=R

CRAY-1S
COMPUTER SYSTEM

I/0 SUBSYSTEM SOFTWARE
WORKBOOK

T-0201

FOR TRAINING PURPOSES ONLY

CRAY-1 S

COMPUTER SYSTEM

1/0 SUBSYSTEM SOF TWARE

WORKBOOK

7-0201

copYRIGHT 1981 BY CRAY RESEARCH, INC, THIS MANUAL OR PARTS
THEREOF MAY NOT BE REPRODUCED IN ANY FORM WITHOUT PERMISSION OF
CRAY RESEARCH, INC,

A

CaFRAY

RECORD OF REVISION RESEARCHXINC. PUBLICATION NUMBER

Each time this manual is revised and reprinted, all changes issued against the previous version in the form of change packets are
incorporated into the new version and the new version is assigned an aiphabetic level. Between reprints, changes may be issued
against the current version in the form of change packets. Each change packet is assighed a numeric designator, starting with
01 for the first change packet of each revision level.

Every page changed by a reprint or by a change packet has the revision level and change packet number in the lower righthand
corner, Changes todpart of a page are noted by a change bar along the margin of the page. A change bar in the margin opposite
the page number indicates that the entire pa%e is new; a dot in the same place indicates that information has been moved from
one page to another, but has not otherwise c

anged.

Requests for copies of Cray Research, Inc. publications and comments about these publications should be directed to:
CRAY RESEARCH, INC.,

1440 Northiland Drive,

Mendota Heights, Minnesota 55120

Revision Description

September, 1980 - Original printing

A November, 1980 - Reprint with revision. Changes include
addition of detail on concentrator software.

B January 1981 - Reprint with revision. Changes to add more
detailed flow diagrams.

C March 1981 - Reprint with revision. Changes include addition
of interactive station software and deadstart procedures.

D September 1981 - Reprint with revision. Changes to add more
detail on Disk I/0 and I0S Chassis Layouts.

TABLE OF CONTENTS

PART 1 - I/0 SUBSYSTEM HARDWARE

L.

2,

3,

b,

SYSTEM OVERVIEW

1/0 SUBSYSTEM
INDIVIDUAL I/0 PROCESSOR
MODEL NUMBERING CONVENTION

AVAILABLE CONFIGURATIONS AND PROCESSOR

DESCRIPTIONS

1/0 PROCESSOR LOCAL MEMORY

FUNCTIONS
CHARACTERISTICS
ADDRESSING SCHEME
ACCESS

COMPUTATION SECTION

BASIC COMPONENTS

INSTRUCTION COHTROL NETHWORK

OPERAND REGISTERS
FUNCTIONAL UNITS
ACCUMULATOR
ADDEND REGISTER
INSTRUCTIONS

1/0 SECTION

CONF IGURATION
ACCUMULATOR CHANNELS
DHMA CHANNELS
OVERVIEW OF 1/0
DEDICATED CHANNELS
INTERFACE CHANNELS

NN NN

W W W W W W W

S e S S o e

(op)

(07e]

Jr-ENo -

12
13
14
.15
17

= oyul = FE

Sl

BUFFER MEMORY

FUNCTIONS
CHARACTERISTICS

PART 2 - APML

6.

APML SYNTAX

MACRO VS ASSEMBLY LANGUAGE
APML FEATURES

APML NOTATION

APML FORMAT

ASSIGNMENT SYNTAX
CONDITION SYNTAX

EXAMPLES

APML CONTROL STATEMENT

APML PSEUDO INSTRUCTIONS

AVAILABLE PSEUDO INSTRUCTIONS
PSEUDO INSTRUCTION DESCRIPTIONS

$APTEXT MACROS
AVATLABLE MACROS
MACRO DESCRIPTIONS

PART 3 - 1/0 SUBSYSTEM OPERATING SYSTEM

9,

OPERATING SYSTEM OVERVIEW

FUNCTIONS
CHARACTERISTICS
SYSTEM COMPONENTS

v

U1l Ul
=== NYNU B N —
o N O

O OYOYy Oy o) Oy O On

~N N
N —

20 0
N =

W W W
= W

10,

11,

12,

13,

SOFTWARE

STRUCTURE AND RESOURCE IMPLEMENTATION

OVERLAYS

RESOURCES AND SOFTWARE STRUCTURES
LOCAL MEMORY

BUFFER MEMORY

TASK HANDLING

INTER-TOP COMMUNICATION

OPERAND REGISTER ASSIGNMENTS

GENERAL DESCRIPTION
OVERLAY MEMORY MANAGEMENT
OVERLAY FORMAT

OVERLAY DEFINITION
OVERLAY CALLS

CONSOLE CALLABLE OVERLAYS

FUNCTIONS
CHARACTERISTICS

BASIC COMPONENTS
ACTIVITY DISPATCHER
INTERRUPT ANSWERING
SERVICE REQUEST PROCESS
INTERNAL SUBROUTINES
LOCAL MEMORY CONTROL
BUFFER MEMORY CONTROL

DISK SUBSYSTEM

FUNCTIONS

OVERVIEW OF DISK I/0

MAJOR COMPONENTS

DISK CHANNEL COMTROL TABLES
DISK REQUEST CONTROL PACKETS
TYPICAL DISK READ SEQUENCE

10,
10,
10,
10,
10,
10.

11,
11,
11,
11,
11,
11,

12,
12,
12.
12,
12,
12,
12,
12,
12,

13,
13,
13,
13,
13,
13,

1
2
4
8
16
22

1
3

— W0 20

18
22

14,

15,

16,

17.

CONCENTRATOR SUBSYSTEM

FUNCTIONS
CHARACTERISTICS

MAIN COMPONENTS

ACTIVITY INTERACTION
OVERVIEW OF MESSAGE FLOW

STATION SUBSYSTEM
FUNCTIONS
CHARACTERISTICS
COMMUNICATION PROTOCOL
MAIN COMPONENTS
ACTIVITY INTERACTION
OVERVIEW OF MESSAGE FLOW

INTERACTIVE STATIOM SUBSYSTEM
FUNCTIONS
CHARACTERISTICS
INTERACTIVE CONCENTRATOR
INTERACTIVE CONSOLE

DEADSTART
OVERVIEW
[/0 SUBSYSTEM DEADSTART
10S TAPE DEADSTART
DEADSTART DISK FILES
[0S DISK DEADSTART
CPU DEADSTART
FILE UTILITIES
PARAMETER FILE EDITOR

\A!

14,1

14,
14,
14,

o0 Oy Ui

15,
15,
15,
15,
15.
15,

= 00 5 W

16,
16,
16,
16,

=N -

17,
17,
17.7

17.13
17.14
17.16
17.18
17.20

N 2

18, UTILITIES
HISTORY TRACE
DMP
SYSDUMP
DEBUGGER

APPENDICES

[. I/0 PROCESSOR INSTRUCTION SUMMARY
IT. SYSTEM CHANNEL ASSIGNMENTS
ITT. 10P BLOCK DIAGRAM IN DETAIL
IV, I0S ACTIVITY SUMMARY
V., KERNEL SERVICE REQUEST FUNCTIONS
VI, INTERNAL SUBROUTINES
VIT, DISK SUBSYSTEM DETAILED INTERACTION

VITI, CONCENTRATOR TABLES AND DETAILED FLOW

VII

PART 1

1/0 SUBSYSTEM HARDWARE

CHAPTER 1

SYSTEM OVERVIEM

INPUT/0UTPUT SUBSYSTEM

INCREASES CRAY-1 S CPU THROUGHPUT BY REDUCING ITS 1/0 AND
FRONT-END RESPONSIBILITIES.,

STREAMS DATA TO CENTRAL MEMORY OVER HIGH SPEED CHAMNEL.
PROVIDES ACCESS TO ADDITIONAL PERIPHERALS. (TAPES)

FUNCTIONS AS A MAINTEMNANCE CONTROL UNIT,

DRIVES UP TO 48 DD-29 DISK DRIVES FOR MASS STORAGE.

ALLOWS OPERATOR CONTROL OF COS.

COLLECTS AND CONCENTRATES DATA FROM FRONT ENDS,

PROVIDES FOR JOB AND DATA ENTRY.

DISTRIBUTES CPU OUTPUT TO SLOWER PERIPHERAL EXPANDER DEVICES.

CONSISTS OF TWO TO FOUR I1/0 PROCESSORS WITH A SHARED BUFFER
MEMORY.

1.1

PHYSICAL CHARACTERISTICS

4 COLUMN CHASSIS CONTAINS I/0 PROCESSORS., BUFFER MEMORY,
CONTROLLERS AND INTERFACES.

4 COLUMNS PLUS 2 POWER SUPPLIES WEIGHTS 3775 LB,

[0S HAS ITS' OWN POWER DISTRIBUTION UNIT (PDU)

COOLING AND POWER SHARED WITH CPU

CRAY-1 S/4X00 REQUIRES AN ADDITIONAL MOTOR
GENERATOR (3) AND AN ADDITIONAL COMPRESSOR (3)

1.2

FIGRE 1-1, 1/0 SUBSYSTEM

j—a
W

———y
e,

BUFFER BUFFER
MEMORY MEMORY
BUFFER
MEMORY
CONTROL
MASTER CLOCK
10P-2 10P-1 10P-0 [0P-3
1/0 1/0 /0 1/0
CONTROLLERS | CONTROLLERS | INTERFACES CONTROLLERS
AND AND AND
INTERFACES | INTERFACES [NTERFACES
(DISK) (DISK) (DISK XOR
BLOCK MUX)
10P-1 DISK
INTERFACE

/0 SUBSYSTEM, MODEL A
(SN 3-5, 7-10)

L4

BUFFER BUFFER BUFFER BUFFER
MEMORY MEMORY MEMORY MEMORY
BUF. MEM. BUF. FPEM.
CONTROL CONTROL
MASTER CLOCK
HSP_CHANNELS | HSP_CHANNELS
10P-1 [0P-0 [0P-3 [0P-2
1/0 1/0 1/0 1/0
CONTROLLERS | INTERFACES | CONTROLLERS | CONTROLLERS
AND AND AND
INTERFACES INTERFACES | INTERFACES
(DISK XOR (DISK)
DISK BLOCK MUX)
INTERFACES | 10P-1 DISK
INTERFACE

/0 SUBSYSTEM MODEL B
(SN 6, 11 +)

1.8

INDIVIDUAL I/0 PROCESSOR

LOCAL MEMORY:

65,536 WORDS
16 BITS/WORD

COMPUTATION SECTION:

INSTRUCTION CONTROL NETWORK
2 FUNCTIONAL UNITS CADDER AND SHIFTER)

LOGICAL "AND‘ OPERATION
512 OPERAND REGISTERS
SINGLE-ADDRESS MODE

1/0 SECTION:

6 DIRECT MEMORY ACCESS (DMA) PORTS R~
4y PARCELS EVERY 6 CLOCK PERIODS MAXIMUM TRANSFER RATE

SEVERAL CHANNELS MAY MULTIPLEX INTO ONE PORT

1.6

MODEL NUMBERING CONVENTION

CRAY-1 S/iZUO THROUGH /4400 CONTAIN AN I/0 SUBSYSTEM

FIRST DIGIT INDICATES SIZE OF CENTRAL MEMORY IN MEGAWORDS
opy A men

SECOND DIGIT INDICATES NUMBER OF I/0 PROCESSORS
EXAMPLE :

CRAY-1 S$/2400 HAS 2 MILLION WORDS OF CENTRAL
‘EMORY AND & I/0 PROCESSORS

1.7

CRAY-1 §/x200

MINIMUM CONFIGURATION

TWO PROCESSOR SYSTEM

1.

2,

MASTER I/0 PROCESSOR (MIOP)

CONTROLS FRONT-END INTERFACES.
HAS UP TO & DISPLAY CONSOLES.

HAS AN EXPANDER CHANNEL WHICH MULTIPLEXES A PRINTER
AND A MAG TAPE UNIT,

CONNECTS TO BUFFER MEMORY THROUGH A DMA CHANNEL.,

EXCHANGES CONTROL SIGNALS WITH CPU OVER A LOW-SPEED
CRAY-1 S CHANNEL PAIR,

COMMUNICATES WITH OTHER IOPS OVER ACCUMULATOR CHANNELS,
MAINTAINS SYSTEM INFORMATION ERROR LOG,

COORDINATES ACTIONS OF CPU AND OTHER IOPS.

BUFFER 1/0 PROCESSOR (BIOP)

HANDLES DATA TRANSFERS BETWEEN CPU AND I/0 SUBSYSTEM.
CONNECTS DIRECTLY TO CENTRAL MEMORY,

CONNECTS TO BUFFER MEMORY THRCUGH A DMA CHANNEL.
COMMUNICATES WITH OTHER IOPS OVER ACCUMULATOR CHANNELS.

DRIVES UP TO 16 DD-29 DISK DRIVES,

. 1.8

1703

P T0 PRONT-E£1D

/
/
!

i
l

l

!

!

!

]
MIOP - EXPANDER
CHASSIS

17016 1704 3: BIOP \
29 oK = =S BUFFER

nsk INITS LCONIR, MEMORY

- = - - EXTERNAL CHANNEL

== 800+ Mbits/s DMA CHANNEL

—~+— 50 MBITS/s CRAY-1 S CHANNEL PAIR
—— ACCUMULATOR CHANNEL

=== 800+ Mbits/s MEMORY CHANNEL

FIGURE 1-2, BLock Diacram oF S/1200, S/2200 AND S/4200 SYSTEMS

| =
w

CRAY-1 S/x300

THREE PROCESSOR SYSTEM
1. MIOP
2, BIOP
3, DISK I/0 PROCESSOR (DIOP)
CONNECTS TO BUFFER MEMORY THROUGH A DMA CHANNEL,

COMMUNICATES WITH OTHER IOPS OVER ACCUMULATOR
CHANNELS ,

DRIVES UP TO 16 DD-29 DISK DRIVES,
OR
3, BLOCK MULTIPLEXER I/0 PRCCESSOR (XIOP)
CONNECTS TO BUFFER MEMORY THROUGH A DMA CHANNEL,

COMMUNICATES WITH OTHER IOPS QOVER ACCUMULATOR
CHANNELS.

HANDLES 1 TO 16 BLOCK MuX (I1BM COMPATIBLE)
CHANNELS.

1.10

171] - MIOP - T EXPANDER
\ CHASSIS
17016 1704 3: BIOP \
DD-29 - - -DCU-4 — = = BUFFER
DIsK UNTs LR, MEMORY
170 16 A
ID-29 |
TTDU- T T T T T DIOP
DISK UNITS ~ |

1703

= - - - EXTERNAL CHANNEL

= 800+ M B1TSs/s DMA CHANMEL
—++— 50 MBITS/S CRAY-1 S CHANNEL PAIR
——— ACCUMULATOR CHANNEL

=== g0+ MerTs/s MEMORY CHANMEL

FIGURE 1-3. BLock DraGraM oF S/1300, S/2300 AnD S/4300 SYSTEMS
WITH INCREASED DIsK CAPACITY.

1.12

CPU

170 16
DD-29 -
DISK UNITS

1703

FRONT-END |
UP TO
If CONSOLES INTERFACES RINTER
AN T
| |
! I !
N : '
\] ! l,
| R AU OO A OO 11 e e o —— -
T T 1T i MIOP EXPANDER
CHASSIS
-ggg}: — - - 1- . BUFFER
' MEMORY
1704 | /
T RMC - — - — — - X I0P
CONTR..
- - - - EXTERNAL CHANNEL

= 800+ M B17s/s DMA CHANNEL
—++— 50 MBITS/S CRAY-1 S CHANNEL PAIR

—— ACCUMULATOR CHANNEL

=800+ M17s/s MEMORY CHAMNEL

FIGURE 1-4., BLOCK DIAGRAM OF S/1300, S/2300 anD S/4300 SYSTEMS
WITH BLOCK MULTIPLEXER CHANNELS,

|—

13

FOUR PROCESSOR SYSTEM

CRAY-1 S/x400

MAXIMUM OF 48 DD-29 DISK DRIVES

TWO POSSIBLE CONFIGURATIONS

OR

1.

2,

MIOP

BIOP

DIOP

DIOP

MIOP

BIOP

DIOP

X10P

1.14

UP 10
44 CONSOLES

1703
FRONT-END
INTERFACES

%RINTER

!
!
!

{
U

!
l
1
!
|

17016 17104
D-29 - --DCU-4
DIsk uniTs LLONTR,
17016
D29 1704
DISK UNITS™ - o DCU-
CONTR.
170 16
DD-29 1104
- - = DoU -4
DISK INITS” ™ 7| 20 =

SYSTEMS WITH INCREASED DSk CAPACITY.

MIOP - EXPANDER
CHASSIS
BIOP \
BUFFER
MEMORY
DIOP
DIOP
—- - — EXTERNAL CHANNEL

= Q0+ MBITs/s DMA CHANNEL
—H+——50 MBITS/S CRAY-1 S 1/0 CHANNEL PAIR

ACCUMULATOR CHANNEL

SEEESE 000+ MerTs/s MEMORY CHANNEL
FIGURE 1-5, BLock DiAGraM OF S$/1400, S/2400 Anp S/4400

1.15

170 16
DB-29

DISK UNITS

170 16
DD-29

DISK UNITS™ = o DCU-H

17016
CHANNELS

-

UP TO
L CONSOLES

1703
FRONT-END
INTERFACES RINTEF

-~

-

1704
| DCU-4 |

1704

CONTR.

1704

BC-4 |-

CONTR.

FIGURE 1-6,

— — s am ey

MIOP T T T T EXPANDER

CHASSIS
m BIOP '

MEMORY

DIOP

XI0P

——=— EXTERNAL CHANNEL

800+ MB1Ts/s DMA CHANNEL

=H-=———50 MBITS/s CRAY-1 S 1/0 CHANNEL PAIR
ACCUMULATOR CHANNEL

=== &0+ MB175/s MEMORY CHANNEL

BLock DiAcrRaM OF S$/1400, S/2400 anD S/4400
SYSTEMS WITH BLOCK MULTIPLEXER CHANNELS,

1.17

CHAPTER 2

170 PROCESSOR LOCAL MEMORY

FUNCTIONS

PROVIDES BUFFERS FOR BLOCK TRANSFERS.

HOLDS NUCLEUS OF OPERATING SYSTEM,

PROVIDES SPACE FOR EXECUTION OF IOS OVERLAY CODE,

CHARACTERISTICS

65,536 16 BIT WORDS IN 4 SECTIONS OF 4 BANKS

4 CP BANK BUSY TIME ON READ

6 CP BANK BUSY TIME ON WRITE

WHOLE SECTION GOES BUSY, NOT JUST BANK

BIPOLAR CIRCUITRY

/7 CP READ TO ACCUMULATOR

INSTRUCTION FETCH DONE IN 4 CP BURSTS, 1 PARCEL/CP
OPERAND REFERENCE MOVES 1 PARCEL TO/FROM ACCUMULATOR
170 REFERENCE MOVES 4 SEQUENTIAL PARCELS TO/FROM 1/0 CHANNEL
ODD PARITY; 1 PARITY BIT PER BYTE

NO ERROR CORRECTION

6 DIRECT MEMORY ACCESS PORTS

2.2

UPPER BYTE SECTION O SECTION SECTION SECTION
BANK 0 BANK 1 BANK 2 BANK 3 1 2 3
PARCEL 0 | PARCEL 1 |PARCEL 2 | PARCEL 3
UPPER UPPER UPPER
BYTE BYTE BYTE
LOWER BYTE SECTION O SECTION SECTION SECTION
BANK 0O BANK 1 BANK 2 BANK 3 1 2 3
PARCEL 0 | PARCEL 1 | PARCEL 2 | PARCEL 3
LOWER LOWER LOWER
BYTE BYTE BYTE
FIGURE 2-2. LOCAL MEMORY LAYOUT
215 21l+ 213 212 211 210 29 28 27 26 25 21+ 23 22 21 20
P [
'p P
i]
Lew L__
UPPER BYTE LOWER BYTE
FIGURE 2-3. DATA WORD FORMAT

ADDRESSING SCHEME

LOWER 4 BITS SELECT SECTION AND BANK

NEXT 10 BITS SELECT ADIRESS IN CHIP

UPPER 2 BITS SELECT CHIP

215 214 9213 4 23 22 21 90
P | AMD -
ADDRESS INFERNAL_CHIP-ADTRESS ™| SECTION | BANK
CHY Cgre 1S (
FIGLRE 2-1, LOCAL MEMORY ADDRESS FORMAT \“’7ﬁi:r q?{:
ey

THREE ADDRESS PATHS TO EACH LOCAL MEMORY SECTION FROM:

1/0 SECTION

COMPUTATION SECTION

FETCH REGISTER

2.4

}ﬂﬁél s

ACCESS

3 READ PATHS AND 2 WRITE PATHS PER LOCAL MEMORY SECTION,
1 OF EACH TO ACCUMULATOR.
1 OF EACH TO 1/0 SECTION TO SERVICE DMA PORTS,

LAST READ PATH TO INSTRUCTION STACK FOR FETCH.

CHAPTER 3

COMPUTATION SECTION

BASIC COMPONENTS

INSTRUCTION CONTROL NETWORK

512 OPERAND REGISTERS

2 FUNCTIONAL UNITS (ADDER AND SHIFTER)

1 PROGRAMMER-VISIBLE ACCUMULATOR

. LOGICAL “AND" OPERATION

172 INSTRUCTION CODES

3,1

i «;‘ he [! \ ‘.‘ : },f ‘ ’
{ < rom——————_
F‘«»J}‘.,s‘ 35 /_9,,
' s
B
o OPERAND
”'Ziﬁ‘éﬁ [10N - REGISTERS
P N s - (512) T
- 3 < K :
U |
* |
| H |
| |
i
|
|
l !
|
| "
— — ADDEND i SHIFTER
i |
| N :
: It lqu_l______]o—l | .
L | E ADDER
e b » * ACCUMULATOR B g *
T C t !
y T :
o [}
Ar |
4* 1
|
|
I
— |
. I !
EXIT T Tl -
cn R i ’
l___g;] > STACK ez -] Mﬁﬂﬁﬁlv'
- > (65K)
[/0 CHANNELS
1\

"

FIGURE 3-1. [/0 PROCESSOR BLOCK DIAGRAM

INSTRUCTIOM COMTROL NETWORK

RESPONSIBLE FOR CONTROLLING ISSUE AND EXECUTION OF
INSTRUCTIONS,
MAIN COMPONENTS ARE:

INSTRUCTION STACK

IT CINSTRUCTION ISSUE) REGISTER

B REGISTER

P (PROGRAM ADDRESS) REGISTER

PROGRAM EXIT STACK

PROGRAM FETCH REQUEST FLAG

3.4

INSTRUCTION STACK

32 PARCELS IN TWO, 16 PARCEL STACKS

[NSTRUCTIONS ARE FULLY INTERLEAVED

BACKGROUND FETCHES OCCUR IN BURSTS OF 4 SEQUENTIAL PARCELS

CIRCULAR

INSTRUCTIONS CONSIST OF 1 OR 2 PARCELS

F FIELD p FIELD PARCEL 1
/ BITS 9 BITS
k FIELD PARCEL 2
16 BITS

FIGURE 3-2, INSTRUCTION FORMAT

3.5

INSTRUCTION ISSUE (T1) REGISTER

16 BITS WIDE

RECEIVES INSTRUCTION PARCEL TO ISSUE FROM INSTRUCTION STACK
INSTRUCTION MAY “WAIT” HERE IF ISSUE DELAYED

p FIELD MAY GO TO ADDEND REGISTER OR ACCUMULATOR

p FIELD MAY DESIGNATE AN OPERAND REGISTER (R I1/0 CHANNEL

k FIELD MAY GO TO ADDEND REGISTER OR ACCUMULATOR

B REGISTER

Q BITS WIDE

A_TERNATE T0 p FIELD

LOADED FROM LOWER 8 BITS OF ACCUMULATOR
PROGRAM MODIFIABLE

MAY GO TO ADDEND REGISTER OR ACCUMULATOR

MAY DESIGNATE AN OPERAND REGISTER OR I/0 CHANNEL

3.6

P REGISTER

16 BITS WIDE

HOLDS LOCAL MEMORY ADDRESS OF INSTRUCTION IN IT REGISTER

IMCREMENTS BY 1 AS EXECUTION OCCURS

BRANCHES OCCUR BY INCREMENTING OR DECREMENTING P, OR
ENTERING NEW VALLE.

LOADED FROM ADD FUNCTIONAL UNIT OR EXIT STACK

CONTENTS MAY GO TO ACCUMULATOR OR EXIT STACK

3.7

PROGRAM EXIT STACK
16, 16 BIT REGISTERS
STORES RETURN ADDRESS ON SUBROUTINE CAL OR INTERRUPT
ADDRESSED BY 4 BIT E REGISTER
E INCREMENTED ON CALL AND DECREMENTED ON EXIT
»E AND EXIT STACK MODIFIED BY ACCUMULATOR THROUGH CHANNEL 2

5 CP DELAY AFTER MODIFICATION MECESSARY BEFORE AN EXIT,
RETURN JUMP, (R INTERRUPT,

LOCATION ZERO RESERVED FOR INTERRUPT HANDLER
SOFTWARE MUST RECONFIGURE STACK WHEN FULL
CONTENTS GO TO P REGISTER ON EXIT

CONTENTS MAY GO TO ACCUMULATOR THROUGH CHANNEL 2

E MAY GO TO ACCUMULATOR THROUGH CHANNEL 2

3.8

ACCUMULATOR

3 f
1/0
—T

POINTER

EXIT STACK
[EA o BOUNDARY FLAG

SRA
SRA
SRA
SRA
SRA
SRA
SRA
SPA |——t

SRA —0r
SRA
11 SRA

E v

—

Olwixww | N VM EITW|IN]EH]O

2 SRA b—

3 SRA

b SRA » EXIT STACK
5

BOUNDARY FLAG
ISRA INTERRUPT

P DATA

IEA = Interrupt Entrance Address
SRA = Subroutine Return Address
ISRA = Interrupted Subroutine Return Jump Destination Address

FIGURE 3-3. PROGRAM EXIT STACK

3.9

PROGRAM FETCH REQUEST ALAG

SETS DURING EXECUTION OF JUMP INSTRUCTIONS 074-077 AND
120-137 IF THE CONTENT OF oo IS O,

SETTING OF THIS FLAG CAUSES AN INTERRUPT AND LOADS THE
REGISTER NUMBER OF oo INTO A 9 BIT INTERFACE REGISTER.

MONITOR PROGRAM IS ENTERED DUE TO INTERRUPT AND MAY USE THIS
REGISTER NUMBER TO LOAD A SEGMENT OF CODE FOR EXECUTION,

3.1

OPERAND REGISTERS

Bl

¥
512, 16 BIT REGISTERS ¢ (f)Q
C7P3L7{ 'Y\&Q

USED FOR TEMPORARY STORAGE. INDIRECT ADDRESSING AND AS INDEX
REGISTERS.

REDUCE LOCAL MEMORY REFERENCES BY COMPUTATION SECTION
ADDRESSED BY p FIELD OR B REGISTER
DATA ENTERED OMLY FROM ACCUMULATOR

CONTENTS GO TO ACCUMULATOR OR ADDEND REGISTER

3,12

FUNCTIONAL UNITS

ADDER:
ADDS AND SUBTRACTS IN 2's COMPLEMENT MODE

D mEGATIVE Hs
OPERANDS FROM ACCUMULATOR AND ADDEND REGISTER

RESULTS TO ACCUMULATOR OR P REGISTER

CARRY BIT COMPLEMENTED IF A CARRY IS GENERATED

1 CP TO COMPLETE OPERATION

1 CP TO STORE RESULT

SHIFTER:
SHIFTS ACCUMULATCR AND CARRY BIT

LEFT, RIGHT, CIRCULAR (R END-OFF ZERO FILL
LOWER 5 BITS OF ADDEND REGISTER USED AS SHIFT COUNT
1 CP TO COMPLETE OPERATION
1 CP TO STORE RESULT IN ACCUMULATOR
"AND":
FORMS LOGICAL PRODUCT OF ACCUMULATOR AND OPERANDS AT
INPUT TO ACCUMULATOR.,
CARRY BIT IS CLEARED

OPERAMDS SUPPLIED BY p OR k FIELD: AN OPERAND REGISTER:
OR A LOCAL MEMORY LOCATION,

3,13

ACCUMJLATOR

16 BITS WIDE PLUS 1 BIT CARRY REGISTER
ALWAYS SUPPLIES ONE OPERAND IF TWO REQUIRED
BRANCH INSTRUCTIONS USE BRANCH ACCUMULATOR
CARRY BIT IS CLEARED WHEN LOADING ACCUMULATOR

CARRY BIT CAN BE MODIFIED BY READING I/0 CHANNEL FLAGS

SOURCES DESTINATIONS
B REGISTER B REGISTER
IT, o FIELD

IT, k FIELD

OPERAND REGISTERS

OPERAND REGISTERS

ADDER/SHIFTER ADDER/SHIFTER

LOCAL MEMORY LOCAL MEMORY

1/0 CHANNELS [/0 CHANNELS
EXIT STACK EXIT STACK
E REGISTER E REGISTER

TABLE 3-1, ACCUMULATOR SOURCES AND DESTIMATIONS

ADDEND REGISTER

16 BITS WIDE

SUPPLIES OME OPERAND TO ADDER AND SHIFT COUNT TO SHIFTER

RECEIVES DATA FROM:
B REGISTER
[T, o FIELD
[T, x FIELD
OPERAND REGISTERS

LOCAL MEMORY

3.15

IMSTRUCTIONS

1 R 2 PARCELS

UPPER 7 BITS OF FIRST PARCEL IS FUNCTION CODE

LOWER 9 BITS OF FIRST PARCEL IS POSITIVE DESIGNATOR o,

SECOND PARCEL IS A 16 BIT POSITIVE CONSTANT k

p FIELD USED AS:
OPERAND REGISTER DESIGNATOR
SHIFT COUNT (LOWER 5 BITS)
DISPLACEMENT FOR BRANCH INSTRUCTION

AN OPERAMD VALUE

k FIELD USED AS:

DISPLACEMENT FOR BRANCH INSTRUCTION

AN OPERAND FCR THE ADDER AND LOGICAL ‘AND’ OPERATION

3.1

DD

(pp)

(B)

10D

108

NOTATION

ACCUMULATOR

CARRY BIT

IT, o FIELD

IT, x FIELD

CONTENT OF OPERAND REGISTER ADDRESSED BY p

CONTENT OF MEMORY ADDRESSED BY OPERAND REGISTER
DD

B REGISTER
CONTENT OF OPERAND REGISTER ADDRESSED BY B

3 CHARACTER MMEMONIC FOR CHANMEL ADDRESSED BY p
FIELD

CHANNEL ADDRESSED BY B

IF

3,18

¥ ooy wheh ¢l 3937 gy

A o000 pass 054 B =A 124 P = ,C=0
brPoor Exit 055 B =A+B 125 P = ,C#0
S 002 I=0 056 B=B+1 126 P = , A=0
003 I-=1 057 B=B-1 127 P = LA#0
{)59 004 A=A>d 060 A = (B) 130 R = =0
005 A=Ac<d 061 A=A & (B) 131 R = #0
006 A=A>d ~Mo62 A=A+ (B) 132 R = =0
007 A=Ac<<d 4},\ 063 A=A - (B) 133 R = 0
010 A=4d 064 (B) = A 134 R = C=0
011 A=Ag&d 065 (B) = A + (B) 135 R = C#0
012 A=A+d 066 (B) = (B) + 1 136 R = A=0
013 A=A-d 067 (B) = (B) - 1 137 R = A#0
014 A =k 7070 P=P+d 140 iod
015 A=AG&k 071 P =P - d 141 iod : 22227
016 A=A+Kk 072 R=P+d 142 iod :
017 A=A-k 073 R=P-d 143 diod :
x%ﬁﬁ 020 A = dd 074 P = dd 144 dod :
M 021 A=A dd 075 P=4dd +k 145 dod :
022 A=A+dd 076 R = dd 146 iod :
023 A=A- dd 077 R=4dd + k 147 diod :
024 dd = A 00 P=P+d,C=0 150 iod :
025 dd = A + dd 101 P=P+d,C#0 151 iod :
026 dd =dd + 1 102 P=P+d,A=0 152 iod :
027 dd = dd - 1 103 P=P+d, A#0 153 iod :
030 A = (dd) 104 P=P-d,C=0 154 iod :
031 A=A & (dd) 105 P=P-d,C#0 155 iod :
032 A=A+ (dd) 106 P=P-d,A=0 15 iod :
033 A=A - (dd) 107 P=P-d,A#0 157 iod:
034 (dd) = A 110 R=P+d,C=0 160 1IOB :
035 (dd) = A+ (dd) 111 R=P+d,C#0 161 I0B :
036 (dd) = (dd) +1 112 R=P+d,A=0 162 1I0B :
037 (dd) = (dd) -1 113 R=P+d, A#0 163 IOB :
,\157 ("‘040 C=1, jod=DN 114 R=P-d,C=0 164 1IOB:
=V 041 C=1,iod=BZ 115 R=P-d,C#0 165 1IOB :
042 C=1, I0B=DON 116 R=P-d,A=0 166 IOB :
S | 043 C=1,108=8BZ 117 R=P-d,A#0 167 108 :
B 044 A=A>B8 120 P=4dd, C =0 170 I0B :
‘ 045 A=Ac<B 121 P=dd, C#0 171 I0B :
046 A=A> B 122 P=dd, A=0 172 I0B :
{XXA 047 A =A<<B 123 P=dd, A#0 173 I0B :
050 A =B 174 10B :
A] 051 A=A&B 175 IO0B :
4 052 A=A+B8 176 10B :
053 A=A-B 177 I0B :
2 dlagses

TABLE 3-2. 1I/0 PROCESSOR INSTRUCTION SUMMARY

3.19

SYSTEM CONTROL INSTRUCTIONS

000 - PASS
ACTS AS A NO-OP
001 - EXIT

RETURNS CONTROL TO SUBROUTINE CALLER OR INTERRUPTED
ROUTINE,

002 - I=0

CLEARS SYSTEM INTERRUPT ENABLE FLAG, LOCKING OUT
INTERRUPTS.,

003 - I[=1
SETS SYSTEM INTERRUPT FLAG, ALLOWING INTERRUPTS.
DELAYED UNTIL COMPLETION OF A 000.001.003 TO 03/
OR Cd44 TO 067 INSTRUCTION,

040 - C=1, roop=DN

041 - (=1, 1op=BZ

042 - C=1., 10B=DN

043 - (=1, I0B=BZ

FORCES CARRY BIT TO SAME STATE AS SPECIFIED CHANNEL'S
DONE (DN) OR BUSY (BZ) FLAG,

3,20

ARTTHMETIC INSTRUCTIONS

THE FOLLOWING OPERATIONS ARE AVAILABLE:

ADD

SUBTRACT

SHIFT

LOGICAL PRODUCT
LOAD

STORE

INCREMENT
DECREMENT

WHEN ANY ARITHMETIC INSTRUCTION COMPLETES THE RESULT IS ALSO
IN THE ACCUMULATOR,

3,21

JUMP INSTRUCTIONS

& UNCONDITIONAL JUMPS 070-077

32 CONDITIONAL JUMPS 100-13/ FORMED BY APPENDING THE
FOLLOWING CONDITIONS:

=0
,CH0
A=
AHO

6 BASIC TYPES OF JUMPS:

1.

RELATIVE JUMPS WITH o AS OFFSET

070 P=P+p
071 P=P-p
RELATIVE RETURN JUMPS WITH p AS OFFSET
072 R=P+p
073 R=P-p

ABSOLUTE JUMP TO ADDRESS IN OPERAND REGISTER
074 P=pp

ABSOLUTE JUMP TO SUM OF ADDRESS IN OPERAND REGISTER
AND k,
075 P=pp*

ABSOLUTE RETURN JUMP TO ADIRESS IN CPERAND REGISTER
076 R=pp

ABSOLUTE RETURN JUMP TO SIM OF ADDRESS IN OPERAND

REGISTER AND «.
077 R=pp*

3.22

CHANNEL CONTROL INSTRUCTIONS

16 POSSIBLE PER CHANNEL

EACH CHANNEL INTERPRETS INSTRUCTION IN UNIQUE WAY

CHANNELS MAY RECOGNIZE SUBFUNCTIONS SPECIFIED IN ACCUMULATOR

CHANNEL SELECTED BY p FIELD, 140-15/: OR B REGISTER 160-177

3,23

CHAPTER 4

170 SECTIOM

CONFIGURATION

12 DEDICATED CHANNELS REQUIRED BY EACH IOP
@, Bg = STHUDARD CHHALONR CL

23 OPTIONAL CHANNELS WHICH MAY BE IMPLEMENTED DIFFERENTLY
BY EACH I0P,

THESE MAY USE UP TO 5 DMA PORTS

CHANNELS NUMBERED OCTALLY (. 475,

INPUT CHANNELS EVEN: OUTPUT CHANNELS 0DD A0l CHAMIE S

/o BT Opidol
@ PORTS ALON BLOK TRANSFERS BPotlipees A
/ - ‘ Al Spre
/" MAY MULTIPLEX SEVERAL DEVICES THROUGH ONE PORT | dgfse.
{ (}%2, GzLLLaQ,zﬂaﬂlzrrUf§>
N fﬂdCMAM(}Hﬂm (@xAkD'W”MM'
D

4.1

KEYBOARD

CONSOLE

CENTRAL

CENTRAL
MENMORY

EXPANDER
CHASSIS

PRINTER/
PLOTTER

Ti*

T0*

BIOP DIOP X10P
(D10P)
AIA AOA AIB AOB
6 7 10 11 12 Al
13 AOC
- Ny
1/0
[accumuLatoR 1 conTroL BUFFER
RTC MEMORY
<)
0 1 2 3 MoS
géi [TorR] [PFR] [PxS] [LME] \\\\\\\\\\\
:
[:: — CIB
LOCAL
[:: MEMORY 0B
ACCUMULATOR CHANNEL
FRONT END

DATA PATH TO LOCAL MEMORY

FIGURE 4-1,

MIOP I/0 SCHEME

ICE

[/0 INTERRUPT REQUEST
PROGRAM FETCH REQUEST
PROGRAM EXIT STACK

LOCAL MMORY ERROR

REAL TIME CLOCK

BUFFER MEMORY

10P INPUT

10P OUTPUT

INPUT FROM CPU (FRONT END)
OUTPUT TO CPU (FRONT END)
INPUT FROM CENTRAL MEMORY
OUTPUT TO CENTRAL MEMORY
ERRR LOG

CONSOLE KEYBOARD

CONSOLE DISPLAY

DISK STORAGE INIT
PERIPHERAL EXPANDER

BLOCK MULTIPLEXER

TARLE 4-1, CHANMEL ASSIGNMENTS

*AIBICI L3N]

CHANNEL
0

1

2

3

b

5
6,10.12
711,13
OPTIONAL
OPTIONAL
OPfIONAL
OPTIONAL
OPTIONAL
OPTIONAL
OPTIONAL
OPTIONAL
OPTIONAL

OPTIONAL

MNEMONIC

IR

PF

prv)

PXS

M

RTC

MOS

AT*

AO*

Cr*

co*

HIA

HOA

/ I, Busj ﬁa?)

P r W’zﬁ

],.%75,/;@
L weeys
-

[Tnshrushae.

. KCLM hs

C)/(| ‘ é-\ ;
_ ﬁ{zrwg% D10k
M, f

U2 R4 DV
6 pear mefRUE VT
"7 LoehL ghnge VT

ACCUMULATOR CHANNELS

USED MAINLY FOR CONTROL

TRANSFER ONE PARCEL OF DATA TO OR FROM ACCUMULATOR
DEDICATED CHANNELS O-4 AND 6-13

DISPLAY, KEYBOARD AND ERROR LOGGING INTERFACE CHANMELS
OUTPUT FROM ACCUMULATOR TAKES 1 CP (IF ACCUMULATOR READY)

INPUT TO ACCUMULATOR TAKES 4-6 CP.

DMA_CHANNELS

HAVE A PATH (ACCUMULATOR CHANNEL) TO COMPUTATION SECTION FOR
PASSING CONTROL SIGNALS.

HAVE DATA PATHS (THROUGH DMA PORT) TO LOCAL MEMORY,
TRANSFER &4 PARCELS PER READ OR WRITE REQUEST,
MAXTMUM TRANSFER RATE OF 4 PARCELS IN & CP,
SIMULTANEOUS INPUT AND QUTPUT VIA SEPARATE PORTS,
DEDICATED CHANNEL 5.

CPU HIGH AND LOW SPEED, DISK, BLOCK MULTIPLEXER AND
PERIPHERAL EXPANDER CHANNEL.,

OVERVIEW OF 1/0

CHANMEL INSTRUCTION SENT TO INTERFACE SPECIFIED INp OR B
FOR INTERPRETATION,

ALL CONTROL INFORMATION PASSED IN AN I1/0 INSTRUCTION GOES
THROUGH THE ACCUMULATCR.

DATA TRANSFERS MAY BE SINGLE PARCELS (R BLOCKS OF DATA.

AN INTERFACE MAY REQUIRE SEVERAL I/0 INSTRUCTIONS TO
ACCOMPLISH A DATA TRANSHER.

CHANNEL STATE MONITORED THROUGH INTERFACE BUSY (BZ) AND DONE
(DN) FLAGS.,

4.5

DEDICATED CHANNELS

[/0 REQUEST CHANNEL O
READS HIGHEST PRIORITY INTERRUPTING CHANNEL NUMBER.
I0R:10 READ INTERRUPTING CHANNEL NUMBER

-LOADS LOWER 6 BITS OF ACCUMULATOR WITH HIGHEST
PRIORITY INTERRUPTING CHANNEL.,

-DN ALWAYS SET, BZ ALWAYS CLEAR

PROGRAM FETCH REQUEST CHANMEL 1
READS NUMBER OF OPERAND REGISTER WHOSE CONTENT WAS ZERO
IN AN 074077 AND 120-137 INSTRUCTION. MONITOR MAY THEN
FETCH APPROPRIATE SEGMENT OF CODE FOR EXECUTION,
PFR:0 CLEAR PFR FLAG. THERE IS NO BUSY FLAG,
PFR:6 CLEAR CHANNEL INTERRUPT ENABLE RLAG (IEF).,
PFR:7 SET IEF

PFR:10 LOAD ACCUMULATOR WITH OPERAND REGISTER NUMBER
AND CLEAR PFR FLAG,

bh.6

Device Mnemonic Function
I/0 REQUEST I0OR : 10 Read interrupt channel number
CH. O
PROGRAM FETCH PFR : O Clear the program fetch request flag
REQUEST CH. 1 PFR : 6 Clear the channel interrupt enable flag
PFR : 7 Set the channel interrupt enable flag
PFR : 10 Read the operand register number
PROGRAM EXIT PXS : 0 Clear the exit stack boundary flag
STACK CH. 2 PXS : 6 Clear the channel interrupt flag
PXS : 7 Set the channel interrupt enable flag
PXS : 10 Read exit stack pointer, E
PXS : 11 Read exit stack address, (E)
PXS : 14 Enter exit stack pointer, E
PXS : 15 Enter exit stack address, (E)
I/0 MEMORY LME : O Clear the I/0 Memory parity error flag
ERROR CH. 3 - LME : 6 Clear the channel interrupt enable flag
A LME : 7 Set the channel interrupt enable flag
I%ON&L f;“‘”fobf LME : 10 Read error information
REAL-TIME CLd%K RTC : O Clear the channel done flag
CH. 4 RTC : 6 Clear the channel interrupt enable flag
RTC : 7 Set the channel interrupt enable flag
BUFFER MEMORY MOS : O Clear the channel busy and done flags
CH. 5 MOS : 1 Enter the I/0 Memory address for next
transfer
MOS : 2 Enter upper portion of Buffer Memory
address
MOS : 3 Enter lower portion of Buffer Memory
address
MOS : 4 Read Buffer Memory to I/0 Memory
MOS : 5 Write Buffer Memory from I/0 Memory
MOS : 6 Clear the channel interrupt enable flag
MOS : 7 Set the channel enable interrupt flag
MOS : 14 Set the control flags
I/0 PROCESSOR AI* : 0 Clear the channel done flag
INPUT AI* : 6 Clear the channel interrupt enable flag
(AIA-AIC) AI* : 7 Set the channel interrupt enable flag
CH. 6, 10, 12 AI* : 10 Read input to accumulator and resume
channel
I/0 PROCESSOR AO* : O Clear the channel busy and done flags
OUTPUT AOD* : 1 Enter control bits from accumulator
(AOA-AOC) AO* : 6 Clear the channel interrupt enable flag
CH. 7, 11, 13 AO* : 7 Set the channel interrupt enable flag
AO* : 14 Set the channel busy flag and output

accumulator data.

TABLE 4-2. DEDICATED CHANNEL FUNCTIONS

4.7

PROGRAM EXIT STACK CHANNEL 2

PROVIDES INFORMATION NECESSARY TO RESTRUCTURE STACK.

PXS:0

PXS:6

PXS:7

PXS:10

PXS:11

PXS:14

PXS:15

CLEAR EXIT STACK BOUNDARY FLAG, NO BUSY FLAG,

CLEARR IEF

SET IEF

ETOA CLEARC

(E) TOA, CLER C

ATOE

ATO (B)

[/0 MEMORY ERROR CHANNEL 3

CONNECTED TO I/0 MEMORY ERROR DETECTION CIRCUITS,
PROVIDES ERROR INFORMATION FOR MAINTENANCE.

LME:0

LME:D

LME:/

ME:10

CLEAR PARITY ERRCR FLAG

CLER IEF

SET IEF

LOAD LOWER 5 BITS OF ACCUMULATOR WITH ADDRESS

OF MEMORY ERROR. THIS GIVES BAMK, SECTIOM
AND BYTE OF ERROR.,

4,2

REAL TIME CLOCK CHANNEL &4
CONNECTED TO RTC WITH 1ms INTERRUPT INTERVAL,
NO BUSY FLAG OR INTERFACE REGISTERS,
DONE FLAG SETS EVERY MILLISECOND.,
READABLE RTC &==EeH-0N MODEL B (SN 6, 11+)

RTC:0 CLEAR DN FLAG
RTC:6 CLEAR IEF
RTC:7 SET IEF ¢
RTC:10 READ k& ORDER BITS OF RTC (21 T0 21%)
HieH
BUFFER MEMORY CHANNEL 5
PERFORMS BLOCK TRANSFERS THROUGH A DEDICATED DMA PORT.
THREE INTERFACE REGISTERS: (HAF DUPEX
A) 24 BIT BUFFER MEMORY ADDRESS REGISTER i
B) 14 BIT LOCAL MEMORY ADDRESS REGISTER
¢) 14 BIT BUFFER MEMORY BLOCK LENGTH

MOS:0 CLEAR DN AND BZ FLAGS (BOTH SET ON ERROR),
MUST BE DOME AFTER EVERY DOUBLE BIT ERROR
. BEFORE NEXT TRANSFER,
MOS:1 LOAD B) WITH UPPER 14 BITS OF ACCUMULATOR
MOS:2 LOAD UPPER 15 BITS OF a) WITH LOWER 15 BITS OF
ACCUMULATOR
MOS: 3 LOAD LOWER 9 BITS OF A) WITH LOWER 9 BITS OF
ACCUMULATOR
MOS: 4 LOAD ¢) WITH LOWER 14 BITS OF ACCUMULATOR,
START BUFFER TO LOCAL BLOCK TRANSFER.
MOS:5 LOAD c) WITH LOWER 14 BITS OF ACCUMULATOR,
START LOCAL TO BUFFER BLOCK TRANSFER.
MOS:6 CLEAR IEF
MOS:7 SET IEF
MOS: 14 LOAD INTERFACE CONTROL REGISTER WITH LOWER 2
BITS OF ACCUMULATOR (DIAGNOSTICS ONLY),

4.9

I70 PROCESSOR INPUT CHANNEL 6, 10, 12

16 BIT INTERFACE REGISTER HOLDS DATA FROM ANOTHER
[OP'S ACCUMULATOR,

AT*:0

AT*:6

Al*:.7

AT*:10

CLEAR DN FLAG, NO BUSY FLAG,
CLEAR TEF
SET IEF

READ INTERFACE TO ACCUMULATOR,
THIS CLEARS INTERFACE REGISTER,

[/0 PROCESSOR OUTPUT CHANNEL 7, 11, 13

ALLOWS IOP TO MASTER CLEAR, DEADSTART AND DEAD DUMP
ANOTHER IOP THROUGH A 3 BIT CONTROL REGISTER,
16 BIT REGISTER HOLDS DATA FOR ANOTHER IOP,

AO*:0

AO*:1

A0*:6

AO*:7

AO*: 14

CLEAR BZ AND DN,
LOAD CONTROL REGISTER WITH LOWER 3 BITS OF
ACCUMULATOR,

20=MASTER CLEAR: 21=DEADSTART: 22=DEAD DUMP,
CLEAR IEF

SET IEF

LOAD INTERFACE REGISTER WITH ACCUMULATOR.

DN FLAG SETS WHEN TARGET IOP PERFORMS AN
AI*: 10,

4,11

INTERFACES

MAIN PURPOSES ARE:
BUFFERING DATA
GENERATING CONTROL SIGNALS
MULTIPLEXING SEVERAL DEVICES INTO OME CHANNEL

INTERPRET THE 4 BIT FUNCTION CODE SENT BY COMPUTATION
SECTION, -

USE BZ AND DN HAGS FOR CONTROL,

THE FOLLOWING FUNCTIONS ARE COMMON TO MOST INTERFACES:
100:0 or I0B:0 CLEAR DN AND BZ, READY CHANNEL
10D:6 or 10B:6 CLERR IEF

1o0:7 or I0B:7 SET IFF

4,12

Device Mnemonic Function
DISK STORAGE DK* : 0 Clear the channel control
UNIT DE* : 1 Select mode or request status
(DKA-DKP) DK* : 2 Read data into I/O Memory
DK* : 3 Write data from I/0 Memory
DK* : 4 Select a new head group
DK*¥ : 5 Select a new cylinder
DK* : 6 Clear the channel interrupt enable
flag
DK* : 7 Set the channel interrupt enable flag
DK* : 10 { Read I/O Memory current address
DK* : 11 | Read status response
DK* : 14 | Enter I/0 Memory beginning address
DRK* : 15 Status response register diagnostic
CONSOLE KEYBOARD T* : 0 Clear the channel done flag
(TIA,TIB,TIC,...) T : 6 Clear the channel interrupt enable
flag
T*. : 7 Set the channel interrupt enable flag
T* : 10 Read data into accumulator and clear
done flag
CONSOLE DISPLAY TC* 3 0 Clear the channel busy and done flags
(TOA,TOB,TOC,...) TO*: 6 Clear the channel interrupt enable
. flag
TO* : 7 Set the channel interrupt enable flag
TO* : 14 Send accumulator data to display
EXPANDER CHASSIS EXB : 0 Idle the channel
EXB : 1 Data input from A register (DIA)
EXB : 2 Data input from B register (DIB)
EXB : 3 Data input from C register (DIC)
EXB : 4 Read busy/done flag, interrupt number
EXB : 5 Load device address
EXB : 6 Send interface mask (MSKO)
EXB : 7 Set interrupt mode
EXB : 10 Read data bus status
EXB : 11 Read status 1
EXB : 13 Read status 2
EXB : 14 | Data output to A register (DOA)
EXB : 15 Data output to B register (DOB)
EXB : 16 Data output to C register (DOC)
EXB : 17 Send control
TABLE 4-3, INTERFACE FUNCTIONS

Device Mnemonic Function
INPUT FROM CPU CIx : 0 Clear channel
TYPE I/0 CI* : 1 Enter I/0 Memory address, start
CHANNEL input
(CIA,CIB,CIC...) cI* : 2 Enter parcel count
C1* : 3 Clear channel parity error flags
CI1* : 4 Clear ready waiting flag
Cci* : 6 Clear interrupt enable flag
CI* : 7 Set interrupt enable flag
CI* : 10 | Real I/O Memory address
CI* : 11 | Read status (ready waiting, parity
errors)
OUTPUT TO CPU co* : 0 Clear channel
TYPE 1/0 CHANNEL co* : 1 Enter I/0 Memory address
(coAa,CcoOB,COC...) CokX : 2 Enter parcel count
co* : 3 Clear error flag
co* : 4 Set/clear external control signals
co* : 6 Clear interrupt enable flag
co* : 7 Set interrupt enable flag
co* : 10 Read I/0 Memory address
co* : 11 Read status (4-bit channel data,
error)
INPUT FROM HIA : O Clear channel busy, done flags
CPU MEMORY CHANNEL HIA : 1 Enter I/0 Memory address
HIA : 2 Enter upper CP memory address
HIA : 3 Enter lower CP memory address
HIA : 4 Read CP memory, enter block length
HIA : 6 Clear interrupt enable flag
HIA : 7 Set interrupt enable flag
HIA : 14 Enter diagnostic mode
OUTPUT TO HOA : O Clear channel busy, done flags
CPU MEMORY CHANNEL HOA : 1 Enter I/0 Memory address
HOA : 2 Enter upper CP memory address
HOA : 3 Enter lower CP memory address
HOA : 5 Write CP memory, enter block length
HOA : 6 Clear interrupt enable flag
HOA : 7 Set interrupt enable flag
HOA : 14 | Enter diagnostic mode

TABLE 4-3,

INTERFACE FUNCTIONS (CONTINUED)

4,14

Device Mnemonic Function
ERROR LOGGING ERA : O Idle channel
CHANNEL ERA : 6 Clear interrupt enable flag
ERA : 7 Set interrupt enable flag
ERA : 10 Read error status
ERA : 11 | Read error information (first parameter)
ERA : 12 Read error information (second parameter)
ERA : 13 Read error information (third parameter)
BLOCK BM* : 0 Clear channel control
MULTIPLEXER BM* : 1 Send reset functions
CHANNEL BM* : 2 Channel command ,
(BMA,BMB,BMC...) BM* : 3 Read request in address (wait request in)
BM* : 4 Single byte I/0 (wait service in/status in)
BM* : 5 Interface disconnect
BM* : 6 Clear channel interrupt enable flag
BM* : 7 Set channel interrupt enable flag
BM* : 10 | Read I/O Memory address
BM* : 11 | Read byte count
BM* : 12 | Read status
BM* : 13 | Read input tags
BM* : 14 | Enter I/0 Memory address
BM* : 15 | Enter byte count
BM* : 16 | Enter address
BM* : 17 Enter output tags

TABLE 4-3,

INTERFACE FUNCTIONS (CONTINUED)

415

INTERFACE CHANNELS

DISK CHANMEL DKA—> DKP
TRANSFER DATA TO/FROM DISK STORAGE UNITS
L CHANNELS PER DCU-4 CONTROLLER
UP TO 16 DISK CHANNELS ON EACH BIOP AND DIOP
COMSOLE KEYBOARD CHANNEL TI*
ACCEPTS INPUT FROM KEYBOARD, ONE CHARACTER AT A TIME,
1 CHANNEL PER CONSOLE
CONSOLE DISPLAY CHANNEL TO*
SENDS QUTPUT TO DISPLAY, ONE CHARACTER AT A TIME
1 CHANNEL PER CONSOLE
EXPANDER CHASSIS CHANNEL EXB
TRANSFERS DATA TO/FROM MAG TAPE AND TO PRINTER
1 CHANNEL ON MIOP

INPUT FROM CPU 1/0 CHANNEL CIA=>CID

ACCEPTS INPUT FROM CPU AND FRONT EMDS.
UP TO 4 CHANMELS ON MIOP

4,16

OUTPUT TO CPU I/0 CHANNEL COA - COD

OUTPUTS DATA TO CPU AND FRONT ENDS.
PROVIDES 10S WITH CPU DEADSTART CAPABILITY
UP TO 4 CHANNELS ON MIOP

INPUT FROM CPU MEMORY CHANMEL HIA

ACCEPTS DATA DIRECTLY FRCM CENTRAL MEMORY INTO
BIOP LOCAL MEMORY,

1 CHANNEL ON BIQP

CAPABLE OF TRANSFER RATES IN EXCESS OF 800 MBIT/S

OUTPUT TO CPU MEMORY CHANNEL HOA

OUTPUTS DATA DIRECTLY TO CENTRAL MEMORY FROM BIOP
LOCAL MEMORY.

1 CHANNEL ON BIOP

CAPABLE OF TRANSFER RATES IN EXCESS OF 800 MBIT/S

ERROR LOGGING CHANNEL ERA

REPORTS ERRORS FROM THE FOLLOWING SOURCES:
OTHER LOCAL MEMORIES
BUFFER MEMORY
CENTRAL MEMORY
CPU MEMORY CHANMELS
1 CHANNEL ON MIQP

4,17

BLOCK MULTIPLEXER CHANNEL BMA-> BYP

PROVIDES ACCESS TO IBM PLUG-COMPATIBLE PERIPHERALS
UP TO 16 CHANNELS ON XIOP

4,18

MIOP DIOP X10P

(DIOP)
AIA AOA AIB AOB ALC
6 7 10 11 T
{5 AOC
V {\
CENTRAL Lacomumator F—— 170 BUFFER
ONTROL
KEMORY ¢ qAA{ﬁiE] MEMORY
MOS
0l 1 2
Gor] Cerrl [exs] [
l
1
CENTRAL ! \\\\
MEMORY — -
LOCAL XAV
] MEMORY —
KA - DKD
8 o/ DD-29
DKA,
/
DKB 4 pp-29
r-
DCU-4
ACCUMULATOR CHANNEL ke
7 pp-29
7" DATA PATH TO LOCAL MEMORY DKD
AN
: N
FIGURE 4-2, BIOP I/O SCHEME DD-29

MIOP BIOP X10P
(DIOP)
AIA AOA AIB AOB
A 7 10 1 AIC Aoc
12 13
| —
BUFFER
MEMORY
[accumptator 1 1/0 o
CONTROL
0 1 2 3 MOS
or] [errl Cexsl (el 5
[:: LOCAL -
MEMORY .
E || DKA -> DKD
DD-29
~
§ was
~ DCU-4
- DD-29
—
ACCUMULATOR CHANNEL
DD-29
/" DATA PATH TO LOCAL MEHORY
FIGURE 4-3, DIOP

1/0 SCHEME

X1op = -

ms [

4 x 16 TAPE CONFIGURATION

,, 1 16 TPES
o LOCAL |
16 TAPES [] mEMORY |] 16 TAPES
: ACC,
UNUSED
N
\/
N
64 BITS : 64 BITS T BITS f 64 BITS
64 BITS | | 61 BITS | 64 BITS | [6% BITS
57 5iTs |1 [64 Bits | | [64 Bits]| [6% BITS BMC-4
64 BITS | ,| 0% BITS | | 64 BITS || B% BITS
I | |
N Y 10S
—] *IBM" — "IBM—7 | 'IBM'— "OUTSIDE’
IBM
TAPE TAPE TAPE TAPE | SELECTOR
C.uU. c.U C.U C.U. CHANNEL
CONTROL - | conTroL
SWITCH \ SWITCH \
AN TN
wéwww¢Twwwu

MIop BIOP DIOP

AlA AOA AIB AOB AIC AOC
6 7 10 11 12 13
/
1/0 BUFFER
Caccunuator — FH—— controL j~— HEMORY
0 1 2 3

T

BMA-> BHD _ |
LOCAL /\
MEMORY
BLOCK — -
MULT IPLEXER
CONTROLLER -
(BMC-4) T T \
i T ~
B, 7 BHB! BMC ! L
¢) : ! ~ \
PCU PCU PCU ! 1 peu ACCUMULATOR CHANNEL
| v PCU .' S\ DATA PATH TO LOCAL MEMORY
1 . i
T
: FIGURE 4-4, XIOP I/0 SCHEME
PERIPH, PERIPH, PERIPH PERIPH.

CHAPTER 5

BUFFER MEMORY

FUNCTIONS
BUFFERS DATA TO/FROM DISK. TAPE AND FRONT ENDS,
USED AS A DISK CACHE.

PROVIDES SPACE FOR OVERLAYS USED BY 1/0 SUBSYSTEM OPERATING
SYSTEM,

PROVIDES SPACE FOR PASSING LARGE MESSAGES BETWEEN I0Ps.
USER DURTEE ME wee R REg DENST NATA SETS

g Ces OUELAYS = KoLl JoR mEmer

CHARACTERISTICS

1/2 OR 1 MILLION 64 BIT WORDS IN & OR 16 BANK MODE
(08 MW medal B) 4%0«1&

NEGATIVE CHANNEL METAL OXIDE SEMICONDUCTOR (NMOS) CIRCUITRY /
REQUIRES REFRESH EVERY 2 MS S5-20% Dﬂ MAQ\LLB»‘

ILARGE SCALE INTEGRATION (1bx CHIPS ON MODEL A: b4 K CHIPS ON
MODEL B)

RESIDES IN 1/0 SUBSYSTEM CHASSIS

12 CP ACCESS TIME

30 CP BANK BUSY TIME (f,g;;lv 0P Bouk Engs B, (ipA4>iLdlZ%3

4 ACCESS PORTS
TWO FUNCTIONS MECESSARY TO PASS 24 BIT ADDRESS

PROTECTED BY SECDED LOGIC

W%X Zihw la%0 Mbik /@@ M ook
by ASKo Mbike fee [

WM%QXQJEE b 1D 2 W\\Oﬁﬁ’/QgL
" S W“ﬁf% Lo UG N

PART 2

APML

CHAPTER 6

APM_ SYNTAX

IN AN ASSEMBLY LANGUAGE THERE IS A ONE-TO-ONE CORRESPONDENCE
BETWEEN INSTRUCTIONS AND MACHINE COIDE.

IN A MAGRO LANGUAGE ONE INSTRUCTION MAY GENERATE SEVERAL
MACHINE INSTRUCTIONS.

6.1

ASSEMBLY LANGUAGE vs MACRO LANGUAGE

EXAMPLE OF ASSEMBLED CAL CODE:

IDENT CAL

6.3

START 3ESIN
0 0000000000000000000012 NUM CoN 10
. ' 1 SuM 33S% 1
2a+ BEGIN = x
2a 1001 00000000+ Al NJIM,0
¢ 022201 A2 1|
4022302 A3 2
3&Q'022Q00¥ : Ad 0
“cf“hlﬁaﬂ>* A4 Agxgz
d 030223 A2 A2+A3
4a 030001 AQ Al
b 011 00000003h+ JaN Lac
g 1104 00000001+ SUM,0 A4
: P iy ENDP
_ END
EXAMPLE OF ASSEMBLED APML CODE:
IDENT aPML
2] REG ISTER (21 R2,R3)
. s 2
0 010012 02400 =1
201000t 024007 R2=y ps = 0
4 0279006 Loc R1=R1=1
5 010002 925007 R2R242_— /B§ L34]22>
7 020006 1070904 =L 0C,R1#0
11 014000 /000016 024010 (SUM)=R2
020007 034010
16 SUM <i>
END

APM. FEATURES

1) EXTREMELY FLEXIBLE ASSIGMMENT AND CONDITION SYNTAX

2) USES MOST CAL PSEUDOS

3) KEY SYMBOL DEPENDENT

6.4

APML NOTATION

MEANING
ACCUMULATOR

B REGISTER (OPERAND REGISTER INDEX)
CONTENT OF OPERAND REGISTER ADDRESSED BY B
CARRY BIT

CONTENT OF OPERAND REGISTER (TWQ CHARACTER
SYMBOL) .

PREFIXES A SYMBOL TO REFER TO AN OPERAND
REGISTER.,

OPERAND REGISTER NUMBER OF pp

CONTENT OF MEMORY ADDRESSED BY THE CONTENT
OF OPERAND REGISTER pp.

CONTENT OF MEMORY ADDRESSED BY THE SUM OF
THE CONTENT OF OPERAND REGISTER pp AND k.
EXIT STACK POINTER

EXIT STACK ENTRY ADDRESSED BY E

INTERRUPT ENABLE FLAG

1/0 CHANNEL DEFINED BY THE CONTENT OF B
1/0 CHANNEL MNEMONIC DEFINED BY CHANNEL
PSEUDO INSTRUCTION,

POSITIVE NUMERIC OR CHARACTER CONSTANT OR
SYMBOL ,

CONTENT OF MEMORY ADDRESSED BY THE VALUE «
P REGISTER (PROGRAM ADDRESS REGISTER)
INDICATES RETURN JUMP

APM. FORMAT

— - C O r

L

ASSIGN
COND
DAT,

NAME

OP,

. COMMENT

’
*

%2
=<
=
&
S
=

0 1 4+ I N

<<
>

<=

-

ASSIGN . COMMENT
ASSIGN,COND . COMMENT
DAT]/DATo /4 . COMMENT
NAME OP7,0Po/ /. , COMMENT
COMMENT

* , COMMENT

OPTIONAL STATEMENT LABEL

MUST BEGIN IN COLUMN 1

ASSTGNMENT STATEMENT ALWAYS HAS =

ASSIGNMENT CONDITION

DATA ITEM (SEE PDATA PSEUDO INSTRUCTION)
PSEUDO NAME

OPERANDS

ALWAYS PRECEDED BY A PERIOD FOLLOWING A BLANK
MEAN “IF’ WHEN USED TO DELIMIT CONDITION
INDICATES ENTIRE LINE IS A COMMENT WHEN
PLACED IN FIRST NON-BLANK COLUMN, OR ASSIGNS
CURRENT LOCATION COUNTER TO L.

SYMBOL MEANING

ASSIGNMENT CONDITION
EQUAL EQUAL
NOT EQUAL
ADD ADD
SUBTRACT SUBTRACT

LOGICAL PRODUCT
CHANNEL FUNCTION
SHIFT LEFT

SHIFT RIGHT

CIRCULAR LEFT SHIFT
CIRCULAR RIGHT SHIFT

LOGICAL PRODUCT
LESS THAN
GREATER THAN

LESS THAN OR EQUAL
GREATER THAN OR EQUAL

RESULT.

o (dd>— | .

| (dd+k)

(E)

(B)

(k)

dde““”"4<::>"'€*

AND u \ OPERAND
) (" rt S
B ::: dd
E ()
(M)l
(B) _/ (dd)
) Vi
dd /&\ N (ddflf - - /r
o/ “\\ﬂ
(B) (k) 9
14d]
(dd) k
e 3
() B
(k) —) —
()}
K N 1 k

=
5
04

s I

i

S

=
e

™)

b

m

JUMP

RETURN
JUMP

CARRY
BIT

INTERRUPT
FLAG

CHANNEL
FUNCTION

e e S

OPER
dd
RESULT
P
(s
Y
R
qcl+k
kK
C ~ 0
\
[1
PASS
EXIT >t
WAIT
o FUNCTION
o
(D))
U k

108

0

SUBJECT

, B
E

JE)
, dd
,(B)

,(@d)

» (k)

)'_k

COMDITION SYNIAX

;,NL(.d-ﬁ‘.*‘K) _

QPERAND =] o
A B
: ‘ (3
rdd]
: (dd)
] -
* ~ (dd+k)
(k) N
k
3

M

COM

DONE

N
7~

PERAND

,led

, 10B

11

6.

SAMPLE ASSIGNVENT STATEMENTS:

21 000334 Loc 334
22 020013 062000 004010 A=R5+(B)>103B
051000
. 00 21 024231 (LOC)=E+R3I~(BOG)
44 024235
R A I TR T4 A 5 B TTIXR
034231
uo 074012 P=RY
at 040000 C=1
42 070000 NATT
4% 174000 I108:14
44 000223 BOG 223

SAMPLE CONDITIONAL STATEMENTS:

w4
4s “EO002 052000

4

006010 4=83,R3I<CE+3>»>»10
024231 920011 023231
0 103003 010007 ERTaled
61 101003 010000 054000 320,20
64 040005 100002 010000 1200408200

6.12

EXAMPLES OF THE DAMGERS OF LSING A AS AN OPERAND:

1) IN ASSIGNMENT STATEMENT:

0 010Q0Q7 As?

i 020007 012025 024231 BzA+(R1+2S)
032231 054000

2) IN CONDITIONAL STATEMENT:

5 010010 a=10
7 020011 9135037 102002 R=A,R3#37
054000

6.13

P MAY NOT BE USED AS OPERAND BY PROGRAMVER

EXAMPLE :

S7 13 070000
14 050000
18 054000 CAT

w > o
"wu M

> W U

P IS USED AS OPERAND BY ASSEMBLER

EXAMPLE ;

16 ora6g>

17 050000
20 054000 DOG

6,15

@ > Y
"N nin

P
E

APML CONTROL STATEMENT

\/ — ARk

APM_,I=1DN, =L DN, B=BDN,E=FDN,ABORT , DEBUG , OPTIONS ,LIST=nAME , S=sDN , SYM=sYM, T=BsT,

I OMITTED SOURCE ON $IN
[=1DN SOURCE ON 1DN
L OMITTED LIST OUTPUT ON $OUT
=0 NO LIST OUTPUT
L=LDN LIST OUTPUT ON Low
B OMITTED BINARY ON $BLD
B=0 NO BINARY
B=mDN BINARY ON BDN
£ OMITTED NO ERROR LISTING
£ ERROR LIST ON $0UT
E=eDN ERROR LIST ON eon, IF epn=Lpn, THEN
NO LpN.
ABORT OMITTED DO NOT ABORT
ABORT ABORT ON FATAL ASSEMBLY ERROR
DEBUG OMITTED IF FATAL ERROR OCCURS, WRITES BINARY
RECORD AND SETS FATAL ERROR FLAG.
DEBUG WRITES BINARY RECORD WITH FATAL ERROR
FLAG CLEAR.
OPTIONS SEE LIST PSEUDO
LIST CMITTED “Namep” LIST PSEUDOS IGNORED
LIST=namMe MATCHING name NOT IGNORED
LIST ALL LIST PSEUDOS ACTIVATED
S OMITTED $APTEXT
Nall NO SYSTEM TEXT
=SDN SYSTEM TEXT ON spn
SM OMITTED NO SYMBOL TABLE
SM SYMBOL TABLE ON mpn ($BLD)
SYM=symM SYMBOL TABLE ON sym
T OMITTED NO BINARY SYSTEM TEXT
T BINARY SYSTEM TEXT IS $BST
T=BsT BINARY SYSTEM TEXT IS BsT

6.16

EXAMPLE OF CONTROL STATEMENT FORMAT NECESSARY TO ASSEMBLE AN
APML PROGRAM:

T8, JNSEREIPL = .
ACCJQUNT,AC=CRT,
APML,
/EOF
IDENT APM|
6 REBISTER (R1,R2,33)
.. SCRATZH R3
MRS
R2=1
L3C R1=R1=1{
R2=R32+2
 P=LOC.R
. (sud
s ‘M o - ‘71__2
END

z

6.1/

CHAPTER 7

SELECTED APM. PSEUDOS

ALL THE CAL PSEUDO INSTRUCTIONS ARE AVAILABLE EXCEPT:
COMMON
OPDEF
THE = PSEUDO INSTRUCTION BECOMES EQUALS
THE FOLLOWING PSEUDO INSTRUCTIONS ARE UNIQUE TO APML:
PDATA |
BASEREG
NEWPAGE
GLOBAL
SCRATCH

CHANNEL

/.1

IDENT & END

REQUIRED
IDENT IDENTIFIES PROGRAM MODULE
IDENT IS PHYSICALLY THE FIRST STATEMENT OF EACH MODILE

END IS PHYSICALLY THE LAST STATEMENT OF EACH MODULE

LOCATION RESULT OPERAND
IGNORED IDENT NAME
IGNORED EMND TGNORED

name - NAVE OF PROGRAM MODULE

EXAMPLE :
IDENT PSEUYDO
0 050000 Az3 12
' = END

7.2

EQUALS AND SET

DEFINES A SYMBOL WITH THE VALUE AND ATTRIRITES DETERMIMED BY THE

EXPRESSION,

SYMBOL IS NOT REDEFINABLE FOR EQUALS,

SYMBOL IS REDEFINARLE FOR SET,

LOCATION RESULT OPERAND
SYMBOL EQUALS EXP,ATTRIBUTE
SYMBOL SET EXP,ATTRIBUTE
SYMBOL - UNQUALIFIED SYMROL
EXP - ANY EXPRESSION
ATTRIBUTE - OPTIONAL, OVERRIDES ATTRIBUTE OF exp
P - PARCEL
W - WORD
V - VALUE
EXAMPLE
IDENT EQUSET
2 R1{ EQUALS 2
3ASERES R1
1024 GEORGE FUALS 1024
17 CAT SET 17,P
0 075002 /u0y017 P=CAT
1031 CAT SET GEJRGE+S
END

7.5

SCRATCH

USED TO DECLARE SCRATCH REGISTERS FOR GENERATING CODE FROM
COMPLEX STATEMENTS.,

LOCATION RESULT OPERAND
IGNORED SCRATCH R{/Rp.RZ Ry RE
RI UP TO 5 PREVIOUSLY DEFINED OR NON-DEFINABLE
SYMBOLS. SYMBOLS MUST BE DEFINED ELSEWHERE,
EXAMPLE:
IDENT SCRATCH
7 SHARK E3JALS 7
3 La SET 3
SCRATCH SHARK,D0,DA
5 VA EIJALS 6
0 LUC <1>
i 014000 /903030 024007 (L3C)=(10A7)
014000 /901057 024003

030003% 034007

/.5

END

BSS - BSS?/

RESERVES 64 BIT WORDS IN LOCAL MEMORY, STARTING AT CURRENT

LOCATION COUNTER.

FORCES WORD BOUNDARY IN DOING SO,

LOCATION RESULT OPERAND
SYMBOL BSS COUNT
SYMBOL BSSZ COUNT
SYMBOL OPTIONAL, IS ASSIGNED WORD ADDRESS OF LOCATION COUNTER
COUNT NUMBER OF WORDS
EXAMPLE :
IDENT 3SSBSSZ
000 aA=3
2un,9§q??o,§i NON 3$S 12
13w ZERO 35587 T
74 HERE *
END

/.6

BASE

ALLOWS SPECIFICATION OF NUMERIC DATA BEING OCTAL. DECIMAL, OR

MIXED. DEFAULT IS OCTAL,

LOCATION RESULT OPERAND
IGNORED BASE DBASE
DBASE DESIRED BASE.

EXAMPLE:

0-OCTAL, D-DECIMAL, M-MIXED
* REVERTS TO PREVIOUS BASE

IDENT BASE

gt10012 asi2 .BASE O
3ASE * |

g1oo0te Azi2 i _LJBASE O
3ASE D

010014 a=12 .BASE D
3ASE *

010012 Az12 .BASE O
END

7.7

MACRO

A SEQUENCE OF SOURCE PROGRAM INSTRUCTIONS THAT ARE SAVED BY THE
ASSEMBLER FOR INCLUSION IN A PROGRAM WHEN CALLED FOR BY THE MACRO

NAME. THE MACRO CALL RESEMBLES A PSEUDO INSTRUCTION.
LOCATION RESULT OPERAND
IGNORED MACRO
SYMBOL NAME Pl,PZ,.../KW1=D11KW2=D2/...
NAME ENDM
SYMBOL 1-8 CHARACTER OPTIONAL SYMBOL - IF PRESENT IT IS A
POSITIONAL PARAMETER.
NAME MACRO NAME TO BE USED WHEN ASSEMBLING INTO A
PROGRAM., THIS NAME WILL REDEFINE ANY CURRENTLY
ACTIVE PSEUDO INSTRUCTION,
P POSITIONAL PARAMETER. MAY BE NONE. ONE OR MORE.
WHEN USED, POSITION OF PARAMETER MUST RE ADHERED
10,
KW KEYWORD PARAMETER, MAY BE NONE, ONE, OR MORE.

WHEN USED THE kw NAME IN THE MACRO HEADING MUST
BE USED., THE xw NAMES MAY BE USED IN ANY ORDER
IN THE MACRO CALL.
D DEFAULT VALUE OF A xw NAME, WHEN A BLANK OR COMMA
FOLLOW THE = SIGN THE DEFAULT IS A NULL VALUE.

ENDM DEFINITION END, THIS TERMINATES THE MACRO
DEFINITION, THE NAME IN THE LOCATION FIELD MUST
MATCH THE NAME IN THE MACRO HEADING,
EXAMPLE:
MACRD
<PROTUTYPE> BAG IDLE COUNT,CAT=6
| LoCAL XXXXXXXX
<DEFINTIIIN> BAG AsCOUNT

<CDEFINTTION>
<DEFTINITION>
<DEFINTTION>

XXXXXXXYXX AsA=]
PazXXXXXXXX,0%0
3sCAT

IDLE ENDM

7.8

MACRO CALLS

LOCATION RESULT OPERAND

SYMBOL NAME PARGl:PARGzz.../KWARGl=A1,KWARGZ=A2,...

SYMBOL OPTIONAL IF symeor USED ON THE MACRO DEFINITION,
SUBSTITUTED WHENEVER symeor APPEARS IN THE MACRO
DEFINITION - IF symsoL DOES NOT APPEAR IN THE MACRO
DEFINITION THE FIELD MUST BE EMPTY,

NAME MUST MATCH THE ~ame OF THE MACRO DEFINITION.

PARG POSITIONAL ARGUMENT TO BE SUBSTITUTED IN THE MACRO
PROTOTYPE, TwWO CONSECUTIVE COMMAS IMDICATE A NULL
POSITIONAL ARGUMENT.

KWARG KEYWORD PARAMETER TO BE USED IN THE MACRO PROTOTYPE,
KEYWORD ARGUMENTS MAY APPEAR IN ANY ORDER,

A KEYWORD ARGUMENT TO BE SUBSTITUTED FOR THE DEFAULT VALUE
IN THE MACRO PROTOTYPE., IF kware IS USED WITH THE ABSENCE OF
A, THEN THE DEFAULT VALUE IS USED THROUGHOUT THE MACRO.

EXAMPLE :
IDENT CALL
7 NUM SET 7
IOLE NUM, CAT=24
0 010007 A=nN M
1 013001 X%2000000 A=sA=}
2 107001 ’ 22%%000000,A%0
3 plrooz2a 954000 3z24d S
SHRIMP IDLE NUM
6 013001 2Z%000001 A=A=~l
7 107001 2=2%%000001,AH#0
10 010006 54000 3z6 .
END

SPECIFIES SYMBOLS WHICH ARE DEFINED ONLY WITHIN A MACRO

LOCATION RESULT OPERAND
IGNORED LOCAL SYM{.SYMo, .\,
SYM, SYMBOLS THAT ARE TO BE LOCAL
EXAMPLE :
SRR Y
<Pe_ 1. [42T> LN L IESY
AL YY(YYTYY
CERTLILT N> YYYYYTYY SET TEST
< TR I N ASYYYYXYYY -

Ll

=it

7.10

ABS

DESIGNATES ABSOLUTE RATHER THAN RELOCATABLE ASSEMBLY

THE KERNEL USES ABSOLUTE ASSEMBLY

LOCATION RESULT OPERAND
IGNORED ABS IGNORED
EXAMPLE:
R AERHEL
:i 3s -

PDATA

LOGICALLY IDENTICAL TO DATA GENERATION,

ALLOWS UNRESTRICTED USE OF REGISTER SYMBOLS AS DATA,

LOCATION RESULT OPERAND
L PDATA DATA1/DATA9, (1.
L STATEMENT LABEL WITH PARCEL ATTRIBUTE
DATA, CAN BE ONE OF THE FOLLOWING:
1. NUMBER
2. SYMBOL
5. CHARACTER STRING
USES AS MANY PARCELS AS NECESSARY
4, PARCEL STORAGE RESERVATION
5. * - ASSIGNS CURRENT PARCEL COUNTER TO L
EXAMPLE;
IDENT PDATA
2 Ry £J3JALS 2
217 A EQAUALS 217
09002 000007 DOG PDATA ApR1,"DATA ITEM*,«<10>,7

ZND

7,12

BASEREG

USED FOR JUMPS TO A LABEL OUTSIDE OF CURRENT “PAGE.”

A “PAGE" IS AT MOST 512 PARCELS,

LOCATION RESULT OPERAND

[GNORED BASEREG R.B

R SYMBOL FOR DESIRED BASE REGISTER

B BIAS (CONTENTS OF REGISTER)

EXAMPLE:
IDENT BASEREG
1 R1 EQUALS 1
~ 3IASERES R1
Q Q75001 Z001744 P=NEXT
2 <1742>
1744 NEXT <1>

END

_ Dsuko WEOPAGEC |jloD BSS
_LABEL 60 DN o DATR GWEE
— EwRGE

FORCES A NEWPAGE

LOCATION RESULT OPERAND

IGNORED NEWPAGE IGNORED

EXAMPLE :

IDENT NENPAGE

1 R1 EQUALS 1

0 07500% /200002 P=NEXT
. NENPAGE
2 NEXT <1>
EAND

/.14

DECLARE A SYMBOL TO BE GLOBAL SO IT CAN BE RETAINED ACROSS
PROGRAM MODULES.,

LOCATION RESULT OPERANDS
IGNORED GLOBAL SYM{/SYMo, 44,
SYM,| NON-REDEFINABLE SYMBOL

SYMBOL MUST NOT BE RELOCATABLE

EXAMPLE:

IDENT GLOBAL
ABS
et e e e BLOBAL-. . _____NDON,BA
0 BA ENUALS 0
3ASERES BA
. 0-—.075000_/003767 .. - P=NON __
2 : <1765>
1767 - NON <i>
e END

BB

IDENT
EQUALS
3ASERES

GLOBAL1

3
BB

0 075003 /002351

- -—-P=NQN

. 2---075000_/0601767

4

—.Loc

P=LOC
3ASERES

3ASERES
<2345>
<i>

BA

b

2351-. — —

7.15

END

CHANNEL

USED TO DEFINE A CHANNEL MNEMONIC

LOCATION RESULT OPERAND

M CHANNEL N
M MNEMONIC (CONVENTION IS 3 CHARACTERS)
N CHANNEL NUMBER
EXAMPLE
IDENT CHANNEL
] i 5 BUF CHANNEL: 5
¢ 140005 3UF 20
1 taob6us nssn
END

7.16

BLOCK

CONTROLS THE ORDER IN WHICH SOURCE CODE IS ASSEMBLED,

THE SOURCE CODE IS DIVIDED INTO BLOCKS.
EACH OF WHICH HAS ITS OWN LOCATION COUNTER,

THE BLOCK PSEUDO INSTRUCTION IS USED IN THE KERNEL SO THAT THE
TABLES DO NOT END UP IN THE FIRST 4000 PARCELS OF LOCAL MEMORY.

LOCATION RESULT OPERAND
IGNORED BLOCK NAME
NAME NAME OF BLOCK,

“* - REVERT TO PREVIOUS BLOCK.

BLANK - REVERT TO NOMINAL BLOCK (DEFAULT)

c XAMPLE: _
o .. IDENTi _ ___ _3LOCK
3 050V200 CAT A=3
3LOC«I JNE!
4 030000 ____ . _ ... BAT. . A=3
3LIC«! TWO
1) 050000 RAT . A=3i
A o oo3wesi
1 9500090 , HAT a=3; .
3Lac«l *
11050000 ___ . . ______MAT____ _ _As3t _ _ _ __ . ___.
3LOC«I INE"
5 250000 NAT A=3i :
N

/.17

QUA

QUALIFIES SYMBOLS SO THAT THE SAME SYMBOL MAY BE USED MORE THAN

ONCE IN A PROGRAM MODULE.

LOCATION RESULT OPERAND
IGNORED QUAL QUALIFIER
QUALIFIER QUALIFIER TO BE APPLIED TO ALL SYMBOLS

DEFINED UNTIL THE NEXT QUAL STATEMENT,

- REVERT TO PREVIOUS QUAL PSEUDO INSTRUCTION.

BLANK - SYMBOLS ARE UNQUALIFIED (DEFAULT)

REFERENCES TO SYMBOLS QUALIFIED BY A QUALIFIER
OTHER THAN THAT CURRENTLY IN EFFECT ARE OF THE

FORM:
/QUALIFIER/ SYMBOL
EXAMPLE:

3 LOC

9 _914000 /7J02030 e

> 014000 /30304

s . loc
Ty 014000 /307024

s 014000 /903030 054000

11 018900 /3203020

7,18

‘A=_0Z1

IDINTI JUAL:

.)
a=.021_
A=/C _ONN/ZLOZ

AJAaL SLOAN
*

3=//..03:

AYALL Ll

A=_0Ci T
ZNX

CHAPTER 8

SELECTED $APTEXT MACROS

MACROS EXIST IN $APTEXT FOR A VARIETY OF APPLICATIONS,
INCLUDING:

EXIT STACK CONTROL

EXECUTION CONTROL

FIELD AND TABLE ACCESS

OVERLAY AND REGISTER DEFINITIONS

OVERLAY COMMUNICATION

BRANCH CONTROL

ARTTHMETIC AND LOGICAL OPERATIONS

HISTORY TRACE ENTRY

INTERRUPT STATE CONTROL

MEMORY REARRANGEMENT

PARAMETER DESCRIPTION

LINKING AMD UNLINKING ITEMS IN A MEMORY CHAIN

20
[

REGISTER

LOCATION RESULT OPERAND

ORIGIN REGISTER (sYM) .S, .00

ORIGIN STARTING OPERAND REGISTER NUMBER (OCTAL)
SYM LIST OF SYMBOLS TO BE ASSIGNED TO OPERAMD

1

REGISTER

SAE AS THE FOLLOWING:

SYM EQUALS orI1GIN

SYMy EQUALS oriGIN + 1

SYM, EQUALS or1GIN + (1-1)
EXAMPLE

IDENT REGISTER
7 EFISTER (R1,AA,CAT)
o E SCRATCH R1
0 ‘ F300¢ i ',,03’ 4010 AA=(RICAT)

R END

2,2

REGDEFS
ASSIGNS OPERAND REGISTERS TO REGISTER SYMBOLS

N_LOCATES SCRATCH REGISTERS

DEFINES TEMPORARY REGISTERS FOR USE BY OTHER MACROS CALLED
WITHIN THIS PROGRAM MODULE.,

LOCATION RESULT OPERAND
L REGDEFS GLOBAL, PARS, LOCAL, TEMP
L OPTIONAL SYMBOL OR CONSTANT BETWEEN O AND 777 OCTAL

SPECIFIES CRIGIN REGISTER (AVOID 300g TO 307g).
DEFALLT 1S 310g

GLopAL U TO ® REGISTER SIMBOLS TO BE ASSIGIED TO REGISTERS
30 T0 307,

PARS LIST OF SYMBOLS TO BE ASSIGNED TO WORKING CPERAND
REGISTERS,

LOCAL LIST OF SYMBOLS TO BE ASSIGNED TO LOCAL REGISTERS,
TEMP LIST OF SYMBOLS TO BE ASSIGHED TO TEMPORARY REGISTERS,
THE FOLLOWING REGISTERS ARE ALSO DEFINED:

AL T0 %S5 SCRATCH REGISTERS

%11 TO 716 MACRO TEMPORARY REGISTERS
71 TO 745 WORKING REGISTERS AVAILABLE TO QVERLAY,

EXAPLE:
IDENT REGOFFS
REGDEFS (Gl.G&),(Rl;RZ;RB)t(LloLZ)oTl
Y 0ta006 V24331 ?2:6
o 030332 %4330 lel;f?S]
4 020327 A=R1¥%AS

END

CUGICAL OPERATIONS

LOCATION RESULT OPERAND
L NAND 0P1,0Po.R
L OR OP{ /OPp/R
L NOR OP7 /OP9.R
L XOR OP] /OP9.R
L OPTIONAL STATEMENT LABEL
0P, OPERANDS
R RESULT
DEFINITIONS
NAND R NOR XOR
1100 1100 1100 1100
1010 1010 1010 1010
0111 1110 0001 0110
EXAMPLE:
IDENT LOGICAL
REGDEFS » (R1,R2),
LABT VOR 17,R1,R2
EAD

2.4

ASSIGN SUCCESSIME VALUES

MXT

LOCATION RESULT OPERAND
SYM NEXT VALUE
SYM OPTIONAL SYMBOL NAME
VALUE OPTIONAL INITIAL VALUE
VALUE VALUE
PRESENT BLANK
SYM SYMEVALUE syM=SNEXT
PRESEMT SMEXT=vALUE+L SNEXT=ENEXT+1
SYM SNEXT=vALUE+]L SNEXT=SMEXT+1
BLANK
EXAMPLE
IDENT NEXT
CAL VEXT 14 LCAL=td, SNEXT=15
BIG NEXT LBIG=13, SVEXT=16
NEXT 12 JSNEXT=13
NEXT CJSNEXT=14
END

2.5

FIELD

LOCATION

RESULT

OPERAND

SYM

SYM

FIELD

P,S/W

FIELD SYMBOL NAME

PARCEL OFFSET

STARTING BIT (DEFAULT 0)
WIDTH OF FIELD (DEFAULT 16)

THE FOLLOWING PARAMETERS ARE GENERATED

SYMaP
SYMAS
SYMaN
SYMAM
SYMaX

PARCEL OFFSET FROM BEGINNING OF TABLE
STARTING BIT OF FIELD (SOFTWARE MUMBERED)
WIDTH OF FIELD

MASK FOR FIELD, RIGHT JUSTIFIED
COMPLEMENT OF MASK IN PROPER POSITION IN
FIELD

IF P=* SYMAP IS UNDEFINED
[F &* SYMaS,SYMaN, SYMaM,SYMaX ARE UNDEFINED

EXAMPLE :

IDENT FIELD
TB1 FIELD 0,349
TB2 FIELD L
TB3 FIELD 2o0,7
T84 FIELD 3,45
END

2.6

FIELD GETS AND PUTS

LOCATION RESULT OPERAND
L &T DEST,FIELD,BASE
L PUT SOURCE,FIELD,BASE
L RGET DEST,FIELD,SOURCE
L RPUT SOURCE,FIELD,DEST
L OPTIONAL STATEMENT LABEL
DEST DESTINATION OPERAND REGISTER OR MEMORY LOCATTON
SOURCE OPERAND REGISTER OR MEMORY LOCATION CONTAINING
DATA TO BE STORED,
FIELD FIELD TO BE LOADED, DEFINED BY FIELD MACRO
BASE TARLE BASE ADIRESS IN) AN o0 9 SisTia
CET LOADS A FIELD FROM A TABLE INTO AM OPERAND REGISTER
OR MEMORY LLOCATION,
PUT STORES DATA IN A FIELD IN A TABLE FROM AN OPERAND
REGISTER OR MEMORY LOCATION,
RGET - LOADS AN OPERAMD REGISTER OR MEMORY LOCATION FROM A
FIELD IN AN OPERAND REGISTER OR MEMORY LOCATION,
RPUT LOADS A FIELD IM AN CPERAND REGISTER (R MEMORY
|LOCATION FROM AN OPERAND REGISTER (R MEMORY LOCATION,
EXAMPLE :
IDENT EGETPUT
0 REGISTER (R1,R2,R3,TA)
SCRATCH R3
FIFLDt FIELD 2:3,9
0 014000 /012340 024003 ;2:125“0 R1,FIELD1,TA
12 014000 /001024 024001 23;102“ RZ,FIELD;,TA
RGCET Rl,FIELDl(ﬁRZ)l
PUT R1,FIELDIJ(R2)
)

R,7

CONDITIONAL BLOCK MACROS

$1F - $ELSEIF - $ELSE - SENDIF

USED TO DELIMIT BLOCKS OF CODE: ONLY ONE OF WHICH IS EXECUTED.

LOCATION RESULT OPERAND
$IF (CONDl),ANDOR,(CONDZ)
$ELSEIF (CONDl),ANDOR,(CONDZ)
$ELSE
$ENDIF

COND, A VALID APM_ CONDITIOMAL EXPRESSION

ANDOR LOGICAL OPERATOR ‘AMD’ or ‘OR'. IF BLANK,

CONDZ IGNORED,

$IF MUST BE FIRST CONDITIONAL BLOCK MACRO AND MUST HAVE A
CORRESPONDIMG $ENDIF,

$ELSEIF OCCURS BETWEEN $IF AND $ENDIF WHEN DELIMITING MORE THAN
TWO BLOCKS.

$ELSE IS OPTIONAL AND DELIMITS LAST BLOCK BEFORE $ENDIF,

EXAMPLE:
IDENT IF
7 R1 EQUALS 7
10 R2 SQUALS 10
SCRATCH Ri
4 LoC SET 4
$IF (R2<L0OC),AND,B=7
10 010000 024040 2=0
, SELSEIF (LOC#4)
17 010001 024010 R2=1
i $FLSF
22 010002 024010 R2=2
SENDIF
END

RTCALL o

USED BY KERNEL TO CALL SUBROUTINES WITHOUT USING EXIT STACK,
THESE CALLS MAY NOT BE NESTED,

LOCATION RESULT OPERAND

L RTCALL SURB,RTN

L OPTIONAL STATEMENT LABEL

SUB SUBROUTINE ENTRY POINT, THE LAST INSTRUCTION

IN THIS SUBROUTINE MUST BE P=RT,
REGISTER RT MUST BE DEFINED,

o /1

RTN NEXT STATEMENT TO BE EXECUTED AFTER SUBROUTINE
DONE, DEFAULT IS STATEMENT FOLLOWING RTCALL
STATEMENT,
EXAMPLE :
IDENT RYCALL
0 RT Z3UALS 0
4 RA EQUALS 4
3JASFREG A, 1
7/ R1 EQUALS 7
0 010013 u24007 Q=13
2 010001 J54000 3=1
RTCALL ODDEVEN,RETURN
0 010001 1540902 E=1 «NOT EXECUTE
2 RETURN _#
2 0sS0n0n a=8
3 0700900 NAIT
4 ODDEVEN %
4 020007 311001 A=RIR1L
§ - 103003 010000 054000 3z0,A=0
1 074800 2=RT
END

PART 3

[/0 SUBSYSTEM OPERATING SYSTEM

CHAPTER 9

OPERATING SYSTEM OVERVIEW

FUNCTTONS

PERFORMS 1/0 BETWEEN CPU AND PERIPHERALS

MANAGES FRONT-END COMMUNICATIONS

PERFORMS STATION FUNCTIONS

DEADSTARTS CPY

9.1

CHARACTERISTICS

MULTI-TASKING
P T0 32 TAKS ACTVE AT A TRE /7o

NONPRE-EMPTIVE SCHEDULING

SIMPLE 16 LEVEL TASK PRIORITY SCHEME

INTERRUPT DRIVEN

EXTENSIVE USE OF OVERLAYS

9,3

KERNEL

OVERLAYS

SYSTEM COMPOMENTS

5%

NUCLEUS OF OPERATING SYSTEM.
LOCAL MEMORY RESIDENT,
EXECUTES IN EACH I/0 PROCESSOR WITH MINOR MODIFICATIONS,
RESPONSIBLE FOR:
ACTIVITY MANAGEMENT
INTER-ACTIVITY COMUNICATION
RESOURCE MANAGEMENT
INTERRUPT HANDLING
INTER-PROCESSOR COMMUNICATION

RESIDE IN BUFFER MEMORY,

READ INTO LOCAL MEMORY WHEN NEEDED,

MAKE UP THE BUK OF THE SYSTEM.

NOT ALL USED BY ANY OME PROCESSCR.,

DISK SUBSYSTEM
RESIDES MOSTLY IN BUFFER MEMORY AS OVERLAYS,
EXECUTES IN BIOP OR DIOP,

STATION SUBSYSTEM
RESIDES IN BUFFER MEMORY AS OVERLAYS,
EXECUTES MOSTLY IN MIOP,

CONCENTRATOR SUBSYSTEM
RESIDES IN BUFFER MEMORY AS OVERLAYS,
EXECUTES MOSTLY IN MICP,

INTERACTIVE CONCENTRATOR SUBSYSTEM
RESIDES IN BUFFER MEMORY AS QVERLAYS,

EXECUTES MOSTLY IN MICP,

TAPE SUBSYSTEM
RESIDES IN BUFFER MEMORY AS OVERLAYS,
EXECUTES MOSTLY IN XIOP,

Q.4

BUFFER

MIOP MEMORY
KERNEL
____________ e
| _CONCENTRATOR _ _ _ _ OVERLAYS:
| _ STATION_ _ _ _ | --DISK SUBSYSTEM
INTERACTIVE STATION --CONCENTRATOR
--STATION
BIOP —~INTERACTIVE
KERNEL STATION
--TAPE SUBSYSTEM
__________ e
__ _DISK SUBSYSTEM _ _ |
| STAT.,CONC., INTER,, TAPE _
DIOP
KERNEL
N
___ DISK SUBSYSTEM _ _ |
XI10P
KERNEL
s

fios. G —— ot wm—— et e wmmaS am—

TAPE SUBSYSTEM

b e wmmmm e emet emeet e mn s e

FIGURE 9-1. I0S SOFTWARE CONFIGURATION

CHAPTER 10

SOFTWARE: STRUCTLRE

&

RESOURCE IMPLEMENTATION

THE RESCURCES AVAILABLE TO THE OPERATING SYSTEM ARE LOCAL AND

BUFFER MEMORY,

THE SOFTWARE STRUCTURE INCLUDES:

ACTIVITY DESCRIPTOR

STORAGE MODULE

SOFTWARE STACK

POPCELL

DISK ACTIVITY LINK

10.1

LOCAL MEMORY

THE KERNEL RESIDES IN LOCAL MEMORY IN EACH IOP,
THE KERNEL MAINTAINS FOUR LOCAL MEMORY CHAINS.
OVERLAY MEMORY CHAIN:

LOCATED AFTER KERMEL,

ALLOCATED IN MULTIPLES OF FOLR PARCELS,
IMPLEMENTED AS A DOUBLY LINKED LIST.
USED TO HOLD EXECUTING OVERLAYS,

sl T

DAL CHAIN: - mg DﬁL
LOCATED AFTER OVERLAY MEMCRY. /9 L’g T

ALLOCATED IN MULTIPLES OF 40 PARCELS.
IMPLEMENTED AS A FORWARD LINKED LIST, DAL
USED FOR MESSAGE SPACE.

L
FREE MEMORY CHAIN: ~J
LOCATED AFTER DALS. VAL 9 RLE Wﬁdﬂ HDR

ALLOCATED IN MULTIPLES OF FOLR PARCELS. - s
INPLEVENTED AS A FORWARD LINGD LisT, | EMAM %"zﬁ

USED FOR TABLES, ACTIVITY DESCRIPTORS AND POPCELLS.

S
LOCAL 1/0 BUFFER CHAIN: \
(\
LOCATED N UPPER MEMORY B BuF
ALLOCATED IN MULTIPLES OF 4000g PARCELS, SAME. e,
IVPLEVENTED AS A FORWARD LINCED LIST.
USED MAIMLY FOR 1/0 BUFFERS. WL
LD 17N

10,2

KERNEL

OVERLAY MEMORY

DALS

ThusE = 22

FREE MEMORY (i\) Oﬁjﬁ:b / N g /2

e e o —— e —— - e mm e e o — — — —— —— — —— — —— — — — —— — — — — — — —— — — — ——

LOCAL I/0 BUFFERS

| ; N /\IDI-L)IF&R

E SRV

FIGLRE 10-1, LCCAL MEMORY COMFIGURATION
10.3

BUFFER MEMORY

SHARED BY ALL IOPs

CONTAINS ALL THE OVERLAYS AVAILABLE TO I0Ps

EACH IOP HAS ITS OWN KERNEL STORAGE AREA
USED FOR TEMPORARY STORAGE AMD /0 BUFFERS

EACH TOP HAS ITS OWN MESSAGE AREA
MESSAGES ARE MAINTAINED BY SEMDER

SYSTEM DIRECTORY CONTAINS INFORMATION ABOUT BUFFER MEMORY
PARTITIONING,

10.4

KERMEL

SYSTEM DIRECTORY

Bif pef ESSAGE REAS
Q) WAL der

OVERLAYS
pLr
AP
J
pe) S ey
| (»(Qe/\, > KERNEL AREAS

FIGLRE 10-2, RBUFFER MEMORY CONFIGURATION

10,5

PARCEL
0
2
4
b
10

12
14
16
20
22

24
26
30
32
3
36

52

WOR

12

D

MIOP MESSAGE AREA ADDRESS IN MOS (2 PARCELS)
BIOP MESSAGE AREA ADDRESS

DIOP MESSAGE AREA ADDRESS

XTOP MESSAGE AREA ADDRESS
OVEREAYDESERIFTOR_TABLE ADDRESS-IN MOS—
£2-PARCELS) DU Sk D
ST #-ENRIES———RESERVED—

1ST OVERLAY ADDRESS (2 PARCELS)

UNUSED

MIOP KERNEL AREA IN MOS

SIZE OF MIOP MOS MODULE (NUMBER OF 1000,
WORD ARFAS)

BIOP KERNEL AREA IN MOS

SIZE (IN 1000g WORD AREAS)

DIOP KERNEL AREA IN MOS

SIZE (1000g WORD AREAS)

X10P KERNEL AREA TN MOS

SIZE (1000g HORD AREAS)

FIGRE 10-3, SYSTEM DIRECTORY

10.7

TASK_HANDLING

TASKS EXECUTING IN AN IOP ARE CALLED ACTIVITIES.

AN ACTIVITY IS AN INDEPENDENT PATH OF EXECUTION
THROUGH THE COIE.

NORMALLY CONSISTS OF NESTED OVERLAY CALLS,

KERNEL MAINTAINS ACTIVITIES THROUGH THE USE OF ACTIVITY
DESCRIPTORS., STORAGE MODULES (SMODS) AND POPCELLS,

10.8

ACTIVITY DESCRIPTOR
USED BY KERNEL TO SCHEDULE AND ACTIVATE ACTIVITIES.

ONE FOR EACH ACTIVITY,

BUILT BY A COMMON SUBROUTINE THROUGH A CREATE SERVICE REQUEST,

CONTAINS LINKS, ADDRESSES AND OTHER INFORMATION NECESSARY T0
MANAGE AN ACTIVITY,

LOCAL MEMORY RESIDENT, (N + CEE MU

EXISTS UNTIL AN ACTIVITY IS TERMINATED,

PARLEL ECPOl — Cenrmac PRocesso Q.
0 [LINK FOR QUEUES

1 |LINK TO EXISTING ACTIVITIES (FOR DEBUGGING)

2 | PRIORITY (0-17¢)

3 | MOS UPPER ADDRESS OF SOFTWARE STACK

4 | MOS LOWER ADDRESS OF SOFTWARE STACK

5 | UNUSED

6 | UNUSED

7 | UNUSED

10 |LINK TO NEXT SMOD (OVERLAY) TO ACTIVATE IF IDLE

LINK TO CURRENT IF ACTIVITY ACTIVE
11 4OOOO=DEMON ACTIVITY
12 FUNCTION CODE OF CURRENT SERVICE REQUEST

13 KERNEL PARAMETERS FOR I/0 REQUESTS AND PASSING STATUS TO

OVERLAYS
1 4 n n " " " " n" "
15 " u " n n" n" n "
16 n" " " n H n n n"
17 i n " " n n" " n"

n

"

"

"

FIGURE 10-4, ACTIVITY DESCRIPTOR

10.9

STORAGE MODULE (SMOD)

USED TO SAVE AM OVERLAY'S EXECUTING ENVIRONMENT,
ONE PER OVERLAY READ INTO LOCAL MEMORY.
SIZE VARIES DEPENDING ON HOW MANY REGISTERS NEED BE SAVED,

MINIMALLY CONTAINS:
LINKS TO ACTIVITY DESCRIPTOR AND PREVIOUS 30D,
OVERLAY INFORMATION,
A, B, C, E, AND P REGISTER CONTENTS.

- MAY CONTAIN:
OPERAND REGISTER CONTENTS ESSENTIAL TO ITS' OVERLAY,
PROGRAM EXIT STACK ENTRIES FOR ITS' OVERLAY,

SMOD IS PARTIALLY I)PDATED WHEN AN OVERLAY DOES A KERNEL SERVICE
REQUEST.
IF CALL RESULTS IN LOSS OF CONTROL, SMOD IS COMPLETELY
UPDATED,

REGISTERS ARE RE-LOADED FROM SMOD WHEN S.R, IS COMPLETED (R
WHEN OVERLAY GETS CONTROL BACK,

INITIAL 0D SET UP THROUGH CREATE SERVICE REQUEST AND IS WRITTEN
TO BUFFER MEMORY AS A SOFTWARE STACK.

10,10

PARCEL

ACTIVITY ADDRESS

LINK TO PREVIOUS SMOD (0 IF FIRST)

SIZE OF THIS SMOD

POINTER TO OVERLAY DESCRIPTOR TABLE ENTRY
UNUSED

UNUSED

; STARTING REGISTER (9)
FIRST OPERAND REGISTER SAVED

FIRST EXIT STACK EMTRY

LAST EXIT STACK ENTRY

FIGURE 10-5, STORAGE MODULE

ra L

SOFTWARE STACK =%~

THERE IS A FIXED STACK
CURRENT ACTIVITY"S vt REEY{%OFEE%ISS%RY WHERE THE SMOPS FOR THE

A SYOD IS *PUSHED' ONTO TH] ;
NOTHER QYA S STACK VHEN AN OVERLAY CALLS
A PUSH"

CONSIST ' ,
AND UPDAT S OF SAVING AN OVERLAY'S REGISTERS

ING THE SMOD POINTER N THE ACTIVITY DESCRIPTCR,

mﬁ z j”:i PUFFED Jg

VICE REQUEST,

A PP CONSISTS oF P
1 (@ LATI o -
RESTORING THE CALLING owirt r TXREGISTERS.

THIS SOFTWARE STACK IS WRITTEN OUT TO BUFFER MEMORY YHEN AN

ACTIVITY RELINQUISHES CONTROL TO THE KERNEL AND OTHER ACTIVITIES
ARE ON THE CENTRAL PROCESSOR QUELE.

THE LOCAL MEMORY SCFTWARE STACK IS NOW FREE FOR USE
BY ANOTHER ACTIVITY,

WHEN AN ACTIVITY REGAINS CONTROL. IT'S SOFTWARE STACK WILL BE
READ INTO THE LOCAL SOFTWARE STACK FROM BUFFER MEMCRY,

10,12

-SMOD

ACTIVITY DESCRIPTNR

0 LINK FOR QUEUES

—10 LINK TO CURRENT/MEXT SMOD

SOFTWARE STACK

=0 ACTIVITY ADDRESS

1 Q
2 SIZE OF THIS SMOD

M EXIT STACK
N+E

—= () ACTIVITY ADDRESS

SMOD

'

L—1 LINK TO PREVIOUS SMOD

2 SIZE OF THIS SMOD

12 |_#% (E) o wrempuers

L—-—-————-~"—~“--——-ﬂ-w“-‘—-

FIGURE 10-B, EXAMPLE OF SOFTWARE STACKING

10,13

POPCELL

ALLOWS ONE ACTIVITY TO CONTROL ANOTHER ACTIVITY IN A DIFFERENT
[0P, ACTIVITY WILL PASS A MESSAGE THROUGH BUFFER MEMORY WHEN
IT WANTS SOMETHING DONE BY THE SLAVE ACTIVITY,

BUILT BY THE KERNEL OF AN IOP WHEN AN ACTIVITY IN ANOTHER IOP
DOES AN ALERT SERVICE REQUEST, CREATING AN ACTIVITY IN THE
FIRST I0P,

IT IS REFERENCED BY THE KERNEL ON SUBSEQUENT AWAKE SERVICE
REQUESTS FROM THE ORIGINAL ACTIVITY IN THE FIRST IOP,

PARCEL
0 LINK TO CTHER POPCELLS
1 ACTIVITY ADDRESS
2 PUSH/POPCELL ~ FIRST CACTIVITY ADDRESS)
3 PUSH/POPCELL LAST CACTIVITY ADDRESS)
4 | DAL QUEUE FIRST
5 DAL QUEUE LAST
b UNUSED
7 UNUSED

FIGURE 10-7., POPCELL FORMAT

(ol P
bl G0 >

10,15

INTER-TOP COMMUNICATION

OCCLRS VIA ACCUMULATOR CHANNELS AND BUFFER MEMORY MESSAGE AREAS,

PARCEL PASSED VIA ACCUMULATOR CHANNEL MAY BE ENTIRE MESSAGE
(R GIVE BUFFER MEMORY ADDRESS OF MESSAGE.

MESSAGES PASSED THROUGH BUFFER MEMORY HAVE A FIXED FORMAT AND
ARE CALLED DISK ACTIVITY LINKS (DAL).

215 212 211 20

FUNCTION ADIRESS OR COMMAND

FIGLRE 10-2, FORMAT OF ACCUMULATOR MESSAGE

10.16

FUNCTION CODES (2'2 - 21S) DEFINITION

0 COMMAND COTE IN BITS 2° - 211,
0 = HALT THe IOP
M$GO = INITIATE SYSDUWP
AMESYNC = SYNCHRONIZE IOP SOFTWARE CLOCK

1-7 UNUSED

10 A MESSAGE IS CONTAINED IN THE MOS MESSAGE AREA
OF THE MIOP PROCESSOR AN AT ADIRESS WHICH IS
CALCULATED USING THE LOWER ORDER 12 BITS OF THE
ACCUMULATOR, EACH MESSAGE AREA IS OF SIZE & B4-
BIT WORDS, TO FIND THE MOS ADDRESS ONE MUST
LEFT SHIFT THE ACCUMULATOR 3 BIT POSITIOMS AND
ADD THE BASE OF THE MOS MESSAGE AREA FOR

PROCESSOR MIOP,
11 MESSAGE IS IN THE AREA CONTROLLED BY BIOP FOR
MESSAGES TO THE OTHER PROCESSORS.
12 MESSAGE IS IN DIOP'S MESSAGE ARFA, et - 2
13 MESSAGE IS IN XIOP'S MESSAGE AREA, ToP-3
14-15 UNUSED
16 USED BY CONCENTRATOR FOR ALLOCATING AND

DEALLOCATING 1/0 BUFFERS IN ANOTHER IOP‘S
KERMEL STORAGE AREA.
17 THE ENTIRE COMMAND IS ENCODED IN THE LOWER
12 BITS, NO MOS DATA AREA IS ASSOCIATED WITH
IT.
10 HEARTBEAT

TABLE 10-1, ACCUMULATOR MESSAGES

10,17

DISK ACTIVITY LI
40g PARCELS IN LENGTH
SENT TO ANOTHER 10P TO REQUEST 1/0 BE PERFORMED.

USED BY DISK, TAPE, STATIOM, COMCENTRATOR AND INTERACTIVE
STATION SUBSYSTEMS,

ALLOCATED FROM A CHAIN IN LOCAL MEMORY,
DE-ALLOCATED WHEN DONE RESPONSE RECEIVED,

PASSED THROUGH MESSAGE AREAS IN BUFFER MEMORY
SENDER MAINTAINS THE MESSAGE AREA,

PARCEL

0 | LINK FOR CHAINING DAL's

1 | FUNCTIOM OF MESSAGE: 1=R/W DISK: 2=RELEASE MOS DAL:
3=MOVE CENTRAL TO MOS: 4=MOVE MOS TO CENTRAL: 5=SEND
STATUS TO CPU: 6=CENTRAL TO MOS DOME: 7=MOS TO CENTRAL
DONE: 20=ALERT: 21=ALERT DONE: 24=AMAKE: 25=RESPOMD,

2 | MOS UPPER OF DAL

3 | MOS LOWER OF DAL

L4] SENDER ACTIVITY DESCRIPTOR FOR RESPONSE
5 | ACCUMULATOR MESSAGE

6 | POPCELL ADDRESS

37

FIGRE 10-9, FORMAT OF DISK ACTIVITY LI

10,19

MESSAGE (DALY FLOW

. ACTIVITY, BUILDS A DAL IN LOCAL MEMORY,
. ACTIVITY, WRITES DAL TO I0P, MESSAGE AREA IN BUFFER MEMORY.
. ACTIVITY, SENDS ACCUMULATOR MESSAGE TO IOP,.

. INPUT MESSAGE ACTIVITY (ACOM) IN 0P, READS IN DAL FROM
BUFFER MEMORY,

3a. ACTIVITY; PROCESSES MESSAGE.

. ACTIVITY, UPDATES DAL FUNCTION CODE AND WRITES DAL TO
ORIGINAL SPOT IN I0P, MESSAGE AREA,

4a, ACTIVITY; DE-ALLOCATES LOCAL MEMORY DAL SPACE IN I0P;.
. ACTIVITY, SENDS ACCUMULATOR MESSAGE TO I0P,.

. ACOM IN 10P, READS IN DAL AND UPDATES THE DAL ALREADY IN
LOCAL MEMORY,

Ba, ACTIVITY, CAN DE-ALLOCATE BUFFER MEMORY AND LOCAL MEMORY
DAL SPACE TF DONE,

10,20

10P, 10P,

ACTIVITY, 5 ACTIVITYB

ACOM | ACOM

\\ I0P, MESSAGE
L DAL AREA

BUFFER MEMORY

FIGURE 10-10., BASIC DAL FLOW

10.21

OPERAND REGISTER ASSIGNMENTS

REGISTER ASSIGNMENTS ARE MADE SO AS TO MAXIMIZE THE AMOUNT OF
INTERRUPTIBLE CODE,

OVERLAYS USE DIFFERENT REGISTERS THAN THE KERNEL SO ON AN
INTERRUPT, ONLY A, B AMND C NEED BE SAVED,
ASSIGNMENTS ARE AS FOLLOWS:

0-177 KERNEL

200-277 DISK HANDLING

300-577 QVERLAYS

600-677 UNUSED

700-777 DEBUG ROUTINES

10.22

CHAPTER 11

OVERLAYS

GENERAL DESCRIPTION

EXECUTABLE PROGRAMS OR SUBROUTINES

RESIDE IN BUFFER MEMORY

READ INTO OVERLAY MEMORY IN LOCAL MEMORY FOR ACTIVATION
KERNEL MAINTAINS A BASE REGISTER CONTAINING THE OVERLAY'S
BASE ADIRESS.

USUALLY SMALLER THAN 1024 PARCELS IN SIZE

COMPLETELY RE-ENTRANT

Y REOLEST DATA AREAS FROM KERIEL. T LYW JREE MEmM CHAU

AN OVERLAY TABLE IS MAINTAINED TO PROVIDE INFORMATION ABOUT EACH
OVERLAY,

1.1

OVERLAY TABLE

KERNEL RESIDENT

ONE ENTRY FOR EACH OVERLAY

FOUR PARCELS PER ENTRY

FIELD PARCEL

OTaWRO/0TaMUP O | LENGTH IN WORDS (12 BITS):MOS UPPER (4 BITS)
0TaMLO 1 | MOS LOWER ADDRESS OF OVERLAY

OTaPAR 2 | # PARAMETERS (7 BITS): FIRST REGISTER (9 BITS)
0TaLoC 3 | LOCAL MEMORY ADDRESS (0 IF MNOT RESIDENT)

TABLE 11-1, OVERLAY TABLE
How \W s OV
Mg s ﬁ? |

Ho, \mﬁ Quindd Smo) 4o

11.2

OVERLAY MEMORY MANAGEMENT

THE KERNEL SETS UP AN AREA IN LOCAL MEMORY FOR OVERLAY MEMORY AT
INITIALIZATION,

THE SIZE OF THIS AREA IS AN INSTALLATION PARAMETER,
THE AREA IS IMPLEMENTED AS TWO DOUBLY-LINKED LISTS:
THE ADJACENT BLOCK LIST IS ORDERED BY BLOCK

ADDRESS AND IS USED TO MERGE PIECES AT
RELEASE TIME,

THE MEMORY SEARCH LIST LINKS THE AVAILABLE BLOCKS
FOLLOWED BY THE OVERLAY BLOCKS ORDERED IN A LEAST
RECENTLY USED FASHION,

EACH BLOCK IN OVERLAY MEMORY HAS AN 2 PARCEL HEADER ASSOCIATED
WITH IT,

THE ENTIRE LIST HAS AN € PARCEL HEADER AND A TRAILER ASSOCIATED
WITH IT,

INITIALLY THE OVERLAY MEMORY CONSISTS OF A HEADER,
TRAILER AND ONE BLOCK CONTAINING ALL THE AVAILABLE
MEMCRY.,

THE KERNEL MAINTAINS A POINTER TO THE INITIAL HEADER IN REGISTER
AEMORY: A COUNT OF THE NUMBER OF OVERLAYS IN THE LIST IN
REGISTER ZOVCNT; AND A COUNT OF THE TOTAL NUMBER OF QVERLAY LOADS
IN REGISTERS 70M.DSO AND Z0WLISL,

5@*’*[g owi ST _30F

IR0 ok
@ W& D% 0 D@W :—!;Opgv——)/ _ (O

MDAID 0 HEADER IDENTIFIER: ‘MD’
MDasUC 1 ADJACENT BLOCK LIST FORWARD POINTER
MDAPRE 2 ADJACENT BLOCK LIST BACKWARD POINTER
MDaTYP 3 BLOCK TYPE:
MDSHEAD - HEADER OR TRAILER ENTRY = 0
MDSFREE - AVAILABLE = 1
MD$OLAY - CURRENTLY IN USE = 2
MD$BUF - FREE MEMORY BUFFER (DEFERRED) = 3
MDaFOR 4 MEMORY SEARCH LIST FORWARD POINTER
MDABAK 5 MEMORY SEARCH LIST BACKWARD POINTER
MDBOVT 6 OVERLAY TABLE ENTRY ADDRESS IF MDATYPE=MDSOLAY
7 UNUSED
TABE%E}I-Z. OVERLAY MEMORY BLOCK HEADER
| 7
b}% Y&jﬁlf‘ _ 7
OW " on v
" o

§<§y 11.4

SEARCH LIST POINTERS

— FORWARD POINTER

— BACKWARD POINTER

HEADER

ENTRY
HEADER

OVERLAY 2

ENTRY
HEADER

FREE

ENTRY
HEADER

OVERLAY 1

ENTRY
HEADER

FREE

TRAILER

ADJACENT BLOCK POINTERS

/javﬂﬁp Cﬁ”{§é>
Fud A = 2@

FIGURE 11-1, EXAMPLE OF OVERLAY MEMORY LIST POINTERS

11.5

OVERLAY FORMAT

MAXIMUM OF 2048 PARCELS < ISTHCL PALM = OVL? (/M=

ka:;>&wul?
FIRST FOUR PARCELS (8 CHARACTERS) CONTAIN OVERLAY NAME
v
OVERLAY HAS ONE ENTRY POINT
DEFAULT IS PARCEL 6 ’

READ ONLY, SO ANY VARIABLE DATA AREAS MUST BE REQUESTED FROM THE
KERNEL,
AN ACTIVITY MUST RETURN MEMORY REQUESTED BY ONE OF ITS'
OVERLAYS BEFORE TERMINATING.

PARCEL
0 | OVERLAY NAME
1 OVERLAY NAME
2 | OVERLAY NAME
3 | OVERLAY NAME
4 | TYPE (1 BIT) O=EXECUTABLE, 1=DATA: OVERLAY NUMBER (15

BITS)
5 PARAMETER DEFINITION: # (7 BITS): FIRST REG (9 BITS)
6 | ENTRY POINT
/
: INSTRUCTIONS
3777

FIGURE 11-2, TYPICAL OVERLAY FORMAT

k

¢
o
K A

OVERLAY DEFINITION

OVERLAY MACRO SETS UP PARAMETERS FOR AN OVERLAY,

SYM

OVERLAY | oviname, FP=,NP=,BASEREG=, ENTRY=,TYPE=

OPTIONAL QUALIFIER FOR ALL SYMBOLS TEFINED IN OVERLAY,
IF BLANK, oviname IS USED AS QUALIFIER,

ovuname NAME OF THIS OVERLAY
Fp FIRST REGISTER TO PASS EXPECTED PARAMETFRS
NP NUMBER OF PARAMETERS
DEFAULT IS O
RASEREG BASE REGISTER TO USE FOR THIS OVERLAY
DEFAULT IS 7B (SET UP BY KERMEL)
ENTRY ENTRY POINT OF OVERLAY
DEFAULT IS PARCEL 6
TYPE IF TYPE = DATA IS SPECIFIED THEN OVERLAY IS‘WO«T
NON-EXECUTARLE , -
Y CauiLS OW
O& ¥ OUERLAY YXXA
Lk OfEs 236
/ \/\/\/\/\/\,
Lot
11,00

ZND

OVERLAY CALLS

CONTROL IS PASSED TO AN OVERLAY VIA THE CALL AND GOTO SERVICE
REQUESTS.

CALL RESULTS IN A ‘PUSH" OF THE CALLER'S SMOD ON
THE SOFTWARE STACK.,

GOTO PASSES CONTROL DIRECTLY TO NEW OVERLAY,
CALLERS SMOD IS NOT SAVED.
AN OVERLAY RETURNS CONTROL TO CALLER VIA THE RETURN SERVICE
REQUEST,

RETURN RESULTS IN A “POP’ OF THE CALLER'S SMOD

OFF THE SOFTWARE STACK,
PARAVETERS MAY BE PASSED TO A CALLED QVERLAY

OVERLAY MAY RETLRN PARAMETERS IN CALLER'S SMOD AREA VIA THE

RETREG MACRO, W

EXAMPLE:

AVERLAY DQN
2 0$DON EQUALS 0$DON.

* CDDYPith CRAY RESEARCHI INC.' 1979, 1980, 1981.

REGDEFS oy (P1,P2,P3,P4),(T0,T1)

A 020330 Q023331 024334 TosPpl=P2
11 020330 022331 024335 T1=P14P2

RﬁTRESe to'gi.'
_RETREG I{,P4

RETURN

END

v %M}p
\ S
66)“ (\/%7 OVERLAY PETE

L OSPETE ~ EQUALS OSPETE

% Copyright CRAY RESEARCH, INC,, 1979, 1980, 1981,

REGOEFS , (AA,S1,32,R1,R2,N1,N2)
b 010030 024335 N1=30
10 010012 024336 N2=12
12 010027 024331 S1=27
14 010010 24332 32210 LN
caLL DON, (S1,52,RD=R1,R0=R2),A1=R1,A23N2
37 020333 21334 A=R18&R2
RETURN ,

KERNEL CONSOLE CALLABLE OVERLAYS

CERTAIN ACTIVITIES MAY BE CREATED BY KEYING IN OVERLAY NAME AT
KERNEL CONSOLE.,

(W oLy

KERNEL CREATES ACTIVITY AND PUTS IT ON ICP CENTRAL PROCESSOR
QUELE.

ACTIVITY THEN PROCEEDS AS ANY OTHER ACTIVITY,

OPERATOR MAY USE THIS FACILITY TO:

DEADSTART CPU

BRING UP THE STATION

START A CONCENTRATOR

ENTER THE INTERACTIVE CONCENTRATOR
RUN TEST ROUTINES

11.11

CHAPTER 12

KERMEL

FUNCTIONS
ACTIVITY SCHEDULING
CENTRAL PROCESSOR ALLOCATION _Lenye T DiSparek e
LOCAL AND BUFFER MEMORY ALLOCATION
INTRA- AND INTER-ACTIVITY COMMUNICATION PROCESSING
INTER-PROCESSOR COMMUNICATION PROCESSING
INTERRUPT PROCESSING

CHARACTERISTICS

LOCAL MEMORY RESIDENT

EXECUTES IN EACH IOP WITH MINOR MODIFICATIOM

EXECUTES IN NON-INTERRUPTIBRLE MOTE

12,1

BASIC COMPONEMTS

ACTIVITY DISPATCHER
INTERRUPT HANDLER
SERVICE REQUEST PROCESS
MEMORY CONTRQL

COMMON SUBROUTINES

KERNEL TABLES

12,2

<« » PASS CONTROL WITH
RET URN,
- PASS_CONTROL WITHOUT
ACTIVITY ssseess ACCESS A TABLE.

KERNEL
TABLES

R

COMMON

MEMORY

"ROUTINES

CONTROL

FIGURE 12-1. KERNEL/ACTIVITY INTERACTION

ACTIVITY DISPATCHER

MANAGES ACTIVITIES THROUGH USE OF ACTIVITY DESCRIPTORS AND
STORAGE MODULES.

TRANSFERS CONTROL FROM ONE ACTIVITY TO ANOTHER

SWAPS SOFTWARE STACKS BETWEEN LOCAL AND BUFFER

MEMORY.

MAINTAINS OVERLAY MEMORY

CONTAINS KERNEL IDLE LOOP

ENTERED FROM KERMEL SERVICE REQUEST PROCESS

12.5

DEMON ACTIVITIES

PERFORM HIGH PRIORITY TASKS. OFTEN IN NON-INTERRUPTIBLE MOIE.

EACH CONSISTS OF ONE OVERLAY,

1P
SOFTWARE STACKS (SMODS) ARE LLOCAL MEMORY RESIDENT 0 7D
preT SW /Zf/%)
ACTIVITY DESCRIPTORS NEVER DEALLOCATED W

ASSEMBLED WITH KERNEL, SO MAY CALL KERMNEL SUBROUTIMNES

12.6

ACOM

AMSG

CDEM

DISK

DEMON Plone Depcon Fob THAPE
ACOM OVERLAY
HANDLES I0P TO I0P COMMUNICATION VIA BUFFER MEMORY,

READS IN DAL FROM BUFFER MEMORY AND PASSES CONTROL TO
DISK DEMON, AMSG DEMON, OR CDEM DEMON,

ACTIVATED BY I0P TO IOP INTERRUPT ANSWERING.,

DEMON
AMSG OVERLAY

PROCESSES DALS FOR ALERT, AWAKE AND RESPOND,
PROCESSES SOME ACCUMULATOR-ONLY MESSAGES.

ACTIVATED BY ACOM,

DEMON Oobay PEppEr
CDEM OVERLAY

HANDLES CPU TO MIOP COMMUNICATON AND STATION AND
CONCENTRATOR TRANSFERS IN BIOP.

ACTIVATED BY CPU TO MIOP IWTERRUPT ANSWERING OR ACOM,

DEMON
DISK OVERLAY

NUCLEUS OF THE DISK SUBSYSTEM,

ACTIVATED BY ACOM OR DISK INTERRUPT ANSWERING,

12.7

START
(ESWP)

INDICATE;]
KERNEL |

J

e

ENABLE
INTER- |

Q) EIDLR

He

i

CLEAR
INTERRUPT

ACTIVITY __(2)
™~ QUEUED

Y

'DISAB'E :
INTER—

RUPTS j

|

ACTIVITY |

FIGURE 12-2,

k
APPEND

GLOBAL
REGISTER

WRITE
OLD STACK
TO MOS

®

READ IN
NEW STACK
FROM MOS

LOAD
GLOBAL

REGISTERS

VERLAY IN
1EMOR

GET
OVERLAY
SPACE

L

READ IN
OVERLAY
FROM MOS

1‘_ -_H_—_l._—__‘— _ v-’—‘—.—-_.
INCREMENT

OVERLAY
COUNT

—T
INCREMENT

'OV, LOAD
| COUNT

(§>

12. g

P

MOVE 0V,

TO END
OF CHAIN

LOAD }

OPERAND |
REGISTER:

o

| EXIT
LSTACK

"ENTER P
IN EXIT
STACK

et

LOAD
A,B.,C

ENABLE |

INTER-
RUPTS

(EXIT)

LAG SET

ACTIVITY DISPATCHER FLOW DIAGRAM,

INTERRUPT ANSWERING

ENTERED WHEN A DONE FLAG SETS ON A CHANNEL WHICH HAS INTERRUPTS
ENABLED.
HARDWARE. READS TAA OUT OF EXIT STACK TN ALM Y L) SWEIMN (-

G0 | &
CLRRENT ACTIVITY'S A, B, C.{E AND PIRECISTERS ARE SAED VL 2

INTERRUPTING CHANNEL NUMBER IS READ FROM CHANNEL O.

JUMP TO APPROPRIATE HANDLER IS DETERMINED FROM OFFSET INTO AN INTERRUPT
JUP TABLE (EITB).

RETURNS CONTROL TO INTERRUPTED ACTIVITY WHEN ALL INTERRUPTS PROCESSED.

STANDARD INTERRUPT HANDLERS ARE:
| IPFT - PROGRAM FETCH REQUEST INTERRUPTS
IPXS - PROGRAM EXTT STACK INTERRUPTS
ILMERR - LOCAL MEMORY ERROR INTERRUPTS
IRTC - REAL-TIME CLOCK INTERRUPTS
[TAP - 0P TO IOP INPUT INTERRUPTS
I0AP - IOP TO IOP OQUTPUT INTERRUPTS

OPTIONAL INTERRUPT HAMDLES ARE:

IREPORT - ERROR LOGGING CHANMEL — MU f:’? WA
TEXP - EXPANDER CHANNEL MV L0
IDID - DISK CHAMNELS pwt/O

ICRI - CRAY-1 LOW SPEED INPUT CHANNEL SNW¥
ICRY - CRAY=1 LOW SPEED OUTPUT CHAmwFL WAO¥
IBMX - BLOCK MULTIPLEXER CHAMMELS K \of
ITIA - CRT INPUT AND OUTPUT CHANMELS

NO INTERRUPT HANDLER FOR CPU MEMORY CHANNEL OR BUFFER MEMORY CHANNEL.

KERNEL WAITS FOR CHAMNEL TO FREE, ISSUES I/0 REQUEST.
THEN PROCEEDS: OR WAITS FOR CHANNEL TO FINISH,

12.10

S

DISABLE 6
pael
INTERRUPTS 0P 10
INT. HAMDLER
SAVE AMD PROCESS
ACTIVITY'S INTERRUPT
RN

SAVE) g omves KO
INTERRUPTED | . pq ', 10 @ 10040
L ADD§ESS §gg%9;%1fﬂ‘(p3
— e
SET , Gowotf| RESTORE
INTERRUPT L REGISTERS
| FLAG . (AR,0)
| ' ENABLE
INTERRUPTS
o READ H.P,

INTERRUPTING
CHANNEL # [EXIT)

KERNEL ERROR_HALT PROCESS

ENTERED WHEN SOFTWARE DETECTS AN ERROR ($PUNTIF MACRO IS EXECUTED)

DISABLES INTERRUPTS

SAVES A, B, C, E REGISTERS, EXIT STACK, AND ALL CHANNEL BZ AND
DN FLAGS.

SENDS ERROR HALT MESSAGE TO KERNEL CONSOLE

HALTS OTHER I0P'S

PASSES CONTROL TO SYSDUMP,

12,13

SERVICE REQUEST PROCESS

PERFORMS ESSENTIAL SERVICES FOR ACTIVITIES, IN NON-INTERRUPTIBLE
MODE .,
ACTIVITY CALLS A MACRO WHICH PASSES PARAMETERS TO ANOTHER MACRO,
WHICH SETS UP PARAMETERS AND DOES A RETLRN JUMP TO SERVICE
REQUEST PROCESS.
SERVICE REQUEST PROCESS IS AS FOLLOWS:

1) LOCK QUT INTERRUPTS

2) SNVE A, B, E AND P IN S10D

3) SAVE SPECIFIED OPERAMD REGISTERS IN SMOD
SAVE EXIT STACK IN SMOD IF AMY REGISTERS SAVED,

4) GET FUNCTION CODE FROM FUNREG
5) JUMP TO ADIRESS AT FCTABLE + FUNCTION CODE

DEPENDING ON FUNCTION, CONTROL IS PASSED TO REQUESTER, KERNEL,
OR MNEW OVERLAY ON COMPLETION,

12,14

CALL PROCEDURE:

LOCATION RESULT OPERAND
L SERVICE | PARAMS., B=FUNREG, Al=START, AZ=LAST
L OPTIONAL STATEMENT LABEL
SERVICE DESIRED SERVICE FUNCTION NAME
PARAMS NECESSARY PARAMETERS. OVERLAY NAME, ETC,
THESE ARE PUT IN REGISTERS FOLLOWING Funres.,
FUNREG REGISTER FOR PASSING FUNCTION CODE
START FIRST REGISTER TO SAVE
LAST LAST REGISTER TO SAVE
EXAMPLE :
IDENT - SERVICE
REGDEFS ,(CC,B88,31,R2,R3,R4,R5,R6)
CAT DELAY - 1,B8=88,A1=R3,A23R5
L PRUSER S e R R e
GETMEM 124,CC
END

12,15

SERVICE REQUESTS EXIST FOR:
CREATING, RESCHEDULING AND TERMINATING ACTIVITIES
PASSING CONTROL BETWEEN OVERLAYS
LOCATING AN OVERLAY IN BUFFER MEMORY
CONTROLLING PUSH AND TIMER QUEUES
SENDING AND RECEIVING MESSAGES ON CRT CHANNELS
SENDING RESPONSES TO OTHER IOPS
REQUESTING ANOTHER IOP TO CREATE OR ACTIVATE AN ACTIVITY
INITIATING FRONT-END AND BLOCK MUX 1/0
SENDING MESSAGES TO CPU AND RECEIVING A RESPONSE
ALLOCATING AND RELEASING LOCAL AND BUFFER MEMORY
MOVING DATA BETWEEN BUFFER MEMORY AND CENTRAL MEMORY
MOVING DATA BETWEEN LOCAL MEMORY AND BUFFER MEMORY,

FLUSHING THE OVERLAY MEMORY BUFFERS.

12,77

SELECTED SERVICE FUNCTIONS

CREATE
- SETS UP INDEPEMDENT ACTIVITY AND PLACES IT OM CP QUELE
AT PRIORITY,
- INITIALIZES ACTIVITY DESCRIPTOR AND SOFTWARE STACK
- WRITES SOFTWARE STACK TO BUFFER MEMORY
- RETURNS CONTROL TO REQUESTER

TE INATE
TE/RMINATES THIS ACTIVITY
- RELEASES BUFFER MEMORY SOFTWARE STACK AREA
- RELEASES ACTIVITY DESCRIPTOR AREA
- RETURNS CONTROL TO KERNEL

CAL
- PASSES CONTROL TO ANOTHER OVERLAY
- RESULTS IN A “PUSH’ ONTO THE SOFTWARE STACK
- NEW OVERLAY GETS CONTROL DIRECTLY

GOTO
- PASSES CONTROL TO ANOTHER OVERLAY
- CALLER'S SMOD IS NOT SAVED
- MNEW OVERLAY GETS CONTROL DIRECTLY

RETURN
- RETURNS CONTROL TO OVERLAY CALLER
- RESULTS IN A "POP* (OFF THE SOFTWARE STACK
- ACTIVITY IS THEN PLACED ON CP QUELE.
- RETURNS CONTROL TO KERNEL

VRN T p oWk (< %WA]

12,1%

ALERT
- CREATES AM ACTIVITY IN A DIFFERENT ICP,
- RETURNS CONTROL TO THE KERNEL.,

AWAKE
- ACTIVATES AN ACTIVITY IN A DIFFERENT ICP,
- ACTIVITY MUST HAVE BEEN PREVIOUSLY ALERTED,
- RETURNS CONTROL TO REQUESTER OR KERNEL,
DEPENDING ON WHETHER OR NOT A RESPONSE IS
DESIRED FROM THE AWAKENED ACTIVITY.

RESPOND
- SENDS A RESPONSE TO THE ACTIVITY WHICH DID AN AWAKE,
= RETURNS CONTROL TO REQUESTER,

A’SL@QP/W [, / [

12.19

ALERT MECHANISM FLOW:

1.

ACTIVITY, DOES AN ALERT SERVICE REQUEST SPECIFYING

THE FIRST OVERLAY OF THE ACTIVITY AND THE IOP TO
CREATE IT IN.

KERNEL, BUILDS A DAL FROM THIS INFORMATION AND SENDS
IT TO KERNEL, THROUGH BUFFER MEMORY,

KERNEL, IDLES ACTIVITY,.

AMSG; BUILDS A POPCELL., CREATES THE NEW ACTIVITY.
PUTS POPCELL ADDRESS IN AD, AND PLACES AD, ON CP QUEUE.

AMSG, THEN PLACES ADDRESS OF POPCELL IN DAL AND KERNEL,
RETURNS THE DAL TO KERNEL, THROUGH BUFFER MEMORY,

AMSG, THEN PLACES POPCELL ADDRESS IN ACTIVITY,
DESCRIPTOR (PARCEL 6),

AMSG, THEN PLACES ACTIVITY, ON CP QUEUE.
WHEN ACTIVITY, IS POPPED OFF THE CP QUEUE, IT CHECKS THE

POPCELL DAL QUEUE, IF THIS IS EMPTY, IT PUSHES ITSELF
ONTO THE POPCELL QUEUE (PARCELS 2 & 3).

12,20

[0Pa

ACTIVITY

AMSH,

KERNELa

£ 1

[0Pb

-

ACTIVITY,

87 L)

l POPClEU_ v\ I

'Y

AMSGy

KERNEL,

f

|

BUFFER
MEMORY

N

FIGURE 12-14,

ALERT MECHANISM FLOW

12.21

AWAKE MECHANISM FLOW:
1. ACTIVITY, BUILDS A DAL FOR ACTIVITY, AND DOES AN AWAKE
SPECIFYING WHICH IOP, POPCELL., AND DAL, AND WHETHER
A RESPONSE IS DESIRED.
2, KERNEL, THEN PASSES DAL TO KERMNEL, THROUGH BUFFER MEMORY.

3. KERNEL, THEN IDLES ACTIVITY, OR RETURNS CONTROL TO IT
DEPENDING ON WAIT/NO WAIT PARAMETER,

4, AMSG, THEN PLACES DAL ON POPCELL DAL QUEUE AND
ACTIVATES ACTIVITY, IF NOT ACTIVE,

5. ACTIVITY; THEN PROCESSES THE NEXT DAL ON THE QUEUE.

6. ACTIVITY, DOES A RESPOND AND KERNEL, PLACES RETURNED
PARAMETER IN DAL,

7. KERNEL, SENDS DAL TO KERNEL, THROUGH BUFFER MEMORY.
8, IF WAIT WAS SPECIFIED, AMSG, RETURNS PARAMETER TO
ACTIVITY, AND PLACES IT ON CPU QUEUE,
8a, IF MORE DALS ON POPCELL QUEUE, 60 TO 5.

9. ACTIVITY, PUSHES ITSELF ON THE POPCELL QUEUE. AWAITING
ANOTHER AWAKE.,

12,22

0P, | 0Py,

ACTIVITY, ACTIVITY,
A N I DD
3 8| T POPCELL B
I
.- AMSG, | AMSG,,
KERNEL , KERNEL,
L Al

\\?
BUFFER
MEMORY

FIGURE 12-5, - AWAKE MECHANISM FLOW
128

U\‘Jﬁ b‘“\’\"‘ /DM, ®M4§z/\>// NN

INTERNAL SUBROUTINES

PERFORM COMMON TASKS REQUIRED BY DIFFERENT PARTS OF THE SYSTEM

CALLED BY KERNEL ROUTINES, DEMON ACTIVITIES, AND OTHER OVERLAYS
ASSEMBLED WITH THE KERNEL.

Ol Lot e ENTRAAT 5
EXECUTE IN NON-INTERRUPTIBLE MODE [xsf oF ECNEL Ces-<

ROUTINES AVAILABLE FOR:

SETTING UP ACTIVITY DESCRIPTOR AND BUFFER MEMORY SOFTWARE
STACK AREAS,

MOVING REGISTERS IN AND OUT OF SMODS,

MAINTAINING QUEUES.

MAINTAINING OVERLAY MEMORY CHAIN, ¢J¢R. <§%V&CX; @}yﬁﬁll

\x
’ \%D\W 6&/ y I W
& st

™
* /L)j;/

12,24

LOCAL MEMORY CONTROL

MAINTAINS LOCAL FREE MEMORY CHAIN
ALLOCATED IN MULTIPLES OF 4 PARCELS

MAINTAINS LOCAL DISK BUFFER CHAIN
ALLOCATED IN 40GOg PARCEL BLOCKS

MAINTAINS DAL CHAIN

ALLOCATED IN 40g PARCEL BLOCKS Kot D Mieps
Yo C AL

MAINTAINS A 1000g PARCEL TRACE BUFFER FOR RECORDING THE
OCCURRENCE GF SPECIFIC EVENTS,

/KEACH TRACE ENTRY IS 10g PARCELS
" WHEN FULL, THE TRACE BUFFER IS WRITTEN TO A 4000y WORD
CIRCULAR BUFFER IN BUFFER MEMORY,

i ‘M@ @\)1/54\{% CANT (7 WL

CM
BUFFER MEMORY CONTROL

CONTROLS ALLOCATION OF 512 WORD BLOCKS IN BUFFER MEMORY KERNEL
STORAGE AREAS,

CONTROLS ALLOCATION OF BUFFER MEMORY SOFTWARE STACK AREAS,

CONTROLS ALLOCATION OF DALs IN MESSAGE AREAS

PERFORMS READS AND WRITES TO BUFFER MEMORY AND QVER BIOP'S
HIGH SPEED MEMORY CHANMEL.

12,26

CHAPTER 13

DISK SUBSYSTEM

FUNCTIONS

MOVES DATA BETWEEN CENTRAL MEMORY AND DISK

PERFORMS DISK ERROR RECOVERY

CPU MUST INITIATE I/0 BY MAKING A DISK REQUEST

CPU IS RESPONSIBLE FOR DEVICE ASSIGNMENTS AND DATASET ALLOCATIONS.

QVERVIEW OF DISK 1/0 VIA DIOP

1, CPU PASSES DISK REQUEST TO MIOP,

2, MIOP TRANSFERS REQUEST TO DIOP THROUGH BUFFER MEMCRY,

WRITE:
3, BIOP TRANSFERS DATA FROM CENTRAL MEMORY TO BUFFER MEMCRY,
4, DIOP TRANSFERS DATA FROM BUFFER MEMORY TO DISK,

READ:
3, DIOP TRANSFERS DATA FROM DISK TO BUFFER MEMORY,

3n, DIOP TRANSFERS ADDITIONAL SECTORS TO BUFFER
MMORY (READ AHEAD).

L, BIOP TRANSFERS DATA FROM BUFFER MEMORY TO CEMTRAL
MMORY

5, DIOP RETURNS REQUEST TO MICP INDICATING I/0 IS FINISHED.

6, MIOP PASSES RESPCNSE TO CPU,

BUFFER
MEMORY

FIGURE 13-1 , DISK WRITE VIA DIOP

13,3

MIOP

)

BIOP
3
//
DIOP

IR

BUFFER
MEMORY

FIGURE 13-2 DISK READ VIA DIOP

13.5

OVERVIEW OF DISK 1/0 VIA BIOP

1, CPU PASSES DISK REQUEST TO MIOP
2, MIOP TRANSFERS REQUEST TO BIOP THROUGH BUFFER MEMORY,
VWRITE:
3a, BIOP TRANSFERS DATA FROM CENTRAL MEMORY TO LOCAL
MEMCRY,
38, BIOP TRANSFERS DATA FROM LOCAL MEMORY TO DISK,
READ:
3A. BIdP TRANSFERS DATA FROM DISK TO LOCAL MEMCRY,
3, BIOP TRANSFERS DATA FROM LOCAL MEMORY TO CENTRAL MEMORY,

3c, BIOP TRANSFERS ADDITIOMAL SECTORS FROM DISK TO BUFFER
MEMORY (READ AHEAD),

4, BIOP RETURNS REQUEST TO MIOP INDICATING 1/0 IS FINISHED.

5, MIOP PASSES RESPONSE TO CPU,

BUFFER

MIoP '\ MEMORY
TN
=

e
3b r—-DATA

BIOP

FIGURE 13-3, DISK WRITE VIA BIOP

13.7

MIOP
3C BIOP

BUFFER
MEMORY

FIGURE 13-4, DISK READ VIA BIOP

13.9

MAJOR COMPCNENTS

ACOM DEMON ACTIVITY

CTEWM DRQUo P ACHVTY
DISK DEMON ACTIVITY

DISK INTERRUPT ANSWERING

DISK ERROR RECOVERY ACTIVITY (i’E;ﬁZEZZ*<i>

DISK DRIVING ROUTINES

13,11

ACOM DEMON ACTIVITY

syC N~
| B =T S
NORMALLY BUILDS INITIAM EDAL ND PLACES THEM ON EXECUTABLE
QUEUE IN DCB. ~—

NORMALLY INITIATES DISK 1/0,
ACTIVATES DISK DEWON, (D\S¢0)
DIOP:
STARTS 1/0 ON READS.
SENDS INITIAL EDALS TO BIOP ON WRITES,
SENDS FIRST STATUS TO MIOP ON WRITES.
BIOP:
STARTS 1/0 ON READS.

MOVES DATA BETWEEN CENTRAL AND BUFFER MEMORY FOR DIOP,

GRTItE CEQ
SENDS RESPONSE 70 CPU,

EXECUTES OFTEN IN NON-INTERRUPTIBLE MODE.

MIOP:

RESIDES IN BUFFER MEMORY AS ACOM OVERLAY.

o

2
Ao

074

13,12

DISK DEMON ACTIVITY

NUCLEUS OF THE DISK SUBSYSTEM

EVALUATES REQUESTS PENDING ON A DISK CHANNEL'S DONE QUEUE
BUILDS EDALS AS NEEDED (SO 3 OM EDAL QUEUE)

PRIMARY RESPONSIBILITY IN DIOP IS MOVING DATA BETWEEN LOCAL AND
BUFFER MEMORY,

SENDS EDALS TO BIOP

IN BIOP TRANSFERS DISK DATA OVER HIGH SPEED CHANNEL

CREATES DISK ERROR RECOVERY ACTIVITY IF NECESSARY

USUALLY ACTIVATED BY DISK INTERRUPT ANSWERING

INITIALLY ACTIVATED BY ACOM DEMON

EXECUTES OFTEN IN NOMN-INTERRUPTIBLE MODE

RESIDES IN BUFFER MEMORY AS DISK OVERLAY

SENDS DOME STATUS TO MIOP

X %
/ \/Mﬁ? ((}) ﬁ%XMISK INTERRUPT ANSHERING

ENTERED WHEN A DISK CHANNEL INTERRUPTS

INITIATES NEXT I/0 AND SCHEDULES DISK DEMON OR DISK ERROR RECOVERY
EXECUTES IN NON-INTERRUPTIBLE MODE

MOVES FINISHED EDALS TO DONE QUEUE,

ALLOCATES LOCAL BUFFERS ON READS.

DEALLOCATES LOCAL BUFFERS ON WRITE
DISK DRIVING ROUTINES

PERFORM MOST OF THE PHYSICAL 1/0

USED BY DISK INTERRUPT ANSWERING, DISK DEMOM., ACOM DEMON
AND DISK ERROR RECOVERY,

EXECUTE IN NON-INTERRUPTIBLE MODE
ROUTINES AVAILABLE FOR:
SELECTING HEAD AND CYLINDER
SETTING UP DISK BUFFERS

BUILDING AND SENDING A DAL
INITIATING DISK 1/0

13.14

oy o< DISK ERROR RECOVERY ACTIVITY
LUE

PERFORMS A SET, TABLE DRIVEN, ERROR RECOVERY ALGORITHM
CPU IS NOTIFIED OF ANY UNRECOVERABLE ERRORS
SCHEDULED BY DISK INTERRUPT ANSWERING
TERMINATES WHEN RECOVERY ALGORITHM COMPLETED
ENE L A# /g

EXECUTES 2GS+ [N NON-INTERRUPTIBLE MODE

RESIDES IN BUFFER MEMORY AS ERRECK OVERLAY

13,15

DISK CHANNEL CONTROL TABLES

DISK CONTROL BLOCK |
S

40g PARCELS IN LEN6TH + Cofi. MEO S /(% mj@,{}

ONE FOR EACH DISK CHANNEL

CONTAINS STATUS AND NECESSARY INFORMATION TO DETERMINE A CHANNEL'S
STATE.,

USED BY DISK DEMON., DISK INTERRUPT ANSWERING, AND DISK ERROR
RECOVERY,

KERNEL MAINTAINS A DCB POINFER TABLE.

DISK READ AHEAD MODULE
6 PARCELS IN LENGTH
ONE FOR EACH SECTOR READ AHEAD ON A CHANNEL
LOCATED AFTER DCB

POINTED TO BY DCB

PARCEL
0 FLAG:0=DATA ON DISK: 1=DATA IN LOCAL: 2=DATA IN MOS
1 CYLINDER (11): HEAD (5)
2 SECTOR (7): UNUSED (9)
3 MOS ADDRESS OF RUFFER (UPPER)
4 MOS ADDRESS OF BUFFER (LOWER)
5 LOCAL BUFFER ADDRESS

FIGURE 13-5, DISK READ AHEAD MODULE

15,16

/57AX7%%*1E;fv0 DATH

PARCEL
0 [FLAG:0=NOT BUSY: 1=READ; 2=WRITE; 4=R.A,; 10=SEEK: 2N=ERROR REC..
100=ERRECK; 4N=CHANNEL WALT; LO0OSERRECK: 200=ACTIVATE ERRECK

1 | CURRENT CYLINDER & HEAD

> | ExccUTABLE DAL QUEWE HEAD CAERTY

3 | EXECUTABLE DAL QUELE TAIL

4 | EXECUTABLE DAL QUEUE POPULATION

5 | MASTER DAL QUELE HEAD

6 | MASTER DAL QUELE TAIL

7 | DISK SELECTED BITS (2) DISK TYPE (5), DISK CHANNEL (9)
10 | READ AHEAD (R.A.) COUNT CONSTANT (RASNUM)
11 | READ AHEADS DONE FOR CURRENT REQUEST
12 | POINTER TO READ AHEAD MODULE TABLE

13 | # OF R.A. SECTORS ACTUALLY USED

14 | DISK DAL DONE QUEUE HEAD
15 | DISK DAL DONE QUEUE TAIL
16 | SECTORS OF READ - UPPER
17 | SECTORS OF READ - LOWER
20 | ERROR COUNT
21 | UNRECOVERABLE ERRORS
22 | SECTORS OF WRITE - UPPER
23 1 SECTORS OF WRITE - LOWER
24 | # OF TIMES RETRIED
25 | FLAG: TYPE OF ERROR
26 | SEQUENCE # OF ERROR RECOVERY PROCEEDINGS
27 | CYLINDER, HEAD OF ERROR
30 | SECTOR, OFFSET AT ERROR
31 | ORIGINAL ERROR STATUS FOR THIS RECOVERY ATTEMPT
32 | INTERLOCK STATUS SAVE CELL
33 | DA 17700t —HEA GRogP— MNWED

34 | pUSH/POP CELL, FIRST (FOR ERRECK)
35 | PUSH/POP CELL, LAST (FOR ERRECK)
36 | TEMPORARY STATUS CELL

37 | LINC FOR DISK QUEUE
40 | FIRST ENTRY IN READ AHEAD MODULE

FIGURE 13-6. DISK CONTROL BLOCK

13.17

DISK REQUEST CONTROL PACKETS

CPU 1/0 REQUEST PACKET

50g PARCELS IN LENGTH

CONTAINS INFORMATION NECESSARY FOR I/0 SUBSYSTEM TO ACCOMPLISH 1/0

SENT QVER CPU LOW SPEED CHANNEL TO MIOP
RETURNED WHEN I/0 FINISHED

MIOP USES PACKET TO BUILD A DISK ACTIVITY LINK FOR THIS REQUEST,
NORMALLY ONLY ONE PACKET PER DISK CHANNEL IN I0S (EXCEPT
IF WRITE BEHIND),

PARCEL

0 DESTINATION I.D, ("C1")

1 SOURCE 1.D, ("A" = DISK: “B" = STATION)

2 UNUSED

3 UNUSED

4 UNUSED

5 UNUSED

b UNUSED

/ UNUSED

10 COS REQUEST I.D, (PSEUDO CHANNEL)

11 ! ! ! (TASK XP)

12 ! !) (BIPOLAR ADDRESS OF DCT)
13 ! ! ! (BIPOLAR ADDRESS OF EAQT)
14 CENTRAL MEMORY ADDRESS OF DATA UPPER

15 CENTRAL MEMORY ADDRESS OF DATA LOWER

16 | FUNCTICN (8 BITS): STATUS (8 BITS)

17 UNUSED (5 BITS): IOP (2 BITS): CHANNEL (9 BITS)

20 | CYLINDER (11 BITS): HEAD (5 BITS) |
21 SECTOR (7 BITS): OFRSEFFOR PARTTADSECTORS (RBIK)
22 LENGTH IN WORDS UPPER

23 LENGTH IN WORDS LOWER

24 | FOR IOS USE

25 FOR I0S USE
26 UNUSED

27 FOR I0S USE

FIGURE 13-7., COS I/0 REQUEST PACKET

15,18

DISK 1/0 DISK ACTIVITY LINKS

MASTER DAL:
40g PARCELS IN LENGTH
BUILT BY MIOP FROM THE CPU 1/0 REQUEST PACKET
ONE FOR EACH I/0 REQUEST
PASSED TO DISK SUBSYSTEM IN APPROPRIATE IOP

DISK SUBSYSTEM RETURNS MASTER DAL TO MIOP WHEN I/0 REQUEST
IS COMPLETED,

DISK SUBSYSTEM USES MASTER DAL AS A TEMPLATE FOR BUILDING
EXECUTABLE DALS.

EXECUTABLE DAL:
40g PARCELS IN LENGTH
BUILT BY DISK SUBSYSTEM FROM A MASTER DAL
ONE FOR EACH SECTOR OF DISK REQUESTED

USED BY DISK SUBSYSTEM TO KEEP TRACK OF WHERE EACH SECTOR OF
DATA 1S,

USUALLY PASSED BY DIOP TO BIOP FOR HIGH SPEED TRANSFER
REQUESTS.,
RETURNED WHEN TRANSFER COMPLETE

ALSO REFERRED TO AS SLAVE DAL OR EDAL

PARCEL

LINK TO MEXT MASTER DAL IN CHAIN (O IF LAST)
FUNCTION OF MSG: 1=R/W DISK: 2=RELEASE MOS DAL:
5=STATUS TO COS

MOS UPPER OF THIS DAL

MOS LOWER OF THIS DAL

COUNT OF STATUS SENT TO MIOP

ACCUMULATOR SENT VIA EMSGIOP

CHANNEL MESSAGE RECEIVED ON

UNUSED

DESTINATION ID

SOURCE ID

SEQUENCE # OF LAST E-DAL BUILT

READ CONTROL. # SECTORS MOVED TO CPU BY BIOP

OF FULL SECTORS TO MOVE (COMPUTED FROM 32 & 33)-
UNUSED

UNUSED

UNUSED

CPU REQUEST IDENTITY

" " "

" " n"

CENTRAL MEMORY ADDRESS (UPPER)
CENTRAL MEMORY ADDRESS (LOWER)
FUNCTION (8): STATUS (R)

UNUSED (5): IO0P (2): CHANNEL (9)
CYLINDER (11): HEAD (5)

SECTOR (7): OFFSET (9)

LENGTH IN WORDS (UPPER)

LENGTH IN WORDS (LOWER)

IF ERROR, ORIGINAL ERROR STATUS
IF ERROR, INTERLOCK STATUS

IF ERROR, CYLINDER FROM DK*:1
UNUSED |

FIGURE 13-8, MASTER DISK ACTIVITY LINK.

15.20

PARCEL

LINK TO NEXT EDAL IN CHAIN

FUNCTION OF MSG: 3=CENTRAL TO MOS: 4=MOS TO CENTRAL:
6=BIPOLAR TO MOS DN: 7=MOS TO BIPOLAR DN
MOS UPPER OF THIS DAL |
MOS LOWER OF THIS DAL

UNUSED

ACCUMULATOR SENT VIA EMSGIOP

CHANNEL MESSAGE RECEIVED ON

UNUSED

ADDRESS OF MASTER DAL

FLAG: 1 IF EDAL FOR LAST SECTR ¢
SEQUENCE # OF THIS EDAL on P
DATA CONTROL: 0=DATA IN CENTRALA 1=DATA IN LOCAL:
2=DATA IN MOS

LOCAL MEMORY ADDRESS OF THIS EDAL FOR BIOP RESPONSE
UNUSED

UNUSED

UNUSED

UNUSED

UNUSED

UNUSED

UNUSED

CENTRAL MEMORY ADDRESS ~(UPPER)

CENTRAL MEMORY ADDRESS (LOWER)

FUNCTION (8); STATUS (%)

UNUSED (5); 10P (2); CHANNEL (9)
CYLINDER (11); HEAD (5)

SECTOR (7); OFFSET (9)

UHUSED

SIZE OF TRANSFER (DEFAULT 1000g)

MOS BUFFER ADDRESS (UPPER)

MOS BUFFER ADDRESS (LOMWER)

UHUSED

LOCAL DISK BUFFER ADDRESS

FIGURE 13-8, EXECUTABLE DISK ACTIVITY LINK,

15,21

10,

11,

12,

DISK READ SEQUEMCE VIA DIQP

CPU TO MIOP: CPU 1/0 REQUEST PACKET (CDEM)
MIOP TO MOS: MASTER DAL TO MIOP MESSAGE AREA (CDEM)

MIOP TO DIOP: MOS ADDRESS OF MASTER DAL IN ACCUMULATOR
(A=10xxxx)

MOS TO DIOP: READ MASTER DAL INTO LOCAL MEMORY (ACOM)
4a, DIOP BUILDS EDALS AS NEEDED (DISKD
4g, DIOP SETS UP LOCAL AND MOS DISK BUFFERS (DISK)

DISK TO DIOP: DATA INTO LOCAL MEMORY (DISK)

. . DIOP TO MOS: DATA TO MOS (DISKD

DIOP TO MOS: EDAL (PARCEL 1=4) TO DIOP MESSAGE AREA (DISK)

DIOP TO BIOP: MOS ADDRESS OF EDAL IN ACCUMULATOR (A=12xxxx)
8a, BIOP SETS UP LOCAL BUFFER CACOM)

MOS TO BIOP: DATA INTO LOCAL MEMORY C(ACOM)
BIOP TO CPU: DATA INTO CENTRAL MEMORY C(ACOM)
BIOP TC DIOP: REQUEST COMPLETED:PARCEL 1 OF EDAL IS 7 (ACOM)

DIOP TO MIOP: REQUEST CCMPLETED:PARCEL 1 OF MDAL IS 5 (DISK)

. MIOP 7O CPU:; CPU 1/0 REQUEST PACKET: PARCEL 16, BYTE 1 IS O

(ACOM)

13,22

MIOP BUFFER
MEMORY

M-DAL MIOP
11 DAL AREA

77 E-DAU pop
DAL AREA

DATA

e

DISK 5

» DATA

FIGURE 13-10 . DISK READ VIA DIOP

15,23

CHAPTER 14

CONCENTRATOR SUBSYSTEM

FUNCTIONS

ALLOWS APPARENT DIRECT COMMUNICATION BETWEEN THE CPU AND A
FRONT END,

LOOKS LIKE A CRAY-1 S CHANNEL PAIR TO FRONT END,
THUS NO CHANGES NECESSARY TO EXISTING
FRONT-END STATIONS,

MAY REDUCE THE NUMBER OF INTERRUPTS TO THE CPU PER FROMT-END
MESSAGE.,

15,1

CHARACTERISTICS

RESIDES IH BUFFER MEMCRY AS OVERLAYS.

EXECUTES MOSTLY IN MIOP WITH HIGH SPEED TRANSFERS TO CPU THROUGH
BIOP,
ONE ACTIVE CONCENTRATOR FOR EACH FRONT-EMD CHANNEL PAIR.,

MAY HAVE SEVERAL LOGICAL ID'S LOGEGED ON TO ONE
CONCENTRATCR.

EACH ID MAY HAVE A DIFFERENT SEGMEMT SIZE.

CONTROLLED VIA CONC AND ENDCONC KERMEL CONSOLE COMMANDS,

14.3

MAIN COMPONENTS

CONC ACTIVITY:

INITTALIZES CONCENTRATOR RESOURCES

CREATES FEREAD, FEWRIT, CONCO AND COMCT ACTIVITIES
CONCT ACTIVITY:

ACCEPTS MESSAGE FROM A FRONT END VIA FEREAD,

PUTS MESSAGE IN BUFFER MEMORY,
CONCO ACTIVITY:

SENDS A MESSAGE TO A FRONT END VIA FEMRIT,

MESSAGE IS IN BUFFER MEMORY,
FEREAD ACTIVITY:

READS A MESSAGE FROM A FRONT END INTO LOCAL MEMORY,
FEWRIT ACTIVITY:

¥RITES A MESSAGE TO A FRONT END FROM LOCAL MEMORY,
CRAYMSG OVERLAY:

GETS CENTRAL MEMORY ADDRESSES FOR MESSAGES VIA CHANNEL
EXTENSION TABLE (CXT),

AWAKENS MSGIC ACTIVITY IN BIOP TO MOVE MESSAGES INTO OR
OUT OF CENTRAL MEMORY,

1.5

COMCENTRATOR ACTIVITY INTERACTION

INTERACTION IS VIA SYNC SERVICE REQUEST CALLS.,

A SYNC SERVICES A 2 PARCEL PUSH QUEUE IN LOCAL MEMORY,

IF QUELE IS EMPTY, A SYNC CALL RESULTS IN A PUSH
ON 70 THE QUELE.

IF FULL. QUEUED ACTIVITY IS POPPED OFF THE QUEUE

AND PLACED ON THE CP QUEUE, THE SYNCING ACTIVITY
REGAINS CONTROL.

“SYNC"ING ACTIVITIES MAY PASS ONE PARCEL MESSAGES THROUGH
PARCELS 17 AND 13 OF THEIR ACTIVITY DESCRIPTORS,

14.6

Queue

l FEWRIT

CTSWQ

CONC

Figure 14-1.

Queue CL@WO
1]

CONCO

QUGUQ CL@CO
A
Y

CONCI |e——
A

Queue | CL@RQ
A

FEREAD

Queue |[CTSRQ

1.7

CHKSMO
SRCHID
CHKSMI
CONCERR
FREEBUFS
CRAYMSG
~ /< REMVID
LOGOFF
SRCHID
LOGONA |
LOGONB |= > MULTIPLY
LOGONC
ENTRID
LOGOFF

Tree structure of Concentrator software

10,

11,

12,

13,

14,

OVERVIEW OF FRONT-END MESSAGE FLOW

FRONT END SENDS MESSAGE CONSISTING OF LCP AND POSSIBLY
SUB-SEGMENTS AND LTP TO MIOP, (FEREAD)

MIOP WRITES THE MESSAGE TO BUFFER MEMORY. (CONCI)

MIOP GETS CENTRAL MEMORY ADDRESSES FROM CPU FOR INPUT MESSAGE,
(CRAYMSG)

MIOP SENDS ADDRESS INFORMATION TO BIOP VIA BUFFER MEMORY,
(CRAYMSG)

BIOP READS THE MESSAGE INTO LOCAL MEMORY. (MSGIO—»MSGIN)
BIOP WRITES THE MESSAGE TO CENTRAL MEMORY, (MSGIN)
BIOP TELLS MIOP IT IS DONE VIA BUFFER MEMORY., (MSGIO)

MIOP TELLS CPU MESSAGE IS IN CENTRAL MEMORY. (CRAYMSG)
8, CPU PROCESSES MESSAGE AND BUILDS A RESPONSE., (SCP)

MIOP RECEIVES RESPOMSE MESSAGE CENTRAL MEMORY ADDRESSES
FROM CPU. (CRAYMSG)

MIOP SENDS ADDRESS INFORMATION TO BIGP VIA BUFFER MEMORY,
(CRAYMSG)

BIOP READS CPU RESPONSE MESSAGE INTO LOCAL MEMORY,
(MSGI0 —>MSGOUT)

BIOP WRITES CPU RESPONSE MESSAGE TO BUFFER MEMORY,
(MSGOUT)

MIOP READS RESPONSE MESSAGE INTO LOCAL MEMORY, (CONCO)
MIOP SENDS RESPONSE MESSAGE TO FRONT END. (FEWRIT)

14, R

FRONT END

‘\ ’ BUFFER
Ly 14 MEMORY
— 1
3 — e |
MIOP — 7 |
— .~ S6
9 2 -
1
6 /
4
» - RES.
__-———-E"“
BIOP 1
\,_..../
— —
10

FIGURE 14-2., FRONT-END MESSAGE FLOW

14,9

CHAPTER 15

STATIOM SUBSYSTEM

FUNCTIONS

PROVIDES A MEANS FCR OPERATOR-CPU COMMUNICATION,
CONTROLS OPERATOR CONSOLES

MAY BE USED AS A BATCH JOB ENTRY STATION,
JOBS OR DATASETS STAGED FROM TAPE

MAY ACCEPT CPU QUTPUT AND DISTRIBUTE IT TO MAG TAPE (R PRINTER

ALLOWS ON-LINE DEBUGGING OF CPU

<>W\/‘S
MM/ ~ @Mﬂo/g

15.1

CHARACTERISTICS

RESIDES IN BUFFER MEMORY AS OVERLAYS,

EXECUTES MOSTLY IN MIOP WITH SOME HIGH SPEED TRANSFERS THROUGH
BIOP.
MAY HAVE MORE THAN ONE STATION ACTIVE AT A TIME,
EACH STATION MUST HAVE A DEDICATED CONSOLE.
THEY- MUST SHARE THE EXPANDER PERIPHERALS.
WO OR MORE CONSOLES MAY BE SUPPORTED BY
ONE STATION,
COMMUNICATES WITH CPU IN STANDARD CRAY MESSAGE FORMAT,

APPEARS TO BE JUST ANOTHER FRONT-END STATION TO CPU,

15.3

COMMUNICATION PROTOCOL

A MESSAGE IS A VARIABLE SIZE SET OF TRANSMISSIONS BETWEEN A
STATION AND THE CPU,

IT IS ALWAYS HEADED BY A LINK CONTROL PACKAGE (LCP)

MAY CONTAIN ONE OR MORE ADDITIONAL TRANSMISSIONS TERMED
SUB-SEGMENTS.,

A GROUP OF SUB-SEGMENTS ASSOCTATED WITH ONE
LCP IS TERMED A SEGENT,

MAXIMUM SEGMENT SIZE IS DETERMINED
BY CPU START UP PARAMETER,

SUB-SEGMENT SIZE IS TETERMINED BY STATION.

MAY CONTAIN A LINK TRAILER PACKAGE (LTP) FOR VALIDATING
THE MESSAGE.

DATASETS ARE TRANSFERRED IN ONE OR MORE MESSAGES.

AL OF THE MESSAGES RELATED TO A SINGE DATASET IS
TERMED A STREAM,

STREAMS ARE MAINTAINED THRCUGH STREAM CONTROL BYTES
PRESENT IN THE LCP,

THE MAXIMUM NUMBER OF STREAMS (UP TO 8 INPUT AND
& QUTPUT) IS DETERMINED BY THE STATION.

15.4

TRANSMISSION 1

TRANSMISSION 2

TRANSMISSION 3

TRANSMISSION N+1

TRANSMISSION N+2

LCP

SUBSEGMENT 1

SUBSEGMENT 2 _ SEGMENT

SUBSEGMENT N

LTP - - - OPTIONAL

FIGURE 15-1. CRAY MESSAGE FORMAT

15.5

MESSAGE

LINK CONTROL PACKAGE

ALWAYS CONSISTS OF SIX b4 BIT WORDS (24 PARCELS)
CONTAINS INFORMATION NECESSARY TO PROCESS ITS' ASSOCIATED SEGMENT,

ALSO PROVILES INFORMATION CONCERNING ALL STREAMS,

PARCEL
0 | DESTINATION ID C ‘Cl’ or STATION LOGOM ID)
1 | SOWRCE ID € “C1" OR STATION LOGON ID)
2 | NUMBER OF SUBSEGMENTS (NSSG): MESSAGE NUMBER (MN)
3 | MESSAGE CODE (MC): MESSAGE SUB-CODE (MSC)
4 | STREAM NUMBER (STN): SEGMENT NUMBER (SGN) (UPPER)
5 | SEGMENT NUMBER (LOWER)
6 | SEGMENT BIT COUNT (SGBC) (UPPER)
7 | SEGMENT BIT COUNT (SGBC) (LOWER)
10 | UNUSED
11 | UNUSED
12 | UNUSED
13 | UNUSED
14 | INPUT STREAM CONTROL BYTE 1 (ISCBp): ISCB,
15 | ISCBg ; 1SCBy
16 | ISCBg ; 1SCBg
V| IS ; 1SCBg
20 | 0SCB ; 0SCBy
21 | 0SChs ; OSCRy
23 | OSCB; ; 0CBq
24 | UNUSED
25 | UNUSED
26 | UNUSED
27 | UNUSED

FIGURE 15-2, LIMNK CONTROL PACKAGE

15,6

STREAM CONTROL BYTES

PROVIDE A MEANS OF PASSING STREAM STATUS INFORMATION,

USED BY BOTH THE STATION AND THE CPU,

OCTAL CODE ACRONYM MEANING SENDER RECEIVER
00 IDL IDLE X X
01 RTS REQUEST TO SEND : X
02 PTR PREPARING TO RECEIVE X
03 SHD SENDING X
04 RCV RECEIVING X
05 SUS SUSPEND X
06 END END OF DATASET X
07 SVG SAVING DATASET X
10 SVD DATASET SAVED X
11 PPN POSTPONE X
12 CAN CANCEL X X
13 MCL MASTER CLEAR X X

TABLE 15-1. STREAM CONTROL BYTES,

15.7

MAIN COMPONENTS

STATION OVERLAY:

INITIALTZES A STATION WHEN STATION" IS TYPED IN AT
THE MIOP KERNEL CONSOLE.,

ALL OTHER STATION COMMAMDS TYPED IN A
A STATION CONSOLE.,

INITIATES ONE SET OF STATION CONSOLE HANDLING ACTIVITIES:
KEYBD, CLI, AND DISPLAY

KEYBD ACTIVITY:

RECEIVES CHARACTERS EMTERED AT THE STATIOM CONSOLE
KEYBOARD,

ONE KEYBD ACTIVITY FOR EACH ACTIVE STATION.

CALLS THE CONSL OVERLAY TO ECHO THE CHARACTERS,

ACTIVATES THE CLI ACTIVITY TO PROCESS COMMANDS,
CLI ACTIVITY:

INTERPRETS AMD EXECUTES THE OPERATOR COMMANDS.

OME CLI ACTIVITY FOR EACH ACTIVE STATION,

GETS COMMANDS FROM A CIRCULAR BUFFER FILLED BY THE

KEYBD ACTIVITY, VALIDATES THEM, AND CALLS APPROPRIATE
OVERLAY (COMMO-13) TO PROCESS THEM,

15.8

DISPLAY ACTIVITY:
FORMATS THE OPERATOR DISPLAY,
ONE DISPLAY ACTIVITY FOR EACH ACTIVE STATION.

RESPONDS TO REQUESTS FROM CLI AND CALLS APPROPRIATE
DISPLAY OVERLAY (DISPO1, DISPO2).

PROTOCOL ACTIVITY:
MANAGES STATION-CPU COMMUNICATIONS FOR AL ACTIVE STATIONS.,
INITIATED BY LOGON COMMAND,
TERMINATED BY LOGOFF OR COMMUNICATION BREAKDOWN,
RESPONSTBLE FOR:
GENERATING MESSAGES SENT TO CPU,
VALIDATING CPU RESPONSES,
MAINTAINING STREAM STATES,
CREATING ACTIVITIES TO MANAGE DATASET TRANSFERS,
SCHEDULING MESSAGES TO CPU.
DISTRIBUTING CPU RESPONSES.
STAGEIN ACTIVITY:
STAGES A DATASET FROM THE I/0 SUBSYSTEM TO CPU,
CREATED BY PROTOCOL ACTIVITY,

REQUEST ORIGINATES FROM A SAVE QR SUBMIT COMMAND FROM
OPERATOR., OR AN ACQUIRE MESSAGE FROM A JOR IN CPU,

OME FOR EACH ACTIVE INPUT STAGING OPERATION, .

15,9

STAGEOUT ACTIVITY:
STAGES A DATASET FROM CPU TO THE I/0 SUBSYSTEM,

CREATED BY THE PROTOCOL ACTIVITY WHEN CPU INTIATES
STAGING ON AN OUTPUT STREAM.

OME FOR EACH ACTIVE STAGING OPERATION,

15.11

STATION ACTIVITY INTERACTION

ACTIVITIES PASS PARAMETERS VIA SHARED LOCAL MEMORY AREAS,

POINTERS TO THESE AREAS (TABLES) ARE MAINTAINED
IN GLOBAL REGISTERS,

THUS AN ACTIVITY MAY MODIFY AM ENTRY IN OME OF
THESE TABLES AND PASS CONTROL TO ANCTHER ACTIVITY
WITHOUT PASSING THE TABLE ADDRESS AS A PARAMETER,

ACTIVITIES INTERACT VIA THE PUSH, POP, AND TPUSH SERVICE
REQUESTS.

ACTIVITIES MAY PASS PARAMETERS AND INTERACT VIA THESE SERVICE
REQUESTS BY USING THE SIGNAL AND WATCH MACROS.,
THESE SERVICE A 3 PARCEL AREA, 2 OF WHICH ARE

USED AS A QUELE, AND THE THIRD FOR PASSING
CODED MESSAGES TO ANOTHER ACTIVITY,

15.13

OVERVIEW OF STATION-CPU MESSAGE FLOW

1. OPERATOR INITIATES STAGING OR AN OPERATOR COMMAND.,

1a, MIOP BUILDS A MESSAGE CONSISTING OF AN LCP
AND POSSIBLY SUBSEGMENTS.

2, MIOP WRITES THE MESSAGE TO BUFFER MEMORY.
3, MIOP GETS CENTRAL MEMORY ADDRESSES FROM CPU FOR INPUT MESSAGE.
4, MIOP SENDS ADDRESS INFORMATION TO BIOP VIA BUFFER MEMORY,
5. BIOP READS THE MESSAGE INTO LOCAL MEMORY,
6. BIOP WRITES THE MESSAGE TO CENTRAL MEMORY,
/. BIOP TELLS MIOP IT IS DONE VIA BUFFER MEMORY.
8, MIOP TELLS CPU MESSAGE IS IN CENTRAL MEMORY,
8a. CPU PROCESSES MESSAGE AND BUILDS A RESPONSE.

9, MIOP RECEIVES RESPONSE MESSAGE CENTRAL MEMORY ADDRESSES FROM
CPU.

10, MIOP SENDS ADDRESS INFORMATION TO BIOP VIA BUFFER MEMORY,
11. BIOP READS CPU RESPONSE MESSAGE INTO LOCAL MEMORY.

12, BIOP WRITES CPU RESPONSE MESSAGE TG BUFFER MEMORY.

13, MIOP READS RESPONSE MESSAGE INTO LOCAL MEMORY,

14, IF APPROPRIATE, MIOP SENDS RESPONSE TO DISPLAY,

15.14

BUFFER
MEMORY

FIGURE 15-3 ,

15.15

STATION-CPU MESSAGE FLOW

CHAPTER 16

INTERACTIVE STATION
SUBSYSTEM

FUNCTIONS

ALLOWS OPERATOR TO RUN JOBS IN THE CPU IN AN INTERACTIVE
FASHION,

CHARACTERISTICS

RESIDES IN BUFFER MEMORY AS OVERLAYS

EXECUTES MOSTLY IN MIOP WITH HIGH SPEED TRANSFERS TO CPU
THROUGH BICP,

MAY SUPPORT SEVERAL CONSOLES
CONSISTS OF TWO PARTS:
INTERACTIVE CONCENTRATOR

INTERACTIVE CONSOLE

16.1

INTERACTIVE CONCENTRATOR COMPONENTS

TAIOP ACTIVITY:

INITIALIZES THE INTERACTIVE CONCENTRATOR AND ACCEPTS
COMMANDS FOR IT,

CURRENT COMMANDS ARE LOG, LOGOFF, POLL AND END.

CREATES THE TAIOPL ACTIVITY

TAIOPL ACTIVITY:
MAIN CONTROL OF INTERACTIVE CONCENTRATOR

TAIOPL OVERLAY CALLS IAFUNC, IAMSG AMD CRAYMSG OVERLAYS,

TAFUNC OVERLAY:
PROCESSES INTERACTIVE CONCENTRATOR COMMANDS.
TAMSG OVERLAY:

DISTRIBUTES RESPONSES TO INTERACTIVE CONSOLES,

CRAYMSG OVERLAY:

SENDS MESSAGES TO THE CPU

16.2

]

TIAIOP

- ~-—--» CREATE
j STGNAL (AL
v

: QUEUE
\ WATCH

AN y =)

IAIOP1

|
!

—

¢

‘
AMSG | TAFUNC { CRAYMSG

2 4

REMVID

CRAYMSG | ENTRID

FIGURE 16-1, TREE STRUCTURE OF INTERATIVE
CONCENTRATOR SOFTWARE

16.3

INTERACTIVE CONSOLE COMPONENTS

TACON ACTIVITY:
INITIALIZES THE INTERACTIVE CONSOLE

CREATES THE KEYBD ACTIVITY FOR INPUT AND THE IAOUT
ACTIVITY TO UPDATE THE SCREEN,

PASSES CONTROL TO THE IACONL OVERLAY.

TACONL ACTIVITY:
MAIN CONTROL ACTIVITY FOR THE INTERACTIVE CONSOLE,
ONE PER INTERACTIVE CONSOLE

PROCESSES INPUT FROM THE KEYBOARD BUFFER AMD
NOTIFIES THE INTERACTIVE CONCENTRATCR.

TACMD OVERLAY:
PROCESSES COMMANDS TO THE INTERACTIVE CONSOLE,
COMANDS ARE PRECEDED BY A COMMAND CONTROL CHARACTER (/)

CURRENTLY SUPPORTED COMMANDS ARE:
ABORT
ATTENTION
BYE
CHANGE
COMENT
FOF
LOGOFF
LOGON

16.4

«—>
—>
————>

IACON

AN
RN

\\ ~
N AN

e

CALL
GOTO
CREATE

E

USURP ICONSL

TIACON KEYBD

-TAOUT

IACMD ! ERROR

i 1
1
i

- ICONCL

ERROR

. b B
l ICONSL = . USURP
.

FIGURE 16-2.

TREE STRUCTURE OF INTERACTIVE
CONSOLE SOFTWARE

16.5

CHAPTER 1/

DEADSTART

OVERVIEW

10S IS INITIALLY DEADSTARTED FROM TAPE.

SUBSEQUENT RESTARTS MAY BE FROM DISK.

THE CPU MAY BE DEADSTARTED FROM TAPE OR DISK.

SYs T ;/u
%«w)N ¢

<5bff>5> AA CQf}%TV&}JL
W/&' Dw //IA %MM a'(;%

17.1

1/0 SUBSYSTEM DEADSTART

MIOP IS INITIALLY DEADSTARTED FROM TAPE THROUGH THE EXPANDER
CHANNEL .

MIOP INITIALIZES THE BUFFER MEMORY CONFIGURATION AMD WRITES
A COPY OF THE KERNEL TO BUFFER MEMORY,

MIOP THEN DEADSTARTS THE OTHER IOPS IN THE CONFIGURATIOM
WHICH CAUSES THE KERNEL TO BE READ IN FROM BUFFER MEMORY,

THESE IOPS ARE THEN INITIALIZED BY SYSS OVERLAY.

THE AMAP OVERLAY IS REFERENCED AT DEADSTART BY ALL I0PS FOR
CONFIGURATION INFORMATION,

17,2

AMAP OVERLAY

THE AMAP QVERLAY IS USED TO PROVIDE CONFIGURATION IMFORMATION
FOR 10S INITIALIZATIONM,

CHANGES TO AMAP ARE MADE USING THE UPDATE UTILITY,

THERE ARE THREE TYPES OF TABLES IN AMAP:

INITIAL AMAP TABLE

[0P INFORMATION TABLE

CHANNEL CONFIGURATION TABLE

17,3

THE INITIAL AMAP TABLE IS 129 PARCELS IN LENGTH AND IS USED TO
PROVIDE SOME BUFFER MEMORY INFORMATION AND TO POINT TO THE IOP
INFORMATION TABLES,

PARCEL DESCRIPTION
(IN AMAP)
*5 BUFFER MEMORY SIZE IN 131K WORD UNITS
6 NUMBER OF I/0 PROCESSORS IN SUBSYSTEM
/ MIOP BUFFER MEMORY MESSAGE AREA SIZE IN WORDS
10 BIOP BUFFER MEMORY MESSAGE AREA SIZE IN WORDS
1 10P-2 BUFFER MEMORY MESSAGE AREA SIZE IN WORDS
12 I0P-3 BUFFER MEMORY MESSAGE AREA SIZE IN WORDS
13 POINTER TO MIOP INFORMATION TABLE
14 POINTER TO BIOP INFORMATION TABLE
15 POINTER TO IOP-2 INFORMATION TABRLE (O IF NOT
CONFIGURED)
16 POINTER TO IOP-3 INFORMATION TABLE (O IF NOT
CONFIGURED)

TABLE 17-1, INITIAL AMAP TABLE

* SINCE THE OVERLAY MACRO GEMERATES A 6-PARCEL HEADER, THIS
PARAMETER MUST BE SPECIFIED AS THE FP PARAMETER ON THE OVERLAY
MACRO, AND NP MUST BE O, FOR EXAMPLE:

LOCATION | RESULT OPERAND COMMENT

OVERLAY AMAP NP=(, FP=4 HALF MILLION WORDS

17.4

THE IOP INFORMATION TABLE IS 7 PARCELS PER I/0 PROCESSOR AND IS
USED TO PROVIDE LOCAL AND BUFFER MEMORY ALLOCATION INFORMATION
AND TO POINT TO THE CHANNEL CONFIGURATION TABLE.

OFFSET DESCRIPTION
0 BUFFER MEMORY ALLOCATED TO THIS IOP IN 1K WORD UNITS
1 NUMBER OF 512-WORD BUFFERS TO RESERVE IN LOCAL MEMORY
2 NUMBER OF SOFTWARE STACK AREAS TO ALLOCATE IN
BUFFER MEMORY,
3 SIZE OF OVERLAY MEMORY IN LOCAL MEMORY.
4 NUMBER OF MESSAGE PACKETS (DALS) TO RESERVE IN LOCAL
MEMORY,
5 EOCAL MEMORY SIZE IN 65K PARCEL UNITS: THIS IS ALWAYS
6 POINTER TO CHANNEL CONFIGURATION TABLE FOR THIS IOP,

TABLE 17-2. [IOP INFORMATION TABLE

17.5

THE CHANNEL CONFIGURATION TABLE IDENTIFIES DEVICES ATTACHED TO
CHANNELS 6 TO 47¢ OF AN I/0 PROCESSOR. THE STATUS OF THE
CHANNEL IS ALSO INDICATED,

ENTRIES IN THIS TABLE ARE DEFINED VIA THE CHANNEL MACRO,
THERE ARE TWO TYPES OF TABLE ENTRIES:
CHANNEL NUM

nuM - HIGHEST CHANNEL NUMBER DESCRIBED BY TABLE,

CHANNEL

(cHANNEL) , ST=sTATUS. TY=TYPE

CHANNEL - CHANNEL NUMBER(S)

sTaTus - CHANNEL STATUS:
UP - DEFAULT
DOWN - CHANNEL NOT TO BE USED

TypE - TYPE OF CHANMEL OR DEVICE ON CHANNEL:

A0
Al
A2
A3
B
CH
CL
o
C1
N
D1
02
EX
ST
EM
(EM,

N)

MIOP ACCUMULATOR CHANNEL
BIOP ACCUMULATOR CHANNEL
10P-2 ACCUMULATOR CHANNEL
10P-3 ACCUMULATOR CHANNEL
BLOCK MULTIPLEXER CHANNEL
CPU HIGH-SPEED CHANNEL
CPU LOW-SPEED CHANNEL

TEC 455 DISPLAY

TEC 1440 DISPLAY

AMPEX DISPLAY

DD-19 DISK IRIVE

DD-29 DI IRIVE

EXPANDER CHANNEL
FRONT-END CHANNEL

UNUSED

N UNUSED CHANNEL ENTRIES

17.6

10S TAPE DEADSTART

THE CONVENTIONAL I0S TAPE LAYOUT IS:

FILE O - TAPELOAD mMuust BE
FILE 1 - IMP
FILE 2 - KERNEL

FILE 3 - OVERLAYS M Forliony K pnel

PROCEDURE::

1.

2,

(U]

MOUNT THE I0S DEADSTART TAPE ON THE I0S TAPE UNIT

PUSH MASTER CLEAR AND DEADSTART BUTTONS AT THE
POWER UNIT,

TYPE “2" IN RESPONSE TO THE TAPELOAD “FROM MTO.”
MESSAGE AT THE MIOP KERMEL COMSOLE,

IF THE KERNEL WAS ASSEMBLED WITH THE ON-LINE DEBUGGER.

TYPE “X" WHEN THE ! PROMPT CHARACTER APPEARS, Q\Y \

WHEN DEADSTART IS COMPLETE, A SYSTEM MESSAGE WILL BE
POSTED AT EACH KERNEL COMSOLE.

DEADSTART Triz CPU, IF APPROPRIATE.

17.7

O

D

2)

3)

2

5)

6)

MIOP INITIAL DEADSTART SEQUENCE

OPERATOR PUSHES MASTER CLEAR BUTTON

THIS CAUSES EXIT STACK LOCATION ZERO TO
BE SET TO ZERO,

CLEARS CHANNELS' DN AND BZ HAGS
OPERATCR PUSHES DEADSTART BUTTON

THIS CAUSES FIRST BLOCK OF TAPE TO BE
LOADED INTO LOW MEMORY.,

INTERRUPT OCCLRS WHEN DONE.,

HARDWARE BEGINS EXECUTION AT ADTRESS IN
EXIT STACK LOCATION ZERO, WHICH IS ZERO.

TAPELOAD ROUTINE (LOCATED IN FIRST BLOCK) LOADS REST
OF KERNEL FROM TAPE,

DISABLE. INTERRUPTS ON CHANNELS 3 TO 47
PERFORM LOCAL MEMORY DIAGNOSTICS

JUMP TO SYSTEM INITIALIZATION ROUTINE

17.8

D

2)

3)

2)

5)

BIOP, DIOP, & XIOP DEADSTART SEQUENCE

MIOP ISSUES AO*:1 COMMAND WITH MASTER CLEAR AND DEADSTART
BITS SET IN A,

MICP ISSUES AQ*:1 COMMAND WITH MASTER CLEAR AND DEADSTART
BITS CLEARED,

THIS INITIATES TRANSFER OF LOWER 65K PARCELS OF
BUFFER MEMORY

WHEN TRANSFER COMPLETES, AN INTERRUPT IS GENERATED
AND EXECUTION BEGINS AT LOCATION G.

DISABLE INTERRUPTS ON CHANMNELS 3 TO 47,

PERFORM LOCAL MEMORY DIAGNOSTICS.

(0 277
LOAD SYSS OVERLAY AND BEGIN RECONFIGURATION OF KERNEL
FOR THIS 10P,

17.9

@gﬁ@

psok
177777

TRAP

THBES

KERNEL

OVERLAY MEMORY

MOS-DAL BIT MAP

[I0P-1 INPUT MSG QUELE

I0P-1 OUTPUT MSG QUEUE

10P-2 & 10P-3 MSG QUELES

MOS ALLOCATION BIT MAP

LOCAL SOFTWARE STACK

DAL CHAIN

LOCAL TRACE BUFFER

CRT TABLES AND BUFFERS

FREE MEMORY

— e o m— —— - - — e = —— — . . — e - — - —

LOCAL DISK BUFFERS

FIGRE 17-1, MIOP LOCAL MEMORY

17.10

£222

D=
177777

TRAP

KERNEL (COMMON BLOCK)

OVERLAY MEMORY

MOS-DAL BIT MAP

MOS BIT MAP o/ ufFfs

TRACE BUFFER BIT MAP TSz

LOCAL SOFTWARE STACK

DAL CHAIN

I0PO, 10P1, 10P2, 10P3
MSG QUEUES

DISK" CONTROL BLOCKS (DCB)

CRT TABLE & BUFFER

LOCAL TRACE BUFFER

FREE MEMORY

e e e e . . o e s e e e e e e e e e e e v - — e — —— e —

LOCAL DISK BUFFERS

FIGURE 1/-2, BIQP, DIOP, OR XIOP LOCAL MEMORY

17,11

KERNEL

SYSTEM DIRECTORY

10P2 MSG AREA

10P3 MSG AREA

OVERLAYS

[0P0 SOFTWARE STACK AREA

[0PO KERNEL AREA

10P2 SOFTWARE STACK AREA

e e e e . — e - e e e e . e e e e v e e e e o — e —— e —

10P2 KERNEL AREA

TI0P3 SOFTWARE STACK AREA

I0P3 KERNEL AREA

10P1 SOFTWARE STACK AREA

b e e e e e e e e e e e e e e e e e e S e e e aem e e e m—

JOP1 KERNEL AREA

L-20000 MOS TRACE BUFFERS

FIGIRE 17-3, BUFFER MEMORY

17,12

DEADSTART DISK FILES

THREE DISK DIRECTORIES ARE SET ASIDE BY COS AT INSTALL TIME FOR
DEADSTART FILES,

THE DIRECTORIES ARE:

C0S USED TO STORE COS BINARY FILES. THE
FILES ARE CREATED, NAMED AND SAVED USING
THE SV OPTION ON THE START COMMAND (R THE
COPY UTILITY,

PAR USED TO STORE PARAMETER TEXT FILES,
THESE ARE CREATED USING THE SV OPTION ON
THE START COMMAND: THE COPY UTILITY: AND
THE PARAMETER FILE EDITOR,

10S USED TO STORE IOS BINARY FILES, THESE ARE
- CREATED USING THE COPY UTILITY.,

THE NAYES OF FILES RESIDING IN THESE DIRECTORIES MUST BE 15 (R LESS
ASCIT CHARACTERS.

THEY CANNOT BEGIN WITH MT (R TT,

17,13

10S DISK DEADSTART

UNDER CERTAIN CONDITIONS, THE 10S MAY BE RESTARTED
FROM A FILE IN THE I0S DIRECTORY ON DISK,

PREREQUISITE:

A FILE, 1os, HAS PREVIOUSLY BEEN SAVED WITH
THE COPY FILE UTILITY,

PROCEDURE:

1.

TYPE CNTRL-D AT THE MIOP KERNEL CONSOLE,
IF “SYSDUMP?" APPEARS, GO TO 5,

IF NO RESPONSE., MAKE SURE THERE IS NO TAPE
LOADED ON THE TAPE DRIVE AND PUSH MASTER
CLEAR AND DEADSTART AT' THE POWER UNIT,

IF 2 RESULTS IN ENTERING THE DEBUGGER, TYPE
CNTRL-D TO EXIT,

TYPE CNTRL-D AGAIN, IF “SYSDUMP?" DOES NOT
APPEAR, A TAPE DEADSTART MUST BE PERFORMED.

TYPE “Y" OR “N" IN RESPONSE TO "SYSDUMP?,”

WHEN DUMP COMPLETE (OR IMMEDIATELY). “RESTART?”
WILL BE POSTED., TYPE "Y“,

ENTER 1os IN RESPONSE TO "ENTER RESTART FILE
NAME: " MESSAGE.

IF AN ERROR OCCURS, IT MAY BE NECESSARY TO DEADSTART
FROM TAPE,

17,14

MESSAGE

MEANING

DISK ERROR
LABEL NOT FOUND
DIRECTORY NOT FOUND

FILE NOT FOUND
MOS ERROR

RETRY?

AN UNRECOVERABLE DISK ERROR OCCURED.
MASTER DEVICE LABEL COULD NOT B FOUND.
THE 10S DIRECTORY COULD NOT BE FOUND.

THE NAMED FILE COULD NOT BE FOUND IM
10S DIRECTORY,

AN UNRECOVERABLE ERROR OCCURRED WHILE
READING BUFFER MEMORY.

DISPLAYED AFTER ERROR MESSAGES, ENTER
“Y* IF ANOTHER TRY AT RESTART IS
DESIRED, A NEW PROMPT FOR FILE NAME
WILL ALSO BE DISPLAYED,

TABLE 17-3,

10S DISK RESTART ERROR MESSAGES

17.15

CPU_DEADSTART

CPU DEADSTART REQUIRES A COS BINARY FILE AND A PARAMETER FILE,
- EITHER OF THESE CAN RESIDE ON TAPE OR DIK,
THE PARAMETER FILE MAY ALSO BE INPUT FROM THE
CONSOLE: OR AN EXISTING ONE MAY BE EDITED
THROUGH THE CONSOLE.,

THE FORMAT OF THE START COMMAND, INPUT AT THE MIOP KERNEL
CONSOLE, IS:

START COSFILE PARFILE (:ED]
WHERE cosriLe IS:
MIO:n [,SV/SYSDSE]
N IS TAPE FILE NUMBER.
syspsN IS DESIRED NAME OF SAVED FILE,
syspsN - NAYE OF FILE IN COS DIRECTORY ON DISK,
PARFILE IS;
MTO:N [, SV/paros]
N IS TAPE FILE NUMBER,
PARDSN [S TESIRED MAME OF SAVED FILE
paRDSN - NAME OF FILE IN PAR DIRECTORY ON DISK,
TTT - PARAMETER FILE IS INPUT FROM CONSOLE

ED INDICATES PARAMETER FILE IS TO BE EDITED FIRST,

17,16

START EXAMPLES

START MT0:0 MTO0:3

- COS BINARY ON TAPE FILE O: PARAMETER FILE ON
TAPE FILE 3,

START MT0:0, SV/C0S1 MT0:2, SV/PAR1
- STARTUP FROM TAPE FILES O AND 2: SAVE COS BINARY
FILE IN COS DIRECTORY AS COS1. SAVE PARAMETER FILE
IN PAR DIRECTORY AS PAR1,
START COS1 PARL, ED

- STARTUP FROM DISK FILE COS1 WITH PARAMETER
FILE PAR1 BEING EDITED FIRST,

- START MT0:2 TTI

- STARTUP FROM TAPE FILE 2 WITH PARAMETER FILE
ENTERED AT CONSOLE,

17.17

FILE UTILITIES

THERE ARE SEVEN UTILITIES AVAILABLE FOR MANIPULATING FILES IN THE
COS, PAR AND IOS DIRECTORIES.

1. EDIT

2, COPY

FN
INVOKES THE PARAMETER FILE EDITOR,

FN MAY BE THE NAME OF A FILE ALREADY IN THE
PAR DIRECTORY: OR TTI, IF A NEW FILE IS TO
BE CREATED.

N M2

COPY FILE Fnq TO FILE PN, THE COPY IS EITHER FROM
TAPE TO DISK (R DISK TO TAPE, IF COPY IS FROM TAPE
70 DISK, #ny CANNOT ALREADY Be IN USE IN THE SPECIFIED
DIRECTORY,

DISK FILES ARE DENOTED AS pir/Fn. WHERE pi1r IS
C0S, PAR (R 10S.

WHEN COPYING TO THE I0S DIRECTORY, THE OVERLAY FILE
MUST IMMEDIATELY FOLLOW THE KERNEL FILE. WHEN
COPYING THE OTHER WAY, ALLOW TWO CONSECUTIVE TAPE
FILES.

3, FSTAT pIR [/FNl,..]

DISPLAY FILE STATUS (CREATED, WORD LENGTH) OF CNE OR
MORE FILES WITHIN THE SPECIFIED DIRECTCRY,

IF NO FILE NAMES SPECIFIED, THEN STATUS OF ALL FILES
IN THE DIRECTORY WILL BE DISPLAYED,

17.1°

DELETE pir[/Fny...]

CLEAR

DUMP

LOAD

DELETE THE SPECIFIED FILES FROM THE SPECIFIED
DIRECTORY,

DIR
DELETE ALL FILES FROM THE NAMED DIRECTORY,
MTO:vy DIR [/FNll..T_]

EXECUTE A FORMATTED DUMP OF THE SPECIFIED FILES
TO TAPE FILE v,

IF NO FILE NAMES SPECIFIED, ALL FILES IN
THE DIRECTORY WILL BE DUMPED.

MTO:v [le,FNZ,..]

LOAD PREVIOUSLY ‘DUMPED’ TAPE FILE INTO THE
ORIGINAL DIRECTORY,

IF NO FILE NAMES SPECIFIED, ALL FILES ON THE TAPE
WILL BE LOADED,

IF A FILE ALREADY EXISTS IN THE DIRECTORY, THE
FILE ON TAPE WILL NOT BE LOADED,

DUMP AND LOAD ARE USEFUL WHEN A DIRECTORY GETS
FRAGMENTED,

17.19

PARAMETER FILE EDITOR

PROVIDES FOR CREATION AND MODIFICATION OF PARAMETER TEXT FILES
REQUIRED FOR CPU DEADSTART,

THE EDITOR IS RUN FROM THE MIOP KERMEL CONSOLE.
EACH OF THE FOLLOWING WILL INVOKE THE EDITOR:
1. ED OPTION ON THE START COMMAND,

2, SPECIFYING TTI FOR parrILe ON THE START
COMMAND.,

3, EDIT mn,

THE EDITOR OPERATES IN TWO MODES:
1. COMMAND INPUT MODE.

THIS MODE IS RECOGNIZED BY A *>" IN
COLUMN 1,

2, TEXT INPUT MODE,
INDICATED BY A LINE NUMBER IN COLUMN 1
INPUT IS ACCEPTED ON A LINE-BY-LINE BASIS,
TERMINATE LINES BY CARRIAGE RETURNS (R LINE FEEDS,

THE ESC KEY RETURNS CONTROL TO COMMAND INPUT MOIDE.

17,20

EDITOR COMMANDS
THERE ARE SEVEN COMMANDS AVAILABLE FOR EDITING PARAMETER TEXT
FILES,
1. INSERT LN
INSERT TEXT FOLLOWING THE SPECIFIED LINE NUMBER.
2. APPEND
APPEND TEXT TO THE FILE.

IF FILE IS EMPTY, TEXT WILL BE ACCEPTED STARTING
AT LINE 1,

3. DELETE wq [LNz}
DELETE LINES Ly TO Ly TNCLUSTVE,
4. REPLACE Ly [y

REPLACE LINES Ly TO Lno, INCLUSIVE, WITH TEXT T0
BE INPUT,

5 TYPE v [LNz]

TYPE LINES Lny TO Lo, INCLUSTVE, TO THE CONSOLE.

V.2

6. RINT 1y [LNZ-]
PRINT LINES Ly TO Ly, INCLUSIVE, ON THE PRINTER.

TERMINATE THE EDITOR.

THE FOLLOWING MESSAGE IS DISPLAYED:

n S AVE?II

NO - EDITED VERSION IS DISCARDED, IF
EDITOR WAS CALLED FROM START, EDITED
VERSION WILL BE SENT TO CPU BUT NOT
MADE PERMANENT,

YES - “ENTER FILE NAME:” MESSAGE IS DISPLAYED,

EDITED VERSION OF THE FILE WILL BE SAVED IN
THE PAR DIRECTORY UNDER THE SPECIFIED NAME,

17.22

MESSAGE

MEANING

COMMAND SYNTAX ERROR
EXPANDER DEVICE ERROR

MOS NOT AVAILABLE
LOCAL MEMORY NCT
AVATLABLE

DISK ERROR

FILE NOT FOUND:NaME
LABEL NOT FOUND
FILE DIRECTORY FULL
FILE BUFFERS DEPLETED
FILE DELETED:~amMe
FILE CREATED:naME
FILE ALREADY EXITS:
NAME

FILE BEING UPDATED:
NAME

FILE DUMPED:NAME

FILE LOADED:NamE

THE COMMAND ENTERED WAS NOT IN LEGAL FORMAT,
AN ERROR WAS ENCOUNTERED ON THE EXPANDER
DEVICE BEING USED,

BUFFER MEMORY SPACE NOT AVAILABLE,

LOCAL MEMORY NOT AVAILABLE.

AN UMRECOVERABLE DISK ERROR OCCURRED,

THE SPECIFIED FILE COULD NOT BE FOUND IN THE
CURRENT DIRECTORY.

THE LABEL ON THE MASTER DEVICE COULD NOT
BE FOUND,

NO MORE ROOM IN THE CURRENT DIRECTORY FOR
NEW FILES.

NOT ENOUGH DISK SPACE REMAINS IN THE
CURRENT DIRECTORY TO LOAD THE FILE,

FILE NAMED WAS DELETED FROM THE CURRENT
DIRECTORY,

FILE NAME WAS CREATED IN THE CURRENT
DIRECTORY.

THE NAMED FILE ALREADY EXISTS. IT MUST
BE DELETED BEFORE IT CAN BE RE-CREATED.
NAMED FILE IS BEING WRITTEN OVER,

NAMED FILE HAS BEEN DUMPED TO THE TAPE
FILE.

NAMED FILE HAS BEEN LOADED FROM THE DUMP
TAPE AND CREATED IN THE CURRENT DIRECTORY.

TABLE 1/-4,

START COMMAND AND FILE UTILITY MESSAGES

17.23

CHAPTER 18

UTILITIES

HISTORY TRACE

PROVIDES A MEANS FOR TRACING, TO A CERTAIN DEGREE, THE PATH OF
EXECUTION THROUGH THE COLE.

STORES PERTINENT DATA RELATING TO SELECTED EVENTS IN A LOCAL
MEMORY BUFFER,

LOCAL TRACE BUFFER IS DUMPED TO A CIRCULAR
BUFFER IN BUFFER MEMORY.

MAY BE USED IN DEBUGGING AND FINE TUNING THE SYSTEM.

18,1

TRACE FORMAT

' EACH TRACE ENTRY IS EIGHT PARCELS LONG.
[EVENT TIVE QVERLAY PAR, PAR, PARz PAR;, PARc \

EVENT - OCTAL CODE OF TRACE EVENT | =
TIME - LOW CRDER 16 BITS OF RTC AT TIME OF RECORDING
OVERLAY - NUMEER (F CONTROLLING OVERLAY AT TIFE OF RECORDING 4,)
PAR, - PARAYETER TO BE RECORDED -
177777
EVENT CODE DESCRIPTION
TRSINTCD) EXIT FROM COMMON INTERRUPT HANDLER (IPOD)
TFSCALL(2) ENTRANCE TO KERNEL FUNCTION PROCESSOR (ENTR)
TRSTSKE3) EXIT FROM ACTIVITY DISPATCHING (ELDPA)
TRSCHNC) INDIVIDUAL INTERRUPT HANDLERS
TF$FCT(S) INDIVIDUAL KERNEL FUNCTION PROCESSOR
TF$SEK(6) DISK SEEK ROUTINE (DIOH)
TF$DSK(7) DISK READAVRITE PROCESSR (DIOSTRT)
TFSDSKER(10) DISK ERROR HANDLER (IDERROR)
TR$HSP(LL) MEFORY CHANNEL 1/0 (CDEM)
TRS0LAY(12) OVERLAY LOADING (OVLBA)
TFSACOM(13) RECETVE MESSAGES FROM OTHER 1/0 PROCESSORS
(ACOM)
TFSATACLY) SEND MESSAGES TO OTHER 1/0 PROCESSORS

(EMSGIOP)

FIGURE 18-1, FEVENT CODE DESCRIPTIOMS,

18,2

TRACE ON-LINE COMMANDS

ENABLE/DISABLE SELECTED EVENTS

PROVILE A FORMATTED LISTING OF TRACE BUFFERS
D TRACE fON . evennfsuecone
OFF

TURNS ON OR OFF A SELECTED EVENT AND ONE OR ALL
R ITS ASSOCIATED SUBCOIES.

2) TRACE g ON‘i AL
OFF

TURNS TRACE ON OR OFF FOR ALL EVENTS,

3) TRACE §ON/ MOS
OFF
CONTROLS DUMPING OF LOCAL BUFFER TO BUFFER MEMORY,

4) TRACE DUWP s_oczng
MOS

PRINTS A FORMATTED LISTING OF SPECIFIED TRACE BUFFER.
EVENTS ARRANGED MOST RECENT TO:LEAST RECENT,

18,3

£

GIVES UNFORMATTED DUMP OF DIFFERENT PARTS OF THE SYSTEM AS AN
AID IN DEBUGGING.

IS A STAND-ALOMg PROGRAM DEADSTARTED INTO MICOP,

PRINTS OUT THE FOLLOWING REGISTERS AND MEMORIES:
CENTRAL MEMORY
BUFFER MEMORY
10P LOCAL MEMORIES
I0P A, B, C, OPERAND REGISTERS AND EXIT STACK

LOCAL AND BUFFER MEMORY TRACE BUFFERS

CRAY-1 I/0 SUBSYSTEM @,,Q/C

EXERCISE 11

1. When deadstarting an I/0 Processor, what causes execution to begin

at Location 0? /I/(ASCZ(/ M uj\ < P‘: q(

2. When deadstarting an I/0 Subsystem from tape,, how does the kernel

get into BIOP? ,2[2 /LLO < o /VL&KQ\/V‘H‘]&L

. What is the history trace used for?

4. When would the DMP utility be used insteaj of SYSDUMP?

Deuring s‘ézrbfw?

5. List two ways to enter the Debugger.

o D
fmg P it st

SYSDUMP

DUMPS SELECTED RESOURCES TO AN AREA (F DISX PRE-SELECTED AT
INSTALL TIME, OR SPECIFIED DIRING SYSDUMP,

THIS DUMP MAY THEN BE FORMATTED VIA FDUMP AND
DISPOSED APPROPRIATELY,

RESTART MAY OCCLR WHEN THE DUMP IS COMPLETE.

THE FOLLOWING MEMORIES AND REGISTERS MAY BE DUMPED:
CENTRAL MEMORY
BUFFER MEMORY
10P LOCAL MEMORIES
I0P OPERAND REGISTERS
I0P A, B, C, E REGISTERS AND EXIT STAC
I0P CHANNELS® BZ AND DN FLAGS

CPU B, T, V AND W REGISTERS

SYSDUMP IS ENTERED BY TYPING CNTRL-D AT THE MIOP KERNEL CONSOLE.

18,5

DEBUGGER

ALLOWS ON-LINE DEBUGGING OF IOS.

ASSEMBLED WITH THE KERNEL AND IS MIOP RESIDENT AT INITIALIZATION,
SUBSEQUENT REFERENCES TO THE DEBUGGER LOAD IT FROM
BUFFER MEMORY INTO AN 1/0 BUFFER.

ALLOKS SETTING OF BREAKPOINTS AND EXAMINATION AND MODIFICATION
OF BUFFER MEMORY AND THE I/0 PROCESSOR'S REGISTERS AND LOCAL
MEMORY |
DEBUGGING COMMANDS ENTERED AT THE KERNEL CONSOLE,

MUST HAVE A KERNEL CONSOLE ON AN IOP

IN ORDER TO DEBUG IT WITH THE DEBUGGER.
THE DEBUGGER MAY BE ENTERED SEVERAL WAYS:

- DIRING SYSTEM INITIALIZATICN

= WHEN A R=XFAR INSTRUCTIONM IS ENCOUNTERED
IN NON-INTERRUPTIBLE COLE.

- WHEN AN /0 PROCESSOR HALT OCCLRS
- WHEN THE DEBUG COMMAND IS ENTERED AT THE KERNEL
CONSOLE,

18,6

DEBUGGER COMMANDS ALLOW CPERATOR TG DISPLAY AND MODIFY THE
FOLLOWING:

A REGISTER

B REGISTER

C REGISTER

P REGISTER

E REGISTER

EXIT STACK
OPERAND REGISTERS
LOCAL MEMORY
BUFFER MEMORY

CHANNEL STATES MAY ALSO BE EXAMINED AND CHANNEL FUNCTIONS ISSUED
WITH THE DEBUGGER.

UP TO 4 ACTIVE BREAKPOINTS MAY BE SET IN THE CODE,

DOUBLE BREAKPOINTS MAY BE SPECIFIED,

18,7

APPENDICES-

APPENDIX 1

[/0 PROCESSOR INSTRUCTION SUMMARY

/O PROCESSOR INSTRUCTION SUMMARY

IOP APML Description

000 PASS No operation

001 EXIT Exit from subroutine

002 I=0 Disable system interrupts

003 I=1 Enable system interrupts

004 A=A >4d Right shift C and A by d places, end off

005 A =1A<d Left shift C and A by d places, end off

006 A =2A>>4 Right shift C and A by d places, circular

007 A = A<<d Left shift C and A by d places, circular

010 A=4d Transmit 4@ to A

011 A=Agd Logical product of A and 4 to A

012 A=A+4d Add 4 to A

013 A=A-4d Subtract 4 from A

014 A=Kk Transmit k to A

015 A=2A4A%&k Logical product of A and k to A

0l6 A=A+ k Add k to A

017 A=A-k Subtract k from A

020 A = dd Transmit operand register 4 to A

021 A=A & d4 Logical product of A and operand register 4 to A

022 A=A+ 44 Add operand register 4 to A

023 A =A-4dd Subtract operand register 4 from A

024 dd = A Transmit A to register d

025 dd = A + dd Add operand register d to A, result to operand
register d

026 dd =4d + 1 Transmit register d to A, add 1, result to
operand register d

027 dd =dd - 1 Transmit register d to A, subtract 1, result to
operand register 4

030 A = (dd) Transmit contents of memory addressed by
register d to A

031 A=A & (dd) Logical product of A and contents of
memory addressed by register d, result to A

032 A=A + (dd) Add contents of memory addressed by register 4
to A, result to A

033 A=A - (dd) Subtract contents of memory addressed by

register d from A, result to A

1.1

I0P

034
035

036

037

040
041
042
043

044
045
046
047

050
051
052
053

054
055
056
057

060
061
062
063

064
065

066

067

070
071
072
073

074
075
076
077

APML

(dd) = A

(dd) = A + (4d4)
(dd) = (dd) + 1
(dd) = (ad) - 1
C =1, iod = DN
C =1, iod = BZ
C =1, IOB = DN
C =1, 1I0B = BZ
A=A>B

A =A<B

A= A>>B

A = A<<B

A =8B

A=AG&DB
A=A+B
A=A-B

B =A

B=A+B
B=B+1
B=B-~-1

A = (B)

"A = A & (B)
A=A+ (B)
A=A - (B)

(B) A

(B) A + (B)
(B) = (B) +1
{(B) = (B) -1
P=P+d
P=P-d
P=P+ d
P=P-4d

P = dd

P=4dd + k

R = d4d

R =dd + k

Description

Transmit A to memory addressed by register 4
Add memory addressed by register d to A,
result to same memory location

Transmit memory addressed by register d to
A, add 1, result to same memory location
Transmit memory addressed by register 4 to A,
subtract 1, result to same memory location

Set carry equal to channel 4 done
Set carry equal to channel d busy
Set carry equal to channel B done
Set carry equal to channel B busy

Right shift C and A by B places, end off
Left shift C and A by B places, end off
Right shift C and A by B places, circular
Left shift C and A by B places, circular

Transmit B to A

Logical product of A and B to A
Add B to A, result to A
Subtract B from A, result to A

Transmit A to B

Add B to A, result to B

Transmit B to A, add 1, result to B
Transmit B to A, subtract 1, result to B

Transmit operand register B to A

Logical product of A and operand register B to A
Add operand register B to A, result to A
Subtract operand register B from A, result to A

Transmit A to operand register B

Add operand register B to A, result to
operand register B

Transmit operand register B to A, add 1,
result to operand register B

Transmit operand register B to A, subtract 1,
result to operand register B

Jump to P + d
Jump to P - d
Return jump to P + d
Return jump to P - d

Jump to address in operand register d

Jump to sum of k and operand register d
Return jump to address in operand register d
Return jump to sum of k and operand register d

1.2

0P APML Description

100 P=P+d, C=0 Jump to P + d if carry = 0

101 P=P+4d, C#0 Jump to P + 4 if carry # 0

102 P=P+d,A=0 JumptoP+dif A =0

103 P P+4d,a#0 Jump to P +4d if A # 0

104 P=P-d, C=0 Jump to P - d if carry = 0

105 P=P~-d,C4# 0 Jump to P - d if carry # 0

106 P=P-d, A=20 Jump to P - 4d if A =0

107 P=P~-d, A $0 Jump to P -4 if A #0

110 R=P+d4, C=20 Return jump to P + d if carry = 0

111 R =P +d, C# 0 Return jump to P + 4 if carry # 0

112 R=P+d, A=0 Return jump to P + d if A =0

113 R=P+d, A %0 Return jump to P + d if A #¥ 0

114 R=P~-d, C=20 Return jump to P - d if carry = 0

115 R=P-4d, C# 0 Return jump to P - & if carry # 0O

116 R=P=-d4d, A=20 Return jump to P - d if A =0

117 R=P-~-d4d,A %0 Return jump to P - d if A # 0

120 P=dd, C=20 Jump to address in operand register 4 if carry
=0 . .

121 P=dd, C $# 0 Jump to address in operand register d if carry
#0

122 pP=dd, A =0 - Jump to address in operand register d if A = 0

123 P=dd, A $# 0 Jump to address in operand register d if A # O

124 P=dd4 + k, C

0 Jump to address in operand register d + k if
carry = 0

125 P =dd + k, C # 0 Jump to address in operand register d + k if

carry # 0

126 P=dd + k, A & Jump to address in operand register d + k if

A=0

127 P=4dd + k, A # 0 "Jump to address in operand register d + k if
A#O ‘

130 R=dd, C =0 Return jump to address in operand register d
if carry = 0

131 R=dd, C % 0 Return jump to address in operand register d
if carry # 0

132 R =4dd, a =20 Return jump to address in operand register d
ifA=0

133 R=d4dd, A 40 Return jump to address in operand register d
ifFAF#O

[.3

I0P

134

135

136

137

140
141
142
143

144
145
146
147

150
151
152
153

154
155
156
157

160
l61
162
163

l64
165
166

167

170
171
172
173

174
175
176

177

APML

=dd + k,
=dd4 + k,
= dd + k,

Description

Return jump to address
if carry = 0

Return jump to address
if carry # O)
Return jump to address
ifA=0

Return jump to address
ifa#0

iod
iod
iod
iod

iod
iod
iod
iod

iod
iod
iod
iod

iod
iod
iod
iod

- I0B

I0B
I0B

I0B

I0B
I0B
I0B
I0B

I0B
I0B
I10B
I0B

I0B
I0B
IOB
I0B

°e e0 oo o
whNhH=Oo

.. L1 (1] L]
N o

L1 .o (Y] e (1} (1] (1] Ll (1] (13 (13 ot (1) e .0 (1]
Noue WNHO - [
(§,} [l

e e (1] L1
[
N

14
15
16
17

Channel d function 0
Channel 4 function 1
Channel d function 2
Channel 4 function 3
Channel 4 function 4
Channel d function 5
Channel d function 6
Channel d function 7
Channel 4 function 10
Channel d function 11
Channel d function 12
Channel d function 13
~Channel 4 function 14
Channel 4 function 15
Channel 4 function 16
Channel 4 function 17
Channel B function 0
Channel B function 1
Channel B function 2
- Channel B function 3
Channel B function 4
Channel B function 5
Channel B function 6
Channel B function 7
Channel B function 10
Channel B function 11
Channel B function 12
Channel B function 13
Channel B function 14
Channel B function 15
Channel B function 16
Channel B function 17

in operand
in operand
in operand

in operand

register d
register d
register d

register d

APPENDIX 11

SYSTEM CHAMNEL ASSIGNVENTS

SYSTEM CHANNEL ASSIGNMENTS

Typical Model 4400 system channel assignments

PROCESSOR | CHANNEL MNEMONIC FUNCTION
Master 0 IOR Interrupt request
I/0 1 PFR Program fetch request

Processor 2 PXS Program exit stack
3 LME I/0 Memory error
4 RTC Real-time clock
S MOS Buffer Memory Interface (DMA 3)
6 ATA Input from Buffer I/0O Processor
7 ACA Output to Buffer I/0 Processor
10 ATIB Input from Disk I/O Processor
11 AOB Output to Disk I/O Processor
12 AIC Input from Auxiliary I/O Processor
13 AOC Output to Auxiliary I/O Processor
14
15
16 - ERA Error log
17 EXB Peripheral Expander (DMA 0)
20 CIA Input from CRAY-1 channel (DMA 1)
21 coa Output to CRAY-1 channel (DMA 1)
22
23
24 CiB Input from F.-E. Interface (DMA 2)
25 COB - { Output to F.-E. Interface (DMA 2)
26
27 > .
30 CIC Input from F.-E. Interface (DMA 4)
31 cocC Output to F.-E. Interface (DMA 4)
32
33
34 CID Input from F.-E. Interface (DMA 5)
35 COD Output to F.-E. Interface (DMA 5)
36
37
40 TIA Console 0 keyboard
41 TOA Console 0 display
42 TIB Console 1 keyboard
43 TOB Console 1 display
44
45
46
47

Typical Model 4400 system channel assignments (continued)

PROCESSOR } CHANNEL MNEMONIC FUNCTION
Buffer 0 IOR Interrupt request
I/0 1 PFR Program fetch request

Processor 2 PXsS Program exit stack
3 LME I/0 Memory error
4 RTC Real-time clock
5 MOS Buffer Memory Interface (DMA 3)
6 ATA Input from Master I/O Processor
7 AOA Output from Master I/0 Processor
10 AIB Input from Disk I/0 Processor
11 AOB Output to Disk I/0 Processor
12 AIC Input from Auxiliary I/O Processor
13 AOC- Qutput to Auxiliary I/0 Processor
14 HIA Input from Memory Channel (DMA 4)
15 HOA Output to Memory Channel (DMA 4)
16
17
20 DKA Disk Storage Unit 0 (DMA 0)
21 DKB Disk Storage Unit 1 (DMA 0)
22 DKC Disk Storage Unit 2 (DMA 1)
23 DKD Disk Storage Unit 3 (DMA 1)
24 DKE Disk Storage Unit 4 (DMA 2)
25 . DKF Disk Storage Unit 5 (DMA 2)
26 DKG Disk Storage Unit 6 (DMA 5)
27 DKH Disk Storage Unit 7 (DMA 5)
30
31
32
33
34
35
36
37
40
41
42
43
44
45
46
47

1.2

Typical Model 4400 system channel assignments (continued)

PROCESSOR § CHANNEL MNEMONIC FUNCTION
Disk 0 IOR Interrupt request
1/0 1 PFR Program fetch request

Processor 2 PXR Program exit stack
3 LME 1/0 Memory error
4 RTC Real-time clock
5 MOS Buffer Memory Interface (DMA 3)
6 ATA Input from Master I/O Processor
7 ACA Output to Master I/0 Processor
10 AIB Input from Buffer I/0 Processor
11 AOB Output to Buffer I/0 Processor
12 AIC Input from Auxiliary I/0 Processor
13 AOC Output to Auxiliary I/O Processor
14
15
16
17
20 DKA Disk Storage Unit 0 (DMA 1)
21 DKB Disk Storage Unit 1 (DMA 1)
22 DKC Disk Storage, Unit 2 (DMA 1)
23 DKD Disk Storage Unit 3 (DMA 1)
24 DKE Disk Storage Unit 4 (DMA 2)
25 DKF Disk Storage Unit 5 (DMA 2)
26 " DKG Disk Storage Unit 6 (DMA 2)
27 DKH Disk Storage Unit 7 (DMA 2)
30 DKI Disk Storage Unit 8 (DMA 4)
31 DKJ Disk Storage Unit 9 (DMA 4)
32 DKK Disk Storage Unit 10 (DMA 4)
33 DKL Disk Storage Unit 11 (DMA 4)
34 DKM Disk Storage Unit 12 (DMA 5)
35 DKN Disk Storage Unit 13 (DMA 5)
36 DKO Disk Storage Unit 14 (DMA 5)
37 DKP Disk Storage Unit 15 (DMA 5)
40
41
42
43
44
45
46
47

I1.3

Typical Model 4400 system channel assignments (continued)

PROCESSOR CHANNEL MNEMONIC FUNCTION

Auxiliary 0 IOR Interrupt request

I/0 1 PFR Program fetch request

Processor 2 PXS Program exit stack
3 LME I/0 Memory error
4 RTC Real time clock
5 MOS Buffer Memory Interface (DMA 3)
6 ATIA Input from Master I/0 Processor
7 AOA Output to Master I/O Processor
10 AIB Input from Buffer I/0 Processor
11 AOB Output to Buffer I/0 Processor
12 AIC Input from Disk I/0 Processor
13 AOC Output to Disk 1I/0 Processor
14
15
16
17
20 BMA Block Multiplexer Channel O (DMA 0)
21 BMB Block Multiplexer Channel 1 (DMA 0)
22 BMC Block Multiplexer Channel 2 (DMA 0)
23 BMD Block Multiplexer Channel 3 (DMA 0)
24 BME Block Multiplexer Channel 4 (DMA 1)
25 BMF Block Multiplexer Channel 5 (DMA 1)
26 BMG Block Multiplexer Channel 6 (DMA 1)
27 BMH Block Multiplexer Channel 7 (DMA 1)
30 BMI Block Multiplexer Channel 10 (DMA 2)
31 BMJ Block Multiplexer Channel 11 (DMA 2)
32 BMK Block Multiplexer Channel 12 (DMA 2)
33 BML Block Multiplexer Channel 13 (DMA 2)
34 BMM Block Multiplexer Channel 14 (DMA 5)
35 BMN Block Multiplexer Channel 15 (DMA 5)
36 BMO Block Multiplexer Channel 16 (DMA 5)
37 BMP Block Multiplexer Channel 17 (DMA 5)
38
39
40
41
42
43
A
45
46
47

I1.4

APPENDIX II1

10P BLOCK DIAGRAM IN DETAIL

1
1
INSTRUCTION .. . :
STACK oL D 13 . [_RP_F-------® opgraND
- | SO » REGISTERS
; SR (512)
5 I o]
]
: | B |
]
)
]
: 'L] *—{nccumuLAToR | ’ ‘ ’
]
C SHIFTER
5% ; k F’E
N preteasammneny |
: 4&.1 o amDEnD]
' ’
!
l—‘l ! ADDER
g I | g acc } ’
PN e rae— | '
*{BRANCH ADD, } >
il [
r——"
] |
1 P MA
EXIT ! ' |
STACK l i
[L
: LOCAL
' MEMORY
. L____ (65K)
(o o 1/0 CHANNELS

FIGURE ITI-1. ™" BLOCK DIAGRAM

THE FOLLOWING ARE PART OF THE INSTRUCTION CONTROL METWORK:
RP (REGISTER POINTER) REGISTER

DP (DESTINATION POINTER) REGISTER

FETCH REGISTER

MA (MEMORY ADDRESS) REGISTER

I11.2

RP REGISTER

9 BITS WIDE
POINTS TO AN OPERAND REGISTER

LOADED FROM IT REGISTER p FIELD OR B REGISTER

DP REGISTER

9 BITS WIDE

STORES ADDRESS (F OPERAND REGISTER TO BE WRITTEN

LOADED FROM IT REGISTER p FIELD OR B REGISTER

PROTECTS READING OF OPERAND REGISTER BEFORE MNEW DATA AVAILABLE

CONTENTS GO TO RP WHEN ACCUMULATOR READY TO WRITE OPERAND
REGISTER,

[11.3

FETCH REGISTER

16 BITS WIDE

HOLDS ADDRESS OF FIRST INSTRUCTION PARCEL OF FOUR PARCEL GROUP TO
BE FETCHED FROM MEMORY,

INCREMENTED BY 4 EVERY (P

MAY BE LOADED FROM EXIT STACK OR ADDER

MA REGISTER

16 BITS WIDE
HOLDS ADDRESS FOR A LOCAL MEMORY REFERENCE

LOADED FROM AN OPERAND REGISTER

IT1.4

BRANCH ACCUMULATOR

16 BITS WIDE
LOADED BY P OR AN OPERAND REGISTER ON A BRANCH INSTRUCTION

SUPPLIES OPERAND TO ADDER

BRANCH ADDEND REGISTER

16 BITS WIDE
LOADED BY o OR k FIELD ON A BRANCH INSTRUCTION

SUPPLIES OPERAND TO ADDER

APPENDIX IV

10S ACTIVITY SUMMARY

ACOM
AYSG
CDEM
DISK
ERRECK
CONC
ENDCONC
CONCI
CONCO
FEREAD
FEWRIT
MSGIO
STATION
KEYBD
CLI

DISPLAY

10S ACTIVITIES

SUBSYSTEM
DISC, STATION, CONCENTRATOR, INTERACTIVE
STATICN, CONCENTRATOR, INTERACTIVE
ALL
DISK
DI
CONCENTRATOR
CONCENTRATOR
CONCENTRATOR
CONCENTRATOR
CONCENTRATOR
CONCENTRATOR
STATION, CONCENTRATOR, INTERACTIVE
STATION
STATION
STATION

STATION

V.1

1/0 PROCESSIR

AL

MIOP, BIOP

MIOP, BIOP

BIOP, DIOP

BIOP, DIOP

MIOP

MIOP

MIOP

MIOP

MIOP

MIOP

bIOP

MIOP

MIOP

MIOP

MIOP

NAME. SUBSYSTEM , 1/0 PROCESSOR

PROTOCOL STATION MIQP
STAGEIN STATION iop
STAGEOUT STATION MIOP
CONFIG - - AL
LISTO - - MIQP
CRAY STATION, CONCENTRATOR , INTERACTIVE MIOP
HPLOAD STATION, CONCENTRATOR , INTERACTIVE MIOP
TACON INTERACTIVE MIOP
TAIOP INTERACTIVE | MIOP
PATCH - - AL
START - - MIQP
TRACE - - AL

V.2

APPENDIX V

KERNEL SERVICE REQUEST FUNCTIONS

10

11

12

15

16

17

20

21

=
I
=
(L]

PUSH

POP

TERMINATE

GIVEUP

PAUSE

DELAY

TPUSH

SYNC

ALERT

AWAKE

RESPONE

MSG

MSGR

DESCRIPTION

PUT ACTIVITY ON A QUEUE AT PRIORITY

REMOVE ACTIVITY FROM A QUEUE AND PLACE

IT ON CP QUEUE AT PRIORITY,

TERMINATE AN ACTIVITY BY RELEASING
ITS* AD AND SMOD AREAS.

RESCHEDULE AN ACTIVE TASK BY PRIORITY

SUSPEND AN ACTIVITY FOR TENTHS OF A
SECOND,

SUSPEND AN ACTIVITY FOR MILLISECONDS

PUT ACTIVITY ON A QUEUE AND ON A
TIMER QUEUE FOR TENTHS OF A SECOND,

SYNCHRONIZE TWO ACTIVITIES

REQUEST ANOTHER I0P TO CREATE AN
ACTIVITY,

REQUEST ANOTHER I0P TO ACTIVATE AN
ACTIVITY,

SEND RESPONSE TG AWOTHER IOP

SEND A MESSAGE TO A CRT

SEND A MESSAGE TO A CRT AND WAIT
FOR RESPONSE.

V.1

RETURN TO

KERNEL
(EE;arPD

REQUESTER

KERNEL

KERNEL

KERNEL

KERNEL

KERNEL

REQUESTER
KERNEL
KERNEL/
REQUESTER
REQUESTER

KERNEL/
REQUESTER

KERNEL/
REQUESTER

CODE MAVE
2 OUTPUT
23 FRNTNDIO
25 RECEIVE
% SBMXIO
30 ETEM
31 RELMEM
32 BGET
33 BRET
W MGET

MPUT
W POLL
45 TRANSFER
4 MOSR
W MOSH

DESCRIPTION
OUTPUT A MESSAGE TO A CRT (STATION)

INITIATE 1/0 BETWEEN A CONCENTRATOR
AND A FRONT EMD.

INPUT ONE CHARACTER FROM A CONSOLE
INITIATE 1/0 ON A BLOCK MUX CHANNEL
ALLOCATE LOCAL MEMORY
RELEASE LOCAL MEMORY

ALLOCATE A 512 WORD (4000 PARCEL)
LOCAL BUFFER,

RELEASE A 512 WORD LOCAL BUFFER

ALLOCATE A 512 WORD MOS BUFFER

RELEASE A 512 WORD MOS BUFFER
SEND A MESSAGE TO THE CPU

MOVE DATA BETWEEN MOS AND CENTRAL
MEMORY

READ DATA FROM MOS TO LOCAL MEMORY

WRITE DATA FROM LOCAL TO MOS MEMORY

V.2

RETURN TO
KERNEL

KERNEL

REQUESTER
KERNEL

REQUESTER
REQUESTER

REQUESTER

REQUESTER

KERNEL/
REQUESTER

REQUESTER
KERNEL

KERNEL

REQUESTER

REQUESTER

CODE NAME
50 CALL
51 G0TO
52 RETURN
53 FIND
54 FLUSH
55 CREATE

DESCRIPTION

PASS CONTROL TO AN OVERLAY WITH
RETURN,

$S
ﬁgﬁw CONTRCL TO AN OVERLAY
RETURN CONTROL TO AN OVERLAY

FIND MOS ADDRESS AND WORD LENGTH
OF AN OVERLAY,

RE-INITIALIZE OVERLAY MEMORY

SET P AN INDEPENDENT ACTIVITY
AND PLACE IT ON A CPU QUELE,

V.3

RETURN T0O

OVERLAY

OVERLAY

ey KFLONVEL

REQUESTER

KERNEL

REQUESTER

APPENDIX VI

INTERNAL SUBROUTIMES

M

FRGC
EREB

EREC
ERED
STOREGS
LODREGS
EDQU
ENQU

EQCP

EPOQ
ETOQ

QT IME

DATIME
DOFIND

EMSGIOP

DESCRIPTION

BUILDS A NEW ACTIVITY DESCRIPTOR AND SMOD. PLACES
AD ON CP QUEUE,

FINDS SPACE FOR AD AND CLEARS IT, PLACES AD
ON CHAIN OF AD.

GETS MOS FOR SMOD AND SETS UP PARAMETERS IN AD
INITIALIZES SMOD IN SCRATCH AREA

STORES SPECIFIED OPERAND REGISTERS IN MOD
LOADS SPECIFIED OPERAND REGISTERS FROM SMOD
REMOVES ACTIVITY FROM SPECIFIED QUEUE

PUTS ACTIVITY ON SPECIFIED QUELE

PUTS ACTIVITY ON CP QUELE AT PRIORITY

PUTS ACTIVITY ON SPECIFIED QUEUE AT PRIORITY
PUTS ENTRY ON MESSAGE QUEUE

REMOVE ENTRY FROM MESSAGE OUELE

PUT AN ACTIVITY ON TIMER QUEUE. ACTIVITY MUST
ALSO BE ON AMOTHER QUEUE,

REMOVE AN ACTIVITY FROM TIMER QUEUE
LOCATE AND REMOVE AN ENTRY FROM A QUEUE

SEND MESSAGE TO AMOTHER I0P VIA ACCUMULATOR CHANMEL

VI.1

APPENDIX VII

DISK SUBSYSTEM DETAILED INTERACTION

1.

2,

3,

b,

MIOP

DIOP

DICP

DIOP

DISK READ REQUEST VIA DIOP

INTERRUPT ON LOW SPEED INPUT CHANNEL DUE TO TRANSFER
OF & WORD I/0 REQUEST PACKET,

CDEM IS ACTIVATED BY INTERRUPT ANSWERING (IA).

CDEM BUILDS A MASTER DISK ACTIVITY LINK (MDAL) BY
PREFIXING 10g CONTROL PARCELS TO THE 6 WORD PACKET,
CDEM ALLOCATES A MOS DAL AND WRITES LOCAL MDAL TO
MOS.

CDEM QUEUES ACCUMULATOR MESSAGE TO BE SENT TO DIOP
(SPECIFYING ADDRESS OF DAL IN MOS).

CDEM DEALLOCATES LOCAL DAL,

INTERRUPT ON I0P TO IOP INPUT CHANNEL,

ACOM IS ACTIVATED BY IA,

ACOM DECODES ACCUMULATOR MSG, ALLOCATES A LOCAL

DAL, AND READS IN MDAL FROM MOS.

ACOM BUILDS FIRST, UP TO 3, EXECUTABLE DALS (EDALS)
AND ALLOCATES LOCAL AND MOS BUFFERS,

ACOM STARTS FIRST READ (OR SEEK) IF DISK IS NOT BUSY.
AND PUTS EDALS ON DISK CONTROL BLOCK (DCB) EDAL QUEUE,

INTERRUPT ON DISK CHANNEL.

IA ALLOCATES A LOCAL BUFFER FOR NEXT TRANSFER,
IF NECESSARY, AND STARTS NEXT SECTOR,

IA MOVES FINISHED EDAL TO DCB DONE QUEUE AND
ACTIVATES THE DISK DEMON (DISKD,

DISK TAKES TOP ENTRY OFF THE DONE QUEUE.

DISK ALLOCATES A MOS BUFFER IF NECESSARY., AND
MOVES THE DATA FROM LOCAL MEMORY TO MOS, AND
DEALLOCATES THE LOCAL BUFFER,

DISK ALLOCATES A MOS DAL AND WRITES LOCAL EDAL TO
MOS AND DEALLOCATES THE LOCAL EDAL.

DISK QUEUES AN ACCUMULATOR MSG FOR BIOP,

DISK CHECKS THE EDAL QUEUE, IF IT IS LESS THAN 3,
BUILDS MORE EDALS UNTIL THERE ARE 3,

VII.1

5,

10,

BIOP -

DIOP -

INTERRUPT OM IOP TO IOP INPUT CHANNEL,

ACOM IS ACTIVATED BY IA,

ACOM ALLOCATES A LOCAL DAL AND READS IN EDAL FROM MOS.
ACOM ALLOCATES A LOCAL BUFFER AND MOVES DATA FROM MOS
TO LOCAL MEMORY TO CENTRAL MEMORY,

ACOM DEALLOCATES LOCAL BUFFER., CHANGES PARCEL 1 IN
EDAL., AND WRITES FIRST WORD OF EDAL OVER EDAL IN MOS,
ACOM DEALLOCATES LOCAL EDAL AND QUEUES AN ACCUMULATOR
MSG FOR DIOP,

INTERRUPT ON IOP TO IOP INPUT CHANNEL.

ACOM IS ACTIVATED BY IA,

ACOM ALLOCATES A LOCAL DAL AND READS IN MOS EDAL,
ACOM DEALLOCATES MOS BUFFER AND LOCAL AND MOS EDALS,

REPEAT STEPS 3 THROUGH & UNTIL ALL BUT LAST SECTOR TRANSFERRED,

DIOP (READ AHEAD)

DIOP -

DIOP -

DIOP -

INTERRUPT On DISK CHANNEL,

IA DETECTS LAST SECTOR THIS REQUEST AND BEGINS READ
AHEAD (IF NO OTHER EDALS) BY ALLOCATING A LOCAL
BUFFER AND STARTING I/0.

1A MOVES LAST EDAL TO DONE QUEUE.

IA ACTIVATES THE DISK DEMON.

DISK PROCESSES LAST EDAL AS PER STEP 4,

INTERRUPT ON DISK CHANNEL,

IA DETECTS 1/0 AS READ AHEAD, ALLOCATES A LOCAL BUFFER
AND STARTS NEXT READ AHEAD,

IA ACTIVATES THE DISK DEMON,

DISK ALLOCATES A MOS BUFFER AND WRITES READ AHEAD
DATA TO MOS,
DISK DEALLOCATES THE LOCAL BUFFER,

REPEAT STEPS 9 & 10 FOR 3 SECTORS OR UNTIL NEW REQUEST
THIS CHANNEL,

V1.2

11. DIOP

12, MIOP

INTERRUPT ON IOP TO IOP INPUT CHANNEL FOR LAST

EDAL (FROM BIOP),

ACOM 1S ACTIVATED BY IA.

ACOM ALLOCATES A LOCAL DAL AND READS IN MOS EDAL.
ACOM DEALLOCATES MOS BUFFER AND LOCAL AND MOS DAL.
ACOM UPDATES LOCAL MDAL AND WRITES IT OVER MOS MDAL.
ACOM DEALLOCATES LOCAL MDAL,

ACOM QUEUES AN ACCUMULATOR MSG FOR MIOP,

INTERRUPT ON I0P TO IOP INPUT CHANNEL

IA ACTIVATES ACOM,

ACOM ALLOCATES A LOCAL DAL AND READS IN MOS MDAL
ACOM DEALLOCATES MOS MDAL,

ACOM “STRIPS' OFF FIRST 10g PARCELS FROM MDAL AND
QUEUES 6 WORDS TO BE SENT TO CPU,

WHEN CPU RECEIVES THE 6 WORDS THE LOCAL MDAL WILL BE
DEALLOCATED,

VIL.3

1.

2,

3,

b,

MIOP

DIOP

BIOP

DIOP

DISK WRITE REQUEST VIA DIQP

INTERRUPT ON LOW SPEED INPUT CHANNEL DUE TO TRANSFER
OF 6 WORD I/0 REQUEST PACKET,

CDEM IS ACTIVATED BY INTERRUPT ANSWERING (IA),

CDEM BUILDS A MASTER DISK ACTIVITY LINK (MDAL)
BY PREFIXING 10g CONTROL PARCELS TO THE 6 WORD
PACKET,

CDEM ALLOCATES A MOS DAL AND WRITES LOCAL MDAL

T0 MOS.

CDEM QUEUES ACCUMULATOR MESSAGE TO BE SENT TO DIOP

(SPECIFYING ADDRESS OF DAL IN MOS),

CDEM DEALLOCATES LOCAL DAL,

INTERRUPT ON IOP TO IOP INPUT CHANNEL.

ACOM IS ACTIVATED BY IA,

ACOM DECODES ACCUMULATOR MSG, ALLOCATES A

LOCAL DAL, AND READS IN MDAL FROM MOS,

ACOM BUILDS FIRST, UP TO 3, EDALS., ALLOCATES MOS
BUFFERS AND QUEUFS EDALS T0 BE SENT TO BIOP.

INTERRUPT ON IOP TO IOP INPUT CHANNEL

ACOM IS ACTIVATED BY IA,

ACOM ALLOCATES A LOCAL DAL AND READS IN EDAL FROM
M0S.

ACOM ALLOCATES A LOCAL BUFFER AND MOVES DATA FROM
CENTRAL TO LOCAL MEMORY AND THEN TO MOS,

ACOM UPDATES LOCAL EDAL AND WRITES 1 WORD OVER MOS

EDAL,

ACOM DEALLOCATES LOCAL BUFFER AND DAL AND QUEUES AN

ACCUMULATOR MSG FOR DIOP,
INTERRUPT ON IOP TO IOP INPUT CHANNEL,

ACOM IS ACTIVATED BY IA
ACOM ALLOCATES A LOCAL DAL AND READS IN EDAL FROM MOS.

VIT.4

@»H‘Q

0
5. DIOP
6. DIOP
/. DIOP

- ACOM MATCHES 'NEW’ EDAL WITH ORIGINAL EDAL AND
DEALLOCATES ‘NEW' EDAL.

- IF FIRST EDAL AND DISK NOT BUSY., ALLOCATE A LOCAL
BUFFER: MOVE DATA TO LOCAL MEMORY: DEALLOCATE
MOS BUFFER: AND START WRITE.

- ACOM PUTS EDAL ON DCB EDAL QUEUE,

- ACOM ACTIVATES DISK DEMON,

- INTERRUPT ON DISK CHANNEL

- IA STARTS NEXT WRITE IF DATA IS AVAILABLE,
- 1A RETURNS LOCAL BUFFER,

- IA PUTS EDAL ON DONE QUEUE IN DCB,

- 1A ACTIVATES DISK DEMON.

- DISK TAKES TOP ENTRY OFF DONE QUEUE,

- DISK RETURNS LOCAL AND MOS EDAL AND MOS
BUFFER, IF NECESSARY,

- DISK BUILDS MORE EDALS (SO THERE ARE 3), AND
ALLOCATES MOS BUFFERS.

- DISK ALLOCATES MOS DAL(S) AND WRITES LOCAL EDAL(S)
T0 MOS.,

- DISK QUEUES (AN) ACCUMULATOR MESSAGE(S) FOR BIOP,

- DISK ALLOCATES A LOCAL BUFFER FOR ANY EDALS ON EDAL QUEUE
WHOSE DATA IS IN MOS AND READS THIS DATA INTO LOCAL.

- DISK DEALLOCATES THESE MOS BUFFERS.

- IF CHANNEL IS INACTIVE, AWAITING THIS DATA, DISK
STARTS A WRITE TRANSFER.

REPEAT STEPS 3 T0O 6 UNTIL ALL DATA TRANSFERRED.

- ACOM DETECTS THE RETURN OF THE LAST EDAL, THIS REQUEST.
FROM BIQP.,

- ACOM ALLOCATES AN MOS DAL AND WRITES LOCAL MDAL
ONTO 1T,

- ACOM QUEUES AN ACCUMULATOR MSG FOR MIOP.

- ACOM DEALLOCATES ‘NEW® LOCAL EDAL BUT NOT LOCAL MDAL.

- ACOM ACTIVATES DISK DEMON,

VIL.5

8, MIOP

9, DIOP

10, MIOP

INTERRUPT ON IOP TO IOP INPUT CHANNEL

ACOM ACTIVATED BY IA,

ACOM ALLOCATES A LOCAL DAL AND READS IN ‘NEW' MDAL
FROM MOS.

ACOM CHANGES FUNCTION CODE IN 'NEW’ MDAL TO 2 AND
WRITES 1 WORD OVER ‘NEW' MOS MDAL,

ACOM QUEUES AN ACCUMULATOR MSG FOR DIOP, (ACOM IN DIOP
WILL EVENTUALLY RELEASE ‘NEW’ MOS DAL).

ACOM STRIPS' OFF FIRST 10g PARCELS FROM ‘NEW' MDAL
AND QUEUES 6 WORDS TO BE SENT T0 CPU,

WHEN CPU RECEIVES THE 6 WORDS THE ‘NEW’ LOCAL MDAL
WILL BE DEALLOCATED.

DISK DETECTS THE LAST EDAL., THIS REQUEST., ON DONE QUEUE.
DISK DEALLOCATES LOCAL AND MOS EDAL AND MOS BUFFER, IF
NECESSARY,

DISK UPDATES LOCAL MDAL AND WRITES IT OVER ORIGINAL MOS
MDAL.

DISK DEALLOCATES LOCAL MDAL,

DISK QUEUES AN ACCUMULATOR MSG FOR MIOP,

INTERRUPT ON IOP TO IOP INPUT CHANNEL

ACOM ACTIVATED BY IA,

ACOM ALLOCATES A LOCAL DAL AND READS IN MDAL FROM MOS,
ACOM DEALLOCATES MOS MDAL.

ACOM ‘STRIPS' OFF FIRST 10g PARCELS FROM MDAL AND
QUEUES b WORDS TO BE SENT TO CPU,

WHEN CPU RECEIVES THE 6 WORDS THE LOCAL MDAL WILL BE
DEALLOCATED.

VII.b

1.

2,

3,

b,

MIOP

BIQOP

BIOP

BIOP

DISK READ REQUEST VIA BIOP

INTERRUPT ON LOW SPEED INPUT CHANNEL DUE TO TRANSFER
OF 6 WORD I/0 REQUEST PACKET,

CDEM IS ACTIVATED BY INTERRUPT ANSWERING (IA),
CDEM BUILDS A MASTER DISK ACTIVITY LINK (MDAL)

BY PREFIXING 10g CONTROL PARCELS TO THE 6 WORD
PACKET,

CDEM ALLOCATES A MOS DAL AND WRITES LOCAL MDAL

TO MOS,

CDEM QUEUES ACCUMULATOR MESSAGE TO BE SENT TO DIOP
(SPECIFYING ADDRESS OF DAL IN MOS),

CDEM DEALLOCATES LOCAL DAL,

INTERRUPT ON IOP TO IOP INPUT CHANNEL.,

ACOM IS ACTIVATED BY IA,

ACOM DECODES ACCUMULATOR MSG, ALLOCATES A LOCAL

DAL, AND READS IN MDAL FROM MOS.

ACOM BUILDS FIRST, UP TO 3, EXECUTABLE DALS (EDALS)

AND ALLOCATES LOCAL BUFFERS,

ACOM STARTS FIRST READ (CR SEEK) IF DISK IS NOT ACTIVE,
AND PUTS EDALS ON DISK CONTROL BLOCK (DCB)

EDAL QUEUE,

INTERRUPT ON DISK CHANNEL,

IA ALLOCATES A LOCAL BUFFER FOR NEXT TRANSFER,
IF NECESSARY, AND STARTS NeXT SECTOR,

IA MOVES FINISHED EDAL TO DCB DONE QUEUE AND
ACTIVATES THE DISK DEMON (DISK),

DISK TAKES FIRST ENTRY OFF THE DONE QUEUE.

DISK MOVES DATA FROM LOCAL TO CENTRAL MEMORY,
DISK DEALLOCATES LOCAL BUFFER AND EDAL.

DISK ALLOCATES A LOCAL BUFFER FOR SECOND EDAL ON
EDAL QUELE,

DISK BUILDS MORE EDALS, IF NECESSARY,

REPEAT STEPS 3 & 4 UNTIL ALL BUT LAST SECTOR TRANSFERRED,

VIL.7

BIOP (READ AHEAD)

BIOP

MIOP

BIOP

BIOP

INTERRUPT ON DISK CHANNEL,

1A DETECTS LAST SECTOR THIS REQUEST AND BEGINS

READ AHEAD (IF NO OTHER EDALS) BY ALLOCATING A LOCAL
BUFFER AND STARTING I/0.

IA MOVES LAST EDAL TO DONE QUELUE.

IA ACTIVATES THE DISK DEMON,

ISK PROCESSES LAST EDAL AS PER STEP 4,

DISK UPDATES LOCAL MDAL AND WRITES IT OVER ORIGINAL
MOS MDAL,
DISK DEALLOCATES LOCAL MDAL AND QUEUES AN ACCUMULATOR

MSG FOR MIOP,

INTERRUPT ON I0P TC IOP INPUT CHANNEL,

ACOM IS ACTIVATED BY IA,

ACOM ALLOCATES A LOCAL DAL AND READS IN MOS MDAL,
ACOM DEALLOCATES MOS MDAL.

ACOM 'STRIPS® OFF FIRST 10g PARCELS FROM MDAL AND
QUEUES 6 WORDS TO BE SENT TO CPU.

WHEN CPU RECEIVES THE 6 WORDS THE LOCAL MDAL WILL
BE DEALLOCATED.,

INTERRUPT ON DISK CHANNEL

IA DETECTS I/0 AS READ AHEAD, ALLOCATES A LOCAL
BUFFER AND STARTS 1/0,

IA ACTIVATES THE DISK DEMON,

DISK ALLOCATES A MOS BUFFER AND WRITES READ AHEAD
DATA TO MOS.
DISK DEALLOCATES THE LOCAL BUFFER.

REPEAT STEPS 8 & 9 FOR 3 SECTORS OR UNTIL NEW REQUEST
THIS CHANNEL.,

VII.8

1.

2,

3,

4,

MIOP

BIOP

BIOP

BIOP

DISK WRITE REQUEST VIA BIQP

INTERRUPT ON LOW SPEED IMPUT CHANNEL DUE TO TRANSFER
OF 6 WORD I/0 REQUEST PACKET.

CDEM IS ACTIVATED BY INTERRUPT ANSWERING (IA).
CDEM BUILDS A MASTER DISK ACTIVITY LINK (MDAL)

BY PREFIXING 10g CONTROL PARCELS TO THE 6 WORD
PACKET.

CDEM ALLOCATES A MOS DAL AND WRITES LOCAL MDAL

TO MOS.

CDEM QUEUES ACCUMULATOR MESSAGE TO BE SENT TO BIOP
(SPECIFYING ADDRESS OF DAL IN MOS).

CDEM DEALLOCATES LOCAL DAL,

INTERRUPT ON I0P TO IOP INPUT CHANMEL,

ACOM IS ACTIVATED BY IA.

ACOM DECODES ACCUMULATOR MSG, ALLOCATES A LOCAL DAL,
AND READS IN MDAL FROM MOS.

ACOM BUILDS FIRST, UP TO 3, EDALS, AND PUTS THEM

ON THE DISK CONTROL BLOCK (DCB) EDAL QUEUE.

ACOM ACTIVATES DISK DEMON,

DISK LOOKS AT FIRST EDAL ON EDAL QUEUE AND ALLOCATES
LOCAL BUFFER.,

ISK MOVES DATA FROM CENTRAL TO LOCAL MEMORY,

[SK STARTS WRITE (OR SEEKD.

DISK LOOKS AT SECOND EDAL ON EDAL QUEUE,

DISK ALLOCATES A LOCAL BUFFER AND MOVES DATA

FROM CENTRAL TO LOCAL MEMORY.

lCD]>

[

)

INTERRUPT ON DISK CHANNEL.

IA STARTS WRITE FOR NEXT SECTOR.

IA DEALLOCATES LOCAL BUFFER,

IA MOVES FINISHED EDAL TO DCB DONE QUEUE,
IA ACTIVATES DISK DEMON.

VILL9

5,

b.

BIOP

MIOP

DISK GETS EDAL OFF DONE QUELUE,

DISK DEALLOCATES LOCAL EDAL.,

IF LAST EDAL THIS REQUEST. UPDATE LOCAL MDAL:

WRITE IT OVER ORIGINAL MDAL IN MOS: DEALLOCATE LOCAL
MDAL: QUEUE AN ACCUMULATOR MSG FOR MIQP.

DISK BUILDS MORE EDALS. IF NECESSARY: ALLOCATE LOCAL
BUFFERS: TRANSFER DATA FROM CENTRAL TO LOCAL

MEMORY,

REPEAT STEPS 4 & 5 UNTIL ALL DATA TRANSFERRED.

INTERRUPT ON IOP TO IOP INPUT CHANNEL.

ACOM IS ACTIVATED BY IA,

ACOM ALLOCATES A LOCAL DAL AND READS IN MOS MDAL.
ACOM DEALLOCATES MOS MDAL,

ACOM 'STRIPS' OFF FIRST 10g PARCELS FROM MDAL AND
QUEUES 6 WORDS TO BE SENT TO CPU.

WHEN CPU RECEIVES THE 6 WORDS THE LOCAL MDAL WILL
BE DEALLOCATED.

VIL,10

APPENDIX VIII

CONCENTRATOR TABLES AND DETAILED FLOW

CONCENTRATOR TABLES

KERNEL RESIDENT CONCENTRATOR TABLE (CT$CT)

LOCAL MEMORY CONCENTRATOR TABLE (CL)

CHANNEL EXTENSION TABLE (CXT)

STREAM DESCRIPTOR TABLE

VIIL,1

KERNEL RESTDENT CONCEMTRATOR TABLE

CONTAINS QUEUES. QUEUE ADDRESSES. TABLE POINTERS AND OTHER
INFORMATION USED BY THE KERNEL TO MANAGE A CONCENTRATOR,

SIZE DEPENDS ON MAXIMUM NUMBER OF CONCENTRATORS ASSEMBLED.,

LOCATED IN MIOP-ONLY SOFTWARE TABLE AREA OF KERNEL.

CONTAINS A 4 PARCEL ID ENTRY FOR EACH LOGICAL ID,

VIIL,2

ADDRESS

CTSCT
CT$1D

CT$MQ

CT$CAQ

CT$MC

CT$RAQ

CT$WQ

CT$ICH

CTSLCL

CT$MO

PAR

W OO

41
42
43
4y
45
4o
47
50
51
52
53
54
55
56
57
60
b1
62
63
o4
65
66
6/
/0
71
/2
73

FIGURE VIII-1.

™
-

IIDI

MESSAGE CHANNEL ORDINAL FOR THIS ID (DEFERRED)

LOGICAL 1D

DESCRIPTOR TABLE BUFFER MEMORY ADDRESS (UPPER)

DESCRIPTOR TABLE BUFFER MEMORY ADDRESS (LOWER)

IMQI

POPCELL QUEUE ADDRESS FOR MSGIOQ IN BIOP
ICQI

CONCENTRATOR O CONCI & CONCO SYNC QUEUE ADDRESS
CONCENTRATOR 1 CONCI & CONCO SYNC QUEUE ADDRESS
IMCI

CONCENTRATOR O MESSAGE COUNT
CONCENTRATOR 1 MESSAGE COUNT

IRQI

CONCENTRATOR O FEREAD QUEUE (FIRST)
CONCENTRATOR O FEREAD QUEUE (LAST)
CONCENTRATOR 1 FEREAD QUEUE (FIRST)
CONCENTRATOR 1 FEREAD QUEUE (LAST)

IWQI

CONCENTRATOR O FEWRIT QUEUE C(FIRST)
CONCENTRATOR O FEWRIT QUEUE (LAST)
CONCENTRATOR 1 FEWRIT QUEUE (FIRST)
CONCENTRATOR 1 FEWRIT QUEUE CLAST)

IICI

CONCENTRATOR O PHYSICAL INPUT CHANNEL
CONCENTRATOR 1 PHYSICAL INPUT CHANNEL
lel

CONCENTRATOR O LOCAL MEMORY TABLE
CONCENTRATOR 1 LOCAL MEMORY TABLE

IMOI

CONCENTRATOR 0 MESSAGE CHANNEL ORDINAL
CONCENTRATOR 1 MESSAGE CHANNEL ORDINAL

KERNEL RESIDENT CONCENTRATOR TABLE

WITH CONC$MX=2 AND IDSMXP=40,

VITL.3

LOCAL MEMORY CONCENTRATOR TABLE

CONTAINS LCP BUFFER, CXT., DSTB SCRATCH SPACE. CONCENTRATOR SYNC
QUEUES, AND LCP BUFFER MEMORY ADDRESS.

ONE PER ACTIVE CONCENTRATOR

ALLOCATED FROM FREE MEMORY AT INITIALIZATIGON

EXISTS UNTIL CONCENTRATOR TERMINATES

254¢ PARCELS LONG

VIIL.4

OFFSET

PARCEL

CLa0LC

CLaILC

CLACXT

CLaDSC

CLaRQ

CLaWQ

CLacq

CLaLCO

0
27
30

57
60
117
120

237
240
241
242
243

244
245
246
247

250
251

252
253

FIGURE VIII-2.

OUTPUT LCP

INPUT LCP

CHANNEL EXTENSION TABLE

SYSTEM DESCRIPTOR TABLE
MANTPULATION SPACE

FEREAD-CONCI SYNC QUEUE (FIRST)
FEREAD-CONCI SYNC QUEUE (LAST)
OF WORDS TO READ

LOCAL ADDRESS TO STORE WORDS

FEWRIT-CONCO SYNC QUEUE (FIRST)
FEWRIT-CONCO SYNC QUEUE (LAST)
OF WORDS TO WRITE

LOCAL ADDRESS TO WRITE FROM

CONCI-CONCO SYNC QUEUE (FIRST)
CONCI-CONCO SYNC QUEUE (LAST)

BUFFER MEMORY ADDRESS OF LCP (UPPER)
BUFFER MEMORY ADDRESS OF LCP (LOWER)

LOCAL MEMORY CONCENTRATOR TABLE

VITI.5

CHANNEL EXTENSION TABLE

40g PARCELS LONG

USED TO OBTAIN CENTRAL MEMORY ADDRESSES FOR MESSAGES.

LAST 30g PARCELS PASSED TO CPU,

LOCATED IN LOCAL MEMORY CONCENTRATOR TABLE,

TREATED AS A DAL BY I/0 SUBSYSTEM.

VIII.b

oYUl W O

WWWWWWWWNDROONRNMNDMNDMNSNNRERPEREFE
NourlIo- WNRFRFONOULTEWNDRFRPONOUTE WD O

LINK TO NEXT DAL IN CHAIN (O IF LAST)
FUNCTIOM OF MESSAGE

BUFFER MEMORY ADDRESS OF DAL (UPPER)

BUFFER MEMORY ADDRESS OF DAL (LOWER)
ACTIVITY DESCRIPTOR OF SENDER (FOR RESPONSE)
ACCUMULATOR MESSAGE

POPCELL ADDRESS

UNUSED

SOURCE ID ('C1* OR 'B")

DESTINATION ID ('B’ OR ‘C1")

MESSAGE CHANNEL ORDINAL (& BITS): MESSAGE COUNT (8 BITS)
UNUSED

BUFFER MEMORY OUTPUT LCP ADDRESS (UPPER)
BUFFER MEMORY QUTPUT LCP ADDRESS (LOWER)
BUFFER MEMORY INPUT LCP ADDRESS (UPPER)
BUFFER MEMORY INPUT LCP ADDRESS (LOWER)

RESEND FLAG (1 BIT): DSTB MOS ADDRESS (UPPER) (15 BITS)
DSTB MOS ADDRESS (LOWER)
STATUS (0 IF NO ERROR)

UNUSED

CENTRAL
CENTRAL
CENTRAL
CENTRAL
CENTRAL
CENTRAL
CENTRAL
CENTRAL
CENTRAL
CENTRAL
CENTRAL
CENTRAL

MEMORY OUTPUT LCP ADDRESS (UPPER)
MEMORY OUTPUT LCP ADDRESS (LOWER)
MEMORY INPUT LCP ADDRESS (UPPER)
MEMORY INPUT LCP ADDRESS (LOWER)
MEMORY QUTPUT SEGMENT ADDRESS (UPPER)
MEMORY OUTPUT SEGMENT ADDRESS (LOWER)
MEMORY INPUT SEGMENT ADDRESS (UPPER)
MEMORY INPUT SEGMENT ADDRESS (LOWER)
MEMORY OUTPUT LTP ADDRESS (UPPER)
MEMORY OUTPUT LTP ADDRESS (LOWER)
MEMORY INPUT LTP ADDRESS (UPPER)
MEMORY INPUT LTP ADDRESS (LOWER)

FIGURE VITI-3, CHANNEL EXTENSION TABLE

VIII.7

STREAM DESCRIPTOR TABLE

PROVIDES INFORMATION TO THE CONCENTRATOR CONCERNING STREAMS,

RESIDES IN BUFFER MEMORY

ACCESSED BY MIOP AND BIOP

CONSISTS OF TWO PARTS:
DESCRIPTOR TABLE (DSTB)

CONTAINS STREAM LIMITS AND POINTERS TO
INDIVIDUAL STREAM DESCRIPTORS,

ONE PER LOGICAL ID
INDIVIDUAL STREAM DESCRIPTOR

CONTAINS SUBSEGMENT AND MESSAGE BUFFER
INFORMATION FOR A STREAM.

VIII.8

PARCEL

0 UNUSED (& BITS): CHECKSUM SIZE (CKZ) (8 BITS)

1 | MAX., # INPUT STREAMS (MIS) (8 BITS): MAX. # OUTPUT STREAMS
(MOS) (8 BITS)

2 MAX. # ACTIVE STREAMS (MAS) (8 BITS): MAX., # SUBSEGMENTS
(MSS) (8 BITS)

3 SUBSEGMENT SIZE IN WORDS

b LOGICAL ID
5

b

UNUSED
UNUSED

7 UNUSED
10 UNUSED
11 UNUSED

12 MOS ADDRESS OF INPUT STREAM O DESCRIPTOR (ISTO) (UPPER)
13 MOS ADDRESS OF INPUT STREAM O DESCRIPTOR (ISTO) (LOWER)

120
FIGURE VIII-4, DESCRIPTOR TABLE
PARCEL
0 # SUBSEGMENTS (NSS) (8 BITS): # BUFFERS THIS STREAM (ENT)

(8 BITS)

1 OFFSET TO FIRST WORD USED IN BUFFER
2 | BUFFER MEMORY DATA BIT COUNT (UPPER)
3 | BUFFER MEMORY DATA BIT COUNT (LOWER)
4 NUMBER OF WORDS USED IN LAST BUFFER
5

6

UNUSED
UNUSED

/ UNUSED
10 UNUSED
11 UNUSED

12 MOS ADDRESS FOR MESSAGE BUFFER 0 (UPPER)
13 MOS ADDRESS FOR MESSAGE BUFFER O (LOWER)

FIGURE VIII-5, STREAM DESCRIPTOR (1 PER STREAM)

VIIT.Q

3.

5.

DETAILED MESSAGE FLOW

FEREAD HAS PREVIOUSLY DONE A FRNTNDIO SERVICE REQUEST.

HIS OPENS UP INPUT CHANNEL FROM FRONT-END,
EREAD IS ON KERNEL TABLE QUEUE (CT$RQ),
CONCI IS ON CLaRQ,

ONCO IS ON CLacq,
FEWRIT IS ON CLaWQ.

T
F

FRONT-END SENDS AN LCP ACROSS THE INPUT CHANNEL. THIS
GENERATES AN INTERRUPT,

INTERRUPT ANSWERING TAKES FEREAD OFF CT$RQ,

FEREAD DOUBLE SYNCS WITH CONCI, THIS ACTIVATES CONCI AND
IDLES FEREAD.

CONCI VALIDATES LCP AND WRITES IT TO BUFFER MEMORY,

CONCI GETS A LOCAL MEMORY SUB-SEGMENT BUFFER AND ALL OF THE
NECESSARY BUFFER MEMORY BUFFERS,

CONCI DOUBLES SYNCS WITH EEREAD,
FEREAD DOES A FRNTNDIO, INITIATING THE READ OF THE NEXT

SUBSEGMENT, AND PLACING EEREAD ON CT$RQ.

VIII.10

10
11,
12,
13,

14,

15.

16.
17,
12,
19,
20,
21,
22,
23,

24,

WHEN THE SUB-SEGMENT (UP TO 512 WORDS) IS READ, INTERRUPT
ANSWERING TAKES FEREAD OFF CT$RO.

FEREAD DOUBLE SYNCS WITH CONCI.

CONCT WRITES THE SUB-SEGMENT TO BUFFER MEMCRY.
@ TO 6 UNTIL ALL SUB-SEGMENTS ARE READ,

IF N0 LTP, 60 TO 18,

CONCT DOUBLE SYNCS WITH FEREAD,

FEREAD DOES A FRNTNDIO, INITIATING THE READ OF THE LTP,
AND PLACING FEREAD ON CT$RQ.

WHEN THE LTP IS READ, INTERRUPT ANSWERING TAKES FEREAD OFF
CT$RQ,

FEREAD DOUBLE SYNCS WITH CONCI.

CONCT CALLS CHKSMI WHICH COMPARES CHECKSWM AND LTP,

CONCT CALLS CRAYMSG,

CRAYMSG SENDS CXT TO CPU WITH RESEND FLAG SET,

CPU RETLRNS CXT WITH CENTRAL MEMORY ADIRESS FOR INPUT MESSAGE.
CRAYMSG AWAKENS MSGIO IN BIOP,

MSGIO CALLS MSGIN WHICH MOVES MESSAGE TO CENTRAL MEMORY.
MSGIO RESPONIS TO CRAYMSG.

CRAYMSG SENDS CXT TO CPU WITH RESEND FLAG CLEAR,

VIIT.11

25,

26,

27,

28,

28,

30.

32,

34,

35,

36,

37,

CPU PROCESSES MESSAGE, BUILDS A RESPONSE, AND RETLRNS CXT
WITH CENTRAL MEMORY ADIRESS CF RESPONSE MESSAGE.

CRAYMSG AWAKENS MSGIO IN BIOP,

MSGIO CALLS MSGOUT WHICH MOVES RESPONSE MESSAGE TO BUFFER
MEMCRY,

MSGIO RESPONDS TO CRAYMSG,
CRAYMSG RETLRMS TO CONCI,
CONCI DOUBLE SYNCS WITH CONCO VIA THE (LaCQ QUELE,

CONCO READS RESPONSE LCP INTO MIOP LOCAL MEMORY FROM BUFFER
MEMRY

CONCO SYNCS WITH FERRIT VIA CLaWQ,

CONCO SYNCS WITH CONCI, THIS IS TO ALLOW FRONT END TO

SEND AN IMYEDIATE RESPONSE TO THE OUTPUT MESSAGE.

A. CONCI DOUBLE SYRCS WITH FEREAD,

B, FEREAD OPENS UP INPUT CHANNEL FOR MEXT LCP VIA
FRNTNDIO. FEREAD GOES ON CT$RQ.

CONCO SYNCS WITH CLowWQ, THIS IDLES CONCO SINCE THIS
QUELE IS EMPTY,

FEWRIT INITIATES WRITE OF LCP TO FRONT END VIA FRNTNDIO,
FEWRIT GOES ON CTHQ.

WHEN LCP IS WRITTEN, INTERRUPT ANSWERING TAKES FEWRIT OFF
CTSWQ.

FEWRIT DOUBLE SYNCS WITH CONCO.,

VIILI2

38,

39,

40,

41,

42,

43,

hi,

45,

4b,

47,

48,

50,

CONCO READS A SUB-SEGMENT (UP TO 512 WORDS) INTO MIOP
LOCAL MEMORY,

CONCO DOUBLE SYNCS WITH EEWRIT,

FEWRIT INITIATES WRITE OF SUB-SEGMENT TO FRONT END VIA
FRNTNDIO. FEEWRIT GOES ON CT$WQ.

WHEN SUB-SEGMENT IS WRITTEN, INTERRUPT ANSWERING TAKES
FEWRIT OFF CT$WQ.

FEWRIT DOUBLE SYNCS WITH CONCO.

GO TC 32 UNTIL ALL SUB-SEGMENTS DONE.
IF NO LTP, GO TO 50,

CONCO CALLS CHKSMO WHICH BUILDS LTP,
CONCO DOUBLE SYNCS WITH EEMWRIT.

FEWRIT INITIATES WRITE OF LTP TO FRONT END VIA FRNTNDIO.
FEWRIT GOES ON CTsCH,

WHEN LTP IS WRITTEN, INTERRUPT ANSWERING TAKES EEWRIT OFF
CTEWA,

FEWRIT DOUBLE SYNCS WITH CONCO,

CONCO SYNCS WITH CONCI VIA CLaCQ, WHICH IS EMPTY, THUS.
CONCO IS IDLED.

VIIT,13

 Cray Research, Inc.

LCorporate Addresses

(CORPORA TE HEADQUARTERS

1440 Northland Drive
Mendota Heights, MN 55120
Tel: 612-452-6650

TLX 298444

~

THE CHIPPEWA FACILITIES

Manufacturing:

Highway 178 North
Chippewa Falls, Wl 54729
Tel: 715-723-2221

TWX 910285 1699

Engineering:

Highway 178 North
Chippewa Falls, Wi 54729
Tel: 715-723-5501

CRAY LABORATORIES

Cray Labs Headquarters
5311 Western Avenue
Boulder, CO 80301
Tet: 303-449-3351

Hallie Lab

P.O. Box 169

Chippewa Falls, WI 54729
Tel: 715-723-0266

N

(SALES OFFICES

Eastern Regional Sales Office
10750 Columbia Pike, Suite 602
Silver Spring, MD 20901

Tel: 301-681-9626

~

Central Regional Sales Office
5330 Manhattan Circle, Suite F
Bouider, CO 80303

Tel: 303-499-3055

Houston Sales Office

3121 Buffalo Speedway, Suite 400
Houston, TX 77098

Tel: 713-877-8053

Austin Sales Office

3415 Greystone, Suite 201
Austin, TX 78731

Tel: 512-345-7034

=~

Western Regional Sales Office
Sunset Office Plaza

1874 Holmes Street
Livermore, CA 94550

Tel: 415-447-0201

Los Angeles Sales Office

El Segundo, CA 90245
Tel: 213-640-2351

Seattle Sales Office

536 A Medical Dental Building
2728 Colby Avenue

Everett, WA 98201

Tel: 206-259-5075

.

101 Continental Boulevard, Suite 456

SR AN

Cray Research (UK) Limited
James Glaisher House
Grenville Place

Bracknell, UK

Tel: 44-344-21515

TLX: 848841

Cray Research GmbH
Wartburgplatz 7
8000 Munich 40
West Germany

Tel: 49-89-3630-76
TLX: 05213211

Cray Research Japan, Limited
Shin Aoyama Building, West 1661
1-1 Minami-Aoyama 1-chome
Minato-ku, Tokyo 107 Japan

Tel: 81(03)403-3471

INTERNATIONAL (SUBSIDIA R/E.a

