
c:
RESEARCH, INC.

CRAY X-MP AND CRAY-1®
COMPUTER SYSTEMS

SYMBOLIC INTERACTIVE DEBUGGER
USER'S GUIDE

SG-0056

Copyright© 1982, 1983, 1985 by CRAY RESEARCH, INC. This
manual or parts thereof may not be reproduced in any form
without permission of CRAY RESEARCH, INC.

RECORD OF REVISION RESEARCH, INC. PUBLICATION NUMBER SG-0056

Each time this manual is revised and reprinted, all chaniJes issued against the previous version in the form of change packets are
incorporated into the new version and the new version IS assigned an alphabetic level. Between reprints, changes may be issued
against the current version in the form of change packets. Each change packet is assigned a numeric designator, starting with
01 for the first change packet of each revision level.

Every page changed by a reprint or by a change packet has the revision level and change packet number in the lower righthand
corner. Changes to part of a page are noted by a change bar along the margin of the page. A change bar in the margin opposite
the page number indicates that the entire page is new; a dot in the same place indicates that information has been moved from
one page to another, but has not otherwise changed.

Requests for copies of Cray Research, Inc. publications and comments about these publications should be directed to:

CRAY RESEARCH, INC.,
1440 Northland Drive,
Mendota Heights, Minnesota 55120

Revision Description

June, 1982 - Original printing.

01 December, 1983 - This change packet brings the manual into
agreement with version 1.13 of cos. It adds the TRACEBACK
directive, information about use with CFT, examples, and minor
additions.

A January, 1985 - This reprint incorporates change packet 01
with the original printing. No other changes have been made.

SG-0056 ii A

PREFACE

This manual describes the operation of theCray Research, Inc., Symbolic
Interactive Debugger (SID), a powerful debugging tool that allows the
programmer to debug programs interactively or in batch mode. SID
operates on all series and models of Cray Computer Systems. The
programmer is assumed to be familiar with the Cray Operating System
(COS), and Cray Assembly Language (CAL) or Cray FORTRAN (CFT).

Other publications that the reader may find useful are:

SR-OOOO
SR-0009
SR-OOII

SG-0056

CAL Assembler Version I Reference Manual
FORTRAN (CFT) Reference Manual
CRAY-OS Version I Reference Manual

iii

CONTENTS

PREFACE

1.

2.

3.

INTRODUCTION •

WORD ADDRESSES
PARCEL ADDRESSES •
SUBSCRIPTED VARIABLES
SYMBOL DEFINITIONS
MODULE •
PARCEL-ADDRESS SYMBOLS
CFT LINE NUMBERS
COMPILER-GENERATED DO-LOOP LABELS
USER SYMBOLS
SPECIAL SYMBOLS
LOCAL AND CONDITIONAL VARIABLES
CONSTANTS
SID REPRIEVE
INPUT
OUTPUT •
CONVENTIONS

CONTROL STATEMENTS

LDR CONTROL STATEMENT
SID CONTROL STATEMENT
USER PROGRAM CONTROL STATEMENT
CAL CONTROL STATEMENT
CFT CONTROL STATEMENT
EXAMPLES OF SETTING UP PROGRAMS TO BE DEBUGGED •

BREAKPOINT •

CONDITIONAL BREAKPOINT •
BREAKPOINT PACKAGE
USER-SUPPLIED BREAKPOINT ROUTINE •
RULES FOR USING BREAKPOINTS

SG-0056 v

iii

1-1

1-2
1-2
1-3
1-3
1-3
1-4
1-4
1-4
1-5
1-5
1-5
1-6
1-6
1-7
1-7
1-8

2-1

2-1
2-2
2-3
2-3
2-3
2-4

3-1

3-1
3-1
3-2
3-3

01

4. SID DIRECTIVES •

SYNTAX •
ACTIVE DIRECTIVE •
ALTERNATE INPUT DIRECTIVE •
BACKWARD DIRECTIVE •
BASE DIRECTIVE •
BREAKPOINT DIRECTIVE •
COMMENT DIRECTIVE
DECREMENTVARIABLE DIRECTIVE
DISPLAY DIRECTIVE
ENDPACKAGE DIRECTIVE •
FORWARD DIRECTIVE
HELP DIRECTIVE •
INCREMENTVARIABLE DIRECTIVE
INSTRUCTIONS DIRECTIVE •
LIST DIRECTIVE •
LOAD DIRECTIVE •
MODULEBASE DIRECTIVE •
NOLIST DIRECTIVE •
NOSTOP DIRECTIVE •
PACKAGE DIRECTIVE
PATCH DIRECTIVE
QUIT DIRECTIVE •
REPEAT DIRECTIVE •
RESETCONDITION DIRECTIVE •
REWIND DIRECTIVE •
RUN DIRECTIVE.
SETCONDITION DIRECTIVE •
STEP DIRECTIVE •
STORE DIRECTIVE
TESTCONDITION DIRECTIVE
TRACEBACK DIRECTIVE
WHERE DIRECTIVE
WIDTH DIRECTIVE

APPENDIX SECTION

A. SID MESSAGES •

UNCODED MESSAGES •
CODED MESSAGED •

B. EXAMPLES OF COMPILER-GENERATED DO-LOOP LABELS

INDEX

SG-0056 vi

4-1

4-1
4-2
4-2
4-3
4-4
4-4
4-6
4-6
4-7
4-10
4-10
4-11
4-11
4-12
4-12
4-13
4-14
4-14
4-15
4-16
4-17
4-19
4-20
4-20
4-20
4-21
4-21
4-22
4-23
4-24
4-25
4-25
4-26

A-I

A-I
A-12

B-1

01

INTRODUCTION

The Cray Research, Inc., Symbolic Interactive Debugger (SID) is a
programming tool for debugging programs interactively or in batch mode.
SID operates under control of the Cray Operating System (COS) on a Cray
Computer System. It can be used for programs written in Cray Assembly
Language (CAL), Cray FORTRAN (CFT) , or a combination. Loading and
executing a program with SID requires approximately lOOK octal additional
words of memory. SID can be used in interactive or batch mode, and can
reference variables and statement labels by their names or absolute
addresses.

SID is an alternative to the Cray Simulator (CSIM) for testing programs
and for inserting snap dumps into the source code. It offers the
advantages of speed to simulator users and flexibility to programmers now
using snap dumps. The user program does not have to be altered or
recompiled, and the user can make decisions about debugging during the
session.

With SID the user can:

• Stop a program at any instruction,

• Step through one or more instructions,

• Examine the contents of memory locations (either program or data)
in several formats, and

• Patch new values into memory locations.

The user program, which is executed rather than simulated, cannot be
stopped when a particular value is written into a memory location.

Because SID is a symbolic debugger, it allows symbols to be used in place
of word or parcel addresses. Variables and statement labels can be
referenced by name as well as by absolute address. Offsets can be used
for both parcel and word addresses, and indirect addressing can be used
for word addresses.

SG-0056 1-1 01

1

I

I

WORD ADDRESSES

Word addresses can be absolute addresses or symbolic addresses. A word
address is a symbol, ·a constant, a symbol and constant joined by addition
Or subtraction, or a subscripted array. Optional parentheses indicate
indirect addressing. The address of the symbol must start on the word
boundary. Some expressions for a word address are: symbol; number';
symbol+number'; (sy.mbol)-number'; and (number').

Word-address symbols can be user symbols or special symbols.

Examples:

symbol SUM

number 214
D'137

symbol+number LIST+3

(symbol) -number (A5)-5

(number) (315)

PARCEL ADDRESSES

A parcel address consists of a symbol with parcel attribute, a parcel
constant, or a symbol with parcel attribute and a parcel constant joined
by addition or subtraction. Indirect addressing cannot be used in parcel
address expressions.

Examples:

symbol S'lOOO
LOOP
N'143
PC

parcel constant 316A

symbol+parcel LOOP+OC

SG-0056 1-2 01

SUBSCRIPTED VARIABLES

Subscripted variables can be used for array elements in CFT programs.
Subscripts must be integer constants or simple integer variables.
Indirect addressing and additional offset cannot be used with subscripted
variables.

Examples:

LIST(3)
TABLE (I,J)

SYMBOL DEFINITIONS

Symbols used in SID are either special symbols known to SID or symbols
found in a Symbol Table available to the user program. A symbol can be a
variable, constant, label, or program segment name available in the
Symbol Table, a local or conditional variable, or a register name.
Symbols have either word or parcel attributes.

The Symbol Table resides in the symbol dataset. The Symbol Table is
available to the CAL user if the program is assembled with the SYM
option, or to the CFT user if the program is compiled with the ON=Z
option. When the Symbol Table is not available, absolute addresses must
be used. For more Symbol Table information, see the COS Tables
Descriptions Internal Reference Manual, publication SM-0045.

MODULE

Each symbol in the Symbol Table is associated with a module. The default
is the first module named in the symbol dataset. The default can be
changed with the MODULEBASE directive.

The module name is the name in the IDENT statement for a CAL program or
subprogram, or the name of the program, subroutine, function, or common
block in a CFT program. The module name for blank common is II.

A specific module can be associated with a single symbol with
'modu1e.symbol'or 'subroutine.commonb1ock.symbo1'.

If the symbol is not found in a routine, all common blocks for the
routine are searched.

SG-0056 1-3

I

PARCEL-ADDRESS SYMBOLS

The symbols for entry points, statement labels, and compiler-generated
statement labels are papcel-addpess symbols. Entry points in CFT
program segments have the same name as the subprogram.

Statement labels from CAL programs must be used as they appear in the
program. CFT statement labels must be preceded by the prefix S' to
distinguish them from absolute addresses, for example, the label 10 would
be referenced as SilO.

The addresses for some CFT statement labels are not saved. Labels in
this category, include labels for FORMAT statements, labels that are not
referenced, and DO-loop terminal statement labels that are not referenced.

CFT LINE NUMBERS

CFT line numbers can be used also as parcel addresses, but only if the
line numbers have been saved in the Symbol Table in $DEBUG. Line numbers
are saved for executable statements only if the DEBUG option is specified
on the CFT control statement. This option enables recognition of DEBUG
and NODEBUG compiler directives and turns on the debug mode as
compilation begins. Debug mode prevents vectorization and most other
optimization.

Line numbers must be preceded by the prefix N' to be used as parcel
addresses in SID, so that SID can distinguish them from absolute
addresses. Line numbers are saved only for executable statements, not
for FORMAT statements, END statements, or declarations. Line number 1 is
the same as the entry point.

COMPILER-GENERATED OO-LOOP LABELS

At the beginning and end of a OO-loop the compiler generates statement
labels which are saved in the Symbol Table. These labels consist of the
original DO-loop terminal statement label with a suffix. Multiple labels
are saved if the same terminal statement is shared by more than one
DO-loop. A label with the suffix A, C, E, etc. is at the beginning of
the loop, and the label with the suffix B, D, F, etc. is at the end of
the loop.

A label in the A family is inside the loop and is encountered before each
iteration of the loop. In a vectorized loop this label is encountered
only once for each 64 elements processed in the loop. A label in the B
family is outside the loop and is encountered only once, when execution
of the loop is completed (or if the loop is bypassed because the
iteration count is less than 1).

SG-0056 1-4 01

I

In some cases the compiler does not generate additional labels for
DO-loops, so they are not available to SID users. Labels are generated
only if they are needed for run-time tests. The B family of labels is
generated if there will be a run-time test for zero iteration count. For
example,

DO 10 1 = 1,N

needs the run-time test

IF (N.LT.l) GO TO lOB

before the body of the loop, but no such test is needed when the initial
and limit values are constant, as with

DO 10 I = 1,100

Labels in the A family are generated if relooping might occur. For
example,

DO 10 I = 1,N

generates the following type of test at the end of the loop body:

I =1+1
IF (I.LE.N) GO TO lOA

Similar code is generated for

DO 10 I = 1,100

The A family of labels is not generated for short vector loops. Short
vector loops are loops with constant loop controls that include less than
64 elements and that can be executed using vector registers. For example,

DO 10 I = 1,50
LIST (I) = 0

50 CONTINUE

See appendix B for further examples of compi1er-generated DO-loop labels.

SG-0056 1-4.1 01

USER SYMBOLS

The user program contains user symbols that refer to variables that have
been saved.,in the Symbol Table. When these variables have the same name
as special symbols, the module must also be specified so that the user
symbol rather than the special symbol is used.

SPECIAL SYMBOLS

Special symbols recognized by SID include Cray register names, local
variable names, and conditional variable names. (For more information on
the use of local and conditional variables, see Local and Conditional
Variables, this section.)

Register names can be actual register names; for example, AS, B06, SO,
T76, V3, V6l4. The symbolic form can also be used; for example, B.ZA
where ZA is a constant in the proper range defined by the = pseudo
instruction. The words containing the Vector Mask and Vector Length
registers are identified by the symbols VM and VL, respectively. The
symbol XP stands for the Exchange Package when used with the DISPLAY
directive. PC can be used for the current user address program counter.

LOCAL AND CONDITIONAL VARIABLES

SID uses ZoeaZ vapiabZes XOI through XIS for each debugging session.
Variables XOI through XIS are used as counters or to temporarily store
values.

xoo is used as a counter to track breakpoints. During initialization,
the SID control statement sets up XOO with an integer value. Each time
program execution is interrupted by a breakpoint, XOO decrements by 1.
When the count reaches 0, the debug package aborts. For a detailed
discussion of breakpoints, see section 3.

If the user program has variables with the same names as local variables,
references to the user program variables must include a module name or an
address.

ConditionaZ vapiabZes are used with a breakpoint package. The 15
conditional variables, COl through CIS, are used with the TESTCONDITION
directive (see section 4 of this manual) to determine whether parts of
the breakpoint package are executed. The user can check the values of
the variables with the DISPLAY directive (also section 4).

SG-00S6 1-5

CONSTANTS

SID uses the following constant types as values in the BREAKPOINT,
PACKAGE, and PATCH directives.

• Integer
• Logical
• String
• Floating-point
• Double-precision
• Complex

Integer constants are also used as counts in the STEP, DISPLAY, FORWARD,
and BACKWARD directives and can be used in word-address expressions. The
default numeric base for integer constants depends on how the integer
constant is used and the default set by the BASE directive. Using the
appropriate prefix changes the base to decimal (0'), hexadecimal (X'), or
octal (0').

Logical constants are expressed as TRUE or FALSE.

A stping constant is a 1- to 8-character value used in directives as a
constant. It is enclosed in single quotes. If fewer than eight
characters are used, the string is left-justified with zero fill.

Papcel constants are used in parcel-address expressions in the
BREAKPOINT, PACKAGE, INSTRUCTIONS, PATCH, STEP, and RUN directives. A
parcel constant is 1- to 8-octal digits followed by one of the letters A,
B, C, or D. If eight digits are used, the first must be either 1 or O.

NOTE

Only the differences in the syntax of constants are
described here. For a full discussion of constants,
see the FORTRAN (CFT) Reference Manual, CRI publication
SR-0009.

SID REPRIEVE

SID has a peppieve mechanism to recover from abort conditions or to
interrupt an executing interactive program. A SID reprieve is reported
to the user as breakpoint O. The abort code ABnnn and the approximate

SG-0056 1-6

address where the abort occurred are reported. See the CRAY-OS Version 1
Reference Manual, publication SR-OOll, for more information on abort
codes.

Because the SID reprieve is set before the user program is initiated, a
user reprieve functions correctly but disables the SID reprieve.

INPUT

SID receives input from control statement parameters, an input dataset,
the Symbol Table for the user program, and alternate input datasets.

SID reads directives from the input dataset entered at the terminal
keyboard in interactive mode, and from alternate input datasets, which
are used when the user wants to use saved groups of directives. Input
records are read before the user program is started and while execution
is halted at breakpoints. (See Breakpoints, section 3.> If SID is
running in batch mode and runs out of input records, it issues RUN
directives until the user program stops executing. If a valid address is
unavailable for the RUN directive, SID issues a QUIT directive to stop
execution.

SID reads the Symbol Table in the symbol dataset to find memory locations
for variables and statement labels whose symbolic names are used. If no
Symbol Table is available for the user program, absolute octal addresses
must be used for all memory locations.

OUTPUT

If SID is run in interactive mode, output from SID goes to an output
dataset displayed at the terminal, and the echo dataset, specified by the
ECH parameter on the SID control statement, receives an echo of the input
directives. If SID is run in batch mode, the input directives can be
sent to the output dataset using ECH.

The LIST directive sends a copy of the output to a temporary dataset
called $LST. Input directives are automatically echoed to $LST when LIST
is used. Directive NOLIST stops sending output to $LST.

The echo dataset can store input directives that are going to be reread
through the ALTERNATE INPUT directive. If one of the directives caused the
program to abort, the alternate input dataset must be edited to delete
the directive that caused the problem.

SG-0056 1-7

CONVENTIONS

The conventions used in this publication to describe statement and
directive syntax are the following.

UPPERCASE Identifies the command verb or literal parameter

UNDERLINED Specifies the minimum number of characters required
for the verb or parameter to be recognized

ItaLic8 Defines generic terms that represent the words or
symbols to be supplied by the user

[] Brackets Enclose optional portions of a command format

••• Ellipsis Indicates optional use of the preceding item one or
more times in succession

SG-0056 1-8

CONTROL STATEMENTS

SID can be used with programs written in CAL, CFT, or a combination of
the two. SID is called into execution when the SID parameter in the LOR
control statement is encountered, or if the control statement verb is the
name of the dataset containing the absolute binary load module of SID and
the user program. The control statements used in setting up a program to
be debugged with SID are the CAL or CFT control statement (depending on
the language used to write the program), the LOR, the SID, and the user
program control statements.

LOR CONTROL STATEMENT

The LOR control statement invokes SID. The parameters shown here for the
LOR statement are only those normally used with SID. For more
information about the LOR control statement, refer to the CRAY-OS
Version 1 Reference Manual, publication SR-OOll.

Format:

LOR [, DN=dn] , SID [= • stping • •] [, AB=adn [, NX]] •

Parameters:

DN=dn

SID

SG-0056

Dataset names to load with SID; default is $BLD.

Loads SID with the datasets specified in the ON parameter

Any number of characters within single quotation marks.
Equated to the keyword SID and contains the parameters to
be passed to SID. The parameters in this string follow the
standard format for control statement parameters. If
stping is not used, the default values for the parameters
in the SID control statement are used.

2-1

2

AB~n

NX

Absolute binary object module. This dataset can be used
later to invoke SID without reloading.

No execution. Inclusion of this parameter inhibits
execution of the loaded program.

SID CONTROL STATEMENT

Control statement parameters for SID either are passed from stping in
the LDR control statement or appear in a control statement in which the
verb is the name of the dataset containing the absolute binary load
module of the user program and SID.

Format:

adn,I=idn,s=sdn,L=Zdn,ECH=edn,CNT=n.

Parameters:

adn

I=idn

s=Bdn

L=Zdn

ECHgedn

SG-0056

Absolute binary load module name as specified with the AB
parameter on the LDR statement

Input dataset name containing the directives to be
executed. (Input is entered at the terminal keyboard in
interactive mode.) The default is $IN. If the input
dataset is not $IN, it must be different from the dataset
containing the data for the user program to avoid confusion.

Symbol dataset nam~ Uses the same format as the $DEBUG
dataset produced by LDR. Default is $DEBUG.

Listing dataset name used for SID's output listing.
Default is $OUT.

Echo dataset name: receives an echo of the input
directives. Default is no echo dataset: ECH or ECH=$ECHO
cause the directives to be echoed to the listing dataset.

Count: an initial decimal value for local variable XOO,
which is decremented once each time execution is
interrupted for a breakpoint. When the count goes to 0,
the debug package aborts. Default is a (no abort).

2-2

USER PROGRAM CONTROL STATEMENT

The control statement for the user program is read from the control
statement file after the first RUN or STEP directive is input. A user
program control statement must always be provided. Breakpoints can be
set before the control statement is read (for information on breakpoints,
see section 3).

In an interactive job, a unique prompt appears when the next control
statement is expected. In a batch job, the user program control
statement must come immediately after the control statement that invokes
SID, which is either the LOR statement, if the NX parameter is not used,
or a statement whose verb is the absolute binary load module of the user
program and SID.

The verb for the user program control statement does not matter, but the
statement must follow the proper syntax for control statements and end
with a period.

If the control statement for the user program is to be continued on a
second line, the first breakpoint must come after the call to GETPARAM
or its equivalent, since this control statement is processed through a
call to the subroutine (such as GETPARAM), SID only reads the first line
of the user program control statement. The user program reads the rest
of it.

CAL CONTROL STATEMENT

When using SID to debug a CAL program, the user must include the SYM
option in the CAL control statement. SYM tells CAL to generate the
Symbol Table used by SID. If the CAL program and SID are loaded together
and the absolute binary Object module is saved, the user must save the
symbol dataset $DEBUG generated by LOR, which contains the Symbol Table.
Saving $DEBUG allows symbols to be used for statement labels and variable
names. If this procedure is not followed, absolute addresses must be
used.

CFT CONTROL STATEMENT

When using SID to debug a CFT program, the user must include ON=Z in the
CFT control statement, so that the Symbol Table will be written to $BLD.

Sequence numbers for executable statements are saved if the DEBUG option
is used On the CFTcontrol statement. This option implies ON=Z, it
enables recognition of DEBUG and NOOEBUG compiler directives, and turns

SG-0056 2-3 01

I on the DEBUG mode when compilation begins. FOr code compiled in DEBUG
mode, MAXBLOCK=lJ this turns off vectorization and most optimization.

If SID and the CFT program are loaded together and saved for later use,
the user must also save $DEBUG.

EXAMPLES OF SETTING UP PROGRAMS TO BE DEBUGGED

EXAMPLE 1

This example shows how to set up a user program to be debugged. The user
program in this example is stored in a program library. It does not use
a control statement, although one must be provided for it. (Refer to the
previous heading, User Program Control Statement.)

Set up files of the program to be debugged loaded together with SID, and
the $DEBUG file for this program, ahead of time. Then they can be
accessed from a later batch or interactive job. To set up and save the
two datasets:

UPDATE,P=MYPL,Q=MYPROG,I=MODS.
I CFT,I=$CPL,ON=Z.

I

LDR,SID,AB=BOTH,NX.
SAVE, DN=BOTH.
SAVE,DN=$DEBUG,PDN=DBBOTH.
EXIT.

For interactive debugging of program MYPROG, i is a prompt for SID input
and ! is a prompt for a control statement.

ACCESS,DN=BOTH.
ACCESS,DN=DBBOTH.

! BOTH,S=DBBOTH.
i SID dipeotives
i .
i RUN AT MYPROG .MYPROG
! MYPROG.
i mope SID diP6otiv6S

SG-0056

This statement invokes SID.

Dummy oontrol statement (requiped)

2-4 01

I

I

I

I

To debug the same program in a batch job:

ACCESS,DN=BOTH.
ACCESS,DN=$DEBUG,PDN=DBBOTH.
BOTH, ECH.
*.
EXIT.
IEOF
SID direotives

EXAMPLE 2

This statement invokes SID.
Dummy oontpol statement (required)

This example shows how to compile and debug a CFT program in the same job,
which can be done in either an interactive or a batch job. Since the NX
parameter is specified on the LDR statement, the absolute binary load module
must be used to begin execution of SID.

CFT,DEBUG,I=SOURCE.
LDR,AB=ABSBIN,NX,SID.
ABSBIN,ECH.
XXX,I=TEST.

EXAMPLE 3

This statement invokes SID.
Control statement (required).

This example shows how to assemble a CAL program and invoke SID with the
LDR statement.

CAL,SYM,I=MYSOURCE.
LDR,SID=IECH. I.
MYPROG,I=TEST.

SG-0056

The LDR statement invokes SID.
Control statement (required)

2-5 01

BREAKPOINT

A bpeakpoint is a position in the user program where execution is to be
suspended. When a breakpoint is reached, the user can examine values of
variables, patch variables with new values, or set and clear
breakpoints. The user program can contain a maximum of 15 breakpoints,
numbered from 1 to 15. Breakpoint 0 is reserved for abort conditions
reprieved by SID.

A breakpoint is implemented by using a 2-parcel jump instruction. SID
places breakpoints at any valid parcel address. The user is responsible
for verifying that breakpoints occur at instruction boundaries; that is,
in the first parcel, not the second parcel, of a 2-parcel instruction.
When a breakpoint is reached, a message is sent to the output dataset
identifying the breakpoint, or a user-supplied breakpoint routine can be
executed.

Breakpoints can be conditional, and can be associated with a breakpoint
package.

CONDITIONAL BREAKPOINT

A'eonditionat bpeakpoint specifies suspension of execution under
certain conditions. If the condition is false, execution of the user
program is resumed with no notification that the breakpoint was reached.
If the condition is true, execution of the user program is suspended, and
a message is printed that the breakpoint has been reached.

Conditional breakpoints are useful when a variable picks up the wrong
value. Statements assigning a value to that variable can be breakpointed
with a conditional clause looking for that value.

BREAKPOINT PACKAGE

A bpeakpoint package allows a group of directives to be carried out
automatically when a breakpoint is reached. A breakpoint package can be
either conditional or unconditional. If it is conditional, the
directives in the package are only used if the conditional expression is
true. When the directive NOSTOP is used within the package, execution of
the program resumes automatically after the directives in the package

SG-0056 3-1

3

have been executed; otherwise SID waits to receive additional
directives. Package size varies, depending on the type of directives the
package contains.

The directives in the package are executed in sequential order by input.
The exception is NOSTOP, which can occur anywhere in the package. The
PACKAGE directive opens a package and ENDPACKAGE closes it. If some
directives in a package are only needed for a particular condition,
TESTCONDITION is used. (NOSTOP is not affected by TESTCONDITION.) If
the local condition or conditions specified in this directive are not
set, the package is exited early.

The following directives cannot be included in a package:

• ALTERNATEINPUT

• BACKWARD

• BASE

• BREAKPOINT
• FORWARD

• MODULEBASE

• PACKAGE

• 'REWIND

• RUN

• STEP

• WHERE

• WIDTH

USER-SUPPLIED BREAKPOINT ROUTINE

A U8e~8uppZied b~eakpoint ~outine is a subroutine the user creates
which executes when a particular breakpoint is reached. The calling
sequence for a breakpoint routine is:

Format:

CALL BPsuBn(b~eakpoint numbe~, n08top ~eque8t) ,

Parameters:

n 2-digit breakpoint number in octal

b~eakpoint numbe~
Decimal integer

SG-0056 3-2

nostop pequest
If 1, SID returns to the user program after finishing the
breakpoint routine.
If 0, SID requests a new directive.

The alternate breakpoint routine must be separately compiled and loaded
so that it is encountered before the default breakpoint routine. It can
be used with conditional breakpoints. Package directives are ignored.

RULES FOR USING BREAKPOINTS

The following rules apply mainly to CAL programs.

• Breakpoints must be placed at instruction boundaries, although SID
places breakpoints at any valid parcel address.

• If a breakpoint is placed on a I-parcel instruction, two
instructions are relocated into SID. During the time the
breakpoint is installed, a jump to the second instruction causes
unpredictable results.

• When a breakpoint is removed, two parcels are written back to the
user program. If the breakpoint is placed on the jump-to-BOO
instruction that ends a routine, a parcel of data can be restored
to an earlier value.

• A warning message is displayed if a new breakpoint moves a return
jump instruction. When this breakpoint occurs, the return jump is
placed in a temporary location that cannot be used by another
breakpoint until after the return from the routine. Exiting the
breakpoint with the STEP directive corrects the return address.

• A breakpoint placed in an overlay must be installed between the
time the overlay is read into memory and the time execution
begins. Remove a breakpoint from an overlay so that the previous
instruction is restored in either the correct or a harmless overlay.

• For input and output, SID uses sequential datasets supported by
routines from $SYSLIB and $FTLIB, which are not designed to be
re-entrant. Therefore, breakpoints cannot be placed on
instructions used for sequential datasets. Sequential I/O can be
stepped through using CAL calls that avoid FTLIB.

The following rules apply only to CFT programs.

• When a program is stopped at some location other than a referenced
statement label (for example, when a breakpoint is set using an

SG-0056 3-3

absolute parcel address or when the STEP directive is used), the
values of some variables may be stored in registers; if they are,
the values stored in their memory locations may not be current.
This situation can be avoided by using only statement labels for
setting breakpoints, and also by not using the STEP directive with
eFT programs.

• The DO-loop variable is kept in a register and cannot be examined
by displaying its memory location while the loop is executing.

• When a DO-loop vectorizes, the increment for the loop is 64, except
for the first iteration of the loop.

SG-0056 3-4

I

SID DIRECTIVES

SID recognizes a set of directives for debugging user programs.
Directives are executed in the order in which they are input unless they
are in a breakpoint package. For interactive use of SID, directives are
entered at an interactive terminal in response to prompts and program
output. In batch mode, directives usually reside in a file of the input
dataset ($IN) but can be in a separate dataset.

A SID directive consists of a keyword, prepositions, and parameters. A
semicolon or the end of a line terminates a directive, so more than one
directive can be placed on an input line. When a directive contains an
error, all characters up to the next semicolon or end of line are
ignored. Extra blanks are ignored.

4

When SID is ready to accept a directive, it prompts with * (pound sign).
After the prompt, the user enters the directive in mixed case followed by
a carriage return. * followed by a period indicates a comment line. SID
then displays its response in uppercase and lowercase.

In the following directive examples, TEST is the user program.

SYNTAX

A directive has the following format:

Parameters:

k

Pi

SG-0056

Keyword

Prepositions (for example, FOR, AT, IN); not all directives
use prepositions, and many prepositions are optional.

Parameters dependent on directive. The order of input for
the parameters cannot be changed.

4-1 01

The underlined portions of the directives specify the m1n1mum number of
characters required for a keyword or parameter to be recognized.

ACTIVE DIRECTIVE

The ACTIVE directive displays a list of all current breakpoints and
breakpoint packages.

Format:

Example:

:I ACTIVE
Breakpoint 1 at 120 in TEST
Breakpoint 2 at 220 in ADD

if SUM in TEST > 12
Package, 4 at 140 in TEST
Breakpoint 13 at 310 in SUBTRACT

if VALl in SUBTRACT = 0.15600000000000E+02

ALTERNATE INPUT DIRECTIVE

The ALTERNATE INPUT directive allows groups of directives to be read from
a dataset other than the input dataset. The ALTERNATE INPUT directive
specifies an input dataset from which to read directives after the
current record has been processed. The new dataset is read until an EOF
is reached, when the input is again read from the original input
dataset. An alternate input dataset cannot contain another
ALTERNATE INPUT directive.

Format:

~LTERNATEINPUT dn [!O~IND] '-

SG-0056 4-2

Parameters:

dn Name of the alternate input dataset

NOREWIND Specifies that the alternate input dataset should not be
rewound before it is read

BACKWARD DIRECTIVE

The BACKWARD directive scrolls the display backward from the last
display. The format of the previous display is used, and the default for
the display count is the count for the previous display.

Format:

BACKWARD [[FOR] eount]

Parameter:

eount Number of words to be displayed~ default is the count for
the previous DISPLAY, FORWARD, or BACKWARD directive.

Examples:

DISPLAY LIST(7) FOR 3
Memory display in decimal at LIST(7) in TEST

00000225 -4
00000226 94
00000227 5
•
BACKWARD

Memory display in decimal at LIST(4) in TEST
00000222 93
00000223 0
00000224 -45
•
BACKWARD 2

Memory display in decimal at LIST (2) in TEST
00000220 -12
00000221 56

SG-0056 4-3

BASE DIRECTIVE

The BASE directive changes the default numeric base used for converting
numbers input to SID. The default base is mixed.

Format:

BASE new base

Parameter:

new base New default numeric base. Permitted values are QCTAL,
QEClMAL, or MIXED.

Constant prefixes, 0', D', and X', override the default base.

In mixed mode, the values for octal and decimal are assigned as follows:

Octal

Word addresses

Parcel addresses

Parcel address offsets

Parcel values

Bit field values

BREAKPOINT DIRECTIVE

Decimal

Word address offsets

Counts for display directives and the
STEP directive

Bit positions and counts

Word values for breakpoint tests or
word patches

Breakpoint numbers

Local and conditional variable numbers

The BREAKPOINT directive installs or removes a breakpoint in the user
program.

SG-0056 4-4

Format to install a breakpoint:

BREAKPOINT n [[AT] papeJel, addpe88 [IF wopd addpe88 pel, val,ue]]

Format to remove a breakpoint:

BREAKPOINT n

Parameters:

n A breakpoint number between 1 and 15

papeJel, addpe88
Location of the instruction where execution is interrupted

UJopd addpe88
Location of a value to be tested; can be a register or a
local variable.

pel, Relation tested for is one of the following:

val,ue

SG-0056

=
<
>
<=
>=
<>

NOTE

These symbols must be entered in the format
shown to be recognized.

Constant to be compared to the value in UJopd addpe88; can
be signed integer, floating-point, logical, double
precision, complex, or a string. The base is decimal in
mixed mode.

4-5

Examples:

BREAKPOINT 1 AT S'120
Breakpoint 01 installed

BR 2 ADD.S'220 IF SUM >12
Breakpoint 02 installed

BREA 15 SUBTRACT.S'310 IF SUBTRACT.VALl=15.6
Breakpoint 15 installed

BR 5 S'140
Breakpoint 05 installed

BR 5
Breakpoint 05 removed

•
BR 2 at CHECK12+0C

**** WARNING: existing breakpoint replaced
Breakpoint 02 installed

COMMENT DIRECTIVE

A comment directive is copied to the echo dataset (see section 1,
Output). It can be at the beginning of an input record or following a
semicolon.

Format:

• [aomment]

Parameter:

aomment Optional documentation

DECREMENTVARIABLE DIRECTIVE

The DECREMENTVARIABLE directive subtracts 1 from one or more local
variables. Ci is set or becomes true when Xi is decremented to o.

SG-0056 4-6

I

I

Format:

Parameter:

Xni Local variables where n is a 2-digit integer

DISPLAY DIRECTIVE

The DISPLAY directive displays the contents of one or more memory
locations, registers, or local variables, in any of several formats.
DISPLAY COO displays the conditional variables (COO-CIS), numbered from
left to right, where 0 is off and 1 is on. XP stands for Exchange
Package when used with this directive.

Format for a full word display:

DISPLAY [AT] word address [[IN] for.mat [AND for.mat]] [[FOR] count]

Parameters:

for.mat Display format1 can be QCTAL, ~EClMAL, !!EXADEClMAL,
fLOATING, DOUBLE, £OMPLEX, ~SCII, E,ARCEL, ADDRESS, and
~ICAL. ADDRESS displays the value as a parcel address.
The default is OCTAL for CAL programs or the type of the
variable being displayed for CFT programs.

Using AND with for.mat causes a dual display. For
example, a word can be displayed in octal with its ASCII
equivalent next to it.

word address

count

SG-OOS6

First location to be displayed; can be XP for the Exchange
Package (A and S registers plus the P, BOO, VM and VL
registers), a register name, or a constant. Using an *
in this field causes the directive to use the word address
of the last DISPLAY or PATCH directive.

Number of words to be displayed. Default is 1, except for
vector registers where the default is the vector length.

4-7 01

Format for a masked display:

~ISPLAY [AT] bJOm addP6SS BIT fipstbit COUNT bitcount [[IN] fomat]

Parameters:

bJON addp6ss
Location to be displayed. Using an * in this field
causes the directive to use the word address of the last
DISPLAY or PATCH directive.

fipstbit Position of the first bit in the field to be displayed;
the default base is decimal.

bitcount Decimal size of the field to be displayed

fomat Display format; can be OCTAL, ~ECIMAL, or !IGNEDDECIMAL;
with signed decimal, the first bit of the field is used as
a sign bit. The default is octal.

Examples:

* DISPLAY CVAL; DISPLAY CVAL IN OCTAL FOR 2
Memory display in complex at CVAL in TEST

00000235 0.45000000000000E+Ol,0.34000000000000E+08
Memory display in octal at CVAL in TEST

00000235 0400034400000000000000
00000236 0400324033144000000000

* . * DISPLAY X
Memory display in floating pt at X in TEST

00000232 0.45700000000000E+02
i . * DISPLAY LVAL

Memory display in logical at LVAL in TEST
00000241 TRUE

* . t DISPLAY K
Memory display in decimal

00000216
i .
i DISPLAY K IN OCTAL

at K in TEST
41

Memory display in octal at K in TEST
00000216 0000000000000000000051
i .

SG-0056 4-8

I

Example (continued):

t DISPLAY LIST FOR 10
Memory display in decimal

00000217
00000220
00000221
00000222
00000223
00000224
00000225
00000226
00000227
00000230
t •
i DISPLAY LIST

at LIST(l)
234
-12
56
93
o

-45
-4
94

5
63

in TEST

Memory display in decimal at LIST(l) in TEST
00000217 234
i D *+2

Memory display in decimal at LIST(3) in TEST
00000221 56
i D * 0

Memory display in octal at LIST(3) in TEST
00000221 0000000000000000000070
i .
i DISPLAY XP

i ·

Exchange package display
P register: 00000267c vector length:
Return addr (BOO): 00000267a vector mask:
AO = 00000342 SO = 0400065554631463146315
A1 = 00000216 Sl = 0000000000000000000000
A2 = 00000215 S2 = 0000000000000000000042
A3 = 00000214 S3 = 0400076103737166621320
A4 = 00000215 S4 = 0000000000000000000051
A5 = 00000214 S5 = 0400007610000000000000
A6 = 00000000 S6 = 0377757676355442641626
A7 = 00000210 S7 = 0000000000000000000007

i DISPLAY BOO ADDRESSS
B - registers display as parcel address at BOO

00000000 00000267a
i .
i DISPLAY A7

A - registers display at A7
I 00000007 00000210

i DISPLAY (A7)
Memory (AX) display at (A7)

00000210 0000000000000000000025
i DISPLAY (A7)+2

Memory (AX) display at (A7)+2
00000212 0000000000000000000015

SG-0056 4-9

00000100
0000000000000

@.6LLLLM
n

@.D>y[np
.......)
@.D •••••
?) (gl.e.

01

Example (continued):

=It DISPLAY A7
A - registers display at A7

I 00000007 00000210
t DISPLAY (*)+2

Memory (AX) display at (A7)+2
00000212 000000000000000000015

ENDPACKAGE DIRECTIVE

The ENDPACKAGE directive closes a breakpoint package.

Format:

ENDPACKAGE

FORWARD DIRECTIVE

The FORWARD directive scrolls the display forward from the last address
displayed for the number of words specified. The default count is the
last count used. The format of the previous display is used.

Format:

!ORWARD [[FOR] oount]

Parameter:

oount Number of words to be displayed. The default is the count
for the previous DISPLAY, FORWARD, or BACKWARD directive.

Examples:

=It DISPLAY LIST(6)
Memory display in decimal at LIST(6) in TEST

00000224 -45

SG-0056 4-10 01

Example (continued) :

:It FORWARD 3
Memory display in decimal at LIST (7) in TEST

00000225 -4
00000226 94
00000227 5
:It .
:It F 1

Memory display in decimal at LIST(lO) in TEST
00000230 63

HELP DIRECTIVE

The HELP directive provides information about SID while the program is in
use.

Format:

HELP [topic]

Parameter:

topic Name of the directive or term for which information is
desired. Specifying HELP without a topic name causes a
menu of HELP topics to be displayed.

HELP information is not echoed to $LST.

INCREMENTVARIABLE DIRECTIVE

The INCREMENTVARIABLE directive adds 1 to one or more local variables.

Format:

SG-0056 4-11

Parameter:

Xni Local variable where ni is a 2-digit integer

INSTRUCTIONS DIRECTIVE

The INSTRUCTIONS directive displays CAL instructions.

Format:

INSTRUCTIONS [AT] pap~8Z addP888 [FOR ~ount]

Parameters:

pap~8Z addP888
Location of the first CAL instruction to be displayed

~ount Number of instructions to be displayed

Examples:

INSTRUCTIONS AT TEST FOR 5
Instruction display at TEST in TEST

00000200a
00000200c
0000020la
0000020lc

Al 210,0.
A2 211,0
A3 212,0
AO A2-Al

0000020ld JAP 203a
•
• PC is the symbol for the user program P register, or program counter
•
I PC

Instruction display at 20lc
0000020lc AO A2-Al

LIST DIRECTIVE

The LIST directive begins sending an echo of the output from SID to $LST
as well as to the output dataset.

SG-0056 4-12

Format:

LOAD DIRECTIVE

The LOAD directive loads a local variable with a value from a register or
memory. Both LOAD and STORE are useful for keeping values of user-program
variables. For example, to see what happens if variable Z has a value of
-584.01859 instead of -584.01858, load the old value, -584.01859, into a
local variable so it can be stored again later.

Format:

LOAD xn FROM wopd addpe88

Xn A local variable where n is a 2-digit integer

wopd addpe88
Memory location to be copied to xn: can be a register.

Example:

* DISPLAY X01:DISPLAY Y OCTAL
X-variables display at X01

00000001 0000000000000000000000
Memory display in octal at Y in TEST

00000233 0400046263146314631463
* LOAD X01 FROM Y * DISPLAY X01:DISPLAY Y OCTAL

X-variables display at X01
00000001 0400046263146314631463

Memory display in octal at Y in TEST
00000233 0400046263146314631463

SG-0056 4-13

MODULEBASE DIRECTIVE

The MODULEBASE directive specifies a default module for looking up
symbols.

Format:

MODULE BASE moduZename

Parameter:

moduZename
Name of the new default module which is the name of a
program, subprogram, or common block in a CFT program, or
the name in the IDENT statement in a CAL routine. A
particular occurrence of a common block can be specified
with'subprogram.commonblock'.

Examples:

41= DISPLAY I
Memory display in decimal at I in TEST

00000225 36
41= MODULE BLOCKl

Module BLOCKl begins at word 200
41= DISPLAY M

Memory display in decimal at M in BLOCKl
00000201 6
41= MODULE ADD.BLOCKl

Module ADD begins at word 260
Module BLOCKl begins at word 200

41= DISPLAY Y
Memory display in decimal at Y in BLOCKl

00000201 6

NOLIST DIRECTIVE

The NOLIST directive stops output from going to $LST.

Format:

SG-0056 4-14

NOSTOP DIRECTIVE

A breakpoint package uses the directive NOSTOP to have SID continue with
the program being tested after the directives in the package have been
executed. NOSTOP can be placed anywhere in a package and is not affected
by a TESTCONDITION directive.

Format:

Example:

PACKAGE 6 AT S'120
Breakpoint 06 installed

DISPLAY SUM
NOSTOP
ENDPACKAGE
•
BREAKPOINT 7 AT S'220

Breakpoint 07 installed
•
RUN AT TEST
Breakpoint 6 at 210 in TEST

Memory display in decimal at SUM in TEST
00000207 0

Breakpoint 6 at 210 in TEST
Memory display in decimal at SUM

00000207 20
Breakpoint 6 at 210 in TEST
Memory display in decimal at SUM

00000207 25
Breakpoint 6 at 210 in TEST
Memory display in decimal at SUM

00000207 25
Breakpoint 6 at 210 in TEST
Memory display in decimal at SUM

00000207 31
Breakpoint 6 at 210 in TEST
Memory display in decimal at SUM

00000207 31
Breakpoint 6 at 210 in TEST
Memory display in decimal at SUM

00000207 40
Breakpoint 6 at 210 in TEST
Memory display in decimal at SUM

00000207 52
Breakpoint 7 at 220 in TEST

in TEST

in TEST

in TEST

in TEST

in TEST

in TEST

in TEST

SG-0056 4-15

PACKAGE DIRECTIVE

The PACKAGE directive opens a breakpoint package. packages can be
conditional.

Format:

PACKAGE n [AT] papcet addpe88 [IF wopd addpe88 pet vatue]

Parameters:

n Breakpoint number between 1 and 15

papce t addpeB8
Location of the instruction where execution is interrupted

wopd addpe88
Location of a value to be tested; can be a register or a
local variable.

pet Relation tested for is one of the following:

vatue

SG-0056

=
<
>

<=
>=
<>

NOTE

These symbols must be entered in the format
shown in order to be recognized.

Constant to be compared to the value in wopd addpe88; can
be signed integer, floating-point, logical, double
precision, complex, or string; default base is decimal when
in mixed-base mode.

4-16

Example:

t PACKAGE 4 at S'140
Breakpoint 04 installed

i DISPLAY LIST FOR 6
i DISPLAY OVAL; DISP OVAL IN OCTAL FOR 2
i ENDPACKAGE
t RUN AT TEST

Breakpoint 4 at 140 in TEST
Memory display in decimal at LIST in TEST

00000217 234
00000220
00000221
00000222
00000223
00000223

-12
56
93
o

-45
Memory display in double prec. at DVAL in TEST

00000237 0.999999999999999999999999999950-01
Memory display in octal at OVAL in TEST

00000237 0377756314631463146314
00000240 0000006314631463146314

PATCH DIRECTIVE

The PATCH directive enters new values into memory, registers, or local
variables. It can patch values into a full word, a bit field, or a
parcel.

Format for a full-word patch:

Parameters:

7J)opd addpe88

SG-0056

First location to receive a new value. Using an * in
this field causes the directive to use the word address of
the last DISPLAY or PATCH directive.

Values to be stored. Values are integer,
floating-point, double precision, complex, logical, or
strings. Default base is decimal when in mixed mode, but
integer values can be given in octal or hexadecimal. The
values are stored in successive memory locations.

4-17

Format for a bit-field patch:

PATCH [AT] ~o~d add~e88 BIT fip8tbit COUNT bitcount WITH value

Parameters:

U)o~d add~e88
Location of the word to be patched. Using an * in this
field causes the directive to use the word address of the
last DISPLAY or PATCH directive.

fi~8tbit position of the first bit in the field to be patched;
default base is decimal when in mixed mode.

bitcount Decimal size of the field to be patched

value Value to be stored. The default is octal and must be an
unsigned integer. This value can be changed to decimal or
hexadecimal by using the prefixes D' or X', respectively.

Format for a parcel patch:

PATCH PARCEL [AT] pa~cel add~e88 WITH valuel [value2 ••• valuen]

Parameters:

pa~cel add~e88
Location of the first parcel to receive a new value

valuen Value to be stored. The default is octal and must
be an unsigned integer. This value can be changed to
decimal or hexadecimal by using the prefixes D' or X',
respectively.

Example of a full-word patch with a floating-point value:

DISPLAY Y
Memory display in floating pt at Y in TEST

00000233 0.52000000000000E+Ol'
PATCH Y WITH 12.7
DISPLAY Y

Memory display in floating pt at Y in TEST
00000233 0.12700000000000E+02

SG-0056 4-18

Example of a word patch with negative integer value using the special
symbol *:

DISPLAY LIST(4)
Memory display in decimal at LIST(4) in TEST

00000222 93
i PATCH * WITH -924
D *

Memory display in decimal at LIST(4) in TEST
00000222 -924

Example of a bit-field patch of an X-variable:

•
DISPLAY X03

X-variables display at X03
00000003 0000000000000000000000
PATCH X03 BIT 10 COUNT 6 WITH 12
DISPLAY X03

X-variables display at X03
00000003 0000120000000000000000

Example of a parcel patch:

WHERE TEST
Symbol TEST in TEST is at parcel 242a

D 242 IN PARCEL
Memory display in parcels

00000242 110700 000301 020000 000303
PATCH PARCEL AT TEST+OB WITH 000302
D 242 PARCEL

Memory display in parcels
00000242 110700 000302 020000 000303

QUIT DIRECTIVE

The QUIT directive terminates a debugging session without running the
entire user program.

SG-0056 4-19

REPEAT DIRECTIVE

The REPEAT directive repeats directives that are in the previous input
record. A blank line followed by a carriage return is the format for
this directive. If the last record from the input dataset was an
ALTERNATEINPUT directive, the repeated record is the last record from the
alternate input dataset. A record can be repeated more than once. For
example, to repeat a line three times, enter three blank lines.

RESETCONDITION DIRECTIVE

The RESETCONDITION directive deactivates conditional variables.

Format:

Parameter:

Conditional variable to be deactivated, where ni is a
2-digit integer

REWIND DIRECTIVE

The REWIND directive is used to rewind one or more local datasets. The
specified datasets are positioned at their initial points. If a dataset
is already at its initial point, this directive has no effect on that
dataset.

Format:

REWIND dn 1 [dn2 ••• dnnl

Parameter:

Name of dataset to be rewound

SG-0056 4-20

RUN DIRECTIVE

The RUN directive executes the user program to the next breakpoint or to
the end of the program if no breakpoint is encountered.

Format:

RUN [[AT] papce Z, addpess]

Parameter:

papcez' addpess

Example:

BREAKPOINT 1
Breakpoint

BREAKPOINT 2
Breakpoint

RUN AT TEST
Breakpoint

RUN
Breakpoint

Address where execution begins; normally present only for
the first RUN or STEP directive to specify the start of the
program. If no parcel address is given, execution resumes
at the current location.

AT S'110
01 installed
AT S'120
02 installed

1 at 110 in TEST

2 at 120 in TEST

SETCONDITION DIRECTIVE

The SETCONDITION directive activates conditional variables.

Format:

Parameter:

SG-0056

Conditional variables to be activated, where ni is a
2-digit integer

4-21

Conditions are also affected by DECREMENTVARIABLE. If variable xni
becomes 0 as a result of the decrement directive, condition cni is
activated.

STEP DIRECTIVE

The STEP directive causes a specified number of CAL instructions in the
user program to be executed.

Format:

STEP [AT papceL addpe88] [[FOR] count]

Parameters:

papceL addpe88
Address where execution begins1 normally present only for
the first RUN or STEP directive to specify the start of the
program. If no parcel address is used, program execution
resumes at the current location.

count Number of CAL instructions to execute. Default is 1.

Examples:

CAUTION

Avoid using STEP while executing $FTLIB. Sequential
I/O can be stepped through using CAL calls that avoid
FTLIB. Using STEP in $SYSLIB can tie the traceback
information in a loop.

STEP AT TEST
STEP command ended at P=00000200c

STEP FOR 5;DISPLAY Al IN DECIMAL FOR 3
STEP command ended at P=00000203b

SG-0056 4-22

Example (continued):

A-registers display in decimal at Al
00000001 21
00000002 32
00000003 13

STEP 5;0 * 3
STEP command ended at P=00000201c
A - r-egisters display in decimal at Al

00000001 21
00000002 13
00000003 32
STEP;D * 3

STEP command ended at P=00000201d
A - registers display in decimal at Al

00000001 21
00000002 13
00000003 32

STORE DIRECTIVE

The STORE directive stores the value from a local variable in a specified
memory location or register. Both LOAD and STORE are useful for keeping
values of user-program variables. For example, to see what happens if
variable Z has a value of -584.01859 instead of -584.01858, load the old
value, -584.01859, into a local variable so it can be stored again later.

Format:

STORE Xn AT wopd addpe88

Parameters:

Xn A local variable where n is a 2-digit integer

wopd addpe88

SG-0056

Memory location into which the value from xn is to be
stored

4-23

Example:

DISPLAY X01;DISPLAY Z OCTAL
X-variables display at X01

00000001 040004414631463146314-6---
Memory display in ~c-~al-at Z in-TEST--

00000234 oooooooooooaoOOOOOOOOO
STORE X01 AT Z
DISPLAY X01;DISPLAY Z OCTAL

X-variables display at XOI
00000001 0400044146314631463146

Memory display in octal at Z in TEST
00000234 0400044146314631463146

TESTCONDITION DIRECTIVE

The TESTCONDITION directive is used to exit a breakpoint package if one
of the conditional variables being tested is activated.

Format:

Parameter:

Cni Conditional variable to be tested, where ni is a
2-digit integer

Example:

To display the variables SUM and I every fourth time a loop is executed,
use the following package (S'210 is a label in the loop):

PATCH X03 WITH 4; RESET C03
PACKAGE 4 AT S'210

DECREMENT X03
NOS TOP
TESTCONDITION C03
DISPLAY SUM
DISPLAY I

SG-0056 4-24

Example (continued):

I .

PATCH X03 WITH 4
RESET C03
ENDPACKAGE

* BREAKPOINT 5 AT S'220
t •
t RUN AT TEST

Breakpoint 4 at 210 in TEST
Memory display in decimal at SUM in TEST

00000207 25
Memory display in decimal at I in TEST

00000205 4
Breakpoint 4 at 210 in TEST
Memory display in decimal at SUM in TEST

00000207 52
Memory display in decimal at I in TEST

00000205 8
Breakpoint 5 at 220 in TEST

TRACEBACK DIRECTIVE

The TRACEBACK directive reports the calling tree from the current program
counter for the user program back to the user's main program.

Format:

Example:

t TRACEBACK
Routine SUB3 stopped at P=346a
SUB3 was called by SUB2 at line 6, P=317c
SUB2 was called by SUB1 at line 7, P=265c
SUB1 was called by TEST at line 12, P=220a

SG-0056 4-25 01

I

WHERE DIRECTIVE

The WHERE directive returns the address for a variable or label or
information about why its value cannot be displayed. It also returns the
symbol associated with an address or the closest symbol whose address is
less than the address given.

Format:

Parameter:

Variable name, label, or line number used in the program or
word or parcel address. Names or labels can be preceded by
module names, for example, modulename.symbol.

Example:

t WHERE TEST.S'120 ADD. VALl
Module TEST begins at word 200
Symbol 120 in TEST is at parcel 263b
Symbol ADD in ADD is at parcel 326a
Symbol VALl in ADD is a dummy argument whose current actual argument
is at word 214

i WHERE 220
Symbol LIST in TEST is at word 217

WIDTH DIRECTIVE

The WIDTH directive changes the display width. The default width is one
column except for the Exchange Package. Other possible widths are 80
characters or 132 characters.

Format:

!IDTH newwidth

SG-0056 4-26 01

•

Parameter:

newwidth New width for the display; can be £OLUMN, ~CREEN, or ~AGE.

Example:

t DISPLAY 200 IN PARCEL FOR 6
Memory display in parcels

00000200 100100 000210 100200 000211
00000201 100300 000212 006000 002024
00000202 001014 030701 030102 030207
00000203 031032 012000 001024 030702
00000204 030203 030307 006000 001006
00000205 110100 000213 110200 000214
I DISPLAY X FOR 3

Memory display at X in TEST
00000210 0000000000000000000025
00000211 0000000000000000000040
00000212 0000000000000000000015
I DISPLAY ANS IN ASCII FOR 6

Memory display in ASCII at ANS in TEST
00000213 ONE •••••
00000214 TWO •••••
00000215 THREE •••
0000216 FOUR ••••
00000217 FIVE ••••
00000220 SIX •••••
I .
I WIDTH SCREEN
I DISPLAY 200 IN PARCEL FOR 6

Memory display in parcels
00000200 100100 000210 100200 000211 100300 000212 006000 002024
00000202 030203 030307 006000 001006 110100 000213 110200 000214
I DISPLAY X FOR 3

Memory display at X in TEST
00000210 0000000000000000000025 0000000000000000000040 0000000000000000000015
I DISPLAY ANS IN ASCII FOR 6

Memory display in ASCII at ANS in TEST
00000213 ONE ••••• TWO ••••• THREE ••• FOUR •••• FIVE •••• SIX •••••

SG-0056 4-27 01

SID MESSAGES

SID produces uncoded and coded messages. Uncoded messages either inform
the user of an error or warn the user of problems if the present action
continues. uncoded messages point to the character that is causing the
error. A coded message beginning with DB, means SID has aborted and is
not reprievable. Coded messages go to the logfile and uncoded messages
go to the output dataset.

UNCODED MESSAGES

**** ERROR: a file name is required
The directive ALTERNATE INPUT was used without a file name.

**** ERROR: a parcel address is required
An INSTRUCTION directive did not contain a parcel address or the
special symbol PC.

**** ERROR: a period must be followed by a symbol
A symbol was followed by a period and another character, causing SID
to treat the first symbol as a module name and to expect another
symbol following the period. A period followed by a space always
terminates the directive.

**** ERROR: a relation is required in an IF clause

A

The word address in the conditional clause of a BREAKPOINT or PACKAGE
directive was not followed by a legal test relation (one of =, <>.
<=, >, or >=). To be recognized, a test relation must be
entered exactly as it is shown in this manual.

**** ERROR: a symbol or address is required
The directive name WHERE was followed by something other than a
symbol, a word address, or a parcel address.

**** ERROR: address is out of range
A word address is outside of the user address space (larger than
JCFL).

SG-0056 A-I

**** ERROR: address is too large
An address was more than 24 bits.

**** ERROR: alternate input file is not available
The dataset used in an ALTERNATE INPUT directive is not local to the
job.

**** ERROR: bad syntax in complex number
A complex number used the wrong format.

**** ERROR: bad syntax in number
An illegal character was encountered while parsing a number.

**** ERROR: base must be OCTAL, DECIMAL, or MIXED
Something other than OCTAL, DECIMAL, or MIXED or their abbreviations
followed the keyword BASE.

**** ERROR: bit count is too large
The bit count in a masked PATCH directive did not fit into the
remainder of the word because the starting bit number plus the bit
count was greater than 64.

**** ERROR: bit number is too large
The starting bit for a masked PATCH or masked DISPLAY directive is
greater than 63 decimal.

**** ERROR: breakpoint address refused
A SID logic problem caused the breakpoint address to be rejected.

**** ERROR: breakpoint number needed
A BREAKPOINT or PACKAGE directive was missing a breakpoint number.
This number, between 1 and 15, must follow the directive keyword.

**** ERROR: can't be used in package and one is open
A directive that cannot be used in a breakpoint package was entered
while a package was still open.

**** ERROR: common block table is missing
The symbol table record for a common block is missing, probably
because the subroutine was not compiled or assembled with the
necessary option.

SG-0056 A-2

**** ERROR: condition refused
A SID logic failure caused the breakpoint condition to be refused.

**** ERROR: count must be numeric
One of the directives FORWARD or BACKWARD was followed by a
non-numeric input token when a count was expected.

**** ERROR: count must be unsigned integer
The bit count for a masked PATCH or masked DISPLAY directive was not
an unsigned integer constant as expected.

**** ERROR: count not allowed for masked display
A masked display directive included a display count, but only one
value at a time can be shown with a masked display.

**** ERROR: directive must begin with keyword
The first token of an input record or the first token following a
semicolon was not a SID keyword; the directive name could have been
misspelled.

**** ERROR: directive must end with ; or end of line
An extra token was found at the end of a directive.

**** ERROR: dual format not allowed for masked display
The keyword AND followed the display format in a masked DISPLAY
directive, but masked displays use only one display format.

**** ERROR: empty parentheses
Empty parentheses were used in a word-address expression.

**** ERROR: exponent overflow
The exponent for a floating-point value was too large.

**** ERROR: exponent underflow
The exponent for a floating-point value was too small.

**** ERROR: fewer subscripts than declared
An array reference contained fewer subscripts than dimensions
declared in the array.

SG-0056 A-3

**** ERROR: first RUN requires a parcel address
A starting address must be given the first time the user code is
entered with a RUN or STEP directive. The starting address is
usually the name of the program.

**** ERROR: first STEP requires a parcel address
A starting address must be given the first time the user code is
entered with a RUN or STEP directive. The starting address is
usually the name of the program.

**** ERROR: help file is not available
The file $DBHELP, which contains the HELP text, is not local to the
job and is not available on the system directory.

**** ERROR: HELP topic tables are too small
The tables that hold the directory for the help files are not large
enough to hold information about all of the HELP topics.

**** ERROR: indirect address is too large
An indirect address is outside the user's address area.

**** ERROR: input token is not a symbol
A SID logic error caused a routine for looking up symbols in the
symbol dataset to be called with a nonsymbol argument.

**** ERROR: invalid hexadecimal digit
A value preceded by the prefix X, contained an invalid hexadecimal
digit and a hexadecimal value was expected.

**** ERROR: invalid octal digit
An invalid character was detected in an octal number.

**** ERROR: invalid parcel specifier
A character other than A, B, C, or D followed an octal address when a
parcel specifier was expected.

**** ERROR: invalid relation
The IF clause in a BREAKPOINT or PACKAGE directive used a relation
other than ~, <>, <, <=, >, or >=. To be recognized, a
test relation must be entered exactly as it is shown in this manual.

SG-0056 A-4

**** ERROR: keyword AND requires a format
The keyword AND in a DISPLAY directive was followed by something
other than a valid format specifier.

**** ERROR: keyword AT requires a parcel address
The keyword AT in a RUN or STEP directive was not followed by a valid
parcel-address expression.

**** ERROR: keyword FOR requires a count
The keyword FOR in a DISPLAY, FORWARD, BACKWARD or INSTRUCTION
directive was not followed by an unsigned integer.

**** ERROR: keyword FOR requires a step count
The keyword FOR in a STEP directive was not followed by an unsigned
integer.

**** ERROR: keyword IN requires a format
The keyword IN in a DISPLAY directive was not followed by a
recognized format name.

**** ERROR: label not saved~ see HELP LABELS
The address for a statement label was not saved. LABELS, a HELP
topic, lists several possible reasons for labels not being saved.

**** ERROR: LOAD requires an X-variable
The keyword LOAD was not followed by an x-variable name.

**** ERROR: maximum string length is 8 characters
A literal string used as a value had more than eight characters.

**** ERROR: memory address is missing
No address was given when a word-address expression was expected.

**** ERROR: module name must be a symbol
The keyword MODULEBASE was not followed by a symbol.

**** ERROR: module not found
The module name preceding a variable name or label was not found in
the Debug Map Table in $DEBUG.

SG-0056 A-5

**** ERROR: module with this address not found
An address used in a WHERE directive was outside the range of
subroutines and common blocks listed in the Debug Map Table in $DEBUG.

**** ERROR: must be used in package and none is open
A directive that can only be used in a breakpoint package was entered
when no package was open.

**** ERROR: need constant to specify a register
A register was specified with a symbol other than a constant, for
example, 'B.ZA' where ZA was not defined with the '=' pseudo-ope

**** ERROR: nesting of ALTERNATE INPUT is not implemented
An ALTERNATE INPUT directive was used in an alternate input file.

**** ERROR: no module has been specified
There is no current default module, this message should occur only
following a MODULEBASE directive with an error.

**** ERROR: not a normal symbol
only symbols classified as constant or normal in the symbol Table can
be processed by SID currently.

**** ERROR: null field
A value decoded by $NICV had a null field, probably from a logic
problem in SID.

**** ERROR: number is too large
A number in a SID directive takes more than 64 bits.

**** ERROR: number must be between 00 and 15 decimal
The number for a local X or C variable was not in the correct range.
For mixed-base mode (the default), this number is decimal and must be
between 00 and 15.

**** ERROR: number must be between 00 and 17 octal
The number for a local X or C variabie was not in the correct range.
~n octal-base mode this number is octal and must be between 0 and 17.

SG-0056 A-6

**** ERROR: number must be between 1 and 15 decimal
A breakpoint or package number was not in the correct range. For
mixed-base mode (the default) or decimal mode, this number is decimal
and must be between 1 and 15.

**** ERROR: number must be between 1 and 17 octal
A breakpoint or package number was not in the correct range. For
octal-base mode, this number is octal and must be between 1 and 17.

**** ERROR: package contains undecodeable command
A SID logic failure placed a command that SID cannot decode in a
breakpoint package.

**** ERROR: package overflow
The last directive entered is ignored and the package is closed.

**** ERROR: parcel address is missing
NO parcel address was given when a parcel-address expression was
expected.

**** ERROR: parcel address is out of range
A parcel-address expression is out of the user's address area.

**** ERROR: parcel value must fit in 16 bits
The value given in a PATCH PARCEL directive was too large to fit into
16 bits.

**** ERROR: PATCH list is too long
The list of values used in a PATCH directive is longer than the
current limit.

**** ERROR: problem with format of $DEBUG
The Symbol Table in $DEBUG does not have the expected format.

**** ERROR: requested format is not implemented
The format requested for a DISPLAY directive is not implemented.

**** ERROR: REWIND requires a file name
The keyword REWIND was followed by something other than a valid file
name.

SG-0056 A-7

**** ERROR: routine GETNONBL failed
Routine GETNONBL in subroutine DBGTOKEN failed due to a SID logic
error.

**** ERROR: search for dimension descriptor is lost
A Symbol Table search was lost due to a SID logic failure or $DEBUG
format problem.

**** ERROR: search for dimension symbol entry is lost
A Symbol Table search was lost due to a SID logic failure or $DEBUG
format problem.

**** ERROR: STORE requires an x-variable
The keyword STORE was not followed by a local variable name.

**** ERROR: subroutine table is missing
The Symbol Table record for a subroutine is missing, probably because
the subroutine was not compiled or assembled with the necessary
option.

**** ERROR: subroutine table is missing for moduZename
The subroutine table for the module named in the message is missing.
The message is issued in response to the WHERE directive using a word
or parcel address, and usually gives the name of a library routine
containing the address.

**** ERROR: subscript must be an integer
An array subscript was something other than an integer constant or an
integer variable.

**** ERROR: subscript must be followed by , or)
An array subscript was followed by something other than a comma or
closing parenthesis.

**** ERROR: symbol * not permitted in an IF clause
The symbol * was used for the word address in the IF clause of a
BREAKPOINT or PACKAGE directive.

SG-0056 A-8

**** ERROR: symbol file is not available
A symbolic address was used in a directive but the dataset containing
the Symbol Table is not available. The dataset can be missing for
two reasons.

• The program was not compiled or assembled with the necessary
options.

• The absolute binary file was saved for later use but the symbol
dataset was not saved or not accessed.

**** ERROR: symbol is external
The address is meaningless for a symbol that is external to the
module in which it is accessed.

**** ERROR: symbol is not a parcel
A symbol used in a parcel-address expression was not a label or entry
point.

**** ERROR: symbol is not an array
A symbol followed by subscripts is not defined as an array.

**** ERROR: symbol is not word aligned
The symbol used in a word-address expression has a bit offset and
cannot be used.

**** ERROR: symbol is too long
A symbol in a directive was longer than the longest valid symbol that
could be expected in that position.

**** ERROR: symbol search is lost
A SID logic error caused the wrong symbol Table record to be searched.

**** ERROR: symbol was not found
A variable or label was not found in the Symbol Table record for the
subprogram or common block last set up as the default with the
MODULEBASE directive, or for the module whose name preceded the
variable or label.

**** ERROR: the keyword AT is required
The X variable in a STORE directive was not followed by the required
keyword AT.

SG-0056 A-9

**** ERROR: the keyword COUNT is required
A masked PATCH or masked DISPLAY directive did not include the
keyword COUNT between the number of the first bit and the bit count.

**** ERROR: the keyword FOR is required
The display count in an INSTRUCTIONS directive was not preceded by
the keyword FOR.

**** ERROR: the keyword FROM is required
The X variable in a LOAD directive was not followed by the required
keyword FROM.

**** ERROR: the keyword IF is required
The parcel address in a BREAKPOINT or PACKAGE directive was not
followed by the keyword IF.

**** ERROR: the keyword WITH is required
A PATCH directive was entered without the keyword WITH between the
first address to be patched and the list of patch values.

**** ERROR: there is no address to scroll from
A FORWARD or BACKWARD directive was used when the last display did
not use an address that could be reused, or before any DISPLAY
directive was used.

**** ERROR: this address overlaps another breakpoint
Installing more than one breakpoint on a parcel can cause the wrong
code to be replaced when breakpoints are removed. The latest
BREAKPOINT or PACKAGE directive is ignored.

**** ERROR: this format not allowed for masked display
An invalid display format was used with a masked DISPLAY directive.

**** ERROR: this value cannot be tested
The value to be tested against in the IF clause of a BREAKPOINT or
PACKAGE directive is an unrecognized type or a type that cannot be
tested.

**** ERROR: too many subscripts in array reference
An array reference contained more subscripts than dimensions declared
in the array.

SG-0056 A-IO

**** ERROR: two-word formats not allowed in dual display
One of the formats DOUBLE or COMPLEX was used in a DISPLAY directive
with another format. Only I-word formats are allowed in dual-format
displays.

**** ERROR: unbalanced parentheses
unbalanced parentheses were used in a word-address expression.

**** ERROR: unrecognized base, octal used
A prefix other than 0', D', and X, was used with a number, so octal
was used as the base for converting the number.

**** ERROR: unrecognized directive
The first token in an input record or following a semicolon was not
recognized as a directive name or a valid abbreviation of a directive
name.

**** ERROR: value is too large for bit field
The value given in a masked PATCH directive does not fit into the
specified bit field.

**** ERROR: value must be string or number
The value used in a PATCH directive was not a string or a recognized
type of number.

**** ERROR: value must be unsigned integer
The value for a masked or parcel patch was not an unsigned integer.
Negative values must be entered using their octal representation.

**** ERROR: width must be COLUMN, SCREEN, or PAGE
Something other than COLUMN, SCREEN, or PAGE followed the keyword
WIDTH.

**** ERROR: X or C variable required
One of the keywords INCREMENTVARIABLE or DECREMENTVARIABLE was not
followed by an X variable1 or, SETCONDITION, RESETCONDITION, or
TESTCONDITION was not followed by a condition variable.

**** WARNING: existing breakpoint replaced
When the last breakpoint was installed, an earlier breakpoint with
the same number was replaced.

SG-0056 A-II

**** WARNING: subscript out of bounds
The subscript for an array is not in the range declared for the
array. The subscript is still used, which could cause the wrong
location to be used.

**** WARNING: the first parcel has been moved at label ZabeL
When a breakpoint is installed, two parcels of the user code are
replaced by a jump to SID. If the second parcel is referenced in a
jump instruction, the second half of the jump instruction is executed
instead of the instruction that was replaced.

**** WARNING: return jump instruction moved
A breakpoint was placed on a return jump instruction, so the return
address for the subroutine could be wrong. There is no problem,
however, if only one breakpoint is set or if the breakpoint is exited
through the STEP directive.

**** WARNING: stepped into a wild jump from P=address
The address for the user program's P register is outside the user's
address area (>JCHLM). This could happen when data rather than code
was executed with the STEP directive, or if an invalid address was
patched into a jump instruction.

CODED MESSAGES

DBOOI - SYMBOL FILE IS NOT AVAILABLE
The dataset ~sed with ~he S parameter is not local to the job.

DB002 - INPUT FILE IS NOT AVAILABLE
The dataset used with the I parameter is not local to the job.

DB003 - CNT. VALUE IS NOT A POSITIVE INTEGER
The value given for the CNT parameter was negative or contained
non-numeric characters.

DB004 - OVERLAPPING BREAKPOINTS
A breakpoint was placed inside the SID code or a library routine used
by the breakpoint routines was stepped into.

SG-0056 A-I 2

DB005 - COUNT DECREMENTED TO ZERO
The variable initialized by .the CNT parameter on the SID control
statement was decremented to O. This variable is decremented once
each time a breakpoint is reached.

DB006 - EMPTY CONTROL STATEMENT FILE
The control statement file was empty when SID, running in batch mode,
tried to read the control statement for the user program.

SG-0056 A-l3

I

EXAMPLES OF COMPILER-GENERATED
DO-LOOP LABELS

The following examples show generated statement labels for DO-loops.

EXAMPLE 1 - SIMPLE DO-LOOP

Original DO-loop:

DO 10 I = 1,N
CALL X(I)

10 CONTINUE

Same loop with compiler-generated labels:

I = 1
IF (N.LT.l) GO TO lOB

lOA CONTINUE
CALL X (I)
I = I+l
IF (I.LE.N) GO TO lOA

lOB CONTINUE

EXAMPLE 2 - LOOP FOR WHICH LABEL B IS NOT SAVED

Original DO-loop:

DO 30 I = 1,200
CALL Z(I)

30 CONTINUE

Same loop with compiler-generated labels:

I = 1
30A CONTINUE

SG-0056

CALL Z (I)
I = I+l
IF (I.LE.200) GO TO 30A

B-1

B

01

I

EXAMPLE 3 - NESTED OO-LOOPS WITH SHARED TERMINAL STATEMENT

Original OO-loop:

DO 20 I = l,N
DO 20 J = 1,M
CALL Y(I,J)

20 CONTINUE

Same loop with compiler-generated labels:

I = 1
IF (N.LT.l) GO TO 20B

20A CONTINUE
J = 1
IF (M.LT.l) GO TO 20D

20C CONTINUE
CALL Y(I,J)
J = J+l
IF (J .LE.M) GO TO 20C

20D CONTINUE
I = 1+1
IF (I.LE.N) GO TO 20A

20B CONTINUE

EXAMPLE 4 - LOOP FOR WHICH THE ORIGINAL LABEL IS SAVED

Original DO-loop:

DO 40 I = 1,N
IF (LIST(I).EQ.O) GO TO 40
CALL A(LIST(I»

40 CONTINUE

Same loop with compiler-generated labels:

1=1
IF (N.LT.l) GO TO 40B

40A CONTINUE
IF (LIST(I).EQ.O) GO TO 40
CALL A(LIST(I»

40 CONTINUE
I = 1+1
IF (I.LE.N) GO TO 40A

40B CONTINUE

SG-0056 01

I

EXAMPLE 5 - SHORT VECTOR LOOp

Original DO-loop:

DO 50 I = 1,50
A(I) = 0

50 CONTINUE

Same loop as set up by the CFT compiler:

A(1:50) = 0
I = 51

A(l:SO) here means elements A(l) through A(SO)

EXAMPLE 6 - VECTORIZED DO-LOOP

Original DO-loop:

DO 60 I = 1,N
A(I) = 0

60 CONTINUE

Same loop with compiler-generated labels:

1=1
REMAIN = MOD(N,64)
IF (N.LT.l) GO TO 60B

60A CONTINUE
A(I:I+REMAIN-l) = 0
I = I+REMAIN
IF (I.LE.N) GO TO 60A
REMAIN = 64

60B CONTINUE

A (I:I+REMAIN-l) here means elements A(I) through A(I+REMAIN+l). The
compiler-generated variable REMAIN serves to cycle I in steps of 64.
Note that the first loop iteration will process the leftover, mod 64,
segment.

SG-0056 B-3 01

INDEX

Abort, 1-5, 1-6, 1-7, 3-1, A-I
Absolute binary

load module, 2-2, 2-3, 2-5
object module, 2-2

ACTIVE directive, 4-2
Addressing methods, 1-2
Alternate input datasets, 1-7, 4-2, 4-3,

A-I
ALTERNATE INPUT directive, 1-7, 3-2, 4-2

error, A-I, A-2, A-6
Array elements, 1-3, A-3, A-8, A-9, A-lO,

A-12
Attributes

word, 1-3
parcel, 1-2, 1-3

BACKWARD directive, 1-6, 3-2, 4-3, 4-10
error, A-3, A-5, A-IO

BASE directive, 1-6, 3-2, 4-4
error, A-2

Batch
mode, 1-1, 1-7, 4-1, A-13
job, 2-3, 2-4

$BLD, 2-3
Braces (see Conventions)
Brackets (see Conventions)
BREAKPOINT directive, 1-6, 3-2, 4-4
Breakpoint, 1-5, 1-6, 1-7, 2-2, 2-3, 3-1,

3-3, 3-4, 4-2, 4-4, 4-5, 4-6, 4-21, A-3,
A-II, A-12

CAL

address, A-2
number, 3-2, 4-6, A-2
error, A-I, A-2, A-4, A-8, A-IO
package, 1-5, 3-1, 4-1, 4-2, 4-10,

4-15, 4-24, A-2, A-6, A-7
routine, 3-2, 3-3
tracking, 5-1

control statement, 2-1, 2-3
instructions, 4-12, 4-22
programs, 1-1, 1-4, 2-1, 2-3, 3-3, 4-14

CFT
control statement, 2-1, 2-3
line numbers, 1-4
programs, 1-1, 1-3, 1-4, 2-1, 2-3, 2-5,

3-3, 3-4, 4-7, 4-14
CNT parameter, A-12, A-13
COMMENT directive, 4-6
Common blocks, 1-3, 4-14, A-2, A-6, A-9
Compiler-generated DO-loop labels, 1-4, B-1

HR-0056 Index-1

Conditional
breakpoint, 3-1
variables (see Variables)

Constants, 1-2, 1-3, 1-6, 4-5, 4-7, 4-15,
A-6

Control statements, 2-1
Conventions, 1-8
COS, 1-1

tables, 1-3
Counters, 1-5
CSIM (see Simulator)

Dataset names, 2-2
DEBUG directive, 2-3, 2-4
$DEBUG, 1-4, 2-4, A-5, A-6, A-7, A-8
Debug map table, A-5, A-6
Debugging

in batch mode, 1-1
interactively, 1-1

DECREMENTVARIABLE directive, 4-6, 4-22
error, A-II

DISPLAY directive, 1-5, 1-6, ,4-3, 4-7,
4-8, 4-10, 4-17, 4-18

error, A-2, A-3, A-5, A-7, A-lO, A-II
DN parameter, 2-1
DO-loops, 1-4, 3-4, B-1

ECH parameter, 1-7
Echo, 4-12

dataset, 1~7, 2-2, 4-6
ENDPACKAGE directive, 3-2, 4-10
Entry points, 1-4, A-9
Error messages (see Messages)
Examples of setting up programs, 2-4
Exchange Package, 1-5, 4-7
Exponent overflow/underflow, A-3

FORMAT statements, 1-4
FORWARD directive, 1-6, 3-2, 4-3, 4-10

error, A-3, A-5, A-lO
$FTLIB, 3-3, 4-22

HELP directive, 4-11
error, A-4, A-5

INCREMENTVARIABLE directive, 4-11
error, A-II

Indirect addressing, 1-3

01

Input, 1-7
INSTRUCTION directive, 1-6, 4-12

error, A-I, A-5, A-10
Integer, 1-6

simple variable, 1-3, A-a
constant, 1-3, A-3, A-a

Interactive
job, 2-3, 2-4, 2-5
mode, 1-1, 1-7, 4-1
program, 1-6

Introduction, 1-1
Italics (see Conventions)

Jump instruction, A-12

Labels, 1-3, A-5, A-9, A-12, B-1
LDR control statement, 2-1, 2-3, 2-5
LIST directive, 1-7, 4-12
LOAD directive, 4-13, 4-23

error, A-5, A-10
Local datasets, 4-20
Local variables (see Variables)
Logfi1e, A-I
$LST, 1-7, 4-11, 4-12, 4-14

Masked display, A-3
MAXBLOCK, 2-4
Memory locations, 1-1, 1-7, 3-4, 4-7, 4-13,

4-17, 4-23, A-5
Memory requirements, 1-1
Messages

coded, A-I, A-12, A-13
error, A-I, A-2, A-3, A 4, A-5, A-6,

A-7, A-a, A-9, A-10, A-II
uncoded, A-I, A-2, A-3, A-4, A-5, A-6,

A-7, A-a, A-9, A-10, A-II
warning, 3-3, A-I, A-II, A-12

Module, 1-3, 1-5, 4-14, A-6, A-9
name, 1-3, 1-5, 4-26, A-I, A-5, A-8

MODULEBASE directive, 1-3, 3-2, 4-14
en'or, A-6, A-9

NODEBUG directive, 1-4, 2-3, 2-4
NOLIST directive, 1-7, 4-14
NOSTOP directive, 3-1, 3-2, 4-15
Nostop request, 3-3
NX parameter, 2-2, 2-3, 2-5ut, 1-7

PACKAGE directive, 1-6, 3-2, 4-16
error, A-I, A-2, A-4, A-8, A-10

Parcel address, 1-1, 1-2, 1-4, 1-6, 3-1,
3-3, 3-4, 4-4, 4-5, 4-15, 4-18, 4-21,
4-22, 4-26

error, A-I, A-4, A-5, A-7, A-8, A-9
Parcel-address symbols, 1-4
PATCH directive, 1-6, 4-7, 4-8, 4-17, 4-18

error, A-2, A-3, A-7, A-10, A-II
PC (program counter), 1-5, 4-12, A-I
Program

segment name, 1-3
testing, 1-1

HR-0056 Index-2

QUIT directive, 1-7, 4-19

Register, 3-4, 4-5, 4-7, 4-13, 4-17, A-6
name, 1-3, 1-5, 4-7
vector length, 1-5
vector mask, 1-5

REPEAT directive, 4-20
Reprieve, (see SID reprieve)
RESETCONDITION directive, 4-20

error, A-II
REWIND directive, 3-2, 4-20

error, A-7
Rules for using breakpoints, 3-3
RUN directive, 1-6, 1-7, 2-2, 3-2, 4-21,

4-22
error, A-4, A-5

SETCONDITION directive, 4-21
error, A-II

SID
control statement, 2-2
directives, 4-1
messages, A-I, A-2, A-3, A-4, A-5, A-6,

A-7, A-8, A-9, A-10, A-II, A-12, A-13
reprieve, 1-6, 1-7, A-I
symbols, 1-3

Simulator, 1-1
Snap dumps, 1-1
Special symbols, (see Symbols)
Statement labels, 1-1, 1-4, 1-7, 2-3, 3-3,

3-4
STEP directive, 1-6, 2-2, 3-2, 3-3, 3-4,

4-21, 4-22, A-12
error, A-4, A-5, A-12

STORE directive, 4-13, 4-23
error, A-8, A-9

String, 2-2, A-5
Subscripted variables, 1-3
Symbol, 1-1, 1-2, 1-4, 4-26

definitions, 1-3
error, A-I, A-4, A-5, A-6, A-9
parcel-address, 1-4
special, 1-2, 1-3, 1-5
table, 1-3, 1-5, 1-7, A-2, A-6, A-7,

A-8, A-9
user, 1-2, 1-5
word-address, 1-2

Symbolic Interactive Debugger, 1-1 (also
see SID)

Syntax, 1-6, 4-1, A-2
$SYSLIB, 3-3, 4-22

TESTCONDITION directive, 1-5, 3-2, 4-15,
4-24

error, A-II
TRACEBACK directive, 4-25

Underlined letters, 1-8
User program, 1-1, 1-3, 1-5, 1-7, 2-3, 2-4,

3-1, ~-3, 4-1, 4-4, 4-13, 4-19, 4-22,
4-23, A-12

control statement, 2-3, 2-5, A-13

01

User symbols, (see Symbols)
User-supplied breakpoint, 3-2

Variables, 1-1, 1-3, 1-5, 2-3, 3-1, 3-4,
4-13, 4-26, A-9

local, 1-3, 1-5, 4-5, 4-6, 4-7, 4-11,
4-12, 4-13, 4-17, 4-23

conditional, 1-3, 1-5, 4-20, 4-21,
4-24, A-II

Vector Length registers (see Registers)
Vector Mask registers (see Registers)

Warning message (see Messages)
WHERE directive, 3-2, 4-26

error, A-I, A-6, A-8
WIDTH directive, 3-2, 4-26

error, A-II
Word address, 1-1, 1-2, 4-4, 4-5, 4-7, 4-8,

4-15, 4-17, 4-18, 4-26
error, A-I, A-3, A-8, A-9, A-II

Word-address symbols, 1-2

HR-0056 Index-3 01

READERS COMMENT FORM

Symbolic Interactive Debugger (SID) User's Guide SG-0056 A

Your comments help us to improve the quality and usefulness of our publications. Please use the space providec
below to share with us your comments. When possible, please give specific page and paragraph references.

NAME _______________________________ _

JOB TITLE _________________ _

Cli=li"" ..." FIRM _____________________________ __
RESEARCH 1 INC.

ADDRESS _________________________________ __

CITY _______________ STATE _____ ZiP ___ _

- -- - - - --~

Attention:
PUBLICATIONS

111111

BUSINESS REPLY CARD
fiRST CLASS PERMIT NO 6184 ST PAUL. MN

POSTAGE WILL BE "'AID BY AI)DRESSEE

C:. I.O:-t'
RESEARCH, INC.

1440 Northland Drive
Mendota Heights, MN 55120
U.S.A.

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

------------------------------------,

n
c
-4
»
r­o z
C)

-4
:::t
en
!:
z
m

READERS COMMENT FORM

Symbolic Interactive Debugger (SID) User's Guide SG-0056 A

Your comments help us to improve the quality and usefulness of our publications. Please use the space providec
below to share with us your comments. When possible, please give specific page and paragraph references.

NAME ______________________________________ _

JOB TITLE ___________________ _

FIRM ______________________________________ __
RESEARCH, INC.

ADDRESS _____________________ __

CITY ___________ STATE _____ ZiP ___ _

- -- - - - --~

Attention:
PUBLICATIONS

111111

BUSINESS REPLY CARD
fiRST CLASS PERMIT NO 6184 ST PAUL. MN

POSTAGE WILL BE PAID BY AI}DRESSEE

c: a :"'f'
RESEARCH. INC.

1440 Northland Drive
Mendota Heights, MN 55120
U.S.A.

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

------------------------------------,

(")
c
~

> r o
Z
C')

-t
:::r:
iii
C
z
m

