
c:
RESEARCH J INC.

CRAY X-MP AND CRAY-1®
COMPUTER SYSTEMS

MACROS AND OPDEFS
REFERENCE MANUAL

SR-0012

Copyright© 1983, 1984 by CRAY RESEARCH, INC. This manual
or parts thereof may not be reproduced in any form without
permission of CRAY RESEARCH, INC.

C::li=ll~ ..."
RECORD OF REVISION RESEARCH. INC. PUBLICATION NUMBER SR-0012

Each time this manual is revised and reprinted, all chan~es issued against the previous version in the form of change packets are
incorporated into the new version and the new version IS assigned an alphabetic level. Between reprints, changes may be issued
against the current version in the form of change packets. Each change packet is assigned a numeric designator starting with
01 for the first change packet of each revision level. '

Every page changed by a reprint or by a change packet has the revision level and change packet number in the lower righthand
corner. Changes to part of a page are noted by a change bar along the margin of the page. A change bar in the margin opposite
the page number indicates that the entire page is new; a dot in the same place indicates that information has been moved from
one page to another, but has not otherwise changed.

Requests for copies of Cray Research, Inc. publications and comments about these publications should be directed to:

CRAY RESEARCH, INC.,
1440 Northland Drive,
Mendota Heights, Minnesota 55120

Revision Description

July, 1983 - Original printing.

01 November, 1983 - This revision supports the COS 1.13 release.
It updates information about the use and effects of several
macros, particularly in relation to new Cray multitasking
features. Besides several editorial changes, modifications to
this manual include information on ENDRPV's influence on
multitasked jobs. Under the positioning macros category of
logical I/O macros, POSITION has new features and parameters.
Moreover, two new positioning macros are included: SYNCH and
TAPEPOS. Two new operands are documented for the LDT
permanent dataset macro: CV and FD, used for handling foreign
datasets. Under COS-dependent macros, revisions have been
made to the description of system task opdefs GETDA and
GETNDA. A new dataset locking macro, DSPLOCK, has also been
added under COS-dependent macros.

A November, 1984 - This rewrite supports the 1.14 COS release.

SR-0012

All previous versions are obsolete. The manual has been
reorganized and is now divided into two parts: user aids and
system aids. The information on table and semaphore
manipulation previously grouped in one section has been
divided into four separate sections: normal table management,
complex table management, translate table construction macros,
and semaphore manipulation. Macro expansions are now grouped
in Appendix B. The following new macros have been added for
this printing: interjob communication (IJCOM), event recall
(ERECALL), user channel access (DRIVER), unconditionally
clearing a semaphore (WAIT$CLR), convert an integer string to
an octal string ($OCTMIC), and positioning for beginning (BOV)
and ending (EOV) of volumes.

ii A

PUBLICATION CHANGE NOTICE C=li=II~"""
RESEARCH. INC.

November, 1984

TITLE: Macros and Opdefs Reference Manual

PUBLICATION NO. SR-0012 REV. A

This rewrite supports the 1.14 COS release. All previous versions
are obsolete.

PREFACE

This manual includes macro and opdef instructions for use with the Cray
Operating System (COS). Macros are available for the Cray Assembly
Language (CAL) and are subject to the rules defined in the CAL Assembler
Version I Reference Manual, publication SR-OOOO.

The contents of this manual presuppose that you are familiar with the
CRAY-OS Version I Reference Manual, publication SR-OOII. Likewise, the
manual's contents assume that you have experience coding CAL as described
in the CAL Assembler Version I Reference Manual, CRI publication SR-OOOO.

CRI publications SR-OOI4, the Library Reference Manual and SM-0045, the
COS Tables Description Reference Manual contain reference information
needed by the macro and opdefs instructions user.

The contents of this manual are organized to reflect the two main
categories of macros and opdefs available to COS users:

Part I

Part 2

USER AIDS MACROS AND OPDEFS

This part includes a general description of macros and
their coding requirements. It also describes macros and
opdefs intended for all COS users.

SYSTEM AIDS MACROS AND OPDEFS

Macros and opdefs which are primarily meant for the use of
internal system users are described in this part.

Other CRI publications that contain macro instructions include:

SR-OOOO
SR-0073
SM-0040
SM-0046
SM-0048
SM-0047
SM-0052
SM-0062
SM-0070

SR-OOI2

CAL Assembler Version I Reference Manual
COS Simulator (CSIM) Reference Manual
COS EXEC/STP/CSP Internal Reference Manual
lOS Software Internal Reference Manual
IBM MVS Station Internal Reference Manual
CDC NOS Station Internal Reference Manual
CDC NOS/BE Station Internal Reference Manual
DEC VAX/VMS Internal Reference Manual
IBM VM Station Internal Reference Manual

iii A

CONTENTS

PREFACE .
PART ONE - USER AID MACROS AND OPDEFS

1.

2.

INTRODUCTION

CATAGORIES OF MACROS AND OPDEFS •
FORMAT

SYSTEM ACTION REQUEST MACROS ..4..
JOB CONTROL MACROS

ABORT - Abort program • • • • •
CONTRPV - Continue from reprieve
CSECHO - Send statement image to
DELAY - Delay job processing •
DUMPJOB - Dump job image • • • •
ENDP - End program • • • • • • •

.
condition •
the logfile •

ENDRPV - End reprieve processing •
GETMODE - Get mode setting •
GETSWS - Get switch setting • • • • •
IOAREA - Control user access to I/O area •
JTlME - Request accumulated CPU time for job •
MEMORY - Request memory • • • • • •
MESSAGE - Enter message in logfi1e •
MODE - Set operating mode •• • • • • • • •
NORERUN - Control detection of nonrerunnable functions • •
RECALL - Recall job upon I/O request completion
RERUN - Unconditionally set job rerunnabi1ity • • • • • •
ROLL - Roll a job • • • • • • • • •
SETRPV - Set job step reprieve • • • •
SWITCH - Set or clear sense switch • •
SYSID - Request system identification • • • •

DATASET MANAGEMENT • • • • • • •
CLOSE - Close dataset
DISPOSE - Dispose dataset
DSP - Create dataset parameter table •
DSPLOCK - Set or clear lock in dataset parameter area
OPEN - Open dataset •••••
RELEASE - Release dataset to system
SUBMIT - Submit job dataset • • • • •

SR-0012 v

iii

1-1

1-1
1-3

2-1

2-2
2-2
2-2
2-3
2-3
2-3
2-4
2-4
2-5
2-5
2-5
2-7
2-7
2-9
2-10
2-12
2-12
2-13
2-14
2-14
2-16
2-17
2-17
2-17
2-18
2-19
2-20
2-21
2-23
2-24

A

3.

TIME AND DATE REQUEST • • • • • •
DATE - Get current date
DTTS - Convert date and time to timestamp
JDATE - Return Julian date • • • • • • •
MTTS - Convert machine time to timestamp • •
TIME - Get current time •••••••• • •
TSDT - Convert timestamp to date and time
TSMT - Convert timestamp to machine time

DEBUGGING AIDS •• • • • • • • • • • • •
DUMP - Dump selected areas of memory

. .

LOADREGS - Restore all registers • • • • • • • •
SAVEREGS - Save all registers
SNAP - Take snapshot of selected registers •

INSFUN - INSTALLATION-DEFINED SUBFUNCTIONS

LOGICAL I/O MACROS

SYNCHRONOUS I/O • •
READ/READP - Read words
READC/READCP - Read characters • •
WRITE/WRITEP - Write words • •
WRITEC/WRITECP - Write characters • • • •
WRITED - Write end-of-data • • • • •
WRITEF - Write end-of-file • • • •

ASYNCHRONOUS I/O • • • • • • • • • • • • • • • •
BUFCHECK - Check buffered I/O completion
BUFEOD - Write end-of-data on dataset
BUFEOF - Write end-of-file on dataset
BUFIN/BUFINP - Transfer data from dataset to user
record area ••• • • • • • • • • • • •
BUFOUT/BUFOUTP - Transfer data from user record area
to dataset • • • • • • • • • • • • • • •

UNBLOCKED I/O • • • • • • • • • • • • • • • • • •
READU - Transfer data from dataset to user's area
WRITEU - Transfer data from user's area to dataset ••

DATASET POSITIONING • • • • • • • • • • • • • • •
ASETPOS - Asynchronously position dataset
BKSP - Backspace record • • • • • • • • • • • • • • •
BKSPF - Backspace file • • • • • • • • • • • • •
CLOSEV - Switch to the next volume • • •
GETPOS - Get current dataset position
POSITION - Position tape dataset • • • •
REWIND - Rewind dataset • • • • • • • •
SETPOS - Synchronously position dataset
SYNCH - Synchronize ••• • • • • • • •
TAPEPOS - Get tape dataset position
TAPES TAT . --. Obtain tape .. status f tomDSP •

USER TAPE VOLUME PROCESSING • • • • • • • • •
ENDSP - Special EOV and BOV processing is complete • •
SETSP - Request notification at end-of-tape volume •
STARTSP - Begin user EOV and BOV processing •••••

SR-0012 vi

2-24
2-24
2-25
2-25
2-26
2-26
2-27
2-28
2-28
2-28
2-30
2-31
2-32
2-33

3-1

3-1
3-1
3-3
3-5
3-6
3-7
3-8
3-8
3-9
3-10
3-10

3-11

3-12
3-13
3-14
3-15
3-16
3-16
3-17
3-18
3-19
3-20
3-21
3-23
3-24
3-25
3-26
3-28
3-28
3-29
3-29
3-30

A

4.

5.

6.

FORTRAN-LIKE I/O • • • •
FREAD - Read data
FWRITE - Write data
UFREAD - Unformatted read
UFWRITE - Unformatted write

SKOL-LIKE I/O • • • • • • •
INPUT - Read data
OUTPUT - Write data

PERMANENT DATASET MACROS

PERMANENT DATASET DEFINITION MACROS •
LDT - Create label definition table
PDD - Create permanent dataset definition table

PERMANENT DATASET MANAGEMENT MACROS • • • • • • •
ACCESS - Access permanent dataset
ADJUST - Adjust permanent dataset • • • • •
DELETE - Delete permanent dataset
PERMIT - Explicitly control access to dataset
SAVE - Save permanent dataset

CFT LINKAGE MACROS

ENTRY BLOCK DESIGN
DEFARG - Define calling parameters •
DEFB - Assign names to B registers •
DEFT - Assign names to T registers •
ALLOC - Allocate space for local temporary variables
MXCALLEN - Declare maximum calling list length •
PROGRAM - Declare program start point •••••••

SUBROUTINE LINKAGE •
CALL - Call a routine using call-by-address sequence •
CALLV - Call a routine using call-by-value sequence
ENTER - Generate CFT-callable entry point
EXIT - Terminate subroutine and return to caller •

ARGUMENT LIST INFORMATION • • • • • • • • • • • • •
ARGADD - Fetch argument address • • • • •
NUMARG - Get the number of arguments passed in •

LOCAL VARIABLE STORAGE • • • • • • •
LOAD - Get memory value •• • •
STORE - Store value into memory
VARADD - Get memory address

STRUCTURED PROGRAMMING MACROS • •

CONDITIONS
MACRO DESCRIPTIONS • • • •

$GOTO - Compute GOTO statement •

SR-0012 vii

3-31
3-31
3-33
3-34
3-35
3-36
3-37
3-40

4-1

4-1
4-1
4-4
4-10
4-10
4-11
4-12
4-12
4-12

5-1

5-1
5-2
5-2
5-4
5-5
5-6
5-6
5-7
5-7
5-9
5-11
5-16
5-19
5-19
5-21
5-22
5-22
5-25
5-27

6-1

6-1
6-4
6-4

A

7.

8.

9.

$IF, $ELSEIF, $ELSE, AND $ENDIF - Form conditional block. 6-5
$JUMP - Jump conditionally • • • • • • • • • • • • • 6-7
$LooP, $EXITLP, AND $ENDLOOP - Define program loop 6-8
$GOSUB - Call local subroutine • • • • • • • • • • • • •• 6-9
$RETURN - Return from local subroutine • • •
$SUBR - Declare local subroutine entry point

SEMAPHORE MANIPULATION MACROS •

DEFSM - DEFINE SEMAPHORE NAME • • • • •
GETSM - GET SEMAPHORE BIT STATUS
SETSM - SET SEMAPHORE WITHOUT WAITING
CLRSM - CLEAR SEMAPHORE WITHOUT WAITING • • •
TEST$SET - TEST SEMAPHORE AND WAIT TO SET
WAIT$CLR - CLEAR A SEMAPHORE BIT AFTER WAITING

CAL EXTENSION OPDEF AND MACROS

DIVIDE OPDEF - PROVIDE A PRECODED DIVIDE ROUTINE
PVEC MACRO - PASS ELEMENTS OF VECTOR REGISTER TO SCALAR ROUTINE
$CYCLES MACRO - GENERATE TIMING-RELATED SYMBOLS AND CONSTANTS •
$DECMIC MACRO - CONVERT AN INTEGER TO A MICRO STRING
$OCTMIC MACRO - CONVERT AN INTEGER TO AN OCTAL MICRO STRING
RECIPCON MACRO - GENTERATE FLOATING-POINT RECIPROCALS • • •

SUBSYSTEM SUPPORT MACROS

INTERJOB COMMUNICTION (IJCOM) • • • • •
USER CHANNEL ACCESS (DRIVER)
EVENT RECALL (ERECALL) ••••

6-10
6-11

7-1

7-2
7-3
7-4
7-4
7-5
7-5

8-1

8-1
8-2
8-4
8-4
8-5
8-6

9-1

9-1
9-3
9-4

FIGURE

1-1 Categories of macros and opdefs • • • • • • • • • • • • • • •• 1-1

TABLES

3-1
6-1
9-1
9-2
9-3

Information returned by the TAPEPOS macro • • • • • • •
Conditions for structured programming macros •••••
IJCOM functions • • • • • •
DRIVER functions ••••
ERECALL functions •

3-27
6-1
9-2
9-4
9-6

SR-0012 viii A

PART 'l'IiO - SYSTEM AID MACROS AND OPDEPS

1.

2.

3.

NORMAL TABLE MANIPULATION

TABLE DEFINITION MACROS • • • • • • • •
TABLE - Define table attributes
CAPTION - Declare table title ••••
ENDTABLE - End table definition • • • • •
FIELD - Name field within table • • • • •
FIELD@ - Equate a new field to a previously defined field
ENDFIELD - Define the end of a field • • • • • • • •
SUBFIELD - Name part of a field • • • • • • • • • • • • •
NEXTWORD - Advance specified number of words • •
REDEFINE - Redefine a specified number of words •••••
BUILD - Construct defined table • • • •

RUN-TIME FIELD MANAGEMENT OPDEFS ••• • • • • • •
Field retrieval •• • • • • • • • • •

GETF - Field retrieval (fast format) ••••
GET - Field retrieval (full format) • •
SGET - Field retrieval (quick format)

Field modification • • • • • • • • • • •
PUT - Field update (full format)
SPUT - Field update (quick format)
SET - Field update (quick format) • •

MISCELLANEOUS RUN-TIME FIELD OPDEFS • • • • • • • • • •
LOAD - Preload entry word (full format)
STORE - Update entry word (full format)
ASSIGN - Field offset change (full format)
LJF - Left shift field (quick format)
XFER - Copy field (fast format) •••••

COMPLEX TABLE MANIPULATION

TABLE DEFINITION
CTABLE - Define table attributes • • • • • • • • •
CENDTAB - End table definition • • • ~ • • • •
CFIELD - Name field within table • • • • •
CSBFIELD - Name part of a field • • • •
CNXTWORD - Advance specified number of 64-bit words
CREDEF - Redefine specified number of 64-bit words •

RUN-TIME TABLE MANAGEMENT • • • • • • • • • • •
CGET - Retrieve field contents • •
CPUT - Store data in a field • •

INDEXED TABLE CONSTRUCTION MACROS •

JUMP VECTORS
INDEXED RECORDS •

SR-0012 ix

1-1

1-1
1-2
1-4
1-5
1-5
1-7
1-8
1-8
1-9
1-11
1-12
1-15
1-17
1-18
1-19
1-20
1-21
1-21
1-22
1-24
1-25
1-25
1-26
1-26
1-27
1-28

2-1

2-1
2-2
2-3
2-3
2-5
2-7
2-8
2-9
2-9
2-10

3-1

3-2
3-3

A

4. COS-DEPENDANT MACROS AND OPDEFS

SYSTEM TASK OPDEFS
ERDEF - Generate error processing entries in the
Exchange Processor • • • • • • • • • •
GETDA - Obtain first DAT page address
GETNDA - Obtain next OAT page address

MESSAGE PROCESSOR MACRO - LOGMSGM •••
COS INTERNAL SUBROUTINE LINKAGE MACRO - $SUB

4-1

4-1

4-1
4-2
4-4
4-6
4-8

APPENDIX SECTION

A.

B.

C.

OUTMODED FEATURES •

BREG - ASSIGN NAMES TO B REGISTERS (OBSOLETE)
TREG - ASSIGN NAMES TO T REGISTERS (OBSOLETE)

TABLE MACRO EXPANSIONS

GET,si EXPANSIONS
GET,Ai EXPANSIONS
GETF,Si EXPANSIONS
GETF,Ai EXPANSIONS
PUT,si EXPANSIONS
PUT,Ai EXPANSIONS
pUT,val EXPANSIONS

CRAY X-MP MODEL 48 MACHINE INSTRUCTION MACROS •

A-I

A-I
A-2

B-1

B-1
B-2
B-4
B-5
B-7
B-8
B-11

C-1

MACHINE INSTRUCTIONS C-1
C-1 CLN - Cluster number instructions

Compress index instruction • • • • • C-2
Extended memory addressing • • • • • • C-3
Gather/scatter instructions •••• • • • • • C-4
Interprocessor interrupts ••••••••• C-5

CIPI - Clear interprocessor interrupt • • • • • C-5
SIPI - Set interprocessor interrupt • • • • • • C-5

IFM PSEUDO INSTRUCTION - TEST TARGET MACHINE ATTRIBUTES FOR
ASSEMBLY CONDITION C-7

INDEX

SR-0012 x A

PART 1

USER AID MACROS AND OPDEFS

INTRODUCTION

A set of macro and opdef instructions is included with the Cray Operating
System (COS). These macros and opdefs provide you with a convenient way
to handle tables and communicate with COS without need to be concerned
with implementation details.

The macro and opdef instructions described in this manual are available
only when you program in Cray Assembly Language (CAL). The assembler
processes these macros by means of macro definitions in the system text,
$SYSTXT. The exception is macros described under part 2, section 5,
COS-dependent macros, which are defined in COSTXT.

CATEGORIES OF MACROS AND OPDEFS

The two main categories of macros and opdefs share a basic instruction
format and are distributed as illustrated in figure 1-1.

Macros
And

Opdefs

I

User aids

System action request macros
Logical I/O macros
Permanent dataset macros
CFT linkage macros
Structured-programming macros
Semaphore manipulation macros
CAL extension opdef and macros

I
I

System aids

Normal table manipulation macros
and opdefs

Complex table manipulation macros
and opdefs

Indexed table construction macros
COS-dependent macros and opdefs

Figure 1-1. Categories of macros and opdefs

SR-0012
Part 1

1-1 A

1

The macros in part 1 of this manual, the user aids group, are meant to
meet the needs of external users. Examples of specific purposes of each
type of macros and opdefs described in this manual include:

• System action request macros: job control macros, dataset
management macros, time and date request macros, debugging aids,
installation-defined macros

• Logical I/O macros: synchronous, asynchronous I/O, unblocked I/O,
dataset positioning, user tape volume processing, Fortran-like
I/O, SKOL-like I/O

• Permanent dataset macros: permanent dataset definition, permanent
dataset management

• CFT linkage macros: entry block design, subroutine linkage,
argument list information, local variable storage

• Structured-programming macros: conditions, macro descriptions

• Semaphore management: define ~emaphore name, get semaphore bit
status, set semaphore without waiting, clear semaphore without
waiting, test semaphore and wait to set, clear semaphore bit after
waiting

• CAL extension opdef and macros: provide a precoded divide
routine, pass elements of a vector register to a scalar routine,
generate timing-related symbols and constants, convert an integer
to a decimal micro string, convert an integer to an octal micro
string, generate floating-point reciprocals

• Subsystem Support macros: interjob communication (IJCOM), user
channel access (DRIVER), event recall (ERECALL)

The macros in part 2 of this manual, the systems aids group, are
primarily intended for internal system users. Examples of specific
purposes of each type of macros and opdefs described in this manual
include:

• Normal table manipulation macros and opdefs: table definition
macros, run-time field management opdefs, miscellaneous run-time
field opdefs

• Complex table manipulation macros and opdefs: table definition
macros, run-time table management opdefs

• Indexed table construction: jump vectors, indexed records

• COS-dependent opdefs and macros: system task opdefs, message
processor macro, COS internal subroutine linkage macro

SR-OOl2
Part 1
~2 A

FORMAT

The format for a macro instruction is:

Location Result OPerand

name

Location field argument. Certain macros require an entry
in this field. For other macros, toc is an optional
symbolic program address and is labeled as optabet.
Macro labels that generate a table are assigned a word
address; macro labels that generate executable code are
assigned a parcel address.

name Name of macro as given in system text

a· 1.. Actual argument string corresponding to positional
parameter in prototype. Two consecutive commas indicate a
null string. positional parameters must preceed keyword
parameters.

f .=b .
J J

Keyword and actual argument; these entries can be
in any order. A space or comma following the equal sign
indicates a null string. A space also terminates the
parameter list scan unless you enclose the space in
parentheses.

SV={NYOES} Stacked items within braces signify that only one of
the listed items must be entered.

A parameter shown in all UPPERCASE letters must be coded literally as
shown. A parameter presented in itatics must be supplied with a value,
a symbol, an expression, or a register designator as indicated in the
text following the format for each macro.

A macro can be coded through column 72 of a line. It can be continued on
the next line by placing a comma in column 1 of the next line and
resuming the parameter list in column 2, with no intervening blanks
before column 73 of the first line. You can include blanks in a
parameter by enclosing the parameter in parentheses.

SR-0012

NOTE

Be careful when specifying AO and SO as macro
parameters. AO and SO become special syntax values in
certain CAL instructions, so be sure you know how the
macro you are using handles AO and SO references.

Part 1
1-3 A

SYSTEM ACTION REQUEST MACROS 2

The system action request macros are a subset of the system function
requests. You can request system actions for job control, dataset
management, timestamps, and debugging aids. Job control system actions,
for example, can be useful to you in specifying abnormal termination of a
job step, or to set a job step repriev~. Likewise, you can call upon the
system to execute dataset management actions such as closing, releasing
or disposing datasets.

Each macro generates an instruction sequence that is a call to the Cray
Operating System (COS). The octal function code value is stored in
register SO; Sl and S2 provide additional arguments for some requests.
The function is executed when the program exit instruction is executed.
Register SO will by convention normally have a zero value when the call
is completed if there were no errors. If there were errors, the job may
either return an error code, or it may abort without returning an error
code. Error codes are defined in the CRAY-OS Version 1 Reference Manual,
publication SR-OOll.

See the COS EXEC/STP/CSP Internal Reference Manual, publication SM-0040
for more information on system function codes.

The system action request macros are divided into the following main
classes:

• Job control

• Dataset management

• Time and date

• Debugging aids

• Installation defined macro

Unless specifically noted, all macros that generate executable code allow
labels. The label is assigned the parcel address of the first executable
instruction.

SR-0012
Part 1

2-1 A

JOB CONTROL MACROS

Several system action request macros allow you to set operating
characteristics and control job processing. These macros include the
following: ABORT, CONTRPV, CSECHO, DELAY, DUMPJOB, ENDP, ENDRPV,
GETMODE, GETSWS, IOAREA, JTIME, MEMORY, MESSAGE, MODE, NORERUN, RECALL,
RERUN, ROLL, SETRPV, SWITCH, SYSID.

ABORT - ABORT PROGRAM

The ABORT request provides for abnormal termination of the current job
step without terminating the entire job. Processing resumes with the job
control statement that follows the first EXIT statement after the aborted
job step. If no EXIT statement exists, the job is terminated.

Format:

I LocationlReSult

oplabel ABORT

I <>i1erana

oplabel Optional label

CONTRPV - CONTINUE FROM REPRIEVE CONDITION

The CONTRPV macro continues normal job processing from within a reprieve
subroutine. The program address to continue processing and all A, S, B,
T, V and VL register values are taken from the user-supplied Exchange
Package.

Format:

Location Result Operand

oplabel CONTRPV address

oplabel

address

SR-0012

Optional label

A symbol, or an A, S, or T register (except SO, Sl, S2),
that points to an Exchange Package in the your area that is
used to continue processing. This is a required parameter.

Part 1
2-2 A

CSECHO - SEND STATEMENT IMAGE TO THE LOGFILE

CSECHO enters the statement at the specified location into the system log
and user logfile. This macro does not echo the statement to the user
logfile if the statement originated as terminal input from an interactive
job. Echoing is also governed by the current ECHO state for JCL
statements. See the CRAY-OS Version 1 Reference Manual, publication
SR-OOll for more information about the ECHO control statement. The
location field is ignored at assembly time.

Format:

I Location I Result

CSECHO address

addpess A symbol, or an A, S, or T register (except SO, Sl, S2),
containing the base address of the statement image. This
is a required parameter.

DELAY - DELAY JOB PROCESSING

This function removes a job from execution and delays the job from
becoming a candidate for processing until the number of milliseconds
specified has elapsed.

Format:

Location Result Operand

oplabel DELAY addpess

oplabel Optional label

address A symbol or an A, S, or T register (not AO or SO)
containing the address of the word that contains the number
of milliseconds to delay

DUMPJOB - DUMP JOB IMAGE

The DUMPJOB request causes the current job image (including the JTA) to
be written to a specified local dataset. If the dataset already exists,
it is rewound before writing; otherwise, a new dataset is created for the

SR-0012
Part 1

2-3 A

dump. The dump is formatted as suitable for the DUMP utility. If the
dataset already exists and is a permanent dataset, the job must have
unique access and write permission.

Format:

Location Result OPerand

op7.,abe7., DUMPJOB DN=dn

op7.,abe7., Optional label

DN=dn A symbol or an A,S, or T register (not AO or SO)
containing the address of a dataset name. If dn is not
specified, $DUMP is assumed. If location dn is not
defined, the DUMPJOB macro generates the symbolic location.

ENDP - END PROGRAM

The ENDP request causes normal termination of the current program.
Processing resumes with the next job control statement if reprieve
processing is not enabled for normal job step termination. If reprieve
processing is enabled for normal job step termination, the user's
reprieve code is entered.

Format:

I Locationresult

ENDP

I Ooorand

ENDRPV - END REPRIEVE PROCESSING

The ENDRPV request returns to job step termination processing. If the
step completed normally, normal termination is completed. If the step
aborted, abort processing is resumed. During reprieve processing the
system also ensures that all other tasks which belong to the job are
excluded from execution when a job step is multi tasked. The ENDRPV
request ends that exclusion.

SR-0012
Part I

2-4 A

Format:

I LocationlReSult

optabet ENDRPV

I Operand

optabet Optional label

GETMODE - GET MODE SETTING

The GETMODE macro returns 1 to register Sl if the contents of parameter
JCEFI=l; all other values return O. GETMODE is obsolete and does not
return reliable values for multitasking jobs.

Format:

I Location I Result

GETMODE

lC¥rand

GETSWS - GET SWITCH SETTING

The GETSWS macro allows you to determine if a specified sense switch
number is set. GETSWS returns the setting of the specified switch number
in the Sl register. (Sl)=l if set; (Sl)=O if not set.

Format:

oplabet Optional label

n Number of the switch (1 through 6) to be tested. This
parameter is required.

IOAREA - CONTROL USER ACCESS TO I/O AREA

The IOAREA request instructs the system to allow or deny access to the
user's system managed I/O buffer and Dataset Parameter Table (DSP) areas.

SR-00l2
Part 1

2-5 A

See the subsection entitled dataset management macros, later in this
section, for a detailed description of the DSP macro.

The IOAREA request can also restore the status of the I/O buffer and DSP
areas to their initial status. Initially, the user I/O area is unlocked.

Format:

NOTE

The IOAREA macro does not protect I/O buffers and DSPs
that have been allocated within the user's heap space.
This applies only to those who use the stack-based
version of the COS libraries.

Location Result Operand

opLabeL IOAREA key,save

opLabeL

key

Optional label

One of the following is required:

LOCK Denies access to the user's I/O buffers and DSP
area. The limit address is set to the address
specified in JCDSP. (All user logical I/O calls
that require access to the DSP area or I/O
buffers involve an exchange to the operating
system before and after I/O processing.)

UNLOCK Gives full access to the user's I/O buffers and
DSP area. The limit address is set to the value
specified in JCFL. (Exchanges to the operating
system are not required for all logical I/O
calls.)

RESTORE Reserved for use by the FORTRAN library. If
UNLOCK was used previously to unlock the I/O
area, RESTORE locks the area.

save Symbolic address where lock status is to be stored;
required only if RESTORE is to used. The current status of
key is stored in I word.

SR-OOI2
Part 1

2-6 A

JTIME - REQUEST ACCUMULATED CPU TIME FOR JOB

JTIME requests that the accumulated CPU time for the job be returned to
the location specified in the macro call. The time in seconds is
expressed in floating-point form.

Format:

Location Result Ooerand

oplabel JTIME address

oplabel Optional label

address A symbol or an A, S, or T register (not AO or SO)
containing the address where the accumulated CPU time is
returned

MEMORY - REQUEST MEMORY

The MEMORY macro determines or changes a job's memory allocation and/or
mode of field length reduction.

The job is aborted if honoring the request results in a field length
greater than the maximum allowed the job. The maximum is the smaller of
the total number of words available to user jobs minus the job's JTA or
the amount determined by the MFL parameter on the JOB statement.

Format:

Location Result Ooerand

oplabel MEMORY (Jode,value

oplabel Optional label

(Jode (Jode is required and can be one of the following:

SR-0012

UC value specifies the number of words to be added
to (if value is positive) or subtracted from (if
value is negative) the end of the user code/data
area.

Memory is added to or deleted from the end of the
user code/data area by using the UC code. If the
user code/data area is expanded, the new memory is
initialized to an installation-defined value.

Part I
2-7 A

value

Examples:

Location
1

FL value specifies the number of words to which the
job's field length is to be changed. If you
specify FL without value, the new field length
is set to the maximum allowed the job.

You can change the job's field length with the FL
code. The field length is set to the larger of
the requested amount rounded up to the nearest
multiple of 512 decimal words or the smallest
multiple of 512 decimal words large enough to
contain the user code/data, LFT, nsp, and buffer
areas. The job is placed in user-managed field
length reduction for the duration of the job step.

USER The job is put in user-managed field length
reduction mode, and value is ignored. When you
specify USER code, the job is placed in user mode
until a subsequent request returns the job to
automatic mode.

AUTO The job is put in automatic field length reduction
mode, and value is ignored. When you specify
AUTO code, the job is placed in automatic mode and
the field length is reduced to the smallest
multiple of 512 decimal words that contain the
user code/data, LFT, nsp, and buffer areas.

MAXFL The maximum field length allowed the job is
determined and returned in value.

CURFL The current field length is determined and
returned in value.

TOTAL The total amount of unused space in the job is
determined and returned in value.

A value or an A, S, or T register (not AO or SO) that must
contain a value when code is Uc and may contain a value
when code is FL. The system returns a value when code is
CURFL, MAXFL, or TOTAL to the A, S, or T register specified
in the macro statement.

Result Operand Comment
10 20 35

MEMORY FL

The job's field length is set to the maximum allowed the job and the job
is placed in user mode for the duration of the job step.

SR-0012
Part 1

2-8 A

Location Result Operand Comment
1 10 20 35

MEMORY AUTO

The job's field length is reduced to a minimum and the job is placed in
automatic mode.

Location Result Operand Comment
1 10 20 35

MEMORY UC,-5
or

MEMORY UC S5 where (S5) = -5

The job's user code/data area is reduced by 5 words.

MESSAGE - ENTER MESSAGE IN LOGFILE

The MESSAGE macro causes the printable ASCII message at the location
specified in the macro call to be entered in the job and system logfile.
The message must be 1 through 80 characters, terminated by a zero byte.

Format:

Location Result Operand

oplabel MESSAGE addpess ,dest,msgelass, oveppide

oplabel Optional label

address A symbol or an A, S, or T register (except AO, SO, and S2)
containing the starting address of the ASCII message. This
parameter is required.

dest Destination for message; this parameter is optional and can
be any of the following:

SR-0012

U User logfile only; specified register=l.
S System logfile only; specified register=2.
US User and system logfiles; specified register=3.

This is the default if oplabel is unspecified.

Part 1
2-9 A

msgclass Assign the message to class msgclass. msgclass can
be a symbol or an A, S, or T register (except AO, SO, S2,
S3, or S4) containing the message class. See the ECHO
control statment in the CRAY-OS Version 1 Reference Manual,
publication SR-OOll, for the available message classes.
This parameter is optional.

override Message Suppression Override flag; if present, message is
to go to $LOG regardless of ECHO status. All messages
destined for system logfile are written to system log
regardless of ECHO status. This parameter is optional.

MODE - SET OPERATING MODE

The MODE macro allows you to set or clear mode flags in the job's
Exchange Package.

Format:

Location Result Op~rand

oplabel MODE FI=option,BT=option,EMA=option,
AVL=option,ORI=option

Parameters are in keyword form. You must specify at least one of the
following parameters:

oplabel Optional label

FI=option Floating interrupt mode. option can be:

ENABLE Enables floating-point error interrupts
DISABLE Disables floating-point error interrupts

The default enables floating-point error interrupts. If
FI=DISABLE is specified, floating-point errors are ignored.

BT=option Bidirectional transfer mode. option can be:

SR-0012

ENABLE Enables bidirectional memory transfers
DISABLE Disables bidirectional memory transfers

The default is an installation option that enables or
disables bidirectional memory transfers. If you specify
BT=DISABLE, block reads and writes are not performed
concurrently. The BT parameter is operational on CRAY X-MP
Computer Systems only.

Part 1
2-10 A

EMA=optiont

Extended memory addressing mode. option can be:

ENABLE Enables extended memory addressing
DISABLE Disables extended memory addressing

The default is an installation option, released as
EMA=ENABLE. This feature is available only on later model
CRAY X-MP Computer Systems. See the CRAY X-MP Series Model
48 Mainframe Reference Manual, publication HR-0097, for a
complete description of extended memory addressing.

AVL=optiont

Additional vector logical functional unit. option an be:

ENABLE Enables additional vector logical functional unit
DISABLE Disables additional vector logical functional unit

The default is an installation option, released as
AVL=DISABLE. This feature is available only on later model
CRAY X-MP Computer Systems. When enabled, the primary path
for vector logical operations is through the vector
multiply functional unit, and a secondary path is available
through the vector logical functional unit. When disabled,
only one path is available for vector logical operations.

ORI=Option
Operand range interrupt mode. option can be:

ENABLE Enables operand range interrupts
DISABLE Disables operand range interrupts

The default is an installation option, released as
ORI=ENABLE. This feature is available only on CRAY X-MP
Computer Systems. When enabled, operand range errors cause
a program interrupt; when disabled, operand range errors
are ignored by the hardware. This feature is also
available through the ERI (002300) and DRI (002400)
instructions, but executing these instructions does not
notify the operating system of the mode change.

t Referred to as enhanced addressing mode in the the CRAY X-MP Series
Model 48 Mainframe Reference Manual, publication HR-0097.

SR-0012
Part 1

2-11 A

NORERUN - CONTROL DETECTION OF NONRERUNNABLE FUNCTIONS

The NORERUN request instructs the system to begin or cease monitoring
user operations for nonrerunnable functions. This request determines
whether execution of such functions makes the job nonrerunnable without
affecting the current rerunnability of the job. The default value is
determined by the installation.

Format:

Location Result Operand

oplabel NORERUN option

oplabel Optional label

option One of the following is required:

papametep A symbol identifying a location or an A, S, or
T register (not AO or SO) containing the address of a
location containing either a 0 for ENABLE or a 1 for
DISABLE.

ENABLE Causes the system to begin (or continue) monitoring user
functions for nonrerunnable operations

DISABLE Causes the system to stop monitoring user operations for
nonrerunnable functions

A NORERUN macro does not affect the existing rerunnability of the job.
The functions that make a job nonrerunnable include:

• Writing to a permanent dataset,

• Saving, deleting, adjusting, or modifying a permanent dataset, and

• Acquiring a dataset from a front-end system.

RECALL - RECALL JOB UPON I/O REQUEST COMPLETION

The RECALL macro removes a job from processing_
a candidate for processing until the previously
the specified dataset is completed or partially
job is resumed when another physical request is
more then one block of data.

SR-0012
Part 1

2-12

The job does not become
issued I/O request for
completed: that is, the
completed, which may be

A

Format:

Location Result Operand

optabet RECALL address

optabet Optional label

address Symbolic address of the Open Dataset Name Table (ODN) or
Dataset Parameter Table (DSP) for this dataset or an A, S,
or T register containing the ODN or DSP address. See
description of OPEN macro under Dataset Management later in
this section.

RERUN - UNCONDITIONALLY SET JOB RERUNNABILITY

The RERUN request instructs the system to mark the job as either
rerunnable or nonrerunnable regardless of functions previously
performed. The future monitoring of nonrerunnable functions is not
affected.

Format:

Location Result Operand

optabet RERUN option

optabet Optional label

option One of the following is required:

parameter A symbol identifying a location or an A, S, or
T register containing the address of a location
that contains either a 0 for ENABLE or a 1 for
DISABLE.

ENABLE

DISABLE

SR-0012

Causes the system to mark the job rerunnable

Causes the system to mark the job nonrerunnable

Part I
2-13 A

ROLL - ROLL A JOB

A user protects a job against system interruption through the ROLL
request. Rolling a job causes it to be written to disk so that the job
then can be recovered in the event of a system interruption. Once a job
has been rolled, it remains recoverable unless it loses the recoverable
status. The following conditions can cause loss of recoverability:

• Random writing to any dataset

• Saving, deleting, adjusting, or modifying a permanent dataset

• Initial writing to a dataset

• Sequential writing to a dataset after any positioning operation,
such as REWIND OR BKSP

• Release any nonpermanent dataset

• Perform queued I/O on a dataset

Once a job loses its recoverable status, you can request another ROLL to
continue to protect the job against system interruption.

Format:

I LocationlResult

oplabel ROLL

loeerand

oplabel Optional label

SETRPV - SET JOB STEP REPRIEVE

The SETRPV request enables your current job step to maintain control when
a job step abort error condition occurs or upon normal termination of the
job step. Once you enable reprieve processing, it remains in effect
until the job step terminates, a selected error condition occurs, or you
disable reprieve processing. See ENDRPV at the beginning of this section
for information on terminating reprieve processing. For other CAL and
CFT techniques, see the Library Reference Manual, CRI publication number
SR-OOl4.

SR-OOl2
Part 1

2-14 A

If a selected error condition occurs, the job step is reprieved from the
normal or abnormal job step termination. The reprieve processing code
transfers control to a user specified address. This address must be
executable code to ensure proper execution.

I/O errors from $SYSLIB or $IOLIB are not readily recognizable or
correctable. At the $IOLIB level, I/O usually involves three steps:
initialization, transfer, and termination. I/O errors almost always
occur at the transfer stage. Because termination does not occur in this
case, any further attempts at initialization fail, thus hampering
correction. Any errors reported by the logical I/O routines look like
user-requested aborts.

Two types of error conditions are related to a job step: nonfatal and
fatal. You can reprieve nonfatal error conditions any number of times
per job step. Each fatal error condition is reprieved only once per job
step. The second occurrence of any fatal error condition results in an
immediate termination of the job step.

Format:

Location Result Operand

oplabel SETRPV entpy,xpsave,mask

oplabel Optional label

entpy Address where control is passed if an error condition for
which reprieve processing is selected occurs. This
parameter is required.

xpsave First word address (FWA) of the area where the system
copies the user's Exchange Package when control is passed
to the user's reprieve processing code. This parameter is
required.

mask A user-specified octal value indicating the classes of
conditions to enable reprieve processing. Any number of
classes is specified by combining the appropriate octal
mask values.

SR-0012

Class
(Octal mask value)

o
1
2
4

Reprievable condition

Disable user reprieve processing
Normal job step termination
User-requested abort
System abort

Part 1
2-15 A

Class
(Octal mask value)

lOt
20
40
100
200t
400t
1000
2000
4000t
10000

Reprievable condition

Operator DROP
Operator RERUN
Memory error
Floating-point error
Time limit
Mass storage limit exceeded
Memory limit exceeded
Link transfer error
Security violation
Interactive console 'attention'
interrupt

NOTE

The system disables reprieve processing once the user's
reprieve processing code gains control. To be
reprieved from future error conditions, you must issue
another SETRPV request. You cannot issue a SETRPV
request for second occurrences of errors defined as
fatal.

SWITCH - SET OR CLEAR SENSE SWITCH

The SWITCH macro allows you to turn ON (set) or turn OFF (clear)
pseudo sense switches. GETSWS returns the setting of the switch
number specified in the Sl register (see SETSWS at the end of
this section).

Format:

Location Result Operand

optabet SWITCH n,x

optabet Optional label

n Number of switch (1 through 6) to be set or cleared:
required parameter.

t Fatal error

SR-0012
Part 1

2-16 A

x Switch position; x is a required parameter and can be:

ON Switch n is turned on; set to 1.
OFF Switch n is turned off; set to o.

SYSID - REQUEST SYSTEM IDENTIFICATION

The identification of the current system is returned at the location
specified in the macro call. The identification is returned as 2 words;
the first contains the COS revision level in ASCII and the second
contains the COS assembly date in ASCII. For example:

COS x.xx

mm/dd/yy

Format:

op7,abe7, SYSID

op7,abe7, Optional label

address A symbol or an A, S, or T register (not AO or SO)
containing the address where the system ID is returned.
This parameter is required.

DATASET MANAGEMENT

The system action request macros involved with dataset management allow
you to open datasets, set up tables, and close, release, or dispose
datasets. System action request macros available include CLOSE, DISPOSE,
DSP, DSPLOCK, OPEN, RELEASE, and SUBMIT.

CLOSE - CLOSE DATASET

CLOSE releases the buffer, the Logical File Table (LFT) , and the Dataset
Parameter Table (DSP) for a COS-managed dataset. Disk space is not
released (as opposed to RELEASE which gives up the DNT as well) and the
dataset remains accessible to the job.

SR-0012
Part 1

2-17 A

The buffers are flushed, if all of the following conditions are true for
the dataset:

• The dataset is currently opened for output.

• No end-of-data is written.

• The dataset is being written sequentially.

• The dataset's DSP is managed by cos.

• The dataset has COS blocked dataset structure.

• The dataset is not memory resident.

Format:

oplabel CLOSE

oplabel Optional label

dn Dataset name. Symbolic address of the Open Dataset Name
Table (ODN) for this dataset or an A, S, or T (not AO or
SO) register containing the address of the ODN. See the
description of the OPEN macro later in this subsection.

DISPOSE - DISPOSE DATASET

The DISPOSE macro places a dataset in the appropriate queue as defined by
the PDD macro (see the CRAY-OS Version 1 Reference Manual, publication
SR-OOll for more information on the PDD macro).

Format:

Location Result Ooerand

oplabel DISPOSE pddtag

oplabel Optional label

pddtag Address of Permanent Dataset Definition (PDD) macro call

SR-0012
Part 1

2-18 A

DSP - CREATE DATASET PARAMETER TABLE

The DSP macro creates a table in the user field called the Dataset
Parameter Table (DSP). This table holds information concerning the
status of the named dataset and the location of the I/O buffer for the
dataset.

You should use the DSP macro only when you need the DSP and I/O buffer in
the user-managed memory portion of the job. Normally, a DSP and buffer
for a dataset are created in the upper end of the job's memory (above
JCHLMt) or in the user heap space, if you are using stack versions of
library routines, by execution of an OPEN macro.

When using the DSP macro, you must also set up a 2-word Open Dataset Name
Table (ODN). You must define ODN before using an OPEN macro specifying
this dataset. For more information on ODN, see the CRAY-OS Version I
Reference Manual, publication number SR-OOll.

The DSP macro is not executable; it merely sets up a DSP table with the
dataset name, first, in, out, and limit fields initialized. An OPEN
macro must be executed to make the DSP known to the system. See the
CRAY-OS Version 1 Reference Manual, publication SR-OOIl for a detailed
description of the DSP.

Format:

Location Result ODerand

dn

nb

DSP dn,fipst,nb

Symbolic address of DSP. If loa is not specified, a
symbol is defined. The default symbolic name is generated
by appending @ to the dataset name.

Dataset name

Address of the first word of the user-allocated buffer for
this dataset

Number of 5l2-word blocks in the dataset buffer

t For more information on JCHLM see the section on Job memory
management in the CRAY-OS Version 1 Reference Manual, publication
SR-OOll.

SR-0012
Part I

2-19 A

Example:

Location Result Operand Comment
1 10 20 ~

x DSP XFIL,BUF,l
ODN CON 'XFIL'L ASCII name

CON X Address of DSP

· · · OPEN ODN, I

Example (default):

Location Result Operand Comment
1 10 20 35

DSP XFIL,BUF,l
ODN CON 'XFIL'L ASCII name

CON XFIL@ Address of DSP

· · · OPEN ODN, I

DSPLOCK - SET OR CLEAR LOCK IN DATASET PARAMETER AREA

The DSPLOCK macro is used by I/O routines to ensure single-threaded I/O
on a dataset while multitasking. The Dataset Parameter Table (DSP) must
be locked on entry to a routine, and unlocked on exit from a routine.

Format:

Location Result Operand

optabet DSPLOCK aation,NAME=name,DSP=addr

optabet

aation

SR-0012

Optional label

This parameter is required and specifies the action to be
taken. aation can be one of the following:

SET Sets the DSP lock
CLEAR Clears the DSP lock
FLUSH Unconditionally clears the DSP lock on an error

condition

Part 1
2-20 A

NAME=name Name of the calling routine

Dsp=addr An A register which contains the address of the DSP.

OPEN - OPEN DATASET

The OPEN macro prepares a dataset for processing. When an OPEN macro is
executed, the dataset is made known to the system if it is not an
existing dataset. I/O tables are created in the upper end of the job's
memory or in the heap, including the Dataset Parameter Table (DSP) and
the Logical File Table (LFT). An I/O buffer is created if the dataset is
COS blocked format, but not for an unblocked dataset. The address or
offset of the DSP table is returned to the user.

An OPEN macro can be executed on a dataset that is already open.

Format:

Location Result Ooerand

optabet OPEN dn,pd,tdt,u

optabet Optional label. If optabet is not specified, the address
of the dataset name is generated.

dn Dataset name. The OPEN macro generates a 2-word Open
Dataset Name Table (ODN) the first time an OPEN of the
dataset is encountered, unless you previously generated an
ODN for the dataset. The ODN is illustrated in CRAY-OS
Version 1 Reference Manual, publication SR-OOll. The dn
becomes the symbolic address of the ODN and is used in all
references to the dataset in other I/O requests.

SR-0012

As an alternative, dn can be an A, S, or T register (not
AO, SO, or S2) containing the ODN address.

Processing direction. Can be any of the following:

I Dataset opened for input
o Dataset opened for output
10 Dataset opened for input/output (default)

pd can alternatively be an S or T register (but not an A
register) with bit 0 set for input and/or bit 1 set for
output.

Part 1
2-21 A

ldt Label Definition Table (LDT); an optional parameter that is
the name of a previously defined LDT for tape processing.
The pointer to this field is placed in the ODN built by the
macro. The parameter applies to tape datasets only. See
part 1, section 4 of this manual for a complete description
of the LDT macro.

u Unblocked. If the u parameter is specified, the DSP has
DPUDS set and no buffer is allocated. The default is
blocked.

The u parameter is used only as a keyword; no registers
are allowed.

If the DSP pointer in the ODN is negative or 0, the OPEN call returns the
negative DSP offset in the DSP field of the ODN. The actual DSP address
is equal to (JCDSP) - negative DSP offset, where (JCDSP) is the value of
the JCDSP field of the Job Communication Block. For more information on
JCDSP, see the CRAY-OS Version 1 Reference Manual, publication SR-OOll.
The negative DSP offset of a dataset does not change when a job's field
length changes or as additional datasets are opened or closed.

On the other hand, if the DSP pointer in the ODN is greater than 0, OPEN
assumes the DSP field contains the address of your own DSP in the user
field between the Job Communication Block and JCHLM (the value in the
JCHLM field of the JCB). The system uses the DSP indicated and does not
allocate an additional DSP or buffer in the job's I/O table area. The
DSP you indicate must already contain the buffer pointers and must
indicate a buffer also within the user field. If the dataset is memory
resident, this buffer should be large enough to contain the entire
dataset plus one block.

Examples:

1. In this example, OPEN generates an ODN for dataset DSETONE unless one
has been previously generated for that dataset. The dataset is
opened for input/output processing.

Location Result Operand Comment
1 10 20 35

OPEN DSETONE,IO

2. In this example, the address of the ODN generated by this OPEN call
is passed through register Sl; S2 contains processing direction
information.

SR-0012
Part 1

2-22 A

Location Result Operand Comment
1 10 20 35

OPEN Sl,S2

3. In this example, the dataset ATAPE is opened for output with LABELX
as the Label Definition Table. An ODN for ATAPE has not yet been
defined.

Location Result Operand Comment
1 10 20 35

OPEN ATAPE,O,LABELX

RELEASE - RELEASE DATASET TO SYSTEM

The RELEASE macro causes the dataset whose Dataset Parameter Table (DSP)
address is at the location specified in the macro call to be returned to
the system. The dataset is closed and the Dataset Name Table (DNT) entry
is released. Additional system action depends on the type of dataset.
Output datasets are routed to a front end. If a dataset is not a
permanent dataset, the disk space associated with that dataset is
returned to the system. The dataset is no longer accessible to the job.

Format:

Location Result Operand

oplabel RELEASE addpess,HOLD

oplabel Optional label

addpess Symbolic address of the Open Dataset Name Table (ODN) or
Dataset Parameter Table (DSP) for this dataset or an A, S,
or T register (not AO or SO) containing the ODN or DSP
address. See description of OPEN and DSP macros in this
section. This parameter is required.

HOLD Hold generic device. If you specify HOLD, the generic
system resource (the peripheral) associated with this
dataset is not returned to the system pool. This parmeter
is optional.

SR-0012
Part 1

2-23 A

SUBMIT - SUBMIT JOB DATASET

The SUBMIT macro places a job dataset into the Cray system job input
queue.

Format:

Location Result Operand

oplabel SUBMIT pddtag

oplabel Optional label

pddtag Address of the Permanent Dataset Definition Table (PDD).
This parameter is required.

TIME AND DATE REQUEST

Several system action request macros inform you of the current time,
date, or the Julian date. These include DATE, DTTS, JDATE, MTTS, TIME,
TSDT, and TSMT.

DATE - GET CURRENT DATE

DATE returns the current date in ASCII at the location specified in the
macro call. The format of the date is as follows:

0 8 16 24 32 40 48 56

I m I m I / I d I d I / I y I y

Your site can change the order of the information, returned by the DATE
macro, with an installation parameter. If the European format is used,
information is returned as day, month, and year.

Format:

Location Result Ooerand

oplabel DATE

oplabel Optional label

SR-0012
Part 1

2-24 A

address A symbol or an A, S, or T register containing the
destination address of the current date

DTTS - CONVERT DATE AND TIME TO TIMESTAMP

DTTS converts the ASCII date and time into the corresponding system
timestamp.

A timestamp is a I-word encoding of the date and time expressed in units
of nanoseconds/l.024. When used to express a date and time, a timestamp
is the number of timestamp units past the system base date
(1 January 1973) and the date/time to be encoded. See subroutines MTTS,
TSMT, TSDT).

Registers Sl and S2 on entry hold the ASCII date and time, respectively,
as follows:

o 8

:: I : I
m

h

Format:

I Location I Result

DTTS

I Operand

The location field of the DTTS macro is completely ignored when the macro
is expanded.

On exit from the macro, S1 is the timestamp corresponding to the
requested date/time. The resulting timestamp can vary from one mainframe
hardware type to another. See the CRAY-OS Version 1 Reference Manual,
publication SR-0011 for more information about the timestamp.

JDATE - RETURN JULIAN DATE

JDATE returns the current Julian date in ASCII at the location specified
in the macro call. The format of the date is as follows:

o 8 16 24

I y I y I d I d

SR-0012

32

I d

Part 1
2-25

40 48 56

A

Five ASCII characters are left-justified with blank fill in the reply
word. The first two characters are the year, the next three are the
number of the day in the year.

Format:

Location Result Ooerand

oplabel JDATE address

oplabel Optional label

address A symbol or an A, S, or T register (not AO or SO)
containing the destination address of the current Julian
date

MTTS - CONVERT MACHINE TIME TO TIMESTAMP

MTTS converts a machine time (real-time, RT, register value) into the
corresponding system timestamp (a I-word encoding of the date and time).
Register Sl contains the machine time on entry.

Format:

I Location I Result

MTTS

I Operand

The location field of the DTTS macro is completely ignored when the macro
is expanded.

Sl contains the timestamp on exit from the macro. The resulting
timestamp can vary from one mainframe hardware type to another.

TIME - GET CURRENT TIME

TIME returns the current time in ASCII at the location you specify in the
macro call. The format of the time is as follows:

o 8 16 24

I h I h I m

SR-0012

32

I m

Part 1
2-26

40 48 56

I s I s

A

Format:

Location Result Operand

optabet TIME address

optabet Optional label

address A symbol or an A, S, or T register containing the
destination address of the current time. This parameter is
required.

TSDT - CONVERT TIMESTAMP TO DATE AND TIME

TSDT converts a timestamp (I-word encoding of a date and time) to the
corresponding date and time expressed in ASCII.

Register Sl on entry holds the timestamp. On exit, registers are set as
follows (Sl holds the ASCII date, S2 holds the ASCII time, and S3 holds
the ASCII fractional sectionds):

o 8 16 24 32 40 48 56

m m / d d / y y Sl

S2
h h . m m . s s . .

s s s S
#to #to #to . S3

The information in register S3 is left-justified and blank filled (#to).

Format:

I LocationlResult

TSDT

The location field of the TSDT macro is completely ignored when the macro
is expanded. The source timestamp can vary from one mainframe hardware
type to another.

SR-0012
Part 1

2-27 A

TSMT - CONVERT TIMESTAMP TO MACHINE TIME

TSMT converts a timestamp (I-word encoding of date and time) to the
corresponding machine time (real-time, RT, clock value). Register Sl on
entry contains the timestamp.

Format:

I LocationlResult

TSMT

I~ralld

The location field of the TSMT macro is completely ignored when the macro
is expanded.

Sl contains the machine time on exit from the macro. The resulting
timestamp can vary from one mainframe hardware type to another.

DEBUGGING AIDS

The system action request macros in this category permit you to
selectively read or write information during a program run to aid in the
debugging process. Included are the DUMP, LOADREGS, SAVEREGS, and SNAP
macros. You can use the label DEBUG for conditional execution of DUMP
and SNAP.

DUMP - DUMP SELECTED AREAS OF MEMORY

The DUMP macro performs a formatted dump of selected memory areas.

The macro generates a minimal amount of inline code; the rest of the
logic is in a subroutine created by the macro and loaded into the user
area.

The DEBUG option allows conditional execution of the DUMP macro. If the
label on the DUMP statement is DEBUG, no label is defined for the
generated code. Instead, unless the symbol DEBUG has been set to 1 by a
previously assembled SET (see the CRAY-oS Version 1 Reference Manual,
publication SR-OOll) or equate control statement, code generation within
the macro is suppressed entirely.

SR-0012
Part 1

2-28 A

Format:

Location Result Operand

oplabel OUMP (list),UNIT=unit

oplabel Optional label

list A list of memory ranges separated by commas. The list need
not be enclosed in parentheses if it contains only one
range. No limit is placed on the number of ranges in the

SR-0012

list. Within the list, null elements are ignored, so that
each memory range can be preceded and followed by blanks.
However, a memory range cannot contain embedded blanks.
Each non-null range must have one of the following forms:

f .. t

f

Oump memory from address f to address t-l

Oump memory word f

fen) Oump n words starting at memory address f

f, l, or n can be numbers, labels, register names,
or a combination of labels and numbers. Indirect
addressing, using the at sign (@) as a prefix, is
allowed. For numbers, the default base is decimal unless
a BASE 0 (octal) or BASE M (mixed) is in effect. The
default for BASE 0 and BASE M is octal.

Examples:

(0'200 •• 0'400)

(0(0'128»

(R.Al(R.A2»

(@R.Al(@R.A2»

(R.Al •• R.A2)

Words 2008 through 3778

Words 0 through 1778 (the Job
Communication Block)

The starting address is given in A11
the word count is given in A2.

The starting address is given in the
memory word addressed by A11 the word
count is in the memory word addressed
by A2.

The address given in Al through the
address immediately before the address
given in A2

Part 1
2-29 A

(@R.AI •• @R.A2)

(TABLE(R.A.BU»

(TTT-I(@R.B77»

(@PTR(@LTH»

(@P •• @Q,@A(@L»

The address given in the memory word
addressed by Al through the address
immediately before the address given in
the memory word addressed by A2

The first n words of TABLE, where n
is held in register A.BU

The first n words following and
including TTT-I, where n is held in
the memory addressed by register B77

The word addressed by PTR is the start,
and the word count is in the word
addressed by LTH

Two ranges are dumped. The first range
is from the word addressed by P through
the word immediately before the word
addressed by Q, the second begins at
the word addressed by A and includes
the number of words given by the value
contained in the memory cell addressed
by L. Only the low-order 24 bits in P,
Q, A, and L are considered in
determining the addresses.

UNIT=unit A local dataset name, an expression containing only
previously defined terms that resolves into a FORTRAN unit
number, or the previously defined label of a word
containing either a local dataset name or a FORTRAN unit
number. The default is $OUT.

Return conditions:
All registers are saved and restored, including the vector registers
and VL.

LOADREGS - RESTORE ALL REGISTERS

The LOADREGS macro restores the A, B, S, T, V, VL, and VM registers that
were saved by a previously executed SAVEREGS macro.

Format:

Location Result

optabet LOADREGS

SR-0012

Operand

Part I
2-30 A

oplabel

~egion

Optional label

The region used previously in a corresponding SAVEREGS.
If no value is specified, the default is QZH44HZQ. If the
region is defined, it must be an area containing 0'1230
words~ if it is not defined, the LOADREGS macro defines
it. If LOADREGS requests are nested, each request must
specify a different region. However, no system checks
are made, and it remains the user's responsibility.

INLINE={~S}

Inline Code flag. If you omit INLINE, AO and BO are
restored from words 0'1200 and 0'1000 of the region. If
INLINE=YES, both AO and BO are lost. If INLINE=NO, BO is
restored from 0'1223, but AO is lost.

SAVEREGS - SAVE ALL REGISTERS

The SAVEREGS macro saves all of the A, B, S, T, V, VL, and VM registers.
Additionally, it sets up words containing VL+l, P/4, parcel(P), BO/4, and
parcel (BO) so that SNAP can handle the VL=VL+l option and so that SNAP,
DUMP, and OUTPUT can output P and BO in parcel-address format. (Here,
parcel (x) means the 2 low-order bits of x.)

The SAVEREGS macro sets a hardware semaphore bit. You must specify a
LOADREGS for every SAVEREGS to clear the semaphore bit set by SAVEREGS.
Since other macros, SNAP for example, call SAVEREGS, never use an
unpaired SAVEREGS with an unspecified region. SAVEREGS can be nested
only if different regions are specified.

Format:

Location Result Operand

oplabel SAVEREGS [region],INLINE={~S}

oplabel

region

SR-0012

Optional label

Label of the first word of a region where registers are to
be saved. The default is QZH44HZQ. When you define the
region, it must be an area containing 0'1230 words~ if
you do not define ~egion, the SAVEREGS macro defines it.
If SAVEREGS requests are nested, each request must specify
a different ~egion.

Part 1
2-31 A

INLINE={~~S}

Inline Code flag. If you omit INLINE, AO is saved in word
0'1200 and BO is saved in word 0'1000 of the region. If
INLINE=YES, both AO and BO are lost. If INLINE=NO, BO is
saved in word 0'1223 of the region and AO is lost.

SNAP - TAKE SNAPSHOT OF SELECTED REGISTERS

The SNAP macro writes the contents of selected registers under the
control of FORTRAN-style formats which you have selected.

The macro generates a minimal amount of inline codeJ the rest of the
logic is in a subroutine called by the macro.

The DEBUG option allows conditional execution of the SNAP macro. If the
label on the SNAP statement is DEBUG, no label is defined for the
generated code. Instead, code generation within the macro is suppressed
entirely unless a previously assembled SET or equate statement has set I
to the symbol DEBUG.

Format:

Location Result Operand

op~abe~ SNAP (~i8t),UNIT=unit,AF=fmt,BF=fmt,
sF=fmt,TF=fmt,VF=fmt,VL=n

op~abe~

~i8t

SR-0012

Optional label

A list of registers and register groups separated by
commas. You do not need to enclose the list in parentheses
if it contains only one element. Within the list, null
elements are ignored so that each element can be preceded
and followed by blanks. However, an element cannot contain
embedded blanks. Each element of the list that is not null
must have one of the following forms:

R Writes the contents of all R registers (where
R is A, B, S, T, or V)

Writes the contents of register Ri (for
example, A7)

Part 1
2-32 A

R· . or Ri-R.
~-J JWrites the contents of registers Ri

through Rj (for example, AI-A4 or AI-4).

Each i or j must be either an octal number
or a previously defined register designator
(for example, B.SEP).

No limit is placed on the number of elements in the list or
to the number of occurrences of a particular register. If
the list is empty, no output is produced except for the
usual header. The header, which is always produced, shows
the contents of P and BO as parcel addresses.

UNIT=unit A local dataset name, an expression containing only
previously defined terms that resolves into a FORTRAN unit
number, or the previously defined label of a word
containing either a local dataset name or a FORTRAN unit
number. The default is $OUT.

AF=fmt

BF=fmt

SF=fmt

TF=fmt

VF=fmt

VL=n

A register format in decimal1 the default is (8(3X,08».

B register format in decimal1 the default is (8(3X,08».

S register format in decimal1 the default is (4025).

T register format in decimal1 the default is (4025).

v register format in decimal1 the default is (4025)

Number of V register elements to be snapped. The default
is VL=VL. The caller can also specify VL=VL+I or an
absolute expression. If VL is 0 or 64, then VL=VL+I means
64 rather than 65. The default base of n is decimal
unless a BASE ° (octal) or BASE M (mixed) is in effect. If
BASE 0 or BASE M is specified the default is octal.

Return conditions:
All registers are preserved (saved and restored), including the
vector registers and VL.

INSFUN - INSTALLATION-DEFINED SUBFUNCTIONS

The INSFUN macro allows you to call anyone of the installation-defined
subfunctions defined in a subfunction table. Control is transferred to
the indicated subfunction.

SR-OOI2
Part I

2-33 A

Format:

NOTE

Cray Research, Inc., does not support the installation­
defined subfunctions which INSFUN calls.

\ Location\Result

I NSFUN

I Operand

n,p

n

p

A symbol or an A, S, or T register (not AO or SO)
containing the subfunction code. This parameter is
required.

An optional symbol, A, S, or T register (not S2),
containing the address of a parameter list to be passed to
the installation-dependent subfunction. This parameter is
optional.

The location field of the INSFUN macro is completely ignored when the
macro is expanded.

You should see your local site programmers for definitions of available
functions.

SR-00l2
Part 1

2-34 A

LOGICAL I/O MACROS

The logical I/O macros generate calls to I/O subroutines to be loaded
from the subroutine library and executed as part of the user program.
The OPEN macro must have opened the datasets referenced by these logical
I/O macros.

The categories of logical I/O macros are: synchronous I/O, asynchronous
(buffered) I/O, unblocked I/O, dataset positioning, user tape volume
processing, FORTRAN-like I/O, and SKOL-like I/O.

SYNCHRONOUS I/O

with the synchronous read/write logical I/O macros you can read and write
words or characters, as well as write an end of file (EOF) or an end of
data (EOD). Control does not return to the user program until all
requested data has been moved to or from the dataset buffer.

Upon termination of the read/write function, register contents are
modified as detailed under the description of each macro. You cannot
assume that A or S registers, other than those specifically mentioned,
have any meaningful contents. Futhermore, you cannot assume that the
registers will change values which they had before the function request.
Registers BO, B70 through B77, and T70 through T77 can be changed, as
well as VL, VM, VO, and VI. Other B, T, and V registers are not changed.

Synchronous read/write logical I/O macros include READ/READP,
READC/READCP, WRITE/WRITEP/ WRITEC/WRITECP, WRITED, and WRITEF.

READ/READP - READ WORDS

The READ and READP macros transfer words of data that are resident on a
dataset into the user's data area. Blank compression characters are not
recognized, nor are any compressed blanks expanded with these macros (see
CRAY-OS Version 1 Reference Manual, publication SR-OOll).

The READ macro generates a return jump to the $RWDR subroutine, thus
causing one record to be processed at a time. Each macro call causes the
dataset to be positioned after the end of record (EOR) that terminated
the read.

SR-0012
Part 1

3-1 A

3

The READP macro generates a return jump to the $RWDP subroutine. If
requested, words are transmitted to the user's data area. Each call is
terminated by reaching an EOR or by satisfying the word count, whichever
occurs first. If you specify READP with a word count of 0, an EOR is
forced after a series of READP calls.

No blank decompression is performed.

When EOR is reached as a result of reading in word mode, the unused bit
count from the EOR is placed in the field DPBUBC of the Dataset Parameter
Table (DSP). Also, the unused bits are zeroed in the user's record area.

Unrecovered data errors do not abort the job; instead, control is
returned to the caller. The caller can use the good data read, (A2)
through (A4)-1, and then abort. The caller can also skip or accept the
bad data. If the caller does nothing, the job aborts when the next read
request occurs. See the Library Reference Manual, CRI publication
SR-0014, for detailed descriptions of SKIPBAD and ACPTBAD.

When a READ or READP macro refers to a memory-resident dataset, the first
such reference causes the dataset to be loaded into the buffer from mass
storage, if it exists there. If it does not exist on mass storage, the
system I/O routines set the DSP so that it appears that the buffer is
filled with data and no attempt is made to read data. Note that the I/O
routines cannot distinguish between the cases (1) an existing dataset is
declared memory resident, read in, modified in the buffer, rewound, and
read again, and (2) no modification of data in the buffer occurs. In
either case, the first read following a REWIND reads the unmodified data
from disk. If an existing dataset is declared memory resident and is to
be modified and reread, use backspace positioning macros rather than
REWIND to reposition to beginning-of-data to preserve the modifications.
This is necessary only when a memory-resident dataset already exists on
mass storage.

Formats:

Location Result Operand

oplabel READ dn,uda,et

~Qcation Rasult Operand

oplabel READP dn,uda,et

oplabel Optional label

SR-0012
Part 1

3-2 A

dn Dataset name (symbolic address of the Open Dataset Name
Table (ODN) for this dataset), or an A, B, or S register
(not AO or SO) containing the Dataset Parameter Table (DSP)
address or negative DSP offset relative to JCDSP

uda User data area first word address (FWA) or an A, B, or S
register (not AI) containing the uda address

at Word count or an A, B, or S register (not Al or A2)
containing the number of words to be read

Return conditions (registers):
(AI) DSP address

(A2) FWA of user data area (uda)

(A3) Requested word count (at)

(A4) Actual LWA+l of data transferred to uda. (A4)=(A2) if a null
record was read.

(SO) Condition of termination:

< 0 EOR encountered
= 0 Null record, EOF, EOD, or unrecovered data error

encountered
> 0 User-specified count (A3) exhausted before

EOR is encountered. For partial read (READP) if EOR and
end of count coincide, EOR takes precedence.

(Sl) Error status:

= 0 No errors encountered
= 1 Unrecovered data error encountered

(S6) Contents of the if (SO)~O and (Sl)=O, otherwise, meaningless.
Note that for READ/READP, the unused bit count can also be
obtained from S6 if (SO)<O.

READC/READCP - READ CHARACTERS

The READC and READCP macros transfer character data from a dataset into
the user data area.

The READC macro generates a return jump to the $RCHR subroutine, thus
causing one record to be processed at a time. Each macro call causes the
dataset to be positioned after the EOR that terminated the read.

SR-0012
Part 1

3-3 A

The READCP macro generates a return jump to the $RCHP subroutine.
Characters are transferred to the user data area as requested by the
user. Each call is terminated by reaching an EOR or by satisfying the
character count, whichever occurs first.

One character from the record is placed, right-adjusted, zero-filled, in
each word of the data area. Blank-compressed fields are recognized and
expanded, one blank per word.

Unrecovered data errors do not abort the job. Instead, control is
returned to the caller. The caller can use the good data read, (A2)
through (A4)-I, and then abort. You can also skip or accept the bad
data. If the caller does nothing, the job aborts when the next read
request occurs. See the Library Reference Manual, CRI publication
SR-0014, for detailed descriptions of SKIPBAD and ACPTBAD.

Memory-resident datasets are treated as described for READ/READP macro.

Formats:

oplabel READC

Igperand

Location Result Operand

oplabel READCP dn,uda,ot

oplabel Optional label

dn Dataset name (symbolic address of the Open Dataset Name
Table (ODN) for this dataset), or an A, B, or S register
(not AO or SO) containing the Dataset Parameter Table (DSP)
address or negative DSP offset

uda User data area first word address (FWA) or an A, B, or S
register (not AI) containing the uda address

ot Character count or an A, B, or S register (not Al or A2)
containing the character count

Return conditions:
Same as for READ/READP, except that the requested count (A3) and
data-transfer length (A4-A2) is in characters rather than words.
Unused bits are not meaningful for READC/READCP since the unused
characters are reflected in the number of characters transferred
«A4)-(A2».

SR-0012
Part I

3-4 A

WRITE/WRITEP - WRITE WORDS

The WRITE macro generates a return jump to either the $WWDR or $WWDS
subroutine, depending on whether an unused bit count is specified. Words
are written from the user's data area. An EOR is written following each
WRITE. The EOR indicates how many bits in the last words are unused, if
any. No blank compression is performed. When a WRITE macro has written
an EOR, the user program cannot write any more data before issuing the
STARTSP macro.

The WRITEP macro generates a return jump to the $WWDP subroutine. No EOR
is written, nor is blank compression performed. If you specify WRITEP
with a word count of 0, the request is treated as a no OPe If the
dataset is memory resident and the WRITE or WRITEP causes the buffer to
become full, the memory-resident flags are cleared and the buffers are
flushed to mass storage.

To write only an EOR, use the WRITE macro with a word count of O.

Formats:

Location Result

oplabel WRITE
oplabel WRITE

oplabel WRITEP

Ooerand

dn,uda,at,uba
dn,uda,at

I Operana

oplabel Optional label

dn Dataset name (symbolic address of the Open Dataset Name
Table (OON) for this dataset), or an A, B, or S register
(not AO or SO) containing the Dataset Parameter Table (OSP)
address or negative OSP offset

uda User data area first word address (FWA) or an A, B, or S
register (not AI) containing the uda address

at Word count or an A, B, or S register (not Al or A2)
containing the word count

uba Unused bit count or an A, B, or S register (not AI, A2, or
A3) containing the unused bit count or null. If null,
record contains no unused bits. Not applicable in WRITEP.

SR-0012
Part I

3-5 A

Return conditions:
(AI) DSP address

(A2) FWA of user data area (uda)

(A3) Requested word count (et)

WRITEC/WRITECP - WRITE CHARACTERS

The WRITEC and WRITECP macros transfer characters from the user's data
area to the dataset. The WRITEC macro generates a return jump to the
$WCHR subroutine, thus causing one record to be processed at a time. An
EOR is written following each WRITEC.

The WRITECP macro generates a return jump to the $WCHP subroutine and
characters are written from the user's data area without an EOR.

One character is taken from bits 56 through 63 of each word of the data
area and packed into the record, eight characters per word. Blank
compression occurs.

Memory-resident datasets are handled as described for WRITE/WRITEP.

To write only an EOR, the WRITEC macro with a character count of 0 is
used.

Formats:

NOTE

Use WRITEC with a character count of 0 to complete a
record written with WRITECP. If you write the EOR by
some other means (such as with WRITE or by closing the
dataset), the last seven characters of data can be lost.

I LocationlResult lQ2erana

Location Result

oplabel WRITECP

SR-OOI2

O~erand

dn,uda,et

Part I
3-6 A

oplabel

dn

at

Optional label

Dataset name (symbolic address of the Open Dataset Name
Table (ODN) for this dataset), or an A, B, or S register
(not AO or SO) containing the Dataset Parameter Table (DSP)
address or negative DSP offset

User data area first word address (FWA) or an A, B, or S
register (not AI) containing the uda addresss

Character count or an A, B, or S register (not Al or A2)
containing the character count

Return conditions:
Same as for WRITE/WRITEP except that the requested count (A3) is
in characters rather than words

WRITED - WRITE END-OF-DATA

The WRITED macro generates a return jump to the $WEOD subroutine,
causing an EOR (if not previously written), an EOF (if not previously
written), and an EOD to be written.

The WRITED macro causes buffers to be flushed. If the dataset is
memory resident, buffers are flushed to mass storage only if the EOD
occurs within the last block of the buffer, in this case, the
memory-resident flags are also cleared.

Format:

Location Result Operand

oplabel WRITED dn

oplabel Optional label

dn Dataset name (symbolic address of the Open Dataset Name
Table (ODN) for this dataset) or an A, B, or S register
(not AO or SO) containing the Dataset Parameter Table (DSP)
address or negative DSP offset

Return conditions:
(AI) DSP address

SR-0012
Part I

3-7 A

WRITEF - WRITE END-OF-FILE

The WRITEF macro generates a return jump to the $WEOF subroutine, causing
an EOR (if not previously written) and an EOF to be written.

If the WRITEF macro causes the buffer for a memory-resident dataset to be
full, the memory-resident flags are cleared and the buffers are flushed
to mass storage.

Format:

Location Result Operand

oplabel WRITEF dn

oplabel Optional label

dn Dataset name (symbolic address of the Open Dataset Name
Table (ODN) for this dataset), or an A, B, or S register
(not AO or SO) containing the Dataset Parameter Table (DSP)
address or negative DSP offset

Return conditions:
(AI) DSP address

ASYNCHRONOUS I/O

The asynchronous read/write logical I/O macros allow you to read and
write words and to write an EOF or an EOD. These macros provide the Cray
Assembly Language (CAL) programmer with the same capabilities as the
FORTRAN BUFFER IN/BUFFER OUT statements.

Control returns to you immediately. It is your responsibility to ensure
that requested data transfers are complete and error free, by examining
the DSP before attempting to process input data or requesting additional
writes. The macro BUFCHECK is provided to make the necessary checks.

All of the asynchronous blocked I/O macros use registers AO, AI, A2, SO,
Sl, and S2. Other A and S registers, and all B, T, and V registers
remain unchanged (except BO). Unblocked I/O processing also uses
registers A6, S3, and S4. In all cases, after the I/O function
completes, Al contains the DSP address. The other registers used are not
meaningful. All status responses must be obtained from the DSP.

SR-0012
Part 1

3-8 A

Asynchronous requests for unblocked datasets require that the uda
parameter (see WRITE/WRITEP in this section for more information on
uda) specify the address of an area in the user's program. Also, the
~t parameter (see WRITE/WRITEP in this section for more information on
~t) must specify a value that is a multiple of 512.

Memory-resident datasets are handled the same as for the synchronous
read/write macros. See the description of the READ, WRITE, WRITEF, and
WRITED macros for the handling of BUFINP, BUFOUTP, BUFEOF, and BUFEOD,
respectively.

Asynchronous read/write logical I/O macros include BUFCHECK, BUFEOD,
BUFEOF, BUFIN/BUFINP, and BUFOUT/BUFOUTP.

BUFCHECK - CHECK BUFFERED I/O COMPLETION

with the BUFCHECK macro, you request the system to wait for the buffered
I/O on a dataset to complete the transfer and, optionally, to go to an
error address if the DSP status contains any error flags when the I/O
completes.

Format:

Location Result O~erand

oplabel BUFCHECK dn,err

oplabel Optional label

dn Dataset name (symbolic address of the Open Dataset Name
Table (ODN) for this dataset). It is the Dataset Parameter
Table (DSP) address only if dn=(Al). The ODN address is
given in any A register other than AO; any S register
except SO, Sl, or S2; or any B register.

err Optional error address. If any error bits are set in the
DSP on completion of the I/O, control is transferred to
err, if specified. If epp is not specified, it is your
responsibility to detect any errors. Note that for this
purpose, DPEOI does not constitute an error bit.

Return conditions:
If err is specified, Sl contains a copy of W@DPERR.

SR-0012
Part 1

3-9 A

BUFEOD - WRITE ENO-oF-OATA ON DATASET

The BUFEOD macro causes an EOR (if not previously written), an EOF (if
not previously written), and an EOD to be written. Control optionally
returns immediately to you and it is your responsibility to monitor the
DPBIO field.

Issuing a BUFEOO macro for an unblocked dataset produces an error.

Format:

Location Result Operand

oplabel BUFEOD dn,rcl

oplabel Optional label

dn Dataset name (symbolic address of the Open Dataset Name
Table (OON) for this dataset). It is the Dataset Parameter
Table (DSP) address only if dn=(Al). The ODN address is
given in any A register other than AO; any S register
except SO, Sl, or S2; or any B register.

~cl Optional Recall flag. If not null, the macro expansion
includes a RECALL loop until the I/O is completed.

BUFEOF - WRITE END-oF-FILE ON DATASET

The BUFEOF macro writes an EOF on a dataset. Control optionally returns
immediately to your program, giving you the responsibility of monitoring
the DPBIO field. An EOR is written if the dataset is at mid record.

Issuing a BUFEOF macro for an unblocked dataset produces an error.

Format:

Location Result Operand

oplabel BUFEOF dn,~cl

oplabel Optional label

SR-0012
Part 1

3-10 A

dn Dataset name (symbolic address of the Open Dataset Name
Table (ODN) for this dataset). It is the Dataset Parameter
Table (DSP) address only if dn=(Al). The ODN address is
given in any A register other than AO; any S register
except SO, Sl, or S2; or any B register.

raL Optional Recall flag. If not null, the macro expansion
includes a RECALL loop until the I/O is completed.

BUFIN/BUFINP - TRANSFER DATA FROM DATASET TO USER RECORD AREA

The BUFIN and BUFINP macros transfer words of data from a dataset to a
user record area. Both macros generate a system call to F$BIO (see the
CRAY-OS Version 1 Reference Manual, publication SR-OOll for more
information on F$BIO).

The BUFIN macro transfers data from the current position to EOR or until
the specified word count is exhausted. The dataset is positioned after
the end of the current record. Field DPBUBC indicates the count of
unused bits in the last word of the record. If the word count is
exhausted before end-of-record, the unused bit count is set to O.

The BUFINP macro transfers data from the current position to EOR or until
the specified word count is exhausted. The dataset remains positioned
mid record if the word count is exhausted before EOR is reached. The
unused bit count is set in the same way as for BUFIN.

In both cases, control optionally returns to your program immediately,
giving you the responsibility of monitoring the proper DSP fields to
determine when the transfer is complete and whether any errors occurred.

If the dataset is unblocked, transfer continues until the specified word
count or EOD is reached.

Formats:

I LocationlReSUlt
opLabeL BUFIN

Location Result ODerand

opLabeL BUFINP dn,uda,ct,rcL

opLabeL Optional label

SR-0012
Part 1

3-11 A

dn Dataset name (symbolic address of the Open Dataset Name
Table (ODN) for this dataset). It is the Dataset Parameter
Table (DSP) address only if dn=(Al). The ODN address is
given in any A register other than AO; any S register
except SO, Sl or S2; or any B register.

uda User record area or A, S, or T register (not AO, SO, Sl, or
S2) containing the uda address

ct Word count or A, S, or T register containing word count
(not Sl or S2)

pcl Optional Recall flag. If not null, the macro expansion
contains a RECALL loop until the I/O is completed.

Registers Sl and S2 construct the parameter word (W@DPBIO) and cannot
contain parameter address or values.

When I/O is completed, for both BUFIN and BUFINP, the actual number of
words transferred can be obtained from the DPBWC field of the DSP for a
blocked dataset. This field is valid only upon completion of the
BUFCHECK macro or upon completion of the BUFIN (BUFINP) macro if recall
was specified.

BUFOUT/BUFOUTP - TRANSFER DATA FROM USER RECORD AREA TO DATASET

The BUFOUT and BUFOUTP macros transfer data from a user's record area to
a dataset using the system F$BIO function.

The BUFOUT macro transfers the specified number of words and writes an
EOR on the dataset. Optionally, an unused bit count can be specified,
giving the number of bits in the last word of data that is not to be
considered as part of the data. The EOR contains this unused bit count.

The BUFOUTP macro transfers the specified number of words but does not
write an EOR. Subsequent BUFOUTP macro calls continue to construct the
record. A subsequent BUFOUT macro terminates the record with an EOR.
Unused bits are meaningless ·for BUFOUTP.

In both cases, control optionally returns to your program immediately,
giving you the responsibility of monitoring the proper DSP fields to
determine when the transfer is complete and whether any errors occurred.

If the dataset is unblocked, the specified word count is transferred.
Unused bits are meaningless. The specified count must be a multiple of
512.

SR-0012
Part 1

3-12 A

Formats:

Location Result O~erand

oplabel BUFOUT dn,uda,ot,ubo,rol

Location Result Operand

oplabel BUFOUTP dn,uda,ot,ubo,rol

oplabel Optional label

dn Dataset name (symbolic address of the Open Dataset Name
Table (ODN) for this dataset). It is the Dataset Parameter
Table (DSP) address only if dn=(Al). The ODN address is
given in any A register other than AO; any S register
except SO, Sl, or S2; or any B register.

uda User record area or A, S, or T register containing record
area address (not AO, SO, Sl, or S2)

ot Word count or A, S, or T register containing word count
(not AO, SO, Sl or S2)

ubo Optional unused bit count or A, S, or T register containing
unused bit count (not AO, SO, or S2) or null. If null,
record contains no unused bits. This field is ignored for
BUFOUTP.

rol Optional Recall flag. If not null, the macro expansion
contains a RECALL loop until the I/O is completed.

Registers Sl and S2 construct the parameter word (W@DPBIO) and must not
contain parameter addresses or values, except that Sl can contain the
unused bit count.

UNBLOCKED I/O

The unblocked dataset read and write macros allow you to read and write
data directly into or from a buffer supplied by a program rather than by
the system. The job waits for I/O to complete.

The system does no blocking or deblocking of unblocked datasets.

SR-0012
Part 1

3-13 A

Upon termination of the READ/WRITE function, register contents are
modified as detailed under the description of each macro. A or S
registers not specifically mentioned should not be assumed to have any
meaningful contents, and do not contain the same values as before the
function request. Registers BO, B10 through B11, and T10 through T77 can
be changed, as well as VL, VM, VO, and VI. Other B, T, and V registers
are not changed.

CAUTION

Special caution should be used with registers BO, B70
through B77, and T70 through T77 as eFT and other
routines use them also.

The READU and WRITEU macros comprise the unblocked I/O macros.

READU - TRANSFER DATA FROM DATASET TO USER'S AREA

The READU macro transfers words of data from an unblocked dataset into an
area specified by the caller. The READU macro generates a return jump to
the $RLB subroutine.

Format:

I Operand

optabet Optional label

dn Dataset name (symbolic address of the Open Dataset Name
Table (ODN) for this dataset), or an A, B, or S register
(except AO or SO) containing the Dataset Parameter Table
(DSP) address or negative DSP offset

uda User data area first word address (FWA) or an A, B, or S
register (except AO, AI, or SO) containing the uda address

ct Word count or an A, B, or S register (except AO, AI, A2, or
SO) containing the number of words to be transferred. ct
must be a multiple of 512.

SR-0012
Part 1

3-14 A

Return conditions (registers):
(AI) DSP address

(A2) FWA of user data area (uda)

(A3) Requested word count (at)

(A4) Actual LWA+l of data transferred

(SO) Completion status. One of the following:

-1.0 Operation complete, no errors
0.0 Attempt to read past allocated data

+1.0 Parity error
+2.0 Unrecovered hardware error

WRITEU - TRANSFER DATA FROM USER'S AREA TO DATASET

The WRITEU macro transfers data from the user's area to an unblocked
dataset. The WRITEU macro generates a return jump to the $WLB subroutine.

Format:

Location Result Operand

optabet WRITEU dn,uda, at

optabet Optional label

dn Dataset name (symbolic address of the Open Dataset Name
Table (ODN) for this dataset), or an A, B, or S register
(not AO or SO) containing the Dataset Parameter Table (DSP)
address or negative DSP offset

uda User data area first word address (FWA) or an A, B, or S
register (not AO, AI, or SO) containing the uda address

at Word count or an A, B, or S register (not Al or A2)
containing the number of words to be transferred. at
must specify a multiple of 512.

Return conditions:
(AI) DSP address

(A2) FWA of user data area (uda)

SR-0012
Part 1

3-15 A

(A3) Requested word count (ot)

(SO) Completion status. One of the following:

-1.0
0.0

+1.0
+2.0

Operation complete, no errors
Attempt to write past allocated data
Parity error
Unrecovered hardware error

DATASET POSITIONING

You can rewind datasets, backspace records or files, get the current
dataset position, and position datasets using the positioning logical I/O
macros. See each macro description for register contents on return.
Other registers mentioned as used by READ/WRITE will be meaningless on
return.

When a dataset is positioned backward and the last operation on the
dataset was a write operation, an EOD is written (and an EOR and EOF, if
necessary; see the WRITE, WRITEF, and WRITED macro descriptions for
handling of memory-resident datasets during the EOD processing). If the
last operation was not a write operation, backward positioning has no
special effect on a dataset.

The positioning macros (ASETPOS, BKSP, BKSPF, CLOSEV, GETPOS, POSITION,
REWIND, SETPOS, SYNCH, TAPEPOS, and TAPESTAT) described in this
subsection refer to the Open Dataset Name Table (ODN). For more
information about the ODN, see the CRAY-OS Version 1 Reference Manual,
publication SR-OOll.

ASETPOS - ASYNCHRONOUSLY POSITION DATASET

The ASETPOS macro generates a return jump to the $ASPOS subroutine. with
asynchronous positioning, the job continues executing while positioning
occurs. The dataset is positioned at the word indicated by the word
offset specified, which must be at a record boundary (at BOD, or
following EOR or EOF, or before EOD) •

For a blocked dataset, the macro initiates a read to the I/O buffer
before positioning occurs, unless the requested position is already in
the buffer. For an unblocked dataset, the DSP is updated to reflect the
specified position within the dataset. No I/O request is actually
issued. ASETPOS applies to mass storage data sets only; it is illegal for
tape datasets.

SR-0012
Part 1

3-16 A

Format:

Location Result Operand

oplabel A5ETP05 dn,pos

oplabel Optional label

dn Dataset name (symbolic address of the Open Dataset Name
Table (ODN) for this dataset), or an A, B, or 5 register
containing the Dataset Parameter Table (D5P) address or
negative D5P offset

pos Dataset position. Can be any of the following:

EOD position the dataset preceding EOD~ register 5n=-1

BOD position the dataset at BOD~ register 5n=0

5n or Tn
position the dataset to the word address
contained in the specified 5 or T register. If
pos is not 51, 51 is destroyed.

If the specified register contains -1, position the
dataset at EOD. For example: 51=-1.

If the specified register contains 0, position the
dataset at BOD. For example: 51=0.

Return conditions:
(AI) Address of Dataset Parameter Table (D5P)

(51) Dataset position~ see GETP05 for meaning of flags.

(56) Record control word after which dataset is positioned, or 0 at
BOD.

BK5P - BACK5PACE RECORD

The BK5P macro generates a return jump to the $BK5P subroutine. The
dataset is backspaced one record. If the initial position is at BOD, no
action occurs. If the initial position is mid record, the dataset is
backspaced to the beginning of that record.

5R-0012
Part 1

3-17 A

Because the backspace operation occurs within the buffer for
memory-resident datasets, such datasets receive special handling only if
an EOD must be written. Changes made in the buffer contents are
preserved.

Issuing a BKSP macro for an unblocked dataset produces an error.

BKSP applies to mass storage datasets only, and is illegal on tape
datasets.

Format:

oplabel BKSP

oplabel Optional label

dn Dataset name (symbolic address of the Open Dataset Name
Table (ODN) for this dataset), or an A, B, or S register
containing the Dataset Parameter Table (DSP) address or
negative DSP offset

Return conditions:
(AI) DSP address

(S6) The record control word (RCW) after which the dataset was
positioned equals 0 if BOD is encountered.

BKSPF - BACKSPACE FILE

The BKSPF macro generates a return jump to the $BKSPF subroutine. The
dataset is backspaced one file. If the initial position is at BOD, no
action occurs. If the initial position is mid file, the dataset is
backspaced to the beginning of that file.

Because the backspace operation occurs within the buffer for
memory-resident datasets, such datasets receive special handling only if
an EOD must be written. Changes made in the buffer contents are
preserved.

Issuing a BKSPF macro for an unblocked dataset produces an error. BKSPF
applies to mass storage datasets only, and is illegal on tape datasets.

SR-0012
Part 1

3-18 A

Format:

Location Result Operand

oplabel BKSPF dn

oplabel Optional label

dn Dataset name (symbolic address of the Open Dataset Name
Table (ODN) for this dataset), or an A, B, or S register
containing the Dataset Parameter Table (DSP) address or
negative DSP offset

Return conditions:
Same as for BKSP

CLOSEV - SWITCH TO THE NEXT VOLUME

A user program uses the CLOSEV macro to switch to the next tape volume at
any time. The CLOSEV macro writes an end of volume (EOV) trailer label
to a mounted output tape before switching tapes. CLOSEV applies only to
magnetic tape datasets.

If the tape is an input tape, you have the option of writing an EOV
trailer label. An output tape job is aborted if the output buffer is not
empty.

In special EOV processing the user program must issue the CLOSEV macro to
switch to the next tape and perform special beginning-of-tape (BOV)
processing. After the CLOSEV macro is executed, the next tape is at the
beginning of the volume. The user program is permitted BOV processing at
this time. After the BOV processing is completed, the user program must
issue the ENDSP macro to inform the operating system that special
processing is complete and to continue normal processing.

Format:

Location Result

CLOSEV

odn ODN address

SR-0012

Operand

odn,L=par.mlist,TRAlLER=EOV

Part 1
3-19 A

L=pa~ti8t
Parameter list address. The length of the list is defined
by symbol LE@TEV~ symbol LE@TEV is defined in the default
system text, $SYSTXT. If the parameter list address is not
coded, the storage is generated inline.

TRAILER=EOV
Indicates that the EOV trailer label will be written

Return conditions:
(Sl)=O No errors

(Sl»O TRAILER=EOV is specified for an input tape. Mount the next
volume.

GETPOS - GET CURRENT DATASET POSITION

The GETPOS macro generates a return jump to the $GPOS subroutine. This
subroutine returns the current dataset position in Sl. The dataset
position is the number of words between the BOD and the present position,
excluding BOWs but including ROWs.

Format:

Location Result O~~rand

optabet GETPOS dn

optabet Optional label

dn Dataset name (symbolic address of the Open Dataset Name
Table (ODN) for this dataset), or an A, B, or S register
(except AO or SO) containing the Dataset Parameter Table
(DSP) address or negative DSP offset

Return conditions:
(AI) DSP address

(Sl) For a blocked dataset, Sl contains dataset position flags.

SR-0012

Bits 0-3 indicate position within records or files~ bits 31-63
indicate physical word address within the file, including
ROWs. At BOD, (Sl)=O. Bit 0=1 if the dataset is positioned
immediately following an ROW. Bit 0-3 contains 108 for EOR,
168 for EOF, 178 for EOD, and 0 for mid-record.

For an unblocked dataset, Sl returns the relative position of
the current block within the dataset.

Part 1
3-20 A

(S2) For an unblocked dataset, S2 contains the same address
contained in bits 31-63 of Sl for blocked datasets.

For a blocked dataset, S2 contains the physical word address
relative to the beginning of the dataset, including RCWs.

POSITION - POSITION TAPE DATASET

with the POSITION macro you can rewind or position an opened tape dataset
at a particular tape block of the dataset. Data blocks on tapes are
numbered so that block number 1 is the first data block on a tape.

You need to consider the effect of POSITION during special EOV/BOV
processing. If you issue the POSITION macro in the EOV/BOV special
processing routine and request relative block positioning, then the
positioning will start from wherever the tape is positioned, which is not
necessarily the last block the user program has read or written.

The POSITION macro uses registers SO, Sl, S2, S3, Al, and A2.

Format:

Location Result Operand

dn

R~I~

SR-0012

POSITION dn,~IND

or

POSITION dn,TP,B={:}nb,v={:}nv,L=pla

or

POSITION dn,Tp,B=nb,vOL=vi,L=pla

Dataset name. dn is a symbolic address of the Open
Dataset Name Table (ODN) for this dataset, or an A, S,
or T register which contains the ODN address. The ODN is
described in the CRAY-OS Version 1 Reference Manual,
publication SR-OOll.

Rewinds a tape dataset. dn is the only other parameter
that can be used with ~I~.

Part 1
3-21 A

TP

SR-0012

Tape positioning request. TP and REWIND are mutually
exclusive. When TP is coded, B, V, and VSN are valid
parameters.

Block. It can be an expression or an S, A, or T
register which contains a number. However, B cannot
specify AO, SO, Sl, S2, or S3. The value of nb cannot be
greater than 15,728,639. possible specifications for
nb re:

+nb Space nb blocks forward from the current
position. The + sign is invalid if either V or VOL
is coded for POSITION.

-nb Space nb blocks back from the current position.
The - sign is invalid if either V or VOL is coded for
POSITION.

nb Specifies the absolute block number on which the
dataset is positioned. This command applies only to
the volume the programming is processing. No volumes
are skipped. If the block request does not exist on
the volume, the tape is repositioned at the end of
the volume, and an error is returned to the user.

Volume. Volume can be an expression or an S, A, or T
register which contains a number. However, V cannot
specify AO, SO, Sl, S2, or S3. nv cannot be greater than
the volume specified by the VOL parameter.

V and VOL are mutually exclusive. possible specifications
for nv are:

+nv Position nv volumes ahead of the current volume

-nV Position nV volumes back from the current volume

nv Position to absolute volume number nv.

If V is specified, the B parameter must specify B=nb,
without + or - signs.

Part 1
3-22 A

VOL=vi Volume identifier to be mounted. vi is a character
string 1 to 6 characters long. You can also specify vi as
an S or T register which contains the volume identifier;
however, vi cannot be SO, Sl, S2, or S3. When a register
is specified, VOL must be left-justified and zero-filled. V
and VOL are mutually exclusive.

If VOL=vi is coded, then the B parameter must specify
B=nb, without + or - signs.

Parameter list address. pta is the address of a storage
area whose length is defined by the symbol LE@PPL. pta
holds the position request parameters.

The parameter list address may be a storage address, or an
A, S, or T register containing the address of the parameter
list address. If you do not code pta the POSITION macro
generates a parameter list.

Return conditions:
Register Sl contains a return code when control returns to the user.
The return codes are:

TPOK=O
TPNT=l
TPNR=2
TPNS=3

Tape positioned successfully
Dataset is not a tape dataset
Tape is not at EOR
Positioning request not fully satisfied. S2 contains the
number of blocks not forward- or back-spaced.

TPTM=4 Tape mark encountered

REWIND - REWIND DATASET

The REWIND macro generates a return jump to the $REWD subroutine, causing
the dataset to be positioned at beginning-of-data (BOD).

The REWIND macro causes all buffer pointers in the DSP to be reset to
indicate an empty buffer. For memory-resident datasets, the next read
causes the pointers to be reset. If the memory-resident dataset
previously existed on mass storage, any changes made to the contents of
the buffer before the rewind are lost. This is because the disk copy of
the dataset is reread without the changes being flushed. If the dataset
did not previously exist on disk, any changes in the buffer contents are
preserved across the rewind and read sequence. To preserve changed buffer
contents for a memory-resident dataset that previously existed on disk,
use BKSPF to reposition the dataset.

SR-0012
Part 1

3-23 A

Format:

I~erand
dn

optabet Optional label

dn Dataset name. dn is the symbolic address of the Open
Dataset Name Table (ODN) for this dataset.

dn can also be an A, B, or S register (not AO or SO)
containing the Dataset Parameter Table (DSP) address or
negative DSP offset. The DSP macro is described in part 1,
section 2 of this manual.

Return conditions:
(AI) DSP address

SETPOS - SYNCHRONOUSLY POSITION DATASET

The SETPOS macro generates a return jump to the $SPOS subroutine. with
synchronous positioning, the job waits for positioning to complete before
continuing. The dataset is positioned at the word indicated by the word
offset specified, which must be at a record boundary (at BOD, or
following EOR or EOF, or before EOD).

For a blocked dataset, the macro initiates a read to fill the I/O buffer
before positioning occurs, unless the requested position is already in
the buffer. For an unblocked dataset, the DSP is updated to reflect the
specified position within the dataset, but no I/O request is actually
issued. SETPOS applies to mass storage datasets only, and is illegal for
tape datasets.

Format:

I LocationlResult

dn,po8

optabet Optional label

SR-OOl2
Part 1

3-24 A

dn Dataset name. dn is the symbolic address of the Open
Dataset Name Table (ODN) for this dataset.

dn can also be an A, B, or S register containing the
Dataset Parameter Table (DSP) address or negative DSP
offset. The DSP macro is described in part 1, section 2 of
this manual.

POB Dataset position. Can be any of the following:

EOD Position the dataset preceding EOD.
BOD position the dataset at BOD.

Sn or Tn
Position the dataset to the word address
contained in the specified S or T register. If
POB is not (Sl), (Sl) is destroyed.

Return conditions:
(Al) DSP address

(Sl) Dataset position (see GETPOS for meaning of flags).

(S6) Record control word after which dataset is positioned, or 0 at
beginning-of-data.

SYNCH - SYNCHRONIZE

The SYNCH macro synchronizes the program and the tape. Before issuing
SYNCH, the dataset must be opened. All previous I/O operations must also
be tested for completion before SYNCH is issued.

If the dataset is synchronized for input, it must be positioned at an EOR
control word. However, an EOR is added to the end of the data before
synchronization if: a) the dataset is an output dataset, and b) the data
in the circular buffer does not end with an EOR control word. A tape
dataset is not synchronized after any data transfer macro is issued. For
an output tape, control is not returned to the user until all of the data
in the circular buffer is written to the tape.

The SYNCH macro uses registers SO, Sl, S2, S3, S5, S6, S7, AI, and A2.

Format:

I LocationlResult

SYNCH

SR-0012

dn,¢

Part 1
3-25 A

dn Dataset name. dn is the symbolic address of the ODN
table for the tape dataset. The ODN is described in the
CRAY-OS Version 1 Reference Manual, publication SR-OOll.

dn can also be an A, S, or T register that contains the
address of the ODN table. However, dn cannot be the
following registers: AO, SO, or Sl.

Processing direction. pd can be:

I Input dataset
o Output dataset

Return conditions:
When control returns to the caller, register Sl contains a return
code. A return of anything other than 0 indicates that no
synchronization occurred. The return codes for SYNCH are:

Execution without error. TPOK=O
TPER=l Execution error; the error code is in the DPERR field of the

DSP.
TPNT=2 Dataset is not a tape dataset.

TAPEPOS - GET TAPE DATASET POSITION

The TAPEPOS macro produces information about the position of a tape
dataset that has been successfully opened.

The information returned by TAPEPOS refers to the block that the user is
going to read or write. For output datasets, the information returned by
TAPEPOS can be meaningless unless the tape dataset has been synchronized
by the SYNCH macro before the TAPEPOS macro is issued. A storage area of
LE@TPI words is necessary to hold the information produced.

The TAPEPOS macro uses registers SO, Sl, S2, S6, S7, Al and A2.

Format:

I Location I Result

TAPEPOS

SR-0012

I Operand

dn,sa

Part 1
3-26 A

dn

sa

Dataset name. dn is the symbolic address of the ODN
table for the tape dataset. dn can also be an A, S, or T
register that contains the address of the ODN table. The
ODN table is described in the CRAY-OS Version 1 Reference
Manual, publication SR-OOll.

dn cannot be the following registers: AO, SO, Sl, or S2.

Storage address. sa can also be an A, S, or T register
that contains the address of LE@ words of storage in the
user's storage area to hold the tape information.

Table 3-1 illustrates the format for information returned by the TAPEPOS
macro.

Table 3-1. Information returned by the TAPEPOS macro

Field

TPVSN
TPPDNl
TPPDN2
TPPDN3
TPPDN4
TPPDN5
TPPDN6
TPRSVI
TPSEC
TPSEQ
TPRSV2
TPRSV3
TPVBC

TPCBC

TPIBC
TPRSV4

Word Bit

o 16
1 0
2 0
3 0
4 0
5 0
6 0
6 32
7 0
7 16
7 32
7 48
8 0

8

9
10

32

o
o

Return conditions:

Length Description

48 VSN of last block processed
64 Characters 1 through 8 of PDN
64 Characters 9 through 16 of PDN
64 Characters 17 through 24 of PDN
64 Characters 25 through 32 of PDN
64 Characters 33 through 40 of PDN
32 Characters 41 through 44 of PDN
32 Reserved for future use
16 File section number
16 File sequence number
16 Reserved for future use
16 Reserved for future use
32 Volume block count of last

32

32
64

block processed by program
Number of blocks in circular
buffer. For output, blocks
not sent to the I/O Subsystem (lOS);
for input, always zero.
Number of blocks in lOS buffer
Reserved

Register Al contains a return code when control returns to the user
A return code other than zero indicates an error. The return codes
for TAPEPOS are:

TPOK=O Tape information returned to the user without errors.
TPNT=2 Dataset is not a tape dataset.

SR-0012
Part 1

3-27 A

TAPESTAT - OBTAIN TAPE STATUS FROM DSP

You should use TAPESTAT to check for any tape status after the READ,
WRITE, BUFIN, BUFOUT and SYNCH macros.

Format:

TAPESTAT

odn Open Dataset Name Table (ODN) address

Return conditions:

SO=O if circular buffer is empty
SO>O if circular buffer is not empty
Sl=tape status code; where tape status code describes current
tape status:

Code

TS$EOV
TS$TOR
TS$TMS
TS$BLT

Description

EOV status
Tape off reel
Tape mark status
Blank tape detected

The tape status bits represent the tape's actual status. For input
tapes, the user program has not reached the condition that the tape
status indicates if the circular buffer is not empty (SO not zero).

USER TAPE VOLUME PROCESSING

The Cray Operating System (COS) handles multivolume (multireel) tape
datasets automatically. However, the following macros allow you to
perform special end of volume (EOV) and beginning-of-volume (BOV)
processing.

• Use SETSP to notify COS that you wish to perform your own EOV and
BOV processing. COS will then notify you whenever it reaches the
end of a tape volume.

SR-00l2
Part I

3-28 A

• Use STARTSP to notify COS that you are beginning your special
processing.

• Use ENDSP to notify COS that you have finished your special
processing.

The user tape volume processing macros include ENDSP, SETSP, and STARTSP.

ENDSP - SPECIAL EOV AND BOV PROCESSING IS COMPLETE

The ENDSP macro indicates to the operating system that special
end-of-volume (EOV) and beginning-of-volume (BOV) processing is complete.

ENDSP does not switch volumes~ when the user program wants to switch to
the next tape, the CLOSEV macro must be issued. Furthermore, data in the
input/output (lOP) buffer is not written to tape until the ENDSP macro is
issued at the end of BOV processing on the next tape. When the BOV
processing is done, the user program must issue the ENDSP macro to
terminate special processing. After the ENDSP macro is issued, the user
program can continue to process the tape dataset.

Format:

I Location I Result

ENDSP

I operand

oon
L=pla

Open Dataset Name Table (ODN) address

Parameter list address. Address of storage area of length
LE@TEV. If you specify L, the macro generates the list at
address pla. If you do not code it, the parameter list
is generated at an address determined by the macro.

SETSP - REQUEST NOTIFICATION AT END-OF-TAPE VOLUME

The SETSP macro informs the operating system that you wish to perform
extra processing when the end of a tape volume is reached. You must use
the SYNCH macro to ensure all data is written to tape before issuing
SETSP.

SR-OOI2
Part I

3-29 A

After the user program has executed the SETSP macro, the EOV condition is
set when the tape is positioned after the last data block. For an input
tape the EOV condition is set after the system has read the last data
block on the volume. For an output dataset, however, the EOV condition
is set when end-of-tape (EOT) status is detected.

Automatic volume switching is not done by COS following the successful
execution of the SETSP macro with the ON option. If you want to control
volume switching, use the CLOSEV macro.

Format:

Location Result Operand

odn

L=pla

SETSP odn,{ON },L=pla
OFF

Address of the Open Dataset Name Table (ODN)

If you specify ON, the user program is notified at EOV.
Otherwise, OFF specifies that the user program no longer
needs to be notified at EOV.

Parameter list address. Address of storage area of length
LE@TEV. If you specify L, the macro generates the list at
address pla. If you do not code it, the parameter list
is generated at an address determined by the macro.

STARTSP - BEGIN USER EOV AND BOV PROCESSING

The STARTSP macro starts special end-of volume (EOV) and
beginning-of-volume (BOV) processing. No special-processing I/O to the
tape takes place until this macro has been executed: the user program
must inform the Cray Operating System (COS) that it intends to reposition
or perform special I/O to the tape by executing the STARTSP macro.

After issuing the STARTSP macro the user program can issue the READ,
WRITE and POSITION macros. When processing is done, the user program
must issue the ENDSP macro to inform COS that special processing is
done. STARTSP does not switch volumes; when the user program wants to
switch to the next tape, you have to issue the CLOSEV macro. Moreover,
after you issue the STARTSP macro and before you issue the ENDSP macro,
the CLOSEV macro is the only macro that performs volume switching for the
user program.

SR-0012
Part 1

3-30 A

You must issue the SYNCH macro before issuing the STARTSP macro. The
data in the buffer is not written to tape until the ENDSP macro is issued
at the end of BOV processing on the next tape.

Format:

Location Result Operand

odn

L=p7,a

STARTSP odn,L=p7,a

Address of the Open Dataset Name Table (ODN)

Parameter list address. Address of storage area of length
LE@TEV. If you specify L, the macro generates the list at
address p7,a. If you do not code it, the parameter list
is generated at an address determined by the macro.

FORTRAN-LIKE I/O

The FORTRAN-like I/O macros allow you to perform formatted and
unformatted reads and writes using FORTRAN-like syntax in a CAL program.
The FORTRAN-like I/O macros include: FREAD, FWRITE, UFREAD, UFWRITE.

FREAD - READ DATA

The FREAD macro permits a FORTRAN-like read statement that can make use
of a FORTRAN-like format.

Format:

Location Result Operand

FREAD fmt,(7,iBt},SV={~~S}'UNIT=unit,END=addp,ERR=addp

fmt Format 1 takes one of the following forms:

faddp

SR-0012

Address of a format, possibly defined with the
DATA pseudo instruction, as in:

fmt DATA

Part 1
3-31

• (FlO.O) •

A

(list)

UNIT=unit

SR-0012

The character string is left-justified, and
the first character in the string is the left
parenthesis.

«(stping» A character string enclosed in a double set
of parentheses

The default is (5025).

List of addresses for which values are to be read. Even
with only one item, the list must be enclosed in
parentheses. Each item in the list specifies either the
address of a single word or the address of an array.

An array is handled by enclosing the array base address,
the word count, and an optional increment in an
additional set of parentheses. Examples: «A,lO» or
«(B,LTH,3))

The CAL statement

FREAD ,«A,10),(B,LTH,3»

is equivalent to the FORTRAN statements

READ 20, (A(I), I=l,lO), (B(I) ,I=1,3*LTH,3)
20 FORMAT (5025)

An array or a single word can be addressed indirectly by
using the at sign (@) and the name of a variable
containing the indirect address instead of an array
name. For example:

«(@C,lO» Reads values for the first 10 words of an array
beginning at an address held in variable C

«(@E,l» Reads a value for the single word specified by
the address held in variable E

To pass a numeric address, use a W prefix (for example,
W.177S)·

Save flag. The default (SV=NO) does not invoke the
SAVEREGS and LOADREGS macros. If SV=YES, all registers
are saved and restored. Always specify SV=YES to protect
the contents of the registers.

A local dataset name, an expression containing only
previously defined terms that resolves into a FORTRAN
unit number, or the previously defined label of a word
containing either a local dataset name or a FORTRAN unit
number. The default is $IN.

Part 1
3-32 A

END=addr

ERR=addr

Optional address where a branch occurs if an EOF is
encountered

Optional address where a branch occurs if an error is
encountered during the read

FWRITE - WRITE DATA

The FWRITE macro permits a FORTRAN-like write statement that can make use
of a previously defined format.

Format:

Location Result . Out::, a.ld

FWRITE

fmt Format; takes one of the following forms:

("List)

SR-0012

faddr Address of a format, possibly defined with the
DATA pseudo instruction, as in:

fmt DATA , (F 10. 0, , 'TEXT' ,) ,

((string))
A character string enclosed in a double set of
parentheses (for example, «FlO.O,"TEXT"»)

The default is (5025).

List of addresses whose contents are to be written. Even
with only one item, the list must be enclosed in
parentheses. Each item in the list specifies either the
address of a single word or the address of an array.

An array is handled by enclosing the array base address,
the word count, and an optional increment in an additional
set of parentheses. Examples: «A,lO» or «B,LTH,3»

The CAL statement

FWRITE ,«A,10),(B,LTH,3»

is equivalent to the FORTRAN statements

PRINT 20, (A(I), 1=1,10), (B(3*(I-l)+1), 1=1, LTH)
20 FORMAT (5025)

Part 1
3-33 A

UNIT=unit

An array or a single word can be addressed indirectly by
using the at sign (@) and the name of a variable containing
the indirect address instead of an array name. For example:

«@C,lO)) Reads values for the first 10 words of an array
beginning at an address held in variable C

«@E,l) Reads a value for the single word specified by
the address held in variable E

To pass a numeric address, use a W prefix (for example,
W.177a) •

Save flag. The default (SV=NO) does not invoke the
SAVEREGS and LOADREGS macros. If SV=YES, all registers are
saved and restored. Always specify SV=YES to protect the
contents of the registers.

A local dataset name, an expression containing only
previously defined terms that resolves into a FORTRAN unit
number, or the previously defined label of a word
containing either a local dataset name or a FORTRAN unit
number. The default is SOUT. See the CRAY-OS Version 1
Reference Manual, publication SR-OOll for more detailed
information about SOUT.

UFREAD - UNFORMATTED READ

The UFREAD macro performs a FORTRAN-like unformatted read.

Format:

Location Result Operand

unit

(list)

SR-0012

UFREAD

A local dataset name, an expression containing only
previously defined terms that resolves into a FORTRAN unit
number, or the previously defined label of a word
containing either a local dataset name or a FORTRAN unit
number. There is no default.

List of addresses for which values are read. Even with
only one item, the list must be enclosed in parentheses.
Each item in the list specifies either the address of a
single word or the address of an array.

Part 1
3-34 A

An array is handled by enclosing the array base address,
the word count, and an optional increment in an additional
set of parentheses. Examples: «A,lO» or «B,LTH,3»

The CAL statement

UFREAD ,«A,10),(B,LTH,3»

is equivalent to the FORTRAN statement

READ (A(I), I=l,lO), (B(3*(I-l)+1) , I=l, LTH)

An array or a single word can be addressed indirectly by
using the at sign (@) and the name of a variable containing
the indirect address instead of an array name. For example:

«@C,lO» Reads values for the first 10 words of an array
beginning at an address held in variable C

«@E,l» Reads a value for the single word specified by
the address held in variable E

To pass a numeric address, use a W prefix (for example,
W.177S) •

Save flag. The default (SV=NO) does not invoke the
SAVEREGS and LOADREGS macros. If SV=YES, all registers are
saved and restored. Always specify SV=YES to protect the
contents of the registers.

END=addr Optional address where a branch occurs if an EOF is
encountered

ERR=addr Optional address where a branch occurs if an error is
encountered during the read

UFWRITE - UNFORMATTED WRITE

The UFWRITE macro performs a FORTRAN-like unformatted write of output
items separated by commas.

Format:

Location Result

UFWRITE

SR-0012

Operand

Part 1
3-35 A

unit

(list)

SKOL-LIKE I/O

A local dataset name, an expression containing only
previously defined terms that resolves into a FORTRAN unit
number, or the previously defined label of a word
containing either a local dataset name or a FORTRAN unit
number. There is no default value.

List of addresses whose contents are to be written. Even
with only one item, the list must be enclosed in
parentheses. Each item in the list specifies either the
address of a single word or the address of an array.

An array is handled by enclosing the array base address,
the word count, and an optional increment in an additional
set of parentheses. Examples: «A,lO» or «B,LTH,3»

The CAL statement

UFWRITE $OUT,«A,lO) ,(B,LTH,3»

is equivalent to the FORTRAN statement

PRINT (A(I), 1=1,10), (B(3*(I-l)+1), 1=1, LTH)

An array or a single word can be addressed indirectly by
using the at sign (@) and the name of a variable containing
the indirect address instead of an array name. For example:

«@C,lO» Writes the first 10 words of an array beginning
at an address held in variable C

«@E,l» Writes the single word specified by the address
held in variable E

To pass a numeric address, use a W prefix (for example,
W.l77~ •

Save flag. The default (SV=NO) does not invoke the
SAVEREGS and LOADREGS macros. If SV=YES, all registers are
saved and restored. Always specify SV=YES to protect the
contents of the registers.

The SKOL-like I/O macros allow you to perform formatted and unformatted
reads and writes using SKOL-like syntax in a CAL program. The SKOL-like
macros include: INPUT and OUTOUT.

SR-0012
Part 1

3-36 A

INPUT - READ DATA

The INPUT macro reads data resident on a dataset or characters already
located in memory and assigns values to variables, words of an array, or
registers. Its syntax is as close as possible to the syntax of the INPUT
statement in SKOL.

The macro generates its code either inline or in a subroutine created by
the macro. In the latter case, exactly three words of code are generated
inline.

The DEBUG option allows conditional execution of the INPUT macro. If the
label on the INPUT statement is DEBUG, no label is defined for the
generated code. Instead, unless the symbol DEBUG has been set to 1 by a
previously assembled SET or equate statement, code generation within the
macro is suppressed entirely.

Format:

Location Result Operand

INPUT (List),SV={~S}'IN={!~S},UNIT=unit,

STRING=string,LTH=Length,END=addr,ERR=addr

List A list of input elements, each of which can include a
variable name, an array specifier, and a format item. The
list need not be enclosed in parentheses if it contains
only one element. If it consists of more than one element,
the elements are separated by commas. Null elements are
ignored, so that each list element can be preceded and
followed by blanks. However, an element cannot contain
embedded blanks. Each non-null element must have one of
the following forms:

SR-OOl2

:fmt

var:fmt

A format item not associated with a variable,
such as the following:

:fmt :2x
fmt 2x

:fmt :/
fmt /

A variable name and the format used to read a
value into it

The format can contain any of the edit descriptors available
to the Cray FORTRAN (CFT) user. The format cannot contain
commas unless the entire list item is enclosed in
parentheses.

Part 1
3-37 A

SR-0012

The variable can refer to a single word, to an array, to a
single register, or to an array of registers, and can take
any of the following forms:

addp Change the contents of a single word (for
example, LABEL-2 or W.1778).

addp(count)Read values for oount words beginning at
addp.

addp(oount!inop)
Read values for count words beginning at
addr and applying an increment of inor
after each word. The default value for incp
is 1.

Change the contents of register pn (where r
is A, B, S, or T and n is an octal register
number or a register designator of the form
.name.) •

R.VL or R.VM
Change the current vector length or vector mask.

R.pn(oount) Change oount registers starting with pn,
as in R.Al(S) •

R.Vn(count) Change the first oount elements of Vn.

R.Vn+e Change the eth element in Vn.

R. Vn+e(oount)
Change oount elements, beginning at the eth
element in Vn.

In all of the above, n must be either an octal number or
a previously defined register designator. oount and e
are represented by any absolute expression, where the
default radix is determined by the calling program. The
variable can also refer indirectly to a word or to an
array, using a saved register or a word in memory as a
pointer. The forms begin with @ and include:

@addp

@addp(oount)

Modify the word addressed by addp.

Modify oount words beginning with the word
addressed by addr.

Part I
3-38 A

@addp(oount!inop)

@R.Pn

@R.Pn(OOunt)

Modify oount words beginning with the word
addressed by addp, applying an increment of
inop after each word.

Modify the word addressed by register Pn.

Modify oount words beginning with the word
addressed by register pn.

Save flag. If SV=NO, the SAVEREGS and LOADREGS macros
are not invoked, and registers cannot be used for input
values; IN=YES must also be specified when SV=NO. The
default is SV=YES, which saves and restores all registers.

Inline Code flag. If IN=YES, all the code necessary to
perform the INPUT (except the standard subroutines called
by the SAVEREGS and LOADREGS macros) is generated inline.
The default is IN=NO, which causes 3 words of code to be
generated inline; the rest is contained in a subroutine
created by the macro.

UNIT=unit A local dataset name, an expression containing only
previously defined terms that resolves into a FORTRAN unit
number, or the previously defined label of a word
containing either a local dataset name or a FORTRAN unit
number. The default is $IN.

STRING=stping
Address of a packed character string that resides in
memory. When used in conjunction with the LTH parameter,
the STRING parameter allows input (decoding) from the
string. The END and ERR parameters cannot be used with
STRING and LTH.

LTH=length
Number of characters to be decoded from stPing

END=addp Optional address where a branch occurs if an EOF is
encountered

ERR=addr Optional address where a branch occurs if an error is
encountered during the read

Return conditions:
All registers, including the vector registers and the Vector Length
register, are saved and restored when SV=YES (the default).

SR-OOI2
Part I

3-39 A

OUTPUT - WRITE DATA

The OUTPUT macro transfers variable values and character strings from a
user's data area to a dataset or to an area in memory. Its syntax is as
close as possible to the syntax of the OUTPUT statement in SKOL.

The macro generates its code either inline or in a subroutine created by
the macro. In the latter case, a minimal amount of code is generated
inline.

The DEBUG option allows conditional execution of the OUTPUT macro. If
the label on the OUTPUT statement is DEBUG, no label is defined for the
generated code. Instead, unless the symbol DEBUG has been set to 1 by a
previously assembled SET or equate statement, code generation within the
macro is suppressed entirely.

Format:

Location Result Operand

OUTPUT (list),SV={~S},IN={~~S},UNIT=unit,

BUFFER=addr,LTH=length

list A list of variable names, array names, format items, and
string constants separated by commas. The list need not be
enclosed in parentheses if it contains only one element.

SR-00l2

If it consists of more than one element, the elements are
separated by commas. Null elements are ignored, so that
each element is preceded and followed by blanks.
However,an element cannot contain embedded blanks unless it
is enclosed in a second level of parentheses. Each
non-null element must have one of the following forms:

'string' or *string*
Any character string. The list item must be
enclosed in parentheses if the string contains
any blanks or commas. If the string is
delimited by apostrophes, any inner
apostrophes must be doubled. If it is
delimited by asterisks, no inner asterisks are
allowed.

Part 1
3-40 A

SR-0012

:fmt Format item that is not associated with any
variable; for example,

:fmt : 2x
fmt 2x

:fmt :/
fmt . /

The list item must be enclosed in parentheses
if fmt contains any commas or blanks.

$ PAGE , $SKIP, and $LINE

var:fmt

vap: :fmt

var

var(•••)

These special format items do not require a
colon prefix. They generate FORTRAN-style
carriage control characters at the beginning
of a line. When $SKIP or $PAGE is the first
list element, the appropriate literal
character (0 or 1) becomes the first element
of the OUTPUT format. $LINE is assumed to be
present by default unless the first list
element is a format item (:fmt). If $LINE,
$SKIP, or $PAGE occurs later in the list, a
comma and a slash are inserted before the
carriage control literal to force a new line.

Variable name and the format to be used
for its output

The same as var:fmt, except that the
variable's name and value are output together

The same as var::022

The same as var(•••) ::(4025)

The variable can refer to a single word, an array, a
single register, or an array of registers and can take
any of the following forms:

addp

addr(count)

Write the contents of a single word (for
example, LABEL-2 or W.177a).

Write count words beginning at addr.

addr(count!incp)
Write count words beginning at addr and
applying an increment of incr after each
word. The default value for incr is 1.

Part 1
3-41 A

SR-OOI2

R.rn Write the contents of register rn (where r
is A, B, S, or T and n is an octal register
number or a register designator of the form
.name) •

R.VL or R.VM
Write the current vector length or vector mask.

R.rn(oount)Write oount registers starting with rn,
as in R.AI(5).

R.Vn(oount)
Write the first oount elements of Vn.

R.Vn+e Write the eth element in Vn.

R. Vn+e (ooun t)
Write oount elements, beginning at the eth
element in Vn.

In all of the above, n must be either an octal number or
a previously defined register designator. oount and e
can be represented by any absolute expression.

The variable can also refer indirectly to a word or to an
array, using a saved register or a word in memory as a
pointer. The forms begin with @ and include:

@addr Write the word addressed by addr.

@addr(oount)
Write oount words beginning with the word
addressed by addr.

@addr(oount!inop)

@R.Pn

Write oount words beginning with the word
addressed by addr, applying an increment of
inor after each word.

Write the word addressed by register pn.

@R.rn(oount)
write oount words beginning with the word
addressed by register Pn.

Save flag. If SV=NO, the SAVEREGS and LOADREGS macros
are not invoked, and registers cannot be used for output;
IN=YES must also be specified if SV=NO. The default is
SV=YES, which saves and restores all registers.

Part I
3-42 A

Inline Code flag. If IN=YES, all the code necessary to
perform the OUTPUT (except the standard subroutines called
by the SAVEREGS and LOADREGS macros) is generated inline.
The default is IN=NO, which means that a minimal amount of
code is generated inline; the rest is contained in a
subroutine created by the macro.

UNIT=unit A local dataset name, an expression containing only
previously defined terms that resolves into a FORTRAN unit
number, or the previously defined label of a word
containing either a local dataset name or a FORTRAN unit
number. The default is $OUT.

UNIT=$LOG is treated as a special parameter value rather
than as a dataset name. If UNIT=$LOG, the OUTPUT macro
automatically encodes the data (using its own buffer)
rather than writing it directly, and uses the MESSAGE macro
to write it to both the user log and the system log.

OUTPUT looks at the first eight characters of the formatted
line. The content of the first eight characters of a
message ID is:

V//I//II////I///I///////f///////I///////)

where A is a blank space. If the first eight characters do not
match the above, OUTPUT inserts the following string:

BUFFER=addr
Address of a packed character buffer used instead of an external
dataset to accept the output

LTH=length
Number of characters to be encoded (output) into the buffer

Return conditions:
All registers, including the vector registers and the Vector Length
register, are saved and restored when SV=YES (the default).

SR-0012
Part 1

3-43 A

PERMANENT DATASET MACROS

The permanent dataset macro instructions are a subset of the system
function requests. Each macro generates a call to the Cray Operating
System (COS) or creates a table to be used later in such a call. The
function code value is stored in register SO; Sl and S2 provide optional
arguments. The function code is processed when the program exit
instruction is executed.

The permanent dataset macro instructions are divided into two
categories: those that define and those that manage permanent datasets.

PERMANENT DATASET DEFINITION MACROS

4

The PDD macro generates a parameter table containing information about
the dataset. The ACCESS, ADJUST, DELETE, DISPOSE, PERMIT, SAVE, and
SUBMIT macros involved in permanent dataset management use the Permanemt
Definition Dataset Table (PDD). For more information on the PDD, see the
CRAY-OS Version 1 Reference Manual, publication SR-OOll. Thus, you must
use the PDD macro with the permanent dataset management macros. For a
description of the DISPOSE and SUBMIT macros, see Dataset Management
Macros, part 1, section 2. The others are described later in this
section.

The LDT macro generates a table containing information required to
process labels for tape datasets. You must use the LDT macro with the
PDD and ACCESS macros in a program accessing a labeled tape dataset if
you want label processing.

LDT - CREATE LABEL DEFINITION TABLE

The LDT macro creates a table called the Label Definition Table (LDT).
This macro does not produce executable code; moreover, you should not
place it in in-line code. You must use the LDT macro with the PDD and
ACCESS macros in a program accessing a labeled tape dataset.

SR-0012
Part 1

4-1 A

Format:

Location Result Operand

ldttag

ldttag

LDT CV=ev,FD=fd ,VOL=(vsnl,vsn2,···vsnn),
FSEC=fsee,FSEQ=fseq,GEN=gen,GVN=gvn,CDT=yyddd,
XDT=yyddd,RF=rf,RS=Ps,MBs=mbs

Symbolic address of the LDT; identical to ldt on PDD
macro.

Parameters are in keyword form.

CV=ev

FD=fd

Foreign dataset conversion mode. CV indicates if implicit
data conversion is to be done by the run time library. CV
values are:

ON Data conversion turned on. ON causes the library to
convert the foreign internal representation to or
from Cray internal representation, according to the
I/O list.

OFF Data conversion turned off. The data type is not
considered when OFF is specified. Full Cray words
are moved to or from the foreign dataset.

Foreign tape dataset translation identifier. fd is a
3-character code which indicates that foreign dataset
translation is to be performed on the dataset. This
parameter is required for run time translation. Valid
values for FD are:

IBM IBM compatible sequential file
CDC Control Data compatible sequential file

vOL=(vsni)
Volume identifier list. A list of 6-character alphanumeric
volume identifiers, separated by commas, that comprise the
tape dataset. The maximum number of volume identifiers per
dataset is specified by an installation parameter.

FSEC=fsee

SR-0012

File section number. A number from 1 through 9999
specifying the volume in the dataset. The first section
(or volume) of a dataset is numbered 0001. The default is 1.

Part 1
4-2 A

FSEQ=fseqtFile sequence number. A number from 1 to 9999 identifying
this file among the files of this set. The first file is
numbered 0001. The default is 1.

GEN=gent Generation number. A number from 1 to 9999 distinguishing
successive generations of the file. The default is 1.

GVN=gvnt Generation version number. A number from 1 to
9999 distinguishing among successive iterations of the same
generation. The default is o.

CDT=yyddd Creation date. yy specifies the year and is a number
from 0 to 99. ddd specifies the day within the year and
is a number from 001 to 366 indicating the creation date
for this file.

XDT=yyddd Expiration date. The expiration date is in the same
format as the creation date, indicating the date when this
file can be overwritten.

Tape dataset record format. pf is a 1- to 8-character
code describing the record type. pfvalues for IBM tape
datasets are:

U Undefined format
F Fixed format
FB Fixed blocked format
V Variable format
VB Variable blocked format
VBS Variable blocked spanned format

For Control Data Corporation (CDC) tape datasets, pf
values are:

IIW SCOPE internal tape format, internal block type,
control word record type

SIIW System or SCOPE internal tape format, internal
block type, control word type

lOW Internal tape format, character count block type,
control word record type

SlOW System or SCOPE internal tape format, character
count block type, control word record type

ICZ Internal tape format, character count block type,
zero byte record type

SICZ System or SCOPE internal tape format, character
count block type, zero byte record type

t Deferred implementation

SR-0012
Part 1

4-3 A

RS=ps

lCS Internal tape format, character count block type,
system-logical record type

SICS System or SCOPE internal tape format, character
count block type, system-logical record type

Record size. ps is expressed in units of 8-bit bytes.

MBs=mbs Maximum tape block size; that is, the number of 8-bit bytes
in the largest tape block to be read or written. The
maximum size allowed at the installation and the default
are specified as installation parameters.

PDD - CREATE PERMANENT DATASET DEFINITION TABLE

The PDD macro creates a parameter table called the Permanent Dataset
Definition Table (PDD). This macro is nonexecutable and must accompany
the ACCESS, SAVE, DELETE, ADJUST, PERMIT, DISPOSE, or SUBMIT macros in a
program. It cannot appear in inline code.

Format:

Location Result

pddtag PDD

Ooerand

DN=dn,PDN=pdn,SDN=sdn,ID=uid,MF=mf,TID=tid,

DF=df,DC=da,SF=sf,RT=pt,ED=ed,RD=pd,WT=wt,

MN=mn,DT=dt,cs=as,LB=lb,LDT=ldt,

NEW={ON },MSG={ON },UQ={ON },WAIT={ON },
OFF OFF OFF OFF

DEFER={ON },NRLS={ON } ,EXO={ON },SID=mf,DID=mf ,
OFF OFF OFF

OWN=OV,PARTIAL={~~S}'PAM=m'ADN=adn,ADNM=m,

pddtag Symbolic address of the PDD Table

SR-OOl2
Part 1

4-4 A

Parameters are in keyword form; the only required parameter is DN.
Parameters apply only to mass storage datasets, unless otherwise noted.

DN~n

PDN=pdn

SDN=sdn

ID=uid

TID=tid

DF~f

SR-0012

Dataset name. DN is a required parameter. This applies to
mass storage or tape datasets.

Permanent dataset name. The default value is dn. This
applies to mass storage or tape datasets.

Staged dataset name; 1- to IS-alphanumeric characters by
which the dataset is known at the destination mainframe.
The default is the local dataset name (DN).

User identification; 1- to a-alphanumeric characters
assigned by the dataset creator.

Mainframe identifier; 2 alphanumeric character
identification. This parameter identifies the front-end
station where the dataset is to be staged. If omitted, the
mainframe where the issuing job originated is used. If MF
is given a value of CRAY ID and DC=IN, the dataset is
disposed to the Cray system input queue, after first
issuing a warning message. This applies to mass storage or
tape datasets.

NOTE

If using the DISPOSE macro, see the description
of the DISPOSE control statement in CRAY-OS
version 1 Reference Manual, publication SR-OOll.

Terminal identifier; 1- to a-alphanumeric character
identifier for the destination terminal. The default is
the terminal of job origin.

Dataset format. This parameter defines whether the
destination computer is to perform character conversion.
The default is CB.

df is a 2-character alpha code defined for use on the
front-end computer system. CRI suggests support of the
following codes:

Part 1
4-S A

DC~O

SR-OOl2

CD Character/deblocked. Th~ front-end system performs
character conversion from a-bit ASCII, if necessary.

CB Character/blocked. No deblocking is performed at the
Cray mainframe before staging. The front end
performs deblocking and character conversion from
a-bit ASCII, if necessary.

BD Binary/deblocked. The front-end system performs no
character conversion.

BB Binary/blocked. The front-end computer performs no
character conversion but does perform deblocking. No
deblocking is performed at the Cray computer before
staging.

TR Transparent. No blocking/deblocking or character
conversion is performed.

IC Interchange tape datasets only. In interchange
format, each tape block of data corresponds to a
single logical record in COS blocked format.

Other codes can be added by the local site. Undefined
pairs of characters can be passed but are treated as
transparent mode by the Cray system.

Disposition code; disposition to be made of the dataset.
The default is PR (print).

do is a 2-character alphabetic code describing the
destination of the dataset as follows:

IN Input (job) dataset. The dataset is to be queued as
a job on the mainframe specified by the MF parameter.

ST Stage to mainframe. Dataset is made permanent at the
mainframe designated by the MF parameter.

SC Scratch dataset. Dataset is deleted.

PR Print dataset. Dataset is printed on any printer
available at the mainframe designated by the MF
parameter. PR is the default value.

PU Punch dataset. Dataset is punched on any card punch
available at the mainframe designated by the MF
parameter.

Part 1
4-6 A

SF=sf

ED=ed

WT=wt

MN9mn

DT=dt

CS=os

LB=tb

SR-0012

PT Plot dataset. Dataset is plotted on any available
plotter at the mainframe designated by the MF
parameter.

MT write dataset on magnetic tape at the mainframe
designated by the MF parameter.

Special form information to be passed to the front-end
system; 1- to 8-alphanumeric characters. SF is defined
by the needs of the front-end system. Consult site
operations for options.

Retention period; a value between 0 and 4095 specifying
the number of days a permanent dataset is to be retained
by the system. The default is an installation-defined
value.

Edition number; a value between 1 and 4095 assigned by
the dataset creator. The default is the highest edition
number known to the system.

Read control word; from 1- to 8-alphanumeric characters
assigned by the dataset creator. The default is no read
control word.

write control word; from 1- to 8-alphanumeric characters
assigned by the dataset creator. The default is no write
control word.

Maintenance control word; from 1- to 8-alphanumeric
characters assigned by the dataset creator. The default
is no maintenance control word.

Tape dataset generic device name. This parameter is
required for tape datasets; it is ignored if you use it
for mass storage datasets. See site operations for legal
values and meanings.

Character set of tape dataset, for data only. This
parameter applies only to tape datasets, and is ignored
if you use it for mass storage datasets.

AS ASCII; default.
EB EBCDIC

Tape dataset label processing option. This parameter
applies only to tape datasets; it is ignored when you use
it for mass storage datasets.

Part 1
4-7 A

LDT=ldt

NEW={ON }
OFF

MSG={ON }
OFF

UQ={ON }
OFF

WAIT={ON }
OFF

BLP Bypass label processing t
FSL Field IBM standard labeled tapes
FNL Field unlabeled tapes, default.
FAL Field ANSI standard labeled tapes
SL IBM standard labeled tapes
NL Unlabeled tapes, default.
Al ANSI standard labeled tapes

Label Definition Table (LOT). The name of the LOT for
tape processing. This parameter applies only to tape
datasets, and is ignored when you use it for mass storage
datasets. ltd must match ldttag on the LOT macro.

Tape dataset is to be created; the dataset must be written
starting at the beginning of information.

ON Tape dataset to be created
OFF Tape dataset not to be created; default.

Normal completion message suppression indicator. The
default is OFF, and applies only to mass storage.

ON Indicator is set, message is suppressed
OFF Indicator is cleared, message is not suppressed

Unique access. If you specify UQ, write, maintenance,
and/or read permission is granted if the appropriate write
or maintenance control words are specified. The default
(OFF) is multiread access if the read control word is
specified (if one exists). UQ applies only to mass storage.

Job wait/nowait. If you specify WAIT=ON, the job waits for
the dataset to be transferred to the front-end system. If
the transfer is canceled, the job is aborted. However, if
you specify WAIT=OFF, the job resumes immediately and does
not wait for the dataset to be transferred. If the
transfer is canceled, the job is not aborted. If you omit
the parameter, an installation default parameter is used.
WAIT applies only to mass storage.

t Deferred implementation

SR-OOl2
Part 1

4-8 A

DEFER= {ON}
OFF

NRLS={ON }
OFF

EXO={ON }
OFF

SID=mf

DID=mf

OWN=ov

SR-OOI2

Deferred disposition. When you specify DEFER, disposing of
the dataset is delayed until the dataset is released either
by a RELEASE request or by termination.

The default is OFF1 the dataset is disposed immediately,
and applies only to mass storage.

No release. When you specify NRLS=ON, the dataset remains
local to the job after a DISPOSE request has been
processed. The default is NRLS=OFF, and applies only to
mass storage.

NOTE

The dataset is available only for reading when
NRLS=ON is specified, until all dataset staging
is complete.

Execute-only dataset. EXO=ON sets the execute-only status
of a dataset. EXO=OFF clears the execute-only status.
The status is ignored if you omit EXO.

Default source mainframe identifier: 2 alphanumeric
characters. This parameter defines the source front-end
station where all staging to the Cray system mainframe
defaults.

Default destination mainframe identifier: 2 alphanumeric
characters. This parameter defines the destination
front-end station where all staging from the Cray system
mainframe defaults.

NOTE

Use of the MF parameter with either SID or DID
is not allowed.

Ownership value1 default is job's ownership value.

Part I
4-9 A

PARTIAL={~~S}

PAM=m

ADN=adn

ADNM=m

USR=ov

Partial delete option (for more information on the partial
delete option, see CRAY-OS Version I Reference Manual,
publication SR-OOlI); default is NO.

Public access mode; default is installation defined.

Attributes dataset name; default is no adn.

Attributes to be propagated from adn; default is all.

Access tracking option (for more information on the access
tracking option see the CRAY-OS Version I Reference Manual,
publication SR-OOII); default is installation defined.

Remove permit option; default is NO.

Dataset user number

PERMANENT DATASET MANAGEMENT MACROS

You can access, save, adjust, delete, and control other users' access to
your permanent datasets by using the permanent dataset management
macros. The POD macro must accompany all of these macros in the job.

ACCESS - ACCESS PERMANENT DATASET

The ACCESS macro associates an existing permanent dataset with a job and
assures that the user is authorized to use this dataset. ACCESS must
precede any other references for the permanent dataset, including an
ASSIGN control statement.

At least one of read, write, or maintenance permissions must be granted,
either by default or by specifying the corresponding control word. If no
permissions are granted, access is denied. If permanent dataset privacy
is enabled, permission must be granted via either the PAM setting or the
PERMIT mechanism for you to access the dataset if the ownership value is
not the same as that of your job.

SR-0012
Part I

4-10 A

Format:

I LocationlResult

ACCESS

1000r~nd
pddtag

pddtag Address of PDD

ADJUST - ADJUST PERMANENT DATASET

The ADJUST macro changes the size of a permanent dataset, that is,
redefines EOD for the dataset. A dataset must be accessed with at least
write permission and unique access within a job before an ADJUST is
issued.

If all of the following conditions are true for the dataset, ADJUST makes
a call to close the dataset and consequently to flush the buffer. This
assures that all the data is written to the dataset. The dataset:

• Must be currently opened for output,

• Has not had an EOD written,

• Is being written sequentially,

• Has COS blocked dataset structure, and

• DSP is managed by COS.

ADJUST does not close the dataset unless all of these conditions are true.

ADJUST applies to mass storage datsets only, and is ignored when you use
it with tape datasets.

Format:

I LocationlResult

ADJUST pddtag

pddtag Address of PDD

SR-0012
Part 1

4-11 A

DELETE - DELETE PERMANENT DATASET

The DELETE macro removes a permanent dataset from the Dataset Catalog
(DSC). If the dataset is mass storage, it must be accessed within a job
with at least maintenance permission and unique access before you issue a
DELETE. If the dataset is a tape dataset, a request is made to the
servicing front-end, if any, to remove the dataset from its catalog.

Format:

DELETE

I Operand

pddtag

pddtag Address of PDD

PERMIT - EXPLICITLY CONTROL ACCESS TO DATASET

The PERMIT macro allows you to explicitly designate user permanent
dataset availability. The macro works exactly the same as the PERMIT
control statement described in CRAY-OS Version 1 Reference Manual,
publication SR-OOll.

The dataset need not be local for you to issue a PERMIT. However, if you
use an ADN parameter to define the PDD, that dataset must be local and
permanent.

Format:

I LocationlResult

PERMIT pddtag

pddtag Address of PDD

SAVE - SAVE PERMANENT DATASET

The SAVE macro enters a local mass storage dataset in the Dataset
Catalog, making it permanent. A permanent dataset is uniquely identified
by permanent dataset name, user identification, ownership, and edition
number. If the dataset is a tape dataset, a request is sent to the
servicing front-end, if any, to catalog the dataset.

SR-0012
Part 1

4-12 A

SAVE has a twofold function:

• Creation of an initial edition of a permanent dataset

• Creation of an additional edition of a permanent dataset

If all of the following conditions are true for the dataset, SAVE makes a
call to close the dataset and consequently to flush the buffer. This
assures that all the data is written to the dataset. The dataset:

• Is currently opened for output,

• Has not had an EOO written,

• Is being written sequentially,

• Has COS blocked dataset structure, and

• OSP is managed by cos.

SAVE does not close the dataset unless all of these conditions are true.

Format:

I LocationlResult

SAVE pddtag

pddtag Address of POD

SR-0012
Part 1

4-13 A

CFT LINKAGE MACROS

The eFT linkage macros handle subroutine linkage between eFT-compiled
routines and CAL-assembled routines.

You can use these macros to:

• Generate code for standard entry and exit sequences

• Build the proper linkages for subroutine calls

• Define symbolic names for passed-in arguments

• Assign symbolic names to Band T registers

• Allocate space for local temporary variable storage

• Fetch argument addresses

• Retrieve the number of arguments passed to a subroutine

• Load and store local temporary variables

• Return the actual address of local temporary variable storage

These macros maintain compatibility across versions of eFT.

ENTRY BLOCK DESIGN

with the use of the CFT linkage macros, you can make the entry section of
a CAL routine to resemble the entry area of a CFT subroutine. The
DEFARG, DEFB, DEFT, ALLOC, MXCALLEN, and PROGRAM macros define the
calling list, Band T register usage and temporary storage space, and
routine type. These macros are generally used at the beginning of a
module and can be considered nonexecutable code or data declarations.

SR-0012
Part 1

5-1 A

5

When you use these macros, you must specify them in the following order:

1. DEFARG macro
2. DEFB macro
3. DEFT macro
4. ALLOC macro
5. MXCALLEN macro
6. PROGRAM or ENTER macro

DEFARG - DEFINE CALLING PARAMETERS

The DEFARG macro defines a symbolic name for a passed-in parameter. The
symbols are assigned to the passed-in arguments in the order in which
they are defined. For example, the symbol specified by the first DEFARG
is assigned to the first argument, the symbol specified by the second
DEFARG is assigned to the second argument, and so on. These symbols can
be used in the ARGADD macro, which is defined later. The ENTER macro
also uses the number of arguments defined to control the generation of
the entry sequence.

Format:

I LocationlResult

name DEFARG

I Operand

name Required symbol to be assigned to the passed-in argument

Example:

Location Result Operand Comment
1 10 20 35

COUNT DEFARG Defines argumen t named COUNT

DEFB - ASSIGN NAMES TO B REGISTERS

The DEFB macro reserves a B register and assigns a symbolic name to it.
If B registers are not assigned explicitly, the DEFB macro uses the next
available B register. The B registers can be assigned from either of two
classes, temporary or nontemporary.

Eight temporary B registers are available (B70 through B77). Temporary B
registers are not saved on entry to a subroutine nor preserved across

SR-0012
Part 1

5-2 A

calls. Using these registers does not cause overhead on entry or exit.
You should not use temporary B registers if you are calling lower level
routines, since the registers can be destroyed during the call.

Format:

Location Result Operand

name DEFB exptioit register designator

name Required symbol to be assigned to a B register

exptioit register designator

Example:

Location
1

VADDR

SEGS

LEN

SR-0012

Specific B register to be assigned the symbolic name.
Values can be blank, TEMP, or an expression.

This parameter is optional. If this field is blank, the
next available B register is assigned starting with the
first register after those used by the calling sequence.
If the word TEMP is used in this field, then the next
available temporary B register is assigned starting with
B70.

An explicit register can also be designated by coding an
expression in this field. Coding a specific number in
this field should be avoided since the number of B
registers used by the CFT calling sequence may change,
possibly invalidating the specific register usage. This
macro also checks if a register has been previously
assigned a name and prohibits its reuse.

Result
10

DEFB

DEFB

DEFB

O~erand

20

VADDR+7

TEMP

Part 1
5-3

Comment
35

Assigns next av
nontemporary B

Skips 7 B regis
assigning next

Assigns next av
temporary B reg

ailable
register

ters before
nontemporary

ailable
ister

A

DEFT - ASSIGN NAMES TO T REGISTERS

The DEFT macro reserves a T register and assigns a symbolic name to it.
If you do not assign T registers explicitly, the DEFT macro uses the next
available T register. You can assign the T registers from either of two
classes, temporary or nontemporary.

Temporary registers are neither saved nor preserved across calls. Eight
temporary T registers are available (T70 through T77). Temporary T
registers are not saved on entry to a subroutine; using these registers
causes no overhead on entry or exit. Do not use temporary T registers if
you are calling lower level routines, because the call may destroy the
registers.

Format:

n~e DEFT expli~it ~egiste~ designato~

name Required symbol to be assigned to a T register

expli~it ~egiste~ designato~

Example:

Location
1

COEFF

SR-0012

Specific T register to be assigned the symbolic name.
Values can be blank, TEMP, or an exp~ession.

This parameter is optional. If this field is left blank,
the next available T register is assigned starting with the
first register after those used by the calling sequence.
If the word TEMP is used in this field, then the next
available temporary T register is assigned starting with
T70.

An explicit register can also be designated by coding an
expression in this field. Coding a specific number in
this field should be avoided since the number of T
registers used by the CFT calling sequence can change,
possibly invalidating specific register usage. This macro
also checks if a register has been previously assigned a
name and prohibits its reuse.

Result
10

DEFT

Operand
20

Part 1
5-4

Comment
35

Assigns next
nontemporary

av ailable
register T

A

Example (continued):

Location Result Operand
1 10 20

XMULT DEFT COEFF+3

SIZE DEFT TEMP

Comment
35

Skips 3 T regis
assigning next

Assigns next av
temporary T reg

ters before
non temporary

ailable
ister

ALLOC - ALLOCATE SPACE FOR LOCAL TEMPORARY VARIABLES

The ALLOC macro establishes memory storage space (stack) and assigns a
symbolic name to it. This space is used for local storage within the
routine and is not assumed to be zeroed on entry or preserved on exit.
In most cases, ALLOC uses the CAL BSS pseudo instruction (see CAL
Assembler Version 1 Reference Manual, CRI publication SR-OOOO) to
dynamically allocate stacks at run time. ALLOC does not use the BSS
pseudo instruction when reentrant code is to be generated. The symbolic
names defined by this macro are used in conjunction with the LOAD, STORE,
and VARADD macros explained later.

Format:

I LocationlResult

name ALLOC

name

size

Example:

Location
1

WIDTH

VTEMP

SR-0012

Symbolic name associated with the first word of the storage
area. This parameter is required.

Size in words of the area to be allocated. This field can
be any valid CAL expression. This parameter is optional;
the default is 1 word.

Result
10

ALLOC

ALLOC

Operand
20

D'64

Part 1
5-5

Comment
35

Allocates 1 wor d of memory
storage space

Allocates 64 wo rds of memory
storage space

A

MXCALLEN - DECLARE MAXIMUM CALLING LIST LENGTH

This macro allocates storage space for an argument list to be passed to
call-by-address routines. You can calculate the length by checking all
calls to call-by-address routines and determining the maximum argument
list length used by any call. You only need this macro when you use
dynamic stack management.

Format:

length

Example:

Location
1

MXCALLEN

lOperand

length

Maximum length of any argument list passed to a
call-by-address routine. The length does not include the
argument list header word. This parameter is required.

Result Operand
10 20

MXCALLEN 7

Comment
35

Defines 7 words
store argument
call-by-address

to be used. to
lists for
routines.

PROGRAM - DECLARE PROGRAM START POINT

The PROGRAM macro generates a starting point for a CAL mainline routine.
This macro uses a START pseudo instruction to declare a main entry point
for a program and establishes symbols required for the LOAD, STORE,
VARADD, CALL, and CALLV macros. When you use this macro with stacks, it
generates stack storage space for Band T register save areas and local
temporary variables.

Format:

name PROGRAM

I Operand

name

SR-0012

Symbolic name associated with the start point. This
parameter is required.

Part 1
~6 A

STKPTR=stkptr
STKPTR specifies an A register to contain the base-of-stack
frame pointer on exit from the PROGRAM macro. The LOAD,
STORE, VARADD, CALL and CALLV macros default to use this
register to load the stack frame pointer. Only registers
Al through AS and A7 are valid options for the STKPTR
parameter (register A6 is used as the argument list
pointer). This parameter is optional~ the default for the
stack pointer register is A7.

NOTE

The STKPTR parameter is used only when dynamic
stack management is in effect at run time.

SCR=sar Scratch register designates a default register to be used
by the LOAD, STORE and VARADD macros. The valid options
are registers Al through AS and A7. The scratch register
must be different from the register you specify for the
STKPTR parameter. This is an optional parameter; the
default value is AS.

SUBROUTINE LINKAGE

The subroutine linkage macros perform the following functions:

• CALL and CALLV external subroutines using the correct calling
sequences for Cray products. These macros provide traceback
information for error processing.

• ENTER sets up a subroutine entry point for CALL or CALLV to use.
ENTER helps design the entry block (see ENTRY block design earlier
in this section) and provides traceback information.

• EXIT performs any cleanup needed before returning to the calling
routine, then returns control to the subroutine caller.

CALL - CALL A ROUTINE USING CALL-BY-ADDRESS SEQUENCE

The CALL macro builds an argument address block for a call-by-address
routine and invokes the routine. The address block is built separately
and pointed to by register A6.

SR-OOI2
Part I

5-7 A

Format:

Location Result Operand

name

CML name,apgtist,STKPTR=stkptp,USE=use

Name of the call-by-address routine being called or an A
register containing the address of the routine to call.
This is a required parameter.

List of arguments to be passed to the call-by-address
routine. The list can consist of literal values,
registers, or memory locations. If you include several
items in the argument list, you must separate the items
with commas and enclose them in parentheses. This is an
optional parameter.

NOTE

If you specify registers as arguments, the
contents of these registers are stored in the
argument list passed to the called routine. For
example, if you specify Sl in the apgtist, the
contents of Sl are stored in the argument list
passed to the called routine and the called
routine regards the contents of Sl as the
address where the actual argument is stored.

STKPTR=stkptp

USE=use

SR-0012

An A register currently containing the value of the stack
pointer. The macro uses this register as an index to
compute memory addresses. This parameter prevents the
stack pointer from being reloaded. This is an optional
parameter; required only when stacks are in use.

An A or B register to recover the dynamic stack pointer.
If the current pointer to the stack has been destroyed, you
must code a USE parameter to force a reload of the stack
pointer value. If the USE parameter specifies an A
register, do not use that register in the argument list.
Likewise, do not use the USE and STKPTR parameters at the
same time, because STKPTR specifies that the stack pointer
is already available and USE specifies that the stack
pointer must be reloaded.

Part 1
5-8 A

Example:

Location
1

If you specify neither STKPTR nor USE, warning messages are
issued and the stack pointer register specified on the
ENTER macro is reloaded with the current stack pointer
value1 default is A7. The stack pointer provides an area
to store the argument address list when dynamic memory
management is being used. The stack pointer value also
computes the addresses of local temporary variables defined
by the ALLOC macro. This is an optional parameter1
required only when stacks are in use.

Result _Operand
10 20

CALL SASUM, (N,A3,l)
STKPTR=A7

Comment
35

Calls routine S
call-by-address
first argument
memory location
argument is sto
a location poin
The third argum
value of I and

ASUM using
method. The

is stored in
N. The second

red in memory at
ted to by A3.
ent is a literal
is defined as a

memory constant
pointer is cont
need not be reI

The stack
ained in A7 and
oaded.

CALLV - CALL A ROUTINE USING CALL-BY-VALUE SEQUENCE

The CALLV macro generates a call by value to an external subroutine. The
arguments for the routine are passed in registers Sl through S7.
Register Sl contains the first argument, S2, the second, etc. A word is
built containing the number of arguments and pointed to by register A6.

Format:

Location Result Qperand

name

SR-0012

CALLV name,aPgti8t,STKPTR=8tkpt~,USE=U8e

Name of the call-by-value routine being called or an A
register containing the address of the routine to call.
This parameter is required.

Part 1
5-9 A

axag7,ist A list of arguments to be passed to the call-by-value
routine. The list can consist of literal values,
registers, or memory locations. If several items are in
the argument list, separate the items with commas and
enclose them in parentheses. This parameter is optional.

STKPTR=stkptp

USE=US8

Example:

Location
1

SR-0012

An A register currently containing the value of the stack
pointer. CALLV uses this A register as an index to compute
memory addresses. This parameter prevents the stack
pointer from being reloaded. This parameter is optional,
required only when data items passed as arguments are on
the stack.

An A or B register to recover the dynamic stack pointer.
If the current pointer to the stack has been destroyed, you
have to code a USE parameter to force a reload of the stack
pointer value. If you specify an A register for the USE
parameter, do not use that register in the argument list.
Likewise, do not code the USE and STKPTR parameters at the
same time, since STKPTR specifies that the stack pointer is
already available and USE specifies that the stack pointer
must be reloaded.

If you specify neither STKPTR nor USE, warning messages are
issued and the stack pointer register specified on the
ENTER macro is reloaded with the current stack pointer
value, default is A7. The stack pointer is needed to
compute the addresses of local variables defined by the
ALLOC macro. This is an optional parameter, required only
when stacks are in use.

Result
10

CALLV

Operand
20

RTOI%, (S5, 5)

Part 1
5-10

Comment
35

Call routine R TOI% using
ethod. The call-by-value m

first argument
from register S
argument is gen
loading S2 with
of 5. Since ne
arguments is on
STKPTR or USE p
needed.

is moved to Sl
5. The second
erated by

a literal value
ither of these
the stack, no

arameter is

A

CAUTION

The CALLV macro loads the S registers in order without
checking if the S register being loaded is used later
as an argument. CALLV ROUTINE, (S2,Sl) causes Sl to be
loaded from S2 and S2 to be loaded with the modified
contents of Sl. This example results in both Sl and S2
being loaded with the original contents of S2.

ENTER - GENERATE CFT-CALLABLE ENTRY POINT

The ENTER macro generates code for a standard call from CFT. The macro
generates call-by-value or call-by-address entry points. It also
generates code conditionally for both types of CFT calling sequences and
for reentrant entry sequences. The ENTER macro also optionally forces
loads of argument values and aligns the first executable statement on an
instruction buffer boundary.

Format:

Lo

n~e

name

NP=np

NB=nb

SR-0012

ENTER

d

NP=np,NB=nb,NT=nt,MODE=mode,TYPE=type,
SHARED= shape, PRELOAD=np,ARGSIZE= size,
ALIGN=ali~n STKPTR=stkptp,SCR=SCP,
COPYIN={O l'INsRTMAc=(macn~e,(maClist))

OFF

Symbolic name associated with the entry point. This
parameter is requried.

Number of parameters expected to be passed to the routine.
This parameter is optional; the default value is the number
of parameters defined using the DEFARG macro.

Number of nontemporary B registers used by the routine.
These registers are saved on entry and restored on exit.
nb is the number of B registers used in addition to those
used by the calling sequence. This parameter is optional;
the default is the number of nontemporary B registers
defined using the DEFB macro.

Part 1
5-11 A

NT=nt Number of nontemporary T registers used by the routine.
These registers are saved on entry and restored on exit.
Currently no T registers are used in the calling sequence.
This parameter is optional; the default is the number of
nontemporary T registers defined using the DEFT macro.

MODE~ode Entry sequence to be generated. This parameter is
optional. Available options are USER, LIBRARY, and BASELVL.

USER mode entry is default.

LIBRARY mode entry is intended for special use in the
libraries. It is a somewhat faster method, but is also
more restrictive because LIBRARY mode makes more
assumptions about registers being returned.

BASELVL mode is a simplified and restrictive entry
sequence intended for use in the primitive level library
routines that make no external calls.

On completion of the entry sequence for MODE=LIBRARY and
MODE=BASELVL, register Al contains the traceback
information for the routine. This must be preserved
during execution for traceback to function properly.

**

CAUTION

MODE=LIBRARY and MODE=BASELVL are intended
for use by Cray systems programmers and are
not for general use.

**

TYPE=type Method to be used for passing arguments. The available
options are VALUE, ADDRESS and BOTH. This parameter is
optional; the default entry type is ADDRESS.

SR-0012 .

TYPE=ADDRESS entry produces a standard CFT callable entry
point. This assumes that the arguments are passed to the
routine by an argument address list that contains the
addresses of the actual arguments.

TYPE=VALUE assumes that the arguments are passed to the
routine in the S or V registers. TYPE=VALUE entries are
incompatible with the method of calling subroutines used
by CFT (except for functions declared by CFT's VFUNCTION
directive) •

Part 1
5-12 A

TYPE=BOTH generates both entry types, an ADDRESS entry
followed by a VALUE entry. To distinguish between these
two entry points, a % is appended to the name for the
call-by-value entry point.

SHARED=shape
Name associated with a previously defined ENTER macro.
This parameter is optional. If you specify this
parameter_, the named entry and the current entry share
storage space for the B & T save area. SHARED is intended
for routines such as SIN and COS, which also share code
sequences.

The NB and NT parameters cannot be used when you use
SHARED. The number of Band T registers saved, the amount
of memory allocated, and the maximum calling list length
must be the same for both entries being shared. The name
you specify for the SHARED parameter must precede the
current entry. You cannot use any unshared entries
between the current entry and the entry being shared.

PRELOAD=np
Number of arguments to be loaded into the S or V registers
in a call-by-address entry. If the first character of the
entry point name is %, then the arguments are loaded into
V registers, otherwise, arguments are loaded into S
registers. V register arguments have two parts: the
first part is the base address of the argument, the second
part is the address of the skip distance between argument
values. This parameter is optional, the default number of
registers to preload is 0 for MODE=USER and is the value
of np for MODE=LIBRARY and BASELVL entries.

ARGSIZE=size

SR-0012

Size of the arguments to preload. The options are
ONEWORD, TWOWORD, and THREEWORD. This option is only
necessary when MODE=ADDRESS or BOTH and PRELOAD are being
used. This parameter is optional, the default is ONEWORD.

When you specify ARGSIZE=ONEWORD, arguments are loaded in
order into the corresponding registers with the first
argument loaded in Sl or VI, the second argument loaded in
S2 or V2, etc. No more than seven I-word arguments can be
preloaded.

Part 1
5-13 A

However, when you specify ARGSIZE=TWOWORD, arguments are
assumed to consist of 2 words stored in memory with the
most significant word first. The 2-word arguments are
loaded into the registers with the first argument's most
significant word loaded into Sl or VI, and the first
argument's least significant word loaded into S2 or V2.
The second argument is loaded into S3 and S4, or V3 and
V4. No more than three 2-word arguments can be preloaded.

If you specify ARGSIZE=THREEWORD, preloading is similar to
2-word arguments, with the exception that registers Sl, S2
and S3, or VI, V2 and V3 are loaded. Only two 3-word
arguments can be preloaded.

ALIGN=align
Causes the entry macro to align the first executable
instruction of the entry sequence on an instruction buffer
boundary. The values for the ALIGN parameter are ON or
OFF. The ALIGN=ON option forces instruction buffer
alignment. This parameter is optional; the default value
for the ALIGN parameter is OFF.

STKPTR=stkptp
Specifies an A register to contain the base of stack frame
pointer on exit from the ENTER macro. The LOAD, STORE,
VARADD, CALL and CALLV macros default to use this register
to load the stack frame pointer. Only Al through AS and
A7 are valid options for the STKPTR parameter (register A6
is the argument list pointer). This parameter is
optional; the default value for the stack pointer register
is A7.

NOTE

The STKPTR parameter is used only when dynamic
stack management is in effect at run time.

SCR=sCp Specifies an A register to be used as a scratch register
during the entry sequence. This parameter is optional.
The valid options are Al through AS and A7. The scratch
register must be different from the register you specify
for the STKPTR parameter. The default value of the SCR
parameter is AS. The SCR parameter also serves to
designate a default value for the LOAD, STORE and VARADD
macros. You can code an SCR value on each of the macros,
which overrides the value on the ENTER macro, or code the
default of AS for that macro invocation only.

SR-0012
Part 1

5-14 A

COPYIN={ON }
OFF

Causes the ENTER macro to build code to convert the new
calling sequence to the old calling sequence. This
parameter is intended to aid in the conversion of routines
written for the old calling sequence. The values for this
parameter are ON and OFF. When COPYIN=ON is specified,
code is produced to translate the new calling sequence to
the old version. This parameter is optional and should
not be used on new programs and should be avoided on older
programs because of the overhead added to the entry
sequence. When COPYIN=ON is specified and the new calling
sequence is in effect, error traceback processing does not
function properly because of the incompatibilities between
the two calling sequences.

INSTRMAC=(macname,(maclist»

Examples:

Location
1

GETDATA

This parameter is optional and is only required when you
need special processing performed before the standard
entry sequence is executed. Cases where you may need
special processing include those such as preserving
registers before entry, and setting a hardware semaphore.
The code to be inserted is placed immediately following
any constants generated by the ENTER macro and immediately
preceding the code needed to perform the entry. You
should define special processing as a macro and reference
this macro name on the INSRTMAC parameter. The INSRTMAC
parameter causes the ENTER macro to invoke the
user-defined macro.

maclist consists of a list of parameters to be passed
to the user-defined macro specified by the INSRTMAC
parameter. This parameter is optional; however, if you
include it, maclist must follow macname and be
enclosed in parentheses, nested if necessary.

Result Operand Comment
10 20 35

ENTER MODE=USER,TYPE=ADDRESS,ALIGN=ON
I

Defines an entry point called GETDATA for a call-by-address routine.
Forces the first executable instruction to be aligned on an
instruction buffer boundary. The number of arguments to be passed to
this routine is defined by the number of DEFARG macros used. The B
and T registers to be saved are defined by the DEFB and DEFT macros.

SR-0012
Part 1

5-15 A

Location Result Operand Comment
1 10 20 35

FOLR ENTER NP=3,NB=7,NT=4,MODE=USER,TYPE=B
I

OTH

Defines two entry points to a routine. The first entry point is
FOLR, which is call by address. The second entry point is FOLR%,
which is call by value and not accessible from CFT. The number of
parameters passed to these entry points is explicitly defined to be 3
and must agree with the number of DEFARG macros if they are used.
Seven B registers are to be saved in addition to those used by the
calling sequence. These registers must agree with the definitions
provided by the DEFB macros if they are used. Four T registers are
to be saved in addition to those used by the calling sequence. These
registers must agree with the definitions provided by the DEFT macros
if they are used.

Location Result Operand Comment
1 10 20 35

SECDED ENTER NP=2,MODE=LIBRARY,TYPE=BOTH,ARG SIZE=TWOWORD,
STKPTR=A4,SCR=A5

I

Defines two entry points to a routine. The first entry point is
SECDED, which is call by address. The second entry point is SECDED%,
which is call-by-value. The number of parameters is explicitly
declared to be 2 and must agree with the number of DEFARG macros if
they are used. The arguments are declared to be 2 words long and are
preloaded for the call-by-address entry into registers Sl and S2 for
argument 1 and registers S3 and S4 for argument 2. Register A5 is
used for a scratch register during the entry sequence and is the
default scratch register for all LOAD, STORE, and VARADD macros.
Register A4 contains the base-of-stack pointer value if dynamic
stacks are used at run time. The shortened form of the entry
sequence used for library routines is generated. Register Al
contains a pointer to error traceback information on completion of
the entry sequence.

EXIT - TERMINATE SUBROUTINE AND RETURN TO CALLER

The EXIT macro constructs a subroutine exit sequence. The exit sequence
includes restoring any Band T registers saved by the entry sequence and
deallocating any dynamic memory storage used by a routine. The EXIT
macro also provides an alternate exit address for routines that require a
different exit, such as for error conditions.

SR-0012
Part 1

5-16 A

Format:

Location Result Operand

NB=nb

NT=nt

EXIT NB=nb,NT=nt,MoDE~ode,NAME=name,KEEP=keep,
ALTEXIT=altexit,INSRTMAC=(maOname,(maolist»

Number of nontemporary B registers to restore. This does
not include the B registers used by the calling sequence.
This parameter is optional~ the default is the number of B
registers saved by the last ENTER macro.

Number of nontemporary T registers to restore. This does
not include the T registers used by the calling sequence.
This parameter is optional~ the default is the number of T
registers saved by the last ENTER macro.

MODE=mode Exit sequence to be generated. mode is optional and can
be one of the following: USER, LIBRARY, and BASELVL; USER
mode exit is default.

LIBRARY mode exit is for special use in the libraries.
It is a faster exit method, because LIBRARY mode makes
more assumptions about registers being returned.

BASELVL mode is a very simplified and restrictive exit
sequence. BASELVL mode exit is intended for use in the
primitive level library routines that make no external
calls and should be used with extreme caution. Register
Al is assumed to contain the traceback information for
exit MODE=LIBRARY and MODE=BASELVL. This means· that
register Al must be preserved during the execution of a
routine if these exit types are to be used. This
parameter is optional. If you use MODE=BASELVL on entry,
then on exit you have to use MODE=BASELVL also.

CAUTION

MODE=LIBRARY and MODE=BASELVL are intended for
use by Cray systems programmers and are not for
general use.

NAME=name Name associated with the ENTER macro that corresponds to
this EXIT. This parameter is optional; the default is the
name of the last ENTER macro without a SHARED clause.

SR-0012
Part 1

5-17 A

KEEP=keep Causes the exit macro to preserve any A or S registers
used during the exit sequence. The values for the KEEP
parameter are ON or OFF. If you code KEEP=ON, then
registers B77 and B76 are used to save the A registers
needed by the exit code. KEEP=OFF destroys registers AO
and A7 during exit. This parameter is optional, the
default value for the KEEP parameter is OFF.

ALTEXIT=altexit
Specifies an A register containing an alternate return
address. This register should not be AO, AI, or A7. This
parameter is optional, the default is to return to the
calling routine.

I NSRTMAC= (macname, (maclist»

Examples:

Location
1

SR-0012

INSRTMAC is optional and is required only when special
processing is to be performed before the standard exit
sequence is executed. Cases where this might be necessary
include those such as restoring registers before exit or
clearing a hardware semaphore. The code to be inserted is
placed immediately following the standard exit sequence
and immediately preceding the jump to BOO. You should
define this special processing as a macro and reference
this macro name on the INSRTMAC parameter. The INSRTMAC
parameter causes the EXIT macro to invoke the user-defined
macro.

maclist consists of a list of parameters to be passed
to the user-defined macro specified by the INSRTMAC
parameter. maclist is optional, however, if you
include it, have it follow the macname and enclose it
in parentheses.

Result Operand Comment
10

EXIT

EXIT

20

MODE=USER

NB=3,NT=5,
ALTEXIT=A3

Part 1
5-18

35

Restores defaul
and T registers
entry sequence
standard exit s
user routine.

Restores 3 B re
5 T registers n
those used by t

t number of B
defined by the

and performs
equence for a

gisters and
ot including
he calling

sequence. Jump s to the address
ter A3 for the stored in regis

exit.

A

Examples (continued):

Location Result
1 10

EXIT

Operand Comment
20 35

I NSRTMAC= (RESTREGS, (Vl,V2,V3»

Performs standa
processing but
back to calling
invokes the RES
The RESTREGS rna
parameter list

rd exit
before jumping
routine,

TREGS macro.
cro is passed a
of Vl,V2,V3.

ARGUMENT LIST INFORMATION

Two macros provide information about passed-in dummy arguments for
call-by-address routines: ARGADD and NUMARG. The ARGADD macro returns
the addresses of passed in arguments from the calling list, whereas the
NUMARG macro returns the number of arguments passed to the routine.

ARGADD - FETCH ARGUMENT ADDRESS

The ARGADD macro fetches an argument address (not a value) and returns it
in a register. This macro is needed only for call-by-address routines.
You can only use the ARGADD macro when you have used an ENTER macro
first. You should refer to arguments symbolically by first declaring
them with a DEFARG macro.

Format:

Location Result Operand

result

SR-0012

ARGADD result,argument,USE=use,ARGPTR=argptr

Result register (either A or S) to be loaded with the
address of the argument. This parameter is required. If
the result register is an S register, the entire word (64
bits) from the argument list is returned in the register.
This parameter is important for character arguments where
the leftmost 40 bits of the argument list value contain
information about the string size and starting bit.

Part 1
5-19 A

argument Name or number of the argument address to be returned.
argument is required and can be an A register containing
the number of the argument address to be returned. The
first argument is number 1, the second is number 2, etc.
Argument names should be used and the names must be
declared by the DEFARG macro.

USE=use An A register to reload the argument address list pointer
if the current value of this pointer has been destroyed.
This parameter is optional.

ARGPTR=argptr

Example:

Location
1

SR-0012

An A register currently containing the address of the
argument list. This parameter is optional and prevents the
argument list pointer from being reloaded before the
argument address is fetched. The ARGPTR and USE parameters
cannot be used at the same t:Lme since USE causes the
argument list pointer to be reloaded and ARGPTR specifies
that the argument list pointer is already available and
need not be reloaded. If you specify neither the ARGPTR
nor the USE parameter, the macro attempts to use the result
register to recover the argument list pointer. If the
result register is AO or an S register, the macro issues a
warning message and uses A6.

Result
10

ARGADD

ARGADD

ARGADD

Operand
20

Al,CX,USE=A6

A2,Y,ARGPTR=A6

A3 ,A2, USE=A6

Part 1
5-20

Comment
35

Returns the add ress of the CX
ister AI. argument in reg

Reload the argu
list pointer in
(register A6 is
been destroyed
point and must

Returns the arg

ment address
to register A6

assumed to have
before this
be reloaded) •

ument address in
register A2 for a dummy
argument named
is assumed to c
the pointer to
address list.

Returns the add
argument in A3.

Y. Register A6
urrently contain
the argumen t

ress of an

the argument to
The number of

return is
contained in A2

A

NUMARG - GET THE NUMBER OF ARGUMENTS PASSED IN

The NUMARG macro gets the number of arguments actually passed to a
routine. This macro works for both call-by-address and call-by-value
routines provided the calling routine properly used the CALL or CALLV
macro (see explanation earlier in this section). You can only use the
NUMARG macro when you have used the ENTER macro first for defining the
entry sequence.

Format:

P8sult

USE=US8

NUMARG

I Operand

Result register (either A or S) to be loaded with the
number of arguments. This parameter is required.

An A register to reload the argument address list pointer
if the current value of this pointer has been destroyed.
This parameter is optional.

ARGPTR=cwgptp

Example:

Location
1

SR-0012

An A register currently containing the address of the
argument list. This parameter is optional and prevents the
argument list pointer from being reloaded before the
argument address is fetched. The ARGPTR and USE parameters
cannot be used at the same time since USE causes the
argument list pointer to be reloaded and ARGPTR specifies
that the argument list pointer is already available and
need not be reloaded. If you specify neither the ARGPTR
nor the USE parameter, the macro attempts to use the result
register to recover the argument list pointer. If the
result register is AO or an S register, the macro issues a
warning message and uses A6.

Result
10

NUMARG

Operand
20

Al,USE=A6

Part 1
5-21

Comment
35

Returns the num ber of arguments
to the routine
the argument

inter into
gister A6 is

been destroyed

actually passed
in AI. Reloads
address list po
register A6 (re
assumed to have
before this poi nt and must be
reloaded) •

A

Example (continued):

Location Result ~_erand

1 10 20

NUMARG A2,ARGPTR=A6

LOCAL VARIABLE STORAGE

Comment
35

Returns, in A2,
arguments actua
the routine. R
assumed to curr
the pointer to
list.

the number of
lly passed to
egister A6 is
ently contain
the argument

Three macros reference temporary memory storage space defined by the
ALLOC macro, explained previously in this section. This storage space is
assumed to be defined only for the length of time that the routine is
executing and is not preserved once a program exits. This space is
defined using the CAL pseudo instruction BSS (see CAL Assembler Version 1
Reference Manual, CRI publication SR-OOOO) when stacks are not being
used. However, the space is acquired at run time from a general pool
when stacks are being used. You can use the three macros, LOAD, STORE,
and VARADD, to store values into memory, retrieve values from memory, and
return the actual address of a memory storage location for a particular
execution of a routine.

LOAD - GET MEMORY VALUE

The LOAD macro transfers data from a local temporary storage area into a
register. The macro generates code to load from memory areas defined by
the CAL pseudo instruction BSS (see CAL Assembler Version 1 Reference
Manual, CRI publication SR-OOOO) and by the ALLOC macro. If dynamic
stack management is in effect, the LOAD macro retrieves data from areas
defined at run time from the general memory pool.

Format:

Location Result Operand

pesult

SR-00l2

LOAD pesult,dataname,INDEX=index,STKPTR=stkptp,
USE=use,SCR=sOP,SKIP=skip

Result register (either A, S, or V) to be loaded from
memory. This parameter is required.

Part 1
5-22 A

dataname Name of the memory location to be loaded. This parameter
is required and can be the name of an area defined by an
ALLOC macro or a CAL pseudo instruction BSS.

INDEX=index
An A register for loading an offset. This value is added
to the address of the data item and can be used as an
offset for elements in tables or to increment to the next
segment for a vector load. This parameter is optional.

STKPTR=stkptr

USE=use

An A register that currently contains the value of the
stack pointer. The macro uses this register as an index to
recover values from memory. stkptr prevents the stack
pointer from being reloaded. This parameter is optional
and is required only when the data item to load is on the
stack.

An A or B register for recovering the dynamic stack
pointer. If the current pointer to the stack has been
destroyed, a USE parameter must be coded to force a reload
of the stack pointer value. If an A register is specified
for the USE parameter, that register contains the current
stack base address after the macro has been executed. If
you specify a B register, this B register is used as
temporary storage to recover the stack pointer. Its
contents are indeterminate after the LOAD macro. The USE
and STKPTR parameters cannot be used at the same time since
STKPTR specifies that the stack pointer is already
available and USE specifies that the stack pointer must be
reloaded. If you specify neither STKPTR nor USE, a warning
message is issued and the stack pointer register specified
on the ENTER macro is reloaded with the current stack
pointer value; default is A7. This parameter is optional
and is required only when the data item to load is on the
stack.

SCR=scr Specifies a scratch A register to be used during execution
of the LOAD macro. This parameter is optional and is
required only when vector registers are to be loaded or
with the INDEX parameter. If no register is specified in
these cases, a warning message is issued and the scratch
register defined by the ENTER macro is used; the default is
AS.

SKIP=skip Specifies an A register containing the skip distance for
a vector load. This parameter is optional; the default
value is register AO (a skip distance of 1).

SR-0012
Part 1

5-23 A

Examples:

Location Result
1 10

LOAD

LOAD

LOAD

LOAD

SR-0012

Operand
20

Sl,X,STKPTR=A7

Vl,VSAVE

A2, TADDR, USE=A 7

S3,TABLE,
INDEX=A4,
SCR=A5,
STKPTR=A7

Part 1
5-24

Comment
35

Transfers to re gister Sl the
contents of the memory location

is assumed that
tains the stack
d that it need

labeled X. It
register A7 con
base address an
not be reloaded

Transfers to re gister VI
e memory beginning at th

location labele d VSAVE. The
number of words to transfer is

he current value
ter. The skip

determined by t
of the VL regis
distance betwee n elements is
assumed to be 1 A warning is

stack pointer
ied on the ENTER
ed. Another

issued and the
register specif
macro is reload
warning is issu ed because no
scratch registe r was specified

ded. The and one was nee
scratch registe r specified on

is used. the ENTER macro

Transfers to re
contents of the

gister A2 the
memory location
It is assumed
register

labeled TADDR.
that the STKPTR
defined by the
been destroyed
recovers the cu
address.

Transfers to re

ENTER macro has
and that A7
rrent stack base

the memory addr
gister S3 from
ess computed by
rent address of
g the contents

finding the cur
TABLE and addin
of register A4.
pointer is cont
register A7 and
reloaded. AS i
scratch registe
intermediate ad
calculations.

The stack
ained in

need not be
s used as a
r to perform
dress

A

STORE - STORE VALUE INTO MEMORY

The STORE macro transfers data from a register to a local temporary
storage area. The macro generates code stored to memory areas defined by
the CAL pseudo instruction BSS and by the ALLOC macro. If dynamic stack
management is in effect, the STORE macro stores data to areas defined at
run time from the general memory pool.

Format:

Location Result Operand

STORE soupae,dataname,INDEX=index,STKPTR=stkptP,
USE=use,SCR=sap,SKIP=skip

soupae Source register (either A, S, or V) to be stored to
memory. This parameter is required.

dataname Name of the destination memory location. This parameter
is required and can be the name of an area defined by an
ALLOC macro or CAL pseudo instruction BSS.

INDEX=index
An A register for storing an offset. This value is added
to the address of the data item. This value can be used to
offset to elements in tables or to increment to the next
segment for a vector store. This parameter is optional.

STKPTR=stkptp
An A register that currently contains the value of the
stack pointer. The macro uses this register as an index to
recover values from memory. stkptp prevents the stack
pointer from being reloaded. This parameter is optional
and is required only when the item to which data is stored
is on the stack.

USE=use An A or B register for recovering the dynamic stack
pointer. If the current pointer to the stack has been
destroyed, a USE parameter must be coded to force a reload

SR-OOl2

of the stack pointer value. If an A register is specified
for the USE parameter, that register contains the current
stack base address after the macro has been executed. If a
B register is specified, the B register is used as
temporary storage to recover the stack pointer. Its
contents are indeterminate after the STORE macro. The USE
and STKPTR parameters cannot be used at the same time since
STKPTR specifies that the stack pointer is already
available and USE specifies that the stack pointer must be
reloaded.

Part 1
5-25 A

If neither STKPTR nor USE is specified, a warning message
is issued and the stack pointer register specified on the
ENTER macro (default is A7) is reloaded with the current
stack pointer value. This parameter is optional and is
required only when the item to which data is stored is on
the stack.

SCR=scr Scratch register specifies a scratch A register for use
during execution of the STORE macro. You only need this
register when you want vector registers stored or when you
use an INDEX parameter. This parameter is optional; if you
do not specify a register in these cases, a warning message
is issued and the scratch register defined by the ENTER
macro is used. The default for SCR is AS.

SKIP=skip Skip distance specifies an A register containing the

Examples:

Location
1

SR-0012

skip distance for a vector store. This parameter is
optional; the default is register AO (a skip distance of 1) •

Result
1_0_

STORE

STORE

STORE

Operand
20

Sl,TEMPl,
STKPTR=A7

Vl,VSAVE,
SCR=A5,
STKPTR=A7

A2, TADDR, USE=A 7

Part 1
5-26

Comment
35

Transfers the c ontents of
the memory register Sl to

location labele d TEMPI. It is
gister A7 assumed that re

contains the cu
address.

Transfers the c
register VI to
beginning at th
labeled VSAVE.
words to transf
by the current
register. The
between element
be 1 and the st
contained in A7

rrent stack base

ontents of
the area
e memory location

The number of
er is determined
value of the VL
skip distance
s is assumed to
ack pointer is

used for interm
Register AS is

ediate address
calculations.

Transfers the c
register A2 to
location labele
assumed that th
defined by the
been destroyed
recovers the cu
address.

ontents of
the memory
d TADDR. It is
e STKPTR register
ENTER macro has
and that A 7
rrent stack base

A

Examples (continued):

Location Result Operand
1 10 20

STORE S3,TABLE,
INDEX=A4

Comment
35

Transfers the c
S3 to the memor
computed by fin

ontents of
y address
ding the current
E and adding the address of TABL

contents of reg
STKPTR register
ENTER macro rec
base address.
defined by the
the ENTER macro
intermediate ad
calculations1 d
Warnings are is
STKPTR and SCR

ister A4. The
defined on the

overs the stack
The register
SCR parameter on
performs

dress
efault is AS.
sued for both
register usage.

VARADD - GET MEMORY ADDRESS

The VARADD macro retrieves the address of a memory storage area. The
macro generates code to return addresses of memory locations defined by
the ALLOC macro for both stack and nonstack modes.

Format:

Location Result Operand

VARADD pesult,dataname,STKPTR=stkptp,USE=use,SCR=scP

pesult Result register (either A or S) to receive the address of
the memory location. This parameter is required.

dataname Name of the memory location address to be found. This
required name can be defined by an ALLOC macro or a CAL
pseudo instruction BSS.

STKPTR=stkptp

SR-0012

An A register currently containing the value of the stack
pointer. The macro uses this register as an index to
compute the memory address. This parameter prevents the
stack pointer from being reloaded. This parameter is
optional and is required only when the data item is on the
stack.

Part 1
5-27 A

USE=use

SCR=s~1"

Examples:

Location
1

SR-0012

An A or B register for recovering the dynamic stack
pointer. If the current pointer to the stack has been
destroyed, you must code a USE parameter to force a reload
of the stack pointer value. If you specify an A register
for the USE parameter, that register contains the current
stack base address after the macro has been executed. On
the other hand, if you specify a B register, the B register
is used as temporary storage to recover the stack pointer.
Its contents are indeterminate after the VARAnD macro.

Do not code the USE and STKPTR parameters at the same time,
since STKPTR specifies that the stack pointer is already
available and USE specifies that the stack pointer must be
reloaded. If you code neither STKPTR nor USE, a warning
message is issued and the stack pointer register specified
on the ENTER macro is reloaded with the current stack
pointer value; default is A7. This parameter is optional
and is required only when the data item is on the stack.

Specifies a scratch A register for use during execution of
the VARADD macro. This parameter is optional and is
required only when S registers or register AO are to
receive the memory address. If you do not specify a
register in these cases, a warning message is issued and
the scratch register defined by the ENTER macro is used;
default is AS.

Result
10

VARADD

VARADD

Operand
20

Al ,TEMPI,
STKPTR=A7

A2, VADDR, USE=A 7

Part 1
5-28

Comment
35

Gets the addres s of the memory
d TEMPI. It is
gister A7

location labele
assumed that re
contains the st
that it need no

ack pointer and
t be reloaded.

Gets the addres
location labele

s of the memory
d VADDR. It is
e STKPTR assumed that th

register define
macro has been
that A 7 recover
stack base addr

d by the ENTER
destroyed and
s the current
esse

A

Examples (continued):

Location Result
1 10

VARADO

SR-OOl2

Operand
20

AO, TABLE, SCR=A2

Part 1
5-29

Conunent
35

Returns in AO t he address of
tion labeled
PTR register
ENTER macro

the memory loca
VADOR. The STK
defined on the
reloads the sta
warning is issu

ck pointer and a
ed. Register A2
ediate performs interm

calculations to find the
address.

A

STRUCTURED PROGRAMMING
MACROS

The structured programming macros in this section are available for use
in programs written in CAL. Unlike the majority of macros in $SYSTXT,
these are independent of the operating system.

Several of the structured programming macros presented in this section
use conditional expressions. Therefore, an explanation of conditions
precedes the macros descriptions.

CONDITIONS

6

Table 6-1 describes the conditions for structured programming macros that
use such conditions.

Conditions

AZ •••
AN ••• t

AP •••
AM •••
sz •••
SN ••• t

SP •••
SM •••

Table 6-1. Conditions for structured programming
macros

Condition Meaning

on AO and SO

(AO) equal to 0
(AO) not equal to 0
(AO) greater than or equal to 0
(AO) less than 0
(SO) equal to 0
(SO) not equal to 0
(SO) greater than or equal to 0
(SO) less than 0

t Condition means not equal to 0, conditions beginning with Ne, NE,
Ng, or NG are not allowed, because they strongly suggest negative
instead of nonzero.

SR-0012
Part 1

6-1 A

Table 6-1. Conditions for structured programming
macros (continued)

Condition Meaning

Conditions on A and S registers t

An[=operand1,z •••
An[=operand1,N ••• tt
An[=operand1,p •••
An[=operand1,M •••
Sn[=operand1,z •••
Sn[=operand1,N ••• tt
Sn[=operand1,p •••
Sn[=operand1,M •••

Bit set conditions

constant,IN,Sm[=operand1

(An) equal to 0
(An) not equal to 0
(An) greater than or equal to 0
(An) less than 0
(Sn) equal to 0
(Sn) not equal to 0
(Sn) greater than or equal to 0
(Sn) less than 0

True if bit number constant is
set in register Sm. Bits are
numbered sequentially, with the
sign bit being O.

Sn[=operand1,ALLIN,So[=operand1 True if every bit set in
register Sn is also set in
register So.

sn[=operand1,ONEIN,SO[=operand1 True if at least 1 bit set
in Sn isalso set in So.

Compound conditions

NOT, (cond)
(condl) ,AND, (cond2)
(condl),OR,(cond2)

cond is not true
condl and cond2 are both true
condl is true, cond2 is true,
or both are true.

t Specify the A micro (S micro) or the An (Sn) format, because the
A.symbo~ (s.symbo~) format causes assembly problems.

tt Condition means not equal to 0; conditions beginning with Ne, NE,
Ng, or NG are not allowed, because they strongly suggest negative
instead of nonzero.

SR-00l2
Part 1

6-2 A

Table 6-1. Conditions for structured programming
macros (continued)

Condition Meaning

Relational conditions

Sn [=opepand] ,
cond,Sm[=opepand]

EQ Sn EQ Sm
NE Sn NE Sm
GT Sn GT Sm
GE Sn GE Sm
LT Sn LT Sm
LE Sn LE Sm

An [=opepand] ,
cOnd,Am[=opepand]

EQ An EQ Am
NE An NE Am
GT An GT Am
GE An GE Am
LT An LT Am
LE An LE Am

The ellipsis (•••) means any number of letters (including zero). For
example, AZ means the same as AZero.

m, nand 0 are any integers from 0 to 7 inclusive1 the portion in
brackets is optional.

Specifying an opepand causes generation of an instruction that sets the
indicated register to the opepand's value. If an opepand contains
embedded commas or blanks the entire assignment must be enclosed in
parentheses.

Example 1:

A3,Minus is true if (A3) is less than 01 AO=PS2,Zero is true if the
population count of (S2) is 01 (SO=JOE,O),Plus is true if the content
of memory word JOE is positive.

SR-0012
Part 1

6-3 A

Example 2:

D'63,IN,SO=T.JOE is true if the content of T.JOE is odd;
S2=<3,ALLIN,S3 is true if the last 3 (low-order) bits of S3 are set;
Sl,ORBIN,(S2=BRROR,0) is true if any bit set in Sl is also set in
memory word ERROR.

oonstant is any CAL expression yielding an integer constant.

oond, oondl , and oond2 are any conditions, simple or compound.
The parentheses are required.

Example:

NOT,(Sl,BQ,S2) is true if (Sl) is not equal to S2;
(AMinus),OR,(SMinus) is true if (AO) is less than 0 or (SO) is less
than 0 or both; and
«Al,GB,A2c'A'R),AHD,(Al,LB,A2='Z'R»,OR,«Al,GB,A2·'a'R),ARD,(Al,LB,A2-'z'R»
is true if Al contains a letter.

MACRO DESCRIPTIONS

The COS-independent structured programming macros presented in this
section include: $GOTO; $IF, $ELSEIF, $ELSE, and $ENDIF; $JUMP; $LOOP,
EXITLP, and $ENDLOOP; $GOSUB; $RETURN; and $SUBR.

$GOTO - COMPUTE GOTO STATEMENT

The $GOTO macro offers CAL users a computed GO TO statement.

Format:

NOTE

Unlike the I-based FORTRAN computed GO TO, this GO TO
statement is O-based.

Location Result Operand

$GOTO

SR-0012
Part 1

6-4 A

Register AO cannot be used as Ai or Aj. Register Ai is a scratch
register, and register Aj holds a value that determines to which.label
the jump takes place. For instance, if Aj=l the jump is to labell.
If Aj is greater than n or less than zero, no jump takes place, and
control falls through to the next instruction.

$IF, $ELSEIF, $ELSE, AND $ENDIF - FORM CONDITIONAL BLOCK

The $IF macro operates in the same manner as the similar structure in
FORTRAN when used with the attendant $ELSEIF, $ELSE, and $ENDIF macros.
The $ELSEIF and $ELSE macros are optional; if you include both, an
$ELSEIF macro cannot follow an $ELSE macro at the same nesting level.
There can be no more than one $ELSE at the same nesting level in an
$IF/$ENDIF sequence.

Format:

_Location Result

$IF
$ELSEIF
$ELSE
$ENDIF

Operand

eond
eond

See table 6-1 for the conditions that can be used with $IF or $ELSEIF.

$IF groups can be nested within other $IF groups up to a level of 10 deep.

The value of an $IF or $ELSEIF condition is treated as either true or
false. If the condition is true, the block that follows is executed;
otherwise, if the condition is false the block that follows is skipped.
The $ELSE macro, if present, must follow any $ELSEIF macros that belong
to the same $IF group. Within each $IF group, no more than one block is
executed (once a block is executed, the remaining blocks in the same $IF
group are skipped). If none of the blocks in a group have been executed
when an $ELSE macro is encountered, then the $ELSE block is executed if
present. A block can be null, that is, it can contain no statements to
be executed.

Examples of conditions used with $IF and $ELSEIF follow.

SR-0012
Part 1

6-5 A

Example 1:

Location Result
1 10

$IF

assembLy
code

· · · $EL8EIF

assembLy
code

· · · $EL8E

assembLy
code

· · · $ENDIF

Example 2:

Location Result
1 10

$IF
81
82

$EL8EIF
A1
A2
$IF

Al
A3

$ENDIF
$ELSE

81
$ENDIF

8R-0012

Operand
20

cond

cond

Operand
20

AZ
A3
A4

8Z
82
83
AP

A2
84

82*F83

Part 1
6-6

Comment
35

This code is exe cuted if the
true. $IF condition is

If the $IF condi
and the $EL8EIF
true, this code

If both of the a
are false, this
executed.

Comment
35

tion is false
condition is
is executed.

bove conditions
code is

A

Example 3:

Location Result Operand Comment
1 10 20 35

$IF S2,LT,S4
Al 2

$ELSEIF A5,GE,Al
Al 5

$ELSEIF Sl,EQ,S7=123
A2 6

$ELSE
$IF A2,NE,A5=ABC

A3 4
$ELSEIF S5,GT,S7=LABEL

Al 5
$ENDIF

$ENDIF

$JUMP - JUMP CONDITIONALLY

You can use the $JUMP macro instead of structured programming macros. An
example of such a use is a routine performing extensive validation of
entry parameters with a single error return.

$JUMP accepts any parameters that are valid on the $IF-$ELSEIF macros.
If the condition holds, flow passes to the destination address. However,
if the condition does not hold, control flow continues on the statement
following the macro call.

Format:

Location Result Operand

deBt

eond

SR-0012

$ JUMP deBt,eond

Destination address. Control flow passes to this address
if the specified condition holds.

Conditions lhere control is to pass to the indicated
address. This expression is of the same form as
conditionallexpressions described in table 6-1.

Part 1
6-7 A

Example:

Location Result I Operand Comment
1 10 20 35

$ JUMP ERROR,SM
$JUMP BADDAY,Sl,LT,S2=1

$LOOP, $EXITLP, AND $ENDLOOP - DEFINE PROGRAM LOOP

The $LOOP, $EXITLP, and $ENDLOOP macros define program loops whose
iteration conditions are determined at execution time. Each loop begins
with a $LOOP macro call which defines the starting parcel address for the
loop, and optionally tests a loop top condition. $EXITLP exits the loop
at its nesting level to the next executable instruction, but does not
exit the entire loop structure. Each loop ends with a $ENDLOOP macro
call.

$ENDLOOP defines the loop exit address and causes the loop body to be
repeated.

The $LOOP and $ENDLOOP statements can be nested to any depth.

Format:

Location Result

$ LOOP
$EXITLP
$ENDLOOP

Qoerand

eond
eond

eond This expression is of the same form as conditional
expressionsldescribed in table 6-1.

Example 1: $EXITLP conditions

Location Result
1 10

$EXITLP
$EXITLP
$EXITLP

SR-0012

Operand
20

SM
Sl,M
Sl,NE,S2

Part 1
6-8

Comment
35

Exits if
Exits if
Exits if

sign of
sign of
Sl<>S2

SO set
Sl set

A

Example 2: $LOOP-$ENDLOOP structure using $EXITLP to exit loop:

*
*
*
*

*
*

Location Result Operand Comment
1 10 20 35

Loops to copy (AI) words from A to B
Destroys AI. I
Always moves at least one word.

$ LOOP
Al Al-l Decrements word
Sl A,Al Gets word
B,Al Sl Moves it
$EXITLP Al,ZR Exits loop when

$ENDLOOP Repeats body of

Here when copy has been completed
I I

counter

all words copied
loop

Example 3: $LOOP-$ENDLOOP structure with test at top of loop:

Location Result Operand Comment
1 10 20 35

*
* Loops to copy a message from X to Y. Copy termin ates

* on an all-zero word. Count of words copied is
* maintained in A7. If null message, loop never ex ecutes.
*

A7 0 Presets count 0 f words copied
S7 X,A7 Prefetches firs t word of buffer
$ LOOP S7,NZ While word to b e copied is

nonzero, stores
y,A7 S7 in destination buffer
A7 A7+l Increments word counter
S7 X,A7 Prefetches next word for

test/copy
$ENDLOOP Unconditionally jumps to loop

top
*
* Here when copy has been completed , ,

$GOSUB - CALL LOCAL SUBROUTINE

The $GOSUB macro calls a subroutine that is local to the current assembly
module. Use a CALL or CALLV macro when the subroutine you are calling is
external. This macro differs from the CALL and CALLV macros, because the
routine being called is not declared external by the macro and the call
can be made conditionally. This macro does not use the standard CFT

SR-0012
Part 1

6-9 A

subroutine linkage and the call is not reported in the traceback if an
error occurs. Only a return jump is generated if no conditions are
specified for $GOSUB.

Format:

Location Result Operand

label

eond

$GOSUB label,eond

Required name of the entry point of the local subroutine.
Declare label using a $SUBR macro.

Optional conditional expression that must be true for the
call to be executed. (See table 6-1.) This expression is
optional. I

$RETURN - RETURN FROM LOCAL SUBROUTINE

The $RETURN macro returns from a local subroutine. This macro can also
specify the name of a B register that contains the return address.
Because this macro is intended to be used with the $SUBR macro the same B
register name should be specified on both macros. This macro does not
use the standard eFT subroutine linkage and is not reported in the
traceback if an error occurs. See also $GOSUB previously in this section.

Format:

Location Result Operand

$ RETURN Bregname

Bregname Optional name of a B register containing the return
address. If you omit Bregname, then BOO is used for the

SR-0012

return. The B register name you specify should be the same
name as the one you specify on the $SUBR macro used to
enter this routine: furthermore, the name should be defined
using a DEFB macro. Note that you should only specify the
name and not the full B register designation (for example,
RETADDR instead of B.RETADDR).

I

Part 1
6-10 A

$SUBR - DECLARE LOCAL SUBROUTINE ENTRY POINT

The $SUBR macro declares a local subroutine entry point. You can also
use this macro to specify a B register for storing the return address.
If you indicate a B register to save the return address, then register AO
is used to load the return address from BOO and store it in the specified
B register. This macro does not declare the entry point with a CAL ENTRY
pseudo-oPe Also, this macro neither uses the standard CFT subroutine
linkage nor is reported in the traceback if an error occurs. See also
$GOSUB previously in this section.

Format:

Location Result Operand

label $SUBR Bpegname

label Required name of this entry point of the local subroutine

Bpegname Optional name of a B register to save the return address.

SR-0012

If you omit Bpegname, the return address is only
contained in BOO, which must not be destroyed if a proper
return is to be made. Define the B register name using the
DEFB macro. Note that you should only specify the name and
not the full B register designation (for example, RETADDR
instead of B.RETADDR).

Part 1
6-11 A

SEMAPHORE MANIPULATION
MACROS

7

Hardware semaphore (SM) registers provide interprocessor communication
and coordination for all models of CRAY X-MP Computer Systems. EXEC uses
these semaphore registers to ensure that only one CPU is active in either
EXEC or in the STP area. (See the COS EXEC/STP/CSP Internal Reference
Manual, publication SM-0040, for additional information on SM registers.)

With the semaphore manipulation macros you can define semaphore names
symbolically and use the CRAY X-MP hardware semaphores. These macros
generate executable code on CRAY X-MP systems. Code generation is
controlled conditionally by use of the CPU= parameter on the CAL control
statement. Indicate CPU='CRAY-XMP' to produce executable code.

NOTE

CRI has reserved the first 16 semaphore bits (0-15) for
use by Cray software. The user should use only
semaphore bits 16-31.

The semaphore manipulation macros include:

• DEFSM Defines semaphore name

• GETSM Gets current status of semaphore bit

• SETSM Unconditionally sets a semaphore

• CLRSM Unconditionally clears a semaphore

• TEST$SET Tests and sets semaphore

• WAIT$CLR Unconditionally clears a semaphore after waiting for
memory references to complete

SR-0012
Part 1

7-1 A

DEFSM - DEFINE SEMAPHORE NAME

The DEFSM macro defines a symbol to be used for a specific semaphore
bit. This macro accepts a user-specified symbol of up to 5 characters
and a number of a semaphore bit from 0 to 31. If you do not specify a
number for the semaphore bit to assign, the semaphore following the last
previous bit defined is assigned. For example, if semaphore bit 17 is
assigned and a DEFSM with no number specified is used, semaphore bit 18
is assigned. Semaphore bit 16 is assigned if a DEFSM with no number
specified is the first DEFSM to be used. Checking is done to ensure that
a semaphore has not already been assigned with a different name.

This macro only defines symbols and generates no executable code.

Format:

I LocationlResult I Operand

number

name

number

Example:

Location
1

BWAIT

CODLK

IOLCK

SIGNL

SR-0012

The required symbol to be assigned to the semaphore bit.
This must be 5 characters or less.

An optional number designating the semaphore bit to be
assigned. This must be a number in the range 0 to 31. If
you do not specify a number, the semaphore bit following
the last previous bit defined is assigned. If this is the
first use of a DEFSM macro and number unspecified,
semaphore bit 16 is assigned.

Result
10

DEFSM

DEFSM

DEFSM

DEFSM

Operand
20

30

Part 1
7-2

Comment
35

Defines Busy!Wa

Defines semapho
lock

Defines semapho
lock

Defines semapho
hardware signal

it; semaphore 16.

re 17 for code

re 30 for I/O

re 31 as

A

GETSM - GET SEMAPHORE BIT STATUS

The GETSM macro gets the current state of a semaphore bit and returns the
state in the sign bit of an S register (the remainder of the S register
is cleared). The GETSM macro reads the semaphore register on the
CRAY X-MP computer and shifts to place the desired semaphore bit in the
sign bit of an S register.

Format:

NOTE

No protection is used for this operation. The bit
being interrogated might be changed by another
processor before you can check its value. Do not use
the GETSM macro in place of a TEST$SET macro; GETSM is
intended for signaling purposes.

I LocationlResult

GETSM

I Operand

name The required name of the semaphore to interrogate. You
must have defined this name using the DEFSM macro.

REG=peg An optional S register in which to return the semaphore
value. The current value of the semaphore is returned in
the sign bit with the remainder of the word set to O. If
you do not specify a REG= clause, the result is returned in
so.

Example:

Location Result Operand
1 10 20

GETSM SIGNL

SR-0012
Part 1

7-3

Comment
35

Gets signal val ue in so

A

SETSM - SET SEMAPHORE WITHOUT WAITING

The SETSM macro causes a semaphore set instruction to be generated for
the CRAY X-MP computer. This instruction sets a semaphore bit to 1
unconditionally, without regard to its prior state. You must have
defined the named semaphore using the DEFSM macro.

Format:

I LocationlResult

SETSM

name

Example:

Location
1

Required name of the semaphore to set. This name must have
been defined using the DEFSM macro.

Result Operand Comment
10 20 35

SETSM BWAIT Forces Busy/Wai t to Busy state

CLRSM - CLEAR SEMAPHORE WITHOUT WAITING

The CLRSM macro causes a semaphore clear instruction to be generated for
the CRAY X-MP computer. This instruction clears a semaphore bit to 0
unconditionally, without regard to its prior state. The semaphore to
clear must have been defined using the DEFSM macro.

Format:

I LocationlReSUlt

CLRSM

name

SR-0012

Required name of the semaphore to clear. You must have
defined this name using the DEFSM macro.

Part 1
7-4 A

Example:

Location Result Operand Comment
1 10 20 ~5

CLRSM CODLK Allows other pr ocessor to enter

TEST$SET - TEST SEMAPHORE AND WAIT TO SET

The TEST$SET macro generates a CRAY X-MP semaphore test and set
instruction. The test and set instruction causes a processor to set the
semaphore if it is clear, or to stop processing instructions until the
sempahore is clear, at which time the semaphore is set and instruction
processing resumes. This macro generates test and set instructions for
the semaphores defined by the DEFSM macro.

Format:

name

Example:

Location
1

TEST$SET

I Operand

name

Required name of the semaphore to test and set. You must
have defined this name using the DEFSM macro.

Result Operand
10 20

TEST$SET CODLK

Comment
35

Stops the proce
instruction unt

ssor issuing the
il SM.CODLK is 0

WAIT$CLR - CLEAR A SEMAPHORE BIT AFTER WAITING

The WAIT$CLR macro causes a CMR instruction and generates a semaphore
clear instruction for the CRAY X-MP Computer System. This instruction
unconditionally clears (sets to 0) a semaphore bit after waiting for
memory references to complete without regard to its prior state. The
semaphore to clear must have been defined using the DEFSM macro.

SR-00l2
Part 1

7-5 A

Format:

I LosatiOolReSUlt

WAIT$CLR

loserand
name

name

Example:

Location
1

SR-0012

Required name of the semaphore to clear. name must have
been defined using the OEFSM macro.

Result Operand
10 20

WAIT$CLR COOLK

Part 1
7-6

Comment
35

Clear code lock

A

CAL EXTENSION OPDEF
AND MACROS

CAL extension opdef and macros provide various means for enhancing the
Cray Assembly Language's capabilities. This opdef and group of macros
include:

• DIVIDE Provides a precoded divide routine

8

• PVEC Passes elements of a vector register to a scalar routine

• $CYCLES Generates timing-related symbols and constants

• $DECMIC Converts an integer to a decimal micro string

• $OCTMIC Converts an integer to an octal micro string

• RECIPCON Generates floating-point reciprocals

DIVIDE OPDEF - PROVIDE A PRECODED DIVIDE ROUTINE

The DIVIDE opdef enhances the instruction repertoire of the CAL assembler
by providing a precoded floating-point divide routine accessible through
a call in machine language syntax.

CAUTION

The contents of registers sj and sk are destroyed.

Format:

I LQCationlResult

symbol si sj/Fsk

SR-0012
Part 1

8-1 A

Expansion:

symbol

symbol

si

Sj

Fsk

si
sj
sk
si

/Hsk
sj*Fsi
sk*Isi
Sj*Fsk

Valid location field name; optional.

S register that gets the result

S register containing the dividend; Sj and si must be
unique registers and must contain normalized floating-point
values.

S register containing the divisor; sk and si must be
unique registers.

PVEC MACRO - PASS ELEMENTS OF VECTOR REGISTER TO SCALAR ROUTINE

The PVEC macro is available for pseudo-vectorized arithmetic routines.
The macro generates a loop to get arguments from vector registers, passes
these to a scalar routine, and stores the results in vector registers or
vector storage locations. This has the effect of taking vectors as input
and producing vector results using a scalar routine, which is necessary
when there are no purely vectorized versions of arithmetic algorithms.
This macro replaces the VECA, VECB, and VECC routines.

Format:

Location Result Ooerand

poutine

SR-0012

PVEC

Required name of the scalar routine to call

An optional vector register or name of a storage area for a
vector (the storage area can be on the stack). The values
in the register or storage area are assigned sequentially
to register Sl and passed to the scalar routine.

An optional vector register or name of a storage area for a
vector (the storage area can be on the stack). The values
in the register or storage area are assigned sequentially
to register S2 and passed to the scalar routine.

Part 1
8-2 A

vec3 An optional vector register or name of a storage area for a
vector (the storage area can be on the stack). The values
in the register or storage area are assigned sequentially
to register S3 and passed to the scalar routine.

vec4 An optional vector register or name of a storage area for a
vector (the storage area can be on the stack). The values
in the register or storage area are assigned sequentially
to register S4 and passed to the scalar routine.

NOTE

The return values from the scalar routines
correspond with the vector registers
specified. For example, if you only specify
vecl' the return value of Sl from the
scalar routine is stored. If you specify
vecl and vec2' the values of Sl and
S2 returned by the scalar routine are both
stored.

LENGTH = length

SR-0012

Optional. The length of the vector to be processed.
length can be passed as a constant or in an A, S, or B
register. (Do not use registers AO and SO.) If you do not
specify length, the length is assumed to be the value of
the VL register when the macro is invoked.

NOTE

The macro assumes that if vector registers
are used as input, they are preserved across
the call to the scalar routine. If the
scalar routine being called uses any of the
vector registers, these registers must be
saved to memory and the name of the save area
passed to the macro. The macro does not
generate storage space for the vector
registers. You must define this space and
store the vectors before invoking the macro.

Part 1
8-3 A

$CYCLES MACRO - GENERATE TIMING-RELATED SYMBOLS AND CONSTANTS

The $CYCLES macro generates timing-related symbols and constants. This
macro generates the number of CPU clock periods or cycles in a given
interval. When the system is assembled, the configuration parameters in
the CONFIG@P common deck in COS TXT or $SYSTXT determine the number of
cycles in each interval specified by a $CYCLES macro invocation.

Format:

~abe~ $ CYCLES INTERVAL=interva~,UNITS=units,TYPE=type

~abe~ Name of symbol or constant generated

INTERVAL=interva~
Nonzero integer interval

UNITS=uni ts
units from the following set:

NSEC Nanoseconds
USEC Microseconds
MSEC Milliseconds
SEC Seconds
MIN Minutes
HOUR Hours
HOURS Hours (alternate form of HOUR)
DAY Days
DAYS Days (alternate form of DAY)

TYPE=type type can be:
SYMBOL if a symbol is to be generated.
CONSTANT if an integer constant is to be generated.
FPCONST if a floating-point constant is to be generated.
RECIP if a floating-point reciprocal is to be generated.

$DECMIC MACRO - CONVERT AN INTEGER TO A MICRO STRING

$DECMIC converts any integer that can be held in a CAL symbol to a MICRO
string.

SR-OOl2
Part 1

8-4 A

Format:

Location Result Operand

micname $DECMIC value [,length]

micname Required micro string name. micname is assigned the
character string that corresponds to the decimal value of
the expression supplied to the macro. If the value is
negative, this string has a leading minus sign.

value A required expression that is converted into a decimal
micro string.

length Optional micro string length. If length is unspecified,
the leading zeros are truncated, and only the significant
digits are returned.

Example:

Location
1

LONGMIC

If a length is specified, the result string is zero filled
to the specified length, If the result string is too small
to contain the converted value, a warning message is
issued. If the length is greater than 20, a warning
message is issued, and the length is reduced to 20
characters.

Result Operand Comment
10 20 35

$DECMIC D'1234567,D'15 Converts to mic ro form
DATA ' "LONGMIC" , Z Use of micro
DATA '000000000l234567'Z Micro expan sion

$OCTMIC MACRO - CONVERT AN INTEGER TO AN OCTAL MICRO STRING

$OCTMIC converts any integer that can be held in a CAL symbol to
a MICRO string.

Format:

Location Result

micname $OCTMIC

SR-00l2

Operand

value [, length]

Part 1
8-5 A

rnicname

vaLue

Length

Example:

Location
I

LONGMIC

Required micro string name. micname is assigned the
character string that corresponds to the octal value of the
expression supplied to the macro. If the value is
negative, it is represented in two's complement form.

A required expression that is converted into an octal micro
string.

Optional micro string length. If length is unspecified,
the leading zeros are truncated, and only the significant
digits are returned.

If a length is specified, the result string is zero filled
to the specified length, If the result string is too small
to contain the converted value, a warning message is
issued. If the length is greater than 22, a warning
message is issued, and the length is reduced to 22
characters.

Result Operand Comment
10 20 35

$OCTMIC O'7654321,D'10 Converts to mic ro form
DATA '''LONGMIC'''Z Use of micro
DATA '0007654321'Z Micro expansion

RECIPCON MACRO - GENERATE FLOATING-POINT RECIPROCALS

The RECIPCON macro generates floating-point reciprocals of integer
constants. These reciprocals are typically used in floating-point
multiply operations, which are much faster than divide sequences on Cray
mainframes.

Format:

I Location I Result

tag Location symbol to be used when generating the constant.

icon Integer constant. The floating-point reciprocal of this
constant is generated at location tag.

SR-OOI2
Part I

8-6 A

Example:

NOTE

The method used to generate the reciprocal is:

itemp = 1.OEl8/icon form reciprocal * lE18
tag = FLOAT(itemp)*1.OE-18 form reciprocal

The net effect is to form 1.0/FLOAT(icon). The
reciprocal is accurate to MIN(18-LOGlO(icon), 14)
decimal digits.

Location Result Operand comment
_1 _lfr 20

TENTH RECIPCON DllO
51 FPNUM,O
52 TENTH, 0
53 5l*F52

5R-0012
Part 1

8-7

35

Forms

(51)
(52)
(53)

=
=
=

floating-point 1/10

any floa ting-point number
-point 1/10

g-point (num/lO.O)
floating
floatin

A

SUBSYSTEM SUPPORT MACROS 9

Subsystem Support macros provide a mechanism for the user to develop code
that would otherwise have to be incorporated as part of the Cray
Operating System (COS). Examples of this kind of code are networking
packages and online diagnostics.

Subsystem Support macros are a collection of independent functions whose
use may be restricted to jobs granted the necessary privilege by COS.

This section describes the following Subsystem Support macros:

• Interjob communication (IJCOM)

• User channel access (DRIVER)

• Event recall (ERECALL)

INTERJOB COMMUNICATION (IJCOM)

The interjob communication (IJCOM) macro allows a job to communicate with
another job. This feature is available to all single-tasking jobs; it is
prohibited to multitasking jobs.

Format:

I LocationlResult

I JCOM

I Operand

ijpbadd

ijpbadd A symbol or an A (not AO), S (not SO), or T register
containing the address of the interjob communication
parameter block (IJPB). For a complete description of the
IJPB parameters, see appendix A of the CRAY-OS Version 1
Reference Manual, publication SR-OOll. Up to an
installation defined maximum number of parameter blocks
(I@MPBS) can be linked together by setting IJLINK in IJPB.
In all cases IJFUNC, IJRID, and IJPLEN are required in
IJPB. IJSTAT is returned in IJPB by the system. ijpbadd
is a required parameter.

SR-00l2
Part 1

9-1 A

Table 9-1 lists interjob communication (IJCOM) functions enabled by the
IJFUNC parameter of the IJPB and briefly describes the operation of each.

Table 9-1. IJCOM functions

Function Description

IJM$NOP

IJM$REC

IJM$OPEN

IJM$ACCE

IJM$REJE

IJM$SNDM

IJM$SNDL

IJM$CLOS

IJM$END

SR-0012

Is ignored

Marks the job as receptive. IJRCB is required in
IJPB; all other fields are ignored.

Initiates an attempt to open a communication path with
another job. IJHLEN, IJTID, and IJNCB are required in
IJPB; all other fields are ignored.

Accepts a request from another job to
opencommunication. IJTID, IJHLEN, and IJNCB are
required in IJPB; all other fields are ignored.

Rejects a request from another job to open
communication. IJTID is required in IJPB; all other
fields are ignored.

Sends a message to another job. IJNCB, IJTID IJBADD
and IJBLEN are required in IJPB; all other fields are
ignored.

Sends a message to an attached job's logfile. This is
a privileged function. IJTID, IJOVR, IJFCS, IJFCU,
IJCLS, and IJBADD are required in IJPB; all other
fields are ignored.

Closes a communication path. Either IJNCB and IJTID
or neither, are required in IJPB. All other fields
are ignored. If IJNCB and IJTID are specified only
the path determined by IJRID and IJTID is closed;
otherwise all communication paths with IJRID are
closed.

Ends a job's receptivity. All other fields are
ignored. Existing communication paths are not
affected.

Part 1
9-2 A

On return from the IJCOM macro, the following status conditions can exist:

Register

so=o

Description

No errors occurred

IJSTAT contains the error code. If linked parameter
blocks are used, all IJSTAT fields must be examined if
SO~O.

USER CHANNEL ACCESS (DRIVER)

Use the DRIVER macro to directly access a Cray channel on the I/O Subsytem
(lOS) MIOP. This feature is available to privileged single-tasking jobs,
and prohibited from multi-tasking jobs.

Format:

I Location I Result

DRIVER

I Operand

d~pbad

drpbad A symbol or an A (not AO), S (not SO), or T register
containing the DRIVER parameter block (DRPB). For a
complete description of the DRPB parameters, see the
CRAY-oS Version I Reference Manual, publication SR-OOlI.
In all cases DRFUNC, DRPLEN, and DRLN are required in DRPB
and DRCOSS is returned to the user. See individual driver
specifications for the use of this word and other field
requirements. dppbad is a required parameter.

Table 9-2 lists the DRIVER functions enabled by the DRFUNC parameter of
the DRPB and briefly describes the operation of each.

SR-OOI2
Part I

9-3 A

Table 9-2. DRIVER functions

Function Description

CFN$OPE

CFN$CLS

CFN$RD

CFN$RDH

CFN$RDD

Opens a channell a job cannot access a channel until
it opens the channel. DRDRNM, DRTO, DRDIR, and DROPD
are required; all other fields are ignored.

Closes a channel.
job termination.
are ignored.

Any open channels are closed during
DRDIR is required; all other fields

Reads data. DRBAD and DRLN are required; DRTLN is
returned.

Reads and holds data. DRBAD and DRLN are required;
DRTLN is returned. A read and hold makes a second
read from the channel, and holds the data in Buffer
Memory for a subsequent read.

Reads and rereads data. DRBAD and DRLN are required;
DRLN is returned. A read and reread makes a second
read to Central Memory.

On return from the DRIVER macro, the following conditions can exist:

Register

so=o

so;,o

Description

No errors occurred. The job must poll DRCOMS for
nonzero indicating the driver has completed the
request. When DRCOMS is nonzero, the driver status is
in DRDRS. See the individual driver specifications for
driver statuses.

DRCOSS contains the error code and the request is not
sent to the driver.

EVENT RECALL (ERECALL)

The ERECALL macro allows a job to suspend itself until one or more
selected events occur. This feature is available to all single-tasking
jobs; it is prohibited to multi-tasking jobs.

SR-OOl2
Part 1

9-4 A

When event monitoring is enabled, the system monitors selected events for
a job, keeping track of the events that have occurred. Monitoring is
disabled at the beginning of each job step and can be enabled by making a
system request specifying the events to monitor. Once monitoring is
enabled, a job can make a system request to do the following: change the
events that are to be monitored, get a map indicating the events that
have occurred, go into event recall, or disable monitoring.

When monitoring is enabled, a map of occurred-events is returned to the
user and discarded by the system. If monitoring was disabled when the
enable occurred the map is zero.

When events to be monitored are changed or a map of occured events is
requested, a map of occured events is returned to the user and discarded
by the system.

When recall is requested and the map of occurred events is zero, the job
is suspended for an event until one of the events occurs. If the map is
nonzero, the map is returned to the user immediately and discarded by the
system.

When recall is disabled, the map of occurred-events is discarded by the
system.

Format:

ERECALL e-ppbadd

eppbadd A symbol or an A (not AO), 5 (not 50), or T register
containing the address of the event recall parameter block
(ERPB). For a complete description of the ERPB parameters,
see the CRAY-OS Version 1 Reference Manual, publication
SR-OOll. In all cases ERFUNC is required in ERPB.
epbpadd is required.

Table 9-3 lists the event recall (ERECALL) functions enabled by the
ERFUNC parameter of the ERPB and briefly describes the operation of each.

5R-00l2
Part 1

9-5 A

Table 9-3. ERECALL functions

Function Description

ERCL$DIS

ERCL$ENA

ERCL$RCL

ERCL$RET

SR-0012

Disables event monitoring; all other fields are
ignored.

Enables event monitoring or changes the events to be
monitored. ERMASK is required. If ERMASK=O, timeout
is the only enabled event. Timeout is always enabled
in order to prevent a job hanging forever in recall.
ERMAP is returned by the system. ERTO is ignored.

Places the job in recall. An error is returned in so
if monitoring is disabled. ERTO is required, ERMASK
is ignored, and ERMAP is set by the system. If
ERTO=O, an installation-defined default value,
I@TODEF, is used. If ERTO is specified but is less
than I@TOMIN, the installation-defined minimum is used
without notification. If ERMAP=O on return, timeout
is the only event that occurred.

Requests the system to set ERMAP; all other fields are
ignored. An error is returned in so if monitoring is
disabled.

Part I
9-6 A

PART 2

SYSTEM AID MACROS AND OPDEFS

NORMAL TABLE MANIPULATION

A table is an area within a program that provides a means of associating
various bits of memory to fields or subfields. Tables consist of one or
more fields. A field, moreover, is a contiguous set of bits in Central
Memory.

When you use CAL, you can simplify access to data structures by defining
tables. You can access a field with only one macro instruction by using
the table manipulation macros and opdefs. The fields of a table are then
accessed by name rather than by address.

The table manipulation macros and opdefs described in this section allow
you to orient the fields to Central Memory word boundaries. The tables,
which are oriented to the physical size of a Central Memory word (that
is, 64 bits), are referred to as normal tables and are governed by the
normal table macros and opdefs.

Tables that allow fields to span Central Memory word boundaries are
called complex tables. Complex tables are defined by the complex table
macros and opdefs described in part 2, section 2.

Normal table manipulation macros and are divided into the following main
classes:

• Table definition macros

• Run-time field management opdefs

• Miscellaneous run-time field management opdefs

TABLE DEFINITION MACROS

Tables are defined during the program's assembly. You define the table's
parts by using a macro that corresponds to the specific aspect to be
defined. The macros in turn define assembly symbols that reflect the
characteristics of what has been defined. These symbols are then used by
the construction and manipulation macros and opdefs.

SR-0012
Part 2

1-1 A

1

Both normal and complex tables consist of three basic categories: a
header, one or more entries, and overall characteristics. However, the
normal table macros and the complex table macros must be used separately
for definition and table structure maintenance. Mixing normal and
complex table macros results in assembly errors. Complex tables are
described in part 2, section 2.

You can construct tables that use 64-bit words by using the following
macros:

• TABLE

• CAPTION

• ENDTABLE

• FIELD

• FIELD@

• ENDFIELD

• SUBFIELD

• NEXTWORD

• REDEFINE

• BUILD

Defines the overall table attributes

Prints a caption underneath a diagram

Designates the end of a table definition

Defines the field within the current table structure,
or sets up special labels for fields

Defines a field with attributes identical to a
previously defined field

Designates the end of a field spanning more than 1 word

Identifies fields contained within a larger field

Advances a specified number of words in the current
table structure

Redefines a specified word or group of words in the
current table structure

Constructs a table at assembly time

TABLE - DEFINE TABLE ATTRIBUTES

The TABLE macro defines symbols that relate to a table; however, TABLE
neither creates the table (see BUILD), nor checks for the presence of a
label. This macro defines special symbols for the length of the table
header (LH@name), the length of each entry in the table (LE@name),
the number of entries in the table (NE@name), and the size of the table
(SZ@name and L@name).

SR-0012
Part 2

1-2 A

Format:

Location Result Operand

name TABLE LH=lh,LE=le,NE=ne,{L=lt }
SZ=st

All parameters are optional. Nonetheless, note that without a name,
coding any parameter can produce unexpected symbols.

name

LH=lh

LE=le

NE=ne

{
L=lt }
SZ=st

Example:

Location
1

DRT

The 1- to 5-character name of the table being described.
This parameter is required if LH, LE, NE, L, or SZ is
specified.

Length of table header in words. If the table has a
header, LH generates an assembler label, LH@name, which
contains the length of the header. This parameter is
optional.

Length of entry in words. This parameter is optional.

Number of entries in the table. Coding NE for the TABLE
macro can be helpful only if NE has not been defined
already in a systems text. If NE has been specified
already, with a value different from the one given here,
CAL generates a double-defined error. This parameter is
optional.

Table length in words. This parameter is optional.

Result Operand Comment
10 20 35

TABLE T*NE@DRT LH=3,LE=67,NE=2,SZ=LH@DRT+LE@DR
I

You can use the TABLE macro to introduce a table for the Table Diagram
Generator (TDG). See the Table Diagram Generator (TDG) Reference Manual,
CRI publication SM-0075 for more information about the TDG.

SR-0012
Part 2

1-3 A

CAPTION - OECLARE TABLE TITLE

For each table diagram drawn by the Table Diagram Generator (TOG), the
TDG prints a caption underneath the diagram and at the bottom of each
page from which the diagram is continued. You provide the caption by
coding a CAPTION statement t •

A CAPTION statement is required to inform the TOG that the records
following are to be considered part of a table. An ENOTABLE or ENDTEXT
statement causes the TDG to ignore records up to the next CAPTION
statement. A TABLE statement can also turn on TOG processing, but the
resulting table's diagram contains inadequate labeling information
because of a lack of a CAPTION statement. For more information about the
TOG, see the Table Diagram Generator (TOG) Reference Manual, CRI
publication SM-0075.

Format:

Location Result Operand

CAPTION pfx,'oaption text' [,WORD='ttt']

mne The table mnemonic. mne should be the same for each
CAPTION statement that is included within a single table
definition. In many cases, the mne value should be the
same as the value of the location field of the preceding
TABLE statement that starts the table definition.

pfx The table prefix. pfx is a 2 or 3 character alphanumeric
prefix that precedes every field label in the table.

'oaption text'

WORD='ttt'

A quoted string describing the table. The first caption
statement for a table is used in page headers for all pages
of the table.

The WORD keyword parameter prefixes the string 'ttt' to
each word number printed by the TOG. This applies to
tables which have variable length components, in whose case
it is appropriate to refer to words as, for example, x+O or
x+l, relative to a given starting word x.

t The CAPTION statement may also be used in complex tables.

SR-OOI2
Part 2

1-4 A

Example:

The following is a typical CAPTION entry for a table:

Location Result Operand

APT CAPTION AP,'ANY PACKET TABLE'

ENDTABLE - END TABLE DEFINITION

The ENDTABLE macro specifies the end of a table description. If you did
not define a LE@name, one is defined with a value equal to the highest
next word counter reached during the assembly of the associated FIELD
macros. If the LE@name is defined, it is checked to ensure that no
FIELD macro for the referenced table or word number, is inconsistent with
the defined LE@name symbol.

Format:

I LocationlResult

name ENDTABLE

I operand

name A 1- to 5-character name of the table being described.
This parameter is optional. This parameter is optional; if
name is specified, LE@name is specified.

The ENDTABLE statement terminates all preceding TABLE statements for the
Table Diagram Generator (TDG). See the Table Diagram Generator (TDG)
Reference Manual, CRI publication SM-0075 for a detailed description of
the TDG. until a new TABLE statement is encountered, the following
statements after an ENDTABLE statement are flagged as errors: FIELD,
SUBFIELD, NEXTWORD, REDEFINE and ENDTABLE.

FIELD - NAME FIELD WITHIN TABLE

The FIELD macro sets up the special labels for fields in tables. These
labels can then be used by the GET, SGET, PUT, SPUT, and SET macros.
When adding a new table or set of FIELD macros, precede the first call to
FIELD with a TABLE macro, even if it contains no parameters. Otherwise,
an assembly error might result on the first FIELD macro. All field
definitions must be in numerically ascending order by ~ord and bit
number (sbit and number) and may not overlap. The current word
counter is set each time the assembler encounters either (a) a FIELD

SR-OOl2
Part 2

1-5 A

macro that contains a specific numeric value for word, (b) a NEXTWORD
macro, (c) a REDEFINE macro, or (d) a FIELD macro containing a + in the
word parameter.

Format:

Location Result Op~rand

n~e

n~e

FIELD word,sbit,number

A 1- to 6-character name of the field being described. The
first few characters should be the table prefix, as
required by the BUILD macro. For processing with the Table
Diagram Generator (TDG)t, it is not necessary to start
the name with the table prefix. Nonetheless, the table
diagram's appearance improves when the proper prefix is
used. This parameter is required.

Relative 64-bit word index in table or table entry in which
the field resides. This parameter is required. Special
variations of this parameter are:

* Suppresses the definition of W@n~e

$ Indicates that the current word (the last explicitly
given word, or the last word number generated by a
NEXTWORD macro) is to be used. This format is useful
when new words are added to the middle of a large
table.

+ Causes the macro expansion to generate a call to
NEXTWORD, with word value of the current next word
counter and a length value of 1.

sbit Starting (leftmost) bit number of the field in the word.
Bit 0 is the sign bit. This parameter is required. *
suppresses the S@n~e and N@name definitions; numbe~
must be omitted if * is used.

t For a complete description of the TOG, see the Table Diagram
Generator (TDG) Reference Manual, CRI publication SM-0075.

SR-0012
Part 2

1-6 A

number

Example:

Location
1

COMDN
DNT
DNBSZ
DNDAT
DNBFZ
DNUSR
DNXYA
DNUSR
DNT

For the TOG, if you code sbit as '*' the length of the
field is ambiguous. The TDG defers drawing the field in
the diagram until a CAL ENDFIELDt directive is
encountered. The TDG calculates the length of the
ambiguous field to cover all bits defined by FIELD or
NEXTWORD, between the ambiguous FIELD statement and the
ENDFIELD statement.

Field size in number of bits. This parameter is required
when sbit has been given a numeric value.

Result Operand Comment
10 20 35

TEXT 'DN Demonstration table - DNT'
TABLE
FIELD 0,6,24 BSZ field
FIELD 1,24,40 DAT field
FIELD 3,12,15 BFZ field
FIELD 16,* USR field
FIELD *,24,40 Part of USR
ENDFIELD Required
ENDTABLE
ENDTEXT

FIELD@ - EQUATE A NEW FIELD TO A PREVIOUSLY DEFINED FIELD

The FIELD@ macro sets up the special labels for a field from values
previously defined for another field. Only the special labels already
defined are set up for the new field. This macro is used to ensure that
two field definitions are identical.

Location Result

name FIELD@

Expansion:
W@name=W@namel
S@name=S@namel
N@name=N@namel

Operand

namel

t The ENDFIELD statement may also be used in complex tables.

SR-0012
Part 2

1-7 A

name A 1- to 6-character name of the field being described.

namel

This parameter is required.

A 1- to 6- character name of a previously defined field.
This parameter is required.

ENDFIELD - DEFINE THE END OF A FIELD

The ENDFIELD macro terminates a field definition that begins with a
special form FIELD statement. See the Table Diagram Generator (TOG)
Reference Manual, eRI publication SM-0075 for more information about the
ENDFIELD and special form FIELD statements.

Format:

ENDFIELD

I Operand

SUBFIELD - NAME PART OF A FIELD

The SUBFIELD macro allows fields to overlap when two or more fields use
the same bit range. Use this macro only when overlapping fields are
logical subfields. The DPERR field, for example, contains 12 separately
addressable bits, each having its own field definition and name. Use of
this macro is not appropriate when two separate formats are used for
either an entire table or one or more words in a table. The SUBFIELD
macro must be preceded by a FIELD macro. If you define a subfield using
the FIELD macro instead of the SUBFIELD macro, the result is an assembly
error.

A subfield must be completely contained within the bit range described by
the immediately preceding FIELD macro. Multiple SUBFIELD macros may
follow one FIELD macro, and all must be completely within that field.

Format:

Location Result

name SUBFIELD

SR-0012

Operand

sbit,length

Part 2
1-8 A

Expansion:
W@name=%%LOC$$
s@name=sbit
N@name='Length

name A 1- to 6-character name of the field being described.
This parameter is required.

sbit Number identifying the leftmost bit of the field. This
parameter is required.

'Length Number identifying the field length in bits. This
parameter is optional. If it is not specified, the default
is 1.

w@name, s@name, and N@name are defined. w@name uses the word
number from the most recent FIELD macro.

Comment processing for SUBFIELD statements is equivalent to that for the
FIELD statement. The diagram annotation for subfields is indented two
spaces relative to other annotations.

Example:

A typical example is the Dataset Parameter Table (DSP) error bits, where
each bit is defined and the group of bits is referenced as field DPERR.

Location Result Operand Comment
1 10 20 35

DPERR FIELD 1,1,12 DSP Error flags
DPEOI SUBFIELD 1,1 EOI in buffer
DPENX SUBFIELD 2,1 Dataset does no
DPEOP SUBFIELD 3,2 Dataset not ope

NEXTWORD - ADVANCE SPECIFIED NUMBER OF WORDS

t exist
n

The NEXTWORD macro allows you to add words into large tables without
recoding the definition of all fields in subsequent words of the table,
unless such subsequent definitions provide specific numeric values for
wopd. Use this macro with a special form of the FIELD macro to maintain
the current word number automatically.

SR-0012
Part 2

1-9 A

Format:

name NEXTWORD

I Operand

lJo1'<i,Length

name

length

Example:

Location
1

COMXX
TAB

Fl

F2

F3

E1
E2

SR-0012

A 1- to 5-character
TABLE macro for the
is defined as word.
and name is present,
N@name is defined as
you indicate name.

table identifier referenced in the
table. If name is present, W@name
If you omit length, or if it is 1,
S@name is defined as ° and
64. No symbols are defined unless

Optional word number to reset counters. If you omit
word, counters are set to the next sequential word
resulting from a previous NEXTWORD macro or FIELD macro.
The default value is the current value of the current word
counter, plus the length from the most recently
encountered NEXTWORD or REDEFINE macro. The default value
can also be the current value of the current word counter
+1 if a FIELD macro is encountered which specifies a
numeric word value or a +, since the NEXTWORD or REDEFINE.

Optional size of block being defined. If length is
omitted, 1 word is assumed. length is used when a block
larger than 1 word is needed in a table but FIELD 'macros do
not exist for individual fields within words other than the
first word. If length is present, a following NEXTWORD
or a following FIELD macro with the + option sets the
current word counter to current word counter plus
length. The default value is 1.

Result
10

TEXT
TABLE

FIELD
NEXTWORD
FIELD
NEXTWORD
FIELD
REDEFINE

FIELD
FIELD

Operand Comment
20 35

'XX Demonstration table - TAB'
LH=3

$,0,24

$,40,24

$,40,24

°
$,0,1
2,40,24

Part 2
1-10

Begin definitio
Current word co

n of table TAB.
unter is set to 0.
in header) W@F1=0 (Fields

W@F2=1

W@F3=2
Reset current w ord to ° to

n entry. define fields i
W@El=O
W@E2=2, redefin es current word.

A

Location Result Operand Comment
1 10 20 35

NEXTWORD 4,6
E3 FIELD $,40,24 W@E3=4

NEXTWORD
E4 FIELD $,0,1 W@E4=D'10
TAB ENDTABLE Defines LE@TAB= D'll.

REDEFINE - REDEFINE SPECIFIED NUMBER OF WORDS

Use the REDEFINE macro to redefine the words within a table definition
that has multiple formats of one or more words. For example, you can use
this macro for the Permanent Dataset Definition Table (PDD), whose formats
change according to the function being performed. A REDEFINE macro must
precede each word or block of words that has one or more alternative
definitions and each possible format, to reset necessary counters, and
prevent FIELD macro errors. All parameters are optional.

Format:

Location Result Operand

name

name

length

SR-0012

REDEFINE wopd,length

A 1- to 5-character
TABLE macro for the
is defined as wopd.
and name is present,
N@name is defined as
you indicate name.

table identifier referenced in the
table. If name is present, W@name
If you omit length, or if it is 1,
S@name is defined as 0 and
64. No symbols are defined unless

The beginning word number of the range to be defined. If
you omit woPd, the redefinition begins at the current
word value.

Length of a block in words being reserved when a field is
to be a multiple of words in length (for example, the
Dataset Name Table (DNT) portion of a System Dataset Table
(SDT) entry). The default value is 1.

Part 2
1-11 A

The REDEFINE statement terminates the current table generated by the
Table Diagram Generator (TOG). The diagram and annotation up to the
occurrence of the REDEFINE statement are drawn. A new diagram. is then
started and its first word is the one specified by the first parameter of
the REDEFINE statement. To avoid redefinitions meant to define
subfields, use the SUBFIELD macro described previously in this
sUbsection. For a detailed description of the TDG, see the Table Diagram
Generator (TDG) Reference Manual, CRI publication SM-0075.

BUILD - CONSTRUCT DEFINED TABLE

Use the BUILD macro with the TABLE and FIELD macros to construct a table
at assembly time. The table is defined in terms of the symbols defined
by TABLE and FIELD macros. The BUILD macro eliminates the need for
coding variable word definition (VWD) statements to set initial values
(see the CAL Assembler Version 1 Reference Manual, CRI publication
SR-OOOO). Fields you specify in the BUILD macro must not overlap or be
repeated, although these conditions are not diagnosed. Any field that
you do not name explicitly in the BUILD macro is initialized to o.

Format:

Location Result Operand

oplabel BUILD pfx,length,(list)

oplabel Optional location symbol. If present, oplabel is defined
as the location of word 0 of the table being built and has
the CAL word address attribute. BUILD always forces the
location counter to a word boundary before constructing the
table.

pfx A 2- or 3-character prefix identifying the field definition
for the table being built. pfx is the prefix used in the
FIELD macro (such as, DP for DSP or EQ for EQT). This
parameter is required.

SR-0012

Use of the BUILD macro requires that all table FIELD
definitions use field names beginning with the
characters given by pfx.

Part 2
1-12 A

length

list

Examples:

Designates length of table. Normally, length should be
L, LH, LE, or SZ. BUILD concatenates the length designator
with the @ character and pfx to produce a symbol that
defines the length of the table designated by the TABLE
macro location field. This parameter is required.

Field names and values to be entered into the fields. You
must enclose the list in parentheses, unless only one field
name and value is specified or no field is specified. If
you do not specify a field, the table is initialized with
all zeros. This parameter is optional.

A field name can be any characters for which a FIELD macro
has been assembled, without the 2- or 3-character prefix.
Fields can be in any order. The list must not contain
the \ character. Entries in the list have the form:

fieldname=value

where value is the data to be assembled into the field
and can contain any characters (except) legal in the value
field of a VWD instruction (see the CAL Assembler Version 1
Reference Manual, CRI publication SR-OOOO).

1. The following examples show the table definition and its fields and
the construct of the table.

a. This entry defines a table named TAB; all field definitions are
prefixed by TAB.

Location Result O~erand Comment
1 10 20 35

TAB TABLE LE=20,NE=3,LH=2

b. These entries define fields A and B for the table header.

Location Result
1 10

TABHFI FIELD
TABHF2 FIELD

SR-0012

Operand
20

0,0,16
1,0,64

Part 2
1-13

Comment
35

Field A
Field B

A

c. These entries define fields X, Y, and Z for the table entry.

Location Result Operand Comment
1 10 20 35

REDEFINE 0,1
TABFl FIELD 0,0,64 Field X

TABF2 FIELD 2,1,4 Field Y
TABF3 FIELD 3,6,12 Field Z

d. The following set of instructions constructs the table during
assembly.

Location Result
1 10

B@TAB BUILD

BUILD

DUP

Operand Comment
20 35_

TAB,LH,(HFl='TB'L,HF2='HDR
I

2 'L)

TAB,LE,(Fl='TABFl'L,F2=O'37)

NE@TAB-l,l

construct
header.
Build one
entry.

BUILD TAB,LE Build remaining
entries for all
fields initial-
ized to O.

2. The following example builds an Equipment Table (EQT) entry. The
field names are described in the COS Table Descriptions Internal
Reference Manual, publication SM-0045.

a. This entry builds the EQT header.

Location Result Operand Comment
1 10 20 35

B@EQT BUILD EQ, (LH@EQT),(NE=I@NDD8l9,NUA=0 ,TN='EQT'L)
I

b. This code builds the entry for the master device.

Location Result Operand Comment
1 10 20 35

EQTOO BUILD EQ,(LE@EQT),(LDV='DD-19-20'L, MSD=1,CHl=2,UN=0, __ __
,

I I

SR-0012

DRT=DRTOO,CPD=NCY8l9,TPC=NTK81

Part 2
1-14

I
9,AU=NBL819,LNK=EQT04

A

c. The following builds an entry for a non-master device.

Location Result Operand Comment
1 10 20 35

EQTOI BUILD
,

EQ,(LE@EQT),(LDV='DD-19-30'L,
CPD=NCY819,TPCjNTK819,AU=NBL81

CHl=3,UN=0,DRT=DRTOl,_
9, LNK=EQTO 5)

I f

NOTE

The length parameter is enclosed in parentheses and
contains a blank character because the length of an
Equipment Table (EQT) entry or header is not defined in
terms of the same prefix as the field names. The
expansion of the macro yields the following line:

Location Result Operand Comment
1 10 20 35

%TL SET LE@EQT @EQ

The blank before @EQ terminates the assembler scan of
the line. If the blank is omitted, the expansion shown
below produces an assembly error. Omitting the
parentheses produces the same expansion and also
produces an assembly error.

Location Result Operand Comment
1 10 20 35

%TL SET LE@EQT@EQ

RUN-TIME FIELD MANAGEMENT OPDEFS

Run-time field management opdefs allow you to manage information
contained in a table during program execution. These opdefs primarily
allow the following:

• Field retrieval
• Field modification

SR-0012
Part 2

1-15 A

Each opdef is structured so that a minimum number of instructions are
generated to produce its major function or functions. You can optimize
memory references still further by using the following format catagories:

• Fast format uses a minimum number of instructions and registers
(omits register Sj) to perform the opdefs' function.

• Full format performs required memory reads within the opdef.

• Quick format assumes r,equired memory reads have been made by
another opdef, usually a full opdef, using register An.

To designate the desired optimization category, enter one of the
following formats:

Location Result Operand Comment

name,Ri Sk,field,An Fast category
name,Ri Sj&Sk,field,An Full category
name,Ri Sj&sk,field Quick category

name Name of the opdef to be optimized

Ri An address register, scalar register, or an assembly symbol
that receives or supplies the field value.

sj

sk

An

field

Base image register. On exit from the opdef, Sj contains
the memory image in which the field resides. The quick
opdef requires the referenced field to reside in the
register on entry into the opdef.

Scratch register. sk is used in masks or shifts to
perform the opdefs major function. No special value is
associated with this register upon entry or exit.

Entry base address register. Register An specifies the
memory base address of the desired table entry.

Field names the field associated with the operation.
field must have been previously defined in a table
structure.

For all of the run-time field management opdefs (GETF, GET, SGET, PUT,
SPUT, SET) and miscellaneous run-time field management opdefs (LOAD,
STORE, ASSIGN, LJF, and XFER) opdefs, an optional location field can be
specified~ All of the other parameters are required.

When you use the quick opdefs, validate the implied field assumptions in
order to avoid a run-time misinterpretation of data.

SR-0012
Part 2

1-16 A

To aid programming, the run-time field management opdefs optionally
compare the word offset assigned in the the base image register of full
form opdefs, and the word offset of fields used by quick form opdefs.
This option is controlled by the following local assembly symbol:

Location Result Operand

% %VERFLD SET value

value A value that can be one of the following:

FIELD RETRIEVAL

Value

Undefined
o
1

2

3

Description

Disable comparison
Disable comparison
Issues a comment to the listing dataset when
a descrepancy is detected
Issues a warning error for each descrepancy
detected
Issues a fatal error for each descrepancy
detected

The set of run-time field retrieval opdefs retrieve (fetch) the current
value of a given field into a result field (an address or scalar
register). The fetched value is right-justified within the result
register. Run-time field retrieval opdefs (GETF, GET, and SGET) use all
of the memory optimization catagories. The catagories are des.,ignated
using the following optimization formats:

• Fast format uses a minimum number of instructions and registers
(omits register sj) to perform field retrieval. The GETF odefs
use this format.

• Full format performs a required memory read of the base image
register (sj) prior to field retrieval within the opdef. The
GET opdefs use this format.

• Quick format assumes the base image register (Sj) has the proper
memory image in which the field resides. The SGET opdefs use this
format.

SR-0012
Part 2

1-17 A

GETF - Field retrieval (fast format)

The GETF (fast format) opdefs retrieve the value of a given field from
the specified table entry. GETF opdefs expand and generate instructions
depending on the registers specified and/or the location and size of the
desired field within the table entry word. The first method uses scratch
register sk as an extraction mask, while the second method extracts the
field using left- and right-shift instructions.

Location Result

GETF,si
GETF,Ai

iQperand

sk,field,An
sk,field,An

si or Ai Result register. A register in the range from SO to
S7 or AO to A7 receiving the desired value (right-justified
within the register).

sk Scratch register. Register sk is used in shifts or masks
to extract the desired field.

An Entry address register. Register An contains the base
address of the desired entry within a table.

field Field entry. field names the field associated with the
operation. This value must be previously defined in a
table structure.

The GETF opdef includes the following special syntaxes:

• Using register AO in the An position takes advantage of special
CAL syntax during the read of memory. AO reads, biased by the
word offset, from the programs current Exchange Package data base
address (XPDBA)t for CRAY X-MP Computer Systems.

• If register si is register sk, a partial-word field is
extracted using shift instructions.

• If register si is register SO, a partial-word field is
using shift instructions.

• If register sk is register SO, a partial-word field is
using shift instructions.

extracted

extracted

t The Exchange Package data base address is designated as XPBA for
CRAY-l Models A, B, S, and M Computer Systems.

SR-0012
Part 2

1-18 A

GET - Field retrieval (full format)

The GET (full format) opdefs retrieve a field value from memory and keep
the entry word read in the base image register (Sj). The word image of
the retrieved field resides in a scalar register and is available to
other field management opdefs. The result register can be an address or
a scalar register. The field value placed in the result register is
right-justified within the register.

Location Result Operand

GET,si
GET,Ai

sj&Sk,field,An
sj&sk,field,An

si or Ai Result register. A register in the range from SO to S7
or AO to A7 receiving the desired value (right-justified
within the register).

sj Base image register. Register sj maintains an image of
the word in which the desire field resides.

sk

An

field

Scratch register. Register sk shifts or masks to extract
the desired field.

Entry address register. Register An contains the base
address of the desired entry within a table.

Field entry. field names the field associated with the
operation. This value must be previously defined in a
table structure.

The GET opdef includes the following special syntaxes:

• The use of AO in the An position takes advantage of the special
CAL syntax during the read of memory. It reads, biased by the
word offset, from the programs current XPDBAt for CRAY X-MP
Computer Systems.

• SO can be used in the si position when the desired field is
right-justified within the table entry word, and the length of the
desired field is greater than or equal to the size of the result
register (64 bits for si and 24 bits for Ai).

t The Exchange Package data base address is designated as XPBA for
CRAY-l Models A, B, S, and M Computer Systems.

SR-0012
Part 2

1-19 A

• SO can be used in the sk position when the desired field is
right-justified within the table entry word, and the length of the
desired field is greater than or equal to the size of the result
register (64 bits for si and 24 bits for Ai).

• sj and sk can be the same register when the desired field is
right-justified within the table entry word, and the length of the
desired field is greater than or equal to the size of the result
register (64 bits for si and 24 bits for Ai).

SGET - Field retrieval (quick format)

The SGET (quick format) opdefs retrieve a field value from the word image
that resides in the base image register (sj). SGET, unlike GET, does
not perform a memory read while extracting the field value. The result
register can be an address or a scalar register. The field value is
right-justified within the result register.

Location Result

SGET,si
SGET,Ai

Ooerand

Sj&Sk,fietd
sj&sk,fietd

si or Ai Result register. A register in the range from SO to S7
or AO to A7 receiving the desired value (right-justified
within the register).

Sj Base image register. Register Sj maintains an image of
the word in which the desire field resides.

sk Scratch register. Register sk shifts or masks to extract
the desired field. This register is assumed to have no
special value upon entry to or exit from the opdef.

field Field entry. field names the field associated with the
operation. This value must be previously defined in a
table structure.

The SGET opdef includes the following special syntaxes:

• SO can be used in the sj position when the desired field is
right-justified within the table entry word, and the length of the
desired field is greater than or equal to the size of the result
register (64 bits for si and 24 bits for Ai).

• SO can be used in the sk position when the desired field is
right-justified within the table entry word, and the length of the
desired field is greater than or equal to the size of the result
register (64 bits for si and 24 bits for Ai).

SR-0012
Part 2

1-20 A

• sj and sk can be the same register when the desired field is
right-justified within the table entry word, and the length of the
desired field is greater than or equal to the size of the result
register (64 bits for si and 24 bits for Ai).

FIELD MODIFICATION

The set of run-time field modification opdefs update the current value of
a specified field. The current value can be expressed as an assembly
symbol or constant or can reside in an address or scalar register. The
field modification opdefs (PUT, SPUT, and SET) use the following
optimization catagories.

• Full format updates a partial word opdef after a read of memory is
made of the base image register (sj). The PUT opefs use this
format.

• Quick format assumes the base image register (sj) contains the
proper memory image in which the field resides. The SPUT and SET
opdefs use this format.

PUT - Field update (full format)

The PUT (full format) opdef updates a field's value in memory and keeps
the entry word in the base image register (sj). Register Sj is then
available to the quick field management opdefs. The source of the value
can be an assembly symbol or constant or can reside in either an address
or a scalar register. If the new value resides in a register, the value
must be right-justified within that register upon entry to the opdef.

Location Result Operand

PUT,si
PUT,Ai
pUT,val

sj&sk,field,Arl
Sj&sk,field,An
sj&sk,field,An

si, Ai, or val

SR-0012

Source of the new value; can be an address register, a
scalar register, or an assembly symbol or con~tant. If the
register contains a value, the value must be
right-justified within that register.

Use of registers AO or SO is invalid and results in
assembly errors.

Part 2
1-21 A

Base image register. Register Sj maintains an image of
the word in which the desire field resides.

sk Scratch register. Register sk shifts or masks to set the
new value for the field.

An

field

Entry address register. Register An contains the base
address of the desired entry within a table.

Field entry. field names the field associated with the
operation. This value must be previously defined in a
table structure.

The PUT opdef includes the following special syntaxes:

• The use of AO in the An position takes advantage of the special
CAL syntax during the read of memory. It reads, biased by the
word offset, from the programs current XPDBA.

• SO can be used in the Sj position when the length of the
referenced field is I-word long (64 bits).

• SO can be used in the sk position when the length of the
referenced field is I-word long (64 bits).

• sj and sk can be the same register when the length of the
referenced field is' I-word long (64 bits).

• Use minus one (-1) in a result field to set all bits in the
referenced field.

• Use zero (0) in the result field to clear all bits in the
referenced field.

SPUT - Field update (quick format)

The SPUT (quick field) opdefs update a field's value in memory and in the
base image register (sj). Upon entry, register Sj contains the
memory image in which the field resides. SPUT differs from PUT, in that,
SPUT does not read memory before changing values. The source of the
value can be an assembly symbol or constant or can reside in either an
address or a scalar register. If the new value resides in a register,
the value must be right-justified upon entry to the opdef.

Location Result

SR-0012

SPUT,si
SPUT,Ai
SPuT,val

Ooerand

Sj&Sk,field,An
Sj&sk,field,An
Sj&Sk,field,An

Part 2
1-22 A

si, Ai, or val
Source of the new value. This is an address register, a
scalar register, or an assembly symbol or constant. If the
register contains a value, the value must be
right-justified within that register.

Sj

Use of registers AO or SO is invalid and results in
assembly errors.

Base image register. Register Sj maintains an image of
the word in which the desire field resides.

sk Scratch register. Register sk shifts or masks to set the
new value for the field.

An

field

Entry address register. Register An contains the base
address of the desired entry within a table.

Field entry. field names the field associated with the
operation. This value must be previously defined in a
table structure.

The SPUT opdef includes the following special syntaxes:

• The use of AO in the An position takes advantage of the special
CAL syntax during the read of memory. It reads, biased by the
word offset, from the programs current XPDBAt for CRAY X-MP
Computer Systems.

• SO can be used in the Sj position when the length of the
referenced field is I-word long (64 bits).

• SO can be used in the sk position when the length of the
referenced field is I-word long (64 bits).

• sj and sk can be the same register when the length of the
referenced field is I-word long (64 bits).

• Use minus one (-1) in a result field to set all bits in the
referenced field.

• Use zero (0) in the result field to clear all bits in the
referenced field.

t The Exchange Package data base address is designated as XPBA for
CRAY-l Models A, B, S, and M Computer Systems.

SR-0012
Part 2

1-23 A

SET - Field update (quick format)

The SET (quick format) opdefs update a field's value only in the base
image register (sj). Upon entry, register Sj contains the memory
image in which the field resides. SET differs from SPUT, in that, SET
does not rewrite memory following a change to the value in the base image
register.

The source of the value can be an assembly symbol or constant or can
reside in either an address or a scalar register. If the new value
resides in a register, the value must be right-justified within that
register upon entry to the opdef.

SET,si
SET ,Ai
SET,vaL

si, Ai, or vaL

d

Sj&Sk,fieLd
sj&Sk,fieLd
Sj&Sk,fieLd

Source of the new value. This is an address register, a
scalar register, or an assembly symbol or constant. If the
register contains a value, the value must be
right-justified within that register.

sj

Use of registers AO or SO is invalid and results in
assembly errors.

Base image register. Register Sj maintains an image of
the word in which the desire field resides.

sk Scratch register. Register sk shifts or masks to set the
new value for the field.

fieLd Field entry. fieLd names the field associated with the
operation. This value must be previously defined in a
table structure.

The SET opdef includes the following special syntaxes:

• SO can be used in the sj position when the length of the
referenced field is I-word long (64 bits).

• SO can be used in the sk position when the length of the
referenced field is I-word long (64 bits).

• sj and sk can be the same register when the length of the
referenced field is I-word long (64 bits).

SR-0012
Part 2

1-24 A

• Use minus one (-1) in a result field to set all bits in the
referenced field.

• Use zero (0) in the result field to clear all bits in the
referenced field.

MISCELLANEOUS RUN-TIME FIELD OPDEFS

The miscellaneous run-time field opdefs described in this section are
helper opdefs for programs that make extensive use of run-time field
management opdefs. These opdefs complement the previously defined set of
quick opdefs and aid the programmer by checking the status of various
field assumptions that can exist in program logic. Miscellaneous
run-time field opdefs include the following:

• LOAD

• STORE

• ASSIGN

• LJF

• XFER

LOAD - PRELOAD ENTRY WORD (FULL FORMAT)

The LOAD (full format) opdef preloads the entry word into a specified
base image register (sj). Upon exit from the LOAD opdef, the entry
word loaded into register sj is available for use by any of the
following quick opdefs: SGET, SET, SPUT, or LJF.

Location I Result

LOAD,Sj

I OPerand

field,An

sj

field

An

SR-0012

Base image register. Register sj maintains an image of
the word in which the desire field resides.

Field entry. field names the field associated with the
operation. This value must be previously defined in a
table structure.

Entry address register. Register An contains the base
address of the desired entry within a table.

Part 2
1-25 A

The LOAD opdef includes the following special syntax:

• The use of AO in the An position takes advantage of the special
CAL syntax during the read of memory. It reads, biased by the
word offset, from the programs current XPDBAt

•

STORE - UPDATE ENTRY WORD (FULL FORMAT)

The STORE (full format) opdef updates an entry word in memory with the
contents of a specified base image register (Sj). Any previous word
offsets assigned to the base image register remain intact upon exit from
the opdef.

Location I Result

STORE,Sj

I Operand

fie~d,An

sj

An

fie~d

Base image register. Register sj maintains an image of
the word in which the desire field resides.

Entry address register. Register An contains the base
address of the desired entry within a table.

Field entry. fie~d names the field associated with the
operation. This value must be previously defined in a
table structure.

The STORE opdef includes the following special syntax:

• The use of AO in the An position takes advantage of the special
CAL syntax during the read of memory. It reads, biased by the
word offset, from the programs current XPDBA.

ASSIGN - FIELD OFFSET CHANGE (FULL FORMAT)

The ASSIGN (full format) opdef changes the word offset assigned to the
base image register (sj). The ASSIGN opdef does not generate any
executable instructions and is only evaluated and processed during
program assembly.

t The Exchange Package data base address is designated as XPBA for
CRAY-l Models A, B, S, and M Computer Systems.

SR-OOl2
Part 2

1-26 A

Location Result Operand

sj

field

ASSIGN,Sj field

Base image register. Register sj maintains an image of
the word in which the desire field resides.

Field entry. field names the field associated with the
operation. This value must be previously defined in a
table structure.

The ASSIGN opdef includes no special syntaxes.

LJF - LEFT SHIFT FIELD (QUICK FORMAT)

The LJF (quick format) opdef left shifts the contents of a base image
register into the specified result register. The number of bits LJF
shifts is governed by the starting number of the referenced field
(S@field). Upon entry, the base image register (Sj) contains the word
image in which the field resides. LJF is commonly used in the testing of
single-bit fields.

si

sj

field

LJF,S~

I Operand

Result register. A register in the range from SO to S7.

Base image register. Register Sj maintains an image of
the word the desired field resides in.

Field entry. field names the field associated with the
operation. This value must be previously defined in a
table structure.

The LJF opdef includes the following special syntax:

• IF si and sj are the same register and the field is
left-justified with the entry word, no executable instructions are
generated.

SR-0012
Part 2

1-27 A

XFER - COpy FIELD (FAST FORMAT)

The XFER (fast format) opdef copies the field value from one entry to
another.

Location Result Operand

XFER,sftd,An Si&Sj&Sk,dftd,Am

sftd Source field. sltd must be previously defined in a table
structure.

An Source entry address register. Register An contains the
base address of the entry within a table.

si Scratch register

sj Scratch register

sk Scratch register

dftd Destination field. dltd must be previously defined in a
table structure.

Am Destination entry address register. Register Am contains
the base address of the entry within a table.

XFER schedules memory reads and writes in the following ways:

• si can
I-word

• Sj can
I-word

• Sk can
I-word

• An can
I-word

• Am can
I-word

SR-0012

be SO if the source
long (64 bits).

be SO if the source
long (64 bits).

be SO if the source
long (64 bits).

be AO if the source
long (64 bits).

be AO is the source
long (64 bits).

and destination fields are both

and destination fields are both

and destination fields are both

and destination fields are both

and destination fields are both

Part 2
1-28 A

COMPLEX TABLE MANIPULATION

Complex tables allow fields to span Central Memory word boundaries.
Normal tables, which require each field to be wholly contained in a
single memory word, are described in part 2, section 1. Since complex
table manipulation is an extension of normal table manipulation, this
section assumes you are familiar with the normal table manipulation
macros and opdefs (see part 2, section 1).

Complex table macros and opdefs are identified by mnemonics with an
initial C, as in CTABLE. The complex table macros define a table's
attributes so that other macros and opdefs may refer to the table
symbolically. The complex run-time management opdefs allow you to
retrieve data from any field defined in the complex table and also store
data any place in the table.

TABLE DEFINITION

Both complex and normal tables consist of three basic categories: a
header, one or more entries, and overall characteristics. However, the
normal table macros and the complex table macros, for definition and
table structure maintenance, must be used separately. Mixing complex and
normal table macros results in assembly errors.

2

You can define fields in tables that are capable of spanning 64-bit word
boundaries. You define tables of this type by using the following macros:

• CTABLE Defines the overall table attributes.

• CENDTAB Designates the end of a complex table structure.

• CFIELD Defines a field within the current complex table
structure.

• CSBFIELD Identifies fields contained within a larger field.

• CNXTWORD Advances a specified number of 64-bit words in the
current complex table structure.

• CREDEF Redefines a specified word or group of 64-bit words for
the current complex table structure.

SR-0012
Part 2

2-1 A

CTABLE - DEFINE TABLE ATTRIBUTES

The CTABLE macro identifies the beginning of a definition for a new
complex table structure. It also defines the table in terms of special
labels, the length of the table header, the length of a table entry, the
number of table entries, and the overall table length. When you omit any
attribute from the parameter list, its corresponding symbol remains
undefined. CTABLE must precede each unique table definition.

Format:

Location Result

name

Expansion:
LH@name=lh
LE@name=le
NE@name=ne
L@name=lt
SZ@name=st

CTABLE

Operand

LH=lh,LE=le,NE=ne,L=lt,sz=st

name A 1- to 5-character name of the table being described.
This parameter is required if any of the other parameters
are specified.

LH=lh

LE=le

NE=rze

L=lt

SZ=st

Example:

Location
1

VOLl

SR-0012

Length of the table header in 64-bit words. This is an
optional parameter.

Length of table entry in 64-bit words. This is an optional
parameter.

Number of table entries. This is an optional parameter.

Table length in 64-bit words. This is an optional
parameter.

Table length in 64-bit words. This is an optional
parameter.

Result
10

CTABLE

Operand
20

LH=O,LE=D'lO

Part 2
2-2

Comment
35

A

Expansion:
LH@VOLl=O
LE@VOLl=D'lO

CENDTAB - END TABLE DEFINITION

The CENDTAB macro terminates the definition of the current complex table
and automatically assigns a value to table entry length (LE@name) if
you have not defined it. When the entry length has been previously
defined by CTABLE, that length is checked to ensure that no field
definition resides outside of that length.

Format:

I LocationlResult

name CENDTAB

I Operand

name A 1- to 5-character name of the table being described.
name is required and must match the name on the CTABLE
macro. This parameter is required.

Example:

Location Result Operand Comment
1 10 20 35

VOLl CTABLE
VLID CFIELD 0,0,32 Volume ID. Equ al to VOLl
VLLVL CFIELD 9,56,8 Standards Level
VOLI CENDTAB

Expansion:
LE@VOLl=lO

CFIELD - NAME FIELD WITHIN TABLE

The CFIELD macro identifies a field definition within a complex table
structure. This identification is accomplished by defining special
labels that in turn are used by the CPUT and CGET opdefs. The CFIELD
macro differs from the FIELD macro in that fields can be defined in
CFIELD that span 64-bit word boundaries. For successful definition of a
complex field:

SR-0012
Part 2

2-3 A

• The definition must be contained within a complex table definition
(within aCTABLE CENDTAB sequence).

• All definitions must be in numerically ascending order with
respect to word and bit positions.

• The field length must be between 1 and 64 bits, inclusive.

Depending on the operands entered, CFIELD generates symbols identifying
the initial word (X@name), the initial bit (T@name), and the length
of the field (O@name).

Format:

Location Result Operand

name CFIELD UJopd,sbit,length

name A 1- to 6-character name of the field being described. If
you omit name, the definition of the special labels is
skipped. This parameter is required.

SR-0012

64-bit word index into the table. If UJord is numeric, it
must be greater than or equal to the word index of the
previously defined field. This parameter is required.
Special variations of this parameter are:

* Suppresses the definition of X@name

$ Equivalent to the current 64-bit word being defined in
the table

+ Equivalent to the next 64-bit word in the table

NOTE

With complex tables, fields can span 64-bit
word boundaries, causing an automatic
incrementing of the current word location for
a table.

Part 2
2-4 A

shit Starting (leftmost) bit number of the field. If shit is
numeric, that value must be between 0 and 63 inclusive and
must also be greater than the length of the previously
defined field. The special value for shit is *. This
value suppresses the starting bit (T@name) and length
(O@name) definitions. This parameter is required.

length Field length in number of bits. If you omit length, a
default length of 1 bit is assumed. If you give length a
numeric value, length must be between 1 and 64,
inclusive. This parameter is required.

Example:

Location Result
1 10

VLLID CFIELD
VLNUM CFIELD
VLVSN CFIELD
VLACC CFIELD

Expansion:
X@VLLID=O
T@VLLID=O
O@VLLID=24

X@VLNUM=O
T@VLNUM=24
O@VLNUM=8

X@VLVSN=O
T@VLVSN=32
O@VLVSN=48

X@VLACC=l
T@VLACC=16
O@VLACC=8

Operand
20

0,0,24
$,24,8
$,32,48
$,16,8

CSBFIELD - NAME PART OF A FIELD

Comment
35

Use the CSBFIELD macro to define a field (defined by CFIELD) as smaller,
separate fields. As with CFIELD, fields which you define with CSBFIELD
can span 64-bit word boundaries. For successful field definition:

SR-0012
Part 2

2-5 A

• The subfield must lie within the last defined field (CFIELD).

• A subfield must begin after the end of the last subfield defined.

Format:

Location Result

name CSBFIELD

Expansion:
X@name=%%LOC$$
T@name=sbit
O@name=length

ODerand

sbit,length

name A 1- to 6-character name of the field being described.
This parameter is required.

sbit Number identifying the leftmost bit of the field. This
parameter is required.

length Number identifying the field length in bits. This
parameter is optional; the default is 1.

Example:

Location Result
1 10

HDXPR CFIELD
HDXPYR CSBFIELD
HDXPDY CSBFIELD

Expansion:
X@HDXPR=5
T@HDXPR=56
O@HDXPR=48

X@HDXPYR=5
T@HDXPYR=56
O@HDXPYR=24

X@HDXPDY=6
T@HDXPDY=16
O@HDXPDY=24

SR-0012

Operand
20

5,56,48
56,24
16,24

Part 2
2-6

Comment
35

A

CNXTWORD - ADVANCE SPECIFIED NUMBER OF 64-BIT WORDS

The CNXTWORD macro allocates an area in a table, leaving out
definitions. Use CNXTWORD primarily when the table to be constructed
contains other previously defined tables as elements. An example is the
Job Table Area (JTA) storing a Permanent Dataset Definition (POD) in its
static part. The use of CNXTWORD complements tables that are constructed
with relative word references in the field definitions: name CFIELD $,
sbit,length) •

Format:

Location Result

word

length

Example:

Location
I

SR-0012

CNXTWORD word, length

The 64-bit word indexes the table where the CNXTWORD is to
begin. This parameter is optional.

NOTE

with complex tables, fields can span 64-bit
word boundaries, thus causing an automatic
incrementing of the current word location for
a table.

Length of the block to allocate in 64-bit words. This
parameter is optional; if you omit length, the default
block length is set to one 64-bit word. The value for
length plus the value for word becomes the new current
word counter after the CNXTWORD macro.

Result
10

DLRL

DLBOF

Operand
20

CFIELD
CNXTWORD
CFIELD

Part 2
2-7

Conunent
35

1,16,40
,LE@ROS
$,8,16

A

Expansion:
X@DLRL=l
T@DLRL=16
O@DLRL=40

X@DLBOF=l+LE@ROS+l
T@DLBOF=8
O@DLBOF=16

CREDEF - REDEFINE SPECIFIED NUMBER OF 64-BIT WORDS

The CREDEF macro allows a block of 64-bit words to be redefined within a
table. Use CREDEF primary to redefine whole tables such as those used
for the ANSI tape dataset label group definitions.

Format:

Location Result Operand

~ength

SR-0012

CREDEF wopd,~ength

The 64-bit word index into the table where the redefinition
is to begin. This parameter is optional; when you omit
wopd, the redefinition begins at the current 64-bit word
being constructed.

NOTE

with complex tables, fields can span 64-bit
word boundaries, causing an automatic
incrementing of the current word location for
a table.

Length of the block to redefine in 64-bit words. This
parameter is optional; if you omit ~ength, the default
block length is set to one 64-bit word.

Part 2
2-8 A

Example:

Location Result Operand Comment
1 10 20 35

DLG CTABLE LE=lO
DLID CFIELD 0,0,32
DLFID CFIELD 0,*

CREDEF O,LE@DLG
DLID CFIELD 0,0,32
DLFMT CFIELD 0,32,8

RUN-TIME TABLE MANAGEMENT

The run-time table management opdefs transfer data between a holding
register and a field in the complex table. Complex fields can physically
reside in more than one 64-bit word. The fetching and storing of values
are always with the value right-justified in its holding register.

The complex run-time table management opdefs are:

• CGET Fetches the contents of a field into a register

• CPUT Stores the contents of a register into a field

The short forms of these macros are not provided due to hardware
restrictions and the need to save on register usage.

An optional location field can be specified for the complex run-time
field management opdefs (CGET and CPUT). All of the other parameters are
required.

NOTE

These macros cannot be used in reentrant code.

CGET - RETRIEVE FIELD CONTENTS

The CGET opdef provides a means of conveniently fetching a field
value that was defined by the CFIELD macro. This opdef
recognizes when it must obtain the value from more than one
64-bit word and appropriately generates the machine instructions
to do so.

SR-00l2
Part 2

2-9 A

Format:

Location Result Operand

Loa

Loa

fieLd

si

sj

Sk

CGET,fieLd,Si Sj ,Sk,AL

Optional field location

A 1- to 6-character name of the field to be fetched

S register to receive the field value; right-justified. SO
is not a valid register.

S register to be used as a scratch register. The contents
of this register, upon exit, have no meaningful value.
si and sj must be unique registers. SO is not a valid
register.

A register to be used as a scratch register. SO is not a
valid register.

A register containing the base address of the table or
table entry. This register is left unchanged. AL and
Ak must be unique registers.

CPUT - STORE DATA IN A FIELD

The CPUT opdef conveniently stores a field value into a table or table
entry. You must have defined the field previously using the CFIELD or
CSBFIELD macros. CPUT recognizes and automatically generates the
additional machine instructions for storing fields that span 64-bit word
boundaries.

Format:

Location Result Operand

Loa CPUT,si,fieLd Sj,Sk,AL

Loa Optional field location

si S register containing the right-justified value to store.

SR-0012

The contents of the registers remain unchanged. SO is not
a valid register.

Part 2
2-10 A

field

sj

sk

SR-0012

Name of the field in which to store the value

S register to be used as a scratch register. The contents
of this register, upon exit, have no meaningful value.
sj, sk, and si must be unique registers. SO is not a
valid register.

S register to be used as a scratch register. The contents
of this register, upon exit, have no meaningful value.
sk, si, and sj must be unique registers. SO is not a
valid register.

A register containing the base address of the table or
table entry. This register is not destroyed by CPUT.

Part 2
2-11 A

INDEXED TABLE CONSTRUCTION
MACROS

3

Use the indexed table construction macros (MAP, MAPTO, and ENDMAP) to
construct indexed arrays of numbers, addresses, words, or data records
that have a common format. Indexed table construction macros can be used
as:

• Jump vectors

• Indexed records

Indexed table construction macros build any table in which an entry can
be looked up by an index key. The MAP macro sets up assembly parameters
to control the table. The ENDMAP macro completes the table and makes
final error checks. Each invocation of the MAPTO macro generates one
table entry. The variable macro or pseudo-op you specify in the MAP
macro call generates each entry.

Since the generating pseudo-op is a variable parameter, MAP, ENDMAP and
MAPTO are very powerful. You can use these macros to create a table of
any desired structure, as long as you order the entries with a set of
sequentially-numbered constant key valueS.

Format:

Location Result Operand

tname
keyl
key2

tname

op

SR-0012

MAP
MAPTO
MAPTO

MAPTO
ENDMAP

Op,FILL=exp,ORIGIN=exp
val.uel
val.ue2

Table name; location field symbol for first entry.

Macro or opdef name to use in generating each entry

Part 2
3-1 A

FILL=exp Value to place in unused entries. FILL=NO causes MAPTO
and ENDMAP to generate an assembly error if there are any
omitted entries. If FILL=exp is omitted, MAPTO uses a

ORIGIN=exp

limit

JUMP VECTORS

default of O.

Value for the first key in the table. Entering a nonzero
value for exp suppresses FILL entries at the beginning of
the table. If you specify a nonzero origin, subtract this
origin value from the index value before referencing the
table.

Entry ordinal symbol. The first key is o.

Value to assemble into the entry

Highest legal key value +1

Jump vectors are the equivalent of the CFT computed GOTO. If you want to
jump to one of a number of addresses based on the value in a variable,
use MAP, MAPTO, and ENOMAP to build a table of addresses or jump
instructions that are indexed by the controlling variable.

Examples:

Location Result

GOTO =
A7
A7
A7
BOO
J

Location Result

JUMPVEC MAP
VALl MAPTO
VAL 2 MAPTO
VAL 3 MAPTO
VAL 5 MAPTO

ENOMAP

SR-0012

Operand

*
P.JUMPVEC
A7+Al
A7+Al
A7
BOO

Operand

J,FILL=UNOEF
LOCI
LOC2
LOC3
LOCS
0'10

Part 2
3-2

Comment

Al=index value
Table base address
Add 2 times the in

Entry parcel addre
To jump instructio

dex

ss
n

A

The example macros construct a series of 32-bit jump instructions. For a
value of VALl, the routine at GOTO jumps to location LOCI, for VAL2 to
LOC2 and so on. For values other than VALl, VAL 2 , VAL 3 , or VAL5, the
routine jumps to location UNDEF.

INDEXED RECORDS

To build a list of messages that associates one message with each
possible value of a variable, use MAP, MAPTO, and ENDMAP as shown in the
following example.

Example:

Location Result

MSGTAB MAP
ERCODEl MAPTO
ERCODE2 MAPTO
ERCODE3 MAP TO

ENDMAP

Operand

DATA,ORIGIN=ERCODEI
(='ERROR I - INVALID PARAMETER'*L)
(='ERROR 2 - ILLEGAL OPERATION'*L)
(='ERROR 3 - SYSTEM ERROR'*L)
ERCODE3+l

Each table entry is a word (DATA) containing the address of the
corresponding message for that index value.

SR-OOl2
Part 2

3-3 A

COS-DEPENDENT MACROS
AND OPDEFS

The COS-dependent macros and opdefs described in this section are system
aids processed by the assembler using macro definitions defined in the
system text, COSTXT.

These specific macros and opdefs are intended for internal system users
only. Users other than system programmers should avoid using them.

There are three categories of COS-dependent macros and opdefs: t

• System task opdefs

• Message processor macro

• COS internal subroutine linkage macro

SYSTEM TASK OPDEFS

The system task opdefs include:

• ERDEF Generates error processing entries in the Exchange
Processor

• GETDA Obtains first Dataset Allocation Table (DAT) page address

• GETNDA Obtains next DAT page address

ERDEF - GENERATE ERROR PROCESSING ENTRIES IN THE EXCHANGE PROCESSOR

The ERDEF opdef generates entries for the error processing table in the
Exchange Processor (EXP) at assembly time. The entries are used during
abort processing.

t Overlay task manager macros were removed with the 1.14 COS release.

SR-0012
Part 2

4-1 A

4

Format:

fatal

elass

ERDEF addr,fatal,elass[,DN=YES] [,REPR=NO]

Message address for this error

Bit number in the JTFEFW field of the Job Table Area (JTA)
other than 0 indicates a fatal error has occurred; it is 0
if the error is nonfatal.

Major error class. To interpret the value of this table
entry, shift the rightmost 1 bit to the left as many times
as specified in the table entry. If the table entry is 2,
the value is 2n where n=elass.

DN=YES Dataset name to be included with the message; otherwise,
omit the parameter.

REPR=NO Error is not reprievable; otherwise, omit the parameter.

GETDA - OBTAIN FIRST DAT PAGE ADDRESS

The GETDA opdef obtains the STP-relative address of the first Dataset
Allocation Table (DAT) page, using either the DNT address, or the DNT and
JTA addresses. The GETDA opdef has two formats: a short form if both
the Dataset Name Table (DNT) and the JTA addresses are known, and a long
form if only the DNT address is known.

CAUTION

This opdef destroys the contents of AO.

Format (long form) :

SR-OOl2

GETDA,Ai,Aj Sk&Sl,Am,An

Part 2
4-2 A

Ai A register to receive the STP-relative address of the DAT;
cannot be AO. Ai is 0 if no DATs are associated with the
DNT.

Aj A register to receive the STP-relative address of the JTA
if the DAT resides in the JTA; cannot be AO.

sk

s2

Am

An

Example:

Location
1

Expansion:

GNI

S register to be used by GETDA; cannot be SO.

S register to be used by GETDA; cannot be SO.

A register to be used by GETDA; cannot be AO.

A register containing STP-relative address of
cannot be AO.

Result Operand Comment
10 20 35

GETDA,Al,A2,S3&S4,A5,A6

S.3 W@DNDAT,A.6
A.l S.3
A.O A.l
JAP GNI
SGET.S.4 S.3&S.4,DNJORD
A.2 S.4
A.5 LE@JXT
A.2 A.2*A.5
A.5 B@JXT
A.2 A.2+A.5
A.2 W@JXJTA,A.2
A.I A.2-A.I
= *

Format (short form):

I Location I Result .

GETDA,A1,

r~rand
Aj,Ak

the DNT;

Ai A register to receive the STP-relative address of the DAT;
cannot be AO. Ai is 0 if no DATs are associated with the
DNT.

SR-0012
Part 2

4-3 A

Aj

Ak

Example:

A register containing the STP-relative address of the DNT;
cannot be AO.

A register containing the STP-relative address of the JTA;
cannot be AO.

Location Result Operand Comment
1 10 20 35

GETDA,Al A2,A3

Expansion:
A.I W@DNDAT,A.2
AO A.I
JAP GDI
A.I A.3-A.l

GDI = *

GETNDA - OBTAIN NEXT DAT PAGE ADDRESS

The GETNDA opdef obtains the STP relative address of the next Dataset
Allocation Table (DAT) page, using either the current DAT page address,
or the current DAT page and JTA addresses. The GETNDA has two formats:
a long form, if only the current DAT page address is known, and a short
form if both the current DAT page and the JTA addresses are known.

CAUTION

This opdef destroys the contents of AO.

Format (long form):

Ai

SR-0012

GETNDA,Ai,Aj Sk&St,Am,An
I

A register to receive the STP-relative address of the next
DAT page; cannot be AO. Ai is 0 if there are no further
DAT pages.

Part 2
4-4 A

Aj A register to receive the STP-relative address of the JTA
if the OAT is in the JTA; cannot be AO.

sk S register to be used by GETNOA; cannot be SO.

St, S register to be used by GETNOA; cannot be SO.

Am A register to be used by GETNOA; cannot be AO.

An A register containing the STP-relative address of the
current OAT page; cannot be AO.

Example:

Location Result O~erand Comment
1 10 20 35

GETNOA,Al,A2 S3&54,A5,A6

Expansion:
S.3 W@OAOAT,A.6
A.l 5.3
AO A.I
JAP GNI
SGET,S.4 S.3&S.4,OAJORD
A.2 S.4
A.5 LE@JXT
A.2 A.2*A.5
A.5 B@JXT
A.2 A.2+A.5
A.I A.2-A.l

GNI = *

Format (short form):

Location Result Operand

GETNOA,Ai Aj,Ak

Ai A register to receive the STP-relative address of the next
DAT page; cannot be AO. Ai will be 0 if there are no
further OAT pages.

Aj A register containing the STP-relative address of the
current OAT page; cannot be AO.

Ak A register containing the STP-relative address of the JTA;
cannot be AO.

SR-00l2
Part 2

4-5 A

Example:

Location Result Operand Comment
1 10 20 35

GETNDA,Al A2,A3

Expansion:
A.l W@DADAT,A.2
AO A.I
JAP GDI
A.l A.3-A.l

GDI = *

MESSAGE PROCESSOR MACRO - LOGMSGM

The LOGMSGM macro sets up a fixed call to the Message Processor task or
sets up a skeleton for the call. In the second case, the fields must be
defined prior to the request.

Format:

Location Result Qnerand

label LOGMSGM LOG=log,OVRD={~:F},CLASs=elasS,TYPE=type,

SUBTYPE=subtype,LENGTH=length,ADDRESS=address

label A 1- to 7-character identifier

LOG = log Specifies message locations with the following codes:

SR-0012

NOLOG
USER
SYS
BOTH

Sets up an empty skeleton in log field
writes message to user log only
Writes message to system log only
writes message to both user and system logs

Determines if a message is issued, regardless of the echo
status. OVRD=OFF sets up an empty skeleton; sets the
override bit off. OVRD=ON overrides the echo status of a
message class; sets the override bit on.

Part 2
4-6 A

CLASS=class
Specifies message class with the following codes:

NOCL Sets up an empty skeleton in the class field
JCL Specifies JCL class message
ABORT Specifies abort class message

TYPE=type Specifies message type. NOTYP sets up an empty skeleton
in the type field. See the COS EXEC/STP/CSP Internal
Reference Manual, publication SM-0040, for legal values of
type. Symbolic values are listed in deck COMLG of the
COSPL program library.

SUBTYPE=subtype
Specifies message subtype. NOSUB sets up an empty skeleton
in the subtype field. See the COS EXEC/STP/CSP Internal
Reference Manual, publication SM-0040, for legal values of
subtype. Symbolic values are listed in deck COMLG of the
COSPL program library.

LENGTH=length
Specifies message length. length must be defined prior
to the macro call. LENGTH=NOLEN sets up an empty skeleton
in the length field.

ADDRESS=addpess

Example:

Location
1

MESSAGE

LEN
WORDl

Specifies address of message to be written. addpess must
be defined prior to the macro call. ADDRESS=NOADDR sets up
an empty skeleton in the address field.

Result
10

BSS
DATA
=
LOGMSGM

Operand Comment
20 35

0
'THIS MESSAGE COMES FROM Csp'
W.@*-MESSAGE
UOG=SYS,OVRD=ON,CLASS=JCL,TYP
SUBTYPE=CSP,LENGTH=LEN,ADDRES

I

E=ASCII,
S=MESSAGE

In this example, the LOGMSGM macro builds a request to the Message
Processor, requesting an ASCII type, CSP subtype, JCL class message at
address MESSAGE to be written to the systemlog only. OVRD=ON causes the
JCL class message to be issued, regardless of echo status.

SR-0012
Part 2

4-7 A

COS INTERNAL SUBROUTINE LINKAGE MACRO - $SUB

The Cray Operating System (COS) internal subroutine linkage ($SUB) macro
defines a subroutine entry point, and provides for the saving and restoring
of registers using a software stack. Register A7 is reserved as the stack
pointer within subroutines using the $SUB calling sequence. $RETURN must
be specified as the exit point for the subroutine.

To call the subroutine, enter the following:

A7
R

Format:

staekaddr
TAG

Entry condition
call subroutine Exit conditions

I Location I Result

TAG $ SUB

I Operand

TAG Name of the subroutine; 1-5 characters. This name is
embedded in a CON statement in the subroutine prologue, and
is merged with the return address in a word on the register
stack.

SREG=a:b Specifies the S registers that are saved by the macro
on entry and restored on exit. For example, SREG=l saves
and restores Sl. SREG=2:4 saves and restores S2, S3, and
S4. Registers SO, S6, and S7 cannot be specified by the
SREG parameter. The default is to save no S registers.

AREG=c:d Specifies the range of A registers that are saved by

SR-0012

the macro on entry and restored on exit. For example,
AREG=3 saves and restores A3. AREG=2:4 saves and restores
A2, A3, and A4. Registers AO and A7 cannot be specified by
the AREG parameter. The default is to save no A registers.

NOTE

Subroutine calls can be made within $SUB subroutines,
provided the called routines do not alter A7.

Part 2
4-8 A

Example:

Location Result Ocerand I Comment

TAG $SUB
I

SREG=a:b.AREG=a:d

J $RETURN lexit coditions

$SUB defines symbol $RETURN as the exit point for the subroutine; all
exits must be made using jumps to $RETURN.

The following restrictions are in effect when using the $SUB macro:

• A, S6, and S7 must not be used as entry registers for $SUB
routines.

• S6 and S7 msut not be used as exit registers for $SUB subroutines.

• BOO is save and restored within the macro; subroutine call can be
made freely within $SUB subroutines, with the provision that
called routines do not alter A7.

• Always exit $SUB subroutines by jumping to $RETURN; never jump to
BOO when exiting $SUB.

Stack format before $SUB call:

SR-OOI2

end

Part 2
4-9 A

Stack format after 'TAG $SUB AREG=I:2,SREG=3'

Al of entry

A2 of entry

S3 of entry

'TAG'L , BOO .
A2 of entry

end

end---"

Stack format after exit from TAG subroutine:

SR-0012

end

Part 2
4-10 A

APPENDIX SECTION

OUTMODED FEATURES

The following features are not supported following the release of the
1.14 version of the Cray Operating System (COS):

• BREG - Assign names to B registers

• TREG - Assign names to T registers

BREG - ASSIGN NAMES TO B REGISTERS (OBSOLETE)

A

The BREG macro assigns numerical values to symbols for use as B register
names. It also checks that no more registers are used than are declared
on the ENTER macro. The register names are assigned after any registers
used by the calling sequence linkage. This macro must be used only after
an ENTER macro. This macro has been replaced by the DEFB macro, which is
used before the ENTER macro.

Format:

name BREG

looerand

name

Example:

Location
1

ARPTR

SR-0012

Required. Symbolic name to designate a B register as in
B.name. BREG assigns numerical values to names in
sequence beginning with the first available register after
those used by the calling sequence.

Result Operand
10 20

BREG

A-I

Comment
35

Assigns
used as

ARPTR a
a B reg

value to be
ister designator

A

TREG - ASSIGN NAMES TO T REGISTERS (OBSOLETE)

The TREG macro assigns numerical values to symbols for use as T register
names. It also checks that no more registers are used than are declared
on the ENTER macro. The register names are assigned after any registers
used by the calling sequence linkage. This macro must be used only after
an ENTER macro. This macro has been replaced by the DEFT macro which is
used before the ENTER macro.

Format:

I Location I Result

name TREG

I ORe rand

name

Example:

Location
1

I PART

SR-00l2

Required. Symbolic name designating a T register as in
T.name. TREG assigns numerical values to names in
sequence beginning with the first register available after
those used by the calling sequence.

Result Operand
10 20

TREG

A-2

Comment
35

Assigns
used as

IPART a
a T reg

value to be
ister designator

A

TABLE MACRO EXPANSIONS

Macro expansions for the following field retrieval and modification
opdefs are included in this section:

• GET,Si

• GET,Ai

• GETF,Si

• GETF,Ai

• PUT,si

• PUT,Ai

• PUT,vaL

GET,si EXPANSIONS

Expansions for the GET,Si opdef take the following into consideration:

• Location of the field within the table word

• Length of the field with respect to the result register size

The GET,Si opdef has four special cases:

• The field size is equal to the size of a Cray word (example 1).

• The field size is less than a Cray word, and the field is
left-justified within the table word (example 2).

• The field size is less than a Cray word, and the field is
right-justified within the table word (example 3).

• The field size is less than a Cray word, and the field is neither
right- nor left-justified within the the table word (example 4).

SR-0012 B-1 A

B

Example 1:

Location Result Operand

si w@fietd,An
sj w@fietd,An

Example 2:

Location Result Operand

Sj W@fietd,An
sk >N@fietd
si Sj&Sk
si Si>D'64-S@fietd-N@fietd

Example 3:

Location Result Operand

Sj w@fietd,An
sk <N@fietd
si Sj&Sk

Example 4:

Location Result Operand

Sj w@fietd,An
sk >N@fietd
sk Sk>S@fietd
si sj&Sk
si Si>D'64-S@fietd-N@fietd

GET,Ai EXPANSIONS

Expansions for the GET,Ai opdef take the following into consideration:

• Location of the field within the table word

• Length of the field with respect to the result register size

SR-OOl2 B-2 A

The GET,Ai opdef has four special cases:

• The field size is greater than or equal to the result register
size, and the field is right-justified within the table word
(example 5).

• The field size is greater than or equal to the result register
size, and the field is not right-justified within the table word
(example 6).

• The field size is less than the size of the result register, and
the field is left-justified within the table word (example 7).

• The field size is less than the size of the result register
(example 8).

Example 5:

Location Result

Example 6:

Ai
sj

Location Result

Example 7:

sk
sj
Sk
Ai

Location Result

SR-OOl2

sk
sj
Sk
Ai

Ooerand

w@field,An
w@field,An

Operand

w@field,An
w@field,An
Sk>D'64-N@field-S@field
sk

Qoerand

W@field,An
w@field,An
Sk>D'64-N@field
sk

B-3 A

Example 8:

Location Result

sk
sj
sk
sk
Ai

GETF,si EXPANSIONS

Operand

w@field,An
w@field,An
sk<S@field
Sk>D'64-N@field
sk

Expansions for the GETF,Si opdef take the following into consideration:

• Location of the field within the table word

• Length of the field with respect to the result register size

• Specified registers

The GETF,Si opdef has four special cases:

• The field size is equal to the size of a Cray word (example 9).

• The field is right-justified within the table word; registers si
and sk must not be the same and cannot be register so (example 10).

• The field is left-justified within the table word (example 11).

• Miscellaneous cases (example 12).

Example 9:

I Operand

SR-0012 8-4 A

Example 10:

Location Result Operand

si W@fie'ld,Arz
sk <N@fie'ld
si Sj&Sk

Example 11:

Location Result Operand

Si W@fie'ld,Arz
si Si>D'64-N@fie'ld

Example 12:

Location Result Operand

si w@fie'ld,Arz
si Si<s@fie'ld
si Si>D'64-N@fie'ld

GETF,Ai EXPANSIONS

Expansions for the GETF,Ai opdef take the following into consideration:

• Location of the field within the table word

• Length of the field with respect to the result register size

The GETF,Ai opdef has four special cases:

• The field size is greater than or equal to the result register
sized, and the field is right-justified within the table word
(example 13).

• The field size is greater than or equal to the result register
size, and the field is not right-justified within the table word
(example 14).

SR-0012 B-S A

• The field size is less than the size of the result register, and
the field is left-justified within the table word (example 15).

• The field size is less than the size of the result register
(example 16).

Example 13:

Example 14:

Location Result

Example 15:

Sk
sk
Ai

Location Result

Example 16:

sk
sk
Ai

Location Result

SR-0012

sk
sk
sk
Ai

I OPerand

Operand

W@fie"ld,An
Sk>w@fietd-s@fietd
sk

Operand

W@field,An
Sk>D'64-N@fietd
sk

Operand

w@fietd,An
sk<s@field
Sk>D' 64-N@field
sk

B-6 A

PUT,si EXPANSIONS

Expansions for the PUT,si opdef take the following into consideration:

• Location of the field within the table word

• Length of the field with respect to the source register size

The PUT,si opdef has five special cases:

• The field size is equal to 1 word, and the source register is
different from the base image register (example 17).

• The field size is equal to 1 word, and the source register is the
same as the base image register (example 18).

• The field size is less than a Cray word, and the field is
left-justified within the table word (example 19).

• The field size is less than a Cray word, and the field is neither
right- nor left-justified within the table word (example 20).

• The field size is less than a Cray word, and the field is
right-justified within the table word (example 21).

Example 17:

Location Result Ooerand

Example 18:.

Sj si
w@field,An si

I Location I Result I Operand

W@field,An si

SR-00l2 B-7 A

Example 19:

Location Result Operand

Sj W@fie7,d,An
sk >N@fie7,d
si Si<O'64-S@fie7,d-N@fie7,d
sj Si!Sj&Sk
si Si>O'64-S@fie7,d-N@fie7,d
w@fie7,d,An sj

Example 20:

Location Result Operand

Sj W@fie7,d,An
sk >N@fie7,d
Sk sk>S@fie7,d
si si<O'64-s@fie7,d-N@fie7,d
Sj Si!Sj&Sk
si Si>O'64-S@fie7,d-N@fie7,d
W@fie7,d,An Sj

Example 21:

Location Result Ooerand

Sj w@fie7,d,An
sk <N@fie7,d
Sj Si~Sj&Sk
w@fie7,d,An sj

PUT,Ai EXPANSIONS

Expansions for the PUT,Ai opdef take the following into consideration:

• Location of the field within the table word

• Length of the field with respect to the source register size

The PUT,Ai opdef has seven special cases:

• The field size is equal to 1 word (example 22).

SR-0012 B-8 A

• The field size is greater than or equal to the source register
size, and the field is right-justified within the table word
(example 23).

• The field size is greater than or equal to the source register
size, and the field is left-justified within the table word
(example 24).

• The field size is greater than or equal to the source register
size (example 25).

• The field size is less than the size of the result register, and
the field is right-justified within the table word (example 26) •

• The field size is less than the size of the result register, and
the field is left-justified within the table word (example 27).

• The field size is less than the size of the result register
(example 28).

Example 22:

I
Location I:SUlt

w@fie'ld,An

Example 23:

Location Result

SR-OOl2

Sj
sk
sj
sk
sj
w@fie'ld,An

I Operand

Ai
Ai

Ooerand

w@fie'ld,An
<N@.fie'ld
iSk&Sj
Ai
Sj!sk
sj

B-9 A

Example 24:

Location Result

Example 25:

Sj
sk
sj
sk
sk
sj
W@field,An

Location Result

Sj
sk
sk
sj
sk
sk
Sj
w@field,An

Example 26:

Location Result

SR-0012

Sj
sk
sj
sk
sk
sk
Sj
w@field,An

OPerand

w@field,An
>N@field
tSk&Sj
Ai
Sk<D ' 64-S@field-N@field
sk:Sj
SJ

• OPerand

W@field,An
>N@field
Sk>S@field
tsk&Sj
Ai
Sk<D ' 64-s@field-N@field
Sk!Sj
Sj

ODe rand

w@field,An
<N@field
tSk&Sj
Ai
Sk<D ' 64-N@field
sk>s@field
Sk!sj
sj

B-lO A

Example 27:

Location Result Operand

Sj W@fie~d,An
sk >N@fie~d
sj iSk&Sj
sk Ai
Sk Sk<D'64-N@fie~d
sj sk:sj
W@fie~d,An Sj

Example 28:

Location Result [Operand

Sj w@fie~d,An
sk >N@fie~d
sk Sk>S@fie~d
sj iSk&sj
sk Ai
sk Sk<D'64-N@fie~d
Sk Sk>S@fie~d
sj sk:sj
W@fie~d,An Sj

PUT,va~ EXPANSIONS

Expansions for the PUT,va~ opdef take the following into consideration:

• Location of the field within the table word

• Value in the field

This special case opdef has values of 0 and -1. The expansions for this
opdef are as follows:

• The field size is equal to 1 word (example 29).

• The value specified is -1, and the field is left-justified within
the table word (example 30).

• The value specified is -1, and the field is right-justified within
the table word (example 31).

SR-0012 B-ll A

• The value specified is -1, and the field is neither right- nor
left-justified within the table word (example 32).

• The value specified is 0, and the field is left-justified within
the table word (example 33).

• The value specified is 0, and the field is right-justified within
the table word (example 34).

• The value specified is 0, and the field is neither right- nor
left-justified within the table word (example 35).

• The value specified is not a special case, and the field is
left-justified within the table word (example 36).

• The value specified is not a special case, and the field is
right-justified within the table word (example 37).

• The value specified is not a special case, and the field is
neither right- nor left-justified within the table word (example
38) •

Example 29:

Location Result Operand

sj vat
w@fietd,An sj

Example 30:

Location Result Operand

sj w@fietd,An
sk >N@fietd
sj sj!sk
w@fietd,An sj

Example 31:

Location Result Operand

sj w@fie7,d,An
sk <N@fietd
sj sj!sk
w@fietd,An sj

SR-0012 B-12 A

Example 32:

Location Result Operand

Sj W@fie1.d,An
sk >N@fie1.d
sk Sk>S@fie1.d
sj sj!Sk
w@fie1.d,An Sj

Example 33:

Location Result Ooerand

Sj w@fie1.d,An
sk >N@fie1.d
sj #Sk&Sj
w@fie1.d,An sj

Example 34:

Location Result Operand

Sj W@fie1.d,An
sk <N@fie1.d
Sj tSk&Sj
w@fie1.d,An sj

Example 35:

Location Result Ooerand

Sj w@fie1.d,An
sk >N@fie1.d
sk Sk>S@fie1.d
sj tsk&Sj
W@fie1.d,An Sj

SR-0012 B-13 A

Example 36:

Location Result

Example 37:

Sj
sk
Sj
sk
Sk
sj
W@field,An

Location Result

Sj
sk
Sj
sk
Sj
w@field,Arl

Example 38:

Location Result

Sj
sk
sk
sj
sk
sk
sj
w@field,An

SR-OOl2

OPerand

w@field,An
>N@field
iSk&Sj
val
Sk<D ' 64-S@field-N@field
sj:sk
Sj

'OPerand

W@field,An
<N@field
iSk&Sj
val
sj:sk
sj

. Ooerand

w@field,An
>N@field
Sk>S@field
isk&sj
val
Sk<D ' 64-N@field
sj!Sk
sj

B-l4 A

CRA Y X-MP MODEL 48 MACHINE
INSTRUCTION MACROS

C

Machine instruction macros for CRAY X-MP Model 48 Computer Systems
generate functions that CAL Version 2 will assemble. These macros are
temporary implementations and will be replaced when CAL Version 2 becomes
available. CRAY X-MP machine instruction macros emulate the following:

• CAL Version 2 machine instructions

• CAL Version 2 pseudo instruction (IFM)

MACHINE INSTRUCTIONS

CRAY X-MP Model 48 machine instruction macros generate the following
machine instructions:

• CLN - Cluster number instructions

• Compress index instruction

• Extended memory addressing

• Gather/scatter instructions

• Interprocessor interrupts (CIPI/SIPI)

CLN - CLUSTER NUMBER INSTRUCTIONS

The following syntax sets the cluster number to j to make the following
cluster selections:

CLN=O

CLN=n

SR-0012

No cluster; all shared register and semaphore operations
are no-ops, (except SB, ST, or SM register reads, which
return a 0 value to Ai or Si).

Cluster number; where n can be 1, 2, 3, 4, or 5.
Clusters 1 through 5 each have a separate set of SM, SB,
and ST registers.

C-l A

Machine
Result Operand Description instruction

CLN j Select cluster number j OOl4j3

COMPRESS INDEX INSTRUCTION

The compress index instructions create a vector mask identical to the
l750jk instruction (VM vj,z •••). The compress index instructions,
also, create a compressed index list in register vi that is based on the
results of tests made on the contents of register Vj.

If an element of vj satisfies one of the following conditions (Z for
zero, N for nonzero, P for positive, or M for minus), the corresponding
bit in the vector mask is set, and the element number is placed in the
next availabe element of vi.

Machine
Result Operand Description instruction

Vi,VM Vj,Z Compress index instruction l75ij4

Vi,VM Vj,N Compress index instruction l75ij5

Vi,VM Vj,P Compress index instruction l75ij6

Vi,VM Vj,M Compress index instruction l75i;;7

Example:

This example of the compress index instruction l75ij4 generates the same
vector mask as instruction l750jO and also generates data into vector
register vi as follows:

SR-OOl2 C-2 A

Vector length=138

Vector Register Vector Register
element vi data element Vj data

00 00 00 Zero
01 02 01 Nonzero
02 05 02 Zero
03 06 03 Nonzero
04 12 04 Nonzero
05 Unchanged 05 Zero
06 Unchanged 06 Zero

07 Nonzero
10 Nonzero
11 Nonzero
12 Zero

The vector length is set to 5 on completion of this operation.

EXTENDED MEMORY ADDRESSING

Extended memory addressing uses the 010-017 instructions to transmit an
expression (ijkm) to register Ah. The high-order bit of the i
field determines whether the instruction is an extended load instruction
or a jump instruction.

If the high-order bit in the i-field of the instruction is a 0, the
instruction is always interpreted as a jump instruction. If the
high-order bit in the i-field of the instruction is a 1 and is input to
a CRAY X-MP Model 11, 12, 14, 22, or 24 Computer System, the instruction
is interpreted as a jump instruction. If the high-order bit in the
i-field of the instruction is a 1 and is input to a CRAY X-MP Model 48
Computer System, the instruction is interpreted as an extended load
instruction with the 2 low-order i-field bits serving as the top 2 bits
of the expression to be loaded.

SR-0012

NOTE

On CRAY-l Models A, B, C, S, and M and on CRAY X-MP
Models 11, 12, 14, 22, and 24, Olhijkm instructions
are always interpreted as jump instructions by the
hardware regardless of the high-order bit in the i
field.

C-3 A

The following two examples illustrate the difference in the i-field
between the extended load instruction and a jump instruction.

Example (jump instruction):

0001 nnn Onn nnn nnn
g ""h-r-TT

nnnnnnnnnnnnnnnn
m

Example (extended load instruction):

0001
g

nnn
T

Inn nnn
i j

nnn
k

nnnnnnnnnnnnnnnn
m

Machine
Result Operand Description instruction

Ah exp Transmit ijkm to Ah (high-order Olhijkm
bit of the i-field=l)

GATHER/SCATTER INSTRUCTIONS

AO is the base address for the load (gather) or store (scatter) of vi.
Successive elements of vi are loaded (gathered) or stored (scattered)
from addresses computed by adding the contents of AO and Vk.

Machine
Result Operand Description instruction

vi ,AO,vk Gather transmits (VL) words from l76iok
memory to vi elements using
memory address (AO)+(Vk)

,AO,vk vj Scatter transmits (VL) words from l77ljk
vj elements to memory using
memory address (AO) + (Vk
elements)

SR-0012 C-4 A

INTERPROCESSOR INTERRUPTS

Macros are available for clearing (CIPI) and setting (SIPI)
interprocessor interrupts.

CIPI - Clear interprocessor interrupt

The clear interprocessor interrupt (CIPI) instruction clears the
interrupt fla9 in the processor executing the instruction. On CRAY X-MP
Model 48 Computer Systems, the j field (0~<3) designates the number
of the processor to be cleared.

Machine
Result Operand Description instruction

CIPI exp Clear interprocessor interrupt 001402
(exp=0<j<3)

Example:

Codeg_ener a ted Location Result Operand Comment
1 10 20 35

001402 CIPI Pass (no op
for CRAY X-MP
Models 11,
12, and 14)

0014j2 CIPI j Clear
interproces sor
interrupt
(CRAY X-MP

Models 22,
24, and 48)

SIPI - Set interprocessor interrupt

The set interprocessor interrupt (SIPI) instruction sets the
Interprocessor Interrupt flag in another processor. The request remains
until cleared by the receiving ~U. On CRAY X-MP Computer Systems Models
22 and 24, SIPI causes an interrupt to be raised in the other processor
regardless of the value of the j field. On CRAY X-MP Model 48 Computer
Systems, the j field (0~~3) desginates the number of the
processor to be interrupted.

SR-0012 C-5 A

Result Operand Description

SIPI Set interprocessor interrupts

SIPI exp Set interprocessor interrupts
(exp=02.j<3)

Example (CRAY X-MP Computer Systems Models 11, 12, and 14):

Code generated Location Result Operand
1 10 20

001401 SIP!

0014jl SIPI j

Example (CRAY X-MP Computer Systems Models 22 and 24) :

Code generated Location Result Operand
1 10 20

001401 SIPI

0014jl SIPI j

Example (CRAY X-MP Computer Systems Model 48) :

Code generated Location Result Operand
1 10 20

001401 SIPI

SR-0012 C-6

Machine
instruction

001401

0014jl

Comment
35

Pass (no op)

Pass (no op)

Comment
35

Set inter-
processor
interrupt for
other processo

Set inter-
processor
interrupt for
other processo

Comment
35

Set inter-
processor
interrupt for
processor 0

A

the
r

the
r

Code generated Location Result Operand Comment
1 10 20 35

0014jl SIPI j Set inter-
processor
interrupt
for
processor

IFM PSEUDO INSTRUCTION - TEST TARGET MACHINE ATTRIBUTES FOR ASSEMBLY
CONDITION

j

The IFM pseudo instruction tests the hardware attributes of the target
machine for assembly conditions. If the target machine has the specified
hardware attribute, assembly continues with the next statement. If the
attribute condition is false, subsequent statements are skipped.
Skipping stops when an ENDIF or ELSE pseudo instruction with the same
location field name as the name on the IFM pseudo instruction is
encountered. If an assembly error is detected, assembly continues with
the next instruction.

Location Result Operand

ifname attPibute

ifname Required with the ELSE or ENDIF pseudos; controls the
skipping of subsequent instructions.

attpibute Target machine hardware attribute name. Currently, only
EMA (Extended Memory Addressing) and CIGS (Compress/Index,
Gather/Scatter) hardware attributes can be tested. If the
specified hardware is not present on the target machine,
the condition is considered false and skipping is

SR-0012

initiated. If the hardware is present, assembly continues
until an ELSE pseudo instruction is encountered.

If a complement (#) sign preceeds a hardware attribute,
subsequent lines are assembled only if the target machine
does not have the specified attribute.

C-7 A

INDEX

INDEX

$ASPOS subroutine, (1)3-16
AO register as parameter, (1)1-3, 2-7
Abnormal termination, (1)2-2
ABORT

macro, (1)2-2
parameter, (2)4-7
processing, (1)2-4
system , (1) 2-16
user-requested, (1)2-15

Absolute
block number, (1)3-22
volume number, (1)3-22

Accept
a request from another job, (1)9-2
bad data, (1)3-2

Access
denied

to the user's DSP area, (1)2-5
to the user's I/O buffers, (1)2-5

given
to the user's DSP area, (1)2-5
to the user's I/O buffers, (1)2-5

mu1tiread, (1)4-8
permanent dataset macro (1)4-10
tracking option, (1)4-10

ACCESS macro, (1)4-10
Access permanent dataset, see ACCESS
Accumulated CPU time, (1)2-7
ACPTBAD, (1)3-2, 3-4
action parameters

CLEAR, (1)2-20
FLUSH, (1) 2-20
SET, (1)2-20

Actual
argument string, (1)1-3
number of words transferred, see DPBWC

field of DSP
Acquiring a dataset, (1)2-12
Additional vector logical functional unit,

(1) 2-11
Address

calculations, (1)5-26
list, (1) 3-32
numeric, (1)3-35
starting address for DUMP, (1)2-29
symbolic address of DSP, (1)2-19

Address of storage area of length LE@TEV,
(1)3-30

Addressing (indirect), (1)2-29
ADJUST macro, (1)4-11
Adjust permanent dataset, see ADJUST
ADN parameter (PDD), (1)4-10
ADNM parameter (PDD), (1)4-10

SR-0012 Index-l

Advance specified number of
64-bit words, see CNXTWORD
words, see NEXTWORD

ALLOC
and CALL macro, (1)5-24
and LOAD macro, (1)5-22 thru 5-23
and VARADD macro, (1)5-9
examples, (1)5-5
macro, (1)5-5, 5-22, 5-25, 5-27
relation to STORE macro, (1)5-25

Allocate space for local temporary
variables, see ALLOC

ANSI, (1) 4-8
AREG=, (2)4-8
ARGADD

examples, (1)5-20
macro, (1)5-19 thru 5-20

ARGPTR parameter
with ARGADD, 5-20
with NUMARG, 5-21

Argument
address

building, (1)5-7
fetching, (1)5-27

list
information, (1)5-19
storage space allocated for, (1)5-24

loaded in order, (1), 5-13
passed to the routine, (1)5-12
passed in

DEFARG, (1) 5-2
dummy argument, (1)5-20
parameter, (1)5-2

pointer, (1)5-20, 5-21
Array

addressed indirectly, (1)2-32, 2-34
name, (1)2-32, 2-34

ASCII
current date, (1)2-24
current Julian date, (1)2-25
date, (1)2-24
date and time converted into

corresponding timestamp, (1)2-25
message, (1)2-9
time, (1)2-26, 2-27

ASETPOS macro, (1)3-26
Assign

a name to stack storage space, (1)5-5
names to B registers (obsolete), see

BREG
names to B registers, DEFB

A

Assign (continued)
names to T registers (obsolete), see

TREG
names to T registers, see DEFT
numerical values to symbols, A-I thru

A-2
ASSIGN opdef, (2)1-26
Assigning values to variables, (1)3-37
Asynchronous

positioning, see ASETPOS
Asynchronous read/write

macros for (1)3-8
requests, (1)3-8

Asynchronous I/O
BUFCHECK, (1)3-9
BUFEOD, (1) 3-10
BUFEOF, (1) 3-10
BUFIN/BUFINP, (1)3-11
BUFOUT/BUFOUTP macro, (1)3-12

Asynchronously position dataset macro,
(1)3-16

At sign (@) used as prefix, (1)2-29
Attention interrupt (interactive), (1)2-16
Attributes

dataset name, (1)4~10

to be propagated, (1)4-10
AUTO parameter (MEMORY macro), (1)2-8
Automatic incrementing of the current word

location for a table, (2)2-7, 2-8

$BKSP subroutine, (1)3-17
B registers

assigning names to (1)5-2
nontemporary, (1)5-2, 5-4, 5-11, 5-17

restoration of, (1)5-16
temporary, (1)5-3

destroyed in lower level routine
calls, (1)5-3

saved on entry, (1)5-2
Backspace

file, see BKSPF
record, see BKSP

Backward positioning, (1)3-16
Base image register, (2)1-19, 1-20, 1-21
BASE option

with DUMP, (1)2-29
with SNAP, (1)2-33

Base-of-stack
frame pointer, (1)5-7
pointer value, (1)5-16

BASELVL mode, (1)5-17
for MODE parameter, (1)5-17
entry specified on ENTER macro,

(1)5-12, 5-13
BCWs, (1)3-20
Begin monitoring user functions, (1)2-12
Begin user EOV and BOV processing, see

STARTSP
Beginning of data (BOD), (1)3-16 thru 17,

3-23 thru 3-25
Beginning-of-tape, see BOV

SR-0012 Index-2

Bidirectional memory transfers
disabled, (1)2-11
enabled, (1)2-10

Binary/blocked code, (1)4-6
Binary/deb1ocked code, (1)4-6
Bit

count, (1) 3-10
unused, (1)3-2, 3-3, 3-5, 3-11, 3-12,

3-13
optional, (1)3-12

BKSP
macro, (1) 3-17
positioning operation, (1)2-14

BKSPF macro, (1)3-18
Blank compression characters

are recognized (1)3-4,
not performed, (1)3-2, 3-5
not recognized by READ or READP, (1)3-1
occur s, (1) 3-6

Blank-compressed fields, (1)3-4
Blanks, (1) 1-3

compressed, (1)3-1
embedded, (1)2-29

Block
control Words, see BOWs
in POSITION macro, (1)3-22
length parameter, (2)1-11
number (absolute), (1)3-22
number 1 (POSITION macro), (1)3-21
parameter, (1)3-22

Blocked dataset (GETPOS), (1)3-20 thru 3-21
BOD

see Beginning-of-data
$REWD subroutine, (1)3-23

BOTH parameter (LOGMSGM), (2)4-6
BOV

description, (1)3-19
for mu1tiree1 tape datasets, (1)3-28

Braces, (1)1-3
BREG macro (unsupported), A-1
BSKPF macro, (1)3-18
BUFCHECK

macro, (1)3-9
DPBWC field valid after macro

invocation, (1)3-12
BUFEOD macro, (1)3-10
BUFEOF macro, (1)3-10
Buffer

area, (1)2-8
boundary, (1)5-11
circular (affected by syncnronization),

(1) 3-25
contents changes to, (1)3-18, 3-23,

3-21
dataset, (1)2-21
empty, (1) 3-23
pointers, (1)2-22
releasing, (1)2-17
user-allocated, (1)2-19

Buffer flush conditions for CLOSE, (1)2-18
BUFIN (DPBWC field valid upon completion),

(1) 3-12
BUFIN/BUFINP macros, (1)3-11

A

BUFOUT/BUFOUTP
formats, (1)3-13
macro, (1)3-12

BUILD macro, (2)1-12

$CYCLES macro, (1)8-4
CAL

and CFT techniques for reprieve
processing, (1)2-14

defined, (1) 1-1
ENDFIELD directive, (2)1-7
ENTRY pseudo-op, (1)6-11
equivalent to FORTRAN I/O, (1)3-32,

3-33, 3-35, 3-36
extension opdef and macros, (1)1-1,

1-2, 8-1
pseudo instruction BSS, (1)5-5, 5-22,

5-23, 5-25, 5-27
routine entry selection, (1)5-1
statement, (1)3-33, 3-35, 3-36
Version 2 machine instructions, C-l
Version 2 pseudo instruction, see IFM

CAL-assembled routines, (1)5-1
Call a routine

using call-by-address sequence, see CALL
using call-by-value sequence, see CALLV

Call local subroutine, $GOSUB
CALL

example, (1) 5-9
effect of PROGRAM macro on, (1)5-6, 5-7
installation subfunction macro, (1)2-33
macro, (1)5-7

Call-by-address
entry, (1)5-11, 5-12
routines, (1)5-6 thru 5-7, 5-19

ARGADD macro and, (1)5-19
argument list passed to, (1)5-6

sequences, (1)5-7
Call-by-value

calling a routine with, (1)5-9
entry, (1)5-11
sequences, (1)5-7

Calling list
defining the, (1)5-1
length maximum, (1)5-6

Calling routine name, (1)2-21
CALLV

effect of PROGRAM macro on, (1)5-6
examples, (1)5-10
macro, (1)5-9

CAPTION macro, (2)1-4
Categories of macros and opdefs, (1)1-1
Cease monitoring user functions, (1)2-12
CENDTAB macro, (2)2-3
Central Memory word boundaries, (2)1-1
CFIELD macro

description, (2)2-3
and CGET opdef, (2)2-3
and CPUT opdef, (2)2-3
and CSBFIELD macro, (2)5

CFN$CLS, (1) 9-4
CFN$OPE, (1)9-4
CFN$RD, (1) 9- 4

SR-0012 Index-3

CFN$RDD, (1) 9-4
CFN$RDH, (1) 9-4
CFT linkage macros

introduction, (1)1-1 thru 1-2
overview, (1)5-1
uses for, (1)5-1

CFT-like
read, (1)3-31
write, (1)3-33

CFT-compiled routines, (1)5-1
CGET opdef

description, (2)2-9
with CFIELD, (2)2-3

Change
job's memory allocation, (1)2-7
the size of a permanent dataset, (1)4-11

Changes to buffer contents are preserved,
(1) 3-18

Character
count, (1)3-4, 3-6, 3-7
data transferred, (1)3-3
set of tape dataset code, (1)4-7
strings transferred, (1)3-40

Character/blocked code, (1)4-5
Character/deblocked code, (1)4-5
Characters

blank compression, (1)3-1
transferred to dataset, (1)3-6
right-adjusted, zero-filled, (1)3-4

Check buffered I/O completion, see BUFCHECK
Checking data transfers, (1)3-8 thru 3-9
CIPI, C-5
Circular buffer, (1)3-25

blocks in, 3-27
Clear

a semaphore bit after waiting, see
WAIT$CLR

interprocessor interrupt, see CIPI
lock in dataset parameter area, (1)2-20
Memory-resident flag, (1)3-8
mode flags, (1)2-9
semaphore without waiting, see CLRSM
sense switch, (1)2-16

CLN macro, C-l
Close

a channel, (1)9-4
a communication path, (1)9-2
dataset, see CLOSE

CLOSE macro, (1)2-17
CLOSEV macro, (1)3-19
CLRSM macro, (1)7-4
Cluster number instruction, see CLN
CNXTWORD macro, (2)2-7
Code

no label generated (1)3-40
nonexecutable, (1)5-1
reprive processing, (1)2-14
generation, (1)2-28, 2-32

for standard entry and exit
sequences, (1)5-1

Column 72 (significance), (1)1-3
Comma, (1) 1-3
Compatability of macros with CFT, (1)5-1
Complement sign, C-7

A

Complete an indexed table and make final
error checks, see ENDMAP

Complex field
definition (CFIELD), (2)2-6
store data, (2)2-10
retrieve contents from, (2)2-10

Complex table manipulation macros and
opdefs, (1)1-1 thru 1-2
Complex table manipulation

description, (2)2-1
CTABLE, (2)2-2
CENDTAB, (2)2-3
CFIELD, (2)2-3
CSBFIELD, (2)2-5
CNXTWORD, (2)2-7
CREDEF, (2) 2-8

Compound conditions, (1)6-2
Compress index instruction, C-2
Compute GOTO statement, see $GOTO
Computed GOTO, (2)3-2
Conditions

for $EXITLP, (1)6-8
for structured programming macros,

(1)6-1 thru 6-3
on A and S registers, (1)6-2
on AO and SO, (1)6-1

CONSTANT, (1)8-4
Construct defined table, see BUILD
Contiguous set of bits in Central Memory,

(2)1-1
Continue

from reprieve condition, see CONTRPV
monitoring user functions, see NORERUN

Continuation, (1)1-3
Control

access to Dataset Parameter Table (DSP)
areas, (1)2-5

detection of nonrerunnab1e functions,
see NORERUN

job processing, (1)2-1
returned

to the caller, (1)3-2
to the user, (1)3-8, 3-9
to user program, (1)3-10, 3-11, 3-12

user access to I/O area, see IOAREA
Control Data Corporation (CDC) tape dataset

values
Internal tape format character count

block type
control word record type, see ICW
zero byte record type, see ICZ
zero byte, see SICZ

overview, (1)4-3
SCOPE internal tape format, see IIW
System or SCOPE internal tape format,

control word type, see SIIW
control word record type, see SICW
zero byte record type, see SICZ

CONTRPV macro, (1)2-2
Conversion of foreign datasets, (1)4-2
Convert

an integer to a micro string, see
$DECMIC

SR-0012 Index-4

Convert (continued)
an integer to an octal micro string,

see $OCTMIC
date and time to timestamp, see DTTS
machine time to timestamp, see MTTS
timestamp to current date and time, see

TSDT
timestamp to machine time, see TSMT

Copy field (fast format), see XFER
COpy IN parameter, (1)5-15
COS

introduction, (1)1-1
internal subroutine linkage macro, see

$SUB
libraries, (1)2-6
reference operating system, (1)2-1, 3-28
revision level (obtain), (1)2-17

COS-dependent macros and opdefs
introduction, (1)1-1 thru 1-2
description, (2)4-1

COS-managed dataset release by CLOSE,
(1)2-17

COS-dependent macros, (2)4-1
COSIN routine (SHARED name), (1)5-13
COSTXT, (1)1-1
CPU='CRAY-XMP', (1)7-1
CPU clock periods, (1)8-1
CPUT

opdef, (2)2-10
use with CFIELO, (2)2~3

Cray Assembly Language (introduction), see
CAL

Cray FORTRAN, see CFT
Cray Operating System, see COS
CRAY X-MP Model 48 machine instruction

macros, C-1
Create

Dataset Parameter Table (DSP), see DSP
Label Definition Table, see LOT
Permanent Dataset Definition Table, see

PDD
Creation date (LOT), (1)4-3
CREDEF macro, (2)2-8
CS parameter (PDD), (1)4-7
CSBFIELD macro, (2)2-5
CSECHO macro, (1)2-3
CTABLE macro, (2)2-2
CURFL parameter (MEMORY macro), (1)2-8
Current

field length, see CURFL
time in ASCII, (1)2-26
word counter, (2)1-5 thru 1-6
word location for a complex table,

(2)2-4
Currently opened dataset, (1)2-17

$DECMIC example, (1)8-5
$DECMIC macro, (1)8-4
DAT page address

first, (1) 4-2
next, (1) 4-4

A

Data
blocks on tapes, (1)3-20
end of, (1) 2-74
errors, (1)3-2

unrecovered, (1)3-4
transferred, (1)3-12, 3-14

from current position, (1)3-11
from temporary storage area, (1)5-22

transfers, (1)3-8
Dataset

buffer, (1)2-21
Catalog, {1)4-12, 4-13
closing, (1)2-17
COS-managed, (1)2-17
COS-managed DSP, (1)4-11, 4-12
Currently open, (1)2-21
disposing, (1)2-18
DSP, (1)2-18
execute-only, (1)4-9
explicit permit, (1)4-12
flushed to buffer, (1)4-11
foreign, (1)4-2
immediate disposition, (1)4-9
locking macro, (1)2-19
management macros, (1)2-17
name local, (1)2-28, 2-33
Name Table, (2)4-2
nonpermanent, (1)2-14
open, (1)2-17

macro to, (1)2-21
Parameter Table, see DSP
permanent

associated with a job, (1)4-10
availability, (1)4-12
changing size of, (1)4-11
deletion of, (1)4-12
management macros, (1)4-10
saving, (1)4-l2

permitted explicitly, (1)4-12
placed in queue, (1)2-18
position, (1)3-24

current, (1)3-20
parameter, (1)3-17

positioned after end of current record,
(1)3-11

positioning, (1)3-23 thru 3-24
prepared for processing, (1)2-21
release, (1)2-14
repositioning, (1)3-23
resident data reading, (1)3-37
sequential writing, (1)2-14
status, (1)2-19
submit job, (1)2-24
synchronous positioning, (1)3-24
tape, (1)3-21, 4-1
unblocked, (1)2-21, 3-10,

3~13 thru 3-15, 3-17 thru 3-21, 3-24
user number parameter, (1)4-10
without EOD, (1)4-10 thru 4-12

Dataset Allocation Table, see DAT
Datasets

mass storage, (1)3-16, 3-24, 4-11, 4-12
memory-resident, (1)3-8, 3-16, 3-17,

3-23

SR-0012 Index-5

Datasets (continued)
opening, (1)2-21
positioning, (1)3-16
unblocked, (1)3-8

Dataset management macros
CLOSE, (1) 2-17
DISPOSE, (1)2-18
DSP, (1)2-19
DSPLOCK, (1) 2-20
OPEN, (1) 2-21
RELEASE, (1)2-23
SUBMIT, (1) 2-24

Dataset Name Table, see DNT
Dataset Parameter Table, see DSP
Dataset position

BOD, (1) 3-17
EOD, (1) 3-17
Position the dataset to the word

address specified in an S or T
register, (1)3-17

Dataset position flags, (1)3-20
Dataset positioning

ASETPOS macro (1)3-16
BKSP macro (1)3-17
BKSPF macro (1)3-18
CLOSEV macro (1)3-19
GETPOS macro (1)3-20
overview, (1)3-16
POSITION macro (1)3-21
REWIND macro (1)3-23
SETPOS macro (1)3-24
SYNCH macro (1)3-25
TAPEPOS macro (1)3-26

DATE macro, (1)2-24
DC parameter (PDD), (1)4-6
Deblocking, (1)3-13
DEBUG option

conditional execution of
DUMP, (1) 2-28
SNAP, (1)2-28, 2-32

used with INPUT, (1)3-37
used with OUTPUT macro, (1)3-40

Debugging aids
DUMP, (1),2-28
LOADREGS, (1),2-30
SAVEREGS, (1),2-31
SNAP, (1) 2-32

Decimal default radix, (1)2-28
Declare

local subroutine entry point, see SUBR
maximum calling list length, see

MXCALLEN
program start point, see PROGRAM
table title, see CAPTION

DEFARG macro, (1)5-2
Default base

for DUMP, (1)2-29
for SNAP, (1)2-32
see BASE

Default
scratch registers, (1)5-26
symbolic name for DSP, (1)2-19
value for the skip parameter, (1)5-26

A

DEFB
examples, (1)5-3
macro, (1)5-2

DEFER parameter (PDD), (1)4-9
Deferred disposition code, (1)4-9
Define

calling parameters, see DEFARG
complex

field, (2)2-3 thru 2-4
complex table attributes, see CTABLE

program loop
see $LOOP
see $EXITLP
see $ENDLOOP

semaphore name, see DEFSM
table attributes, see TABLE
the end of a field, see ENDFIELD

DEFSM
and CLRSM macro, (1)7-4
example, (1) 7-2
macro, (1)7-2
macro used with TEST$SET, (1)7-5

DEFT
examples, (1)5-4, 5-5
macro, (1) 5-4

Delay job processing, see DELAY
DELAY macro, (1)2-3
DELETE macro, (1)4-12
Delete permanent dataset, see DELETE
Designate the end of a table definition

macro, see ENDTABLE
Destination parameter for MESSAGE macro,

(1)2-9
Detection of nonrerunnab1e functions,

(1)2-12
DF parameter (PDD), (1)4-5
DID parameter (PDD) , (1)4-9
Disable event monitoring, (1)9-6
Disk space, (1)2-17

not released, (1)2-17
releasing, (1)2-17

Dispose dataset, see DISPOSE
DISPOSE macro, (1)2-18
DIVIDE opdef, (1)8-1
DN parameter (PDD), (1)4-5
DNT entry released by RELEASE, (1)2-23
DNT, (2) 4-2
DPBIO field, (1)3-10
DPBUBC

count of unused bits, (1)3-11
field of DSP, (1),3-2

DPBWC field of DSP, (1)3-12
DPERR field, (2)1-8
DPUDS parameter, (1)2-22
DRBAD, (1) 9-4
DRCOSS, (1) 9-3
DRDIR, (1)9-4
DRDRNM, (1)9-4
DRFUNC, (1) 9- 3
DRI instruction, (1)2-11
DRIVER

functions, (1)9-4
macro, (1)9-3
parameter block, see DRPB

SR-0012 Index-6

DRLN, (1)9-3 thru (1)9-4
DROPD, (1) 9-4
DRPB, (1) 9-3
DRPLEN, (1) 9-3
DRTO, (1) 9-4
DSP

(1)2-13, 2-20, 2-23, 3-4, 3-5, 3-7,
3-8, 3-14, 3-15, 3-17, 3-18, 3-19,
3-20, 3-24

address, (1)2-21, 3-13 thru 3-14
area, (1)2-5, 2-8
buffer pointers, (1)3-23
examples, (1)2-20
fields

monitored, (1)3-11 thru 3-12
macro, (1) 2-19
releasing, (1)2-17
symbolic address, (1)2-19
updated for unblocked dataset, (1)3-16

DSPLOCK macro, (1)2-20
DT parameter (PDD), (1)4-7
DTTS macro, (1)2-25
Dump

job image, see DUMPJOB
selected areas of memory, see DUMP

DUMP
macro, (1)2-4, 2-28
used with SAVEREGS, (1)2-31
utility, (1)2-4

DUMPJOB macro, (1)2-4
Dynamic stack management, (1)5-6

$ELSE, (1) 6-5
$ELSEIF

examples, (1)6-6 thru 6-7
macro, (1)6-5

$ENDIF, (1) 6-5
$ENDLOOP macro, (1)6-8
$EXITLP

conditions, (1)6-8
macro, (1) 6-8

EBCDIC, (1) 4-7
ECHO

state, (1) 2-3
status, (1) 2-10

ED parameter (PDD), (1)4-7
Edit descriptors, (1)2-37
Edition number code, (1)4-7
Ellipsis, (1)6-3
Embedded blanks, (1)2-83
Enable

End

event monitoring, (1)9-6
reprieve processing, (1)2-14

a job's receptivity, (1)9-2
complex table definition, see CENDTAB
reprieve processing, see ENDRPV
table definition, (2)1-5

End-of-data, see EOD
End-of-file, see EOF
End-of-volume trailer label, (1)3-19
END program, see ENDP

A

ENDFIELD macro, (2)1-8
ENDMAP macro, (2)3-1
ENDP macro, (1)2-4
ENDRPV macro, (1)2-4, 2-14
ENDSP

macro, (1)3-19, 3-29
notifying COS, (1)3-29

ENDTABLE macro, (2)1-5
Enhanced addressing mode, (1)2-11
ENTER

and CALL macro, (1)5-8
and STORE macro, (1)5-26
and VARADD macro, (1)5-29
examples, (1)5-15 thru 5-16
macro, (1)5-11 thru 5-16, 5-27 thru 5-28
relation to LOAD macro, (1)5-24
used with NUMARG, (1)5-21, 5-22

Entry block design
ALLOC, (1)5-5
DEFARG, (1) 5-2
DEFB, (1) 5-2
DEFT, (1) 5-4
design of, (1)5-1
order of use, (1)5-2

Entry point (declaring the local
subroutine), (1)6-11

MXCALLEN, (1)5-6
overview (1)5-1
PROGRAM, (1) 5-6

Entry sequence, (1)5-1
EOD

description, (1)3-1, 3-10, 3-16, 3-17
3-24

processing, (1)3-16
written by BUFEOD, (1)3-10

EOF
description, (1)3-1
written by BUFEOD, (1)3-10

EOR
forced after a series of READP calls,

(1) 3-2
positioning after read termination,

(1) 3-1
satisfying word count, (1)3-2
write characters to user's data area

without EOR), (1)3
written

at mid record, (1)3-10
by BUFEOD, (1)3-10

EOT set for output, (1)3-30
EOV

for multireel tape datasets, (1)3-28
set by CLOSEV, (1)3-19

EOV/BOV processing, (1)3-22
Equate a new field to a previously defined

field, see FIELD@
Equipment Table (EQT) entry, (2)1-14
ERCL$CLR, (1)9-6
ERCL$DIS, (1)9-6
ERCL$ENA, (1)9-6
ERCL$RET, (1)9-6
ERDEF macro, (2)4-1

SR-0012 Index-7

ERECALL
functions, (1)9-6
macro, (1) 9-4

ERFUNC parameter, (1)9-5
ERI instruction, (1)2-12
ERMAP parameter, (1)9-6
ERMASK parameter, (1)9-6
ERPB (Event Recall Parameter Block), (1)9-5
Error

address, (1) 3-9
optional, (1) 3-9

code, (1)2-1, 2-15, 2-16
condition, (1)2-14
data unrecovered, (:)3-2
encountered during read, (1)2-39
fatal, (1)2-15, 2-16
flags, (1) 3-9
floating-point, (1)2-16
issuing BKSP for unblocked dataset,

(1)3-18
link transfer, (1)2-16
memory, (1) 2-16
nonfatal, (1)2-14
not reprievable, (1)7-2
parity, (1)3-15, 3-16
status word, (1)2-15
traceback (1)6-11

ERTO, (1) 9-6
European format for current date, (1)2-24
Event

recall, see ERECALL
Recall Parameter Block, see ERPB

Example of
loop structure with test at the top of

the loop, (1)6-9
structured programming macros, (1)6-3

thru 6-4
Examples

BUILD, (2) 1-14
CAPTION, (2) 1-5
CFIELD, (2)2-5
CNXTWORD, (2)2-7
CSBFIELD, (2)2-6
CTABLE, (2) 2-2
extended load instruction, C-4
FIELD, (2)1-13 thru 1-14
FIELD, (2)1-7
GETDA, (2)4-3 thru 4-4
GETNDA, (2)4-5 thru 4-6
jump instruction, C-4
LOGMSGM, (2)4-7
NEXTWORD, (2)1-10 thru 1-11
SUBFIELD, (2)1-9
TABLE, (2)1-3, 1-13
CIPI/SIPI, C-6
OPEN, (1)2-22 thru 2-23

Exchange Package data base address, see
XPDBA

Exchange Processor, see EXP
EXIT

examples, (1)5-18
macro, (1)5-16 thru 5-19
statement, (1)2-2

A

EXO parameter (PDD), (1)4-9
EXP, (2) 4-1
Expiration date (LDT), (1)4-3
Explicitly control acess to dataset, see

PERMIT
expLicit register designator, (1)5-3, 5-4
Extended

load instruction, C-3
memory addressing, C-3
memory addressing mode, (1)2-11

External users, (1)1-2

5025 default, (1)3-32, 3-33
F$BIO function, (1)3-11 thru 3-12
Failed initialization attempts, (1)2-14,

2-15
Fatal error, (1)2-15
Fetch

argument address, see ARGADD
contents of a normal field, (2)1-18

thru 1-21
contents of a complex field, (2)2-9

thru 2-10
Field

length parameter for MEMORY macro,
(1) 2-8

modification opdefs
description, (2)1-21
PUT, (2) 1-21
SPUT, (2)1-22
SET, (2)1-24

offset change (full format), see ASSIGN
retrieval

opdefs
description, (2)1-17
GETF, (2) 1-18
GET, (2) 1-19
SGET, (2)1-20

fast format, see GETF
full format, see GET
quick format, see SGET

update
full format, see PUT
quick format, see SET
quick format, see SPUT

FIELD macro
description, (2)1-5
example, (2)1-6
GET opdef, (2)1-19
NEXTWORD opdef, (2)1-9
SUBFIELD macro, (2)1-8
special variations, (2)1-6

FIELD@ macro, (2)1-7
File

section number (LOT), (1)4-2
sequence number (LOT), (1)4-3

FILL parameter, (2)3-2
Floating-point

constant (generate), (1)8-4
divide routine, (1)8-1
multiply operations, (1)8-6
reciprocal (generate), (1)8-4

Floating interrupt mode, (1)2-10

SR-0012 Index-8

Flush buffers with
WRITED, (1)3-7
WRITED, (1) 3-7
WRITEF, (1)3-8

Force to word boundary, (2)1-12
Foreign

data conversion mode (LOT), (1)4-2
tape data translation identifier (LOT),

(1)4-2
Form conditional block

see $IF
see $ELSEIF
see $$ELSE
see $ENDIF

Formatted dump, (1)2-28
FORTRAN

BUFFERIN/BUFFEROUT statements, (1)3-8
unit number, (1)3-30, 3-32, 3-34

FORTRAN-like I/O
overview, (1)3-31
FREAD, (1) 3-31
FWRITE, (1) 3-33
UFREAD, (1) 3-34
UFWRITE, (1)3-35

FORTRAN-style format, (1)2-32
FPCONST, (1) 8-4
FREAD macro, (1)3-31
FWRITE macro, (1)3-33

$GOSUB macro, (1)6-9 thru 6-10
$GOTO macro, (1)6-4
$GPOS subroutine, (1)3-20
Gather instruction, C-4
Gather/scatter instruction, C-4
Generate

CFT-ca11ab1e entry point, see ENTER
CONSTANT, (1)8-4
error processing entries in the

Exchange Processor, see ERDEF
floating-point reciprocal, see RECIPCON
FPCONST, (1) 8-4
one table entry for an indexed table,

see MAPTO
RECIPCON, (1)8-4
SYMBOL, (1)8-4
timing-related symbols and constants,

see $CYCLES
Generation

number (LOT), (1)4-3
version number (LOT), (1)4-3

Generic device name code, (1)4-7
Get

current
dataset position, see GETPOS
date in ASCII, see DATE
time, see TIME

memory
address, see VARADD
value, see LOAD

mode setting, see GETMODE
semaphore bit status, see GETSM
switch setting, see GETSWS

A

GET (continued)
tape dataset position, see TAPEPOS
the number of arguments passed in, see

NUMARG
GET opdef

description, (2)1-19
special syntaxes, (2)1-19

GET,Ai
expansions, B-2
special cases, B-3 thru B-4

GET,Si
expansions, B-1
special cases, B-1

GETDA macro, (2)4-2
GETF opdef

description, (2)1-18
special syntaxes, (2)1-18

GETF,Ai
expansions, B-5
special cases, B-5 thru B-6

GETF,Si
expansions, B-4
special cases, B-4 thru B-5

GETMODE macro, (1)2-5
GETNDA macro

description, (2)4-4
system task opdef, (2)4-1

GETPOS macro, (1)3-20
GETSM

example, (1)7-3
macro, (1) 7-3

GETSWS macro, (1)2-5

Hardware error unrecovered, (1)3-15, 3-16
Heap space, (1)2-6
High-order bit in i field, C-3
HOLD parameter, see SUBMIT

$IF
examples, (1)6-6 thru 6-7
macro, (1) 6-5

$IN (1)3-32, 3-39
$IOLIB, (1) 2-15
I/O

area unblocked, (1)2-6
buffer, (1) 2-6
errors from $IOLIB, (1)2-15
errors from $SYSLIB, (1)2-15
transfer stage, (1)2-15

I@MPS, (1) 9-2
I@TOMIN, (1) 9-6
IBM

standard labeled tapes, (1)4-8
tape datasets, (1)4-3

ICS (CDC dataset record format), (1)4-3
ICW (CDC dataset record format), (1)4-3
ICZ (CDC dataset record format), (1)4-3
ID parameter (PDD), (1)4-5
Identify a field within a larger fields,

(2)1-8
IFM (pseduo-op), C-7

SR-0012 Index-9

IIW (CDC dataset record format), (1)4-3
IJBADD, (1) 9-2
I JCOM

functions, (1)9-2
macro, (1)9-1
parameters

IJFCS parameter, (1)9-2
IJFUNC parameter, (1)9-2
IJHLEN parameter, (1)9-2
IJLINK parameter, (1)9-2
IJNCB parameter, (1)9-2
IJOVR parameter, (1)9-2
IJPB parameter, (1)9-2, 9-3
IJPLEN parameter, (1)9-2
IJRCB parameter, (1)9-2
IJRID parameter, (1)9-2
IJSTAT parameter, (1)9-2
IJTID parameter, (1)9-2

IJFCS parameter, (1)9-2
IJFUNC parameter, (1)9-2
IJHLEN parameter, (1)9-2
IJLINK parameter, (1)9-2
IJM$ACCE parameter, (1)9-2
IJM$CLOS parameter, (1)9-2
IJM$END parameter, (1)9-2
IJM$NOP parameter, (1)9-2
IJM$OPEN parameter, (1)9-2
IJM$REC parameter, (1)9-2
IJM$REJE parameter, (1)9-2
IJM$SNDL parameter, (1)9-2
IJM$SNDM parameter, (1)9-2
IJNCB parameter, (1)9-2
IJOVR parameter, (1)9-2
IJPB parameter, (1)9-2, 9-3
IJPLEN parameter, (1)9-2
IJRCB parameter, (1)9-2
IJRID parameter, (1)9-2
IJSTAT parameter, (1)9-2
IJTID parameter, (1)9-2
Illegal macros for tape datasets

ASETPOS, (1)3-16
BKSP, (1) 3-18

IN parameter
on INPUT macro, (1)3-39
on OUTPUT macro, (1)3-43

INDEX parameter
on LOAD macro, (1)5-23
on STORE macro, (1)5-25

Index table construction macros
description, (2)3-1
introduction, (1)1-1, 1-2
MAP, (2) 3-1
MAPTO, (2) 3-1
ENDMAP, (2)3-1

INDEXED records, (2)3-2
Indirect addressing, (1)2-29
Information returned by TAPEPOS macro,

(1)3-27
Initial

edition, (1)4-12
position, (1)3-17
writing to a dataset, (1)2-14

A

Initialization
attempts, (1)2-15
failed, (1)2-15

Initiate a read to the I/O buffer, (1)3-16
Inline Code flag

LOADREGS, (1)2-31
SAVEREGS, (1)2-32
INPUT, (1)3-39
OUTPUT, (1) 3-41

INPUT macro (SKOL)
assigns values

to registers, (1)3-37
to variables, (1)3-37
to words of an array, (1)3-37

conditional execution, (1)3-37
description, (1)3-36

INSFUN, (1) 2-33
Installation-defined

papametep (NORERUN), (1)2-11
subfunctions (unsupported), see INSFUN

Integer to
micro string, (1)8-4
octal micro string, (1)8-5

Interactive 'attention interrupt', (1)2-16
Interchange tape datasets, (1)4-6
Interjob communication parameter block, see

IJPB
Interjob communication, see IJCOM
Interprocessor interrupts, C-5
Interval parameter on $CYCLES macro, (1)8-4
Intervening blanks, (1)1-3
I/O

buffer, (1)2-19, 3-24
initiating a read to, (1)3-16

complete, (1)3-9
errors at transfer stage, (1)2-16
request completion, (1)2-12
subroutines (generating calls to),

(1)3-1
tables (creation of), (1)2-21

IOAREA
format

LOCK parameter, (1)2-6
RESTORE parameter, (1)2-6
UNLOCK parameter, (1)2-6

macro, (1)2-5
Italics, (1)1-3

$JUMP
example, (1)6-8
macro, (1) 6-7

JCDSP, (1) 3-3
JCEFI parameter, (1)2-5
JCHLM parameter, (1)2-19
JCL parameter, (2)4-7
JCPSP parameter, (1)2-22
JDATE macro, (1)2-25
Job Communication Block

control macros, (1)2-1
dataset placing, (1)2-24
input queue place job dataset in,

(1)2-24

SR-0012 Index-IO

Job Communication Block (continued)
location, (1)2-22, 2-29
nonrerunnabi1ity, (1)2-12
protection, (1)2-14
recalling, (1)2-12
recovery, (1)2-14
removal from processing, (1)2-12
rerunnab1i1ity, (1)2-12

marking, (1)2-12
unconditional, (1)2-12

rolling, (1)2-14
step, (1) 2-14

abort, (1) 2-14
error conditions, (1)2-14, 2-15
mu1titasked, (1)2-4
normal termination, (1)2-4, 2-14,

2-15
under OPEN macro, (1)2-22

Job control macros
ABORT, (1)2-2
CONTRPV, (1) 2-2
CSECHO, (1)2-3
DELAY, (1) 2-3
DUMPJOB, (1) 2-3
ENDP, (1) 2-4
ENDRPV, (1)2-4
GETMODE, (1) 2-5
GETSWS, (1)2-5
IOAREA, (1) 2-5
JTlME, (1) 2-7
MEMORY, (1) 2-7
MESSAGE; (1)2-9
MODE, (1) 2-10
NORERUN, (1)2-12
Overview, (1)2-2
RECALL, (1) 2-13
RERUN, (1) 2-13
ROLL, (1) 2-14
SETRPV, (1) 2-14
SWITCH, (1) 2-16
SYSID, (1) 2-17

Abort program, see ABORT
Job's

Exchange Package, (1)2-10
field length, (1)2-8, 2-22
memory, (1)2-7 thru 2-8

Job Table Area, see JTA
JTA, (2)4-2, 4-4
JTFEFW field of JTA, (2)4-2
JTlME macro, (1)2-7
Julian date in ASCII, (1)2-25
Jump

conditionally, see $JUMP
vectors, (2)3-2

KEEP parameter on EXIT macro, (1)5-18
Keyword and actual argument, (1)1-3

$LlNE, (1) 3-41
$LOG, (1) 2-10
$LOOP macro, (1)6-8

A

$LOOP-$ENDLOOP structure, (1)6-9
L@name, (2) 1-2
Label

first word of a region, (1)2-31
processing bypassing, (1)4-8

Label Definition Table, see LDT
Labels

description, (1)2-1
for fields in tables, (2)1-2
length of table header, (2)-1-2
on executable code, (1)2-2
of table designation, (1)1-2

LB parameter (PDD) , (1)4-7
LDT

macro, (1) 4-1
parameter for PDD, (1)4-8

LDT macro parameters
CV, (1)4-2
FD, (1) 4-2
VOL, (1) 4-2
FSEC, (1) 4-2
FSEQ, (1) 4-3
GEN, (1) 4-3
GVN, (1) 4-3
CDT, (1)4-3
XDT, (1) 4-3
RF, (1)4-3

LE@name, (2)1-2, 1-5
LE@TEV

storage length of parameter list address
for CLOSEV macro, (1)3-20
fo~ ENDSP macro, (1)3-29
for STARTSP macro, (1)3-31

LE@TPI parameter, (1)3-26
Left shift field (quick format), see LJF
Legal for tape datasets only, see CLOSEV
Length of

LFT

each entry in the table (TABLE), see
LE@name

table header (TABLE), see LH@name

area, (1)2-8
description, (1)2-17

LH@name, (2) 1-2
LIBRARY

description, (1)5-17
entry specified on ENTER macro, (1)5-12
for MODE parameter, (1)5-17

Library routine
primitive level, (1)5-17
stack version, (1)2-19

Library subroutine, (1)3-1
list option for DUMP, (1)2-29
Limi t exceeded

memory, (1) 2-16
mass storage, (1)2-16
time, (1) 2-16

Link transfer, (1)2-16
Linkage subroutine, (1)5-1
List of

addresses, (1)3-32
arguments parameter, (1)5-10
arguments (parameter on EXIT macro),

(1) 5-20

SR-OOI2 Index-II

LJF opdef, (2)1-27
LJF special syntax, (2)1-27
LOAD

examples, (1)5-24
effect

of ENTER macro, (1)5-14
of PROGRAM macro, (1)5-5

macro, (1)5-22 thru 5-24
opdef, (2) 1-25
relation to temporary variable storage

macros, (1) 5-22
special syntax, (2)1-26

LOADREGS
clear semaphore bit, (1)2-31
generate in1ine code, (1)3-39
macro, (1) 2-30
use of, (1)3-32, 3-35, 3-36

Local variable storage
description, (1)5-22
LOAD, (1) 5-22
STORE, (1) 5-23
VARADD, (1)5-24

Location
field argument description, (1)1-3
I/O buffer, (1)2-19

Lock status storage, (1)2-6
Logical

File Table, see LFT
I/O macros

description, (1)3-1
introduction, (1)1-1, 1-2

LOGMSGM macro, (2)4-6
Losing changes to buffer contents, (1)3-23
LTH

description, (1)3-39
on INPUT macro, (1)2-39
on OUTPUT macro, (1)2-43

Machine instructions,
CLN (cluster number instructions), C-1
Compress index instruction, C-2
descriptions, C-1
Extended memory addressing, C-3
Gather/scatter instructions, C-4
Interprocessor interrupts (CIPI/SIPI),

C-5
Macro continued, (1)1-3
Macro descriptions

$GOSUB, $RETURN, $SUBR, (1)6-10
$GOTO, (1) 6-4
$IF, $ELSEIF, $ELSE, $ENDIF, (1)6-5
$JUMP, $ LOOP , EXITLP, $ENDLOOP, (1)6-10
overview, (1)6-4

Macro instruction format, (1)1-3
Mainframe identifier, (1)4-9
Maintenance control word, (1)4-7
MAP macro, (2)3-1
Map of occurred-events, (1)9-5
MAPTO macro, (2)3-1
Mark job as receptive for inter job

communication, (1)9-2

A

Mass storage dataset restriction
ASETPOS macro, (1)3-16
BKSP macro, (1)3-18
BKSPF macro, (1)3-18
limit exceeded, (1)2-16
POD parameters, (1)4-5
SETPOS macro,3-24

Maximum
calling list length declared, (1)5-6
field length for MEMORY macro, see MAXFL
tape block size, (1)4-4

MAXFL parameter (MEMORY macro), (lT2-8
Memory

added, (1) 2-7
deleted, (1) 2-7
dumping selected areas, (1)2-28
error, (1) 2-16
get value from, (1)5-22
job, (1) 2-19
location, (1)5-25

return the address of, (1)5-27
pool, (1) 5-22
range list, (1)2-28
request macro, (1)2-7
storage

area address (retieva1), (1)5-27
space assigned symbolic names, (1)5-5

MEMORY macro,
overview, (1)2-7
UC option, (1)2-7
FL option, (1)2-8
USER option, (1)2-8
AUTO option, (1)2-8
MAXFL option, (1)2-8
CURFL option, (1)2-8
TOTAL option, (1)2-8
value parameter, (1)2-8
examples, (1)2-8, 2-9

Memory-resident dataset
BKSPF macro, (1)3-18
BUFEOD, (1) 3-9
BUFEOF, (1) 3-9
BUFINP, (1) 3-9
BUFOUTP, (1) 3-9
READ/READP macro, (1)3-2, 3-3, 3-4
REWIND macro, (1)3-23
WRITE/WRITEP macro, (1)3-5, 3-6
WRITEF macro, (1)3-8

Message class parameter, (1)2-10
MESSAGE macro, (1)2-9, 3-43

Enter message in 1ogfi1e, see MESSAGE
ASCII message, (1)2-9

Message
processor macro, see LOGMSGM
Suppression OVerride flag, (1)2-10

MF parameter (POD), (1)4-5
MFL parameter on the JOB statement, (1)2-7
Mid file (BFSPF), (1)3-18
Mid record

address 178 set to 0 (GETPOS), (1)3-20
backspace (BKSP), (1)3-10
EOR written (BUFEOF), (1)3-10
initial position, (1)3-17
maintains position (BUFINP), (1)3-11

SR-0012 Index-12

Miscellaneous run-time opdefs
ASSIGN, (2) 1-26
description, (2)1-25
LJF, (2) 1-27
LOAD, (2)1-25
STORE, (2) 1-26
XFER, (2)1-28

Mixing normal and complex tables (errors
resulting, (2)1-1

MN parameter (POD), (1)4-7
MODE

AVL parameter, (1)2-11
BT parameter, (1)2-11
description, (1)2-10
EMA parameter, (1)2-11
FI parameter, (1)2-10
ORI parameter, (1)2-11
overview, (1)2-10

MSG parameter (POD), (1)4-8
MTTS macro, (1)2-26
Multiple SUBFIELD macros, (2)1-8
Mu1itread access, (1)4-8
Mu1titasked job step, (1)2-4
Multitasking (DSPLOCK) macro, (1)2-20
MXCALLEN

Name

example, (1) 5-6
macro, (1) 5-6

a field within a table, see FIELD
complex field within a table, see CFIELD
part

of a complex field, see CSBFIELD
of a field, see SUBFIELD

NE@name, (2) 1-2
Nesting $IF groups, (1)6-5
NEW parameter (PDD), (1)4-8
NEXTWORD macro, (2)1-9
No release code, (1)4-9
NOCL parameter, (2)4-7
NOLOG parameter, (2)4-6
Non-master device build entry, (2)1-15
Nonfatal error conditions, (1)2-15
Nonrerunnab1e functions, (1)2-12
NORERUN macro, (1)2-12
Normal

completion message suppression
indicator, (1)4-9

fields opdefs, (2)1-15
job step termination, (1)2-3, 2-13
macros, (2)1-1
opdefs, (2) 1-15
table macros, (2)1-1

Normal table manipulation macros and opdefs
introduction, (1)1-1 thru 1-2
description, (2)1-1

Notify COS of the beginning of special
processing, (1)3-30

NRLS parameter (PDD), (1)4-9
Null

string, (1) 1-3
elements, (1)3-37

A

NUMARG
examples, (1)5-21
macro, (1) 5-21

Number of entries for a table (TABLE), see
NE@name

$OCTMIC macro, (1)8-5
$OUT

default for FORTRAN unit number for
DUMP macro, (1)2-30
SNAP macro, (1)2-33

Obtain
first DAT page address, see GETDA
next DAT page address, see GETNDA

Octal
function code value, (1)2-1
mask value, (1)2-15 thru 2-16

ODN referred to by
ASETPOS, (1)3-17
BKSP, (1)3-18
BKSPF, (1) 3-19
BUFCHECK, (1)3-9
BUFEOD, (1) 3-10
BUFEOF, (1) 3-11
BUFIN/BUFINP, (1)3-12
BUFOUT/BUFOUTP, (1)3-13
CLOSE, (1) 2-18
CLOSEVM (1) 3-19
DSP, (1) 1-19
ENDSP, (1)3-29
OPEN, (1)21 thru 23
GETPOS, (1)3-20
POSITION, (1)3-21
READ/READCP, (1)3-4
READ/READP, (1)3-3
READU, (1) 3-14
RECALL, (1) 2-13
RELEASE, (1)2-23
REWIND, (1) 3-24
SETPOS, (1)3-25
SETSP, (1) 3-30
STARTSP, (1)3-31
SYNCH, (1) 3-26
TAPEPOS, (1)3-27
TAPESTAT, (1)3-28
WRITE/WRITEP, (1)3-5
WRlTEC/WRITECP, (1)3-7
WRITED, (1)3-7
WRITEF, (1) 3-8
WRITEU, (1) 3-15

Opdefs
complex, (2) 2-1
normal, (2)1-1

Open
a channel, (1)9-4
communication path, (1)9-2
dataset, see OPEN

Open Dataset Name Table, see ODN
OPEN

examples, (1)2-22 thru 2-23
macro

(1)2-21
declare after specifying ODN, (1)2-19

SR-0012 Index-13

operand (structured programming), (1)6-3
Operand range interrupt mode, (1)2-11
optabeL (description), (1)1-3
Optimize memory references, (2)1-16
Optional Recall flag

BUFEOD macro, (1) 3-10
BUFEOF macro, (1) 3-11
BUFIN/BUFINP macros, (1) 3-12,
BUFOUT/BUFOUTP macros, (1) 3-13

Order for specifying entry block design
macros, (1) 5-2

ORIGIN parameter, (2)3-2
OUTPUT

macro (SKOL), (1)3-40
used with SAVEREGS, (1)2-31

Overhead on entry or exit, (1)5-3
Overlay task manager, (2)4-1
Override echo status of a message class,

(2) 4-6
OWN parameter (PDD), (1)4-9

$PAGE, (1) 3-41
Packed character string, (1)3-39
PAM parameter (PDD), (1)4-10
Parameter list address, (1)3-23
Parcel address, (1)1-3
Parity error, (1)3-15, 3-16
Partial delete option, (1)4-10
PARTIAL parameter (PDD), (1)4-10
Pass elements of vector register to scalar

routine, see PVEC
Passed-in dummy arguments, (1)5-19
PDD

DISPOSE, (1)2-18
macro, (1)4-4
parameters

DN, (1)4-5
PDN, (1)4-5
SDN, (1) 4-5
ID, (1) 4-5
MF, (1) 4-5
TID, (1)4-5
DF, (1) 4-5
DC, (1) 4-6
SF, (1)4-7
RT, (1)4-7
ED, (1) 4-7
RD, (1)4-7
WT, (1)4-7
MN, (1)4-7
DT, (1)4-7
CS, (1)4-7
LB, (1)4-7
LDT, (1) 4-8
NEW, (1) 4-8
MSG, (1) 4-8
UQ, (1)4-8
WAIT, (1) 4-8
DEFER, (1) 4-9
NRLS, (1)4-9
EXO, (1) 4-9
SID, (1)4-9

A

PDD (continued)
DID, (1)4-9
OWN, (1) 4-9
PARTIAL, (1)4-10
PAM, (1) 4-10
ADN, (1)4-10
TA, (1) 4-10
RP, (1)4-10
USR, (1) 4-10

with SUBMIT, (1)2-24
PDN parameter (PDD), (1)4-5
Permanent Dataset Definition, see PDD
Permanent dataset

adjusting, (1)2-14
associated with a job, (1)4-10
availablility, (1)4-12
creation of initial edition, (1)4-12
definition macros, (1)4-1
deleting, (1)2-9, 2-14, 4-11
macros, (1) 4-1
management macros, (1)4-1

Permanent Dataset Definition Table, (2)1-11
creation of, (1)4-4

Permanent dataset macros
description, (1)1-1 thru (1)1-2
LDT macro, (1)4-1
PDD macro, (1)4-1

Permanent dataset management macros
ACCESS, (1) 4-10
ADJUST, (1)4-11
DELETE, (1) 4-12
overview, (1)4-10
PERMIT, (1)4-12
SAVE, (1) 4-12

PERMIT macro, (1)4-12
pfx parameter, (2)1-12
Physical word address, (1)3-18
Place the job in recall, (1)9-6
POSITION macro, (1)3-21
position

tape dataset, see POSITION
the dataset at BOD, (1)3-25
the dataset preceding EOD, (1)3-25

positive integer conversion, (1)8-4
Precoded divide routine, see DIVIDE
Preload entry word (full format), see LOAD
PRELOAD parameter on ENTER macro, (1)5-13
Prepare a dataset for processing, (2)2-1
Previously defined name for tape

processing, (1)2-22
Print dataset code, (1)4-6
Processing direction, (1)2-21
Program

and tape synchronized, (1)3-25
exit instruction, (1)2-2

PROGRAM macro, (1)5-6
Protect a job against system interruption,

(1) 2-14
Protection (job), (1)2-14
Prototype, (1)1-3
Pseudo instruction, see IFM
Pseudo-vectorized arithmetic routines,

(1)8-2

SR-0012 Index-14

Public access mode, (1)4-10
PUT

opdef special syntaxes, (2)1-22
opdef, (2) 1-21

pUT,va"l,
expansions, B-11
special cases, B-ll thru B-14

PUT, Ai
expansions, B-8
special cases, B-8 thru B-ll

PUT,si
expansions, B-7
special cases, B-7 thru B-8

PVEC macro, (1)8-2

Quick opdefs
see SGET
see SET
see SPUT
see LJF

QZH44HZQ default, (1)2-31

$RCHP subroutine, (1)3-4
$RCHR subroutine, (1)3-3
$RETURN

exit point for subroutine, (2)4-8
macro, (1) 6-10

$REWD subroutine, (1)3-23
$RLB subroutine, (1)3-14
$RWDR routine, (1)3-1 thru 3-2
RCWs, (1) 3-20
RD parameter (PDD), (1)4-7
Read

and hold data (DRIVER), (1)9-4
and reread data (DRIVER), (1)9-4
characters, see READC/READCP
data

DRIVER, (1) 9-4
FORTRAN, see FREAD
SKOL, see INPUT

formats, (1) 3-2
unmodified data from disk, (1)3-2
words, see READ/READP

READ/READP, (1)3-1
READC/READCP formats, (1)3-4
READC/READCP, (1)3-3
READCP macro satisfying character count,

(1) 3-4
READU, (1) 3-14
Recall job upon I/O request completion, see

RECALL
RECALL macro, (1)2-13
RECIP parameter ($CYCLES), (1)8-4
RECI PCON

example, (1) 8-7
macro, (1) 8-6

Record
backspace, (1)3-16
boundary, (1)3-16
Control Words, see RCWs
size (foreign tape datasets), (1)4-4

A

Recover dynamic stack pointer, (1)5-8, 5-10
REDEFINE macro, (2)1-11
Redefine specified number of

64-bit words (complex field), see CREDEF
of words, see REDEFINE

Reentrant code not used with complex
opdefs, (2) 2-9

Reference local temporary variable storage,
(1) 5-22

REG parameter on GETSM macro, (1)7-3
Register

contents modified, (1)3-14
designator, (1)1-3

explicit, (1)5-3, 5-4
format, (1) 2-33
scratch, (1)5-23, 5-26
source parameter on STORE macro, (1)5-25
SO (zero value), (1)2-1

Registers
changed through function request, (1)3-1
nontemporary, 2-30
restoration of, (1)3-35, 3-36, 3-39,

3-40
saved, (1)2-30, 2-33
temporary, (1)5-4
unchanged, (1)3-9, 3-20

through function, (1)3-1
used by CFT, (1)3-14
vector, (1) 2-32

Reject a request from another job, (1)9-2
Release

dataset to system, see RELEASE
disk space, (1)2-17

RELEASE macro, (1)2-23
Reprievable condition, (1)2-15 thru 2-16
Reprieve

classes, (1)2-15 thru 2-16
error conditions, (1)2-15
processing, (1)2-4, 2-14, 2-15

code, (1)2-14, 2-15, 2-16
enabled, (1)2-14

Reprieved fatal error condition, (1)2-15,
2-16

Request
accumulated CPU time for job, see JTlME
memory, see MEMORY
notification at end of tape volume, see

SETSP
system identification, (1)2-17

RERUN macro, (1)2-13
Reset pointers to indicate empty buffer

request, (1)3-23
Restore

all registers, see LOADREGS
status

of the DSP area, (1)2-5
of the I/O area, (1)2-5

Retention period code, (1)4-7
Retrieve

complex field contents, see CGET
the number of arguments, (1)5-1
passed-in argument list information

macros, (1) 5-19

SR-OOI2 Index-IS

Return
from local subroutine, see $RETURN
Julian date, see JDATE

Return conditions for
ASETPOS, (1)3-17
BKSP, (1)3-18
BUFCHECK, (1)3-9
CLOSEV, (1)3-20
DUMP, (1)2-29
DUMP, (1) 2-30
INPUT, (1) 3-39
OUTPUT, (1)3-43
POSITION, (1)3-23
READ/READP, (1)3-3
READU, (1) 3-14
REWIND, (1) 3-24
SNAP, (1) 2-33
SNAP, (1) 2-33
SYNCH, (1) 3-26
TAPEPOS, (1)3-27
TAPES TAT , (1)3-28
termination condition, (1)3-3
WRITC/WRITECP, (1)3-7
WRITED, (1) 3-7
WRITEU, (1) 3-15
READC/READCP, (1)3-4
WRITE/WRITEP, (1)3-6

Rewind dataset, see REWIND
REWIND

macro, (1) 3-23
parameter (POSITION), (1)3-21
positioning operation, (1)2-14
statement, (1)3-2

Right-adjusted, zero-filled, (1)3-4
Roll a job, see ROLL
ROLL macro, (1)2-14
Routine

arguments passed to, (1)5-21
calling with call by address sequence,

(1)5-7
start point, (1)5-6

Routines
call-by-address, (1)5-7
calling external, (1)5-7

RP parameter (PDD), (1)4-10
RT parameter (PDD), (1)4-7
Run-time complex table management

description, (2)2-9
CGET, (2)2-9
CPUT, (2) 2-10

Run-time field management opdefs
description, (2)1-15
format, (2)1-16
field retrieval, (2)1-17
field modification, (2)1-21
Fast category, (2)1-16, 1-17
Full category, (2)1-16, 1-17
Quick category, (2)1-16, 1-17

$SKIP, (1)3-41
$SPOS, (1) 3-24
$SUB, (2)4-8

A

$SUBR macro, (1}6-11
$SYSLIB, (1}2-15
$SYSTXT (defines LE@TEV), (1)3-20
$SYSTXT, (1) 1-1
64 bit words

advancing, (2)1-9
boundaries, (2}2-10
and CGET opdef, (2)2-9
redefinition of, (2)2-9
tables oriented to, (2)2-2

S registers affected by CALLV macro, (1)5-9
SO register as a parameter, (1)1-3
Save all registers, see SAVEREGS
SAVE conditions, (1)4-13
Save flag

FREAD, (1) 3-32
FWRITE, (1) 3-34
UFREAD, (1) 3-35
UFWRITE, (1)3-36
INPUT, (1) 3-39
OUTPUT, (1) 3-42

Save permanent dataset, see SAVE
SAVE

functions, (1)4-13
macro, (1) 4-12

SAVEREGS
generate inline code, (1)3-39
macro, (1) 2-31
not invoked by SV parameter, (1)3-32,

3-34, 3-35, 3-36, 3-39, 3-42
used before LOADREGS, (1)2-30

Scalar routine
elements of vector register passed to,

(1) 8-2
values corresponding to vector

registers, (1)8-2, 8-3
Scatter instruction, C-4
Schedule memory reads and writes (XFER) ,

(2)1-28
SCR register, (1)5-23, 5-26
Scratch

dataset code, (1)4-6
register, (1}5-23, 5-26

SDN parameter (PDD), (1)4-5
Security violation, (1)2-16
Selected error condition, (1)2-14
Semaphore

bit current status, (1)7-2
management, (1)1-2
manipulation

of, (1) 7-1
macros

CLRSM, (1) 7-4
Description, (1)7-1
DEFSM, (1)7-2
GETSM, (I) 7-3
SETSM, (1) 7-4
TEST$SET, (1)7-5
WAIT$CLR, (1)7-5

setting, (1) 7-2
testing, (1)7-2
unconditionally clearing, (1)7-5
unconditionally setting, (1}7-4

SR-0012 Index-16

Send a message
to another job, (1)9-2
to attached 10gfile, (1)9-2

Send statement image to the 10gfile, (1)2-3
Sense switch

clear, (1) 2-16
set, (1) 2-16

Sequential writing to a dataset, (1)2-14
Sequentially written dataset, (1)2-17
Set or clear

additional vector logical functional
uni t, (1) 2-11

bidirection transfer mode, (1)2-11
extended memory addressing mode, (1)2-11
floating interrupt mode, (1)2-10
interprocessor interrupt, see SIPI
job step reprieve, see SETRPV
lock in DSP area, see DSPLOCK
mode flags macro, (1)2-10
operating characteristics, (1)2-16
operating mode, see MODE
or clear sense switch macro, (1)2-16
semaphore without waiting, see SETSM
sense switch, see SWITCH

SET macro and field opdef, (2)1-5, 1-6
SET opdef

description, (2)1-24
special syntaxes, (2)1-23
statement, (1)3-37
suppressing code generation, (1)2-32

Set up assembly parameters to control an
indexed table, see MAP

SETPOS, (1) 3-24
SETRPV

macro, (1) 2-14
request reissue, (1)2-16

SETSM macro
description, (1)7-4
with the ON option, (1)3-30

SETSP
macro, (1)3-29
request EOV and BOV processing, (1)3-28

SF parameter (PDD), (1)4-7
SGET opdef

description, (2)1-20
special syntaxes, (2)1-20

SHARED
clause effect on EXIT macro, (1)5-17
parameter on ENTER macro, (1) 5-13

SICS (CDC dataset record format), (1)4-3
SICZ (CDC dataset record format), (1)4-3
SID parameter (PDD), (1)4-9
SIIW (CDC dataset record format), (1)4-3
SIN routine (SHARED name), (1)5-13
Single-threaded I/O, (1)2-20
Single word addressed indirectly, (1) 2-32,

2-35
SIPI, C-5
Size of the table (TABLE), see SZ@name
Skip

bad data, (1)3-2
distance

for a vector load, (1)5-23
for a vector store, (1)5-26

A

SKIP parameter
on LOAD macro, (1)5-23
on store macro, (1)5-26

SKIPBAD, (1)3-2, 3-4
SKOL-1ike I/O

INPUT, (1)3-37
OUTPUT, (1) 3-40
overview, (1)3-36

SM.CODLK, (1)7-5
Snapshot of selected registers, see SNAP
SNAP

macro, (1) 2-32
used with SAVEREGS, (1)2-31

Source register, (1)5-25
Space allocation for local temporary

storage, (1) 5-1
Special

cases for
GET Ai, B-3 thru B-4
GET si, B-1 thru B-2
GETF Ai, B-5 thru B-6
GETF si, B-4 thru B-5
PUT val, B-11 thru B-14
PUT Ai, B-8 thru B-11
PUT si, B-7 thru B-8

EOV and BOV processing completed, see
ENDSP

form infomation code, (1)4-7
syntax

for LJF, (2)1-27
for LOAD, (2)1-26
for STORE, (2)1-26
values (AO and SO), (1)1-3

syntaxes for
GET opdef, (2)1-19
PUT opdef, (2)1-22
SET opdef, (2)1-23
SGET opdef, (2)1-20
SPUT opdef, (2)1-23
GETF opdef, (2)1-18

variations of the word of the FIELD
macro, (2)1-6

Specify address to write message, (2)4-7
Specify message

class, (2) 4-7
length, (2) 4-7
location, (2)4-6
subtype, (2)4-7
type, (2) 4-7

SPUT opdef
description, (2)1-22
special syntaxes, (2)1-23

SREG=, (2) 4-8
Stack

format
after $SUB call (figure), (2)4-10
before $SUB call (figure), (2)4-9

pointer
dynamic, (1)5-23, 5-25
preventing reloading of, (1)5-27

Stacked items, (1)1-3
Stacks

effect of PROGRAM macro on, (1)5-6, 5-7
stage to mainframe code, (1)4-6

SR-OOI2 Index-I7

Staged dataset name parameter, (1)4-5
Standard

entry and exit sequences, (1)5-1
labeled tapes, (1)4-7, 4-8

Starting address, (1)2-29
STARTSP notify COS of special processing,

(1)3-29
STARTSP, (1)3-30
status

condition
DRIVER, (1) 9-4
I JCOM, (1) 9-3

of the named dataset, (1)2-19
Steps in I/O, (1)2-15
STKPTR parameter

CALL, (1)5-8, 5-9
CALLV, (1) 5-10
ENTER, (1) 5-14
LOAD, (1) 5-2 3, 5-2 4
PROGRAM, (1)5-7
STORE, (1)5-25, 5-26
VARADD, (1)5-27 thru 5-29

stop monitoring user functions macro,
(1)2-12

Storage address
for data in a complex field, see CPUT
for lock status, (1)2-6
parameter, (1)3-27
space temporary, (1) 5-1
variable temporary, (1)5-22Store
value into memory, see STORE

STORE
effect

of ENTER macro, (1)5-14
of PROGRAM macro, (1)5-6, 5-7

examples, (1)5-26 thru 5-27
macro, (1)5-25 thru 5-27
opdef, (2)1-26
special syntax, (2)1-26

STRING paramter, (1)3-39
Structured programming macros

description, (1)6-1
introduction, (1)1-1,1-2

Structured programming opepands, (1)6-1
SUBFIELD macro, (2)1-8
Submit job dataset, (1)2-24
SUBMIT macro, (1)2-24
Subroutine

calls, (1)5-1
calls without $SUB, (2)4-8
definition of entry point, (1)4-8
entry point, (1)6-11
exit sequence construction, (1)5-16

thru 5-19
library, (1)3-1
linkage macroS

CALL macro, (1)5-7
CALLV macro, (1)5-9
ENTER macro, (1)5-11
EXIT macro, (1)L5-16
overview, (1)5-7

termination of linkage macros, (1)5-16

A

Subsystem Support macros
description, (1)9-1
DRIVER, (1) 9-3
ERECALL, (1) 9-4
IJCOM, (1) 9-1
introduction, (1)1-2

SWITCH macro, (1)2-16
Switch to the next volume, see CLOSEV
SYMBOL, (1)1-3, 8-4
Symbolic name

assigned
to B register, (1)5-2
to memory storage space, (1)5-5

definition of, (1)5-2
SYNCH macro

description, (1)3-25
with STARTSP, (1)3-31

Synchronization of program and tape, (1)3-25
Synchronize

for input, (1)3-25
macro, see SYNCH

Synchronous I/O macros
description, (1)3-1
READ/READP, (1)3-1
READC/READCP, (1)3-3
WRITE/WRITEP, (1)3-5
WRITEC/WRITECP, (1)3-6
WRITED, (1) 3-7
WRITEF, (1) 3-8

Synchronously position dataset, see SETPOS
SYS, (2)4-6
SYSID macro, (1)2-17
System

abort, (1) 2-6
action request macros, (1)2-1
function requests, (1)1, 4-1
identification, (1)2-17
interruption, (1)2-14
log, (1) 2-3
10gfile, (1)2-7, 2-8
task opdefs, (2)4-1
text, (1) 1-3
timestamp, (1)2-25

System action request macros
description, (1)1-1, 1-2
introduction, (1)2-1

System
aids

Complex table manipulation macros and
opdefs, (2) 2-1

COS-dependent macros and opdefs,
(2)4-1

Index table construction macros,
(2)3-1

Normal table manipulation macros and
opdefs, (2) 1-1

ID returned, (1)2-17
task opdefs, (2)4-1

SZ@name, (2) 1-2

2-word arguments (effect of ARGSIZE),
(1) 5-14

SR-OOI2 Index-18

T registers
assigning names to, (1)5-4
destroyed during lower level routine

calls, (1) 5-4
nontemporary, (1)5-12
restoration of nontemporary, (1)5-17

TA parameter (PDD), (1)4-10
Table

attributes
definition, (2)1-2, 2-1

complex field, (2)2-3
construction, (2)1-1
definition and construction macros,

(2)1-1
entry length definition, (1)2-1
field definition, (2)1-12
header length

definition, (2)2-2
labels for, (2)1-2

label definition, (2)2-2
length definition, (2)2-2
manipulation, (2)1-1
number of entries, (2)1-2
size of, (2) 1-2
structure, (2)2-3

construction of, (2)1-12
Table definition macros

BUILD (2)1-12
CAPTION, (2) 1-4
description, (2)1-1
ENDFIELD (2)1-8
ENDTABLE, (2)1-5
FIELD, (2) 1-5
FIELD@ (2)1-7
NEXTWORD (2)1-9
REDEFINE (2)1-11
SUBFIELD (2)1-8
TABLE, (2) 1-2

Table definition
complex, (2) 2-1
normal, (2)1-2

Table Diagram Generator, see TDG
Table macro expansions

GET,Si, B-1
GET,Ai, B-2
GETF,Si, B-4
GETF,Ai, B-5
PUT,si, B-7
PUT,Ai, B-8
PUT, val, B-ll

TABLE macro, (2)1-2 thru 1-3
tape status code, (1)3-28
Tape

for tape datasets only, see CLOSEV
positioning request, (1)3-21
status from DSP, see TAPES TAT

Tape dataset
ADJUST ignored for, (1)4-11
BKSP illegal for, (1)3-17
BKSPF illegal for, (1)3-18
CDC, (1) 4-3
character set code, (1)4-5, 4-6
creation of, (1)4-8

A

Tape dataset (continued)
foreign

generation number, (1)4-3
maximum tape block size, (1)4-4

generic device name code, (1)4-7
IBM, (1) 4-3
interchange, (1)4-6
label processing option code, (1)4-7
opened successfully, (1)3-16
position information

macro, (1) 3-6
table, (1) 3-27

positioning, (1)3-21
rewound, (1)3-23
synchronization, (1)3-24

Tape dataset record format (LDT macro)
description
fixed format, (1)4-3
fixed block format, (1)4-3
undefined format, (1)4-3
variable format, (1)4-3
variable blocked format, (1)4-3
variable blocked spanned format, (1)4-3

TAPEPOS macro, (1)3-26
TAPESTAT macro, (1)3-28
TDG

ENDFIELD macro, (2)1-8
CAPTION macro, (2)1-4

TDG makes use of
TABLE, (2) 1-3
CAPTION, (2)1-4
ENDTABLE, (2) 1-5
FIELD, (2)1-6
ENDFIELD, (2)1-8
REDEFINE, (2)1-12

Temporary storage area (transfer data from),
(1)5-22

Terminal identifier, (1)4-5
Terminate

reprieve processing, (1)2-14
subroutine and return to caller, see

EXIT
Termination, (1)2-14

normal, (1)2-14, 2-15
read/write function, (1)3-1

Test
semaphore and.wait to set, see TEST$SET
target machine attributes for assembly

condition, see IFM
TEST$SET (note), (1)7-3
TEST$SET macro description, (1)7-5
TID parameter (PDD), (1)4-5
Time and data request macros

DATE, (1) 2-24
JDATE, (1) 2-25
MTTS, (1) 2-26
overview, (1)2-24
TIME, (1) 2-26
TSDT, (1)2-27
TSMT, (1) 2-28

TIME macro, (1)2-26
Timestamp, (1)2-25

SR-0012 Index-19

Timing-related symbols and constants
Description, (1)8-4
Interval parameter, (1)8-4
UNITS parameter, (1)8-4
TYPE parameter, (1)8-4

TPER parameter, (1)3-26
TPNR parameter, (1)3-23
TPNS parameter, (1)3-23
TPNT parameter, (1)3-23, 3-26, 3-27
TPOK parameter, (1)3-23, 3-26, 3-27
TPTM parameter, (1)3-23
Traceback function for error processing,

(1) 5-7
TRAILER=EOV, (1)3-20
Transfer data from

characters from user's data area,
(1) 3-3, 3-6

current position to EOR, (1)3-11
dataset to user's area, see READU
dataset to user's record area, see

BUFIN/BUFINP
link error, (1)2-16
stage, (1) 2-15
user's area to dataset, see WRITEU
user's record area to dataset, see

BUFOUT/BUFOUTP
user's record area to dataset, (1)3-12

Translation of foreign tape datasets, (1)4-3
Transparent code, (1)4-6
TREG macro (unsupported), A-2
TS$BLT (1)3-28
TS$EOV (1)3-28
TS$TMS (1)3-28
TS$TOR (1)3-28
TSDT macro, (1)2-27
TSMT macro, (1)2-28

UFREAD macro, (1)3-34
UFWRITE macro, (1)3-35
Unblock dataset

GETPOS, (1)3-20 thru 3-21
BKSP, (1)3-18

Unblocked dataset transfer, (1)3-11
Unblocked I/O, (1)3-13

READU, (1) 3-14
WRITEU, (1) 3-15

Unconditionally set job rerunnab1i1ity, see
RERUN

Unformatted
read (FORTRAN), see UFREAD
write (FORTRAN), see UFWRITE

Unique access code, (1)4-8
UNIT option

with DUMP (FORTRAN unit number), (1)2-30
with SNAP (FORTRAN unit number), (1)2-33

UNIT=$LOG, (1)3-43
UNITS parameter on $CYCLES macro, (1)8-4
Unlabeled tapes, (1)4-8
Unrecovered

data errors, (1)3-2, 3-4
hardware error, (1)3-15, 3-16

Unsupported features, A-I

A

Unused bit count, (1)3-2, 3-3, 3-11
Update entry word (full format), see STORE
UPPERCASE parameter, (1)1-3
UQ parameter (PDD), (1)4-8
USE parameter

CALL macro, (1)5-8
CALLV macro, (1)5-10
LOAD macro, (1)5-23
NUMARG macro, (1)5-21
STORE macro, (1)5-25
VARADD macro, (1)5-28

Use tape volume processing, (1)3-28
User

aids group, (1)1-2
channel access, see DRIVER
code (UC parameter) for the MEMORY

macro, (1)2-7
data area, (1)3-3, 3-14, 3-15
field, (1)2-19, 2-20
identification parameter, (1)4-5
logfi1e, (1) 2-9
mode, (1)2-7, 2-8
program reposition or perform special

I/O to tape, (1)3-30
record area, (1)3-11, 3-12
reprieve processing disabled, (1)2-16

USER, (2) 4-6
User aid macros

CFT linkage macros, (1)1-1
description, (1)1-1
logical I/O macros, (1)1-1
permanent dataset macros, (1)1-1
structured-programming macros,

(1) 1-1, 1-2
CAL extension opdef and macros,

(1) 1-1, 1-2
system action request macros, (1)1-1

User mode entry (specified on ENTER macro) ,
(1)5-12

USER parameter for MEMORY macro, (1)2-8
User-allocated buffer, (1)2-19
User-managed

field length reduction, (1)2-8
memory, (1) 2-19

User-requested aborts, (1)2-14, 2-16
User-supplied Exchange Package, (1)2-2
User's

data area, (1)3-1, 3-5
words transmitted to, (1)3-2

Exchange Package, see USER parameter
for MEMORY macro

I/O area, (1)2-5
reprieve code, (1)2-4

USR parameter (PDD), (1)4-10

Value
for first key in the table, (2)3-2
italics convention, (1)1-3
to place in unused entries, (2)3-2

VALUE parameter specified on ENTER macro,
(1)5-12

SR-0012 Index-20

VARADD
examples, (1)5-28 thru 5-29
macro, (1)5-27 thru 5-29

Variable word definition (VWD), (2)1-12
Variables

assigned values, (1)3-31
local temporary allocating space, (1)5-5

VECA routine, (1)8-2
VECB routine, (1)8-2
VECC routine, (1)8-2
Vector

length
change, (1)3-38
current, (1)3-42
processing, (1)8-3

load and LOAD macro, (1)5-23
mask

change, (1)3-38
current, (1)3-42

multiply functional unit, (1)2-11
registers, (1)5-26

affected by PVEC macro, (1)8-2
elements, (1)8-2

Violation (security), (1)2-16
Volume

block count, (1)3-27
identifier list (LOT), (1)4-2
identifier, (1)3-23
description, (1)3-22

Volumes not switched, (1)3-30
VWD, see Variable word definition

$WCHP subroutine, (1)3-6
$WCHR subroutine, (1)3-6
$WEOD subroutine, (1)3-7
$WEOF subroutine, (1)3-8
$WLB subroutine, (1)3-15
$WWDR subroutine, (1)3-5
$WWDS subroutine, (1)3-5
W prefix, (1)3-32, 3-35, 3-38, 3-41
W@DBIO, (1)3-13
W@DPBIO parameter, (1)3-12
W@DPERR parameter, (1)3-9
WAIT parameter (PDD), (1)4-8
WAIT$CLR

example, (1) 7-6
macro, (1) 7-5

Word count exhausted by EOR, (1)3-11
write

characters, see WRITE/WRITECP
control word code, (1)4-7
data

FORTRAN, see FWRITE
SKOL, see OUTPUT

end of data
on dataset, see BUFEOD
see WRITED

end of file, see WRITEF
end of file on dataset, see BUFEOF
EOR with character count of 0, (1)3-6
words, see WRITE/WRITEP

A

Writing
to a permanent dataset, (1)2-12
random, (1) 2-14

WRITE/WRITEP
description, (1)3-5
formats, (1)3-5

WRITED macro, (1)3-7
WRITEF macro, (1)3-8
WRITEU, (1) 3-15
WT parameter (PDD), (1)4-7

X@name (suppress definition), (2)2-4
XFER opdef, (2)1-28
XPBA, (2)1-18, 1-23, 1-26
XPDBA, (2)1-18, 1-23, 1-26

Zero byte, (1)2-9
Zero-filled, right-adjusted, (1)3-4

SR-0012 Index-21 A

READERS COMMENT FORM

Macros and Opdefs Reference Manual SR-0012 A

Your comments help us to improve the quality and usefulness of our publications. Please use the space provided
below to share with us your comments. When possible, please give specific page and paragraph references.

NAME ______________________________________ _

JOB TITLE ____________________ _

FIRM ______________________ ---
RESEARCH. INC.

ADDRESS _______________________________ ___

CITY __________ STATE _----ZiP ___ _

___________________________ I
--- ------i

Attention:
PUBLICATIONS

111111

BUSINESS REPLY CARD
HRST CLASS PERMIT NO 6184 ST PAUl. MN

POSTAGE Will BE PAID BY Af)DRESSEE

RESEARCH. INC.

1440 Northland Drive
Mendota Heights, MN 55120
U.S.A.

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

I
I
I

-------------------------------------,

~TADIC

n
c
-4
»
r o
Z
G')

-4
J:
en
c
Z
m

REAOERSCOMMENTFORM

Macros and Opdefs Reference Manual SR-0012 A

Your comments help us to improve the quality and usefulness of our publications. Please use the space provided
below to share with us your comments. When possible, please give specific page and paragraph references.

NAME ____________________________________ ___

JOB TITLE ___________________ _

FIRM ________________________________ --____ _
RESEARCH. INC.

ADDRESS __________ - _____ ---------__ -

CITY _____________ STATE _--- ZI P ____ _

Attention:
PUBLICATIONS

111111

BUSINESS REPLY CARD
~IRST CLASS PERMIT NO 6184 ST PAUL. MN

POST AGE Will BE PAlO BY ADDRESSEE

Cli =it.J.o~:'Y'
RESEARCH. INC.

1440 Northland Drive
Mendota Heights, MN 55120
U.S.A.

--- -----~
NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

---------------------------------~---I

STAPLE

(")
C
-4
> r o z
C')

-4
J:
en
c
Z
m

