
RESEARCH J INC.

CRAY® COMPUTER SYSTEMS

COS PERFORMANCE UTILITIES
REFERENCE MANUAL

SR-0146

Copyright© 1987 by CRAY RESEARCH, INC. This manual or
parts thereof may not be reproduced in any form without
permission of CRAY RESEARCH, INC.

RECORD OF REVISION RESEARCH. INC. PUBLICATION NUMBER SR-0146

Each time this manual is revised and reprinted, all changes issued against the previous version are incorporated into the new version
and the new version is assigned an alphabetic level.

Every page changed by a reprint with revision has the revision level in the lower righthand corner. Changes to part of a page are noted
by a change bar in the margin directly opposite the change. A change bar in the margin opposite the page number indicates that the
entire page is new. If the manual is rewritten, the revision level changes but the manual does not contain change bars.

Requests for copies of Cray Research, Inc. publications should be directed to the Distribution Center and comments about these
publications should be directed to:

CRAY RESEARCH, INC.
1345 Northland Drive
Mendota Heights, Minnesota 55120

Revision Description

April 1987 - Original printing.

CRAY, CRAY-1, SSD, and UNICOS are registered trademarks and APML, CFT,
CFT77, CFT2, COS, CRAY-2, CRAY X-MP, CSIM, IDS, SEGLDR, SID, and
SUPERLINK are trademarks of Cray Research, Inc. UNIX is a registered
trademark of AT&T;

ii SR-0146

PREFACE

This manual describes performance utilities that run on the CRAY X-MP and
CRAY-l computer systems under the Cray operating system cos. They can be
used with at least one of the following language processors:

• Cray Fortran compiler CFT77

• Cray Fortran compiler CFT

• Cray Pascal compiler

• Cray C compiler

• Cray Assembly Language (CAL) assembler

This manual describes the means of invoking these utilities, their
options, and their output.

Related publications from Cray Research, Inc. (CRI) are the following:

SR-0018
SR-0009
SR-0222
SR-2024
SR-0060
SR-2003
SR-OOll
SR-Ol12

CFT77 Reference Manual
Fortran (CFT) Reference Manual
CRAY X-MP Multitasking Programmer's Manual
Cray C Reference Manual
Pascal Reference Manual
CAL Assembler Version 2 Reference Manual
COS Version 1 Reference Manual
Symbolic Debugging Package Reference Manual

Within this manual, all publication references refer to CRI publications.

CONVENTIONS

This manual uses the following conventions:

Convention

italics

[]

bold

SR-0146

Description

Indicates variable information usually specified by
the user or terms being defined

Brackets enclose optional portions of a command or
directive format

Denotes a word from an output listing spelled as in
the listing

iii

READER COMMENTS

If you have any comments about the technical accuracy, content, or
organization of this manual, please tell us. You have several options
that you can use to notify us:

• Call our Technical Publications department directly at
(612) 681-5729 during normal business hours

• Send us UNICOS or UNIX electronic mail at:

ihnp4!cray!publications or sun!tundra!hall!publications

• Use the Reader Comment form at the back of this manual

• Write to us at the following address:

Cray Research, Inc.
Technical Publications Department
1345 Northland Drive
Mendota Heights, Minnesota 55120

We value your comments and assure a prompt response.

iv SR-0146

CONTENTS

PREF ACE •• iii

1. INTRODUCTION • • • • • • • • • • • • • • . • . . • • •

2.

3.

4.

FTREF - ANALYZING FORTRAN SOURCE CODE · · .
2.1 FTREF CONTROL STATEMENT
2.2 DIRECTIVES · · · . · · · · 2.2.1 ROOT directive · ·

2.2.2 SUBSET directive · · · · 2.2.3 CHKBLK directive · ·

FLOWTRACE - TRACING SUBPROGRAM CALLS •

3.1
3.2
3.3

Spy

4.1

ENABLING AND DISABLING FLOWTRACE
FLODUMP UTILITY: FOR ABORT CONDITIONS
SETPLIMQ SUBROUTINE

- TIMING SELECTED CODE SEGMENTS

REQUIREMENTS FOR RUNNING Spy · ·
4.1.1 Generating the symbol table

.

.

4.1.2 Loading and running the subject program
4.1.3 The PREP and POST runs ·

4.2 Spy CONTROL STATEMENT
4.3 STORAGE REQUIREMENTS · 4.4 Spy OUTPUT · · ·

5. PERFMON - CRAY X-MP PERFORMANCE MONITOR

INDEX

5.1
5.2

SR-0146

PERFMON CONTROL STATEMENT
PERFMON OUTPUT • . • • • • •

. . . .

· · · ·
· · · ·
· · · · . · · · ·
· · · ·

· · · ·
· · · ·
· · · · . · · · ·
· · · ·
· · · ·

1-1

2-1

2-2
2-4
2-5
2-5
2-5

3-1

3-1
3-3
3-4

4-1

4-2
4-3
4-3
4-3
4-4
4-5
4-6

5-1

5-1
5-2

v

INTRODUCTION

This manual documents COS utilities for analyzing the performance of
application programs.

1

FTREF statically analyzes Fortran source code as an aid in understanding
program structure, keeping track of variables and common blocks, and
other aspects of programming. It is especially useful in the analysis of
programs for multitasking. FTREF output includes a summary of common
block references, a summary of entries and subprogram calls, and a static
calling tree.

FLOWTRACE monitors calls to and from all program units during execution
of a program and prints a summary of these calls with statistics about
execution time. By including in a program unit's timing the time used by
its libary calls, it indicates the program unit's total execution time.
FLOWTRACE output includes a summary of subprogram calls and timings and a
calling tree. SETPLIMQ can be used to give separate timings for each
call.

Spy gives a statistical picture of the time spent in specific areas of
code by monitoring the program address register during execution. The
granularity of code areas to be monitored is selected by the user, and
can be as small as a single word of instructions. This fine-grained
monitoring differs from FLOWTRACE's results at the level of program
units. Although SPY's results are approximate, they are useful for
isolating inefficient code. Spy output includes a line for each
specified code area, or bucket. Each line shows statistics on how many
times one bucket was accessed, shown in the following ways:

• An absolute count of accesses of the address bucket
• The bucket's percentage of accesses within the routine
• The bucket's percentage of accesses within the program

Another table summarizes these results for entire routines rather than
individual buckets.

PERFMON monitors hardware performance during program execution and can be
used for further analysis of execution speed. PERFMON output includes
detailed information concerning scalar activity, hold issue conditions,
memory use, or vectorization.

This manual uses the terms program unit and subprogram in their
Fortran senses, as defined in the reference manuals for the Cray Fortran
compilers and by the American National Standards Institute (ANSI)
standard X3.9-1978, often called Fortran 77. For Fortran programs, both

SR-OI46 1-1

terms refer to Fortran code that you compile, as distinguished from
library routines or procedures written in other languages. A program
unit can be a main program or a subprogram. A subprogram is either a
subroutine, function, or block data subprogram.

In other languages the term subprogram is equivalent to the following
terms:

• Pascal: procedure or function

• C: function

• CAL: entry

1-2 SR-0146

FTREF - ANALYZING FORTRAN
SOURCE CODE

The FTREF utility analyzes Fortran source listings and provides
structural information about it. This analysis does not use information
derived from executing a program. The analysis contains the following
information:

• Global cross-reference listing of common block variables

• A static calling tree showing entry names, calling program units,
and called subprograms for each subprogram

• For multitasked applications, a summary of macrotasking
subroutines used, with options to indicate whether a common
variable or a subroutine is locked when it is referenced or
redefined

2

FTREF processes listings generated by either CFT77 or CFT. (CFT output
should not be mixed with CFT77 output, however.) The dataset to be
processed by FTREF may contain any number of program units used by the
application. The more program units that are included in the dataset,
the more complete will be the information output by FTREF. A listing can
also contain output from multiple compilations using different levels of
a compiler.

FTREF is invoked by the FTREF control statement. A Fortran job must have
been compiled previously, with the Fortran control statement specifying
ON=XS to generate a cross-reference table and a source listing. The
Fortran control statement must have specified a listing dataset with L=,
and the FTREF control statement specifies an input dataset with 1=.
These should match unless you need to use different datasets, such as to
combine more than one Fortran compilation into one dataset.

The following examples show how to invoke FTREF in the same job as the
compile step. These steps can be done in different jobs.

JCL examples:

JOB, •••
ACCOUNT, •••
CFT77,ON=SX,L=LISTX.
FTREF,I=LISTX,CB=FULL,TREE=FULL.
IEOF

CFT77 source
IEOF

SR-0146 2-1

JOB, •••
ACCOUNT, •••
CFT,ON=SX,L=LISTX.
FTREF,I=LISTX,CB=FULL,TREE=FULL.
IEOF

eFT source
IEOF

In the preceding examples, the compiler takes source code from the next
file in the dataset and writes the source listing and cross-reference
table in dataset LISTX; FTREF then uses LISTX as its input. The CB=FULL
and TREE=FULL options represent a typical basic use of FTREF.

2.1 FTREF CONTROL STATEMENT

The FTREF control statement invokes FTREF to analyze listings from a
previous Fortran compilation. The control statement can be in the same
job as the compilation, as shown in the previous examples, or in a
different job. The I parameter is required.

Format:

FTREF,I=idn,L=ldn,CB=op,TREE=op,ROOT=r,END=end,

LEVEL=n,DIR=dir,NORDER,MULTI.

I=idn

L=ldn

CB=Op

Input dataset containing listings generated by one or more
Fortran compilations, in which the ON=SX options were
specified. This parameter is required. Unless different
datasets are needed, the I specification agrees with the L=
dataset shown on the Fortran control statement.

Dataset to receive the output listing; the default is $OUT.

Global common-block cross-references. The options are as
follows:

PART Identifies program units that use each common block;
this is the default.

FULL Details the use of common block variables in all
program units.

NONE No common block output

2-2 SR-0146

TREE=Op

ROOT=r

END=end

LEVEL=n

DIR=dir

NORDER

MULTI

SR-0146

Produces the static calling tree for the program and
information about the subprograms called. The value
LOOP in the output indicates there is an apparent
recursive call in the program. The options are as follows:

PART For each program unit, reports the entry names,
external calls, names of program units that call it,
and common block names; this is the default.

FULL Reports the information that the PART option
provides plus the static calling tree. The ROOT,
END, and LEVEL parameters and the ROOT directive can
be used to manage the calling tree output. See the
examples at the end of this section.

NONE No output information

If TREE=FULL, ROOT causes subprogram r to be the root of
the tree. Use ROOT when you want to see only one subtree of
the calling tree. Use the ROOT directive (see subsection
2.2.1) if you want to see more than one subtree. The
default root is the main program; that is, the program unit
that is not called. If there is more than one such program
unit, the first by alphabetic order is used.

If TREE=FULL, END directs subprogram end to terminate any
branch of the tree in which end is encountered. The value
STOP is printed whenever the end subprogram is found,
and that branch of the tree is terminated. By default, any
calling tree generated by FTREF contains all subprograms in
the program.

If TREE=FULL, LEVEL limits the length of any branch to n
levels deep. The default is the entire program. If both
LEVEL and END are specified, FTREF terminates a branch of
the tree at whichever state is encountered first.

Dataset dir contains a set of directives that control the
processing (see subsection 2.2). If DIR is specified
without a value, the directives are taken from $IN, whether
the Fortran source is in $IN or another dataset. If DIR is
not specified, no directives are read.

Lists the source program's subprograms in input order
instead of alphabetic order. The default is alphabetic
order.

Examines the source for uses of the macrotasking subroutines
and generates tables summarizing the subroutines' use within
the program. See the CRAY X-MP Multitasking Programmer's
Manual, publication SR-0222.

2-3

2.2 DIRECTIVES

FTREF directives are placed in a separate file; see the description of the
DIR option on the FTREF control statement.

A directive consists of a keyword and zero or more parameters. A blank,
comma, or opening parenthesis separates the keyword and the parameters.
The terminator is a period, closing parenthesis, or two consecutive
blanks.

A caret at the end of the directive line indicates that the next line is a
continuation of the current directive. Do not precede the caret by a
blank; it must immediately follow the last nonblank character of the line.

Each line should contain only one directive. FTREF processes 80
characters per line and ignores the rest of the characters.

Examples:

The following examples show the use of FTREF with a directive file. In
both examples, FTREF is invoked in the same job with the compile step.
The JCL, source file, and directive file are all in $IN. The DIR keyword
on the FTREF control statement causes a directive file to be read from $IN
(in these cases, the file following the source file). This file contains
the CHKBLK directive.

JOB, •••
ACCOUNT, •••
CFT77,ON=SX,L=SOURCE.
FTREF,I=SOURCE,CB=FULL,TREE=FULL,DIR.
IEOF

IEOF
CHKBLK
IEOF

CFT77 source

JOB, •••
ACCOUNT, .•.
CFT,ON=XS,L=SOURCE.
FTREF,I=SOURCE,CB=FULL,TREE=FULL,DIR.
IEOF

IEOF
CHKBLK
IEOF

2-4

CFT source

SR-0146

2.2.1 ROOT DIRECTIVE

The ROOT directive specifies a subprogram to be used as the root of a
static calling tree (TREE=FULL). The output for each subprogram
(specified in this directive or on the ROOT parameter) is a separate
tree. Default processing is described with the ROOT parameter.

mdn Name of a root subprogram

2.2.2 SUBSET DIRECTIVE

The SUBSET directive specifies which program units will be processed by
FTREF and prevents FTREF from processing program units not on the
parameter list. If no SUBSET directive appears, or only one SUBSET
directive is specified and it has no parameters, FTREF processes all
program units in the input file.

mdi Name of the program unit to be processed by FTREF

2.2.3 CHKBLK DIRECTIVE

The CHKBLK directive specifies the common blocks whose variables FTREF
will check to determine if the variables appear only in locked areas in a
multitasked program. If no CHKBLK directive appears, FTREF does not check
on whether variables are in a locked area. If there is only one CHKBLK
directive and it is without a parameter, FTREF processes all the common
block variables.

A locked area begins with a LOCKON call and ends with a LOCKOFF call, both
with the same lock variable. If a common block variable is referenced or
redefined in such an area, it is considered to be locked; otherwise, it is
unlocked. If a variable reference is unlocked, check to ensure that this
is a safe condition. A locked area must be completely within a program
unit to be detected by FTREF. Refer to the CRAY X-MP Multitasking
Programmer's Manual, publication SR-0222, concerning the locking feature.

SR-0146 2-5

Name of the common block whose variables FTREF will check to
determine if a variable is in a locked area. To specify
blank common, use II •

NOTE

FTREF searches for the presence of the LOCKON and
LOCKOFF calls. It does not attempt a flow analysis;
that is, it does not consider the effects of IF or GOTO
statements on locks or variables.

2.3 OUTPUT EXAMPLE

In the following example of FTREF output, longer lines have been truncated
to fit the page. The global common block reference is an excerpt of
longer output.

BLOCK NAME
IDA IS

II IS

SMATRIX IS

2-6

**

*
*
*

SUMMARY OF COMMON BLOCK REFERENCES
*
*
*

**

USED BY:
BKSUB DIFEQ PINVS PLGNDR RED

USED BY:
DIFEQ SFROID

USED BY:
DIFEQ PINVS RED

SFROID SOLVDE

SR-0146

* *
* GLOBAL COMMON BLOCK CROSS REFERENCE *
* *

BLOCK NAME
iDA
ADDRESS NAME TYPE MAIN USAGE MODULE SOURCE PROGRAM REFERENCE

246 C R 3DIM ARRAY SFROID 52P 4D

1041 CONV R VARIABLE SFROID 52P 9S

1044 I I VARIABLE SFROID 28U/2 27I

50 INDEXV I 1DIM ARRAY SFROID 52P 22S 21S
50 NVARS I VARIABLE SOLVDE 58U 8S

II

ADDRESS NAME TYPE MAIN USAGE MODULE SOURCE PROGRAM REFERENCE
55 ANORM R VARIABLE SFROID 46P 45P 42U
55 ANORM R VARIABLE DIFEQ 26U 3D

54 C2 R VARIABLE SFROID 53U 51U 50S
54 C2 R VARIABLE DIFEQ 35U 22U 19U

51 H R VARIABLE SFROID 33U 11S 3D
51 H R VARIABLE DIFEQ 48U 34U 32U

52 MM I VARIABLE SFROID 53U/3 44U 43U/2
27N 25U 15U

52 MM I VARIABLE DIFEQ 49U 37U 22U

SMATRIX
ADDRESS NAME TYPE MAIN USAGE MODULE SOURCE PROGRAM REFERENCE

0 S R 2DIM ARRAY PINVS 64U 54S 52U/2 52S
o S R 2DIM ARRAY RED 15U/2 15S 10U/2 lOS
o S R 2DIM ARRAY DIFEQ 50S 49S 48S 47S

ABBREVIATION USED ABOVE (KEY TO THE LINE NUMBER)

SR-0146

D DEFINED IN DECLARATIVE STATEMENT
N NAME USED AS A DO LOOP PARAMETER
P ARGUMENT IN CALL OR FUNCTION CALL
S STORED SO CONTENTS MAY BE CHANGED
U NAME USED IN EXECUTABLE STATEMENT
* DEFINED OR DECLARED BUT NEVER USED
12 REFERENCED MORE THAN ONE TIME IN THE STATEMENT

2-7

20S

**
* *
* SUMMARY OF ENTRIES AND ROUTINE CALLS *
* * ********** ••• * ••••••••••••• * •••••••• *** •••••••••

BKSUB
ENTRY BKSUB
CALLS •• NONE ••

CALLED BY SOLVDE
BLOCK USED: iDA

DIFEQ
ENTRY DIFEQ
CALLS •• NONE ••

CALLED BY SOLVDE
BLOCK USED: iDA II SMATRIX

PINVS
ENTRY PINVS
CALLS •• NONE ••

CALLED BY SOLVDE
BLOCK USED: iDA SMATRIX

PLGNDR
ENTRY PLGNDR
CALLS .* NONE ••

CALLED BY SFROID
BLOCK USED: iDA

RED
ENTRY RED
CALLS ** NONE .*

CALLED BY SOLVDE
BLOCK USED: iDA SMATRIX

SFROID
ENTRY SFROID
CALLS PLGNDR SOLVDE

CALLED BY •• NONE .*
BLOCK USED: iDA II

SOLVDE
ENTRY SOLVDE
CALLS BKSUB DIFEQ PINVS RED

CALLED BY SFROID
BLOCK USED: iDA

2-8 SR-0146

SFROID
< 1 >

PLGNDR
SOLVDE

< 2 >
< 2 >

*
*
*

STATIC CALLING TREE FOR SFROID
*
*
*

BKSUB
DIFEQ
PINVS

< 2 > RED
****** END OF THE CALLING TREE ******

Notes on the preceding output

The preceding calling tree would look as follows in graphic form:

SFROID
I

PLGNDR

BKSUB DIFEQ

Another calling tree example:

MAIN

< 1 >

SUBl
< 2 >
SUB2

< 1 > SUB3

SUBSUBl SUB22
SUBSUB2
SUBSUBl SUB22

SUBSUB2

SUBSUB2

SOLVDE
I

PINVS

The above calling tree would look as follows in graphic form:

MAIN

I
SUBl SUB2 SUB3
I I I

SUBSUBl SUBSUB2 SUBSUBl

I I
SUB22 SUB22

I I
SUBSUB2 SUBSUB2

SR-0146

RED

2-9

FLOWTRACE - TRACING
SUBPROGRAM CALLS

3

FLOWTRACE generates printed information about all subprogram calls in a
program; the output is based on execution of the program. The summary is
written to dataset $OUT. The following information is shown:

• The time spent in each program unit: amount, percentage of the
total execution time, and average time per call

• Number of calls to each subprogram and total calls in the program

• Lists of subprograms that call and are called by each subprogram

• A calling tree of the main program and all subprograms

3.1 ENABLING AND DISABLING FLOWTRACE

Flowtracing is activated by compiler options or directives, as follows:

CFT77 or CFT:
The main program must begin with a PROGRAM statement.
Flowtracing can be enabled for an entire program or for parts of
a program, as follows:

To trace an entire program, include ON=F on the CFT?? or CFT
control statement.

To trace specific parts of a program, insert directives in
the source code: CDIR$ FLOW enables, and CDIR$ NOFLOW
disables. In CFT77, these directives must be within a
program unit. In CFT, FLOW must precede a program unit's
header statement, and NOFLOW must follow its END statement.

C: The -F option on the CC control statement applies to the whole
executable program. See the following text concerning libraries.

Pascal: The BT+ option can appear on the PASCAL control statement to
apply to the whole program, or within compiler directives to
enable flowtracing for specific parts of a program. Used within
compiler directives, BT+ is disabled by BT-. See the following
text concerning libraries.

SR-0146 3-1

When you run FLOWTRACE with C or Pascal, you must use the STACK or MULTI
versions of libraries to be accessed. The default version of the
libraries is site-dependent, as is the manner of selecting another
version. Consult your site analyst about the default and the method of
selection.

It may be useful to disable flowtracing for small, frequently called
subprograms because the FLOWTRACE overhead time can exceed the execution
time.

When flowtracing is enabled, a FLOWTRACE summary is listed after
execution. Programs that terminate with library calls such as EXIT or
ABORT must be modified for flowtracing: these calls should be replaced by
END or STOP statements.

Time spent in a lower-level called subprogram for which flowtracing is
enabled is not counted as time spent in the calling subprogram. Time
spent in library routines (such as SIN, PRINT, or CFFT) or in any
subprogram for which flowtracing is not enabled is counted as time spent
in the calling subprogram; these called subprograms are not listed in the
summary.

The output headed "Alphabetized summary" shows the following information:

Column

(leftmost)

Routine

Time executing

Called

Average T

(next right)

(rightmost)

3-2

Description

Index into the calling tree for the first 999
subprograms; *** indicates subsequent subprograms.

Subprogram name, such as the name in a FUNCTION or
SUBROUTINE statement

Seconds of CPU time and percentage of the program's
total time. The) symbol indicates a time less than
1 ms; ») means less than 1 microsecond.

Number of calls to the subprogram

Average time per call to the subprogram. The)
symbol indicates a time less than 1 ms; ») means
less than 1 microsecond.

Absolute address of the subprogram

Calling subprograms. If nothing follows the phrase
"Called by," the subprogram was not called; normally
this indicates the main program or the system. See
the line for SFROID in the following example.

SR-0146

FLOWTRACE displays only the first 28 routines that called a given
routine. If you require more than 28, ask your site analyst to modify the
source for FLOWTRACE in $UTLIB, and rebuild it for you.

Example (longer lines truncated):

FLO W T R ACE Alphabetized summary

Routine Time executing Called Average T
7 BKSUB 0.007 (12.49C?&) 15) @00003361a Called
4 DIFEQ 0.002 (3.47C?&) 630) @00004717a Called
5 PINVS 0.029 (53.21C?&) 630) @00004044a Called
2 PLGNDR) (0.67C?&) 120) @00002340a Called
6 RED 0.007 (13.30C?&) 615) @00004431a Called
1 SFROID 0.002 (3.50C?&) 1 0.002 @00002012a Called
3 SOLVDE 0.007 (13.36C?&) 4 0.002 @00003006a Called

TOTAL 0.054 2015 Total calls

The output headed "Calling tree" displays the dynamic calling tree by
progressively indenting each successive level of the tree.

Example:

F L 0 W T R A C E Calling tree

1 SFROID 00002012a
2 PLGNDR 00002340a
3 SOLVDE 00003006a
4 DIFEQ 00004717a
5 PINVS 00004044a
6 RED 00004431a
7 BKSUB 00003361a

The above tree is shown graphically at the end of section 2.

3.2 FLODUMP UTILITY: FOR ABORT CONDITIONS

by SOLVDE
by SOLVDE
by SOLVDE
by SFROID
by SOLVDE
by
by SFROID

The FLODUMP utility recovers and dumps FLOWTRACE tables when a program
aborts. It is activated by the FLODUMP control statement in the program's
JCL, and should be included only if flowtracing is enabled (see subsection
3.1). FLODUMP also requires a previous DUMP JOB statement. The following
example illustrates the use of the FLODUMP control statement:

SR-0146 3-3

JOB, ••••
CFT77,ON=SF.
SEGLDR,GO.
EXIT.
DUMPJOB.
FLODUMP.

Format:

FLODUMP[,L=ldn].

L=ldn Dataset to write the report to; the default is $OUT.

3.3 SETPLIMQ SUBROUTINE

Subroutine SETPLIMQ enables FLOWTRACE to print a line on the output
listing file for every CALL or RETURN statement executed, listing timing
information per call rather than the total per subprogram. Because this
option can generate a large volume of output, source code directives FLOW
and NOFLOW should be used to include only areas of special interest.

SETPLIMQ is requested by a subroutine call in the source code. In Fortran
this call would appear as follows.

CALL SETPLIMQ(count)

In general, the above statement should be one of the first executable
statements in a program. The value of count specifies the number of
trace lines printed. Since one line is produced for each CALL and each
RETURN, count should be set to twice the number of CALL statements for
which flowtracing is desired.

In effect, each CALL and each RETURN statement is given a sequence number
at run time; if this number is less than ABS(count) for a given CALL or
RETURN, a line is printed to $OUT; these lines are interspersed with other
output. CALL or RETURN statements executed before CALL SETPLIMQ are
counted toward the line limit but generate no output.

3-4 SR-0146

SETPLIMO output example:

FLOWTRACE Call SOLVDE by SFROID 407727978 407301664
FLOWTRACE Call DIFEO by SOLVDE 407744474 407743808
FLOWTRACE Return DIFEQ to SOLVDE 149 149
FLOWTRACE Call PINVS by SOLVDE 407775007 407743808
FLOWTRACE Return PINVS to SOLVDE 844 844
FLOWTRACE Call DIFEO by SOLVDE 407806315 407743808
FLOWTRACE Return DIFEQ to SOLVDE 382 531

The longer numbers such as 407727978 are reference times shown in CPU
clock periods. Shorter numbers such as 149 indicate how many clock
periods were used by each call. The shorter numbers in the left
column indicate how many clock periods were actually charged to a
subprogram; these numbers can be used to assess program performance.
Shorter numbers in the right column include FLOWTRACE overhead.

SR-0146 3-5

Spy - TIMING SELECTED
CODE SEGMENTS

4

Spy indicates how much time is being spent in different segments of code
within routines. Routines measured by SPY can be written in any language
available on Cray computers running cos. An advantage of Spy is that it
entails almost no overhead. (A routine here is any identifiable,
executable code with distinct entry and end points, whether it is part of
your program or contained in a library.)

When so requested by Spy, COS reads the address of the instruction
currently being executed. Addresses are grouped in buckets, whose size
is selectable; each access of a bucket is called a hit. After
execution, SPY outputs statistics for all the buckets, including a bar
graph on which "spikes" indicate code where the most time is spent.

Because of the time interval between samples, SPY's results involve
probability: in the worst case, an address could be executed many times
but never be sampled by Spy. The TS and BS parameters on the Spy control
statement change the address and time intervals to provide a check on the
probability.

SPY's output includes a line for each bucket that was hit more than a
specified number of times, followed by totals organized by subroutine.
Because the volume of this output can be considerable, the SUB keyword is
provided to let you specify which routines are to be represented.

Spy results contain an inherent error which is insignificant for most
applications. However, if your application program is very short, the
following sources of noise may be greater than the real information
gathered:

• Loading CSP to crack your program's control statement

• Loading your program

• Loading CSP to crack the control statement which specifies the
SPY, POST action

• Loading SPY, turning off the COS Spy activity and obtaining the
raw data

The execution time for most application programs is long enough to make
these noise sources insignificant.

SR-0146 4-1

The following examples show how Spy is used in three typical situations.
In all three cases, the program being spied is named SUBJECT.

CFT77 with SEGLDR

CFT77,DEBUG.
SEGLDR,CMD='ABS=SUBJECT'.
SPY, PREP.
SUBJECT.
SPY, POST.

CFT with LDR

CFT,ON=IZ.
LDR,NX,AB=SUBJECT.
Spy, PREP.
SUBJECT.
SPY, POST.

CAL with SEGLDR

CAL,SYM.
SEGLDR,CMD='ABS=SUBJECT'.
Spy, PREP.
SUBJECT.
SPY, POST.

* Loader does not run program

* Program executes

* Loader does not run program

* Program executes

4.1 REQUIREMENTS FOR RUNNING Spy

In addition to normal compiling, loading, and executing of the subject
program, the JCL needed for using Spy must accomplish the following:

4-2

• Generate a debug symbol table for the subject program

• Load and execute the subject program in two separate steps

• Execute Spy twice: both before and after execution of the subject
program

SR-0146

4.1.1 GENERATING THE SYMBOL TABLE

Spy requires a symbol table for the subject program, generated by the
appropriate language processor. The table is sent to dataset $BLD by
default, from which it is copied by the loader into $DEBUG. The table is
generated by different processors using the following control statement
specifications:

Processor Keyword

CFT?? DEBUG

CFT ON=IZ or DEBUG (see below)

CC -Z (deferred implementation)

PASCAL O=DM3

CAL

Note that the DEBUG option on CFT turns off all optimization. This makes
the result inapplicable for many situations.

4.1.2 LOADING AND RUNNING THE SUBJECT PROGRAM

When Spy is used, the subject program is loaded and run in separate
steps. Between the load and run steps, SPY,PREP is run (see subsection
4.1.3). The Cray loaders SEGLDR and LDR perform these separate steps as
follows for program SUBJECT:

SEGLDR,CMD='ABS=SUBJECT'. LDR,NX,AB=SUBJECT.

SUBJECT. SUBJECT.

4.1.3 THE PREP AND POST RUNS

To use Spy you must include the Spy command both before and after the
command line for the subject program, with the keywords PREP and POST,
respectively.

The SPY,PREP call reads the symbol table and calculates the absolute
address of each symbol. Then, as specified by the TS, BS, and THRSHLD
parameters, Spy performs one or more calls to, COS, specifying regions of
interest. Each call sets up a table so that at each interupt, COS reads
the P register in your exchange package and increments the bucket that
includes that P address. This information is written to dataset $SPY. A
SPY,POST call then reads $SPY and generates a report as specified by the
SUB, THRSHLD, and NOLIB parameters.

SR-0146 4-3

4.2 Spy CONTROL STATEMENT

The format for the PREP call of Spy is as follows:

SPY,PREP [,BS=bcktsz] [,D=dbugdn] [,S=scrtch]

[,SUB=rtnl:rtn2: ..• rtnn] [,THRSHLD=gap] [,TS=time].

BS=bcktsz Bucket size in words; default, 4. Each bucket begins on a
word address that is a multiple of the bucket size. This
parameter affects storage requirements; see subsection 4.3.

D=dbugdn Dataset containing the symbol table for the subject program.
The default is $DEBUG, which is the dataset to which SEGLDR
and LDR write the symbol table (after copying it from $BLD).

S=scrtch Dataset where the tables prepared by SPY,PREP are to be
written, and from which SPY,POST is to read these tables.
Default is $SPY.

SUB=rtnl:rtn2:···rtnn
List of routines that are to be reported on; ni20. The
default is to report on the entire executable program; that
is, the SUB= parameter is used to limit output. This
parameter affects storage requirements; see subsection 4.3.

THRSHLD=gap

TS=time

This keyword is not needed when SEGLDR is used. It is used
to make the best use of storage when LDR is used; see
subsection 4.3.

Time slice in microseconds; default, 500.

The format for the POST call of Spy is as follows:

SPY,POST [,ADDRESS] [,L=listdn] [,NOLABEL] [,NOLIB]

[,S=scrtch] [,SUB=rtnl:rtn2: •.. rtnn] [,MINHIT=n].

ADDRESS Causes a report by address rather than by label

L=listdn Dataset on which the final report is written; default, $OUT.

4-4 SR-0146

NOLABEL Causes the bucket size to be an entire routine. This makes
the output similar to that of FLOWTRACE, except that time
spent in library calls is accounted for separately.

NOLIB Excludes library calls by eliminating any reference to a
routine name that begins with a dollar sign ($). Library
calls that do not begin with $, such as SECOND, are not
affected by the NOLIB keyword.

S=scrtch Dataset where the tables prepared by SPY,PREP are to be
written, and from which SPY,POST is to read these tables.
Default is $SPY.

MINHIT=n Minimum number of hits required for an output line to be
printed for a bucket or label; default 1. (MINHIT=O is not
recommended.)

SUB=rtn1:rtn2:···rtnn
List of routines that are to be reported on; n~20. The
default is to report on the entire executable program; the
SUB= parameter is used to limit output. This parameter
affects storage requirements; see subsection 4.3.

4.3 STORAGE REQUIREMENTS

Using Spy causes COS to allocate storage in the Job Table Area (JTA) of
your job. This space counts against the maximum memory allowed to your
job. Smaller bucket sizes require more JTA memory than larger sizes.

Several factors influence the amount of JTA storage required by a given
symbol table:

BS

THRSHLD=t

SR-0146

One JTA word is required for each bucket monitored in the
user field. Larger bucket sizes provide less resolution but
require less JTA space. The default is four words.

When you use LDR, areas of memory for code are intermingled
with those for data. Since spying in data areas serves no
purpose, the system jumps past any data area as large as t
words (default 512), to the next code area. This saves the
JTA space that would be used for buckets in the data area,
but requires more JTA space for a separate call to SPY.
THRSHLD allows you to adjust t for individual cases, in
order to use the least JTA space.

If this is a significant factor in your program, you should
consider switching to SEGLDR, which gathers all code areas
together.

4-5

SUB The SUB parameter can be used to limit SPY activity to 20 or
fewer subprograms. Provided that using such a subset gives
you the information you need, you can greatly reduce the JTA
requirements this way.

The default choices for the preceding parameters almost always yield a
successful run, so they seldom need adjustment. However, if you encounter
memory limitations, adjusting these parameters should allow you to get the
information you need.

4.4 Spy OUTPUT

The main Spy output shows seven columns, giving the following information:

Sample SPY output:

ROUTINE LABEL ADDRESS HITS %PRG %SUB SECONDS CUM~o

MAIN MAIN 00000201 12 7.6 100.0 0.006 7.6 *******

SUB1 110A 00001400 13 8.3 44.8 0.006 15.9 ********
SUB1 306 00001512 6 3.8 20.7 0.003 19.7 ***
SUB1 00003 00001541 3 1.9 10.3 0.001 21.7 *
SUB1 115 00001604 3 1.9 10.3 0.001 23.6 *
SUB1 110D 00001615 1 0.6 3.4 0.000 24.2
SUB1 110B 00001620 3 1.9 10.3 0.001 26.1 *

SUBZZZ SUBZZZ 00003177 4 2.5 80.0 0.002 28.7 **
SUBZZZ 40 00003240 1 0.6 20.0 0.000 29.3

$CDCO $CDCO 00004140 4 2.5 100.0 0.002 31.8 **

$IBMO $IBMO 00004561 1 0.6 100.0 0.000 32.5

$RLD $RLD 00007104 1 0.6 100.0 0.000 33.1

$WLD $WLD 00013162 2 1.3 100.0 0.001 34.4 *

$NICV $NICV 00021640 6 3.8 100.0 0.003 38.2 ***

$NOCV $NOCV 00022217 5 3.2 100.0 0.002 41.4 ***

$STOP $STOP 00022700 4 2.5 100.0 0.002 43.9 **

$GTDSP $GTDSP 00024321 10 6.4 100.0 0.005 50.3 ******

$RCW $RCW 00025100 2 1.3 100.0 0.001 51.6 *

$WCH $WCH 00034452 3 1.9 100.0 0.001 53.5 *

4-6 SR-0146

Header

ROUTINE

LABEL

ADDRESS

HITS

~PGM

~SUB

SECONDS

Meaning

Name of the routine using this address. Note that routine
names beginning with $ are library routines and are
documented in the Programmer's Library Reference Manual and
the System Library Reference Manual, CRI publications
SR-0113 and SM-0114. Many of these names suggest their
functions, mathematical or otherwise. Routines whose names
begin with $W and $R are often for writing and reading,
respectively.

The label used by Spy to identify the bucket. The label
can be any of the following:

The name of the program unit. This label is given to
the first bucket in each subprogram.

An integer followed by an alphabetic character. The
integer is the label for a DO loop, and the character
is used to identify more than one bucket in a single
DO loop; for example, 11B is the label for the second
bucket for the DO 11 loop in a program unit.

A five-digit integer. SPY generates these labels for
buckets to which neither of the above cases applies.

Octal address of the bucket's first word

Number of hits for this bucket

Percent of hits in program: hits for this label divided by
total hits in the program, multiplied by 100

Percent of hits in subroutine: hits for this label divided
by total hits in subroutine

Estimated time: number of hits multiplied by time slice

CUM~ Cumulative sum of %PRG column.

Far right Bar graph showing column 5, ~PRG, percentage of hits in the
program

SR-0146 4-7

Sample:

ROUTINE SUMMARY HITS

MAIN 12
SUBl 29
SUBZZZ 5
$CDCO 4
$IBMO 1
$RLD 1
$WLD 2
$NICV 6
$NOCV 5
$STOP 4
$GTDSP 10
$RCW 2
$ATAN2 7
$CABS 27
$DASS 1

UNDER 0
BETWEEN 0
OVER 20
RUN SUMMARY 157

~PRG

7.6
18.5

3.2
2.5
0.6
0.6
1.3
3.8
3.2
2.5
6.4
1.3
4.5

17.2
0.6

0.0
0.0

12.7

SECONDS

0.006
0.014
0.002
0.002
0.000
0.000
0.001
0.003
0.002
0.002
0.005
0.001
0.003
0.013
0.000

0.000
0.000
0.010
0.078

~~%~~%~

~~~~~~~%~~~~~~~~~~ 

~~~ 

~%

~

%~~

~%q,o

~%

~%%%%%

%
%%%q,o
%%%%%%%%%~%%%%%~%

After the information for all the buckets, a summary by routine is
printed. The following columns are used:

HITS

q,oPRG

SECONDS

Total hits for the routine

Percent of hits in program: hits for this routine divided
by total hits in program, multiplied by 100

Estimated time in seconds: number of hits multiplied by
time slice

Far right Bar graph showing column 3, %PGM, percentage of hits in the
program

At the bottom of the routine summary are the categories UNDER, BETWEEN,
OVER, and RUN SUMMARY. The first three refer, respectively, to addresses
that are lower than any area that was supposed to be measured, between
such areas, or higher than these areas. If the UNDER and BETWEEN counts
are significantly more than zero when the entire program is being
measured, it indicates improper use of SPY. A high number for OVER can
have various causes that do not indicate a problem, such as the use of
overlays. The run summary is a total of all routines, including these
final special categories.

The estimated time should be similar to that generated by FLOWTRACE, with
the qualification that FLOWTRACE includes time spent by library calls in
the timing of the calling routine.

4-8 SR-0146

PERFMON - CRAY X-MP
PERFORMANCE MONITOR

PERFMON is an interface to the hardware performance monitor available on
CRAY X-MP series computers. It is invoked within JCL.

5

To use PERFMON, first execute it to turn on one of four available
performance monitors. Then execute the program whose performance is to be
monitored. To obtain the PERFMON report, execute PERFMON with the RESET
or REPORT option immediately after the subject program.

PERFMON results can be affected by the times taken for loading your
program and loading CSP to crack your program's control statement. These
are a factor only for very short applications.

5.1 PERFMON CONTROL STATEMENT

The format of the PERFMON control statement is as follows:

PERFMON [,L=list] ,result.

L=listdn Specifies the listing output dataset for PERFMON reports.
The default is $OUT.

result Specifies the primary effect of the PERFMON control
statement; can be one of the following:

ON=n

OFF

SR-0146

Turns on performance monitoring and selects one
of four hardware performance monitors. These are
indicated in PERFMON output at the upper right in
each block as "Monitor 0" and so on. The
monitors record the following:

o Execution summary
1 Hold issue conditions
2 Memory activity
3 Vector events and instruction summary

Turns off performance monitoring

5-1

REPORT

RESET

Produces a report of the current performance
monitor counters (to the L listing file). It
does not clear the counters.

Produces a report of the current performance
monitor counters (to the L listing file). In
addition, the counters are cleared after printing
and monitoring is turned off.

JCL example for program SUBJECT:

SEGLDR,CMD='ABS=SUBJECT'.
PERFMON,ON=O.
SUBJECT.
PERFMON,RESET.
PERFMON,ON=1.
SUBJECT.
PERFMON,RESET.
PERFMON,ON=2.
SUBJECT.
PERFMON,RESET.
PERFMON,ON=3.
SUBJECT.
PERFMON,RESET.

5.2 PERFMON OUTPUT

Each run of PERFMON (that is, each monitor used) generates one block of
information.

Output sample of monitor 0, execution summary:

Cycles: 6173669, CP seconds: 0.058649856, Task number: 1, Monitor o.

36.95 Million instr/sec (MIPS) 2166976 instructions issued
2.85 avg. clock periods per instruction.

43.87 % of CP holding issue. 2708154 CP holding issue
407861.19 instr. buf. fetches/sec. 23921 fetches

0.00 I/O memory references/sec. 0 I/O references
6528183.18 CPU memory references/sec. 382877 CPU references
2972522.24 Floating adds/sec. 174338 F.P. adds
4045108.01 Floating multiplies/sec. 237245 F.P. multiplies

710419.48 Floating reciprocals/sec. 41666 F.P. reciprocals
7.73 Million Floating Operations/sec (MFLOPS)

5-2 SR-0146

Output sample of monitor 1, hold issue conditions:

Cycles: 6302128, CP seconds: 0.059870216, Task number: 1, Monitor 1.

0.00 '\ CP hold issue - semaphores
0.01 '\ CP hold issue - shared registers
6.26 '\ CP hold issue - A-regs & A-functionals

36.13 '\ CP hold issue - S-regs & S-functionals
0.16 '\ CP hold issue - V-regs
0.24 ~ CP hold issue - V-functionals
0.47 '\ CP hold issue - scalar memory
0.74 ~ CP hold issue - block memory

Output sample of monitor 2, memory activity:

Cycles: 6387292, CP seconds: 0.060679274, Task number: 1, Monitor 2.

412694.46 instr. buffer fetches/sec.
4413154.32 scalar memory refs/sec.

40.94 ~ conflicts/scalar reference
33751.23 Block memory refs/sec.

19.63 ~ conflicts/block reference
2050156.37 Block memory refs/sec.

18.51 ~ conflicts/block reference
1303344.53 vector memory references/sec.

Output sample of monitor 3, vector events and instruction summary:

Cycles: 5069820, CP seconds: 0.048163290, Task number: 1, Monitor 3.

4410496.04 000-017 instructions/sec issued,
12.03 ~ of all instructions

32123345.39 scalar (020-137) instructions/sec issued,
87.64 ~ of all instructions

14554.65 vector integer&logical instr./sec. issued,
0.04 ~ of all instructions

37123.71 vector floating-point instr./sec. issued,
0.10 ~ of all instructions

66772.85 vector load-store instr./sec. issued,
0.18 ~ of all instructions

412409.53 vector integer operations/sec. 28.34 elements/instruction
917337.67 vector floating operations/sec. 24.71 elements/instruction

1555811.49 vector memory references/sec. 23.30 elements/instruction

SR-0146 5-3

INDEX

ADDRESS column in Spy output, 4-6
ADDRESS parameter, Spy, 4-4
ANSI 77 terminology, 1-1
Average T column, FLOWTRACE output, 3-2

BETWEEN category in SPY output, 4-8
Blank common, 2-6
$BLD dataset, and SPY, 4-3, 4-4
Block data subprogram, 1-2
BS parameter, Spy, 4-1, 4-3 to 4-5
BT Pascal option, with FLOWTRACE, 3-1
Bucket, Spy, 4-1

size, 4-4

C, 1-2
and FLOWTRACE, 3-1

CAL, 1-2
with Spy, 4-3

Called column, FLOWTRACE output, 3-2
Calling tree

from FLOWTRACE, 3-3
from FTREF, 2-1, 2-5

CB keyword, FTREF, 2-2
CC control statement

with FLOWTRACE, 3-1
with SPY, 4-3

CFT77 or CFT (also see Fortran)
with FLOWTRACE, 3-1
with FTREF, 2-1
with SPY, 4-3

CHKBLK directive (FTREF), 2-5
Common block

Block data subprogram, 1-2
blank, 2-6
variable, 2-1, 2-5
cross-references, FTREF, 2-2

Cross-reference listing, from FTREF, 2-1
CSP overhead

Spy, 4-1
PERFMON, 5-1

o parameter, Spy, 4-4
DEBUG Fortran keyword, with Spy, 4-3
Debug symbol table, with SPY, 4-2
$DEBUG, Spy, 4-4
DIR keyword, FTREF, 2-3

END keyword, FTREF, 2-3

SR-0146

END statement, with FLOWTRACE, 3-1
Entry, in CAL, 1-2
Execution summary, from PERFMON, 5-2

F Fortran option, with FLOWTRACE, 3-1
-F option for C, with FLOWTRACE, 3-1
FLODUMP utility (FLOWTRACE), 3-3
FLOW compiler directive, and FLOWTRACE,

3-1, 3-4
FLOWTRACE, 3-1

and other utilities, 1-1
compared with SPY, 4-8
enabling and disabling, 3-1
FLODUMP utility, 3-3
output, 3-2
SETPLIMQ subroutine, 3-4

Fortran
DEBUG keyword, with Spy, 4-3
F option, with FLOWTRACE, 3-1
L keyword (listing dataset)

and FTREF, 2-1
and Spy, 4-4

source, and FTREF, 2-1
terms, 1-1

FTREF, 2-1
and other utilities, 1-1
control statement, 2-2
CHKBLK directive, 2-5
ROOT directive, 2-5
SUBSET directive, 2-5

FULL option, FTREF, 2-2, 2-3, 2-5
Function, in C, 1-2

Hit, Spy, 4-1
HITS column in Spy output, 4-6, 4-8
Hold issue conditions, from PERFMON, 5-3

I CFT option, with SPY, 4-3
I keyword, FTREF, 2-1, 2-2
$IN, for FTREF d,irectives, 2-3
Instruction summary, from PERFMON, 5-3

Job Table Area (JTA), Spy, 4-5

L keyword
FTREF, 2-2
PERFMON, 5-1

Index-l

L Fortran keyword (listing dataset)
and FTREF, 2-1
and SPY, 4-4

LABEL column in SPY output, 4-6
LDR, and Spy, 4-3
LEVEL keyword, FTREF, 2-3
Libraries, with FLOWTRACE, 3-2
Loading overhead, SPY, 4-1
Locked areas, checked by FTREF, 2-1, 2-5
LOCKON, LOCKOFF calls, 2-5
LOOP value, FTREF, 2-3

Macrotasking subroutines, and FTREF, 2-1,
2-3

Memory activity, from PERFMON, 5-3
MINHIT keyword, SPY, 4-5
MULTI keyword, FTREF, 2-3
MULTI libraries, with FLOWTRACE, 3-2
Multitasking, and FTREF, 2-1, 2-3, 2-5

NOFLOW compiler directive, and FLOWTRACE,
3-1, 3-4

NOLABEL parameter, SPY, 4-5
NOLIB parameter, SPY, 4-3, 4-5
NONE option, FTREF, 2-2, 2-3
NORDER keyword, FTREF, 2-3

o Pascal option, with SPY, 4-3
ON and OFF options, PERFMON, 5-1
ON=F Fortran option, with FLOWTRACE, 3-1
ON=IZ CFT keyword, with SPY, 4-3
$OUT dataset

with FLOWTRACE, 3-1, 3-4
with PERFMON, 5-1
with SPY, 4-4

OVER category in SPY output, 4-8

P register, and SPY, 4-3
PART option, FTREF, 2-2, 2-3
Pascal

and FLOWTRACE, 3-1
terms, 1-2
with SPY, 4-3

PERFMON, 5-1
control statement, 5-1
output, 5-2

PGM column in Spy output, 4-7, 4-8
POST and PREP calls (Spy), 4-3
PRG column in SPY output, 4-8
Procedure, in Pascal, 1-2
PROGRAM statement, with FLOWTRACE, 3-1
Program unit

and FTREF, 2-1
defined, 1-1

REPORT option, PERFMON, 5-1, 5-2
RESET option, PERFMON, 5-1, 5-2
RETURN statement, and FLOWTRACE, 3-4

Index-2

ROOT (FTREF)
directive, 2-5
keyword, 2-3

ROUTINE column in Spy output, 4-6
Routine column in FLOWTRACE output, 3-2
RUN SUMMARY category in Spy output, 4-8

S parameter, SPY, 4-4, 4-5
SECONDS column in SPY output, 4-7, 4-8
SEGLDR, and SPY, 4-3, 4-4
SETPLIMQ subroutine (FLOWTRACE), 3-4
$SPY dataset, 4-3, 4-4
SPY, 4-1

and other utilities, 1-1
compared with FLOWTRACE, 4-8
control statement, 4-4
generating symbol table, 4-3
handling subject program, 4-3
output, 4-6
PREP and POST runs, 4-3
storage requirements, 4-5

STACK libraries, with FLOWTRACE, 3-2
Static calling tree, from FTREF, 2-1
STOP value, FTREF, 2-3
Storage requirements for SPY, 4-5
SUB column in Spy output, 4-7
SUB parameter, SPY, 4-1, 4-4, 4-5, 4-6
Subprogram, defined, 1-1

and subroutine, 1-2
SUBSET directive (FTREF), 2-5
Symbol table, with Spy, 4-2

THRSHLD parameter, SPY, 4-3, 4-4, 4-5
Time executing column, FLOWTRACE output, 3-2
TREE keyword, FTREF, 2-3, 2-5

FULL option, 2-2
TS parameter, SPY, 4-1, 4-3, 4-4

UNDER category in SPY output, 4-8

Vector events, from PERFMON, 5-3

-Z keyword (CC control statement), with
SPY, 4-3

Z CFT option, with SPY, 4-3

SR-0146

READER'S COMMENT FORM

COS Performance Utilities Reference Manual SR-Ol46

Your reactions to this manual will help us provide you with better documentation. Please take a moment to
check the spaces below. and use the blank space for additional comments.

1) Your experience with computers: __ 0-1 year __ 1-5 years __ 5+ years
2) Your experience with Cray computer systems: __ 0-1 year __ 1-5 years __ 5+ years
3) Your occupation: __ computer programmer __ non-computer professional

__ other (please specify): ___________ _
4) How you used this manual: __ in a class __ as a tutorial or introduction __ as a reference guide

__ for troubleshooting

Using a scale from 1 (poor) to 10 (excellent). please rate this manual on the following criteria:

5) Accuracy __ 8) Physical qualities (binding, printing) __
6) Completeness __ 9) Readability __
7) Organization __ 10) Amount and quality of examples __

Please use the space below, and an additional sheet if necessary, for your other comments about this
manual. If you have discovered any inaccuracies or omissions, please give us the page number on which
the problem occurred. We promise a quick reply to your comments and questions.

Name Address ---------------------- -------------------
Title ------------------------ City ________________ _
Company ______________ _ Statel Country ______ __
Telephone ________ _ Zip Code _________ _
Today's Date ______ _

FOLD

--~

III " I
BUSINESS REPLY CARD
FIRST CLASS PERMIT ND 6184 ST PAUL, MN

POSTAGE WILL BE PAlO BY ADDRESSEE

RESEARC INC.

Attention: PUBLICATIONS
1345 Northland Drive
Mendota Heights, MN 55120

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

--~
FOLD

STAPLE '

(")
C
-I
»
r o
Z
G>
-I
I
en
r
Z
m

READER'S COMMENT FORM

COS Performance Utilities Reference Manual SR-Ol46

Your reactions to this manual will help us provide you with better documentation. Please take a moment to
check the spaces below. and use the blank space for additional comments.

1} Your experience with computers: __ 0-1 year __ 1-5 years __ 5+ years
2} Your experience with Cray computer systems: __ 0-1 year __ 1-5 years __ 5+ years
3) Your occupation: __ computer programmer __ non-computer professional

__ other (please specify): ________ --__ _
4) How you used this manual: __ in a class __ as a tutorial or introduction __ as a reference guide

__ for troubleshooting

Using a scale from 1 (poor) to 10 (excellent). please rate this manual on the following criteria:

5} Accuracy __ 8) Physical qualities (binding, printing) __
6) Completeness __ 9) Readability __
7) Organization __ 10) Amount and quality of examples __

Please use the space below, and an additional sheet if necessary, for your other comments about this
manual. If you have discovered any inaccuracies or omissions, please give us the page number on which
the problem occurred. We promise a quick reply to your comments and questions.

Name Address ---------------------- --------------Title __________ _ City __________ _
Company _________ _ Statel Country ______ _
Telephone _______ _ Zip Code ________ _
Today's Date ______ _

FOLD

--~

111111

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO 6184 ST PAUL MN

POSTAGE WILL BE PAID BY ADDRESSEE

RESEARCH, INC.

Attention: PUBLICATIONS
1345 Northland Drive
Mendota Heights, MN 55120

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

--~
FOLD

STAPLE .

(")
c
~

»
r o
Z
Cl
~
:J:
Cii
r
Z
m

