CRAY-1

— P G- .
COMPUTER SYSTEM

HARDWARE REFERENCE MANUAL

'
!
|
; | |
|
|
!

2240004

CRAY-1

COMPUTER SYSTEM®

HARDWARE REFERENCE MANUAL
2240004

Copyright©1977 by CRAY RESEARCH, INC. This manual or parts thereof may
not be reproduced in any form without permission of CRAY RESEARCH, INC.

PR AN

RECORD OF REVISION

Revision Print Date
1/76

A 5/76

A-01 9/76

B 10/76

B-01 2/77

B-02 7/77

C 11/77

PUBLICATION NUMBER

Description
Original printing
Reprint with revision

Corrections to pages 3420, 3-27, 4-9, 4-10, 4-28,
4-36, 4-43, 4-55, and 4-57.

Reprint with revision. Addition of:
Floating point range error detection
Vector floating point error
Error correction '

Changes to exchange package (p 3-36); additions
to instructions 152 and 153 (p 4-53); corrections
to syndrome bit description p 5-5; corrections to
instruction summary, appendix D.

Corrections and changes to pages xi, 2-3, 3-19
through 3-28.1, 3-31, 3-34, 3-36, 3-38, 4-14
through 4-17, 4-54, 4-68, 5-1, 5-3, 5-4, 5-6,
6-2, A-4, D-1 through D-4.

This printing obsoletes revision B. Features
added include 8-bank phasing and I/0 master clear
procedure. Chart tape reflects only changes
introduced with this revision.

Each time this manual is revised and reprinted, all changes issued against the previous version in the form
of change packets are incorporated into the new version and the new version is assigned an alphabetic level.
Between reprints, changes may be issued against the current version in the form of change packets. Each
change packet is assigned a numeric designator starting with 01 for each new revision level. Every page
changed by a reprint or by a change packet has the revision level and change packet number in the lower right-

hand corner.

A1l changes are noted by a change bar along the margin of the page.

Requests for copies of CRAY RESEARCH, INC. publications should be directed to: CRAY RESEARCH, INC.

7850 Metro Parkway
Suite 213

ii Bloomington, MN 55420

CONTENTS

1. INTROBUCTION . . .+ & v v v e e e e e e e e e e e e e e e e e 1-1
COMPUTATION SECTION v v e e e e e e e e e e e e e e 1-4
MEMORY SECTION« & ot e e e e e e e e e e e e e e v 1-5
INPUT/OUTPUT SECTION o & i v e e e e e e e e e e u 1-5
VECTOR PROCESSING . . v & v v v e o e e e e e e e e e e e e e 1-6

2. PHYSICAL ORGANIZATION, v v ... 2-1
INTRODUCTION . . & v v v v e e e e e e e e e e e e e e e e e e e 2-1
MAINFRAME o o e o e e e e e e e e e e e e e e e e e e 2-1

Modules ¢ o v v i e e e e e e e e e e e 2-1
Printed circuit board 2-4

Module assemblyo 2-5
Integrated circuit packages 2-5

IC high-speed logic gate 2-5

IC slow-speed Togic gate« « v v v v v o 2-5

16x1 register chip « . o o oo o000 .. 2-5

1024x1 memory chip « « . . . o0 0 e e e e 2-6

Resistors i e e e e e e e e e e e 2-6

Connector strips v v v v v v v e e e e e e . 2-6

Clock . . & & v v o o e e e e e e e e e e e e e e e e e 2-7
Power supplies« .« e e e e e 2-7
PRIMARY POWER SYSTEM & & v o i e e et e e e e e e e e 2-8
COOLING . . & v v ot e 2-8
MAINTENANCE CONTROL UNIT & v v v v v v v v v v v v .29
FRONT-END COMPUTER & & v v v v v e e e e v e e e e e e e 2-10
EXTERNAL INTERFACE & & v o i v e i e e e e e e e e e s 2-10
MASS STORAGE SUBSYSTEM « « ¢ v v v v v v v v v e e 2-11

3 COMPUTATION SECTION . . . v v v v v v v vt et e e e e e e e e 3-1
INTRODUCTION . . . o v ot v e e e e e e e e e e e e e e e e e e 3-1
REGISTER CONVENTIONS ¢ ot i e e et e e e e e e e e 3-3
OPERATING REGISTERS . . . & & & v v v v v e v v e e e e e e e e 3-3

Voregisters 000000034
V register reservations . « .+« « . oo, 3-5

/

2240004 iid ‘ C

Vector control registers v v v v v 4 4 e . v .. "L . 3-6

VL register b e e e s e s e s e e e e 3-6

VM register o o i v 0o e e e e e e e e e 3-6
Sregisters 0 0 i e e e e e e e e e e e e e e e 3-7
T registers e e 3-8
A vregisters i 0 i L e e e e e e e e e e e e e e e e 3-8
B registers v i i i i e e e e e e e e e e e e e 3-9
FUNCTIONAL UNITS & o v v v v v v e e v e v e [3-10
Address functional units ¢ ¢ o v v o v oo 3-11
Address add unit 0 0o oo o000 3-11
Address multiply unit ¢ o oo oo oo 3-11
Scalar functional units« o v v v v o 4 3-12
Scalar add unit o o .00 . oo .. 3-12
Scalar shift unito o v v v oo 3-12
Scalar logical unit v v v v v v v v o o 3-13
Population/leading zero count unit 3-13
Vector functional units e e e 3-13
Vector functional unit reservation 3-13

Recursive characteristic of vector functional units . . 3-14

Vector add unit ¢ v v v v v e e e e e 3-17
Vector shift unit« « v v v v v v o oo o 3-17
Vector logical unit« o o o e e e 3-17
Floating point functional units+ .« .. 3-17
Floating point add unit« ¢ v o v v v v 3-18
Floating point multiply unit ¢« o o .. 3-18
Reciprocal approximation unit 3-18
ARITHMETIC OPERATIONS . .« v v v v @ v v v e v o o o o o o 0 o o 3-19
Integer arithmetic ¢ v o v o o o0 e e e e 3-19
Floating point arithmetic ¢ o ¢ o v v v v v v 3-20
Normalized floating point ¢ ¢ ¢ o o o 3-20
Floating point range errors « « « « ¢« ¢« « ¢ o 3-21
Floating point add unit. . . - « « « « « « « ¢« .. 3-21
Floating point multiply unit . . « « « « « o« o v v - 3-22
Floating point reciprocal approximation unit 3-22

Double precision numbers o o o o oo 3-23
Addition algorithm « v v ¢ ¢« v o o 3-23
Multiplication algorithm« o o .. 3-24
Division algorithm« . ¢ o v v o0 o 3-28

2240004 iv C

INSTRUCTION ISSUE AND CONTROL v v v v v v v v v o u 3-30

P register @ i i e e e e e e e e e e e e e 3-30

CIP register & v v v v v i i e e e e e e e 3-31

NIP register e e e e e e e e e e e e e e e e e 3-31

LIP register @ @ @ v i i i e e e e e e e e e 3-32

Instruction buffers 3-32

EXCHANGE MECHANISM e e e e e e e e e e e e e e 3-35

XA register e e e e e e e e e e 3-35

Moregister . . . v v v i i e e e e e e e e e e e . 3-35

Foregister e e e e e e e e e e 3-36

Exchange package e e e e e 3-36

Active exchange package 3-39

Exchange sequence W s s s e s e e s e a e s e 3-39

Initiated by dead start sequence 3-40

Initiated by interrupt flagset+ 3-40

Initiated by programexit 3-40

Exchange sequence issue conditions 3-41

Exchange package management 4-42

MEMORY FIELD PROTECTION . . & v v v v v v v v e v e e e e e _ 3-43

BA register, e 3-44

LA register e e e e e e e e e e e e e e 3-44

DEAD START SEQUENCE . . . v & v v v v v e e v e e e e e e e e e 3-44
INSTRUCTIONS o v v i o e e e e e e e e e e e e e e 4-1
INSTRUCTION FORMAT . . & & v it e e et et e e e e e e e e e e 4-1
Arithmetic, Togical format 4-1
Shift; mask format L. .. .00 e 4-2
Immediate constant format e e e . 4-2
Memory transfer format v v v v v . .. 4-3
Branch format 4-4
SPECIAL REGISTER VALUES & « v v v v v v e e e e e e e 4-5
INSTRUCTION ISSUE " o v s e e s e e e e e e e e e e e 4-5
INSTRUCTION DESCRIPTIONS . . & & v ¢ v v v v v v v v v e e o o s . 4-6
000000 Error exit o 0. e e e e 4-7
001ijk Monitor functions 4-8

0020xk Transmit (AK) to VL 4-10

2240004 v C

2240004

0021xx
0022xx

003xjx
004xxx
005xjk
0061 jkm
0074 jkm
0107 jkm
0111ijkm
0127 jkm

013ijkm

0141ijkm
015ijkm
0161ijkm
0171ijkm
0207 jkm
021ijkm
022ijk
023ijx
0241 jk
025ijk
0261jx
0271jx
0301jk
031ijk
032ijk
033ijk
0341jk

035ijk

0361k

0371ijk

Set the floating point mode flag in the M register‘4_11
Clear the floating point'mode flag in the M

registero o o000 s e 4-11
Transmit~(Sj) to vectormask 4-12
Normal eXit » v v v v v v v o e e e e e e e .. 4-13
Branch to (Bjk) « . « v v v o . oo 4-14
Branch to ijkm oo ... 4-15
Return jump to ijkm; set Bgg to (P) 4-16
Branch to ijkm if (Ag) =0 4-17
Branch to ijkm if (Ag) #0 4-17
Branch to ijkm if (Ao) positive 4-17
Branch to ijkm if (Ag) negative 4-17
Branch to ijkm if (Sg) =0 4-18
Branch to ijkm if (Sg) #0 4-18
Branch to ijkm if (So) positive 4-18
Branch to ijkm if (Sg) negative 4-18
Transmit jkm to A7 o000 4-19
Transmit complement of jkm to Ai 4-19
Transmit jk to A1 o o oo oo 4-20
Transmit (Sj) to Ai o ... 4-21
Transmit (Bjk) to Ai« 4-22
Transmit (Ai) to Bjk 4-22
Population count of (Sj) to AP 4-23
Leading zero count of (Sj) to A 4-24
Integer sum of (Aj) and (Ak) to A1 4-25
Integer difference (Aj) and (Ak) to Ai 4-25
Integer product of (Aj) and (Ak) to AP 4-26
Transmit I/0 status to Ai 4-27

Block transfer (Ai) words from memory starting at
address (Ap) to B register starting at register jk 4-29
Block transfer (Ai) words from B registers starting

at register jk to memory starting at address (Ap) 4-29
Block transfer (Ai) words from memory starting at

address (Ag) to T registers starting at register jk 4-29

Block transfer (Ai) words from T registers starting

at register jk to memory starting at address (Ag) 4-29

N

Vi C

0401 jkm
041ijkm
042ijk
043ijk
0441 jk
045ijk
0461jk
0471k

0504 jk
0511k
0521 jk
0531 jk
0541 jk
05513k
05613k
0571k
0601 jk
0611k
0621 jk
0631k
0641 jk
0651 jk

0661ijk
067ijk
070ijx
071ijk

0721ixx
0731ixx
0741jk
0751jk
0761jk
0771ijk

2240004

Transmit jkm to So 0 0. . 4-31
Transmit complement of jkm to S1 4-31
Form 64-jk bits of one's mask in Si from right . . 4-32
Form jk bits of one's mask in Si from left 4-32
Logical product of (Sj) and (Sk) to Si 4-33

Logical product of (Sj) and complement of Sk to Si. 4-33
Logical difference of (Sj) and (Sk) to Si 4-33
Logical difference of (Sk) and complement of

(SK) £0 ST v v v v v v e e e e e e 4-33
Scalar merge . . . « ¢ v v v e e v e e e e e e e 4-33
Logical sum of (Sj) and (Sk) to Si 4-33
Shift (Si) left jk places to Sy 4-36
Shift (Si) right 64-jk places to Sg 4-36
Shift (Si) left jk places to Si 4-36
Shift (Si) right 64-jk places to Si 4-36

Shift (Si) and (Sj) left by (Sk) places to Si . . 4-37
Shift (Sj) and (Si) right by (Ak) places to Si . . 4-37

Integer sum of (Sj) and (Sk) to Si 4-38
Integer difference of (Sj) and (Sk) to Si 4-38
Floating sum of (Sj) and (Sk) to Si. 4-39
Floating difference of (Sj) and (Sk) to Si 4-39
Floating product of (Sj) and (Sk) to Si 4-40
Half-precision rounded floating product of (Sj)

and (Sk) to Sio o0 e . 4-40
Rounded floating product of (Sj) and (Sk) to Si . 4-40
Reciprocal iteration; 2-(Sj)*(Sk) to Si 4-40

Floating reciprocal approximation of (Sj) to Si . 4-42
Transmit (Ak) or normalized floating point

constant to Sio 0o e o e 4-43
Transmit (RTC) to Si « « ¢ ¢« v v v v v 4-45
Transmit (VM) to Si« . . o o v v v v . 4-45
Transmit (Tjk) to Si- 4-45
Transmit (Si) to Tgk « o« v v o o o« 4-45
Transmit (Vj element (Ak)) to Si- 4-46
Transmit (Sj) to Vi element (Ak) 4-46

vii C

10hi jkm
11hijkm
12hijkm
13hijkm
1401 jk
1411k
1421 jk
1431 jk
1444 jk
1451k
1461k
14714k
1501k
1511k
1521k
153ijk

1541 jk
1551k

1561 jk

1571k

2240004

Read from ((Ah) + jkm) to Ai 4217

Store (Ai) to (Ah) + jkm 4-47
Read from ((Ah) + jkm) to Si 4-47
Store (Si) to (Ah) + jkm 4-47
Logical products of (Sj) and (Vk elements) to |
Vielements o o 0 oo e e e e e 4-49
Logical products of (Vj elements) and (Vk elements

to Vi elements R 4-49
Logical sums of (Sj) and (Vk elements) to Vi

elements v v v e e e e e e e e e e e e e 4-19
Logical sums of (Vj elements) and (Vk elements) to

Vi elements« v v v 0 0o e e e e 4-49
Logical differences of (Sj) and (Vk elements) to

Vi elements e e e e e e e e e e e 4-49
Logical differences of (Vj elements) and (Vk

elements) to Vi elements 4-49

If VM bit = 1, transmit (Sj) to Vi elements

If VM bit # 1, transmit (Vk elements) to Vi elements 4-49
If VM bit = 1, transmit (Vj elements) to Vi elements

If VM bit # 1, transmit (Vk elements) to Vi elements %-49
Single shift of (Vj elements) left by (Ak) places

to Vi elements . . . & ¢ b e v e e e e e e e e 4-53
Single shift of (Vi elements) right by (Ak) places

to Vi elements « v o v e e e e e e e .. 4-53
Double shifts of (Vj elements) left (Ak) places

to Vi elements « ¢« v v v v e 0 e e e e e 4-54
Double shifts of (Vj elements) right (Ak) places

to Vi elements . . . & v v o v e e e e e e e e . 4-54

Integer sums (Sj) and (Vk elements) to Vi elements 4-59
Integer sums (Vi elements) and (Vk elements) to

Vi elements . . « v v v v v e W e e e e e e e e e . 4-59

Integer differences of (Sj) and (Vk elements) to

Vi elements . .+ « v v v v v e e e e e e e e e e e 4-59

Integer differences of (Vj elements) and (Vk

elements) to Vi elements.« o o . 4-59
viii C

2240004

1601 jk
1611k
162ijk
1631 jk
1641 jk
1651jk
1661k
1671jk
1701k
171ijk
1721jk
1731k
1744 jx
175xjk

176ixk

177x3k

Floating products of (Sj) and (Vk elements)

toVielements 4-61
Floating products of (Vj elements) and (Vk

elements) to Vi elements 4-61
Half-precision rounded floating products of (Sj)

and (Vk elements) to Vi elements 4-61
Half-precision rounded floating products of (Vj

elements) and (Vk elements) to Vi elements 4-61
Rounded floating product of (Sj) and (Vk elements)
toVielements 4-61
Rounded floating product of (Vj elements) and

(Vk elements) to Vi elements -. 4-61
Reciprocal itefations; 2 - (Sj) * (Vk elements) to

Vi elements . . S 4-61
Reciprocal iterations; 2 - (Vj elements) * (Vk

elements) to Vi elements 4-61
Fioating sums of (Sj) and (Vk elements) to Vi
RTEMENtS . . e e e e e e e e e e e e 4-64
Floating sums of (Vj elements) and (Vk elements)

to Vi elements e e e e e 4-64
Floating differences of (Sj) and (Vk elements) to
Vielements 0., 4-64
Floating differences of (Vj elements) and (Vk ,
e]ements)'to Vielements 4-64
Floating point reciprocal approximation of

(Vj elements) to Vi elements 4-66
Test (Vj elements) and enter test results into VM;

the type of test made is defined by k 4-68

Transmit (VL) words from memory to Vi elements

starting at memory address (Ag) and incrementing by

(Ak) for successive addresses 4-70
Transmit (VL) words from Vj elements to memory

starting at memory address (Ag) and incrementing by

(Ak) for successive addresses 4-70

INTRODUCTION . & v v v v v et e e b e e e e v s e e o e e oo s 5-1
MEMORY CYCLE TIME . . & v & & v v v e v e v e e e e o o e o e e s 5-1
MEMORY ACCESS . . & & v v ot e e e et e e e o 4 o o o o v o e 5-1
MEMORY ORGANIZATION . . & & v ¢ v v v v e v v o o o o e e e e 5-3
MEMORY ADDRESSING+ « « « . e e e e e e e e e e e 5-3
8-BANK PHASING OPTION & v v v v v e v e e e e e e e 5-4
MEMORY PARITY ERROR CORRECTION « « . . v o v« . . 5-5
INPUT/OUTPUT SECTION . & v v v v v v v e e e e e e e e e e e s 6-1
MEMORY ACCESS . . . & . v v e e e e e e e e e e e e e 6-1
RESYNCHRONIZATION e e e e e e e e e e e e e e 6-3
MEMORY BANK CONFLICTS e e e e e e e e e e 6-3
I/0 MEMORY REQUEST CONDITIONS b e e e e e e e e e 6-4
"IJOLOCKOUT v v v o s s e e e e e e e e b e e e e e e e 6-4
I/0 INTERRUPTS P e e e s e e e e e e e e 6-4
CHANNEL ERROR CONDITIONS v v v v v v v e o e e e e v 6-4
I/0 MEMORY ADDRESSING e e e e e e e e e e 6-5
I/0 CHANNEL PARITY o« o o o o o o o e o e e s 6-5
INPUT CHANNEL SIGNALS & ¢ v v e e e e e e e e e e e e 6-5
Input data & ¢ i i e e e e e e e e e e e e e e 6-5
Input ready e e e e e e e e e e e 6-5
Input resume e e e e e e e e e e e e e e e 6-6
Input disconnect L0, 6-6\
OUTPUT CHANNEL SIGNALS & v i vt e e e e e e e e e e e 6-6
Output data e e e e e e e e e e e e e e e e e 6-6
Output ready . . . & . . v i i e e e e e e e e e e e 6-6
Output resume e e e e e e e e e e e 6-6
Output disconnect v v i i e e e e e e 6-6
CHANNEL OPERATION CONTROL e e e e e e e e e e e 6-6
I/0 CHANNEL MASTER CLEAR v v v i v v v v v v v .67

REAL-TIME CLOCK e e e e e 6-8

2240004 | X C

APPENDIXES

A

B
C
D

FIGURES

1-1
2-1
2-2
2-3
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
4-1
4-2
4-3
4-4
4-5
4-6
5-1
5-2
6-1

TABLES

1-1
2-1

2240004

TIMING SUMMARY o o s e e e e e e e e e A-1
MODULE TYPES o . o o o e s e e B-1
SOFTWARE CONSIDERATIONS v v v v v v v v v . C-1
INSTRUCTION SUMMARY o v v v v v e v o . D-1
Basic computer system 1=2
Physical organization of the mainframe 2-2
General chassis Tayout 2-3
Clock pulse waveform 2-7
Computation section 3-2
Integer data formats 3-19
Floating point data format 3-20
49-bit floating point addition 3-23
Floating point multiply pyramid 3-25
Relationship of instruction buffers and registers 3-30
Instruction buffers 3-33
Exchange package e e e e e 3-37
General format for instructions 4-1
Format for arithmetic and logical instructions 4-2
Format for shift and mask instructions 4-2
Format for immediate constant instructions 4-3
Format for memory transfer instructions 4-4
Two-parcel format for branch instructions 4-4
Memory organization 5-2
Memory address 0 e e e e e e e e e 5-3
Channel I/0 control 6-2
Characteristics of CRAY-1 Computer System 1-3
Characteristics of a DD-19 Disk Storage Qnit 2-13
xi | C

SECTION 1

INTRODUCTION

INTRODUCTION 1

The CRAY-1 Computer System is a powerful general-purpose computer capable
of extremely high processing rates. These rates are achieved by combining
scalar and vector capabilities into a single central processor which is
joined to a large, fast, bi-polar memory. Vector processing by performing
iterative operations on sets of ordered data provide results at rates
greatly exceeding result rates of conventional scalar processing. Scalar
operations complement the vector capability by providing solutions to
problems not readily adapted to vector techniques.

Figure 1-1 represents the basic organization of a CRAY-1 system. The
central processor unit (CPU) is a single integrated processing unit
consisting of a computation section, a memory section, and an input/
output section. The memory is expandab]é from 0.25 million 64-bit words
to a maximum of 1.0 million words. The 12 input channels and 12

output channels in the input/output section connect to a maintenance
control unit (MCU), a mass storage subsystem, and a variety of front-end
systems or peripheral equipment. The MCU provides for system initializa-
tion and for monitoring system performance. The mass storage subsystem
'provides secondary storage and consists of one to eight Cray Research
DCU-2 Disk Controllers, each with one to four DD-19 Disk Storage Units.
Each DD-19 has a capacity of 2.424 x 109 bits so that a maximum mass
storage configuration could hold 9.7 x 109 8-bit characters.

I/0 channels can be connected to independent processors referred to as
front-end computers or I/0 stations or can be connected to peripheral
equipment according to the requirements of the individual installation.
At least one front-end system is considered standard to collect data
and present it to the CRAY-1 for processing and to receive output from
the CRAY-1 for distribution to slower devices.

Table 1-1 summarizes the characteristics of the system. The following
paragraphs provide an additional introduction to the three sections of
the CPU; later sections of this manual describe the features in detail.

2240004 1-1 C

COMPUTATION SECTION

® Registers
o Functional units
8 Instruction buffers

_

|
|
|
:
|
|
I
|
!
|
|
|
]
: MEMORY SECTION
I
|
[
|
|
|
|
|
|
|
|
|
|

0.25Mor 0.5Mor 1 M
64-bit bi-polar words

I/0 SECTION

e 12 input channels
e 12 output channels

FRONT-END COMPUTERS,
MASS STORAGE I/0 STATIONS AND

Mcu SUBSYSTEM PERIPHERAL EQUIPMENT

Figure 1-1. Basic computer system

2240004 1-2

Table 1-1. Characteristics of the CRAY-1 Computer System

@ © © ©6 © o 0o 0o o © o©o o o

0

o 6 © ©o o e

COMPUTATION SECTION

64-bit word

12.5 nanosecond clock period

2's complement arithmetic

Scalar and vector processing modes

Twelve fully segmented functional units

Eight 24-bit address (A) registers

Sixty-four 24-bit intermediate address (B) registers
Eight 64-bit scalar (S) registers

Sixty-four 64-bit intermediate scalar (T) registers
Eiaht 64-element vector (V) registers, 64-bits per element
Four instruction buffers of 64 16-bit parcels each
Integer and floating point arithmetic

128 Instruction codes

MEMORY SECTION

Up to 1,048,576 words of bi-polar memory

(64 data bits and eight error correction bits)

Eight or sixteen banks of 65,536 words each

Four-clock-period bank cycle time

One word per clock period transfer rate to B, T, and V registers
One word per two clock periods transfer rate to A and S registers
Four words per clock period transfer rate to instruction buffers
Single error correction - double error detection (SEC-DED)

INPUT/OUTPUT SECTION

o Twelve input channels and twelve output channels
o Channel groups contain either six input or six output channels
"o Channel groups served equally by memory (scanned every four

~ clock periods)
o Channel priority resolved within channel groups
@ Sixteen data bits, three control bits per channel, and

4 parity bits
® |ost data detection
2240004 1-3 c

COMPUTATION SECTION

The computation section contains instruction buffers, registers and
functional units which operate together to execute a program of
instructions stored in memory. '

Arithmetic operations are either integer or floating point. Integer
arithmetic is performed in two's complement mode. Floating point
quantities have signed-magnitude representation.

The CRAY-1 executes 128 operation codes as either 16-bit (one parcel) or
32-bit (two-parcel) instructions. Operation codes provide for both
scalar and vector processing.

Floating point instructions provide for addition, subtraction, multi-
plication, and reciprocal approximation. The reciprocal approximation
instruction allows for the computation of a floating divide operation
using a multiple instruction sequence.

Integer or fixed point operations are provided as follows: integer
addition, integer subtraction, and integer multiplication. An integer
multiply operation produces a 24-bit result; additions and subtractions
produce either 24-bit or 64-bit results. No integer divide instruction
is provided and the operation is accomplished through a software
algorithm using floating point hardware.

The instruction set includes Boolean operations for OR, AND, and exclusive
OR and for a mask-controlled merge operation. Shift operations allow the
manipulation of either 64-bit or 128-bit operands to produce 64-bit
results. With the exception of 24-bit integer arithmetic, all operations
are implemented in vector as well as scalar instructions. The integer
product is a scalar instruction designed for indéx calculation. Full
indexing capability allows the programmer to index throughout memory in
either scalar or vector modes. The index may be positive or negative in
either mode. This allows matrix operations in vector mode to be performed
on rows or the diagonal as well as conventional column-oriented operations.

Each functional unit implements an algorithm or a portion of the instruction
set. Units are independent and are fully segmented. This means that a new
set of operands for unrelated computation may enter a functional unit each
clock period.

2240004 1-4 C

MEMORY SECTION

The memory for the CRAY-1 normally consists of 16 banks-'F of bi-polar 1024-
bit LSI memory. Three memory size options are available: 262,144 words,

524,288 words, or 1,048,576 words. Each word is 72 bits long and consists
of 64 data bits and 8 check bits. The banks are independent of each other.

Sequentially addressed words reside in sequential banks. The memory cycle
time is four clock periods (50 nsec). The access time, that is, the time

required to fetch an operand from memory to a scalar register is 11 clock

periods (132.5 nsec). There is no inherent memory degradation for 16-bank
memories of less than one million words.

The maximum transfer rate for B, T, and V registers is one word per
clock period. For A and S registers, it is one word per two clock
periods. Transfers of instructions to the instruction buffers occur
at a rate of 16 parcels (four words) per clock period.

Thus, the high speed of memory supports the requirements of scientific
applications while its Tow cycle time is well suited to random access
applications. The phased memory banks allow high communication rates
through the I/0 section and provide: Tow read/store times for vector
registers.

INPUT/OUTPUT SECTION

Input and output communication with the CRAY-1 is over 12 full duplex
16-bit channels. Associated with each channel are control lines that
indicate the presence of data on the channel (ready), data received
(resume), or transfer complete (disconnect).

The channels are divided into four channel groups. A channel group

consists of either six input paths or six output paths. The four

channel groups are scanned sequentially for I/0 requests at a rate of

one channel group per clock period. The channel group will be reinterrogated
four clock periods later whether any I/0 request is pending in the channel

or not. If more than one channel of the channel group is active, the
requests are resolved on a priority basis. The request from the lowest

numbered channel is serviced first.

T See 8-Bank Phasing Option, section 5.
2240004 : 1-5 ' C

VECTOR PROCESSING

A11 operands processed by the CRAY-1 are held in registers prior to their
being processed by the functional units and are received by registers
after processing. In general, the sequence of operations is to load one
or more vector registers from memory and pass them to functional units.
Results from this operation are received by another vector register and
may be processed additionally in another operation or returned to memory
if the results are to be retained.

The contents of a V register are transferred to or from memory by
specifying a first word address in memory, an increment for the memory
address, and a length. The transfer proceeds beginning with the first
element of the V register and incrementing by one in the V register at

a rate of up to one word per clock period depending on memory conflicts.

A result may be received by a V register and re-entered as an operand to
another vector computation in the same clock period. This mechanism
allows for "chaining" two or more vector operations together. Chain
operation allows the CRAY-1 to produce more than one result per clock
period. Chain operation is detected automatically by the CRAY-1 and

is not explicitly specified by the programmer, although the programmer
may reorder certain code segments in order to enable chain operation.

There may be a conflict between scalar and vector operations only for the
floating point operations and storage access. With the exception of these
operations, the functional units are always available for scalar operations.
A vector operation will occupy the selected functional unit until the
vector has been processed.

Parallel vector operations may be processed in two ways:
1. Using different functional units and all different V registers.
2. Chain mode, using the result stream from one vector register
simultaneously as the operand to another operation Using a
different functional unit.

Parallel operations on vectors allow the generation of two or more results
per clock period. Most vector operations use two vector registers as

2240004 1-6 C

operands or one scalar and one vector register as operands. Exceptions are
vector shifts, vector reciprocal, and the load or store instructions.

Since many vectors exceed 64 elements, a long vector is processed as one

or more 64-element segments and a possible remainder of less than 64
elements. Generally, it is convenient to compute the remainder and process
this short segment before processing the remaining number of 64-element
segments; however, a programmer may choose to construct the vector Toop
code in any of a number of ways. The processing of long vectors in FORTRAN
is handled by the compiler and is transparent to the programmer.

2240004 1-7 C

SECTION 2

PHYSICAL ORGANIZATION

PHYSICAL ORGANIZATION 2

INTRODUCTION

" The CRAY-1 computer system consists of the following:
- The CPU mainframe
- A bower cabinet
- Two condensing units
- Two motor generators and control cabinets
- A maintenance control unit (MCU)
- One or more disk systems
- An interface to a.front-end computer

MAINFRAME

The CRAY-1 mainframe, figure 2-1, is composed of 24 logic chassis. The
chassis are arranged two per column in a 270° arc which is 56.5 inches in
diameter. The twelve columns are 77 inches high. At the base of the
columns, 19 inches high and extending outward 30 inches, are cabinets
for power supplies and cooling distribution systems.

Viewing the cabinet from the top, the chassis of the upper circle are labeled
A through L proceeding in a counter-clockwise direction from the opening.

The chassis of the lower circle are labeled M through X. The assignment

of modules to chassis is illustrated in figure 2-2.

MODULES

The CRAY-1 computer system uses only one basic module construction through-
out the entire machine. The module consists of two 6 x 8 inch printed
circuit boards mounted on opposite sides of a heavy copper heat transfer
plate. Each printed circuit board has capacity for a maximum of 144
integrated circuit (IC) packages and approximately 300 resistor packages.

/

2240004 2-1 C

77"

—
/)\/
/

1034"

- Dimensions
Base - 103% inches diameter by 19 inches high

Columns - 56% inches diameter by 77 inches high including
height of base

- 24 chassis
- 1662 modules (16 banks); 113 module types
- Each module contains up to 288 IC packages per module
- Power consumption approximately 115 kw input for maximum memory size
- Freon cooled with Freon/water heat exchange
= Three memory options
- Weight 10,500 1bs (maximum memory size)
- Three basic chip types
5/4 NAND gates
Memory chips
Register chips

Figure 2-1. Physical organization of mainframe

2240004 . 2-2

71

64

56

48

40

32

24

16

16

24

32

40

48

56

64

71

2240004

Figure 2-2.

2

-3

General chassis layout

A B C D E F G H J K L
: 1
1 CLOCK MISC.
E FANOUT
FLOATING FLOATING
MULTIPLY ADD
RECIP.
SCALAR
APPROX.
ADD
SCALAR
REGISTERS
STORAGE STORAGE
CLOCK AND CLOCK AND
ADDRESS ADDRESS
FANOUT . FANOUT
SECDED ADDRESS | SECDED
REGISTERS
ADDRESS
SCALAR
MULTIPLY
SHIFTS
CONTROL LOGIC
VECTOR VECTOR
SHIFT LOGICAL
CONTROL NIP INSTR. CONTROL
CONTROL || BUFFERS
SECDED VECTOR SECDED
ADD XP DATA
Vj TO VECTOR VECTOR SHIFT STOR.
| DU —
Vj § Vk TO FUNCTIONAL UNITS
STORAGE STORAGE
CLOCK AND DATA TO VECTOR REGISTERS CLOCK AND
ADDRESS ADDRESS
FANOUT FANOUT
VECTOR
REGISTERS
ADDR
ADDR FANOUT FANOUT
1/0
CLOCK FANOUT
M N O P Q R S T u v wiX

71

64

56

48

40

16

16

32

40

48

56

64

71

There are 1662 modules in a standard 16-bank+CRAY—1 memory. Modules are
arranged 72 per chassis as illustrated in figure 2-2. There are 113
module types. Usage varies from 1 to 708 modules per type. Module type
and usage is summarized in Appendix B. Each module type is identified

by two letters. The first indicates the module series (A, D, F, G, H, J,
M, R, S, T, V, X, and Z). The second letter identifies types of modules
within a series.

The computation and I/0 modules are on the eight chassis forming the center
four columns. Each of the eight chassis on either side of the four center
columns contains one of the 16 memory banks.

Modules are cooled by transferring heat via the heat transfer plate to
cooling bars which in turn transfer the heat to Freon. Power dissipation
depends on module density. The maximum module power dissipation by type
is approximately 65 watts. The average module dissipation by usage is
approximately 49 watts.

Two supply voltages are used for each module: -5.2 volts for IC power;
-2.0 volts for line termination.

Each module has 96 pin pairs available for interconnecting to other modules.
A11 interconnections are via twisted pair wire. The average utilization of
pins is approximately 60 per cent.

" Each module has 144 available test points which can be used for trouble
shooting. Test points are driven by circuits which do not drive other loads.

Printed circuit board

The printed circuit board used in the CRAY-1 computer system is a 5-layer
board. The two outer surfaces of the PC board are used for signal runs;

the inner three layers are used for the -5.2 V, -2.0 V, and ground supplies.

Signal foil runs are a nominal 0.0075 inch. The spacing of the signal layer
to the adjacent voltage is a nominal 0.008 inch. The dimensions used
provide signal lines with an impedance of 50 to 6C ohms.

Conventional PC techniques are used in the construction of the PC board.

t+ Refer to 8-Bank Phasing Option, section 5.
2240004 2-4 ¢

Holes are drilled in the PC board for component mounting, interconnecting
signal layers, and supplying signal and voltages to components. A1l holes
are plated. The two signal layers are tin-lead plated before etching.

The finished PC board is reflowed to eliminate slivers caused by the etching

process.

Module assembly

The 1individual boards of the module are arranged, flow soldered, and
inspected prior to being assembled as a module. Logic testing is done
at the module Tevel. |

Integrated circuit packages

A11 integrated circuit devices used in the CRAY-1 are packaged in a
common package type. The package is a 16-pin hermetically sealed flat
pack. Gold or tin-Tead plated leads are used depending on the vendor.
The 16-pin flat pack was chosen for its reliability and compactness.

IC high-speed logic gate ; ,

With minor exceptions, one typé of logic gate is used for the central
processing unit. This is an ECL circuit with either four or five inputs
and with both normal and inverted outputs available to drive loads. One
four-input gate and one five-input gate are packaged in a 16-p1h flat

pack (5/4 gate). A1l latches, adders, subtracters, etc., are made of

this basic gate. The high-speed logic gate has a minimum propagation delay
of 0.5 nsec and a maximum propagation delay of 1 nsec. Edge speeds are

1 nsec or less.

»IC slow-speed logic gate

The sTow-speed gate is a MECL 10K version of the high-speed gate and is
used in the memory module for address fanout. The speed is adequate for
this application and the lower power requirement is an advantage.

16x1 register chip

The 16x1 register chip provides very fast temporary storage for scalar
and vector functional units. The chips are used for instruction buffers
and for B, T, and V registers. The chips have a 6 nsec read/write time,
well within the 12.5 nsec clock period.

2240004 : 2-5 C

1024x1 memory chip

The bipolar 1024x1 LSI chip is the basic building block around which the
CRAY-1 memory is built. The chip was developed by Fairchild using the
isoplanar technology. The memory chip has a maximum 50 nsec read/write
cycle time. Address decoding is internal to the package and is compatible
with standard ECL logic levels.

Resistors

Only two resistor types are used throughout the entire CRAY-1 computer
system. They are a center-tapped 120-ohm resistor providing two 60-ohm
resistors per package; and a 300-ohm resistor tapped to provide a 120-ohm
and 180-ohm resistor. The basic resistor package is a three-Tead device
in a ceramic substrate. The resistance film is tantalum nitride. The
lead frame is thermal pulse bonded. An epoxy covering is used to protect
the film from mechanical damage.

A1l printed circuit boards lines are treated as transmission lines. To
provide the proper termination of the transmission lines, each line is
parallel-terminated to the -2.0 volt supply. A 60-ohm resistor is used

to match the transmission Tine impedance. To minimize noise on the -2.0 V
supply, all used logic gate inputs and outputs are terminated with a 60-
ohm resistor to -2.0 volts.

The 16x1 register chip and the 1024x1 memory chip provide only a normal signal
output (logic gates provide the normal and inverted output signals). To
minimize the noise that could be introduced on the -2.0 volt bus by an
unbalanced load, these two devices are terminated with a Thévenin equivalent
to the -5.2 volt supply. The 300-ohm resistor is used for the Thévenin
equivalent termination.

Connector strips

The module connector strip uses 96 individual sockets molded in plastic.
The chassis connector strip uses 96 mating pins molded in plastic.
Individual pins and sockets when assembled are mounted on 0.050-inch
centers with mounting holes provided in the assembled plastic strip. Each
board has 96 holes provided for connecting signals to the module connector

2240004 2-6 - C

strip. The chassis connector strip is assembled with an 18-inch wire
crimped to each pin. Wire pairs are twisted after assembly to provide

the twisted pair wire transmission lines. The interconnection of

twisted pair wires is made in the center of the line using a solder sleeve.

CLOCK

A11 timing within the mainframe cabinet is controlled by a single phase
synchronous clock network. This clock has a period of 12.5 nsec. The
lines that carry the clock signal from the central clock source to the
individual modules of the CPU are all made of uniform length so that
the leading edge of a clock signal arrives at all parts of the CPU
cabinet at the same time. A three nanosecond pulse (figure 2-3) is
formed on each module.

le—————12.5 ns >

—13 ns =

Figure 2-3. Clock pulse waveform

References to clock periods in this manual are often given in the form
CPn where n indicates the number of the clock period during which an
event occurs. Clock periods are numbered beginning with CPO. Thus, the
third clock period would be referred to as CP2.

POWER SUPPLIES

Thirty-six power supplies are used for the CRAY-1 computer system. There
are twenty -5.2 volt supplies and sixteen -2.0 volt supplies. The supplies
are divided into twelve groups of three. Each group supplies one column.

The power supply design assumes a constant load. The power supplies do not
have internal regulation but depend on the motor-generator to isolate and
regulate incoming power. The power supplies use a twelve-phase transformer,

2240004 2-7

Silicon diodes, balancing coil, and a filter choke to supply Tow ripple
DC voltages. The entire supply is mounted on a Freon-cooled heat sink.
Power is distributed via bus bars to the load.

PRIMARY POWER SYSTEM

The primary power system consists of a 150 KW motor generator, motor-
generator control cabinet, and power distribution cabinet. The motor
generator supplies 208 V, 400 cycle, three-phase power to the power
distribution cabinet, which the power distribution cabinet supplies

via a variac to each power supply. The power distribution cabinet also
contains voltage and temperature monitoring equipment to detect power
and cooling malfunctions.

COOLING

Modules in the CRAY-1 computer system are cooled by the exchange of heat
from the module heat sink to a cold bar which is Freon cooled. The module
heat sink is wedged along both 8-inch edges to a cold bar. Cold bars are
arranged in vertical columns, with each column having capacity for 128
modules. The cold bar is a cast aluminum bar containing a stainless steel
refrigerant tube.

To assure component reliability, the cooling system was designed to
provide a maximum case temperature of 130° F (54° C). To meet this
goal, the following temperature differentials are encountered:

IC case temperature at center of module 130° F (540 C)
IC case temperature at edge of module 118° F (48° ¢)
Cold plate temperature at wedge 78° F (25°)
Cold bar temperature 70° F (21° ¢)
Refrigerant tube temperature 70° F (21°)

Two 20-ton compressors are located external to the computer room to
complete the cooling system.

2240004 2-8 C

MAINTENANCE CONTROL UNIT

The CRAY-1 computer system is equipped with a 16-bit minicomputer system
that serves as a maintenance tool and provides control for the system
initialization. After the CRAY-1 operating system has been initialized
and is operational, communication with the MCU is via a software protocol.
The MCU is connected to a CRAY-1 channel pair with additional control
signals for execution of the master clear operation, I/0 master clear
operation, dead dump operation, and samp1e parity error operation.

The maintenance control unit (MCU) includes:

1. A Data General ECLIPSE S-200 minicomputer or equivalent with

32K words of 16-bit memory

An 80-column c¢ard reader

A 132-column 1line printer

An 800 bpi 9-track tape unit

Two display terminals

A moving head disk drive

GOy O B W N

Included in the MCU system is a software package that enables it to
serve as a local batch station during production hours. As a local
station, diagnostic routines may be submitted for execution along with
other batch jobs. These diagnostics are typically stored on the local
disk and are submitted to the CRAY-1 by operator command.

The system initialization procedure is referred to in this manual as \
the dead start sequence. This sequence is described in detail in
Section 3.

Detailed information about the MCU is presented in separate publications.

2240004 2.9 c

FRONT-END COMPUTER

The CRAY-1 computer system may be equipped with one or more front-end
computer systems. that provide input data to the CRAY-1 computer system
and receive output from the CRAY-1 to be distributed to a variety of
slow-speed peripheral equipments. A front-end computer system is a self-
contained system that executes under the control of its own operating
system. Peripheral equipment attached to the front-end computer will
vary depending on the use to which the system is put.

A front-end computer may service the CRAY-1 in the following ways:
e As a local operator station
e As a local batch entry station
e As a data concentrator for multiplexing several other stations
into a single CRAY-1 channel
e As a remote batch entry station

Detailed information about the front-end system is presented in
separate publications.

EXTERNAL INTERFACE

The CRAY-1 is interfaced to front-end systems through special interface
controllers that compensate for differences in channel widths, machine
word size, electrical logic levels, and control protocols. The interface
is a Cray Research, Inc. product implemented ih ECL logic compatible

with the host system. One or more interface controllers are contained

in a small chassis located near the CRAY-1 mainframe. A primary goal

of the interface is to maximize the utility of the front-end channel
connected to the CRAY-1. ' Such a channel is generally slower than CRAY-1
channels. It is desirable that channel cables be Timited to less than 75
feet. If site conditions require that the interconnected systems be
physically located a considerable distance from each ofher, the

effective transmission rate may be degraded.

2240004 2-10 C

MASS STORAGE SUBSYSTEM

Mass storage for the CRAY-1 computer system consists of two or more Cray
Research Inc. DCU-2 Disk Controllers and multiple DD-19 Disk Storage
Units. The disk controller is a Cray Research, Inc. product and is
implemented in flat-pack ECL logic similar to that used in the CRAY-1 |
mainframe. The controller operates synchronously with the mainframe

over a 16-bit full-duplex channel. The controller is in a DCC-1 Freon
cooled cabinet located near the mainframe. Up to four controllers may be
contained in one cabinet. The cabinet requires about five square feet of
floor space and is 49 inches high.

Each controller may have from one to four DD-19 disk storage units attached
to it. Data passes through the controller to or from one disk storage unit
at a time. The controller may be connected to a 16-bit minicomputer station
in addition to the CRAY-1. If this additional connection is made, the
station and mainframe may share the controller operation on a fUnction-by-
function basis.

~ Each of the DD-19 disk storage units has two ports for controllers. A
second independent data path may exist to each disk storage unit through
another Cray Research controller. Reservation logic is provided to
control access to each disk storage unit.

Operational characteristics of the DD-19 Disk Storage Units are summarized
in Table 2-1. Further information about the mass storage subsystem is
presented in separate publications.

Table 2-1. Characteristics of a DD-19 Disk Storage Unit

Bit capacity per drive | 2.424 x 10°| Latency 16.6 msec

Tracks per surface 411 Access time 15 - 80 msec

Sectors per track 18 Data transfer rate

Bits per sector 32,768 (average bits per sec.) | 35.4 x 108
Total bits that can be

Number of head groups |10 streamed to a unit

Recording surfaces (disk cylinder capacity) | 5.9 x 108

per drive 40 :

2240004 ' 2-11 C

SECTION 3

COMPUTATION SECTION

COMPUTATION SECTION 3

INTRODUCTION

The computation section (figure 3-1) consists of an instruction control
network, operating registers, and functional units. The instruction
control network performs all decisions related to instruction issue and
coordinates the activities for the three types of processing, vector,
scalar, and address. Associated with each type of processing are
registers and functional units that support the processing mode. For
vector processing, there are: a set of 64-bit multi-element registers,
three functional units dedicated solely to vector applications, and three
floating point functional units supporting both scalar and vector operations.
For scalar processing, there are two levels of 64-bit scalar registers and
four functional units dedicated solely to scalar processing in addition

to the three floating point units shared with the vector operations. For
address processing, there are two levels of 24-bit registers and two
integer arithmetic functional units.

Vector and scalar processing is performed on data as opposed to address
processing which operates on internal control information such as addresses
and indexes. The flow of data in the computation section is generally from
memory to registers and from registers to functional units. The flow of
results is from functional units to registers and from registers to memory
or back to functional units. Data flows along either the scalar or vector
path depending on the mode of processing it is undergoing. An exception is
that scalar registers can provide one of the operands required for vector
operations performed in the vector functional units.

The flow of address information is from memory or from control registers to
address registers. Information in the address registers can then be distributed
to various parts of the control network for use in controlling the scalar,
vector, and I1/0 operations. The address registers can also supply operands

to two integer functional units. The units generate address and index
information and return the result to the address registers. Address

information can also be transmitted to memory from the address registers.

2240004 3-1 C

Memory

77

Vector Registers
'
V6
V5
V4

I Shift
Logical

S3

Vi

Vk

Vi

Vector

Vector
Functional
Units

Add

Vi

ecip.
MuaTtip

Vk

Vi

Control
i sj

e

Si

B v)

Si

SJ

RTC

L ==

(R0)

Scalar Registers

T00
through

Sk

Floating
Point
Functional
Units

Add

Pap
| Shif
Lagi

177

((Ah

) + jkm)
Exchange

Control
I XA |
Vector

Address Registers

BOO

(R0)

Scalar
Functional
Units

Add

Ai A7

A6

Control
V0L

rough

Ak

[Multipl

Add

((Ah) +

00

Execution

————— e -

2240004

Instruction
Buffers

Figure 3-1. Computation section

3-2

Address
Functional
Units

REGISTER CONVENTIONS

Frequent use is made in this manual of parenthesized register names.

This is shorthand notation for the expression "the contents of register
---." For example, "Branch to (P) means "Branch to the address indicated
by the contents of the program parcel counter, P."

Extensive use is also made of subscripted designations for the A, B, S,

T, and V registers. For example, "Transmit (Tjk) to Si" means "Transmit
the contents of the T register specified by the jk designators to the S

register specified by the 1 designator."

In this manual, register bit positions are numbered from left to right
starting with bit 0. Bit 63 of an S, V, or T register value represents
the least significant bit in the operand. Bit 23 of an A or B register
value represents the least significant bit in the operand. When a power
of two is meant rather than a bit position, it is referred to as 2",
where n is the power of two.

OPERATING REGISTERS

Operating registers are a primary programmable resource of the CRAY-1.

They enhance the speed of the system by satisfying the heavy demands for
data that are made by the functional units. A single functional unit may
require one to three operands per clock period and may deliver results at

a rate of one per clock period. Moreover, multiple functional units can

be in use concurrently. To meet these requirements, the CRAY-1 has five
sets of registers; three primary sets and two intermediate sets. The

three primary sets of registers are vector, scalar, and address designated
in this manual as V, S, and A, respectively. These registers are considered
primary because functional units can access them directly. For the scalar
and address registers, an intermediate level of registers exists which is
not accessible to the functional units. These registers act as buffers

for the primary registers. Block transfers are possible between these
registers and memory so that the number of memory references required for
scalar and address operands is greatly reduced. The intermediate registers
that support scalar registers are referred to as T registers. The inter-
mediate registers that support the address registers are referred to as B
registers.

2240004 3-3 C

V REGISTERS

Eight V registers, each with 64 elements are the major computational
registers of the CRAY-1. Each element of a V register has 64 bits.

When associated data is grouped into successive elements of a V register,
the register quantity may be considered a vector. Examples of vector
quantities are rows or columns of a matrix or elements of a table.

Computational efficiency is achieved by processing each element of a
vector identically. Vector instructions provide for the iterative
processing of successive vector register elements. A vector operation
begins by obtaining operands from the first element of one or more V
registers and delivering the result to the first e]emenf of a V register.
Successive elements are provided each clock period and as each operation
is performed, the result is delivered to successive elements of the
result V register. The vector operation continues until the number of
operations performed by the instruction equals a count specified by the
contents of the vector length (VL) register. Vectors having lengths
exceeding 64 are handled under program control in groups of 64 and a
remainder,

A result may be received by a V register and retransmitted as an operand

to a subsequent operation in the same clock period. This use of a register
as both a result and operand register allows for the "chaining" of two or
more vector operations together. In this mode, two or more results may be
produced per clock period.

The contents of a V register are transferred to or from memory in a block
mode by specifying a first word address in memory, an increment for the
memory address, and a vector length. The transfer then proceeds beginning
with the first element of the V register at a maximum rate of one word
per clock period, depending upon bank conflicts.

Single-word data transfers are possible between an S register and an element
of a V register.

In this manual, the V registers are individually referred to by the letter
V and a numeric subscript in the range 0 through 7. Vector instructions

2240004 3-4 c

reference V registers by allowing specification of the subscript as the
i, j, or k designator as described in section 4 of this manual.

Individual elements of a V register are designated in this manual by
decimal numbers in the range 00 through 63.

V register reservations

The term "reservation" describes the register condition when a register

is in use and therefore not available for use as a result or as an operand
register for another operation. During execution of a vector instruction,

reservations are placed on the operand V registers and on the result V
register. These reservations are placed on the registers themselves, not
on individual elements of the V register.

A reservation for a result register is lifted during "chain slot" time.
Chain slot time is the clock period that occurs at functional unit time
plus two clock periods. During this clock period, the result is
available for use as an operand in another vector operation. Chain slot
time has no effect on the reservation placed on operand V registers.

A V register may serve only one vector operation as the source of one or
both operands.

No reservation is placed on the VL register during vector processing. If
a vector instruction employs an S register, no reservation is placed on
the S register. It may be modified in the next instruction after vector

issue. The length of each vector operation is maintained apart from the
VL register. Vector operations employing different lengths may proceed
concurrently.

The Ag and Ak registers in a vector memory reference are treated in a
similar fashion. They are available for modification immediately after use.

The vector store instruction (177) is blocked from chain slot execution.

The vector read instruction (176) is blocked from chain slot execution if
the memory increment is a multiple of eight.

2240004 3-5 C

VECTOR CONTROL REGISTERS

Two registers are associated with vector registers and provide control
information needed in the performance of vector operations. They are
the vector length (VL) register and the vector mask (VM) register.

VL register

The 7-bit vector length register can be set to 0 through 1005 and specifies
the length of all vector operations performed by vector instructions and
the length of the vectors held by the V registers. It controls the number
of operations performed for instructions 140 through 177. The VL register
may be set to an A register value through use of the 0020 instruction.

VM register

The vector mask register has 64 bits, each of which corresponds to a word
element in a vector register. Bit 0 corresponds to element 0, bit 63 to
element 63. The mask is used in conjunction with vector merge and test
instructions to allow operations to be performed on individual vector
elements.

The vector mask register may be set from an S register through the 003
instruction or may be created by testing a vector register for condition
using the 175 instruction. The mask controls element selection in the
vector merge instructions (146 and 147).

-

2240004 : 3-6 : C

S REGISTERS

The eight 64-bit S registers are the principal scalar registers for the
CPU. These registers serve as the source and destination for operands
in the execution of scalar arithmetic and logical instructions. The
related functional units perform both integer and floating point arith-
metic operations.

S registers may furnish one operand in vector instructions. Single-word
transmissions of data between an S register and an element of a V register
are also possible.

Data can move directly between memory and S registers or can be placed in
T registers as an intermediate step. This allows buffering of scalar
operands between S registers and memory.

Data can also be transferred between A and S registers.

Another use of the S registers is for setting or reading the vector mask
(VM) register or the real-time clock register.

At most, one S register can be entered with data during each clock period.
Issue of an instruction is delayed if it would cause data to arrive at the
S registers at the same time as data already being processed which is
scheduled to arrive from another source.

When an instruction issues that will deliver new data to an S register, a
reservation is set for that register to prevent issue of instructions that
read the register until the new data has been delivered.

In this manual, the S registers are individually referred to by the letter
S and a numeric subscript in the range 0 through 7. Instructions reference
S registers by allowing specification of the subscript as the i, j, or k
designator as described in section 4 of this manual. The only register to
which an implicit reference is made is the Sp register. The use of this
register is implied in the following branch instructions:

014 through 017.

Refer to section 4 for additional information concerning the use of S
registers by instructions.

2240004 : 3-7

T REGISTERS

There are sixty-four 64-bit T registers in the computation section. The
T registers are used as intermediate storage for the S registers.

Data may be transferred between T and S registers and between T registers
and memory. The transfer of a value between a T register and an S
register requires only one clock period. T registers reference memory
through block read and block write instructions. Block transfers occur
at a maximum rate of one word per clock period. No reservations are
made for T registers and no instructions can issue during block
transfers to and from T regjstersﬂ

In this manual, T registers are referred to by the letter T and a 2-digit
octal subscript in the range 00 through 77. Instructions reference T
registers by allowing specification of the octal subscript as the jk
designator as described in section 4 of this manual.

A REGISTERS

The eight 24-bit A registers serve a variety of applications. They are
primarily used as address registers for memory references and as index
registers but also are used to provide values for shift counts, Toop
control, and channel I/0 operations. In address applications, they are
used to index the base address for scalar memory references and for
providing both a base address and an index address for vector memory
references.

The address functional units support address and index generation by
performing 24-bit integer arithmetic on operands obtained from A registers
and delivering the results to A registers.

Data can move directly between memory and A registers or can be placed in
B registers as an intermediate step. This allows buffering of the data
between A registers and memory.

Data can also be transferred between A and S registers.

The vector length register is set by transmitting a value to it from an
A register.

2240004 3-8

At most, one A register can be entered with data during each clock period.
Issue of an instruction is delayed if it would cause data to arrive at the
A registers at the same time as data already being processed which is
scheduled to arrive from another source.

When an instruction issues that will deliver new data to an A register, a
reservation is set for that register to prevent issue of instructions that
read the register until the new data has been delivered.

In this manual, the A registers are individually referfed to by the letter
A and a numeric subscript in the range 0 through 7. Instructions reference
A registers by allowing specification‘of the subscript as the h, i, j, or k
designator as described in section 4 of this manual. The only register to
which an implicit reference is made is the Ay register. The use of this
register is implied in the following instructions:

010 through 013
034 through 037
176 and 177

Refer to section 4 for additional information concerning the use of A
registers by instructions.

B REGISTERS

There are sixty-four 24-bit B registers in the computation section. The B
registers are used as intermediate storage for the A registers. Typically,
the B registers will contain data to be referenced repeatedly over a
sufficiently long span that it would not be desirable to retain the data

in either A registers or in memory. Examples of uses are loop counts,
variable array base addresses, and dimensions.

The transfer of a value between an A register and a B register requires
only one clock period. A block of B registers may be transferred to or
from memory at the maximum rate of one 24-bit value per clock period.
No reservations are made for B registers and no instructions can issue
during block transfers to and from B registers.

2240004 3-9 C

In this manual, B registers are individually referred to by the letter B
and a 2-digit octal subscript in the range 00 through 77. Instructions
reference B registers by allowing specification of the octal subscript as
the jk designator as described in section 4 of this manual. The only B
register to which an implicit reference is made is the Byo register. On
execution of the return jump instruction (007), register Byo is set to

the next instruction parcel address (P) and a branch to an address
specified by ijkm occurs. Upon receiving control, the called routine will
conventionally save (Bgg) so that the By, register will be free for the
called routine to initiate return jumps of its own. When a called routine
wishes to return to its caller, it restores the saved address and executes
a 005 instruction. This instruction, which is a branch to (Bjk), causes
the address saved in Bjk to be entered into P as the address of the next
instruction parcel to be executed.

FUNCTIONAL UNITS

Instructions other than simple transmits or control operations are
performed by hardware organizations known as functional units. Each unit
implements an a1gorithm or a portion of the instruction set. Units are
independent; a number of functional units can be in operation at the same
time.

A functional unit receives operands from registers and delivers the result
to a register when the function has been performed. The units operate
essentially in three-address mode with source and destination addressing
Timited to register designators.

A11 functional units perform their algorithms in a fixed amount of time;
no delays are possible once the operands have been delivered to the unit.
The amount of time required from delivery of the operands to the unit to
the completion of the calculation is termed the "functional unit time" and
is measured in 12.5 nsec clock periods.

The functional units are all fully segmented. This means that a new set
of operands for unrelated computation may enter a functional unit each

2240004 3-10 : c

clock period even though the functional unit time may be more than one
clock period. This segmentation is made possible by capturing and holding
the information arriving at the unit or moving within the unit at the end
of every clock period.

Twelve functional units are identified in this manual and are arbitrarily
described in four groups: address, scalar, vector, and floating point.
The first three groups each act in conjunction with one of the three
primary register types, A, S, and V, to support the address, scalar, and
vector modes of processing available in the CRAY-1. The fourth group,
floating point, can support either scalar or vector operations and will
accept operands from or deliver results to S or V registers‘according1y.

ADDRESS FUNCTIONAL UNITS

The address functional units perform 24-bit integer arithmetic on operands
obtained from A registers and deliver the results to an A register. The
arithmetic is two's complement.

Address add unit

The address add unit performs 24-bit integer addition and subtraction. The
unit executes instructions 030.and 031. The addition and subtraction are
performed in a similar manner. However, the two's complement subtraction
for the 031 instruction occurs as follows. The one's complement of the Ak
operand is added to the Aj operand. Then a one is added in the Tow order

bit position of the result.
No overflow is detected in the functional unit.
The functional unit time is two clock perijods.

Address multiply unit
The address multiply unit executes instruction 032 which forms a 24-bit
integer product from two 24-bit operands. No rounding is performed.

The functional unit does not detect overflow of the product.

The functional unit time is six clock periods.

2240004 3-11 C

SCALAR FUNCTIONAL UNITS

The scalar functional units perform operations on 64-bit operands obtained
from S registers and in most cases deliver the 64-bit results to an S
register. The exception is the population/leading zero count unit which
delivers its 7-bit result to an A register.

Four functional units are exclusively associated with scalar operations
and are described here. Three functional units are used for both scalar
and vector operations and are described under the section entitled
Floating Point Functional Units. '

Scalar add unit

The scalar add unit performs 64-bit integer addition and subtraction. It
executes instructions 060 and 061. The addition and subtraction are per-
formed in a similar manner. However, the two's complement subtraction

for the 061 instruction occurs as follows. The one's complement of the Sk
operand is added to the Sj operand. Then a one is added in the Tow order
bit position of the result.

No overflow is detected in the unit.
The functional unit time is three clock periods.

Scalar shift unit
The scalar shift unit shifts the entire 64-bit contents of an S register

or shifts the double 128-bit contents of two concatenated S registers.
Shift counts are obtained from an A register or from the jk portion of
the instruction. Shifts are end off with zero fi1l. For a double shift,
3 circular shift is effected if the shift count does not exceed 64 and
the i and j designators are equal and non-zero.

The scalar shift unit executes instructions 052 through 057. Single-
register shift instructions, 052 through 055, are executed in two clock
periods. Double-register shift instructions, 056 and 057, are executed
in three clock periods.

2240004 3-12 C

Scalar logical unit

The scalar logical unit performs bit-by-bit manipulation of 64-bit
quantities obtained from S registers. It executes instructions 042
through 051, the mask and Boolean instructions. '

The scalar logical unit is an integral part of the modules containing
the S registers. Since data does not have to leave the modules for
the function to be performed, operations require only one clock period.

Population/leading zero count unit .
This functional unit executes instructions 026 and 027. Instruction 026,

which counts the number of bits having a value of one in the operand,
executes in four clock periods. Instruction 027, which counts the number
of bits of zero preceding a one bit in the operand, executes in three
clock periods. For either instruction, the 64-bit operand is obtained
from an S register and the 7-bit result is delivered to an A register.

VECTOR FUNCTIONAL UNITS

Most vector functional units perform operations on operands obtained from
one or two .V registers or from a V register and an S register. The
reciprocal unit, which requires only one operand, is an exception. Results
from a vector functional unit are delivered to a V register.

Successive operand pairs are transmitted to a functional unit each clock
period. The corresponding result emerges from the functional unit n clock
periods later where n is the functional unit time and is constant for a
given functional unit. The vector length determines the number of operand
pairs to be processed by a functional unit.

Three functional units are exclusively associated with vector operations

and are described in this subsection. Three functional units are associated
with both vector operations and scalar operations and are described in the
subsection entitled Floating Point Functional Units. When a floating point
unit is used for a vector operation, the general descriptidn of vector
functional units given in this subsection applies.

Vector functional unit reservation

A functional unit engaged in a vector operation remains busy during each
clock period and may not participate in other operations. In this state,

2240004 3-13 C

the functional unit is said to be reserved. Other instructions that
require the same functional unit will not issue until the previous
operation is completed. Only one functional unit of each type is
“available to the vector instruction hardware. When the vector operation
completes, the reservation is dropped and the functional unit is then
available for another operation.

Recursive characteristic of vector functional units

In a vector operation, the result register (designated by i in the
jnstruction) is not normally the same V register as the source of either
of the operands (designated by j or k). However, turning the output
stream of a vector functional unit back into the input stream by setting

- i to the same register designator as j or k may be desirable under certain
circumstances since it provides a facility for reducing 64 elements down
to just a few. The number of terms generated by the partial reduction is
determined by the number of values that can be in process in a functional
unit at one time (i.e., functional unit time + 2CP).

When the i designator is the same as the j or k designator, a recursive
characteristic is introduced into the vector processing because of the

way in which element counters are handled. At the beginning of an operation
for which i is the same as j or k, the element counters for both the operand
register and the operand/result register are set to zero. The element
counter for the operand/result register is held at zero and does not begin
incrementing until the first result arrives from the functional unit at
functional unit time + 2 CP. This counter then begins to advance by one
each clock period. Note that until f.u. + 2, the initial contents of
element zero of the operand/result register are repeatedly sent to the
functional unit. The element counter for the other eperand register,
however, immediately begins advancing by one on each successive clock period

2240004 3-14 C

thus sending the contents of elements 0, 1, 2, ... on successive clock
periods. Thus, the first f.u. + 2 elements of the operand/result register
contain results based on the contents of element 0 of the operand/result
register and on successive elements of the other operand register. These
f.u. + 2 elements then provide one of the operands used in calculating

the results for the next f.u. + 2 elements. The third group of f.u. + 2
elements of the operand/result register contains results based on the
results delivered to the second group of f.u. + 2 elements, and so on until
the final group of f.u. + 2 elements is generated as determined by the

vector length.

As an example, consider the summation of a vector of floating point numbers
where the initial conditions for the vector operation are the following:
- A11 elements of register V1 contain floating point values.
- Register V2 will provide one set of operands and will receijve
the results. Element 0 of this register contains a 0 value.
- The vector length register (VL) contains 64. .

A floating point add instruction (171212) is then executed using register

V1 for one operand and using register V2 as an operand/result register.

This instruction uses the floating point add unit which has a functional
unit time of 6 CP causing sums to be generated in groups of eight (f.u. +

2 = 8). The final eight partial sums of the 64 elements of V1 are contained
in elements 56 through 63 of V2. Specifically, elements of V2 contain the
following sums:

(V200) = (V244) + (V1,,)
(V241) = (V240) + (V1)

(V2,) = (V244) + (V14,)

(V253) = (V240) + (V1g,)

(V24,) = (V254) + (V1)

(V2o5) = (V2,,) + (V1)

(V25¢) = (V240) + (V14g)

(V24,) = (V2p0) + (V1,,) "t (VZ00)

(V240) = (V240) + (V1g5) = (V24,) + (V1,,) + (V1,,)
(V25q) = (V2g) + (V1gg) = (V2qq) + (V1g)) + (V1)
(V2yo) = (V25,) + (V1) = (V240) + (V1g,) + (V1)

2240004 3-15 C -

(contents of

register V2, continued)

(V2,,) = (v25,) + (V1)) = (V2,,) + (V1g,) + (V1))

(V2,,) = (V2,,) + (V1,,) = (V2 0) + (V1g,) + (V1,)

(V2,3) = (V 205) + (V1 13) (V250) + (V1gg) + (V1,5)

(V2y,) = (V25¢) + (V1;,) = (V240) + (Vigg) + (V1)

(v2,.) = (297) + (V1,5) = (V2,0) + (V1g,) + (V1)

(V2,¢) = (V25) + (V1) = (V2,,) + (V1,,) + (Vlos) + (V1)

(V25¢) = (V2,4) + (V1) = (V2 0) + (V1) + (V1) + (V1)) ... + (Vige)
(V257) = (V249) + (V1sy) = (V2qq) + (V1gy) + (V1go) + (V117) voo + (V1gq)
(V25g) = (V25q) + (V1gg) = (V2qq) + (V1gy) + (V1y9) + (V1yg) ... + (Vigg)
(V259) = (V251) + (V1sg) = (V2qq) + (V1gg) + (V1gy) + (V1;q) ... + (Vigo)
(V2g0) = (V255) + (Vlgg) = (V2qq) + (V1gy) + (V15) + (V1yg) ... + (Vig,)
(V2g1) = (V2g53) + (V1gy) = (V2qq) + (Vigs) + (Viy3) + (Vipq) ... + (V1g,)
(Vzez) = (stu) + (Vlez) = (Vzoo) + (Vlgg) + (V1yy) + (Vlzz) ceo F (Vlsg)
(V2g3) = (V255) + (Vlgs) = (V250) + (V1gy) + (Viys) + (V1ps) ... + (Vigs)

Note that if an ‘integer summation were performed instead of a floating

point summation, five partial sums would be generated and placed in

elements 59 through 63 since the functional unit time for the integer add

unit is 3 CP.

Assuming that the same registers are used as for the previous

example but that the registers now contain integer values, the last five

elements of V2 would contain the following values:

(V2s9) = (V200) + (V1igu) + (V1igg) + (V11y) ... + (Viso)

(V260) = (V20q) + (V1gg) + (Vlgs) + (V1iq) ... + (V1ss) + (Viso)
(V2g1) = (V29q) + (V1g1) + (Vlge) + (VI11) ... + (V1sg) + (V1e1)
(V2g2) = (V20q) + (V1g2) + (V1gy) + (V1) ... + (V1s7) + (Vlg2)
(V2g3) = (V2¢g) + (V1p3) + (Vlgg) + (V113) ... + (Vlsg) + (Vlga)

This recursive characteristic of vector processing is applicable to any

vector operation, arithmetic or logical.

The value initially placed in

element 0 of the operand/result register will depend on the operation

being performed.

For example, when using the floating point multiply

unit, element 0 of the operand/result register will usually be set to an
initial value of 1.0.

2240004

3-16

Vector add unit

The vector add unit performs 64-bit integer addition and subtraction for

a vector operation and delivers the results to elements of a V register.
The unit executes instructions 154 through 157. The addition and subtrac-
tion are performed in a similar manner. However, for the subtraction
operations, 156 and 157, the Vk operand is complemented prior to addition
and during the addition a one is added into the Tow order bit position of
the result.

No overflow is detected by the unit.

The functional unit time for the vector add unit is three clock periods.

Vector shift unit

The vector shift unit shifts the entire 64-bit contents of a V register
element or the 128-bit value formed from two consecutive elements of a
V register. Shift counts are obtained from an A register, Shifts are
end-off with zero fill.

The vector shift unit executes instructions 150 through 153. Functional
unit time is four clock periods.

Vector logical unft

The vector logical unit performs bit-by-bit manipulation of 64-bit
quantities for instructions 140 through 147. The unit also performs the
logical operations associated with the vector mask instruction, 175.
Because the 175 instruction uses the same functional unit as instructions
140 through 147, it cannot be chained with these logical operations.

. Functional unit time is two clock periods.

FLOATING POINT FUNCTIONAL UNITS

The three floating point functional units perform floating point arithmetic
for both scalar and vector operations. When executing a scalar instruction,
operands are obtained from S registers and the result is delivered to an S
register. When executing most vector instructions, operands are obtained
from pairs of V registers or from a V register and an S register and the |
results are delivered to a V register. The reciprocal instruction, which has
only one input operand, is an exception.

2240004 3-17 C

A floating point unit is reserved during execution of a vector instruction.

Information on floating point out-of-range conditions is contained in the
subsection entitled Floating Point Arithmetic.

Floating point add unit
The floating point add unit performs addition or subtraction of 64-bit

operands in floating point format. The unit executes instructions 062,
063, and 170 through 173. Functional unit time is six clock periods.

A result is normalized even if the operands are unnormalized.

Out-of-range exponents are detected as described under Floating Point
Arithmetic.

Floating point multiply unit

The floating point multiply unit executes instructions 060 through 067
and 160 through 167. These instructions provide for full and half
precision multiplication of 64-bit operands in floating point format and

for computing two minus a floating point product for reciprocal iterations.

The half-precision product is rounded; the full-precision product is
either rounded or unrounded.

Input operands are assumed to be normalized. The unit delivers a
normalized result except that the result is not guaranteed to be
normalized if the input operands are not normalized.

Out-of-range exponents are detected as described under Floating Point.
Arithmetic. However, if both operands have zero exponents, the result
is considered as an integer product and is not normalized.

Functional unit time is seven clock periods.

Reciprocal approximation unit

The reciprocal approximation unit finds the approximate reciprocal of a
64-bit operand in floating point format. The unit executes instructions
070 and 174. Functional unit time is 14 clock periods.

The result is normalized. The input operand is assumed to be normalized;
the uppermost bit of the coefficient is not tested but is assumed to be
set in the computation. ’

2240004 3-18 C

ARITHMETIC OPERATIONS

Functional units in the CRAY-1 either perform two's complement integer
arithmetic or perform floating point arithmetic.

INTEGER ARITHMETIC

A11 integer arithmetic, whether 24 bits or 64 bits, is two's complement
and is so represented in the registers as illustrated in figure 3-2.

The address add unit and address multiply unit perform 24-bit arithmetic.
The scalar add unit and the vector add unit perform 64-bit arithmetic.

0 23

SIGN

2's COMPLEMENT INTEGER (24 BITS)

SIGN
2's COMPLEMENT INTEGER (64 BITS)

Figure 3-2. Integer data formats

Multiplication of two fractional operands may be accomplished using the
floating point multiply instruction. The floating point multiply unit
recognizes the conditions where both operands have zero exponents as a
special case and returns the upper 48 bits of the product of the
coefficients as the coefficient of the result and Teaves the exponent
field zero.

Division of integers would require that they first be converted to
floating point format and then divided using the floating point units.

2240004 : 3-19

FLOATING POINT ARITHMETIC

Floating point numbers are represented in a standard format throughout
the CPU. This format is a packed representation of a binary coefficient
and an exponent or power of two. The coefficient is a 48-bit signed
fraction. The sign of the coefficient is separated from the rest of

the coefficient as shown in figure 3-3. Since the coefficient is signed
magnitude, it is not complemented for negative values.

BINARY POINT

v
o | 15 16 63

SIGN EXPONENT COEFFICIENT

Figure 3-3. Floating point data format

The exponent portion of the floating point format is represented as a
bjased integer in bits 1 through 15. The bias that is added to the
exponents is 40000g. The positive range of exponents is 400004 through
577774. The negative range of exponents is 37777 through 200004. Thus,
the unbiased range of exponents is the following:

2—200008 thr‘ough 2+177778

In terms of decimal values, the floating point format of the CRAY-1 allows
the expression of numbers accurate to about 15 decimal digits in the
approximate decimal range of 1072500 through 10+25°°.

A zero value or an underflow result is not biased and is represented as a
word of all zeros.

A negative zero is not generated by any functional unit.

2240004 3-20 C

Normalized floating point ,

A non-zero floating point number in packed format is normalized if the
most significant bit of the coefficient is non-zero. This condition
implies that the coefficient has been shifted to the left as far as
possible and therefore the floating point number has no leading zeros in
the coefficient.

When a floating point number has been created by inserting an exponent

of 40060g into a word containing a 48-bit integer, the result should be
normalized before being used in a floating point operation. Normalization

is accomplished by adding the unnormalized floating point operand to zero.
Since Sy provides a 64-bit zero when used in the Sj field of an instruction,
a normalize of an operand in Sk can be performed using the following
instruction:

06210k

Si contains the normalized result.

Floating point range errors

Overflow of the floating point range is indicated by an exponent value of
60000g or greater in packed format. Underflow is indicated by an exponent
value of 177774 or less in packed format. Detection of the overflow
condition will initiate an interrupt if the floating point mode flag is
set in the mode register and monitor mode is not in effect. The floating
point mode flag can be set or cleared by an object program. The object
program has the responsibility to clear the f.p. mode flag via a 0022
instruction at the beginning of each vector branch sequence and resetting
it via a 0021 instruction after the merge.

Detection of floating point error conditions by the floating point units
is described in the following paragraphs.

2240004 3-21 c

Floating point add unit - A floating point add range error condition is

generated for scalar operands when the Targer incoming exponent is greater
than or equal to 60000g. The floating point error flag is set and an
exponent of 600005 is sent to the result register along with the computed
coefficient, as in the following example:

60000.4 Range error
+ 57777.4

60000.6 Result register. ,

Floating point multiply unit - In the floating point multiply unit, if

the exponent of either operand is greater than or equal to 60000 or if
the the sum of the two exponents is greater than or equal to 60000 , the
floating point error flat is set and an exponent of 60000y is sent to the
result register along with the computed coefficient.

An underflow condition is detected when the result exponent is less than
or equal to 17777g and causes an all zero exponent and coefficient to be
returned to the result register.

Underflow is also generated when either, but not both, of the incoming
exponents is zero. Both exponents equal to zero is treated as an integer
multiply and the result is treated normally with no normalization shift of
the result allowed.

Floating point reciprocal approximation unit - For the floating point
approximation unit, an incoming operand with an exponent less than or
equal to 2000lg or greater than or equal to 600003 causes a floating
point range error. The error flag is set and an exponent of 60000 is
sent to the result register along with the computed coefficient.

2240004 3-22 C

Double precision numbers

The CRAY-1 does not provide special hardware for performing double or
multiple precision operations. Double precision computations with 95-bit
accuracy are available through software routines provided by Cray Research.

Addition algorithm

Floating point addition or subtraction is performed in a 49-bit register.
Trial subtraction of the exponents occurs to select the operand to be
shifted down for aligning the operands. The larger exponent operand
carries the sign and the shift is always to the right. Bits shifted

out of the register are lost; no round-up takes place. \

* 48 discarded

v

. VT

Figure 3-4. 49-bit floating point addition

2240004 3-23

Multiplication algorithm

The floating point multiply unit in the CRAY-1 computer has an input of
48 bits of coefficient into a multiply pyramid (figure 3-5). The pyramid
truncates part of the lower bits of the 96-bit producf. To adjust for
this truncation, a constant is unconditionally added above the truncation.

Considering that the binary point is to the left of the top bit of the
pyramid, that is, at 2°1, the maximum value of the truncated amount is
approximately 27°°x 317 + 279% or about 5.5 x 10716, Therefore, the
effect of the truncation constant on the entire multiply pyramid is a
product variation in the following range:

1.16 x 107'® to 6.66 x 1071

The net result of this on the 48-bit fraction transmitted from the
functional unit is the possibility of rounding up 2748,

In a full precision rounded multiply, a round bit is entered into the
pyramid at 279 and allowed to propagate up the pyramid. However, in

this case, the product bit 27*° §s forced to zero.

The following table illustrates the effects of multiply truncation and
rounding.

Bit -u48-49-50-51-52-53-54-55-56-57-58-59-60~61-62-63

3 11 16 21 26 37 36 35 34 Max. missing Tog. prod.
1 2 4 916 21 26 31 36 35 34 33 32 Missing carry

1 2 4 © 193242 52 62 72 70 68 66 Bits truncated from bit
1 0011000000 0 o Position

5 3
100111101000 0=2"°x37%565x10"°
256 32168 4 1
k k =252 3%6.66 x 107°
R =29 21,776 x 1071°

2240004 3-24 C

000t ¢e

G¢-¢€

"G-¢ d4nbL 4

piweadd Ajdrynw buigeo|

L.

0

L

Logical products are formed to the left
of this line. No computation is per-
formed to the right of this line.——

MultipTier input

HH

| 1
II‘SIl‘qll‘zllqoll”llsell“ll'IIIIIIIIlIIIlIIIIlIIIlIII!IIl

S ——s—

Multiplicand input

Note that reversing the mu]tip]fer and multiplicand operands could cause
slightly different results, that is, A x B is not necessarily the same as
B x A.

For a half-precision multiply, round bits are entered into the pyramid at
bit positions 2 =32 and 2731, A carry resu]ting from this entry is allowed
to propagate up and a 31 bit result (2 to 2'30) is transmitted back. If
the result requires a left shift, the bottom bit (2) will be zero.

A few simplified examples may help to illustrate the CRAY-1 multiplication
algorithm. Each of these examples uses only 6-bit arithmetic to aid
understanding of this algorithm and its differences from the convent1ona1
a]gor1thm. The multiplication is shown in the usual school presentation

(intermediate additions are not shown).

CASE 1 - RESULT FROM CRAY-1 ALGORITHM 1 BIT HIGH

0.5 x 0.6

CRAY-1 algorithm (binary)

Conventional algorighm (binary)

.101000 .101000
.110000 .110000 .
000 000000
00 000000
000 |- 000000
000000 000000
101000 101000
101000 101000

.011110000

.011110000000
1<— Round bit truncate
111101 x 271 = .75 x 27 111100 x 271 = 744 x 271

2240004 3-26

CASE 2 - CRAY-1 ALGORITHM ROUNDS CORRECTLY AND IS COMMUTATIVE

0.74 x 0.53
CRAY-1 algorithm, both orders of multiplication Conventional Algorithm
.111100 .101010 .111100
.101010 .111100 .101010
000000
111100
000000
111100
000000
111100
.100111000 .100111010 .100111911000
1 1
.100111 = .47 .100111 = .47g .100111 = .47

CASE 3 - CRAY-1 ALGORITHM NOT COMMUTATIVE, 1 BIT LOW IN ONE ORDER, ROUNDS
CORRECTLY IN THE OTHER ORDER.

CRAY-1 algorithm, both orders of multiplication Conventional Algorithm
.101011 .110010 .101011
.110010 .101011 .110010

11 000000
101011
000 000000
11001 000000
00000 101011
101011
.100001010 .100001100 .100001100110
l< Round bit —1 ¥ Round bit
Truncate
.100001 = 41g .100010 = 42g .10010 = .42

240004 3-27 C

Division algorithm

The CRAY-1 performs floating point division by the method of reciprocal
approximation. This facilitates the hardware implementation of a fully-
segmented functional unit. Operands may enter the reciprocal unit each
clock period because of this segmentation. In vector mode, results are
produced at a one clock period rate. These results may be used in other
vector operations during chaining because all functional units in the
CRAY-1 have the same result rate.

The division algorithm that computes S; /'S, to full precision requires
four operations:

1. S3 =1/S, Reciprocal approximation

2. S, =(2-S3*S,) Reciprocal iteration

3. S5 =35; *S3 Numerator * approximation

4. Sg =S, * Sg Half-precision quotient * correction factor

The approximation is based on Newton's method. The reciprocal approxima-
tion at step 1 is correct to 30 bits. The additional Newton iteration at
step 2 increases this accuracy to 47 bits. This iteration is applied as
a correction factor with a full-precision multiply operation.

Where 31 bits of accuracy is sufficient, the reciprocal approximation
instruction may be used with the half-precision multiply to produce a
half-precision quotient.

The 18 low-order bits of the half-precision results are returned as zeros
with a round applied to the Tow-order bit of the 30-bit result.

A scalar quotient is computed in 29 clock periods since operations 2 and
3 issue in successive clock periods.

A vector quotient requires effectively three vector times since operations
1 and 3 are chained together. This hides one of the multiply operations.
A vector time is one clock period for each element in the vector.

For example, two 50-element vectors are divided in about 3 * 50 clock
periods. This estimate does not include overhead associated with the
functional units.

2240004 3-28 C

LOGICAL OPERATIONS

The scalar and vector logical units perform bit-by-bit manipulation

of 64-bit’quantities. Operations provide for forming logical products,
differences, sums and merges.

A Togical product is the AND function:

operand one 1010
operand two 1100
result 1000

A Togical difference is the exclusive OR function:

operand one 1010
operand two 1100
result 0110

A logical sum is the inclusive OR function:

operand one 1010
operand two 1100
result 1110

2240004 3-29

INSTRUCTION ISSUE AND CONTROL

This section describes the instruction buffers and registers involved
with instruction issue and control. Figure 3-6 illustrates the general
flow of instruction parcels through the registers and buffers.

p 1_+1__]

]
r——————————— |
v 3 I
’__|____ 2 i
1 i
0t 0 |
|
]
i
t o NIP ~ CIP
Lo
Execution
LIP o ————— >
‘ 'Instruction
17 Buffers

Figure 3-6. Relationship of instruction buffers
and registers

P REGISTER

The P register is a 22-bit register which indicates the next parcel

of program code to enter the next instruction parcel (NIP) register
in a linear program sequence. The upper 20 bits of the P register
indicate the word address for the program word in memory. The Tower
two bits indicate the parcel within the word. The content of the P
register is normally advanced as each parcel successfully enters the
NIP register. The value in the P register normally corresponds to the
parcel address for the parcel currently moving to the NIP register.

2240004 3-30 C

The P register is entered with new data on an instruction branch or
on an exchange sequence. It is then advanced sequentially until the
next branch or exchange sequence. The value in the P register is
stored directly into the terminating exchange package during an
exchange sequence.

The P register is not master cleared. A noisy value is stored in the
terminating exchange package at address zero during the dead start
sequence.

CIP REGISTER

The CIP (current instruction parcel) register is a 16-bit register
which holds the instruction waiting to issue. If this instruction
is a two-parcel instruction, the CIP register holds the upper half
of the instruction and the LIP holds the lower half. Once an
instruction enters the CIP register, it must issue. Issue may be
delayed until previous operations have been completed but then the
current instruction waiting for issue must proceed. Data arrives
at the CIP register from the MIP register. The indicators which make
up the instruction are distributed to all modules which have mode
selection requirements when the instruction issues.

The control flags associated with the CIP register are generally
master cleared. The register itself is not and a noisy instruction
will issue during the master clear sequence.

NIP REGISTER

The NIP (next instruction parcel) register is a 16-bit register
which holds a parcel of program code prior to entering the CIP
register. A parcel of program code which has entered the NIP
register must be executed. There is no mechanism to discard it.

2240004 ‘ 3-31

If issue of the instruction in the CIP register is delayed, the data in
the NIP register is held over for the next clock period. Data entry

to the NIP register is blocked for the second_parce1 of a two-parcel
instruction. The resulting blank is then issued at the CIP register at
the proper time as a do nothing instruction. A blank instruction differs
from a 000 instruction only in that a true 000 instruction causes an error
interrupt.

Data entry in the NIP register is also blocked when the arriving data is
not valid. This occurs on crossing buffer boundaries and on branching as
well as on interrupt conditions.

The NIP register is not master cleared. A noisy instruction may issue
during the master clear interval before the interrupt condition blocks
data entry into the NIP register.

LIP REGISTER

The LIP (lower instruction parcel) register is a 16-bit register which

holds the lower half of a two-parcel instruction at the time the two-

parcé] instruction issues from the CIP register. This register is

almost the same as the NIP register except that it contains valid data

at times when the same data has been blocked from entering the NIP register.

INSTRUCTION BUFFERS

There are four instruction buffers in the CRAY-1, each of which holds 64
consecutive 16-bit instruction parcels (figure 3-7). Instruction parcels
are held in the buffers prior to being delivered to the NIP or LIP
registers. ’

The beginning instruction parcel in a buffer always has a parcel address
that is an even multiple of 100g. This allows the entire range of
addresses for instructions in a buffer to be defined by the high-order 16
bits of the beginning parcel address. For each buffer, there is a 16-bit
beginning address register that contains this value.

The beginning address registers are scanned each clock period. If the
high-order 18 bits of the P register match one of the beginning addresses,

2240004 3-32 C

Bank 0 L0 Ll L2 _)_3_ 1441
VoLa_ o5 _Lée__|_7__11/]
2 | 10_ _|_11_ _ 12 _(_13_ _| 11|
3 14 _(_15__| 16_ _| 17 44
4 |20 _|_21_ [22 ~23_ _ {441
5 24 |25 | 26 _|_27_ _| |||
6 | 30 _ J3 32 (33]
7 _QL__ﬁ___y___j____q
ms_ﬂL__y___y___g_____
g | 84__|_45__| 46___47__ || ||
12 | 50_ _| 51 _| 52 _| 53 _ ||]|
13g | 54 _|_85__| 56_ | 57__ ||]|
148 _go___gl___gz___§_3_—_ -ﬁ.—J‘—— Buffer 3
158 i §4_ L §5- L §6_ L §7_] __-4—--—- Buffer 2
16 | 70_ |71 _| 72 | 73 a—— Buffer 1
17 74 75 76 | 77 = Buffer 0

Figure 3-7 Instruction buffers

an in-buffer condition exists and the proper instruction parcel is
selected from the instruction buffer. An instruction parcel to be
executed is normally sent to the NIP. However, the second half of a
two-parcel, instruction is blocked from entering the NIP and is sent to
the LIP, instead, and is available when the upper half issues from the
CIP. At the same time, a blank parcel is entered into the NIP.

On an in-buffer condition, if the instructibn is in a different buffer
than the previous instruction, a change of buffers occurs necessitating a
two clock period delay of issue.

An out-of-buffer condition exists when the high-order 18 bits of the P
register do not match any instruction buffer beginning address. When
this condition occurs, instructions must be Toaded into one of the
instruction buffers from memory before execution can continue. The

2240004 3-33 c

instruction buffer that receives the instructions is determined by a two-
bit counter. Each occurrence of an out-of-buffer condition causes the
counter to be incremented by one so that the buffers are selected in
rotation. '

Buffers are loaded from memory four words per clock period, an operation
that fully occupies memory. The first group of 16 parcels delivered to
the buffer always contains the instruction required for execution. For

I this reason, the branch out of buffer time is a constant 14 clock periodsﬁ'
The remaining groups arrive at a rate of 16 parcels per clock period and
circularly fill the buffer.

An instruction buffer is loaded with one word of instructions from each

I of the 16 memory bankst The first four instruction parcels residing in
an instruction buffer are always from bank 0. Figure 3-7 illustrates
the organization of parcels and words in an instruction buffer.

An exchange sequence voids the instruction buffers by setting their
beginning address registers to all ones. This prevents a match with the
P register and causes one of the buffers to be Toaded.

Both forward and backward branching is possible within the buffers. A
'branch does not cause reloading of an instruction buffer if the instruc-
tion being branched to is within one of the buffers. Multiple copies of
instruction parcels cannot occur in the instruction buffers. Because
instructions are held in instruction buffers prior to issue, no attempt
should be made to dynamically modify instruction sequences. As long as
the unmodified instruction is in an instruction buffer, the modified
instruction in memory will not be loaded into an instruction buffer.

Although optimization of code segment lengths for instruction buffers is
not a prime consideration when programming the CRAY-1, the number and
size of the buffers and the capability for both forward and backward
branching can be used to good advantage. Large loops containing up to 256
consecutive instruction parcels can be maintained in the four buffers or as
an alternative, one could have a main program sequence in one or two of the
buffers which makes repeated calls to short subroutines maintained in the
other buffers. The program and subroutines remain in the buffers undisturbed
as long as no out-of-buffer condition causes a buffer to be reloaded.

I T Refer to 8 Bank Phasing Option, section 5.
12240004 3-34 C

EXCHANGE MECHANISM

Exchange mechanism refers to the technique empioyed in the CRAY-1 for
switching instruction execution from program to program. This technique
involves the use of blocks or program parameters known as exchange packages
and a CPU operation referred to as an exchange sequence. Three special
registers are instrumental in the exchange mechanism. These are the exchange
address (XA) register, the mode (M) register, and the flag (F) register.

XA REGISTER

The XA (exchange address) register specifies the first word address of a
16-word exchange package loaded by an exchange operation. The register
contains the upper eight bits of a 12-bit field that specifies the address.
The Tower bits of the field are always zero; an exchange package must begin
on a 16-word boundary. The 12-bit Timit requires that the absolute address
be in the Tower 4096 words of memory.

When an execution interval terminates, the exchange sequence exchanges the
contents of the registers with the contents of the exchange package at
(XA)*16 in memory.

M REGISTER

The M (mode) register is a four-bit register that contains part of the
exchange package for a currently active program. The four bits are
selectively set during an exchange sequence. Bit 37, the floating point
error mode flag, can be set or cleared during the execution interval for

a program through use of the 0021 and 0022 instructions. The remaining
bits are not altered during the execution interval for the exchange
package and can be altered only when the exchange package is inactive in
storage. Bits are assigned as follows in word two of the exchange package.

Bit 36 Correctable memory error mode flag. When this bit is set,
interrupts on correctable errors are enabled.

Bit 37 Floating point error mode flag. When this bit is set,
interrupts on floating point errors are enabled.

Bit 38 Uncorrectable memory error mode flag. When this bit is set,
interrupts on uncorrectable memory errors are enabled.

Bit 39 Monitor mode flag. When this bit is set, all interrupts
other than memory errors are inhibited.

2240004 3-35 _ C

F REGISTER

The F (flag) register is a nine-bit register that contains part of the
exchange package for the currently active program. This register contains
nine flags which are individually identified with the exchange package in
figure 3-8. Setting any of these flags causes interruption of the program
execution. When one or more flags are set, a request interrupt signal is
sent to initiate an exchange sequence. The content of the F register is
stored along with the rest of the exchange package and the monitor program
can analyze the nine flags for the cause of the interruption. Before the
monitor program exchanges back to the package, it may clear the flags in
the F register area of the package. If any of the bits is set, another
exchange will occur immediately.

Any flag, other than the memory error flag, can be set in the F register
only if the currently active exchange package is not in monitor mode.
This means that these flags will set only if the highest order bit of the
M register is zero. With the excéption of the memory error flag, if the
program is in monitor mode and the conditions for setting an F register
are otherwise present, the flag remains cleared and no exchange sequence
is initiated.

EXCHANGE PACKAGE

An exchange package is a 16-word block of data in memory which is associated
with a particular computer program. It contains the basic parameters
necessary to provide continuity from one execution interval for the program
to the next. These parameters consist of the following:

Program address register (P) - 22 bits
Base address register (BA) - 18 bits
Limit address register (LA) - 18 bits
Mode register (M) -4 bits

Exchange address register (XA) - 8 bits
Vector length register (VL) - 7 bits

Flag register (F) - 9 bits

Current contents of the eight A registers
Current contents of the eight S registers

2240004 3-36 C

0 2 1012 16 18 24 31 36 40 63
0 El S IR B P l AO
RA Y4 BA 2;7; Al
n+ | >
ne2 G, LA M A2
ne3 vw | F A3

Y, %
77 T
e b 7777 T
Uz 7 5

n+ 8 S0
n+9 S!
n+I0 S2
n+il S3
n+i2 S4
n+13 SS
n+ 14 S6
n+id 57
) 63
Registers M - Modes™
S Syndrome bits 36 Interrupt on correctable
RAB Read address for error memory error
(where B is bank) 37 Interrupt on floating point
P Program address 38 Interrupt on uncorrectable
BA Base address memory error
LA Limit address 39 Monitor mode

XA Exchange address

F - Flagst
VL Vector length

31 Console interrupt

E - Error type (bits 0,1) 32 RTC interrupt
33 Floating point error

10 Uncorrectable memory

01 Correctable memory 34 Operand range

35 Program range

R - Read mode (bits 10,11) 36 Memory error
00 Scalar 37 1/0 interrupt
01 1I/0 ‘ 38 Error exit
10 Vector 39 Normal exit
11 Fetch

TBit position from left of word

Figure 3-8. Exchange package

2240004 3-37 C

The exchange package contents are arranged in a 16-word block as shown
in figure 3-8. Data is swapped from memory to the computer operating
registers and back to memory by the exchange sequence. This sequence
exchanges the data in a currently active exchange package, which is
residing in the operating registers, with an inactive exchange package
in memory. The XA address of the currently active exchange package
specifies the address of the inactive exchange package to be used in
the swap. The data is exchanged and a new program execution interval
is initiated by the exchange sequence.

The B register, T register, and V register contents are not swapped in
the exchange sequence. The data in these registers must be stored and
replaced as required by specific coding in the monitor program which
supervises the object program execution.

Memory error data

Two bits in the Mode (M) register determine whether or not the exchange
package contains data relevant to a memory error if one occurs prior
to an exchange sequence. These are bit 36, the "Interrupt on correctable
memory error bit" and bit 38, the "Interrupt on uncorrectable memory
“error bit". The error data, consisting of four fields of information,
appears in the exchange package if bit 38 is set and an uncorrectable
memory error is detected or if bit 36 is set and correctable memory error
is encountered.

Error type (E) - The type of error encountered, uncorrectable or

correctable, is indicated in bits 0 and 1 of the first word of the
exchange package. Bit 0 is set for an uncorrectable memory error; bit 1
is set for a correctable memory error.

Syndrome (S) - The eight syndrome bits used in detecting the error are
returned in bits 2 through 9 of the first word of the exchange package.
Refer to section 5 for additional information.

2240004 3-38 C

Read mode (R) - This field indicates the read mode in progress when the
error occurred and consists of bits 10 and 11 of the first word of the
exchange package. These bits assume the following values:

00 Scalar

01 1/0

10 Vector

1 Instrucfion fetch

Read address (RAB) - The RAB field contains the address at which the error
occurred. Bits 12 through 15 (B) of the first word of the exchange package

contain bits 23 through 20 of the address and may be considered as the bank
address; bits 0 through 15 (RA) of the second word of the exchange package
contain bits 219 through 2% of the address.

Active exchange package

An active exchange package is an exchange package which is currently
residing in the computer operating registers. The interval of time in
which the exchange package is active is called the execution interval for
the exchange package and also for the prograh with which it is associated.
The execution interval begins with an exchange sequence in which the
subject exchange package moves from memory to the operating registers.

The execution interval ends as the exchange package moves back to
memory in a subsequent exchange sequence.

EXCHANGE SEQUENCE

The exchange seqUence is the vehicle for moving an inactive exchange
package from memory into the operating registers and at the same time
moving the currently active exchange package from the operating registers
back into memory. This swapping operation is done in a fixed sequence
when all computational activity associated with the currently active
exchange package has stopped. The same 16-word block of memory is used
as the source of the inactive exchange package and the destination of the
currently active exchange package. The Tocation of this block is
specified by the content of the exchange address register and is a part of

2240004 3-39 C

the currently active exchange package. The exchange sequence may be
. initiated in three different ways.

Dead start sequence
Interrupt flag set
Program exit

Initiated by dead start sequence
The dead start sequence forces the exchange address register content to
zero and also forces a 000 code in the NIP register. These two actions

cause the execution of a program error exit using memory address zero

as the location of the exchange package. The inactive exchange package
at address zero is then moved into the operating registers and a program
is initiated using these parameters. The exchange package stored at
address zero is largely noise as a result of the dead start operation
and is in effect discarded by the subsequent entry of new data at these
storage addresses.

Initiated by interrupt flag set

An exchange séquence can be initiated by setting any one of the nine
interrupt flags in the F register. One or more flags set result in a
request interrupt signal which initiates an exchange sequence.

Initjated by program exit

There are two program exit instructions that cause the initiation of an
exchange sequence. The timing of the instruction execution is the same
in either case and the difference is only in which of the two flags in
the F register is set. The two instructions are:

Program code 000 - Error exit °
Program code 004 - Normal exit

The two exits provide a means for a program to request its own termination.
A non-monitor (object) program will usually use the normal exit instruction.
to exchange back to the monitor program. The error exit allows for
termination of an object program that has branched into an unused area of
memory or into a data area. The exchange address selected is the same as
for a normal exit.

2240004 3-40 C

There is a flag in the F register for each of these instructions. The
appropriate flag is set providing the currently active exchange package
is not in monitor mode. The inactive exchange package called in this
case is normally one that executes in monitor mode and the flags are
sensed for evaluation of the cause of program termination.

The monitor program selects an inactive exchange package for activation
by setting the address of the inactive exchange package into the XA
register and then executing a normal exit instruction.

Exchange sequence jssue conditions

An exchange sequence initiated by other than a 000 or 004 instruction has
the following hold issue conditions, execution time, and special cases.
The corresponding information for the 000 and 004 instructions is provided
with the instruction descriptions in Section 4 of this manual.

Hold issue conditions:
Instruction buffer data invalid
NIP not blank \
Wajt exchange flag not set
S, V, or A registers busy

Execution time: 49 CPs

Special cases:
Block instruction issue
Block I/0 references
Block fetch

2240004 3-41 C

EXCHANGE PACKAGE MANAGEMENT

Each 16-word exchange package resides in an area defined during system
dead start that must 1ie within the lower 4096 words of memory. The
package at address 0 is that of the monitor program. Other packages
provide for object programs and monitor tasks. These packages Tie
outside of the field lengths for the programs they represent as-
determined by the base and limit addresses for the programs. Only the
monitor program has a field defined so that it can access all of memory
including the exchange package areas. This allows the monitor program
to define or alter all exchange packages other than its own when it is
the currently active exchange package.

Proper management of exchange packages dictates that a non-monitor
program always exchange' back to the monitor program that exchanged to
it. This assures that the program information is always swapped back
into its proper exchange package.

Consider the case where exchange packages exist for programs A, B, and C.
Program A is the monitor program, program B is a user program, and program
C is an interrupt processing program.

The monitor program, A, begins an execution interval following dead start.
No interrupts can terminate its execution interval since it is in monitor
mode. The monitor program voluntarily exits by issuing a 004 exit
instruction. Before doing so, however, it sets the contents of the XA
register to point to B's exchange package so that B will be the next
program to execute.and it sets the exit address in B's exchange package,
to point back to the monitor.

The exchange sequence to B causes the exit address from B's exchange
package to be entered in the XA register. At the same time, the exchange
address in the XA register goes to B's exchange package area along with all
other program parameters for the monitor program. When the exchange.is
complete, program B begins its execution interval.

2240004 3-42 C

Suppose further that while B is executing, an interrupt flag sets
initiating an exchange sequence. Since B cannot alter the XA register,
the exit is back to the monitdr program. Program B's parameters swap back
into B's exchange package area; the monitor program parameters held in
B's package during the execution interval swap back into the operating
registers.

The monitor, upon resuming execution, determines that an interrupt has
caused the exchange and sets the XA register to call the proper interrupt
processor into execution. It does this by setting XA to point to the
exchange package for program C. Then, it clears the interrupt and
initiates execution of C by executing a 004 exit instruction, Depending
on the design of the operating system, -the interrupt processor program
could execute in monitor mode or in user mode.

MEMORY FIELD PROTECTION

Each object program at execution time has a designated field of memory
holding instructions and data. The field 1imits are specified by the
monitor program when the object program is loaded and initiated. The
field may begin at any word address that is a multiple of 16 and may
continue to another address that is also a multiple of 16. The field
limits are contained in two registers, the base address register (BA)
and the 1imit address register (LA), which are described later in this
subsection.

A11 memory addresses contained in the object program code are relative

to the base address which begins the defined field. It is, therefore,

not possible for an object program’to read or alter any memory location
with a Tower absolute address than the base address. Each object program
reference to memory is also checked against the 1imit address to determine
if the address is within the bounds assigned. A memory reference beyond
the assigned field 1imit is prevented from altering the memory content

and for a non-monitor mode program, creates an error condition that
terminates program execution. The program or operand range flag is set

2240004 . 3-43 C

to indicate the error correction. The monitor program upon resuming
execution determines the cause of the interrupt and takes appropriate
action, perhaps terminating the user program.

BA REGISTER

The 18-bit BA register holds the base address of the user field during

the execution interval for each exchange package. The contents of this
register are interpreted as the upper 18 bits of a 22-bit memory address.
The lower four bits of the address are assumed zero. Absolute memory
addresses are formed by adding (BA) * 16 to the relative address specified
by the CPU instructions. The BA register always indicates a bank O
memory address.

LA REGISTER

The 18-bit LA register holds the limit address of the user field during
the execution interval for each exchange package. The contents of LA
are interpreted as the upper 18 bits of a 22-bit memory address. - The
lower four bits of the address are assumed zero. The LA register always
indicates a bank 0 memory address.

The final address that can be executed or referenced by a program is at
[(LA) x 247 - 1. Note that the (LA) is absolute, not relative; it is not
added to (BA).

DEAD START SEQUENCE

The dead start sequence is that sequence of operations required to start
a program running in the CPU after power has been turned off and then
turned on again. A1l registers in the machine, all control latches,
and all words in memory are assumed to be noisy after power has been
turned on. The sequence of operations required to begin a program is
initiated by the maintenance control unit. This unit sequences the
following operations:

1. Turns on master clear signal.

2. Turns on I/0 clear signal.

2240004 3-44 C

3. Turns off I/0 clear signal.

4. Loads memory via MCU channel.
}

5. Turns off master clear signal.

The master clear signal stops all internal computation and forces the
critical control Tatches to predetermined states. The I/0 signal clears
the input channel address registers to zero and sets an active status.
The maintenance control unit then loads an initial exchange package and
monitor program. The exchange package must be located at address zero

in memory. Turning off the master clear signal initiates the exchange
sequence to read this package and begin execution of the monitor program.
Subsequent actions are dictated by the design of the operating system.

2240004 3-45

SECTION 4

INSTRUCTIONS

INSTRUCTIONS

INSTRUCTION FORMAT

Each instruction is either a one-parcel (16-bit) instruction or a two-
parcel (32-bit) instruction. Instructions are packed four parcels per
word. Parcels in a word are numbered from left to right as 0 through 3
and can be addressed in branch instructions. A two-parcel instruction
may begin in any parcel of a word and may span a word boundary. A two-
parcel instruction that begins in the fourth parcel of a word ends in
the first parcel of the next word. No padding to word boundaries is
required.

Instructions have the following general form:

4,33 3 3] 6 |
g h i j k , m
[«First parcel—s}«Second parcel-]

Figure 4-1. General format for instructions

Five variants of this general format use the fields in different ways.
Two of these variant forms are two-parcel formats, two are one-parcel
formats, and one is either a one-parcel or a two-parcel format.

ARITHMETIC, LOGICAL FORMAT

For arithmetic and logical instructions, a 7-bit operation code (gh) is
followed by three 3-bit address fields. The first field, i, designates
the result register. The j and k fields designate the two operand
registers or are combined to designate a 6-bit B or T register address.
This format is illustrated in figure 4-2.

2240004 4-1 C

9 h i] k
L« J 3 1 31313] 18 BITS
L Y J ARITHMETIC, LOGICAL
OPERATION
CODE
RESULT
REG. "
OPERAND
REG.
]
OPERAND
REG.

Figure 4-2. Format for arithmetic and
logical instructions

SHIFT, MASK FORMAT

The shift and mask instructions consist of a 7-bit operation code (gh)
followed by a 3-bit field and a 6-bit field. The 3-bit i field desig-
nates the result and operand registers. The 6-bit combined jk field
specifies a shift or mask count. This format is jllustrated in figure 4-3.

9 h i ik
C« T T1T:31 6} 16 BITS
L \ J SHIFT, MASK
OPERATION
CODE ‘

OPERAND AND
RESULT REG.

SHIFT, MASK COUNT

Figure 4-3. Format for shift and mask
instructions

IMMEDIATE CONSTANT FORMAT

The instructions that enter immediate constants into A registers have
either a one-parcel or a two-parcel form. Only the two-parcel form exists
for entering 1mﬁediate constants into S registers. For the one-parcel
form, the j and k fields are combined to give a 6-bit quantity. For the

2240004 4-2 , C

two-parcel form, the j, k, and m fields are combined to give a 22-bit
quantity. In either form, a 7-bit operation code (gh) and a 3-bit

result field designating a result register precede the immediate constant.
Figure 4-4 illustrates the instruction format for immediate constant
instructions.

¢ h 1 jk
[4 [3 ' 3 I 6] 16 BITS
N | ' CONSTANT —=A
r
OPERATION
CODE
Y
RESULT CONSTANT
REG.
g h i] K m
L2 I 3 13 1 ! ! 22 i 32 BITS
l J . o CONSTANT —»A
T . ' CONSTANT —&S
OPERATION
CODE
i | |
RESULT o CONSTANT
REG.

Figure 4-4. Format for immediate constant instructions

MEMORY TRANSFER FORMAT

Instructions that transfer data between the A or S registers and memory
require a 32-bit format. For these instructions, a 4-bit operation code
(g) 1s followed by two 3-bit fields and a 22-bit field. The first 3-bit
field (h) designates an index (A) register.

When the h field is zero, the special value of zero is considered to be

the address index. Contents of Ah are not affected. The second 3-bit
field (i) designates a result or source register. The 22-bit field formed
by j, k, and m, specifies a memory word address. The upper two bits of

the j field are unused. An operand range error occurs if either bit is set.

Figure 4-5 illustrates the format of memory transfer instructions.

2240004 J 4-3 C

g h i
| |
Le 1 3 1 3 1 22 3 52 BITS
L-r--j ' A <= MEMORY
OPERATION , S < MEMORY
CODE
ADDRESS
INDEX REG. | 1
RESULT ADDRESS
REG.
J k m
%2 I 4
BANK ADDRESS BANK

SELECT

Figure 4-5. Format for memory transfer instructions

BRANCH FORMAT

In general, the branch instructions are two-parcel instructions. A 7-bit
operation code (gh) is followed by a 25-bit field formed by combining i, j,
k, and m. The 25-bit field contains a parcel address and allows branching
to a quarter-word boundary. The 3-bit i field is unused. A program range
error occurs if either of the two Tow-order bits of i is set; the high-

order bit of i is ignored.

Figure 4-6 illustrates the two-parcel format for branch instructions.

g h i j k m
) Y 1
I R | 25 J 32 BITS
{ y) BRANCH
OPERATION '
COOE ADDRESS
i j k m
AR T i
O 16 ‘ 4 2
BANK ADDRESS BANK PARCEL

SELECT SELECT

Figure 4-6. Two-parcel format for branch instructions

2240004 4-4

The unconditional branch to (Bjk) instruction requires only one parcel.

- For this instruction, there is a 7-bit operation code (gh) followed by

a null i field and a combined jk field which specifies a B register that
contains a parcel address. The format is not illustrated.

SPECTAL REGISTER VALUES

The So and A, registers provide special values when referenced in the j
or k fields of an instruction. In these cases, the special value is used
as the operand and the actual value of the S, or Ay register is ignored.
Such a use does not alter the actual value of the S, or A, register. If
Sgor A, is used in the i field, the actual value of the register is
provided as the operand.

Field Operand value
Ai, i=0 (Ao)

Aj, =0 0

Ak, k = 0 1

Si, i=0 (So)

Sj, j=0 0

Sk, k =0 283

Ah, h = 0 0

INSTRUCTION ISSUE | | /

Instructions are read a parcel at a time from the instruction buffers and
delivered to the NIP register. The instruction issues and is passed to

the CIP register when the conditions in the functional unit and registers
are such that the functions required for execution may be performed with-
out conflicting with a previously issued instruction. Instruction parcels
may issue at a maximum rate of one per clock period. Once an instruction
has been delivered to the CIP it is considered as issued and it must be
completed in a fixed time frame following its final clock period in the CIP
register. No delays are allowed from issue to delivery of data to the
destination operating registers.

Entry to the NIP is blocked for the second half of a two-parcel instruction.
The parcel is delivered to the LIP register, instead. The blank NIP for
the second parcel is issued as a do-nothing instruction in the CIP.

2240004 4-5 C

INSTRUCTION DESCRIPTIONS

This section contains detailed information about individual instructions
or groups of related instructions. Descriptions are presented in the
octal code sequence defined by the gh fields. Each subsection begins
with boxed information consisting of the format and a brief summary of
“each instruction described in the subsection. The appearance of an m

in a format designates that the instruction consists of two parcels.

An x in the format signifies that the field containing the x is ignored
during instruction execution.

Following the header information is a more detailed description of the
instruction or instructions, including a Tist of hold issue
conditions, execution time, and special cases. Hold issue conditions
refer to those conditions that delay issue of an instruction until the
conditions are met.

Instruction issue time assumes that if an instruction issues at clock
period n, the next instruction will issue at clock period'n'+ issue time
if its issue conditions have been met.

2240004 4-6

e e o o o . S S b M S G W G G G G G SR G T G g S G e W G G S WU G G S G S G G e S e S e W S S RS S G B S S e -

This instruction is treated as an error condition and an exchange
sequence occurs. The content of the instruction buffers is voided
by the exchange sequence. If monitor mode is not in effect, the
error exit flag in the F register is set. A1l instructions issued
prior to this instruction are run to completion. When the results
of previously 1ssued instructions have arrived at the operating
registers, an exchangeloccurs to the exchange package designated by
the contents of the XA register. The program address stored in the
exchange package on the terminating exchange sequence is advanced by
one count from the address of the error exit instruction. The error
exit instruction is not generally used in program code. Its purpose
is to halt execution of an incorrectly coded program that branches
into an unused area of memory or into a data area.

Hold issue conditions
034 - 037 in process
Exchange in process

Execution time
Instruction issue 50 CPs

Special cases
None

2240004 , 4-7

o
o
=
-t
<.
~
=
o
=]
—de
ct
o
i
)
c
>
(@]
+
—e
o
3
[72]

This instruction performs specialized functions useful to the operating
system. Functions are selected through the i designator. The instruc-
tion is treated as a pass instruction if the monitor mode bit is not
set or if the i designator is 5, 6, or 7.

Subfunctions defined by the i designator are as follows:

0010jk Set the current address (CA) register for the channel
indicated by (Aj) to (Ak) and activate the channel
0011jk Set the 1imit address (CL) register for the channel
indicated by (Aj) to (Ak)
0012k Clear the interrupt flag and error flag for the
" channel indicated by (Aj)
00133k Enter the XA register with (Aj) \
0014k Enter the real-time clock register with (Sj)
\
When the i designator is 0, 1, or 2, the instruction controls the
operation of the I/0 channels. Each channel has two registers that
direct the channel activity. The CA register for a channel contains
the address of the current channel word. The CL register specifies
the 1imit address. In programming the channel, the CL register is
initialized and setting CA activates the channel. As the transfer
continues, CA is incremented toward CL. When (CA) = (CL), the
transfer is complete for words at initial (CA) through (CL)-1.
When the j designator is O or when the content of Aj is less than 2
or greater than 25, the functions are executed as pass instructions.
When the k designator is 0, CA or CL is set to 1.

' . . . 1
When the i designator is 3, the instruction transmits bits 2 ! through

2% of (Aj) to the exchange address (XA) register. When the j designator
js 0, the XA register is cleared. '

2240004 4-8

/" When the i designator is 4, the instruction transmits the contents of Sj
to the real-time clock register. When the j designator is 0, the real-
time clock is cleared.

Hold issue conditions

034 - 037 1in process

Exchange in process

For 0010 and 0011, Aj or Sj or Ak reserved
For 0012 or 0013, Aj or Sj or Ak reserved
For 0014, Aj or Sj or Ak reserved

Execution time
Instruction issue 1 CP

Special cases

If the program is not in monitor mode, instruction becomes a
no-op although all hold issue conditions remain effective.

For 0010, 0011, and 0012:
If j =0, instruction is a no-op
If (Aj) < 2 or (Aj)> 31g, instruction is a no-op
- If k =0, CAor CL is set to 1

For 0013:
If j = 0, XA register is cleared

For 0014:
If j =0, RTC register is cleared

Correct priority interrupting channel number can be read (via
033 instruction) 2 CP after issue of 0012 instruction.

2240004 4-9

0020xk Transmit (Ak) to VL

This instruction enters the vector length (VL) register with a value
determined by the contents of Ak. The low order seven bits of (Ak)

are entered into the VL register. The number of operations performed is
determined by first subtracting one from the contents of VL and then
adding one to the low-order six bits of the result. For example, if

(VL) = 100g, then 100-1 = 77 and 77+1 = 100. However, if (VL) = 0,

then 0-1 = 177 and 77+1 = 100. Thus, the number of vector operations is
64 when the content of Ak is 0 or 64 before executing the 0020 instruction.

Hold issue conditions

034 - 037 in process
Exchange in process
Ak reserved

Execution time

Instruction issue 1 CP
YL register ready 1 CP

Special cases

Maximum vector length is 64
(Ak) = 1if k=0
(VL) = 0 if k # 0 and (Ak) = 0

2240004 4-10 C

0021xx Set f.p. mode flag in M register
0022xx Clear f.p. mode flag in M register

These instructions set (0021xx) or clear (0022xx) the floating point
mode flag in the M register. They do not check the previous state of
the flag (there is no way of testing the flag).

When set, the floating point mode flag enables interrupts on floating
point overflow errors as described in Section 3.

The object program has the responsibility of clearing the f.p. mode flag
at the beginning of a vector branch sequence and of resetting the flag
after the merge.

Hold issue conditions

034 - 037 in process
Exchange in process
Ak reserved

Execution time

Instruction issue 1 CP

Special cases

None

2240004 4-11 C

This instruction enters the vector mask (VM) register with the contents
of Sj. The VM register is cleared if the j designator is zero. This
instruction is used in conjunction with the vector merge instructions
(146 and 147) in which an operation is performed depending on the
contents of VM. |

Hold dissue conditions

034 - 037 in process

Exchange in process

Sj reserved

003 in process - unit busy 3 CPs

14x in process - unit busy (VL) + 4 CPs
175 in process - unit busy (VL) + 4 CPs

Execution time
Instruction issue 1 CP
VM ready in 3 CPs except for use in 073 instruction
For 073 instruction, VM ready in 6 CPs

Special cases
(sj) =0if j=20

2240004 4-12

]
i 004 xxx Mormal exit
]

This instruction causes an exchange sequence. The contents of the
instruction bufférs are voided by the exchange sequence. If monitor
mode is not in effect, the normal exit flag in the F register is set.
A11 instructions issued prior to this instruction are run to completion.
When all results have arrived at the operating registers as a result

of previously issued instructions, an exchange sequence occurs to the
exchange package designated by the contents of the XA register. The
program address stored in the exchange package is advanced one count
from the address of the normal exit instruction. This instruction is
used to issue a monitor request from a user program.

Hold issue conditions

034 - 037 in process
Exchange in process

Execution time

Instruction issue 50 CPs

Special cases

Block instruction issue
Begin exchange sequence

2240004 4-13

This instruction sets the P register to the parcel address specified
by the contents of Bjk causing execution to continue at that address.
The instruction is used to return from a subroutine.

Hold issue conditions

034 - 037 in process
Exchange in process
Execution time

Instruction issue:

Both parcels of branch in a buffer and branch address in a
buffer 7 CFS

Both parcels of branch in a buffer and branch address not
in a buffer 16 CPs

Second parcel of branch not in a buffer and branch address
in a buffer 16 CPs

Second parcel of branch not in a buffer and branch address
not in a buffer 25 CPs

Special cases

The parcel following an 005 instruction is not used for branching;
however, it can cause a delay of the 005 instruction if it is
out of buffer. See execution times.

2240004 4-14 C

This two-parcel instruction sets the P register to the parcel address
specified by the low order 22 bits of the ijkm field. Execution -
continues at that address. The high order bit of the ijkm field is
ignored.

Hold issue conditions

034 - 037 in process
Exchange in process

Execution time

Instruction issue:

Both parcé]s of branch in the same buffer and branch address
in a buffer 5 CPs

Both parcels of branch in the same buffer and branch address
not in a buffer 14 CPs

Both parcels of branch in different buffers and branch
address in a buffer 7 CPs

Both parcels of branch in different buffers and branch
address not in a buffer 16 CPs

Second parcel of branch not in a buffer and branch address
in a buffer 16 CPs

Second parcel of branch not in a buffer and branch address
not in a buffer 25 CPs

Special cases

None

2240004 ‘ 4-15

!
007ijkm Return jump to ijkm; set Bgg to (P) E
1

This two-parcel instruction sets register Bgg to the address of the
following parcel. The P register is then set to the parcel address
specified by the low order 22 bits of the ijkm field. Execution
continues at that address. The high order bit of the ijkm field is
ignored. The purpose of this instruction is to provide a return
linkage for subroutine calls. The subroutine is entered via a

return jump. The subroutine returns to the caller at the instruction
following the call by executing a branch to the contents of a

B register.

Hold issue conditions
034 - 037 1in process
‘Exchange in process

Execution time

Instruction issue:

Both parcels of branch in the same buffer and branch address
in a buffer 5 CPs

Both parcels of branch in the same buffer and branch address
not in a buffer 14 CPs

Both pakce]s'of branch in different buffers and branch
" address in a buffer 7 CPs

Both parcels of branch in different buffers and branch
address not in a buffer 16.CPs

Second parcel of branch not in a buffer and branch address
in a buffer 16 CPs

Second parcel of branch not in a buffer and branch address
not in a buffer 25 CPs

Special cases

None

2240004 4-16

010ijkm Branch to ijkm if

r

i Ag) =0
]

E C1lijkm Branch to ijkm if

i

]

]

]

1

1

Ag) # O
012ijkm Branch to ijkm if (Ao) positive

013ijkm Branch to ijkm if

Ag) negative

- - " . . - o o S e e R e e G S e S S e e A e S e B e S e S T e S

These two-parcel instructions test the contents of Ay for the
condition specified by the h field. If the condition is satisfied,
the P register is set to the parcel address specified by the Tow order
22 bits of the ijkm field and execution continues at that address.

The high order bit of the ijkm field is ignored. If the condition is
not satisfied, execution continues with the instruction following the
branch 1nstrucfion.

Hold issue conditions

034 - 037 in process
Exchange in process
Ao busy in Tast 2 CPs

Execution time

Instruction issue:

Both parcels of branch in the same buffer and branch address
in a buffer 5 CPs

Both parcels of branch in the same buffer and branch address
not in a buffer 14 CPs

Both parcels of branch in different buffers and branch
address in a buffer 7 CPs

Both parcels of branch in different buffers and branch
address not in a buffer 16 CPs

Second parcel of branch not in a buffer and branch address
in a buffer 16 CPs

Second parcel of branch not in a buffer and branch address
not in a buffer 25 CPs

Both parcels of branch in the same buffer and branch not taken 2 CPs

Both parcels of branch in different buffers and branch not taken 4 CPs

Second parcel of branch not in a buffer and branch not taken 13 CPs
Special cases

(Rg) = 0 is considered a positive condition

2240004 4-17 C

1

% 014ijkm Branch to ijkm if (S;) =0 i
i 015ijkm Branch to ijkm if (S)) # 0 i
i 016ijkm Branch to ijkm if (S,) positive E
i 017ijkm Branch to ijkm if (S,) negative 3
1

o e o T o - = . o o o e T " = S = S e T G e e v e = e e e T A e = = % G S R e e mm S e R G A e e S S S e e e o

These two-parcel instructions test the contents of Sy for the condition
specified by the h field. If the condition is satisfied, the P register
is set to the parcel address specified by the low order 22 bits of the
ijkm field and execution continues at that address. The high order bit
of the ijkm field is ignored. If the condition is not satisfied,
execution continues with the instruction following the branch instruction.

Hold issue conditions

034 - 037 in process
Exchange in process
S, busy in last 2 CPs

Execution time

Instruction issue:

Both parcels of branch in the same buffer and branch address
in a buffer 5 CPs

Both parcels of branch in the same buffer and branch address
not in a buffer 14 CPs

Both parcels of branch in different buffers and branch
address in a buffer 7 CPs

Both parcels of branch in different buffers and branch
address not in a buffer 16 CPs

Second parcel of branch not in a buffer and branch address
in a buffer 16 CPs

Second parcel of branch not in a buffer and branch address

not in a buffer 25 CPs

Both parcels of branch in the same buffer and branch not taken 2 CPs

Both parcels of branch in different buffers and branch not taken 4 CPs

Second parcel of branch not in a buffer and branch not taken 13 CPs
Special cases

(Sg) = 0 is considered a positive condition

2240004 4-18 C

020ijkm Transmit jkm to Ai
021ijkm Transmit complement of jkm to Ai

The 020 instruction enters into Ai a 24-bit value that is composed of
the 22-bit jkm field and two upper bits of zero.

The 021 instruction enters into Ai a 24-bit value that is the complement

of a value formed by the 22-bit jkm field and two upper bits of zero. The
complement is formed by changing all one bits to zero and all zero bits to
one. Thus, for the 021 instruction, the upper two bits of Ai are set to one
and the instruction provides a means of entering a negative value into Afi.

The instructions are both two-parcel instructions.

Hold issue conditions .
034 - 037 in process
Exchange in process
A register access conflict

Ai reserved

Execution time

Instruction issue:
Both parcels in same buffer 2 CPs
Parcels in different buffers 4 CPs
Second parcel not in a buffer 13 CPs
Ai ready 1 CP

Special cases

None

2240004 4-19 C

— o o - - " " - " o . R G e S S = e = e e S e N G G . e SR e S S G e SR T e 0 G S e AR e e A S e em O

This one-parcel instruction enters the 6-bit quantity from the jk field
into the low order 6 bits of Ai. The upper 18 bits of Ai are zeroed.
No sign extension occurs.

Hold isssue conditions
034 - 037 in process
Exchange in process
A register access conflict

Ri reserved

Execution time
Instruction issue 1 CP
Aj ready 1 CP

Special cases
None

2240004 4-20

This instruction enters the low order 24 bits of (Sj) into Ai. The
‘"high order bits of (Sj) are ignored.

.

Hold issue conditions

034 - 037 in process
Exchange in process

A register access conflict
Ai reserved

Sj reserved

Execution time
Instruction issue 1 CP

Ai ready 1 CP

Special cases
(Sj) =0ifj=0

2240004 4-21

o oo e e e mmmmmmmmmmmm————————————————
S

E 0241jk Transmit (Bjk) to Aj

i 025ijk Transmit (Ai) to Bjk

1

The 024 instruction enters the contents of Bjk into Ai.

The 025 instruction enters the contents of Ai into Bjk.

Hold issue conditions
034 - 037 1in process
Exchange in process
A register access conflict (024 only)
Ai reserved

Execution time
For 024, Ai ready 1 CP
Instruction issue for 024 or 025 1 CP

Special cases
None

2240004 4-22

. 8 G - " e Sw - . o G = e S S P e e G e e P e S G e T G O e e v S e . -

This instruction counts the number of bits set to one in (Sj) and
enters the result into the low order 7 bits of Ai. The upper 17
bits of Ai are zeroed. ‘

The instruction is executed in the population/leading zero count unit.

Hold issue conditions
034 - 037 in process
Exchange in process
A register access conflict

Ai reserved
Sj reserved

Execution time
Instruction issue 1 CP
Ai ready 4 CPs

Special cases
(Ai) =0 ifi=0

2240004 4-23

This instruction counts the number of leading zeros in Sj and enters
the result into the low order seven bits of Ai. The upper 17 bits of
Ai are zeroed.

The instruction is executed in the population/leading zero count unit.

Hold jssue conditions
034 - 037 in process

Exchange in process
A register access conflict

Ai reserved
Sj reserved

Execution time :
Instruction issue 1 CP
Ai ready 3 CPs

Special cases
(A1)
(A1)

64 if j=0
0 if (Sj) is negative

2240004 4-24

_ 030ijk Integer sum of (Aj) and (Ak) to Ai
031ijk Integer difference (Aj) and (Ak) to Ai

These instructions are executed in the address add unit.

The 030 instruction forms the integer sum of (Aj) and (Ak) and enters
the result into Ai. Mo overflow is detected.

The 031 instruction forms the integer difference of (Aj) and (Ak) and
enters the result into Ai. No overflow is detected.

Hold issue conditions
034 - 037 in process
Exchange in process
A register access conflict

Ai, Aj, or Ak reserved

Execution time

Instruction issue 1 CP
Ai ready 2 CPs

Special cases

For 030:
(Ai)= (Ak) ifj=0and k#0
(A1) = ifj=0and k=0
(Ai)= (Aj)+1 if j#0and k =0

For 031: v
(Ai)= -(Ak) if j=0and k # 0
(Af)= -1 ifj=0and k=0
(Ai)= (Aj)-1 if j#0and k=0

2240004 4-25

This instruction forms the integer product of (Aj) and (Ak) and
enters the Tow order 24 bits of the result into Ai. No overflow
is detected.

This instruction is executed in the address multiply unit.

Hold issue conditions

034 - 037 in procéss
Exchange in process

A register access conflict
Ai, Aj, or Ak reserved

Execution time
Instruction issue 1 CP
Ai ready 6 CPs

Special cases
(Ai) and (Aj) =0if j=0
(Ak) = 1 and (Ai) = (Aj) ifk=0and j # 0

2240004 4-26

This instruction enters channel status information into Ai. The j
and k designatofs and the contents of Aj define the desired information.

033i0x Channel number of highest priority interrupt request
to Ai

033ij0 Current address of channel (Aj) to Ai

033ij1 Error flag of channel (Aj) to Ai

The channel number of the highest priority interrupt request is entered
into Ai when the j designator is zero. The contents of Aj speCifies a
channel number when the j designator is nonzero. The value of the
current address (CA) register for the channel is entered into Ai when
the k designator is an even number. The error flag for the channel is
entered into the low order bit of Ai when the k designator is an odd
number. The high-order bits of Ai are cleared. The error flag can be
cleared only in monitor mode using the 0012 instruction.

The 033 instruction does not interfere with channel operation and is
not protected from user execution.

Hold issue conditions

034 - 037 in process
Exchange in process
A register access conflict

Ai reserved
Aj reserved

Execution time

Instruction issue 1 CP
Ai ready 4 CPs

2240004 4-27

Special cases

2240004

(Ai) = highest priority channel causing interrupt if (Aj) = 0
(Ai) = current address of channel (Aj) if (Aj) # 0 and k = 0,2,4,6
(Ai) =

I/0 error flag of channel (Aj) if (Aj) # 0 and k = 1,3,5,7
(A1) = 0 if (AJ) =1

2 CPs must elapse after an 0012xx instruction issue before issuing
an 033700 instruction.

4-28 C

0341 jk Block transfer (Ai) words from memory starting at
address (Ap) to B registers starting at register jk.
035ijk Block transfer (Ai) words from B registers starting
at register jk to memory starting at address (Ag)
0361ijk Block transfer (Ai) words from memory starting at
address (Ag) to T registers starting at register jk
0371ijk Block transfer (Ai) words from T registers starting
at register jk to memory starting at address (Ag)

These instructions perform block transfers between memory and B or T
registers. o

In all of the instructions, the amount of data transferred is specified

by the lower seven bits of (Ai). See special cases for detaijls.

The first register involved in the transfer is specified by jk. Successive
transfers involve successive B or T registers until B4y or Ty7 is reached.
Since processing of the registers is circular, Bgg will be processed

after Byy and Tgq will be processed after Ty7 if the count in (Ai) is

not exhausted.

The first memory location referenced by the transfer instruction is _
specified by (Ag). The Ap register contents are not altered by
execution of the instruction. Memory references are incremented by one
for successive transfers.

For transfers of B registers to memory, each 24-bit value is right adjsated
in the word; the upper 40 bits are zeroed. When transferring from memory
to B registers, only the low order 24 bits are transmitted; the upper 40
bits are ignored.

2240004 4-29 C

Hold issue conditions

A, reserved

Ai reserved

Block sequence flag set (034 - 037, 176, 177)
034 - 037 in process

Exchange in process

Scalar reference in CP2

Rank B data valid

Fetch request in last clock period

I/0 memory request

Execution time

For 034, 036:
Instruction issue 14 CPs + (Ai) if (Ai) # 0; 5 CPs if (Ai) =0

For 035, 037:
Instruction issue 6 CPs + (Ai) if (Ai) # 0; 7 CPs if (Ai) = 0

Special cases

1.
2.
3.

2240004

Block all issues when in process.

Block all I/0 references.

An out-of-range memory reference will cause an interrupt condition
to occur. For 034, 036, the interrupt will occur in 2 CP + 2 jssues.
For 035, 037, the interrupt will occur in 0 to 2 CP + 2 jssues,
For 034, 036, memory reference out of Timits will allow two
parcels to issue. For 035, 037, two to four parcels will issue.
An uncorrected memory parity error will allow a minimum of 2
issues and a maximum of 7 CPs + 2 issues.

(Ai) = 0 causes a zero block transfer.

200g > (Ai) > 100 causes a wrap-around condition

(A1) > 1774, bits 27 through 223 are truncated. The block
transfer is equal to the value of 2% through 26.

(Ag) is used as the block length if i = 0.

4-30 C

1
040ijkm Transmit jkm to Si i
04lijkm Transmit complement of jkm to Si 5

1

. . e e 0 T T G - O T " . = S e S S e S S S G e S Gw - G - e S S S A = S MBS G A AR M = . -

These two-parcel instructions provide for entering immediate values
into an S register.

The 040 instruction enters into Si a 64-bit value that is composed
of the 22-bit jkm field and 42 upper bits of zero.

The 041 instruction enters into Si a.64-bit valué that is the complement
of a value formed by the 22-bit jkm field and 42 upper bits of zero. The -
complement is formed by changing all one bits to zero and all zero bits
to one. Thus, for the 041 instruction, the upper 42 bits of Si are
set to one and the instruction provides for entering a negative value
into Si. '
Hold issue conditions

034 ~ 037 in process

Exchange in process

S register access conflict /
Si reserved

Execution time

Instruction issue
Both parcels in same buffer 2 CPs

Both parcels in different buffers 4 CPs
Second parcel not in a buffer 13 CPs
Si ready 1 CP

Special cases

None

2240004 4-31

"
1
042ijk Form 64-jk bits of one's mask in Si from right :
]
0431ijk Form jk bits of one's mask in Si from left i

1

- T = T - S = Y e S mm g R e 6 G R e G G e R S S e e U A e S e S

The 042 instruction generates a mask of 64-jk ones from right to left
in Si. Thus, for example, if jk = 0, Si contains all one bits and if
jk = 778, Si contains zeros in all but the lowest order bit.

The 043 instruction generates a mask of jk ones from left to right in
Si. Thus, for example, if jk = 0, Si contains all zeroed bits and if
jk = 778, Si contains ones in all but the Towest order bit.

These instructions are executed in the scalar loaical unit.
Hold issue conditions

034 - 037 in process
Exchange in process

S register access conflict
Si reserved

Execution time

Instruétion issue 1 CP
Si ready 1 CP

Special cases

None

2240004 4-32

. 1
04443k Logical product of (Sj) and (Sk) to Si E
0451 jk Logical product of (Sj) and complement of (Sk) to Si E
0461 jk Logical difference of (Sj) and (Sk) to Si E
0471jk Logical equivalence of (Sk) and (Sj) to Si E
0501 jk Scalar merge | E
051ijk Logical sum of (Sj) and (Sk) to Si :

]

P - = G5 G n - R M o - T o S = S e m S e G R G . 8 e A e S e S = = T e S G - . - -

These instructions are executed in the scalar logical unit.

~ The 044 instruction forms the logical product (AND) of {Sj) and (Sk)
and enters the result into Si. Bits of Si are set to one when the -
corresponding bits of (Sj) and (Sk) are one as in the following example:

S (Sj)=1100
(Sk)=1010
(Si)=1000

(Sj) is transmitted to Si if the j and k designators have the same non-
zero value. Si is cleared if the j designator is zero. The sign bit
of (Sj) is extracted into Si if the j designator is nonzero and the k
designator is zero.

The 045 instruction forms the logical product (AND) of (Sj) and the

complement of (Sk) and enters the result into Si. Bits of Si are set
to one when the corresponding bits of (Sj) and the complement of (Sk)
are one as in the following example:

() =1100
(Sk) =1010
(5i) =0100

Si is cleared if the j and k designators have the same value or if the
j designator is zero. (Sj) with the sign bit cleared is transmitted
to Si if the j designator is non-zero and the k designator is zero.

2240004 4-33

The 046 instruction forms the logical difference (exclusive OR) of
(Sj) and (Sk) and enters the result into Si. Bits of Si are set to
one when the corresponding bits of (Sj) and (Sk) are different as in
the following example:

(Sj)=1100
(Sk) =1010
(Ssi)=0110

Si is cleared if the j and k designators have the same nonzero value.
§Sk) is transmitted to Si if the j designator is zero and the k
designator is nonzero. The sign bit of (Sj) is complemented and the
result is transmitted to Si if the j designator is nonzero and the

k designator is zero.

The 047 instruction forms the logical equivalence o7 (Sj) and (Sk), and
enters the result into Si. Bits of Si are set to one when the -
corresponding bits of (Sj) and (Sk) are the same as in the

following example:

/

(Ssj)=1100
(Sk) =1010
(Si)=1001

Si is set to all ones if the j and k designators have the same nonzero
value. The complement of (Sk) is transmitted to Si if the j designator
is zero and the k designator is nonzero. A11 bits except the sign bit:
of (Sj) are complemented and the result is transmitted to Si if the j
designator is nonzero and the k designator is zero.

The 050 instruction merges the contents of (Sj) with (Si) depending
on the ones mask in Sk. The result is defined by the Boolean equation
(Si) = (Sj)(Sk) + (Si)(Sk) as illustrated in the following example:

(Sk) =11110000
(Si)=11001100
(Sj)=10101010
(Si)=10101100

2240004 : 4-34

The 050 instruction is intended for merging portions of 64-bit words
into a composite word. Bits of Si are cleared when the corresponding
bits of Sk are one if the j designator is zero and the k designator is
nonzero. The sign bit of (Sj) replaces the sign bit of Si if the j
designator is nonzero and the k designator is zero. The sign bit of
Si is cleared if the j and k designators are both zero.

The 051 instruction forms the logical sum (inclusive OR) of (Sj) and
(Sk) and enters the result into Si. Bits of Si are set when one of
the corresponding bits of (Sj) and (Sk) is set as in the following example:

(sj)=1100
(Sk) =1010
(Si)=1110

(Sj) is transmitted to Si if the j and k designators have the same
nonzero value. (Sk) is transmitted to Si if the j designator is zero
and the k designator is nonzero. (Sj) with the sign bit set to one

is transmitted to Si if the j designator is nonzero and the k désignator
is zero. A ones mask consisting of only the sign bit is entered into

Si if the j and k designators are both zero.

Hold issue conditions
034 - 037 in process

Exchange in process
S register access conflict
Si, Sj, and Sk reserved

Execution time

Si ready 1 CP
Instruction issue 1 CP

Special cases
(Sj) =0if j=0
(sk) = 2°% if k = 0

2240004 4-35 . : : C

r
§ 05215k Shift (Si) Teft jk places to Sg
i 053ijk Shift (Si) right 64-jk places to Sg
E 0541 jk Shift (Si) left jk places to Si
i 0551 jk Shift (Si) right 64-jk places to Si
1

These instructions are executed in the scalar shift unit. They
shift values in an S register by an amount specified by jk. Al
shifts are end off with zero fill.

The 052 instruction shifts (Si) left jk places and enters the result
into So. |

The 053 instruction shifts (Si) right by 64-jk places and enters the
result into So.

The 054 instruction shifts (Si) left jk places and enters the result
into Si.

The 055 instruction shifts (Si) right by 64-jk places and enters the
result into Si.

Hold issue conditions
034 - 037 in process
Exchange in process

S register access conflict
Si.reserved
Sg reserved (052 and 053 only)

Execution time
For 052, 053, So ready 2 CPs

For 054, 055, Si ready 2 CPs
Instruction issue 1 CP

Special cases

None

2240004 4-36

L e e Y T ey

E 05617 jk Shift (Si) and (Sj) left by (Ak) places to Si
E 057ijk Shift (Sj) and (Si) right by (Ak) places to Si
L

These instructions are executed in the scalar shift unit. They shift
128-bit values fromed by logically joining two S registers. Shift counts
are obtained from register Ak. A shift of one place occurs if the k
designator is zero.

A11 shifts are end-off with zero fill. The shift is effectively a
circular shift if the shift count does not exceed 64 and the i and j
designators are equal and nonzero. For both the 056 and 057 instructions,
(Sj) are unchanged.

The 056 instruction performs left shifts of (Si) and (Sj) with (Si)
initially the most significant bits of the double register. The high-
order 64 bits of the result are transmitted to Si. Si is cleared if the
shift count exceeds 127. The 056 instruction produces the same result
as the 054 instruction if the shift count does not exceed 63 and the j

designator is zero.
)

The 057 instruction performs right shifts of (Sj) and (Si) with (Sj)
initially the most significant bits of the double register. - The Tow-order
64 bits of the result are transmitted to Si. Si is c]eared‘if the shift
count exceeds 127. The 057 instruction produces the same result as the
055 instruction if the shift count does not exceed 63 and the j designator
is zero.
Hold issue conditions

034 - 037 1in process

Exchange in process
S register access conflict
Si, Sj, or Ak reserved

Execution time
Si ready 3 CPs
Instruction issue 1 CP

Special cases
(Sj) = 0 if j
(Ak) = 1 if k .
2240004 4-37 C

It
]

.
]

E 0601 jk Integer sum of (Sj) and (Sk) to Si

i 0611jk Integer difference of (Sj) and (Sk) to Si
1

These instructions are executed in the scalar add unit.

The 060 instruction forms the integer sum of (Sj) and (Sk) and enters
the result into Si. No overflow is detected.

The 061 instruction forms the integer difference of (Sj) and (Sk) and
enters the result into Si. No overflow is detected.

Hold issue conditions

034 - 037 in process
Exchange in process

S register access conflict
Si, Sj, or Sk reserved

Execution time

Si ready 3 CPs
Instruction issue 1 CP

Special cases

For 060:

(Si) = (Sk) ifj=0and k # 0

(si)=2%% ifj=0and k=0

(Si) = (Sj) with 253 complemented if j # 0 and k = 0
For 061:

(si) = -(Sk) ifj=0and k #0

(Si) = (Sj) with 263 complemented if j # 0 and k = 9

2240004 4-38

———

1
i 062ijk Floating sum of (Sj) and (Sk) to Si

i 063ijk Floating difference of (Sj) and (Sk) to Si
1

These instructions are performed by the floating point add unit.
Operands are assumed to be in floating point format. The result is
normalized even if the operands are unnormalized. Underflow and
overf]dw conditions are described in Section 3.

The 062 instruction forms the sum of the floating point quantities
in Sj and Sk and enters the normalized result into Si.

The 063 instruction forms the difference of the floating point
quantities in Sj and Sk and enters the normalized result into Si.
.

Hold issue conditions

034 - 037 in process

Exchange in process

Si register access conflict

Si, Sj, or Sk reserved

170 - 173 in process; unit busy (VL) + 4 CPs

Execution time
Si ready 6 CPs
Instruction issue 1 CP

Special cases -
For 062:
(S9)

(Sk) normalized if j=0and k # 0

(Si) = (Sj) normalized if (Sj) exponent is valid, j # 0 and k
For 063:

(Si) = -(Sk) normalized if j = 0 and k # O

(Si) = (Sj) normalized if (Sj) exponent is valid, j ¢\0 and k

Arithmetic error allows 0 to 9 CPs + 2 parcels to issue before

interrupt occurs if f.p. error flag is set.

2240004 4-39

0641 jk Floating product of (Sj) and (Sk) to Si

0651 jk Half-precision rounded floating product of (Sj) and
(sk) to Si /

0661ijk Rounded floating product of (Sj) and (Sk) to Si

067ijk Reciprocal iteration; 2-(Sj)*(Sk) to Si

These instructions are executed by the floating point multiply unit.
Operands are assumed to be in floating point format. The result is
not guaranteed to be normalized if the operands are unnormalized.

The 064 instruction forms the product of the floating point quantities
in Sj and Sk and enters the result into Si.

The 065 instruction forms the half-precision rounded product of the
floating point quantities in Sj and Sk and enters the result into Si.
The low order 18 bits of the result are cleared.

The 066 instruction forms the rounded product of the floating point
quantities in Sj and Sk and enters the result into Si.

The 067 instruction forms two minus the product of the floating point
quantities in Sj and Sk and enters the result into Si. This instruction
is used in the divide sequence as described in Section 3 under Floating
Point Arithmetic.

Hold issue conditions

034 - 037 1in process

Exchange in process

S register access conflict

Si, Sj, or Sk reserved

160 - 167 in process; unit busy (VL) + 4 CPs

2240004 4-40 C

Execution time
Instruction issue 1 CP
Si ready 7 CPs

Special cases
(Sj) =0if j=0
(Sk) = 263 if k =0

Arithmetic error allows 0 to 9 CPs + 2 parcels to issue
before interrupt occurs if f.p. error flag is set.

2240004 4-41

This instruction is executed in the reciprocal approximation unit.

The instruction forms an approximation to the reciprocal of the normalized
floating point quantity in Sj and enters the result into Si. This
instruction occurs in the divide sequence to compute the quotient of
two floating point quantities as described in Section 3 under Floating
Point Arithmetic.

y
The reciprocal approximation instruction produces a result that is
accurate to 27 bits. A second approximation may be generated to
extend the accuracy to 47 bits using the reciprocal iteration instruction.

Hold issue conditions
034 - 037 in process
Exchange in process
Si or Sj reserved
174 in process; unit busy (VL) + 4 CPs

Execution time
Si ready 14 CPs
Instruction issue 1 CP

Special cases

An arithmetic error allows 17 CPs + 2 parcels to issue if the
f.p. error flag is set.

(Si) is meaningless if (Sj) is not normalized; the unit assumes
that bit 247 of (Sj) = 1; no test is made of this bit.

(s3)
(S3)

0 produces a range error; the result is meaningless.

0if j=0.

2240004 4-42 C

0711 jk Transmit (Ak) or normalized floating point constant
to Si

This instruction performs one of several functions depending on the
value of the j designator. The functions are concerned with trans-
mitting information from an A register to an S register and with
generating frequently used floating point constants.

07140k Transmit (Ak) to Si with no sign extension

07171k Transmit (Ak) to Si with sign extension

07112k Transmit (Ak) to Si as unnormalized floating point
number

0713k Transmit constant 0.75 x 2"° to S

07114k Transmit constant 0.5 to Si

071i5k Transmit constant 1.0 to Si

07146k Transmit constant 2.0 to Si

07117k Transmit constant 4.0 to Si

When the j designator is 0, the 24-bit value in Ak is transmitted to
Si. The value is treated as an unsigned integer. The high-order bits
of Si are cleared.

When the j designator is 1, the 24-bit value in Ak is transmitted to
Si. The value is treated as a signed integer. The sign bit of Ak is
extended to the high order bit of Si.

When the j designator is 2, the 24-bit value in Ak is transmitted to
Si as an unnormalized floating point quantity. The result can then
be added to zero to normalize. For this instruction, the exponent in
bits 1 through 15 is set to 400604. The sign of the coefficient is
set according to the sign of Ak. If the sign bit of Ak is set, the
two's complement of Ak is entered into Si as the magnitude of the
coefficient and bit 0 of Si is set for the sign of the coefficient.

2240004 4-43

48
When the j designator is 3, the constant 0.75 x 2 ~ is entered .into
Si. |

When the j designator is 4, 5, 6, or 7, the normalized f]oating poﬁ'ﬁt~
constant 0.5, 1.0, 2.0, or 4.0, respectively is transmitted to Si.

Hold issue conditions

034 - 037 in process
Exchange in process

Si register access conflict
Si reserved

Ak reserved (a1l instructions)

Execution time

Si ready 2 CPs
Instruction issue 1 CP

Special cases

(Ag) = 1 if k=0

(si) = (Ak) if j =0

(Si) = (Ak) sign extended if j =1
(Si) = (Ak) unnormalized if j = 2
(si) = 0.6 x 28° (octal) if j = 3
(Si) = 0.4 x 2% (octal) if j = 4
(5i) = 0.4 x 2! (octal) if j =5
(Si) = 0.4 x 22 (octal) if j =6
(si) = 0.4 x/23 (octal) if j =7

12240004 4-44

r
| 072ixx Transmit (RTC) to Si
E 0731 xx Transmit (VM) to Si

i 074ijk Transmit (Tjk) to Si
i 075ijk Transmit (Si) to Tjk
i

These instructions transmit register values to Si except for instruction
075 which transmits (Si) to Tjk.

The 072 instruction enters the 64-bit value of the real-time clock into
Si. The clock is incremented by one each clock period. The real-time
clock is cleared by the operating system at system initialization and
can be reset only by the monitor through use of the 0014 instruction.

The 073 instruction enters the 64-bit value of the vector mask (VM)
register into Si. The VM register is usually read after having been set
by the 175 instruction.

The 074 instructioﬁ enters the contents of Tjk into Si.

The 075 instruction enters the contents of Si into Tjk.

Hold issue conditions
034 - 037 in process
Exchange in process
Si register access conflict (072, 073, and 074 only)
Si reserved

For 073 only: ,
175 in process, unit busy (VL) + 6 CPs
003 in process, unit busy 6 CPs

Execution time
Instruction issue 1 CP
For 072 through 074, Si ready 1 CP
For 075, Tjk ready 1 CP

Special cases
None

2240004 4-45

- - T . m S o . . . T T A S B G G e e W e G e G S e G G e G G B e T e SR B e S R S e

0761 jk Transmit (Vj element (Ak)) to Si
0771k Transmit (Sj) to Vi element (Ak)

These instructions transmit a 64-bit quantity between a V register
element and an S register.

The 076 instruction transmits the contents of an element of register

Vj to Si.

The 077 instruction transmits the contents of register Sj to an element
of register Vi.

The low-order six bits of (Ak) determine the vector element for either
instruction.

Hold issue conditions
034 - 037 in process
Exchange in process
Ak reserved
Si register access conflict (076 only) : ,
For 076, Si and Vj reserved
For 077, Vi and Sj reserved

Execution time
Instruction issue 1 CP
For 076, Si ready 5 CPs
For 077, Vi ready 3 CPs

Special cases
(S3)
. (Ak)

"
o O

0 if J
1i4f k

2240004 4-46

TN - > e S G S T G G S M e T R A T G e S e - S S e S S G G S G S S M N G G e T R B me G S e S S G -

10hijkm Read from ((Ah) + jkm) to Ai
11hijkm Store (Ai) to (Ah) + jkm
12hijkm Read from ((Ah) + jkm) to Si
13hijkm Store (Si) to (Ah) + jkm

These two parcel instructions transmit data between memory and an A
register or an S register. The content of Ah is added to the signed
integer in the jkm field to determine the memory address. If h is 0,
(Ah) is 0 and only the jkm field is used for the address. The address
arithmetic is performed by an address adder similar to but separate
from the address add unit.

The 10h and 11h instructions transmit 24-bit quantities to or from

A registers. When transmitting data from memory to an A register, the
upper 40 bits of the memory word are ignored. On a store from Ai into
memory, the upper 40 bits of the memory word are zeroed.

The 12h and 13h instructions transmit 64-bit quantities to or from
register Si.

Hold issue conditions
034 - 037 in process
Exchange in process
Rank A conflict and unit busy 3 CPs
Rank B conflict and unit busy 2 CPs
Rank C conflict and unit busy 1 CP
Storage hold continuation
Ah reserved
For 10h and 11h only, Ai reserved
For 12h and 13h only, Si reserved

For 12h only, Si register access conflict
Fetch request in last clock period

2240004 4-47

Execution time

Instruction issue:
Both parcels in same buffer 2 CPs
Parcels in different buffers 4 CPs
Second parcel not in a buffer 13 CPs
10h only, Ai ready 11 CPs
12h only, Si ready 11 CPs
Memory ready for next scalar read or store 4 CPs

Special cases
Rank A conflict, 3 CPs delay before Si ready
Rank B conflict, 2 CPs delay before Si ready
Rank C conflict, 1 CP delay before Si ready
Hold storage, 1 CP delay if 070 access conflict occurs
An uncorrected memory parity error will allow 14 CP + 2 parcels
to issue
An out of range error will allow 5 CP + 2 parcels to issue
(Ah) =0 ifh=0

2240004 4-48

1
1
1
1
1
1
1
1
1
!
1
i
1
1
1
]
]
1
1
]
1
1
1
1
1
1
]
1
1
1
1
[}
1
1
1
1
1
]
1
1
!
1
1
1
!
1
}
1
1
1
I
1
I
1
I
I
1
1
]
)
1
1
1
1
]
1
1
]
1
]
]
1

14093k Logical products of (Sj) and (Vk elements) to Vi
elements

1411jk Logical products of (Vj elements) and (Vk elements)
to Vi elements

1421 jk Logical sums of (Sj) and (Vk elements) to Vi elements

14313k Logical sums of (Vj elements) and (Vk elements) to
Vi elements

1444 jk Logical differences of (Sj) and (Vk elements) to
Vi elements

1451 jk Logical differences of (Vj elements) and (Vk elements)
to Vi elements

14613k If VM bit = 1, transmit
If VM bit

1474k If VM bit = 1, transmit
If VM bit = 0, transmit

——

Sj) to Vi elements

Vk elements) to Vi elements
Vj elements) to Vi elements
Vk elements) to Vi elements

0, transmit

o~ N o~ o~

o WS PR = s S A T e EE . S A S G S R G e SR B S T WO S W SR T A G S G W M G G W G S .
- - — . A - e - . = e . S - e D R S R AR S S G e M S - e s M S N G S G e e e

These instructions are executed by the vector logical unit. The number
of operations performed is determined by the contents of the VL register.
A11 operations start with element zero of the Vi, Vj, or Vk register and
increment the element number by one for each operation performed. All
results are delivered to Vi.

For instructions 140, 142, 144, and 146, the content of Sj is delivered.
to the functional unit for each operation as one of the operands. For
instructions 141, 143, 145, and 147, all operands are obtained from V
registers.

+ Instructions 14Q and 141 form the logical products (AND) of pairs of
operands and enter the result into Vi. Bits of an element of Vi are set
to one when the corresponding bits of (Sj) or (Vj element) and (Vk
element) are one as in the following:

2240004 4-49 ‘ C

(Sj) or (Vj element) = 1100
(Vk element) =1010
(Vi element) =1000

The 142 and 143 instructions form the Togical sums (inclusive OR) of
pairs of operands and deliver the results to Vi. Bits of an element
of Vi are set to one when one of the corresponding bits of (Sj) or
(Vi element) and (Vk element) is one as in the following:

(Sj) or (Vj element) =1100
(Vk element) =1010
(Vi element) =1110

The 144 and 145 instructions form the logical differences (exclusive
OR) of pairs of operands and deliver the results to Vi. Bits of an
element are set to one when the corresponding bit of (Sj) or (Vj
element) are different from (Vk.element) as in the following:

(Sj) or (Vj element) =1100
(Vk element) =1010
(Vi element) =0110

The 146 and 147 instructions transmit operands to Vi depending on the
contents of the vector mask register (VM). Bit 0 of the mask |
corresponds to element 0 of a V register. Bit 63 corresponds to
element 63. Operand pairs used for the selection depend on the
instruction. For the 146 instructions, the first operand is always
(Sj), the second operand is (Vk element). For the 147 instruction,
the first operand is (Vj element) and the second operand is (Vk
element). If bit n of the vector mask is one, the first operand is
transmitted; if bit n of the mask is zero, the second operand (Vk
element) is selected.

2240004 : 4-50

Examples
1.Suppose that a 146 instruction is to be executed and the following

register conditions exist:
(VL) = 4
(vM) = 0 60000 0000 0000 0000 0000
(s2) = -1
(Element 0) of V6
(Element 1) of V6
(Element 2) of V6
(Element 3) of V6 = 4
Instruction 146726 is executed and following execution, the first four
elements of V7 contain the following values:
(Element 0) of V7 =1
(Element 1) of V7 = -1
(Element 2) of V7 = -1
(ETement 3) of V7 = 4
The remaining elements of V7 are unaltered.

1
2
3

Suppose that a 147 instruction is to be executed and the following
register conditions exist: '

(VL) = 4

(vM) = 0 600000 0000 0000 0000 0000

(Element 0) of V2 =1 (Element 0) of V3 = -1
(Element 1) of V2 = 2 (Element 1) of V3 = -2
(Element 2) of V3 = 3 (Element 2) of V3 = -3
(Element 3) of V4 = 4 (ETement 3) of V3 = -4

Instruction 147123 is executed and following execution, the first four
elements of V1 contain the following values:

(Element 0) of V1 = -1
(Element 1) of V1 =
(Element 2) of V1 =
(Element 3) of V1 = -4

The remaining elements of V1 are unaltered.

2240004 4-51 C

Hold issue conditions

034 - 037 1in process

Exchange in process

Vi or VK reserved

14x in process, unit busy (VL) + 4 CPs
175 in process, unit busy (VL) + 4 CPs
003 in process, unit busy 3 CPs

For 140, 142, 144, 146 only, Sj reserved
For 141, 143, 145, 147 only, Vj reserved

Execution time

7

Instruction issue 1 CP

Vi ready 9 CPs if (VL)< 5

Vi ready (VL) + 4 CPs if (VL) > 5
Vj or Vk ready 5 CPs if (VL) £ 5

Vj or Vk ready (VL) CPs if (VL)>5
Unit ready (VL) + 4 CPs

Chain slot ready 4 CPs

Special cases

(Sj) = 0 if j = 0

2240004 4-52

1501 jk Single shift of (Vj elements) left by (Ak) places to
Vi elements '

151ijk Single shift of (Vj elements) right by (Ak) places to
Vi elements

e G o —— o " = S Gm - . SR e m S G e e A G S e S R S G S e A SR S G S S e S S G e G G W G G G

These instructions are executed in the vector shift unit. The number

of operations performed is determined by the contents of the VL register.
Operations start with element 0 of the Vi and Vj registers and end with
elements specified by the contents of VL.

A11 shifts are end-off with zero fill. The shift count is obtained
from (Ak) and elements of Vi are cleared if the shift count exceeds 63.

Hold issue conditions
034 - 037 in process
Exchange in process

Vi or Vj reserved
Ak reserved
150 - 153 in process, unit busy (VL) + 4 CPs

Execution time

Instruction issue 1 CP

Vi ready 11 CPs if (VL) <5

Vi ready (VL) + 6 CPs if (VL) > 5
Vj ready 5 CPs if (VL) = 5

Vj ready (VL) CPs if (VL) > 5
Unit ready (VL) + 4 CPs

Chain slot ready 6 CPs

Special cases
(Ak) =1 if k=0 .

2240004 4-53 C

1521 jk Double shifts of (Vj elements) Teft (Ak) places to
Vi elements

1531 jk Double shifts of (Vj elements) right (Ak) places to
Vi elements

These instructions are executed in the vector shift unit. They shift
128-bit values formed by logically joining the contents of two elements
of the Vj register. The direction of the shift determines whether the
upper bits or the lower bits of the result are sent to Vi. Shift counts

are obtained from register Ak.
A11 shifts are end-off with zero fill.
The number of operations is determined by the contents of the VL register.

The 152 instruction performs left shifts. In the general case, element

0 of Vj is joined with element 1 and the 128-bit quantity is shifted left
by the amount specified by (Ak). The 64 high order bits of the result
are transmitted to element 0 of Vi. The figure below illustrates this

operation.
(Element 0) of V] (Element 1) of Vj
(Element 0) 14——(Ak)
End ;;f 64-bit result to element 0 of Vi

"1f (VL) were 1, element O would have been joined with 64 bits of zero and
only the one operation would be performed. If (VL) > 2, the operation
continues by joining element 1 with element 2 and transmitting the 64-bit
result to element 1 of Vi. This is illustrated as follows:

(Element 1) of Vj (Element 2) of Vj

(Element 1)

-<—(Ak)

—

Endvgff 6L4-bit result to element 1 of Vi

2240004 4-54 C

If (VL) were 2, however, element 1 would have been joined with 64 bits of
zero and only two operations would be performed. Thus, the last element

of Vj as determined by (VL) is joined with 64 bits of zeros. The following
figure illustrates this operation.

(Element (VL)-1) of Vj 000......... 0
(Elemen ..0 ~—— (Ak)
End of f 6L4-bit result to element (VL)-1 of Vj

If (Ak) > 128, the result is all zeros. If (Ak) > 64, the result register
contains (Ak) - 64 zeros.

Example:

Suppose that a 152 instruction is to be executed and the following
register conditions exist:

(VL) = 4

(A1) = 3

(Element 0) of V4 = 0 00000 0000 0000 0000 0007

(Element 1) of V4 = 0 60000 0000 0000 0000 0005

(Element 2) of Vu = 1 00000 0000 0000 0000 0006

(Element 3) of Vu = 1 60000 0000 0000 0000 0007

Instruction 152541 1is executed and following execution, the first four

elements of Vs contain the following values:
(Element 0) of Vg = 0 0000C 0000 0000 0000 0073

(Element 1) of V= 0 0000C 0000 0000 0000 0054
(Element 2) of V= 0 00000 0000 0000 0000 0067
(Element 3) of V= 0 00000 0000 0000 0000 0070

2240004 4-55 C

The 153 instruction performs right shifts. Element 0 of Vj is joined
with 64 Tow-order bits of zero and the 128 bit quantity js shifted

right by the amount specified by (Ak). The 64 Tlow-order bits of the
result are transmitted to element 0 of Vi. The figure below illustrates
this operation.

000......... 0 (Element 0) of Vj

6h-bit result to " End off
element 0 of Vi

If (VL) = 1, only the one operation is performed. In the general case,
however, instruction execution continues by joining element O with
element 1, shifting the 128-bit quantity by the amount specified by (Ak),
and transmitting the result to element 1 of Vi. This operation is shown
below.

(Element 0) of Vj (Element 1) of Vj

(AK) — (Element 1) of Vj

64-bit result to End off
element 1 of Vj

The last operation performed by the instruction joins the last element
of Vj as determined by (VL) with the preceding element. The following
figure illustrates this operation.

(Element (VL)-2) of V] (Element (VL)-1) of Vj

(Ak) —» (Element (

64-bit result to End off
element (VL)-1 of Vj

2240004 4-56 C

If (Ak) > 128, the result is all zeros. If (Ak) > 64, the result register
contains (Ak) - 64 zeros.

Example:
Suppose that a 153 instruction is to be executed and the following
register conditions exist:

(VL) = 4

(A6) = 3

(Element 0) of V,

(Element 1) of V,

0 00000 0000 0000 0000 0017
0 60000 0000 0000 0000 0006
(Element 2) of V, = 1 00000 0000 0000 0000 0006
(Element 3) of V, = 1 60000 0000 0000 0000 0007
Instruction 153026 is executed and fo]]owiné execution, register Vo
contains the following values:
(Element 0) of Vo = 0 00000 0000 0000 0000 0001
(Element 1) of Vo = 1 66000 0000 0000 0000 0000
(Element 2) of V¢ = 1 50000 0000 0000 0000 0000
(Element 3) of Vo = 1 56000 0000 0000 0000 0000
The remaining elements of Vo are unaltered.

n

Hold issue conditions
034 - 037 in process
Exchange in process

Vi or Vj reserved
Ak reserved
150 - 153 in process, unit busy (VL) + 4 CPs

Execution time
Instruction issue 1 CP
Vi ready 11 CPs if (VL) =5
Vi ready (VL) + 6 CPs if (VL) > 5

2240004 4-57 | C

Execution time (continued)
Vj ready 5 CPs if (VL) < 5
Vj ready (VL) CPs if (VL) > 5
Unit ready (VL) + 4 CPs
Chain slot ready 6 CPs

Special cases ‘
(Ak) =1 if k=0

2240004 4-58

1541 jk Integer sums of (Sj

) and (Vk elements) to Vi elements

1551 jk Integer sums of (Vj elements) and (Vk elements) to

Vi elements

Vi elements

157ijk Integer differences of (Vj elements) and (Vk elements)

to Vi elements

]
]
]
1
]
1
1
]
i
1
1
! 1561 jk Integer differences of (Sj) and (Vk elements) to
1
[]
1
1
1
1
1
1
1
]
1

These instructions are executed by the vector add unit.

Instructions 154 and 156 perform integer addition. Instructions 155

and 157 perform integer subtraction.

The number of additions or

subtractions performed is determined by the contents of the VL register.
A11 operations start with element zero of the V registers and increment
the element number by one for each operation performed. A1l results

are delivered to elements of Vi. No overflow is detected.

Instructions 154 and 156 deliver (Sj
of the operands for each operation.

1

) to the functional unit as one
The other operand is an element

of Vk. For instructions 155 and 157, both operands are obtained from

V registers.

Hold issue conditions

034 - 037 in process
Exchange in process
Vi or Vk reserved

154 - 157 in process, unit busy (VL) + 4 CP%
For 154 and 156 only, Sj reserved
For 155 and 157 only, Vj reserved

2240004

4-59

Execution time
Instruction issue 1 CP
Vi ready 10 CPs if (VL) < 5
Vi ready (VL) + 5 CPs if (VL) > 5
Vj or Vk ready 5 CPs if (VL) <5
Vi or Vk ready (VL) CPs if (VL) > 5
Unit ready (VL) + 4 CPs
Chain slot ready 5 CPs

Special cases
For 154, if j
For 156, if J

0, then (Sj) = 0 and (Vi element) = (Vk element)
0, then (Sj) = 0 and (Vi element) = -(Vk element)

/2240004 4-60

!
1601jk Floating products of (Sj) and (Vk elements) to Vi E
elements i

1617 jk Floating products of (Vj elements) and (Vk e1ements)i
to Vi elements E

1621 jk Half-precision rounded floating products of (Sj) i
and (Vk elements) to Vi elements i

163ijk Half-precision rounded floating products of (Vj i
elements) and (Vk elements) to Vi elements i

1641k Rounded floating products of (Sj) and (Vk elements) i

: to Vi elements i

1651 jk Rounded floating products of (Vj elements) and (Vk i
elements) to Vi elements E

1661 jk Reciprocal iterations; 2 - (Sj) * (Vk elements) to E
Vi elements i

1671 jk Reciprocal iterations; 2 - (Vj elements) * (Vk E
elements) to Vi elements E

1

1

These instructions are executed in the floating point multiply unit.
The number of operations performed by an instruction is determined by
the contents of the VL register. A1l operations start with element
zero of the V registers and increment the element number by one for
each success operation.

Operands are assumed to be in floating point format. Even-numbered
instructions in the group deliver (Sj) to the functional unit for each
operation as one of the operands. The other operand is an element of
Vk. For odd-numbered instructions in the group, both operands are
obtained from V registers.

A11 results are delivered to elements of Vi. If the operands are
unnormalized, there is no guarantee that the products will be normalized.

Out of range conditions are described in Section 3.

2240004 4-61

The 160 instruction forms the products of the floating point quantity
in Sj and the floating point quantities in elements of Vk and enters
the results into Vi.

The 161 instruction forms the products of the floating point quantities
in elements of Vj and Vk and enters the results into Vi.

The 162 instruction forms the half-precision rounded products of the
floating point quantity in Sj and the floating point quantities in
elements of Vk and enters the results into Vi. The Tow order 18 bits
of the result elements are zeroed.

The 163 instruction forms the half-precision rounded products of the
floating point quantities in elements of Vj and Vk and enters the
results into Vi. The low order 18 bits of the result elements are
zeroed.

The 164 instruction forms the rounded products cf the floating point
quantity in Sj and the floating point quantities in elements of Vk
and enters the results into Vi.

The 165 instruction forms the rounded products of the floating point
quantities in elements of Vj and Vk and enters the results into Vi.

The 166 instruction forms for each element, two minus the product of
the floating point quantity in Sj and the floating point quantity in
elements of Vk. It then enters the results into Vi.

The 167 instruction forms for each element paif, two minus the product

of the floating point quantities in elements of Vj and Vk and enters
the results into Vi.

2240004 4-62

Hold issue conditions
034 - 037 1in process
Exchange in process
Vi or Vk reserved
16x in process, unit busy (VL) + 4 CPs
For 160, 162, 164, and 166:
Sj reserved
For 161, 163, 165, and 167:
' Vj reserved

Execution time
Instruction issue 1 CP
Vi ready 14 CPs if (VL) < 5
Vi ready (VL) + 9 CPs if (VL) > 5
Vj or Vk ready 5 CPS if (VL) < 5
Vj or Vk ready (VL) CPs if (VL) » 5
Unit ready (VL) + 4 CPs
Chain slot ready 9 CPs

Special cases :
(Sj) =04ifj=0

Arithmetic error allows a minimum of 21 CP + 2 parcels
and a maximum of (VL) + 20 CP + 2 parcels to issue
before interrupt occurs if floating point error flag set.

2240004 4-63

1701jk Floating sums of (Sj) and (Vk elements) to Vi
elements

1714k Floating sums of (Vj elements) and (Vk elements) to
Vi elements

172ijk Floating differences of (Sj) and (Vk elements) to
Vi elements

173ijk Floating differences of (Vj elements) and (Vk
elements) to Vi elements

These instructions are executed by the floating point add unit.
Instructions 170 and 171 perform floating point addition; instructions
172 and 173 perform f]dating point subtraction. The number of additions
or subtractions performed by—an instruction is determined by the contents
of the VL register. A1l operations start with element zero of the V
registers and increment the element number by one for each operation
performed. All results are delivered to Vi. The results are normalized
even if the operands are unnormalized.

Instructions 170 and 172 deliver (Sj) to the functional unit for each
operation as one of the operands. The other operand is an element of
Vk. For instructions 171 and 173, both operands are obtained from V
registers.

Out of range conditions are described in Section 3.

Hold issue conditions

034 - 037 in process
Exchange in process
Vi or Vk reserved
170 - 173 1in process, unit busy (VL) + 4 CPs
For 170, 172:
Sj reserved
For 171, 173:
Vj reserved

2240004 4-64 C

Execution time
Instruction issue 1 CP
Vi ready 13 CPs if (VL) £ 5
Vi ready (VL) + 8 CPs if (VL) > 5
Vj and Vk ready 5 CPs if (VL)X5
Vj and Vk ready (VL) CPs if (VL) > 5
Unit ready (VL) + 4 CPs
Chain slot ready 8 CPs

Special cases
(Sj) =0if j=0

\
Arithmetic error allows a minimum of 13 CP + 2 parcels and
a maximum of (VL) + 12 CP + 2 parcels to issue before
interrupt occurs if f.p. error flag set.

2240004 4-65

1744 jx Floating point reciprocal approximation of (Vj
elements) to Vi elements

- = " E MR Em G TS e S e o G S M G G SR T e o o = S e o T e G v W B T G S B e G S W= s e A W

This instruction is executed in the reciprocal approximation unit.

The instruction forms an approximate value of the reciprocal of the
normalized floating point quantity in each element of Vj and enters
the result into elements of Vi. The number of elements for which
approximations are found is determined by the contents of the VL
register.

The 174 instruction occurs in the divide sequence to compute the
quotients of floating point quantities as described in Section 3
under Floating Point Arithmetic.

The reciprocal approximation instruction produces results that are
accurate to 27 bits. A second approximation may be generated to
extend the accuracy to 47 bits using the reciprocal iteration
instruction.

Hold issue conditions

034 - 037 in process

Exchange in process

Vi or Vi reserved

174 in process, unit busy for (VL) + 4 CPs

Execution time

Instruction issue 1 CP

Vi ready 21 CPs if (VL) < 5

Vi ready (VL) + 16 CPs if (VL) > 5
Vj ready 21 CPs if (VL) £ 5

Vj ready (VL) CPs if (VL) > 5

Unit ready (VL) + 4 CPs

Chain slot ready 16 CPs

2240004 4-66

Special cases
(Vi element) is meaningless if (Vj element) is not normalized;
the unit assumes that bit 2h7~0f (Vj element) is one; no test
of this bit is made.

Arithmetic error allows a minimum of 21 CP + 2 parcels and
a maximum of (VL) + 20 CP + 2 parcels to issue before
interrupt occurs if f.p. error flag set.

2240004 4-67

175xjk Test (Vj elements) and enter test results. E
into VM; the type of test made is defined by k i

]

1

This instruction creates a vector mask in VM based on the results of
testing the contents of the elements of register Vj. Each bit of VM
corresponds to an element of Vj. Bit 0 corresponds to element 0;
bit 63 corresponds to element 63.

The type of test made by the instruction depends on the lower two bits
of the k designator. The upper bit of the k designator is not
interpreted.

If the k designator is 0, the VM bit is set to one when (Vj element)
is zero and is set to zero when (Vj element) is nonzero.

If the k designator is 1, the VM bit is set to one when (Vj element)
is nonzero and is set to zero when (VJj element) is zero.

If the k designator is 2, the VM bit is Eet to one when (Vj element)
is positive and is set to zero when (Vj element) is negative. A zero
value is considered positive.

If the k designator is 3, the VM bit is set to one when (Vj element)
is negative and is set to zero when (Vj element) is positive. A zero
value is considered positive.

The number of elements tested is determined by the contents of the VL
register. VM bits corresponding to untested elements of Vj are zeroed.

The 175 vector mask instruction provides a vector counterpart to the
scalar conditional branch instructions.

The 175 vector mask instruction uses the vector logical unit.

2240004 4-68

Hold issue conditions
034 - 037 in process
Exchange in process

Vj reserved

14x in process, unit busy (VL) + 4 CPs
003 in process, unit busy 3 CPs

175 in process, unit busy (VL) + 4 CPs

Execution time
Instruction issue 1 CP
Vj ready 5 CPs if (VL) £ 5
Vj ready (VL) CPs if (VL) > 5
Unit ready except for 073 instruction (VL) + 4 CPs
Unit ready for 073 instruction (VL) + 6 CPs

Special cases

k =0or 4, VM bit xx
1or 5, VMbit xx
2 or 6, VM bit xx
3or 7, VM bit xx

1 if (Vj element xx) = 0
1 if (Vj element xx) # 0
1 if (Vj element xx) is positive
1 if (Vj element xx) is negative

k
k
k

2240004 4-69

1764xk Transmit (VL) words from memory to Vi elements
starting at memory address (Ag) and incrementing
\ by (Ak) for successive addresses
177xjk Transmit (VL) words from Vj elements to memory
starting at memory address (Ap) and incrementing
by (Ak) for successive addresses

These instructions transfer blocks of data between V registers and memory.
The 176 instruction transfers data from memory to elements of register Vi.
The 177 instruction transfers data from elements of register Vj to memory.
Register elements begin with zero and are incremented by one for each
transfer. Memory addresses begin with (Ag) and.are incremented by the
contents of Ak. Ak contains a signed integer which is added to the
address of the current word to obtain the address of the next word. Ak
may specify either a positive or negative increment allowing both forware
and backward streams of reference. |

The number of words transferred is determined by the contents of the VL
register. :

Hold issue conditions
034 - 037 in process
Exchange in process

Ao reserved

Ak reserved where k = 1 through 7

Block sequence flag set (034 - 037, 176, 177)
Scalar reference

Rank B data valid

Fetch request in last clock period

For 176, vector register i reserved

For 177, vector register j reserved

I/0 memory request

2240004 4-70

Execution time

For 176:
Instruction issue except for 034-037, 100-137, 176, 177: 1 CP
Instruction issue for above exceptions: (VL) + 4 CPs
Vi ready 14 CPs if (VL) < 5
¥i ready (VL) + 8 CPs if (VL) > 5
For 177:
Instruction issue except for 034-037, 100-137, 176, 177: 1 CP
Instruction issue for above exceptions: (VL) + 5 CPs
Vj ready 5 CPs if (VL) £ 5
Vj ready (VL) CPs if (VL) > &

Special cases

The increment, (Ap),=1if k=0 ‘
Chain slot issue is 9 CPs if full speed for 176?»b1ockgd for 177

Block I/0 references
Block 034 - 037, 100 - 137, 176, 177

(Ak) determines speed control. There are 16 memory banks;
successive addresses are located in successive banks. References
to the same bank can be made every 4 CPs or more. Incrementing
(Ak) by 16+ places successive memory references in the same bank,
so a word is transferred every 4 CPs. If (Ak) is incremented

by 8,7t every other reference is to the same bank and words can
transfer every 2 CPs. With any address incrementing that allows
4 CPs before addressing the same bank, the words can transfer
each CP. *

Memory reference out of Timits will allow 6 CPs + 2 parcels to issue.

For 176, a parity error will allow a minimum of 16 CPs + 2 parcels
to issue and a maximum of (VL) + 15 CPs + 2 parcels to issue.

T g places for 8-bank memory option. Refer to section 5.
Ty places for 8-bank memory option. Refer to section 5.

2240004 4-71 C

SECTION 5

MEMORY SECTION

MEMORY SECTION 5

INTRODUCTION

The memory for the CRAY-1 normally consists of 16 banks+ of bi-polar
1024-bit LSI memory. Three memory size options are available.

262,144 words,
524,288 words, or
1,048,576 words.

The banks are independent of each other.

MEMORY CYCLE TIME

The memory cycle time is four clock periods (50 nsec). The access time,
that is, the time required to fetch an operand from memory to an operational
register is 11 clock periods (137.5 nsec). There is no inherent memory

degradation for 16-bank memories of less than one million words.

MEMORY ACCESS

The memory of the CRAY-1 Computer System is shared by the computation
section and the I/0 section. A single port access is provided.

Scalar instructions referencing memory have priority over I/0 requests
arriving at memory in the same clock period. The I/0 request is rejected
and resubmitted eight clock periods later. Vector references to memory
bTock access for the length of the transfer plus four clock periods.
However, the I/0 channel requests are rejected during these transfers.

Under normal operating conditions on codes performing a mix of vector
and scalar instructions, the memory access will support four disk and
three interface channels without degrading the CPU computation rate.
However, a single program requiring memory access continuously will

be measurably degraded by maximum I/O transfer conditions. This is
caused by the delays imposed on the issue of vector memory instructions

¥ Refer to 8-Bank Phasing Option later in this section.

2240004 5-1 ' C

I l 1152 memory N
modules 1

1,048,576 words
524,288 words //////

262, 144word57??//////////////;:
[~ 72k
bits
-
G 16K words per
o
) chip plane*
5 . 32 chips per
E ?;:. - module
5;//16 chips per module

3 I | EE://16 chips per module
Bk
6

22—
~ ——
~ —b

QKR —>

- OO

—_ AT —]

— O

g p—

— o
"x__>
(o)
~
= o
mx__>

Bk Bk Bk Bk Bk B
01 3

o
~
- O

* A chip plane is one chip per module,
72 modules per bank (64 data; 8 SECDED).

Adding a chip to‘every module increases
memory by 16K words.

B Figure 5-1. Memory organization (16 banks)

2240004 5-2

to clear the I/0 channels. Such degradation is anticipated to be less
than 10 percent over the same program running with no I/0 interference.

MEMORY ORGANIZATION

The memory is organized into 16 interleaved bankstto minimize memory
conflicts and to exploit the speed of the memory chip. Each bank

occupies a chassis and contains 72 modules. Each module contributes

one data or check bit to each 72-bit word in the bank. For a one-million
word memory, each module contains 64 memory chips. For smaller memory
configurations, the number of bits per module is reduced by reducing

the number of memory chips per module as illustrated in figure 5-1. Each
module in a half-million word memory contains 32 memory chips; each module
in a quarter-million word memory contains 16 memory chips. This technique
allows a reduction in memory'size with no sacrifice in performance. 1I/0
characteristics and memory access time are the same for all memory

sizes. Memory configurations are field upgradable.

MEMORY ADDRESSING
A word in a 16-bank memory is addressed in 20 bits as shown in figure 5-2.

The Tow order four bits specify one of the 16 banks.
The next 10 bits specify an address within the chip.
The upper six bits specify one of up to 64 chips on the module.

219 213 23 2

6-bit chip | 10-bit bit address| 4-bit
address in chip bank

0

Figure 5-2. Memory address

The address structure provided for by the instruction format is
sufficient to address fourkmi1110n words directly; however, there are
no plans to incorporate this size memory into the CRAY-1.

t Refer to description of 8-Bank Phasing Option
2240004 5-3 C

8-BANK PHASING OPTION

Although 16-bank phasing is standard on the CRAY-1, 8-bank phasing
(allowing a maximum memory size of 1/2 million words) can be accomplished
by replacing two modules and setting the bank select switch to the left
or right banks. This option is available on any 16-bank memory machines
‘for the purpose of maintaining memory since it allows the system to run
with half of its memory while the other half is being worked on.

Eight-bank phasing also makes pbssib]e a system consisting of one-half

million words arranged in only eight banks rather than the conventional

sixteen. Such a system could be easily field upgraded to a 16-bank full
million words simply by completing the remaining banks.

For 8-bank phasing, each of the 576 modules in a half-million word memory
contains 64 memory chips; each module in a quarter-million word memory
contains 32 memory chips.
A word in an 8-bank memory is-addressed in 19 bits. °

The Tow order three bits specify one of the 8 banks.

The next 10 bits specify an address within the chip.

The upper six bits specify one of the 64 chips on the module.

The effect of 8-bank phasing on instruction fetches is a predictable
increase of 4 clock periods for filling an instruction buffer. Otherwise,
the amount of performance degradation for 8 banks as compared with 16
banks is not readily predictable since it largely results from an increase
of memory conflicts for vector memory references.

For 176 and 177 instructions, (Ak) determines speed control. For 8 banks,
incrementing by 8 places successive references in the same bank so that a
word is transferred every 4 CPs. If (Ak) is incremented by 4, an 8-bank

memory transfers words every 2 CPs.

Vector memory rate * 80 x 106 references per second

Phasing Increment or multipie
1-3 | 4 |5-7] 8 [9-11 | 12 |13-15 | 16

8-bank 1 |1/20 1 {178 1 172 | 1 1/4

16-bank 1 1 1 j1/2(1 1 1 1/4

2240004 5-4 C

MEMORY PARITY ERROR CORRECTION

An error correction and detection network between the CPU and memory
assures that the data written into memory can be returned to the CPU
with consistent precision. (Refer to figure 5-3.)

C
ERROR CORRECT .
DATA BITS i"‘ MEMORY DATA MERGE ““"‘"“”‘& DATA FANOUT £ ‘CPU
63
~ 64
CHECK BITS — 1 ERROR DETECT
N7

Figure 5-3. Memory data path with SEC-DED.

The network operates on the basis of single error correction, double error
detection (SEC-DED). If one bit of a data word is altered, the single
error alteration is automatically corrected before passing the data word

to the computer. If two bits of the same data word are altered, the double
error is detected but not corrgcted. In either case, the CPU may be
interrupted depending on interrupt options selected to prevent incorrect
data from contaminating a job.

The SEC-DED error processing scheme is based on error detection and
correction codes devised by R. W. Hamming®t. An 8-bit check byte is
appended to the 64-bit data word before the data is written in memory.
The eight check bits are each generated as even parity bits for a
specific group of data bits. Figure 5-4 shows the bits of the data
word used to determine the state of each check bit. An X in the

Hammipg, R.W., "Error Detection and Correcting bodes“. Bell System
Technical Journal, 29, No., 2, 147-160 (April, 1950).

2240004 5-5 C

horizontal row indicates that data bit contributes to the generation

of that check bit.

Thus, check bit number 0 (bit 28*) is the bit making

group parity odd for the group of bits 21, 23, 25, 27, 29, 211, 213 215,
217 19 21 223 225 227 229, and 231 through 2°°.

The eight check bits are stored in memory at the same location as the

data word.

When read from memory, the same 72-bit matrix of figure 5-4

is used to generate a new set of parity bits, which are even parity bits

of the data word and the old check bits.

are called syndrome bits, shown as bits 64 through 71 in figure 5-4.

The resulting eight parity bits

BYTE O BYTE 1 BYTE 2 BYTE 3
- -A- N r —A N\ — A h) (—_-—___A————_—’\
01 23 456 17 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
X X X X X x be x be X X X X X X
X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X
X X X x X X X X X X be X X x x
X X
X X
X X
X X
BYTE 4 BYTES BYTE 6 - BYTE 7
——— A \ — A \ — A N - A N
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
X X X X X X X X X X X X X X X X X X X X
X X X X X X X X %X X X X X X X X X X X
X X
X X
X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X
X X X X X X X X x X X X X X X
CHECK BYTE
r— —A A}
64 65 66 67 68 69 70 71
b3 So
X S1
S2
X S3
X Sy
X S5
S6
S7
Figure 5-4. Error correction matrix
2240004 5-6 ¢

The states of these "S" bits are all symptoms of any error that occurred.

The matrix is designed so that any change of state of one data bit will
change an odd number of syndrome bits. An error in two columns changes
the parity states of an even number of bit groups. Therefore, a double
error appears as an even number of syndrome bits set to 1.

The matrix is designed so that SEC-DED decodes the syndrome bits and
determines the error condition using the following four rules:

1. If all syndrome bits are 0, no error occurred.

2. If only one syndrome bit is 1, the associated check bit
is in error.

3. If more than one syndrome bit is 1 and the parity of
all syndrome bits SO through S7 is even, then multiple
errors occurred within the data bits or check bits.

4. If more than one syndrome bit is 1 and the parity of all
syndrome bits is odd, then a single and correctable error
is assumed to have occurred. The syndrome bits can be
decoded to identify the bit in error.

2240004 - 5-7

SECTION 6

INPUT/OUTPUT SECTION

INPUT /OUTPUT SECTION 6

The Input/Output section of the CRAY-1 contains twenty-four I/0 channels,
of which twelve are input channels and twelve are output channels. The
channels are assigned the numbers 2 through 314, and channels are divided
into four groups as follows:

, 6,12, 16, 22, 26 J
., 7,13, 17, 23, 27
, 10, 14, 20, 24, 30
, 11, 15, 21, 25, 31

Group 1 Input channels
Group 2 Output channels
Group 3 Input channels
Group 4 Output channels

o BN

Each input channel consists of a data channe] (16 data bits and 3 control
bits), a 64-bit assembly register, a current address register, and a limit
register. Each input channel can cause a CPU interrupt condition when the
current address equals the 1imit register value or when the input device
sends a disconnect.

Each output channel consists of a data channel (16 data bits and 3 control
bits), a 64-bit disassembly register, a current address register, and a
1imit register. Each output channel can cause a CPU interrupt condition
when the current address equals the 1imit register value. A disconnect is
sent on the output channel after the last word of a record is sent and
acknowledged.

MEMORY ACCESS

Each of the four channel groups is assigned a time slot, which is scanned
once every four clock periods for a memory request. The Towest-numbered
channel in the group has the highest priority. A memory request that is
accepted causes the requesting channel to miss the next time slot.
Therefore, any given channel can request a memory reference only every
eight clock periods. However, another channel in the same group as a
channel that has had a memory request denied can cause a memory request
four clock periods later. During the next three clock periods, the scanner
will allow requests from the other three channel groups. Therefore, it is
possible to have an I/0 memory request every clock period.

2240004 6-1 B

INPUT ASSEMBLY REG.
16 BITS CH. >

.

DATA IN — 4] I/0 DATA MEMORY
—~ MEMORY
] FAN IN DATA MERGE
o CraNERS
] G0 I/0
OUTPUT DISASSEMBLY REG. _
16 BITS CH. 3
DATA OUT p— 5| I/0 DATA |_ MEMORY | MoRY
FAN OUT DATA DISTR.
o crantELs)
INPUT
INFUT CHANNEL CONTROL
INPUT . ~— NO SCALAR REF.
RESUME ced, mese. | |PRIORITY NO BLOCK MODE
\ NET GR. |
ouTPUT . L— NO EXCH. SEQ.
— NO FETCH
OUTPUT — NO MEMORY CONFLICT
PRIORITY T
NET GR.2J ™Y ,A\:‘
I J MEMORY REQ.
M REQUEST = | ACCESS CONTR RESP.
T (R REFERENCE
| "\
NET GR. 3 s 6o 1/0
PRIORITY
] NET GR.4
[}
I/0 ADDR. MEMORY MEMORY
FAN IN ADDR. REG.
OUTPUT ADDRESS REG.
]
Figure 6-1. Channel I/0 control
B-02

2240004

Maximum request rates are the following:
1 channel 8 CPs
1 channel group 4 CPs
A11 channel groups 1 CP

I/0 CHANNEL PARITY

Channel parity is maintained by one parity bit for each four data bits on
the 16-bit channels. '

On input, the CRAY-1 samples parity with the data and, if it senses a parity
error, immediately generates a channel error interrupt.

On output, the parity bits are sent with the data and are available for
checking by the receiving device.

RESYNCHRONIZATION

Each channel resynchronizes the control pulses received from the external
devices. Control pulses must be a minimum of 50 nsec + 10 nsec. The
maximum rate is one pulse each 100 nsec.

MEMORY BANK CONFLICTS

Memory bank conflicts are tested for CPU scalar references and I/0 memory
references. A1l other memory references (block transfers, exchange
sequence, instruction fetch sequence) wait issue until all memory banks
are quiet.

Each memory bank can accept a new request every four clock periods. To
test for a memory bank conflict, the Tower four bitstof the memory

address move through four l-clock-period registers. The first register is
rank A, the second register is rank B, the third register is rank C, and
the fourth register is the memory address register.

Rank A is not explicitly tested against on a scalar reference since I/0 is
prohibited for scalar in CP2. Scalar causes a three clock period hold of
the new request. The Tower four bitstof a scalar reference address are

tested against ranks B and C. Coincidence with rank B causes a two clock

+ 3 bits for 8-bank phasing; see description in section 5.
2240004 6-3 C

period hold of the new request; coincidence with rank C causes a one clock
period hold of the new request. A lack of coincidence allows a new memory
reference to proceed without delay.

The Tower four bits of an I/0 reference are tested against ranks A, B, and
C. Coincidence with rank A, B, or C disallows the I/0 request. An I/0
request that is disallowed must wait eight clock periods before it can
request again.

I/0 MEMORY REQUEST CONDITIONS

The following conditions must be present for a memory request to be
processed:
1. I/0 request
No coincidence in rank A, B, or C
No scalar instruction in clock period two of a scalar sequence
No fetch request
No 176, 177, or 034 through 037 in process
No exchange sequence
No 033 request

N O o iAW N

1/0_LOCKOUT J

An I/0 memory request can be Tocked out by a block transfer. Multiple
block transfers cannot issue without allowing waiting I/0 references to
complete. The maximum duration of a Tockout caused by block

transfers is one block length.

Exchange sequences and instruction fetch sequences can also cause lockouts.

I/0 INTERRUPTS

I/0 interrupts can be caused by the fo]]owingz
1. Current address equals limit address

N
.

External device disconnect on an input channel
3. Channel error condition

+ 3 bits for 8-bank phasing; see description in section 5.

2240004 6-4 C

The channel number causing an interrupt can be determined by use of a 033
instruction which will read to Ai the highest priority channel number
requesting an interrupt. The Towest numbered channel has the highest
priority. The interrupt requést will continue until cleared by the
monitor program. '

CHANNEL ERROR CONDITIONS

A channel error condition can be generated as follows:
1. Input channel not active and input data ready
2. Input channel current address equals 1imit address and input ready
3. Input ready received before channel has written previous data in
memory (extra ready)
Output channel not active and output resume
Parity error on an input channel

I/0 MEMORY ADDRESSING

A11 1/0 memory references are absolute. The current and 1imit registers
are 20 bits, allowing I/0 access to all of memory.

INPUT CHANNEL SIGNALS

INPUT DATA

There are sixteen 1lines for input data. Data must arrive coincident with
the input ready signal and remain until an input resume signal is sent

to the sending device.

INPUT READY

This signal indicates that data is on the input 1ines. The input ready
signal is resynchronized before sampling the input data. This signal
must be a pulse with a minimum width of 50 nsec t 10 nsec.

2240004 6-5 | c

INPUT RESUME

This signal indicates that the input data has been received. The input
data 1lines can now receive a new data word. This signal is a 50 nsec.
pulse.

INPUT DISCONNECT

This signal terminates an input sequence and causes the input channel to
interrupt the CPU. This signal must be a pulse with a minimum width of
50 nsec t 10 nsec.

OUTPUT CHANNEL SIGNALS

OUTPUT DATA

There are sixteen lines for output data. Data is sent coincident with the
output ready signal and remains on the Tine until an output resume signal
is received.

OUTPUT READY

This signal indicates that data is on the output lines. This signal is a
50 nsec pulse.

OUTPUT RESUME

This signal indicates the receiving device has received the output data.
The output resume is resynchronized allowing a new output data word to
change the output data lines. This signal must be a pulse with a minimum
width of 50 nsec t 10 nsec.

OUTPUT DISCONNECT
This signal terminates an output sequence when the last data word in a

record (current address equals 1imit address) has been acknowledged. This
signal is a 50 nsec pulse.

CHANNEL OPERATION CONTROL

Channel input and output is controlled by the 20-bit channel address (CA)
" and channel 1limit (CL) registers. .A set of these registers exists for
each channel. The CA register contains the address of the next channel

2240004 6-6 C

word. The CL register specifies the 1imit address. In programming the
channel, the CL register is first initialized with the channel 1imit address
and then the channel is activated by setting the beginning address in CA.
During the transfer, (CA) increments toward (CL). When (CA) equals (CL),
the transfer is complete and an interrupt occurs. The last word read or
written is at (CL)-1. The monitor may then determine which channel

caused the interrupt and take appropriate action.

Any channel may read or write elsewhere in memory with any size block
but does so only under the exclusive control of the monitor program.

I/0 CHANNEL MASTER CLEAR

The following program sequence master clears an I/0 channel. The sequence
affects the specified channel only.

0011jk Set Timit address (LA)
0010k Set current address (CA)=(LA)
0012jk Clear interrupt Enables MC
(Delay, device dependent)
0011jk Set 1imit address (LA); disables MC

The device type determines the length of time to wait after turning off
MC before trying to program it.

Only one channel of an I/0 pair responds to this sequence.

For a normal channel pair, program the input channel and set the delay at
1 psec.

For a high-speed synchronous channel pair, program the output channel and
set the delay at one clock period.

2240004 6-7 C

REAL-TIME CLOCK

Programs can be timed precisely by using the clock period counter. This
counter is advanced one count each clock period of 12.5 nanoseconds. Since
the clock is advanced synchronously with program execution, it may be used
to time the program to an exact number of clock periods.

The clock period counter is a 64-bit counter that can be read by a
program through the use of the 072 instruction and can only be reset by
the 0014 monitor instruction.

2240004 6-8 ‘ C

APPENDIX SECTION

SUMMARY OF TIMING INFORMATION A

When issue conditions are satisfied an instruction completes in a fixed
amount of time. Instruction issue may cause reservations to be placed
on a functional unit or registers. Knowledge of the issue conditions,

instruction execution times and reservations permit accurate timing of

code sequences. Memory bank conflicts due to I/0 activity are the only
. element of unpredictability.

SCALAR INSTRUCTIONS

Four conditions must be satisfied for issue of a scalar instruction:

1. The functional unit must be free. No conflicts can arise with other
scalar instructions, however vector floating point instructions
reserve the floating point units. Memory references may be delayed
due to conflicts.

2. The result register must be free.
3. The operand register must be free.

4. Issue is delayed 1 clock period if a result register group input path
conflict would exist with a previously issued instruction. One input
path exists for each of the four register groups (A, B, S and T).

Scalar instructions place reservations only on result registers. A result
register is reserved for the execution time of the instruction. No
reservations are placed on the functional unit or operand registers.

A transmit scalar mask instruction to Si (073) instruction is delayed
by (VL) + 6 clock periods from the issue of a previous vector mask’
(175) instruction, and is delayed by 6 clock periods from the issue
of a preceding transmit (Sj) to VM (003) instruction.

2240004 A-1 C

Execution times in clock periods are given below. An asterisk indicates
that issue may be delayed because of a functional unit reservation by a
vector instruction. Memory may be considered a functional unit for timing

considerations.

(A=A register, M=Memory, B=B register, S=S register, I=Immediate, C=Channel)

24-bit results:

A<M 11 A=<—C 4
M—<—A 1* A—-—A+A 2
A—=<—8 1 A-<—AXxA 6
B-—A 1 A ~—pop(S) 4
A=<—S5S 1 A =<—12zc(S) 3
A=<—1 1 VL -<—A 1

64-bit results:
S=<—M 11* S -—S+S 3

M <—S 1* S <—S(f.add)S 6*
ST 1 S <—S(f.mult)S 7*
TS 1 S <—S(r.a.) 14*
S =] 1 S-—V 5
S =<—5(10g.)S 1 V<5 3
S «—S(shift)I 2 S—<—VM 1
S <—S(shift)A 3 S <«—RTC 1
S <—S(mask)I 1 S<—A 2
RTC <—S§ 1 VM —~—S 3

* Issue may be delayed because of a functional unit reservation by a
vector instruction. Memory may be considered a functional unit for
timing considerations.

VECTOR INSTRUCTIONS

Four conditions must be satisfied for issue of a vector instruction:

1. The functional unit must be free. (Conflicts may occur with vector
operations.)

2. The result register must be free. (Conflicts may occur with vector
operations.) '

3. The operand registers must be free or at chain slot time.

4. Memory must be quiet if the instruction referemces memory.

Vector instructions place reservations on functional units and registers
for the duration of execution.

1. Functional units are reserved for VL+4 clock periods. Memory is
reserved for VL+5 clock periods on a write operation, VL+4 clock
periods on a read operation.

2240004 A-2 C

2. The result register is reserved for the functional unit time
+(VL+2) clock periods. The result register is reserved for the
functional unit +7 clock periods if the vector length is less than
5. At functional unit time +2 (chain slot time) a subseqdent
instruction, which has met all other issue conditions, may issue. This
process is called "chaining." Several instructions using different
functional units may be chained in this manner to attain a significant

enhancement of processing speed.

3. Vector operand registers are reserved for VL clock periods. Vector
operand registers are reserved for 5 clock periods if the vector
length is less than 5. The vector register used in a block store to
memory (177 instruction) is reserved for VL clock periods. Scalar
operand registers are not reserved. ’

Vector instructions produce one result per clock period. The functional
unit times are given below. The vector read and write instructions'
(176, 177) produce results more slowly if bank conflicts arise due to

E the increment value (Ak) being a multiple of Qﬁ Chainfng cannot occur
for the vector read operation in this case.

B If (Ak) is an odd multipte of 8} results are produced every 2 clock
periods. :

i 1f (Ak) is an even multiple of 8% results are produced every 4 clock
periods. '

Memory must be quiet before issue of the B and T register block copy
instructions (034-037). Subsequent instructions may not issue for 14+ (Ai)
clock periods if (Ai)#0 and 5 clock periods if (Ai)=0 when reading

data to the B and T registers (034,036). They may not issue for 6+(Ai)
clock periods when storing data (035,037).

The B and T register block read (034,036) instructions require that there
be no register reservation on the A and S registers, respectively, before
issue. | '

+ Multiple of 4 for 8-bank phasing; refer to section 5.

2240004 A-3 C

Branch instructions cannot issue until an AO or SO operand register has
been free for one clock period. Fall-through in buffer requires two
~clock periods. Branch-in-buffer requires five clock periods. When an

"out of buffer" condition occurs the execution time for a branch

instruction is 14 clock periodsT

A two parcel instruction takes two clock periods to issue.

Instruction issue is delayed 2 clock periods when the next instruction
parcel is in a different instruction parcel buffer. Instruction issue is
de1ayed 14 clock periods if the next instruction parcel is not in an
instruction parcel buffer.

HOLD MEMORY

A delay of 1, 2, or 3 CP will be added to a scalar memory read if a bank-
conflict occurs with rank C, B, or A, respectively, of the memory access
network. A conflict occurs if the address is in the same bank as the
address in rank C, B, or A. Conflicts can occur only with scalar or I/0
references. The scalar instruction senses the conflict condition at
issue time + 1 CP. The scalar instruction address enters rank A of the
memory access network at issue time + 1 CP. The scalar instruction
address enters rank B at issue + 2 CP. The scalar instruction address
enters rank C at issue + 3 CP.

Scalar instruction timing (no conflict):

CP n Issue, reserve register

CP n+l Address rank A, sense conflict
CP n+t2 Address rank B

CP n+3 Address rank C

Cﬁ nt9 Clear register reservation
CP n+10 Issue

l t 18 clock periods for 8-bank phasing option; refer to section 5.

2240004 A-4

HOLD ISSUE

A delay of issue results if a 100 - 137 instruction is in the CIP register
and a hold memory condition exists. The delay will depend on the hold
memory delay. '

A delay of issue results if a 100 - 137 instruction is in the CIP register
and a 100 - 137 instruction in process senses a conflict with rank A, B,
or C.

An additional 1 CP delay is added to a hold memory condition if a 070
instruction conflict is sensed.

2240004 A-5

MODULE TYPES

Alpha
Code

AB
AC
AD
AE
AF
AG
AH
Al
AJ
AR

DA*
DB*
DC*
DD*
DE
DF
DG
DH
DI
DJ
DK
DL
DM

FA
FB
FC

FD
-FE

FF

FG
FH
FI
FJ

Application

A SERIES MODULES

Address adder

Storage block address

Vector storage control
Storage address distribution
Band T
Address
Address
Address
Address
Address
Address

storage control
multiply levels 1 and 2
multiply level 2
multiply upper level 3
multiply lower level 3
multiply Tevel 4
registers

D SERIES MODULES
Input channel control 8-bit
Output channel control 8-bit
Input data assembly 8-bit
Output data disassembly 8-bit
Address merge fanout
Channel reference control
Channel interrupt control
Channel address control
Synchronizing circuits
Input channel control 16-bit
Qutput channel control 16-bit
Input data assembly 16-bit
Qutput data disassembly 16-bit

F SERIES MODULES

Floating add exponent input
operands

Floating
operands

add exponent input

Floating add

operands
Floating add

Floating add
(front half)

Floating add
(back half)

Floating add
Floating add
Floating add
Floating add

coefficient input

coefficient

coefficient add

coefficient add

coefficient result
coefficient

exponent data

result

exponent result

alignment

—_ = N W

No.

Used

e e W W - W= DD

—
~nN

12
12
12
12
10

12
12
12
12

S

Alpha
Code

GA
GB
GC
GD
GE .
GF
GG
GH
GI
GR

HA
HB
HC
HD
HE
HF
HR
HX

JA
JB
Jc
JD
JE
JF
JG
JH
JI
JJ
JK
JL

MA
MB
MC
MD
ME
MF
MG
MH

Application

G SERIES MODULES
Scalar single shift

Scalar double shift (front half)

Scalar double shift (back half)
Data Ak to Si extended

Scalar add (front half)

Scalar add (back half)

Constant to Si

Pop and zero count to Ai

Real time clock

Scalar registers

H SERIES MODULES
Program branch control
Next instruction parcel
Lower program address
Upper program address
Program parameter data
Fetch sequence control
Instruction buffers
Exchange sequence control

J SERIES MODULES
CIP fanout to AR modules
CIP fanout to GR modules
Select vector data paths
Vector function issue control
Floating point issue control
Vector register issue control
Scalar register issue control
Address register issue control
Storage access issue control
Hold storage issue control
Address access control
Scalar access control

M SERIES MODULES

First level product

Second level product
Third Tevel product

Fourth level product

Fifth level product

First level ends

First section exponents
Last sectfon exponents '

* 16-bit channels can be substituted for 8-bit channels in groups of four

2240004

B-1

w
e B i T 0 B ~ T =) N NN = = N D= B N

—
o o;

e e e S s b e s

24

- N W W

Alpha
Code _ Application
R SERIES MODULES
RA Table for Ao '
RB Table for Ao2
RC Form A1
RD Form A1
RE Form A1
RF . Form A1
RG Form A1
RH Form A
RI Form A12
RJ Form A12
RK Form A1
RL Form Al2
RM Form A2
RN Form A2
RO . Form A2
RP Form A2
RQ Form A2
RR Form A2
RS Reciprocal coefficient
RT Reciprocal coefficient
RU ' Operand delay
RV Result exponent

S SERIES MODULES

SH* 16-bit synchronous

input data assembly

SI* 16-bit synchronous

output da;a assembly

*%

*kk

SH and SI modules can be substituted for DJ and DK modules, respectively,

Used

—
o

- W NN W NN

N = = PN N e e W e

Alpha
Code

TC
Tx
Ty*
TZ

VA
VB
Ve
VD
VE
VF
VG
VH
VI
Vd
VK
VR

ZB

C
D
ZE
ZF
1G
1
ZK

11

and are used for the disk controller.
For 8-bank phasing, TY modules are substituted for TX modules.

Figures are for 16-bank memory.

2240004

Application

T SERIES MODULES

Clock fanout
16-bank phasing
8-bank phasing
Master clock

V SERIES MODULES

Data to vector registers
Vector data to jk functions
Vector data to j functions
Vector length control
Vector write control

Front half vector shift
Back half vector shift
Front half vector add

Back half vector add
Vector logical data
Vector logical control
Vector registers

Z SERIES MODULES***
Storage with memory data
buffers
Storage with clock fanout
Storage R/W control
Storage section control
Storage with address fanout
Check bit generation
Correction storage

NN W

- W W
o NN

[- T AC IR I

w
n

288

Syndrome generation and error 32

correction
Storage module

708

SOFTWARE CONSIDERATIONS - C

References to software in this publication are 1imited to those features
of the hardware that provide for software or take it into consideration.

SYSTEM MONITOR

A monitor program is loaded at system dead start and remains in memory
for as long as the system is used. Only the monitor program execute§
in monitor mode and can execute monitor instructions. A program
executing in monitor mode cannot be interrupted. A monitor program is
designed to reference all of memory.

OBJECT PROGRAM

An object program as referred to in this publication means any program
other than the monitor program. Generally, the term describes a job-
oriented program but may also describe an operating system task that does
not execute in monitor mode. An object program may be a machine language
program such as a FORTRAN compiler or it may be a program resu1t1ng from
compilation of FORTRAN statements by the compiler.

OPERATING SYSTEM

The operating system consists of a monitor program, object programs that
perform system—related functions, compilers, assemblers, and various

utility programs. The operating system is loaded into memory and possibly
onto mass storage during system dead start. Features of the operating system
system and organization of storage, which is a function of the operating
system, will be described in the operating system reference manual.

SYSTEM OPERATION

System operation begins at CPU dead start. Dead start is that sequence of
operations required to start a program running in the computer after power
has been turned off and then turned on again.

2240004 C-1 C

The dead start sequence is initiated from the maintenance control unit
(MCU). The sequence is described in detail in Section 3. During the
dead start sequence, the MCU loads a program containing an exchange
package at absolute address zero in the CRAY-1 memory. A signal from

the MCU causes the CRAY-1 to begin execution of the program pointed to by
the exchange package.

2240004 c-2

INSTRUCTION SUMMARY D

CRAY-1 CAL PAGE UNIT DESCRIPTION
000xxx ERR 4-7 - Error exit’
t000ijk ERR exp 4-7 - Error exit
tt0010jk CA,Aj Ak 4-8 - Set the channel (Aj) current address to

(Ak) and begin the I/0 sequence

++0011jk CL,Aj Ak 4-8 - Set the channel (Aj) limit address to (Ak)
++0012jx CI,Aj 4-8 - Clear channel (Aj) interrupt flag
++0013jx XA Aj 4-8 - Enter XA register with (Aj)
+10014jx RT Sj 4-8 - ' Enter real-time clock register with (Sj)
0020xk VL Ak 4-10 - Transmit (Ak) to VL register
t0020x0 VL 1 4-10 - Transmit 1 to VL register
0021xx EFI 4-10.1 - Enable interrupt on floating point error
0022xx DFI 4-10.1 - Disable interrupt on floating point error
003xjx VM Sj 4-11 - Transmit (Sj) to VM register \
t003x0x VM 0 4-11 - Clear VM register
004xxx EX 4-12 - Normal exit
t004ijk EX exp 4-12 - Normal exit
005xjk J Bjk 4-13 - Jump to (Bjk)
006ijkm J exp 4-14 - Jump to exp
007ijkm R exp 4-15 - Return jump to exp; set BOO to P
010ijkm JAZ exp 4-16 - Branch to exp if (A0) = 0
011ijkm JAN exp - 4-16 - Branch to exp if (A0) # 0
012ijkm JAP exp 4-16 - Branch to exp if (A0) positive
013ijkm JAM exp 4-16 - Branch to exp if (A0) negative
014ijkm JSZ exp 4-17 - Branch to exp if (S0) = 0
015ijkm JSN exp 4-17 - Branch to exp if (S0) # 0
016ijkm JSP exp 4-17 - Branch to exp if (S0) positive
017ijkm JSM exp 4-17 - Branch to exp if (S0) negative
020ijkm ‘ 4-18 - Transmit exp = jkm to Ai
021ijkm{ Ai exp 4-18 - Transmit exp = 1's complement
of jkm to Ai
022ijk 4-19 - Transmit exp = jk to Ai
023ijx Ai Sj 4-20 - . Transmit (Sj) to Ai
024ijk Al Bjk 4-21 - Transmit (Bjk) to Ai
025ijk Bjk Ai 4-21 - Transmit (Ai) to Bjk
026ijx Ai PSj 4-22 Pop/LZ Population count of (Sj) to Ai
027ijx Al ZSj 4-23 Pop/LZ Leading zero count of (Sj) to Ai
030ijk Ai Aj+Ak 4-24 A Int Add Integer sum of (Aj) and (Ak) to Ai
+030i0k Ai Ak 4-24 A Int Add Transmit (Ak) to Ai
+030ij0 Ai Aj+1 4-24 A Int Add Integer sum of (Aj) and 1 to Ai
031ijk Ai Aj-Ak 4-24 A Int Add Integer difference of (Aj) less (Ak) to Ai
+031i00 Ai -1 4-24 A Int Add Transmit -1 to Ai
03110k Al -Ak 4-24 A Int Add Transmit the negative of (Ak) to Ai
031ij0 Ai Aj-1 4-24 A Int Afd Irteger difference of (Aj) less 1 to Ai
032ijk Al Aj*Ak 4-25 A Int Mult Integer product of (Aj) and (Ak) to Ai

+ Special syntax form

2240004 D-1 C

CRAY-1

033i0x
033130
033ij1
034ijk
t034ijk
035ijk
10351jk
036ijk
$036ijk
037ijk
103715k
040ijkm
041ijkm }
04213k

1042177
1042100
043ijk

+043100

044ijk
+044i30
1044150
+045ijk

1045130

046ijk
1046130
+0461j0

047ijk
+04710k
1047150

1047130
+047100

050ijk
+050130

051ijk
+05110k
+051130
+051ij0
+051i00
052ijk
053ijk
054i3k
055ijk
056ijk
1056150
105610k

CAL

Bjk,Al
Bjk,Ai
,AO
0,A0
Tjk, Al
Tjk,Ai

0,A0

st

Si
Si
Si

Si
Si

Si
Si
Si
Si
Si

Si
Si
Si
Si
Si
Si
Si

Si

Si
Si

Si

si
si
si
si
si
S0
S0
si
si
si
si
Si

T Special syntax form
++ Privileged to monitor mode.

2240004

cI
CA,Aj
CE,Aj
,AD
0,A0
Bjk,Ai
Bjk,Ai
LAO
0,A0
Tjk, Al
Tjk,Ad

exp

<exp

#>exp

1
-1

>exp
#<exp

0
Sj§Sk
Sj&SB
SB§Sj
#SKESj

#SBES]
Sj\Sk
Sj\SB
SB\Sj
#Sj\Sk
#Sk
#S3j\SB

#SB\Sj

#SB
SjiISigSk

Sj!Si§SB

Sj!Sk
Sk
Sj!SB
SB!Sj
SB’
Si<exp
Si>exp
Sicexp
Sisexp
Si,Sj<Ak
S$i,S8j<1
Si<Ak

Channel number to Ai (j=0)

Address of channel (Aj) to Ai (j#0; k=0)
Error flag of channel (Aj) to Ai (j#0; k=1)
Read (Ai) words to B register jk from (A0Q)
Read (Ai) words to B register jk from (A0)
Store (Ai) words at B register jk to (A0)
Store (Ai) words at B register jk to (A0)
Read (Ai) words to T register jk from (A0)
Read (Ai) words to T register jk from (A0)
Store (Ai) words at T register jk to (A0)
Store (Ai) words at T register jk to (A0)

Transmit exp = 1's complement of jkm to Si

Form 1's mask exp = 64-jk bits in Si from

Form 1's mask exp = jk bits in Si from

Logical product of (Sj) and (Sk) to Si
Sign bit of (Sj) to Si
Sign bit of (Sj) to Si (j#0)

Logical product of (Sj) and 1's
complement of (Sk) to Si

(Sj) with sign bit cleared to Si

Logical difference of (Sj) and (Sk) to Si
Toggle sign bit of Sj, then enter into Si
Toggle sign bit of Sj, then enter into Si (j#0)
Logical equivalence of (Sk) and (Sj) to Si
Transmit 1's complement of (Sk) to Si

Logical equivalence of (Sj) and sign

Logical equivalence of (Sj) and sign

Enter 1's complement of sign bit into Si

Logical product of (Si) and (Sk) complement
ORed with logical product of (Sj) and (Sk) to Si

Scalar merge of (Si) and sign bit of (Sj)

Logical sum of (Sj) and (Sk) to Si
Transmit (Sk) to Si

Logical sum of (Sj) and sign bit to Si
Logical sum of (Sj) and sign bit to Si (j#0)
Enter sign bit into Si

Shift (Si) left exp = jk places to SO
Shift (Si) right exp = 64-jk places to SO
Shift (Si) left exp = jk places

Shift (Si) right exp = 64-jk places

Shift (Si and Sj) left (Ak) places to Si
Shift (Si and Sj) left one place to Si
Shift (Si) left (Ak) places to Si

PAGE UNIT DESCRIPTION
4-26 -
4-26 -
4-26 -
4-28 Memory
4-28 Memory
4-28 Memory
4-28 Memory
4-28 Memory
4-28 Memory
428 Memory
4-28 Memory
4-30 - Transmit jkm to Si
4-30 -
4-31 S Logical
» the right

4-31 S Logical Enter 1 into Si
4-31 S Logical Enter -1 into Si
4-31 S Logical

the left
4-31 S Logical Clear Si
4-33 S Logical
4-33 S Logical
4-33 S Logical
4-33 S Logical
4-33 S Logical
4-33 S Logical
4-33 S Logical
4-33 S Logical
4-33 S Logical
4-33 S Logical
4-33 S Logical

bit to Si
4-33 S Logical

bit to Si (j#0)
4-33 S Logical
4-33 S Logical
4-33 S Logical

to Si
4-33 S Logical
4-33 S Logical
4-33 S Logical
4-33 S Logical
4-33 S Logical
4-35 S Shift
4-35 S Shift
4-35 S Shift
4-35 S Shift
4-36 S Shift
4-36 S Shift
4-36 S Shift

D-2

CRAY-1
0571jk
1057150
105710k
060ijk
061ijk
+061i0k
062ijk
106210k
063ijk
106310k
064ijk
065ijk

066ijk
067ijk
070ijx
07110k

071i1k
071i2k

071i3x
071i4x

071i5x

071i6x
071i7x
072ixx
0731xx
074ijk
075ijk
076ijk
077ijk
107710k
10hijkm
1+100ijkm
+100ijkm
+t10hi000
11hijkm
t110ijkm
t1101ijkm
t11hi000
12hijkm
t120ijkm
t120ijkm

+t12hi000

13hijkm
+130ijkm

t130ijkm

+13hi000
140ijk

+140100
141ijk

CAL

Si

Si
Si

Si
Si

51

Si
si

si

si

si

si

Si
Tjk
si
Vi,Ak
Vi,Ak

exp,Ah
exp,0
exp,

Sj,Si Ak
Sj,Si>1
SisAk
Sj+Sk
Sj-Sk
-Sk
Sj+FSk
+FSk
Sj-FSk
-FSk
Sj*FSk
Sj*HSk

Sj*RSk

Sj*1ISk
/HSj

Ak
+Ak
+FAk

Si
Si
Sj§Vk
0
VigVk

T Special syntax form

2240004

Shift (Sj and Si) right (Ak) places to Si
Shift (Sj and Si) right one place to Si
Shift (Si) right (Ak) places to Si

Integer sum of (Sj) and (Sk) to Si

Integer difference of (Sj) and (Sk) to Si
Transmit negative of (Sk) to Si

Floating sum of (Sj) and (Sk) to Si
Normalize (Sk) to Si

Floating difference of (Sj) and (Sk) to Si
Transmit normalized negative of (Sk) to Si
Floating product of (Sj) and (Sk) to Si

Half precision rounded floating product
of (Sj) and (Sk) to Si

Full precision rounded floating product
of (Sj) and (Sk) to Si

2 - Floating product of (Sj) and (Sk) to Si
Floating reciprocal approximation of

Transmit (Ak) to Si with no sign extension
Transmit (Ak) to Si with sign extension

Transmit (Ak) to Si as unnormalized
floating point number

Transmit constant 0.75%2**48 to Si
Transmit constant 0.5 to Si
Transmit constant 1.0 to Si
Transmit constant 2.0 to Si
Transmit constant 4.0 to Si
Transmit (RTC) to Si

Transmit (VM) to Si

Transmit (Tjk) to Si

Transmit (Si) to Tjk

Transmit (Vj, element (Ak)) to Si
Transmit (Sj) to Vi element (Ak)
Clear Vi element (Ak)

Read from ((Ah) + exp) to Ai (A0=0)
Read from (exp) to Ai

Read from (exp) to Ai

Read from (Ah) to Ai

Store (Ai) to (Ah) + exp (A0=0)

Store (Ai) to (Ah)

Read from ((Ah) + exp) to Si (A0=0)
Read from exp to Si

Read from exp to Si

Read from (Ah) to Si

Store (Si) to (Ah) + exp (A0=0)

Store (Si) to (Ah)
Logical products of (Sj) and (Vk) to Vi

Logical products of (Vj) and (Vk) to Vi

PAGE UNIT DESCRIPTION
4-36 S Shift
4-36 S Shift
4-36 S Shift
4-37 S Int Add
4-37 S Int Add
4-37 S Int Add
4-38 F.P. Add
4-38 F.P. Add
4-38 F.P. Add
4-38 F.P. Add
4-38 F.P. Mult
4-39 F.P. Mult
4-39 F.P. Mult
4-39 F.P. Mult
4-41 F.P. Rcpl
(Sj) to Si

4-42 -
4-42 -
4-42 -
4-42 -
4-42 -
4-42 -
4-42 -
4-42 -
4-44 -
4-44 -
4-44 -
4-44 -
4-45 -
4-45 -
4-45 -
4-46 Memory
4-46 Memory
4-46 Memory
4-46 Memory
4-46 Memory
4-46 Memory Store (Ai) to exp
4-46 Memory Store (Ai) to exp
4-46 Memory
4-46 Memory
4-46 Memory
4-46 Memory
4-46 Memory
4-46 Memory
4-46 Memory Store (Si) to exp
4-46 Memory Store {Si) to exp
4-46 Memory
4-48 V Logical
4-48 V Logical Clear Vi
4-48 V Logical

D-3

CRAY-1 CAL PAGE UNIT DESCRIPTION

142ijk Vi Sjlvk 4-48 V Logical Logical sums of (Sj) and (Vk) to Vi
+142i0k Vi vk 4-48 V Logical Transmit (Vk) to Vi
143ijk Vi Vj!lvk 4-48 V Logical Logical sums of (Vj) and (Vk) to Vi
144ijk Vi Sj\Vk 4-48 V Logical Logical differences of (Sj) and (Vk) to Vi
14513k Vi Vj\Vk 4-48 V Logical Logical differences of (Vj) and (Vk) to Vi
146ijk Vi Sj ! Vk§VM 4-48 V Logical Transmit (Sj) if VM bit = 1; (Vk) if
VM bit = 0 to Vi
14610k Vi #VMEVk 4-48 V Logical Vector merge of (Vk) and 0 to Vi
147ijk Vi Vj!VkEVM 4-48 V Logical Transmit (Vj) if VM bit = 1; (Vk) if
VM bit = 0 to Vi
150ijk Vi Vj<Ak 4-52 V Shift Shift (Vj) left (Ak) places to Vi
+150ij0 Vi Vj<1 4-52 V Shift Shift (Vj) left one place to Vi
151ijk Vi Vj>Ak 4-52 V Shift Shift (Vj) right (Ak) places to Vi
+151ij0 Vi Vj>1 4-52 V Shift Shift (Vj) right one place to Vi
152ijk Vi Vj,Vj<Ak 4-53 V Shift Double shift (Vj) left (Ak) places to Vi
t152ij0 Vi Vj,Vj<1 4-53 V Shift. Double shift (Vj) left one place to Vi
ISSijk‘ Vi Vj,Vj>Ak 4-53 V Shift Double shift (Vj) right (Ak) places to Vi
153ij0 Vi Vj,Vi>1 © 4-53 V Shift Double shift (Vj) right one place to Vi
154ijk Vi Sj+Vk 4-56 V Int Add Integer sums of (Sj) and (Vk) to Vi
155ijk Vi Vj+Vk 4-56 V Int Add Integer sums of (Vj) and (Vk) to Vi
156ijk Vi Sj-Vk 4-56 V Int Add Integer differences of (Sj) and (Vk) to Vi
t156i0k Vi -Vk 4-56 V Int Add Transmit negative of (Vk) to Vi
1571j% Vi Vj-Vk 4-56 V Int Add 1Integer differences of (Vj) and (Vk) to Vi
160ijk Vi Sj*Fvk 4-58 F.P. Mult Floating products of (Sj) and (Vk) to Vi
161ijk Vi Vj*FVk 4-58 F.P. Mult Floating products of (Vj) and (Vk) to Vi
162ijk Vi Sj*HVk 4-58 F.P. Mult Half precision rounded floating products
of (Sj) and (Vk) to Vi
163ijk Vi Vj*HVk 4-58 F.P. Mult Half precision rounded floating products
of (Vj) and (Vk) to Vi
164ijk Vi Sj*RVk 4-58 F.P. Mult Rounded floating products of (Sj) and
(Vk) to Vi
165ijk Vi Vj*RVk 4-58 F.P. Mult Rounded floating products of (Vj) and
(Vk) to Vi -
166ijk Vi Sj*IVk 4-58 F.P. Mult 2 - floating products of (Sj) and
(Vk) to Vi » :
167ijk Vi Vji*Ivk 4-58 F.P. Mult 2 - floating products of (Vj) and
. (Vk) to Vi
170ijk Vi Sj+FVk 4-61 F.P. Add Floating sums of (Sj) and (Vk) to Vi
+17010k Vi +FVk 4-61 F.P. Add Normalize (Vk) to Vi
171ijk Vi Vj+FVk 4-61 F.P. Add Floating sums of (Vj) and (Vk) to Vi
172ijk Vi - S§j-FVk 4-61 F.P. Add Floating differences of (Sj) and (Vk) to Vi
+17210k Vi . -FVk 4-61 F.P. Add Transmit normalized negatives of (Vk) to Vi
173ijk Vi Vj-Fvk 4-61 F.P. Add Floating differences of (Vj) and (Vk) to Vi
174ijx Vi /HVj 4-63 F.P. Rcpl Floating reciprocal approximations of
(Vj) to Vi
175x3j0 VM vj,Z 4-65 V Logical VM=1 where (Vj) = 0
175xj1 VM Vj,N 4-65 V Logical VM=1 where (Vj) # 0
175xj2 WM Vi,P 4-65 V Logical VM=1 where (Vj) positive
175xj3 VM Vi,M 4-65 V Logical VM=1 where (Vj) negative
176ixk Vi ,A0,Ak 4-67 Memory Read (VL) words to Vi, from (A0)
incremented by (Ak)
+1761ix0 Vi ,A0,1 4-67 Memory Read (VL) words to Vi from (A0)
incremented by 1
177xjk ,A0,Ak Vj 4-67 Memory Store (VL) words from Vj to (A0)
incremented by (Ak)

+177x30 ,AO0,1 Vj 4-67 Memory Store (VL) words from Vj to (A0)
. incremented by 1

+ Special syntax form

2240004 D-4 c

== Ay TECHNICAL COMMUNICATIONS
7850 Metro Parkway, Suite 213, Minneapolis, MN 55420 « (612) 854-7472

PUBLTICATION CHANGE NOTICE
November 4, 1977

TITLE: CRAY-1 Hardware Reference Manual
PUBLICATION NO. 2240004 REV. C

This printing obsoletes version B and applies to CRAY-1 Computer Systems
starting with Serial No. 3. Revision A remains relevant for Serial 1.

R ANY TECHNICAL COMMUNICATIONS
7850 Metro Parkway, Suite 213, Minneapolis, MN 55420 e (612) 854-7472

PUBLICATION CHANGE NOTICE
May 15, 1978

TITLE: CRAY-1 Hardware Reference Manual
PURLICATION NO. 2240004 REV. C , CHANGE PACKET NO. (-01

This change packet changes the nomenclature for two flags in the exchange package.

Please replace the following pages:

Title page and record of revision
2-11
3-21 and 3-22
3-37 and 3-38
4-71
5-5 and 5-6
6-5 and 6-6
A-3 through A-5
Comment sheet

CRAY-1
COMPUTER SYSTEM®

HARDWARE REFERENCE MANUAL
- 2240004

Copyright© 1976, 1977, 1978 by CRAY RESEARCH, INC.
This manual or parts thereof may not be reproduced in any
form without permission of CRAY RESEARCH, INC,

&=FRAY

RECORD OF REVISION

Revision Print Date
1/76

A 5/76

A-01 9/76

B 10/76

B-01 2/77

B-02 7)77

C 11/77

C-01 4/78

PUBLICATION NUMBER 2240004

Description
Original printing
Reprint with revision

Corrections to pages 3-20, 3-27, 4-9, 4-10, 4-28,
4-36, 4-43, 4-55, and 4-57.

Repr1nt with revision. Addition of:
Floating point range error detection
Vector floating point error
Error correction

Changes to exchange package (p 3-36); additions
to instructions 152 and 153 (p 4-53); corrections
to syndrome bit description p 5-5; corrections to
instruction summary, appendix D.

Corrections and changes to pages xi, 2-3, 3-19
through 3-28.1, 3-31, 3-34, 3-36, 3-38, 4-14
through 4-17, 4-54, 4-68, 5-1, 5-3, 5-4, 5-6,
6-2, A-4, D-1 through D-4.

This printing obsoletes revision B. Features
added include 8-bank phasing and I/0 master clear
procedure. Chart tape reflects only changes
introduced with this revision.

This change packet changes the nomenclature for
two flags in the exchange package (pace 3-37)
and corrects technical errors on pages 2-11,
4-71, 5-6, 6-5, and A-3.

Each time this manual is revised and reprinted, all changes issued against the previous version in the form

of change packets are incorporated into the new version and the new version is assigned an alphabetic level.

Between reprints, changes may be issued against the current version in the form of change packets. Each

change packet is assigned a numeric designator starting with 01 for each new revision level. Every page

changed by a reprint or by a change packet has the revision level and change packet number in the Tower right-

hand corner.

A1l changes are noted by a change bar along the margin of the page.

Requests for copies of CRAY RESEARCH, INC. publications should be directed to: CRAY RESEARCH, INC.

7850 Metro Parkway
. Suite 213

iid Bloomington, MN 55420

MASS STORAGE SUBSYSTEM

Mass storage for the CRAY-1 computer system consists of two or more Cray
Research Inc. DCU-2 Dick Controllers and multiple DD-19 Disk Storage Units.
The disk controller is a Cray Research, Inc. product and is implemented in
flat-pack ECL logic similar to that used in the CRAY-1 mainframe. The con-
troller operates synchronously with the mainframe over a 16-bit full-duplex
channel. The controller is in a DCC-1 Freon cooled cabinet Tocated near the
mainframe. Up to four controllers may be contained in one cabinet. The
cabinet requires about five square feet of floor space and is 49 inches high.

Each controller may have from one to four DD-19 disk storage units attached

to it. Data passes through the controller to or from one disk storage unit

at a time. The controller may be connected to a 16-bit minicomputer station

in addition to the CRAY-1l. If this additional connection is made, the station
and mainframe may share the controller operation. Either, but not both, can
have an operation in progress at one time; software interlocks must be provided
to avoid conflicts.

Each of the DD-19 disk storage units has two ports for controllers. A second
independent data path may exist to each disk storage unit through another
Cray Research controller. Reservation logic is provided to control access

to each disk storage unit.

Operational characteristics of the DD-19 Disk Storage Units are summarized
in Table 2-1. Further information about the mass storage subsystem is
presented in separate publications.

Table 2-1. Characteristics of a DD-19 Disk Storage Unit

Bit capacity per drive | 2.424 X 10°]| Latency 16.6 msec
Tracks per surface 411 Access time 15 - 80 msec
Sectors per track 18 Data transfer rate

Bits per sector 32,768 (average bits per sec.) | 35.4 x 108

Total bits that can be
streamed to a unit

Recording surfaces (disk cylinder capacity) | 5.9 x 106
per drive 40

Number of head groups |10

2240004 2-11 C-01

Normalized floating point

A non-zero floating point number in packed format is normalized if the
most significant bit of the coefficient is non-zero. This condition
implies that the coefficient has been shifted to the left as far as
possible and therefore the floating point number has no leading zeros in

the coefficient.
When a floating point number has been created by inserting an exponent
of 40060g into a word containing a 48-bit integer, the result should be
normalized before being used in a floating point operation. Normalization
is accomplished by adding the unnormalized floating point operand to zero.
Since S, provides a 64-bit zero when used in the Sj field of an instruction,
a normalize of an operand in Sk can be performed using the following
instruction:

06210k

Si contains the normalized result.

Floating point range errors
Overflow of the floating point range is indicated by an exponent value of

600005 or greater in packed format. Underflow is indicated by an exponent
value of 177775 or less in packed format. Detection of the overflow
condition will initiate an interrupt if the floating point mode f]ag is
set in the mode register and monitor mode is not in effect. The floating
point mode flag can be set or cleared by an object program. The object
program has the responsibility to clear the f.p. mode flag via a 0022
instruction at the beginning of each vector branch sequence and resetting
it via a 0021 instruction after the merge.

Detection of floating point error conditions by the floating point units
is described in the following paragraphs.

2240004 3-21 C

Floating point add unit - A floating point add range error condition is
generated for scalar operands when the larger incoming exponent is greater
than or equal to 60000g. The f]oatihg point error flag is set and an
exponent of 60000g is sent to the result register along with the computed
coefficient, as in the following example:

60000.4 Range error
+ 57777.4

60000.6 Result register.

Floating point multiply unit - In the floating point multiply unit, if
the exponent of either operand is greater than or equal to 60000 or if
the sum of the two exponents is greater than or equal to 60000g, the
floating point error flag is set and an exponent of 60000g is sent to
the result register along with the computed coefficient.

An underflow condition is detected when the sum of the exponent is less
than or equal to 177774 and causes an all zero exponent and coefficient
to be returned to the result register. However, if the sum of the
exponents is 200005 and a normalizina left shift occurs, and exponent of
177774 is sent to the result register along with the computed coefficient.

Underflow is also generated when either, but not both, of the incoming
exponents s zero. Both exponents equal to zero is treated as an integer
multiply and the result is treated normally with no normalization shift
of the result allowed.

Floating point reciprocal approximation unit - For the floating point

reciprocal approximation unit, an incoming operand with an exponent less
than or equal to 20001g or greater than or equal to 60000g causes a
floating point range error. The error flag is set and an exponent of
600005 is sent to the result register along with the computed coefficient.

2240004 3-22 C-01

RAB

BA
LA
XA
VL

N el s In _@_;ﬁ P AO
N+t 22 BA 2§J Al
ne2 /47’/4227’ / LA M a2
ne 3 iy R K K A3
W /i a4
nes W i, as
77770 T
ne 1 L 0 a7
Registers M - Modes™

Syndrome bits

Read address for error
(where B is bank)

Program address
Base address
Limit address
Exchange address
Vector length

- Error type (bits 0,1)

10
01

Uncorrectable memory
Correctable memory

- Read mode (bits 10,11)

00
01
10
11

Scalar
I/0
Vector
Fetch

tBit position from left of word

**Supports Programmable Clock option.

Figure 3-8.

2240004

36

37
38

39

31
132
33
34
35
36
37
38
39

Interrupt on correctable
memory error

Interrupt on floating point

Interrupt on uncorrectable
memory error

Monitor mode

F - Flagst
PCI interrupt tt
MCU interrupt
Floating point error
Operand range
Program range
Memory error
I1/0 interrupt
Error exit
Normal exit

Exchange Package

3-37

c-01

The exchange package contents are arranged in a 16-word block as shown
in figure 3-8. Data is swapped from memory to the computer operating
registers and back to memory by the exchange sequence. This sequence
exchanges the data in a currently active exchange package, which is
residing in the operating registers, with an inactive exchange package
in memory. The XA address of the currently active exchange package
specifies the address of the inactive exchange package to be used in
the swap. The data is exchanged and a new program execution interval
is initiated by the exchange sequence.

The B register, T register, and V register contents are not swapped in
the exchange sequence. The data in these registers must be stored and
replaced as required by specific coding in the monitor program which
supervises the object program execution.

Memory error data

Two bits in the Mode (M) register determine whether or not the exchange
package contains data relevant to a memory error if one occurs prior
to an exchange sequence. These are bit 36, the "Interrupt on correctable
memory error bit" and bit 38, the "Interrupt on uncorrectable memory
“error bit". The error data, consisting of four fields of information,
appears in the exchange package if bit 38 is set and an uncorrectable
memory error is detected or if bit 36 is set and correctable memory error
is encountered.

Error type (E) - The type of error encountered, uncorrectable or
correctable, is indicated in bits 0 and 1 of the first word of the
exchange package. Bit 0 is set for an uncorrectable memory error; bit 1
is set for a correctable memory error.

Syndrome (S) - The eight syndrome bits used in detecting the error are
returned in bits 2 through 9 of the first word of the exchange package.
Refer to section 5 for additional information.

2240004 3-38 C

Execution time

For 176:
Instruction issue except for 034-037, 100-137, 176, 177: 1 CP
Instruction issue for above exceptions: (VL) + 4 CPs
Vi ready 14 CPs if (VL) < 5
Vi ready (VL) + 9 CPs if (VL) > 5
For 177:
Instruction issue except for 034-037, 100-137, 176, 177: 1 CP
Instruction issue for above exceptions: (VL) + 5 CPs
Vj ready 5 CPs if (VL) < 5
Vj ready (VL) CPs if (VL) > &

Special cases

The increment, (Ag),=1 if k. =0 ,
Chain slot issue is 9 CPs if full speed for 176, blocked for 177

Block I/0 references
Block 034 - 037, 100 - 137, 176, 177

(Ak) determines speed control. There are 16 memory banks;
successive addresses are located in successive banks. References
to the same bank can be made every 4 CPs or more. Incrementing
(Ak) by 16" places successive memory references in the same bank,
so a word is transferred every 4 CPs. If (Ak) is incremented

by 8,ft every other reference is to the same bank and words can
transfer every 2 CPs. With any address incrementing that allows
4 CPs before addressing the same bank, the words can transfer
each CP.

Memory reference out of Timits will allow 6 CPs + 2 parcels to issue.

For 176, a parity error will allow a minimum of 16 CPs + 2 parcels
to issue and a maximum of (VL) + 15 CPs + 2 parcels to issue.

T g places for 8-bank memory option. Refer to section 5.
T 4 places for 8-bank memory option. Refer to section 5.

2240004 4-71 C-01

MEMORY PARITY ERROR CORRECTION

An error correction and detection network between the CPU and memory
assures that the data written into memory can be returned to the CPU
with consistent precision. (Refer to figure 5-3.)

0
ERROR CORRECT
DATA BITS i"“ MEMORY o= DATA MERGE ™1s DATA FANOUT v\.PU
63
~ 64
CHECK BITS — > ERROR DETECT
N7

Figure 5-3. Memory data path with SEC-DED.

The network operates on the basis of single error correction, double error
detection (SEC-DED). If one bit of a data word is altered, the single
error alteration is automatically corrected before passing the data word

to ﬁhe computer. If two bits of the same data word are altered, the double
error is detected but not corrected. In either case, the CPU may be
interrupted depending on interrupt options selected to prevent incorrect
data from contaminating a job.

The SEC-DED error processing scheme is based on error detection and
correction codes devised by R. W. Hamming®™. An 8-bit check byte is
appended to the 64-bit data word before the data is written in memory.
The eight check bits are each generated as even parity bits for a
specific group of data bits. Figure 5-4 shows the bits of the data
word used to determine the state of each check bit. An X in the

Hamming, R.W., "Error Detection and Correcting Codes". Bell System
Technical Journal, 29, No., 2, 147-160 (April, 1950).

2240004 5-5

horizontal row indicates that data bit contributes to the generation

of that check bit. Thus, check bit number 0 (bit 2%*) is the bit making
group parity even for the group of bits 21, 23, 25, 27, 29, 211, 213 215,
217, 219, 221, 223 225 227 229 and 23! through 255.

The eight check bits are stored in memory at the same location as the
data word. When read from memory, the same 72-bit matrix of figure 5-4
is used to generate a new set of pa%ity bits, which are even parity bits
of the data word and the old check bits. The resulting eight parity bits
are called syndrome bits, shown as bits 64 through 7] in figure 5-4.

BYTE O BYTE 1 BYTE 2 BYTE 3
(e —A- A r A- N - — hl ~ A N
01 2 3 456 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X
X X
X X
X X
X X
BYTE 4 BYTE 5 BYTE 6 BYTE 7
—~ —A S —~ A \ Is - S r A)
32 33 34 35 36 37 38 3 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
X X
X X
X X
X X
X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X
CHECK BYTE
A
64 65 66 67 68 69 70 71
X So
X S1
X §2
X S3
X Sy
X S5
X S6
x S7

Figure 5-4. Error correction matrix

2240004 5-6 | c-01

The number of the channel causing an interrupt can be determined by use
of a 033 instruction which reads to Ai the highest priority channel
number requesting an interrupt. The Towest numbered channel has the
highest priority. The interrupt request will continue until cleared

by the monitor program.

CHANNEL ERROR CONDITIONS

A channel error condition can be generated as follows:
1. Input channel not active and input data ready.
2. Input channel current address equals 1imit address and input ready.
3. Input ready received before channel has written privious data in
memory (extra ready).
Qutput channel not active and output resume.
5. Parity error on an input channel.

One of the above error conditions could be forced by the driven
interface to signal an interface-related error. For example, a
fire code on a disk input channel produces a type 1 error. Refer
to documentation for the driven interface for descriptions of these
error conditions.

[/0 MEMORY ADDRESSING

A11 I/0 memory references are absolute. The current and 1imit registers
are 20 bits, allowing 1/0 access to all of memory.

INPUT CHANNEL SIGNALS

INPUT DATA

There are sixteen lines for input data. Data must arrive coincident with
the input ready signal and remain until an input resume signal is sent
to the sending device.

INPUT READY

This signal indicates that data is on the input lines. The input ready
signal is resynchronized before sampling the input data. This signal
must be a pulse with a minimum width of 50 nsec + 10 nsec.

2240004 6-5 C-01

INPUT RESUME

This signal indicates that the input data has been received. The input
data Tines can now receive a new data word. This signal is a 50 nsec.
pulse.

INPUT DISCONNECT
This signal terminates an input sequence and causes the input channel to

interrupt the CPU. This signal must be a pulse with a minimum width of
50 nsec t 10 nsec.

QUTPUT CHANNEL SIGNALS

OUTPUT DATA v

There are sixteen lines for output data. Data is sent coincident with the
output ready signal and remains on the Tine until an output resume signal
is received.

OUTPUT READY

This signal indicates that data is on the output lines. This signal is a
50 nsec pulse.

OUTPUT RESUME

This signal indicates the receiving device has received the output data.
The output resume is resynchronized allowing a new output data word to
change the output data lines. This signal must be a pulse with a minimum
width of 50 nsec + 10 nsec.

OUTPUT DISCONNECT

This signal terminates an output sequence when the last data word in a
record (current address equals 1imit address) has been acknowledged. This
signal is a 50 nsec pulse.

CHANNEL OPERATION CONTROL

Channel input and output is controlled by the 20-bit channel address (CA)
and channel Timit (CL) registers. .A set of these registers exists for
each channel. The CA register contains the address of the next channel

2240004 6-6 C

2. The result register is reserved for the functional unit time
+(VL+2) clock periods. The result register is reserved for the
functional unit +7 clock periods if the vector length is Tess than
5. At functional unit time +2 (chain slot time) a subsequent
instruction, which has met all other issue conditions, may issue. This
process is called "chaining." Several instructions using different
functional units may be chained in this manner to attain a significant
enhancement of processing speed.

3. Vector operand registers are reserved for VL clock periods. Vector
| operand registers are reserved for 5 clock periods if the vector
length is less than 5. The vector register used in a block store to
memory (177 instruction) is reserved for VL clock periods. Scalar
operand registers are not reserved.

Vector instructions produce one result per clock period. The functional
unit times are given below. The vector read and write instructions'
(176, 177) produce results more slowly if bank conflicts arise due. to
the increment value (Ak) being a multiple of Bf Chainfng cannot occur
for the vector read operation in this case.

If (Ak) is an odd multiple of 8% results are produced every 2 clock
periods.

If (Ak) is an even multiple of 8% results are produced every 4 clock

periods.
Functional unit Time (c.p.)
Logical 2
Shift 4
Integer add 3
Floating add 6
Floatina multiply 7
Reciprocal approximation 14
Memory 7

t Multiple of 4 for 8-bank phasing; refer to section 5.

2240004 A-3 C-01

Memory must be quiet before issue of the B and T register block copy
instructions (034-037). Subsequent instructions may not issue for 14+ (Ai)
clock periods if (Ai)#0 and 5 clock periods if (Ai)=0 when reading

data to the B and T registers (034,036). They may not issue for 6+(Ai)
clock periods when storing data (035,037).

The B and T register block read (034,036) instructions require that there
be no register reservation on the A and S registers, respect1ve1y, before
issue.

Branch instructions cannot issue until an AO or SO operand register has
been free for one clock period. Fall-through in buffer requires two
clock periods. Branch-in-buffer requires five clock periods. When an
"out of buffer" condition occurs the execution time for a branch

instruction is 14 clock periods?

A two parcel instruction takes two clock periods to issue.

Instruction issue is delayed 2 clock periods when the next instruction
parcel is in a different instruction parcel buffer. Instruction issue is
delayed 14 clock periods if the next instruction parce] is not in an
instruction parcel buffer.

HOLD MEMORY

A delay of 1, 2, or 3 CP will be added to a scalar memory read'if a bank
conflict occurs with rank C, B, or A, respectively, of the memory access
network. A conflict occurs if the address is in the same bank as the
address in rank C, B, or A. Conflicts can occur only with scalar or I/0 -
references. The scalar instruction senses the conflict condition at
issue time + 1 CP. The scalar instruction address enters rank A of the
memory access network at issue time + 1 CP. The scalar instruction
address enters rank B at issue + 2 CP. The scalar instruction address
enters rank C at issue + 3 CP.

T 18 clock periods for 8-bank phasing option; refer to section 5.

* 2240004 A-4 C-01

Scalar instruction timing (no conflict):

CP n Issue, reserve register

CP n+l Address rank A, sense conflict
CP n+2 Address rank B

CP n+3 Address rank C

CP nt9 Clear register reservation
CP n+10 Issue

HOLD ISSUE
A delay of issue results if a 100 - 137 instruction is in the CIP register
and a hold memory condition exists. The delay will depend on the hold

memory delay.

A delay of issue results if a 100 - 137 instruction is in the CIP register
and a 100 - 137 instruction in process senses a conflict with rank A, B,

or C.

An additional 1 CP delay is added to a hold memory condition if a 070
instruction conflict is sensed.

i 2240004 A-5 C-01

Comment Sheet

Publication Number: 2240004 C-01
Title: CRAY-1 Hardware Reference Manual

Please feel free to share with us your comments, criticisms, or compliments
regarding this publication. We value your feedback. Thank you.

Comments:

Mail to: Publications
CRAY RESEARCH, INC.

7850 Metro Parkway
Suite 213 ' (——P - -
Minneapolis, MN 55420

(—y — P - s TECHNICAL COMMUNICATIONS

7850 Metro Parkway, Suite 213, Minneapolis, MN 55420 « (612) 854-7472

PUBLTCATION CHANGE NOTICE
July 5, 1978

TITLE: CRAY-1 Hardware Reference Manual

PUBLICATION NO. 2240004 REV. C CHANGE PACKET NO. C-02

This change packet contains changes to the physical description of the CRAY-1.

Please replace the following pages:

Title page and record of revision
Pages 2-1 through 2-11

A-5

Comment sheet

CRAY-1
COMPUTER SYSTEM®

HARDWARE REFERENCE MANUAL
2240004

Copyright© 1976, 1977, 1978 by CRAY RESEARCH, INC.
This manual or parts thereof may not be reproduced in any
form without permission of CRAY RESEARCH, INC.

=R AY

RECORD OF REVISION PUBLICATION NUMBER 2240004

Revision Print Date Description

1/76 Original printing
A 5/76 Reprint with revision
A-01 9/76 Corrections to pages 3-20, 3-27, 4-9, 4-10, 4-28,
4-36, 4-43, 4-55, and 4- 57
B 10/76 Reprint with revision. Addition of:

Floating point range error detection
Vector floating point error
Error correction

B-01 2/77 Changes to exchange package (p 3-36); additions
to instructions 152 and 153 (p 4-53); corrections
to syndrome bit description p 5-5; correct1ons to
instruction summary, appendix D.

B-02 7/77 Corrections and changes to pages xi, 2-3, 3-19
through 3-28.1, 3-31, 3-34, 3-36, 3-38, 4-14
through 4-17, 4-54, 4-68, 5-1, 5-3, 5-4, 5-6,
6-2, A-4, D-1 through D-4.

C 11/77 This printing obsoletes revision B. Features
added include 8-bank phasing and I/0 master clear
procedure. Chart tape reflects only changes
introduced with this revision.

Cc-01 4/78 This change packet changes the nomenclature for
two flags in the exchange package (pace 3-37)
and corrects technical errors on pages 2-11,
4-71, 5-6, 6-5, and A-3.

C-02 7/78 This change packet documents changes to the physical
description of the CRAY-1 Computer System. Changes
are all in section 2.

Each time this manual is revised and reprinted, all changes issued against the previous version in the form
of change packets are incorporated into the new version and the new version is assigned an alphabetic level.
Between reprints, changes may be issued against the current version in the form of change packets. Each
change packet is assigned a numeric designator starting with 01 for each new revision level. Every page
changed by a reprint or by a change packet has the revision level and change packet number in the lower right-
hand corner. A1l changes are noted by a change bar along the marain of the page.
Requests for copies of CRAY RESEARCH, INC. publications should be directed to: CRAY RESEARCH, INC.

: 7850 Metro Parkway

Suite 213
id Bloomington, MN 55420

PHYSICAL ORGANIZATION 2

INTRODUCTION

The CRAY-1 computer system consists of the following:
- The CPU mainframe
- A power cabinet
- A condensing unit
- Two motor generators and control cabinets
- A maintenance control unit (MCU)
- One or more disk systems, and

- Optional interfaces to one or more front-end computer systems.

MAINFRAME

The CRAY-1 mainframe, figure 2-1, is composed of 24 logic chassis. The
chassis are arranged two per column in a 270% arc which is 56.5 inches in
diameter. The twelve columns are 77 dinches high. At the base of the
columns, 19 inches high and extending outward 30 inches, are cabinets
for power supplies and cooling distribution systems.

Viewing the cabinet from the top, the chassis of the upper circle are labeled
A through L proceeding in a counter-clockwise direction from the opening.

The chassis of the lower circle are labeled M through X. The assignment

of modules to chassis is illustrated in figure. 2-2.

MODULES

The CRAY-1 computer system uses only one basic module construction through-
out the entire machine. The module consists of two 6 x 8 inch printed
circuit boards mounted on opposite sides of a heavy copper heat transfer
plate. Each printed circuit board has capacity for a maximum of 144
integrated circuit (IC) packages and approximately 300 resistor packages.

2240004 2-1 0-02

19"

b

|
.

W

/”’<::: . Ef:::j\?

TR A

103%"

- Dimensions
Base - 103% inches diameter by 19 inches high
Columns - 56% inches diameter by 77 inches high including

height of base

24 chassis arranged in 12 columns
1662 modules (16 banks); 113 module types

- Each module contains up to 288 IC packages per module

- Power consumption approximately 118 kw input for maximum memory size
- Refrigerant-22 cooled with refrigerant/water heat exchange

= Three memory options
- Weight 10,500 1bs (maximum memory size)
- Three basic chip types

5/4 NAND gates

Memory chips

Register chips

Figure 2-1. Physical organization of mainframe

2240004

9.2 | C-02

A B C D E F G H J K L
71 ' 1
| cLock MIsC.
FANOUT
64
FLOATING FLOATING
56
MULTIPLY ADD
RECIP.
48 SCALAR
APPROX.
ADD
40
SCALAR
REGISTERS
32 STORAGE STORAGE
CLOCK AND! CLOCK AND
ADDRESS ADDRESS
FANOUT FANOUT
24
SECDED ADDRESS | SECDED
REGISTERS
16 ADDRESS
SCALAR
MULTIPLY
SHIFTS
8 CONTROL LOGIC
VECTOR VECTOR
0 SHIFT LOGICAL
CONTROL NIP INSTR. CONTROL
CCNTROL § BUFFERS
SECDED § VECTOR SECDED
8 ADD XP DATA
Vj TO VECTOR VECTOR SHIFT STOR.
1 |
16
Vi & Vk TO FUNCTIONAL UNITS
STORAGE STORAGE
24
CLOCK AND DATA TO VECTOR REGISTERS CLOCK AND
ADDRESS ADDRESS
FANOUT FANOUT
32
VECTOR
REGISTERS
40 ADDR
ADDR FANOUT FANOUT
48 1/0
56 CLOCK FANOUT
64
71
M N O P Q R S T u v w X

2240004

Figure 2-2. General chassis layout

2-3

71

64

56

48

40

32

24

16

16

24

32

40

48

56

64

71

There are 1662 modules in a CRAY-1 with a standard 16-bank’ memory. Modules
are arranged 72 per chassis as illustrated in figure 2-2. There are 113
module types. Usage varies from 1 to 708 modules per type. Module type

and usage is summarized in Appendix B. Each module type is identified by
two letters. The first indicates the module series (A, D, F, G, H, J, M,

R, S, T, V, X, and Z). The second letter identifies types of modules

within a series.

The computation and I/0 modules are on the eight chassis forming the center
four columns. Each of the eight chassis on either side of the four center
columns contains one of the 16 memory banks.

Modules are cooled by transferring heat via the heat transfer plate to cool-
ing bars which in turn transfer the heat to refrigerant-22. Power dissipa-
tion depends on module density. The maximum module power dissipation by
type is approximately 65 watts. The average module dissipation by usage is
approximately 49 watts.

Two supply voltages are used for each module: -5.2 volts for IC power;
-2.0 volts for line termination.

Each module has 96 pin pairs available for interconnecting to other modules.
A1l interconnections are via twisted pair wire. The average utilization of
pins is approximately 60 percent.

Each module has 144 available test points that can be used for trouble
shooting. Test points are driven by circuits that do not drive other loads.

Printed circuit board

The printed circuit board used in the CRAY-1 computer system is a 5-layer
board. The two outer surfaces of the PC board are used for signal runs;

the inner three layers are used for the -5.2 V, -2.0 V, and ground supp]ies.
Signal foil runs are a nominal 0.0075 inch. The spacing of the signal layer
to the adjacent voltage is a nominal 0.008 inch. The dimensions used
provide signal 1ines with an impedance of 50 to 60 ohms.

Conventional PC techniques are used in the construction of the PC boards.

+ Refer to 8-Bank Phasing Option, section 5

2240004 2-4 C-02

Holes are drilled in the PC board for component mounting, interconnecting
signal layers, and supplying signal and voltages to components. A1l holes
are plated. The two signal layers are tin-lead plated before etching.

The finished PC board is reflowed to eliminate slivers caused by the etching
process.

Module assembly
The individual boards of the module are arranged, flow soldered, and

inspected prior to being assembled as a module. Logic testing is done
at the module level.

Integrated circuit packages
A11 integrated circuit devices used in the CRAY-1 are packaged in a

common package type. The package is a 16-pin hermetically sealed flat
pack. Gold or tin-lead plated leads are used depending on the vendor.
The 16-pin flat pack was chosen for its reliability and compactness.

IC high-speed logic gate

With minor exceptions, one type of logic gate is used for the central
processing unit. This is an ECL circuit with either four or five inputs
and with both normal and inverted outputs available to drive loads. One

four-input gate and one five-input gate are packaged in a 16-pin flat

pack (5/4 gate). A1l latches, adders, subtracters, etc., are made of

this basic gate. The high-speed logic gate has a minimum propagation delay
of 0.5 nsec and a maximum propagation delay of 1 nsec. Edge speeds are

1 nsec or less.

1C slow-speed logic gate

The slow-speed gate is a MECL 10K version of the high-speed gate and is
used in the memory module for address fanout. The speed is adequate for
this application and the lower power requirement is an advantage.

16x1 register chip
The 16x1 register chip provides very fast temporary storage for scalar
and vector functional units. The chips are used for instruction buffers

and for B, T, and V registers. The chips have a 6 nsec read/write time,
well within the 12.5 nsec clock period.

2240004 2-5 C

1024x1 memory chip
The bipolar 1024x1 LSI chip is the basic building block around which the
CRAY-1 memory is built. The chip was developed by Fairchild using the

isoplanar technology. The memory chip has a speed of 25 nsec so that a
memory access cycle time of 50 nsec can be achieved. Address decoding is
internal to the package and is compatible with standard ECL Togic levels.

Resistors

Only two resistor types are used throughout the entire CRAY-1 computer
system. They are a center-tapped 120-ohm resistor providing two 60-ohm
resistors per package; and a 300-ohm resistor tapped to provide a 120-ohm
and 180-ohm resistor. The basic resistor package is a three-lead device
in a ceramic substrate. The resistance film is tantalum nitride. The
lead frame is thermal pulse bonded. An epoxy covering is used to protect
the film from mechanical damage.

A11 printed circuit boards lines are treated as transmission lines. To
provide the proper termination of the transmission lines, each Tine is
parallel-terminated to the -2.0 volt supply. A 60-ohm resistor is used

to match the transmission line impedance. To minimize noise on the -2.0 V

supply, all used logic gate inputs and outputs are terminated with a 60-
ohm resistor to -2.0 volts.

The 16x1 register chip and the 1024x1 memory chip provide only a normal signal
output (logic gates provide the normal and inverted output signals). To
minimize the noise that could be introduced on the -2.0 volt bus by an
unbalanced load, these two devices are terminated with a Thévenin equivalent
to the -5.2 volt supply. The 300-ohm resistor is used for the Thévenin
equivalent termination.

Connector strips

The module connector strip uses 96 individual sockets molded in plastic.
The chassis connector strip uses 96 mating pins molded in plastic.
Individual pins and sockets when assembled are mounted on 0.050-inch
centers with mounting holes provided in the assembled plastic strip. Each
board has 96 holes provided for connecting signals to the module connector

2240004 2-6 02

strip. The chassis connector strip is assembled with an 18~inch wire
crimped to each pin. Wire pairs are twisted after assembly to provide

the twisted pair wire transmission lines. The interconnection of

twisted pair wires is made in the center of the line using a solder sleeve.

CLOCK

A11 timing within the mainframe cabinet is controlled by a single phase
synchronous clock network. This clock has a period of 12.5 nsec. The
lines that carry the clock signal from the central clock source to the
individual modules of the CPU are all made of uniform length so that
the leading edge of a clock signal arrives at all parts of the CPU
cabinet at the same time. A three nanosecond pulse (figure 2-3) is
formed on each module.

l«—————— 12.5 ns -

—» 3 ns [+

Figure 2-3. Clock pulse waveform

References to clock periods in this manual are often given in the form
CPn where n indicates the number of the clock period during which an
event occurs. Clock periods are numbered beginning with CPO. Thus, the
third clock period would be referred to as CP2.

POWER SUPPLIES

Thirty-six power supplies are used for the CRAY-1 computer system. There
are twenty -5.2 volt supplies and sixteen -2.0 volt supplies. The supplies
are divided into twelve groups of three. Each group supplies one column.

The power supply design assumes a constant load. The power supplies do not
have internal regulation but depend on the motor-generator to isolate and
requlate incoming power. The power supplies use a twelve-phase transformer,

2240004 2-7

silicon diodes, balancing coil, and a filter choke to supply low ripple
DC voltages. The entire supply is mounted on a refrigerant-22 cooled heat
sink. Power is distributed via bus bars to the load.

PRIMARY POWER SYSTEM

The primary power system consists of a pair of 150 KW motor generators,
motor-generator control cabinets, and a power distribution cabinet. The
motor generators supply 208 V, 400 cycle, three-phase power to the power
distribution cabinet, which the power distribution cabinet supplies via a
variac to each power supply. The power distribution cabinet also contains
voltage and temperature monitoring equipment to detect power and cooling
malfunctions.

COOLING

Modules in the CRAY-1 computer system are cooled by the exchange of heat
from the module heat sink to a refrigerant-cooled cold bar. The module
heat sink is wedged along both 8-inch edges to a cold bar. Cold bars are
arranged in vertical columns, with each column having capacity for 144
modules. The cold bar is a cast aluminum bar containing a stainless steel
refrigerant tube.

To assure component reliability, the cooling system was designed to provide
a maximum case temperature of 130° F (54° C). To meet this goal, the
following temperature differentials are encountered:

IC case temperature at center of module 130° F (54 C)
IC case temperature at edge of module 118° F (48O C)
Cold plate temperature at wedge 78° F (25O C)
Cold bar temperature 70° F (210 C)
Refrigerant tube temperature 70° F (21O C)

One 50-ton condensing unit is located external to the computer room to
complete the cooling system.

2240004 2-8 C-02

MAINTENANCE CONTROL UNIT

The CRAY-1 computer system is equipped with a 16-bit minicomputer system
that serves as a maintenance tool and provides control for the system
initialization. After the CRAY-1 operating system has been initialized
and is operational, communication with the MCU is via a software protocol.
The MCU is connected to a CRAY-1 channel pair with additional control
signals for execution of the master clear operation, I/0 master clear:
operation, dead dump operation, and sample parity error operation.
The maintenance control unit (MCU) includes:

1. A Data General ECLIPSE $-200 minicomputer or equivalent with

32K words of 16-bit memory

An 80-column ¢ard reader

A 132-column line printer

An 800 bpi 9-track tape unit

Two display terminals

oy O B W N

A moving head disk drive

Included in the MCU system is a software package that enables it to
serve as a local batch station during production hours. As a local
station, diagnostic routines may be submitted for execution along with
other batch jobs. These diagnostics are typically stored on the 1o¢a1
disk and are submitted to the CRAY-1 by operator command.

The system initialization procedure is referred to in this manual as
the dead start sequence. This sequence is described in detail in
Section 3.

Detailed information about the MCU is presented in separate publications.

2240004 2-9 ¢

FRONT-END COMPUTER

The CRAY-1 computer system may be equipped with one or more front-end
computer systems that provide input data to the CRAY-1 computer system
and receive output from the CRAY-1 to be distributed to a variety of
slow-speed peripheral equipments. A front-end computer system is a self-
contained system that executes under the control of its own operating
system. Peripheral equipment attached to the front-end computer will
vary depending on the use to which the system is put.

A front-end computer may service the CRAY-1 in the following ways:
e As a local operator station
@ As a local batch entry station
o As a data concentrator for multiplexing several other stations
into a single CRAY-1 channel
o As a remote batch entry station

Detailed information about the front-end system is presented in
separate publications.

EXTERNAL INTERFACE

The CRAY-1may be interfaced to front-end systems through special interface
controllers that compensate for differences in channel widths, machine
word size, electrical Togic levels, and control protocols. An interface
is a Cray Research, Inc. product implemented in ECL logic compatible

with the host system. An interface controller is contained

in a small cabinet located near the CRAY-1 mainframe. A primary goal

of the interface is to maximize the utility of the front-end channel
connected to the CRAY-1. Such a channel is generally slower than CRAY-1
channels. It is desirable that channel cables be limited to less than 75
feet. If site conditions require that the interconnected systems be
physically located a considerable distance from each other, the -
effective transmission rate may be degraded.

2240004 2-10 €-02

MASS STORAGE SUBSYSTEM

Mass storage for the CRAY-1 computer system consists of one or more Cray
Research, Inc. DCU-2 Disk Controllers and multiple DD-19 Disk Storage Units.
The disk controller is a Cray Research, Inc. product and is implemented in
flat-pack ECL Togic similar to that used in the CRAY-1 mainframe. The con-
troller operates synchronously with the mainframe over a 16-bit full-duplex
channel. The controller is in a DCC-1 refrigerant-cooled cabinet Tocated
near the mainframe. Up to four controllers may be contained in a cabinet.
The cabinet requires about 5 sq. ft. of floor space and is 49 inches high.

Each controller may have from one to four DD-19 disk storage units attached

to it. Data passes through the controller to or from one disk storage unit

at a time. The controller may be connected to a 16-bit minicomputer station

in addition to the CRAY-1. If this additional connection is made, the station
and mainframe may share the controller operation. Either, but not both, can
have an operation in progress at one time; software interlocks must be provided
to avoid conflicts.

Each of the DD-19 disk storage units has two ports for controllers. A second
independent data path may exist to each disk storage unit through another
Cray Research controller. Reservation logic is provided to control access

to each disk storage unit.

Operational characteristics of the DD-19 Disk Storage Units are summarized
in Table 2-1. Further information about the mass storage subsystem is
presented in separate publications.

Table 2-1. Characteristics of a DD-19 Disk Storage Unit

Bit capacity per drive | 2.424 X 10°%| Latency 16.6 msec

Tracks per surface 411 Access time 15 - 80 msec

Sectors per track 18 Data transfer rate |

Bits per sector 32,768 (average bits per sec.) |[35.4 x 10°
Total bits that can be

Number of head groups |10 streamed to a unit

Recording surfaces (disk cylinder capacity) [5.9 x 106

per drive 40

2240004 2-11 c-02

Scalar instruction timing (no conflict):

CPn

CP n+l
CP n+2
CP n+3

CP n+9
CP n+10

HOLD ISSUE

Issue, reserve register
Address rank A, sense conflict

- Address rank B

Address rank C

Clear register reservation
Issue

E A delay of issue results if a 100 - 137 instruction is in the NIP register

and a hold memory condition exists. The delay will depend on the hold

memory delay.

- A delay of issue results if a 100 - 137 instruction is in the NIP register

and a 100 - 137 instruction in process senses a conflict with rank A, B,

or C.

An additional 1 CP delay is added to a hold memory condition if a 070

instruction conflict is sensed.

2240004

A-5

C-02

Comment Sheet

Publication Number: 2240004 C-02
Title: CRAY-1 Hardware Reference Manual

Please feel free to share with us your comments, criticisms, or compliments
regarding this publication. We value your feedback. Thank you.

Comments:

Mail to: PubTications
CRAY RESEARCH, INC.
7850 Metro Parkway
Suite 213
Minneapolis, MN 55420

Comment Sheet

Publication Number: 2240004 C
Title: CRAY-1 Hardware Reference Manual

Please feel free to share with us your comments, criticisms, or compliments
regarding this publication. We value your feedback. Thank you.

Comments:

Mail to: Publications
CRAY RESEARCH, INC.

7850 Metro Parkway
Suite 213 (—— P - -
Minneapolis, MN 55420

=' !‘ > l HEADQUARTERS e 7850 Metro Parkway, Suite 213, Minneapolis, MN 55420 e (612) 854-7472

RESEARCH, ING. DEVELOPMENT LABORATORY o P.O. Box 169, Chippewa Falls, WI.54729 o (715) 723-0266

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	1-00
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	2-00
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	3-00
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	4-00
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	4-51
	4-52
	4-53
	4-54
	4-55
	4-56
	4-57
	4-58
	4-59
	4-60
	4-61
	4-62
	4-63
	4-64
	4-65
	4-66
	4-67
	4-68
	4-69
	4-70
	4-71
	5-00
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	6-00
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	B-01
	B-02
	C-01
	C-02
	D-01
	D-02
	D-03
	D-04
	_01
	_02
	_03
	_04
	_05
	_06
	_07
	_08
	_09
	_10
	_11
	_12
	_13
	_14
	_15
	_16
	_17
	_18
	_19
	_20
	_21
	_22
	_23
	_24
	_25
	_26
	_27
	_28
	_29
	_30
	_31
	_32
	_33
	_34
	replyA
	xBack

