
c:
RESEARCH J INC. '

CRAY-1®
COMPUTER SYSTEMS

COS
EXEC/STP/CSP

INTERNAL REFERENCE
MANUAL

SM-0040

PUBLICATION CHANGE NOTICE c: "O:--t'
RESEARCH. INC.

October, 1980

TITLE: COS EXEC/STP/CSP Internal Reference Manual

PUBLICATION NO. SM-0040 REV.

This manual supports COS Version 1.09 and obsoletes portions of the
CRAY-OS Version 1 System Programmer's Manual, publication 2240012.

c:
RESEARCH, INC.

CRAY-1®
COMPUTER SYSTEMS

COS
EXEC/STP/CSP

INTERNAL REFERENCE
MANUAL

SM-0040

Copyright© 1980 by CRAY RESEARCH, INC. This manual or
parts thereof may not be reproduced in any form without
permission of CRAY RESEARCH, INC.

RECORD OF REVISION RESEARCH. INC. PUBLICATION NUMBER SM-0040

Each time this manual is revised and reprinted, all chan~es issued against the previous version in the form of change packets are
incorporated into the new version and the new version IS assigned an alphabetic level. Between reprints, changes may be issued
against the current version in the form of change packets. Each change packet is assigned a numeric designator, starting with
01 for the first change packet of each revision level.

Every page changed by a reprint or by a change packet has the revision level and change packet number in the lower righthand
corner. Changes to part of a page are noted by a change bar along the margin of the page. A change bar in the margin opposite
the page nt,fmber indicates that the entire page is new; a dot in the same place indicates that information has been moved from
one page to another, but has not otherwise changed.

Requests for copies of Cray Research, Inc. publications and comments about these publications should be directed to:

CRAY RESEARCH, INC.,
1440 Northland Drive,
Mendota Heights, Minnesota 55120

Revision

SM-0040

Description
October, 1980 - Original printing; supports COS
Version 1.09. This manual obsoletes portions of the
CRAY-QS Version 1 System Programmer's Manual,
publication 2240012.

ii

PREFACE

This manual describes the internal features of the EXEC, STP, and CSP
portions of the CRAY-l Operating System.

This pUblication is part of a set of manuals that describes the internal
design of the CRAY-l Operating System and its product set.

Other publications in this set are:

SM-0042
SM-0043
SM-0044
SM-0045
SM-0046
SM-0049
SM-0050

COS Front-End Protocol Internal Reference Manual
COS Operational Procedures Reference Manual
COS Operational Aids Reference Manual
COS Table Descriptions Internal Reference Manual
lOS Software Internal Reference Manual
OGS Internal Reference Manual
COS Simulator (CSIM) Reference Manual

The following, which are available for use only by Cray Research
personnel, complete the set of software maintenance documentation.

SM-OOl7
SM-004l

FORTRAN (CFT) Internal Reference Manual
COS Product Set Internal Reference Manual

Manuals designated as internal describe the internal design of the
software, whereas the other manuals in the set define procedures and
external features of tools needed for installing and maintaining CRI
software.

The reader is assumed to be familiar with the contents of the CRAY-OS
Version 1 Reference Manual (SR-OOll) and to be experienced in coding the
CRAY-l Assembly Language (CAL) as described in the CAL Version 1
Reference Manual (SR-OOOO). In addition, the I/O Subsystem assembler
language (APML) is described in the APML Reference Manual (SR-0036).

Operating information is available in the following publications:

SG-0006
SG-005l

SM-0040

Data General Station (OGS) Operator's Guide
I/O Subsystem (lOS) Operator's Guide

iii

CONTENTS

PREFACE · iii

1. INTRODUCTION . . · · · · · · · · 1-1

1.1 GENERAL DESCRIPTION · · · · 1-1
1.2 HARDWARE CHARACTERISTICS · · · · · 1-2

1.2.1 Computation section · 1-5
1.2.2 Central Memory section · · · · · 1-5
1.2.3 Memory protection · · · · · · · · · 1-5
1.2.4 Mass storage · · · · · 1-6
1.2.5 I/O Subsystem · · · · · · 1-6
1.2.6 Front-end computer systems 1-8
1.2.7 Maintenance Control unit (MCU) · · · · 1-8
1.2.8 peripheral Expanders · · · · · 1-8

1.3 SOFTWARE CONFIGURATION · · · · · · · · · · · · · · 1-9
1.3.1 CRAY-1 Operating System (COS) 1-9
1.3.2 Language systems · · · · 1-10
1.3.3 Library routines · · · · · · · · · 1-12
1.3.4 Applications programs · · · · · 1-13

1.4 SYSTEM RESIDENCE · · · · · · · · · · · · · 1-13
1.4.1 EXEC table area · · · · · · · · · · · 1-17
1.4.2 EXEC program area · · · · · 1-18
1.4.3 STP table area · · · · · · · · · 1-18
1.4.4 STP program area · · · · · · · · · 1-21
1.4.5 CSP area. · · · · · 1-21
1.4.6 user area · · · · · · · · · 1-21

1.5 MASS STORAGE SUBSYSTEM ORGANIZATION · · · · · · · · 1-23
1.5.1 Formatting · · · · · · · · · · · · · · · · · · · 1-23
1.5.2 Device label (DVL) · · · · 1-24
1.5.3 Dataset Catalog (DSC) · · · · · 1-24

1.6 EXCHANGE MECHANISM · · · · · · · · · .. · · · · · · · 1-25
1.6.1 Exchange package · · · · · · · · · 1-25
1.6.2 Exchange package areas · · · · · 1-25
1.6.3 B, T, and V registers · · · · · · 1-27

1.7 COS STARTUP · · · · · · · · · 1-29
1.8 GENERAL DESCRIPTION OF JOB FLOW · · · · · 1-29

1.8.1 Job entry · · · · · · · · · 1-29
1.8.2 Job initiation 1-30
1.8.3 Job advancement · · · · · · · · 1-30
1.8.4 Job termination · · · · 1-31

1.9 DATASET MANAGEMENT · · · · · · · · · 1-31
1.10 I/O INTERFACES · · · · · · · · · 1-32

SM-0040 v

2. EXEC

2.1
2.2
2.3

2.4
2.5
2.6

2.7

2.8

2.9

2.10

2.11

.
INTERCHAOOE INTERRUPT ANALYSIS •
INTERRUPT HANDLERS • •
CHANNEL MANAGEMENT • • • •
2.3.1 Channel tables
2.3.2. Channel assignments
2.3.3 Channel processors
TASK SCHEDULER • • • • • • •
EXEC RESOURCE ACCOUNTING •
EXECUTIVE REQUEST PROCESSOR
2.6.1 Executive requests
2.6.2 EXEC error codes
FRONT-END DRIVER • • • • • •
2.7.1 Theory of operation •••••
2.7.2 System tables used by FED.
2.7.3 Processors ••••••••••••••
00-19/29 DISK DRIVER • • • • • • • •
2.8.1 ROll • • • • • • • • • •••
2.8.2 Hardware sequences for sample requests
I/O SUBSYSTEM DRIVER • • • • • • • • • •
2.9.1 Functional description •••••
2.9.2 Recovery •••••••
2.9.3 MIOP command and status packet formats
EXEC DEBUG AIDS • • • • • • •
2.10.1 History trace •••••
2.10.2 System crash message buffer.
INTERACTIVE SYSTEM DEBUGGING 0 0 0 0 ~ ~ ~ ~ @

3. SYSTEM·TASK·PROCESSOR (STP)

3.1
3.2

3.3

SM-0040

GENERAL DESCRIPTION • • • •
TASK COMMUNICATIONS • • • • • • • • •
3.2.1 EXEC/task communication.
3.2.2 Task-to-task communication
3.2.3 User/STP communication
STP COMMON ROUTINES • • • • • •
3.3.1 Task I/O routines (TIO) •
3.3.2 System tables used by TIO •
3.3.3 Circular I/O routines (CIO) •
3.3.4 Memory allocation/deallocation routines •
3.3.5 Chaining/unchaining subroutines •••••••••
3.3.6 Interactive communication buffer management

routines • • • • • • • • • • • • • • • • • •

vi

2-1

2-2
2-4
2-4
2-5
2-6
2-6
2-9
2-10
2-10
2-11
2-26
2-27
2-27
2-28
2-29
2-30
2-30
2-32
2-35
2-35
2-37
2-37
2-40
2-41
2-46
2-47

3-1

3-1
3-2
3-2
3-2
3-7
3-7
3-7
3-9
3-19
3-27
3-29

3-32

4. SYSTEM' TASKS · · · · · · · · 4.1-1

4.1 COS STARTUP · · · · · · · · 4.1-1
4.1.1 Input to Startup · · · · 4.1-3
4.1.2 Tables used by Startup · · · · 4.1-6
4.1.3 Startup subroutines · · · · · 4.1-9
4.1.4 Install . 4.1-13
4.1.5 Deadstart . · · 4.1-14
4.1.6 Restart . . · · 4.1-15
4.1.7 Job recovery by Restart · · · · · 4.1-17

4.2 DISK QUEUE MANAGER (D<»1) · · · · 4.2-1
4.2.1 System tables used by DQM 4.2-1
4.2.2 DQM interface with other tasks 4.2-4
4.2.3 Dataset allocation 4.2-5
4.2.4 Resource management 4.2-6
4.2.5 Queue management · · · · 4.2-8
4.2.6 I/O request flow in DQM · · · · · 4.2-9
4.2.7 Hardware error logging 4.2-9

4.3 STATION CALL PROCESSOR (SCP) · · 4.3-1
4.3.1 System tables used by SCP · · · · · 4.3-1
4.3.2 Processing flow for SCP · · · · · 4.3-3
4.3.3 Interactive processing · · · · 4.3-5

4.4 EXCHANGE PROCESSOR (EXP) · · 4.4-1
4.4.1 System tables used by EXP · · · · · · 4.4-2
4.4.2 User area tables used by EXP · · · · 4.4-3
4.4.3 Exchange processor request word · · · · 4.4-4
4.4.4 User normal exit · · · · · · · · 4.4-5
4.4.5 System action requests 4.4-5
4.4.6 User error exit · · · · · · · · · · · · 4.4-17
4.4.7 Job scheduler requests · · · · 4.4-17
4.4.8 Job rerun . · · · · · · · · · · · · 4.4-18
4.4.9 Reprieve processing · · · · · · 4.4-19
4.4.10 Non-recoverabi1ity of jobs · · · · · · 4.4-20

4.5 JOB SCHEDULER (JSH) 4.5-1
4.5.1 Job flow . · · · · · · · · 4.5-1
4.5.2 Scheduling philosophy 4.5-3
4.5.3 Tuning the system · · · · · · · · 4.5-15
4.5.4 Memory management · · · · · · · · 4.5-17
4.5.5 Job startup · · · · · · 4.5-18
4.5.6 Job status and state changes · · · · 4.5-20
4.5.7 JSH interface with other tasks · · .. · 4.5-26

4.6 PERMANENT DATASET MANAGEMENT (PDM) · 4.6-1
4.6.1 Tables used by PDM 4.6-2
4.6.2 Subfunctions · · · · · · . · · · · · 4.6-4
4.6.3 POD status · · · · · . · · · · · · 4.6-8
4.6.4 Theory of operation · 4.6-10

SM-0040 vii

4.7

4.8
4.9

4.10

LOG MANAGER • • • • • • • • • • •
4.7.1 Message processor (MSG) ••
4.7.2 System tables used by MSG •
4.7.3 Task calls to MSG ••••••
4.7.4 $SYSTEMLOG format •••
4.7.5 $LOG format ••••••
MEMORY ERROR PROCESSOR (MEP)
DISK ERROR CORRECTION (DEC)
4.9.1 System table used by DEC ••••••••••••
4.9.2 DEC interface with other tasks ••••
SYSTEM PERFORMANCE MONITOR (SPM) •••••••••••
4.10.1 control parameters •••••••••••
4.10.2 Method of data collection ••••••
4.10.3 Data collection and record definition •••••
4.10.4 Task flow for SPM ••••••••••
4.10.5 System tables used by SPM •••••••

4.11 JOB CLASS MANAGER (JCM) ••••••••••••••••
4.11.1 Job class assignment ••••••••••••••
4.11.2 Interface between JCM and other tasks •••••

4.12 OVERLAY MANAGER (OVM) •••••••••••••••••
4.12.1 Task communication with OVM • • •• • •••
4.12.2 System generation/overlay definition.
4.12.3 Overlay calling macros. • •••••
4.12.4 OVM tables ••••••••••••••

5. CONTROL STATEMENT PROCESSOR (CSP)

5.1

5.2

5.3
5.4

SM-0040

SYSTEM TABLES USED BY CSP
5.1.1 Job communication block (JCB)
5.1.2 Logical file table (LFT)
5.1.3 Dataset parameter area (DSP)
5.1.4 Dataset name table (DNT)
THEORY OF OPERATION • • • • • • •

.
.

5. 2.1 CSP load process • • • • • • • • •
5.2.2 Entry and exit conditions •••••
5.2.3 Begin job. • • • • • •••
5.2.4 Crack statements ••••••••
5.2.5 Process statements ••••• • ••• •
5.2.6 Advance job ••••
5.2.7 Error exit processing. • •••••••
5 • 2 • 8 End job • • • • • • • • • • •
CSP STEP FLOW • • • • • • • • • • • • • • • •
RECOVERY STATUS MESSAGES •

viii

4.7-1
4.7-1
4.7-3
4.7-4
4.7-6
4.7-10
4.8-1
4.9-1
4.9-1
4.9-1

4.10-1
4.10-1
4.10-2
4.10-2
4.1Q-9
4.10-9

4.11-1
4.11-1
4.11-2

4.12-1
4.12-1
4.12-6
4.12-6
4.12-7

5-1

5-1
5-1
5-1
5-2
5-2
5-2
5-2
5-3
5-4
5-4
5-4
5-5
5-5
5-6
5-6
5-8

FIGURES

1-1 CRAY-IA/B or CRAY-l S Series Model S/250, S/500 or S/lOOO
Computer Systems • • • • • • • • • • • • • • • • • •

1-2 CRAy-l S Series Model S/1200 through S/4400 Computer Systems
1-3
1-4
1-5 1-3

1-4
1-5
1-6
1-7
1-8
1-9
1-10
1-11
2-1
2-2
2-3
2-4
3-1
3-2
3-3
3-4
3-5
3-6
3-7

4.2-1
4.2-2

program field • • • •
Elements of CRAY-OS •
Memory Assignment • •
Expansion of a user area • • • • • • • •
Expansion of COS resident
Mass storage organization • •
Exchange package. • • • •
Exchange package management •
Overview of COS I/O • • • • •
EXEC-controlled exchange sequences
System control ••• • • • •
Channel table linkage • • • • • • • • • • •
Task Scheduler table linkage
Task communication tables
Dataset table linkage • •
TIO logical read
TIO logical write
Physical I/O
Memory allocation tables • • • • •
Chain tables
DQM table linkages • • • • • • • • •
OAT structure • • • • • • •

.

4.2-3 DCU-2, 3 Controller configuration •••••••••••• •
4.2-7
4.2-4 DCU-4 controller configuration
4.5-1 Job flow •••••
4.5-2a-
4.5-2f Memory priority variation. • • ••••
4.5-3 Normal transition between job states

5-1 CSP general flow diagram • • • •

TABLES

1-1
1-2
2-1
2-2

4.5-1
4.5-2
4.5-3
4.5-4
4.6-1

4.10-1
4.10-2
4.10-3
4.10-4

SM-0040

Characteristics of models of the CRAY-1 Computer Systems
Operational characteristics of disk storage units •
History trace functions • • • • •
EXEC stop message • • • • • • • •
DNT initialization
Status bit assignments
State change sequences
JSH functions • • • • • •
POD status •• • • • •
CPU usage record - subtype 1
Task usage record - subtype 2
EXEC requests record - subtype 3
User memory usage record - subtype 4

ix

1-10
1-14
1-15
1-16
1-23
1-26
1-28
1-33
2-2
2-3
2-5
2-11
3-4
3-8
3-12
3-13
3-20
3-28
3-31

4.2-1
4.2-3

4.2-8
4.5-2

4.5-10
4.5-22

5-7

1-2
1-7
2-42
2-46

4.5-19
4.5-20
4.5-23
4.5-28
4.6-8
4.10-3
4.10-3
4.10-4
4.10-4

TABLES continued

4.10-5
4.10-6
4.10-7
4.10-8
4.10-9
4.10-10
4.10-11
4.10-12
4.11-1

SM-0040

Disk usage record - subtype 5 • • • •
Disk channel usage record - subtype 6
Link usage record - subtype 7 • • • •
EXEC call usage record - subtype 8
User call usage record - subtype 9
Interrupt count record - subtype 10 •
Job Scheduler management statistics record - subtype 11 •
Job class information record - subtype 12 ••••
JCM functions •

x

4.10-5
4.10-5
4.10-6
4.10-6
4.10-7
4.10-7
4.10-8
4.10-8
4.11-3

INTRODUCTION 1

1.1 GENERAL DESCRIPTION

CRAY-OS (COS) is a multiprogramming operating system for the CRAY-l
Computer System. The operating system provides for efficient use of
system resources by monitoring and controlling the flow of work presented
to the system in the form of jobs. The operating system centralizes many
of the job functions such as input/output and memory allocation and
resolves conflicts when more than one job is in need of resources.

CRAY-OS is a collection of programs that, following startup of the system,
resides in CRAY-l Central Memory, on system mass storage, and in the I/O
Subsystem on some models of the CRAY-l S Series. (Startup is the process
of bringing the CRAY-l and the operating system to an operational
state.)

Jobs are presented to the CRAY-l by one or more computers referred to as
front-end systems, which may be any of a variety of computer systems.
Since a front-end system operates asynchronously under control of its own
operating system, software executing on the front-end system is beyond
the scope of this publication.

The FORTRAN compiler, the CAL assembler, the SKOL macro translator, the
UPDATE program, and utility programs execute as parts of user jobs and
are described in separate publications.

The operating system is available in two forms: (1) preassembled into
absolute binary programs in an unblocked format and (2) source language
programs in the form of UPDATE decks.

The binary form of the program is provided for the installation of the
basic system. The UPDATE decks provide a means of modifying and updating
the source code and generating a new system in binary form by
reassembling the modified programs.

Details for generating, installing, and starting up the operating system
are given in COS Operational Procedures Reference Manual, CRI publication
SM-0043.

SM-0040 1-1

1.2 HARDWARE CHARACTERISTICS

This section briefly summarizes the hardware characteristics of the
CRAY-l Computer System. The basic components of the system are
summarized in table 1-1 and illustrated in figures 1-1 and 1-2. Figure
1-1 illustrates basic components of a CRAY-lA/B or CRAY-l Model S/250,
S/500, or S/lOOO Computers. These systems consist of a central
processing unit (CPU), power and cooling equipment, a minicomputer
maintenance control unit (MCU), a mass storage disk subsystem, and a
front-end system.

Table 1-1. Characteristics of Models of the CRAY-l Computer Systems

Model S/250 S/500 S/1000 S/1200 S/1300 S/1400 S/2200 S/2300 S/2400 S/4200 S/4300 S/4400
or lIB or l/A

CPU
Memory size in 1/4M 1/2M 1 M 1 M 1 M 1 M 2 M 2 M 2 M 4 M 4 M 4 M
64-bi t words

FRONT-END INTERFACES 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3

I/O SUBSYSTEM
I/O Processor s
Buffer Memory .5 or 1M .5 or 1M .5 or 1M .5 or 1M .5 or 1M .5 or 1M .5 or 1M .5 or 1M .5 or
DCU-4 Controllers 1-4 1-8 1-12 1-4 1-8 1-12 1-4 I-B 1-12

00-29 Disk Storage Units 2-16 2-32 2-4B 2-16 2-32 2-48 2-16 2-32 2-48

MASS STORAGE SUBSYSTEl-IS
DCU-3 Disk controllers 2-8 2-8 2-8 2-85S 2-8§§ 2-8§§ 2-8S5 2-8S5 2-BSS 2-8S5 2-BSS 2-BSS
00-29 Disk Storage Units 2-32 2-32 2-32 1-32S5 1-3255 1-32SS 1-32SS 1-32§5 1-3255 1-3255 1-32SS 1-3255
DCU-2 Disk Controllers 2-8 2-8
00-19 Disk Storage Units 2-32 2-32

~:

M3S~ ctaregc limite ""CGumc '" GonE igu.r i:i. tivrl with a jYtQhiiflUilt 0[il I,,;hGluut:l~ d.vd..i.ldult:.

1M

5S While connection of mass storage devices through the I/O Subsystem is preferred, where possible, available CPU channels can be used for additional mass
storage.

Figure 1-2 illustrates the CRAY-l S Series Models S/1200 through S/4400
Computer Systems. These systems are characterized by the incorporation
of an I/O Subsystem comprised of two to four I/O Processors.

SM-0040 1-2

r-------------------------------,
I CPU
I
I
I ,
I
I
I
I
1
I
I
I
I
I
I
I
I
I
I
I
I
I

CONTROL
SECTION

• Instruction
buffers

• Control
registers

• Exchange
mechanism

• Interrupt
system

• Real-time
clock

• Program­
mabl e
clock

COMPUTATION SECTION

• Registers
• Functional units

MEMORY SECTION

• 0.25 M or 0.5 M or 1 M
words of 64 bits each

I/O SECTION
• 12 I/O channel pairs

L _________ _ , f/' II' \\ \\

__ 1_ L 1-1_ - __ :_I_~____\ __ - __ J
1/1/ I:, \ \ \\
1/1/ 'I' \\ \ \

/ / I I 'I' \ \ \ \
/ / / I 'I' \ \ \ \

I I I I ' \ \ \ / I I, \
I j ,I I ~. , \ \ \ \ ----.

FRONT-END COMPUTERS, MASS STORAGE,
MCU AND

PERIPHERAL EQUIPMENT

Figure 1-1. CRAY-lA/B or CRAY-! S Series, ModelS/250,
S/500 or S/1000 Computer Systems

SM-0040 1-3

r-------------------------------,
CPU

CONTROL
SECTION

• Instructio
buffers

• Control
registers

• Exchange
mechanism

• Interrupt
system

• Real-time
clock

• Program­
mabl e
clock

COMPUTATION SECTION

• Registers
• Functional units

MEMORY SECTION

• 1 M or 2 M or 4 M
words of 64 bits each

I/O SECTION
• 12 I/O channel pairs
• 1 Memory channel

L ________ _
- 7

1
- _ _ /-1+ I- -,~ -~ -~ --\ -\-'.- - - - _-.J

I· I 1 I I I I I \ \ \ \
I 1'1' /" \ \ \ \

II I I I' I I , \ \ \ \
I 1'1 \ /1' \ \ \ \

/ I', \ / \ \ \ \ \
/ I I, '\ \

~----~--------~--~
I/O SUBSYSTEM

• 2 to 4 I/O Processors
• 1/2 to 1 M words of

Buffer Memory

/ I I
/ I I

I I I
I I I

FRONT-END

COMPUTERS

' " "", " , "" '", , , ' ... " ", " " ", , ," ""
'\. " ",,"

MASS STORAGE,
BLOCK MULTIPLEXERS,

AND PERIPHERAL
EXPANDER EQUIPMENT

FRONT-END COMPUTERS

Figure 1-2. CRAY-l S Series Model S/1200 through S/4400 Computer Systems

SM-0040 1-4

1.2.1 COMPUTATION SECTION

The computation section is composed of instruction buffers, registers,
and functional units that operate together to execute sequences of
instructions. At anyone time, only one program can be in execution
although several programs may be candidates for execution. This means
that multiprogramming, the sharing of the computation section among
multiple programs, is possible: but multiprocessing, the concurrent
execution of multiple programs, is not possible.

1.2.2 CENTRAL MEMORY SECTION

The CRAY-l Central Memory is constructed of LSI chips arranged in 8 or 16
banks. Memory sizes depend on the model. Available sizes are: 262,144
words, 524,288 words, 1,048,576 words, 2,097,152 words, or 4,194,304
words. A word is 64 bits.

The lower memory addresses contain exchange packages, operating system
tables and pointers, and operating system programs. The extreme upper
memory addresses contain operating system I/O buffers. The remainder of
memory is available for user jobs.

An algorithm that calculates the maximum memory size allocation for a job
is described in Appendix B of the COS Operational Procedures Reference
Manual, publication SM-0043.

1.2.3 MEMORY PROTECTION

Two registers (BA and LA) define the field of memory addresses that can
be referenced by the executing program (see figure 1-3). The base
address (BA) register contents define the beginning address: the limit
address (LA) register contents define the upper address. The last usable
address is at (LA)x2 4-l.

Q-----------.r-------------------------.
[(BAit2~
__ to

[< LA) x2 4] -1

I _______ .~~~iil: iil:~~~:l4

Memory

Figure 1-3. program field
The hardware senses an attempt by a program to reference an address not
in this range of addresses and sets an error interrupt flag. Note that
both SA and LA addresses are with reference to absolute address O.

SM-0040 1-5

Some of the operating system programs are privileged by having access to
all of memory: others are limited to certain portions of the operating
system and to user program areas. Each user program has access to its
own defined field only. •

1.2.4 MASS STORAGE

CRAY-l mass storage consists of one or more Cray Research DCU-2 or OCU-3
Disk Controllers for CRAY-IA/B Systems or CRAY-l 5/250, S/500 or S/lOOO
Systems and multiple 00-19 or 00-29 Disk Storage units (OSUs). The disk
controller is a Cray Research product and is implemented in ECL logic
similar to that used in the mainframe. Each controller may have up to
four 00-19 or 00-29 disk storage units attached to it. Operational
characteristics of the OSUs are summarized in table 1-2. (The 00-29
resembles the 00-19, except that it has approximately twice the storage
capacity of the 00-19.) Additional information about the CRAY-l mass
storage subsystem is given in the CRAY-l OCU-2, OCU-3 Disk Controller
Reference Manual, publication 2240630.

For the CRAy-l S/1200 and above, the mass storage is attached to the I/O
Subsystem. The I/O Subsystem consists of 2 or more I/O processors. One
of these serves as the Master I/O Processor. A second processor (the
Buffer I/O Processor or SlOP) is dedicated to mass storage. The other
two processors may be dedicated to mass storage. If they are, they are
referred to as Data I/O Processors (DIOP). Each SlOP or DIOP can drive
up to four DCU-4 Oisk Control units. Each DCU-4 Disk Control unit
supports up to four disk storage units. All units connected to a OCU-4
may be simultaneously active. However, the number of concurrent data
streams is limited by the Suffer Memory size, the Suffer I/O Processor
(SlOP) transfer capacity, and software overhead. For example, a Model
S/x200 might be limited to 6 streams while a larger system could have as
many as 12 streams.

1.2.5 I/O SUBSYSTEM

Starting with the S/1200 (1 million words), I/O throughput to front-end
computers and to mass storage devices is significantly enhanced with the
incorporation of an I/O Subsystem. The I/O Subsystem is a Cray Research
product specifically designed to complement the CRAy-l CPU requirements.
A primary feature is the incorporation of a Memory Channel linking the
I/O Subsystem to Central Memory. Maximum transfer rates of approximately
850 Mbits per second are achievable on this channel. The power of the
I/O Subsystem relates directly to the number of I/O Processors it
contains. TWo, three, or four I/O Processors may comprise the I/O
Subsystem. with each addition of another I/O processor, significant
increases in mass storage capacity or the ability to drive peripheral
devices is achieved.

SM-0040 1-6

SM-0040

Table 1-2. Operational characterstics of disk storage units

Word capacity per drive

Word capacity per cylinder

Bit capacity per drive

Tracks per surface or
cylinders per drive

Sectors per track

Bits per sector

Number of head groups

Latency

Access time

00-19

3.723 x 10 7
7.585 x 10 7

92,160

2.424 x 10 9

404 (411 less
7 cylinders
reserved for
diagnostics)

18

32,768

10

16.7 ms

15 - 80 ms

Data transfer rate (average
bits per second) 35.4 x 106

Longest continuous transfer 92,160 words
per command (1 cylinder)

Total bits that can be
streamed to a unit (disk
cylinder capacity) 5.9 x 10 6

1-7

00-29

92,160

4.854 x 10 9

814 (823 less
9 cylinders
reserved for
diagnostics)

18

32,768

10

16.7 ms

15 - 80 ms

35.4 x 10 6

92,160 words
(1 cylinder)

5.9 x 10 6

1.2.6 FRONT-END COMPUTER SYSTEMS

The CRAY-l Computer System may be equipped with one or more front-end computer
systems that provide input data to the CRAY-l and receive output from the
CRAY-l for distribution to a variety of slow-speed peripheral equipment.
Peripherals attached to the front-end system vary with application
requirements (i.e., local or remote job entry stations, data concentrator for
multiplexing remote stations, etc.). On CRAY-l Models S/1200 and above, the
front-end computers are usually connected through the I/O Subsystem.
Front-end systems connect directly to the CPU I/O channels on systems that do
not have I/O Subsystems.

The CRAY-l is interfaced to front-end systems through special interface
controllers that compensate for differences in channel widths, machine word
size, electrical logic levels, and control protocols. The interface
controller is a Cray Research product implemented in logic compatible with the
host system.

CRAY-l front-end systems connect directly to the CPU I/O channels on systems
that do not have I/O Subsystems. On Models S/1200 and above, the front-end
computers normally connect through the I/O Subsystem but may also be connected
to the CPU I/O channels.

1.2.7 MAINTENANCE CONTROL UNIT (MCU)

On CRAY-lA/B Systems and Models S/250, S/500, and S/lOOO Systems, a Data
General minicomputer serves as a maintenance control unit. The MCU performs
initial system startup and recovery for the operating system. Included in the
MCU system is a software package that enables the minicomputer to monitor
CRAY-l performance during production hours. When not used for maintenance
purposes, the MCU can serve as a front-end system for the CRAY-l by employing
CRI-supplied software.

A description of the software for the MCU is beyond the scope of this
publication.

1.2.8 PERIPHERAL EXPANDER

On CRAY-l models 5/1200 through S/4400, peripheral devices connected to the
I/O Subsystem through a Peripheral Expander interface allow for maintenance
operations such as initial system startup and recovery.

SM-0040

1.3 SOFTWARE CONFIGURATION

The CRAY-l, as with any other computer system, requires three types of
software: an operating system, language systems, and applications programs.
The I/O Subsystem, when present, also requires its own software. The internal
features of the I/O Subsystem Software are described in the lOS Software
Internal Reference Manual, publication SM-0046.

1.3.1 CRAY-l OPERATING SYSTEM (COS)

The CRAY-l Operating System (COS) consists of memory-resident and disk
resident programs that (1) manage resources, (2) supervise job processing, and
(3) perform input/output operations. COS also contains a set of disk resident
utility programs. The operating system is activated through a system startup
operation performed from the MCU or the I/O Subsystem. A job may consist of a
compilation or assembly of a program written in some source language such as
FORTRAN, followed by execution of the program resulting from the compilation
or assembly.

The CRAY-l Operating System consists of the following modules that execute on
the CPU (figure 1-4):

Executive (EXEC)
System Task Processor (STP)
Control Statement Processor (CSP)
Utility programs (not shown)

EXEC (described in section 2) runs in monitor mode and is responsible for
control of the system. It schedules STP tasks, manages exchange packages,
performs I/O, and handles all interrupts. EXEC has access to all of memory.

STP (described in section 3) runs in object program (user) mode. It accesses
all memory other than that occupied by EXEC and is responsible for processing
all user requests. STP is composed of a number of programs known as tasks,
each of which has its own exchange package.

CSP (described in section 5) is responsible for interpreting all job control
statements and either performing the requested function or making the
appropriate system request. An image of CSP is resident after the STP area of
memory but is copied into a user field for execution.

Utility programs (described in the COS Product Set Internal Reference Manual)
include the loader, a library generation program (BUILD), a source language
maintenance program (UPDATE), permanent dataset utility programs, copy and
positioning routines, and so on.

SM-0040 1-9

JOBS

STP

EXEC

Figure 1-4. Elements of CRAY-OS

Images of utility programs are resident on disk storage and are summoned
for loading and execution in the user field through control statements.

1.3.2 LANGUAGE SYSTEMS

Currently, four language systems developed by Cray Research are available
for use on the CRAY-l. They are the FORTRAN compiler (CFT), the CRAY-l
Assembler language program (CAL), the SKOL macro translator, and A
Programming Macro Language (APML) for the I/O Subsystem.

SM-0040 1-10

FORTRAN compiler

Developed in parallel with the CRAY-l Computer System, the Cray Research
FORTRAN compiler is designed to take advantage of the vector capability
of the computer.

The compiler itself determines the need for vectorizing and generates
code accordingly, removing the burdens of such considerations from the
programmer. Optimizing routines examine FORTRAN source code to see if it
can be vectorized. The compiler adheres closely to the ANSI 1966
standards and includes many ANSI 1978 extensions.

A description of the design of the compiler is outside the scope of this
publication. It is included in the CRAY-l FORTRAN (eFT) Internal
Reference Manual, CRI publication SM-0017 which is distributed only to
CRI personnel.

CAL assembler

The CAL assembler provides users with a means of expressing symbolically
all hardware functions of the CPU. Augmenting the instruction repertoire
is a set of versatile pseudo instructions that provide users with options
for generating macro instructions, organizing programs, and so on.
Programs written in CAL may take advantage of Cray Research-provided
system macros that facilitate communication with the operating system.
CAL enables the user to tailor programs to the architecture of the
CRAY-l. Much of the operating system as well as other software provided
by Cray Research is coded in CAL assembly language.

A description of the design of the CAL assembler is beyond the scope of
this publication. See The CRAY-l CAL Assembler Language Reference
Manual, publication SR-OOOO for assembler information.

APML assembler

The APML assembler executes on the CRAY-l CPU and generates absolute code
that is executable in the CRAY-l I/O Processors. APML allows the system
progranwer to express symbolically all hardware functions of a CRAY-l I/O
Proce~sor. It is used to generate the I/O Subsystem software.

In addition to the full range of symbolic instructions, which allow the
APML user to fully use the I/O Processors arithmetic and I/O
instructions, registers, and memory, APML provides a number of macro,
conditional assembly, and pseudo instructions that simplify the task of
creating assembly language programs.

APML is described in the APML Reference Manual, publication SR-0036.

SM-0040 1-11

SKOL macro translator

SKOL is a high-level programming language that stresses readability and
extensibility. It offers the user a well structured language while
retaining the power and efficiency of the CFT compiler. This is possible
because SKOL is translated into FORTRAN code by a set of
string-processing macro instructions. By adding to these instructions,
the user can extend the language to suit his own purposes. By inserting
macros directly into the SKOL source program, changes in the languages
can be defined for a specific run.

Many of the control statements are familiar to users of other high-level
languages. For example, SKOL's IF-ELSEIF-ELSE-ENDIF structure is derived
from LISP and ALGOL, and its LOOP-WHILE-ENDLOOP subsumes all single-exit
loop structures. The scalar case structure is derived from Pascal. The
important situation case structure, which eliminates the need for labels
and GOrOs, is unique to SKOL.

The use of the record and pointer data structures in SKOL also largely
parallels Pascal. Character string processing is performed in SKOL with
the STRING data structure, and partial-word variables can be defined by
the WORD structure. The user can also define his own enumerated data
types.

Since any valid FORTRAN code is also valid SKOL code, SKOL makes use of
the subroutine and the function. Additionally, SKOL offers routines
without parameters, recursive routines, and the concept of a process. A
process consists of several cooperating coroutines that can activate one
another or suspend the process.

SKOL provides a number of tools for testing and debugging programs.
Among the tools are:

• Conditional compilation, which specifies a statement, part of a
statement, or a series of statements to be either compiled or not
compiled, as determined by the user for a specific run.

• The TRACE statement, Which prints the value of a variable Whenever
an assignment is made to it.

• The VALIDATE statement, which enables or disables the output of
built-in run-time debugging messages.

1.3.3 LIBRARY ROUTINES

The CRAY-l software includes a group of subprograms that are callable
from CAL and CFT programs. These subprograms reside in the $FTLIB,
$SYSLIB, and $SCILIB libraries. They are grouped by UPDATE deck name
within each library. The subprograms have been divided among the three
libraries generally on a functional basis.

SM-0040 1-12

$FTLIB contains routines that are an intrinsic part of CFT, such as the
mathematical functions. All of the basic external functions as specified
by ANSI X3.9-l966 are incorporated in the library. Additionally, a large
number of vector FORTRAN library routines are also provided. $FTLIB also
contains nonmathematical routines such as the DATE routine.

$SYSLIB routines, which link directly to the operating system, are not
usually accessible from a CFT program but are callable from $FTLIB
routines for specific tasks. In general, $SYSLIB serves as a link
between the general-purpose $FTLIB routines and the details of COS.

The routines in $SCILIB usually perform mathematics in the scientific
process such as matrix multiply or Fourier transformation.

1.3.4 APPLICATIONS PROGRAMS

Applications programs are specialized programs usually written in a
source language such as FORTRAN to solve particular user problems. These
programs are generally written by customers and as such are not described
in this publication.

1.4 SYSTEM RESIDENCE

This section describes the locations of the various components of the
operating system without attempting to explain what they are. The
components are described in later sections. The system components reside
in areas of memory as defined during startup (section 4.1).

Figure 1-5 illustrates the general contents of memory following startup.
Figure 1-6 illustrates the general layout of a user area. Figure 1-7
itemizes the memory resident portions of the operating system.

SM-0040 1-13

SM-0040

o

User areal

User area2

User area3

User area n

Figure 1-5. Memory Assignment

that defines maX1mum memory 1n

1-14

____ .:1_

WUl.U~

Use r SA - I @ I J TL ".---------------.

User BA

User BA+200s

JCHLM

JCLFT

User LA-l

Job Table Area

Job Communication
Block

User program

l •••••••••••••• ~ ••• or · · · · ." · · ·
I. • • • • • • e .• :- • .: •

Dataset buffers
and I/O tables

Figure 1-6. Expansion of a user area

SM-0040 1-15

user
field

SM-0040

XMTR

CSPBASE

CSPEND

o

EXEC Table Area

EXEC

STP Table Area

STP

CSP

Available

for

Jobs

- --

Memory for CRAY-OS
System tog and station

buffers J@MEM .. _______ _

F igur~ 1-7.

1-16

1.4.1 EXEC TABLE AREA

The EXEC table area contains the following tables and parameters used by
EXEC. Detailed descriptions of the tables are given in COS Table
Descriptions Internal Reference Manual, publication SM-004S.

,

IC

XMELIM
XMECNT
XMEDIS
SAXP
SAEF
SUXC
NCAERR
SXBF
IDXP
CORXP
MCCCNT
MCLCNT
SIDLE
SERRLIM
DSLWA

CRT
SSBO
SXTC
ETIM
ITIM

UTIM
BTIM
RUNTIM
MSLIM
STT

CHT

SM-0040

Channel interrupt counters
Miscellaneous pointers and constants
Logged single-bit error limit
Single-bit error count
Single-bit interrupt disabled flag
Pointer to currently connected user job
Error flags from current exchange package
User exchange package in JTA flag
Count of channel address errors on disk channels
Current user exchange package
Idle exchange package
Correction exchange package
Disk master clear count
Disk master clear loop count
Alternate scheduling flag
Station input error retry limit
l+LWA of COS binary and parameter file
Miscellaneous pointers and constants
Disk channel reservation table
Contents of BO register of interrupted processor
Clock at beginning of interrupt
Accrued executive time
Accrued idle time

Accrued user time
Accrued system I/O blocked time
Accrued time since deadstart
Idle memory scan limit
System Task Table. This table consists of three parts: a
4-word header, a task parameter word area, and an exchange
package area. The sign bit of the second word of the STT
header is set if the highest priority STP task is to
execute. The address in the low-order bits of the word
points to the parameter word for the task to be executed.
The third header word contains a bit for each STP task.
The bit is set if the task is created. This word also
contains a pointer to the exchange package for the
currently scheduled STP task. The fourth word contains a
breakpoint flag.
Channel Processor Table. This table contains a I-word
entry for each side (input and output) of a physical
channel and a pseudo channel. An entry contains a pointer
to the channel message buffer for the channel-assigned task
ID and the address of the channel processor assigned to the
side of the channel. Input sides are assigned even
numbers: output sides odd numbers.

1-17

CBT

AET

PUT

MTCT

DOFS
SMSC
SSEC
SHMS
SMDY
TBPT
PERT
DBF
SCT
CXT

Channel Buffer Table. This table contains one entry of
working storage for each disk driver channel.
Assigned Equipment Table. This table points to entries in
the PUT based on channels.
TIl tables: TIICSW, TIILID, TIILIDC, TIICHUN
Physical Unit Table. This table contains one entry of
working storage for each disk drive on the system.
Executive Request Table. This jump table contains a I-word
entry for each executive request that can be made by a
task. The entry consists of the address of the routine
that processes the request.
A set of constants used by the system
1 ms in 12.5 ns counts
1 second in 12.5 ns counts
ASCII time in hours, minutes, and seconds
ASCII date in month, day, and year
Task Breakpoint Table
Parity Error Table
History trace buffer
Subsystem control table
Channel extension table

1.4.2 EXEC PROGRAM AREA

Included in the System Executive (EXEC) occupied area are interrupt
handlers, channel processors, task scheduler, the drivers (disk, I/O
Subsystem, and front-end), system interchange, request processors, and
debug aids. EXEC has a BA of 0 and an LA equal to the installation
parameter I@MEM.

1.4.3 STP TABLE AREA

This area contains tables accessible to all STP tasks (not necessarily in
the order noted).

AUT

CMCC

SM-0040

Active User Table. It contains an entry for each
interactive user that is logged on.

Communication Module Chain Control. This table controls
task-to-task communication. It is a contiguous area
containing an entry for each combination of tasks possible
within the system. The CMCC is arranged in task number
sequence. The IDs of the requesting task and requested
task determine the appropriate CMCC entry.

1-18

CMOD

CSD

DAT

OCT

Communications Modules. These are groups of six words each
that form a pool from which they are allocated as needed.
Two words are used as control; two are used as input
registers; and two are used as output registers. A task
receives all of its requests and makes all of its replies
through a CMOD.

Class Structure Definition. CSD contains the job class
structure. For each class defined in the structure, there
is a class map; these appear in CSD in descending order. A
header precedes the class maps. Variable length
characteristic expressions for each class follow the maps.

Dataset Allocation Table. There is a OAT for each dataset
known to the system that defines where the dataset
logically resides on mass storage, that is, on which
logical device(s) and what portion of a device.

Device Channel Table. The OCT serves as a link between the
channel and the EQT. It is used by the disk driver to
report completion of I/O and to report disk status.

DET Device Error Table. The DET is used to build messages for
the system log.

DRT Device Reservation Table. There is a DRT for each device
known to the system. The DRT contains a bit map showing
available and reserved tracks on the device.

ECT Error Code Table. This table controls abort and reprieve
processing done by UEP. It contains a I-word entry for
each system error code and is defined using the ERDEF macro.

EQT Equipment Table. The EQT contains an entry for each device
known to the system.

1ST Interactive Buffer Table. It manages the Interactive
Buffer pool Table.

JXT Job Execution Table. The JXT contains an entry for each
job that has begun processing. The table is used to
control all active jobs in the system and may contain from
o to 63 entries. A 64th entry is reserved to represent the
operating system, itself.

LCT Link Configuration Table. It contains an entry for each
front end connected to physical channels.

LIT Link Interface Table. SCP assigns an LIT entry at
deadstart to each channel used for interface
communications.

SM-0040 1-19

LST Link Interface Stream Table. Eight input stream and eight
output stream LSTs are contained within each LXT as used by
SCP.

LXT Link Interface Extension Table. An LXT entry is assigned
by SCP to an active LIT entry for each front-end ID at
LOGON and deassigned at LOGOFF. The LXT contains SCP
working storage and input and output LSTs.

MST Memory Segment Allocation Table. The MST contains an entry
for each segment of memory that has been allocated by JSH
as well as an entry for each free segment. It may contain
from 1 to 127 l-word entries.

PDI Permanent Dataset Information Table. This table contains
information used by the Permanent Dataset Manager, such as
the number of overflow and hash pages.

PDS Permanent Dataset Table. The PDS table consists of a
1-word header followed by a I-word entry for each active
permanent dataset. The entry indicates how a dataset is
accessed and if multiple access exists. If so, the entry
tells how many users are accessing the dataset.

RJI Rolled Job Index Table. For each defined JXT entry, the
RJI Table contains an entry that describes the job assigned
to the JXT entry and controls the recovery of jobs from
mass storage.

RQT

QAT

SDR

SDT

STPDD

Request Table. This table is used to queue transfer
requests for disk management.

Queued Dataset Table. This table describes the mUltitype
attributes for a dataset that has been disposed. It is
managed by PDM and EXP. The number of entries in the QDT
must equal the SDT entry count.

System Directory. This area contains a Dataset Name Table
(DNT), section 1.4.6, for each of the datasets comprising
the system library. The SDR is initialized after a system
Startup.

System Dataset Table. This table contains an entry for
each dataset spooled to or from a front-end system.

STP Dump Directory. This area contains pointers to task
or1g1ns, buffers, etc. An entry gives a mnemonic in ASCII
plus the relative STP address for the area.

Details of the STP tables are given in the COS Table Descriptions

SM-0040 1-20

1.4.4 STP PROGRAM AREA

The System Task Processor (STP) consists of tasks and re-entrant code
common to all of the tasks. Tasks cannot access the memory area occupied
by EXEC but may access the rest of memory.

Although tasks are loaded into memory during Startup, they are recognized
only through an Executive create-task request (usually issued by the
Startup task). The Startup task is a special case since it executes only
when the system is started up and is created by EXEC itself. Recovery of
rolled-out jobs executes as a portion of the Startup task rather than as
a separate task. STP is described further in section 3.

1.4.5 CSP AREA

A prototype of the Control Statement Processor (CSP) is maintained in
memory following STP. This program is copied into each user program
field where it executes each time the job requires interpretation of a
control statement.

CSP is further described in section 5.

1.4.6 USER AREA

The user area of memory is assigned to one or more jobs. Each job has an
area referred to as the Job Table Area (JTA) preceding the field defined
for the user. A JTA is accessible to the operating system but not to the
user.

The JTA contains job-related information such as accounting data; JXT
pointer~ sense switches; areas for saving B, T, and V register contents;
control statement, logfile, and EXU DSPs (user calls that load the
binaries); a logfile buffer; and a DNT area.

DNT Dataset Name Table. This area in each user's JTA contains
an entry for each dataset used by the job.

Each user field begins with a l28-word block referred to as the Job
Communication Block (JCB), which contains a copy of the current control
statement for the job as well as other job-related information. The
highest of the user field contains dataset buffers and I/O tables.

The user field, in addition to being used for user-requested programs
such as the compiler, assembler, and object programs, is also the area in
which the operating system utility programs such as the loader, copy and
positioning routines, and permanent dataset utility programs execute.
The Control Statement Processor (CSP) also executes in the user field.

SM-0040 1-21

Tables that may reside in the user field include the following:

BAT Binary Audit Table. This table contains an entry for each
permanent dataset that meets requirements specified on the
AUDIT control statement and for which the user number
matches the user number for the job.

DOL Dataset Definition List. A DOL in the user field
accompanies each request to create a DNT.

DSP Dataset Parameter Area. A DSP area in the user field
contains information concerning the status of a particular
dataset and the location of the I/O buffer for the
dataset.

JAC Job Accounting Table. This table defines the format of
data returned to the user by an accounting request.

LFT Logical File Table. This table in the user field contains
an entry for each dataset name and alias referenced by
FORTRAN users. Each entry points to the DSP for a
dataset.

ODN Open Dataset Name Table. A request to open a dataset for a
job contains a pointer to the ODN table in the user field.

PDD Permanent Dataset Definition Table. A PDD table in the
Control Statement Processor (CSP) is used for saving,
accessing, and deleting permanent datasets.

Refer to COS Table Descriptions Internal Reference Manual, publication
SM-0045 for detailed descriptions of these tables.

SM-0040 1-22

1.5 MASS STORAGE SUBSYSTEM ORGANIZATION

Depending on the CRAY-l model, mass storage consists of either DD-19 or
DD-29 Disk Storage Units and DCU-2, DCU-3, and DCU-4 Disk Control Units.
The controllers are model dependent. These devices are physically
non-removable. For models that do not have an I/O Subsystem, assignment
of units and DCU-2 and DCU-3 DCUs to channels is assembled into the
Equipment Table (EQT). The DCU-4 controllers and their corresponding
units are on the I/O Subsystem.

Each disk storage unit contains a device label, datasets, and unused
space to be allocated to datasets (figure 1-8). Additionally, one disk
storage unit is designated as the master device and contains a table area
called the Dataset Catalog (DSC), which is used for maintaining
information about permanent datasets.

1.5.1 FORMATTING

Before a unit can be introduced into the system, it must be formatted.
Formatting is the process of writing cylinder, head, and sector
identification on the disk storage unit. This process is performed
off-line by field engineers. Unless addressing information has been
inadvertently destroyed, formatting is performed only once.

MASTER
DEVICE DEVICE

Figure 1-8. Mass storage organization

SM-0040 1-23

DEVICE

1.5.2 DEVICE LABEL (DVL)

A disk storage unit (DSU) must be labeled before it can be used by the
system. The Install program writes a Device Label Table (DVL) on one
track of each DSU. The DVLs act as the starting point for determining
the status of mass storage when the system is deadstarted or restarted.
The location of the DVL is usually, but is not required to be, the first
track on the device.

Flaw information

A DVL contains a list of flaws (bad tracks) for its DSU. Initial flaw
information is obtained from an engineering diagnostic run prior to the
Install program. Install reads back each DVL after writing it to verify
the integrity of the DVL. If a DVL cannot be read back perfectly, then
the track is overwritten with a test pattern and a different track is
tried.

The DVL is the last track written by Install so that all flaws, even any
discovered while trying to write the DVL itself, are recorded in the
DVL.

Dataset Allocation Table (DAT) for DSC

The DVL for the master device maps the Dataset Catalog (DSC) since it
contains the complete Dataset Allocation Table (DAT) for the DSC except
for DAT page headers.

1.5.3 DATASET CATALOG (DSC)

The Device Label Table (DVL) for the master device states which tracks
comprise the Dataset Catalog (DSC). Similarly, the DSC states which
tracks comprise each of the currently cataloged datasets. Deadstart and
Restart update the Disk Reservation Table (DRT) in STP-resident memory to
reserve these dataset tracks so that the existence of permanent datasets
is known to the system when it is deadstarted or restarted, as opposed to
an install which assumes that all of mass storage is vacant. Special
consideration is given to job input and output datasets, however.
Deadstart deletes all of the input and output datasets, defined by flags
in the DSC. Entries for these datasets in the DSC are zeroed. Restart,
on the other hand, recovers the job input and output datasets.

SM-0040 1-24

1.6 EXCHANGE MECHANISM

The technique employed in the CRAY-l to switch execution from one program
to another is termed the exchange mechanism. A 16-word block of program
parameters is maintained for each program. When another program is to
begin execution, an operation known as an exchange sequence is
initiated. This sequence causes the program parameters for the next
program to be executed to be exchanged with the information in the
operating registers. The operating register contents are thus saved for
the terminating program and the registers entered with data for the new
program.

Exchange sequences may be initiated automatically upon occurrence of an
interrupt condition or may be voluntarily initiated by the user or by the
operating system through normal (EX) or error (ERR) exit instructions.

As will be shown in section 2, the System Executive (EXEC) is always a
partner in the exchange; that is, it is either the program relinquishing
control or receiving control. All other programs must return control to
EXEC. The contents of the interrupt flag register (F) are instrumental
in the selection of the next program to be executed.

1.6.1 EXCHANGE PACKAGE

An exchange package is a 16-word block of data in memory that is
associated with a particular computer program. It contains the basic
hardware parameters necessary to provide continuity from one execution
interval for the program to the next. The exchange package is
illustrated in figure 1-9.

1.6.2 EXCHANGE PACKAGE AREAS

System hardware requires that all exchange packages be located in the
first 4096 words of memory. In addition, the deadstart function expects
an exchange package to be at address O. This is the exchange package
that initiates execution of EXEC and, consequently, the operating
system. The EXEC exchange package is either active or is in one of the
other exchange package areas (figure 1-10).

SM-0040 1-25

o 2 10 12 14 16 18 24 31 36 40 63

n

n+1 ~~~~~~~~9----------------+~~----------------~
n+2 ~~~~~~~~ ______ ~ ____ ~ __ ~ __ ~ __________________ ~

n+3 ~~~~~~~~~~~~~~~~~~~ __________________ ~

n+4 ~~~~~~~~~~~~~~~~~~~ __________________ ~

n+~ ~~~~~~~~~~~~~~~~~~~ __________________ ~

n+6 ~~~~~~~~~~~~~~~~~~~ __________________ ~

n+7 ~~~~~~~~~~~~~~~.w.w~~ __________________ ~
n+8 ~ __ ~

n+9 ~ __ ,

n+IO~ __ ,

n+1I ~ __ ,

n+12~ __ ~

n+13~ __ ,

n+14~ __ ~
n+15~ __ ~

Registers
S Syndrome bi ts

R I RAB Read address for error
(where B is bank)

P Program address
BA Base address
LA Limit' address
XA Exchange address
VL Vector length

E - Error type (bits 0,1 of n)
10 Uncorrectable memory
01 Correctable memory

R - Read mode (bits 10,11 of n)
00 Scalar
01 I/O

10 Vector
11 Fetch

H - Modes

n+1 39 Interrupt monitor modet

n+2 36 Interrupt on correctable
memory error

n+2 37 Interrupt on floating point
error

n+2 38 Interrupt on uncorrectable
memory error

n+2 39 Monitor mode

f - Flags
n+3 31 Programmable clock interrupttt
n+3 32 MCU interrupt
n+3 33 Floating point error
n+3 34 Operand range error
n+3 35 Program range error
n+3 36 Memory error
n+3 37 I/O interrupt
n+3 38 Error exit
n+3 39 Normal exit

t Supports Monitor Mode Interrupt option on CRAY-lA and CRAY-lB.
tt Supports Programmable Clock (optional on CRAY-lA and CRAY-lS; standard

on CRAY-l S Series computers)
Figure 1-9. Exchange package

SM-0040 1-26

These other exchange packages, summarized below, are selected by EXEC
depending on interrupt flags and other conditions as defined later:

• Any of a set of exchange packages in the System Task Table (STT).
(There is one exchange package for each STP task.)

• The active user exchange package. This exchange package, located
at location SXBF, points to the currently active user program as
selected by the Job Scheduler. When a user program becomes
inactive (is disconnected from the CPU) or causes a normal or
error exit, its exchange package is copied from the active user
exchange package area into the Job Table Area (JTA) for that job.
When a user program is disconnected, some other job may be
connected to the CPU and its exchange package is copied from its
JTA to the active user exchange package area.

• The idle program exchange package. This exchange package, located
at location IDXP, is selected when there are no tasks or user
programs are scheduled for execution.

• The memory error correction exchange package. This exchange
package, located at CORXP, is selected when an exchange is caused
by a memory parity error.

1.6.3 B, T, AND V REGISTERS

On any exchange to EXEC, EXEC saves the task or user program's BO
register because EXEC uses BO. A task's BO register values are stored in
the STT. The active user's BO value is stored in SSBO during interrupt
processing. When EXEC exchanges out, it restores the proper BO register
value.

All B, T, and V register values are saved by EXEC only when the current
user job is being disconnected from the CPU in favor of some other job.
A job's B, T, and V register values are restored when it is reconnected
to the CPU. These registers are maintained in the job's JTA.

SM-0040 1-27

EXEC

STP

-- --
-- USERS ---

"-- - --

k - -(BA).. - --

~ -- (p)--

/
/

, ,
\

5LA)
/ Operating Registerst

User XP

Idle XP

Task 0 XP

Task 1 XP

:

Task n XP

Program Areas Exchange Package Areas

EXEC

STP

--

-- USERS

--

Program Areas

EXEC

STP

1--

f.-- USERS

--

--
--

.-
~

A. EXEC IN EXECUTION

/----,
".'"

,(BA) - l .;1'1 , ...
__ "{PY'''

",/' ,
.... I'

/
/

}LA)

/

" /

//
/

/

" ,,/

TASK 1
XP

I¥
~ Operating Registers

B. TASK 1 IN EXECUTION

-...... "" ...

/

(SA) ,
/ J A'

/' '"
/ ' /' ,

/ ,
/(p'(.. / ,-

I /1 " --~ / / '" USER

-- ~
;/, (LA)
,.., XP

--
Operating Registers

User XP

Idle XP

Task n XP

Exchange Package Areas

Idle XP

Task 0 XP

Task 1 XP

Task n XP

Program Areas Exchange Package Areas
C. CURRENT USER IN EXECUTION

SM-0040 1-28

1.7 COS STARTUP

System Startup is the process of loading the operating system into CRAY-l
memory, beginning execution, and generating or recovering tables for the
operating system. There are three types of startup: Install, Deadstart,
and Restart. A general description follows; details are given in section
5.

Install

Deadstart

Restart

For an install, COS is started as if for the very
first time. All CRAY-l mass storage is assumed to be
vacant. The startup program labels devices and
establishes the Dataset Catalog (DSC) on mass
storage.

For a deadstart, COS is started as if after a normal
system power-down. Permanent datasets are recovered
but input queues and output queues are not
reconstructed. Rolled-out jobs cannot be recovered
during a deadstart.

For a restart, COS is started as if after a system
failure (crash). Input queues and output queues as
well as permanent data sets are recovered. Rolled-out
jobs may be recovered according to operator
selection.

1.8 GENERAL DESCRIPTION OF JOB FLOW

A job passes through the following stages from the time it is read by the
front-end system until it terminates:

• Entry
• Initiation
• Advancement
• Termination

1.8.1 JOB ENTRY

A job enters the system from a front-end system. The Station Call
Processor task (SCP) in STP is responsible for making the job's existence
known to the system. It does this by:

SM-0040 1-29

• Making an entry in the System Dataset Table (SDT),

• Requesting that an entry be created in the Dataset Catalog (DSC),
thereby making the dataset permanent, and

• Readying the Job Scheduler Task (JSH).

1.8.2 JOB INITIATION

The Job Scheduler Task (JSH) scans the SOT looking for candidates for
processing. A job is scheduled to begin processing (initiated) when:

• An entry for a job of the correct class is available in the Job
Execution Table (JXT) (the maximum number of entries in the JXT is
63), and

• No other job of higher priority is waiting to begin processing.

JSH uses an available entry in the JXT to create an entry for the job
being initiated. The Job Scheduler continues to use the JXT entry during
the life of the job to control CPU use, job roll-in/roll-out, and memory
allocation.

JSH also moves the job's SDT entry from the input queue to the executing
queue, still in the SDT.

The Rolled Job Index entry corresponding to the assigned JXT entry is
also initialized at this point.

1.8.3 JOB ADVANCEMENT

The Job Scheduler gives each job a CPU priority that reflects its history
of CPU usage so that I/O-bound jobs can have a greater chance of being
assigned to the CPU. A job requiring a large memory area is allowed to
stay in memory longer to compensate for its greater roll-in/roll-out
time. A job assigned more than average CPU time for its priority is
liable to be rolled out sooner as a consequence. The operator may change
a job's priority while a job is running.

Not all jobs having entries in the JXT are in memory. Some may be rolled
out to mass storage when some event has occurred that causes other jobs
to replace them in memory.

The Control Statement Processor (CSP) advances a job through its program
steps. CSP is first loaded and executed in the user field following job
initiation; thereafter, it is called whenever a job step terminates.
Nnrm~l ;nh ~t-~n t-~rmin~t-inn nr~l1r~ wh~n an F'mAnV ~all is maop to thp
-. - - ---- - oJ - - - - - L,- - - - ---- - - -- - - - - - - - - -- - - - . _. - - - -- - - -.-- - _. - - - - -

system by the user program. Abnormal termination occurs upon detection
of an error during the job step or an F$ABT call by the user program.

SM-0040 1-30

1.8.4 JOB TERMINATION

When a job terminates, the following action occurs:

• A DSC entry is created for the job's output datasets.
• A SDT entry is created for the job's output datasets.
• The DSC entry is deleted for the input dataset.
• The user dayfile, $LOG, is copied onto the end of $OUT.
• The SDT entry is deleted from the executing queue.
• The JXT entry and the memory assigned to the job are released
• The Rolled Job Index entry is cleared (zeroed).
• SCP is readied and scans the SDT for output to send to the

front-end system.
• SCP deletes its DSC and SDT entries after the output dataset is

totally transmitted to the front-end system.

1.9 DATASET MANAGEMENT

All information maintained on mass storage by the CRAY-l Operating System
is organized into collections of information known as datasets. Datasets
are of two types: local or permanent. A local dataset exists only for
the life of the job that created it and can be accessed only by that
job. A permanent dataset is available to the system and can survive
system deadstarts.

A dataset is permanent if it has an entry in the Dataset Catalog on
disk. Permanent datasets are of two types: those that are created
through use of directives (user permanent datasets), and those that
represent standard job input and output data sets (sy~tem permanent
datasets) •

User permanent datasets are maintained for as long as the user or
installation desires. A user permanent dataset is protected from
unauthorized access by use of permission control words. The user may
create a user permanent dataset by pre-staging in a dataset from a
front-end computer system or by using the SAVE or ACQUIRE control
statement or macro. A user accesses a user permanent dataset by using
the ACCESS control statement or macro. The dataset may be removed from
the system with the DELETE control statement or macro. More than one
authorized user may access a permanent dataset. A user wishing to write
on or otherwise alter a permanent dataset must have unique access;
multiple users wishing to read the dataset may have multiaccess.

Some permanent datasets similar to user permanent datasets are created
and maintained by the system. No user can either delete or access these
datasets because the system has unique access to them. Among these
datasets is the Rolled Job Index dataset, which is created or accessed by
the Startup task and remains in use throughout the operation of the
system.

SM-0040 1-31

System permanent datasets are job related. Each job's input dataset is
made permanent when the job is received by the CRAY-l. When job
processing ends, certain of the job's local datasets having special names
or which were given a disposition other than scratch by the user are made
permanent and the job's input dataset is deleted from CRAY-l mass
storage. The output datasets that were made permanent are sent to a
front-end computer system for processing. They are deleted from CRAY-l
mass storage when their receipt has been acknowledged by the front-end
computer system.

1.10 I/O INTERFACES

Figure 1-11 presents an overview of the interfaces and system components
involved in performing input and output in the system. It summarizes the
request levels and routine calls without going into details on the
movement of data. That is, it does not describe how data is transferred
from disk to a circular buffer and then to a user area on a read; nor
does it describe how it is transferred in the reverse sequence on a
write.

Major interfaces exist between the user and STP and between STP and
EXEC. Details of the user levels of I/O are presented in the FORTRAN
Reference Manual, publication 2240009, and in the CRAY-OS Version 1
Reference Manual, publication SR-OOll. Details for EXEC (driver level)
I/O are given in section 1 of this publication. Details for STP
interfaces are given in section 3.3 of this publication.

I/O can be blocked or unblocked and can be initiated by the user or by
the system.

FORTRAN statements for logical I/O represent the highest level of I/O
requests. The FORTRAN statements fall into two categories:
formatted/unformatted and buffered. The formatted/unformatted statements
(i.e., READ,- PUNCH, WRITE, and PRINT) result in calls to library routines
$RFI through $WUF. These routines contain calls to the Logical Record
I/O routines, also on the library. These calls may be formatted by the
user or may be made through CAL language macros.

The Logical Record I/O routines issue Exchange Processor requests (i.e.,
F$ calls) that consists of read circular and write circular requests to
the Circular Input/Output (CIO) routines resident in STP (see section
3.3.3).

SM-0040 1-32

Asynchronous 1/0

CAL BUFFERED

I/O MACROS

BUF IN BUFOUT BUFEOF

BUF INP BUFOUTP BUFEOD

BUF CHECK

,
CAL BUFFERED I/O

INTERFACE

$CB IO

F$B IO

TIO

CFT ~UFFERED I/O
STATEMENTS

BUFFER IN

BUFFER OUT

"
BUFFERED I/O

$RB

$WB

CAL UNBLOCKED

I/O MACROS

READU

WRITEU

UNBLOCKED DATASETS

$RLB

$WLB

Synchronous I/O

eFT FORMATTED/
UNFORMATTED STATEMENTS

READ

PR INT

$RF I $WF I

$RFA $WFA

$RFV $WFV

$RFF $WFF

"

PUNCH

WRITE

$RUI $WU I

$RUA $WUA

$RUV $WUV

$RUF $WUF

F$RDC

F$WDC

,
CIO

RDCS ..
~ WDCS

$RWDR $WWDR $WEOF 1-----------------.......
$RWDP $WWDP $WEOD

$WWDS $R EWD CIOS

DQM

l'
DISK DRIVER

'/ I / I \ \
Disk Controller Functions

Figure 1-11. Overview of COS I/O

SM-0040 1-33

user
interface

CAL BLOCKED I/O MACROS

READ WRITE WR I TEF

READP WRITEP WRlTEG

READC WR !TEC BKSP

READCP WRITECP BKSPF

GETPOS

SETPOS

REWIND

1 ibrary
routines

LOGI CAL RECORD I/O

$RWDR $WWDR $WEOF $GP05

$RWDP $WWDP $WEOD $51'05

$RCHR $WCHR $REWD

$RCHP $WCHP $BK5P

$WWDS $BKSPF

NON-CIO

system
calls

USER

(Z. SCP. and JSH)

I
I
I _____ .J

STP

EXEC

System logical I/O required by COS tasks (e.g., management of the Dataset
Catalog, etc.) is generally performed through Task I/O routines resident
in STP (see section 3.3.2). TIO routines closely resemble the Logical
Record I/O routines. In addition to supporting I/O for system tasks, TIO
routines also handle FORTRAN buffered I/O. At the FORTRAN level, the
BUFFER IN and BUFFER OUT statements are compiled into calls to two
library routines, $RB and $WB.These routines issue F$BIO Exchange
Processor requests that interface with a subset of TIO routines in STP.

Since TIO routines reside jointly with CIO in STP, they directly call CIO
routines to perform the same functions as requested through F$ calls by
the Logical Record I/O routines. Thus, CIO becomes the focal point for
all logical I/O in the system.

CIO communicates its needs for physical I/O to the Disk Queue Manager
(DQM) through DNT and DSP tables. The DNT for a dataset points to its
DSP, which specifies the request. This is the normal mode of
communication with DQM. Currently, however, DQM also communicates with
the Station and Startup interfaces. In these interfaces, SCP and Z pass
a caller-built DNT containing the I/O request for DQM. The Job Scheduler
(JSH) also uses a non-CIO interface to process job roll-in/roll-out and
to manipulate the Rolled Job Ind~x dataset.

DQM coordinates physical I/O activity on the disks by queueing executive
requests for the Disk Driver (section 2.8). This driver consists of a
number of channel processors that issue functions to the disk
controllers.

SM-0040 1-34

EXEC

The system Executive module (EXEC) is the control center for the
operating system. It alone accesses all of memory, controls the I/O
channels, and selects the program to execute next. Components of EXEC
include an interchange routine, interrupt handlers, channel processors,
an EXEC request processor, and a task scheduler. These programs are
integral to EXEC. Control transfers from routine to routine through
simple jumps.

EXEC first begins execution when the system is started up. Following
this initial system interchange, EXEC performs the following functions.

• Disables and clears the programmable clock,

2

• Determines the size of the deadstart binary by reading the channel
address for the MCU channel,

• Receives a word packet containing time and date from the MCU,

• Sets the real-time clock,

• Master clears each disk control unit,

• Sets the SECDED bits in memory in case a power off has occurred,

• Sets the limit address to the proper value, and·

• Starts up the root task (Startup).

After the system is started up, EXEC begins execution Whenever a task or
the currently active user program is interrupted. This interrupt may
result from the program executing an exit instruction, ERR or EX, or may
be an I/O or error condition. EXEC saves (BO) and saves the clock upon
entry. If one second has elapsed, it sets the real-time (RT) flag in the
exchange package. After setting and checking the clock, EXEC initiates
execution of the Interchange routine.

SM-0040 2-1

Interchange analyzes the cause of the interrupt (details are given below)
and passes control to the appropriate handler. The interrupt handler, in
turn, clears the interrupt flag and activates a channel processor. After
processing the interrupt condition, the channel processor returns to
Interchange which checks for additional conditions. When all of the
outstanding interrupts have been analyzed and processed, the Task
Scheduler selects the highest priority task ready for execution. If no
tasks are ready, the currently active user program is scheduled for
execution. If no user program is currently active, the idle program is
executed. EXEC then initiates an exchange sequence to the selected
program and does not regain control until the next interrupt occurs.

----------~.~EXEC exit

.. - ----- I/O interrupt,
program exit, or
error condition

Figure 2-1. EXEC-controlled exchange sequences

2.1 INTERCHANGE INTERRUPT ANALYSIS

Each time Interchange is entered, it checks to see if the cause of the
interrupt was an I/O condition. It does not do this by directly checking
the I/O interrupt flag in the F register but rather by requesting the
channel number of the highest priority channel with an I/O request. If a
channel has an I/O request, Interchange calls the I/O Interrupt Handler,
101, Which then uses the channel number to initiate the correct channel
processor. The channel processor returns control to Interchange which
repeats the inquiry for the highest priority channel having an I/O
request. In this way, Interchange continues to process I/O requests
until none remains.

When no I/O requests are outstanding, Interchange checks each of the
following interrupt flags in turn, summoning the appropriate interrupt
handler:

MCU
Programmable clock
Real-time
Error exit, floating-point error, program range error, and operand
range error (tested as a group)
Normal exit
Memory error exit

SM-0040 2-2

After a flag is processed, control always returns to the beginning of
EXEC to ensure that any I/O interrupts occurring in the interim are
handled.

DISK RES
COS

JTA n
ID~ IUtilities I 4

CAL . 3 .. -..
2

... ...
CFT JTA - 1 ...

............. n
I- 4 • 3 I---

LDR ~
2

I-- USER 1 t--

Icspr Idle !-- to
I-- \ current

job

INTERRUPT XP XP

I ~ ,
t /

~ TASK ,.... INTERCHANGE SCHEDULER

\ ++- ... t t t
EXEC INTERRUPT HANDLERS

1TI ~ ...

CHANNEL PROCESSORS J
~

lOP DISK FRONT- EXEC
CHANNEL DRIVER END REQUEST
DRIVER DRIVER PROCESSOR

I t ! I

Figure 2-2. System control

SM-0040 2-3

Memory
error
correction
program

t COMMON
ROUTINES

XP

V ~ Task
0

XP

i-- ~ Task

V
XP 1

~
Task

XP ~ f-- 2

•

1\
• • • • •

Task XP r-- r.. n

STP

2.2 INTERRUPT HANDLERS

An interrupt occurs, triggering an exchange to EXEC, if one or more of
the interrupt flags is set in the F register. One or more of the
following interrupt handlers will then be executed.

IOI I/O interrupt handler
CII MCU interrupt handler
RTI Real-time interrupt handler
NEI Normal exit interrupt handler
EEl Error exit interrupt handler
MEl Memory error interrupt handler

The interrupt handler clears the interrupt flag in the exchange package
of the interrupted program and determines the channel on which the
interrupt occurred. Execution of the processor assigned to that channel
is then initiated.

2.3 CHANNEL MANAGEMENT

The operating system recognizes 12 physical I/O channels and 4 pseudo
channels. The four pseudo channels are for normal exit, error exit,
memory error, and real-time interrupts and can be processed in a manner
similar to I/O interrupts. Each channel is considered as having two
sides, an input side and an output side, each numbered separately.

Input sides are assigned even numbers; output sides are assigned odd
numbers. When both sides of a channel are referenced (sometimes referred
to as a channel pair), the number is the input channel number divided by
two. That is, channel pair 5 is channels 10 and 11. Thus, channel pairs
are assigned decimal numbers as follows:

o Console interrupt
2
4
6 12 I/O channel pairs

24
26 Normal exit pseudo channel pair
28 Error exit pseudo channel pair
30 Real-time interrupt pseudo channel pair
32 Memory error pseudo channel pair

SM-0040 2-4

2.3.1 CHANNEL TABLES

The following tables aid in channel management:

Channel Table (CHT)
I/O Service Task Defined Table
System Task Table (STT)
Channel Extension Table (CXT)
Channel Buffer Table (CBT)
Subsystem Control Table (SCT)

Detailed information on these tables is available in the COS Table
Descriptions Internal Reference Manual, publication SM-0045.

Figure 2-3 illustrates how these tables are linked together.

STT

Channel Table (CHT)

CHT

Figure 2-3. Channel table linkage

I/O Service
Processor Table

CHT contains an entry for the input side and the output side of each
channel, real or pseudo. The entry contains (1) a pointer to the I/O
Service Processor table used by the channel processor to control the
channel, (2) the address of a processor for that side of the channel, and
(3) a pointer to the STT parameter block for the task using the request
on this channel.

SM-0040 2-5

I/O Service Processor Tables

The I/O Service Processor tables contain information for control of the
channel processor and may contain pointers to other tables. Each of the
following channel types has a different I/O Service Processor Table:
front-end channel, mass storage channel, exchange pseudo channel, memory
error, and real-time pseudo channel.

System Task Table (STT)

The STT contains a parameter block and the exchange package area for each
task. Tasks are identified by numeric IDs.

2.3.2 CHANNEL ASSIGNMENTS

Channel assignment is a 2-level process:

• Assign a task to a channel
• Assign an EXEC processor to a channel

Startup performs the first level when it enters the task 10 and Channel
Control Table address in the CHT. The second level assignments occur
either at system build time or dynamically during I/O initiation.

The following executive requests relate to channel assignment:

• Assign channel
• Disk block I/O request
• Station I/O request

2.3.3 CHANNEL PROCESSORS

Some channel processors are assigned to a channel permanently; others are
assigned on an as-needed basis as a result of task requests to EXEC.
Each side of a channel always has one of the following processors
assigned to it. The current assignment is maintained in the Channel
Table (CHT).

Console Exit Processor (CEP)

The Console Exit Processor is always assigned to channel 0 and to the MCU
interrupt flag. It forces the executive to check the top event on its
time event stack.

SM-0040 2-6

Reject Processor (RJ)

The Reject Processor is assigned to any unused channels. A transient
interrupt could result in RJ being executed. The processor simply
returns control to the interchange routine.

Normal Exit Processor (NE)

The Normal Exit Processor is assigned to pseudo channel 26. If the
normal exchange is from a task, bit STRTS of word I of the STT header is
nonzero and NE initiates execution of the executive request processor.
Otherwise, the job has issued a system task request and the Exchange
Processor task is scheduled.

Error Exit Processor (EE)

The Error Exit Processor is assigned to pseudo channel 28. If the error
exit was from a task, EE checks for a possible breakpoint condition. If
the error exit (includes error exit and operand range and floating-point
errors) was from the currently active user, the Exchange Processor task
is readied. The interrupt register error flags are passed to the
Exchange Processor for interpretation of the cause of the error exit.

Memory Error Processor (ME)

The Memory Error Processor is assigned to pseudo channel 32. When a
single-bit memory error occurs, it compares the total single-bit error
count against the limit for disabling single-bit error detection. If the
count exceeds the limit, the processor disables the interrupt on
single-bit errors. For single-bit errors, the processor attempts to
restore the memory address to its correct value so that the error does
not occur on the next read of that address.

For all memory errors, the processor readies the memory error task, Which
determines what software corrective action should occur.

Real-time Interrupt Processor (RTP)

The Real-time Interrupt Processor is assigned to pseudo channel 30. If
the job's time slice has elapsed, it schedules the Job Scheduler task.

SM-0040 2-7

Disk Processors

Any of the following disk processors can be assigned to a CPU I/O channel
as a result of an executive request for the disk driver from the Disk
Queue Manager.

US Unit select
DP Disk position
WD write
MS Margin select
RD Read
SS Subsystem status
MC Master clear controller
EC Error correction

When a processor completes its function, the disk driver in the Executive
Request Processor assigns a processor for the next function in the
sequence to be performed without involving a task. Refer to Disk Driver,
section 2.8, for details.

Front-end Processors

Any of the following processors can be assigned to a CPU I/O channel as a
result of an executive request for the front-end driver from the Station
Call Processor task.

WLCP write link control package
WSSEG Write subsegment
WLTP Write link trailer package
RLCP Read link control package
RSSEG Read subsegment
RLTP Read link trailer package
WXLCP Write error link control package
WXLTP Write error link trailer package

When a processor completes its function, it assigns the next front-end
processor or reject (RJ) to the channel without involving the station
Call Processor. Refer to Front-end Driver, section 2.7, for details.

I/O Subsystem MIOP Command and Status Processors

The following two processors are assigned respectively to the I/O
Subsystem Master I/O Processor (MIOP) command and status channels which
are handled in a fully asynchronous manner.

• APIIP Processes MIOP status input interrupt

• APOIP Processes MIOP command output interrupt

SM-0040 2-8

APIIP calls the following packet processors to handle the appropriate
status packets.

APPACN
APPACX
APPACE
APPACI
APPACJ
APPACA
APPACB

Null packet
STP task packet
Echo packet
I-packet processor
J-packet processor
Disk packet
Station packet

I/O Subsystem BIOP Simulated Memory Channel

The following processors handle the I/O Subsystem Buffer I/O Processor
(BIOP) simulated memory channel in a synchronous manner.

SHSRQT
SHSOT
SHSIT

Simulated memory channel request processor
Simulated memory channel output processor
Simulated memory channel input processor

2.4 TASK SCHEDULER

If a channel processor has requested execution of the Task Scheduler, the
request task scheduler flag (STRTS) is set. If execution of the Task
Scheduler has not been requested, the currently executing task resumes
execution.

The Task Scheduler executes, if requested, when Interchange has checked
all of the interrupt conditions. If the STP interlock flag is set, the
Task Scheduler returns to the previously executing task. This flag
allows tasks to run in uninterruptible mode.

Depending on the condition of the debug scheduling flag, one of two parts
of the Task Scheduler executes. If the flag is not set, normal
scheduling occurs. The STT is examined for the highest priority task
ready to execute and its exchange package is selected. If two tasks have
equally high priority, the first encountered task is selected.

If debug scheduling is indicated (the debug scheduler flag is set), only
the Station Call Processor (SCP) is a candidate for scheduling.

SM-0040 2-9

A task is a candidate for execution when all of its status bits§ in its
parameter word in the STT are clear. The status of a task may change
when a task issues one of the following executive requests:

• Create a task
• Ready a task
• Suspend self
• Ready called task and suspend self

Figure 2-4 illustrates the table linkage for task scheduling.

If no task is ready for execution, the currently active job as defined by
the Job Scheduler task is allowed to run. If no job is currently active,
the idle program is selected.

2.5 EXEC RESOURCE ACCOUNTING

EXEC maintains the following performance information in EXEC tables:

• Accumulated CPU time for itself (in EXEC table ETIM)
• Accumulated CPU time for each task (in STT)
• Total time given to users (in table UTIM)
• Count of all channel interrupts for both real and pseudo

channels (Ie)
• Each user's execution time (in Job Table Area)
• Number of normal exits for each task (in STT)
• Number of ready task requests, both from other tasks and from

external and internal interrupts, for each task (in STT)
• Number of each type of EXEC request

2.6 EXECUTIVE REQUEST PROCESSOR

The Executive Request Processor is initiated by the Normal Exit (NE)
channel processor when a normal exchange from a task implies the presence
of a request for the Executive. The request is passed to EXEC in
registers S6 and S7 of the task's exchange package. The low-order bits
of word 1 of the STT header point to the parameter word for the
interrupted task.

§ Ready is not considered a status bit.

SM-0040 2-10

The Executive Request Processor handles the requests defined by the Task
Call Table (TCT).

When EXEC returns to a task following processing of an Executive request,
control returns at (P)+3 for a normal return and at (P)+l if an error
occurred. (P) is the address of the exit to EXEC.

2.6.1 EXECU'rlVE REQUESTS

This section provides the request format and functional flow of executive
requests issued by tasks.

.. --

STT HEADER

STT TASK PARAMETER BLOCKS

...-

STT TASK EXCHANGE PACKAGES

Figure 2-4. Task Scheduler table linkage

SM-0040 2-11

Create a task request (CTSK=Ol)

Request format:

56

S7

This function adds a task to the EXEC STT. The flow is:

1. If table is full, report table full error to STP.

2. Retrieve task's XP information from caller.

3. Set task status to requested status.

4. Set task 10 to requested priority.

5. Set task priority to requested 10.

6. Construct task XP in STT XP area.

7. Set task defined bit in header of STT.

8. Build disk I/O reply queue control word.

9. Force task into execution.

Ready a task request (RTSK=02)

Request format: 55

task
10

01

63

56 63

This function readies a task. Its flow is:

1. Find task with desired 10; if none, report error to STP.

2. Clear suspend fla9s~ set reready status if task currently ready.

3. If task is suspended, request task scheduler.

SM-0040 2-12

Self-suspend task request (SUSP=03)

Request format:

o 55 63

::1 1
This request suspends a task. Its flow is:

1. If reready bit is clear, set suspend bit: otherwise, clear
reready bit.

2. Request task scheduler to run.

Assign channel request (ARES=04)

Request format:

o 16 40
55

52 56

This request assigns a task to a channel pair. The flow is:

1. Find task with desired 10.

task
ID

63

2. Check for task assigned to channel; if one is, report status to
STP.

3. Link task to channel by entering the Task Parameter Block (TPB)
address of task in CHT entry for the channel pair.

SM-0040 2-13

Station I/O request (FET=05)

Request format:

a 36 55

S6 5

S7 _~_------------.JI

60 63

This request activates the input and/or output sides of a channel pair.
The processing flow is as follows:

1. If channel ordinal is 0:

a. Assign task to channel.
b. Set input and/or output active flags.
c. Set CA and CL for input and/or output.§
d. Start processing by station channel driver.
e. Release task from channel.

2. Otherwise:

a. Build MIOP station request in CXT.
b. When MIOP requests addresses, put message on send queue to

MIOP. (The eXT contains a flag indicating that an address
request has arrived and addresses should be queued
immediately.)

c. Return to requesting task.

Timed ready request (TDLY=06)

Request format:

o 55 63

RTC value when resume is to occur

06

§ Privileged to monitor

SM-0040 2-14

This request suspends a task until the specified time occurs. The
processing flow is:

1. Clear current task time delay, if set.

2. Set resume time in time event stack.

3. After time delay, ready task and request scheduling.

Dequeue SOT entry request (DQSD=10)

Request format:

01

DQ

16

o if FIFO dequeuing
1 if entry dequeuing

The processing flow is:

1. Type of dequeue is determined.

40 55

- If FIFO dequeuing, the first entry is used. Its address is
placed in S6.

- If entry dequeuing, the entry specified in S6 is used.

2. Entry dequeued.

3. Count in queue head is decremented by 1.

4. Entry is unlocked.

Disk block I/O request (10=11)

Request format:

63

o 16 31 40 55 63

DNT address EQT address

DCT address 11 8

SM-0040 2-15

The processing flow is as follows:

1. If channel number greater than 12:

a. Build a MIOP disk request.
b. Set a request timeout.
c. Return to the calling task.

2. Otherwise, the disk block I/O request results in execution of the
disk drive. See section 2.8.

Enqueue SOT entry request (EQSO=12)

Request format:

01 16 40 55 63

S6

S7

EQ
a if FIFO enqueuing
1 if class-priority enqueuing

The processing flow is:

1. Type of enqueue is determined.

- If FIFO enqueueing, the last entry position is used.

- If class-priority enqueueing, the queue is searched by class
rank, priority, and time submitted to determine position.

2. Entry is enqueued.

3. Count in queue head is incremented by 1.

4. Entry is locked.

5 .. Set up SDT with control information.

6. Set return address.

The routine that processes this request is actually the disk driver
(section 2.8).

SM-0040 2-16

Ready task and suspend self request (RTSS=14)

Request format:

a .55 56

task
ID

14 8

This request permits one task to ready another and then have itself
suspended. The processing flow is:

1. Find task 10.

2. Clear suspend bit of called task.

3. Set suspend bit of calling task.

4. Set EXEC scheduler request bit.

Get time and date request (RQST=15)

Request format:

a 55

63

63

:1 I
This request returns the time and date to the requesting task. The flow
is:

1. Get time and date from real-time pseudo channel.

2. Set time and date into S6 and S7 of requesting task's XP area.

Time format:

a 15 23 39 47 63

h h m m s 5 I

SM-0040 2-17

Date format:

a

1m

Connect user job

Request format:

0

s

15 23

m / d d

to CPU request (RCP=16)

16

relative address
of job I s JTA

39 47 63

I / y y

40 55 63

in msec. 168

The job scheduler issues this request when the CPU is to be switched from
the currently executing job to a newly selected job. The executive
request flow is:

1. Verify CPU not in use by another job.

2. Get absolute address of job.

3. Set SAXP to user P register and XP pointer.

4. Copy XA from user XP area.

5. Set time slice value into real-time pseudo channel.

6. Set start time into real-time pseudo channel.

7. Load B, T, and V registers.

Disconnect user job from CPU request (DCP=17)

Request format:
o

SM-0040 2-18

55 63

This request must precede an RCP request issued by the job scheduler.
The processing flow for this request is:

1. Clear SAXP.

2. Save B, T, and V registers.

3. Relocate SA and LA.

4. Copy XP to Job Table Area for the job being disconnected.

Post message in history buffer request (POST=20)

Request format:
o 43 46 49 55 63

::1 ~r~~
Debug function

code

This request permits any STP task to enter two S registers of information
into the history buffer, when that debug function is selected. The
processing flow is:

1. Set up call to EXEC subroutine DEBUG. In other words, move debug
function code to AS, first S register to S6, and second S
register to S7.

2. Call subroutine DEBUG to enter message in trace with time and
issuing location stamp.

Set memory size request (SMSZ=21)

Request format:

o 40 55 63

56 ddress

57 _ 21 8

This request is used during system initialization when the size of memory
is changed through a Startup *SIZ parameter.

1. Set new system limit address in all system exchange packages.

SM-0040 2-19

Packet I/O request (PIO=22)

Request format:

o 40 52 55 63
S6

S7 02281
Field

SCT
Fe

Word

S6
S7

Bits

40-63
52-54

Description

subsystem Control Table address
Function code

o Clear
I Send packet
2 Receive packet

This request invokes the I/O Subsystem driver called the lOP driver.
Before a task uses this request to perform I/O, the lOP driver must be
linked to the STP resident table called the Subsystem Control Table
(SCT). This linking is accomplished when the task issues the first clear
PIO request. The SCT address must never change thereafter. A task
monitors the status of the subsystem by inspecting the status field
(SCSTAT) of the SCT table. Three flags are maintained by the lOP driver
in the SCSTAT field. They are as follows:

• SCDOWN=1
• SCRST=1
• SCIR=1

I/O Subsystem Down flag
I/O Subsystem Reset flag
Input Ready flag

Flag SCDOWN is cleared and flag SCRST is set by the lOP driver when the
I/O Subsystem has been restarted or initialized. A task can then
acknowledge reset by issuing a PIO clear request which clears the SCRST
flag. The driver cannot accept a clear until all input has been
processed which means the flag SCIR must be clear.

Sending or receiving a packet requires that a packet address (SCCIP) and
packet size in words (SCPSZ) be passed in the SCT table. In general a
packet can be received When the SCIR flag is set, and a packet can be
sent when all status flags are clear.

Move system down to execution area request (MVEDWN=23)

Request format:

o 16 40 55 63

S6 A
S7 238

SM-0040 2-20

This request moves an image of an operating system down to the executable
area. The processing flow is:

1. Build an exchange package at location 0, with monitor mode set
ano with P as the first instruction in the move-down loop_

2. Consider that exchange package to be the current one and activate
it.

The move-down flow is:

1. Starting with the high address of the system, perform full-length
vector transfers.

2. Assign the exchange package at location 0 and exchange to it.

Start system request (START=24)

Request format:

56

57

This request starts the system after a system breakpoint is encountered
or after a stop function has been issued. The flow is:

1. Clear alternate task scheduling flag that forced system to idle
except for external requests to the station (SCP).

2. Request execution of the task scheduler.

stop system request (STOP=25)

Request format:

o 55 63

I
56

57

SM-0040 2-21

This request stops the system except for entry of interactive debugging
commands. The processing flow is:

1. Set alternate task scheduling flag. The alternate scheduling
allows only SCP to execute so interactive debugging commands can
be entered.

Display memory request (DMEM=26)

Reauest format:

56

57

o 16

Display area FWA

Length

40 55

Buffer area FWA

This request copies memory to a specified area. It is used to display
memory during interactive debugging. The processing flow is:

1. Move the memory block from the requested area to the display
buffer.

Enter memory request (EMEM=27)

63

Request format:
o 40 4648 52 55 63

56 Value to be entered

57 Memory word address 27
8

it length
This request enters the bit string into memory at the specified bit
position. The flow is:

1. Shift value right (64 - bit offset - bit length).

2. Merge into the memory address.

Display exchange package request (DXPR=30)

Request format:

o 40 47 55

SM-0040 2-22

63

I
I '

This request moves the contents of the exchange package and BO to a
buffer. The processing flow is:

1. Copy exchange package to words 0 through 15 of buffer.

2. Copy (BO) to word 16 of buffer from the task BO Save Table.

Enter exchange package register request (EXPR=31)

Request format:

o 8 16 32 40 46 48 55

56 Value

Register

63

This request inserts the bit string into the specified exchange package
register. The flow is:

1. Determine word length and position of specified register in
memory.

2. Shift value right to desired position.

3. Merge into memory address.

Register designators can be any of those noted in COS Front-end Protocol
Internal Reference Manual, publication SM-0042, Debug Function Request
(0278) •

Set system breakpoint request (SBKPT=32)

Request format:
o

56

57

16 40 43 55 63

1

This request sets a single or double breakpoint in the system by changing
an instruction parcel to an illegal value. If a breakpoint exits at the
address, an error is reported. The double breakpoint allows for
automatic resetting of the initial breakpoint When the second breakpoint
is encountered. Up to eight system task breakpoints are allowed. The
processing flow is:

SM-0040 2-23

1. Verify breakpoint number.

2. Verify breakpoint number not in use.

3. Verify memory address not already in Breakpoint Table.

4. Store information in task breakpoint table.

5. Save breakpoint instruction parcel.

6. Set breakpoint.

Clear system breakpoint request (CBKPT=33)

Request format:

o

56

57

40 43 55 63

This request clears a system task breakpoint entry. The processing flow
is:

1. Verify breakpoint number.

2. Verify breakpoint number in use.

3. Determine which of two possible breakpoint addresses is active.

4. Restore instruction parcel at the active addresses.

5. Clear breakpoint table entry.

Report CPU usage request (CPUTIL=34)

Request format:

o 24 40 55 63

~ ss I

57 __ ~___ 3
4

8 _

SM-0040 2-24

This request puts CPU usage data into the assigned buffer The processing
flow is:

1. Validate buffer size.

2. Fill the buffer with CPU usage data, zeroing the fields in EXEC
that collect such data.

Report task usage request (TASKUTIL=35)

Request format:

o 24 40 55 63

s6 ss

57. 358

This request puts task usage data into the assigned buffer. The
processing flow is:

1. Validate buffer size.

2. Put number of tasks into buffer.

3. Put number of readies of each task into buffer, zeroing the
fields in the STT that collect such data.

Report EXEC request (EREQNT=36)

Request format:

o 24 40 55 63

~ ss I
57. 368 _

This request puts the EXEC request count of each task into the assigned
buffer. The processing flow is:

1. Validate buffer size.

2. Put number of tasks into buffer.

3. Put number of requests made by each task into buffer, zeroing the
fields in the STT that collect such data.

SM-0040 2-25

Report EXEC call counts request (ECALLCNT=37)

Request format:

o 24 40 55 63

56 55

57. 378

This request puts the number of EXEC requests of each type into the
assigned buffer. The processing flow is:

1. Validate buffer size.

2. Put number of task EXEC request types into buffer.

3. Put number of requests of each type into buffer, zeroing the
fields in the STT that collect such data.

Report interrupt counts request (CINTCNT=40)

Request format:

o 24 40 55 63

56 55

57 . 408

This request puts interrupt counts of each channel and pseudo channel
into the assigned buffer. The processing flow is:

1. Validate buffer size.

2. Put number of interrupt channels into buffer.

3. Put interrupt count of each channel into buffer, zeroing the
table entries that collect such data.

2.6.2 EXEC ERROR CODES

EXEC returns one of the following error codes in register S6 if a request
cannot be processed. The P register is not incremented in this case.

SM-0040 2-26

Cooe (octal)

1
2
3
4
5
6
7

10
11
12
13
14
15
16
17
20
21
24
25

2.7 FRONT-END DRIVER

Significance

No task space left
No task assigned
Task does not exist
Resource already assigned to a task
Channel already active
Illegal task call
Input side of channel active
Output side of channel active
Illegal breakpoint number
Address already has a breakpoint
Bad field definition
Job already connected
Disk malfunction
Breakpoint invalid
Device does not exist
Illegal register name
Equipment not in system
Time queue is full
Insufficient buffer length

The front-end driver (FED) physically controls I/O between front-end
computer systems and STP. It performs all hardware error recovery, While
STP provides all logical error recovery.

FED supports configurations allowing up to four front-end channels with
multiple front-end computer systems attached to each channel. These
multiple front-end systems may be attached either directly to the channel
or may be remote batch entry stations attached to the front-end system.

The front-end driver also intercepts and processes maintenance control
unit (MCU) request messages. The format and function of these messages
is described in CRAY-OS Message Manual, publication SR-0039.

2.7.1 THEORY OF OPERATION

The front-end driver is a slave to the Station Call Processor (SCP) in
that all external interrupts are rejected on front-end channels until SCP
requests an output/input (0/1) pair. The driver then becomes the passive
partner of the front-end computer system.

SM-0040 2-27

Error recovery is initiated by the front-end computer system. FED only
reports input hardware errors to the front-end system and retransmits
output messages on request from the front-end system.

2.7.2 SYSTEM TABLES USED BY FED

FED uses the following system tables:

CHT Channel Table
LIT Link Interface Table
LXT Link Extension Table
CXT Channel Extension Table

Detailed information on these tables is available in the COS Tables
Descriptions Internal Reference Manual, publication SM-0045.

Channel Table (CHT)

The front-end driver sets the link interface table address and requesting
task parameter block address into the channel table (CHT) When the 0/1 is
initiated, and clears them when the 0/1 completes. FED sets the
interrupt processor address for the next interrupt in the processing
sequence.

Link Interface Table (LIT)

FED uses the Link Interface Table to determine the type of 0/1 request,
to communicate 0/1 completions to sep, to maintain usage statistics, and
to maintain auxiliary control information.

Link Extension Table (LXT)

FED uses the LXT to validate source 10 and obtain parameters for control
of checksumming.

Channel Extension Table (CXT)

FED uses this table to build output message for I/O Subsystem.

SM-0040 2-28

2.7.3 PROCESSORS

The front-end driver is composed of a request processor and the following
set of re-entrant interrupt processors.

RLCP

RSSEG

RLTP

WLCP

WSSEG

WLTP

WXLCP

Processes interrupt from input of Link Control Package
(LCP). If channel error flag, RLCP sets up WXLCP to process
output interrupt from error LCP. If the LCP is a hardware
error LCP, RLCP restarts driver: otherwise, it checks input
LCP for following subsegments. If no subsegments exists,
RLCP terminates the 0/1 operation or sets up for receipt of
LTP. When there are subsegments, RLCP sets the channel to
receive the first subsegment and requests RSSEG to process
the next interrupt on this input channel.

Processes interrupt from input of subsegment. If a channel
error occurs, RSSEG requests WXLCP to process next interrupt
on output side and resets RLCP to process next interrupt on
input side. When there are no errors and no LTP is expected,
RSSEG readies the requesting task if there are no more
subsegmentsJ otherwise, it sets up to receive the next
subsegment or LTP.

Processes interrupt from input of Link Trailer Package (LTP).

Processes interrupt from output of LCP. If a subsegment is
to follow, WLCP sets the channel to send the first subsegment
and requests WSSEG to process the next interrupt on this
output channel. If an LTP is to follow, WLCP sets the
channel for a data transfer and requests WLTP to process the
interrupt.

Processes interrupt from output of LCP. If another
subsegment remains to be sent, WSSEG sets up to send the next
subsegment and requests itself to process the interrupt,
otherwise, WSSEG sets up for an LTP and requests WLTP to
process the interrupt. If there is to be no LTP, it clears
output active in the LIT and sets reject on the output
channel.

Processes interrupt from LTP and clears output active and
sets reject on the output channel.

Processes interrupt from output of hardware error LCP.
clears output active and sets reject on output channel.
an LTP is to follow, WXLCP sets the channel for a data
transfer and requests WXLTP to process the interrupt.

WXLCP
If

WXLTP Processes interrupt from output of error LTP.

APIIP Processes MIOP status input interrupt

SM-0040 2-29

APOIP Processes MIOP command output interrupt

APPACN Null packet processor

APPACX STP task packet processor

APPACE Echo packet processor

APPACI I-packet processor

APPACJ J-packet processor

APPACA Disk packet processor

APPACB Station packet processor

SHSRQT BIOP simulated memory channel request processor

SHSOT BIOP simulated memory channel output processor

SHSIT BIOP simulated memory channel input processor

2.8 00-19/29 DISK DRIVER

The disk driver drives either a 00-19 or a 00-29 disk storage unit
connected to a CRAY-l I/O channel. The disk driver executes in monitor
mode as that part of the Executive Request Processor devoted to
processing the I/O Executive request. This request is described in
section 2.6.1.

2.8.1 ROll

The disk driver is labeled ROll in EXEC. ROll receives control when an
STP task executes an EX instruction with an I/O function code in S7. The
contents of S6 and the remainder of S7 specify parameter addresses
relative to STP. The parameters at these addresses completely specify
the current request to ROll.

ROll does no I/O until it has checked the legality of the request
parameters. If the request parameters are legal, ROll activates the
CRAY-l channels and disk hardware specified by the request. Channel
activation consists of the sending of data and disk hardware functions
and the receiving back of data and disk hardware status.

SM-0040 2-30

An illegal value causes ROll to schedule its caller to resume execution
at the parcel immediately following the EX instruction. A legal request
causes ROll to schedule its caller at the third parcel following the EX
instruction.

ROll is interrupt driven and executes a request in short bursts. Upon
activating the I/O hardware, ROll gives control to Interchange. It
regains control When the I/O hardware generates an interrupt on the
CRAY-I channel involved.

ROll keeps its caller STP task aware of the progress of the request after
each transfer of a oector and at the completion of the request.

Lost interrupts

An interrupt could fail to occur due to a hardware failure. Therefore,
ROll protects itself by scheduling a timeout interrupt for each request
to ROll. As a result, each execution of Interchange compares the current
contents of RTC (Real-Time Clock) to the timeout value. Interchange
gives control to ROll if the timeout occurs.

Since it is possible that exchanges or other interrupts might not occur
for an extended period, the MCU real-time interrupts to the CRAY-I should
be enabled to ensure frequent execution of Interchange. The time delay
scheduled for timeout reflects the magnitude of the request to ROll while
being liberal enough to avoid needless timeouts.

A single ROll request may involve many interrupts~ thus, the single
timeout scheduled per ROll request acts as a blanket protection.

Lost interrupts are rare, generally only expected interrupts occur.

When the request completes, the timeout is released.

Multiprogramming

Between the short bursts of ROll activity, Interchange finds other work
for the CPU. Therefore, user programs, STP, and even other parts of EXEC
are multiprogrammed with ROll. A trace of COS activity generally shows
considerable non-ROll activity between disk interrupts.

ROll also helps facilitate CPU-I/O overlap for user programs by helping
them to take advantage of each sector of transfer when that sector
completes as well as when the entire request completes.

SM-0040 2-31

The user program is taken out of recall as soon as possible so that the
user program may immediately begin to process the next block of data.

I/O requests by user programs come to ROll via the disk queue manager
task (DQM) of STP. DQM queues these user calls, issuing corresponding
requests to ROll in a sequence that optimizes system throughput; that is,
seeks are optimized. DQM passes to ROll the address of the DNT for the
dataset involved.

Status checking and error recovery

ROll checks hardware status at the start of each request, during the
request, and at the completion of the request.

ROll notifies the calling STP task when a request completes whether
successfully or in error. To effect error recovery, the calling task
must make the appropriate calls to ROll.

ROll contains features explicity for error recovery. ROll performs the
servo offset and data strobe functions if requested by the calling task.

Callers

The Disk Queue Manager is the only STP task that calls ROll. ROll
rejects any call that would interfere with an ongoing request, except for
the call to master clear the disk controller and the CRAY-I input and
output channels to which it is connected.

2.8.2 HARDWARE SEQUENCES FOR SAMPLE REQUESTS

This subsection assumes that the reader is familiar with the CRAY-I
DCU-2, DCU-3 Reference Manual, publication 2240630. The processing
sequence for several requests are presented here.

Multiple sector read

If another DSU is selected, release connected DSU.

If the DSU is not selected, then,

SM-0040

Set unit selected flag,
Wait 5 usec after last head select,
Activate output channel to send unit reserve function to disk
control unit, and
Await interrupt causes by output channel completion.

2-32

1. • If in error recovery mode, then,

- Activate output channel to send status readout function
(requesting subsystem status) to disk control unit,

- Await interrupt caused by output channel completion,
- Activate input channel to receive subsystem status from

disk control unit,
- Await interrupt caused by input channel completion,
- If subsystem status is bad, then go to error recovery,
- If not desired cylinder, then,

(1) Update current cylinder to desired cylinder,
(2) Activate output channel to send cylinder select

function to disk control unit, and
(3) Await interrupt caused by output channel completion.

• If sectors to transfer equal 0, then go to 2.

• If retry is enabled, then,

- Read continuity is broken.
Activate output channel to send margin select function to
disk control unit, and

- Await interrupt caused by output channel completion.
• If read continuity is broken, then,

- Await 5 usec after last head select.
- Activate output channel to send read function to ncu,
- Await interrupt caused by output channel completion,
- Activate input channel to receive read-write response

from ncu,
- Await interrupt caused by input channel completion, and
- If read-write response is bad, then go to error recovery.

• Activate input channel to receive data block from DCU-2.
• Await interrupt caused by input channel completion.
• If channel error, get subsystem status, then go to error

recovery.
• Update tables.
• If sectors to transfer equal 0, then go to 2.
• If recall flag in DNT is set, then ready caller task.
• Go to 1.

2. • Activate output channel to send status readout function
(requesting subsystem status) to ncu.

• Await interrupt caused by output channel completion.
• Activate input channel to receive subsystem status from DCU.
• Await interrupt caused by input channel completion.
• If subsystem status is bad, then go to error recovery.
• Update tables.
• Ready caller task.

SM-0040 2-33

Multiple sector write

A multiple sector write resembles the multiple sector read; however,
retry is disabled implicitly and write continuity is checked. Either a
margin select function or a read function destroys write continuity. A
write function destroys read continuity.

Cylinder select

A cylinder select resembles a multiple sector read or write except
that sectops to transfer are 0 on entry to the driver.

Controller master clear

1. Clear reserved bits in all PUTs for the channel.

2. Clear PUTs to force unit select and seek.

3. Master clear channel with recommended I/O master clear sequence.

4. Reserve unit.

5. Send subsystem status.

6. Open input channel for one parcel immediately.

7. If input interrupt preceeds output interrupt for subsystem
status, reject further input interrupts until output interrupt.

8. If subsystem status is not ready

- Send fault status function,

- Release unit with fault clear bit set.

- If fault status shows a seek error, perform clear fault
and return to zero seek.

- Reserve unit.

9. If subsystem status is ready, return to caller; otherwise, retry
clearing procedure until it is successful.

SM-0040 2-34

Unit release

1. Activate output channel to send unit release function to DCU-2.

2. Await interrupt caused by output channel completion.

3. Update tables.

4. Ready caller task.

Margin select

The margin select algorithm selects margins in the following sequence:

1. Late strobe, maximum offset toward center (position 37S)

2. Late strobe, maximum offset toward edge

3. Early strobe, maximum offset toward center

4. Early strobe, maximum offset toward edge

5. Maximum offset toward center

6. Maximum offset toward edge

7-12. Same strobe and direction but with offset position 24S

l3-lS. Same strobe and direction but with offset position lIS

2.9 I/O SUBSYSTEM DRIVER

The I/O Subsystem driver, called the lOP driver, is responsible for
controlling all normal I/O channels between the CRAY-l CPU and its I/O
Subsystem.

2.9.1 FUNCTIONAL DESCRIPTION

All information passed through the driver is in the form of a six 64-bit
word packet. The general format of a packet as well as specific formats
can be found in the COS Table Descriptions Internal Reference Manual,
publication SM-0045. The tables to be concerned with are:

ADC I/O Processor Disk Command
ASC lOP Station Command
APT Any Packet Table

SM-0040 2-35

Processing of a packet by the driver is determined by the packet's source
10 (SID). Possible SIOs are listed below.

SID

CI

A

B

C

o

E

I

J

N

Definition and processing

Any packet to be queued for output to the I/O Subsystem

Disk request reply packet is passed to disk driver for
processing.

Station request packet passed to station driver for
processing

lOP message packet (Not implemented)

Reserved for expansion

Echo packet; the source and destination IDs are swapped
and the packet queues for output to the I/O Subsystem.

Initialize channel; subsystem downed; output queue cleared
and packet echoed to sender

Acknowledgement of channel initialization; up the
subsystem and echo the packet.

Null Packet; packet discarded and no further processing.

STP tasks interface to the lOP driver via the PIO monitor request
(PIO=22) as described in section 2.6.1 of this manual.

Tables used internally to the lOP driver are described as follows.

Channel Extension Table (CXT)

The station driver interfaces to the lOP driver through the CXT table.
This table holds some control information for the station driver as well
as the station command packet (ASC).

Queue Control Table (QCT)

This table is used internally by the lOP driver to maintain an input
queue to each STP task and an output queue to each I/O Subsystem.

SM-0040 2-36

Subsystem Control Table (SCT)

This table resides in EXEC and is used by the driver to manage I/O with
the I/O Subsystem. A duplicate of this table is required in STP for each
task Which is using the lOP driver. The tables are linked when the first
lOP driver request is made. The task can then monitor the subsystem
status in its SCT table.

2.9.2 RECOVERY

The lOP driver does not handle the recovery of any requests. It will
only notifies each requester when a subsystem has gone down and comes up
again.

2.9.3 MIOP COMMAND AND STATUS PACKET FORMATS

SGZ 2 32-63

SM-0040

ILCP

ISEG

ILTP

Description

Destination 10

Source 10

Channel ordinal

Message number

Address request flag. Set by MIOP
when requesting next set of addresses
only. When this field is clear, SCP
will be initiated.

Segment size. Set by EXEC; MIOP does
not need to return these values.

2-37

Word

OLCP 3

ILCP 3

OSEG 4

ISEG 4

OLTP 5

ILTP 5

Bits

0-31

32-63

0-31

32-63

0-31

32-63

Description

Output LCP address. Set by EXEC~ MIOP
does. not need to return these values.

Input LCP address. Set by EXEC; MIOP
does not need to return these values.

Output segment address. Set by EXEC~
MIOP does not need to return these
values. If 0, there is no segment or
LTP.

Input segment address. Set by EXEC;
MIOP does not need to return these
values. If 0, there is no segment or
LTP.

Input LTP address. Set by EXEC; MIOP
does not need to return these values.
If 0, there is no segment or LTP.

Input LTP address. Set by EXEC; MIOP
d~es not need to return these values.
If 0, there is no segment or LTP.

The station command protocol interleaves with the standard station
protocol in the following cycle:

1. At polling interval, MIOP sends station packet with address
request flag set.

2. CPU returns addresses to MIOP.

3. CPU input LCP and segment are transfered over the memory channel.

4. MIOP sends station packet with address request flag clear, causing
CPU to execute station task.

5. CPU returns addresses to MIOP.

6. CPU output LCP and segment are transfered over the memory channel.

SM-0040 2-38

Disk packet format

Request:

Reply:

Field

DID

SID

PCH

TPB

OCT

EQT

DA

FCT

STS

o
1

2

3

4

5

o

\
2

3

4

5

SM-0040

o

CYL

RSEP

Word

o

o

2

2

2

3

3

3

3

MOS RAe RES

11 -16 23

DA

HD SEC OFF WL

INLK CYSK lMRG

Bits Description

0~'15 Destination IO

16-31 Source IO

O~ ·15 Pseudo channel number

16-31 Task parameter block address

OCT address

48-63 EQT address

0"'31 Bipolar data address

32-39 Function

40-47 Logical status

48-52 Unused

2-3'9

Field Word Bits --- Description

PN 3 53-54 lOP Processor number

CHN 3 55-63 lOP channel number

CYL 4 0-10 Cylinder

HD 4 11-15 Head

SEC 4 16-22 Sector

OFF 4 23-31 Word offset

WL 4 32-63 Word length

MaS 5 0-31 MOS data address

RAC 5 32-47 Read ahead count

RES 5 48-63 Reserved for lOP

RESP 5 0-15 Error flags

INLK 5 16-31 Interlock status

CYSK 5 32-47 Cylinder status

IMRG 5 48-63 Last margin

The disk packet command protocol interleaves with data flow over memory
channel with the following cycle.

1. CPU sends MIOP the disk request.

2. Data transfers over memory channel.

3. MIOP sends the disk status reply.

Note that only one request is outstanding to the lOP on each pseudo
channel.

2.10 EXEC'DEBUG'AIDS

EXEC has two debugging aids: history trace and the stop buffer.

SM-0040 2-40

2.10.1 HISTORY TRACE
:. . ,

History trace is an EXEC-resident routine composed of 4-word messages
entered in a circular buffer by the subroutine DEBUG. The buffer begins
at location DBF and has room for 1024 messages before previous messages
are overwritten. DEBUG maintains the table offset to the next message
address at location DBFP. The general format of a trace message 'address
is as follows:

0

0 F

1

2

3

Field Word

F 0

P 0

XP 0

BO 1
1

48 51 63

p XP

Time interval since last ~ntry

Bits

0-6

27-48

51-63

0-23
24-63

word 3 s

Description

Function number

P register of interrupted exchallg'e
I

p~k~e . .' .
Exchange package addr'ess

Contents of BO of interrupted task
Time interval since last entry

The purpose of each trace type and the contents of the two registers are
defined in table 2-1. The function trace tool changes frequentlY1 check
listings for current formats.

The function trace may be selectively or collectively enabled. To enable
all functions, set location DBUGM nonzero. To selectively enable a
function clear (DBUGM) and set (DBUGM plus the function number). Any
combination of functions may be enabled at a given time. Disabling is
accomplished by clearing the location that enabled the debug function.
STP functions (12 and 21 through 32) are further selected through the POST
micro acting together with the POST macros occurring throughout STP. An
STP function not listed in the POST micro in the early part of STP is
disabled and can be re-enabled only through reassembly or by patching the
code generated by a particular POST macro.

In table 2-1, disabled functions are indicated with a § flag. Functions
1-11 and 13-20 are used by EXEC and are not affected by the POST micro.

S Refer to table 2-1 for the contents of words 2 and 3.

SM-0040 2-41

Use the following macro to make a trace entry from a task in 8TP. This
example assumes that 0'77 is the function number and 82 and 83 contain the
information to be captured. Note that any register values other than 80
and 87 can be used instead.

Location Result Operand Comment
1 10 20 35

POST 0177,S2,S3

In EXEC, to perform a history t:J:ace, place the information of interest in
86 and 87 and execute the following:

Location Result Operand Comment
1 10 20 35

A5 0 1 77 function number
R DEBUG

The history trace is easily expandable so new function types may be
added. New DEBUG function numbers may be assigned up to a maximum value
of 77 octal.

Function
Number

Table 2-1. History trace functions

Event causing
trace entry Contents of words 2 and 3

II

1 I/O trace interrupt 7/channel error flag, 9/channel
number, 24/fwa of CBxx,
24/fpa

2

3

4

S MCPT =

SS 8AXP =

8M-0040

User-initiated normal exchange

8TP-initiated normal exchange

EXEC-initiated normal exchange

64/lst word of relevent PUT
table if disk

64/user 80
64/user 81

64/task 86
64/task 87

64/MCPTS
64/8AXPSS

l/task scheduler request flag, 5l/not used, l2/task parameter
block address (zero if user program was interrupted)

l3/JXT offset, 24/JTA address, l5/time slice in milliseconds,
12/XP address (constant)

2-42

Function
Number

5

6

7

10

10

11

11

11

11

12

13

14

SM-0040

Table 2-1. History trace functions (continued)

Event causing
trace entry

Real-time interrupt

Copy user XP to JTA

Station input interrupt for
LCP

User is being given control
of CPU

Input SCBs received

Physical disk I/O
request

Physical disk I/O retry
first message

Physical disk I/O retry second
message

Physical disk I/O channel
error

Intertask message

Error exchange

Station output interrupt for
LCP

"

2-43

Contents of words 2 and 3

64/MCPT
64/SAXP

64/MCPT
64/SAXP

64/LCP+0
64/LCP+l

7/not used, 9/XP flags, 24/not
used, 24/nonzero if user XP
is in JTA

64/SAXP

64/input stream control bytes
64/output stream control bytes

16/transfer length, 24/disk
address, 24/buffer address

l/transfer direction,
54/unused, 3/1, 4/software
channel number,2/unit number

16/1ast function, 24/1ast
status, 24/first parcel
address

16/edited status

16/retry length, 24/disk
address, 24/memory address

16/, 24/CA IN, 24/CA OUT

16/channel no, 24/desired CA,
24/actual CA

64/'CA ERROR'

64/input word 0 or output word 0
64 input word 1 or output word 1

64/MCPT
7/unused, 9/XP flags, 40/unused

64/LCP+0
64/LCP+l

Table 2-1. History trace functions (continued)

Function
Number

15

16

17

20

24

Event causing
trace entry

Input/output segment
termination

Input SCBs received

Station output interrupt for
error LCP

Output SCBs sent

User's time slice expired

Job being initiated

Job being reactivated after
a time elapsed or an event
occurred

Job status change

Search for a free memory
segment

Allocation of a memory
segment

§ Entries disabled in default system

Contents of words 2 and 3

63/, l/input active
63/, l/output active

64/input stream control bytes
64/output stream control bytes

63/, l/input active
63/, l/output active

64/input stream control bytes
64/output stream control bytes

24/'RTC', 40/number of RTC
interrupts

64/RTC interrupt word (JRTCWORO)

64/ASCII job name from SOT
l6/priority, 24/job size

(including JTA), 24/time
limit in seconds

64/ASCII job name
64/RTC value, or the event

compar ison value

8/0, 56/0ld JXSTCH (with
"--> II if room)

56/New JXSTCH, 8/JXT ordinal
(1-0'77)

64/JXSTCH for job that needs
memory;

64/size of free segment sought

64/MST entry§§ for the free
segment from Which the
allocation is to be taken;

64/number of words to be
allocated

S§ MST entry = l6/JXT ordinal, 24/segment size, 24/segment address.

SM-0040 2-44

Table 2-1. History trace functions (continued)

Function
Number

32

32

32

32

Event causing
trace entry

Liberation of a memory
segment

User job about to be
connected

Disconnected user job losing
X status

Disconnected user job about
to be reconnected

CPU going to idle state

Request received by JSH

J$ALLOC request's
initial processing done

Entry to MOVEMEM routine
(trace entry suppressed if no
data will be moved)

Entry to ERASEMEM routine
(trace entry suppressed if
no data will be erased)

Exit from RELOCATE routine
(Always two trace entries:
before and after relocating)

§ Entries disabled in default system

SM-0040 2-45

Contents of words 2 and 3

64/offset of the MS'r entryS §

for the segment to be freed;
64/the MST entry itself

64/job name
64/'GOT CPU'

64/Job name
64/'HAD CPU'

64/Job name
64/'KEPT CPU'

64/'CPU IDLE', 64/JXTPOP in
the first trace entry; for
each job in the JXT,
another function-27 entry
follows, containing:

64/Job name, 56/JXSTCH, 8/JXORD

40/ASCII function name, 24/JXT
ordinal

64/ASCII job name

64/address of memory request word
in STP

64/memory request word itself

l6/'MV',24/from-address,
24/from-length, 40/to-address,
24/to-length

64/ ' ERASE', 40/address, 24/length
of area to be erased

Values before relocating: 22/HLM
2l/LFT, 2l/DSP, 22/BFB,
2l/buffer boundary, 2l/FL

Values after relocating: 22/HLM,
2l/LFT, 2l/DSP, 22/BFB,
2l/change in FL, 2l/FL

2.10.2 SYSTEM CRASH MESSAGE BUFFER

This error reporting feature of EXEC assists the computer operator or
system analyst in finding the general cause of a system crash. When EXEC
has detected a fatal error condition, a STOP message is built in a buffer
called the stop buffer. This buffer is located in EXEC at B@STOP, which
is located just before the history trace buffer, is loaded with the label
in EXEC where the error was detected, the word address of P and BO, and a
stop message in ASCII. The buffer is dumped with the following format.

==============================
S TOP B U F FER

==============================
EXEC STOPPED AT LABEL: $ STOP 0 0 6

W.P = W.BO =

EEF - OPERAND RANGE ERROR
------------END BUFFER ---------

The stop label is the label used in EXEC to call the STOP macro. The
values in P and BO are not converted to ASCII characters, so their values
appear in the dump. The value of P is in the word after the word
containing W.P and the value of BO is in the word after the word
containing W.BO. Remember these two values have been truncated to,words.

A convention is used for STOP labels and messages. The label has the form
$STOPec, where ec is a unique decimal number for each error condition. The
stop message contains the routine name where the stop occurred and a short
descriptive error message. EXEC stop messages are shown in table 2-2.

Label

$STOPOOO
$STOPOOl
$STOP002
$STOP003
$STOP004
$STOP005
$ STOPOO 6
$STOP007
$STOP008
$STOP009
$STOPOlO
$STOPOll
$STOPOl2
$STOPOl3
$STOPOl4

SM-0040

Table 2-2. EXEC stop messages

Code

EEF
DEQRT
DEQRT
DEQRT
EE
EEF
EEF
EEF
EEF
ENSECl
TllCLCA
NER
EE
EEF
MC

Significance

unknown Error
Invalid Time Index
Parameter Word Mismatch
Time Queue Empty
program Address Range Error
Floating-point Error
Operand Range Error
Program Range Error
STP Error Exit (See STP Hang Message)
Time Queue Full
Illegal Disk Channel Selected
Uncorrectable I/O Read Memory Error
Double Bit Memory Error
Memory Error
Disk Controller Not Responding

2-46

STOP-macro to hang EXEC

The STOP macro calls routine $STOP When the selected condition is true.
Otherwise execution continues after the macro call. Routine $STOP builds
the message in the STOP buffer, restores all the registers to their
values before the STOP macro was entered, and then hangs in a tight loop.

Format:

Location Result Operand

Po STOP

Po Label field is required.

Pl Stop condi tion argument. EXEC hangs When this condition is
true.

Condition Significance

UC Unconditional stop
SZ Stop if SO zero
SN Stop if SO not zero
SP Stop if SO positive
SM Stop if SO negative
AZ Stop if AO zero
AN Stop if AO not zero
AP Stop if AO positive
AM Stop if AO negative

P2 Message argument1 string of 1 to 64 characters enclosed by
parentheses.

2.11 INTERACTIVE SYSTEM DEBUGGING

The executive requests described in section 2.6.1 provide the mechanism
through which interactive system debugging control passes from the user
to SCP to EXEC. The debugging capability provides for memory entry and
display, operating register entry and display, setting and clearing
breakpoints, and starting and stopping the system.

The operator debug commands that use this capability are described in the
COS Operational Procedures Reference Manual, publication SM-0043.

SM-0040 2-47

SYSTEM TASK PROCESSOR (STP)

3.1 GENERAL DESCRIPTION

The System Task Processor (STP) consists of tables, a set of routines
called tasks, and some re-entrant routines common to all tasks.

A task is a routine that serves a specific purpose and usually recognizes
a set of subfunctions that can be requested by other tasks.
Characteristics of a task are that it has its own 10 (a number in the
range 0-358)' an assigned priority (OOO-3778)' its own exchange
package area in the System Task Table (STT), and its own intertask
communication control table which defines which tasks are allowed to
communicate.

The addresses of the Base Address (BA) register and Limit Address (LA)
register are the same for all tasks; BA is set to the beginning of STP
and LA is set to I@MEM (an installation defined maximum memory value).

Although a task is loaded into memory during system startup, it does not
normally become known to the system until an existing task issues an
executive request for the creation of some other task. COS Startup is
the necessary exception. A "create task" request assigns an 10 and a
priority to a task via the task's parameter block in the STT.

Tasks execute in program mode and are thus interruptible. An interrupt
may occur as a result of the task executing an exit instruction (ERR or
EX) or may result from one of the interrupt flags being set automatically
(e.g., an I/O interrupt occurred).

When a task is created, it is forced into execution. During this initial
execution, it usually performs some initialization and setup operations
and then suspends itself. Thereafter, a task is executed only if it is
readied. Readying of a task consists of altering its suspend bit. It is
not a candidate for execution, however, unless all of the bits in its
status field are 0, including the breakpoint and stop bits.

Task readying occurs automatically or explicitly. Readying occurs
automatically for tasks assigned to a channel when an interrupt occurs on
the assigned channel. Readying of a task may also occur as a result of
an explicit EXEC request issued by one task for the execution of another
task. A task may be readied or suspended by a System Operator Station
request (Station Debug Command). A task remains ready (unless
breakpointed or stopped) until EXEC receives a request to suspend it.

SM-0040 3-1

3

A task requests self suspension when it has completed an assigned
function or posts a request for another task. Note that if the task
being requested is of lower priority than the task making the request,
the requesting task must suspend itself to allow the lower priority task
to execute.

Subsequent requests to ready a task already readied cause the ready
request bit in the task's parameter word to be set. When this bit is
set, the next suspend request for the task causes the task to be
rereadied rather than suspended. The task ready request bit is then
cleared.

3.2 TASK COMMUNICATIONS

Tasks may communicate with EXEC, with each other, and with user jobs.

3.2.1 EXEC/TASK COMMUNICATION

A task communicates with EXEC by placing a request and parameters in
registers S6 and S7 and by executing an EX instruction. When a task
executes an EX, the error return is to the instruction following the EX;
the normal return is to the instruction following the error return. The
error return instruction must be a 2-parcel instruction. A reply to the
request is returned in S6 and 57.

EXEC requests are described in detail in section 2.6.

3.2.2 TASK-TO-TASK COMMUNICATION

5TP contains two areas used for inter task communication. The first area
is the Communication Module Chain Control (CMCC); the second area is the
Communication Module (CMOO).

SM-0040 3-2

The CMCC is a contiguous area containing an entry for each combination of
tasks possible within the system. The CMCC is arranged in task number
sequence, that is, all possible task 0 combinations of requests to task 0
are followed by all possible combinations of requests to task 1. The
task 10 of the requesting task and the task 10 of the requested task are
the values that determine the appropriate CMCC entry.

CMOOS are allocated from a pool as needed and, therefore, have no fixed
location. Memory Pool 2 is reserved exclusively for use by intertask
communications. A CMOO consists of six words: two are used for control;
two are used as input registers: and two are used as output registers. A
task receives all of its requests and makes all of its replies through a
CMOO.

Figure 3-1 illustrates the tables used for task communication.

One task communicates with another by placing a request in the input word
of a CMOO. The requested task replies by placing the request status in
the output words of the CMOO. The format of a request is subject to the
requirements defined by the called task. Requests recognized by a task
are described with the task later in this section. However, some
conventions do exist. Conventionally, the requested function is placed
in INPUT+O. Output usage is conventionally defined such that OUTPUT+O is
o if no error has occurred; otherwise, it contains a nonzero error code.

Task communication routines

Six re-entrant routines in STP that are common to all tasks facilitate
inter task communication. They are:

PUTREQ Put request routine, asynchronous, destroys A6 and A7

GETREQ Get request routine: destroys A6 and A7

PUTREPLY Put task reply routine; destroys A6 and A7

GETREPLY Request status routine; destroys A6 and A7

TSKREQ Task request routine, synchronous; destroys A3

REPLIES Queues unrequested reply: destroys A6 and A7

The task placing a request calls PUTREQ to place the request and calls
GETREPLY to check for a status from the requested task. Conversely, the
requested task uses GETREQ to locate outstanding requests and uses
PUTREPLY to return the status.

SM-0040 3-3

COMMUNICATION MODULE CHAIN CONTROL

TASK 0 -------- HEADER

TASK 0 to TASK 1
TASK 1

TASK 1 to TASK 1

, TASK 2 to TASK 1

"
"-

"-
.......

.......
"-

" ",J TASK n to TASK 1
TASK n

COMMUNICATION MODULES

CMOD No. 1

TASK 2 to TASK 1 /

/'
/' CONTROL

/ INPUT

------------------~

CMOD No. 2

TASK 2 to TASK 1

/'

OUTPUT
~-------------,I- - - - - - - - - - - - - - _____________ ,

SM-0040

• • •

CMOD No. n

TASK 2 to TASK

Figure 3-1. Task co~~unication tables

3-4

PUTREQ - This STP common subroutine places the request in the input
registers of a CMOO and links it to the appropriate communications module
chain control. If the request cannot be chained because either no CMOOs
are available or the chain is at its maximum, PUTREQ suspends the calling
task or, at the caller's discretion, returns control to the requester
with no action taken. Once PUTREQ has successfully generated the CMOO
and linked it to the CMCC, the requested task is readied and control
returns to the requester. PUTREQ is called via a return jump with the
caller providing the following values:

INPUT REGISTERS:

(A2) =

(Sl) =

(S2) =

OUTPUT REGISTERS:

(AI) = "Throw-away" indicator. If (AI) is positive,
control is not returned to caller until request
is queued. If (AI) is negative, control
returns with no action taken if the request
cannot be queued without suspending the caller.

Requested task's 10

INPUT+O}
Request

I NPUT+I

None

GETREQ - This STP common subroutine locates any outstanding request for
the caller. Using the CMCC, GETREQ searches for a CMOO representing a
request not yet given to the requester. GETREQ begins the CMCC search
with the lowest numbered task and returns the first request encountered
to the caller. A task calls GETREQ via a return jump.

INPUT REGISTERS: None

OUTPUT REGISTERS: (AO) = "Found" indicator. If (AO)=O, no outstanding
requests exist. If (AO),O, a request is
being returned.

(A2) = 10 of task that generated the request

(Sl) =

(S2) =
INPUT+O}

INPUT+l
Request

PUTREPLY - This STP common subroutine places the reply to a request in
the first available CMOO. Requests and replies are stored in the CMOO in
the sequence in Which they are generated. Therefore, a single CMOO may
represent an unrelated request and reply. The subroutine readies the
task to which the reply is directed and returns to the requester.
PUTREPLY is called via a return jump.

SM-0040 3-5

INPUT REGISTERS: (A2) = 10 of task to receive the reply

(51) = OUTPUT+O}
Reply

(52) OUTPUT+l

OUTPUT REGISTERS: None

GETREPLY - This STP common subroutine searches for a reply to the calling
task. The search begins with the lowest numbered task and ends with the
highest numbered task, returning the first reply encountered. GETREPLY
removes the CMOO from the CMCC and releases it for reallocation. The
subroutine is called via a return jump.

INPUT REGISTERS: None

OUTPUT REGISTERS: (AO) = "Found" indicator. If (AO)=O, no reply was
located; if (AO);iO, a reply is being
returned to the caller.

(A2) 10 of replying task

(51) OUTPUT+O}
Reply

(52) = OUTPUT+l

TSKREQ - This STP common subroutine makes a request to a task for
processing and suspends the caller until a reply is received. If the
request cannot be queued immediately, because either the queue is at its
maximum or because no communication modules are available, the caller is
suspended until the request can be queued. Once the request has been
queued, the caller is suspended until a reply is received. TSKREQ is
called via a return jump.

INPUT REGISTERS: (A2) = 10 of requested task

(51) = INPUT+O}

(52) = INPUT+l
Request

OUTPUT REGISTERS: (51) = OUTPUT+O}

(52) = OUTPUT+l
Reply

REPLIES - This subroutine queues a reply for which no request was made.
The reply is queued at the beginning of the reply queue. A reply sent
via this subroutine will be seen by GETREPLY before any reply sent via
.Po'rREPLY.

SM-0040 3-6

INPUT REGISTERS: (Al) = "Thro\traway" indicator. If (Al) is positive,
control is not returned to caller until reply
is queued. If (Al) is negative, control
returns with no action taken if the reply
cannot be queued without suspending the caller.

(A2) = Replied task's ID

(Sl)

(S2) =

INPUT+O}

INPUT+l
Reply

OUTPUT REGISTERS: None

3.2.3 USER/STP COMMUNICATION

All user/STP communication is initiated by user jobs. A user-program
request to STP may be issued as a CAL macro (see CRAY-OS Version 1
Reference Manual, publication SR-OOll). The user macro results in a
normal exit from the user program. EXEC routes all normal exits from a
job to the Exchange Package Processor. Exchange Package Processor
handling of these requests is described in section 4.4

3.3 STP COMMON ROUTINES

Certain re-entrant routines resident in STP may be called via return jumps
rather than via a call to another task. These include task logical I/O
routines (TIO), circular I/O routines (CIO), memory management routines,
and item chaining/unchaining routines.

3.3.1 TASK I/O ROUTINES (TIO)

Task I/O is a re-entrant routine in STP that logically can be considered a
part of any task that uses it. It operates only on blocked datasets. TIO
allows a system programmer to do logical I/O at the task level without
being concerned about physical I/O.

A task that uses TIO must have a DSP, DNT, and buffer assigned for the
dataset; TIO does no allocation or deallocation of DSPs, DNTs, and
buffers. A task may use a dataset's DNT, DSP, and buffer in a user field
or may generate its own DNT, DSP, and buffer for the dataset local to
STP. For example, SCP may use an existing DNT portion of an SDT entry
While generating a DSP and buffer to accommodate the logical I/O.
Similarly, EXP may reference the existing DNT for a user's $OUT dataset or
JSH may reference its own DNT for a roll-out dataset. Figure 3-2
illustrates the linkages between the DNT, DSP, and buffer.

SM-0040 3-7

Buffer

DSP

Figure 3-2. Dataset table linkages

Since task I/O cannot sense completion of physical I/O, each task must
provide the sensing. To do this, each task, when it is readied from a
suspension, should call GETREPLY. If a reply is found that belongs to
task I/O (A2=DQMID), the task should jump to REPCIO with Sl and S2 intact
from GETREPLY.

When TIO must wait for completion of physical I/O before completing a
task's logical request, it returns to the task's main interrupt loop.
TIO returns to the task's calling address only on completion of the
logical request. The calling task may not make another TIO request for a
particular DNT until any pr~ious logical request has completed.

The following TIO routines are available to system programmers:

$RWDP
$RWDR
$WWOP
$WWDS

$WWDR
$WEOF
$WEOD
$REWD

Read word (s); partial mode (will not point to next eo1')
Read word(s); record mode (will point to next eo1')
Write word(s); partial mode (no eo1' written)
Write word(s) with unused bits in last word; record mode (eo1'
written)
Write word(s); record mode (eo1' written)
Write eo!; calls $WWDR if no eo1' was written
write eod; calls $WEOF if no eo! was written
Rewind dataset; calls $WEOD if no eod was written

To call a TIO routine, a task places parameters required by the routine
in A registers and executes a return jump to the routine. The routine
returns results to the caller via A registers.

SM-0040

CAUTION

These TIO routines have the same names as logically
equivalent routines in the system library, $SYSLIB.
However, the TIC routines reside in STP and the source
for library routines resides in the SYSLBPL program
library.

3-8

3.3.2 SYSTEM TABLES USED BY TIO

TIO uses the following system tables for the dataset on Which I/O is to
be preformed:

DNT Dataset Name Table
DSP Dataset Parameter Area

Detailed information on these tables is available in the COS Table
Descriptions Internal Reference Manual, publication SM-0045.

Dataset Name Table (DNT)

TIO uses the DNT as indicated by the F$RDC and F$WDC routines available
to users (refer to description of the Exchange Package Processor in
section 4.4).

Dataset Parameter Area (DSP)

TIO uses certain DSPs located in the user field, such as those for $IN,
$OUT, data sets read or written by BUFFER IN/OUT, and sequential COS
blocked datasets that are being closed When in write mode and not
positioned to end of data. TIO uses reserved words at the end of the
DSPs. These are saved in the JTA When a TIO routine goes into recall.

Error processing

When TIO detects an error, a negative value is returned in AO. The
caller is responsible for processing these errors. Appropriate error
bits in the DSP error status (DPERR) indicate which error occurred.

TIO logical read routines

The TIO read routines transfer partial or full records of data from the
I/O buffer to the task's data area. The data is placed in the data area
in full words depending on the' read request issued. Figure 3-3 provides
an overview of the logical read operation. The calling routine must
examine DPEOR, DPEOF, and DPEOD in the DSP to determine end of record,
end of file, or end of data status. If the record control word indicates
unused bits in the last word of the record, these bits are zeroed in the
data area and field DPUBC is set to the number of unused bits.

$RWDP - Words are transmitted from the I/O buffer defined by DSP to the
area beginning at FWA until either the word count in A3 is satisfied or
an eo?? is encountered. $RWDP calls $RBLK, automatically.

SM-0040 3-9

SUBROUTINE NAME: $RWDP - Read words, partial mode

ENTRY CONDITIONS: (Al) Address of DSP

(A2) FWA of task's data area

(A3) Word count. If word count is 0, no data is
transferred.

(A6) Address of DNT

(A7) Address of JXT
(=0 if not job related)

RETURN CONDITIONS: (AO) Status

(Al)

(A2)

(A3)

(A4)

(A6)

(A7)

<0 TIO error (block number error, null
dataset, etc.)

=0 Logical I/O complete

Address of DSP

FWA of task's data area

Word count

LWA+l

Address of DNT

Same value as input

$RWDR - This routine resembles $RWDP; however, following the read, the
dataset is positioned after the eop that terminates the current record.

SUBROUTINE NAME: $RWDR - Read words, record mode

ENTRY CONDITIONS: Same as $RWDP

RETURN CONDITIONS: Same as $RWDP

TIO logical write routines

The TIO write routines transfer partial or full records of data from the
task's data area to the I/O buffer. The data is transferred in full words
depending on the write operation requested. Two additional write routines
provide for writing an eo! or an eod on the dataset. Figure 3-4 provides
an overview of the logical write operations. When writing in record mode,
it is possible to provide a count of unused bits in the last word of the
record. These bits are not zeroed in the buffer, but the record control
word indicates unused bits, and the bits are then cleared When the record
is read.

SM-0040 3-10

$WWDP - The number of words specified by the count are transmitted from
the task's data area beginning at FWA and are written in the I/O buffer
defined by DSP. $WWDP automatically calls $WBLK, as needed.

SUBROUTINE NAME: $WWDP - Write words, partial mode

ENTRY CONDITIONS: (AI) Address of DSP

(A2) FWA of task's data area

(A3) Word count. If count is 0, no data is
transferred.

(A6) Address of DNT

(A7) Address of JXT
(=0 if not job related)

RETURN CONDITIONS: (AO) Status
<0 TIO error
=0 Logical I/O complete

(AI) Address of DSP

(A2) FWA of task's data area

(A3) Word count

(A4) LWA+l

(A6) Address of DNT

(A7) Same value as on input

$WWDR - The $WWDR routine resembles $WWDP. However, an eo~ RCW
terminating the record is inserted in the I/O buffer in the next word
following the data. To simply write an eo~, the task issues a $WWDR with
(A3) =0.

SUBROUTINE NAME: $WWDR - Write words, record mode

ENTRY CONDITIONS: Same as $WWDP

RETURN CONDITIONS: Same as $WWDP

SM-0040 3-11

(A2)

(A6) dn

[QL

~ DNT
l.(A 1 ,....-------..,

SM-0040

DSP

CNCC
for
DQM

--f- Task's

(A3) Data

_.J __ ~ __ ~A_r_e_a __ ~~

I/O BUFFER

TASK I/O

PHYSICAL I/O

Figure 3-3. TIO logical read

3-12

SM-0040

(A2)--t- Task's

(A3) Data
Area

J~~~-==""

CMCC I=====~
fo r _______ ----"

-pQM_

I/O BUFFER

mass
storage

Figure 3-4. TIO logical write

3-13

TASK I/O

PHYSICAL I/O

$WWDS - The $WWDS routine is identical to $WWDR, except that the last
word of the record contains unused bits, and the eop RCW constructed
contains the unused bit count.

SUBROUTINE NAME: $WWDS - write words, record mode, with unused bit count

ENTRY CONDITIONS: Same as $WWDR, plus:

(A4) Unused bit count in the last word of the record~
a value from 0-63

RETURN CONDITIONS: Same as $WWDR

$WEOF - This routine writes an eof RCW preceded by an eop RCW, if
necessary, as the next words in the I/O buffer.

SUBROUTINE NAME: $WEOF - write end of file

ENTRY CONDITIONS: (Al) Address of DSP

(A6) Address of DNT

(A7) Address of JXT
(=0 if not job related)

RETURN CONDITIONS: (AO) Status
<0 TIO error
=0 Logical I/O complete

(A6) Address of DNT

(A7) Same value as on input

$WEOD - This routine writes an eod RCW preceded by an eop and an eof, if
necessary, as the next words in the I/O BUFFER. The $WEOD forces the
final block of data to be written on the disk; that is, it flushes the
I/O buffer. A $WEOD cannot be followed by a write.

SUBROUTINE NAME: $WEOD - Write end of data

ENTRY CONDITIONS: (AI) Address of DSP

(A6) Address of DNT

(A7) Address of JXT
(=0 if not job related)

SM-0040 3-14

RETURN CONDITIONS: (AO) Status
<0 TIO error
=0 Logical I/O complete

(A6) Address of DNT

(A7) Same value as on input

Positioning routine

TIO supports a single positioning routine, $REWD.

$REWD - The $REWD routine positions the dataset at the beginning of data
(bod). If the deadstart is in write mode and no eod has been written,
$REWD calls $WEOD.

SUBROUTINE NAME: $REWD - Rewind dataset

ENTRY CONDITIONS: (AI) Address of DSP

(A6) Address of DNT

(A7) Address of JXT
(=0 if not job related)

RETURN CONDITIONS: (AO) Status
<0 TIO error
=0 Logical I/O complete

(A6) Address of DNT

(A7) Same value as on input

Block transfer routines

TIO supports two block transfer routines, $RBLK and $WBLK.

$RBLK - $RBLK is called only by other task I/O routines and may not be
called directly by a task. $RBLK looks to see if the buffer is less than
half full. If it is, it calls CIO to initiate a disk read. CIO
continues to read as long as the user continues to empty the buffer fast
enough to keep it half empty. If the buffer is more than half full when
$RBLK is called, $RBLK verifies the next BCW (its block number must equal
the relative sector number of the dataset) and returns to the caller.

SM-0040 3-15

SUBROUTINE NAME: $RBLK - Read block(s)

ENTRY CONDITIONS: (AI) Address of DSP

(AS) Address of current block control word

(A6) Address of DNT

(A7) Base address of DSP buffer pointers (either uses
BA or JM address)

(W.DPTM) PW

RETURN CONDITIONS: (AO) Status
<0 TIO error
=0 Logical I/O complete

(AI) Address of DSP

(A4) OUT

(A6) Address of DNT

(A7) Same value as input

$WBLK - $WBLK is called only by other task I/O routines. $WBLK checks to
see if the buffer is more than half full. If it is, it calls CIO to
initiate a disk write and writes a sew. CIO continues to write as long
as the user continues to fill the buffer fast enough to keep it more than
half full. If the buffer is less than half empty When $WBLK is called,
$WBLK does no more than insert BCWs as needed.

SUBROUTINE NAME: $WBLK - Write block(s)

ENTRY CONDITIONS: (AI) Address of DSP

(AS) Address of next block control word

(A6) Address of DNT

(A7) Base address of DSP buffer pointers

RETURN CONDITIONS: (AO) Status
<0 TIO error
=0 Logical I/O complete

(AI) Address of DSP

(A6) Address of DNT

(A7) Same value as input

SM-0040 3-16

Stepflows of TIO subroutines

$REWD

1. If eod not written, call $WEOD.

2. Reset DSP.

3. Exit.

$WEOD

1. If eof not written, call $WEOF.

2. Call $WWDR to write eod.

3. Exit.

$WEOF

1. If eop not written, call $WWDR.

2. Call $WWDR to write eof.

3. Exit.

$WWOP/$WWDR/$WWDS

1. If preceding function was a write, go to 3.

2. Process write after read.

3. Move words into buffer; if end of move, go to 7.

4. If not at BCW, go to 3.

5. Call $WBLK.

6. Go to 3.

7. If not record mode ($WWDR), go to 11.

8. Insert eop.

9. If not at BCW, go to 11.

SM-0040 3-17

10. Call $WBLK.

11. Update DSP.

12. Exit.

$WBLK

1. If buffer more than half used, call woeS.

2. Update DSP.

3. Exit.

$RWDP/$RWDR

1. Move words out of buffer; if end of move, go to 5.

2. If not at BCW, go to 5.

3. Call $RBLK.

4. Go to 1.

5. If not record mode (SRWDR), go to 9.

6. Point at next eop.

7. If not at BCW, go to 9.

8. Call $RBLK.

9. Update DSP.

10. Exit.

$RBLK

1. If buffer more than half empty, call ROCS.

2. Update DSP.

3. Exit.

SM-0040 3-18

3.3.3 CIRCULAR I/O ROUTINES (CIa)

Physical I/O on a dataset uses a circular buffering technique and is
initiated by a set of STP common routines known as CIa (Circular I/O).
The Exchange Processor uses CIa to handle I/O calls from user programs.
CIa is also accessible to all other tasks through TIO and through direct
calls.

The Disk Queue Manager initiates circular I/O operations on mass storage
in response to CIa calls. These calls are issued by user programs or
tasks when data is to be transferred between the I/O buffer defined by
the DSP and mass storage. However, these requests need not be explicitly
issued. FORTRAN I/O routines in user programs and TIO routines in STP
manage the I/O buffers and make calls to CIa.

The I/O buffer consists of an integral number of 5l2-word blocks. For a
COS blocked file, the first word of each block is a block control word.
The size and location of the buffer are defined when the DSP is
generated. The default size is defined by an installation parameter.

Logical I/O on a buffer may be concurrent with physical I/O. That is, on
a read operation, the user may be extracting data from the buffer at the
same time the system is inserting data, with the user read lagging the
system read.

Alternatively, on a write operation, the user may be inserting data into
the buffer at the same time the system is emptying it. In this case, the
user write leads the system write.

The buffers are managed through the IN, OUT, FIRST, and LIMIT pointers in
the DSP. Figure 3-5 illustrates the format of physical I/O. Referring
to step A, the IN pointer advances from FIRST to LIMIT as data is
inserted into the buffer.

Step B illustrates how emptying the buffer lags filling the buffer. The
OUT pointer, Which is initially the same as IN, advances toward LIMIT but
always lags IN.

For writing, a buffer can become full when data is inserted faster than
it is extracted.

For reading, a buffer can become empty if data is extracted faster than
it is inserted.

Physical reads and writes always involve 5l2-word blocks. On a read, IN
is always at a 5l2-word buffer boundary, but OUT, Which is being modified
by the user, need not be. Conversely, on a write, OUT is always at a
5l2-word buffer boundary but IN need not be.

SM-0040 3-19

On a read operation, EXEC and CIO modify the IN pointer and the caller
modifies the OUT pointer. If IN=OUT, the buffer is empty if errors have
occurred (DPERR~O) or if the DSP is busy (DPBSY=l). The buffer is full
when IN=OUT, the DSP is not busy, and no errors have occurred.

OUT=F I RST-+

IN-+

I
I

t

FIRST -+

OUT-+

IN-+

LIMIT-+~------------------~ LIM IT -+ '--_________ ----1

A. Fi 11 i ng the buffer B. Emptying the buffer

FIRST -+

IN-+

OUT-+

LIMIT-+

C. Concurrently filling
and emptying the buffer

Figure 3-5. Physical I/O

S~0040 3-20

processing
flow

On a write operation, DQM and CIO modify the OUT pointer and the caller
modifies the IN pointer. If IN=OUT, the buffer is full if errors have
occurred (DPE~O) or if the DSP is busy (DPBSY=l). The buffer is empty
if IN=OUT, the DSP is not busy, and no errors have occurred.

A dataset may be declared memory resident. If so, CIO determines Whether
a physical I/O request should be issued for the dataset based on
processing direction and whether the buffer is full or empty. If the
request is to write the dataset and the buffer is full (IN=OUT), CIO
issues a physical I/O request. In this case, CIa also clears the memory
resident indicators in the DSP and DNT. If the buffer is not full, CIO
merely returns to the caller.

If the request is to read the dataset and the buffer is empty (IN=OUT and
DPIBN=O), CIO issues a physical request if the DNT shows that mass
storage space exists. If CIO is called to read and the buffer is not
empty, CIO returns as if a successful read had occurred. If the buffer
is empty, CIO determines whether the requested block (DPIBN) is within
the buffer (IBN*512~LIMIT-FIRST) and whether the block exists
(IBN<DNLBN). If either condition is not true, CIO clears the memory
resident flags and the read proceeds as for a null dataset. If both
conditions are true, CIO:

1. Sets DPIBN=DNLBN,
2. Sets DPOBN=requested block (old DPIBN) ,
3. Sets IN and OUT to point to the correct 512-word boundaries

within the buffer, and
4. Sets the EOI bit in DSP.

If mass storage space is allocated and the dataset size from the OAT is
greater than the buffer size, CIO clears the memory resident indicators. Any
I/O suspend calls made to the Job Scheduler are canceled before returning.

CIa call format

A task calls CIO by calling CIO subroutines RDCS or woes. User CIO calls
are processed by a special entry point, CIOS. These routines return
control immediately after calling the Disk Queue Manager. A task that
wants to resume processing upon completion of part of the physical I/O
should call subroutine TRCL.

RDCS - This subroutine is a task's entry point to CIO for read requests.

ENTRY CONDITIONS: (AI) Address of DSP

(A6) Address of DNT

(A7) Address of JXT
(=0 if not job related)

SM-0040 3-21

RETURN CONDITIONS: Control returns immediately to the caller.

(AI) Address of DSP

(A6) Address of DNT

(A7) Address of JXT
(=0 if not job related)

WOCS - This routine is a task's entry point to CIO for write requests.

ENTRY CONDITIONS: (AI) Address of DSP

(A6) Address of DNT

(A7) Address of JXT
(=0 if not job related)

RETURN CONDITIONS: Control returns immediately to the caller.

(AI) Address of DSP

(A6) Address of DNT

(A7) Address of JXT
(=0 if not job related)

~ - CIOS is an entry point for user CIO calls.

ENTRY CONDITIONS: DNP contains processing direction.

DNDSP contains DSP address.

(A6) Address of DNT

(A7) Address of JXT
(=0 if not job related)

RETURN CONDITIONS: Control returns immediately to the caller.

(AI) Address of DSP

(A6) Address of DNT

(A7) Address of JXT
(=0 if not job related)

SM-0040 3-22

~ - Return from CIOS - REPCIO returns control here based on the return
address passed to the Disk Queue Manager (DQM) from CIOS. Control may
return here several times if DQM generates multiple replies While chasing
DSP buffer pointers to read ahead or write behind.

ENTRY CONDITIONS: (Sl) Word 0 of DQM reply (DQM error status)

(S2) Word 1 of DQM reply

(AI) Address of DSP

(A6) Address of DNT

(A7) Address of JXT
(=0 if not job related)

RETURN CONDITIONS: (AI) Address of DSP

(A6) Address of DNT

(A7) Address of JXT
(=0 if not job related)

REPClO - This routine processes Disk Queue Manager replies.

ENTRY CONDITIONS: (Sl) Word 0 of reply

(S2) Word 1 of reply

RETURN CONDITIONS: (Sl)=(SO) Word 0 of reply (error status)

(S2) Word 1 of reply (24/return addr, 16/JXT offset,
24/DNT address)

(AI) Address of DSP

(A6) Address of DNT

(A7) Address of JXT
(=0 if not job related)

TRCL - Task I/O recall - This routine resumes the task When I/O is
complete or partially complete. TRCL may be called only by the task that
initiated I/O on this DNT.

ENTRY CONDITIONS: (AI) Address of DSP

(A6) Address of DNT

(A7) Address of JXT
(=0 if not job related)

S~0040 3-23

RETURN CONDITIONS: (SO) Contents of DSP word containing DPERR

(AI) Address of DSP

(A6) Address of DNT

(A7) Address of JXT
(=0 if not job related)

Control returns to caller When at least one sector
has been transferred without error or when an error
is detected. Control is returned via CIOR when this
task is resumed by a Disk Queue Manager reply.

Stepflows of CIO Subroutines

RDCS/WDCS

1. Set processing direction in DNP.

2. Save DSP address in DNDSP.

3. Set DNIOU if JXT address is nonzero.

CIOS

1. If dataset is not memory resident, go to step 14.

2. If dataset is being written, go to step 12.

3. If IN!OUT, go to step 9.

4. If DPIBN!O, go to step 13.

5. If dataset does not exist on mass storage, go to step 8.

6. If dataset is larger than buffer, go to step 13.

7. Go to step 14.

8. If last block written (DNLBN) is greater than buffer size in
blocks, go to step 13.
a. If user requested block is greater than or equal to last

block, go to step 13.
b. Set DPOBN=DPIBN. Set DPIBN=DNLBN. Set IN and OUT to point

to the current block, determined from IBN and OBN. Set
DPEOI=l.

9. Clear any DNT I/O wait flags. If not job related, return to
caller.

SM-0040 3-24

10. If job was suspended, cancel suspend (J$IODONE).

11. Return to caller.
12. If buffer is not full (IN~OUT), go to 9.

13. Clear DNMEM and DPMEM.

14. System error if the DNT is active, (DNAIO) =1.

15. User error if the DSP is busy, (DPBSY)=l.

16. If not job related, JXT address=O, go to step 14.

17. Increment job I/O request count (JTIOR) and DNT I/O request
count (DNIOR).

18. If CIO is called by Task I/O, (DNIOU)=l, or if CIO is called for
user-buffered I/O, (DNBIO)=l, or if the I/O buffer is in the user
field between 0 and the LFT table, then continue with step 19;
else, go to step 14.

19. Increment the user I/O count, JTIOUC. Set DNIOU=l.

20. Set the DSP busy bit.

21. If job related I/O, JXT address~O, then set DNDSP equal to the
DSP address relative to the JTA address.

22. Call the Disk Queue Manager:
Sl = 24/return address, 16 JXT offset, 24/DNT address
S2 = 0 (read/write function code)
R PUTREQ

The return address is set to CIOR.
The DNT address is relative to the job's JTA address if job
related.

23. Return to the caller.

CIOR

1. Clear the busy bit in the DSP (if this is not a DQM intermediate
recall reply).

2. If the job is in recall, (DNJIO=l), call the Job Scheduler with
function code J$IODONE. Clear DNJIO.

3. If I/O was in the user field below the LFT table, (DNIOU) =1, then
clear DNIOU and decrement the user I/O count, JTIOCU. Ready the
Job Scheduler if JTIOCU 'is decremented to o.

SMr0040 3-25

4. If the Disk Queue Manager return status is 0, go to step 6.

5. Process Disk Queue Manager (DQM) error.

DQM
error

EREOI

EREXT

ERUDE

ERUHE

ERIDP

ERNLD

ERNMT

ERNMS

ERNCS

DPERR
bit set

DPEOI

DPEOI

DPUDE

DPUHE

Exchange
Processor error

ERBDP

ERLDV

ERNDT

ERNDS

ERNDS

Description

Read beyond EOI

write beyond EOI
without
extend permission

Data error

Hardware error

Invalid DSP

Unknown logical device
name

No more OAT space

No more disk space

Not enough contiguous
disk space

For each error from DQM, CIOR either sets a bit in the DSP error
status field, DPERR, or processes the error as a fatal error.

For a fatal error, the system is aborted if CIO is not executing
in the Exchange Processor. If CIO is executing in the Exchange
Processor, the job is aborted with an appropriate error
message. (In this case, CIO exits directly to entry ABTJl in
the Exchange Processor.)

6. Clear DNRCL.

7. If called for buffered I/O, (DNBIO)=l, then clear DNBIO and
validate the DPTM words in the DSP by comparing with the copy
saved in the JTA at JTDTM.

8. If Task I/O recall, (DNTIO)=l, then clear DNTIO and return to the
address in DNCIO.

9. Return to the executing task's main loop as determined by the
address in the CIOJ table for the task~

SM-0040 3-26

REPeIO

1. Set A7 - JXT off.et + JXT ba •• ,
A2 - DNT addr ••• , and
Al - (DNSP) + JTA .ddr ••••

2. Exit to r.turn .ddr ••• in word 1 of r.ply.

!e
1. If DNTIo-l or if DNRC~-l, abort the job if the reque.t i. job

related, oth.rwi •• , abort the .y.t.m.

2. Set DNTIO-l and DNRC~-l.

3. Sit DNCle-BO.

4. If not a buff.r.d I/O requ •• t, .u.p.nd the job, •• t DNJIO-l and
call the Job Sch.dul.r.

S. Save DSP word. in the JTA if a buff.r.d I/O r.qu •• t.

6. Exit to thi. ta.k'. main loop. u •• the CIOJ jump table
containing the main loop addr ••• for .ach ta.k that call. CIO
routin •••

j,J.. MlNOaV ALLO~ION/DIALLaaA'IOI aoU'ZIII

fh. MlMAL Ind MlNDI .,' lammon IWIIOwiin., ,r.vi.. '.r 1110aliion Ind
,.,ii., •• iOft II ,.'i,li.-'i', mtm.,v .,.11 '.r i •• por.r, u •• IV I 'I'~.
Aiillliion In' , •• ii'.lii,n i. "Im m.molV p •• i(I). 'hi numblr Ind .i ••
• , m.mor, ,"i' i. d.i.,min •• Wh.n ihl op.rliin, 1,1'lm il ,lnl'I •• d.

A. 'iiwI".i •• in "'Y" a-I, ib. , •• i ,.Ii. Ind 'hi h.l.lr Ind .rlil.r
WO," If. YI.' '.f Ilfti'liiin, m •• or, lii"liion Ind .111100Iiion. Th.
"Ii 'Iii. I.n,',', •• I h •••• , wor. Ind Oft. Wlr. I., .Iah m.mor, pool in
ihl ",'.m, 'b. "Ii Illi. h •••• , d"'nl. ib. miNimum vlli. pool
numb". 'h. WlI' ••••• i.' •• wiih ihl m.mo" pool "ovi ••• ih. b •••
••• r •••• n. ihl .il ••• ih. m.mlf, p.,i.
I •• h ., •• II ••• lIfr ,I" ,. lur •• un'.' Dr • b •••• ' II" .nd • irlil,r
W.,', 'h. h..... .nl ••• "., WI." ••• ".ft".li .ft' indi •• " 'h. ailiul
C.y.ii.liI •• un.,.iilli., .n. ihl •••• II ih •• ,... Ihl ftum'.r Ind
.i ••• • , ib •• , •••• bln, •• "ft •• , •• i~r I •••• ~. • •••• n wolda .ram or
,,'u,n .. , •• i •• ,II',

1M-0040

Pool Table

HEADER

Pool No.

Memory Pool No. 1

Pool No. n

,

Memory Pool No. n

Figure 3-6. Memory allocation tables

Memory allocation - MEMAL

ME MAL is an STP common subroutine that allocates a variable size memory
area for temporary use by a task.,

Memory is allocated from a memory pool. The caller provides MEMAL with
the number of the pool from Which allocation is to occur and the number
of words desired. The number of words must be at least one and not more
than the pool size less 2. MEMAL allocates two words more than
requested; these are used by MEMAL as header and trailer words for the
area to be allocated. On return to the caller, MEMAL provides a status
and, if memory was allocated, the address of the first usable word. The
allocated area is zeroed.

INPUT REGISTERS:

OUTPUT REGISTERS:

SM-0040

(A6) = Number of memory pool from which to allocate

(A7) = Number of words desired

(A6) = Status:
o Good status
1 Invalid memory pool number
2 Invalid number of words requested
3 Memory not available

3-28

(A7) = Address of first usable word of memory to be
allocated (meaningless if A6rO).

Memory deallocation - MEMDE

MEMDE is an STP common subroutine that returns memory to its memory pool
for reallocation.

In addition to marking the memory as available for allocation, MEMDE
combines the area with any adjacent available areas thereby maintaining
the largest possible size for allocation.

The caller must provide MEMDE with the memory pool number to which memory
should be returned and the address of the first usable word of the memory
to be deallocated.

INPUT REGISTERS:

OUTPUT REGISTERS:

(A6) = Memory pool number

(A7) = Address of first usable word of memory to be
deallocated

(A6) = Status:
o Good return
I Invalid address
2 Area not currently allocated
3 Invalid pool number

(A7) = Address of memory released; meaningful only
if status is o.

3.3.5 CHAINING/UNCHAINING SUBROUTINES

The CHAIN and UNCHAIN STP common subroutines provide tasks with a means
of linking data. Each piece of data is termed an item and consists of
two words of header information followed by the information being added
to the chain. As an example, an item could be the input and output
registers used for intertask communications. By chaining registers,
tasks need not be limited to two words of input and two words of output.
However, the CHAIN/UNCHAIN subroutines are not restricted to use for
intertask communications; the amount of information in an item and its
type is defined entirely by the task using the subroutines.

Chaining is established through a chain control word and the first two
words of each item in the chain. Figure 3-7 illustrates a chain of items.

SM-0040 3-29

Pointers in the chain control word identify the first and last items on
the chain. The chain control word also contains space for the maximum
number of items that may exist on the chain and a count of the number of
items on the chain. However, because the chain control word may reflect
only a portion of the entire chain, the maintenance of the count is the
responsibility of the calling task.

The two words used in the chain item provide a forward link to the next
item on the chain, a backward link to the preceding item on the chain,
and the address of the chain control word to Which this item is linked.

Chain item - CHAIN

CHAIN is an STP common subroutine that places an item in a queue
(chain). CHAIN always adds items at the end of the existing queue.
Therefore, if a single destination accepts multiple priorities, creation
of a separate queue for each priority is necessary.

The caller must provide CHAIN with the address of the chain control word
and the address of the chain item.

INPUT REGISTERS: (A6) = Address of chain control word

(A7) = Address of the item to be chained

OUTPUT REGISTERS: (A6) = Unchanged from input

(A7) = Unchanged from input

Unchain item - UNCHAIN

UNCHAIN is an STP common subroutine that removes an item from a queue.
The item to be removed may be anywhere in the queue.

Although the chain control word contains a count of the items in the
queue, UNCHAIN does not adjust this count; this is the responsibility of
the caller.

The caller must provide UNCHAIN with the address of the item to be
unchained. UNCHAIN determines the appropriate chain control word from
the item.

INPUT REGISTER: (A7) = Address of item to be unchained

OUTPUT REGISTER: (A7) = Unchanged from input

SM-0040 3-30

n l ~------------------~

Figure 3-7. Chain tables

SM-0040 3-31

3.3.6 INTERACTIVE COMMUNICATION BUFFER MANAGEMENT ROUTINES

The interactive communication buffer management routines are a set of
common routines that operate on the Interactive Buffer Table (IBT) and
queue control words in the Active User Table (AUT). They allocate and
deallocate buffer space, queue and dequeue messages, and transfer
messages to and from the buffer area. To ensure proper management of the
buffers, these routines allocate and deallocate buffers in STP
non-interruptible mode.

The interactive communication buffer area is in the high range of memory,
and the IBT is constructed so that, in the future, the buffer can be
expanded, contracted, or relocated as required by dynamic memory
management. Features of the IBT and the management routines that
minimize overhead in providing dynamic memory management of this area are
the interactive buffer base address, the use of buffer identifiers, and
inverting entry allocation (the highest address buffer is allocated
first). Furthermore, the bit map in the IBT minimizes overhead in
allocating and deallocating buffer space. Buffer area fragmentation is
prevented by allocating memory in small, fixed-size blocks, which can be
linked together.

Queue control word structure

The interactive buffer management routines manipulate a queue control
word with the following structure:

16 32 48

QCOUNT ~ QTAIL I QHEAD

Field Bits Description

QCOUNT 0-15 Count of entries on the queue

QTAIL 32-47 Buffer identifier of the last buffer on the queue

QHEAD 48-63 Buffer identifier of the first buffer on the queue

ENQMSG - This routine allocates buffer space, moves the message into the
buffer, and queues the buffer on the desired queue.

ENTRY CONDITIONS:

SM-0040

(AO) Enqueue type:
=0 Queue at tail
#0 Queue at head

3-32

RETURN CONDITIONS:

(AS) Message length

(A6) Message address

(A7) Queue control word address

(AO) Operation status:
=0 Successful
~O Inadequate buffer space

Registers Al through A4 are saved and restored.

NXTMSG - NXTMSG moves the next message in the queue to the record area.

ENTRY CONDITIONS:

RETURN CONDITIONS:

(AO) Type of move (presently only block is
supported)

(AS) Maximum move size

(A6) Move address

(A7) Queue control word

(AO) Operation status:
=0 Successful

address

~O No message or message too long

(AS) Buffer 10

(A6) Address within record area where next buffer
may be moved

(A7) Queue control word address

Registers Al through A4 are saved and restored.

FREEMSG - This routine removes a message from the queue and releases the
buffer space.

ENTRY CONDITIONS:

RETURN CONDITIONS:

SM-0040

(A6) Buffer ID

(A7) Queue control word address

(AO) Operation status:
=0 Successful
~O Buffer not on queue

3-33

SYSTEM TASKS 4

The system tasks are described in this section. They are:

Task

cos Startup
Disk Queue Manager (DQM)
Station Call Processor (SCP)
Exchange Processor (EXP)
Job Scheduler (JSH)
Permanent Dataset Management (PDM)
Log Manager (MSG)
Memory Error Processor (MEP)
Disk Error Correction (DEC)
System Performance Monitor (SPM)
Job Class Manager (JCM)
Overlay Manager (OVM)

Section

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

4.1 COS STARTUP

System startup is the process of loading the CRAY-l Operating System
(COS) into CRAY-l memory, beginning execution, and generating or
recovering tables for the operating system. The operating system to be
started mayor may not be on a user permanent dataset. If it is on a
CRAY-l disk storage unit, then a 2-pass startup is performed, and the
parameter file must specify a 2-pass startup. COS has three types of
startups: Install, Deadstart, and Restart.

Install

SM-0040

For an Install, COS is started as if for the first
time. All CRAY-l mass storage is assumed to be
vacant. Therefore, a label is written on each disk
storage unit, and the Dataset Catalog (DSC) is written
on the master unit. An amount of space, determined by
the value of the installation parameter I@DMPSIZ, is
allocated and zeroed on the master device. This space
is used to dump memory following system failures. The
DSC and the tables residing in memory are set up to
indicate that no datasets (permanent or temporary) are
there other than the dataset containing the DSC

4.1-1

Deadstart

Restart

itself. The Rolled Job Index dataset is initialized
and is entered into the DSC. A 2-pass startup is
meaningless during an Install. If a 2-pass startup is
requested during an Install, startup halts and issues
a message to the operator in the S-registers
explaining why it has halted. Install execution is
described further in section 4.1.4.

FOr a Deadstart, COS is started as if after a normal
system shutdown. That is, permanent datasets
mentioned in the DSC are preserved via proper setup of
tables in memory. However, any input or output queues
mentioned in the DSC are deleted. The area reserved
for the system dump is also preserved. An attempt is
made to access the Rolled Job Index dataset. If the
dataset cannot be accessed, a new edition is created
and initialized. If the dataset can be accessed, all
entries other than entry 0 are cleared (since I/O
datasets are not recovered by a Deadstart) and the
dataset is rewritten. For a 2-pass Deadstart, the
specified system dataset is located and read into
memory on pass 1. Once the system is read, the system
and the parameter file are moved down over the current
system, and a normal startup is initiated. Deadstart
execution is described further in section 4.1.5.

For a Restart, COS is started as if after a system
interruption. That is, input and output queues as
well as permanent datasets are recovered. The area
reserved for the system dump is also preserved. The
Rolled Job Index dataset is accessed and read into
memory. If the access or the read receives an error,
a new edition is initialized and written to disk. If
the operator chooses not to recover rolled jobs, the
index is cleared and rewritten. The first pass of a
2-pass Restart is identical to the first pass of a
2-pass Deadstart. Restart execution is described
further in sections 4.1.6 and 4.1.7.

Most of COS Startup resides in the System Task Processor (STP) for
convenient access to system tables and facilities. However, some COS
Startup logic resides in operator station software and in EXEC. Some
tables, such as the Permanent Dataset Information Table are initialized
when STP is assembled.

SM-0040 4.1-2

4.1.1 INPUT TO STARTUP

Input to Startup may consist of a parameter file and the $SDR and $ROLL
datasets.

Parameter file

Control of the COS startup procedure is through parameters in the form of
statements on a special file. These statements, Which are described in
the COS Operational Procedures Reference Manual, publication SM-0043, are
sent from the operator station. The parameter file may be prepared from
punched cards or from the operator station with the aid of a text
editor. However, parsing of the command language is performed in the
CRAY-l. In this way, rewriting of the parsing logic for each front-end
system becomes unnecessary.

A closed subroutine parses the parameter file and correspondingly
modifies memory. Thereafter, Startup proceeds as if no parameters have
been passed; that is, the intent is to drive Startup directly via STP
tables and only indirectly via parameters from the operator station. The
operator station commands copy the parameter file into CRAY-l memory
along with EXEC, STP, and CSP.

System Directory dataset (SSDR)

A permanent dataset, $SDR, is maintained to contain records specifying
System Directory datasets to be recovered during Restart or Deadstart.
The Dataset Catalog (DSC) contains an entry for $SDR, which is
initialized during an Install. Space is allocated based on the number of
SDR entries specified in the system. During Restart or Deadstart, the
dataset is read to rebuild the System Directory. If a failure occurs, a
message is issued to the system log, and the operating system
initialization is abnormally terminated.

The $SDR dataset is constructed of 512-word blocks. Each block contains
eight logical records, with the first word of each block holding the
block number relative to the beginning of the $SDR file. The first block
in the dataset is a header record containing the maximum number of SDR
entries as specified in the last system that recovered the System
Directory. The value is updated if the number of entries in the system
increases or decreases and recovery is not to be performed. Logical
records in the file are accessed by using the formula: (Relative
resident SDR entry +1)/8. The quotient gives the block number of the
entry within the file, and the remainder gives the logical record number
within the block.

SM-0040 4.1-3

Each $SDR record except the header contains the Permanent Dataset
Definition Table (PDD) of a dataset entered into the System Directory.
When an ACCESS request with the ENTER operand is processed by the
Exchange Processor (EXP) , the Dataset Name Table (DNT) of the dataset is
saved in the resident SDR table. The PDD of the dataset is written to
the $SDR dataset. The dataset update is complete before EXP completes
processing the request.

Whenever a Restart or a Deadstart is performed by the operating system,
the resident System Directory (SDR) is recovered unless the operator
specifies that recovery is not to be performed by means of the *SDR
parameter. When an Install is performed, the System Directory is not
recovered, and a user job (JSYSDIR) must be run to create the initial
System Directory entries.

Rolled job index dataset ($ROLL)

The operating system maintains a special permanent dataset so Startup can
determine which jobs were in execution prior to a system recovery. This
dataset, referred to as $ROLL, contains information about each job that
has entered execution and has not yet terminated. $ROLL is maintained in
the Dataset Catalog (DSC) with a permanent dataset name of SYSROLLINDEX.
Read, write, and maintenance passwords are defined for it. $ROLL is
initialized and saved during an Install.

During either Restart or Deadstart, the recovery of rolled jobs
subroutine, RRJ, attempts to access $ROLL. If the access fails, a new
edition of $ROLL is created, initialized, and saved, and recovery of
rolled jobs is disabled with a message to the system log if recovery
would have been performed otherwise. No message appears if $ROLL cannot
be accessed and recovery was not requested.

The information in $ROLL consists of fixed-length entries, one for each
defined Job Execution Table (JXT) entry. The entry corresponding to JXT
ordinal zero is used for validation of the $ROLL dataset and does not
correspond to any job in the system. Information in entry 0 consists of:

• The number of JXT entries defined in the previously deadstarted
system. Recovery is not possible if the previous system defined
more JXT entries than the current system. An error message is
issued in this case.

• The memory size of the previously deadstarted system. This is
informational only.

• The logical name of the device containing $ROLL. This is compared
with the device name from the Dataset Allocation Table (OAT) that
is supplied by the Permanent Dataset Manager when $ROLL is
accessed. A mismatch causes an error message to be issued, and
recovery is disabled.

SM-0040 4.1-4

• The track number allocated to $ROLL. JXT limitations assume that
$ROLL will never exceed one allocation unit. This number is
compared with the AI from the OAT for the accessed $ROLL. A
mismatch causes an error message to be issued, and recovery is
disabled.

• The sizes of key tables contained in the Job Table Area (JTA) on
the roll index, in particular, LE@RJ, LE@DNT, and LE@JXT. These
must be the same in the recovered system or RRJ halts. RRJ halts
rather than continuing with recovery disabled so the operator can
restart with a correct system file without having the roll index
ove rw r i t te n •

All other entries in $ROLL correspond to one specific JXT entry. These
entries contain enough information to identify which job has been
assigned to the JXT entry and to locate the roll image if the job has
been rolled out. The index entry also contains a flag that indicates
whether a job has performed some function that will invalidate the roll
image. (See the description of the RJ table in the COS Table
Descriptions Internal Reference Manual, publication SM-0045, for detailed
descriptions of the formats of these entries.)

Information contained in these entries includes:

• The first three words of the first partition from the OAT for
the roll image dataset. This includes the 2-word partition
header and one word containing up to four allocation unit
indices. If the job has never been rolled out, these words are
zeros.

• The job name, job sequence number, station, and terminal 10 of
job origin. These determine which SOT entry in the input queue
corresponds to this job.

• A "not recoverable" flag. This indicates that the job cannot be
recovered from the roll image. This flag is set whenever the
job performs one of the following functions:

1. DELETE, ADJUST, or MODIFY on a permanent dataset. Since
these functions change the DSC in a manner that could cause
the job to fail if they were repeated, the roll image cannot
be relied upon.

2. Random write to any dataset. The system circular I/O (CIO)
routines recognize a random write to a dataset and declare
the job not recoverable, since the difference in data may
change job results if the job is restarted at an earlier
point.

SM-0040 4.1-5

3. Write following read, rewind, or skip forward on any
dataset. Since a program that reads or skips to end of data
or end of file may have different results if the terminator
is moved or removed completely by overwriting, the job is
considered not recoverable.

4. Release of a local dataset. Since disk space returned to the
system is available for use by other jobs, release of a local
dataset causes the job to be not recoverable. Release of a
permanent dataset does not affect disk allocation and
therefore does not affect recoverability.

Note that every job that becomes irrecoverable due to any of
the above becomes recoverable again as soon as it has
subsequently been successfully rolled out.

• Date/time stamp of system that was running When job was rolled
out.
This is generated from the STP assembly date and time~ it
detects jobs being recovered on a different system.

$ROLL is maintained jointly by EXP and the Job Scheduler (JSH) during
system operation. At job initiation JSH sets up the corresponding index
entry to reflect the fact that the job was never rolled out and is
therefore not recoverable. Subsequently, each time JSH rolls the job, it
sets up the index to point to the roll dataset and designates the job to
be recoverable. The index is written to disk When the Disk Queue Manager
(DQM) informs JSH that the rollout has completed successfully. EXP
recognizes the fact that a job is performing one of the functions that
causes the job to become irrecoverable and signals the Job Scheduler to
set the index entry accordingly and to rewrite the index. The rewrite of
the index always occurs before EXP completes processing the function.

4.1.2 TABLES USED BY STARTUP

The Startup task uses the following tables to initialize the system for
an Install, Deadstart, or Restart.

DRT
DSC
SDT
DNT
DAT
DSP
PDI
DVL
EQT
RJI
QDT
OCT
OCT
OLL

SM-0040

Device Reservation Table
Dataset Catalog
System Dataset Table
Dataset Name Table
Device Allocation Table
Dataset Parameter Area
Permanent Dataset Information Table
Device Label
Equipment Table
Rolled Job Index Table
Queued Dataset Table
Overlay Directory Table
Overlay Control Table
Overlay Load Request List

4.1-6

Detailed information about these tables is available in the COS Table
Descriptions Internal Reference Manual, publication SM-0045.

Device Reservation Table (DRT)

The DRT, as initially assembled and updated through parameter file
options, lists disk flaws that Install uses to locate the first good
track. Install updates the DRT upon detecting additional flaws.
Deadstart and Restart reconstruct the DRT based on flaw table information
and DATs for permanent datasets: they also set up the area reserved for
system dumps.

Dataset Catalog Table (DSC)

Install creates the DSC dataset on the master device. Deadstart and
Restart use the DSC for bringing up the system following a idle down or
system interruption,.

When Startup sets the DRT bits for the Dataset Catalog (DSC), the system
dump area, the system overlay dataset, or datasets encountered in the
DSC, the DRT is checked to see if the bit is already set. If any
occurrences of such a conflict are found, a special flag is set and a
note is made of each such device and track number. Following completion
of the normal dataset recovery pass, a second pass is made through the
DSC and all datasets which have conflicts are identified with system log
messages.

System Dataset Table (SDT)

Install and Deadstart initialize the SDT as having all entries in the
available queue. Restart uses the DSC to recover the queues for system
input and output datasets and makes entries in the SDT accordingly. SDT
entries are threaded into the input and output queues.

Dataset Name Table (DNT)

The Startup task initializes the DNT for the DSC.

Device Allocation Table (DAT)

Deadstart creates a DAT for the DSC dataset.

SM-0040 4.1-7

Dataset Parameter Area (DSP)

Startup and PDM use their own internal separate DSPs for manipulating the
OSC. There is no central OSP in this regard.

Permanent Dataset Information Table (PDI)

Install computes the number of hash pages and the number of overflow
pages and stores them in the PDI and in the device label. Deadstart and
Restart retrieve these values from the device label.

Device Label (DVL)

Install writes a device label on the first usable track of each mass
storage device. The label contains the device name and flaw information
for each device. The master device label also contains the DAT for the
OSC and a pointer to the first track of the reserved system dump area as
well as a pointer to the system overlay dataset. A special flag in the
label identifies the master device.

A Device Label (DVL) usually resides on the first track of its disk
storage unit (OSU). This is because of I@DVLRES, an installation
parameter, that reserves tracks at the front of a DSU for attempts to
write the DVL. Usually, the first attempt is successful and the rest of
the I@OVLRES tracks are available for user datasets. However, if enough
bad tracks are discovered When trying to write a DVL, the DVL could
inhabit any track.

Because the DVL track location cannot be known beforehand, Deadstart and
Restart search for each DVL. To prevent false DVL finds, each DVL
contains the ASCII characters DLB, the logical device name, and a
checksum.

When a DVL is located, its track is reserved in the Device Reservation
Table (ORT). Also, each flaw mentioned in the DVL is reserved in the
DRT. For the master device, the DSC tracks mentioned by the DVL are also
reserved in the DRT and the DSC OAT is rebuilt in memory. The master
device label also contains the track number of the first track
pre-allocated for system dumps and the system overlay dataset. These
areas are also reserved in the DRT.

Equipment Table (EQT)

The EQT is used by Startup as a source of information to describe devices
and the hardware configuration. It may be modified by the parameter
file.

SM-0040 4.1-8

Rolled Job Index Table (RJI)

The Rolled Job Index is either initialized or read into memory, depending
on type of Startup and operator options in the Startup parameter file.
This index controls the recovery of rolled out jobs.

Queued Dataset Table (QDT)

Install and Deadstart initialize the QDT with no entries in use. Restart
uses the DSC, as well as the information in the roll files, to recover
the QDT. During a Deadstart, those user-permanent DSC entries with a
non-zero QDT index are rewritten with the QDT field cleared.

Overlay Control Table (OCT)

The OCT contains flags and pointers for determinine the current status of
the overlay area for the associated task.

Overlay Call Stack (OCS)

The Overlay Call Stack contains ten entries for each task.

Overlay Load Request List (OLL)

The OLL tracks initial load requests occurring While the overlay areas is
busy.

4.1.3 STARTUP SUBROUTINES

The COS startup task (Startup) is created by EXEC. Startup executes only
once--When the operating system is loaded and started up. Although
communication areas exist for Startup, no tasks can ever place requests
in the registers or request that this task be readied. (In this section,
readying the task means clearing its suspended bit.)

Startup leaves messages in memory to notify the operator of failures
during the COS Startup procedure.

Three main subroutines along with many helper subroutines comprise the
Startup Task. They are Z, RRJ, and SDRREC.

SM-0040 4.1-9

Z subroutine

The three Startup options (Install, Deadstart, and Restart) run as the
first portion of Startup in STP in the form of a closed subroutine called
by Startup via a return jump to entry point z. Z resides at the
high-address end of STP. Z is executed just after Startup has created
all STP tasks with the exception of the Job Scheduler (JSH), log manager,
job class manager, and memory error tasks. When Z completes execution,
Startup creates the remaining tasks in STP. Z executes a return jump to
subroutine RRJ (Recovery of Rolled Jobs) just prior to exiting. RRJ in
turn carries out any manipulation of the Rolled Job Index dataset that
may be required due to operator specification or installation-selected
defaults. Since the code of Z is not needed again, as one of its final
functions, Startup moves the image of CSP to overwrite Z and adjusts
pointers accordingly so that the unused memory is made available for user
jobs.

JSH and the Station Call Processor (SCP) are two of the tasks created by
Startup. JSH activity is stimulated by the System Dataset Table (SOT)
entries comprising the input queue. JSH is not readied if the input
queue is empty. Similarly, SCP activity is stimulated by entries in the
output queue. The queues are assembled as being empty and are left empty
by the Install and Deadstart options; therefore, JSH and SCP remain idle
when either of these options is selected during Startup. Similarly, the
queue of available SDT entries is assembled as containing all of the SOT
entries.

When the Restart option is selected, however, it sets up SOT entries from
the DSC and, therefore, alters the input, output, and available queues.
In this way, Restart notifies JSH and SCP that queues exist for them to
process.

If recovery of rolled jobs is selected, JXT entries may also be
constructed to reflect jobs that can be successfully recovered. In this
case, certain JSH flags are set up so that the Job Scheduler will be
aware that jobs are already in the execution queue.

The COS startup procedure requires the time and date for handling the DSC
entries. It obtains the current time and date from the operator station
which is passed to EXEC. EXEC converts the date and time to CRAY-l clock
periods and sets the real-time clock to this value.

The SCP task may be active during execution of Z, responding to station
messages. HOwever, a flag in STP controls which messages STP processes
immediately and which are postponed until Z completes.

Also required is the memory size of the CRAY-l on which COS is
executing. The actual memory size is defined by an installation
parameter (I@MEM) or via a Startup parameter file statement (*MEMSIZ).

SM-0040 4.1-10

RRJ subroutine

All three Startup routines call subroutine RRJ before calling System
Directory Recovery (SDRREC) and before processing system dumps. RRJ
executes as a closed subroutine called by Z and performs any processing
of rolled out jobs or the index dataset required. RRJ is called before Z
executes SDR recovery or copies any existing system dump, since disk
space needed to restart a rolled job must be recovered and allocated in
the Disk Reservation Table (DRT) before any new space can be used. RRJ
does not return any status used by Z; it does set a status word
indicating the type of recovery performed, which is used by JSH to
determine how much JXT initialization JSH must perform.

RRJ performs one of several activities depending on the type of Startup
being performed.

RRJ execution during Install - Recovery of rolled jobs cannot be
performed during an Install, since permanent datasets and input/output
queues are not recovered. Therefore, RRJ merely initializes $ROLL and
issues a SAVE request to the Permanent Dataset Manager (PDM). The
initialization of $ROLL consists of setting up entry 0 (See RJ table
description in the COS Table Descriptions Internal Reference Manual) and
zeroing all other entries. The buffer used to write $ROLL remains intact
in memory throughout normal operation of the system, and $ROLL is never
read during normal operation.

RRJ execution during Deadstart - Since input/output queues are not
recovered during Deadstart, rolled jobs cannot be recovered. RRJ
attempts to access $ROLL and read it into memory. The buffer remains
intact throughout normal operation, and $ROLL is never read again during
normal operation. If RRJ was enabled by operator specification, RRJ
detects that it is a Deadstart, issues an error message, and disables
recovery_

Once $ROLL has been successfully accessed and read in, the contents of
entry 0 contents are checked. If errors occur on the access or read, or
if entry 0 does not validate correctly, RRJ issues error messages and
re-initializes $ROLL. A new edition of $ROLL is created if the access
was unsuccessful or if the existing edition received an error while being
read. Otherwise, the new $ROLL is written over the existing one. If no
errors are received, the $ROLL buffer is cleared to indicate no executing
jobs and the dataset is rewritten.

SM-0040 4.1-11

RRJ execution during Restart - If Restart was selected, RRJ may attempt
to recover jobs. This depends on whether RRJ is able to successfully
access and read $ROLL. Error conditions here are handled as for
Deadstart. If the access and read are successful but RRJ was not enabled
by the operator, then RRJ clears $ROLL as for Deadstart. If RRJ is
enabled, RRJ begins scanning the index entries following verification of
entry O. If an error occurs during entry 0 validation, RRJ disables
recovery with a message to the system log and continues as for Deadstart.

If no errors occur during $ROLL validation, RRJ attempts to recover
jobs. Messages are issued to the system log explaining why a job
mentioned in the index is not recovered or indicating a successful
recovery. A successful recovery means that the job has been entered into
the JXT chain at the appropriate spot and the input System Dataset Table
(SOT) entry has been moved from the input queue to the execute queue.
The job status in the JXT is then set to "rolled out" and "suspended by
recovery." The "waiting for memory", "pending abort", and "operator
suspended" bits are maintained. All other status bits are set to 0, as
are any event wait words. Any caller who requested recall based on an
event is responsible for determining whether the event is satisfied or
whether the recall should be re-issued. For example, any outstanding
ACQUIRE requests may have to be re-issued.

SDRREC subroutine

SDRREC is executed as a closed subroutine that is called by Z after
Recovery of Rolled Jobs (RRJ) is complete but before the system dump is
copied. RRJ must be executed first to ensure the integrity of datasets
belonging to any jobs being recovered. Any failures during SDR recovery
cause the operating system to terminate abnormally.

File allocation - SDR recovery begins with a request to access the $SDR
dataset. If no dataset exists, the number of blocks (segments) required
to contain the current number of generated resident SDR entries is
computed. A request is issued to the Disk Queue Manager to allocate disk
space for the dataset. Then a request is made to the Permanent Dataset
Manager to SAVE the dataset. Once the operating system initialization is
complete, entries can be added to the SDR by ACCESS requests specifying
the ENTER parameter.

SDR recovery - .If the $SDR dataset exists, each block of the dataset is
read and processed until a logical record with a binary zero dataset name
is found or until the system-specified number of SDR entries is
processed. A Dataset Name Table (DNT) is built for each dataset. The
DNT and POD in the logical record are used to ACCESS the dataset. Then
the dataset is entered into the Permanent Dataset Table (PDS). If the
dataset access fails, a message is issued to the system log, and the
entry is ignored.

SM-0040 4.1-12

No recovery specified - If the operator specifies *SDR in the parameter
file to indicate that the System Directory is not to be recovered, a new
edition of $SDR is allocated. Once the operating system initialization
is complete, entries can be added to the SDR by ACCESS requests
specifying the ENTER operand.

Changes in the number of SDR entries - If System Directory recovery
detects that the system-generated number of SDR entries is greater than
the value saved in the $SDR header record, the number of blocks required
by the system is calculated. If additional blocks are required, write
requests are issued until all blocks are allocated. An ADJUST request is
issued to the Permanent Dataset Manager to update the DSC for $SDR, and
processing continues for SDR recovery.

If System Directory recovery detects that the number of SDR entries
specified by the system has decreased, and if no recovery is specified,
then the dataset is cleared, and the altered number of SDR entries is
recorded in the header record. Once the operating system initialization
is complete, entries can be added to the SDR by ACCESS requests
specifying the ENTER parameter.

If the number of SDR entries specified by the system has decreased and
recovery is to be performed, a message is issued to the system log, and
initialization is abnormally terminated.

Two-pass Startup

A 2-pass startup is detected when Startup encounters the *BOOT and
*SYSTEM directives in the parameter file. These directives tell Startup
that the system currently executing is for locating and transferring
control to another version of the operating system resident on the CRAY-l
disks. The procedure followed by pass 1 is identical to that of a normal
Startup to the point where the datasets in the Dataset Catalog (DSC) are
to be recovered. At that point, pass 1 makes a task request to the
Permanent Dataset Manager (PDM) to locate the system dataset. Once the
system dataset has been found, Startup validates the DSC entries for the
dataset. Next, the Disk Queue Manager (DQM) reads the dataset into
available memory. The final step Startup performs before requesting EXEC
to move the system is to build the boot exchange package, location 20, of
the new system. This indicates that pass 2 is about to begin.

4.1.4 INSTALL

Install requires a track on each mass storage unit and uses the first
track that the DRT says is good for the device label. After writing the
device label, Install reads it back to verify it. If the verification
fails, the track is noted in the DRT as being bad and the next available
track is used.

SM-0040 4.1-13

Flaw information for a device is written on the disk as part of the
device label and is updated at the end of Install. Anything Install
writes is validated, and any flaws are noted in the DRT and in the device
labels.

On the master device, the device label points to the DSC by containing
the OAT for the OSC. The master device label also contains a pointer to
the first track of an area allocated by Install to contain system dumps.

Install creates the OSC in blocked format upon the master device while
logging any disk errors found in the DRT and in the flaw table within the
OVL image being built in memory. The OSC (except for block control
words) is initialized to all zeros.

The system dump area is zeroed, and any flaws are entered into the DRT
and flaw table. The amount of mass storage allocated is determined from
the value of I@OMPSIZ. The list of allocation indices allocated to the
system dump is written to the first sector of the first track in the
reserved area for use by Deadstart and Restart. The system overlay
dataset is zeroed and the Allocation Index list written to sector 0 of
the first track.

In general, I/O on a dataset requires a buffer, DSP, DNT, and DAT.
Install uses separate buffers and OSPs of its own when working with
device labels and the DSC. At assembly of STP, space for the DNT and DAT
are set aside for post-Install use. However, Install must complete
initialization of the DNT and the DAT.

The default job class structure is in effect after an Install.

4.1.5 DEADSTART

Deadstart executes as an operator option if recovery of the input and
output queues is not possible or desirable. Deadstart scans the DSC for
input and output datasets, deleting all such datasets to help create the
effect of an idle system. Permanent datasets are preserved.

In memory, Deadstart updates the DRT to reflect those tracks reserved by
datasets mentioned in the DSC and tracks mentioned in the flaw portion of
the device labels. Deadstart also creates the DAT (derived from the DSC
DAT in the Master Device label) and initializes the DNT for the DSC.
Deadstart calls RRJ to set up the Rolled Job Index. This is done before
system dump processing.

SM-0040 4.1-14

Deadstart also attempts to locate the disk area pre-allocated for the
system dump. If this area can be found, Deadstart reserves the tracks in
the DRT. If a dump that has not been copied exists in the pre-allocated
area, Deadstart copies the dump to a new dataset and requests the
Permanent Dataset Manager to save the copy so that it can be accessed by
user jobs following completion of startup. If no new dump exists, the
disk space remains reserved, but the pre-allocated area is not copied.
If the pre-allocated area cannot be found, no space is reserved in the
DRT.

Deaddstart also attempts to locate the system overlay area. It it can be
found, Deadstart reserves tracks for it in the DRT.

The buffers and DSPs for the DSC are assembled into STP.

To summarize, Deadstart:

• Finds Device Label (DVL)

• Reserves flaws

• If master device, reserves DSC and the disk space occupied by
system dump and system overlay areas and initializes DNT and OAT
for the DSC

• Deletes each input and output dataset and reserves all other
permanent datasets

• Establishes Rolled Job Index in memory

• Copies system dump from the pre-allocated area to available space
and saves the copy as a permanent dataset.

Deadstart places the job class structure that was written to the
permanent dataset named in the Deadstart parameter file into effect. If
no dataset is named, or if it cannot be accessed or read, the default job
class structure goes into effect.

4.1.6 RESTART

Restart executes as an operator option following an interruption of the
system Where recovery of the input and output queues and jobs in process
is desired.

In memory, Restart updates the DRT to reflect those tracks reserved by
datasets mentioned in the DSC and tracks mentioned in the flaw portion of
the device labels. Restart also creates the DAT (derived from the master
device label) and initializes the DNT for the DSC.

SM-0040 4.1-15

The OSPs for the OSC are defined during assembly of STP. Recovery of
rOlled jobs is performed if necessary. The system dump area is recovered
and possibly copied as described under Deadstart.

Restart scans the OSC to find all entries with the input flag or output
flag set. From these input and output DSC entries on mass storage,
Restart creates SOT entries and OATS in memory. The input and output
queues are threaded by forward and backward link pointers. The first
item in the queue is the one first saved.

During Dataset Catalog (OSC) recovery, Startup processes the allocation
information for multitype datasets. Startup processes the first OSC
entry for a multitype dataset as a normal entry, allocating the dataset
and initializing it for associated OSC entries. processing of the
subsequent entries differs from normal recovery for error pre-processing,
OAT body processing, and post-OAT validating. Since all OSC entries for
a dataset are interrelated, any recovery errors are carried through to
all of the entries.

OAT body processing involves a comparison of the OAT body chain from a
previous OSC entry_ Any differences cause the dataset to be flagged as
having inconsistent allocation, and all OSC entries are processed
accordingly during a second pass over the OSC.

Post-OAT validation processing essentially involves QOT update and is
performed only when all preceding entries for the dataset pass recovery
validation.

When Restart completes execution, the Startup task creates the JSH task.
A non-empty input queue causes JSH to begin job scheduling. Similarly, a
non-empty output queue activates SCP. The SCP task was created before
the call to the Z routine.

JSH may also be activated if at least one job was recovered and placed
into the execution queue by subroutine RRJ.

A Restart with recovery of rolled jobs recovers the job class structure
that was in effect before the system interruption from a permanent
dataset, PON=JOBCLASSROLLEO. If a disk error makes recovery impossible,
the structure that was written to the permanent dataset named in the
Restart parameter file goes into effect.

Restart without recovery of rolled jobs places into effect the structure
that was written to the permanent dataset named in the Restart parameter
file.

In either case (Restart with or without recovery), the default structure
goes into effect if no dataset is named or if the named dataset is
inaccessible.

SM-0040 4.1-16

The system overlay dataset is reserved in a way similar to the way in
which the system dump area is treated. If no system overlay dataset was
preallocated or if the validation checks for it fail, recovery of rolled
jobs cannot be performed. In this case Startup halts if recovery is
specified, or it allocates the area following permanent dataset recovery
if recovery was disabled.

To summarize, Restart:

• Finds Device Label (DVL)

• Reserves flaws

• If master device, reserves DSC and initializes DNT and DAT for the
DSC

• Reserves all permanent datasets and the system dump area and
system overlay dataset, if possible

• In memory, builds DAT and sor for each input/output dataset

• If specified, recovers rolled out jobs via call to RRJ

• Allocates system overlay dataset if necessary

• Copies system dump if necessary and saves the copy as a permanent
dataset.

4 • 1. 7 JOB RECOVERY BY RESTART

Following any system failure, whether due to software, hardware, or
environmental problems, the system operator may attempt to recover any
job in the execution queue at the time of the failure. This section
describes job recovery and related operations.

Currently, Startup can successfully recover and restart all jobs that
were rolled out to mass storage at the time of the system failure, or
those that rolled out, rolled back in, and performed no additional
activity to cause the roll image on mass storage to be unusable. A job
can be recovered only if it is certain that the roll image is valid and
that repeating any of the activities of the job following roll-in will
not cause the results of the job to change. In some cases, a job that
has been rolled out but has subsequently been rolled in and reconnected
to the CPU may have executed some function that makes the system unable
to determine whether the job can be successfully restarted from the roll
dataset image. In this case, the job is declared irrecoverable and the
Startup task leaves the job in the input queue. Subsequently, EXP
attempts to rerun the job from the beginning. If a job is not
recoverable and is ineligible for rerun, it is returned to the input

SM-0040 4.1-17

queue by Startup and terminates with an informative message in both the
user and system logs as soon as the Job Scheduler attempts to re-initiate
the job. A job that has initiated but has never been rolled out cannot
be recovered since there is no roll image to recover. However, permanent
datasets accessed following roll-in might not be available following a
system recovery if one or more mass storage devices become unavailable.
In this event, the recovered job receives an error status when attempting
to re-access the datasets. Any permanent datasets already acc~ssed by a
job prior to roll-out must be re-accessed successfully during Startup
before the job is considered successfully recovered.

Recovering a job from its latest roll image is performed in the steps
described below. An error in any validation step renders the job
irrecoverable, and an appropriate message is sent to the system log.

Index entry validation

The first step is to validate the information in the index entry. The
job cannot be recovered if the index states that the job is
irrecoverable, or if the roll dataset is either non-existent or resides
on a non-existent or unavailable device.

The job is also considered irrecoverable if the date/time stamp in the
index entry does not match the date/time stamp of the system being
restarted, if field JTEPC is nonzero in the job's JTA, and if the
operator or installation specifies not to recover such jobs.

Roll dataset validation

The partition header information in the index entry is used to read in as
much of the roll dataset as can be located from the one word of
allocation indices contained in the index. It must contain enough of the
JTA for the job to locate the copy of the full roll dataset DAT, which
was copied along with the JXT image to the JTA by the Job Scheduler
immediately before rollout. An error on the read makes the job
irrecoverable.

Once the first read completes, the JTA size values taken from the JTA and
from the saved copy of the JXT, are compared. An error occurs if the two
do not match. This size is then used to determine if more JTA exists.
If more does exist, the additional information is read in.

Normally, the entire JTA is read in by the first read, but if many large
datasets exist, the JTA may be quite large. RRJ must have the whole JTA
in memory at once. It is an error if the JTA does not fit into available
memory above the message stack.

SM-0040 4.1-18

The image of the roll DAT is moved from the JTA to the STP DAT area. An
error results if not enough OAT pages can be allocated in STP to hold the
DAT. The roll DAT is then validated. If no errors are found in the DAT,
any remaining portion of the JTA and the last block of the user field are
read in. They must fit, and the reads must have no errors. The last
block of the user field is located using the JXCJS field of the saved JXT
copy. The Job Scheduler stores the current value of the real-time clock
in the first block of the JTA and in the last block of the user field
immediately prior to roll-out. If they do not match, the roll-out was
only partially complete at the time the system failure occurred, which is
an error condition.

OAT validation

Each dataset, including the roll image dataset, must have a zero OAT
address in the DNT or must point to a valid OAT. The roll image dataset
and the $CS and $IN datas~ts point to OATS in the STP tables; all others
point to OATs in the JTA. To be considered a valid OAT, the following
points must be satisfied:

• A multipage OAT must be entirely within the STP tables or
entirely within the JTA. It cannot be in both places.

• The OAJORO field for a DAT in STP must be equal to 0; the DAJORD
field for a OAT in the JTA must be equal to the JXT ordinal.

• Successive pages must be numbered correctly.

• A OAT in the JTA must be pointed to by a negative offset that
must be within the range indicated by the JTA size; the same is
true for each successive page.

• For each partition, the named device must exist and must be
available (EQNA must equal 0).

• Each allocation unit index for a partition must be within range
for the device.

• For a multitype OAT (ONQDT'is nonzero), each allocation unit
index must have its corresponding ORT bit set; otherwise an
inconsistent allocation has occurred.

• For a OAT that is not mUltitype (ONQOT is 0), each allocation
unit index must not have the corresponding ORT set; otherwise an
allocation conflict has occurred.

• When the end of the last page or last partition is reached, the
remaining AI count and next partition pointers must be O.

SM-0040 4.1-19

• When the end of a partition is reached, the next partition
pointer (OANPA) must point to either the next word in the
current page or the first word following the page header in the
next page, or it must be O.

OAT validation occurs in two passes. The first pass serves as an error
scan and does not set the ORT bits. The second pass actually sets the
ORT bits and decrements the available space counts for the device. In
this way, RRJ can be sure that a dataset is either completely reserved or
completely unreserved. This is necessary for successful deallocation of
resources if a later dataset is found to have an error.

Dataset reservation

Each dataset named in the ONT chain in the JTA must be processed. LOcal
datasets must have their OATs validated and the ORT bit maps updated.
Permanent datasets must be validated against the Dataset Catalog.
Startup will already have updated the ORT bit maps for permanent
datasets. Permanent Dataset Table (POS) entries must also be
reconstructed for permanent datasets.

The ONT chain is scanned from the beginning to the end. The memory pool
control word preceding each ONT is checked to be sure that the pool entry
is in use, and the ONT is checked to ensure that there is a name. If
there is no OAT, RRJ goes on to the next ONT. If there is a OAT and it
is in STP (ONOAT is greater than 0), the ONT must be for either $CS or
$IN. The SOT entries are searched for an SOT with the correct sequence
number, and the OAT address field of the ONT is corrected. RRJ then goes
to the next ONT.

If the OAT is in the JTA (ONOAT is less than 0), the ONT is checked to
see if the dataset is permanent. If it is not, the OAT is validated. If
it is, a pseudo access is performed. If no errors are found, RRJ goes to
the next ONT. When the end of the ONT scan is reached, the job is
considered successfully recovered.

Pseudo access of permanent datasets

When a permanent dataset is encountered in the ONT scan, RRJ requests the
Permanent Dataset Manager (POM) to perform a pseudo access on the
dataset. This process causes the Permanent Dataset Manager to locate the
OSC entry for the dataset from the OAOSC field of the OAT and to compare
the OAT in the JTA with the OAT in the ose.

If the OAT appears valid, POM attempts to construct or update a POS
entry. The ONT permission flags are used to set the POS permission
flags. If the POS entry already exists, the ONT must indicate read-only

Resource de-allocation

If an error occurs at any point in the recovery of a job, any system
resources assigned to that job by RRJ must be released. In particular,
any disk space reserved for local datasets prior to finding an error on a
later dataset, or any POS entries corresponding to datasets that have
already been pseudo accessed must be de-allocated. For this purpose, the
ONT chain is searched until the ONT with the error is reached again. For
releasing local datasets, the Disk Queue Manager de-allocate request is
used. For releasing POS entries, the POM request PMFCRL is used. The
disk space for datasets such as $CS or $IN, which has its OAT in STP, is
not released. The roll image dataset is released and its STP OAT pages
are returned to the system.

Job recovery completion

When the end of the ONT chain is reached without error, the job is
successfully recovered. The copy of the JXT from the JTA is placed in
the JXT area, and the JXT entries are re-linked by priority. The roll
image ONT within the JXT is updated to point correctly to the OAT, the
SOT entry is moved to the execute queue, and the JXT ordinal is placed in
the SOT. All wait words are cleared. The JXT status bits are set to R,
N, and B ("rolled out," "not in memory," and "suspended by recovery") and
all other bits except 0, A and M (operator suspended, abort pending, and
waiting for memory) are zeroed. The SOT address in the JTA is corrected,
and the JTA is rewritten to the roll image dataset. If field JTEPC is
nonzero, if the date/time stamps in the index entry and the current
system do not match, and if the operator or installation has elected to
recover and lock out such jobs, the JXT and SOT lockout bits are set. A
message is sent to the system log and RRJ advances to the next index
entry.

Termination of RRJ

When the end of the roll index is reached, all entries corresponding to
jobs that were not recovered have been cleared. The input queue is
scanned, and all jobs that were previously initiated are flagged with a
status in the SOT so that CSP will issue log messages when the jobs are
re-initiated. Such jobs may be ineligible for rerun, in which case the
status passed to CSP reflects that condition. CSP then terminates the
job immediately after issuing the log file messages. The status word
RRJSTAT is set to indicate to the Job Scheduler that the JXT entries are
already initialized and linked, and the JSH flag SWAPFLAG is set if any
jobs were recovered. RRJ then returns to z.

SM-0040 4.1-21

4.2 DISK QUEUE MANAGER (DQM)

The Disk Queue Manager task (DQM) controls the simultaneous operation of
Disk Storage Units on CPU I/O channels or the I/O Subsystem. DQM provides:

• Allocation/deallocation of mass storage

• Management of mass storage resources (channels, controllers, and
disk storage units)

• Management of disk storage unit request queues

Another task readies DQM Whenever it needs allocation, deallocation, or
access of mass storage. After satisfying the request, DQM readies the
calling task and suspends itself. EXEC readies DQM When an I/O request
finishes or when a sector transfer completes for a dataset in recall.

4.2.1 SYSTEM TABLES USED BY DQM

DQM uses the following system tables. Detailed information on these
tables is available in the COS Table Descriptions Internal Reference
Manual, publication SM-0045.

DAT Dataset Allocation Table
DCT Device Channel Table
EQT Equipment Table
RQT Request Table
DRT Device Reservation Table
DSP Dataset Parameter Table
JXT Job Execution Table
JTA Job Table Area
DNT Dataset Name Table

Figure 4.2-1 illustrates the linkages of tables used by DQM •

. .--------..~I

Figure 4.2-1. DQM table linkages

SM-0040 4.2-1

Dataset Allocation Table (OAT)

The OAT resides in the STP common table area or the JTA and associates
datasets with physical space in one or more devices. The OAT consists of
a header and a body. The header is used pr imar ily for managing the body
which is composed of a pool of i6-~rd pages. Pages are assigned· to OAT
entries as needed.

The OAT contains an entry for each active dataset. OQM creates a OAT
entry for a dataset When the dataset is opened (if preallocation is
requested) or when the usel'makes the first write request on the
dataset. For.a permanent dat~set, a new OAT entry is not created but
r ather the OAT fbr: the datase·t maintained in the DSC is copied into as
many OAT pages <\is are required.

Figure 4.2 ... ·2 illustrates the· structure of the OAT.

A dataset's OAT entry contains a header and one or more partitions. Each
partition represents a separate device on which space is allocated for
the dataset. A partition header contains a pointer to the next partition
for the dataset. The size of a partition depends on the number of
allocation units assighed to the dataset on the device. A partition has
four l6-bit allocation indices per word in the partition.

When a partition overflows the current page, DQM adds a page to the ONT's
dataset entry. Page headers logically link pages comprising the entry.

Device Channel Table (OCT)

The OCT contains information for channel control among each channel's
attached devices. Only one device may be active ona channel at a time.

Equipment Table (EQT)

The EQT contains information for device allocation, physical operation
control, device request queue management, channel configuration,
performance monitoring, and error counting.

SM-0040 4.2-2

DAT Head

Page Map

b
DAT

Body

OAT

, , ,
\

\
\

\
\

\

\
\

\

\

\

\

15

DNT

lI!)or---,----, /

o 1---------1

,
\

I
I

\

I

\

I
I

I
I

\
\

\
\

I
I

I

,

\
\

\

I

I
I ,

/
I , DAT Ent ry

Header

I -------t

Partition b

,

I
I

I
I

I ,
I

"'1"--------1"" - __

\ , ,
\

\

Partition
x

OAT Entry

Figure 4.2-2. OAT structure

SM-0040 4.2-3

I
I

I
I

I ,
I ,

.1
I

I
I

I
I

I
I

-- - --

Partition
- - Header

Als

Device
Partition

-

Request Table (RQT)

The RQT contains information to be communicated between the I/O requester
and the Disk Queue Manager.

Device Reservation Table (DRT)

The DRT for a device contains a bit map showing reserved allocation units
for the device. DQM manages this table When it allocates or deallocates
space on the device.

Dataset Parameter Table (DSP)

The DSP contains information for logical I/O requests. If the DNT has a
DSP associated with it, DQM uses this table to build the DNT request
word.

Job Execution Table (JXT)

The JXT contains information about all active jobs. DQM uses this table
to determine the Job Table Area (JTA) location.

Job Table Area (JTA)

The JTA contains information about a specific job. DQM uses this table
for I/O accounting.

4.2.2 DQM INTERFACE WITH OTHER TASKS

A task calls DQM through the PUTREQ routine Which places the requested
function in INPUT+l and the dataset's DNT address in its INPUT+O register
and exits with an EXEC request to ready DQM.

Allocation

INPUT REGISTERS: INPUT+O 40/,24/DNT address
INPUT+l 56/,8/1

OUTPUT REGISTERS: OUTPUT+O 64/,status
OUTPUT+l 40/,24/DNT address

Deallocation

SM-0040

I NPUT+0
INPUT+l

24/0, 16/JXT,24/DNT
56/,8/2

4.2-4

OUTPUT REGISTERS: OUTPUT+O 64/,status
OUTPUT+l 24/0,l6/JXT,24/DNT

Queue I/O

INPUT REGISTERS: INPUT+O 24/returnS,l6/JXT,24/DNT
INPUT+l 56/,8/0

OUTPUT REGISTERS: OUTPUT+O 64/,status
OUTPUT+l 24/return,l6/JXT,24/DNT

4.2.3 DATASET ALLOCATION

The Disk Queue Manager supports two allocation modes: preallocation and
dynamic allocation. Preallocation is supported both explicitly and
implicitly. That is, other parts of the system may separately request
preallocation prior to writing a dataset or may simply write to the
dataset, in which case, preallocation is performed as the first step in
the write process. Dynamic allocation is performed on datasets that are
not preallocated or on which overflow occurs for their preallocated
sizes. Storage is allocated dynamically in multiples of tracks as
specified at the time of dataset definition.

A dataset explicitly assigned a logical device starts on that device if
space is available but may overflow to other devices.

To dynamically allocate a dataset, the DNT need only contain a logical
write request specifying the starting sector number and the number of
sectors or a DSP address. If the currently assigned device becomes full,
another device is selected by the device allocation scheme defined
later.

For those allocation requests not specifying a logical device name, the
available disks are assigned to new dataset requests in a round-robin
fashion.

The order of allocation is the order of entries in the Equipment Table
(EQT). The Equipment Table should be constructed so rotation occurs
among channels first and then among units. In other words, the first
entries should be unit 0 entries arranged in order of ascending channel
number. Varying the order of entries in the EQT generates a system that
allocates units in a different order.

S The return field is normally used to save a return address needed in
particular by CIO. If the queue I/O interface is used directly
without going through CIO, the return field may contain any
information that needs to be preserved.

SM-0040 4.2-5

Currently, only one allocation style is supported: that is, one track per
allocation index.

Allocation units

Each time OQM assigns an allocation unit to a dataset, it places the
allocation index (AI) for the device in the dataset's OAT entry and sets
the corresponding bit in the ORT. Oeallocation causes the OAT and the
ORT to be cleared and the OAT to be released.

The size of an allocation unit is currently defined as one track
(eighteen 5l2-word sectors).

Allocation is always to the device most recently assigned to the dataset,
that is, to the most recent device partition in the OAT entry.

4.2.4 RESOURCE MANAGEMENT

OQM manages the channels, controllers, and storage units assigned to it
to provide:

• Maximum responsiveness to I/O requests

• Maximum throughput of I/O requests

• Streaming of data where possible

DQM manages the following three types of hardware controllers: OCU-2,
OCU-3, and DCU-4. The OCU-2 and OCU-3 controllers are directly connected
to the CRAY-l CPU I/O channels. The DCU-4 controlles are integral to the
Buffer I/O Processor and Data I/O Processors in the I/O Subsystem and
control 00-29 Disk Storage Unit.

OCU-2 and DCU-3 controller management

For the DCU-2 and OCU-3 controllers, DQM maximizes channel availability
by releasing channels While positioning occurs on units. This allows
several units to be positioning simultaneously or several units to be
positioned simultaneously with transfer from a single unit. The channel
and controller configuration is illustrated in figure 4.2-3.

SM-0040 4.2-6

~ DCU-2,31 I/O Channel· ~
Contra 11 er : \S CPU

Figure 4.2-3. DCU-2, 3 Controller configuration

DCU-4 controller management

The DCU-4 controllers reside in the BIOP and DIOP in the I/O Subsystem
(See figure 4.2-4).

Each DCU-4 controller supports four simultaneous data paths. To DQM,
these appear as if there were a one-to-one relationship between
controllers and disk storage units. Figure 4.2-4.

Storage unit management

DQM is responsible for maintaining the logical status of each unit,
advancing each unit to the next state, and initiating and controlling
error recovery_ The possible logical states for the storage units are:

• Idle
• Waiting seek issue
• Seek issued
• Waiting transfer issue
• Transfer issued
• Transfer reissued (error recovery in process)

SM-0040 4.2-7

DQM controls error recovery. It initiates retries and selects Whether
retry shall be with margins. This is in addition to the automatic retry
on time-out or error that is present in the disk driver. Each retry
failure is logged in the system log. If a correctable error occurs on
the last retry, DQM initiates a low priority task (Disk Error Correction
task) to correct any correctable disk errors.

4.2.5 QUEUE MANAGEMENT

Each device has a separate queue. The disk queue manager enters requests
in the queue and services them in the order they are received. To
provide streaming, a request is not considered complete until a DSP
indicates that no more I/O can be performed for this request.

When a request overflows a device, the DQM places it at the bottom of the
queue for the next device.

MIOP

Dcu-4

Dcu-4

Dcu-4
BIOP

Dcu-4

Dcu-4

Dcu-4 OPTIONAL

Dcu-4 DIOP

Dcu-4

Dcu-4

Dcu-4 OPTIONAL

Dcu-4 DIOP

Dcu-4

I/O SUBSYSTEM

Figure 4.2-4. DCU-4 controller configuration

SM-0040 4.2-8

4.2.6 I/O REQUEST FLOW IN DQM

1. DQM receives I/O request from another task.

2. The requesting task is determined and request entry space is
reserved.

3. The DSP request is mapped into a logical request in the DNT.

4. The DQM is started; enqueue transforms the logical request into a
physical request and enqueues it.

5. DQM is started. If no requests are outstanding on the requested
channel, a zero-length transfer seek is issued and the task is
suspended.

6. DQM is restarted after the hardware accepts the seek function and
checks for any other seeks. If none, it issues the transfer
request and suspends.

7. DQM is restarted. If the dataset is in recall and a half buffer
has been transferred, then the requesting task is restarted. If
it is the last sector of the request, the DSP is examined for
more I/O. If there is more I/O, go to step 1 and repeat the
sequence. If there is no more I/O, go to step 8. If an error
occurs, an entry is made in the log and the failing block is
retried with margins.

8. DQM is restarted. It dequeues the finished request and starts
the requesting task. OQM is requested to initiate the next
request.

9. The task is suspended.

4 .2. 7 HARDWARE ERROR LOGGING

DQM logs disk errors by calling the message task with a binary record to
be inserted into the system and user logs. The record format is:

o

2

3

4

5

6

o

SM-0040

16

SC
:

NBK

40 63

IN

DEV

DN

DA BA

SBK BUF

EQSTS

AUX
i

4.2-9

Field Word

IN o

DEV 1

DN 2

SC 3

DA

BA

NBK 4

SBK

BUF

EQSTS 5

AUX 6

SM-0040

Bits

0-63

0-63

0-63

0-15

16-39

40-63

0-15

16-39

40-63

0-63
1
2
3

24-39
24-29

30
31
32
33
34
35
36
37
38
39

48-63
48-53

54
55
56
57
58
59
60
61
62
63

0-63

Description

Job name or system in ASCII

Device name

Dataset name

Sectors remaining in request

Disk address (12/cylinder, 6/track,
6/sector)

Current buffer address

Number of blocks

Starting block number

Initial buffer address

Edited status from EQT
Error flag
Time out flag
Read/write response error

Subsystem status last retry
Undefined
Channel parity 212 - 215
Channel parity 28 - 211
Channel parity 24 - 27
Channel parity 20 - 23
Read check word error
DSU ready error
DSU not on cylinder
DSU index error
10 verification error
DSU reservation error

Subsystem status first try
Undefined
Channel parity 212 - 215
Channel parity 28 - 211
Channel parity 24 - 27
Channel parity 20 - 2 3
Read check word error
DSU ready error
DSU not on cylinder
DSU index error
10 verification error
DSU reservation error

Auxiliary status (to be defined)

4.2-10

4.3 STATION CALL PROCESSOR (SCP)

The Station Call processo~·(SCP} handles functions for one or more
front-end computer systems and provides for:

• Establishing communications with the front-end system,

• Responding to front-end requests for functions such as stream
control, I/O transfer, and status requests,

• Managing I/O transmission buffers,

• Receiving datasets containing jobs or data,

• Transmitting output datasets to the designated front-end system,

• Multiplexing of streams for each logical station,

• Multiplexing of logical stations on the same hardware channel,

• Recovering from link errors and front-end system failures,

• Routing of messages and datasets to networks, and

• Allowing operator intervention to re-establish link communication.

The SCP task is readied by the system executive (EXEC) front-end driver
whenever an output/input pair completes on a channel assigned to
front-end communications.

This section assumes the reader is familiar with the contents of the
Front-end Protocol Internal Reference Manual, publication SM-0042.

4.3.1 SYSTEM TABLES USED BY SCP

SCP uses the following system tables:

LIT Link Interface Table
LST Logical stream Table
LXT Link Extension Table
SDT System Dataset Table
PDD Permanent Dataset Definition Table
LCT Link configuration Table
AUT Active User Table
IBT Interactive Buffer Table

These tables are described in detail in the COS Table Descriptions
Internal Reference Manual, publication SM-004S.

SM-0040 4.3-1

Link Interface Table (LIT)

SCP maintains one LIT entry for each station hardware channel. This
table communicates between the front-end driver and SCP and controls
multiplexing of logical stations.

Link Extension Table (LXT)

The Link Extension Table is the working storage area for SCP. The LXT
contains all the information to control stream multiplexing for a logical
station.

Link Stream Table (LST)

LST contains the information for controlling an input or output stream.

Systemoataset Table (SOT)

SCP has prime responsibility for the SOT. It takes entries from the
available queue for jobs being assigned to the input queue and returns
entries to the available queue after staging output datasets to the
front-end system.

Permanent· Dataset· Definition (POD)

SCP, as a user of permanent dataset management, must generate poos to
accompany requests for saving and deleting permanent datasets. These
PODS reside in SCP rather than in a user field.

Link configuration Table· (LCT)

LCT contains information for reserving buffer space and other
configuration information for each physical channel that is attached to a
front end.
Active·user·Table (AUT)

The Active user Table controls interactive communication. It contains
messages queued for input and output as well as associated information.

Interactive Buffer Table' (IBT)

The Interactive Buffer Table provides control over buffer space allocated
for interactive messages.

SM-0040

4.3.2 PROCESSING FLOW FOR SCP

Upon receipt of each message, SCP checks the input LCP in the channel
buffer for illegal message code and illegal parameters. Any error causes
an immediate MESSAGE ERROR response. Errors are retried to a limit, then
a RESTART code is sent.

If a data segment was sent on the previous transmission from the CRAY-l,
SCP assumes that the segment has been accepted and calls the Disk Queue
Manager (DQM) to transfer the next segment of this dataset from disk to
the output buffer.

SCP then processes the input LCP message code as follows:

1. LOGON causes SCP to save LOGON parameters and to initialize the
buffer pool. If LOGON was not expected, the LOGOFF procedure is
also followed.

2. LOGOFF causes SCP to deallocate all incoming datasets and makes
the associated SDT entries available. All outgoing dataset SDT
entries are returned to the output queue.

3. RELOG is a no-ope

4. CONTROL is a no-ope

5. DATASET HEADER causes an SDT entry to be assigned and the header
parameters to be saved in the SDT. If edition number is
specified, SCP calls PDM to verify that this edition number does
not already exist. If edition number exists, a CANCEL is sent
for the stream.

6. DATASET SEGMENT causes a segment to be written to disk using
dynamic allocation. If DC=IN, SCP interprets the first record
(the JOB statement), and saves the jobname, priority, time limit,

and field length in the SDT entry.

7. JOB STATUS, SYSTEM STATUS, LINK STATUS, MASS STORAGE STATUS,
DATASET STATUS, OPERATOR DEBUG, LOGFILE INFORMATION, LOGFILE
ENTRY REQUEST, and INTERACTIVE REQUEST must be replied to before
a second request of this class may be sent. Except for the
DATASET STATUS, replies are built immediately.

8. DIAGNOSTIC ECHO REQUEST causes the appropriate ECHO REPLY to be
built and transmitted immediately.

9. MESSAGE ERROR causes immediate retransmission of the prior
message.

SM-0040 4.3-3

10. DATASET TRANSFER REPLY causes the status field to be examined.
If the status is NO, the request is deleted and the originating
job is dropped. If the status is YES, the request is removed
from the request queue. If the status is POSTPONE, the request
is reissued after a delay defined by I@DTRDLY.

SCP then processes the input stream control bytes. Input stream (front
end is the sender) types are as follows:

1. IDLE - Normal state if front end has no activity for this
stream. NO SOT entry is associated. CPAy-l response is IDLE.

2. REQUEST TO SEND - Front end wishes to stage a dataset. SCP
immediately responds with PREPARING TO RECEIVE.

3. SENDING - Front end is prepared to send DATASET HEADER. SCP
immediately responds with RECEIVING.

4. END DATA - Front end is awaiting DATASET SAVED response from
CRAY-l. CRAy-l responds with SAVING until dataset is saved.

5. CANCEL - Front end requests that this stream's current activity
be dropped. SCP deallocates incoming dataset and makes the
associated SOT entry available. If this dataset originated from
a dataset transfer request, the originating job is dropped. The
CRAy-l response is IDLE.

6. POSTPONE - Front end requests that this stream's current activity
be dropped. SCP deallocates the incoming dataset and makes the
associated SOT entry available. If this dataset originated from
a dataset transfer request, the originating job is not dropped.
The CRAy-l response is IDLE.

7. MASTER CLEAR - Front end has encountered an invalid CRAy-l
response. For an input dataset, SCP deallocates it and makes the
associated SOT entry available. CRAy-l response is IDLE.

SCP then processes the output stream control bytes. Output stream
(CRAy-l is the sender) types are as follows:

1. IDLE - Normal front end response if CRAy-l state is IDLE,
POSTPONE, CANCEL, or MASTER CLEAR. CRAy-l responds by issuing
either IDLE or REQUEST TO SEND if an output dataset was queued.
The SOT entry is removed from the output queue and is assigned to
this stream.

2. PREPARING TO RECEIVE - Front end response indicating preparing to
accept DATASET HEADER. The header is not eligible to be sent.

3. RECEIVE - Front end response indicating readiness to accept
DATASET HEADER or DATASET SEGMENT. Next segment is transferred
from disk to memory and is then made eligible to be sent.

SM-0040 4.3-4

4. SUSPEND - Front end wishes to temporarily stop rece1v1ng segments
for this stream. CRAy-1 holds response as SENDING.

5. DATASET SAVED - Front end indicates dataset has been saved and
stream may be released. SCP calls PDM to delete the dataset,
makes the SOT entry available, and responds by issuing IDLE.

6. POSTPONE - Front end wishes to postpone receipt of this dataset.
SCP places the associated SOT entry for this dataset at the end
of the output queue and responds by issuing IDLE.

7. CANCEL - Front end wishes to cancel receipt of this dataset. SCP
releases the dataset and makes the associated SOT entry
available. If this dataset originated from a dataset transfer
request and the WAIT flag is set in the SOT, then the job is
aborted. The response is IDLE.

8. MASTER CLEAR - Front end has encountered an invalid CRAy-1
response. For a dataset in the process of being staged out, SCP
returns the associated SOT entry to the output queue and responds
by issuing IDLE.

The output LCP must now be constructed. If a DIAGNOSTIC ECHO REPLY is
ready, it must be senti otherwise, if a DATASET TRANSFER REQUEST is
queued, it is sent. If any nonstaging reply is ready, the appropriate
message code -- JOB STATUS, SYSTEM STATUS, DATASET STATUS, LINK STATUS,
MASS STORAGE STATUS, OPERATOR DEBUG, LOGFILE INFO~TION, INTERACTIVE
REPLY, and LOGFILE ENTRY REPLY -- is used.

If there is no non-staging transmission to be sent, SCP examines the
output streams for transmission of eligible headers or segments using the
appropriate message code -- DATASET HEADER or DATASET SEGMENT. If no
information is to be returned, the message code is CONTROL. SCP moves
the CRAy-1 stream control bytes (SCBS) into the output Link Control
package (LCP) to complete the output LCP.

Finally, SCP assigns an input buffer and requests the station driver (via
EXEC) to complete the output transmission and await input.

4.3.3 INTERACTIVE PROCESSING

Interactive processing requires an interactive terminal attached to a
concentrator CPU, since the CRAy-ldoes not support its own terminals.
The concentrator packs terminal messages into a message segment and
distributes them to the users. Output messages destined for an
interactive concentrator are also packed into a segment by SCP for
distribution.

SM-0040 4.3-5

station types

COS recognizes three station types: batch only, interactive only, and
both. The batch-only station cannot send or receive interactive
messages. The interactive-only station can exchange only logon, logoff,
start, restart, control, diagnostic echo, and interactive message types.
A station that supports both interactive and batch can exchange all
message types. The station type is defined in a parameter of the logon
segment.

Terminal modes

TWo terminal modes, buffered and unbuffered, are supported. An
unbuffered terminal must receive a response message before it can send
another message. A buffered terminal can send or receive a terminal
message in any interactive segment. The,exceptions are the terminal
logon and logoff messages, which require explicit responses before
further messages can be processed.

Interactive request message processing

upon receipt of an interactive request, SCP verifies that the station is
of the proper type and that no interactive reply is outstanding. If the
segment bit count (SGBC) is nonzero, the data within the segment is also
validated. Individual terminal messages are then processed by message
type.

LOgon (1) - A logon message type is checked to determine whether it is an
initial or a subsequent logon by scanning the Active user Table (AUT) for
an entry belonging to the user. If no entry is found, an initial logon
sequence begins. If an entry is found and the currently logged off flag
is set, the subsequent logon sequence begins. If the entry is active,
access is denied, and a restart is queued for output with an error code
stating the problem.

For an initial logon, the user name and password are verified against the
system dataset containing a list of valid user names.§ If there is no
match, access is denied, and a restart message is sent to the terminal.
A system Dataset Table (SOT) entry is created with the origin type set to
interactive for a valid user. The Control Statement processor (CSP) is
called to process the first input message. A start message containing
the process identifier for all future communication is queued to the
terminal.

§ Deferred implementation

SM-0040 4.3-6

processing a subsequent logon is identical to processing an initial logon
except that an SOT entry is not created.

In the event 9f a concentrator crash, the station logon processing logs
off all users corning through that station. A flag is set in the AUT
showing the problem. The user must perform another LOGON, which is
treated as a subsequent LOGON.

Data (4) - With a data message type, SCP validates the process number and
places the data on the input message queue indicated by the process
number. If the job was suspended for input, processing is resumed.

Special "Function" (5) - SCP responds to a special function message type by
performing an abort or a status, as required.

FOr the abort function, SCP requests the Job Scheduler (JSH) to perform
an advance job step, which loads CSP. All messages in the job's input
message queue are flushed, and CSP waits for input from the terminal.

When the status function is received, SCP queues a data message to the
terminal containing CPU time used, job status, and last log message.

Logoff (6) - When a logoff message type is received, SCP determines which
of the following three types of bye processing to select by examining the
value in the special function field.

o Terminal is marked as logged off in the AUT: and SOT and JXT
entries are retained~ Only the most recent output messages are
retained.

1 The job presently running is killed at the completion of its
current job step. CSP is then loaded to perform termination, and
all output messages are discarded.

2 Terminal is marked as logged off in the AUT. The SOT and JXT
entries are retained and all output messages are retained. If
necessary, job processing is suspended until the output is
transmitted.

Control" (10) - SCP performs the state change associated with a control
message. A data message may also contain control information.

Error" (11) - When an error message is received, SCP posts the error in
the AUT and attempts to retransmit the last message.

SM-0040 4.3-7

Interactive reply "processing

After a request has been processed a reply is built. A Dataset Transfer
Request from a station of both batch and interactive types can interrupt
this process.

SCP then places terminal messages in the segment buffer in the following
order:

1. Error,

2. Controls for buffered mode state changes,

3. Restarts,

4. Data for buffered mode and for logon and logoff replies for both
terminal modes, and

5. Data for nonbuffered mode terminals and control for nonbuffered
mode terminals if I@IAPOLL time has expired.

If there are no terminal messages to be sent, an Interactive Reply with
SGBC=O is sent.

Start (2) - SCP generates a start message type when a logon is valid.
This message contains a process identifier, which must be used on all
future communications and echoes the logon text.

Restart"(3) - SCP creates a restart message type when an invalid logon or
unexpected message is received. The error code field describes the
nature of the problem. The possible problems are:

• Invalid user name
• Invalid password
• Already logged on

If the response is to an invalid logon, the logon data is returned with
the restart.

Logoff" Reply" (7) - A logoff reply message type is created when a logoff
is received, and all required termination is finished. The logoff
message type always contains a BYE text message.

cata"(4} - SCP builds the output data type text message from the output
message queue for a process. More than one output line may be sent in a
message. Record control words for interactive messages must be present
in the text. Word 0 of the text is the first interactive record control
word. If a job is suspended for output, it is reactivated.

SM-0040 4.3-8

The maximum length of a data message is set by the MML field in the logon
message. A message is sent only if it fits entirely within the segment
buffer. Messages may cross subsegment boundaries but may not cross
segment boundaries.

Error (11) - SCP sends an error message to indicate a problem with the
most recent message, identified by the message number.

Control (10) - SCP sends a control message to change the state of an
input process or to respond to a nonbuffered terminal if there is no data
and the poll interval specified by I@IAPOLL has expired.

Text for-logon; -start; -and-restart-messages - There are no record control
words associated with this text.

0- 52-

0 UN

1 PW

2 AN

3 ///////////111/1/11//1/////1/////////111/////1///11/1 MML

4 TID

Field Word Bits Descril2tion

UN 0 0-63 user name (bits 0-55 are used for the
job name)

PW 1 0-63 password

AN 2 0-63 Account number

MML 3 52-63 Maximum message length in CRAy-1 words

TID 4 0-63 Terminal 10

SM-0040 4.3-9

Text·structure·for·inputor·output·data - The text associated with a
terminal entry may contain one or more variable length records with a
record control word between each record as illustrated below.

o·
·IRCW

RECORD

·IRCW .

RECORD

IRCW.

The interactive record control word (IRCW) has the following form:

63

·1

I

o 4 10 55 63

Field

M

UBC

TYPE

FWI

I M I UBC J;t!YPE//////////////////////////////////////1 FWI I
Bits

0-3

4-9

10

55-63

Description

An octal number indicating the mode:

10 End of record (EOR)
16 End of file (EOF)
17 End of data (EOD)
o Block control word (BCW)

unused bit count of the previous record

Mode for the following record

o Line (default)
1 Transparent

pointer to the next record control word

This record structure is similar to CRAy-l dataset format. Each record is
terminated with a record control word. The last record control word
contains a 0 FWI. The first record control word must be a BCW.

SM-0040 4.3-10

Transparent record mode

To allow more control over the output to terminals, COS supports a
transparent record mode. When this mode is specified, there is no blank
compression, no trailing blank compression, and no line feed caused by
the eop RCW. The mode is defined as a property of the dataset and may be
altered on a record bias. The mode is set by a bit in the DOL when the
dataset is defined.

Operations control

An operator KILL or DROP command returns the SOT and the JXT resources to
the system. Further attempts by the terminal to access the job results in
error messages being returned to the front end. The error code indicates
either not logged on or logged on but no job exists.

SM-0040 4.3-11

4.4 EXCHANGE PROCESSOR (EXP)

The Exchange Processor (EXP) is a task that processes all user system
action requests and user error exits. The Exchange Processor also
handles certain requests from the Job Scheduler (JSH) to initiate or
abort a job.

EXP recognizes that certain functions prevent the restarting of a job
from its most recent roll image without potentially yielding results
different from those that would be obtained had the job not been
restarted. In these cases, EXP declares the job to be irrecoverable and
causes the Job Scheduler to update the Rolled Job Index accordingly.

Similarly, EXP recognizes that certain functions (notably permanent
dataset manipulations) make it uncertain whether a job could be rerun
from the beginning without changing its results. In these cases, EXP
declares the job to be non-rerunnable. In cases where the user knows
that changes to permanent datasets would not affect the correct execution
of the job if it is rerun, the user may override EXP and declare the job
rerunnable or may prevent EXP from declaring the job not rerunnable. See
Job Rerun and Job Recovery later in this section for an explanation of
recoverable and rerunnable jobs.

When a user program exchanges to the system due to normal exit, error
exit, or execution error, the Executive (EXEC) sets flags in the word
JTEP of the Job Table Area (JTA) to request execution of Exchange
Processor and to indicate Whether the exchange was a normal or an error
exchange.

JSH requests EXP by setting another flag in the same word (JTEP) in the
JTA. The EXEC readies EXP and exchanges to it instead of exchanging to
the user whenever the JTEP word is nonzero for the currently connected
job.

When EXP finishes processing a request, it clears the JTEP word to allow
EXEC to return to the user job.

If EXP cannot finish a request immediately, it suspends itself without
clearing JTEP. EXEC then continues to return control to EXP rather than
the user, as long as that job is assigned to the CPU.

In general, EXP calls JSH to suspend the job before suspending itself
when it must wait for completion of a request to another task, such as
for an I/O request. This allows other jobs in the system to be assigned
the CPU.

SM-0040 4.4-1

4.4.1 SYSTEM TABLES USED BY EXP

All EXP functions are job related. Consequently, most of the tables used
by EXP are either in the user field or in the Job Table Area (JTA) Which
is immediately below the user field.

The Exchange Processor accesses most system tables, the most important of
which are:

JXT
CALL
SDT
QDT

Job Execution Table
Call table
System Dataset Table
Queued Datset Table

Detailed information of the JXT and SOT tables is available in the COS
Table Descriptions Internal Reference Manual, publication SM-0045.

Under certain circumstances, EXP allocates a table in the memory pool
area of STP. This table is used as a POD for rewriting an SDT entry in
the DSC.

Job Execution Table (JXT)

The Job Execution Table contains an entry for each job Which has been
initiated. It contains job parameters and statistics Which may be
required while the job is rolled out to disk.

CALL Table (CALL)

The CALL table is a static table composed of I-word entries for each user
system action request. The contents of SO on a user call serves as an
index into the table. The format of each entry is the following:

o 16 40

length

addpess

length address

Length of a table whose address is in Sl of the user
exchange package. Length is 0 if Sl does not contain a
table address.

Address of the routine that processes the request

System Dataset Table (SOT)

63

The System Dataset Table contains an entry for the job dataset for each
job in execution. EXP creates an entry in the SOT for each output
dataset (job output and disposed datasets). It also allocates an SOT if
something is disposed to the input queue.

SM-0040 4.4-2

Queued Dataset Table (QDT)

EXP modifies the QDT (via the common subroutines RELDNT) When a job
releases a local scratch dataset that has related disposes.

4.4.2 USER AREA TABLES USED BY EXP

EXP uses the following tables located either in the user field or in the
JTA.

Dataset Definition List (DDL)

The Dataset Definition List is used to pass dataset parameters used in
creating the DNT on a F$DNT call.

Dataset Name Table (DNT)

The DNT is a table in the JTA containing an entry for each dataset of a
job. The DNT is used to pass parameters to the Disk Queue Manager. The
DNT contains pointers to the Device Allocation Table and to the active
DSP for the dataset. The DNT also contains important dataset
characteristics and status.

Dataset Parameter Table (DSP)

The DSP is required for all user I/O. It contains pointers to the
dataset buffer. DSPs for system-managed datasets such as the control
statement file, $CS, and the user logfile (SLOG) are contained in the
JTA. An additional DSP, for the F$DJA and F$EXU functions, is also
contained in the JTA. All other DSPs are located in the user field,
conventionally in an area reserved for DSPs at the high end of the user
field.

Job Communication Block (JCB)

The JCB occupies words 0 through 1778 of the user field and is used for
communicating between EXP and the user.

Logical File Table (LFT)

The LFT is a table near the high end of the user field containing a
2-word entry for each dataset Which has a DSP in the DSP area. The LFT
points to the DSP. If the dataset has been assigned an alias, it will
have more than one LFT entry.

SM-0040 4.4-3

Open Dataset Name Table (OON)

The OON table in the user field is required When opening (or closing) a
dataset (F$OPN call).

Permanent Dataset Definition (POD)

A PDD table in the user field is required for a user permanent dataset
management request (F$PDM request). A PDD table also exists in the JTA
for use by EXP when releasing a dataset.

4.4.3 EXCHANGE PROCESSOR REQUEST WORD

All requests to the Exchange Processor are made via the Exchange
Processor request word (JTEP) in the JTA for the job assigned to the
CPU. The Exchange Processor is readied by EXEC whenever JTEP is
nonzero. The format of JTEP is as follows:

o 2 4 6 16 40 63

1~9iM~_F-----------lI'-----p --.. =--'-:I~ _-_-_-_-A====~

Field Bits

JTEPX 0-1

JTEPC 2

JTEPJ 3

JTEPM 4

7-15

JTEPP 16-39

JTEPA 40-63

Description

User exit
2 Normal exit
I Error exit or execution error
o Not user exit

Continuation flag

Job Scheduler request flag

JTA expansion request flag

Exchange package flags

P register for errors

Memory error address; EXP address if JTEPC=l

The flags in fields X, C, and J are mutually exclusive. The user exit
flags in field X, normal exit and error exit, are set by EXEC when the
user causes a normal or error exchange. The continuation flag, field C,
is set by the Exchange Processor when an EXP function must be restarted
after being partially processed. In this case, JTEPA contains the P
address for the interrupted function. The Job Scheduler request flag is
set by the Job Scheduler to request that a job be initiated or aborted.

SM-0040 4 .. 4-4

4.4.4 USER NORMAL EXIT

Exit from a user program occurs when the user program executes a program
exit instruction (004). The user issues a system action request on a
program exit by setting SO to the desired function code and setting Sl and
S2 to optional arguments before exiting. When the request completes, the
user's SO contains a status code. Conventionally, (SO)=O indicates no
error.

If an error is encountered, the job normally aborts with appropriate
messages issued to the logfile. For some errors, however, an error code
is placed in the user's SO and the user is allowed to continue
processing. If the Control Statement Processor (CSP) is executing as the
user, SO returns an error code for all but a few fatal errors.

When EXP is readied, it detects the user request because the JTEPX field
for the currently executing job contains a 2. The function code in SO is
then used as an index into the CALL table to obtain the address of the
routine to process this request. If the length field in the CALL table
entry is nonzero, EXP verifies that the address in Sl points to a table
within the user field length. This address is converted to an
STP-relative address. Next, the vital parameters in the Job Communication
Block (JCB) are verified by comparing them with duplicate values in the
JTA. The parameters checked are JCFL, JCNPF, JCBFB, and JCDSP. Several
other fields are also verified as reasonable values.

4.4.5 SYSTEM ACTION REQUESTS

The mnemonic values used to assemble user codes are supplied by the system
text ($SYSTXT). These mnemonics should be used to provide function codes
for register SO when making system action requests. Unless otherwise
specified, a function has no effect on a job's ability to be recovered or
rerun. See Job Rerun and Non-Recoverability of jobs in this section.

Mnemonic
Code

F$ADV

F$ABT

F$DAT

SM-0040

Octal
Value

000

001

002

Task
Description

Advance job. The current job step is
terminated and the job is advanced to the
next control statement.

Abort. The job is advanced to the EXIT
control statement if one exists. If none
exists, the job is terminated.

Get current date. The current date in ASCII
format is returned at the location specified
in Sl in the following format:

4.4-5

Mnemonic
Code

(continued)

F$TIM

F$MSG

F$RCL

F$TRM

F$SSW

F$OPN

SM-Q040

Octal
Value

003

004

005

006

007

010

Task
Description

a 15 23 39 47 63

1m m I I I d d I II y y

Get current time. The current time in ASCII
format is returned at the location specified
in S1 in the following format:

o 15 23 39 47 63

s

Enter message in logfile. A message
beginning at the location specified by Sl is
written to the logfile. S2 is used to
determine to which logfile the message is
written.

1
2
3

Significance

User logfile only
System logfile only
System and user logfiles

The message is 1-80 characters and is
terminated by a zero byte.

Dataset recall. The job is removed from
execution until another block of data has
been transferred without error or until I/O
is complete on the dataset specified. Sl
contains the ODN or DSP address.

Terminate job. The job is terminated
normally and its resources are returned to
the system.

Set pseudo sense switch. 51 contains the
number of the switch to be set.

Open dataset. 51 contains processing
direction in bits 0 and 1 and the address of
the Open Dataset Name (ODN) table. Bits
40-63 of 51 contain the address.

4.4-6

Mnemonic
Code

(continued)

SM-0040

Octal
Value

Task
Description

1) 40
Pd~ ODNaddr

An OPEN call creates the following entries
(if not already created) for the dataset
whose name is in the first word of the OON
table:

• A ONT entry in the user's JTA

• An LFT entry

• A DSP entry

• Allocates a buffer if the dataset is to
be in blocked format

Entries 2, 3, and 4 may result in moving
existing LFT entries, DSP entries, and
buffers. Additional user field is allocated
if insufficient room exists for adding the
LFT, DSP, or buffer. Parameters in the JCB
of the user field reflect any movement of
these tables.

o The negative DSP offset is equal to the
DSP base address (JCDSP)-OSP entry
address.

This value is returned in bits 40-63 of
word 2 of the ODN table.

o The DNT and DSP are modified to reflect
the processing direction requested.

4.4-7

Mnemonic
Code

(continued)

F$MEM

F$MEM

SM-0040

Octal
Value

011

Task
Description

NOTE

If word 2 of ODN, bits 39-63,
already contains a positive,
nonzero address, then the user
is requesting that a user's own
DSP and buffer be used. The
.address in the OON points to the
OSP, and the OSP and buffer must
be contained in the user field
below the high limit of user
code (JCHLM). In this case,
entries 2, 3, and 4 are omitted.

Processing Direction

01 Output
10 Input
11 Input/Output

Request memory. The amount of memory
assigned to a job may be determined or
changed. 51 contains the address of the
memory request word. The job is aborted if
filling the request would exceed the maximum
allowable memory for the job. The memory
request word has the following format:

012 1 16 40 63

DEL we

M Maximum memory flag. If M is set by
the caller, JSH returns in we the
maximum allowable amount of memory (in
words) excluding the JTA. No memory
is allocated.

L Limit flag. The system sets this flag
when it has assigned the maximum
allowable amount of memory to the user.

4.4-8

Mnemonic
Cooe

(continued)

F6LBN

F$CL5

Octal
Value

012

013

T

Task
Description

Total flag. If T is set, WC represents
the total memory requested (excluding
the JTA) rather than an increment or
decrement, and DEL is ignored.

DEL Deletion pointer. If the user wants an
increase in memory, DEL must be O. If
the caller wants a decrease in memory,
DEL must contain the beginning address
of the area to be deleted.

WC Word count. The user must supply the
absolute number of words to be added to
or deleted from the user's field
length. Any words added to the user's
field length are added to its
high-address end. If WC=O, no action
is taken other than to return the
user's field length in WC.

Return last block number. 51 contains the
address of the Open Dataset Name table. On
return, 52 contains the block number of the
last block of the dataset. 52 contains -1
(all bits set) if the dataset is empty.

Close dataset. Sl contains the address of
the Open Dataset Name (OON) table. A close
call does the following processing for the
dataset whose name is in the first word of
the OON table:

• Writes end of data on a sequential
blocked dataset if dataset is write
mooe

• If the dataset is in write mooe and is a
blocked dataset, flushes data in the
buffer to disk and writes an eod RCW, if
necessary. This may result in the job
being declared temporarily
irrecoverable. An unblocked dataset has
no system buffer.

• Releases any buffer for the dataset

• Releases the D5P for the dataset

5M-0040 4.4-9

Mnemonic
Cooe

F$DNT

F$MDE

F$GNS

F$EXU

SM-0040

Octal
Value

014

015

016

017

Task
Description

• Releases any LFT entries for the dataset

• Updates the DNT entry for the dataset to
indicate that the dataset is closed

Return dataset characteristics - DDNFE=l,
OOSTAT=1

S1 contains the address of the Dataset
Definition List (DDL). This call performs
the sense local dataset function first. If
the DNT is located, a copy is made in the
user area at the location specified by
DDDNT. Additioan DDL parameters are
ignored. On return: (SO)=O if the dataset
exists; (SO)#O otherwise.

Create local dataset - DONFE=O
Sl contains the address of the DOL. This
call creates a DNT if one does not already
exist. If the dataset already exists, it
must be closed. Parameters from the DOL are
inserted into the DNT.

Sense local dataset - DDNFE=l, DNSTAT=O
Sl contains the address of the DOL. This
call searches for a ONT. On return: (SO=O
if the dataset exists; (SO)#O otherwise.
The dataset need not be closed. Additional
DOL parameters are ignored.

Set exchange package mooe. Sl contains the
address of the word containing new mode
setting. See CRAY-OS Version 1 Reference
Manual, for mode settings.

Get next control statement. Copy one card
image from control statement buffer to
address specified in Sl. Error cooe EREFR
(1) is returned in SO if end of file is
encountered on the control statement file.

Load binary dataset at location specified in
the PDT in the user field and begin
execution. The address of the word
containing the name of the dataset is in
Sl. Additional memory is allocated for the
job if required to load the binary dataset.

4.4-10

Mnemonic
Code

F$RLS

F$PDM

F$RDC

F$WDC

F$GRN

F$DIS

F$JDA

SM-0040

Octal
Value

020

021

022

023

024

025

026

Task
Description

Return dataset whose Open Dataset Name table
address is specified in Sl to the system.
The dataset is closed and disposed of
according to the disposition code contained
in the Dataset Name Table entry for this
dataset. The dataset is no longer available
to the job. This may result in the job
being declared irrecoverable.

Permanent dataset management request. Sl
contains address of the Permanent Dataset
Definition (POD) table. The format of the
PDD depends on the function requested. This
may result in the job being declared
irrecoverable, not rerunnab1e, or both.

Read disk circular. Sl contains the DSP
address. The error bits and the busy bit in
the DSP must be monitored by the caller.
Automatic recall is requested if bit 0 of Sl
is set.

Write disk circular. Sl contains the DSP
address. The error bits and the busy bit in
the DSP must be monitored by the caller.
Automatic recall is requested if bit 0 of Sl
is set. This may result in the job being
declared irrecoverable, not rerunnable, or
both.

Get system revision numbers. Sl contains
address of 2-word table. Information is
returned in ASCII format, left-justified and
blank-filled as follows:

, COSflx. xx

mm/dd/yy

Dispose dataset. Sl contains the PDD
address. This may result in the job being
declared irrecoverable.

Get current Julian data in ASCII format.
The date is returned at the location
specified in Sl. The date is returned as
follows:

4.4-11

Mnemonic
. code

(continued)

F$JTI

F$ACT

F$SPS

F$CSW

F$TSW

F$BIO

F$BIO

Octal
Value

027

030

031

032

033

034

y

Task
Description

40

d d d ~

63

~I

Return accumulated CPU time for the job in
the location specified by Sl. The time is
expressed in seconds in floating-point
format.

Accounting information from the JXT and the
JTA is returned at locations starting with
the address in Sl. The format of the
information returned is described by the Job
Accounting Table (JAC).

set P register and suspend user. New
program address in Sl.

Clear sense swtich. Sl contains the switch
number to be cleared.

Test sense switch. Sl contains the switch
number to be tested.

On return: (Sl)~O if sense switch is set
(Sl)=O if sense switch not set

Buffered I/O request. Sl contains the DSP
address.

Perform record oriented I/O request on a COS
blocked dataset. A record or partial record
is transferred to or from a user-specified
data area. Control returns immediately to
the user, allowing the user to do processing
in parallel with the I/O. The user must
check status in the DSP for completion of
the request and for errors. This may result
in the job being declared irrecoverable.

The DSP must contain the following fields
set by the user when the call is made:

DPBIO Buffered I/O busy flag must be 0
indicating that any previous request has
completed. This flag is set by the
system when the call is made and cleared
when the request is completed.

SM-0040 4.4-12

Mnemonic
Code

Octal
Value

Task
Description

(continued) If a user wants to relinquish the CPU
and wait for completion of the buffered
I/O request, the user should continue to
call recall (F$RCL) until the buffered
I/O busy flag is cleared.

F$BIO

SM-0040

DPBER Buffered I/O error flag must be 0,
indicating that any error on the
previous request has been recognized by
the user.

If an error has occurred when a request
is completed, DPBER is set to 1. The
user may then check DPERR to determine
the nature of the error.

DPBF Function code:

000 Read partial record, logically
equivalent to $RWDP

010 Read record, logically equivalent
to $RWDR

040 Write partial record, logically
equivalent to $WWDP

050 Write record, logically equivalent
to $WWDR

052 Write end of file, logically
equivalent to $WEOF

056 write end of data, logically
equivalent to $WEOD

156 Rewind, logically equivalent to
$REWD

DPBWC Word count is the number of words to
transfer to or from the user's record
area. On a read request, the system
returns the actual number of words
read. If a null record is read, a
zero word count is returned in
DPBWC. The user may then use DPEOR,
DPEOF and DPEOD to determine if end
of record, end of file, or end of
data has been reached.

4.4-13

Mnemonic
Code

F$DLY

F$AQR

F$NRN

F$RRN

F$IOA

SM-0040

Octal
Value

035

036

037

040

041

Task
Description

DPBWA Word address of user's record area.

Oelay job. The job is removed from
processing for the number of milliseconds
contained in the rightmost 24-bits of the
location specified by Sl.

Acquire dataset from front end. F$AQR first
checks to see if the requested dataset
exists on the CRAY-l by issuing an ACCESS
request to the Permanent Dataset Manager to
obtain the dataset. If it is not present on
the CRAY-l, it acquires the dataset from the
front end and accesses it. Sl contains the
address of the POD.

Enable or disable job-not-rerunnable checks.

Sl contains the address of a word containing
the enable/disable flag. If the flag is 0,
the job can be declared not rerunnable. If
the flag is 1, the job cannot be declared
not rerunnable. This does not affect the
existing rerunnability of the job~ if the
job has already been declared not
rerunnable, it remains so. Other flag
values are illegal.

Enable or disable job rerun. Sl contains
the address of a word containing the
enable/disable flag. If the flag is 0,
rerun is enabled~ that is, an operator RERUN
command or a system recovery places the job
back into the input queue. If the flag is
1, rerun is disabled; that is, an operator
RERUN command is rejected and a system
recovery does not allow the job to be rerun
from the beginning.

Set (lock) or clear (unlock) lOA bits in the
JCB and JTA and alter accordingly the limit
address in the user's exchange package.
When the lOA bits = 1 (lock user's I/O
area), the limit address is set to (JCDSP)~
when the lOA bits = 0 (unlock user's I/O
area), the limit address is set to (JCFL).
Sl contains the address of the LOCK/UNLOCK
indication.

4.4-14

Mnemonic
Code

FSLFT

F$INV

FSDJA

F$RPV

SM-0040

Octal
Value

042

043

044

045

Task
Description

Delete, change, or create
JTA. Sl contains the LFT
user field. S2 contains
performed on an LFT.

DELLFT = 0 Delete
CHGLFT = 1 Change
CRELFT = 2 Create

an LFT in the
address in the

the operation to be

an LFT
an LFT
an LFT

Invoke a job class structure. The job
aborts if an FSINV request is already
pending. Sl must contain the address of the
invoke request word, Which has the following
form:

28 40 63

~~~~~_LE_N....I.-I __ LOU 

LEN The length of the array located at 
LOC. The job aborts if LEN is not a 
multiple of 1000S or is greater than 
the maximum size allowed. 

LOC The address of the array containing the 
job class structure to be invoked 

The array at LOC is copied to the Class 
Structure Definition Table (CSD) as soon as 
all of the job's I/O requests are complete. 
Then the class assignments of all the jobs 
in the input queue are redetermined. 

No Job Execution Tables (JXTs) are allocated 
While a J$INVOKE request is pending. (See 
JSH functions in section 4.5). 

Dump job area. Sl contains the address of a 
local dataset name. If non-existent, the 
dataset is created. 

Enable or disable reprieve processing. Sl 
contains the address of a 3-word table in 
the following format: 

o 
+1 

+2 

FWA of reprieve code 
FWA of 30-word save area for exchange 
package and system use 
Mask defining error classes to be 
reprieved 

4.4-15 



Mnemonic 
Code 

FSBGN 

FSSKP 

F$PRC 

FSRTN 

F$TBL 

F$INS 

F$UROLL 

F$ASD 

Octal 
Value 

046 

047 

050 

051 

052 

053 

054 

055 

Task 
Description 

S2 is set to 0 to activate reprieve 
processing. If S2 is nonzero, abort 
processing continues as if the reprieve 
never occurred, providing the capability to 
continue abort processing at the termination 
of reprieve. 

Begin user code execution. Sl contains the 
address of the BGN table. The code to be 
executed is assumed to be loaded in the user 
field. BGN performs necessary housekeeping 
and calls the Job Scheduler to begin job 
execution. 

Skip or end skipping of control statements. 
Set Sl=l to begin skipping control 
statements; set Sl=O to end skipping_ This 
function forces the Exchange Processor ADV 
routine to ignore all control statements 
(for example, DUMPJOB). 

Procedure dataset invocation. Sl contains 
the address of the procedure dataset name. 
Control statements are read from the 
indicated dataset until eo! or RETURN is 
encountered, at Which point reversion to the 
dataset containing the invocation occurs. 

Procedure return; resume reading from the 
previous control statement dataset. 

Save eSP-managed tables 

Jump to installation-reserved function. Sl 
should contain the subfunction code, an 
offset into the subfunction table. This 
function allows the installation an 
unlimited number of subfunctions. 

Roll a job; user requested rollout to 
protect against system interruptions. 

Access system dataset. Search the System 
Directory for the dataset name which is 
pointed to by Sl. Sl may also have the sign 
bit set to indicate no abort. 

4.4-16 



o 40 63 

Sl = FA 1/////////////////////////////////////1 dn addr 

On return, if there was an error and the NA 
flag was set: 

o 40 63 

SO = V///////////////////////////////////////I job abort error Code] 

Job abort error codes: 

12 JTA overflow 
21 Dataset not found 
76 Dataset already accessed by job 

4.4.6 USER ERROR EXIT 

When a user program executes an error exit instruction or encounters a 
hardware execution error (such as a floating point error, operand range 
error, or program range error), an exchange to EXEC occurs. EXEC readies 
the Exchange Processor after setting the following fields in the JTA of 
the job: 

• JTEPX is set to 1. 

• JTEPF is set to the exchange package flags in the user exchange 
package, bits 30-38 of word 3. 

• JTEPP is set to the P register in the user exchange package. 

• JTEPA is set to the word address of the failing memory word for an 
uncorrected memory error. 

The Exchange Processor issues appropriate error messages and initiates 
job abort or reprieve processing. 

The Exchange Processor skips through the job control statements to the 
statement following the next EXIT statement or to the end of file. If 
the statement following the EXIT statement is DUMPJOB, a dataset named 
$DUMP is created if it does not already exist. This dataset contains the 
job image, including the Job Table Area (JTA) and the entire user field. 

4.4.7 JOB SCHEDULER REQUESTS 

The Job Scheduler (JSH) requests the Exchange Processor to initiate or 
abort a job by setting the JTEP word in the job's JTA. The JTEP word 
must be 0 before JSH can modify it. JSH sets the JTEPJ field to 1, 
indicating a JSH request. 

SM-0040 4.4-17 



The Exchange Processor is readied by EXEC when the job is connected if 
the JTEP word is nonzero, that is, When it becomes the currently 
executing job. If JTEP is nonzero at the time JSH needs to use it, JSH 
sets the flag in JXT. As soon as the job is connect~d again and JTEP is 
0, JSH sets the JTEPJ field to 1. 

4.4.8 JOB RERUN 

Under certain conditions, termination of job processing and returning to 
the input queue for reprocessing at some later time may be desirable or 
necessary. This is known as rerunning a job. When a job is rerun, the 
results of the second (or subsequent) execution should be the same as 
those that would have been obtained had the original execution continued 
to a normal termination. However, after a job has performed certain 
functions that have a lasting effect on the system (in particular, 
functions that make changes in the contents of permanent datasets or the 
Dataset Catalog), the system is unable to guarantee that the results of 
the rerun job will be the same. 

Normally, When EXP recognizes that the user is performing one of these 
functions, the job is declared ineligible for rerun. A job ineligible 
for rerun cannot be rerun under any conditions. Normally, once a job is 
declared ineligible for rerun, that status is permanent. The job may 
become eligible for rerun again only if the user program specifically 
requests such a change using the F$RRN system call (RERL~ macro or RERUN 
control statement). The system never declares a job to be again eligible 
for rerun wit.hout a specific user request. 

Through the F$NRN system call, the user may prevent EXP from declaring a 
job not rerunnable regardless of What functions are performed. This 
prohibition remains in effect until the user specifically re-enables the 
detection of non-rerunnable functions. This does not affect the current 
rerunnability of a job; it merely prevents future declaration of 
non-rerunnability. The NORERUN macro and control statements may be used 
to enable or disable the detection of conditions that normally cause a 
job to be not rerunnable. 

The functions that cause a job to be declared ineligible for rerun are: 

• A SAVE of a permanent dataset, 

• A DELETE of a permanent dataset, 

• Any write operation involving a permanent dataset, and 

• An ADJUST or MODIFY of a permanent dataset. 

Conditions that may cause the system to attempt to rerun a job are: 

• Operator entry of a RERUN command. 

SM-0040 4.4-18 



If the job has already been declared ineligible for rerun, the 
RERUN command is not accepted and the job is not affected. 

• Disk error while attempting to read the roll image of a job that 
has been copied to mass storage. 

If the job is ineligible for rerun and the roll image cannot be 
read, the job is placed back in the input queue and aborts with an 
informative message as soon as the Job Scheduler attempts to 
re-initiate the job. 

• System software or hardware failure necessitating a system restart. 

If recovery of rolled jobs is not performed or if the job is not 
recoverable (see Job Recovery), Startup attempts to rerun the job 
from the beginning. If the job is ineligible for rerun, it aborts 
with an informative message when the Job Scheduler attempts to 
re-initiate the job. 

In any case, an informative message appears in the user log and in the 
system logfile whenever a job is rerun or a rerun is necessary but the 
job is ineligible for rerun. A rejected operator RERUN command produces 
no messages in either log. 

4.4.9 REPRIEVE PROCESSING 

Reprieve processing enables a user program to gain control in a uniquely 
identified routine when a job step completes either normally or 
abnormally. This routine is entered with reprieve processing disabled. 
The user program can recover from the termination; however, an abort due 
to an I/O error can produce unpredictable results if the dataset is 
accessed in the reprieve routine. 

When a job step termination condition occurs, either normally or 
abnormally, the F$ADV or F$ABT system action routine determines if a 
reprieve request has been issued and if the termination condition has 
been specified by the user as reprievable. If so, the reprieve 
processing routine, ERPV, gains control and performs these tasks: 

1. Clears the current reprieve values, 

2. Copies the exchange package, vector mask register, error class 
code, and actual error code contents to the user-specified area, 
and 

3. Sets up the user-specified reprieve routine to receive control 
when the job is selected for execution by placing its address in 
the program address register of the exchange package. 

SM-0040 4.4-19 



Reprieve processing is initiated either by issuing the SETRPV macro 
instruction in a CAL program or by calling the SETRPV library routine in 
CFT. Both requests invoke execution of the $SETRPV library routine. 
$SETRPV issues an F$RPV system action request, which saves the user 
specified reprievable error class code and the address of the reprieve 
code in the JTA. 

The ENDRPV macro instruction in CAL or the ENDRPV call in CFT terminates 
the job step. The job step terminates as if reprieve processing had 
never been in effect. 

4.4.10 NON-RECOVERABILITY OF JOBS 

Functions that a job may perform causing the job to be declared not 
recoverable include: 

• A random write on any dataset, 

• A sequential write on any dataset immediately following any 
forward positioning, rewind, or read on that dataset. Thus, the 
position of the end-of-data is changed, which could cause the job 
to behave differently if started from a previous roll image. 

• A SAVE, DELETE, ADJUST, or MODIFY of a permanent dataset, and 

• The release of a local dataset, returning disk space to the system. 

In any event, the job becomes recoverable as soon as the Job Scheduler 
rolls the job out to mass storage again. 

A job is declared irrecoverable by a call from EXP to the Job Scheduler 
(JSH). If the job is already marked irrecoverable, JSH returns without 
further action. If the job is not already marked irrecoverable, JSH 
suspends the job, changes the Rolled Job Index Table (RJ), and writes the 
modified index to disk. When the modified index is successfully written, 
JSH resumes the job. The write of the index always occurs before EXP 
performs the request that makes the rolled image invalid. 

SM-0040 4.4-20 



4.5 JOB SCHEDULER (JSH) 

The Job Scheduler is the task responsible for initiating the processing 
of a job, selecting the currently active job, managing job roll-in and 
roll-out, and terminating a job. 

4.5.1 JOB FLOW 

A job enters the system as an input dataset spooled from a front-end 
computer. As illustrated in figure 4.5-1, the input dataset is 
transferred to CRAY-l mass storage by the Station Call Processor task 
(SCP). SCP also makes the job's existence known to the system by 
creating an entry in the System Dataset Table (SDT) and an entry in the 
disk resident Dataset Catalog (DSC). The latter entry makes the job's 
input dataset permanent until it is deleted at the completion of the job. 

Any SOT entry contains information sufficient to identify and access the 
dataset. In addition, the SOT entry for a job input dataset contains the 
job's name, priority, field length, CPU time limit, $OUT size, and CL 
parameter all obtained from the JOB statement by SCP. Class membership 
is assigned by the Job Class Manager (see section 4.11) as soon as the 
job enters the input queue. 

The Job Scheduler (JSH) selects jobs from the SOT for entry into the Job 
Execution Table (JXT) in the following manner: 

• Classes are scanned from highest to lowest rank to find a class 
with an available JXT. A class has an available JXT when the 
class is ON, and it either has an unused reserved JXT, or it is 
not at its maximum and a pool JXT is available. 

• When a class with an available JXT is found, its members are 
initiated in priority order (see section on initial memory 
priority). Jobs that have a priority of 0 are not initiated until 

. the operator raises their priority. This process continues until 
all jobs are initiated or belong to a class having no available 
JXTs. 

The size of the JXT depends on the value of the installation parameter 
I@JXTSIZ (defined in COSTXT), which imposes an absolute limit on the 
number of JXT entries (from 1-63). The operator can reduce the apparent 
size of the JXT further by using the LIMIT command, Which affects the 
variable JXTMAX. 

After the system Startup or a SUSPEND ALL, SHUTDOWN, or LIMIT 0 operator 
command, JXTMAX is set to 0 by the system. The LIMIT operator command 
should be used to set JXTMAX to a nonzero value. 

SM-0040 4.5-1 



iT~:~~~:~YI 
~ 

FRONT-END 
SYSTEM 

SCP 

SCP JSH 

Figure 4.5-1. Job flow 

After the Job Scheduler enters a job into the JXT, the job begins 
contending for memory with the other jobs in the JXT. Jobs with priority 
o are not initiated until the operator raises their priority. Memory 
allocation is based on priority, memory size, and the time limit 
specified on the JOB control statement. The Job Scheduler rolls jobs in 
and out of memory when necessary to ensure reasonably quick turnaround 
for all jobs. 

Jobs that currently reside in memory contend with each other for CPU 
time. Their CPU priorities may depend on their user-assigned memory 
priorities, or they may be made independent of their user-assigned 
priority to maximize overall CPU usage. If I@AGECP, an installation 
parameter defined in STP, is 1, the Job Scheduler periodically adjusts 
the CPU priority of each job according to one of two alternate strategies 
(selected by I@CPPRI). When the currently executing job is disconnected 
from the CPU, JSH connects in its place Whichever job among those ready 
to run that has the highest CPU priority. According to one strategy, 
that job is the job that has had the least CPU time in the past; using an 
alternate strategy, it is the job that has had the most I/O activity in 
the past. 

SM-0040 4.5-2 



4.5.2 SCHEDULING PHILOSOPHY 

The typical time to service an I/O request is much longer than the 
average computation period; therefore, multiprogramming is essential to 
reduce the CPU idle time. A multiprogramming system schedules as many 
user programs into memory as is possible at anyone time. These jobs may 
then share the CPU. 

The two objectives of the scheduling mechanism are: (1) to make 
efficient use of the resources (memory and CPU time) and (2) to turn jobs 
around in a time that is consistently faster as the job's priority 
increases. 

These two objectives are somewhat in conflict. However, scheduling 
occurs on two levels: at a high level Where jobs contend for space in 
memory and at a low level where they contend for CPU time. A low-level 
scheduling strategy that pays little attention to user priorities is 
reasonable for the sake of efficiency, as long as it is balanced by a 
high-level strategy that allows the high priority jobs to initiate 
(transfer from the input queue, SOT, to the job mix, JXT) earlier and 
stay in memory longer. Time in memory is measured in terms of time 
actually used (excluding time spent waiting for resources). Even if the 
average stay in memory is made so long that most jobs finish before they 

. can be rolled out, advantage is gained by early initiation. 

From the viewpoint of system efficiency, each job should be held in 
memory until it terminates--or at least until a higher priority job 
displaces it. But then, a large job could monopolize system resources, 
preventing small or quick jobs from running at all. To avoid this 
possibility, a small or quick job is given a higher initial priority than 
requested on the JOB statement, and this initial priority (which governs 
the allocation of memory to the job) is periodically adjusted after the 
job joins the job mix. A job's memory priority rises While it is waiting 
for memory and falls while it is in memory and running. Jobs are swapped 
in and out of memory when the difference between their memory priorities 
is great enough. The installation is given several means of control over 
the rate at Which swapping occurs. 

Low-level scheduling: CPU priority 

If I@CPMULT, an installation parameter defined in STP, is 0, each job 
begins with the maximum possible CPU priority~ otherwise, each job begins 
with a CPU priority proportional to its initial memory priority. If 
I@AGECP is 0, CPU priorities do not age (the priorities do not increase 
or decrease) and memory priorities determine CPU assignments. When 
I@AGECP is nonzero, the CPU priorities for each job in memory are 
adjusted at the end of each scheduling interval in an attempt to 
apportion CPU time fairly between all jobs in memory. (The scheduling 
interval, I@JSHSI, is a tunable parameter and should have a value large 
enough so that system performance is not significantly degraded by 
priority recalculations.) 

SM-0040 4.5-3 



One of two alternative formulas (selected by the installation parameter 
I@CPPRI) is used in recomputing the CPU priority (CP) at the end of each 
scheduling interval (tt). 

If I@CPPRI is 0, the formula is: 

CPmax (
dbX • dbt )-
!1t ndev 

old CP 

new CP = old CP + 

where 

dbx 

dbt 

ndev 

cput 

CPmax 

phw 

is the number of disk blocks transferred for the job 
in !1 t 

lis the minimum time needed to transfer one block 
(74000 cycles) 

is the number of mass storage devices (EQNE in EQT) 

is the time spent by the job actually executing in the 
CPU in !1t 

is the maximum value allowed for CP (2 n , where n= 
N@JXCP, if I@CPMULT=O; else CPmax is proportional 
to PO' the initial memory priority as defined in the 
section on High-Level Scheduling.) 

is the past-histo~ weight, I@JSHPHW (an integer from 
1 to 8 so that 2P = 2, 4, 8, 16, 32, 64, 128, or 
256) (If phw = 1, the behavior during the current 
scheduling interval has a weight equal to all the past 
history; if phw = 0, the past history is ignored.) 

If I@CPPRI is not 0, the formula is: 

CP (1 _ cf~t)-
new CP = old CP + ___ max ______________________________ _ 

old CP 

2Phw 

where cput, CPmax' and phw have the same meanings as above. 

Note that (dbX dbt) and (1 - cput) are dimensionless numbers. 
!1 t ndev !1 t 

The first formula expresses the ratio of disk utilization to execution 
time; the second expresses the fraction of time not used by the job 
during the scheduling interval. CP is initialized to CPmax for each 
job when it is initialized. 

SM-0040 4.5-4 



The CPU switching strategy is selected by another installation parameter 
(I@TSMIN). If I@TSMIN is greater than 0, the following formula is used 
to determine a maximum time slice for each job that depends on its 
initial priority: 

time sliee = I@TSMIN + (met • I@TSCTM) + (PO • I@TSMPM) 

where 

I@TSMIN is the minimum time slice and the only one of the five 
terms that is never 0 

met is the mean connect time for all jobs in the past 
scheduling interval (in milliseconds, rounded down) 

I@TSCTM is the connect time multiplier (any value from 0.0 to 
10.0) 

Po is the job's initial memory priority, calculated as 
described in the following section, High-Level 
Scheduling: it is treated as a scaled integer with 
values ranging from 0 to 15 and 15/16. 

I@TSMPM is the memory-priority multiplier (any value from 0.0 
to 50.0) 

If I@TSMIN is 0, the Job Scheduler gives every job the largest possible 
time slice (32,767 milliseconds), thus effectively disabling the 
time-slice mechanism for switching jobs. In this case, the Job Scheduler 
chooses a strategy of instant preemption. Whenever a new job is added to 
the list of waiting jobs (because of an I/O completion, the lifting of a 
suspension, or the addition of a new job to the JXT), the job that is 
currently executing is disconnected if its CP value is less than that of 
the new waiting job. 

No matter which of the two strategies is used for disconnecting a job 
(time-slice versus high-priority preemption), JSH assigns the CPU to the 
highest priority job that is waiting and ready to run. If a job is 
suspended at its own request and no other job is ready to run, JSH merely 
suspends itself and control eventually passes to the idle loop. 

Either of the two formulas for CP keeps strongly I/O-bound jobs at the 
top of the priority list and CPU-bound jobs at the bottom. (CPU-bound 
jobs get their fair share of CPU time on the average simply because they 
are more likely to be ready when the CPU becomes available.) The first 
formula gives more weight to jobs with efficient disk utilization. 
Together with the switching strategy that immediately reconnects a 
high-priority job that has just become ready, this formula allows a 
single job that is heavily I/O bound to perform as well as if it were 
running alone. 

SM-0040 4.5-5 



Such a job can be prevented from being swapped out in order to take the 
last step toward letting it run as if it were alone. For details, see 
section 4.5.3 on Tuning the System. 

High-level scheduling: memory priority 

Jobs in the JXT are transferred between disk and memory according to 
their memory priorities. These priorities are made to rise and fall so 
that jobs share memory fairly and orderly. (Jobs are spoken of here as 
disk resident whenever they are waiting for memory, although this is not 
literally true. An inactive job may remain in memory if memory is not in 
demand, although we treat the job as if it were rolled out; or the job 
may not reside anywhere at all if it has yet to be initiated.) 

-pt The memory priority of a job is approximated by P = Po ~ a(l-e ) 

where 

Po is the initial priority 

a is the amplitude (the maximum difference between P and PO) 

p is the decay rate (the rate at which P approaches Po ± a) 

Initial memory priority - The initial priority, PO' is determined by 
three values: 

P Priority (0-15): the larger the number, the more important the 
job (and the more expensive it may be to the user). P is 
either the priority parameter from the JOB statement, the job 
priority assigned by the class, or the job priority entered by 
the operator, whichever occurs most recently. 

M Memory parameter from the JOB statement (an octal number of 
5l2-word blocks). The job's initial priority is increased by a 
value that is inversely proportional to its size. 

T Time limit parameter from the JOB statement (in seconds). The 
job's initial priority is increased by a value that is 
inversely proportional to its time limit. 

Calculation of a job's initial priority occurs as soon as COS becomes 
aware of the job; that is, just before the job is placed on the input 
queue. (The job's position on the input queue is determined by the 
calculated priority rather than by the P parameter alone.) 

The initial priority, Po is determined as follows: 

If P = 0, Po = 0; if P = 15, Po = 16-I@JSHAMP: otherwise, 

SM-0040 4.5-6 



(

flmaX - M·O' 1000 ) . ( tquick + tlbias ) Po = P + • fl~nc + • tlinc 
flmax - flmin max (T,tquick) + tlbias 

where Po cannot be less than I@JSHAMP or as large as 16-I@JSHAMP; any 
value of Po outside this range might cause p, the floating memory 
priority, to become negative or to overflow its field. 

Several installation-dependent parameters appear in the above formula 
for PO: 

flmax 

f'lmin 

flinc 

tquick 

tlbias 

tlinc 

is the maximum field length (I@JFLMAX). 

is the minimum field length (I@JFLMIN). 

is the maximum priority increase (I@FLINC) to be given for 
small size. 

is the time limit of a typical quick job. 

is an arbitrary scaling factor chosen empirically 
(I@TLBIAS)i determines the shape of the curve relating the 
priority increase in the T parameter. 

is the priority increase (I@TLINC) to be given. 

Floating memory priority: - In the formula for p, the sign (+) is taken 
as plus while the job is disk resident and minus while the job is memory 
resident. That is, while a job waits for memory, its priority p 
increases asymptotically toward Po + a; When the job is initiated or 
rolled in, P begins to decrease toward Po - a; and if the job is rolled 
out, p again begins increasing toward Po + a. 

The increasing function is applied continuously While the job is rolled 
out, but the decreasing function is applied only to those (discontinuous) 
intervals of time during Which the job is using the CPU or is suspended 
for I/O. Therefore, P has different values for the two separate 
functions, with the increasing function having the smaller value. The 
rise rate is called Pp and Pd is the decay rate. 

When memory is available, it is assigned to a job on the basis of its 
current priority Pi When jobs are of equal priority, the largest one that 
will fit is chosen. 

SM-0040 4.5-7 



When memory is not available, a job that is waiting for memory may preempt 
space from jobs in lnemory only if toe waiting job:s p value is greater than 
each of the P values of the jobs that it seeks to replace. Additionally, 
the waiting job must be greater by a certain deadband amount, db, in order 
to prevent an immediate counter-preemption once the jobs are swapped. 

The deadband height, db, is a tunable parameter (I@JSHDB). The larger it 
is made, the less the sharing of memory between jobs of low and high 
priority and, therefore, the less thrashing. 

The two piS are also tunable parameters (I@JSHRR and I@JSHDR). The smaller 
both rates are, the less thrashing that occurs. The ratio pd/pp should be 
greater than 1 and might be very large. 

Finally, the amplitude, a, is a tunable 
determines the range of possible PO's. 
be between 3 and 131 if a is 1 or less, 
forces all values of Po into the proper 
of P ever goes below 0 or rises as high 

parameter (I@JSHAMP) whose value 
For instance, with a=3, Po must 
Po may range from 1 to 15. JSH 
range so that no interim value 
as 16. 

The actual algorithm does not compute exponential values. Instead, it 
approximates the exponential function by incrementing P every 6t by a 6p, 
calculated as follows: 

6p = (PO - p+a) p6t 

where a<O and p = Pd for jobs in memory, and 

a>o and p = Pp for jobs not in.memory. 

The approximation improves with decreasing 6t, becoming exact when 6t is 
infinitesimally small. (~P is too large by a factor that approaches 1+ 
(p6t)/2 as P 6t approaches O. Any error introduced by too large a 
scheduling interval causes p to approach its asymptote at Po ~ a more 
quickly.) 

The rate of change for a job's memory priority should depend to some 
extent on the size of the job. A large job takes more time to be rolled 
in and out than does a small job, so the large job should remain longer in 
memory and on the disk. Job size causes memory priority to vary when the 
rate of change (p) is multiplied by 

1 - jaw 

where 

jaw 

flmax 

S~0040 

( job size ) 

flmax 

is an adjustable weighting factor (I@JSHJSW), and 

is the maximum job size (I@JFLMAX). 

4.5-8 



Note that the value of this expression is always less than or equal to 1, 
and that it approaches 1 either as jsw approaches 0 or as the job size 
approaches the maximum job size. 

Thus, the final version of the algorithm is 

I:, P = (Po + a - P) - jsw (_jOb size ) 1 PI:, t 

f"lmax 

For the purpose of determining when a job should be rolled out, the time 
actually used by a job is assumed to be a function of the time spent 
executing and the time spent waiting for I/O completion; that is, it 
excludes only the time spent waiting for assignment to the CPU. The 
underlying assumption is that no time is lost in the I/O request queue and 
no time lost waiting for the best opportunity to begin the seek operation. 
To the extent that this assumption is false, jobs are short-changed on 
memory time. Also penalized are those jobs that access disk cylinders far 
removed from the centers of disk activity. An offsetting advantage is 
that, when waiting time is low, memory priorities age nearly as fast in 
memory as on the disk. 

Behavior of the high-level scheduling algorithm 

Figures 4.5-2a through 4.5-2f show the variation of the memory priorities 
for several jobs running at the same time. In all of the examples given 
below, the following conditions hold: 

• Not all the jobs can fit into memory together. 

• The scheduling interval is very small, so that exponential curves 
may be used to describe the variations in each job's running 
priority. 

• The rate of change of memory priority is independent of how much CPU 
time each job gets. (This is contrary to the facts, but it 
simplifies the graphs by giving each curve fragment the same decay 
constant. ) 

• The deadband interval, db, is 2. 

• The amplitude, a, is 3. 

• The solid lines represent memory priority for jobs in memory; the 
dashed lines represent jobs that are waiting for memory. 

• All jobs are submitted at the same time and they each run long 
enough that their subpriorities are all O. 

• Competing jobs are of the same size (until figure 4.5-2e) • 

• The rates of rise and decay are independent of job size. 

SM-0040 4.5-9 



Figure 4.5-2a shows two jobs that are too large to share memory. Their 
initial priorities (from the job statements) are 3 and S. The nIgher 
priority job runs first and consistently enjoys a longer stay in memory, 
because its priority has asymptotes at P=2 and 8 (as opposed to 0 and 6 
for the other job). 

t 

9 

8 

7 

6 

t 
db=2 

t 

Note: In all the examples, jobs 
are swapped when the difference 
between their priorities equals 
or exceeds db. 

o~---------------------------------------------------------------

Figure 4.5-2a. Memory priority variation 

Figure 4.5-2b shows three jobs, only two of which can share memory at any 
one time. Except for the presence of the priority-7 job, this graph is 
identical to figure 4.5-2a. The priority-7 job can never be forced out 
of memory because its priority never will be even as much as one unit 
below P=5, which is the maximum attainable by either of the other two 
jobs. (If its initial priority was 6 instead of 7, it still would never 
be forced out by the other two jobs.) 

9 

8 

7 

6 

t 5 
7 

p 4 

3 
~t3 -I ~ t5~ 

2 

0 
t ----. 

Figure 4.5-2b. Memory priority variation 

SM-0040 4.5-10 



Figure 4.5-2c shows three jobs which, like those in figure 4.5-2b, must 
share memory two at a time. In this case, though, the priorities are 
close enough together that they each get some time in memory. Although 
the pattern may not be a repeating one, each job's time in memory is 
consistent with its priority. 

9 

8 

7 

6 

r 5 
p 4 

3 

2 

3~4 I ~ ;' , / ",;' 

I I 
, I /" 

o~-----------------------------------------------------------------
t ---. 

Figure 4.5-2c. Memory priority variation 

Figure 4.5-2d shows a very large number of jobs, all of the same initial 
priority (4), and only one of which can fit in memory at anyone time. 
The uppermost dashed line represents the current priority of all the jobs 
that have yet to be initiated. The jobs are initiated in the order they 
were submitted (or in JXT-entry order, if they were submitted 
simultaneously). Each job that runs gets slightly less time than the 
previous one, but this time in memory rapidly approaches a limiting 
value T as t advances. (It may be possible to specify the decay 
rate Pp indirectly by specifying this value of T, along with db and a.) 

9 

8 

7 

3 

2 

Time in memory (t4) approaches a 1 imit 
T as t~oo; specifying T would fix the 
decay rate if db and a were known. 

o~-----------------------------------------------------------------
t ---. 

Figure 4.5-2d. Memory priority variation 

SM-0040 4.5-11 



In figure 4.5-2e is the first example in which the jobs are of different 
sizes. One high-priority job (6L) fills mernory~ while two other jobs C6S 
and 3) are each half as large as 6L. Note that the two possible states 
of memory (6L versus 6S and 3) each exist half the time, so that the 
low-priority job gets as much memory time as if it had the same priority 
as the other two jobs. This unfairness is remedied by making 3's 
priority decay faster, since the other two jobs completely determine 
scheduling. 

9 

8 

7 /XX 6 
/ /" / 

/ 

r 
/ / / 

8d~~ 5 65 6L 

p 4 
65 ...--

3 //~ 3 Alternating memory states for 
figures 4,S-2e and 4.S-2f. 

2 ~t6L :~s~ / 
0 

t -.. 

Figure 4.5-2e. Memory priority variation 

Figure 4.5-2f is the same job mix as in figure 4.5-2e, but the rates of 
priority rise and decay are both inversely proportional to job size. The 
two possible states of memory each exist half the time, just as before. 
No gain is made in fairness--but making both rates depend on job size in 
this way improves the efficiency of the operating system because larger 
jobs take more time to roll in and out. The strength of the relationship 
between job size and rate of priority change depends on the value of 
I@JSHJSW. 

t ---. 

Figure 4.5-2f. Memory priority variation 

SM-0040 4.5-12 



Interrelationship between a, db, and user priorities 

By choosing a value for the amplitude, a, an installation determines the 
range of permissible user priorities so that the difference between the 
minimum and maximum Po is l5-2a. Furthermore, any two jobs whose pas 
differ by as much as 2a-db can never force each other to rollout. 
Therefore, the installation should make sure that l5-2a is less than 
2a-db by making db < 4a-15 if memory swapping is to affect all jobs. 

The installation also selects a default priority (I@MEMPRI) when the P 
option is missing from the job statement. The priority should be in the 
middle of the permissible range; ideally, 7 or 8. 

Job class scheduling 

Job class scheduling consists of identifying sets of jobs having common 
characteristics so that they can receive special handling. Special 
handling occurs during job initiation (When a job receives a JXT) and/or 
job processing (when a job is given the CPU and/or memory). 

A class receives a job initiation advantage when a number of JXTs are 
reserved for its exclusive use. A job belonging to that class is 
initiated as soon as it enters the input queue unless all of that class's 
reserved JXTs are allocated. If they are, a JXT may be drawn from the 
JXT pool. The JXT pool consists of all the non-reserved JXTs available 
to the system. 

Each class may draw from the pool when all of its reserved JXTs are 
allocated. The total number of a class's allocated JXTs--reserved and in 
the pool--must not exceed the class's maximum JXT limit. A relative 
advantage is given to jobs in a class that has a large maximum JXT limit. 

A class receives an additional job initiation advantage when it is 
assigned a high class rank in a CLASS directive, because JXTs are 
allocated from the pool in class rank order. 

Job initiation is disabled when a class is turned OFF in a CLASS 
directive; that is, no new JXTs are allocated to a class that is OFF. 
Members of such a class remain in the input queue until the operator 
turns the class ON. 

Job processing is affected when the class provides a class priority that 
overrides the job priority of all of its members. 

SM-0040 4.5-13 



Job class structure 

Job class scheduling is defined by the job class structure in effect. 
See JCSDEF for a detailed description of a job class structure. 

After a system Install, the following default job class structure is in 
effect: 

SNAME,SN=DEFAULT. 
CLASS,NAME=JOBSERR,RANK=1,CHAR=JSE,RES=O,MAX=63 
CLASS,NAME=NORMAL,RANK=2,CHAR=ORPH,RES=O,MAX=63. 
SLIMIT,LI=lS. 

When the default structure is in effect, all jobs are classified as 
normal. 

The operator may use the LIMIT command to set the maximum number of JXTs 
to the structure's recommended value, IS. When the LIMIT comand sets the 
maximum number of active JXTs to less than the total reserved JXTs, the 
JXTs are reserved in class rank order until they are exhausted. 

The utility JCSDEF can be used to define a job class structure from a 
series of card image directives. The operator can run JCSDEF to invoke a 
new class structure at any time without a system interruption. 

A job class structure can be recovered or invoked at system Startup. 

Job class structure monitoring 

The effectiveness of a job class structure can be monitored by system log 
entries. When a structure is invoked or recovered, COS enters a message 
into the system log recording the structure's name. Additionally, the 
System Performance Monitor task logs scheduling status information at 
regular intervals. 

Scheduling status information includes: 

• Number of jobs in the system 

• Number of active JXTs 

• Number of available pool JXTs 

• Number of active JXTs in each class 

• Number of classes waiting for JXTs 

• Number of jobs waiting for JXTs in each class 

• RES, MAX and ON/OFF values of each class 

COS enters a message into the system log when a job enters the input 
queue and again when it is given a JXT. The system utility, EXTRACT, can 
be used to generate job class reports. 

SM-0040 4.S-14 



4.5.3 TUNING THE SYSTEM 

To reduce thrashing (excessive rolling in and out), several adjustments 
are possible. For quick results, an installation might increase the 
deadband, decrease the amplitude, and/or decrease the rise and decay 
rates, all of which affect high-level scheduling. A much slower change 
occurs if the operator reduces the maximum number of jobs in the mix. 
The most drastic approach is to reduce the maximum field length, thus 
preventing very large jobs from ever being able to run. 

To reduce turnaround time for low-priority jobs (at the expense of system 
throughput), an installation might take the opposite course: increase 
the number of jobs in the mix, increase the rise and decay rates, 
increase the amplitude, and/or decrease the deadband. 

Installation parameters 

Installations can change several JSH parameters to suit their specific 
needs. (Parameters are made adjustable by using a memory word for each 
parameter, rather than equated values assembled into multiple locations, 
and by providing a means for changing them during deadstart and/or while 
the system is running.) 

A list of installation parameters (including JSH parameters) and the 
values assembled into the released system are given in COS Operational 
Procedures Reference Manual, publication SM-0043. 

Time slice 

The time slice is the maximum amount of continuous execution time that a 
user job is allowed to have before it is disconnected from the CPU. This 
maximum normally affects only CPU-bound jobs because an I/O-bound job 
usually relinquishes the CPU before its time slice expires. The formula 
used by the Job Scheduler allows an installation to determine each job's 
time slice. If I@TSCTM=O, the time slice is directly proportional to its 
initial memory priority. If I@TSMPM=O, all jobs have the same time slice 
as determined by the mean connect time for all jobs in the past 
scheduling interval. A position anyWhere between these two extremes is 
also possible. 

The value of I@TSMIN is important. The smaller it is, the more sensitive 
the time slice computation is to variations in the other four terms and 
the more likely it is that the system will be subjected to excessively 
frequent exchanges when strongly I/O-bound jobs are sharing the cpu. For 
the latter reason, very small values of I@TSMIN are to be avoided. A 
value of 0, however, turns off the entire time-slice mechanism in favor 
of a strategy of instant preemption by the higher priority job, as 
described under Low-level scheduling. 

SM-0040 4.5-15 



Maximum number of jobs in mix (LIMIT command) 

The maximum number of jobs in the mix (JXTMAX) is set by the operatuL 
using the station's LIMIT command. JXTMAX is usually smaller than the 
number of jobs waiting to be initiated but larger than the number of jobs 
that can be in memory together. If JXTMAX is greater than the actual 
number of jobs in the mix, jobs are taken from the input queue (Where 
they are ordered by priority) and added to the mix. This parameter can 
be reduced to 0 by the operator to prevent any new jobs from being added 
as the operator cancels or lets complete all jobs in the mix. No job can 
be added to a full mix, regardless of its priority, until one of the 
running jobs terminates. 

Deadband 

Increasing the deadband decreases the importance of priority levels; as 
an extreme example, if the deadband height were 10 (with a = 3 and Po 
therefore ranging from 3 to 13), all jobs would inevitably run to 
completion without ever being forced to rollout. 

Even with the deadband height as low as 2 (with a = 3), a job with Po 
= 7 would never rollout to make way for one with Po = 3; although, 
reducing the deadband height to 1.9 in this case would allow the job 
with Po = 7 to eventually be forced out by the job with Po = 3. 

Rise and decay rates 

Decreasing the rates at which memory priorities rise and fall reduces the 
roll-out activity, increases the advantage of jobs with higher initial 
priorities, and greatly increases the turnaround time of some 
low-priority jobs. Infinitely slow aging rates prevent any rolling out, 
just as if a large deadband were used. 

Weighting factors 

I@JSHPHW: 

I@JSHJSW: 

SM-0040 

The past-history weighting factor. When increased, this 
factor reduces the effect (on CPU sharing) of momentary 
fluctuations in the character of a job from CPU-bound to 
I/O-bound or vice versa. 

The job-size weighting factor. At 1.0, this factor allows 
close correspondence between job size and rollout frequency 
so that a job that is twice as large is rolled to disk 
about half as often. If this factor is set to 0.0, job 
size is not considered at all in computing the changes in 
memory priority. 

4.5-16 



4.5.4 MEMORY MANAGEMENT 

The Job Scheduler allocates memory for job initiation and rolling in. It 
also handles requests made by the job that is currently running for 
changes in field length. 

If a request for more memory cannot be satisfied by annexing part of an 
area contiguous to the current job, the job must be moved to another free 
area or rolled out. 

The first-fit method is used for allocating memory to jobs that are to be 
moved or rolled in. That is, JSH allocates from the first free block of 
memory that is large enough, always beginning its search at the low end 
of memory to encourage large blocks of free memory to grow at the high 
end. 

If a memory requirement cannot be satisfied immediately, but could have 
been satisfied if the available blocks were collected into one large 
block, a storage compaction mechanism is enabled and remains enabled as 
long as it can help to satisfy such requirements. 

If compaction is enabled, it takes place after all allocations are made 
that can be made without compaction. During compaction, only jobs in 
wait state (not running and not in I/O suspension) can be moved, so the 
result is necessarily imperfect. More than one free area will very 
likely be available. After each cycle of compaction, JSH tries the 
unsatisfied requests again in the same order in Which they originally 
occurred. When all requests are satisfied, compaction is disabled. 

The compaction mechanism moves allocated blocks from the high end of 
memory to the low end, again (like the "first-fit" allocation strategy) 
to encourage the growth of large blocks of free memory at the high end. 

Jobs to be moved are selected starting at the low end of memory. For 
each job that can be moved, the memory it occupies is temporarily freed 
and a search is made for a segment of the same size starting at the low 
end of memory. (The search is always successful because it can return 
the same segment or one that overlaps it.) The job is relocated to the 
found segment, if necessary, and compaction resumes with the next job 
that is movable. 

The compaction mechanism is enabled based on a tally of the total amount 
of memory available, including blocks that will become available When 
previously requested rollouts (if any) are completed. If a job is 
promised memory (to be allocated when made available by compaction), this 
tally is reduced accordingly. It is only when an unsatisfied memory 
request is less than this total amount that compaction does any good; 
larger requests must wait for rollouts to occur (rollouts triggered by 
changes in memory priorities) • 

SM-0040 4.5-17 



A table of memory segment descriptors (MST) is maintained by the Job 
~cneduler. Each I-word entry in this table corresponds to a free or 
allocated memory segment. A newly freed segment adjacent to another free 
segment are immediately combined. All of the memory that is allocatable 
by JSH is initialized as a single free block. 

For a description of how the Job Scheduler handles requests for changes 
in field length, see Allocate Request in section 4.5.7. 

4.5.5 JOB STARTUP 

When JSH sets up'a job for its first shot at the CPU, it allocates the 
amount of memory specified by the M parameter on the JOB statement (but 
first adjusting this value if it exceeds I@JFLMAX or is smaller than 
I@JFLMIN). It then initializes the job's JXT entry and the Job Table 
Area (JTA). Most of the JTA is initially filled with zeros. The 
exceptions are the following fields: 

Field 

JTJN 
JTUSR 
JTXP+l 
JTXP+2 
JTJCB 
JTCMSG 
JTEPJ 
JTSID 
JTDID 
JTJXT 
JTTID 
JTDNT 

JTCDP 
JTLDP 

Description 

7-character job name (from JXT) 
IS-character user number (from SOT) 
Bits 18-35 (BA) 
LA and flags 
JCB pointers 
Conditional message flags 
JSH request flag 
Source ID (from SDT) 
Destination ID (from SDT) 
Pointer to JXT entry 
Terminal ID (from SDT) 
3 DNTs (the first 2 for system use only), in the 
following order: 

$CS, $LOG, and $IN 
The DNTs for $CS and $IN refer to the same dataset. 
DSP list for $CS 
DSP list for $LOG 

JSH makes the DNTs for $CS and $LOG· unavailable to the user by storing a 
nonzero value in the low-order 8 bits of the first word in each DNT. The 
names $CS and $LOG, therefore, cannot be found by FSDNT and are used only 
as reference points in a dump. These two DNTs are always placed in the 
JTA in the order given above. The user DNTs, theoretically, may be in 
any order following the first two. (The DNTs for $CS and $IN refer to 
the same dataset.) 

JSH sets up DSPs for $CS and $LOG in the JTA, initializing the dataset 
name (the same as the dataset name in the DNT) and the four I/O 
pointers--FIRST, IN, OUT, and LIMIT. $CS is opened for input and $LOG is 
opened for output. 

SM-0040 4.5-18 



The DNTs are initialized as shown in table 4.5-1. The DNT for the rolled 
dataset is in the JXT rather than in the JTA. 

Table 4.5-1. DNT initialization 

Files initialized 

DNT Field Roll Control LOG Standard 

§ 

§§ 

§ §§ 

Dataset Statement File File Input Dataset 

DNDN 'ROLLDNT' '$CS'§ '$LOG'§ '$IN' 
ASCII 

DNOC ' 11'B 'lO'B 'Ol'B 'OO'B 
binary 

DNP l§§ - - -
binary 

DNDC 'SCI 'IN' 'PR' 'IN' 
ASCII 

DNDAT - copied - copied 
address from SDT from SDT 

DNPDS 0 1 0 1 
binary 

DNACS 0007 0007 0007 0007 
octal 

DNBFZ - 1 1 4§§§ 
decimal 

DNDSP - yes yes no 
address 

tr'he dataset names $CS and $LOG are unavailable to the user because 
the low-order byte of the word in which each name is stored is set 
to a nonzero value. The roll dataset's DNT is unavailable because 
it is not in the JTA. 

The DNT (processing direction) flag for the roll dataset is toggled 
according to the expected direction of the next I/O transfer. 

The buffer size for $IN is an installation-dependent parameter. 
The numbers given for DNBFZ are multiples of 512-word blocks. 

SM-0040 4.5-19 



d.5.6 JOB STATUS AND STATE CHANGES 

The 23-bit status field (JXSTAT) in each job's JXT entry is described in 
table 4.5-2. The bits labeled Q, R, X, I, U, L, S, 0, and Mare 
determine the jobis state; the other bits modify the job's state. 

If all of bits 3 through 22 are 0, the job is said to be waiting to be 
connected to the CPU (state W). 

Bit position 
in JXSTAT 

o 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

SM-0040 

Table 4.5-2. Status bi~ assignments 

Bit 
name 

K 

A 

H 

o 

s 

T 

E 

M 

Q 

R 

x 

I 

C 

D 

U 

Corresponding 
job state 

s 

any 

o 

o 

s 

s 

s 

M 

Q 

R 

x 

I 

any 

any 

u 

Interpretation 
(when bit is set) 

Keep this job in memory; do not 
roll it out. 

Abort pending; reason given in 
JXEPC 

Holding operator or shutdown 
suspension until RN is set 

Suspended (indefinitely) by 
operator 

Suspended (possibly by system) 

Suspended until a given time elapse 

Suspended until a given event 
occurs 

Memory allocation is pending. 

Queued up; waiting to be initiated 

Rolled out. The M bit may also be 
set. 

Executing 

Dormant pending recall on I/O 
completion 

Rerun request in process 

Delete request in progress 

Unloading from memory to roll file 

4.5-20 



Table 4.5-2. Status bit assignments (continued) 

Bit position Bit Cor responding Interpretation 
in JXSTAT name job state (when bit is set) 

15 L L Loading into a new memory area 

16 p U or L Unload or load initiation is 
pending 

17 y M" Q or R Waiting for memory liberation 

18 Z M" Q or R Waiting for memory compaction 

19 B S Suspended (indefinitely) by 
recovery 

20 V I Waiting on INDEX write completion 

21 F I Waiting on rollfile write 
completion 

22 N M" Q or R Not in memory 

SM-0040 4.5-21 



Figure 4.5-3 and table 4.5-3 illustrate some of the transitions that 
normally occur between job states. 

Operator 
. SUSPEND command 

Allocate 
request 

Hust wait 
for I/O 

Disconnection 
(time slice 

expired) 

soon enough 

I/O is 
complete 

Roll-in 
is done -i'7l ----- ~ 

I 
IRoll-out 
Iforced by 
lanother job 

I 

----­Roll-out 
is done 

Roll-:out 
is done 

I 
I Preempts 
Imemory from 
lanother job 

I 

Operator 
RESUME 
command 

Figure 4.5-3. Normal transitions between job states 

SM-0040 4.5-22 



Table 4.5-3. State-change sequences 

Sequence Explanation 

QN +(W) +X A job is started up for the first time. 

X +I +W A job requests recall on I/O completion. 

x +W A job's CPU time-slice expires. 

W+X A job is given another time slice. 

W+UN-+RN A job is rolled out. 

RN +LN +W A job is rolled in. 

X +MN +W A job's memory allocation is adjusted. 

X -4- MN + UN + RN Not enough memory is immediately available. 

x + UN + RN-+liRO A job is suspended by the operator. 

A job is resumed. 

State changes involved in CPU swapping 

Figure 4.5-3 shows most of the state changes that can occur for any 
particular job. Those state changes shown with broad solid lines are the 
basic changes that all jobs must undergo. If all the jobs in the JXT can 
fit into memory at the same time, these state changes are also the only 
state changes that the jobs undergo as long as they make no memory 
requests and open no auxiliary datasets. 

QN~X 

X+I 

I+W 

SM-0040 

A job that has been queued in the JXT (Job Execution Table) 
waiting for sufficient memory to become available is given 
its first CPU time slice. (The job actually exists 
momentarily in the W state before it begins executing; but 
because the new job's CPU priority is initialized to the 
highest possible value, the transition to state X is 
immediate. ) 

The currently executing job becomes dormant, either by 
requesting suspension pending the completion of a 
particular I/O transfer. The CPU becomes available for use 
by another job. 

The I/O transfer for which suspension was requested is now 
complete. The job joins others that may be waiting for CPU 
time. 

4.5-23 



x -+W 

h-' +X 

The executing job's time slice expires. Unless it is the 
only job that is running~ it is disconn~ctpd from th~ CPU 
and joins any other jobs that may be waiting. 

The CPU has just become availableQ JSH selects the waiting 
job that has the highest CPU priority (excluding the job 
that was just disconnected) and connects it to the CPU. 

State changes involved in memory swapping 

In figure 4.5-3, the paths involved in rolling jobs in and out are shown 
as dashed lines. 

Any job that is in state W, waiting for more CPU time, is liable to be 
rolled out if it occupies space that can be used by another job with 
sufficiently high memory priority. In essence, jobs having states W 
and R exchange places, but they must each pass first through an 
intermediate state (U or L). 

{i -+ UN 

UN -+ RN 

RN -+LN 

LN -+W 

A roll-out I/O request is initiated for a waiting job in 
order to make memory available. 

The roll-out I/O request is complete; the job's memory is 
released. 

Memory is allocated for the job and a roll-in I/O request 
is initiated. 

The roll-in I/O request is complete; the job begins 
contending for CPU time. 

State changes involved in job suspension and reactivation 

In figure 4.5-3, the suspended states are connected to the rest with 
narrow solid lines. 

A job may be momentarily suspended when it makes an allocation request 
(J$ALLOC). Shortly after it suspends the job, JSH checks for active I/O 
requests; if there are no I/O requests and the allocation request can be 
satisfied, the suspension is lifted. The suspension is kept in force if 
the job must be moved but there is no space for it right away; that is, 
the M bit remains set and the job is then liable to be rolled out if 
memory is in demand. 

Suspension can also occur as a result of an explicit user request to 
suspend processing until a given event has occurred (J$AWAIT) or until a 
given time has expired (J$DELAY). 

SM-0040 4.5-24 



Finally, a job can be suspended and resumed by the operator to prevent 
the job from using any system resources. 

X-+ M 

MN -+ W 

MN-+ UN 

X-+ S 

w-+ 0 

S-+ SUN 

SUN -+ SRN 

ORN-+ RN 

SRN-+ RN 

S-+ W 

SM-0040 

The currently executing job makes an allocation request and 
is considered dormant until the request can be satisfied. 
If the request involves the movement of I/O buffers or 
tables, it cannot be satisfied until all the job's I/O is 
done. If, after all I/O is done, the request still cannot 
be satisfied, the job may be rolled out. 

The allocation request was satisfied before the job could 
be rolled out. The job joins any other jobs that may be 
waiting for CPU time. 

The job has been rolled out because memory is in demand. 
More space was required to satisfy the allocation request 
than could be obtained merely by reallocating memory. 

The currently executing job makes a suspension request 
(JSDELAY or JSAWAIT). The job is disconnected and may be 
rolled out if memory is in demand. 

A job in memory is suspended by operator intervention. A 
job that is operator-suspended (0) is always rolled out 
when active I/O finishes. 

A roll-out I/O request to make memory available is 
inititated for a suspended job. 

The roll-out I/O request is complete; the job's memory is 
released. 

A job that was suspended by the operator (and subsequently 
rolled-out is reactivated by the operator. The job is 
rolled back in When memory is available. 

A job that was suspended by the system (and subsequently 
rolled-out) is reactivated because a given time elapsed or 
a particular event occurred. The job is rolled back in 
when memory is available. 

A job that was suspended by the system is reactivated While 
still in memory. 

4.5-25 



4.5.7 JSH INTERFACE WITH OTHER TASKS 

The job scheduler task is created with all other system tasks by the 
startup procedure. It can then be called by any other task through the 
sequence of instructions shown later in this subsection. 

JSH always replies to each request by setting the appropriate output 
registers and readying the requesting task. However, the reply is not 
always immediate. For some requests, JSH must wait until memory is 
available or until an I/O transfer is complete before it replies, so that 
the requesting task may proceed correctly. 

To enable the requesting task to determine What a delayed reply means, 
JSH echoes the entire contents of the first input register as the second 
output register. This word contains the JSH function code, the JXT 
ordinal identifying the job, and additional information as supplied by 
the requesting ta$k. A status indicator is returned in the first output 
register. 

Input register format: 

INPUT+Q 
INPUT+l 

Field 

AUX 

CODE 

ADDR 

FC 

JXO 

SM-0040 

Word Bits 

I NPUT+O 0-23 

I NPUT+O 24-47 

INPUT+O 24-47 

INPUT+O 48-52 

INPUT+O 53-63 

Description 

Auxiliary information1 unused by JSH. (Any 
value the caller places in INPUT+O is 
returned verbatim in OUTPUT+I.) 

(J$ABORT request only) Abort code; use 
equated labels of the form A$xxxxx, 
Where xxxxx = DROP, KILL, RERUN, or other 
predefined abort code. These abort codes 
are also used in the J8UROLL request. 

Word address relative to the beginning of 
STP of an additional word or list of words 
if needed to fully specify the call. Refer 
to the individual function descriptions for 
more detail. 

Function code; use equated labels of the 
form J$Xxxx, selected from table 4.5-4. 

JXT ordinal for the job in question. It can 
assume a value from 1 to I@JXTSIZ. It 
cannot be O. 

4.5-26 



Output register format: 

00 
OUTPUT+Q r --."--_ ... _'"""---._----
OUTPUT+l 1---____ _ 

L _______ ._.~~_~ __ _ 
Field Word Bits 

STATUS OUTPUT+O 0-63 

AUX OUTPUT+l 0-23 

CODE OUTPUT+l 24-47 

ADDR OUTPUT+l 24-47 

FC OUTPUT+I 48-52 

OUTPUT+I 53-63 

SM-0040 

24 48 53 63 .... -- -. -- ------.. -- _.-.--.--._-- ----------------------1 
STATUS I CODE or ADOR ., -FC-r--·-JXO----' -. -.... _. .. __ .. _ ... _____ ~----__ - _______ l 

Description 

Status of requested function 
=0 Requested function completely 

accomplished 
;0 Error or system is unable to 

fulfill request completely 

Auxiliary information; unused by JSH. (Any 
value the caller places in INPUT+O is 
returned verbatim in OUTPUT+I.) 

(J$ABORT request only) Abort code; use 
equated labels of the form A$xxxxx, 
Where xxxxx = DROP, KILL, RERUN, or other 
predefined abort code. These abort codes 
are also used in the J$UROLL request. 

Word address relative to the beginning of 
STP of an additional word or list of words 
if needed to fully specify the call. Refer 
to the individual function descriptions for 
more detail. 

Function code; use equated labels of the 
form J$xxxx, selected from table 4.5-4. 

JXT ordinal for the job in question. It 
can assume a value from I to I@JXTSIZ. It 
cannot be O. 

4.5-27 



Calling sequence 

JSH can be invoked from any other task by calling either TSKREQ or PUTREQ 
with the following instruction sequence: 

Location 

A2 
Sl 
S2 
Sl 

[ 

S2 
S2 
Sl 

[ ~~ Sl 
I R 

Result Operand 

JSHID,O 
function code (already shifted) 
job1s ordinal in JXT 

Sl!S2 
address if any 1 
S2<0116 
Sl!S2 
auxiliary information if any 1 
S2<D 140 
Sl!S2 
TSKREQ or PUTREQ 

The TSKREQ subroutine enforces synchronous task behavior; that is, it 
does not return to its caller until JSH has replied. PUTREQ returns as 
soon as it has stored the input registers, thus permitting asynchronous 
task execution. 

The requests that tasks can make to JSH are described on the following 
pages in the order listed in table 4.5-4. 

Table 4.5-4. JSH functions 

Function Input 
Code Parameters Function 

-- no input required -- Fills up JXT with jobs from SDT 

JSABORT JXO,CODE Aborts a job 

J$DELETE JXO Releases all space allocated to a job 

JSRERUN JXO Same as JSDELETE but places a job back 
in the input queue 

JSALLOC JXO,ADDR Allocates or releases memory for a job 

J$IOSUSP JXO Suspends a job until an I/O request is 
done 

SM-0040 4.5-28 



Function 
Code 

J$IODONE 

J$DELAY 

J$AWAIT 

J$SUSP 

J$SUSPK 

J$REMK 

J$RESUME 

J$STOP 

J$STPALL 

J$START 

J$STRALL 

J$CLEAR 

J$INDEX 

J$SHTDWN 

J$RCVR 

J$INVOKE 

J$UROLL 

SM-0040 

Table 4.5-4. JSH functions (continued) 

Input 
parameters 

JXO 

JXO,ADDR 

JXO,ADDR 

JXO 

JXO 

JXO 

JXO 

JXO 

JXO 

JXO 

JXO 

JXO,ADDR 

JXO,CODE 

Function 

Resumes an I/O suspended job 

Suspends a job for a given time 

Suspends a job until a given event 
occurs 

Suspends a job momentarily: system 
initiated 

Same as J$SUSP but keeps the job in 
memory 

Lifts the keep-in-memory restriction 

Ends momentary suspension 

Suspends a job indefinitely;' operator 
action 

Suspends all jobs indefinitely: 
operator action 

Ends an indefinite suspension for a 
job; operator action 

Ends an indefinite suspension for all 
jobs; operator action 

Forces the end of a job's suspension 

Marks the job irrecoverable 

Idles down job activity in preparation 
for a system interruption 

Lifts the suspension from jobs 
suspended by a J$SHTDWN or system 
interruption 

Invokes a job class structure 

Rolls a job; user requested to protect 
against system interruption 

4.5-29 



Initialize request 

FUNCTION: 

FUNCTION CODE: 

ENTRY: 

EXIT: 

DESCRIPTION: 

SM-0040 

Transfers as many jobs as possible from the input 
queue to the executing queue 

None 

None 

None 

If there are any available JXT entries, jobs are 
selected from the input queue (part of the SOT) and 
entered into the JXT until the JXT is full or nor more 
jobs can be initiated in the appropriate class. Any 
job entered into the JXT is also transferred from the 
input queue to the executing queue (still in the SOT); 
its SOT entry is not deleted until the job terminates. 

The number of JXT entries currently in use is stored 
in JXTPOP, while the current maximum is in JXTMAX. 
Because JXTMAX can be reduced by the operator while 
the system is running, live JXT entries may be 
scattered throughout the table. They are chained 
together in order of both memory priority and CPU 
priority. Empty JXT entries are similarily chained 
together. 

The startup program readies JSH for this request after 
setting up the input queue in the SDT; subsequently, 
the Station Call Processor (SCP) readies JSH again 
Whenever it adds a new job to the input queue. The 
jobs are expected to be queued in order of decreasing 
priority and, within priority, in order of decreasing 
age. 

Whenever a job terminates, JSH checks the input queue 
for any waiting jobs previously bypassed because of 
lack of room in the JXT. 

Note that a job does not begin execution until its 
memory priority (Which begins to rise from the value 
given on the JOB statement as soon as the job gets 
into the JXT) is higher than the memory priority of 
Whatever jobs it must displace in order to run. (For 
its initial memory allocation, a job needs only enough 
room for a copy of the Control Statement Processor, 
CSP. ) 

4 .. 5-30 



Abort request 

FUNCTION: 

FUNCTION CODE: 

EN'rRY: 

EXIT: 

DESCRIPTION: 

Delete request 

FUNCTION: 

FUNCTION CODE: 

ENTRY: 

EXIT: 

DESCRIPTION: 

SM-0040 

Aborts a job 

JSABORT (In actual coding, use JSABORT+IS20*A$XXxx, 
where xxxx = DROP, KILL, RERUN, or other predefined 
abor t code.) 

FC, JXO, and CODE are required. CODE occupies the 
same position as ADDR does in other requests. 

The first output register is a status word normally 
set to O. The second output register is simply a copy 
of the first input register. 

The output registers are set and the caller is readied 
immediately after the request is received. 

JSH disconnects the job from the CPU and sets a flag 
(JTEPJ) in the Exchange Processor's request word in 
the JTA so that, when the job is reconnected, the 
Exchange Processor task aborts the user. The abort 
code (JXECP) is stored in the JXT to be picked up by 
the Exchange Processor. 

Releases all memory belonging to a given job 

J$DELETE 

FC and JXO are required. 

The first output register is a status word normally 
set to O. The second output register is simply a copy 
of the first input register. 

The output registers are set and the caller is readied 
immediately after the request is received. 

This call is the last action in the terminating of a 
job. JSB disconnects the job from the CPU if 
necessary and, as soon as any pending I/O is complete, 
frees all memory assigned to the job (the user area, 
the JXT, and the empty SOT entry). 

4.5-31 



Rerun request 

FUNCTION: 

FUNCTION CODE: 

ENTRY: 

EXIT: 

DESCRIPTION: 

Allocate request 

FUNCTION: 

FUNCTION CODE: 

ENTRY: 

Releases all memory belonging to a given job except 
its SOT entry and moves the SDT from the executing 
queue back to the input queue so that it can be 
reinitiated. 

J$RERUN 

Fe and JXO are required. 

The first output register is a status word normally 
set to O. The second output register is simply a copy 
of the first input register. 

The output registers are set and the caller is readied 
immediately after the request is received. 

This call is the last action taken in the terminating 
of a job that is to be rerun. JSH disconnects the job 
from the CPU if necessary and as soon as any pending 
I/O is complete, frees the job's user area and its JXT 
entry. The SOT entry for the job is moved from the 
execute queue to the input queue. 

Determines or changes a job's memory allocation 

J$ALLOC 

Fe, JXO, and ADDR are required. ADDR is the 
STP-relative address of a memory request word having 
the following format: 

o 2 45 78910 16 40 63 

Field Bits 

M o 

L 2 

SM-0040 

DEL WC 

Description 

Maximum memory flag. If M is set by the caller, 
JSH returns in WC the maximum allowable amount 
of memory (in words) excluding the JTA. No 
memory is allocated. 

Limit flag. JSH sets this flag when the job has 
received the maximum allowable amount of memory. 

4.5-32 



B 4 

D 5 

T 7 

J 8 

c 9 

U 10 

DEL 16-39 

wc 40-63 

SM-0040 

Buffer flag. If set by the caller, JSH is to 
add WC words to the beginning of the I/O buffer 
area. The B flag should be set if the caller 
wants the D flag to be tested. WC should be 0 
if no buffer space is needed. 

DSP flag. If set by the caller, JSH is to 
allocate a fixed number of words (I@DSPINC) at 
the end of the DSP area. D is ignored if B is o. 

Total flag. WC represents the total memory 
requested (excluding the JTA) rather than an 
increment or decrement, and DEL is ignored. 
(HLM is not changed if the T flag is set; HLM is 
adjusted only if the Band T flags are both 0.) 
If the T flag is set, the Band D flags are 
ignored. 

JTA expansion flag. WC represents the number of 
words to be added to the JTA. 

Lock flag. If C is set by the caller, the 
user's I/O area is locked (the user does not 
have access to his buffers and tables). JSH 
changes the user's LA to (JCDSP). 

Unlock flag. If U is set by the caller, the 
user has access to his buffers and tables. JSH 
changes the user's LA to (JCFL). The user's I/O 
area status remains unlocked until the lock flag 
is set by the user. 

Deletion pointer. If the caller wants an 
increase in memory, DEL must be O. If the 
caller wants a decrease in memory, DEL must 
contain the address relative to the user's BA of 
the beginning of the area to be deleted and that 
address must agree with the B flag. That is, if 
the B flag is not set, the area to be deleted 
must lie Wholly within the program area, from 
L@JCB to (HLM); and if the B flag is set, the 
area to be deleted must lie entirely within the 
buffer area. 

Word count. Here, unless the total flag is set, 
the caller must supply an absolute number of 
words to be added to or deleted from the user 
area. If the total flag is set, WC must contain 
the total field length desired by the caller. 
If the entire memory request word equals 0, no 
action is taken other than to return the user's 

4.5-33 



EXIT: 

DESCRIPTION: 

SM-0040 

field length as described under EXIT, below. If 
M is set, no action is taken other than to 
return the maximum allowable amount of memory as 
described under EXIT. 

NOTE 

The caller has no control over Where 
the we words are to be added, except 
to say whether they are to be added at 
the beginning of the I/O buffer area 
(B=l) or at the end of the program 
area (B=O). However, the caller has 
more control over deletion; DEL may 
point to any location within the 
program or buffer areas. On a 
deletion call, if the area to be 
deleted does not lie entirely within 
the appropriate area (see DEL, above), 
an error status is returned and no 
deletion is performed. 

In the memory request word, L may be set by JSH as 
described above. When the entire memory request word 
equals 0, JSH sets WC to the current total number of 
words in the user's field length (which does not 
include the JTA, but does include the I/O buffers and 
tables). When M is set, JSH sets WC to the maximum 
allowable amount of memory, including the I/O buffers 
and tables excluding the JTA. 

The first output register is a status word which is 
set to 0 unless the job is to be aborted as a result 
of the request. The second output register is simply 
a copy of the first input register. 

The output registers are set and the caller is readied 
immediately after the request is received; if the job 
must be aborted, that is accomplished by returning an 
appropriate error status to the calling task. 

JSH begins processing the request by placing the job 
in state M and disconnecting the job from the CPU. 

A JSALLOC request may be made for any job, whether 
currently executing or not. If the B bit in the 
memory request word is 0, the request applies to the 
program area rather than to the I/O areas following 
the program area. The HLM pointer is adjusted but the 
other pointers are not necessarily changed. 

4.5-34 



If the size of the user area must be expanded or 
reduced, nothing can be done until all the job's 
outstanding I/O requests are complete. In the 
meantime, the job is dormant. 

When the job has no I/O activity, the user area can be 
contracted, expanded, moved, or rolled out. A request 
for less space is always honored immediately. A 
request for more space is honored immediately if there 
is a large enough area for it. If other jobs would 
have to be moved but they have I/O in progress, the 
job remains in state M until either a sufficiently 
large continuous area becomes available or the job is 
rolled out. 

If a job requests more memory than the installation 
allows for each job, the job is aborted. 

Besides the total length of the user area, the JCB has 
five pointers (HLM, LFT, DSP, BUF, FL) that must be 
maintained by JSALLOC When it either expands or 
compresses the user area. As was mentioned at the end 
of the INPUT section, compression (deletion) must 
always be contained completely within the areas that 
are bounded by these pointers. Furthermore, any 
expansion or compression always implies the adjustment 
of at least one of these pointers. 

If any expansion of the user area is performed, the 
additional memory is cleared before JSH reconnects the 
job to the CPU. 

I/O-suspend request 

FUNCTION: 

FUNCTION CODE: 

ENTRY: 

EXIT: 

SM-0040 

Suspends execution of a job until an I/O-recall 
request is made for the same job 

J$IOSUSP 

FC and JXO are required. 

The first output register is a status word normally 
set to O. The second output register is simply a copy 
of the first input register. 

The output registers are set and the caller is readied 
immediately after the request is received. 

4.5-35 



DESCRIPTION: 

FUNCTION: 

FUNCTION CODE: 

ENTRY: 

EXIT: 

DESCRIPTION: 

Delay request 

FUNCTION: 

FUNCTION CODE: 

ENTRY: 

EXIT: 

SM-0040 

JSH disconnects the job from the CPU if necessary, and 
~ets the ! bit in its status F;cl~ ~h~nn;nn ~hc ;nh'~ 

-----, -- .. - ..... ~- ..... ;;J --.,- J'-'-- '-

state to D (dormant). 

Reactivates an I/O-suspended job 

J$IODONE 

FC and JXO are required. 

The first output register is a status word normally 
set to O. The second output register is simply a copy 
of the first input register. 

The output registers are set and the caller is readied 
immediately after the request is received. 

JSH clears the I bit in the job's status field, 
changing the job's status from D to W unless the job 
is suspended for other reasons as well. 

Suspends execution of a job for a given number of 
milliseconds 

J$DELAY 

Fe, JXO, and ADDR are required. ADDR is the 
STP-relative address of a delay request word having the 
following format: 

r 
63 

DELAY 

where DELAY is the number of milliseconds for which the 
job is to be delayed. The maximum delay is 879,609 
seconds, Which is more than 10 days. 

The first output register is a status word normally set 
to O. The second output register is simply a copy of 
the first input register. 

The output registers are set and the caller is readied 
immediately after the request is received. 

4.5-36 



DESCRIPTION: 

Await request 

FUNCTION: 

FUNCTION CODE: 

ENTRY: 

SM-0040 

JSH disconnects the job from the CPU if necessary, sets 
the T bit in the status field, and stores the wake-up 
time in the JXDLY field in the job's JXT entry. 

If the job's T bit is set, the JXDLY field is compared 
to the real-time clock every time JSH is readied. The 
suspension is lifted when the wake-up time has been 
reached. 

A job may be rolled out while it is suspended. It 
enters into the normal memory swapping activity after 
it is reactivated. 

Lifting the suspension involves clearing both the T and 
E bits (the E bit is set by J$AWAIT). However, the job 
remains suspended if either the S (JSSUSP), B, or 0 bit 
is set. Only a J$RESUME request can clear the S bit. 
Only a JSSTART or a J$STRALL request can clear the 0 
bit. Only A J$RCVR, a J$START, or a J$STRALL can clear 
the B bit. 

Suspends execution of a job until a given event occurs 

J$AWAIT 

FC, JXO, and ADDR are required. ADDR is the 
STP-relative address of an event word having the 
following format: 

026 32 48 63 

where 
ECC 

EPA 

EMV 

ECV 

EPA I EMV ! ECV 

is the condition code (0-3) 

is the STP-relative address of a parcel to 
be tested periodically 

is the mask value to be applied in the test 

is the comparison value to be used in the 
test 

The first output register is a status word normally 
set to O. The second output register is simply a copy 
of the first input register. 

4.5-37 



DESCRIPTION: 

Suspend request 

FUNCTION: 

FUNCTION CODE: 

ENTRY: 

EXIT: 

DESCRIPTION: 

SM-0040 

The output registers are set and the caller is readied 
immGdiatcly after the request i8 r~cpjved. 

JSH disconnects the job from the CPU if necessary, 
sets the E bit in the status field, and stores the 
event word in the job's JXT entry. 

If the job's E bit is set, the parcel at the given 
address is periodically ANDed with the mask and then 
subtracted from the comparison value. The event is 
said to have occurred when the result matches the 
condition code. 

Condition 
code 

o 
1 
2 
3 

Matching 
result 

zero 
nonzero 
positive 
negative 

As stated in the description of JSDELAY, a suspended 
job is liable to be rolled out. When the event 
occurs, both the E and T bits are reset and the 
suspension is lifted unless the S, B, or 0 bit is 
set. (Refer to the description of JSDELAY). 

Suspends execution of a job momentarily 

J$SUSP or J$SUSPK 

Fe and JXO are required. 

The first output register is a status word normally 
set to O. The second output register is simply a copy 
of the first input register. 

The output registers are set and the caller is readied 
immediately after the request is received. 

JSH disconnects the job from the CPU if necessary and 
sets the S bit in the status field. The K bit is set 
for a JSSUSPK request but left unchanged for a J$SUSP 
request. The T and E bits are left unchanged; if they 
are set, they can be reset only by the occurrence of 
an event or the elapsing of a delay time. 

4.5-38 



Remove K ~~~est 

FUNCTION: 

FUNCTION CODE: 

ENTRY: 

EXIT: 

DESCRIPTION: 

Resume request 

FUNCTION: 

FUNCTION CODE: 

ENTRY: 

EXIT: 

SM-0040 

The K (keep) bit, if set, prevents the job from being 
rolled out While it is suspended. A JSRESUME request 
clears the Sand K bits allowing the job to 
participate in normal rollout activity. 

Lifts the keep-in-memory (K) restriction 

J$REMK 

FC and JXO are required. 

The first output register is a status word normally 
set to O. The second output register is a copy of the 
first input register. The output registers are set 
and the caller is readied immediately after the 
request is received. 

The K status bit is cleared. The job may begin to 
participate in normal memory swapping activity, unless 
it is suspended. 

NOTE 

The K bit must be set when the J$REMK 
request is made. 

Lifts a suspension imposed on a job by JSSUSP or 
J$SUSPK 

J$RESUME 

FC and JXQ are required. 

The first output register is a status word normally 
set to O. The second output register is simply a copy 
of the first input register. 

The output registers are set ~nd the caller is readied 
immediately after the request is received. 

4.5-39 



DESCRIPTION: 

FUNCTION: 

FUNCTION CODE: 

ENTRY: 

EXIT: 

DESCRIPTION: 

FUNCTION: 

FUNCTION CODE: 

EN'fRY: 

EXIT: 

DESCRIPTION: 

SM-0040 

This call must be made to restart a job that has 
previously been Guepended by a call to J~SUSP or 
J$SUSPK, but it has no immediate effect if the job is 
still under suspension for another reason. 

JSH clears the Sand K bits in the job's status 
field. If or when the H, 0, T, and E bits are also 
clear, the job is no longer suspended and may begin to 
participate in the normal memory swapping activity. 

Suspends execution of a job indefinitely~ operator 
action 

J$STOP 

FC and JXO are required. 

The first output register is a status word normally 
set to O. The second output register is simply a copy 
of the first input register. The output registers are 
set and the caller is readied immediately after the 
request is received. 

The job's 0 (operator suspended) and H (holding) bits 
are set. The job will be rolled out as soon as 
possible. When the job is rolled out and its memory 
is released, the H bit is cleared. 

Suspends processing of all jobs in the JXT; rolls them 
out, and releases their memory 

J$STPALL 

FC is required. 

The first output register is a status word normally 
set to O. The second output register is simply a copy 
of the first input register. 

The output registers are set and the caller is readied 
immediately after the request is received. 

The JXT limit (JXTMAX) is set to O. All jobs are 
suspended. (Refer to the section on JJ)STOP.) 

4.5-40 



Start request 

FUNCTION: 

FUNCTION CODE: 

ENTRY: 

EXIT: 

DESCRIPTION: 

FUNCTION: 

FUNCTION CODE: 

ENrrRY: 

AEXIT: 

DESCRIPTION: 

Clear request 

FUNCTION: 

FUNCTION CODE: 

SM-0040 

Lifts the indefinite suspension from a job suspended 
by J$STOP, J$STPALL, J$SHTDWN or a system interruption 

J$START 

FC and JXO are required. 

The first output register is a status word normally 
set to O. The second output register is simply a copy 
of the first input register. 

The output registers are set and the caller is readied 
immediately after the request is received. 

This call must be made to restart a job that has been 
suspended by J$STOP or J$STPALL. It may also be used 
to lift the suspension imposed on a job by JSSHTDWN or 
a system recovery. Both the 0 (operator suspended) 
and the B (suspended by recovery) bits are cleared. 
This has no immediate effect if the jobs are still 
under suspension for another reason. 

Lifts the indefinite suspension from all jobs that 
were suspended by J$STOP, J$STPALL, J$SHTDWN or a 
system interruption 

J$STRALL 

FC is required. 

The first output register is a status word normally 
set to O. The second output register is simply a copy 
of the first input register. The output registers are 
set and the caller is readied immediately after the 
request is received. 

JSSTART is applied to all jobs in the JXT. 

Forces the end of a job's suspension, no matter for 
what reason the suspension was imposed 

J$CLEAR 

4.5-41 



ENTRY: 

EXIT: 

DESCRIPTION: 

FUNCTION: 

FUNCTION CODE: 

ENTRY: 

EXIT: 

DESCRIPTION: 

Shutdown request 

FUNCTION: 

FUNCTION CODE: 

ENTRY: 

SM-0040 

Fe and JXO are required. 

The first output register is a status word normally 
set to O. The second output register is simply a copy 
of the first input register. 

The output registers are set and the caller is readied 
immediately after the request is received. 

This call is customarily made only during job 
termination and job abort, after a JSSUSPK call and 
prior to a J$DELETE call. 

JSH clears the job's H, 0, S, T, B, and E bits. The 
job is no longer suspended and begins to participate 
in the normal memory swapping activity unless its K 
bit is set. 

Marks a job irrecoverable 

J$INDEX 

Fe and JXO are required. 

The output registers are set and the caller is readied 
immediately after the request is received. 

This call is made by the Exchange Processor When a job 
has become non-recoverable from the roll image. 

JSH checks the job's roll index entry to see if it is 
already marked non-recoverable. If it is already 
marked, JSH does nothing. If it is not marked, JSH 
sets the non-recoverable bit in the job's roll index 
entry. The job's V bit is set to indicate an index 
write is pending. The job is disconnected and the 
index write is initiated. 

Shuts down the system; normally used to prepare for an 
expected system interruption. Job activity is idled 
down, all jobs are rolled out and their memroy 
released. Station activity is not affected. 

J$SHTDWN 

FC is required. 

4.5-42 



EXIT: 

DESCRIP'fION: 

FUNCrfION: 

FUNCTION CODE: 

EN'fRY: 

EXI'f: 

DESCRIPTION: 

Invoke Request 

FUNCTION: 

FUNCTION CODE: 

ENTRY: 

SM-0040 

The first output register is a status word normally 
set to O. The second output register is simply a copy 
of the first input register. 

The output registers are set and the caller is readied 
immediately after the request is received. 

The B (suspended by recovery) and H (holding) bits are 
set for all jobs. The jobs are rolled out as soon as 
possible. When the jobs are rolled out and their 
memory is released, the H bits are cleared. The JXT 
limit (JXTMAX) is set to o. 

Recovers all jobs in the system 

J$RCVR 

FC is required. 

The first output register is a status word normally 
set to O. The second output register is simply a copy 
of the first input register. 

The output registers are set and the caller is readied 
immediately after the request is received. 

J$RCVR or J$START must be used after a system 
interruption of a JSSHTDWN request. Either request 
causes JSH to clear the B bit in the job's status 
field. This has no immediate effect if the jobs are 
still under suspension of another reason. 

Invokes a job class structure 

J$INVOKE 

FC, JXO, and ADDR are required. ADDR is the 
STP-relative address of an invoke request word, which 
has the following format: 

4.5-43 



Field 

LEN 

LOC 

EXI'I': 

o 21 40 63 
r . . .................. .I 
VIIIIIIIIII/IIIIIIIIII LEN LOC 

Bits 

21-39 

40-63 

Description 

The length of the array located at LOC. LEN 
must be a positive, nonzero multiple of lOOOa 
that does not exceed I@ICSMAX. 

The address, relative to the user's BA, of the 
array that contains the job class structure to 
be invoked. 

The first output register is a status word which 
is normally O. It is set to an appropriate 
error status when LEN is either less than 
lOOOS' not a multiple of 1000 S' or greater 
than I@JCSMAX. The second output register is a 
copy of the first input register5 

The output registers are set, and the caller is 
readied immediately after the request is 
received. 

DESCRIPTION: JSH begins processing the request by placing the 
job in SK state and disconnecting it from the 
CPU. The array at LOC is copied to the CSD 
table as soon as all of the job's I/O requests 
are complete. Then the class assignments for 
all jobs in the input queue are redetermined. 

SM-0040 

No JXTs are allocated while a JSINVOKE request 
is pending. All jobs that issue a J$INVOKE 
request while another JSINVOKE request is 
pending are aborted. 

4.5-44 



FUNCTION: 

FUNCTION CODE: 

ENTRY: 

EXIT: 

DESCRIPTION :, 

SM-0040 

Rolls a job out; user requested to protect 
against system interruptions. 

J$UROLL 

FC, JXO, and CODE are required. Code indicates 
whether the job rolled message should be sent to 
the user log (1) or not sent (0). 

The first output register is a status word 
normally set to O. The second output register 
is simply a copy of the first input register. 

The output registers are set and the caller is 
readied immediately after the request is 
received. 

JSH begins processing the request by placing the 
job in S (suspended) state, disconnecting it 
from the CPU and marking it to be rolled out. 
When rollout is complete, the job's memory 
remains intact and its suspension is lifted. 
The job may again participate in the normal 
memory swapping activity. 

4.5-45 





4.6 PERMANENT DATASET MANAGER (PDM) 

The Permanent Dataset Manager task (PDM) provides a means of creating, 
accessing, deleting, maintaining, and auditing permanent datasets. 

Permanent datasets are of two types: user permanent datasets, which are 
created via a user request, and system permanent datasets, which are 
created by the system for spooled input and output datasets. 

Each type of dataset may take on mUltitype attributes. A multitype 
dataset is described by one or more Dataset Catalog (DSC) entries, at 
least one of which is a spooled (system permanent) entry_ 

A dataset changes from a single-DSC-entry dataset to a multiple-DSC-entry 
dataset when it is staged by one or more DISPOSE statements. It returns 
to single-DSC-entry status when all related disposes have completed. 

The PDM coordinates these activities via the Queued Dataset Table (QDT). 
A temporary dataset may also have multiple DSC entries. 

Permanent dataset capabilities that may be requested by the user are 
divided into two categories: permanent dataset functions and permanent 
dataset utilities. The permanent dataset functions are: 

• SAVE Creates user permanent dataset 

• ACCESS Associates a user permanent dataset with a job 

• DELETE Removes a user permanent dataset from the system 

• ADJUST Changes the size of an existing permanent dataset 

• MODIFY Changes information for an existing permanent dataset 

The system may request that input or output datasets be saved or deleted. 

The permanent dataset utilities are: 

• PDSDUMP Dumps permanent datasets to a dataset 

• PDSLOAD Loads permanent datasets that have been dumped by 
PDSDUMP 

• AUDIT Produces a report containing status information for 
each permanent dataset 

SM-0040 4.6-1 



Functions not available to users that the Permanent Dataset Manager may 
requested to perform 

• PSEUDO-ACCESS Accesses a permanent dataset during recovery of 
rolled jobs. Available only to the Startup task. 

• REWRITE SDT Updates the DSC copy of the job input SD'r. Used 
by the Exchange Processor to declare a job 
ineligible for rerun. 

4.6.1 TABLES USED BY PDM 

The following tables are used in permanent dataset management: 

DSC Dataset Catalog 
DNT Dataset Name Table 
DAT Dataset Allocation Table 
PDS Permanent Dataset Table 
PDD Permanent Dataset Definition Table 
JrrA Job Table Area 
PDI Permanent Dataset Information Table 
DSP Dataset Parameter Area 
QDT Queued Dataset Table 

Detailed information on these tables is available in the COS Table 
Descriptions Internal Reference Manual, publication SM-0045. 

Dataset Catalog (DSC) 

The DSC is the table that makes a dataset permanent. It is a disk 
resident table partitioned into 512-word pages, each containing a block 
control word, a 7-word header, and eight 63-word DSC entries. When the 
DSC is initialized, it is cleared. Each DSC entry contains history 
information about the dataset and the OAT for the dataset. As the 
dataset size increases, the DAT size increases; therefore, for large 
datasets, more than one DSC entry may be required. 

The page to Which the permanent dataset is assigned is determined by 
hashing the permanent dataset name for a dataset created via a SAVE 
control statement or macro and hashing the dataset name for spooled 
datasets. 

Dataset Name Table (DNT) 

When the Permanent Dataset Manager is active, two DNTs are of primary 
concern: the DNT for the dataset currently being processed and the DNT 
for the DSC (Dataset Catalog). The DNT for the DSC is created by Startup. 

SM-0040 4.6-2 



Dataset Allocation Table (OAT) 

When Permanent Dataset Manager is active, two DATs are of interest: the 
OAT for the dataset being processed and the DAT for the DSC (Dataset 
Catalog). The DAT for the DSC is created when the Dataset Catalog DNT is 
created and is pointed to by the DSC DNT. 

Permanent Dataset Table (PDS) 

An entry in the PDS exists for each active user permanent dataset. The 
PDS monitors which user permanent datasets are currently being used and 
controls dataset access by maintaining the number of users accessing the 
permanent dataset and controlling the waiting for access to a permanent 
dataset. 

Permanent Dataset Definition Table (PDD) 

The POD is the input to the Permanent Dataset Manager. It contains the 
operation request for the Permanent Dataset Manager in the function code 
and all the parameters necessary to perform the operation. 

Job Table Area (JTA) 

The Permanent Dataset Manager uses the dataset DNT and the user number 
from the JTA. 

Permanent Dataset Information Table (POI) 

The PDI is set up by Startup and contains device label information that 
is pertinent to permanent dataset management (number of hash and overflow 
pages) and contains a pointer to the DNT for the DSC. 

Dataset Parameter Area (DSP) 

A DSP for the DSC is assembled into the Permanent Dataset Manager task. 
It is used as input to Task I/O for reading and writing DSP pages. 

Queued Dataset Table (QDT) 

The PDM performs most of the maintenance required by the QDT. Due to the 
nature of mUltitype datasets, the common subroutine RELDNT also modifies 
entries. PDM performs functions such as assigning entries (spooled 
SAVE), updating assigned entries (SAVE, MODIFY, ACCESS, and DELETE), and 
releasing entries (DELETE and PDSREL) • 

SM-0040 4.6-3 



4.6.2 SUBFUNCTIONS 

A task calls the Permanent Dataset Manager by placing a PDD pointer and 
possibly a return address in its INPUT+O and a JTA and/or DAT or DNT 
pointer in INPUT+l of CMCC, the Permanent Dataset Manager communication 
block. The FC field of the PDD indicates the function to be performed. 

The function codes processed by the task are as follows: 

PMFCSU=108 
PMFCSI=128 
PMFCSO=148 
PMFCAU= 20S 
PMFCAI= 26S 
PMFCAO= 26S 
PMFCDU= 30S 
PMFCDI=36S 
PMFCDO=36S 
PMFCPG=40S 
PMFCLU=50S 
PMFCLI=52S 
PMFCLO=54S 
PMFCRL=60S 
PMFCPN=70S 
PMFCOT= 100S 
pr~FCDQ=llOs 

PMFCEA=120S 
Pt-1FCEI= 122S 
PMFCEO= 124s 
P MFCAD= 13 Os 
PMFCMD= 140S 
PMFCRSOT= 150a 
PMFCPSAC= 160a 
PMFCPU=170S 
PMFCPO= 1768 
PI~FCPI=1768 

Save user dataset 
Save input dataset 
Save output dataset 
Access user dataset 
Access spooled dataset 
Access spooled dataset 
Delete user dataset 
Delete spooled dataset 
Delete spooled dataset 
Page request 
Load user dataset 
Load input dataset 
Load output dataset 
POS/Release request 
PDN request 
Dump time request 
Dequeue SOT 
Queue SOT to available queue 
Queue SOT to input queue 
Queue SOT to output queue 
Adjust user dataset 
Modify user dataset 
Rewrite job's input SOT 
Pseudo-access for RRJ 
Access user-saved dataset for PDSDUMP 
Access output dataset for PDSDUMP 
Access input dataset for PDSDUMP 

ACCESS processing (function codes 20, 26, 70) 

Access processing handles the ACCESS control statement and macro and PDN 
requests (PDN requests are used by the system to see if a dataset 
exists). Input to access processing is a POD table. 

Calling sequence: 

INPUT+O: POD address, bits 40-63 
Return address, bits 16-39 (if Exchange Package Processor 
call) 

INPUT+I: JTA address, bits 40-63 (if job call) 
DNT address, bits 16-39 (if job call) 
SYS call flag, bit ° 

SM-0040 4.6-4 



DELETE processing (function codes 30, 36) 

Delete processing handles the DELETE control statement and macro, 
PDSDUMP, and the delete spooled dataset request. Input consists of a PDD 
table. 

Calling sequence: 

INPUT+O: POD address, bits 40-63 
Return address, bits 16-39 (if Exchange Package Processor 
call) 

INPUT+l: JTA address, bits 40-63 (if job call) 
OAT address, bits 16-39 (if system call) 
SYS call flag, bit 0 

Page Request processing (function code 40) 

Page request processing is requested by both AUDIT and PDSDUMP to 
determine the permanent datasets in a given page. Input consists of a 
POD table in the page request format. 

Calling sequence: 

INPUT+O: PDO address, bits 40-63 
Return address, bits 16-39 

INPUT+l: JTA address, bits 40-63 

LOAD processing (function codes 50, 52, 54) 

The load processing request is used by PDSLOAD to reconstruct a DSC 
entry. Input consists of a PDD table in the load request format. 

Calling sequence: 

INPUT+O: PDD address, bits 40-63 
Return address, bits 16-39 

INPUT+l: JTA address, bits 40-63 

PDS/Release processing (function code 60) 

PDS/Release processing handles the updating of the PDS table when a user 
permanent dataset is released. 

SM-0040 4.6-5 



Calling sequence: 

INPUT+O: PDD address, bits 40-63 
Return address, bits 16-39 (if Exchange Package Processor 
call) 

INPUT+l: JTA address, bits 40-63 

Dump Time processing (function code 100) 

Dump time processing sets the dump time in the specified DSC to the 
current time and returns that time to the requester. Input is a PDD 
table. 

Calling sequence: 

INPUT+O: PDD address, bits 40-63 
Return address, bits 16-39 

INPUT+l: JTA address, bits 40-63 

Dequeue SDT processing (function code 110) 

Dequeue SDT processing removes the SDT from the input or output queue. 
Input is a PDD table. 

Calling sequence: 

INPUT+O: PDD address, bits 40-63 
Return address, bits 16-39 

INPUT+l: JTA address, bits 40-63 

Queue SDT processing (function codes 120, 122, 124) 

Queue SOT processing returns an existing SDT to the available, input, or 
output queue. Input is a POD table. 

Calling sequence: 

INPUT+O: PDD address, bits 40-63 
Return address, bits 16-39 

INPUT+l: JTA address, bits 40-63 

ADJUST processing (function code 130) 

The ADJUST processing modifies the size of an existing user permanent 
dataset in the DSC. Input consists of a PDD table. 

SM-0040 4.6-6 



Calling sequence: 

INPUT+O: PDD address, bits 40-63 
Return address, bits 16-39 (if Exchange package Processor 
call) 

INPUT+l: JTA address, bits 40-63 (if job call) 
DNT address, bits 16-39 
SYS call flag, bit 0 

MODIFY processing (function code 140) 

MODIFY processing changes established information of an existing user 
permanent dataset in the DSC. Input consists of a PDD table. 

Calling sequence: 

INPUT+O: PDD address, bits 40-63 
Return address, bits 16-39 (if Exchange Package Processor 
call) 

INPUT+l: JTA address, bits 40-63 (if job call) 
ONT address, bits 16-39 
SYS call flag, bit 0 

SOT rewrite processing (function code 150) 

The fixed portion of the input SOT entry for the specified job is 
rewritten in the OSC. This is used only by EXP to declare a job 
ineligible for rerun and to signal that the job has been previously 
initiated so that Startup can recognize if a job is about to be rerun. 
Input consists of a POO table and the OAT address for the SOT to be 
rewritten. 

Calling sequence: 

INPUT+O: POO address, bits 40-63 
Return address within EXP, bits 16-39 

INPUT+l: Address of OAT from SOT, bits 16-39 
JTA address, bits 40-63 (ignored) 

Pseudo~access processing (function code 160) 

When recovery of rolled jobs occurs during Startup, any permanent 
datasets that were accessed by a job being recovered must be re-linked. 
This means that POS entries must be built or updated and the OAT from the 
rolled image must be verified against the OAT in the OSC. Input consists 
of a PDD table and DNT. 

SM-0040 4.6-7 



Calling sequence: 

INPUT+O: POD address, bits 40-63 

INPUT+l: SYS call flag, bit 0 
DNT address (within JTA), bits 16-39 
JTA address, bits 40-63 

PDSDUMP Access processing (function codes 170, 176) 

Access of a dataset by PDSDUMP prevents the update of the last access 
time and the number of accesses by the dump itself. Input consists of a 
PDD table. 

Calling sequence: 

INPUT+O: PDD address, bits 40-63 

INPUT+l: JTA address, bits 40-63 
DNT address, bits 16-39 

4.6.3 PDD STATUS 

The return status is placed in the PMST field of the POD (table 4.6-1). 
The logfile contains a corresponding code and message for most of the 
status conditions. 

~ogfi1e 

1 
2 
3 
4 

5 
6 

7 

9 
10 
11 
12 
13 
14 

S~0040 

PMST 

1 
11 
21 
31 
41 
51 
61 

71 
101 
111 
121 
131 
141 
151 
161 

Table 4.6-1. POD status 

Status 

Complete; no error 
A ONT cannot be found for the specified dataset. 
Maintenance permission not granted 
Edition already exists 
DSC full 
Function code out of range 
The job has a dataset of the local name (ON) 
specified. 
No permission granted 
Delay and try again 
DSC does not contain the requested dataset. 
Edition does not exist 
PDS full 
Dataset not permanent 
POS entry not found 
Continuation error 

4.6-8 



Logfile 

15 
16 

18 
19 
20 
21 

25 
26 

27 

28 

29 

30 

31 

34 

36 

39 

40 
41 

SM-0040 

FMST 

171 
201 
211 
221 
231 
241 
251 
261 
271 
301 
311 
321 

331 

341 

351 

361 

371 

401 

Table 4.6-1. POD status (continued) 

OAT full 
ONT full 
End of DSC 

Status 

PDN already accessed by this job 
Request to read zero pages 
Invalid page number requested 
No data has been written to disk 
SOT does not exist 
SOT not on input or output queue 
Unable to queue SOT 
Dataset name in POD is 0 
Maximum allowable edition of the dataset will be 
exceeded if this function is performed. 
Multiple editions of the dataset exist, prohibiting 
changes to the permission control words. 
Unique access is not acceptable because the dataset 
is part of the System Directory. 
The POD contains a text length without a text 
address, or a text address without a length specified. 
The text length specified exceeds the allowable 
maximum. 
The device on which all or part of the dataset 
resides is down. 
Error occurred while rewriting the SOT, or the SOT 
name and dataset type in the DSC do not match those 
in the POD. 

411 Permanent dataset to be pseudo-accessed is not 
available or the DSC OAT does not match the JTA OAT. 

421 

441 

461 

471 

501 

511 
521 

Access is denied because crossed allocation unit 
exists. 
The DSC entry was flagged by Startup as containing a 
fatal error. Access is denied. 
No available QDT entries exist to coordinate the 
dispose. 
The dataset has outstanding disposes; do not 
deallocate disk space. 
Allocation of multitype dataset inconsistent with 
related datasets. 
Multitype dataset has non-existent QDT entry. 
Maximum edition reached 

4.6-9 



4.6.4 THEORY OF OPERATION 

The Permanent Dataset Manager is called by the User Exchange Package 
Processor for SAVE, ACCESS, DISPOSE, RELEASE, DELETE, ADJUST, and MODIFY 
verbs and to perform functions for PDSDUMP, PDSLOAD, and AUDIT. The 
Permanent Dataset Manager is also called (1) by the Station Call 
Processor task to create DSC entries for spooled input datasets, to 
delete DSC entries for spooled output datasets, and to perform PDN 
requests, (2) by the Exchange Package Processor to create DSC entries for 
spooled output datasets, to delete DSC entries for spooled input 
datasets, and to re~ite spooled input dataset entries, and (3) by 
Startup, to rebuild PDS entries for permanent data sets associated with 
jobs being recovered or to access/save system datasets such as $ROll and 
$SDR. 

Job termination must check to see if a dataset is permanent prior to 
releasing the dataset from the system. 

1. Validate parameters. 
2. If SYS call, go to 5; otherwise, 
3. Check if dataset exists. 
4. If not, error; otherwise, 
5. Get information from PDI. 
6. Hash name (DN for spooled, PDN for non-spooled). 
7. Read DSC hash page. 
8. If spooled, go to 25; otherwise, 
9. Search for matching PDN and 10 (with highest or matching edition 

number). 
10. If match not found, go to 15; otherwise, 
11. Compare MN permission control words. 
12. If MNs do not match, error; otherwise, 
13. If edition numbers match, error; otherwise, 
14. Save permission control words. 
15. If page has never overflowed, go to 25; otherwise, 
16. Increment overflow page count. 
17. If end of overflow, go to 25; otherwise, 
18. Read DSC overflow page. 
19. Search for matching PON and 10 (with highest or matching edition 

number) • 
20. If no match found, go to 24; otherwise, 
21. Compare MN permission control words. 
22. If MNs do not match, error; otherwise, 
23. If edition numbers match, error; otherwise, 
24. If page edition has overflowed, go to 16; otherwise, 
25. If hash page not full, go to 30; otherwise, 
26. Increment overflow page number. 
27. If end of overflow, error; otherwise, 

SM-0040 4.6-10 



28. Read overflow page. 
29. Search for empty slot in page. 
30. If empty slot found, go to 34; otherwise, 
31. Set page full flag. 
32. Write page to Osc. 
33. Go to 26. 
34. If continuation processing, go to 57; otherwise, 
35. Create OSC entry. 
36. Put first (and second) OAT page in initial OSC entry or text. 
37. If all OAT moved, go to 43; otherwise, 
38. Search for empty slot. 
39. If empty slot not found, go to 54; otherwise, 
40. Put continuation pointer in previous nsc. 
41. Create continuation OSC entry. 
42. Go to 37. 
43. Write page to disk. 
44. If spooled, go to 46; otherwise, 
45. Create POS entry. 
46. If SYS call, go to 48; otherwise, 
47. Update ONT. 
48. Put DSC pointer in OAT. 
49. Set status. 
50. Clear constants. 
51. Clear input registers. 
52. Set output registers and ready calling task. 
53. Exit. 
54. Set page full flag. 
55. If page not hash page, move to hash buffer. 
56. Go to 26. 
57. Put continuation pointer in previous OSC entry. 
58. Write DSC page. 
59. Go to 41. 

General flow for ACCESS processing 

1. Validate parameters. 
2. Check if dataset exists. 
3. If it does, error; otherwise, 
4. Get information from POI. 
5. Hash name (POI for non-spooled). 
6. Read OSC hash page. 
7. Search for matching PON and 10 (with highest, lowest, or matching 

edition number). 
8. If match not found, go to 17; otherwise, 
9. If edition numbers match not found, go to 17; otherwise, 

10. Compare permission control words. 
11. If no permissions granted, error; otherwise, 
12. Search PON for matching OSC pointer and edition number. 
13. If match not found, go to 30; otherwise, 
14. Check access required. 

SM-0040 4.6-11 



15. If multiaccess allowable, go to 40; otherwise, 
16. Return to caller with delay error code. 
17. If page has overflowed, go to 20; otherwise, 
lS. If PDN and ID match not found, error; otherwise, 
l~. Go to lO~ 
20. Increment overflow page number. 
21. If end of overflow, go to 26; otherwise, 
22. Read overflow page. 
23. Search for matching PDN and ID (with highest, lowest, or matching 

edition number). 
24. If match found, go to 29; otherwise, 
25. If page has ever overflowed, go to 22; otherwise, 
26. If PDN and ID match not found, error; otherwise, 
27. Calculate entry number. 
28. Go to 10. 
29. Move overflow buffer to hash buffer. 
30. Move first DAT pages from DSC to memory. 
31. Update DSC entry. 
32. Write DSC page. 
33. If all DAT moved, go to 39; otherwise, 
34. If next DSC page in this page, go to 36; otherwise, 
35. Read DSC page. 
36. Move continuation DAT into memory. 
37. If all DAT moved, go to 39; otherwise, 
3S. Go to 34. 
39. Create PDS entry. 
40. Create DNT entry. 
41. Set status. 
42. Clear constants. 
43. Clear input registers. 
44. Set output registers and ready calling task. 
45. Exit. 

General flow for DELETE processing 

1. Validate parameters. 
2. If SYS call, go to 7; otherwise, 
3. Check if dataset exists. 
4. If not, error; otherwise, 
5. If dataset is not permanent, error; otherwise, 
6. If MN permission not granted, error; otherwise, 
7. Get information from PDI. 
S. Get hash page and entry number from DAT. 
9. Read DSC page. 

10. Clear entry. 
11. If DSC not continued, go to 13; otherwise, 
12. If next entry in same page, go to 10; otherwise, 
13. Write DSC page. 
14. If DSC continued, go to 9; otherwise, 
15. If spooled dataset, go to 22; otherwise, 

SM-0040 4.6-12 



16. Search POS for match (OAT match) • 
17. If not found, error; otherwise, 
18. Decrement POS user count. 
19. Clear POS entry. 
20. Clear permanent flag in ONT. 
21. Set status. 
22. Clear constants. 
23. Clear input registers. 
24. Set output register and ready calling task. 
25. Exit. 

General flow for AOJUST processing 

1. Validate parameters. 
2. If not a permanent dataset, error; otherwise, 
3. If no size change, go to 39; otherwise, 
4. If contraction, deallocate excess space; otherwise, 
5. Read OSC page. 
6. Clear the OAT area. 
7. Insert new OAT page in OSC entry. 
8. If no more OATs, go to 30; otherwise, 
9. Insert new OAT page in OSC entry. 

10. If no more OATs, go to 30; otherwise, 
11. If OSC continuation entry does not exist, go to 18; otherwise, 
12. If DSC continuation on same page, go to 15; otherwise, 
13. write current OSC page. 
14. Read next OSC page. 
15. Clear the OSC continuation entry. 
16. Create DSC continuation entry. 
17. Go to 10. 
18. Search for empty slot on this page. 
19. If no slot found, go to 22; otherwise, 
20. Create OSC continuation entry. 
21. Go to 10. 
22. Set page full and overflow. 
23. If page not hash page, move to hash buffer. 
24. Read next overflow page. 
25. Search for an empty slot in overflow page. 
26. If slot found, go to 20; otherwise, 
27. Set page full and overflow 
28. Write OSC overflow page. 
29. Go to 24. 
30. If there are no continuations, go to 37; otherwise, 
31. If continuation on current page, go to 34; otherwise, 
32. write current page. 
33. Read continuation page. 
34. Clear continuation entry. 
35. Set page not full 
36. Go to 30. 
37. write final page. 

SM-Q040 4.6-13 



38. Set ONT Dataset Catalog size equal to dataset size in OA'f. 
39. Set POD status. 
40. Exit. 

General flow for MODIFY processing 

1. If SYS call, go to 4; otherwise, 
2. Check if dataset exists. 
3. If not, error; otherwise, 
4. Get POI information. 
5. Verify requester has all permissions. 
6. If not, error; otherwise, 
7. Read original entry into memory. 
8. Determine if PON, 10 and/or ED being changed. 
9. Search for duplicate dataset. 

10. If found, error; otherwise, 
11. If new entry goes on same hash page, use existing entry; 

otherwise, locate an available slot on new page. 
12. Create new entry. 
13. Delete the old entry. 
14. If continuation entries exist, change the first page/entry 

indicator; otherwise, 
15. Write the new page. 
16. Write the old page. 
17. Change the OSC pointer in the OAT. 
18. Change the OSC pointer in the POSe 
19. Exit. 

General flow for Page Request processing 

1. Validate PDO input. 
2. Get POI information. 
3. Check if pages to read. 
4. If not, go to 8; otherwise, 
5. Read page. 
6. Move page to user buffer. 
7. Go to 3. 
8. If not end of OSC, go to 10; otherwise, 
9. Set end of OSC status. 

10. Set complete status. 
11. Clear constants. 
12. Clear input registers. 
13. Set output registers and ready calling task. 
14. Exit. 

SM-0040 4.6-14 



General flow for LOAO processing 

1. Check if function code indicates spooled input. 
2. I f not, go to 4; other wise, 
3. Set spooled indicator. 
4. Execute save processing. 
5. Check if this was a spooled input. 
6. If not, go to 8; otherwise, 
7. Create an SOT. 
8. Exit. 

General flow for POS/Release processing 

1. Validate parameters. 
2. Check if POS entry exists. 
3. If not, error; otherwise, 
4. Decrement POS user count. 
5. If user count not 0, go to 8; otherwise, 
6. Clear PDS entry. 
7. Decrement PDS entry count. 
8. Set status. 
9. Clear constants. 

10. Clear input registers. 
11. Set output registers and ready calling task. 
12. Exit. 

General flow for Dump Time processing 

1. Check if DNT for the dataset exists. 
2. If not, error; otherwise, 
3. Check if ONT indicates a permanent dataset. 
4. If not, error; otherwise, 
5. Get OAT address from ONT. 
6. Get DSC address from OAT. 
7. Break OSC address into page and entry. 
8. Read DSC page. 
9. Get current time. 

10. Insert time into OSC entry. 
11. Save time for the requester. 
12. Write OSC page. 
13. Exit. 

General flow for dequeue SOT processing 

1. Search SOT for matching dataset name and job sequence number. 
2. If not found, error; otherwise, 
3. Verify that SOT is on either the input queue or the output queue. 
4. If not, error; otherwise, 

SM-0040 4.6-15 



5. Remove the SDT from the queue. 
6. Exit. 

General flow for queue SDT processing 

1. Determine appropriate queue from function code. 
2. Mak e queue req uest. 
3. If request incomplete, error; otherwise, 
4. Exit. 

General flow for SDT rewTite processing 

1. Locate DSC entry for desired SD'I' from the DADSC field of the DAT. 
2. Read the DSC page and locate the entry. 
3. Verify that the name in the DSC matches the name in the PDD. 
4. Move information from the PDD to the DSC entry. 
5. write the DSC page. 
6. Exit. 

General flow for Pseudo-access Erocessing 

1. Using the supplied DNT address, locate the DAT address. 
2. Error if no DNT or if DAT pointer is 0 or points to STP DAT 
3. Get DSC pointer from DAT; error if none 
4. Read DSC page for first entry. Locate entry in page. 
5. Check that entry is for saved dataset, not continuation; no down 

device in DAT; no AI conflicts in DAT. Error if any checks fail. 
6. Locate first DAT body in DSC entry. If necessary, read a 

continuation entry to locate first OAT body. 
7. Verify that the OSC OAT size is less than or equal to the JTA DAT 

size. 
8. Verify that the DSC copy of the DAT matches the JTA copy of the 

DAT, or as much of theJTA copy as there is OSC DAT to compare. 
The JTA DAT may represent a larger dataset than is reflected in 
the OSC, but only as much as is in the OSC needs to be verified. 
Read continuation pages as necessary. Error if JTA DAT ends 
before DSC DAT, or if any AI in the DSC does not match the 
corresponding AI in the JTA. 

9. Search for existing PDS entry. If none exists, go to 11. 
10. See if able to add this job as a user of this dataset. Error if 

job needs unique access, or if unique access is already granted 
to another job. If access can be granted, return with successful 
status. 

ll. Create a PDS entry. Set permission bits from the DNT and return 
with successful status. 

SM-0040 4.6-16 



4.7 LOG MANAGER (MSG) 

The log manager for the CRAY-OS is called the Message Processor (MSG). 

4.7.1 MESSAGE PROCESSOR (MSG) 

The Message Processor (MSG) writes messages in the system and user log 
files in response to requests from other tasks. Users request entries to 
be made in these files through requests to the Exchange Processor, which 
in turn calls the Message Processor. The 10 for the Message Processor is 
MSG; the task priority is set just below that for the Disk Queue Manager 
(DQM) and the Station Call Processor (SCP). 

Two separate queues are created in the STP memory pool: one with 
messages going to the system log and one with messages going to user 
logs. For each message request, a system log entry and/or a user log 
entry is constructed. Then the messages are written from the queues to 
the appropriate files via Task I/O (see section 3.3). 

A system log created by MSG can be used and analyzed by the EXTRACT 
program and by the STATS program. Any edition, including the running 
edition, can be accessed by a user having the correct read password. 

System log processing 

The system log is a permanent dataset named $SYSTEMLOG. If no system log 
exists when the system is deadstarted, MSG calls the Permanent Dataset 
Manager (PDM) to create edition number 1 of $SYSTEMLOG. An installation 
parameter, I@LGDSZ, determines the size of $SYSTEMLOG. Log manager 
initializes $SYSTEMLOG with end-of-file RCWs and terminates it with an 
end-of-data RCW. This initialization permits a user program such as 
EXTRACT to read $SYSTEMLOG without accidentally running off the end. It 
also allows MSG to recover its position on the system log during a 
restart. 

Disk initialization delays execution only of those system tasks waiting 
to write messages on the log. After initialization, MSG rewinds the 
dataset to the beginning of information. PDM enters $SYSTEMLOG in the 
Dataset Catalog (DSC) after it has been initialized. 

If the system log fills up, a new edition is created and initialized. No 
messages are lost When this happens. 

The system log memory buffer and DSP are allocated in high memory to 
facilitate system log recovery. 

SM-0040 4.7-1 



At system startup, the log manager attempts to recover the system log 
using the following procedure. 

1. Access $SYSTEMLOG. 
If none exists, go to step 4. 

2. Validate table area and buffer pointers; set x in recovery 
message to OK. 
If valid, go to step 5. 

3. Read $SYSTEMLOG to eof. Then backspace once. Initialize high 
memory table area. Set x in recovery message to 2. Go to 
step 5. 

4. Initialize $SYSTEMLOG with eof marks. Call PDM to save 
$SYSTEMLOG in the Dataset Catalog. Rewind $SYSTEMLOG. 
Initialize high memory table area. Set x in recovery message to 
1. 

5. Enter SY014 - SYSTEMLOG RECOVERY SUCCESS CODE x message in the 
log. The recovery success codes are as follows: 

Code Definition 

1 $SYSTEMLOG did not exist. 

2 Recovery validation word was bad. 

3 $SYSTEMLOG edition numbers did not match. 

4 $SYSLOG DSP failed validation. 

5 The eop flag was not set in $SYSLOG DSP. 

6 Record control was not RCW or BCW. 

7 Bad forward word index in record control word 

8 Bad block number in block control word 

OK Good recovery 

User log processing 

A user log dataset named $LOG is created for each job by JSH when a job 
is initiated. The buffer for this dataset is in the JTA for the job. 
Tasks (and the user via the Exchange Processor) may request MSG to write 
messages in the user log. 

SM-0040 4.7-2 



User log messages are placed on one general queue in the memory pool, and 
each job may have ten messages backlogged on the queue. If more messages 
are to be entered in a user log while at its maximum queue count (before 
its backlog can be written from the queue to $LOG), the MSG task begins 
discarding messages. The last two messages on the queue for that job are 
replaced with an overflow message and the new message request, preventing 
a looping job from filling the entire queue and hanging the system while 
waiting for I/O. 

The maximum size of each $LOG is limited by the installation parameter 
I@LGUSZ. 

4.7.2 SYSTEM TABLES USED BY MSG 

The following tables are used for message processing. 

DSP Dataset Parameter Area 
JXT Job Execution Table 
JTA Job Table Area 
SDT System Dataset Table 
PDD Permanent Dataset Definition Table 
AUT Active User Table, for interactive mode 
LGJ Log JXT Table 

Detailed information for these tables is available in the COS Table 
Descriptions Internal Reference Manual, publication SM-0045. 

Dataset Parameter Area (DSP) 

Task I/O uses the Dataset Parameter Area tables for the $SYSLOG and the 
$LOG datasets. The DSP and I/O buffer for $SYSLOG are allocated in high 
memory during system startup. The OSP and I/O buffer for $LOG are in the 
user JTA. 

Job Execution Table (JXT) 

MSG uses the following fields in the JXT: 

JXSOT 
JXJN 
JXTSX 
JXJTA 
JXSTAT 
JXLFM 
JXSTCH 
JXORD 
JXIA 
JXLVL 
JXAUT 

SM-0040 

SOT offset 
Jobname 
Time spent executing 
JTA address 
Status bit N (not in memory) 
Last logfile message 
Job status in displayable form 
Ordinal number 
Interactive flag 
Procedure level 
AUT table address 

4.7-3 



Job Table Area (JTA) 

MSG uses the following fields in the Job Table Area: 

JTLDP 
J'rTSX 
JTDLM 
J'l'MSG 
J'l'LGF 
,J'fJN 
JT.1X'l' 
J'fLOG 

User DSP address for $LOG 
Time spent executing 
Disable log message flag; set during job termination 
User log record area 
User log buffer 
.Job name 
JXT address 
Logfile (SLOG) DNT 

Permanent Dataset Definition Table (PDD) 

Permanent Dataset Manager requests issued by MSG are accompanied by 
Permanent Dataset Definition tables. 

4.7.3 TASK CALLS TO MSG 

A System Task Processor task calls MSG only through the synchronous 
TSKREQ routine and receives a reply as soon as the message has been 
copied to a queue entry in an STP memory pool. This allows any part of 
STP to enter a message in the system and/or user log very easily. 

Before executing a return jump to TSKREQ, place the following information 
in input registers: 

U~.2) MSGID,O 

(Sl) INPUT+O} 
Request 

(S2) INPUT+l 

Request format: 

o 2 10 19 25 40 46 

INPUT+O WCI//////I TYPE I SUB f LENGTH 1 
INPUT+l V/////////////////////////////////////////////f 

SM-0040 4.7-4 

ADDR 

JXT 

63 



Field Word Bits 

FC INPUT+O 0-1 

TYPE INPUT+O 10-18 

SUB INPUT+O 19-24 

LENG'rH INPUT+O 25-39 

ADDR INPUT+O 40-63 

JXT INPUT+ 1 46-63 

Description 

Function code: 

1 Write message in user's logfile 
only 

2 Write message in SYSTEMLOG only 

3 Write message in both user's 
logfile and in SYS'rEMLOG 

Major class of log record (section 
4.7.4) 

Subtype of log record (section 4.7.4) 

Length in words of message. If 
length is 0, the message is a 
character string terminated by a zero 
byte in any position. 

Starting address relative to STP of 
message to be written 

JXT address if message associated 
with job; otherwise 0 

Tbe calling task receives the following information after the message has 
been built and queued for output: 

(Sl) OUTPUT + 0 

(S2) OUTPUT + 1 

Reply format: 

o 1 63 

OUTPUT+O 
OUTPUT+l MSGDONE 

SM-0040 4.7-5 



Field Word Bits Description 

MSGWORD OUTPUT+O 0-63 First word of the message located at 
ADDR specified in the input request. 
This may be ASCII characters or 
binary data. 

MSGDONE OUTPUT+l 0-63 Characters 'MSG DONE I in ASCII 

4.7.4 $SYSTEMLOG FORMAT 

The format of $SYSTEMLOG is easily read by a user program with the 
correct read password. Each message occupies a single variable-length 
record on the system log. All records of the same type and subtype have 
the same format. MSG builds two or three header words, but it does no 
other formatting of the message. It merely transfers the ASCII or binary 
data from the location specified by the starting address in the request 
to the memory pool queue. Then the entire record is written to the 
system log via Task I/O. The EXTRACT utility program processes each type 
according to its format for each different message to produce its report, 
and the STATS utility program uses several of the types to procure its 
daily and monthly statistical report. 

Records are formatted as follows: 

RECORD+O 
RECORD+l 

RECORD+2 
RECORD+3 

RECORD+ 
LENGTH+l 

Field 

TIME 

U 

SM-0040 

o 10 15 20 24 40 

TIME 

~1 TYPE lSUB~ JSQ I LENGTH 

Word 

RECORD+O 

RECORD+l 

JOBNAME or binary data 

ASCII text or binary data 

Bits 

0-63 

o 

Description 

Real-time clock expressed in cycles 

User flag; message also written in 
user's logfile 

4.7-6 

63 



Field 

TYPE 

SUB 

JSQ 

LENGTH 

JOBNAME 

Word Bits 

RECORD 1 1-9 

RECORD+l 10-15 

RECORD+l 24-39 

RECORD+l 40-63 

RECORD+2 0-63 

RECORD+3 0-63 
through 
RECORD+LENGTH+l 

Description 

Major message type. See system log 
message types. 

Subtype of message. See system log 
message type. 

Job sequence number (SDJSQ). Used 
only if entry is associated with a 
job. 

Number of words excluding the first 
two words in this record 

Job name (JXJN), used for type 1 and 
type 4 records. For other record 
types, this word contains the 
beginning of binary information. 

For all but type 1 records, binary 
information as supplied by caller; 
for type 1 records, ASCII text. 

The following paragraphs describe formats for different message types 
recorded in the system log. 

Type 0 - null messages 

A type 0 message is a null record that may have a length of O. Null 
messages are used to pad blocks so that no message in the system log 
crosses a disk sector boundary. Type 0 messages do not have subtypes. 

Type 1 - ASCII string messages 

Type 1 messages includes all user-requested messages and system-generated 
informative messages. 

The subtype field contains the task number of the task that requested the 
message or is a 168 for a user-requested entry. (Only type 1 messages 
can be written in a user logfile.) 

SM-0040 4.7-7 



Type 2 - Station Call Processor messages 

Type 2 messages are issued by the Station Call Processor. Message 
subtypes relating to the station are: 

Subtype 

I 
2 
3 

Message 

Staging in of datasets 
Staging out of datasets 
RetransmissionS 

Type 3 - Hardware messages 

Type 3 messages record hardware errors detected during normal operations. 
These errors are of possible interest to field engineers. 

Subtype 

I 
2 
3 
4 

I-bit corrected memory errors 
Uncorrectable memory errors 
Disk errors 
Channel errors§ 

Type 4 - Accounting messages 

Type 4 messages include all job-related accounting information. Subtypes 
provide for the following types of accounting messages: 

Subtype 

I 
2 

Message 

Job termination 
PDM accounting messages 

Type 5 - Startup messages 

Type 5 messages are issued during system startup processing. Message 
subtypes are as follows: 

Subtype 

I 
2 

Message 

Permanent dataset recovery 
Rolled job recovery 

§ Deferred implementation -

SM-0040 4.7-8 



Type 6 - System performance messages 

Type 6 messages are issued by the System Performance Monitor on a 
periodic basis. These records report on the performance and usage of 
COS, the processors, and I/O. Section 4.10 describes the System 
Performance Monitor Task in detail. 

Subtype 

1 
2 

3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

Message 

CPU utilization 
Task utilization 
EXEC requests from each task 
User memory utilizationS 
Disk utilizationS 
Disk channel utilization 
Link utilizationS 
EXEC call usage 
User call usageS 
Channel interrupt counts 
Job Scheduler statistics 
Job class statistics 

S Deferred implementation 

SM-0040 4.7-9 



4.7.5 $LOG FORMAT 

Each job has a user log named $LOG containing a history of the job. Log 
messages are generated by the operating system and by the user job 
itself. Each message occupies a single variable-length record on $LOG. 
At the completion of the job, $LOG is copied to $OUT, Which is then 
staged for output. 

Records are formatted as follows: 

. 0 6 24 32 40 ,------
Chain items§ 

~,----------------------

63 

RECORO-3 
RECORO-2 
RECORO-l 
RECORD+O 
RECORO+ 1 
RECORO+2 
RECORD+3 
RECORO+4 
RECORO+5 

Chain items=-§ __ ~ ____________________ ~ 
L§ ~ __ JQ...!.-§ ___ ~ 

R ----,-------------------
T1 1----_._---------------
C1 

I---_______ CF ______ . __ --'-~_s ___ I LV-, _SP __ ~ 
10 

T 

RECORO+n 

Field Word Bits Descri2tion 

L RECORD-l 0-5 Number of words, excluding the first 
three header words 

JQ RECORD-l 24-39 Job sequence number 

JX RECORD-l 40-63 JXT address 

§ These fields exist only while the record is being built in the memory 
pool area, but are discarded when the record is written into the actual 
$LOG dataset. 

SM-0040 4.7-10 



Field Word Bits 

R RECORD+O 0-63 

TI RECORD+ 1 0-63 

CI RECORD+2 0-63 

CF RECORD+2 0-31 

S RECORD+3 32-47 

LV RECORD+3 48-55 

SP RECORD+3 56-63 

ID RECORD+4 0-63 

T RECORD+5-n 0-63 

SM-0040 

Description 

ASCII space codes 

Wall clock time expressed in ASCII 
code in the format hh:mm:ss 

CPU time expressed in ASCII code, 
seven digits and a decimal point 

CPU time, four fractional digits 

ASCII space codes 

Procedure level 

ASCII space code 

ID of calling task or user in ASCII 
code (left-justified) 

Message text in ASCII code; last word 
is left-justified with zero fill 

4.7-11 





4.8 MEMORY ERROR PROCESSOR (MEP) 

'roe Memory Error Processor (MEP) exists so that EXEC can communicate with 
the system log. Its purpose is to relay information about memory errors 
from EXEC to the Message Processor (MSG). Messages from EXEC to MSG are 
in the following format: 

o 
1 

2 

3 

Field 

IN 

R 

SYN 

o 2 8 16 32 40 63 ----- ,- ------,,-"'------, ---------------------'----------------'-----------, 

RTC 
--------,----- ----,- "'----,------- - -,------------- ------------------------------------------------~ 

Word Bits 

o 0-63 

1 0,1 

1 8-15 

1 32-39 

Description 

Jobname or 'STP' 

Error type (binary): 
10 Uncorrectab1e memory error 
01 Correctable memory error 

Read mode: 
0 Scalar 
1 I/O 
2 Vector 
3 Fetch 

Syndrome bits 

ERR ADDR 1 40-63 Error address 

BA 2 26-39 Base address 

P 2 40-63 Program address 

RTC 3 0-63 Real-time clock 

SM-0040 4.8-1 





4.9 DISK ERROR CORRECTION (DEC) 

The Disk Error Correction Task (DEC) is called by the CRAY-OS Disk Queue 
Manager Task (DQM) to attempt correction of a disk error by applying the 
cyclic redundancy check word (CRC) algorithm described in the DCU-2 Disk 
Controller Reference Manual, CRI publication 2240630. 

4.9.1 SYSTEM TABLE USED BY DEC 

DEC uses the Equipment Table (EQT). 

Equipment Table (EQT) 

The EQT contains information for device allocation, physical operation 
control, device request queue management, channel configuration, 
performance monitoring, error counting, and error correction. Detailed 
information on this table is available in the COS Table Descriptions 
Internal Reference Manual, publication SM-0045. 

4.9.2 DEC INTERFACE WITH OTHER TASKS 

DEC is called by a task through PUTREQ, Which places the EQT address in 
INPUT+O. DEC returns the request word in the reply. 

INPUT REGISTERS: 

OUTPUT REGISTERS: 

SM-0040 

INPUT+O 24/return,16/0,24/EQT 

INPUT+l 64/0 

OUTPUT+O 

OUTPUT+l 

64/error status 

Error status: 
o corrected error 

-1 uncorrected error 

24/return,16/0,24/EQT 

4.9-1 





4.10 SYST&~ PERFORMANCE MONITOR (SPM) 

The System Performance Monitor (SPM) is a low priority task that collects 
system performance data and periodically sends it to the system log. 
Once SPM is created, it goes into an infinite loop where it is readied by 
EXEC, collects information sending it to the Log Manager, and performs a 
time delay. SPM's only communication with other tasks is one-way to the 
Log Manager. 

4.10.1 CONTROL PARAMETERS 

The following System Task Processor (STP) parameters control SPM's data 
collection: 

I@SPMDLY 

I@SPMMIN 

I@SPMON 

I@SPMTYP 

Delay interval between collection periods in seconds 

Delay interval when waiting for buffer space in which to 
collect information 

SPM task enable flag, checked every I@SPMDLY seconds 

SPM subtype enable vector. Each bit set turns on the 
data collection for the respective subtyPe (or group of 
data, as enumerated in section 4.10.3). The vector is 
right-adjusted so that the rightmost bit corresponds to 
subtype 12. 

The value of I@SPMDLY is an installation option. The suggested value is 
30 minutes (1800 seconds). In general, the advantages of setting a large 
value for the interval are: 

• Smaller system overhead and 

• Smaller volume of EXTRACT output. 

The advantages of a small interval are: 

• More detailed statistics of specific period of time and 

• Smaller probability of losing SPM data through system crashes. 

The operator may change parameters while COS is running by entering new 
values into the corresponding STP locations using system debug commands. 

SM-0040 4.10-1 



4.10.2 MErrHOD OF DATA COLLECTION 

Performance data is stored in STP as well as in EXEC. In general, such 
data accumulates with time until it is read by SPM. At that time, the 
data areas are zeroed and accumulation resumes. Therefore, each system 
log record contains data accumulated since the last collection period. 
EXEC tables are read and zeroed via EXEC requests. During collection 
periods, STP is locked, ensuring that other tasks do not read and update 
a data area between the time the data is read by SPM and the time the 
data area is zeroed. 

4.10.3 DATA COLLECTION AND RECORD DEFINI'rION 

Twelve groups (or subtypes) of data are collected by SPM. Each group is 
sent to the Log Manager as a record. All SPM records belong to Log 
Manager record type 6. The data subtypes and record definitions are 
given in tables 4.10-1 through 4.10-12. 

A listing of subtypes follows: 

Table Subtype Description 

4.10-1 1 CPU usage 
4.10-2 2 Task usage 
4.10-3 3 EXEC requests 
4.10-4 4 User memory usageS 
4.10-5 5 Disk usageS 
4.10-6 6 Disk channel usage 
4.10-7 7 Link usageS 
4.10-8 8 EXEC call usage 
4.10-9 9 User call usageS 
4.10-10 10 Interrupt count 
4.10-11 11 Job scheduler management statistics 
4.10-12 12 Job class information 

§ Deferred implementation 

SM-0040 4.10-2 



Table 4.10-1. CPU usage record - subtype 1 

Word Data Origin of Data 

0 Time interval Calculated in SPM 
1 User time u'rIM (in EXEC) 
2 Idle time I'PIM (in EXEC) 
3 Blocked time BTIM (in EXEC) 
4 EXEC time ETIM (in EXEC) 
5 Number of tasks NE@S'rT (in COSTXT) 
6 Task 0 time STTIME field of STT (in EXEC) 
7 Task 1 time srpTIME field of STT (in EXEC) 

· · · 
· · · 
· · · 

N+6 Task N time S'rTIME field of STT (in EXEC) 

Table 4.10-2. Task usage record - subtype 2 

Word Data Origin of Data 

0 Time interval Calculated in SPM 
1 Number of tasks NE@STT (in COSTXT) 
2 Number of task 0 readies STCN'r field of ST'r (in EXEC) 
3 Number of task 1 readies STCNT field of STT (in EXEC) 

· · · 
· · · 
· · · N+2 Number of task N readies STCNT field of STT (in EXEC) 

SM-0040 4.10-3 



Table 4.10-3. EXEC requests record - subtype 3 

Word Data Origin of Data 

0 Time interval Calculated in SPM 
1 Number of tasks NE@STT (in COSTXT) 
2 Number of task 0 requests STNEC field in STT (in EXEC) 
3 Number of task 1 requests STNEC field in STT ( in EXEC) 

· · · 
· · · 
· · · N+2 Number of task N STNEC field in STrr (in EXEC) 

Table 4.10-4. User memory usage record - subtype 4§ 

Word Data Origin of Data 

0 Time interval Calculated in SPM 
1 Available memory integral PM04AMI in STP 
2 I/O wait integral PM04IMI in STP 
3 CPU wait integral PM04CMI in STP 
4 CPU execute integral PM04WMI in STP 

§ Deferred implementation 

SM-0040 4.10-4 



Word 

o 
1 
2 
3 
4 
5 
6 

7 

6*N+2 
6*N+7 

Word 

0 
1 
2 

· 
· 
· 

12 

Table 4.10-5. Disk usage record - subtype 5§ 

Data 

Time interval 
Number of devices 
Logical device 0 name 
Blocks transferred (device 0) 
Seek time (device 0) 
Transfer time (device 0) 
Number of physical requests 
(device 0) 
Number of non-seek requests 
(device 0) 

Logical device N name 
Number of non-seek requests 
(device N) 

Origin of Data 

Calculated in SPM 

Table 4.10-6. Disk channel usage record - subtype 6 

Data Origin of Data 

Time interval Calculated in SPM 
Channel 0 time D'rCTA field in OCT (in STP) 
Channel 1 time DTCTA field in DCT (in STP) 

· · · · 
· · 
Channel 11 time DTCTA field in DCT (in STP) 

§ Deferred implementation 

SM-0040 4.10-5 



Table 4.10-7. Link usage record - subtype 7§ 

Word Data Origin of Data 

0 Time interval Calculated in SPM 
1 Number of links 
2 J..Jogical ID (link 0) 
3 Number of messages (link 0) 
4 Number of words sent (link 0) 
5 Number of words received 

(link 0) 

· · 
· · 
· · 4*N+2 Logical ID (link N ) 

4*N+3 Number of messages (link N) 
4*N+4 Number of words sent (link N) 
4*N+5 Number of words received 

(link N) 
-

Table 4.10-8. EXEC call usage record - subtype 8 

Word Data Origin of Data 

0 'rime interval Calculated in SPM 
1 Number of types MTCTL (in COSTXT) 
2 Number of type 0 requests MCT (in EXEC) 
3 Number of type 1 requests MCT (in EXEC) 

· · · · · · 
· · · N+2 Number of type requests MCT (in EXEC) 

§ Deferred implementation 

SM-0040 4.10-6 



Table 4.10-9. User call usage record - subtype 9§ 

,.... 

Word Data Origin of Data 

0 Time interval Calculated in SPM 
1 Number of user 

request types 
2 Number of type 0 requests 
3 Number of type 1 requests 

· · 
· · 
· · N+2 Number of type N requests 

Table 4.10-10. Interrupt count record - subtype 10 

Word Data Origin of Data 

0 Time interval Calculated in SPM 
1 Number of channels NE@IC (COSTXT) 
2 Number of channel 0 interrupts IC table (EXEC) 
3 Number of channel 1 interrupts IC table (EXEC) 

· · · 
· · · 
· · · 

N+2 Number of channel N interrupts 
IC table (EXEC) 

§ Deferred implementation 

SM-0040 4.10-7 



Table 4.10-11. Job SCheduler management statistics record - subtype 11 

Word 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

Data 

Time interval 
Number of memory compacts 
Number of rolls 
Number of expands 
Number of reduces 
Number of initiates 
Number of terminates 
Number of scheduling intervals 
Number of index writes 
Job class structure name 
Number of jobs in the system 

Number of active IXTs 
Maximum number of JXTs 
Number of available pool JXTs 
Number of defined JXTs 
Number of classes waiting 
for JXTs 

Origin of Data 

Calculated in SPM 
PMllMC in STP 
PMl1NR in STP 
PMllFLE in STP 
PMl1FLR in STP 
PMllNI in STP 
PMllNT in STP 
PMllSI in STP 
PMl1IN in STP 
CSSNM in STP 
Input and execute queue 
counts in STP 
JXTPOP in STP 
JXTMAY in STP 
JXTMAX-CSSCUM-CSAPL in STP 
CSNCL in STP 
CSNCW in STP 

Table 4.10-12. Job class information record - subtype 12 

Word Data Origin of data 

0 Time interval Calculated in SPM 
1 Job class name CSCNM in STP 
2 Number of active JXTs CSACT in STP 
3 Number of jobs waiting for JXTs CSWTG in STP 
4 Number of reserved JXTs CSRES in STP 
5 Maximum number of JXTs CSMAX in STP 
6 Status (ON/OFF) CSOFF in STP 

SM-0040 4.10-8 



4.10.4 TASK FLOW FOR SPM 

1. If SPM not enabled, go to lSi otherwise, 
2. Get a buffer for each subtype. 
3. If not enough memory, return buffers and go to 15; otherwise, 
4. Lock STP. 
5. If each enabled subtype buffer filled, go to 9; otherwise, 
6. Put time interval into word 0 of buffer. 
7. Call corresponding collection routine to fill the buffer. 
8. Go to 5. 
9. Unlock STP. 
10. If there are no buffers left, go to 17; otherwise, 
11. Call MSG to write the subtype to system log. 
12. Check MSG reply. 
13. Return the buffer. 
14. Go to 10. 
15. Time delay for I@SPMMIN seconds. 
16. If now have buffer space, go to 4; otherwise, 
17. Time delay for I@SPMDLY seconds. 
18. Go to 1. 

4.10.5 SYSTEM TABLES USED BY SPM 

The following system tables are used by SPM: 

IC Interrupt Count Table 
STT System Task Table 
MCT Monitor Call Table 
OCT Device Channel Table 
CSD Class Structure Definition Table 

Detailed information on these tables is available in the COS Table 
Descriptions Internal Reference Manual, publication SM-0045. 

Interrupt Count Table (IC) 

The IC counts interrupts for each channel or pseudo channel. This table 
is read and zeroed indirectly through EXEC calls. 

System Task Table (STT) 

Four fields of the STT are used by SPM. STCNT maintains the ready count, 
STNEC the normal exit count, STTIME the task execution time, and STLPMC 
the time of the last/SPM call. 

SM-0040 4.10-9 



Monitor Call Table (MCT) 

Monitor call table serves only SPM. It counts each type of call to EXEC 
from various tasks. 

Table format: 

o Number of type 0 requests 
Number of type 1 requests 

N Number of type N requests 

Device Channel Table (OCT) 

The OCT is an STP-resident table. The only field used by SPM is DTCTA, 
the cumulative channel reserve time field. 

Class Structure Definition Table (CSO) 

The CSD is an STP-resident table containing all job class information. 

SM-0040 4.10-10 



4.11 JOB CLASS MANAGER (JCM) 

Before a job enters the input queue, it must be given a job class 
assignment. The Job Class Manager Task (JCM) assigns a job to a class. 
JCM uses the job class structure currently in effect to determine the 
class assignment. See JCSDEF in the COS Operational Aids Reference 
Manual, publication SM-0044, for a detailed description of a job class 
structure. 

After a system Install, the following default job class structure is in 
effect: 

SNAME,SN=DEFAULT. 
CLASS,NAME=JOBSERR,RANK=1,CHAR=JSE,RES=O,MAX=63. 
CLASS,NAME=NORMAL,RANK=2,CHAR=ORPH,RES=O,MAX=63. 
SLIMIT,LI=15. 

4.11.1 JOB CLASS ASSIGNMENT 

A job can belong to only one class. A job that qualifies for more than 
one class is assigned to the highest ranked class for which it 
qualifies. The user may override this assignment (to lower the class 
only) by using the CL parameter on the JOB control statement to specify 
the class in which the job is to be run. The job must still meet the 
qualifications of the specified class. If a job does not qualify for any 
class, it is assigned to the class defined using CHAR=ORPH (ORPH suggests 
orphan). 

A JOB statement error occurs in the following cases: 

• The job does not qualify for any class, and no class is defined 
using CHAR=ORPH. 

• The user has overridden class assignment via the CL parameter on 
the JOB statement but the job does not meet the class 
qualifications of the specified class, or the specified class does 
not exist. 

• The job is neither recoverable nor rerunnable during a system 
restart with recovery of rolled job selected. 

Job class assignments are redetermined in the following cases: 

• After a system startup, job classes are reassigned for all jobs 
that are in the input queue at the end of the startup. Jobs that 
are recovered are not affected. 

• After a new structure is invoked, job classes are reassigned for 
all jobs in the input queue. 

SM-0040 4.11-1 



• After an operator uses the ENTER command to change a job's class, 
priority, time limit, TID, or DID, the job class of the specified 
job is determined if it is in the input queue. 

• After an operator uses the ROUTE command to change a DID, job 
classes are reassigned for all jobs in the input queue that had 
the original DID. 

Once a job receives a JXT, its class assignment does not change unless 
the job is rerun. After a restart, jobs are either recovered, rerun, or 
marked by the system as having a JOB statement error. Recovered jobs 
maintain the class assignment they had before the system interruption. 

4.11.2 INTERFACE BETWEEN JCM AND OTHER TASKS 

The Job Class Manager task is created with all other system tasks by the 
startup procedure. A task can call JCM by setting the appropriate input 
registers and calling PUTREQ and TSKREQ. JCM replies to each request by 
setting the appropriate output registers. See section 3.2 for a complete 
description of task communications. 

INPUT register format: 

o 17 40 58 63 

INPUT+O VIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII//III/i//il/I~ Fe 

INPUT+l /1/1111111111111 CMO t SOT 

Field Word Bits Description 

FC INPUT+O 58-63 Function code 

CMO INPUT+l 17-39 Class Map Offset of the associated 
class 

SDT I 40-63 SDT address of the associated job 

OUTPUT register format: 

o 6 40 63 
OUTPUT+O 

OUTPUT+I 

Fe 111I11111I111111111111111111111111111111111111111111111111 
FC CMO 1 SDT 

SM-0040 4.11-2 



Field ---
FC 

FC 

CMO 

SOT 

The requests 
pages in the 

Word 

OUTPUT+O 

OUTPUT+l 

1 

1 

that tasks 

Bits 

0-5 

0-5 

17-39 

40-63 

can make 

Oescr iption 

Function code 

Function code 

Class Map Offset of the associated 
class 

SOT address of the associated job 

order listed in the 
to JCM are described on the following 
following table: 

Table 4.11-1. JCM functions ----_ .. __ ._ ..... _.- _ ... _._--_.-

Function 
Code 

CASS 

RCASS 

ASSIT 

FXC 

FXCI 

Input 
Parameters Function 

SOT Assigns specified job to a class 

SOT Reassigns specified job to a class 

SOT, CMO Assigns specified job to a specified class 

Fixes invoked class structure 

Fixes recovered class structure 

~lassify request 

FUNCTION: 

FUNCTION CODE: 

ENTRY: 

EXIT: 

SM-0040 

Assigns a specific job to a class: called just 
before entering a job into the input queue for 
the first time. 

CASS 

SOT of specific job required 

Specified job is assigned to a class and the 
appropriate class-waiting-counts in the class 
structure are updated 

4.11-3 



Reclassif~ Request 

FUNCTION: 

FUNCTION CODE: 

ENTRY: 

EXIT: 

Assign Request 

FUNCTION: 

FUNCTION CODE: 

ENTRY 

EXIT: 

Fixclass Requests 

FUNCTION: 

FUNCTION CODE: 

ENTRY: 

EXIT: 

SM-0040 

Reassigns a specific job to a class: called when 
a job in the input queue has one of its job 
statement parameters (that may affect job 
classification) altered. The job must be removed 
from the input queue before JCM is called and 
returned to the input queue after JCM is called. 

RCASS 

SOT of specific job required 

Specified job is removed from its current class. 
The appropriate class-waiting-counts in the class 
structure are updated: the job then reassigned to 
a class and the appropriate class-waiting-counts 
are updated. 

Assigns a specific job to a specific class; 
called When the operator issues an ENTER,CL 
command to assign a job to a specific class. 

ASSIT 

SOT of specific job and class map offset of 
specific class 

Specific job is assigned to the specified class 
and the class-waiting-counts are updated in the 
class structure 

Fixes the class structure: called after a new 
class structure has been invoked and all waiting 
and allocated counts in the structure are O. 

FXC 

Nothing required 

All jobs in the input queue are reclassified, and 
all waiting and allocated counts in the class 
structure are determined. 

4.11-4 



FUNCTION: 

FUNCTION CODE: 

ENTRY: 

EXIT: 

SM-0040 

Fix the class structure; called after a system 
recovery When all the waiting and allocated 
counts in the structure may not be O. 

FXCI 

Nothing required 

All waiting and allocated counts in the class 
structure are zeroed. Then all jobs in the input 
queue are reclassified, and all waiting and 
allocated counts in the class structure are 
determined. 

4.11-5 





4.12 OVERLAY MANAGER (OVM) 

The Overlay Manager Task (OVM) controls the loading and unloading of 
task overlays. Loading an overlay means locating the required disk 
resident portion of COS and reading it into a predefined area of memory 
for execution. Unloading an overlay simply means to mark the overlay 
area occupied by the overlay as being available for use by another 
overlay. 

4.12.1 TASK COMMUNICATION WITH OVM 

Each task which uses overlays must define an overlay area to be used for 
reading and executing overlays related to that task. OVM keeps track of 
which overlay areas are currently in use and which overlays currently 
are memory resident. An overlay is not reloaded from disk if it is 
currently in memory unless it has requested that reuse of the overlay be 
disabled. 

While a user job is waiting for EXP to process a request and EXP must 
load an overlay, a job is marked "I/O Suspend" to force it to be 
disconnected, but remain in memory until OVM signals to EXP that the 
overlay load is complete. When the load is complete, EXP issues an I/O 
Done request. Similar actions must be taken by any other task that 
requires an overlay load as a result of a job-related request. 

A .task communicates wi th OVM by a PUTREQ/GETREPLY sequence. The request 
contains a function code, telling OVM which of five functions is to be 
performed. The five functions recognized by OVM include: 

• Initial overlay load 
• Overlay Call request 
• OVerlay Return request 
• Overlay Goto request 
• Overlay Re-use Disable request 

Each function is accompanied by parameters which are part of the request. 

Initial load overlay request 

When a task determines that an overlay load is required to process some 
event and the determination is made by a non-overlay portion of the 
task, an "Initial Overlay Load" request must be made. For this request, 
OVM does not begin loading until the task overlay area is available. If 
an Initial Overlay Load request is received while the overlay area is 
marked as busy, it is entered into a list of outstanding requests. OVM 
does not send a reply to the calling task until the request has been 
processed and the overlay is available. 

SM-0040 4.12-1 



OVM maintains a stack of initial overlay load requests for each task. 
This allows EXP to request an overlay load in response to a user job 
function request and then to request another overlay load in response to 
a request from another job without having to wait until the initial 
overlay load has completed. In general, requests are processed in the 
order in which they are received, with the exception that, if two or 
more requests are for the same overlay, the second and subsequent such 
requests are honored as soon as the first completes, even though there 
may have been different intervening requests. 

The overlay IDs are defined at installation. 

If an error occurs which prevents honoring a request, an error is 
returned to the caller. The only currently defined one is: 

Code Significance 

OV$ECNS No room in the overlay load list 

Input required by OVM for an Initial Overlay Load request consists of 
the overlay IO. This IO consists of an overlay identifier. 

LOADOVL macro 

Request: 

01 25 49 63 

51 III Memory pool address f return address t OV$FCLD 

52 V////////////////////////////////////////////////' OVerlay ID 

Reply: 

o 40 63 

51 ~t//////////////////////////////////////I f~dependent contents 

52 copy of request Sl 

f Significance 

1 Bits 40-63 contain error code 
OBits 40-63 contain address to which control is transferred 

SM-0040 4.12-2 



Call an overlay and goto an overlay requests 

When an overlay is executing and determines that a different overlay is 
needed to perform some function and the second overlay is associated 
with the same task, either an Overlay Call request or an Overlay Goto 
request must be made. An Overlay Call request is used if the calling 
overlay wants control returned to it when the called overlay completes: 
an Overlay Goto request is used if control is not to return to the 
caller. 

When either request is made, the new overlay is read into the overlay 
area on top of the calling overlay. If the calling overlay wants to 
save data, or wants to pass data to the called overlay, it must place 
the data in a memory pool area. OVM passes that address to the called 
overlay in 52, the reply word. The content or format of the data is 
determined by the calling task and OVM does not use or examine any such 
information. 

Where an Overlay Call request is made, OVM saves the caller 10, 
caller-supplied return address, and caller-supplied memory pool 
address. The memory pool address is made available to the called 
overlay. When the called overlay completes execution, the calling 
overlay is reloaded, reply word 52 contains the supplied memory pool 
address, and OVM restarts the caller at the supplied return address. 
For an Overlay Goto request, the information about the caller is not 
saved and when the called overlay terminates, OVM restarts the last 
overlay that made an Overlay Call request, or returns to the task main 
loop if no such request is outstanding. The caller information is saved 
in a first-in-last-out (FILO) stack. 

Input to OVM for an Overlay Call request is the desired overlay 10, the 
return address, and a memory pool address. For an Overlay Goto request, 
the return address is not used. 

CALLOVL 

Request: 

51 

52 

Reply: 

01 25 49 63 

vi Memory pool address t return address OV$FCCL 

VIIIIIIIIIIIIIIIIII/IIIII/IIIIIIIIII///II/III/III overlay 10 

o 40 63 

51 ~lllllili//I/IIIIIIIIIIIIIII//IIIIIII/II~ f-dependent contents 

52 copy of request 51 

5M-0040 4.12-3 



f Significance 

1 Bits 40-63 contain error code 
OBits 40-63 contain address to which control is transferred 

GOTOOVL macro 

Request: 

01 25 49 63 

Sl ~rnory pool address tlllllllllllllllllllllill OV$FCGO 

S2 ~~~/IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII Overlay ID 

Reply: 

o 40 63 

51 ~///////////////////////////////////// f-dependent contents 

S2 L-- _ copy of request 51 

f Significance 

1 Bits 40-63 contain error code 
OBits 40-63 contain address to which control is transferred 

Inhibit overlay reuse 

The Overlay Reuse disable request signals OVM that the current overlay 
must be reloaded before it can be used again. This is used only if some 
change has been made in code or some internal table requiring 
reinitialization that cannot be restored by the overlay. 

OVM sets a flag in its internal tables signaling that any Initial Load 
Request that references the current overlay must be satisfied by going 
back to the disk copy. 

No input is required. No status is returned in the reply. 

SM-0040 4.12-4 



Disable macro 

Request: 

o 49 63 

Sl 1/1//1/11///111//11/1////11/111/1///1/////1/111//1 OV$FCDIS 

S2 ///////11/1/1111/11/1//1////1/1///////1////1///111/1/1///1/1/1// 
~-----------------------------------------------------------

Reply: 

o 63 

SS2
l

t' t--____ O ____ ~, 
OV$FCDLS ] 

Return to caller overlay 

An overlay uses an Overlay Return Request to signal OVM that it has 
completed execution and may be unloaded. When this request is received, 
OVM determines which overlay, if any, should be loaded next. This is 
done by the following process: 

o Take the last entry made in the Overlay Call stack, and restart 
the specified overlay. 

o If the Call Stack is empty, OVM examines the Load Request List 
for any load request which needs the currently loaded overlay. 
If one is found and the current overlay is reuseable, OVM 
restarts the current overlay. 

o If no load request needs the current overlay or the overlay is 
not reuseable, OVM takes the oldest unprocessed entry from the 
Load Request List and loads the specified overlay. 

o If no unprocessed entry exists in the Load Request List, OVM 
returns to the main loop of the associated task. 

Other than the return function code, no input is required. When no Call 
Stack entries exist, the reply to the calling task contains a copy of 
the Sl from the Initial Load request which initiated the sequence of 
overlays which is now terminating. This copy of Sl is in S2. 

SM-0040 4.12-5 



RTNOVL macro 

Request: 

o 49 63 

Sl V////////////////////////////////////////////////' OV$FCRTN 
~.--.----------------------------------------~~----------~ 

S2 V/////////////////////////////////////////////////////////////// 

Reply: 

01 25 40 49 
Sl 

S2 

f //////////////////////////////////////If-dependent contents 

/ Memory pool address f return address ~ OV$FCRTN 

f Significance 

1 Bits 40-63 contain error code 
OBits 40-63 contain address to which control is transferred 

The addresses are from the previous CALLOVL, LOADOVL, or GOTOOVL 

4.12.2 SYSTEM GENERATION/OVERLAY DEFINITION 

63 

Portions of tasks which are intended to be overlays must be identified 
as such during system assembly so that the address references can be 
properly defined by the assembler. Macros are provided to define the 
limits of overlay code. These macros are used to construct the initial 
Overlay Directory, and to ensure code is physically located at the end 
of STP. The CAL LOC and BLOCK pseudo-ops are used to control addressing 
and physical placement of code. The macros provided are described in 
the COS Operational Aids Reference Manual, publication SM-0044. 

4.12.3 OVERLAY CALLING MACROS 

Macros are provided to generate jumps to each task's resident overlay 
loader. The task resident overlay loader is merely a subroutine within 
each task which actually makes the call to OVM. The macros set up the 
OVM parameters. The purpose of the task resident overlay loader is to 
provide one place within a task to perform the PUTREQ and process 
replies from OVM. Entry to the task resident overlay loader is via 
return jump (R) instructions. Macros are provided to generate each of 
the OVM function requests. When a reply is received from OVM, Sl 
contains the address to which the resident loader should transfer 
control or an error code. The macros are described in the COS 
Operational Aids Reference Manual, publication SM-0044. 

SM-0040 4.12-6 



4.12.4 OVM TABLES 

The Overlay Manager task uses certain tables which it uses to control 
the loading and unloading of overlays. These tables include all 
necessary stacks, the DNTS needed for the I/O and the Overlay Directory 
Table (ODT). Each task has an Overlay Control Table (OCT). Information 
in each table is as described below. 

Overlay Directory Table (ODT) 

The ODT is constructed partially during system assembly and partially 
during Startup. During assembly, the overlay id, memory address, entry 
point address, and length in 64-bit words are inserted. Startup 
converts the memory address to a word address within the overlay 
dataset. A residence flag is provided to allow for future use of MOS 
memory on the I/O Subsystem as an overlay storage medium. There is one 
entry in the ODT for each overlay. 

Format of an entry: 
o 

0 10 

1 CA 

2 

3 

4 

Field Word 

10 o 

R o 

16 

tRI 

GO 

~M 

MOS 

Bits 

0-15 

16 

25 30 40 
USR f WA 

1 LTH I EP 

LD 

DSK 

~A 

Description 

Installation - defined overlay 10 

Residence: O=disk: l=MOS 

63 

USR o 17-29 Count of current users if re-entrant 
overlayS 

WA o 

CA 1 

LTH 1 

EP 1 

GO 2 

SM-0040 

30-63 

0-24 

25-39 

40-63 

0-31 

Address - word address in dataset 

Count of CALLOVL requests for this 
overlay 

Length of overlay in words 

Entry point within overlay for 
transfer of control 

Count of GOTOOVL requests for this 
overlay 

4.12-7 



Field Word Bits Description 

LD 2 32-63 Count of LOADOVL requests for this 
overlay 

MEM 3 0-31 Count of times overlay was already 
available 

DSK 3 32-63 Count of times overlay was loaded for 
disk 

MaS 4 0-31 Count of times overlay was loaded for 
MOS 

MWA 4 32-63 MOS word address of overlay 

Overlay Control Table (OCT) 

The OCT contains flags and pointers to determine current status of the 
overlay area for the associated task. The OCT is constructed and used 
only by OVM. If the task does not use overlays its OCT contains zeroes. 
There is one Overlay Control Table for each task. 

Format of an entry: 
o 1 

B lRJ REQ 

LE@DNT 

Field Bits 

B o 

R 1 

REQ 2-24 

ID 25-39 

EP 40-63 

25 40 

I ID EP 

DNT 

Description 

Busy; if 1, overlay area in use 

Reusable; if 1, overlay issued DISABLE call 

Request; count of OVM requests from this task 

ID; current overlay in area if B is nonzero 

Entry; entry point of current overlay 

§ Deferred implementation 

SM-0040 4.12-8 

63 



The ONT following the I-word entry reads all disk resident overlays for 
the associated task. Separate DNTs allow more than one task to be 
loading overlays concurrently. All DNT entries point to the single copy 
of the OAT constructed by Startup. 

Overlay Call Stack (OCS) 

One Overlay Call Stack containing ten entries is maintained for each 
task. A I-word header contains control information for the stack. 

Format of the header: 
o 56 63 

I111111111111111111111111111111111111111111111111111111111 EN I 
Field Bits 

EN 56-63 

Format of each entry: 

0 

0 [ 10 

1 

Field Word 

10 0 

RTN 0 

51 1 

Description 

Number of entries in use. Stack is empty when 
EN=O 

15 40 

I11111111111111111111111 RTN 

Sl 

Bits DescriEtion 

0-15 Calling overlay 10 

40-63 Return address 

0-63 Copy of Sl from CALLOVL request 

63 

I 

Overlay Load· Request List (OLL) 

The Overlay Load Request List tracks initial load requests occuring while 
the overlay area is busy. The first initial load request is also kept. A 
l-word header controls the list. Each entry is linked for ease in adding 
or deleting requests, not necessarily in order of receipt. Format of the 
header is: 

o 32 40 48 56 63 

VIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII! SIZ I NE I LE I FE I 

SM-0040 4.12-9 



Field Bits 

SIZ 32-39 

NE 40-47 

LE 48-55 

FE 56-63 

Format of an entry: 
o 

Description 

Number total entries in list (space reserved) 

Number entries in use 

Last entry in list in use 

First entry in list in use 

16 25 40 63 

~f//////I///////f NXT ~. 10 f RTN 

Field Bits 

S 0 

NXT 16-24 

ID 25-39 

RTN 40-63 

SlA 0-63 

SlB 0-63 

SM-0040 

SlA 

SlB 

Description 

Submitted (loading initiated or overlay executing 
if nonzero) 

Next entry in use in order load will occur 

Installation-defined overlay ID 

Return address within calling task 

Copy of Sl from PUTREQ/TSKREQ call 

Copy of Sl from most recent CALLOVL/GOTOOVL 
request during the sequence initiated by this 
LOADOVL request 

4.12-10 



CONTROL STATEMENT PROCESSOR (CSP) 

The Control Statement Processor (CSP) is a system program that executes 
in the user field. CSP initiates the job, analyzes and stores the 
various elements of the control statements (that is, cracks them), 
processes system verbs, advances the job step by step, processes errors, 
and ends the job. 

5.1 SYS'rEM TABLES USED BY CSP 

5 

CSP uses system tables to communicate with STP tasks and system or 
user-supplied programs. These tables are located in the user field or in. 
JTA and are preserved or updated by CSP, STP, or other programs during 
the duration of the job. The tables CSP uses are: 

JCB Job Communication Block 
LFT Logical File Table 
DSP Dataset Parameter Area 
DNT Dataset Name Table 

Detailed information for these tables is available in the COS Table 
Descriptions Internal Reference Manual, publication SM-0045. 

5.1.1 JOB COMMUNICATION BLOCK (JCB) 

The Job Communication Block (JCB) is the first 2008 words of the user 
field. CSP places the current control statement in cracked and uncracked 
format and information for accessing or building I/O buffers, DSPs, and 
LFT in the JCB. Other information can also be maintained there. 

5.1.2 LOGICAL FILE TABLE (LFT) 

The Logical File Table (LFT) is located at the address specified in the 
JCLFT field of the JCB. CSP makes entries for $OUT, $IN, and any other 
datasets or aliases known to the job. The LFT entries point to the DSPs. 

SM-0040 5-1 



5.1.3 DATASET PARAMETER AREA (DSP) 

The Dataset Parameter Area (DSP) contains dataset status and information 
needed for I/O. It begins at the address specified in the JCDSP field of 
the JCB. Individual DSP addresses are specified in the LFT. CSP makes a 
DSP for $OUT, $IN, and any other data sets known to the job. 

5.1.4 DATASET NAME TABLE (DNT) 

The Dataset Name Table (DNT) is located in the JTDNT field of JTA. STP 
creates a DNT entry as a result of an F$DNT system call by CSP. All 
datasets known to the jobs have a DNT. Each DNT entry contains dataset 
status, information for identifying the dataset, and pointers to other 
tables. The information required for the system call is supplied by CSP 
from arguments in the JOB statement, ASSIGN statment, or from default 
lists. This information is put in the format of a Dataset Definition 
List (DDL) described with the F$DNT system call. 

5.2 THEORY OF OPERATION 

The CSP binary is loaded during system generation and is copied to the 
user field When the job is initiated. The job's control statements are 
passed from the first file of the dataset jobname which is on the disk, 
to CSP. Exits are by normal exchange sequence. CSP initiates the job, 
cracks control statements, processes some system verbs, advances the job 
step by step, processes errors, and ends the job. 

5.2.1 CSP LOAD PROCESS 

A copy of the CSP binary is appended at the end of STP during system 
generation. Following deadstart, this copy resides in the system 
resident memory with EXEC and STP. When the job is submitted, JSH 
allocates memory for the job, sets up the JTA, and causes the Exchange 
Processor to copy CSP into the user field at location (BA)+200S. 
Following loading, CSP is ready to process a control statement. Any user 
program called as a result of processing the control statement is loaded 
over CSP. When the user program ends, CSP is again loaded into the user 
field. Since CSP executes in the user field, it is subject to 
roll-in/roll-out procedures the same as a user program. 

CSP executes as a user program and shares the user exchange package, JTA, 
JCB, LFT, DSPs, and I/O buffers with user programs. CSP may, however, 
make some requests of STP not allowed by a user program. 

SM-0040 5-2 



5.2.2 ENTRY AND EXIT CONDITIONS 

CSP assumes that a control statement file for the job has been staged 
from the front-end processor to the CRAY-l disk as the first file of the 
dataset jobname. Control statements are passed by STP from the disk to 
CSP using the control statement buffer (CSB) of the JTA as the input 
buffer. 

Also, if it is the first time into esp, register S7 will contain a status 
from the job's input SDT entry. This status determines which log 
message, if any, is to be issued by CSP immediately following the 
processing of the JOB control statement. It may also cause CSP to 
terminate the job immediately. This status is used by recovery of rolled 
jobs to inform users of jobs that were rerun by system recovery or that 
could not be recovered and were also not rerunnable. 

Entry condition 

Every time CSP is loaded into the user field, STP passes exchange status 
to CSP in Sl as follows: 

o 
JST s11 

~~------------------------------------------------

Field Description 

JST Job status: 
1 Job initiation 
o Subsequent normal exchange 

(Sl) is tested to see if this is the first time into CSP. If it is, the 
JOB control statement must be the first control statement encountered. 

Exit conditions 

Exits from CSP are by the normal exchange sequence described in section 
4.4. The exit and re-entry conditions for the system calls are 
documented with the system task calls. Re-entry from most calls is to 
the instruction following the EX instruction. One exception, which is 
important for the functioning of CSP, is the F~TRM calls. 

When CSP makes an F$TRM call, it has prepared all output data sets for 
return to the front-end processor and passes no other values to STP. CSP 
is never again re-entered for that job. 

SM-0040 5-3 



5.2.3 BEGIN JOB 

CSP begins a job by first opening the user logfi1e and entering a 
headline message. Next, it processes the JOB control statement, which 
must be the first statement in the control statement file. The job 
parameter .. values are set according to the arguments in the JOB 
statement. LFT entries, DSPs, and I/O buffers are made for $OUT and 
$IN. Aliases FT05 and FT06 in the LFT are created for $IN and $OUT, 
respectively. 

Depending on the status that EXP passed to CSP in S7, a message may be 
written to the user and system logs, immediately following the JOB card. 
Sometimes this message represents a fatal error from Startup, in which 
case CSP terminates the job immediately. 

5.2.4 CRACK STATEMENTS 

CSP makes a request to STP to place one control statement in the JCCCI 
field of the JCB and in the logfi1e. CSP then cracks the statement into 
verb, separators, keywords, and values. It places the cracked statement 
in the JCCPR field of the JCB. The cracked format is described in the 
CRAY-OS Version 1 Reference Manual, publication SR-0011. In the cracked 
format, the parameter keywords and values are available for processing by 
CSP, by system-supplied programs, or by user-supplied programs. 

5.2.5 PROCESS STATEMENTS 

Every statement is a user's request for some action and has either a 
system verb or a dataset verb. System verbs are processed by the system 
(CSP and/or STP). The verbs processed in part by CSP are: 

* ASSIGN EXIT RELEASE SWITCH 
ACCESS CALL MODE REWIND 
ACQUIRE DELETE MODIFY RFL 
ADJUST DISPOSE PAUSE SAVE 

Dataset verbs are processed by loading a program into the user field and 
then executing it. 

SM-0040 5-4 



System calls 

In processing control statements, CSP makes frequent system calls to 
STP. These calls, which are described in section 4.4, are: 

F$DAT 

F$MSG 
FSTRM 
F$SSW 

Parameters 

FSOPN 
F$MEM 
FSDNT 
F$MDE 

FSGNS 
F$PDM 
FSGRN 
F$DIS 

FSAc'r 
F$CSW 
FSAQR 
F$ABT 

FSRLS 
F$SPS 
FSASD 
F$PRC 

Job processing requires assigning values to many parameters. Most have 
default values; some have a second default value called a keyed value. 
Other parameters have no default values and require that the user specify 
a value. The default values for a given control statement are contained 
in a default list. Also included in the list are keywords and the 
destination address for the final value. 

CSP sets the parameter values by using the statement keyword to locate 
the default list entry, taking the user-specified value if the keyword is 
equated to a value, taking the keyed value if the keyword stands alone, 
or taking the default value if the keyword does not appear in the control 
statement. The value is then entered at the address specified in the 
default list. If there is no default value or keyed value, the sign bit 
is set in these words. If the user does not specify a value, the sign 
bit remains and an error results. 

5.2.6 ADVANCE JOB 

A job step is the action taken as a result of a control statement. CSP 
advances the job, step by step, in the sequence specified by the control 
statement file. These steps are summarized under CSP Step Flow. 

5.2.7 ERROR EXIT PROCESSING 

As CSP advances the job, it alters the normal sequence from that of the 
control statement file if an error occurs. If an error is detected in 
the JOB statement, all other statements in the control file are ignored 
and the job is not processed. If the error occurs for any other control 
statement, CSP makes an ABORT system call. The Exchange Processor Task 
then performs the control statement processing. 

SM-0040 5-5 



Once an error is encountered, all statements are skipped until an EXIT 
control statement is found in the control statement file. If an EXIT is 
found, job processing resumes with the control statement after the EXIT 
statement; however, the statements after EXIT are processed only after an 
error; they are ignored if no error occurred. 

The job is ended if there is no EXIT control statement in the remainder 
of the control statement file. 

5.2.8 END JOB 

Every job goes through the end job procedure whether or not an error 
occurs. End of job and job accounting messages are placed in the 
logfile. $LOG and CSP make a job termination system call, F$TRM. The 
Exchange Processor Task completes job termination. $LOG is written to 
$OUT; $OUT is closed; all buffers are flushed; the name of the $OUT 
dataset is changed to the jobname; and the dataset is routed to the 
front-end processor. Finally, the user area is released to the system. 

5.3 CSP STEP FLOW 

The system processes jobs and errors as outlined below: 

General Step Flow 

1. Load CSP into the user field. 

2. Begin job with JOB statement; open logfile; enter headline and 
JOB statement into logfile; set job parameters; and set up $IN 
and $OUT DSPs and buffers. 

3. Issue any logfile message required by EXP status code. Terminate 
job immediately if status indicates fatal error. 

4. Get next statement and enter statement into logfile; if a CSP 
verb is encountered, process it; if not, attempt to locate a 
local dataset with the matching name. If one is found, load it 
into memory and execute it. If a local dataset exists with a 
matching name, attempt to locate a dataset in the System 
Directory with a matching name. If one is found, load and 
execute it. If no such dataset is in the System Directory, abort 
the job. When the system or user program ends, CSP is reloaded 
for the next statement. 

5. End job when next statement is EXIT or there are no more 
statements. 

SM-0040 5-6 



process 
CSP 

verbs 

load and 

program 

load and 
execute 

user supp 1 jed 
program 

error in 
processing 

JOB statement 

get next 
statement 

no 

Figure 5-1. CSP general flow diagram 

SM-0040 5-7 



Error Processing Step Flow 

1. If first control statement is not JOB or if there is any error in 
the JOB statement, enter error message into logfile and then end 
the job. 

2. If an error is detected while processing any other verb (CSP, 
system, or user), enter an error message into the logfile and 
abort the job. 

5.4 RECOVERY STATUS MESSAGES 

CSP may issue messages immediately following the JOB control statement. 
These messages are described in the CRAY-OS Message Manual, publication 
SR-0039. They are issued in response to a status code sent by EXP on the 
first entry into CSP. This status code acts as an index into a table of 
message control words. If the message control word indicates that the 
status is fatal, CSP ends the job immediately; if it indicates that the 
status is non-fatal, CSP continues normally. 

Message control word format 
01 40 

F/~I I 
Field 

F/NF 

Description 

Flag 
1 
o 

Fatal 
Nonfatal 

txt address 

63 

txt address 

Address of message text. The message must be terminated by 
a zero byte. 

SM-0040 5-8 



READERS COMMENT FORM 

CRAY-l cos EXEC/STP/CSP Internal Reference Manual SM-0040 

Your comments help us to improve the quality and usefulness of our publications. Please use the space provided 
below to share with us your comments. When possible, please give specific page and paragraph references. 

NAME ____________________________________ __ 

JOB TITLE _______________________ _ 

FIRM _________________________________ _ RESEARCH, INC. 
ADDRESS __________________________________ _ 

CITY ________________ STATE _____ ZIP ____ _ 



FOLD 

Attention: 
PUBLICATIONS 

FOLD 

111111 

BUSINESS REPLY CARD 
FIRST CLASS PERMIT NO 6184 5T PAUL. MN 

POSTAGE WILL BE PAID BY AI'lDRESSEE 

c, .'" a :-t'" 
RESEARCH. INC. 

1440 Northland Drive 
Mendota Heights, MN 55120 
U.S.A. 

, - - -"~ .. ,,- - -; 
r-,. .. ...• _-". '--.---"'l 
: NO POSTAGE 
i NECESSARY II 

L 
IF MAILED 

IN THE I 
UNI!!~_STATES ! 

.. 

-

I 
I 

----------------------------------------, 

STAPLE 



READERS COMMENT FORM 

CRAY-l cos EXEC/STP/CSP Internal Reference Manual SM-0040 

Your comments help us to improve the quality and usefulness of our publications. Please use the space provided 
below to share with us your comments. When possible, please give specific page and paragraph references. 

NAME ____________________________________ _ 

JOBTITLE ________________________________ __ 

FIRM ______________________________________ _ 
RESEARCH. INC. 

AD 0 RESS __________________________________ _ 

CITY _________________ STATE ______ ZIP ____ _ 



FOLD 

FOLD 

-----------------------

Attention: 
PUBLICATIONS 

111111 

BUSINESS REPLY CARD 
FIRST CLASS PERMIT NO 6184 ST PAUL. MN 

POST AGE WILL BE PAlO BY AI'10RESSEE 

C'l=li", a • ..." 
RESEARCH, INC. 

1440 Northland Drive 
Mendota Heights, MN 55120 
U.S.A. 

--- -----~ 
NO POSTAGE 
NECESSARY 

IF MAILED 
IN THE 

UNITED STATES 

----------------------------~-----------I 

STAPLE 

(") 
C 
-i 
)) 
F 
o 
Z 
G') 

-i 
:t 
Cii 
C 
Z 
m 




