
CRAY Y-Mp® EL Functional Description

HR-04027

Cray Research, Inc.

Copyright @ 1992 by Cray Research, Inc. This manual or parts thereof
may not be reproduced in any form unless permitted by contract or by
written permission of Cray Research, Inc.

For FCC information, please contact your Cray Research account
manager.

Autotasking, CRAY, CRAY-1, Cray Ada, CRAYY-MP, HSX, SSD,
UNICOS, and X-MP EA are federally registered trademarks and CCI,
CF77, CFT, CFf2, CFT77, COS, CRAYX-MP, CRAYXMS, CRAY-2,
CRl/TurboKiva, CSIM, CVT, Delivering the power ... , Docview, IDS,
MPGS, OLNET, RQS, SEGLDR, SMARTE, SUPERCLUSTER,
SUPERUNK, Trusted UNICOS, UniChem, Y-MP, and Y-MP C90 are
trademarks of Cray Research, Inc.

Ethernet is a trademark of Xerox Corporation. EXABYTE is a
trademark of EXABYTE Corporation. HYPERchannel and NSC are
trademarks of Network Systems Corporation. SPARC is a trademark of
SPARC International, Inc. UNIX is a trademark of UNIX System
Laboratories, Inc.

Requests for copies of Cray Research, Inc. publications should be
directed to:

CRAY RESEARCH, INC.
Distribution
2360 Pilot Knob Road
Mendota Heights, MN 55120
(800) 284-2729 extension 5907

Comments about this publication should be directed to:

CRAY RESEARCH, INC.
Hardware Publications and Training
770 Industrial Blvd.
Chippewa Falls, WI 54729

Record of Revision

Each time this manual is revised and reprinted, all changes issued against the previous version are incorporated into the new
version, and the new version is assigned an alphabetic level which is indicated in the publication number on each page of the
manual.

Changes to part of a page are indicated by a change bar in the margin directly opposite the change. A change bar in the footer
indicates that most, if not all, of the page is new. If the manual is rewritten, the revision level changes but the manual does not
contain change bars.

REVISION

001

HR-04027-001

DESCRIPTION

Original printing. January 1992.

August 1992. This change packet updates the DAS-2 disk array
subsystem transfer-rate information. I

iii

PREFACE

HR-04027

This manual is written primarily for customers of Cray Research, Inc.
and describes the basic functions of the CRAY Y-MP EL system
manufactured by Cray Research. It also describes the design and
architecture of the CRAY Y -MP EL system and its associated peripheral
devices.

•

•

•

Section 1 provides an overview of the major components of a
CRAY Y-MP EL system.

Section 2 describes the major functional areas of the CPU and
provides a summary of the CPU instruction set.

Section 3 describes the input/output subsystem (IDS) and system
peripherals.

Each section has a separate table of contents.

Please use one of the reader comment forms located at the front and back
of this manual to suggest improvements or to point out technical errors.

The following conventions are used throughout this manual.

Convention

Lowercase italic

Xorx orx

n

(value)

Register bit

Description

Variable information.

An unused value.

A specified value.

The contents of the register or memory
location designated by value.

Register bits are numbered from right to
left as powers of 2.

v

Preface

vi

Convention

Designators

Number base

CRAY Y-MP EL Functional Description

Description

Bit 2° corresponds to the least
significant bit of the register. One
exception is the vector mask register.
The vector mask register bits
correspond to a word element in a vector
register; bit 263 corresponds to element 0
and bit 2° corresponds element 63.

All numbers used in this manual are
decimal unless otherwise indicated.
Octal numbers are indicated with an 8
subscript. Exceptions are register
numbers, instruction parcels in
instruction buffers, and instruction
forms, which are given in octal without
subscript notation.

The following are examples of the preceding conventions.

Example

Transmit (Ak) to Si

167ixk

Read n words from
memory

10008

Description

Transmit the contents of the A register
specified by the k field to the S register
specified by the "i field.

Machine instruction 167. The x
represents the j field, which is not used.

Read a specified number of words from
memory.

The value represents the most
significant bit of an S register or element
of a V register.

The number base is octal

HR-04027

CONTENTS

1 SYSTEM OVERVIEW

2 CPU

Mainframe Cabinet 1-1

Peripheral Cabinet . 1-3

Disk Subsystems 1-3

Tape Subsystems

Maintenance Workstation

Power and Cooling

Network Interfaces

System Software

System Configurations

1-4

1-4

1-4

1-4

1-5

1-5

CPU Shared Resources 2-1

Central Memory .. 2-1

lOS.. 2-2

lnterprocessor Communication Section 2-2

Real-time Clock 2-3

CPU Computation Section 2-3

Registers . 2-6

Address Registers 2-6

Scalar Registers . 2-7

Vector Registers . 2-7

Functional Units ~ . 2-7

Address Functional Units 2-8

Scalar Functional Units. 2-8

Vector Functional Units. 2-9

Floating-point Functional Units 2-10

Functional Unit Operations 2-11

Logical Operations 2-12

Integer Arithmetic. 2-12

HR-04027 vii

2 CPU (continued)

Floating-point Arithmetic 2-15

CPU Control Section. 2-26

Exchange Mechanism 2-26

Exchange Sequence. 2-26

Exchange Package. 2-26

Instruction Fetch. 2-32

Instruction Issue .. 2-32

Programmable Clock 2-33

Status Register 2-33

Special Features of the CPU 2-33

Pipelining and Segmentation. 2-34

Functional Unit Independence . 2-34

Vector Processing . 2-35

Definition of Vector Processing 2-36

Advantages of Vector Processing 2-36

Vector Chaining. 2-36

Types of Vector Instructions 2-38

Instruction Formats 2-45

1-parcel Instruction Format with Discrete j and k
Fields .. 2-45

1-parcel Instruction Format with Combined j and k
Fields .. 2-46

2-parcel Instruction Format with Combined j, k, and m
Fields .. 2-46

2-parcel Instruction Format with Combined ~ j, k, and m
Fields .. 2-47

3-parcel Instruction Format with Combined m and n
Fields .. 2-48

Instruction Differences between X-mode and Y -mode. 2-49

Special Register Values . 2-50

Monitor Mode Instructions. 2-51

Special CAL Syntax Forms . 2-51

CPU Instruction Summary 2-52

Functional Units Instruction Summary 2-53

Functional Instruction Summary 2-54

Register Entry Instructions 2-54

viii HR-04027

2 CPU (continued)

Interregister Transfer Instructions. 2-56

Memory Transfer Instructions. 2-59

Integer Arithmetic Instructions 2-63

Floating-point Arithmetic Instructions 2-65

Logical Operation Instructions 2-68

Shift Instructions . 2-72

Bit Count Instructions . 2-73

Branch Instructions 2-7 4

Monitor Mode Instructions 2-7 6

3 INPUT/OUTPUT SUBSYSTEM

IDS Configurations 3-1

Channel Communications and Networking 3-2

Master I/O Processor . 3-3

Peripheral Devices . 3-3

DD-3 Disk Drive 3-3

DC-3 Disk Controller . 3-4

DD-4 Disk Drive 3-4

DC-4 Disk Controller . 3-4

DAS-2 Disk Array Subsystem . 3-4

DAS-2 Disk Array Subsystem Controller 3-5

DEB-2 Disk Array Bank 3-5

RD-1 Removable Disk Subsystem 3-5

RD-2 Removable Maintenance Drive 3-5

TD-2 Tape Drive Subsystem 3-5

TC-2 Tape Controller . 3-6

TD-3 Tape Drive Subsystem 3-6

SI-1 Small Computer System Interface 0 3-6

EX-2 8nim Cartridge Tape Subsystem. 0 •• 0 • • • • • • • • • • 3-6

Network Connections ·0 • 3-6

Ethernet Interface Controller 0 • 0 • • • • • • • • • • • • • 3-6

Fiber-optic Distributed Data Interface Controller 3-7

HYPERchannel Interface Controller. 0 • • • • • • • • 3-7

Printer and Plotter Controller 3-7

HR-04027 ix

GLOSSARY

BIBLIOGRAPHY

INDEX

FIGURES

x

Glossary .. Glo-1

Bibliography ... Bib-1

Index ... Ind-1

Figure 1-1.

Figure 1-2.

Figure 2-1.

Figure 2-2.

Figure 2-3.

Figure 2-4.

Figure 2-5.

Figure 2-6.

Figure 2-7.

Figure 2-8.

Figure 2-9.

CRAY Y-MP EL Computer System

Example of Cabinet Layout for the CRAY Y-MP EL
System

CRAY Y-MP ELSystem CPU Block Diagram .. .

Integer Data Formats

24-bit Integer Multiply Performed in
Floating-point Mulitply Functional Unit

32-bit Integer Mulitply Performed in
Floating-point Mulitply Functional Unit

Floating-point Data Format

Internal Representation of Floating-point Number

Biased and Unbiased Exponent Ranges

Floating-point Add and Multiply Range Errors .. .

Floating-point Reciprocal Approximation Range
Errors

1-2

1-3

2-4

2-13

2-14

2-15

2-16

2-16

2-17

2-18

2-19

Figure 2-10. Newton's Method for Approximating Roots. 2-23

Figure 2-11. Segmentation and Pipelining Example 2-35

Figure 2-12. Vector Chaining Example 2-38

Figure 2-13. Vector-vector Operand Instructions. 2-39

Figure 2-14. Vector-scalar Operand Instructions. 2-39

Figure 2-15. Vector Memory Instructions 2-40

Figure 2-16. Gather Instruction Example. 2-41

Figure 2-17. Scatter Instructon Example 2-42

HR-04027

FIGURES (continued)

TABLES

HR-04027

Figure 2-18. Compressed Index Example 2-43

Figure 2-19. General Format for Instructions. 2-45

Figure 2-20. I-parcel Instruction Format with
Discrete j and k fields 2-46

Figure 2-21. I-parcel Instruction Format with
Combined j and k Fields 2-46

Figure 2-22. 2-parcellnstruction Format with
Combined j, k, and m Fields 2-47

Figure 2-23. 2-parcel Instruction Format with
Combined ~ j, k, and m Fields 2-48

Figure 2-24. 2-parcel Instruction Format for a 24-bit Immediate
Constant with Combined ~ j, k, and m Fields 2-48

Figure 2-25. 3-parcel Instruction Format with
Combined m and n Fields 2-49

Figure 3-1. lOS Block Diagram. 3-2

Table 1-1.

Table 2-1.

Table 2-2.

Table 2-3.

CRAY Y-MP EL System Configurations 1-5

3-parcel Instructions 2-50

CRAY Y-MP and CRAY X-MP Instruction
Differences. 2-50

Special Register Values 2-51

xi

1 SYSTEM OVERVIEW

Mainframe Cabinet

HR-04027

The CRAY Y-MP EL minisupercomputer system (refer to Figure 1-1)
makes real supercomputing available to more prospective supercomputer
users with its affordable entry-level system. It is easy to install and can
be installed in almost any office environment. Each cabinet is air cooled
and consumes a maximum of only 6 kW of power.

The CRAY Y -MP EL system is a minisupercomputer system that
includes one to four 30-ns central processing units (CPUs), central
memory, input/output subsystem (IDS), and disk and tape storage units
that are all contained in one mainframe cabinet (cabinet 1). One or more
optional peripheral cabinets may contain additional lOSs and optional
peripheral devices (cabinets 2, 3, and 4). A typical layout of each of
these cabinets is shown in Figure 1-1.

The CRAY Y -MP EL system features the following large-scale
supercomputer features:

•

•

•

•

•

•

Vector capability

Parallel processing

Memory capacity of 32, 64, or 128 Mwords that use dynamic
random-access memory (DRAM) components

I/O capacity

Powerful and productive software

Use of existing CRAY Y -MP supercomputer applications

The following subsections discuss the mainframe and peripheral cabinet
and their components. Section 2 contains a more detailed description of
the CPU; Section 3 describes the IDS.

The mainframe cabinet is a stand-alone system that acts as the base
cabinet in a system that can be added to simply by attaching a peripheral
cabinet that contains additional lOSs and optional peripheral devices.
The amount of memory or number of CPUs in the mainframe cabinet

1-1

System Overview

1-2

CRAY Y-MP EL Functional Description

/

may be field upgraded by adding aq.ditional CPU modules and by adding
memory components to the existing memory modules. The mainframe
cabinet contains the following components:

•
•
•
•
•
•

One to four CPUs, each on a single module
32, 64, or 128 Mwords of memory across four modules
Up to four VME-based lOSs
Optional peripheral devices
Power supplies
Cooling fans

Figure 1-1. CRAY Y-MP EL Computer System

HR-04027

CRAY Y-MP EL Functional Description System Overview

Peripheral Cabinet

Power
Bulk

Fan Tray Converter

VME IDS Chassis

Cabling Tray

CPU Chassis

Power
Fan Tray Ride-

through

o Banks

One to three peripheral cabinets can be attached to the mainframe when
the system is ordered or as part of an upgrade. Peripheral cabinets may
be added to provide up to 16 lOSs and over 200 Gbytes of disk storage.
A peripheral cabinet can include the following components (refer to
Figure 1-2):

•
•
•
•

Fan Tray

Tape Storage

Disk Storage

Disk Storage

Disk Storage

Fan Tray

o

Up to 12 additional lOSs (up to 16 total for entire system)
Additional peripheral configurations
Power supplies
Cooling fans

Power
Bulk

Fan Tray Converter Fan Tray

VME IDS Chassis
Tape Storage

Cabling Tray

Disk Storage Disk Storage

Disk Storage Disk Storage

Disk Storage Disk Storage

Power
Fan Tray Ride- Fan Tray

through
Banks o o A·OOM

Back View of Cabinet 1 Back View of Cabinets 2, 3, and 4

Figure 1-2. Example of Cabinet Layout for the CRAY Y-MP EL System

Disk Subsystems

HR-04027

Cray Research uses other manufacturers' disk subsystem products for the
CRAY Y -MP EL system. The CRAY Y -MP EL system uses disk storage
systems and disk array subsystems (DASs) for mass storage. The lOS

1-3

System Overview

Tape Subsystems

CRAY Y-MP EL Functional Description

controls these devices via controller boards. Refer to Section 3 for a
description of each disk storage device that is offered as optional
equipment with the system.

Cray Research uses other manufacturers' tape drive products for the
CRAY Y -MP EL system; the lOS also controls these devices. An
autoloading low-profile 9-track tape drive, lI2-in. cartridge 3480-type
tape drive, and an 8-mm helical scan tape system are the tape support
options offered with the system. These are described in greater detail in
Section 3.

Maintenance Workstation

Power and Cooling

Network Interfaces

1-4

The CRAY Y -MP EL system uses a maintenance workstation model EL
(MWS-EL) that provides a dedicated platform for performing hardware
maintenance and monitoring Cray Research, Inc. computer systems.
Cray Research owns the MWS-EL and uses it for offline diagnostic
testing, diagnostic listings, and hardware error logging. The MWS-EL is
supplied as part of the maintenance contract. The MWS-EL is not part of
the customer's system and is not connected to the customer's network.
System operators use a system console, rather than an operator
workstation (OWS).

The CRAY Y -MP EL system is completely air cooled and requires no
raised floor or refrigeration. Fans are located at the top and bottom of
each cabinet. Airflow through the frame is vertical, and the air is filtered
at the base of the frame.

A power conditioning and distribution system is located in each
mainframe and peripheral cabinet. The CPU and VME components have
their own power supplies.

The CRAY Y -MP EL system can serve as a stand-alone system or can be
networked into an existing computing environment. The system can be
connected to a multiple-system network via HYPERchannel or Ethernet
local area network using Transmission Control ProtocollInternet Protocol
(TCPIIP). The network interfaces have controller boards in the lOS.

HR-04027

CRAYY-MP EL Functional Description System Overview

System Software

The following Cray Research, Inc. binary system software is shipped
with the CRAY Y -MP EL system:

•

•

•

•

•

•

UNICOS operating system derived from UNIX System
Laboratories, Inc. UNIX System V

Cray CF77 FORTRAN compiling system

Cray ANSI standard C compiler

Cray Assembly Language (CAL) - a versatile macro assembler

Utilities

Cray subroutine libraries

System Configurations

HR-04027

Customers can upgrade the number of CPUs, size of central memory,
number of lOSs, and number and type of peripheral devices. The naming
convention for these systems is CRAY Y -MP EL /n-y; nand y represent
the following numbers:

n = Maximum number of mainframe CPU s the system can contain

y = Central memory size in megabytes (Mbytes); refer to Table 1-1.

For example, a CRAY Y-MP EL/4-1024 computer system has four CPUs
and 1,024 Mbytes (128 Mwords) of central memory.

Table 1-1. CRAYY-MP EL System Configurations

VME Central Memory
Product Name CPUs Memory Size I/O Subsystems (Mbytes)

CRAYY-MP ELJ1-256 1 32 Mwords 1 to 4 256 (32 Mwords)

CRAYY-MP ELJ1-512 1 64 Mwords 1 to 4 512 (64 Mwords)

CRAYY-MP ELJ1-1024 1 128 Mwords 1 to 4 1,024 (128 Mwords)

CRAYY-MP ELJ2-256 2 32 Mwords 1 to 8 256 (32 Mwords)

CRAYY-MP ELJ2-512 2 64 Mwords 1 to 8 512 (64 Mwords)

CRAYY-MP ELJ2-1024 2 128 Mwords 1 to 8 1,024 (128 Mwords)

CRAY Y-MP ELJ4-256 4 32 Mwords 1 to 16 256 (32 Mwords)

CRAYY-MP ELJ4-512 4 64 Mwords 1 to 16 512 (64 Mwords)

CRAYY-MP ELJ4-1024 4 128 Mwords 1 to 16 1,024 (128 Mwords)

1-5

2 CPU

This section describes the major functional areas of a CRAY Y -MP EL
central processing unit (CPU) and special features of the mainframe.
Section 2 also provides a summary of the Cray Assembly Language
(CAL) instruction set.

CPU Shared Resources

Central Memory

HR-04027

The CPUs share several functional areas (or sections) of the mainframe.
These sections include central memory, the I/O section, the
interprocessor communication section, and the real-time clock (RTC).
The following subsections describe these functional areas.

Central memory is shared by the CPUs and the I/O section. Central
memory is divided into sections and banks. This arrangement allows
simultaneous and overlapping memory references. Simultaneous
references are two or more references that begin at the same time;
overlapping references are one or more references that begin while
another reference is in progress.

Each CPU in the system has four parallel memory ports. Each port
performs specific functions, allowing different types of memory transfers
to occur simultaneously. To further enhance memory operations, the
bidirectional memory mode allows block read and write operations to
occur concurrently.

The mainframe has built-in conflict resolution hardware to minimize the
delays caused by memory conflicts and to maintain the integrity of all
memory references when conflicts occur. A memory conflict occurs
when more than one reference is made to the same area of central
memory.

To protect data, single-error correction/double-error detection (SECDED)
logic is used in central memory and on data channels to or from central
memory. When data is written into central memory, a checkbyte (an
8-bit Hamming code t) is generated for the word and stored with that

t Hamming, R. W. "Error Detection and Correcting Codes." Bell System Technical
Journal. 29.2 (1950): 147 - 160.

2-1

CPU

lOS

CRAY Y-MP EL Functional Description

word. When the word is read from central memory, the checkbyte and
data word are processed to determine whether any bits were altered. If
no errors occurred, the word is passed without modification.

If an error occurred, the 8 bits of the checkbyte are analyzed by the logic
to fmd the number of altered bits. If only a single bit was altered, the
correction logic resets that bit to the correct state and passes the corrected
word on. The memory error flag in the exchange package sets to indicate
that an error occurred, which can generate an interrupt. (Refer to "Flag
Register Field" in this section for more information on the memory error
flag.) Error information is also sent to an error logger.

If more than a single bit is altered, the logic cannot correct the word and
the results are unpredictable. When a double error is detected, the
memory error flag in the exchange package sets to indicate an error
occurred, which can generate an interrupt.

Each CPU can be connected to a maximum of four lOSs, each via
40-Mbyte/s channels. These channels are used to transfer data between
the CPU and the IDS. Refer to Section 3 for a more detailed description
of the IDS.

Interprocessor Communication Section

2-2

The interprocessor communication section of the mainframe contains
clusters of shared registers for interprocessor communication and
synchronization. Each cluster consists of shared address (SB), shared
scalar (S1), and semaphore (SM) registers.

The SB and ST registers pass address and scalar information from one
CPU to another, while the SM registers control activity between CPUs.

Each CPU cluster number (CLN) register determines which set of shared
registers is accessed by a CPU (clustering). The cluster may be accessed
by any CPU to which it is allocated in either user or system (monitor)
mode. Any CPU in monitor mode can interrupt any other CPU and
cause it to switch from user to monitor mode. Additionally, each CPU in
a cluster can asynchronously perform scalar or vector operations dictated
by user programs. The hardware also provides built-in detection of
system deadlock within the cluster; a deadlock condition occurs when all
CPUs in the cluster are holding issue on a test and set instruction.

HR-04027

CRAY Y-MP EL Functional Description CPU

Real-time Clock

The mainframe contains one real-time clock (RTC) that is shared by all
the CPUs. This clock consists of a 64-bit counter that advances one
count each clock period (CP). Because the clock advances
synchronously with program execution, it can be used to time the
program to an exact number of CPs. Contents of the RTC register can be
read into or loaded from a scalar (S) register.

CPU Computation Section

HR-04027

Each CPU has an identical, independent computation section consisting
of operating registers, functional units, and instruction issue control
logic. Figure 2-1 shows the computation section of CPU 0 for a
four-processor mainframe. The operating registers and functional units
of each computation section are associated with three types of
processing: address, scalar, and vector.

Address processing operates on internal control information, such as loop
counts, addresses, and indices. This processing uses address (A)
registers and dedicated integer arithmetic functional units.

Address information originates from central memory, from constant
instruction values, or from control registers. Information in the A
registers is distributed to various parts of the instruction issue control for
use in controlling the scalar, vector, and I/O operations. The A registers
can also supply operands to the add and multiply functional units. The
units generate address and index information and return the result to the
A registers. Address information can also be transmitted to central
memory from the A registers.

Scalar and vector processing can also be performed on data. Scalar
processing occurs sequentially and uses one operand or operand pair to
produce a single result. Scalar processing is performed using scalar (S)
registers, several functional units dedicated solely to scalar processing,
and additional floating-point functional units shared with vector
operations.

Vector processing allows a single operation to be performed sequentially
on a set (or vector) of operands, repeating the same function to produce a
series of results. Vector processing is performed by vector (V) registers,
several functional units dedicated solely to vector processing, and
additional floating-point functional units supporting both scalar and
vector operations.

2-3

CPU

I I Interpr0C8ssor
Communications

~I Real-time Clock
(64 bits) !

1- VReglstera
8 registers - 64 64-blt
elements per

-----I register

~CPU2-

T Registers - 64 64-bit
registers

Central
Memory

~CPU3-

B Registers - 64 32-bit
registers

..
Instruction
Buffers

~CPU4- 4 buffers (512 16-bit

-
t

r VO 1. ..
I Section r

t
To External

Devices

I instruction
parcels)

Exchange
Parameter
Registers

-'

CRAY Y-MP EL Functional Description

Vector
FunCtional Units
Add/Subtract
Shift
logical (2)
Population
(64-bit arithmetic)

Vector Mask
(64 bits)

Floatlng-polnt~
1-

t.,..
Functional Units
Add/Subtract

Vector Length Multiply
f7 bits) ~ Reciprocal

approximation
(64-bit arithmetic)

Scalar 1- 1 S Registers ' Functional Units
~, 8 64-bit registers _ Add/Subtract

Logical
Shift
Population/LZ
(64-bit arithmetic) - -

• A Reg...... Add....] 8 32-b't g'sters...-4.... Functional Units
.. I re I Add/Subtract

Multiply
(32-blt arithmetic)

-Instruction - Issue
Registers - I Status Register l I Programmable
Clock (32 bits) J

-
VO Control

t -

CPU 1

Vector
Section

Scalar
Section

Address
Section

Control
Section

A-10332

Figure 2-1. CRAY Y-MP EL System CPU Block Diagram

2-4 HR-04027

CRAYY-MP EL Functional Description CPU

HR-04027

The main advantage of vector processing over scalar processing is that
vector processing eliminates instruction start-up time for all but the first
operand. Execution time for vector operations is short enough that
vector processing is more efficient than scalar processing for vectors
containing as few as two elements. Register-to-register vector
instructions eliminate the problem of memory conflicts.

Data flow in a computation section is from central memory to registers
and from registers to functional units. Results flow from functional units
to registers and from registers to central memory or back to functional
units. Data flows along either the scalar or vector path, depending on the
instruction. An exception is that scalar registers can provide one
required operand for some vector instructions.

The computation section performs integer or floating-point arithmetic
operations such as logical operations, indexing, population count, and
leading-zero counts.

Integer, or fixed-point, operations are integer addition, integer
subtraction, and integer multiplication. Integer arithmetic is performed
in two's complement mode. No integer divide instruction is provided;
the operation is accomplished through a software algorithm using
floating-point hardware.

Floating-point instructions include addition, subtraction, multiplication,
and reciprocal approximation. Floating-point quantities have signed
magnitude representation. The reciprocal approximation instructions are
used with a multiply instruction sequence to perform a floating-point
divide operation.

The instruction set includes logical operations for AND, inclusive OR,
exclusive OR, exclusive NOR, and a mask-controlled merge operation.
Shift operations allow the manipulation of either 64-bit or 128-bit
operands to produce 64-bit results. With the exception of address integer
arithmetic, most operations are implemented in vector and scalar
instructions.

Index calculation is the integer product of a scalar instruction. Full
indexing capability is possible throughout memory in either scalar or
vector modes. The index can be positive or negative in either mode.
Indexing allows matrix operations in vector mode to be performed on
rows or on the diagonal, as well as allowing conventional column
operations.

Population and parity count instructions are provided for both vector and
scalar operations. An additional scalar operation is the leading zero
count.

2-5

CPU

Registers

Address Registers

2-6

CRAY Y-MP EL Functional Description

Each CPU has three primary and two intermediate sets of registers. The
primary sets of registers are the address (A), scalar (S), and vector (V)
registers. These registers are considered primary because central
memory and the functional units can access them via intermediate
registers.

For the A and S registers, an intermediate level of registers exists. These
registers are not accessible to the functional units, but act as a buffer for
the primary registers. Block transfers of data from consecutive locations
are possible between these registers and central memory so that the
number of memory reference instructions required for scalar and address
operands is greatly reduced. Data can then be moved from the
intermediate registers to the primary register when needed. The
intermediate registers that support the A registers are referred to as
intermediate address (B) registers. The intermediate registers that
support S registers are referred to as intermediate scalar (T) registers.

Each CPU contains eight 32-bit A registers. The A registers serve a
variety of applications, but are primarily used as address registers for
memory references and as index registers. They also provide values for
shift counts, loop control, and channel 110 operations and receive values
of population count and leading zeros count. In address applications, A
register 0 contains the base address for scalar and vector memory .
references. In addition, the A registers provide an address increment for
vector memory references.

Each CPU contains 64 B registers; each register is 32 bits wide. The B
registers are used as intermediate storage for the A registers. Data is
transferred between B registers and central memory, and between A and
B registers. Typically, B registers contain data to be referenced
repeatedly over a long time span, making it unnecessary to retain the data
in either A registers or central memory. Examples of data stored in B
registers are loop counts, variable array base addresses, and dimensions.

Address processing in the mainframe operates in two modes: the
X-mode and the Y-mode. In the X-mode, the A registers, B registers,
and the address functional units are limited to 24 bits, as in CRAY X-MP
computer systems. Only 1- and 2-parcel instructions run in this mode.
In the Y -mode, the A registers, B registers, and address functional units
run at a full 32-bit width and the instruction set is expanded to include
3-parcel instructions. Refer to "Instruction Differences between the
X-mode and Y-mode" in this section for more information on these
modes and instructions.

HR-04027

CRAYY-MP EL Functional Description CPU

Scalar Registers

Vector Registers

Functional Units

HR-04027

Each CPU contains eight S registers; each register is 64 bits wide. The S
registers are the principal scalar registers for a CPU. Scalar registers
serve as the source and destination for scalar arithmetic and logical
instructions. Scalar registers can also provide an operand for some
vector operations.

Each CPU contains 64 T registers; each register is 64 bits wide. The T
registers are used as intermediate storage for the S registers. Data is
transferred between T registers and central memory, and between T and
S registers.

Each CPU contains eight vector (V) registers. Each V register consists
of 64 elements; each element is 64 bits wide. The V registers serve as
the source and destination for vector arithmetic and logical instructions.
Successive elements from a V register are sent to a functional unit in
successive CPs with a single instruction.

The effective length of a V register for any operation is controlled by the
program-selectable vector length (VL) register. The VL register is a
7 -bit register that specifies the number of vector elements processed by
vector instructions. The contents range from 08 through 1008.

The vector mask (VM) register allows for the logical selection of
particular elements of a vector during merge and test instructions. The
VM register has 64 bits, each corresponding to a word element in a V
register. The high-order bit of the VM register corresponds to element 0
of the V register, while the low-order bit corresponds to element 63.

Refer to "Vector Processing" in this section for more information on
vector processing.

Instructions other than simple transmit or control operations are
performed by specialized hardware known as functional units. Each unit
implements an algorithm or a portion of the instruction set. Most
functional units have independent logic and can operate simultaneously.

All functional units perform algorithms in a fixed time; delays are
impossible once the operands are delivered to the unit. Functional units
are fully segmented. 'This means that a new set of operands for unrelated
computation can enter a functional unit each CP even though the
functional unit time can be more than one CPo Refer to "Pipelining and

2-7

CPU

Address Functional Units

Scalar Functional Units

2-8

CRAY Y -MP EL Functional Description

Segmentation" and ''Functional Unit Independence" in this section for
more information on segmentation, pipelining, and functional unit
independence.

The functional units are described in four groups: address, scalar, vector,
and floating-point. Each of the first three groups functions with one of
the primary register types (A, S, and V) to support the address, scalar,
and vector processing modes. The fourth group, floating-point, supports
either scalar or vector operations and accepts operands from or delivers
results to S or V registers. In addition, central memory can also act as a
functional unit for vector operations.

Address functional units perform integer arithmetic on operands obtained
from A registers and deliver the results to an A register (integer
arithmetic is explained later in this section). The following list describes
the two address functional units.

•

•

The address add functional unit performs integer addition and
subtraction; subtraction is performed by using two's complement
arithmetic. Overflow is not detected.

The address multiply functional unit forms an integer product from
two operands. No rounding is performed and overflow is not
detected. The unit returns only the least significant bits of the
product.

Scalar functional units perform operations on operands obtained from S
registers and usually deliver the results to an S register (integer
arithmetic is explained later in this section). The exception is the
population/parity/leading zero count functional unit, which delivers its
result to an A register.

The scalar add, scalar shift, scalar logical, and scalar
population/parity/leading zero count functional units are used exclusively
with scalar operations and are described here. Three additional
functional units are used for both scalar and vector operations. They are
described in the following "Floating-point Functional Units" subsection.
The following list describes the four scalar functional units.

• The scalar logical functional unit performs bit-by-bit manipulation
of S register operands.

HR-04027

CRAY Y-MP EL Functional Description CPU

Vector Functional Units

HR-04027

•

•

•

The scalar add functional unit performs integer addition and
subtraction; subtraction is performed by using two's complement
arithmetic. Overflow is not detected.

The scalar shift functional unit shifts the entire contents of an S
register or shifts the contents of two concatenated S registers into a
single resultant S register. Single shifts are end-off with zero fill,
while double shifts can be circular fill. Shift counts are obtained
from an A register or from the jk field of the instruction.

The scalar population/parity /leading zero count functional unit
receives operands from an S register and delivers results to an A
register. The population/parity functional unit counts the number
of bits in an S register having a value of one and then, depending
on the instruction issued, returns either a 7 -bit population value or a
1-bit population parity count value. For the leading zero function,
it counts the number of 0 bits preceding a 1 bit in the operand from
left to right.

Vector functional units perform operations on successive elements of
one or two V registers, or on successive elements from a V register and a
copy of an S register. The vector add and logical functional units require
two operands, while the vector shift and population/parity functional
units require only one operand. Results from a vector functional unit are
delivered to a V register.

For operations using vector elements and a copy of a scalar register, the
contents of the scalar register are transferred once to the functional unit
and held there to be used as a constant. Successive operand pairs are
transmitted each CP to a functional unit. The corresponding result
emerges from the functional unit n CPs later, where n is the functional
unit time and is constant for a given functional unit.

There are four general-purpose memory ports for each CPU: port A
through port D, of which port D is used for I/O channels and as a fetch
operations unit. The VL register determines the number of operands or
operand pairs to be processed by a functional unit. Refer to "Special
Features of the CPU" in this section for more information on vector
processing, chaining, and other special vector processing features.

The CRAY Y-MP EL CPU features four sets of vector functional unit
execution units (BUs), EU 0 through EU 3. Each EU contains a copy of
every vector functional unit plus floating-point add and multiply
functional units. There is only one copy of the reciprocal approximation
unit. EU 3 is the only unit that executes vector mask instructions. Each

2-9

CPU CRAY Y-MP EL Functional Description

EU has one data path to registers. As a result, a CPU can simultaneously
perform four vector add or four vector multiply operations, or any
combination thereof.

The functional units described in this subsection are used exclusively
with vector operations. Three functional units are used with both vector
and scalar operations, and are described in the following "Floating-point
Functional Units" subsection. The following list describes the four
vector functional units.

• The vector add functional unit performs integer addition and
subtraction for a vector operation and delivers the results to
elements of a V register. Subtraction is performed by using two's
complement arithmetic. Overflow is not detected.

• The vector shift functional unit shifts the entire contents of a V
register element or the value formed from two consecutive
elements of a V register. Shift counts are obtained from an A
register. All shifts are end-off with zero fill.

• The full vector logical functional unit performs a bit-by-bit
manipulation of specified quantities for specific instructions. The
full vector logical functional unit also performs vector register
merge, compressed index, and logical operations associated with
the vector mask instructions.

• The vector population/parity functional unit counts the number of
bits set in each element of the source V register; the result is the
population count. This population count can be an odd or an even
number, as shown by its low-order bit. The vector population
count instruction delivers the total population count to elements of
the destination V register. The vector population count parity
instruction delivers only the low-order bit of the count to the
destination V register. This bit can be used to determine even or
odd parity.

Floating-point Functional Units

2-10

There are four sets of floating-point functional units for each
CRAY Y-MP EL CPU. Each set consists of three floating-point
functional units that perform floating-point arithmetic for scalar and
vector operations in a CRAY Y-MP EL CPU. When a scalar instruction
issues, operands are obtained from S register(s) and results are delivered
to an S register. For most vector instructions, operands are obtained from
pairs of V registers, or from an S register and a V register. Results are
delivered to a V register. An exception is the reciprocal approximation
functional unit, which requires only one input operand. When a

HR-04027

CRAY Y-MP EL Functional Description CPU

floating-point functional unit is used for a vector operation, the general
description of vector functional units given in the individual subsection
applies.

The following list describes the three floating-point functional units.

•

•

The floating-point add functional unit performs addition or
subtraction of operands in floating-point format. The final result is
normalized even when operands are unnormalized. The
floating-point add functional unit detects overflow and underflow
conditions; only overflow conditions are flagged. (Refer to
"Normalized Floating-point Numbers" in this section for more
information on normalized numbers.)

The floating-point multiply functional unit performs full- and
half-precision multiplication of operands in floating-point format.
The half-precision product is rounded; the full-precision product
can be rounded or not rounded. This functional unit also generates
a 32-bit integer product.

Input operands are assumed to be normalized. The floating-point
multiply functional unit delivers a normalized result only if both
input operands are normalized.

Out-of-range exponents are detected. If both operands have zero
exponents, the result is considered an integer product, is not
normalized, and is not considered to be out of range.

• The reciprocal approximation functional unit calculates the
approximate reciprocal of an operand in floating-point format. The
input operand is assumed to be normalized. The high-order bit of
the coefficient is not tested, but is assumed to be a 1. Out-of-range
exponents are detected. Reciprocal approximation operations are
used in conjunction with multiply operations to perform an add
operation.

Functional Unit Operations

HR-04027

Functional units in a CPU perform logical operations, integer arithmetic,
and floating-point arithmetic. Both types of arithmetic are performed
using two's complement arithmetic. The following subsections explain
and define the logical operations, the integer arithmetic, and the
floating-point arithmetic used by the mainframe.

2-11

CPU

Logical Operations

Integer Arithmetic

2-12

CRAY Y-MP EL Functional Description

Scalar and vector logical units perform bit-by-bit manipulation of 64-bit
quantities. Instructions are provided for forming logical products, sums,
differences, equivalences, and merges.

A logical product is the AND function shown below.

Operand 1: 1010
Operand 2: 1 1 0 0
Result: 1 0 0 0

A logical sum is the inclusive OR function shown below.

Operand 1: 1010
Operand 2: 1 1 0 0
Result : 1 1 1 0

A logical difference is the exclusive OR function shown below.

Operand 1: 1010
Operand 2: 1 1 0 0
Result: 0 1 1 0

A logical equivalence is the exclusive NOR function shown below.

Operand 1: 1010
Operand 2: 1 1 0 0
Result: 1 0 0 1

The merge uses two vperands and a mask to produce results as shown
below. The bits of operand 1 are transmitted when the mask bit is a 1.
The bits of operand 2 are transmitted when the mask bit is a O.

Operand 1: 1 0 1 0 1 0 1 0
Operand 2: 1 1 0 0 1 1 0 0
Mask: 1 1 1 1 0 0 0 0
Result: 1 0 1 0 1 1 0 0

All integers, whether 24, 32, or 64 bits, are represented in the registers as
shown in Figure 2-2. The address add and multiply functional units
perform 24-bit arithmetic in X-mode and 32-bit arithmetic in Y-mode
(refer to "Instruction Differences between X-mode and Y-mode" in this
section for more information on these modes). The scalar add and vector
add functional units perform 64-bit arithmetic.

HR-04027

CRAY Y-MP EL Functional Description CPU

HR-04027

Two's Complement Integer (24 bits in X-mode)

Two's Complement Integer (32 bits in V-mode)

Two's Complement Integer (64 bits)

A-9887

Figure 2-2. Integer Data Formats

Multiplication of two scalar (64-bit) integer operands is done using the
floating-point multiply instruction and one of two mUltiplication
methods. The method used depends on the magnitude of the operands
and the number of bits available to contain the product. The following
paragraphs explain the 24-bit integer multiply operation and the method
used for operands greater than 24 bits in length.

The floating-point multiply functional unit recognizes the condition in
which both operands have zero exponents as a special case; it is treated
as an integer multiply operation, and a complete multiply is performed
with no truncation as long as the total number of bits in the two operands
does not exceed 48 bit positions. To multiply two integers together, set
each operand's exponent equal to zero and place each 24-bit integer
value in bit positions 247 through 224 of the operand's coefficient field.
To ensure accuracy, the least significant 24 bits must be O.

When the floating-point multiply functional unit has performed the
operation, it returns the high-order 48 bits of the product as the result
coefficient and leaves the exponent field as O. The result is a 48-bit
quantity in bit positions 247 through 2°; no normalization shift of the
result is performed.

As shown in Figure 2-3, if operand 1 is 48 and operand 2 is 68, a 48-bit
result of 308 is produced. Bit 263 follows the usual rules for mUltiplying
signs and the result is a sign-magnitude integer. Both the hardware and
software require two's complement format, not sign-magnitude format.
Therefore, negative products must be converted to two's complement
form.

2-13

CPU CRAY Y-MP EL Functional Description

OPE!rand 1 I 10----+----------- 04 I Must be 0 to Ensure Correct Product I

Operand 2 0---- -------------------06 Must be 0 to Ensure Correct Product

~~HI lo-----olo-----------------------~o~

2-14

Figure 2-3. 24-bit Integer Multiply Performed in
Floating-point Multiply Functional Unit

A-9888

The second multiplication method is used when the operands are greater
than 24 bits in length; multiplication is done by software forming
multiple partial products and then shifting and adding the partial
products.

A second integer multiplication operation performs a 32-bit
multiplication operation on the Sj and the Vk operands and puts the result
in the Vi register. The operands must be left-shifted before the operation
begins. The Sj operand must be left-shifted 3110 places, leaving the
operand in bit positions 262 through 231; bit positions 230 through 2° must
be equal to 0 to ensure accuracy (refer to Figure 2-4). The Vk operand
must be shifted left 1610 places, leaving the operand in bit positions 247
through 216; bit positions 215 through 2° must be equal to 0 to ensure
accuracy. The result of the multiply is right justified into positions 231

through 2°, while positions 232 through 263 are filled with zeros.

Although no integer divide operation is provided, integer division can be
carried out by converting the numbers to the floating-point format and
then using the floating-point functional units. Refer to "Floating-point
Division Algorithm" in this section for more information.

HR-04027

CRAY Y-MP EL Functional Description CPU

Operand ------1 • .,.1 Must be 0 to Ensure Correct Product

(VI<) 1 10--0 - Operand
J Must be 0 to Ensure

------.,~I Correct Product

Result 10--------------- 0 1·1------ Result ·1

Floating-point Arithmetic

Floating-point Data Format

HR-04027

Figure 2-4. 32-bit Integer Multiply Performed in
Floating-point Multiply Functional Unit

A-9B89

Floating-point arithmetic is used by the scalar and vector instructions.
The following subsections explain the floating-point data format,
exponent ranges, normalized floating-point numbers, floating-point range
errors, the floating-point addition, multiplication, and division
algorithms, and double-precision numbers.

Floating-point numbers are represented in a standard format throughout
the CPU; this format is shown in Figure 2-5. The format has three
different fields: coefficient sign, exponent, and coefficient.

This format is a packed representation of a binary coefficient and an
exponent (power of two). The coefficient sign is located in bit position
263 and is separated from the rest of the coefficient. If this bit is equal to
0, the coefficient is positive; if this bit is equal to 1, the coefficient is
negative. The exponent is represented as a biased integer number in bit
positions 262 through 248; each exponent is biased by 400008. Bit 261 is
the sign of the exponent; a 0 indicates a positive exponent, while a 1
indicates a negative exponent. Bit 262 is the bias of the exponent.

2-15

CPU

2-16

Coefficient
Sign

262

Coefficient
Sign

CRAY Y-MP EL Functional Description

Binary Point

~1~7
Exponent Coefficient

A-9890

Figure 2-5. Floating-point Data Format

The coefficient is a 48-bit signed fraction; the sign of the coefficient is
located in bit position 263• Because the coefficient is in sign-magnitude
format, it is not complemented for negative values. A normalized
floating-point number has a 1 in the 247 bit position, while an
unnormalized floating-point number has a 0 in this bit position
(normalized numbers are discussed in more detail later in this section).

Figure 2-6 and the following steps show the relation between the bias,
exponent, and coefficient.

To convert a floating-point number to its decimal equivalent:

1. Subtract the bias from the exponent to get the integer value of the
exponent:

400118
- 400008

118 = 910

2. Multiply the normalized coefficient by the power of 2 indicated in
the exponent to get the result:

0.56348 X 29 = 563.408 = 371.510

A zero value or an underflow result is not biased and is represented as a
word of all O's. A negative 0 is not generated by any floating-point
functional unit, except when one operand going into the floating-point
multiply or floating-point add functional unit has a value of negative O.

Binary Point

40011 8 56340000000000008

Exponent Normalized Coefficient
A-9891

Figure 2-6. Internal Representation of Floating-point Number

HR-04027

CRAY Y-MP EL Functional Description CPU

Exponent Ranges

4 200008

The exponent portion of the floating-point format is represented as a
biased integer in bits 262 through 248. The bias that is added to the
exponents is 400008, which represents an exponent of 2°. Figure 2-7
shows the biased and unbiased exponent ranges.

In terms of decimal values, the floating-point format of the system allows
the accurate expression of numbers to about 15 decimal digits in the
approximate decimal range of 10-2466 through 10+2466•

Biased Exponent Range

Negative Range Positive Range

400008

I

Unbiased Exponent Range A-9892

Figure 2-7. Biased and Unbiased Exponent Ranges

Normalized Floating-point Numbers

HR-04027

A nonzero floating-point number is normalized if the most significant bit
of the coefficient, bit 247, is nonzero. This condition implies that the
coefficient has been shifted as far left as possible and that the exponent
has been adjusted accordingly; therefore, a normalized floating-point
number has no leading O's in its coefficient. The exception is a
normalized floating-point 0, which is all O's.

When a floating-point number is created by inserting an exponent of
400608 and a 48-bit integer word into the coefficient, the result should be
normalized before being used in a floating-point operation.
Normalization is accomplished by adding the unnormalized
floating-point operand to O.

The reciprocal approximation functional unit must use normalized
numbers to produce correct results; using unnormalized numbers will
produce inaccurate results. The floating-point multiply functional unit
does not require the use of normalized numbers to get correct results;
however, more accurate results occur when normalized numbers are
used.

2-17

CPU

Floating-point Range Errors

263 262

Overflow I 0

Sign

263 262

underflowl 0
1
0

Sign

2-18

CRAYY-MP EL Functional Description

The floating-point add functional unit does not require normalized
numbers to get correct results. The floating-point add functional unit
does, however, automatically normalize all its results; unnormalized
floating-point numbers may be routed through this functional unit to take
advantage of this process.

To make sure the limits of the functional units will not be exceeded, a
range check is made on the exponent of each floating-point number for
overflow and underflow conditions. In the floating-point add and
multiply functional units, bits 261 and 262 are checked; if both bits are
equal to 1, the exponent is equal to or greater than 600008 and an
overflow condition is detected. The calculated coefficient is reported,
but the exponent is set to 600008 and the floating-point error flag is set
(refer to Figure 2-8).

When an overflow condition is detected, an interrupt occurs only if the
interrupt-on floating-point error (IFP) bit is set in the mode register and
the system is not in monitor mode. The IFP flag can be set or cleared by
a user mode program.

To check for an underflow condition in the floating-point add and
multiply functional units, bits 261 and 262 are checked; if both are equal
to 0, then the exponent is less than or equal to 177778 and an underflow
condition is detected. No flag is set, but the exponent and coefficient are
both set to O's (refer to Figure 2-8).

248 247 2°

60000 Calculated

Exponent Coefficient, Flag Set

248 247 2°

01 0 01
Exponent Coefficient, No Flag Set A·9893

Figure 2-8. Floating-point Add and Multiply Range Errors

In the reciprocal approximation functional unit, the exponent is
complemented and the value of 2 is added before the operation proceeds.
When the check is made in a reciprocal approximation operation, the
exponent must be equal to or greater than 600028 to cause an overflow

HR-04027

CRAYY-MP EL Functional Description CPU

263 262

Overflow I 0

Sign

263 262

Underflow I 0

Sign

condition. In this case, the calculated coefficient is reported, but bit 247
is set to 0, the exponent is set to 600008, and the floating-point error flag
is set (refer to Figure 2-9).

248 247 2°

60000 Calculated

Exponent Coefficient, 247 = 0, Rag Set

248 247 2°

60000
1
0 01

Exponent Coefficient, 247 = 0, Flag Set A-9894

Figure 2-9. Floating-point Reciprocal Approximation Range Errors

Again, because the reciprocal approximation operation complements and
adds 2 to a floating-point number, the exponent must be less than or
equal to 200018 for an underflow condition to occur. 1bis underflow
condition then causes an overflow condition in the original exponent. In
this case, the calculated coefficient is reported, but bit 247 is set to 0, the
exponent is set to 600008, and the floating-point error flag is set (refer to
Figure 2-9).

Floating-point Addition Algorithm

HR-04027

Floating-point addition or subtraction is performed in a 49-bit register to
allow for a sum that might carry into an additional bit position. The
algorithm performs three operations: equalizing exponents, adding
coefficients, and normalizing the results.

To equalize the exponents, the larger of the two exponents is retained.
The coefficient of the smaller exponent is right-shifted by the difference
of the two exponents, or until both exponents are equal. Bits shifted out
of the register are lost; no round-up operation occurs. Because the
coefficient is only 48 bits in length, any shift beyond 48 bits causes the
smaller coefficient to become O's.

After equalizing the two coefficients, they are added together. rno
conditions are analyzed to determine whether an addition or subtraction
operation occurs. The two conditions are the sign bits of the two
coefficients and the type of instruction (an add or subtract) issued.

2-19

CPU CRAY Y-MP EL Functional Description

The following list shows how the operation is determined.

• If the sign bits are equal and an add instruction is issued, an add
operation is performed.

• If the sign bits are not equal and an add instruction is issued, a
subtraction operation is performed.

• If the sign bits are equal and a subtract instruction is issued, a
subtract operation is performed.

• If the sign bits are not equal and a subtract instruction is issued, an
add operation is performed.

The last operation performed normalizes the results. To normalize the
result, the coefficient is left-shifted by the number of leading D's (the
coefficient is normalized when bit 247 is a 1). The exponent must also
decrement accordingly. If a carry across the binary point occurs during
an addition operation, the coefficient is right-shifted by 1 and the
exponent increases by 1. If a carry across the binary point occurs during
a subtraction operation, an end-around carry occurs.

The normalization feature of the floating-point add functional unit can be
used to normalize any floating-point number. Adding an unnormalized
number to a zero operand will normalize the number.

A range check is performed on the result of all additions; refer to
"Floating-point Range Errors" in this section for more information on
how the result is checked.

Floating-point Multiplication Algorithm

2-20

The floating-point multiply functional unit receives two floating-point
operands from either an S or V register. The signs of the two operands
are combined using an exclusive OR operation, the exponents are added
together, and the two 48-bit coefficients are multiplied together. If the
coefficients are both normalized, multiplying them together produces a
full product of either 95 or 96 bits. A 96-bit product is normalized as
generated, while a 95-bit product requires a left-shift of one to generate
the final coefficient. If the shift is performed, the final exponent is
reduced by 1 to reflect the shift.

Because the result register (an S or V register) can hold only 48 bits in
the coefficient, only the upper 48 bits of the 96-bit result are used. The
lower 48 bits are never generated. The following paragraphs describe the
truncation process used to compensate for the loss of bits in the product.
It assumes no shift was required to generate the final product; power of
two designators are used.

HR-04027

CRAY Y-MP EL Functional Description CPU

Floating-point Division Algorithm

HR-04027

The functional unit truncates part of the low-order bits of the 96-bit
product. To adjust for this truncation, a constant is unconditionally
added above the truncation. The average value of this truncation is
9.25 X 2-56, which is determined by adding all carries produced by all
possible combinations that could be truncated and dividing the sum by
the number of possible combinations. Nine carries are inserted at bit
position 2-56 to compensate for the truncated bits.

The effect of the truncation without compensation is at most a result
coefficient 1 smaller than expected. With compensation, the results
range from 1 too large to 1 too small in the 2-48 bit position, with
approximately 99% of the values having zero deviation from what would
have been generated had a full 96-bit product been present. The
multiplication is commutative; that is, A X B = B x A.

Rounding is optional, while truncation compensation is not. The
rounding method used adds a constant so that it is 50% high (0.25 x 2-48;
high) 38% of the time and 25% low (0.125 x 2-48; low) 62% of the time,
resulting in a near-zero average rounding error. In a full-precision
rounded multiply, 2 round bits are entered into the summation at bit
positions 2-50 and 2-51 and allowed to propagate.

For a half-precision multiply, round bits are entered into the summation
at bit positions 2-32 and 2-31. A carry resulting from this entry is allowed
to propagate up and the 29 most significant bits of the normalized result
are transmitted back.

The variations due to this truncation and rounding are in one of the
following ranges:

--0.23 X 2-48 to +0.57 X 2-48

or

-8.17 X 10-16 to +20.25 X 10-16

With a full 96-bit product and rounding equal to one-half the least
significant bit, the following variation is expected.

--0.5 X 2-48 to +0.5 X 2-48

The mainframe does not have a single functional unit that is dedicated to
the division operation. Rather, the floating-point multiply and reciprocal
approximation functional units together carry out the algorithm. The
following paragraphs explain how the algorithm is determined and how it
is used in the functional units.

2-21

CPU

2-22

CRAY Y-MP EL Functional Description

Finding the quotient of two floating-point numbers involves two steps.
For example, to find the quotient of NB, first, the B operand is sent
through the reciprocal approximation functional unit to obtain its
reciprocal, lIB. Then, this result, along with the A operand is sent to the
floating-point multiply functional unit to obtain the product of Ax lIB.

The reciprocal approximation functional unit uses an application of
Newton's method for approximating the real root of an arbitrary
equation, F(x) = 0, to find reciprocals.

To find the reciprocal, the equation, F(x) = 1/x - B, must be solved. To
do this, a number, A, must be found so that F(A) = 1/A - B = o. That is,
the number A is the root of the equation 1/x - B = o. The method
requires an initial approximation (or guess, which is shown as Xo in
Figure 2-10) sufficiently close to the true root (which is shown as Xt in
Figure 2-10). Xo is then used to obtain a better approximation; this is
done by drawing a tangent line (line 1 in Figure 2-10) to the graph of
y = F(x) at the point [Xo, F(Xo)]. The intercept of this tangent line
becomes the second approximation, Xl. This process is repeated, using
tangent line 2 to obtain X2, and so on.

The following iteration equation is derived from this process:

In the equation, x(x + 1) is the next iteration, Xi is the current iteration, and
B is the divisor. Each XCi + 1) is a better approximation than Xi to the true
value, Xt. The exact answer is generally not obtained at once because the
correction term is not exact. The operation is repeated until the answer
becomes sufficiently close for practical use.

HR-04027

CRAYY-MP EL Functional Description CPU

HR-04027

y

J4----+-Tangent Line 1

·~--+--1'--------+-Tangent Line 2

X
A-9895

Figure 2-10. Newton's Method for Approximating Roots

The CPU uses this approximation technique based on Newton's method.
A hardware lookup table provides an initial guess, Xo, to start the process.
The following iterations are then calculated.

Iteration Operation Description

The first approximation is done
in the reciprocal approximation
functional unit and is accurate to
8 bits.

The second approximation is
done in the reciprocal
approximation functional unit
and is accurate to 16 bits.

The third approximation is done
in the reciprocal approximation
functional unit and is accurate to
30 bits.

2-23

CPU

2-24

4

CRAYY-MP EL Functional Description

The fourth approximation is
done in the floating-point
multiply functional unit to
calculate the correction term.

The reciprocal approximation functional unit calculates the first three
iterations, while the the floating-point multiply functional unit calculates
the fourth iteration. The fourth iteration uses a special instruction within
the floating-point mUltiply functional unit to calculate the correction
term. This iteration is used to increase accuracy of the reciprocal
approximation functional unit's answer to full precision (the
floating-point multiply functional unit can provide both full- and
half-precision results). A fifth iteration should not be done.

The following example shows how the floating-point mUltiply functional
unit is used to provide a full-precision result, solving the equation S1/S2.

1

2

3

4

Operation

S3 = 1/S2

S4 = [2-(S3 * S2)]

S5 = S4 * S3

S6 = S5 * S1

Performed By

Reciprocal approximation
functional unit

Floating-point multiply
functional unit

Floating-point multiply
functional unit using
full-precision; S5 now equals
1/S2 to 48-bit accuracy

Floating-point multiply
functional unit using
full-precision rounded

The reciprocal approximation in Step 1 is correct to 30 bits. By Step 3, it
is accurate to 48 bits. This iteration answer is applied as an operand in a
full-precision rounded multiply operation (Step 4) to obtain a quotient
accurate to 48 bits. Additional iterations may produce erroneous results.

Where 29 bits of accuracy are sufficient, the reciprocal approximation
instruction is used with the half-precision multiply to produce a
half-precision quotient in only two operations, as shown in the following
example.

Operation

1 S3 = 1/S2

Performed by

Reciprocal approximation
functional unit

HR-04027

CRAYY-MP EL Functional Description CPU

Double-precision Numbers

HR-04027

Operation

2 S6 = S1 * S3

Performed by

Floating-point mUltiply
functional unit in half-precision

The 19 low-order bits of the half-precision results are returned as D's
with a rounding applied to the low-order bit of the 29-bit result.

The reciprocal iteration is designed for use once with each half-precision
reciprocal generated. If the iteration performed by the floating-point
multiply functional unit results in an exact reciprocal or if an exact
reciprocal is generated by some other method, performing another
iteration results in an incorrect final reciprocal.

The following process is another method of computing division:

Operation

1 S3 = 1/S2

2 S5 = S1 * S3

3 S4 = [2 - (S3 * S2)]

4 S6 = S4 * S5

Performed by

Reciprocal approximation
functional unit

Floating-point multiply
functional unit

Floating-point multiply
functional unit

Floating-point multiply
functional unit

In this method the correction to reach a full-precision reciprocal is done
after the number is multiplied by the half-precision reciprocal, rather than
before the multiplication.

The coefficient of the reciprocal produced by this alternative method can
be different by as much as 2 x 2-48 from the first method described for
generating full-precision reciprocals. This difference can occur because
one method can round up as much as twice, while the other method may
not round at all. One round can occur while the correction is generated
and the second round can occur when producing the final quotient.
Therefore, if the reciprocals are to be compared, use the same method
each time the reciprocals are generated.

The CPU does not provide special hardware for performing double- or
multiple-precision operations. Double-precision computations with
95-bit accuracy are available through software routines provided by
Cray Research.

2-25

CPU

CPU Control Section

Exchange Mechanism

Exchange Sequence

Exchange Package

2-26

CRAY Y-MP EL Functional Description

The control section of the CPU issues program instructions. Before
program instructions can issue, exchange and instruction fetch sequences
must occur. The following subsections describe the exchange
mechanism (which includes defining both the exchange package and
exchange sequence), and the instruction fetch and instruction issue
sequences.

Each CPU uses an exchange mechanism for switching instruction
execution from program to program. This exchange mechanism uses a
CPU operation referred to as an exchange sequence and blocks of
program parameters known as exchange packages.

An exchange sequence occurs before a program can begin running. An
exchange sequence performs two simultaneous functions. First, program
parameters for the next program are loaded from central memory into
registers in the CPU. Second, parameters from the previous program are
read from the registers and stored back into central memory.

The program parameters are held in an exchange package, which is
described in the following subsections. The contents of the A and S
registers are automatically saved in the exchange package; the contents
of the B, T, V, VM, shared address (SB), shared scalar (ST), and
semaphore (SM) registers must be saved by software.

Exchange sequences may be initiated by a deadstart sequence or program
exit, voluntarily by the software, or automatically upon occurrence of an
interrupt condition. All instructions previously issued are allowed to
complete before the exchange sequence begins. An instruction fetch
always follows an exchange sequence. Refer to "Instruction Fetch" in
this section for more information on this sequence.

The exchange package is composed of a number of parameters, which
are held in fields. These fields contain the contents of certain registers
that are swapped during an exchange sequence. The following
subsections define the fields of the exchange package.

HR-04027

CRAYY-MP EL Functional Description CPU

Processor Number Field

Memory Error Data Fields

Program Address Register Field

HR-04027

The contents of the processor number (PN) field in the exchange package
indicates which CPU performed the exchange sequence. This value is
not stored initially in the exchange package before program execution; it
is a constant inserted into the exchange package after the program ran
and exchanged out.

Memory error data, consisting of six fields of information, appears in the
exchange package only if one of two conditions is met. The first
condition is that the interrupt-on-correctable memory error bit is set and a
correctable memory error is encountered. The second condition is that
the interrupt-on-uncorrectable memory error bit is set and an
uncorrectable memory error is detected. Memory error data fields are
described below.

•

•

•

•

•

•

The syndrome field defines a SECDED error on a memory read or
I/O channel.

The read address bank field defines the bank where a memory read
error occurred.

The read error type field defines the type of memory or I/O error
encountered; the error can be either correctable or uncorrectable.

The port field defines the port where a memory read or I/O error
occurred; these bits are used with the read mode bits to identify the
operation in error.

The read address chip select field identifies the chip on which a
memory read error occurred.

The read mode field determines the type of read mode in progress
when a memory data error occurred; these bits are used with the
port bits to identify the operation in error.

The program address (P) register contents are stored in this field of the
exchange package. The instruction at this location is the first instruction
issued when this program begins.

2-27

CPU

Address Base and Limit Fields

CRAY Y-MP EL Functional Description

Four registers in the exchange package define a program's data range and
instruction range anywhere in memory and allocate specific amounts of
memory to each range. This memory allocation technique has two
benefits. First, all programs are relocatable. When a program is written,
the programmer does not need to know where in memory the instruction
and data fields will be located. Second, each program can have its
memory access restricted to certain parts of memory. A program can be
halted if it tries to run an instruction outside of its allowed instruction
range or if it tries to read or write data outside of its allowed data range.
This is especially important where more than one program occupies
memory at the same time; programs can be prevented from executing
instructions or operating on data that belongs to other programs. The
four registers are described in the following list.

•

•

•

•

The instruction base address (IBA) register holds the base address
of the user's instruction range. It determines where in memory an
instruction fetch is made. This is done by adding the contents of
the P register to the contents of the rnA register. The sum equals
the absolute memory address for the fetch.

The instruction limit address (ILA) register holds the upper limit
address of the user's instruction range. It determines the highest
absolute address that can be accessed during an instruction fetch
sequence. If this absolute address exceeds the limit, a program
range error flag is set, which generates an interrupt.

The data base address (DBA) register holds the base address of the
user's data range. It determines where in memory a program's data
field is located. This is done by adding the memory address
generated by the instruction to the contents of the DBA register.
The sum equals the absolute address for any memory read or write
operation.

The data limit address (DLA) register holds the upper limit address
of the user's data range. It determines the highest absolute memory
address that a program can use for reading or writing data. If this
absolute address exceeds the limit, the memory reference is
aborted. The operand range error flag is set, which generates an
interrupt if the interrupt-on-operand range error bit is set.

Exchange Address Register Field

2-28

The exchange address (XA) register specifies the first word address of a
16-word exchange package loaded by an exchange sequence. The
register contains the high-order 8 bits of a 12-bit field specifying the
address. The low-order bits of the field are always 0 because an

HR-04027

CRAY Y-MP EL Functional Description CPU

Vector Length Register Field

Cluster Number Register Field

Flag Register Field

HR-04027

exchange package must begin on a 16-word boundary. The 12-bit limit
requires that the absolute address be in the lower 4,096 (100008) words
of memory. When an execution interval terminates, the exchange
sequence exchanges the contents of the registers with the contents of the
exchange package at the beginning address (XA) in memory.

The vector length (VL) register specifies the length of all vector
operations performed by vector instructions and the number of elements
held by the V registers. The value in the VL register can be changed by
software while a program is running.

The cluster number (CLN) register determines which set of SB, ST, and
SM registers the CPU can access. If the CLN register is 0, the CPU does
not have access to any SB, ST, or SM register. The contents of the CLN
register in all CPUs are also used to determine the condition necessary
for a deadlock interrupt.

The flag (F) register contains several flags, which when set, interrupt
program execution by initiating an exchange sequence. The contents of
the F register are stored along with the rest of the exchange package
during the exchange sequence. The monitor program can then analyze
the flags for the cause of the interrupt. Before the monitor program
exchanges back, it must clear the flags in the F register area of the
exchange package. If any bit remains set, another exchange occurs
immediately.

The F register contains the following flags:

•

•

•

•

Interrupt-from-internal CPU (ICP) flag; set when another CPU
issues instruction 0014j1.

Deadlock (DL) flag; set when all CPUs in a cluster are holding
issue on a test and set instruction.

Programmable clock interrupt (PCI) flag; set when the
programmable clock reaches a count of O.

MCU interrupt (MCV) flag; set when the lOS sends this signal.

2-29

CPU

Mode Register Field

2-30

•

•

•

•

•

•

•

CRAY Y-MP EL Functional Description

Floating-point error (FPE) flag; set when a floating-point range
error occurs in any of the floating-point functional units and the
interrupt-on-floating-point error (IFP) bit in the M register is set.

Operand range error (ORE) flag; set when a data reference is made
outside the boundaries of the DBA and DLA registers and the
interrupt-on-operand range error bit is set.

Program range error (PRE) flag; set when an instruction fetch is
made outside the boundaries of the rnA and ILA registers.

Memory error (ME) flag; set when a correctable or uncorrectable
memory error occurs and the corresponding interrupt-on-memory
error (IME) bit in the M register is set.

I/O interrupt (101) flag; set when a 6-Mbyte/s channel or a
lOOO-Mbyte/s channel completes a transfer.

Error exit (EEX) flag; if not in monitor mode or if the
interrupt-in-monitor mode bit is set, this flag is set by an error exit
instruction.

Normal exit (NEX) flag; if not in monitor mode, this flag is set by a
normal exit instruction.

The mode (M) register contains user-selectable bits that dictate the
execution of the program. It also contains 2 status bits (program state
and floating-point error status) that are set by software and hardware,
respectively, during an exchange sequence. The M register contains the
following bits:

•

•

•

•

Program state (PS) bit; this bit is set by the operating system to
show whether a CPU, concurrently processing a program with
another CPU, is the master or slave in a multitasking situation.

Floating-point error status (FPS) bit; when set, a floating-point
error occurred regardless of the state of the
interrupt-on-floating-point error bit.

Bidirectional memory (BDM) bit; when set, block reads and writes
can operate concurrently.

Interrupt-on-operand range error (lOR) bit; when set, this bit
enables interrupts on operand address range errors.

HR-04027

CRAYY-MP EL Functional Description CPU

Vector Not Used Field

Waiting for Semaphore Field

Concurrent Block Write

HR-04027

•

•

•

•

•

•

•

Interrupt-on-floating-point error (IFP) bit; when set, this bit enables
interrupts on floating-point errors.

Interrupt-on-uncorrectable memory error (ruM) bit; when set, this
bit enables interrupts on uncorrectable memory data errors and on
register parity bits.

Interrupt-on-correctable memory error (ICM) bit; when set, this bit
enables interrupts on correctable memory data errors.

Extended addressing mode (EAM) bit; when set, this bit indicates
that 32-bit (Y -mode) addressing takes place. When it is not set,
this bit indicates that 24-bit (X-mode) addressing takes place.

Selected for external interrupts (SEI) bit; this bit designates the
CPU with priority for I/O interrupts.

Interrupt monitor mode (IMM) bit; when set, this bit enables all
interrupts in monitor mode except the programmable clock
interrupt, MCU interrupt, interrupt-on-internal CPU, and I/O
interrupt.

Monitor mode (MM) bit; when set, this bit inhibits all interrupts
except memory errors, normal exit, and error exit.

The state of the vector not used (VNU) bit in the exchange package
indicates whether vector register instructions were issued during the
execution intervals. If no vector register instructions were issued, the bit
is set. H one or more of the vector register instructions were issued, the
bit is not set.

The state of the waiting for semaphore (WS) bit indicates that the CPU
exchanged when a test and set instruction was holding in the current
instruction parcel (CIP) register.

Because the memory ports A through C are either read or write ports,
more that one write port may be active at the same time when the
concurrent block write (CBW) bit is equal to a 1. When the CBW bit is
equal to 0, the memory ports allow only one write port acive at a time.

2-31

CPU

Scalar .Block Overlap

A Registers Field

S Registers Field

Instruction Fetch

Instruction Issue

2-32

CRAY Y-MP EL Functional Description

The scalar block overlap (SBO) allows scalar and block references to
mix when SBO is equal to 1. When SBO is equal to a 0, scalar memory
references wait until all block references are complete before isssuing.

The current contents of all A registers are stored in this portion of the
exchange package.

The current contents of all S registers are stored in this portion of the
exchange package.

An instruction fetch operation loads program code from central memory
to one of the instruction buffers. Each CPU has eight instruction buffers;
each holds 128 consecutive instruction parcels for a total of 1,024
parcels. Refer to "Instruction Formats" later in this section for more
information on instruction formats and parcels. Instruction parcels are
held in the buffers before being delivered to the instruction issue registers
(refer to the following "Instruction Issue" subsection for a definition of
these registers).

The contents of the program address (P) register determines when a fetch
is made (refer to the following "Instruction Issue" subsection for a
definition of the P register). If the P register is pointing to an instruction
parcel not currently held in one of the instruction buffers, a fetch
operation occurs.

A fetch operation always occurs following an exchange sequence. The
instruction buffers are filled circularly as needed. When the P register
counts 128 parcels, it reaches the end of the first instruction buffer. A
second fetch occurs, filling the second instruction buffer, and so on, until
all buffers are filled. If a program exceeds 1,024 parcels, the ninth fetch
reloads the first instruction buffer.

The P register receives instruction parcels from the instruction buffers,
decodes the instructions, checks the availability of the necessary
hardware, and issues the instruction.

HR-04027

CRAY Y -MP EL Functional Description CPU

Programmable Clock

Status Register

The P register selects an instruction parcel from one of the instruction
buffers. This parcel is sent to the next instruction parcel (NfPghijk)
register. Under normal circumstances, the P register increments
sequentially as instructions are issued. However, branch instructions and
exchange sequences can load the P register with any value.

Each CPU has one programmable clock. This 32-bit clock can be loaded
with a count value, then decremented one count each CP. An interrupt is
generated when the clock reaches a count of O. These clocks allow the
operating system to force interrupts at a particular time or frequency and
enhance the use of multitasking in programs.

The status register contains bits that reflect the operating modes of the
CPU. These bits can be transferred to the high-order bit positions of a
selected S register. The status register bits reflect the following CPU
states:

•
•
•
•
•
•
•
•
•
•

Clustered, CLN not set to 0
Uncorrectable memory error occurred
Correctable memory error occurred
Program state status
Floating-point error occurred
Floating-point interrupt enabled
Operand range interrupt enabled
Bidirectional memory enabled
Processor number count (bits 2° through 22)
Cluster number count (bits 2° through 23)

Special Features of the CPU

HR-04027

The mainframe has several special features that enhance the parallel
processing capabilities inherent in all Cray Research mainframes.
Parallel processing can mean different things in different environments;
the following subsections describe parallel processing within a single
CPU of a CRAY Y -MP EL series mainframe.

Parallel processing features within a single CPU include pipelining and
segmentation, functional unit independence, and vector processing
(vectorization). The first two features are inherent hardware features of

2-33

CPU CRAY Y-MP EL Functional Description

the mainframe. Vector processing is a feature that can be manipulated by
a programmer to provide optimum throughput. These features are
explained in following subsections.

Plpellnlng and Segmentation

Pipelining is defined as an operation or instruction beginning before a
previous operation or instruction has completed. Pipelining is
accomplished through the use of fully segmented hardware.
Segmentation refers to the process whereby an operation is divided into a
discrete number of sequential steps, or segments. Fully segmented
hardware is designed to implement this segmentation by performing one
segment of the operation during a single CPo At the beginning of the next
CP, the partial results obtained are sent to the next segment of the
hardware for processing the next step of the operation. During this CP,
the previous hardware segment can process the next operation. If
segmented hardware is not used, the whole operation or instruction has to
finish before another starts.

In the mainframe, segmented hardware includes all the hardware
associated with exchange sequences, memory references, instruction
fetch sequences, instruction issue sequences, and functional unit
operations. The pipelining and segmentation features are critical to the
execution of vector instructions.

Figure 2-11 shows how a set of elements is pipelined through a
segmented vector functional unit. In the first CP, element 1 of register
Vl and element 1 of register V2 enters the first segment of the functional
unit. During the next CP, the partial result is moved to the second
segment of the functional unit, and element 2 of both vector registers
enters the first segment. This process continues each CP until all
elements are completely processed.

In this example, the functional unit is divided into five segments; the
functional unit can process up to five different pairs of elements
simultaneously. Mter the first result leaves the functional unit and enters
register V3, subsequent results are available at the rate of one result per
CPo

Functional Unit Independence

2-34

The specialized funCtional units in the mainframe handle the arithmetic,
logical, and shift operations. Most units are fully independent of the
others and any number of functional units can process instructions
concurrently. This functional unit independence allows different
operations, such as multiplications, additions, and so on, to proceed in
parallel.

HR-04027

CRAYY-MP EL Functional Description CPU

Vector Register V1

Element 1

Element 2

· · ·
ElementN

ector Register V2

Element 1

Element 2

· · ·
Element N

Vector Processing

HR-04027

Vector Register V3

Functional Unit Element 1

Element 2 -- · · ~ ·
Element N

\...1 2 3 4 ~
V

Segments

Functional Unit Segment
CP 1 2 3 4 5

1 1 I",

2 2

3 3 2 Elements in each
Segment during

4 4 3 2 Successive CPs

5 5 4 3 2

6 6 5 4 3 2
A-9896

Figure 2-11. Segmentation and Pipelining Example

For example, the equation, A = (B + C) X D X E, could be run as follows.
If operands B, C, D, and E are already loaded into the S registers, three
instructions are generated for the equation: one that adds Band C; one
that multiplies D and E, and one that multiplies the results of these two
operations. The multiplication of D and E is issued first, followed by the
addition of B and C. The addition and the multiplication proceed
concurrently, and because the add takes less time to run than the multiply,
the add and multiply complete at the same time. The add operation is
essentially hidden in that it occurs during the same time interval as the
multiply operation. The results of these two operations are then
multiplied to obtain the final result.

One of the most powerful features of the mainframe is its vector
processing capability. This feature increases processing speed and
efficiency by allowing an operation to be performed sequentially on a set
(or vector) of operands, through the execution of a single instruction.
The following subsections describe vector processing, the advantages of
using vector processing, and the types of vector instructions.

2-35

CPU CRAY Y-MP EL Functional Description

Definition of Vector Processing

Each CPU of the mainframe contains V registers and a number of vector
and floating-point functional units that perform vector operations. Refer
to "Vector Registers," "Vector Functional Units," and "Floating-point
Functional Units" in this section for more information on these registers
and functional units.

A vector is an ordered set of elements; each is represented as a 64-bit
word. A vector is distinguished from a scalar, which is a single 64-bit
word. Examples of structures in Fortran that can be represented as
vectors are one-dimensional arrays and rows, columns, and diagonals of
multidimensional arrays. Vector processing occurs when arithmetic or
logical operations are applied to vectors; it is distinguished from scalar
processing in that it operates on many elements rather than on one.

In vector processing, successive elements are provided each CP, and as
each operation is completed, the result is delivered to a successive
element of the result register. The vector operation continues until the
number of operations performed by the instructions equals the count
specified by the vector length (VL) register.

Advantages of Vector Processing

Vector Chaining

2-36

In general, vector processing is faster and more efficient than scalar
processing. Vector processing reduces overhead associated with
maintenance of the loop control variable (for example, incrementing and
checking the count). In many cases, loops processed as vectors reduce to
a simple sequence of instructions without branching backwards. Vector
instructions are usually the register-to-register type so that memory
access conflicts are reduced. Finally, functional unit segmentation is
exploited through vector processing because results from the units can
then be obtained at the rate of one result per CPo

Vectorization typically speeds up a code segment by approximately a
factor of 10. If a segment of code that previously accounted for 50% of a
program's run time is vectorized, the overall run time is 55% of the
original run time (50% for the unvectorized portion plus 0.1 X 50% for
the vectorized portion). Vectorizing 90% of a program causes run time to
drop to 19% of the original execution time.

The mainframe allows a vector register reserved for results to become the
operand register of a succeeding instruction. This process, called
chaining, allows a continuous stream of operands to flow through the

HR-04027

CRAY Y-MP EL Functional Description CPU

HR-04027

vector registers and functional units. Even when a vector load operation
pauses due to memory conflicts, chained operations may proceed as soon
as data is available.

This chaining mechanism allows chaining to begin at any point in the
result vector data stream. The amount of concurrency in a chained
operation depends on the relation between the issue time of the chaining
instruction and the result data stream. For full chaining to occur, the
chaining instruction must have issued and be ready to use element 0 of
the result at the same time element 0 arrives at the V register. Partial
chaining occurs if the chaining instruction issues after the arrival of
element O.

Figure 2-12 shows how the results of four instructions are chained
together. The sequence of instructions uses both the pipelining and
segmentation features described in the previous subsection, along with
the chaining mechanism to efficiently process the elements. The
sequence of instructions performs the following operations:

1. Read a vector of integers from memory to vector register YO.

2. Add the contents of VO to the contents of VI and send the results
toV2.

3. Shift the results obtained in Step 2 and send the results to V3.

4. Form the logical product of the shifted sum obtained in Step 3 with
V4, and send the results to VS.

Elements are loaded into vector register YO. As soon as the first element
arrives from memory into YO, it is added to the first element of vector
register VI. Subsequent elements are pipelined through the segmented
functional unit, so that a continuous stream of results is sent to the
destination register, which is vector register V2. As soon as the first
element arrives at V2, it becomes the operand for the shift operation.
The results are sent to V3, which immediately becomes the source of one
of the operands necessary for the logical operation between V3 and V 4.
The results of the logical operation are then sent to vector register VS.

2-37

CPU

Memory
V1 Register

VO Registe~r..t:===:;-1

Memory Path

V2 Register

Vector Add
Functional Unit

CRAY Y-MP EL Functional Description

V4 Register

Vector Shift
Functional Unit

V5 Register

Vector Logical
Functional Unit A-9897

Figure 2-12. Vector Chaining Example

Types of Vector Instructions

2-38

The instructions that operate on vectors can be divided into four types.

•

•

•

•

Vector-vector operand instructions that obtain operand(s) from one
or two V registers and enter results into another V register

Vector-scalar operand instructions that obtain one operand (a
constant) from an S register and one operand from a V register and
enter results in another V register

Vector memory instructions that load (read) or store (write)
elements to memory

Vector instructions that set the vector mask (VM) register or
set/read the vector length (VL) register

The vector-vector operand instructions obtain operands from one or two
V registers and enter results into another V register. Refer to "Functional
Instruction Summary" in this section for more information on the
specific instructions.

Figure 2-13 shows how the data flows for these instructions. Successive
operands or operand pairs are transmitted from Vjand/or Vk to the
segmented functional unit each CP. Corresponding results emerge from
the functional unit n CPs later; n is a constant for a given functional unit

HR-04027

CRAY Y-MP EL Functional Description CPU

HR-04027

and is called the functional unit time. Results are then entered into result
register Vi. Contents of the VL register determine the number of
operand pairs processed by the functional unit.

VjRegister VkRegister Vi Register

Functional Unit A-9898

Figure 2-13. Vector-vector Operand Instructions

The vector-scalar operand instructions obtain one operand from an S
register and one from a V register (refer to Figure 2-14). A copy of the S
register is transmitted to the functional unit with each V register operand.
Refer to "Functional Instruction Summary" in this section for more
information on the specific instructions.

VkRegister Vi Register

SjRegister

Functional Unit

A-9899

Figure 2-14. Vector-scalar Operand Instructions

2-39

CPU

2-40

CRAY Y-MP EL Functional Description

Vector memory instructions transmit data between memory and the V
registers (refer to Figure 2-15). A path between memory and the V
registers is considered a functional unit for timing considerations. Refer
to "Functional Instruction Summary" in this section for more information
on the instructions.

Vi Register

Memory

Memory Path
A-9900

Figure 2-15. Vector Memory Instructions

Memory access and vector processing are closely related. A special
gather/scatter mechanism is available on the mainframe to allow access
to memory for vector operations in cases where vectorization would
otherwise not be possible.

Most vector memory instructions access memory addresses with a fixed
increment value. The gather and scatter instructions use two vector
registers to gather or scatter elements randomly throughout memory. The
first vector register contains the data and the second vector register is
used as an index to gather or scatter the data from/to random memory
locations.

Figure 2-16 shows an example of the gather instruction. The gather
instruction transfers the contents of nonsequential memory locations to
elements of a V register. In the example, the VL register is set to 4,
resulting in a transfer of 4 elements. The gather instruction adds the
contents of AO to the contents of each element of the index V register
(VO) to form a memory address. The contents of that address are then
stored in the result V register (V1). Since AO = 100 and VO element
0=4, the contents of address 104 are stored in V1 element O. Similarly,
AO + VO element 1 = 102, and the contents of memory location 102 are
stored in V1 element 1. This process continues until the number of
elements transferred equals the VL count.

HR-04027

CRAY Y-MP EL Functional Description CPU

VL Register

4 I
AO

100

HR-04027

VO Register V1 Register Memory

(Index) (Result) Contents Address

4, 600 200 100

2 400 300 101

7 250 400 102

0 200 500 103

600 104

700 105

100 106

250 107

350 108

A-9901

Figure 2-16. Gather Instruction Example

Figure 2-17 shows an example of the scatter instruction. The scatter
instruction transfers elements of a V register to nonsequential memory
locations. In the example, the VL register is set to 4, resulting in a
transfer of 4 elements. The scatter instruction adds the contents of AO to
the contents of each element of the index V register (VO) to form a
memory address. An element of V1 is stored at the resulting memory
address. Because AO = 100 and VO element 0 = 4, the contents of V1
element 0 are stored in address 104. Similarly, AO + VO element 1 = 102,
and the contents of V1 element 1 are stored in memory location 102.
This process continues until the number of elements transferred equals
the VL count.

The fourth group of instructions sets the VM register or reads and sets
the VL register. (Refer to "Functional Instruction Summary" in this
section for more information on the specific instructions.) The VM
register has 64 bits, each corresponding to a word element in a V register.
The high-order bit of the VM register corresponds to element 0 of the V
register, while the low-order bit corresponds to element 63. The mask is
used with vector merge and test instructions to perform operations on
individual elements.

2-41

CPU

VL Register

4 I
AO

100

2-42

CRAY Y -MP EL Functional Description

The VM instructions can be issued only to a single integrated circuit. The
VM instructions include four compressed index instructions. These
instructions test for zero, nonzero, positive, and negative elements, and
generate a vector mask at the same time. Figure 2-18 shows an example
of a compressed index instruction.

In the example, the elements in VO are individually tested for a nonzero
status; if the element is 0, a 0 is entered in the VM register. If the
element is nonzero, a 1 is entered in the VM register and the index of the
nonzero elements is loaded into register VI. This process continues until
the number of elements specified in the VL register has been tested.

Memory

VO Register V1 Register Contents Address

4 200 500 100

2 300 x 101

7 400 300 102

0 500 x 103

200 104

x 105

x 106

400 107

x 110

A-9902

Figure 2-17. Scatter Instruction Example

HR-04027

CRAYY-MP EL Functional Description CPU

VO Register V1 Register
(Tested) (Result)

0 01

-1 03
VL Register

0 04

5 07

-15 10

0 11

0 13

24

-7

VM Register 13

0

-17

A-9903

Figure 2-18. Compressed Index Example

HR-04027 2-43

CRAYY-MP EL Functional Description CPU

Instruction Formats

First Parcel

r ~

g h j

4 3 3 3 I
k

3

The following subsections explain the instruction formats, instruction
differences between X-mode and Y -mode, and special register values
used by the CPUs. A CPU instruction summary is also included.

Instructions can be 1 parcel (16-bit), 2 parcels (32-bit), or 3 parcels
(48-bit, Y-mode only) long. Instructions are packed 4 parcels per word
and parcels are numbered 0 through 3 from left to right. Any parcel
position can be addressed in branch instructions. A 2-parcel or 3-parcel
instruction begins in any parcel of a word and can span a word boundary.
For example, a 2-parcel instruction beginning in parcel 3 of a word ends
in parcel 0 of the next word. No padding to word boundaries is required.
Figure 2-19 shows the general format for instructions.

Second Parcel Third Parcel

~r
~

~r
~

"'" m n Fields

II 16 II 16 Number of Bits
A·9904

Figure 2-19. General Format for Instructions

Five variations of this general format use the fields differently. The
formats of the following variations are described in the following
subsections.

•
•
•
•
•

1-parcel instnlction format with discrete j and k fields
1-parcel instruction format with combined j and k fields
2-parcel instruction format with combinedj, k, and m fields
2-parcel instruction format with combined i, j, k, and m fields
3-parcel instruction format with combined m and n fields

1-parcel Instruction Format with Discrete j and k Fields

HR-04027

The most common of the 1-parcel instruction formats uses the i, j, and k
fields as individual designators for operand and result registers (refer to
Figure 2-20). The g and h fields define the operation code, the i field
designates a result register, and the j and k fields designate operand
registers. The arithmetic, logical, double shift, and floating-point
constant instructions ignore one or more of the i, j, and k fields.

2-45

CPU CRAY Y-MP EL Functional Description

g h i j k Fields

I 4 I 3 I 3 I 3 I 3 I Number of B~
'---r--J~
Operation Register

Code Designators A-9905

Figure 2-20. 1-parcel Instruction Format with Discrete j and k fields

1-parcel Instruction Format with Combined j and k Fields

Some 1-parcel instructions use the j and k fields as a combined 6-bit field
(refer to Figure 2-21). The g and h fields contain the operation code, and
the i field is generally a destination register. The combined j and k fields
generally contain a constant or a B or T register designator. The branch
instruction 005ijk and the following types of instructions use the 1-parcel
instruction format with combined j and k fields.

•
•
•
•
•

Constant
B and T register block memory transfer
B and T register data transfer
Single shift
Mask

g h jk Fields

Number of Bits

Constant or
Register

Designators

Result
Register A-9906

Figure 2-21. 1-parcel Instruction Format with Combinedj and k Fields

2-parcel Instruction Format with Combined j, k, and m Fields

2-46

The format for a 22-bit immediate constant uses the combined j, k, and m
fields to hold the constant. The 7-bit g and h fields contain an operation
code and the 3-bit i field designates a result register. The instruction
using this format transfers the 22-bit jkm constant to an A or S register.

HR-04027

CRAY Y-MP EL Functional Description CPU

The instruction format used for scalar memory transfers also requires a
22-bit jlan field for address displacement. This format uses the 4-bit g
field for an operation code, the 3-bit h field to designate an address index
register, and the 3-bit i field to designate a source or result register.

Figure 2-22 shows the two general applications for the 2-parcel
instruction format with combinedj, k, and m fields.

First Parcel Second Parcel

-------~------- -------~-------r g h j k '" r m "" Fields

I Number of Bits

~--------------~J
16

'---v---'
Operation

Code

\

Result Register

v
Constant

First Parcel Second Parcel

-------~------- -------~-------rg k'" r " . h j m Fields

I Number of Bits
~~~~~~~--~ ~----------------J~. 

16 

Operation 
Code 

V' 

Address or Displacement 

Source or Result Register 

'---- Address Register Used as Index A-9907 

Figure 2-22. 2-parcel Instruction Format with Combinedj, k, and m Fields 

2-parcel Instruction Format with Combined i, j, k, and m Fields 

HR-04027 

This 2-parcel format uses the combined i, j, k, and m fields to contain a 
24-bit address that allows branching to an instruction parcel (refer to 
Figure 2-23). A 7-bit operation code (gh) is followed by an ijlan field. 
The high-order bit of the i field is equal to O. 

The 2-parcel format for a 24-bit immediate constant (refer to Figure 
2-24) uses the combined i,j, k, and m fields to hold the constant. This 
format uses the 4-bit g field for an operation code and the 3-bit h field to 
designate the result address register. The high-order bit of this i field is 
set. 

2-47 



CPU CRAY Y-MP EL Functional Description 

First Parcel Second Parcel 

------~~------- -------~-------r g h j k' r m ~ Fields 

I Number of Bits 

----------~----~---------------------_-_-~/-
16 

Operation 
Code 

v 
Constant 

High Bit = 1 

'----- Result Register A-9909 

Figure 2-23. 2-parcel Instruction Format with Combined ~ j, k, and m Fields 

First Parcel Second Parcel 

-------~------- -------~-------r k" r ~ . g h j m Fields 

..... _____ 1_6 ___ ~1 Number of Bits 

Operation 
Code 

------------~v-------------I 
Constant 

High Bit = 1 

------- Result Register A-9909 

Figure 2-24. 2-parcel Instruction Format for a 24-bit Immediate 
Constant with Combined ~ j, Ie, and m Fields 

3-parcellnstructlon Format with Combined m and n Fields 

2-48 

The format for a 32-bit immediate constant uses the combined m and n 
fields to hold the constant. The 7 -bit g and h fields contain an operation 
code, and the 3-bit i field designates a result register; the j and k fields are 
a constant O. The instruction using this format transfers the 32-bit mn 
constant to an A or S register. 

NOTE: The m field of the 3-parcel instruction contains bits 2° through 
215 of the expression, while the n field contains bits 216 through 
231 of the expression. When the instruction is assembled, the 
mn field is "reversed" and actually appears as the nm field when 
used as an expression. 

The format used for scalar memory transfers also requires a 32-bit mn 
field for address or displacement. This format uses the 4-bit g field for 
an operation code, the 3-bit h field to designate an address index register, 
and the 3-bit i field to designate a source or result register .. 

HR-04027 



CRAY Y-MP EL Functional Description CPU 

First Parcel 

r ~ 

g h j k 

Figure 2-25 shows the two general applications for the 3-parcel 
instruction format with combined m and n fields. 

Second Parcel Third Parcel 

~r 
~ ,r ~ 

~ 
m n Fields 

I 16 II 16 I Number of Bits 

\ I 
yo 

Constant 

First Parcel Second Parcel Third Parcel 

-------------~------------- -------------~------------- -------------~-------------r k~r m ~r ~ g h j n Fields 

Operation Source or 
Code Result 

Register 

Address Register 
Used as Index 

I 16 II 1 6 I Number of Bits 

~~----------------~ ~----------------~J 
----------------~yr-----------------

Address or Displacement 

A-991 0 

Figure 2-25. 3-parcel Instruction Format with Combined m and n Fields 

Instruction Differences between X-mode and V-mode 

HR-04027 

CRAY Y-MP EL CPUs run either of two instruction modes: the X-mode 
or the Y-mode. In the Y-mode, the instruction set is expanded to include 
3-parcel instructions (refer to Table 2-1), and the A registers, B registers, 
and the address functional units operate at a full 32-bit width. These 
3-parcel instructions run only if the system is operating in Y-mode; use 
of these instructions while in X-mode produces errors. The program 
range remains 4 Mwords in both the X-mode and Y-mode. 

2-49 



CPU CRAY Y-MP EL Functional Description 

Table 2-1. 3-parcellnstructions 

CAL Syntax Octal Code 

Aiexp 0201J0mn 

Aiexp 0201J0mn 

Siexp 0401J0mn 

Siexp 0411J0mn 

Aiexp, Ah 10hIJOmn 

exp, AhAi 11hIJOmn 

Siexp, Ah 12hIJOmn 

exp, AhSi 13hIJOmn 

The X-mode can be selected by resetting the extended addressing mode 
bit in the exchange package. In this mode, the system runs only the 
X-mode (1- and 2-parcel) instruction set. The upper 8 bits of the 32-bit 
registers and 32-bit results are discarded, leaving the operation exactly 
the same as the 24-bit CRAY X-MP computer system results. 

All instructions operate the same as in the CRAY X-MP computer 
systems, except those listed in Table 2-2. 

Table 2-2. CRAY Y-MP and CRAY X-MP Instruction Differences 

Instruction X-mode V-mode Comments 

01hijkm Ahexp N/A Not allowed in Y -mode 

0014j1 SIPI exp SIPIAj Change is necessary because 
more CPUs are available 

0014fJ CLN exp CLNAj Change is necessary because 
there are more clusters in the 
mainframe 

166ijk ViSflVk ViSfVk Runs differently in the X-mode 
than in the V-mode 

Special Register Values 

2-50 

If the SO and AO registers are referenced in the h, j, or k fields of certain 
instructions, the contents of the respective register are not used; instead, a 
special operand is generated. The special operand is available regardless 
of existing AO or SO reservations (and in this case is not checked). This 

HR-04027 



CRAY Y-MP EL Functional Description CPU 

use does not alter the actual value of the SO or AO register. If SO or AO is 
used in the i field as the operand, the actual value of the register is 
provided. CAL issues a caution-level error message for AO or SO when 0 
does not apply to the i field. Table 2-3 shows the special register values. 

Table 2-3. Special Register Values 

Field Operand Value 

Ah. h= 0 0 

Ai. i= 0 (AO) 

Aj.j= 0 0 

Ak. k= 0 1 

Si. i = 0 (SO) 

Sj. j= 0 0 

Sk, k= 0 263 

Monitor Mode Instructions 

The monitor mode instructions (channel control, set real-time clock, and 
programmable clock interrupts) perform specialized functions that are 
useful to the operating system. These instructions run only when the 
CPU is operating in monitor mode. If a monitor mode instruction issues 
while the CPU is not in monitor mode, it is treated as a no-operation 
instruction. 

Special CAL Syntax Forms 

HR-04027 

The CAL instruction set has special forms of symbolic instructions. 
Because of this expansion, certain machine instructions can be generated 
from two or more different CAL instructions. Any of the operations 
performed by special instructions can be performed by instructions in the 
basic set. 

For example, both of the following CAL instructions generate instruction 
002000, which enters a 1 into the VL register: 

VL AO 
VL 1 

2-51 



CPU CRAY Y-MP EL Functional Description 

The first instruction is the basic form of the enter VL instruction, which 
takes advantage of the special case where (Ak) = 1 if k = 0; the second 
instruction is a special syntax form providing the programmer with a 
more convenient notation for the special case. 

In several cases, a single CAL syntax can generate several different 
machine instructions. These cases provide for entering the value of an 
expression into an A register or an S register, or for shifting S register 
contents. The assembler determines which instruction to generate from 
characteristics of the expression. 

Instructions having a special syntax form are identified in the instruction 
summary in this section. 

CPU Instruction Summary 

2-52 

This subsection introduces and summarizes all CPU instructions. The 
instructions are summarized two ways: by the functional unit that 
executes the instruction and by the function the instruction performs. 

The following instruction summaries use the acronyms and abbreviations 
that were defined in previous sections. A glossary is provided at the end 
of this manual; acronyms and abbreviations are defined there. 

In some instructions, register designators are prefixed by the following 
letters that have special meaning to the assembler. The letters and their 
meanings are listed as follows. 

Letter Description 

F Floating-point operation 
H Half-precision floating-point operation 
I Reciprocal iteration 
P Population count 
Q Parity count 
R Rounded floating-point operation 
Z Leading-zero count 

The following list describes some of the notations used in the instruction 
set. 

Character 

+ 

* 

Operation 

Arithmetic sum of specified registers 
Arithmetic difference of specified registers 
Arithmetic product of specified registers 

HR-04027 



CRAY Y-MP EL Functional Description CPU 

Character Operation 

/ Reciprocal of approximation 
# Use one's complement 
> Shift value or form mask from left to right 
< Shift value or form mask from right to left 
& Logic~ product of specified registers 

Logical sum of specified registers 
\ Logical difference of specified registers 

An expression (exp) occupies thejk, ijk,jkm, ijkm, or ijkmn field. The h, 
i, j, and k designators indicate the field of the machine instruction into 
which the register designator constant or symbol value is placed. 

Functional Units Instruction Summary 

HR-04027 

Instructions other than simple transmit or control operations are 
performed by functional units. The following list summarizes the 
instructions performed by each of the functional units. 

Functional Unit 

Address Add (Integer) 
Address Multiply (Integer) 
Scalar Add (Integer) 
Scalar Logical 
Scalar Shift 

Functional Unit 

Scalar Pop/Parity / 
Leading Zero 

Vector Add (Integer) 
Vector Logical 
Second Vector Logical 
Vector Shift 
Vector Pop/Parity 
Floating-point Add 
Floating-point Multiply 
Floating-point Reciprocal 
Memory (Scalar) 
Memory (Vector) 

Instructions 

030,031 
032 
060,061 
042 through 051 
052 through 055, 056, 057 

Instructions 

026 
027 
154 through 157 
140 through 147, 175 
140 through 145 
150,151,153,152 
174ij1, 174ij2 
062, 063, 170 through 173 
064 through 067, 160 through 167 
070, 174ijO 
100 through 130 
176,177 

2-53 



CPU CRAY Y-MP EL Functional Description 

Functional Instruction Summary 

Register Entry Instructions 

Transfers into A Registers 

2-54 

This subsection summarizes the instructions by the functions they 
perform. Included is a brief, general description of the function of each 
group of instructions; then the machine instruction, the CAL syntax, and 
a description are listed. 

The following footnotes are used throughout the instruction summary: 

Footnote Description 

1 Privileged to monitor mode 
2 Special syntax mode 
3 Not supported by CAL Version 2 
4 Generated depending on the value of exp 
5 X-mode only 
6 Y-mode only 

The register entry instructions transmit values, such as constants, 
expression values, or masks, directly into registers. 

The following instructions transmit values into the A registers. 

Machine 
Instruction CAL Syntax Description 

01hijlans Mexp Transmit exp to M (i2 = 1) 

020ij1an4, 5 or Ai exp Transmit exp into Ai (020) or 

02lij1an4,s Transmit one's complement of exp 
into Ai (021) 

020iOOmn4, 6 Aiexp Transmit exp into Ai (020) or 

02liOOmn4, 6 Transmit one's complement of exp 
into Ai (021) 

022ijl« Ai exp Transmit exp = jk to Ai 

03li002 Ai -1 Transmit -1 into Ai 

HR-04027 



CRAY Y-MP EL Functional Description CPU 

Transfers into S Registers 

The following instructions transmit values into the S registers. 

Machine 
Instruction CAL Syntax Description 

040ijkm4,s or Si exp Transmit exp into Si (040) or 
041ijkm4,s Transmit one's complement of exp 

into Si (041) 

040iOOmn4,s Si exp Transmit exp into Si (040) or 
04liOOmn4,s Transmit one's complement of exp 

into Si (041) 

042i002 Si -1 Enter -1 into Si 

042ijk Si <exp Form ones mask in Si exp bits from 
right; jk field gets 64-exp 

042ijJc2 Si #>exp Form zeros mask in Si exp bits from 
left; jk field gets exp 

042i772 Si 1 Enter 1 into Si 

043i002 Si 0 Clear Si 

043ijk Si >exp Form ones mask in Si exp bits from 
left; jk field gets exp 

043ijJc2 Si #<exp Form zeros mask in Si exp bits from 
right; jk field gets 64-exp 

047i002 Si #SB Enter one's complement of sign bit 
intoSi 

051i002 Si SB Enter sign bit into Si 

071i30 Si 0.6 Transmit (0.75 x 248) as normalized 
floating-point constant into Si 

071i40 Si 0.4 Transmit 0.4 as normalized 
floating-point constant into Si 

HR-04027 2-55 



CPU CRAY Y-MP EL Functional Description 

Machine 
Instruction CAL Syntax Description 

071i5 0 Si 1. Transmit 1.0 as normalized 
floating-point constant into Si 

071i60 Si 2. Transmit 2.0 as normalized 
floating-point constant into Si 

071i70 Si 4. Transmit 4.0 as normalized 
floating-point constant into Si 

Transfers Into V Registers 

The following instructions transmit values into the V registers. 

Machine 
Instruction CAL Syntax Description 

077 iOJCl Vi ,Ak 0 Clear element (Ale) of register Vi 

145iii2 Vi 0 Clear Vi elements 

Transfers Into Semaphore Register 

The following instructions transmit values into the semaphore registers. 

Machine 
Instruction CAL Syntax 

0034jk SMjk 1,TS 

0036jk SMjk 0 

0037jk SMjk 1 

Description 

Test and set semaphore jk, 
o <jk< 3110 

Clear semaphore jk, 0 < jk < 3110 

Set semaphore jk, 0 < jk < 3110 

Interreglster Transfer Instructions 

2-56 

The interregister transfer instructions transmit the contents of one register 
to another register. In some cases, the register contents can be 
complemented, converted to floating-point format, or sign extended as a 
function of the transfer. 

HR-04027 



CRAY Y-MP EL Functional Description CPU 

Transfers to A Registers 

Transfers to S Registers 

HR-04027 

The following instructions transfer the contents of other registers into the 
A registers. 

Machine 
Instruction CAL Syntax Description 

023ijO Ai Sj Transmit (Sj) to Ai 

023i01 Ai VL Transmit (VL) to Ai 

024ijk Ai Bjk Transmit (Bjk) to Ai 

026ij7 Ai SBj Transmit (SBj) to Ai 

030iOJc2 Ai Ak Transmit (Ak) to Ai 

031iOJc2 Ai -Ak Transmit negative of (Ak) to Ai 

033iOO Ai CI Channel number of highest priority 
interrupt request to Ai (j = 0) 

033ijO Ai CA,Aj Current address of channel (Aj) to 
Ai (j ~ 0, k = 0) 

033ij1 Ai CE,Aj Error flag of channel (Aj) to Ai 
(j ~ 0, k = 1) 

The following instructions transmit the contents of other registers into 
the S registers. 

Machine 
Instruction CAL Syntax Description 

025ijk Bjk Ai Transmit (AI) to Bjk 

027ij7 SBj Ai Transmit (AI) to SBj 

047iOJc2 Si #Sk Transmit one's complement of (Sk) 
to Si 

051iOJc2 Si Sk Transmit (Sk) to Si 

061i0Jc2 Si -Sk Transmit negative of (Sk) to Si 

2-57 



CPU 

Transfers to V Registers 

2-58 

CRAY Y-MP EL Functional Description 

Machine 
Instruction CAL Syntax Description 

071iOk Si Ale Transmit (Ale) to Si with no sign 
extension 

071ilk Si +AIe Transmit (Ale) to Si with sign 
extension 

071i2k Si +FAIe Transmit (Ale) to Si as unnormalized 
floating-point number 

072iOO Si RT Transmit (RTC) to Si 

072i02 Si SM Transmit semaphore to Si 

072ij3 Si STj Transmit (STj) register to Si 

073iOO Si VM Transmit (VM) to Si 

073iOl Si SRj Transmit (SRj) to Si (j = 0) 

073ij3 STj Si Transmit (Si) to STj 

074ijk Si Tjk Transmit (Tjk) to Si 

075ijk Tjk Si Transmit (SO to Tjk 

076ijk Si Vj,AIe Transmit (Vj element (Ale)) to Si 

The following instructions transmit the contents of other registers into 
the V registers. 

Machine 
Instruction CAL Syntax 

077ijk Vi ,Ak Sj 

142i012- Vi Vk 

156i012- Vi -Vk 

Description 

Transmit (Sj) to Vi element (Ale) 

Transmit (Vk elements) to Vi 
elements 

Transmit two's complement of (Vk 
elements) to Vi elements 

HR-04027 



CRAY Y -MP EL Functional Description CPU 

Transfer to Vector Mask Register 

The following instructions transmit the contents of other registers into 
the VM register. 

Machine 
Instruction CAL Syntax Description 

0030jO VM Sj Transmit (Sj) to VM register 

0030002 VM 0 Clear VM register 

Transfer to Vector Length Register 

Transfer to Semaphore Register 

Memory Transfer Instructions 

HR-04027 

The following instructions transmit the contents of other registers into 
the vector length register. 

Machine 
Instruction CAL Syntax Description 

00200k VL Ak Transmit (Ak) to VL register 

0020002 VL 1 Transmit 1 to VL register 

The following instruction transmits the contents of other registers into 
the semaphore registers. 

Machine 
Instruction CAL Syntax Description 

073i02 SM Si Read semaphores from Si 

The memory transfer instructions enable or disable bidirectional memory 
transfers, transfer data between registers and memory, and ensure 
completion of memory references. 

2-59 



CPU 

Bidirectional Memory Transfers 

Memory References 

Writes 

2-60 

CRAY Y-MP EL Functional Description 

The following instructions enable or disable bidirectional memory 
transfers. 

Machine 
Instruction CAL Syntax Description 

002500 DBM Disable bidirectional memory 
transfers 

002404 DCBW Concurrent block write 

002506 DSBO Scalar and block overlap 

002600 EBM Enable bidirectional memory 
transfers 

002604 ECBW Enable concurrent block write 

002606 ESBO Enable scalar and block overlap 

The following instruction ensures completion of instructions for 
bidirectional memory transfers. 

Machine 
Instruction CAL Syntax Description 

002700 CMR Complete memory references 

The following instructions write values into memory. 

Machine 
Instruction CAL Syntax 

035ijk ,AO Bjk,Ai 

035ijJc2 O,AO Bjk,Ai 

Description 

Write (Ai) words from B registers 
starting at register jk to memory 
starting at address (AO) + DBA 

Write (Ai) words from B registers 
starting at register jk to memory 
starting at address (AO) + DBA 

HR-04027 



CRAY Y-MP EL Functional Description CPU 

Machine 
Instruction CAL Syntax Description 

037ijk ,AO Tjk,Ai Write (Ai) words from T registers 
starting at register jk to memory 
starting at address (AO) + DBA 

037ijJil O,AO Tjk,Ai Write (Ai) words from T registers 
starting at register jk to memory 
starting at address (AO) 

Ilhijkm5 exp,Ah Ai Write (Ai) to «M) + exp) + DBA 

IlhiOOmn6 exp,Ah Ai Write (Ai) to «M) + exp) + DBA 

IlhiOOO2,s ,M Ai Write (Ai) to (M) + DBA 

llhiOOo02, 6 ,M Ai Write (Ai) to (M) + DBA 

110ijkm2,5 exp,O Ai Write (Ai) to exp + DBA 

110iOOmn2, 6 exp,O Ai Write (Ai) to exp + DBA 

110ijkm2, 5 exp, Ai Write (AI) to exp + DBA 

110iOOmn2, 6 exp, Ai Write (Ai) to exp + DBA 

13hijkm5 exp,Ah Si Write (Sz) to «M) + exp) + DBA 

13hiOOmn6 exp,Ah Si Write (Sz) to «M) + exp) + DBA 

130ijkm2,s exp,O Si Write (Sz) to exp + DBA 

130iOOmn2,6 exp,O Si Write (Sz) to exp + DBA 

130ijkm2,s exp, Si Write (Sz) to exp + DBA 

130iOOmn2, 6 exp, Si Write (Sz) to exp + DBA 

13hiOo02,s ,M Si Write (Si) to (M) + DBA 

13hi00002, 6 ,M Si Write (Si) to (M) + DBA 

1770jk ,AO,Ak Vj Write (VJ) to memory starting at 
(AO) + DBA increased by (Ak) 

HR-04027 2-61 



CPU CRAY Y-MPEL Functional Description 

Machine 
Instruction CAL Syntax Description 

1770jO ,AO,1 Vj Write (V)) to memory in 
consecutive addresses starting with 
(AO) + DBA 

1771jk ,AO,Vk Vj Write (Vj) to memory using 
memory address «AO) + (Vk) + 
DBA) 

Reads 

The following instructions load values from memory. 

Machine 
Instruction CAL Syntax Description 

034ijk Bjk,Ai ,AO Read (Ai) words from memory 
starting at address (AO) + DBA to B 
registers starting at address jk 

034ijJc2 Bjk,Ai O,AO Read (Ai) w0rds from memory 
starting at address (AO) + DBA to B 
registers starting at address jk 

036ijk Tjk,Ai ,AO Read (Ai) words from memory 
starting at address (AO) + DBA to T 
registers starting at address jk 

036ijJc2 Tjk,Ai O,AO Read (Ai) words from memory 
starting at address (AO) + DBA to T 
registers starting at address jk 

10hijkm5 Ai exp,Ah Read from «Ah) + exp + DBA) to 
Ai 

10hiOOmn6 Ai exp,Ah Read from «Ah) + exp + DBA) to 
Ai 

10hiOOO2,5 Ai ,Ah Read from (Ah) DBA to Ai 

10hi00002, 6 Ai ,Ah Read from (Ah) DBA to Ai 

lOOijkm2,5 Ai exp,O Read from (exp) DBA to Ai 

lOOiOOmn2, 6 Ai exp,O Read from (exp) DBA to Ai 

lOOijkm2,5 Ai exp, Read from (exp) DBA to Ai 

2-62 HR-04027 



CRAY Y-MP EL Functional Description CPU 

Machine 
Instruction 

l00iOOmn2,6 

12hijkm5 

12hiOOmn6 

120ijkm2,5 

120iOOmn2, 6 

120ijkm2,5 

120iOOmn2, 6 

12hiOOO2,5 

12hi00002, 6 

176iOk 

176i002 

176i1k 

CAL Syntax 

Ai exp, 

Si exp,Ah 

Si exp,Ah 

Si exp,O 

Si exp,O 

Si exp 

Si exp 

Si ,Ah 

Si,Ah 

Vi ,AO,Ak 

Vi ,AO,l 

Vi ,AO,Vk 

Description 

Read from (exp) DBA to Ai 

Read from «Ah) + exp + DBA) to 
Si 

Read from «Ah) + exp + DBA) to 
Si 

Read from (exp) DBA to Si 

Read from (exp) DBA to Si 

Read from (exp) DBA to Si 

Read from (exp) DBA to Si 

Read from (Ah) + DBA to Si 

Read from (Ah) + DBA to Si 

Read from memory starting at (AO) 
+ DBA increased by (Ak) and load 
into Vi 

Read from consecutive memory 
addresses starting with (AO) + DBA 
into Vi 

Read from memory using memory 
address (AO) + (Vk) + DBA into Vi 

Integer Arithmetic Instructions 

HR-04027 

Integer arithmetic operations obtain operands from registers and return 
results to registers. No direct memory references are allowed. 

The assembler recognizes several special syntax forms for increasing or 
decreasing register contents, such as the operands Ai+ 1 and Ai-l; 
however, these references actually result in register references such that 
the 1 becomes a reference to Akwith k = O. 

All integer arithmetic, whether 24-bit, 32-bit, or 64-bit, is two's 
complement and is represented as such in the registers. The address add 
and address multiply functional units perform 24-bit (X-mode) and 

2-63 



CPU CRAY Y-MP ELFunctional Description 

32-bit (Y-mode) arithmetic. The scalar add functional unit and the vector 
add functional unjt perform 64-bit arithmetic. No overflow is detected 
by functional units when performing integer arithmetic. 

Multiplication of two fractional operands is accomplished using a 
floating-point multiply instruction. The floating-point multiply 
functional unit recognizes conditions in which both operands have zero 
exponents as a special case and returns the high-order 48 bits of the result 
as an unnormalized fraction. Division of integers requires that they first 
be converted to floating-point format and then divided using the 
floating-point functional units. Refer to "Floating-point Arithmetic" in 
this section for more information on these algorithms. 

24-bit or 32-bit Integer Arithmetic 

64-bit Integer Arithmetic 

2-64 

The following instructions perform 24-bit (X-mode) or 32-bit (Y-mode) 
integer arithmetic. 

Machine 
Instruction CAL Syntax Description 

030ijk Ai Aj+Ak Integer sum of (Aj) and (Ak) to Ai 

030ijQ2 Ai Aj+l Integer sum of (Aj) and 1 to Ai 

031ijk Ai Aj-Ak Integer difference of (Aj) and (Ak) 
to Ai 

031ij02 Ai Aj-l Integer difference of (Aj) and 1 to 
Ai 

032ijk Ai Aj*Ak Integer product of (Aj) and (Ak) to 
Ai 

The following instructions perform 64-bit integer arithmetic. 

Machine 
Instruction CAL Syntax 

060ijk Si Sj+Sk 

061ijk Si Sj-Sk 

154ijk Vi Sj + Vk 

Description 

Integer sum of (Sj) and (Sk) to Si 

Integer difference of (Sj) and (Sk) to 
Si 

Integer sums of (Sj) and (Vk 
elements) to Vi elements 

HR-04027 



CRAY Y-MP EL Functional Description CPU 

Machine 
Instruction CAL Syntax Description 

155ijk Vi Vj + Vk Integer sums of (Vj elements) and 
(Vk elements) to Vi elements 

156ijk Vi Sj-Vk Integer differences of (Sj) and (Vk 
elements) to Vi elements 

157ijk Vi Vj-Vk Integer differences of (Vj elements) 
and (Vk elements) to Vi elements 

Floating-point Arithmetic Instructions 

Floating-point Range Errors 

HR-04027 

All floating-point arithmetic operations use registers as the source of 
operands and return results to registers. 

Floating-point numbers are represented in a standard format throughout 
the CPU. This format is a packed representation of a binary coefficient 
and an exponent or power of 2. The coefficient is a 48-bit signed 
fraction. The sign of the coefficient is separated from the rest of the 
coefficient. Because the coefficient is signed magnitude, it is not 
complemented for negative values. Refer to "Floating-point Arithmetic" 
in this section for more information on floating-point numbers and 
arithmetic. 

The following instructions enable or disable floating-point range errors to 
be flagged. 

Machine 
Instruction CAL Syntax 

002100 EFI 

002200 DFI 

Description 

Enable interrupt on Floating-point 
error 

Disable interrupt on Floating-point 
error 

2-65 



CPU CRAY Y-MP EL Functional Description 

Floating-point Addition and Subtraction 

The following instructions perform floating-point addition or subtraction. 

Machine 
Instruction CAL Syntax 

062ijk Si Sj + FSk 

062iO~ Si +FSk 

063ijk Si Sj-FSk 

063iO~ Si -FSk 

170ijk Vi Sj+FVk 

170iO~ Vi + FVk 

171ijk Vi Vj+FVk 

172ijk Vi Sj-FVk 

172iO~ Vi -FVk 

173ijk Vi Vj-FVk 

2-66 

Description 

Floating-point sum of (Sj) and (Sk) 
to Si 

Normalize (Sk) to Si 

Floating-point difference of (Sj) and 
(Sk) to Si 

Transmit the normalized negative of 
(Sk) to Si 

Floating-point sums of (Sj) and (Vk 
elements) to Vi elements 

Transmit normalized (Vk elements) 
to Vi elements 

Floating-point sums of (Vj 
elements) and (V k elements) to Vi 
elements 

Floating-point differences of (Sj) 
and (Vk elements) to Vi elements 

Transmit normalized negative of 
(Vk elements) to Vi elements 

Floating-point differences of (Vj 
elements) and (Vk elements) to Vi 
elements 

HR-04027 



CRAY Y-MP EL Functional Description CPU 

Floating-point Multiplication 

The following instructions perform floating-point multiplication. 

Machine 
Instruction CAL Syntax 

064ijk Si Sj*FSk 

065ijk Si Sj*HSk 

066ijk Si Sj*RSk 

160ijk Vi Sj*FVk 

161ijk Vi Vj*FVk 

162ijk Vi Sj*HVk 

163ijk Vi Vj*HVk 

164ijk Vi Sj*RVk 

165ijk Vi Vj*RVk 

HR-04027 

Description 

Floating-point product of (Sj) and 
(Sk) to Si 

Half-precision rounded 
floating-point product of (Sj) and 
(Sk) to Si 

Rounded floating-point product of 
(Sj) and (Sk) to Si 

Floating-point products of (Sj) and 
(Vk elements) to Vi elements 

Floating-point products of (Vj 
elements) and (Vk elements) to Vi 
elements 

Half-precision rounded 
floating-point products of (Sj) and 
(Vk elements) to Vi elements 

Half-precision rounded 
floating-point products of (Vj 
elements) and (Vk elements) to Vi 
elements 

Rounded floating-point products of 
(Sj) and (Vk elements) to Vi 
elements 

Rounded floating-point products of 
(Vj elements) and (Vk elements) to 
Vi elements 

2-67 



CPU 

Reciprocal Iteration 

Reciprocal Approximation 

CRAY Y-MP EL Functional Description 

The following instructions perform reciprocal iteration operations. 

Machine 
Instruction CAL Syntax Description 

067ijk Si Sj*ISk Reciprocal iteration: 2 - (Sj) x (Sk) 
to Si 

166ij12 Vi Sj*IVk Reciprocal iteration: 2 - (Sj) x (Vk 
elements) to Vi elements 

166ijJc6 Vi Sj*Vk 32-bit integer product of (Sj) and 
(Vk elements) to Vi elements 

167ijk Vi Vj*IVk Reciprocal iteration: 2 - (Vj 
elements) x (Vk elements) to Vi 
elements 

The following instructions perform floating-point reciprocal 
approximation operations. 

Machine 
Instruction CAL Syntax 

070ijO Si /HSj 

174ijO Vi !HVj 

Description 

Floating-point reciprocal 
approximation of (Sj) to Si 

Floating-point reciprocal 
approximation of (Vj elements) to 
Vi elements 

Logical Operation Instructions 

2-68 

The scalar and vector logical functional units perform bit-by-bit 
manipulation of 64-bit quantities. Logical operations include logical 
products, logical sums, logical differences, logical equivalence, vector 
mask, and merges. Logical operations are defined below. 

• 
• 
• 
• 

A logical product (& operator) is the AND function. 
A logical difference (\ operator) is the exclusive OR function. 
A logical sum (! operator) is the inclusive OR function. 
A logical merge combines two operands depending on a ones mask 
in a third operand. The result is defined by (operand 2 & mask) ! 
(operand 1 & #mask). 

HR-04027 



CRAY Y -MP EL Functional Description CPU 

Logical Products 

The following instructions produce logical products. 

Machine 
Instruction CAL Syntax Description 

044ijk Si Sj&Sk Logical product of (Sj) and (Sk) to 
Si 

044ij02 Si Sj&SB Sign bit of (Sj) to Si 

044ij02 Si SB&Sj Sign bit of (Sj) to Si (j ¢ 0) 

045ijk Si #Sk&Sj Logical product of (Sj) and 
complement of (Sk) to Si 

045ij02 Si #SB&Sj (Sj) with sign bit cleared to Si 

140ijk Vi Sj&Vk Logical products of (Sj) and (Vk 
elements) to Vi elements 

141ijk Vi Vj&Vk Logical products of (Vj elements) 
and (Vk elements) to Vi elements 

Logical Sums 

The following instructions produce logical sums. 

Machine 
Instruction CAL Syntax Description 

051ijk Si Sj!Sk Logical sum of (Sj) and (Sk) to Si 

051ij02 Si Sj!SB Logical sum of (Sj) and sign bit to 
Si 

051ij02 Si SB!Sj Logical sum of (Sj) and sign bit to 
Si (j ¢ 0) 

142ijk Vi Sj!Vk Logical sums of (Sj) and (Vk 
elements) to Vi elements 

143ijk Vi Vj!Vk Logical sums of (Vj elements) and 
(Vk elements) to Vi elements 

HR-04027 2-69 



CPU CRAY Y-MP EL Functional Description 

Logical Differences 

The·following instructions produce logical differences. 

Machine 
Instruction CAL Syntax Description 

046ijk Si Sj\Sk Logical difference of (Sj) and (Sk) 
toSi 

046ij02 Si Sj\SB Toggle sign bit of (Sj), then enter 
intoSi 

046ij02 Si SB\Sj Toggle sign bit of (Sj), then enter 
into (Sz) (j pi! 0) 

144ijk Vi Sj\Vk Logical differences of (Sj) and (Vk 
elements) to Vi elements 

145ijk Vi Vj\Vk Logical differences of (Vj elements) 
and (Vk elements) to Vi elements 

Logical Equivalence 

The following instructions produce logical equivalence. 

Machine 
Instruction CAL Syntax Description 

047ijk Si #Sj\Sk Logical equivalence of (Sj) and (Sk) 
to Si 

047ij02 Si #Sj\SB Logical equivalence of (Sj) and sign 
bit to Si 

047ij02 Si #SB\Sj Logical equivalence of (Sj) and sign 
bit to Si (j pi! 0) 

2-70 HR-04027 



CRAY Y-MP EL Functional Description CPU 

Vector Mask 

Merge 

HR-04027 

The following instructions perform a mask operation that sets a vector 
operand for certain elements depending on the mask. 

Machine 
Instruction CAL Syntax Description 

1750jO VM Vj,Z Set VM bits for zero elements of Vj 

1750jl VM Vj,N Set VM bits for nonzero elements of 
Vj 

1750j2 VM Vj,P Set VM bits for positive elements of 
Vj 

1750j3 VM Vj,M Set VM bits for negative elements 
ofVj 

175ij4 Vi,VM Vj,Z Set VM bits and register Vi to Vj, 
for zero elements of Vj 

175ij5 Vi,VM Vj,N Set VM bits and register Vi to Vj, 
for nonzero elements of Vj 

175ij6 Vi,VM Vj,P Set VM bits and register Vi to Vj, 
for positive elements of Vj 

175ij7 Vi,VM Vj,M Set VM bits and register Vi to Vj, 
for negative elements of Vj 

The following instructions merge two operands together depending on a 
ones mask in a third operand. 

Machine 
Instruction CAL Syntax 

050ijk Si Sj!Si&Sk 

050ij02 Si Sj! Si&SB 

146ijk Vi Sj!Vk&VM 

Description 

Logical product of (Sl) and (Sk) 
complement ORed with logical 
product of (Sj) and (Sk) to Si 

Scalar merge of (Sz) and sign bit of 
(Sj) to Si 

Transmit (Sj) if VM bit = 1; (Vk) if 
VM bit = 0 to Vi 

2-71 



CPU 

Shift Instructions 

2-72 

Machine 
Instruction CAL Syntax 

146iO~ Vi #VM&Vk 

147ijk Vi VjIVk&VM 

CRAY Y-MP EL Functional Description 

Description 

Vector merge of (Vk) and 0 to Vi 

Transmit (Vj) if VM bit = 1; (Vk) if 
VM bit = 0 to Vi 

The scalar shift functional unit and vector shift functional unit shift 
64-bit quantities or 128-bit quantities. A 128-bit quantity is formed by 
concatenating two 64-bit quantities. The number of bits a value is shifted 
left or right is determined by the value of an expression for some 
instructions and by the contents of an A register for other instructions. If 
the count is specified by an expression, the value of the expression must 
not exceed 64. 

The following instructions shift values by a specified amount. 

Machine 
Instruction CAL Syntax Description 

052ijk SO Si<exp Shift (Sz) left exp places to SO; 
exp =jk 

053ijk SO Si>exp Shift (Sz) right exp places to SO; 
exp = 64-jk 

054ijk Si Si<exp Shift (Sz) left exp places to Si; 
ex=jk 

055ijk Si Si>exp Shift (Sz) right exp places to Si; 
exp = 64-exp 

056ijk Si Si,Sj<Ak Shift (Sz) and (Sj) left by (Ak) 
places to Si 

056ij02 Si Si,Sj<1 Shift (Si) and (Sj) left one place to 
Si 

056iO~ Si Si<Ak Shift (Sz) left (Ak) places to Si 

057ijk Si Sj,Si>Ak Shift (Sj) and (Sz) right by (Ak) 
places to (Sz) 

057ij02 Si Sj,Si>1 Shift (Sj) and (Sz) right one place to 
(Si) 

HR-04027 



CRAYY-MP EL Functional Description CPU 

Bit Count Instructions 

Scalar Population Count 

HR-04027 

Machine 
Instruction CAL Syntax Description 

057iOJc2 Si Si>Ak Shift (Si) right (Ak) places to Si 

150ijk Vi Vj<.Ak Shift (Vj elements) left by (Ak) 
places to Vi elements 

150ijOZ Vi Vj<l Shift (Vj elements) left one place to 
Vi elements 

151ijk Vi Vj>Ak Shift (Vj elements) right by (Ak) 
places to Vi elements 

151ijOZ Vi Vj>l Shift (Vj elements) right one place 
to Vi elements 

152ijk Vi Vj,Vj<.Ak Double shift of (Vj elements) left 
(Ak) places to Vi elements 

152ij02 Vi Vj,Vj<l Double shift of (Vj elements) left 
one place to Vi elements 

153ijk Vi Vj,Vj>Ak Double shift of (Vj elements) right 
(Ak) places to Vi elements 

153ij02 Vi Vj,Vj>l Double shift of (Vj elements) right 
one place to Vi elements 

Bit count instructions count the number of set bits or the number of 
leading 0 bits in an S or V register. 

The following instruction performs the scalar population count. 

Machine 
Instruction CAL Syntax Description 

026ijO Ai PSj Population count of (Sj) to Ai 

2-73 



CPU 

Vector Population Count 

Population Parity Count 

Scalar Leading Zero Count 

Branch Instructions 

2-74 

CRAY Y-MP EL Functional Description 

The following instruction performs the vector population count. 

Machine 
Instruction CAL Syntax 

174ijl Vi PVj 

Description 

Population count of (Vj elements) to 
(Vi elements) 

The following instructions perform popUlation parity count. 

Machine 
Instruction CAL Syntax 

026ijl Ai QSj 

174ij2 Vi QVj 

Description 

Population count parity of (Sj) to Ai 

Population count parity of (Vj 
elements) to (Vi elements) 

The following instruction performs leading zero count. 

Machine 
Instruction CAL Syntax Description 

027ijO Ai ZSj Leading zero count of (Sj) to Ai 

Instructions in this category include conditional and unconditional 
branch instructions. An expression or the contents of a B register specify 
the branch address. An address is always taken to be a parcel address 
when the instruction runs. If an expression has a word-address attribute, 
the assembler issues an error message. 

HR-04027 



CRAY Y-MP EL Functional Description CPU 

Unconditional Branch Instructions 

Conditional Branch Instructions 

Return Jump 

HR-04027 

The following instructions perform unconditional branch operations. 

Machine 
Instruction CAL Syntax Description 

0050jk J Bjk Jump to (Bjk) 

006ijkm J exp Jump to exp 

The following instructions perform conditional branch operations. 

Machine 
Instruction CAL Syntax Description 

OlOijkm JAZ exp Jump to exp if (AO) = 0 (i2 = 0) 

Ollijkm JAN exp Jump to exp if (AO) ~ 0 (i2 = 0) 

012ijkm JAP exp Jump to exp if (AO) positive; 
includes (AO) = 0 (i2 = 0) 

013ijkm JAM exp Jump to exp if (AO) negative (i2 = 0) 

014ijkm JSZ exp Jump to exp if (SO) = 0 (i2 = 0) 

015ijkm JSN exp Jump to exp if (SO) ~ 0 (i2 = 0) 

016ijkm JSP exp Jump to exp if (SO) positive; 
includes (SO) = 0 (i2 = 0) 

017ijkm JSM exp Jump to exp if (SO) negative (i2 = 0) 

The following instruction performs a return jump operation. 

Machine 
Instruction CAL Syntax 

007ijkm R exp 

Description 

Return jump to exp; set BOO to 
(P) + 2 

2-75 



CPU 

Normal Exit 

Error Exit 

Monitor Mode Instructions 

Channel Control 

CRAY Y-MP EL Functional Description 

The following instruction performs a normal exit operation. 

Machine 
Instruction CAL Syntax Description 

004000 EX Normal exit 

The following instruction performs an error exit operation. 

Machine 
Instruction CAL Syntax Description 

000000 ERR Error exit 

Monitor mode instructions are executed only when the CPU is in monitor 
mode. An attempt to execute one of these instructions when the CPU is 
not in monitor mode is treated as a pass instruction. Monitor mode 
instructions perform specialized functions useful to the operating system. 

The following instructions perform channel control operations. 

Machine 
Instruction CAL Syntax 

00 1 Ojk1 CA,Aj Ak 

001000 PASS 

00 11jkl CL,Aj Ak 

0012jOl CI,Aj 

Description 

Set the CA register for the channel 
indicated by (Aj) to (Ak) and 
activate the channel 

Pass 

Set the CL register for the channel 
indicated by (Aj) to (Ak) address 

Clear the interrupt flag and error 
flag for the channel indicated by 
(Aj); clear device master-clear 
(output channel) 

HR-04027 



CRAYY-MP EL Functional Description 

Machine 
Instruction CAL Syntax 

0012j11 MC,Aj 

0013jOl XA Aj 

Set Real-time Clock 

CPU 

Description 

Clear the interrupt flag and error 
flag for the channel indicated by 
(A)); set device master-clear (output 
channel); clear device ready-held 
(input channel) 

Enter XA register with (AJ) 

The following instruction performs a real-time clock operation. 

Machine 
Instruction CAL Syntax Description 

0014jOl RT Sj Load RTC register with (Sj) 

Programmable Clock Interrupt Instructions 

The following instructions perform programmable clock operations. 

Machine 
Instruction CAL Syntax Description 

00 14j41 PCI Sj Load II register with (Sj) 

0014051 CCI Clear programmable clock interrupt 
request 

0014061 ECI Enable programmable clock 
interrupt request 

0014071 DCI Disable programmable clock 
interrupt request 

HR-04027 2-77 



CPU CRAY Y-MP EL Functional Description 

I nterprocessor I nterrupt Instructions 

Cluster Number Instructions 

The following instructions perform interprocessor interrupt operations. 

Machine 
Instruction CAL Syntax Description 

0014j11 SIPI Aj Set interprocessor interrupt request 
to CPU (Aj) 

0014011,2 SIPI Set interprocessor interrupt request 
to CPU 0 

0014021 CIPI Clear interprocessor interrupt 

The following instruction sets the cluster number. 

Machine 
Instruction 

0014j31 

CAL Syntax 

CLNAj 

Description 

Load CLN register with (Aj) where 
0s.exps.7 

Operand Range Error Interrupt Instructions 

2-78 

The following instructions enable or disable operand range error 
interrupts. 

Machine 
Instruction 

002300 

002400 

CAL Syntax 

ERI 

DRI 

Description 

Enable interrupt on address range 
error 

Disable interrupt on address range 
error 

HR-04027 





3 INPUT/OUTPUT SUBSYSTEM 

lOS Configurations 

HR-04027 

The CRAY Y-MP EL system uses a VMEbus architecture input/output 
subsystem (IDS) for data transfers from central memory to the 
peripherals. The VMEbus is a high-performance industry standard 
backplane that can connect any vendor input/output (I/O) controller to 
the IDS. The backplane distributes power and delivers a common set of 
data, address, and control signals to the boards plugged into it. 

The IDS offloads the mainframe from peripheral control tasks, allowing 
parallel I/O operations and overlapping I/O and computation, thus 
freeing the CPU for high-speed numerical computation. 

The CRAY Y-MP EL IDS supports the following devices and operations 
via the VME controller boards. These devices are discussed in the 
"Peripheral Devices" subsection of this section. 

• 
• 
• 
• 
• 
• 

System console operation 
MWS operation 
Disk subsystems 
Tape subsystem 
Network subsystem 
Printer or plotter 

A CRAY Y-MP EL system can contain as many as 16 lOSs. Each CPU 
can handle up to four lOSs. The first IDS resides in the mainframe 
cabinet; the mainframe cabinet may contain up to four lOSs. As many as 
12 more lOSs can be located in the peripheral cabinets. 

Each VME IDS supports 8, 4, or 2 I/O controllers plus 2 standard boards. 
The input/output buffer board (IOBB) and the CPU board are included 
with the system's first IDS. The number of controllers supported depends 
on the VME backplane selected when the system configuration is 
ordered. 

Each IDS can consist of a 10-s10t, 6-s10t, or 4-s10t backplane. 

3-1 



Input/Output Subsystem CRAY Y-MP EL Functional Description 

Channel Communications and. Networking 

3-2 

The lOS controls all data transfers between components of the 
CRAY Y -MP EL system. It provides fast data transmission among 
central memory and peripheral devices and networks. Data travels from 
a peripheral device across a data channel to the IOBB board in the lOS, 
then to the CRAY Y-MP EL memory via a 40-Mbyte/s channel. There 
are four of these data channels for each CPU. Refer to Figure 3-1. 

The CRAY Y -MP EL system can be connected to a multiple-system 
network using the Transmission Control Protocol/Internet Protocol 
(fCPIIP), a widely used protocol for interconnecting UNIX systems. 
This network connection is supported using Ethernet, HYPERchannel, 
and fiber-optic distributed data interface (FDDI) connections. 

VME Card Cage 

Master lOP 
(68030) 

Disk 
Controller - I""-

Disk 
Controller - I""-

CRAYY-MP EL 
I/O Buffer 

40 Mbytes/s Board 
Mainframe CPU (4) 

DAS 
Controller - I""-

Network 
Controller(s) - I""-

Tape - I""-
Controller 

Tape - I""-
Controller 

Figure 3-1. lOS Block Diagram 

Disk Drive Option 

Disk Drive Option 

12-Gbyte Disk Array 
(DAS) Subsystem 

Ethernet, FDDI, and 
HYPERchannel 

Tape Drive Option 

Tape Drive Option 

A-9807 

HR-04027 



CRAY Y-MP EL Functional Description Input/Output Subsystem 

Master I/O Processor 

Peripheral Devices 

00-3 Disk Drive 

HR-04027-001 

The lOS master input/output processor (MIOP) is the CPU board in the 
lOS. The MIOP carries out I/O functions for the I/O controllers. It also 
processes external interrupts and CPU I/O requests and executes 
peripheral driver routines. 

The MIOP is a self-contained system that consists of a 68030-based 
processor board, local memory, and control store. It controls a wide 
variety of peripheral devices and networks, including disk drives and 
drive arrays, 9-track and 3480-compatible tape drives, and networks. 
System diagnostics can be accessed either locally or remotely through 
theMIOP. 

The system console and MWS are connected to the CRAY Y-MP EL 
system via separate cables connected to a MIOP port. 

The first MIOP, which is located in the mainframe lOS, contains the 
following devices: 

• Winchester disk drive 
• 1/4-in. cartridge tape drive 
• Communications ports 
• Optional cartridge tape drive (1 or 2) 

The MIOP performs the following operations: 

• Controls the advanced diagnostic system 
• Controls the central operating system start-up 
• Maintains a log of detected and corrected system errors 

Many peripheral devices can be included in the CRAY Y-MP EL system. 
The following subsections describe these optional peripheral devices, 
controllers, and interfaces. Customers may upgrade their systems by 
adding peripheral cabinets that can include additional lOSs and 
peripheral devices. 

The DD-3 disk drive is a compact 5 1/4-in. format high-performance 
enhanced small disk interface (ESDI) disk drive with a capacity of 1.3 
Gbytes formatted. This disk drive operates at sustained data-transfer 
rates of approximately 1.9 Mbytes/s with a peak of 2 Mbytes/s. 

3-3 



Input/Output Subsystem 

DC-3 Disk Controller 

DD-4 Disk Drive 

DC-4 Disk Controller 

CRAYY-MP EL Functional Description 

The DC-3 disk controller interfaces the DD-3 disk drive to the lOS. The 
DD-3 disk drive connects to the DC-3 disk controller board in the lOS. 
The DC-3 disk controller is an intelligent controller that supports from 
one to four DD-3 disk drives. Intelligent disk management techniques 
include overlapping seek operations on multiple drives connected to the 
disk controller. 

The DC-3 controller transfers data from one drive at a time. 

The DD-4 disk drive is a high-performance, two-head parallel intelligent 
peripheral interface (IPI) -2 drive. Its drive capacity is 2.7 Gbytes 
formatted. The DD-4 disk drive operates at sustained data-transfer rates 
of approximately 6 to 7 Mbytes/s with a peak transfer rate of 7.5 
Mbytes/s. 

The DC-4 disk controller interfaces the DD-4 disk drive to the lOS. The 
DC-4 is an intelligent controller that supports from one to four DD-4 
disk drives. The DC-4 controller transfers data from two drives 
simultaneously. 

DAS-2 Disk Array Subsystem 

3-4 

The DAS-2 disk array subsystem uses the 5 1/4-in. DD-3 disk drives for 
data storage. This subsystem consists of one to four banks of ten 
1.3-Gbyte drives, eight for data storage plus one for parity and error 
recovery and one spare drive. The spare drive serves as a standby should 
one of the data storage drives become inoperable. If a disk becomes 
inoperable, the parity drive allows the DAS controller to dynamically 
regenerate the data on that disk to the spare drive. The spare drive 
automatically replaces the failed drive, and operation of the DAS 
continues uninterrupted. 

The DAS-2 disk array subsystem can transfer data at the following rates: 

• 
• 
• 

0.23 Mbytes/sec for data blocks that contain 4,096 bytes 
2 Mbytes/sec for data blocks that contain 32,768 bytes 
13 Mbytes/sec for data blocks that contain 1 Mbyte or more 

HR-04027-001 



CRAY Y-MP EL Functional Description Input/Output Subsystem 

DAS·2 Disk Array Subsystem Controller 

DEB·2 Disk Array Bank 

Stored data from the DAS-2 subsystem is transferred by the DAS-2 
controller to and from all drives. The DAS-2 controller can control eight 
DAS-2 disk subsystems. 

The DEB-2 disk array bank subsystem offers all the features of the 
DAS-2 subsystem. A DEB-2tray consists often 1.3-Gbyte ESDI drives; 
eight for data storage plus one for parity and error recovery and one 
spare drive. This tray uses one peripheral tray slot in the cabinet. 

The DEB-2 subsystem requires a disk array subsystem multiplexer 
(DAS-M) that allows up to four DEB-2 subsystems to be added to a 
DAS-2 controller. 

RD·1 Removable Disk Subsystem 

The RD-l removable disk subsystem includes two 1.3-Gbyte removable 
drives with a 2.75-Mbyte/s peak transfer rate. These RD-l ESDI disk 
drives require a DC-3 disk controller; this controller can control two 
RD-l subsystems. 

The RD-l C removable disk drive is identical in operation to the RD-l 
disk drives, but the additional drives are contained in a removable 
canister. 

RD·2 Removable Maintenance Drive 

The RD-2 removable maintenance drive is the same small computer 
system interface (SCSI) drive that is used in the MIOP. These 
Winchester drives allow the CRAY Y -MP EL system to be configured 
entirely with removable media. 

TD·2 Tape Drive Subsystem 

HR-04027 

The TD-2 9-track tape drive is a high-performance digital 
vacuum-buffered drive for l/2-in. open reel tape. The TD-2 tape drive 
transfers data at a rate of 2 Mbytes/s. A CRAY Y -MP EL cabinet can 
contain one TD-2 tape drive. 

3-5 



Input/Output Subsystem 

TC·2 Tape Controller 

CRAY Y -MP EL Functional Description 

The TC-2 tape controller interface card interfaces the TD-2 tape drive to 
the lOS. 

TD·3 Tape Drive Subsystem 

The ID-3 3480-compatible 18-track cartridge drive subsystem is a 
1/2-in. cartridge tape drive. The ID-3 cartridge drive transfers data at a 
rate of 3 Mbytes/s. A CRAY Y-MP EL cabinet can contain up to two 
ID-3 cartridge drive subsystems. Each ID-3 cartridge drive is 
controlled by the SI-l interface card. 

SI·1 Small Computer System Interface 

The SI-l small computer system interface board interfaces the ID-3 
cartridge drive to the lOS. This SI-l interface board supports a 
maximum of seven SCSI devices in a daisy-chained arrangement. 

EX·2 Smm Cartridge Tape Subsystem 

Network Connections 

Ethernet Interface Controller 

3-6 

The EX-2 cartridge tape subsystem consists of a helical-scan cartridge 
tape drive recording technology that uses read and write head pairs. The 
EX-2 subsystem provides up to 5 Gbytes of data storage on a single 
cartridge and transfers data at a rate of 500 Kbytes/s. 

The EX-2 subsystem is controlled directly from the MIOP and does not 
use a VME slot. 

A wide variety of network connections are available with the 
CRAY Y-MP EL system to provide access to other network computer 
systems and workstations. The CRAY Y-MP EL system supports 
Ethernet, fiber-optic distributed data interface (FDDI), and 
HYPERchannel connections. These interface controllers are discussed in 
the following subsections. 

An Ethernet cable connects a CRAY Y-MP EL system to multiple 
computer systems on the Ethernet network. An Ethernet connection uses 
TCPIIP. 

HR-04027 



CRAY Y-MP EL Functional Description Input/Output Subsystem 

The Ethernet controller uses one VME slot. 

Fiber-optic Distributed Data Interface Controller 

The FDOI interface enables the CRAY Y-MP EL system to communicate 
with other front-end systems on the FDOI network. The FOOl 
connection uses TCP/IP. 

The FDOI uses one VME slot. 

HYPERchannel Interface Controller 

Printer and Plotter Controller 

HR-04027 

The HYPERchannel interface enables the CRAY Y -MP EL system to 
communicate with other front-end systems on the network via an NSC 
box. The HYPERchannel connection also uses TCP /IP. 

The HYPERchannel controller uses one VME slot. 

Printers and plotters can be connected to the CRAY Y-MP EL system 
externally by using the bulkhead located on the back of the system. 

3-7 







GLOSSARY 

A 

B 

c 

Application 

A register 

Backplane 

Bank 

B register 

BDM 

CA 

CAL 

CCI 

Central memory 

Central processing unit 
(CPU) 

HR-04027 

Software designed to perform a particular job or set of related jobs. 

Address register. A registers are primarily used as address registers for 
memory references and as index registers. 

The printed circuit board connector panel used in the VMEbus. 

The smallest addressable division of central memory. 

Intermediate address register. B registers are used as intermediate 
storage for the A registers. 

Bidirectional memory mode (bit). The modes field in the exchange 
package contains the BDM mode bit. When the BDM mode bit is set, 
block read and write operations can operate concurrently. 

Current address (register). The CA register contains the initial address 
for a channel transfer. The contents of the CA register are incremented 
until the transfer is complete. 

Cray Assembly Language. A symbolic language that generates machine 
instructions on a one-for-one basis and allows programs to call 
subroutines from the library through the use of pseudoinstructions. 

Clear clock interrupt (instruction). The CCI instruction clears a 
programmable clock interrupt request. 

Memory residing in the mainframe. 

A module used in the mainframe that controls the flow of system data, 
performs mathematical and logical functions on system data, and 
executes program instructions. 

Glo-1 



Glossary 

C (continued) 

D 

Glo-2 

Chaining 

Check bits 

CRAY Y-MP EL Functional Description 

The process of sequencing logical operations so the results of one 
operation may be used by another operation without needing a memory 
reference in between. 

Used to determine whether one or more bits in a word have an incorrect 
value. 

CIP Current instruction parcel. 

CIPI Clear interprocessor interrupt (instruction). The CIPI instruction clears 
an interprocessor interrupt. 

CL Channel limit (register.) The contents of the CL register are one greater 
than the last address for a channel transfer. When the contents of the CA 
register equal the contents of the CL register, the transfer is complete. 

CLN 

Clusters 

CMOS 

CMR 

CP 

DAS 

DBA 

DBM 

DC·3 

Cluster number (register). The CLN register in the exchange package 
determines which set of the 1710 available clusters of SB, ST, and SM 
registers the CPU can access. 

A set of shared registers accessible by all CPUs. There are 1710 valid 
clusters of shared registers in a CPU. 

Complementary metal oxide semiconductor. An integrated circuit 
option. 

Complete memory reference (instruction). The CMR instruction assures 
completion of all memory references within a particular CPU issuing the 
instruction. 

Clock period. The CP is the interval in which the system clock 
completes one oscillation. 

Disk Array Subsystem. A disk drive subsystem that includes a bank of 
ten disk drives and an I/O controller. 

Data base address (register). The DBA register, part of the exchange 
package, holds the base address of the user's data range. 

Disable bidirectional memory transfers (instruction). The DBM 
instruction disables the bidirectional memory mode. 

Disk Controller-3. An I/O controller board that supports from one to 
four DD-3 disk drives. 

HR-04027 



CRAY Y-MP EL Functional Description Glossary 

D (continued) 

DC·4 

DCI 

DD·3 

DD·4 

DEB·2 

DBA 

Deadlock 

Deadstart 

DFI 

DL 

DLA 

DRAM 

DRI 

HR-04027 

Disk Controller-4. An I/O controller board that supports from one to 
four DD-4 disk drives. 

Disable clock interrupts (instruction). The DCI instruction disables 
programmable clock interrupts until an enable clock interrupt instruction 
is executed. 

Disk Drive-3. A disk subsystem that utilizes the enhanced small disk 
interface (ESDI) drives. 

Disk Drive-4. A disk subsystem that utilizes the intelligent peripheral 
interface (IPI) drives. 

Disk Array Bank-2. A disk subsystem that is identical to the DAS with 
the exception that all of the ESDI drives are contained in one peripheral 
tray. 

Data base address (register). The DBA register, part of the exchange 
package, holds the base address of the user's data range. 

A state resulting in the inability to continue processing due to an 
unresolvable conflict. Deadlock occurs when all CPUs in a cluster are 
holding issue on a test and set instruction. 

The sequence of operations required to start an operating system running 
in a Cray Research computer system. 

Disable floating-point interrupts (instruction). The DFI instruction clears 
the floating-point interrupt flag in the mode register. 

Deadlock interrupt (flag). The deadlock interrupt flag sets if the IDL 
interrupt mode bit is set, the program is not in monitor mode, and a 
deadlock condition occurs because all CPUs in a cluster are holding issue 
on a test and set instruction. 

Data limit address (register). The DLA register holds the upper limit 
address of the user's data range. 

Dynamic random-access memory. A memory device that must be 
refreshed periodically in order to store data. 

Disable interrupt on address range error (instruction). The DR! 
instruction clears the operand range error mode flag in the exchange 
package M register. 

Glo-3 



Glossary 

E 

ESDI 

Ethernet 

EX-2 

Exchange mechanism 

F 

Glo-4 

Exchange package 

Execution unit (ED) 

F 

F register 

FDDI 

Fetch sequence 

Floating-point 
operation 

FPE 

CRAY Y-MP EL Functional Description 

Enhanced small disk interface. A particular type of disk drive that is 
used in various disk subsystems. 

A particular type of network hardware that forms a physical link: between 
computers; a trademark of Xerox Corporation. 

EXABYfE-2. An 8-mm helical scan tape cartridge subsystem. 

The technique used in the CRAY Y-MP EL computer system for 
switching instruction execution from program to program. Refer to 
exchange package. 

A 16-word block of data in memory reserved for exchange packages. 
The exchange package contains the necessary registers and flags 
associated with a particular program. Each program has its own 
exchange package. 

An arithmetic unit utilized by the CRA Y Y -MP EL system. 

Floating-point (operation). This operation is identified by an F appearing 
in front of a register designator in a symbolic machine. 

Flag register. The F register contains part of the exchange package for 
the currently active program. The F register contains flags identified 
individually within the exchange package. Setting any of these flags 
interrupts program execution. 

Fiber-optic distributed device interface. A network protocol that uses 
fiberoptics to transmit data. 

A fetch sequence transfers a block of instructions from memory to an 
instruction buffer. 

A mathematical or logical operation on two or more real numbers. 

Floating-point error (flag). The interrupt flags field in the exchange 
package contains the FPE flag. The FPE flag sets when a floating-point 
range error occurs in any of the floating-point functional units and the 
interrupt-on-floating-point error (IFP) flag is set. 

HR-04027 



CRAY Y-MP EL Functional Description Glossary 

F (continued) 

FPS 

Functional unit 

G 

Gather/scatter 

H 

H 

Helical scan 

HYPERchannel 

I 

IBA 

ICM 

ICP 

HR-04027 

Floating-point error status (bit). The status field in the exchange package 
contains the FPS status bit. The floating-point status bit sets if a 
floating-point error occurred during the execution interval. 

Circuitry designed to perform a particular mathematical or logical 
operation. 

An operation that places data at various intervals in the available memory 
storage and then gathers the data back into its original organization. 

Half-precision floating-point (operation). When an H appears in front of 
a register designator in a symbolic machine instruction, the calculation is 
a half-precision floating-point operation. 

Storage tape solution that uses video recording technology. 

A trademark and product of Network Systems Corporation (NSC) that 
interfaces a channel to other brands of computers. 

Reciprocal iteration (operation). When an I appears in front of a register 
designator in a symbolic machine instruction, the calculation is a 
reciprocal iteration operation. 

Instruction base address (register). The rnA register is in the exchange 
package. The rnA register holds the base address of the user's 
instruction range. 

Interrupt-on-correctable memory error mode (bit). The interrupt modes 
field in the exchange package contains the ICM bit. When the ICM bit is 
set, it enables interrupts on correctable memory data errors while reading 
data from memory. 

Interprocessor interrupt (flag). The interprocessor interrupt flag sets if 
the lIP interrupt mode bit is set and enabled and another CPU requests an 
interrupt of this CPU by issuing instruction 0014jl. 

Glo-5 



Glossary 

I (continued) 

IFP 

ILA 

Input/output subsystem 
(IOS) 

Instruction buffer 

Instruction fetch 

Instruction set 

Input/output buffer 
board (IOBB) 

101 

lOR 

Intelligent peripheral 
interface· 2 (IPI·2) 

Issue sequence 

IUM 

Glo-6 

CRAYY-MP EL Functional Description 

Interrupt-on-floating-point error mode (bit). The interrupt modes field in 
the exchange package contains the IFP bit. When the IFP bit is set, it 
enables interrupts on floating-point errors. 

Instruction limit address (register). The lLA register is in the exchange 
package. The ILA register holds the limit address of the user's 
instruction field. 

The CRAY Y-MP EL system uses a VMEbus architecture IDS for its 
data transfers between central memory and peripheral devices. 

A set of registers in a CRAY Y-MP EL CPU used for temporary storage 
of instructions before issue. Each instruction buffer can hold 128 
consecutive instruction parcels. 

The process of loading program code from central memory to an 
instruction buffer. 

A set of instructions that a particular computer can perform. 

The I/O buffer board provides temporary storage for data transfers 
between the mainframe and peripheral devices. 

I/O interrupt (flag). The F register in the exchange package contains the 
101 flag. The 10I flag sets when a 6-Mbyte/s channel or when the 
1000-Mbyte/s channel completes a transfer. 

Operand range error mode (bit). The interrupt modes field in the 
exchange package contains the lOR bit. When the lOR bit is set, it 
enables interrupts on operand address range errors. 

An interface used to transfer control and system data between the 
CRAY Y-MP EL CPU and the IDS. 

The issue sequence selects the instruction indicated by the program 
address (P) register, decodes it, determines whether the required registers 
or functional units are available, and if so, enables the CPU to execute 
the instruction. 

Interrupt-on-uncorrectable memory error mode (bit). The M register in 
the exchange package contains the ruM bit. When the IUM bit is set, it 
enables interrupts on uncorrectable memory errors. 

HR-04027 



CRAY Y-MP EL Functional Description Glossary 

J 

M 

J The unconditional branch instruction. 

JAM A conditional branch instruction. A branch occurs if the content of 
register AO is negative. 

JAN A conditional branch instruction. A branch occurs if the content of 
register AO is nonzero. 

JAP A conditional branch instruction. A branch occurs if the content of 
register AO is positive. 

JAZ A conditional branch instruction. A branch occurs if the content of 
register AO is O. 

JSM A conditional branch instruction. A branch occurs if the content of 
register SO is negative. 

JSN A conditional branch instruction. A branch occurs if the content of 
register SO is nonzero. 

JSP A conditional branch instruction. A branch occurs if the content of 
register SO is positive or O. 

JSZ A conditional branch instruction. A branch occurs if the content of 
register SO is O. 

M register 

Mainframe 

Maintenance 
workstation model EL 

(MWS-EL) 

MIOP 

MM 

Mode register. The M register in the exchange package contains 
user-selectable bits that dictate the execution of the program. 

A component of the CRAY Y-MP EL computer system that contains 
central memory and central processing units (CPUs). 

A component of a CRAY Y-MP EL computer system that provides an 
intelligent and dedicated platform for performing offline and online tests, 
monitoring environmental conditions, and recording hardware errors. 

Master I/O processor. The MIOP is the CPU board in the lOS. 

Monitor mode (bit). The modes field in the exchange package contains 
the MM bit. When the MM mode bit is set, it inhibits all interrupts 
except memory errors, normal exit, and error exit. The program can 
execute those instructions that are privileged to monitor mode. 

HR-04027 Glo-7 



Glossary CRAY Y-MP EL Functional Description 

M (continued) 

N 

o 

p 

Glo-8 

MODE 

Monitor mode 

Multiprocessing 

Read mode (bits). The MODE bits are part of the memory error data 
fields in the exchange package. The MODE bits determine the type of 
read mode in progress when a memory data error occurred; these bits are 
used with the port bits to identify the operation in error. 

A condition in which a CPU inhibits all interrupts except those caused by 
memory errors, normal exit, or error exit instructions. 

An operation in which several computer processes or jobs are computed 
at the same time. 

NEX Normal exit interrupt (flag). The interrupt flags field in the exchange 
package contains the NEX flag. The normal exit flag sets if the FNX 
interrupt mode bit is set and enabled and a normal exit instruction 
(00400) issues. Issuing a normal exit instruction always causes an 
exchange, regardless of the state of FNX. 

NIP Next instruction parcel (register). The NIP register holds a parcel of 
program code before it enters the current instruction parcel register. 
Instruction decoding begins in this register. 

NSC A trademark of Network Systems Corporation. 

ORE Operand range error (flag). The interrupt flags field in the exchange 
package contains the ORE flag. The ORE flag sets when a data reference 
is made outside the boundaries of the DBA and DLA registers and the 
interrupt-on-operand range error bit is set. 

P 

Parcel 

Parity 

Population count (operation). When a P appears in front of a register 
designator in a symbolic machine instruction, the calculation is a 
population count operation. 

A 16-bit portion of a word that is addressable for instruction execution 
but not for operand references. 

Equivalence in the check bit of transmitted and received data. 

HR-04027 



CRAYY-MP ELFunctional Description Glossary 

P (continued) 

P register 

PCI 

Pipelining 

PN 

Port 

Program address register. The P register selects an instruction parcel 
from one of the instruction buffers. The contents of the P register are 
stored in the program address register field in the exchange package. 
The P register is 24 bits wide in Y -MP mode and 32 bits wide in EL 
mode. 

Programmable clock interrupt (flag). The programmable clock interrupt 
flag sets if the IPC interrupt mode bit is set and enabled and the counter 
in the programmable clock equals O. 

An operation or instruction that begins before a previous operation or 
instruction finishes. Pipelining uses fully segmented hardware. 

Processor number. The PN field in an exchange package indicates which 
CPU executed the exchange sequence. 

A hardware or software access path to memory. 

Power bulk converter Converts AC power to DC power. 

PRE Program range error (flag). The interrupt flags field in the exchange 
package contains the PRE flag. The PRE flag sets when an instruction 
fetch is made outside the boundaries of the rnA and ILA registers. 

Programmable clock A 32-bit counter in each CPU that is used to generate interrupts at 
selectable intervals. 

Q 

R 

HR-04027 

Protocol 

PS 

Software that defines the precise way in which data is transferred from 
one place to another. 

Program state status (bit). The interrupt modes field in the exchange 
package contains the PS status bit. 

Q Parity count (operation). When a Q appears in front of a register 
designator in a symbolic machine instruction, the calculation is a parity 
count operation. 

R Rounded floating-point (operation). When an R appears in front of a 
register designator in a symbolic machine instruction, the calculation is a 
rounded floating-point operation. 

Glo-9 



Glossary 

R (continued) 

s 

RAM 

RD-1 

RD-2 

Reciprocal 
approximation 

Register 

RPE 

RT 

RTC 

Scalar 

Section 

Semaphore 

Shared registers 

Single-error 
correction/double-error 

detection (SECDED) 

Glo-10 

CRAY Y-MP EL Functional Description 

Random-access memory. A memory device that retains the stored data 
as long as power is applied. When power is removed from the device, 
the stored information is lost. 

Removable disk drive-l. A removable disk drive media option available 
in the CRAY Y -MP EL system. 

Removable disk drive-2. The removable maintenance disk drive in the 
CRAY Y-MP EL IDS. 

The mathematical process of approximating the value of a real number 
when one is divided by the number (1/n). 

A hardware storage location for one word, byte, or element of data. 

Register parity error (flag). When a word is written into a register, a set 
of parity bits is generated and stored with the data bits. This set of parity 
bits is compared to another set that is generated when the word is read 
out of the register. An error is indicated when the two sets do not match. 
Parity errors set the register parity error (RPE) flag in the exchange 
package. 

Load real-time clock (instruction). The RT instruction loads the 
real-time clock register with the contents of an S register. 

Real-time clock. The RTC is a 64-bit counter that advances one count 
each clock period. 

A single numerical value that represents a single aspect of a physical 
quantity. 

A major addressable division of central memory that may be further 
divided into subsections and banks. 

A l-bit value stored in a register and used by programs to communicate 
the occurrence of an event. 

Registers that are available for more than one CPU to write to and read 
from. 

A method of detecting whether one or more bits in a word has an 
incorrect value. If only one bit has an incorrect value, that bit can be 
changed back to the correct value. 

HR-04027 



CRAY Y -MP EL Functional Description Glossary 

S (continued) 

Small computer system 
interface (SCSI) devices 

S register 

SB 

Segmentation 

SEI 

Shared registers 

SIPI 

SI-l 

SM 

SPARC 

ST 

Status field 

Status register 

HR-04027 

Components of the MWS-EL that store and retrieve data used in the 
workstations. 

Scalar register. The S registers are the source and destination registers 
for operands executing scalar arithmetic and logical instructions. 

Shared address (register). The SB register is a shared register used for 
transferring address information from one CPU to another. 

An operation that is divided into a discrete number of sequential steps, or 
segments. Fully segmented hardware is designed to perform one 
segment of an operation during a single CPo 

Selected for external interrupts (flag). The interrupt modes field in the 
exchange package contains the SEI flag. When the SEI flag is set, this 
CPU is preferred for I/O interrupts. 

S registers that are available for more than one CPU to write to and read 
from. 

Set interprocessor interrupt (instruction). The SIPI instruction sets an 
interprocessor interrupt request to a specific CPU. 

SCSI-l. The small computer system interface-l interfaces the TD-3 
cartridge tape drive to the IDS. 

Semaphore (register). The SM register is a shared register used for 
control between CPUs. 

Scale able Processor ARChitecture. A trademark of SPARC 
International, Inc. 

Shared T (register). The ST register is a shared register used for 
transferring data from one CPU to another. 

The exchange package contains a status field that is used to determine the 
operating modes of a CPU. 

A read-only register that is used to determine the operating modes of a 
CPU. 

Glo-11 



Glossary 

T 

T register 

TC·2 

TD·2 

TD·3 

u 
UNICOS 

v 

Vector 

V register 

VL 

VM 

VMEbus 

VNU 

Glo-12 

CRAY Y-MP EL Functional Description 

Intermediate scalar register. The T registers are used as intermediate 
storage for the S registers. 

Tape controller-2. An interface board that interfaces the TD-2 tape drive 
to the IDS. 

Tape drive-2. A 9-track tape drive subsystem option used in the 
CRAY Y-MP EL system. 

Tape drive-3. An 18-track tape drive subsystem option used in the 
CRAY Y-MP EL system. 

An operating system for Cray Research computer systems based 
primarily on the UNIX System Laboratories, Inc. UNIX System V and 
partially on the Fourth Berkeley Software Distribution. UNICOS is 
essentially the same in philosophy, structure, and function as UNIX, but 
has been enhanced to exploit the power of Cray Research computer 
systems. 

A single numerical value that contains information on more than one 
aspect of a physical quantity. 

Vector register. Each V register contains 64 bits x 64 elements in 
Y -mode and 64 bits x 128 elements in X-mode. 

Vector length (register). The program-selectable VL register controls the 
effective length of a vector register for any operation. The VL register is 
7 bits wide in Y -MP mode and 8 bits wide in EL mode. 

Vector mask (register). The VM field allows for the logical selection of 
particular elements of a vector. 

The VMEbus is a high-performance industry standard backplane that can 
connect any vendor's I/O controller to the lOS. 

Vector not used status (bit). The state of the VNU bit in the exchange 
package status field indicates whether vector instructions (077xxx or 
140xxx through 177xxx) were issued during the execution interval. 

HR-04027 



CRAY Y-MP EL Functional Description Glossary 

w 

x 

z 

HR-04027 

Word 

WS 

A set amount of data that contains 64 bits of system data and 8 check 
bits. 

Waiting for semaphore status (bit). The interrupt modes field in the 
exchange package contains the WS status bit. The waiting on semaphore 
bit sets if a test and set instruction (0034jk) is holding issue. 

XA Exchange address (register). The XA register in the exchange package 
specifies the address of the first word of a 16-word exchange package 
loaded by an exchange sequence. 

z Leading-zero count (operation). When a Z appears in front of a register 
designator in a symbolic machine instruction, the calculation is a 
leading-zero count operation. 

Glo-13 







BIBLIOGRAPHY 

Cray Research, Inc. Customer Publications 

HR-04027 

Submit orders for Cray Research, Inc. publications to the following 
address or telephone (800) 284-2729 extension 5907. 

Cray Research, Inc. 
Distribution 
2360 Pilot Knob Road 
Mendota Heights, MN 55210 

Other publications related to the CRAY Y -MP EL system are listed 
below and are available from Distribution. 

Preparing Your Site for a CRAYY-MP EL Installation, (available second 
quarter of 1992). 

This manual contains the technical information necessary to plan and 
prepare a site for the installation of a CRAY Y-MP EL system. This 
manual contains the information contained in a traditional site planning 
manual, such as wiring, power consumption, grounding, and access 
requirements. The name and format have been updated to support the 
concept that the CRAY Y-MP EL computer system is easy to install and 
can be located in any office environment. 

A Brief Introduction to Your Cray Research Entry-level (EL) Computer 
System, Cray Research publication number SG-2410. 

This manual provides an introductory description of CRAY Y-MP EL 
hardware and software. It includes the following information: UNICOS 
overview, Shells, utilities, features, network and connectivity, program 
generation, and programming tools. 

UNICOS System Installation Bulletin for Cray Research Entry-level (EL) 
Computer Systems, (available second quarter of 1992). 

This manual explains how to install 6.1 of the Cray Research, Inc. 
operating system UNICOS and release 8.3 of the Cray Research ELS 
Division, I/O subsystem (lOS). This bulletin also explains the 
procedures for installing diagnostics, customizing configuration, and how 
to recover from a root (/) file system crash. 

Bib-1 







INDEX 

Boldface numbers refer to illustrations and 
charts. 

Addition algorithm, floating point, 2-19--2-20 
Address and multiply range errors, 

floating-point, 2-18 
Address add functional unit 

CPU, 2-8 
integer arithmetic, 2-63 

Address base and limit fields, 2-28 
Address functional units, CPU, 2-4, 2-6 
Address multiply functional unit 

CPU, 2-8 
integer arithmetic, 2-68 

Address processing 
general, 2-3 
mainframe, 2-6 

Address registers. See A registers and B 
registers 

AND function, 2-12 
ANSI standard C compiler, 1-5 
Approximation iterations, 2-23 
A registers. See also B registers 

CPU, 2-4, 2-6 
exchange sequence, 2-26 
field, 2-32 

Biased and unbiased exponent ranges, 2-17 
BDM bit, 2-30 
Bidirectional memory transfers, 2-60 
Bit count instructions 

general, 2-73 
population parity population count, 2-74 
scalar leading zero count, 2-74 
scalar population count, 2-73 
vector population count, 2-74 

Block diagrams 
CPU, 2-4 
lOS, 3-2 

HR-04027 

Branch instructions 
conditional, 2-75 
error exit, 2-76 
general, 2-74 
normal exit, 2-76 
return jump, 2-75 
unconditional, 2-75 

B registers, 2-4, 2-6, 2-26. See also A registers 

Cabinets 
mainframe, 1-1, 1-2 
peripheral, 1-3--1-4 
system, 1-1, 1-2 

CAL syntax forms, 2-51--2-52 
CBWbit, 2-31 
Central memory as a shared resource, 2-1--2-2. 

See also Memory 
CF77 FORTRAN compiling system, 1-5 
Chaining operations, 2-37 
Channel communications and networking, 3-2 
Channel control instructions, 2-76--2-77 
CIP register, 2-31 
CLN, 2-29 
CLN register. See Cluster number 
Cluster number (CLN) 

instruction, 2-78 
register, 2-2 
register field, 2-29--2-30 

Coefficient 
field, 2-15 
sign field, 2-15 

Compressed index example, 2-43 
Computation section, CPU 

block diagram, 2-4 
functional unit operations, 2-11--2-25 

Ind-1 



Index 

functional units, 2-7--2-11 
general, 2-3--2-5 
registers, 2-6--2-7 

Concurrent block write, 2-31 
Conditional branch instructions, 2-75 
Conditions, memory error data, 2-27 
Configuration 

lOS, 3-1 
system, 1-5 

Conflicts, memory, 2-1 
Control section, CPU 

exchange mechanism, 2-26--2-32 
instruction fetch, 2-32 
instruction issue, 2-32--2-33 
programmable clock, 2-33 
status register, 2-4, 2-33 

Cooling and power, 1-4 
CPU 

block diagram, 2-4 
computation section, 2-3--2-25 
control section, 2-26--2-32 
instruction differences between X-mode and 

Y -mode, 2-49--2-50 
instruction formats, 2-45--2-49 
instruction summary, 2-52--2-78 
monitor mode instructions, 2-51 
shared resources, 2-1--2-3 
special CAL syntax forms, 2-51--2-52 
special features, 2-33--2-45 
special register values, 2-50--2-51 

DAS-M disk array subsystem multiplexer, 3-5 
DASs. See also Peripheral devices 

DAS-2, 3-4 
DAS-2 controller, 3-5 
general, 1-3--1-4 

Data flow 
computation section, 2-5 
system, 3-2 

Data format, floating-point, 2-15--2-16 
DBA register, 2-28, 2-30 
DC-3 disk controller, 3-4 
DC-4 disk controller, 3-4 
DD-3 disk drive, 3-3 
D D-4 disk drive, 3-4 
Deadlock, system, 2-2 
DEB-2 disk array bank, 3-5 
Decimal equivalents to floating-point numbers, 

2-16,2-17 

Ind-2 

CRAY Y-MP EL Functional Description 

Diagnostic 
error logging, 1-4 
listings, 1-4 
offline, testing, 1-4 

Disk array subsystem multiplexer, 3-5 
Disk array subsystems. See DASs 
Disk controllers 

DC-3, 3-4 
DC-4, 3-4 

Disk drives 
DD-3, 3-3, 3-4 
DD-4, 3-4 
ESDI, 3-3 

Disk subsystems, 1-3--1-4. See also Peripheral 
devices 

Division algorithm, floating-point, 2-21--2-25 
Division, alternate method, 2-25 
DLA register, 2-28, 2-30 
DL flag, 2-29 
Double-precision numbers, 2-25 

EAMbit, 2-31 
EEX flag, 2-30 
Enhanced small disk interface, 3-3 
Error exit branch instruction, 2-76 
Error logging. See MWS-EL 
ESDI, 3-3 
Ethernet 

general, 1-4 
interface controller, 3-6--3-7 
network connections, 3-2 

EUs, 2-9--2-10 
EX-2 8mm cartridge tape subsystem, 3-6 
Exchange address register field, 2-28--2-29 
Exchange mechanism 

exchange package, 2-26--2-32 
exchange sequence, 2-26 

Exchange package 
address base and limit fields, 2-28 
A registers field, 2-32 
cluster number register field, 2-29--2-30 
concurrent block write, 2-31 
exchange address (P) register field, 

2-28--2-29 
memory error data fields, 2-27 
mode register field, 2-30--2-31 
processor number (PN) field, 2-27 
program address register field, 2-27 
scalar block overlap, 2-32 

HR-04027 



CRAY Y-MP EL Functional Description 

S registers field, 2-32 
vector length register field, 2-29 
vector not used field, 2-31 
waiting for semaphore field, 2-31 

Exchangesequence,2-26 
Exclusive NOR function, 2-12 
Exclusive OR function, 2-12 
Exponent field, 2-15 
Exponent ranges, biased and unbiased, 2-17 
FDDI 

controller, 3-7 
general, 3-2, 3-6 
network connections, 3-2 

Features, CPU. See Special features, CPU 
Features, supercomputer, 1-1 
Fiber-optic distributed data interface. See FDDI 
Fields, exchange package, 2-26--2-32 
Fields, floating-point number, 2-15 
Fixed-point operations, 2-5 
Flag register 

field, 2-29--2-30 
flags, 2-29--2-30 

Floating-point 
add and mUltiply range errors, 2-18 
add functional unit, 2-18 
addition algorithm, 2-19--2-20 
data format, 2-15--2-16 
division algorithm, 2-21--2-25 
multiplication algorithm, 2-20--2-21 
mUltiply functional unit, 2-17, 2-18 
range errors, 2-18--2-19 
reciprocal approximation range errors, 2-19 

Floating-point arithmetic 
biased and unbiased exponent ranges, 2-17 
double-precision numbers, 2-25 
floating-point data format, 2-15--2-16 
internal representation of floating-point 

number, 2-16 
Newton's method for approximating roots, 

2-23 
normalized numbers, 

2-17--2-18 
Floating-point arithmetic instructions 

addition and subtraction, 2-66 
approximation, 2-68 
multiplication, 2-67 
range errors, 2-65 
reciprocal iteration, 2-68 

Floating-point functional units, CPU, 2-4, 
2-10--2-11, 2-64 

HR-04027 

Floating-point instructions, 2-5 
Floating-point multiply functional unit 

approximation iterations, 2-24 
division algorithm, 2-21 

Floating-point number, internal 
representation, 2·16 

Fortran 
CF77 compiling system, 1-5 
structures, 2-36 

FPE flag, 2-30 
FPS bit, 2-30 
F register flags, 2-29--2-30 

Index 

Functional instruction summary. See Instruction 
summary, functional 

Functional units 
CPU, 2-7--2-11 
floating-point, 2·4, 2-10--2-11, 2-17, 2-18, 

2-64 
instruction summary, 2-53 
integer arithmetic, 2-12--2-15 
operations, 2-11--2-25 
reciprocal approximation, 2-17, 2-21--2-22, 

2-24 
scalar logical, 2-68 
scalar shift, 2-72 
vector logical, 2-68 
vector shift, 2-72 

Gather instruction example, 2-41 
Gather/scatter, 2-40, 2-41 

Hamming code. See SECDED 
HYPERchannel 

general, 1-4 
interface controller, 3-7 
network connection, 3-2, 3-6 

IBA register, 2-28, 2-30 
ICM bit, 2-31 
I CP flag, 2-29 
IFP bit, 2-18, 2-31 
ILA register, 2-28 
IME bit, 2-30 
IMM bit, 2-31 
Inclusive OR function, 2-12 
Index calculation, 2-5 
Instruction 

buffers, 2-4 
fetch, 2-32 

Ind-3 



Index 

format variations, 2-45 
issue, 2-32--2-33 
issue registers, 2-4 
modes, 2-49--2-50, 2-51 
notations, 2-52--2-52 
set, 2-5 
types, vector, 2-38--2-43 
X-mode and Y -mode differences, 

2-49--2-50 
Instruction formats 

general format, 2-45 
I-parcel, 2-45--2-46 
2-parcel, 2-46--2-48 
3-parcel, 2-48--2-49, 2-50 

Instructions, monitor mode, 2-51 
Instruction summary, CPU 

general, 2-52--2-53 
functional, 2-54--2-78 
functional units, 2-53 

Instruction summary, functional 
bit count, 2-73--2-74 
branch, 2-74--2-76 
floating-point arithmetic, 2-65--2-68 
integer arithmetic, 2-63--2-65 
interregister transfer, 2-56--2-59 
logical operation, 2-68--2-72 
memory transfer, 2-59--2-63 
monitor mode, 2-76--2-78 
register entry, 2-54--2-56 
shift, 2-72--2-73 

Integer arithmetic 
24-bit multiply, 2·14 
functional unit, 2-12--2-15 
integer data formats, 2-13 

Integer arithmetic instructions 
24-bit or 32-bit, 2-64 
64-bit, 2-64--2-65 
general, 2-63--2-64 

Integer data formats, 2·13 
Integer operations, 2-5 
Intelligent peripheral interface-2 (IPI), 3-4 
Intermediate registers, 2-6 
Internal representation of floating-point 

numbers, 2-16 
Interprocessor interrupt instruction, 2-78 
Interregister transfer instructions 

general, 2-56 
transfers to A registers, 2-57 
transfer to semaphore register, 2-59 
transfer to S registers, 2-57--2-58 

Ind-4 

CRAY Y-MP EL Functional Description 

transfer to vector length register, 2-59 
transfer to vector mask register, 2-59 
transfer to V registers, 2-58 

IOBB, 3-1--3-2 
I/O buffer board, 3-1, 3-2 
101 flag, 2-30 
lOR bit, 2-30 
lOS 

block diagram, 3·2 
configurations, 3-1 
channel communications and networking, 

3-2 
general, 2-2 
master lOP, 3-3 
peripheral devices, 3-3--3-7 

IPI, 3-4 
IUM bit, 2-31 

Logical operation instructions 
differences, 2-70 
equivalence, 2-70 
general, 2-68 
merge, 2-71--2-72 
products, 2-69 
sums, 2-69 
vector mask, 2-71 

Logical operations, CPU, 2-12 

Mainframe 
cabinet layout, 1-3 
components, 1-2 
illustration, 1·2 

Maintenance workstation. See MWS-EL 
Master I/O processor, 3-3 
MCU flag, 2-29 
ME flag, 2-30 
Memory 

bidirectional mode, 2-1 
conflicts, 2-1 
overlapping references, 2-1 
ports, 2-1 
upgrades, 1-1--1-2 

Memory allocation technique, 2-28 
Memory error data fields, 2-27 
Memory error flag, 2-2 
Memory ports 

A through C, 2-31 
CPU, 2-9 

HR-04027 



CRAY Y-MP EL Functional Description 

Memory references, 2-60 
Memory transfer instructions 

bidirectional memory transfers, 2-60 
general, 2-59 
memory references, 2-60 
reads, 2-62--2-63 
writes, 2-60--2-62 

MIOP, 3-3 
MMbit, 2-31 
Mode (M) register field, 2-30--2-31 
Modes 

bidirectional memory, 2-1 
CPU operating, 2-33 
X and Y, 2-6 

Monitor mode to user mode, 2-2 
Monitor mode instructions 

channel control, 2-76--2-77 
cluster number, 2-78 
general, 2-76 
interprocessor interrupt, 2-78 
operand range error interrupt, 2-78 
programmable clock interrupt, 2-77 
set real-time clock, 2-77 

Monitor program (flag register field), 2-29 
M register, 2-30 
Multiple precision operations, 2-25 
Multiplication algorithm, floating-point, 

2-20--2-21 
MWS-EL, 1-4 

Network connections 
Ethernet interface controller, 3-6--3-7 
FOOl controller, 3-7 
HYPERchannel interface controller, 3-7 
printer and plotter controller, 3-7 

Networking, 3-2 
Network interfaces, 1-4 
Newton's method, 2-22, 2·23 
NEX flag, 2-30 
Normal exit branch instruction, 2-76 
Normalized floating-point numbers, 2-17--2-18 

Operand instructions 
vector-scalar, 2-38, 2·39 
vector-vector, 2-38, 2·39 

Operand range error interrupt instructions, 2-78 
Operator workstation, 1-4 
ORE flag, 2-30 

HR-04027 

Overview, system, 1-1--1-5 
OWS, 1-4 

Parallel processing, 2-33--2-34, 
Parity count instructions, 2-5 
PCl flag, 2-29 
Peripheral devices, 3-3--3-7 
Population count instructions, 2-5 
Population parity count instruction, 2-74 
Port field, 2-27 
Ports, memory, 2-1 
Power and cooling, 1-1, 1-4 
PRE flag, 2-30 
P register 

general, 2-27 
instruction fetch and issue, 2-32--2-33 

Primary registers, 2-6 
Printer and plotter controller, 3-7 
Processor number (PN) field, 2-27 

Index 

Program address (P) register field, 2-27. See 
also P register 

Programmable clock, 2-33 
Programmable clock interrupt instruction, 2-77 
PS bit, 2-30 

Range errors, floating-point, 2·18--2·19 
RD-1 removable disk subsystem, 3-5 
RD-2 removable maintenance drive, 3-5 
Read address bank field, 2-27 
Read address chip select field, 2-27 
Read error type field, 2-27 
Read instructions, 2-62--2-63 
Read mode field, 2-27 
Real-time clock. See RTC 
Reciprocal 

approximation functional unit, 2-17 
approximation instructions, 2-68 
approximation range errors, floating-point, 

2·19 
iteration instructions, 2-68 

Reciprocal approximation functional unit 
approximation iterations, 2-24 
floating-point division algorithm, 

2-21--2-22 
normalized numbers, 2-17 

Reciprocal approximation instruction, division 
algorithm, 2·24--2·25 

Ind-5 



Index 

Register entry instructions 
transfers into A registers, 2-54 
transfers into S registers, 2-55--2-56 
transfers into semaphore registers, 2-56 
transfers into V register, 2-56 

Registers, CPU, 2-6--2-7 
Register values. See Special register values 
Return jump branch instructions, 2-75 
Roots, approximating, 2·23 
RTC 

set instruction, 2-77 
as a shared resource, 2-1, 2-3, 2-4 

SBO, 2-32 
SB registers. See Shared address 
Scalar block overlap, 2-32 
Scalar functional units 

CPU, 2-4, 2-8--2-9 
logical, 2-68 
shift, 2-72 

Scalar leading zero count instruction, 2-74 
Scalar population count instruction, 2-73 
Scalar processing, 2-3 
Scalar registers. See S registers 
Scatter instruction example, 2·42 
SECDED, 2-1 
Segmentation, 2-7 
SEI bit, 2-31 
Semaphore (SM) registers 

exchange sequence, 2-26 
interprocessor communication section, 2-2 

Shared address (SB) registers 
exchange sequence, 2-26 
interprocessor communication section, 2-2 

Shared registers, 2-2 
Shared resources, CPU 

central memory, 2-1--2-2 
interprocessor communication section, 2-2 
IDS, 2-2 
real-time clock, 2-3 

Shared scalar (S1) registers 
exchange sequence, 2-26 
interprocessor communication section, 2-2 

Shift instructions, 2-72--2-73 
SI -1 small computer system interface, 3-6 
SM registers. See Semaphore 
Software, system, 1-5 
Special CAL syntax forms, 2-51--2-52 

Ind-6 

CRAY Y-MP EL Functional Description 

Special features, CPU 
functional unit independence, 2-34 
pipelining and segmentation, 2-34--2·35 
vector processing, 2-35--2-43 

Special register values, 2-50--2·51 
S registers 

CPU, 2-4, 2-6, 2-7 
exchange sequence, 2-26 
field, 2-32 
and RTC, 2-3 
vector-scalar operand instructions, 2-39 

Status register, 2·4, 2-33 
ST registers. See Shared scalar 
Syndrome field, 2-27 
System overview, 1-1--1-5 

Tape subsystems, 1-4. See also Peripheral 
devices 

TC-2 tape controller, 3-6 
TD-2 tape drive subsystem, 3-5 
TD-3 tape drive subsystem, 3-6 
Transfer instructions. See Interregister transfer 
T registers, 2.4, 2-6, 2-7, 2-26. See also S 

registers 

Unconditional branch instructions, 2-75 
UNICOS, 1-5 
Upgrades 

mainframe memory, 1-1--1-2 
peripherals, 1-3, 3-3 
system configurations, 1·5 

User mode to monitor mode, 2-2 
Utilities, 1-5 

Vector 
length, 2·4 
mask, 2·4 
mask instructions, 2-42 
not used field, 2-31 

Vector functional unit 
CPU, 2-4, 2-9--2-10 
execution units (EUs), 2-9--2-10 
logical, 2-68 
shift, 2-72 

Vector instructions, 2-38, 2-41--2-42 

HR-04027 



CRAY Y-MP EL Functional Description 

Vector length (VL) 
field, 2-29 
register, 2-7, 2-9 

Vector mask register. See VM register 
Vector memory instructions, 2-38 
Vector population count instructions, 2-74 
Vector processing. See also Vector registers 

advantages, 2-36 
chaining, 2-36--2-37, 2-38 
compressed index example, 2-43 
defined, 2-36 
gather instruction example, 2-41 
general, 2-3, 2-5 
instruction types, 2-38--2-43 
scatter instruction example, 2-42 
vector memory instructions, 2-40 
vector-scalar operand instructions, 2-38, 

2-39 
vector-vector operand instructions, 2-38, 

2-39 
Vector registers. See V registers 
Vector-scalar operand instructions, 2-38, 2-39 
Vector-vector operand instructions, 2-38, 2-39 
VL register, 2-7, 2-9, 2-29 
VMregister 

exchange sequence, 2-26 
general, 2-7 

VNU bit, 2-31 
V registers, 2-4, 2-7, 2-26, 2-38, 2-39, 2-40 

Waiting for semaphore field, 2-31 
Write instructions, 2-60--2-62 
WS bit, 2-31 
XA register, 2-28 

HR-04027 

Index 

Ind-7 





Reader Comment Form 

Title: CRAY Y ·MP EL Functional Description Number: HR·04027 

Your feedback on this publication will help us provide better documentation in the future. Please take 
a moment to answer the few questions below. 

For what purpose did you primarily use this manual? 

___ Troubleshooting 
___ Tutorial or introduction 
___ Reference information 
___ Classroom use 
___ Other - please explain _______________________ _ 

Using a scale from 1 (poor) to 10 (excellent), please rate this manual on the following criteria and 
explain your ratings: 
___ .Accuracy ___________________________ _ 

___ Organization __________________________ _ 

___ .Readability ___________________________ _ 

___ .Physical qualities (binding, printing, page layout) ______________ _ 
__ --'Amount of diagrams and photos ____________________ _ 

___ Quality of diagrams and photos ____________________ _ 

Completeness (Check one) 
___ Too much information _______________________ _ 

___ Too little information _______________________ _ 

__ --'Just the right amount of information 

Your comments help Hardware Publications and Training improve the quality and usefulness of your 
publications. Please use the space provided below to share your comments with us. When possible, 
please give specific page and paragraph references. We will respond to your comments in writing 
within 48 hOUTS. 

NAME _____________________________ ___ 
JOB TITLE. ______________ _ 
FIRM _____________________________ ___ C::IIS -C, 0 :-t' ADDRESS ________________ ___ 

~ESEA~CH, INC. 
CITY ___________ STATE, ____ ZIP _____ __ 
DATE~ _________________ __ 

[or attach your business card] 



-- - - - - - - ----- - ------- - ---- --- - ----- --------- ---------------- - ---------------., 

111111 

BUSINESS REPLY CARD 
FIRST CLASS PERMIT NO 6164 ST. PAUL, MN 

POSTAGE WILL BE PAID BY ADDRESSEE _ 
2 2.t"t:-t' 

~E5EA~CH, INC. 

Attn: Hardware Publications and Training 
770 Industrial Boulevard 
Chippewa Falls, WI 54729 

STAPLE 

NO POSTAGE 
NECESSARY 

IF MAILED 
IN THE 

UNITED STATES 



Cray Research, Inc. 
Hardware Publications and Training 
770 Industrial Boulevard 
Chippewa Falls, WI 54729 

, 


