
I

c:
RESEARCt-I, INC.

CRAY X-MP AND CRAY-1®
COMPUTER SYSTEMS

FORTRAN (eFT)
REFERENCE MANUAL

SR-0009

Gopyright© 1976, 1977, 1978,1979,1980,1981,1982,1983,1984,
1986 by Gray Research, Inc. This manual or parts thereof may not
be reproduced in any form unless permitted by contract or by
written permission of Gray Research, Inc.

C=li=li~'V
RECORD OF REVISION RESEARCH, INC. PUBLICATION NUMBER SR-0009

Each time this manual is revised and reprinted. all changes issued against the previous version are incorporated into the new version
and the new version is assigned an alphabetic level.

Every page changed by a reprint with revision has the revision level in the lower righthand corner. Changes to part of a page are noted
by a change bar In the margin directly opposite the change. A change bar in the margin opposite the pa~e number indicates that the
entire page is new. If the manual is rewritten. the revision level changes but the manual does not contaIn change bars.

Requests for copies of Cray Research. Inc. publications should be directed to the Distribution Center and comments about these
publications should be directed to:

CRAY RESEARCH, INC.
2520 Pilot Knob Road
Suite 310
Mendota Heights, Minnesota 55120

Revision

A

B

C

C-01

C-02

D

D-01

SR-0009

Description

July 1976 - Preliminary distribution, copies

February 1977 - First printing. Since changes are very
extensive, they are not noted by change bars.

November 1977 - Second printing. Since this represents a
complete rewrite, changes are not noted by change bars.

April 1978 - Updates the manual to be in full agreement with
the April 1978 release of the CRAY-1 FORTRAN Compiler (eFT)
Version 1.01.

July 1978 - Included in this change packet, which brings the
manual into agreement with the FORTRAN Compiler Version 1.02,
is a new description of listable output, changes to the type
statements, the addition of several utility procedures, and
several new messages.

October 1978 - This change packet brings the manual
agreement with the FORTRAN compiler, Version 1.03.
includes the FLOWTRACE directive, new eFT messages,
table list option, and the ABORT subroutine.

into
It
DO-loop

January 1979 - Reprint. This printing brings the manual into
agreement with the FORTRAN compiler, Version 1.04. Major
changes include DO-variable usage; addition of ERR and END to
the control information list; scheduler directives; the TRUNC
parameter on the eFT card; M, R, and W compiler options;
vector and code generation information with intrinsic
functions and utility procedures; new subroutines ERREXIT,
REMARK2, and TRBK; and new eFT messages.

April 1979 - This change packet brings the manual into
agreement with version 1.05 of the FORTRAN compiler. Major
changes include the alternate return feature, upper and lower
bounds of DIMENSION declarators, and the NAMELIST statement.

ii L

E April 1979 - This reV1S10n is the same as Revision D with
change packet D-01 incorporated.

E-01

E-02

E-03

F

F-01

G

G-01

SR-0009

July 1979 - This change packet brings the manual into
agreement with version 1.06 of the eFT compiler. Major
changes include conditional block statements ELSE IF, block
IF, ELSE, and END IF; a new eFT directive BOUNDS; a new
compiler option, 0; a debugging utility, SYMDEBUG; and new eFT
messages. Minor changes include clarification of Boolean
arithmetic concepts and the introduction of dynamic memory
allocation.

July 1979 - This change packet corrects a technical error
appearing on page 6-6 of the E-01 change packet.

It also replaces pages inadvertently deleted by the E-01
change packet.

December 1979 - This change packet brings the manual into
agreement with version 1.07 of the eFT compiler. Major
changes include a symbolic debug package, enabled by the eFT
control statement option Z; utility procedures that permit or
prohibit floating-point interrupts and that determine the
current floating-point interrupt mode; an enhancement to the
editing process that allows D, E, F, G, and 0 format
specifications to edit both real and double-precision list
items; and reprieve processing routines.

December 1979 - This reprint includes change packets E-01,
E-02, and E-03. It contains no other changes.

April 1980 - This change packet brings the manual into
agreement with version 1.08 of the eFT compiler. Major
changes include lower-case letters in the eFT character set,
character constants, the POINTER statement, full
implementation of reprieve processing, new subprograms REMARKF
and DUMPJOB, new eFT messages, and unblocked I/O.

May 1980 - This revision is the same as Revision F with change
packet F-01 incorporated.

October 1980 - This change packet brings the manual into
agreement with version 1.09 of the CFT compiler. Major
changes include arithmetic constant expressions; the IMPLICIT
NONE statement; the implementation of the PAUSE statement;
sequential, direct, and random access; file identifiers in
input/output statements; the INQUIRE, OPEN, and CLOSE
statements; further clarification on vector operations; page
header lines on listable output; a new flowtrace routine,
FLODUMP; a new eFT parameter, AIDS; and new eFT messages.

iii L

H

H-01

I

J

J-01

SR-0009

August 1981 - Rewrite. With this printing, the manual has
been completely reorganized and updated to agree with version
1.10 of the CFT compiler. Major changes include adherence to
ANSI X3.9-1978 (FORTRAN 77), including the character data type
and the generic function feature and adding list-directed
I/O. Other miscellaneous changes were also added. Changes
are not noted by change bars. All previous versions are
obsolete.

August 1982 - This change packet brings the manual into
agreement with version 1.10 of the CFT compiler. Major
changes include adding to the comment lines description; new
intrinsic func~ion names; new internal file restrictions,
changing the INQUIRE table, the OPEN table, and the CLOSE
table; adding to the CLOSE statement description and the
NAMELIST statement description; moving time functions, Boolean
functions, and vectorization aids from Appendix C to Appendix
B; new CFT messages; and the Hollerith format specification.

November 1982 - This revision is the same as Revision H with
change packet H-01 incorporated.

April 1983 - This reprint with reV1S10n brings the manual into
agreement with version 1.11 of the CFT compiler. The formats
of the following have changed: character substring, CHARACTER
type statement, COMMON statement, FORMAT statement, CALL
statement, SUBROUTINE statement, RETURN statement, and INT24
directive. The following are additions: DATA statement
restrictions; information to program control statements and
input/output statements; user control subroutine; the MAXBLOCK
and INT parameters on the CFT control statement; optimization
options; the INT64 integer control directive; the
multiply/divide directives (FASTMD, SLOWMD); the optimization
directives NO SIDE EFFECTS, ALIGN, NOIFCON, and RESUMEIFCON;
and vectorization and optimization information to Cray FORTRAN
programming. The following items have changes: nonrepeatable
edit descriptors and the format specifications. The calling
sequence information was moved from Appendix F to the Macros
and Opdefs Reference Manual, CRI publication SR-0012. The
console attention handler information was removed from
Appendix I.

July 1983 - This change packet brings the manual into
agreement with the CFT 1.11 release. Changing the default of
IF optimization from OPT=PARTIALIFCON to OPT=NOIFCON on the
CFT control statement is the only major change. Miscellaneous
technical and editorial changes are also included.

iv L

J-02

J-03

K

L

January 1984 - This change packet brings the manual into
agreement with the CFT 1.13 release. The eFT release has been
numbered 1.13 in conjunction with the 1.13 COS release. Major
changes include the addition of: reentrancy support; new
instruction scheduler; gather/scatter; dollar sign editing;
the ALLOC, CPU, DEBUG, and SAVEALL control statement
parameters; SAFEDOREP, FULLDOREP, NODOREP, INVMOV, NOINVMOV,
UNSAFEIF, SAFEIF, BL, NOBL, BTREG, and NOBTREG control
statement options; the U compiler option; UNSAFEIF, SAFEIF,
BL, and NOBL scheduler directives; RESUMEDOREP and NODOREP
optimization directives; implementing the ALIGN directive;
DEBUG and NODEBUG directives; dependency information;
population parity count Boolean function; and new eFT
messages. The M and Y compiler options, the SCHED/NOSCH
compiler directives, and several CFT messages have been
removed. Miscellaneous technical and editorial changes are
also included.

December 1984 - This change packet brings the manual into
agreement with the CFT 1.14 release. Major changes include
the addition of: extended memory common blocks; task common
blocks; the EDN, UNROLL, and ANSI control statement
parameters; the CVL/NOCVL and KEEPTEMP/KILLTEMP control
statement options; CPU control statement parameter
characteristics; table of parameters encountered; ROLL/UNROLL
compiler directives; IVDMO vectorization control directive;
CVL/NOCVL optimization directives; conditional vector loops;
compressed index references; Bidirectional Memory; new CFT
messages; and the FTREF utility. Miscellaneous technical and
editorial changes are also included.

January 1986 - This revision is the same as revision J with
change packets J-01, J-02 and J-03 incorporated. No other
changes have been made.

February 1986 - This rewrite brings the manual into agreement
with the eFT 1.15 under both COS 1.15 and UNICOSt 1.0. This
revision obsoletes previous editions of the manual. Features
incorporated into this rewrite include: correction of Boolean
inconsistencies, code and data separation, CPU targeting,
Do-loop table enhancements, generalized loop Clls (CIVs),
extension of local data addressability, initialization of
stack variables to undefined values (INDEF), update to
FLOWTRACE, vectorization of search loops, the LOOPMARK
utility, function and subroutine recursion, and support for
Cray C and Cray Pascal external procedures. Miscellaneous
technical and editorial changes are also included.

t UNICOS is a trademark of Cray Research, Inc. and is derived from the
AT&T UNIX system; UNIX is a trademark of AT&T Bell Laboratories.

SR-0009 v L

PREFACE

The Cray FORTRAN (CFT) Compiler translates FORTRAN language statements
into Cray Assembly Language (CAL) programs that make effective use of the
CRAY'X-MP and CRAY-l Computer Systems. This manual describes the Cray
FORTRAN language in its entirety; related characteristics of the Cray
operating systems COS and UNICOS are described where applicable.

This manual is a reference manual for CFT programmers. The programmer is
assumed to have a working knowledge of the FORTRAN programming language.
However, when basic terms and concepts are being defined, they are
italicized.

Related publications for the Cray FORTRAN programmer are:

SR-OOll
SR-0012
SM-0017
SR-0039
SR-Ol12
SR-Ol13
SN-0222
SR-2011

SR-0009

COS Version 1 Reference Manual
Macros and Opdefs Reference Manual
FORTRAN (CFT) Internal Reference Manual
COS Message Manual
Symbolic Debugging Package Reference Manual
Programmer's Library Reference Manual
CRAY X-MP Multitasking Programmer's Manual
UNICOS Commands Reference Manual

vii L

CONTENTS

PREFACE • • • • • • • • • • • • • • . • • • • • • • • • • • • • .• vii

1. THE CFT COMPILER • • • • • • • • • •

1.1

1.2
1.3
1.4
1.5

1.6

SR-0009

THE COS CFT CONTROL STATEMENT
1.1.1 Allocation of variables to storage.
THE UNICOS CFT COMMAND • • • • • • • • • • •
COS ERROR MESSAGES DURING PROGRAM EXECUTION
INPUT TO CFT • • • • • • • • • • • •
OUTPUT FROM CFT • • • • . • . • • •
1.5.1 Page header lines ••.•
1.5.2 Source statement listings .••••
1.5.3 Block begins messages
1.5.4 Table of statement numbers.
1.5.5 Table of names encountered •

1.5.5.1 Address field
1.5.5.2
1.5.5.3
1.5.5.4
1.5.5.5

Name field • • . •
Type field • • • •
Main usage field •
Block field

1.5.6 Table of parameters encountered •••.
1.5.7 Table of block names and lengths in octal
1.5.8 Static Space Table anad Stack Space Table
1.5.9 Table of external names
1.5.10 Table of loops encountered •••
1.5.11 Cross-reference information ••••
1 • 5 • 12 Me s sage s • • • • • • •• ••••••••
1.5.13 Program Unit Page Table ••••••••
COMPILER DIRECTIVES • • • • • •
1.6.1 Using compiler directive lines.
1.6.2 Categories of compiler directives

1.6.2.1 Listable output control directives
1.6.2.2 Vectorization control directives.
1.6.2.3 Integer control directives (INT24,

1.6.2.4

1.6.2.5
1.6.2.6
1.6.2.7

1.6.2.8

INT64) • • . • . • • • . • • . • .
Multiply/divide directives (FASTMD,
SLOWMD) •••..••••..•.••
Flow trace directives (FLOW/NOFLOW)
Scheduler directives
Dynamic common block directive
(DYNAMIC) .••••••••••
Array bounds checking directive
(BOUNDS) • • • • • • • • • • • •

ix

1-1

1-1
1-10
1-13
1-20
1-20
1-20
1-21
1-21
1-21
1-22
1-22
1-22
1-22
1-22
1-24
1-24
1-25
1-25
1-25
1-26
1-26
1-27
1-28
1-28
1-28
1-29
1-29
1-30
1-31

1-36

1-36
1-37
1-40

1-40

1-41

L

1.6.2 Categories of compiler directives (continued)
1.6.2.9 Optimization directives · · · · · 1-42
1.6.2.10 Debugging directives (DEBUG, NODEBUG) 1-45
1.6.2.11 ROLL/UNROLL directives · 1-46

1.7 EXTERNAL ROUTINES · · · · · · · · · · · · · · · · · , · 1-46

2. PROGRAM STRUCTURE · · · · · · · · · · · · · 2-1

2.1 THE EXECUTABLE PROGRAM · · · · · · · · · · 2-1
2.2 PROGRAM UNITS · · · · · · · · · · · · · · · · 2-3

2.2.1 Program statement · · · · 2-3
2.3 FUNCTIONS · · · · · · · · · · · · · 2-4

2.3.1 Function reference · · · · · · · · · 2-5
2.3.2 Statement functions · · · · 2-5

2.3.2.1 Statement function definition
statement · · · · · · · · · · · 2-6

2.3.3 Intrinsic functions · · · · · · · · · · · · · · 2-8
2.3.3.1 Referencing intrinsic functions 2-8
2.3.3.2 Restrictions · · · • · · · · · · 2-8

2.4 SUBPROGRAMS · · · · · · · · · · · · · · · · · 2-9
2.4.1 Recursion in subprograms · · · · · · · · · · 2-10
2.4.2 External functions and function subprograms 2-11

2.4.2.1 External functions · · · · · · · · · · 2-11
2.4.2.2 Function subprograms · · · · · 2-12
2.4.2.3 FUNCTION statement · · · · · · · · 2-12

2.4.3 Subroutines and subroutine subprograms · · · · · 2-13
2.4.3.1 Requirements · · · · · 2-13
2.4.3.2 SUBROUTINE statement · · · · · · · 2-14
2.4.3.3 CALL statement (subroutine reference) 2-14

2.4.4 Statements for using subprograms · · · · · 2..,16
2.4.4.1 ENTRY statement · · · 2-16
2.4.4.2 RETURN statement · · · · · · 2-17

2.4.5 SAVE statement · · · · · · · · · · 2-18
2.4.6 Block data subprograms · · 2-19

2.4.6.1 BLOCK DATA statement · · · · · 2-20
2.5 ARGUMENTS · 2-20

2.S.1 Association of arguments · · · · · · · · · · · · 2-21
2.S.2 Actual arguments for external procedures · 2-22
2.5.3 Dummy arguments · · · · · · · 2-23
2.5.4 Dummy procedures · · · · · · · · 2-24

2.5.4.1 EXTERNAL statement · · · · · 2-24
2.S.4.2 INTRINSIC statement · · · · · · · 2-2S

3. DATA TYPES . . . · · · · · · · · · · · · · · 3-1

3.1 DATA SPECIFICATION STATEMENTS · · · · 3-2
3.1.1 Type statements · · 3-3
3.1.2 IMPLICIT statement · · · · · 3-4
3.1.3 IMPLICIT NONE statement (CFT extension) · · · · 3-S

3.2 INTEGER TYPE · · · · · · · · · · · · · · · · · · 3-S

SR-0009 x L

3. DATA TYPES (continued)

3.3
3.4
3.5
3.6
3.7
3.8

3.9

REAL TYPE " •••
DOUBLE-PRECISION TYPE
COMPLEX TYPE
BOOLEAN TYPE • • •
LOGICAL TYPE • •
CHARACTER TYPE • • • • • .
3.8.1 Character type statement
3.8.2 Character substrings ••
3.8.3 Arguments of type character
POINTERS • • • • • • • • • • •
3.9.1
3.9.2

POINTER statement (CFT extension)
Restrictions • • • • .

3-6
3-7
3-7
3-8
3-10
3-10
3-11
3-12
3-12
3-13
3-14
3-16

4. DATA STRUCTURES, STORAGE, AND ASSOCIATION • 4-1

4.1

4.2
4.3

4.4

4.5

4.6

SR-0009

CONSTANTS .• • • • • . . •
4.1.1 PARAMETER statement
VARIABLES •• • • • • .
ARRAYS
4.3.1
4.3.2

Dummy and actual arrays • • . .
Constant, adjustable, assumed-size and pointee

4.3.3
4.3.4

4.3.5

4.3.6

arrays • • • • • • • •
DIMENSION statement
Array declarators • • • • •
4.3.4.1 Kinds of array declarators
4.3.4.2 Adjustable array declarators
Array elements and subscripts • • • •
4.3.5.1 Array subscripts and storage
Array size • • . • • • • • • • • • • •
4.3.6.1 Size of an assumed-size array
4.3.6.2 Maximum array size

4.3.7 Arrays as arguments ••••
4.3.8 Use of array names •••••
DATA STATEMENT • • • • . • • • • • •

sequence

4-1
4-1
4-2
4-3
4-4

4-4
4-5
4-5
4-7
4-7
4-7
4-9
4-11
4-11
4-12
4-12
4-13
4-14

4.4.1 Implied-DO list in a DATA statement 4-15
4.4.2
STORAGE
4.5.1
4.5.2
4.5.3
4.5.4
4.5.5

COMMON
4.6.1
4.6.2

Data types in a DATA statement • • • • • . 4-16
AND ASSOCIATION • • • • •••••••• 4-17
Storage units and sequences
Static and stack storage
Definition . •
Association of entities • • • • • • • • • .
EQUIVALENCE statement • • • •
4.5.5.1 Array names and array element names
4.5.5.2 Restrictions on EQUIVALENCE statements

BLOCKS
COMMON statement .
Referencing common blocks

xi

4-17
4-18
4-18
4-19
4-20
4-21
4-21
4-22
4-23
4-23

L

5.

6.

4.6

4.7

COMMON BLOCKS (continued)
4.6.3 Common block names ••••••
4.6.4 Common block storage sequence
4.6.5 Common block size ••••
4.6.6 Extended memory common blocks
4.6.7 Task common statement
SYMBOLIC NAMES • • • • • • • •
4.7.1 Scope of symbolic names ••••••

4.7.1.1 Global entities
4.7.1.2 Loeal entities • •

EXPRESSIONS AND ASSIGNMENT • •

5.1

5.2

5.3

5.4

5.5

ARTHMETIC EXPRESSIONS • • • . • • • • • •
5.1.1 Arithmetic assignment statement •••••••.
5.1.2 Arithmetic operators .•••••••••••••

5.1.3

5.1.4

5.1.5

5.1.2.1 Precedence of arithmetic operators
Arithmetic operands
5.1.3.1 Primaries
5.1.3.2 Factors
5.1.3.3 Terms •••••••••••
5.1.3.4 Arithmetic expressions ••••••
Data type of arithmetic expressions • • • •
5.1.4.1 Type conversion •••••••••
Considerations in evaluating arithmetic
expressions • • • • • • • • •

CHARACTER EXPRESSIONS • • • •
5.2.1 Character assignment statement •••••••
5.2.2 Character expression evaluation ••••
5.2.3 Hollerith type ••••••••••
RELATIONAL EXPRESSIONS • • • • • • • • • •
5.3.1 Arithmetic relational expressions
5.3.2 Character relational expressions
LOGICAL EXPRESSIONS • • • • • • • • • •
5.4.1 Logical assignment statement ••••
5.4.2 Logical operators ••••
5.4.3 Form and interpretation of logical expressions.
MASKING EXPRESSIONS • • • • • • • • • • • • • • • • • •

PROGRAM CONTROL STATEMENTS

6.1

6.2
6.3
6.4

GOTO STATEMENTS • • • • • • •
6.1.1 Conditional GOTO statement.
6.1.2 Computed GOTO statement ••••••
6.1.3 Assigned GOTO statement
ARITHMETIC IF STATEMENT . • • . . • • • • .
LOGICAL IF STATEMENT • • .
CONDITIONAL BLOCKS • • • •
6.4.1 Block IF statement.

SR-0009 xii

4-24
4-24
4-25
4-25
4-25
4-26
4-27
4-27
4-27

5-1

5-2
5-3
5-4
5-5
5-6
5-6
5-7
5-7
5-7
5-8
5-11

5-12
5-13
5-13
5-14
5-14
5-14
5-16
5-16
5-16
5-17
5-17
5-19
5-20

6-1

6-1
6-1
6-2
6-3
6-3
6-4
6-5
6-6

L

6.4

6.5

6.6
6.7
6.8

CONDITIONAL BLOCKS (continued)
6.4.2 ENDIF statement ••••.
6.4.3 ELSEIF statement
6.4.4 ELSE statement •
DO LOOPS • • . . • • .
6.5.1 DO variable
6.5.2 Executing a DO statement.
6.5.3 Loop control processing
6.5.4 DO statement ••••
6.5.5 Terminal statement.
6.5.6 CONTINUE statement.
STOP STATEMENT • •
PAUSE STATEMENT
END STATEMENT

7. INPUT/OUTPUT STATEMENTS

7.1

7.2
7.3
7.4
7.5

7.6
7.7

7.8

7.9

7.10

SR-0009

INPUT/OUTPUT RECORDS •
7.1.1
7.1.2
7.1.3

Formatted records . • • • •
Unformatted records
End-of-file (endfile) records

7.1.4 End-of-data records
INPUT/OUTPUT FILES •
COS DATASETS • • • • • . . •
INTERNAL RECORDS AND FILES • . .
EXTERNAL FILE ACCESS METHODS .
7.5.1 File position after data transfer

7.5.1.1 Sequential access
7.5.1.2 Direct access

UNITS
IDENTIFIERS • • • •
7.7.1 Unit identifiers .•
7.7.2 File identifiers.
7.7.3 Format identifiers •....•.•••
DATA TRANSFER STATEMENTS • •
7.8.1 Control information lists
7.8.2 I/O lists •.•.•.•.

7.8.2.1 Input list items
7.8.2.2 Output list items
7.8.2.3 Implied DO lists.

DATA TRANSFER OPERATIONS • . . • . . .
7.9.1 Identifying a unit•
7.9.2 Establishing a format .•..
7.9.3 Transferring data

7.9.3.1 Unformatted data transfer
7.9.3.2 Formatted data transfer

7.9.4 Output to a printer ..•...
7.9.5 Error and end-of-file conditions ..••.
SEQUENTIAL FILE STATEMENTS .
7.10.1 BACKSPACE statement •.•..•••

xiii

6-6
6-6
6-7
6-7
6-8
6-8
6-9
6-11
6-11
6-11
6-12
6-12
6-13

7-1

7-2
7-2
7-2
7-2
7-4
7-4
7-4
7-5
7-6
7-7
7-7
7-7
7-7
7-8
7-8
7-8
7-9
7-9
7-10
7-12
7-12
7-12
7-13
7-14
7-14
7-14
7-14
7-15
7-15
7-16
7-16
7-17
7-18

L

8.

7.10

7.11

7.12
7.13
7.14

7.15

7.16

7.17
7.18

SEQUENTIAL FILE STATEMENTS (continued)
7.10.2 ENDFILE statement
7.10.3 REWIND statement.
INQUIRE STATEMENT • • • • • • • •
7.11.1 Inquiry by file name •••••• • •••
7.11.2 Inquiry by unit ••••
7.11.3 INQUIRE statement restrictions ••••
OPEN STATEMENT • • • • • • • • • • • • • • •
CLOSE STATEMENT • • • • • • • • • •
NAMELIST STATEMENT (CFT EXTENSION)
7.14.1 NAMELIST input ••••••••••

7.14.1.1 NAMELIST input variables.
7.14.1.2 NAMELIST input processing
7.14.1.3 User control subroutines.

7.14.2

BUFFER
7.15.1
7.15.2
RANDOM
7.16.1
7.16.2

NAMELIST output • • • • • • • • • •
7.14.2.1 User control subroutines. • •••

IN AND BUFFER OUT STATEMENTS (CFT EXTENSIONS)
The unit function (CFT extension)
The length function (CFT extension)

INPUT/OUTPUT OPERATIONS • • • • • • •
Creating a dataset for random access
Dataset connection • • • • • • • • • • .
7.16.2.1 Positioning while connected for random

access (GETPOS/SETPOS) •••
7.16.3 Modifying a record under random access.
RESTRICTIONS ON INPUT/OUTPUT STATEMENTS
I/O ERROR RECOVERY • • • • • • • • • • • • • •

7-18
7-19
7-19
7-19
7-20
7-23
7-23
7-24
7-27
7-28
7-29
7-30
7-30
7-32
7-33
7-35
7-37
7-38
7-38
7-38
7-39

7-39
7-40
7-40
7-40

7.19 CHANGING MAXIMUM LENGTH FOR I/O LISTS AND FORMAT
SPECIFICATIONS • • • • • • • • • • • • • • • • • 7 -41
7.19.1 Changing I/O buffer lengths using SEGLDR

directives • • • • • • • • • • • • • • • 7-41
7.19.2 Changing I/O buffer lengths by regenerating

SIOLIB . • • • • • • . • • • • • • • • • • • 7 -41

INPUT/OUTPUT FORMATTING 8-1.

8.1
8.2

8.3
8.4

UNFORMATTED I/O
LIST-DIRECTED I/O
8.2.1 List-directed input
8.2.2 List-directed output
FORMAT STATEMENTS • • • • .
EDIT DESCRIPTORS • . • • • •
8.4.1 Interaction betwwen I/O lists and format

8.4.2
8.4.3
8.4.4
8.4.5

specifications • • • • • • • • • • • • •
Positioning by format control • • • • •
Apostrophe and quotation mark editing
H editing
positional editing (T, TL, TR, and X) •••••
8.4.5.1 T, TL, and TR editing
8.4.5.2 X editing • • • • • • •

8-1
8-2
8-3
8-4
8-5
8-6

8-10
8-11
8-12
8-12
8-13
8-13
8-14

SR-0009 xiv L

8.4 EDIT DESCRIPTORS (continued)
8.4.6 Slash editing · · · · · · · 8-14
8.4.7 Colon editing · · · · · · 8-15
8.4.8 Dollar sign editing (CFT extension) 8-15
8.4.9 P editing . · · · · · · · · · · · · · · 8-16
8.4.10 Numeric editing (BN, BZ, S, SP, SS; I, F, E, D,

and G) . · · · · · · · · 8-17
8.4.10.1 BN and BZ editing 8-18
8.4.10.2 S, SP, and SS editing · · · · · 8-18
8.4.10.3 Integer editing · · · · · · 8-18
8.4.10.4 F editing · · · · · · 8-19
8.4.10.5 E editing · · · · · · · · · · · · 8-21
8.4.10.6 D (double-precision) editing · · · · · 8-23
8.4.10.7 G editing · · · · · 8-23

8.4.11 Complex editing · · · · · · · · · · · · · · · · 8-25
8.4.12 0 (octal) editing (CFT extension) · · · · · 8-25
8.4.13 Z (hexadecimal) editing (CFT extension) · · · · 8-25
8.4.14 L (logical) editing · · · · · · · · · · · 8-26
8.4.15 A (alphanumeric) editing · · · · · · · · · · · · 8-27
8.4.16 R (right-justified) editing (CFT extension) 8-28

9. CRAY FORTRAN PROGRAMMING . · · · · · · · · 9-1
9.1 VECTORIZABLE DO LOOPS · · · · · · · · 9-1

9.1.1 Qualifications for vectorization · · · 9-1
9.1.2 Entity categories · · · · · · · · 9-2
9.1.3 Dependencies · · · · · · · · · · · · · · · · 9-5
9.1.4 Conditional vector loops · · 9-11
9.1.5 Vectorization with arrays 9-11
9.1.6 Using optimized routines · 9-13
9.1.7 Use of optimized routines by CFT · 9-13

9.1.7.1 Conditional statements · · · · · · 9-15
9.1.8 Compressed index reference · · · 9-18
9.1.9 General guidelines for vectorization · 9-18

9.2 BIDIRECTIONAL MEMORY · · · · · · · · · · · · · 9-19

APPENDIX SECTION

A. CHARACTER SET A-1

B. CRAY FORTRAN INTRINSIC FUNCTIONS • • • • • B-1

B.1 CSMG (CRAY SCALAR MERGE) FUNCTION B-12

C. CRAY FORTRAN UTILITY PROCEDURES C-1

SR-0009 xv L

D.

E.

F.

G.

H.

I.

J.

CFT MESSAGES • • •

D.1
D.2
D.3
D.4

COMPILE-TIME MESSAGES
LOGFILE MESSAGES • • •
NOVECTOR MESSAGES
INFORMATIVE DEPENDENCY MESSAGES

OUTMODED FEATURES

E.1 HOLLERITH DATA •

D-1

D-2
D-27
D-29
D-38

E-1

E-2
E.1.1 Hollerith expressions • • • • • E-4

E.1.1.1 Hollerith relational expressions. E-S

E.2
E.3
E.4

E.S
E.6
E.7
E.8
E.9
E.10
E.l1

E.1.2 Hollerith format specification.
TWO-BRANCH ARITHMETIC IF STATEMENTS
INDIRECT LOGICAL IF STATEMENTS • • • •
FO~MATTED DATA ASSIGNMENT
E.4.1 ENCODE and DECODE statements ••••.

E.4.l.1 The ENCODE statement.
E.4.l.2 The DECODE statement.

EDIT DESCRIPTORS
DOUBLE DECLARATION STATEMENTS
DATA STATEMENT FEATURES
PUNCH STATEMENT • • . • • • •
TYPE STATEMENT DATA LENGTH • •
EXTENDED RANGE OF A DO LOOP
NONCHARACTER ARRAYS FOR FORMAT SPECIFICATION •
E.11.1 EOF, IEOF, and IOSTAT functions

CREATING NON-FORTRAN PROCEDURES

F.1
F.2
F.3

CAL
CRAY PASCAL
CRAY C . • • •

SYMBOLIC DEBUG PACKAGE • . • • • • • • . • • • •

UNBLOCKED DATASETS • • . • • • . • . • • • • • • • • • • • • •

REPRIEVE PROCESSING

1.1
1.2

REPRIEVE INITIATION
REPRIEVE TERMINATION

FTREF UTILITY

E-6
E-6
E-7
E-7
E-7
E-8
E-9
E-9
E-10
E-1l
E-11
E-1l
E-13
E-13
E-13

F-l

F-1
F-l
F-2

G-1

H-l

1-1

1-1
1-2

J-1

SR-0009 xvi L

FIGURES

2-1
4-1
4-2

Subcategories of FORTRAN Terms (Program Units Boxed) ••••
Array Specification and Size • • . • • • • • •
Storage Sequence for a Three-dimensional Array . • • •

TABLES

1-1
1-2
1-3
3-1
4-1
5-1
5-2
5-3
5-4
5-5

5-6
5-7
5-8
7-1
7-2
7-3
7-4
7-5
8-1
8-2
8-3
8-4

9-1
9-2
A-1
B-1
B-2
B-3
B-4
B-5
B-6
B-7
B-8
8-9
8-10
B-11
C-1
E-1

INDEX

Compiler Options Under COS . • • • •
Compiler Options Under UNICOS • . . • • • • • • • • •
External Routines • • • • • • • . . • • •
Values Represented in Different Data Types • • • • • . • • .
Subscript Evaluation • • • • •
Allowed Assignment Statements: y=x •••••..••••..
Arithmetic Operators and Their Use in Expressions .
Use of Data Types with Arithmetic Operations: +, -, *, / ..
Data Types in Exponentiation: **..
Data Types in Relational Operations: .EQ.,.NE.,.GT.,.GE.,
.LT. ,LE.•••..
Logical Operators • • • • • • . • . . . • . • • •
Meanings of Logical Operators • • . . . • . • • . • • . •
Allowed Logical and Masking Operations and Result Types .
CFT Input/Output Statements . • . • •
Print Control Characters • . • • • •
INQUIRE Specifiers and Their Meanings . • • • • •
OPEN Specifiers and Their Meanings
CLOSE Specifiers and Their Meanings •
Repeatable Edit Descriptors . • •
Nonrepeatable Edit Descriptors . • • •
Edit Descriptors with Data Types • • • •
Edit Descriptors and Data Types When SEGLDR and the EQUIV
Directive Are Used • . • • • • • •
Array A elements in vector and scalar modes •
Dependency information combinations .
Character Set • • . • • • . . •
Generic Arithmetic Functions • . • • . . • .
Trigonometric Functions (Angles in Radians) •
Exponential Functions • • • .
Logarithmic Functions • • • . . • .
Maximum/Minimum Functions • • • • • •
Character Functions • • • • .
Type Conversion Functions
Boolean Functions . • •
Time and Date Functions .
Miscellaneous Functions •
Vectorization Functions .
CFT Utility Procedures
Data Length

SR-0009 xvii

2-2
4-8
4-10

1-12
1-18
1-46
3-16
4-11
5-4
5-5
5-9
5-10

5-15
5-18
5-18
5-21
7-1
7-16
7-20
7-25
7-27
8-7
8-8
8-9

8-10
9-5
9-7
A-2
B-2
B-4
B-5
B-6
B-6
B-7
B-7
B-9
B-l1
B-11
B-12
C-2
E-12

L

1. THE CFT COMPILER

The Cray FORTRAN Compiler (CFT) transforms a Cray FORTRAN language
program into a relocatable binary program that can be loaded and executed
on the CRAY-1 or CRAY X-MP Computer System.

CFT can be used with the Cray operating system COS or the Cray operating
system UNICOS. The COS and UNICOS compiler call formats are described
separately in this section.

1.1 THE COS CFT CONTROL STATEMENT

Under COS, the CFT compiler is loaded and executed when a CFT control
statement is encountered in the control statement stream.

Format:

CFT,AIDs=aids,ALLOC=alloc,ANSI,B=bdn,C=cdn,CPu=cputype:

cpuchar,DEBUG,E=eml,EDN=edn,I=idn,INDEF,INT=il,L=ldn,

LOOPMARK=lmmsgs,MAXBLOCK=mb,OFF=Opts,ON=Opts,OPT=optim,

SAVEALL,TRUNC=tr,UNROLL=r.

Options can be in any order. If a keyword and option are omitted from
the statement, the compiler uses a default value. The following control
statement shows the default values for all options.

CFT,AIDS=LOOPPART,ALLOC=STATIC,B=$BLD,CPu=(characteristics of
machine executing eFT statement),E=3,I=$IN,INT=64,L=$OUT,
MAXBLOCK=2310,OFF=ABDFGHIJMNOWXZ,ON=CELPQRSTUV,OPT=BL:NOBTREG:
CVL:INVMOV:SLOWMD:KEEPTEMP:NOIFCON:SAFEIF:SAFEDOREP:NOZEROINC,
TRUNC=O,UNROLL=3.

A left parenthesis can be used in place of the first comma. A right
parenthesis can be used in place of the period. If all options are
omitted, a period can be used in place of empty parentheses. Dataset
names are limited to 7 characters.

SR-0009 1-1 L

The compiler does not reposition datasets before or after compilation.

AIDS=aids Controls number of vectorization inhibition
messages to be listed. aids can be one of the following.

aids

LOOPNONE

LOOPPART

LOOP ALL

Description

No messages issued

Maximum of 3 messages per inner DO loop up
to a total of 100 messages per compilation
(default option)

All messages issued

ALLOC=alloc
Specifies memory allocation scheme for entities in memory.
alloc can be one of the following.

STATIC

STACK

Description

All memory is statically allocated; a stack
is not used (default option). (See the
SAVEALL parameter, BTREG control statement
option, and subsection 1.1.1, Allocation of
Variables to Storage.)

Read-only constants and entities in a DATA
statement, SAVE statement, or a common block
are statically allocated. All other
entities are allocated on the stack.

ANSI Enables non-ANSI messages to be printed at compile time.

B=bdn

SR-0009

Some of these messages have a NOTE, CAUTION, or WARNING
severity type when ANSI is not selected as an option.
Specifying ANSI on the CFT control statement causes CFT to
further analyze the compiled code and detect more
occurrences of nonstandard FORTRAN. When ANSI is
specified, messages indicating nonstandard code are issued
with the prefix NON-ANSI instead of NOTE, CAUTION, or
WARNING. A count of the non-ANSI messages is placed in the
logfile. When ANSI is used, non-ANSI messages are issued
regardless of the severity type of CFT messages selected
with the E parameter. ANSI is disabled by default.

Name of dataset on which compiler writes binary load
modules; default is $BLD. If B=O, no binary load files are
written. An end of file is not written.

1-2 L

C=cdn Name of pseudo Cray Assembly Language (CAL) dataset;
default is no dataset. This option provides for the
generation of a text file that contains acceptable input to
the CAL assembler with minor manual corrections. DATA
statements are not supported with this option. It is
intended to be used for hand coding of inner loops for
enhanced efficiency.

cpu=cputype:cpuchar

SR-0009

Specifies mainframe type and optional mainframe
characteristics running the generated code; default is
obtained from the operating system. Separate
characteristics must be separated by commas.

cputype Description

CRAY-1A Generates code for CRAY-1 A Computer Systems
CRAY-1B Generates code for CRAY-1 B Computer Systems
CRAY-1M Generates code for CRAY-1 M Computer Systems
CRAY-1S Generates code for CRAY-1 S Computer Systems
CRAY-XMP Generates code for any CRAY X-MP Computer

System
CRAY-X1 Generates code for single-processor

CRAY X-MP Computer Systems
CRAY-X2 Generates code for dual-processor CRAY X-MP

Computer Systems
CRAY-X4 Generates code for four-processor CRAY X-MP

Computer Systems

characteristics Description

AVLINOAVL

BDMINOBDM

CIINOCI

CIGSINOCIGS

EMAI NOEMA

GSINOGS

IBUFSIZE=words
MEMSPEED=Cps
VPOPINOVPOP

VRECURINOVRECUR

Target machine does/does not have two vector
logical functional units
Target machine does/does not have
bidirectional memory
Target machine does/does not have compressed
index hardware
Target machine does/does not have compressed
index gather/scatter hardware (CIGS implies
CI and GS; NOCIGS implies NOCI and NOGS)
Target machine does/does not have extended
memory addressing
Target machine does/does not have
gather/scatter hardware
Instruction buffer size in words (16 or 32)
Memory speed in clock periods
Target machine does/does not have a vector
population count functional unit
Target machine does/does not have vector
recursion

1-3 L

DEBUG

E=eml

SR-0009

Both cputype and cpuchar are optional. If cputype is
not specified, a default mainframe type and a set of
default characteristics are obtained from the operating
system.

If a mainframe type is specified, unspecified
characteristics are assumed to be the minimum traits for
that mainframe. For example, if CPU=CRAY-X2 is specified,
the following characteristics are assumed.

NOEMA:NOCI:NOGS:NOCIGS:VPOP:NOAVL:
BDM:NOVRECUR:IBUFSIZE=32:MEMSPEED=11

Characteristics specified on the CPU parameter override the
values obtained from the operating system.

Writes sequence number labels at each executable FORTRAN
statement to the Debug Symbol Table, allowing breakpoints
to be set with SID at statement sequence numbers. DEBUG
forces ON=IZ and sets MAXBLOCK=l. DEBUG on the control
statement enables recognition of CDIR$ DEBUG and CDIR$
NODEBUG.

If DEBUG is not specified on the control statement
(default), CDIR$ DEBUG and CDIR$ NODEBUG are ignored and
debugging is turned off for the compilation.

Highest level of severity of CFT-produced messages to be
listed. For example, E=2 allows CAUTION, WARNING, and
ERROR messages to appear. Fatal errors are never
suppressed. Default is E=3. If E=O is specified, no
suppression takes place. The following levels are
available. (Also see the ANSI parameter.)

eml

1

2

3

4

5

Severity Type

COMMENT

NOTE

CAUTION

Description

Comments on programming
inefficiencies (vectorization
messages are controlled by the
AIDS parameter)

May cause problems with other
compilers (Example: non-ANSI 66)

Possible user error (Example: no
path to a statement)

WARNING Probable user error (Example:
using an array with too few
subscripts)

ERROR Fatal error

1-4 L

EDN=edn

I=idn

INDEF

INT=il

L=ldn

Name of dataset rece1v1ng an alternate error listing;
default is no dataset. Error messages with a higher
severity type than E=n type are printed on dataset
edn. Error messages printed to ldn are not affected by
EDN.

Name of dataset containing source input; default is $IN.

Enables the stack frame to be initialized to the octal
value 0605054000000070000000 upon entering a routine.
INDEF causes a floating-point error to occur when
floating-point arithmetic is performed on an uninitialized
real variable, and causes an operand range error to occur
when an uninitialized integer variable is used as an array
subscript. INDEF is ignored if ALLOC=STACK is not
specified.

Length of integers. il values are as follows.

il Description

64 Full 64-bit integers (default option)

24 Short 24-bit integers

Name of dataset to receive list output; default is $OUT.
L=O suppresses all list output except for error messages
written on $OUT. If L=O is specified, individual list
options (see table 1-1) specified by the ON= specification
are overridden.

LOOPMARK[=lmmsgs]

SR-0009

Activates the LOOPMARK utility. LOOPMARK draws brackets
delimiting DO loops in the source code listing. Each loop
is marked with a symbol indicating the type of loop (see
subsection 1.5.9, Table of Loops Encountered). If LOOPMARK
or LOOPMARK=MSGS is specified, a message is printed on the
line following each inner DO loop that did not vectorize,
indicating the reason that the loop did not vectorize.

The lmmsgs parameter indicates whether messages are to be
printed by the LOOPMARK utility.

lmmsgs

MSGS

NOMSGS

Description

Messages are printed for all inner DO loops
that did not vectorize (default if LOOPMARK
is specified alone)

No messages are printed

LOOPMARK implies ON=D. LOOPMARK is disabled by default.

1-5 L

MAXBLOCK=mb
Allows CFT to optimize or vectorize a block of code with a
length up to mb words. Default is 2310 words of internal
intermediate text. Values larger than 2310 may increase
optimization but there may also be internal compiler errors
(the errors may be undetected by CFT). MAXBLOCK=~

eliminates optimization and vectorization.

ON=string Enables compile options (see table 1-1, list of up to 15
characters representing options to be enabled)

OFF=string

OPT=option

SR-0009

Disables list or compile options (see table 1-1, list of up
to 15 characters representing options to be disabled)

Specifies optimization options. When selecting multiple
options, separate values by colons. Option values are:

option Description

NOZEROINC Assumes that constant increment variables
(CIVs) are not incremented by variables with·
the value 0 (default option)

ZEROINC Assumes constant increment variables (CIV)
can be incremented by variables with the
value o. This option inhibits the
vectorization of any DO loop in which there
are CIVs of the form CIV=CIV+VARIABLE.

NOIFCON Disables optimization of conditional
replacement statements of the form
IF(logical exp)var=expression except
where CFT replaces these statements with
MAXIMIN intrinsic functions (default option)

PARTIALIFCON Allows CFT to optimize conditional
replacement statements of the form
IF(logical exp)var=expression if var
is of type integer, real, or logical, and
expression does not involve division or an
external function reference. The
optimization causes CFT to generate code
similar to var=CVMGx(expression,var,condition).
If the optimization is performed, the IF
statement will not inhibit vectorization or
break an optimization block. See CDIR$
NOIFCON and CDIR$ RESUMEIFCON.

1-6 L

option

FULLIFCON

FASTMD

SLOWMD

SAFEDOREP

FULLDOREP

NODOREP

INVMOV

NO I NVMOV

SR-0009

Description

Allows CFT to optimize conditional
replacement statements as described for
PARTIALIFCON; unlike PARTIALIFCON,
conditional replacement statements involving
division and external functions are also
optimized.

Causes CFT to use the fast integer multiply
and divide algorithms. Operands and results
are limited to 46 bits; there is no overflow
protection.

Causes CFT to generate the full 64-bit
integer multiply and divide (default option)

Enables replacement of one-line DO loops
with a call to a $SCILIB routine performing
the same operation more efficiently (default
option). Replacement does not occur when a
one-line DO loop contains potential
dependencies or equivalenced variables.
DO-loop replacement can be disabled and
reenabled within a program unit by
specifying CDIR$ NODOREP and RESUMEDOREP,
respectively.

Enables replacement of one-line DO loops
with a call to a $SCILIB routine performing
the same operation more efficiently.
Potential dependencies and equivalences are
ignored. DO-loop replacement can be
disabled and reenabled within a program unit
by specifying CDIR$ NODOREP and RESUMEDOREP,
respectively.

Disables replacement of one-line DO loops
with a call to a $SCILIB routine. NODOREP
has no effect on vectorization of loops in
the program. When OPT=NODOREP is specified,
CDIR$ RESUMEDOREP is ignored.

Enables movement of invariant code from a
DO~loop body over an IF statement into the
loop preamble (default option)

Disables movement of any invariant code from
the DO-loop body over an IF statement into
the loop preamble

1-7 L

option

UNSAFEIF

SAFEIF

BL

NOBL

BTREG

SR-0009

Description

Enables the instruction scheduler to move
instructions over a branch instruction

Disables instructions moving over a branch
instruction. Prevents movement of a
'floating-point operation or subscripted
reference before the branch of an IF
statement put in to protect the operation
(default option).

Enables scalar loops to be bottom loaded;
operand prefetched over the branch of the
loop (default option).

Disables bottom loading for scalar loops;
intended to obtain correct code where the
subscript for a load would be out of range
if executed.

Causes CFT to allocate certain scalar
variables in a program unit to T registers
during the program unit existence. Some
variables, such as dummy arguments, arrays,
and variables named in SAVE, DATA, COMMON,
or NAMELIST statements and variables named
in I/O control information lists are
allocated to memory.

The maximum number of T registers available
for variable allocation is 25. If there are
fewer than 25 local integer (including
INT24), real, logical, and compiler-generated
variables, the remaining T registers are
used as scratch registers during expression
evaluation. If there are more than 25
variables in a program unit, the first 25
variables in the source code are allocated
to the T registers and the remaining
variables are allocated to memory. Specific
variables can be forced into T registers by
declaring them part of the first 25
variables at the beginning of a program
unit. Variables can be excluded from T
registers by specifying their names in a
SAVE statement.

1-8 L

SR-0009

option Description

BTREG Variables allocated to T registers are not
(continued) initialized upon routine entry and become

undefined when a RETURN or END is executed.
Subprograms depending on local variables
retaining their values across calls, which
violates the ANSI FORTRAN standard, do not
work properly unless the SAVE statement is
used. (See the SAVEALL control statement
option and subsection 1.1.1, Allocation of
Variables to Storage.) The INDEF option
does not affect variables assigned to T
registers.

NOBTREG

CVL

NOCVL

KEEPTEMP

KILLTEMP

Multitasked programs can use the BTREG
option; however, all variables passed as
arguments to a task, through TSKSTART, must
be excluded from T registers (for example,
named in a COMMON or SAVE statement).

Causes CFT to allocate all user variables to
memory. NOBTREG does not affect the
allocation of compiler-generated variables
to B or T registers or the use of B or T
registers temporarily holding values during
expression evaluation. Default is NOBTREG.

Allows CFT to generate both scalar and
vector code for loops with specific
ambiguous dependencies. A run-time test
determines which version is used. Default
is OPT=CVL.

Prevents CFT from generating both scalar and
vector code for loops with ambiguous
dependencies. Only scalar code is generated
for these loops.

Variables used as scalar temporaries will
have the correct updated values when the
vector DO loops execute (default option)

Variables used as scalar temporaries in
vector DO loops do not have their values
updated when the DO loops execute. The
values of the scalar temporaries will be
undefined when the DO loops terminate.

1-9 L·

SAVEALL Compilation occurs as if a SAVE statement with an empty
list was in each program unit. All user variables in a
program unit are allocated to static storage. Compiler­
generated variables are allocated to B or T registers.

SAVEALL overrides OPT=BTREG. SAVEALL can be specified with
ALLOC=STACK, that is, eFT uses the stack only for
compiler-generated variables, argument lists, etc. (See
the BTREG option, the ALLOC parameter, and subsection
1.1.1, Allocation of Variables to Storage)

TRUNC=tr Number of bits to be truncated. Range is 0itri47.
Default is O. Specifies truncation for all floating-point
results. Does not truncate double-precision results,
function results, or constants. Truncated bits are set to
o.

UNROLL=r Specifies that inner DO loops with constant limits
iterating r times or less may use DO-loop unrolling. The
maximum value of r is 9, and the default value is 3.
DO-loop unrolling makes n copies of the DO loop body,
where n is the trip count, and replaces all occurrences
of the DO control variable with constants. The DO control
variable is set to the same value it would have had if the
DO loop did not unroll. A DO loop is not unrolled if it
has labels, references to labels, extern~l calls, or
modifications to the DO control variable. A DO loop must
also be small enough to make unrolling practical. UNROLL=O
turns DO-loop unrolling off.

1.1.1 ALLOCATION OF VARIABLES TO STORAGE

FORTRAN variables are allocated to storage according to the following
criteria.

1. All user variables are allocated to static storage if the
SAVEALL option is specified on the CFT control statement.

2. User variables appearing in a SAVE, DATA, or COMMON statement
are always allocated to static storage.

3. Other user variables are allocated to a T register if the BTREG
option is specified on the eFT control statement, subject to the
following limitations:

SR-0009

• A maximum of 24 variables in each program unit can be
allocated to T registers.

• Array variables and variables declared in CHARACTER,
COMPLEX, DOUBLE, EQUIVALENCE, and NAMELIST statements are
not allocated to T registers.

1-10 L

4. Other user variables are assigned to the stack if ALLOC=STACK is
specified on the CFT control statement, or to static storage if
ALLOC=STACK is not specified.

5. Compiler-generated variables are assigned to a register or to
memory (to the stack if ALLOC=STACK is specified, to static
memory otherwise) depending on how the variable is used.
Compiler-generated variables include DO-loop trip counts, dummy
argument addresses, bemporaries used in expression evaluation,
argument lists, and variables storing adjustable dimension
bounds at entries.

Option

A

B

C

D

E

F

G

H

I

Table 1-1. Compiler Options Under COS

Description

Aborts job after compilation if any program
unit contains a fatal error

Lists beginning sequence number of each code
generation block (G implies B)

Lists common block names and lengths listed on
Idn after each program unit

Lists DO-Loop Table

Enables recognition of compiler directive lines

Enables FLOWTRACE option. (Also see FLOW/NOFLOW
directives.)

Lists generated code for each program unit.t
(See CODE/NOCODE directives)

Causes listing of the first statement of each
program unit and error messages. All other list
options are ignored or disabled.

Enters compiler-generated statement labels in the
Symbol Table

Default

OFF

OFF

ON

OFF

ON

OFF

OFF

OFF

OFF

t The G option lists the skeleton for the code generated for NTRY and
RETURN sequences. The actual number of Band T registers saved and
the address where they are saved are not indicated. If no T
registers are to be saved, the instruction to save T registers is
replaced by a pass instruction.

SR-0009 1-11 L

Option

J

L

M

N

o

P

Q

R

S

T

U

Table 1-1. Compiler Options Under COS (continued)

Description

Causes all DO loops to be executed at least once

Enables recognition of output listing control
directives

Lists current machine characteristics table

Enters null symbols in the Symbol Table (defined
but not referenced)

Prints a message identifying any array references
with out-of-bounds subscripts found during
executiont. Enables the BOUNDS compiler
directives.

Allows double precision. Setting OFF=P causes
at compile time:
1. All double-precision declaratives to be

treated as real;
2. Double-precision functions to be changed to

the corresponding single-precision functions;
3. Double-precision constants to be converted as

double-precision and truncated to real;
4. D's in FORMAT statement to be changed to E's.

Aborts compilation when 100 fatal error messages.
counted

Rounds result on multiply operations

Lists FORTRAN source code

Lists the Symbol Table after each program unit

Enables recognition of INTEGER*2 declaration.
OFF=U processes variables declared INTEGER*2
as 64-bit integers.

Default

OFF

ON

OFF

OFF

OFF

ON

ON

ON

ON

ON

ON

t Bounds checking inhibits many optimizations CFT normally performs.

SR-0009 1-12 L

Table 1-1. Compiler Options Under COS (continued)

Option Description Default

v Vectorizes inner DO loops ON

W Compiles all floating-point operations as return OFF
jumps to user-supplied external routines.t
(See table 1-4.)

x Lists the Symbol Table with cross references after OFF
each program unit (X overrides T)

z Writes the Debug Symbol Table on $BLD OFF

t The W option has no effect on complex or double-precision
arithmetic, intrinsic functions, or expressions in a DATA or
PARAMETER statement.

1.2 THE UNICOS CFT COMMAND

Under UNICOS, the CFT compiler is loaded and executed when a CFT command
is encountered.

Format:

cft [-a alloe] [-b binfile] [-c ealfile] [-d oplist]
[-e oplist] [-i intlen] [-m mlev] [-0 options] [-t trune]
[-u unroll] [-v vmsgs] [-A aids] [-C type,eharaeteristies]
[-E errfile] [-M maxbloek] [--] filename

Options can be in any order, but must precede the filename argument.

-a alloe

SR-0009

Specifies memory allocation scheme for entities in
memory. alloc can be one of the following.

alloe

static

stack

Description

All memory is statically allocated; a stack is
not used (default).

Read-only constants and entities in a DATA or
SAVE statement, or a common block are
statically allocated. All other entities are
allocated on the stack.

1-13 L

+b binfile

-c calfile

-d oplist

-e oplist

-i intlen

-1 listfile

-m mlev

-0 options

SR-0009

Binary output file name; default is filename.o.

CAL listing file name; default is no file. If -e C is
specified, filename.s is used.

List of options to be disabled (see table 1-2)

List of options to be enabled (see table 1-2)

Specifies length of inteqers, 64 or 24 bits; default is 64
bits.

Source listing file name; default is no file. If -e L is
specified, filename.l is used.

Highest message level to be suppressed. Fatal errors are
not suppressed.

mlev Severity

1 COMMENT
2 NOTE
3 CAUTION (default)
4 WARNING
5 ERROR

List of optimization options to be enabled or disabled.
Options must be separated by commas; only one option in
each group can be selected.

bl I nobl
bl enables scalar loops to be bottom loaded (default)
nobl prevents bottom loading of scalar loops

btreg I nobtreg
btreg causes CFT to allocate specific scalar
variables in a program unit to T registers
nobtreg causes eFT to allocate all user variables to
memory. Does not affect the allocation of
compiler-generated variables to 8 or T registers or
the use of 8 or T registers temporarily holding
values during expression evaluation. (default)

cvl I nocvl
cvl enables compilation of conditional vector loops
(default)
nocvl disables compilation of conditional vector loops

1-14 L

SR-0009

fastmd I slowmd
fastrnd enables fast 46-bit integer multiply and divide
slowmd enables full 64-bit integer multiply and
divide (default)

invmov I noinvmov
invrnov enables movement of invariant code from
DO loops (default)
noinvmov disables movement of invariant code from
DO loops

keeptemp I kill temp
keeptemp updates scalar temporary variables in
DO loops (default)
kill temp does not update scalar temporary variables
in DO loops. The variable values will be undefined
when the DO loops terminate.

nodorep I safedorep I fulldorep
nodorep disables replacement of one-line DO loops
with a call to a $SCILIB routine
safedorep enables replacement of one-line DO loops
(without potential dependencies or equivalenced
variables) with a call to a $SCILIB routine
performing the same operation more efficiently
(default)
fulldorep enables replacement of one-line DO loops
(potential dependencies and equivalencies are
ignored) with a call to a $SCILIB routine performing
the same operation more efficiently

noifcon I partialifcon I fullifcon
noifcon disables optimization of conditional
replacement statements (default) partialifcon enables
optimization of conditional replacement statements
not involving division and external functions
fullifcon enables optimization of conditional
replacement statements involving division and
external functions

safeif I unsafeif
safeif preventi instructions from moving over a
branch instruction (default)
unsafeif enables instructions to move over a branch
instruction

zeroinc I nozeroinc
zeroinc allows constant increment variables to be
incremented by zero variables
nozeroinc prevents constant increment variables from
being incremented by zero variables (default)

1-15 L

-t trunc

-u unroll

-v lmmsgs

-A aids

Number of bits truncated for floating-point results.
Truncated bits are zeroed. Range is 0inni47; default
is O.

Specifies that inner DO loops with constant limits
iterating unroll times or less may use DO-loop
unrolling. The maximum value of unroll is 9; default is
3. -u 0 turns off DO-loop unrolling.

Enables the· LOOPMARK utility. LOOPMARK draws brackets
delimiting DO loops in the source code listing. Each loop
is marked with a symbol indicating the type of loop (see
subsection 1.5.9, Table of Loops Encountered). If -v msgs
is specified, a message is printed on the line following
each inner DO loop that did not vectorize, indicating the
reason that the loop did not vectorize.

The lmmsgs parameter indicates whether messages are
to be printed by the LOOPMARK utility. This parameter
is required.

lmmsgs

msgs

nomsgs

Description

Messages are printed for all inner DO
loops that did not vectorize

No messages are printed

-v lmmsgs implies -e d. LOOPMARK is disabled by
default.

Number of vectorization inhibition messages.

aids

LOOPNONE
LOOPPART

LOOPALL

Number of Messages

None
Three per compiler block; 100 messages per
compilation (default).
All

-C tgpe,characteristics

SR-0009

Specifies mainframe type and optional mainframe
characteristics running the generated code; default is the
machine running CFT and its characteristics.

~ Mainframe Type

cray-1 Generates code for CRAY-1/A Computer Systems
cray-1a Generates code for CRAY-1/A Computer Systems
cray-1b Generates code for CRAY-1/B Computer Systems
cray-1m Generates code for CRAY-1 M Computer Systems

1-16 L

-E errfile

-M maxblock

SR-0009

~ Mainframe Type

cray-ls Generates code for CRAY-l S Computer Systems
cray-xmp Generates code for CRAY X-MP Computer Systems
cray-xl Generates code for single-processor

CRAY X-MP Computer Systems
cray-x2 Generates code for dual-processor CRAY X-MP

Computer Systems
cray-x4 Generates code for four-processor CRAY X-MP

Computer Systems

characteristics Description

[no]avl

[no]bdm

[no]ci

[no]ema

[no]gs

[no]cigs

ibufsize=words

memspeed=cps
[no]vpop

[no]vrecur

Target machine does/does not have two
vector logical functional units
Target machine does/does not have
bidirectional memory
Target machine does/does not have
compressed index hardware
Target machine does/does not have
extended memory addressing
Target machine does/does not have
gather/scatter hardware
Target machine does/does not have
compressed index gather/scatter
hardware (cigs implies ci and cs,
nocigs implies noci and nogs)
Instruction buffer size in words (16
or 32)
Memory speed in clock periods
Target machine does/does not have a
vector population count functional
unit
Target machine does/does not have
vector recursion

Alternate error listing file; default is stderr.

Length of code block being optimized or vectorized; default
is 2310. Values greater than 2310 may increase
optimization and internal compiler errors. -M 1 eliminates
optimization or vectorization.

1-17 L

Option

A

B

C

D

E

I

L

S

a

b

c

d

e

f

g

h

Table 1-2. Compiler Options Under UNICOS

Description

Prints non-ANSI messages at compile time

Creates a binary object file

Creates a pseudo CAL file

Writes sequence number labels for executable
FORTRAN statements to the Debug Symbol Table;
forces -e iz and -M 1.

Creates an error listing file; default file name
is stderr.

Sets stack variables to an undefined value.

Creates a listing file

Compiles as if a SAVE statement with an empty list
were in each program unit; overrides -0 btreg.

Aborts job after compilation if any program unit
contains compilation errors

Lists beginning sequence number of each code
generation block

Lists common block names and lengths after each
program unit

Lists the DO-loop Table

Enables recognition of compiler directive lines

Enables the FLOWTRACE utility

Lists generated code for each program unit

Lists the first statement of each program unit
and error messages; disables or ignores all other
oplist options.

Default

-d A

-e B

-d C

-d D

-d E

-d I

-d L

-d S

-d a

-d b

-e c

-d d

-e e

-d f

-d g

-d h

t The g option lists the skeleton for the code generated for ENTRY and
RETURN sequences. The actual number of Band T registers saved and
the address where they are saved are not indicated. If no T
registers are to be saved, the instruction to save T registers is
replaced by a pass instruction.

SR-0009 1-18 L

Table 1-2. Compiler Options Under UNICOS (continued)

Option Description Default

i Enters compiler-generated statement labels in the -d i
symbol table

j Causes all DO loops to execute at least once -d j

I Enables recognition of output control directives -d I

n Enters null symbols in symbol table (defined but -d n
not referenced)

o Prints messages identifying array references with -d 0

out-of-bounds subscripts found during execution.T
Enables BOUNDS compiler directives.

p Allows use of double precision -e p

q Aborts compilation when 100 fatal error messages -e q
have been issued

r Rounds result on multiply operations -e r

s Lists FORTRAN source code -e s

t Lists symbol table after each program unit -e t

u Allows recognition of INTEGER*2 declaration -e u

v Vectorizes inner DO loops -e v

w Compiles all floating-point operations as return -d w
jumps to user-supplied external routines. TT
(See table 1-4.)

x Lists symbol table with cross reference after each -d x
program unit (overrides t)

z Writes the Debug Symbol Table -d z

T Bounds checking inhibits many optimizations eFT normally performs.
TT The w option has no effect on complex or double-precision

arithmetic, intrinsic functions, or expressions in a DATA or
PARAMETER statement.

SR-0009 1-19 L

1.3 COS ERROR MESSAGES DURING PROGRAM EXECUTION

The executing program calls on operating system routines to accomplish its
mathematical, input/output, and utility operations. These routines are
not executed during compilation of the program. They are loaded from the
system or user libraries and linked to the program by a loader (SEGLDR or
LDR). When used, the routines respond to programming and/or equipment
discrepancies by placing messages in the jobfile and in the user output
file or dataset. Some of these discrepancies also cause the job to
abort. The COS error messages are described in the COS Message Manual,
publication SR-0039; the UNICOS error messages are described in the UNICOS
Kernel Error Message Ma~ual, publication SR-2015.

1.4 INPUT TO CFT

CFT, when initiated, seeks two types of information: the program to be
compiled and instructions on controlling the compilation.

A FORTRAN program to be compiled by CFT must be specified in a form using
the ASCII character codes listed in appendix A. The result is source
code.

Other information required by CFT to complete its operations is provided
by the operating system and compiler directives specified in the program
being compiled. (See a description of compiler directives later in this
section.) This information includes identification of the input dataset
containing the source and identification of datasets receiving binary and
listable output from CFT during compilation. The CFT options to use are
specified in the CFT control statement or command.

1.5 OUTPUT FROM CFT

Relocatable binary output is written on the dataset specified on the B
parameter under COS, or the file specified in the -b parameter under
UNICOS, in a format suitable for input by SEGLDR or LDR, one record per
program unit. When requested, the loader loads and links this file plus
routines required from the system or user libraries. CFT optionally
produces a file or dataset containing the following.

• A source statement listing

• Error messages and their severity

• Tables of statement numbers, names encountered, parameters
encountered, block names and their octal lengths, external names,
and loops encountered

SR-0009 1-20 L

The CFT control statement or command, and the CFT compiler directives
allow the user to control this output and specify the receiving file or
dataset. Listable output is divided into pages.

1.5.1 PAGE HEADER LINES

Each page of listable output contains a header line with the following
information.

• The name of the program unit (except for the first page for each
program unit)

• The current page number within the program unit

• The truncation count, if nonzero (see the TRUNC parameter on the
CFT control statement, earlier in this section)

• A list of compiler options currently turned on (see tables 1-1 and
1-2)

• The date and time compilation began

• The CFT revision level and assembly date

• The global page number

1.5.2 SOURCE STATEMENT LISTINGS

The source statement listing is generated when the S list option is
selected. The listing is a record of all FORTRAN statements comprising
the program as they are sequentially read and interpreted from the source
input dataset. A sequence number is listed for each statement identifying
its position in the program. A line number for each line is listed to
the left of the sequence number. Continuation lines and comments are
separate lines but not separate statements. Errors encountered during a
statement compilation are flagged by lines subsequent to that statement
or recorded at the end of the source statement listing.

1.5.3 BLOCK BEGINS MESSAGES

CFT divides program units into smaller units called blocks, which are the
basic units optimized by CFT. Specifying ON=B or ON=G in the CFT control
statement produces a BLOCK BEGINS message for each block, listing the
sequence number and relative program address of the beginning of each
block. If ON=B or ON=S is selected, the message VECTOR LOOP BEGINS is
listed for blocks with a vector loop.

SR-0009 1-21 L

A vector block can begin several lines before a vectorized DO loop.
(Only an innermost loop is a candidate for vectorization.) Results
calculated in this loop preamble are used by the optimizer in the 'loop.
Debugging instructions should be inserted between blocks to avoid
altering the generated code of the block being tested.

1.5.4 TABLE OF STATEMENT NUMBERS

The table of statement numbers can be in a short form, excluding cross
reference information (T option) or in a long form, including cross
reference information (X option). In either case, the table lists all
statement numbers used in the program unit, followed by a suffix
indicating whether the number is inactive (SN), a FORMAT statement, or
undefined (UNDEF.). For active statements, the relative address of the
beginning of the statement is given.

Statement numbers are internally generated for logical IF statements,
implied-DO statements, and ENTRY statements. A 5-digit number in
sequence starting with 00001 is generated with leading zeros present and
significant.

For DO loops, two internally generated statement labels are created, one
at the top of the loop (the reloop point) and one after loop termination
control (the zero trip point). These labels are generated by suffixing
the loop terminal number with letters A, B, etc., taken in pairs.

By default, internally generated numbers are not listed in this table.
Specifying ON=I lists them.

1.5.5 TABLE OF NAMES ENCOUNTERED

This table has a short form, excluding cross reference information (T
option) and a long form, including cross reference information (X
option). In either case, the following fields of information are
presented.

• Address

• Name
• Type

• Main usage
• Block

SR-0009 1-22 L

1.5.5.1 Address field

A value in this field is octal and is either an address relative to the
beginning of the program, the local stack area, or a named common block;
or it is a B or T register number.

1.5.5.2 Name field

The name field contains an alphabetized list of all symbolic names
specified in the program unit. If the PROGRAM statement is omitted from
the executable program, CFT identifies the main program with the name
$MAIN.

1.5.5.3 Type field

The type field gives the type of array, variable, or program unit and can
contain the following values.

Significance

C Complex

D Double precision (prefix to other types, if they are double)

I Integer (64 bits)

I' Integer (24 bits)

L Logical

R Real

CH Character

none Typeless function or subroutine

If the item is defined or declared but not used, the type code is
preceded by *.

SR-0009 1-23 L

1.5.5.4 Main usage field

An entry in this field describes the use of the corresponding symbolic
name and can contain the following.

Use

nO. EQ. ARRAY

nDIM ARRAY

ENTRY

EQUIVALENCE

EXTERNAL

INTRINSIC

PARAMETER

ST. FUNCTION

UNDEF EQUIV

UNDEFINED ***

VARIABLE

iT-REG

1.5.5.5 Block field

Significance

n-dimensional array in EQUIVALENCE

Array with n dimensions (1~n~7)

Entry

Variable or array in EQUIVALENCE

External function or subroutine

Intrinsic function

Symbol appears in PARAMETER statement

Arithmetic statement function

Variable or array appears in EQUIVALENCE
statement but does not appear on the left side of
an assignment operator or in a DATA statement

Variable or array never defined

Simple variable

Simple variable assigned to a T register instead
of memory

The block field identifies the common block containing a variable or
array. If no common block name appears, the variable or array is local
to the program unit. If the name iST appears, the variable or array is
assigned to stack storage. If the name iT-REG or iB-REG appears, the
variable is permanently assigned to a register.

If the common block name is preceded by a ~, the common block is declared
a task common block. All variables declared in a task common block are
assigned to the task common block heap. For more information, see task
common blocks in section 4.

If the symbol is a dummy argument to the subroutine or function, the
field contains the characters DUM.ARG. and the address field contains the
dummy argument number.

SR-0009 1-24 L

If the symbol is a pointee, the field contains the characters POINTEE and
the address field contains the pointee number.

1.5.6 TABLE OF PARAMETERS ENCOUNTERED

This table contains the names and values of the symbolic constants and is
generated only when cross-reference information (X or T option) is
requested.

1.5.7 TABLE OF BLOCK NAMES AND LENGTHS IN OCTAL

This table lists the name of each block referenced in the program unit
preceded by its word length in octal. The C list option controls this
table.

The program block is the first block listed, and it has the same name as
the program unit being compiled. Pound blocks #TB, #CL, and #ST follow
the program block, in that order. The program block and pound blocks are
created by the compiler and contain code and static data to execute the
compiled program unit. The compiler uses the pound blocks to store the
following entities:

#TB Temporary variables local to a code block; space in #TB is
reused from block to block. #TB is used in static mode only.

#CL In static mode, #CL holds argument lists and the space into
which passed-in argument lists are copied for multiple-entry
routines. In stack mode, #CL holds argument list headers only;
the he~ders are built as compile-time constants.

#ST All stacked entities except the BIT save area and variables
initialized in DATA statements. #ST is not used in static
mode. #ST contains all entities that are in #TB in static mode,
and most entities that are in #CL in static mode. In generated
code listings, the offset field gives the offset from the
run-time address in B03 to the first word of the stacked entity.

1.5.8 STATIC SPACE TABLE AND STACK SPACE TABLE

The Static Space Table and Stack Space Table follow the Block Name and
Length Table and describe space usage of the compiled program units. The
C list option controls printing of the Static and Stack Space Tables.

The Static Space Table describes how space is used in program and pound
blocks. The Static Space Table has the following entries.

SR-0009 1-25 L

B SAVE

T SAVE

Number of words reserved to hold values in B registers; one
greater than the number of B registers used by the
generated code.

Number of words reserved to hold values in T registers;
equal to the number of T registers used by the generated
code.

CONSTANTS Number of words reserved to hold read-only constants.

VARIABLES Number of words reserved for local variables, including
variables declared by the user and variables created by the
compiler.

TEMPORARIES

CODE

TOTAL

Number of words reserved to hold temporary variables.
Temporary variables are compiler-generated variables and
are usually reused from code block to code block.

Number of words occupied by generated code.

Number of static words required to execute the compiled
program unit; equal to the sum of the preceding items and
also the sum of the lengths of program and pound blocks.

If stack mode is requested (see the subsection on the CFT control
statement for a description of the ALLOC parameter), the table describing
stack space usage in the program units is printed. The Stack Space Table
has the same format as the Static Space Table and contains the number of
words of stack space required for the B-register save area, T-register
save area, stack-based variables, and stack-based temporaries. The
amount of stack space needed by the program unit is also printed.

1.5.9 TABLE OF EXTERNAL NAMES

This table is generated only when cross reference information (X option)
is requested and contains external names and source program references.

1.5.10 TABLE OF LOOPS ENCOUNTERED

This table presents the following fields of information relevant for
program loops when the D list option is selected.

Label Statement number ending the loop

Index DO-loop index

From Beginning source line number

SR-0009 1-26 L

To

Address

Length

Ending source line number

Parcel address of loop start (blank if no loop is generated)

Octal number of words of code generated for the loop body.
When a loop is not generated for a DO loop, such as a short
vector loop, the word INLINE appears in place of the length.

Properties
Properties of the DO loop, indicating whether the DO loop
was vectorized, unrolled, or replaced with a call to a
$SCILIB routine. This portion of the table contains
messages for each DO loop that did not vectorize,
indicating the reason the DO loop did not vectorize (see
appendix 0 for descriptions of these messages).

Rp - REPLACED
This DO loop was replaced by a call to an optimized
$SCILIB routine.

Ur - UNROLLED
This DO loop was unrolled.

v - VECTOR
This DO loop was vectorized.

V2 - TWO SUBSEQUENT AMBIGUOUS VECTORS
Two vector versions of this DO loop were generated. A
run-time test determines which version is executed.

Vc - CONDITIONAL VECTOR
Scalar and vector v~rsions of this loop were
generated. A run-time test determines which version
is executed.

Vs - SHORT VECTOR
A vector loop with a known iteration count of at most
64 was generated. This loop has less overhead than
other vector loops, and will execute slightly faster.

1.5.11 CROSS-REFERENCE INFORMATION

Cross-reference information is optionally included in the list output
with the selection of the X list option. When requested, the table of
statement numbers, the table of names encountered, and the table of
external names include the source program references. These references
are keyed to the source listing line numbers. The following codes are
used in these references.

SR-0009 1-27 L

Code

A
o
E
I
J
L
N
p

R
S
U
W
?

Significance

Used in FORTRAN ASSIGN statement
Defined in declarative statement
Statement number ending a DO loop
Index of a DO or implied DO loop
Statement number used in transfer
Source line of a statement number
Name used as a DO loop parameter
Used in CALL/FUNC call or array reference
Format used in READ statement
Stored so contents can be changed
Name used in executable statement
Format used in WRITE statement
Ten or more references to symbol

1.5.12 MESSAGES

Up to six levels of messages are produced by CFT, depending on the E and
ANSI parameters on the CFT control statement. (See appendix 0 for
details of messages.)

1.5.13 PROGRAM UNIT PAGE TABLE

If more than one program unit is compiled, CFT prints a sorted table of
the names of the units compiled, listing the beginning global page number
of each program unit. This table appears at the end of CFT's output.

1.6 COMPILER DIRECTIVES

Compiler options selected by the user in the CFT control statement or
command (see descriptions earlier in this section) establish particular
methods for application throughout the compilation of all related FORTRAN
program units. Compiler directives encountered in the program units
being compiled can change or reinstate this set of methods. Certain
other compiler actions are enabled and disabled only by compiler
directives.

The COS CFT compiler option ON=E or the UNICOS CFT compiler option -e e
(enable compiler directives) option must be in effect in order for
compiler options to be recognized by CFT (this option is enabled by
default in both operating systems). Otherwise, the lines containing
compiler options are treated as comment lines.

SR-0009 1-28 L

1.6.1 USING COMPILER DIRECTIVE LINES

A compiler directive line contains the characters CDIR$ in columns 1
through 5. Column 6 of the initial line must be blank or contain the
character O. Columns 7 through 72 of the initial line contain zero or
more compiler directives separated by commas. If the compiler directive
has a list associated with it, no other compiler directive can appear on
the same line. Spaces can precede, follow, or be embedded within a
compiler directive. Columns 73 through 96 can be used for any purpose.
Continuation of compiler directive information beyond a single line can
be accomplished by one of the following methods.

• Enter any character except a blank or zero in column 6 of up to 19
subsequent lines.

• Enter the characters CDIR$ in columns 1 through 5 of all lines in
the sequence.

Comment or blank lines cannot occur within a continued CDIR$ sequence.
The first non-CDIR$ line terminates the CDIR$ continuation sequence.

The character C in column 1 identifies lines as comment lines to all but
the Cray FORTRAN Compiler. This feature maintains the transportability
of programs using compiler directives.

Compiler directive lines are listed in the source statement listing.

1.6.2 CATEGORIES OF COMPILER DIRECTIVES

CFT provides the following categories of compiler directives.

• Listable output control
• Vectorization control
• Integer control
• Multiply/divide control
• Flow trace
• Scheduler
• Dynamic common block
• Array bounds checking
• Optimization
• Debugging
• Roll/unroll

SR-0009 1-29 L

1.6.2.1 Listable output control directives

Following are the listable output control directives.

• EJECT
• LIST
• NOLIST
• CODE
• NOCODE

The listable output control directive (compiler option L under COS;
compiler option -e 1 under UNICOS) must be on in order to cause
recognition of this set of compiler directives.

EJECT directive - A compiler directive line containing an EJECT directive
is printed as the last line of the current page of source statement
listing. If the EJECT dir~ctive is contained in a continuation set of
compiler directive lines, the last of these becomes the last line of the
page. In either case, a new page begins. The EJECT directive has no
effect if production of the source statement listing has been suppressed.

Format:

EJECT

LIST directive - The LIST directive causes the production of a source
statement listing or is ignored if one is already being produced. The
LIST directive also restores the other list options specified on the CFT
control statement.

Format:

LIST

NOLIST directive - The NOLIST directive suppresses the production of all
listable output. If no listable output is being produced, the NOLIST
directive is ignored.

Format:

NOLIST

SR-0009 1-30 L

CODE directive - The CODE directive produces CFT-generated code listings
if previously suppressed by a listing directive or by the CFT compiler
option OFF=G or OFF=L under COS, or by the CFT compiler option -d C or -d
I under UNICOS. Code is listed for the optimization block where the CODE
directive occurs. The listing continues until a NOCODE directive is
encountered or until superseded by another LIST directive.

Format:

CODE

NOCODE directive - The NOCODE directive suppresses the production of a
CFT-generated code listing. The NOCOOE directive takes effect at the
beginning of the next optimization block, and no generated code is
produced until a COOE directive is encountered. If no CFT-generated code
listings are being produced, the NOCOOE directive is ignored.

Format:

NOCOOE

NOTE

The COOE and NOCOOE directives apply on an optimization
block basis instead of a program unit basis.

1.6.2.2 Vectorization control directives

The vectorization control directives require the COS ON=V or the UNICOS
-e v CFT compiler option. Following are the vectorization control
directives.

• VECTOR

• NOVECTOR

• NORECURRENCE

• IVOEP
• IVOMO

• VFUNCTION

• NEXTSCALAR

• SHORTLOOP

SR-0009 1-31 L

VECTOR directive - The VECTOR directive causes the compiler to resume its
attempts to vectorize inner DO loops if such attempts were suppressed or
modified by another vectorization directive. After a VECTOR directive is
specified, DO loops with a known .iteration count of one are executed in
scalar mode; those with an iteration count of two or more or with an
unknown iteration count are executed in vector mode.

DO loops containing recurrences are affected only by the NORECURRENCE
directive. (See NOVECTOR and NORECURRENCE directives.)

The VECTOR directive takes effect at the next DO loop and applies to the
rest of the compilation unless it is superseded by another vectorization
directive.

Format:

VECTOR

NOVECTOR directive - The NOVECTOR directive suppresses the compiler's
attempts to vectorize inner DO loops. The NOVECTOR directive takes
effect at the next DO loop and applies to the rest of the compilation
unit unless it is superseded by another vectorization directive.

Format:

NOVECTOR[=n]

n An integer constant or a previously defined integer parameter in
the range 0 to 64.

Generally, vector loops are faster than scalar loops, but because more
preparation time is needed for vector registers than for scalar
registers, DO loops executed a few times may be executed faster in scalar
mode than in vector mode.

If the NOVECTOR directive is not in effect, the compiler causes
vectorizable loops to execute in scalar mode if the DO-loop iteration
count is less than 2.

If the NOVECTOR directive is in effect and n is not specified, DO loops
are executed in scalar mode. If n is specified, DO loops with an
iteration count greater than n are executed in vector mode, if
possible. Those with an iteration count of n or less are executed in
scalar mode.

SR-0009 1-32 L

The determination of scalar versus vector mode is made during
compilation. If the value of any of the DO parameters cannot be
determined during compilation (that is, if an expression contains
anything other than constants or parameters), the loop is executed in
vector mode unless vectorization is inhibited for some other reason.

If attempted vectorization of inner DO loops is not specified by CFT
control statement option, the NOVECTOR directive is ignored.

NOTE

Both VECTOR and NOVECTOR directives can be specified in
a single program unit.

NORECURRENCE directive - The NORECURRENCE directive causes DO loops
containing recurrences to be executed in scalar or vector mode. The
NORECURRENCE directive takes effect at the next DO loop and applies to
the rest of the compilation unit unless it is superseded by another
vectorization directive.

Format:

NORECURRENCE[=n]

n Integer constant or a previously defined integer parameter
in the range 0 to 64 (default is 2).

An assignment statement is a recurrence relation if the right side
involves a variable just computed. The CFT compiler can vectorize DO
loops containing most recurrence relations of scalar variables. The
following recurrence relations can be vectorized.

S=S*e

S A scalar variable

e Any expression not inhibiting vectorization (see section 5
for a description of FORTRAN expressions)

Because more preparation time is needed for vector registers than for
scalar registers, DO loops executed only a few times are executed faster
in.scalar mode than in vector mode.

If n is not specified, DO loops containing recurrences are executed in
scalar mode. If n is specified, DO loops with a known iteration count

SR-0009 1-33 L

greater than n are executed in vector mode; those with a known
iteration count of n or less are executed in scalar mode.

The determination of scalar versus vector mode is made during
compilation. If the value of any of the DO parameters cannot be
determined during compilation (that is, if an expression contains
anything other than constants or parameters), the loop is executed in
vector mode unless vectorization is inhibited for some other reason.

If the NORECURRENCE directive is omitted, the CFT compiler executes
vectorizable loops with recurrences in vector mode if the iteration count
is known to be 3 or greater. Generally, vector mode is faster than
scalar mode for DO loops with recurrences. If attempted vectorization of
inner DO loops is not specified by a CFT control statement option, the
NORECURRENCE directive is ignored.

IVDEP directive - The IVDEP directive is specified before a DO statement
causing the compiler's attempts to vectorize the corresponding DO loop to
ignore any vector dependencies, but any dependencies must be processed in
source text order. The IVDEP directive affects only the single innermost
DO loop it directly precedes. Conditions other than vector dependencies
can inhibit vectorization even if an IVDEP. directive is specified.

Format:

IVDEP

IVDMO directive - The IVDMO directive is specified before a DO statement
causing the compiler's attempts to vectorize the corresponding DO loop to
ignore any vector dependencies and memory overlaps. Conditions other
than vector dependencies and Bidirectional Memory hazards can inhibit
vectorization whether or not an IVDMO directive is specified.

Format:

IVDMO

VFUNCTION directive - The VFUNCTION directive declares that a vector
version of an external function exists.

Format:

VFUNCTION f[,f] •••

f The symbolic name of a vector external function

SR-0009 1-34 L

The function f must be written in CAL and must use the call-by-value
sequence. Because CFT prefixes and suffixes the name with ~ as part of
the calling sequence, f must be limited to six characters. (See the
Macros and Opdefs Reference Manual, CRI publication SR-0012, for details
on CFT linkage macros.) f must not be the name of a dummy procedure.

VFUNCTION arguments must be either vectorizable expressions or scalar
expressions. If the argument list contains both scalar and vector
arguments in a vector loop, the scalar arguments are broadcast into the
appropriate vector registers. If all arguments are scalar or the
reference is not in a vector loop, the function f~ is called with all
arguments passed in S registers. Functions named in a VFUNCTION list
must not have side effects. (CDIR$ VFUNCTION implies NO SIDE EFFECTS;
the names of functions appearing in the VFUNCTION directive need not
appear in a CDIR$ NO SIDE EFFECTS list.) Registers are used for argument
transmission and, therefore, no more than seven single-word items or
three double-wor.d items can be passed by a call. One register passes
each single-word argument and two registers pass each double-word
argument; these can be mixed in any order with a maximum of seven
required registers.

The VFUNCTION directive must precede any statement function definitions
or executable statements in a program. If the names of functions in a
VFUNCTION directive also appear in an EXTERNAL declaration, the EXTERNAL
declaration must precede the VFUNCTION directive.

A VFUNCTION function should receive inputs from its argument list. The
VFUNCTION function should not change the value of its arguments or
variables in common blocks and should not reference variables in common
blocks which are also used by a program unit in the calling chain.

NEXTSCALAR directive - The NEXTSCALAR directive, specified in advance of
a DO statement, causes only that DO loop to be executed in scalar mode.
Vectorization is inhibited.

Format:

1
NEXTSCALAR I·

______ 1

SHORTLOOP directive - The SHORTLOOP directive, specified in advance of a
DO statement, states that the succeeding DO loop will be executed at
least once and at most 64 times, allowing CFT to generate special code
for the succeeding DO loop. This directive may decrease execution time
because it eliminates the run time tests that determine if a vectorized
DO loop has been completed. Using this directive before a zero-iteration
DO loop or a DO loop that should be executed more than 64 times produces
indeterminate results.

SR-0009 1-35 L

Format:

SHORTLOOP

1.6.2.3 Integer control directives (INT24, INT64)

The specification of INT24 or INT64 in a program unit causes all
variables and arrays named in its argument list to be identified as
entities of type integer. When INT24 is specified, the integers provide
24-bit (instead of the usual 64-bit) values when referenced. The INT24
directive is not a Cray FORTRAN language statement. It must, however, be
specified in a program unit according to the rules for specifying type
statements.

Formats:

INT24 v[,v •••]
INT64 v[,v •••]

INT24

INT64

v

Specifies a 24-bit integer data type,

Specifies a 64-bit integer data type, and

Is the symbolic name of a variable or array. If v is
omitted, the INT24 or INT64 directive implicitly types all
variables beginning with the letters I-N as short or long
integers.

Use caution with INT24 variables. The INT24 directive is intended to
allow the programmer to force CFT to use the fast 24-bit registers for
performing some arithmetic operations. When a 24-bit variable is used as
an argument to a function or subroutine, the 24-bit variable is sign
extended and treated as a 64-bit variable. Overflow on values greater
than 223_1 is never detected. The INT64 directive overrides a default
specification of INT24.

1.6.2.4 Multiply/divide directives (FASTMD, SLOWMD)

The two multiply/divide directives are FASTMD and SLOWMD. When the
FASTMD directive is specified, the fast 46-bit integer multiply and
divide algorithms are used in the current block. When the SLOWMD
directive is specified, the normal 64-bit integer arithmetic is used in
the current block. When the 46-bit integer arithmetic is used, the
integer multiply or divide result has only 46 bits of accuracy and there
is no overflow protection for operands or results greater than 46 bits.

SR-0009 1-36 L

1.6.2.5 Flow trace directives (FLOW/NOFLOW)

Flow trace directives print a summary listing the following information
about each subroutine in a program. This summary is written to dataset
$OUT under COS, or to file filename.l under UNICOS, where filename is
the name of the CFT source file.

• The time spent in the subroutine

• The percent of the total time spent in the subroutine

• The number of times the subroutine was called

• The average time per call spent in the subroutine

• A list of the first 14 routines called by the subroutine

• A list of the first 14 routines that call the subroutine

• Subroutine linkage overhead, which consists of the following
information

Total number of subroutine calls

Total amount of Band T register usage and number of arguments
passed for the entire job

Minimum, maximum, and average number of Band T registers used
and arguments passed for each routine traced. (Averages are
weighted by calling frequency.)

Time spent saving and restoring the Band T registers

Time spent in the calling sequence and the approximate time
spent in the flow trace routine. (The time is listed in number
of clock cycles, uumber of seconds, and percent of total job
time.)

Flow trace enable/disable - Flow trace is enabled under COS by using ON=F
on the CFT statement or under UNICOS by specifying -e f on the CFT
command, or by using a CDIR$ FLOW directive in the source program. A
matching CDIR$ NOFLOW disables flow trace. To be useful, the CDIR$ FLOW
or NOFLOW directives must come after an END statement and before the next
PROGRAM, SUBROUTINE, or FUNCTION statement. It is often wise to disable

SR-0009 1-37 L

flow tracing for small, frequently called routines because the flow trace
overhead time can be much greater than the actual subroutine execution
time. As currently implemented, the main program where flow trace is
enabled must contain a PROGRAM statement.

When flowtrace is enabled, a flow trace summary is listed either after
the END statement in the main program is executed or after a STOP
statement in the routine being traced is executed. Programs that
terminate with CALL EXIT, CALL ABORT, etc., must be modified to use flow
trace.

Time spent in a lower level called routine for which flow trace is
enabled is not counted as time spent in the calling routine. Time spent
in library routines (SIN, PRINT, CFFT, etc.) or in any routine for which
flow trace is not enabled is counted as time spent in the calling
routine. However, such routines are not listed in the summary.

FLODUMP utility - FLODUMP provides, upon request, a dump of the flow
trace tables when a program aborts with flow trace active. FLODUMP dumps
the tables in flow trace format. FLODUMP is invoked by specifying ON=F
in the COS CFT control statement, or -e f in the UNICOS CFT command, and
by including the FLODUMP control statement or command.

The following example shows the use of the FLODUMP control statement in
conjunction with the CFT, EXIT and DUMP JOB control statements under COS.

Example:

JOB,
CFT,ON=F.
SEGLDR,GO.
EXIT.
DUMPJOB.
FLODUMP.

See the COS Version 1 Reference Manual, publication SR-OOll, for details
of the FLODUMP control statement.

The user can select one or more of the following options.

• SETPLIMQ

• ARGPLIMQ

• FLOWLIM

SR-0009 1-38 L

SETPLIMQ - This option enables the flow trace routine to print a line on
the output listing file for every CALL or RETURN statement executed,
listing the following information.

• Routine n~e

• Calling routine n~e

• Job time

• Time the routine is entered

• Time spent in the routine

• Time the routine returns

Because this option can generate a large volume of output, it must be
explicitly requested at run time as follows.

CALL SETPLIMQ(KOUNT)

The value of KOUNT specifies the number of trace lines printed. Since
one line is produced for each CALL and each RETURN, KOUNT should be set
to twice the number of CALL statements for which flow trace is desired.

In effect, each CALL and each RETURN statement is given a sequence number
at run time. Each subsequent CALL or RETURN statement whose sequence
number is less than ABS(KOUNT) causes a printout. CALL or RETURN
statements executed before the CALL SETPLIMQ(KOUNT) count toward the line
limit but do not generate any output. In general, CALL SETPLIMQ(KOUNT)
is one of the first executable statements in a progr~.

ARGPLIMQ - ARGPLIMQ enables the flow trace routine to list the subroutine
arguments for the next ABS(KOUNT) calls. This option must be explicitly
requested at run time as follows.

CALL ARGPLIMQ(KOUNT)

This option can be called only once in a progr~.

FLOWLIM - FLOWLIM enables the flow trace routine to limit the number of
traced subroutines to the next ABS(KOUNT) subroutines. After this limit
is reached, the flow trace summary is printed. Further calls to FLOWENTR
and FLOWEXIT result in a return to the user's calling subroutine, thus
reducing overhead time. In effect, the call to FLOWLIM turns off the
flow trace option after the limit is reached.

SR-0009 1-39 L

The FLOWLIM option must appear before any subroutine calls and it must be
explicitly requested at run time as follows.

CALL FLOWLIM(KOUNT)

KOUNT=O traces all subroutines.

1.6.2.6 Scheduler directives

The list of scheduler directives follows.

• UNSAFEIF
• SAFEIF
• BL
• NOBL

UNSAFEIF/SAFEIF directives - The UNSAFEIF and SAFEIF directives enable or
disable movement of code past the branch of an IF statement for a block
of code, respectively. If UNSAFEIF is enabled, the code scheduler
attempts to move any operation except a store or divide over a branch
instruction. A branch instruction may have been inserted to protect the
operation. UNSAFEIF allows code movement for a block of code. SAFEIF
prevents code movement over an IF statement for a block of code.
UNSAFEIF and SAFEIF apply to one block at a time and the last directive
appearing in a block is the directive used. The CDIR$ directives
override the default or CFT compiler option for one block of code.

BL/NOBL directives - The BL and NOBL directives enable or disable the
prefetch of operands over a loop branch, respectively. The code
scheduler usually attempts to prefetch operations in eligible short
scalar loops. Subscripts for the iteration after the last one may be out
of range and cause an operand range error. BL allows pre fetch of code.
NOBL prevents pre fetch of an operand for the next block of code. The
CDIR$ directives override the default or CFT compiler options. The CDIR$
directives apply to one block at a time and the last directive appearing
in a block is the directive used.

1.6.2.7 Dynamic common block directive (DYNAMIC)

The DYNAMIC directive declares dynamic common blocks for users with
dynamic common block capability. The COS loaders do not support the
dynamic common block capability.

SR-0009 1-40 L

Format:

DYNAMIC b[,b] •••

b Name of a previously encountered common block

1.6.2.8 Array bounds checking directive (BOUNDS)

The BOUNDS directive checks most array references for out-of-bounds
subscripts. The BOUNDS directive is enabled when the ON=O compiler
option is specified under COS or the -e 0 compiler option is specified
under UNICOS and can be controlled by a CDIR$ BOUNDS directive. If ON=O
or -e 0 is not specified, all CDIR$ BOUNDS directives are ignored.

The ON=O or -e 0 option is global to all program units in the
compilation. The BOUNDS directives are local to the program unit where
they appear.

Bounds checking typically increases program run time by a factor of 10
and inhibits vectorization of any DO loop that references a checked array.

Bounds checking is not applied to arrays of type character or array
references that appear in argument lists or in input/output statements.
If an array has a last dimension of * or 1, bounds checking is not
performed on the last dimension. Dependency messages issued with bounds
checking turned on may not appear when bounds checking is turned off,
because bounds checking is performed by passing an array argument to a
nonvectorizable procedure or function. If a DO loop contains an array
bei~g checked, a dependency message may be issued.

BOUNDS options - The BOUNDS directive can be specified with three
different argument options.

• The BOUNDS directive with no arguments

BOUNDS

This option enables bounds checking for all arrays. It remains in
effect until another BOUNDS directive or the end of the
compilation unit is encountered.

• The BOUNDS directive with an empty argument list

SR-0009

BOUNDS (

This option disables bounds checking for all arrays. It remains
in effect until another BOUNDS directive or the end of the
compilation unit is encountered.

1-41 L

• The BOUNDS directive with an argument list

BOUNDS(a,b,c)

This option enables bounds checking only for the arrays named in
the argument list and remains in effect only for the current
routine, or until another BOUNDS directive is encountered. Bounds
checking can be enabled and disabled many times in a specific
compilation unit. Bounds checking for all arrays is performed in
subsequent program units until another BOUNDS directive is
encountered.

1.6.2.9 Optimization directives

The following directives are optimization directives.

• BLOCK

• NO SIDE EFFECTS
• ALIGN

• NOIFCON

• RESUME I FCON

• RESUMEDOREP
• NODOREP

• CVL

• NOCVL

BLOCK directive - The CFT compiler divides source code into sections
called blocks. The BLOCK directive, specified in advance of a FORTRAN
statement, causes a block to begin with the succeeding FORTRAN statement.

Blocks are used as the basis for optimization and vectorization by the
compiler. This directive is useful for machine-timing tests and for
certain unusual program debugging applications.

NO SIDE EFFECTS directive - The NO SIDE EFFECTS directive declares that
an external subprogram has no side effects. A NO SIDE EFFECTS external
subprogram does not redefine the value of a variable local to the calling
program, passed as an argument to the subprogram, or declar~d in a common
block. Using the NO SIDE EFFECTS directive allows eFT to keep
information in registers across subprogram invocations without reloading
the information from memory after returning from the subprogram.
Intrinsic functions are assumed to have no side effects.

SR-0009 1-42 L

Format:

NO SIDE EFFECTS f[,f] •••

f Symbolic name of an external subprogram the user guarantees
to have no side effects. f must not be the name of a
dummy procedure~

A NO SIDE EFFECTS subprogram should receive inputs from its arguments.
The subprogram should not reference or define variables in a common block
shared by a program unit in the calling chain, or redefine the value of
its arguments. If these conditions are not met, results can be
unpredictable.

The NO SIDE EFFECTS directive must precede arithmetic statement functions
or executable statements in a program. If the name of a subprogram
appears in a NO SIDE EFFECTS directive and an EXTERNAL declaration, the
EXTERNAL declaration must precede the NO SIDE EFFECTS directive.

CFT may move invocations of a NO SIDE EFFECTS subprogram from the body of
a DO loop to the loop introduction if the arguments to that function are
invariant in the loop. This may affect the results of the program,
particularly if the NO SIDE EFFECTS subprogram calls functions like the
random number generator or the real-time clock.

ALIGN directive - The ALIGN directive causes the next referenced
statement label, the first instruction of the next DO loop body, or the
next ENTRY point to align on an instruction buffer boundary. The
beginning of a DO loop, a referenced statement label, or an ENTRY point
will be aligned. The ALIGN directive must appear immediately before the
aligned statement.

If the ALIGN directive does not immediately precede a SUBROUTINE
statement, PROGRAM statement, FUNCTION statement, ENTRY statement, DO
statement, or a statement with a referenced statement label, a warning
message is issued and the directive is ignored.

CFT does not generate a loop construct for short vector loops; therefore,
these loops are not aligned. If an ALIGN directive appears before a
short vector loop, a warning message is issued and the directive is
ignored.

The ALIGN directive is useful for fitting loops and short subprograms
into instruction buffers, so the buffer will not need frequent reloading.

An ALIGN directive preceding a DO statement with a referenced label on
the statement causes the body of the DO loop, not the preamble, to be
aligned.

SR-0009 1-43 L

Format:

I
I ALIGN

I I --------
NOIFCON directive - The NOIFCON directive disables optimization of
conditional replacement statements of the form IF(logical
exp)var=expression, except when the statement can be converted to a
MAXIMIN function. Conditional replacement statements appearing before a
NOIFCON directive can be optimized at the level specified on the CFT
control statement or command. Optimization is disabled only for
conditional replacement statements appearing after the NOIFCON
directive. The NOIFCON directive is ignored if the optimization level is
NOIFCON.

Format:

NOIFCON

RESUMEIFCON directive - The RESUMEIFCON directive enables optimization of
conditional replacement statements at the level specified in CFT compiler
call. When this optimization is enabled, CFT attempts to optimize
statements of the form IF(logical exp)var=expression by producing
code similar to that for var=CVMGx(expression,var,condition). If
NOIFCON is specified on the compiler call, either by default or with an
OPT=NOIFCON parameter, or if the optimization has not been disabled by a
CDIR$ NOIFCON directive, the RESUMEIFCON directive is ignored.

Format:

RESUMEIFCON

RESUMEDOREP directive - The RESUMEDOREP directive, specified before a DO
statement, enables replacement of successive one-line DO loops by calling
a $SCILIB routine at the level specified by the OPT parameter on the CFT
control statement or the -0 parameter on the UNICOS CFT command. If
OPT=NODOREP or -0 nodorep , CDIR$ RESUMEDOREP is ignored. OPT=SAFEDOREP
or -0 safedorep is the default option.

SR-0009 1-44 L

Format:

RESUMEDOREP

NODOREP directive - The NODOREP directive disables replacement of
one-line DO loops with a call to a $SCILIB routine until a RESUMEDOREP
directive is used. Specifying NODOREP has no effect on vectorization of
successive DO loops.

Format:

NODOREP

CVL directive - CVL compiles the next DO loop containing potential
unvectorizable dependencies into a vector and a scalar version of the
loop. The version which will be used is determined by a run-time test.
CVL overrides the OPT=NOCVL compiler option.

NOCVL directive - NOCVL prevents eFT from compiling the next DO loop in
the conditional vector and scalar version of the loop. NOVCL overrides
the OPT=CVL or -0 cvl compiler option and can be used to save space for
loops with known dependencies.

1.6.2.10 Debugging directives (DEBUG, NODEBUG)

DEBUG and NODEBUG are debugqing directives enablinq or disabling the
generation of sequence number labels, respectively. The DEBUG and
NODEBUG directives are recognized only when the DEBUG parameter is
specified on the CFT control statement or command. See the Symbolic
Interactive Debugger (SID) User's Guide, CRI publication SG-0056 for a
detailed description on the debugging directives.

DEBUG writes sequence number labels for executable FORTRAN statements to
the Debug Symbol Table, allowing breakpoints to be set with the Symbolic
Interactive Debugger (SID) at statement sequence numbers. DEBUG disables
vectorization and scheduling.

NODEBUG disables sequence number label generation and restores
vectorization and scheduling.

SR-0009 1-45 L

1.6.2.11 ROLL/UNROLL directives

The ROLL and UNROLL directives control DO-loop unrolling. ROLL and
UNROLL have no effect if UNROLL=O is specified on the CFT control
statement.

ROLL specifies that all DO loops remain rolled until an UNROLL directive
is encountered.

UNROLL specifies that inner DO loops with constant limits are candidates
for DO-loop unrolling.

1.7 EXTERNAL ROUTINES

Enabling the W compiler option under COS or the w compiler option under
UNICOS causes all floating-point arithmetic operations to be replaced by
return jumps to the external routines shown in table 1-3. These routines
shown are called with the call-by-value sequence. Normally the first
operand is in S1 or V1, the second is in S2 or V2, and results are
returned in S1 or V1. An exception is the divide routines, where the
reciprocal approximation to S2 or V2 is returned in S1 or V1.

Table 1-3. External Routines

Operation External routine

s + S RASS'
s - s RSSS'
s * s RMSS'
I / s RDSS'\
s + v RASV,\
s - v RSSV,\
s * v RMSV'
I / v RDSV'
v + v RAVV'
v - v RSVV'
v * v RMVV,\

v - s RSVS,\

v = vector
s = scalar

SR-0009 1-46 L

SR-0009

NOTE

The following operations are changed as indicated
before the external routine is called.

v + s ~ s + v
v * s ~ s * v
v I s ~ (lIs) * v

v1 t v2 ~ (1/v2) * vI

1-47

s I v ~ (ltv) * s
-s ~ 0 - s
-v ~ 0 - v

L

2. PROGRAM STRUCTURE

This section describes the structure of a FORTRAN program and the
statements that define the structure. It begins with an overview of the
divisions of a FORTRAN program. The remainder of the chapter covers
these same subjects in detail.

2.1 THE EXECUTABLE PROGRAM

An executable program consists of a group of one or more program units
and procedures. A procedure is executable code, not necessarily
FORTRAN, that can be invoked from a program unit or another procedure;
procedures are discussed below. A program unit is an ordered set of
FORTRAN statements, which can be a main program or a subprogram:

• The main program is the first program unit to receive control
and cannot be invoked by another program unit; there must be
exactly one main program in an executable program.

• A subprogram is a program unit that is not the main program. It
can be a procedure subprogram, which specifies a procedure, or a
specification (block data) subprogram, which initializes
variables in blocks of memory and is not executable.

A procedure is an executable entity invoked by a procedure call. A
procedure call can pass values to a procedure, and procedures can return
values. A call can appear at different points in either a program unit
or another procedure. Code for specifying a procedure can be any of the
following: a subprogram (function or subroutine), a statement within a
program unit (statement function), code provided by the compiler
(intrinsic function), or user-supplied non-FORTRAN code (external
function or subroutine). A procedure can be a subroutine or a function:

• A subroutine is invoked only by the CALL statement.

• A function is invoked by its name in an expression; it must
return at least one value, called the function value.

SR-0009 2-1 L

A function can be one of the following:

• A statement function is specified by a single statement within
the prog~am unit that uses the function.

• An intrinsic function is included with a given compiler and is
always available with that compiler.

• An external function is specified by user-supplied code outside
the calling program unit.

If a procedure is specified by user-supplied code outside the calling
program unit, it is an external procedure, which can be either an
external function or a subroutine. An external procedure can be
specified either by a FORTRAN subprogram or by non-FORTRAN code. A
FORTRAN subprogram that specifies a procedure is a procedure subprogram,
which can be either a subroutine subprogram to specify a subroutine or
a function subprogram to specify an external function.

Figure 2-1 illustrates the breakdown of FORTRAN terms; all instances of a
given term appear below it connected to it with dashed lines. All
instances of program units are enclosed in boxes. In the interest of
legibility, the five instances of the term function and the two
instances of the term subroutine are not tied to unifying labels.

I Program I
I unit I

/ \

/ \

/ \ ---- -----
I Main I I Subprogram I
Iprograml

/ -------
ISpecificationl
I (block data) I
I subprogram I

/ \

/ \

\ /

IProcedure I
I subprogram I

/

/

/ \

/ \

/ \

\

\

External
procedure

/ I
I
I
I

External
function

I Subroutine I
I subprogram I

I Function
I subprogram I

/

/

\

\

\
\

Procedure
/ \

\

\

\

\
\

Intrinsic Statement
function function

Non-FORTRAN
subroutine

\

Non-FORTRAN
function

Figure 2-1. Subcategories of FORTRAN Terms (Program Units Boxed)

SR-0009 2-2 L

A common block is an area of memory that can be referenced by any
program unit or procedure in a program and serves as a means to pass
values. A named common block has a name specified in a COMMON
statement, along with the names of variables, arrays, or constants stored
in the block; its size is the same for use by all program units. Common
blocks are discussed in section 4.

An actual argument is an entity whose value is passed to a procedure; a
dummy argument is an entity within a procedure which takes the value of
an actual argument. Before the actual argument is passed to a procedure,
symbolic names are replaced by values, and expressions are evaluated.

2.2 PROGRAM UNITS

A program unit contains a sequence of FORTRAN statements and optional
comment lines. An executable program must include one main program and
can include one or more subprograms. Each program unit must end with an
END statement.

The main program's first statement can be a PROGRAM statement, which is
required for several compiler options, and cannot be a FUNCTION,
SUBROUTINE, or BLOCK DATA statement.

A subprogram begins with a FUNCTION, SUBROUTINE, or BLOCK DATA
statement. A subprogram must not reference a main program. The main
program can reference one or more subprograms during its execution.

When a subprogram entry is referenced, execution begins with the first
executable statement following the ENTRY statement named in that
reference. If stack mode is specified on the CFT control statement or
command, recursive use of procedures is allowed; otherwise CFT runs in
static mode and execution of a procedure subprogram must be terminated by
a RETURN or END statement before the subprogram can be referenced again.

Neither the main program nor a subprogram can reference a main program.
The main program can reference one, more than one, or no subprogram
during its execution, provided each is defined before main program
execution.

2.2.1 PROGRAM STATEMENT

Although the PROGRAM statement is optional, it is recommended because
several compiler options (for example, F) require it. When used, it is
the first statement of the main program.

SR-0009 2-3 L

Format:

PROGRAM pgm [(h)]

pgm Symbolic name of the main program in which the PROGRAM
statement appears; from one to eight alphanumeric
characters. The name is global.

h Sequence of any CFT characters except ! ; has no effect on
the executable program, but is allowed so that programs for
other implementations of FORTRAN will run.

The ANSI FORTRAN Standard does not provide for the h field in the
PROGRAM statement.

Example:

PROGRAM AIB2C3D4

PROGRAM X (INPUT,OUTPUT)

2.3 FUNCTIONS

A function is an executable entity that is invoked by its name and used
as an element of an expression. It must return at least one value,
called the function value, and can return other values.

The value returned by a function has the same data type as the function
name or entry name used. Types are determined differently for different
kinds of functions, which are discussed under individual headings in this
section. Function names obey the same type conventions as variable
names.

A function is one of the following:

• "A statement function is specified by a single statement within
the program unit that uses the function.

• An intrinsic function is provided by the CFT compiler and is
always available unless an external function of the same name is
substituted.

SR-0009 2-4 L

• An external function is specified by user-supplied code outside
the calling program unit; if it is written in FORTRAN, it is a
function subprogram, discussed later under the heading External
Functions and Function Subprograms. (Routines in other languages
are not called subprograms in ANSI terminology.)

2.3.1 FUNCTION REFERENCE

All functions use the same form of reference.

Format:

fun([a[,a] ••.])

fun Symbolic name of a function or dummy procedure

a Actual argument; the parentheses are required even with no
argument.

The type of each argument and the number of actual arguments specified in
a function reference must agree with the (dummy) arguments defined in the
specification of the function being referenced.

The length of a character function must be declared by the CHARACTER
statement. In addition, the length of a character function subprogram
can be declared in the subprogram's FUNCTION statement.

Execution of a function reference results in the following actions:

• Expressions that are actual arguments are evaluated.

• Actual arguments are associated with the corresponding dummy
arguments.

• The function is executed.

• Control is returned to the calling program unit. The function
value is then available to the expression to be evaluated, which
contains the function reference.

2.3.2 STATEMENT FUNCTIONS

A statement function is a function specified by a statement appearing in
the same program unit that invokes the function; this specifying
statement is called the statement function definition statement. It
appears after the specification statements, before the first executable

SR-0009 2-5 L

statement, and before any other statement that references the function;
it is non-executable and is not part of the normal execution sequence.

An actual argument in a statement function reference can be any
expression except an array expression. The exception to this is a
character expression involving concatenation of an operand whose length
is specified by an asterisk in parentheses, unless the operand is the
symbolic name of a constant.

A statement function definition cannot reference the function subprogram
in which it is defined. For example, a statement function defined within
function CAT cannot reference CAT.

2.3.2.1 Statement function definition statement

The statement function definition statement specifies a function for use
within the same program unit.

Format:

fun ([d[,d] ..•]) = e

fun Symbolic name of the statement function, local to the
program unit that contains the function. The name must not
appear in an EXTERNAL statement and must not be any of the
following: a symbolic name in any specification statement
other than a type statement (to specify the type of the
function); a common block name in the same program unit; an
actual argument.

d

e

Dummy argument, local to this statement. The same name
cannot appear twice in the list.

Expression. The relationship between fun and e must
conform to the assignment rules in table 5-1. The type of
expression e can differ from the type of the statement
function name fun.

Statement function dummy arguments serve only to indicate the order,
number, and type of arguments for a single statement function. A dummy
argument name used outside the statement function statement does not
refer to the dummy argument, but can be used in the following ways:

• As a dummy argument of the same type in another statement function
definition statement

• As a variable of the same type appearing elsewhere in the program
unit

SR-0009 2-6 L

• As a common block name

• As a dummy argument in a FUNCTION or SUBROUTINE statement in the
same subprogram that contains the statement function statement

Each primary of the expression e must be one of the following.

• A constant

• The symbolic name of a constant

• A statement function dummy argument referenced as a variable

• A reference to a variable used elsewhere in the same program unit

• An array element reference

• An intrinsic function reference

• A reference to a statement function defined previously in the same
program unit

• An external function reference; this must not cause a dummy
argument of the statement function to become undefined or
redefined.

• A dummy procedure reference

• An expression enclosed in parentheses

Examples:

DISCRIM(X,Y,Z)=Y**2-4.*X*Z

ROOT(A,B,C,SIGN)=(-B+SIGN*SQRT(4*A*C»/(2.*A)

CIRCUM(R)=6.2831852*R

VOL ()=4.1887901*R**3 (where R appears elsewhere in the same
program unit)

In the following example, function F is evaluated for X=2, even though X
has a value of 1 outside the definition statement; Y therefore equals 3
rather than 2; the value of X outside the function statement is
unaffected by the use of the function.

INTEGER X
F(X)=X+l
X=l
Y=F(2)

SR-0009 2-7 L

The type of a statement function is determined in the same way as a
variable's type; that is, it can be implicit in the name or can be
declared in a type statement preceding the statement function definition
statement.

Example:

LOGICAL EVEN
EVEN(N)=MOD(N,2).EQ.O

2.3.3 INTRINSIC FUNCTIONS

An intrinsic function is a prespecified function for performing common
operations and is always available unless you replace it with an external
function of the same name. Some intrinsic functions are called from
libraries included with the CFT compiler, while others cause CFT to
generate in-line code. Intrinsic functions contain optimized code and
frequently run faster than user-supplied code, but certain applications
might require functions using different units, number systems, etc. To
replace an intrinsic function with a user-supplied function with the same
name, use the EXTERNAL statement to declare the name of the external
function; this statement is described in the later subsection, Arguments.

CFT also provides a set of non-ANSI utility procedures, referenced like
external functions, which extend the use of operating system features and
input/output operations. They are described in appendix C.

2.3.3.1 Referencing intrinsic functions

The actual arguments for an intrinsic function must agree in type,
number, and order with those shown in appendix B. An actual argument can
be any expression except a character expression involving concatenation
of an operand whose length specification is an asterisk in parentheses,
unless the ~perand is the symbolic name of a constant.

Generic function names are used for families of intrinsic functions that
perform similar operations but differ in the data types required for
arguments and returned as results. These names simplify referencing
because the same function name can be used with more than one type of
argument. A generic name, however, cannot be used for an intrinsic
function used as an actual argument. Appendix B lists the intrinsic
functions in groups, with the first name in each group serving as a
generic for the whole group.

2.3.3.2 Restrictions

Intrinsic functions are undefined for some values such as LOG(-l).
Out-of-range arguments cause run-time messages to be issued. Appendix B
shows allowable argument ranges.

SR-0009 2-8 L

Example:

T = TAN(THETA)

The above function reference is undefined if the value of THETA is pi/2
radians (90°).

2.4 SUBPROGRAMS

A subprogram is a program unit that is not the main program. A
subprogram can be a procedure subprogram, which specifies a procedure
(function or subroutine) and is invoked by another program unit or a
specification (block data) subprogram, which initializes variables
in blocks of memory. A procedure subprogram can be one of the following:

• A subroutine subprogram specifies a subroutine, which is a
procedure called by a CALL statement.

• A function subprogram specifies a function. The use of
functions is described under the previous heading, Functions;
function subprograms are described within this subsection.

Some subroutines and external functions are not specified in FORTRAN (and
are therefore not considered "subprograms" in ANSI terminology.) They
can be written in Cray Assembly Language (CAL) or another high-level
language and are separately assembled or compiled. The Macros and Opdefs
Reference Manual., CRI publication SR-0012, describes the creation of
non-FORTRAN procedures. Appendix F describes the creation of external
procedures in CAL, Pascal, and C.

A subprogram begins with a FUNCTION, SUBROUTINE, or BLOCK DATA
statement. Execution can begin with the next statement or with the
statement following an ENTRY statement in a function or subroutine
subprogram, described below.

An ENTRY statement allows entering a procedure subprogram at any
executable statement not within a DO loop or block IF range. A procedure
subprogram can contain one or more ENTRY statements following its
FUNCTION or SUBROUTINE statement.

A subprogram ends with an END statement. A RETURN statement allows
returning control to the calling program unit before the end of the
subprogram. Execution of a RETURN or END statement terminates a
reference to a procedure subprogram and returns control to the calling
program unit.

SR-0009 2-9 L

The EXTERNAL statement declares a name to be the name of an external
function, subroutine, or dummy procedure; it must be used in the
following cases:

• When an external or dummy procedure name is to be passed as an
actual argument, even if the use of the name is not ambiguous.
See the later subsection, Dummy Procedures.

• When you want to replace an intrinsic function with a function
subprogram of the same name, such as to use a different algorithm.

Execution of a RETURN or END statement within a subprogram causes all
entities within the subprogram to become undefined, except for the
following.

• Entities in a common block

• Initially defined entities

• Entities specified by SAVE statements

The ANSI FORTRAN Standard specifies that, on execution of a RETURN or END
statement in a subprogram, entities within the subprogram that are in a
named common block become undefined unless the common block name appears
in a program unit that is referencing the subprogram.

2.4.1 RECURSION IN SUBPROGRAMS

CFT function and subroutine subprograms may normally not reference
themselves, either directly or indirectly. However, in stack mode, a CFT
extension, function and subroutine subprograms may call themselves.
(Refer to section 1 for a description of the co~piler parameter
associated with stack mode.)

In stack mode, a subroutine can call itself through a CALL statement, or
its entry point address can be passed to another function or subroutine
as an argument. For example, the following statements are allowed within
subroutine subprogram XYZ:

CALL XYZ

CALL ABC(XYZ)

x = DEF(XYZ)

SR-0009 2-10 L

A function can call itself by referencing its name. For example, the
following statement is allowed within function subprogram FUN:

F = FUN(X)

A function name can be used to pass the entry point address of the
function as an argument. The function whose name is passed in this
manner must be declared in an EXTERNAL or INTRINSIC statement, as in the
following example.

EXTERNAL FUN

CALL ABC(FUN)

Without the prior declaration statement, CFT would not pass the entry
point address of FUN to ABC but the current value of function FUN.

The ANSI FORTRAN Standard does not allow a subprogram to call itself.

2.4.2 EXTERNAL FUNCTIONS AND FUNCTION SUBPROGRAMS

An external function is a function specified by user-supplied code that
is external to the calling program unit; the code mayor may not be a
FORTRAN subprogram. A function subprogram is a FORTRAN subprogram that
defines a function, and is one kind of external function.

Functions are called as described in the previous subsection, Functions;
function arguments are discussed later under Arguments. Non-FORTRAN
functions are discussed in the introduction to this subsection,
Subprograms.

2.4.2.1 External functions

An external function name is global to the executable program and must
not be the same as any other global name. It cannot be the same as any
local name in a program unit where it is referenced or in the program
unit that defines it, except that it can be used as a variable in the
defining program unit. A function name is followed by an argument list
in parentheses, except in a type statement, in an EXTERNAL statement, or
when used as an actual argument.

An external function can define one or more of its dummy arguments to
return values in addition to the function value. However, this
redefinition must not affect any entities referenced in the statement
that references the function.

SR-0009 2-11 L

2.4.2.2 Function subprograms

A function subprogram begins with a FUNCTION statement and can contain
any statement other than a BLOCK DATA, PROGRAM, SUBROUTINE, or second
FUNCTION statement. Execution can begin with the statement following the
FUNCTION statement or with the statement following an ENTRY statement. A
subprogram ends with a RETURN statement or an END statement.

The symbolic name of a function subprogram or an associated entry name of
the same type must appear as a variable name in the function subprogram
and must become defined during execution of the procedure. The
function value is the value of this variable when a RETURN or END
statement is executed in the subprogram. The symbolic name of a function
specified by a FUNCTION or ENTRY statement must not appear in any other
non-executable statement except a type statement and must appear only as
a variable in executable statements.

The function value's type is implicit to the function name but can be
overridden by the specification of another type. If the type is
specified in the FUNCTION statement, the function name must not also
appear in a type statement; redundant type specifications are not
allowed. If the function name is a character variable with a length
specification of (*), it must not appear as an operand for concatenation
except in a character assignment statement.

In stack mode (specified as an option on the CFT control statement or
command), the function value is handled separately for each recursive
repetition of the function. See the introduction to this subsection,
Subprograms, concerning a subprogram referencing itself.

In a function subprogram, the symbolic name of a dummy argument is local
and must not appear in an EQUIVALENCE, PARAMETER, SAVE, or DATA
statement; as a pointer; or in a COMMON statement except as a common
block name.

2.4.2.3 FUNCTION statement

A function subprogram begins with a FUNCTION statement. It identifies a
subprogram as a function subprogram and establishes the function's
symbolic name and data type (if the type is not implied by the name).

[type] FUNCTION fun([d[,d] ...])

SR-0009 2-12 L

type Declares the function's data type, INTEGER, REAL, DOUBLE
PRECISION, COMPLEX, LOGICAL, or CHARACTER[*len]. The
type is declared if it is not implicit in the name,
specified within the subprogram, or specified in a type
statement preceding the function call.

len Length of the result of a character function; can
be an unsigned, nonzero, positive integer
constant or positive integer constant expression
enclosed in parentheses (expression cannot
include the symbolic name of a constant), or an
asterisk enclosed in parentheses, (*).

fun Symbolic name of the function subprogram; global name of
1-8 alphanumeric characters

d Dummy argument representing a variable, array, or dummy
procedure name. Parentheses are required even with no
arguments listed.

2.4.3 SUBROUTINES AND SUBROUTINE SUBPROGRAMS

A subroutine is a procedure called by a CALL statement within a program
unit or procedure; a subroutine is not necessarily a specified by a
FORTRAN subprogram. A subroutine subprogram is a FORTRAN subprogram
that specifies a subroutine.

Values can be passed to a subroutine as arguments in the CALL statement
or by the use of entities in common blocks. Dummy arguments and entities
specified in a COMMON statement in the subroutine can become defined and
returned to the calling program unit. Arguments are discussed later in
this section; common blocks are described in section 4.

See the introduction to this subsection, Subprograms, concerning a
subprogram referencing itself.

2.4.3.1 Requirements

A subroutine subprogram begins with a SUBROUTINE statement containing the
subroutine's name and any arguments or alternate return specifiers, and
ends with an END statement, which returns control to the calling program
unit. A subroutine subprogram cannot contain a BLOCK DATA, FUNCTION, or
PROGRAM statement, or a second SUBROUTINE statement.

The RETURN statement normally returns control to the statement that
follows the CALL statement, but can return control to a different
statement. The RETURN statement and alternate returns are discussed
later in this subsection.

SR-0009 2-13 L

A subroutine subprogram can contain one or more ENTRY statements,
described later in this subsection, which provide alternative entry
points; the name shown in the ENTRY statement is specified in the
subroutine call if that entry point is needed.

The name of a subroutine or subroutine entry is global, and within the
calling program unit cannot be used as a local name, function name, or
function entry name.

2.4.3.2 SUBROUTINE statement

The SUBROUTINE statement identifies a subprogram as a subroutine
subprogram. It contains the subroutine name and an optional list of
dummy arguments or asterisks corresponding to alternate return specifiers.

Format:

SUBROUTINE sub [([d[,d] •••])]

sub Symbolic name of the subroutine; the name is global.

d Dummy argument or asterisk. A dummy argument represents an
entity used in the subprogram, corresponding to an actual
argument in the CALL statement that calls the subprogram.
An asterisk corresponds to an alternate return specifier in
the CALL statement; see the RETURN statement in the next
subsection.

Examples:

SUBROUTINE SAM

SUBROUTINE GEORGE(A,B)

SUBROUTINE TOM(*,X,*,Y)

The first example is the first statement of subroutine SAM, which has no
dummy arguments or alternate returns. The second example is for a
subroutine with dummy arguments A and B. The third is for a subroutine
with dummy arguments X and Y, and two asterisks corresponding to
alternate return specifiers in the CALL statement. The examples shown
for the CALL statement (following) correspond to these examples.

2.4.3.3 CALL statement (subroutine reference)

The CALL statement causes execution of the subroutine specified in the
statement; it can include actual arguments to be passed to the subroutine
and can specify other statements to which control can be returned.

SR-0009 2-14 L

Format:

CALL sub [([a[,a] •••])]

sub Symbolic name of a subroutine, subroutine entry (see ENTRY
statement later in this subsection), or dummy procedure.

a

Examples:

A dummy procedure is used within a subprogram; the
subroutine to be called is specified as an actual argument
in the call to the subprogram that contains this CALL
statement.

Actual argument or alternate return specifier of the form
*s, where s is a statement label in the calling program
unit. A RETURN statement, described later in this
subsection, in the called subroutine can return control to
a statement so specified.

CALL GEORGE(X,-1)

CALL TOM(*10,X,*20,Y)

Corresponding to the examples shown for the SUBROUTINE statement
(preceding paragraph), the first example above calls subroutine SAM; the
second calls subroutine GEORGE with actual arguments X and -1: the third
calls subroutine TOM with actual arguments X and Y and alternate return
specifiers for statements 10 and 20.

Execution of a CALL statement - Execution of a CALL statement results in
the following:

• Evaluation of actual arguments that are expressions

• Association of actual arguments with the corresponding dummy
arguments

• The actions specified by the referenced subroutine

Control can be returned to the first executable statement following the
CALL statement or to a statement indicated by an alternate return
specifier in the CALL statement. Return of control to the referencing
program unit completes execution of the CALL statement.

SR-0009 2-15 L

2.4.4 STATEMENTS, FOR USING SUBPROGRAMS

The following statements determine the transfer of control to and from
function subprograms and subroutine subprograms.

2.4.4.1 ENTRY statement

The ENTRY statement is used in a procedure subprogram to allow execution
to begin at any executable statement not within a DO loop or IF-block
range; execution begins with the first executable statement following the
ENTRY statement. A procedure subprogram can contain one or more ENTRY
statements following its FUNCTION or SUBROUTINE statement.

Format:

ENTRYen[([d[,d] •••])]

" en

d

Function or subroutine name that is an entry in the
procedure subprogram. This name cannot be a dummy argument
in the same subprogram.

Dummy argument representing a variable name, array name,
procedure name, or an asterisk associated with an alternate
return specifier. An alternate return asterisk can be used
only in a subroutine subprogram.

An entry name in a function or subroutine subprogram is referenced in the
same way as the subprogram name. The order, number, and types of dummy
arguments in an ENTRY statement must agree with the actual arguments in
any reference to that ENTRY statement. These names need not agree with
those specified in a FUNCTION, SUBROUTINE, or other ENTRY statement in
the same subprogram. Type agreement is not required for an actual
argument specifying a subrout~ne name, which has no type.

The function name en specified in an ENTRY statement is considered an
external function name and is associated with all variables that are
associated with the name appearing in the FUNCTION statement. When one
of these variables becomes defined, all associated variables and function
names of the same type also become defined; those not of the same type
become undefined. Names appearing in the ENTRY statement can differ in
type from the name in the FUNCTION statement.

Entry statement restrictions - A function or subroutine name specified in
an ENTRY statement cannot be the same as any name specified in PROGRAM,
BLOCK DATA, FUNCTION, SUBROUTINE, or ENTRY statements in the same
executable program.

SR-0009 2-16 L

The function name specified in an ENTRY statement must not appear as a
variable in any statement preceding that ENTRY statement except a type
statement.

A name appearing as a dummy argument in an ENTRY statement cannot appear
in an executable statement preceding that ENTRY statement unless it also
appears in a FUNCTION, SUBROUTINE, or ENTRY statement preceding the
executable statement.

If a dummy argument name is referenced in an executable statement, it
must also be specified in a FUNCTION, SUBROUTINE, or ENTRY statement
referenced before execution of the executable statement. A dummy
argument specified in an ENTRY statement cannot be referenced in a
statement function definition statement unless it also appears as a dummy
argument in the same definition statement or in a preceding FUNCTION,
SUBROUTINE, or ENTRY statement.

If a function subprogram name is of type character, each entry name in
the function subprogram must be of type character; the function name and
all entry names must have the same declared length, whether it is an
integer or (*) to denote an adjustable length.

2.4.4.2 RETURN statement

A RETURN statement returns control from a procedure subprogram to the
referencing program unit. The statement is used only in function
subprograms and subroutine subprograms. A subprogram can contain more
than one RETURN statement, but a subprogram need not contain a RETURN
statement since execution of an END statement in a function or subroutine
subprogram has the same effect as executing a RETURN statement.

In a function subprogram, the RETURN statement has no arguments. In a
subroutine subprogram, the RETURN statement uses the following format.

Format:

RETURN [i]

i

SR-0009

Integer expression specifying an alternate return. i
indicates the ith return specifier in the list of dummy
arguments in a subroutine subprogram; see the next
paragraph.

2-17 L

Alternate return - The alternate return option allows a subroutine to
return control to a statement identified in the CALL statement that
called the subroutine. i in the RETURN statement references the ith
asterisk in the dummy argument list of a SUBROUTINE statement; this
asterisk in turn specifies a statement label preceded by the ith
asterisk in the CALL statement. If i is less than one or greater than
the number of asterisks specified, RETURN i is treated as RETURN.

Example:

CALL SUB (*5,A,B,*6)

5 statement

6 statement

SUBROUTINE SUB (*,A,B,*)

10 RETURN 1
11 RETURN 2

Execution of statement 10 above returns control to statement 5 because
RETURN 1 refers to the first asterisk in the SUBROUTINE statement and
therefore the first asterisk in the CALL statement. Execution of
statement 11 returns control to statement 6.

2.4.5 SAVE STATEMENT

In a subprogram, a SAVE statement retains the definition status of an
entity after the execution of a RETURN or END statement. The entity
remains defined in the current program unit only. The SAVE statement
must appear before any executable statement in a program unit. All
entities specified in a SAVE statement are assigned to static storage.

The ANSI FORTRAN Standard does not specify storage allocation methods.

Format:

SAVE [a [, a] • • •]

a Named common block name preceded and followed by a slash; a
variable name; or an array name.

SR-0009 2-18 L

The names of dummy arguments or procedures must not be specified in a
SAVE statement. Variables and arrays within a common block must not be
specified except by specifying the entire block. A common block
specified in a SAVE statement must also be specified in every subprogram
where the common block appears.

If a is omitted, all common blocks, variables, and arrays are assumed
specified.

A name must not appear more than once in the SAVE statements of a program
unit.

A SAVE statement can appear in the main program; this use of the SAVE
statement can be used for programs running in STACK mode when it is
necessary to assign values to static storage. For example, values used
in a multitasked program must be allocated to static storage prior to the
execution of a TASK START statement; this can be accomplished by using a
SAVE statement in the main program prior to the TASK START statement.

2.4.6 BLOCK DATA SUBPROGRAMS

A block data subprogram provides initial values for variables and array
elements in named common blocks, which are discussed at the end of this
section. A block data subprogram contains no executable statements and
is not called by another program unit. A block data subprogram can
initialize more than one common block, and one common block can be
initialized in more than one block data subprogram.

A block data subprogram begins with a BLOCK DATA statement and ends with
an END statement. The BLOCK DATA statement can contain the subprogram's
name; unnamed block data subprograms are described below. The only other
statements that can appear in a block data subprogram are IMPLICIT,
PARAMETER, DIMENSION, COMMON, EQUIVALENCE, SAVE, DATA, and type
statements.

During one invocation of CFT, up to 26 unnamed block data subprograms can
be encountered. CFT assigns the name BLCKDATA to the first unnamed block
data subprogram, BLCKDATB to the second, BLCKDATC to the third, etc.
Separate compilations can give the same name to two different block data
subprograms; this prevents proper loading of the routines, so use care to
prevent such duplication. Any number of differently named block data
subprograms can be specified in an executable program.

The ANSI FORTRAN Standard does not allow a common block to be initialized
in more than one block data subprogram, and allows only one unnamed block
data subprogram in an executable program.

SR-0009 2-19 L

2.4.6.1 BLOCK DATA statement

The BLOCK DATA statement identifies a subprogram as a block data
subprogram and can contain a subprogram name. A block data subprogram
provides initial values for variables and array elements in named common
blocks.

Format:

BLOCK DATA [sub]

sub Symbolic name of the block data subprogram in which the
BLOCK DATA statement appears

The optional name sub is a global name and must not be the same as the
name of an external procedure, main program, or other block data
subprogram in the same executable program. The name sub must not be
the same as any local name in the subprogram.

The ANSI FORTRAN Standard does not allow the name of a block data
subprogram to be the same as a common block name.

Example:

BLOCK DATA BDl
COMMON/NAME1/TABLEA,TABLEB,TEST1,TEST2
DIMENSION TABLEA(10,lO),TABLEB(6,2,2)
DATA TABLEA/l00*123.I,TABLEB/12*O.,12*1.1
DATA TEST1/72.35E-201
END

2.5 ARGUMENTS

An actual argument is an entity whose value is passed to a procedure; a
dummy argument is an entity within a procedure which takes the value of
an actual argument. Before the actual argument is passed to a procedure,
symbolic names are replaced by values, and expressions are evaluated.

Arguments of type character are discussed in subsection 3.8, Character
Type. Arrays as arguments are discussed in subsection 4.3, Arrays.

SR-0009 2-20 L

Data can be communicated in the following ways:

• To a statement function or intrinsic function by an argument list

• To a statement function by local variables

• To and from an external procedure by an argument list or by common
blocks, described in section 4

Procedure names can be communicated to an external procedure only by an
argument list.

2.5.1 ASSOCIATION OF ARGUMENTS

Execution of a procedure reference causes actual arguments to be
associated with dummy arguments: the first actual argument with the
first dummy argument, etc. A valid association occurs only if the type
of the actual argument is the same as the type of the corresponding dummy
argument; a subroutine name has no type and must be associated with a
dummy procedure. Argument association can be carried through more than
one level of procedure reference; a valid association exists at the last
level only if a valid association exists at all intermediate levels.

All appearances of a dummy argument within a procedure become associated
with the corresponding actual argument when a procedure reference is
executed. A dummy argument is undefined if it is not currently
associated with an actual argument.

If the actual argument is a variable name, array element name, or
substring name, the associated dummy argument can be defined or redefined
within the subprogram. A dummy argument must not be redefined within the
subprogram if the associated actual argument is a constant, the name of a
constant, a function reference, or an expression involving operators or
enclosed in parentheses.

If a subprogram reference causes two dummy arguments in the referenced
subprogram to become associated with each other, neither dummy argument
can become defined in the subprogram. For example, if two dummy
arguments are passed the same actual argument, they become associated
with each other and cannot legally become defined.

If a subprogram reference associates a dummy argument with an entity in a
common block, neither the dummy argument nor the entity in the common
block can become defined within the subprogram if the common block is
declared in the subprogram or is referenced during execution of the
subpro9ram .

SR-0009 2-21 L

Example:

In calling program unit: In called subprogram:

COMMON B
CALL XYZ (B)

SUBROUTINE XYZ (A)
COMMON C

The above subroutine call associates A with B; Band C are associated in
a common block. Neither A nor C can become'defined during the execution
of subroutine XYZ or by any procedures it references.

2.5.2 ACTUAL ARGUMENTS FOR EXTERNAL PROCEDURES

Actual arguments specify the entities that are to be associated with the
dummy arguments of a referenced subroutine or function.

The actual arguments in a reference to an external procedure must agree
in order, number, and type with the dummy arguments in the procedure or
procedure entry. An actual argument can be a subroutine name or an
alternate return specifier (see subsection 2.4.4.2, RETURN Statement);
these are not associated with data types and are exceptions to the
requirement for type agreement.

An actual argument in an external procedure reference must be one of the
following. (Actual arguments for intrinsic functions and statement
functions are discussed in subsection 2.3, Functions.)

• An expression. The expression is evaluated, and the resulting
value is passed to the procedure; that is, it is evaluated just
before the association of arguments takes place. Expressions
include the following, among other possibilities:

SR-0009

A variable or array element name. The subscript is evaluated
just before the arguments are associated. The subscript
value remains constant as long as the arguments are
associated, even if the subscript contains variables that are
redefined during the association.

A function reference with its own argument list (empty where
appropriate). The function is evaluated, and the resulting
function value is passed to the procedure that is being
referenced.

A character substring name. A character expression involving
concatenation of an operand with a length specifiriation of
(*) cannot be used unless the operand is the name of a
constant. See subsection 3.8.3, Arguments of Type Character.

2-22 L

• The name of an intrinsic function, external function, or
subroutine. This allows a procedure reference to specify a second
procedure to be called by the referenced procedure. See the later
subsection, Dummy Procedures.

• An array name. The referenced actual array must be at least as
large as the dummy array in the called procedure; see the
subsection Arrays in section 4.

• For subroutines only: An alternate return specifier of the form
*n, where n is a statement label in the calling program unit
(see the previous subsection,· Alternate Return).

• A dummy argument within the subprogram containing the procedure
reference. Example:

CALL SUBA(X)
SUBROUTINE SUBA(Y)
CALL SUBB(Y)

SUBROUTINE SUBB(Z)

Variable Y above serves as a dummy argument within subroutine
SUBA, but is used as an actual argument in the call to subroutine
SUBB. This allows a value to be passed through several levels of
procedures. (Alternate return specifiers cannot be used this
way.)

2.5.3 DUMMY ARGUMENTS

External procedures use dummy arguments to indicate the types of actual
arguments and whether each is a single value, an array, or a procedure.
A reference to a subprogram causes a Qummy argument to become defined if
the corresponding actual argument is defined. A dummy argument name is
local to a subprogram. Dummy arguments for statement functions are
limited to scalar values.

Each dummy argument is classified as a variable, array, or procedure. A
dummy argument name can appear wherever an actual name of the same class
and type can appear, except where explicitly prohibited. A dummy
argument that is a variable can be associated with an actual argument
that is a variable, array element, substring, or expression. Dummy
argument names of type integer can appear as adjustable dimension
declarators in dummy array declarators.

A dummy argument name cannot appear in an EQUIVALENCE, DATA, SAVE,
INTRINSIC, or PARAMETER statement, as a pointee in a POINTER statement,
or in a COMMON statement, except as common block names. A dummy argument
name must not be the same as the procedure name appearing in a FUNCTION,
SUBROUTINE, or statement function statement in the same program unit.

SR-0009 2-23 L

2.5.4 DUMMY PROCEDURES

A dummy procedure is a dummy argument used as a procedure name in a
call to an external procedure. This allows a procedure call to specify a
second procedure to be referenced by the called procedure. In the
following example, dummy argument S is associated with subroutine SUBB,
which causes the CALL statement to call subroutine SUBB with argument A.

FUNCTION HIGHEST(S,Z)
TOP=HIGHEST(SUBB,A)

CALL S(Z)

END

Before being passed as actual arguments, procedure names are declared in
EXTERNAL or INTRINSIC statements, to distinguish them from other kinds of
arguments. Statement functions cannot be used as dummy procedures. The
use of the EXTERNAL statement allows replacing an intrinsic function with
another function that is better suited to a given application; when this
is done, the intrinsic function of the same name is unavailable.

A dummy procedure name must be associated with an actual argument that is
a procedure; the procedure must be available at the time a reference to
it is executed. If a dummy argument is referenced as a subroutine, the
actual argument must be the name of a subroutine and must not appear in a
type statement or be referenced as a function. If a dummy argument
appears in a type statement and an EXTERNAL statement, the actual
argument must be the name of a function.

When an intrinsic function name is passed to a procedure to be used in a
function reference within the procedure, the arguments in the function
reference must agree in number and type with those specified for the
intrinsic function. As with dummy arguments, the type of a dummy
procedure must match the type of its actual argument when it is used as a
function. (See the intrinsic functions in appendix B.)

A dummy procedure name must appear in the dummy argument list of a
FUNCTION, SUBROUTINE, or ENTRY statement. It cannot be the name of an
array or character variable and is immediately followed by a left
parenthesis except: as an arg~ent; in a type, EXTERNAL, or CALL
statement; or as a common block name in a COMMON or SAVE statement. A
dummy function subprogram name must be declared in an EXTERNAL or
INTRINSIC statement.

2.5.4.1 EXTERNAL statement

An EXTERNAL statement identifies a symbolic name as representing an
external procedure and permits its use as an actual argument.

SR-0009 2-24 L

Format:

EXTERNAL proc [,proc] .•.

proc Name of an external procedure, dummy procedure, or block
data subprogram

The appearance of a name in an EXTERNAL statement declares that name to
be an external procedure name. If an external procedure name is to be an
actual argument in a program unit, it must appear in an EXTERNAL
statement in that program unit. A statement function name must not
appear in an EXTERNAL statement.

If an intrinsic function or utility procedure name appears in an EXTERNAL
statement, that name becomes the name of some external procedure. The
intrinsic function or utility procedure of the same name is not available
for reference in that program unit.

A given symbolic name can appear only once in all of the EXTERNAL
statements of a program unit.

2.5.4.2 INTRINSIC statement

An INTRINSIC statement identifies a symbolic name as an intrinsic
function. It permits use of a specific intrinsic function name as an
actual argument.

Format:

INTRINSIC fun[,fun] ..•

fun Intrinsic function name

The appearance of a name in an INTRINSIC statement declares that name to
be an intrinsic function name. If an intrinsic function name is an
actual argument in a program unit, it must appear in an INTRINSIC
statement in that program unit.

The following intrinsic function names must not appear as actual
arguments.

AMAXO CHAR DMINl IFIX LLE MAX 1 REAL
AMAXl CMPLX FLOAT INT LLT MIN SNGL
AMINO DBLE ICHAR LGE MAX MINO
AMINl DMAXl IDINT LGT MAXO MINl

SR-0009 2-25 L

The appearance of a generic function name in an INTRINSIC statement does
not cause loss of the name's generic property.

A given symbolic name must not appear in both an EXTERNAL and an
INTRINSIC statement. In addition, it can appear only once in all of the
INTRINSIC statements of a program unit. Appendix B lists the intrinsic
functions.

SR-0009 2-26 L

3 • DATA TYPES

Data can be speci~ied or input in a FORTRAN ~rogram as a constant, a
variable, an array, an array element, or a function reference. A
constant is an invariant value, which cannot be modified. A variable
is a name that can assume different values during program execution. An
array is an ordered set of data items of the same type identified by a
single name. An array ~lement is one item ~n an array and, like a
variable, can assume different values during Progr~ execution; it is
identified by the array name and one or more numbers to specify its
position within the array. Functions are discussed in section 2; the
other terms above are disc~ssed in section 4.

Each data item has a data type, which specifies how the item is
represented, stored, and manipulated. Pata types can be any of t~e
following.

• Integer - integral, signed values

• ~eal - values approximating real numbers, consisting of a mantissa
and an e~ponent

• Double-precision - the s~e as real data, but extended to about
twice the precision

• Complex - val~es approximating co~plex numbers as pairs of signed,
real data items. The first item in the ~air represents the real
portion and the second, the imaginary por~ion of the data.

• Logical - the log~ca~ values true and false

• Caaracter - se9uences of characters

• Pointer - values representing storage addresses; only a variable
can have a pointer value.

• Boolean - octal values representing the binary contents of Cray
words; only constants, intrinsic functions, or expressions can be
Boolean.

An arithmetic value is a number that can be used in an arithmetic
operation, and can be of type integer, rea~, double-precision, complex.
Table 3~1 shows some examFles of values represented in these data types.
Pointer variables, Boolean constants, and Hol+erith constants can also be
used in limited ways i~ arithmetic expressions.

SR-0009 3-1 L

The ANSI FORTRAN Standard does not provide for the Boolean or pointer
data types.

After a symbolic name is identified with a type, that type applies to all
uses of that name. Exception: a common block can have the same name as a
variable or array, but the common block name has no type.

A data type (for a symbolic constant, variable, array, external function
or statement function) can be specified explicitly in a type statement or
implicitly by the first letter of its symbolic name. If no type is
specified, a first letter of I, J, K, L, M, or N implies type integer;
any other first letter implies type real. The default for implied typing
can be changed or confirmed by an IMPLICIT statement. Type statements
and the IMPLICIT statement are discussed in subsections 3.1.1 and 3.1.2.

The data type of an array element is the same as the data type of the
array that contains it.

The data type of a function establishes the type of data returned when
the function is referenced in an expression. The data type of a user­
specified function can be implied by its name, specified in a type
statement, or specified within a function subprogram. The names of
intrinsic functions can be specific or generic, so that the result type
agrees with the type of the data passed to the function. See section 2
and appendix B.

3.1 DATA SPECIFICATION STATEMENTS

Data specification statements specify characteristics and values of data
to be used by a program. Data specification statements are not
executable; therefore, statement labels associated with them cannot be
referenced to control the execution sequence. Data specification
statements usually appear (and most must appear) before any executable
statements in a program.

The kinds of data specification statements are as follows.

• Declaration and initialization: PARAMETER, DIMENSION, and DATA

• Association: EQUIVALENCE and COMMON

• Type statements, including IMPLICIT and IMPLICIT NONE

The first and second categories are discussed in section 4.

SR-0009 3-2 L

3.1.1 TYPE STATEMENTS

A type statement declares the type of an entity and either overrides or
confirms implicit typing and can specify array dimensions by including
array declarators with array names.

The appearance of the symbolic name of a constant, variable, array, or
function in a type statement specifies the data type for all appearances
of that name in the program unit. Within a program unit, a name must not
have its type explicitly specified more than once.

Subroutine names, main program names, and block data subprogram names
must not appear in a type statement.

If a specific intrinsic function name appears in a type statement that
conflicts with that function's type as specified in appendix B, the
function name must first be declared in an EXTERNAL statement.
Otherwise, the conflicting type statement is ignored and a warning
message is issued.

The form of type statements other than CHARACTER is as follows. (See
subsection 3.8, Character Type for additional information.)

type v[,v] ••.

type Specifies type INTEGER, REAL, DOUBLE PRECISION, COMPLEX, or
LOGICAL

v

Examples:

Symbolic name of a constant, variable name, array name,
function name, dummy procedure name, or array declarator.
An array declarator includes dimension declarators as shown
in subsection 4.3, Arrays.

INTEGER NPAK(60,230),RTEST,XREF(20,2),ARRAY

DOUBLE PRECISION ANG(1014,8),KLIM,PTEST(10)

COMPLEX IMAG,COMARR(30,3),ZREF,KITEMS(64)

LOGICAL KEY2,BOOLSET(64,64),TTABLEB(2,20,15)

In the above examples, numbers in parentheses are dimension declarators,
and the names preceding the parentheses are array names. See appendix E
for extensions of the type declaration statements.

SR-0009 3-3 L

3.1.2 IMPLICIT STATEMENT

An IMPLICIT statement changes or confirms the data typing of constants,
variables, arrays, and functions according to the first letter of their
symbolic names.

type

d

len

Data type: INTEGER, REAL, DOUBLE PRECISION, COMPLEX,
CHARACTER[*len], or LOGICAL

Single letter or a range of single letters denoted by the
first and last letter of the range separated by a hyphen.
A range of letters within the alphabet can be written in the
form dfirst-dlast.

Length of the character entities. len can be an unsigned,
nonzero, positive integer constant or expression with a
value is less than 224_1.

An IMPLICIT statement specifies a type for names of constants, variables,
arrays, and functions (except intrinsic functions), beginning with any
letter appearing singly or within a range in the specification. IMPLICIT
statements do not change the types of intrinsic functions. An IMPLICIT
statement applies only to the program unit containing it.

The appearance of a constant, variable, array, or function name in a type
statement overrides or confirms type specification by an IMPLICIT
statement. An explicit type specification in a FUNCTION statement
overrides IMPLICIT statement typing for the name of that function
subprogram.

Within the specification statements of a program unit, IMPLICIT statements
must precede all specification statements other than PARAMETER
statements. A PARAMETER statement must follow an IMPLICIT statement to
affect the typing of constants named in the PARAMETER statement.

A letter can be specified (or implied within a range of letters) only once
in all of the IMPLICIT statements in a program unit.

Examples:

IMPLICIT LOGICAL(L)

IMPLICIT DOUBLE PRECISION(X,Y),COMPLEX(C)

IMPLICIT INTEGER(A,B,F-K),REAL(M-W,Z)

SR-0009 3-4 L

The last example declares variables starting with A, B, F, G, H, I, J,
and K to be integer type.

3.1.3 IMPLICIT NONE STATEMENT (CFT EXTENSION)

The IMPLICIT NONE statement prevents the use of implicit typing by
requiring all constant, variable, array, dummy argument, statement
function, and function (except intrinsic function) names to appear in an
explicit type statement. It also requires all nonintrinsic subroutine
and function names to appear in an EXTERNAL statement. The statement
consists of the words IMPLICIT NONE with no other parameters.

The IMPLICIT NONE statement applies only to the program unit containing
it and must be the first specification statement.

Failure to provide type or EXTERNAL declarations is a fatal error when
IMPLICIT NONE is specified, except in the following cases.

• Intrinsic subroutine and function names need not appear in
explicit type statements and must not be declared EXTERNAL.

• Pointers appearing in a POINTER statement are always assumed to be
of type INTEGER and need not be explicitly typed.

3.2 INTEGER TYPE

Integer data represents positive, negative, or zero values with no
fractional part. The form of an integer constant is an optional sign
followed by a nonempty sequence of digits specifying a decimal integer
value. An integer value occupies one storage unit in a storage sequence,
as discussed later in this section under the heading Storage and
Association.

Integer values are represented in the Cray Computer System by integer
binary values (I) in the following range:

or

When the INTEGER=64 option is specified on the CFT control statement (see
part 1), integer values can be represented in the following range:

or

The ANSI FORTRAN Standard does not specify a range of values for integer
values.

SR-0009 3-5 L

3.3 REAL TYPE

A real value approximates the value of a real number, including a
mantissa and exponent. A real value occupies one storage unit in a
storage sequence described in subsection 4.5, Storage and Association.

A real constant is written as one of the following.

• Basic real constant

• Basic real constant followed by a real exponent

• Integer constant followed by a real exponent

A basic real constant eonsists of an optional sign, an integer portion,
a decimal point, and a fractional portion, in that order. The integer
and fractional portions are sequences of digits representing integer and
fractional decimal constants. Either, but not both, of these portions
can be omitted. A basic real constant can be written with more digits
than can be used to approximate its constant; the excess digits are lost
by eFT in roundoff.

A real exponent is a power of 10 specified by an optionally signed
integer constant following the letter E. The value preceding the
exponent is multiplied by 10 to the specified power.

Nonzero real values are represented in the Cray computer by normalized
floating-point binary values (R) in the following range.

Nonzero real values have a maximum of 48 significant binary digits of
precision. Rounding and truncation during computation can cause fewer
than 48 reliable bits to be generated. This approximates the following
decimal range with approximately 14 decimal digits of precision.

The ANSI FORTRAN Standard does not specify a range of values for real
values.

SR-0009 3-6 L

3.4 DOUBLE-PRECISION TYPE

Double-precision values are signed approximations of real numbers,
extended to approximately twice the precision of real values.
Double-precision values can be positive, negative, or zero, and occupy
two consecutive units in a storage sequence, as described in subsection
4.5, heading Storage and Association.

A double-precision constant is written as one of the following:

• Basic real constant followed by a double-precision exponent

• Integer constant followed by a double-precision exponent

Basic real and integer constants are defined in previous subsections.

A double-precision exponent has the same range as a real exponent. The
form of a double-precision exponent is the letter D followed by an
optionally signed integer value; the value preceding the exponent is
multiplied by 10 to the specified integer value. This notation is shown
in table 3-1.

Nonzero double-precision values are represented in the Cray computers by
normalized floating-point binary values (D) in the following range.

Nonzero double-precision values have a maximum of 96 significant binary
digits of precision. Rounding and truncation during computation can
cause fewer than 96 reliable bits to be generated. This approximates the
following decimal range, with approximately 29 decimal digits of
precision.

The ANSI FORTRAN Standard does not specify a range of values for
double-precision values.

3.5 COMPLEX TYPE

A complex value approximates a complex number as a pair of signed real
values. The first item in the pair represents the real portion and the
second, the imaginary portion of the value. A complex constant is
written as a pair of integer or real constants, within parentheses and
separated by a comma. A complex value occupies two consecutive storage

SR-0009 3-7 L

units in a storage sequence: the first for the real portion and the
second for the imaginary portion. See subsection 4.5, Storage and
Association.

As discussed in subsection 4.5, Storage and Association, when a complex
entity becomes defined, all partially associated real entities become
defined. When both parts of a complex entity become defined as a result
of partially associated real or complex entities becoming defined, the
complex entity becomes defined.

The real and imaginary components of nonzero complex values are
represented in the Cray computer by two real values (Creal,Cimag) in
the following range.

2-8193 < C 1 or C· (28189
- rea 1mag -

Each component contains a maximum of 48 significant binary digits of
precision, approximating to the following decimal range with
approximately 14 decimal digits of accuracy.

10 2466 C C. 10 2465 - (real or 1mag <

The ANSI FORTRAN Standard does not specify a range of values for complex
value components.

3.6 BOOLEAN TYPE

A Boolean constant consists of zeros and ones representing the contents
of bits in a single storage unit (64-bit Cray computer word). There are
no Boolean variables, arrays, or array elements. No user-specified
function can return a Boolean result, but some intrinsic functions (Cray
extensions) can return Boolean results. Masking expressions and some
arithmetic expressions involving Boolean operands have Boolean results.
Arithmetic operations involving Boolean values are performed with integer
arithmetic, and no type conversion is performed.

SR-0009 3-8 L

A Boolean constant is written in one of two forms, octal or hexadecimal:

• The octal form contains 1 to 22 octal digits (O through 7)
followed by the letter B. 22 octal digits in a Boolean value
correspond to the binary contents of a complete storage unit
(64-bit word). In this case, the leftmost octal digit can be only
o or 1, representing the content of the leftmost bit position (bit
0). Each successive octal digit specifies the contents of the
next three bit positions until the last octal digit specifies the
contents of the rightmost three bit positions (bits 61, 62, and
63). A Boolean value represented by fewer than 22 octal digits is
right-justified; that is, it represents the rightmost bits of a
Cray word: bits x through 63.

• The hexadecimal form contains the letter X followed by a string of
1 to 16 hexadecimal digits (0-9, A-F) enclosed by apostrophes or
quotation marks. The hexadecimal digits may be preceded by an
optional + or - sign. Blanks are ignored in hexadecimal values.
When a Boolean value contains 16 hexadecimal digits, their binary
equivalents correspond to the content of every bit position in the
storage unit (64-bit word). A Boolean value containing fewer than
16 hexadecimal digits is right-justified, as in the octal
representation.

• A Hollerith constant is of type Boolean.

Examples:

Boolean Constant

Octal notation:

1274653312572676113745B
OB

1777777777777777777777B
77740B
00776B

Hexadecimal notation:
X'ABE'
X"2FO"
X"-340"
X ' 1 2 3 I

X' FFFFFFFFFFFFFFFF ,

Internal Representation (Octal)

1274653312572676113745
0000000000000000000000
1777777777777777777777
0000000000000000077740
0000000000000000000776

0000000000000000005276
0000000000000000001360
1777777777777777776300
0000000000000000000443
1777777777777777777777

The ANSI FORTRAN Standard does not provide for Boolean values.

SR-0009 3-9 L

3.7 LOGICAL TYPE

A logical value is only true or false, and occupies one storage unit in
a storage sequence (see section 4). The forms and internal
representations of logical values are shown below.

Internal Representation

• TRUE. 0 r • T • True Any negative value

.FALSE. or .F. False Zero or any positive value

The ANSI FORTRAN Standard does not provide for the .T. or .F. form of
the logical value.

3.8 CHARACTER TYPE

A character value or character string consists of one or more 8-bit
ASCII characters (listed in appendix A). A character constant is written
as a sequence of characters preceded and followed by a delimiter, which
can be an apostrophe or quotation mark. The delimiter can appear as a
character within the string if it appears twice in succession; the double
character is interpreted as a single character. Blanks in a character
string are significant.

Examples:

Constant 'ABC' or "ABC" is stored internally as ABC.
Constant' ,., or is stored internally as
Constant , , is stored internally as '"'

The length of a character constant is the number of characters between
its delimiters, with each pair of consecutive delimiters counted as a
single character. A character variable is declared with its length by
the CHARACTER type statement, before any executable statements. The
length of each variable is specified by an integer following an asterisk;
this specifier can follow any individual variable name or can follow the
word CHARACTER for all names lacking length specifiers. The following
example shows a declaration for variables X and Z of length 5, W of
length 2, and Y of length 7.

CHARACTER*5 W*2,X,Y*7,Z

User-specified functions of type character must be declared in the same
manner as character variables. Actual and dummy arguments of type
character must agree in length.

SR-0009 3-10 L

The length of a character constant must be greater than 0 and less than
1317; this limitation derives from the number of lines allowed in a
FORTRAN statement. The length of a character value must be greater than
o and less than 16393 or 214 _1.

Each character within a string has a position that is numbered ordinally
from the first character. These positions are used in specifying
character substrings, discussed in subsection 3.8.2, Character Substrings.

When all characters of a character entity become defined, the character
entity becomes defined. See subsection 4.5.3, Definition.

The ANSI FORTRAN Standard does not provide for the use of quotation marks
as delimiters, and does not specify a maximum length for a character
value.

3.8.1 CHARACTER TYPE STATEMENT

The CHARACTER statement declares a symbolic name to be of type character
and shows the length of each character entity declared.

CHARACTER [*len[,]]nam[*len][,nam[*len]] ...

len Length specification (number of characters) for an entity

nam Variable name, symbolic name of a constant, function name,
dummy procedure name, or array name or array declarator

The length specification following the word CHARACTER refers to each
entity without a length specification. If the CHARACTER type statement
does not include a length specification, the length is assumed to be one.

The length specification, len, can be an unsigned, nonzero integer
constant or a positive, nonzero integer constant expression enclosed in
parentheses. The value of len cannot be greater than 214_ 1.

The ANSI FORTRAN Standard does not specify a maximum character length.

If the entity is an external function, a dummy argument, or a character
constant, len can be specified as an asterisk enclosed in parentheses:
for example, CHARACTER*(*). If the entity is an external function, the

SR-0009 3-11 L

function name must appear in a FUNCTION or an ENTRY statement in the same
subprogram, and the length is obtained from the referencing program
unit. If the entity is a dummy argument, the dummy argument assumes the
length of the associated actual argument. If the entity is a character
constant with a symbolic name, the constant will assume the length of its
corresponding constant expression defined later in a PARAMETER statement.

3.8.2 CHARACTER SUBSTRINGS

A character substring consists of one or more contiguous characters
within a character variable or character array element (see later in this
section under the heading Arrays). A substring name takes the following
form:

cvname ([begpos]:[endpos])

cvname Name of a character variable or character array element.

([begpos]:[endpos])
Substring designator. begpos and endpos are integer
expressions designating the beginning and ending character
positions of the substring. The minimum and default value
of begpos is 1; the maximum and default value of endpos
is the last position.

Examples:

Substring: Designates Characters:

STRINGA(6:9) 6 through 9 of variable STRINGA

STRINGB(4:) 4 through last of variable STRINGB

STRINGC(2,6)(1:3) 1 though 3 of array element STRINGC(2,6)

STRINGD(5,4)(:7) 1 through 7 of array element STRINGD(5,4)

3.8.3 ARGUMENTS OF TYPE CHARACTER

Arguments of type character can be character variables, substrings, or,
in external procedures, character arrays. An actual argument associated
with a character dummy argument must be of type character, with a length
exceeding or equaling that of the dummy argument.

SR-0009 3-12 L

If a function subprogram name is of type character, each entry name in
the function subprogram must be of type character; the function name and
all entry names must have the same declared length, whether it is an
integer or (*), denoting adjustable length. A character dummy argument
whose length is specified as (*) must not appear as an operand for
concatenation, except in a character assignment statement.

If the length len of a dummy argument of type character is less than
the length of an associated actual argument, the leftmost len
characters of the actual argument are associated with the dummy argument;
that is, the rightmost characters are truncated. len must not exceed
the actual argument's length (this can cause unpredictable execution-time
errors).

If a dummy argument of type character for an external procedure is an
array name, the restriction on the array's length (described in the
previous paragraph) is for the entire array and not for each array
element. The length of a dummy array element can differ from the length
of an associated actual array, element, or element substring; but the
dummy array must not extend beyond the end of the associated actual array.

When an actual argument is a character substring, the argument's length
is the substring's length. If an actual argument is the concatenation of
two or more operands, the argument's length is the sum of the operands'
lengths. A character expression involving concatenation of an operand
with a length specification of (*) cannot be used as an actual or dummy
argument unless the operand is the name of a constant in a character
assignment statement.

Substring expressions are evaluated immediately preceding argument
association; the expression values remain constant as long as argument
association continues.

3.9 POINTERS

A pointer is a type INTEGER variable whose value is used as the address
of another entity, which is called a pointee. A pointer is declared by
the POINTER statement, which also specifies its pointee.

Example:

POINTER (P,B),(Q,C)

The above statement declares pointer P and its pointee B, and pointer Q
and pointee C; the pointer's current value is used as the pointee's
address whenever the pointee is referenced.

SR-0009 3-13 L

The pointee does not have an address until the pointer's value is
defined: the pointee's value starts at the location specified by the
pointer. A pointer cannot be assigned a literal constant number; its
value must derive from the location of an entity or be defined in terms
of other pointers:

• The LOC function returns the address of a variable. Example:

P=LOC(X)

• A pointer can be defined in terms of another pointer. Example:

Q=P+100

The CFT compiler assumes that a pointee's storage is never overlaid on
another variable's storage; that is, a pointee should never be associated
with another variable or array. The programmer is responsible for
preventing such association. In the following example, Band C have the
same pointer, so the result is likely to be invalid.

POINTER (P,B),(P,C)
REAL X,B,C
P=LOC(X)
B=1.0
C=2.0
PRINT *,B

3.9.1 POINTER STATEMENT (CFT EXTENSION)

The P0INTER statement declares one variable to be a pointer (which is of
type pointer), and another variable to be its pointee; that is, the
pointer's value is the address of the pointee.

POINTER (p,a)[,(p,a)] •.•

p

a

SR-0009

Pointer to the corresponding a. p contains the word
address of the location of a.

Variable pointed to by p. The content of p is used for
any reference to a; therefore a is not assigned
storage. a cannot be a dummy argument nor appear in a
COMMON, EQUIVALENCE, or DATA statement. a cannot be of
type CHARACTER.

3-14 L

ai can be dimensioned in a separate type or DIMENSION statement or
dimensioned in the pointer list itself, as in the following example:

POINTER (IX,X(N,O:M»

In a subroutine or function, the a dimension expression can contain
references to variables in a common block or to dummy arguments.

The pointer, p, is a simple variable of type INTEGER and can appear in
a common list or be a dummy argument in a subprogram. p can be set
with a LOC function reference or as an absolute address, as in the
following example:

COMMON POOL (100000) INTEGER JCB (128), WORD64
REAL A (l),B(l),C(l) POINTER
(PJCB,JCB),(IA,A),(IB,B),(IC,C),(ADDRESS,WORD64)
DATA ADDRESS/64/ PJCB = 0 IA = LOC(POOL)
IB = IA + 1000 IC = IB + N

In effect, WORD64 refers to the contents of absolute address 64; JCB is
an array occupying the first 128 words of memory; A is an array of length
1000 located in blank common; B follows A and is of length N;
C follows B. A, B, and C are equated to POOL and possibly to each other,
depending on the subscript usage. Similarly, WORD64 is the same as
JCB(65). However, CFT makes no checks for possible equivalence overlap.
Each a is assumed to be a distinct entity.

Any change in the value of a pointer causes subsequent references to the
corresponding pointee to refer to the new location.

Besides providing a limited form of dynamic storage allocation, the
POINTER statement can manipulate linked lists, as in the following
example:

SUBROUTINE FINDSAM (SAMSSPOT)
POINTER (SAMSSPOT, RECORD (N»
COMMON N
INTEGER RECORD

10 IF (RECORD (4) .EQ.'SAM') RETURN
SAMSSPOT = RECORD (25)
IF (SAMSSPOT .NE.O) GO TO 10
PRINT 20

20 FORMAT ("SAM'S NOT HERE")
STOP
END

SR-0009 3-15 L

3.9.2 RESTRICTIONS

A pointer can be only a scalar variable; that is, in addition to the
other restrictions on variables, it cannot be a constant, array, array
element, or function.

A pointer's value occupies one storage unit (discussed later in this
section). Its range of values depends on the size of memory for the
machine in use.

A pointee cannot appear in an EQUIVALENCE, FUNCTION, SUBROUTINE, ENTRY,
SAVE, or COMMON statement; this does not apply to pointers.

The ANSI FORTRAN Standard does not provide for the pointer data type.

Table 3-1. Values Represented in Different Data Types

Value Int. Real Oouble-prec. Complex

o 0 O. 0.000 (0. ,0.)

692 692. (692.,0.)
692.0 (692.0,0.)
692EO 69200 (692EO,0.)

692 692.EO 692.00 (692.EO,0.)
692.0EO 692.000 (692.0EO,0.)
6920E-1 69200-1 (6920E-1,0.)
.692E3 .69203 (.692E3,0.)
6.92E2 6.9202 (6.92E2,0.)

6.128547472 (6.128547472,0.)
6.128547472EO 6.12854747200 (6.128547472EO,0.)

6.128547472 6t 6128547472E-9 61285474720-9 (6128547472E-9,0.)
6128547472.0E-9 6128547472.00-9 (6128547472.0E-9,0.)
.6128547472E1 .612854747201 (.6128547472E1,0.)
612.8547472E-2 612.85474720-2 (612.8547472E-2,0.)

t This value, which is different than the original va ue, is the result
of type conversion of the original value to the type shown in this
column.

SR-0009 3-16 L

Table 3-1. Values Represented in Different Data Types (continued)

Value Int.

.875i ot o.t

692+.875i 692.t

Real Double-prec.

O.ODOt

692.0DOt

Complex

(0.,.875)
(0.,875E-3)
(0.,.875EO)
(0.,8.75E-1)
(0.,.000000875E6)

(692.,.875)
(692EO,0.875)
(69.2E1,875E-3)
(.692E3,875.E-3)
(6.92E2,8.75E-1)

t This value, which is different than the original va ue, is the result
of type conversion of the original value to the type shown in this
column.

SR-0009 3-17 L

4.· DATA STRUCTURES, STORAGE, AND ASSOCIATION

This section describes the methods of using and storing data: constants,
variables, arrays, and common.blocks. It also describes how entities are
associated. Relevant CFT statements are included.

4.1 CONSTANTS

A literal ~onstant is the ASCII representation of a constant value.
Except within character constants, blank characters in a literal constant
have no effect.

A constant can be given a symbolic name by the PARAMETER statement, in
which the name's data type is determined the same way as for variables.
That is, the name can be declared in a preceding type statement, or the
type can be implicit. For example, in the following statement, R is real
even though 1 is an integer:

PARAMETER (R=1)

A constant name is local to a program unit and cannot be used as the name
of anything else except a common block.

A signed constant is a literal constant preceded by a sign (+ or -)
indicating either a positive or negative number. An unsigned constant
is a literal constant not preceded by a sign. An optionally signed
constant can be either signed or unsigned. Arithmetic constants are
optionally signed except where otherwise specified. The negative of a
nonzero constant, exponent constant, or complex portion is formed by
preceding it with a minus sign. If no sign is shown in this position, a
positive constant is assumed. The constant zero is neither positive nor
negative; a signed zero has the same value as an unsigned zero.

4.1.1 PARAMETER STATEMENT

A PARAMETER statement assigns a symbolic name to a constant.

PARAMETER (p=e[,p=e] .•.)

SR-0009 4-1 L

p

e

Symbolic name of a constant

Constant expression. In an exponentiation operation
x**y, y must be an integer.

The type of a symbolic name in a PARAMETER statement is specified by its
appearance in a previous type statement, by a previous IMPLICIT statement
specifying its first letter, or by default. A symbolic name p must be
followed by an arithmetic expression containing only arithmetic constants
or the names of arithmetic constants that have been previously defined in
the same or an earlier PARAMETER statement. If the type of a symbolic
constant is not its implicit type, it must appear in a type statement
before the PARAMETER statement.

The length of a character constant must be specified in a type statement
or an IMPLICIT statement before the first appearance of its name.
Otherwise, the length is assumed to be one. The length cannot be changed
by subsequent statements. If the length is specified as (*), the
parameter length is the length of the actual character string.

Type conversion of an arithmetic expression in a PARAMETER statement
follows the same rules as assignment statements, discussed in section 6.
A symbolic name p of type logical can be followed only by a logical
constant expression. Similarly, a symbolic name p of type character
can be followed only by a character constant expression. A symbolic name
can be assigned an arithmetic or logical value only once in a program
unit. Constants named in a PARAMETER statement can be referenced in any
subsequent statement in the same program unit except in a format
specification or to form a part of any other constant, such as any part
of a complex constant.

Examples:

PARAMETER (PI=3.1415926, C=1.86E5)

PARAMETER (JOULE=10000000,KELVIN=-273)

IMPLICIT LOGICAL(A-B)
PARAMETER (BOOLEAN=.TRUE.,ABOOLEAN=.FALSE.)

4.2 VARIABLES

A variable is a name whose value can be changed during program
execution; it is unsubscripted and is not an array or array element. The
term subscripted variable is often used to apply to an array element,
but should not be assumed to have the characteristics of other variables;
see subsection 4.3, Arrays. Scalar and simple variables are merely
variables as defined above, as distinguished from arrays or array
elements.

SR-0009 4-2 L

A static variable's storage is allocated before program execution and
remains in one location during execution; the default storage type for
all CFT variables is static. A stack variable is dynamically
allocated; that is, its storage is allocated at execution time. If stack
mode is specified on the CFT control statement or command, all variables
are stack variables except those appearing in COMMON, DATA, or SAVE
statements, and any variables equivalenced to these variables.

A variable has one data type throughout a program, as specified by the
rules governing symbolic names, described under the following heading,
Types of Data. The value of a variable can be defined by means of the
assignment operator (=) or used in operations according to the rules
described in section 5.

A variable name has the following restrictions:

• It cannot appear in a PARAMETER, INTRINSIC, or EXTERNAL statement.

• It cannot be the name of an array, subroutine, main program, or
block data subprogram, nor the entry name in an ENTRY statement
for an external subroutine, or NAMELIST group name.

• A variable name can be followed by a left parenthesis only if it
is preceded by the word FUNCTION in a FUNCTION statement or by the
word ENTRY in an ENTRY statement; or if it begins a character
substring name (see subsection 3.8, Character Type).

A variable name is local to a program unit; see under the heading later
in this section, Scope of Symbolic Names.

A variable can have the same name as a common block. A variable or
common block can have the same name as a dummy argument of a statement
function, but the dummy argument name is local to the statement function
definition statement. The data type is the same in these different uses,
except the use as a common block name. If the type is character, the
length is also the same. See the discussion of statement functions in
section 2.

4.3 ARRAYS

An array is a nonempty, ordered sequence of data items, called array
elements, that occupy consecutive locations in storage. An array name
is the symbolic name of an array and obeys the same rules for data typing
used for other symbolic names; all elements of a given array are of one
type. An array element name identifies one element and consists of an
array name with one or more subscripts indicating the element's position
within the array. Each subscript corresponds to an array dimension.
An array declarator is a list item that specifies an array's symbolic
name and the size of each dimension of the array.

SR-0009 4-3 L

An array name with no subscript identifies the entire array in contexts
where such use is permitted (see subsection 4.3.8, Use of Array Names).
In an EQUIVALENCE statement, an array name with no subscript identifies
the first element of the array.

An array element substring is a character substring of a character
array element; see subsection 3.8, Character Type.

Arrays are classified as dummy or actual, depending on their use as dummy
arguments; and as constant-size, adjustable, assumed-size, and pointee,
depending on how the dimension sizes are determined and on their usage.

4.3.1 DUMMY AND ACTUAL ARRAYS

A dummy array is an array (constant-size, adjustable, assumed-size, or
pointee; terms defined later) that is a dummy argument in a procedure
subprogram. Each dummy array must be associated through one or more
levels of procedure references with an actual array or an actual array
element. (Association of a dummy array with an actual array element
causes the element's address to be used as the dummy array's base
address.) See subsection 4.3.7, Arrays as Arguments.

An actual array is an array that is not a dummy array. An actual array
can be a constant-size or pointee array. All arrays in main programs are
actual arrays; actual arrays can also be in procedure subprograms.

In a reference to a subprogram containing a dummy array, the actual
argument corresponding to the dummy array name must be either an array
name, an array element substring, or an array element name. Size
requirements for dummy and actual arrays are discussed in subsection
4.3.6, Array Size.

4.3.2 CONSTANT, ADJUSTABLE, ASSUMED-SIZE AND POINTEE ARRAYS

An array is constant-size, adjustable, assumed-size, or pointee,
depending on how its size is determined and how the array is used. Each
category has a corresponding kind of declarator, described under the next
heading.

A constant-size array has dimensions that do not vary in size; that is,
the dimension bounds in the array declarator are constant expressions.

An adjustable array is a dummy array whose size is determined during
program execution, as defined by the array declarator. Each reference to
a subprogram can specify dimension sizes for an array in the subprogram;
the sizes are constant during subprogram execution~ Variables defining
an adjustable dimension bound can be redefined or become undefined during
execution of the subprogram with no effect. on the bound or on array size.

SR-0009 4-4 L

An assumed-size array is a dummy array whose last dimension is of an
unknown size (specified as ".") that is assumed to be large enough for
all references made to the array. The size of an assumed-size array is
determined as described under the heading Array Size. An assumed-size
array cannot be used as an item in an input/output list or in a READ,
WRITE, or PRINT statement containing a format specification.

A pointee array is an actual array that is the object of a pointer.
Its dimensions are determined in the same way as those of an adjustable
array.

The ANSI FORTRAN Standard does not provide for pointee arrays.

4.3.3 DIMENSION STATEMENT

The DIMENSION statement specifies the symbolic names and dimension
specifications of arrays. Because arrays can be dimensioned in type
statements, the DIMENSION statement is unnecessary.

DIMENSION a(d)[,a(d)] •.•

a(d) Array declarator; see subsection 4.3.4.

Each symbolic name a appearing in a DIMENSION statement declares a to
be an array in that program unit. An array name can appear only once as
an array declarator in a program unit. Array declarators can also appear
in COMMON statements, type statements, and in POINTER statements.

4.3.4 ARRAY DECLARATORS

An array declarator is an item (within a statement) that specifies an
array's symbolic name and the size of each dimension in the array. This
information is used to allocate storage for an array. Array declarators
can be listed in DIMENSION, COMMON, or type declaration statements, or as
pointees in a POINTER statement. Within one program unit, only one array
declarator is permitted for a given array name. Figure 4-1 shows three
array declarators and the arrays that they define.

SR-0009 4-5 L

The format of an array declarator is as follows:

a Symbolic name of the array

Dimension declarator, one for each dimension in the array.
The dimension bounds, u and 1, can be expressions.

1 Lower bound of the dimension; default is 1.

u Upper bound of the dimension. This can be specified
as "*" for an assumed-size array.

A dimension declarator specifies the number of array elements in one
dimension of an array; this number is (u-1)+1. u and 1 can be
positive, zero, or negative, so long as u~l. If the-lower bound is
omitted, its value is assumed to be 1. An array declarator has as many
dimension declarators as the array has dimensions; there can be from one
to seven.

A dimension bound expression is an expression that serves as the upper
or lower bound of a dimension in an array declarator. The expression
must be scalar and of integer type. Functions, array elements, and
variables are used only in adjustable array declarators, described in
subsection 4.3.4.2, Adjustable Array Declarators.

The ANSI FORTRAN Standard does not permit dimension bound expressions
to contain function references, array elements, or noninteger variables.

Examples:

DIMENSION ARRAY (34,0:24,1:34), VECTOR (64), Z7144X (5:10,-2:20)

DIMENSION MATRIX (ROWS,COLUMNS), Y(2*N+1)

DIMENSION TABLE (3,IVAL, MATRIX,2,2), TAB(6:IVALX,MAT:10)

In the last two examples, the use of variables defines adjustable
dimensions and is permitted only in procedure subprograms.

SR-0009 4-6 L

4.3.4.1 Kinds of array declarators

Reflecting the different kinds of arrays, array declarators are
classified as either actual or dummy; and as constant-size, adjustable,
assumed-size, or pointee.

Actual, dummy - An actual array declarator declares an actual array.
Actual array declarators are permitted in DIMENSION, COMMON, or type
statements, with the exception that pointee declarators appear only in
POINTER statements.

A dummy array declarator declares a dummy array, which can be either
constant, adjustable, or assumed-size. Dummy array declarators appear
only in procedure subprograms, within DIMENSION or type statements but
not COMMON statements.

Constant, adjustable, assumed-size, pointee - In a constant array
declarator, the dimension bound expressions contain no variables,
functions, or array elements. Adjustable and pointee array
declarators contain one or more variables, functions, or array elements.
In an assumed-size array declarator, the upper bound of the last
dimension declarator is an asterisk, which indicates an unknown value.

4.3.4.2 Adjustable array declarators

An adjustable array declarator defines an adjustable array; its dimension
bound expressions can contain variables, array elements, or functions. A
variable or array element in an adjustable dimension declarator must be
named in the dummy argument list containing the array name or in a COMMON
statement in the same subprogram. Array elements used in an adjustable
array declarator must not be elements of the array being declared.

4.3.5 ARRAY ELEMENTS AND SUBSCRIPTS

The subscript of an array element name identifies the element's
position in the array, and consists of a group of subscript expressions
separated by commas and between parentheses. Within a subscript, each
subscript expression specifies the element's position in one array
dimension. The subscript value is the ordinal number of an element's
position in the array's storage sequence, as discussed in this subsection.

SR-0009 4-7 L

One Dimension

1

2

3

4

5 t

6

Array declarator:

Data type:

Dimension
sizes:

Total elements:

Array elementt
reference:

Number of words:

Two Dimensions

2 ___ 1 ______ 1 ___ I

I I I
3 ___ 1 ______ 1 ___ I

I I I
4 ___ 1 ______ 1 ___ I

I I 1
5 ___ 1 ______ 1 ___ I

I I I
6 ___ t_ t ____ 1 ___ I

1 I I
7 ___ 1 ______ 1 ___ I

I I 1
8 ___ 1 ______ 1 ___ I

I I 1
9 ___ 1 ______ 1 ___ I

1 I 1
1 2 3 4

ARX(6) ARY(9,4)

Real Double precision

6 elements 9 and 4 elements

6 36

ARX(5) ARY(6,2)

6 72

Dimensions

I
__ ---''---__ 1

I
I_I

__1...-__ 1 I

t

2

I_I
_I I

I_I
_I I

I_I
_I I

I_I
_I I

I_I
_I

I
_I

IARZ(7,2,3)

Integer

7,2, and 3 elements

42

IARZ(3,2,1)

42

Figure 4-1. Array Specification and Size

SR-0009 4-8 L

An array name designating an entire array causes sequential processing of
all array elements; see subsection 4.3.8, Use of Array Names. The format
of an array element name is as follows.

a

s

a(s[,s] •••)

Array name

Subscript expression; must be scalar and integer type.

NOTE

In ANSI usage, the term subscript refers to a grouF
of subscript expressions that completely specify an
element's position within an array. In common usage
the term often refers to just one subscript expression
within a group. In this manual an attempt is made to
avoid ambiguity in the use of these terms.

4.3.5.1 Array subscripts and storage sequence

A subscript expression must yield an integer value when evaluated and can
contain references to any arithmetic type of constant, variable,
function, or array element. The evaluation of the subscript expression
must not alter the value of other expressions within the same statement.

eFT uses 24-bit A registers for subscript calculations. Overflow on
intermediate values greater than 223_1 is not detected; very large
values in subscript expressions can produce unpredictable results.

Although an array is arranged in dimensions for programming purposes, it
is stored in a single ordinal sequence. Each array element's position in
the sequence is specified by its group of subscript expressions, each
expression specifying the element's position within one array dimension.
Figure 4-2 shows the storage sequence of a typical three-dimensional
array. Table 4-1 illustrates the conversion of subscript values to
ordinal positions within an array's storage sequence.

SR-0009 4-9 L

The number of subscripts normally equals the number of dimension
declarators in the array declarator. When fewer subscript expressions
are used, the lower bound is assumed for the missing subscript
expressions, and a warning message is issued.

The ANSI FORTRAN Standard does not provide for fewer subscript
expressions than declarators.

Array Declarator: X(5,3,2)

Array
Arrangement

1

2
I X(1,1,2)
I X(2,1,2)
I X(3,1,2}
I X(4,1,2}
I X(5,1,2)

X(1,2,2}
X(2,2,2}
X(3,2,2}
X(4,2,2}
X(5,2,2)

11 X(1,1,1}
21 X(2,1,1}
31 X(3,1,1}
41 X(4,1,1}
51 X(5,1,1)

X(1,2,1}
X(2,2,1}
X(3,2,1}
X(4,2,1)
X(5,2,1)

X(1,3,1}
X(2,3,1}
X(3,3,1)
X(4,3,1}
X(5,3,1)

1 2 3

Array Characteristics

Array declarator: X(5,3,2)

Dimensions: 3

Dimension sizes: 5, 3, and 2
elements

Array size: 30 elements

X(1,3,2}
X(2,3,2}
X(3,3,2}
X(4,3,2}
X(5,3,2}

Array Storage
Sequence

Ordinal 11 X(1,1,1}
Position 21 X(2,1,1}

31 X(3,1,1}
41 X(4,1,1}
51 X(5,1,1}
6 X(1,2,1}
7 X(2,2,1}
8 X(3,2,1}
9 X(3,2,1)

10 X(5,2,1}
11 X(1,3,1}
12 X(2,3,1}
13 X(3,3,1)
14 X(4,3,1}
15 X(5,3,1}
16 X(1,1,2}
17 X(2,1,2)
18 X(3,1,2)
19 X(4,1,2}
20 X(5,1,2}
21 X(1,2,2)
22 X(2,2,2}
23 X(3,2,2)
24 X(4,2,2)
25 X(5,2,2)
26 X(1,3,2)
27 X(2,3,2)
28 X(3,3,2}
29 X(4,3,2)
30 X(5,3,2)

Figure 4-2. Storage Sequence for a Three-dimensional Array

SR-0009 4-10 L

Table 4-1. Subscript Evaluation

n Dimension Declarator Subscript

1 (1 1 :u1) (S1)

2 (1 1:u1,12 :u2) (Sl'S2)

3 (1 1:u1,1 2:U2,1 3 :U3) (S1'S2'S3)

n

n = Number of dimensions (1~n~7)

1 = Lower bound of dimension declarator
u = Upper bound of dimension declarator
si = Subscript expression (1i~si~ui)
di = (ui- 1i)+1

4.3.6 ARRAY SIZE

Subscript Value

1+(Sl-11)

1+(S1-11)
+(s2-12)*d1

1+(S1-11)
+(S2-12)*d1
+(S3- 13)*d2*d1

1+(S1-11)
+(S2- 12)*d1
+(S3-13)*d2*d1
+ •••

The size of an array (that is, the number of elements in the array)
equals the product of the sizes of all dimensions for that array. The
number of storage units (words) in an array is the product of the number
of the elements in the array and the number of storage units required for
each element. Figure 4-1 shows the sizes of typical arrays.

4.3.6.1 Size of an assumed-size array

The size of an assumed-size dummy array is determined as follows:

• If the actual argument corresponding to the dummy array is a
noncharacter array name, the size of the dummy array is the size
of the actual argument array.

SR-0009 4-11 L

• If the actual argument corresponding to the dummy array name is a
noncharacter array element name with a subscript value of r in
an array of size x, the size of the dummy array is x+1-r.

• If the actual argument is a character array name, character array
element name, or character array element substring name and begins
at character storage unit t of an array with c character storage
units, then the size of the dummy array is (c+1-t)/1 where 1 is the
length of an element of the dummy' array.

If an assumed-size dummy array has n dimensions, the product of the
sizes of the first n-1 dimensions must be less than or equal to the
size of the array, as determined by one of the above rules.

4.3.6.2 Maximum array size

CFT allows a maximum array size of 4,194,304 Cray computer words when not
using extended memory addressing (EMA). The maximum array size when
using EMA is 16,777,216 Cray computer words (see the EMA compiler option
in section 1). The maximum array sizes are reduced by the computer
system being used, the amount of executable code and data associated with
the program, the external routines needed by the program, and the memory
required for system-related activities.

The ANSI FORTRAN Standard does not specify a maximum for array size.

4.3.7 ARRAYS AS ARGUMENTS

A dummy array can be associated with an actual argument that is either an
array name, an array element name, or an array element substring.

The number and size of dimensions in an actual array declarator can
differ from those in an associated dummy array declarator, but the dummy
array cannot be larger than the actual array. If an actual argument is
an array element name with a subscript value of S in an array of size
n, the size of the dummy array must not exceed n-s+1.

Actual and dummy array elements are associated via their subscript
values. When an actual argument is an array element name with a
subscript value of p, the dummy argument array element with a subscript
value of q becomes associated with the actual argument array element
that has a subscript value of p+q-l.

SR-0009 4-12 L

Dummy argument names of type integer can appear as adjustable dimension
declarators in dummy array declarators. If an actual argument is
associated with a dummy argument appearing in an adjustable dimension
declarator, the actual argument must be defined with an integer value at
the time the procedure is referenced.

An adjustable array is undefined if the dummy argument array is not
currently associated with an actual argument array or if any variable
appearing in the adjustable array declarator is not currently associated
with an actual argument or is not in a common block.

4.3.8 USE OF ARRAY NAMES

The use of an array name with no subscript to designate a whole array
implies the following:

• The number of values to be processed equals the number of elements
in the array.

• The elements of the array are to be taken in sequential order,
except in the evaluation of array expressions and in array
assignment statements.

In a program unit, each appearance of an array name must be as part of an
array element name except when used in the following.

• Array expression

• Array declarator

• List of arguments

• COMMON, EQUIVALENCE, DATA, NAMELIST, or SAVE statement

• Type statement

• POINTER statement, as a pointee

• Input/output statement: as a format identifier, in a list, or as
a unit identifier for an internal file. These do not apply to an
assumed-size array.

SR-0009 4-13 L

4.4 DATA STATEMENT

A DATA statement provides initial values for variables, arrays, and array
elements. Only those entities named in DATA statements become defined
prior to executable program execution; all other entities are undefined
at this time.

A DATA statement can be intermixed with specification statements but must
follow type statements for variables appearing in the DATA statement.

Entities appearing in DATA statements are assigned to static storage.

The ANSI FORTRAN standard specifies that the DATA statement follows all
specification statements.

The ANSI FORTRAN Standard does not specify storage allocation methods.

Format:

DATA nlistlclistl[[,]nlistlclistl] .•.

nlist

clist

List of variable names, array names, array element names,
substring names, and implied-DO lists (described below)
separated by commas

List of the form [~*]c[,[r*]c] •••
c Constant or the symbolic name of a constant
r Nonzero, unsigned, integer constant or the symbolic

name of such a constant

The r*c form is interpreted to provide r successive
values of the constant c.

Elements of arrays named in nlist must be individually accounted for in
clist.

Example:

INTEGER I(5) DATA I/5*01

Array I above has five elements, and the DATA statement assigns it five
zeros.

SR-0009 4-14 L

Counting as separate items the elements of any arrays in nlist, and
counting an r*c entry in clist as r items, the ith item in nlist
becomes defined with the ith value from clist. The same number of
items must be specified by each nlist and its corresponding clist.
The initial values of the entities are defined by this correspondence.
Exceptions to this rule are shown in appendix E, Outmoded Features.

Each subscript expression in the list nlist must be an integer constant
expression except for implied-DO variables. Each substring expression in
the list nlist must be an integer constant expression.

Names of constants, dummy arguments, and functions must not appear in
nlist. Names of entities in a named common block or in blank common
(including entities associated with an entity in blank common) can appear
in nlist.

The ANSI FORTRAN Standard does not permit entities in blank common to be
initialized in a DATA statement.

If a variable, an array element, or an entity associated with either is
defined by a DATA statement more than once in an executable program, the
one nearest the end of the program is the only definition to apply.

4.4.1 IMPLIED-DO LIST IN A DATA STATEMENT

An implied-DO list allows a DATA statement to initialize a group of
values systematically as in a DO loop. The implied-DO is used frequently
for initializing an array. The following format represents one item in
an nlist as shown above; the values assigned are contained in a
subsequent clist.

dlist

i

SR-0009

List of array element names and implied-DO lists separated
by commas. dlist cannot contain substring names, even if
they are substrings of array elements.

Name of an integer variable called the implied-DO variable

4-15 L

e1' e2' and e3
Integer constant expressions containing only integer
constants, the names of integer constants, and implied-DO
variables of other implied-DO lists containing this
implied-DO list within their ranges. If omitted, e3 is
assumed to be 1.

The range of an implied-DO list is the list dlist. The iteration count
and values of the implied-DO variable i are established as for a
DO-loop except that the iteration count must be greater than zero.
Interpretation of an implied-DO list in a DATA statement causes each item
in the list dlist to be specified once for each iteration, and for
appropriate values to be substituted where implied-DO variables are
referenced.

Each subscript expression in the list dlist must be an integer constant
expression except that the expression may contain implied-DO variables of
implied-DO lists that have the subscript expressions within their ranges.

Any declaratives affecting the variable or array names in nlist must
precede the DATA statement.

Examples:

(1) DIMENSION A(25)
DATA (A(I),I=1,10)/10*11

The first ten values of array A above are set to 1.

(2) DIMENSION GRID (2,3),KBUF(10,200,2)
PARAMETER (XCON=6.0)
DATA GRID 111.0,21.0,12.0,22.0,13.0,23.0/,KBUF/4000*XCONI
DATA I/1/K/20001
PARAMETER (NEG=-6)
INTEGER NB (10)
DATA NB/-3,7*-4,2*NEGI

4.4.2 DATA TYPES IN A DATA STATEMENT

When the nlist entity is of type integer, real, or double-precision,
the corresponding clist constant is converted, if necessary, to the
type of the nlist entity according to the rules for arithmetic
conversion, as shown in table 2-4.

An nlist entity of type logical must correspond to a clist constant
of the same type. A clist entity of type logical must correspond to an
nlist entity of type logical.

SR-0009 4-16 L

An entity in the list nlist that corresponds to a character constant
must be of type character. If the length of the character entity in the
list nlist is greater than the length of its corresponding character
constant, the additional rightmost characters in the entity are initially
defined with blank characters. If the length of the character entity in
the list nlist, is less than the length of its corresponding character
constant, the additional rightmost characters in the constant are ignored.

Other rules concerning data tyges in the DATA statement are shown in
appendix E, Outmoded Features.

4.4.3 ENTITIES THAT CAN BE DEFINED

Any variable or array element can be initially defined in a DATA
statement except for the following.

• An entity that is a dummy argument

• A variable in a function subprogram whose name is also the name of
the function subprogram

• A pointee

• An entity declared to be in BLANK COMMON

4.5 STORAGE AND ASSOCIATION

This subsection discusses the storage of variables, arrays, and common
blocks, and how entities become associated.

4.5.1 STORAGE UNITS AND SEQUENCES

A numeric storage unit is a Cray word of 64 bits; a character storage
unit is an 8-bit byte. A storage sequence is a contiguous group of
storage units with a consecutive series of addresses. Each array and
each common block is stored in a storage sequence. The size of a storage
sequence is the number of storage units it contains. Two numeric storage
sequences are associated if they share at least one storage unit.

An integer, real, or logical value occupies one numeric storage unit.
A character value is represented as an 8-bit ASCII code, packed eight
characters per word; the storage size depends on the value's length
specification. A double-precision or complex value uses a storage
sequence of two numeric storage units, with the first storage unit

SR-0009 4-17 L

containing the most significant bits of a double-precision value or the
real part of a complex value, and the secQnd storage unit containing the
least significant bits of a double-precision value or the imaginary part
of a complex value.

The ANSI FORTRAN Standard does not specify the relationship between
storage units and computer words, nor does it specify any relation
between numeric and character storage units.

4.5.2 STATIC AND STACK STORAGE

With static storage, any local variable that is allocated memory
occupies the same address throughout program execution. Code using
static storage is nonreentrant and does not adapt to multitasking.
Static storage occurs unless stack mode is specified on the CFT control
statement or command.

A stack is an area of memory where storage for variables is allocated
when a subprogram or procedure begins execution and is released when
execution completes. When stack mode is in effect for a program, stack
storage is used for all local variables except those named in SAVE, DATA,
or COMMON statements. The stack expands and contracts as procedures are
invoked and return. The amount of memory available for the stack is
determined by the STK parameter on the LDR call or the STACK directive on
the call to SEGLDR. Stacks are also called pushdown storage or
last-in-first-out (LIFO).

4.5.3 DEFINITION

A defined variable or array element has a value. An undefined
variable or array element does not have a predictable value. Once
defined, a variable or array element keeps a value until it becomes
undefined or is redefined.

All variables and array elements are initially undefined and can be
defined before or during during program execution. An initially
defined variable or array element is one defined before program
execution. Constants are always defined and are never redefined. A
function's value is defined only when it is required.

When an entity of a given type becomes defined, all totally associated
entities of different types become undefined. When an entity not of
character type becomes defined, all partially associated entities become
undefined. This does not apply to two entities of types real and complex
or to two entities of type complex.

SR-0009 4-18 L

4.5.4 ASSOCIATION OF ENTITIES

Association of entities occurs when a storage location can be identified
by different symbolic names or from different program units: that is,
two entities are associated if their storage sequences are associated.
Totally associated entities have the same storage sequence. Partially
associated entities share part but not all of a storage sequence. All
entities using a given storage unit are affected by the unit's value or
undefined status; totally associated entities have the same values and
definition status.

Within a program unit, an EQUIVALENCE statement associates entities.
Across program units, entities are associated through arguments and
COMMON statements. Character entities must not be associated with
arithmetic or logical entities.

Partial association can exist between a double-precision or complex value
and a second value of type integer, real, logical, double-precision, or
complex; or between two character entities. Partial association can
occur only through the use of COMMON, EQUIVALENCE, or ENTRY statements.
(ENTRY statements in a function subprogram associate any variables in the
subprogram that have the same names as the ENTRY statements.) Partial
association must not occur through argument association.

Example:

INTEGER I
REAL R(4)
COMPLEX C(2)
DOUBLE PRECISION D
EQUIVALENCE (C(2), R(2), I), (R,D)

The EQUIVALENCE statement above specifies that the following storage
units are the same:

• The third storage unit of C (that is, the first unit of the second
element of C)

• The second storage unit of R

• The storage unit of I

• The second storage unit of D

SR-0009 4-19 L

The storage sequences can be illustrated as follows:

Complex

Real

Integer

Double precision

Storage unit
1 213 1 4 1 5

C(1) C(2)

IR(1)IR(2)IR(3)IR(4)1

1_1_1

D

R(2) and I are totally associated. The following are partially
associated: R(1) and C(1), R(2) and C(2), R(3) and C(2), I and C(2),
R(1) and D, R(2) and D, I and D, C(l) and D, and C(2) and D. Although
C(1) and C(2) are each associated with D" C(1) and C(2) are not
associated with each other.

4.5.5 EQUIVALENCE STATEMENT

An EQUIVALENCE statement specifies the sharing of one or more storage
units by two or more entities in a single program unit, in order to use
storage more efficiently. This causes the association of those entities.

EQUIVALENCE (nlist)[,(nlist)] •.•

nlist List of two or more variable names, array element names,
character substring names, or array names, separated by
commas. nlist cannot include names of subprogram dummy
arguments or variable names that are also function names.

An EQUIVALENCE statement specifies that the storage sequence of each
entity in a list nlist shares the same first storage unit. This
associates all entities in the list and can also indirectly associate
other entities. If entities are of different data types, the EQUIVALENCE
statement does not cause type conversion or imply mathematical
equivalence.

Associated entities are assigned to the same kind of storage, static or
stack; static storage is used unless the stack mode option is specified
on the CFT control statement or command (see section 1).

The ANSI FORTRAN Standard does not specify storage allocation methods.

SR-0009 4-20 L

4.5.5.1 Array names and array element names

The use of an array name in an EQUIVALENCE statement has the same effect
as using the name of the first array element. If a variable and an array
are associated, the variable does not assume the properties of an array
and the array does not assume the properties of a variable. If an array
element name appears in an EQUIVALENCE statement, the number of subscript
expressions must be less than or equal to the number of dimensions in the
array declarator for the array. When the number of subscripts is less
than the number of dimensions, the lower bounds are used for the
unspecified subscripts; this does not conform to the ANSI standard, and a
warning is issued.

4.5.5.2 Restrictions on EQUIVALENCE statements

An EQUIVALENCE statemen~ ffly§t not associate the storage sequences of two
different common blocks in the same program unit. An EQUIVALENCE
statement must not specify the same storage unit to occur more than once
in a storage sequence. Example:

DIMENSION A(2)
EQUIVALENCE (A (1) , B) , (A (2) , B) !Illegal statement

The above sequence is prohibited because it specifies the same storage
unit for A(1) and A(2).

An EQUIVALENCE statement must not specify consecutive storage units to be
nonconsecutive. For example, the following is prohibited:

REAL A(2)
DOUBLE PRECISION 0(2)
EQUIVALENCE (A(1) , D(1)) , (A(2) , D(2» ! Illegal statement

An EQUIVALENCE statement must not associate the storage sequences of two
different common blocks in the same program unit.

Example:

COMMON/A/X
COMMON/B/Y
EQUIVALENCE (X,Y) !Illegal statement

EQUIVALENCE statement association must not cause extending of a common
block storage sequence by adding storage units preceding the first
storage unit of the first entity specified in a COMMON statement for the
common block.

SR-0009 4-21 L

Example:

COMMON IX/A
REAL B(2)
EQUIVALENCE (A,B(2» !Illegal statement

The above sequence is not permitted since it would associate an array
element B(l) with a storage unit preceding A in common block X.

An entity of type character can be equivalenced only with other entities
of type character. Lengths are not required to be the same. Partial
overlapping between character entities can occur through equivalance
association.

Example:

CHARACTER A*4,B*4,C(2)*3
EQUIVALENCE (A,C(1»,(B,C(2»

The above sequence associates A with C(2) as shown in the following
illustration.

Character number:

4.6 COMMON BLOCKS

1011021031041051061071
1---- A ----I

1---- B ----I
1--C(1)--I--C(2)--1

A common block is an area of memory that can be referenced by any
program unit in a program, and serves as a means of passing values among
program units and external procedures. A common block can be referenced
by any subprogram in which the common block is declared.

A named common block has a name specified in a COMMON statement, along
with the names of variables or arrays stored in the block; its size is
the same for use by all program units. Different subprograms can include
COMMON statements specifying the same common block. A blank common
block is declared in the same way but without a name; its size need not
be constant for use by different program units. Only a named common
block can be initialized by a DATA statement.

Within an executable program, the common block storage sequences of all
common blocks with the same name share the same first storage unit. The
same is true of all blank common blocks. This associates entities among
different program units.

SR-0009 4-22 L

4.6.1 COMMON STATEMENT

The COMMON statement associates entities in different program units.
This allows different program units to share storage units and to define
and reference the same data.

COMMON [/[cb]/]nlist[,/[cb]/nlist] ...

cb Common block name. The blank (unnamed) common block is
specified when a cb does not appear between slashes.

nlist List of variable names, array names, and array declarators
separated by commas. Names of dummy arguments of a
subprogram cannot appear in the list.

The entities occurring in nlist following a block name cb are
declared to be in common block cb. If the first cb is omitted, its
enclosing slashes are optional and all entities in nlist are specified
to be in blank common.

Any cb (or an omitted cb for blank common) can occur more than once
in one or more COMMON statements in a program unit. The nlist
following each successive appearance of the same common block name
continues the preceding list for that common block name.

If any entity in a common block is a character variable or character
array, all entities in that common block must be of type character. If
the common block is defined in any other procedure, the entities in that
procedure must be character entities.

EQUIVALENCE statement association must not extend a common block storage
sequence by adding storage units preceding the first storage unit of the
first entity specified in a COMMON statement for the common block.

4.6.2 REFERENCING COMMON BLOCKS

Because a common block associates entities by storage sequence rather
than by name, the names and types of variables and arrays can differ
between different subprograms. To be referenced, a datum in a common
block must be defined, and the reference must be of the type which was
declared for that datum in the subprogram where the reference appears.

Qualifications:

• An integer variable that has been assigned an executable statemel~t
label must not be referenced in any program unit other than the
one in which it was assigned.

SR-0009 4-23 L

• Either part of a complex datum can be referenced as a real datum.

• If any entity in a common block is of type character, all entities
in the block must be of type character, and the common block
definitions in all subprograms must be of type character.

In a subprogram that has declared a named or blank common block, the
entities in the block remain defined after the execution of a RETURN or
END statement.

The ANSI FORTRAN Standard specifies that variables in a named common
block become undefined if no executing program unit has declared the
common block.

4.6.3 COMMON BLOCK NAMES

A symbolic name is the name of a common block if it appears as a block
name in a COMMON statement. A common block name is global to the
executable program.

A common block name in a program unit may also be the name of any local
entity other than a constant, intrinsic function (unless the function is
not referenced), or a local variable that is also an external function in
a function subprogram. If a name is used for both a common block and a
local entity, the appearance of that name in any context other than as a
common block name in a COMMON or SAVE statement identifies only the local
entity. A common block name can be the name of a constant, intrinsic
function, or external procedure.

The ANSI FORTRAN Standard does not allow a common block name to be the
name of a constant, intrinsic function, or external procedure.

4.6.4 COMMON BLOCK STORAGE SEQUENCE

For each common block, a common block storage sequence is formed as
follows.

• A storage sequence is formed, consisting of the storage sequences
of all entities listed in a COMMON statement. The sequence order
is determined by the order of these entities.

SR-0009 4-24 L

• This storage sequence is extended to include all storage units of
any storage sequence associated with it by an EQUIVALENCE
statement. The sequence can be extended only by adding storage
units beyond the last storage unit. Entities associated with an
entity in a common block are considered to be in that common block.

4.6.5 COMMON BLOCK SIZE

The size of a common block is the size of its common block storage
sequence, including any extensions of the sequence resulting from
association by an EQUIVALENCE statement.

The maximum size of common blocks within a program depends on the loader
being used: LDR uses the size of the first common block as a maximum;
SEGLDR uses the maximum size specified in the whole program as a
maximum. Blank common blocks within an executable program are not
required to be of the same size and can increase, decrease or remain the
same as each program unit is compiled.

The ANSI FORTRAN Standard does not include variable size for named
common blocks.

4.6.6 EXTENDED MEMORY COMMON BLOCKS

CFT allows common blocks to contain more than 4 million words of memory
by using the extended memory addressing (EMA) feature (see the EMA CPU
characteristic in subsections 1.1 and 1.2). When the EMA CPU
characteristic is specified, all variables declared in named and blank
common blocks are addressed as though they are allocated beyond 4 million
words of memory. The variables declared in an extended memory common
block can be used like variables declared in a regular common block.

A fatal error message is issued when the NOEMA CPU characteristic is used
and any common block is declared to contain more than 4 million words.

4.6.7 TASK COMMON STATEMENT

When multitasking is used, some common blocks may need to be local to a
task. CFT allows common blocks to be declared local to a task by using
the task common block extension. All variables declared in a task common
block are considered local to a task. If multiple tasks execute code
containing the same task common block, each task will have a separate
copy of the block.

SR-0009 4-25 L

The keyword TASK must precede the keyword COMMON when a named common
block is declared. A task common block is allocated at task invocation.

The format of a task common block is as follows.

Format:

TASK COMMON [/[cb]/]nlist[,/[cb]/nlist] ..•

cb Task common block name

nlist List of variable names, ar.ray names, and array declarators,
separated by commas. Names of subprogram dummy arguments
cannot appear in the list.

The variables in nlist cannot be preset with data. With this
exception, the variables can be used like the other variables declared in
COMMON.

Stack allocation must be used with task common blocks (see the STACK
option in the CFT control statement or command in subsections 1.1 and
1.2). If static allocation is used, all task common blocks are treated
as regular cornmon blocks.

The ANSI FORTRAN Standard does not provide for task common blocks.

4.7 SYMBOLIC NAMES

A symbolic name is the name of constant, variable, array, cornmon block,
main program, external function, subroutine, intrinsic function,
statement function, block data subprogram, or dummy procedure. Each of
these uses is referred to as a class.

A symbolic name consists of from one to eight alphanumeric characters,
the first of which must be a letter (see below for a restriction on
symbolic names identifying global entities). Some sequences of
characters, such as format edit descriptors and keywords that uniquely
identify certain statements (GO TO, READ, FORMAT, etc.) are not symbolic
names, nor do they form the first characters of symbolic names in such
occurrences.

The ANSI FORTRAN Standard provides for symbolic names of up to six
alphanumeric characters.

SR-0009 L

4.7.1 SCOPE OF SYMBOLIC NAMES

The scope of a symbolic name is the range, within a program, where the
name can be used. The scope can be an entire executable program, a
program unit, a statement function statement, or an implied-DO list in a
DATA statement.

The name of the main program and the names of block data subprograms,
external functions, subroutines, and common blocks have a scope of an
executable program and are global to that program.

The names of variables, arrays, constants, statement functions, and
intrinsic functions have the scope of a program unit.

The names of variables that appear as dummy arguments in a statement
function statement have a scope of that statement.

The name of a variable appearing as a DO-variable in an implied-DO list
in a DATA statement has a scope of that list.

4.7.1.1 Global entities

The main program, common blocks, subprograms, and external procedures are
global entities of an executable program; that is, their scope is the
entire program. A global name must not be used to identify any other
global entity in the same executable program.

A global entity is identified by a symbolic name appearing in a common
block, external function, subroutine, main program, or block data
subprogram.

4.7.1.2 Local entities

A local entity's scope is a single program
identified by a symbolic name appearing in
statement function, or intrinsic function.
the following restrictions:

unit. A local entity is
an array, variable, constant,
Names of local entities have

• The name of a local entity must not also be the name of any other
local entity in that program unit.

• The name of a global entity in a program unit must not also
identify a local entity in that program unit except as noted in
subsection 4.6.3, Common Block Names.

SR-0009 4-27 L

5. EXPRESSIONS AND ASSIGNMENT

An expression specifies either: a computation involving two or more
operands with one or more operators; or, one operand and an optional
+ or -. Operands can be constants, symbolic names of constants,
variables, array elements, substrings, or function references. Operators
can specify arithmetic, assignment, character, relational, or logical
operations.

Assignment statements, for defining variables and array elements during
program execution, are arithmetic, logical, and character. Table 5-1
shows which data types can be used together in an assignment statement.
The ASSIGN statement, for assigning statement labels, is described in
section 6.

The use of functions in expressions is discussed in subsection 2.3,
Functions.

An operand (a variable, array element, or function referenced in an
expression) must be defined at the time the reference is executed. The
name of a constant must be established in a PARAMETER statement preceding
the statement where the constant is first referenced.

A parenthesized expression is treated as an entity. For example, in the
expression A*(B*C), the product of Band C is evaluated and then
multiplied by A. Parenthesized expressions can contain one or more
parenthesized expressions, each of which can contain one or more
parenthesized expressions, etc. The limit on the number of nested levels
depends on the context.

The ANSI FORTRAN Standard does not limit the number of levels of nested
parentheses.

Precedence among all types of operators is as follows:

Operator

Arithmetic
Character
Relational
Logical

SR-0009

Precedence

Highest

Lowest

5-1 L

An expression can contain more than one kind of operator. For example,
the following logical expression contains arithmetic, relational, and
logical operators:

L .OR. A + B .GE. C

This expression would be interpreted the same as the following
expression:

L • OR • « A + B) • GE • C)

The order in which primaries are combined using operators is determined
by the following conditions, which are described in this section.

• Use of parentheses

• Precedence of operators

• Right-to-left interpretation of exponentiations in a factor

• Left-to-right interpretation of multiplications and divisions in a
term

• Left-to-right interpretation of additions and subtractions in an
arithmetic expression

• Left-to-right interpretation of concatenations in a character
expression

• Left-to-right interpretation of conjunctions in a logical or
masking term

• Left-to-right interpretation of inclusive disjunctions in a
logical or masking disjunct

• Left-to-right interpretation of exclusive disjunctions,
equivalences and nonequivalences in a logical or masking expression

5.1 ARITHMETIC EXPRESSIONS

An arithmetic expression specifies a numeric computation. Its
evaluation produces a scalar or an array value.

The simplest form of an arithmetic expression is an unsigned constant or
the symbolic name of a constant, variable, array element, or function.
More complicated arithmetic expressions are formed by using one or more
arithmetic operands with arithmetic operators and parentheses. As shown

SR-0009 5-2 • L

in table 5-3, arithmetic operands are normally of type integer, real,
double-precision, or complex; type Boolean can also be used, with the
qualifications shown in the table.

An arithmetic constant expression is an arithmetic expression that
contains as operands any combination of arithmetic constants, symbolic
names of arithmetic constants, or arithmetic constant expressions.
Exponents (y in expression x**y) must be of type integer. References to
variables, array elements, or functions are not permitted. Arithmetic
constant expressions are required in some contexts such as PARAMETER
statements.

An arithmetic operation that cannot be mathematically defined has
unpredictable results. Terms that are not needed for an expressions's
result are not always evaluated. Expressions that raise 0 to a 0 or
negative power or that raise a negative value to a noninteger power cause
run-time faults; these are detected and reported in different ways,
depending on their nature.

5.1.1 ARITHMETIC ASSIGNMENT STATEMENT

An arithmetic assignment statement defines the entity on the left of the
equal sign, v, to be the value of the expression on the right, e,
whose type is converted to that of v if required. Table 5-1 shows
which combinations of operands are legal and which require conversion.

1
1 v = e
1 ______ _

v Name of a variable or array element of type integer, real,
double-precision, or complex

e Arithmetic expression

Examples:

L = 12
C = (0.8,16.5) - (16.32,-6.1)
x = -B +(B**2-4*A*C)**O.5
A B + L
ROOT = SQRT(65536.0)
ARRAY(6,2,1) = 0
MATRIX(I,J,K) = MATRIX(I,J,K)+l

SR-0009 5-3 L

Table 5-1. Allowed Assignment Statements: y=x

y=x y=I y=R y=D y=C y=B y=L y=S

I=x 1=1 I=R I=D I=C I=B I.L I.S1

R=x R=I R=R R=D R=C R=B R.L R.Sl

D=x D=I D=R D=D D.=C D.B D.L D.S

C=x C=I C=R C=D C=C C.B C.L C.S

L=x L.I L.R L.D L.C L.B L=L L.S

S=x S.I S.R S.D S.C S.B S.L S=S

Boolean variables can never appear on the left side of an equal sign.

Legend:

= The assignment is legal.

An underscored letter indicates the x expression on the right
side of the equal sign is converted to the type of the
variable on the left side.

• The expression on the right cannot be assigned to the variable
on the left.

I Integer
B Boolean

R Real
L Logical

D Double-precision
S Character string

C Complex

1 If S is a literal character string and length (S) i8 characters, the
assignment is performed with S treated as a Hollerith constant; a
warning message is issued. See the following heading, Character
Expressions.

5.1'.2 ARITHMETIC OPERATORS

Arithmetic operators and their interpretations are shown in table 5-2.
Each arithmetic operator operates on a pair of operands and appears
between them. The operators + and - can also operate on a single operand
when it precedes that operand.

SR-0009 5-4 L

The interpretation of a division operation depends on the type of the
operands. An integer quotient is the integer portion of a quotient
having an integer divisor and dividend. For example, the expression -5/2
yields an integer quotient of -2.

5.1.2.1 Precedence of arithmetic operators

In an arithmetic expression, quantities enclosed in parentheses are
evaluated first. If parentheses are within parentheses, the innermost
quantity is evaluated first. Then the operations are evaluated in the
following order:

Highest: **
Second: * and 1
Lowest: + and -

For example, in the expression -A**2, ** has precedence over - •
Therefore the result of the exponentiation is used as the operand for the
negation. Thus, -A**2 is interpreted as -(A**2).

When an expression involves two or more operations of the same
precedence, their position within the expression determines the order of
their evaluation. Exponentiation (**) is evaluated right to left.
Multiplication (*), division (I), addition (+), and subtraction (-) are
evaluated left to right. There is one exception to the left-to-right
evaluation of addition and multiplication operators; the eFT compiler
uses

Table 5-2. Arithmetic Operators and Their
Use in Expressions

Use of Operator

X**Y
X/Y
x*y
X-Y

-y
X+Y

+y

Interpretation

Exponentiate X to the power Y
Divide X by Y
Multiply X by Y
Subtract Y from X
Negate Y
Add X to Y
(Same as Y)

the associative laws of addition and multiplication in order to optimize
code, and freely moves operands within an expression that fits the
associative law of addition or multiplication.

SR-0009 5-5 L

5.1.3 ARITHMETIC OPERANDS

An arithmetic operand is an entity representing a number, which can be
manipulated by an arithmetic operator. Arithmetic operands can be any of
the following:

• Primaries
• Factors
• Terms
• Arithmetic expressions"

The following subsections describe the forms of combining operands and
operators in arithmetic expressions.

5.1.3.1 Primaries

A primary is the most basic unit at one level of syntax, but can itself
be an expression with its own syntax. Primaries can be any of the
following:

• Unsigned arithmetic constants
• Symbolic names of arithmetic constants
• Variable references
• Array element references
• Function references
• Arithmetic expressions enclosed in parentheses

Examples:

Primary

2309

KVALUE

COUNTERS

Description

Unsigned double-precision constant

Integer constant name if named in a PARAMETER
statement

Real variable name

IMAG(3,52,75) Complex array element name if declared in a COMPLEX
statement

EVAL(A,B,C)

(A/B**2)

SR-0009

Real function name if declared in a FUNCTION or
statement function statement

Parenthesized arithmetic expression

5-6 L

5.1.3.2 Factors

A factor is a sequence of one or more primaries, separated by the
exponentiation operator. The forms of a factor are:

• primary

• primary ** factor

The second form above indicates that for interpreting a factor containing
two or more exponentiation operators, the primaries must be combined from
right to left. For example, the factor 2**3**2 is interpreted as
2**(3**2).

5.1.3.3 Terms

A term is a factor or a sequence of factors separated by multiplication
or division operators. A term can take any of the following forms:

• factor

• term / factor

• term * factor

The second and third forms show that a single term can include both the *
and / operators. The factors are combined from left to right in
interpreting a term containing two or more multiplication or division
operators.

5.1.3.4 Arithmetic expressions

An arithmetic expression is a term or sequence of terms separated by
addition (+) or a subtraction (-) operators. The forms of an arithmetic
expression are as follows:

• term

• + term

• - term

• arithmetic expression + term

• arithmetic expression - term

The first term in an arithmetic expression can be preceded by an identity
(+) or negation (-) operator. The last two forms show that terms are
combined from left to right in interpreting an arithmetic expression
containing two or more addition or subtraction operators.

SR-0009 5-7 L

These formation rules prohibit expressions containing two consecutive
arithmetic operators such as A**-B or A+-B. However, expressions such as
A**(-B) and A+(-B) are permitted.

5.1.4 DATA TYPE OF ARITHMETIC EXPRESSIONS

The data type of an arithmetic expression containing one or more
arithmetic operators is determined from the data types of the operands.
The data types of arithmetic expressions are given in table 5-3, and those
for exponentiation in table 5-4. Each table item represents an expression
and a result, and each capital letter represents an operand or result, as
follows:

I Integer
B Boolean

R Real
L Logical

D Double-precision
S Character string

C Complex

A comma represents an arithmetic operator in table 5-3. If an arrow is
shown, it points to the result type; a square symbol with no arrow
indicates the two operands cannot be used in an arithmetic expression. In
each row and column, one operand has the same data type throughout, and
the other operand changes; the unchanging operand is indicated in the
column head and at the beginning of each row.

Each table entry is similar in form to an assignment statement, but also
applies to expressions within parentheses.

Example:

To the right of the arrow, the comma is an operator and I and Rare
operands of types integer and real. To the left of the arrow, R indicates
a real result; the underscored I indic~tes that integers in such an
expression are converted to type real. The preceding entry would apply to
the following expression:

CTEMP * 9/5 + 32

This would be treated as

CTEMP * 9./5. + 32.

When + or - operates on a single operand, the data type of the reSUlting
expression is the same as the data type of the operand.

SR-0009 5-8 L

Table 5-3. Use of Data Types with Arithmetic
Operations: +, -, 'II, /

y~I,x y~R,x y~D,x y~C,x }*B,x y~S,x

y~x,I I~I,I R~R,! D~D,! C~C,! lI~B,I 3. S,I

y~x,R R~!,R R~R,R D~D,! C~C,! 2R~B,R 3. S,R

y~x,D D~!,D D~!,D D~D,D C~C,!! • B,D • S,D

y~x,C C~!,C C~!,C C~!!,C C~C,C • B,C • S,C

y~x,B lI~I,B 2R~R,B • D,B • C,B lB~B,B • S,B

y~x,S 3. I,S 3. R,S • D,S • C,S • B,S 3. S,S

Legend:

x One of two operands. A capital letter represents another operand
of the indicated data type. Logical is never allowed.

Arithmetic operator: + - ." /. Two operands and an operator are
an expression.

y Result of arithmetic operation. A letter to the left of the ~
symbol represents a result of the indicated data type.

• Error

Underscore indicates that the indicated operand's data type is
converted before computation.

I Integer
C Complex

R Real
B Boolean

D Double-precision
S Character string

1 Integer operation; no conversion is performed on the Boolean item.

2 Real operation; no conversion is performed on the Boolean item.

3 If S is a literal character string and length (S) ~8 characters, then
the operation is performed with S treated as Hollerith; a warning
message is issued. See subsection 5.2, Character Expressions.

The ANSI FORTRAN Standard does not allow mixing complex and double
precision types in arithmetic operations.

SR-0009 5-9 L

Table 5-4. Data Types in Exponentiation: **

y+-I**x y~R**x y+-D**x y~C**x

y+-x**I I~I**I R+-R**I D~D**I C+-C**I

y+-x**R R~I**R R+-R**R D~D**R C+-C**R

y+-x**D D~I**D D+-R**D D~D**D 1C+-C**D

y+-x**C C+-!**C C+-R**C C+-D**C C+-C**C

Types Boolean, logical, and character cannot be used in exponentiation.

Legend:

x One of two operands. A capital letter represents an
operand of the indicated data type.

** Exponentiation operator
y Result of exponentiation operation. A letter to the

left of the +- symbol represents a result of the
indicated type.

• Error
Underscore indicates that the indicated operand's data
type is converted before the operation is performed.

I Integer R Real D Double-precision

1 The double-precision exponent is converted to type Real.

The ANSI FORTRAN Stand~rd does not allow mixing complex and
double-precision types in exponentiation operations.

C Complex

In general, conversion of data types is determined by a hierarchy of
types, and is always upward within the hierarchy. The hierarchy is as
follows:

SR-0009 5-10 L

Complex

Double-precision

Real

Integer

Because type Boolean is not converted, it does not fit in the hierarchy;
it is used only with types integer and real. Types character and logical
are not allowed in arithmetic expressions.

In an expression operating on either a single operand or a pair of
operands, the type and interpretation are independent of the context where
the expression appears, and independent of the type of any other operand
of a larger expression where the expression appears.

5.1.4.1 Type conversion

Type conversion of operands can occur during an expression's evaluation or
when the results of an expression's evaluation are stored into a variable
or array element.

Numerical type conversion is based on the following two operations.

(a) Integer-to-real conversion creates a real value from an integer
value. The absolute value of the integer must be less than
2**46; no warning is issued if the value exceeds this range.

(b) Real-to-integer conversion creates a 64-bit integer value from a
real value. The absolute value of the number being converted
must be less than 2**46; no warning is issued if the value
exceeds the range. The fractional part is truncated.

Type integer - Type integer is converted to type real as described in item
(a) above. Integer is converted to double-precision by converting to real
and adding zeros to extend the precision of the value. For converting
integer to complex, the integer is converted to real as described in item
(a) above; then the integer value becomes the real portion of a complex
value, and zero is the imaginary portion.

Type real - Real is converted to integer as described in item (b) above.
For converting to double-precision, zeros are added as the least
significant portion to extend the real number's precision. For converting
real to complex, the real value becomes the real portion of a complex
value and zero is the imaginary portion.

SR-0009 5-11 L

Type complex - Complex is converted to integer by converting the real
portion of the complex value as described for the real value in item (b)
above. For converting complex to real, the real portion of the complex
value becomes the real value. For converting complex to double-precision,
zeros are added to extend the precision of the real portion of the complex
value; this extended real portion becomes the double-precision value.

Type double-precision - Double-precision is converted to integer by
converting the most significant portion as in item (b) above. For
converting to real, the most significant portion of the double-precision
value is used as the real value; no rounding occurs. For converting to
complex, the most significant portion of the double-precision value
becomes the real portion of the complex value, and zero is the imaginary
portion; no rounding occurs.

The ANSI FORTRAN Standard does not provide for converting double­
precision to complex.

5.1.5 CONSIDERATIONS IN EVALUATING ARITHMETIC EXPRESSIONS

In expressions that include integers, truncation can cause unintended
results. Example:

(3.0*10) / 3 equals 30.0 / 3 equals 10.0

3.0*(10/3) equals 3.0*3 equals 9.0

Because the expression 10/3 gives an integer quotient, the placement of
parentheses in the two expressions above changes the result.

In addition to truncation in the use of integers, results can be affected
by round-off errors and finite approximation of real numbers. For
example, the difference between 5./10. and 5.*.1 is a computational
difference; that is, although the two expressions are mathematically
equivalent, the resulting values in a computer program could be different.
Predicting and controlling computational differences is beyond the scope
of this book but is discussed in various textbooks.

In addition to parentheses required for the intended interpretation of an
expression, other parentheses can be included to control the magnitude and
accuracy of intermediate values in the evaluation of an expression.

SR-0009 5-12 L

Example:

A+(B-C)

The term (B-C) above is evaluated and then added to A. Removing
parentheses could change the computed value.

5.2 CHARACTER EXPRESSIONS

A character expression is one character primary or a sequence of
character primaries joined by the concatenation operator II. A
character primary is one of the following:

• A character constant or the symbolic name of a character constant
• A character substring
• A variable, array element, or function reference of type character
• A character expression enclosed in parentheses

Relational expressions involving character operands are discussed in
subsection 5.3, Relation Expressions.

5.2.1 CHARACTER ASSIGNMENT STATEMENT

Execution of a character assignment statement causes the evaluation of a
character expression ce and the definition of character entity cv with
the value of ce.

cv = ce

cv Name of a variable, array element, or substring of type
character

ce Character expression

Where appropriate, ce is either truncated or padded with blanks on the
right to match the length of .CV. No character positions defined in cv
can be referenced in ce.

SR-0009 5-13 L

5.2.2 CHARACTER EXPRESSION EVALUATION

The result of evaluating a character expression is always of type
character. Primaries are combined from left to right. Example:

CHARACTER*2 VAR1,VAR2
PRINT *,VAR1//VAR2

VAR1='CR' VAR2='AY'

The preceding sequence produce;; the following printed result:

CRAY

5.2.3 HOLLERITH TYPE

The older Hollerith type is described in appendix E, Outmoded Features.
Because CFT supports the representation of Hollerith using the same
conventions as the character type, the compiler must determine which type
applies in ambiguous situations.

A character constant is treated as Hollerith in contexts where a
character constant is illegal and a Hollerith constant is legal. Tables
5-1, 5-2, 5-5, and 5-8 indicate which categories of expressions fall into
this category. This "passive" Hollerith typing (that is, letting the
compiler determine that a constant is Hollerith) is not encouraged, and a
warning message is issued. If you intend a constant to be Hollerith,
specify it by following the second delimiter with H; for example 'ABC'H.

5.3 RELATIONAL EXPRESSIONS

A relational expression compares the values of two arithmetic or
character expressions, producing a logical value of true or false.
Relational expressions can appear within logical expressions. Relational
operators are as follows:

Operator

.LT.

.LE.

.EQ.

.NE.

.GE •
• GT.

SR-0009

Operation (Comparison)

Less than
Less than or equal to
Equal to
Not equal to
Greater than or equal to
Greater than

5-14 L

Relational operators have no precedence within this group because the use
of more than one operator in the same relational expression is illegal.

Table 5-5 shows which data types can be used together in relational
operations. The result type is logical for all relational operations.

Table 5-5 • Data Types in Relational Operations:
• EQ.,.NE.,.GT.,.GE.,.LT.,LE.

xoz
z I R D C B L S

x

I L L L Ll L3 • .2

R L L L Ll L3 • .2

D L L L Ll • • •
C L1 Ll L1 • • • •
B L3 L3 • • L • •
L • • • • • • •
S .2 .2 • • • • L

Legend:

Xoz Relational operation: .EQ.,.NE.,.GT.,.GE.,.LT.,LE.
• Prohibited

I Integer
B Boolean

R Real D Double-precision
S Character string

C Complex
L Loqical

1 Only .EQ. and .NE. are allowed for complex comparisons.

2 If S is a literal and length (S) ~ 8 characters, the operation is
performed with S treated as a Hollerith constant; a warning message is
issued. See the preceding heading, Character Expressions.

3 The comparison is performed without conversion of either operand.

SR-0009 5-15 L

5.3.1 ARITHMETIC RELATIONAL EXPRESSIONS

An arithmetic relational expression is a relational expression whose
operands are arithm~tic expressions or arithmetic array expressions. An
arithmetic relational expression is interpreted as the logical value TRUE
if the values of the expressions satisfy the relation specified by the
operator; FALSE if they do not. If the operands are arrays, an array of
logical values is returned.

A complex expression is permitted only when the relational operator is
.EQ. or .NE.

In the relational expression x relop y, if arithmetic expressions x
and yare of different types, the expression is evaluated as (x-y)
relop O. The expression in parentheses would be evaluated according to
the type conventions for arithmetic expressions, as shown in table 5-3.

Examples:

A .LE. B
INDEX .EQ. ENDVALU
J(1,6,6)*COS(ALPHA/10.) .GT. Z
3.1415927 .LT. (22./7.)
CMPLXM .NE. CMPLXN

5.3.2 CHARACTER RELATIONAL EXPRESSIONS

A character relational expression is a relational expression in which
both operands are character expressions. The result is interpreted as
the logical value TRUE if the values of the operands satisfy the relation
specified by the operator; otherwise, the result is interpreted as the
logical value FALSE.

The character expression that comes first in the collating sequence (see
Appendix A) is considered to be of lower value. If the operands are of
unequal length, the shorter operand is extended on the right with blanks
to the length of the longer operand.

5.4 LOGICAL EXPRESSIONS

A logical expression specifies a logical computation. Evaluation of a
logical expression produces a result of type logical with a value of
either TRUE or FALSE. Tables 5-6 and 5-7 show the logical operators
and their usage. Table 5-8 shows that operands for logical expressions
are always of type logical; table 5-4 shows that only logical entities
can be used in logical assignment statements.

SR-0009 5-16 L

5.4.1 LOGICAL ASSIGNMENT STATEMENT

Execution of a logical assignment statement causes the evaluation of
logical expression Ie and the definition of logical entity Iv with
the value of Ie.

Iv = Ie

Iv Name of a logical variable, logical array, logical array
section, or array element

Ie Logical expression

Examples:

All variable and array element names are assumed to be of type logical
except E and F, which are type real.

T = .FALSE.
A = B
C = (A .AND. B) .OR. (C .AND. D)
T = .NOT. T
TRUTAB(I,J,K,L) = .T.
T = E.GE.F .OR. ElF .LT •• 4
T = A .EOV. B

5.4.2 LOGICAL OPERATORS

The logical operators are shown in table 5-6; their use with operands is
shown in table 5-7. The .NOT. or .N. operator produces the logical
complement of its operand.

For logical expressions containing two or more logical operators, the
precedence, as shown in table 5-6, determines the order in which they are
to be combined (unless changed by the use of parentheses).

Example:

A .OR. B .AND. C

In the preceding expression, .AND. has higher precedence than .OR.
Therefore the expression is interpreted as follows:

A • OR • (B • AND • C)

SR-0009 5-17 L

Logical operators can also be written as functions; for example A.AND.B
can be written as AND(A,B) •• NOT. is written as COMPL(), and .NOT •• OR.
is replaced by EQV(). See appendix B.

Table 5-6. Logical Operators

Operator

• NOT. or .N.

.AND. or .A.

.OR. or .0.

.XOR. or .X. or .NEQV.

.EQV.

Operation

Logical negation

Logical conjunction

Logical inclusive disjunction

Logical exclusive disjunction
or logical nonequivalence

Logical equivalence

Precedence

Highest

Lowest

The ANSI FORTRAN Standard does not provide for the .XOR. operator or for
.N., .A., .0., or .X. as abbreviations.

Table 5-7. Meanings of Logical Operators

Xl.XOR.X2
Xl X2 Xl.AND.X2 Xl.) R .X2 Xl.NEQV.X2 X1.EQV.X2

true true true true false true
true false false true true false
false true false true true false
false false false false false true

SR-0009 5-18 L

5.4.3 FORM AND INTERPRETATION OF LOGICAL EXPRESSIONS

A logical operand is an entity that can be operated on by a logical
operator. Logical operands can be any of the following:

• Logical primaries

• Logical factors

• Logical terms

• Logical disjuncts

• Logical expressions

A logical primary is a primary in a logical expression. Logical
primaries can be any of the following:

• Logical constants
• Symbolic names of logical constants
• Logical variable or array element references
• Logical function references
• Relational expressions
• Logical expressions enclosed in parentheses

A logical factor consists of a logical primary with or without the
.NOT. operator. The form of a logical factor is:

[.NOT.] logical-primary

A logical term is a sequence of logical factors separated by an .AND.
operator. If a logical term contains two or more .AND. operators, the
logical factors are combined from left to right. The form of a logical
term is:

[logical-term .AND.] logical-factor

A logical disjunct is a sequence of logical terms separated by an .OR.
operator. If a logical disjunct contains two or more .OR. operators, the
logical terms are combined from left to right. The form of a logical
disjunct is:

[logical-disjunct .OR.] logical-term

A logical expression is a sequence of logical disjuncts separated by
.XOR., .EQV., or .NEQV. operators. If a logical expression contains two
or more .XOR., .EQV., and/or .NEQV. operators, the logical disjuncts are
combined from left to right. The forms of a logical expression are:

[logical expression .XOR.] logical disjunct
[logical expression .EQV.] logical disjunct
[logical expression .NEQV.] logical disjunct

SR-0009 5-19 L

These forms allow the logical operator .NOT. to immediately follow any
other logical operator. For example, the following logical term is
permitted:

LOGICALX .AND •• NOT. LOGICALY

5.5 MASKING EXPRESSIONS

A masking expression is an expression using a logical operator on
integer, real, or Boolean operands, giving a result of type Boolean.
Each operand is treated as a single storage unit (a 64-bit Cray word),
and the result is a single storage unit.

The ANSI FORTRAN Standard does not provide for masking expressions.

Masking operators can also be written as functions; for example A.AND.B
can be written as AND(A,B). .NOT. is written as COMPL(); .NOT •• OR. is
replaced by EQV(). See table B-8 in appendix B. The same table shows
other functions that operate on Boolean values, such as shifting, parity
count, and tallying l's or leading O's.

Table 5-8 shows which data types can be used together in masking
operations. Letters in the table indicate the result type for each
allowed operation. A masking expression cannot have operands of type
logical, double precision, or complex.

Masking expressions can be combined with expressions of Boolean or other
types by using arithmetic, relational, and logical (masking) operators.
Evaluation of an arithmetic or relational operator processes a masking
expression with no type conversion. Boolean data is never converted to
another type.

A logical (masking) operator processing a masking expression performs the
indicated logical operation separately on each bit. The interpretation
of individual bits in masking factors, terms, and expressions is the same
as described in the preceding subsection, Logical Expressions. The
results of binary 1 and 0 correspond to the logical results TRUE and
FALSE, respectively, in each of 64 bit positions. These values are
summarized as follows:

.NOT. 1100
=0011

SR-0009

1100
.AND. 1010

1000

1100
.OR. 1010

1110

5-20

1100
.XOR. 1010

0110

1100
.EQV. 1010

1001

L

Table 5-8. Allowed Logical and Masking Operations
and Result Types

I
yl I R B L S

X

I B B B • .1

R B B B • .1

B B B B • .1

L • • • L •
S .1 .1 .1 • •

Types complex and double precision cannot be used in logical or masking
operations.

Legend:

x,y Operands for a masking or logical expression, using operands
.NOT., .AND., .OR.~ .XOR., and • EOV.

Entries in table:

B Masking operation with result type Boolean

L Logical operation with result type logical

• Prohibited

I Integer
B Boolean

R Real
L Logical

D Double-precision
S Character string

C Complex

1 If S is a literal and length (S) ~8 characters, the operation is
performed with S treated as a Hollerith constant. A warning message
is also issued. See the preceding subsection, Character Expressions.

SR-0009 5-21 L

6. PROGRAM CONTROL STATEMENTS

Program control statements are used when two or more alternative
sequences of statements exist and a decision is required, or when a
statement sequence is to be repeated, interrupted, or terminated.

The following statements control an execution sequence.

• Unconditional GOTO
• Computed GOTO
• Assigned GOTO
• Arithmetic IF
• Logical IF
• Conditional block statements

• DO
• CONTINUE
• STOP
• PAUSE
• END
• CALL (described in section 2)
• RETURN (described in section 2)

6.1 GOTO STATEMENTS

GOTO statements specify other statement within the same program unit to
which control is transferred. Their use is discouraged for good program
structure.

6.1.1 CONDITIONAL GOTO STATEMENT

Execution of an unconditional GOTO statement causes a transfer of control
to the statement identified by the statement label. The space between GO
and TO is optional.

GOTO s

s

SR-0009

Statement label of an executable statement in the same
program unit

6-1 L

Example:

GOTO 910

6.1.2 COMPUTED GOTO STATEMENT

Execution of a computed GOTO statement causes the expression e to be
evaluated for an integer result, i. A transfer of control to the
statement identified by the ith statement label in the list of n
statement labels is then executed if 1iiin. If i<l or i>n, the
execution sequence proceeds as though a CONTINUE statement were
executed. If the evaluation of e for i produces a noninteger result,
e is converted to integer as if i=e had been executed. A space
between GO and TO is optional.

Format:

GOTO (s[,s] •••)[,]e

e Expression

s Statement label of an executable statement that appears in
the same program unit as the computed GOTO statement. A
given statement label can appear more than once in a
computed GOTO statement.

Examples:

GOTO (2,4,8,16)A

GOTO (0031,59,728)IX

(The value of A is truncated, if necessary, to
produce an integer value.)

GOTO (0031,59,728)MSIZE/2

GOTO (6,3,6,6,7,2,7),NBRANCH

The ANSI FORTRAN Standard specifies that the expression e in a computed
GOTO statement must be an integer expression only.

SR-0009 6-2 L

6.1.3 ASSIGNED GOTO STATEMENT

At the time of execution of an assigned GOTO statement, the variable i
must be defined with the value of a statement label of an executable
statement appearing in the same program unit. The variable can be
defined with a statement label value only by an ASSIGN statement in the
same program unit as the assigned GOTO statement. Execution of the
assigned GOTO statement causes a transfer of control to the statement
identified by that statement label. The space between GO and TO is
optional.

Format:

GOTO i[[,] (s[,s] .••)]

i Integer variable name

s Statement label of an executable statement that appears in
the same program unit as the assigned GOTO statement. A
given statement label can appear more than once in this
statement.

The ANSI FORTRAN Standard specifies that if the optional list is present,
i must have been assigned a statement label from the list.

Examples:

(1) ASSIGN 76 TO LAB

GOTO LAB

(2) ASSIGN 999 TO KFIN

GOTO KFIN (997,997,999)

(3) ASSIGN 1 TO JAIL

GOTO JAIL,(1,2,3,4,5)

6.2 ARITHMETIC IF STATEMENT

Execution of an arithmetic IF statement causes evaluation of the
expression e. Control is transferred to one of the statements
identified by s1' s2' or s3 if the value of e is less than zero,
equal to zero, or greater than zero, respectively.

SR-0009 6-3 L

Format:

e Integer, real, or double-precision expression

sl,S2' and s3
Statement labels of executable statements that appear in
the same program unit as the arithmetic IF statement. The
same statement label can appear more than once in this
statement.

Examples:

IF (VTEST)· 20,21,20

IF (B**2-4*A*C) 70,80,90

6.3 LOGICAL IF STATEMENT

Execution of a logical IF statement causes evaluation of the expression
e. If the value of e is true, statement st is executed. If the
value of e is false, statement st is not executed and the execution
sequence proceeds as though a CONTINUE statement were executed. The
execution of a function reference in the expression e may affect
related entities in the statement st.

Format:

IF (e) st

e Logical expression

st Any executable statement other than a DO, END, block IF,
ELSE IF, ELSE, END IF, or another logical IF statement.

Examples:

IF(K) K=.NOT.K

IF (A.EQ.B) GOTO 100

SR-0009 6-4 L

6.4 CONDITIONAL BLOCKS

A conditional block is a group of executable statements delimited by
conditional block statements, which specify conditions under which the
block is executed. Following is a list of the conditional block
statements:

• Block IF
• ENDIF
• ELSE IF
• ELSE

The IF-level of a given statement is the number of block IF statements
from the beginning of the program unit to that statement minus the number
of END IF statements from the beginning of the program unit up to but not
including that statement. The IF-level of the END statement of each
program unit must always be zero.

An IF-block is a group of executable statements that are executed if
the condition specified in the block's IF statement is true. The block
is preceded by a block IF statement and followed by another conditional
block statement (ENDIF, ELSEIF, or ELSE) of the same IF-level. An
IF-block can be empty.

An ELSEIF-block is a group of executable statements that are executed
if the IF block and preceding ELSEIF blocks at the same IF-level were not
executed. The block begins with an ELSEIF statement a conditional block
statement (ENDIF, ELSEIF, or ELSE) of the same IF-level following the
group. The IF-level of the ELSEIF-block must be greater than or equal
to 1. An ELSEIF-block may be empty.

An ELSE-block is a group of executable statements that are executed if
no preceding ELSEIF block at the same IF-level was executed. An
ELSE-block begins with an ELSE statement and ends with an ENDIF statement
of the same IF-level. No other conditional block statement at the same
level can appear after the ELSE statement or before the ENDIF statement.
ELSE-blocks can be empty. Statement labels on ELSE statements are
ignored.

A group of blocks must begin with a block IF statement and end with an
ENDIF statement. No more than one block is executed within each level of
blocks. This execution depends on the sequential evaluation of the
conditional block statements.

The ELSEIF and ELSE statements are not required to accompany block IF
statements. A block begins with a block IF, an ELSEIF, or an ELSE
statement and continues until an ENDIF or the beginning of the next block
is encountered. Control must not be transferred to a location within a
block from outside that block.

SR-0009 6-5 L

Each statement in a block has an IF-level number assigned to it. The
first block IF encountered is assigned IF-level 1. All following
statements retain that IF-level number until either another block IF or
an ENDIF statement is encountered. If another block IF is encountered,
the IF-level number of that statement is incremented by one. The
following statements reflect that IF-level number until another block IF
or ENDIF statement is encountered. If an ENDIF statement is encountered,
the IF-level is decremented by 1 and all following statements retain that
IF-level number until a block IF or ENDIF is encountered.

6.4.1 BLOCK IF STATEMENT

Execution of the block IF statement causes evaluation of the expression
e. If the value of e is true, normal execution sequence continues
with the first statement in the IF-block. If the value of e is false,
control is transferred to the next ENDIF, ELSEIF, or ELSE statement of
the same IF-level. The block IF statement must always have a
corresponding ENDIF statement of the same IF-level.

Format:

IF (e) THEN

e Logical expression

If a block IF statement appears within the range of a DO loop, the entire
block must ,appear within that range.

Transfer of control into an IF-block from outside the IF-block is
prohibited.

6.4.2 ENDIF STATEMENT

The ENDIF statement indicates the. end of an IF-level and must always have
a corresponding block IF statement of the same IF-level. The ENDIF
statement consists of the word ENDIF alone.

6.4.3 ELSEIF STATEMENT

The ELSEIF statement is executed if none of the preceding blocks has been
executed.

SR-0009 6-6 L

Format:

ELSEIF (e) THEN

e Logical expression

Execution of the ELSEIF statement causes evaluation of the expression
e. If the value of e is true, normal execution sequence continues
with the first statement of the ELSEIF-block. If the value of e is
false, control is transferred to the next ELSEIF, ELSE, or ENDIF
statement that has the same IF-level as the ELSEIF statement. Statement
labels on ELSEIF statements are ignored.

Transfer of control into an ELSEIF-block from outside the ELSEIF-block is
prohibited.

6.4.4 ELSE STATEMENT

The ELSE statement begins an ELSE block, described under the heading
Conditional Blocks. The statement consists of the word ELSE alone; any
statement label on an ELSE statement is ignored.

6.5 DO LOOPS

A DO loop consists of a DO statement and a set of statements to be
executed repeatedly, as indicated by the iteration count. The number
of repetitions is controlled by the DO variable in the DO statement.
The range of a DO loop consists of all executable statements from the
first executable statement following the DO statement and ending with the
terminal statement of the DO loop.

A DO loop can appear within a DO loop and must be entirely contained
within the outer DO-loop range. More than one DO loop can have the same
terminal statement. However, no more than 15 DO loops can terminate on
the same terminal statement.

The ANSI FORTRAN Standard does not specify a limit to the number of
DO loops that can terminate on the same terminal statement.

A DO loop can appear within a conditional block but must be entirely
contained within that block. If a block-IF statement appears within the
range of a DO loop, the corresponding ENDIF statement must appear within
the same DO loop.

SR-0009 6-7 L

A DO loop is either active or inactive. A DO loop is initially inactive
and becomes active only when its DO statement is executed. Control must
not transfer into the range of an inactive DO loop. An active DO loop
becomes inactive under any of the following conditions.

• Its iteration count is tested and determined to be zero.

• A RETURN or STOP statement is executed in the same program unit.

• Control is transferred to a statement that is in the same program
unit and is outside th~ range of the DO loop.

• It is in the range of another DO loop whose DO statement is
executed.

When a DO loop becomes inactive, the DO variable retains its last defined
value unless it became undefined due to earlier action.

6.5.1 DO VARIABLE

The DO variable is an index which, during the execution of the DO loop,
is set to an initial value and incremented (or decremented) until its
value reaches or exceeds the limit value. The DO variable can be used in
subscript or nonsubscript calculations within the DO loop. The absolute
value of an integer DO variable must not exceed 223 -1.

The ANSI FORTRAN Standard does not limit the value of a DO variable.

6.5.2 EXECUTING A DO STATEMENT

Executing a DO statement initiates the following sequence of steps.

1. The initial, limit, and increment value expressions (e1' e2'
and e3) are evaluated, producing the initial parameter m1'
the terminal parameter m2' and the incrementation parameter
m3. If necessary, types are converted to the type of the DO
variable, according to the 'r-ules for arithmetic conversion. If
e3 has been omitted from the DO statement, m3 is assigned a
value of 1. m3 can be positive or negative but must not be O.
If the DO variable is of type integer, then m1' m2' m3 and
(m2-ml+m3) must all be less than 223_1 in absolute value.

The ANSI FORTRAN Standard does not limit the values of m or of the
quantity (m2-m1+m3).

SR-0009 6-8 L

2. The DO variable i becomes defined with the value of the initial
parameter ml.

3. The iteration count is established as an integer value equal to
the integer portion of the following expression:

The iteration count is.O when the following conditions occur:

ml>m2' and m3>0 or
ml<m2' and m3<0.

m3=0 is not explicitly detected, but results in a
floating-point error when the iteration count is evaluated at run
time.

The iteration count must be less than 223. Once the iteration count is
established, entities named in the initial, limit, and incrementation
value expressions el' e2' and e3 can be redefined with no effect on
loop control processing. The DO variable cannot be redefined by a
subsequent nested DO statement.

At the completion of DO statement execution, loop control processing
begins.

The ANSI FORTRAN Standard does not specify a maximum iteration count.

6.5.3 LOOP CONTROL PROCESSING

Loop control processing determines if execution in the range of the
DO loop is required. If the iteration count is not 0, control transfers
to the first statement in the range of the DO loop. If the iteration
count is 0, the DO loop becomes inactive. However, specifying ON=J in
the COS CFT control statement or -e j in the UNICOS CFT command overrides
this feature and causes all DO loops to execute at least once. If, as a
result, all DO loops sharing the terminal statement of this DO loop are
inactive, control is transferred to the first executable statement after
the terminal statement. However, if any DO loops sharing the terminal
statement are active, execution resumes with incrementation processing,
described as follows.

Statements in the range of a DO loop are executed until the terminal
statement is reached.

SR-0009 6-9 L

Incrementation processing has the effect of performing the following
steps in sequence.

1. The value of the DO variable is incremented by the value of m3.

2. The iteration count is decremented by 1.

3. Execution continues with loop control processing of the same DO
loop whose iteration count was decremented.

A DO variable can increase or decrease in value during incrementation
processing.

Examples:

(1) PARAMETER(N=50)
DIMENSION TABLE (N)
DO 2 I=l,N
IF(TABLE(I»2,2,1

1 TABLE(I)=-TABLE(I)
2 TABLE(I)=-TABLE(I+1)

(2) PARAMETER(I=2,J=200)
DIMENSION GRID(I,J), PGRID(I,J)

DO 22 L=J,l,-l
PGRID(K,L) = GRID(K,L)
IF(PGRID(K,L»21,22,22

21 PGRID(K,L) = -PGRID(K,L)
22 GRID(K,L) = 0

(3) M=O
DO 100 1=1,10
J=I
DO 100 K=1,5
L=K

100 M=M+1

In the above example, I=ll, J=10, K=6, L=5, and M=50 after the last
statement is executed for the last time.

(4) N=O
DO 200 1=1,10
J=I
DO 200 K=5,1
L=K

200 N=N+1
201 CONTINUE

SR-0009 6-10 L

After execution of the previous statements and at the execution of the
CONTINUE statement, 1=11, J=10, K=5, and N=O. L is not defined by these
statements.

6.5.4 DO STATEMEMT

A DO statement specifies necessary information to control the repeated
execution of a set of statements.

Format:

S Statement label of an executable statement, called the
terminal statement

i Name of an integer, real, or double-precision variable,
called the DO variable

e1' e2' and e3
Integer, real, or double-precision expressions specifying
the initial value, limit value, and increment value,
respectively, of the DO variable. If e3 is omitted, a
value of 1 is assumed.

6.5.5 TERMINAL STATEMENT

The terminal statement is an executable statement that ends the DO
loop. The terminal statement of a DO loop must not be an unconditional
GOTO, assigned GOTO, arithmetic IF, conditional block, RETURN, STOP, END,
or another DO statement. If the terminal statement of a DO loop is a
logical IF statement, it may contain any-executable statement except a DO
conditional block, END, or another logical IF.

Execution of the terminal statement occurs during a normal execution
sequence or through transfer of control. If execution of the terminal
statement does not cause a transfer of control, execution continues with
incrementation processing, described as follows.

6.5.6 CONTINUE STATEMENT

Execution of a CONTINUE statement has no effect. It is commonly used as
the terminal statement of a DO loop. As with any statement so used, the

SR-0009 6-11 L

next statement executed depends on the result of DO-loop incrementation
processing. This action is the result of DO loop processing and not of
CONTINUE statement execution.

Example:

DIMENSION ARRAY6(16)
DO 22,I=16,1,-1
IF(ARRAY6(I).NE.O) ARRAY6(I)=1.0/ARRAY6(I)

22 CONTINUE

6.6 STOP STATEMENT

A STOP statement terminates execution of a main program, subroutine
subprogram, or function subprogram.

Specification or nonspecification of id has no effect on the executable
program. The characters specified by id appear in a logfile message to
identify the STOP statement encounter,ed during program execution.

Format:

STOP [id]

id Unsigned integer constant of up to 8 digits, a character
constant of up to 8 characters, or the symbolic name of a
variable, array element, or function containing (or
providing) 8 characters

The ANSI FORTRAN Standard limits noncharacter id to 5 digits, sets no
limit on the length of character constants, and does not permit id to
be the name of a variable, an array element, or a function.

6.7 PAUSE STATEMENT

A PAUSE statement suspends or terminates a main program, subroutine
subprogram, or function subprogram. The PAUSE statement is seldom used
in current computer systems but is retained so that older programs can be
run.

SR-0009 6-12 L

An installation parameter determines whether the execution can be resumed
or is unconditionally terminated. Specification or nonspecification of
id has no effect on the executable program. The characters specified
by id appear in a logfile message to identify the PAUSE statement
encountered during program execution.

The ANSI FORTRAN Standard does not provide for the option of resuming or
terminating execution.

Format:

PAUSE [id]

id Unsigned integer constant of up to 8 digits, a character
constant of up to 8 characters, or the symbolic name of a
variable, array element, or function containing or
providing 8 characters

The ANSI FORTRAN Standard limits noncharacter id to 5 digits, sets no
limit on the length of character constants, and does not permit id to
be the name of a variable, an array element, or a function.

6.8 END STATEMENT

An END statement is required at the physical end of the sequence of
statements and lines of every program unit. When executed in a
subprogram, it has the effect of a RETURN statement. When executed in a
main program, it has the effect of a STOP statement.

No other statement in a program unit can be expressed with an initial
line containing only an END statement. Embedded comments can be included
on an END statement when preceded by an exclamation point.

The last line of every program unit must be an initial line containing a
complete END statement. This special form of initial line is called a
terminal line. A single END statement can appear with one or more STOP
statements or with one or more RETURN statements in the same program unit.

SR-0009 6-13 L

7.' INPUT/OUTPUT STATEMENTS

Input statements transfer data from a file to program memory. This
process is called reading. Output statements transfer data from
program memory to a file. This process is called writing. Some
input/output (I/O) statements allow formatting (or editing) of the
data as it is transferred.

The CFT statements that deal with I/O operations are summarized in table
7~1.

Statement

READ

WRITE

PRINT

FORMAT

BACKSPACE

ENDFILE

REWIND

INQUIRE

OPEN

CLOSE

NAMELISTt

t CFT extension

SR-0009

Table 7-1. CFT Input/Output Statements

Description

Transfers data from a file to the program

Transfers data from the program to a file

Transfers data from the program to a file

Formats data that is transferred between the program
and a file

Repositions a file before the preceding record

Writes an end-of-file mark at a file's current
position

Repositions a file to the beginning of information

Returns information about a file's properties

Initializes a file for I/O operations

Finishes processing on a file and returns it to the
operating system

Enables data transfer between the program and a file
containing lists of variables with assigned values

7-1 L

Table 7-1. CFT Input/Output Statements (continued)

I
I Statement Description

,==
I
, BUFFER INt
I
I
I BUFFER OUTt
I

Transfers data from a file to the program; allows
immediate execution of following program statement.

Transfers data from the program to a file; allows
immediate execution of following program statement.

I ________________________ ~---
t CFT extension

I/O statements perform operations on FORTRAN files. A FORTRAN file can
be either internal or external. Internal files are internal to the
program and cease to exist when the program terminates. External files
are associated with the operating system; external files are associated
with files in UNICOS, and with datasets in cos.

This section describes I/O operations with blocked files. The structure
of COS blocked datasets is described in the COS Version 1 Reference
Manual, publication SR-0011. The structure of UNICOS blocked files is
described in the UNICOS File Formats and Special Files Reference Manual,
publication SR-2014. Limited I/O operations for unblocked files are
described in appendix H. Nonstandard random access I/O operations are
described in appendix E.

7.1 INPUT/OUTPUT RECORDS

A record is the smallest entity that can be read or written by a
FORTRAN I/O statement. A record is a sequence of values or characters.
For example, a punched card is usually considered a record. For printed
output" each print line is a record. A record mayor may not correspond
to a physical entity.

Records can be of the following types.

• Formatted
• Unformatted
• End-of-file or endfile
• End-of-data

The ANSI FORTRAN Standard does not provide for end-of-data records.

SR-0009 7-2 L

7.1.1 FORMATTED RECORDS

A formatted record consists of a sequence of characters. Its length,
measured in characters or 8-bit bytes, depends primarily on the number of
characters transferred when written. The length also depends on the
peripheral device characteristics (for example, line printer or card
reader) serving as the origin or ultimate destination of the data.
Formatted records can be read or written by formatted I/O statements, or
prepared by means other than FORTRAN.

Unformatted and buffered I/O statements can also read and write formatted
records, but in a manner ignoring their formatted characteristics.
Because of record blocking, reading formatted records with unformatted
I/O statements may not be practical. The structure of COS blocked
records is described in the COS Version 1 Reference Manual, publication
SR-0011.

The ANSI FORTRAN Standard allows reading and writing of formatted
records only by formatted 110.

7.1.2 UNFORMATTED RECORDS

An unformatted record consists of a sequence of character and/or
noncharacter data. The length of an unformatted record is measured in
storage units (words) unless the record contains character data items.
In that case, each character entity of length len takes (len+7)/8
words.

Unformatted records can be read or written by unformatted and buffered
I/O statements.

The ANSI FORTRAN Standard does not allow reading and writing of
unformatted records with formatted I/O.

7.1.3 END-OF-FILE (ENDFILE) RECORDS

An end-of-file (endfile) record occurs as the last record of a file. An
endfile record can be written at the end of a file by an ENDFILE
statement. The endfile record has no length property.

SR-0009 7-3 L

7.1.4 END-OF-DATA RECORDS

An end-of-data (EOD) record occurs as the last record of a COS dataset.
An EOD record has no significance in UNICOS. It cannot be explicitly
written by a FORTRAN program.

7.2 INPUT/OUTPUT FILES

A file is a sequence of records. A CFT file can contain formatted
records, unformatted records, or a combination of formatted and
unformatted records. All files are terminated with an end-of-file record.

The ANSI FORTRAN Standard does not provide for the mixing of formatted
and unformatted records in a file.

An external file is associated with a COS dataset or a UNICOS file when
the external file is created or initialized (opened) in a program.
Internal files are not associated with operating system files or datasets.

7.3 COS DATASETS

Under COS, a dataset is a sequence of all files associated with a
particular unit during program execution. Association of a dataset with
a particular unit is controlled by the executing program. However,
datasets and units can be preassociated before program execution.
Datasets are described in the COS Version 1 Reference Manual, publication
SR-OOll.

UNICOS does not have datasets or any other multiple file entity.

The ANSI FORTRAN Standard does not provide for datasets or other
multiple file entities.

The following program, executing under COS, creates a FORTRAN file named
CIRCLES; reads an input file containing values for the diameters of
circles; and writes the the diameters, an end-of-file mark, then the
circumferences, to file CIRCLES.

SR-0009 7-4 L

PROGRAM TWOFILES
PARAMETER(PI=3.14)
DIMENSION CIRCUM(10)
OPEN(UNIT=I,FILE='CIRCLES',STATUS='NEW')
J=1

5 READ(100,*,END=10) DIAM READ DIAMETER FROM INPUT FILE
WRITE(I,*) DIAM WRITE DIAMETER TO FILE CIRCLES
CIRCUM(J)=DIAM * PI
J=J+l
GOTO 5

10 ENDFILE 1 WHEN DONE READING, WRITE EOF MARKER
15 DO 20 I=I,J-l

WRITE(I,*) CIRCUM(I)
20 CONTINUE

CLOSE(I)
END

IEOF
••• data ••.

IEOF

WRITE CIRCUMFERENCE TO FILE CIRCLES

CFT associates file CIRCLES with a COS dataset having the same name.
Upon termination of the program, dataset CIRCLES contains two files. The
first file contains the diameters; the second file contains the
circumferences.

7.4 INTERNAL RECORDS AND FILES

Internal records and internal files provide a way to transfer and
convert data within internal storage. This feature is useful when input
data must be converted before it can be used. An internal file
identifier is used for internal files in place of an external unit
identifier.

An internal file is a character variable, character array element,
character array, or character substring. A record of an internal file is
a character variable, character array element, or character substring.
If the internal file is a character variable, character array element, or
character substring, it consists of a single record with the same length
as the file. If the internal file is a character array, it is treated as
a sequence of character array elements. Each array element is a record
of the internal file. The ordering of the file records is the same as
the ordering of the array elements in the array. Every record of the
file has the same length, the length of an array element in the array.

The contents of a record of the internal file are defined by writing the
record. If the number of characters written in a record is less than the
length of the record, the remaining portion of the record is filled with
blanks.

SR-0009 7-5 L

The internal file record can be defined or redefined by using statements
other than an output statement, such as a character assignment statement.

An internal file is always positioned at the beginning of the first
record before data transfer. Reading and writing records is done only by
sequential access formatted 1/0 statements not specifying list-directed
formatting.

Internal records and files are useful for editing input data before using
it. The following statements read numbers from an input file that have
been entered with a dollar sign preceding them. The statements place an
input value in an internal file, remove the dollar sign, then transfe·r
the value to a type REAL variable.

INTEGER POSN
CHARACTER *12 TEMP

READ(6,1)TEMP
1 FORMAT(A10)

IF (INDEX(TEMP,'$').NE.O) THEN
POSN = INDEX(TEMP,'$')
TEMP(POSN:POSN) = ' ,

ENDIF
READ(TEMP,2) VALUE

2 FORMAT(F10.2)

7.5 EXTERNAL FILE ACCESS METHODS

DECLARE TYPE OF INTERNAL- FILE TEMP

READ A RECORD FROM DEVICE 6 TO TEMP

REPLACE DOLLAR
SIGN WITH
A BLANK

READ RESULT INTO REAL VARIABLE

There are two methods of accessing external files: sequential access
and direct access.

• Sequential access operations are based on the sequential storage
of records within files. The order of the records is the order in
which they are written.

• In direct access operations, records can be read or written in
any order. The order of record numbers determines the order of
the records. All records of the file have the same length and
each record of a file has a unique record number. The record
number is a positive integer that is specified when the record is
written. Once established, the record number cannot be changed.
A record can be overwritten but not deleted. Records must not be
read or written with list-directed or NAMELIST formatting.
Multifile direct access COS datasets are not allowed.

SR-0009 7-6 L

If both sequential and direct access are allowed on a given file, the
records can be in any order. The first record accessed by sequential
access is the record numbered 1 for direct access, the second record
accessed by sequential access is the record numbered 2 for direct access,
and so on.

While a file is connected for one type of access (sequential or direct),
only I/O statements using that type of access may be used with the file.

See appendix E for random access extensions.

7.5.1 FILE POSITION AFTER DATA TRANSFER

File position determines the next record of a file to be read or
written. File position depends on the method of access, sequential
access or direct access.

7.5.1.1 Sequential access

When an input operation is performed on a file, the file is positioned at
the beginning of the next record, which becomes the current record. When
an output operation is performed on a file, a new record is created,
becoming the last record of the file.

The position of an internal file is always at the beginning of the
character variable, array, array element, or substring referenced by the
I/O operation.

7.5.1.2 Direct access

When an input operation is performed on a file, the file is positioned at
the beginning of the record specified by the next higher record number,
which becomes the current record. When an output operation is performed
on a file, a new record is created with a record number one higher than
the previous record number, becoming the last record of the file.

7.6 UNITS

A unit is a means of referring to a file or dataset. At any given
time, a set of units exists for an executable program; these are the
preconnected units and the units corresponding to open files. I/O
statements can refer only to existing units.

SR-0009 7-7 L

7.7 IDENTIFIERS

Identifiers assign names to units, internal files, files, and formats.

7.7.1 UNIT IDENTIFIERS

An external unit identifier is used to refer to an external file and is
an integer constant or expression in the range 0 through 102, or the
character *. In COS, the values 100, 101, and 102 refer to datasets $IN,
$OUT, and $PUNCH, respectively; in UNICOS, they refer to files stdin,
stdout, and stderr, respectively. These assignments cannot be
changed. The character * can only specify a unit preconnected for
formatted, sequential access; it can appear only in a READ or WRITE
statement. In a READ statement, * refers to $IN under COS and to stdin
under UNICOS; in a WRITE statement, * refers to $OUT under COS and to
stdout under UNICOS. The defaults for units 5 and 6 under COS are $IN
and $OUT, respectively; under UNICOS, the defaults are stdin and
stdout, respectively. These assignments can be changed. (See the COS
Version 1 Reference Manual, publication SR-0011, or the UNICOS File
Formats and Special Files Reference Manual, publication SR-2014, for
further details.)

The ANSI FORTRAN Standard does not specify a maximum value for the
external unit identifier.

An internal file identifier is used to refer to an internal file and is
the name of a character variable, character array, character array
element, or character substring.

If the optional characters UNIT= are omitted from the unit identifier,
the unit identifier must be the first item in a list of identifiers.

The ANSI FORTRAN Standard does not provide for the definition of unit
identifiers 100, 101, or 102 or for the preconnection of units 5 and 6.

7.7.2 FILE IDENTIFIERS

A file identifier is a constant value that is used to identify a
particular file. It can be

• A character constant
• An integer variable
• An integer array element containing Hollerith data of not more

than 7 characters

SR-0009 7-8 L

External file identifiers of type character can only be used in OPEN and
INQUIRE statements. Using character type variables as unit identifiers
in READ/WRITE statements implies I/O operations on internal files.

The ANSI FORTRAN Standard does not provide for file identifiers.

7.7.3 FORMAT IDENTIFIERS

A format identifier must "be one of the following:

• A FORMAT statement label appearing in the same program unit as the
format identifier

• An integer variable name with the following restrictions:

The integer variable name cannot also appear as a dummy
argument in the same program unit.

An ASSIGN statement must assign the format label.

• A character array name

• A character expression not involving concatenation of an operand
with an asterisk length specification unless the operand is the
symbolic name of a constant

• An asterisk, specifying list-directed formatting

7.8 DATA TRANSFER STATEMENTS

The READ statement is the data transfer input statement; execution of a
READ statement causes values to be transferred from an external or
internal file to the entities specified in the input list, if present.
WRITE and PRINT statements are data transfer output statements; execution
of these statements causes values to be transferred from the entities
specified in the output list, if present, to an external or internal
file. The READ, WRITE, and PRINT statements have the following formats.

SR-0009 7-9 L

Format:

READ (cilist) [iolist]

READ f [,iolist]

WRITE (cilist) [iolist]

WRITE f [,iolist]

PRINT f [,iolist]

The ANSI FORTRAN Standard does not provide for the WRITE f [,iolist]
format.

cilist Control information list; includes a reference to the
source or destination of the data to be transferred and an
optional format identifier.

f Format identifier

iolist I/O list specifying the data to be transferred

7.8.1 CONTROL INFORMATION LISTS

The format of a control information list (cilist) is as follows.

Format:

[UNIT=] {U. }[,[FMT=]f][,END=sn][,REc=rn][,ERR=S][,IOSTAT=iOS]
fIn

[UNIT=] {U. }
fIn

Unit identifier (u) or file identifier (fin). Either
U or fin must be specified, but not both. If the UNIT=
keyword is omitted, U and fin are positional parameters
and must appear first.

The ANSI FORTRAN Standard does not provide for the [UNIT=]fin form.

SR-0009 7-10 L

[FMT=]f

END=sn

REC=rn

ERR=S

IOSTAT=ios

Format identifier. This parameter must be present for
formatted I/O statements. If f is an asterisk, the
statement is list-directed and a record identifier cannot be
present. If the optional UNIT= keyword is specified with
the unit or file identifier, the FMT= keyword must be
specified with the format identifier. If both the UNIT= and
the FMT= keywords are omitted, f must follow u or fin.

End-of-file identifier. sn is the number of the statement
where execution continues after an EOF on a READ statement
has been encountered. An end-of-file identifier must not
appear in a WRITE statement or in the same control
information list as a record identifier.

Record identifier. rn must be an integer expression with
a positive value. A record identifier appears only in
direct-access I/O statements. A statement containing a
record identifier cannot contain an end-of-file identifier.

Error identifier. s is the statement label of the
statement where control continues after a recoverable error
occurs.

Status identifier that becomes defined when an I/O statement
is executed. ios must be an integer variable or an
integer array element. Following are the identifier values
and their meanings.

ios Value

=0

>0

<0

Meaning

Transfer is complete; no error or
end-of-file condition exists.

Error message number; see coded $IOLIB
messages in COS Message Manual,
publication SR-0039.

End of file was encountered; no error
condition exists.

Examples of control information lists:

READ (10) .••
WRITE(10,430) .••
WRITE(lO,REC=J) •..
READ('FILE1',30) •..
READ(10,*) .•.
READ(*,*) •••
READ(*,*,END=200) •.•

SR-0009 7-11

READ(10,IOSTAT=JOE) •••
READ(98,12345,ERR=42,END=75) •••
READ(J,ARRAYF,ERR=10,END=25) ...
WRITE(98,32,ERR=37) •.•
READ(END=100,FMT=20,UNIT=5) .••
WRITE(98, '(6E11.4)' ,ERR=75) •••
READ(10,IOSTAT=JOE,ERR=100,END=200) •••

7.8.2 IIO LISTS

An 110 list (iolist) specifies entities whose values are transferred
by lID statements. This list is composed of one or more IIO list items
separated by commas. Optionally, one or more implied DO lists can be
included in the list.

An array name appearing as an IIO list item is treated as if all elements
of the array were specified in the order given by array element ordering.

7.8.2.1 Input list items

Only input list items can appear in an input statement. An input list
item must be one of the following.

• Variable name

• Array element name

• Array name

• Character substring name

7.8.2.2 Output list items

An output list item must be one of the following.

• Variable name

• Array element name

• Array name

• Character substring name

• An expression (the expression may not be a character expression
involving concatenation of an operand with a length specification of
(*), unless the operand is the symbolic name of a constant)

Examples of input and output lists:

READ(23)X,Y !VARIABLE NAMES

WRITE(23)A(1),A(4),X(2) !ARRAY ELEMENT NAMES

DIMENSION Z(64)

READ(23)Z !ARRAY NAME

SR-0009 7-12 L

CHARACTER*10 WORD

READ(23)WORD(2:3) !CHARACTER SUBSTRING

WRITE(23)A+B !EXPRESSION

7.8.2.3 Implied DO lists

The format of an implied DO list is as follows.

Format:

dlist An I/O list

i, e1' e2' and e3
As specified for the DO statement (see section 6)

The range of an implied DO list is the list dlist. dlist can itself
contain one or more implied DO lists. The iteration count and the value
of the DO variable i are established from e1' e2' and e3 exactly as for a
DO-loop. Once the values of i and of the iteration count are
established, i, e1' e2' and e3 can be redefined with no effect on the loop
control process. The DO variable i can be specified as a subscript to
array elements named in dlist for both input and output list items.
When an implied DO list appears in an I/O list, it is treated as if
dlist were specified once for each iteration of the implied DO list.
If a premature exit from an implied DO occurs due to an I/O error or
end-of-file, the loop indices become undefined.

Examples:

PRINT 311,(VECTOR(I),I=1,100)

READ(12,345)«XREF(M,N),M=1,N),N=1,3)

WRITE(6,350)(M,(N,XREF(M,N),N=1,3),M=2,1,-1)

READ(5,1,END=50,ERR=60)«BUFFER(I,J),I=1,20),J=1,1000)

SR-0009 7-13 L

7.9 DATA TRANSFER OPERATIONS

When a data transfer 1/0 statement (READ, WRITE, or PRINT) is executed,
the following operations are performed in the order specified.

1. The direction of data transfer is determined (input for READ,
output for WRITE and PRINT).

2. The unit involved in the transfer is identified.

3. The format (if specified) is established.

4. Data is transferred between the external or internal file and the
entities specified by the 1/0 list (if any).

5. The status identifier (if specified) is defined.

7.9.1 IDENTIFYING A UNIT

A READ statement without a unit or file identifier specifies unit 100,
which is preconnected to the COS dataset SIN or the UNICOS file stdin.
PRINT and WRITE statements similarly specify unit 101, preconnected to
the COS dataset SOUT or the UNICOS file stdout. Unit preconnection for
READ, PRINT, and WRITE statements without a unit identifier is not under
the control of the executing program.

If the file specified by the output statement does not exist, a file is
created and the write proceeds normally. If the file specified by an
input statement does not exist, an empty file is created.

The ANSI FORTRAN Standard does not provide for reading or writing a
nonexistent file or dataset.

7.9.2 ESTABLISHING A FORMAT

A format identifier in a control information list identifies a format
specification.

7.9.3 TRANSFERRING DATA

Data is transferred between records and entities specified in the 1/0
list. List items are processed in the order of their left-to-right
appearance in the 1/0 list.

SR-0009 7-14 L

All values needed to determine entities specified by an IIO list item are
determined at the beginning of the processing of that item. For example,
the following statements cause a value to be read into N(3).

N(1)=3
READ(8)N(N(1»

All values are transmitted to or from the entities specified by a list
item before the processing of any succeeding list item. For example, the
following statement causes two values to be read.

READ(3)N,A(N)

Tne first value read is assigned to N, and the second is assigned to
A(N), where the new value of N is used as the subscript.

A DO variable in an implied DO list becomes defined at the beginning of
processing the implied DO list as an IIO list item.

An input list item, or any entity associated with it, must not affect any
portion of the established format specification.

7.9.3.1 Unformatted data transfer

During unformatted data transfer, data is transferred without editing
between the current record and the entities specified by the IIO list.
Exactly one record is read or written.

On input, the file should be positioned so the record read is an
unformatted record or an endfile record.t The number of values
required by the input list must be less than or equal to the number of
values in the record and must not require more values than the record
contains.

7.9.3.2 Formatted data transfer

During formatted data transfer, data is transferred with editing between
the entities specified by the IIO list and the file. The current record
and possibly additional records are read or written.

On input, the record read should be a formatted record or an endfile
record.t

t eFT allows formatted and unformatted records on the same file or
dataset (non-ANSI).

SR-0009 7-15 L

The I/O list and format specification must not specify more than 152
characters. Some formats larger than 133 characters generate warning
errors. If the input record length is less than the input list requires,
the additional characters are defined as blanks.

The ANSI FORTRAN Standard does not provide for a maximum number of
characters per record, nor for blank padding if the record is less than
that required for the input list.

7.9.4 OUTPUT TO A PRINTER

The transfer of formatted record information to certain devices is called
printing. The first character of a formatted record is not printed.
The remaining characters of the record, if any, are printed in one line
beginning at the left margin.

The first character of such a record determines the vertical spacing to
occur before printing. The character codes specifying vertical spacing
(carriage) control are shown in table 7-2.

Table 7-2. Print Control Characters

I
Character I Vertical Spacing Before Printing

I

I
Blank I. Advance one line
0 I Advance two lines
1 I Advance to first line of next page
+ I No advance
All other I Advance one line

I

If the record contains no characters, an advance of one line occurs and
nothing is printed in that line. A PRINT statement does not necessarily
result in a printing operation.

7.9.5 ERROR AND END-OF-FILE CONDITIONS

If an error condition occurs during data transfer, the position of the
file is indeterminate.

SR-0009 7-16 L

If an end-of-file (EOF) condition exists as a result of reading an
endfile record, the file is positioned after the endfile record.

If no error condition or EOF condition exists, the file is positioned
after the last record read or written.

If an error condition or EOF condition is encountered during a read
operation, the read terminates and the entities specified in the IIO list
become undefined.

7.10 SEQUENTIAL FILE STATEMENTS

The BACKSPACE, ENDFILE, and REWIND statements perform operations on
sequential files. The BACKSPACE statement positions a file at the
beginning of the previous record from the current record; the ENDFILE
statement writes an end-of-file (EOF) mark at the file's current
position; and the REWIND statement positions the file to the first record
of the file.

Formats:

BACKSPACE

{
u } fin
(alist)

ENDFILE

{
u } fin
(alist)

REWIND

{
u } fin
(alist)

U External unit identifier

fin File identifier whose value specifies the name of an
external file

alist

SR-0009

The following set of identifiers:

[UNIT=] U or fin
IOSTAT= ios
ERR= s

7-17 L

alist must contain a single external unit identifier or file identifier
and can contain at most one of each of the other identifiers. See the
UNIT, IOSTAT, and ERR identifiers described for the OPEN and CLOSE
statement in tables 7-4 and 7-5, respectively.

The external unit or file specified in a BACKSPACE or ENDFILE statement
must not be connected for direct access. If the external unit or file
specified by a BACKSPACE, ENDFILE, or REWIND statement is not connected,
it becomes connected and the file is created.

BACKSPACE, ENDFILE, and REWIND operations on internal files are not
allowed.

The ANSI FORTRAN Standard does not provide for positioning of an
unconnected file.

The ANSI FORTRAN Standard does not provide for the fin parameter on
BACKSPACE, ENDFILE, or REWIND statements.

7.10.1 BACKSPACE STATEMENT

A BACKSPACE statement causes the file related to the specified unit to be
positioned at the beginning of the preceding record. If no preceding
record exists, the position of the file is unchanged. If the preceding
record is an endfile record, the file is positioned before it.

The ANSI FORTRAN Standard does not provide for backspacing a file that
is not connected, a file that is connected but does not exist, or one
that has been written with list-directed format.

7.10.2 ENDFILE STATEMENT

An ENDFILE statement writes an endfile record as the next record of the
file. The file is then positioned after the endfile record.

After the execution of an ENDFILE statement, a BACKSPACE or REWIND
statement must reposition the file before execution of an input
statement. An output statement creates another file on the same file.
Under COS, execution of an output statement on a file that is positioned
after an endfile record creates another file on the same dataset (see the
example in subsection 7.3, COS Datasets). Under UNICOS, output

SR-0009 7-18 L

statements are not allowed to execute on a file that is positioned after
an endfile record. Execution of an ENDFILE statement for a file that is
connected but does not exist creates the file.

The ANSI FORTRAN Standard does not provide for the writing of an
endfile on a file that is not connected.

7.10.3 REWIND STATEMENT

A REWIND statement causes the specified file to be positioned at its
initial point. If the file is already positioned at its initial point,
execution of the statement has no effect on the file position.

The ANSI FORTRAN Standard does not provide for the rewinding of an
unconnected file or a file connected for direct access, nor does it
provide for the creation of a connected file when one does not exist.

7.11 INQUIRE STATEMENT

An INQUIRE statement determines the current status of an external file's
attribute. Inquiry can be made by file name or by unit number.

7.11.1 INQUIRY BY FILE NAME

The format of the INQUIRE by file name statement is as follows.

Format:

INQUIRE (FILE:fin,islist)

fin

islist

SR-0009

A character expression that specifies the name of the
file. The file need not be connected to a unit. fin is
limited to seven characters, not counting trailing blanks.
Any trailing blanks are discarded.

A list of inquiry identifiers that contains at most one of
each of the inquiry identifiers described in table 7-3.

7-19 L

7.11.2 INQUIRY BY UNIT

The format of the INQUIRE by unit statement follows.

Format:

INQUIRE(u,islist)

u

islist

An external unit identifier. (See ~ubsection 7.7.1, Unit
Identifiers.) The unit specified need not be connected to
a file. If it is connected to a file, however, the inquiry
includes the connected file.

A list of inquiry identifiers that contains at most one of
each of the inquiry identifiers described in table 7-3.

The following example illustrates the use of the INQUIRE statement. The
INQUIRE statement determines if a file NAMES exits; if it does not, the
program creates an empty file NAMES.

LOGICAL AROUND

INQUIRE(FILE='NAMES',EXIST=AROUND)
IF(.NOT.AROUND)OPEN(UNIT=6,FILE='NAMES',STATUS='NEW')

Specifier

IOSTAT=ios

ERR=S

SR-0009

Table 7-3. INQUIRE Specifiers and Their Meanings

Data Type Meaning

Integer variable Error status
or array element

Statement label Statement label

(RV)

Input (I) or
Return Value (RV)

o if no error condition
exists; error message
number if error condition
exists

(I)
where control is FORTRAN statement label
transferred if
error condition
exists

7-20 L

Table 7-3. INQUIRE Specifiers and Their Meanings (continued)

Specifier

EXIST=ex

OPENED=od

NUMBER=num

NAMED=nmd

RECL=rel

NEXTREC=nr

NAME=fn

ACCESS=dee

SR-0009

Data Type Meaning

Logical variable Existence
or array element specifier

Logical variable Connection
or array element specifier

Integer variable External unit
or array element specifier

Logical variable Unit name
or array element specifier

Integer variable Record length
or array element unit or file

connected for
direct access

Integer variable Next record
or array element

Character
variable or
array element

File name

of

(RV)

Input (I) or
Return Value (RV)

.TRUE. if unit or file
exists; else, .FALSE.

(RV)
.TRUE. if unit and dataset
are connected; else, .FALSE.

(RV)
Unit currently connected;
if no unit, num is undefined

(RV)
.TRUE. if unit has a name;
else, • FALSE.

(RV)
Record length in characters.
(For unformatted I/O, the
record length is a positive
integer multiple of eight.)
If not connected for direct
access, reI is undefined.

(RV)
The record number that
follows the last record read
or written for direct
access. If none have been
written, nr=l. If access is
not direct, nr is undefined.

(RV)
File name if file has a
name; else, fn is undefined.

Character
variable or
array element

Access specifier (RV)

7-21

'SEQUENTIAL' is access
method; 'DIRECT' is access
method.

L

Table 7-3. INQUIRE Specifiers and Their Meanings (continued)

Specifier Data Type

SEQUENTIAL= Character
seq variable or

array element

DIRECT=dir Character

FORM=fmt

FORMATTED =
fmtt

variable or
array element

Character
variable or
array element

Character
variable or
array element

UNFORMATTED= Character
unEt variable or

array element

BLANK=
blnkt

Character
variable or
array element

Meaning

Sequential as
possible access
method

Direct as
possible access
method

(RV)

Input (I) or
Return Value (RV)

'YES' if sequential is
allowed; 'NO' if sequential
is not allowed; 'UNKNOWN' if
unable to determine.

(RV)
'YES' if direct is allowed;
'NO' if direct is not
allowed; 'UNKNOWN' if unable
to determine

Format specifier (RV)

Formatted as a
possible allowed
form

Unformatted as a
possible allowed
form

Blank control
I specifier
I
I
I
I
I

'FORMATTED' if file is
connected for formatted I/O;
'UNFORMATTED' if file is
connected for unformatted
I/O.

(RV)
'YES' if formatted is
allowed; 'NO' if formatted
is not allowed; 'UNKNOWN' if
unable to determine.

(RV)
'YES' if unformatted is
allowed; 'NO' if unformatted
is not allowed; 'UNKNOWN' if
unable to determine.

(RV)
'NULL' if null blank control
is in effect; 'ZERO' if zero
blank control is in effect.
Blank control applies only

Ito formatted records.
I

t CFT allows formatted and unformatted records in the same file (non-ANSI).

SR-0009 7 -22 L

7.11.3 INQUIRE STATEMENT RESTRICTIONS

A variable or array element that becomes defined or undefined as a result
of its use as a identifier must not be referenced by any other identifier
in the same INQUIRE statement.

Execution of an INQUIRE by file name statement causes nmd, fn, seq, dir,
fmt, and unf (see table 7-3) to be assigned a value only if the
value of fin is acceptable as a file name and if a file by that name
exists. Otherwise, these identifiers become undefined. If od becomes
defined with the value .TRUE., then num, rcl, ace, fm, blnk, and nr become
defined.

Execution of an INQUIRE by unit statement causes num, nmd, rcl, fn, ace,
seq, dir, fm, fmt, unf, blnk, and nr to be assigned values only if the
specified unit exists and if a file is connected to the unit. Otherwise,
these identifiers become undefined.

If an error condition occurs during execution of an INQUIRE statement,
all of the inquiry identifiers except ios become undefined. ex and
od always become defined unless an error condition occurs.

7.12 OPEN STATEMENT

The OPEN statement prepares an external file for use in a FORTRAN
program. Depending on the status of the file when the OPEN statement is
executed, the OPEN statement does one of the following:

• Connects an existing file to a unit

• Creates a file that is preconnected to a unit

• Creates a file and connects it to a unit

• Changes the characteristics of an existing connection between a
file and a unit

Format:

OPEN (olist)

olist An external unit identifier and at most one of each of the
other identifiers described in table 7-4

SR-0009 7-23 L

-
If a unit is connected to an existing file, execution of an OPEN
statement for that unit is permitted. If the FILE= identifier is not
included in the OPEN statement, the file to be connected to the unit is
the same as the file to which the unit is connected.

If the file to be connected to the unit does not exist but is the same as
the file to which the unit is preconnected, the specifications in the
OPEN statement become a part of the connection.

If the file to be connected to the unit is not the same as the file to
which the unit is connected, the effect is as if a CLOSE statement
without a STATUS= identifier had been executed for the unit immediately
before the execution of the OPEN statement.

If the file to be connected to the unit is the same as the file to which
the unit is connected, only the BLANK= identifier can have a value that
is different from the current value. Execution of the OPEN statement
causes the new value of the BLANK= identifier to be in effect. The file
position is unaffected.

If a file is connected to a unit, execution of an OPEN statement on that
file and a different unit is not permitted.

7.13 CLOSE STATEMENT

A CLOSE statement terminates the connection of a particular file to a
unit and rewinds the file.

Format:

CLOSE (cllist)

cllist External unit identifier and at most one of each of the
other identifiers described in table 7-5

Execution of a CLOSE statement can occur in any executable program and
need not occur in the same program unit as the OPEN statement that opened
the file.

A disconnected file or unit can be reconnected within the same executable
program either to the same file or unit, or to a different file or unit,
provided the file still exists. If the file is memory resident, CLOSE
deletes the file regardless of the STATUS identifier.

SR-0009 7-24 L

A file that is opened without a status specifier is deleted when it is
closed. A subequent OPEN creates a new file.

The ANSI FORTRAN Standard provides an implicit CLOSE for all files
upon normal program termination. CFT programs do not perform implicit
CLOSE operations, and files are not automatically rewound during
program termination.

The ANSI FORTRAN Standard does not allow memory resident files
which are automatically deleted regardless of the STATUS identifier.

Table 7-4. OPEN Specifiers and Their Meanings

Specifier Data Type Meaning
Input (I) or

Return Value (RV)

UNIT=ut

IOSTAT=ios

ERR=S

FILE=fintt

Integer

Integer variable
or array element

Statement label

Character
expression

t UNIT= does not need to be
the first item in olist.

External unit
specifier

Error status
specifier

Statement label

(I)
Unit number

(RV)
o if no error condition
exists; error message number
if error condition exists.

(I)

where control is FORTRAN statement label
transferred if
error condition
exists

IFile specifier (I)
I Name of dataset to be
I I connected
I I
included in the unit specification if u is

tt fin is limited to seven characters, not counting trailing blanks.

SR-0009 7-25 L

Specifier

STATUS=sta

ACCESS=acc

FORM=fmt

RECL=rl

BLANK=blnk

Table 7-4. OPEN Specifiers and Their Meanings (continued)

Data Type

Character
expression

Character
expression

Character
expression

Positive integer
expression

Character
expression

Meaning

Disposition
specifier
(Default,
'UNKNOWN'

Access specifier
(Default,
'SEQUENTIAL')

(I)

Input (I) or
Return Value (RV)

'OLD', dataset must exist
and FILE= must be specified.
'NEW', dataset is created,
status becomes 'OLD', FILE=
must be specified.
'SCRATCH', dataset is
deleted when CLOSE statement
is executed or when program
is terminated. Dataset must
not be named. 'UNKNOWN',
the status is 'SCRATCH' if
no file specifier is
supplied and the unit is not
connected; otherwise, the
status becomes 'OLD'.

(I)

'SEQUENTIAL' is access
method; 'DIRECT' is access
method.

Form specifier (I)
(Default, 'FORMATTED', formatted 1/0;
'UNFORMATTED' if 'UNFORMATTED', unformatted
access is direct; 1/0
'FORMATTED' if
access is
sequential.)

Record length (I)
for direct access For formatted 1/0, number of
(omitted for characters per record;
sequention access For unformatted 1/0, 8 times

the number of words

Blank specifier (I)
(Default, 'NULL') 'NULL' if numeric input

blanks are ignored; 'ZERO'
if all nonleading blanks are
treated as zeros. This
specifier permitted on
datasets opened for

Iformatted 1/0 only.
I

t CFT allows formatted and unformatted records in the same file (non-ANSI).

SR-0009 7-26 L

Specifier

UNIT=ut

IOSTAT=ios

ERR=s

STATUS=sta

Table 7-5. CLOSE Specifiers and Their Meanings

Data Type

Integer

Integer variable
or array element

Statement label

Character
expression

Meaning

External unit
specifier

Error status
specifier

Statement label

(I)

Input (I) or
Return Value (RV)

Unit number

(RV)
o if no error condition
exists; error message number
if error condition exists.

(I)
where control is FORTRAN statement label
transferred if
error condition
exists

Disposition (I)
specifier 'KEEP', the dataset
(Default, 'KEEP' continues to exist after
if OPEN status is CLOSE statement execution.
'OLD', 'NEW', or Do not specify 'KEEP' for a
'UNKNOWN'. dataset with 'SCRATCH'
Default, 'DELETE; status on an OPEN statement.
if OPEN status 'DELETE', the dataset does
is 'SCRATCH' or not exist after execution of
dataset is memory the CLOSE statement.
resident.)

t UNIT= does not need to be included in the unit specification if u is the
first item in cllist.

7.14 NAMELIST STATEMENT (CFT EXTENSION)

The NAMELIST statement provides a format-free method of specifying 1/0 lists.

Format:

NAMELISTlgrouplv[,V] ... [[,]lgroupIV[,v] •••] •••

group Group name for the following list

SR-0009 7-27 L

v Variable name or array name. v cannot be a dummy
argument, cannot be referenced by a pointer, and cannot be
of type CHARACTER.

The group name must be used only as a NAMELIST group name within the
program unit. It can be used in place of the FORMAT statement in the
following I/O statements only.

READ
WRITE
READ
PRINT
PUNCH

(unit,group [,ERR=sn,END=sn])
(unit,group [,ERR=!n])
group
group
group

Every occurrence of a group name in NAMELIST statements after the first
occurrence is treated as a continuation of the first occurrence. Lists
with the same group name are treated as a single group.

Variable or array names are separated by commas in the NAMELIST
statement. These names can be members of more than one NAMELIST group.

The NAMELIST statement must follow all declaratives affecting the
variable or array names and must precede the first use of the group name
in any I/O statement.

7.14.1 NAMELIST INPUT

An input NAMELIST group record consists of one or more physical records.
Column 1 is ignored, except for a possible echo flag. The first nonblank
character following column 1 must contain a NAMELIST delimiter ($ or &),
immediately followed by the group name and one or more blanks. The
remaining portion of an input record contains as many variables desired
with assigned values, separated by commas, in any order in one of the
following forms.

variable=value

array=value[,value,] ...

array(subscripts)=value[,value,] ...

SR-0009 7-28 L

subscript An integer constant; multiple array values are assigned
in storage order.

Any value can be repeated by:

n*value

n Repetition count

An input NAMELIST physical record can contain up to 160 characters.
Blanks can be used for readability but must not be embedded in names or
values. Names or values cannot be continued from one physical record to
another. A delimiter $ or & terminates a group record. The next group
record begins with the next delimiter.

An optional comment can appear between input NAMELIST group records. It
can also appear within an input NAMELIST group record. A comment within
the record must be preceded by a colon or semicolon. A comment, if
included, is the last item in a physical record. An input NAMELIST group
record can contain only comments, or can be entirely blank.

7.14.1.1 NAMELIST input variables

NAMELIST input variables can be of type integer, integer*2, real, double
precision, complex or logical. If a type mismatch occurs across the
equal sign, the value is converted to the declared type of the variable,
following the rules of v=e in section 6, except that conversions
between complex and double precision, or logical and any other type are
not allowed. Octal and hexadecimal constants are considered to be
Boolean. Character constants can be assigned to noncharacter variables,
where they are treated as Boolean. Character constants cannot be
assigned to a complex or double-precision variable.

Integer, real, and double-precision values are specified in the normal
FORTRAN manner. Octal constants are specified as dddd .•. dB or as
O'ddd ••• d['], where each d is a digit between 0 and 7. Hexadecimal
constants are specified as Z'hhh",h['], where each h is a hexadecimal
character between 0 and 9, or between A and F. Up to 22 d's or 16 h's can
be specified. If fewer than 22 or 16 are specified, the values are
right-justified in the input word.

Logical values are specified as

.T[string], or

.F[string], or
T[string], or
F[string]

SR-0009 7-29 L

string An optional string of characters that does not contain the
following characters.

Replacement (=)
Delimiter ($ or &)
Separator (,)
Comment (: or ;)

Array name indicator (()

string is generally added for clarity. For example, T or .T can
specify a logically true value, or, for clarity, .TRUE can be used.

Complex constants are represented as

(real,imag)

real and imag can be integer or floating-point constants.

7.14.1.2 NAMELIST input processing

The NAMELIST processor scans forward from the current position on the
input file until it encounters a delimiter ($ or &) as the first nonblank
character immediately followed by the group name.

If end-of-file or end-of-data is encountered before the group name is
located, the job either aborts or branches to the END= address.

If the processor finds a NAMELIST record other than the one it is looking
for, that record is skipped with an informative message to the logfile.

If the processor encounters an echo flag (E) in column 1 of any record,
that record and all subsequent records processed by the current read are
echoed to $OUT.

The job aborts or the ERR= branch is taken if one or more of the
following conditions exists.

• The record contains a variable name that is not in a NAMELIST
group.

• Punctuation is missing.

• The format of a constant is illegal.

7.14.1.3 User control subroutines

The following routines provide for control of the NAMELIST input
defaults. The mode setting indicates the action to be taken.

SR-0009 7-30 L

CALL RNLSKIP(mode)

mode > 0

mode = 0

mode < 0

CALL RNLTYPE(mode)

mode ~ 0

mode = 0

CALL RNLECHO(unit)

unit < 0

unit > 0

Determines action taken if NAMELIST sees a
group name that is not the one being sought

Skips the record and issues a logfile
message (default)

Skips the record

Aborts the job or goes to the optional ERR=
branch

Determines action taken if a type mismatch
occurs across the equal sign

Converts the constant to the type of the
variable (default)

Aborts the job or goes to the optional ERR=
branch

Specifies output unit for error message and
echo lines

Specifies that error messages go to $OUT.
Lines echoed because of an E in column 1 go
to $OUT. (Default)

Specifies that error messages go to unit.
All input lines are echoed on unit,
regardless of any echo flags present.
(unit=6 or 101 imply $OUT.)

In the following user control subroutine argument lists, char is a
character specified as 1Lx or 1RX, and mode is a value which, if
nonzero, adds the character to the set and which, if zero, removes the
character from the set. No checks are made to determine the suitability
or consistency of the changes.

CALL RNLFLAG(char,mode) Adds or removes char from the set of
characters that, if found in column 1,
initiates echoing of the input lines onto
$OUT. (char default is E.)

CALL RNLDELM(char,mode) Adds or removes char from the set of
characters that precede the NAMELIST group
name and signal end of input. (char
default is $ or &.)

CALL RNLSEP(char,mode) Adds or removes char from the set of
characters that must follow each constant to
act as a separator. (char default is ,.)

SR-0009 7-31 L

CALL RNLREP(char,mode) Adds or removes char from the set of
characters that occurs between the variable
name and the value. (char default is =.)

CALL RNLCOMM(char,mode) Adds or removes char from the set of
characters that initiates trailing comments
on a line. (char default is : or ;.)

7.14.2 NAMELIST OUTPUT

An output NAMELIST group record is written in the following general form.

Format:

& group name variable name = value, .•• ,
array name = value, ..• ,value, ..• ,&END

group name, variable name, and array name
Names corresponding to the names in the NAMELIST statement

For arrays, the values are listed in storage order and repeated values
are listed as n*value.

Example:

&OUTPUT ARRAYX=3,7,4*5,2,&END

Logical values are listed as .T. or .F.

Example:

&OUTPUT LOGVAL=.T.,&END

Complex values are listed with real and imaginary portions, respectively.

Example:

&OUTPUT COMVAL=(2.5,3.),&END

An output NAMELIST group record can extend any number of lines (physical
records). The first position of each line is normally blank. The first
line contains the delimiter & in column 2, followed by the group name.
The last line ends with the character string &END.

SR-0009 7-32 L

Default line width is 133 characters unless the unit is 102 ($PUNCH), in
which case the default line width is 80 characters. NAMELIST output is
readable as NAMELIST input.

7.14.2.1 User control subroutines

The following routines provide the user control of NAMELIST output format.

In the following subroutines, char can be any ASCII character specified
by 1Lx, or lRx. No checks are made to determine if char is
reasonable, useful, or consistent with other characters. If the default
characters are changed, use of the output line as NAMELIST input might
not be possible.

CALL WNLLONG(length)

CALL WNLDELM(char)

CALL WNLSEP(char)

CALL WNLREP(char)

CALL WNLFLAG(char)

CALL WNLLINE(value)

SR-0009

Sets the output line length to length.
length must be greater than 8 and less than
161. If length is too short for an actual
output line, the job aborts. Setting
length to -1 restores the default line
length (80 for $PUNCH; otherwise, 133).

Changes the character preceding the group
name and END from & to char.

Changes the separator character immediately
following each value from , to char.

Changes the replacement operator that comes
between name and value, from = to char.

Changes the character written in column 1 of
the first line from blank to char.
Typically, char is used for carriage
control if the output is to be listed, or
for forcing echoing if the output is to be
used.as input for NAMELIST reads.

Allows each namelist variable to begin on a
new line.

value = 0, no new line
value = 1, new line for each variable

7-33 L

The following example is a sample program, an input listing, and an
output listing, showing the use of the NAMELIST statement.

PROGRAM

PROGRAM EXAMPLE (TYPICAL NAMELIST I/O USAGE)
LOGICAL ALL DONE
REAL LENGTH
DATA DENSITY,LENGTH,WIDTH,HEIGHT,ALLDONE 14*1.0,.FALSE.I
NAMELIST IINPUTI LENGTH, WIDTH, HEIGHT, ALLDONE ,DENSITY
NAMELIST IOUTPUTI WEIGHT,LENGTH,WIDTH,HEIGHT,DENSITY

10 READ INPUT
IF (ALLDONE) STOP
WEIGHT = DENSITY*LENGTH*WIDTH*HEIGHT
PRINT OUTPUT
GO TO 10
END

INPUT LISTING

INPUT DATA FOR PROGRAM EXAMPLE
NOTE THAT COMMENT CARDS MAY BE INTERSPERSED BETWEEN COMPLETE GROUPS

$INPUT $ USE DEFAULT VALUES
$INPUT LENGTH = 3.0, ; A LONG WIDE CASE

WIDTH = 3. $
&INPUT

&INPUT
IEOF

DENSITY = .5
ALLDONE = TRUE

OUTPUT LISTING

&END
&

&OUTPUT WEIGHT - 1., LENGTH = 1., WIDTH = 1., HEIGHT = 1., DENISTY = 1., &END
&OUTPUT WEIGHT - 9., LENGTH = 3., WIDTH = 3., HEIGHT = 1., DENISTY = 1., &END
&OUTPUT WEIGHT - 4.5, LENGTH = 3., WIDTH = 3., HEIGHT = 1., DENISTY = 0.1., &E~

SR-0009 7-34 L

7.15 BUFFER IN AND BUFFER OUT STATEMENTS <CFT EXTENSIONS)

Buffered I/O operations initiate a transfer of data and allow the
subsequent execution sequence to proceed concurrently with the actual
transfer. Either the UNIT or LENGTH utility function must be referenced
to cause a delay in an execution sequence, pending completion of a
buffered I/O operation. These functions can also determine certain
characteristics of that operation upon its termination. The amount of
data to be transferred is specified in terms of Cray computer words with
no consideration given to the type or format of information contained.

Formats:

BUFFER IN <(U. },m) <bloc,eloc)
fIn

BUFFER OUT <(U. },m) (bloc,eloc)
fIn

U

fin

m

bloc

eloc

Unit identifier expressed as an integer or as a Hollerith
expression of up to 7 characters

File name expressed as a character string or a character or
integer variable containing a character string of up to
seven characters

Mode identifier expressed as an integer expression
indicating full record processing if 0 or greater and
partial record processing if less than 0

Symbolic name of that variable or array element marking the
beginning location of the buffered I/O transfer

Symbolic name of that variable or array element marking the
ending location of the buffered I/O transfer

BUFFER IN causes information to be read; BUFFER OUT causes information to
be written. Execution of either statement initiates the transfer of data
between the current record at unit u or file fin and the contiguous
memory locations beginning with bloc and concluding with eloc. If
unit U or file fin is completing a buffered lID operation initiated
earlier, a BUFFER IN or BUFFER OUT specification suspends the execution
sequence until that earlier operation terminates. Upon termination,
execution of the BUFFER IN or BUFFER OUT statement completes as though no
delay occurred.

BUFFER IN and BUFFER OUT operations can proceed simultaneously on several
units or files.

SR-0009 7-35 L

In determining the number of computer words to be transferred,
consideration must be given to the data types of the symbolic names used
for bloc and eloc. If eloc is of type double-precision or complex,
the location of the second word in its 2-word form of representation
marks the ending location of the data transfer.

Both eloc and bloc must be either elements of a single array (or
equivalenced to an array) or must be members of the same common block.
Otherwise, the results are undefined. Except for terminating a partial
record, bloc following eloe in a storage sequence causes a run-time
error. Neither eloe nor bloc can be character entities.

The mode identifier, m, controls the position of the record at unit u
after the data transfer has taken place. Full record processing is
indicated if the value of m is greater than or equal to O. The record
position following this mode of transfer is always between the current
record (the record to or from which the transfer occurred) and the next
record. For a value of m less than 0, partial record processing occurs.

In a BUFFER IN statement, m less than 0 specifies that the record be
positioned ready to transfer its (n+1)th word if the nth word was the
last transferred. In a BUFFER OUT statement, m less than 0 indicates
the record is left positioned to receive additional words. A BUFFER OUT
concludes a series of partial record buffered output transfers if m is
greater than or equal to O. A BUFFER OUT statement containing bloc
equal to eloc+1 to produce a zero-word transfer also concludes the
record being created.

File and record positioning for buffered I/O operations are as described
for nonbuffered I/O operations. Buffered operations are allowed on all
COS datasets except BUFFER OUT on COS blocked, random datasets. Buffered
data transfers on COS unblocked datasets must be performed in multiples
of 512 words. BUFFER IN and BUFFER OUT can be used with asynchronous
SETPOS. See appendix E and the Programmer's Library Reference Manual,
CRI publication SR-Ol13.

Example:

A BUFFER IN statement initiates the transfer of 1000 words from unit 32.
Computation then proceeds on data not related to that transfer. A second
BUFFER IN statement is encountered upon completion of this computation,
causing a delay in the execution sequence until the last of the 1000
words is received. A transfer of another 500 words is initiated from
unit 32. While these words are transferring, the execution sequence
proceeds. A BUFFER OUT statement initiates the transfer of the first
1000 words to unit 22. The value of the mode identifier is 0 in all
cases, indicating full record processing.

SR-0009 7-36 L

PROGRAM XFR
PARAMETER(INUNIT=32)
DIMENSION A(1000), B(2,10,100), C(500)
BUFFER IN(INUNIT,O) (A(1),A(1000»
DO 10 1=1,100

10 B(l,l,I)=B(l,l,I) + B(2,1,I)
BUFFER IN(INUNIT,O) (C(1),C(500»
BUFFER OUT(22,0) (A(1),A(1000»

END

7.15.1 THE UNIT FUNCTION (CFT EXTENSION)

After a BUFFER IN or BUFFER OUT statement has been executed, the normal
execution sequence continues concurrently with the transfer of data. If
the utility function UNIT is referenced in this execution sequence,
continuation of the sequence is delayed pending completion of the
transfer. After the BUFFER IN operation, a call to utility function UNIT
or LENGTH is recommended before using storage locations where the
information is placed.

Upon completion of the transfer, the UNIT function provides one of the
following real data type values to the expression where it is referenced:

• -2.0 Partial record read operation (BUFFER IN with m{O)
completed successfully without encountering the end of the
current record

• -1.0 Operation other than a partial read completed successfully

• 0.0 End-of-file was read

• 1.0 Disk parity error occurred during reading

• 2.0 Other disk malfunction occurred during reading or writing

Example:

PROGRAM TESTUNIT
DIMENSION M(200,5)

10 BUFFER IN (32,0) (M(1,1),M(200,5»
IF (UNIT(32»11,13,13

11 D012 J=1,5
0012 1=1,200

12 M(I,J)=M(I,J)*2
BUFFER OUT (22,0) (M(1,1),M(200,5»
IF (UNIT(22»10,13,13

13 END

SR-0009 7-37 L

7.15.2 THE LENGTH FUNCTION (CFT EXTENSION)

If the utility function LENGTH is referenced while a buffered I/O
operation is in progress, the execution sequence is delayed until the
transfer is complete. LENGTH then returns an integer value reflecting
the number of Cray computer words successfully transferred. This value
is 0 if an end-of-file was read.

Example:

PROGRAM PGM
DIMENSION V(16384)

10 BUFFER IN (32,-1) (V(1),V(16384»
X= UNIT(32)
K= LENGTH(32)
IF(X)11,14,14

11 DO 12 I=1,K,1
12 IF(V(I).EO.'KEY') GO TO 13

IF(X.EO.-2.0) GO TO 10
STOP

13

14 END

7.16 RANDOM INPUT/OUTPUT OPERATIONS

FORTRAN-77 defines two access methods for unit/dataset connection:
sequential and direct. CFT, in addition, supports random connection.
Random connection is intended to meet the need for nonsequential
input/output operations on a dataset with records of various lengths.

7.16.1 CREATING A DATASET FOR RANDOM ACCESS

The techniques for creating a dataset to be randomly accessed are as
follows.

• The dataset can be created while the dataset is connected for
sequential access.

• The WRITEDS control statement can create the dataset if the
dataset is already connected for random access but no input/output
to the dataset has yet occurred. The WRITEDS control statement is
described in the COS Version 1 Reference Manual, publication
SR-0011.

SR-0009 7-38 L

7.16.2 DATASET CONNECTION

A dataset is connected for random access through the ASSIGN control
statement described in the COS Version 1 Reference Manual, publication
SR-0011. CFT supports two methods of reading or writing on random access
datasets: GETPOS/SETPOS and READMS/WRITMS.

7.16.2.1 Positioning while connected for random access (GETPOS/SETPOS)

The responsibility for positioning a random access dataset rests with the
user. The user can position the dataset on a record boundary only. In
addition, the user must 'maintain a log of record locations. The utility
procedures provided for positioning are GETPOS and SETPOS (see appendixes
B and C). SETPOS asynchronously positions a dataset to a record
boundary. Similar to BUFFER IN and BUFFER OUT, SETPOS initiates a
dataset position request and allows the subsequent execution sequence to
proceed concurrently. An input/output request or dataset status request
subsequent to a SETPOS calIon the same unit waits until the SETPOS
request is completed before processing. For more information on GETPOS
and SETPOS see the Programmer's Library Reference Manual, CRI publication
SR-0113.

Example:

In the main program below, up to 100 records containing from zero to 10
words each are written into a dataset associated with input/output unit
1. A final record of up to 201 words is added and contains length and
location information for each preceding record plus a count of their
number. The dataset is rewound. At a later point in the program, a
subroutine is called, causing all records to be read in reverse order and
all but the last record stored into 10-word vectors of a 100-vector
array. Information in the last record directs this process. The
subroutine then returns control to the main program.

The following are assumed preset.

• NRECS to the number of records to be processed (1~NRECS~100)

• RLENGTH(i) to the number of words in the ith record written
(0~RLENGTH(i)~10)

• RECORD(j) to the jth word to be written in each nonempty
record (lijiRLENGTH(i»

SR-0009 7-39 L

PROGRAM RANDOMIO
INTEGER RLENGTH(lOO),ADDRESS(lOO),RECORD(lO),NRECS,LRA,RESULT
COMMON RESULT(lOO,10)

DO 20 I=l,NRECS
ADDRESS(I)=GETPOS(1)

20 WRITE(l) (RECORD(J),J=1,RLENGTH(I»
LRA=GETPOS(1)
WRITE(l)NRECS,(RLENGTH(I),ADDRESS(I),I=lNRECS)
REWIND(l)

CALL READIN(LRA,1)

END

7.16.3 MODIFYING A RECORD UNDER RANDOM ACCESS

Sequential read/write statements are used under random access. Formatted
input/output is prohibited under random access. BUFFER IN and BUFFER OUT
on COS random datasets is allowed except BUFFER OUT on COS blocked random
datasets. When a record is being replaced, the length of the record
being written must equal the length of the replaced record. COS blocked
datasets cannot be extended while connected for random access.

7.17 RESTRICTIONS ON INPUT/OUTPUT STATEMENTS

A function must not be referenced in an I/O statement if it causes an 1/0
statement to be executed.

An I/O statement must not reference a unit or file not having all the
properties required for its execution.

7.18 I/O ERROR RECOVERY

If an irrecoverable error occurs during the execution of an I/O
statement, the operating system aborts the current job step. The current
job step is aborted even if an error identifier (ERR=sn) appears in the
I/O statement's control information list. Generally, error conditions

SR-0009 7-40 L

detected by code in $FTLIB are recoverable and return control to the
statement indicated by the error identifier; error conditions detected by
the operating system are irrecoverable and abort the current job step.

The ANSI FORTRAN Standard does not distinguish between recoverable and
irrecoverable errors.

7.19 CHANGING MAXIMUM LENGTH FOR I/O LISTS AND FORMAT SPECIFICATIONS

The maximum length for I/O lists and format specifications in CFT is
normally 152 characters. The length of the $IOLIB read and write buffers
can be changed in either of two ways: by using SEGLDR directives, or by
regenerating the version of $IOLIB used with the CFT compiler.

7.19.1 CHANGING I/O BUFFER LENGTHS USING SEGLDR DIRECTIVES

The SEGLDR directives SET and COMMONS can be used to change the values of
the buffer lengths and common block lengths in $IOLIB. The SET
directives should specify the desired buffer length, and the common
directives should specify a value 9 greater than the desired buffer
length. For example, to change both the read and write buffer lengths to
256 words, the following sequence of SEGLDR directives can be used:

SET=$RBUFLN:256
COMMONS=$RFDCOM:265
SET=$WBUFLN:256
COMMONS=$WFDCOM:265

The SEGLDR directives affect the buffer lengths only for the job in which
they are used.

For more information about the SET and COMMONS SEGLDR directives, see the
Segment Loader (SEGLDR) Reference Manual, CRI publication SM-0066.

7.19.2 CHANGING I/O BUFFER LENGTHS BY REGENERATING $IOLIB

The values of the buffer lengths and common block lengths in $IOLIB can
be changed by regenerating $IOLIB. This involves changing the values of
$RBUFLN and $WBUFLN in deck RWFDCD in program library IOLIBPL. Changing
these values and regenerating $IOLIB automatically resizes the common
blocks $RFDCOM and $WFDCOM.

Changing the buffer lengths in this manner affects all jobs using the
regenerated library.

SR-0009 7-41 L

8. INPUT/OUTPUT FORMATTING

eFT allows both formatted and unformatted input/output (I/O).
Unformatted I/O is considerably faster than formatted I/O. Your decision
to use formatted or unformatted I/O can have a serious impact on program
performance; using unformatted I/O in eFT programs with large amounts of
I/O can be the single most important factor in program optimization.

eFT provides two methods of formatting program input and output.
List-directed I/O is easy to use, but allows relatively limited control
over the format of input and output records. Formatted I/O is more
complex, and allows greater control over the format of input and output
records.

8.1 UNFORMATTED I/O

Unformatted I/O is accomplished by using a data transfer statement with
no format specified. For example, the statement

WRITE(9)X

writes one record containing the value of X to the file connected to
unit 9.

With unformatted I/O, all items in the input or output list are written
to or read from a single record. The statement

WRITE(9)X,Y,Z

writes one record containing the values of X, Y, and Z to the file
connected to unit 9.

List items are written and read based on their type. Integers, real
numbers, and logical values occupy one word of memory; complex and
double-precision numbers occupy two words of memory; and character
strings are stored eight characters per memory word, left-justified.
Unformatted READ statements read the appropriate number of memory words
for the type of each variable in the input list.

SR-0009 8-1 L

For example, in the following program,

LOGICAL TEST
CHARACTER*24 STRING
INTEGER Z

READ(9)TEST,STRING,Z

one word from the file connected to unit 9 would be assigned to the
variable TEST, the next three words would be assigned to STRING, and the
next word would be assigned to Z.

Implied-DO lists can be used in unformatted I/O statements. For example,
the statement

WRITE(9)(VECTOR(I),I=1,55)

writes one record, containing the values of VECTOR(l) through VECTOR(55),
to the file connected to unit 9.

8.2 LIST-DIRECTED I/O

List-directed I/O allows data editing to be performed according to the
type of the list item instead of by a format identifier. List-directed
records consist of values and value separators. Each value is either a
constant, a null value, or one of the following forms.

Format:

r

r*c
r*

Unsigned, nonzero, integer constant

The r*c form is equivalent to r successive appearances of the constant
c. The r* form is equivalent to r successive null values. Neither of
these forms can contain embedded blanks, except where permitted within
the constant c.

Value separators can have one of the following forms.

• A comma optionally preceded and followed by one or more contiguous
blanks

• A slash optionally preceded and followed by one or more contiguous
blanks

SR-0009 8-2 L

• One or more contiguous blanks between two constants or following
the last constant

8.2.1 LIST-DIRECTED INPUT

The form of a list-directed input value must be acceptable for the type
of the input list item. Blanks cannot be used as zeros. Embedded blanks
are permitted only in complex ~onstants and character constants.

Type real or double-precision list items must be numeric and suitable for
F editing.

A type complex list item consists of an ordered pair of numeric fields
separated by a comma and enclosed in parentheses. The first numeric
field is the real portion of the complex constant; the second numeric
field is the imaginary portion. An end-of-record can occur between the
real portion and the comma or between the comma and the imaginary
portion. Each numeric field can be preceded or followed by blanks.

A list item of type logical must not include either slashes or commas
among the optional characters permitted for L editing.

A type character list item has an input form with a nonempty string of
characters enclosed in apostrophes. Each apostrophe in a character
constant must be represented by two consecutive apostrophes without a
blank or end-of-record. Character constants can be continued from the
end of one record to the beginning of the next record. The end of the
record does not cause a blank or any other character to become part of
the constant. The constant can be continued on to as many records as
needed. A blank, comma, and slash can appear in character constants.

For example, if len is the list item length, w is the character
constant length and len is less than or equal to w, the leftmost
len characters of the constant are transmitted to the list item. If
len is greater than w, the constant is transmitted to the leftmost
w characters of the list item and the remaining len-w characters of
the list item are filled with blanks. The effect is as if the constant
were assigned to the list item in a character assignment statement.

A null value has no characters before or between value separators. A
null value has no effect on the definition status of the corresponding
input list item. A single null value can represent an entire complex
constant but it cannot be used as either the imaginary or the real
portion alone. The end of a record following any other separator, with
or without separating blanks, does not specify a null value.

A slash encountered as a value separator during execution of a
list-directed input statement terminates execution of that input
statement after the assignment of the previous value. If additional
items are present in the input list, the effect is as if null values had
been supplied for them.

SR-0009 8-3 L

All blanks in a list-directed input record are considered to be part of
some value separator except for the following.

• Embedded blanks surrounding the real or imaginary portion of a
complex constant

• Leading blanks in the first record read, unless immediately
followed by a slash or comma

8.2.2 LIST-DIRECTED OUTPUT

The form of the values produced is the same as that required for input,
except as noted otherwise. The values are separated by one of the
following.

• One or more blanks

• A comma optionally preceded and followed by one or more blanks

New records begin as necessary but, except for complex and character
constants, the end of a record does not occur within a constant and
blanks do not appear within a constant.

Logical output constants are T for the value true and F for the value
false.

Integer output constants are produced with the effect of an Iw edit
descriptor, for some value of w.

Real and double-precision constants are produced with the effect of
either an F edit descriptor or an E edit descriptor, depending on the
magnitude x of the value and a range lO**-24661x{lO**2466. If
the magnitude x is within this range, the constant is produced with
OPFw.d; otherwise, IPEw.dEe is used. Reasonable values of w,
d, and e are used for each of the cases involved.

Complex constants are enclosed in parentheses, with a comma separating
the real and imaginary portions. If two or more successive values in an
output record have identical values, a repeated constant of the form
r*c is produced instead of the sequence of identical values.

Character constants are not delimited by apostrophes and are not preceded
or followed by a value separator. Each internal apostrophe in a
character constant is represented externally by one apostrophe.
Character constants have a blank character inserted by the processor for
carriage control at the beginning of any record that begins with the
continuation of a character constant from the preceding record.

SR-0009 8-4 L

Slashes as value separators and null values are not produced by
list-directed formatting.

Each output record begins with a blank character for carriage control
when the record is printed.

A format specification provides explicit editing information to direct
the editing of data between its internal representation and the
corresponding character strings required. Format specifications can be
given in FORMAT statements, or as values of character arrays, character
variables, or other character expressions.

A format identifier that is a statement label must be the label of a
FORMAT statement in the same program unit. The format specification
contained in that FORMAT statement is applied when the formatted IIO or
assignment statement is executed.

A format specification begins with a left parenthesis and ends with a
right parenthesis. A complete format specification can contain another
complete format specification. Nesting of this type can be carried to
nine levels. Character data following the right parenthesis of a
complete format specification is ignored only when the specification is
contained in an array.

8.3 FORMAT STATEMENTS

The FORMAT statement is p nonexecutable statement that specifies the
formatting of data to be read or written with formatted I/O.

Format:

label FORMAT flist

label

flist

Statement label (required)

List of items, each having one of the following forms:

ned
[r]ed
[r](flist)

ned Nonrepeatable edit descriptor

ed Repeatable edit descriptor

r Nonzero, unsigned integer constant called a repeat
specification; if not specified, a value of 1 is assumed.

SR-0009 8-5 L

Commas can separate list items in flist but are required only under the
following conditions.

• Between two adjacent digits where each belongs to different list,
items

• Between two adjacent apostrophe or quotation mark delimiters of
separate edit descriptors

• After a D, E, or G specification that precedes an E specification

The ANSI FORTRAN Standard does not provide for the optional use of commas
except before and after the slash or the colon edit descriptor or between
a P edit descriptor and an immediately following F, E, D, or G edit
descriptor.

Examples:

1999 FORMAT ('F',5X,6F6.2)

1234 FORMAT ('ABCI23',2X,"=",DI5.5,2X,I6)

8.4 EDIT DESCRIPTORS

Edit descriptors specify the form of a record and direct the editing
between characters in a record and their corresponding internal
representation.

An edit descriptor is either a repeatable edit descriptor, ed, or a
nonrepeatable edit descriptor, ned. Table 8-1 summarizes the format
and function of the repeatable edit descriptors; table 8-2 summarizes the
format and function of the nonrepeatable edit descriptors.

SR-0009 8-6 L

Data Type

Alphanumeric

Boolean

Table 8-1. Repeatable Edit Descriptors

Edit
Descriptor Descriptor

A Character with Qata-dependent length

Aw

Ow

Ow.m

Rw

Zw

Character with specified length

Octal integer

Octal integer with leading zeros and
minimum number of digits

Boolean conversion

Hexadecimal integer

Zw.m Hexadecimal integer with leading zeros
and minimum number of digits

Logical Lw

Numeric Ow.d

Ew.d

Ew.dEe

Fw.d

Logical

Double-precision floating-point with
exponent

Single-precision floating-point with
exponent

Single-precision floating-point with
specified exponent length

Single-precision floating-point
without exponent

w Field width in number of character positions in the external record.
This width includes leading blanks, + or·- signs, decimal point, and
exponent.

d Number of digits to the right of the decimal point within the field.
On output all numbers are rounded.

e Number of digits in the exponent; must not be greater than 6.

m Minimum number of digits to be output.

SR-0009 8-7 L

Table 8-1. Repeatabie Edit Descriptors (continued)

Data Type

Numeric
(continued)

Edit
Descriptor Descriptor

Gw.d Single-precision floating-point with
or without exponent

Gw.dEe

Iw

Iw.m

Single-precision floating-point with
or without exponent of specified
length

Decimal integer

Decimal integer with minimum number
of digits

w Field width in number of character positions in the external record.
This width includes leading blanks, + or - signs, decimal point, and
exponent.

d Number of digits to the right of the decimal point within the field.
On output all numbers are rounded.

e Number of digits in the exponent; must not be greater than 6.

m Minimum number of digits to be output.

Table 8-2. Nonrepeatable Edit Descriptors

Edit
Data Type Descriptor Descriptor

Blank Control BN Blanks ignored

BZ Blanks treated as zeros

Character Output " Output character string

Output character string

Format Control Terminate format control

k Integer constant scale factor

n Positive nonzero integer

SR-0009 8-8 L

Table 8-2. Nonrepeatable Edit Descriptors (continued)

Edit
Data Type Descriptor Descriptor

Hollerith Data nH Output Hollerith string

Position Control Tn Position forward or backward

TRn Position forward

TLn Position backward

nX Position forward

$ Suppress carriage control

k Integer constant scale factor

n Positive nonzero integer

Table 8-3 describes the correct usage of the CFT edit descriptors with
data types. An * indicates legal usage for input and output. A +
indicates legal usage for output. A - indicates illegal usage.

Table 8-3. Edit Descriptors with Data Types

Edit Descriptors

Data Types I F E D G L A 0 Z R

Character *
Complex * * * * * * * *
Double-precision * * * * +

Integer * * * * *
Logical * * * *
Real * * * * * * * *

SR-0009 8-9 L

Format restrictions for integer, logical, and real variables can be
lifted using SEGLDR and its EQUIV directive. To change the limitations
for read and write operations, specify EQUIV=$RNOCHK($RCHK) or
EQUIV=$WNOCHK($WCHK), respectively. Both of these EQUIV statements must
be specified if changes are desired. Table 8-4 describes the edit
descriptors and data types when SEGLDR and the EQUIV directive is used.
An * indicates legal usage for input and output. A - indicates illegal
usage.

Table 8-4. Edit Descriptors and Data Types When SEGLDR and the
EQUIV Directive Are Used

Edit Descriptors

Data Types I F E D G L A 0 Z R

Integer * * * * * * * * *

Logical * * * * * * * * *

Real * * * * * * * * * *

8.4.1 INTERACTION BETWEEN I/O LISTS AND FORMAT SPECIFICATIONS

The beginning of execution of a formatted I/O statement initiates format
control. Each action of format control depends on information from the
next edit descriptor provided by the format specification, and the next
item in the I/O list, if one exists.

If a statement has an I/O list, at least one repeatable edit descriptor
must exist in the format specification.

An empty format specification of the form () can be used unless
contained within another format specification. An empty format
specification causes one input or internal record to be skipped or one
output or internal record containing no characters to be written. No I/O
list items can correspond to an empty format specification.

Except for repeated edit descriptors and embedded format specifications,
a format specification is interpreted from left to right.

An embedded format specification or edit descriptor preceded by an r is
processed as a list of r format specifications or edit descriptors. An
omitted repeat specification is treated the same as a repeat
specification with a value of 1.

SR-0009 8-10 L

Each repeatable edit descriptor interpreted in a format specification
corresponds to one item specified by the I/O list, except that an item of
type complex requires the interpretation of two F, E, 0, G, A, or R edit
descriptors. An I/O list contains no items corresponding to
nonrepeatable edit descriptors.

When format control encounters a repeatable edit descriptor, it
determines whether the I/O list has specified a corresponding item. If
it has, format control transmits appropriately edited information between
the item and the record, then proceeds. If no corresponding item exists,
format control terminates.

Format control also terminates if the rightmost parenthesis of a complete
format specification is encountered and no additional I/O list items are
specified. If another list item is specified, the file is positioned to
the next record and format control reverts to the beginning of that
format specification terminated by the next-to-last right parenthesis.
If there is none, format control reverts to the first left parenthesis of
the complete format specification. If reversion occurs, the reused
portion of the format specification must contain at least one repeatable
edit descriptor. If format control reverts to a parenthesis that is
immediately preceded by a repeat specification, the repeat specification
is reused. Reversion of format control, of itself, has no effect on the
scale factor (see P editing) or on S, SP, SS., BN, or BZ.

Examples:

In the following examples, the t indicates the reversion point if list
items remain when format control encounters the closing parenthesis.

1 FORMAT(10FI0.3,IPE20.6)
t

2 FORMAT(10FI0.3,(IPE20.6»
t

3 FORMAT(II0,3(I5,2(I5,I7),3(Ll,L2),I7»
t

4 FORMAT(I5,2(I4,I6),3(Il,I2»
t

8.4.2 POSITIONING BY FORMAT CONTROL

If a T or X edit descriptor is the first edit descriptor encountered
after format control is initiated, the action of the descriptor causes
the next record to become the current record.

SR-0009 8-11 L

After the processing of each repeatable edit descriptor or an H,
apostrophe, or quotation mark edit descriptor, the file is positioned
after the last character read or written in the current record.

After a T, TL, TR, X, slash, or colon edit descriptor is processed, the
file is positioned as separately described for each.

If format control reverts, the file is positioned in the same manner as
when a slash edit descriptor is processed.

After a read operation, any unprocessed characters of the record read are
skipped.

When format control terminates, the file is positioned after the current
record.

8.4.3 APOSTROPHE AND QUOTATION MARK EDITING

An apostrophe or quotation mark edit descriptor has the form of a
character constant and causes characters to be written from the delimited
characters (including blanks) of the edit descriptor itself. These edit
descriptors apply only to output. The width of the field is the number
of characters contained between (but not including) the delimiting
quotation marks or apostrophes. Within the field, two adjacent
apostrophes or quotation marks are counted as one and not as members of a
delimiting apostrophe or quotation mark character pair, respectively.

The ANSI FORTRAN Standard does not provide for quotation mark editing.

Example:

Execution of -

WRITE(6,13)
13 FORMAT(' ISN' 'T "." BETTER' ," THAN ""H""", 'IS')

results in the printing of -

ISN'T "." BETTER THAN "H" IS

8.4.4 H EDITING

The nH edit descriptor causes character information to be written from
the n characters (including blanks) following the H of the edit
descriptor. An H edit descriptor can be used only for output.

SR-0009 8-12 L

Examples:

PRINT 22

22 FORMAT(27H ABCDEFGHIJKLMNOPQRSTUVWXYZ,10H1234S67890)

WRITE(41,16)

16 FORMAT(' LABEL',SH UNIT,' 41')

8.4.5 POSITIONAL EDITING (T, TL, TR, AND X)

The T, TL, TR, and X descriptors specify the position where the next
character will be transmitted to or from the record.

An X edit descriptor specifies a position relative to the current
position.

T edit' descriptors can specify a character position in either direction
from the current position. This allows portions of a record to be read
more than once, possibly with different editing.

T or X edit descriptors can replace a character that is already in the
record. During transmission to the record, undefined positions are
filled with blanks. The result is as if the entire record were initially
filled with blank characters. On output, an X descriptor that specifies
a move to position c causes the length of the record to be at least
c-l characters. T edit descriptors by themselves do not affect the
length of an output record. Positions beyond the last character of the
record can be specified if no characters are to be transmitted from such
positions.

8.4.5.1 T, TL, and TR editing

The Tc edit descriptor indicates the transmission of the next character
to or from a record is to occur at the cth character position.

The TLc edit descriptor indicates the transmission of the next
character is to occur at the character position c characters backward
from the current position. If the current position is less than or equal
to position c, the transmission of the next character occurs at
position 1 of the current record.

The TRc edit descriptor indicates the transmission of the next
character is to occur at the character position c characters forward
from the current position.

SR-0009 8-13 L

8.4.5.2 X editing

During transmission from a record, the nx edit descriptor causes the
skipping of n character positions following and including the current
character position. During transmission to a record, blank characters
are placed into n character positions beginning with the current
character position. In both cases; the record becomes positioned to the
first character following the last character processed.

Example:

Execution of -

PRINT 12345
12345 FORMAT(lX,'ONE',16X,'FIVE',T6,'TWO',7X,4HFOUR,T10,'T','HR','E',lHE)

Results in the printing of -

Position:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Content:
ONE TWO T H R E E F 0 U R F I V E

The first output character controls vertical spacing. Although this
character is not printed, it must be included in the edit descriptor
character count. For example, (T6) in the above example represents the
position of the fifth character to be printed.

8.4.6 SLASH EDITING

The slash edit descriptor indicates the end of a record. During
transmission from a file, the remaining portion of any current record is
skipped and the file is positioned at the beginning of the next record.
If no current record exists, the file is positioned after the next
record. During transmission to a file, an empty record is written as the
last record of the file. Thus, an empty record can be written on output
and an entire record can be skipped on input.

Slash edit descriptor processing of adjacent records can be specified by
the appearance of as many consecutive slashes (optionally separated by
commas) or by preceding a single slash with a n value equal to the
number of records to be processed.

The ANSI FORTRAN Standard does not provide for a repeat count for slash
editing.

SR-0009 8-14 L

Examples:

PRINT 39

39 FORMAT('lLINE 1',/,' LINE 2'/' LINE 3'///7H LINE 6)

READ(99,42) RECORD3

42 FORMAT(2/, •••)

8.4.7 COLON EDITING

The colon prevents the printing of some or all text information by a
format that is used with a varying number of list items. When
encountered in a format specification, a colon edit descriptor terminates
the formatted transfer of data if no I/O list items remain to be
processed. If unprocessed I/O list items remain, the colon edit
descriptor has no effect on format control. Termination of format
control by a colon edit descriptor causes the record being processed to
become the preceding record.

Example:

Execution of

PRINT 10,X
10 FORMAT(' X= 'F10.S,' y= 'F10.S)

results in the printing of

X= 1234.56789 Y=.

Whereas execution of

PRINT 20,X
20 FORMAT(' X= 'F10.S,:' Y= 'F10.S)

results in the printing of

X= 1234.56789.

8.4.8 DOLLAR SIGN EDITING (eFT EXTENSION)

The dollar sign character ($) in a format specification modifies the
carriage control specified by the first character of the record. In an
output statement, the $ descriptor suppresses the carriage return/line

SR-0009 8-15 L

feed. In an input statement, the $ descriptor is ignored. The $
descriptor is intended primarily for interactive I/O; it leaves the
terminal print position at the end of the text (instead of returning it
to the left margin), so a typed response follows the output on the same
line.

Example:

Execution of

WRITE (6,100)
100 FORMAT('WHAT IS YOUR NAME?',$)

READ (5,105)
105 FORMAT (4A8)

Results in the printing of

WHAT IS YOUR NAME?

The response (in this example, HARRY) can go on the same line

WHAT IS YOUR NAME? HARRY

8.4.9 P EDITING

A scale factor is specified by a P edit descriptor of the form kP,
where k is an optionally signed integer constant called the scale
factor. kp represents 10k as a multiplier.

The scale factor is 0 at the beginning of each IIO statement. It applies
to all subsequently interpreted F, E, D, and G edit descriptors until
another scale factor is encountered and established. Note that reversion
of format control does not affect the established scale factor.

The scale factor, k, affects editing in the following manner.

• With F, E, 0, and G input editing (provided that no exponent
exists in the field) and with F output editing, the scale
factor causes the externally represented number to correspond
to the internally represented number multiplied by 10 to the
kth power.

• On input with F, E, 0, and G editing, the scale factor has no
effect if there is an exponent in the field.

• On output with E and D editing, the basic real constant part of
the quantity to be produced' is multiplied by the kth power of
10 and the exponent is reduced by k.

SR-0009 8-16 L

• On output with G editing, the effect of the scale factor is
suspended unless the magnitude of the data to be edited requires
the use of E editing. In this case, the sc~le factor has the same
effect as with E output editing.

Examples:

field 9876.54 98.7654E2 9876.54 987.654 .8647860-4 86.4786E2

FORMAT
statement FORMAT (2PF8.3, -2PE9.4, F9.4, OPG9.4, 09.4, -2PE9.4

Internal
representation 98.7654 9876.54 987654. 987.654 .0000864786 8647.86

Internal
representation 9.87654 9876.54 9876.54 987.654 864.786 8647.86

FORMAT
statement FORMAT (2PF12.2, -2PE12.4, F12.4, 1PG12.2, 012.4, -2PE12.4

Output
field 987.65 .0099E+06 98.7654. 9.88E+02 8.6479D+02 .OO86E+06

131.:1-1) ,

The scale factor k control decimal normalization. If -d{k{O, there
are Ikl leading zeros and d-Ikl significant digits after the
decimal point. If 0{k{(d+2), there are k significant digits to
the left of the decimal point and d-k+1 significant digits to the
right of the decimal point. Other values of k are not permitted.

8.4.10 NUMERIC EDITING (BN, BZ, S, SP, SS, I, F, E, D, AND G)

Numeric editing specifies I/O editing of integer, real, double-precision,
and complex data. The following general rules apply.

• On input, leading blanks are not significant. Plus signs can be
omitted. A field of all blanks has the value O.

• On input with F, E, D, and G editing, a decimal point appearing in
the input field overrides that portion of an edit descriptor
specifying the decimal point location. The input field can have
more digits than are used in approximating the valueo-f the data.
The excess digits are used to round to the approximation but are
otherwise discarded.

SR-0009 8-17 L

)

• On output, a positive or zero internal value in the field is
prefixed with blank characters except as described below for 5,
SP, and 55 editing. A negative internal value in the field is
prefixed with blank characters followed by a minus sign.

• On output, the representation is right-justified in the field.

If the number of characters produced by the editing is smaller
than the field width, leading blanks are inserted in the field.

• On output, if the number of characters exceeds the field width,
the entire field is filled with asterisks.

8.4.10.1 BN and BZ editing

The BN and BZ edit descriptors specify the interpretation of blanks other
than leading blanks. BN and BZ affect input fields only.

The BN edit descriptor causes blanks to be ignored. Ignoring blanks has
the effect of removing blanks, right-justifying the rema1n1ng portion of
the field, and replacing the removed blanks as leading blanks. A field
of all blanks has the value O.

The BZ edit descriptor causes all blank characters to be treated as
zeros. The initial interpretation of blanks in numeric input fields
depends on the value of the BLANK= identifier when the unit was opened.
NULL (BN) is the default.

8.4.10.2 S, SP, and SS editing

The S, SP, and SS edit descriptors control plus signs in numeric output
fields. Normally, the compiler suppresses plus signs. The SP edit
descriptor causes plus signs to be produced on numeric output fields
until either an S or an SS edit descriptor is encountered. The S5 edit
descriptor specifies suppression of plus signs; the 5 edit descriptor
restores the normal compiler option, which, in this case, is also the
suppression of plus signs.

8.4.10.3 Integer editing

The Iw and Iw.m edit descriptors indicate that the field to be edited
occupies w positions. The specified IIO list item must be of type
integer. On input, the specified list item becomes defined with an
integer datum. On output, the specified list item must be defined with
an integer datum.

SR-0009 8-18 L

In the input field, the character string must be in the form of an
optionally signed integer constant. Leading blanks in the input field
are ignored. The Iw.m edit descriptor is treated identically to the
Iw edit descriptor.

The output field for the Iw edit descriptor consists of zero or more
leading blanks followed by a minus if the value of the internal datum is
negative, followed by the magnitude of the internal value in the form of
an unsigned integer constant without leading zeros. If the value (plus
the possible minus sign) exceeds w digits, the field is filled with
asterisks.

If the Iw.m edit descriptor is used on output, the unsigned, integer
constant consists of at least m digits and, if necessary, has leading
zeros. The value of m must not exceed the value of w. If m is 0
and the value of the internal datum is 0, the output field consists of
only blank characters.

Example:

Execution of -

READ 20,I,J,K
20 FORMAT(I2,IS,I3)

with an input line of -

1Sbb-10bb

followed by -

PRINT 10,I,J,K
10 FORMAT(IS,I3,I4)

yields -

bbb15-10bbbO.

Where b indicates a blank character.

8.4.10.4 F editing

The Fw.d edit descriptor indicates that the field occupies w
positions, the fractional part of which consists of d digits.

SR-0009 8-19 L

The input field consists of an optional ~ign followed by a string of
digits optionally containing a decimal point. This basic form can be
followed by an exponent of 10 having one of the following forms.

• Signed integer constant

• E followed by an optionally signed integer constant

• D followed by an optionally signed integer constant

An exponent containing a D is processed identically to an exponent
containing an E.

The output field consists of blanks, if necessary, followed by a minus
sign if the internal value is negative, followed by a string of digits
that contains a decimal point. This string of digits represents the
magnitude of the internal value. This representation is modified by
the established scale factor and is rounded to d fractional digits.
If the output field value is less than 1, a single 0 is written
immediately to the left of the decimal point, space permitting. If
the output field value is 0 and d is 0, a single 0 is written. In
no other cases are leading zeros written. If the value is too large
to print in the specified field, the field is filled with asterisks.
If the value is an out-of-range floating-point value, a single R is
printed, right-justified in the field.

Examples:

Input Field Positions F Edit Internal
1 2 3 4 5 6 1 8 9 10 Descriptor Representation

1 7 7 6 1 9 7 6 F9.4 1776.1976

1 7 7 6 1 9 7 6 F10.4 -1776.1976

1 7 7 6 1 9 7 6 F9.4 -1776.197

1 9 7 7 F4.0 1977.

1 9 7 7 F4.4 .1977

1 9 7 7 F2.0 19.

1 4 9 2 E 3 FB.O -1.492

6 0 2 3 D 2 3 FB.3 602300000000000000000000.

The ANSI FORTRAN Standard does not specify outp~t editing for values too
large to be printed in the specified field.

SR-0009 B-20 L

Internal F Edit Output Field Positions
Representation Descriptor 1 2 3 4 5 6 7 8 9 10

3.1415926 F10.5 3 1 4 1 5 9

-3.1415926 F7.4 3 1 4 1 6

747 F4.0 7 4 7

0 F8.6 0 0 0 0 0 0 0

0 F8.5 0 0 0 0 0 0

0 F7.6 0 0 0 0 0 0

8.4.10.5 E editing

The Ew.d and Ew.dEe edit descriptors indicate that the external
field occupies w positions. The fractional portion consists of d
digits unless the scale factor is greater than 1. The exponent portion
consists of e digits. e has no effect on input. If the value is an
out-of-range floating-point value, a single R is printed, right-justified
in the field.

The format of the input field is the same as for F editing.

The format of the output field for a scale factor of 0 is

where Xd
are the d most significant digits of the rounded
data, and

exp is a decimal exponent of one of the following forms.

SR-0009 8-21 L

Edit Absolute Value Output Form
Descriptor of Exponent of Exponent

Ew.d exp = 0 E+OO

Ew.d 0<lexpl.s.,99 E.:tY1Y2

Ew.d 100.s.,lexpl.s.,999 .:tY1Y2Y3

Ew.d 1000.s.,lexpl.s.,2466 .:tY1Y2Y3Y4

Ew.dEe expl«lO**e)-lt E.:tY1Y2Y3···Ye

t If e is greater than the number of digits
necessary to express exp, leading zeros are
inserted.

An lexpl21000 value causes the entire field to be shifted left one
position to provide for Y4. If space has not been provided, the
entire field is replaced with asterisks.

The value of w must be greater than d+5 for output.

Examples:

Input Field Positions E Edit Internal
1 2 3 4 5 6 7 8 9 10 11 12 Descriptor Representation

+ 1 0 4 8 5 7 5 7 5 E11.2 1048575.75

1 0 4 8 5 7 5 7 5 E11.0 -1048575.75

3 8 E11.11 .00000000038

1 5 9 2 E 3 E12.3 1592.

6 5 5 3 6 E 5 E8.3 .00065536

6 5 5 3 6 E 5 E9.3 .65536

3 2 7 6 8 0 0 4 E10.3 -327680.

SR-0009 8-22 L

Internal E Edit Output Field Positions
Representation Descriptor 1 2 3 4 5 6 1 8 9 10 11

365.26 E10.2 0 3 1 E + 0 3

-365.26 E11.5 3 6 5 2 6 E + 0 3

.000000099 E11.3 0 9 9 0 E 0 1

100. E11.2E1 1 0 E + 3

100. E11.2E4 1 0 E + 0 0 0 3

8.4.10.6 D (double-precision) editing

D editing is identical to E editing.

8.4.10.1 G editing

The Gw.d and GW.dEe edit descriptors indicate that the field
occupies w positions with d significant digits, and contains an
exponent of e digits.

G input editing is the same as F input editing.

Representation in the output field depends on the mag.nitude of the data
being edited. If N is the magnitude of the internal data, its value
determines the editing as follows.

Magnitude of Data Equivalent Edit Descriptors

O.l<N<l F(w-4) .d,4X

F(w-4). (d-1),4X

F(w-4).l,4X

F(w-4).O,4X

N<O.l or N>10d kP,Ew.d

SR-0009 8-23 L

where k is the scale factor in effect. The scale factor is effective
only if the magnitude of the data exceeds the range for effective F
editing.

The value of w must be greater than d+5 for output.

Examples:

Input Field Positions G Edit Internal
1 2 3 4 5 6 1 8 9 10 11 12 Descriptor Representation

6 2 9 G5.1 6290.

6 2 9 0 0 0 0 G10.2 -.629

+ 8 7 8 4 9 2 1 G9.4 878.4921

4 7 2 1 0 E 2 G12.1 47.21

7 2 D 1 0 G5.0 720000000000.

Internal G Edit Outp~t Field Positions
Representation Descriptor 1 2 3 4 5 6 7 8 9 10 11 12

-324.876 G12.6 3 2 4 8 7 6

.487295343397 G10.5 4 8 1 3 0

-72.59 G10.3 7 2 6

.000000000019 G12.2 1 9 E 1 0

.000000000019 G9.1 2 E 1 0

10000. G12.2 1 0 E + 0 5

10000.01 G12.2 1 0 E + 0 5

10000. G12.2E1 1 0 E + 5

10000. G12.2E4 1 0 E + 0 0 0 5

SR-0009 8-24 L

8.4.11 COMPLEX EDITING

Complex data consists of a pair of separate real data. Data editing must
be specified by two successively interpreted A, D, E, F, G, 0, R, or Z
edit descriptors. The first of the edit descriptors specifies editing
for the real part; the second for the imaginary part. The two edit
descriptors can differ. Nonrepeatable edit descriptors can appear
between two successive A, D, E, F, G, 0, R, or Z edit descriptors.

8.4.12 a (OCTAL) EDITING (eFT EXTENSION)

The Ow edit descriptor indicates the processing of an input list item
of type integer, real, complex, Boolean, or logical and a field width of
w positions. A double-precision list item can be used with an Ow
descriptor for output only.

On input, the field contains a string of from 0 to 22 octal digits or
blanks, representing a binary value to be stored into the list item.
This value is right-justified in the list item if fewer than 22 octal
digits are contained in the field. Unspecified bit positions are cleared
to O. A blank field is considered to be a field containing all zeros.
If the first nonblank character in the field is a minus, the ones
complement of the value is stored.

On output, the internal representation of the list item is converted to
octal and the rightmost W octal digits are right-justified in the field.

If the list item is not of type double-precision and the field is larger
than 22 positions, the output contains leading blank characters. If the
list item is of type double-precision and W is greater than 45, the
output contains leading blank characters. If w is greater than 22, a
blank character occupies position (w-22) in the output field. This
character indicates the beginning of the double-precision portion. To
completely output a double-precision value, the value of w must be at
least 45.

8.4.13 Z (HEXADECIMAL) EDITING (CFT EXTENSION)

The Zw edit descriptor indicates processing of a list item of type
integer, real, complex, Boolean, or logical and a field width of w
positions.

On input, the field contains a string of from 0 to 16 hexadecimal
characters representing a zero or positive integral value (in the base-16
number system) to be stored into the list item. This value is
right-justified in the list item if fewer than 16 hexadecimal characters

SR-0009 8-25 L

are contained in the field; leading zeros are assumed. A blank field is
assumed to be a field of all zeros. If the first nonblank character in
the field is a minus, the ones complement of the value is stored.

On output, the internal representation of the list item is converted to a
zero or positive hexadecimal value and the rightmost w digits are
right-justified in the field. If the field is larger than 16 positions,
leading blank characters are output.

8.4.14 L (LOGICAL) EDITING

The Lw edit descriptor indicates processing of a logical list item and
an input or output field width of w positions. The specified I/O list
item must be of type logical. On input, the list item becomes defined
with logical data. On output, the list item must be defined with logical
data.

The input field consists of a T for true or an F for false, optionally
followed by additional characters. The field can contain a leading
period or leading blanks.

The output field consists of w-l blanks followed by a T or F, depending
on the value of the internal data.

Examples:

Input Field Positions L"Edit Internal
1 2 3 4 5 6 7 8 9 10 11 12 Descriptor Representation

T Ll (true)

T R U E L4 (true)

F L3 (false)

F A L S E L12 (false)

T 1 2 3 L7 (true)

F A B C L9 (false)

T L12 (true)

F L12 (false)

SR-0009 8-26 L

Internal L Edit Output Field Positions
Representation Descriptor 1 2 3 4 5 6 7 8 9 10 11 12

(true) L6 T

(false) L12 F

(true) L10 T

(false) L1 F

(true) L1 T

(false) L3 F

8.4.15 A (ALPHANUMERIC) EDITING

The A[W] edit descriptor is used with an I/O list item of type
character, logical, integer, real, or complex. w specifies the field
width. If w is not specified, the I/O list item must be of type
character, in which case the number of characters in the field is the
length of the character I/O list item. On input, the input list item
becomes defined with character data. On output, the output list item
must be defined with character data. Integer, real, and logical I/O list
items can contain up to eight characters; complex, up to 16. w
specifies a field of one to eight characters for list items not of type
character.

len is the length of the character list item. If the specified field
width for A input is greater than or equal to eight for noncharacter
variables or greater than or equal to len for character list items, the
rightmost eight or len characters of the input field form the internal
representation. If the specified field width is less than eight or less
than len in the case of character list items, the characters from the
input field are left-justified with 8-w or len-w trailing blank
characters added to form the internal representation.

If the specified field width for A output is greater than eight for
noncharacter variables or greater than len for character list items,
the output field consists of w-8 or w-len blanks followed by the
characters from the internal representation. If the specified field
width is less than or equal to eight (or less than or equal to len for
type character), the output field consists of the leftmost w characters
from the internal representation.

SR-0009 8-27 L

Input/output list items of type complex can contain up to 16 characters
in two storage units (computer words). Two A edit descriptors are
required to store a complex variable. In this case, each is applied to a
single I/O list item; the first to the first storage unit, the second to
the second storage unit.

The ANSI FORTRAN Standard does not provide for the use of A with
noncharacter list items.

Examples:

Input Field Positions Item A Edit Internal
1 2 3 4 5 6 7 8 9 10 11 12 Type Descriptor(s) Representation

A B C D E F G H I J K L Integer A8 'ABCDEFGH'

I N D E X 6 Complex A8,A3 ·INDEX ••••• 6·

R T C Integer A3 'RTC

A B C D E F G H I Character*6 A 'ABCDEF

Internal Item A Edit Output Field Positions
Representation Type Descriptor 1 2 3 4 5 6 1 8 9

8HABCDEFGH Integer A8 A B C D E F G H

8HABCDEFGH Real A9 A B C D E F G H

8HA-FORMAT Integer A3 A F

'ABC' Character A A B C

'ABC' Character Al A

'ABC' Character A4 A B C

8.4.16 R (RIGHT-JUSTIFIED) EDITING (CFT EXTENSION)

The Rw edit descriptor is used with an I/O list item of type logical,
integer, real, or complex. On input, the input list item becomes defined
with w characters of character data. On output, the output list item

SR-0009 8-28 L

must be defined with W characters. RW edit descriptor actions are
identical to those of the Aw edit descriptor with the following two
exceptions.

• Characters in an incompletely filled input list item are
right-justified with the remainder of that list item containing
binary zeros.

• Partial output of an output list item is from its rightmost
character positions.

Examples:

Input Field Positions R Edit Internal
1 2 3 4 5 6 7 8 9 10 11 12

Item
Type Descriptor Representation

ABC D E F G H I J K L Integer

R T C

Internal
Representation

'ABCDEFGH'

'ABCDEFGH'

'A-FORMAT'

SR-0009

Item
Type

Integer

Real

Integer

Integer
(Where #

R Edit
Descriptor 1

R8 A

R9

R6 F

8-29

R8 'ABCDEFGH'

R3 '#####RTC'
is a null (0) character)

Output Field Positions
2 3 4 5 6 7 8 9

B C D E F G H

A B C D E F G H

0 R M A T

L

9. CRAY FORTRAN PROGRAMMING

The Cray FORTRAN Compiler (CFT) produces Cray machine language
instructions from FORTRAN language statements with run-time efficiency as
a prime objective. Its operations include the following.

• Providing the most effective instruction sequence for each FORTRAN
statement compiled

• Making full use of all Cray Computer System capabilities and
techniques, enhancing execution speed

CFT is particularly effective in compiling statements describing vector
processing. When properly applied, vector processing affords dramatic
decreases in computation time over equivalent scalar processing methods.
The Cray FORTRAN programming techniques are described in this section
with emphasis on vector processing.

9.1 VECTORIZABLE DO LOOPS

CFT analyzes the innermost DO loops of the FORTRAN programs, it compiles
to determine whether vector processing methods can be applied to improve
overall program efficiency. If such efficiency can be improved, CFT
produces a sequence of code containing vector instructions to drive the
high-speed vector and floating-point functional units and the eight
vector registers in their specified operation. This feature of CFT is
automatically activated through compiler analysis of statements contained
in certain DO loops without special notation on the part of the
programmer. No special provisions are required that would encumber the
programmer or affect the transportability of the programs. However, CFT
does provide utility procedures that can enhance vectorization. (See the
vectorization utilities in appendix C.)

9.1.1 QUALIFICATIONS FOR VECTORIZATION

Not all DO loops are vectorizable. In determining the qualifications of
a loop for vectorization, CFT examines each statement and its
relationship to others in that DO-loop range. The Cray FORTRAN
programmer can enhance program performance by avoiding certain constructs
inhibiting DO-loop vectorization.

SR-0009 9-1 L

To be vectorized, a DO loop must manipulate or perform calculations on
the contents of one or more arrays and not have certain constructions
that inhibit vectorization. Conditions inhibiting vectorization are:

• CALL statements
• IIO statements
• Inner DO loops
• Backward branches within the loop
• Statement numbers with references from outside the loop
• References to character variables, arrays, or functions
• IF statements which may not execute due to the effects of previous

IF statements
• ELSEIF statements
• External function references not declared on a CDIR$ VFUNCTION

directive
• RETURN, STOP, and PAUSE statements
• NOVECTOR and BLOCK compiler directives
• Bounds checking on any array referenced in the loop
• Specifying the DEBUG option
• Loop size exceeds the optimized MAXBLOCK size
• Loop has been unrolled or replaced by a $SCILIB routine

IF statements of the form

IF(variable1 .rop. eXP1) variable1 = eXP1
IF(exP2 .rop. variable2) variable2 = eXP2

where variable1 and variable2 are variables, eXPl and
eXP2 are expressions of the same type, and .rop. is .GT., .GE.,
.LT., or .LE. are compiled as if written as

variable = MAX (variable, exp), or
variable = MIN (variable, exp).

See section 1 for the conditions under which IF statements of the form

IF(logical exp)var=expression

are compiled as conditional vector merges.

Blocks executed conditionally on the outcome of an IF statement are
vectorized with a compressed index (see the description of compressed
index references in this section).

9.1.2 ENTITY CATEGORIES

Loop analysis is performed to determine if all defined or referenced
entities in the DO-loop range are in one of the following categories.

SR-0009 9-2 L

• Invariant - Constant or variable referenced but not redefined in
the course of a DO loop

• Invariant expression - Arithmetic expression only with invariants

• Invariant array element - An array element where all subscript
expressions are invariant expressions

• Constant increment variable (CIV) - A variable of type INTEGER,
REAL, DOUBLE PRECISION, or COMPLEX that is incremented or
decremented once during each pass through a DO loop by an
invariant expression. The CIV definition must be in a statement
which is executed during every DO-loop iteration. The expression
defining a CIV can reference itself or another CIV. The
expression must not use operators other than plus or minus or
involve expressions containing parentheses. For example,

CIV=CIV~(INVARIANT EXPRESSION)

• Vector array reference - An array element where one subscript
expression contains one CIV reference and where any other
subscript expression is an invariant expression. The subscript
expression containing the CIV must be a linear expression
algebraically reducible to the following form

SR-0009

[~invariant expressionl*]CIV[~invariant expression2]

where the only operators, if any, in invariant expressionl are
multiply operators. Using parentheses in the CIV subscript may
prevent vectorization. Some of the more common forms of array
references with nested parentheses are converted to vector array
references. For example, the array reference A(3*(I-2» is
converted to the vector array reference A(I*3-6). The following
format is generally used

[:
integer variable +]
integer constant *

(integer
integer constant *

variable [+ integer variable])
integer constant

where at least one term inside the parentheses is a variable.

The following examples show array references that are converted to
vector array references:

Array References

A«I+2»
A(3-(I+2»
A(J*(I+K»
A«I-2)+3)
A(K+(I*3»

Vector Array References

A(I+2)
A(l-I)

A(J*I+J*K)
A(I+l)

A(K+I*3)

9-3 L

The following examples show array references that are not
converted to vector array references:

Array References Reasons

A«I+(3-(J») Parentheses are nested too deeply
A(I*(3-2» One inner term must be a variable

A(2*(I+K+2» Too many inner terms
A(2*I+(K+2» Too many outer terms

• Scalar temporary - A variable set equal to a vectorizable
expression during each pass through a DO loop. A scalar temporary
cannot be defined before or used after a statement number
reference in a vector loop.

• Variable or invariant array element used in a reduction array
operation. The item must appear on both the left and the right
sides of the equal sign. On the right, it must be a summand,
multiplicand, dividend, or minuend. For example,

x = X+A(I)*B
X = X-A(I)*B

Y = Y*(A(I)+4)
Y = Y/(A(I)+4).

The type of reduction variable must be INTEGER or REAL. Real
operations between the reduction variable and the remaining
expression are limited to addition, subtraction, multiplication,
and division. Integer operations are limited to addition and
subtraction. No other operations are allowed between the
reduction variable and the remaining expression.

• Pseudo vector - An array reference which does not meet the
previous requirements, but has a subscript expression that
vectorizes and no dependencies will pseudo vectorize. The array
reference is treated as a scalar subloop inside the vector loop,
and the subscript expression is computed as a vector expression.

SR-0009

A single instruction can be compiled instead of the scalar subloop
on a Cray Computer System with the appropriate hardware. The
subscript portion of a subscript reference is a vectorizable
expression and partially vectorizes; that is, CFT generates a
separate scalar loop to handle the subscript reference and
vectorize the remaining loop.

9-4 L

In the following example, I, J, and K are CIVs; A, B, and C are vector
array references; KDELTA, 107, 3, 2, 7, M, L, and X are invariants;
D(L,M) is an invariant array element; and E is a pseudo vector.

DO 10 I = 3,101,2
K = K - KDELTA
J = 107 - I
A(3,I-2) = COS(B(J» **C(M-2*K+L*M/7,L,M/L)*X*D(L,M)
E(I,J) = 0

10 CONTINUE

9.1.3 DEPENDENCIES

CFT inhibits vectorization of DO loops with dependencies. The following
example of a DO loop shows a dependency within CFT. In this example, the
first seven elements of array A are 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, and
7.0, respectively.

DO 10 I = 2,7
A(I) = A(I-1)

10 CONTINUE

The results of array A differ, depending on the mode type the loop is
executing, vector mode or scalar mode. Table 9-1 shows the first seven
elements of array A in vector and scalar modes.

Table 9-1. Array A Elements in Vector and Scalar Modes

Array A Elements 1 2 3 4 567

Vector mode 1.0 1.0 2.0 3.0 4.0 5.0 6.0

Scalar mode 1.0 1.0 1.0 1.0 1.0 1.0 1.0

The scalar results are correct by default. CFT detects that the vector
results may be different from the scalar results for the DO loop and
inhibits vectorization. A dependency exists if the following two
conditions are met.

• An array is referenced and defined in the DO loop

• An array element defined in a previous pass of the DO loop is
referenced

SR-0009 9-5 L

CFT can internally change the order of the definition and reference,
eliminating an apparent dependency, if the reference and definition are
not conditionally executed.

In the previous example, A(I) is the definition and A(I-1) is the
reference. A definition is on the left side of the = operator. The
dependency detected is called a previous minus with an incrementing
subscript.

The term previous means a reference in a statement occurs before the
definition statement, or a reference is on the right side of the =
operator. The term subsequent means a reference in a statement occurs
after the definition statement. The following diagram describes the
terms previous and subsequent.

Previous

A(I) =

Subsequent

The following example also has a previous reference because the
reference, A(I-1), is in a statement before the definition A(I).

DO 20 I = 2,M
B(I) = A(I-1)
A(I) = C(I)

20 CONTINUE

The term minus means the subscript of the reference (1-1) is less than
the subscript of the definition (I). In this example, subscript I is
incrementing. Both of the examples have a previous minus with an
incrementing subscript dependency.

The following information is required to determine if there is a
dependency.

• Previous or subsequent reference
• Plus or minus subscript difference
• Incrementing or decrementing subscript

SR-0009 9-6 L

Table 9-2 shows dependency information combinations and results.

Table 9-2. Dependency Information Combinations

Dependency Information Combinations

Previous minus with an incrementing subscript
Previous minus with a decrementing subscript
Previous plus with an incrementing subscript
Previous plus with a decrementing subscript
Subsequent minus with an incrementing subscript
Subsequent minus with a decrementing subscript
Subsequent plus with an incrementing subscript
Subsequent plus with a decrementing subscript

Results

Dependency
Vector
Vector
Dependency
Vector
Vector
Vector
Vector

The following two DO loops have previous plus with decrementing subscript
dependencies.

DO 30 I = 99,1,-1
A(I) = A(I+1)

30 CONTINUE

DO 40 I = 99,N,-1
8(1) = A(I+1)
A(I) = C(I)

40 CONTINUE

The following two DO loops also have dependencies.

DO 50 I = 1,99
A(I) = 8(1)
A(I+1) = C(I)

50 CONTINUE

DO 60 I = 99,1,-1
A(I) = 8(1)
A(I-1) = C(I)

60 CONTINUE

In these two examples, A never appears on the right side of the =
operator, therefore, assigning the reference and definition labels is
ambiguous. In this case, it is assumed the last statement has the
definition. The definitions for the first and second examples are A(I+1)
and A(I-1), respectively. This means the first example has a previous
minus with an incrementing subscript dependency and the second example
has a previous plus with a decrementing subscript dependency.

SR-0009 9-7 L

This example is a previous plus with a decrementing subscript dependency.

DO 10 I = 1,10
A(ll-I) = A(12-I)

10 CONTINUE

The DO control variable is an incrementing I and the subscripts (11-1)
and (12-1) are decrementing. Therefore, this DO loop would cause CFT to
detect a previous plus with a decrementing subscript dependency.

The following DO loops do not have dependencies.

Previous minus with a decrementing subscript

DO 10 I = 100,2,-1
A(I) = A(I-1)

10 CONTINUE

Previous plus with an incrementing subscript

DO 20 I = 1,99
B(I) = A(I+1)
A(I) = 3.0

20 CONTINUE

Subsequent minus with an incrementing subscript

DO 30 I = 2,100
A(I) = B(I)
C(I) = A(I-1)

30 CONTINUE

Subsequent minus with a decrementing subscript

DO 40 I = 100,2,-1
A(I+1) = B(I)
C(I) = A(I)

40 CONTINUE

Subsequent plus with an incrementing subscript

DO 50 I = 1,100
A(I) = B(I)
C(I) = A(I+1)

50 CONTINUE

Subsequent plus with a decrementing subscript

DO 60 I = 2,100
A(I-1) = B(I)
C(I) = A(I)

60 CONTINUE

SR-0009 9-8 L

Two types of dependency messages are issued by CFT.

AT SEQUENCE NUMBER - m
PRNAME name COMMENT - DEPENDENCY INVOLVING ARRAY "name"

is issued when the definition and reference appear in the same statement
with sequence number m.

AT SEQUENCE NUMBER - m
PRNAME name COMMENT - DEPENDENCY INVOLVING ARRAY "name" IN
SEQUENCE NUMBER n

is issued when the definition appears in a statement with sequence number
m and the reference appears in a statement with sequence number n.
When a dependency message is issued, an informative dependency message
also appears, explaining why the dependency exists. See appendix 0 for a
description of these messages.

All the previous examples had a subscript incremented or decremented by
1. The following three examples have DO loops with an increment and
decrement other than 1.

DO 10 I = 10,20,2
A(I) = A(I-1)

10 CONTINUE

The first example has a previous minus with an incrementing CIV
dependency. Because the increment is 2, A(I) and A(I-1) never access the
same array elements. A(I) accesses elements 10, 12, 14, 16, 18, and 20.
A(I-1) accesses elements 9, 11, 13, 15, 17, and 19. This type of DO loop
vectorizes.

DO 20 I = 20,10,-2
A(I) = A(I+3)

20 CONTINUE

This example also has a dependency but A(I) and A(I+3) access different
array elements. This DO loop also vectorizes.

DO 30 I = 10,20,2
A (I) = A (I -4)

30 CONTINUE

In this example, A(I) and A(I-4) access some of the same array elements.
A(I) accesses elements 10, 12, 14, 16, 18, and 20. A(I-4) accesses 6, 8,
10, 12, 14, and 16. In this case, a dependency message is issued.

CFT cannot always determine if the subscript is incrementing or
decrementing as shown in the following example:

DO 40 I = M,N,J
A(I) = A(I+2)

40 CONTINUE

SR-0009 9-9 L

If J is positive, the subscript is incrementing and there is no
dependency. If J is negative, the subscript is decrementing and a
previous plus with a decrementing subscript dependency exists. This
increment is ambiguous and causes a dependency message to be issued.

CFT cannot always determine if the subscript difference is minus or plus.

DO 50 I = 1,100
A(I) = B(I)
C(I) = A(I+J)

50 CONTINUE

If J is positive, the subscript difference is plus. If J is negative,
the subscript difference is minus. This example also causes a dependency
message to be issued.

If the value of J is known not to cause a dependency, an IVDEP or IVDMO
compiler directive can be used, allowing CFT to generate vector code for
a DO loop with dependencies (see section 1 for the format of compiler
directives).

Equivalenced arrays can introduce different dependency problems related
to the storage overlap, as in the following example.

DIMENSION A(6),B(6),X(6)
EQUIVALENCE (B,A(3»
DO 5 I = 2,5
A(I) = ..•
X(I) = B(I)

5 CONTINUE

This sequence causes the multiple-statement dependency message to be
printed. The message refers to the dependency between A(I) and B(I).
The message uses only one array name rather than both names. In general,
messages concerned with equivalenced arrays print only the first name
encountered in processing the declarative statement.

The inhibiting of vectorization because of such dependencies can be
relaxed in the case of multiply-dimensioned array processing. CFT must
be able to determine that the specified array elements are in different
vectors (that is, rows, columns, planes, etc.) of the array. For
example, the loop

DO 10 I = 2,100
10 A(I,J) = A(I-1,J-1)

is vectorizable, while the similar loop

DO 20 I = 2,100
20 A(I,J) = A(I-1,JMINUS1)

is conditionally vectorized with a run-time test to determine whether J
and JMINUS1 are equal.

SR-0009 9-10 L

The compiler directive IVDEP can be placed in advance of an inner DO loop
DO statement to cause vector dependencies to be ignored in determining
whether or not to vectorize that loop. (See section 1 for a description
of IVDEP and other compiler directives.)

9.1.4 CONDITIONAL VECTOR LOOPS

If CFT cannot determine at compile time that a loop can be correctly
vectorized, a run-time test is performed to ensure correct
vectorization. CFT generates scalar and vector versions of the loop with
a run-time test to select which version will execute. CFT conditionally
vectorizes loops with ambiguous dependencies from zero CIV increments,
unequal invariant subscripts, and mismatched CIVs in subscript
expressions.

For example, when OPT=ZEROINC is specified a loop such as

DO 1 I = 1,N
J = J+JINC

1 A(J) = A(J)+B(I)

will be conditionally vectorized with a test for JINC=O. The loop

DO 2 I = 1,N
2 A(I,J) = A(I,JMINUS1)

will be conditionally vectorized with a test for J=JMINUS1. The loop

DO 2 I = 1,N
J = J+1

2 A(J) = A(I)

will be conditionally vectorized with a test for J{l or JtN.

9.1.5 VECTORIZATION WITH ARRAYS

Because CFT allows only one subscript in an array reference to be
variant, loops that reference the diagonal of an array are not fully
vectorized. A loop such as

DIMENSION A(N,N)
DO 10 I = 1,N

10 A(I,I) =

can be rewritten as

SR-0009 9-11 L

or as

DIMENSION A(N,N)
J = 1
DO 10 I = 1,N
A(J)= •••

10 J = J+N+l

DIMENSION A(N,N),B(N*N)
EQUIVALENCE (A,B)
J = -N
DO 10 I = 1,N
J = J+N+l

10 B(J) =

The first case is allowed by CFT but the use of one subscript rather than
two causes a warning level diagnostic. Since array operations typically
execute in times proportional to N2 and diagonal operations execute in
times proportional to N, vectorizing the diagonal operations might not
have a significant effect on overall program execution time.

CFT allows variables and array elements to be defined within a vectorized
loop as CIVs, scalar temporaries, or as recursively defined terms. (CIVs
are discussed earlier in this section.) A scalar temporary is a variable
set equal to a vectorizable expression. Recursively defined terms must
be defined by integer addition or subtraction or real addition,
subtraction or multiplication.

The following loop is vectorizable.

REAL A(100),B(100,100),C(100)
INTEGER 11(100)
DO 10 I = 1,100
T = B(7,I) + A(I)*B(I,7)
C(7) = C(7) + T*SQRT(T)
T = B(I,7)*B(11,I)
PROD = PROD*(T + A(101-I»
11(1) = 11(1) + 1

10 ISOM = ISOM + 11(1)

The following example describes pseudo vectorization. I, J, and K are
CIVs and A, B, C, II, and JJ are arrays without dependencies.

SR-0009

A(II(I» = B(JJ(I»
K = C(I/J)
Y = A(INT(SIN(B(I»*X»

9-12 L

9.1.6 USING OPTIMIZED ROUTINES

The efficiency of the vectorization depends on the number of iterations
of the loop and the complexity of the loop. In many cases, a loop with a
large number of iterations and simple calculations producing a single
scalar result (for example, a dot product or a sum) should be replaced
with a call to an optimized routine in the $SCILIB library. The vector
sum

SUM = 0.0
DO 10 I = 1,100
SUM = SUM + A(I)

is better written as

SUM = SSUM(100,A(1),1).

Nested DO loops producing a vector result should also be replaced with a
call to an optimized routine in the $SCILIB library. For example, the
following matrix multiply

DO 10 I = 1,N
DO 10 J = 1,M
A(I,J) = 0.0
DO 10 L = 1,K
A(I,J) = A(I,J) + B(I,L) * C(L,J)

is better written as

CALL MXM(B,N,C,K,A,M).

For more examples on optimized routines in $SCILIB library see the
Library Reference Manual, CRI publication SR-0014.

9.1.7 USE OF OPTIMIZED ROUTINES BY CFT

Several one-line DO loops are recognized by CFT and automatically
replaced by a call to the proper library routine. Vector sums and vector
dot products are replaced by calls to library routines SSOM and SDOT,
respectively. The vector sum

DO 10 I = l,N
10 S = S + A(I)

is automatically replaced by

s = S + SSUM(N,A(l),l)

SR-0009 9-13 L

and the vector dot product

DO 10 I = 1,N
10 C(J,K) = C(J,K) + A(I,K) * B(I,K)

is automatically replaced by

C(J,K) = C(J,K) + SDOT(N,A(l,K),l,B(l,K),l).

For more information on SSOM and SDOT, see the Programmer's Library
Reference Manual, CRI publication SR-0113.

One-line DO loops calculating a single vector result (for example, first
order linear recurrences) are recognized and automatically replaced by a
call to the $SCILIB library FOLR, FOLR2, FOLRP, and FOLR2P. The example,

DO 10 I = 2,N
10 B(I) = B(I) - A(I) * B(I-1)

is automatically replaced by

CALL FOLR(N,A(l),l,B(l),l).

Similarly

DO 10 I = 3,500,2
10 C(I) = B(I) - A(I) * C(I-2)

is automatically replaced by

CALL FOLR2(500,A(1),2,B(1),2,C(1),2).

Routines FOLRP and FOLR2P are called when the DO loop statement's
additive operation is addition instead of subtraction. For more
information on first-order linear recurrences, see the Programmer's
Library Reference Manual, CRI publication SR-0113.

Follow these guidelines for writing one-line DO loops that will be
optimized by replacement with library calls.

• The DO-loop body must be one and only one FORTRAN statement long.
The terminating statement number can be on the same line or on the
following line with a CONTINUE statement.

• The one-line DO-loop body must be a vector sum, vector dot
product, or a first order linear recurrence.

• All terms must be single-precision real and not equivalenced.

SR-0009 9-14 L

• Keep array subscripts simple; that is, of the form A(invariant
* variable + invariant). Other loops that vectorize are less
restrictive with subscript complexity than one-line DO-loop
replacement.

• The DO-loop increment (~) must be a positive constant value.

9.1.7.1 Conditional statements

On-some machines, code generated for vectorizable IF statements is
inefficient. The instruction functions CVMGT, CVMGP, CVMGM, CVMGZ,
CVMGN, MAX, and MIN can often be used to replace the IF statement with
more efficient statements.

CFT automatically replaces some IF statements. IF statements of the form
IF(var.op.expression)var=expression can be optimized to produce
code similar to var=function(var,expression) where function is a
version of the MAXIMIN functions. For this form of optimization to
occur, .op. must be one of the relational operators .GT., .GE., .LT.,
or .LE.; var and expression must be the same type, either REAL,
INTEGER, or DOUBLE PRECISION. Examples of IF statements optimized by CFT
in this way are

IF(A(I).GT.B(I»A(I)=B(I)
IF(I1· LE • I 2)I2=I1
IF«I+3)*R1· GT •R2)R2=(I+3)*R1·

A more general form of conditional replacement statements can also be
optimized by CFT. Statements of the form IF(logical exp)var=expression
can be optimized to produce code similar to that for
var=CVMGx(expression,var,condition) where CVMGx is a vector merge function,
var is type INTEGER, REAL, or LOGICAL, and condition is a logical
expression. Examples of IF statements which CFT can optimize in this
manner are

IF(COND1·0R.COND2)B(I)=C(I)
IF«B(I).GT.C(I».OR.(B(I).LT.A(I»B(I)=ABS(A(I)*C(I»
IF(I.GT.R)I=R (the types are mismatched so a MAXIMIN optimization
will not occur).

Conditional replacement statements of the form

IF(cond)var=var op exp

where op is the operator +, -, *, or /; and

IF(cond)var=exp op var

SR-0009 9-15 L

where op is the operator + or * may be restruct~red as if written as

var=var opCVMGx(exp,ident,cond)

where ident is 0 when op is + or - and ident is 1 when op is * or
I. This form of restructuring occurs only if exp does not contain
unparenthesized operators of lower priority than OPe If op is - or
I, exp cannot contain unparenthesized operators of the same priority as
Ope This form of the IF conversion allows a vector reduction loop to
be generated if var is a scalar reference and the statement appears in
a loop that otherwise would be vectorizable.

There are two possible drawbacks to performing this type of optimization
in all cases. An illegal operation may occur. For example,
IF(X.NE.O.O)R=R/X. If optimization occurred, an error would occur if X
were equal to zero. Another example is, IF(X.GE.O.O)R=SQRT(X). An error
would occur if X is negative.

The second drawback occurs when the IF statement appears in a DO loop and
the logical expression is usually false. For example,

DO 10, I = 1,100
A(I) = B(I)*C(I)
IF(A(I).GT.RMAX)A(I) = MAX(B(I),C(I»

30 CONTINUE

In this example, if A(I) were less than RMAX and the IF statement was not
optimized, MAX(B(I),C(I» would never be evaluated. If the IF statement
were optimized, MAX(B(I),C(I» would always be evaluated.

Because of these drawbacks, the user can control vector merge
optimizations. By specifying OPT=NOIFCON on the CFT control card, this
form of optimization is disabled (the default level of optimization).
OPT=PARTIALIFCON allows the optimization to occur when the replacement
expression does not involve division or an external function reference.
OPT=FULLIFCON enables the optimization for all cases, including those
involving division or external functions. The compiler directives CDIR$
NOIFCON and CDIR$ RESUMEIFCON may be used to turn the optimization off
and on around unsafe cases (such as, division by zero if OPT=FULLIFCON)
or when the logical expression of the IF statement is usually false. The
following examples may be helpful in performing optimizations.

The simple case

DO 10 I = N,M
X(I) = C(I)
IF(B(I).GT.C(I»X(I) = B(I)

10 CONTINUE

SR-0009 9-16 L

could be rewritten as

DO 10 I = N,M
X(I) = CVMGT(B(I),C(I),B(I).GT.C(I»

10 CONTINUE

or as

DO 10 I = N,M
X(I) = AMAX1(B(I),C(I»

10 CONTINUE

to produce vectorizable loops.

Similarly,

DO 10 I = N,M
IF(X(I).GE.10.)X(I) = X(I) + 1.0

10 CONTINUE

could be rewritten as

DO 10 I = N,M
X(I) = CVMGP(X(I) + 1.0,X(I),X(I)-10.)

10 CONTINUE.

The library routines SENSEFI, SETFI, and CLEARFI, or the EFI and DFI CAL
instructions can be used to control floating-point interrupts on a
loop-by-Ioop basis and MAX or MIN functions can be used to protect
function references.

Example:

SR-0009

CALL SENSEFI (MODE)
CALL CLEARFI
DO 10 I = 1,100
X(I) = CVMGN(l./X(I),X(I),X(I»
Y(I) = CVMGP(SQRT(AMAX1(Y(I),0.0»,Y(I),Y(I»

10 CONTINUE
IF(MODE.NE.O) CALL SETFI

9-17 L

9.1.8 COMPRESSED INDEX REFERENCES

Memory references are in blocks of code which mayor may not be executed
depending on the outcome of an IF statement, and are compiled as
compressed index references. The variable values for the loop iterations
executed by the IF statement are collected as vector values, and the
subscripts are computed as vector expressions which generate a pseudo
vector memory reference. For example,

DO 1 I = 1,N
IF(MOD(I,2).EQ.O)THEN
A(I) = B(I)
ENDIF

1 CONTINUE

When I is even, the elements of B are moved to the corresponding elements
of A.

If there are no appropriate vector instructions to compress an index, the
instructions are simulated with a compiler-generated instruction sequence.

9.1.9 GENERAL GUIDELINES FOR VECTORIZATION

Follow the general guidelines given below to promote vectorization of
DO-loop operations.

• Keep subscripts simple and explicit; do not use parentheses in
subscripts.

• Do not use GO TO or CALL statements.

• Use the Cray FORTRAN intrinsic functions where appropriate.

• Make judicious use of the Cray FORTRAN intrinsic functions CVMGT,
CVMGP, CVMGM, CVMGZ, CVMGN, and the MAX and MIN functions instead
of IF statements. For more information, see the subsection on
using optimized routines described earlier in this section.

• Rewrite large loops containing a few unvectorizable statements as
two or more loops, one or more of which will vectorize.

SR-0009 9-18 L

9.2 BIDIRECTIONAL MEMORY

Bidirectional Memory is memory which can be read from and written to
simultaneously. The CRAY X-MP Computer Systems have Bidirectional Memory
(multiple ports to memory) and CFT uses it to enhance the performance of
FORTRAN programs. This section describes how CFT uses Bidirectional
Memory, beginning with CFT version 1.11.

CFT attempts to use Bidirectional Memory in all vectorizable loops. In
loops where Bidirectional Memory may cause incorrect results, CFT inserts
instructions forcing sequential, instead of bidirectional, accesses to
memory. Using Bidirectional Memory is only a concern when using vector
loops, since scalar memory operations are always sequential.

Bidirectional Memory can always be used if there are no overlaps between
the arrays in memory. For example,

PROGRAM EXAMPLE1
COMMON B(10),C(10)
DIMENSION D(10),E(10)

The values of B, C, 0, and E occupy different areas in memory and
therefore, have no Bidirectional Memory errors.

CFT assumes that subscripts are within bounds, dummy arguments are
independent, and arrays referenced by pointer variables are independent.
In the following example,

SUBROUTINE EXAMPLE2(B,C)
REAL B(100),C(100)
COMMON D(100),E(100)
POINTER (IF,F(100»,(IG,G(100»

statements such as

CALL EXAMPLE2 (X(1),X(2»
or

IG = IF + 1
or

DO 10 I = 1,SO
10 D(I+99) = E(2S-I)

do not follow the CFT assumptions and produce unpredictable results. The
errors are not Bidirectional Memory errors but programming errors caused
by the incorrect use of FORTRAN.

Chaining operation results will always be correct when Bidirectional
Memory is used. In the loop:

SR-0009 9-19 L

DO 10 I = 1,100
10 A(I) = A(I) + 1.0

the first A(I) will be loaded before the second A(I) is stored.

Multiple stores into the same array will always be correct, since there
is only one write port to memory. For example, the loop:

DO 10 I = 1,N
A(K*I+J) =

10 A(J*I+M) = ...

will be 'correct when Bidirectional Memory is used.

When CFT generates code, it ensures that previous dependent load and
store operations are complete before subsequent operations begin. This
may be ensured by the nature of the code (as in the previous examples);
if it is not, CFT generates protective code that guarantees completion of
previous dependent operations.

CFT considers two types of dependencies when looking for Bidirectional
Memory dependencies.

• A store operation preceded by a load operation. The two load
operations most recently compiled are examined (because there are
two read ports to memory). If either load operation has an order
dependency and does not chain into the store operation, protective
code is generated.

• A load operation preceded by a store operation. The store
operation most recently compiled is examined (because there is one
write port to memory). If the store operation has an order
dependency on the load operation, protective code is generated.

CFT also considers two special cases when looking for Bidirectional
Memory dependencies: loop wrap-around dependencies and loop-to-loop
dependencies. In a loop such as

CDIR$ IVDEP
DO 10 I = 1,N

= A(I)

10 A(I+J) =

the store operation at the end of one iteration must be completed before
the load at the beginning of the next iteration begins. CFT 1.11
unconditionally inserts a CMR instruction (complete memory references) as
the first instruction of a loop preceded by an IVDEP directive (CFT does
not normally vectorize a loop with a wrap-around dependency). CFT 1.13

SR-0009 9-20 L

and 1.14 perform a load/store analysis on the first two load operations
and the last store operation. If a potential dependency is found,
protective code is generated.

In the two adjacent loops

DO 10 I = 1,64
10 A(I) = •••

DO 20 I = 63,64
20 B(I) = A(I)

the store operation in line 10 may not be completed before the load
operation in line 20 begins.

Before each vector loop, CFT generates a CMR instruction as the last
instruction in the loop preamble. Therefore, no vector memory operations
are in progress when a loop begins processing.

In a loop such as

CDIR$ IVDEP
DO 10 I = 1,10
• •• - A(I+M)

10 A(I) =

where MtlO, CFT adds unnecessary and undesirable protective code. The
IVDMO directive can be used to prevent CFT from adding this code (see
section 1).

SR-0009 9-21 L

APPENDIX SECTION

A. CHARACTER SET

The ASCII character set contains 128 control and graphic characters shown
in the following table. Numbers, letters, and special characters that
form the Cray FORTRAN character set are identified by the appearance of
the letter C in the fourth column. All other characters are members of
the auxiliary character set. The letter A in the fourth column of the
table indicates those characters belonging to the ANSI FORTRAN character
set (see table A-1).

The letters that appear in parentheses following the descriptions in the
fifth column indicate the following control character usage.

• CC - Communication control

• FE - Format effector

• IS - Information separator

SR-0009 A-1 L

Character

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL

BS
HT
LF
VT
FF
CR
SO
SI
DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB

CAN
EM
SUB
ESC
FS
GS
RS
US
(Space)

it
$

&

SR-0009

ASCII
Octal
Code

000
001
002
003
004
005
006
007

010
011
012
013
014
015
016
017
020
021
022
023
024
025
026
027

030
031
032
033
034
035
036
037
040
041
042
043
044
045
046
047

Table A-1. Character Set

I
ASCII I FORTRAN

Punched-card (A=ANSI)
Code (C=CRAY)

12-0-9-8-1
12-9-1
12-9-2
12-9-3
9-7
0-9-8-5
0-9-8-6
0-9-8-7

11-9-6
12-9-5
0-9-5
12-9-8-3
12-9-8-4
12-9-8-5
12-9-8-6
12-9-8-7
12-11-9-8-1
11-9-1
11-9-2
11-9-3
9-8-4
9-8-5
9-2
0-9-6

11-9-8
11-9-8-1
0-8-7
0-9-7
11-9-8-4
11-9-8-5
11-9-8-6
11-9-8-7
(None)
12-8-7
8-7
8-3
11-8-3
0-8-4
12
8-5

A,C

C

A,C

A,C

A-2

Description

Null
Start of heading (CC)
Start of text (CC)
End of text (CC)
End of transmission (CC)
Enquiry (CC)
Acknowledge (CC)
Bell (audible or attention
signal)
Backspace (FE)
Horizontal tabulation (FE)
Line feed (FE)
Vertical tabulation (FE)
Form feed (FE)
Carriage return (FE)
Shift out
Shift in
Data link escape (CC)
Device control 1
Device control 2
Device control 3
Device control 4 (stop)
Negative acknowledge (CC)
Synchronous idle (CC)
End of transmission block
(CC)
Cancel
End of medium
Substitute
Escape
File separator (IS)
Group separator (IS)
Record separator (IS)
Unit separator (IS)
Space (blank)
Exclamation mark
Quotation marks (diaeresis)
Number sign
Dollar sign (currency symbol)
Percent
Ampersand
Apostrophe (single close
quotation)

L

Character

*
+

/

o
1
2
3
4

5
6
7

8
9

. ,
<
=
)

?
@

A
B
C
D
E
F
G
H
I
J
K

L
M
N

o
P
Q

SR-0009

I
IASCII
Octal
Code

050
051
052
053
054
055
056
057
060
061
062
063
064
065
066
067
070
071
072
073
074
075
076
077
100
101
102
103
104
105
106
107
110
111
112
113
114
115
116
117
120
121

Table A-1. Character Set (continued)

ASCII FORTRAN
Punched-card (A=ANSI)

Code (C=CRAY)

12-8-5
11-8-5
11-8-4
12-8-6
0-8-3
11
12-8-3
0-1
o
1
2
3
4
5
6
7
8
9
8-2
11-8-6
12-8-4
8-6
0-8-6
0-8-7
8-4
12-1
12-2
12-3
12-4
12-5
12-6
12-7
12-8
12-9
11-1
11-2
11-3
11-4
11-5
11-6
11-7
11-8

A,C
A,C
A,C
A,C
A,C
A,C
A,C
A,C
A,C
A,C
A,C
A,C
A,C
A,C
A,C
A,C
A,C
A,C
A,C

A,C

A,C
A,C
A,C
A,C
A,C
A,C
A,C
A,C
A,C
A,C
A,C
A,C
A,C
A,C
A,C
A,C
A,C

A-3

Description

Opening (left) parenthesis
Closing (right) parenthesis
Asterisk
Plus
Comma (cedilla)
Minus (hyphen)
Period (decimal point)
Slant (slash, virgule)
Zero
One
Two
Three
Four
Five
Six
Seven
Eight
Nine
Colon
Semicolon
Less than
Equal
Greater than
Question mark
Commercial at-sign
Uppercase letter
Uppercase letter
Uppercase letter
Uppercase letter
Uppercase letter
Uppercase letter
Uppercase letter
Uppercase letter
Uppercase letter
Uppercase letter
Uppercase letter
Uppercase letter
Uppercase letter
Uppercase letter
Uppercase letter
Uppercase letter
Uppercase letter

L

Table A-1. Character Set (continued)

I
ASCII ASCII I FORTRAN
Octal Punched-card (A=ANSI)

Character Code Code (C=CRAY) Description

R 122 11-9 A,C Uppercase letter
S 123 0-2 A,C Uppercase letter
T 124 0-3 A,C Uppercase letter
U 125 0-4 A,C Uppercase letter
V 126 0-5 A,C Uppercase letter
W 127 0-6 A,C Uppercase letter
X 130 0-7 A,C Uppercase letter
Y 131 0-8 A,C Uppercase letter
Z 132 0-9 A,C Uppercase letter
[133 12-8-2 Opening (left) bracket
\ 134 0-8-2 Reverse slant (backslash)
] 135 11-8-2 Closing (right) bracket

136 11-8-7 Circumflex
137 0-8-5 Underline
140 8-1 Grave accent (single open

quotation)
a 141 12-0-1 C Lowercase letter
b 142 12-0-2 C Lowercase letter
c 143 12-0-3 C Lowercase letter
d 144 12-0-4 C Lowercase letter
e 145 12-0-5 C Lowercase letter
f 146 12-0-6 C Lowercase letter
g 147 12-0-7 C Lowercase letter
h 150 12-0-8 C Lowercase letter
i 151 12-0-9 C Lowercase letter
j 152 12-11-1 C Lowercase letter
k 153 12-11-2 C Lowercase letter
1 154 12-11-3 C Lowercase letter
m 155 12-11-4 C Lowercase letter
n 156 12-11-5 C Lowercase letter
0 157 12-11-6 C Lowercase letter
p 160 12-11-7 C Lowercase letter
q 161 12-11-8 C Lowercase letter
r 162 12-11-9 C Lowercase letter
s 163 11-0-2 C Lowercase letter
t 164 11-0-3 C Lowercase letter
u 165 11-0-4 C Lowercase letter
v 166 11-0-5 C Lowercase letter
w 167 11-0-6 C Lowercase letter
x 170 11-0-7 C Lowercase letter
y 171 11-0-8 C Lowercase letter
z 172 11-0-9 C Lowercase letter

SR-0009 A-4 L

Table A-1. Character Set (continued)

ASCII ASCII FORTRAN
Octal Punched-card (A=ANSI)

Character Code Code (C=CRAY) Description

{ 173 12-0 Opening (left) brace

I 174 12-11 Vertical line
} 175 11-0 Closing (right) brace

176 11-0-1 Overline (tilde, general
accent)

DEL 177 12-9-7 Delete

SR-0009 A-5 L

B. CRAY FORTRAN INTRINSIC FUNCTIONS

The tables in this section show the intrinsic functions available with
CFT. Conventions used in the tables are described below.

The rightmost column in each table includes letter codes to indicate
conformance with the ANSI standard, the level of vectorization, and the
kind of code generated. The codes use the following format:

First letter: ANSI standard
A The function is specified in the ANSI FORTRAN 77 standard.
C The function is a Cray extension to the standard.

Second letter: level of vectorization
F Full vectorization
P Pseudo vectorization
N No vectorization.

Third letter: code generation
E External code is generated.
I In-line code is generated.

Unless noted otherwise, the first function name in each group of functions
can be used as a generic function name. A generic function name can be
used to call any of a group of related functions, so that one name can be
used with arguments of different data types (see section 2). Groups of
related functions are separated by horizontal lines, with the arguments
and results shown for each specific function.

In the Definition column, y is the function's result, and the x values are
function arguments separated by parentheses in the function call. Square
brackets indicate truncation of a term: if x has a value of 5.67,
[xl equals 5.

Data types shown in the Function and Argument columns are as follows:

B Boolean
C Complex
CH Character
D Double precision
I Integer
L Logical
P Pointer
R Real

SR-0009 B-1 L

Table B-1. General Arithmetic Functions

1

Function ______ A_r_q_um __ e_n~t~(~s~) _______ Codes 1
Purpose Definition Name,Type No. Type Range t 1

-=======~====~========-=-=----==~~==~==--========--==~I

Truncation y=[x] (fraction lost; no
rounding)

Nearest
whole
number

Nearest
integer

y=[x+.5] if x>O
y=[x-.5] if x<O

y=[x+.5] if x~O
y=[x-.5] if x<O

Absolute Y=lxl
value

Divide for y=x1-x2[x1/x2]
remainder
of x1/x2

Transfer y= IX11 if x2~O
sign or

y= -lx11 if x2<O
I

AINT R
DINT D

ANINT R
DNINT D

NINT I
IDNINT I

ABS R
lABS I
DABS D
CABStt R

MOD
AMOD
DMOD

I
R
D

1
1

1
1

1
1

1
1
1
1

2
2
2

SIGN R 2
ISIGN I 2
DSIGN DI 2

I

R Ixl<246
1

A F II
A F E D Ixl <295

R
D

R
D

R
I
D
C

I
R
D

R
I
D

A F I
A F E

A F I
A F E

Ixl<infinity A F I
A F I
A F I
A F E

ttt
APE
A F I
A F E

Ixl<infinity A F I
IA F I
IA F I
I

t A=ANSI standard, C=Cray extension; F=full, P=pseudo, N=no vectorizing;
E=external code, I=in-line code.

tt x=xr+i'xi
ttt Argument ranges for MOD functions:

MOD: I xli <263

AMOD : 1 xli < 247

DMOD: I xli <295

SR-0009

O<IX21<263

O<lx21<247

O<l x21<2 95

B-2

2-63<lx1/x21<263

2-47<lx1/x21<247

2-95<lx1/x21<295

L

Table B-1. General Arithmetic Functions

I
I Function

Purpose I Definition Name, Type

I
I

Positive ly=x1-x2 if x1>x2 DIM R
difference y=O if x1~x2 IOIM I

OOIM 0

Oouble- y=x1*x2 OPROO 0
precision
product

Imaginary y=xi AIMAGtt R
portion of
complex
value

Conjugate y=xr-i-xi CONJGtt C
of complex
value

Obtain y=r where r is the first RANF R
random or next in a series of
number random numbers (O<y<l)

Obtain The current random number RANGET I
rndm seed seed

Establish y=x
rndm seed

RANSET R

No.

2
2
2

2

1

1

0

1

1

(continued)

I I
Argument(s) ICodesl
Type Range I t I

I I
I I

R Ixl<infinitylA F II
I IA F I I
0 IA F E

I
I

R Ixl<infinitYIA F I

C Ixl<infinity A F I

C Ixl<infinity A F I

C F E

I Ixl<infinity C N E

B Ixl<infinity C N E

t A=ANSI standard, C=Cray extension; F=full, P=pseudo, N no vectorizing;
E=external code, I=in-line code.

tt x=xr+i·xi

SR-0009 B-3 L

Table B-2. Trigonometric Functions (Angles in Radians)

I I
Function Argument(s) ICodesl

Purpose Definition Name, Type No. Type Range I t I
I I
I I

Sine y=sin(x) SIN R 1 R Ixl<224 IA F EI
DSIN D 1 D Ixl<248 IA F EI
CSINtt C 1 C IXrl<224, IA F EI

IXil<2 13 ·ln2 I
I
I

Cosine y=cos(x) COS R 1 R Ixl<224 F EI
DCOS D 1 D Ixl<248 F EI
ccostt C 1 C IXrl<224, F EI

IXil<2 13 ·ln2 I
I
I

Tangent y=tan(x) TAN R 1 R Ixl<224 A F EI
DTAN D 1 D A F EI

I
I

Cotangent y=cot(x) COT R 1 R Ixl <224 C F EI
DCOT D 1 D C F E

Arcsine y=arcsin(x) ASIN R 1 R Ixl~l A F E
DASIN D 1 D A F E

Arccosine y=arccos(x) ACOS R 1 R Ixl~l A F E
DACOS D 1 D A F E

Arctangent y=arctan(x) ATAN R 1 A F E
DATAN D 1 D Ixl<infinity A F E

y=arctan(xl /x2) ATAN2 R 2 R IX11<infin., A F E
DATAN2 D 1 D IX21~O A F E

Hyperbolic y=sinh(x) SINH R 1 R Ixl<2 13 ·1n2 A F E
sine DSINH D 1 D A F E

t A=ANSI standard, C=Cray extension; F=full, P=pseudo, N no vectorizing;
E=external code, I=in-line code.

tt x=xr+i·xi

SR-0009 B-4 L

Table B-2. Trigonometric Functions (Angles in Radians) (continued)

Function Argument(s) Codes
Purpose Definition Name, Type No. Type Range t

Hyperbolic y=cosh(x) COSH R 1 R Ixl<2 13 ·ln2 A F E
cosine DCOSH D 1 D A F E

Hyperbolic y=tanh(x) TANH R 1 R Ixl<2 13 ·1n2 A F E
tangent IDTANH D 1 D A F E

I
t A=ANSI standard, C=Cray extension; F=full, P=pseudo, N=no vectorizing;

E=external code, I=in-line code.

Table B-3. Exponential Functions

Function Argument(s) I Codes
Purpose Definition Name, Type No. Type I Range I

I I
I I

Square y=x1/2 SQRT R 1 R IO~x~infinityIA
root DSQRT D 1 D I A

CSQRTtt C 1 C IXr~O, A
xi<infinity

Exponent y=ex EXP R 1 R Ixl<2 13 ·1n2 A
DEXP D 1 D A
CEXPtt C 1 C Ixr l<2 13 ·1n2 A

IXil<224

t A=ANSI standard, C=Cray extension; F=full, P=pseudo, N no vectorizing;
E=external code, I=in-line code.

tt x=xr+ioxi

SR-0009 B-5 L

t

F E
F E
F E

F E
F E
F E

Table B-4. Logarithmic Functions

I Function Argument(s) Codes
Purpose Definition Name,Type No. Type I Range t

I
I

Natural Generic is LOG ALOG R 1 R I A F E
logarithm y=ln(x) DLOG D 1 D IO<x<infinity A F E

CLOGtt C 1 C I A F E
I
I

Common Generic is LOGIO ALOGIO R I R I A F E
logarithm y=log(x) DLOGIO D 1 D IO<x<infinity A F E

I
t A=ANSI standard, C=Cray extension; F=full, P=pseudo, N=no vectorizing;

E=external code, I=in-line code.
tt x=xr+i·xi

Table B-S. Maximum/Minimum Functions

I Function Argument(s) Codes
Purpose Definition Name,Type No. I Type Range t

I
I

Select Generic is MJlX MAXO I I I A F I
maximum AMAXI R I R A F I
value y=The largest of all x DMAXI D 64>n>2 D Ixl<infinity A F I

AMAXO R I I A F I
MAXI I I R A F I

I
I

Select Generic is M.IN MINO I I I A F I
minimum AMINI R I R A F I
value y=The smallest of all x DMINI D 64>n>2 D Ixl<infinity A F I

AMINO R I I A F I
IMINI I I R A F I
I I

t A=ANSI standard, C=Cray extension; F=full, P=pseudo, N=no vectorizing;
E=external code, I=in-line code.

SR-0009 B-6 L

Table B-6. Character Functions

I Function Argument(s) Codes
Purpose Definition Name, Type No. Type Range t

Lex .GE. y=al~a2 in collating seq LGE L 2 CH Any string A N E

Lex .GT. y=al>a2 in collating seq LGT L 2 CH Any string A N E

Lex .LE. y=al~a2 in collating seq LLE L 2 CH Any string A N E

Lex .LT. y=al~a2 in collating seq LLT L 2 CH Any string A N E

Length of Number of characters in a LEN I 1 CH Any string A N I
string character entity

Index of a Returns the position of a INDEX I 2 CH Any string A N E
substrng character within a string

t A=ANSI standard, C=Cray extension, F=full, P=pseudo, N=no vectorizing;
E=external code, I=in-line code.

Table B-7. Type Conversion Functions

Purpose Definition

ConversionlTruncation
to integerltoward zero

I (fraction lost)
I
I
I
I
I

Function
Name, Type

INT I
I
I
I
I

IFIX I
IDINT I

No.

1
1
1
1
1
1
1

Argument(s)
Type I Range

I

I
C Ilxrl<246
I Ilxl<263
R Ilxl<246
Itt I I x I < 223

Bttt I I x I < 263
R,Btttlxl<246
D I

I

Codes
t

A F I

A F I
A F I

t A=ANSI standard, C=Cray extension; F=full P=pseudo, N=no vectoriz~ng;
E=external code, I=in-line code.

tt 24-bit integer
ttt Type conversion routines assign appropriate types to Boolean arguments

without shifting or manipulating the bit patterns they represent.

SR-0009 B-7 L

Table B-7. Type Conversion Functions (continued)

Purpose Definition
Function
Name, Type

Arqument(s) Codes I
No. Type I Range t I

=====================================d====~====I==========~===1

Conversion y=x r ,r
to real

y=x

y=x Accuracy may be lost

Conversion y=x r ,r
to double­
precision

y=x

Conversion y=x
to complex

Accuracy may be
lost.

Accuracy may be
extended.

y=xl + i·x2
or

y=xl + i·O

I I
I I

REAL R 1
1
1
1
1
1

C Ilxrl<246 A F II
R

R
I

R Ilxl<infinity I
I Ilxl<246 I
Itt Ilxl<223 I

FLOAT R
SNGL R

Bttt I Ixl<infinity A F II
D I Ixl<infinitylA F II

DBLE

CMPLX

D
D
I
D
D
D

1
1
1
1
1
1

C
I
Itt
R
D
Bttt

C 1 C
C 1,2 I
I 1 Itt
C 1,2 Bttt
C 1,2 R
C 1,2 D

IXrl<infin. A F I
Ixl <246
Ixl<223

I x I <infinity

Ixl<infinity A F I
Ixl <246
Ixl<223

Ixl<infinity

Character ICHAR(x) returns position ICHAR
to integer of character x in

I 1 CH any legal
character

A N E

collating sequence

Integer to CHAR(x) returns the xth
character Icharacter in collating

I sequence
I

CHAR CH 1
CHI 1

I
I

I

B
0-255 A N I

t A=ANSI standard, C=Cray extension; F=full, P=pseudo, N=no vectoriz1ng;
E=external code, I=in-line code.

tt 24-bit integer
ttt Type conversion routines assign appropriate types to Boolean arguments

without shifting or manipulating the bit patterns they represent.
,r x=xr+i· xi

SR-0009 B-8 L

Table 8-8. Boolean Functions

I
Function Argument(s) Codes I

Purpose Definition Name, Type I No. Type Range t I
============================~======~I====~==============~===I

I I
Logical
product

Bit-by-bit logical
product (AND) of
xl and x2

AND B I 2 B, I, C F I I
I R,P I

L 2 L I
_________ ~----------------------~------~----~--~----------~-----I
Logical
sum

Bit-by-bit logical sum
(OR) of xl and x2

Logical Bit-by-bit logical
difference difference (XOR or NEQV)
(not of xl and x2
equiv.)

Equiva­
lence

Bit-by-bit equivalence
(XOR) of xl and x2

Complement Bit-by-bit logical
complement of xl

Mask x=number of one-bits to
be left-justified if
O<x<63.
(128-x)=number of l-bits
to be right-justified
if 64~x~l28.

OR

XOR,
NEQV

EQV

COMPL

I MASK
I
I
I
I
I
I

B 2

L 2

B 2

L 2

B 2

L 2

B 1

L 2

B 1

B,I,
R,P

L

B,I,
R,P

L

B,I,
P

L

B,I,
R,P

L

I

C F I

C F I

C F I

C F I

C F I

t A=ANSI standard, C=Cray extension; F=full, P=pseudo, N=no vectorizing;
E=external code, I=in-line code.

SR-0009 B-9 L

I

Table B-8. Boolean Functions (continued)

Purpose

Circular
shift

Definition

Xl shifts left x2
positions; leftmost
positions replace vacated
positions.

Function
Name, Type

SHIFT B

Logical
shift

Xl shifts left x2 SHIFTL B
positions; leftmost
positions lost; rightmost
positions set to zero.

Xl shifts right x2 SHIFTR B
positions; rightmost
positions lost; leftmost
positions set to zero.

Leading
zeros

Tallies number of leading LEADZ
zeros in X

Population Tallies number of ones
count in X

PopulationlO, if x has an even
parity Inumber of ones; 1, if X
count Ihas odd number of ones.

Cray
Scalar
Merge

I
I
IBit-by-bit selective
Imerge: (xl AND x3) OR
l(x2 AND NOT x3). See the
lend of this section.
I

POPCNT

POPARR

CSMG

I

I

I

B

No.

2

2

2

I

I

1

3

Argument(s)
Type 1 Range

I

1
xl: IO~x2<64
B,I,I
R,L 1

x2: 1

Xl: O~x2<64
B,I,
R,P
x2: 1

Xl:
B,I,
R,P
x2: 1

B,I,
R,L

B,I,
R,L

B,I,
R,L

B,I,
R,L

Codes
t

C F I

C F I

C F I

C F I

C F I

C F I

C F I

t A=ANSI standard, C=Cray extension, F=full, P=pseudo, N=no vectorizing;
E=external code, I=in-line code.

SR-0009 B-10 L

Purpose

Real-time
clock

Time

Julian
date

Date

Table B-9. Time and Date Functions

Definition

Low order 46 bits of
clock register exeressed
as floating point integer

Current clock register
content

Current time in ASCII
code (hh:rnm:ss)

Current Julian date in
ASCII code (yyddd)

Current date in ASCII
code (rnm/dd/yy)

I Function Argument(s)
I Name, Type 1 No. Type 1 Range
I I I
1 1 I
IRTC R 0 I
I I

I
1

IRTC I 0

CLOCKtt B 0

JDATEtt B 0

DATEtt B o

Codes
t

C N I

C N I

C N E

C N E

C N E

t A=ANSI standard, C=Cray extension; F=full, P=pseudo, N no vectorizing;
E=external code, I=in-line code.

tt These procedures can be called as subroutines also. An integer or real
argument is passed to return the result.

Table B-10. Miscellaneous Functions

Purpose Definition
Function
Name,Type No.

Argument(s)
Type Range

Codes 1

t 1

===1
Location Returns memory address of LOC I

specified variable or
array

1 B,I,
R,L,
C,D,
p

1
1

I
I
I

____________ ~-------------------------~-------~------~---~------------~-----I
Number of Tallies number of
arguments arguments used to

subprogram

INUMARG I

call a I
I

0
I

C N II
I
I

I --------~----------------------~--------~----~----~----------~----I
t A=ANSI standard, C=Cray extension; F=full, P=pseudo, N=no vectorizing;

E=external code, I=in-line code.

SR-0009 B-11 L

Table B-11. Vectorization Functionst

I
Function I Argument(s) Codes

Purpose Definition Name, Type I No. Type Range tt
I
I

Vectoriza- xl returned if x3 ~ 0 CVMGP BI 3 B,I, C F I
tion x2 returned if x3 < 0 I R,P

L 3 L

xl returned if x3 < 0 CVMGM B 3 B,I, C F I
x2 returned if x3) 0 R,P

L 3 L

xl returned if x3 = 0 CVMGZ B 3 B,I, C F I
x2 returned if x3 i: 0 R,P

L 3 L

xl returned if x3 i: 0 CVMGN B 3 B,I, C F I
x2 returned if x3 = 0 R,P

L 3 L

xl returned if x3 CVMGT B 3 x1,x2 C F
is true B,I,

x2 returned if x3 R,P
lis false x3: L
I L 3 L
I

t These functions cannot be passed as arguments.
tt A=ANSI standard, C=Cray extension; F=full, P=pseudo, N=no vectorizing;

E=external code, I=in-line code.

B.1 CSMG (CRAY SCALAR MERGE) FUNCTION

C SMG (xl, x 2 , x 3) = (xl. AND • x 3) • OR • (x 2 . AND • • NOT. x 3)

CSMG merges xl and x2, controlled by the bit mask in x3. When a 1 bit
appears in x3, the corresponding bit of xl is taken, and when a 0 bit appears
in x3, the corresponding bit of x2 is taken.

CSMG compiles to very efficient in-line code because the Cray hardware
includes a scalar merge instruction, which eFT generates for CSMG. Because

SR-0009 B-12 L

I

the uses of CSMG are generally machine-dependent, it should not normally be
used where portability is important.

Some typical uses of CSMG follow.

To select one of the arguments:

For any xl & x2: CSMG(xl,x2,MASK(64» = CSMG(xl,x2,-1) = xl.

CSMG (xl,x2,0) = x2.

To replace bit-fields:

CSMG('ABCDEFGH'H, '12345678'H, X'OOOOFFFFFFOOOOFF') =
'12CDE67H'H

INTEGER EXPONENT, EXPMASK
PARAMETER (EXPMASK = X'7FFFOOOOOOOOOOOO'
EXPONENT(X) = SHIFTR(X.AND.EXPMASK, 48)
DIVBY2(X) =

Statement function
& CSMG(SHIFTL(EXPONENT(X)-1,48),
& X,
& EXPMASK)

Then, for example, DIVBY2(-28.0) = -14.0.

SR-0009 B-13

Statement function

L

C. CRAY FORTRAN UTILITY PROCEDURES

The Cray FORTRAN Compiler (CFT) includes a set of utility procedures
which, like intrinsic functions, are predefined by name and function.
Unlike intrinsic functions, however, utility procedures are not provided
for by the ANSI FORTRAN Standard. They include subroutines as well as
functions; some have arguments of mixed type; and some modify these
arguments' contents.

The CFT utility procedures qenerate calls to operating system routines.
All of the utility procedures are implemented under COS. Some of the
procedures are not implemented under UNICOS; these procedures are so
indicated in table C-l.

Table C-l describes the utility procedures. Data types are abbreviated
as follows: integer (I), real (R), double precision (D), complex (C),
logical (L), Boolean (B), and Hollerith (H). Unless noted, 24-bit
integer variables can be used as arguments to a function accepting
integer arguments. 24-bit variables are sign extended and treated as
64-bit variables.

SR-0009

NOTE

Although correct argument types are specified, it is
the user's responsibility to ensure that actual
arguments are of the correct type. No type conversion
occurs automatically.

C-l L

Function Type
or Subrtn. (fnct

Name only)

tSYSTEM I

SSWITCH

ABORT

ERREXIT

TRBK I

REMARK

REMARK2

REMARKF

Table C-1. CFT Utilities

Description

Selects a COS function. See the description of
the Exchange Processor in the COS EXEC/STP/CSP
Internal Reference Manual, publication SM-0040

Terminates job step. Job continues at next
control statement.

x2 = 1 if sense switch xl is ON.
x2 = 2 if sense switch xl is OFF, if xl < 1,
or if xl) 6.

Terminates job step after program detects error.
Gives error exit to COS. Job continues at next
EXIT statement. Prints traceback in logfile.
Argument xl is optional; if present, it is
written to the loqfile before the traceback, and
is subject to same restrictions as in REMARK2.

Terminates job step after program detects error.
Gives error exit to COS. Job continues at next
EXIT control statement. Prints no traceback.

Writes a traceback through subroutine calls to
file xl. If xl is '$LOG' or is missing, the
traceback is written to the logfile.

Writes an ASCII message to both the user logfile
and system logfile. The R descriptor is
prohibited. For a variable or array name of type
I, R, C, or D (not 24-bit integer), the caller
must signal the end of the message'by a null
character (0). xl = 8 words maximum.

Same as REMARK except that xl may have a maximum
of 9 words. The first 5 characters are a code
identifying the message for machine processing.

Enters a message in the logfile. A format and up
to 12 variables can be passed, each occupying
only 1 word. The first argument is the format
label.

t This procedure is not available under UNICOS.

SR-0009 C-2

Arg.
Type

L

I

I

B,I,
D,C,

L

I

B,I,
D,C,

L

B,I,
D,C,

L

I
Function IType

or Subrtn. (fnct

Table C-1. CFT Utilities (continued)

Name only) Description

SENSEFI Determines current interrupt mode.

CLEARFI

SETFI

CLEARFIS

SETFIS

tIEOF I

R

tUNIT R

tLENGTH I

Mode=l, interrupts permitted;
Mode=O, interrupts prohibited.

Temporarily prohibits floating-point interrupts

Temporarily permits floating-point interrupts

Permanently prohibits floating-point interrupts

Permanently permits floating-point interrupts

Writes EOD and, as required, EOF and EOR
record (s)on unit xl

Returns -1 if EOD processed at unit xl;
+1 if EOF read at unit xl;
0, otherwise.

Returns -1.0 if EOD processed at unit xl;
+1.0 if EOF read at unit xl;
0.0, otherwise.

Returns -2.0 if record at unit xl partly read;
-1.0 if unit xl transfer successful;
0.0 if EOF or EOD read at unit xl;

+1.0 if disk parity error while reading
unit xl;

+2.0 if unit xl error indicated.
Applies only to buffered input/output operations.

Returns number of Cray words transferred to or
from unit Xl. Returns 0 if EOF or EOD read
from unit x1.Applies only to buffered
input/output operations.

t This p ocedure is not available under UNICOS.
tt Xl can be a unit number or a Hollerith unit name. If no argument

is specified for DUMPJOB, $DUMP is used.

SR-0009 C-3

Arg.
Type

I

Itt

Itt

Itt

Itt

Itt

L

Function Type
or Subrtn. (fnct

Name only)

Table C-l. CFT Utilities (continued)

Description

1

1

Arg. I
Type I

===1

tGETPOS B

tSETPOS

TIMEF R

SECOND R

tENDRPV

tSETRPV

tSYMDEBUG

tDUMPJOB

Returns starting address of cur,rent record in
the dataset associated with unit xl

Sets starting address of current record in
dataset associated with unit xl to beginning
address of dataset if x2 = 0, to ending address
if x2 = -1, or to word address x2.

Returns current clock register content in
milliseconds

xl = Cumulative CPU time for job in seconds.ttt

Resumes error exit processing suspended by SETRPV

Transfers control to a specified routine upon
encountering a user-selected system error.
Xl = Name of subroutine to which control is

passed
x2 = Array to receive the Exchange Package and

abort conditions
x3 = Mask defining the error class from which

reprieve is desired

Dumps the contents of specified program variables.
The character string argument is identical to the
parameters for the DEBUG control statement. See
COS Version 1 Reference Manual, publication
SR-OOll

Creates an unblocked dataset containing the user
job area image (including register states)
suitable as input to the DUMP programs

t This procedure is not available under UNICOS.

1
Itt 1

I
I

xl: Itt

R

I,R,L

H

Itt

tt Xl can be a unit number or a Hollerith unit name. If no argument
is specified for DUMPJOB, $DUMP is used.

ttt This procedure can be used either as a function or as a subroutine,
but not both within the same program unit.

SR-0009 C-4 L

D. eFT MESSAGES

The Cray FORTRAN Compiler (CFT) produces seven types of compile-time
messages. From least severe to most severe, they are

NOVECTOR

COMMENT

NOTE

CAUTION

WARNING

NON-ANSI

ERROR

Message describes why a DO loop did not vectorize.
NOVECTOR messages are issued only when the LOOPMARK
utility is enabled on the CFT compiler call. The
NOVECTOR messages are described following the logfile
message descriptions in this appendix.

Message reports a ,programming inefficiency.

This usage may cause problems with other compilers.

Message reports a possible programmer error.

Message reports a probable programmer error.

Message reports when the ANSI parameter is specified
on the eFT control statement. Specifying ANSI issues
nonstandard code messages as NON-ANSI instead of NOTE,
CAUTION, or WARNING. When ANSI is not specified on
the CFT control statement (the default), the message
is issued as a NOTE, CAUTION, or WARNING.

Message reports a fatal error.

CFT produces these messages in the following general format.

severity type message location number

(Location number is the internal CFT location where the message was
generated.)

If a message in this appendix is preceded by t, the print position at
which the error occurred is specified by the following.

NEAR » «

Error messages can occur under the following conditions.

• After the first nondeclarative statement - An error message
occurring after the first nondeclarative statement usually
indicates contradictions between declarative statements.

• After an END statement - An error message occurring after an END
statement usually refers to missing statement or format numbers.

SR-0009 0-1 L

• After any other statement - An error message occurring after any
other statement usually refers to a syntax error in that
statement. If no source list is being generated, the first line
of the statement is listed. Continuation lines, if any, are not
listed but are indicated by four plus signs appended to the first
line of the statement.

Logfile messages follow the compile-time messages in this appendix.

D.1 COMPILE-TIME MESSAGES

"name" ALREADY SAVED AT SEQUENCE NUMBER n
"name" is in a SAVE statement list and the preceding SAVE statement
list at sequence number n.

"name" APPEARS TWICE IN DUMMY ARGUMENT LIST
A symbolic name appears twice in the dummy argument list of a
FUNCTION or SUBROUTINE statement.

"name" CANNOT BE DECLARED EXTERNAL
"name" has appeared in both an EXTERNAL statement and in an array
declarator, DATA, COMMON, or PARAMETER statement.

"name" CANNOT BE DECLARED INTRINSIC
The symbolic name was used in the program unit, giving the name a
type; for example, a dummy argument.

"name" DOUBLY ASSOCIATED IN EQUIVALENCE AT SEQUENCE "number"
EQUIVALENCE statements using "name" are incorrect and specify an
illegal storage sequence. To correct the error, the following two
situations must be true. The same storage unit cannot occur more
than once in a storage sequence. The example

REAL A(2)
EQUIVALENCE (X,A(l», (X,A(2»

is incorrect because A(l) and A(2) have the same storage unit.
Consecutive storage units cannot be specified as nonconsecutive. The
example

REAL A(2)
DOUBLE D(2)
EQUIVALENCE (A(l),D(l», (A(2),D(2»

is incorrect because A(l) and A(2) are nonconsecutive.

"name" IS STATICALLY ALLOCATED
CFT assigns "name" to static storage; otherwise, the name can be
removed from SAVE and DATA statements.

SR-0009 D-2 L

"name" NO LONGER INTRINSIC
An intrinsic function name appeared in a compiler directive, g1v1ng
external subprograms special attributes (for example, VFUNCTION and
NO SIDE EFFECTS). The intrinsic function loses its intrinsic
properties. The intrinsic function should appear in an EXTERNAL
statement before the compiler directive declarations.

"name" NOT AN INTRINSIC FUNCTION
A symbolic name in the list of an INTRINSIC statement is not an
intrinsic function.

"name" NOT LOCAL OR COMMON BLOCK VARIABLE
List may contain only local or common block variables.

"name" PREVIOUSLY DECLARED AS AN ARRAY
The symbol name has already been used in the program as an array
name.

"name" STATEMENT IS A NONSTANDARD STATEMENT
The statement type indicated is a CFT extension to the FORTRAN
language specified by the ANSI FORTRAN Standard.

t"name" UNEXPECTED CHARACTER IN FORMAT
When a format specifier list was parsed, an unknown edit descriptor
or premature end of an edit descriptor was found. CFT attempts to
recover at the next character following a comma or at the next
parenthesis or string delimiter.

"name" USED AS SYMBOLIC CONSTANT AND AS COMMON BLOCK NAME
The same identifier was used for a common block name and a symbolic
constant name. The ANSI FORTRAN Standard prohibits this duplicate
usage within the same program unit.

tABBREVIATION OF "name" IS NONSTANDARD
The logical operator or constant indicated by "name" was abbreviated.
The ANSI FORTRAN Standard prohibits the abbreviation of logical
constants or operators.

ADJUSTABLE DIMENSION ILLEGAL IN MAIN PROGRAM
Arrays in main program must have constant subscripts.

ALTERNATE RETURNS ARE NOT ALLOWED IN FUNCTIONS
An alternate return was encountered in a function.

AMBIGUOUS CHARACTER EXPRESSION
A character expression of the form v=e is illegal if the same
character position is referenced by v and e. A character
expression is ambiguous if subscripts or substrings are defined with
variables. For example, A(I:J)=A(K:L) is ambiguous to the compiler.
The expression must be legal or unexpected results may occur.

SR-0009 D-3 L

ARGUMENTS IGNORED FOR ZERO ARGUMENT INTRINSIC
An intrinsic function defined to have zero arguments was referenced
with one or more arguments. Reference zero argument intrinsics with
a null argument list.

ARITHMETIC EXPRESSION WITH DOUBLE PRECISION AND COMPLEX IS NONSTANDARD
An arithmetic or relational expression was used with a complex and
double-precision operand. CFT will convert the double-precision
operand to a complex operand. The ANSI FORTRAN Standard prohibits
these conversions.

ARITHMETIC EXPRESSIONS WITH BOOLEAN OPERANDS ARE EVALUATED LEFT TO RIGHT
RESULTS MAY DIFFER FROM PRE-1.1S CFT RESULTS

Arithmetic expressions with Boolean operands are evaluated so that
the result is the same as if the expression were evaluated from left
to right within precedence levels. This is not necessarily the case
in CFT versions prior to 1.15.

ARITHMETIC WITH TWO BOOLEAN OPERANDS PRODUCES BOOLEAN RESULTS
RESULTS MAY DIFFER FROM PRE-1.1S CFT RESULTS

In CFT versions prior to 1.15, arithmetic with two Boolean operands
produced integer results.

ARRAY NAMED FORMAT IS POTENTIALLY AMBIGUOUS
An array with the symbolic name 'FORMAT' was declared using the
DIMENSION, COMMON, INTEGER, REAL, DOUBLE, or COMPLEX statement.

ASSUMED SIZE DIMENSION ILLEGAL IN MAIN PROGRAM
Arrays in main program must have constant subscripts.

AT SEQUENCE NUMBER n: "name" CANNOT BE SAVED
"name" is in a SAVE statement list at sequence number n, but
"name" cannot appear in a SAVE statement list.

tBAD CONSTANT LIST IN DATA STATEMENT
A DATA statement is missing a constant list or contains an illegal
constant or separator character.

BAD HEXADECIMAL CONSTANT
Illegal separator between hexadecimal digits or the length of the
constant is greater than 16 characters.

BAD REPETITION FIELD
The repetition count in a DATA constant list must be an integer
greater than O.

tBAD STATEMENT FUNCTION PARAMETER LIST
The formal parameter list in an arithmetic statement function
definition statement contains an illegal element.

SR-0009 0-4 L

BAD SUBSCRIPT IN DATA STATEMENT
A subscript must be an integer constant or constant name in a DATA
statement.

BAD TRIP COUNT IN IMPLIED DO
Incrementation parameter m3 has been assigned a value of 0 or
(m2 - m1+m3) /m3 is negative or O.

BLOCK IF STATEMENTS NESTED TOO DEEPLY
The nesting of block IF statements exceeds 511. CFT does not allow
more than 511 nested block IF statements.

BRANCH INTO IF, ELSE, OR ELSE IF BLOCK; LABEL "1"
A branch into an IF-block, ELSE-block, or ELSE IF-block to label
"1" from outside the block has been detected. The ANSI FORTRAN
Standard prohibits the transfer of control into an IF-block,
ELSE-block, or ELSE IF-block.

BUFFERED 10 IS NONSTANDARD
A BUFFER IN or BUFFER OUT statement was used. Buffered input and
output are CFT extensions to the ANSI FORTRAN Standard.

CALL OF NON EXTERNAL FUNCTION "name"
Called external procedure does not exist or a name has been used for
both a variable and an external procedure.

tCHARACTER COUNT TOO LARGE
An R-form Hollerith constant is specified with more than eight
characters or an H- or L-form Hollerith constant is specified with
more than eight characters in other than a DATA statement or an
actual argument list.

CHARACTER LENGTH MUST BE >ZERO and <16384
A character entity must be assigned a length greater than 0 and less
than 16,384.

COMBINATION OF CODE AND DATA EXCEEDED MAXIMUM SIZE
The combination of code and data has exceeded 16 million words if
Extended Memory Addressing (EMA) was used, or 4 million words if EMA
was not used.

COMMA EXPECTED
A required comma has not been specified.

COMMA EXPECTED IN EQUIVALENCE AT SEQUENCE "number"
A required comma has been omitted in an EQUIVALENCE statement.

tCOMMA OR RIGHT PARENTHESIS EXPECTED
A required comma or right parenthesis was omitted.

SR-0009 0-5 L

COMMA OR RIGHT PARENTHESIS EXPECTED IN EQUIVALENCE AT SEQUENCE "number"
A required comma or right parenthesis was omitted in an EQUIVALENCE
statement.

tCOMMA REQUIRED BY STANDARD BETWEEN FORMAT FIELDS
The ANSI FORTRAN Standard requires a comma between most format edit
descriptor fields, while most commas in CFT format specifier lists
are optional.

COMMON BLOCK "name" IS VERY LARGE; USE EXTENDED MEMORY ADDRESSING
A named or blank common block was declared with more than 4 million
words of storage.

COMMON BLOCK NAME "name" MORE THAN 6 CHARACTERS
The common block name has seven or eight characters. ANSI FORTRAN
Standard common block names cannot have more than six characters.

COMPILER ERROR
The CFT compiler detected an error in its internal tables; please
show your listing to a Cray Research systems analyst.

COMPILER ERROR - INTERNAL TABLE OVERFLOW, RECOMPILE WITH SMALLER BLOCK
SIZE

A CFT internal table has overflowed when compiling. The optimization
block where the error occurs must be reduced in size by inserting a
CDIR$ BLOCK compiler directive in the block or reducing the maximum
block size with the MAXBLOCK control statement parameter.

CONFLICTING TYPE FOR INTRINSIC FUNCTION "name" IGNORED
A type statement cannot change the type of an intrinsic function.
The function must be declared EXTERNAL before its type can be changed.

CONFLICTING USE OF INTRINSIC FUNCTION "name"
An intrinsic function name has been used to reference the function in
another way within the program unit.

CONSTANT DIMENSION TOO LARGE
All dimensions must be less than 222.

CONSTANT LIST LONGER THAN VARIABLE LIST
Constants and variables in a DATA statement must have a one-to-one
correspondence.

tCONSTANT SUBSCRIPT TOO LARGE
Statement contains a subscript which, when evaluated, yields a result
greater than the size of the named array.

CONTROL LIST MUST INCLUDE ONE FILE OR UNIT OPTION
INQUIRE statement must specify either a file or a unit.

SR-0009 0-6 L

CONTROL LIST MUST INCLUDE ONE UNIT OPTION
The I/O statement must specify a unit.

tDATA ENTRY IN BLANK COMMON ILLEGAL
The DATA statement cannot be used to initialize blank common.

DATA INITIALIZATION OF COMMON VARIABLE "name" NOT IN BLOCK DATA SUBPROGRAM
"name" appeared in a common block and was initialized in a DATA
statement in an executable subprogram. The ANSI FORTRAN Standard
allows data initialization of common block entities only in a block
data subprogram.

DATA STATEMENT PRECEDES SPECIFICATION STATEMENT
The ANSI FORTRAN Standard specifies an order for nonexecutable
statements. A DATA statement must appear after every specification
statement. CFT detected a DATA statement preceding a specification
statement.

DECLARATOR "name" MUST BE DUMMY ARGUMENT OR IN COMMON
The dimension declarator "name" in an adjustable array declarator
was not a dummy argument or a variable in common.

DEPENDENCY INVOLVING ARRAY "name"
A dependency exists involving two array references in the same
statement. This dependency inhibits DO-loop vectorization.

DEPENDENCY INVOLVING ARRAY "name" IN SEQUENCE NUMBER nnnnnnnn
A dependency exists involving an array reference in sequence number
nnnnnnnn and an array reference in the AT SEQUENCE NUMBER n line
preceding this message. This dependency inhibits DO-loop
vectorization.

DIMENSION COUNT > SEVEN
More than seven dimensions appear in an array declarator.

DIMENSION EXCEEDED
A subscript in a DATA statement element exceeds the corresponding
array declaration.

DIRECTIVE NO LONGER SUPPORTED
The SCHED and NOSCH directives are no longer supported. The
directives have no effect if used.

DIVIDE BY ZERO
Dividing by the constant 0 is illegal.

DO ILLEGAL ON CONDITIONAL STATEMENT
This type of statement is not allowed as the conditional statement of
a direct logical IF statement.

SR-0009 0-7 L

DO INDEX ACTIVE
The loop control variable is already active from a previous loop.

DO INDEX IN INPUT LIST
Attempt to read data into a DO variable.

DO LOOP MAY NOT CROSS BLOCK BOUNDARY
A DO loop that begins within an IF-block, ELSE-block or ELSE IF-block
must be totally contained within that block. A block that begins
within a DO loop must be totally contained within the loop.

DO TERMINATOR ILLEGAL IN CONDITIONAL BLOCK STATEMENT
DO-loop must not terminate on an IF (e)THEN, ELSE, ELSE IF, or
ENDIF statement.

DO TERMINATOR PRECEDES DO STATEMENT
The statement label that terminates a DO-loop precedes the
corresponding DO statement.

tDOUBLE PRECISION CONSTANT IN COMPLEX CONSTANT IS NONSTANDARD
A double-precision constant is used to form a complex constant. CFT
allows this when double prec~s~on is disabled (OFF=P option in the
CFT control statement), but it is prohibited by the ANSI FORTRAN
Standard.

DOUBLY DEFINED FUNCTION OR MISSING DIMENSION
An arithme'tic statement function is defined more than once or an
array was not dimensioned.

DOUBLY DEFINED STATEMENT NUMBER
Statement labels cannot be defined more than once in a program unit.

DUMMY ARGUMENT IN EXECUTABLE STATEMENT PREVIOUS TO ENTRY
A dummy argument name in an executable statement must also be
specified in the FUNCTION, SUBROUTINE, or ENTRY statement referenced
before the executable statement.

DUPLICATE COMMON DEFINITION "name"
Variable or array appears in common more than once.

DUPLICATE CONTROL OPTION IN LIST
An option is specified more than once in an 1/0 statement control list.

DUPLICATE DIMENSION "name"
Dimensions cannot be declared more than once.

DUPLICATE TYPE DEFINITION "name"
Variables cannot be given more than one type. This message is issued
when a type statement redefines the variable type with a type
established by a DATA, POINTER, or previous type statement.

SR-0009 D-8 L

DYNAMIC BLOCK "name" NOT IN PREVIOUS COMMON
Dynamic name must be declared as a common block previous to its
appearance in a DYNAMIC compiler directive.

tEBCDIC NOT IMPLEMENTED
The current version of CFT allows only ASCII characters.

EMBEDDED COMMENTS ARE NONSTANDARD
A comment is embedded in a line of source code following an
exclamation point. Embedded comments are a CFT extension to the ANSI
FORTRAN Standard.

tEMPTY PARENTHESES ILLEGAL IN FORMAT
CFT found an empty set of parentheses nested in a format specifier
list. Only the outermost set of parentheses can be empty.

ENCODE/DECODE MAY NOT BE LIST DIRECTED
The format identifier in an ENCODE or DECODE statement must not
specify list-directed I/O; it cannot be an *.

ENTRY NAME ILLEGAL
ENTRY name not a function or subroutine name.

ENTRY "name" USED AS DUMMY ARGUMENT
"name" is an entry point (that is, "name" appeared in a FUNCTION,
SUBROUTINE, ENTRY, or BLOCK DATA statement) and appears as a dummy
argument.

ENTRY STATEMENT ILLEGAL IN DO LOOP OR BLOCK IF
The ENTRY statement must not be used in a DO loop or a block IF.

ENTRY STATEMENT ILLEGAL IN MAIN PROGRAM
The ENTRY statement must not be used in a main program. It is used
only in a subroutine or function.

tEQUIVALENCE EXTENDS COMMON BLOCK BASE
Common block storage is illegally extended by adding storage units
preceding the first storage unit specified in the COMMON statement.

EQUIVALENCE OF "name" IN DIFFERENT COMMON BLOCKS
An EQUIVALENCE statement must not associate the storage sequences of
two different common blocks in the same program unit.

ERROR IN CONSTANT
Illegal characters in constant, or constant out of range

EXECUTABLE CODE IN BLOCK DATA SUBPROGRAM
Executable statements appear in a block data subprogram. This is
prohibited by the ANSI FORTRAN Standard.

SR-0009 D-9 L

tEXPRESSION ILLEGAL IN INPUT LIST
Input list item is not a variable name, array element name, or array
name.

EXPRESSION TYPE MUST BE INTEGER
Expressions in alternate RETURN statement must be type integer.

EXTENDED RANGE DO-LOOP IS NONSTANDARD
CFT detects a branch into the range of a DO loop or a possible branch . .
uS1ng an ASSIGN, END=, or ERR= branch to a label defined in the range
of a DO-loop. Extended range DO loops are a CFT extension to the
ANSI FORTRAN Standard.

tEXTRA CHARACTERS AFTER END OF STATEMENT
Characters are specified after the syntactic end of a statement.

tEXTRA CHARACTERS AFTER END OF STATEMENT IN EQUIVALENCE AT SEQUENCE
"number"

Characters are specified after the syntactic end of an EQUIVALENCE
statement.

tEXTRA COMMA OR MISSING PARAMETER
Either the statement contains an extra comma or a parameter or list
item has been omitted.

tFEWER SUBSCRIPTS USED THAN DECLARED
A reference to an actual array element has fewer subscript
expressions in its subscript than dimension declarators in the
corresponding array declarator. The missing subscript expressions
are assumed rightmost in the subscript and are each assigned the
value 1 by the compiler.

tFEWER SUBSCRIPTS USED THAN DECLARED IN EQUIVALENCE AT SEQUENCE "number"
A reference to an actual array element in an EQUIVALENCE statement
has fewer subscript expressions in its subscript than dimension
declarators in the corresponding array declarator. The missing
subscript expressions are assumed rightmost in the subscript and are
each assigned the value 1 by the compiler.

tFIELD WIDTH MUST NOT BE ZERO
The field width following a format edit descriptor is zero, for
example, FO.2 or G20.8EO.

tFIELD WIDTH VALUE TOO SMALL
The field width value of a format edit descriptor is too small to
print as specified, for example, F3.5.

FORMAT MUST BE CHARACTER EXPRESSION
A FORMAT specifier can be an expression only if the expression is a
character expression.

SR-0009 0-10 L

FUNCTION "name" ALREADY DECLARED EXTERNAL
The symbolic name appearing in an INTRINSIC statement has already
appeared in an EXTERNAL statement.

FUNCTION "name" ALREADY DECLARED INTRINSIC
The symbolic name appearing in an INTRINSIC statement has already
appeared in an INTRINSIC statement.

FUNCTION "name" MORE THAN 6 CHARACTERS
An attempt was made to declare a function with a name greater than
six characters as having a vector call-by-value version (CDIR$
VFUNCTION). Rename the function with a shorter name.

FUNCTION "name" MUST BE DECLARED IN INTRINSIC OR EXTERNAL STATEMENT
A function passed to another subprogram as an actual argument must be
declared in an INTRINSIC statement (intrinsic functions) or an
EXTERNAL statement (user-supplied functions).

FUNCTION "name" NOT DECLARED
One of the following conditions exists with IMPLICIT NONE or IMPLICIT
SKOL specified.

1. Function "name" has not appeared in an EXTERNAL statement.
2. "name" was intended to be an array but did not appear in an

array declarator.

FUNCTION OR CALL "name" REFERENCES ITSELF
A reference to the function or subroutine subprogram being compiled
is encountered with that subprogram.

tFUNCTION USED WITH INCORRECT NUMBER OF ARGUMENTS
The number of arguments in the function reference does not agree with
the number of arguments in the function definition.

GROUP NAME DEFINED PREVIOUS TO NAMELIST
A group name may be defined only in NAMELIST.

tH,L,R COUNT < OR = ZERO
In an nH, nL, or nR specification of a Hollerith value, n is
less than or equal to O.

tH,L,R COUNT PAST END OF STATEMENT
In an nH, nL, or nR specification of a Hollerith value, n
specifies more characters than are provided, or an apostrophe
terminating a Hollerith string is missing.

HEXADECIMAL CONSTANT IS NONSTANDARD
The ANSI FORTRAN Standard does not provide for hexadecimal constants.

SR-0009 D-11 L

tHOLLERITH CONSTANT > EIGHT CHARACTERS
A Hollerith constant of more than eight characters is specified in
other than H- or L-form and in other than an actual argument list or
a DATA statement constant.

tHOLLERITH CONSTANTS ARE NONSTANDARD
A Hollerith constant was used in a statement other than a FORMAT
statement. The ANSI FORTRAN Standard only allows Hollerith constants
in FORMAT statements.

IDENTIFIER "name" MORE THAN 6 CHARACTERS
The identifier contains 7 or 8 characters. The ANSI FORTRAN Standard
provides for a maximum of 6 characters in identifier names.

IF BLOCK LEVEL NOT = ZERO AT END STATEMENT
An ENDIF statement is missing.

ILLEGAL ARGUMENT TO TSKSTART
One or more arguments being passed to TSKSTART is inconsistent with
tlAe expected arguments. Check the arguments to ensure that the first
argument is an integer array with a minimum length of 2. The second
argument must be a declared external. The remaining arguments must
be local variables or variables declared in common. See the
Multitasking User's Guide, CRI publication SN-0222 for more
information.

ILLEGAL ARITHMETIC EXPRESSION
An operand in an arithmetic expression is of type logical. This is
prohibited by the ANSI FORTRAN Standard.

ILLEGAL BY VALUE CALL
A by-value function call requires more than seven S or V registers to
pass its arguments. A by-value call cannot use more than seven
registers. Reduce the register number to a number less than eight or
pass the arguments by address instead of by value.

tILLEGAL CHARACTER
A nonstandard FORTRAN character, misplaced character, or syntax error
has been encountered.

ILLEGAL CHARACTER EXPRESSION
A character assignment expression (for example, v=e) is illegal
because v is used in expression e.

tILLEGAL CHARACTER OR MISSING DIMENSION
Either the statement contains an illegal character or an array
element has not been defined by a DIMENSION statement.

tILLEGAL CHARACTERS IN NAME FIELD
Illegal characters are in a field that must contain a symbolic name.

SR-0009 D-12 L

tILLEGAL CHARACTERS IN NAME FIELD IN EQUIVALENCE AT SEQUENCE "number"
Illegal characters are in an EQUIVALENCE field that must contain a
symbolic name.

tILLEGAL CHARACTERS IN STATEMENT NUMBER FIELD
Non-numeric characters appear in what should be a numeric field.

tILLEGAL COMMON BLOCK NAME
The specification of a common block name does not conform to the
rules for constructing symbolic names.

tILLEGAL COMPILER DIRECTIVE
CDIR$ omitted or misspelled in columns 1 through 5, 6 not blank or
zero, compiler directive not in columns 7 through 72.

ILLEGAL CONDITIONAL STATEMENT
The conditional statement go logical IF must not be a logical IF
statement or a block statement IF.

ILLEGAL CONTINUATION
More than 19 consecutive continuation lines encountered or the first
line of a program unit is a continuation line.

tILLEGAL CONTROL OPTION
An option in the control list of an IIO statement is incorrect.

ILLEGAL CONVERSION IN DATA STATEMENT
The types of a variable and an associated constant in a DATA
statement differ. The type conversion required is illegal or
undefined.

tILLEGAL DO INDEX
DO variable is not an integer, real, or double-precision variable.

tILLEGAL DO TERMINATOR
DO loops must not terminate on unconditional transfer statements.

ILLEGAL DO VARIABLE OR PARAMETER TYPE
The DO-loop variable or parameter is not type integer, real,
double-precision, or Boolean.

tILLEGAL FORMAT NAME
A format identifier cannot be recognized as a statement label or the
name of an array.

tILLEGAL IMPLICIT STATEMENT ARGUMENTS
IMPLICIT statement argument is not an alphabetic character or the
range of characters specified is illegal.

ILLEGAL LOGICAL EXPRESSION
An operand in a logical expression is not of type logical. This is
prohibited by the ANSI FORTRAN Standard.

SR-0009 D-13 L

ILLEGAL MASKING OR BOOLEAN EXPRESSION
One or both operands in a masking or Boolean expression is of type
double precision or complex. Masking and Boolean expression operands
must be single word entities.

ILLEGAL MIX OF CHARACTER AND NONCHARACTER IN COMMON BLOCK "name"
It is illegal to mix character and noncharacter entities in the same
common block.

ILLEGAL MIX OF CHARACTER AND NONCHARACTER IN EQUIVALENCE AT SEQUENCE
"number"

It is illegal to mix character and noncharacter entities in" the same
EQUIVALENCE statement.

ILLEGAL MIXED MODE OR CONVERSION
The types of two operands in an expression are incompatible or the
type of array element or variable being defined is incompatible with
the type of expression being evaluated.

tILLEGAL NUMBER IN NAME FIELD
A symbolic name must not begin with a number.

tILLEGAL OR DUPLICATE PARAMETER DEFINITION
Symbolic name of type integer, real, double prec~s~on, or complex not
followed by an arithmetic expression. Symbolic name of type logical
not followed by a logical expression. A symbolic name has been
assigned more than once in the same program unit.

ILLEGAL PLACEMENT OF ALIGN, DIRECTIVE IGNORED
The ALIGN compiler directive was not placed immediately before a DO
statement, a statement with a referenced statement label, a PROGRAM
statement, a SUBROUTINE statement, a FUNCTION statement, or an ENTRY
statement. The directive will be ignored.

ILLEGAL POINTEE "name"
A pointee cannot be a dummy argument or a pointer. It cannot be
equivalenced or be specified in a common block statement.

ILLEGAL POINTER VARIABLE "name"
A pointer must be a simple variable. It cannot appear in an
EQUIVALENCE statement. If defined in a PARAMETER or DATA statement,
the definition must not precede its definition as a pointer.

ILLEGAL RELATIONAL EXPRESSION
One or both of the operands in a relational expression is an illegal
type for a relational expression. The most common error is comparing
logical values with .EQ. or .NE. The logical operators .EQV. or
.NEQV. should be used in these cases.

ILLEGAL STATEMENT LABEL IN 10 CONTROL LIST
A 1- to 5-digit statement number is missing after END= or ERR=.

SR-0009 D-14 L

ILLEGAL STATEMENT SEQUENCE
An improper sequence of statement types has been encountered (for
example, a GO TO statement followed by a DIMENSION statement).

ILLEGAL STATEMENT TYPE
A statement keyword is misspelled (for example, DIMENSOIN) or is
otherwise unidentifiable.

ILLEGAL STATEMENT TYPE IN BLOCK DATA SUBPROGRAM
A statement appears in a block data subprogram which is not provided
for by the ANSI FORTRAN Standard, that is, an INTRINSIC or EXTERNAL
statement.

ILLEGAL SUBSCRIPT TYPE "name"
A subscript expression is not of type integer or contains a constant
that exceeds 224_1.

ILLEGAL SUBSTRING
A substring for a character item is incorrectly formed or an attempt
is made to use a substring with an entity which can not have a
substring (such as a character constant).

ILLEGAL SYNTAX IN NAMELIST
Illegal element found in NAMELIST statement.

ILLEGAL TYPE FOR ASSIGNED VARIABLE
A variable reference in an ASSIGN statement is not of type integer.

tILLEGAL TYPE LENGTH
Length specified is not allowed for this data type.

ILLEGAL UNIT SPECIFIER
The unit specifier for INQUIRE must be an integer expression.

tILLEGAL USE OF ** IN CONSTANT EXPRESSION
A constant expression specifies exponentiation to a non-integer power.

ILLEGAL USE OF ASSUMED CHARACTER LENGTH
A character entity with a length of * must be a dummy argument, the
symbolic name of a constant, or an external function whose name
appears in a FUNCTION or ENTRY statement within the same program unit.

ILLEGAL USE OF ASSUMED SIZE ARRAY "name"
An array with an asterisk for the last dimension cannot be used
without subscripts in an IIO statement.

ILLEGAL USE OF COLON
A colon can only be used in a FORMAT statement or to separate the
lower and upper dimensions in a declarative.

SR-0009 D-15 L

ILLEGAL USE OF DUMMY ARGUMENT "name"
A dummy argument in a procedure subprogram cannot be named the same
as a local variable or another dummy argument.

ILLEGAL USE OF DUMMY ARGUMENT "name" IN EQUIVALENCE AT SEQUENCE
"number"

Dummy arguments may not appear in an EQUIVALENCE statement.

ILLEGAL USE OF FUNCTION "name"
A function name cannot be used as an array name.

ILLEGAL USE OF FUNCTION "name" IN EQUIVALENCE AT SEQUENCE "number"
A function name cannot be used as an array name in an EQUIVALENCE
statement.

ILLEGAL USE OF "name" IN 1/0 LIST
External, function, or program name not permitted in an 1/0 list.

ILLEGAL USE OF "name"
Group name referenced previous to its definition in a NAMELIST
statement.

ILLEGAL USE OF NAMELIST GROUP "name"
A namelist group "name" can be used only as a group name in a
NAMELIST read or write.

ILLEGAL USE OF TASK COMMON
The named common block was declared as both a task common block and a
regular common block in the same subprogram.

ILLEGAL USE OF TASK COMMON VARIABLE
A task common variable was used illegally in a DATA, NAMELIST 1/0, or
SAVE statement.

ILLEGAL VALUE IN CONSTANT EXPRESSION
The evaluation of a constant expression yields a result that is out
of range.

IMPLICIT NONE MUST BE ONLY IMPLICIT STATEMENT
IMPLICIT NONE or IMPLICIT SKOL appear in the same program unit as
another IMPLICIT statement.

IMPROPERLY NESTED DO LOOP
Inner DO loop is not contained entirely within the outer DO loop
range.

INCORRECT ARGUMENT TYPE
Actual argument is of the wrong type in a function reference.

SR-0009 0-16 L

INPUT FILE EMPTY
An end-of-file record was encountered as the first record of the
source input dataset.

INTEGER*2=24 BIT INTEGER
INTEGER*2 is implemented as a 24-bit integer by CFT.

tINTEGER CONSTANT EXPECTED WHERE "char" OCCURS
When a format edit descriptor field is parsed, "char" appears where
an integer constant is expected.

INTEGER CONSTANT EXPRESSION REQUIRED
The subscript or substring expression is not an integer constant
expression.

INTRINSIC FUNCTION "name" CANNOT BE ACTUAL ARGUMENT
Certain intrinsic functions cannot be passed to subprograms as actual
arguments.

INTRINSIC FUNCTION "name" IS NONSTANDARD
The specified intrinsic function is a CFT intrinsic function and is
not provided for in the ANSI FORTRAN Standard. CFT uses the
intrinsic version unless the function is declared external. This
message is NON-ANSI if ANSI is specified on the CFT control statement
and "name" is confirmed as an intrinsic function in an INTRINSIC
statement.

INTRINSIC FUNCTION USED WITH ILLEGAL ARGUMENT TYPE
The actual argument(s) to the intrinsic function is an improper type.

INT24 IGNORED WITH EMA OPTION
When the EMA (extended memory addressing) CPU characteristic is in
effect, the INT24 compiler option is ignored; 64-bit integers are
used whenever the EMA option is used.

10 CONTROL LIST SPECIFIER MUST BE CHARACTER ~EXPRESSION
The 1/0 control list specifier must be evaluated to a character value.

10 CONTROL LIST SPECIFIER MUST BE CHARACTER VARIABLE OR ARRAY ELEMENT
The 1/0 control list specifier can be a character variable or an
array element.

10 CONTROL LIST SPECIFIER MUST BE INTEGER EXPRESSION
The 1/0 control list specifier must be evaluated to an integer value.

10 CONTROL LIST SPECIFIER MUST BE INTEGER VARIABLE OR ARRAY ELEMENT
The 1/0 control list specifier can be an integer variable or an array
element.

10 CONTROL LIST SPECIFIER MUST BE LOGICAL VARIABLE OR ARRAY ELEMENT
The 1/0 control list specifier can be a logical variable or an array
element.

SR-0009 0-17 L

LAST ARRAY ONLY PARTIALLY INITIALIZED
The last element in a DATA statement variable list is an
unsubscripted array and not enough constants are specified to
completely fill the array. Remaining elements of the array are not
initialized.

tLEFT PARENTHESIS EXPECTED
A required opening parenthesis was omitted.

LEFT PARENTHESIS EXPECTED IN EQUIVALENCE AT SEQUENCE "number"
A required opening parenthesis was omitted in an EQUIVALENCE
statement.

LINE LENGTH > 133 CHARACTERS
One or more lines exceeds 133 characters during FORMAT statement
editing.

LIST DIRECTED 10 ILLEGAL FOR INTERNAL FILE
List-directed reads and writes all illegal operations on internal
files. Internal file 10 must be formatted.

LOGICAL OPERATOR MUST END IN PERIOD
A period does not follow an otherwise correct logical operator.

LOSS OF PRECISION IN TYPE CONVERSION
The type of a variable and the type of the associated constant in a
DATA statement differ. The constant is converted to the type of the
variable and precision is lost.

LOWERCASE CHARACTERS IN KEYWORDS OR IDENTIFIERS ARE NONSTANDARD
At least one lowercase alphabetic character which is not part of a
character constant or comment appears in a program unit. This
lowercase alphabetic character may be a keyword, identifier, or
control character such as a Hollerith character constant descriptor.
Lowercase characters are not provided for in the ANSI FORTRAN
Standard. This message is issued only once in a program unit that
contains lowercase characters.

LOWERCASE CHARACTERS USED AS EDIT DESCRIPTORS ARE NONSTANDARD
When a format specifier list was parsed, CFT encountered at least one
lowercase character used as an edit descriptor. The ANSI FORTRAN
Standard character set does not include lowercase characters.

MAIN PROGRAM MUST BE NAMED FOR FLOW TRACE •
The main program must be named if flow trace is enabled by using the
ON=F control statement option or by using a CDIR$ FLOW directive .in
the source program.

SR-0009 D-18 ' L

MASKING OR BOOLEAN EXPRESSION IS NONSTANDARD
A masking or Boolean expression was detected by CFT. These
expressions are not provided for in the ANSI FORTRAN Standard.

MAXIMUM CODE SIZE EXCEEDED
The code size for the current program unit has exceeded 4 million
words (16 million parcels).

MAXIMUM DATA BLOCK SIZE EXCEEDED
The current program unit local data block size, in Extended Memory
Addressing (EMA) mode, has exceeded 16 million words.

MAXIMUM LEGAL ITERATION COUNT EXCEEDED
A DO-loop trip count is larger than the allowable maximum of 223_1.

MINIMUM ONE PASS DO-LOOPS ARE NONSTANDARD
The control statement option ON=J was selected, causing all DO loops
to execute at least once. This is a CFT extension not provided for
in the ANSI FORTRAN Standard. This message is issued for all
DO loops in a program compiled with ON=J.

tMISSING =
An equal sign is missing in a PARAMETER or statement function
definition statement.

MISSING = IN CONTROL LIST
There is no equal sign after an option in an 1/0 statement control
list.

MISSING COLON
A required colon has been omitted in a substring expression.

MISSING END STATEMENT
The last or only program unit being compiled lacks an END statement
in its last line.

MISSING OR ILLEGAL CONSTANT LIST
A PARAMETER or DATA statement has not specified a constant list, or a
list has a missing separator.

tMISSING OR ILLEGAL STATEMENT NUMBER IN DO
The statement number is missing or it contains illegal characters in
a DO statement.

tMISSING OR ZERO COUNT FOR HOLLERITH STRING
The count field for a Hollerith edit descriptor is missing or zero in
a format specifier list.

SR-0009 D-19 L

MISSING RIGHT PARENTHESIS OR UNEXPECTED END OF FORMAT
When a format specifier list was parsed, CFT unexpectedly reached the
end of the format statement. This can occur when-the parentheses are
unmatched or when a Hollerith string count is too large and contains
the closing, parenthesis at the end of a FORMAT statement.

MISSING STATEMENT NUMBER IN ASSIGN
An ASSIGN statement lacks a statement label reference.

MISSING TO IN ASSIGN STATEMENT
An ASSIGN statement requires the keyword extension TO.

MODIFICATION OF DO CONTROL VARIABLE WITHIN LOOP IS NONSTANDARD
CFT has detected the modification of the DO-loop control variable
inside the DO loop. This is allowed by CFT but not allowed by the
ANSI FORTRAN Standard.

MORE THAN 8 MILLION WORDS OF LOCAL VARIABLES DECLARED IN SUBROUTINE
A subroutine may not use more than 8 million words for local
variables. If possible, use common blocks for some of the variables.

MORE THAN 312 DUMMY ARGUMENTS IN PROGRAM UNIT
CFT does not accept more than 312 dummy arguments in a subroutine or
function subprogram. Each argument for an entry point in a program
unit represents a separate argument when computing the number of
arguments used in a program unit.

MORE THAN 511 DISTINCT CHARACTER LENGTHS DECLARED IN THIS PROGRAM UNIT
There cannot be more than 511 distinct character lengths declared in
a program unit. These lengths include character variables, character

-constants, and character temporaries.

MORE THAN ONE ELSE STATEMENT AT THIS IF LEVEL
Only one ELSE statement is permitted per IF-level.

MORE THAN ONE UNNAMED BLOCK DATA SUBPROGRAM IS NONSTANDARD
More than one unnamed block data subprogram appears in a
compilation. CFT allows a maximum of 26 unnamed block data
subprograms per compilation, but the ANSI FORTRAN Standard allows
only one unnamed block data subprogram per compilation.

tNAME LONGER THAN EIGHT CHARACTERS
A symbolic name must not contain more than eight characters.

NO BLOCK IF ASSOCIATED WITH ELSE STATEMENT
An ELSE statement must follow a block IF statement and precede an END
IF statement of the same level.

NO BLOCK IF ASSOCIATED WITH END IF STATEMENT
,An END IF must be uniquely associated with an IF(e)THEN statement
of the same IF-level.

SR-0009 0-20 L

NO PATH TO THIS STATEMENT
The previous statement is an unconditional transfer and this
statement has no statement number.

NONSTANDARD "name" SPECIFIER
A CFT extended form of a unit or format specifier appears in an I/O
control list. This form is not allowed in the ANSI FORTRAN Standard.

tNONSTANDARD "name" STATEMENT SYNTAX
An extended form of an ANSI FORTRAN Standard statement type indicated
by "name" was used in a program.

NONSTANDARD ARITHMETIC EXPRESSION
An arithmetic or relational expression is formed with operand types
not provided for in the ANSI FORTRAN Standard. An example is adding
an integer variable to a Hollerith constant, which is a CFT extension.

NONSTANDARD BLOCK DATA STATEMENT SYNTAX
Parameters appear on a BLOCK DATA statement. These are CFT
extensions to the ANSI FORTRAN Standard.

tNONSTANDARD DIMENSION DECLARATOR
A dimension declarator expression contains noninteger constants or
variables, or function references. The ANSI FORTRAN Standard
specifies that only integer v~riables and constants can be used in a
dimension declarator expression.

tNONSTANDARD EDIT DESCRIPTOR FIELD
An edit descriptor not provided for in the ANSI FORTRAN Standard or
an extended form of a standard edit descriptor was used in a format
specifier list.

tNONSTANDARD OPERATOR "name"
An operator not provided for in the ANSI FORTRAN Standard, such as
the .XOR. or .X. operator, was used. .XOR. and .X. are CFT
extensions to the ANSI FORTRAN Standard.

NONSTANDARD RELATIONAL EXPRESSION
A relational expression compares a pair of operands in a way not
provided for in the ANSI FORTRAN Standard. An example is comparing a
character constant to an integer variable, which is a CFT extension.
Some nonstandard relational expressions may receive the message
"NONSTANDARD ARITHMETIC EXPRESSION" because of operator conversion
during compilation.

tNONSTANDARD STRING DELIMITER
CFT allows string constants to be delimiters by using quotation marks
in place of apostrophes. Asterisks can also be used in format
specifier lists. Quotation marks and asterisks are not provided for
in the ANSI FORTRAN Standard.

SR-0009 D-21 L

TNONSTANDARD TYPE DECLARATION
A TYPE • BYTE COUNT type declaration or nonstandard IMPLICIT
statement, such as an IMPLICIT NONE statement, appears in a program
unit, or a double declaration type statement is used in place of a
DOUBLE PRECISION type statement. These are CFT extensions to the
ANSI FORTRAN Standard.

NOT ENOUGH DO PARAMETERS
Fewer than two arguments have been encountered after the equal sign
in a DO statement.

NOT ENOUGH MEMORY TO COMPILE
The program unit is too long to compile in the available memory.

TOCTAL CONSTANT IS NONSTANDARD
Octal constants were used, and they are not provided for in the ANSI
FORTRAN Standard. These are CFT e¥tensions to the ANSI FORTRAN
Standard.

OPTIMIZATION BLOCK BROKEN AT THIS POINT
The code size forced CFT to terminate an optimization block at this
point. A new optimization block begins with the next statement.

PARAMETER USED TWICE IN STATEMENT FUNCTION PARAMETER LIST
A given symbolic name can appear only once in a single dummy argument
list.

TPARENTHESES NESTED TOO DEEPLY
The number of nested parentheses allowed by CFT in a format specifier
list exceeded the maximum limit of nine nested parentheses.

PASS TWO SKIPPED BECAUSE OF FATAL PASS ONE ERRORS
Pass two of CFT's compilation is skipped for this program unit due to
fatal pass one errors.

TPERIOD EXPECTED WHERE "char" OCCURS
When a format edit descriptor field is parsed, "char" appears where
a period is expected.

PLEASE RERUN WITH SMALLER VALUE FOR MAXBLOCK
This message follows a compiler error or an internal compiler error
message if the value for the MAXBLOCK control statement parameter is
greater than the system default value.

POINTER MUST BE TYPE INTEGER
A pointer variable must not be assigned a type other than integer.

POSSIBLE BRANCH INTO BLOCK IF VIA ASSIGN OR END=/ERR= WITH LABEL "I"
Label "I" is a FORTRAN statement number defined in an IF-block,
ELSE IF-block, or ELSE-block and appears in an ASSIGN statement or in
an END= or ERR= branch of an 1/0 statement. Branches into IF-blocks,
ELSE IF-blocks, or ELSE-blocks are not provided for in the ANSI
FORTRAN Standard.

SR-0009 D-22 L

POSSIBLE BRANCH INTO INACTIVE DO LOOP; STATEMENT LABEL "nnn"
CFT detected a branch to a labeled statement inside the range of a DO
loop from a branch statement outside the range of the DO loop.

POSSIBLE BRANCH INTO INACTIVE DO LOOP VIA ASSIGN OR END=/ERR= WITH LABEL
"n"

lin" is a statement label defined within the range of a DO loop. It
has appeared in an ASSIGN statement or in the END= or ERR= branch of
an I/O statement in the program unit. Verify that the branches to
the statement label occur only within the innermost DO loop where the
label is defined.

tPREVIOUS IMPLICIT REFERENCES THIS CHARACTER
Only one IMPLICIT reference is permitted per character.

PREVIOUS REFERENCES TO "name"
An ENTRY name has been used before its declaration as an ENTRY.

PROGRAM UNIT TOO LARGE TO COMPILE
One of CFT's internal tables has overflowed because there is too much
code in a program unit.

REAL*8 = SINGLE PRECISION
REAL*8 is implemented as single-precision by CFT.

RECURSIVE SUBROUTINE OR FUNCTION REFERENCE OF "name"
The function, subroutine, or entry name was referenced within the
same program unit that defined it.

RECURSIVE SUBROUTINE REFERENCE "name" USED AS AN ARGUMENT
The main subroutine name was used as an argument to another function
or subroutine call.

REFERENCES TO ARRAY "name" WITH NO SUBSCRIPTS
The array named was referenced without subscripts in a statement that
required them.

RELATIONAL EXPRESSION WITH DOUBLE PRECISION AND COMPLEX IS NONSTANDARD
A relational expression was detected with a complex and
double-precision operand. CFT converts the double-precision operand
to a complex operand. The ANSI FORTRAN Standard does not provide for
these conversions. Some nonstandard relational expressions with
double-precision and complex operands may receive the message
ARITHMETIC EXPRESSION WITH DOUBLE PRECISION AND COMPLEX IS
NONSTANDARD because of operator conversion during compilation.

tREPETITION COUNT ILLEGAL FOR "name"
A repetition count appears before the nonrepeatable edit descriptor
"name" in a format specifier list.

SR-0009 0-23 L

tREPETITION COUNT MUST BE > ZERO
The repetition count before a repeatable edit descriptor in a format
specifier list is zero.

tREPETITION COUNT TOO LARGE
The value of n in the nx edit descriptor field moves the next
character position to the left of the first position.

RETURN ILLEGAL IN MAIN PROGRAM
A RETURN statement is encountered in a main program unit.

tRIGHT PARENTHESIS EXPECTED
A required closing parenthesis was omitted.

RIGHT PARENTHESIS EXPECTED IN EQUIVALENCE AT SEQUENCE "number"
A required closing parenthesis was omitted in an EQUIVALENCE
statement.

SCALAR DUMMY ARGUMENT "name" USED AS FORMAT IDENTIFIER
The integer variable named appears both as a format identifier and as
an entry in a dummy argument list in this program unit. The cause
might be a missing DIMENSION statement.

SCAN STOPPED, TOO MANY ERRORS IN FORMAT
CFT attempts recovery of up to three errors before abandoning the
FORMAT statement.

SPECIFIER RECL LEGAL IF AND ONLY IF ACCESS IS DIRECT
In an OPEN statement, the REeL control list option is supported only
if direct access is specified.

STATEMENT FUNCTION "name" IN COMMON OR ARGUMENT LIST
Statement function must not appear as a variable in a common block or
an argument list.

STATEMENT FUNCTION "name" REFERENCES ITSELF
A statement function definition statement cannot be recursive.

tSTATEMENT FUNCTION PARAMETER MUST NOT BE ARRAY
The names of variables appearing as dummy arguments of a statement
function have a scope of that statement only.

STATEMENT LABEL IGNORED
Statement label is ignored because transfer to this statement is
prohibited.

STATEMENT LENGTH EXCEEDED
The statement, when arithmetic statement functions have been
expanded, exceeds CFT's limit on size of statements.

SR-0009 D-24 L

STATEMENT NUMBER ILLEGAL ON DECLARATIVE
CFT does not allow a statement number on ENTRY statements.

STATEMENT NUMBER ON BLANK CARD IGNORED
Blank lines cannot contain statement labels.

SUBROUTINE "name" NOT DECLARED
IMPLICIT NONE or IMPLICIT SKOL has been specified but "name" did
not appear in an EXTERNAL statement.

SUBSCRIPT OUT OF DIMENSION BOUNDS IN EQUIVALENCE AT SEQUENCE "number"
Subscript exceeds the value given in the dimensions.

SUBSTRING EXPRESSION OUT OF BOUNDS
In a substring expression "(Cl:C2)", the relations 1 ~ Cl ~ C2 ~ LEN
do not all'hold (where LEN is the declared length of the character
entity) •

SYNTAX ERROR
Illegal element, name where number required, or extra or missing
punctuation.

SYNTAX ERROR IN ENCODE OR DECODE STATEMENT
Illegal element in ENCODE or DECODE statement.

tSYNTAX ERROR IN IMPLIED DO
An implied-DO list specified in a DATA statement is of improper
syntactical form, references a variable that is not an implied-DO
variable, or references an array element that does not specify the
implied-DO variable for this implied-DO list in its subscript.

SYNTAX ERROR IN IO CONTROL LIST
Illegal element in 1/0 control list.

tSYNTAX ERROR IN UNIT IDENTIFIER
A syntax error was found in a unit identifier.

tTAB COUNT MUST NOT BE ZERO
A tab edit descriptor (T, TL, or TR) appears in a format specifier
list followed by a tab count of O.

TASK COMMON BLOCK "name" IS STATICALLY ALLOCATED
A task common block was declared when the allocation specification
was defined as STATIC.

TASK COMMON IS NONSTANDARD
A task common block is not provided for in the ANSI FORTRAN Standard.

tTASK COMMON MUST BE NAMED
A blank common block was declared with the CFT extension task common
block.

SR-0009 D-25 L

TEST EXPRESSION MUST BE LOGICAL
Expression type in a logical IF must be logical or Boolean.

TEST EXPRESSION MUST NOT BE CHARACTER
Cannot have character expression type in a logical or arithmetic IF
statement.

TEST EXPRESSION MUST NOT BE LOGICAL
Expression type in an arithmetic IF must not be type logical.

TOO MANY COMMON BLOCKS DECLARED
More than 120 distinct common blocks were declared in a single
program unit.

TOO MANY DO PARAMETERS
More than three arguments have been encountered after the equal sign
in a DO statement.

TOO MANY DOS ON STATEMENT
More than 15 DO loops ended on the same statement.

TOO MANY POINTERS DECLARED
More than 312 pointers were declared in a single program unit.

TOO MANY SUBSCRIPTS
An array reference contains more subscripts than the subscripts
declared.

TOO MANY SUBSCRIPTS IN EQUIVALENCE AT SEQUENCE "number"
An array reference in an EQUIVALENCE statement has more subscripts
than were declared.

TOO MANY UNNAMED BLOCK DATA SUBPROGRAMS
The ANSI FORTRAN Standard allows only one unnamed block data
subprogram to be used in a program. CFT allows a maximum of 26
unnamed block data subprograms. More than 26 block data subprograms
appeared during the compilation.

TWO BRANCH IF STATEMENT IS A NONSTANDARD STATEMENT
A 2-branch arithmetic or logical IF statement appears in a program.
These statements are CFT extensions to the ANSI FORTRAN Standard.

TYPE CONVERSION IN DEFINITION
A constant in a PARAMETER statement was not converted to the type of
the corresponding symbolic name.

TYPE OF "name" NOT DECLARED
"name" was declared in an EXTERNAL statement, but did not appear in
an explicit type statement.

SR-0009 D-26 L

TYPE MISMATCH BETWEEN "name" AND EXPRESSION
The expression being assigned to name is not of the same type as
name (for example, a logical variable being assigned a character
string in a PARAMETER statement).

TYPE STATEMENT IGNORED FOR INTRINSIC FUNCTION "name"
Type statements do not change the type of an intrinsic function and
are ignored.

UNBALANCED PARENTHESIS
Opening and closing parentheses do not match; required parenthesis
not present.

UNDEFINED ITEM IN CONSTANT EXPRESSION
A constant expression in a PARAMETER or DATA statement is specified
with other than constants or the symbolic names of constants. A
constant expression in a DATA statement is specified with other than
constants, the symbolic names of constants, or the names of
implied-DO variables.

UNDEFINED STATEMENT NUMBER "number"
A referenced statement label is not defined.

UNDEFINED SUBSCRIPT
An equivalence subscript must be constant.

UNEXPECTED END OF STATEMENT
A statement encountered is syntactically incomplete.

UNIT=* ILLEGAL FOR DIRECT ACCESS
[UNIT=]* appeared in a direct access READ or WRITE statement.

UNIT=* ILLEGAL FOR UNFORMATTED 10
[UNIT=]* appeared without a format identifier in a READ or WRITE
statement.

UNIT=* LEGAL ONLY IN READ OR WRITE
[UNIT=]* appeared in an auxiliary 1/0 statement.

UNKNOWN LOGICAL OPERATOR
The characters following a period do not represent a logical operator.

UNRECOGNIZED COMPILER DIRECTIVE
The compiler directive is misspelled or does not exist for CFT.

UPPER DIMENSION < LOWER DIMENSION
The lower dimension must be less than or equal to the upper dimension.

USE OF END ILLEGAL IN WRITE CONTROL LIST
END= may not be specified in a WRITE statement.

SR-0009 0-27 L

VALUE NOT ASSIGNED TO FUNCTION NAME
Function subprogram is missing value assignment for the function.

VARIABLE DIMENSION ARRAY "name" MUST BE DUMMY ARGUMENT
A variably dimensioned array must appear as a dummy argument at some
entry point.

VARIABLE DIMENSION ILLEGAL FOR ARRAY IN COMMON
An attempt was made to put a variably dimensioned array into COMMON.

VARIABLE LIST LONGER THAN CONSTANT LIST
Constants and variables must correspond one-to-one in a DATA
statement.

VARIABLE "name" USED AS ARRAY OR FUNCTION
A simple variable is referenced with either subscripts or an argument
list.

VERY LARGE LOCAL DATA BLOCK; USE EXTENDED MEMORY COMMON BLOCK
Very large local arrays were declared, causing the generated code to
end at more than 4 million words of memory.

VERY LARGE OFFSET ENCOUNTERED; USE EXTENDED MEMORY ADDRESSING
A calculated offset greater than 4 million words was detected with a
nonextended memory variable. An extended memory variable must be
declared in a common block.

ZERO SUBSCRIPT INCREMENT
A CIV subscript must have a nonzero increment.

ZERO TO NEGATIVE POWER
Raising zero to a zero or negative power produces unpredictable
results in an executable program.

D.2 LOGFILE MESSAGES

The following messages appear in the logfile following the CFT statement
if the indicated condition occurs. Some ~f the conditions cause compiler
execution to terminate after processing the CFT statement. Control
statement processing resumes with an EXIT statement if there is one in
the control statement file; otherwise, the job terminates.

CF007 - BAD PARAMETER TO KEYWORD keyword = parameter
The parameter for the keyword is out of range or undefined.

CF008 - NULL INPUT FILE ILLEGAL
1=0 is an illegal input.

SR-0009 0-28 L

CF009 - B=O and ON=Z INCOMPATIBLE OPTIONS
B must specify a file if the Z option is on.

CF010 - ON = character PARAMETER NOT ALPHA
CF010 - OFF = character PARAMETER NOT ALPHA

All characters in the strings for ON and OFF must be alphabetic.

CF011 - letter OPTION NOT IMPLEMENTED
No existing ON/OFF option is associated with the letter.

CF012 - nn CFT CONTROL CARD ERRORS
Gives count of control statement errors.

CF013 - WARNING: string WILL BE SET TO OFF
Options listed in string appear in both the ON= and OFF= keyword
parameter lists.

CF014 - DOUBLY DEFINED OPTION FOR OPT= KEYWORD
An option set by an OPT= keyword parameter was defined two times or
redefined in the parameter list.

CF015 - HEAP BASED ALLOCATION NOT YET IMPLEMENTED
ALLOC=HEAP was specified on the CFT control statement. Heap Memory
management is not implemented by CFT.

CF016 - CPU TYPE UNKNOWN - MAY EFFECT GENERATED CODE
The CPU type from the Job Communication Block is unknown to CFT and
optimizations may be effected.

CF017 - 1 WARNING
CF017 - n WARNINGS

Warning errors were encountered during compilation.

CF018 - WARNING: MAXBLOCK WILL BE SET TO 1
When compiling with DEBUG on the COS CFT control statement or with
-e D specified on the UNICOS CFT command, MAXBLOCK is set to 1.

CF019 - WARNING: Z WILL BE SET TO ON
When compiling with DEBUG on the CFT control statement, Z is forced
on.

CF020 - WARNING: I WILL BE SET TO ON
When compiling with DEBUG on the CFT control statement, I is forced
on.

CF023 - 1 NON-ANSI MESSAGE ISSUED
CF023 - n NON-ANSI MESSAGES ISSUED

Nonstandard FORTRAN was detected when compiling with ANSI specified
on the CFT control statement.

SR-0009 D-29 L

CF025 - ILLEGAL MAINFRAME TYPE TO KEYWORD CPU=mainframe type
An illegal mainframe type was specified on the CPU keyword or the COS
TARGET control statement.

CF026 - ILLEGAL VALUE value FOR PARAMETER param TO KEYWORD CPU=
An illegal value was entered for a numeric trait of the CPU keyword
or the TARGET control statement.

CF027 - DUPLICATE OR CONFLICTING PARAMETER TO KEYWORD CPU= string
A parameter to the CPU keyword was defined twice or was redefined.

CF028 - WARNING: [NO]CI AND [NO]GS WILL BE REMOVED IN CFT 1.16; USE
[NO]CIGS INSTEAD

[NO]CI and [NO]GS will not be supported in CFT 1.16.

CF029 - lmdn ALREADY LOCAL
The LOOPMARK option on the CFT compiler call uses dataset lmdn as a
scratch dataset. Imdn was a local dataset at the start of
compilation. Modify the job so that Imdn is not a local dataset at
the start of compilation.

D.3 NOVECTOR MESSAGES

NOVECTOR messages indicate the reason an innermost loop did not
vectorize. If LOOPMARK or LOOPMARK=MSGS is specified on the CFT compiler
call, a NOVECTOR message is printed in the source listing on the line
immediately following each innermost scalar loop.

NOVECTOR messages are also printed as part of the Table of Loops
Encountered.

'name' IN RECURRENCE AT S.N. sn USED AS A SUBSCRIPT OR
IS OF TYPE INT24

Using a reduction variable as a subscript inhibits vectorization.
Reductions involving 24 bit integers do not vectorize. For example:

DIMENSION IARRAY1(100),IARRAY2(100),IARRAY3(100)
DO 10 I = 1,N

ISOM = ISOM + IARRAY1(I)
IARRAY2(ISOM) = IARRAY3(ISUM)

10 CONTINUE

SR-0009 D-30 L

'name' REFERENCED AT S.N. sn BEFORE BEING DEFINED AT S.N. sn
A loop will not vectorize if the first reference to a variable in the
loop occurs before the first definition of the variable in the loop.
For example:

DIMENSION A(100)
II = 1
DO 10 I = 2,N

A(II) = 3.0
II = I

10 CONTINUE

'name' STATEMENT AT S.N. sn
STOP statements inhibit vectorization. For example:

DIMENSION A(100)
DO 10 I = 1,N

IF (A (I) . EQ • 5 • 0) STOP
10 CONTINUE

ASSIGNED 'GOTO' AT S.N. sn
Assigned GOTOs inhibit vectorization. For example:

DIMENSION A(100)
ASSIGN 20 TO JUMP OUT
DO 10 I = 1,N

IF (A(I) .EQ. 5.0) GO TO JUMP OUT
10 CONTINUE
20 CONTINUE

BACKWARD BRANCH FROM S.N. sn TO LABEL 'label number' AT S.N. sn
Backward branches within a loop inhibit vectorization. For example:

DIMENSION A(100)
DO 10 I = 1,N

20 CONTINUE
A(I) = A(I) + 1.0
IF (A(I) .LE. 5.0) GO TO 20

10 CONTINUE

BRANCH BETWEEN DEFINITION OF 'name' AT S.N. sn AND
OCCURRENCE AT S.N. sn

A branch statement between the definition of a vector temporary and a
use or redefinition of the vector temporary inhibits vectorization.
For example:

DIMENSION A(100),B(100),C(100)
DO 10 I = 1,N

VECTTEMP = A(l)
IF (MOD(I,2) .EQ. 0) VECTTEMP = B(l)
C(I) = VECTTEMP

10 CONTINUE

SR-0009 0-31 . L

CDIR$ 'NEXTSCALAR'
The compiler directive NEXTSCALAR preceded this loop. For example:

DIMENSION A(lOO)
CDIR$ NEXTSCALAR

DO 10 I = 1,N
A(I) = 0.0

10 CONTINUE

CDIR$ 'NORECURRENCE'
The compiler directive NORECURRENCE preceded this loop and this loop
has an otherwise vectorizable recurrence. For example:

DIMENSION IARRAY(100)
. CDIR$ NORECURRENCE

DO 10 I = 1,N
ISUM = ISOM + IARRAY(I)

10 CONTINUE

CDIR$ 'NOVECTOR'
The compiler directive NOVECTOR is in effect for this loop. For
example:

DIMENSION A(100)
CDIR$ NOVECTOR

DO 10 I = 1,N
A(I) = 0.0

10 CONTINUE

CHARACTER VARIABLE OR FUNCTION REFERENCE 'name' AT S.N. sn
Character variables and character function references inhibit
vectorization. For example:

CHARACTER CHARARAY*1(100)
DO 10 I = 1,N

CHARARAY(I) = ' ,
10 CONTINUE

CII 'name' DEFINED MORE THAN ONCE
Defining a CIV more than once in a loop inhibits vectorization. For
example:

SR-0009

DIMENSION A(100)
J = 0
DO 10 I = liN

J = J + 1
A(J) = 1.0
J = J + 1
A(J) = 2.0

10 CONTINUE

D-32 L

CII 'name' EQUIVALENCED WITH AN ARRAY
Equivalencing a CIV with an array inhibits vectorization. For
example:

DIMENSION A(100)
EQUIVALENCE (I,A(50»
DO 10 I = 1,N

A(I) = I
10 CONTINUE

COMPUTED 'GOTO' AT S.N. sn
Computed GOTOs inhibit vectorization. For example:

DIMENSION A(100)
DO 30 I = 1,N

GOTO (10,20) I
A(I) = I + 2

10 CONTINUE
A(I) = I + 1

20 CONTINUE
A(I) = I

30 CONTINUE

DEPENDENCY INVOLVING ARRAY 'name' AT S.N. sn
A dependency that inhibits vectorization was encountered. See the
NOVECTOR message on the following line of the listing for a further
explanation. For example:

DIMENSION A(100)
DO 10 I = 1,N

A(J) = A(I)
10 CONTINUE

DEPENDENCY INVOLVING ARRAY 'name' AT S.N. sn AND sn
A dependency that inhibits vectorization was encountered. See the
NOVECTOR message on the following line of the listing for a further
explanation. For example:

DIMENSION A(100)
DO 10 I = 1,N

B(I) = A(I-1)
A(I) = C(I)

10 CONTINUE

DO CONTROL VARIABLE 'name' MODIFIED AT S.N. sn
Assigning a value to a DO control variable, other than in a DO
statement, inhibits vectorization. For example:

DIMENSION A(100)
DO 10 I = 1,N

I = I + 3
A(I) = 3.0

10 CONTINUE

SR-0009 0-33 L

'ELSEIF' OR NESTED 'IF' AT S.N. sn
ELSEIF statements and nested IF statements inhibit vectorization.
For example:

DIMENSION A(100)
DO 10 I = 1,N

IF (A(I) .LE. 10.0) THEN
A(I) = 10.0

ELSEIF (A(I) .LE. 5.0) THEN
A(I) = 5.0

ENDIF
10 CONTINUE

EXTERNAL REFERENCE 'name' AT S.N. sn
Subroutine calls and external function references inhibit
vectorization. For example:

DO 10 I = 1,N
CALL SUB1(I,X,Y,Z)

10 CONTINUE

FAILED VECTOR TEMPORARY
An apparent vector temporary was not used.

1/0 NOT VECTORIZABLE - 'name' AT S.N. sn
Input and output statements inhibit vectorization. For example:

DIMENSION A(100)
DO 10 I = 1,N

WRITE (*,*) A(I)
10 CONTINUE

1/0 NOT VECTORIZABLE - IMPLIED DO AT S.N. sn
Input and output statements inhibit vectorization. For example:

DIMENSION A(100,100)
DO 10 I = 1,N

WRITE (*,*) (A(I,J),J=1,N)
10 CONTINUE

NO REDUCTION NOR VARIANT ARRAY DEFINITION ENCOUNTERED
If a loop does not have a reduction nor variant array definition,
there is no reason to vectorize it. For example:

DIMENSION A(100)
DO 10 I = 1,N

X = A(I)
10 CONTINUE

SR-0009 D-34 L

'OFF=V' SPECIFIED ON CFT CONTROL STATEMENT
When OFF=V is specified on the CFT control statement, all
vectorization is suppressed.

OPTIMIZATION BLOCK BROKEN AT S.N. sn
CFT can only vectorize loops that fit into one optimization block.
The size of intermediate text for this loop exceeds CFT's
optimization block size.

OUTER LOOP
A loop is vectorizable only if it is an innermost loop or if all the
loops nested in it are unrolled. For example:

C DO 20 does not vectorize because DO 20 is not an innermost
C loop and DO 10 does not unroll.

DIMENSION A(100,100)
DO 20 I = 1,N

DO 10 J = 1,N
A(I,J) = 0.0

10 CONTINUE
20 CONTINUE

C DO 40 will vectorize if DO 30 is unrolled.
C DO 30 will be unrolled by default or if UNROLL=n is
C specified on the CFT control statement and n is
C greater than or equal to 3.

DO 40 I = 1,N
DO 30 J = 1,3

A(I,J) = 0.0
30 CONTINUE
40 CONTINUE

REASON FOR NOT VECTORIZING UNKNOWN
The reason for not vectorizing this loop is unknown. This is
abnormal but does not affect the correctness of the compiled
program. Please show your listing to a Cray Research systems analyst.

RECURRENCE OF 'name' AT S.N. sn BEFORE BRANCH OUT OF LOOP
AT S.N. sn

Recurrences before branches out of loops inhibit vectorization. For
example:

DIMENSION A(100)
DO 10 I = 1,N

SUM = SUM + A(I)
IF (SUM .GE. 100.0) GO TO 20

10 CONTINUE
20 CONTINUE

SR-0009 D-35 L

RECURRENCE OF 'name' AT S.N. sn USED AS AN OPERAND AT S.N. sn
Referencing the result of a recurrence elsewhere in the same loop
inhibits vectorization. For example:

DIMENSION A(100)
DO 10 I = 1,N

SUM = SUM + A(I)
IF (MAX • LT. SUM) MAX = SUM

10 CONTINUE

REDUCTION LOOP WITH CONSTANT ITERATION COUNT (= n
A reduction loop with a constant iteration count of less than or
equal to n will not vectorize. The default value for n is 2
since reduction loops with iteration counts of 1 or 2 generally
execute faster as scalar loops than as vector loops. The value of n
can be changed with the compiler directive NORECURRENCE=n. For
example:

DIMENSION A(100)
CDIR$ NORECURRENCE=15

DO 10 I = 1,10
SUM = SUM + A(I)

10 CONTINUE

SEARCH LOOP TOO COMPLICATED
This loop has more than eight branches out or 2 * double precision +
2 * complex + real + integer + logical number of stores is greater
than eight.

**
*** THIS MESSAGE AND EXPLANATION WILL BE IMPROVED FOR THE ***
*** NEXT REVISION. AN EXAMPLE LOOP WILL ALSO BE INCLUDED. ***
**

SECOND ARGUMENT TO 'SHIFT' AT S.N. sn IS VARIANT
The intrinsic function SHIFT will not vectorize if the shift count
varies within the loop. For example:

DIMENSION IARRAY1(100),IARRAY2(100)
DO 10 I = 1,N

IARRAY1(I) = SHIFT(IARRAY2(I),I)
10 CONTINUE

SUBSEQUENT PLUS GATHER/SCATTER
Loops with subsequent plus dependencies involving nonlinear
subscripts do not vectorize. For example:

DIMENSION IARRAY1(100)
DIMENSION A(100),B(100)
DO 10 I = 1,N

A(IARRAY1(I» = X
C(I) = A(IARRAY1(I)+1)

10 CONTINUE

SR-0009 D-36 L

TOO MANY INDIRECT ADDRESSES, NO GATHER/SCATTER HARDWARE
Code is being generated for a Cray computer system with no
gather/scatter instructions. Gather/scatter instructions are found
on certain CRAY X-MP Computer Systems, but are not found on CRAY-1 S
Computer Systems.

On machines without gather/scatter instructions, indirect addressing
will vectorize only if the number of operations is greater than the
number of array references. If the number of operations is less than
the number of array references, CFT generates scalar code since
scalar code will execute faster than pseudo-vectorized code in this
instance. For example:

DIMENSION A(100),B(100),IARRAY(100)
DO 10 I = 1,N

A(I) = B(IARRAY(I»
10 CONTINUE

UNVECTORIZABLE ASSIGNMENT TO SCALAR 'name' AT S.N. sn
A CIV in a conditionally executed block must be of the form I = I •••
in order to vectorize. If a CIV in a conditionally executed block is
of any other form, for example, J = I ••• , where I is a CIV, the loop
will not vectorize. For example:

DIMENSION A(100),B(100)
DO 10 I = 1,N

IF (A(I) .LT. 0.0) THEN
J = I + 5
B(J) = 2.0

ENDIF
10 CONTINUE

UNVECTORIZABLE RECURRENCE AT S.N. sn
See section 9 for a discussion of the types of recurrences that CFT
vectorizes. This loop contains a recurrence that is not of a
vectorizable form. For example:

DIMENSION A(100)

DO 10 I = 1,N
X = A(I) / X

10 CONTINUE

DO 20 I = 1,N
X = A(I) - X

20 CONTINUE

DO 30 I = 1,N
X = X * A(I)

30 CONTINUE

DO 40 I = 1,N

+ Y

X = SQRT(A(I)*X)
40 CONTINUE

SR-0009 0-37 L

UNVECTORIZABLE TYPE FOR PRODUCT REDUCTION - 'name' AT S.N. sn
Product and division reductions will not vectorize unless the
operands are real. For example:

DIMENSION IARRAY(100)
DO 10 I = 1,N

ISOM = ISOM * IARRAY(100)
10 CONTINUE

UNVECTORIZABLE TYPE FOR REDUCTION - 'name' AT S.N. sn
Only real and integer reductions vectorize. For example:

DOUBLE PRECISION DARRAY(100)
DO 10 I = 1,N

DSOM = DSUM + DARRAY(100)
10 CONTINUE

VARIANT BASE POINTER 'name' AT S.N. sn
A pointer that is variant within a loop points to an array that is
defined or referenced in the loop. This is not vectorizable. For
example:

POINTER (IP,P(100»
DO 10 I = 1,N

IP = IP + N
P(I) = 3.0

10 CONTINUE

VECTOR TEMPORARY 'name' AT S.N. sn IS IN A CONDITIONALLY
EXECUTED BLOCK

Vector temporaries in conditionally executed blocks inhibit
vectorization. For example:

DIMENSION A(100),B(100)
DO 10 I = 1,N

IF (I .EQ. 3) THEN
VECTTEMP = A(I)
B(I) = VECTTEMP + 2.7

ENDIF
10 CONTINUE

ZERO INCREMENT CII
Zero increment CIVs inhibit vectorization. For example:

DIMENSION A(100),B(100)
DO 10 I = 1,N

J = J + 1 - 1
A(J) = B(I)

10 CONTINUE

SR-0009 D-38 L

D.4 INFORMATIVE DEPENDENCY MESSAGES

When a dependency message is issued, another message also appears
explaining why the dependency exists. The following list contains all
the informative messages with examples of DO loops causing the message to
be issued. Examples of che first two messages can be found in part 3,
section 2.

PREVIOUS PLUS WITH A DECREMENTING SUBSCRIPT

PREVIOUS MINUS WITH AN INCREMENTING SUBSCRIPT

POTENTIAL PROBLEM WITH EQUIVALENCED ARRAYS

DIMENSION E(100),D(50)
EQUIVALENCE (E,D)

DO 10 I = M,N
E(I+1) = 2.0
D(I) = 3.0

10 CONTINUE

If E and D are dimensioned to 100 elements, no dependency is detected.

DIMENSION A(100),B(100)
EQUIVALENCE (A(50),B)

DO 15 I = 1,100
A(I) = X
B(I) = Y

15 CONTINUE

REFERENCE MADE TO AN ARRAY THAT IS NOT SUBSCRIPTED

DO 20 I = 2,N
A(I) = SASUM(N-I,A,l)

20 CONTINUE

ARRAY USED AS AN ARGUMENT TO A SUBROUTINE/FUNCTION

DO 40 I = M,N
A(I) = 2.0
CALL SB(A(I»

40 CONTINUE

SR-0009 D-39 L

DEFINITION AND REFERENCE HAVE A DIFFERENT NUMBER OF SUBSCRIPTS

DO 50 I = M,50
A(I,K) = A(I)

50 CONTINUE

DO 30 I = 1,100
B(I) = A(2,I)
A(I) = 2.0

30 CONTINUE

AMBIGUOUS OR CONFLICTING SUBSCRIPTS

DO 55 I = 1,N
B(I) = A(3)
A(I) = 3.0

55 CONTINUE

DO 60 I = 1,N
K = IA(I)
A(K) = A(I)

60 CONTINUE

CONFLICTING SUBSCRIPTS

DO 10 I = 1,200
A(I) = A(2)

10 CONTINUE

NULL DEPENDENCY WITH CIV MODIFIED BETWEEN DEFINITION AND REFERENCE

DO 10 I = 1,N
B(I) = A(J)
J = J+1
A(J) = 1.0

10 CONTINUE

DO 5 I = 1,N
A(J) = 3.0
J = J-2
A(J) = B(I)

5 CONTINUE

Null means the difference between the subscripts is zero. If the
subscript difference is not equal to zero, vectorization is possible.

SR-0009 D-40 L

AMBIGUOUS INCREMENT OF CIV

DO 20 I = M,N,K
A(I) = A(I+l)

20 CONTINUE

DO 30 I = 1,100
A(J) = 1.0
B(J) = A(J-l)
J = J-K

30 CONTINUE

DEPENDENCY POSSIBLE WITH ZERO INCREMENT

DO 90 I = I,M
A(J) = A(J)+B(I)
J = J+N

90 CONTINUE

This message is only issued if OPT=ZEROINC is specified on the CFT
control statement.

NO CIV WAS FOUND IN ARRAY REFERENCE

DO 55 I = 1,N
A(I) = 1.0
B(J) = B(K)

55 CONTINUE

SR-0009 D-41 L

E. OU1.'MODED FEATURES

This appendix describes non-ANSI features CFT supports but have generally
been outmoded by alternatives meeting the standard and enhancing the
portability of CFT programs. These outmoded features and their preferred
alternatives are as follows.

Obsolete Feature Preferred Alternative

Hollerith data Character data

Two-branch arithmetic IF Arithmetic IF or block IF

Indirect logical IF Logical IF

ENCODE and DECODE Internal files

Asterisk editing Quotation mark editing

[-b]X editing TL editing

DOUBLE declaration type ,statement DOUBLE PRECISION declaration
type statement

DOUBLE declaration FUNCTION statement DOUBLE PRECISION declaration
FUNCTION statement

DATA statement nlistlclist nlistlclist correspondence
logical/Hollerith correspondence both logical or both character

PUNCH statement WRITE statement

Type statements with *n Standard type statements

DATA statement with declaratives DATA statement after other
declaratives

EOF, IEOF, and IOSTAT functions; End-of-file specifier (END=)
or status specifier (IOSTAT=)

SR-0009 E-l L

E.1 HOLLERITH DATA

Hollerith data is a sequence of any characters capable of internal
representation as specified in appendix A. Its length is the number of
characters in the sequence, including blank characters. Each character
occupies a position within the storage sequence identified by one of the
numbers 1, 2, 3, ••• indicating its placement from the left (position
1). Hollerith data must contain at least one character.

A Hollerith constant is expressed in one of three forms. The first of
these is specified as a nonzero integer constant followed by the letter H
and as many characters as equal the value of the integer constant. The
second form of Hollerith constant specification delimits the character
sequence between a pair of apostrophes followed by the letter H.

The third form is like the second, except quotation marks replace
apostrophes.

Example:

CHARACTER SEQUENCE Form 1 Form 2 Form 3

ABC 12 6HABC 12 'ABC 12'H "ABC 12"H

Two adjacent apostrophes or quotation marks appearing within the bounds
of two delimiting apostrophes or quotation marks are interpreted and
counted as a single apostrophe within the sequence. The character
sequence, DON'T USE would be specified with the apostrophe delimiters
as 'DON"T USE ·H, and with the quotation mark delimiters as "DON'T
USE ' .. • .. H.

Each character of a Hollerith constant character sequence is represented
internally by its unique 8-bit code (see Appendix A) with up to eight
such codes contained in a single 64-bit Cray computer word. The codes
corresponding to character positions 1 through 8 of a Hollerith constant
are sequentially represented from left to right in a Cray computer word.
Successive groups of eight codes are similarly represented in as many
successive Cray computer words. When the last position of a sequence is
not an even multiple of 8, the unused portion of the computer word it
occupies is to its right and contains up to seven blank character codes
(0408).

When the number of characters in a character sequence is fewer than
eight, the single Cray computer word used can contain up to seven null
character codes (000). The null character codes can be produced by
substituting the letter L for the letter H in the Hollerith forms
described above.

SR-0009 E-2 L

When fewer than eight characters appear in a Hollerith constant, the
unused portion of a single Cray computer word can contain up to seven
null character codes (000) to the left of the one or more codes
representing the character sequence. The null character codes can be
produced by substituting the letter R for the letter H in the first form
of Hollerith constant expression or by suffixing the second apostrophe or
quotation mark delimiter with the letter R in the second form.

All of the following Hollerith constant expressions yield the same
Hollerith constant and differ only in specifying the content and
placement of the unused portion of the single Cray computer word
containing the constant.

Hollerith
Constant Internal ReEresentation (64-bit Cra2: comEuter word

(bit position) (0-7 8-15 16-23 24-31 32-39 40-47 48-55 56-63)

6HCRAY-1 C R A Y 1 (040 8) (0408)

'CRAY-1'H C R A Y 1 (0408) (040 8)

"CRAY-1"H C R A Y 1 (040 8) (0408)

6LCRAY-l C R A Y 1 (000) (000)

'CRAY-1'L C R A Y 1 (000) (000)

"CRAY-1"L C R A Y 1 (000) (000)

6RCRAY-1 (000) (000) C R A Y 1

'CRAY-1'R (000) (000) C R A Y 1

"CRAY-1"R (000) (000) C R A Y 1

A Hollerith constant is limited to a maximum of eight characters
except when specified in a CALL statement, a function argument list,
or a DATA statement. In a DATA statement, Hollerith constants longer
than eight characters are permitted only when an array is being
initialized in its entirety. For example,

DIMENSION IARRAY (2)
DATA IARRAY 116HABCDEFGHIJKLMNOPI

is permitted, but

DIMENSION JARRAY (2)
DATA JARRAY(1),JARRAY(2) 116HABCDEFGHIJKLMNOPI

SR-0009 E-3 L

)

is illegal. All Hollerith constants with R suffixes are limited to a
maximum of eight characters. A zero word follows the last word
containing a Hollerith constant specified as an actual argument in an
argument list.

The forms E'string' and E"string" are reserved for future EBCDIC
constants.

NAMELIST Hollerith constants are specified by the following forms.

nH •••

nL •••

nR •••

"

H
L

R

H
L
R

If the R form is used, the string must contain eight or less
characters. Within the ' or " delimited format, a ' or " is specified
as " or "", respectively.

E.l.l HOLLERITH EXPRESSIONS

Hollerith expressions contain no operators and only a single
operand. A Hollerith expression is evaluated to yield a sequence of
characters. Its value is that sequence. The forms of a Hollerith
expression appear below.

• A Hollerith constant

• Name of a variable containing Hollerith data

• Name of an array element containing Hollerith data

• Name of a function providing Hollerith data when referenced

A Hollerith constant comprising a Hollerith expression is limited to
eight characters.

SR-0009 E-4 L

The data type of the name referencing a variable or array element
containing Hollerith data can affect its evaluation during program
execution. A variable or array element of type integer or real contains
eight Hollerith characters. A variable or array element of type complex
or double precision cannot contain Hollerith characters. A variable or
array element of type logical cannot contain Hollerith characters except
when it has been initialized in a DATA statement.

Hollerith data provided when a function is referenced contains as many
characters as a variable or array element of corresponding type.

When used in arithmetic or relational expressions, Hollerith expressions
are considered to be type Boolean.

E.I.I.I Hollerith relational expressions

The form of a Hollerith relational expression is

Hollerith expressions

relop Relational operator

A Hollerith relational expression is interpreted as the logical value
true if the values of the operands satisfy the relation specified by the
operator; false if they do not.

The Hollerith expression el is considered less than e2 if its value
precedes the value of e(2) in the collating sequence or is considered
greater if its value follows the value of e2 in the collating sequence.

Examples:

The following are evaluated as true if the integer variable LOCK contains
the Hollerith characters K, E, and Y in that order and left-justified
with five trailing blank character codes.

3HKEY.EQ.LOCK
'KEY'.EQ.LOCK
LOCK. EQ. LOCK
'KEYI'.GT.LOCK
'KEYO'H.GT.LOCK

SR-0009 E-5 L

Two Hollerith expressions are equivalent if their values are equal for
all possible values of their specification.

E.1.2 HOLLERITH FORMAT SPECIFICATION

A format specification can be an array name of type integer, real, or
logical.

The leftmost characters of the specified entity must contain Hollerith
data constituting a format specification when the statement is executed.

The format specification must begin with a left parenthesis and end with
a right parenthesis. Data can follow the right parenthesis ending the
format specification and have no effect. Blank characters can precede
the format specification.

E.2 TWO-BRANCH ARITHMETIC IF STATEMENTS

The form of a two-branch arithmetic IF statement is as follows.

Format:

e An integer, real, or double-precision expression

Statement labels of executable statements appearing
in the same program unit as the two-branch arithmetic IF
statement

Execution of a 2-branch arithmetic IF statement causes evaluation of the
expression e. Control is transferred to the statement identified by
s1 if e is nonzero or to the statement identified by s2 if e is zero.

Example:

IF (I+J*K) 100,101

SR-0009 E-6 L

E.3 INDIRECT LOGICAL IF STATEMENTS

The form of an indirect logical IF statement is as follows.

Format:

e Logical expression

Statement labels of executable statements appearing
in the same program unit as the indirect logical IF
statement

Execution of an indirect logical IF statement causes evaluation of the
expression e for a logical value followed by a transfer of control., If
the value of e is true, the statement identified with statement label
sl is executed next. If the value of e is false, the statement
identified with statement label s2 is executed next.

Example:

IF(X.GE.Y)148,9999

E.4 FORMATTED DATA ASSIGNMENT

Formatted data assignment operations define entities by transferring data
between input/output list items and internal records. Like other
assignment statements, formatted data assignment statements only perform
internal data transfers. Like formatted input/output statements,
formatted data assignment statements specify an input/output list and
invoke format control during their operations.

The two formatted data assignment statements are ENCODE and DECODE.

E.4.1 ENCODE AND DECODE STATEMENTS

The forms of the ENCODE and DECODE statements are:

ENCODE (n,f,dent)[elist]

DECODE (n,f,sent)[dlist]

SR-0009 E-7 L

n

f

dent

sent

Number of characters to be processe~, specified by a
nonzero integer expression not to exceed 152

FORMAT identifier, except for an asterisk

Symbolic name of a destination variable, array element, or
array where the n characters of elist are packed (eight
per word) by ENCODE

Symbolic name of the source variable, array element, or
a.rray where characters are unpacked and stored into dlist
by DECODE

elist and dlist
Lists specified the same as for formatted input/output
statements. elist is the list of items written to the
destination entity; dlist is the list of items receiving
the source entity.

E.4.1.1 The ENCODE statement

The ENCODE statement produces a sequence of n characters (packed eight
per word) from values contained in the input list items specified in
elist under control of the format specification identified by f. The
character sequence is stored into a variable, array element, or array
identified by dent.

If 'n is not an integer multiple of eight, the last word in each record
is padded with spaces to a word boundary. In effect, n is rounded up
to be a multiple of eight.

Example:

elist: array ZD(5): ZD(l) = 'THISbbbb'
ZD(2) = 'MUSTbbbb'
ZD(3) = 'HAVEbbbb'
ZD(4) = 'FOURbbbb'
ZD(5) = 'CHARbbbb'

f: FORMAT (5A4)

n: 20

dent: array ZE(3)

The sequence

ENCODE (20,1,ZE)ZD
1 FORMAT (5A4)

SR-0009 E-8 L

produces

dent = ZE(l) = 'THISMUST'
ZE(2) = 'HAVEFOUR'
ZE(3) = 'CHARbbbb'

E.4.1.2 The DECODE statement

The DECODE statement processes a sequence of n characters (packed eight
per word) contained in the variable, array element, or array identified
by $ent under control of the format specification identified by f.
The resulting values define the input list items specified in dlist.

If n is not an integer multiple of eight and the DECODE format calls
for more than one DECODE record, the second and all subsequent DECODE
records begin on a word boundary. In effect, n is rounded up to be a
multiple of eight.

Example:

sent: ZE:

n: = 20

ZE(l) = 'WHILETHI'
ZE(2) = 'SbHASbbF'
ZE(3) = 'IVEbbbbb'

f: FORMAT (5A5)

The sequence

DECODE (20,2,ZE)ZD
2 FORMAT (4A5)

produces

dlist = ZD(l) = 'WHILEbbb'
ZD(2) = 'THISbbbb'
ZD(3) = 'HASbbbbb'
ZD(4) = 'FIVEbbbb'

E.S EDIT DESCRIPTORS

The formats of obsolete edit descriptors are:

SR-0009 E-9 L

[-b]X

* or X

h· 1

b

Examples:

Asterisk and .the X indicate the manner of editing

Any ASCII character listed in appendix A as capable of
internal representation

Any nonzero, unsigned integer constant

AN ASTERISK EDIT DESCRIPTOR

-55X (moves current position 55 spaces to left)

E.6 DOUBLE DECLARATION STATEMENTS

The form of the double declaration type statement is:

DOUBLE v[,v] •••

DOUBLE Specifies the desired data type

v Constant, variable, array, function, or dummy procedure
name, or an array declarator

The form of the double declaration FUNCTION statement is:

DOUBLE FUNCTION fun[([d[,d] •..])

fun Symbolic name of the function subprogram in which the
FUNCTION statement appears

d Dummy argument representing a variable, array, or external
procedure name

SR-0009 E-10 L

E.7 DATA STATEMENT FEATURES

An nlist entity of type logical can correspond to a clist constant of
type Hollerith.

One constant must exist for each element of an array whose name appears
in the list without subscripting unless named as the last item of an
nlist. In this case, the values in clist can specify any number of
consecutive array element values, beginning with the first.

A character constant can be specified to correspond to entities of any
type except logical.

If a variable, an array element, or an entity associated with either is
defined by a DATA statement more than once in an executable program, the
one nearest the end of the program is the only definition to apply.

E.8 PUNCH STATEMENT

The PUNCH statement is a data transfer output statement.

Format:

PUNCH f [,iolist]

f Format identifier

iolist Input/output list specifying the data to be transferred

E.9 TYPE STATEMENT DATA LENGTH

The forms of the type statements with data length included are:

type [*n] v[,vJ .••

SR-0009 E-ll L

type Specifies type INTEGER, REAL, DOUBLE PRECISION, COMPLEX, or
LOGICAL

*n Specifies the data length as shown in table E-1 (INTEGER*2
should be used with caution since it implies 24-bit
integers)

v

a

data \
type \

INTEGER

REAL

COMPLEX

LOGICAL

n
\

Constant, variable, array, function, or dummy procedure
name, or an array declarator

Single letter or is a range of single letters denoted by
the first and last letter of the range separated by a
hyphen. Writing a range of letters (a1 through an) has the
same effect as writing a list of the single letters
(a1,a2, ••• an) and where a1 precedes an in this
alphabetically ordered sequence.

1

Table E-l. Data Length

2

24-bit
integer

4 8

64-bit integer

16

64-bit real
single precision

128-bit real
d'ble prec.

64-bit complex
single precision

64-bit logical

DOUBLE PRECISION 128-bit real
d'ble prec.

Any other data length gives a fatal error.

SR-0009 E-12 L

E.lO EXTENDED RANGE OF A DO LOOP

Transfer of control out of the range of a DO loop does not inactivate the
DO loop. However, the DO loop becomes inactive if the DO variable
becomes undefined or is redefined while outside the range. If the DO
loop remains active, control can be transferred to any statement in the
loop.

E.ll NONCHARACTER ARRAYS FOR FORMAT~PECIFICATION

No FORMAT statement is required if the format identifier in a formatted
input/output or formatted assignment statement is a noncharacter array
name. The initial and following elements of that array must be defined
with character data that constitute a format specification when the
input/output statement is executed. The opening parenthesis must be in
the first or ninth character position (the first character in the first
or second word). If in the ninth character position, the content of the
first word has no effect on program execution.

E.ll.1 EOF, IEOF, AND IOSTAT FUNCTIONS

If an end-of-file condition occurs during a READ statement not containing
a end-of-file specifier (END=) or an I/O status specifier (IOSTAT=),
execution of the program continues. A reference to the EOF, IEOF, or
IOSTAT function must occur before the next attempted read from that
dataset.

The ANSI FORTRAN Standard does not provide continued execution of a
program following an end-of-file encountered during a READ statement
not containing an end-of-file specifier or an I/O status specifier.

SR-0009 E-l3 L

F. CREATING NON-FORTRAN PROCEDURES

Function and subroutine subprograms written in languages other than
FORTRAN can be used with CFT programs. Cray Assembly Language (CAL),
Cray C, and Cray Pascal can be used with FORTRAN programs.

F.l CAL

Specific macros are available to aid the CAL programmer in writing
routines to be used with CFT. These macros maintain compatibility with
different versions of CFT. The following is a list of some of the CAL
linkage macros and their purpose:

• DEFARG defines argument transmission

• DEFB defines B register use

• DEFT defines T register use

• ENTRY defines FORTRAN-callable entry points

• ARGADD allows argument retrieval

• LOAD allows local variable reference

• STORE allows local variable updates

See the Macros and Opdefs Reference Manual, CRI publication SR-0012, for
more information on linkage macros.

F.2 CRAY PASCAL

There are several important differences between the Pascal and FORTRAN
languages that must be taken into account in order to use Pascal routines
with CFT.

• Because all FORTRAN arguments are passed by address, all arguments
in Pascal must be declared in VAR statements.

• Pascal and FORTRAN store arrays differently. Multidimensional
arrays defined in one language are transposed in the other.

SR-0009 F-l L

• Cray Pascal is a stack-based language. The Cray Pascal Compiler
uses the standard Cray stack management routines, so FORTRAN
routines also using the stack will not have a problem. A FORTRAN
program executing in static mode that calls a Pascal routine will
have a stack allocated for the Pascal routine.

• If a Pascal routine performs any I/O with the default input or
output files and the main routine is not a Pascal routine, the
Pascal routine must reset (for input) or rewrite (for output)
appropriately.

• A reference to a Pascal procedure name is a level of indirection
more than a reference to a FORTRAN subroutine name, when the name
is specified as an argument. For example, the following FORTRAN
and Pascal programs pass different information to B.

SUBROUTINE A
EXERNAL P
CALL B(P)
END
SUBROUTINE B(P)
EXTERNAL P
CALL P
END

program A;
procedure B(procedure P);
begin;
end;
procedure P;external;

begin
B(P)

end;

In FORTRAN, the parcel address of P is passed to subroutine B. In
Pascal, the parameter descriptor containing the parcel address of P is
passed to procedure B.

F.3 CRAY C

There are several important differences between the C and FORTRAN
languages that must be taken into account in order to use C language
routines with CFT.

• Because all FORTRAN parameters are passed by address, all
parameters in the C routines must be declared as "pointer to."
This is true for all single-word items. Arrays and structures
declared in C are correctly passed by address.

SR-0009 F-2 L

• FORTRAN arrays and C arrays have different storage allocation.
Multidimensional arrays defined in one language are transposed in
the other.

• The C character pointer is incompatible with the FORTRAN CHARACTER
type. It is not recommended that character values be passed
between C and FORTRAN routines.

• Cray C is a stack-based language. The Cray C Compiler uses the
standard Cray stack management routines, so FORTRAN routines also
using the stack will not have a problem. A FORTRAN program
executing in static mode that calls a C routine will have a stack
allocated for the C routine.

See the Cray C Differences Reference Manual, CRI publication SR-2024, for
more information about using C routines in FORTRAN programs.

SR-0009 F-3 L

G. SYMBOLIC DEBUG PACKAGE

The symbolic debug package provides, upon request, a symbolic memory
dump. This dump gives variable names and values in a format appropriate
to the variable type. It is i~voked by specifying the CFT Z option,
ON=Z, in the CFT control statement and by including the DEBUG control
statement or by calling the library routine SYMDEBUG.

The DEBUG control statement is conventionally used after EXIT and DUMPJOB
control statements as an aid in determining the cause of a job abort.

Example:

JOB ••••
CFT,ON=Z.
SEGLDR,GO.
EXIT.
DUMPJOB.
DEBUG.

The library routine SYMDEBUG is callable from a running program and
provides a debug printout of the job's memory. SYMDEBUG has one
argument, a Hollerith string, which can contain any of the parameters
that DEBUG accepts.

Example:

CALL SYMDEBUG('O=OUT,PAGES=17.')

The string must terminate with a period.

See the Symbolic Debugging Package Reference Manual, CRI publication
SR-Ol12, for details of the optional DEBUG parameters.

SR-0009 G-l L

H. UNBLOCKED DATASETS

Unblocked datasets do not conform to standard Cray operatinq system COS
dataset format. An unblocked dataset must be explicitly declared with
the U parameter on a COS ASSIGN statement.

Formatted input/output is prohibited on an unblocked dataset. For
unformatted I/O, an implied DO loop in the input/output list (iolist)
is not permitted. For synchronous I/O, each item in the iolist must be
an array name without subscripts. In addition, each array dimension must
be a multiple of 512.

ENDFILE and BACKSPACE requests are illeqal for an unblocked dataset. All
other auxiliary I/O operations are permitted on an unblocked dataset.

See the COS Version 1 Reference Manual, publication SR-0011, for detailed
descriptions of the ASSIGN control statement, unblocked and blocked
dataset structures, and loqical I/O for both structures.

SR-0009 H-1 L

I. REPRIEVE PROCESSING

Reprieve processing suspends normal system error processing and allows
the user to attempt to recover from what normally would be an abort
condition. The user selects the conditions under which recovery occurs.
(See the COS Version 1 Reference Manual, publication SR-0011, for a
complete list of reprievable abort conditions and selection codes.)
Reprieve processing allows recovery from a time limit, for example, and
can save important data on disk before the job aborts.

I.1 REPRIEVE INITIATION

Reprieve processing is set up by a call to the library routine SETRPV.
This call can appear anywhere and any number of times in a program but
must be executed before the abort condition occurs. The call typically
appears at the beginning of a main program.

Format:

CALL SETRPV(recname,xpsave,class)

recname

xpsave

class

Name of the external subroutine to be called if a
reprievable error occurs. recname must be declared in an
EXTERNAL statement.

Array with dimensions of at least 40. On entry to
recname, xpsave contains a copy of the Exchange Package
at the time of the abort and information about the type of
the abort. (See the COS Version 1 Reference Manual,
publication SR-0011, for a description of xpsave.)
xpsave must be in a common block in the routine that
calls SETRPV and in recname.

Mask that defines recoverable errors. Valid mask values
are listed in appendix F of the COS Version 1 Reference
Manual, publication SR-0011.

Within recname, any FORTRAN statements except RETURN or END can be
executed.

SR-0009 I-1 L

I.2 REPRIEVE TERMINATION

The normal FORTRAN method of terminating reprieve processing is to call
the subroutine ENDRPV from the external subroutine set up by SETRPV.

Format:

CALL ENDRPV

The execution of this call ends the job step. Job processing resumes at
the next EXIT control statement or it terminates if no EXIT is present.

A STOP or CALL EXIT can terminate the job step and resume execution at
the next job control statement. Using END or RETURN to terminate the job
step gives unpredictable results.

SR-0009 I-2 L

J. FTREF UTILITY

The FTREF utility generates a report about common block variable usage in
the subroutines of a user application on a global basis. FTREF also
provides tabular information, which includes entry names, calling
routines, and the called routines for each subroutine. FTREF displays
this information as a static calling tree. If the user program is
multitasked, FTREF states whether a common variable is locked or unlocked
when it is referenced or redefined.

FTREF is invoked by specifying ON=XS in the CFT control statement and by
including the FTREF control statement. The input file to FTREF should
contain as many modules used by the application as possible for the best
results.

Example:

JOB,
ACCOUNT, ••• •
CFT,ON=XS,L=OUT.
CFT,ON=XS,L=OUT.
CFT,ON=XS,L=OUT.
FTREF,I=OUT,CB=FULL,TREE=FULL.

See the COS Version 1 Reference Manual, publication SR-OOll, for details
of the FTREF control statement.

SR-0009 J-l L

INDEX

INDEX

-a parameter in UNICOS CFT command, 1-13
-A parameter in UNICOS CFT command, 1-16
A (alphanumeric) editing, 8-27
A edit descriptor, 8-27
Abort

compilation, 1-19
condition, recovery from, 1-1
job, 1-11,18
NAMELIST, reasons for, 7-30

ABORT system function, C-2
ABS function, B-2
Absolute value function, B-2
ACCESS specifier, 7-21

for OPEN, 7-26
Access

direct, 7-7
sequential, 7-7

ACOS function, B-4
Active DO loop, 6-8
Actual argument, 2-3,6,8,21, 4-12

for external procedures, 2-22
Actual array, 4-4

declarator, 4-8
element, 4-4

Addition, 5-5
Address

field, 1-22
of current record, return, C-4
of pointee, 3-14

Adjustable array, 4-8,13
declarator, 4-7,8

Adjustable-size array, 4-4
AIDS=dids control statement parameter, 1-2
AlMAG function, B-3
AINT function, B-2
ALIGN compiler directive, 1-43
ALLOC=dlloc control statement parameter,

1-2
Allocation of variables to storage, 1-10
Allowed

assignment statements, 5-4
Logical and Masking Operations and

Result Types, 5-21
ALOG function, B-6
ALOGI0 function, B-6
Alphanumeric editing, 8-27
Alternate return, 2-14,18
AMAXO function, 2-25, 8-6
AMAXI function, 2-25, 8-6
Ambiguous vectors, 1-27
AMINO function, 2-25, 8-6
AMIN1 function, 2-25, 8-6
AMOD function, B-2

SR-0009 Index-l

AND function, B-9
ANINT function, B-2
ANSI control r.tatement parameter, 1-2
Apostrophe edit descriptor, 8-12
Apostrophe editing, 8-12
Arccosine function, B-4
Arcsine function, B-4
Arctangent function, 8-4
ARGADD, CAL linkage macro, F-1
ARGPLIMQ directive, 1-39
Arguments, 2-20

number of, function, 8-11
type character, 3-12

Arithmetic
assignment statement, 5-3
constants, 4-1
constant expression, 5-3
expressions, 5-2,6,l
IF statement, £=l,11
IF statement, two-branch, E-6
operand, 5-6
operator, 5-4
relational expressions, 5-16
value, 3-1

Arrays, 3-1, 4-3
as arguments, 4-12
bounds checking directive, 1-41
declarator, 3-3, 4-3,~

differences between C and CFT, F-3
dimension, 3-3, 4-3,9
element, 3-1,2,4-3,9

in vector and scalar modes, 9-7
name, 4-3,21
reference, 5-6
substring, 4-4
and subscripts, 4-7

name, 3-3, 4-3, 21
in an 1/0 list, 7-12

size, 4-11
specification and size, 4-8
storage, 4-17
stored differently in Pascal than CFT,

F-l
subscripts and storage sequence, 4-9

ASCII character, 3-10
codes, 1-20
set, A-I

ASIN function, 8-4
ASSIGN to connect a dataset for random

acess, 7 -39
Assigned GOTO

statement, 6-3,11
inhibits vectorization, 0-31

L

Assignment, 5-1
statements, 1-33, 5-1,4

Association, 4-1
of arguments, 2-21
of entities, 4-19

Associative law, 5-6
Assumed-size array, 4-4,5

declaratQr, 4-8
dummy array, 4-11

Asterisks written on field overflow, 8-18
ATAN function, B-4
ATAN2 function, B-4
Auxiliary character set, A-1

-b parameter in UNICOS CFT command, 1-14
B registers, 1-26
B=bdn control statement parameter, 1-2
BACKSPACE statement, 7-17, 7-18

unblocked datasets, H-1
Backward branches, 9-2

inhibit vectorization, D-31
Basic real constant, 3-6
Bidirectional memory, 1-3, 1-17, 9-20

hazards, 1-34
Binary

load modules, 1-2
object file, 1-18
output, 1-14
program, 1-1

BL compiler directive, 1-40
BL optimization option, 1-8, 1-14
BLANK specifier

for INQUIRE, 7-22
for OPEN, 7-26

Blanks
ignore, 8-18
in list-directed input, 8-3
treat as zeros, 8-18

$BLD, 1-13
Block begins messages, 1-21
BLOCK compiler directive, 1-42
BLOCK DATA statement, 2-20
Block data subprogram, 2-9, 2-19
Block field, 1-24
Block IF statement, 6-6
Blocked files, I/O for, 7-2
BN edit descriptor, 8-18
BN editing, 8-18
Boolean

functions, B-9
results, 3-8
type, ~
values, 3-8
variable, 5-4

Bottom loading, 1-40,41
Bounds checking, 1-41
BOUNDS compiler directive, 1-12, 1-41
Branch instruction, 1-8, 1-40
Branch statement inhibiting vectorization,

D-31

Breakpoints, 1-4
BTREG optimization option, 1-8, 1-14
BUFFER IN, BUFFER OUT on COS random

datasets, 7-40

SR-0009 Index-2

BUFFER IN statement, 7-33
BUFFER OUT statement, 7-33
Buffered 1/0 with formatted records, 7-3
BZ edit descriptor, 8-18
BZ editing, 8-18

-c parameter in UNICOS CFT command, 1-14
-C parameter in UNICOS CFT command, 1-16
C procedures, F-2
C=cdn control statement parameter, 1-3
CABS function, B-2
CAL, F-1

assembler, 1-3
listing, 1-14
procedures, calling, F-1

CALL statement, 2-14
and Hollerith constants, E-3

Call-by-value sequence, 1-35, 1-46
Carriage control, modify, 8-15
Categories of compiler directives, 1-29
CAUTION message, definition, D-1
CCOS function, B-4
CEXP function, B-5
CFT

command, 1-13
compiler, 1-1
control statement, 1-1
input/output statements, 7-1
revision level, 1-21
ut.ilities, C-2
utility procedures, C-2

Changing 1/0 buffer lengths
using SEGLDR directives, 7-41
by regenerating $IOLIB, 7-41

CHAR function, 2-25, B-8
Character

array, 3-12
assignment statement, 5-13
constant, 3-10
dummy argument, 3-13
expression, 5-13,16

evaluation, 5-14
function, 3-10, B-7
information edit descriptor, 8-12
items, list-directed input, 8-3
limit in 1/0 list and format

specification, 7-16
output constants, 8-4
print control, 7-16
relational expressions, 5-16
set, A-I, 2
storage unit, 4-17
string, 3-10
substring, 3-12
-to-integer function, B-8
type statement, 3-11
value, 3-10
variables, 3-12
variables and function references,

inhibiting vectorization, D-32
CHARACTER statement, 3-11
CHARACTER type, 3-10
Cilist parameter, 1/0 statements, 7-10

L

Circular shift function, 8-10
CIV see Constant increment variables
CLEARFI subroutine, C-3
CLEARFIS subroutine, C-3
Cllist parameter, CLOSE statement, 7-24
CLOCK function, 8-11
Clock register content, return, C-4
Clock, real-time, function, 8-11
CLOG function, 8-6
CLOSE Specifiers and Their Meanings, 7-27
CLOSE statement, 7-24
CMPLX function, 2-25, 8-8
CODE compiler directive, 1-31
Code, 1-11

generation block, 1-18
movement, 1-40
scheduler, 1-40

Colon editing, 8-15
Comment between input NAMELIST group

records, 7-29
COMMENT message, definition, D-1
Common block, 1-2,24, 2-3, 3-2, 4-3,17,~

extended memory, 4-25
names, 1-11,18, 4-24
size, 4-25
storage sequence, 4-24
variable usage, reporting, J-1

COMMON keyword, 4-26
Common logarithm function, 8-6
COMMON statement, 4-5,19,~
COMMONS SEGLDR directive, 7-41
Compilation errors, 1-18
Compile-time messages, 0-1, 0-2
Compiler directive lines, 1-11,18,29
Compiler directives, 1-28
Compiler options, 1-6,21,28

under COS, 1-12
under UNICOS, 1-18

Compiler-generated variables, 1-10,11
COMPL function, 8-9
Complement function, 8-9
Complex

constant, 3-7
as NAMELIST variables, 7-30

editing, 8-25
expression, 5-16
items, list-directed input, 8-3
output constants, 8-4
type conversion, 5-12
value, 3-7

COMPLEX type, 3-3,1
Compressed index gather/scatter hardware,

1-3,17
Compressed index hardware, 1-3,17
Compressed index reference, 9-19
Computed GOTO statement, 6-2

inhibits vectorization, 0-33
Concurrent I/O, 7-33
Conditional

block, 6-5, 6-11
GOTO statement, ~
replacement statements, 1-6,7,15,44
statements, 9-16
vector loops, 1-14, 9-12

Conditions inhibiting vectorization, 9-2

SR-0009 Index-3

CONJG function, 8-3
Conjugate of complex value function, B-3
Connecting a file, 7-24
Considerations in evaluating arithmetic

expressions, 5-12
Constant array declarator, 4-8
Constant increment variables, 1-6,15, 9-3

defined more than once in a loop, 0-32
equivalencing with an array, 0-33
zero increment, 0-38

Constant, 3-1,3, 4-1, 5-1
Hollerith, E-2

Constant-size array, 4-4
CONTINUE statement, 6-2, 6-4, 6-11
Control

characters, print, 7-16
information list, 7-10

examples, 7-11
statement, 1-1

Conversion
to complex function, 8-8
to double-precision function, 8-8
to integer function, 8-7
to real function, 8-8

COS, 1-1
CFT control statement, 1-1
dataset, 7-4
error messages, 1-20
function, 8-4
select, C-2

COSH function, 8-5
Cosine function, 8-4
COT function, 8-4
Cotangent function, 8-4
CPU time for job function, C-4
CPU=cputype:cpuchar control statement

parameter, 1-3
Cray Assembly Language (CAL), 1-3
CRAY C, F-2
Cray FORTRAN, 1-1

programming, 9-1
CRAY Pascal, F-1
CRAY scalar merge function, 8-12
CRAY X-MP Computer System, 1-1
CRAY-l Computer System, 1-1
Creating a dataset

for random access, 7-38
to be randomly accessed, 7-38

Creating non-FORTRAN procedures, F-1
Cross-reference information, 1-27
CSIN function, 8-4
CSMG (CRAY scalar merge) function, 8-10,12
CSQRT function, 8-5
Current interrupt mode, determine, C-3
Current record, return address, C-4
CVL compiler directive, 1-45
CVL optimization option, 1-9,14
CVMGM function, 8-12
CVMGN function, 8-12
CVMGP function, 9-15, 8-12
CVMGT function, 9-15, 8-12
CVMGZ function, 8-12

L

-d parameter in UNICOS CFT command, 1-14
D edit descriptor, 8-23
D editing, 8-23
DACOS function, B-4
DASIN function, B-4
Data

length, E-12
of type statement, E-11
table, E-12

specification statements, ~
statement, 1-2,3, 4-14

and Hollerith constants, E-3
features, E-11

structures, 4-1
transfer operations, 7-14
transfer statement, 7-9
transfer, formatted, 7-15
transfer, unformatted, 7-15
types, 3-1,2

in DATA statement, 4-16
in Exponentiation, 5-10
in Relational Operations, 5-15
of arithmetic expressions, 5-8
with correct edit descriptors, 8-9

using and storing, 4-1
DATAN function, B-4
DATAN2 function, 8-4
Dataset, 7-4

connection, 7-39
for random access, creating, 7-38
names, 1-1
unblocked, H-l

DATE function, B-11
DBLE function, 2-25, 8-8
DCOS function, B-4
DCOSH function, B-5
DCOT function, B-4
DDIM function, B-3
DEBUG compiler directive, 1-45
DEBUG control statement parameter, 1-4
DEBUG control statement, G-1
Debug Symbol Table, 1-4,13,18,19
Debugging directives, 1-45
Debugging instructions, 1-22
Decimal normalization control on 1/0, 8-17
DECODE statement, E-7, E-9
DEFARG, CAL linkage macro, F-1
Defaults, controlling NAMELIST input, 7-30
Defaults, controlling NAMELIST output, 7-33
DEFB, CAL linkage macro, F-1
Defined array element, 4-18
Defined entity, 4-17
Defined variable, 4-18
DEFT, CAL linkage macro, F-1
Delimiter, NAMELIST ($ or &), 7-30
Dependencies, 9-5
Dependency information combinations, 9-8
Dependency messages, 9-9, D-38
DEXP function, B-5
Difference, positive, function, B-3
DIM function, B-3
Dimension bound expression, 4-6
Dimension declarators, 3-3, 4-6
DIMENSION statement, 3-15, 4-5

SR-0009 Index-4

DINT, B-2
Direct access of external files, 7-6
Direct access, 7-7
DIRECT specifier for INQUIRE, 7-22
Directive Are Used, 8-10
Division, 5-5
DLOG function, B-6
DLOG10 function, B-6
DMAX1 function, 2-25, B-6
DMIN1 function, 2-25, B-6
DMOD function, B-2
DNINT function, B-2
DO control variable, 1-10
DO loop, 1-5,7,12,27,32, 6-7

active, 6-8
extended range of, E-13
transfer out, E-13
vectorizable, 9-1

DO statement, 6-7, 6-8, 6-11
DO variable, 6-7,~

in an implied DO list, 7-15
DO-Loop Table, 1-11,18
DO-loop unrolling, 1-10,16,46
Dollar sign editing, 8-15
Double declaration statements, E-10
Double precision, 1-12,19

constant, 3-7
editing, 8-23
exponent, 3-7
items, list-directed input, 8-3
octal output, 8-25
output constants, 8-4
product function, B-3
type conversion, 5-12

DOUBLE PRECISION type, 3-3,2
DPROD function, B-3
DSIGN function, B-2
DSIN function, B-4
DSINH function, B-4
DSQRT function, B-5
DTAN function, B-4
DTANH function, B-5
Dummy and actual arrays, 4-4
Dummy argument, 1-24, 2-4,13,14,21,~, 4-4
Dummy array, 4-12

declarator, 4-8
Dummy procedure, 2-10,24
Dump, symbolic memory, G-1
DUMP JOB subroutine, C-4
Dynamic common block, 1-40
Dynamic common block directive, 1-40
DYNAMIC compiler directive, 1-40

-e parameter in UNICOS CFT command, 1-14
-E parameter in UNICOS CFT command, 1-17
E edit descriptor, 8-21
E editing, 8-21
E=eml control statement parameter, 1-4
Edit descriptor, 8-6, E-9

A, 8-27
apostrophe, 8-12
BN, 8-18
BZ, 8-18
colon, 8-15

L

Edit descriptor (continued)
0, 8-23
dollar sign, 8-15
E, 8-21
F, 8-19
G, 8-23
H, 8-12
I, 8-18
L, 8-26
0, 8-25
P, 8-16
quotation mark, 8-12
R, 8-28
S, 8-18
slash, 8-14
SP, 8-18
S5, 8-18
Z, 8-25

Edit Descriptors with Data Types, 8-9
Edit descriptors, obsolete, E-9
Editing input data, 7-6
EDN=edn, 1-5
EJECT compiler directive, 1-30
ELSE statement, 6-7
ELSE-block, 6-5
ELSE IF statement, 6-6
ELSEIF statements, inhibiting

vectorization, D-34
ELSEIF-block, 6-5
Embedded format specification, 8-10
Empty record, write, 8-14
ENCODE statements, E-7, E-8
END statement, 2-3, 2-9, 2-13, 6-13
End-of-data record, 7-4
End-of-file

condition, 7-16
identifier, 7-11
record, 7 -2

END= parameter, 7-11
Endfile record, 7-2
ENDFILE statement, 7-3, 7-17, 7-18
ENDFILE with unblocked datasets, H-1
ENDIF statement, 6-6
ENDRPV subroutine, C-4, 1-2
Enter message in logfile, C-2
Entity categories, 9-3
Entry point address, 2-11
ENTRY statement, 2-16, 4-3
ENTRY, CAL linkage macro, F-1
EOD record, 7-4
EOD, detect, C-3
EODW, C-3
EOF

condition after reading an endfile
record, 7-17

function, C-3, E-13
detect, C-3
written by ENDFILE, 7-17

EQUIV directive of SEGLDR, 8-10
Equivalence function, 8-9
EQUIVALENCE statement, 4-4,19,20
EQV function, 8-9
ERR specifier, 7-20

for CLOSE, 7-27
for OPEN, 7-25

SR-0009 Index-5

ERR= parameter, 7-11
ERREXIT subroutine, C-2
Error

condition, 7-16
during data transfer, 7-16
during INQUIRE, 7-23

during 1/0, 7-40
exit processing, resume, C-4
identifier, 7-11
listing, 1-5,17,18
message, definition, 0-1
messages, 1-4,20
recovery, 1/0, 7-40

Establishing a format, 7-14
Exchange Package, saving a copy, 1-1
Executable program, 2-1,3
Executing a DO statement, 6-8
Execution speed, 9-1
EXIST specifier, 7-21
EXIT statement, with CFT job, D-28
EXIT subroutine, C-2
EXP function, 8-5
Exponent function, 8-5
Exponential functions, 8-5
Expressions, 5-1
Extended memory

addressing, 1-3,17, 4-25
common blocks, 4-25

Extended range of DO loop, E-13
External file ,opening, 7-23
External file, 7-2

access methods, 7-6
identifiers, 7-9
attribute, determining status, 7-19

External
function, 2-2,5,8,11

references, inhibit vectorization,
D-34

routines, 1-46
subprogram, 1-42

EXTERNAL statement, 2-8, 2-10, 2-24, 2-26

F edit descriptor, 8-19
F editing, 8-19
Factor, 5-7
False logical value, 3-10
Fast integer multiply and divide

algori thms, 1-7
FASTMD

compiler directive, 1-36
optimization option, 1-7,15

Fatal error, 1-4,11,14
messages, 1-12,19

File, 7-4
access methods, 7-6
and record positioning for buffered

I/O, 7 -36
closing, 7-24
identifier, 7 -8
input/output, 7-4
internal, 7 -5
opening, 7-23
parameter, INQUIRE statement, 7-19

L

File (continued)
position after data transfer, 7-7
specifier for OPEN, 7-2

FLOAT function, 2-25, 8-8
Floating-point

arithmetic, 1-5
operations, 1-46

error, 1-5
functional unit, 9-1
interrupts, prohibit, C-3
interrupts, permit, C-3
operations, 1-13,19
output format, 8-19
results, 1-16
values, 3-6

FLODUMP utility, 1-38
FLOW compiler directive, 1-37
Flow trace directives, 1-37
FLOWLIM directive, 1-39
FLOWTRACE option, 1-11
FLOWTRACE utility, 1-18
FMT parameter, 7-11
Form and interpretation of logical

expressions, 5-19
FORM specifier

for INQUIRE, 7-22
for OPEN, 7-26

Format
control, processing, 8-11
establishing, 7-14
format identifier, 7-9,11
of messages, 0-1
restrictions, lifting, 8-10
specifications

and I/O lists, 8-10
empty, 8-10
list-directed output, 8-5
using noncharacter arrays, E-13

FORMAT statement, 8-5
Formatted

and unformatted records on the same
file, 7-15

data assignment, E-7
data transfer, 7-15
I/O

prohibited on an unblocked dataset,
H-1

prohibited under random access, 7-40
record, 7-2

FORMATTED specifier for INQUIRE, 7-22
Formatting, input/output , 8-1
FORTRAN character set, A-1
FORTRAN source code, 1-12,19
FTREF utility, J-1
FULLDOREP optimization option, 1-7, 1-15
FULLIFCON optimization option, 1-7, 1-15
Function, 2-1,~

name, 3-3
data type of, 3-2
external, 2-2
intrinsic, 2-2
reference, 2-5, 5-6

in an I/O statement, 7-40
statement, 2-2

SR-0009 Index-6

Function (continued)
subprogram, 2-9,12
value, 2-1, 2-4

FUNCTION statement, 2-12, 4-3

G edit descriptor, 8-23
G editing, 8-23
Gather/scatter hardware, 1-3, 1-17
.GE. function, 8-7
General Arithmetic Functions, B-2
Generated code, 1-26
Generic Arithmetic Functions, B-2
GETPOS function, C-4

with random access, 7-39
Global entities, 4-27
GOTO statement, 6-1
Group name parameter, NAMELIST, 7-28
.GT. function, 8-7
Guidelines for vectorization, 9-19

H editing descriptor, 8-12
H editing, 8-12
Header line, 1-21
Hexadecimal constants as NAMELIST

variables, 7-29
Hexadecimal editing, 8-25
Hollerith

constant, 3-9, 5-14
data, E-2
expressions, E-4
format specification, E-6
relational expressions, E-5
type, 5-14

Hyperbolic
cosine function, B-5
sine function, 8-4
tangent function, B-5

-i parameter in UNICOS CFT command, 1-14
I edit descriptor, 8-18
I/O

error recovery, 7-40
list, 7-12

and format specifications, 8-10
list-directed, 8-2
statements, processing, 7-14
unformatted, 8-1
using a Pascal routine, F-2

I=idn control statement parameter, 1-5
ICHAR function, 2-25, 8-8
Identifier, 7-8
Identifying a unit, 7-14
101M function, 8-3
IOINT function, 2-25, B-7
IONINT function, B-2
IEOF function, C-3, E-13
IF statement, 1-8

nested, inhibit, 0-34
IF-block, 6-5
IF-level, 6-5
IFIX function, 2-25, B-7

L

Imaginary portion of complex value
function, B-3

IMPLICIT NONE statement, 3-5
IMPLICIT statement, 3-2, 3-4, 4-2
Implied-DO list, 4-16, 7-13

in a DATA statement, 4-15
in unformatted I/O, 8-2

$IN, unit identifier number, 7-8
Inactive DO loop, 6-8
INDEF control statement parameter, 1-5
INDEX function, B-7
Index of substring function, B-7
Indirect logical IF statement, E-7
Information supplied by FTREF, J-1
Inner DO loops, 9-2
Input

file, editing, 7-6
list item, 7-12
list-directed, 8-3
lists, examples, 7-12
statements, inhibit vectorization, 0-34
to CFT, 1-20

Input/output
file, 7-4
formatting, 8-1
record, 7-2
statements, 7-1

INQUIRE specifiers and their meanings, 7-20
INQUIRE statement restrictions, 7-23
Inquiry

by file name, 7-19
by unit, 7-20

Instruction buffer
boundary, 1-43
size, 1-3,17

Instruction scheduler, 1-8
INT function, 2-25, B-7
INT24 compiler directive, 1-36
INT64 compiler directive, 1-36
INT:il control statement parameter, 1-5
Integer

arithmetic, 3-8
constant, 3-5,6
control directives, 1-36
editing, 8-18
nearest, function, B-2
output constants, 8-4
type conversion, 5-11
values, 3-5

Integer-to-character conversion function,
B-8

INTEGER type, 3-3, 3-5
INTEGER*2 declaration, 1-12, 1-19
Interactive I/O, with $ edit descirptor,

8-16
Internal file, 7-5

identifier, 7-8
position, 7-7
definition, 7-2

Internal record, 7-5
Interpretation of blanks on input, 8-18
Intrinsic function, 2-2,4,~, B-1

referencing, 2-8
INTRINSIC statement, 2-25,26

SR-0009 Index-7

Invariant, 9-3
array element, 9-3
expression, 9-3

INVMOV optimization option, 1-7,15
$IOLIB buffers, 7-41
$IOLIB, regenerating to change I/O buffer

lengths, 7 - 41
10STAT

function, E-13
specifier, 7-20

for OPEN, 7-25
for CLOSE, 7-27

10STAT: parameter, 7-11
IRTC function, B-11
ISIGN function, B-2
Islist parameter, INQUIRE statement, 7-19,20
Iteration count, 1-27,32, 4-16, 6-7, 6-8
IVDEP compiler directive, 1-34
IVDMO compiler directive, 1-34

JDATE function, B-11
Job area image, save, C-4
Job step, terminate, C-2
Julian time function, B-11

KEEPTEMP optimization option, 1-9,15
KILLTEMP optimization option, 1-9,15
Kinds of array declarators, 4-7

-1 parameter in UNICOS CFT command, 1-14
L (logical) editing, 8-26
L edit descriptor, 8-26
L:ldn control statement parameter, 1-5
Last-in-first-out storage, 4-18
LOR, 1-20
Leading zeros function, B-10
LEADZ function, B-10
.LE. function, B-7
LEN function, B-7
Length

for I/O lists, maximum, 7-41
function, 7-38, C-3
of an unformatted record, 7-3
of character constant, 3-11
of code block, 1-17
of formatted record, 7-3
of integers, 1-5,14
of string function, B-7

LGE function, 2-25, B-7
LGT function, 2-25, B-7
Line width ,default for NAMELIST output,

7-33
Linkage macros, purpose, F-1
LIST compiler directive, 1-30
List options, 1-5,11
List output, 1-5
List-directed

I/O, 8-2
input, 8-3
output, 8-4

Listable output control directives, 1-30
Literal constant, 4-1

L

LLE function, 2-25, B-7
LLT function, 2-25, B-7
LOAD, CAL linkage macro, F-1
Loader, 1-20
LOC function, B-11
Local entities, 4-27
Local variables, 1-26, 4-18
Location function, 8-11
Logarithmic functions, B-6
Logfile messages, D-27
Logfile, enter message, C-2
Logical

assignment statement, 5-17
difference function, B-9
disjunct, 5-19
editing, 8-26
entities, 5-16
expression, 5-16,19
factor, 5-19
IF statement, 6-4

indirect, E-7
items, list-directed input, 8-3
operators, 5-16,!l,18
output constants, 8-4
product function, B-9
shift function, B-10
sum function, B-9
term, 5-19

LOGICAL type, 3-3,10
Loop control processing, 6-9
Loop preamble, 1-7,22
LOOPMARK utility, 1-5,16
LOOPMARK[=lmmsgs] control statement

parameter, 1-5
.LT. function, B-7

-m parameter in UNICOS CFT command, 1-14
-M parameter in UNICOS CFT command, 1-17
Machine

characteristics table, 1-12
language instructions, 9-1

Main
program, 2-1,3
usage field, 1-24

$MAIN, 1-23
Mainframe

characteristics, 1-3,16
type, 1-3·,16

MASK function, B-9
Masking expression, 5-20
MAX function, 2-25, 9-15
MAX/MIN intrinsic functions, 1-6
MAXO function, 2-25, B-6
MAX1 function, 2-25, B-6
MAXBLOCK=mb control statement parameter,

1-6
Maximum

array size, 4-12
value function, B-6

Maximum/minimum functions, 8-6
Meanings of Logical Operators, 5-18
Memory

allocation scheme, 1-2,13
dump, G-1

SR-0009 Index-8

Memory (continued)
requirements, data types, 8-1
speed, 1-3,17

Messages, 1-28, D-1
compile-time, D-2
dependency, D-38
enter into logfile, C-2
logfile, D-27
novector, D-29
write, C-2

MIN function, 2-25, 9-15
MINO function, 2-25, B-6
MINI function, 2-25, B-6
Minimum value, B-6
Miscellaneous Functions, B-11
MOD function, B-2
Mode identifier, BUFFER IN and BUFFER OUT,

7-35
Modifying a record under random access, 7-40
Movement of invariant code from DO loops,

1-15
Multiple ports to memory, 9-19
Multiplication, 5-5
Multiply/divide directives, 1-36

Name field, 1-22
NAME specifier, 7-21
Named common block, 4-22
NAMED spec'ifier, 7-21
NAMELIST, 4-3

input, 7-28
processing, 7-30
variables, 7-29

output, 7-32
statement, 7-27

Natural logarithm function, B-6
NEQV function, B-9
Nested DO loop, 9-13
NEXTREC specifier, 7-21
NEXTSCALAR compiler directive, 1-35

example, D-32
NINT function, B-2
NO SIDE EFFECTS compiler directive, 1-42
NOBL compiler directive, 1-40
NOBL optimization option, 1-8, 1-14
NOBTREG optimization option, 1-9,14
NOCODE compiler directive, 1-31
NOCVL compiler directive, 1-45
NOCVL optimization option, 1-9,14
NODEBUG compiler directive, 1-45
NODOREP compiler directive, 1-45
NODOREP optimization option, 1-7,15
NOEMA CPU characteristic, 4-25
NOFLOW compiler directive, 1-37
NOIFCON compiler directive, 1-44
NOIFCON optimization option, 1-6,15
NOINVMOV optimization option, 1-7,15
NOLIST compiler directive, 1-30
Non-ANSI features, outmoded, E-1
Non-ANSI messages, 1-18, 0-1
Non-FORTRAN procedures, F-1
Noncharacter arrays for format

specification, E-13

L

Nonrepeatable edit descriptors, 8-8
Nonstandard FORTRAN, 1-2
Nonzero real values, 3-6
NORECURRENCE compiler directive, 1-33
NORECURRENCE, example, D-32
NOTE message, definition, D-1
NOVECTOR compiler directive, 1-32
NOVECTOR message, definition, D-1
Novector messages, D-29
NOVECTOR, example, D-32
NOZEROINC optimization option, 1-6
Nozeroinc optimization option, 1-15
Null

character, in Hollerith constant, E-2
symbols, 1-19
value in input list, 8-3

NUMARG function, B-11
NUMBER specifier, 7-21
Numeric

computation, 5-2
editing, 8-17
storage unit, 4-17

-0 parameter in UNICOS CFT command, 1-14
o (octal) editing, 8-25
o edit descriptor, 8-25
Octal constants as NAMELIST variables, 7-29
Octal editing, 8-25
OFF:string control statement parameter,

1-6
Olist parameter, OPEN statement, 7-23
ON:string control statement parameter, 1-6
One-line DO loop, 9-13
OPEN specifiers and their meanings, 7-25
OPEN statement, 7-23
OPENED specifier, 7-21
Operand range error, 1-5
Operand, 5-1
Operating system routines, 1-20

called by CFT Utilities, C-1
Operator, 5-1
OPT:option control statement parameter,

1-6
Optimization, 1-6

block, 1-6
directives, 1-42
options, 1-6,14

Optimized code, 2-8
Optimized routines, 9-14
Optionally signed constant, 4-1
OR function, 8-9
Out-of-bounds subscripts, 1-12,41
Out-of-range floating-point value,

p ri n t i ng, 8 - 2 0
Outmoded features, E-1
Output

control directives, 1-19
for numbers, general rules, 8-17
from CFT, 1-20
list item, 7-12
listing control directives, 1-12
lists, examples, 7-12
list-directed, 8-4

SR-0009 Index-9

Output (continued)
NAMELIST group record, 7-32
statements, inhibit vectorization, D-34
to a printer, 7-16

$OUT, unit identifier number, 7-8

P editing, 8-16
Page header lines, 1-21
PARAMETER statement, 3-4, 4-1
Parameter, passing between C and CFT, F-2
Parcel address, 1-27
Parenthesized expression, 5-1
PARTIALIFCON optimization option, 1-6,15
Partially associated entities, 4-19
Pascal procedures, calling, F-1
PAUSE statement, 6-12
Plus signs, control on output, 8-18
Pointee, 1-25, 3-14

array, 4-4,5
declarator, 4-8

Pointer, 3-13
POINTER statement, 3-14, 4-5
POPARR function, B-10
POPCNT function, B-10
Population count function, B-10
Population parity count function, B-10
Position edit descriptors, 8-13
Positional editing (T, TL, TR, and X), 8-13
Positioning

by format control, 8-11
while connected for random access, 7-39

Pound blocks, 1-25
Precedence of arithmetic operators, 5-5
Primary, 5-6
Print control characters, 7-16
Printer output, 7-16
Printing, 7 -16
Procedure, 2-1

reference, 4-4
subprogram, 2-9, 4-4

Product, double-precision, function, B-3
Program

block, 1-25
control statements, 6-1
structure, 2-1
unit, 1-28, ~
Unit Page Table, 1-28
variables, dump contents, C-4

PROGRAM statement, ~
Pseudo CAL file, 1-18
Pseudo vector, 9-4
PUNCH statement, E-11
$PUNCH, unit identifier number, 7-8
Pushdown storage, 4-18

Qualifications for vectorization, 9-1
Quotation mark edit descriptor, 8-12
Quotation mark editing, 8-12

R (right-justified) editing, 8-28
R edit descriptor, 8-28

L

Random
access dataset, creating, 7-38
connection access method, 7-38
number function, B-3
seed function, B-3

RANF function, B-3
RANGET function, B-3
RANSET function, B-3
$RBUFLN, 7-41
READ statement,7-9

format, 7-10
Read-only constants, 1-26
Real

constant, 3-6
exponent, 3-6
items, list-directed input, 8-3
output constants, 8-4
type conversion, 5-11
function, 2-25, B-8

REAL type, 3-3,£
Real-time clock function, B-ll
REC parameter, 7-11
RECL specifier, 7-21

for OPEN, 7-26
Record, 7-2

identifier, 7-11
numbers, in direct access of external

files, 7-6
of an internal file, 7-5
end-of-data, 7-4
end-of-file, 7-2
formatted, 7-2
input/output, 7-2
internal, 7-5
NAMELIST input, 7-29
output NAMELIST group, 7-32
unformatted, 7-2

Recurrence relation, 1-33
Recurrence, referencing the result inhibits

vectorization, 0-36
Recursion

in subprogram, 2-10
reduction variable, 9-4
variable as a subscript, 0-30

Reductions, vectorizing, 0-38
Referencing common blocks, 4-23
Referencing intrinsic function, 2-8
Relational expression, 5-14,16
Relational operator, 5-16
Relocatable binaty

output, 1-20
binary program, 1-1

Remainder function, B-2
REMARK subroutine, C-2
REMARK2 subroutine, C-2
REMARKF subroutine, C-2
Repeat specification, 8-5

RESUMEDOREP compiler directive, 1-44
RESUMEIFCON compiler directive, 1-44, 9-16
RETURN statement, 2-17, 6-8
REWIND statement, 7-17, 7-19
$RFDCOM, resizing, 7-41
Right-justified output, 8-18
RNLCOMM routine, 7-32
RNLDELM routine, 7-31
RNLECHO routine, 7-31
RNLFLAG routine, 7-31
RNLREP routine, 7-32
RNLSEP routine, 7-31
RNLSKIP routine, 7-31
RNLTYPE routine, 7-31
ROLL compiler directive, 1-46
ROLL/UNROLL directives, 1-46
Round result on multiply operations, 1-19
Round-off errors, 5-12
Rounding results of multiply operations,

1-12
RTC function, B-11
Rules for numeric editing, 8-17

S edit descriptor, 8-18
S editing, 8-18
SAFEDOREP optimization option, 1-7,15
SAFEIF compiler directive, 1-40
SAFEIF optimization option, 1-8,15
SAVE statement, 1-10,18, 2-18
SAVEALL control statement parameter, 1-10
Scalar

loops, 1-32
merge function, B-I0
mode, 1-32,35
temporaries, 1-9, 9-14
temporary variables, 1-15

Scale factor, edit descriptor, 8-16
Scheduler directives, 1-40
$SCILIB, 1-7,15,27,45,13
Scope of symbolic names, 4-27
SOOT library routine, 9-14
SECOND function, C-4
Seed, random, function, B-3
SEGLDR, 1-20

directives for changing I/O buffer
lengths, 7-41

lifting format restrictions, 8-10
SENSEFI subroutine, C-3
Separators, list-directed output, 8-4
Sequence number, 1-18
Sequential access, 7-7

of external files, 7-6
Sequential file statements, 7-17
SEQUENTIAL specifier for INQUIRE, 7-22
SET SEGLDR directive, 7-41
SETFI subroutine, C-3
SETFIS subroutine,' C-3 Repeatable edit descriptors, 8-7

Repeated execution of statements,
Replacement of one-line DO loops,
Reprieve

6-11 SETPLIMQ directive, 1-39

initiation, I-I
processing, I-I
termination, ~

SR-0009

1-15 SETPOS function, C-4
SETPOS with random access, 7-39
SETRPV library routine, 1-1
SETRPV subroutine, C-4
SHIFT function, B-I0

Index-lO L

SHIFT does not vectorize, 0-36
Shift, circular, function, B-10
SHIFTL function, B-10
SHIFTR function, B-10
Short vector loop, 1-27
SHORTLOOP compiler directive, 1-35
Side effects, 1-42
SIGN function, B-2
Sign, transfer, function, B-2
Signed constant, 4-1
Simple variable, 4-2
Simultaneous 1/0, 7-35
SIN function, B-4
Sine function, B-4
SINH function, B-4
Size of an assumed-size array, 4-11
Skip record, 8-10
Skip positions edit descriptor, 8-14
Slash as separator during list-directed

input, 8-3
Slash edit descriptor, 8-14
Slash editing, 8-14
Slashes as value separators, list-directed

output, 8-5
SLOWMD compiler directive, 1-36
SLOWMD optimization option, 1-7,15
SNGL function, 2-25, B-8
Source

input, 1-5
listing, 1-14
statement listing, 1-20, 1-21

SP edit descriptor, 8-18
SP editing, 8-18
Specification subprogram, 2-9
SQRT function, B-5
Square root function, B-5
SS editing, 8-18
SSUM library routine, 9-14
SSWITCH subroutine, C-2
Stack, 1-2,11,13, 4-18

allocation, 4-26
frame, 1-5
mode, 1-26, 2-3,10
Space Table, 1-25,26
storage, 1-24, 4-18
variable, 1-18, 4-3

Statement
function, 2-2,4,~

definition statement, 2-6
labels, 1-11,19,22
numbers, 1-22
sequence, 6-1

Statements
for using subprograms, 2-16
I/O, 7-1

Static
memory, 1-13
mode, 1-25
Space Table, 1-25,26

and Stack Space Table, 1-25
storage, 1-2,10,11, 4-14,18
variable, 4-3

Status identifier, 7-11
STATUS specifier for OPEN, 7-26

SR-0009 Index-ll

STATUS specifier for CLOSE, 7-27
Stderr unit identifier number, 7-8
Stdin unit identifier number, 7-8
Stdout unit identifier number, 7-8
STOP statement, 6-8,12

inhibits vectorization, 0-31
Storage, 4-1

and association, 4-17
sequence, 4-17

for a Three-dimensional Array, 4-10
unit, 4-17

STORE, CAL linkage macro, F-1
String, length of, function, B-7
Subcategories of FORTRAN Terms, 2-2
Subprogram, 2-1,3,~

entry, 2-3
recursion in, 2-10

Subroutine, 2-1,13
calls, inhibiting vectorization, 0-34
subprogram, 2-9,~3

SUBROUTINE statement, 2-14
Subscript

calculations, 4-9
evaluation, 4-11
expression, 4-9
of array element name, 4-8
value, 4-8

Subscripted variable, 4-2
Substring, index, function, B-7
Subtraction, 5-5
Suspending execution, 6-12
Symbol Table, 1-11,12,13,19
Symbolic debug package, G-1
Symbolic names, 1-23, 4-26, 5-6
SYMDEBUG library routine, G-1
SYMDEBUG subroutine, C-4
Synchronous 1/0, with unblocked datasets,

H-1
SYSTEM function, C-2

-t parameter in UNICOS CFT command, 1-16
T edit descriptor, 8-13
T editing, 8-13
T registers, 1-8,10,14,26
Table of block names and lengths in octal,

1-25
Table

of external names, 1-26
of loops encountered, 1-26

includes NOVECTOR messages, 0-30
of names encountered, 1-22
of parameters encountered, 1-25
of statement numbers, 1-22

TAN function, B-4
Tangent function, B-4
TANH function, B-5
Task common block, 1-24
TASK COMMON statement, 4-25
TASK keyword, 4-26
TASK START statement, 2-19
Temporary variables, 1-26
Term, 5-7
Terminal statement of DO loop, 6-7, 6-11

L

Terminate job step, C-2
Terminating execution, 6-12
Time and Date Functions, B-11
Time function, B-ll
Time limit, recovery from, 1-1
TIMEF function, C-4
TL edit descriptor, 8-13
TL editing, 8-13
Totally associated entities, 4-19
TR edit descriptor, 8-13
TR editing, 8-13
Traceback, write, C-2
Transfer of control, 6-1
Transferring data, 7-14
Transportability of programs, 9-1
TRBK function, C-2
Trigonometric functions, B-4
Trip count, 1-10
True logical value, 3-10
TRUNC=tr control statement parameter, 1-10
Truncation, 1-10,16

count, 1-21
function, B-2

Two-branch arithmetic IF statement, E-6
Type

Boolean, 5-11
conversion functions, B-7
conversion, 5-11
field, 1-22
statement, 3-3

data length, E-l1

-u parameter in UNICOS CFT command, 1-16
Unblocked dataset, H-1

with buffered 1/0, 7-36
Unconditional GOTO, 6-11
Unformatted

and formatted records on the same file,
7-15

data transfer, 7-15
1/0, 8-1

with formatted records, 7-3
with unblocked datasets, H-1

record, 7-2
UNFORMATTED specifier for INQUIRE, 7-22
UNICOS, 1-1,13

CFT command, 1-13
Uninitialized integer variable, 1-5
Unit, 7-7

UNIT

identifier, 7-8
parameter, 7-10

100, preconnected to $IN or stdin, 7-14
101, preconnected to $OUT or stdout,

7-14

function, 7-37, C-3
specifier for CLOSE, 7-27
specifier for OPEN, 7-25

UNSAFEIF optimization option, 1-8,15
Unsigned arithmetic constant, 4-1, 5-2,6
Use of array names, 4-13
Use of Data Types with Arithmetic

Operations, 5-9
User control subroutines, 7-30,~
User-supplied code, 2-2
User-supplied function, 2-8
Using compiler directive lines, 1-29
Utility procedures, C-1

-v parameter in UNICOS CFT command, 1-16
Value separators, forms, 8-2
Values Represented in Different Data Types,

3-16
Variable, 3-1, 4-2

name, 3-3
reference, 5-6
usage, common block, J-1

Variables that can contain Hollerith data,
E-5

Vector array reference, 9-3,4
Vector block, 1-22
VECTOR compiler directive, 1-32
Vector

dependency, 9-5
dot product, 9-13
functional unit, 9-1
logical functional units, 1-3,17
loops, 1-32
merge, 9-16
population count functional unit, 1-3,17
processing, 9-1
recursion, 1-3,17
sum, 9-13
temporaries inhibiting vectorization,

D-38
Vectorizable DO loops, 9-1
Vectorization, 1-6,32

control directives, 1-31
functions, B-12
guidelines, 9-19
inhibition messages, 1-2,16
with arrays, 9-12

VFUNCTION compiler directive, 1-34

WARNING message, definition, D-1
$WBUFLN, 7-41
$WFDCOM, resizing, 7-41
WNLDELM routine, 7-33
WNLFLAG routine, 7-33
WNLLINE routine, 7-33
WNLLONG routine, 7-33
WNLREP routine, 7-33
WNLSEP routine, 7-33
Write

a traceback, C-2
an ASCII message, C-2 UNROLL compiler directive, 1-46

UNROLL=r control statement parameter,
Unrolled loop, example, D-35
Unrolling of DO loops, 1-46

1-10 EOD, C-3

UNSAFEIF compiler directive, 1-40

SR-0009

WRITE statement, description, 7-9
WRITEDS to create a dataset, 7-38

Index-12 L

X edit descriptor, 8-13
X editing, 8-14
XOR function, B-9

Z (hexadecimal) editing, 8-25
Z edit descriptor indicates, 8-25
ZEROINC optimization option, 1-6
Zeroinc optimization option, 1-15
Zeros, leading, function, B-10

24-bit integer, 1-5,36
46-bit integer multiply and divide, 1-15,36
64-bit integer arithmetic, 1-36
64-bit integer multiply and divide, 1-7,15
64-bit integer, 1-5,36

SR-0009 Index-13 L

READER'S COMMENT FORM

FORTRAN (eFT) Reference Manual SR-0009 L

Your reactions to this manual will help us provide you with better documentation. Please take a moment te
check the spaces below, and use the blank space for additional comments.

1) Your experience with computers: __ 0-1 year __ 1-5 years __ 5+ years
2) Your experience with Cray computer systems: __ 0-1 year __ 1-5 years __ 5+ years
3) Your occupation: __ computer programmer __ non-computer professional

__ other (please specify): ___________ _
4) How you used this manual: __ in a class __ as a tutorial or introduction __ as a reference guide

__ for troubleshooting

Using a scale from 1 (poor) to 10 (excellent), please rate this manual on the following criteria:

5) Accuracy __ 8) Physical qualities (binding, printing) __
6) Completeness __ 9) Readability __
7) Organization __ 10) Amount and quality of examples __

Please use the space below, and an additional sheet if necessary, for your other comments about this
manual. If you have discovered any inaccuracies or omissions, please give us the page number on which
the problem occurred. We promise a quick reply to your comments and questions.

Name Address ----------------------- --------------------
Title ----------------------- City __________ _
Company _____________ _ Statel Country _______ _
Telephone ________ _ Zip Code ______________ _
Today's Date _______ _

------------------~------------------------~

III " I
BUSINESS REPLY CARD
FIRST CLASS PERMIT NO 6184 ST PAUl. MN

POSTAGE WILL BE PAID BY ADDRESSEE

RESEARCH, INC.

Attention: PUBLICATIONS
1345 Northland Drive
Mendota Heights, MN 55120

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

---~

(")
C
-t
»
r o z
G>
-t
:I:
en
r
Z
m

READER'S COMMENT FORM

FORTRAN (eFT) Reference Manual SR-0009 L

Your reactions to this manual will help us provide you with better documentation. Please take a moment to
check the spaces below, and use the blank space for additional comments.

1) Your experience with computers: __ 0-1 year __ 1-5 years __ 5+ years
2) Your experience with Cray computer systems: __ 0-1 year __ 1-5 years __ 5+ years
3) Your occupation: __ computer programmer __ non-computer professional

__ other (please specify): ___________ _
4) How you used this manual: __ in a class __ as a tutorial or introduction __ as a reference guide

__ for troubleshooting

Using a scale from 1 (poor) to 10 (excellent), please rate this manual on the following criteria:

5) Accuracy __ 8) Physical qualities (binding, printing) __
6) Completeness __ 9) Readability __
7) Organization __ 10) Amount and quality of examples __

Please use the space below, and an additional sheet if necessary, for your other comments about this
manual. If you have discovered any inaccuracies or omissions, please give us the page number on which
the problem occurred. We promise a quick reply to your comments and questions.

Name ----------------------- Address _________ _
Title ------------------------ City __________ _
Company _______________ _ Statel Country ______ _
Telephone ____________ _ Zip Code ________ _
Today's Date _______ _

---~

IIIIII
BUSINESS REPLY CARD
FIRST CLASS PERMIT NO 6184 ST PAUl. MN

POSTAGE Will BE PAlO BY ADDRESSEE

RESEARCH, INC.

Attention: PUBLICATIONS
1345 Northland Drive
Mendota Heights, MN 55120

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

---~

("')
C
-I
»
r o
Z
G)

-I
J:
en
r
Z
m

