®
CRAY-1
=R AY"
COMPUTER SYSTEM

3
e - I I

] ¥
‘\~ 7 J

CRAY-0S VERSION 1.0
REFERENCE MANUAL
2240011

TTO0%CC

CONTROL STATEMENT SUMMARY

Page (part 2) Control statement

or pub. no.
2-4 *, user-defined comments
4-3 ACCESS,DN=dn,PDN=pdn,I1D=uid,ED=ed,R=rd W=wt ,M=mn,UQ ,ENTERTT.
5-1 +ACQUIRE,DN=dn,PDN=pdn,ID=uid,ED=ed.RT=rt,R=rd,N=wt,M=mn,
UQ,ENTERtT, TEXT=text ,MF=msf,TID=¢t1d,DF=
IN
4-4 ADJUST ,DN=dn. SE
SC
3-1 ASSIGN,DN=dn,S=size,A=adn,BS=b1k,DV=1dv ,RDM,U,LM=Zm,DC=}PR .
PU
7-3 AUDIT. PT
+ MT
11-1 BUILD,I=ddn,L=1dn,0BL=0dn,B=bdn,NBL=ndn,IMMED ' ,SORT ,NODIR.

2240000 CAL,I=<dn,L=1dn,B=bdn,E=edn,ABORT ,options,LI1ST=name,S=sdn.

options| ON XRE DUP LIS MAC MIC MIF]

p S|0FF NXRF NDUP NLIS NMAC NMIC NMIF

2240009 CFT,I=<dn,L=1dn,B=bdn,C=cdn,0N=string,0FF=string.
string: BCGINQSTVUX

cD
cB

BD;.

TR

6-5 TCOMPARE,A=adn,B=bdn,L=ldn,DF=(i,,ME=maxe,CP=cpn,CS=esn,ABORT.
6-2 COPYD,I=idn,0=0dn.
6-2 COPYF,I=7dn,0=0dn,NF=n.
6-1 COPYR,I=idn,0=an,NR=n.
2240012 CSIM,LINES=n,T=t7,0PSYS=0sdn,0SPAR=pfdn ,MAXBK=ms .
IN
4-6 DELETE,DN=dn. ST CD
sC cB
5-4 DISPOSE,DN=dn,SDN=sdn,DC=4{ PR}, DF={BD ,MF=mf,SF=sf,ID=uid+,
PU BB
PT TR
MT
TID=tid,ED=ed,RT=rt,R=rd,N=vt ,M=mn , TEXT=text T ,WAITT.
8-2 DSDUMP , I=4dn,0=0dn,DF={B} , IN=n,NW=r, IR=n,NR=n, [F=n,NF=n,
1S=n,NS=n.
8-1 DUMP,I=¢dn,0=0dn,FW=fwa,LW=2wa,JTA,NXP,V,DSP.
T Deferred implementation Note: defaults are underscored

+t See CRI publication 2240012

Page {part 2)
or pub. no.

8-1
2-3
2240012
2-1
9-1

2240012
2240013

6-5

Control statement

DUMPJOB.

EXIT.

EXTRACT.

JQB’JN=jn,M=fZ,T=tz,P=p,US=us,BP*+,OLM=Zm.

LDR,DN=dz, L18=1dn,AB=adn NAP= _8& ,T=tra,NX,BPTH C,0VL=dir,
1 PART
3 FULL ZERO

MODE ,M= . LERU
3' CNS,NA,L=Zdn,SET={ONES .
4 INDEF

MODIFY,DN=dn,PDN=pdn+,ID=uid,ED=ed,RT=rt,R=pd,W=wt,M=mn.

PDSDUMP ,DN=dn,DV=1dv ,PDS=pds,CW=cw,ID=uid,US=usn,ED=ed,X,C,
,D,1,0,S.

PDSLOAD,DN=dn,PDS=pds,CN=cw,ID=uid,US=usn,ED=ed,A,I,O,S.
RELEASE ,DN=dn.

REWIND,DN=dn.

RFL,M=f7.

SAVE,DN=dn,PDN=pdn,1D=uid,ED=ed ,RT=rt,R=rd,W=wt,M=mn,UQ.
SKIPD,DN=dn.

SKIPF,DN=dn,NF=n.

SKIPR,DN=dn,NR=n.

SWITCH, =\OEF

1
o)
6
UNB,I=idn,0=0dn.

UPDATE,C=cdn, [5] I=idn,L=1dn,L1ST=string,N=ndn,P=odn,
string: ACDEZ S=sdn,*=m,/=c.

WRITEDS,DN=dn ,NR=nr,RL=ri.

CRAY-1®
COMPUTER SYSTEM

CRAY-0S VERSION 1.0
REFERENCE MANUAL

2240011

Copyright© 1976, 1977, 1978 by CRAY RESEARCH, INC.
This manual or parts thereof may not be reproduced in any
form without permission of CRAY RESEARCH, INC.

=R Ay

RECORD OF REVISION =l !‘ > ¥ PUBLICATION NUMBER 2240011

Revision

RESEARCH, INC.

Description

June 1976 - First printing

September 1976 - General technical changes; changes to JOB, MODE,
RFL, and DMP statements; names of DS and RETURN changed to ASSIGN
and RELEASE. STAGEI deleted; STAGEO replaced by DISPOSE. RECALL
macro added and expansions provided for all logical I/O macros.
RELEASE, DUMPDS, and LOADPDS renamed to DELETE, PDSDUMP, and
PDSLOAD. Detailed description of BUILD added (formerly LIB).
EDIT renamed to UPDATE.

February 1977 - Addition of Overlay Loader; deletion of Loader
Tables (information now documented in CRI publication No.

2240012); deletion of UPDATE (information now documented in CRI
publication No. 2240013); changes to reflect current implementation.

July 1977 - Addition of BKSPF, GETPOS, and POSITION logical I/O
macros and $BKSPF, S$GPOS and $SPOS routines. Addition of random
I/0. Changes to dataset structure, JOB, ASSIGN, MODE, and DUMP
statements; BUILD; logical I/O and system action macro expan-

sions. General technical changes to reflect current implementation.

January 1978 - Corrections to DISPOSE and LDR control statement
documentation, addition of description of $SWWDS write routine,
miscellaneous changes to bring documentation into agreement with
January 1978 released version of the operating system.

February 1978 - Reprint with revision. This printing is exactly
the same as Revision C with the C-01 change packet.

April 1978 - Change packet includes the addition of the ADJUST
control statement; MODE and SWITCH macros; and PDD, ACCESS, SAVE,
DELETE, and ADJUST permanent dataset macros. Miscellaneous
changes to bring documentation into agreement with released
system, version 1.01.

July 1978 - Represents a complete rewrite of this manual.

Changes are not marked by change bars. New features for version
1.02 of the operating system which are documented in this
revision include: addition of the MODIFY control statement and
the DSP, SYSID, and DISPOSE macros; the addition of parameters to
some control statements, the implementation of BUILD. The
POSITION macro has been renamed SETPOS. Other changes have been
made to bring documentation into agreement with the released
version 1.02 of the operating system.

Each time this manual is revised and reprinted, all changes issued against the previous version in the form

of change packets are incorporated into the new version and the new version is assigned an alphabetic level.
Between reprints, changes may be issued against the current version in the form of change packets. Each
change packet is assigned a numeric designator starting with 01 for each new revision Tevel. Every page
changed by a reprint or by a change packet has the revision level and change packet number in the lower right-

hand corner.

A11 changes are noted by a change bar along the margin of the page.

Requests for copies of CRAY RESEARCH, INC. publications should be directed to: CRAY RESEARCH, INC.

7850 Metro Parkway
Suite 213
Bloomington, MN 55420

ii

PREFACE

This manual describes the external features of the CRAY-1 Operating
System (COS). The manual consists of three parts:

PART 1 SYSTEM DESCRIPTION

This part describes the system components, storage of
information on the CRAY-1, and job processing. An
introduction to job control language is also included.

PART 2 JOB CONTROL LANGUAGE

In this part, the format of each COS JCL control statement
is given, along with an explanation of the function of
each. Examples are provided at the end of each section.

PART 3 MACRO INSTRUCTIONS

In Part 3, CAL language macro instructions are described,
and in some cases examples are provided.

2240011 iii

INTERNAL REPRESENTATION OF CONTROL STATEMENTS

2240011

Separator

Parameter separator . .
Equivalence separator .
Concatenation separator
Terminator

Literal delimiter
Parameter

Positional parameters .
Keyword parameters . .

Comments « . .« . .
Blanks . . ¢« « ¢« ¢ o« o o &

Part 1
iv

4-2
4-2
4-2
4-2
4-2
4-4
4-4
4-4
4-5
4-6
4-6
4-7
E

Part 1

SYSTEM DESCRIPTION

CONTENTS
PART 1 SYSTEM DESCRIPTION

1. INTRODUCTION« . « o o . .
HARDWARE REQUIREMENTS
SYSTEM INITIALIZATION
MEMORY ASSIGNMENT o « o « o . . .

Memory resident COS
User area of memory

Job Table Area - JTA

User field

MASS STORAGE USAGE e e s s s & o o e o @

2. DATASETS |
DATASET TYPES . . ¢ ¢« v ¢ o o« o o« o o «
Local datasets

Permanent datasets

DATASET NAMING CONVENTIONS . . . « . . .
DATASET FORMATS v« « « o o o o o o o o o @
Blocked format

Block control word (BCW) . . .
Record control word (RCW) . . .
Blank compression

Unblocked format
USER LOGICAL I/O INTERFACES . . . « . . .
DATASET DISPOSITION CODES « v« « o o o « .

3. DECK STRUCTURE AND JOB PROCESSING.

JOB DECK STRUCTURE . . . « « ¢ « & « « .
GENERAL DESCRIPTION OF JOB FLOW

Jobentry

Job initiation
Job advancement
Job termination

JOB LOGFILE AND ACCOUNTING INFORMATION .

4. CONTROL STATEMENTS

INTRODUCTION . . & v ¢ o o o o o o o o =
CONTROL STATEMENT SYNTAX

Syntax violations
Verb ¢ ¢ ¢ . ..

2240011

o
=

| | |
U b bd bW WK

i

\S]
I
=

NN D DD D DD DN
1
o OO0 OWW N DN HBE

INTRODUCTION 1

The CRAY-1 Operating System (COS) is a multiprogramming operating system
for the CRAY-1 Computer System. The operating system provides for
efficient use of system resources by monitoring and controlling the flow
of work presented to the system in the form of jobs. The operating system
optimizes resource usage and resolves conflicts when more than one job is
in need of resources.

COS is a collection of programs that resides in CRAY-1 mMEmMOYy Or on
Ssystem mass storage following startup of the system. (Startup is the
process of bringing the CRAY-1 and the operating system to an operational
state.)

Jobs are presented to the CRAY-1 by one or more computers referred to as
front-end computers. A front-end computer may be any of a variety of
computer systems. Since a front-end computer system operates asynchronously
under control of its own operating system, software execution on the
front-end computer system is beyond the scope of this publication.

The FORTRAN compiler, the CAL assembler, and UPDATE are described in
separate publications.

HARDWARE REQUIREMENTS

The CRAY-1 Operating System executes on the basic configuration of the
CRAY-1 Computer System, which consists of the CRAY-1 central processor
unit (CPU), a maintenance control unit (MCU), and a mass storage subsystem.
The CRAY-1 CPU holds the computation, memory, and I/0 sections of the
computer system. COS operates with any of three memory size options:

one million, one-half million, and one-quarter million words. The mass
storage subsystem may have one or more disk units.

Figure 1-1 illustrates a basic system configuration. For more information

about CRAY-1 hardware characteristics, refer to CRI publication 2240004,
The CRAY-1 Hardware Reference Manual.

SYSTEM INITIALIZATION

COS is loaded into memory and activated through a system startup procedure
performed at the MCU. At startup, permanent datasets are reloaded or
re-established on mass storage. (Permanent datasets survive deadstart;
the user can always assume that they are present. See part 1, section 2
of this manual for more information on datasets.)

Part 1
2240011 1.1) E

CRAY-1 COMPUTER USER-SUPPLIED
SYSTEM SUPPORTING
EQUIPMENT
(OPTIONAL)
E———
ﬁ DISK UNITS
Mass Storage
Subsystem
/
A B CRAY-1
CPU

DISK
CONTROLLER

|

1

MCU DISK

==

CARD
READER

Maintenance
Control Unit

2240011

=N

S—"

/—""

MC

MCU CONSOLE

Figure 1-1.

U —

INTER-
FACE

PRINTER/
PLOTTER

CRAY-1 system configuration

Part 1

L—

/

Front-end
Computer

PERIPHERAL
OR
REMOTE
DEVICES

MEMORY ASSIGNMENT

Jobs running on the CRAY-1 and datasets associated with these jobs share
CRAY-1 memory with each other and with COS. COS allocates resources to
each job as needed as these resources become available. As a job
progresses, information is transferred between memory and mass storage.
These transfers can be initiated by either the job or by COS.

Figure 1-2 illustrates the assignment of memory to COS and to jobs.

0
User area;
User area,
User areas
User area
MAX 1 MUM
MEMORY

Figure 1-2, Memory assignment

MEMORY RESIDENT COS

COS occupies two areas of memory. The memory resident portion of the
operating system occupying lower memory consists of exchange packages,
the System Executive (EXEC), the System Task Processor (STP), and the
Control Statement Processor (CSP). In extreme upper memory, the opera-
ting system resident contains station I/O buffers and memory for the
system log. For a detailed description of the COS components and design,
refer to The System Programmer's Handbook, CRI publication 2240012.

Part 1
2
240011 1-3 E

USER AREA OF MEMORY

Every job is assigned a user area in memory. The user area consists of
a Job Table Area and a user field.

Job Table Area - JTA

For each job, the operating system maintains an area in memory that
contains the parameters and information required for monitoring and
managing the job. This area is called the Job Table Area (JTA). Each
active job has a separate Job Table Area adjacent to the job's user
field. The Job Table Area is not accessible to the user, although it may
be dumped for analysis (see part 2, section 8).

User field

The user field for a job is a contiguous block of memory that immediately
follows the job's JTA. The Base Address (BA) and the upper Limit Address
(LA) are set by the operating system. The Limit Address is specified by
a parameter on the JOB control statement (refer to Part 2) or by default.
A user is able to request changes in field size during the course of a
job.

Compilers, assemblers, and user programs are loaded from mass storage

into the user field and are executed in response to control statements
in the job deck. Each load and execution of a program may be referred
to as a job step. During the processing of a job step, various disk-

resident portions of the operating system, such as the loader and copy
utilities, may also execute in the user field.

A detailed description of the contents of the user field is given in
Appendix A. Briefly, however, the first 200g words of the user field
are reserved for an operating system/job intercommunications area known
as the Job Communication Block (JCB). Programs are loaded starting at
BA+200g and reside in the lower portion of the user field. The upper
portion of the user field contains tables and buffers required for
input/output operations. The user field limit is equal to (LA)-1.

Program addresses for instructions and operands are relative to BA. The
CRAY-1 hardware adds the contents of BA to a relative address when it
executes the instruction containing the address. A user cannot access
memory outside of the user field as defined by the BA and LA register
contents; LA-1 is the user limit.

Part 1 .
2240011 1-4 E

MASS STORAGE USAGE

Mass storage for the CRAY-1 consists of one to forty-four DD-19 Disk Storage
Units (DSUs). These devices are physically nonremovable. In general, the
user is not concerned with the physical transfer of data between the disks
and memory nor with the exact location and physical form in which datasets
are maintained on mass storage. The Disk Queue Manager and the Disk Driver
in the operating system translate the user's logical requests for input and
output into disk controller functions automatically.

For purposes of orientation, however, the user may wish to be aware of some

of the characteristics of mass storage. Operational characteristics of DD-19
Disk Storage Units are summarized in Table 1-1.

Table 1-1. Characteristics of DD-19 Disk Storage Unit

Bit capacity per drive 2.424 x 10°
Tracks per surface 411

Sectors per track 18

Bits per sector 32,768
Number of head groups 10
Recording surfaces per drive 4o

Latency 16.7 msec
Access time 15 - 80 msec
Data transfer rate (average 35.4 x 10°
bits per second)

Total bits that can be ‘ 5.9 x 108
streamed to a unit (disk

cylinder capacity)

.

N

All information maintained on mass storage by the CRAY-1 Operating System
is organized into quantities of information known as datasets.

Each disk storage unit contains a device label, datasets, and unused space

to be allocated to datasets. The device labels note usable (unflawed) space
on the disk unit and designate one of the devices as the Master Device. The
Master Device is the disk storage unit that contains a table known as the
Dataset Catalog, which contains information for maintaining permanent datasets.

Part 1
2240011 1-5 E

To the user, permanent datasets are those datasets that appear always to be
present and available on mass storage. This "permanence" is achieved through
techniques that permit the datasets noted in the Dataset Catalog to be recov-
ered or re—established in the event of system failures. Portions of the
operating system, such as the loader, utility programs, the compiler, the
assembler, and library maintenance and generation routines, reside in per-
manent datasets and can be accessed by user jobs at any time. Datasets
containing job input decks and output from jobs that have terminated also
reside on mass storage and because they are listed in the Dataset Catalog

are regarded as permanent. This designation is somewhat misleading since
their "permanence" is by definition rather than by tenure in the system.

That is, the input dataset is "permanent" from the time it is staged from

the front-end system to the CRAY-1 until the job terminates. Output datasets
being disposed to a front-end are "permanent" from job termination until the
disposition is completed. This permanence of these system-defined datasets
allows them to be recovered along with other permanent datasets.

Any user job can create a permanent dataset that can be subsequently accessed
modified, or deleted, by any job that can produce the correct permission
codes when attempting to associate it with a job. These permission codes
are defined at the time the dataset is designated as permanent (i.e., saved) .

A permanent dataset ceases to exist when a user with the correct permission
code "deletes" it. This deletion notifies the system that the space pre-
viously occupied by the dataset can be reassigned to other datasets.

In addition to the various permanent datasets, mass storage is used for any
number of datasets local to the jobs being processed. A local dataset is
created by the job using it unless designated as permanent or disposed to

a front-end by the job. The dataset can be accessed only by the job to which
it is local. A local dataset that is neither saved as permanent nor dis-
posed is termed a "scratch" dataset and ceéases to exist when the job
terminates.

The operating system allocates space to datasets by sectors on an "as-needed
basis". Storage assigned to a single dataset can be non-contiguous and can
even be on multiple disk units. Default and maximum sizes for datasets are
defined by system parameters. The user has limited control over the allo-
cation of storage to a dataset through the ASSIGN control statement.

2240011 Part 1 : E

DATASETS | 2

All information maintained on mass storage by the CRAY-1 Operating System
is organized into quantities of information known as datasets. Each
dataset is identified by a symbolic name called a dataset name (dn) .

A dataset may be Zocal to a job or permanent and available to the system
and other jobs.

DATASET TYPES

Datasets are of two types: 1local and permanent.

LOCAL DATASETS

A local dataset is a dataset available only to the job that created it.
Local datasets can be created in two ways: either explicitly by use of
the ASSIGN control statement, or implicitly upon first reference to a

dataset by name or unit number on a write request or an OPEN macro call
(refer to part 3, section 2).

A local dataset is empty until written on. Rewind or backspace of the
dataset is necessary before it can be read. A local dataset may be made
permanent by use of the SAVE control statement; if the dataset is not
made permanent, it will be released at job termination and its mass
storage made available to the system.

PERMANENT DATASETS

A permanent dataset is available to the system and to other jobs and is
maintained across system deadstarts. Permanent datasets are of two types:
those that are created by SAVE requests made by the user or front-end
system (user permanent datasets), and those that represent input or
output datasets (system permanent datasets).

User permanent datasets are maintained for as long as the user or instal-
lation desires. They are protected from unauthorized access by use of
permission control words.

When a user permanent dataset is accessed via an ACCESS control statement
(see part 2, section 4), it is treated as a local dataset by the job
requesting access. However, it still exists as a permanent dataset on
the system and may be used by other jobs unless unique access to that
dataset was granted. '

Part 1
2240011 2-1 E

System permanent datasets relate to particular jobs. A job's input dataset
is made permanent when the job is received by the CRAY-1 and is deleted
when the job terminates. Output datasets local to the job may be disposed
while the job is running or may be made permanent when the job terminates
and then deleted from the CRAY-1 after they have been sent to the front-end
system for processing.

DATASET NAMING CONVENTIONS

The user assigns a symbolic name to each user dataset. This name is 1-7
characters, the first of which can be A-Z, $, @, or %; remaining char-
acters can also be numeric. Certain language processors may place further
restrictions on dataset names.

By CRAY-1 Operating System convention, all datasets defined by the system
are assigned names of the form $dn. Since datasets whose names begin with
a $ may receive special handling by the system, the user should refrain
from using this format when naming datasets.

DATASET FORMATS

Two dataset formats are supported for the CRAY-1: blocked and unblocked.

BLOCKED FORMAT

The blocked format is required for external types of datasets such as
user input and output datasets. The blocked format adds control words to
the data to allow for processing of variable-length records and to allow
for delimiting of levels of data within a dataset. Figure 2-1 illus-
strates the data hierarchy within a dataset. A blocked dataset may be
composed of one or more files which are in turn composed of one or more
records.

Dataset
File, Files . Filey
Record; Record, | ... |Record,

Figure 2-1. Data hierarchy within a dataset

Part 1
2240011 2-2 E

The data in a blocked dataset may be either coded or binary. Each block
consists of 512 words. There are two types of control words in a blocked
dataset: block and record.

Block Control Word (BCW)

The block control word is the first word of every 512-word block. The
format of a block control word is depicted in figure 2-2.

.31 55 63

Figure 2-2. Format of a block control word

Field Bits Description

M 0-3 Mode indicator (for block control word, M=0)

BN 31-54 Block number; designates the number of the current
data block. The first block in a dataset is block
zero.

FWI 55-63 Forward index; designates the number of words

(starting with 0) to the next record control word
or block control word.

Record Control Word - (RCW)

A record control word occurs at the end of each record, file, or dataset.
The format of a record control word is illustrated in figure 2-3.

20 40 55 63

M | usc]W PFI PRI FW

Figure 2-3. Format of a record control word

: : Part 1
2240011 2-3 E

Field

UBC

PFI

PRI

FWI

Bits

20-39

40-54

55-63

Description

Mode: 10g End of record - <eor>
16g, End of file - <eof>
17¢ End of data - <eod>

Disregarding block control words occurring at
512-word intervals in a dataset, RCWs have the
following logical relationship in a dataset. An
<eor> RCW immediately follows the data for the
record it terminates. If the record is null, i.e.,
contains no data, an <eor> RCW may immediately
follow an <eor> or <eof> RCW or may be the first
word of the dataset.

An <eof> RCW immediately follows the <eor> RCW for
the final record in a file. If the file is null,
i.e., it contains no records, the <eof> RCW may
immediately follow an <eof> RCW or may be the first
word on the dataset.

An <eod> RCW immediately follows the <eof> RCW for
the final file in the dataset. If the dataset is
null, the <eod> RCW may be the first word on the
dataset.

Unused bit count. For <eor>, UBC designates the
number of unused low order bits in the last data
word in the record terminated by the <eof>. For
<eof> and <eod> RCWs, this field is 0.

Prevous file index. This field points to the
block containing the beginning of the file. The
pointer is relative to the current block such that
if the beginning of the file is in the same block
as this RCW, PFI is O.

Previous RCW index. This field points to the block
containing the beginning of the record. The pointer
is relative to the current block such that if the
first word of data in this record is in the same
block as this RCW, PRI is O.

Forward word index. This field points to the next
control word (RCW or BCW) and consists of a count
of the number of data words up to the control word
(i.e., if the next word is an RCW or BCW, FWI is 0).

The typical dataset has many <eor> RCWs per block. An example of dataset
control words is illustrated in figure 2-4.

2240011

Part 1
2-4 E

BCW

c
\
\\
N
ST AT
[SAAVAVANAN

Dataset

N

3 (null)

Figure 2-4. Example of dataset control words
(octal values shown)

2240011 Part 1 E

2-5

Blank compression

Blank fields are compressed for blocked files. Blank field compression

is accomplished by using a blank field initiator code followed by a count.
The blank field initiator code is 33g, the ASCII ESC code. The count is
biased by 36g. A blank field of 3 through 96 characters may be compressed
to a two-character field. The actual count character is limited to

4lg < character count < 176g (the ASCII graphics).

UNBLOCKED FORMAT
Dataset I/O may also be performed using unblocked datasets. Any dataset
that does not have COS blocked format is considered unblocked. The data

stream for unblocked datasets does not contain COS RCWs or BCWs.

The unblocked format is used internally by COS for some operating system
generated datasets.

USER LOGICAL I/O INTERFACES

Figure 2-5 illustrates the relationship of different levels of user
logical I/O interfaces and routines. It summarizes the request levels
and routine calls without going into details on the movement of data
between the system buffers and user program areas. All user I/O is
logical; the user is never directly concerned with the actual transfer
of data between the disks and the system buffers.

The highest level of user interface is FORTRAN I/O statements; the lowest
level is in the form of specially formatted requests called Exchange Pro-
cessor (or F$) requests.

User blocked I/O can take place at the highest level; user unblocked I/0
can only be done at the lowest level.

FORTRAN statements fall into two categories: formatted/unformatted and
buffered. The formatted/unformatted statements result in calls to library
routines $RFI through $WUF. These routines contain calls to Logical

Record I/O routines $RWDR through $BKSP or contain macros that format these
calls. The logical record I/O routines perform blocking and deblocking.
The Logical Record I/0 routines communicate with the system through the
Exchange Processor F$RDC and FSWDC requests.

Note that since all blocking and deblocking for blocked I/O is performed

at the logical record level, the user desiring to perform unblocked logical
I/0 can do so by directly formatting the F$RDC and F$WDC Exchange Processor
calls. ©No user routines are provided for this purpose.

Part 1
2240011 . 2-6 E

BLOCKED 1/0 UNBLOCKED 1/0

FORTRAN
BUFFERED 1/0 | {FORMATTED/UNFORMATTED
STATEMENTS STATEMENTS
READ
BUFFER IN PRINT
BUFFER OUT PUNCH
WRITE CAL
l | 1/0 MACROS
SRFI $WFI $RUI S$WUI READ WRITE WRITEF
$RB SRFA SWFA $RUA S$WUA | _ ___| READP WRITEP WRITED
F$BIO SRFV $WFV $RUV $WUV READC WRITEC BKSP
$WB $RFF $WFF $RUF $WUF READCP WRITECP BKSPF
GETPOS
SETPOS
LOGICAL RECORD I/0
SRWDR $WWDR $WEOF
SRWDP $WWDP $WEQD
$RCHR $WCHR $REWD
$BKSP USER
SYSTEM
\
TIO CI0
$RWDP $WWDP $SWEOD - FSRDC
SRWDR $WWDR $WEOF F$WDC
$REWD -

v
TO SYSTEM

Figure 2-5. Relationship of levels of user I/O

The buffered I/O takes a different path from formatted/unformatted I/O.
These routines interface (through an F$BIO Exchange Processor request) to
routines in COS that normally perform logical I/0 for system tasks. These
routines, called TASK I/O or TIO, closely resemble the Logical Record I/O
routines. TIO and the Logical Record I/0O routines make similar requests

of the Circular I/O routines in COS although the mechanism for making these
requests is different. CIO is the focal point for all logical I/0 in the
system. CIO communicates its needs for physical I/0 to the Disk Queue
Manager (not shown). The Disk Queue Manager coordinates all physical I/0
activity in the system.

CAL language I/0O macros are described in Part 3, section 3 of this manual.
Logical Record I/O routines and FORTRAN I/0O routines are described in
Appendix D of this manual. Refer to CRI publication 2240009 for a descrip-
tion of FORTRAN statements. For descriptions of TIO and CIO, refer to

CRI publication 2240012.

Part 1
2240011
2-7 E

DATASET DISPOSITION CODES

Each dataset is assigned a disposition code that tells the operating system
the disposition to be made of the dataset when the job is terminated or

the dataset is released. The disposition code is one of the parameters

of the DISPOSE and ASSIGN control statements (see part 2).

Each disposition code is a two-character alpha code describing the
destination of the dataset. The default disposition code for a dataset
is SC (scratch) when a dataset is opened, unless the dataset is named
$OUT. By default, COS assigns the disposition code PR (print) to $OUT
when the dataset is created. No DISPOSE statement is required for $OUT;
it will be automatically routed back to the designated mainframe to be
printed on any available printer.

2240011 Part 1 E

DECK STRUCTURE & JOB PROCESSING 3

A job is a unit of work submitted to a computing system. A job consists
of one or more files of images contained in a job deck dataset. Each job
passes through several stages from job entry through job termination.

JOB DECK STRUCTURE

A job originates as a card deck (or its equivalent) at a front-end computer
system. Cards in the job deck dataset are organized into one or more files.
Figure 3-1 illustrates a typical job deck consisting of a JCL control statement
file, a source file, and a data file. (The physical card form for <eof> and
<eod> are defined by the front-end system.)

X <eod> !

lm'-_;::_:: —_ = = = N\

-|m! DATA FILE

<ééf>
w" =—===== ‘§§
K SOURCE FILE

‘um

<eof>

! CONTROL STATEMENTS
L_l JOB,JIN=...

JCL CONTROL STATEMENT
FILE

A= =

Py
i

Figure 3-1. Basic job deck

Part 1
2240011 3-1 E

The first (or only) file of the job deck must contain the Job Control
Language control statements that specify the job processing requirements.
(Refer to part 1, section 4 for information on control statements.) Each

job begins with a JOB statement, which identifies the job to the system.

All other control statements directly follow the JOB statement in the control
statement file. The end of the control statement file is designated by an
<eof> (or an <eod> if the job consists of a control statement file only).

Files following the control statement file may contain source code or data.

These files are handled according to instructions given in the control
statement file. The final card in a job deck must be an <eod>.

GENERAL DESCRIPTION OF JOB FLOW

A job passes through the following stages from the time it is read by the
front-end computer system until it completes:

() Entry
° Initiation
® Advancement

° Termination.

JOB ENTRY

A job enters the system in the form of a job deck submitted to a front-end
computer system or a local or remote job entry station. The job is
transferred to CRAY-1 mass storage, where it resides until the job is
scheduled to begin processing. An entry is made in the system tables for

the job; this makes the job input dataset permanent until it is deleted
at the completion of the job.

The job input dataset is identified at the front-end computer system by a
dataset name given to it by the user. The job itself can access the input
dataset by its local name, $IN, or as FORTRAN unit 5 (or any other unit
number #n, where FTnn is assigned as an alias for $IN; refer to part 2,
section 3). S$IN is initially positioned after the control statement file.

JOB INITIATION

The operating system examines the parameters on the JOB statement to
determine the resources needed. When system resources required for
initiation are available, the job is initiated (scheduled to begin
processing) . '

Initiation of a job includes preparing a job-related system area,
positioning the input dataset for the first job step, and placing the job
in a waiting queue for the CPU.

2240011 Part 1

When the CRAY-1 Operating System schedules the job for processing, it
creates three datasets: $CS, SOUT, and SLOG.

° $CS is a copy of the job's JCL file from $IN and is for use by the
system only; the user cannot access $CS by name. This dataset is
used to read job control statements. The disposition code for $CS
is SC (scratch).

® $OUT is the job output dataset. The job can access this dataset
by name or as FORTRAN unit 6 (or as any other unit number if FTun
is aliased to $OUT). The disposition code for $OUT is PR (print).

° $LOG is the job's logfile and contains a history of the job.
This dataset is known only to the operating system and is not
accessible by the user. User messages can be added to $LOG with
the MESSAGE system action request macro (see part 3).

JOB ADVANCEMENT

The system begins processing the job by examining each of the control

statements that accompany the job deck. Control statements inform the
operating system of the tasks to be performed by the job. The control
statements are read, interpreted, and acted on sequentially.

The CRAY-1 Operating System multiprograms jobs so that a large number of
jobs can be in some stage of processing concurrently. The CPU is

shared among jobs in memory based on an installation-chosen scheduling
algorithm internal to the system.

JOB TERMINATION

Output from a job is placed on system mass storage. At completion of a
job, the operating system appends SLOG to $OUT and makes $OUT permanent.
$IN, $CS, and SLOG are released. $OUT is renamed jobname (from the JIN
parameter value of the JOB control statement) and is directed to the
output queue for staging to the specified front-end computer system.
When the front-end has received the entire contents of $SOUT, the system
table entries for the dataset are deleted and the dataset itself is
deleted from CRAY-1l mass storage.

The front-end computer will process $OUT as specified by the dataset
disposition code. Output will normally be printed on the printer
available at the designated front-end computer.

If, for any vreason, $OUT is destroyed by the job, $LOG will be the only
output given at job termination.

2240011 Pagf; E

JOB LOGFILE AND ACCOUNTING INFORMATION

The logfile for a job consists of a list of comments at the end of the
job output. The logfile presents an abbreviated history of the progress
of the job through the system. Each control statement is listed in
sequence, followed by any messages associated with the job step. Clock
time, accumulated CPU time, and COS information are also given for each
job step. A logfile usually consists of the five items illustrated in
figure 3-2. Item 6 illustrates the accounting information given to the

user.

0.0000 csp (:) CRAY-1 SERIAL-7 CHIPPEWA FALLS, WISCONSIN 05/26/78
0.0000 CsP
@.000d CsP (:)l:RQY—l OPERATING SYSTEM., VERSION 1.02 REVISION DATE 05/24/78
0. 0009 CsP
@.0000 CSP
Q. 0000 Cs5P @,,, JOB, JN=TEST, T=10@ .
7.0001 CsP > CFT, OFF=BCT.
0.0001 USER FTO@4 —~ CFT VERSION — 04/14/78
©.0061 USER FTo@1 - COMPILE TIME = ©.0059 SECONDS
0.0061 csP ~ LR
©.0144 USER LD@1@ — BEGIN EXECUTION
2 8454 USER FTe@1 END OF LOOP
2. 2454 CsP END OF JOB
712454 CSP
2. 8454 CSP
£.8454 CsP Fr—-———= — - — = -9
2 8454 CsP | JOBNAME TEST USER NUMBER |
3.8454 CsP | TIME EXECUTING IN CPU - 0@:00:08.8454
: 28455 CSP (:) | TIME WAITING TO EXECUTE 00:00:@0.0775 |
: 8. 2455 csP | TIME WAITING FOR 1/0 —— ©@:00:00.4319 |
13:47:56 8.8455 CSP | DISK BLOCKS MOVED ————— 26 |
13:47:56 8.8455 csP L PHYSICAL 1/0 REQUESTS - 20 |
——— — — ——— . —— ——- Sma oam — e — a— —]
Figure 3-2. Example of a job logfile
P 1
2240011 art E

3-4

2240011

First header line: identifies site and the date the job was run.

Second header line: identifies operating system, its current
revision level, and the date of last revision.

Columns: The leftmost column identifies the wallclock time for
each job step and the middle column identifies the accumulated
CPU time for the job. The rightmost column identifies the
system module that used the CPU time, or if execution is in

the user field, notes USER. All times are in decimal. Entries
commonly noted include the following:

CSsp Control Statement Processor
PDM Permanent Dataset Manager
EXP Exchange Package Processor
ABORT Abort message

Control statements: Control statements are listed sequentially.
The last control statement listed is the last one processed by
the job; therefore, if the job abnormally terminates, not all of
the control statements may be listed.

Logfile messages: 2Any messages related to control statement
processing are shown below the statement.

Accounting information: When a job reaches completion, CQOS

writes a summary of basic accounting data onto the logfile for
the job. All times given are in hours, minutes, and seconds
(to the nearest ten-thousandth of a second). The following
accounting information is provided (in decimal) :

) Job name and user number

° CPU time used by the job

e Time spent waiting to execute

e Time waiting for I/0

° Number of disk blocks (sectors) moved

e Number of physical I/O requests made by the job

Part 1 E
3-5

CONTROL STATEMENTS 4

INTRODUCTION

The CRAY-1l Operating System (COS) Job Control Language allows the
user to present a job to the CRAY-1, define and control execution of
programs within the job, and manipulate datasets associated with a job.

JCL is composed of control statements. Each control statement is contained
on one card image and contains information for a job step. COS sequentially
reads these cards from the JCL control statement file, $CS, created by COS.

CONTROL STATEMENT SYNTAX

All control statements must adhere to a set of general syntax rules.

The syntax of a control statement is:

verb | sepy | param | sepy |paramy, | ... | sep, |param, |term |comments

n

Every control statement consists of a verb and a terminator (term) as a
minimum. Additionally, most control statements require parameters and
separators between the verb and the terminator.

The maximum number of parameters (zero, one, or more) depends on the verb.
A verb and a terminator are always required; the comment is optional.

SYNTAX VIOLATIONS

COS notes syntax violations in the system and user logfiles. If the JOB
control statement is in error, processing of the job terminates immediately.
All other syntax errors invoke the job step abort procedure, which causes
the system to search for an EXIT control statement in the JCL. A success-
ful search resumes JCL processing with the job step after EXIT. If no such
job step exists or if an EXIT statement is not found, the job is terminated.

2240011 Part 1 E

VERB

A control statement verb is 1 to 7 alphanumeric characters beginning with
an alphabetic character.t A verb may be preceded by blanks but must be
the first field of a control statement. A verb is either a system verb
that directs COS to take an action, or the name of a dataset containing
the absolute binary of a program to be executed. Every control statement
must have a verb.

If the verb is a system verb it causes the system to perform the requested
action.

If the verb is not a system verb, it is assumed to be the name of one of
the two types of datasets known to the system. The first type of dataset
searched for is the user dataset. If the user job has a local dataset with
this name, the system loads the program in absolute form from the dataset
and executes it. If the verb is not the name of a user dataset, the System
Directory Table (SDR) is searched. The SDR is a list of common language
processors and utilities which are known to the system and made available
to users at Startup. The name of the program (e.g., CAL, CFT, or DUMP)

is also the name of the dataset that contains the absolute binary of the
program. If a match is found in the SDR, the program is loaded and executed;
otherwise, a control statement error is issued.

SEPARATOR

A separator separates the verb from the first parameter, separates parameters
from one another, delimits subparameters, terminates verbs and parameters,
and separates keyword from value in parameters having keyword form.

A separator is represented in a control statement by one of several ASCII
characters, as illustrated in Table 4-1.

+ Alphabetic characters include $, %, and @, as well as the 26 upper-
case letters A through Z. Alphanumeric characters include all the
alphabetic characters and the digits 0 through 9.

2240011 Part 1 E
4-2

Table 4-1. Control statement separators

Graphic Internal) .
Symbol Code (octal) Character Application
: 3 Colon Concatenation separator
= 7 Equal Sign Equivalence separator
’ 17 Comma Parameter separator
(17 left Optional initial separator
parenthesis
. 37 Period Terminator
) 37 Right Optional terminator
parenthesis

Parameter separator

A parameter separator separates the control statement verb from the first
parameter and subsequent adjacent parameters from each other. The
parameter separator character is the comma. Optionally, a left parenthesis
may be used to indicate the beginning of a parameter string. Adjacent
parameter separators indicate a null parameter, which is ignored unless it
is a positional parameter.

Equivalence separator

An equivalence separator separates a parameter keyword from the first
parameter value for that keyword. The equivalence separator character
is the equal sign. Adjacent equivalence separators are illegal.

Concatenation separator

A concatenation separator separates multiple parameter values from each
other. The concatenation separator character is the colon.

Terminator
A terminator signifies the end of control statement information. Any
characters following ther terminator on the card image represent comments.

Every control statement requires a terminator. The control statement
terminator is the period or, optionally, -the right parenthesis.

2240011 Part 1 BE

LITERAL DELIMITER'

The literal delimiter character, the apostrophe ('), brackets a character
string that is to be taken literally as the value of a parameter. Any
ASCII graphic character (character codes 040g through 176g) can be included
in a literal character string. The character string can be of any length,
with possible restrictions depending on the verb. Two successive apos-
trophes within the literal string represent a single apostrophe. The
literal character has the octal internal code Ol.

Characters normally interpreted as separators or terminators are not
interpreted as such within a literal string. The first occurrence of
a literal delimiter denotes the beginning of the literal string; the
second occurrence signifies the end of the literal string (continued
literals represent an exception). Two adjacent literal delimiters
represent a null literal string.

Examples of valid literal strings:

'ABC! String consists of the characters A, B, and C.
'ABC=DEF’ The equal sign is not interpreted as a separator.
' The literal string is null.

"DON''T"! The literal string is interpreted as DON'T.

'A VERY LONG LITERAL STRING WITH ,.=:()"'

PARAMETER
A parameter is a control statement argument, the exact requirements of

which are defined by the verb. Parameters are either positional or have
a keyword form.

Positional parameters

A positional parameter has a precise position relative to separators in
the control statement. Even when a positional parameter is null, the
separator that delimits it from the verb or other parameters cannot be
omitted.

+ Deferred implementation

2240011 Part 1 E

The format for a positional parameter is:
value

or vaZuel:vaZuez:...vaZuen :vaZuen
-1

where each vaZuei is a string of 1-7 alphanumeric characters or a null
string. All positional parameters are required to be represented by at
least one value, although the value may be null.

Examples of positional parameters:

...,ABCDE,... Parameter value is ABCDE.

ety gees The adjacent parameter separators indicate
a null positional parameter.

...,P1:P2:P3,... Parameter values are concatenated.

NOTE

Although the control statement syntax supports
positional parameters, no COS system verb or
Cray Research product uses them.,

Keyword parameters

A keyword parameter is identified by its form rather than its position.
The keyword is a string of 1 to 7 alphanumeric characters uniquely
identifying the parameter. Parameters of this type can occur in any order
or can be omitted.

2240011 Part 1 E
4-5

The format of a keyword parameter is:

keyword
or keyword = value
or keyword = valuei:values:values:... vaZuen_ 1:valuen

where keyword is an alphanumeric string that depends on the requirements
of the verb and vaZuei is a string of 0 or more alphanumeric characters
or a null string. A keyword parameter may occur anywhere in the control
statement. Whether or not a keyword parameter is required depends on the
control statement verb. If the keyword is not included in the control
statement, a default value may be assigned.

Examples of keyword parameters:

...,DN=FILET,... Parameter consists of keyword and value.

e..,UQ,. .. Parameter consists of keyword only.

..,DN=FILE1:FILE2:FILE3,... Parameter consists of keyword and con-
catenated values.

eee,DN=,. .. Null parameter value.

vee,DN=A:::B,. .. A,B, and two null parameter values
concatenated.

COMMENTS

A comment is an arbitrary ASCII graphic character string that allows the
user to annotate a control statement. All comments appear in the logfile.
A comment follows a control statement terminator. The control statement
interpreter ignores comments.

BLANKS

All blanks are ignored.

2240011 Part 1 E

INTERNAL REPRESENTATION OF CONTROL STATEMENTS

COS interprets control statements one card image at a time and stores the
elements comprising the statement in the Job Communication Block (JCB)
starting at word 20g. A O- to l5-character string delimited by two separa-
tors is stored in two words. The two-word area contains, left-adjusted,
the 0 to 15 characters of the string, followed by trailing zero £ill (for
strings < 15 characters), with the internal code for a separator in the
rightmost character of the second word. (See Table 4-1.) For example, if
the string is eight characters or fewer, it is left-adjusted with zero fill
in the first word and the separator is in the second word.

A copy of the original control statement (uncracked) is stored eight
characters per word starting at word 5 of the JCB.

Example:

The following control statement is shown stored in the JCB:

ASSIGN,DN=MYFILE,BS=25.

il

olof
ojojwitll j»n
oio|unix|n
ojof Il |<]|—
olojnv|mie
olojni—|=
O]
ololmio

17g
20g

173

074

178

07,

[llallellellellpilieollel el e]

O|O|O|O|OIMO|O|O|Z{O
OO O|O|OIO|IO|O| OO |0
o

o|Nv|olm|lo|IX|O|O|O]|>|O
oWV o|n|o|K|ClZ|0o|wn|o
o|o|o|o|o|—~|ojo|o|—|C

[=llellellellelhiielfe] el i) (o]

37s

Part 1
E
2240011 4-7

Part 2

JOB CONTROL LANGUAGE

CONTENTS

PART 2 JOB CONTROL LANGUAGE

1. INTRODUCTION

- . « e e o - - .

2. JOB DEFINITION AND CONTROL

JOB ~ JOB IDENTIFICATION
MODE - SET OPERATING MODE
EXIT - EXIT PROCESSING .
RFL - REQUEST FIELD LENGTH

o . - . o . e . - -

- . - e . e o o . -

- . - . . - o -

SWITCH - SET OR CLEAR SENSE SWITCH o o o e

* - COMMENT STATEMENT . .

. e o . e s o -

3. DATASET DEFINITION AND CONTROL . . .

ASSIGN - ASSIGN DATASET CHARACTERISTICS . .

RELEASE -~ RELEASE DATASET

- o . . . o e .

4. PERMANENT DATASET MANAGEMENT.

SAVE - SAVE PERMANENT DATA

SET

ACCESS - ACCESS PERMANENT DATASET
ADJUST - ADJUST PERMANENT DATASET . . e e .
MODIFY - MODIFY PERMANENT DATASET
DELETE - DELETE PERMANENT DATASET
5. DATASET STAGING CONTROL

ACQUIRE - ACQUIRE PERMANENT DATASET

DISPOSE - DISPOSE DATASET

6. DATASET UTILITIES . .

COPYR - COPY RECORDS . .
COPYF - COPY FILES . . .
COPYD - COPY DATASET . .
SKIPR - SKIP RECORDS . .
SKIPF - SKIP FILES . . .
SKIPD - SKIP DATASET . .
REWIND - REWIND DATASET
WRITEDS - WRITE RANDOM OR
COMPARE - COMPARE DATASETS

- e e o o

¢ e o s o s e e e

e e s e e s o e

e e s s e 2 s e o =
e e e e s e e v e

SEQUENTIAL DATASET

- . . « e o . .

7. PERMANENT DATASET UTILITIES

PDSDUMP - DUMP PERMANENT DATASET .,
PDSLOAD - LOAD PERMANENT DATASET
AUDIT - AUDIT PERMANENT DATASET

2240011

Part 2
iii

0
i

[\)I\)I\)IT)I\)NN
B wwwNNHE

ww w
[
Wk

;bvbslb-b»b [
AUt WK

go o
B

gl b wwhhNh - =

1 1
[

\lTl\l ~
w N =

8. ANALYTICAL AIDS . .
DUMPJOB - CREATE $DUMP

DUMP - DUMP REGISTERS AND

DSDUMP - DUMP DATASET .

9. RELOCATABLE LOADER

LDR CONTROL STATEMENT .
ILOAD MAP . . « « « =« =«

10. OVERLAY LOADER . . .

OVERLAY STRUCTURE . . .
OVERLAY GENERATION . .

OVERLAY GENERATION DIRECTIVES . .

FILE directive . .
OVLDN directive .
ROOT directive . .
POVL directive .

SOVL directive . .

RULES FOR OVERLAY GENERATION
EXAMPLE OF OVERLAY GENERATION

EXECUTION OF OVERLAYS .
OVERLAY CALLS =

.

FORTRAN language call

CAL language call
11. BUILD

INTRODUCTION -

Program module names .
Program module groups
Program module ranges
File output sequence .
File searching method

BUILD CONTROL STATEMENT
BUILD DIRECTIVES . . .

FROM directive . .
OMIT directive . .
COPY directives .
LIST directive . .

EXAMPIES . . . « . . .

2240011

o o .

e e o

Part 2
iv

DIRECTIVES

.

10-]

10-1
10-3
10-3

10-3
10-4
10-4
10-4
10-5

10-5
10-6
10-7
10-7

10-7
10-8

11-1

11-1

11-1
11-1
11-2
11-2
11-2
11-3
11-5
11-5
11-6
11-7
11-8

11-8

INTRODUCTION ’

The first file of a job dataset contains control statements that are
read and processed sequentially.

Control statements identify the job to the system, define operating
characteristics for the job, manipulate datasets, call for the loading
and execution of user programs, and call programs that perform a number
of utility functions for the user.

Information on the general syntax rules and conventions for control state-
ments is presented in Part 1, Section 4 of this publication. 1In the
sections following, COS control statements are described individually

and examples are given. The control statements have been divided into

the following categories:

Job Definition and Control - JOB, MODE, EXIT, RFL, SWITCH,
and *

Dataset Management - ASSIGN and RELEASE

Permanent Dataset Management - SAVE, ACCESS, ADJUST, MODIFY,
and DELETE

Dataset Staging Control - ACQUIRE+ and DISPOSE

Dataset Utilities - COPYR, COPYF, COPYD, SKIPR, SKIPF, SKIPD,
REWIND, WRITEDS, and COMPARE T

Permanent Dataset Utilities - PDSDUMP, PDSLOAD, and AUDIT

Analytical Aids - DUMPJOB, DUMP, and DSDUMP

Also available to the user and described in this part of the manual are
the Relocatable and Overlay Loader and the Build utility.

T+ Deferred implementation

2240011

Part 2

JOB DEFINITION AND CONTROL 2

A number of control statements allow the user to specify job processing
requirements. JCL statements defining a job and its operating character-
istics to the operating system include the following:

° JOB defines the job to the operating system and sets such charac-
teristics as size, time limit, and priority levels.

e MODE allows the user to define the settings for the mode (M)
register in the exchange package for the job.

° EXIT indicates the point in the control statement file at which
processing of control statements will resume following .a job
step abort from a program or indicates the end of control state-
ment processing.

° RFL allows the user to request a new field length.
) SWITCH allows a user to turn on or turn off pseudo sense switches.

® * allows the user to annotate JCL statements with comments.

JOB - JOB IDENTIFICATION

The JOB control statement must be the first statement in a control state-
ment file. It defines the job to the operating system. JOB is a system
verb.

Format:

JOB,JIN=jn,M=f1,T=t1,P=p,US=us ,OLM=Tm.

Parameters are in keyword form; the only required parameter is JN.

IN=7n Job name. 1-7 alphanumeric characters, the first of which
is A-Z; remaining ¢characters may also be numeric. This
name identifies the job and its subsequent output. JN is
a required parameter.

M=f1 Memory field length. fl specifies an octal count of 1000g-
word blocks of memory to be assigned to the job. The limit
address is a function of the base address and requested
field length: (LA)=(BA)+f1*1000g. If this parameter is
omitted, the field length is set by the system to a value

2240011 Part 2 E

determined by an installation parameter.T If M is present
without a value, the field size is the maximum amount that
can be assigned (also an installation parameter).

T=t1 Time limit in decimal seconds after which the job is
terminated by the system. If this parameter is omitted,
the time limit is set to a value determined by an instal-
lation parameter. .If T is present without a value, a
maximum of 16,777,215 seconds is allowed.

P=p Priority level at which the job enters the system. This
parameter may assume the values of 0-15 decimal. If
omitted, a value specified by the installation is assumed.

US=us User number. 1-15 alphanumeric characters. The default
is 0. This parameter identifies the user to whom this job
belongs. The capability of having user numbers is provided
for installation accounting; their specific application is
defined by the installation.

OLM=1m Size of $OUT. Im specifies a decimal count of 512-word
blocks. A block holds about 45 print lines (approximately
one full page of output). The default and maximum values
for Im are defined by the installation.

MODE - SET OPERATING MODE

The MODE control statement allows the user to define the settings for the
mode (M) register in the exchange package for the job. The only mode
register flag that can be set by this statement is the floating point error
mode flag. This flag controls whether or not a floating point error will
cause an interrupt flag to be set in the flags (F) register. If a floating
point error condition occurs, an exit from the program occurs only if the
floating point error flag is set in the mode register.

Format:

MODE ,M=mode .

T The fl parameter on the JOB statement does not include the job's JTA;
space for the JTA is added by the system. The installation parameter,
however, does include the JTA.

Part 2
24
2240011 5_2 E

Parameters:
M=mode A single octal digit having one of the following values:

1l or 2 No interrupt on floating point errors
3 or 4 Interrupt on floating point errors

EXIT - EXIT PROCESSING

An EXIT control statement indicates the point in the control statement
file at which processing of control statements will resume following a
job step abort from a program. If no job step abort occurs, it indicates
the end of the control statement processing. EXIT is a system verb.

Format:

EXIT.

Parameters: none

RFL - REQUEST FIELD LENGTH

The RFL control statement allows the user to request a new field length.
RFL is a system verb.

Format:

RFL,M=f1.

Parameters:

M=f1 New field length; octal number of 1000g-word blocks of memory
to be assigned to the job; this number does not include the
JTA (see footnote on the M parameter of the JOB statement)

SWITCH - SET OR CLEAR SENSE SWITCH

The SWITCH control statement allows a user to turn on or turn off pseudo
sense switches. SWITCH is a system verb.

Format:

SWITCH,n=x.
Parameters:

n Number of switch (1 through 6) to be turned on or off
2240011 Part 2 E

2-3

by Switch position
ON Switch n is turned on

OFF Switch 7 is turned off

* - JCL COMMENT STATEMENT

The comment control statement allows the user to annotate JCL statements
with comments. * is a system verb.

Format:

*, user-defined comments

Parameters: none

2240011 Part 2 E

DATASET DEFINITION AND CONTROL 3

Datasets may be defined and managed by use of dataset control statements.
Control statements available:

® ASSIGN allows the user to create a dataset and assign dataset
characteristics or to define an alias for an existing dataset.

e RELEASE relinquishes access to the named dataset for the job.

ASSIGN - ASSIGN DATASET CHARACTERISTICS

The ASSIGN control statement is used to create a dataset and assign data-
set characteristics or to define an alias for an existing dataset. If

an ASSIGN is used for dataset creation, it must appear prior to the first
reference to the dataset; otherwise, the characteristics are defined at
the first reference. ASSIGN statements are not required for defining the
alias FTO5 for the $IN dataset or for defining the alias FT06 for the
SOUT dataset; aliases for these two datasets are defined automatically
during job initialization. ASSIGN is a system verb.

Format:

ASS1GN,DN=dn,S=size,A=adn,BS=b1k ,DV=1dv ,RDM,U,LM=Im,DC=dec.

Parameters are in keyword form; the only required parameter is DN.

DN=dn Local dataset name. 1-7 alphanumeric characters, the first
of which is A-Z, $, %, or @; remaining characters may also
be numeric. DN is a required parameter.

S=size Dataset size. Octal number of sectors (1000g-word blocks)
to be reserved for the dataset. If the dataset size is
not given, the disk space for the dataset is dynamically
allocated as needed.

A=adn Alias; alternate dataset name. Although any name can be
used, in practice, common usage is limited to FORTRAN.
By FORTRAN convention, an alias is specified in the form
FTun where wn is a FORTRAN unit number from 00-99. An
alias assigned to one dataset can be reassigned to a second
dataset; the new assignment takes precedence over the
previous assignment. A dataset may have multiple aliases

Part 2
2240011 3-1 E

BS=blk

DV=1dv

IM=1m

DC=dc

2240011

and can be assigned a new alias at any time. The new alias
is added to the list of current aliases.

Buffer size. Octal number of 1000g-word blocks to be
reserved for user buffer. The default number of blocks
is set by an installation parameter.

Logical device on which dataset is to begin. If a logical
device name is not given, one is chosen by the system.

Random dataset. If the RDM parameter is present, the
dataset is to be accessed randomly. If the RDM parameter
is absent, the dataset is to be accessed sequentially.

Undefined dataset structure. If the U parameter is

present, the dataset is not in Ccos-defined blocked format.
If the U parameter is absent, the dataset is a COS blocked
dataset.

Maximum size limit for this dataset. Im specifies a decimal
count of 512-word blocks. The job step will be aborted if
this size is exceeded. The default and maximum dataset size
limits are set by an installation parameter.

Disposition code; disposition to be made of the dataset at
job termination. The default is SC when the DC parameter is
omitted.

de is a 2-character alpha code describing the destination
of the dataset as follows:

IN Input to mainframe. Dataset is placed in the job
input queue for the mainframe of job origin.

ST Stage to mainframe. Dataset is made permanent at
the mainframe of job origin.

sC Scratch dataset. Dataset is deleted.

PR Print dataset. Dataset is printed on any printer
available at the mainframe of job origin.

PU Punch dataset. Dataset is punched on any card punch
available at the mainframe of job origin.

PT Plot dataset. Dataset is plotted on any available
plotter at the mainframe of job origin.

MT Write dataset on magnetic tape at the mainframe of
job origin.

NOTE
Currently, the system does not automatically flush
the memory buffers during job termination. There-
fore, the user must explicitly do a rewind or
release to flush the memory buffers.

Part 2
3-2

RELEASE - RELEASE DATASET

The RELEASE control statement relinguishes access to the named dataset for
the job. If the dataset is not permanent and its disposition code is SC
(scratch), the mass storage assigned to the dataset is released to the
system. If the dataset has a disposition code other than SC, then the
dataset is entered in the output queue for staging to the mainframe of

job origin. RELEASE is a system verb.

Format:

RELEASE,DN=dn.

Parameters:

DN=dn Name of dataset to be released.

Part 2

2240011
3-3

PERMANENT DATASET MANAGEMENT 4

Permanent dataset management provides methods for creating, protecting,
and accessing datasets that are assigned permanently to mass storage.
Such datasets cannot be destroyed by normal system activity, deadstart-
ing, restarting, or engineering maintenance.

The user can manage user permanent datasets only; system permanent datasets
are not directly accessable by the user. (See part 1, section 2 for a
description of the types of datasets.)

The user manages user permanent datasets by communicating with the Permanent
Dataset Manager through the following control statements:

® OSAVE enters a dataset's identification and location in a system-—
maintained Dataset Catalog (DSC). Datasets recorded in the DSC
are user permanent datasets and are recoverable at deadstart.

® ACCESS causes a saved dataset to be assigned to a job. The usage
(reading or writing, for example) of a dataset is determined by
permissions granted when the dataset is accessed.

® ADJUST changes the size of a user permanent dataset in the Dataset
Catalog (DsC).

® MODIFY changes established information for an existing user perma-
nent dataset in the DSC.

® DELETE causes a saved dataset to be removed from the DsC.

SAVE - SAVE PERMANENT DATASET

The SAVE control statement makes a local dataset permanent. Saving a
dataset consists of making an entry in the Dataset Catalog. A permanent
dataset is uniquely identified by permanent dataset name, user identifi-
cation, and edition number. SAVE is a system verb.

SAVE has a two-fold function:

1. Creation of an initial edition of a permanent dataset, or
2. Creation of an additional edition of a permanent dataset.

The maintenance control word controls the creation of additional editions
of an existing permanent dataset. Thus, to create a subsequent edition
of an existing permanent dataset, the user must match the maintenance
control word of the oldest existing edition. The read and write control
words specified on the oldest existing edition of a permanent dataset
apply to all subsequent editions of that dataset.

Part 2
2240011 4-1 BE

NOTE

The assurance that a dataset is written to disk prior

to being saved is the responsibility of the user. This
may be accomplished by writing an end of data on the
dataset. Issuing a REWIND is a convenient way of writing
an end of data on the dataset. If no data at all has
been written to disk, the SAVE request will abort. If
some data has been written, but the last buffer has

never been written, the SAVE will succeed, but a subse-
quent job attempting to use the dataset may abort.

Format:

SAVE ,DN=dn ,PDN=pdn, | D=uid,ED=ed ,RT=rt ,R=rd ,W=wt ,M=mn,UQ.

Parameters are in keyword form; the only required parameter is DN.

DN=dn Name of a dataset that is local to the job.

PDN=pdn Permanent dataset name; 1-15 alphanumeric characters

assigned by the dataset creator. This is the name that
is saved by the system. Default value is dn.

ID=uid User identification; 1-8 alphanumeric characters
assigned by the dataset creator. The default is no
user ID.

. Eb=ed Edition number; a value from 1 through 4095 assigned by

the dataset creator. The default value is:

@ One, if a permanent dataset with the same PDN and
ID does not exist, or

e The current highest edition number plus one, if a
permanent dataset with the same PDN and ID does
exist.

RT=rt Retention period; a value specifying the number of days

a permanent dataset is to be retained by the system. The

parameter may assume the value of O through 4095. The
default value is an installation-defined parameter.

R=rd Read control word; 1-8 alphanumeric characters assigned

by the dataset creator. The read control word of the

oldest existing edition of a permanent dataset applies to

all subsequent editions of that dataset. The default is
no read control word.

W=wt Write control word; 1-8 alphanumeric characters assigned

2240011

by the dataset creator. The write control word of the
oldest existing edition of a permanent dataset applies to

Part 2

all subsequent editions of that dataset. To obtain write
permission, the user must also have unique access (UQ) to
that dataset. The default is no write control word.

M=mn Maintenance control word; 1-8 alphanumeric characters.
The maintenance control word must be specified if a
subsequent edition of the same permanent dataset is
saved. The default is no maintenance control word.

uQ Unique access. If UQ is specified, only this job may
access the permanent dataset at the completion of the
SAVE function. Otherwise, multi-user access to the
permanent dataset is granted.

ACCESS - ACCESS PERMANENT DATASET

The ACCESS control statement makes an existing permanent dataset local to
a job. Following the ACCESS, all references to the permanent dataset
must be by the local dataset name specified by the DN parameter. ACCESS
assures that the user is authorized to use the permanent dataset. The
ACCESS control statement must precede the ASSIGN control statement or
" the open call for the dataset. ACCESS is a system verb.

Permanent datasets entered into the System Directory (SDR) do not require
the use of the ACCESS control statement prior to being accessed. A basic
set of datasets is entered into the System Directory when the operating
system is installed. These datasets include the loader, the CFT compiler,
the CAL assembler, UPDATE, BUTLD, and the system utility programs such as
copies and dumps. Other datasets can be entered into the System Directory
according to site requirements.

Format:

ACCESS,DN=dn,PDN=pdh,ID=uid,ED=ed,R=rd,W=wt,M=mn,UQ.

Parameters are in keyword form; DN is the only required parameter.

DN=dn - Dataset name by which the permanent dataset is to be
known.

PDN=pdn Name of a permanent dataset being accessed and which must
already exist in the system. The default value is dxu.

ID=uzd 1-8 character user identification. If uid was specified
at SAVE time, the ID parameter must be specified on the
ACCESS control statement. The default is no user ID.

Part 2
2240011 4-3

ED=ed Edition number of permanent dataset being accessed; a
value from 1 to 4095 was assigned by the dataset creator.
If the ED parameter is not specified, the default is the

highest edition number known to the system (for this
permanent dataset).

R=rd Read control word as specified at SAVE time. To obtain
read permission, this parameter must be specified on the
ACCESS control statement if a read parameter was specified
when the dataset was saved.

W=wt Write control word as specified at SAVE time. To obtain
write permission, this parameter must be specified in
conjunction with a UQ parameter on the ACCESS control
statement if a W parameter was specified when the dataset
was saved. This parameter is required prior to an ADJUST,

M=mn Maintenance control word as specified at SAVE time. This
parameter is specified in conjunction with a UQ parameter
on an ACCESS control statement if the dataset is to be
subsequently deleted, e.g., maintenance permission is
required to cdelete a dataset.

uQ Unique access. If the UQ parameter is specified and the
' appropriate write or maintenance control words are speci-
fied, write, maintenance, and/or read permission may be
granted. If UQ is not specified, multi-user read access is
granted by default (if at a minimum the read control word
is specified).

ADJUST - ADJUST PERMANENT DATASET

The ADJUST control statement changes the size of a permanent dataset, that
is, it redefines dataset size for the dataset. When a permanent dataset
is overwritten and the dataset size changes, issuing an ADJUST informs

the system of the dataset's new size. An ADJUST of a permanent dataset
may be issued if the dataset has been previously accessed within the job
with write permission. ADJUST is a system verb.

Format:

ADJUST,DN=dn.

Parameters:
DN=dn Local dataset name of a permanent dataset that has been

accessed with write permission.

Part 2
2240011 4-4 E

MODIFY - MODIFY PERMANENT DATASET

The MODIFY control statement changes bPermanent dataset information estab-
lished by the SAVE function or a pPreviously-executed MODIFY function. A

permanent dataset must be accessed with unique access and all permissions
before a MODIFY of a permanent dataset may be issued. MODIFY is a system
verb.

Once a permanent dataset exists, the read, write, and maintenance control
words apply to subsequent editions of that permanent dataset. Therefore,
permission control words can be modified only for a single edition dataset.

Format:

MODIFY,DN=dh,PDN=pdn,lD=uid,ED=ed,RT=rt,R=rd,W=wt,M=mn.

Parameters are in keyword form; the only required parameter is DN.

DN=dn Local dataset name of a permanent dataset that has been
accessed with all permissions. DN is a required
parameter.

PDN=pdnJr New permanent dataset name to be applied to the existing
dataset.

ID=uid New user identification, to be applied to the existing
permanent dataset. 1-8 alphanumeric characters. If
this parameter is omitted, the existing user ID is
retained. If this parameter is present without a value,
user identification is established as binary zeros.

ED=ed New edition number to be applied to the existing permanent
dataset. If this parameter is omitted, the existing
edition number is retained.

RT=rt New retention period to be applied to the existing per-
manent dataset. 1If this parameter is omitted, the
current retention period is retained. If this parameter
is present without a value, the retention period is set
to the installation-defined value.

R=rd New read permission control word to be applied to the
existing permanent dataset. If this parameter is
omitted, the existing read permission is retained. If
R is present without a value, read permission is established
as binary zeros.

T Deferred implementation

Part 2
2240011 4-5 E

W=wt New write permission control word to be applied to the
existing permanent dataset. If this parameter is omitted,
the existing write permission is retained. If W is present
without a value, write permission is established as binary
Zeros.

M=mmn New maintenance permission control word to be applied to
the existing permanent dataset. If this parameter is
omitted, the existing maintenance permission is retained.
If M is present without a value, maintenance permission is
established as binary =zeros.

DELETE - DELETE PERMANENT DATASET

The DELETE control statement removes a permanent dataset from the Dataset
Catalog (DSC). To issue a DELETE of a dataset, the job must have previously
accessed the dataset with maintenance permission. The dataset remains a
local dataset after DELETE. DELETE is a system verb. '

Format:

DELETE,DN=dn.

Parameters:

DN=dn Local dataset name of a permanent dataset that has been
accessed with maintenance permission.

Part 2
2240011 4-6 E

DATASET STAGING CONTROL 5

Two control statements support staging of datasets between the CRAY-1
and a front-end system: ACQUIRET and DISPOSE.

® ACQUIRE obtains a front-end resident dataset, stages it to the
CRAY-1, and makes it permanent and accessible to the job making
the request. Alternatively, if the dataset is already permanent
on CRAY-1l mass storage, ACQUIRE allows dataset access to the job
making the request.

® DISPOSE directs a dataset to the output queue for staging to a
specified front-end computer system. DISPOSE can also be used
to release a dataset or to change dataset disposition character-
istics.

Dataset control information such as save or access codes (required by a
front-end system for management of its own files) can be sent by the
CRAY-1 user to the front-end system through the use of TEXT, a special
parameter of the ACQUIRE and DISPOSE statements. The contents of the
character string provided with the TEXT parameter are defined by the
front-end system.

ACQUIRE - ACQUIRE PERMANENT DATASET+

A dataset may be made permanent and accessible to the job making the
request by use of the ACQUIRE control statement.

When an ACQUIRE control statement is issued, COS determines whether the
requested dataset is front-end resident or permanently resident on CRAY-1
mass storage. If the requested dataset is front-end resident, the front-
end stages the dataset to the CRAY-1l. The CRAY-1 then makes the dataset
permanent and grants dataset access to the job making the request. Until
the dataset is made permanent, processing of the job making the request
is delayed.

If the CRAY-1 Operating System determines that the requested dataset is
already permanently resident on CRAY-1 mass storage, dataset access is
granted to the job making the request. ACQUIRE is a system verb.

T Deferred implementation

Part 2
2240011 5-1 E

Format:

ACQUIRE,DN=dn,PDN=pdn,ID=uid,ED=ed,RT=rt,R=rd,W=wt,M=mn,UQ;3

2 TEXT=text ,MF=mf,T1D=tid ,DF=df.

Parameters are in keyword form; the only required parameter is DN.

DN=dn

PDN=pdn

ID=utd

ED=ed

RT=prt

R=prd
W=wt

M=mn

2240011

Local dataset name by which the permanent dataset is to
be known; 1-7 alphanumeric characters, the first of
which is A-%, $, @, or %. Remaining characters may also
be numeric. This is a required parameter.

Name of CRAY-1 permanent dataset to be accessed or staged
from a front-end system, saved, and accessed; 1-15
alphanumeric characters assigned by the dataset creator.
This is the name that is saved by the system if the
dataset is staged. The default for pdn is dn.

User identification; 1-8 alphanumeric characters assigned
by the dataset creator. The default is no user ID.

Edition number. A value from 1 to 4095 assigned by the
dataset creator. The default value is:

e One, if there is no permanent dataset currently in
existence with the same PDN and ID, or

@ The current highest edition number of that dataset
if the permanent dataset with the specified PDN
and ID does exist.

Retention period; a value specifying the number of days
that a permanent dataset is to be retained by the system.
The parameter may assume a value from O to 4095. The
default value is an installation-defined parameter.

Read control word; 1-8 alphanumeric characters assigned
by the dataset creator. Default is no read control word.

Write control word; 1-8 alphanumeric characters assigned
by the dataset creator. Default is no write control word.

Maintenance control word; 1-8 alphanumeric characters
assigned by the dataset creator. The control word must
be specified if a subsequent edition of the permanent
dataset is saved. If no staging occurs, and the dataset
is to be subsequently deleted, this parameter may be
specified in conjunction with the UQ parameter (i.e.,
maintenance permission is required to delete a dataset).

Part 2
5-2 E

uQ Unique access. If specified, the job is granted unique
access to the permanent dataset; otherwise, multi-access
to the permanent dataset is granted. If no staging is
performed because the dataset already exists, write,
maintenance, and/or read permission may be granted if the
appropriate write or maintenance control words are
specified.

TEXT=text Text to be passed to the front-end system requesting
transfer of a dataset. The format for TEXT is defined
by the front-end system for managing its own datasets or
files. Typically, text is in the form of one or more
control statements for the front-end system; these state-
ments must contain their own terminator for the front-end.
Any CRAY-0S record control words are extracted from the
text string before it is passed to the front-end. text
cannot exceed 120 characters.

MEF=mf Mainframe identifier for the front-end computer; two
alphanumeric characters. Default is mainframe of job
origin.

TID=tid Terminal identifier. 1-8 alphanumeric characters; for
identifying destination terminal. Default is terminal
of job origin.

DF=df Dataset format. This parameter defines whether a dataset
is to be presented to the CRAY-1 in COS blocked format
and whether the front-end system is to perform character
conversion. The default is CB when the DF parameter is
omitted.

For example, a nser may wich to acquire a dataset from

- magnetic tape in blocked binary as it appears at the
front-end system. In this case, BB is specified.

df is a two-character alpha code defined for use on the
front-end computer system. CRI suggests support of the
following codes:

CD Character/deblocked. The front-end system performs
character conversion to 8-bit ASCII, if necessary.

CB Character/blocked. The front-end system blocks
the dataset prior to staging and performs char-
acter conversion to 8-bit ASCII, if necessary.

BD Binary/deblocked. The front-end system performs
no character conversion. BD is the same as TR
for ACQUIRE.

Part 2
2240011 5-3 E

BB Binary/blocked. The front-end system blocks the
dataset prior to staging but does not do char-
acter conversion.

TR Transparent. No blocking/deblocking or character
conversion is performed.

Other codes may be added by the local site. Undefined
pairs of characters may be passed but will be treated as
transparent mode by the CRAY-1.

DISPOSE — DISPOSE DATASET

The DISPOSE control statement directs a dataset to the output queue for
staging to the specified front-end computer system (mainframe). DISPOSE
may also be used to alter dataset disposition characteristics or to
release a dataset. The dataset to be disposed must be a local dataset.

The dataset being disposed is placed in the output queue immediately.
Disposing a dataset does not delay job processing unless the warrt
parameter is specified. After the ‘dataset is staged, it is released
from CRAY-1 mass storage. DISPOSE is a system verb.

Format:

DISPOSE, DN=d~ ,SDN=sdn,DC=dc ,DF=df ,MF=mf,SF=sf, | D=uid ,T1D=tid, i

} ED=ed,RT=rt ,R=rd ,W=wt ,M=mn, TEXT=text ,WAIT.

Parameters are in keyword form; the only required parameter is DN.

DN=dn Dataset name; the name by which dataset is known at the
CRAY-1. dn is 1-7 alphanumeric characters, the first of
which is A-Z, $§, %, or @; remaining characters may also
be numeric. This is a required parameter.

SDN=sdn Staged dataset name; 1-15 alphanumeric character name
by which the dataset will be known at destination main-
frame. The default is the local name of the dataset.

T Deferred implementation

Part 2
2240011 5-4 E

DC=dc

DF=df

2240011

Disposition code; disposition to be made of the dataset.
The default is PR when the DC parameter is omitted.

de is a 2-character alpha code describing the destination
of the dataset as follows:

IN Input to mainframe. Dataset is placed in the job
input queue for the mainframe designated by the
MF parameter. If no MF parameter is specified, the
job is disposed to the CRAY-1 input queue.

ST Stage to mainframe. Dataset is made permanent at
the mainframe designated by the MF parameter.

SC Scratch dataset. Dataset is deleted.

PR Print dataset. Dataset is printed on any printer
available at the mainframe designated by the MF
parameter.

PU Punch dataset. Dataset is punched on any card
punch available at the mainframe designated by
the MF parameter.

PT Plot dataset. Dataset is plotted on any available
plotter at the mainframe designated by the MF
parameter.

MT Write dataset on magnetic tape at the mainframe
designated by the MF parameter.

Dataset format. This parameter defines whether a dataset
is sent from the CRAY-1 in COS blocked format and
whether the front-end system is to perform character
conversion. The default is CB when the DF parameter is
omitted.

For example, a user may wish to save a dataset on magnetic
tape in blocked binary as it appears at the CRAY-1l. 1In
this case, BB is specified. A user who wants a dataset
printed will specify CB if the front-end computer handles
deblocking.

df is a two-character alpha code defined for use on the
front-end computer system. CRI suggests support of the
following codes:

CD Character/deblocked. The front-end computer
performs character conversion from 8-bit ASCII,
if necessary.

Part 2
5-5 E

MF=mf

SF=sf

D=uid T

TID=t1d

ED=ed

RT=rt

R=rd

W=wt

M=mn

CB Character/blocked. No deblocking is performed at
the CRAY-1 prior to staging. The front-end performs
character conversion from 8-bit ASCII, if necessary.

BD Binary/deblocked. The front-end computer performs
no character conversion.

BB Binary/blocked. The front-end computer performs
no character conversion. No deblocking is performed
at the CRAY-1l prior to staging. For DISPOSE, BB
is the same as TR.

TRT Transparent. No blocking/deblocking or character
conversion is performed.

Other codes may be added by the local site. Undefined pairs
of characters may be passed but will be treated as trans-
parent mode by the CRAY-1.

Mainframe computer identifier; 2 alphanumeric characters.
The default is the mainframe of job origin.

Special form information to be passed to the front-end
system. 1-8 alphanumeric characters. SF is defined by
the needs of the front-end system.

User identification; 1-8 alphanumeric characters assigned
by the dataset creator. The default is no user ID.

Terminal identifier; 1-8 alphanumeric characters for
identifying destination terminal. The default is terminal
of job origin, where applicable.

Edition number meaningful only if DC=ST; a value from 1 to
4095, assigned by the user. The default value depends on
the destination mainframe.

Retention period meaningful only if DC=ST; a value from O
to 4095 specifying the number of days a dataset is to be
retained by the destination mainframe. The default value
depends on the destination mainframe.

Read control word meaningful only if DC=ST; 1-8 alpha~-
numeric characters. The default is no read control word.

Write control word meaningful only if DC=ST; 1-8 alpha-
numeric characters. The default is no write control word.

Maintenance control word meaningful only if DC=ST; 1-8
alphanumeric characters. The default is no maintenance
control word.

t Deferred implementation

2240011

Part 2
5-6 E

TEXT=text+ Text to be passed to the front-end system requesting

WAIT

transfer of a dataset; meaningful only if DC=ST. The
format for TEXT is defined by the front-end system for
managing its own datasets or files. Typically, text is
in the form of one or more control statements for the
front-end system; these statements must contain their
own terminator for the front-end. Any COS record
control words are extracted from the text string before
it is passed to the front-end. text cannot exceed 120
characters. If no TEXT field is specified, the default
value is SDN if specified, otherwise the default is DN.

Job wait. When this parameter is specified, the job
does not resume processing until the disposed dataset
has been staged to the front-end system.

T Deferred implementation

2240011

Part 2
5-7 E

DATASET UTILITIES - 6

Utility control statements provide the user with a convenient means of
copying, positioning, or dumping datasets. The following utilities are
available to the user:

e COPYR, COPYF, and COPYD allow the user to copy records, files,
or datasets, respectively.

® SKIPR, SKIPF, and SKIPD allow the user to skip records, files,
or datasets, respectively.

e REWIND positions a dataset at the beginning of data; i.e., prior
to the first block control word of the dataset.

e WRITEDS is intended for initializing a random dataset, but may
also initialize a sequential dataset.

L
o COMPARE' compares two datasets and makes a list of all discrep=-
ancies found between the two.

All parameters are in keyword form and have default values.

COPYR - COPY RECORDS

The COPYR statement copies a specified number of records from one dataset
to another starting at the current dataset position.

Format:

COPYR, I=tdn,0=0dn ,NR=n.

Parameters (in keyword form):

I=idn Name of dataset to be copied. The default is S$IN.
O=odn Name of dataset to receive the copy. The default is S$OUT.
NR=1 Decimal number of records to copy. The default for »n is 1.

If the dataset contains fewer than »# records, the copy
prematurely terminates on the next <eof>. <eof> or <eod>
is not written. If the keyword NR is specified without a
value, the copy terminates at the next <eof>. If the in-
put dataset is positioned midrecord, the partial record
is counted as one record.

T Deferred implementation

Part 2
2240011 6-1 E

Following the copy, the datasets are positioned after the
<eor> for the last record copied.

COPYF - COPY FILES

The COPYF statement copies a specified number of files from one dataset
to another starting at the current dataset position.

Format:

COPYF, I=2dn,0=0dn ,NF=n.

Parameters (in keyword form):

I=1dn Name of dataset to be copied. The default is $IN.
0=odn Name of dataset to receive the copy. The default is $OUT.
NF=n Decimal number of files to copy. If the dataset contains

fewer than n files, the copy prematurely terminates on
<eod>. <eod> is not written. The default for »n is 1.
If the keyword NF is specified without a value, the copy
terminates at the <eod>. If the input dataset is posi-
tioned midfile, the partial file counts as one file.

Following the copy, the datasets are positioned after the
<eof> for the last file copied.

COPYD - COPY DATASET

The COPYD statement copies one dataset to another starting at their
current positions. Following the copy, both datasets are positioned
after the <eof> of the last file copied. The <eod> is not written to
the output dataset.

Format:

COPYD, I=tdn,0=0dn.

Parameters (in keyword form):

I=idn . Name of dataset to be copied. The default is $IN.
O=odn Name of dataset to receive the copy. The default is $OUT.
Part 2

2240011 6-2 E

SKIPR - SKIP RECORDS

The SKIPR control statement directs the system to bypass a specified number
of records from the current position of the named dataset.

Format:

SKIPR,DN=d» ,NR=n.

Parameters (in keyword form):

DN=dn Dataset name. The default is $IN.

NR=n1 Decimal number of records to skip. The default is 1. If
the keyword NR is specified without a value, then the system
positions dn after the last <eor> of the current file. If
n is negative, SKIPR skips backward on dn.

SKIPR does not bypass an <eof>. If an <eof> is encountered
before n records have been bypassed when skipping backward,
the dataset is positioned after the <eof>; when skipping
forward, the dataset is positioned after the last <eor> of
the current file.

SKIPR does not bypass an <eof> or <bod>. 1If an <eof> or
<bod> is encountered before »n records have been bypassed
when skipping backward, the dataset is positioned after
the <eof> or <bod>; when skipping forward, the dataset
is positioned after the last <eor> of the current file.

SKIPF -~ SKIP FILES

The SKIPF control statement directs the system to bypass a specified
number of files from the current position of the named dataset.

Format:

SKIPF,DN=dn ,NF=n.

Parameters (in keyword form) :

DN=dn Dataset name. The default is $IN.

NF=n Decimal number of files to bypass. The default is 1.
If the keyword NF is specified without a value, then the
system positions dn after the last <eof> of the dataset.
If n is negative, SKIPF skips backward on dn.

If dn is positioned midfile, the partial file skipped
counts as one file.

Part 2
2240011 6-3 E

SKIPF does not bypass an <eod> or <bod>. If <bod> is
encountered before n files have been bypassed when skipping
backward, the dataset is positioned after the <bod>; when
skipping forward, the dataset is positioned before the
<eod> of the current file.

EXAMPLE: If dn is positioned just after an <eof>, the
following control statement will position dn after the
previous <eof>. 1If dn is positioned midfile, dn will be
positioned at the beginning of that file.

SKIPF,DN=dn ,NF=-1.

SKIPD - SKIP DATASET

The SKIPD control statement directs the system to position a dataset at
<eod>, that is, after the last <eof> of the dataset. It has the same
effect as the following statement:

SKIPF,DN=dn,NF.

Format:

SKIPD,DN=dn.

Parameters (in keyword form):
DN=dn Dataset name. The default is S$IN.
If the specified dataset is empty or already at <eod>, the statement has

no effect.

REWIND - REWIND DATASET

The REWIND control statement positions a dataset at the beginning of
data <bod>, i.e., prior to the first block control word of the dataset.
If the dataset is not open, REWIND opens it. REWIND is a system verb.

Format:

REWIND, DN=dn.

Parameters (in keyword form):

DN=dn Name of dataset to be rewound.

Part 2
2240011 6-4 E

WRITEDS - WRITE RANDOM OR SEQUENTIAL DATASET

The WRITEDS control statement is intended for initializing a random data-
set. It writes a dataset containing a single file which consists of a
specified number of records of a specified length. This utility is useful
for random datasets because of the requirement that a record written on a
random dataset must end on a pre-existing record boundary or must begin

at <eod>.

WRITEDS may also be used to write a sequential dataset.

Format:

WRITEDS, DN=dn ,NR=nr,RL=rZ.

Parameters are in keyword form; the only required parameters are DN and NR.

DN=dn Name of dataset to be written. This parameter is required.

NR=nr Decimal number of records to be written. This parameter
is required.

RL=r1 Decimal record length, i.e., the number of words in each
record. The default is zero words, which generates a
null record.

If the record length is 1 or greater, the first word of each record is
the record number as a binary integer starting with O.

COMPARE - COMPARE DATASETS'

The COMPARE control statement compares two datasets and makes a list of
all discrepancies found between the two. Output consists of a listing
of the location of each discrepancy and the contents of the differing
portions of the datasets. If no discrepancies are found, a message in
the user logfile informs the user that the datasets agree.

Keyword parameters allow the user to specify the maximum number of errors
and the amount of context to be listed as output.

T Deferred implementation

Part 2
2240011 6-5 E

If only parts of two datasets are to be compared, the user must make
copies of the parts before using a COMPARE statement; COMPARE compares

complete datasets only.

COMPARE rewinds both input datasets before and after the comparison.

Format:

COMPARE, A=adn ,B=bdn ,L=ldn,DF=df ,ME=maxe ,CP=cpn ,CS=csn ,ABORT.

Parameters are in keyword form; one of A and B must be specified.

A=adn
B=bdn

L= 1dn

DF=df

ME=maxe

CP=cpn

2240011

Input dataset names. The default is $IN; default may be
taken for one input dataset only - at least one of A and
B must be specified. If adn=bdn, an error message will
be sent.

Dataset name for list of discrepancies. The default is
SOUT. L must be different from A and B.

Input dataset format. The default is T.
df is a one-character alpha code as follows:

B Binary. The input datasets will be compared
logically to verify that they are identical.
If they are not identical, the differing words
will be printed in octal and as ASCII characters.
The location printed will be a word count in
decimal. The first word of each dataset is called

word 1.

T Text. If the input datasets are not identical,
they will be compared to see if they are equivalent
as text. For example, a blank-compressed record
and its expansion are considered equivalent. If
the two datasets are not equivalent, the differing
records are printed as text. The location is
printed as a record count in decimal. The first
record of each dataset is called record 1.

Maximum number of errors printed. The default is 100.

Amount of context printed. c¢pn words (if DF=B) or records
(if DF=T) to either side of a discrepancy are printed.
The default is O.

Part 2

CS=csn

ABORT

2240011

Amount of context scanned. c¢sn words (if DF=B) or records
(if DF=T) to either side of a discrepancy are scanned for
a match. The default is O.

If a match is found within the permitted range, subsequent
comparisons will be made at the same interval. That is,
if record 275 of dataset A is equivalent to record 277 of
dataset B, the next comparison will be between record 276
of dataset A and record 278 of dataset B.

CAUTION

If identical records occur within c¢sn records
of each other, the pairing is ambiguous and
COMPARE may match the wrong pair.

If ABORT is specified, the job ends with an error exit
if any discrepancies are found between the two input
datasets. Specifying ABORT will not prevent the listing
of up to maxe errors.

Part 2
6-7 E

PERMANENT DATASET UTILITIES

Three utility routines are provided for permanent datasets.

e PDSDUMP dumps all permanent datasets to a user-specified
dataset. Input and output datasets may be included in the dump.

® PDSLOAD loads permanent datasets that have been dumped by
PDSDUMP and updates or regenerates the Dataset Catalog. Input
and output datasets are also loaded via PDSLOAD.

® AUDIT produces a report containing status information for each
permanent dataset. AUDIT does not include input or output
datasets.

PDSDUMP - DUMP PERMANENT DATASET

PDSDUMP dumps permanent datasets to a dataset, which may then be saved or
staged to a station as desired.

Format:

PDSDUMP,DN=dh,DV=Zdv,PDS=pd8,Cw=cw,|D=uid,US=usn,ED=ed,X,C,D,l,O,S

All parameters are in keyword form; the only required parameter is CW.
Optional parameters establish criteria for those datasets to be dumped.
By default, all permanent datasets will be dumped.

DN=dn
DV=1dv

PDS=pds
CW=cw.

ID=uid
US=usn

ED=ed

2240011

Dataset to which dump is to be written. Default is $PDS.

Dump all datasets residing on logical device ZIdv.
Currently, only one Ldv can be specified.

Dump all editions of the specified permanent dataset.
Editions may be limited by ED parameter.

Installation-defined control word to regulate the use of
PDSDUMP. This is a required parameter.

Dump all datasets with user identification as specified.
Dump all datasets with specified user number.

Edition number of permanent dataset to be dumped; mean-
ingful only if PDS parameter is specified.

Part 2
7-1 E

nwn O H U

Dump expired datasets.

Dump datasets that have been modified or created since
last dump of the dataset.

Delete datasets that are dumped.
Dump input datasets.
Dump output datasets. See note

Dump saved datasets.

NOTE

If none of these parameters is specified, the
input, output, and saved datasets are all dumped.
If any of these parameters is specified, only
those datasets of the type specified are dumped.

PDSLOAD - LOAD PERMANENT DATASET

PDSLOAD loads permanent datasets from a dataset created by PDSDUMP.
Dataset Catalog (DSC) entries are reconstructed.

Format:

PDSLOAD,DN=dn,PDS=pds,Cw=cw,|D=uid,US=usn,ED=ed,A,I,O,S.

All parameters are in keyword form; the only required parameter is CwW.
Optional parameters establish criteria for those datasets to be loaded.
By default, all permanent datasets will be loaded.

DN=dn
PDS=pds
CW=cw

ID=utd
US=usn

ED=ed

A

2240011

Dataset from which permanent dataset is to be recon-
structed. The default is $PDS.

Load all editions of the specified permanent dataset.
Editions may be limited by the ED parameter.

Installation-defined control word to regulate the use
of PDSLOAD. This is a required parameter.

Load all datasets with user identification as specified.
Load all datasets with specified user number.

Edition number of dataset to be loaded; meaningful only
if PDS parameter is specified.

Load only active datasets, i.e., do not load expired
datasets.

Part 2
7-2 E

I Load input datasets.
0o Load output datasets. See note

Load saved datasets.

NOTE

If none of these parameters is specified, the
input, output, and saved datasets are all loaded.
If any of these parameters is specified, only
those datasets of the type specified are loaded.

AUDIT - AUDIT PERMANENT DATASET

The AUDIT utility provides reports on the status of each permanent dataset
known to the system. AUDIT does not include input or output datasets.

Format:

AUDIT. l

Parameters: none

UDIT ovuipul suppiies the following information to S0UL:

Permanent dataset name
User identification
Edition number

User number

Creation date/time
Last access date/time
Last modify date/time
Expiration date

Last dump date/time
Dataset size

Number of accesses

Part 2
2240011 7-3 E

ANALYTICAL AIDS 8

The following control statements provide analytical aids to the programmer:

) DUMPJOB and DUMP are generally used together to examine the contents
of registers and memory as they were at a specific time during job
execution. DUMPJOB captures the information so that DUMP can later
format and output selected parts of it.

o DSDUMP dumps all or part of a dataset to another dataset in one
of two formats: blocked or unblocked.

DUMPJOB - CREATES S$DUMP

The DUMPJOB control statement causes the local dataset $DUMP to be
created. $DUMP receives an image of the memory assigned to the job
(JTA and user field) at the time the DUMPJOB statement is encountered.
DUMPJOB may be placed anywhere in the control statement file.

If $DUMP already exists, it will be overwritten by the issuing of a
DUMPJOB control statement. If S$DUMP is permanent and the job does not
have write permission, DUMPJOB will abort. If $DUMP is permanent and
the job has write permission, the dataset will be overwritten. An
ADJUST control statement may be required to make any extension of the
dataset permanent.

$DUMP is created as an unblocked dataset by DUMPJOB for use by DUMP.
DUMPJOB is a system verb.

Format:

DUMPJOB.

Parameters: none

DUMP - DUMP REGISTERS AND MEMORY

DUMP reads and formats selected parts of the memory image contained in
$DUMP and writes the information onto another dataset. The DUMP statement
may be placed anywhere in the control statement file after $DUMP has been
created by the DUMPJOB control statement.

2240011 Fart 2 E

8-1

Format:

DUMP, | =tdn ,0=o0dn , FW=fwa ,LW=7wa ,JTA ,NXP,V ,DSP.

Parameters are in keyword form:

I=idn Name of the dataset containing the memory image. The dataset
S$DUMP is created by DUMPJOB and is the default, but any
dataset in the $DUMP format is acceptable.

o=odn Name of the dataset to receive the dump. The default is $OUT.

FW=fwa First word address (in octal) of memory to dump. The default
is O.

Iw=lwa Last word address+l (in octal) of memory to dump. The default
is 200g. Specifying the keyword LW without a value causes
the limit address to be used.

JTA Job Table Area to be dumped. The default is no dump.

NXP No exchange package, B, or T registers dumped. The default
causes exchange package, B, and T registers to be dumped.

\Y Vector registers to be dumped. The default is no dump of V
registers.

DSP Logical File Tables and Dataset Parameter Areas to be dumped .

The default is to not dump LFTs and DSPs.

Placing the DUMPJOB and DUMP statements after an EXIT statement is
conventional and provides the advantage of giving a dump regardless of
which part of the job caused an error exit. The usage of DUMP and
DUMPJOB, however, is not restricted to this purpose.

DUMP may be called any number of times within a job. This might be done
to dump selected portions of memory from a single $SDUMP dataset or it
might be done if $DUMP has been created more than once in a single job.

DSDUMP - DUMP DATASET

The DSDUMP control statement dumps a specified portion of a dataset to
another dataset. The dump may be made in one of two formats: blocked
or unblocked.

In the blocked format, a group of words within a record, a group of
records within a file, and a group of files within a dataset may be
selected. Initial word number, initial record number, and initial file
number each begins with one and is relative to the current dataset
position. Specifying an initial number other than one causes words,

2240011 Part 2 E
8-2

records, or files to be skipped starting from the current position. Since
the initial word, record, or file number is relative to the beginning

of the dataset, the dataset must be positioned properly prior to calling
DSDUMP. When DSDUMP is completed, the input dataset is positioned after
the last record read.

The unblocked format is used for datasets that do not follow the COS
blocked format or for examining control words in a blocked dataset. A
group of sectors within the dataset may be selected. The initial sector
number begins with one and is always relative to the beginning of the
dataset. The number of words dumped is always 512 words per sector.
Following a DSDUMP in unblocked format, the input dataset is closed.

Format:

DSDUMP, | =idn,0=0dn ,DF=df, IW=n ,NW=n, | R=n,NR=n, | F=n ,NF=n, | S=12,NS=n.

Parameters are in keyword form; the only requried parameter is I.

I=idn Name of dataset to be dumped. This is a required
parameter.

0=odn Name of dataset to receive the dump. The default is $OUT.

DF=df Dump format can be blocked (B) or unblocked (U); default
is B.

IW=n Decimal number (n) of initial word for each record on Zdn;

the default is 1.

NW=n Decimal number (n) of words per record to dump; the default
is 1. Specifying NW without a value gives all words to the
end of the record.

IR=n Decimal number (n) of initial record for each file on Zdn;
the default is 1.

NR=n», Decimal number (n) of records per file to dump; the default
is 1. Specifying NR without a value gives all the records
to the end of the file.

IF=n Decimal number (n) of initial file for dataset on idn; the
default is 1.

NF=n Decimal number (n) of files 7dn to dump; the default is 1.
Specifying NF without a value gives all the files to the
end of the dataset.

IS=n Decimal number () of initial sector on Zdn; the default is
1. Applicable only if DF=U. '

NS=n Decimal number (n) of sectors to dump; the default is 1.
Specifying NS without a value gives all the sectors to the
end of the dataset. Applicable only if DF=U.

Part 2
2240011 8-3 E

For blocked format; each record from Zdn dumped to odn is preceded by a
header specifying the file and record number. For unblocked format, each
sector is preceded by a header specifying the sector number.

Format of each dump record:

octal interpretation character interpretation

d cou
word count of four words of four words

A row of five asterisks indicates that one or more groups of four words
has not been formatted because it is identical to the previous four.
Only the first group is formatted. The number of words not formatted
can be determined from the word counts of the formatted lines before and
after the asterisks. The final group of four or less words is always
formatted.

Part 2
2240011 8-4 E

RELOCATABLE LOADER 9

The COS relocatable loader is a utility program that executes within the
user field and provides the loading and linking in memory of relocatable
modules from datasets on mass storage.

The relocatable loader is called through the LDR control statement when

a user requires loading of a program in relocatable format. Absolute

load modules can also be loaded. The design of the COS loader tables

and relocatable loader allows program modules to be loaded, relocated

and linked to externals in a single pass over the dataset being loaded.
This minimizes the time spent in loading activities on the CRAY-1. The
loader allows the immediate execution of the object module or the creation
of an absolute binary image of the object module on a specified dataset.
Loader features are governed by parameters of the LDR control statement.

LDR CONTROL STATEMENT

The loader is called into execution by the LDR control statement. Para-
meters of the control statement determine the functions to be performed
by the loader.

Format:

LDR,DN=dn, L|B=1dn,AB=adn ,MAP=0p ,T=tra,NX,C,0VL=dir ,CNS ,NA,L=1dn,SET=val.

Parameters are in keyword form:

DN=dn Dataset containing modules to be loaded. The default is
$BLD. Loading continues until an <eof> is reached.
Modules are loaded according to block name as determined
by a CAL IDENT card or a CFT PROGRAM, SUBROUTINE, or
FUNCTION statement. Duplicate blocks are skipped and
an informative message is issued.

Multiple files from the same dataset may be loaded by
specifying the dataset name multiple times separated by
colons. A maximum of eight files may be indicated.

Datasets specified by the DN parameter are closed at the
end of the load process. Closing a dataset has the effect
of rewinding the dataset and releasing I/O tables and
buffers.

Modules to be loaded may be relocatable or absolute.
However, the two types of modules may not be mixed.

Part 2
2240011 9-1 E

LIB=Ldn

AB=adn

MAP=0p

2240011

For example,
DN=LOAD1:LOAD2: $BLD

causes the loading of all modules in the first file of
datasets LOAD1l, then LOAD2, and then S$SBLD.

Normally the dataset is rewound before loading; however,
consecutive occurrences of a dataset name inhibit the
rewind operation. Therefore, the statement

DN=LOAD3 : LOAD3

causes the loading of all modules in the first two files
of dataset LOAD3.

The LIB parameter names the dataset from which unsatisfied
externals are loaded. Datasets indicated are selectively
scanned for load modules whose entry points are unsatisfied
externals from the load of Idn datasets. The default is
$FTLIB; the LIB parameter is not required for S$FTLIB to

be searched unless other files are named.

Multiple datasets may be named up to a limit of eight with
dataset names separated by colons. Each dataset is repeti-
tively scanned to permit all required system routines to
be loaded. All datasets listed are automatically accessed;
therefore, no ACCESS statement is required.

Datasets specified by the DN parameter are closed at the
end of the load process. Closing a dataset has the effect
of rewinding the dataset and releasing I/O tables and
buffers.

Absolute binary object module generation. Use of this
parameter causes an absolute binary object module to be
written to the named dataset after the load process is
completed. Selecting AB does not imply NX (no execution).
Unless NX is also selected, the loaded program begins
execution after the binary is generated. Specifying AB
without adn causes the module to be written on a dataset
named $ABD, the default dataset. Some other dataset

may be specified by AB=adn. The dataset is not rewound
before or after the file is written.

If the AB parameter is omitted, no binary generation
occurs.

Map control. If the MAP parameter appears, the loader
produces a map of the loaded program on the specified
dataset. MAP=OFF is the default. MAP=ON is equivalent

Part 2

to MAP=FULL and produces a block 1list and an entry list
including all cross references to each entry. MAP=PART
is equivalent to MAP with no value and produces a block

list only.

T=tra Transfer name. The T parameter allows specification of
an entry name where the loader transfers control at
completion of the load. The T parameter also specifies
the entry included in absolute binary object modules.

The entry name is a maximum of 8 characters. If no T
parameter is specified, the loader begins object program
execution at either the entry specified by the first
encountered START pseudo from a CAL routine, or at the
entry of the first main program in CFT compiled routines.
If no START entries are encountered, a warning message
is issued and the first entry of the first relocatable
or absolute module is used.

NX No execution. Inclusion of this parameter inhibits
execution of the loaded program.

c Compressed load. Inclusion of this pParameter causes
loading of each module to begin at the next available
location after the previous module. TIf this parameter
is omitted, loading of modules begins on 20g-word
increments only (optimal load).

OVL=dir Overlay load. The OVL parameter indicates an overlay
load sequence is specified on dir. (See next section
for a detailed description of the overlay load.) If
the OVL keyword is specified without a value, the loader
examines the next file of S$IN for an overlay load
sequence. The default is no overlay load. Selecting
OVL implies NX (no execution).

CNS Crack next control statement card image. This feature
allows the loader to bass parameters on to the loaded
program for analysis and use during execution of the
loaded program. The control statement cracked follows
the LDR control statement and is not available for
processing by the Control Statement Processor (CSP)
after processing by the loaded program.

NA No abort. If this parameter is omitted, a fatal loader
error causes the job to abort.

L=1dn Listing output. This parameter allows the user to specify
the name of the dataset to receive the map output. The
default is SOUT.

Part 2
2240011 9-3 E

SET=val Memory initialization. Variables, named and blank common
blocks, and storage areas defined by DIMENSION statements

are set to 0, -1, or an out-of-range floating point
value during loading.

SET=ZERO Memory is set to binary =zeros.
SET=0ONES Memory is set to -1 (all bits set in word).

SET=INDEF Memory is set to a value that causes a
floating point error if used as a floating
point operand. The value is 060505 000000
000777 000000 as 16-bit parcels.

LOAD MAP

Each time the loader is called, the user has the option of requesting a
listing that describes where each module is loaded and what entry points
and external symbols were used for loading. This listing is called a load
map.

The user may specify the contents of the map or the file to receive the
map by setting parameters of the LDR control statement to the desired
values. The MAP parameter of the LDR control statement allows the user to
specify the contents of the map requested. MAP=ON or MAP=FULL produces

a block list and an entry list. The block list gives the names, beginning
addresses and lengths of the program and subroutines loaded on this loader
call; the entry list includes all cross references to each entry. MAP=PART
supplies a partial map; i.e., the block map only.

Figure 9-1 illustrates the load map generated by the following LDR statement:
LDR,DN=$BLD:LOAD2,LIB=MYLIB:$FTLIB,MAP=FULL.

The block list consists of items 1-13 in figure 9-1; the entry list includes
items 14-17.

1. Job name

2. Loader. level and Julian date of assembly of the loader

3. Date and time of loader execution

4. Page number

5. Load type; either relocatable, absolute, or overlay

6. Name of load or library dataset containing modules to be loaded

Part 2
2240011 9-4 E

PAGE 1

SAMPL

®©

RELOCATABLE LOAD (:)

V4
DATE

LOR 1 B2 78172

ON

@

av/12-78 14: 52: 05

®

DATASET BLOCK ADDRESS LENGTH TIME 0S FEU FROC. REU
XSYSTEM 8 208
$BLD MAINPRG 63 1938 @7/13/78 14:58:84 B7/12-72 CFT 1.92 06-22/78
/GLOBAL ~ 260 144
SURoL 1560 EB @7 13-78 14:58:04 @7/12/78 CFT 1.82 ©6/22/78
AABEL - 1410 146
FUNL1L 1640 25 O7/13/78 14.58.D4 O7/12.78 CFT 1.B2 06/22.78
LOADZ2 SUES 1700 1 97 13,78 1458 05 O7F-12-78 CAL L.02 78173
MYLIB SUB1L 1720 43 @7/13/78 1458:B4 071272 CFT 1.02 0G6/72-78
SIBY3 2003 42 @v/13/78 145804 @V-12-72 CFT 1.92 ©6/22/78
$FTLIB $END 2060 75 @B/22/78 12:38:00 05/24-79 CAL 1.91 781R4
$SEXIT 2129 16 ©6/22/78 123360 ©5/24.73 CAL 1.81 78104
FRCW 5400 267 OR/22,72 12:48:03 B5/24-73 CAL 1.91 78104
2 SE67 144
BLOCK NAME ENTRIES ENTRY UALUE ABSOLUTE REFERENCES
MAINPRG MAINPRG 1371a
SUB@1 SUBRAL 15654 1374d
FUNLL FUN11 1645a 1621a 1671 1622h
SUBS SUEB2 1700 1375
SUBL1 SUB1 1 1725a 1614a
SUBR3 SUBA3 2012q 1376b
$END $END 20624 1403h 163la 16604 1753a 2033b
END$ 2063a
$LEUL 2190
$LEUZ 2101
PAGE 2
SAMPL LDR 1.02 78173 27,1278 14:58:85 FAGE 2
$LOCA 2193
$LOCB 2104
$EXIT EXIT 2123a 1482c I
L—\’_,_,_\
$RCW FRCHP S441b
ERCHR £442q
IRUDP 5551k
FRWDR 5ESZa 4256a
Figure 9-1. Example of a load map
7. Names of blocks loaded from the named dataset. These blocks may
be common blocks (identified by the slashes around their names,
e.g., /LABEL/) or may be names of program blocks.
*SYSTEM is always the first block listed in a relocatable load.
It consists of the first 200g words of the user field, which is
reserved for the Job Communication Block (JCB). For an absolute
Part 2
2240011 E

load, *SYSTEM is not allocated. Therefore, the CAL user must
set the origin to 200g via an ORG pseudo instruction to allow
space for the JCB. If this is not done, the job will abort.

Blank common, indicated as //, is allocated last, and appears at
the end of the list (if it has been defined).

8. Starting address of the block (in octal)
9. Word length of the block (in octal)
10. Date and time the object module was generated

11l. Operating system revision date at the time the object module was
generated

12. Name and revision level of the processor that generated the object
module

13. Revision date of the processor that generated the object module
14. Name of program block referenced

15. Entry points in the program block

16. Word address, parcel address, or value of each entry point

17. Absolute parcel addresses of references to each entry point.

Eight references are listed per line; some entry points have
no references.

Part 2
2240011 art

OVERLAY LOADER 10

Some very large programs may not fit in the available user memory space
or may not use large portions of memory while other parts of the program
are in execution. For such programs, the COS Relocatable Loader includes
the ability to define and generate overlays -- separate modules that the
user creates and then calls and executes as necessary.

OVERLAY STRUCTURE

Each overlay is identified by a pair of decimal numbers, each from 0
through 999. There must be one and only one root overlay; its level
numbers are (0,0). This root remains in memory throughout program execu-
tion. Primary overlays all have level numbers (1,0) where » is in the
range 1 through 999; level 0 is the highest level.

Primary overlays are called at various times by the root and are loaded
at the same address immediately following the root. A secondary overlay
is associated with a specific primary overlay. The secondary level
numbers are (,), where is the primary number , and is in the range
1 through 999. All secondary overlays associated with a given primary
are loaded at the same address immediately following that primary.

Only the root, one primary overlay, and one secondary overlay can be in
memory at one time.

Figure 10-1 shows a sample overlay loading diagram. The primary and
secondary overlays are shown in time sequence.

All external references must be directed toward an overlay nearer to the
root. For example, overlay (1,0) may contain references to the root (0,0)
but not to overlay (1,1). Overlay (1,1) may contain references to both
(1,0) and (0,0).

The loader places named common prior to the routine that first references
it. All named common references must be directed toward a lower level
routine.

Part 2
2240011 10-1 E

BA+JCHLM

SECONDARY
OVERLAY

(1,1)

\

(1;2)

(2,1)

1 (5,1) (5,2)

(5,3)

(5,0)

SUBROUT INE

memory

(1,0)

PRIMARY
OVERLAY

A

BA+2008

BLANK COMMON

SUBROUTINE SUBZ2

SUBROUTINE SUBI1
NAMED COMMON B

PROGRAM MAIN
NAMED COMMON A

ROOT

(0,0)

2240011

Figure 10-1.

time

Y

Example of overlay loading

Part 2
10-2

For example, in Figure 10-1,

MAIN can reference named common A only
SUBL and SUB2 can reference named common A and B only

TEST can reference named common A, B, and C

The loader allocates blank common above the first overlay in which it is
declared. If blank common is declared in the root overlay (0,0), it is
allocated at the highest address of the root overlay and is accessible
to all overlays. If blank common is first declared in primary overlay
(1,0) and not declared in the root (0,0), then it is accessible only to
the (1,x) overlays.

OVERLAY GENERATION

Overlay generation consists of a load operation in which the loader
performs relocatable loading and writes the resulting binary image to
disk as a named absolute overlay encompassing one binary record.

If the LDR control statement (part 2, section 9) has the parameter OVL=dir,
the loader finds the overlay generation directives on the named dataset,
dir. 1If no dataset is given (i.e., OVL), then the loader reads overlay
generation directives from $IN.

The format of the control statement is:

LDR,...,0VL=dir,....

OVERLAY GENERATION DIRECTIVES

An overlay generation directive consists of a keyword and a parameter.
A blank or comma must separate the keyword from the parameter; two or
more blanks or a period serve as a terminator.

FILE DIRECTIVE

The FILE directive indicates the dataset, dn, containing the routines to
be loaded. It is generally the first directive on the directives dataset
but may appear at any time and as often as necessary thereafter. If no
FILE directive appears, the loading proceeds from $BLD.

Part 2
2240011 10-3 E

Format:

FILE,dn.

OVLDN DIRECTIVE

This directive names the dataset, dn, on which overlays are written. If
no OVIDN directive is present, the default overlay binary dataset is
assigned, i.e., $OBD. All overlays generated following an OVLDN direc-
tive reside as separate binary records on dataset dn. OVLDN directives
may appear as often as desired.

Format:

OVLDN,dn.

ROOT DIRECTIVE

This directive defines programs, subroutines, or entry points comprising
the load from dn. For programs written in CAL, list each entry referenced.
FORTRAN programs need the program name only. All members for this direc-
tive reside on the same dataset, du.

Format:

ROOT ,membery ymember, , . .. membery .

POVL DIRECTIVE

This directive causes relocatable loading of the named blocks of a primary
overlay with the name pnumber:000. The size of the root determines the
base location. All members for this directive reside on the same dataset,
dn. The first member in the list is the one that receives control when the
overlay is loaded.

Part 2
10-4

2240011

Format:

POVL,pnumber,memberl,memberz,...,membern.

where pnumber is between 1 and 999.

SOVL DIRECTIVE

This directive causes relocatable loading of the named blocks of a
secondary overlay with the name pnumber:snumber. The length of POVL
(pnumber:000) determines the base location. All members for this directive
reside on the same dataset, dn. The first member in the list is the one
that receives control when the overlay is loaded.

Format:

SOVL,snumber,memberl,memberz,...,membern.

where snumber is between 1 and 999.

RULES FOR OVERLAY GENERATION

The following rules apply to overlay generation:

1. Root and overlay members are loaded from datasets named in
FILE directives. Members are searched for in the most
recently mentioned dataset only. Currently, the relocatable
modules of all members must reside on the same file.

2. The overlays are generated in the order of the directives.
3. There must be one and only one root.

4. Level hierarchy must be maintained. The ROOT overlay must be
generated first; hence the ROOT directives appear first.
Following the ROOT generation, a Primary overlay (POVL) is
generated. No limitation is placed on which primary overlay
number (pnumber) is generated; however, all secondary overlays
(SOVL) associated with the pnumber must follow. The secondary
overlay snumbers may be generated in any order.

5. An end-of-file ends the input of overlay directives.

Part 2

2240011 10-5

6. Any directive other than FILE, OVLDN, ROOT, POVL, or SOVL
causes a fatal error.

t 7. The list of members can be continued to another card by using a
carat (A) character at the end of the listing card. The adoes
not replace a separator and must not appear within a member name.

8. Any number of cards can be used to name the members of an overlay.
A maximum of 256 members may be named for an overlay.

EXAMPLE OF OVERLAY GENERATION DIRECTIVES

In the following example,

DSET1 contains routines SAM,TEST,CARROT,SUB1,MAIN,SUB2.

DSET2 contains routines NEW2,TURNIP,OVER,NEW1l,JONES,ISABEL,
MARY ,UNAMIT...

Format of the control statement that initializes overlay generation:

LDR,...,0VL=0VLIN,....

Dataset OVLIN contains the following directives:

FILE,DSET1. Loader selectively loads from dataset DSETI.
OVLDN,LEVO0O. The following overlays are generated on and
can be called from LEVQO.
ROOT,MAIN,SUB1 , The absolute binary of MAIN,SUB1l,SUB2 is
,SUB2. the first record on dataset LEVO0O.
POVL,1,TEST. The binary of TEST is named 001:000 and is
binary record 2 on dataset LEVOO,
FILE,DSET2. Loader selectively loads from dataset DSET2.
SOVL ,1,NEWLl. The binary of NEWl is named 001:001 and is

binary record 3 on dataset LEVO0O.

OVLDN,LEV12. The following overlays are generated on and
called from LEV12.

SOVL, 2,NEW2. The binary of NEW2 is named 001:002 and is
binary record 1 on dataset LEV12.

POVL, 2, TURNIP,UNAMIT. The binary of TURNIP,UNAMIT is named 002:000
and is record 2 on dataset LEV12.

<eof>

+ Deferred implementation

Part 2
2240011 10-6 E

EXECUTION OF OVERLAYS

A control statement call of the dataset containing the ROOT overlay
initiates its loading and execution. If no OVLDN directives are used
before generating the ROOT, the dataset $OBD will contain the ROOT
overlay.

The following sequence executes the root overlay after generation:

IDR,...,0VL=dir,....
SOBD.

During overlay generation the members are loaded from the FILE dataset
in the order they appear on the dataset, regardless of their order of
appearance in the members list. The entry for POVL and SOVL overlays

is defined by the first member listed on the generation directive.
Control is transferred to this address after loading by the $SOVERLAY
routine during program execution. The ROOT entry may be named using the
T parameter on the LDR card as for normal relcocatable loads.

OVERLAY CALLS

The user calls for the loading of overlays from within the program, and
the method by which they are called depends on the program language in
use (FORTRAN or CAL). OVERLAY is a subroutine of the root overlay and
is loaded into memory with the root.

FORTRAN LANGUAGE CALL

A FORTRAN program calls for the loading of overlays as follows:

CALL OVERLAY(nldn,level;,level,,r)

The number of characters in the name

Indicates left justification

dn The dataset on which this overlay resides; name must be
left justified and zero filled

levely Primary level number of the overlay

level, Secondary level number of the overlay

r An optional recall parameter. If the user wishes to

re—-execute an overlay without reloading it, »r=6LRECALL
may be entered.

Part 2
2240011 10-7 E

CAL LANGUAGE CALL

A sample call sequence from a CAL program is as follows:

Location Result Operand
S1 OVLDN
S2 PLEV
S3 SLEV

W.OVERLAY-1,0| s1
W.OVERLAY-2,0 | S2
W.OVERLAY-3,0 | S3
R OVERLAY

. .
.

OVLDN CON A'DNAME 'L

where OVLDN contains the dataset name, PLEV contains the primary level,
and SLEV contains the secondary level.

OVERLAY must appear on an EXT statement. If recall is desired the para-
meter is transmitted to W.OVERLAY-4.

Example:
Location Result Operand
RECALL CON A'RECALL'L

sS4 RECALL
W.OVERLAY-4,0 | Sk

For both FORTRAN and CAL language calls, during execution of the ROOT (0,0)
program MAIN, the statement

CALL OVERLAY (5LLEV12,2,0)

causes OVERLAY to search dataset LEV12 for the absolute binary named
002:000. The search proceeds from the current position of LEV12 to <eof>,
If the search is not successful, OVERLAY rewinds the dataset and searches
forward again to <eof>. If it finds overlay (2,0), it loads it and
transfers control to the first encountered entry point. After execution
of the overlay, control returns to the statement in MAIN immediately
following the CALL statement. Following the load, dataset LEV12 is
positioned immediately after the end of record for the overlay (2,0).

If the loader cannot find overlay (2,0) on dataset LEV12, a fatal error
results.

Part 2
2240011 10-8 E

Placing a call for a secondary overlay for which the corresponding primary
overlay is not already loaded causes OVERLAY to load both overlays. Control
transfers to the secondary after both overlays are in memory. A fatal error
results if the primary and secondary overlays are not both on the named
ovldn. If the overlays reside on different datasets, the user must place
separate calls to load the overlays in the correct order.

Part 2
2240011 10-9 ' E

BUILD | 11

INTRODUCTION

BUILD is an operating system utility program for generating and main-
taining library datasets. A library dataset is a dataset containing

a program file followed by a directory file. Library datasets are
designed primarily to provide the loader with a means of rapidly locat-
ing and accessing program modules. The program file is composed of
loader tables for one or more absolute or relocatable program modules.
The directory file contains an entry for each program; the entry con-
tains the name of the program module, the relative location of the
program module in the dataset, and block names, entry names, and
external names.

The BUILD program constructs a library from one or more input datasets
named by the user when BUILD is called. A library dataset created by

a BUILD run may be used as input to a subsequent BUILD run. Through
BUILD directives, the user designates the program modules to be copied
from the input datasets to the new library and the order in which they
are to be placed in the library. However, no directives (and no control
statement parameters) are needed for the most frequent application of
BUILD, which is to add new binaries from $BLD to an existing library of
binary programs, replacing the old binaries where necessary.

PROGRAM MODULE NAMES

BUILD directives refer to program modules by their names as given in the
directory or (if the directory is missing or is unreadable) by the names
given in the loader PDTs for each module.

PROGRAM MODULE GROUPST

In the COPY and OMIT directives, program modules whose names contain one
or more identical groups of characters may be specified together, with
the variable parts of each name replaced by one or more hyphens. For
example, XYZ- represents all names beginning with XYZ, including XYZ
itself. 1In the extreme case, a name consisting of only a hyphen repre-
sents all possible names.

In addition, up to eight asterisks may be used anywhere in a name as wild
characters that match any character other than a blank. For example, GE*
specifies a group of modules that includes GET and GEM but not GE or GEMS.

+ Deferred implementation

Part 2
2240011 11-1 E

PROGRAM MODULE RANGES+
In order to facilitate the copying of large numbers of contiguous program
modules, the COPY directive allows a range specifier to be used instead of
a single name or group specifier. The range specifier has the general form:

(first,last)

which means "skip to the first module and then copy all modules from that
first one up to and including the last module".

FILE OUTPUT SEQUENCE

If the SORT parameter appears in the BUILD control statement, all modules
are put out in alphabetical order according to their new names. In the
absence of a SORT parameter, modules are put out in the order in which
they were read originally from the input dataset(s).

Note that as an exception, modules specified explicitly (not as part of

a group or a range) are put out at the time their COPY directives are
encountered if the IMMED parameter appears on the BUILD control statement.
The order of the entries in the directory is always the same as the

order of the modules themselves.

FILE SEARCHING METHOD

The user need not be aware of the order of modules in the input dataset
unless there are two or more modules with the same name or unless a range
is specified in a COPY directive.

If two or more modules with the same name are anywhere among the several
input datasets, the last of the modules to be read in is the one that
survives, unless the user specifically omits that last module while its
original dataset is the currently active input dataset.

The concept of current position in the input file is used to interpret
range specifiers in which the first name is omitted as in (,2ast) or (,).
In such cases, the current position is defined to be either immediately
after the last module copied or at the beginning of the dataset if no
modules have yet been copied.

+ Deferred implementation

Part 2
2240011 11-2 E

BUILD CONTROL STATEMENT

The general format of the BUILD control statement is:

BUILD, I=ddn,L=1dn,0BL=0odn ,B=bdn ,NBL=ndn, IMMED,SORT ,NODIR.

Keyword parameters:

I=ddn

L=1dn

OBL=odn

B=bdn

2240011

Identifies the source of BUILD directives, if any.
Directives may be included in the S$IN dataset or they may
be submitted in a separate dataset.

If the I parameter appears alone, all directives are taken
from the $IN dataset, starting at its current position and
stopping when an <eof> is read.

If I=ddn, all directives are taken from the specified data-
set, ddn, stopping when an <eof> is read.

If I=0 or is omitted, no directives are read. The default
condition is to merge the modules from odn (the OBL dataset)
with those from pdn (the B dataset), replacing OBL modules
with B modules whenever the names conflict, and to write the
output to ndn (the NBL dataset). Note that the input data-
set specified by the B parameter corresponds to the binary
output from CAL and CFT, also designated by B.

Identifies the list output dataset.

If the L parameter appears alone or is omitted, list output
is written to $OUT.

If L=1Idn, list output is written to Idn.

If L=0, no list output is written.

Identifies the first input dataset, which is usually a
previously created program library.

If the OBL parameter is omitted or appears alone, the first
dataset read is S$OBL.

If OBL=o0odn, the first dataset read is odn.
If OBL=0, the first input step is skipped.
Identifies the second input dataset, whose modules will be
added to or will replace the modules in the first dataset.

If the B parameter appears alone or is omitted, the second
dataset read is $BLD.

If B=bdn, the second dataset read is bdn.

If B=0, the second input step is skipped.

Part 2
11-3 E

NBL=ndn

IMMED

SORT

NODIR

BUILD stops at <eof>; bdn is not required.

Identifies the output dataset, which is usually considered
to be a new program library.

If the NBL parameter appears alone or is omitted, output
is written to $NBL.

If NBL=ndn, output is written to ndn.

If NBL=0, no output is written. This usage is intended for
checking out BUILD directives.

Specifies that any modules named individually in COPY
directives are to be output immediately upon encountering
the COPY directive. The default is to output all modules
at the end, after all the directives have been read.

Specifies that all modules . (except any that were affected
by the IMMED parameter) are to be output in alphabetical

order according to their (new) names. The default is to

output the modules in the order they were first read.

Specifies that no directory is to be appended to the output
dataset (resulting in an ordinary sequential dataset like
$BLD). The default is to append the directory.

Any of the following errors causes BUILD to abort:

e A module specified explicitly in a COPY or OMIT directive does
not actually exist in the current input dataset

® A module specified explicitly in a COPY directive has already
been selected for output

e Bad syntax in the BUILD control statement or in the directive
dataset

® A nonexistent directive or control statement keyword

e A dataset name or module name is too long or contains illegal
characters

Deferred implementation

2240011

Part 2
11-4 E

BUILD DIRECTIVES

BUILD is controlled through directives in a dataset defined by the I para-
meter in the BUILD control statement. A directive consists of a keyword
and, if the keyword requires it, a list of dataset names or module names.
When names are required, a blank must separate the keyword from the first
name; subsequent names (if any) in the list are separated from each other
by commas. Extra blanks are optional everywhere.

A line may contain more than one directive; periods or semicolons may be
used to separate directives on the same line from each other. A directive
may not overflow from one directive line to the next.

Examples of directives:
OMIT ENCODE,DECODE
COPY **CODE.

Examples of multiple directives on one line:
FROM OLDLIB; LIST; OMIT ENCODE,DECODE,XLATE

FROM $BLD. LIST.

FROM DIRECTIVE

A FROM directive may name a single dataset, which is thus established as
the input dataset for succeeding COPY, OMIT, and LIST directives, or it
may list several datasets that (except for the last dataset in the list)
are to be copied in their entirety to the output dataset. The last data-
set in the list is established as the current input dataset, just as if
it had been specified alone in the FROM directive. If no COPY or LIST
directive follows, the last dataset will also be copied in its entirety
to the output dataset.

An input dataset may be a library (with a directory) or an ordinary
sequential dataset (such as $BLD). BUILD always determines whether a
directory is present at the end of the dataset, and attempts to use it if
it is there. A library dataset is treated as sequential if its directory
file is unreadable for any reason.

Format:

FROM dnl,dnz,...,dnn

Part 2
2240011 11-5 E

The following general rule is what allows the user to copy several datasets
with one FROM directive or to omit "COPY" (which means "éopy all") when it

would be the only directive (except for OMIT directives) in the range of a

particular FROM directive:

If any dataset named on a FROM directive is not acted on by any
LIST or COPY directive, then BUILD copies all of the modules
belonging to that dataset. BUILD takes this action when it
encounters the next FROM dataset name or the end of the directive
file, whichever comes first.

Note that if there are two input datasets to be read as soon as BUILD
begins to execute (that is, if neither OBIL=0 nor B=0 is specified), the
modules from these two datasets are treated as if they belonged to a
single dataset as far as the OMIT, COPY, and LIST directives are concerned.
However, if either of them is named in a FROM directive instead, it is
treated as a separate dataset and OMIT, COPY, and LIST directives apply
only to whichever is the current input dataset.

OMIT DIRECTIVE

The OMIT directive allows a user to specify that certain modules otherwise
included in a group be omitted from the group on subsequent copy operations.
An OMIT affects modules on the current input dataset only; its effect ends

when a FROM directive is encountered.

Format:

OMIT fnllfnZI--°lfnn

where each fhi may be one of the following:

® A single name, such as $AB@CDEF or CAB22, by which files can
be explicitly prevented from being copied

+o A group file name, such as F$- or *AB**, by which files are

prevented from being copied unless they are specified expli-
citly (i.e., singly) in a COPY directive

If an fn parameter specifies a module not in the input dataset or a group
of modules having no representatives in the input dataset, a diagnostic
message is included in the list output and BUILD aborts.

T Deferred implementation

Part 2
2240011 1l1-6 E

COPY DIRECTIVES+

COPY directives cause BUILD to select the specified modules for copying
from the current input dataset to the output dataset. The user may
specify single modules, groups of modules, or ranges of modules to be
copied.! If the user specifies an individual module that is not in the
current input dataset, a diagnostic message is included in the list out-
put and BUILD aborts.

Format:

COPY f%l,fhz,...,fhn

where each fhi may be either of the two forms that are valid in OMIT
directives;

e A single module name, by which modules are explicitly selected
for copying, even if they belong to a group named in a previous
OMIT directive

® A group specifier, by which all the modules in the group are
selected for copying unless they were specified either expli-
citly or implicitly in a previous OMIT directive

In addition, two special forms are allowed for each fhi in COPY directives:
To A form to rename a single module whose old name is specified
explicitly; for example, OLDNAME=NEWNAME. (The name is changed
both in the output directory and in the PDT.)

e A form to copy an inclusive range, as in (FIRST,LAST), by which
all the modules in the range are selected for copying unless they
were specified either explicitly or implicitly in a previous OMIT
directive.

These two forms are mutually exclusive. A module copied by being included
in a range cannot at the same time be renamed. Nor can either form accept
a hyphen or asterisk specifying a group of modules.

T Deferred implementation

Part 2
2240011 11-7 E

Examples:

BUG=ROACH Copies BUG, renaming it to ROACH
(LOKI,THOR) Copies all modules from LOKI through THOR
(THOTH,) Copies all modules from THOTH to the end of the

input dataset

(,1s1S) Copies all modules from the current dataset
position to ISIS

(,) Copies all modules from the current dataset
position to the end of the input dataset

The current dataset position is defined as the beginning of the input
dataset if no modules have been selected for copying yet, or else as the
beginning of the record immediately after the last module that has been
selected for copying.

LIST DIRECTIVE

The LIST directive tells BUILD to list the characteristics of the modules
in the current input dataset. Its effect is immediate. (BUILD's standard
list output describes the contents of the output dataset and is produced
at the end of the run so as not to interfere with output triggered by LIST
directives.)

Format:

LIST

EXAMPLES

The following are examples of various uses of the BUILD program:

e Creating a new library dataset, using as input whatever binary
modules have been written out to $BLD by CAL and/or CFT.

Control statements:

BUILD,OBL=0.
SAVE ,DN=$NBL ,PDN=MYLIB.

Part 2
2240011 11-8 E

2240011

Adding one or more modules to an already existing library
dataset, again taking the input from $BLD.

Control statements:

ACCESS,DN=$0BL, PDN=MYL I B.
BUILD.
SAVE , DN=$NBL, PDN=MYL|B.

.
.
.

Any modules whose names were already in the directory of MYLIB
are replaced by the new binaries from $BLD in the new edition
of MYLIB that is created by the SAVE control statement.

Merging several libraries.
Control statements:

ACCESS ,DN=L I BONE,PDN=HERLIB.
ACCESS,DN=LIBTWO,PDN=HISLIB.
ACCESS,DN=ANOTHER ,PDN=ITSLIB.
ACCESS ,DN=LASTONE ,PDN=MYLIB.
BUILD,I,0BL=0,B=0.
SAVE,DN=$NBL ,PDN=MYLIB.

.
.

Directives:
FROM LIBTWO,ANOTHER,LIBONE,LASTONE

The order of the dataset names in the FROM directives, not the
order of the ACCESS control statements, determines the order of
processing. If two datasets contain modules of the same name,
the surviving module is the one in the dataset whose name occurs
later in the FROM directive. (Any module could be renamed before
input from a succeeding dataset is begun, in order to prevent it
from being discarded.)

Part 2
11-9 E

® Deleting a program module from a library.
Control statements:

ACCESS ,DN=$0BL , PDN=MYLIB.
BUILD,I,B=0.
SAVE, DN=$NBL, PDN=MYLB.

Directive:
OMIT BADPROG
e Extracting a program module from a library for input to the
system loader, using the local dataset name S$SBLD as the inter-
mediate file.

Control statements:

ACCESS,DN=XXX,PDN=MYLIB.
BUILD, |,0BL=XXX,B=0,NBL=$BLD,NODIR.

Directive:

COPY RUNPROG

2240011 Part 2 E
11-10

Part 3

MACRO INSTRUCTIONS

CONTENTS

PART 3 MACRO INSTRUCTIONS

1. INTRODUCTION

2. SYSTEM ACTION REQUEST MACROS

JOB CONTROL . . .« & « 4 v « o . .

MEMORY - Request memory . .

MESSAGE - Enter message in logfile

MODE - Set operating mode .

.

SWITCH - Set or clear sense switch .
JTIME - Request accumulated CPU time
RECALL - Recall job upon I/0 request

DELAY - Delay job processing
ABORT -~ Abort program . . .
ENDP - End program

DATASET MANAGEMENT

.

- e o e e
- - . -
e o e .

for job .
completion

DSP - Create Dataset Parameter Area (DSP) . .

OPEN - Open dataset
CLOSE ~ Close dataset . . .
RELEASE - Release dataset to

TIME AND DATE REQUESTS

TIME - Get current time .
DATE - Get current date . .
JDATE - Return Julian date .

MISCELLANEOUS . . . ¢ & &« ¢ o« . .

SYSID - Request system identification

3. LOGICAL I/O MACROS

" READ/WRITE . . . ¢ v v o o o . .
READ/READP - Read words . .

READC/READCP - Read characters

WRITE/WRITEP - Write words .

WRITEC/WRITECP - Write characters

WRITEF - Write end of file .
WRITED - Write end of data .

POSITIONING . . . & &« « & & « o .

REWIND - Rewind dataset .
BKSP - Backspace record . .
BKSPF - Backspace file . . .

GETPOS -~ Get current dataset position
SETPOS - Position dataset . . .

2240011

system

-

Part 3

iii

.

.

.

- - - -

Yoo
=

1
(=]

NN
L S R A I |
B W wN

1
PO O OO O U1u b

@]

o

MNMI\)NK\J[\JI})NMNMNNI\J

Yoy
-
(R

P
[}

5
| el

1
oo L1 b WD

4. PERMANENT DATASET MACROS . .

PERMANENT DATASET DEFINITION . .

PDD - Create Permanent Dataset Definition Table

PERMANENT DATASET MANAGEMENT . .

2240011

ACCESS - Access permanent dataset

SAVE - Save permanent dataset

DELETE - Delete permanent dataset
ADJUST - Adjust permanent dataset

DISPOSE - Dispose dataset .

Part 3
iv

1sN
! I
ja

[IE N S e

INTRODUCTION 1

Included with the CRAY-1l Operating System is a set of macro instructions
that provide the user with a means of communicating with COS. These
macro instructions are available only when programming in the CAL
assembler language and are processed by the assembler using macro
definitions defined on the system text, $SYSTXT. The code generated by
the macros represents a call to a system task or a system-provided sub-
routine, or generates a table.

The format for a macro instruction is:

Location Result Operand
Loc iame al,az,...,aj,f1=b1,f‘2=b2,...,f'k=bk
Loc Location field argument. Certain macros require an entry

in this field. For other macros, loc is an optional
symbolic program address. Macros that generate a table
are assigned a word address and macros that generate
executable code are assigned a parcel address.

name Name of macro as given in system text

a; Actual argument string corresponding to positional parameter
in prototype. Two consecutive commas indicate a null
string.

f3= J Keyword and actual argument; these entries can be in any

order. A space or comma following the equal sign indicates
a null string.

A parameter shown in all UPPERCASE letters must be coded literally as
shown. A parameter presented in <¢talics must be supplied with a value,
symbol, expression, or register designator as indicated in the text
following the format for each macro.

A macro can be coded through column 72 of a line. It is continued on the
next line by placing a comma in column one of the next line and resuming
the parameter list in column two, with no intervening blanks at the end
of the first line.

2240011 Part 3 E

SYSTEM ACTION REQUEST MACROS 2

The system action request macros are a subset of the system function
requests. Each macro generates a function code that is a call to the
operating system. The function code octal value is stored in register SO;
Sl and S2 provide optional arguments. The function is enabled when the
program exit instruction is executed. (Note that the contents of the
registers used are not restored after the call is completed.) See
Appendix C for more information on system function codes.

The system action request macros can be divided into three main classes:

those involved in job control, those related to dataset management, and
those representing requests for time or date.

JOB CONTROL

Several system action request macros allow the user to set operating
characteristics and control job processing. These include MEMORY, MESSAGE,
MODE, SWITCH, JTIME, RECALL, DELAY, ABORT, and ENDP.

MEMORY - REQUEST MEMORY

The amount of memory assigned to the job may be determined or changed by
the memory request.

Format:

Location Result Operand
MEMORY address

address A symbol or an A, S, or T register that contains the address

The format of the word at location address is as follows:

01234 7 16 Lo 63

WiZ1%77 DEL W

A Abort-disable flag. Unless this flag is set by the user,
the job is aborted if f£illing the request would cause the
job to exceed its maximum allowable memory.

Part 3
2240011 2-1 E

I Immediate flag. If set by the caller, the system returns
with whatever memory is immediately available; no delay
can occur. Currently, immediate flag is ignored.

L Limit flag. The system sets this flag when the job has
received the maximum allowable amount of memory.

M Mode flag. The system sets this flag if it is controlling
memory management for this job.

T Total flag. If T is set, WC represents the total memory
requested (excluding the JTA) rather than an increment
or decrement. If T is specified, DEL is ignored.

DEL Deletion pointer. If the caller wants an increase in

’ memory, DEL must be zero. If the caller wants a decrease
in memory, DEL must contain the address relative to the
user's BA of the beginning of the area to be deleted.

wC Word count. Here, the caller must supply the absolute
number of words to be added to or deleted from the user
area. If WC=0, no action is taken other than to return
the user's field length as described under RETURN, below.

Space is always added at the end of the program area.
Deletions, on the other hand, are under full control of
the user; DEL may point to any location between the job
communication block and HLM (where HLM is the value in
the JCHIM field of the ‘Job Communication Block).

RETURN In the memory request word, L and M may be set by the
system as described above. If the total request is
allocated, the system sets WC to the current total number
of words in the user's field length and sets DEL to O.

If the system is unable to allocate all the memory that
was requested, DEL contains the number of words that were
not supplied. The total number of words in the user's
field length does not include the Job Table Area and may
or may not include the I/0 buffers and tables.

If the user area is expanded, the additional memory is
set to an installation-defined value before control
returns to the user.

MESSAGE - ENTER MESSAGE IN LOGFILE

The printable ASCII message at the location specified in the macro call
is entered in the job and system logfile. The message must be 1-80
characters terminated by a zero byte. A flag, loc, indicates the des-
tination for the message.

-i‘

Deferred implementation

Part 3
2240011 2-2 E

Format:

Location Result Operand
MESSAGE address, Loc

address A symbol or an A, S, or T register that contains the address

loe Destination for message. May be any of the following:

§) User logfile only
S System logfile only
US User and system logfiles; default, if Zoe is blank.

MODE - SET OPERATING MODE

The MODE macro sets the floating point error flag in the M register of the
job's exchange package. This flag controls whether or not a floating
point error will cause an interrupt flag to be set in the Flags (F)
register. An exit from the program occurs on a floating point error only
when the floating point error flag has been set.

Format:

Location Result Operand
MODE m

m A single octal digit having one of the following values:
lor2 No interrupt on floating point errors

3 or 4 Interrupt on floating point errors

SWITCH - SET OR CLEAR SENSE SWITCH

The SWITCH macro allows a user to turn on (set) or turn off (clear)
pseudo sense switches. ’

Format:

Location Result Operand
SWITCH n,x

Part 3
2240011 2-3

Number of switch (1-6) to be set or cleared

x Switch position

ON Switch n is turned on; set to 1
OFF Switch 7 is turned off; set to O

JTIME - REQUEST ACCUMULATED CPU TIME FOR JOB

The accumulated CPU time for the job is returned at the location specified

in the macro call. The time in seconds is expressed in floating point form.

Format:

Location Result Operand

JTIME address

address A symbol or an A, S, or T register that contains the address

RECALL - RECALL JOB UPON I/O REQUEST COMPLETION

This function removes the job from processing. It does not become a

candidate for processing until the previously issued I/O request for the
specified dataset is completed or partially completed, i.e., the job is
resumed when another block of data is transferred to or from the user's

buffer or when the I/0O requested is completed.

Format:
Location Result Operand
RECALL address
address Symbolic address of the ODN or DSP for this dataset or

an A, S, or T register containing the ODN or DSP address.

Part 3
2240011 2-4 E

DELAY - DELAY JOB PROCESSING

The job is removed from execution and is not made a candidate for proces-
sing until the number of milliseconds (specified in the word at the given
address) has elapsed.

Format:

Location Result Operand
DELAY address

address A symbol or an A, S, or T register that contains the address

ABORT - ABORT PROGRAM

The ABORT request provides for abnormal termination of the current program.
Processing resumes with the first job control statement following the next
EXIT statement. If no such statement exists, the job is terminated.

Format:

Location Result Operand
ABORT

ENDP - END PROGRAM

The ENDP request is used for normal termination of the current program.
Processing resumes with the next job control statement. If no such
statement exists, the job is terminated.

Format:

Location Result Operand
ENDP

Part 3
2240011 2-5

DATASET MANAGEMENT

The system action request macros involved with dataset management allow
the user to open datasets, set up tables, and close, release, and dispose
datasets.

DSP - CREATE DATASET PARAMETER AREA

The DSP macro creates a table in the user field called the Dataset Para-
meter Area (DSP). This table holds information concerning the status of
the named dataset and the location of the I/0 buffer for the dataset. The
DSP is illustrated in Appendix A of this manual.

Format:
Location Result Operand
DSP dn,first ,nb
dn Dataset name
first Address of the first word of the user-allocated buffer for
this dataset
nb Number of 512-word blocks in the dataset buffer

OPEN - OPEN DATASET

OPEN prepares a dataset for processing.

Format:
Location Result Operand
OPEN dn,pd
dn Dataset name. The OPEN macro generates a 2-word Open

Dataset Name Table (ODN) the first time an OPEN of the
dataset is encountered, unless the user has previously
generated an ODN for the dataset (figure 2-1).

The dn becomes the symbolic address of the ODN as well as
being the dataset name. It is used in all references to
the dataset in other I/0 requests.

As an alternative, dn may be an A, S, or T register (not s2)
containing the ODN address.

‘ Part 3
2240011 2-6 E

0 dn (ASCI I;O %
vz

Field Word Bits Description
ODDN 0 0-55 ° Dataset name
ODDSP 1 40-63 DSP pointer

negative or zero - negative DSP offset
positive - absolute address of DSP

Figure 2-1. Open Dataset Name Table (ODN)

pd Processing direction.

I Dataset opened for input
o] Dataset opened for output
I0 Dataset opened for input/output

pd may alternatively be an A, S, or T register (not S2)
with bit 0 set for input and/or bit 1 set for output.

If dsp is negative or zero, the OPEN call returns the negative DSP offset

in dsp. The actual DSP address is equal to (JCDSP) - negative DSP offset,
where (JCDSP) is the value in the JCDSP field of the Job Communication
Block. Note that the negative DSP offset of a dataset does not change when
a job's field length changes or as additional datasets are opened or closed.

If dsp is positive and greater than zero, OPEN assumes dsp is the address
of a user's own DSP in the user field between the Job Communication Block
and (JCHLM) (the value in the JCHLM field of the JCB). The system uses
the DSP indicated and does not allocate an additional DSP or buffer in the
job's I/0O table area.

Part 3
2240011 2=-7 E

Examples:

1. 1In the following example, the OPEN generates an ODN for dataset
DSETONE unless one has been previously generated for that dataset.

The dataset is opened for input/output processing.

Location Result Operand Comment
1 10 20 35

L OPEN DSETONE, IO

In this example, the address of the ODN generated by this OPEN call

2.
is passed via register S2; S1 contains processing direction informa-
tion.
Location Result Operand Comment
1 10 20 35
OPEN S2,S1

CLOSE - CLOSE DATASET

CLOSE terminates I/O processing on a dataset and flushes buffers if needed.

Format:
Location Result Operand
CLOSE an
dn Dataset name. Symbolic address of the ODN for this dataset

or an A, S, or T register containing the address of the ODN.

Part 3
2240011 2-8

RELEASE - RELEASE DATASET TO SYSTEM

The dataset whose DSP address is at the location specified in the macro
call is returned to the system. The dataset is closed and buffers and

DSP are released. Additional system action depends on the type of dataset.
Output datasets are routed to a front end. If a dataset is not a permanent
dataset, the disk space associated with that dataset is returned to the

system.

Format:

Location Result Operand
RELEASE address

address Symbolic address of the ODN or DSP for this dataset or
an A, S, or T register containing the ODN or DSP address.

TIME AND DATE REQUESTS

Several system action request macros inform the user of the current time
or date and the Julian date.

TIME - GET CURRENT TIME

The current time in ASCII is returned at the location specified in the
macro call. The format of the time is as follows:

0 15 23 39 47 63
h h : m m : s S
Format:
Location Result Operand
TIME address

address A symbol or an A, S, or T register that contains the address

Part 3
2240011 2-9 E

DATE - GET CURRENT DATE

The current date in ASCII is returned at the location specified in the
macro call. The format of the date is as follows:

0 15 23 39 L7 63

m m / d d / y y

The order can be changed to day, month, and year (the European format)
through an installation parameter.

Format:

Location Result Operand
DATE address

address A symbol or an A, S, or T register that contains the address

JDATE - RETURN JULIAN DATE

The current Julian date in ASCII is returned at the location specified
in the macro call. The format of the date is as follows:

0 40 63

y Yy d d d A A A

<

Five ASCII characters are left-adjusted with blank fill in the reply word.
The first two characters are the year; the next three are the number of
the day in the year.

Format:

Location Result . Operand
JDATE address

address A symbol or an A, S, or T register that contains the address

Part 3
2240011 2-10 E

MISCELLANEOUS

This section describes macros that do not fit in the other categories.
Currently only the SYSID macro is in this category.

SYSID - REQUEST SYSTEM IDENTIFICATION

The identification of the current system is returned at the location
specified in the macro call.
the first contains the COS System Task Processor (STP) revision date in
ASCII and the second contains the STP assembly date in ASCIT.

The identification is returned as two words,

Format:
Location Result Operand
SYSID address
address A symbol or an A, S, or T register that contains the address

2240011

Part 3
2-11 E

LOGICAL 1/0 MACROS 3

The logical I/0 macros generate calls to I/0 subroutines to be loaded
from the subroutine library and executed as part of the user program.
The logical I/O macros apply only to blocked datasets.

There are two main categories of logical I/O macro instructions:
read/write macros and positioning macros.

READ/WRITE

The read/write logical I/0 macros allow the user to read and write words
or characters and to write an end of file or an end of data.

READ/READP - READ WORDS

The READ and READP macros transfer words of data resident on a dataset
into the user's data area.

The READ macro generates a return jump to the $RWDR subroutine, thus
causing one record at a time to be processed. Each macro call causes
the dataset to be positioned after the end of record that terminated
the read.

The READP macro generates a return jump to the $RWDP subroutine. Words
are transmitted to the user's data area as requested by the user. Each
call is terminated by reaching an end of record or by satisfying the
word count, whichever comes first.

Formats:
Location Result Operand
READ dn,uda,ct
Location Result Operand
READP dn,uda,ct
dn Dataset name (symbolic address of the ODN for this

dataset) or an A, B, or S register containing the DSP
address or negative DSP offset.

Part 3 »
2240011 3-1 E

uda User data area fwa or an A, B, or S register (not Al)
containing the uda address

ct Word count or an A, B, or S register (not Al or A2)
containing the word count

READC/READCP - READ CHARACTERS

The READC and READCP macros transfer characters from a dataset into the
user data area.

The READC macro generates a return jump to the $RCHR subroutine, thus
causing one record at a time to be processed. Each macro call causes the
dataset to be positioned after the <eor> that terminated the read.

The READCP macro generates a return jump to the S$RCHP subroutine. Char-
acters are transferred to the user data area as requested by the user.
Each call is terminated by reaching an <eor> or by satisfying the char-
acter count, whichever occurs first.

Formats:
lLocation Result Operand
READC dn,uda,ct
llocation Result Operand
READCP dn,uda, ct
dn Dataset name (symbolic address of the ODN for this dataset)
or an A, B, or S register containing the DSP address
or negative DSP offset.
uda User data area fwa or an A, B, or S register (not Al) containing
the uda address
ct Word count or an A, B, or S register (not Al or A2) containing

the word count

WRITE/WRITEP - WRITE WORDS

The WRITE macro generates a return jump to the $WWDR subroutine. Woxds
are written from the user's data area. An end of record is written
following each WRITE.

The WRITEP macro generates a return jump to the $WWDP subroutine. Woxrds
are written from the user's data area as requested by the user. No end
of record is written.

Part 3
2240011 3-2 E

Formats:

Location Result Operand
WRITE dn,uda,ct
Location Result Operand

WRITEP dn,uda,ct

dn Dataset name (symbolic address of the ODN for this dataset)
or an A, B, or S register containing the DSP address
or negative DSP offset

uda User data area fwa or an A, B, or S register (not Al) containing
the uda address

ct Word count or an A, B, or S register (not Al or A2) containing
the word count

To write just an end of record, the WRITE macro with word count of 0 is
used.

WRITEC/WRITECP - WRITE CHARACTERS

The WRITEC and WRITECP macros transfer characters from the user's data
area to the dataset.

The WRITEC macro generates a return jump to the $WCHR subroutine, thus
causing one record at a time to be processed. An end of record is
written following each WRITEC.

The WRITECP macro generates a return jump to the S$WCHP subroutine.
Characters are written from the user's data area as requested by the
user. No end of record is written.

Formats:
Location Result Operand
WRITEC dn,uda,ct
Location Result Operand
WRITECP dn,uda,ct

Part 3.
2240011 3-3 BE

dn Dataset name (symbolic address of the ODN for this dataset)
or an A, B, or S register containing the DSP address

or negative DSP offset

User data area fwa or an A, B, or S register (not Al) contain-
ing the uda address

Word count or an A, B, or S register (not Al or A2) containing

uda

ct
the word count

To write just an end of record, the WRITEC macro with word count of 0O is

used.

WRITEF - WRITE END OF FILE

The WRITEF macro generates a return jump to the $WEOF subroutine causing
an end of record (if not previously written) and an end of file to be

written.
Format:
Location Result Operand
WRITEF dn
dan Dataset name (symbolic address of the ODN for this dataset)

or an A, B, or S register containing the DSP address or
negative DSP offset

WRITED - WRITE END OF DATA

The WRITED macro generates a return jump to the SWEOD subroutine causing
an end of record (if not previously written), an end of file (if not
previously written), and an end of data to be written.

Format:
Location Result Operand
WRITED an
dn Dataset name (symbolic address of the ODN for this dataset)

or an A, B, or S register containing the DSP address or
negative DSP offset

Part 3
2240011 3-4 E

POSITIONING

The user can rewind datasets, backspace records or files, get the current
dataset position, and position datasets using the positioning logical I/O
macros.

REWIND - REWIND DATASET

The REWIND macro generates a return jump to the $REWD subroutine causing
the dataset to be positioned at beginning of data.

Format:
Location Result Operand
REWIND dn
dn Dataset name (symbolic address of the ODN for this dataset)

or an A, B, or S register containing the DSP address or
negative DSP offset

BKSP - BACKSPACE RECORD

The BKSP macro generates a return jump to the $BKSP subroutine. The
dataset is backspaced one record. If the dataset is at beginning of
data, no action occurs.

Format:
Location Result Operand
BKSP dn
an Dataset name (symbolic address of the ODN for this dataset)

Oor an A, B, or S register containing the DSP address or
negative DSP offset

Part 3
2240011 3-5 E

BKSPF - BACKSPACE FILE

The BKSPF macro generates a return jump to the $BKSPF subroutine. The
dataset is backspaced one file. If the dataset is at beginning of data,
no action occurs.

Format:
Location Result Operand
BKSPF an
dn Dataset name (symbolic address of the ODN for this dataset)

or an A, B, or S register containing the DSP address or
negative DSP offset

GETPOS - GET CURRENT DATASET POSITION

The GETPOS macro generates a return jump to the $SGPOS subroutine. This
subroutine returns the current dataset position in S1. The dataset
position is the number of words between the beginning of data and the
present position, not counting RCWs and BCWs.

Format:
Location Result Operand
GETPOS dn
dn Dataset name (symbolic address of the ODN for this dataset)

or an A, B, or S register containing the DSP address or
negative DSP offset

SETPOS - POSITION DATASET

The SETPOS macro generates a return jump to the $SPOS subroutine. The
dataset is positioned at the word address specified, which must be at a
record boundary (at beginning of data, or following end of record or end
of file, or before end of data).

Format:

Location Resul T Operand
SETPOS dn,pos

Part 3
2240011 3-6 E

an

pos

2240011

Dataset name (symbolic address of the ODN for this dataset)
or an A, B, or S register containing the DSP address or
negative DSP offset

May be any of the following:
EOD Position the dataset preceding end of data
BOD Position the dataset at beginning of data

Sn or Tn Position the dataset to the word address
contained in the specified S or T register.
If pos is not S1, Sl is destroyed.

Part 3
3-7

PERMANENT DATASET MACROS 4

The permanent dataset macro instructions are a subset of the system
function requests. Each macro generates a function code that is a call
to COS. The function code octal value is stored in register SO; S1 and
S2 provide optional arguments. The function code is enabled when the
program exit instruction is executed. (Note that the contents of the
registers used are not restored after the call is completed.) See
Appendix C for more information on system function codes.

The permanent dataset macro instructions are divided into two categories:
those that define and those that manage permanent datasets.

PERMANENT DATASET DEFINITION

The PDD macro generates a parameter table containing information about the
dataset. The ACCESS, SAVE, DELETE, ADJUST, and DISPOSE macros involved in
permanent dataset management use the PDD table. Thus, the PDD macro must

accompany the use of the permanent dataset management macros.

PDD - CREATE PERMANENT DATASET DEFINITION TABLE

The PDD macro creatés a parameter table called the Permanent Dataset
Definition Table (PDD). (See Appendix A for a description of the PDD
table.) This macro is nonexecutable and must accompany the use of the
ACCESS, SAVE, DELETE, ADJUST, or DISPOSE macros in a program.

Format:
Location Result Operand
pddtag PDD DN=dn,PDN=pdn,SDN=sdn,ID=uid,MF=mf,TID=tid,

DF=df,DC=dc,SF=sf,RT=rt,ED=ed,R=rd,W=wt,

e 6= Qe | B {0 uo= (08).

pddtag Symbolic address of the PDD table.

Parameters are in keyword form; the only required parameter is DN

DN=dn Dataset name. DN is a required parameter.

Part 3
2240011 4-1 E

PDN=pdn

SDN=sdn

ID=uid

MF=mf

TID=t1d

DF=df

DC=dec

2240011

Permanent dataset name. The default value is an.

Staged dataset name; 1-15 alphanumeric character name by
which the dataset will be known at the destination main-
frame. The default is the local dataset name.

User identification; 1-8 alphanumeric characters assigned
by the dataset creator.

Mainframe identifier; 2 alphanumeric character
identification. The default is the mainframe of job
origin.

Terminal identifier; 1-8 alphanumeric character
identifier for the destination terminal. The default
is the terminal of job origin.

Dataset format. This parameter defines whether the
destination computer is to perform character conversion
The default is CB.

df is a two-character alpha code defined for use on the
front-end computer system. CRI suggests support of the
following codes:

CD Character/deblocked. The front-end system
performs character conversion from 8-bit ASCII,
if necessary.

CB Character/blocked. No deblocking is performed
at the CRAY-1 prior to staging. The front-end
performs character conversion from 8-bit ASCII,
if necessary.

BC Binary/deblocked. The front-end system performs
no character conversion.

BB Binary/blocked. The front-end computer performs
no character conversion. No deblocking is
performed at the CRAY-1l prior to staging.

TR Transparent. No blocking/deblocking or character
conversion is performed.

Other codes may be added by the local site. Undefined
pairs of characters may be passed but will be treated as
transparent mode by the CRAY-1.

Disposition code; disposition to be made of the dataset.
The default is PR (print).

de is a two-character alpha code which describes the
destination of the dataset as follows:

IN Input to mainframe. Dataset is placed in the
job input queue for the mainframe designated
by the MF parameter.

Part 3
4-2 E

SF=gf
RT=rt

ED=ed
R=rd
W=wt
M=mn
OFF

MSG=lON ’

lON t
OFF

ST Stage to mainframe. Dataset is made permanent
at the mainframe designated by the MF parameter.

SC Scratch dataset. Dataset is deleted.

PR Print dataset. Dataset is printed on any printer
available at the mainframe designated by the MF
parameter. PR is the default value.

PU Punch dataset. Dataset is punched on any card
punch available at the mainframe designated by
the MF parameter.

PT Plot dataset. Dataset is plotted on any available
plotter at the mainframe designated by the MF
parameter.

MT Write dataset on magnetic tape at the mainframe
designated by the MF parameter.

Special form information to be passed to the front-end
system; 1-8 alphanumeric characters. SF is defined by
the needs of the front-end system. Consult on-site
analyst for options.

Retention period; a value between 0 and 4095 specifying
the number of days a permanent dataset is to be retained
by the system. The default is an installation-defined
value.

Edition number; a value between 1 and 4095 assigned by
the dataset creator. The default is the highest edition
number known to the system.

Read control word; 1-8 alphanumeric characters assigned
by the dataset creator. The default is no read control
word.

Write control word; 1-8 alphanumeric characters assigned
by the dataset creator. The default is no write control
word.

Maintenance control word; 1-8 alphanumeric characters
assigned by the dataset creator. The default is no
maintenance control word.

Normal completion message suppression indicator. The
default is OFF,

ON Indicator is set
OFF Indicator is cleared

Abort indicator; abort job if an error is encountered.
The default is ON.

ON Indicator is set
OFF 1Indicator is cleared

T Deferred implementation

2240011

Part 3
4-3 E

UQ:{S?F} Unique access. If UQ is specified, write maintenancg
and/or read permission may be granted if the appropriate
write or maintenance control words are specified. The
default is multi-read access if the read control word is
specified.

PERMANENT DATASET MANAGEMENT

The user may access, save, adjust, dispose, and delete permanent datasets
by use of the permanent dataset management macros. All of these macros
must be accompanied by the PDD macro in the job.

ACCESS - ACCESS PERMANENT DATASET

The ACCESS macro associates an existing permanent dataset with a job and
assures that the user is authorized to use this dataset. ACCESS must
precede the ASSIGNT macro and any logical I/O macros for the dataset.

Format:

Location Result Operand

ACCESS pddtag

pddtag Address of PDD macro call

SAVE - SAVE PERMANENT DATASET

The SAVE macro enters a local dataset in the Dataset Catalog, making it
permanent. A permanent dataset is uniquely identified by permanent
dataset name, user identification, and edition number.

SAVE has a two-fold function:

1. Creation of an initial edition of a permanent dataset, or

2. Creation of an additional edition of a permanent dataset.

+ Deferred implementation

Part 3
2240011 4-4 E

Format:

Location Resul+t Operand
SAVE pddtag
pddtag Address of PDD macro call

DELETE - DELETE PERMANENT DATASET

The DELETE macro removes a permanent dataset from the Dataset Catalog.
A dataset must be accessed within a job with maintenance permission
before a DELETE may be issued.

Format:
Location Result Operand
DELETE pddtag
pddtag Address of PDD macro call

ADJUST - ADJUST PERMANENT DATASET

The ADJUST macro changes the size of a permanent dataset, that is,
redefines <eod> for the dataset. A dataset must be accessed with write
permission within a job before an ADJUST may be issued.

Format:
Location Result Operand
ADIUST |pddtag
pddtag Address of PDD macro call

2240011

Part 3

DISPOSE - DISPOSE DATASET

The DISPOSE macro immediately places a dataset in the output queue for

staging to the specified front-end computer system.
job processing.

This does not delay

The DISPOSE macro may also be used to release a dataset
or to alter its disposition characteristics.

Format:
Location Result Operand
DISPOSE pddtag
pddtag Address of PDD macro call
2240011 Part 3

4-6

APPENDIX SECTION

CONTENTS
APPENDIX SECTION

A. JOB USER AREA. ¢« o o« ..
JOB TABLE AREA ~ JTA . ¢ ¢ ¢ v ¢ o o o -
JOB COMMUNICATION BLOCK - JCB
LOGICAL FILE TABLE - LFT ¢« ¢« « . .
DATASET PARAMETER AREA - DSP

PERMANENT DATASET DEFINITION TABLE - PDD .

B. CHARACTER SET ¢ ¢ o v « « « .

cC. SYSTEM FUNCTION CODES

D. LOGICAL I/O0 ROUTINES. v v « . .
LOGICAL RECORD I/O ROUTINES . . . v ¢ « . .

Read routines

Write routines
Positioning routines

FORTRAN LEVEL I/0 ¢ v v v v 4 o v o o o o =

Formatted and unformatted I/O routines
Buffered I/0 routines
Positioning and Control I/O routines .

E. EXCHANGE PACKAGE

GLOSSARY

INDEX

2240011 Appendix
iii

JOB USER AREA

The user area of memory is assigned to one or more jobs.
illustrates the user area of one job.

to the user.

Figure A-1
The shaded area is not accessible

-2560
0
Job Communication Block
128
user code
JCLFT—> / %
Logical File Tables
Jcpsp—>
Dataset Parameter Area
JCBFB—™>
I/0 Buffers
JCFL >

2240011

Figure A-1l. User area of memory for a job

user
field

JOB TABLE AREA - JTA

Each job has an area referred to as the Job Table Area (JTA) preceding the
field defined for the user. A JTA is accessible to the operating system
but not to the user. The Job Table Area contains job-related information
such as accounting data; a JXT pointer; sense switches; area for saving

B, T, and V register contents; control statement, logfile, and EXU DSPs;

a logfile buffer; and a Dataset Name Table (DNT) containing an entry for
each dataset used by the system.

JOB COMMUNICATION BLOCK - JCB

Following the JTA is a 128-word block referred to as the Job Communication
Block (JCB). The JCB contains a copy of the current control statement for
the job and other job-related information.

Figure A-2 illustrates an expansion of the JCB.

2240011 A-2 E

16

64 N v
65 VL HLM FL

66 NPF BFB DSP
67LSIM NLE % /WW// LFT

68] || JRr / ///////////

69

102

117

123
124
125

126

127

///

DAT

TIM

i

Field

JCCCI

JCCPR

JCIN

. Job Communication Block

Word

—

5-15

16-63

64

Bits

0-63

0-63

0-55

Descri

Curren
charac

ption

t control car
ters per wor

d image, 8
d

Control statement parameters as
cracked from JCCCI

Job name

Field Word Bits Description

JCHLM 65 16-39 High 1imit of user code

JCFL 65 40-63 Field length

JCNPF 66 0-15 Number of physical buffers and
datasets

JCBFB 66 16-39 Base of I/0 buffers

JCDSP 66 40-63 Base of LFT

JCSIM 68 0 Simulator flag

JCCSDB 68 1 CSP debug flag

JCBP 68 2 Breakpoint flag

JCMRF 68 3 Memory request flag

JCEFI 69 0 Enable floating point interrupt flag

JCLDR 102-116 0-63 Unsatisfied externals

JCDIG 117-123 0-63 Reserved for diagnostics

JCDAT 125 0-63 Date of absolute load module
generation

JCTIM 126 0-63 Time of absolute Toad module
generation

LOGICAL FILE TABLE - LFT

The LFT contains an entry for each dataset name and alias. Each entry
points to the DSP for a dataset. Figure A-3 illustrates an LFT for a
dataset.

0 40 63
DN

0
YW, DSP

Figure A-3. Logical File Table (LFT)

Field Word Bits Description
LFDN 0 0-63 Dataset name or alias
LFDSP 1 40-63 DSP address

DATASET PARAMETER AREA - DSP

Information concerning the status of a particular dataset and the location
of the I/0 buffer for the dataset is maintained in the Dataset Parameter
Area (DSP) of the user field. The DSP is illustrated in Figure A-4.

2240011 A-4 E

0 |BSY STS UDS)
1 ERR WV pM‘hﬁJ(—END FRST
20/ 18P IBN IN
3 / RBC | 0BP OBN 0UT
R S, LT
EOR? fRi PRI PRI RCH
6 OF EOD LPW
SN TFF[Be0 7777 BWC BWA
8 BER BPD
Reserved
Figure A-4. Dataset Parameter Area (DSP)
Field Word Bits Description
DPDN 0 0-55 Dataset name
DPBSY 0 Busy flag (circular 1/0)
DPERR 1 1-12 Error flags:
DPEOI Bit 01 End of data on read
Write past allocated disk
space on write
DPENX Bit 02 Dataset does not exist
DPEOP Bit 03 Dataset not open
DPEPD Bit 04 Invalid processing direction
DPEBN Bit 05 Block number error
DPEDE Bit 06 Unrecovered data error
DPEHE Bit 07 Unrecovered hardware error
DPERW Bit 08 Attempted read after write
or past end of data
DPEPT Bit 09 Dataset prematurely

2240011

terminated on read
Bits 10 through 12 reserved

Field

DPSTS

DPRDM

DPUDS

DPEND
DPFRST
DPIBP

DPIBN

DPIN

DPRBC
DPOBP
DPOBN

DPOUT
DPUEOF
DPLMT

DPEOR
DPEOF
DPEOD
DPRW

2240011

Description

Word Bits
1 14,15
1 37
1 38
1 39
1 40-63
2 10-15
2 16-39
2 40-63
3 3-9
3 10-15
3 16-39
3 40-63
4 0
4 40-63
5 0
5 2
5 3
5 4

Status

00 Closed

10 Open for input (I)
01 Open for output (0)
11 Open for 1/0

Random dataset flag

0 Sequential dataset
1 Random dataset

Undefined dataset structure

0 COS blocked dataset structure
1 Undefined dataset structure

Write end of data flag
Address of first word of buffer

Bit position in current input word
(Togical 1/0)

Block number, read request

System reads from block number until
buffer is filled. The next block
number is then in word 2. If the block
number is 22%-1 = 777777775, the Tlast
block of the dataset is read.

Address of current input word
Remaining bit count

Bit position in current output word
Block number, write request

System writes from block number until
buffer is empty. The next block number
is then in word 3.

Address of current output word
Uncleared end of file

Address of last word + 1 of buffer; LMT
minus FRST defines buffer size

End of record flag

End of file flag

End of data flag

Previous operation read/write flag

0 Read
1 Write

A-6 E

Field Word Bits Description

DPPFI 5 5-24 Previous file index; backward index to
block

DPPRI 5 25-39 Previous record index; backward index to
block containing previous end of record

DPRCH 5 40-63 Control word access

Previous RCW address in write mode
Next RCW in read mode

DPLPW 6 0-63 Last partial word; used for character

mode I1/0
DPBIO 7 0 Buffer in/out busy

0 Buffer in/out operation complete
1 Buffer in/out operation not complete

DPBER 7 1 Buffered I/0 error flag
DPFF 7 2-4 Function code

000 Read partial

010 Read record

040 Write partial

050 Write record

052 Write end-of-file
056 Write end-of-data

DPBPD 7 5 Processing direction

0 Read
1 Write

DPBEO 7 6-9 Termination condition

00 Partial
10 Record
12 File, write only
16 Data, write only

DPBWC 7 16-39 Word count; number of words at DPBWA to
read or write. Actual number of words
read when BI0=0 on read.

DPBWA 7 40-63 Word address

2240011 A-7 E

PERMANENT DATASET DEFINITION TABLE - PDD

The PDD is a parameter list that gives input to the Permanent Dataset
Manager. The contents of PDD are illustrated in Figure A-5.

; ~ ERR DN m
Z :z” 7
5

6 USR 7
w0 [R 5//
g OJIB)
9 SID DID DC JsqQ
N 5

12 IRW FL | TL [R
14b-ENT WT

15 MN

25 ACS /////////////C//T/////////////////////////
26 R

27 ACT

28 TDM

29 MOD

Figure A-5. Permanent Dataset Definition Table (PDD)

Note that for delete requests, the PDD consists of only the first two
words (words 0 and 1) of figure A-5.

2240011 A-8

PMERR

PMST
PMFC

PMDN
PMPDN

PMNPG
PMBPG

2240011

@
-
o+
w

— o I

40-51
52-63

0-55
0-63

32-47
48-63

Description

Normal completion message suppression

indicator

Error message suppression indicator

Return status

Function code (octal):

PMFCSU=10
PMFCSI=12
PMFCSO=14
PMFCAU=20
PMFCAI=26
PMFCAO=26
PMFCDU=30
PMFCDI=36
PMFCDO=36
PMFCPG=40
PMFCLU=50
PMFCLI=52
PMFCLO=54
PMFCRL=60
PMFCPN=70
PMFCDT=100
PMFCDQ=110
PMFCEA=120

PIMFCEI=122
PMFCEO=124

Dataset name

Save user dataset

Save input dataset
Save output dataset
Access user dataset
Access spooled dataset
Access spooled dataset
Delete user dataset
Delete spooled dataset
Delete spooled dataset
Page request

Load user dataset

Load input dataset
Load output dataset
PDS/Release request
PDN request

Dump time request
Dequeue SDT

Queue SDT to available
queue

Queue SDT to input queue
Queue SDT to output queue

Permanent dataset name - format 1 PDDs;
1-15 characters

Number of pages - format 2 PDDs

Beginning page number - format 2 PDDs

Field

PMSDT
PMSQJ

PMBUF
PMID
PMUSR
PMFM

PMRT
PMED
PMOJB
PMSID
PMDID
PMDC

PMJSQ
PMTID
PMSF
PMUQ
PMENT
PMIR
PMFL

2240011

Word

nN

N OR W

W W W 0 N N

10
11
12
12
12
12

Bits

24-47
48-63

40-63
0-63
0-63

24-39

40-51
52-63
0-55
0-15
16-31
32-47

48-63
0-63
0-63

16-31

Description

SDT address; format 4 PDDs
Job sequence number; format 4 PDDs

Buffer address

User identification

User number; 1-15 characters

Format designator:
FMCD=CD Character/deblocked
FMCB=CB Character/blocked
FMBD=BD Binary/deblocked
FMBB=BB Binary/blocked

Retention period; 0-4095 days

Edition number (0-4095)

Originating job name

Source ID; 2 characters

Destination ID; 2 characters

Disposition code; 2 characters
DCIN=IN Job dataset
DCST=ST Dataset to be staged
DCSC=SC Scratch dataset
DCPR=PR Print dataset
DCPU=PU Punch dataset
DCPT=PT Plot dataset
DCMT=MT Magnetic tape dataset

Job sequence number

Terminal ID; 1-8 characters

Special forms

Unique access required

Enter in System Directory

Immediate reply requested

Field length/512

A-10 E

Field Word Bits Description

PMTL 12 32-55 Time Timit

PMPR 12 56-63 Priority

PMRD 13 0-63 Read permission control word

PMWT 14 0-63 Write permission control word

PMMN 15 0-63 Maintenance permission control word

PMACS 25 0-15 Number of accesses (load saved datasets
only)

PMCRT 26 0-63 Creation time in cycles (load request
only)

PMACT 27 0-63 Time of last access in cycles (load
request only)

PMTDM 28 0-63 Time of last dump in cycles (load
request only)

PMMOD 29 0-63 Time of Tast modification in cycles

(Toad request only)

2240011 A-11 E

CHARACTER SET B

This appendix describes the 128 control and graphic characters comprising
the ASCII character set. Those numbers, letters, and special characters
that form the CRAY-1 FORTRAN character set are identified by the appearance
of the letter C in the fourth column. 211 other characters are members of
the auxiliary character set. The letter A in the fourth column of the
table indicates those characters belonging to the ANSI FORTRAN character
set. Note that all control characters are grouped on the first page.

2240011 B-1 E

CONTRoL ASCII ASCII FORTRAN

CHARACTER %C(:)'I]‘)I;;L PUNnggECARD Eé:é&gi:y[)) DESCRIPTION
NUL 000 12-0-9-8-1 Null
SOH 001 12-9-1 Start of heading (cCC)
STX 002 12-9-2 Start of text (CC)
ETX 003 12-9-3 End of text (CC)
EOT 004 9-7 End of transmission (CC)
ENQ 005 0-9-8-5 Enquiry (cCC)
ACK 006 0-9-8-6 Acknowledge (CC) .
BEL 007 0-9-8-7 Bell (audible or attention signal)
BS 010 11-9-6 Backspace (FE)
HT 011 12-9-5 Horizontal tabulation (FE)
LF 012 0-9-5 Line feed (FE)
VT 013 12-9-8-3 Vertical tabulation (FE)
FF 014 12-9-8-4 Form feed (FE)
CR 015 12-9-8-5 Carriage return (FE)
SO 016 12-9-8-6 Shift out
SI 017 12-9-8-7 Shift in
DLE 020 12-11-9-8-1 Data link escape (CC)
DC1 021 11-9-1 Device control 1
DC2 022 11-9-2 Device control 2
DC3 023 11-9-3 Device control 3
DC4 024 9~8-4 Device control 4 (stop)
NAK 025 9-8-5 Negative acknowledge (CC)
SYN 026 9-2 Synchronous idle (cCC)
ETB 027 0-9-6 End of transmission block (CC)
CAN 030 11-9-8 Cancel
EM 031 11-9-8-1 End of medium *®
SUB 032 9-8-7 Substitute
ESC 033 0-9-7 Escape
FS 034 11-9-8-4 File separator (IS)
GS 035 11-9-8-5 Group separator (IS)
RS 036 11-9-8-6 Record separator (IS)
Us 037 11-9-8-7 Unit separator (IS)
DEL 177 12-9-7 Delete

Legend: CC - Communication control
FE - Format effector
IS - Information separator

2240011 B-2 E

GRAPHIC ASCIT ASCII FORTRAN

CHARACTER OBl PUNCIégg;:CARD Eé:ggia DESCRIPTION
(Space) 040 (None) A,C Space {(blank)
! 041 12-8-7 Exclamation point
" 042 8-7 C Quotation marks (diaeresis)
043 8-3 Number sign
$ 044 11-8-3 A,C Dollar sign (currency symbol)
% 045 0-8-4 Percent
& 046 12 Ampersand
' 047 8-5 C Apostrophe (closing single quotation mark)
(050 12-8-5 A,C Opening (left) parenthesis
) 051 11-8-5 A,C Closing (right) parenthesis
* 052 11-8-4 A,C Asterisk
+ 053 12-8-6 A,C Plus
, 054 0-8-3 A,C Comma (cedilla)
- 055 11 A,C Minus. (hyphen)
. 056 12-8-3 A,C Period (decimal point)
/ 057 0-1 ,C Slant (slash, virgule)
0 060 0 a,c Zero
1 061 1 A,C One
2 062 2 ,C Two
3 063 3 A,C Three
4 064 4 A,C Four
5 065) A,C Five
6 066 6 ,C Six
7 067 7 ,C Seven
8 070 8 A,C Eight
9 071 9 A,C Nine
: - 072 8-2 Colon
: 073 11-8-6 Semicolon
< 074 12-8-4 Less than
= 075 8-6 A,C Equal
> 076 0-8-6 Greater than
? 077 0-8-7 Question mark

2240011 B-3 E

GRAPHIC ASCIT ASCII FORTRAN
CHARACTER OCTAL PUNCHED-CARD (A=ANST) DESCRIPTION
CODE CODE (C=CRAY)
@ 100 8-4 Commercial at
A 101 12-1 A,C \
B 102 12-2 A,C
C 103 12-3 A,C
D 104 12-4 A,C
E 105 12-5 A,C
F 106 12-6 a,cC
G 107 12-7 A,C
H 110 12-8 A,C
I 111 12-9 A,C
J 112 11-1 A,C
K 113 11-2 A,C
L 114 11-3 A,C
M 115 11-4 A,C
N 116 11-5 A,C —Upper-case letters
0 117 11-6 A,C
P 120 11-7 A,C
Q 121 11-8 A,C
R 122 11-9 aA,C
S 123 0-2 A,C
T 124 0-3 A,C
U 125 0-4 aA,C
A 126 0-5 A,C
W 127 0-6 A,C
X 130 0-7 A,C
Y 131 0-8 A,
z 132 0-9 A,C /
[133 12-8-2 Opening (left) bracket
\ 134 0-8-2 Reverse slant (backslash)
] 135 11-8-2 Closing (right) bracket
~ 136 11-8-7 Circumflex
_ 137 0-8-5 Underline
2240011 B-4

ASCII ASCII FORTRAN

ng‘gig;gR OCTAL PUNCHED-CARD (A=ANSI) DESCRIPTION
CODE CODE {C=CRAY)

' 140 8-1 Grave accent (opening single gquotation mark)
a 141 12-0-1 \

b 142 12-0-2

e 143 12-0-3

d 144 12-0-4

e 145 12-0-5

£ 146 12-0-6

g 147 12-0-7

h 150 12-0-8

151 12-0-9
152 12-11-1
153 12-11-2
154 12-11-3
155 12-11-4
156 12-11-5
157 12-11-6
160 12-11-7
161 12-11-8
162 12-11-9
163 11-0-2
164 11-0-3
165 11-0-4
166 11-0-5
167 11-0-6
170 11-0-7
171 11-0-8

— Lower-case letters

e Y -—-— MmN X =2 dc R QT 0B 383 H K® WY P

172 11-0-9 /

173 12-0 Opening (left) brace

174 12-11 Vertical line

175 11-0 Closing (right) brace

176 11-0-1 Overline (tilde, general accent)

2240011 B-5 ‘ E

SYSTEM FUNCTION CODES C

Many of the macro instructions (see part 3) generate function codes that
are calls to the operating system. The function code octal value is
stored in register S0; Sl and S2 provide optional arguments. Sl conven-
tionally contains the address of a user table, if required. The function
is enabled when the program exit instruction is executed.

When the request completes, the user's SO is set to zero to indicate the
request was completed without error. If an error is encountered, the job
normally aborts with appropriate messages issued to the logfile. For
some errors, however, an error code is placed in the user's S0 and the
user is allowed to continue processing. If the Control Statement
Processor (CSP) is executing as the user, SO returns an error code for
all but a few fatal errors, which causes CSP to be reloaded.

System-defined mnemonic values are supplied for the function codes in

SO and should be used for all functions, as supplied in the list that
follows.

2240011 c-1

FUNCTION
CODE

FSADV

FS$SABT

FS$DAT

FSTIM

F$MSG

FS$RCL

2240011

TASK
DESCRIPTION

Advance job. The current job step is
terminated and the job is advanced to
the next control statement.

Abort job. The job is advanced to the
EXIT control statement, if one exists.

Get current date. The current date in
ASCII format is returned at the location
specified in S1 in the following format:

0 15 23 39 47 63
m m\{/td df{/|y vy

Get current time. The current time in
ASCII format is returned at the location
specified in S1 in the following format:

0 15 23 39 L7 63

h h : m m : S S

Enter message in logfile. A message
beginning at the location specified by
Sl is written to the logfile. S2 is
used to determine the logfile to which
the message is written.

(s2) Significance
1 User logfile only
2 System logfile only
3 System and user logfiles

The message is 1-80 characters and is
terminated by a zero byte.

Dataset recall. The job is removed from
execution until another block of data has
been transferred without error or until
I/0 is complete on the dataset specified.
S1 contains the ODN or DSP address (see
Appendix A for a description of the DSP
and part 3, page 2-7 for a description of
the ODN).

FUNCTION

CODE

F$STRM

F$SSW

FSOPN

2240011

TASK
DESCRIPTION

Terminate job. The job is terminated
normally and its resources are returned
to the system.

Set pseudo sense switch. S1 contains the
number of the switch to be set.

Open dataset. S1 contains processing
direction in bits 0 and 1 and the address
of the Open Dataset Name (ODN) table (see
part 3, page 2-7). Bits 40-63 of Sl
contain the address.

1 L0 6

pdl/ / 7] ooN addr

An open call does the following processing
for the dataset whose name is in the first
word of the ODN table:

1. A DNT entry is created in the user's
JTA if one does not already exist for
this dataset.

2. An LFT entry is created for this
dataset if one does not already exist..

3. A DSP entry is created for this
dataset if one does not already exist.

4. A buffer is allocated for this
dataset if one does not already exist.

Steps 2, 3, and 4 may result in moving
existing LFT entries, DSP entries, and
buffers. Additional user field is not
allocated if insufficient room exists for
adding the LFT, DSP, or buffer. Parame-
ters in the JCB of the user field reflect
any movement of these tables.

5. The negative DSP offset:

= DSP base address (JCDSP) - DSP entry
address

is returned in bits 40-63 of word 2 of
the ODN table.

6. The DNT and DSP are modified to reflect
the processing direction requested.

FUNCTION
CODE

TASK
DESCRIPTION

NOTE

If word 2 of the ODN, bits 40-63, already
contains a positive, nonzero address, then
the user is requesting that a user's own
DSP and buffer be used. The address in

the ODN points to the DSP, and the DSP and
buffer must be contained in the user field
below the high limit of user code (JCHLM).
In this case, steps 2, 3, and 4 are omitted.

F$MEM

t Deferred implementation

2240011

Processing Direction

01 Output
10 Input
11 Input/Output

Request memory. The amount of memory
assigned to a job may be determined or
changed. S1 contains the address of the
memory request word. The memory request
word has the following format:

01234 7 16 L0 63

AllILM /CT%ZZZ DEL WC

A Abort-disable flag. Unless this flag is
set by the user, the job is aborted if
filling the request would cause the Jjob
to exceed its maximum allowable memory.

IT Immediate flag. If set by the user,
only the memory that is immediately
available is assigned to the user.

L Limit flag. The system sets this flag
when it has assigned the maximum
allowable amount of memory to the user.

M Mode flag. The system sets this flag
if it is performing automatic memory
management for the job.

DEL Deletion pointer. If the user wants an
increase in memory, DEL must be zero.
If the caller wants a decrease in
memory, DEL must contain the beginning
address of the area to be deleted.

c-4

FUNCTION TASK
CODE DESCRIPTION

WC Word count. Here, the user must supply
the absolute number of words to be
added to or deleted from the user's
field length. Any words added to the
user's field length are added to its
high-address end. If WC=0, no action
is taken other than to return the
user's field length in WC.

FSLBN Return last block number. S1 contains the
address of the Open Dataset Name Table
(ODN) (see part 3, page 2-7). On return,
S2 contains the block number of the last
block of the dataset. S2 contains -1
(all bits set) if the dataset is empty.

FSCLS Close dataset. Sl contains the address of
the Open Dataset Name Table (ODN).

A close call does the following processing
for the dataset whose name is in the first
word of the ODN table:

1. End of data is written on a sequential
blocked dataset if the dataset is in
write mode.

2. If the dataset is in write mode and is
a blocked dataset, data in the buffer
is flushed to disk.

3. The buffer for the dataset is released.
4. The DSP for the dataset is released.

5. Any ILFT entries for the dataset are
released.

6. The DNT entry for the dataset is
updated to indicate that the dataset
is closed.

FS$DNT Create local dataset. S1 contains the address
of the Dataset Definition List (DDL) in the
user field. This call creates a Dataset Name
Table (DNT) for the dataset if one does not
already exist.

If the DDNFE flag is set to 1, the DNT is
searched for an existing dataset with the
specified name. On return to the user,

2240011 C-5 E

FUNCTION

CODE

FSMDE

FSGNS

FS$EXU

F$RLS

F$PDM

FS$RDC

2240011

TASK
DESCRIPTION

(S0)=0 if the dataset already exists,
otherwise (S0)#0.

If the dataset already exists for this job,
then the dataset must be closed. Parameters
from the DDL are inserted in the DNT.

Set exchange package mode. S1 contains the
address of the word containing the new mode
setting. (See part 2, page 2-2 for mode
settings.) .

Get next control statement. Copy one card
image from the control statement buffer to
the address specified in S1. Error code
EREFR (1) is returned in SO if an end of
file is encountered on the control statement
file.

Load binary dataset at location specified

in the PDT in the user field and begin
execution. The address of a word containing
the name of the dataset is in S1.

Additional memory is allocated for the job
if required to load the binary dataset.

Return dataset whose ODN table address is
specified in S1. The dataset is closed and
disposed of according to the disposition
code contained in the DNT entry for this
dataset. The dataset is no longer available
to the job.

Permanent dataset management request. Sl
contains address of the Permanent Dataset
Definition (PDD) table. The contents of the
PDD depend on the function requested. (See
Appendix A for the formats of the PDD table.)

Read disk circular. S1 contains the DSP
address. The error bits and the busy bit
in the DSP must be monitored by the caller.
Automatic recall is requested if bit 0 of
Sl is set. If more than one sector is
being read, automatic recall returns
control at half buffer boundary.

FUNCTION TASK

CODE DESCRIPTION
FSWDC Write disk circular. Sl contains the DSP

address. The error bits and the busy bit

in the DSP must be monitored by the caller.
Automatic recall is requested if bit O of

S1 is set. If more than one sector is being
written on, automatic recall returns control
at half buffer boundary.

F$GRN Get system revision numbers. Sl contains
the address of a two-word table. Infor-
mation is returned in ASCII format, left
justified and blank filled as follows:

STP revision date

STP assembly date

F$DIS Dispose dataset. Sl contains the PDD
address.
F$JDA Get current Julian date in ASCII format.

The date is returned at the location
specified in S1. The date is returned as
follows:

0 40 63

y yl|d d dla a a

F$JTI Return accumulated CPU time for the job in
the location specified by S1. The time is
expressed in floating point seconds.

FSACT Accounting information from the JXT and the
' JTA is returned at locations starting with
the address in Sl1.

F$SPS Set P register and suspend user. The new
program address is in Sl.

FSCsSw Clear sense switch. S1 contains the switch
number to be cleared.

FSTSW Test sense switch. S1 contains the switch
number to be tested.

On return (S1l) # 0 if sense switch is set
= 0 if sense switch is not set.

2240011 c-7 E

FUNCTION

CODE

F$BIO

2240011

DPBIO

DPBER

DPBF

TASK
DESCRIPTION

Buffered I/O request. S1 contains the DSP
address.

Perform record oriented I/0 request on a
COS blocked dataset. A record or partial
record 1is transferred to or from a user-
specified data area. Control returns
immediately to the user, allowing the user
to do processing in parallel with the I/O.
The user must check status in the DSP for
completion of the request and for errors.

The DSP must contain the following fields
set by the user when the call is made (see
Appendix A for a description of the DSP):

Buffered I/O busy flag must be zero
indicating that any previous request has
completed. This flag is set by the system
when the call is made and cleared when the
request is completed.

If a user wants to relinquish the CPU and
wait for completion of the buffered I/O
request, the user should continue to call
recall (F$RCL) until the buffered I/O
busy flag is cleared.

Buffered I/0 errxor flag must be zero,
indicating that any error on the previous
request has been recognized by the user.

If an error has occurred when a request is

completed, DPBER is set to 1. The user may
then check DPERR to determine the nature of
the error.

Function code:

000 Read partial record, logically
equivalent to S$RWDP

010 Read record, logically eguivalent to
SRWDR

040 Write partial record, logically
equivalent to $WWDP

050 Write record, logically equivalent
to SWWDR

FUNCTION
CODE

FS$DLY

FSDJA T

DPBWC

DPBWA

TASK
DESCRIPTION

052 Write end of file, logically
equivalent to S$WEOF

056 Write end of data, logically
equivalent to $WEOD

156 Rewind, logically equivalent to $REWD

Word count is the number of words to
transfer to or from the user's record area.
On a read request, the system returns the
actual number of words read. If a null
record is read, a zero word count is
returned in DPBWC. The user may then use
DPEOR, DPEOF, and DPEOD to determine if end
of record, end of file, or end of data has
been reached.

Word address of user's record area.

Delay job. The job is removed from
processing for the number of milliseconds
contained in the rightmost 24 bits of the
location specified by S1.

Dump job area.

A local dataset $DUMP is created if it does
not already exist. After rewinding $DUMP,
the job's JTA and user field are written

to $DUMP. The number of words written is
L@JTA + the job's field length, LA-BA.

The dataset created by this task is an
unformatted dataset without record control
words or block control words.

See Appendix A for a description of the Job
Table Area (JTA). The JTA contains the
user exchange package and B, T, VM, and

V registers at the time this call is made.

t Deferred implementation

2240011

LOGICAL 1/0 ROUTINES D

LOGICAL RECORD I/O ROUTINES

The logical record I/O routines are divided into three basic groups:
read routines, write routines, and positioning routines.

READ ROUTINES

The read routines transfer partial or full records of data from the I/0
buffer to the user data area. The data is placed in the user data area
one character per word or in full words depending on the read request

issued. Figure D-1 provides an overview of the logical read operation.

SRWDP - Read words, partial mode

Words are transmitted from the I/O buffer defined by DSP to the area
beginning at FWA until either the word count in A3 is satisfied or an
end of record is encountered.

SUBROUTINE NAME: $RDWP

ENTRY CONDITIONS: (Al) Address of DSP or negative DSP offset
relative to DSP base (JCDSP), i.e.,
contents of second word of ODN table

(A2) FWA of user data area

(A3) Word count. If count is 0, no data is
transferred

RETURN CONDITIONS: (A1) Address of DSP
(A2) FWA of user data area
(A3) Word count
(A4) Actual LWA+l (equals FWA if null record)
(SO0) Termination mode

< 0 Read terminated by end of record
= 0 Null record, end of file, or end of
data

2240011 D-1 E

>0 Read terminated by count. If count
is exhausted simultaneously with
reaching end of record, the EOR takes
precedence.

(s6) Contains RCW if (S0)< O
REGISTERS MODIFIED: A0, Al, A4, A5, A6

B.ZA, B.ZB (within B70g...B77g)

s0, s1, s2, s3, s4, s5, s6

T.ZA (within T70g...T77g), VO, V1

Example:

A|lB|C|DJ|E[F [G|H

i|J|K|L|M]|N {O|P (A2)-———f e S

RSTUVWX$RWDP

vz ala]a]as]s|—— WI=20 T Tk [L{m]n]o]r
RCW User data area

11231415 1|67

89 afa Al
RCW

Data in 1/0 buffer

SRWDR - Read words, record mode

This routine resembles $RWDP. However, following the read, the dataset
is positioned after the <eor> that terminates the current record.

SUBROUTINE NAME: $SRWDR

ENTRY CONDITIONS: Same as S$SRWDP
RETURN CONDITIONS: Same as $RWDP
REGISTERS MODIFIED: Same as S$RWDP

2240011 D-2 E

(A1)

T€«FRST

—3€IN 1/0 BUFFER POINTERS

*0ouUT

JSLMT
DSP

(A2) -- 1 -

T User
Data
(A3) Area

1/0 BUFFER

USER

SYSTEM
disk

queue

manager

mass
storage

Figure D-1. Logical read

2240011 D-3 E

$RCHP -~ Read characters, partial mode

The $RCHP routine unpacks characters from the I/O buffer defined by the
DSP and inserts them into the user data area beginning at the fwa
specified by (A2) until either the count is satisfied or an <eor> is
encountered. If an <eor> is encountered first, the remainder of the
field specified by the character count is filled with blanks.

SUBROUTINE NAME: $RCHP

ENTRY CONDITIONS: (A1)

Address of DSP or negative DSP offset
relative to DSP base (JCDSP), i.e.,
contents of second word of ODN table

(A2) fwa of user data area
(A3) Character count. If count is 0, no data
is transferred.
RETURN CONDITIONS: (Al) Address of DSP
(A2) fwa of user data area
(A3) Character count
(A4) Actual lwa+l (equals fwa if null record)
(Ss0) Termination mode
<0 Read terminated by end of record
=0 Null record, end of file or end of
data
>0 Read terminated by count. If count
is exhausted simultaneously with
reaching end of record, the <eor>
takes precedence
(s6) Contains RCW if (S0) < O
REGISTERS MODIFIED: A0, Al, A4, A5, A6

B.ZA, B.ZB (within B70g...B77g)

s0, s1, s2, s3, s4, s5, s6

T.ZA (within T708' . .T778)

2240011

Example:

(A2) -5

T
H

|

S

T | ALY S (A A
AlT[A A A A §E£ﬂ£ |
L s
A

Data in 1/0 buffer 0
(A3)=16 A

T

1A

A

LY A

User data area

SRCHR - Read characters, record mode

This routine resembles $RCHP. However, following the read, the dataset
is positioned after the end of record that terminates the current record.

SUBROUTINE NAME: $RCHR

ENTRY CONDITIONS: Same as for $RCHP
RETURN CONDITIONS: Same as for $RCHP
REGISTERS MODIFIED: Same as for $RCHP

2240011 D-5 E

WRITE ROUTINES

The write routines transfer partial or full records of data from the user
data area to the I/O0 buffer. The data is taken from the user data area
one character per word and packed eight per word or is transferred in full
words depending on the write operation requested. Figure D-2 provides an
overview of the logical write operation.

SWWDP - Write words, partial mode

The number of words specified by the count is transmitted from the area
beginning at fwa and is written in the I/O buffer defined by DSP.

SUBROUTINE NAME: SWWDP

ENTRY CONDITIONS: (Al) Address of DSP or negative DSP offset
relative to DSP base (JCDSP), i.e.,
contents of second word of ODN table

(A2) fwa of user data area
(A3) Word count
If count is 0, no data is transferred.
RETURN CONDITIONS: (Al) Address of DSP
(A2) fwa of user data area
(A3) Word count
(A4) Twa+l

REGISTERS MODIFIED: A0, Al, A4, A5, A6
B.ZA, B.ZB (within B70g...B77g)
s0, sl, s2, sS3, s4, s5, s6
T.ZA (within T70g...T77g)

Vo, V1
Example:

N
A|BIC|D F |GIH AlB|C|D F| G|H
P

1 KILMN p SWWDP 1{J | KIL|M[N
"IQIRISIT U [V |W|X QIR[S|TIU|VIW[X

Y|Z Y|(Z
User data area 1/0 buffer

2240011 D-6 E

(A1)

—Z%0Ur o |/0 BUFFER POINTERS

4| MT
DSP
(A2) - —
(A3) Data

SWCHP SWCHR < SWWDP > < SWWDR > SWEOF m

I/0 BUFFER

USER

SYSTEM

disk
queue
manager

mass
storage

Figure D-2. Logical write

2240011 D-7 E

SWWDR - Write words, record mode

The $WWDR routine resembles $WWDP. However, an <eor> RCW terminating
the record is inserted in the I/O buffer in the next word following the
data. To simply write an <eor>, the user issues a $WWDR with (A3) = O.

SUBROUTINE NAME: $WWDR

ENTRY CONDITIONS: Same as $WWDP
RETURN CONDITIONS: Same as $WWDP
REGISTERS MODIFIED: Same as $WWDP

SWWDS - Write words, record mode with unused bit count

The $WWDS routine resembles $WWDR. However, the use may specify the
unused bit count in the last word of the record as an entry condition.

SUBROUTINE NAME: SWWDS
ENTRY CONDITIONS: Same as $WWDP with the addition of the follow-
ing:

(A4) Unused bit count in the last word of the

record; a value from 0 - 63.
RETURN CONDITIONS: Same as SWWDP
REGISTERS MODIFIED: Same as SWWDP

SWCHP - Write characters, partial mode

The $WCHP routine packs the number of characters specified by the count
from the user area defined at fwa to the I/O buffer for the dataset
defined by DSP. The number of characters specified by the count is
packed from the area beginning at fwa to the dataset defined by DSP.

SUBROUTINE NAME: SWCHP

ENTRY CONDITIONS: (A1) Address of DSP or negative DSP offset
relative to DSP base (JCDSP), i.e.,
contents of second word of ODN table

(A2) fwa of user data area
(A3) Character count

If count is 0, no data is transferred.

2240011 D-8

RETURN CONDITIONS: (A1) Address of DSP
(A2) fwa of user data area
(A3) Character count
(24) lIwa+l

REGISTERS MODIFIED: A0, Al, A4, A5, A6
B.ZA, B.AB (within B70g...B77g)
s0, si, s2, s3, s4, s5, S6

Example:
(A2 __ _
0
U
T
P SWCHP
U
A3)=11
(3) T A|D| A T]A
A 1/0 buffer
D
A
T
R A

User data area

$WCHR - Write characters record mode

The $WCHR routine resembles $WCHP. However, an <eor> RCW terminating the
record is inserted in the I/O buffer in the next full word following the
data. The unused bit count in the RCW specifies the end of data in the
previous word. To simply write an <eor>, the user issues a SWCHR with
(d3) = 0. The RCW is written in ‘the next full word.

SUBROUT INE NAME: $WCHR

ENTRY CONDITIONS: Same as $WCHP
RETURN CONDITIONS: Same as $WCHP
REGISTERS MODIFIED: Same as $WCHP

2240011 D-9 E

SWEOF - Write end of file

This routine writes an <eof> RCW preceded by an <eor> RCW if necessany
as the next words in the I/O buffer.

SUBROUT INE NAME: SWEOF

ENTRY CONDITIONS: (A1) Address of DSP or negat%ye DSP offset
relative to DSP base (JCDSP), i.e.,
contents of second word of ODN table

'RETURN CONDITIONS: (Al) Address of DSP

REGISTERS MODIFIED: 20, AL, A2, A3, A4, A5, A6
B.2C (within B70g...B77g)
so, sl, s2, s3, s4, S5, S6
T.2B (within T70g...T77g)

SWEOD - Write end of data

This routine writes an <eod> RCW preceded by an <eor> and an <eof> if
necessary as the next words in the I/O buffer. The SWEOD forces the
final block of data to be written on the disk; that is, it flushes the
I/0 buffer. The dataset is left positioned before the <eod>.
SUBROUTINE NAME: SWEOD

ENTRY CONDITIONS: (A1) Address of DSP or negative DSP offset
relative to DSP base (JCDSP), i.e.,
contents of second word of ODN table

RETURN CONDITIONS: (Al) Address of DSP

REGISTERS MOD!FIED: A0, Al, A2, A3, R4, A5, B6
B.zZD (within B70g...B77g)
so, s1, s2, s3, s4, S5, S6
T.ZB (within T70g...T77g)

2240011 D-10

POSITIONING ROUTINES

The positioning routines, except for $GPOS, set the current processing
direction to input (reading). If the processing direction was previously
output (writing), on a sequential dataset end of data is written and

the buffer is flushed. On a random dataset, the buffer is flushed.

SREWD -~ Rewind dataset

The $REWD routine positions the dataset at beginning of data (BOD).

SUBROUTINE NAME: SREWD

ENTRY CONDITIONS: (Al) Address of DSP or negative DSP offset
relative to DSP base (JCDSP), i.e., contents
of second word of ODN table

RETURN CONDITIONS: (Al) Address of DSP
REGISTERS MODIFIED: AO, Al, A2, A3, A4, A5, A6
s0, s1, s2, s3, s4, s5, s6

$BKSP - Backspace one record

The $BKSP routine positions the dataset after the previous <eor> RCW.
The function is a no-op if the dataset is at BOD. If the dataset is at

the first record of a file, backspace positions the dataset ahead of the
<eof> RCW.

SUBROUTINE NAME: $BKSP

ENTRY CONDITIONS: (Al) Address of DSP or negative DSP offset
relative to DSP base (JCDSP), i.e.,
contents of second word of ODN table

RETURN CONDITIONS: (Al) Address of DSP

(S6) Contains RCW after which dataset is
positioned (equals 0 if at BOD)

REGISTERS MODIFIED: AO, Al, A2, A3, A4, A5, A6
so, s1, s2, s3, s4, S5, s6

2240011 D-11 E

$BKSPF - Backspace one file

The SBKSPF routine positions a dataset after the previous <eof> RCW.
The function is a no-op if the dataset is at BOD.

SUBROUTINE NAME:
ENTRY CONDITIONS:
RETURN CONDITIONS:
REGISTERS MODIFIED:

$SBKSPF
Same as S$BKSP
Same as $BKSP

Same as S$BKSP

SGPOS - Get current dataset position

The $GPOS routine returns the current dataset position, including the
current word address and flags that indicate whether the dataset is
positioned at a record, file, or dataset boundary.

This routine does not alter the dataset position.

SUBROUTINE NAME:
ENTRY CONDITIONS:

RETURN CONDITIONS:

2240011

SGPOS

(Al) Address of DSP or negative DSP offset
relative to DSP base (JCDSP), i.e.,
contents of second word of ODN table

(Al) DSP address

(S1) Dataset position

Flags - the upper four bits of S1 indicate
record, file, and dataset boundaries:

<gor> bit O

bit 1
<eof> bit 2
bits 3-30
D-12

End of record flag. 1 indicates
the dataset is positioned at a
record boundary, i.e., following
an RCW. O indicates the dataset
is either at beginning of data
or in the middle of a record.

Unused

End of file flag. 1 indicates

the dataset is at a file boundary,
i.e., following the end of file
RCW.

Unused

REGISTERS MODIFIED:

WA bits 31-63 Word address. This is the current

physical word address within the
dataset, including record control
words.

Note: The entire word in S1 is
0 at beginning of data (BOD).

AO, Al, A2, A3

S0, Ss1, s2, 83, s4

SSPOS - Set current dataset position

The $SPOS routine positions the dataset at the position specified. The
position must be at a record boundary, i.e., at beginning of data or
following an end of record or end of file, or before an end of data. A
dataset cannot be positioned beyond the current end of data.

SUBROUTINE NAME:
ENTRY CONDITIONS:

Special cases:

RETURN CONDITIONS:

REGISTERS MODIFIED:

2240011

$SPOS
(A1)

(s1)

WA

(s1)

(s1)

(A1)
(s1)
(s6)

Address of DSP or negative DSP offset
relative to DSP base (JCDSP), i.e.,
contents of second word of ODN table.

Dataset position
bits 0-30 Unused

bits 31-63 Word address. The desired
physical word address within
the dataset, including record
control words

= -1 denotes end of data. The dataset is

positioned at <eod>, i.e., before the
<eod> RCW.

‘0 denotes beginning of data

DSP address
Dataset position

Contains RCW after which the dataset is
positioned; (S6) = 0 if at beginning of
data (BOD)

A0, Al, A2, A3, A4, A5, A6
s0, sl1, s2, s3, s4, s5, s6

FORTRAN LEVEL I/O

FORTRAN I/O consists of formatted and unformatted I/0 routines, buffered
I/0 routines, and positioning and control I/O routines.

Although they do not perform I/O in the strict sense, the encode/decode
routines are also described in this section.

FORMATTED AND UNFORMATTED I/O ROUTINES

These routines are divided into six basic groups; read formatted, write
formatted, read unformatted, write unformatted, encode, and decode.

Routines in the four read and write groups transfer data between user
locations and that system I/O buffer area allocated to a dataset and
associated with a particular I/O unit. Routines in the encode and decode
groups transfer data to or from user locations and a user-supplied buffer.

The buffer contains eight characters per word and has no I/O unit association.
All dataset processing by these routines is sequential.

Each of the six groups is accessed through a minimum of two calls: the
first to an initiation routine and the last to a termination routine.
Optionally, one or more calls may be made to either of two transfer routines
between initiation and termination routine calls. The initiation routine
name is identified by an I suffix; the termination routine name by an F
suffix.

Transfer routines are of two types: call by address and call by value.
Those called by address have names suffixed with an A. Those called by
value have names suffixed with a V. Both types of routines can be called
within the same sequence.

These routines are named and their functions summarized in the chart below:

OPERATION READ WRITE READ WRITE ‘
SEQUENCE FORMATTED | FORMATTED |UNFORMATTED|UNFORMATTED| DECODE ENCODE
INITIATION
U INES $RFI $WFI SRUI SWUT $DFI $EFI
TRANGFER
ROUTINES $RFA $WFA $RUA $WUA $DFA $EFA
CALL BY ABDRESS
TRANSFER
ROUTINES $RFV $WFV $RUV $WUV $DFV $EFV
CALL BY VALUE
TERMINATION
SOUTINES $RFF $WFF $RUF $WUF $DFF SEFF

2240011 D-14 E

Each transfer routine has six different entry points. Each entry point
corresponds to a particular type of data to be processed and is specified
as the name of the routine (xmam) plus a (parcel) increment value. These
entry points and the FORTRAN data types they accommodate are:

Entry Point Type of data

xnam or Typeless (Boolean)
xnam + 0O

xnam + 3 Integer

xnam + 6 Real

xnam + 9 Double precision
xnam + 12 Complex

xnam + 15 Logical

In transfer routines that process formatted data, double-precision values
must be specified by using the xnam + 9 entry. All other types of values
may use the appropriately incremented entry or the xnam entry. If the
xnam entry is used, typing is determined from format specification edit
descriptors. Transfer routines processing unformatted data must be entered
at xnam + 9 and xnam + 12 for double-precision and complex values. Values
of all other types may be processed by using the appropriately incremented
entry or the xnam entry.

Format specifications identified by initiation routines and used by trans-
fer routines are described in Cray Research publication 2240009, CRAY-1
(CFT) FORTRAN Reference Manual.

If an end-of-file <eof> record is read, zeros or blanks are supplied in
place of valid values or characters. An optional <eof> exit address may be
supplied to the read-initiation routine to suppress this action. Acknow-
ledgement of an <eof> record's having been read must occur before initiating
another read operation at the same unit. This is done by:

e Providing an <eof> exit address to the read initiation routine,

° Writing, rewinding, or backspacing the dataset, or

o Calling the utility procedure IEOF.

2240011 D-15 E

Routine

Function

Type of call
Entry

Routine

Function

Type of call
Entry

Exit

Routine

Function

Type of call
Entry
Exit

Routine

Function

Type of call

2240011

SDFI

Decode formatted initialize. This function
provides arguments for subsequent $DFA and
SDFV calls.

By address

(EP-1) = address of record length

(EP-2) = address of FORMAT specification
(EP-3) = address of character string

No arguments returned

SDFA (multiple entry points)

Decode formatted, call by address. This function
decodes items in a character string, placing
results into an array.

By address
(EP-1) = address of array
(EP-2)

address of item count
(EP-3) = address of item increment

Items are at user item addresses

$DFV (multiple entry points)

Decode formatted, call by value. This function
decodes a single item in a character string.

By value

No arguments required

S1 contains the decoded item

S2 contains the second word of the decoded item,
if required

SDFF

Decode formatted final. This function terminates
a decoding sequence.

No arguments required

Routine

Function

Type of call
Entry

Exit

Routine

Function

Type of call
Entry

Exit

Routine

Function

Type of call

Routine

Function

Type of call
Entry

Exit

2240011

SEFI

Encode formatted initialize. This function pro-
vides arguments for subsequent S$EFA and S$EFV
calls.

By address
(EP-1) = address of record length
(EP-2)

Il

address of FORMAT specification
(EP-3) = address of item increment

Content of character string buffer

SEFV (multiple entry points)

Encode formatted, call by value. This function
encodes a value and places the result in the
character string buffer.

By wvalue
S1 contains the value to be encoded

$2 contains the second word of the value to be
encoded, if required

Content of character string buffer

SEFF

Encode formatted final. This function terminates
an encoding sequence.

No arguments required

SRFI.

Read formatted initialize. This function
provides arguments for subsequent $RFA and
SRFV calls

By address

(EP-1) = address of unit name or number

(EP-2) = address of FORMAT specification

(EP-3) = address of error exit address (optional)
(EP-4) = address of <eof> exit address (optional)

No arguments returned

D-17 E

Routine

Function

Type of call
Entry

Exit

Routine
Function
Type of call

Entry
Exit

Routine

Function

Type of call

Routine

Function

Type of call
Entry
Exit

2240011

$RFA (multiple entry points)

Read formatted, call by address. This function
decodes and moves the number of items specified
by (EP-2) to locations beginning at (EP-1) as
incremented by (EP-3).

By address

(EP-1) = address of array

(EP-2) = address of item count

(EP-3) = address of array address increment

Decoded items are at user item addresses

SRFV (multiple entry points)

Read formatted, call by value. This function
decodes a single item.

By value
No arguments required
Sl contains the decoded item

S2 contains the second word of the decoded item,
if required

SRFF
Read formatted final. This function terminates
a read formatted sequence.

No arguments required

SRUI

Read unformatted initialize. This function
provides arguments for subsequent $RUA and $RUV
calls.

By address
(EP-1) = address of unit name or number

No arguments returned

Routine

Function

Type of call
Entry

Exit

Routine

Function

Type of call
Entry
Exit

Routine

Function

Type of call

2240011

SRUA (multiple entry points)

Read unformatted, call by address. This function
relocates the number of words specified by (EP-2)
from the I/0 buffer to locations beginning at
(EP-1) as incremented by (EP-3).

By address

(EP-1) = address of array

(EP-2) = address of word count

(EP-3) = address of array address increment

Requested words are in the array

SRUV (multiple entry points)

Read unformatted, call by value. This function
moves a single value from the I/O buffer.

By value
No arguments required
Sl contains the requested word

S2 contains a second requested word, if required
(for two-word values)

SRUF

Read unformatted final. This function terminates
a read unformatted sequence.

No arguments required

Routine

Function

Type of call
Entry

Exit

Routine

Function

Type of call
Entry

Exit

Routine

Function

Type of call
Entry

Exit

2240011

SWFI

Write formatted initialize. This function
provides arguments for subsequent $WFA and
SWFV calls.

By address
(EP-1) = address of unit name or number
(EP-2) = address of FORMAT specification

(EP-3)

I

address of error exit address
(optional)

(EP-4) = address of <eof> exit address (optional)

No arguments returned

SWFA (multiple entry points)

Write formatted, call by address. This function
encodes and moves to the I/O buffer the number
of items specified by (EP-2) from locations
beginning at (EP-1) as incremented by (EP-3).

By address

(EP-1) = address of array

(EP~-2) = address of item count

(EP-3) = address of array address increment

Encoded items are in the I/O buffer

SWFV (multiple entry point)

Write formatted, call by value. This function
encodes and moves the word(s) provided into
the I/0 buffer.

By value
S1 contains the word to be encoded and moved

S2 contains a second word to be encoded and
moved, if required

Encoded item is in the I/O buffer

Routine

Function

Type of call

Routine

Function

Type of call
Entry
Exit

Routine

Function

Type of call
Entry

Exit

Routine

Function

Type of call
Entry

Exit

2240011

SWEF
Write formatted final. This function terminates
a write formatted sequence.

No arguments required.

$WUI

Write unformatted initialize. This function
provides arguments for subsequent $WUA and
$WUV calls.

By address
(EP-1) = address of unit name or number

No arguments returned

SWUA (multiple entry points)

Write unformatted, call by address. This
function transfers the number of words specified
by (EP-2) from the locations beginning at

(EP-1) as incremented by (EP-3).

By address

(EP-1) = address of array

(EP-2) = address of word count
(EP-3) = address of array increment

No arguments returned

SWUV (multiple entry points)

Write unformatted, call by value. This function
transfers the word(s) provided into the I/O
buffer.

By value
Sl contains the word to be transferred

S2 contains a second word to be transferred, if
required (for two-word values)

No arguments returned

Routine SWUF

Function Write unformatted final. This function terminates
a write unformatted sequence.

Type of call No arguments returned

BUFFERED I/O ROUTINES

Buffered I/0 routines perform operations on logical records.

Routine $RB

Function Read buffered. Reads up to (EP-4)-(EP-3)+1
words from the I/O buffer to the specified
array locations. If (EP-2)<0, a partial record
may be read with a subsequent read capable of
transferring all or part of the remaining words
in' the record. 1If (EP-2)>0, a subsequent read
transfers words from the next record.

Type of call By address

Entry (EP-1) = address of unit name or number
(EP-2) = address’ of mode specifier
(EP-3) = address of first word of array
(EP-4) = address of last word of array

Exit No arguments returned

Routine SWB

Function Write buffered. Writes (EP-4)-(EP-3)+1 words

to the I/O buffer from locations (EP-3) through
(EP~4) of the array. If (EP-2)<0, a partial
record may be written with a subsequent write
capable of transferring all or part of the
remaining words to the record. 1If (EP-2)>0, a
subsequent write transfers words to a new record.
If (EP-4) is set to (EP-3)-1, the partial record
being written is terminated. Any attempt to
write past the end of the allocated area or after

encountering an <eod> results in job abortion.

2240011 D-22 E

Type of call By address
Entry (EP-1) = address of unit name or number

(EP-2)

address of mode specifier
(EP-3) = address of first word of array
(EP-4) = address of last word of array

Exit No arguments returned

POSITIONING AND CONTROL I/O ROUTINES

The FORTRAN I/O routines described below perform dataset positioning and
control operations:

Routine

Function

SEOFW

Write end-of-file. This function writes an end-
of-file <eof> record on the specified dataset.

Type of call By address

Entry (EP-1) = address of unit name oxr number

Exit No arguments returned

Routine $BACK

Function Backspace record. Positions the dataset to the
start of the preceding record.

Type of call By address

Entry (EP-1) = address of unit name or number

Exit No arguments returned

Routine SREWF

Function Rewind function. Rewinds the specified data-

Type of call

set to the beginning-of-data <bod> point.

By address

Entry (EP-1) = address of unit name or number
Exit No arguments returned
2240011 D-23 E

Routine STRBK

Function Abort function. Makes the $FTLIB error pro-
cedure available to user programs. Returns
to the error entrance to COS, not to the calling

program.

Type of call No arguments required

2240011 D-24 E

EXCHANGE PACKAGE

RAB

BA
LA
XA
VL

E

0 2 1012 16 18 24 31 36 4o €3
E s B o

e :

n+2 7//// /// LA M A2

n+3 ;/</42322;>/ 77 KL v |r A3

nes WL 0 a4

n+$§ // //// A8

n+ 6 / / // // / A6

ner W22 g a7

s ;i

n+10 s2

n+ il S3

n+i2 S4

n+i3 S5

n+ 14 S6

n+15 s7
° 63
Registers M - ModesT

Syndrome bits

Read address for error
(where B is bank)

Program address
Base address
Limit address
Exchange address
Vector length

- Error type (bits 0,1)

10
01

R

Uncorrectable memory
Correctable memory

- Read mode (bits 10,11)

00
01
10
11

Scalar
170
Vector
Fetch

TBit position from left of word
2240011

36

37
38

39

31
32
33
34
35
36
37
38
39

Interrupt on correctable
memory error

Interrupt on floating point

Interrupt on uncorrectable
memory error

Monitor mode

F - Flagst
PCI interrupt Tt
MCU interrupt
Floating point error
Operand range
Program range
Memory error
I/0 interrupt
Error exit
Normal exit

++Supports Programmable Clock option
E-1

E

GLOSSARY

A

Abort - To terminate a program or job when a condition (hardware or
software) exists from which the program or computer cannot recover.

Absolute address - (1) An address that is permanently assigned by the
machine designator to a storage location. (2) A pattern of characters
that identifies a unique storage location without further modification.
Synonymous with machine address.

Bbsolute block - Loader tables consisting of the image of a program in
memory. It can be saved on a dataset for subsequent reloading and
execution.

Address - (1) An identification, as represented by a name, label, or
number, for a register, location in storage, or any other data source
or destination such as the location of a station in a communication
network. (2) Any part of an instruction that specifies the location
of an operand for the instruction.

Allocate - To reserve an amount of some resource in a computing system
for a specific purpose (usually refers to a data storage medium).

Alphabetic - A character set including $, %, and @, as well as the
26 upper-case letters A through Z.

Alphanumeric - A character set including all alphabetic characters and
the digits O through 9.

Assemble - To prepare an object language program from a symbolic language
program by substituting machine operation codes for symbolic operation
codes and absolute or relocatable addresses for symbolic instructions.

B

Base address - The starting absolute address of the memory field length
assigned to the user's job. This address is maintained in the base
address (BA) register. The base dddress must be a multiple of 20g.

$BLD - A dataset on which load modules are placed by a compiler or
assembler unless the user designates some other dataset.

Blank common block -~ A common block into which data cannot be stored at
load time. The first declaration need not be the largest. The blank
common block is allocated after all other blocks have been processed.

2240011 Glossary-1 E

Block - (1) A group of contiguous characters recorded on and read from
magnetic tape as a unit. Blocks are separated by record gaps. A block
and a physical record are synonymous on magnetic tape. (2) In CRAY-1
blocked format, a block is a fixed number of contiguous characters pre-
ceded by a block control word as the first word of the block. The
internal block size for the CRAY-1 is 1000g words (one sector on the
DD-19 disk).

Block control word - A word occurring at the beginning of each block in
the CRAY-1l blocked format which identifies the sequential position of
the block in the dataset and points forward to the next block control
word.

Buffer ~ A storage device used to compensate for a difference in rate of
flow of data, or time of occurrence of events, when transmitting data
from one device to another. It is normally a block of memory used by
the system to transmit data from one place to another. Buffers are
usually associated with the I/0 system.

C

Call - The transfer of control to a specified closed routine.

Card image - A one-to-one representation of the contents of a punched card,
for example, a matrix in which a 1 represents a punch and a O represents

the absence of a punch. In CRAY-1 blocked format, each card image is a
record.

Catalog (noun) - A list or table of items with descriptive data, usually
arranged so that a specific kind of information can be readily located.

Channel - A path along which signals can be sent.

Character - A logical unit composed of bits representing alphabetic,
numeric, and special symbols. The CRAY-1 software processes 8-bit
characters in the ASCII character set.

Code - (1) A system of characters and rules representing information in a
form understandable by a computer. (2) Translation of a problem into a
computer language.

Common block - A block that can be declared by more than one program
module during a load operation. More than one program module can specify
data for a common block but if a conflict occurs, information from later
programs is loaded over previously loaded information. A program may
declare no common blocks or as many as 125 common blocks. The two types
of common blocks are labeled and blank.

2240011 Glossary-2 E

D

Data - (1) Information manipulated by or produced by a computer program.
(2) Empirical numerical values and numerical constants used in arithmetic
calculation. Data is considered to be that which is transformed by a
process to produce the evidence of work. Parameters, device input, and
working storage are considered data.

Dataset - A quantity of information maintained on mass storage by the
CRAY-1 Operating System. Each dataset is identified by a symbolic name
called a dataset name. Datasets are of two types: local and permanent.
A local dataset is a dataset available only to the job that created it.
A permanent dataset is available to the system and to other jobs and is
maintained across system deadstarts.

Deadstart - The process by which an inactive machine is brought up to an
operational condition ready to process jobs.

Debug - To detect, locate, and remove mistakes from a routine or mal-
function of a computer. Synonymous with troubleshoot.

Diagnostic - (1) Pertaining to the detection and isolation of a mal-
function or a mistake. (2) A message printed when an assembler or
compiler detects a program error.

Dispositon code - A code used in I/0 processing to indicate the disposition
to be made of a dataset when its corresponding job is terminated or the
dataset is released.

Dump - (1) To copy the contents of all or part of a storage device, usually

from internal storage, at a given instant of time. (2) The process of
performing (1). (3) The document resulting from (1).
E

End-of-data delimiter - Indicates the end of a dataset. In CRAY-1 blocked
format, this is a record control word with a 17g in the mode field.

End-~of-file delimiter - Indicates the end of a file. (1) In CRAY-1 blocked
format, this is a record control word with a 16g in the mode field. (2)
On magnetic tape in external format, this is a tapemark.

End-of-record delimiter - Indicates the end of a record. (1) In CRAY-1
blocked format, this is a record control word with a 10g in the mode
field. (2) In an ASCII punched deck, this is indicated by the end of
each card.

Entry point - A location within a block that can be referenced from program
blocks that do not declare the block. Each entry point has a unique name
associated with it. The loader is given a list of entry points in a loader
table. A block can contain any number of entry points.

2240011 Glossary-3 E

An entry point name must be 1 to 8 characters and cannot contain the
characters blank, asterisk, or slash. Some language processors (i.e.,
FORTRAN) may produce entry point names under more restricted formats
due to their own requirements.

Exchange package - A 16-word block of data in memory which is associated
with a particular computer program or memory field. It contains the basic
parameters necessary to provide continuity from one execution interval

for the program to the next.

External reference - A reference in one program block to an entry point
in a block not declared by that program. Throughout the loading process,
externals are matched to entry points (this is also referred to as
satisfying externals); that is, addresses referencing externals are
supplied with the correct address.

F

File - A collection of records in a dataset. In CRAY-1 blocked -format,
a file is terminated by a record control word with 17g in the mode field.

Filemark - Refer to tapemark.

Front-end processor - A computer connected to a CRAY-1 channel. The front-
end processor supplies data and jobs to the CRAY-1 and processes or distrib-
utes the output from the jobs.

I

Input/Output - (1) Commonly called I/0. To communicate from external
equipment to the computer and vice versa. (2) The data involved in such
a communication. (3) Equipment used to communicate with a computer.

(4) The media carrying the data for input/output.

J

Job - (1) An arbitrarily defined parcel of work submitted to a computing

system. (2) A collection of tasks submitted to the system and treated by
the system as an entity. A job is presented to the system as a formatted
dataset. With respect to a job, the system is parametrically controlled

by the content of the job dataset.

Job Communication Block - The first 200g words of the job memory field.
This area is used to hold the current control statement and certain job-
related parameters. The area is accessible to the user, the operating
system, and the loader for inter-phase job communication.

2240011 Glossary-4 E

Job control statement - Any of the statements used to direct the operating
system in its functioning, as compared to data, programs, or other informa-
tion needed to process a job but not intended directly for the operating
system, itself. A control statement may be expressed in card, card image,
or user terminal keyboard entry medium.

Job control statement sector - After the job has entered the system and
has become a candidate for processing, the job control statements are
made into a separate file of the job's input dataset. The user cannot
access this file.

Job deck - The physical representation of a job before processing either
as a deck of cards or as a group of records. The first file of the job
dataset contains the job statements and the job parameters which will be
used to control the job. Following files contain the program and data
which the job will reqguire for the various job control statements. The
job deck is terminated by an end-of-data delimiter.

Job input dataset - A dataset name $IN on which the card images of the

job deck are maintained. This consists of programs and data referenced

by various job steps. The user can manipulate the dataset like any other
dataset (excluding write operations). The control statements are a separate
inaccessible portion of this dataset.

Job output dataset - Any of a set of datasets recognized by the system
by a special dataset name (e.g., OUT, SPLOT, and $PUNCH), which becomes
a system permanent dataset at job end and is automatically staged to a
front-end computer for processing.

Job step - This is a unit of work within a job, such as source language
compilation or object program execution.

L

Labeled common - A common block into which data can be stored at load time.

Library - A dataset composed of sequentially organized files. Files other
than the last may contain a binary copy of a program or text. The

last file contains a-directory giving the relative starting position of
each of the program or text files as well as information required by the
loader for satisfying externals.

Limit address - The upper address of a memory field. This address is
maintained in the limit address (LA) register.

Literal - A symbol which names, describes, or defines itself and not
something else that it might represent.

Loader tables - The form in which code is presented to the loader. Loader
tables are generated by compilers and assemblers according to loader
requirements. The tables contain information required for loading such

as type of code, names, types and lengths of storage blocks, data to be
stored, etc.

2240011 Glossary-5

Loading - The placement of instructions and data into memory so that it
is ready for execution. Loader input is obtained from one or more data-
sets and/or libraries. Upon completion of loading, execution of the
program in the job's memory field is optionally initiated. Loading may
also involve the performance of load-related services such as generation
of a loader map, presetting of unused memory to a user-specified value,
and generation of overlays.

Logfile - During the processing of the job, a special dataset named SLOG
is maintained. At job termination, this dataset is appended to the $OUT
file for the job. The job logfile serves as a time-ordered record of the
activities of the job -- all control statements processed by the job,
significant information such as dataset usage, all operator interactions
with a job, and errors detected during processing of the Jjob.

M
Macro - An instruction in a source language that is equivalent to a specified
sequence of machine instructions.

Magnetic tape - A tape with a magnetic surface on which data can be stored
by selective polarization of portions of that surface.

Main frame - The central processor of the computer system. It contains

-the arithmetic unit and special register groups. It does not include input,
output, or peripheral units and usually does not include internal storage.
Synonymous with Central Processing Unit (CPU).

Mass storage - (on line) - The storage of a large amount of data which is
also readily accessible to the Central Processing Unit of a computer.

Memory field - A portion of memory containing instructions and data usually
defined for a specific job. Field limits are defined by the base address
and the limit address. A program in the memory field cannot execute out-
side of the field nor refer to operands outside of the field.

Multiprocessing - Utilization of several computers to logically or function-
ally divide jobs or processors, and to execute various programs or segments
asynchronously and simultaneously.

Multiprogramming -~ A technique for handling multiple routines or programs
simultaneously by overlapping or interleaving their execution, i.e.,
permitting more than one program to time-share machine components.

2240022 Glossary-6 E

(0]

Operating system - (1) The executive, monitor, utility, and any other
routines necessary for the performance of a computer system. (2) A
resident executive program which automates certain aspects of machine
operation, particularly as they relate to initiating and controlling
the processing of jobs.

$OUT - A dataset that contains the list output from compilers and assemblers
unless the user designates some other dataset. At job end, the job log-
file is added to the $OUT dataset and the dataset is sent to a front-end
computer.

Overlaying - A technique for bringing routines into memory from some
other form of storage during processing so that several routines will
occupy the same storage locations at different times. Overlaying is
used when the total memory requirements for instructions exceeds the
available memory.

P

Parameter - A quantity in a control statement which may be given different
values when the control statement is used for a specific purpose or process.

Parcel - A 16-bit portion of a word which is addressable for instruction
execution but not for operand references. An instruction occupies one
or two parcels; if it occupies two parcels, they may be in separate words.

Permanent dataset - A dataset known to the operating system as being perman-
ent; the dataset survives deadstart.

Program - (1) A sequence of coded instructions that solves a problem. (2)

To plan the procedures for solving a problem. This may involve analyzing
the problem, preparing a flow diagram, providing details, developing and

testing subroutines, allocating storage, specifying I/0 formats, and in-

corporating a computer run into a complete data processing system.

Program block - The block within a load module that usually contains
executable code. It is automatically declared for each program (though
it may be zero-length). It is local to the module; that is, it can be
accessed from other load modules only through use of external symbols.
Data placed in a program block always comes from its own load module.

Program name - Also referrred to as IDENT name or deck name, it is the
name contained in the loader PDT table at the beginning of each load
module.

Program library - see Library.

2240011 Glossary-7 E

R

Record - A group of contiguous words or characters related to each other
by virtue of convention. A record may be fixed or variable length. (1)
In CRAY-1 blocked format, a record ends with a record control word with
10g in the mode field. (2) In an ASCII coded punched deck, each card is
a record. (3) For a listable dataset, each line is a record. (4) For

a binary load dataset, each module is a record.

Relative address - An address defined by its relationship to a base address
(e.g., the (BA)) such that the base address has a relative address of O.

Relocatable address -~ An address presented to the loader in such a form that
it can be loaded anywhere in the memory field. A relocatable address is
defined as being relative to the beginning address of a load module program
block or common block.

Relocatable module - This is the basic program unit produced by a compiler

or assember. CAL produces a relocatable module from source statements
delineated by IDENT and END. In FORTRAN, the corresponding beginning
statements are PROGRAM, SUBROUTINE, BLOCK DATA, or FUNCTION. The correspond-
ing end statement is END.

A relocatable module consists of several loader tables that define blocks,
their contents, and address relocation information.

Relocate - In programming, to move a routine from one portion of internal
storage to another and to adjust the necessary address references so that
the routine can be executed in its new location.

Instruction addresses are modified relative to a fixed point or origin.

If the instruction is modified using an address below the reference point,
relocation is negative. If addresses are above the reference point,
relocation is positive. Generally, a program is loaded using positive
relocation.

T

Table - A collection of data, each item being uniquely identified either
by some label or by its relative position.

Tapemark - A special hardware bit configuration recorded on magnetic tape.
It indicates the boundary between datasets and labels. It is sometinmes
called a filemark.

Time slice - The maximum amount of time during which the CPU can be
assigned to a job without re-evaluation as to which jobs should have the
CPU next.

2240011 Glossary-8 E

U

Unit record device - A device such as a card reader, printer, or card
punch for which each unit of data to be processed is considered a record.

Unload - To remove a tape from ready status by rewinding beyond the load
point. The tape is then no longer under control of the computer.

Unsatisfied external - An external reference for which the loader has not
yet loaded a module containing the matching entry point.

v

Volume - A physical unit of storage media. The term volume is synonymous
with reel of magnetic tape.

W

Word - A group of bits between boundaries imposed by the computer. Word
size must be considered in the implementation of logical divisions such
as character. The word size of the CRAY-1 is 64 bits.

2240011 Glossary-9 E

INDEX

ABORT macro

ACCESS control statement

ACCESS macro

ACQUIRE control statement
ADJUST control statement

ADJUST macro
Aliases

Analytical aids
ASCII character set

ASSIGN control statement
AUDIT control statement

BKSP macro
BKSPF macro

Block control word (BCW)

Blocked datasets
blank compression
block control word
record control word

BUILD statement

BUILD directives
COPY directive
FROM directive
LIST directive
OMIT directive
examples

$Cs

Central Processor Unit

Character set
CLOSE macro
Comment (*) statement

COMPARE control statement

Control statements
blanks
comments
file

internal representation

literal delimiter
parameter
separator

syntax

syntax violations
verb

COPYD control statement
COPYF control statement
COPYR control statement
COS (see Operating system)
CPU (see Central Processor

Unit)

2240011

(3)2-5
(2)4-3
(3)4-4
(2)5-1
(2)4-4
(3)4-5
(2)3-1
(2)8-1

B-1
(2)3-1
(2)7-3

(3)3-5
(3)3-6
(1)2-3

(1)2-6
(1)2-3
(1)2-3
(2)11-3

(2)11-7
(2)11-5
(2)11-8
(2)11-6
(2)11-8

(1)3-3,4-1
(1)1-1

B-1
(3)2-8
(2)2-4
(2)6~-5
(1)4-1;(2)1-1
(1)4-6
(1) 4-6
(1)3-1,4-1
(1)4-7
(1)4-4
(1)4-4
(1)4-2
(1)4-1
(1)4-1
(1)4-2
(2)6-2
(2)6-2
(2)6-1

‘Index-1

SDUMP

Dataset
accessing
aliases
changing size of
control
control words

creation and definition

disposition codes

editions

formats

maintenance control
words

naming conventions

retention

size

staging

types

Dataset Catalog

Dataset management macros
Dataset Parameter Area

Datasets
blocked
local
permanent
unblocked

DATE macro

DELAY macro

DELETE control statement

DELETE macro

DISPOSE control statement

DISPOSE macro

DSC (see Dataset Catalog)
DSDUMP control statement
DSP (see Dataset Parameter

Area)
DSP macro

DUMP control statement
DUMPJOB control statement

ENDP macro
Exchange package
EXIT statement

FORTRAN I/O
FORTRAN I/0O routines
buffered
formatted
positioning
unformatted
Front-end computer
Function codes

(2)8-1

(2)4-3
(2)3-1
(2)4-4
(2)3-1
(1)2-3
(2)3-1
(1)2-8
(2)4-1,4-6
(1)2-2

(2)4-1
(1)2-2
(2)4-2
(2)3-1
(2)5-1
(1)2-1
(2)4-1
(3)2-6

A-4

(1)2-2
(1)2-1
(1)2-1
(1) 2-6
(3)2-10
(3)2-5
(2)4-6
(3)4-5
(2)5-4
(3)2-8

(2)8-2

(3)2-6
(2)8-1
(2)8-1

(3)2-5
E-1
(2)2-3

(1) 2-6;D-14

D-22
D-14
D-23
D-14
(1)1-1
c-1

GETPOS macro

Hardware requirements

$IN
I/0

JCB
Block)
(see Control state-
ments)

JCL

JDATE macro
Job
accounting information
definition to system
flow
identification
logfile
name
priority
processing requirements
user field
Job Communication Block
Job control statements
Job control language (see
Control statements)
Job control macros
Job deck dataset
Job deck structure
Job definition
Job flow
entry
initiation
advancement
termination
Job processing
JOB control statement
Job step abort
Job Table Area
JTA (see Job Table Area)
JTIME macro

$LOG
LDR statement
LFT (see Logical File
Table)

Library datasets
Literal delimiter
Literal string
Loader

map

tables

2240011

(see Job Communication

(3)3-6

(1)1-1

(1)3-2
(1)2~-6

(3)2-10

(1)3-3
(2)2-1
(1)3-2
(2)2-1
(1) 3-4
(2)2-1
(2)2-2
(2)2-1
(1)1-4;A-1
(1)1-4;A-2
(2)2-1

(3)2-1
(1)3-1
(1)3-1
(2)2-1

(1)3-2
(1)3-2
(1)3-3
(1)3-3
(1)3-2
(2)2-1

(1)4-1;(2)2-3

(1)1-4;a-2

(3)2-4

(1)3-4
(2)9-1

(2)11-1
(1)4-4
(1)4-4

(2)9-2
(2)9-1

Loader,Overlay (see
Overlay Loader)
Loader ,Relocatable (see
Relocatable Loader)
Load map
block list
description
entry list
example
Logfile
description
example
Logical File Table
Logical I/0
Logical I/O macros
Read/write
Positioning
Logical I/O routines
Logical Record 1/0
read routines
write routines
positioning routines

Macro instructions
Macros, Logical I/O
Mass storage subsystem
Memory
assignment
field length
operating system
resident
size
user area
MEMORY macro
MESSAGE macro
MODE control statement
MODE macro
MODIFY control statement
Multiprogramming

Named common

$ouT
Operating system
description
job processing
memory assignment to
memory resident COS
OPEN macro
examples
Overlay calls
FORTRAN
CAL language

Index-2

(3)1-1
(3)3-1
(1)1-1,1-3

(1)1-3
(2)2-1

(1)1-3
(1)1-1
(1)1-4;n-1
(3)2-1
(3)2-2

c(2)2-2

(3)2-3
(3)4~5
(1)3-3

(2)10-1

(1)3-3;(2)7-3

(1)1-1
(1)3-2
(1)1-3
(1)1-3
(3)2-6
(3)2-7
(2)10-7
(2)10-7
(2)10-8

Overlay directives REWIND control statement (2)6-4

FILE directive (2)10-3 REWIND macro (3)3-5
OVLDN directive (2)10-4 RFL control statement (2)2-3
POVL directive (2)10~-4
ROOT directive (2)10-4
SOVL directive (2)10-5 SAVE control statement (2)4-1
Overlay generation (2)10-3 SAVE macro (3)4-4
directives (2)10-3 SDR (see System Directory
examples (2)10-6 Table)
rules (2)10-5 Separators, control
Overlay loader (2)10-1 statement (1)4-1,4-2
overlay structure (2)10-1 concatenation (1)4-3
Overlays ‘ equivalence (1)4-3
klank common (2)10-3 parameter (1)4-3
execution of (2)10-7 terminator (1)4-3
primary (2)10-1 SETPOS macro (3)3-6
root of (2)10-1 SKIPD control statement (2)6-4
secondary (2)10-1 SKIPF control statement (2)6-3
SKIPR control statement (2)6-3
Startup, system (1)1-1
Parameters (1)4-1,4-4 SWITCH control statement (2)2-3
keyword (1)4-4 SWITCH macro (3)2-3
positional (1)4-5 SYSID macro (3)2-11
PDD (see Permanent Dataset System action request
Definition Table) nacros (3)2-1
PDD macro (3)4-1 System Directory Table (1)4-2
PDSDUMP control statement (2)7-1 System function codes c-1
PDSLOAD control statement (2)7-2 System initialization (1)1-1
Permanent Dataset) System permanent datasets (1)2-1
Definition Table (3)4-1;A-8 System startup (1)1-1
Permanent datasets System verb (1)4-2
control statements (2)4-1,7-1
macros (3)4-1
system (1)2-1 Terminator (1)4-1,4-3
user (1)2-1 TIME macro (3)2-9
Program groups (2)11-1
Program modules (2)11-1
Program names (2)11-1 Unblocked datasets (1)2-6
Program ranges (2)11-1 User area of memory A-1
User field (1)1-4;A-1
READ macro (3)3-1 User logical I/0 interface(l)2-6
READC macro (3)3-2 User permanent datasets (1)2-1
READCP macro (3)3-2
READP macro (3)3—]_ Verb (1)4_1
RECALL macro (3)2-4 types of (1)4-2
Record control word (1)2-3
RELEASE control statement (2)3-3
RELEASE macro (3)2-9 WRITE macro (3)3-2
Relocatable loader (2)9-1 WRITEC macro (3)3-3
features of (2)9-1 WRITECP macro (3)3-3
LDR control statement (2)9-1 WRITED macro (3)3-4
load map (2)9-4 WRITEDS control statement (2)6-5
map control (2)9-2 'WRITEF macro (3)3-4
WRITEP macro (3)3-2

2240011 Index-3 E

=R A TECHNICAL COMMUNICATIONS
’ 7850 Metro Parkway, Suite 213, Minneapolis, MN 55420 « (612) 854-7472

PUBLTCATION CHANGE NOTICE
July 15, 1978
TITLE: CRAY-0S Version 1.0 Reference Manual

PUBLICATION NO. 2240011 REV. E

Revision E obsoletes all previous printings of this publication. This printing
brings the manual into full agreement with the July 1978 release of the CRAY-1
Operating System (COS) Version 1.02.

Comment Sheet

Publication Number: 2240011 E
Title: CRAY-0S Version 1.0 Reference Manual

Please feel free to share with us your comments, criticisms, or compliments
regarding this publication. We value your feedback. Thank you.

Comments:

Mail to: Publications
CRAY RESEARCH, INC.

7850 Metro Parkway
Suite 213 (—y
Minneapolis, MN 55420

MACRO INSTRUCTIONS

Page no. Page no.
Macro instruction Part 3 Macro instruction Part 3
ABORT 2=5 PDD 4-1
ACCESS 4-4 READ 3-1
ADJUST 4-5 READC 3-2
BKSP 3-5 READCP 3-2
BKSPF 3-6 READP 3-1
CLOSE 2-8 RECALL 2-4
DATE 2-10 RELEASE 2-9
DELAY 2-5 REWIND 3-5
DELETE 4-5 SAVE 4-4
DISPOSE 4-6 SETPOS 3-6
DSP 2-5 SWITCH 2-3
ENDP 2-5 SYSID 2-11
GETPOS 3-6 TIME 2-9
JDATE 2-10 WRITE 3-2
JTIME 2-4 WRITEC 3-3
MEMORY 2-1 WRITECP 3-3
MESSAGE z=2 WRITED 3-4
MODE 2-3 WRITEF 3-4
OPEN 2-6 WRITEP 3-2

2240011

: =A ' HEADQUARTERS e 7850 Metro Parkway, Suite 213, Minneapolis, MN 55420 e (612) 854-7472

RESEARCH, INC. DEVELOPMENT LABORATORY e P.O. Box 169, Chippewa Falls, W 54729 e (715) 723-0266

	0001
	0002
	001
	002
	003
	004
	1_001
	1_003
	1_1-01
	1_1-02
	1_1-03
	1_1-04
	1_1-05
	1_1-06
	1_2-01
	1_2-02
	1_2-03
	1_2-04
	1_2-05
	1_2-06
	1_2-07
	1_2-08
	1_3-01
	1_3-02
	1_3-03
	1_3-04
	1_3-05
	1_4-01
	1_4-02
	1_4-03
	1_4-04
	1_4-05
	1_4-06
	1_4-07
	2_001
	2_003
	2_004
	2_01-01
	2_02-01
	2_02-02
	2_02-03
	2_02-04
	2_03-01
	2_03-02
	2_03-03
	2_04-01
	2_04-02
	2_04-03
	2_04-04
	2_04-05
	2_04-06
	2_05-01
	2_05-02
	2_05-03
	2_05-04
	2_05-05
	2_05-06
	2_05-07
	2_06-01
	2_06-02
	2_06-03
	2_06-04
	2_06-05
	2_06-06
	2_06-07
	2_07-01
	2_07-02
	2_07-03
	2_08-01
	2_08-02
	2_08-03
	2_08-04
	2_09-01
	2_09-02
	2_09-03
	2_09-04
	2_09-05
	2_09-06
	2_10-01
	2_10-02
	2_10-03
	2_10-04
	2_10-05
	2_10-06
	2_10-07
	2_10-08
	2_10-09
	2_11-01
	2_11-02
	2_11-03
	2_11-04
	2_11-05
	2_11-06
	2_11-07
	2_11-08
	2_11-09
	2_11-10
	3_001
	3_003
	3_004
	3_1-01
	3_2-01
	3_2-02
	3_2-03
	3_2-04
	3_2-05
	3_2-06
	3_2-07
	3_2-08
	3_2-09
	3_2-10
	3_2-11
	3_3-01
	3_3-02
	3_3-03
	3_3-04
	3_3-05
	3_3-06
	3_3-07
	3_4-01
	3_4-02
	3_4-03
	3_4-04
	3_4-05
	3_4-06
	A-001
	A-003
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	B-01
	B-02
	B-03
	B-04
	B-05
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	D-15
	D-16
	D-17
	D-18
	D-19
	D-20
	D-21
	D-22
	D-23
	D-24
	E-01
	Glossary-01
	Glossary-02
	Glossary-03
	Glossary-04
	Glossary-05
	Glossary-06
	Glossary-07
	Glossary-08
	Glossary-09
	Index-01
	Index-02
	Index-03
	_01
	replyA
	xBackA
	xBackB

