
RESEARCH, INC

CRAY X-MP AND CRAY-1®
COMPUTER SYSTEMS

FORTRAN (CFT)
INTERNAL REFERENCE MANUAL

SM-0017

Copyright© 1980, 1981,1983, 1984 by CRAY RESEARCH, INC.
This manual or parts thereof may not be reproduced in any
form without permission of CRAY RESEARCH, INC.

PUBLICATION NUMBER SM-0017

Each time this manual is revised and reprinted, all changes issued against the pr
incorporated into the new version and the new version is assigned an alphabetic
against the current version in the form of change packets. Each change packe
01 for the first change packet of each revision level.

Every page changed by a reprint or by a change packet has the revision level an. Cf
lumber indicates that the entire page

one page to another, but Has not otherwise changed.

comer. Changes to part of a page are noted by a change bar along the margin
the page number indicates that the entire page is new; a dot in the same place

evious version in the form of change packets are
level. Between reprints, changes may be issued
is assigned a numeric designator, starting with

d change packet number in the lower righthand
4>f the page. A change bar in the margin opposite

ndicates that information has been moved from

Requests for copies of Cray Research, Inc. publications and comments about these publications should be directed to:

CRAY RESEARCH, INC., |
1440 Northland Drive,

Mendota Heights, Minnesota 55120

Revision

A

Description

October, 1980 - Original printing.

June, 1981 - This reprint with revision includes
implementation of the character data type and other
miscellaneous changes that bring the manual into agreement

with the version 1.10 release. All previous printings are
obsolete.

A-01 May, 1983 - This change packet brings the manual into
agreement with the CFT 1.11 release. Major changes include
the addition of intrinsic function processing, the #CL Text
Table (TBCLTXT) , the Substring Definition Table (TBSB) , the
Intrinsic Function Name Table (TBJ) , the Intrinsic Function
Attribute Table (TBK) , calling sequence information, and the
following subroutines: CCAT, CCLA, CCLO, CCRS, CCTB, CKRF,
CLCF, CLGA, CLOF, CLOG, CLRS, CLSZ, CLTG, CPOP, FRTG, FSHD,
FSUB, IPRN, IRST, MSAR, MVOP, NARG, SIN, and SOPT. The
register numbers were moved to tables 4-1 and B-l.
Miscellaneous technical and editorial changes are also
included.

A-02 July, 1983 - This change packet, along with A-01, brings the
manual into agreement with the CFT 1.11 release. The default
of IF optimization is changed from OPT=PARTIALIFCON to
OPT=NOIFCON on the CFT control statement.

B November, 1983 - This reprint with revision incorporates
revision A and change packets A-01 and A-02. No other changes
have been made.

SM-0017 ii

B-01 February, 1984 - This change packet brings the manual into
agreement with the CFT 1.13 release. The CFT release has been

numbered 1.13 in conjunction with the 1.13 COS release. Major
changes include the addition of reentrancy support, new
instruction scheduler information, the Entry/Exit Address

Table (TBEE) , the Call-by-value Reference Table (TBFR) , the
Program Description Table (TBH) , the Plus Dependency Table
(TBPD) , the Sequence Number Table (TBSN) , the Saved Variable
Table (TBSV) , the following subroutines: ABRA, ARUS, ASVL,
ASVM, BLCN, BTD, COPR, CRAR, CRRG, CRVR, DORP, EVOP, FLVS,
FSTK, GCRF, GIXA, GSBS, ISRF, LSOM, LSOV, MCEX, NICV, NOCV,
PMRT, PMST, PPDP, RBIN, RBLI, RBRG, RCCK, RSTB, SAST, SA50,
SDCO, SPFH, SPFR, TPRU, ZMEM, and Appendixes D and E.
Miscellaneous technical and editorial changes are also
included.

B-02 December, 1984 - This change packet brings the manual into
agreement with the CFT 1.14 release. Major changes include
the addition of the Block Definition Table (TBBK) , the
Register Variables to Restore After a CALL Table (TBCALL) , the
Character Length Table (TBCLEN) , the Conjunctive Term Table
(TBCT) , the Disjunctive Term Table (TBDT) , the Label Usage

Table (TBLB) , the TBT Index of Variables Not Assignable to B/T
Register Table (TBNOBT) , the TBX Extension Table (TBXX) , and
the following subroutines: AIBF, CDPR, CEXP, CFBI, CIDN,

CQYL, CRMV, CRNK, CTTY, DOUN, EBSN, EBXR, EBXS, ECNT, ECNU,
EDJT, EDJU, ERTX, ESBK, ESNL, ETBX, FPAR, GBAT, GCBS, GLBD,

GTCB, IGXF, IVTX, LBLK, NOBTVAR, PBLK, PCIV, PCST, PLDP, RBMV,

RDPT, ROSR, SDPF, SFMN, SGES, SPRN, TFBK, and VLAN.
Miscellaneous technical and editorial changes are also
included.

SM-0017 iii B-02

PREFACE

This publication is part of a set of manuals written for programmers,
analysts, and field engineers who have the responsibility of installing,
debugging, and modifying the Cray Operating System (COS).

This manual describes the internal design of the Cray FORTRAN Compiler
(CFT) , Version 1.

Section 1briefly introduces the compiler and describes CFT conventions.

Sections 2 and 3 provide a basis for understanding the compiler's
operation. These sections describe the general flow of the compiler
through Passes 1and 2, respectively.

Section 4 describes table management and gives the specifications for the

tables used by the compiler.

Section 5 gives the details of the major subroutines within the compiler.

Section 6 provides information about CFT I/O.

The appendix section gives additional information about the compiler's
internal design, including pertinent reference information and sample
code.

Other publications in this set are:

SM-0007 IOS Table Descriptions Internal Reference Manual
SM-0040 COS EXEC/STP/CSP Internal Reference Manual
SM-0041 COS Product Set Internal Reference Manual
SM-0042 Front-end Protocol Internal Reference Manual
SM-0043 COS Operational Procedures Reference Manual
SM-0044 COS Operational Aids Reference Manual
SM-0045 COS Table Descriptions Internal Reference Manual
SM-0046 IOS Software Internal Reference Manual
SM-0049 Data General Station (DGS) Internal Reference Manual

SM-0072 COS Simulator (CSIM) Internal Reference Manual
SR-0073 COS Simulator (CSIM) Reference Manual

SM—0017 V B—01

Manuals designated as internal describe the internal design of the
software whereas the other manuals in the set define procedures and
external features of tools needed for installing and maintaining CRI
software.

The reader is assumed to be familiar with the contents of the CRAY-OS
Version 1Reference Manual, publication SR-0011 and have experience in
coding the Cray Assembly Language (CAL) as described in the CAL Version 1
Reference Manual, publication SR-0000.

All values specified in this manual are expressed in octal unless
otherwise noted,

SM-0017 vi B—01

CONTENTS

PREFACE V

1. COMPILER OVERVIEW 1-1

1.1 GENERAL DESCRIPTION 1-1
1.1.1 Pass 1 1-3
1.1.2 Pass 2 1-5

1.2 TABLE NAMES AND INDEXES 1-8
1.3 CFT MEMORY ORGANIZATION 1-8

2. PASS 1FLOW 2-1

2.1 INTRODUCTION 2-1
2.2 INITIALIZATION 2-1

2.2.1 Initialization at BGIN 2-2

2.2.2 Initialization at BG10 2-2
2.3 READ SOURCE STATEMENT 2-2
2.4 DETERMINE STATEMENT TYPE 2-4
2.5 STATEMENT PROCESSING 2-6
2.6 NON-EXECUTABLE STATEMENT PROCESSING 2-8
2.7 EXECUTABLE STATEMENT PROCESSING 2-10

2.7.1 Input/output operations statements2-13
2.7.2 Program control statements 2-14
2.7.3 Assignment statements 2-14
2.7.4 Statement termination 2-15
2.7.5 Intrinsic function processing 2-15

2.8 END PROCESSING 2-16

3. PASS 2 FLOW 3-1

3.1 INTRODUCTION 3-1
3.2 LOCATE AND ANALYZE CODE BLOCK 3-2

3.2.1 Define next code block to be processed.....3-2
3.2.2 Mark constant increment integers 3-3
3.2.3 Analyze array references for dependencies 3-3

3.2.4 Promote constants within subscript expressions . 3-4

SM-0017 vii B-02

3.2.5 Examine array references and function
references 3-5

3.2.6 Transfer to vector control 3-6
3.3 GENERATE INTERMEDIATE CODE 3-6
3.4 SCHEDULING 3-9
3.5 GENERATE LOADER TABLES 3-10
3.6 END PROCESSING 3-11

4. COMPILER TABLES 4-1

4.1 INTRODUCTION 4-1
4.2 TABLE MANAGEMENT 4-3

4.2.1 Sequential table management 4-4
4.2.2 Sorted table management 4-6

4.3 TABLE DESCRIPTIONS 4-7
4.3.1 Notational conventions 4-8
4.3.2 Tag definitions 4-9
4.3.3 Mode flags 4-11
4.3.4 TL field 4-11

5. SUBROUTINES

6. CFT I/O 6-1

6.1 INPUT TO CFT 6-1
6.2 OUTPUT FROM CFT 6-1
6.3 I/O DATASETS 6-2

APPENDIX SECTION

A. CHARACTER SET A-l

B. REGISTER USAGE B-l

C. DEBUGGING AIDS C-l

D. STACK FRAME FORMAT D-l

E. CFT INSTRUCTION BUFFERS E-l

SM-0017 viii B-02

FIGURES

1-1 CFT's 2-pass philosophy 1-2
1-2 Pass 1overview 1-4
1-3 Pass 2 overview 1-7
1-4 CFT memory organization 1-9
2-1 Required order of lines and statements 2-7
4-1 Compiler table memory locations 4-2
6-1 I/O datasets used during compilation 6-2

D-l Stack frames D-l

TABLES

2-1 Statement Type Table 2-5

2-2 Non-executable statement processors 2-9

4-1 Table descriptions 4-7
4-2 TGB tag descriptions . 4-9
B—1 Register numbers B-4

INDEX

SM-0017 ix B-02

COMPILER OVERVIEW 1

1.1 GENERAL DESCRIPTION

The CRAY-1 FORTRAN Compiler (CFT) is a 2-pass compiler that converts
statements from the FORTRAN language to the binary machine language
of the CRAY-1 Computer Systems. CFT constructs CRAY-1
machine-language instruction sequences that cause the full range of
CRAY-1 features and capabilities to be applied during program
execution.

CFT is written in CRAY-1 Assembly Language (CAL) and executes under
control of the CRAY-1 Operating System (COS) . It has no hardware
requirements beyond those required for the minimum system
configuration.

CFT analyzes and compiles source code one program unit (main

program, subroutine, function, or block data subroutine) at a time.
No information is retained from one program unit to the next.

During compilation, CFT constructs a number of tables in the user
area. A table is basically a list of information kept for
referencing by the compiler. Examples of the tables maintained by
CFT are a list of the symbols used in the source program and a list
of constants encountered.

The compiler tables are located at the high end of user memory
immediately below the user Dataset Parameter Area. Space is
allocated to each table as needed. Table length is variable, with
most tables expanding as compilation proceeds. If the table area
overflows its allotted memory, CFT requests additional memory from

the operating system.

Figure 1-1 illustrates the 2-pass philosophy of CFT. The input to
Pass 1of CFT is the source input dataset consisting of the source

code file and the accompanying control statement. The principal
output from Pass 1 is a copy of the source program translated to an
internal format and a symbol table describing the attributes of the
symbols encountered in the source program. The Pass 1output

becomes the input to Pass 2. Pass 2 finishes compilation and
provides as its output the loader tables, suitable for loading and
execution.

SM-0017 1-1 A

SOURCE INPUT DATASET

Source code
fileOFT control statement

CFT Pass 1
(build intermediate form of text)

Source
listing
dataset

CFT Pass 2
(compile, schedule, assign registers

generate loader tables)

/ Binary ÿ
relocatable
V dataset j

Pseudo-
assembly
language
. dataset

Symbol
tables

Generate
code

listings

Figure 1-1. CFT's 2-pass philosophy

SM-0017 1-2 A

The compiler is loaded in the user field by the operating system
with a CFT control statement. Each user receives a copy of the
compiler in the user field. The compiler itself is not re-entrant.
Control statement parameters specify characteristics of the compiler
run, such as the datasets containing source statements and list
output.

1.1.1 PASS 1

Basically, Pass 1of CFT converts the source code to an intermediate
form to facilitate Pass 2 activities. Figure 1-2 illustrates the
general flow of Pass 1. A brief summary of Pass 1activity
follows. Section 2 of this manual provides a more detailed
description of the flow through Pass 1.

After CFT reads and interprets the CFT control statement, it
initializes the tables, presets default values, and opens the
datasets required by the job. The preset defaults retain their
values for any options not specified by the user on the CFT
statement.

At this point, the main loop of the compiler begins. Most pointers
are cleared and the tables are set to empty. The statement sequence
number is initialized at 0. This procedure is executed at the start
of each program unit. Then, compilation begins by calling CFT's
card reader driver. The card reader driver reads the source input
file statement by statement, checking for continuation cards and
comment cards.

As each statement is read, it is copied into the compiler's
statement buffer, where it is examined and classified by type.
Then, depending on statement type, control transfers to one of the
many different unique statement processors. A uni-que statement
processor is a handler for only one specific FORTRAN statement; for
example, there is a unique statement processor for WRITE statements
and another for DIMENSION statements.

Each FORTRAN statement is classified as either executable or
non-executable. An executable statement specifies an action, while
a non-executable statement is an inactive descriptor of data
(declarative) or program form.

With few exceptions, statements are completely processed as they are
encountered. Exceptions to this are the DO and EQUIVALENCE
statements. DO statements generate table entries that trigger

additional processing when the terminal statement is encountered.
EQUIVALENCE statements are packed into a table as they are
encountered and are processed when the first executable statement
(that is, the last declarative statement) is encountered.

SM-0017 1-3 A

STATEMENT PROCESSING

to Pass 2

Non-executable
statement
processing

END

statement
processing

Executable
statement
processing

INITIALIZATION

DETERMINE STATEMENT TYPE

READ NEXT STATEMENT

Figure 1-2. Pass 1overview

Many FORTRAN statements have similar syntax. For example, the syntaxes
of READ, WRITE, and PRINT statements are similar, as are those of REAL,
DIMENSION, and COMMON statements. In such cases, one of the unique
statement processors is called to process the initial keyword. This
unique statement processor then branches to an appropriate common
syntax processor to handle the syntax held in common by the statements.

SM-0017 1-4 A

Generally, each declarative statement makes entries in the Symbol
Table specifying attributes for the named entity.

Each executable statement is converted by CFT to an internal
notation and stored in a separate table called the Tag Buffer
Table. The internal notation used in the Tag Buffer Table consists
of a 1-word statement header entry containing information on the
characteristics of the statement, followed by a series of 1-word tag
and operator entries.

CFT constructs a tag for each lexical entity in the statement.
Ihis tag describes the attributes of the entity (variables,
statement numbers, and constants, for example) .
Each operator* entry specifies the processing precedence of that
operator within the FORTRAN statement. The Tag Buffer represents
each operator by a precedence-level-related numerical value. (See

section 4 for a list of these values.) The entry for a parenthesis
points to the matching open or close parenthesis.

At the end of Pass 1, the Tag Buffer contains a nearly literal
one-for-one translation of the input statement in CFT internal
notation.

Statement functions are translated into tag-and-operator sequences

and copied to a separate table. When a reference to the statement
function occurs in an executable statement, the tags and operators
representing the statement function are copied from the table to the

Tag Buffer, the actual arguments being substituted for the dummy
arguments.

When the END statement is encountered, all variables are assigned
addresses. Statement number references are linked and the contents

of the Tag Buffer are transferred to a Tag Buffer Table. Finally,

the compiler initializes the loader tables and initializes
parameters for Pass 2.

1.1.2 PASS 2

Pass 2 cycles through the program unit, identifying code blocks.

These code blocks are handled one at a time, in order of

occurrence. Each block is compiled individually, registers are
assigned, and the loader tables for that block are generated. When

an END statement is encountered, END statement processing for the

program unit takes place. Unless an end of file is encountered,
control transfers back to Pass 1to reinitialize for the next
program unit.

SM-0017 1-5 A

Figure 1-3 illustrates the basic flow of Pass 2. A brief summary of

Pass 2 activity follows; section 3 of this manual provides a more
detailed description of the flow through Pass 2.

The first task of Pass 2 is to identify a code block. A block is
delimited by a loop boundary, the subprogram boundary, an ENTRY
statement, or an active label with a transfer from outside the
block. A block has only one entry point, but may have more than one
exit point. Code blocks are defined this way so that the code
generator and optimizer can analyze them more easily.

When a code block has been defined, the compiler determines if it is
an innermost DO-loop and therefore subject to vector analysis. If
vector analysis is indicated, CFT checks for proper subscripting and
for calls to library functions that have known vector versions. CFT
also makes sure there are no dependencies. If all of these
conditions are met, vectorization within the code block may be
possible.

If there are ambiguous dependencies and CFT can determine a
condition for safe compilation of the loop, vectorization may be
possible. These loops are called conditional vector loops and are
compiled as two loops, one vector loop and one scalar loop. A
run-time test determines which loop will be executed.

Next, code is generated for the code block. A pass is made on the
block, statement-by-statement. Operations are parsed as triads, and
hardware instruction codes are selected. Register assignment at
this point, however, is internal to the compiler. CFT assigns
pseudo registers where required by the operation code. References
to intrinsic functions are expanded to intermediate instructions.

Scheduling occurs after a code block is translated to intermediate
code. Scheduling involves breaking the block into smaller, separate
groups, determining the instruction dependencies, and determining
which instruction sequences take the most time to execute.

After an instruction group is ordered on instruction time, hard
registers are assigned and the final instruction order is
determined. When all instructions are assigned hard registers, the
completed instructions are packed and transferred to loader text
tables. The next group is selected from the block and the
scheduling and register assignment repeated. When there are no more
groups in the block, control transfers back to the selection of the
next block. At the end of the program unit, END statement
processing occurs and control transfers back to Pass 1to begin
processing the next program unit.

SM-0017 1-6 B-02

Another
block

YES

NO

Analyze code block

Assign registers

Generate Loader tables

Schedule instructions

END statement
processing

Generate
intermediate code

Identify next code
block to be processed

Figure 1-3. Pass 2 overview

SM-0017 1-7 A

1.2 TABLE NAMES AND INDEXES

| CFT maintains nearly 50 tables during compilation. Initially, all
the tables are empty. Then, as compilation proceeds, the tables
expand in memory.

Several conventions exist for naming tables. Each table has a
unique name, often a mnemonic for the function the table performs.

The form is TBx, where x is the table identifier. For example,
a table that maintains array information is TBA, the Array Table.

The index to a table is of the form KTÿc. For example, the index
to TBA is KTA. Pointer words to the CFT tables are maintained in
register V7. The pointer word contains the first word address (FWA)
and the last word address + 1 (LWA+1) for the table. (Refer to
Appendix B for more information.)

Table indexes are relative to the beginning address of the
appropriate table. Except for the Symbol Table, the Tag Buffer

Table (TBG) , and the Program Unit Name Table (TBPN) , the FWA of a
table is always a multiple of 100q, while the LWA+1 changes as
necessary.

Refer to the section entitled Compiler Tables for table descriptions
and a summary of table management.

1.3 CFT MEMORY ORGANIZATION

The compiler is loaded for each CFT control statement and is
reinitialized rather than reloaded for each program unit. In a

multiprogramming environment, several copies of the compiler can be
in memory at one time because a copy goes in the field of each CFT
user.

Figure 1-4 illustrates the organization of the memory area occupied
by one FORTRAN user job. CFT code is at the low end of the user
field, with the various routines comprising CFT arranged in
approximately alphabetical order. Immediately above that is an area
allocated for two compiler tables, the Library Name Table (TBL) and
the Library Macro Table (TBM) . Above that is the Record Image

Buffer (RIB) , which contains one source line at a time, followed by
the library routines. During Pass 1, the statement currently being
processed by CFT is stored in the Character Buffer (CHB) , which is
at the low end of blank common.

SM-0017 1-8 B-02

LA-1
I/O buffers

TGB

CHB/PIB

Library routines

RIB

Tables L and M

CFT

blank
common

BA

Figure 1-4. CFT memory organization

SM-0017 1-9 A

Immediately above CHB is the Intermediate Tag Buffer (TGB) ,
containing the intermediate form of the text during Pass 1. At the
end of Pass 1, the contents of TGB are moved to the Tag Buffer Table
(TBG) . Then, during Pass 2, the Pseudo Instruction Buffer (PIB) is
built in the area previously occupied by CHB and TGB.

I/O buffers are allocated at the high end of the user field. TGB
and the other tables maintained by the compiler are located just
below the I/O buffer area in blank common. As each new statement is
processed, the tables expand downward in memory and TGB expands
upward. If the available memory is exhausted, CFT requests more
memory from the operating system. The additional memory is inserted
between the tables and TGB so, in theory, the two never meet.

Experience shows that, exclusive of I/O buffers, a typical program
| can be compiled in 64K words (200,0008). Since compilation occurs

one program unit at a time, each program unit is completely
generated and the loader tables written out before a new unit is
begun. The source listing is produced as Pass 1 is read. The
generated code is listed at completion of compilation for each code

| block. Compiler code, TBPG, and TBPN, are saved from one program
unit to the next. All of the loader tables for a given program unit
are saved in memory and written out at one time. Nothing else is
saved from one program unit to the next.

SM-0017 1-10 B-02

PASS 1 FLOW 2

2.1 INTRODUCTION

Pass 1of the CRAY-1 FORTRAN Compiler performs the following
functions :

Compiler initialization

Statement-by-statement processing of the source file:

- Read source statement
- Determine statement type
- Process statement

END processing for Pass 1

The input to Pass 1 is the source input file. The main output from
Pass 1 is the information contained in three tables:

The Symbol Table (TBS) - Contains the names of all symbols in
the source program

The Tag Table (TBT) - Holds the attributes of all of the
symbols listed in TBS

The Tag Buffer Table (TBG) - Contains a copy of the source
program translated into an internal tag-and-operator format

2.2 INITIALIZATION

Routine BGIN (begin compilation) handles both initialization at the

beginning of processing and initialization at the start of each
program unit. Control transfers to BGIN at the start of processing
to initialize the compiler. Then, each time processing begins on a
new program unit, control transfers to BG10, a location within the
routine BGIN, to reinitialize for that program unit.

SM-0017 2-1 A

2.2.1 INITIALIZATION AT BGIN

BGIN calls the control card cracking routine CARD to read the CFT
control statement. A copy of the CFT statement is stored in words 5
through 77 of the operating system's Job Communication Block. Once
the CFT statement is decoded, CARD determines what datasets are
required and opens them.

CARD also collects the list options and error processing options in
the CFT statement and sets indicator bits in register T.OCW to show
whether the corresponding options are on or off. Any options not
specified by the user on the CFT control statement are set to the
default values. The default options are generally contained in the
block of constants at the front of the compiler and can be changed at
compiler assembly time.

2.2.2 INITIALIZATION AT BG10

The main loop of the compiler begins at label BG10. Control returns
to BG10 at the start of each program unit to reinitialize CFT.
Pointers are cleared and table pointers are reset to indicate that the
tables are empty except for the Program Unit Name Table and the Page
Number Table (TBPN and TBPG) , which are saved from pass to pass.
Storage registers are zeroed and the statement sequence number is
initialized at 0.

Compilation begins with a call to routine RNXT.

2.3 READ SOURCE STATEMENT

Routine RNXT (read next statement) is the compiler's card reader
driver. RNXT reads the input dataset ($IN or its equivalent)
statement by statement, checking for statement continuation and
comments. An internal buffer builds one complete FORTRAN statement at
a time into a buffer. If a source listing is requested, lines are
written to the listing file as they are read.

Two buffer areas are used to assemble a statement. The Record Image
Buffer (RIB) can accommodate one card image and contains the image of
the next card to be processed. The Character Buffer (CHB) contains
one complete FORTRAN statement character image including an initial
line and up to 19 continuation lines.

The First Card Buffer (FCB) is maintained if no source listing was
requested. The FCB receives the first line of each statement so that
the line can be printed out if an error occurs during processing.

SM-Q017 2-2 A

RIB holds columns 1 through 96 of the next card to be processed.

Characters beyond 96 are discarded. Upon entry, RNXT examines the
contents of RIB. If RIB contains a blank line or a comment line
(indicated by an asterisk or the letter C in column 1), the line is
copied to the output dataset ($OUT or its equivalent) , if
requested. Each comment line is copied out in turn until the first
non-comment line is encountered.

Columns 1 through 72 of this initial non-comment line are copied
from RIB into CHB. The next line is read into RIB. RNXT disregards
any comments contained in the comment field (columns 73 through 96)

of this initial line. RNXT also checks to see if the initial line
in CHB has a statement number. (A statement number is contained in

columns 1 through 5.) If a statement number is present, it is
stripped from the card image and saved for later processing where it
is then assembled, eliminating blanks and leading zeros. Statement
number entries are made in the Symbol Table and the Tag Table (TBS

and TBT) .
If the initial non-comment line is not an END statement, RNXT

determines if RIB contains a continuation line. Columns 7 through
72 of any continuation lines are copied line by line until a
non-continuation line or a comment line is in RIB. Any comment
lines encountered within a continued statement are skipped and are
copied to the output dataset, if requested. Finally, CHB contains
one complete FORTRAN statement, including any continuation lines but
excluding the statement number, the comments fields, and any
continuation characters. A zero word terminates the string in CHB.

RNXT must treat several statements as special cases during Pass 1,

as described below. END and FORMAT statements and the CDIR$
compiler directives are such statements.

RNXT identifies the special CDIR$ compiler directive cards. The
characters 'CDIR$' are stripped off each of these cards. Comment
cards are not allowed in a CDIR$ continuation so that CDIR$ NOLIST
can operate properly.

The FORTRAN standard prescribes special treatment for the END

statement. An END statement cannot be continued to a subsequent

line; therefore, RNXT does not look for a continuation line if the

initial line encountered contains only the characters 'END'. No
other statement can contain only the characters 'END' on its initial

line. Identification of an END statement terminates the reading of
any more lines for that program unit; thus, comment lines following

an END statement are listed before the next program unit rather than

after the END statement.

SM-0017 2-3 A

FORMAT statements are special cases because the asterisk character
is allowed as a text delimiter and because commas are not required
within FORMAT statements. Thus, the statement

FORMAT (13 * 14) = (15 * 16)

is ambiguous. A statement is identified as a FORMAT statement if it
has a statement number and if it begins with the characters FORMAT (.

For statements other than FORMAT, RNXT makes a separate pass through
CHB for the following reasons:

To eliminate Hollerith/character constant notation, quote
fields, and spaces not in a Hollerith/character field

To convert any lowercase characters not in a Hollerith or
character string to uppercase

For all statements, CFT indicates any character that is part of a
Hollerith/character string by setting its sign bit. Setting of this
bit means that Hollerith/character strings can be easily recognized
and will not be confused with other characters. The high-order 41
bits are also set so that the character is negative in both A and S

registers. A suffix character at the end of each Hollerith string
indicates whether it is an H, L, or R type Hollerith constant. If
no suffix is present, a C suffix is inserted into CHB to indicate a
character constant.

The end of each statement is indicated by a zero word.

2.4 DETERMINE STATEMENT TYPE

After RNXT has assembled a statement into CHB, routine STTP

(determine statement type) examines the statement and identifies it
by type. First, it checks for the presence of DO in a replacement
statement because an expression such as

DO 11 1= . . .
is potentially ambiguous when compared with a replacement
statement. Then, depending on an address contained in the
corresponding Statement Type Table entry, STTP transfers to the
appropriate common syntax processor or unique statement processor.

Table 2-1 provides the Statement Type Table information as it
appears at the front of the compiler.

SM-0017 2-4 A

Table 2-1. Statement Type Table

GROUP STATEMENT TYPE

BLOCK DATA
FUNCTION

PROGRAM
SUBROUTINE

IMPLICIT

CHARACTER

COMMON
COMPLEX

DIMENSION
DOUBLE
DOUBLE PRECISION
EQUIVALENCE

EXTERNAL
GENERIC
INTEGER
INTRINSIC
LOGICAL
POINTER
REAL

PARAMETER

Statement function definition

ASSIGN IF
BACKSPACE INQUIRE
BUFFER IN NAMELIST READ

BUFFER OUT NAMELIST WRITE
CALL OPEN
CLOSE PAUSE
CONTINUE PRINT
DECODE PUNCH
DO READ

ELSE Replacement statement
ENCODE RETURN
ENDFILE REWIND
ENDIF STOP
GO TO WRITE

DATA NAMELIST

ENTRY FORMAT

END

SM-0017 2-5

Each entry in the Statement Type Table has the following format:

40 50 77

STC STF @SP

Field Bits Description

STC 0-37 Initial 1 to 4 ASCII characters of
statement; provides a unique statement type
identifier. The content of this field is
left-justified with zero fill. These
identifiers are listed at the front of the
compiler .

STF 40-47 Statement type flags

@SP 50-77 Address of appropriate statement processor

Because CFT specifies that statements must be in a certain order/
types in the Statement Type Table are organized into groups
according to these rules. For example, DIMENSION statements must
precede all executable statements.

When a statement has been identified by type, the previous statement
type is checked to ensure that the sequence is legal. Statements
within a program must be ordered by group# (i.e., group numbers must
be in increasing order), except for group 6 and group 7 statements,
which can appear anywhere after group 0 statements. A group 0
statement need not be present. Figure 2-1 illustrates the required
order of lines and statements in a CRAY-1 FORTRAN program.

2.5 STATEMENT PROCESSING

The compiler has nearly 50 unique statement processors that handle
only one FORTRAN statement each. Additionally, there are common
syntax processors that handle groups of statements. These handlers
work on similar statements after they have been partially processed
by unique statement processors.

SM-0017 2-6 A

PROGRAM, FUNCTION, SUBROUTINE
statements
(Group 0)

, BLOCK DATA

PARAMETER
statement

IMPLICIT
statement
(Group 1)

and
Comment

ENTRY
and

FORMAT
statements
(Group 7)

(Group 3)
Other

specification
statements

(Group 2)

and
compiler

directive
lines

NAMELIST
and

Statement
function
definition
statements

(Group 4)

DATA
statements

(Group 6)
Other

executable
statements

(Group 5)

END statement

Figure 2-1. Required order of lines and statements

By convention* most of the statement processors have names of the
form xxST, where xx is a mnemonic for the statement or statement
group handled by the processor. For example, WRST is the name of
the unique statement processor that handles FORTRAN WRITE statements
initially, while routine IOST handles final processing of the
FORTRAN I/O operations statements as a group (including WRITE
statements) .

SM-0017 2-7 A

A major task of the statement processing section of the compiler is
to reduce the number of different FORTRAN statements handled by
CFT. Many FORTRAN statements provide the same result as one or
more basic FORTRAN statements. For example, the statement

ENDFILE 10

serves the same purpose as (and therefore is replaced by) :

CALL $EOFW (10)

Thus , a goal of Pass 1of the compiler is to reduce the number of
different FORTRAN statements in a program to only the most basic
FORTRAN statements. Pass 2 of the compiler, therefore, needs very
few different statement processors. By the end of Pass 1, the
compiler has restructured the program unit so that it contains only
five types of statements: replacement statements, CALLs, IFs, GO
TOs, and ENTRY statement headers.

2.6 NON-EXECUTABLE STATEMENT PROCESSING

CRAY FORTRAN includes a number of non-executable statements.
Non-executable statements contain I/O editing information, specify
statement functions, classify program sections, and provide data
specification. Non-executable statements and their processors are
shown in table 2-2.

Once STTP determines that a statement is non-executable, control
transfers to the appropriate unique statement processor. Unless
the statement is a declarative, this unique statement processor
completely processes the statement.

Declarative statements are handled in two steps. First, a
declarative statement is handled by a unique statement processor,
which handles items unique to that statement and then transfers
control to a routine named DCLR (process declarative statement) .
DCLR is a group statement processor that handles list processing,
taking variables and making entries for them in TBS and TBT.
Additionally, DCLR makes TBA and TBQ entries for arrays.

EQUIVALENCE statements are processed differently from other
non-executable statements. All EQUIVALENCE statements encountered
in a program unit are packed eight characters per word in TBR.
Then, after all other non-executable statements have been
processed, the set of EQUIVALENCE statements is handled.

SM-0017 2-8 A

Table 2-2. Non-executable statement processors

Group
Non-executable

statement
Statement

processor (s)

BLOCK DATA

FUNCTION
PROGRAM
SUBROUTINE

BDST

FNST
PGST

SRST

IMPLICIT IMST

CHARACTER CHST, DCLR
COMMON CMST, DCLR
COMPLEX CPST, DCLR
DIMENSION DMST, DCLR
DOUBLE DBST, DCLR
DOUBLE PRECISION DBSTf DCLR

EQUIVALENCE EQST
EXTERNAL EXST
INTEGER INST, DCLR
INTRINSIC INFN
LOGICAL LGST, DCLR
POINTER PTST, DCLR

REAL REST, DCLR

PARAMETER PRST

Statement function
definition

ENTRY

SFST

NTRY

SM-0017 2-9 A-01

DATA statements also are processed in two steps. First, as they are
encountered, DATA statements are translated to a tag-operator
sequence (refer to section 4 of this manual for more information)
and entered in TBG. Then, during END statement processing, this
information is processed into the Loader tables. Constants within
DATA statements are handled differently from other constants.
Normally, constants are entered in the Constant Table (TBB) ;
however, constants within DATA statements are stored into TBE
instead.

Dummy arguments in FUNCTION and SUBROUTINE statements are entered
into TBS and are given a tag in TBT. This tag identifies an
argument as a dummy argument, and the argument's type is determined
from the Intrinsic Type Table maintained in register V7. When the
remaining non-executable statements are processed, the arguments may
become arrays or may have their types changed by typing statements.

Once a statement has been completely processed, control returns to
RNXT for the next statement to be processed. The process loops
until STTP determines that the next statement to be processed is an
executable statement rather than another non-executable statement.
When an executable statement is encountered, STTP branches to label
EQ10 to finish processing the EQUIVALENCE statements.

The EQUIVALENCE statements are removed from the Block Relocation
Table (TBR) and processed. The information gained in processing is
then stored in the Dummy Argument Address Table (TBP) until the end
of Pass 1, when all variables are assigned addresses.

2'7 EXECUTABLE STATEMENT PROCESSING

CFT converts executable statements to an intermediate form and puts
them into the intermediate Tag Buffer (TGB) . Each executable
FORTRAN statement is converted to a sequence of tags, operators, and
separators. Thus, at the end of Pass 1, TGB contains the entire
executable string derived from the program unit? during Pass 2, the
machine code is generated from this string.

A TGB statement entry begins with a statement header word. The
header word is the only word of a statement entry having its sign

| bit set. A quick search through the sign bits in TGB can locate the
beginning of each statement entry.

The statement entry header word cannot be completed until the entire
statement entry has been built because some of the information kept
in the header word, such as backward and forward indexes, are not
known until further processing has taken place.

SM-0017 2-10 A-01

Following the header wor
for each element in the
operator, or a separator

A tag is derived from th
corresponding symbol or
contains the following i

Tag type, a 3-oct
function of an el
function name, st&
common block)

(1 for a statement entry is a 1-word entry

statement. This word may be a tag, an

; Tag Table (TBT) entry for the

Statement number. Generally, the tag
formation :

al-digit descriptor that identifies the
iment in a statement (for example, external
tement number, constant, variable in a

Mode and particular attributes (such as call-by-value or
function)

Data type (such a
(single-precision

It also contains an inde

Operators and separators
compiler processing prec
at the front of the comp
publication) . CFT shiftfe
the leftmost 20 bits so
field. The rest of the

for a separator , parenthÿ
subscript or expression
which TGB entries are for
and which are for operato

The Tables section of th
description of the TGB s
statement entry words po

CFT automatically surrou
statement with a pair of
the parser through the s
evaluation. In other wo
on a close parenthesis r
parenthesis and an end-of

Two routines act as hand
and OEsca; (assemble opera
these two routines to tr
statement to TGB format.
operator is encountered,
determines whether the n
operator , or a separator

integer, real) and data length
double-precision, and so on)

< into TBT for the corresponding entry.

are translated to 6-bit codes that reflect
ijdence. The precedence scheme is detailed
tier (and in the description of TGB in this

the code for an operator or separator to
that it sits in the exponent portion of the
ÿord is all zeros for an operator; however,

sis group type flags are set to indicate
ihode. Thus, the compiler can quickly spot

tags (those with a tag value in bits 1-11)

rs (those with zeros in bits 1-11) .
s publication includes a detailed
;atement entry header and the types of
ssible.

i(ids the right-hand side of a replacement
parentheses. The extra parentheses force
:atement one more time to finish
j:ds, the statement processor can terminate
ÿther than looking for both a close
-statement (the all-zeros word) .
ers for expressions: ATtra: (assemble tag)
:or). Each unique statement processor uses
ÿnslate any expressions in the corresponding

Each time the start of a new tag or
control is transferred to AT##. ATÿ then

£xt element is a symbol, a number, an

SM-0017 2-11 A

If the next element is a numeric constant, ATaxc
(numeric input conversion) to convert the numbe

CRAY-1 internal format. If the next element is
Hollerith constant, routine EHOL packs the char
constant. The converted constant is then enter
Table (TBB) . ATtrcc also generates a tag for the
an entry in TGB.

TC,If the next element encountered is a symbol, A
(assemble alphanumeric character group) to asse
name. A tag is generated for the symbol name a
one does not already exist. Entries are also m
Table (TBS) and in TGB.

x calls routine ACAN
tnble the symbol
id entered in TBT, if
ade in the Symbol

If the next element encountered is an operator
converts it to a precedence code and enters it
precedence codes are listed in the description
Compiler Tables section.) OPxx then returns co
ATxo; detects an array, it branches to the secti
handles open parentheses and begins subscript evaluation

:>r a separator, OPxx
Ln TGB. (These
of TGB in the
itrol to Alircc. If
:>n of OPxx that

ORkc sets flags in register S7, indicating that
subscript mode. The subscript is then expanded
entered in TGB.

OPa%c maintains a parenthesis stack in registers
time an open parenthesis is encountered, the cu
type (subscript, expression, argument list) is
V6 and the new parenthesis type is entered into
parenthesis is found, V6 is popped back to S7.
describes the current type of parenthesis being

Finally, ATa%c determines that the end of the stÿ
reached and branches to terminate the statement

Executable statements are of three types: thos£
input/output operations, those that provide prog
those that handle data assignment. Because thes
differently by the compiler, they are discussed

calls routine $NICV
r from ASCII to
a character or

acter or Hollerith
ed into the Constant
constant and makes

the statement is in
by ATccx and OPxx and

S7 and V6 . Each
rent parenthesis

pushed from S7 onto
S7. When a close
Thus, S7 always
processed.

tement has been
processing (STTR) .
that accomplish

ram control, and
e types are handled
individually.

SM-0017 2-12 A

2.7.1 INPUT/OUTPUT OPERATIONS STATEMENTS

Each input/output unique
functions specific to thÿ
processors include:

Statement Processor

READ RDST

WRITE WRST

PRINT PIST

PUNCH PUST

ENDFILE EFST

REWIND RWST

BACKSPACE BKST
BUFFER IN BFST

BUFFER OUT BFST

ENCODE ECST
DECODE DCST
NAMELIST READ NLST
NAMELIST WRITE NLST

Each of these unique sta
and BKST) then calls rout
the list. IOST generate

for external I/O library

I/O operations statements;

READ, WRITE, PRINT, and
calls: an initial call,

The internal statement fi
compile library calling
statements generate direc

SM-0017

statement processor performs initial
statement. The I/O operations statement

dement processors (except for EFST, RWST,

ine IOST (process I/O statement) to process

entries in TBS and TBT for variables and
routine calls. The compiler converts all
to a series of CALL statements.

UNCH statements involve three types of
a data processing call, and a final call.
notion facility is used extensively to

Sequences. The processors for other
t calls to the corresponding I/O routines

The DO statement processor, DOST, is called to process implied
DO-loops in an I/O list.

2-13 A

2.7.2 PROGRAM CONTROL STATEMENTS

Each program control statement has a unique statement processor
associated with it. These statements and their unique processors
include:

Statement Processor

CALL CLST
RETURN RTST
END IF IEND
ELSE IELS
GO TO GTST
IF IFST
PAUSE PAST
STOP STST
CONTINUE CNST
DO DOST

Each of these unique statement processors performs initial functions
specific to the statement, including generation of particular test
and required branch instructions. Program control statements are
converted to IF statements. The same routines used for replacement
statements process expressions in program control statements.

2.7.3 ASSIGNMENT STATEMENTS j

Data assignment statements define variables and; array elements
during execution of a program. These statements and the unique
statement processors associated with them in thfc compiler include:

Statement Processor

Replacement statements RPST
ASSIGN ASST

RPST initializes for a replacement and then transfers to PJSxx and
OKge to process subscripts on the left and the expressions on the
right.

SM-0017 2-14 A

2.7.4 STATEMENT TERMINATION

Every executable statement terminates through routine STTR
(statement terminate) . STTR terminates processing for a particular
statement.

If the statement is a statement function definition, STTR copies the
definition from TBG to the Statement Function Skeleton Table (TBF) ,
where all statement function skeletons are kept, and then resets TBG
to empty. A statement function definition does not directly
generate any code. The definition is copied from TBF to TBG
whenever the statement function is actually referenced.

STTR examines statement numbers to check for DO-loop termination.
If STTR detects loop termination, it first checks for a special case
where the DO-loop consists of one statement. If the loop is a
1-line DO-loop, STTR calls the routine DORP to conditionally replace
a 1-line DO-loop with a call to a SCILIB routine. If the
replacement was successful and the statement number does not
terminate additional DO-loops, STTR branches to RNXT to read the
next statement. If the DO-loop is not a 1-line DO-loop, STTR
branches to process the DO termination sequence.

Finally, STTR handles the actual insertion of backward and forward
pointers in the statement entry header word. Normally, control then
transfers to RNXT to read the next statement. However, if a
statement such as a DO statement is expanding, STTP may branch to

the main driver for that statement to handle the expansion
processing.

2.7.5 INTRINSIC FUNCTION PROCESSING

The resolution of an intrinsic function name occurs in several
locations between AT23 and AT28. The Intrinsic Function Name Table
(TBJ) is searched for the intrinsic function name currently
processing. If the intrinsic function name is found in TBJ, it is
determined if the name refers to an intrinsic function or another
construct (the NLI bit in the corresponding Intrinsic Function
Attribute Table (TBK) entry) . If the name refers to another
construct, processing continues. If the name refers to a valid
intrinsic function name, processing continues at AT50.

At AT50, an entry is made in the intrinsic stack INTST for the
function reference. Each INTST entry contains three words: a
function name in 8-bit ASCII, right-justif ied and zero-filled, the
addresses of the last comma pointer and function tag in TGB, and the
address of the TBK entry. All functions except MAX and MIN

functions (those with a variable number of arguments) are treated as
internal function macros by leaving a space before the function tag

SM-0017 2-15 B-01

for comma pointers. After storing the function in TBG and allowing
space for the open parenthesis, the sign bit in S7 is set indicating
intrinsic function processing and processing continues at 0P71.
Zero-argument functions have the parameter list inserted into TGB at
AT55 and processing continues at OP90.

When the closing parenthesis of the function reference is located
(indicated by the set sign bit of the parenthesis level), function
name resolution is done by OP90 and the stack is popped. If the TBK
entry indicates a special processing need, control transfers to the
special processor. Special processing is done for CMPLX, CVMGT, MAX
and MIN type functions, zero-argument functions, shift functions,
and Boolean result functions, such as AND. Except for CMPLX and the
MAX and MIN type functions, the REAL bit in TBK is set and is
followed by the TBM index. Processing special cases is as close to
processing general cases as possible.

In general processing, the arguments are counted (the counter is
incremented at each comma tag) and each argument type is compared to
the first argument type (the type is found in the comma tag). If
all argument types are not alike, an error message is output. If
the number of arguments differs from the function number in the TBK
entry, an error message is output. The argument type is used as the
index into a computed $GOTO transferring control to the appropriate
type processor. The type processor checks the flag for the argument
type. If the flag is not set, an error message is output, otherwise
the Library Macro Table (TBM) is extracted from the TBK and control
is transferred to 0P114. At 0P114, the specifier name is found in
TBM and inserted into the Symbol Table (TBS) . If the generic name
is referenced, an ! is added to the specific name entered into TBS.
The specific name can now be used as a name other than an intrinsic
function name. The ! is removed from the TBS name at EN08. The
function tag is found in TBM and updates the Tag Table (TBT) .
If the function tag is an internal function tag, control is
transferred to 0P81 for expansion. Function tags and parameters,
except MAX or MIN type functions, are moved over the comma
pointers. S7 is adjusted accordingly and parsing continues at AT03.

2.8 END PROCESSING

When the compiler finds an END statement. Pass 1ends. Routine ENST
(process END statement) is called to handle the END statement.

Unless the previous statement was an unconditional transfer, ENST
generates a call to $END in a main program or a RETURN in a
subprogram. (There is no generation if the previous statement was
an unconditional transfer.) Once the END of the program unit is

SM-0017 2-16 B-01

encountered, variables are assigned addresses. By the end o£ Pass
1, all variables are known. Variables occurring in EQUIVALENCE
statements have already been given addresses by this time, since
they are handled at the end o£ nonexecutable statement processing.
Local variables, however, must be assigned addresses. ENST resolves
all EQUIVALENCES and assigns addresses to all variables in TBT.

DATA statement entries are also made in TBB, the Loader's Text
Table. Then ENST begins building TBH, the Loader Program
Description Table. TBH holds program name, common block name and
length information. Following this are ENTRY names and EXTERNAL
names.

Each statement having a statement number also has a pointer in bits
1through 17 of the statement header entry in TGB that points to the
corresponding TBT statement number entry. At the end of Pass 1, all
statement number references are linked together, and unreferenced
statement numbers are deleted. The index to the TBT entry for an
unreferenced statement number is cleared from the TGB statement
header entry. Although the statement number still exists in TBS and
TBT, no pointers to these table entries exist. An unreferenced
statement number is transparent to CFT Pass 2.

ENST copies intermediate code generated as a result of variable
dimension declarators from TBQ to immediately after each ENTRY
statement header. ENST also links all statement numbers and
references. Any statement number having no reference is deleted.
If a statement number is never referenced, the pointer to TBT in the
statement entry header word is cleared and, although the statement
number is still in TBT, there is no pointer to it. This means
statement numbers cannot be used only to break up blocks of code.
Finally, the Intermediate Tag Buffer (TGB) is moved to the Tag
Buffer Table (TBG) and actual addresses relative to the appropriate
block are filled in for all symbols. The move is done
word-for-word. As each item is moved, its tag is examined and
looked up in TBT and the actual address or offset is put into the
tag.

At EN81, some of the tables are cleared and released in preparation
for Pass 2.

SM-0017 2-17 B-01

PASS 2 FLOW 3

3.1 INTRODUCTION

Basically, Pass 2 of the CRAY-1 FORTRAN compiler performs the
following functions:

Initialization of loader tables

Processing of code blocks one at a time;

- Locate and analyze code block

- Generate intermediate code
Schedule instructions

- Assign registers

- Generate loader tables
- Optionally produce generated code listing

END processing for Pass 2

- Link actual statement number addresses in generated code
- Put B and T register counts in EXIT/ENTRY sequences

Produce Symbol Table (TBS) with cross-references on the
output file after each program unit (if called for)

- Produce Debug Symbol Table (if called for)

- Write loader tables out on binary output dataset

The primary input to Pass 2 is the information contained in the Tag

Buffer Table (TBG) . TBG is the translation of the original program
into intermediate text made during Pass 1. Auxiliary tables
produced during Pass 1and used as input to Pass 2 include TBS, the

Tag Table (TBT) , and the Array Table (TBA) .
The principal output from Pass 2 is the compiled FORTRAN program in
relocatable binary form. Secondary output from Pass 2 includes a
printable listing of the generated code, including TBS with the
cross-reference lists, if called for.

SM-0017 3-1 A

3.2 LOCATE AND ANALYZE CODE BLOCK

Analysis of a code block is the key to optimization for CFT. The
code block is the basic optimizing unit that CFT handles. Once a
code block is defined, block analysis includes the following
functions:

Mark constant increment integers
Analyze array references for dependencies
Promote constants within subscript expressions
Examine array and function references

Once block analysis is complete, actual code generation can occur.

3.2.1 DEFINE NEXT CODE BLOCK TO BE PROCESSED

Routine ABLK (analyze block) is the main driver for Pass 2. During
this pass, the Tag Buffer string in TBG is processed one code block
at a time. The first section of ABLK prepares for and then defines
the next block to be processed.

Actual code is generated in PIB, the Pseudo Instruction Buffer (see

Appendix E for a detailed description of PIB) . PIB is allocated and
released on a block-by-block basis as Pass 2 progresses, taking up
the memory area occupied by the Character Buffer Table (CHB) and TGB
during Pass 1processing. The Constant Table (TBB) expands as the
binary is constructed.

ABLK initializes the following tables by setting their LWA+1 equal
to their FWA: the Block Definition Table (TBBK) , the Label Usage
Table (TBLB) , the Triad Table (TBW) , the Variable Reference Table
(TBX) , the Dependent Reference Table (TBY) , and the Defined Variable
Table (TBZ) . These tables can be marked empty because they are
built for each code block during Pass 2.

ABLK searches through the statements in TBG building a TBBK for each
block. The block is delimited by a loop boundary, ENTRY statement,
subprogram begin, subprogram end, or an active label with a
reference outside the block.

SM-0017 3-2 B—02

Statement numbers encountered during Pass 2 are not limited to those
that were included in the original source code. During Pass 1
processing, CFT inserts made-up statement numbers for processing
logical IF and block IF statements when it is necessary to jump from
a block. CFT also inserts made-up statement numbers at both the
beginning and the end of a DO-loop when processing a DO. A made-up
statement number is also inserted immediately following an ENTRY
other than the primary. These made-up statement numbers go through
Pass 2 analysis the same as any programmer-defined statement numbers.

3.2.2 MARK CONSTANT INCREMENT INTEGERS

The section of code beginning at AB20 builds TBZ . TBZ contains an
entry for each variable defined within the code block. The
information in TBZ is used later in Pass 2 in handling constant
increment integers and in building the Cross Reference Overflow
Table (TBV) .
Starting at AB40 is a section of code that finds and marks all
constant increment integers in TBG. In loop mode, a constant
increment integer (CII) is an integer that is incremented by an
invariant expression at only one point in the loop and is not
conditionally executed in the block. An example of a CII is the DO
control variable in a DO block where the index is an integer. CIIs
are located for two reasons: subscript optimization in general and
vectorization in particular.

In a replacement statement, a CII can be either a function of itself
(for example, 1=1+1) or a function of another integer that is a CII
(for example, I=J+1, where J is a CII). The only operators allowed
in a CII expression are + and -. One operand may be variant, but

all others must be invariant within the loop.

When a CII variable is identified, a flag is set in the TBZ entry

for the variable. All references in TBG made to that variable also
have a flag set to indicate that that variable is a CII.

3.2.3 ANALYZE ARRAY REFERENCES FOR DEPENDENCIES

Routine ADEP (analyze dependencies) checks for dependencies within
arrays. Vectorization is inhibited if a dependency exists; however,
the programmer can override this with the CDIR$ IVDEP directive.

ADEP builds the Plus Dependency Table (TBPD) . TBPD is used in code
generation to move a vector load before a vector store.

SM-0017 3-3 B-02

ADEP is a double loop. The outer loop, which drives ADEP, takes
each successive definition entry from the Defined Variable Table
(TBZ) . A definition entry is one in which the defined item appears
on the left-hand side of a replacement statement, or the item is
used in an input statement or is an argument in a subroutine or
function that might have side effects. For each definition entry,
the inner loop of the routine searches the entire block for
references to the item defined. ADEP compares the definition with
subsequent definitions and other references made to it in the block,
looking for dependencies (EQUIVALENCE overlapping, for example). If
ADEP finds an ambiguous dependency with a condition for safe
vectorization, the condition is entered into the Conjunctive Term
Table (TBCT) . If ADEP finds an unambiguous dependency or an
ambiguous dependency with no condition for safe vectorization, the
Vector Loop flag (VLF) is turned off. The VLF is global to a block
and is located in register S7.

ADEP builds TBY, which is used by the optimizer in load-and-store
operations. Each variable within a loop has a definition entry
followed by an entry for each reference made to the variable. ADEP
proceeds through the entire block, even if not in loop mode or if a
dependency has been found, because TBY must be completely built for
the instruction scheduler and the load/store generation routines.

3.2.4 PROMOTE CONSTANTS WITHIN SUBSCRIPT EXPRESSIONS

Basically, routine PCON (promote constants) has as its task the
cleanup of all subscripts within the code block. PCON cycles
through the code block looking for array references. Each time PCON
finds an array reference, it cycles through the reference looking
for constants within subscripts. Each constant occurring within a
subscript is multiplied by the appropriate dimension multiplier and
then added into the initial term of a subscript expression where it
acts like a bias.

For example, if the dimension is A(10,10,10), the subscript

A(I,3,J+2)

is processed as follows:

Pass 1expands the subscript to

| @ A + 0 + 1* (1-1) + 10 * (2) + 100 * (J+l).

PCON extracts the constants, leaving

| @ A + 119 + 1* (I) + 100 * (J) .

SM-0017 3-4 B-02

As a result of PCONf an array reference looks like a base address
plus a constant plus terms that involve variables within the
subroutine for the rest of the subscript. The constant is the sum
of all constants from all subscripts. PCON calls routine SVEC to
locate possible scalar temporary definitions in a vector loop. SVEC
then sets the vector array flag (VAF) in subsequent references to
the scalar temporary within the TBG block.

3.2.5 EXAMINE ARRAY REFERENCES AND FUNCTION REFERENCES

Array and function references are examined by routine EAFR. For
each statement in a block, EAFR does a backward scan looking for
array and function references. Within a statement, it scans from
right to left so that it can sort out the parentheses within the
statement.

Array references are checked by EAFR to determine whether they are
vectorizable. An array element is a candidate for vectorization if
its subscripts meet the following general rules:

1. All subscripts within a loop must be invariant within that
loop except one.

2. The one variant subscript can contain only one linear
reference to a CII variable.

3. The only operators allowed in the variant subscript are +,
-, and * on either side of the CII; otherwise, +, -, *, /,
and ** are allowed.

If all of these conditions are met, then EAFR sets a flag called the
vector array flag (VAF) for this particular array reference. This
flag is set on a term-by-term basis.

EAFR also sets the variant subscript flag (DSF) in the array tag if
the subscript has any variants. A vectorizable array has this flag
set, but a non-vector izable array might also have a variant
subscript. A subscript is invariant if it is not changed within a
loop and there are no stores anywhere into the array. A subscript
is variant if it is changed within the loop or if there is any store
into the array.

SM-0017 3-5 A

EAFR looks at function references to ensure all arguments are proper
vector arguments. It checks a flag in the function tag for a vector
version available for the function. If a vector version exists,
EAFR looks at each argument of the function to see if it is
invariant and to see if its VAF is set. If either condition is met#
then the function reference is vectorizable.

3.2.6 TRANSFER TO VECTOR CONTROL

If processing is in loop mode, control is transferred next to
routine VCTL (vector control). VCTL consists of three main sections.

The first section of VCTL copies several flags including the VAF
from TBG into TBZ .
The second section of routine VCTL searches each tag in order.
Whenever VCTL finds a condition that turns off vectorization, it
turns off the vector loop mode flag (VLF) and returns to the Compile
Block routine (CBLK) . If the tag is that of a variant (the variant
bit is set from ABLK) , then it is a vector.

A scalar temporary, even though it is not an array, has had its VAF
set by ADEP; VCTL thus treats it as an array. VCTL also looks for
recursive sums and checks to ensure that at least one array
reference appears in the loop.

When VCTL is done, it generates the necessary calculations at the
beginning of the loop to set the vector length register and then
returns to CBLK. CBLK generates vector instructions because the VLF

is set.

The third part of VCTL generates the incrementation for the CIIs
found in the code block. It is called when CBLK finishes the loop.
The information in TBZ is used for this purpose.

3.3 GENERATE INTERMEDIATE CODE

As a result of Pass 1, the number of different FORTRAN statements in
a program is reduced to very few. By the end of the pass, CFT has
restructured the program unit so that it contains the following

types of statements: replacement statements, CALLs, IFs, GO TOs,

and ENTRY statement headers.

SM-0017 3-6 A

Generating intermediate code is driven by routine CBLK (compile
block). CBLK handles CALL statements and replacement statements.
IF statements are handled by the code beginning at IF50 and GO TO
statements cause control to transfer to GT30; however, this transfer
does not occur until after CBLK generates the code for all
expressions associated with the statements.

All expressions are handled by CBLK as general-purpose expressions
even if they are basic 1-term expressions (for example, each
argument of a CALL statement or the expression in the parentheses in
an IF statement) .
CBLK calls PBLK to find the next statement to be compiled. CBLK
tries to compile the located statement by finding the innermost set
of parentheses. The innermost set of parentheses is compiled, the
parentheses are removed, and the process is repeated until all
parentheses have been removed. Final statement processing occurs
when the parentheses processing ends. Then, any remaining stores
are compiled and IF statements or GO TO statements are completed.

When CBLK finds an open parenthesis, it begins a series of forward
scans within the parentheses. By definition, the first open
parenthesis found in a backward scan is the innermost. CBLK puts
itself in a loop and calls routine OLEV (operator level) , which
makes repeated scans through the expression, looking for operators

in precedence order.

CBLK calls PTRI (process triad) for each operator OLEV finds in the
expression. PTRI checks for index processing, and either calls CTRI

or extracts the index increment.

When CBLK determines it is processing an intrinsic function
reference, it evaluates each of the function parameters and calls
routine INFN (intrinsic function generator) to expand the skeleton
for the function and generate instructions. INFN returns to CBLK.

Intermediate code is generated one word at a time in TGB, the Tag

Buffer. Most of the code inserted in TGB is generated by routine
CTRI. As each instruction is generated, one word is stored into
TGB. Register A7 contains the address where the next instruction
can be stored? A7 is incremented by 1after each store to prepare
for the next instruction.

SM-0017 3-7 B-02

Hie format of a stored instruction is;

01

/I
15 31

flags

45?52 61 77

I OP | flags

Field Bits Description

1 1-14 Ifield of instruction, pseudo register
number, or parameter number

J 15-30 J field of instruction, pseudo register
number, or parameter number

K 31-44 K field of instruction, pseudo register
number, or parameter number

Flags: 45-50

45 If set, Ifield is result or is unused; if
clear, Ifield is operand pseudo register
or constant.

46 If set, J field is result or is unused? if
clear, J field is operand pseudo register
or constant.

47 If set, K field is result or is unused; if
clear, K field is operand pseudo register
or constant.

50 If set, Iis both an operand and a result
(as in shift operations)

OP 52-60 Opcode for instruction to be generated

Two special cases exist for the FLG and OP fields. If
FLG bits 45, 46, and 47 are set and OP-005, the entry
represents an entry or exit sequence. If FLG=0, OP=Or
and 1=0, the entry represents a special-case
instruction sequence.

Flags: 61-77

75 If set, instruction can be delayed to
postamble

77 If set, J and K are invariants and
instruction can be removed to preamble

When instructions are generated, pseudo registers are assigned
instead of real registers. A pseudo register is an imaginary
register not corresponding to any hard (real) register. Pseudo

SM-0017 3-8 B-01

| register assignment begins at register 7375 and goes downward;
pseudo registers 7400 and above are special-purpose registers
reserved for use by the compiler. For example, pseudo registers
7470-7477 represent V0-V7. The lowest numbered pseudo register
assigned is 100. Approximately 4000 pseudo registers are available
in each block. Generally, individual pseudo registers are not used
more than once in a block.

3.4 SCHEDULING

CBLK transfers to SKED (instruction scheduler) after compiling the
last statement in a block. SKED separates the preamble, main body,
and postamble instructions and returns to ABLK. If more blocks can
be added to the compiled blocks, ABLK transfers to CBLK to compile
the next block. If code cannot be added to the current block, ABLK
transfers to SKED to schedule the compiled code.

SKED separates the block of code into groups. The groups are
separated by statement numbers, return jump instructions, entries,

or exits. Each group is scheduled separately with the backup
registers holding values which need to be passed between instruction
groups.

Processing an instruction group begins with a backward pass to

assign times ignoring the limitations of the real machine. The

times given by the first pass are used to assign instruction issue
priorities. When all the priorities are assigned, a final pass is
made to assign registers and issue the instructions in the correct

order. This final pass takes the hardware limitations into account
when issuing instructions.

The final pass first processes statement numbers or return jumps at

the start of a group, then takes the highest priority instruction
which is ready to issue, assigns registers, and issues it. The

issue process normally ensures an operand is in the register when
the instruction using it comes up for issue. If an operand is not

in the register, the value is reloaded from a backup register or the

constant definition is reissued. If there is no register free for

the result register, a register is made free by transmitting the
lowest priority register to a backup register.

During the final pass, memory transfers are examined for overlap.

If an overlap occurs and the machine for which code is being
generated can get the operations out of sequence, code is inserted
to force proper ordering.

If an instruction is partially processed and cannot be issued,
processing is undone and the next eligible instruction is selected
for issue.

SM-0017 3-9 B-02

Special processing occurs when the group processing contains a
complete loop. Constant definitions and eligible instructions are
moved to the preamble and reissued at the end of the loop.
Recursive register definitions are assigned to a register for the
life of the loop.

At the end of a group, remaining transfers to specific registers are
compiled. These transfers may not need compiling because register
assignment attempts to assign a result which is later transmitted to
a specific register.

Routine RASN (register assignment) maintains a mapping between the
CRAY-1 system's hard registers and the assigned pseudo registers.
The mapping isj

The A registers and their backup registers, the B registers;
The S registers and their backups, the T registers; and
The V registers and their backups, the W registers.

The W registers do not really exist; they are included only to
preserve symmetry. A reference to a W register is actually taken as
a reference to memory.

RASN cannot assign all B and T registers. For example, by
convention B70-77 and T70-77 are used as scratch registers by
library routines, while several other B registers are dedicated to
the calling sequence and stack support. The first B register RASN
can assign is given by the value in memory word BFIRST, and the last
B and T registers RASN can assign are coded in memory word BTLIM.

RASN produces the Final Instruction Buffer (FIB) . RASN and SKED
reformat the assigned hardware registers entries into the FIB format
(see Appendix E for a detailed description of FIB) . FIB holds the
generated code with assigned hardware registers. Instructions and
statement numbers are unpacked and stored one to a word. FIB is
packed into the relocatable binary table by LTGN.

3.5 GENERATE LOADER TABLES

The three parts of routine LT (loader table generation) handle all
aspects of building the loader tables. The code beginning at LTST
is called at the start of Pass 2 initializing the loader tables.
LTGN takes a block of instructions after RASN and packs up the code
into the loader tables. LTND does the final processing; it does
some statement number processing for the loader tables after the
entire program unit is compiled, then it closes the tables.

SM-0017 3-10 B—01

LTGN moves through a code block one instruction at a time. It
determines if an instruction is 16 or 32 bits and packs the
instructions into the Text Table (TBB) . The 32-bit instruction
requires care in packing so it is correctly broken up across a word
boundary in TBB. LTGN makes other table entries necessary for a
given instruction, such as making an entry in the External Reference
Table (TBE) if the instruction refers to an external or making an
entry in the Block Relocation Table (TBR) if it is relocatable.
Statement label references and ENTRY/EXITs are linked for processing
by LTND after all addresses are known.

Each time LTGN encounters a statement number definition, that is,
the location where a statement is labeled with that statement
number, it puts the address of the statement number in a table.
LTGN maintains a linked list through the code in TBB of all
references to a statement number.

LTGN is also the driver for the routine OUT. OUT produces the
generated code and/or the pseudo-CAL code for the program.

Control then returns to ABLK to access the next code block. This
loop is repeated until an END statement is encountered.

3.6 END PROCESSING

When LTND is called, TBR and TBB are closed, that is, the size of
each table is determined and the header word is built for each.

LTND cycles through TBB, the generated code, and finds all statement
number references. Before end processing, all references to a given
statement number are linked. LTND goes through this link and fills
in each link term with the actual relative location of the
corresponding statement number.

LTND also determines how many B and T registers the program unit
uses. It cycles through all the ENTRY and EXIT sequences LTGN
linked together and adjusts the code, inserting the exact number of

B and T registers into the instructions saving B and T registers.

After LTND finishes the loader tables, it writes them out to the
binary file. The Debug Symbol Table is created and written to the
binary output file if requested (ON=Z on the CFT control statement)

at this point. Then, if called for, the following tables are
formatted and listed on the output: the DO-loop Table (TBD; ON=D) ,
the common block table (ON=C) , the statement number table (TBS and
TBT; ON=T or X) and the Symbol Table (TBS and TBT; ON=T or X) .

SM-0017 3-11 B-01

This completes compilation of a program unit. Unless end of file is
encountered, control returns to BG10 to begin Pass 1for the next
program unit. When end of file is detected, control transfers to
EN78 to terminate compilation.

SM-0017 3-12 B-01

COMPILER TABLES 4

4.1 INTRODUCTION

CFT constructs a number of tables in the user area. As compilation
proceeds and tables are built, the table area grows downward in memory.

To minimize storage moves during compilation, those tables not changing
greatly in size during processing are located near the top of the table
area, while those expanding significantly are positioned near the bottom
of the area. For example, the Symbol and Tag Tables (TBS and TBT) are
located near the bottom of the table area, while the skeleton for
DIMENSION statements is near the top, because it is built early in
compilation and does not change thereafter.

Four tables are exceptions to the above: the Intrinsic Function Name

Table (TBJ) , the Intrinsic Function Attribute Table (TBK) , the External
Library Tag Table (TBL) , and the Library Macro Table (TBM) . These tables
are assembled with the compiler and do not expand in size during program
compilation. TBJ, TBK, TBL, and TBM are not true compiler tables but are
treated as true compiler tables because the mechanisms for table searches
and general table handling can then be used on these tables. TBJ, TBK,

TBL, and TBM are stored immediately following the compiler's executable
code.

Figure 4-1 illustrates the relative locations of the compiler tables in
the user area.

SM-0017 4-1 B-01

LWA user field

Dynamic
tables

Fixed
tables

I/O buffers
DSPs

TBPG (Sorted program unit names)

TBPN (Page number)
TBA (Array)
TBCLEN (Character length)
TBSN (Sequence number)

TBO (Array bounds checking)

TBQ (Declarative expressions)
TBCLTXT (#CL Text Table)
TBF (Statement for skeleton)

TBD (DO-loop)

TBI (TBA index)
TBC (Pointer variable)

TBV (Cross reference overflow)

TBU (Symbol cross reference)

TBT (Tag)
TBS (Sorted symbol)
TBG (Tag buffer)

TBB (Binary constant)
TBH (Program description)
TBSV (Saved variables)
TBEE (Entry/exit addresses)

TBP (Common and equivalence/dummy argument)
TBR (Equivalence/block relocation)

TBE (External reference)

TBZ (Defined block variables)

TBY (Dependent reference)
TBX (Variable reference)

TBPD (Plus dependency)
TBFR (Call-by-value reference)

TBWR (W register association)

TBTR (T register association)

TBBR (B register association)
TBSB (Substring definition)

TBNOBT (TBT index of variables not assignable to

B/T registers)
TBCALL (Register variables to restore after a CALL)

TBXX (TBX extension)

TBLB (Label usage in block)
TBBK (Sub-block definitions)

TBCT (Conjunctive terms)

TBDT (Disjunctive terms)
TBW (Triad)

TGB (Tag buffer)

CHB (Character buffer)

Library I/O routines

TBM (Library macros)
TBL (External library tags)
TBK (Intrinsic function attributes)
TBJ (Intrinsic function names)

CFT code

Figure 4-1. Compiler table memory locations

SM-0017 4-2 B-02

4.2 TABLE MANAGEMENT

Part of register V7 contains CFT table parameter words (see Appendix B

for a detailed description of register V7) . Each table maintained by CFT

has one word of V7 set aside as a pointer. The format of this word
follows.

0 10 20 50 77

////////I KT* | LWA+1 FWA

Field

KTiC

Bits

10-17

Description

Table pointer? index to the corresponding
table in V7.

LWA+1 20-47 Last word address + 1of the table? LWA+1
is used so the difference between it and
FWA equals the true table length.

FWA 50-77 First word address of the table

KTa: is not used during compilation and is in V7 only for use by
the postmortem debugger, CFTDUMP.

Initially, all the table pointers for the dynamic tables point to
the top word of memory and all the tables are empty. For each
table, LWA+1=FWA, which indicates a null table. As compilation
proceeds, the tables grow in size, with memory allocated as needed.
Each time there is a memory move, all table parameter words are
adjusted accordingly. In Pass 2, many tables are emptied and reused
from code block to code block.

Most compiler tables are sequential tables. A sequential table
has entries made to it as the entries are encountered; new entries
are made at LWA+1.

TBS and TBPN are maintained in sorted order. A sorted table
requires more time to enter a new element, but it can be searched
rapidly because every element does not have to be examined. A

sequential table is easy to add entries to, but searches must
examine every element until a match is found.

SM—0017 4-3 B-01

4.2.1 SEQUENTIAL TABLE MANAGEMENT

The FWA for most sequential tables is a multiple of 100, because space
for sequential tables is allocated 100 words at a time.

All entries to sequential tables are made by the routine ELWD (enter last
word) . Each time an entry is made to a sequential table, it is checked
to ensure that the table did not overflow the adjacent table; that is,
LWA+l is equal to FWA of the next table.

When entering ELWD, register A1 contains the index into V7 of the
appropriate table pointer word enabling examination of both the current
and adjacent table pointer words, causing difficulty if the table pointer
words were not stored in a vector register. The value to be entered into
the table is in register S4.

When exiting from ELWD, register S3 contains the updated current table
pointer word, register A4 contains the index to the new table entry, and
register A3 contains the actual address of the new table entry.

If a table is full, ELWD calls routine MTAB (move table) to allocate
another 100 words for the table. MTAB searches through the table pointer
words in V7 looking for a gap (a table whose size has been previously
decreased) . The search proceeds from high memory (TBA) through low
memory. If a gap is found, tables between the table needing space and
the gap are moved 100 words into the gap. If no gap exists, all lower
tables are moved down 100 words.

If the table area must grow downward, a check is made to see if the table
is within 4000 words of the top of TGB/PIB. If it is, 20000 more words
are requested from the system by GMEM. 4000 words is an arbitrary pool
and an estimate allowing TGB/PIB to grow one word at a time and probably
not overflow the tables. While a statement is being processed, no checks
are made for table overflow when entries are made in TGB/PIB. If MTAB
does a memory move, it adjusts all of the table pointers in V7.

The actual memory move is done by the routine MMEM (move memory) . When
entering MMEM, register A1 contains the address of the source FROM,
register A2 contains the destination address TO, and register A3 contains
a count of the number of words to move. MMEM is a general memory
management routine that moves up or down and handles overlapping of the
FROM and TO area. The actual move uses vector loads and stores.

A sequential table can be released or collapsed by setting its LWA+l
equal to its FWA. If another table has to be expanded later, ELWD and
MTAB use this space.

SM-0017 4-4 A— 01

Ten routines can be used to search sequential tables. The four primary
table search routines are:

SBLT - Search backward, shift left, table
SBRT - Search backward, shift right, table
SFLT - Search forward, shift left, table
SFRT - Search forward, shift right, table

These routines search tables in the forward or backward direction. The
backward search is important because often the last reference to an item
is needed rather than the first. These four routines act as drivers for
four general-purpose search routines that can be used to search any area
of memory. These four are:

SBLS - Search backward, shift left, string
SBRS - Search backward, shift right, string
SFLS - Search forward, shift left, string
SFRS - Search forward, shift right, string

A normal search does the following steps:

1. Loads up a vector of table elements.
2. Optionally, shifts them right or left to shift off the bits not

going to be search targets.
3. Subtracts the search target from the vector.
4. Generates a vector mask.
5. If a match is not found, loops until table is empty.

This procedure allows everything to chain together; thus, it takes about

1clock period per element. Most tables are organized so likely search

targets are entered in the uppermost or lowermost portion of a word.
This allows shifting instead of masking to obtain the search targets.

When it is not possible to find the search target using a shift
operation, a masked search occurs and proceeds as follows:

1. Loads up a vector of table elements.
2. Subtracts the search target from the vector.

3. Masks to get at the middle bits of the word.

4. Generates a vector mask.
5. If a match is not found, loops until table is empty.

Because this uses the logical unit both for the masking and formation of

the vector mask, this is a 2-clock-period operation per element.

Two general-purpose masked search routines are available:

SBMS - Search backward, masked, string
SFMS - Search forward, masked, string

No masked table search routines exist.

SM-0017 4-5 A-01

4.2.2 SORTED TABLE MANAGEMENT

Entries in the Symbol Table (TBS) and the Program Unit Name Table (TBPN)
are arranged alphabetically. Thus, every time an entry is made, the
table is rearranged, inserting the new entry in alphabetical order.

Initially, the largest possible positive value (263-l) is entered in
the table. Subsequent entries are made above or below the initial entry,
depending on whether they come before or after the initial entry
alphabetically. Thus, no more than half of the table need be moved to
make any one entry. On the average, no more than one-fourth is moved.

The FWAs of these tables are not, in general, multiples of 100 words.
Initially, FWA points to the first element inserted in the table. Each
time a symbol name or a program unit name is encountered, the compiler
searches TBS or TBPN, respectively. If the name is found, the compiler
uses the information provided in the corresponding entry. However, if
the name is new, the compiler locates the slot where the new element must
be inserted; that is, it finds the two elements that the new entry
belongs between, and then makes the entry.

Entries in TBS and TBPN are in 6-bit ASCII, packed eight characters per
word. At the end of the entry is a pointer to the corresponding entry in
TBT or TBPG, respectively. SSTB converts from 8-bit to 6-bit ASCII
before searching either table.

Routine SSTB (search sorted table) bases its search techniques on the
fact that a sorted table is in alphabetical, and thus numerical, order.
If the table has 64 or fewer elements, SSTB effectively performs a normal
sequential search. However, if there are more than 64 elements, SSTB
loads every 63rd element into a vector register. This procedure ensures
that there are no memory bank conflicts on the vector read. By
performing a search along this vector, it is possible to determine which
block of 63 the match is in. This block is then searched sequentially.

SSTB follows a general-purpose algorithm. SSTB searches tables longer
than 64 x 64 words by first loading up every 64 x 63rd word and
determining the block where the target is. This block is then searched
in multiples of 63. This search allows up to a 256,000-word table,
although FORTRAN symbol tables are typically smaller. If the element is
in the table, SSTB finds the match; if it is not, the search finds the
spot in the table where the element should be entered.

Routine ESTB (enter sorted table) makes the entry. It first checks if
the new entry will be made in the upper or the lower half of the table.
If the addition is to be made in the upper half, entries above the
addition are moved up; if it is in the lower half, entries below it are
moved down. ESTB also checks to see if additional space is needed before
making the entry. TBS, TBG, and TBPN expand in either direction; ESTB
does a memory move, moving everything one word above or below the
appropriate slot and inserting the new entry.

SM-0017 4-6 A-01

4.3 TABLE DESCRIPTIONS

The compiler tables listed in table 4-1 are described in the following
section. Table 4-1 contains the table prefix, table name, and the
register numbers (in octal) of the associated table parameter word in
register V7 for CFT compiler versions 1.11, 1.13, and 1.14 calling
sequences, respectively. The table descriptions in the following section
are arranged alphabetically according to table prefixes. Pages are also
numbered according to the table prefixes. Tables with different
functions in Pass 1and Pass 2 have their dual role descriptions
separated by a slash.

Table 4-1. Table descriptions

1.11 1.13 1.14
Version Version Version
Register Register Register

Prefix Number Number Number Table name

TBA 44 51 57 Array Table
TBB 27 33 40 Constant Binary Table
TBBK None None 16 Block Definition Table
TBBR 7 16 23 B-register Associates Table
TBC 35 41 46 Pointer Variable Table
TBCALL None 14 21 Register Variables to

Restore After a CALL Table
TBCLEN None None 56 Character Length Table
TBCLTXT 41 45 52 #CL Text Table
TBCT None None 15 Conjunctive Term Table
TBD 37 43 50 DO—loop Table

TBDT None None 14 Disjunctive Term Table
TBE 23 26 33 External Reference Table
TBEE None 31 36 Entry/Exit Address Table
TBF 40 44 51 Statement Function Skeleton

Table
TBFR None 21 26 Call-by-value Reference

Table
TBG 30 34 41 Tag Buffer Table
TBH 26 32 37 Program Description Table
TBI 36 42 47 TBA Index Table
TBJ 12 7 7 Intrinsic Function Name

Table
TBK 13 10 10 Intrinsic Function

Attribute Table
TBL 14 11 11 External Library Tag Table
TBLB None None 17 Label Usage Table

TBM 15 12 12 Library Macro Table

| SM-0017 4-7 B-02

Table 4-1. Table descriptions (continued)

1.11 1.13 1.14
Version Version Version
Register Register Register

Prefix Number Number Number Table name

TBNOBT None None 21 TBT Index of Variables Not
Assignable to B/T Register
Table

TBO 43 47 54 Array Bounds Checking Table
TBP 25 30 35 Common and Equivalence /

Dummy Argument Address Table
TBPD None 22 27 Plus Dependency Table
TBPG 46 53 61 Page Number Table
TBPN 45 52 60 Program Unit Name Table
TBQ 42 46 53 Variable Declarator Table
TBR 24 27 34 Packed EQUIVALENCE / Block

Relocation Table
TBS 31 35 42 Symbol Table
TBSB 17 15 22 Substring Definition Table
TBSN 45 50 55 Sequence Number Table
TBSV 26 31 36 Saved Variable Table
TBT 32 36 43 Tag Table
TBTR 10 17 24 T-register Associates Table
TBU 33 37 44 Symbol Cross Reference Table
TBV 34 40 45 Cross Reference Overflow

Table
TBW 16 13 13 Triad Table
TBWR 11 20 25 W-register Associates Table
TBX 20 23 30 Variable Reference Table
TBXX None None 20 TBX Extension Table
TBY 21 24 31 Dependent Reference Table
TBZ 22 25 32 Defined Variable Table
TSIFS None None None Special Intrinsic Function

Table

4.3.1 NOTATIONAL CONVENTIONS

Several conventions are followed in the presentation of table
information. Unless otherwise noted, the following conventions are
observed throughout the section.

I SM-0017 4-8 B-02

When the field value is known, the value is given in the field
description (in octal) . The format for the field description is:

Field description; xxxx

where xxxx is the content of the field being described.

If a field contains an index to another table, the field is given the

abbreviation %TBcc. An address in another table is abbreviated @TB£C.

If a field contains zeros, the figure shows diagonal lines for that field.

| The bit positions are specified in octal.

SM-0017 4-8.1 B-02

4.3.2 TAG DEFINITIONS

Each entity (variable, statement number, external name, etc.) within a
statement is converted to a descriptive tag during Pass 1processing.
The first three octal digits (9 bits) of a tag describe the basic type of
entity.

Tags are used in many compiler tables. Table 4-2 describes tag types.

Table 4-2. TGB tag descriptions

Tag Description

100 Pseudo tag. Used primarily in DO statement processing when a tag

is desired but no memory needs to be assigned. Only used in TGB.

101 Statement number tag

102 External function tag

103 Inline function tag

104 Statement function tag? arithmetic statement function.

106 Subroutine entry name tag

107 Function entry name tag? also used for implied-DO variables in
DATA statements.

110-
577

Dummy argument tags. Assigned in consecutive order? 110 is
assigned the first dummy argument allowing for over 300 arguments

per subroutine or function,
or
Pointee tags. Assigned in consecutive order? 110 is assigned the
first pointee tag.

600q Constant tag? refers to a constant rather than a variable. The
digit immediately following the tag {q) is the subtype for the
type of constant. Subtypes are as follows:

q value Explanation

0 Refer to TBB? the offset field is an index into TBB.

1 Constant can be machine-generated using an 071
machine instruction

4 Immediate constant? 22-bit constant is supplied.
6 Shifted constant? 22-bit constant entered in S

register and shifted left 51 bits.

SM-0017 4-9 B-01

Table 4-2. TGB tag descriptions (continued)

Tag Description

601 Used for dummy argument addresses. The offset field gives the
offset from the address in B01 to the address passed in for a
dummy argument,

602 Program block; positive relocation with respect to the origin of
the current program. The program block is used for generated
code, static variables and arrays, and constants.

603
(#TB)

In static mode, #TB holds temporary variables local to a code
block; space in #TB is reused from block to block. #TB is not
used in stack mode.

604
(#CL)

In static mode, #CL holds argument lists and the space into which
passed-in argument lists are copied for multiple-entry routines.
In stack mode, #CL holds argument list headers only (the headers
are built as compile-time constants) .

605
(#ST)

#ST is not used in static mode. In stack mode, all stacked
entities except the B/T save area are in #ST (including entities
in #TB and most entities in #CL in static mode) . The offset
field gives the offset from the run time address in B03 to the
first word of the stacked entity.

606
(#RG)

Used for variables globally assigned to the B and T registers

607ÿ
(#DA)

Holds data (constants and static arrays and variables not in
common)

Tags 601, 605 (#ST) , and 606 (#RG) are used internally by CFT; no
loader tables are generated for them. Tags 602, 603 (#TB) , 604
(#CL) , and 607 (#DA) are treated as local blocks by the loader; a
program unit using one of these blocks is assigned a unique
(nonshared) area of memory.

610-
777

User-declared common block tags. Assigned in consecutive order;
610 is assigned the first common block. This assignment allows
up to 120 common blocks per subroutine or function. The loader
treats these tags as common blocks; references to the same common
block by two program units are treated as references to a single
(shared) area of memory.

t Deferred implementation

I SM-0017 4-10 B-01

4.3.3 MODE FLAGS

Several different groups of flags are referenced during compilation.
These groups include:

Statement type flags
Parenthesis group type flags
Generation mode flags
TBT and Tag Buffer flags

If a flag bit is set (equal to 1) , the entity has the named attribute.

4.3.4 TL FIELD

Tags also usually have a field called TL in bits 64 through 77. This
field contains data type and length information. The TL field contains
four octal digits. The first digit indicates data type and the remaining
three denote data length, as follows:

T | I L [

Data type codes currently used by CFT include:

Type Description
0 Typeless, Boolean
1 Logical
2 Character ASCII
4 Integer binary
6 Real
7 Complex

These data types are hierarchical; if operands of different types
are combined, the lower type is converted to the higher type.
However, not all type conversions are allowed. Type 7 (complex) is
the highest type.

Data length is equal to the number of bits minus 1of a quantity,
unless Hollerith notation is used. In Hollerith notation, data
length is equal to the number of characters. Data length values
include:

Length Description
027 24-bit
077 64-bit
177 128-bit (double-precision)

A typical TL field value might be 4027 for a 24-bit integer value or
6077 for a single-precision real value.

SM-0017 4-11 B-01

4.TBA TBA - ARRAY TABLE

Each array has a corresponding entry in TBA. An Array Table index in the
Tag Table (TBT) points to each TBA entry. Arrays of the same dimensions
use the same TBA entry.

For an array dimensioned N, the TBA has an N+l word entry. The header
word for this entry differs for fixed dimension and variable dimension
arrays. The N word entries are the same regardless of array type.

Header word for fixed dimension array entry

Format :

01_12 15_45 50_64_ 11

/| 600 | 4 | CON_|//I TBF 1 TL

Field Bits Description

TAG 1-11 Tag; 600 (constant tag)

TYP 12-14 Constant tag subtype; 4 (integer)

CON 15-44 22-bit immediate constant (preceded by 2 sign
bits) ; total array size

TBF 50-63 Tag Buffer flags (refer to 4.TGB)

TL 64-77 Type and length; 4027 for 22-bit integer, 4077
for 64-bit integer

SM-0017 4.TBA-1 A

Header word for variable dimension array entry

Format:

HDR

77

Field

HDR

Bits

0-77

Description

Header word; zero-filled

Entry word

The fields for the entry word are in word 1-n.

Format

1-n

0
LIF*

\12 15— -
//////////11/1 LBND,

45 50

XIFÿI |//I
77

XTNTn

Field

lifl-
LIFvj

LBNDi -
LBND.n

XIF1"
XIFv,

xtntl-
XTNTfl

Bits

12

15-44

45

50-77

Description

Lower bound indirect flag? clear for
a constant array

Lower bound. If corresponding LIF is
clear, contains actual lower bound. If LIF is
set, contains pointer to the TBT entry for the
compiler-generated local variable whose value is
the actual lower bound

Indirect extent flag; clear for
a constant array

Dimension length. If corresponding
XIF is clear, contains the actual dimension
length (or extent) . If XIF is set, contains a

pointer to the TBT entry for the
compiler-generated local variable whose value is
the actual dimension length

SM-0017 4.TBA-2 A-01

4.TBB TBB - CONSTANT, BINARY TABLE

TBB contains the loader TXT, Text Table (type 16) . Refer to the COS

Table Descriptions Internal Reference Manual, CRI publication SM-0045,

for more information.

Constants are inserted into TBB during Pass 1. However, constants within

DATA statements are forced into another table, TBE; then, at the end of

Pass 1the output from DATA statements is inserted in TBB.

Instructions are inserted during Pass 2.

SM-0017 4.TBB-1 A

4.TBBK TBBK - BLOCK DEFINITION TABLE

TBBK describes the characteristics of each statement in a block, such as
the beginning of the block, the end of the block, and factors that can
inhibit vectorization.

Format before compilation:

01 31 57 63 77

/I %LWA+1 I %FWA I/////// I flags

Field

%LWA+1

%FWA

Flags:

BVL

BLS

BUB

BBR

BET

BVF

BLF

BFE

BND

BXE

BEX

BSP

BSM

Bits Description

1-30 %LWA+1 statement in TBG (before compilation)

31-56 %FWA statement in TBG (before compilation)

63-77

63 Vectorizable function reference

64 ELSE block

65 Unconditional branch

66 Change in flow of control

67 Block is executed every time

70 Nonvectorizable function reference

71 Block in loop

72 Forward entry within group

73 End of group

74 Enter from outside group

75 Calls function or subroutine

76 Sub-block has a plus dependency

77 Sub-block has a minus dependency

SM-0017 4.TBBK-1 B-02

Format after compilation:

0 17

%FR

37 57 77

%TBW %TBX I/////////////////////

Field

%FR

%TBW

%TBX

Bits

0-16

17-36

37-56

Description

Length of TBFR (after compilation)

Length of TBW (after compilation)

Length of TBX (after compilation)

| SM-0017 4.TBBK-2 B-02

4.TBBR TBBR - B-REGISTER ASSOCIATES TABLE

TBBR is used in Pass 2 by CSRD and CSWR for loop mode variant scalars
referenced before definition. CSRD forms the following entry.

Format;

01 12 45 64 77

/ I TAG | OFS I////////////// I ILPR

Field

TAG

Bits

1-11

OFS 12-44

Description

Tag; one of the following:
601 Offset from B01 (dummy argument addresses)

602 Program block, positive relocation
603 (#TB) Temporary block tag
604 (#CL) Argument list block tag
605 (#ST) Offset from B03; stack tag.
606 (#RG) B/T register tag
607 (#DA) Data block tag
610-777

Common block tag (assigned in ascending
order)

Bit offset from the base of the block

ILPR 64-77 Initial loop pseudo register

This entry is updated by CSWR to the following entry,

Format:

45 60 64 77

///////////////////////////////////// I ILPR I/// I FIPR

Field

ILPR

FIPR

Bits

45-60

64-77

Description

Initial loop pseudo register

Final loop pseudo register

SM-0017 4 .TBBR—1 B-01

RASN uses TBBR passed on by CSWR and generates the following temporary
entries as required.

Formats

64 77

///UF// PR

Field

UF

PR

Bits

63

64-77

Description

Previously used flag

Pseudo registers

In addition, if the temporary variables overflow the available secondary
registers, the entry is as follows.

Format:

Field

OFS

UF

PR

0 12

//////////I

Bits

12-44

63

64-77

OFS

45 64

I/////////UF//III-

Description

Bit offset from the base of the block

Previously used flag

Pseudo registers

77

PR

This entry gives the block location assigned to the temporary variables

SM-0017 4.TBBR-2 B-01

4.TBC TBC - POINTER VARIABLE TABLE

TBC contains one entry for each pointer variable. Their format is
similar to the argument format, but each pointer variable has its Dummy
Argument flag (bit 50) and its Equivalence flag (bit 51) set making them
identifiable as pointers.

Format:

01_12_50_64_77

/! 602 | OFS I TBF I TL

Field Bits Description

TAG 1-11 Tag? 602 (program block, positive relocation
tag) .

OFS 12-47 Index of TBT entry (Pass 1) ; bit offset within
the block (Pass 2) .

TBF 50-63 Tag Buffer flags (refer to 4.TGB)

TL 64-77 Type and length

SM—0017 4 .TBC—1 B-01

4.TBCALL TBCALL - REGISTER VARIABLES TO RESTORE AFTER A CALL TABLE

TBCALL is used to restore T register variables after a CALL statement
which may have side effects on the variable. CB21 copies the variable
value to memory and uses the memory address as the actual argument. A
3-word entry is made for each register variable used as a call-by-address
argument. After the CALL statement is compiled, CB48 scans TBCALL and
generates code restoring the value from memory into the T register.
TBCALL is set to empty by ABLK at the beginning of each block. CB21 and
CB48 treat TBCALL as a stack and TBCALL is emptied by CB48 when the
restore code is complete.

Format:

0 77

0

1

2

TBG tag of register variable

#TB tag of temporary memory location

Reference indicator

Word Bits Description

0 0-77 TBG tag of register variable

1 0-77 Temporary block tag (#TB) of
temporary memory location; 603.

2 0-77 Reference indicator:
0 Multiple references to the T

register variable in this
statement

@TBG of reference
Only one reference to the T

register variable

If there are multiple variable
references, the called routine cannot
(legally) change the variable value
and CB48 will not generate the
restore code. If there is only one
variable reference, the @TBG value is
used by CSRE and CSWD to build TBY.

I SM-0017 4 ÿ TBCALL-1 B-02

4.TBCLEN TBCLEN - CHARACTER LENGTH TABLE

During passes 1and 2, TBCLEN contains the lengths, in characters, of all

character entities declared in a program unit. TBCLEN will never contain
more than 511 entries because the offset field (for indexing into TBCLEN)

in a character tag is limited to 9 bits. The maximum length entered in
this table cannot be larger than 16383.

Format:

0 77
LEN

Field Bits Description

LEN 0-77 Length in characters

I SM-0017 4 TBCLEN-1 B-02

4 .TBCLTXT TBCLTXT - #CL TEXT TABLE

During pass 2, TBCLTXT contains the loader TXT, Text Table (type 16) for

#CL. See the COS Table Descriptions Internal Reference Manual, CRI
publication SM-0045 for more information.

#CL contains argument lists. See the Macros and Opdefs Reference Manual/
CRI publication SR-0012 for argument list format. All argument lists
begin with an argument list header. The header contains the sequence
number of the source code line that generated the call, a
number-of-arguments field, and flags indicating if the call is for a
character function or call-by-value.

Argument transmission is either call-by-value or call-by-address mode.

In call-by-value mode, a header is built and the number-of-arguments

field is the number of registers set up for the call. In call-by-address
mode, one word is saved for each argument in addition to the header
word. Call-by-address character functions are an exception to the
general call-by-address format and save one additional word reflecting
the address-of-result argument invented by the compiler.

| SM-0017 4.TBCLTXT-1 A— 01

4.TBCT TBCT - CONJUNCTIVE TERM TABLE

TBCT contains the conditions for safe vectorization of a conditional
vector loop in the form of an IF statement in TGB format.

| SM-0017 4.TBCT-1 B-02

4 .TBD TBD - DO LOOP TABLE

TBD contains a 3-word entry for each DO-loop encountered by the compiler

Format:

01 20 50 61 77

0 SLN I LBL

1 /I DLI I ELN

2 //I %TBS

Field Word Bits

SLN 0 0-17

LBL 0 20-77

DLI 1 1-60

ELN 1 61-77

Description

Starting line number; keyed to the
source listing line number.

Label that ends the DO-loop; 6 ASCII
characters, right-justified, and
zero-filled.

DO-loop index; 8 compressed (6-bit)

ASCII characters, left-justif ied. A
bias of 40B is used for compression.

Ending line number, keyed to the
source listing line number

%TBS 2 50-77 Index into TBS for the label that is
the start of the DO-loop. The TBS
entry for the end-of-loop label is
always the next TBS entry.

SM—0017 4.TBD-1 B-01

4.TBDT TBDT - DISJUNCTIVE TERM TABLE

TBDT contains the conditions for safe vectorization of a subscript
dependency in the form of a logical expression in TGB format. TBDT is

copied to TBCT at the end of dependency analysis for a single subscript
dependency.

| SM-0017 4 .TBDT-1 B-02

4 .TBE TBB - EXTERNAL REFERENCE TABLE

In Pass 1, TBE contains the converted constant values from the constant
lists in the DATA statements.

During Pass 2, TBE contains the loader XRT, the External Relocation Table

(type 14) .
See the COS Table Descriptions Internal Reference Manual, CRI publication
SM-0045 for more information.

SM-0017 4.TBE-1 A

4.TBEE TBEE - ENTRY/EXIT ADDRESS TABLE

Several quantities used in entry and exit sequences are unknown until the
end of Pass 2. These quantities include the starting addresses and sizes
of the B and T register save areas and the size of the stack frame in the
stack sequence.

TBEE is cleared at the beginning of Pass 2 by LTST. During Pass 2, LT50
adds one item to TBEE for each entry and exit sequence encountered.
After Pass 2, LT48 uses the addresses in TBEE to locate the entry and
exit sequences and inserts the correct counts and addresses into the
sequences.

Format:

01 50 77

ADR

Field Bits Description

EXITFLAG 0 Set for an exit sequence and clear for an entry
sequence

ADR 50-77 Address of the entry or exit sequence; a parcel
address relative to the program code base.

I SM-0017 4.TBEE-1 B-01

4.TBF TBF - STATEMENT FUNCTION SKELETON TABLE

During Pass 1, this table contains statement function skeletons. The
statement function definitions are stored in TBF as they are encountered
and are expanded as macros when they are referenced during Pass 1.

A skeleton consists of a tag-operator string similar to that compiled in
TGB for an expression.

The parameters are given a tag with a bias of 100.

TBF is not used during Pass 2.

SM-0017 4.TBF-1 A

4.TBFR TBFR - CALL-BY-VALUE REFERENCE TABLE

This table contains a primary entry for each unique call-by-value
function reference in a block. Associated with each primary entry are
one to six secondary entries corresponding to the arguments of the
function reference.

Primary entry format:

01_20 23_50_64_77
/| RPR |//// | OFS |/////////// I TL

Field Bits Description

RPR 1-17 Result pseudo register

OFS 23-47 Offset

TL 64-77 Type and length

Secondary entry format:

01_20_64_77

/I PR I///////////////////////////////////// I TL

Bits Description

1-17 Pseudo register

64-77 Type and length

Field

PR

TL

SM—0017 4 .TBFR—1 B—01

4.TBG TBG - DATA STATEMENT / TAG BUFFER TABLE

During Pass 1, TBG contains the DATA statements in Tag Buffer (TGB)
format. (Refer to the TGB format description in this section for more
information.)

During Pass 2, TBG contains the Tag Buffer built during Pass 1.
Descriptions of the different kinds of entries made to TBG follow.

The CFT statement type flags (STF field) set in the statement header of
TBG are:

Bit Flaq Description
37 ENF ENTRY statement
40 DBF Beginning of a DO
41 CSF Conditional statement
42 RPF Replacement statement
43 CAF CALL statement
44 ISF IF statement
45 GTF GO TO statement
46 CNF CONTINUE statement
47 IDF Ignore Vector Dependency flag

Statement number reference entry

Formats

_31_53_64_77

%TBT | IPR | TBF I 0017

Description

Tag; 101 (statement number tag).

Index into TBT entry

Index into previous reference in TBG. This
index is a backward index relative to the LWA+1
of TBG.

Tag Buffer flags (refer to 4.TGB)

Type and length; 0017.

Field

TAG

%TBT

IPR

TBF

TL

01_12

/I 101 I

Bits

1-11

12-30

31-52

53-63

64-77

SM-0017 4 .TBG—1 B-01

External function tag

Format:

01_12_23 31_50_64_77

/I 102 |//////// I OFS I %TBT I TBF | TL

Field Bits Description

TAG 1-11 Tag; 102 (external function tag) .
OFS 23-30 Parcel offset from primary entry

%TBT 31-47 %TBT of external function

TBF 50-63 Tag buffer flags

TL 64-77 Type and length

Intrinsic function entry

Format:

01_12_23 31_50_64_77

/ | 103 I PRU I PCT | %TBL I TBF | TL

Field Bits Description

TAG 1-11 Tag? 103 (intrinsic function tag).

PRU 12-22 Pseudo registers used

PCT 23-30 Parameter count; number of arguments to the
function.

%TBL 31-47 Index into TBL entry

TBF 50-63 Tag Buffer flags (refer to 4.TGB)

TL 64-77 Type and length

SM-0017 4.TBG-2 B-01

Dummy argument entry

Format:

01 12 50 64 77

/ |110-577 |///////////////////////////// I TBF TL

Field

TAG

TBF

TL

Bits

1-11

50-63

64-77

Description

Tag; a number from 110 to 577 (dummy argument
tag) .
Tag Buffer flags (refer to 4.TGB)

Type and length

Program and common block entry

Formats

01 12 50 64 77

/I601-777 | OFS TBF TL

Field

TAG

OFS

TBF

TL

Bits

1-11

12-47

50-63

64-77

Description

Tag; one of the following:
601 Offset from B01 (dummy argument addresses)

602 Program block, positive relocation
603 (#TB) Temporary block tag
604 (#CL) Argument list block tag
605 (#ST) Offset from B03; stack tag.
606 (#RG) B/T register tag
607 (#DA) Data block tag
610-777

Common block tag (assigned in ascending
order)

Bit offset from the base of the block

Tag Buffer flags (refer to 4.TGB)

Type and length

SM—0017 4.TBG-3 B—01

Constant entry

Format:

01_12 15_50_64_77

/\ 600] 0 I OFS 1 TBF I TL

Field Bits Description

TAG 1-11 Tag; 600 (constant tag) .
TYP 12-14 Constant type; 0 (offset field is index into

TBB) .
OFS 15-47 Bit offset into block

TBF 50-63 Tag Buffer flags (refer to 4.TGB)

TL 64-77 Type and length

01_12 15_44 50_64_77

/I 600 ITYP j_CONS_I/////I TBF | TL

Field Bits Description

TAG 1-11 Tag; 600 (constant tag).

TYP 12-14 Constant type (6 if shifted; 4 if immediate.)

CONS 15-44 Constant value

TBF 50-63 Tag Buffer flags (refer to 4.TGB)

TL 64-77 Type and length

SM-0017 4.TBG-4 B-01

4.TBH TBH - PROGRAM DESCRIPTION TABLE

TBH is a simplified form of the loader's Program Description Table
(PDT) . See the COS Table Descriptions Internal Reference Manual, CRI
publication SM-0045, for more information on PDT. The format of TBH
follows.
Format:

0

1

BL+1

EL+BL+1

XL+EL+BL

0_77

HEADER

BLOCKS

ENTRY NAMES

EXTERNAL NAMES

Header word

Format:

34 52 70 77
TT| WC XL EL BL

Field Bits Description

TT 0-3 Table type? 17.

WC 4-33 Word count; number of words in table

XL 34-51 Word count for external names

EL 52-67 Word count for entry names

BL 70-77 Word count for blocks

Blocks

Each block has a 2-word descriptor in TBH. The first block is the
program block, the second block is #TB, the third block is #CLr and so
on. Following the blocks created by the compiler are descriptors for

common blocks declared by the user.

SM-0017 4.TBH-1 B-01

Format:

50 77

BKN

///////////////////////////////////////I BKL

Field

BKN

Word

BKL

Bits

0-77

50-77

Description

Block name; in ASCII, left-justified
and zero-filled.
Blank common; if present, has name
//!»•

BLock length; length in words of the
named block.

The program block (the first block) has many flags set in the second word
of the descriptor. See the COS Table Descriptions Internal Reference
Manual, publication SM-0045, for more information on the PDT flags.

Entry names

Each entry point to a program unit has a 3-word descriptor in TBH.

Format:

0

1

2

70 77

EPN EPQ

///EPE// II EBI |
-ÿ-

EPV

Field

EPN

EPE

EBI

EPQ

Word Bits Description

0-77 Entry name; in ASCII, left-justified
and zero-filled.

67 Primary entry flag; set for a program
and clear for a subroutine or
function subprogram.

70-76 Block index; 2 (program block) .
77 Relocation mode; 1 (parcel address) .

SM-0017 4.TBH-2 B-01

Field Word Bits Description

EPV 2 0-77 Entry value; parcel address of the
entry point.

External names

Each external routine called by a program unit has a 1-word entry in
TBH. The entry is the external routine name in ASCII, left-justified and
zero-filled. The external index of an external routine is the origin-0
index into the external names section in TBH of the external routine's
name. The first external name listed in TBH has an external index of 0,
the second external name listed has an external index of 1, and so on.

| SM-0017 4.TBH-3 B-01

4.TBI TBI - TBA INDEX TABLE

TBI is built when option Z (Debug Symbol Table) is specified on the CFT
control statement. TBI contains a 1-word entry for each array in the
FORTRAN routine. This table retains pointers to the array dimension
descriptors during Pass 2 so that they may be included in the Debug
Symbol Table.

Format:

0_20_50_77

%TBB | %TBA | %TBT

Field Bits Description

%TBB 0-17 Index into TBB of array name

%TBA 20-47 Index into TBA

%TBT 50-77 Index into TBT

SM—0017 4 .TBI—1 B-01

4.TBJ TBJ - INTRINSIC FUNCTION NAME TABLE

TBJ contains the names of all intrinsic functions, ANSI and non-ANSI.
TBJ is a static table formed when the compiler is assembled. The macro
INTRIN makes entries in TBJ and its companion table, TBK. TBJ is divided
into two parts, ANSI function names and non-ANSI function names. Each
part has generic function names arranged alphabetically. Specific
function names are grouped with the appropriate generic name.

Format

01 77

/I FNM

Field Bits Description

FNM 1-77 Function name; in 8-bit ASCII characters,
right-justif ied, zero-filled

I SM-0017 4.TBJ-1 A-01

4.TBK TBK - INTRINSIC FUNCTION ATTRIBUTE TABLE

TBK contains attribute information for the intrinsic function names
appearing in TBJ. This information includes TBM indices for the proper
skeleton, the number of arguments, and flag bits indicating if the
function is ANSI or if the function can be passed. Each TBK entry
contains three words. Entry n of TBK corresponds to entry n of TBJ.
The macro INTRIN makes entries in TBK and TBJ.

Format

0

NLI 1

2

INTG
0 1 12 15 26y 33

flags I %TBM PT %TBM

DBL

43/44Hr 50
SHINT
61) 65

I *1 %TBM

77

%TBM I////
%TBM1J %TBM %TBM M_

///CPLX////////LOGL//////CHAR//////BOOL/ |
JsL %TBM I SPL I/////

%TBT

Field

Flags:

EXT

INTRIN

ANSI

NOPAS

GENER

MXMN

Word

0

0

ARGS 0

REAL 0

0

Bits

0-11

0

6-10

11

12-25

Description

Set if function name is declared in
an EXTERNAL statement

Set if function name is declared in
an INTRINSIC statement

Set if function is part of the ANSI
standard set of functions

Set if the function name cannot be
passed as an actual argument

Set if the function name is a generic
name but not a specific name

Set if the function has a variable
number of arguments, applies only to
functions finding the maximum or
minimum of a series of arguments

Number of arguments

Set if the real argument is valid for
the function
%TBM if REAL is set

SM-0017 4.TBK-1 B-01

Field Word Bits Description

INTG

DBL

SHINT

NLI

CPLX

LOGL

CHAR

BOOL

SPL

%TBT

26 Set if long integer arguments are
valid for the function

26-42 %TBM if INTG is set

43 Set if double-precision arguments are
valid for the function

44-57 %TBM if DBL is set

60 Set if short integer arguments are
valid for the function

61-74 %TBM if SHINT is set

0 Set if function name no longer
retains its intrinsic property, such
as when declared as an array

1 Set if complex arguments are valid
for the function

2-15 %TBM if CPLX is set

16 Set if logical arguments are valid
for the function

17-32 %TBM if LOGL is set

33 Set if character arguments are valid
for the function

34-47 %TBM if CHAR is set

50 Set if Boolean arguments are valid
for the function

51-65 %TBM if BOOL is set

65-73 Index into computed $GOTO near OP9Q;
jumps to appropriate special
processor .

50-77 %TBT secondary entry if intrinsic
function is passed as an actual
argument

SM-0017 4.TBK-2 A—01

| 4.TBL TBL - EXTERNAL LIBRARY TAG TABLE

This table contains the names of all external library function tags,
mainly the I/O routines. TBL, along with TBM, resembles the Symbol and
Tag Tables (TBS and TBT) in format. TBL is a static table formed when
the compiler is assembled and is kept in sorted order.

Format:

01 61 77

/I FNM %TBM

Field Bits Description

FNM 1-60 Function name; in 6-bit (compressed) ASCII

characters, left-justified, zero-filled

%TBM 61-77 Index into the corresponding function definition
in TBiM

SM-0017 4.TBL-1 A-01

4.TBLB TBLB - LABEL USAGE TABLE

TBLB describes the flow of control in the table by describing the block
label usage and definitions.

Format:

DEF

01
ÿ I %TBT

21 77
%TBBK

Field

DEF

%TBT

%TBBK

Bits

1-20

21-77

Description

Label entry types
0 Label definition entry
1 Label reference entry

%TBTE of label

%TBBKE of statement using this statement number

SM-0017 4.TBLB-1 B-02

4.TBM TBM - LIBRARY MACRO TABLE

TBM contains the function tags for external functions and skeletons for
the internal statement functions and the macro functions. TBM, along
with TBL, resembles the Symbol and Tag Tables (TBT and TBS) in format.
TBM is a static table that is formed when the compiler is assembled. The
name of the function in left-justif ied 8-bit ASCII appears before the
function tags for the macro functions.

The convention for an inline function with a scalar and a vector
definition is:

1. A header for the definition (of the form I@name)
2. A header for the scalar definition (of the form I$name)
3. One word per instruction for the scalar definition for that

instruction
4. A zero word flagging the end of the scalar definition
5. A header for the vector definition (of the form I%name)

6. One word per instruction for the vector definition for that
instruction

7. A zero word flagging the end of the vector definition

If no vector definition for the function exists, item 1and items 5
through 7 are omitted.

Function header word

Format:

01_12_23 31_50_64_77

/I 103 | NUM | PCT | ISH | TBF | TL

Field Bits Description

TAG 1-11 Tag? 103 (intrinsic function tag).

NUM 12-22 Number of words in scalar definition (including
the header and trailer)

PCT 23-30 Parameter count; number of arguments to the
function.

ISH 31-47 Index into TBM of scalar header

TBF 50-63 Tag Buffer flags (refer to 4.TGB)

TL 64-77 Type and length

SM-0017 4.TBM-1 B-01

Scalar definition header

Format:

01_12_23 31_50_64_77

/I 103 | NUM | PCT I IFW I TBF | TL

Field Bits Description

TAG 1-11 Tag; 103 (intrinsic function tag).

NUM 12-22 Number of pseudo registers used

PCT 23-30 Parameter count; number of arguments to the
function.

IFW 31-47 Index into TBM of first word of scalar definition

TBF 50-63 Tag Buffer flags (refer to 4.TGB)

TL 64-77 Type and length

Vector definition header

Format:

01_12_23 31_50_64_77

/| 103 I NUM | PCT | IFW_| TBF \ TL

Field Bits Description

TAG 1-11 Tag; 103 (intrinsic function tag).

NUM 12-22 Number of pseudo registers used

PCT 23-30 Parameter count; number of arguments to the
function.

IFW 31-47 Index into TBM of first word of vector definition

TBF 50-63 Tag Buffer flags (refer to 4.TGB)

TL 64-77 Type and length

SM-0017 4.TBM-2 B-01

Instruction entry for scalar or vector definition

Each definition consists of a number of instruction entries, one
instruction per word.

Format:

01 15 31 45 52 61 64 67 72 77

/I IFLG | OP 1 IF|JF |KF|//////

Field Bits Description

I 1-14 Ifield of instruction, pseudo register number,
or parameter number

J 15-30 J field of instruction, pseudo register number,
or parameter number

K 31-44 K field of instruction, pseudo register number,
or parameter number

FLG 45-51 Flags, as follows:
45 If set, Ifield is result or is unused? if

clear, Ifield is operand pseudo register
or constant.

46 If set, J field is result or is unused; if
clear, J field is operand pseudo register
or constant.

47 If set, K field is result or is unused; if
clear, J field is operand pseudo register
or constant.

50 If set, Iis both an operand and a result
(as in shift operations) . If set and
operand is floating-point multiply,
perform a rounded multiply even if
rounding is disabled.

51 If set and operand is a floating-point
instruction, inhibit the truncation option
for this instruction.

OP 52-60 Opcode for instruction to be generated

IF 61-63 Field flag for Ifield

JF 64-66 Field flag for J field

SM-0017 4.TBM-3 A-01

Field Bits Description

KF 67-71 Field flag for K field

Field flags are as follows.

Value Explanation

4 Field is the number of a pseudo
register to use (beginning with 1) .

7 Field is the number of the argument to
the function (beginning with 0 from
left to right) .

0 Field is a constant or unused;
substitute directly.

SM-0017 4.TBM-4 A-01

4.TBNOBT TBNOBT - TBT INDEX OF VARIABLES NOT ASSIGNABLE TO B/T REGISTER
TABLE

TBNOBT is used in Pass 1to identify variables which cannot be assigned
to T registers. If OPT-NOBTREG is specified on the CFT control
statement, no entries are made. NOBTVAR makes the entries. Entries are
made for variables named in DATA, NAMELIST, and SAVE statements, and for
variables used in I/O control lists, such as IOSTAT. The loop at EN13
scans the table, and variables found in the table are assigned to memory
instead of a T register.

Format:

0 50 77

0 %TBT

Field Bits Description

%TBT 50-77 Index of TBT entry

| SM-0017 4 TBNOBT-1 B-02

4.TB0 TBO - ARRAY BOUNDS CHECKING TABLE

TBO contains array bounds checking information. If word 0 of TBO is
negative, all arrays are checked for subscript bounds errors.

| If word 0 is positive, the remaining words in TBO contain the 8-bit ASCII

names of the arrays to be bounds checked. These names are left-justif ied
and zero-filled.

SM-0017 4.TB0-1 A-01

4.TBP TBP ~ COMMON AND EQUIVALENCE / DUMMY ARGUMENT ADDRESS TABLE

The following TBP entry exists for each entity in a common block.

Format

01 12 20 56 61 71 77
/| TAG I/////// I OFS I TYP I/////I UBC

Field

TAG

OFS

TYP

UBC

Bits

1-11

20-55

56-60

71-77

Description

Tag of the common block to which this entity
belongs

Bit offset from the base of the common block for
the beginning location of this entity:

20-47 Word offset
50-55 Bit offset into the first word.

Type of the common block if all entities in the
block must have the same type (that is,
character)

Unused bit count in the last word of this
entity. This field can be nonzero if the common
block is of type character.

At the end of declarative processing during Pass 1, the EQUIVALENCE
statements packed in TBR are processed and an entry for each equivalenced
variable is made TBP. Variables used in EQUIVALENCE statements are
assigned storage and TBP is cleared at the end of Pass 1.

Following the common block entries in TBP is a zero word, separating
common block entries from equivalence entries. Equivalence entries are
also terminated by a zero word.

The following TBP entry exists for each entity in an EQUIVALENCE
statement.

Format:

01 12 20 56 61 77

/| TAG I/////// I OFS TYP | %TBT

SM-0017 4.TBP-1 B-01

Field Bits Description

TAG 1-11

OFS 20-55

TYP

%TBT

56-60

61-77

After EQ and before EN, TAG is the common block
tag for the equivalenced entity or the index
into TBT of the equivalence group's base tag.
After EN, TAG is the Common or Program Block tag
for the equivalenced entity

Bit offset for the beginning location of this
entity. After EQ and before EN, the offset is
from the base of the common block or the
equivalence group's base tag. After EN, the
offset is from the base of the common, static,
or stack block.

Type of the equivalenced entity if the entity
must be equivalenced to another entity of the
same type

Index into TBT for the variable or array being
equivalenced

During Pass 2, the addresses of dummy arguments are entered into TBP.
For example, the first TBP entry gives the address of the 110-tagged
dummy argument.

Format:

01 12 42 50 64 77

/I TAG OFS 1/////I TBF TL

Field

TAG

Bits

OFS

TBF

TL

12-41

50-63

64-77

Description

In the old sequence, 602 (program block, positive
relocation tag)

In the new sequence, either 601 (offset from
(B01)) for a single-entry routine or 604
(positive relocation into #CL) for a
multiple-entry routine

Word offset from block base

Tag Buffer flags (refer to 4.TGB)

Type and length

SM-0017 4.TBP-2 B—01

4.TBPD TBPD - PLUS DEPENDENCY TABLE

TBPD is used by code generation to resolve subsequent plus dependencies.

Format:

01_20_50_77

////////////////I REF 1 DEF

Field Bits Description

REF 20-47 Index of reference in TBG

DEF 50-77 Index of definition in TBG

SM-0017 4.TBPD-1 B-01

4.TBPG TBPG - PAGE NUMBER TABLE

TBPG, along with the Program Name Table (TBPN) , keeps track of the
program units compiled by CFT.

The position of any program unit name can be found in TBPN. Then, using

the TBPN pointer, the page number for that program unit can be referenced
in TBPG.

Entries are made to TBPG as encountered, using routine ELWD.

Format :

01 77

/I PN

Field Bits Description

PN 1-77 Page number in 8-bit ASCII, left-justified and
blank-filled

SM-0017 4.TBPG-1 A

4.TBPN TBPN - PROGRAM UNIT NAME TABLE

TBPN, along with the Page Number Table (TBPG) , keeps track of the program
units compiled by CFT.

TBPN has one entry for each program unit encountered. This entry
includes an index into TBPG, giving the page number location of that
program unit.

TBPN, like TBS, is maintained in sorted order.

Format :

01_61_77

/ | PUN I %TBPG

Field Bits Description

PUN 1-60 Program unit name in 6-bit ASCII

%TBPG 61-77 Index into corresponding entry in TBPG

SM-0017 4.TBPN-1 A

4.TBQ TBQ - VARIABLE DECLARATOR TABLE

TBQ is used for variable dimension declarators. It contains statements
in Pass 1 tag-and-operator format that generate code to save the run-time
value of a variable declarator on entry to the program unit.

The format for these entries is the same as that for replacement
statements in TGB. The statements in TBQ are moved into TGB during END

statement processing before Pass 2 begins.

SM-0017 4.TBQ-1 A

4.TBR TBR - PACKED EQUIVALENCE / BLOCK RELOCATION TABLE

During Pass 1, TBR resembles one large EQUIVALENCE statement. All
EQUIVALENCE statements within a program are packed up, eight characters
per word, in TBR. The remnant part of an EQUIVALENCE statement is
packed, left-justified, and zero-filled into TBR. When a new EQUIVALENCE
statement appears, the current sequence number in T.SH is entered into
TBR separating each EQUIVALENCE statement. The sign bit set in this word
distinguishes it from words with packed characters. These sequence
numbers are used during subsequent EQUIVALENCE processing (at EQ29)
ensuring correct sequence numbers in error messages and
cross-references. Packed EQUIVALENCES are retained in TBR throughout all
declarative processing. TBR is processed at the end of declarative
processing in Pass 1. During executable statement processing, the DO

parameter stack is retained in TBR. In addition, the conditional block
stack is maintained in TBR. A conditional block entry has the sign bit

set? the sign bit is clear for a DO entry.

During Pass 2, the loader BRT, Block Relocation Table (type 15) is
generated in TBR. See the COS Table Descriptions Internal Reference

Manual, CRI publication SM-0045, for more information.

The DO entry consists of the following words.

Terminal Statement Number flag
DO variable tag, DOUT
DO increment tag, INCT
Iteration count tag, ITRT
Beginning statement number tag, BSNT

Ending statement number tag, ESNT

Format:

01_21_40_77

/ 1 ND I SN I %TBT

Field Bits Description

ND 2-20 Nesting depth

SN 21-37 Statement number

%TBT 40-77 %TBT of generated statement number

SM-0017 4.TBR-1 B-01

Conditional block entries

TBR contains one entry per conditional block statement.

Format:

01

LEV

20 37 42

BN ELF |J//|- — %TBT

61 77

%TBT

Field

1

LEV

BN

ELF

%TBT

%TBT

Bits

0

1-17

20-36

37

42-60

61-77

Description

Indicates a conditional block statement

IF-level (>1)

Block number. Internal statement number for the

conditional statement

ELSE flag. Set if this entry corresponds with
an ELSE statement

Index into TBT of the generated statement number
assigned to the ENDIF statement

Index into TBT of the generated statement number

for the next conditional block within this
IF-level

SM-0017 4.TBR-2 B-01

4.TBS TBS - SYMBOL TABLE

TBS is the Symbol Table, sorted alphabetically. One entry appears in TBS
for each symbol referenced. The corresponding Tag Table is TBT.

TBS is a list of all symbol names encountered by the compiler. The
attributes of each symbol name are kept in TBT, the Tag Table. TBS

maintains an index for each symbol name's corresponding TBT entry.

Refer to the first part of the tables section in this manual for a
description of how TBS is maintained.

Format :

01 61 77

/I SNM %TBT

Field Bits Description

SNM 1-60 Symbol name in 6-bit ASCII (left-justified and
zero-filled) or 5-digit statement number with
leading zeros

%TBT 61-77 Index into corresponding TBT entry

SM-0017 4.TBS-1 A

4 .TBSB TBSB - SUBSTRING DEFINITION TABLE

TBSB is the Substring Definition Table used during Pass 2. TBSB contains
the first character and length definitions of active substrings in a
block. The entry is two words, the first word is the first character tag

in TGB format and the second word is the length of the substring tag in
TGB format.

I SM-0017 4.TBSB—1 A— 01

4.TBSN TBSN - SEQUENCE NUMBER TABLE

TBSN is the table of sequence numbers. RNXT makes an entry for each
statement in a program unit. ABRA uses information added to the table in
Pass 1to perform branch statement analysis. DETB uses information added
during Pass 2 to write parcel addresses to the Debug Symbol Table when
the DEBUG parameter is specified on the CFT control statement.

Format for Pass 1:

0 6_20_30_50_77
flags |///////// I PBI I LISN | SEQ

Field Bits

Flags: 0-5

SNSMT 0

SNMF 1

SNEL 2

SNEI 3

SNIF 4

SNNT 5

PBI 20-30

LISN 31-47

SEQ 50-77

Description

Symbol Table flag; set in ABLK if entry is
written to the SMT by routine DETB.

Mode flag; set if DEBUG is enabled for this
statement.

ELSE or ELSEIF flag; indicates the statement is
an ELSE or ELSEIF statement.

ENDIF flag; indicates the statement is an ENDIF
statement.

IF flag; set if the statement is the beginning
of a block IF statement.

ENTRY flag; set for ENTRY statements.

Parent block index; nesting level of current IF,

ELSE, or ELSEIF block.

Last internal sequence number; set for IF, ELSE,

or ELSEIF statements, this is the internal
sequence number of the last statement number in
the block.

Sequence number of the statement

| SM-0017 4 .TBSN-1 B-02

Format for Pass 2:

0 6 20 50 77
flags I///////// 1 PA I SEQ

Field Bits Description

Flags: 0-5

SNSMT 0

SNMF 1

SNEL 2

SNEI 3

SNIF 4

SNNT 5

PA 20-47

Symbol Table flag; set in ABLK if entry is
written to the SMT by routine DETB.

Mode flag; set if DEBUG is enabled for this
statement.

ELSE or ELSEIF flag; indicates the statement is
an ELSE or ELSEIF statement.

ENDIF flag; indicates the statement is an ENDIF
statement.

IF flag; set if the statement is the beginning
of a block IF statement.

ENTRY flag; set for ENTRY statements.

Parcel address of the first executable
instruction generated for the FORTRAN
statement. This field is defined only for
executable statements.

SEQ 50-77 Sequence number of the FORTRAN statement

I SM-0017 4.TBSN-2 B-02

4.TBSV TBSV - SAVED VARIABLE TABLE

TBSV identifies the local variables assigned to permanent static
storage. Entries are made by the SAVE statement processor (routine SAST)

and the DATA statement processor (routine DAST) . Routine SA50 uses TBSV
for SAVE statement error checking and assigning the saved variables to
static storage.

TBSV exists only during Pass 1. At the end of Pass 1, routine LTST

collapses TBSV. TBSV is reused during Pass 2 under the name TBEE (the

Entry/Exit Address Table) .

Formats

01 20 50 77

SVDF- l////////////// I SVSQ SVTBT

Field Bits Description

SVDF Data flag; set only if the entry was made

because the variable appeared in a DATA
statement.

SVSQ

1-17

20-47

Reserved for future use; zero-filled.

Sequence number of the source text line
containing the SAVE or DATA statement for which
this entry was made

SVTBT 50-77 Index into TBT of the variable's tag

SM-0017 4.TBSV-1 B-01

4.TBT TBT - TAG TABLE

TBT is the Tag Table for TBS, Basically, the two tables are arranged in
one-to-one correspondence. Given a symbol name, its position can be
found in TBS. Then, using the pointer in the TBS entry, the attributes
of the symbol can be referenced in TBT.

Entries are made to TBT as they are encountered, using routine ELWD.
When a new symbol is encountered, tag type is determined by syntax
analysis of the statement.

Tag Buffer flags are as follows:

50 61 63 64 77

///////////////////////////////////I flags 1/lPEFl TL

Field Bits Description

Flags: 50-61

DAF 50 Dummy Argument flag

EQF 51 Equivalence flag

FNF 52, Function flag; if flag is set, the symbol name
53-55 is a function and bits 53-55 are as follows:

53 Call-by-value flag (CBV)
54 Function/subroutine call flag (FSC)
55 Single/multiple result function flag (SMR)

If flag is clear and bits 53-55 are zeros, then
the symbol name is a simple variable. Otherwise,
the symbol name is an array; bit 52 is clear and
bits 53-55 contain the number of dimensions in
the array (up to 7) .
If the TBT entry is the tag for the program unit
being compiled, FNF is set and bits 53-55
determine the type of program unit: bit 53 for

the main program, bit 54 for the subroutine, and
bit 55 for the function. Bits 53-55 are clear
for a BLOCK DATA subprogram.

DFF 56 Defined Entry flag; set if the symbol name was
defined (assigned a value) either 1) in a DATA
statement, 2) on the left-hand side of a
statement, 3) in a read, or 4) as an argument in
a call.

SM-0017 4.TBT-1 B-01

Field Bits Description

RFF

TDF

ASF

PEF

TL

57

60

61

63

64-77

Referenced Entry flag? set if the symbol name
was referenced either on the right-hand side of
a statement or in a call.

During nonexecutable statement processing for
variables, this bit is the Explicit Type flag.
If set, flag indicates that the variable was
mentioned in a typing statement.

This bit is also the DO Terminator flag; it is
set if the variable is in use as a DO-loop
terminator. This flag is set at the start of
each DO-loop and cleared at the end.

This bit is set for DO-loop terminating
statement numbers during Pass 1.

Assigned Statement Number flag / TBF Skeleton
flag

Previous Entry flag. If tag is a dummy argument
tag, this flag indicates that the dummy argument
appeared in a previous entry.

Type and length

Statement number entry

Format of TBT primary entry for a statement number during Pass 1:

01 12 31 50 64 77

/I 101 I////////////// I ISE TBF 0017

Field

TAG

ISE

TBF

TL

Bits

1-11

31-47

50-63

64-77

Description

Tag; 101 (statement number tag) .
Index into TBT secondary entry, if one exists

Tag Buffer flags

Type and length; 0017.

SM-0017 4.TBT-2 B-01

Format of a TBT primary entry for a statement label during Pass 2:

SNDF SNRF
01 20 42 \ "\56 77

SB._ TBBL I LDI |/////// 1ÿ I *1 TBGL

Field Bits Description

SB 0 Sign bit; set for statement numbers with
secondary entries. This bit is set between Pass
1and Pass 2 when the initial jump instruction
is generated to the label and stored at the
offset specified by the secondary entry.

This bit is set for other labels when the
statement number definition is compiled and
entered in TBB.

TBBL 1-17 TBB last reference index. TBBL is the index of
the last reference to this label in TBB relative
to T.PBS. TBBL is updated for each reference
compiled and is the head of the chain of
references in TBB.

LDI 20-41 Label definition index; initially an index
relative to the LWA+1 of TBG pointing to the
statement header of the statement where the
label is defined. When the statement number
definition is compiled, it becomes the index of
the definition in TBB.

SNDF 54 Statement number defined flag; set until the
label definition is compiled and entered in TBB

SNRF 55 Statement number referenced flag; set for
referenced statement numbers.

TBGL 56-77 TBG last reference index. TBGL is the index to
the last reference of the label in TBG relative
to the LWA+1 of TBG. TBLG serves as the head of
the chain of references in TBG.

A TBT secondary entry exists for statement numbers with parcel addresses
must be read into a register at run time. User-defined statement numbers
appearing in ASSIGN statements or END= or ERR= branches of I/O statements
require secondary TBT entries. Compiler generated labels also have
secondary entries when associated with the first word address of a jump
table generated for alternate return subroutine calls and computed GOTOs.

| SM—0017 4 .TBT—2.1 B—01

Format of a TBT secondary entry during Pass 1:

0 77

00011

Format of a TBT secondary entry during Pass 2:

01 12 50 77

/\ 602 | OFS I////////////////////////

Field

TAG

OFS

Bits

1-11

12-47

Description

Tag; 602, constant (program) block.

Offset in the constant block where a statically
allocated word containing a jump instruction to
the parcel address of the statement label is
stored. Loading an A register from this word
gives the parcel address of the label (in the
generated code) .

Format number entry

Format of TBT primary entry for a format number:

01 12 31 50

/I 101 I %TBB ISE

64

I TBF ! TL

77

Field Bits Description

TAG 1-11 Tag; 101 (statement number tag) .
%TBB 12-30 Index into TBB

ISE 31-47 Index into TBT secondary entry, if one exists

TBF 50-63 Tag Buffer flags

TL 64-77 Type and length; 2017 for a 24-bit ASCII value
2077 for a 64-bit ASCII value.

SM-0017 4.TBT-3 B-01

A TBT secondary entry exists when a format number appears in an ASSIGN
statement. Format of a TBT secondary entry for a format number:

01_12_42_77

/I 602 |_OFS_1/////////////////////////////////

Field Bits Description

TAG 1-11 Tag? 602 (program block, positive relocation
tag) .

OFS 12-41 Word offset into program block

External function entry

Format:

01 12 31 45 50 64 77

/| 102 | PCT | %TBH I////I TBF | TL

Field Bits Description

TAG 1-11 Tag; 102 (external function tag) .
PCT 12-30 Parameter count

%TBH 31-44 %TBH of the external function

TBF 50-63 Tag Buffer flags

TL 64-77 Type and length

Intrinsic function entry header

Format:

01 12 23 31 50 64 77

/I 103 I PRU | PCT I////////////// I TBF | TL

SM-0017 4 .TBT-4 A-01

Field Bits Description

TAG 1-11 Tag; 103 (intrinsic function tag).

PRU 12-22 Pseudo registers used

PCT 23-30 Parameter count

TBF 50-63 Tag Buffer flags

TL 64-77 Result type and length

Statement function entry header

The statement function tag is written over immediately during Pass 1when
the expanded function is moved down in TGB at OP87.

Format:

01 12 31 50 64 77

/I 104 1 PCT FPI TBF TL

Field Bits Description

TAG 1-11 Tag? 104 (statement function tag).

PCT 12-30 Parameter count

FPI 31-47 Function processing information:
If mode flag 61 is set, then this field contains
the index to the skeleton in TBF; if it is
clear, then this field contains the index to the
skeleton in TBM.

If mode flag 46 is set, then this field contains
the word address of return for special function
evaluation, for example, DO statement processing.

TBF 50-63 Tag Buffer flags

TL 64-77 Result type and length

SM-0017 4.TBT-5 B-01

Dummy argument entry

The Dummy Argument flag (bit 50) is set in this entry.

Format :

01 12

/I110-577 |

31 37 50 64

%TBA I/////// I PET | TBF TL

77

Field

TAG

%TBA

PET

TBF

TL

Bits

1-11

12-30

37-47

50-63

64-77

Description

Tag; a number from 110 to 577 (assigned in
ascending order) .
Index into TBA (for array references)

Tag of dummy argument at its primary entry.
This field is used only if the previous entry
flag (PEF) is set, indicating that the dummy
argument has appeared in the argument list of a
previously encountered entry in the subprogram.

Tag Buffer flags

Type and length

Pointee entry

The Dummy Argument flag (bit 50) and the EQUIVALENCE flag (bit 51) are
set in this entry.

Format:

01 12 31 50 64 77

/I110-577 | %TBA I////////////// I TBF TL

Field

TAG

%TBA

Bits

1-11

12-30

Description

Tag? a number from 110 to 577 (assigned in
ascending order) .
Index into TBA (for array references)

SM-0017 4.TBT-6 B-01

Field Bits Description

TBF

TL

50-63

64-77

Tag Buffer flags

Type and length

Constant entry

An entry is made in TGB for each constant encountered. Additionally, an
entry is made in TBT for constants within PARAMETER statements. Refer to
description of constant entry in tables section on TGB.

Program and common block entry

Format of TBT Pass 1entry for a program or common block:

01 12 31 50

/I601-777 ! %TBA %TBP TBF

64 77

TL

Field

TAG

Bits

1-11

%TBA 12-30

%TBP 31-47

TBF 50-63

TL 64-77

Description

Tag; one of the following:
601 Offset from B01 (dummy argument addresses)

602 Program block, positive relocation
603 (#TB) Temporary block tag
604 (#CL) Argument list block tag
605 (#ST) Offset from B03; stack tag.

606 (#RG) B/T register tag

607 (#DA) Data block tag
610-777

Common block tag (assigned in ascending
order)

Index into TBA (for array references)

For an equivalenced or common block tag

Tag Buffer flags

Type and length

SM-0017 4.TBT-7 B-01

At the beginning of Pass 2, the TBT tag for an entry contains the tag
(110-577) of the last dummy argument associated with the entry in bits
12-22.

Format of TBT Pass 2 entry for a program or common block:

01_12_ 50_64_77

/ 1 TAG | OFS | TBF 1 TL

Field Bits Description

TAG 1-11 Tag; same as corresponding primary entry.

OFS 12-47 Offset within block specified by tag
12-41 Word offset
42-47 Bit offset within first word

TBF 50-63 Tag Buffer flags

TL 64-77 Type and length

SM-0017 4.TBT-8 B-01

4 .TBTR TBTR - T-REGISTER ASSOCIATES TABLE

TBTR is used in Pass 2 by CSRD and CSWR for loop mode variant scalars
that are referenced ahead of definition. CSRD forms the following entry.

Format;

01 12 45 64 77

/I TAG OFS I////////// I ILPR

Field

TAG

OFS

Bits

1-11

12-44

Description

Tag; one of the following:
601 Offset from B01 (dummy argument addresses)

602 Program block, positive relocation
603 (#TB) Temporary block tag
604 (#CL) Argument list block tag
605 (#ST) Offset from B03; stack tag.
606 (#RG) B/T register tag
607 (#DA) Data block tag
610-777

Common block tag (assigned in ascending
order)

Bit offset from the base of the block

ILPR 64-77 Initial loop pseudo register

This entry is updated by CSWR to the following entry.

Format:

0 45 60 64 77

////////////////////////////////////// I ILPR I//// I FIPR

Field

ILPR

FIPR

Bits

45-60

64-77

Description

Initial loop pseudo register

Final loop pseudo register

SM-0017 4 .TBTR—1 B-01

RASN uses TBTR passed on by CSWR. It also generates the following
temporary entries as required.

Format:

63 64 77

///UF// I PR

Field

UF

PR

Bits

63

64-77

Description

Previously used flag

Pseudo registers

In addition, if the temporary variables overflow the available secondary
registers, the entry is as follows.

Format:

0 12 45 63 64

//////////I OFS I///////UF//I

Field

OFS

UF

PR

Bits

12-44

63

64-77

Description

Bit offset from the base of the block

Previously used flag

Pseudo registers

77
PR

This entry gives the temporary block location assigned to the temporary
variable.

SM-0017 4 .TBTR—2

4.TBU TBU - SYMBOL CROSS REFERENCE TABLE

TBU contains a cross reference to all symbolic names and statement labels
used within the source program. TBV is an overflow table for TBU.

Entries in TBU are one word long. Entries are shifted into TBU from the
right. If a TBU entry overflows the word, it causes an overflow flag in
the TBU word to be set and a pointer to the corresponding TBV entry is
inserted. The overflow information is then stored in TBV at the location
pointed to by TBU.

Format:

01 20 40 60 77

OF. %TBV E1 E2 *3

Field

OF

Bits Description

Overflow flag; set if overflow entries have been
made in TBV for this symbol.

%TBV 1-17 TBV pointer; contains an index to a TBV entry
containing a pointer to the latest information
for this symbol. If a symbol has less than four
entries, this field is empty and there is no
corresponding entry in TBV.

e1~e3 20-37, Symbol entries; each entry contains a usage code
40-57, in its first 3 bits and the next 13 bits contain
60-77 a source program line number.

SM-0017 4.TBU-1 B-01

4.TBV TBV - CROSS REFERENCE OVERFLOW TABLE

TBV is the overflow table for TBU. When the TBU entry has overflowed, a
pointer to TBV is inserted in TBU. This pointer to TBV points to the
latest TBV word for the symbol. Entries to TBV are shifted in from the
right.

Format:

01 20 40 60 77
FF. PTV El e2 E-

Field Bits Description

FF 0 First TBV entry flag; set if this word is the
first TBV entry for this symbol.

PTV 1-17 Index to previous TBV word used for this
symbol. If this is the first TBV word for this
symbol, PTV is 0.

EJL-E3 20-37, Symbol entries; each entry contains a usage code
40-57, in its first 3 bits and the source program line
60-77 number in the remaining 13 bits.

SM—0017 4.TBV-1 B-01

4.TBW TBW - TRIAD TABLE

During Pass 2, each triad (P operand - operator - Q operand) compiled is
entered in TBW, together with the result type and result pseudo
register. Thus, if a triad is encountered more than once during
compilation, it is only compiled once.

TBW is cleared at the beginning of each new block that does not have a
drop-through entry.

Format:

01_15 20 26_42_56 64_77

/I RPR I///I RM I RTL | PPR I OP I QPR

Field Bits Description

RPR 1-14 Result pseudo register

RM 20-25 Result mode

RTL 26-41 Result type and length

PPR 42-55 P operand pseudo register

OP 56-63 Operator (see section 4.TGB for a description of

I operator representations) . A null entry
indicates type conversion or register transfer.

I QPR 64-77 Q operand pseudo register, null if type
conversion or register transfer

SM-0017 4.TBW-1 A-01

4 .TBWR TBWR - W-REGISTER ASSOCIATES TABLE

TBWR acts as an overflow area for the vector register backups, the W
registers. It is a fixed length table.

Format:

01

/I 603

12

OFS

45 64

i /////uf/ rI PR

77

Field

TAG

OFS

UF

PR

Bits

1-11

12-44

63

64-77

Description

Tag; 603 (temporary block tag

Bit offset from the base of the block

Previously used flag

Pseudo registers

This entry is updated by CSWR to the following entry.

Format

0 45 60 64 77

////////////////////////////////////// I ILPR |//// | FIPR

Field

ILPR

FIPR

Bits

45-60

64-77

Description

Initial loop pseudo register

Final loop pseudo register

| SM-0017 4.TBWR-1 A-01

4.TBX TBX - VARIABLE REFERENCE TABLE

During Pass 2, TBX contains entries for any variable whether scalar or
vector. For an array reference, TBX contains the index pseudo register.

Compiled instructions contain the index to TBX. At the primary
instruction level, the index is converted using the tag offset field.
Information regarding the common block or the program block is contained
in the tag entry.

TBX is used by CSRD and CSWR, the compile scalar read and write routines,
to keep track of what has been loaded and stored from the pseudo
registers. A section of code within CBLK also uses the information in
TBX when doing vector array loads and stores.

TBX is cleared at the beginning of each new block that does not have a
drop-through entry.

Format:

01_12 15_42_61 64_11

/I 600 I//I OFS I///////////// I L I PR

Field Bits Description

TAG 1-11 Tag; 600 (constant tag) .
OFS 15-41 Word offset into block for constant

L 61-63 Length of
operand (bits) L value

30 0
100 2
200 6

PR 64-77 Pseudo register assigned to the constant

SM-0017 4.TBX-1 A-01

01 12 15 42 61 64 77

/I 600 |//| CONS I///////////// I L | PR

Field

TAG

CONS

L

Bits

1-11

15-41

61-63

Description

Tag; 600 (constant tag) .
22-bit immediate constant

Length of
operand (bits) L value

30
100
200

PR 64-77 Pseudo register assigned to the constant

01 12 42 45 61 64 77
AF'' 'i| TAG OFS I//I IPR I L I PR

Field

AF

TAG

OFS

IPR

Bits

0

1-11

12-41

45-60

61-63

PR

63

64-77

Description

Address flag; if set, PR is the pseudo register
containing the address of the tag.

Tag

Word offset within the block

Index pseudo register if entry is an array
reference:

7774 EMA common block base indicator
7775 Task common block base indicator
7776 SKED indicator
7777 Obsolete definition indicator

Length of
operand (bits) L value

30
100
200

Subsequent Ambiguous Reference flag

Pseudo register assigned to the constant

SM-0017 4.TBX-2 B-02

4.TBXX TBXX - TBX EXTENSION TABLE

TBXX is an extension of TBX (Variable Reference Table) See subsection
4.TBX for a detailed description of TBX.

Format:

0_ 75 77

// 1 flags

Field Bits Description

Flags: 75-77

XCTG 75 Conditional definition of tag

XRMV 76 Conditional definition of sub-block

XSVE 77 Save definition at sub--block boundary

| SM-0017 4.TBXX-1 B-02

4 .TBY TBY - DEPENDENT REFERENCE TABLE

During Pass 2, TBY contains pointers to definitions contained within the
block and all references relative to each definition. Each definition in
the block has an entry, followed by an entry for each reference to that
entry.

Routine ADEP builds TBY for use by SKED, the instruction scheduling
routine. TBY tells SKED how far it can move instructions, particularly
loads and stores. TBY is also used by CSRD and CSWR (the compile scalar
read and write routines) to resolve loads and stores.

TBY is cleared at the beginning of each new block that does not have a
drop-through entry.

Format of a definition entry:

01_31 35_50_77

/I @TBG I///I %TBX I////////////////////////

Field Bits Description

@TBG 1-30 Address of TBG entry

%TBX 35-47 Index into TBX entry

Format of a reference entry:

01_31 35_50_77

/I @TBG |flags I %TBY | @PIB

Field Bits Description

@TBG 1-30 Address of TBG entry

Flags: 31-34
DEPDEF 31 Reference/definition (0/1)

DEPSUB 32 Previous/subsequent (0/1) relative to the
definition entry

DEPMIN 33 Minus dependency. Entry referenced in earlier
loop iteration instead of definition entry. If
entry is not in loop iteration, it is in storage
before definition entry.

SM-0017 4.TBY-1 B-01

Field Bits Description

DEPPLS 34 Plus dependency. Entry referenced in later loop

iteration instead of definition entry. If the
entry is not in the loop iteration, it is in
storage after definition entry.

%TBY 35-47 Offset from TBY definition entry to TBY
reference entry

@PIB 50-77 Address of PIB entry

SM-0017 4.TBY-2 B-01

4.TBZ TBZ - DEFINED VARIABLE TABLE

During Pass 2, each variable that is defined in a block is entered in
TBZ. Each entry consists of two words. The first word, word 0, contains
the variable tag. The second word, word 1, contains the tag location
index, tag definition index, and a number of flags pertaining to constant
integer analysis.

TBZ is cleared at the beginning of each new block that does not have a
drop-through entry.

Format:

01 12 45 50 64 77

/ 1 TAG I OFS //I TBF TL

Field Bits Description

TAG 1-11 Tag

OFS 12-44 Offset

TBF 50-63 Tag Buffer flags (refer to 4.TGB)

TL 64-77 Type and length

Format;

01 21 26 42 61 77

/I TPR FLGSI IPR TDI TLI

Field

TPR

FLGS

Bit Description

21 Increment type; clear for 24-bit integer,

set for 64-bit integer
22 Trip Count flag
23 Self-reference flag

Bits Description

1-20 Tag pseudo register

21-25 Flags, as follows:

SM-0017 4.TBZ-1 A-01

Field Bits Description

Bit Description

24-25 Increment sign, as follows:
Value Description
00,01 Ambiguous
10 Plus
11 Minus

IPR 26-41 Increment pseudo register

TDI 42-60 Tag definition index. For a replacement
definition, TDI equals the block index of
beginning of next statement in TBG? otherwise,
TDI=TLI.

TLI 61-77 Tag location index; equal to block index of tag
location in TBG

SM-0017 4.TBZ-2 A-01

4.TGB TGB - TAG BUFFER

During Pass 1, a TGB statement entry begins with a statement header
word. This header word has its sign bit set, whereas none of the entry
words do; the header word's sign bit is set so that during Pass 2, where
things are processed on a statement-by-statement basis, a quick search
will locate the head of each statement unit. The statement header word
has the following format:

20 37 50 64 77

%TBT ISN STF BWI FWI

Field Bits

HF 0

%TBT 1-17

Description

Flag set to indicate header word

Index into statement number entry in TBT, if one

exists. If header is for an entry (ENF set) ,
the field is the index into TBH of the entry

name.

ISN 20-36 Internal sequence number in binary, as it
appears on FORTRAN source listing on left margin

STF 37-47 Statement type flags, as follows:

Bit Flacj Description

37 ENF ENTRY statement
40 DBF Beginning of a DO
41 CSF Conditional statement
42 RPF Replacement statement
43 CAF CALL statement
44 ISF IF statement
45 GTF GO TO statement
46 CNF CONTINUE statement
47 IDF Ignore Vector Dependency flag

If the header is for an entry (ENF set) , bits
40-47 give the number of arguments associated
with this entry.

BWI 50-63 Backward offset relative to the location of this
header to previous statement header in TGB

FWI 64-77 Forward offset relative to the location of this
header to next statement header in TGB

SM-0017 4.TGB-1 B-01

Following the header word for a statement is a 1-word entry for each of
the elements in the statement. This entry can be a tag, an operator, or
a separator. A tag is derived from the TBT entry for the corresponding
symbol. It contains an index to the TBT entry. Operators and separators
are translated to 6-bit codes that reflect processing precedence.

Tag Buffer flags are as follows:

0 50 64 77

///////////////////////////////////I flags | TL

Field Bit Description

Flags: 50-63

DAF 50 Dummy Argument flag

EQF 51 Equivalence flag

If DAF and EQF are set, the tag is a ppinter
reference

FNF 52, Function flag? if flag is set, the symbol name
53-55 is a function and bits 53-55 are as follows.

53 Call-by-value flag (CBV)
54 Function/subroutine Call flag (FSC)
55 Single/multiple Result Function flag (SMR)

If flag is clear and bits 53-55 are zeros, then
the symbol name is a simple variable. Otherwise,
the symbol name is an array; bit 52 is clear and
bits 53-55 contain the number of dimensions in
the array (up to 7). If bits 51 and 52 are set,
the function has side effects and cannot be
optimized.

INF 56 Internal Statement Function flag
or

RDF 56 Defined flag; set if variable is defined
(assigned a value) . This bit is set on a
block-by-block basis.

IVF 57 Variant/invariant flag; set if variable is a
variant within the block. This bit is set on a
block-by-block basis.

CIF 60 Constant Increment Integer (CII) flag

VAF 61 Vector Array flag or Function flag; set if this
array reference or function call can be
vectorized. Vectorization is possible if the

SM-0017 4.TGB-2 B—01

Field Bit Description

VAF (continued) subscripting is acceptable, if the vector array
or function is in a vectorizable form, or if it
is a known vector library routine with a vector
argument.

SAF 62

KSF 62

Intrinsic function special processing bit; bit
is checked only in function headers with VAF
set. If SAF is also set, a call is made to SPFH
from CBLK and to SPFR to handle special
processing for intrinsic functions such as SHIFT
and CSMG.
or
Known Sign flag; set if the sign of a number is
known. Used for constant tags (600) only.

MAF

SCF

TL

63

63

64-77

Sign bit, if known (if bit 62 is set)
or
Subsequent ambiguous reference

Type and length

Pseudo entry

A pseudo tag is used to represent a temporary value which is not to be
allocated a memory location. The pseudo tag (100) is used only in TGB

and TBG. Fields conform to function and variable. Pseudo entry for a
function is only used for RETURN statements, while that for a variable is
used throughout.

Format:

01 12 15

45 50_64_77

/i 100 |TYP| OFS I//I TBF I TL

Field Bits Description

TAG 1-11 Tag; 100 (constant tag)

TYP 12-14 Constant tag subtype

OFS 15-44 Offset

TBF 50-63 Tag Buffer flags

TL 64-77 Type and length

SM-0017 4.TGB-3 B-01

Statement number definition entry

Format:

01

/I %TBT

20 37 50 64 77

ISN STF BSI FSI

Field

%TBT

ISN

STF

BSI

FSI

Bits

1-17

20-36

37-47

50-63

64-77

Description

Index into TBT

Internal sequence number

Statement Type flags

Backward statement index

Forward statement index

Statement number reference entry

Format:

01 12 31 50 64 77

/I 101 I////////////// I %TBT TBF 0017

Field

TAG

%TBT

TBF

TL

Bits

1-11

31-47

50-63

64-77

Description

Tag; 101 (statement number tag)

Index into TBT

Tag Buffer flags

Type and length; 0017.

Format number reference entry

Format:

01 12 31 50 64 77
/I 602 I////////////// I %TBT TBF TL

SM-0017 4.TGB-4 B-01

Field Bits Description

TAG

%TBT

TBF

TL

1-11

31-47

50-63

64-77

Tag; 602 (program block, positive relocation
tag) .
Index into TBT

Tag Buffer flags

Type and length? 2017 for 24-bit ASCII value,
2077 for 64-bit ASCII value.

External function entry

(An external intrinsic function has an entry in TBL and TBM.)

Format:

01 12

/I 102 |

31 50 64

PCT %TBT TBF

77

TL

Field

TAG

PCT

%TBT

TBF

TL

Bits

1-11

12-30

31-47

50-63

64-77

Description

Tag? 102 (external function tag).

Parameter count; number of arguments to the
function (taken from TBM) .
Index into TBT

Tag Buffer flags

Type and length

Intrinsic function entry

Format:

01 12 31 50 64 77

/) 103 I////////////// I %TBL TBF TL

Field

TAG

Bits

1-11

Description

Tag; 103 (intrinsic function tag).

SM-0017 4.TGB-5 B-01

Field

%TBL

TBF

TL

Bits

31-47

50-63

64-77

Description

Index into TBI. entry

Tag Buffer flags

Type and length

Dummy argument entry (Pass 1)

Format :

01 12

/1110-577 |

31 50 64 77

%TBA %TBT TBF TL

Field

TAG

%TBA

%TBT

TBF

TL

Bits

1-11

12-30

31-47

50-63

64-77

Description

Tag; a number from 110 to 577 (dummy argument
tag) .
Index into TBA (for array references)

Index into TBT

Tag Buffer flags

Type and length

Dummy argument entry (Pass 2)

Format:

01 12

/I110-577 I
31

OFS

50 64 77

TBF TL

Field

TAG

OFS

TBF

TL

Bits

1-11

12-47

50-63

64-77

Description

Tag; a number from 110 to 577 (dummy argument tag)

Offset in block

Tag Buffer flags

Type and length

SM-0017 4.TGB-6 B-01

Variable in program and common block (Pass 1)

Format:

01_
/I601-777

12 31

%TBA

50 64 77
%TBT TBF TL

Field

TAG

Bits

1-11

Description

%TBA

%TBT

TBF

TL

12-30

31-47

50-63

64-77

Tag; one of the following:
601 Offset from B01 (dummy argument addresses)

Program block, positive relocation
(#TB) Temporary block tag
(#CL) Argument list block tag
(#ST) Offset from B03; stack tag.
(#RG) B/T register tag

Data block tag

602
603
604
605
606
607 (#DA)

610-777
Common block tag (assigned in ascending
order)

Index into TBA (for array references)

Index into TBT

Tag Buffer flags

Type and length

Variable in program and common block (Pass 2)

Format:

01 12 31 50 64 77

/I 601-777 | OFS TBF TL

Field

TAG

Bits

1-11

Description

Tag; one of the following:
601 Offset from B01 (dummy argument addresses)
602 Program block, positive relocation
603 (#TB) Temporary block tag
604 (#CL) Argument list block tag

605 (#ST) Offset from B03; stack tag.
606 (#RG) B/T register tag

SM-0017 4.TGB-7 B-01

Field Bits Description

TAG (continued)

OFS

TBF

TL

12-47

50-63

64-77

607 (#DA) Data block tag
610-777

Common block tag (assigned in ascending
order)

Offset in block

Tag Buffer flags

Type and length

Constant entry

An entry is made in TGB for each constant encountered.
subtypes are available. Their formats follow.

A subtype 0 constant tag gives TBB entry information.

Four constant tag

Format:

01 12 15 41 50 64 77

/I 600 | 0 | %TBB I////// I TBF TL

Field Bits Description

TAG 1-11 Tag; 600 (constant tag) .
SUB 12-14 Constant tag subtype? 0 (constant in TBB) .
%TBB 15-41 Index into TBB

TBF 50-63 Tag Buffer flags

TL 64-77 Type and length

A subtype 1constant tag signals a machine-generated constant. (The 071

machine instruction allows generation of a number of different constants.)

Format :

01_12 15_45 50_64_77

/| 600 111 J I////I TBF | TL

SM-0017 4 .TGB-8 B-01

Field Bits Description

TAG 1-11 Tag; 600 (constant tag) .
SUB 12-14 Constant tag subtype; 1 (machine-generated

constant) .
J 15-44 J holds a value that corresponds to the opcode's

J value as follows:

Opcode Constant J value

071i4x 0.5 4
071i5x 1.0 5
071i6a: 2.0 6
071i7x 4.0 7

TBF 50-63 Tag Buffer flags

TL 64-77 Type and length

A subtype 4 constant tag is used for a 22-bit immediate constant.

Format:

01_12 15_45 50_64_77

/| 600 | 4 | CON |///I TBF | TL

Field Bits Description

TAG 1-11 Tag? 600 (constant tag) .
SUB 12-14 Constant tag subtype; 4 (immediate) .
CON 15-44 22-bit immediate constant (preceded by 2 sign

bits)

TBF 50-63 Tag Buffer flags

TL 64-77 Type and length

A subtype 6 constant tag contains a 22-bit intermediate shifted
constant. The 22-bit constant is shifted left 51 places. This subtype
is used to generate floating-point constants.

SM-0017 4.TGB-9 B-01

Format:

01 12 15 45 50 64 77

/I 600 | 6 | CON I///1 TBF | TL

Field Bits Description

TAG 1-11 Tag; 600 (constant tag).

SUB 12-14 Constant tag subtype? 6 (shifted constant) .
CON 15-44 22-bit intermediate shifted constant

TBF 50-63 Tag Buffer flags

TL 64-77 Type and length

Operator entry

Format:

0 12 21 50 64 77

//////////I OPC I///////////////////////I TBF | TL

Field Bits Description

OPC 12-20 TGB representation of operator or separator in
6-bit code form, OPC codes are given in table
4.TGB-1.

TBF 50-63 Tag Buffer flags

TL 64-77 Type and length

The following bits are used when the OPC field is 53, 54, or 55.

Field Bits Description

20-37 Size of the parenthesis group if OPC is 53 or 54

34-47 %TBW of subscript increment if OPC is 53 or 54
Number of arguments if OPC is 53 or 54
Number of subscripts if OPC is 53, 54f or 55
Argument number if OPC is 53, 54, or 55

SM-0017 4.TGB-10 B-01

Field Bits Description

PMF 50-63 Parenthesis Mode flag if OPC is 53, 54, or 55.
The description of the bits follows:

Bit Flag Description

53 STF Substring

CBV If PLF is set, bit 53 is the
call-by-value parameter list

54 RTF Required type
55 DSF Data statement/variable

subscript
56 IOF I/O list
57 SNF Statement number
60 IFF IF statement
61 PLR Parameter list
62 SSF Subscript flag
63 EXF Expression flag

Table 4.TGB-1. TGB representation of operators and separators

Code Description
Precedence

Level

77 Arithmetic exponentiation 16
76 Arithmetic quotient 15
75 Arithmetic product 15
74 Arithmetic difference 14
73 Arithmetic sum 14
72 Character concatenation 13
71 .EQ. 12
70 .NE. 12
67 .LE. 12
66 .GT. 12
65 .GE. 12
64 .LT. 12
63 .NOT. Logical complement 11
62 .AND. Product 10
61 .OR. Sum 7
60 .XOR. Difference (.NEQV.) 6
57 .EQV. Equivalence 6
56 Colon 5
55 Comma 4
54 Close parenthesis 3
53 Open parenthesis 2
52 Equal sign 1

SM-0017 4.TGB-11 A— 01

4.TSIF TSIF - SPECIAL INTRINSIC FUNCTION TABLE

TSIF appears in CB near CB35B to cause special intrinsic functions to be
preprocessed by CBLK before the call to INFN. For example, the external
value functions are processed as repeated calls to two argument versions
including INFN as follows.

MAXO (I,J,K) = MAX0(I,MAX0(J,K))

Format:

0 20 40 77

I /////////////// I %TBM(C) %TBM(N)

Field Bits Description

%TBM(C) 20-37 Index into TBM of 2-argument version of function
with type conversion from arguments to result
(integer to floating-point or vice versa)

%TBM(N) 40-77 Index into TBM of 2-argument version of function
with result type equal to argument type

SM—0017 4.TSIF-1 B-01

SUBROUTINES 5

This section includes brief descriptions of the major subroutines
that comprise the CFT compiler. These routines are listed in
alphabetical order according to routine name.

SM-0017 5-1 A

ROUTINE: ABLK - Analyze block

PASS: 2

DESCRIPTION: ABLK is the main driver for Pass 2. It divides TBG
into segments, called blocks, which are then
compiled into code, one at a time.

During Pass 1, all extraneous statement numbers are
deactivated. Thus, at the beginning of Pass 2, each
statement number in TBG is a target.

Each time ABLK is called, it searches through TBG to
find the next block boundary. A block boundary is
an ENTRY statement, a loop begin, or a statement
referenced from outside the block.

ABLK does the following:

Builds TBZ, the list of variables defined
within the block
Sets the variant bit in all references to
variant elements, including variables used in
EQUIVALENCE statements and common or dummy
arguments (if there is an external reference
to them)
Locates all constant increment integer (CII)
variables and creates a TBZ entry for each CII

The ABLK sequence is:

1. ABLK
2. Analyze dependency conditions (ADEP)

3. Promote constants from subscripts (PCON)

4. Set Vector Array flag in all probable scalar
temporary vectors (SVEC)

5. Examine array or function references (EAFR)
6. Vector loop control (VCTL)
7. Compile block (CBLK)

SM-0017 5-2 B-02

ROUTINE: ABRA - Analyze branch statements

PASS: 1 (during END statement processing)

DESCRIPTION: ABRA is called from EN30 at the end of Pass 1before
Pass 2 begins. The intermediate text is built and
statement labels and references to the text are
linked together before ABRA is called. ABRA
examines all statement numbers to see if they are
defined in the range of a DO-loop. If they are in
the range of a DO-loop, all references to the
statement number are examined. Each reference
outside the loop where the statement label is
defined causes ABRA to issue a warning message if
the reference is a conditional, unconditional, or
computed GO TO; two or three branch arithmetic IF;
or an alternate return subroutine call. A caution
message is issued if a statement number defined in a
loop is referenced in an ASSIGN statement or in the
END« or ERR= branch of an I/O statement.

ROUTINES: ACAL, ACAN, ACGR, ACNU - Assemble character string

PASS: 1

DESCRIPTION: Biese routines assemble a character string in
register SI, left-adjusted and packed 8 characters
per word. TSie string is gathered from a character
string, generally the Character Buffer (CHB) .
The routines and the string types they handle are:

ACAL - Alphabetic characters
ACAN - Alphanumeric characters
ACGR - General strings; user specifies list of

characters allowed.
ACNU - Numeric characters

A routine continues assembling a string until it
encounters a character not in the appropriate
group. Control transfers to the appropriate routine.

These routines use a special technique possible on
the CRAY-1 computer for determining whether or not
an ASCII character is a member of a specific group.

SM-0017 5-3 B-02

DESCRIPTION: ASCII characters are 8-bit characters; however, only
(continued) the low-order 7 bits are used. Thus, there are 128

possible ASCII characters. Two S registers are
treated as if they are concatenated to form a 128-bit
string. Two masks are entered into these registers
with ones in the bit position corresponding to an
ASCII character being searched for. The position of
the character to be examined is then loaded into an A
register and a double length concatenated shift is
performed on the two S registers, putting the result
into SO. If SO is negative, then the character being
examined is a member of the set being looked for; if
SO is positive, the character is not a member.

These routines can assemble a symbol of up to eight
characters. Compatibility and transportability can be
enforced by inserting code into these routines to
limit symbol lengths to six or seven characters.

ROUTINE:

PASS:

DESCRIPTION:

ADEP - Analyze dependency conditions

2

ADEP examines array references within a block, looking
for vector potential. ADEP's function is to analyze
the dependency of array references and to identify
characteristics inhibiting vector ization. It marks
both actual and ambiguous dependencies. If a
dependency is found, ADEP clears the Vector Loop flag.

ADEP also sets up TBY, the Dependent Reference Table,
which is used in optimization.

Clearing the Vector Loop flag occurs in S7 under one
of the following conditions.

When the Reference, Previous, and Minus flags are
set
When the Define, Previous, and Minus flags are set

Constant stride analysis determines if a detected
dependency can be ignored because array references
never access the same memory locations. A(I) and
A(I-l) never access the same memory locations if the
stride through the DO-loop is 2.

SM-0017 5-4 B-01

DESCRIPTION: Analysis continues even if the Vector Loop flag has
(continued) been cleared in ADEP because dependency cases are

important for other optimizations. The Vector Array
flag may be set for other array tags, but a vector
read does not occur for those arrays unless the
Vector Loop flag is also set,

ROUTINE:

PASS:

DESCRIPTION:

AIBF - Analyze internal block flow

2

AIBF analyzes the flow of control within a block
selected by ABLK. BOF should be marked if the flow
transfers out of the block. AIBF also determines
which statements are executed each time and the
extent of the loop, if any. If the block is a loop,
set LPF (and VLF and DLF, if appropriate) .

ROUTINE:

PASS:

DESCRIPTION:

ARUS - Analyze register usage

2

APWD counts usage of each register type.

ROUTINE: ASST - ASSIGN statement processor

PASS: 1

DESCRIPTION: Hiis routine processes ASSIGN xx TO yy statements.

ROUTINE:

PASS:

DESCRIPTION:

ASVL - Assign short-loop registers

2

ASVL attempts to assign recursion registers to real
registers for the life of the loop. ASVL also
extracts instructions to be bottom-loaded and sets up
the bottom load.

SM-0017 5-5 B-02

ROUTINE: ASVM - Assign loop boundaries

PASS: 2

DESCRIPTION: ASVM determines the boundaries of the IF-loop and
sets up the preamble for bottom-loading the IF-loop

ROUTINE: ATxx - Assemble Tag Buffer

PASS: 1

DESCRIPTION: This routine is the main driver in assembling the
Tag Buffer (TGB) . ATk# works along with OPxx
for Pass 1syntax checking.

AT02 performs the syntax checking for all
expressions. It compares the previous tag or
operator with the current tag or operator and a
precedence mask for the current tag or operator to
determine whether the sequence is legal.

AT05 begins processing of the next element. Three
element types are possible: Hollerith text,
operator or separator, and alphabetic or numeric.
If the code at AT05 detects Hollerith notation, it
branches to routine HOLD, the Hollerith text
processor; if it encounters an operator, it branches
to 0p02 to process that operator. However,
alphabetic and numeric fields are processed by
ATkx itself. An alphabetic field is converted to
a tag. Then, the next character is examined. If it

I is an open parenthesis for a subscript or an
argument, list processing is set up. A numeric item
can be either a number or a statement label.

hTxx processes both expressions and lists (for
example, I/O lists or argument lists). If the array
bounds feature is enabled, ATarx transforms array
references into function calls.

ATazc also sets the referenced entry flag and/or
the defined entry flag for tags.

After AT38, there are several entries to initialize
for special statement processing.

SM-0017 5-6 B-02

ROUTINES BDST - BLOCK DATA statement processor

PASS: 1

DESCRIPTION: Routine BDST processes BLOCK DATA statements and
enters SRST at SR04.

ROUTINE:

PASS:

DESCRIPTION:

BFST - BUFFER IN and BUFFER OUT statement processor

1

This routine processes BUFFER IN and BUFFER OUT
statements. It also does some syntax checking and
branches to routine IOST (at 1066) .

ROUTINE:

PASS:

DESCRIPTION:

BGIN - Begin compilation

1

Routine BGIN initializes CFT and calls the control
statement cracking routine, CARD.

The code beginning at BG10 performs partial
initialization at the start of Pass 1for each block
compiled.

ROUTINE:

PASS:

DESCRIPTION:

BKST - BACKSPACE statement processor

1

Routine BKST is the BACKSPACE statement processor.
Upon recognition of 'BACKSPACE', control is passed
to RW01 in RWST for further processing.

SM-0017 5-7 B-02

ROUTINE: BLCN - Blank count

PASS s 1,2

DESCRIPTION: Routine BLCN returns the number of bits occupied by
the leading blanks in the right-justified,
blank-filled, 8-bit ASCII symbol in SI. The caller
can use this bit count to left-justify the symbol.

ROUTINE: BLFL - Blank fill a word

PASS: 1,2

DESCRIPTION: This routine blank fills an ASCII word in register
SI.

ROUTINE:

PASS:

DESCRIPTION:

BTD - Convert binary value to ASCII decimal value

1,2

BTD converts a binary value (SI) to the ASCII
representation of its decimal value (returned in
SI). The contents of A0-A7 and S7 are saved, the
external library routine $BTD does the conversion,
and A0-A7 and S7 are restored.

ROUTINE: CADR - Compile address

PASS: 2

DESCRIPTION: CADR compiles the address of a tag. It compiles the
code needed to load an address into an A register.

SM-0017 5-8 B-02

ROUTINE: CADW - Compile dummy argument address

PASS:

DESCRIPTION: Routine CADW compiles code to copy a dummy argument
address from a secondary entry to the primary entry.

ROUTINE:

PASS:

DESCRIPTION:

CARD - Crack CFT control statement

0

CARD is called as part of the initialization process
performed by routine BGIN. It cracks the CFT
control statement, determines the datasets needed,
and' opens them if they are not already open. CARD
also collects the list and error processing options
specified on the CFT control statement, setting
indicator bits in register T.OCW showing which
options are ON and OFF. Default values are used for
options not specified on the CFT control statement.

ROUTINE:

PASS:

DESCRIPTION:

CBLK - Compile block

2

Compile block. This routine sequences through a
block line-by-line and generates code. On each
line, CBLK locates the innermost parentheses pair
and drives routine OLEV through the operator
precedence list to compile code (PTRI) . CBLK also
processes function calls, transmits argument

addresses, broadcasts scalar arguments, expands
intrinsic functions (calling routine INFN) , and
forces expression type conversion, if necessary.

The code beginning at CB70 processes vector array
loads and stores.

SM-0017 5-9 B-02

ROUTINE: CCAT - Compile concatenation

PASS: 2

DESCRIPTION: CCAT compiles concatenation by taking a sequence of
character operands and generating temporary storage
and calls for the run time routines doing the
concatenation.

ROUTINE: CCLA - Construct character operand address

PASS: 2

DESCRIPTION: CCLA generates code constructing a character operand
address and transmits the address to another routine,

ROUTINE: CCLO - Convert character constant

PASS: 1

DESCRIPTION: CCLO converts a character constant to a Boolean
operand when a character operand is illegal.

ROUTINE: CCRS - Convert conditional replacement statement

PASS: 1

DESCRIPTION: CCRS optimizes conditional replacement statements of
the form IF(logical expression) varÿexpression
by producing code similar to the replacement
statement var=CVMGT (expression,var,logical
expression) . A new tag buffer entry is created
from the conditional replacement statement entry and
is copied over that entry in the tag buffer.

SM-0017 5-10 B-02

DESCRIPTION: Certain conditions must be met before optimization
(continued) occurs. Optimization must first be enabled by

specifying OPT=FULLIFCON or OPT=PARTIALIFCON on the
CFT control card. (Optimization is disabled by
specifying OPT=NOIFCON on the CFT control card
(default) or using the CDIR$ NOIFCON compiler
directive.) If the optimization level is partial-IF
conversion (OPT=PARTIALIFCON) , the replacement
expression cannot involve division or an external
function reference. The last requirement for
optimization is that the type of the replacement
variable must be integer, logical, or real.

ROUTINE:

PASS:

DESCRIPTION:

CCTB - Convert character constant operand

2

CCTB converts a character constant operand to a
Boolean operand when the character constant operand
is used as an arithmetic operator operand.

ROUTINE: CDIR - Compiler directive processor

PASS: 1

DESCRIPTION: CDIR processes the CDIR$ directives during Pass 1.

ROUTINE:

PASS:

DESCRIPTION:

CDPR - Compiler directive processor

2

CDPR processes the ALIGN, BL, BLOCK, CODE, CVL,
FASTMD, NOBL, NOCODE, NOCVL, NODOREP, NOIFCON,
NORECURRENCE, NOVECTOR, RESUMEDOREP, RESUMEIFCON,
ROLL, SAFEIF, SLOWMD, and UNSAFEIF compiler
directives during Pass 2.

SM-0017 5-11 B-02

ROUTINE: CEaxc - Check EQUIVALENCE overlap

PASS: 2

DESCRIPTION: These routines check for EQUIVALENCE overlap,
looking for EQUIVALENCE dependencies between two tags.

CExrc checks all references against the definitions
in TBZ. CEOV selects exact matches for the
references in TBZ and then begins an analysis of the
subscripts. Because all constants are packed
together at the end of the subscript expression
during Pass 1, all scans proceed from right to
left. If the constant add-ins do not match, a flag
is set.

ROUTINE:

PASS:

DESCRIPTION:

CEXP - Constant expression evaluation

1,2

CEXP examines the tag buffer for a simple constant
expression inside parentheses. If the tag buffer
contains {constant-ÿ operator eonstant2)

where the constant tags are of the form 06004... and
the operator must be KAP, KAS, or KAD, this
expression is evaluated to a single constant and
stored back into the tag buffer.

ROUTINE:

PASS:

DESCRIPTION:

CFBI - Correct forward and backward indices

1,2

CFBI examines a section of the tag buffer to ensure
that all statement header forward and backward
indices are correct.

SM-0017 5-12 B-02

ROUTINE: CHST - CHARACTER statement processor

PASS; 1

DESCRIPTION: This routine sets the appropriate type and length
fields in S7, verifies the spelling of CHARACTER,
and jumps to routine DCLR, Control returns to CH10
from DC02 if the character length must be
evaluated. After the length evaluation, control
reverts to DCLR.

ROUTINE:

PASS:

DESCRIPTION:

CIDN - Check identifier names

End of Pass 1

CIDN is called at the end of Pass 1only if non-ANSI
messages are enabled. A pass is made through TBS to
examine identifiers with lengths greater than 6
characters and to examine symbolic constant names
used as common block names. Both cases are flagged
with non-ANSI messages.

ROUTINE: CKRF - Examine IF statements

PASS: 1

DESCRIPTION: CKRF examines IF statements for replacement by a MAX
or MIN function.

ROUTINES: CLAT, CLCF, CLGA, CLOF, CLOG, CLRS, CLSZ, CLTG -
Process external function and subroutine calls

PASS: 2

DESCRIPTION: These routines are primarily used by CBLK to process
external function and subroutine calls.

SM-0017 5-13 B-02

DESCRIPTION; Argument lists are built in block #CL in static
(continued) mode. Argument lists are built on the stack in

stack mode (see Appendix D for the stack frame
format) . Static and stack modes have argument list
headers built as compile-time constants in #CL. The
argument list header for a call by address in stack
mode is read from #CL and transferred to the stack
at run time.

The CLSZ function is used between Passes 1and 2 to
compute the space needed in #CL. CLRS reserves
space in #CL.

Processing a call begins with CLOF or CLOG. CLOF is
invoked for calls in TBG and CLOG is invoked for
by-value function calls created in Pass 2. Both
routines reserve #CL and stack space needed for the
call, construct the arglist header in #CL, and save
call information used by CLAT, CLGA, and CLTG.
Saved call information is stored on a compile-time
stack and includes: the amount of #CL space
reserved for the call, a pointer to the arglist
header in #CL, a pointer to the call list in TBG,
the amount of space reserved for the argument list,
a pointer to the arglist header slot in the run time
stack (in stack mode), and a pseudo register with
the base address of the argument list (for calls by
address) .
All the information for a call may not be known when
CLOF or CLOG is invoked. For example, CBLK creates
an address-of-result argument for character
functions after CLOF is complete. CLGA makes
adjustments to process these generated arguments.

When a call is being processed, CLAT and CLTG are
invoked to obtain tags for argument list entities.
CLTG returns a tag for an entity in #CL and is
usually used to obtain a tag for the arglist
header. CLAT returns a tag for an arglist entity in
the form of an offset from a base-address pseudo
register and is usually used to generate code which
stores an argument address in the argument list.
The type of tag returned by CLAT can be used in
stack and static modes and therefore, most CBLK
call-handling code ignores the mode in use.

Invoke CLCF to complete call processing. CLCF pops
the compile-time stack which reactivates the
processing of an enclosing call, if any.

SM-0017 5-14 B-02

ROUTINE: CLOS - CLOSE statement processor

PASS:

DESCRIPTION: This routine processes CLOSE statements. Most
processing takes place in OPEN.

ROUTINE:

PASS:

DESCRIPTION:

CLST - CALL statement processor

1

CLST processes CALL statements. If alternate
returns are present, CLST branches to GT10 to
process as a computed GO TO? otherwise, it branches
to AT44 to process the argument list.

ROUTINE:

PASS:

DESCRIPTION:

CMST - COMMON statement processor

1

CMST processes COMMON statements and then prepares
for DCLR. CMST also processes TASK COMMON
statements. Control transfers to CMST when the TASK
keyword is used. If the syntax passes and a task
common block was declared, CMST places the necessary
information in a static table (COMTAG) . COMTAG is
defined at the end of CMST and contains additional
common block attribute information.

ROUTINE:

PASS:

DESCRIPTION:

CNST - CONTINUE statement processor

1

CNST processes CONTINUE statements. Processing of a
statement number (typically a DO terminator) is done
at STTR.

SM-0017 5-15 B-02

ROUTINES: CNTG, CNTB, CNTD - Convert constant to tag

PASS:

DESCRIPTION: Ihese routines convert a constant stored in
registers SI and S2 into a tag. They then enter the
value into a table or generate an immediate constant
tag.

CNTD handles double and complex entries.

CNTB (used by DATA statement processsing) bypasses
the check for immediate constants.

ROUTINE:

PASS:

DESCRIPTION:

COPR - Returns and enters calculations into TBW

2

COPR loops operation in TBW and returns previous
calculations if present. If not in TBW, the result
is calculated and then entered into TBW.

ROUTINE: CPOP - Compare operands for equality

PASS: 1,2

DESCRIPTION: CPOP compares operands for equality and uses the
pointers set up by SOPT.

ROUTINE: CPST - COMPLEX statement processor

PASS: 1

DESCRIPTION: Routine CPST processes COMPLEX statements and then
sets up for DCLR.

SM-0017 5-16 B-02

ROUTINE: CQYL - Copy loop

PASS:

DESCRIPTION: CQYL makes a second copy of the body of a loop in
TBG and adds the appropriate entries to TBY. CQYL
completes the IF statement in TBCT.

ROUTINE:

PASS:

DESCRIPTION;

CRAR - Check register assignment

2

CRAR analyzes the register assignment for the
release of loop-assigned registers,

ROUTINE:

PASS:

DESCRIPTION!

CRMV - Issue a register transfer

2

CRMV builds and issues a secondary/primary register
transfer.

ROUTINE:

PASS:

DESCRIPTION:

CRNK - Close up ranks

2

CRNK copies a block of code in TBG format, removing
nulls and adjusting parentheses groups to account

for removed nulls.

SM-0017 5-17 B-02

ROUTINE: CRRG - Clear assigned registers at end of loop

PASS: 2

DESCRIPTION: CRRG finds registers assigned for the life of the
loop and clears registers not needed after the end
of the loop.

ROUTINE:

PASS:

DESCRIPTION:

CRVR - Process vector recursion

2

CRVR does the final processing on vector reduction
assigned to the real register for the life of the
loop.

ROUTINE: CSNR - Compile statement number

PASS: 2

DESCRIPTION: This routine compiles a jump to a statement number
tag.

ROUTINE: CSRD - Compile scalar read

PASS: 2

DESCRIPTION: CSRD compiles a scalar read instruction to read from
memory into a pseudo register. CSRD, along with
CSWR, maintains TBX, a table of the variables placed
in pseudo registers.

SM-0017 5-18 B-02

DESCRIPTION: CSRD searches TBX to see if a value is already in a
(continued) pseudo register. If it is, CSRD returns the TBX

entry rather than generating another read command.
CSRD searches TBX backward so that CSRD always
obtains the most recent version of the variable. If
the value is not already in a pseudo register, CSRD
generates the code to do a load.

CSRD checks for stores following reads and checks
for redefinition. Additionally, CSRD handles pseudo
register generation for double-word operands
(complex and double-precision) and does two reads
into two adjacently numbered pseudo registers.

CSRD processes subscripted references, immediate and
shifted constants as well as normal scalars. A
secondary entry for CSRD exists at CS04.

ROUTINE:

PASS:

DESCRIPTION:

CSWR - Compile scalar write

2

This routine compiles the write instruction. It
compiles a move from the A to the S registers, if
necessary. CSWR, along with CSRD, maintains TBX,
which holds variable tag and new pseudo register
information to suppress future reads. A secondary
entry for CSWR exists at CS38.

ROUTINE: CTRI - Compile triad

PASS: 2

DESCRIPTION: CTRI is called to compile the code for the triad
selected by routine PTRI. A triad consists of
operandlf operator, operand2. CTRI

examines the two operands to see if either is a
variable tag rather than a pseudo register. If one
is a variable tag, it must be a scalar variable
because vector array tags are handled earlier and
thus do not reach CTRI as simple operands.

SM-0017 5-19 B-02

DESCRIPTION; CTRI calls CSRD if needed to load operands into
(continued) registers and does any needed type conversion

(calling routine TRAN) . It then generates the code.

CTRI may call routine INFN to expand macros for some
operations (for example, complex arithmetic). It
calls routine LGCL to process logical operators and
DBLE to process double-precision operations or
function calls.

ROUTINE:

PASS:

DESCRIPTION:

CTTY - Check triad type

2

CTTY checks the operand types of each triad passed
to CTRI and detects nonstandard and illegal logical,
relational, and arithmetic expressions.

ROUTINE: CUaa: - Constant integer operations

PASS: 2

DESCRIPTION: These subroutines of CTRI treat as special cases
constant integer operations.

ROUTINE: CVAL - Convert constant tag to value

PASS: 1,2

DESCRIPTION: CVAL converts a constant tag into the corresponding
values. CVAL is the inverse of CNTG.

SM-0017 5-20 B-02

ROUTINE: CXOO - Compile constant expression

PASS: 1

DESCRIPTION: This routine compiles constant expressions in
declaratives, PARAMETER, and DATA statements. CXOO
is similar to CBLK. Value and pseudo register
associations are maintained in TBX and TBY. Several
operations (for example, exponentiation) are special
cases and the compiled code is not expanded as it
normally would be.

CX70 does type conversion on constants, similar to
that done by TRAN.

ROUTINE:

PASS:

DESCRIPTION:

DAST - DATA or NAMELIST statement processor

1

DAST processes DATA and NAMELIST statements. It has
two sections. The first section converts a
statement to tag-operator format and copies it to
TBG. If necessary, CXOO is called to process
implied DOs and subscript expressions. Constants
are entered into TBE.

The second section of DAST begins at DA40. It
processes all of the DATA statements accumulated by
the end of Pass 1. DA40 is a driver for routine
DPOO, which cycles through TBG and builds text
tables for the loader.

ROUTINE:

PASS:

DESCRIPTION;

DBLE - Double-precision operator processor

2

Routine DBLE processes double-precision operators by
generating a function call (through CB42A) . DBLE is
called by routine CTRI.

SM-0017 5-21 B-02

ROUTINE: DBST - DOUBLE or DOUBLE PRECISION statement processor

PASS: 1

DESCRIPTION: This routine processes DOUBLE and DOUBLE PRECISION
statements and then sets up for DCLR.

ROUTINE: DCLR - Declarative processor

PASS: 1

DESCRIPTION: Routine DCLR processes lists for type, COMMON, and
DIMENSION declaratives. An array declared via a
POINTER statement is also processed in DCLR. It
does the following:

Adds names to TBS and TBT for each simple
variable encountered
Forces types
Processes DIMENSION descriptors
Makes an entry in TBA for each array reference
Makes entries in TBQ for dummy declarators
Makes an entry in TBI for each array if the
Debug Symbol Table is being written

ROUTINE: DCST - DECODE statement processor

PASS: 1

DESCRIPTION: DCST processes DECODE statements and then sets up
for routine IOST.

SM-0017 5-22 B-02

ROUTINE: DDaxc - Implied DO processor

PASS: 1

DESCRIPTION: These routines process implied DOs during the second
section of DATA statement processing. They
calculate and maintain trip counts and increment the
DO variable pseudo register in TBY.

ROUTINE: DETB - Build Debug Symbol Table

PASS: 2

DESCRIPTION: DE1B builds the Debug Symbol Table for the loader.

ROUTINE: DLTB - Print DO-loop table

PASS: 2

DESCRIPTION: Routine DLTB prints the DO-loop table on the cross
reference map, if requested.

ROUTINE: DMST - DIMENSION statement processor

PASS: 1

DESCRIPTION: This routine processes DIMENSION statements and then
sets up for routine DCLR.

SM-0017 5-23 B-02

ROUTINE: DORP - DO-loop replacement

PASS: 1

DESCRIPTION: DORP checks for the replacement of a 1-line DO-loop
with a call to a $SCILIB routine which performs the
same operation more efficiently. When DORP is
called from STTR, DOST expanded the DO-loop preamble
and body in TBG. DORP parses the TGB for an
equation match and evaluates the equation to
determine if a $SCILIB routine can do the same
operation. If a $SCILIB routine is chosen, the
DO-loop preamble is rewritten and the $SCILIB call
macro is expanded by 0P81. Control returns to STTR
where the DO terminator label is checked. If the
1-line DO-loop cannot be replaced, control returns
to STTR before TGB is altered and DO-loop termination
continues normally.

ROUTINE:

PASS:

DESCRIPTION:

DOST - DO statement processor

1

DOST processes DO statements and does the following!

Checks syntax
Calls AT44 to process the DO list
Builds the termination package in TBR
Calls 0P81 to expand the Pass 1macro for a DO
statement
Processes implied DOs in I/O statements

D022 is called from STTR to expand TBR into the DO
termination macro.

ROUTINE: DOUN - DO-loop unrolling

PASS: 1

DESCRIPTION: DOUN attempts to unroll an inner DO-loop with known
iteration counts. The following conditions must be
met before a DO-loop is unrolled.

SM-0017 5-24 B-02

DESCRIPTION: The number of iterations is less than or equal
(continued) to the value specified on the UNROLL parameter

in the CPT control statement.

The number of tags associated with the DO-loop
body is less than or equal to MAXTAGS (a CFT
internal constant) .
No labels, references to labels, external
calls, or DO control variable modifications
appear inside the DO-loop body.

A CDIR$ ROLL is not in effect.

Unrolling makes n copies of the DO-loop body,
where n is the trip count, and replaces all
occurrances of the DO control variable with constant
tags. The DO control variable is set to the value
it would have had if the DO-loop remained rolled.
The table R parameter word is updated to pop the
DO-loop entry.

ROUTINE:

PASS:

DESCRIPTION:

DPOO - DATA statement processor

1

DPOO processes the lists in TBG during DATA
statement processing. DPOO works through the
variable and constant lists to build TXT (the loader
Text Table) and the DUP table, if possible.

ROUTINE: EAFR - Examine array or function reference

PASS: 2

DESCRIPTION: EAFR examines array or function references for
vectorizability. It makes a sweep through TGB,
picking out array references (array references are
recognized by a nonzero value in the dimension field
of the TGB entry) .

SM-0017 5-25 B-02

DESCRIPTION: For a function call, EAFR checks TBL to see if a
(continued) vector version is available. The function must be

known to TBL; this eliminates vectorization of any
programmer-defined function. If the function is
known to TBL, EAFR checks the function's parameters
to make sure that they qualify for vectorization.

ROUTINE: EBSN - Process statement number definition within
block

PASS:

DESCRIPTION: EBSN examines a statement number inside a block to
determine if it is a forward branch within the
loop. EBSN saves the DO-loop flag and enters the
number in the block statement number table.

ROUTINE: EBXR - Examine block for external references

PASS: 2

DESCRIPTION: EBXR examines each statement number defined within a
block for references from outside the block.

ROUTINE:

PASS:

DESCRIPTION:

EBXS - Adjust block for external entries

2

If the first statement of a loop has an external
entry, EBXS replaces the statement number with a
generated statement number and then compiles the
original statement number. This allows invariant
code to be removed from the loop.

| SM-0017 5-26 B-02

ROUTINE: ECNT - Enter conjunctive term

PASS:

DESCRIPTION: ECNT copies the term from TBDT to TBCT if it is not
already in TBCT.

ROUTINE:

PASS:

DESCRIPTION:

ECNU - Enter simple term

2

ECNT forms and enters a simple relational term into
TBCT.

ROUTINE:

PASS:

DESCRIPTION:

ECST - ENCODE statement processor

1

This routine processes ENCODE statements and then
sets up for routine IOST.

ROUTINE:

PASS:

DESCRIPTION:

EDJT - Enter disjunctive term

2

EDJT forms and adds one condition for safe
vectorization of a dependency to the conditions
already found. Terms are simplified and duplicates
are removed before entry.

SM-0017 5-27 B-02

ROUTINE: EDJU - Enter test for differing CIls

PASS: 2

DESCRIPTION: EDJT forms and adds one condition for safe
vectorization of subscripts with CIIs which do not
match.

ROUTINE:

PASS:

DESCRIPTION:

EFST - ENDFILE statement processor

1

EFST processes ENDFILE statements. Upon recognition
of 'ENDFILE', control is passed to RW01 in RWST for
further processing.

ROUTINE:

PASS:

DESCRIPTION:

EHOL - Enter Hollerith string

1

EHOL enters a Hollerith/character string in TBB (or

TBE for a DATA statement) . The string can be longer
than one word. It is packed, eight characters per
word, and any trailing H, L, or R is processed.
Character or Hollerith constants with an H suffix
are padded from the right with blanks to a word
boundary. A zero word in TBB terminates a character
or Hollerith string that appears in an argument list,

ROUTINE:

PASS:

DESCRIPTION:

EIDL - Examine implied DO-loop list

1

Routine EIDL examines the implied DO-loop list. It
examines subscript expressions in DATA statements to
see if subscripting is linear; if it is, the implied
DO-loop is compressed into a loader DUP Table.

SM-0017 5-28 B-02

ROUTINE s ELWD - Enter last word

PASS: 1,2

DESCRIPTION: ELWD is the main table manager. It is used in
creating table entries for all sequential tables.
ELWD enters a value from register S4 into the last
word of a table (KTx in Al) .
When making an entry, ELWD detects whether the entry

would cause the table to overflow. If this is the
case, ELWD calls routine MTAB to expand the table.
If there is a memory move, all the table pointer
words (in V7) of the moved tables are adjusted.

ROUTINE:

PASS:

DESCRIPTION:

EMPR - Error message processor

1,2

EMPR is the error message processor. It prints out
any error messages, with the message number as its
argument.

Normally, for a fatal error during Pass 1, EMPR
exits to STTR; for a fatal Pass 2 error, it exits to

ABLK. It can optionally return to the caller on
fatal errors.

EMPR always returns for nonfatal errors.
returning, EMPR restores all registers.

Before

ROUTINE: ENST - END statement processor

PASS: 1

DESCRIPTION: ENST terminates Pass 1and processes FLOWEXIT, $END,

or implied RETURN.

SM-0017 5-29 B-02

DESCRIPTION: EN01 begins termination of Pass 1and sets up for

(continued) Pass 2. It performs the following functions:

Allocates actual addresses for blocks
Processes DATA statements
Initializes the loader tables
Links statement number references in TGB

Counts the number of declared task common
blocks and prepares the required number of
reserved B registers
Incorporates TBQ into the entries in TGB
Moves TGB to TBG; as TGB is moved, the tags are
transformed to contain actual offset addresses
rather than pointers into TBT.

If fatal errors have occurred, the last three steps
are skipped. After ABLK has compiled the last
block, the LDR tables are closed and written to the
binary file. The symbol table is printed if
specified and control then transfers to BG10.

When RNXT detects end of file, control transfers to
EN78. CFT issues logfile messages and exits.

ROUTINE:

PASS:

DESCRIPTION:

EQST - EQUIVALENCE statement processor

1

Routine EQST processes EQUIVALENCE statements.

EQUIVALENCE processing is done in three steps.
First, as EQUIVALENCE statements are encountered
they are packed up, 8 characters per word, and moved
from CHB to TBR. Control then returns to RNXT.

Further processing is postponed until all other
declaratives are processed, when the first
executable statement or statement function is
found. Finally, storage is assigned.

When the first nondeclarative is encountered,
control transfers to EQ10. At this point, TBP

contains an entry for each common block entity
consisting of the %TBT for that entity. EQ replaces
each common block entry in TBP with an entry of the
form described in 4.TBP. TBH is updated reflecting
each common block length. The corresponding TBT
entry for each TBP entry is updated with %TBP for

that entity.

SM-0017 5-30 B-02

DESCRIPTION: Next, the packed equivalenced entities are extracted
(continued) one by one from TBR. A corresponding TBP entry is

created for each equivalenced entity. This ends the
actions occurring at EQ10.

At the end of Pass 1 (at EN10) , a pass is made
through TBP to perform two functions for each
equivalenced entity: (1) Detect a common block
lengthened through an equivalence, in which case,
TBH is updated; (2) Assign storage to equivalenced
entities that are part of the static or stack
blocks. The information in TBP is saved until the
end of Pass 1when all storage allocations are done.

At the end of Pass 1, all variable tags within a
block are represented by a base tag and an offset
field. This means that during Pass 2, CFT can
accurately determine whether there is a conflict
between EQUIVALENCE variables.

ROUTINE: ERTX - Invalidate old TBX entries

PASS: 2

DESCRIPTION: ERTX marks TBX entries which are no longer valid due
to a transfer of control.

ROUTINE: ESBK - Enter new sub-block

PASS: 2

DESCRIPTION: ESBK enters the statement description into TBBK.

SM-0017 5-31 B-02

ROUTINE:

PASS:

DESCRIPTION:

ESNL - Enter statement number reference

2

ESNL checks the the statement number reference for a
previous definition in the block. If a previous
definition is found, the block is terminated and
loop is compiled. If a previous definition is not
found, the reference is entered into TBBK.

ROUTINE: ESTB - Enter Symbol Table

PASS: 1

DESCRIPTION: Routine ESTB makes an entry in the Symbol Table
(TBS) . ESTB is called only after SSTB has
determined that the symbol name in question is not
yet in TBS. SSTB makes an alphabetical search of
TBS and locates the slot that the new symbol name
should occupy. ESTB then makes the entry at that
point in TBS.

ESTB checks to make sure that there is space in TBS
for each new entry. If ESTB finds that more space
is required, it calls for a memory move upward or
downward, depending on whether the new symbol
belongs in the upper or lower half of TBS. (Refer

to the section on Table Management in this
publication for a detailed description.) Then ESTB
completes making the new entry.

ROUTINE: ETBX - Make TBX entry

PASS: 2

DESCRIPTION: ETBX generates the TBX entry and a parallel TBXX
entry with a Valid or Invalid flag.

SM-0017 5-32 B-02

ROUTINE: EVOP - Evaluate operand

PASS s 1

DESCRIPTION: EVOP is used by the DORP routine. EVOP uses a
pointer word in SI as input describing an operand in
the TGB. A pointer word contains the dominant type,
the length in words, and the starting TGB address
for the operand. EVOP returns a value in SI
indicating if the operand is variant, invariant, or
illegal.
If the operand's dominant type is single real, not
equivalenced, and a variable in a program or common
block, the dimensions are used to evaluate the
subscripts. Zero dimensions imply the operand is a
scalar variable. If the scalar variable is not the
DO variable for the current loop, the operand is
invariant. If the scalar variable is the DO

variable for the current loop, the operand is
illegal. If the variable is dimensioned, the
subscripts are evaluated by obtaining variant
multipliers from the subscript with the DO
variable. Only one subscript can contain the DO

variable? otherwise, the operand is illegal. If all
subscripts are evaluated as legal, the operand is
flagged as variant or invariant, depending on the
presence of the DO variable in the subscripts.

ROUTINE:

PASS:

DESCRIPTION:

EXST - EXTERNAL statement processor

1

This routine is the EXTERNAL statement processor
It adds names to TBS and TBT, if they are not
already there. It also checks for possible
conflicts with existing definitions.

I

SM-0017 5-33 B-02

ROUTINES FLVS - Find last vector store

PASS: 2

DESCRIPTION: FLVS finds the last vector store in the loop to
check for memory conflicts on the CRAY X-MP computer.

ROUTINE: FMST - FORMAT statement processor

PASS: 1

DESCRIPTION: This routine processes FORMAT statements. It enters
the FORMAT label in TBS and TBT and acts as a driver
for routine FAEV.

ROUTINE: FNST - FUNCTION statement processor

PASS: 1

DESCRIPTION: This routine processes FUNCTION statements and then
sets up for entry SR04 in subroutine SRST.

ROUTINE:

PASS:

DESCRIPTION:

FPAR - FORMAT statement parser

1

FPAR is the FORMAT statement parser. It processes
FORMAT statements, packs them into TBB, and removes
blanks and unnecessary commas.

SM-0017 5-34 B-02

ROUTINE; FRTG - Locate argument tag

PASS: 1

DESCRIPTION: FRTG locates the argument tag if it is a single tag
and returns the argument tag to the caller .

ROUTINE: FSHD - Find statement header

PASS: 2

DESCRIPTION: FSHD is given the address of a TBG entry and finds
the statement header of the entry.

ROUTINE:

PASS:

DESCRIPTION:

FSTK - Force compiler-generated variables onto stack

1

FSTK is called in stack mode to force
compiler-generated variables onto the run time stack
(see Appendix D for the stack frame format) . This
procedure is done by inserting the stack block tag
into each static-tagged TBT entry without a
corresponding TBS entry (that is, it moves anonymous
variables to the stack) .
Two classes of compiler-generated variables are not

forced by FSTK. The first class occurs when the

space into which argument lists are copied for
multiple-entry routines is assigned to the stack by

EN10. The second class is function result tags made

into special cases by EN84.

SM-0017 5-35 B-02

ROUTINE: FSUB - Find substring

PASS:

DESCRIPTION: FSUB locates the substring for the character operand.

ROUTINE:

PASS:

DESCRIPTION:

GBAT - Generate B to A register transfer instruction

2

GBAT adds a Q24ijk (Ai Bjk) instruction to PIB.
TBX is searched for a matching entry to the B pseudo
register in SI. If a matching entry is found, the
pseudo register is returned. If a matching entry is
not found, a register tag entry is made and entered
into TBX. An 024ijk (AiBjk) instruction is
generated using a new pseudo register. The resulting
A pseudo register is then returned in SI.

ROUTINE: GCBS - Get common block base pseudo register

PASS: 2

DESCRIPTION: GCBC adds instructions to PIB to address the base (0
word) of a common block. GCBS is used by Pass 2
addressing routines to address extended memory common
blocks.

S4 contains the tag buffer entry. The offset in S4 is
zeroed to create a new table entry. TBX is searched
for a matching entry. If a match is found, the
matching pseudo register is returned. If a matching
entry is not found, a new pseudo register is assigned
to S4 and the new entry is added to TBX. Using the
new TBX entry, a 020 load instruction is generated and
the new pseudo register is returned. If extended
memory addressing is used, all 020 loads with common
block relocation will be changed to an extended memory
01h 1ijkm load. The ijkm field is 24 bits long
to allow for very large addresses.

I SM-0017 5-36 B-02

DESCRIPTION: If the offset in S4 is positive and longer than 22
(continued) bits, the offset is left in the new TBX entry and the

original TBX entry is zeroed. This allows the 01h
lijkm load to be generated with the very large
offset,

ROUTINE:

PASS:

DESCRIPTION:

GCRF - Generate code-and-result tag

2

GCRF generates the code-and-result tag for a 22-bit
constant deferred in Pass 2.

ROUTINE:

PASS:

DESCRIPTION:

GIXA - Generate index address

2

GIXA generates pseudo registers for an address on a
stack and computes the address.

ROUTINE: GLBD - Get label definition

PASS: 2

DESCRIPTION: GLBD generates an internal label for use in Pass 2
code generation.

ROUTINE:

PASS:

DESCRIPTION:

GMEM - Get memory

1,2

Routine GMEM gets more memory from the operating
system. COS inserts the memory between the tables and
the I/O buffers. GMEM moves the tables and adjusts
the table pointer words in V7.

SM-0017 5-37 B-02

ROUTINEs GSBS - Get stack base tag

PASS: 2

DESCRIPTION: GSBS finds the pseudo register holding the address of
the stack base.

ROUTINE: GTCB - Get task common block base pseudo register

PASS: 2

DESCRIPTION: GTCB adds instructions to PIB to address the base
(word 0) of a task common block. GTCB is used by Pass

2 addressing routines to address task common blocks.

The corresponding common block attribute entry
(COMTAG) is obtained based on the S4 tag. If the B
pseudo register field is nonzero, a call is made to
GBAT to generate a B to A register transfer. If the B

register field is 0, the base address of the common
block must be calculated. A new TBX entry is created
by zeroing the offset. TBX is searched for a matching
entry. If a match is found, the matching pseudo
register is returned. If a matching entry is not
found, a new pseudo register is assigned and the new
TBX entry is added to TBX. A 100-load instruction is
generated and the base pseudo register is returned.

If the S4 offset is positive and longer than 22 bits,
a check is made for extended memory addressing. If
extended memory addressing is not requested, an error
message is issued. If EMA is being used, the offset
for the original TBX entry is zeroed and a 020 load
instruction is generated (it will become a 01h ijkm
extended memory load) . An A register add is- then
generated to add the original task common block base
PR to the very large offset PR. The pseudo register
used as the result of the add is then returned.

| SM-0017 5-38 B-02

ROUTINE: GTST - GO TO statement processor

PASS: 1,2

DESCRIPTION: This routine processes GO TO statements. The code
beginning at GT30 does Pass 2 processing.

ROUTINE:

PASS:

DESCRIPTION:

HOLD - Hollerith data assembler

1

HOLD assembles Hollerith/character data (using routine
EHOL) and returns a tag for AT02. HOLD assigns a type
of Boolean to any Hollerith constant not used in an
argument list.

ROUTINE: IATY - Insert address in TBY

PASS: 2

DESCRIPTION: Routine IATY inserts TBG address in TBY reference
entries.

ROUTINE:

PASS:

DESCRIPTION:

IELS - ELSE and ELSE IF statement processor

IELS processes ELSE and ELSE IF statements. An entry
is made in TBR for each ELSE/ELSE IF statement.

SM-0017 5-39 B-02

ROUTINE: IEND - ENDIF statement processor

PASS: 1

DESCRIPTION: This routine processes ENDIF statements. It uses the
TBR entries for the current IP level. The TBR entries
at the current IF level are then deleted.

ROUTINE:

PASS:

DESCRIPTION:

IFST - IF statement processor

1,2

IFST is the IF statement processor. It assembles test
expressions (via routine ATa:#) and builds the
statement number list. It creates a TBR entry for a
block IF statement.

IF40 generates the jump instructions during Pass 2.

ROUTINE:

PASS:

DESCRIPTION:

IGXF - Intergroup transfer

2

IGXF resets segment pointers and definitions when
starting new segments of code in a block of code.

ROUTINE:

PASS:

DESCRIPTION:

IMST - IMPLICIT statement processor

1

This routine processes IMPLICIT statements. It
changes the implicit type codes in register V7 and
changes the types of a function entry and dummy
arguments, if necessary.

SM-0017 5-40 B-02

ROUTINE s INFN - Intrinsic function expander

PASS s 2

DESCRIPTION: INFN expands intrinsic function macros during Pass 2.
It compiles the functions and substitutes argument
pseudo registers. The macros for this are in TBM.

INFN requires that the parameters to the intrinsic
function are stored in V5, beginning with element 0.
Up to 64 parameters can be included, depending on how
many the intrinsic function calls for.

ROUTINE:

PASS:

DESCRIPTION:

IOST - I/O statement processor

1

IOST is the main processor for I/O statements. It
converts I/O statements into a series of calls to
library routines.

ROUTINE:

PASS:

DESCRIPTION:

IPRN - Insert parentheses

1

IPRN encloses an expression in parentheses if the
expression contains a masking operator (.EQV. , .XOR.

.NEQV., .OR., and .AND.).

SM-0017 5-41 B-02

ROUTINES IRST - Process INTRINSIC statement

PASS: X

DESCRIPTION: IRST processes the INTRINSIC statement and ensures
that the names declared INTRINSIC are intrinsic
function names and were correctly used as intrinsic
functions. IRST creates an entry in TBS for the
intrinsic function name. An entry consisting of an
external function tag is made in TBT and is updated at
the first function reference.

ROUTINE: ISRF - Insert subscripted reference

PASS: 2

DESCRIPTION: ISRF sets up code generation for a subscripted
reference.

ROUTINE:

PASS:

DESCRIPTION:

ITYP - Implicit type determiner

1

ITYP determines the implicit type of a variable name.
It uses the first character of the variable name as an
index into register V7.

ROUTINE: IVTX - Invalidate TBX entries

PASS: 2

DESCRIPTION: IVTX marks TBX entries generated after a given point
as invalid so they will not be used incorrectly.

SM-0017 5-42 B-02

LBLK - Locate sub-block definition

2

LBLK locates the TBBK entry and the TBG address.

ROUTINE: LDIV - Integer divide processor

PASS: 2

DESCRIPTION: LDIV generates a function call to process the 64-bit
integer divide. LDIV is called by CTRI.

ROUTINE: LGCL - Logical and relational operator processor

PASS: 2

DESCRIPTION: Routine LGCL generates code to process relational and
logical operators. It is called by CTRI and it may

call CTRI or INFN to generate code.

ROUTINE:

PASS:

DESCRIPTION:

ROUTINE: LGST - LOGICAL statement processor

PASS: 1

DESCRIPTION: This routine processes LOGICAL statements and then
sets up a call to routine DCLR.

ROUTINE:

PASS:

DESCRIPTION:

LSOM - Load store overlap move

2

LSOM inserts DBM,EBM around a vector instruction which
could cause memory overlap on the CRAY X-MP Computer

System.

SM-0017 5-43 B-02

ROUTINE: LSOV - Load/store overlap check

PASS: 2

DESCRIPTIONS LSOV checks for vector load/vector store overlaps on
the CRAY X-MP Computer System.

ROUTINE: LTxx - Loader Table generator

PASS: 2

DESCRIPTION: The LTxx routines build the loader tables

LTST initializes the loader tables called by END at
the start of Pass 2. It takes all the instructions
from RASN and packs them into the format required by
the loader. It adds indicator bits used by the loader
to indicate what to relocate, whether an instruction
references an external, common block information, and
so on.

LTGN builds the loader tables for each block. It is
called after routine RASN has assigned registers.
LTGN exits to ABLK to fetch the next block. It packs
each instruction into TBB. Since the actual target
address for jumps may not be known, all jump
instructions are linked in TBB. LTGN also builds the
External Reference Table (TBE) and the Block
Relocation Table (TBR) for variable references and
jumps. If the generated code listing is requested,
LTGN calls the appropriate OUTccx routine to format
the output.

LTFU can be called to force pass instructions until a
word boundary is reached. It is normally used at the
end of a routine or before an entry.

LTND is called at the end of Pass 2 to terminate the
loader tables. The actual number of B and T registers
needed to be saved/restored is inserted in all of the
EXIT/ENTRY sequences. Actual statement label
addresses are inserted in jump instructions.

SM-0017 5-44 B-02

ROUTINE: MAP - Map block names and lengths

PASS:

DESCRIPTION: MAP prints the block names and lengths list in the
symbol table, if requested.

ROUTINE: MCEX - Special case handling for scheduler

PASS: 2

DESCRIPTION: MCEX expands the instruction sequence after the
sequence is scheduled.

ROUTINE:

PASS:

DESCRIPTION:

MMEM - Manage memory

1,2

MMEM is a general memory management routine that does
memory moves through the vector registers. It can
move a block of memory either up or down. The source
and destination blocks specified may overlap.

ELWD determines that a move is necessary, MTAB
determines which way and where to move, and MMEM does
the actual move.

ROUTINE:

PASS:

DESCRIPTION;

MSAR - Move S to A register

2

MSAR generates the TBW entry to move the S to the A
register. MSAR returns the PR found in TBW if one
exists; otherwise, the next entry in TBW is returned
and generates code moving the S to the A register.

SM-0017 5-45 B-02

ROUTINE: MTAB - Move table

PASS: 1,2

DESCRIPTION: MTAB moves tables in memory. It is called by ELWD or
ESTB. Each time an addition must be made to a table
(a table has overflowed) , MTAB looks at adjacent table
pointer words in V7 to see what kind of table move is
necessary.

First, MTAB looks above the current table for any
gaps? if there are, tables are moved upward to fill
the gaps (rather than moving down and taking more
memory) . If no gaps exist above this table, MTAB
moves the table and all tables below it down 100s
words of memory and allocates 1008 words to the
table that overflowed. If the downward move gets
close to the top of TGB or PIB, GMEM is called to get
more memory. MTAB calls MMEM to do the actual move.
Table pointers in V7 are updated by MTAB.

ROUTINE: MVOP - Move operands

PASS: 1,2

DESCRIPTION: MVOP moves operands and uses the pointers set up by
SOPT.

ROUTINE:

PASS:

DESCRIPTION:

NARG - Return number of arguments

2

NARG is a function returning the number of arguments
in a tag-and-operator-format subroutine or function
call.

SM-0017 5-46 B-02

ROUTINE: NICV - Numeric input conversion

PASS: 1,2

DESCRIPTION: NICV converts numeric input by calling the external
routine $NICV. Input parameters are moved from the
registers used by the old entry sequence to $NICV to
the registers used by the new entry sequence to

$NICV. Output parameters are moved from the registers
used by the new exit sequence to the registers used by
the old exit sequence. Registers A7 and S7 are
preserved across the call as in the old sequence calls
to $NICV.

ROUTINE:

PASS:

DESCRIPTION:

NLST - NAMELIST statement processor

1,2

Routine NLST is the NAMELIST statement processor.
Pass 1sets up for DA08 (of DAST) to convert the list
to tags and place them in TBG. In Pass 2, the code
beginning at NL20 processes each NAMELIST group. It

builds the table of names and attributes and calls
LTGN to pack the list into the loader tables.

ROUTINE:

PASS:

DESCRIPTION:

NMTB - Write statement number table

2

NMTB writes the statement number table in the symbol
table, if requested.

SM-0017 5-47 B-02

ROUTINE: NOBTVAR - Enter TBT index into table KTNOBT

PASS: 1

DESCRIPTION: If OPT=BTREG, NOBTVAR enters the TBT index into table
KTNOBT of any variable used in a DATA, NAMELIST, or
SAVE statement or in an IOSTAT=, or EXIST=, etc. in an

I/O statement. These variables will not be assigned
to B or T registers.

ROUTINE:

PASS:

DESCRIPTION:

NOCV - Numeric output conversion

1,2

NOCV converts numeric
routine $NOCV. Input
registers used by the
registers used by the
Output parameters are
the new exit sequence
exit sequence.

output by calling the external
parameters are moved from the
old entry sequence to $NOCV to
new entry sequence to $NOCV.
moved from the registers used by
to the registers used by the old

ROUTINE:

PASS:

DESCRIPTION:

NTRY - ENTRY statement processor

1,2

NT20 is called once for each routine entry point
during Pass 2. For each entry point NT20 must:

Place the entry name before entry sequence code,
Place the entry parcel value in PDT (TBH) ,
Compile the entry sequence code,
Compute address tags for the entry's arguments
and save in TBP for later reference, and
If there are multiple entry points, compile code
to move passed-in arguments to standard locations
and reset B01 (the argument list base pointer) to
point to the start of the standard location space,

SM-0017 5-48 B-02

DESCRIPTION:
(continued)

Alternate returns and character functions can cause
processing complications. Each alternate return is
assigned a dummy argument tag and contributes to its
entry point's argument count. Alternate returns are
unique because their dummy argument tag does not
have a TBT entry and the caller does not pass
anything although space in the argument list is
reserved by the caller.

When character functions are used, the compiler
creates an address-of-result argument for the caller
and prefixes it to the user's argument list. A

dummy argument tag is not assigned to the created
argument and the argument is not included in the TBG
number-of-arguments field.

The following example shows entries to a routine and
the associated dummy argument tags.

Entries Associated dummy argument tags

E5(C,B,A,X) 117, 120, 121, 122

The alternate return tags are 111, 113, and 114 and
they have no TBT entry.

The primary dummy argument tags (the smallest or
only dummy argument tag associated with an argument)
are 110(A), 112(B), 116(C), and 122(X).

The secondary dummy argument tags (nonprimary
nonalternate return dummy argument tags) are 115 and
120 associated with 112(B), 117 associated with
116(C), and 121 associated with 110(A).

If the code following E4 references B and the
calling code entered the routine at E4, B*s
descriptor is the first in the argument list. If
the routine entered at El, B's descriptor is the

third in the argument list. This ambiguity cannot
be resolved at compile time. CFT solves the problem
by placing code at each entry point of a
multiple-entry routine moving the entry's passed-in
argument descriptors to standard locations. The
standard location space is contiguous and contains
one slot for the argument list header, one slot for

El(A,*,B)
E2()
E3(*,*)
E4(B,C)

none
110, 111, 112

113, 114
115, 116

SM-0017 5-49 B-02

DESCRIPTION: each dummy argument (for example, four slots for A,
(continued) B, C, and X) , and if the routine is a character

function, one slot for the invented
address-of-result argument.

In the non-stack calling sequence, the standard
location space for multiple-entry routines is the
beginning of #CL.

For a single-entry routine, argument-moving code is
not needed because the standard location space is
the passed-in argument list. If there are multiple
entries, NT20 also generates code resetting B01 to
the base of the standard location space.

NT20 communicates these offsets to the rest of CFT
by table P (TBP is built by NT20) . TBP contains one
address tag for each dummy argument tag in
increasing order: TBP's first entry is an address
tag giving standard location of the 110-tagged dummy
argument, the second TBP entry is for the Ill-tagged
dummy argument, and so on.

Continuing from the previous example, this example
shows the dummy argument tags and how TBP appears
with the standard location base of B01 (the 601 tag).

Dummy argument tag TBP (standard location tags)

110 (primary A) 601000000010000024027
111 (alternate return) 0
112 (primary B) 601000000020000024027
113 (alternate return) 0
114 (alternate return) 0
115 (second B) copy of 112's entry
116 (primary C) 601000000030000024027
117 (second C) copy of 116's entry
120 (third B) copy of 112's entry
121 (second A) copy of 110's entry
122 (primary X) 601000000040000024027

For a multiple-entry non-stack routine, the standard
location is in the first frame of #CL (#CL+0 and so
on) and CFT generates offset-into-#CL code for
argument references (the TBP tag fields are 604) .

SM-0017 5-50 B-02

DESCRIPTION: The first offset field is 1because the 0-offset
(continued) address is reserved for a copy of the passed-in

argument list header. For a character function, the
first offset field is 2 because the 1-offset address
is reserved for the address-of-result argument (this
argument does not have a 110-577 tag, and must be
special-cased) .

ROUTINE: OLEV - Operator level

PASS: 2

DESCRIPTION: OLEV finds the current operator level. It is called
by CBLK to begin a forward scan through an
expression, looking for operators at certain
precedence levels. CBLK makes successive calls to
OLEV once for each operator level, beginning from
the top of the hierarchy and working downward. (All
operations of the same precedence are done at the
same time, taking advantage of the CRAY'S
independent functional units.) OLEV works from the
innermost parenthesis pair outwards. The hierarchy
from highest to lowest is:

Exponentiation
Multiplies and divides
Adds and subtracts
Logical
Relational

OLEV works together with CBLK and PTRI to generate

code for each operation and then to replace each
triad processed in the text with the result register
used.

Whenever OLEV finds an operator, it returns a
pointer to that operator to CBLK, and CBLK calls
PTRI to process the triad. Once PTRI and CTRI have
reduced the triad to a result and returned the
result register to CBLK, CBLK again calls OLEV to

find another operator.

A simple test in OLEV determines whether any more
operators of the same precedence level remain in the
expression. Once no operators remain, the scan is
terminated.

SM-0017 5-51 B-02

DESCRIPTION: Because Pass X puts a set of parentheses around the
(continued) entire righthand side of an expression, the entire

expression can be worked off to one result
register. It is also necessary to look at the
left-hand side of the expression because a subscript
expression may have to be worked off as well.

ROUTINE:

PASS:

DESCRIPTION:

OPxx - Operator processor

1

OPxx processes operators during Pass 1conversion
to tag-operator format. It works in conjunction
with ATxsc, converting operators into precedence
numbers for TBG. It also processes parentheses in
expressions, subscripts, and calls and maintains a
parenthesis stack in V6. OPa%c processes commas in
lists, and in subscripts it expands the subscript
reference.

0P81 expands Pass 1macros such as the DO macros and
also expands arithmetic statement functions.

ROUTINE:

PASS:

DESCRIPTION}

OPEN - OPEN, CLOSE, and INQUIRE statement processor

1

This routine processes OPEN, CLOSE, and INQUIRE
statements and then sets up a call to routine IOST.

ROUTINE:

PASS:

DESCRIPTION:

OTBL - Output table generator

2

OTBL performs output table generation. It writes
the IDENT, etc. on the pseudo CAL file, if it is
called for.

SM-0017 5-52 B-02

ROUTINE: OUTaxc - Pseudo-CAL output generator

PASS:

DESCRIPTION: OUTxx generates the pseudo CAL output. It converts
instructions to ASCII and writes them on the output or
pseudo CAL file, if requested.

ROUTINE:

PASS:

DESCRIPTION:

OUTBB - Output BLOCK BEGINS

2

This routine writes the "BLOCK BEGINS" message.

ROUTINE:

PASS:

DESCRIPTION;

PAST - PAUSE statement processor

1

Routine PAST processes PAUSE statements.

PA02 is the code common for processing STOP and PAUSE.

PA10 is common for STOP and PAUSE.

ROUTINE:

PASS:

DESCRIPTION:

PBLK - Select and prepare compilation of next statement

2

PBLK invalidates the TBX entries, if necessary, and
selects the next statement to be compiled. At the end
of the block, the block is transferred to SKED.
Prepare the compressed index sub-blocks and compile
any statement number definitions.

SM-0017 5-53 B-02

ROUTINE: PCIV - Process conditional CII variables

PASS: 2

DESCRIPTION; PCIV examines the conditional block for CII references
and moves the load of CII from the conditional block.

ROUTINE:

PASS:

DESCRIPTION:

PCON - Promote constants

2

PCON promotes the constants that have been retained
thus far intact in subscript expressions, it scans
through the subscript references in TBG and collects
all possible constants into a single offset term.

ROUTINE: PCST - Process conditional store

PASS: 2

DESCRIPTION: PCST invalidates the TBX entries made unusable by a
conditional store.

ROUTINE:

PASS:

DESCRIPTION:

PEXP - Process exponent

2

PEXP is the exponentiation processor. It is called
from CBLK if OLEV finds an exponentiation operation.
It searches for the last ** in a sequence (for
example, in the expression A**B**C, the B**C would be
processed first) .
This routine handles special casing of **2, **3, and
**4 by calling routine CTRI to do the multiplies.
Otherwise, PEXP builds the name of the external
routine that does the operation and calls CTRI; CTRI

then calls PE90 to generate the actual CALL (through
CB32 and CB42A) .

SM-0017 5-54 B-02

ROUTINE: PGST - PROGRAM statement processor

PASS: 1

DESCRIPTION: Routine PGST processes the PROGRAM statement. It then
sets up and transfers to SR04 (of SRST) .

ROUTINE:

PASS:

DESCRIPTION!

PHDL - Print header line

1/2

PHDL prints the header line on the top of each page of
the program listing.

ROUTINE:

PASS:

DESCRIPTION:

PIST - PRINT statement processor

1

This routine processes the PRINT statement, sets unit
to 101, and goes to routine IOST.

ROUTINE:

PASS:

DESCRIPTION:

PLDP - Process loop dependencies

2

PLDP marks the dependencies in TBBK.

ROUTINE:

PASS:

DESCRIPTION:

PMRT - Process memory reference time

2

PMRT determines when memory allows the issue of a
given instruction.

SM-0017 5-55 B-02

ROUTINE: PMST - Process memory set time

PASS: 2

DESCRIPTION: PMST sets the time that memory is free after an
instruction issue.

ROUTINE:

PASS:

DESCRIPTION:

PNST - POINTER statement processor

1

PNST processes the POINTER statement. It adds the
pointer and pointee names to TBS and TBT, checks
syntax, and then calls DC17 (of DCLR) to process
pointee dimensions, if necessary.

ROUTINE:

PASS:

DESCRIPTION:

PPDP - Process plus dependency

2

PPDP checks for a plus dependency. If a plus
dependency is found, PPDP inserts a load of the
referenced operands.

ROUTINE: PPGN - Print page number list

PASS: End of compilation

DESCRIPTION: Routine PPGN prints out a list of routine names and
starting page numbers at the end of the source listing.

SM-0017 5-56 B-02

ROUTINE: PRST - PARAMETER statement processor

PASSs 1

DESCRIPTION: This routine processes the PARAMETER statement. It
enters the parameter name in TBS, evaluates the value
(via CXccrc and XCaxc) , creates a constant tag and
enters it in TBT. PRST will also do type conversion
(via CX80) if necessary.

ROUTINE: PSRC - Process secondary register clear

PASS: 2

DESCRIPTION: PSRC clears out the secondary registers that have
contents no longer needed.

ROUTINE: PTRI - Process triad

PASS: 2

DESCRIPTION: This routine processes triads. It is the main driver
for routine CTRI. PTRI is called after OLEV has found
an operator. It finds the corresponding operands and
calls CTRI.

If there is a sequence of operators at the same
precedence level, PTRI attempts to select operands
that are both variant or both invariant. For example,
given l+J+2, PTRI selects 1+2 as the first triad to

process. For triad A*3*B, PTRI processes A*B first.

The code at PT40 treats constant increment integer
variables as special cases. The code is entered from

ABLK.

SM-0017 5-57 B-02

ROUTINE:

PASS:

DESCRIPTION:

PUST - PUNCH statement processor

1

Routine PUST processes PUNCH statements,

unit to 102 and goes to IOST (via PI01) ,
It then sets

ROUTINE:

PASS:

DESCRIPTION:

RASN - Register assignment

2

RASN assigns pseudo registers to real registers and
issues instructions to the final instruction buffer.

ROUTINE:

PASS:

DESCRIPTION:

RBIN - RASN initialization

2

RBIN sets up initial values for temporaries used in
register assignment.

ROUTINE:

PASS:

DESCRIPTION:

RBLI - Reissue bottom-load instructions

2

RBLI analyzes bottom-load instructions to determine
when to reissue them and sets up the reissue.

ROUTINE:

PASS:

DESCRIPTION:

RBMV - Remove the inserted save from the IF-block

2

RBMV is used by the instruction scheduler to move the
save of the register from the conditional block of
code.

SM-0017 5-58 B-02

ROUTINE:

PASS:

DESCRIPTION:

RBRG - Initialize register times

2

RBRG assigns initial times to registers.

ROUTINE:

PASS:

DESCRIPTION:

RCCK - Register chain check

2

RBRG determines if the result of one operation is
needed for the evaluation of a specified pseudo
register#

ROUTINE:

PASS:

DESCRIPTION:

RDPT - Remove duplicate terms

2

RDPT compares two terms and removes duplicate additive
expressions from both terms. Duplicate expressions
are replaced by nulls.

ROUTINE: RDST - READ statement processor

PASS: 1

DESCRIPTION: RDST processes READ statements. It sets unit to 100
if the READ is in short form and goes to IOST.

ROUTINE: REST - REAL statement processor

PASS: 1

DESCRIPTION: REST processes REAL statements and then sets up for
routine DCLR.

SM-0017 5-59 B-02

ROUTINE: RNXT - Read next statement

PASS: 1

DESCRIPTION: Routine RNXT reads the next statement from the input
file, checks for comment and continuation cards, and
(if necessary) drives the source output listers.

RNXT places the statement in the Character Buffer
(CHB) . It skips comment lines and concatenates
continuation lines. Columns 1through 6 and 72
through the end of line are discarded. All blanks are
removed from CHB except on FORMAT statements.

Hollerith/character text characters are flagged by
setting their sign bits. RNXT converts lowercase
characters to uppercase.

FORMAT and END statements are special cases. RNXT
also checks to ensure all parentheses are matched
pairs. See section 2 for a detailed description of
RNXT.

End of statement is indicated by a zero word.

ROUTINE: ROSR - Convert an invariant **CII

PASS: 1

DESCRIPTION: ROSR reduces the strength of an invariant **CII by
converting it to a multiply operation.

ROUTINE: RPST - Replacement statement processor

PASS: 1

DESCRIPTION: This routine processes the replacement statement. It
sets up and transfers to AT36 to convert to
tag-operator format.

SM-0017 5-60 B-02

DESCRIPTION: If array bounds checking is in effect and the
(continued) left-hand side of the replacement statement is an

array, RPST sets up for OP02 to do the actual bounds
checking.

ROUTINE: RSTB - Restore table pointers

PASS: 1,2

DESCRIPTION: RSTB restores a dynamic table pointer to a previous
state given the current and previous pointers.

ROUTINE: RTC - Real-time clock

PASS: End of compilation

DESCRIPTION: This routine calculates compile time and formats the
logfile message.

ROUTINE: RTST - RETURN statement processor

PASS: 1

DESCRIPTION: RTST processes the RETURN statement.

ROUTINE:

PASS:

DESCRIPTION:

RWST - REWIND statement processor

1

This routine processes the REWIND statement. RW01 is
common for REWIND, ENDFILE, and BACKSPACE.

Subroutines at 1010 and 1020 are called and control is
passed to 1067 for final processing.

SM-0017 5-61 B-02

ROUTINES: SAST, SA50 - SAVE statement processors

PASS; 1

DESCRIPTION: SAST processes the SAVE statement. If the SAVE list
is empty, SAVE ALL is implied. SAST sets a SAVE ALL
flag, makes the default block tag a static tag, and
replaces all stack tags in TBT with static tags. If
the SAVE list is not empty, SAST creates an entry in
TBSV for each list entry (see 4.TBSV-1) .
Semantic checking of the SAVE list cannot be done
until all specification statements are processed. For
example, variables in common blocks cannot appear in a
SAVE list, but variables in common blocks are not
known until all specifications are processed and
equivalences are resolved. Routine SA50 performs
semantic checks after the equivalence resolution.

ROUTINES:

PASS:

DESCRIPTION:

SBLS, SBLT, SBMS, SBRS, SBRT - Search table

1,2

These routines are all used for table searches,

section 4 for detailed descriptions.
See

ROUTINE:

PASS:

DESCRIPTION:

SBOP - Scan buffer for operator

1

This routine scans a buffer for an operator at the
current parenthesis level, that is, one that is not
contained within parentheses. It searches forward
through a string buffer until end of statement or the
specified operator is found. The operator to be
searched is given in a 2-word mask at the current
parenthesis level.

If SBOP encounters a parenthesis, it scans for the
matching parenthesis before resuming its scan for the
target character.

SM-0017 5-62 B-02

ROUTINE: SBUF - Scan buffer for match or end of statement

PASS: 1

DESCRIPTION: Routine SBUF scans a string buffer to find a matching
character or end of statement. SBUF scans forward
through the string until it finds a character that
matches the one specified by a 2-word mask. SBUF
terminates if it comes to the zero word at the end of
the character string,

ROUTINE:

PASS:

DESCRIPTION:

SDCO - Suppress dead code

2

SDCO is called after an unconditional branch
eliminating following statements which cannot be
executed.

ROUTINE: SDPF - Set Dependency flags

PASS: 2

DESCRIPTION: SDPF sets the Block Dependency flags in KTBK.

ROUTINE:

PASS:

DESCRIPTION:

SDPN - Search double-precision function name table

1

SDPN searches the double-precision function name
table. This routine is used if OFF=p is selected on
the CFT card. OFF=P causes the conversion of
double-precision function names to single-precision
names.

SM-0017 5-63 B-02

ROUTINES: SFLS, SFLT, SFMS, SFRS, SFRT - Search table

PASS: 1,2

DESCRIPTION: These routines are all used for table searches. See
section 4 for detailed descriptions.

ROUTINE: SFMN - Search forward for nonzero field

PASS: 1,2

DESCRIPTION: SFMN searches the string for an entry with a nonzero
field.

ROUTINE:

PASS:

DESCRIPTION:

SFST - Arithmetic statement function definition
processor

1

Routine SFST processes arithmetic statement functions
definitions. It collects dummy argument names in
register V5, sets up and branches to AT06 to convert
the right-hand side to tag-operator format. The
tag-operator definition is copied to TBF by routine
STTR and then expanded into TBG whenever an actual
reference to that arithmetic statement function is
encountered.

ROUTINE: SGES - Search group for equality in string

PASS: 2

DESCRIPTION: SGES searches for duplicates of a given group in a
specified string.

SM-0017 5-64 B-02

ROUTINE: SIDL - Search implied DO-loop name list

PASS: 1

DESCRIPTION: Routine SIDL searches the implied DO-loop name list in
register V4. SIDL is used by routine DAST to search
the list of known active DO-loop indexes.

ROUTINE:

PASS:

DESCRIPTION:

SIN - Search for Intrinsic Function Name Table (TBJ)

1

Routine SIN searches TBJ to determine if the input
parameter is an intrinsic function name. If the input
parameter is an intrinsic function name, the
attributes of that function (from TBK) are returned.

ROUTINE:

PASS:

DESCRIPTION:

SKED - Code scheduling

2

SKED is the instruction scheduler. It breaks the code
block into groups and determines instruction
dependencies. SKED is entered from ABLK, CBLK, or
TRUNC.

ROUTINE:

PASS:

DESCRIPTION:

SNGN - Statement number generator

1

This routine generates a 5-digit internal statement
number. Statement numbers are assigned in ascending
order, beginning with 00001. SNGN is used when a
statement number is needed for DO-loops or block IFs,

for example.

SM-0017 5-65 B-02

ROUTINE s

PASS:

DESCRIPTION:

SOPT - Scan for end of operand

1,2

SOPT scans for the end of the operand.

ROUTINE:

PASS:

DESCRIPTION;

SPFH - Special-case intrinsic function header based
on its arguments

SPFH is called from CBLK at CB35 if an intrinsic
function header has the SAF (special processing) bit
set. Shift and condition vector merge intrinsics are
special cases if their arguments are vector or scalar.

ROUTINE:

PASS:

DESCRIPTION:

SPFR - Check function arguments for special cases

2

SPFR is called from EAFR at EA40 if an intrinsic
function header has the SAF {special processing) bit
set. Shift intrinsics are treated as special cases to
ensure a scalar second argument. If the second
argument is not scalar, the current loop cannot
vectorize.

ROUTINE:

PASS:

DESCRIPTION:

SPRN - Suppress redundant parentheses groups

2

SPRN scans a string in TGB format, searching for
redundant parentheses and replacing them with nulls.
Redundant groups are either empty or contain only one
operand.

SM-0017 5-66 B-02

ROUTINE: SRST - SUBROUTINE statement processor

PASS: 1

DESCRIPTION: Routine SRST processes SUBROUTINE statements.

Beginning at SR04 is code common for PROGRAM,
SUBROUTINE, FUNCTION, and BLOCK DATA statements. It
enters the dummy argument names in TBS and TBT. SRST
also generates a call to FLOWENTR if ON=F is specified
on the CFT statement.

ROUTINE: SSTB - Search sorted table

PASS: 1,2

DESCRIPTION: SSTB is the sorted table search routine. See section
4 for a detailed description.

ROUTINE:

PASS:

DESCRIPTION:

STST - STOP statement processor

1

STST is the STOP statement processor. If ON=F is
specified on the CFT statement, STST generates a call
to FLOWSTOP. It then sets up and branches to PA02.

ROUTINE: STTP - Statement type determination

PASS: 1

DESCRIPTION: Routine STTP determines statement type. It is called
after RNXT has assembled a statement in the Character
Buffer. STTP treats as special cases assignment
statements, statement function definitions, and DO and
FORMAT statements.

SM-0017 5-67 B-02

DESCRIPTION: If the statement being considered is not one of the
(continued) above* STTP assembles the first four alphabetic

characters from CHB and searches the statement type
table. The low-order 24 bits of a table entry contain
the address of the corresponding statement processor.
If a match is found, STTP exits to the appropriate
statement processor.

STTP determines statement group and checks whether
statements in the program are in legal order. See
section 2 for a details on legal statement order.

If the statement is determined to be the first
nondeclarative statement, STTP branches to EQ10 to
process the EQUIVALENCE statements.

ROUTINE: STTR - Statement processing terminator

PASS: 1

DESCRIPTION: STTR terminates statement processing. If the
statement is an arithmetic statement function, STTR
copies the definition to TBF. A check is made for
possible replacement by conditional vector merge
intrinsic functions. STTR links statement headers by
setting the forward and backward index fields. STTR
detects DO-loop termination. If there is a 1-line
DO-loop, a call is made to DORP for conditional
replacement by a SCILIB routine. If the replacement
is successful and the statement number does not
terminate additional DO-loops, STTR branches to RNXT
to begin the next statement. If the replacement is
unsuccessful or the DO-loop is not a 1-line DO-loop,
STTR branches to D022 to process DO-loop
termination. STTR returns if it is called during an
internal Pass 1macro expansion.

ROUTINE: SVEC - Set Vector Array flag

PASS: 2

DESCRIPTION: SVEC sets the Vector Array flag in all probable scalar
temporary vectors. It is called by PCON.

SM-0017 5-68 B-02

ROUTINE:

PASS:

DESCRIPTION:

SYMADD - Add symbol to cross-reference

1

SYMADD updates cross-reference tables TBU and TBV.

ROUTINE:

PASS:

DESCRIPTION:

SYTB - Print Symbol Table

2

SYTB prints out the Symbol Table in either the short
form or the full cross-reference form, if requested.

ROUTINE:

PASS:

DESCRIPTION:

TFBK - Transfer between sub-blocks in a conditional
loop

TFBK controls compilations of various sub-blocks in a
conditional vector loop. TFBK inserts a transfer
around a block and the definitions for the generated
statement numbers of the loop. TFBK replaces the
statement number definitions in a second block with
the generated statement numbers.

ROUTINE: TPRU - Tally PR usage

PASS: 2

DESCRIPTION: TPRU makes a list of PRs to be used after the end of
the instruction group.

SM-0017 5-69 B-02

ROUTINE: TRAN - Do type conversion

PASS: 2

DESCRIPTION: Hiis routine compiles code for type conversion. If
the two operands are not the same type, TRAN generates
code converting the operand of lowest type to match
the code of the higher type operand.

ROUTINE: TRUN - Truncate after each floating-point operation

PASS: 2

DESCRIPTION: TRUN compiles code to do truncation after each
floating-point operation, if TRUNC=w« is specified.

ROUTINE:

PASS:

DESCRIPTION:

VCTL - Vector loop control

2

This routine provides vector loop control.

ROUTINE:

PASS:

DESCRIPTIONS

VEaKC - VECTOR/NOVECTOR directive processor

1

The code at VEOO processes the VECTOR compiler
directive, while that at VE01 processes the NOVECTOR
directive.

SM-0017 5-70 B-02

ROUTINE:

PASS:

DESCRIPTION:

VLAN - Vector loop analysis

2

VLAN analyzes the loop for vector hazards such as
vector temporaries defined in conditional code,
transfers out of the loop, and dependencies.

ROUTINE:

PASS:

DESCRIPTION:

WRST - WRITE statement processor

1

This routine processes WRITE statements. It sets unit
to 101 for the short form of WRITE and branches to
IOST.

ROUTINE: XC00 - Execute code

PASS: 1

DESCRIPTION: This routine interpretively executes the code compiled
by CX00 for constant expressions.

ROUTINE: XX00 - Set of interpreters for instructions compiled
by CX00

PASS: 1

DESCRIPTION: This routine consists of a set of interpreters for the
instructions compiled by CX00. It is driven by XC00.

SM-0017 5-71 B-02

ROUTINE: ZMEM - Clear a block of memory

PASS: 1,2

DESCRIPTION: ZMEM clears a block of memory. ZMEM is called to
clear the tag buffer between compilation units and
clear additional tag buffer space when the tag buffer
grows. ZMEM is also called to clear scratch tag
buffer space after restructuring IF statements.

SM-0017 5-72 B-02

CFT I/O 6

CFT converts a user program written in FORTRAN to the binary machine
language of the CRAY-1. The compiler is loaded and begins
processing as a result of a control statement call from a user job
deck.

CFT requires two types of input: the user program to be compiled
and a user job deck that gives instructions for controlling

compilation. The output provided by CFT includes the user's
compiled FORTRAN program in relocatable binary and a printable
record of the compilation.

Figure 6~1 illustrates the I/O datasets used by CFT during
compilation.

6.1 INPUT TO CFT

A user's FORTRAN program submitted to CFT must comply with certain
program specif ications. The syntactic and notational guidelines
outlined in the CRAY-1 FORTRAN (CFT) Reference Manual must be
observed,

A user may select compiler options through the CFT control statement

and through use of compiler directives. (Refer to the CRAY-1
FORTRAN (CFT) Reference Manual for descriptions of both the CFT

statement and CFT directives.)

6.2 OUTPUT FROM CFT

The output obtained from CFT is dependent on the options selected by

the user. The principal output obtained is the compiled FORTRAN
program in relocatable form. Optional output consists of a

printable record of the compilation* including the FORTRAN source
code, the assembly language equivalent generated by CFT, the
cross-reference lists, the Debug Symbol Table, and more.

SM-0017 6-1 A

CAL

CFT ÿÿEXECUTABLE

PROGRAM
LDRBLDIN

$OUT
pseudo
CAL
dataset

$FTLIB

Figure 6-1. I/O datasets used during compilation

6.3 I/O DATASETS

As many as four I/O datasets are in use during compilation. These
are:

The text input dataset, $IN (by default)
The source output dataset, $OUT (by default)

The binary load-and-go dataset, $BLD {by default)
A pseudo-CAL output dataset (if requested by the user)

After cracking the CFT control statement, CFT opens the datasets it
will need, using system default parameters. If the datasets are
already open, the system ignores the redundant OPEN request.

The compiler references a set of library routines to aid the user in
manipulating dataset buffers. These logical I/O routines do all the
driving of the buffers, make the system calls to fill the buffers,
and keep track of the IN and OUT pointers. The I/O routines read or
write strings of words or characters and make the system calls that
allow physical I/O to be transparent to the user.

SM-0D17 6-2 A

| CFT first writes out the generated code in binary to a dataset
called $BLD (by default) or its equivalent. This is used as input
to the loader. Using the FORTRAN support library $FTLIB, the loader
produces an executable program version of the information in $BLD.

CFT also produces a source listing on dataset $OUT containing a copy

of the source input, compiler messages, and so on. Optionally, the
user can also obtain a pseudo-CAL listing of the code in a form
almost completely acceptable to the assembler; allowing the user to
hand-optimize portions of the code if desired.

CFT uses the standard $SYSLIB routines $RCW and $WCW to perform all

I/O.

SM-0017 6-3 A-01

APPENDIX SECTION

<r

CHARACTER SET A

This appendix describes the 128 control and graphic characters comprising
the ASCII character set. Those numbers# letters, and special characters

that form the CRAY-l FORTRAN character set are identified by the
appearance of the letter C in the fourth column. All other characters
are members of the auxiliary character set. The letter A in the fourth
column of the table indicates those characters belonging to the ANSI

FORTRAN character set. Note that all control characters are grouped on

the first page.

In the description column/ CC designates communication control, FE

designates format effector, and IS designates information separator.

SM-0017 A-1 A

ASCII ASCII FORTRAN
CONTROL

CHARACTER
OCTAL

CODE
PUNCHED-CARD

CODE
(A=ANSI)
(C=CRAY)

DESCRIPTION

NUL 000 12-0-9-8-1 Null

SOH 001 12-9-1 Start of heading (CC)

STX 002 12-9-2 Start of text (CC)

ETX 003 12-9-3 End of text (CC)

EOT 004 9-7 End of transmission (CC)

ENQ 005 0-9-8-5 Enquiry (CC)

ACK 006 0-9-8-6 Acknowledge (CC)

BEL 007 0-9-8-7 Bell (audible or attention signal)

BS 010 11-9-6 Backspace (FE)

HT Oil 12-9-5 Horizontal tabulation (FE)

LF 012 0-9-5 Line feed (FE)

VT 013 12-9-8-3 Vertical tabulation (FE)

FF 014 12-9-8-4 Form feed (FE)

CR 015 12-9-8-5 Carriage return (FE)

SO 016 12-9-8-6 Shift out

SI 017 12-9-8-7 Shift in

DLE 020 12-11-9-8-1 Data link escape (CC)

DCl 021 11-9-1 Device control 1

DC2 022 11-9-2 Device control 2

DC3 023 11-9-3 Device control 3

DC4 024 9-8-4 Device control 4 (stop)

NAK 025 9-8-5 Negative acknowledge (CC)

SYN 026 9-2 Synchronous idle (CC)

ETB 027 0-9-6 End of transmission block (CC)

CAN 030 11-9-8 Cancel

EM 031 H-9-8-1 End of medium

SUB 032 9-8-7 Substitute

ESC 033 0-9-7 Escape

FS 034 11-9-8-4 File separator (IS)

GS 035 11-9-8-5 Group separator (IS)

RS 036 11-9-8-6 Record separator (IS)

US 037 11-9-8-7 Unit separator (IS)

DEL 177 12-9-7 Delete

SM-0017 A-2 A

ASCII ASCII FORTRAN
CONTROL OCTAL PUNCHED-CARD (A=ANSI) DESCRIPTION

CHARACTER CODE CODE_(C=CRAY)_
(Space) 040 (None) A,C Space (blank)

1
ÿ 041 12-8-7 Exclamation point

II 042 8-7 C Quotation marks (diaeresis)

t 043 8-3 Number sign

$ 044 11-8-3 A,C Dollar sign (currency symbol)

% 045 0-8-4 Percent

& 046 12 Ampersand

f 047 8-5 A,C Apostrophe (closing single quotation mark)

(050 12-8-5 A,C Opening (left) parenthesis

) 051 11-8-5 A,C Closing (right) parenthesis

* 052 11-8-4 A,C Asterisk

+ 053 12-8-6 A,C Plus

t 054 0-8-3 A,C Comma (cedilla)

- 055 11 A,C Minus (hyphen)

. 056 12-8-3 A,C Period (decimal point)

/ 057 0-1 A,C Slant (slash, virgule)

0 060 0 A,C Zero

1 061 1 A,C One

2 062 2 A,C Two

3 063 3 A,C Three

4 064 4 ArC Four

5 065 5 A,C Five

6 066 6 A,C Six

7 067 7 A,C Seven

8 068 8 A,C Eight

9 069 9 A,C Nine

: 072 8-2 AfC Colon

r 073 11-8-6 Semicolon

< 074 12-8-4 Less than

= 075 8-6 A,C Equal

1 076 0-8-6 Greater than

077 0-8-7 Question mark

-0017 A-3 A

ASCII
CONTROL OCTAL

CHARACTER CODE

ASCII
PUNCHED-CARD

CODE

FORTRAN
(A=ANSI)
(C=CRAY)

DESCRIPTION

0 100 8-4 Commercial at sign

A 101 12-1 A,C

B 102 12-2 A,C

C 103 12-3 A, C

D 104 12-4 A,C

E 105 12-5 A, C

F 106 12-6 A,C

G 107 12-7 A,C

H 110 12-8 A,C

I 111 12-9 A,C

J 112 11-1 A,C

K 113 11-2 ArC

L 114 11-3 A,C

M 115 11-4 A,C

N 116 11-5 A,C Uppercase letters

0 117 11-6 A,C

P 120 11-7 A,C

Q 121 11-8 A,C

R 122 11-9 A,C

S 123 0-2 A,C

T 124 0-3 A,C

U 125 0-4 A,C

V 126 0-5 A,C

w 127 0-6 A,C

X 130 0-7 ArC

Y 131 0-8 A, C

Z 132 0-9 A,C

[133 12-8-2 Opening (left) bracket

\ 134 0-8-2 Reverse slant (backslash)

] 135 11-8-2 Closing (right) bracket

A 136 11-8-7 Circumflex

— 137 0-8-5 Underline

SM-0017 A-4 A

CONTROL
CHARACTER

ASCII
OCTAL

CODE

ASCII
PUNCHED-CARD

CODE

FORTRAN
(A=ANSI) DESCRIPTION
(C=CRAY)

t 140 8-1 Grave accent (opening single quotation

a 141 12-0-1 C mark)

b 142 12-0-2 C

c 143 12-0-3 C

a 144 12-0-4 C

e 145 12-0-5 C

f 146 12-0-6 C

g 147 12-0-7 C

h 150 12-0-8 C

i 151 12-0-9 C

j 152 12-11-1 C

k 153 12-11-2 C

1 154 12-11-3 C

m 155 12-11-4 C

n 156 12-11-5 C lowercase letters

o 157 12-11-6 C

P 160 12-11-7 C

q 161 12-11-8 C

r 162 12-11-9 C

s 163 11-0-2 C

t 164 11-0-3 C

u 165 11-0-4 C

V 166 11-0-5 C

w 167 11-0-6 C

X 170 11-0-7 C

y 171 11-0-8 c

z 172 11-0-9 c

{ 173 12-0 Opening (left) brace

1
1 174 12-11 Vertical line

} 175 11-0 Closing (right) brace

OJ 176 11-0-1 Overline (tilde, general accent)

SM-0017 A-5 A

REGISTER USAGE B

The CRAY-1 computation section includes two basic types of operating
registers: primary (A, S, and V) registers and secondary or intermediate
(B and T) registers. CFT makes extensive use of the CRAY-1's high-speed
intermediate storage registers to take full advantage of the CRAY-1's
internal architecture. CFT uses vector registers to store compiler

tables and working tables.

PRIMARY REGISTERS

CFT uses A registers AO through A7, S registers SO through S7, and V

registers VO through V7 as general purpose registers. Several of these
registers have permanent uses throughout most of compilation. These
include:

Register Description

A6 A6 is usually a pointer to the source of an item.

A7 A7 is a pointer to the location where the result of a

process will be stored. For example, when CFT is
processing an expression such as B*C during pass 1,
register A6 points to the B and A7 points to the location
where the tag for B will be stored.

i
S6 During constant increment integer analysis in Pass 2, S6

contains the following information:

Field Bits Description

IS 32-33 Increment sign:
00 No increment
01 Plus
10 Minus
11 Ambiguous

SM-0017 B-1 A

Register Description

Field Bits

S6 FLG 54-56
(continued) 54

55

56

@TBY 57-77

Description

Flags:
Invariant encountered
Variant sign; if equal to 0,

variant is positive
If equal to 1, address is
self-referencing

Address of TBY table entry base

S7 In Pass 1, S7 tracks the current parenthesis level; for
each new open parenthesis encountered, a new entry is
made in S7 and the current entry is pushed onto a stack
in V6 (refer to description of V6 in this section) . In

Pass 2, S7 is set block-by-block to contain generation
mode flags. (Refer to section entitled Compiler Tables.)

V6 During Pass 1, a parenthesis stack is maintained in V6.
Whenever a new open parenthesis is encountered, a new
entry is saved on a stack that contains the current
position and mode flags; then, whenever a close
parenthesis is encountered, the last entry on the stack
is popped. An entry is made for parenthesis limits (PL) ,
subscript expressions ((s) , subscripts ([s), and
expressions (EXP) . V6 is thus a normal push-down pop-up
stack maintained by the compiler itself. Maximum stack
depth is 77.

Field Bits Description

SBI 0-17 Statement buffer index

ATI 20-51 Array Table index or count. This
field contains:

Parameter count (PL)

Constant count ((s)

Array Table index ([s)
Zeros (EXP)

PTF 52-63 Parenthesis group type flags

TL 64-77 Type and length

SM-0017 B-2

Register Description

V7 Throughout compilation, register V7 contains an Intrinsic
Type Table and table parameter words.

Words 0 through 6 of V7 contain implicit type codes.
Because each code takes 16 bits, each word contains the
type codes for four characters. Thus, enough room exists
to accommodate all 26 allowed characters (A through Z) .
The codes are preset during initialization but can be
changed through use of an IMPLICIT statement.

Starting in word 7 of V7 are the table parameter words,
one for each table maintained by CFT. Each table
parameter word contains FWA, LWA+1, and table index
information.

0 20_40 50 60_77

0 TL TL TL TL

1 TL TL TL TL

6 TL TL TL TL

7

Kite LWA+1 FWA

42

Field Word Bits Description

TL 0-6 0-17, Implicit type and length; one
20-37, entry for each letter (refer to

40-57, tables section for more
60-77 information) .

KTr 7-42 10-17 Table pointer; index to the
corresponding table in V7.

SM-0017 B-3 A

Register Description

Field Word Bits

LWA+1 7-42 20-47

FWA 7-42 50-77

Description

Last word address + 1of
corresponding table

First word address of
corresponding table

V7 Table Parameter Words

There are three sets of register numbers, one set for the CFT 1.11
compiler version calling sequence, one set for the CFT 1.13 compiler
version calling sequence, and one set for the CFT 1.14 compiler version
calling sequence. The three sets are referred to as the CFT 1.11, CFT
1.13, and CFT 1.14 register numbers, respectively. Table B-l lists the
register numbers arranged alphabetically by symbol name.

Table B-l. Register numbers

CFT 1.11 CFT 1.13 CFT 1.14
Symbol Description register register register

KTA Array Table (TBA) 44 51 57
KTB Constant, Binary Table (TBB) 27 33 40
KTBK Block Definition Table None None 16

(TBBK)
KTBR B-register Associates 7 16 23

Table (TBBR)

KTC Pointer Variable Table (TBC) 35 41 46
KTCALL Register Variables to None 14 21

Restore After a CALL
Table (TBCALL)

KTCLEN Character Length Table None None 56
(TBCLEN)

KTCLTXT #CL Text Table (TBCLTXT) 41 45 52
KTCT Conjunctive Term Table (TBCT) None None 15
KTD DO-loop Table (TBD) 37 43 50
KTDT Disjunctive Term Table (TBDT) None None 14
KTE External Reference Table 23 26 33

(TBE)

KTEE Entry/Exit Address None 31 36
Table (TBEE)

I SM-0017 B-4 B-02

Table B-l. Register numbers (continued)

CFT 1.11 CFT 1.13 CFT 1.14
Symbol Description register register register

KTF Statement Function 40 44 51
Skeleton Table (TBF)

KTFR Call-by-value Reference None 21 26
Table (TBFR)

KTG Tag Buffer Table (TBG) 30 34 41
KTH Program Description 26 32 37

Table (TBH)

KTI TBA Index Table (TBI) 36 42 47
KTJ Intrinsic Function Name 12 7 7

Table (TBJ)
KTK Intrinsic Function 13 10 10

Attribute Table (TBK)
KTL Library Name Table (TBL) 14 11 11
KTLB Label Usage Table (TBLB) None None 17
KTM Library Macro Table (TBM) 15 12 12
KTNOBT TBT Index of Variables Not None None 21

Assignable to B/T Register
Table (TBNOBT)

KTO Array Bounds Checking 43 47 54
Table (TBO)

KTP Common and Equivalence / 25 30 35
Dummy Argument Address
Table (TBP)

KTPD Plus Dependency Table None 22 27
(TBPD)

KTPG Program Unit Page Table 45 46 61
(TBPG)

KTPN Program Unit Name Table 45 52 60
(TBPN)

KTQ Declarator Expression 42 46 53
Table (TBQ)

KTR Packed EQUIVALENCE / Block 24 27 34
Relocation Table (TBR)

KTS Symbol Table (TBS) 31 35 42
KTSB Substring Definition 17 15 22

Table (TBSB)

KTSN Sequence Number Table (TBSN) None 45 50

KTSV Saved Variable Table (TBSV) 26 31 36

KTT Tag Table (TBT) 32 36 43

KTTR T-register Associates 10 17 24
Table (TBTR)

KTU Symbol Cross Reference 33 37 44

Table (TBU)

| SM-0017 B-5 B-02

Table B-l. Register numbers (continued)

CFT 1.11 CFT 1.13 CFT 1.14
Symbol Description register register register

KTV Cross Reference Overflow
Table (TBV)

34 40 45

KTW Triad Table (TBW) 16 13 13
KTWR W-register Associates

Table (TBWR)
11 20 25

KTX Variable Reference Table
(TBX)

20 23 30

KTXX TBX Extension Table (TBXX) None None 20
KTY Dependent Block Reference

Table (TBY)
21 24 31

KTZ Defined Block Variable
Table (TBZ)

22 25 32

SECONDARY REGISTERS

The B and T registers are divided into two classes: temporary (variable)
and permanent (fixed-global) . The temporary registers begin at 67 and go
downward, while the permanent registers begin at register 0 and go upward.
Registers 70 through 77 are reserved for routines called by CFT and short
term scratch usage within CFT.

TEMPORARY SECONDARY REGISTERS

Registers B50 through B67 and T50 through T67 are generally used as
multipurpose scratch registers. The contents of these registers are not
preserved over a long period of time. The B and T temporary registers are
referenced by symbolic names as follows:

Register Symbol Register Symbol

B67 B.ZA T67 T.ZA
B66 B.ZB T66 T.ZB
B65 B.ZC T65 T.ZC

B50 B.ZP T50 T.ZP

SM-0017 B-6 B-02

VOLATILE SECONDARY REGISTERS

Registers B70 through B77 and T70 through T77 are used as short term

scratch registers. By convention, these registers are redefined after a

long jump and by most subroutine calls. The registers are referenced
symbolically by the symbols VA, VB, ..., VH.

SM-0017 B-6.1 B-02

PERMANENT SECONDARY REGISTERS

The permanent B and T registers begin at the 0 registers and go
upward. The contents of many of these registers are preserved over
long periods of time. Each permanent register is assigned a mnemonic
label that indicates the value held in that register. By convention/
these mnemonics are usually 2-letter names. For example, the B

register containing field length is named B.FL.

Definition of the permanent secondary registers occurs at the
beginning of the compiler through a set of equates. Although none of
the B registers are preset, some of the T registers are. The values
placed into the T registers can be found at the end of the compiler in
the constant area preceding the intrinsic functions. The base address
for these constants is ITRG. Keeping the ITRG area in a one-to-one
correspondence with the definition of the registers at the beginning
of the compiler is important.

Symbolic 24-bit B Register Definitions

Register Symbol Description

1 FL Field length
2 SF Special function return; tag.

3 TB Tag Buffer base. Pass 2
4 SB Statement begin (Tag Buffer end)

5 BI Backward statement index
6 BB Block begin
7 BE Block end (address in TBG)

10 LI Parenthesis level index
11 FP Formal parameter count
12 DP Dimension product
13 ND Number of dimensions
14 SG Statement group; @ compile block SN

15 DB DO begin (Remnant length is EAFR)

16 EQ Address of = in replacement statement
17 RL Remnant length
20 RW Read/write address tag
21 AP Address of P operand
22 AQ Address of Q operand
23 OC Octal output flag
24 TXT Pointer to start of loader Text

Table in TBB

25 PD Parameter or data expression flag
26 DC Processing declarator flag
30 MT Machine type from the JCB or control

card
27-47 - Work registers
50-67 - Temporary registers

SM-0017 B-7 B-01

Symbolic T Register Definitions

Register Symbol

0 NU

1 AL

Description

Numeric character mask
Alpha character mask

Common B and T Register Definitions

Register Symbol Description

3 TM Tag Buffer entry mask
4 OF Offset field mask
5 CT Constant tag
6 CS 200,200, «
7 IZ Integer zero constant
10 IU Integer unity constant
11 ST Statement number tag
12 FT External function tag
13 PB Program relocation block tag
14 CB Common block tag
15 DA Dummy argument tag
16 TT Temporary tag
17 PC Pointer count tag
20 FLG Miscellaneous flags
21 PN Program name
22 NT Program name tag
23 PT Previous tag
24 RN Reference name
25 SH Current statement header ISN
26 SN Current statement number
27 TZ Table Z PW base value in Pass 2

(keyword in Pass 1)
30 PR Last used pseudo register
31 PA code block address
32 BC Blank common tag
33 SL Segment length tag
34 LV Current level of parentheses
35 SR Secondary register
36 LA Last word address for octal list

output
37 AW Partial assembly word, instructions
40 BR Partial block relocation table

assembly
41 PBS Program base address
42 OCW Output control word flags
43 CD Compiler directive flags
44 DBT Default block tag (static or stack

block)
45-47 - Work registers
50-67 - Temporary registers

SM-0017 B-8 b—01

DEBUGGING AIDS C

The organization of CFT generally allows errors to be isolated. This
appendix gives some information and methods that may be useful in
debugging code.

Because CFT is almost completely reinitialized at the start of each
program unit compilation, it is highly unlikely that a compilation bug

in one routine was caused by compiler failure in a previous routine.

During compilation, CFT makes two passes through the source code.

PASS 1

Pass 1 reads the input deck, translating it into an internal notation,

and then produces the source listing. Any syntax errors detected are
listed immediately after the line in error. Generally, Pass 1bugs

can be reproduced by combining the line causing the error with any
declaratives that refer to variables used in that line. The
statements preceding or following usually have no effect on syntax
bugs? an exception to this includes bugs related to blocking sequences
(DO-CONTINUE or IF-ENDIF) .

PASS 2

Pass 2 is the code generation pass. The optimizer breaks the program

unit into code blocks and processes these blocks one at a time.
Generally, if CFT makes an error in one block, all of the other blocks
can be deleted from a test program and CFT will still fail.

An easy way to determine the block structure of a routine is to use
the ON=B option on the CFT statement. This procedure is especially
useful if the error is an operand range error occurring during
compilation.

SM-0017 C-l A

The method CPT uses to divide a program unit into code blocks is
relatively straightforward. A code block begins either:

With a statement that has a label referenced elsewhere in the
program unit, or

At an entry statement, or

After a loop ends.

A code block ends just before the next one begins or on a statement
that causes a backward branch to the start of the current block.

Some I/O statements that have unusual side effects also cause a new
block to start. Examples are NAMELIST and BUFFER IN. Also, IF
statements often force the start of a block because they implicitly
jump around code.

The block that immediately precedes an innermost DO-loop is usually
considered to be part of the DO-loop preamble for optimization
purposes.

Pass 2 bugs generally consist of:

Variables or intermediate results being saved in B or T
registers across subroutine calls by mistake, or

Calculations being mistakenly removed from a DO-loop, or

Loop quantities not being properly saved for relooping.

RELEASE-RELATED BUGS

Sometimes, a program compiles and executes correctly with one version
of the compiler but executes incorrectly with the next version. In
such cases, it is best to talk to the programmer. If this does not
isolate the problem, the binary search technique detailed below may be
used to find the bad routine.

SM-0017 C-2 A

Suppose a job has 100 program units. Compile the job as in the
following example:

JOB.
OLDCFT.
REWIND,DN=$IN.
REWIND,DN=$BLD.
SKIPR,DN=$BLD,NR=-50 .
NEWCFT.
LDR.

This example compiles the first 50 program units of the job with the
old version of CFT and the last 50 with the new CFT. If the job
fails, then new CFT is compiling one of the last 50 routines
incorrectly. By changing the NR parameter from -50 to -25 (and then
halving this number again and again in suceeding compilations), the
offending routine can be pinpointed. This binary search technique
converges quickly and works even if there are several program units in
error (although it will find only one of them) .

SM-0017 C-3 A

STACK FRAME FORMAT D

In stack mode, each routine uses a contiguous area of the stack at run
time to hold its local variables* This stack area is a stack £rame. A
routine's frame format is described in figure D-l. Memory addresses
increase downwards.

Low address end of stack

(B01)-

(B.%STKCBP)-

BTSIZE

Argument list header

Argument 1descriptor

Argument 2 descriptor

Argument n descriptor

Word address of entry point (B77)

Return address (BOO)

Argument
descriptors

Previous
routine's
stack
frame

B register
save area

Current
routine* s
stack frame

Figure D-l. Stack frames

| SM-0017 D-l B-01

BTSIZE
(continued)

(B03).

(B03) +LOCLEN-

(B.%STKCTP).

(B.%STKATP)-

Address of argument list header in
previous frame (B01)

Base address of previous frame
(B02)

Base address of array and scalar
variables' space in previous frame

(B03)

(other saved B
register values)

TOO save area

(other saved T
register values)

Array and scalar variables' space

Space for temporaries and calling
lists (#TB) ; reused by each code

block

B register
save area
(continued)

T register
save area

Local
variables

Temporary
variable
space

Current
routine's
stack frame
(continued)

Available
stack space

High address end of stack

Figure D-l. Stack frames (continued)

I SM-0017 D-2 B—01

LOCLEN is the amount of space reserved for local nontemporary variables
and arrays. This includes all nonstatic user-declared variables and
arrays, variables invented by the compiler which have meaning across code
blocks, and the space into which arglists are copied for multiple-entry
routines.

CFT must generate addressing code during Pass 2. However, the size of
the B/T save area (appearing first in the stack frame) is unknown until
the end of Pass 2. CFT solves the problem by setting B03 in the entry
sequence to point at the first word following the B/T save area, and by
treating all stack references as non-negative offsets from the run time
value in B03. Stack address tags are identified by the tag field value
605; the terms stack tag and offset from B03 have the same meaning. B03
is comprised of B.%STKCBP and BTSIZE. BTS1ZE contains the B and T
register save areas.

| SM-0017 D-3 B-01

CFT INSTRUCTION BUFFERS E

The two instruction buffers used by CFT are the Pseudo Instruction Buffer
(PIB) and the Final Instruction Buffer (FIB) . They are described below
with their formats.

PIB holds code compiled in internal format until the code is scheduled
and actual hardware registers assigned. All compiled instructions and
statement numbers are entered in PIB by various code generation
routines. The first part of SKED sorts the instructions into preamble,
body, and postamble groups. The remainder of SKED and RASN assign
hardware registers and reformat the entries into the FIB format.

FIB holds the generated code with assigned hardware registers. The
instructions and statement numbers are unpacked and stored one to a
word. FIB is produced by RASN and packed into the relocatable binary

table by LTGN.

PIB formats

PIB has four formats. The first format described is used by most
operations and the remaining three are used by the return jump/call,
statement number, and pseudo statement number, respectively.

Format used by most operations:

0_15 20_31_45 52_61_75 77

IPR J JPR | KPR Iflags | OPC | %TBY Iflags

Field Bits Description

IPR 0-14 Ipseudo register or result pseudo register

JPR 15-30 J pseudo register

KPR 31-44 K pseudo register

Flags: 45-51

I0P 45 Ipseudo register used as an operand

JOR 46 J pseudo register used as an operand

| SM-0017 E—1 B-01

Field Bits Description

KOP 47 K pseudo register used as an operand

IUR 50 Inhibits unrounding of floating-point operation

LBF 50 Loop Branch flag

DPR 50 Dependent memory reference

IRL 50 Inhibits release; used only with operation using
IPR as operand. This is the Scheduling flag.

ITR 51 Inhibits truncation of arithmetic function

OPC 52-60 Operation code; if IPRÿO, the previous PIB
entry is processed by MCEX.

%TBY 61-74 Index to TBY for store operations

Flags: 75-77

PSF 75 Postamble flag

CNF 76 Constant pseudo register definition

PRF 77 Preamble flag

Return jump/call format:

0_15_31_45 50 52_61_75 77

IPR | JPR | KPR |WR |XR| 007 I///////// 1 flags

Field Bits Description

IPR 0-14 Ipseudo register or result pseudo register

JPR 15-30 J pseudo register

KPR 31-44 %TBX of destination if WR*=6

WR 45-47 Call type:
4 Indirect through JPR
6 %TBX in KPR
7 Second word of CPX or DBL; complex and

double-precision calls use a 2-word branch
format. The second word which is not
scheduled uses WR=7 to define the result
pseudo register.

| SM-0017 E-2 B-01

Field Bits Description

XR 50-51 Result of function:
0 None
1 A1
2 SI
3 VI

OPC 52-60 Operation code; 007.

Flags: 75,77

PSF 75 Postamble flag

PRF 77 Preamble flag

Statement number format:

0_20_77

%TBT I//

Field

%TBT

Bits

0-17

Description

Index into TBT

Pseudo statement number format:

0 20 31

Field

OPC

POS

POC

IMF

0

Bits

0-17

31-44

45-60

74

45 61 74 77

I//////// I POS | POC I////IMF///L I//

Description

Operation code; 0.

Pseudo operation subtype; applies only if POSÿO.
1 EFI
2 DFI
3 ERI
4 DRI
5 DBM
6 EBM
7 CMR

Pseudo operation code; if POSÿO, P0c>002.

Inhibits moving code over the pseudo statement
number

SM-0017 E-3 B-01

FIB formats

The FIB has two formats. The first format described is used for all
operations except the statement number definition. The second format
describes the format for statement number definition.

Format:

EXT RELPA

20 31 40) /42 53 77
0PC| I| J | K | REL |*|*| BN IQ I///////////////////////

Field Bits Description

OPC 0-6 Operation code; if OPC=Of this is a statement
number definition.

I 7-11 Iregister

J 12-14 J register

K 15-17 K register

REL 20-37 Address field

EXT 40 Set if reference is to an external name

RELPA 41 Relative to program counter relocation if
RELPAs1; otherwise, normal relocation occurs.

BN 42-52 Block number (common)

Q 53 Quarter Word flag (for branch addresses)

Statement number definition format:

0 7 10_31_50_77
0 II////EEF//////// | %TBT |////////////////////////////

Field

0

EEF

%TBT

Bits

0-6

7

31-47

Description

Statement number definition; 0

Exit/Entry flag

Index into TBT

| SM-0017 E-4 B-01

INDEX

».<-.T'Aÿ v «afc»

INDEX

ABLK (analyze block)
description, 5-2
main driver Pass 2, 3-2
searches for active statement in field,

3-3
used in scheduling, 3-9

ABRA (analyze branch statements), 5-3
ACAL (assemble alphabetic character

string) , 5-3
ACAN (assemble alphanumeric character group)

assemble symbol name, 2-12
description, 5-3

ACGR (assemble general character string) ,
5-3

ACNU (assemble numeric character string),
5-3

Active label, 1-6, 3-2
Actual arguments, 1-5
Add symbol to cross reference (SYMADD) , 5-69
Address

index, 5-37
insert in TBY (IATY) , 5-39

ADEp (analyze dependencies)
builds

TBPD, 3-3
TBY, 3-4, 4.TBY-1

description, 5-4
double loop, 3-4

Adjust block for external entries (EBXS) ,
5-26

AIBF (analyze internal block flow) , 5-5
Alternate returns, 5-49
Ambiguous dependencies, 1-6, 3-4
Analyze

block (ABLK)
description, 5-2
main driver Pass 2, 3-2
searches for active statement field,

3-3
branch statements (ABRA), 5-3
dependencies (ADEP)

builds TBY, 3-4, 4.TBY-1
checks for dependency in arrays, 3-4

description, 5-4
double loop, 3-4

internal block flow (AIBF) , 5-5
register usage (ARUS) , 5-5

Argument
list, 5-14
tags, dummy, 4-9, 5-49

Arguments used in intrinsic function
processing, 2-15, 2-16

Arithmetic statement function definition
processor (SFST) , 5-64

Array
Bounds Checking Table (TBO) , 4.TB0-1
processed in DCLR, 5-22
references scanned by EAFR, 3-15
subscript evaluation, 2-12

Array Table (TBA)
DCLR makes entries in, 5-22
description, 4.TBA-1
index, 4.TBA-1, B-2

ARUS (analyze register usage), 5-5
Assemble

alphanumeric character group (ACAN)

assemble symbol name, 2-12
description, 5-3

character string (ACAL, ACAN, ACGR,
ACNG) , 5-3

Tag Buffer (Altta;)
description, 5-6
expression handler, 2-11

Assign
loop boundaries (ASVM) , 5-6
short-loop registers (ASVL) , 5-5
statement processor (ASST) , 5-5

Assignment statement
define variables and array elements,

2-14
processing, 2-14

ASST (assign statement processor) , 5-5
ASVL (assign short-loop registers) , 5-5
ASVM (assign loop boundaries) , 5-6
ATea; (assemble Tag Buffer)

description, 5-6
determines end of statement, 2-12
expression handler , 2-11
process subscripts and expressions, 2-14

BACKSPACE statement processor (BKST) , 5-7
BDST (BLOCK DATA statement processor) , 5-7
Begin compilation (BGIN) , 5-7
BPIRST memory word, 3-10
BFST (BUFFER IN/BUFFER OUT statement

processor) , 5-7
BGIN (begin compilation)

description, 5-7
initialization, 2-1, 2-2

Binary
file

Debug Symbol Table written to, 3-11
LTND writes loader tables to, 3-11
relocatable, 6-1

search, C-2
BKST (BACKSPACE statement processor) , 5-7

SM-0017 Index-1 B-02

Blank
common

CHB location, 1-8
TGB location, 1-10

count (BLCN), 5-8
fill a word (BLFL) , 5-8

BLCN (blank count) , 5-8
SBLD, as binary load-and-go dataset, 6-2
BLPL (blank fill a word) , 5-8
Block

boundary# 5-2
common, 4.TBX-1
program, 4.TBX-1

BLOCK DATA statement processor (BDST) , 5-7
Block Definition Table (TBBK)

description, 4.TBBK-1
initialized with LWA+1=FWA, 3-2

Block Relocation Table (BRT)
generated in TBR

description, 4 .TBR-1
entries received from LTGN, 3-11

Boundary
block, 5-2
loop, 1-6, 3-2
subprogram, 1-6

B-register Associates Table (TBBR) , 4.TBBR-1
BRT (Block Relocation Table)

generated in TBR, 4.TBR-1
BTD (convert binary value to ASCII decimal

value) , 5-8
BTLIM memory word, 3-10
BTSIZE, D-3
BUFFER IN/BUFFER OUT statement processor

(BFST) , 5-7
Buffers, CFT instruction, E-l
Build

Debug Symbol Table (DETB) , 5-23
loader tables (LTGN)

description, 5-44
processing, 3-10

CADR (compile address) , 5-8
CADW (compile dummy argument address) , 5-9
Call-by-value Reference Table (TBFR) ,

4.TBFR-1
CALL statement

compiled, 4.TBCALL-1
handled by CBLK, 3-7
I/O operations converted to, 2-13
processor (CLST) , 5-15
TBCALL restores T register variables

after a, 4 .TBCALL—1
Calling sequence, non-stack, 5-5 0
Calls

data processing, 2-13
final, 2-13
initial, 2-13

CARD (crack CFT control statement)
collects options, 2-2
description, 5-9
sets

default values, 2-2
register indicator bits, 2-2

Card reader driver, 1-3, 2-2
CBLK (compile block)

calls OLEV, 3-7
description, 5-9
handles CALL statements, 3-7
intermediate code driven by, 3-7
uses TBX, 4.TBX-1

CCAT (compile concatenation) , 5-10
CCLA (construct character operand address) ,

5-10
CCLO (convert character constant) , 5-10
CCRS (convert conditional replacement

statement), 5-10
CCTB (convert character constant operand) ,

5-11
CDIR (compiler directive processor) , 5-11
CDIRS ROLL, 5-25
CDPR (compiler directive processor) , 5-11
CEcx (check EQUIVALENCE overlap) , 5-12
CEXP (constant expression evaluation) , 5-12
CFBI (correct forward and backward indices) ,

5-12
CFT

control statement
compiler loaded for, 1-8
error processing options in, 2-2
read by CARD routine, 2-2

DUMP (post mortem debugger) , 4-3
instruction buffers, E-l
memory organization

description, 1-8
flow, 1-9

Character
buffer (CHB)

at low end of blank common, 1-8
holds one FORTRAN statement, 2-2

functions, 5-49
Length Table (TBCLEN) , 4.TBCLEN-1
set. A—1

CHARACTER statement processor (CHST) , 5-13
CHB (character buffer)

at low end of blank common, 1-8
holds one FORTRAN statement, 2-2

Check
EQUIVALENCE overlap (CBCtf) , 5-12
function arguments for special cases

(SPFR) , 5-66
identifier names (CIDN) , 5-13
register assignment (CRAR) , 5-17
triad type (CTTY) , 5-20

CHST (CHARACTER statement processor) , 5-13
CIDN (check identifier names) , 5-13
CII (constant increment integer)

analysis, 4.TB2-1
examined for vector ization, 3-5
in a replacement statement, 3-3
incrementation, 3-6
marked, 3-3
operators allowed, 3-3

CKRF (examine IF statements) , 5-13
#CL Text Table (TBCLTXT) , 4.TBCLTXT-1
CLAT (process external function and

subroutine calls) , 5-13

SM-0017 Index-2 B-02

CLCF (process external function and
subroutine calls) , 5-13

Clear
a block of memory (ZMEM), 5-72
assigned registers at end of loop

(CRRG), 5-18
CLGA (process external function and

subroutine calls) , 5-13
CLOF (process external function and

subroutine calls) , 5-13
CLOG (process external function and

subroutine calls) , 5-13
CLOS (CLOSE statement processor) , 5-15
CLOSE statement processor (CLOS) , 5-15
Close up ranks (CRNK) , 5-17
CLRS (process external function and

subroutine calls), 5-13
CLST (CALL statement processor) , 5-15
CLSZ (process external function and

subroutine calls) , 5-13
CLTG (process external function and

subroutine calls) , 5-13
CMST (COMMON statement processor) , 5-15
CNST (CONTINUE statement processor), 5-15
CNTB (convert constant to tag), 5-16
CNTD (convert constant to tag) , 5-16
CNTG (convert constant to tag), 5-16
Code

block
analysis, 3-2
code generated for, 1-6
entry point, 1-6
exit point, 1-6
generated code listed, 1-10
identified and handled during Pass 2,

1-5, 1-6
optimizer breaks program into, C-1,2
PCON cleans up subscripts within, 3-4
vector analysis of, 1-6

generation
in Pass 2, C-l

generator and optimizer, 1-6
scheduling (SKED)

description, 5-6 5
schedule instructions, 3-9
TBY built for, 3-4
uses TBY, 4.TBY-1

Code-and-result tag, 5-37
Comment cards, card reader driver checks

for, 1-3, 2-2
Common

and Equivalence/Dummy Argument Address
Table (TBP) , 4.TBP-1

B and T register definitions, B-8
block

attribute entry (COMTAG) , 5-38
base pseudo register, 5-36
table, 3-11

syntax processor
definition, 2-6
STTP transfers to, 2-4

task, block base pseudo register, 5-38
COMMON statement processor (CMST) , 5-15
Compare operands for equality (CPOP) , 5-16

Compile
address (CADR) , 5-8
block (CBLK)

calls OLEV, 3-7
description, 5-9
handles CALL statements, 3-7
intermediate code driven by, 3-7
uses TBX, 4.TBX-1

concatenation (CCAT) , 5-10
constant expression (CX00), 5-21
dummy argument address (CADW) , 5-9
scalar read (CSRD)

description, 5-18
uses TBY, 4.TBY-1

scalar write (CSWR)
description, 5-19
uses TBY, 4.TBY-1

statement number (CSNR) , 5-18
triad (CTRI)

description, 5-19
generates code, 3-7

Compiler
directive processors (CDIR and CDPR) ,

5-11
in multiprogramming environment, 1-8
initialization, 2-1
loaded, 1-8
main loop, during Pass 1, 1-3
overview, 1-1
processing precedence, 2-11
table, 1-1

construction, 4-1
location, 1-1
memory locations, 4-2
storing, B-l

tables, 1-8
COMPLEX statement processor (CPST) , 5-16
COMTAG (common block attribute entry), 5-3 8
Copy loop (CQYL) , 5-17

Conditional vector loop, 1-6
Conjunctive Term Table (TBCT)

description, 4.TBCT-1
used by ADEP, 3-4

Constant
expression evaluation (CEXP) , 5-12
increment integer (CII)

analysis, 4.TB2-1, B-l
examined for vectorization, 3-5
in a replacement statement, 3-3
incrementation, 3-6
marked, 3-3
operators allowed, 3-3

integer operations (CUca:), 5-20
multiplied by dimension multipler, 3-4

PCON looks for , 3-4
Table (TBB)

converted constant entered into, 2-12
description, 4.TBB-1

Construct character operand address (CCLA) ,
5-10

Continuation cards, card reader driver
checks for, 1-3, 2-2

CONTINUE statement processor (CNST) , 5-15

SM-0017 Index-3 B-02

Control
card cracking routine (CARD)

collects options, 2-2
sets default values, 2-2
sets register indicator bits, 2-2

statement parameters, 1-3
Conventions, 4-8
Convert

an invariant **CII (ROSR) , 5-60
binary value to ASCII decimal value

(BTD), 5-8
character

constant (CCLO) , 5-10
constant operand (CCTB) , 5-11

conditional replacement statement
(CCRS) , 5-10

constant
tag to value (CVAL) , 5-20
to tag (CNTB, CNTD, CNTG) , 5-16

COPR (returns and enters calculations into
TBW) , 5-16

Correct forward and backward indices
(CFBI), 5-12

CPOP (compare operands for equality) , 5-16
CPST (COMPLEX statement processor) , 5-16
CQYL (copy loop) , 5-17
Crack CFT control statement (CARD) , 5-9
CRAR (check register assignment) , 5-17
CRAY Assembly Language (CAL) , 1-1
CRAY—1

CFT executes under , 1-1
FORTRAN compiler (CFT) , 1-1
Operating System (COS) , 1-1

CRMV (issue a register transfer), 5-17
CRNK (close up ranks) , 5-17
Cross-reference map, DO-loop table printed

on, 5-23
Cross Reference Overflow Table (TBV) ,

4.TBV-1
CRRG (Clear assigned registers at end of

loop) , 5-18
CRVR (process vector recursion) , 5-18
CSNR (compile statement number), 5-18
CSRD (compile scalar read)

description, 5-18
uses TBY, 4.TBY-1

CSWR (compile scalar write)
description, 5-19
uses TBY, 4.TBY-1

CTRI (compile triad)
description, 5-19
generates code, 3-7

CTTY (check triad type), 5-20
CUcx (constant integer operations) , 5-20
CVAL (convert constant tag to value) , 5-20
CX00 (compile constant expression) , 5-21

DAST (DATA or NAMELIST Statement
processor), 5-21

DATA or NAMELIST statement processor
(DAST) , 5-21

DATA statement
entries made in TBB, 2-17
processed in two steps, 2-10
processor (DP00), 5-25

Dataset Parameter Area, 1-1
Datasets

binary load-and-go, 6-2
I/O, 6-2
pseudo-CAL output, 6-2
source output, 6-2
text input, 6-2

DBLE (double-precision operator processor) ,
5-21

DBST {DOUBLE or DOUBLE PRECISION statement
processor), 5-22

DCLR (declarative processor)
description, 5-22
DMST sets up for, 5-23

DCST (DECODE statement processor), 5-2 2
DDcx (implied DO processor), 5-23
Debug Symbol Table

built by DETB, 5-2 3
created, 3-11
specified on CFT control statement,

4 .TBI—1
Debugging aids

for Pass 1, C-l
for Pass 2, C-l

Declarative
processing, end of, 4.TBR-1
processor (DCLR)

description, 5-22
DMST sets up for , 5-2 3

DECODE statement processor (DCST) , 5-22
Default values

CFT presets, 1-3
unspecified CFT statement options are

set to, 2-2
Defined Variable Table (TBZ)

ADEP takes definition entry from, 3-4
description, 4.TBZ-1
flag set for CII, 3-3
initialized with LWA+1=FWA, 3-2

Definition entry
description, 3-4
followed by reference entry, 3-4
taken from TBZ, 3-4

Definitions, register, B-7, B-8
Dependencies

ADEP looks for, 3-4
ambiguous, 1-6
vector analysis, 1-6

Dependent Reference Table (TBY)
built for

instruction scheduler, 3-4
load/store generation, 3-4

descr iption, 4 .TBY-1
initialized with LWA+1=FWA, 3-2

Descriptions
field, format, 4-8.1
table, 4-7

DETB (build Debug Symbol Table) , 5-23
Dimension multiplier , 3-4
DIMENSION statement processor (DMST) , 5-23

SM-0017 Index-4 B-02

Disjunctive Term Table {TBDT) , 4.TBDT-1
DLTB (print DO-loop table), 5-23
DMST (DIMENSION statement processor)# 5-23
DO-loop

innermost, 1-6
1-line, 2-15, 5-24, 5-68
preamble, C-2
process implied, 2-13
replacement (DORP), 5-24
termination

check, 2-15
sequence, 2-15
STTR detects, 5-68

unrolling (DOUN) , 5-24
DO-loop Table (TBD)

description, 4.TBD-1
end processing, 3-11

DO statement
control variable, 3-3
generate table entries, 1-3
processor (DOST)

description, 5-2 4
processes implied DO-loops, 2-13

DORP (DO-loop replacement)
called by STTR, 2-15
description, 5-24

DOST (DO statement processor)
description, 5-24
processes implied DO-loops, 2-13

DOUBLE or DOUBLE PRECISION statement
processor (DBST) , 5-22

Double-precision operator processor (DBLE) ,
5-21

DOUN (DO-loop unrolling) , 5-24
DPOO (DATA statement processor) , 5-25
DSF (variant subscript flag), 3-5
Dummy argument

in FUNCTION and SUBROUTINE statements,
2-10

statement function reference, 1-5

tags, 4-9, 5-49
Dummy Argument Address Table (TBP) , 4.TBP-1

EAFR (examine array or function reference) ,
3-5, 5-25

EBSN (process statement number definition
within block) , 5-26

EBXR (examine block for external
references) , 5-26

EBXS (adjust block for external entries),
5-26

ECNT (enter conjunctive term) , 5-27
ECND (enter simple term) , 5-27
ECST (ENCODE statement processor), 5-27
EDJT (enter disjunctive term) , 5-27
EDJU (enter test for differing Clis) , 5-28
EFST (ENDFILE statement processor), 5-28
EHOL (enter Hollerith string), 5-28
EIDL (examine implied DO-loop list) , 5-28
ELSE and ELSE IF statement processor

(IELS), 5-39

ELWD (enter last word)

calls MTAB, 4-4
description, 5-29
makes entries to TBT, 4.TBT-1
sequential table entries made by, 4-4

EMPR (error message processor), 5-29
ENCODE statement processor (ECST), 5-27
End-of-file encountered, 1-5
END processing during Pass 2, 1-5, 2-16,

3-11
END statement

also see process END statement
encountered

Pass 1, 1-5
Pass 2, 1-5

processing, 1-6, 2-16, 4.TBQ-1
processor (ENST) , 5-29
special case treatment, 2-3

ENDFILE statement processor (EFST) , 5-28
ENDIF statement processor (IEND) , 5-40
ENST (END statement processor)

assigns TBT addresses, 2-17
called, 2-16
copies intermediate code, 2-17
description, 5-29
generates

call to $END, 2-16
RETURN, 2-16

resolves equivalences, 2-17
Enter

conjunctive term (ECNT) , 5-27
disjunctive term (EDJT) , 5-27
Hollerith string (EHOL) , 5-28
last word (ELWD)

calls MTAB, 4-4
description, 5-29
makes entries to TBT, 4.TBT-1
sequential table entries made by, 4-4

new sub-block (ESBK) , 5-31
simple term (ECNU) , 5-27
statement number reference (ESNL) , 5-32
Symbol Table (ESTB)

description, 5-32
entry procedure, 4-6

TBT index into table KTNOBT (NOBTVAR) ,
5-48

test for differing CIIs (EDJU), 5-28
Entry/Exit Address Table (TBEE) , 4.TBEE-1
ENTRY statement, 1-6, 3-2
ENTRY statement processor (NTRY) , 5-48
EQST (EQUIVALENCE statement processor) , 5-30

EQUIVALENCE statement
processing, 2-8
processor (EQST), 5-3 0
stored in TBP, 4.TBP-1

Error message processor (EMPR) , 5-29
ERTX (invalidate old TBX entries), 5-31
ESBK (enter new sub-block) , 5-31
ESNL (enter statement number reference) ,

5-32
ESTB (enter Symbol Table)

description, 5-32
entry procedure, 4-6

ETBX (make TBX entry), 5-3 2

SM-0017 Index-5 B-02

Evaluate operand (EVOP) , 5-33
EVOP (evaluate operand), 5-33
Examine

array or function reference (EAFR) ,
3-5, 5-25

block for external references (EBXR) ,
5-26

IF statements (CKRF) , 5-13
implied DO-loop list (EIDL) , 5-28

Executable statements
converted to internal notation, 1-5
processing, 2-10
terminates through STTR, 2-15
three types, 2-12

Execute code (XCOO) , 5-71
EXST (EXTERNAL statement processor), 5-33
External

Library Tag Table (TBL)
descr iption, 4 .TBL-1
location in memory area, 1-8, 4-1

Reference Table (TBE)
description, 4.TBE-1
entries received from LTGN, 3-11

Relocation Table (XRT) , TBE contains,
4.TBE-1

EXTERNAL statement processor (EXST) , 5-33

FCB (first card buffer) , holds first line
of statement, 2-2

FIB (Final Instruction Buffer)
description, 3-10, E-l
formats, E-4

Field description format, 4-8.1
Final Instruction Buffer (FIB)

description, 3-10, E-l
formats, E-4

Find
last vector store (FLVS) , 5-34
statement header (FSHO) , 5-35
substring (FSUB) , 5-36

First
card buffer (FCB) , holds first line of

statement, 2-2
word address (FWA) , printer word

contains, 1-8
Flag

generation mode, 4-11, B-2
mode, 4-11
parenthesis group type, 4-11, B-2
statement type, 4-11
TBT and Tag Buffer, 4-11
variant subscript (DSF) , 3-5

FLVS (find last vector store), 5-34
FMST (FORMAT statement processor), 5-34
FNST (FUNCTION statement processor) , 5-34
Force

compiler-generated variables onto stack
(FSTK) , 5-35

pass instructions (LTFU) , 5-44
FORMAT statement

parser (FPAR) , 5-34
processor (FMST) , 5-3 4
treated as special case, 2-3, 2-4

Formats
FIB, E-4
field description, 4-8.1
PIB, E-l
stack frame, D-l

FPAR (FORMAT statement parser), 5-34
Frames, stack, D-l
FRTG (locate argument tag), 5-3 5
FSHD (find statement header) , 5-35
FSTK (force compiler-generated variables

onto stack), 5-35
FSUB (find substring), 5-36
Function

character, 5-49
processing, intrinsic, 2-15
reference vectorizable, 3-5
references checked by EAFR, 3-5
skeletons, 4.TBM-1
tag, internal, 2-16
tag checked for flag, 3-5
vector definition, 4.TBM-1

FUNCTION statement processor (FNST) , 5-34
FWA (first word address) , pointer word

contains, 1-8

GBAT (generate B to A register transfer
instruction) , 5-36

GCBS (get common block base pseudo
register), 5-36

GCRF (generate code-and-result tag) , 5-37
Generate

B to A register transfer instruction
(GBAT) , 5-36

code-and-result tag (GCRF) , 5-37
index address (GIXA) , 5-37
loader tables, 3-10, 5-44
output table (OTBL) , 5-52
pseudo CAL output (OUTcx), 5-53
statement number (SNGN) , 5-65

Get
common block base pseudo register

(GCBS) , 5-36
label definition (GLBD) , 5-37
memory (GMEM) , 5-37 .
stack base tag (GSBS) , 5-38
task common block base pseudo

register (GTCB) , 5-38
GIXA (generate index address), 5-3 7
GLBD (get label definition) , 5-37
GMEM (get memory) , 5-37
GO TO statement processor (GTST) , 5-39
GSBS (get stack base tag) , 5-38
GTCB (get task common block base pseudo

register) , 5-38
GTST (GO TO statement processor), 5-39

Hard (real) register
assignment, 1-6, 3-9
contrasted to pseudo register, 3-8
pseudo converted to, 3-9

SM-0017 Index-6 B-02

*
Hardware instructions

packed, transferred to loader text
tables, 1-6

HOLD (Hollerith data assembler), 5-39
Hollerith data assembler (HOLD), 5-39

IATY (insert address in TBY) , 5-39
IELS (ELSE and ELSE IP statement

processor) , 5-39
IEND (ENDIF statement processor), 5-40
IF statement processor (1FST) , 5-40
IFST (IF statement processor), 5-40
IGXF (intergroup transfer), 5-40
IMPLICIT statement processor (IMST) , 5-40
Implicit type determiner (ITYP) , 5-42
Implied

DO—loop name list, search (SIDL), 5-65
DO processor (DDex) , 5-23

IMST (IMPLICIT statement processor), 5-40
$IN, as text input dataset, 6-2
Index address, generate (GIXA) , 5-37
Indicator hits set by CATD routine, 2-2
INFN

intrinsic function
expander, 5-41
generator, 3-7

Initialize
loader table (LTST) , 5-44
register times (RBRG) , 5-59

Input/output
CFT, 6-1
datasets, 6-2
statements, 2-13

INQUIRE statement processor (OPEN), 5-52
Insert

address in TBY (IATY), 5-39
parentheses (IPRN) , 5-41
subscripted reference (ISRF) , 5-42

Instruction
buffers, CFT, E-l
hardware, 1-6
primary level, 4.TBX-1
stored, 3-7

Integer divide processor (LDIV) , 5-43
Intergroup transfer (IGXF) , 5-40
intermediate

code
code block translated to, 1-6
generated, 3-6, 3-7

tag buffer (TGB)
description, 4.TGB-1
executable statement put into, 2-10
location in memory area, 1-10
tag entered into, 2-12

Internal
buffer, builds statement, 2-2
function tag, 2-16
notation, executable statement

converted to, 1-5
statement function facility, compiles

library calling sequences, 2-13
Interpreters for CX00 (XX00) , 5-71

Intrinsic function
CBLK checks for, 3-7
expander (INFN) , 5-41
generator (INFN) , 3-7
processing, 2-15
references to, 1-6
TBL contains names of, 4.TBL-1

Intrinsic Function Attribute Table (TBK) ,
4 .TBK-1

Intrinsic Function Name Table (TBJ)
description, 4.TBJ-1
use in intrinsic function processing,

2-15
Intrinsic Type Table, type determined from,

2-10
Invalidate

old TBX entries (ERTX) , 5-31
TBX entries (IVTX) , 5-42

I/O
buffer, location in user field, 1-8
statement processor (IOST), 5-41

IOST (I/O statement processor)
DCST sets up for, 5-22
description, 5-41
ECST sets up for, 5-27
generates entries in TBS and TBT, 2-13
processes I/O list, 2-13

IPRN (insert parentheses) , 5-41
IRST (process INTRINSIC statement), 5-4 2
ISRF (insert subscripted reference), 5-42
Issue a register transfer (CRMV) , 5-17
ITYP (implicit type determiner) , 5-42
IVTX (invalidate TBX entries), 5-42

Job Communication Block (JCB) , CFT
statement stored in, 2-2

Label
active, 1-6
definition, get (GLBD) , 5-37

Label Usage Table (TBLB)

description, 4.TBLB-1
initialized with LWA+1=FWA, 3-2

Language, binary machine, 6-1
Last word address (LWAJ , pointer word

contains, 1-8
LBLK (locate sub-block definition), 5-43
LDIV (integer divide processor), 5-43
Lexical entity, tag for, 1-5
LGCL (logical and relational operator

processor), 5-43
LGST (LOGICAL statement processor) , 5-43
Library

calling sequence, compiled, 2-13
functions, calls to, 1-6
Macro Table (TBM)

description, 4.TBM-1
location in memory area, 1-8, 4-1

List
argument, 5-14
output, 1-3

Listing file, 2-2

SM-0017 Index-7 B-02

Load/store overlap check (LSOV) , 5-44
Load store overlap move (LS0M) , 5-43
Loader Program Description Table (TBH)

descr iption, 4 .TBH—1
ENST builds, 2-17

Loader table
as output from Pass 2, 1-1
closed and written to binary file

(ENST), 5-30
generated, 1-5, 3-10
processed during END statement

processing, 2-10
saved in memory, 1-10

Loader table generator (LTKx)

builds loader tables, 3-10
description, 5-44

Loader's Text Table (TXT)

contained in TBB, 4.TBB-1
DATA statement entries made in, 2-17
description, 4.TBB-1

Load/store generation routines
TBY built for, 3-4
vector, 4-4

Locate

argument tag (FRTG), 5-35
sub-block definition (LBLK) , 5-43

LOCLEN, D-3
Logical

and relational operator processor
(LGCL) , 5-43

I/O routines, 6-2

LOGICAL statement processor (LGST) , 5-4 3
Loop

boundary, 1-6, 3-2
conditional vector, 1-6
made, control transferred to VCTL, 3-6
scalar, 1-6
vector , 1-6

LSOM (load store overlap move), 5-43
LSOV (load/store overlap check), 5-44
L"Scx (loader table generator)

builds loader tables, 3-10
description, 5-44

LTFU (force pass instructions), 5-44
LTGN (build loader tables)

description, 5-44
processing, 3-10

LTND (terminate loader tables)

builds header word for TBR, TBB, 3-11
description, 5-44
processing, 3-10

LTST (initialize loader table), 5-44
LWA (last word address) , pointer word

contains, 1-8

Main driver
Pass 1, STTP branch for expansion

processing, 2-15
Pass 2, ABLK routine, 3-2

Make TBX entry (ETBX) , 5-32
Manage memory (MMEM)

description, 5-45
memory move procedure, 4-4

MAP (map block names and lengths), 5-45
Map block names and lengths (MAP) , 5-45
Mapping of registers by RASN, 3-10
MAXTAGS, 5-25
MCEX (special case handling for scheduler),

5-45
Memory

bank conflicts, 4-6
get (GMEM) , 5-37
high, 4-4
low, 4-4
management routine, 4-4
move, 4-3
request, 1-10
words

BFIRST, 3-10
BTLIM, 3-10

MMEM (manage memory)
description, 5-45
memory move procedure, 4-4

Mode
stack, 5-14, 5-35, D-l
static, 5-14

Move

operands (MVOP) , 5-46
S to A register (MSAR) , 5-45
table (MTAB) , 4-4, 5-46

MSAR (move S to A register), 5-45
MTAB (move table), 4-4, 5-46
Multiprogramming environment, 1-8
Multipurpose scratch registers, B-6
MVOP (move operands) , 5-46

NAMELIST statement processor (NLST) , 5-47
NARG (return number of arguments) , 5-46
$NICV (numeric input conversion), converts

ASCII to CRAY internal, 2-12
NICV (numeric input conversion), 5-47
NLST (NAMELIST statement processor), 5-4 7
NMTB (write statement number table) , 5-47
NOBTVAR (enter TBT index into table

KTNOBT) , 5-48
NOCV (numeric output conversion), 5-48
Non-stack calling sequence, 5-50
NTRY (ENTRY statement processor) , 5-48
Numbers, register, B-4
Numeric

constant, 2-12
input conversion

$NICV, converts, ASCII to CRAY
internal, 2-12

NICV, 5-4 7
output conversion (NOCV) , 5-48

OLEV (operator level)

called by CBLK, 3-7
description, 5-51
scans expressions for operators, 3-7

1-line DO-loop, 2-15, 5-24, 5-68
Orcx (operator processor)

description, 5-52
expression handler, 2-11

SM-0017 Index-8 B-02

Obex (operator processor) (continued)

maintains parenthesis stack, 2-12
process subscripts and expressions, 2-14
sets flags, 2-12

OPEN (OPEN, CLOSE, and INQUIRE statement
processor) , 5-52

OPEN, CLOSE, and INQUIRE statement
processor (OPEN) , 5-52

OPEN statement processor (OPEN) , 5-52
Operation code, requires pseudo register

assignment, 1-6
Operator

converted to precedence code, 2-12
level (OLEV)

called by CBLK, 3-7
description, 5-51
scans expressions for operators, 3-7

one-word entry, 2-11
processing precedence of, 1-5
processor (OPrx)

description, 5-52
expression handler/ 2-11

Optimizer with code block, 1-6, 3-2
OTBL (output table generator) , 5-52
$OUT

as source output dataset, 6-2
line copied to, 2-3

OUT routine, 3-11
OUTcx (pseudo-CAL output generator) , 5-53
OUTBB (output BLOCK BEGINS), 5-53
Output

BLOCK BEGINS (OUTBB) , 5-53
pseudo CAL, generator (OUTrx) , 5-53
table generator (OTBL) , 5-52

Overflow
area

TBBR acts as, 4.TBBR-1
TBTR acts as, 4.TBTR-1
TBWR acts as, 4.TBWR-1

table
for TBU, 4.TBU-1
for TBV, 4.TBV-1

Packed Equivalence Table (TBR) , 4.TBR-1
Page Number Table (TBPG)

description, 4.TBPG-1
saved, 2-2

PARAMETER statement processor (PRST) , 5-57
Parentheses, insert (IPRN) , 5-41
Parenthesis stock, maintained by Oscx ,

2-12
Parsed operations

as triads, 1-6
parentheses forcing, 2-11

Parser, FORMAT statement (FPAR) , 5-34
Pass 1

auxiliary tables produced during, 3-1
current statement storage, 1-8
end of, 1-5, 10
function of, 1-3, 2-1
general flow of, 1-2
goal of, 2-8
input to, 1-1, 2-1

Pass 1 (continued)
intermediate text form, 1-10
output from, 1-1, 2-1
source listing produced, 1-10

Pass 2
code generation, C-l
function of, 1-5
general flow of, 1-7
input to, 1-1, 3-1
output from, 1-1, 3-1
parameters initialized for, 1-5
PIB replaces CHB and TGB, 1-10

PAST (PAUSE statement processor), 5-5 3
PAUSE statement processor (PAST), 5-53
PBLK (select and prepare compilation of next

statement)

called by CBLK, 3-7
description, 5-53

PCIV (process conditional CII variables),
5-54

PCON (promote constants)
description, 3-4, 5-54
looks for constants, array references,

3-4
PCST (process conditional store) , 5-54
PDT (Program Description Table) , generated

in TBH, 4.TBH-1
Permanent registers, B-6
PEXP (process exponent) , 5-54
PGST (PROGRAM statement processor), 5-55
PHDL (print header line) , 5-55
PIB (pseudo instruction buffer)

actual code generated in, 3-2
format, E-l
replaces CHB and TGB, 1-10

PIST (PRINT statement processor), 5-5 5
PLDP (process loop dependencies) , 5-55
Plus Dependency Table (TBPD)

built by ADEP, 3-3
description, 4,TBPD-1

PMRT (process memory reference time), 5-55
PMST (process memory set time) , 5-56
PNST (POINTER statement processor) , 5-56
Pointer

backward and forward, 2-15
for statement number, 3-2
to source and result, B-l
words to CFT tables, 1-8, 4-3, 4-4

POINTER statement processor (PNST) , 5-56
Pointer Variable Table (TBC) , 4.TBC-1
Postmortem debugger (CFTDUMP) , 4-3
PPDP (process plus dependency) , 5-56
PPGN (print page number list), 5-56
Print

DO-loop table (DLTB) , 5-23
header line (PHDL) , 5-55
page number list (PPGN) , 5-56
Symbol Table (SYTB) , 5-69

PRINT statement processor (PIST) , 5-55
Process

conditional CII variables (PCIV) , 5-54
conditional store (PCST) , 5-54

SM-0017 Index-9 B-02

Process (continued)

END statement (ENST)
assigns TBT addresses/ 2-17
called, 2-16
copies intermediate code, 2-17
description, 5-29
generates call to $END, 2-16
generates RETURN, 2-16
resolves equivalences, 2-17

exponent (PEXP) , 5-54
external function and subroutine calls

(CLAT, CLCF, CLGA, CLOF, CLOG, CLRS,
CLSZ, CLTG) , 5-13

INTRINSIC statement (IRST), 5-42
I/O statement (IOST)

DCST sets up for, 5-22
description, 5-41
ECST sets up for , 5-2 7
process I/O list, 2-13

loop dependencies (PLDP) , 5-5 5
memory

reference time (PMRT) , 5-55
set time (PMST) , 5-56

plus dependency (PPDP) , 5-56
secondary register clear (PSRC) , 5-57
statement number definition within

block (EBSN) , 5-26
triad (PTRI)

called by CBLK, 3-7
description, 5-57

vector recursion (CRVR) , 5-18
Processing, intrinsic function, 2-15
Processor

arithmetic statement function
definition (SFST) , 5-64

ASSIGN statement (ASST) , 5-5
BACKSPACE statement (BKST) , 5-7
BLOCK DATA statement (BDST) , 5-7
BUFFER IN and BUFFER OUT statement

(BFST) , 5-7
CALL statement (CLST) , 5-15
CHARACTER Statement (CHST) , 5-13
CLOSE statement (CLOS) , 5-15
COMMON statement (CMST) , 5-15
compiler directive (CDIR and CDPR) , 5-11
COMPLEX statement (CPST) , 5-16
CONTINUE statement (CNST) , 5-15
DATA statement (DPOO), 5-25
DATA or NAMELIST statement (DAST) , 5-21
Declarative (DCLR) , 5-22
DECODE statement (DCST), 5-2 2
DIMENSION statement (DMST) , 5-23
DO statement (DOST) , 5-24
DOUBLE or DOUBLE-PRECISION statement

(DBST) , 5-22
double-precision operator (DBLE) , 5-21
ELSE and ELSE IF statement (IELS) , 5-39
ENCODE statement (ECST) , 5-27
END statement (ENST) , 5-29
ENDFILE statement (EFST) , 5-28
ENDIF statement (IEND) , 5-40
ENTRY statement (NTRY) , 5-48
EQUIVALENCE statement (EQST) , 5-3 0
error message (EMPR) , 5-29

Processor (continued)
exponentiation (PEXP), 5-5 4
EXTERNAL statement (EXST) , 5-33
FORMAT statement (FMST) , 5-34
FUNCTION statement (FNST) , 5-34
GO TO statement (GTST) , 5-39
IF statement (IFST), 5-40
IMPLICIT statement (IMST) , 5-4 0
implied DO (DDccc) , 5-23
integer divide (LDIV) , 5-43
IOST (I/O statement) , 5-41
logical and relational operator (LGCL) ,

5-43
LOGICAL statement (LGST) , 5-43
NAMELIST statement (NLST) , 5-47
OPEN, CLOSE, and INQUIRE statements

(OPEN) , 5-52
operator (OEcx) , 5-52
PARAMETER statement (PRST) , 5-57
PAUSE statement (PAST) , 5-53
POINTER statement (PNST) , 5-56
PRINT statement (PIST) , 5-55
PROGRAM statement (PGST) , 5-55
PUNCH statement (PUST) , 5-58
READ statement (RDST) , 5-59
REAL statement (REST), 5-59
replacement statement (RPST) , 5-60
RETURN statement (RTST) , 5-61
REWIND statement (RWST) , 5-61
SAVE statement (SAST, SA50) , 5-62
STOP statement (STST) , 5-67
SUBROUTINE statement (SRST) , 5-6 7
VECTOR/NOVECTOR directive (VEcx) , 5-70

Program control statement, processing, 2-14
Program Description Table (PDT) , generated

in TBH, 4.TBH-1
PROGRAM statement processor (PGST) , 5-55
Program unit, 1-1

compiler reinitialized for, 1-8, 2-1
definition, 1-1
END processing for, 1-5
name, 4-6
process next, 1-6
start of, 1-3, 2-1, 2-2
TBBG and PBPN keep track of, 4.TBPG-1

Program Unit Name Table (TBPN)
description, 4.TBPN-1
entries in 6-bit ASCII, 4-6
maintained in sorted order, 4-3, 4-6
saved, 2-2
search, 4-6

Promote constants (PCON)
description, 3-4, 5-54
looks for constants, array references,

3-4
PRST (PARAMETER statement processor), 5-57
Pseudo instruction buffer (PIB)

actual code generated in, 3-2
replaces CHB and TGB, 1-10

Pseudo-CAL output generator (OUTcx), 5-53
Pseudo registers

assigned, 1-6
common block base, 5-36
converted to hard, 3-9

SM-0017 Index-10 B-02

Pseudo registers (continued)
definition, 3-8
task common block base, 5-38

PSRC (process secondary register clear) ,
5-57

PTRI (process triad)

called by CBLK, 3-7
description, 5-57

PUNCH statement processor (PUST) , 5-58
PUST (PUNCH statement processor), 5-58

RASN (register assignment)
converts pseudo to hard, 3-9, 3-10
description, 5-58
initialization (RBIN) , 5-58

RBIN (RASN initialization) , 5-58
RBLI (reissue bottom-load instructions),

5-58
RBMV (remove the inserted save from the

IF-block) , 5-58
RBRG (initialize register times), 5-59
RCCK (register chain check) , 5-59
RDPT (remove duplicate terms), 5-59
RDST (REM) statement processor) , 5-59
Read next statement (RNXT)

compilation begins with, 2-2
description, 5-60

READ statement processor (RDST), 5-59
Real (hard) registers, contrasted with

pseudo register, 3-8
REAL statement processor (REST) , 5-59
Real-time clock (RTC) , 5-61
Record image buffer (RIB)

holds next card to be processed, 2-2
location in memory area, 1-8

Register
assigned, 1-5, 1-6, 3-9
assignment (RASN)

converts pseudo to hard, 3-9
description, 5-58

chain check (RCCK) , 5-59
definitions, B-7, B-8
general purpose, B-l
hard (real), 3-8, 3-9, 3-10
index pseudo, 4 .TBX-1
intermediate, B-l
multipurpose scratch, B-6
numbers, B-4
permanent, B-6
permanent secondary, B-7
primary, B-l
pseudo, 1-6, 3-8, 4.TBX-1
pseudo converted to hard, 3-9
secondary, B-6
secondary, volatile, B-6.1
short term scratch, B-6.1
temporary, B-6
temporary secondary, B-6
usage, B-l
Variables to Restore After a CALL Table

(TBCALL) , 4.TBCALL-1
vector, 4-4, 4-6

Reissue bottom-load instructions (RBLI) ,
5-58

Remove duplicate terms (RDPT) , 5-59
Remove the inserted save from the IF-block

(RBMV), 5-58
Replacement statement processor (RPST) , 5-60
REST (REAL statement processor) , 5-59
Restore table pointers (RSTB) , 5-61
Return

alternate, 5-49
number of arguments (NARG) , 5-4 6

RETURN-statement processor (RTST) , 5-61
Returns and enters calculations into TBW

(COPR) , 5-16
REWIND statement processor (RWST) , 5-61
RIB (record image buffer)

holds next card to be processed, 2-2
location in memory area, 1-8

RNXT (read next statement)

branched from STTR, 2-15
compilation begins with, 2-2
description, 5-60

ROSR (convert an invariant **CII), 5-60
RPST (replacement statement processor), 5-60
RSTB (restore table pointers), 5-61
RTC (real-time clock) , 5-61
RTST (RETURN statement processor), 5-61
Run-time test, 1-6
RWST (REWIND statement processor), 5-61

SAF (special processing) bit, 5-66
SAST, SA50 (SAVE statement processors) , 5-62
SAVE statement processors (SAST, SA50) , 5-62
Saved Variable Table (TBSV) , 4.T8SV-1
SBLS (search backward, shift left, string) ,

4-5, 5-62
SBLT (search backward, shift left, table) ,

4-5, 5-62
SBMS (search backward, masked, string),

4-5, 5-62
SBOP (scan buffer for operator), 5-62
SBRS (search backward, shift right,

string), 4-5, 5-62
SBRT (search backward, shift right,

string), 4-5, 5-62
SBUF (scan buffer for match or end of

statement), 5-63
Scalar

loop, 1-6
temporary

located by SVEC, 3-5
VAF set to, 3-5

Scan
buffer

for match or end of statement
(SBUF) , 5-63

for operator (SBOP) , 5-62
for end of operand (SOPT) , 5-66

Scheduling
code (SKED), 5-65
description, 3-9
in Pass 2, 1-6

SCILIB routine, 2-15

SM-0017 Index-11 B-02

Scratch registers
multipurpose, B-6
short term, B-6.1

SDCO (suppress dead code)/ 5-63
SDPF {set Dependency flags), 5-63
SDPN (search double-precision function name

table), 5-63
Search

backward, 4-5, 5-62
double-precision function name table

(SDPN), 5-63
for Intrinsic Function Name Table

(SIN) , 5-65
forward, 4-5, 5-64
forward for nonzero field (SFMN) , 5-64
general purpose, 4-5
group for equality in string (SGES) ,

5-64
implied DO-loop name list (SIDL) , 5-65
masked, 4-5, 4-6, 5-62, 5-64
normal, 4-5
sequential table, 4-5
sorted table (SSTB)

descr iption, 5-67
technique, 4-6

table
backward (SBLS, SBLT, SBMS, SBRS,

SBRT) , 5-62
forward (SFLS, SFLT, SFMS, SFRS,

SFRT) , 5-64
targets, 4- 5

Secondary registers
description, B-6
temporary, B-6
volatile, B-6.1

Select and prepare compilation of next
statement (PBLK) , 5-53

Separator
converted to precedence code, 2-12
1-word entry, 2-11

Sequence
calling, non-stack, 5-50
Number Table (TBSN) , 4.TBSN-1
numbers initialized, 1-3, 2-2

Sequential Table
entries into, 4-4
FWA for, 4-4
released or collapsed, 4-5
searches, 4-5
space allocated for, 4-4

Set Dependency flags (SDPF), 5-63
Set of interpreters for instructions

compiled by CX00 (XX00) , 5-71
Set Vector Array flag (SVEC) , 5-68
SFLS (search forward, shift left, string) ,

4-5, 5-64
SFLT (search forward, shift left, table),

4-5, 5-64
SFMN (search forward for nonzero field) ,

5-64
SFMS (search forward, masked, string), 4-5,

5-64
SFRS (search forward, shift right, string),

4-5, 5-64

SFRT (search forward, shift right, table),

4-5, 5-64
SFST (arithmetic statement function

definition processor), 5-64
SGES (search group for equality in string) ,

5-64
Short term scratch registers, B-6.1
SIDL (search implied DO-loop name list) ,

5-65
SIN (search for Intrinsic Function Name

Table (TBJ) , 5-65
SKED (code scheduling)

description, 5-65
schedules instructions, 3-9
users TBY, 4.TBY-1

SNGN (statement number generator), 5-65
SOPT (scan for end of operand) , 5-66
Source

code, 1-1
at low end of user field, 1-8
minor mention, 1-1

input dataset, 1-1
as input to Pass 1, 1-1

listing, 2-2
program, 1-1

as output from Pass 1, 1-1
statements, 1-3

Special
case handling for scheduler (MCEX) , 5-45
processing bit (SAF) , 5-66

Special-case intrinsic function header
based on its arguments (SPFH) , 5-66

SPFH (special-case intrinsic function
header based on its arguments), 5-66

SPFR (check function arguments for special
cases) , 5-66

SPRN (suppress redundant parentheses
groups) , 5-66

SRST (SUBROUTINE statement processor), 5-67
SSTB (search sorted table)

description, 5-67
technique, 4-6

Stack
base tag, get (GSBS) , 5-38
frame format, D-l
mode, 5-14, 5-35, D-l
parenthesis, B-2
push-down pop up, B-2

Statement
buffer, statement copied into, 1-3
declarative, 2-8
executable, 1-3
function

definition in TBG, TBF, 2-15, 4.TBF-1
skeleton, 2-15, 4.TBF-1
translated, 1-5

Function Skeleton Table (TBF) , 4.TBF-1
group numbers, in increasing order, 2-6
nonexecutable, 1-3, 2-8
number

assemble, 2-3
at beginning of code block, 3-3
deleted, 2-17
generator (SNGN), 5-65

SM-0017 Index-12 B-02

Statement (continued)

number (continued)

linked with references, 2-17
location, 2-3
made-up, 3-3
pointer, 3-2
processing, 3-10
programmer-defined, 3- 3
STTR examines, 2-15
table, 3-11, 5-47
TL field, 4-11

processing terminator (STTR)
description, 5-68
minor mention, 2-12
terminate executable statement, 2-14

processor
common syntax, 1-4
form of names, 2-7
non-executable, 2-9
terminate on close parenthesis, 2-11
unique, 1-3

required order, 2-7
terminated (STTR) , terminate executable

statement, 2-15
type determination (STTP)

branch to main driver, 2-15
description, 5-67
in Pass 1, 2-4

Type Table
corresponding with STTP entry, 2-4
entry format, 2-6
group and statement type, 2-5

when processed, 1-3
Static mode, 5-14
STOP statement processor (STST) , 5-67
STST (STOP statement processor), 5-67
STTP (statement type determination)

branch to main driver, 2-15
description, 5-67
determines statement type, 2-4

STTR (statement processing terminator)
description, 5-68
terminate

executable statement, 2-15
statement processing, 2-12

Subprogram
begin, 3-2
boundary, 1-6
end, 3-2

SUBROUTINE statement processor (SRST) , 5-67
Subroutines, 5-1
Subscripting, vector analysis check, 1-6
Substring Definition Table (TBSB) , 4.TBSB-1
Suppress

dead code (SDCO) , 5-63
redundant parentheses groups (SPRN) ,

5-66
Svec (set Vector Array flag)

called by PCON, 3-5
description, 5-68
locates scalar temporary, 3-5
sets VAF to scalar temporary, 3-5

SYMADD (add symbol to cross reference), 5-69

Symbol
Cross Reference Table (TBU) , 4.TBU-1
name, 4-6
Table (TBS)

as output from Pass 1, 2-1
contents of, 1-5
description, 4.TBS-1
dummy arguments entered into, 2-10
end processing, 3-11
entries in 6-bit ASCII, 4-6
location, 4-1
maintained in sorted order, 4-3
search, 4-6
statement number entries made in, 2-2

Symbolic
B register definitions, B-7
T register definitions, B~8

SYTB (print Symbol Table), 5-69

Table
area, 4-1
compiler, 1-8, 4-1, B-l
conventions for presentation, 4-8
definition, 1-1
descriptions, 4-7
dynamic, 4-3
elements, 4-5
expansion, 4-1, 4-5
identifier, 1-8
index form KTc , 1-8
intrinsic type, B-2
length, 1-1
maintained during compilation, 1-8
management

description, 4-3
sequential, 4-4
sorted, 4-6

names and indexes, 1-8
new entry, 4-4
null, 4-3
overflow, 4-4
parameter words, 4-3, B-4
pointers, 2-2, 4-4, B-3
search, 4-5
sequential, 4-3, 4-4
sorted, 4-3
working, B-l

Tag
buffer

internal notation stored in, 1-5
represents operator, 1-5

Buffer Table (TBG)
arranged in alphabetical order, 4-6
as output from Pass 1, 2-1
contents of tag buffer transferred

to, 1-5
contents of TGB moved to, 1-10
DATA statement entered into, 2-10
descr iption, 4 .TBG-1
primary input to Pass 2, 3-1
tag buffer string in, 3-1

constant, 4-9
contents, 2-11

SM-0017 Index-13 B-02

Tag (continued)
data type codes, 4-11
definition index, TBZ entry contains,

4.TBZ-1
definitions, 4-9
derived from TBT, 2-11
descriptions, 4-9
dummy argument, 4-9, 5-4 9
dummy argument address, 4-10
external function, 4-9, 4.TBM-1
function entry name, 4-9
holds data, 4-10
inline function, 4-9
internal function, 2-16
location index, TBZ entry contains,

4.TBZ-1
offset field, 4.TBX-1
one-word entry, 2-11
pointer, 4-9
program block, 4-10
pseudo, 4-9
statement

function, 4-9
number, 4-9

subroutine entry name, 4-9
Table (TBT)

as output from Pass 1, 2-1
description, 4.TBT-1
dummy argument given a tag in, 2-10
location, 4-1
statement number entries made in, 2-2
tag derived from, 2-11

TL field, 4-11
type, 4-9
type determined, 4.TBT-1
user-declared common block, 4-10
variables globally assigned, 4-10

Tag-and-operator sequence
statement function translated to, 1-5
TBG translated to, 2-1

Tag-operator
sequence, DATA statements translated

to, 2-10
string, skeleton consists of, 4.TBF-1

Tally PR usage (TPRU) , 5-69
TBA (Array Table)

DCLR makes entries in, 5-22
description, 1-8, 4.TBA-1

TBA Index Table (TBI)

DCLR makes entries in, 5-22
description, 4.TBI-1

TBB (Constant, Binary Table)
converted constant entered into, 2-12
DATA statement entries made in, 2-17
descr iption, 4 .TBB-1
instructions packed into, 3-11
loader Text Table (TXT) , 4.TBB-1

TBBK (Block Definition Table)

descr iption, 4.TBBK-1
initialized with LWA+1=FWA, 3-2

TBBR (B-register Associates Table), 4.TBBR-1
TBC (Pointer Variable Table), 4.TBC-1
TBCALL (Register Variables to Restore After

a CALL Table), 4 .TBCALL-1

TBCLEN (Character Length Table), 4.TBCLEN-1
TBCLTXT (#CL Text Table), 4.TBCLTXT-1
TBCT (Conjunctive Term Table)

description, 4.TBCT-1
used by ADEP, 3-4

TBD (DO-loop Table)

descr iption, 4 .TBD-1
end processing, 3-11

TBDT (Disjunctive Term Table), 4.TBDT-1
TBE (External Reference Table)

description, 4.TBE-1
entries received from LTGN, 3-11

TBEE (Entry/Exit Address Table), 4.TBEE-1
TBF (Statement Function Skeleton Table) ,

4 .TBF-1
TBFR (Call-by-value Reference Table) ,

4.TBFR-1
TBG (Tag Buffer Table)

DATA statement entered into, 2-10
description, 4.TBG-1
primary input to Pass 2, 3-1
Tag Buffer string in, 3-2

TBH (Loader Program Description Table)
description, 4.TBH-1
ENST builds, 2-17

TBI (TBA Index Table)
DCLR makes entries in, 5-22
description, 4 .TBI-1

TBJ (Intrinsic Function Name Table)

descr iption, 4 .TBJ-1
search (SIN), 5-65

TBK (Intrinsic Function Attribute Table),
4.TBK-1

TBL (External Library Tag Table)
description, 4.TBL-1
location in memory area, 1-8, 4-1

TBLB (Label Usage Table)

description, 4.TBLB-1
initialized with LWA+lÿFWA, 3-2

TBM (Library Macro Table)
description, 4.TBM-1
location in memory area, 1-8, 4-1

TBNOBT (TBT Index of Variables Not

Assignable to B/T Register Table) ,
4.TBNOBT-l

TBO (Array Bounds Checking Table), 4.TBO-1
TBP (Common and Equivalence/Dummy Argument

Address Table), 4.TBP-1
TBPD (Plus Dependency Table)

built by ADEP, 3-3
descr iption, 4 .TBPD-1

TBPG (Page Numbers Table)
description, 4.TBPG-1
saved, 2-2

TBPN (Program Unit Name Table)
description, 4.TBPN-1
entries in 6-bit ASCII, 4-6
maintained in sorted order, 4-3, 4-6
saved, 2-2
search, 4-6

TBQ (Variable Declarator Table)
DCLR makes entries in, 5-22
description, 4.TBQ-1

SM-0017 Index-14 B-02

TBR (Packed Equivalence/Block Relocation
Table)

description, 4.TBR-1
entries received from LTGN, 3-11
LTND builds header word, 3-11

TBS (Symbol Table)

as output from Pass 1, 2-1
DCLR adds names to, 5-22
description, 4.TBS-1
dummy arguments entered into, 2-10
entries in 6-bit ASCII* 4-6
location, 4-1
maintained in sorted order, 4-3
search, 4-6
statement number entries made in, 2-2

TBSB (Substring Definition Table) , 4.TBSB-1
TBSN (Sequence Number Table), 4.TBSN-1
TBSV (Saved Variable Table), 4.TBSV-1
TBT (Tag Table)

as output from Pass 1, 2-1
DCLR adds names to, 5-22
description, 4.TBT-1
dummy argument given a tag in, 2-10
location, 4-1
statement number entries made in, 2-2
tag derived from, 2-11

TBT Index of Variables Not Assignable to

B/T Register Table (TBNOBT) , 4.TBN0BT-1
TBTR (T-register Associates Table), 4.TBTR-1
TBU (Symbol Cross Reference Table) , 4.TBU-1

TBV {Cross Reference Overflow Table) ,
4.TBV-1

TBW (Triad Table)

description, 4.TBW-1
initialized with LWA+1=FWA, 3-2

TBWR (W-register Associates Table) , 4.TBWR-1
TBX (Variable Reference Table)

description, 4.TBX-1
initialized with LWA+1=FWA, 3-2

TBX Extension Table (TBXX) , 4.TBXX-1
TBXX (TBX Extension Table), 4.TBXX-1
TBY (Dependent Reference Table)

built
for instruction scheduler, 3-4
for load/store generation, 3-4

descr iption, 4 .TBY-1
initialized with LWA+lÿFWA, 3-2

TBZ (Defined Variable Table)

ADEP takes definition entry from, 3-4
descr iption, 4.TBZ-1
flag set for CII, 3-3
initialized with LWA+1=FWA, 3-2

Temporary
register, B-6
secondary register, B-6

Terminal statement encountered, 1-3
Terminate

loader table (LTND)

builds header word for TBR and TBB ,
3-11

description, 5-44
processing, 3-10

statement processing (STTR) , 5-68
Termination, DO-loop, 5-68

Text Input Dataset <$IN) , 6-2
Text Table (TXT)

description, 4.TBB-1
instructions packed into, 3-11
DATA statement entries made in, 2-17

TFBK (transfer between sub-blocks in a
conditional loop) , 5-69

TGB (Intermediate Tag Buffer)
description, 4 .TGB-1
executable statements put into, 2-10
location in memory area, 1-10
tag entered into, 2-12

TL data
length values, 4-11
type codes, 4-11

TPRU (tally PR usage), 5-69
TRAN (type conversion) , 5-70
Transfer

between sub-blocks in a conditional
loop (TFBK) , 5-69

intergroup (IGXF), 5-40
T-register Associates Table (TBTR) , 4.TBTR-1
Tr iad

description, 5-19
entered in TBW, 4.TBW-1
operation parsed as, 1-6
process, routine (PTRI), 3-7
Table (TBW)

description, 4.TBW-1
initialized with LWA+1=FWA, 3-2

TRUN (truncate after each floating-point
operation) , 5-70

Truncate after each floating-point operation
(TRUN) , 5-70

Two-pass philosophy, 1-2
TXT (Text Table)

DATA statement entries made in, 2-17
descr iption, 4 .TBB-1
instructions packed into, 3-11

Type
code, implicit, B-3
conversion (TRAN), 5-7 0

Unique statement processor
assignment statements, 2-14
definition, 2-6
input/output, 2-13
program control, 2-14
STTP transfers to, 2-4

Unit/ logical, 4-6
UNROLL parameter, 5-25
User

area, tables constructed in, 4-1
field, compiler loaded into, 1-3
job deck, 1-3

V7 table parameter words, B-4
VAF (vector array flag) , set by EAFR, 3-5

Variable
Declarator Table (TBQ)

DCLR makes entries in, 5-22
description, 4.TBQ-1

SM-0017 Index-15 B-02

Variable (continued)
dimension declarators, TBQ used for,

4.TBQZ-1
Reference Table (TBX)

description, 4.TBX-1
initialized with LWA+1=FWA, 3-2

tag

as a scalar variable, 5-19
TBZ entry contains, 4.TBZ-1

Variant subscript flag (DSF) , 3-5
VCTL (vector loop control)

checks for recursive sums, 3-6
control transferred to, 3-6
copies VAF from TBG to TBZ, 3-6
description, 5-70
generated CII incrementation, 3-6
searches tags, 3-6
sets vector length register, 3-6

VEKC (VECTOR/NOVECTOR directive
processor), 5-70

Vector
analysis

of a code block, 1-6
subscript check during, 1-6

array flag (VAF), set by EAFR, 3-5
loads and stores, 3-3, 4-4
loop

ambiguous dependencies, 1-6
analysis (VLAN) , 5-71
conditional, 1-6

loop control (VCTL)
checks for recursive sums, 3-6
control transferred to, 3-6
copies VAF from TBG to TBZ, 3-6
description, 5-70
generated CII incrementation, 3-6
searches tags, 3-6
sets vector length register, 3-6

loop mode flag (VLF)
description, 3-4
turned off, 3-4

mask, 4-5
register, 4-4, 4-6

VECTOR/NOVECTOR directive processor
(VB&r), 5-70

VLAN (vector loop analysis), 5-71
VLF (Vector Loop Mode flag)

description, 3-4
turned off, 3-4

Volatile secondary registers, B-6.1

XRT (External Relocation Table), TBE
contains, 4.TBE-1

XX00 (set of interpreters for instructions
compiled by CX00) , 5-71

Zero-argument functions, 2-16
Zero word

in TBB, 5-28
indicates end of statement, 2-4, 5-60
SBUF terminates, 5-63
terminated string, 2-3

ZMEM (clear a block of memory) , 5-7 2

Words
statement header, 4.TGB-1
table parameter, B-3
V7 table parameter, B-4

W register, 3-10
W-register Associates Table (TBWR) , 4.TBWR-1
Write statement number table (NMTB) , 5-47
WRITE statement processor (WRST) , 5-71
WRST (WRITE statement processor) , 5-71

XC00 (execute code), 5-71

SM-0017 Index-16 B-02

READER COMMENT FORM

FORTRAN (CFT) Internal Reference Manual SM-0017 B-02

Your comments help us to improve the quality and usefulness of our publications. Please use the space provided
below to share with us your comments. When possible, please give specific page and paragraph references.

NAME.

JOB TITLE

FIRM_

ADDRESS

CITY_

RESEARCH) INC.

STATE. ZIP.

FOLD

Attention:
PUBLICATIONS

FOLD

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO 6184 ST PAUL MN

POSTAGE WILL 8E PAIG BY ADDRESSEE

RESEARCH, INC.

2520 Pilot Knob Road
Suite 350
Mendota Heights, MN 55120
U.S.A.

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

-I

-J

I

READER COMMENT FORM

FORTRAN (CFT) Internal Reference Manual SM-0017 B-02

Your comments help us to improve the quality and usefulness of our publications. Please use the space provided
below to share with us your comments. When possible, please give specific page and paragraph references.

NAME

JOB TITLE

FIRM_
ADDRESS

CITY_

RESEARCH, INC.

STATE. ZIP-

I

FOLD

Attention:
PUBLICATIONS

FOLD

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO 6184 ST PAUL, MN

POSTAGE WILL BE PAID BY ADDRESSEE

RESEARCH, INC.

2520 Pilot Knob Road
Suite 350
Mendota Heights, MN 55120
U.S.A.

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

--I

.J

l

