
c:
RESEARCH J INC.

CRAY® COMPUTER SYSTEMS

UNICOS USER COMMANDS
REFERENCE MANUAL

SR-2011

Copyright© 1986 by CRAY RESEARCH, INC. This manual or
parts thereof may not be reproduced in any form without
permission of CRAY RESEARCH, INC.

, ~.::::li=:II~ -..."
RECORD OF REVISION RESEARCH, INC. PUBLICATION NUMBER SR-2011

Requests for copies of Cray Rcscarch, Inc. publications shauld be directed to the Distribution Center and comments about these publications should
be direc:t.cd to:

CRA Y RBSEARClI, INC.

Tcclmical Publications
1345 Northland Drive
Mendota Heights. Minnesota 55120

Revision
March 1986

July 1986

Description
Documentation to support the UNICOS release 1.0 running on Cray computer sys­
tems. This documentation is derived from UNIX System V under license from
AT&T Technologies, Inc.

On-line documentation only to support the UNICOS release 1.1 running on Cray
computer systems.

October 1986 Documentation to support the UNICOS release 2.0 running on Cray computer sys­
tems. This documentation contains the following new commands: cft77, clear, csh,
csim, dda, dispose, drd, ex, expand, fetch, ftodump, flow, lastcomm, more, nasa, ps,
premult, printenv, prof, rdrop, rdist, sag, sar, sc, scpqsub, scpreroute, sim, stty, tar­
get, tput, tset, ul, unexpand, uupick, uuname, uustat, uuto, uux, vi, wdrop, and
whereis. See the following commands for revisions: adb, ar, as, asa, awk, cb, cft,
dd, df, finger, Id, nice, pascal, r1ogin, segldr, sim, update, units, and qsub. Other
commands have some minor revisions.

The UNICOS operating system is derived from the AT&T UNIX System- V operating system.
UNICOS is also based in part on the Fourth Berkeley Software Distribution under license from The
Regents of The University of California.

The UNICOS batch job processing capability is based on the Network Queuing Systems (NQS),
which was developed by Sterling Software for the National Aeronautics Space Administration
(NASA) Numerical Aerodynamic Simulation (NAS) project.

CRAY, CRAY-l, and SSD are registered trademarks and APML, CFf, CFT77, CFf2, COS, CRAY-2,
CRAY X-MP, CSIM. lOS, SEGLDR, SID. SUPERLINK/ISP, and UNICOS are trademarks of Cray
Research, Inc.

NSC and HYPERchannel are registered trademarks of Network Systems Corporation. UNIX is a
registered trademark of AT&T.

Release 2.0 ii SR-2011

SR-2011

The TCP/IP documentation is copyrighted by The Wollengong Group and may not be reproduced,
transmitted, transcribed, stored in a retrieval system, or ttanslated into any language or computer
language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, except as provided in the license agreement governing the documentation or
by written permission of The Wollongong Group, Inc., 1129 San Antonio Road, Palo Alto, Cali­
fornia 94303. The Wollongong software and documentation is based in part on the Fourth Berke­
ley Software Disttibution under license from The Regents of the University of California. © The
Wollongong Group 1985.

iii Release 2.0

SR-2011

PREFACE

The UNICOS Commands Reference Manual provides descriptions of commands and application
programs for system users of the Cmy opemting system UNICOS. It supplements the information
contained in the other manuals in the UNICOS documentation set.

This manual describes programs that are invoked directly by the user or by command language pro­
cedures. Commands described in section 1 of this manual genemlly reside in the directory Ibin (for
binary programs). Programs can also reside in lusrlbin to save space in Ibin, lusr/ucb (those com­
mands ported from the Fourth Berkeley Software Distribution), and /lib. The Ibin, lusrlbin, and
lusr/ucb directories are searched automatically by the command interpreter called the shell (see sh(l».
You must change the path (or specify the path on the command line) if you want to use a command in
/lib. The commands for which this is necessary are specified as such in the SYNOPSIS section on the
man page.

This manual is a reference manual for UNICOS programmers. It is assumed that the reader has a work­
ing knowledge of either the Cmy opemting system .UNICOS or the UNIX Operating System.

Other Cray Research, Inc. (CRI), manuals that may be helpful to the reader are listed below (all other
manuals referred to are CRI publications unless otherwise specified):

• The apppropriate CRI libmry reference manual:
Programmer's Library Reference Manual, publication SR-Ol13
System Libmy Reference Manual, publication SM-0114
CRAY X-MP and CRAY-l C Library Reference Manual, publication SR-0136
CRAY-2 UNICOS Libnuies, Macros and Opdefs Reference Manual, publication SR-2013

• UNICOS Administrator Commands Reference Manual, publication SR-2022

• UNICOS System Calls Reference Manual, publication SR-2012

• UNICOS File Formats and Special Files Reference Manual, publication SR-2014

• UNICOS Kernel Error Message Manual, publication SR-2015

• UNICOS Administrator Commands Reference Manual, publication SR-2022

• Cray C Reference Manual, publication SR-2024

CONVENTIONS

Throughout the UNICOS documentation, the following conventions are used:

command(l) refers to an entry in the UNICOS User Commands Reference Manual, publication
SR-20l1.

command(lM) refers to an entry in the UNICOS Administrator Commands Reference Manual, publi­
cation SR-2022.

routine(2) refers to an entry in the UNICOS System Calls Reference Manual; publication
SR-2012.

routine(3x) refers to an entry in the appropriate CRI library reference manual. The optional letter
following the number 3 indicates the section reference.

entry(4x) refers to an entry in the UNICOS File Formats and Special Files Reference Manual,
publication SR-2014. The optional letter following the number 4 indicates the section
reference.

v Release 2.0

Each manual consists of sections with independent entries of a page or more in length. The name of
the entry appears in the upper comers of its pages. Entries within each section are alphabetized, with
the exception of the introductory entry that begins each section. The page numbers of each entry start
at 1. Some entries may describe several routines, commands, etc. In such cases, the entry appears only
once, alphabetized under its "major" name.

All entries are based on the following common fonnat, not all of whose parts always appear:

NAME gives the name(s) of the entry and briefly states its purpose.

SYNOPSIS summarizes the use of the program being described. The following conventions are
used in the SYNOPSIS:

Boldface strings are literals and are to be typed just as they appear.

Italic strings usually represent substitutable argument prototypes and program names found
elsewhere in the manual.

Square brackets [] around an argument prototype indicate that the argument is optional.
When an argument prototype is given as name or file, it always refers to afile name.

Ellipses ••• indicate that the previous argument prototype may be repeated.

An argument beginning with a minus, plus, or equal sign (-,+,or =) is often recognized to be
some sort of flag argument, even if it appears in a position where a file name could appear.
Therefore, it is recommended that files names do not begin with -, +, or =.

DESCRIPTION discusses the subject at hand.

EXAMPLES gives examples of usage, where appropriate.

FILES gives the file names that are built into the program.

SEE ALSO gives pointers to related information.

MESSAGES discusses the diagnostic indications that may be produced. Messages that are
intended to be self-explanatory are not listed.

WARNINGS points out potential pitfalls.

LIMITATIONS identifies restrictions of the program being described.

BUGS gives known bugs and sometimes deficiencies. Occasionally, the suggested fix is also
described.

All entries are available on line through the man(1) command.

A contents list follows this introduction.

Release 2.0 vi SR-2011

USER COMMANDS (1)

intro ... Introduction to general-utility commands
acctcom ... Searches and prints process accounting files
acquire .. Makes a request for a file from a front-end station
adb ... Invokes the absolute debugger
admin .. Creates and administers SCCS files
adstape (CRAY X-MP and CRAY-I only) .. ~ Prepares lOS deadstart tape
apml (CRAY X-MP and CRA Y-I only) Invokes the APML assembler
ar (CRA Y-2 only) .. Maintains archives and libraries for portable archives
ar (CRAY X-MP and CRAY-I only) Maintains archives and libraries for portable archives
as ... Invokes the Cray assembler (CAL)
asa ... Interprets ASA carriage control chamcters
at ... Executes commands at a later time
awk .. Scans and processes patterns
banner ... Makes posters
basename .. Prints portions of pathnames on standard output
batch (see at(1» ... Executes commands at a later time
be ... Invokes the arbitrary-precision arithmetic

language preprocessor
bdiff ... Compares very large files for differences
bind (CRAY X-MP and CRAY-I only) Binds APML relocatable modules together
bmxio (CRAY X-MP and CRAY-I only) Provides an interface to block mux devices
cal .. Prints a calendar
calendar ... Reminder service
cat .. Concatenates and prints files
cb ... C program beautifier
cc (CRAY-2 only) ... Invokes the C compiler
cc (CRAY X-MP and CRAY-I only) Invokes the C compiler
cd ... Changes working directory
cdc ... Changes the delta commentary of an SCCS delta
cflow ... Generates C flow graph
cft (CRAY-2 only) ... Invokes the CRAY-2 Fortran compiler
cft (CRAY X-MP and CRAY-I only) Invokes the CFT Fortran compiler
cft11 ... CFf71 Fortran compiler, not machine-specific
chgrp (see chown(1» .. Changes owner or group
chmod ... Changes mooe
chown .. Changes owner or group
chsh (CRAY X-MP and CRAY-I only) Changes default login shell
clear (CRAY X-MP and CRAY-I only) Clears tenninal screen
cmp ... Com}lafes two files
comb ... Combines SCCS deltas
comm .. Selects or rejects lines common to two sorted files
cord (CRAY X-MP and CRAY-I only) Invokes the core dump program
cp ... Copies files
cpio ... Copies file archives in and out
cpp ... Invokes the C language preprocessor
crayl (see machid(l» .. Provides truth value about processor type
cray2 (see machid(l» .. Provides truth value about processor type
crayxmp (see machid(l» ... Provides truth value about processor type
crontab .. Copies files into the user crontab file

SR-2011 vii Release 2.0

crypt .. Encodes/decodes files
csh ... Invokes a shell (command interpreter) with a C-like syntax
csim (CRAY X-MP and CRAY-l only) Invokes the hardware simulator for operating systems
csplit Separates files into sections
cut ... Cuts out selected fields of each line of a file
cvt (CRAY-2 only) .. Converts files between update and scm formats
cxref .. Generates C program cross reference
date .. ~ Prints and sets the date
dc ... Desk calculator
dd .. Converts and copies a file to the specified output
dda ... Invokes the dynamic dump analyzer
debug ... Invokes the postmortem core analyzer
delta .. Makes a delta (change) to an SCCS file
df ... Reports the number of free disk blocks
diff ... Compares files for differences
diff3 (CRAY-2 only) ... Performs a 3-way differential file comparison
dircmp ... Compares directories
dimame (see basename(l» .. Prints portions of pathnames on standard output
dispose .. Disposes a file from the Cray computer system

to a front-end station
drd ... Invokes the dynamic runtime debugger
du .. Summarizes disk usage
echo ... Echos arguments
ed ... Invokes the ed text editor
edit (see ex(l» •..•............ Invokes the ex text editor
egrep (see grep(l» ... Searches a file for a pattern
env ... Sets environment for command execution
ex (CRAY X-MP and CRAY-l only) Invokes the ex text-editor
eXdf (CRAY X-MP and CRAY-l only) Transfers files to and from

the lOS partition of the expander disk
exlp (CRAY X-MP and CRAY-l only) Prints files on the expander line printer
expand ... Expands tabs to spaces
expr ... Evaluates arguments as an expression
extd (CRAY X-MP and CRAY-l only) Transfers files to and from the lOS expander tape drive
factor .. Factors a number
false (see true(1» ... Provides truth values about processor type
fetch .. Requests a file from a front-end station
fgrep (see grep(l» ... Searches a file for a pattern
file ... Determines file type
find Finds files
finger (TCP/IP NETWORK) ... Provides user information
flodump (CRAY-2 only) .. Displays flowtrace data in 132-column format
flodump (CRAY X-MP and CRAY-l) Displays flowtrace data from a file named core
flow (CRAY-2 only) .. Displays flowtrace data in 80-column format
fold (CRA Y X-MP and CRA Y-I only) Folds long lines of files for finite width output
fpld (see ld(1) on the CRA Y-2) .. Invokes the link editor for relocatable files
from2 (see t02(1» .. Copies files between VAX and CRAY-2
fromvax (see t02(1» .. Copies files between VAX and CRAY-2
fsplit Splits Fortran files
ftp (TCP/IP NETWORK) .. Transfers files to and from a remote network site
ftref (CRAY X-MP and CRAY-l only) Generates Fortran reference listing
get ... Gets a version of an SCCS file

Release 2.0 viii SR-2011

getopt .. Parses comm3lld options
grep ... Searches a file for a pattern
head (CRAY X-MP and CRAY-l only) Writes the first few lines of a file
help ... Provides explanation of messages and commands
hostid (TCP/IP NETWORK) ... Sets or prints identifier of current host system
hostname (TCP/IP NETWORK) ... Prints the name of current host system
id ... Prints user and group IDs
jad (CRAY-2 only) .. Job accounting daemon
jar (CRAY-2 only) ... Provides job accounting information
join .. Joins specified lines of files
kill ... Terminates a process
last (CRAY X-MP and CRAY-l only) Indicates the last logins of users and teletypes
lastcomm (CRAY X-MP and CRAY-l only) Shows last commands executed in reverse order
Id (CRA Y-2 only) .. Invokes the link editor for relocatable files
Id (CRAY X-MP 3Ild CRAY-l only) Invokes the CRAY X-MP and CRAY-l link editor
lex ... Generates programs for simple lexical tasks
line .. Reads one line
lint ... Invokes a C program checker
In ... Links files
login .. Signs on
logname .. Gets login name
lorder (CRAY-2 only) ... Finds ordering relation for an object library
Is .. Lists contents of directory
m4 ... Invokes a macro processor
machid .. Provides truth value about processor type
mail ... Lets you send or read mail
mailx ... Electronic message processing system
make .. Maintains, updates, and regenerates groups of programs
makekey .. Generates encryption key
man ... Prints entries in this manual
mesg .. Permits or denys messages
mkdir ... Creates a directory
more (CRAY X-MP and CRAY-l only) Lets you peruse text one screenful at a time
mv ... Moves files
mxm .. Invokes the mod creation program
nasa ... Adds ASA carriage control characters for printing
netstat (TCP/IP NETWORK) .. Displays network status
newacct ... Changes account ID
newgtp .. Logs in to a new group
news .. Prints news items
nice .. Runs a comm3lld at low priority
nm (CRAY-2 only) .. Prints name list
nm (CRAY X-MP and CRAY-l only) Prints name list
nmab (CRAY-2 only) .. Produces a list of names 3Ild addresses from executable file
nohup .. Runs a comm3lld immune to hangups and quits
nqsintro ... Inttoduction to the Network Queuing System (NQS)
od .. Produces an octal dump
pack ... Compresses and eXJ>8llds files
page (see more(l)) ... Lets you peruse text one screenful at a time
pascal .. Invokes Pascal compiler
passwd ... Changes login password

SR-2011 ix Release 2.0

paste .. Merges same lines of several files or subsequent
lines of one file

peat (see pack(l» ... Compresses and expands files
pdp11 (see machid(l» ... Provides truth value about processor type
pg .. ~ts yoo peruse files one screenful at a time
plcopy (CRAY X-MP and CRAY-l only) Converts COS PLs into UNICOS PLs
pr ... Prints files
premult (CRA Y X-MP only) ... Invokes the premult preprocessor
printenv (CRAY X-MP and CRAY-l only) Prints out the environment
prof (CRAY-2 only) .. Displays profile data
prs ... Prints an SCCS file
ps (CRAY-2 only) ... ReJX)rts process status
ps (CRAY X-MP and CRAY-l only) ReJX)rts process status
pwd ... Prints working directory naIlle
qdel ... Deletes or signals NQS requests
qdev ... Displays the status of NQS devices
qlimit ... Shows supported batch limits and shell

strategy for named host
qpr ... Submits a hard-copy print request to NQS
qstat ... Displays the status of NQS queues
qsub ... Submits an NQS batch request
rep (TCP/IP NETWORK) ... Copies remote files
rdist (CCRAY X-MP and CRAY-l only) Remote file disbibution program
rdrop (CRAY X-MP and CRAY-l only) Reloads a recoverable drop file
red (see ed(l» .. Invokes the ed text editor
regcmp .. Compiles regular expression
remsh (TCP/IP NETWORK) ... Invokes a remote shell
reset (see tset(l» .. Tenninal dependent initialization
rlogin (TCP/IP NETWORK) ... Invokes a remote login
rm ... Removes files or directories
rmail (see 1nQil(l» .. ~ts yoo send or read mail
rmdel ... Removes a delta from an SCCS file
rmdir (see rm(1» .. Removes files or directories
rsh (see sh(1» ... Shell, the standard/restricted command

programming language
ruptime (TCP/IP NETWORK) .. Shows host status of local machines
rwho (TCP/IP NETWORK) .. Indicates who is logged in on local machines
sact .. Prints current SCCS file editing activity
sag (CRAY X-MP and CRAY-l only) System activity graph
sar (CRAY X-MP and CRAY-l only) Extracts operating system activity information
sc ... Invokes the front end for the scm source code

control program
sccsdiff .. Com}l8I'es two versions of an SCCS file
scm .. Invokes the source control prograIll
scpqsub ... Allows you to submit jobs to NQS from USCP spawned job
scpreroute .. Allows you to define station processing of job output
script (CRAY-2 only) .. Makes typescript of terminal session
script (CRA Y X-MP and CRA Y-l only) Makes typescript of terminal session
sdiff ... Side-by-side difference program
sed ... Invokes the StreaJn editor
segldr ... Invokes the segment loOOer (SEGLDR)

Release 2.0 x SR-2011

sh ... Shell, the standard/restricted command
programming language

sim (CRAY-2 only) ... Invokes the interactive Cray Simulator
size Prints section sizes of executable files
sleep .. Suspends execution for an interval
sno ... Invokes the SNOBOL interpreter
sort Sorts and/or merges files
split Splits a file into pieces
strings (CRAY X-MP and CRAY-l only) Finds the printable strins in a object or other binary file
stty (CRAY X-MP and CRAY-l only) Sets the options for a teminal
su ... uts you become super user or another user
sum .. Prints checksum and block count of a file
sync ... Flushes file system cache to disk
tail Displays the last part of a file
tar Tape file archiver
target (CRAY X-MP and CRAY-l only) Verify target CPU characteristics
tee .. Duplicates output
telnet (TCP/IP NETWORK) ... User interface to the TELNET protocol
test ... Performs a conditional evaluation
tftp (TCP/IP NETWORK) ... Invokes the trivial file transfer program
time ... Times a command
timex ... Time a commandi report process data and system activity
t02 (CRAY-2 only) .. Copies files between VAX and CRAY-2
touch ... Updates access and modification times of a file
tovax (see t02(1» ... Copies files between VAX and CRAY-2
tput (CRAY X-MP and CRAY-l only) Makes terminfo data available to the shell
tr .. Translates characters
true .. Provides truth values about processor type
tset (CRAY X-MP and CRAY-l only) Tenninal dependent initialization
tsort (CRA Y-2 only) .. Performs a topological sort
tty .. Gets the name of the terminal
u370 (see machid(l» ... Provides truth value about processor type
u3b (see machid(l» ... Provides truth value about processor type
u3b5 (see machid(l» ... Provides truth value about processor type
ul (CRAY X-MP and CRAY-l only) Underlines text
umask .. Sets file-creation mode mask
uname .. Prints name of current system
unexpand (see expand(l» .. Replaces tabs in data
unget ... Undoes a previous get of an SCCS file
uniq ... Reports repeated lines in a file
units ... Unit conversion program
unpack (see pack(l» .. Compresses and expands files
update .. Invokes the UPDATE utility
uucp (CRAY X-MP and CRAY-l only) UNIX system to UNIX system copy
uulog (see uucp(l» ... UNIX system to UNIX system copy
uuname (see uucp(J» ... UNIX system to UNIX system copy
uupick (see uuto(1» ... Public UNIX-to-UNIX system file copy
uustat ... Uucp status inquiry and job control
uuto (CRAY X-MP and CRAY-l only) Public UNIX-to-UNIX system file copy
uux (CRAY X-MP and CRAY-l only) UNIX-to-UNIX system command execution
val ... Validates secs file
vax (see machid(l» .. Provides truth value about processor type

SR-2011 xi Release 2.0

vc ... Version control
vedit (see vi(l» .. Invokes the screen-oriented (visual)

display editor based on ex(l)
vi (CRAY X-MP and CRAY-l only) Invokes the screen-oriented (visual)

display editor based on ex (1)
view (see vi(l» .. Invokes the screen-oriented (visUal)

display editor based on ex(1)
wait ... Awaits completion of process
wc .. Counts words, lines, and characters in a file
wdrop (CRAY X-MP and CRAY-l only) Writes recoverable drop file
what ... Identifies SCCS files
whereis (CRAY X-MP and CRAY-l only) Locates source, binary, and/or manual for program
who ... Rep<>rts who is on the system
who am i (see who(l» ... Rep<>rts who is on the system
write .. I..ets you write to another user
xargs .. Constructs argument lists and execute a command
yacc ... Yet another compiler-compiler

Release 2.0 xii SR-2011

INTRO(l) INTRO(l)

NAME

intro - Introduction to general-utility commands

DESCRIPTION

This section describes, in alphabetical order, commands that are of general utility for the eray operating
system UNICOS.

COMMAND SYNTAX

Unless otherwise noted, commands described in this section accept options and other arguments accord­
ing to the following syntax:

name [option] [cmdarg]

name

option

cmdarg

The name of an executable command.

- noargleiter 01',

- argletterooptarg
where <> is optional white space.

noargletter A single letter representing an option without an argument.

argletter A single letter representing an option requiring an argument.

optarg An argument (character string) satisfying the preceding argletter.

Path name (or other command argument) not beginning with a - or, a - by
itself indicating the standard input

MESSAGES

Upon termination, each command returns two bytes of status, one supplied by the system and giving the
cause for termination, and (in the case of "normal" termination) one supplied by the program (see
wait(2) and exit(2». The fonner byte is 0 for normal tennination; the latter is customarily 0 for suc­
cessful execution and nonzero to indicate troubles such as erroneous parameters, bad or inaccessible
data, or other inability to cope with the task at hand. It is called variously "exit code", "exit status",
or "return code", and is described only where special conventions are involved.

SEE ALSO

getopt(l)

SR-2011

getopt(3C) in the CRA Y -2 UNICOS Libraries, Macros and Opdefs Reference Manual, publication
SR-2013

I Release 2.0

ACCTCOM(l) ACCTCOM(l)

NAME

acctcom - Searches and prints process accounting files

SYNOPSIS

acctcom [[options] [file]] . . .

DESCRIPTION

SR-2011

The acctcom command reads file, the standard input, or lusr/admlpacct , in the fonn described by
acct(4F) and writes selected records to the standard output. Each record represents the execution of one
process. The output shows the COMMAND NAME, USER, TTYNAME, START TIME, END TIME,
REAL (SEC), CPU (SEC), MEAN SIZE(K), and optionally, F (the fork/exec flag: 1 for fork without
exec), STAT (the system exit status), HOG FACTOR, KCORE MIN, CPU FACTOR, CHARS TRNSFD,
and BLOCKS READ (total blocks read and written).

The command name is prefixed with a , if it was executed with super user privileges. If a process is
not associated with a known tenninal, a ? is printed in the TTYNAME field.

If you do not specify files, and if the standard input is associated with a tenninal or /dev/null (as is the
case when using & in the shell), lusr/adm/pacct is read; otherwise, the standard input is read

If any file arguments are given, they are read in their respective order. Each file is nonnally read for­
ward, that is, in chronological order by process completion time. The lusr/adm/pacct file is the current
file to be examined. The options are as follows:

-a Shows some average statistics about the processes selected. The statistics are printed after
the output records.

-b Reads backwards, showing latest commands first. This option has no effect when the stan­
dard input is read.

-I Prints the lork/exec flag and system exit status columns in the output

-h Instead of mean memory size, shows the fraction of total available CPU time consumed by
the process during its execution. This "hog factor" is computed as:

-i

-k

-m

-r

-t

-v

-I line

(total CPU time)/(elapsed time)

Prints columns containing the I/O counts in the output

Instead of memory size, shows total keore-minutes; this is an integral of memory usage
over time. One kcore minute is 1024 words used for 1 minute.

Shows mean core size (the default)

Shows CPU factor (user time/(system-time + user-time)

Shows separate system and user CPU times

Excludes column headings from the output

Shows only processes belonging to tenninal/devlline

1 Release 2.0

ACCTCOM (1) ACCTCOM (1)

FILES

BUGS

-u user Shows only processes belonging to user that may be specified by: a user ID, a login name
that is then converted to a user ID, a I which designates only those processes executed
with super user privileges, or ? which designates only those processes associated with unk­
nown user IDs

-g group Shows only processes belonging to group; the group may be designated by either the
group ID or group name.

--s time Selects processes existing at or after time, given in the format hr [: min [: sec]]

-e time Selects processes existing at or before time

-S time Selects processes starting at or after time

-E time Selects processes ending at or before time. Using the same time for both -S and -E
shows the processes that existed at time.

-0 pattern Shows only commands matching pattern that may be a regular expression as in ed(1)
except that + means one or more occurrences

-q Does not print any output records, just prints the average statistics as with the -a option.

-0 ofile Copies selected process records in the input data format to ofile; suppresses standard out­
put printing.

-H factor Shows only processes that exceed factor, where factor is the "hog factor" as explained in
the preceding -h option.

-0 sec Shows only process~s-with CPU system time exceeding sec seconds

-C sec Shows only processes with total CPU time, system plus user, exceeding sec seconds

-I chars Shows only processes transferring more characters than the cut-off number given by chars

/etc/passwd
/usr/adm/pacct
/etc/group

The acctcom command only reports on processes that have terminated; use ps(1) for active processes.
If time exceeds the present time, time is interpreted as occurring on the previous day.

SEE ALSO

ps(1), su(1),
acct(1M), acctcms(1M), acctcon(1M), acctmerg(1M), acctprc(1M), acctsh(lM), fwtmp(lM), runacct(lM)
in the UNICOS Administrator Commands Reference Manual, publication SR-2022
acct(2) in the UNICOS System Calls Reference Manual, publication SR-2012
acct(4F), uttnp(4F) in the UNICOS File Formats and Special Files Reference Manual, publication
SR-2014

Release 2.0 2 SR-2011

ACQUIRE(l) ACQUIRE(l)

NAME

acquire - Makes a request for a file from a front-end station

SYNOPSIS

acquire loealpath [-oSFN] [-iTERM/D] [-mMF] [-dDC] [-fFM] [-t'TEXT']
[-uUSER]

DESCRIPTION

SR-2011

The acquire command assures you that the requested file, specified by the loealpath argument exists. If
the file exists at the time you invoke the acquire command, the command returns directly with a posi­
tive status. If the file does not already exist, the acquire command creates a request file for USCP (
UNICOS Station Call Processor). If any slot information is associated with the requesting user, it is also
copied into the request file. USCP uses station protocol to make the request for a file from the desig­
nated station (specified by the -m option). The acquire command then waits until the transfer status
has been determined. The transfer status is returned when a negative reply is received from the station
(requested file did not transfer) or when a positive reply is received from the station (requested file has
been saved on the Cray computer system). It is possible for the station to return a postpone status, in
which case the acquire command resets the request for USCP to find and again waits for the transfer
status. The acquire command accepts the following options:

loealpath A path name (either full or relative to current working directory) where the requested file
is to reside when the transfer is complete. The local path must be a location where the
requesting user has permission to write. This argument is required.

-nSFN The name associated with the requested file on the specified front end. This argument is
stored in the request record PDN field. Only 15 characters are significant. If you do not
specify SFN, the field is filled with the filename from loealpath.

-iTERM/D The terminal ID associated with the requested file on the spcified front end. The size
limit is 8 characters. If you do not specify TERM/D, the default is the terminal ID associ­
ated with the requesting user on the front-end station that user originated from.

-mMF A two character front-end ill for a station that has access to the requested file. If you do
not specify the mainframe, the stored ID of the station from which the requesting user
originated is used.

-fF M A two character file format code. Valid codes are:

-dDC

CB Character blocked; the default

CD Character deblocked

BB Binary blocked

BD Binary deblocked

TR Transparent

un UNICOS Data

For further descriptions of the valid format codes, see the Front End Pro­
tocol Internal Reference Manual, CRI publication SM-0042.

A two character dispostion code interpreted by the receiving system. Valid codes are:

IN File is to be executed as a job by the receiving system.

ST File is to be saved by the receiving system.

1 Release 2.0

ACQUIRE(l)

-t'TEXT

-uUSER

LIMIT A TrONS

ACQUIRE(l)

Text to be interpreted by the specified station for processing the request. The field can
contain label infonnation, routing, etc., possibly in the fonn of control statements for the
station. Text field infonnation should be enclosed by single quotes ('). If you do not
specify this option, the request text field is filled with binary O's.

The user ID associated with the requested file on the specified front end. If you do not
specify USER, this field is left blank for the request.

If you are not accessing the Cray computer system through USCP, defaults for TERMID and MF do not
exist. The request is queued without regard to whether Ute mainframe ID specified belongs to a
currently active station. If the associated station is not active or has no streams assigned (that is,
interactive only station), the user process waits indefinitely.

SEE ALSO

fetch(1), dispose(1)
Front End Protocol Internal Reference Manual, publication SM-0042

Release 2.0 2 SR-2011

ADB(l) ADB(I)

NAME

adb - Invokes the absolute debugger

SYNOPSIS

adb [-w] [objfil [corfil]]

DESCRIPTION

The adb command is a general purpose debugging program, which examines files and provides a con­
ttolled environment in which to execute UNICOS programs. Requests to adb are read from the standard
input and responses are written to the standard output.

The adb command accepts the following arguments:

obifil An executable program file, preferably containing a symbol table; if it does not contain a
symbol table, the symbolic features of adb cannot be used although you can still examine the
file. The default for objfil is a.out.

corfil Assumed to be a core image file produced after executing objfil; the default for corfil is core.

-w Indicates that both objfil and corfil are created if necessary and opened for reading and writ­
ing so that files can be modified using adb.

The adb command ignores QUIT; INTERRUYf causes adb to return to the next adb command.

In general, requests to adb are of the format:

[address] [, count] [command]

Address and count are expressions (see the EXPRESSION subsection). If address is present, dot is set to
address. Initially dot is set to O. For most commands, count specifies how many times the command
is executed; default count is 1.

The interpretation of an address depends on the context in which it is used. If a subprocess is being
debugged, addresses are interpreted in the usual way in the address space of the subprocess. For further
details of address mapping see the ADDRESSES section.

Expressions

SR-2011

Expressions have the following meanings:

The value of dot

+ The value of dot incremented by the current increment

The value of dot decremented by the current increment

" The last address typed

integer An octal number. If you have used a $d command, hexadecimal (leading Ox), and octal
(leading 0) bases are accepted.

integer .fraction
A 64-bit floating-point number

, cccccccc' The AScn value of up to 8 characters. A \ may be used to escape a ' symbol.

< name The value of name, which is either a variable name or a register name. Adb maintains a
number of variables (see the VARIABLES subsection) named by single letters or digits. If
name is a register name, the the register value is obtained from the system header in corfil.
The register names on the CRAY-2 computer system are aO through a7, sO through s7, p, q,
I, m, VOOO through v777. The register names on the CRAY X-MP and CRAY-l computer
systems are aO through a7, sO through s7, p, vi, vm, vOOO through v777, bOO through b77,
and tOO through t77.

1 Release 2.0

ADB(1) ADB(l)

symbol A sequence of upper or lowercase letters. underscores or digits. not starting with a digit
The value of symbol is taken from the symbol table in objfil.

(exp) The value of the expression exp

Monadic operators:

*exp The contents of the location addressed by exp in corfil

@exp The contents of the location addressed by exp in obifil

-exp Integer negation

- exp Bitwise complement

Dyadic operators are left associative and are less binding than monadic operators.

exp1+exp2
Integer addition

exp1-exp2
Integer subtraction

exp1*exp2
Integer multiplication

exp1 %exp2
Integer division

exp1&exp2
Bitwise conjunction

exp11exp2
Bitwise disjunction

exp11exp2
E1 rounded up to the next multiple of e2

Commands
Most commands consist of a verb followed by a modifier or list of modifiers. The following verbs are
available. (The commands? and I may be followed by *; see ADDRESSES section for further details.)

?I Locations starting at address in objfil are printed according to the format I. and dot is incre­
mented by the sum of the increments for each format letter

If Locations starting at address in corfil are printed according to the format 1 and dot is incre-
mented as for ?

=1 The value of address itself is printed in the styles indicated by the format f
A format consists of one or more characters that specify a style of printing. Each format character may
be preceded by a decimal integer and an asterisk (3*x) that is a repeat count for the format character.
While stepping through a format. dot is incremented by the amount given for each fonnat letter. If no
format is given, the previous format is used. The format letters available are as follows:

o 8 Prints 8 bytes in octal. All octal numbers output by adb are preceded by O.
o 8 Prints 8 bytes in octal
q 8 Print in signed octal
Q 8 Prints long signed octal
d 8 Print in decimal
D 8 Prints long decimal
x 8 Prints 8 bytes in hexadecimal
X 8 Prints 8 bytes in hexadecimal
u 8 Prints as an unsigned decimal number

Release 2.0 2 SR-2011

ADD(I) ADD(1)

SR-2011

new line

U8
b 1
c 1
C 1

s n
S n

Y8
i n
a 0
p 8

t 0

r 0
n 0
" ... " 0

+

Prints long unsigned decimal
Prints the addressed byte in octal
Prints the addressed character
Prints the addressed character using the following escape convention. Character
values 000 to 040 are printed as @ followed by the corresponding character in the
range 0100 to 0140. The character @ is printed as @@.
Prints the addressed characters until a zero character is reached
Prints a string using the @ escape convention; n is the length of the string including
its zero terminator.
Prints 4 bytes in date format (see ctime(3C»
Prints as instructions; n is the number of instructions.
Prints the value of dot in symbolic form
Prints the addressed value in symbolic form using the same rules for symbol lookup as
a (refer back to format in the COMMANDS section)
When preceded by an integer, it tabs to the next appropriate tab stop. For example, 8t
moves to the next 8-space tab stop.
Prints a sp~e
Prints a new line
Prints the enclosed string
Dot is decremented by the current increment; nothing is printed.
Dot is incremented by 1; nothing is printed.
Dot is decremented by I; nothing is printed.

Repeats the previous command with a count of 1

[?/]I value mask
Words starting at dot are masked with mask and compared with value until a match is found.
If L is used, the match is for 8 bytes at a time instead of 2. If no match is found, dot is
unchanged; otherwise, dot is set to the matched location. If mask is omitted, -1 is used.

[?/]w value ...
Writes the 2-byte value into the addressed location. If the command is W, writes 8 bytes.
Word aligned addresses are required when writing to a subprocess address space.

[?/]m bJ upJ fl [?!]
New values for (bJ, upJ. and fl) are recorded. If less than three expressions are given, the
remaining map parameters are left unchanged. If the ? or I is followed by., the second seg­
ment (b2 ,exp2 , and j2) of the mapping is changed. If the list is terminated by ? or I, then the
file (objfil or corfil, respectively) is used for subsequent requests. (For example, 1m? cause I to
refer to objfil.)

>name Dot is assigned to the variable or register named

A shell is called to read the rest of the line following !

$modifier
Miscellaneous commands. The available modifiers are as follows:

<f Reads commands from the file I and return
>1 Sends output to the file I, which is created if it does not exist
r Prints the general registers. Dot is set to pc. For UNICOS on CRA Y -2 computer sys­

tem, r also prints the instruction addressed by pc.
b Prints all breakpoints and their associated counts and commands
c C stack backtrace. If address is given, it is taken as the address of the current frame.

If count is given then only the first count frames are printed. For UNICOS running on
eRA Y -2 computer system, if C is used, the values of all automatic variables are

3 Release 2.0

ADB(l)

w
s
o
d

P
q
u
m
v
vn

j
k

printed for each active function
Sets the page width for output to address (default 80)
Sets the limit for symbol matches to address (default 255)
All integers input are regarded as octal
Resets integer input as described in EXPRESSIONS section
Changes to register set address
Exits from adb
Prints all nonzero variables in octal
Prints the address map
Prints vector registers at address for count. (CRAY-2 computer system only)

ADB(l)

Prints vector register n; default for n is O. (CRAY X-MP and CRAY-l computer system
only)
Prints b registers. (CRAY X-MP and CRAY-l computer system only)
Prints t registers. (CRAY X-MP and CRAY-l computer system only)

: modifier

Variables

Manage a subprocess. Available modifiers are as follows:

be Sets breakpoint at address. The breakpoint is executed count-I times before causing
a stop. Each time the breakpoint is encountered, the command c is executed. If this
command sets dot to 0, the breakpoint causes a stop.

d Deletes breakpoint at address

r Runs objfil as a subprocess. If address is given explicitly, the program is entered at
this point; otherwise the program is entered at its standard entry point. The value
count specifies how many breakpoints are to be ignored before stopping. Arguments
to the subprocess may be supplied on the same line as the command. An argument
starting with < or > causes the standard input or output to be established for the com­
mand. All signals are turned on entry to the subprocess.

es The subprocess is continued with signal s (see signal(2». If address is given, the
subprocess is continued at this address. If no signal is specified, the signal that caused
the subprocess to stop is sent Breakpoint skipping is the same as for r.

ss As for e , except that the subprocess is single stepped count times. If there is no
current subprocess, objfil is run as a subprocess as for r. In this case no signal can be
sent; the remainder of the line is treated as arguments to the subprocess.

k The current subprocess, if any, is terminated

The adb command provides a number of variables. Named variables are set initially by adb but are
not used subsequently. Numbered variables are reserved for communication as follows.

o Last value printed
1 Last offset part of an instruction source.
2 Previous value of variable I.

On entry the following are set from the system header in the corfil. If corfil does not appear to be a
eore file, these values are set from objfil.

b Base address of the data segment
d Data segment size
e Entry point
m "Magic" number (0405, 0407, 0410, or 0411)
s Stack segment size
t Text segment size

Release 2.0 4 SR-2011

ADB(l) ADB(l)

p
q

Number of the current register set
Total number of register sets in the core file

For dumps that do not involve multiprocessing, var[V ARP]=O and var[V ARQ]=I.

To change from one register set to another, n$p moves the register and Local Memory
map so that register set n may be examined. The numbering starts from O. Thus, 0
<= n < var[V ARQ].

Addresses

FILES

The address in a file associated with a written address is determined by a mapping associated with that
file. Each mapping is represented by two triples, (b1, exp1, and /1) and (b2, exp2, and 12). The
second triple may be specified by following the ? or I with an *. The address file is calculated as fol­
lows:

if ((no *) and (b1 ~ess<expl), file address=address+/l-bl

else if ((*) and (b2Saddress<exp2),ftie address=address+j2-b2

else address is invalid

For UNICOS running on CRAY-2 computer system, the second map for the I (core) file is set to pennit
accessing Local Memory.

For UNICOS running on CRAY-XMP and CRAY-l computer systems, the second map for the I (core) file
is the map for the data section if there is split code and data.

If either file is not of the kind expected, b1 and /1 are set to 0 and exp1 is set to the maximum file
size; in this way, the whole file can be analyzed with no address translation. All addresses are byte
addresses, except for register number in a $v display for UNICOS running on CRA Y -2 computer system.

a.out
core

MESSAGES

Exit status is 0, unless last command failed or returned nonzero status.

BUGS

A breakpoint set at the entry point is not effective on initial entry to the program.

SEE ALSO

SR-2011

ptrace(2) in the UNICOS System Calls Reference Manual, publication SR-2012
a.out(4F), core(4F) in the UNICOS File Formats and Special Files Reference Manual, publication
SR-2014

5 Release 2.0

ADMIN(l) ADMIN(l)

NAME

admin - Creates and administers sees (Source Code Control System) files

SYNOPSIS

admin [-0] [-i [name]] [-rrel] [-t[name]] [-f flag [flag-val]] [-d flag [flag-val]] [-alogin]
[-elogin] [-m[mrlist]] [-y[comment]] [-b] [-z] files

DESCRIPTION

SR-2011

The admin command creates new sees files and changes parameters of existing ones. Arguments to
admin, which may appear in any order, consist of keyletter arguments, which begin with -, and named
files (SeeS file names must begin with the characters s.). If a named file does not exist, it is created,
and its parameters are initialized according to the specified keyletter arguments. Parameters not initial­
ized by a keyletter argument are assigned a default value. If a named file does exist, parameters
corresponding to specified keyletter arguments are changed, and other parameters are left as is.

If a directory is named, admin behaves as though each file in the directory were specified as a named
file, except that nonsees files (last component of the path name does not begin with s.) and unreadable
files are silently ignored. If a name of - is given, the standard input is read; each line of the standard
input is taken to be the name of an sees file to be processed. Nonsees files, unreadable files, and
directories are silently ignored.

The keyletter arguments are as follows. Each is explained as though only one named file is to be pro­
cessed since the effects of the arguments apply independently to each named file.

-0 Indicates that a new sees file is to be created

-i[name] The name of a file from which the text for a new sees file is to be taken. The text consti-
tutes the first delta of the file (see -r key letter for delta numbering scheme). If the i
keyletter is used, but the file name is omitted, the text is obtained by reading the standard
input until an end-of-file (EOF) is encountered. If this keyletter is omitted, then the sees
file is created empty. ·Only one sees file may be created by an admin command on which
the i keyletter is supplied. Using a single admin to create two or more sees files requires
that they be created empty (no -i keyletter). The -i keyletter implies the -0 keyletter.

-rrel The release into which the initial delta is inserted. This keyletter may be used only if the
-i keyletter is also used. If the -r keyletter is not used, the initial delta is inserted into
release 1. The level of the initial delta is always 1 (by default initial deltas are named 1.1).

-t[name] The name of a file from which descriptive text for the sees file is to be taken. If the -t
keyletter is used and admin is creating a new sees file (the -8 and/or -i keyletters also
used), the descriptive text file name must also be supplied. In the case of existing sees
files: (1) a -t keyletter without a file name causes removal of descriptive text (if any)
currently in the sees file, and (2) a -t keyletter with a file name causes text (if any) in the
named file to replace the descriptive text (if any) currently in the sees file.

-fjlag Specifies a flag, and, possibly, a value for the flag, to be placed in the sees file. Several f
keyletters may be supplied on a single admin command line. The allowable flags and their
values are as follows:

b Allows use of the -b keyletter on a get(I) command to create branch deltas

cceil The highest release (that is, "ceiling"), a number less than or equal to 9999,
which may be retrieved by a get(1) command for editing; default value for an
unspecified c flag is 9999.

1 Release 2.0

ADMIN(l) ADMIN(l)

-dflag

-llist

-a login

Release 2.0

ffloor The lowest release (that is, "floor"), a number greater than 0 but less than 9999,
which may be retrieved by a get(l) command for editing; default value for an
unspecified f flag is 1.

dSID Default delta number (SID) to be used by a get(l) command

i[str] Causes the "No id keywords (ge6)" message issued by get(l) or delta(l) to be
treated as a fatal error. In the absence of this flag, the message is only a warning.
The message is issued if no sees identification keywords (see get(l» are found in
the text retrieved or stored in the sees file. If a value is supplied, the keywords
must exactly match the given string, however, the string must contain a keyword,
and no embedded new lines.

j Allows concurrent get(l) commands for editing on the same SID of an sees file.
This allows multiple concurrent updates to the same version of the sees file.

llist A list of releases to which deltas can no longer be made (get -e against one of
these "locked" releases fails). The list has the following syntax:

<list> ::= <range> I <list> , <range>
<range> ::=RELEASE NUMBER I a

The character a in the list is equivalent to specifying all releases for the named
sees file.

D Causes delta(l) to create a "null" delta in each of those releases (if any) being
skipped when a delta is made in a new release (such as, in making delta 5.1 after
delta 2.7, releases 3 and 4 are skipped). These null deltas serve as "anchor
points" so that branch deltas may later be created from them. The absence of this
flag causes skipped releases to be non-existent in the sees file, preventing branch
deltas from being created from them in the future.

qtext User-definable text substituted for all occurrences of the %Q% keyword in sees
file text retrieved by get(l)

mmod Module name of the sees file substituted for all occurrences of the %M% keyword
in sees file text retrieved by get(l). If the m flag is not specified, the value
assigned is the name of the sees file with the leading s. removed.

ttype Type of module in the sees file substituted for all occurrences of % Y% keyword
in sees file text retrieved by get(l)

vfpgm] Causes delta(l) to prompt for Modification Request (MR) numbers as the reason
for creating a delta. The optional value specifies the name of an MR number vali­
dity checking program (see delta(l». (If this flag is set when creating an sees
file, the m keyletter must also be used even if its value is null).

Causes removal (deletion) of the specified flag from an sees file. The ~ keyletter may be
specified only when processing existing sees files. Several -d keyletters may be supplied
on a single admin command. See the -f key letter for allowable flag names.

A list of releases to be "unlocked." See the -f key letter for a description of the -I flag and
the syntax of a list.

A login name (see passwd(4F», or numerical UNICOS system group ID (see group(4F», to
be added to the list of users which may make deltas (changes) to the sees file. A group ID
is equivalent to specifying all login names common to that group ID. Several a keyletters
may be used on a single admin command line. As many logins, or numerical group IDs, as
desired may be on the list simultaneously. If the list of users is empty, anyone may add
deltas. If login or group ID is preceded by a !, they are to be denied permission to make
deltas.

2 SR-20l1

ADMIN(l) ADMIN(l)

FILES

SR-2011

-elogin A login name, or numerical group ID, to be erased from the list of users allowed to make
deltas (changes) to the sees file. Specifying a group ID is equivalent to specifying all
login names common to that group 10. Several e keyletters may be used on a single admin
command line.

-y[comment]
The comment text is inserted into the sees file as a comment for the initial delta in a
manner identical to that of delta(l). Omission of the -y keyletter results in a default com­
ment line being inserted in the form:

date and time created YY/MM/DD HH:MM:SS by login

The -y keyletter is valid only if the -i and/or -0 keyletters are specified (that is a new
sees file is being created).

-m[mrlist] The list of Modification Requests (MR) numbers is inserted into the sees file as the reason
for creating the initial delta in a manner identical to delta(l). The v flag must be set and
the (MR) numbers are validated if the v flag has a value (the name of an (MR) number
validation program). Messages occur if the v flag is not set or (MR) validation fails.

-h Causes admin to check the structure of the sees file (see sccsfile(4F», and to compare a
newly computed checksum (the sum of all the characters in the sees file except those in
the first line) with the checksum that is stored in the first line of the sees file. Appropriate
error messages are produced.

This keyletter inhibits writing on the file, so that it nullifies the effect of any other
keyletters supplied, and is, therefore, only meaningful when processing existing files.

-z The sees file checksum is recomputed and stored in the first line of the sees file (see -h).
Use of this keyletter on a truly corrupted file may prevent future detection of the corruption.

The last component of all sees file names must be of the form s/lle-name. New sees files are given
mode 444 (see chmod(l». Write permission in the pertinent directory is, of course, required to create a
file. All writing done by admin is to a temporary x-file, called x/lle-name, (see get(1», created with
mode 444 if the admin command is creating a new sees file, or with the same mode as the sees file if
it exists. After successful execution of admin, the sees file is removed (if it exists), and the x-file is
renamed with the name of the sees file. This ensures that changes are made to the sees file only if
no errors occurred.

It is recommended that directories containing sees files be mode 755 and that sees files themselves be
mode 444. The mode of the directories allows only the owner to modify sees files contained in the
directories. The mode of the sees files prevents any modification at all except by sees commands.

If it should be necessary to patch an sees file for any reason, the mode may be changed to 644 by the
owner allowing use of ed(l). Care must be taken! The edited file should always be processed by an
admin -h to check for corruption followed by an admio -z to generate a proper check-sum. Another
admin -h is recommended to ensure the sees file is valid.

Admin also makes use of a transient lock file (called z/lle-name), which prevents simultaneous updates
to the sees file by different users. See get(1) for further information.

3 Release 2.0

ADMIN(l) ADMIN(I)

MESSAGES

Use help(1) for explanations.

SEE ALSO

delta(1), ed(1), get(l), help(l), prs(1), what(l)
sccsfile(4F) in the UNICOS File Formats and Special Files Reference Manual, publication SR-2014

Release 2.0 4 SR-2011

ADSTAPE(l) (CltAY X-MP and CRAY-l computer systems only) ADSTAPE(l)

NAME

adstape - Prepares IDS deadstart tape

SYNOPSIS

llib/adstape [-i in] [-0 names] [-v overlays]

DESCRIPTION

The adstape command reads in, a collection of APML absolute binary records and writes names.

The adstape command accepts the following arguments:

names A comma-separated list of file names; there is one for each initial, nonoverlay program in the
input file. In writing the output binary records, the Permanent Dataset Table (PDT) and the
Task Execution Table (TXT) header are removed. The default names is
tape.boot,disk.boot,dsdump,kernel.

-v overlays
If the input file contains overlays, they are written to the overlays file. As above, PDTs and the
TXT header are removed Each overlay is preceded by a word count pointing to the next over­
lay. The default overlays is overlays.

-i in A file containing APMLbinary records ; the file should have been prepared by bind(l). The
default in is a.out.

Error information is written to the standard output file. The operational procedures for the use of
adstape are considerably different in COS.

MESSAGES

The exit code is nonzero if any problems are encountered.

SEE ALSO

apml(l)
The Operational Aids Reference Manual, publication SM-0044.

SR-2011 1 Release 2.0

APML(l) (CRAY X-MP Uld CRAY-l computer systems only) APML(l)

NAME

apml - Invokes the APML assembler

SYNOPSIS

/lih/apml [-t bsys] [-r xreJ] [-g sym] [-I listing] [-m tmwords] [-L] [-s text(s)]
[-b] [-i list] [-0 binary] name.s

DESCRIPTION

FILES

SR-2011

The apml command assembles the file you specified in name.s and places the binary object file in
name. 0, unless you have specified the -0 option. The listing is written to the file listing if specified.
The error messages and statistics information are written to standard error.

-t bsys Names the output file to which apml writes the binary system text. There is no
default.

-r xreJ

-g sym

-I listing

-m tmwords

-L

-s text(s)

-h

-i nlist

-0 binary

name.s

binary
stderr
sym
name.s
xref
bsys
listing
text(s)
/tmp/ APML.?

Names the output file to which apml writes the binary cross-reference text. You must
supply xref..If you omit xreJ, apml ignores the -r option.

Names the output file to which apml writes the Symbol Table. You must supply the
name of the output file. If you omit sym, apml ignores the -g option.

Names the output file to which apml writes the assembler listing. The default is no
listing.

Specifies an integer number of memory words to be reserved for the table manager
work area. The default is 65,476 words.

Requests output of the statistical 'logfile' messages to stderr. If the -L option is used,
the amount of excess work area is reported as UNUSED: nnnnn. It should not be
necessary to increase this except on very large assemblies, such as 1/0 Subsystem. The
work area is not expandable at runtime; therefore if sufficient space is not preallocated
for the assembly to complete, apml aborts.

Any number of system texts; must be separated by commas.

Causes all list pseudos to be processed regardless of the location of the field name (the
default is not enabled). If -b is enabled, -i is ignored.

Processes list pseudos whose location field names you specify in nlist. The nlist argu­
ment can be a single name or a list of names separated by commas.

Names the binary object file. The default is name.o if name.s is the input.

Specifies the file containing the assembler source code.

Binary object file
Warning, error, and statistics messages (statistics are provided only if requested by -L)
Symbol table
Assembler input
Binary cross-reference
Binary systems text; there is no default name
Assembler listing (only if requested)
Any number of systems texts (must be separated by commas)
Temporary intermediate files

1 Release 2.0

APML(l) (CRAY X-MP and CRAY-l computer systems only) APML(l)

BUGS

The -g option occasionally causes an assembly to fail.

SEE ALSO

The APML Assembler Reference Manual, CRI publication SM-0036

Release 2.0 2 SR-2011

AR(l) (CRA Y -2 computer systems only) AR(I)

NAME

ar - Maintains archives and libraries for portable archives

SYNOPSIS

ar key [posname] afile [name] ...

DESCRIPTION

SR-2011

The ar command maintains groups of files combined into a single archive file. It primarily creates and
updates library files as used by the link editor.

The ar command accepts the following arguments:

Key One character from the set d, r, q, t, p, m, and x that can be optionally concatenated with one
or more of the following: v, u, a, i, b, c, or 1. The meanings of the key letters are as fol­
lows:

d Deletes the named files from the archive file

r Replaces the named files in the archive file. If the optional u character is used with
r, then only those files with dates of modification later than the archive files are
replaced.

q Quickly appends the named files to the end of the archive file. Optional positioning
characters are invalid. The command does not check if the added members are
already in the archive. It is useful only to avoid quadratic behavior when creating a
large archive piece-by-piece.

t Prints a table of contents of the archive file. If no names are given, all files in the
archive are tabled. If names are given, only those files are tabled.

p Prints the named files in the archive

m Moves the named files to the end of the archive. If a positioning character is present,
the posname argument must be present and, as in r, specifies where the files are to be
moved.

x Extracts the named files. If no names are given, all files in the archive are extracted.
In neither case does x alter the archive file.

v Gives a verbose file-by-file description of the making of a new archive file from the
old archive and the constituent files. When used with t, gives a long listing of all
information about the files. When used with x, precedes each file with a name.

C Suppresses the message that is produced by default when afile is created

Places temporary files in the local current working directory Itmp; this option causes
them to be placed in the local directory.

z Suppresses the feature of putting the filename into the PDT name

posname Specifies that new files are to be placed after (a) or before (b or i) posname. Otherwise, new
files are placed at the end. Posname must be used with the abi key arguments.

afile Specifies the archive file

name Constituent files in the archive file, afile.

1 Release 2.0

AR(l)

FILES

BUGS

(CRA Y -2 computer systems only) Alt(1)

/tmp/ar* Temporary files

If the same file is mentioned twice in an argument list, it may be put in the archive twice. The module
name from the PDT should be the same as the file name.

SEE ALSO

Id(1), lorder(l)
a.out(4F), relo(4F) in the UNICOS File Fonnats and Special Files Reference Manual, publication
SR-2014

Release 2.0 2 SR-2011

AR(I) (CRAY X-MP and CRAY-l computer systems only) AR(I)

NAME

ar - Maintains archives and libraries for portable archives

SYNOPSIS

ar key [posname] afile [name] ...

DESCRIPTION

SR-2011

The aT command maintains groups of files combined into a single archive file. The magic string and
the file headers used by ar consist of printable ASCII characters. If an archive is composed of printable
files, the entire archive is printable.

The portable archive format and structure is described in detail in ar(4F).

The ar command accepts the following arguments:

Key An optional -, followed by one character from the set drqtpmx, optionally concatenated with
one or more of vuaibcls. The meanings of the key characters are:

d Delete the named files from the archive file.

r Replace the named files in the archive file. If the optional character u is used with r,
then only those files with dates of modification later than the archive files are
replaced.

q Quickly append the named files to the end of the archive file. Optional positioning
characters are invalid. The command does not check whether the added members are
already in the archive. Useful only to avoid quadratic behavior when creating a large
archive piece-by-piece.

t Print a table of contents of the archive file. If no names are given, all files in the
archive are tabled. If names are given, only those files are tabled.

p Print the named files in the archive.

m Move the named files to the end of the archive. If a positioning character is present,
then the posname argument must be present and, as in r, specifies where the files are
to be moved.

x Extract the named files. If no names are given, all files in the archive are extracted.
In neither case does x alter the archive file.

v Give a verbose file-by-file description of the making of a new archive file from the
old archive and the constituent files. When used with t, give a long listing of all
information about the files. When used with x, precede each file with a name.

c Suppress the message that is produced by default when afile is created.

Place temporary files in the local current working directory, rather than in the direc­
tory specified by the environment variable TMPDIR or in the default directory Itmp.

posname Specifies that new files are to be placed after (a) or before (b or i) posname. Otherwise, new
files are placed at the end. Posname must be used with the abi key arguments.

afile Specifies the archive file

name Constituent files in the archive file, afile.

1 Release 2.0

AR(l) (CRAY X-MP and CRAY-l computer systems only) AR(l)

FaES

/ttnp/ar* Temporary files

SEE ALSO

NOTES

BUGS

ar(4F) in the UNICOS File Fonnats and Special Files Reference Manual, publication SR-20l4

This archive fonnat is not compatible with UNIX System V. It was changed in anticipation of the day
when segldr{l) will be able to read archives.

If the same file is mentioned twice in an argument list, it may be put in the archive twice.

Release 2.0 2 SR-2011

AS(l) AS(l)

NAME

as - Invokes the Cray assembler CAL

SYNOPSIS

as [-0 objfile] [-I lstfile] [-L msgfile] [-b bdflist] [-B] [-c bdfile] [-D micdefJ
[-g symfile] [-G] [-C cpu] [-h] [-H] [-i mist] [-I options]
[-m mlevel] [-0 number] [-f] [-F] [-j] [-Jl [-V] filename

DESCRIPI10N

SR-2011

The as command assembles the named file. The following options, each a separate argument, can
appear in any order but must precede the filename argument If errors are encountered during assembly,
a diagnostic message is issued to stderr.

-0 obifile Relocatable assembly output; stored in objfile file. By default, the relocatable output file
name is formed by removing the path name and the .s suffix, if they exist, from the input file
and appending a .0 suffix. Objfile must be processed by a link editor or loader.

-I lstfile Assembly output source listing; stored in lstfile file; default, the output source listing is
suppressed.

-L msgfile
Assembly output message listing; stored in msgfile file; default, the output message listing is
suppressed.

-b bdjlist Reads the binary definition files stored in one or more files. The files named in bdflist can
be designated using one of the following forms:

• List of files separated from one another by a comma

• List of files enclosed in double quotes and separated from one another by a comma
and/or one or more spaces

Reads the default binary assembler definitions found in the file lIib/asdef unless suppressed
with the -B option. The remaining files listed in bdflist are then read in the order in which
they are specified.

-B Suppresses Ilib/asdef as the default binary assembler definition file

-c bdfile Creates the binary definition file bdfile; by default, the creation of a binary definition file is

-D micdef

suppressed.

Defines a globally-defined constant micro mname as follows:

micdef ::= mname[=[string]]

mname must be a valid identifier. If the = character is specified, it must immediately follow
mname. The string that immediately follows the = character, if any, is associated with
mname. If you do not specify the Siring, mname is associated with an empty string.

-g symfile Assembly output symbol file; stored in symfile. Symfile is used by the system debuggers. By
default, the output symbol file is suppressed.

-G Forces all symbols to symfile if the -g option is used. Normally, nonreferenced symbols are
not included.

1 Release 2.0

AS(I) AS(I)

-C cpu Code is generated for the specified CPU. The default is that code is generated for the
characteristics of the host machine. The cpu option has the following syntax:

cpu ::= [primary] (, [charac])
or
cpu ::= , [charac] (, [charac])

primary Primary can be one of the following Cray computer systems:

Primary Computer system Primary Computer system

cray-2 CRAY-2 cray-1m CRAY-IM
cray-x4 CRAY X-MP models 48 and 416 cray-1s CRAY-lS
cray-x2 CRA Y X-MP models 22, 24, and 28 cray-1b CRAY-IB
cray-xl CRAY X-MP models 11, 12, 14, and 18 cray-1a CRAY-IA
cray-xmp CRAYX-MP crayl CRAY-l

charac Features of the primary computer. CRAY-2 computer systems have no
special characters.

The CRAY X-MP and CRAY-l computer systems let you specify the
following logical and numeric traits:

Logical traits Description Logical traits Description
avl Additional vector logical nocori No control operand range interrupts
noavl No additional vector logical ema Extended memory addressing
bdm Bidirectional memory noema No extended memory addressing
nobdm No bidirectional memory hpm Hardware performance monitor
cigs Compressed index and gather/scatter nohpm No hardware performance monitor
nocigs No compressed index and pc Programmable clock

gather/scatter
cori Control operand range interrupts nope No programmable clock

Logical traits Description Logical traits Description

readvl Read vector length vpop Vector pop count
noreadvl Do not read vector length novpop No vector pop count
statrg Status register vrecur Vector recursion
nostatrg No Status register novrecur No vector recursion

Release 2.0 2 SR-2011

AS(l)

SR-2011

AS(l)

In the following table, n represents an unsigned decimal number.

Numeric traits Description Numeric traits Description

bankbusy=n Bank busy time in clock periods memsize=n Memory size in words
banks=n Number of memory banks memspeed=n Memory speed in clock periods
clocktim=n Clock time in picoseconds numclstr.=n Number of cluster registers
ibufsize=n Instruction buffer size in words numcpus=n Number of cpus

-h Enables all list pseudo instructions, regardless of the location field name.

-H Disables all list pseudo instructions, regardless of the location field name

-i nlist Restricts list pseudo instruction processing to those pseudo instructions whose location field
names are given in nlist. The names specified by nlist can take one of the following forms:

• List of names separated from one another by a comma

• List of names enclosed in double quotes and separated from one another by a
comma and/or one or more spaces

-I options List options. A list of more than one option must be specified without interyening blanks. It
is not permitted to specify conflicting options (the same character in upper case and lower
case) in the -I list. Options can be any of the following:

s Enables source statement listing (default)

S Disables source statement listing

e Enables edited statement listing (default)

E Disables edited statement listing

t Enables text source statement listing

T Disables text source statement listing (default)

I Enables listing control pseudo instructions

L Disables listing control pseudo instructions (default)

m Enables macr%pdef expansion

M Disables macr%pdef expansion (default)

d Enables dup/echo expansion

D Disables dup/echo expansion (default)

b Enables macr%pdef/dup/echo expansion binary only

B Disables macr%pdef/dup/echo expansion binary only (default)

c Enables macr%pdef/dup/echo expansion conditionals

C Disables macr%pdef/dup/echo expansion conditionals (default)

p Enables macr%pdef/dup/echo expansion of preedited lines

P Disables macr%pdef/dup/echo expansion of preedited lines (default)

3 Release 2.0

AS(I)

FILES

-m mlevel

-D number

x Enables cross-reference listing (default)

X Disables cross-reference listing

D Enables nonreferenced local symbols included in the cross reference (default)

N Disables nonreferenced local symbols included in the cross reference

ASCI)

Message priority level for output source, message, and standard error file. Mlevel can be one
of the following:

comment
note
caution
warning
error

By default, the message priority level is warning.

Maximum number of messages to be inserted into the output source, message, and standard
error file. Number must be 0 or greater; the default is 100.

-r Enables the new statement format. By default, the old format is used when targeting for a
CRAY X-MP or CRAY-I computer system; otherwise, the new format is used. Statement
format reverts to the format specified on the invocation statement at the end of every
assembler segment.

-F Disables the new statement format. By default, the old format is used when targeting for a
CRAY X-MP or CRAY-I computer system; otherwise, the new format is used. Statement
format reverts to the format specified on the invocation statement at the end of every
assembler segment.

-j Enables editing; the default is enabled. Editing status reverts to the status specified on the
invocation statement at the end of every assembler segment

-J Disables editing; the default is enabled. Editing status reverts to the status specified on the
invocation statement at the end of every assembler segment

-V Causes the version number of the assembler being run and other statistical information
(diagnostic messages of priority comment) to be written to the stderr.

filename Files to be assembled; all options must precede the filename argument

/lib/asdef
tmpdirlas. ?

Assembler binary definition file
Temporary file; tmpdir is a directory defined by $TMPDIR. Otherwise, a system
default temporary directory is used.

SEE ALSO

ce(1), Id(1), nm(1)
tmpnam(3C) in the CRA Y X-MP and CRA Y-I C Library Reference Manual, publication SR-0136
tmpnam(3S) in the CRAY-2 Computer System CRAY-2 UNICOS Libraries, Macros, and Opdefs
Reference Manual, publication 2013
CAL Assembler Version 2 Reference Manual, publication SR-2003
Symbolic Machine Instructions Reference Manual, CRI publication SR-0085
CRAY X-MP and CRAY-I CAL Assembler Version 2 Ready Reference, publication SQ-0083
CRAY-2 Computer System Functional Description, publication HR-2000
CRAY-2 CAL Assembler Version 2 Reference Card, publication SQ-2002

Release 2.0 4 SR-2011

ASA(l) ASA(l)

NAME

asa - Interprets ASA carriage control characters

SYNOPSIS

asa [files]

DESCRIPTION

The asa command interprets the output of Fortran programs that utilize ASA carriage control characters.
It processes either the files whose names are given as arguments or the standard input if you do not sup­
ply any file names. The first character of each line is assumed to be a control character; the control
characters have the following meanings:

, , (blank) single new line before printing

o double new line before printing

1 new page before printing

+ overprint previous line

Lines beginning with other than the above characters are treated as if they began with". The first
character of a line is not printed. If any such lines appear, an appropriate diagnostic will appear on
standard error. This program forces the first line of each input file to start on a new page.

To correctly view the output of Fortran programs that use ASA carriage control characters, asa could be
used as a filter thusly:

a.out I asa I lpr

and the output, properly fonnatted and paginated, would be directed to the line printer. Fortran output
sent to a file could be viewed by:

asa file

SEE ALSO

fsplit(l) nasa(l)

SR-2011 1 Release 2.0

AT(l) AT(l)

NAME

at, batch - Executes commands at a later time

SYNOPSIS

at time [date] [+ increment]
at -r job .. .
at -I [job ...]

batch

DESCRIPTION

SR-2011

At and batch read commands from standard input to be executed at a later time. At allows you to
specify when the commands should be executed, while jobs queued with batch execute when system
load level permits. At -r removes jobs previously scheduled with at. The -I option reports all jobs
scheduled for the invoking user.

Standard output and standard error output are mailed to the user unless they are redirected elsewhere.
The exported shell environment variables, current directory, umask, and ulimit are retained when the
commands are executed. Open file descriptors, traps, and priority are lost.

Users are permitted to use at if their name appears in the file /usr/lib/cronlat.allow. If that file does
not exist, the file /usrlIib/cronlat.deny is checked to determine if the user should be denied access to
at. If neither file exists, only root is allowed to submit a job. The null file at.allow would mean no user
is allowed to use at; a null file at.deny would mean no user is denied the use of at. The allow/deny
files consist of one user name per line.

The time may be specified as 1, 2, or 4 digits. One-digit and two-digit numbers are taken to be hours,
four digits to be hours and minutes. The time may alternately be specified as two numbers separated by
a colon, meaning hour: minute. A suffix am or pm may be appended; otherwise a 24-hour clock time
is understood. The suffix zulu may be used to indicate GMT. The special names noon, midnight,
now, and next are also recognized.

An optional date may be specified as either a month name followed by a day number (and possibly
year number preceded by an optional comma) or a day of the week (fully spelled or abbreviated to
three characters). Two special "days", today and tomorrow, are recognized. If no date is given,
today is assumed if the given hour is greater than the current hour and tomorrow is assumed if it is
less. If the given month is less than the current month (and no year is given), next year is assumed.

The optional increment is simply a number suffixed by one of the following: minutes, hours, days,
weeks, months, or years. (The singular form is also accepted.)

Thus legitimate commands include:

at 0815am Jan 24
at 8:15am Jan 24
at now + I day
at 5 pm Friday

At and batch write the job number and schedule time to standard error.

Batch submits a batch job. It is almost equivalent to "at now," except that it goes into a different
queue. Also, "at now" responds with the error message "too late."

At -r removes jobs previously scheduled by at or batch. The job number is the number given to you
previously by the at or batch command. You can also get job numbers by typing at -I. You can only
remove your own jobs unless you are the super user.

1 Release 2.0

AT(!) AT(!)

EXAMPLES

FILES

The at and batch commands read from standard input the commands to be executed at a later time.
Sh(1) provides different ways of specifying standard input. Within your commands, it may be useful to
redirect standard output

This sequence can be used at a terminal:

batch
make filename >outfile
<Control-D> (hold down 'control' and depress 'D')

This sequence, which demonstrates redirecting standard error to a pipe, is useful in a shell procedure
(the sequence of output redirection specifications is significant):

batch «~I
make filename 2>&1 >outfile I mailloginid
!

To have a job reschedule itself, invoke at from within the shell procedure by including code similar to
the following within the shell file:

echo "sh shellfile" I at 1900 thursday next week

/usr/lib/cron

/usr/lib/cron/at.allow

/usr/lib/cron/at.deny

/usr/lib/cron/queue

/usr/spooVcron/atjobs

Main cron directory

List of allowed users

List of denied users

Scheduling information

Spool area

MESSAGES

At complains about various syntax errors and times out of range.

SEE ALSO

kill(1), mail(1), nice(1), ps(1), sh(1)
cron(1M) in the UNICOS Administrator Commands Reference Manual, publication SR-2022

Release 2.0 2 SR-2011

AWK(1) AWK(l)

NAME

awk - Scans and processes patterns

SYNOPSIS

awk [-Fc] [prog] [-r file] [parameters] [files]

DESCRIPTION

SR-2011

Awk scans each inputfile for lines that match any of a set of patterns specified in prog. With each pat­
tern in pro g there can be an associated action that will be performed when a line of a file matches the
pattern. The set of patterns may appear literally as prog, or in a file specified as -r file. The prog
string should be enclosed in single quotes (') to protect it from the shell.

Parameters, in the form X= ... y= ... etc., may be passed to awk.

Files are read in order; if there are no files, the standard input is read. The file name - means the stan­
dard input Each line is matched against the pattern portion of every pattern-action statement; the asso­
ciated action is performed for each matched pattern.

An input line is made up of fields separated by white space. (This default can be changed by using FS,
see below). The fields are denoted $1, $2, ... ; $0 refers to the entire line.

A pattern-action statement has the form:

pattern (action)

A missing action means print the line; a missing pattern always matches. An action is a sequence of
statements. A statement can be one of the following:

if (conditional) statement [else statement]
while (conditional) statement
for (expression ; conditional ; expression) statement
break
continue
([statement] ...)
variable = expression
print [expression-list] [>expression]
printf format [, expression-list] [>expression]
next # skip remaining patterns on this input line
exit # skip the rest of the input

Statements are terminated by semicolons, new-lines, or right braces. An empty expression-list stands
for the whole line. Expressions take on string or numeric values as appropriate, and are built using the
operators +, -, *, /, %, and concatenation (indicated by a blank). The C operators ++, -, +=, -=, *=,
/=, and %= are also available in expressions. Variables may be scalars, array elements (denoted x[i])
or fields. Variables are initialized to the null string. Array subscripts may be any string, not neces­
sarily numeric; this allows for a form of associative memory. Each variable and field can be either a
string or a number at any time. When a variable is set by the assignment v = expr its type is set to
that of expr. (This includes +=, ++, etc.) An arithmetic expression is of type string, and so on. IT the
assignment is a simple copy, as in vi = v2, then the type of vI becomes that of v2. String constants
are quoted (").

The print statement prints its arguments on the standard output (or on a file if >expr is present),
separated by the current output field separator, and terminated by the output record separator. The
print! statement formats its expression list according to the format (see print/(3S».

The expression in an action may contain any of several built-in functions. The built-in function length
returns the length of its argument taken as a string, or of the whole line if no argument There are also

1 Release 2.0

AWIC(l) AWK(l)

built-in functions exp, log, sqrt, and into The last truncates its argument to an integer; substr(s, m, n)
returns the n-character substring of s that begins at position m. The function
sprint/ifmt, apr, apr, ...) fonnats the expressions according to the print/(3S) fonnat given by fmt and
returns the resulting string.

Patterns are arbitrary Boolean combinations (!, II, &&, and parentheses) of regular expressions and
relational expressions. Regular expressions must be surrounded by slashes and are as in egrep (see
grep(l». Isolated regular expressions in a pattern apply to the entire line. Regular expressions may
also occur in relational expressions. A pattern may consist of two patterns separated by a comma; in
this case, the action is performed for all lines between an occurrence of the first pattern and the next
occurrence of the second.

A relational expression is one of the following:

expression matchop regular-expression
expression relop expression

where a relop is any of the six relational operators in C, and a matchop is either - (for contains) or !­
(for does not contain). A conditional is an arithmetic expression, a relational expression, or a Boolean
combination of these.

The special patterns BEGIN and END may be used to capture control before the first input line is read
and after the last BEGIN must be the first pattern, END the last.

A single character c may be used to separate the fields by starting the program with:

BEGIN { FS = c }

or by using the -Fe option.

Other variable names with special meanings include NF, the number of fields in the current record; NR,
the ordinal number of the current record; FILENAME, the name of the current input file; OFS, the output
field separator (default blank); ORS, the output record separator (default new-line); and OFMT, the out­
put format for numbers (default %.6g).

EXAMPLES

Print lines longer than 72 characters:

length> 72

Print first two fields in opposite order:

{ print $2, $1 }

Add up first column, print sum and average:

{ s += $1 }
END { print "sum is", s, " average is", s/NR

Print fields in reverse order:

{ for (i = NF; i > 0; -i) print $i }

Print all lines between start/stop pairs:

!stlrt/, !stop!

Print all lines whose first field is different from previous one:

$1 != prey { print; prey = $1 }

Print file, filling in page numbers starting at 5:

/Page! { $2 = n++; }
{ print}

Release 2.0 2 SR-2011

AWK(l) AWK(l)

command line: awk -f program n=5 input

WARNINGS

Input white space is not preserved on output if fields are involved.
There are no explicit conversions between numbers and strings. To force an expression to be treated as
a number add 0 to it; to force it to be treated as a string concatenate the null string ("") to it

SEE ALSO

grep(l)t lex(l)t sed(1)
UNICOS Support Tools Guidet publication SG-2016

SR-2011 3 Release 2.0

BANNER(l) BANNER(l)

NAME

banner - Makes posters

SYNOPSIS

banner string ...

DESCRIPTION

Banner prints the string arguments (each up to 10 characters long) in large letters on the standard out­
put.

SEE ALSO

echo(l)

SR-2011 1 Release 2.0

BASENAME (1)

NAME

basename, dirname - Prints portions of pathnames on standard output

SYNOPSIS

base name string [suffix]
dirname string

DESCRIPTION

BASENAME(1)

The basename command deletes any prefix ending in I and the suffix (if present in string) from string,
and prints the result on the standard output. It is normally used inside substitution marks C") within
shell procedures.

The dirname command delivers all but the last level of the pathname in string.

EXAMPLES

The following example, invoked with the argument lusrlsrclcmdlcat.c 9 compiles the named file and
moves the output to a file named cat in the current directory:

cc $1
mv a.out "basename $1 .c"

The following example will set the shell variable NAME to lusrlsrc/cmd:

NAME=:" dirname /usr/src/cmd/catc"

BUGS

On CRAY-2 UNICOS the basename of root (I) is null and is considered an error.

SEE ALSO

sh(l)

SR-2011 1 Release 2.0

Be(t) Be(l)

NAME

be - Invokes the arbitrary-precision arithmetic language preprocessor

SYNOPSIS

be [-c] [-I] [file ...]

DESCRIPTION

SR-2011

Be is an interactive processor for a language that resembles C but provides unlimited precision arith­
metic. It takes input from any files given, then reads the standard input

Be is actually a preprocessor for de(l), which it invokes automatically, unless the --c (compile only)
option is present. In this case the de input is sent to the standard output instead.

The be command accepts the following arguments:

-c Specifies compile only

-I Specifies the name of an arbitrary precision math library.

In the be language, assignment to scale influences the number of digits to be retained on arithmetic
operations in the manner of de(l).

The same letter may be used as an array, a function, and a simple variable simultaneously. All vari­
ables are global to the program. "Auto" variables are pushed down during function calIs. When using
arrays as function arguments or defining them as automatic variables

The following table shows the syntax and functions of the be language. The letters in the table (the
syntax for be programs) is as follows:

L A letter a-z,

E An expression

S A statement

1 Release 2.0

BC(l)

Release 2.0

Type

Comments

Names

Other operands

Operators

Statements

Function

definitions

Functions in
-L math library

Syntax/Function

strings enclosed in 1* and 1*
simple variables - L
array elements - L [E]
The words "ibase", "obase", and "scale"

Arbitrarily long numbers with
optional sign and
decimal point
(E)
sqrt (E)
Length (E) Number of significant decimal
digits
Scale (E) Number of digits right of
decimal point
L(E, ... ,E)

+-*/%'"
++-
==+ =- =* =/ =% ='"
E
{S; ... ; S}
if (E) S
while (E) S
for (E ; E ; E) S
null statement
break
quit

define L (L , ... , L) (
auto L, ... , L
S; ... S
return (E)

s(x) sine
c(x) cosine
e(x) exponential
l(x) log
a(x) arctangent
j(n,x) Bessel function

2

BC(l)

Notes

Assignments to ibase or
obase set the input and out­
put number radix respec­
tively.

% is remainder; '" is power
Prefix and postfix;
apply to names

Either semicolons or
new-lines can separate
statements.

The value of an expression
statement is printed unless
the main operator is an
assignment

All function arguments
are passed by value.

SR-2011

BC(l)

EXAMPLE

scale = 20
define e(x)(

auto a, b, c, i, s
a=1
b=1
s = 1
for(i=I; 1==1; i++)(

a =a*x
b = b*i
c = alb
if(c == 0) return(s)
s = s+c

defines a function to compute an approximate value of the exponential function and

for(i= I; k= 10; i++) e(i)

FILES

prints approximate values of the exponential function of the first ten integers.

/usr/libllib.b

/usr/bin/dc

Mathematical library

Desk calculator proper

LIMIT A nONS

No &&, I I yet.

A for statement must have all three E's.

Quit is interpreted when read, not when executed.

SEE ALSO

dc(l)
UNICOS Support Tools Guide, publication SG-2016

SR-2011 3

BC(l)

Release 2.0

BDIFF(1) BDIFF(l)

NAME

bdiff - Compares very large files for differences

SYNOPSIS

bdiff filel file2 [n] [-s]

DESCRIPTION

FILES

The bdiff command is used in a manner analogous to diff(l) to find which lines must be changed in two
files to bring them into agreement. Its purpose is to allow processing of files that are too large for diff.
The bdiff command ignores lines common to the beginning of both files, splits the remainder of each
file into n-line segments, and invokes diff upon corresponding segments. The value of n is 35,000 by
default. The bdiff command accepts the following arguments:

filel One of the files to compare

file2 The other file to compare. If filel or file2 is -, bdiff reads the standard input.

n If n is numeric, it is useful in those cases in which 35,()()()-line segments are too large for diff,
casuing it to fail.

-s Specifies that no diagnostics are to be printed by bdiff (however, this does not suppress possible
exclamations by diff.)

If both optional arguments are specified, they must appear in the order indicated above.

Bdiff's output is exactly that of diff, with line numbers adjusted to account for the segmenting of the
files (that is, to make it look as if the files had been processed whole). Because of the segmenting of
the files, bdiff does not necessarily find a smallest sufficient set of file differences.

/tmp/bd?????

MESSAGES

Use help(1) for explanations.

SEE ALSO

diff(1)

SR-2011 I Release 2.0

BIND(I) (CRAY X-MP and CRAY-l computer systems only) BIND(I)

NAME

bind - Binds APML relocatable modules together

SYNOPSIS

lliblbind [-i inputfile] [-0 outputfile]

DESCRIPTION

Bind reads inputfile, a collection of APML binary records containing external references, and writes
outputfile, a copy of the binary records with external references resolved.

The default inputfile is a.o. The default outputfile is a.out. Error information regarding duplicate or
undefined symbols is written to standard output

The exit code is nonzero if any undefined symbols were encountered during the binding process.

SEE ALSO

The COS Operational Aids Reference Manual, publication SM-0044

BUGS

Bind does not accept an archive as input

SR-2011 1 Release 2.0

BMXIO(l) (CRAY X-MP and CRAY-l computer systems only) BMXIO(l)

NAME

bmxio - Provides an interface to block mux devices

SYNOPSIS

bmxio [-io] [-t type] [-d dens] [-v vsnO:vsnl: ...] In

DESCRIPTION

NOTES

SR-2011

Bmxio provides a means to move data between a file and a block mux device (most often a tape).

Bmxio selects a device of the requested type; if it is a tape device, bmxio issues a mount message on
the system console. The device is then read or written according to arguments you specify; any of the
following:

-i Input is taken from the block mux device and written to the specified output file

-0 Input is taken from the provided file and written to a block mux device

-t Generic device type (the default is TAPE)

-d Tape density; default is 6250 b/i; may specify 1600.

-v List of volume names (vsn) separated by colons (:); required on input

In File name (the default is stdin/ stdout)

Bmxio supports multivolume, single file tape handling. On output, when the end of tape is detected,
bmxio selects another device, issues a mount message, and continues output until EOF is detected on the
input file. On input, when the end of volume is detected, bmxio checks for the next volume (vsn) in the
list provided and continues reading until all volumes are processed.

Labelled tapes are not currently supported.

Block mux devices are treated as system resources and are opened and closed by the super user upon
initiazation.

1 Release 2.0

CAL(l) CAL(l)

NAME

cal - Prints a calendar

SYNOPSIS

cal [[month] year]

DESCRIPTION

SR-2011

The cal command prints a calendar for the present month, if you do not specify a year and a month. If
you specify a year, cal prints a calendar for all twelve months of the year. If you also specify a month
with the year, a calendar just for that month is printed.

Following are the specifications for the arguments:

year A number representing a year, between 1 and 9999.

month A number between 1 and 12, representing a month.

The calendar produced is that. for England and her colonies. Note that "cal 85" refers to the early
Christian era, not the 20th century. The year is always considered to start in January even though this
is historically naive.

Try 9 (for September) 1752.

1 Release 2.0

CALENDAR. (1) CALENDAR. (1)

NAME

calendar - Reminder service

SYNOPSIS

calendar [-]

DESCRIPTION

Fll..ES

BUGS

The calendar command consults the calendar file in your current directory and prints out lines that
contain today's or tomorrow's date anywhere in the line. Most reasonable month-day dates such as
"Aug. 24," "august 24," or "8/24" are recognized, but not "24 August" or "24/8". On weekends
"tomorrow" extends through Monday.

When you specify the argument, calendar does its job for every user who has a file calendar in their
login directory and sends them any positive results by mail (1). Normally, this is done daily by faciIi­
ties in UNICOS.

/usr/lib/calprog

/etc/passwd

/tmp/ca1*

Program to figure out today's and tomorrow's dates

List of login directories

Temporary files

Your calendar must have public permission (see chmod(1)) for you to get reminder service.

Calendar's extended idea of "tomorrow" does not account for holidays.

SEE ALSO

mai1(1)

SR-2011 1 Release 2.0

CAT(l) CAT(l)

NAME

cat - Concatenates and prints files

SYNOPSIS

cat [-u] [-S] [-v [-t] [-e]] file

DESCRIPTION

The cat command reads each file you specify on the command line in sequence and writes it to stan­
dard output. Thus:

cat file

prints file, and:

cat filel file2 >file3

concatenates the first two files and places the result in the third.

If you do not specify an input file, or if cat encounters the argument -, cat reads frpm standard input.
The following options are available;

-u Causes the output to be unbuffered

-s Makes cat silent about nonexistent files

-v Prints nonprinting characters (with the exception of tabs, new-lines and form-feeds) visibly. Here,
control characters are printed as AX (CONTROL-X); the DEL character (octal 0177) is printed as
A? Non-ASCII characters (with the high-order bit set) are printed as M-x, where x is the charac­
ter specified by the 7 low-order bits.

-t When used with the -v option, -t causes tabs to be printed as AI's and form feeds to be printed as
AL's; Cat ignores this option if you do not specify the -v option.

-e Prints a $ character at the end of each line (prior to the new-line). Cat ignores this option if you
do not specify the -v option.

WARNING

Command formats such as
cat file I file2 >file 1

cause the original data in filel to be lost.

The cat command may hang if the file it attempts to write to the terminal is a binary file.

SEE ALSO

cp(I), pg(1), pr(1), more(l)

SR-2011 1 Release 2.0

CB(l) CB(l)

NAME

cb - C program beautifier

SYNOPSIS

cb [-s] [-j] [-I length] [file ...

DESCRIPTION

The cb command reads C programs either from its arguments or from the standard input and writes
them on the standard output with spacing and indentation that displays the structure of.the code. Under
default options, cb preserves all user new-lines.

The cb command accepts the following arguments:

-s Changes the style of the code to conform to the style of Kernigham and Ritchie in The C Pro­
gramming Language

-j Causes split lines to be put back together

-I length
Causes cb to split lines that are longer than length

WARNING

Punctuation that is hidden in preprocessor statements causes indentation errors.

SEE ALSO

cc(l)

SR-2011 1 Release 2.0

CC(l) (CRA Y -2 computer systems only) CC(l)

NAME

cc - Invokes the C compiler

SYNOPSIS

cc [option] file ...

DESCRIPfION

SR-2011

Cc is the UNICOS system C compiler. It accepts several types of arguments.

Arguments whose names end with .c are taken to be C source programs. They are compiled, and each
object program is left on the file whose name is that of the source with .0 substituted for .c. The.o file
is normally deleted, however, if a single C program is compiled and linked all at one go.

In the same way, arguments whose names end with .s are taken to be assembly source programs and are
assembled, producing a .0 file. The assembler used is not as(1) but a limited-purpose assembler
intended for the output of the compilation phase of the C compiler (see the -S option).

The following options are interpreted by cc. See Id(1) for link editor options and cpp(1) for more
preprocessor options.

-ooutfile
Produce an object file by the name outfile. The default name is a.out.

-c Suppress the link edit phase of the compilation and force an object file to be produced even if
only one program is compiled.

-f Compile C code into object code that does not use floating-point instructions, and link with
appropriate library.

-0 Invoke an object-code optimizer.

-S Compile the named C programs and leave the assembler-language output on corresponding
files suffixed .s.

-E Run only cpp(l) on the named C programs and send the result to the standard output.

-p Run only cpp(l) on the named C programs and leave the result on corresponding files suffixed
.i.

-Dname[=defJ
Define name as if a #define directive. If no =de! is given, name is defined as 1.

-Idir Change the algorithm for searching for #include files whose names do not begin with / to
look in dir before looking in the directories on the standard list. Thus, #include files whose
names are enclosed in 1111 are searched for first in the directory of the file argument, then in
directories named in -I options, and last in directories on a standard list. For #include files
whose names are enclosed in <>, the directory of the file argument is not searched.

-Uname Remove any initial definition of name, where name is a reserved symbol that is predefined.
The predefined symbols on the CRAY-2 Computer System are CRAY, CRAY2, and unix.

-C By default, cpp strips C-style comments. If the -C option is specified, all comments (except
those found on cpp directive lines) are passed along.

-# Produce information-only output indicating the actions cc would take based on the arguments
provided. Note that # is the shell sh(1) comment character, but the adjacent - causes it to be
treated differently.

-Bstring Construct path names for substitute preprocessor, compiler, optimizer, assembler and link edi­
tor passes by concatenating string with the suffixes epp, ccom, cd, ccas, and ld. If string is
empty it is taken to be /lib/o. By default, only ccp, ecom, and cci are modified by this option
(see the -t option).

1 Release 2.0

CC(l)

FILES

NOTES

(CRA Y -2 computer systems only) CC(l)

-t[p02aJ]
Find only the designated preprocessor (P), compiler (0), optimizer (2), assembler (a), and link
editor (I) passes in the files whose names are constructed by a -B option. In the absence of a
-B option, the string is taken to be llib/n. The value -t "" is equivalent to -tp02.

-Wc,argl[,arg2 ... j
Hand off the arguments to pass c where c is one of [p02a1] indicating preprocessor, compiler,
optimizer, assembler, or link editor, respectively.

Other arguments are taken to be either link-editor option arguments, C-preprocessor option arguments,
or C-compatible object programs, typically produced by an earlier cc run, or perhaps libraries of C­
compatible routines. These programs, together with the results of any compilations specified, are linked
(in the order given) to produce an executable program with the name a.out.

The AT&T C language standard was extended to include arbitrary length variable names. This portion
of the standard has not been implemented on the CRAY-2 compiler.

file.c
file. 0

a.out
/tmp/ctm*
/usr/tmp/ctm *
/lib/cpp
/lib/ccom
/lib/ccas
/lib/pci
/usr/lib/Oc*
/bin/as
/bin/ld
/lib/crtO.o
/lib/libc.a

/lib/libm.a

/lib/lmset

input file
object file
linked output
temporary
temporary
C preprocessor cpp(l)
compiler
Cray C compiler
optional optimizer
backup compiler, Occ
assembler, as(l)
link editor, ld(l)
runtime startoff
standard C library, see the CRAY-2 UNICOS Libraries, Macros and Opdefs
Reference Manual, publication SR-2013
math library, see the CRAY-2 UNICOS Libraries, Macros and Opdefs
Reference Manual, publication SR-2013
local memory definitions input to link editor

The location of compiler and temporary files can be controlled by setting and exporting the environ­
ment variable TMPDIR (see sh(l) and tmpnam(3».

By default, the return value from a C program is completely random. The only two guaranteed ways to
return a specific value are to explicitly call exit(2) or to leave the function mainO with a return
expression; construct

MESSAGES

The diagnostics produced by C itself are intended to be self-explanatory. Occasional messages may be
produced by the assembler or the link editor.

SEE ALSO

adb(l). cpP(l), as(l), ld(l).
exit(2) in the UNICOS System Calls Reference Manual, publication SR-2012

Release 2.0 2 SR-2011

CC(1) (CRAY X-MP and CRAY-l computer systems only) CC(l)

NAME

cc - Invokes the C compiler

SYNOPSIS

CC [-ooudile] [-c] [-hoptions] [-W] [-S] [-g] [-Dname[=dej]] [-E] [-Idirectory] [-0] [-P]
[-Uname] [-C] ... file ...

DESCRIPTION

SR-2011

The cc command invokes the UNICOS C compiler.

Cc expects several optional arguments followed by a list of one or more files. Files whose names end
with .c are taken to be C source programs; they are compiled, and each object program is left in the file
whose name is that of the source with .0 substituted for .c. The.o file is nonnally deleted.

Similarly, all files whose name ends with .s are taken to be CAl; they are assembled, and each object
program is left in the file whose name is that of the source with .0 substituted for .s.

Any files whose name ends with .0 are passed on to ld(l) and are loaded with all other .0 files that
were compiled or assembled to produce an executable program with the name a.out.

The cc command accepts the following options:

-ooutfile Passed to ld. Override the default output file name, a.out, to be outfile.

-c Do not call ld. Force the object files to be produced and leave them in their respective .0

files.

- W Passed to as(l)

-hoptions Pass the C compiler code generation options on the the C compiler. The following options
can be used, with multiple arguments separated by a comma and no intervening spaces:

ema (noema)
This option causes the compiler to generate code sequences which will allow
memory references up to addresses requiring a full 24-bits. The default is noema,
which disables 24-bit addresses.

fastmd (nofastmd)
This option generates code sequences for int variables which are shorter when
doing multiply or divide operations but allow for only 46 bits of significance.
Without this option, int variables use the much longer (for 64 bits of significance)
code sequences used by long variables for multiply and divide operations. The
default is fastmd, which requires int variables to use the long multiply/divide code
sequences.

abort (noabort)
This option controls whether a compilation does or does not abort if a fatal error is
detected. The default is abort.

btreg (nobtreg)
This option generates optimization code sequences involving B and T register sets
in specific instances. The default is btreg.

varargs (novarargs)
This option is not presently implemented.

-S Compiles the named C programs and leaves their assembly language output in the
corresponding files suffixed .s.

1 Release 2.0

CC(l)

FILES

(CRAY X-MP and CRAY-l computer systems only) CC(l)

-g Create a debug symbol table to be used with symbolic debuggers. Deferred implementation

-Dname[=dej]
Passed to the C preprocessor. Define name as if by a #define directive. If no =def is
given, name is defined as 1.

-E Run only the C preprocessor and send the result to standard output.

-Idirectory Passed to the C preprocessor. Change the algorithm for searching for #include files whose
names do not begin with I to look in directory before looking in the directories on the stan­
dard list. Thus, #include files whose names are enclosed in "" will be searched for first in
the directory of the input file, then in directories named in -I options, and finally in the
standard directories. For #include files whose names are enclo.sed in <>, the directory of
the input file is not searched.

-0 Invoke the optimizer. Deferred implementation

-p Run only the C preprocessor, and leave the result in the corresponding file suffixed with .i.

-Uname Passed to the C preprocessor. Undefine name as if by a #undef directive.

-C Passed to the C preprocessor. By detault, the C preprocessor strips C comments. If the -C
options is specified, all comments are passed along to the C compiler. Only those com­
ments on preprocessor directive lines are not passed along.

-# Produce information-only output indicating the actions cc would take based on the argu­
ments provided. Note that # is the shell (sh(1» comment character, but the adjacent -
causes it to be treated differently.

file.c Input C source file

file.s Assembly language file

file.o Object file

a.out Executable output file

CAL Temporary file for compiler output

/bin/cpp C preprocessor

/bin/comp Cray C compiler

/lib/libc.o C compiler library

/bin/as CRAY X-MP and CRAY-l assembler

/bin/ld CRAY X-MP and CRAY-l loader

MESSAGES

The error messages produced by the C compiler are intended to be self-explanatory. If further explana­
tion is required, please see the COS Message Manual, publication SR-0039.

SEE ALSO

as(1), ld(l), segldr(l)
Cray C Reference Manual, publication SR-2024.

Release 2.0 2 SR-2011

CD(I) CD(I)

NAME

cd - Changes working directory

SYNOPSIS

cd [directory]

DESCRIPTION

If directory is not specified, the value of the shell parameter $HOME (your home directory) is used as
the new working directory. If directory specifies a complete path starting with I, ., or •• , directory
becomes the new working directory. If neither case applies, cd tries to find the designated directory
relative to one of the paths specified by the $CDPATH shell variable. If $CDPATH is not defined, the
search path defaults to . (dot). $CDPATH has the same syntax as, and similar semantics to, the $PATH
shell variable. Cd must have execute (search) pennission in directory.

Because a new process is created to execute each command, cd would be ineffective if it were written
as a nonnal command; therefore, it is recognized and is built in to the shell (see sh(l».

SEE ALSO

pwd(l), sh(1)
chdir(2) in the UNICOS System Calls Reference Manual, publication SR-2012

SR-2011 1 Release 2.0

COC(l> COC(I)

NAME

cdc - Changes the delta commentary of an sees delta

SYNOPSIS

cdc -rSID -m [mrlist]] -y [comment]] files

DESCRIPTION

SR-2011

The cdc command changes the delta commentary, for the SID specified by the -r keyletter of each
named sees file. A delta commentary is defined to be the Modification Request (MR) and comment
information normally specified via the delta(l) command (-m and -y keyletters).

If you specify a directory, cdc behaves as though each file in the directory were specified as a named
file, except that non-sees files (last component of the path name does not begin with s.) and unreadable
files are silently ignored. If a name of - is given, the standard input is read (see WARNINGS); each line
of the standard input is taken to be the name of an sees file to be processed.

Arguments to cdc, which may appear in any order, consist of keyletter arguments and file names.

All the described keyletter arguments apply independently to each named file:

-r [SID] Used to specify the Sees IDentification (SID) string of a delta for which the delta com­
mentary is to be changed.

-m [mrlist] If the sees file has the v flag set (see admin(l» then a list of MR numbers to be added
and/or deleted in the delta commentary of the SID specified by the -r keyletter may be
supplied. A null MR list has no effect.

MR entries are added to the list of MRs in the same manner as that of delta(l). In
order to delete an MR, precede the MR number with the character! (see EXAMPLES). If
the MR to be deleted is currently in the list of MRs, it is removed and changed into a
"comment" line. A list of all deleted MRs is placed in the comment section of the
delta commentary and preceded by a comment line stating that they were deleted.

If -m is not used and the standard input is a terminal, the prompt MRs? is issued on the
standard output before the standard input is read; if the standard input is not a terminal,
no prompt is issued. The MRs? prompt always precedes the comments? prompt (see -y
key letter).

MRs in a list are separated by blanks and/or tab characters. An unescaped new-line
character terminates the MR list.

Note that if the v flag has a value (see admin(l», it is taken to be the name of a pro­
gram (or shell procedure) which validates the correctness of the MR numbers. If a
non-zero exit status is returned from the MR number validation program, cdc terminates
and the delta commentary remains unchanged.

-y [comment] Arbitrary text used to replace the comment(s) already existing for the delta specified by
the -r keyletter. The previous comments are kept and preceded by a comment line stat­
ing that they were changed. A null comment has no effect

If -y is not specified and the standard input is a terminal, the prompt comments? is
issued on the standard output before the standard input is read; if the standard input is
not a terminal, no prompt is issued. An unescaped new-line character terminates the
comment text

The exact permissions necessary to modify the sees file are documented in the Source Code Control
System (SCCS) User's Guide. Simply stated, they are either (1) if you made the delta, you can change
its delta commentary; or (2) if you own the file and directory you can modify the delta commentary.

1 Release 2.0

COC(l) CDC(l)

EXAMPLES

cdc -r1.6 -m"bI78-12345 !bI77-54321 bI79-()()()()1" -ytrouble s.file

adds b178-12345 and b179-()()()()1 to the MR list, removes b177-54321 from the MR list, and adds the
comment trouble to delta 1.6 of s.file.

cdc -r 1.6 s.file
MRs? !bI77-54321 b178-12345 bl79-OOOOI
comments? ttouble

does the same thing.

WARNINGS

FILES

If secs file names are supplied to the cdc command via the standard input (- on the command line).
then the -m and -y keyletters must also be used.

x/ile (see delta(1»
z.file (see delta(l»

MESSAGES

Use help(l) for explanations.

SEE ALSO

admin(l), delta(1), get(l), help(1), prs(1)
sccsfile(4F) in the UNICOS File Formats and Special Files Reference Manual, publication SR-2014
the UNICOS Source Code Control System (SCeS) User's Guide, publication SG-2017

Release 2.0 2 SR-2011

CFLOW(l) CFLOW(l)

NAME

cflow - Generates C flow graph

SYNOPSIS

cHow [-r] [-ix] [-C] [-dnum] files

DESCRIPTION

(flow analyzes a collection of C, YACC, and LEX files and attempts to build a graph charting the exter­
nal references. Files suffixed in .y, .1, .c, and .i are YACC'd, LEX'd, and C-preprocessed (bypassed for
.i files) as appropriate and then run through the first pass of !int(1). (The -I, -D, and -U options of the
C-preprocessor are also understood.) The output of all this nontrivial processing is collected and turned
into a graph of external references, which is displayed on standard output.

Each line of output begins with a reference (that is, line) number, followed by a suitable number of tabs
indicating the level. Then the name of the global (normally only a function not defined as an external
or beginning with an underscore; see below for the -i inclusion option) a colon and its definition. For
information extracted from C source, the definition consists of an abstract type declaration (for example,
char *), and, delimited by angle brackets, the name of the source file and the line number where the
definition was found.

Once a definition of a name has been printed, subsequent references to that name contain only the refer­
ence number of the line where the definition is found. For undefined references, only < > is printed.

EXAMPLES

SR-2011

Given the following in file.c :

int

mainO
{

fO
{

the command

i· ,

fO;
gO;
fO;

i = hO;

cflow -ix file.c

produces the output

I main: intO, <file.c 4>
2 f: intO, <file.c 11>
3 h:<>
4 i: int, <file.c 1>
5 g: <>

1 Release 2.0

CFLOW(l) CFLOW(l)

When the nesting level becomes too deep. use the -e option of pr(1) to compress the tab expansion to
something less than every eight spaces.

The following options are interpreted by cflow:

-r Reverses the "caller: callee •• relationship producing an inverted listing showing the callers of
each function. The listing is also sorted in lexicographical order by callee.

-ix Includes external and static data symbols. The default is to include only functions in the
flowgraph.

-i_ Includes names that begin with an underscore. The default is to exclude these functions (and
data if -ix is used).

-dnum Indicates the depth at which the flowgraph is cut off. By default. num is a very large number.
Attempts to set the cutoff depth to a nonpositive integer are met with contempt.

MESSAGES

BUGS

Complains about bad options. Complains about multiple definitions and only believes the first. Other
messages may come from the various programs used (for example, the C-preprocessor).

Files produced by lex(l) and yacc(l) cause the reordering of line number declarations which can con­
fuse cflow. To get proper results, feed cflow the yacc or lex input.

SEE ALSO

cc(l), cpp(l), lex(l), lint(l), pr(l), yacc(l)

Release 2.0 2 SR-2011

CFf(1) (CRA Y -2 computer systems only) CFf(l)

NAME

cft - Invokes the CRAY-2 Fortran compiler

SYNOPSIS

eft [-b binfn] [-c calfn] [-t trncnt] [~ oplist] [~ oplist] [-i intsize] [-I listfn] [-m mlev]
[-M maxblock] [-0 optlst] [- -] f/name.fj

DESCRIPTION

SR-2011

The CRAY-2 Fortran compiler is loaded and executed when a cft command is encountered in the stdin
file.

You can specify options in any order. If you omit an option from the statement, the compiler uses the
default value indicated in the following explanation. The compiler input file (see fname.f) is not
optional; it must appear as the last item on the command line. Options are:

-b binfn Binary object code file name; fname.o is the default (see fname.f).

-c calfn Alternate CAL listing file. The ~C option writes pseudo CAL to fname.s. The default is
no file.

-t trncnt Specifies the number of bits to be truncated for floating-point results (0-47)

~ ~ oplist
Option argument list for use with the ~ and ~ options. Arguments in oplist following the
~ option are disabled; those in oplist following the ~ option are enabled. Oplist
arguments must not appear in both a -d and ~ argument list. If more than one argument
appears in oplist, the argument list can be delimited by quotation marks for readability;
arguments within the quotation marks can be separated by commas and blanks, or not
separated at all. If oplist is not delimited by quotation marks, arguments can be separated
by commas for readability; no other separator can be used. If an option argument is not
specifically enabled or disabled, the compiler uses the default. Specific oplist arguments
and defaults are:

a Aborts job after compilation if any program unit contains a fatal error; disabled by
default.

b Lists beginning sequence number of each code generation block (g implies b);
disabled by default.

B Controls generation of binary file to fname.o in the current directory or to binfn, if -b
is specified; enabled by default.

c Lists common block names and lengths after each program unit; enabled by default.

C Creates pseudo CAL filename fname.s in the current directory unless an alternate
filename is given by the -c option; disabled by default

d Lists DO loop table; disabled by default.

e Controls recognition of compiler directive lines; enabled by default.

f Enables flowtrace processing

g Lists generated code for each program unit (see CODE/NOCODE directives); disabled
by default.

h Lists the first statement of each program unit and error messages; all other list options
in oplist are ignored or disabled. The h argument is disabled by default.

I Release 2.0

CFf(l) (CRAY-2 computer systems only) CFf(l)

Enters compiler-generated statement labels in the symbol table; disabled by default.

j Causes at least one execution of all DO loops; disabled by default.

I Controls recognition of output listing control directives; enabled by default.

L Controls generation of a listing file to /name.I in the current directory or to listfn if
the -I option is specified; enabled by default.

n Enters null symbols in symbol table (defined but not referenced); disabled by default.

p Allows double precision; enabled by default Disabling p (that is, specifying p in
oplist following -d) at compile time causes the following:

1. All double-precision declaratives to be treated as real.

2. Double-precision functions to be changed to corresponding single-precision
functions.

3. Double-precision constants to be converted as double precision and truncated to
real.

4. D format edit descriptors to be changed to E edit descriptors.

q Aborts compilation when 100 fatal error messages are counted; enabled by default.

s Lists Fortran source code; enabled by default.

S Causes compilation to proceed as if a SAVE statement was in every program unit.

t Lists symbol table after each program unit; enabled by default.

v Vectorizes inner DO loops; enabled by default.

x Lists symbol table with cross references after each program unit (x overrides t);
disabled by default.

z Causes output of debug symbol table to binary rname.o.

-i intsize Integer size; default is 32 bits. Valid options are 32 (integer) and 64 (long integer).

-I listfn File to which the output listing is written. Listing options (for example, cross references,
symbol tables, source code) are controlled by arguments in oplist. The default listing file
name is/name.I.

-M maxblock
Length of code block being optimized or vectorized; default is 2560 words of intermediate
text. Values greater than 2560 may increase optimization and internal compiler errors. A
value of I eliminates vectorization and optimization between Fortran source statements.

-m mlev Message level; the highest severity level of CRAY-2 Fortran-produced messages to be
suppressed (O~mlev~). For example, -m 2 allows CAUTION, WARNING, and ERROR
messages to be issued. -m 0 means no suppression takes place. The default is -m 3. The
severity levels are defined as follows:

Release 2.0 2 SR-2011

CFf(1) (CRA Y -2 computer systems only) CFf(l)

FILES

SR-2011

Message Severity
level type Description

0 COMMENT Comments on
programmirig inefficiencies.

1 NOTE ~y cause problems
with other compilers

2 CAUTION Possible user error
(example: no path to
this statement)

3 WARNING Probable user error
(example: using an array
with too few subscripts)

4 ERROR Fatal error. Fatal errors
cannot be suppressed.

-0 optlst Specifies optimization option. When selecting multiple options, separate values by
commas. The options are:

Jname.f

nozeroinc Assumes constant increment integers are not incremented by variables with
value O. This is the default option.

zeroinc Assumes constant increment integers can be incremented by variables with the
value O. This option inhibits the vectorization of any DO loop with cns of the
form cn = cn + VARIABLE.

1m Iv Assigns local variables to local memory saved variables, equivalenced
variables; variables used as actual arguments are excluded. This is the default
option.

nolmlv Disables the Imlv option.

noifcon Disables conditional replacement optimization (default)

partialifcon Optimizes conditional replacement statements.

Optional symbol used to delimit the end of the options; the compiler considers whatever
follows this symbol to be fname.r.

Compiler input file containing the Fortran source code to be compiled. The input file name
must end in .f. If the -I option is omitted and the -d option does not contain the L option
argument, the compiler output listing is written to the file Jname.l. Similarly, if the -b
option is not specified and B is not an argument to option -d, the binary object file is
written to Jname.o. The input file name must follow all other command line options.

Jname.o Compiler binary object code output file. This file may be redirected using the -b option.
The -d option with the opUst argument B enables the writing of this file.

Jname.f CRAY-2 Fortran input Fortran source code file.

Jname.l Compiler listing output file. This file may contain a source listing, cross references,
generated code listing, error messages and diagnostics, and other listing options controlled
by the ~ and -d options. The listing file may be redirected using the -lor disabled using
the L argument with the -d option.

Jname.s Pseudo CAL filename; not written by default.

3 Release 2.0

CFf(l) (CRA Y -2 computer systems only) CFf(1)

stderr Command line errors are written to stderr. If the compiler listing is disabled (with -d I),
compile time errors and diagnostics are written to stderr.

MESSAGES

A full list of compiler diagnostics can be found in the CRAY-2 Fortran Reference Manual, publication
SR-2007.

EXAMPLES

cft in.f
In this example, the file in.r is compiled and a binary object file is written to the file iD.o. A
listing file including source code, fatal and warning messages, symbol table, and list of common
block names and length is written to the file in.1. The default optimization option nonzeroinc is
set. Vectorization of inner 00 loops, OOUBLE PRECISION, and recognition of compiler directive
lines is enabled. Floating-point operation results are not truncated. Compilation terminates if
more than 100 fatal errors are found.

cft -b binary -dLelpv ~"j q" -m 4 -ozeroinc - file.f
In this example, the file file.r is compiled, creating the binary object file name binary. Only fatal
errors are written to stderr. No listing file is created. All compiler directive lines are ignored.
All DO loops execute at least once, but do not vectorize. DOUBLE PRECISION is treated as
REAL. The optimization option zeroinc is assumed.

cft -d B,L -m 0 input.f

Release 2.0

In this example, the file input.f is compiled. No listing file or object file is created. All levels of
compiler messages are written to stderr. Listing options are disabled, and all other compiler
options are set to their default setting.

4 SR-2011

CFf(l) (CRAY X-MP and CRAY-l computer systems only) CFf(l)

NAME

eft - Invokes the CFT Fortran compiler

SYNOPSIS

cft [-a alloe] [-b binfile] [-c ealfile] [-d oplist] [-e oplist] [-i intlen] [-I listfile] [-m mlev]
[-0 options] [-t trune] [-u unroll] [-v msgs] [-A aids] [-C type,eharaeteristie] [-E e"file]
[-M maxbloek] [- -] filename

DESCRIPTION

SR-2011

The symbol - - may be used to delimit the end of the options. The Fortran source code to be compiled
must be filename. Filename must end in .f. If the -b option is omitted, the default binary file is writ­
ten to filename.o. The error messages and statistics information are written to standard error, stderr,
unless -eE or -E errfile is specified. The eft command accepts the following options are:

-a alloe Allocation mode; alloe can be equal to static or stack. Static allocation is the default

-b binfile Alternate binary object file. Default is filename.o. -d B disables binary object creation.

-c ealfile Alternate CAL listing file. -e C writes pseudo CAL to filename.s. Default is no file.

- { die} oplist
Arguments in oplist following the -d option will be disabled, those in oplist following the
-e option will be enabled. The arguments in the oplists must not appear in both the d and e
oplists. The options are:

A Enables non-ANSI messages to be printed at compile time. Disabled by default.

B Creates binary object file filename.o. Enabled by default.

C Creates pseudo CAL file filename.s. Disabled by default.

D Writes sequence number labels at each executable Fortran statement to the Debug
Symbol Table, allowing Breakpoints to be set with SID at statement sequence
numbers. This option forces -e iz and -M 1. Disabled by default.

E Creates an error listing file in filename.e. Disabled by default.

I Sets all uninitialized stack variables to an undefined value. Disabled by default.

L Creates a listing file filenameJ. Disabled by default.

S Saveall option allows compilation to occur as if a SA VB statement with an empty
list were in each program unit This option overrides -0 btreg. Disabled by
default.

a Aborts job after compilation if any program unit contains compilation errors. Dis­
abled by default

b Lists beginning sequence number of each code generation block (g implies b).
Disabled by default

c Lists common block names and lengths after each program unit Enabled by
default.

d Lists DO-loop table. Disabled by default.

e Enables recognition of compiler directive lines. Enabled by default.

f Enables the jlowtraee option. Disabled by default

g Lists generated code for each program unit (see CODE and NOCODE compiler
directives). Disabled by default

1 Release 2.0

CFf(l) (CRAY X-MP and CRAY-l computer systems only) CFf(1)

h Causes listing of the first statement of each program unit and error messages. All
other list options in oplist are ignored or disabled. Disabled by default.

Enters compiler-generated statement labels in the symbol table. Disabled by
default.

j Causes all DO loops to execute at least once. Disabled by default.

Enables recognition of output control directives. Disabled by default.

m Generates a table of machine characteristics. Disabled by default

n Enters null symbols in symbol table (defined but not referenced). Disabled by
default.

o Prints a message identifying any array references with out-of-bounds subscripts
found during execution. Enables the BOUNDS compiler directives. Disabled by
default.

p Allows double precision. Enabled by default. Disabling p causes at compile time:

1. All double precision declarations to be treated as real.

2. Double precision functions to be changed to corresponding single precision
functions.

3. Double precision constants to be converted as double precision and trun­
cated to real.

4. D rormat edit descriptors to be changed to E rormat descriptors.

q Aborts compilation when 100 fatal error messages have been issued. Enabled by
default.

r Rounds results on multiply operations. Enabled by default.

s Lists Fortran source code. Enabled by default.

t Lists symbol table after each program unit Enabled by default.

u Controls int24 usage. Enabled by default.

v Attempts to vectorize inner 00 loops. Enabled by default.

x Lists symbol table with cross reference after each program unit (x overrides t).
Disabled by default

z Writes the Debug Symbol Table. Disabled by default.

-i intlen Specifies length of integers. "64" implies 64-bit integers. This is the default option. "24"
implies 24-bit integers.

-I listfile Alternate source listing file. Default is no source listing. -e L enables a source listing file
with the name filename.1.

-m mlev Highest message level to be suppressed; default is 3. Fatal errors are not suppressed.

Level Severity Description

0 COMMENT Comments on programming inefficiencies
1 NOTE May cause problems with other compilers
2 CAUTION Possible user error
3 WARNING Probable user error
4 ERROR Fatal error

Release 2.0 2 SR-2011

CFf(1)

SR-20II

(CRAY X-MP and CRAY-l computer systems only) CFf(l)

-0 options Specifies optimization options. Only one from each group of options may be selected. If
more than one argument is specified, arguments must be separated by commas. The option
groups are:

Dozeroinc Assumes constant increment integers are not incremented by variables with
the value 0 (default option).

zeroinc Assumes constant increment integers can be incremented by variables with the
value O. This option inhibits the vectorization of any DO loop in which there
are Clls of the form CII=CII+variable.

noifcon Disables . optimization of conditional replacement statements of the form
JF(logical exp) var=expression except where CFT replaces these statements
with MINIMAX intrinsic functions (default option).

partialifcon Allows CFT to optimize conditional replacement statements of the form
JF(logical exp) var=expression if var is of type real, integer, or logical, and
expression does not involve division or an external function reference. The
optimization causes CFT to generate code similar to
var=CVMGx(expression,var,condition). If the optimization is performed, the
IF statement will not inhibit vectorization or break an optimization block.

fullifcon Allows CFT to optimize conditional replacement statements as described for
PARTIALIFCON, except conditional replacement statements involving division
and external functions are also optimized.

fastmd Causes CFT to use the fast integer multiply and divide algorithms. Operands
and results are limited to 46 bits; there is no overflow detection.

slowmd Causes CFT to generate the full 64 bit integer multiply and divide (default
option).

safedorep Enables replacement of 1-line DO loops with a call to a $SCILIB routine per­
forming the same operation more efficiently . Replacement does not occur
when a one-line DO loop contains potential dependencies or equivalenced
variables (default option).

fulldorep Enables replacement of I-line DO loops with a call to a $SCILIB routine.
Potential dependencies and equivalences are ignored.

nodorep Disables replacement of I-line DO loops. Nodorep has no effect on vectori-
zation of loops in the program.

invmov Enables movement of invariant code from DO loops (default option).

noinvmov Disables movement of invariant code from DO loops.

unsafeif Enables instructions to move over a branch instruction.

safeif Disables instructions moving over a branch instruction (default option).

bl Enables scalar loops to be bottom loaded (default option).

nobl Disables bottom loading of scalar loops.

btreg Causes CFT to allocate specific scalar variables in a program unit to a T regis­
ters.

nobtreg Causes CFT to allocate all user variables to memory. Nobtreg does not affect
the allocation of compiler-generated variables to B or T registers or the use of
B or T registers temporarily holding values during expression evaluation
(default option).

3 Release 2.0

CFf(I) (CRAY X-MP and CRAY-l computer systems only) CFf(I)

cvl Enables compilation of conditional vector loops (default option).

nocvl Disables compilation of conditional vector loops.

keep temp Updates scalar temporary variables in DO loops (default option).

killtemp Does not update scalar temporary variables in 00 loops. The variable values
will be undefined when the DO loop terminates.

-t trune Number of bits truncated for floating-point results. Truncated bits are zeroed. Range is
O<=trune<=4 7. Default is O.

-u unroll Specifies that inner DO loops with constant limits iterating unroll times or less may use
DO-loop unrolling. The maximum value for unroll is 9. Default is 3. -u 0 turns off DO­
loop unrolling.

-v msgs Enables the LOOPMARK utility. If msgs is messages an explanation as to what was done to
the loop will be printed. If msgs is nomessages no explanation is given. Msgs is required.
The LOOPMARK utility is disabled by default

-A aids Determines the number of vectorization inhibition messages to be printed when the aids
argument is equal to :

loopnone No messages

looppart 3 per compiler block; 100 per compilation. (default)

loop all All messages are issued

-C type,charaeteristies
Specifies the mainframe type running the binary object. This defaults to the CPU type of
the current machine

cray-lm Generates code for the CRA Y -1 M computer systems.

cray-l, cray-la, cray-lb, cray-ls Generates code for the CRAY-l S computer systems.

cray-xmp, cray-xl, cray-x2, cray-x4
Generates code for the CRA Y X-MP computer systems.

Optional machine characteristics can be specified following the machine type. Specifying a
machine characteristic requires specifying a machine type.

[no]avl Target machine does/does not have two vector logical
functional units.

[no]bdm

[no]cigs

[no]ema

[no]vpop

[no]vrecur

ibursize=words

Target machine does/does not have bidirectional
memory.

Target machine does/does not have compressed index
gather/scatter hardware.

Enables/disables extended addressing capability.

Enables/disables vector pop count capability.

Target machine does/does not have vector recursion.

Instruction buffer size in words (16 or 32).

memspeed=eps Memory speed in clock periods.

-E errfile Alternate error listing file. -e E writes errors to filename.e. Default is stderr.

-M maxbloek

Release 2.0

Length of code block being optimized or vectorized. Default is 4000 words of internal
intermediate text. Values greater than 4000 may increase optimization and internal com­
piler errors. Maxbloek=1 eliminates optimization and vectorization.

4 SR-2011

CFf(l) (CRAY X-MP and CRAY-l computer systems only) CFr(l)

FILES

filename.e Error listing file

filename.r Fortran source file; must always be specified

filename.1 Source listing filename; default is no filename.

filename.o Binary object filename

filename.s Pseudo CAL file name; default is no filename.

MESSAGES

The full range of CFf diagnostics can be found in the Fortran (CFf) Reference Manual, publication
SR-0009.

SEE ALSO

The Fortran (CFT) Reference Manual, publication SR-0009

SR-2011 5 Release 2.0

CFI77(1) (Deferred Implementation on CItAY X-MP mel CRAY-l computer systems) CFf77(1)

NAME

cft?7 - Fortran compiler, not machine-specific

SYNOPSIS

cft77 [-8 alloe] [-b binfde] [-d offstrng] [-e onstrng] [-i intlen] [-I listfile]
[-m msglev] [-0 optim] [-s ealfile] [-t trune] [-C epu,hdw] [--] file!

DESCRIPTION

SR-2011

The cft77 command invokes the CFT77 compiler. Keywords in the cft77 command can be in any order.
If a keyword and option are omitted from the statement, the compiler uses a default value. If an entry
in the command is not a recognized keyword, the job is aborted. If a keyword option is unrecognized,
duplicated, or in conflict with another option, the job is usually aborted.

The command showing all default values is as follows (file! must be specified, and other appearances
of file use the same name. -s defaults to no file.):

eft77 -a static -b fi/e.o -d ADLSacfgjosx -e Bpqr -i46 -I -m~ -0 full,nozeroinc -to -C
eray-xmp,nocigs,noema,novpop - file!

If conflicting list output options appear on a control statement, a warning message appears in the logfile
and the option is used with the highest precedence (1 being the highest) as follows:

1. -10
2. -eL
3. -e h
4. -e cgsx
5. -d cgsx
6. CDIR$

Thus, if ON=S and the NOUST directive is compiled, the directive is ignored.

-a alloc Memory allocation scheme for entities in memory. alloe can be either static (the default),
or stack.

static All memory is statically allocated; a stack is not used, except automatic arrays
and array temporaries, which are allocated on the heap.

stack Constants and entities in a DATA statement, SAVE statement, or a common
block are statically allocated. All other entities are allocated on the stack,
except automatic arrays and array temporaries, which are allocated on the heap.

-b binfile Creates file binfile (if it does not already exist), on which the compiler writes binary object
modules. With -b 0, no binary load files are written. The default is file.o.

-d eoplist Disables or enables up to 12 compiler options. The options establish settings throughout an
executable program. Compiler directives can turn many options on or off within programs,
but only those options not included in the -e or -d string. If an option appears in one of
the strings, directives for that option are ignored. -d ADLSacfgjosx -e Bpqr. The-d
options are as follows.

L -eL enables all available kinds of listings to the output file (file.! or the file specified
by the -I parameter). These include generated code, cross reference listing, common
blocks, and vectorization information. L supersedes c, g, s, and x, which supersedes
compiler directives. The default is disabled (output is enabled by c, g, s, and x
options).

1 Release 2.0

CFI'77 (1) (Deferred Implementation on CRAY X-MP and CRAY-l computer systems) CFI'11 (1)

D Generates a symbol table for the debugger on the file specified by -b binfile. The
default file is file.o, where file is specified by filef in the command. The default for
the D option is disabled. .

B Enables creation of a binary object file; that is, -dB disables the object file. See
parameter -b. The default is enabled.

A Generates messages to note all non ANSI usages. The default is disabled.

S Creates CAL file file.s, where file is specified by filef in the command. Parameter-s
creates a file with a non-default name, which overrides option S. The default is dis­
abled.

a Aborts job after compilation if any program unit contains a fatal error. The default is
disabled.

c Lists common block names and lengths in file listfile after each program unit. Not
needed if -eL is used. The default is disabled.

f -ef generates flowtrace for the entire compilation unit. The option supersedes FLOW
and NO FLOW directives. The default is disabled.

g -eg enables listing of generated code to the output file (file.l or the file named by -I).
This option is superseded by -eL; it supersedes CODE and NOCODE directives. The
default is disabled.

h Enables listing of first statement in each program unit and error messages. h is super­
seded by UST; it supersedes c, g, s, and x. The default is disabled.

j Causes at least one execution of each DO loop whose DO statement is executed. The
default is disabled.

o -eo generates bounds checking for entire compilation unit, and also enables runtime
conformance checking in array syntax expressions. -eo supersedes the BOUNDS direc­
tive. The default is disabled.

p Allows double-precision. If -dp is specified, the following occurs during compile
two (the default is enabled):
• All double-precision declaratives are treated as real
• Double-precision functions are changed to the corresponding

single-precision functions
• Double-precision constants are converted as double-precision and

truncated to real
• D in FORMAT statement is changed to E

q Aborts compilation when 100 fatal error messages are counted. The default is
enabled.

r Rounds the results on multiply operations. The default is enabled.

s -es enables listing of source code to the output file (file.! or file named by -I). This
option supersedes LIST, NOUST, and EJECT directives; it is not needed if -eL is
specified. The default is disabled

x Enables cross reference listing to the output file (file.o or the file named by -1). Not
needed if -eL is specified.

-i intlen intlen can be either 64 or 46, to specify 64-bit or 46-bit integer arithmetic. The default is
46.

-I listfile Creates file listfile to receive list output Output is enabled by -e options /fIL, c, g, s, or x.
The default, file.! uses file from filef on the command.

Release 2.0 2 SR-2011

CFf77(1) (Deferred Implementation on CRAY X-MP and CRAY-l computer systems) CFf77(1)

SR-2011

-m msglev Level of CFTl7 messages; msglev indicates the highest message level to be suppressed. For
example, -m2 allows Caution, Warning, and Fatal messages to appear. O<msglev<4. For
example, -mO allows all messages, and fatal errors are never suppressed. The default is 3
(only warning and error messages will be issued). The message levels are as follows:

Level Severity

Comment Comments on programming inefficiencies

Note May cause problems with other compilers

Caution Possible user error.

Warning Probable user error.

Error Fatal error (never suppressed)

-() optim Specifies optimization options. optim can be off,full, or novector; and zeroine or nozeroine.
With full (default), compiler directives for vectorization are recognized. nozeroinc, the
default, improves execution time by assuming that constant increment variables (CNs) are
not incremented by variables with the value O. zeroinc adds runtime checks for zero incre­
ments of CIV increments in DO-loops.

-s calfile Creates file calfile (if it does not already exist) to receive Cray Assembly Language (CAL)

output. This file can be manually modified to be input to the CAL assembler. DATA state­
ments are not supported. The default is no file or option s

-t trune Number of bits to be truncated. Range is O<trunc<47. -t specifies truncation for all
floating-point results; it does not truncate double-precision results, function results, or con­
stants. Truncated bits are set to O. The default is O.

-C epu,hdw
Specifies the mainframe type and optional characteristics of the hardware running the gen­
erated code. This parameters does not apply to CRAY-2 computer systems. The cpu value
assumes the minimum characteristics for that mainframe. Unspecified hardware is assumed
to be disabled. The cpu and hdw options are as follows (the default value is eray-xmp,
nocigs,noema,mova,movpop):

3 Release 2.0

CFT77(1) (Deferred Implementation on CRA Y X -MP and CRA Y -1 computer systems) CFT77(1)

FILES

Hardware Descri~tion

cray-lm CRA Y-IM computer systems

cray-l CRA Y-l computer systems

cray-la CRAY-IS computer systems
cray-lb
cray-ls

cray-xmp CRA Y X-MP computer systems
cray-xl
cray-x2
cray-x4
ema-noema Target machine does/does not have

extended memory addressing.
cigs- nocigs Target machine does/does not have

gather-scatter hardware with
compressed index hardware.

vpop-novpop Target machine does/does not have a
vector population count.

filef Name of file containing source input. This option does not have an option. The file must
be specified.

filef Fortran source file; must always be specified.

file. 0 Binary object file name. The default name derived from filef, parameter -b can be used to
specify a different name.

file.l Source listing file name. The default name derived from filef, parameter -e can be used to
specify a different name.

file.s Pseudo CAL file; default is derived from filef; parameter -e can be used to specify a
different name.

SEE ALSO

UNICOS CFf77 Reference Card, publication SQ-0138
CFf77 Reference Manual, publication SR-0018, and UNICOS CFf77

Release 2.0 4 SR-201l

CHMOD(l) CHMOD(l)

NAME

chmod - Changes mode

SYNOPSIS

chmod mode files

DESCRIPTION

SR-2011

The permissions of the named files are changed according to mode, which may be absolute or sym­
bolic. An absolute mode is an octal number constructed from the OR of the following modes:

4000 Set user ID on execution
2000 Set group ID on execution
0400 Read by owner
0200 Write by owner
0100 Execute (search in directory) by owner
0070 Read, write, execute (search) by group
0007 Read, write, execute (search) by others

A symbolic mode has the form:

[who] op permission [op permission]

Who is a combination of the letters u (for user's permissions), g (group) and 0 (other). The
letter a stands for ugo (for the rwx permissions); ugo is the default if who is omitted
(also for the rwx permissions).

Op can be + to add permission to the file's mode, - to take away permission, or = to
assign permission absolutely (the bits associated with the specified who will be reset).

Permission
is any combination of the letters r (read), w (write), x (execute), s (set owner or group
ID) and t (save text). The t permission is associated with the 1000 bit; only a super
user can alter the t permission. The t permission is not operable in UNICOS. Omit­
ting permission is only useful with = to take away all permissions.

The letters u, g, and 0 are allowable as permissions. For example,

chmod g+u file

makes group permissions the same as user pennissions.

Multiple symbolic modes separated by commas may be given. Operations are performed in the
order specified. The letter s only works with u or g; t only works with u (t is not operable in
UNICOS).

Only the owner of a file (or the super-user) may change its mode. In order to set the group ID,
the group of the file must correspond to your current group ID.

1 Release 2.0

CHMOD(l)

EXAMPLES

The first example denies write pennission to others, the second makes a file executable:

chmod o-w file

SEE ALSO

Is(l)

chmod +x file

chmod(2) in the UNICOS System Calls Reference Manual, publication SR-2012

Release 2.0 2

CHMOD(l)

SR-2011

CHOWN(l) CHOWN(l)

NAME

chown, chgrp - Changes owner or group

SYNOPSIS

chown owner file .. .

chgrp group file .. .

DESCRIPTION

FILES

Chown changes the owner of the files to owner. The owner may be either a decimal user ID or a login
name found in the password file.

Chgrp changes the group ID of the files to group. The group may be either a decimal group ID or a
group name found in the group file.

If either command is invoked by someone other than the super user, the set-user-ID and set-group-ID
bits of the file mode, 04000 and 02000, respectively, are cleared.

/etc/passwd
/etc/group

SEE ALSO

SR-2011

chown(2) in the UNICOS System Calls Reference Manual, publication SR-20l2
group(4F), passwd(4F) in the UNICOS File Formats and Special Files Reference Manual, publication
SR-2014

1 Release 2.0

CHSH(l) (CRAY X-MP and CRAY-l computer systems only) CHSH(l)

NAME

chsh - Change default login shell

SYNOPSIS

cbsb name [shell]

DESCRIPTION

The chsh command is similar to passwd(l) except that it changes the login shell field of your password
file rather than the password entry. You can specify one of the following for shell: Ibinlcsh,
Ibinloldcsb, or lusr/new/csb. If you do not specify shell, it defaults to the login shell /hin/sh. Only
the super user can specify a shell other than one of these.

Name is your login name.

An example use of this command would be

chsh bill jbEn/csh

SEE ALSO

csh(l), passwd(l)
passwd(4F) the UNICOS File Formats and Special Files Reference Manual, publication SR-2014

SR-2011 1 Release 2.0

CLEAR(l) (CRAY X-MP and CRAY-l computer systems only) CLEAR(l)

NAME

clear - Clears tenninal screen

SYNOPSIS

clear

DESCRIPTION

The clear command clears your screen. It looks in the environment for the terminal type and then in
lusr/Iib/terminro to figure out how to clear the screen.

FILES

lusr/lib/tenninfo Terminal capability data base

SR-2011 1 Release 2.0

CMP(l) CMP(l)

NAME

cmp - Compares two files

SYNOPSIS

cmp [-I] [-s] filel file2

DESCRIPTION

Filel and file2 are compared. (If filel is -t the standard input is used.) Under default options, cmp
makes no comment if the files are the same; if they differ, cmp displays the byte and line number at
which the difference occurs. If one file is an initial subsequence of the other, that fact is noted.

Exit code 0 is returned for identical files t 1 for different files, and 2 for an inaccessible or missing argu­
ment.

Options for cmp are as follows:

-I Prints the byte number (decimal) and the differing bytes (octal) in three columns for each
difference.

-s Prints nothing for differing files; return codes only.

SEE ALSO

comm(l), diff(1)

SR-2011 1 Release 2.0

eOMB(l) eOMB(l)

NAME

comb - Combines sees deltas

SYNOPSIS

comb [-0] [-s] [-psid] [-<list] files

DESCRIPTION

FILES

Comb generates a shell procedure (see sh(I» which, when run, reconstructs the given sees files. The
reconstructed files are, hopefully, smaller than the original files. The arguments may be specified in
any order, but all keyletter arguments apply to all named sees files. If a directory is named, comb
behaves as though each file in the directory were specified as a named file, except that non-Sees files
(last component of the path name does not begin with s.) and unreadable files are silently ignored. If a
name of - is given, the standard input is read; each line of the input is taken to be the name of an sees
file to be processed; non-SeeS files and unreadable files are silently ignored. If no keyletter arguments
are specified, comb will preserve only leaf deltas and the minimal number of ancestors needed to
preserve the tree.

The generated shell procedure is written on the standard output.

The keyletter arguments are as follows. Each is explained as though only one named' file is to be pro­
cessed, but the effects of any keyletter argument apply independently to each named file.

-pSID Provides the Sees IDentification string (SID) of the oldest delta to be preserved. All older
deltas are discarded in the reconstructed file.

-<list Prints a list (see get(l) for the syntax of a list) of deltas to be preserved. All other deltas are
discarded.

-0 For each get -e generated, this argument causes the reconstructed file to be accessed at the
release of the delta to be created, otherwise the reconstructed file would be accessed at the
most recent ancestor. Use of the -0 keyletter may decrease the size of the reconstructed sees
file. It may also alter the shape of the delta tree of the original file.

-s Causes comb to generate a shell procedure which, when run, will produce a report giving, for
each file: the file name, size (in blocks) after combining, original size (also in blocks), and
percentage change computed by:

100 * (original - combined) / original
It is recommended that before any sees files are actually combined, one should use this
option to determine exactly how much space is saved by the combining process.

If no keyletter arguments are specified, comb will preserve only leaf deltas and the minimal
number of ancestors needed to preserve the tree.

s.eOMB
comb?????

The name of the reconstructed sees file
Temporary file

MESSAGES

Use help(l) for explanations.

SR-2011 1 Release 2.0

eOMB(1) eOMB(l)

BUGS

Comb may rearrange the shape of the tree of deltas. It may not save any space; in fact, it is possible
for the reconstructed file to actually be larger than the original.

SEE ALSO

admin(l), delta(1), get(l), help(l), prs(l)
sccsfile(4F) in the UNIeos File Formats and Special Files Reference Manual, publication SR-2014
The Source Code Control System (SeeS) User Guide, publication SG-2017

Release 2.0 2 SR-2011

COMM(l) COMM(l)

NAME

comm - Selects or rejects lines common to two sorted files

SYNOPSIS

comm [- [123]] filel file2

DESCRIPTION

Comm reads filel andfile2, which should be ordered in Ascn collating sequence (see sort(l)), and pro­
duces a three-column output: lines only in filel; lines only in file2; and lines in both files. The file
name - means standard input is used.

Arguments I, 2, or 3 suppress printing of the corresponding column. Thus comm -12 prints only the
lines common to the two files (column 3); comm -23 prints only lines in the first file but not in the
second; comm -123 is a no-op.

SEE ALSO

cmp(1), diff(l), sort(1), uniq(l)

SR-2011 1 Release 2.0

CORD(l) (CRAY X-MP and CRAY-l computer systems only) CORD(l)

NAME

cord - Invokes the core dump program

SYNOPSIS

cord [-btvs] [-{wla} addrl,addr2]

DESCRIPTION

BUGS

SR-2011

Cord is a core dump fonnatter. The program reads the local file core and formats selected portions for
dumping to standard output. Cord dumps the exchange package by default but can dump b, t, or v
registers, the stack (s), and memory by argument selection.

The options -b, -t, and -v select the respective saved registers for dumping. The -s option selects a
stack dump. This is possible only if the stack is in tact. The memory dump can be invoked by either
the -w or -a option. The dual option is to provide compatibility both with earlier versions of cord and
/dmp(l). The parameter addrl is the starting dump word address, and the parameter addr2 is the end­
ing dump word address. The word dump mode is from program address zero, not core file address zero.

Input can only be from the file core.

The stack dump often appears to be bashed.

Cord is extremely sensitive to the format of the core file.

There is currently no option for formatting the user structure.

1 Release 2.0

CP(l) CP(l)

NAME

cp - Copies files

SYNOPSIS

cp file1 [file2 ...] target

DESCRIPTION

Filel is copied to target. Under no circumstance can file1 and target be the same (take care when
using sh(l) metachamcters). If target is a directory, then one or more files are copied to that directory.
If target is a file, its contents are destroyed.

If target is not a file, cp creates a new file that has the same mode as filel except that the sticky bit is
not set unless you are super user (the sticky bit is not operable in UNICOS); the owner and group of tar­
get are those of the user. If target is a file, copying a file into target does not change its mode, owner,
or group. The last modification time of target (and the last access time, if target did not exist) and the
last access time of filel are set to the time the copy was made. If target is a link to a file, all links
remain and the file is changed.

SEE ALSO

cpio(I), In(I), mv(I), nn(l)
chmod(2) in the UNICOS System Calls Reference Manual, publication SR-2012

SR-2011 I Release 2.0

CPIO(1) CPIO(1)

NAME

cpio - Copies file archives in and out

SYNOPSIS

cpio ~ [acBv]

cpio -i [BcdmrtuvfsSb6] [patterns

cpio -p [adlmuv] directory

DESCRIPTION

SR-2011

The cpio ~ command (copy out) reads the standard input to obtain a list of path names and copies
those files onto the standard output together with path name and status information. Output is padded
to a 4096-byte boundary.

The cpio -i command (copy in) extracts files from the standard input, which is assumed to be the pro­
duct of a previous cpio~. Only files with names that match patterns are selected. Patterns are given
in the name-generating notation of sh(l). In patterns, meta-characters ?, *, and [...] match the slash I
character. Multiple patterns may be specified and if no patterns are specified, the default for patterns
is * (that is, select all files). The extracted files are conditionally created and copied into the current
directory tree based upon the options described below. The permissions of the files will be those of the
previous cpio~. The owner and group of the files will be that of the current user unless the user is
super-user, which causes cpio to retain the owner and group of the files of the previous epio -0.

The cpio -p command (pass) reads the standard input to obtain a list of path names of files that are
conditionally created and copied into the destination directory tree directory based upon the options
described below.

The available arguments are as follows. The hyphen preceding the following options can be omitted if
the options are concatenated without spaces.

a Reset access times of input files after they have been copied.
B Block input/output at 5,120 bytes to the record (does not apply to the pass option; useful only

with data that will be stored on tape).
d Creates directories as needed.
e Writes header information in Ascn character form for portability. This option is necessary to

transfer a cpio archive between a CRA Y mainframe and a front end machine.
r Interactively rename files. If the user types a null line, the file is skipped. This option is

usable only with the -i option.
t Prints table of contents of the input. No files are created.
u Copies unconditionally (normally, an older file will not replace a newer file with the same

name).
v Verbose: causes a list of file names to be printed. When used with the t option, the table of

contents looks like the output of an Is ~ command (see Is(1».
Whenever possible, link files rather than copying them. Usable only with the -p option.

m Retains previous file modification time. This is ineffective on directories that are being copied.
r Copies in all files except those in patterns.
s Swaps bytes. Use only with the -i option.
S Swaps halfwords. Use only with the -i option.
b Swaps both bytes and half words. Use only with the -i option.
6 Processes an old (that is, UNIX System Sixth Edition format) file. Only useful with the -i

option (copy in).

1 Release 2.0

CPIO(1) CPIO(1)

EXAMPLES

The first example below copies the contents of a directory into an archive; the second duplicates a
directory hierarchy:

CAVEATS

Is I cpio -0 >/archive/file

cd olddir
find • -depth -print I cpio -pdl newdir

Only the super user can copy special files.

BUGS

Path names are restricted to 256 characters. If there are too many unique linked files, the program runs
out of memory to keep back of them and, thereafter, linking infonnation is lost.

SEE ALSO

ar(1), find(l), Is(1), tar(1)
cpio(4F) in the UNICOS File Formats and Special Files Reference Manual, publication SR-2014

Release 2.0 2 SR-2011

CPP(1) CPP(l)

NAME

cpp - Invokes the C language preprocessor

SYNOPSIS

llih/cpp [-P] [-C] [-Uname] [-D [name=dej] [-T] [-Idir] [ifile [ofile]]

DESCRIPTION

SR-2011

Cpp is the C language preprocessor, which is invoked as the first pass of any C compilation using the
ee(l) command. Thus, the output of epp is in a form acceptable as input to the next pass of the C
compiler. As the C language evolves, epp and the rest of the C compilation package will be modified
to follow these changes. Therefore, the use of epp other than in this framework is not suggested. The
preferred way to invoke epp is through the ee(l) command since the functionality of epp may someday
be moved elsewhere.

Cpp optionally accepts two file names as arguments. lfile and ofile are respectively the input and out­
put for the preprocessor. They default to standard input and standard output if you do not supply these
arguments.

The following options to epp are recognized:

-P Preprocess the input without producing the line control information used by the next pass of
the C compiler.

-C Strips, by default, the C-style comments. If the -C option is specified, all comments (except
those found on epp directive lines) are passed along.

-Uname
Removes any initial definition of name, where name is a reserved symbol that is predefined.
The predefined symbols on the CRAY-2 Computer System are CRAY, CRAY2, and unix.

-D [name=dej]
Defines name as if by a 'define directive. If no =def is given, name is defined as 1.

-T Causes preprocessor symbols to not be restricted to 8 characters. The -T option forces epp to
use only the first 8 characters for distinguishing different preprocessor names. This behavior is
the same as previous preprocessors with respect to the length of names and is included for
backward compatibility.

-Idir Change the algorithm for searching for 'include files whose names do not begin with I to look
in dir before looking in the directories on the standard list Thus, linclude files whose names
are enclosed in quotes (It ") will be searched for first in the directory of the ifile argument, then
in directories named in -I options, and last in directories on a standard list For 'include files
whose names are enclosed in <>, the directory of the ifile argument is not searched.

Two special names are understood by epp. The name __ LINE __ is defined as the current line number
(as a decimal integer) as known by epp, and __ FILE __ is defined as the current file name (as a C
string) as known by cpp. They can be used anywhere (including in macros) just as any other defined
name.

All cpp directives start with lines begun by'. The directives are:

'define name token-string
Replace subsequent instances of name with token-string.

1 Release 2.0

CPP(1)

NOTES

FILES

CPP(l)

Idefine name(arg, .•• , arg) token-string
Notice that there can be no space between name and the (. Replace subsequent instances of
name followed by a (, a list of comma-separated tokens, and a) by token-string where each
occurrence of an arg in the token-string is replaced by the corresponding token in the comma­
separated list.

lundefname
Cause the definition of name (if any) to be forgotten.

linclude ''filename''
linclude <filename>

Include at this point the contents of filename (which will then be run through cpp). When the
<filename> notation is used, filename is only searched for in the standard places. See the -I
option above for more detail.

Iline integer-constant ''filename''

lendif

Causes cpp to generate line control information for the next pass of the C compiler. Integer­
constant is the line number of the next line and filename is the file where it comes from. If
''filename'' is not given, the current file name is unchanged.

Ends a section of lines begun by a test directive (Iif, lifdef, or #ifndef). Each test directive
must have a matching #endif.

#ifdef name
The lines following will appear in the output if and only if name has been the subject of a pre­
vious Idefine without being the subject of an intervening lundef.

#ifndef name
The lines following will not appear in the output if and only if name has been the subject of a
previous #define without being the subject of an intervening lundef.

#if constant-expression
Lines following will appear in the output if and only if the constant-expression evaluates to
non-zero. All binary non-assignment C operators, the ?: operator, the unary -, !, and - opera­
tors are all legal in constant-expression. The precedence of the operators is the same as
defined by the C language. There is also a unary operator defined, which can be used in
constant-expression in these two forms: defined (name) or definedname. This allows the util­
ity of #ifdef and lifndef in a #if directive. Only these operators, integer constants, and names
which are known by cpp should be used in constant-expression. In particular, the sizeof opera­
tor is not available.

#else Reverses the notion of the test directive which matches this directive. So if lines before this
directive are ignored, the following lines will appear in the output. And vice versa.

The test directives and the possible Heise directives can be nested.

In previous versions of cpp, when new-line characters were found in argument lists for macros to be
expanded, new-lines were put out as they were found and expanded. The current version of cpp
replaces these new-lines with blanks to alleviate problems that the previous versions had when this
occurred.

/usr/include Standard directory for Hinclude files

Release 2.0 2 SR-2011

CPP(1) CPP(l)

MESSAGES

The error messages produced by cpp are intended to be self-explanatory. The line number and filename
where the error occurred are printed along with the diagnostic.

SEE ALSO

ce(l)

SR-2011 3 Release 2.0

CRONTAB(l) CRONTAB(l)

NAME

crontab - Copies files into the user crontab file

SYNOPSIS

crontab [file]
crontab -r
crontab -I

DESCRIYITON

SR-2011

Crontab copies the specified file, or standard input if no file is specified, into a directory that holds all
users' crontabs. The -r option removes a user's crontab from the crontab directory. Crontab -I lists
the crontab file for the invoking user.

A user is pennitted to use crontab if his or her name appears in the file lusrlIib/cronlcron.allow. If that
file does not exist, the file lusrlIib/cronlcron.deny is checked to detennine if the user should be denied
access to crontab. If neither file exists, only root is allowed to submit a job. The null file cron.allow
would mean no user is allowed to use cron; a null file cron.deny would mean no user is denied the use
of cron. The allow/deny files consist of one user name per line.

A crontab file consists of lines of six fields each. The fields are separated by spaces or tabs. The first
five are integer patterns that specify the following:

minute (0-59),
hour (0-23),
day of the month (1-31),
month of the year (1-12),
day of the week (0-6 with O=Sunday).

Each of these patterns may be either an asterisk (meaning all legal values), or a list of elements
separated by commas. An element is either one number, or two numbers separated by a minus sign
(meaning an inclusive range). Note that the specification of days may be made by two fields (day of
the month and day of the week). If both are specified as a list of elements, both are adhered to. For
example, 0 0 1,15 * 1 would run a command on the first and fifteenth of each month, as well as on
every Monday. To specify days by only one field, the other field should be set to * (for example, 00*
* 1 would run a command only on Mondays).

The sixth field of a line in a crontab file is a string that is executed by the shell at the specified times.
A percent character (%) in this field (unless escaped by \) is translated to a new-line character. Only
the first line (up to a % character or end of line) of the command field is executed by the shell. The
other lines are made available to the command as standard input.

The shell is invoked from your $HOME directory with an argO of sh. Users who desire to have their
.profile executed must explicitly do so in the crontab file. Cron supplies a default environment for
every shell, defining HOME, LOGNAME, SHELL(=!binlsh), and PATH(=:lbin:!usrlbin:/usr!lbin). You
will probably want to set the TZ variable.

NOTE: Users should remember to redirect the standard output and standard error of their commands! If
this is not done, any generated output or errors is mailed to the user.

1 Release 2.0

CRONTAB(l)

FILES

/usr/lib/cron

/usr/spooVcron/crontabs

/usr/lib/cron/log

/usr/lib/cron/cron.allow

/usr/lib/cron/cron.deny

SEE ALSO

sh(1)

Main cron directory

Spool area

Accounting information

List of allowed users

List of denied users

CRONTAB(l)

cron(lM) in the UNICOS Administrator Commands Reference Manual, publication SR-2022

Release 2.0 2 SR-2011

CRYPT(l) CRYYf(l)

NAME

crypt - Encodes/decodes files

SYNOPSIS

crypt [password]

DESCRIPTION

FILES

Crypt reads from the standard input and writes on the standard output. The password is a key that
selects a particular transfonnation. If no password is given, crypt demands a key from the tenninal and
turns off printing while the key is being typed in. Crypt encrypts and decrypts with the same key:

crypt key <clear >cypher
crypt key <cypher I pr

will print the clear.

Files encrypted by crypt are compatible with those treated by the editor ed in encryption mode.

Since the key is an argument to the crypt command, it is potentially visible to users executing ps(l) or
a derivative. The choice of keys and key security are the most vulnerable aspect of crypt.

/dev/tty Typed key

LIMITATIONS

If two or more files encrypted with the same key are concatenated and an attempt is made to decrypt
the result, only the contents of the first of the original files will be decrypted correctly.

SEE ALSO

ed(I), makekey(l)

SR-2011 I Release 2.0

CSH(1) CSH(l)

NAME

csh - Invokes a shell (command interpreter) with C-like syntax

SYNOPSIS

csh [-cefinstvVxX] [arg ...]

DESCRIPTION

SR-2011

The csh command is the first implementation of a command language interpreter that incorporates a his­
tory mechanism (see the History Substitutions subsection), job control facilities, and a C-like syntax.

A session with csh begins by executing commands from the file .cshrc in your home directory. If this
is a login shell, csh also executes commands from the files letcicshrc, .cshrc, and .Iogin (in that order).

The shell begins reading commands from the terminal after the '% ' prompt; it then repeatedly per­
forms the following actions:

1. Reads a line of command input

2. Breaks the line of command input into words (described under Lexical structure)

3. Puts the sequence of words in the command history list (described under History substitution)

4. Parses the command history list

5. Executes each command on the current line

When a login shell terminates, csh executes commands from the .Iogout file in the users home direc­
tory.

If argument 0 to the shell is '-', then this is a login shell. The csh command accepts the following
options:

-c Reads commands from the (single) following argument, which must be present. Any remaining
arguments are placed in the argv variable.

--e Exits if any invoked command terminates abnormally or yields a nonzero exit status

-f Starts faster, because it neither searches for nor executes commands from the .cshrc file in your
home directory.

-i Specifies an interactive shell and prompts for its top-level input, even if it appears to not be a ter-
minal. Shells are interactive without this option if their inputs and outputs are terminals.

-0 Commands are parsed, but not executed. This helps check for accuracy in syntax of shell scripts.

-s Takes command input from the standard input

-t Reads and executes a single line of input Use a '\' to escape the newline at the end of this line
and continue onto another line.

-v Sets the verbose variable, so that command input is echoed after history substitution

-x Sets the echo variable, so that commands are echoed immediately before execution

-V Sets the verbose variable even before .cshrc is executed

-X Is to -x as -V is to -v.

1 Release 2.0

CSH(l) CSH(l)

After argument processing, if arguments remain but you did not specify any of the ~, -i, -s, or -t
options, the first argument is taken as the name of a file of commands to be executed. The shell opens
this file, and saves its name for possible resubstitution by ~$O'. Since many systems use either the stan­
dard version 6 or version 7 shells whose shell scripts are not compatible with this shell, the shell exe­
cutes such a 'standard' shell if the first character of a script is not a 'I', that is, if the script does not
start with a comment. Remaining arguments initialize the variable argv.

Lexical structure
The shell splits input lines into words at blanks and tabs with the following exceptions. The characters
~ &' ~I' ~;' '<' '>' '(' ')' form separate words. If the characters' &&', 'I I', '«' or '»' are doubled,
the pairs fonn single words. You can use these parser metacharacters as part of other words or override
their special meaning by preceding them with '\'. (A newline preceded by a '\' is equivalent to a
blank.)

In addition, strings enclosed in matched pairs of quotations, "', '''', or ~"', form parts of a word; meta­
characters in these strings, including blanks and tabs, do not fonn separate words. Quotations have
semantics to be described subsequently (see the Quotations with ' and "subsection). Within pairs of , ... ,
or "tt characters, a newline preceded by a '\' gives a true newline character.

When the shell's input is not a terminal, the character 'I' introduces a comment, which continues to the
end of the input line. To override this special meaning, precede the 'I' with a '\' and use ~"', ''''', and
'''' in quotations.

Commands
A simple command is a sequence of words, the first of which specifies the command you want to exe­
cute. A simple command or a sequence of simple commands separated by ~I' characters forms a pipe­
line. The output of each command in a pipeline is connected to the input of the next You can
separate sequences of pipelines with ';'. The piped commands are then executed sequentially. You can
execute a sequence of pipelines without immediately waiting for the sequence to terminate by following
it with an ~&'.

You can put any of the above characters in '(' ')' to form a simple command (which can be a com­
ponent of a pipeline). You can also separate pipelines with 'I I' or ~&&' indicating, as in the C
language, that the second is to be executed only if the first fails or succeeds respectively. (See the
Expressions subsection.)

Built-in commands

The csh command accepts the following list of built-in commands (execution of nonbullt-in commands
is described later). If a built-in command occurs as any component of a pipeline except the last then it
is executed in a subshell.

alias
alias name
alias name wordlist

The first form prints all aliases. The second form prints the alias for name. The final form
assigns the specified wordlist as the alias of name .. wordlist is command and filename substituted.
Name can not be alias or unalias.

break
Causes execution to resume after the end of the nearest enclosing roreacb or wbile. The remain­
ing commands on the current line are executed. Multilevel breaks are thus possible by writing
them all on one line.

breaksw
Causes a break from a switcb, resuming after the endsw.

case label:
A label in a switch statement as discussed below (see the derault command).

Release 2.0 2 SR-2011

CSH(1)

SR-2011

CSH(l)

cd
cd name
chdir
chdir name

Changes the shell's working directory to directory name. If no argument is given, it changes to
the home directory of the user. If name is not found as a subdirectory of the current directory
(and does not begin with ~r, ~.!' or ' .. !'), then each component of the variable cdpatb is checked
to see if it has a subdirectory name. Finally, if all else fails but name is a shell variable whose
value begins with ~ /" then this is tried to see if it is a directory.

continue
Continues execution of the nearest enclosing while or foreach. The rest of the commands on the
current line are executed.

default:

dirs

Labels the default case in a switch statement. The default should come after all case labels.

Prints the directory stack; the top of the stack is at the left, the first directory in the stack is the
current directory.

echo wordlist
echo -n wordlist

Writes the specified words to the shell's standard output, separated by spaces, and terminated with
a newline unless the -n option is specified.

else
end
endif
endsw

See the description of the foreach, if, switch, and while statements below.

eval arg ...
(As in sh(l).) The arguments are read as input to the shell and the resulting command(s) are exe­
cuted in the context of the current shell. This is usually used to execute commands generated as
the result of command or variable substitution, since parsing occurs before these substitutions.
See tset(1) for an example of using eval.

exec command
Executes the specified command in place of the current shell.

exit
exit (expr)

Exits the shell either with the value of the status variable (first form) or with the value of the
specified expr (second form).

foreach name (wordlist)

end
Successively sets the variable name to each member of wordlist and executes the sequence of
commands between this command and the matching end. (Both foreach and end must appear
alone on separate lines.)

3 Release 2.0

CSH(1) CSH(l)

continue may be used to continue the loop prematurely a break to tenninate it prematurely.
When this command is read from the tenninal, the loop is read up once prompting with '?' before
any statements in the loop are executed. If you make a mistake typing in a loop at the terminal
you can rub it out.

glob wordlist
Like echo but no '\' escapes are recognized and words are delimited by null characters in the out­
put. Glob is useful for programs that wish to use the shell to filename expand a list of words.

goto word
The specified word is a filename and command expanded to yield a string of the fonn 'label'.
The shell rewinds its input as much as possible and searches for a line of the form 'label:' possi­
bly preceded by blanks or tabs. Execution continues after the specified line.

history
history n
history -r n
history -h n

Displays the history event list If n is given, only the n most recent events are printed. The-r
option reverses the order of printout to be most recent first instead of the oldest first The-h
option causes the history list to be printed without leading numbers. This is used to produce files
suitable to the source command using the -h option to source.

if (expr) command
If the specified expression evaluates true, then the single command with arguments is executed.
Variable substitution (described later) on command happens simultaneously with the rest of the if
command. Command must be a simple command (not a pipeline), a command list, or a
parenthesized command list. Input/output redirection occurs even if expr is false, when command
is not executed (this is a bug).

if (expr) then

else if (expr2) then

else

endif
If the specified expr is true, then the commands up to the first else are executed; else if expr2 is
true then the commands up to the second else are executed, and so on. Any number of else-if
pairs are possible; only one endif is needed. The else part is likewise optional. (fhe words else
and endif must appear at the beginning of input lines; the if must appear alone on its input line or
after an else.)

jobs
jobs -I

Lists the active jobs. The -I option lists the process ID's in addition to the normal information.

kill %job
kill -sig % job ...
killpid
kill -sig pid ...
kill -I

Release 2.0

Sends either the TERM (terminate) signal or the specified signal to the specified jobs or processes.
Signals are either given by number or by names (as given in /usr/include/signal.h, stripped of the
prefix "SIG"). The signal names are listed by "kill -I". There is no default, saying just 'kill'
does not send a signal to the current job. If the signal being sent is TERM (terminate) or HUP
(hangup), then the job or process will be sent a CONT (continue) signal as well.

4 SR-2011

CSH(1)

SR-2011

login

eSH(t)

Terminates a login shell, replacing it with an instance of lbinlIogin. This is one way to log off; it
was included for compatibility with sh(1).

logout
Terminate a login shell. Especially useful if the ignoreeor variable is set

newgrp

newgrp -

newgrp group

newgrp - group

nice

Changes a user's group identifation by replacing the current shell with an instance of
Ibin/newgrp. The first fonn changes the group ID back to the group you specified in your pass­
word file entry. The second form changes the environment to what would be expected if the user
logged in again. The third form changes the group ID to group. The last form combines the
actions of the second and third fonns. You may be prompted for a password.

nice +number
nice command
nice +number command

The first form adds 4 to the current nice value for this shell. for this shell to 4. The second form
adds number to the current nice value. The final two forms run command at priority 4 plus the
current nice value, and number plus the current nice value, respectively. The super user may
specify negative niceness by using 'nice -number ... '. The command is always executed in a
sub-shell, and the restrictions placed on commands in simple if statements apply. The system
imposes a maximum nice value of 39 and a minimum nice value of O.

nohup
nohup command

The first form can be used in shell scripts to ignore hangups for the remainder of the script. The
second form causes the specified command to run with hangups ignored. All processes detached
with '&' are effectively ignored.

notify
notify %job ...

Causes the shell to notify the user asynchronously when the status of the current or specified job
changes; normally notification is presented before a prompt This is automatic if the shell vari­
able notify is set

onintr
onintr -
onintr label

Controls the action of the shell on interrupts. The first form restores the default action of the
shell on interrupts, which is to terminate shell scripts or to return to the terminal command input
level. The second form, 'onintr -', causes all interrupts to be ignored. The final fonn causes the
shell to execute a 'goto label' when it receives an interrupt or when a child process terminates
because it was interrupted.

If the shell is running detached and interrupts are being ignored, all forms of onintr have no
meaning, and interrupts continue to be ignored by the shell and all invoked commands.

5 Release 2.0

CSH(l) CSH(l)

popd
popd +n

Pops the directory stack, returning to the new top directory. With an argument, '+n', popd dis­
cards the nth entry in the stack. The elements of the directory stack are numbered from 0 start­
ing at the top.

pushd
pushd name
pushd +n

The first form, without arguments, exchanges the top two elements of the directory stack. The
second form changes to the new directory (ala cd) and pushes the old current working directory
(as in csw) onto the directory stack. The last form with a numeric argument, pushd rotates the
nth argument of the directory stack around to be the top element and changes to it The
members of the directory stack are numbered from the top starting at O.

rehash
Recomputes the internal hash table of the contents of the directories in the path variable. This is
needed if new commands are added to directories in the path while you are logged in. This
should only be necessary if you add commands to one of your own directories, or if a systems
programmer changes the contents of one of the system directories.

repeatcountconunand

set

Executes the specified conunand, which is subject to the same restrictions as the command in the
one line if statement above, count times. I/O redirections occur exactly once, even if count=O.

set name
set name=word
set namelindex}=word
set name=(wordlist)

The first form of the command shows the value of all shell variables. Variables that have other
than a single word as value, print as a parenthesized word list The second form sets name to the
null string. The third form sets name to the single word. The fourth form sets the index'th com­
ponent of name to word; this component must already exist. The final form sets name to the list
of words in wordlist. In all cases, the value is command and filename expanded.

You can repeat these arguments to set multiple values in a single set command. Note that vari­
able expansion happens for all arguments before any setting occurs.

setenv name value

shift

Sets the value of environment variable name to be value, a single string. The most commonly
used environment variable LOONAME, TERM, and PATH are automatically imported to and
exported from the csh variables user, term, and path; there is no need to use setenv for these.

shift variable
Shifts the members of argv to the left, discarding argv[l]. It is erroneous to not have argv set or
to have less than one word as value. The second form performs the same function on the
specified variable.

source name
source -h name

Release 2.0

Reads commands from name. Source commands can be nested; if they are nested too deeply, the
shell may run out of file descriptors. An error in a source at any level terminates all nested
source commands. Input during source commands is not placed on the history list; the option
causes the commands to be placed in the history list without being executed.

6 SR-2011

CSH(1)

SR-2011

eSH(l)

switch (string)
case str1:

breaksw

default:

breaksw
endsw

time

Matches each case label successively, against the specified string, which is first command and
filename expanded. The file metacharacters '*', '1' and '[...]' may be used in the case labels,
which are variable expanded. If none of the labels match before a 'default' label is found, then
execution begins after the default label. Each case label and the default label must appear at the
beginning of a line. The command breaksw causes execution to continue after the endsw. Other­
wise control may fall through case labels and default labels as in C. If no label matches and no
default exists, execution continues after endsw.

time command
This command is only available on CRAY X-MP and CRAY-l computer systems. With no argu­
ment, the shell prints a summary of time used by this shell and its children. If the argument is
given, the shell times the specified simple command and prints a time summary as described
under the time variable. If necessary, an extra shell is created to print the time statistic when the
command completes.

umask
umask value

Displays (first form) or sets the file creation mask to the specified value (second form). The mask
is given in octal. Common values for the mask are 002 giving all access to the group and read
and execute access to others or 022 giving all access except no write access for users in the group
or others.

unalias pattern
Discards all aliases whose names match the specified pattern. Thus all aliases are removed by
'unalias *'. It is not an error for nothing to be unaliased.

unhash
Disables use of the internal hash table. The internal hash table speeds up locating executed pro­
grams.

unset pattern
Removes all variables whose names match the specified pattern. To remove all variables, use
'unset *'; this has noticeably distasteful side-effects. It is not an error for nothing to be unset.

unsetenv pattern

wait

Removes all variables whose name match the specified pattern from the environment. See also
the setenv command above and printenv(l).

Waits for all background jobs. If the shell is interactive, an interrupt can disrupt the wait

which name •••
Takes the specified name and searches for the file that would be executed had this name been
given as a command. Name is expanded if it is aliased, and searched for along your path.

7 Release 2.0

CSH(1) CSH(l)

while (expr)

end

@

While the specified expression evaluates nonzero, the commands between the while and the
matching end are evaluated. The break and continue built-in commands may be used to ter­
minate or continue the loop prematurely. (The while and end must appear alone on their input
lines.) Prompting occurs here the first time through the loop as for the roreach statement if the
input is a tenninal.

@ name=expr
@ name[index)=expr

The first fonn prints the values of all the shell variables. The second form sets the specified
name th the value of expr. If the expression contains '<', '>', '&', or 'I', then at least this part of
the expression must be put in parentheses (0). The third form assigns the value of expr to the
index'th argument of name. Both name and its index'th component must already exist

The operators '*=', '+=', etc. are available as in C. The space separating the name from the
assignment operator is optional. Spaces are, however, mandatory in separating components of
expr which would otherwise be single words.

Special postfix '++' and '--' operators increment and decrement name respectively (that is, '@
i++').

Nonbuilt-in command execution

When a command to be executed is found not to be a built-in command, the shell attempts to execute
the command using execv(2). Each word in the variable path names a directory from which the shell
will attempt to execute the command. If it is not given a ~ or a -t option, the shell hashes the names
in these directories into an internal table so that it only tries an exec in a directory if there is a possibil­
ity that the command resides there. This greatly speeds command location when a large number of
directories are present in the search path. If this mechanism has been turned off (using unhash), or if
the shell was given a -c or -t argument (and in any case, for each directory component of path that
does not begin with a '/'), the shell concatenates with the given command name to form a path name of
a file, which it then attempts to execute.

Parenthesized commands are always executed in a subshell. For example,

(cd; pwd) ; pwd

prints the home directory; leaving you where you were (printing this after the home directory), while

cd; pwd

leaves you in the home directory. Parenthesized commands are most often used to prevent chdir from
affecting the current shell.

If the file has execute permissions but is not an executable binary to the system, it is assumed to be a
file containing shell commands, and a new shell is spawned to read it

If there is an alias for shell, the words of the alias are prepended to the argument list to form the shell
command. The first word of the alias should be the full path name of the shell (for example, $shell).
This is a special, late occurring, case of alias substitution, and only allows words to be prepended to the
argument list without modification.

Release 2.0 8 SR-2011

CSH(1) CSH(l)

Jobs
The shell associates a job with each pipeline. It keeps a table of current jobs, printed by the jobs com­
mand, and assigns them small integer numbers. When a job is started asynchronously with '&', the
shell prints a line which looks like:

[1] 1234

indicating that the job which was started asynchronously, was job number 1 and had one (top-level)
process, whose process ID was 1234.

The shell redirects standard input to /dev/null for a job being run in the background, this will result in
the receipt of an end-of-file if such a job tries to read from the terminal. Background jobs are normally
allowed to produce output

There are several ways to refer to jobs in the shell. The character '%' introduces a job name. If you
wish to refer to job number I, you can name it as '% 1 '. Jobs can also be named by prefixes of the
string typed in to start them, if these prefixes are unambiguous. It is also possible to say '%?string'
which specifies a job whose text contains string J if there is only one such job.

The shell maintains a notion of the current and previous jobs. In output pertaining to jobs, the current
job is marked with a '+' and the previous job with a '-'. The abbreviation '%+' refers to the current
job and '%-' refers to the previous job. The characters '%%' is a synonym for the current job.

Status reporting
This shell learns immediately whenever a process changes state. It normally informs you whenever a
job becomes blocked so that no further progress is possible, but only just before it prints a prompt.
This is done so that it does not otherwise disturb your work. If you set the shell variable notify, the
shell notifies you immediately of changes of status in background jobs. There is also a shell command
notify which marks a single process so that its status changes are immediately reported. By default
notify marks the current process; simply say 'notify' after starting a background job to mark it

Substitutions

SR-2011

The following subsections describe the various transformations the shell performs on the input. The
shell performs these in the following order:

History substitution
Alias substitution
Variable substitution
Command substitution
Filename substitution

History substitution

History substitutions place words from previous command input as portions of new commands, making
it easy to repeat commands, repeat arguments of a previous command in the current command, or fix
spelling mistakes in the previous command with little typing and a high degree of confidence. History
substitutions begin with the character '!' and may begin anywhere in the input stream (with the
provison that they do not nest.) The '!' can be preceded by a '\' to override its special meaning; for
convenience, a '!' is passed unchanged when it is followed by a blank, tab, newline, '=' or '('. (History
substitutions also occur when an input line begins with a carat ("); which will be described later.) Any
input line that contains history substitution is echoed on the terminal before it is executed as it could
have been typed without history substitution.

Commands input from the terminal consisting of one or more words are saved in the history list. The
history substitutions reintroduce sequences of words from these saved commands into the input stream
(the size of which is controlled by the history variable). The previous command is always retained,
regardless of its value. Commands are numbered sequentially from 1.

9 Release 2.0

CSH(l)

For definiteness, consider the following output from the history command:

9 write michael
10 ex write.c
11 cat oldwrite.c
12 diff .write.c

CSH(l)

The commands are shown with their event numbers. It is not usually necessary to use event numbers,
but the current event number can be made part of the prompt by placing an '!' in the prompt string.

With the current event 13, we can refer to previous events by event number '! 11', relatively as in '!-2'
(referring to the same event), by a prefix of a command word as in old' for event 12 or '!wri' for event
9, or by a string contained in a word in the command as in '!?mic?', which also refers to event 9.
These forms, without further modification, simply reintroduce the words of the specified events, each
separated by a single blank. As a special case '!!' refers to the previous command; thus '!!' alone is
essentially a redo.

To select words from an event, we follow the event specification by a ':' and a designator for the
desired words. The words of an input line are numbered from 0, the first (usually command) word
being 0, the second word (first argument) being I, etc. The basic word designators are:

o first (command) word
n n 'th argument

first argument, that is, '1'
$ last argument
% word matched by (immediately preceding) ? s? search
x -y range of words
-y abbreviates 'O-y'
• abbreviates ,A --$', or nothing if only 1 word in event
x • abbreviates 'x --$'
x- like 'x.' but omitting word '$'

The ':' separating the event specification from the word designator can be omitted if the argument
selector begins with a 'A', '$', '.' '-' or '%'. After the optional word designator you can place a
sequence of modifiers, each preceded by a ':'. The following modifiers are defined:

h Remove a trailing pathname component, leaving the head.
r Remove a trailing '.xxx' component, leaving the root name.
e Remove all but the extension '.xxx' part.
sfl Ir I Substitute r for 1
t Remove all leading pathname components, leaving the tail.
& Repeat the previous substitution.
g Apply the change globally, prefixing the above, for example, 'g&'.
p Print the new command but do not execute it
q Quote the substituted words, preventing further substitutions.
x Like q, but break into words at blanks, tabs and newlines.

Unless preceded by a 'g' the modification is applied only to the first modifiable word. With substitu­
tions, it is an error for no word to be applicable.

The left hand side of substitutions are not regular expressions in the sense of the editors, but are strings.
Any character may be used as the delimiter in place of 'f'; a '\' quotes the delimiter into the I and r
strings. The character '&' in the right hand side is replaced by the text from the left. A '\' quotes '&'
also. A null 1 uses the previous string either from a I or from a contextual scan string sin'!? s1'. The
trailing delimiter in the substitution may be omitted if a newline follows immediately as may the trail­
ing '?' in a contextual scan.

A history reference may be given without an event specification, for example, '!$'. In this case the
reference is to the previous command unless a previous history reference occurred on the same line in

Release 2.0 10 SR-2011

CSH(l) CSH(l)

SR-2011

which case this form repeats the previous reference. For example,'!?foo?" !$' gives the first and last
arguments from the command matching '?foo?'.

A special abbreviation of a history reference occurs when the first non~blank character of an input line
is a carat C). This is equivalent to '!:s'" providing a convenient shorthand for substitutions on the text
of the previous line. For example, '''lb''lib' fixes the spelling of 'lib' in the previous command. Finally,
a history substitution may be surrounded with '{' and '}' if necessary to insulate it from the characters
which follow. For example, after 'Is -Id -paul' we might do '!{l}a' to do 'Is -Id -paula', while ella'
would look for a command starting 'la'.

Quotations with ' and ..

You can put quotations around strings ('" and "") to override all or some of the remaining substitu­
tions. Strings enclosed in ", are prevented any further interpretation. Strings enclosed in ,It, may be
expanded as described below.

In both cases the resulting text becomes (all or part of) a single word; only in one special case (see the
Command Substitition subsection) does a "" quoted string yield parts of more than one word; ",
quoted strings never do.

Alias substitution

The shell maintains a list of aliases which can be established, displayed and modified by the alias and
unalias commands. Mter a command line is scanned, it is parsed into distinct commands and the first
word of each command, left-to-right, is checked to see if it has an alias. If it does, then the text which
is the alias for that command is reread with the history mechanism available as though that command
were the previous input line. The resulting words replace the command and argument list. If no refer­
ence is made to the history list, then the argument list is left unchanged.

For example, if the alias for 'Is' is 'Is -I' the command 'Is lusr' would map to 'Is -I lusr', the argument
list here being undisturbed. Similarly if the alias for 'lookup' was 'grep r letc/passwd' then 'lookup
bill' would map to 'grep bill letc/passwd'.

If an alias is found, the word transformation of the input text is performed and the aliasing process
repeats on the reformed input line. Looping is prevented if the first word of the new text is the same as
the old by flagging it to prevent further aliasing. Other loops are detected and cause an error.

The mechanism allows aliases to introduce parser metasyntax. Thus we can 'alias print 'pr \!* I Ipr"
to make a command which prJ s its arguments to the line printer.

Variable substitution

The shell maintains a set of variables, each of which has as value a list of zero or more words. Some
of these variables are set by the shell or referred to by it. For instance, the argv variable is an image of
the shell's argument list, and words of this variable's value are referred to in special ways.

The values of variables may be displayed and changed by using the set and unset commands. Of the
variables referred to by the shell a number are toggles; the shell disregards what their value is, and is
only concerned if they are set or not For instance, the verbose variable is a toggle which causes com­
mand input to be echoed. The setting of this variable results from the -v command line option.

Other operations treat variables numerically. The @ command permits numeric calculations to be per­
formed and the result assigned to a variable. Variable values are, however, always represented as (zero
or more) strings. For the purposes of numeric operations, the null string is considered to be zero, and
the second and subsequent words of multi word values are ignored.

Mter the input line is aliased and parsed, and before each command is executed, variable substitution is
performed keyed by '$' character. This expansion can be prevented by preceding the '$' with a '\'
except within ""s where it always occurs, and within "'s where it never occurs. Strings quoted by'"
are interpreted later (see Command substitution below); '$' substitution does not occur there until later,
if at all. A '$' is passed unchanged if followed by a blank, tab, or end-of-line.

11 Release 2.0

CSH(I) CSH(I)

Input/output redirections are recognized before variable expansion, and are variable expanded
separately. Otherwise, the command name and entire argument list are expanded together. It is possi­
ble for the first (command) word to this point to generate more than one word, the first of which
becomes the command name, and the rest of which become arguments.

Unless enclosed in "" or given the ':q' modifier, the results of variable substitution may eventually be
command and filename substituted. A variable within '''', whose value consists of multiple words
expands to a (portion of) a single word, with the words of the variables value separated by blanks.
When the ':q' modifier is applied to a substitution, the variable expands to multiple words, with each
word separated by a blank and quoted to prevent later command or filename substitution.

The following metasequences introduce variable values into the shell input. Except as noted, it is an
error to reference a variable which is not set.

$name
$ {name}

Are replaced by the words of the value of variable name, each separated by a blank. Braces
insulate name from following characters which would otherwise be part of it. Shell variables
have names consisting of up to 20 letters and digits starting with a letter. The underscore charac­
ter is considered a letter.
If name is not a shell variable, but is set in the environment, then that value is returned (but:
modifiers and the other forms given below are not available in this case).

$name[selector]
$ {name[selector] }

May be used to select only some of the words from the value of name. The selector is subjected
to '$' substitution and may consist of a single number or two numbers separated by a '-'. The
first word of a variables value is numbered '1'. If the first number of a range is omitted, it
defaults to '1'. If the last member of a range is omitted, it defaults to '$#name'. The selector '*'
selects all words. It is legal for a range to be empty if the second argument is omitted or in
range.

$#name
$ {#name}

$0

Gives the number of words in the variable. This is useful for later use in a '[selector]'.

Substitutes the name of the file from which command input is being read. An error occurs if the
name is unknown.

$number
$ {number}

Equivalent to '$argv[number]'.

Equivalent to '$argv[*]' .

The modifiers ':h', ':t', ':r', ':q' and ':x' may be applied to the substitutions above as may ':gh', ':gt'
and ':gr'. If braces '{' '}' appear in the command form, then the modifiers must appear within the
braces. The current implementation allows only one ':' modifier on each '$' expansion.

The following substitutions may not be modified with ':' modifiers.

$?name
$ {?name}

Substitutes the string '1' if name is set, '0' if it is not.

$?O
Substitutes '1' if the current input filename is known, '0' if it is not.

Release 2.0 12 SR-2011

CSH(1) CSH(l)

$$
Substitute the (decimal) process number of the (parent) shell.

$<
Substitutes a line from the standard input, with no further interpretation thereafter. It can be used
to read from the keyboard in a shell script

Command and filename substitution

Command and filename substitution are applied selectively to the arguments of built-in commands.
This means that portions of expressions which are not evaluated are not subjected to these expansions.
For commands which are not internal to the shell, the command name is substituted separately from the
argument list. This occurs very late, after input-output redirection is performed, and in a child of the
main shell.

Command substitution

Command substitution is indicated by a command enclosed in ''''. The output is broken into separate
words at blanks, tabs and newlines, with null words being discarded, this text then replaces the original
string. Within ""s, only newlines force new words; blanks and tabs are preserved.

In any case, the single final newline does not force a new word. Note that this makes it possible for a
command substitution to yield only part of a word, even if the command outputs a complete line.

Filename substitution

If a word contains any of the characters '*', '1', '[' or '{' or begins with the character '-', then that
word is a candidate for filename substitution (also known as 'globbing'). This word is then regarded as
a pattern, and replaced with an alphabetically sorted list of file names which match the pattern. In a list
of words specifying filename substitution it is an error for no pattern to match an existing file name, but
it is not required for each pattern to match. Only the metacharacters '*', '?' and '[' imply pattern
matching, the characters ,-, and '(' are more "akin to abbreviations.

In matching filenames, the character'.' at the beginning of a filename or immediately following a '/" as
well as the character '/' must be matched explicitly. The character '*' matches any string of characters,
including the null string. The character '1' matches any single character. The sequence '[...]' matches
anyone of the characters enclosed. Within '[...]', a pair of characters separated by '-' matches any
character lexically between the two.

The character ,-, at the beginning of a filename is used to refer to home directories. Standing alone,
i.e. ,-, it expands to the user's home directory as reflected in the value of the variable home. When fol­
lowed by a name consisting of letters, digits and '-' characters the shell searches for a user with that
name and substitutes their home directory; for example, ,- ken' might expand to '/usr/ken' and
'-ken/chmach' to '/usr/ken/chmach'. If the character ,-, is followed by a character other than a letter
or '/' or does not appear at the beginning of a word, it is left undisturbed.

The metanotation 'a(b,c,d}e' is a shorthand for 'abe ace ade'. Left to right order is preserved, with
results of matches being sorted separately at a low level to preserve this order. This construct may be
nested. For example, '-source/sl/(oldls,ls}.c' expands to '/usr/source/sl/oldls.c /usr/source/sl/ls.c'
whether or not these files exist without any chance of error if the home directory for 'source' is
'/usr/source'. Similarly ' . ./(memo,*box)' might expand to ' . ./memo .. /box . ./mbox'. (Note that 'memo'
was not sorted with the results of matching '*box'.) As a special case '(', '}' and '{}' are passed undis­
turbed.

Input/output
The standard input and standard output of a command may be redirected with the following syntax:

<name
Open file name (which is first variable, command and filename expanded) as the standard input.

SR-2011 13 Release 2.0

CSH(1) CSH(1)

« word
Read the shell input up to a line which is identical to word. Word is not subjected to variable,
filename or command substitution, and each input line is compared to word before any substitu­
tions are done on this input line. Unless a quoting '\', "", ", or , .. , appears in word variable and
command substitution is performed on the intervening lines, allowing '\' to quote '$', '\' and ''''.
Commands which are substituted have all blanks, tabs, and newlines preserved, except for the
final newline which is dropped. The resultant text is placed in an anonymous temporary file
which is given to the command as standard input.

> name
>!name
>& name
>&! name

The file name is used as standard output. If the file does not exist it is created; if the file exists,
it is truncated, losing its previous contents.

If the variable noclobber is set, then the file must not exist or be a character special file (e.g. a
terminal or '/dev/null') or an error results. This helps prevent accidental destruction of files. In
this case the '!' forms can be used and suppress this check.

The forms involving '&' route the diagnostic output into the specified file as well as the standard
output. The name is expanded in the same way as '<' input filenames are.

» name
»& name
»! name
»&! name

Uses file name as standard output like '>' but places output at the end of the file. If the variable
nocIobber is set, then it is an error for the file not to exist unless one of the '!' forms is given.
Otherwise similar to '>'.

A command receives the environment in which the shell was invoked as modified by the input-output
parameters and the presence of the command in a pipeline. Unlike some previous shells, commands
run from a file of shell commands have no access to the text of the commands by default; rather they
receive the original standard input of the shell. The '«' mechanism should be used to present inline
data. This permits shell command scripts to function as components of pipelines and allows the shell to
block read its input. Note that the default standard input for a command run detached remains as the
original standard input of the shell. If this is a terminal and if the process attempts to read from the
terminal, then the process will block and the user will be notified

Diagnostic output may be directed through a pipe with the standard output. By using the form 'I &'
rather than just 'I'.

Expressions
A number of the built-in commands take expressions, in which the operators are similar to those of C,
with the same precedence. These expressions appear in the @, exit, if, and while commands. The fol­
lowing operators are available:

I I && I A & = != =- !- <= >= < > « » + - * I % ! - ()

Here the precedence increases to the right, '=' '!=' '=-' and '!-', '<=' '>=' '<' and '>', '«' and '»',
'+' and '-', '*' '/' and '%' being, in groups, at the same level. The '==' '!=' '=-' and '!-' operators
compare their arguments as strings; all others operate on numbers. The operators '=-' and '!-' are like
'!=' and '=' except that the right hand side is a pattern (containing, for example, '*'s, '?'s and
instances of '[...]') against which the left hand operand is matched. This reduces the need for use of
the switch statement in shell scripts when all that is really needed is pattern matching.

Strings that begin with '0' are considered octal numbers. Null or missing arguments are considered '0'.
The result of all expressions are strings, which represent decimal numbers. Note that no two

Release 2.0 14 SR-2011

CSH(1) CSH(l)

components of an expression can appear in the same word; except when adjacent to components of
expressions which are syntactically significant to the parser ('&' 'I' '<' '>' '(' C)') they are surrounded
by spaces.

Also available in expressions as primitive operands are command executions enclosed in '{' and '}' and
file enquiries of the form '-l name', where I is one of the following:

r read access
w write access
x execute access
e existence
0 ownership
z zero size
f plain file
d directory

The specified name is command and filename expanded and then tested to see if it has the specified
relationship to the real user. If the file does not exist or is inaccessible then all enquiries return false,
that is, '0'. Successful command executions return the value 'I' if true or '0' if false. If more detailed
status information is required then the command should be executed outside of an expression and the
variable status examined.

Control flow
The shell contains a number of commands that can be used to regulate the flow of control in command
files (shell scripts) and (in limited but useful ways) from terminal input These commands all operate
by forcing the shell to reread or skip in its input and, due to the implementation, restrict the placement
of some of the commands.

The foreach, switch, and while statements, as well as the if-then-else form of the if statement require
that the major keywords appear in a single simple command on an input line as shown below.

If the shell's input is searchable, the shell buffers up input whenever a loop is being read and performs
seeks in this internal buffer to accomplish the rereading implied by the loop. (To the extent that this
allows, backward goto's will succeed on non-seekable inputs.)

Predefined and environment variables

SR-2011

The following variables have special meaning to the shell. Of these, the shell always sets argv, cwd,
home, path, prompt, shell and status. Except for cwd and status, these variables are only set at ini­
tialization; therefore, if you wish to modify these, you must explicitly do so.

The shell copies the environment variable LOGNAME into the variable user, TERM into term, and
HOME into home, which are copied back into the environment whenever the normal shell variables are
reset. The environment variable PATH is likewise handled; you do not need to worry about its setting
other than in the .cshrc file as inferior csh processes will import the definition of path from the
environment, and re-export it if you change it.

argv Sets the arguments to the shell, it is from this variable that positional parameters are
substituted, for example, '$1' is replaced by '$argv[I],.

cdpath

cwd

echo

histchars

Gives a list of alternate directories searched to find subdirectories in chdir commands.

Gives the full pathname of the current directory.

Sets when the -x command line option is given. Causes each command and its argu­
ments to be echoed just. before execution. For nonbuilt-in commands all expansions
occur before echoing. Built-in commands are echoed before command and filename
substitution, since these substitutions are then done selectively.

Can be given a string value to change the characters used in history substitution. The
first character of its value is used as the history substitution character, replacing the
default character !. The second character of its value replaces the character A in quick

15 Release 2.0

CSH(1)

history

home

ignoreeof

mail

noclobber

noglob

nonomatch

notify

path

prompt

savehist

shell

Release 2.0

CSH(I)

substitutions.

Can be given a numeric value to control the size of the history list Any command
that has been referenced in this many events will not be discarded. Too large values
of history may run the shell out of memory. The last executed command is saved on
the history list.

The user's home directory, initialized from the environment. The filename expansion
of ,-, refers to this variable.

If set, the shell ignores end-of-file from input devices, which are terminals. This
prevents shells from accidentally being killed by CONTROL-D's.

The files where the shell checks for mail. This is done after each command comple­
tion, which results in a prompt, if a specified interval has elapsed. The shell says
'You have new mail.' if the file exists with an access time not greater than its modify
time.

If the first word of the value of mail is numeric it specifies a different mail checking
interval, in seconds, instead of the default, which is 10 minutes.

If multiple mail files are specified, the shell says 'New mail in name' when there is
mail in the file name.

As described in the section on Input/output, restrictions are placed on output redirec­
tion to ensure that files are not accidentally destroyed, and that '»' redirections refer
to existing files.

If set, filename expansion is inhibited. This is most useful in shell scripts that are not
dealing with filenames, or after a list of filenames has been obtained and further
expansions are not desirable.

If set, it is not an error for a filename expansion to not match any existing files;
rather the primitive pattern is returned. It is still an error, however, for the primitive
pattern to be malformed, that is, 'echo [' still gives an error.

If set, the shell notifies asynchronously of job completions. The default is to rather
present job completions just before printing a prompt.

Each word of the path variable specifies a directory in which commands are to be
sought for execution. A null word specifies the current directory. If there is no path
variable, only full path names will execute. The usual search path is '.', '/bin' and
'/usr/bin', but this may vary from system to system. For the super-user the default
search path is '/etc', '/bin' and '/usr/bin'. A shell that is given neither the -c nor the
-t option will normally hash the contents of the directories in the path variable after
reading .cshrc, and each time the path variable is reset If new commands are added
to these directories while the shell is active, it may be necessary to give the rehash
or the commands may not be found.

The string that is printed before each command is read from an interactive terminal
input If a '!' appears in the string, it will be replaced by the current event number
unless a preceding '\' is given. Default is '% " or '# ' for the super user.

Given a numeric value to control the number of entries of the history list that are
saved in - I.history when the user logs out. Any command that has been referenced in
this many events will be saved. During start up, the shell sources - I.history into the
history list enabling history to be saved across logins. Too large values of savehist
will slow down the shell during start up.

The file in which the shell resides. This is used in forlcing shells to interpret files that
have execute bits set, but that are not executable by the system. (See the description

16 SR-2011

CSH(1) CSH(l)

status

time

verbose

of Nonbuiltin Command Execution.) Initialized to the (system-dependent) home of the
shell.

The status returned by the last command. If it terminated abnormally, then 0200 is
added to the status. Built-in commands that fail return exit status '1', all other built­
in commands set status '0'.

Controls automatic timing of commands. If set, any command that takes more than
this many cpu seconds prints a line giving user, system, and real times and a utiliza­
tion percentage, which is the ratio of user plus system times to real time to be printed
when it terminates.

Set by the -v command line option, which prints the words of each command after
history substitution.

Signal handling

FILES

The shell ignores quit signals. Jobs running detached (by '&') are immune to signals generated from
the keyboard, including hangups. Other signals have the values, which the shell inherited from its
parent Onintr can control the shells handling of interrupts and terminate signals in shell scripts.
Login shells catch the terminate signal; otherwise this signal is passed on to children from the state in
the shell's parent In no case are interrupts allowed when a login shell is reading the file .Iogout.

-/.cshrc
-/.login
-/.logout
/bin/sh
/tmp/sh*
/etc/passwd

Read at beginning of execution by each shell
Read by login shell, after '.cshrc' at login
Read by login shell, at logout
Standard shell, for shell scripts not starting with a 'I'
Temporary file for '«'
Source of home directories for ,- name'

LIMITATIONS

BUGS

Words can be no longer than 1024 characters. The system limits argument lists to 5120 characters on
the CRAY X-MP and CRAY-l computer systems. The system limits argument lists to 50,000 characters
on the CRA Y -2 computer system. The number of arguments to a command involving filename expan­
sion is limited to l/6'th the number of characters allowed in an argument list. Command substitutions
can substitute no more characters than are allowed in an argument list To detect looping, the shell res­
tricts the number of alias substitutions on a single line to 20.

Alias substitution is most often used to clumsily simulate shell scripts; shell scripts should be provided
rather than aliases.

Commands within loops, prompted for by'?', are not placed in the history list. Control structure
should be parsed rather than being recognized as built-in commands. This would allow control com­
mands to be placed anywhere, to be combined with 'I', and to be used with '&' and ';' metasyntax.

It should be possible to use the ':' modifiers on the output of command substitutions. All and more
than one ':' modifier should be allowed on '$' substitutions.

SEE ALSO

sh(l),

SR-2011

access(2), execve(2), fork(2), kill(2) , pipe(2), signal(2), umask(2), wait(2) , in in the UNICOS System
Calls Reference Manual, publication SR-2012
a.out(4F) in in the UNICOS File Formats and Special Files Reference Manual, publication SR-2014

17 Release 2.0

CSIM(1) (CRAY X-MP and CRAY-l computer systems only) CSIM(l)

NAME

csim - Invokes the hardware simulator for the CRAY X-MP and CRAY-l operating systems

SYNOPSIS

csim [-i ifile] [-I /file] [-t time] [-s symfile] [-m fwi]

DESCRIPTION

The csim command invokes the Cray hardware simulator for the CRAY X-MP, CRAY-l, and 1/0 Subsys­
tems. The csim command lets you test several versions of an operating system at the same time, without
affecting the production-level operating system. You control input to the simulated system, track perfor­
mance, and observe reactions at selected points. See the Cray Simulator (CSIM) Reference Manual for
details.

The following options are available:

-i ifile Input file name. The default is standard input.

-I lfile List file name. The default is standard output

-ttime Time limit of simulation. The default is 100. You can override -t by using the T keyword
on the RUN command.

-s symfile Name of symbol file.

-mfwi CSIM message level. -m is one of the following:

f Fatal errors

w Warning errors

i Informative errors

EXAMPLE

Fll..ES

BUGS

In this example, CSIM is started with the default time limit Only fatal and warning messages are
printed from the interpreter.

csim -m fw

VMEMn Virtual memory files

The file system and system binary must be in the users current directory.

The DSU command does not default properly. You must specify the NS keyword for a new disk.

Checkpoint/reload facilities do not work.

The COS station does not work. Attempts to use it will produce unpredictable results.

Symbol tables are not implemented yet

SEE ALSO

Cray Simulator (CSIM) Reference Manual (SR-0073)

SR-2011 1 Release 2.0

CSPLIT(l) CSPLIT(l)

NAME

csplit - Separates files into sections

SYNOPSIS

csplit [-s] [-k] [-f prefix] file argl [••• argn]

DESCRIPTION

Csplit reads file and separates it into n+l sections, defined by the arguments argl. •• argn. By
default the sections are placed in xxOO •.• xxn (n may not be greater than 99). These sections get
the following pieces of file:

00: From the start of file up to (but not including) the line referenced by argl.
01: From the line referenced by argl up to the line referenced by arg2.

n+ 1: From the line referenced by argn to the end of file.

If the file option is a hyphen (-), then the standard input is used.

The options to csplit are:

-s Csplit normally prints the character counts for each file created. If the -s option is
present, csplit suppresses the printing of all character counts.

-k Csplit normally removes created files if an error occurs. If the -k option is present,
csplit leaves previously created files intact.

-r prefix If the -r option is used, the created files are named prefixOO ••• prefixn. The default
is xxOO ••• xxn.

The arguments (argl ••• argn) to csplit can be a combination of the following:

Irexp I A file is to be created for the section from the current line up to (but not including) the
line containing the regular expression rexp. The current line becomes the line contain­
ing rexp. This argument may be followed by an optional + or - some number of lines
(e.g.,/Pagel-S).

%rexp % This argument is the same as /rexp I. except that no file is created for the section.

lnno A file is to be created from the current line up to (but not including) lnno. The
current line becomes lnno.

(num) Repeat argument This argument may follow any of the above arguments. If it fol­
lows a rexp type argument, that argument is applied num more times. If it follows
lnno, the file will be split every lnno lines (num times) from that point.

Enclose all rexp type arguments that contain blanks or other characters meaningful to the Shell in the
appropriate quotes. Regular expressions may not contain embedded new-lines. Csplit does not affect
the original file; it is the users responsibility to remove it.

EXAMPLES

SR-2011

csplit -f cobol file '/procedure division(lpar5./ Iparl6./

This example creates four files, coboIOO ••• cobol03. Mter editing the "split" files, they can be
recombined as follows:

cat coboI0[0--3] > file

1 Release 2.0

CSPLIT(l) CSPLIT(I)

Note that this example overwrites the original file.

csplit -k file 100 {99}

This example would split the file at every 100 lines, up to 10,000 lines. The -k option causes the
created files to be retained if there are less than 10,000 lines; however, an error message would still be
printed.

csplit -k prog.c '%main(%' 'r}/+I' {20}

Assuming that prog.c follows the normal C coding convention of ending routines with a } at the begin­
ning of the line, this example will create a file containing each separate C routine (up to 21) in prog.c.

MESSAGES

Diagnostic messages are self-explanatory, except for the following:
arg - out of range

which means that the given argument did not reference a line between the current position and the end
of the file.

SEE ALSO

ed(1), sh(l)

Release 2.0 2 SR-2011

CUT(l) CUT(l)

NAME

cut - Cuts out selected fields of each line of a file

SYNOPSIS

cut -clist [file1 file2 ...]
cut -rlist [-d char] [~] [file1 file2 ...]

DESCRIPTION

HINTS

Use cut to cut out columns from a table or fields from each line of a file; in data base parlance, it
implements the projection of a relation. The fields as specified by list can be fixed length, that is, char­
acter positions as on a punched card (-c option) or the length can vary from line to line and can be
marked with a field delimiter character like tab (-r option). Cut can be used as a filter; if no files are
given, the standard input is used.

The meanings of the options are (either -c or -f must be specified:

list Comma-separated list of integer field numbers (in increasing order), with optional - to indicate
ranges such as, 1,4,7; 1-3,8; -5,10 (short for 1-5,10); or 3- (short for third through last field).

-clist The list following -c (no space) specifies character positions (such as, -c1-72 would pass the
first 72 characters of each line).

-rlist The list following -r is a list of fields assumed to be separated in the file by a delimiter charac­
ter (see -d); such as, -11,7 copies the first and seventh field only. Lines with no field delim­
iters will be passed through intact (useful for table subheadings), unless ~ is specified.

-dchar The character following -d is the field delimiter (-f option only). Default is tab. Space or
other characters with special meaning to the shell must be quoted.

-s Suppresses lines with no delimiter characters in case of -f option. Unless specified, lines with
no delimiters will be passed through untouched.

Use grep(l) to make horizontal "cuts" (by context) through a file, or paste(1) to put files together
column-wise (that is, horizontally). To reorder columns in a table, use cut and paste.

EXAMPLES

cut -d: -fl ,5 /etc/passwd
Maps user IDs to names; a colon (:) is used as a field separator.

name='who am i I cut -fl -d" " ..
Sets name to current login name.

MESSAGES

line too long A line can have no more than 1023 characters or fields.

bad list for clf option Missing -c or -f option or incorrectly specified list. No error occurs if a line
has fewer fields than the list calls for.

no fields The list is empty.

SEE ALSO

grep(l), join(l), paste(l)

SR-2011 1 Release 2.0

CVT(l) (CRA Y -2 computer systems only) CVT(l)

NAME

cvt - Converts files between update and scm formats

SYNOPSIS

cvt toscm
cvt toupdate

DESCRIPTION

BUGS

Cvt converts update(l) somce files to scm(l) .m fonnat, and files in scm .m format to update source
format. It reads standard input and writes to standard output. The argument tells cvt what type of
conversion to perfonn; cvt toscm converts an update file to scm format, while cvt toupdate converts
an scm file to update format.

Both update and scm tag each line with identifiers that are used to describe the locations of
modifications. Each identifier is made up of a program or modification name followed by a '.', fol­
lowed by a line number (for example, init.t, CFf77.t086, or HISTORY.3). Update source files have
line identifiers on the right hand side after column 72; the identifiers are adjusted so that the '.' always
appears in column 81. Scm.m files have line identifiers on the left hand side between columns 1 and
24; the identifiers are left justified and are generally lower case.

If the input to cvt is a file not in update or scm .m format or a file already in the desired format, cvt
may write nonsense in the output file or produce a core file with no error messages.

SEE ALSO

scm(l)

SR-2011 1 Release 2.0

CXREF(I) CXREF(I)

NAME

cxref - Generates C program cross reference

SYNOPSIS

cxref [options] files

DESCRIPTION

FILES

Cxref analyzes a collection of C files and attempts to build a cross-reference table. Cxref utilizes a spe­
cial version of cpp to include information in 'define directives in its symbol table. It produces a listing
on standard output of all symbols (auto, static, and global) in each file separately, or with the -c option,
in combination. Each symbol contains an asterisk (*) before the declaring reference.

In addition to the -D, -I and -U options, which are identical to their interpretation by cpp(l), the fol­
lowing options are interpreted by cxref:

-c Print a combined cross-reference of all input files.

-w<num>
Width option which formats output no wider than num (decimal) columns. This option will
default to 80 if num is not specified or is less than 51.

--0 file Direct output to named file.

-s Operate silently; does not print input file names.

-t Format listing for SO-column width.

/usr/lib/xcpp Special version of C-preprocessor

/usr/lib/xpass Executable file for cross-reference pass

MESSAGES

BUGS

Error messages are unusually cryptic, but usually mean that you cannot compile these files.

Cxref considers a formal argument in a 'define macro definition to be a declaration of that symbol.
For example, a program that has 'include ctype.h contains many declarations of the variable c.

SEE ALSO

cpp(l)

SR-2011 1 Release 2.0

DATE(l) DATE(l)

NAME

date - Prints and sets the date

SYNOPSIS

date [mmddhhmm[yy]] [+ format]

DESCRIPTION

If you do not specify an argument, or if the argument begins with +, the current date and time are
printed. Otherwise, the current date is set. The first mm is the month number; dd is the day number in
the month; hh is the hour number (24 hour system); the second mm is the minute number; yy is the last
2 digits of the year number and is optional. For example:

date 10080045

sets the date to Oct 8, 12:45 AM. The current year is the default if no year is mentioned. The system
operates in GMT. Date takes care of the conversion to and from local standard and daylight time.

If the argument begins with +, the output of date is under the control of the user. The format for the
output is similar to that of the first argument to print/(3S). AIl output fields are of fixed size (zero­
padded if necessary). Each field descriptor is preceded by % and will be replaced in the output by its
corresponding value. A single % is encoded by % %. AIl other characters are copied to the output
without change. The string is always terminated with a new-line character.

Format Field Descriptors:
n Insert a new-line character
t Insert a tab character
m Month of year - 01 to 12
d Day of month - 01 to 31
y Last 2 digits of year - 00 to 99
D Date as mm/dd/yy
H Hour - 00 to 23
M Minute - 00 to 59
S Second - 00 to 59
T Time as HH:MM:SS
j Day of year - 00 1 to 366
w Day of week - Sunday = 0
a Abbreviated weekday - Sun to Sat
h Abbreviated month - Jan to Dec
r Time in AM/PM notation

EXAMPLE

date '+DA1E: %m/%d/%y%nTIME: %H:%M:%S'

would have generated as output:

DA1E: 08/01n6
TIME: 14:45:05

MESSAGES

SR-2011

no permission
bad conversion
bad format character

Only the super user can change the date.
The date specified is syntactically incorrect.
A field descriptor is not recognizable.

1 Release 2.0

DATE(I) DATE(I)

WARNING

It is a bad practice to change the date while the system is running in multi-user mode.

SEE ALSO

printf(3S) in the eRA Y-2 UNICOS Libraries, Macros and Opdefs Reference Manual, publication SR-2013

Release 2.0 2 SR-2011

De(l) De(l)

NAME

dc - Desk calculator

SYNOPSIS

de [file]

DESCRIPTION

SR-2011

De is an arbitrary precision arithmetic package. Ordinarily it operates on decimal integers, but one may
specify an input base, output base, and a number of fractional digits to be maintained. (See bc(l».
The overall structure of de is a stacking (reverse Polish) calculator. If an argument is given, input is
taken from that file until its end, then from the standard input The following constructions are recog­
nized:

number
The value of the number is pushed on the stack. A number is an unbroken string of the digits 0
through 9. It may be preceded by an underscore U to input a negative number. Numbers may
contain decimal points.

+_1*%10
The top two values on the stack are added (+), subtracted (-), multiplied (*), divided (I), remain­
dered (%), or exponentiated C). The two entries are popped off the stack; the result is pushed
on the stack in their place. Any fractional part of an exponent is ignored.

sx The top of the stack is popped and stored into a register named x, where x may be any charac­
ter. If the s is capitalized, x is treated as a stack and the value is pushed on it.

Ix The value in register x is pushed on the stack. The register x is not altered. All registers start
with 0 value. If the I is capitalized, register x is treated as a stack and its top value is popped
onto the main stack.

d The top value on the stack is duplicated.

p The top value on the stack is printed. The top value remains unchanged.

P interprets the top of the stack as an AScn string, removes it, and prints it.

r All values on the stack are printed.

q exits the program. If executing a string, the recursion level is popped by 2.

Q The top value on the stack is popped and the string execution level is popped by that value.

x Treats the top element of the stack as a character string and executes it as a string of de com-
mands.

X Replaces the number on the top of the stack with its scale factor.

[...] Puts the bracketed ASCII string onto the top of the stack.

<x >x =X

The top two elements of the stack are popped and compared. Register x is evaluated if they
obey the stated relation. The exclamation point indicates negation.

v Replaces the top element on the stack by its square root. Any existing fractional part of the
argument is taken into account, but otherwise the scale factor is ignored

Interprets the rest of the line as a UNICOS command. Control returns to de when the command
terminates.

e All values on the stack are popped.

1 Release 2.0

DC(l)

I

o

The top value on the stack is popped and used as the number radix for further input.

Pushes the input base on the top of the stack.

The top value on the stack is popped and used as the number radix for further output.

Pushes the output base on the top of the stack.

DC(l)

o
k The top of the stack is popped, and that value is used as a non-negative scale factor: the

appropriate number of decimal places are printed on output, and maintained during multiplica­
tion, division, and exponentiation. The interaction of scale factor, input base, and output base
will be reasonable if all are changed together.

K Pushes the value of the scale factor onto the stack.

z The stack level is pushed onto the stack.

z Replaces the number on the top of the stack with its length.

?

; :

A line of input is taken from the input source (usually the tenninal) and executed.

Are used by be for array operations.

EXAMPLE

This example prints the first ten values of n!:

[lal +dsa*plaIO>y]sy
Osal
lyx

MESSAGES

x is unimplemented

stack empty

Out of space

Out of headers

Out of pushdown

Nesting Depth

SEE ALSO

bc(i)

Release 2.0

x is an octal number.

Not enough elements on the stack to do what was asked.

Free list is exhausted (too many digits).

Too many numbers being kept around.

Too many items on the stack.

Too many levels of nested execution.

2 SR-2011

DD(!) DD(!)

NAME

dd - Converts and copies a file to the specified output

SYNOPSIS

dd [option=value]

DESCRIPTION

SR-2011

The dd command copies the specified input file to the specified output with possible conversions. The
standard input and output are used by default. The input and output block size may be specified to take
advantage of raw physical I/O.

OPTION VALUES
Inputs file name; standard input is default
Outputs file name; standard output is default
Inputs block size -n bytes (default 4096)
Outputs block size (default 4096)

if=/ile
of=/ile
ibs=n
obs=n
bs=n

ebs=n
skip=n

Sets both input and output block size, superseding ibs and obs; also, if you do not
specify a conversion, it is particularly efficient since no in-core copy need be done
Conversion buffer size
Skips n input blocks before starting copy; th skipped blocks are actually read, so this
can take a considerable amount of time.

iseek=n Seeks n input blocks from beginning of input file before starting copy. (this option is
invalid on the CRAY X-MP and CRAY-l computer systems)

seek=n Seeks n output blocks from beginning of output file before copying
eount=n Copies only n blocks
eonv=ascii Converts EBCDIC to ASCII

ebedic ConvertsASCII to EBCDIC (does not match the COS conversion exactly)
ibm Slightly different map of Ascn to EBCDIC
lease Maps alphabetics to lower case
Dease Maps alphabetics to upper case
swab Swaps every pair of bytes
noerror Do not stop processing on an error
sync Pads every input block to ibs
• .• , ••• Several comma-separated conversions

Where sizes are specified, a number of bytes is expected. A number may end with b, s. k, or w to
specify multiplication by 4096. 4096, 1024, or 8, respectively; a pair of numbers may be separated by x
to indicate a product.

Cbs is used only if ascii or ebcdic conversion is specified. In the former case cbs characters are placed
into the conversion buffer, converted to ASCn, and trailing blanks trimmed and new-line added before
sending the line to the output. In the latter case ASCII characters are read into the conversion buffer,
converted to EBCDIC, and blanks added to make up an output block of size cbs.

After completion, dd reports the number of whole and partial input and output blocks.

Release 2.0

DD(l) DD(l)

EXAMPLE

This following command reads an EBCDIC tape blocked ten 80-byte EBCDIC card images per block into
the ASCII file x :

dd if=/dev/rmtO of=x ibs=800 cbs=80 conv=ascii,lcase

Note the use of raw magtape. The dd command is especially suited to I/O on the raw physical devices
because it permits reading and writing in arbitrary block sizes.

MESSAGES

BUGS

j+p records in (out) Numbers of full and partial records read (written)

The ASCII/EBCDIC conversion tables are taken from the 256-character standard in the CACM Nov,
1968. The ibm conversion corresponds better to certain mM print train conventions.

New-lines are inserted only on conversion to ASCII; padding is done only on conversion to EBCDIC.
These should be separate options.

SEE ALSO

cp(l)

Release 2.0 2 SR-2011

DDA(l) DDA(l)

NAME

dda - Invokes the dynamic dump analyzer

SYNOPSIS

dda [-i '[s=symfile] [dblog=logfile] [echo=echofile].']

DESCRIPTION

The dda command invokes the dynamic dump analyzer. It is a programming tool for interactively
debugging program memory dumps.

For specific information about dda directives and debugging, see the Symbolic Debugging Package
Reference Manual. The dda command accepts the following arguments if you specify the -i option
(surrounded by quotes and terminated with a period):

s=symfile The symfile argument names the file containing the symbol tables. The default is a.out.

dblog=logfile Name of the log file that receives a copy of all input to and all output from the debugger.

echo=echofile

The default is log.db. Your program cannot use Fortran I/O unit 99 because dda uses it
to write log.db.

Name of the echo file that receives a copy of all input to the debugger. The default is
echo.db. Your program cannot use Fortran I/O unit 98 because dda uses it to write
echo.db.

SEE ALSO

SR-2011

as(I), cft(I), pascal(1), segldr(1)
symdebug(3.16) in the Programmer's Library Reference Manual, publication SR-Ol13
Symbolic Debugging Package Reference Manual, publication SR-0112

I Release 2.0

DEBUG(l) DEBUG(l)

NAME

debug - Invokes the postmortem core analyzer

SYNOPSIS

debug [-i 'options list.']

DESCRIPTION

SR-2011

The debug command provides a traceback of a program, and interprets the program memory dump in
terms of source language symbols. It is normally used after a program has aborted and a core file has
been written. The debug command reads a symbol file that is created by compilers and the loader.
Refer to the command descriptions of the compiler and loader you are using to find out what options
are necessary to produce this information.

The debug command optionally processes a set of input arguments. These are specified on the -i option
as a quoted string. The string must be terminated by a dot (.). AIl arguments are optional and must be
separated with commas; the list may consist of any subset of the following:

calls=n The n argument specifies the number of routine levels to be displayed in the symbolic dump.
For each task reported, debug traces back through active subprograms the number of levels
specified by n. Routines for which no symbol table information is available are not counted
for purposes of the calls count. The default is 50.

tasks Traces back through all existing tasks; the default is to trace back only through tasks that were
running when the dump file was written. Deferred implementation

s=symfile
The symfile argument names the file containing the DEBUG symbol table. The default is a.out.
With regard to case, symfile must be entered exactly as it appears to the system.

syms=sym (:sym)
List of symbols to be dumped by debug. You can specify up to 20 symbols and there is no
limit on the length of the sy~bol name; symbols are separated by a colon (:). The default is
that all symbols are skipped. The syms argument applies to all blocks dumped.

notsyms=nsym (:nsym)
List of symbols to be skipped. You can specify up to 20 symbols and there is no limit on the
length of the symbol's name; symbols are separated by a colon (:). The default is that no sym­
bols are skipped. This argument takes precedence over the syms argument.

maxdim=dim (:dim)
Maximum number of elements from each dimension of the arrays to be dumped. The maxdim
allows you to sample the contents of arrays without creating huge amounts of output. When
the maxdim argument is specified, arrays are dumped in storage order (row. column for C and
Pascal; column. row for CFT and CFT77). No more than 7 dimensions can be specified.

blocks=blk(:blk}
List of common blocks to be included in the symbolic dump. You can specify a maximum of
20 blocks separated by colons. All symbols (qualified by syms and notsyms arguments) in the
named blocks are dumped. The default is to dump no common blocks. If you specify blocks
with any blk values, all blocks are dumped.

notblks=nblk(:nblk}
List of common blocks to be excluded from the symbolic dump. You can specify a maximum
of 20 blocks separated by colons. This argument takes precedence over the blocks argument.

1 Release 2.0

DEBUG(l) DEBUG(l)

FILES

BUGS

rptblks Repeat blocks; when this option is used, the contents of common blocks that you specified
using the blocks and notblks arguments are displayed for each subroutine in which they are
declared. The default displays common blocks only once.

mtbuf=m
Number of entries in the multitasking history trace buffer to list. If you do not specify m, the
whole buffer is displayed. If you do not specify this argument and the buffer is present, the
last 25 entries are displayed. Deferred implementation.

pages=np
Under UNICOS, debug does not format output in pages; This argument can still be used to
regulate the amount of output that debug generates. Every page is worth 45 lines of output
from debug, so page=10 limits the output to 450 lines. The default for np is 70.

SYMBOLS

DBSYM

DBBLK

core

Symbolic information

Temporary use by debug

Temporary use by debug

Program memory dump

Support for multitasked programs is not yet available.

SEE ALSO

as(l), cft(l), pascal(l), segldr(l)
symdebug(3.16) in the Programmer's Library Reference Manual, publication SR-0113.
Symbolic Debugging Package Reference Manual, publication SR-01l2.

Release 2.0 2 SR-2011

DELTA(l) DELTA(l)

NAME

delta - Makes a delta (change) to an sees file

SYNOPSIS

delta [-r SID] [-5] [-0] [-g list] [-m [mrlist]] [-y [comment]] [-p] files

DESCRIPTION

SR-2011

The delta command is used to permanently introduce into the named sees file changes that were made
to the file retrieved by get(l) (called the g-file, or generated file).

The delta command makes a delta to each named sees file. If a directory is named, delta behaves as
though each file in the directory were specified as a named file, except that non-SeeS files (last com­
ponent of the path name does not begin with s.) and unreadable files are silently ignored. If a name of
- is given, the standard input is read (see WARNINGS); each line of the standard input is taken to be the
name of an sees file to be processed.

The delta command may issue prompts on the standard output depending upon certain keyletters
specified and flags (see admin(l» that may be present in the sees file (see -m and -y keyletters
below).

Keyletter arguments apply independently to each named file.

-r SID Uniquely identifies which delta is to be made to the sees file. The use of this keyletter is
necessary only if two or more outstanding gets for editing (get -e) on the same sees file
were done by the same person (login name). The SID value specified with the -r keyletter
can be either the SID specified on the get command line or the SID to be made as reported
by the get command (see get(1». A diagnostic results if the specified SID is ambiguous,
or, if necessary and omitted on the command line.

-5 Suppresses the issue, on the standard output, of the created delta's SID, as well as the
number of lines inserted, deleted and unchanged in the sees file.

-0

-g list

Specifies retention of the edited g-file (normally removed at completion of delta process­
ing).

Specifies a list (see get(l) for the definition of list) of deltas which are to be ignored when
the file is accessed at the change level (SID) created by this delta.

-m [mrlist]
If the sees file has the v flag set (see admin(1» then a Modification Request (MR) number
must be supplied as the reason for creating the new delta.

If -m is not used and the standard input is a terminal, the prompt MRs? is issued on the
standard output before the standard input is read; if the standard input is not a terminal, no
prompt is issued. The MRs? prompt always precedes the comments? prompt (see -y
keyletter).

MRs in a list are separated by blanks and/or tab characters. An unescaped new-line charac­
ter terminates the MR list.

Note that if the v flag has a value (see admin(l», it is taken to be the name of a program
(or shell procedure), which will validate the correctness of the MR numbers. If a nonzero
exit status is returned from MR number validation program, delta terminates (it is assumed
that the MR numbers were not all valid).

1 Release 2.0

DELTA(l) DELTA(1)

FILES

-y [comment]
Arbitrary text used to describe the reason for making the delta. A null string is considered
a valid comment.

If -y is not specified and the standard input is a terminal, the prompt comments? is issued
on the standard output before the standard input is read; if the standard input is not a tenni­
nal, no prompt is issued. An unescaped new-line character terminates the comment text.

-p Causes delta to print (on the standard output) the sees file differences before and after the
delta is applied in a diJf(l) format

All files of the form ?-file are explained in the SOUTce Code Control System (SCCS) User's Guide. The
naming convention for these files is also described there.

g-file Existed before the execution of delta; removed after completion of delta.
p.file Existed before the execution of delta; may exist after completion of delta.
q/ile Created during the execution of delta; removed after completion of delta.
x/ile Created during the execution of delta; renamed to sees file after completion of delta.
z.file Created during the execution of delta; removed during the execution of delta.
d/ile Created during the execution of delta; removed after completion of delta.
lusrlbinlbdiff Program to compute differences between the "gotten" file and the g-file.

WARNINGS

Lines beginning with an SOH ASCII character (binary (01) cannot be placed in the sees file unless the
SOH is escaped. This character has special meaning to sees (see sccsfile(4F» and will cause an error.

A get of many sees files, followed by a delta of those files, should be avoided when the get generates
a large amount of data. Instead, multiple get/delta sequences should be used.

If the standard input (-) is specified on the delta command line, the -m (if necessary) and -y keyletters
must also be present. Omission of these keyletters causes an error to occur.

Comments are limited to text strings of at most 512 characters.

MESSAGES

Use help(1) for explanations.

SEE ALSO

admin(l), bdiff(I), cdc(1), get(I), help(l), prs(I), rmdel(l)
sccsfile(4F) in the UNIeos File Formats and Special Files Reference Manual, publication SR-2014
The Source Code Control System (SeeS) User Guide, publication SG-2017

Release 2.0 2 SR-2011

DF(l) DF(l)

NAME

df - Reports the number of free disk blocks

SYNOPSIS

df [-t] [-f] [-p] [file-systems]

DESCRIPTION

FILES

The df command prints out the number of free blocks and free i-nodes available for on-line file systems
by examining the counts kept in the super-blocks; you can specify file-systems either by device name
(such as Idev/dsklOsO on the CRAY-2 computer system and Idev/d4901 on the CRAY X-MP and CRAY-l
computer systems) or by mounted directory name (such as lusr). If you do not specify the file-systems
option, the free space on all of the mounted file systems is printed.

The following options are available:

-t Reports the total allocated block figures.

-f Reports only an actual count of the blocks in the free list (free i-nodes are not reported). With
this option, df reports on raw devices.

-p The -p option is only available on the CRAY X-MP and CRAY-l computer systems. It displays
partitions on the filesystem in the following format:

Part
o

Start
o

Total
100

Free
50 (50%)

Frags
10 (40%)

Device
A131

Where, part is the relative partition number, start is the starting block number, total is the total
block count of partitions, free is the free block count of partitions, frags is the count of uncon­
tiguous areas in the partition, and device is the ASCII name of the device on which the partition
resides.

/dev/dsk/* Disk devices on the CRAY-2 computer system

/dev/d* Disk devices on the CRAY X-MP and CRAY-l computer systems

/etc/mnttab List of currently mounted file systems

SEE ALSO

fs(4F), mnttab(4F) in the UNICOS File Formats and Special Files Reference Manual, publication SR-2014

SR-2011 1 Release 2.0

DIFF(l) DIFF(l)

NAME

diff - Compares files for differences

SYNOPSIS

difT [-efbh] filel file2

DESCRIPTION

FILES

The diff command indicates what lines must be changed in two files to bring them into agreement. If
filel (file2) is -, the standard input is used. If filel (file2) is a directory, then a file in that directory
with the name file2 (filel) is used. The normal output contains lines of these forms:

nl a n3,n4
nl,n2 d n3
nl,n2 c n3 ,n4

These lines resemble ed commands to convert filel into file2. The numbers after the letters pertain to
file2. In fact, by exchanging a for d and reading backward one may ascertain equally how to convert
file2 into filel. As in ed, identical pairs where nl = n2 or n3 = n4 are abbreviated as a single number.

Following each of these lines is a list of all lines that are affected in the first file flagged by <, then all
the lines that are affected in the second file flagged by>.

Options for dijJ follow.

-b Causes trailing blanks (spaces and tabs) to be ignored and other strings of blanks to compare
equal.

-e Produces a script of a, c, and d commands for the editor ed, which will recreate file2 from filel .

-f Produces a script similar to that of option -e but in the opposite order. This script is not useful
with ed.

-h Does a fast, half-hearted job. It works only when changed stretches are short and well separated,
but does work on files of unlimited length. Options -e and -r are not available with -h.

In connection with -e, the following shell program may help maintain multiple versions of a file. Only
an ancestral file ($1) and a chain of version-to-version ed scripts ($2,$3, ...) made by diff need be on
hand. A "latest version" appears on the standard output.

(shift; cat $*; echo 'l,$p') I ed - $1

Except in rare circumstances, diff finds a smallest sufficient set of file differences.

/tmp/d?????
/usr/lib/diffb For -b option

MESSAGES

SR-2011

Exit status is 0 for no differences, 1 for some differences, 2 for trouble.

Missing newline at end of file x
The last line of file x did not have a newline character. If the lines are different, they are flagged
and output; however the output will indicate they are the same.

1 Release 2.0

DIFF(l) DIFF(l)

BUGS

Editing scripts produced under the -e or -f option are naive about creating lines consisting of a single
period (.).

SEE ALSO

bdiff(I), cmp(I), comm(l), diff3(l) (CRAY-2 only), ed(I), scm(l)
The Source Code Control System (SCCS) User Guide, publication SG-2017

Release 2.0 2 SR-2011

DIFF3(l) (CRA Y -2 computer systems only) DIFF3(l)

NAME

diff3 - Makes a 3-way differential file comparison

SYNOPSIS

diff3 [-ex3] filel file2 file3

DESCRIPTION

FILES

BUGS

The diff3 command compares three versions of a file, and publishes disagreeing ranges of text flagged
with these codes:

==1

==2

==3

All three files differ

filel is different

file2 is different

file3 is different

The type of change suffered in converting a given range of a given file to some other is indicated in
one of these ways:

j: nl a Text is to be appended after line number nl in filej, wherej = 1, 2, or 3.

j:nl,n2c Text is to be changed in the range line nl to line n2. If nl = n 2, the range
may be abbreviated to nl .

The original contents of the range follow immediately after a c indication. When the contents of two
files are identical, the contents of the lower-numbered file are suppressed.

Under the -e option, diff3 publishes a script for the editor ed that will incorporate into filel all changes
between file2 and file3; that is, the changes that nonnally would be flagged == and ===3. Option
-x (-3) produces a script to incorporate only changes flagged == (==3). The following command
will apply the resulting script to filel :

(cat script; echo '1,$p') I ed - filel

/tmp/d3*
/usr/lib/diff3prog

Text lines that consist of a single • will defeat the -e option.

There is an arbitrary limit of 200 on the total number of disagreeing ranges of text.

SEE ALSO

diff(l)

SR-2011 1 Release 2.0

DIRCMP(l) DIRCMP(l)

NAME

dircmp - Compares directories

SYNOPSIS

dircmp [-d] [-s] [-wn] dir 1 dir2

DESCRIPTION

The dircmp command examines dir 1 and dir2 and generates various tabulated information about the
contents of the directories. Listings of files that are unique to each directory are generated for all the
options. If you do not specify an option. a list is output indicating whether the files common to both
directories have the same contents. Options are:

-d Compare the contents of files with the same name in both directories and output a list telling
what must be changed in the two files to bring them into agreement. The list format is
described in diff(l).

-s Suppress messages about identical files.

-w n Change the width of the output line to n characters. The default width is 72.

SEE ALSO

cmp(l). diff(1)

SR-2011 1 Release 2.0

DISPOSE(l) DISPOSE(l)

NAME

dispose - Disposes a file from the Cray computer system to a front-end station

SYNOPSIS

dispose loealpath [-nSFN] [-iTERMID] [-mMF] [-dDe] [-rFM] [-t'TEXT']
[-sSPECIAL] [-uUSER]

DESCRIPTION

SR-2011

The dispose command creates a request file for USCP (UNICOS Station Call Processor). If any slot
information is associated with the requesting user, it is also copied into the request file. USCP uses sta­
tion protocol to negotiate the file transfer from the Cray computer system to the designated station
(specified by the -m option). The dispose command then waits for the transfer to complete.

loealpath The path name (either full or relative to the current working directory) of the file to be
disposed. This must be a path name from which the requesting user has pennission to
read.

-nSFN The name to be associated with the file when it is received by the front end. Only 15
characters are significant. If you do not specify SFN, the field is filled with the filename
from the loealpath.

-iTERMID The terminal ID to be associated with the file on the specified front end. If you do not
specify TERMID, the default is the stored terminal ID associated with the requesting user
on the front -end station from which the user originated.

-mMF A two character front-end ill for the station that is to handle the file transfer. If you do
not specify the mainframe, then the stored ill of the station from which the requesting
user originated is used.

-rFM A two character file format code. Valid formats are:

-dDC

CB Character blocked; the default

CO Character deblocked

DB Binary blocked

DO Binary deblocked

TR Transparent

UO UNICOS Data
For further descriptions of the valid fonnat codes, see the Front End Protocol Internal
Reference Manual, CRI publication SM-0042.

A two character disposition code. Valid codes are:

IN File is executed as a job.

ST File is saved.

MT File is disposed to a magnetic tape.

PR File is disposed to a printer.

PU File is disposed to a card punch.

PT File is disposed to a plotter.

IT File is flagged as intertask data and handled by the receiving station.

1 Release 2.0

DISPOSE (1) DISPOSE (1)

-t'TEXT Text to be interpreted by the specified station for dispose processing. The field can con­
tain label information, routing, etc., possibly in the fonn of control statements for the sta­
tion. Text field infonnation should be enclosed by single quotes ('). If you do not
specify this option, the dispose text field is filled with binary O's.

-sSPECIAL The station-defined special fonns option. If you do not specify this option, the special
fonns field is filled with binary O's.

-uUSER The user ID associated with the requested file on the specified front end. If you do not
specify USER, the field is left blank.

LIMITATIONS

If you are not accessing the Cray computer system through USCP, defaults for TERMID and MF do not
exist. The request is queued without regard to whether the mainframe ID you specified belongs to a
currently active station. If the associated station is not active or does not have streams assigned (that is,
interactive only station), then the user process wait indefinitely.

SEE ALSO

fetch(l), dispose(l)
Front End Protocol Internal Reference Manual, publication SM-0042

Release 2.0 2 SR-2011

DRD(l) DRD(l)

NAME

drd - Invokes the dynamic runtime debugger

SYNOPSIS

drd [-i '[s=symJile], [dblog=logfile], [echo=echofile], [maxbp=n],
[prog="command"].']

DESCRIPTION

The drd command invokes the dynamic runtime debugger to use as a programming tool for debugging
executing programs. You can use the drd command in either interactive or batch mode. The drd com­
mand accepts the following options:

s=symfile Symfile names the file containing the symbol table. The default is a.out. With
regard to case, symJile must be entered in exactly as it appears to the system.

dblog=logfile

echo=ec hofile

maxbp=n

prog=command

10 gfile names the debug log file; the default is log.db. Your program cannot use
Fortran 110 unit 99 because drd uses it to write the debug log file.

echofile names the echo file; the default is echo.db. Your program cannot use For­
tran I/O unit 98 because drd uses it to write the echo file.

n names the maximum breakpoint limit; by default, there is no breakpoint limit.

command invokes the user program, including all options. The default is a.out.
Enclose all input entered in the command portion in double quotes (").

SEE ALSO

SR-2011

as(I), cft(1), pascal(I), segldr(l)
symdebug(3.16) in the Programmer's Library Reference Manual, publication SR-0113
Symbolic Debugging Package Reference Manual, publication SR-0112

1 Release 2.0

DU(l) DU(I)

NAME

du - Summarizes disk usage

SYNOPSIS

du [-ars] [names]

DESCRIPTION

BUGS

SR-2011

The Du command gives the number of blocks contained in all files and (recursively) directories within
each directory and file specified by the names argument The block count includes the indirect blocks
of the file. If names is not supplied, the current directory is used.

The du command accepts the following arguments:

-s Causes only the grand total (for each of the specified names) to be given

-a Causes an entry to be generated for each file. Absence of either this argument or -s causes an
entry to be generated for each directory only.

-r Causes du to generate messages about directories that cannot be read, files that cannot be
opened, and the like. The du command is normally silent about such things.

A file with two or more links is only counted once.

If you do not use the -a option, nondirectories given as arguments are not listed.
If there are too many distinct linked files, du counts the excess files more than once.
Files with holes in them will have an incorrect block count

1 Release 2.0

ECHO(l) ECHO(l)

NAME

echo - Echos arguments

SYNOPSIS

echo [arg]

DESCRIPTION

NOTES

The echo command writes its arguments separated by blanks and terminated by a new-line on the stan­
dard output. It also understands C-like escape conventions; beware of conflicts with the shell's use of\:

\b Backspace
\c Print line without new-line
\f Form-feed
\n New-line
\r Carriage return
\t Tab
\v Vertical tab
\\ Backslash
\n The 8-bit character whose ASCII code is the 1-, 2- or 3-digit octal number n, which

must start with a O.

The echo command is useful for producing diagnostics in command files and for sending known data
into a pipe.

csh(l) has a built-in echo with slightly different characteristics. See csh(1)

SEE ALSO

sh(l)

SR-2011 1 Release 2.0

ED(I) ED(I)

NAME

ed, red - Invokes the ed text editor

SYNOPSIS

ed [-] [-p string] [-d dir] [-x] [file]

red [-] [-p string] [-d dir] [-x] [file]

DESCRIPTION

Ed is the standard text editor. If the file argument is given, ed simulates an e command (described
later) on the named file; that is to say, the file is read into ed's buffer so that it can be edited. The
optional - (hyphen) suppresses the printing of character counts bye, r, and w commands, of diagnos­
tics from e and q commands, and of the ! prompt after a !shell command. The -p option allows the
user to specify a prompt string. If -x is present, an x command is simulated first to handle an
encrypted file. The -d option allows temporary files to be created in file systems with large free space.
Ed operates on a copy of the file it is editing; changes made to the copy have no effect on the file until
a w (write) command is given. A copy of the text being edited resides in a temporary file called the
buffer. There is only one buffer.

Red is a restricted version of ed. It will only allow editing of files in the current directory. It prohibits
executing shell commands via !shell command. Attempts to bypass these restrictions result in an error
message (restricted shelf).

Commands to ed have a simple and regular structure: zero, one, or two addresses followed by a
single-character command, possibly followed by parameters to that command. These addresses specify
one or more lines in the buffer. Every command that requires addresses has default addresses, so that
the addresses can very often be omitted.

In general, only one command may appear on a line. Certain commands allow the input of text This
text is placed in the appropriate place in the buffer. While ed is accepting text, it is said to be in input
mode. In this mode, no commands are recognized; all input is merely collected. Input mode is left by
typing a period (.) alone at the beginning of a line.

Regular Expressions

SR-2011

Ed supports a limited form of regular expression notation; regular expressions are used in addresses to
specify lines and in some commands (such as s) to specify portions of a line that are to be substituted.
A regular expression (RE) specifies a set of character strings. A member of this set of strings is said to
be matched by the RE. The REs allowed by ed are constructed as follows:

The following one-character REs match a single character:

1.1 An ordinary character (not one of those discussed in 1.2) is a one-character RE that matches
itself.

1.2 A backslash (\) followed by any special character is a one-character RE that matches the special
character itself. The special characters are:

a. ., *, [, and \ (period, asterisk, left square bracket, and backslash, respectively), which are
always special, except when they appear within square brackets ([]; see 1.4).

b. A (caret or circumflex), which is special at the beginning of an entire RE (see 3.1 and 3.2),
or when it immediately follows the left of a pair of square brackets ([]) (see 1.4).

1 Release 2.0

ED(l) ED(l)

c. $ (currency symbol), which is special at the end of an entire RE (see 3.2).

d The character used to bound (that is, delimit) an entire RE, which is special for that RE (for
example, see how slash (I) is used in the g command, described later.)

1.3 A period (.) is a one-character RE that matches any character except new-line.

1.4 A non-empty string of characters enclosed in square brackets ([]) is a one-character RE that
matches anyone character in that string. IT, however, the first character of the string is a
circumflex r) the one-character RE matches any character except new-line and the remaining
characters in the string. The'" has this special meaning only if it occurs first in the string. The
minus (-) may be used to indicate a range of consecutive ASCII characters; for example, [0-9] is
equivalent to [0123456789]. The - loses this special meaning if it occurs first (after an initial A,
if any) or last in the string. The right square bracket (]) does not terminate such a string when it
is the first character within it (after an initial A, if any); for instance, []a-I] matches either a right
square bracket (]) or one of the letters a through f inclusive. The four characters listed in 1.2.a
above stand for themselves within such a string of characters.

The following rules may be used to construct REs from one-character REs:

2.1 A one-character RE is a RE that matches whatever the one-character RE matches.

2.2 A one-character RE followed by an asterisk (.) is a RE that matches zero or more occurrences of
the one-character RE. IT there is any choice, the longest leftmost string that permits a match is
chosen.

2.3 A one-character RE followed by \(m\), \(m,\), or \("m,n\) is a RE that matches a range of
occurrences of the one-character RE. The values of m and n must be non-negative integers less
than 256; \(m\) matches exactly m occurrences; \{m,\} matches at least m occurrences;
\(m,n\) matches any number of occurrences between m and n inclusive. Whenever a choice
exists, the RE matches as many occurrences as possible.

2.4 The concatenation of REs is a RE that matches the concatenation of the strings matched by each
component of the RE.

2.5 A RE enclosed between the character sequences 'C and \) is a RE that matches whatever the una­
dorned RE matches.

2.6 The expression \n matches the same string of characters as was matched by an expression
enclosed between 'C and \) earlier in the same RE. Here n is a digit; the sub-expression
specified is that beginning with the n -th occurrence of 'C counting from the left. For example,
the expression A'C.*\)\1$ matches a line consisting of two repeated appearances of the same
string.

Finally, an entire RE may be constrained to match only an initial segment or final segment of a line (or
both).

3.1 A circumflex r) at the beginning of an entire RE constrains that RE to match an initial segment
of a line.

3.2 A currency symbol ($) at the end of an entire RE constrains that RE to match a final segment of
a line.

The construction ... entire RE $ constrains the entire RE to match the entire line.

The null RE (such as, II) is equivalent to the last RE encountered.

Release 2.0 2 SR-2011

ED(I) ED(I)

Addressing

SR-2011

To understand addressing in ed, it is necessary to know that at any time there is a current line. The
current line is the last line affected by a command; the exact effect on the current line is discussed
under the description of each command. Addresses are constructed as follows:

I. The character. addresses the current line.

2. The character $ addresses the last line of the buffer.

3. A decimal number n addresses the n-th line of the buffer.

4. 'x addresses the line marked with the mark name character x, which must be a lower-case letter.
Lines are marked with the k command described below.

5. A RE enclosed by slashes (I) addresses the first line found by searching forward from the line
following the current line toward the end of the buffer and stopping at the first line containing a
string matching the RE. If necessary, the search wraps around to the beginning of the buffer and
continues up to and including the current line, so that the entire buffer is searched. See also the
last paragraph before FILES below.

6. A RE enclosed in question marks (1) addresses the first line found by searching backward from
the line preceding the current line toward the beginning of the buffer and stopping at the first line
containing a string matching the RE. If necessary, the search wraps around to the end of the
buffer and continues up to and including the current line. See also the last paragraph before
FILES below.

7. An address followed by a plus sign (+) or a minus sign (-) followed by a decimal number
specifies that address plus (or minus) the indicated number of lines. The plus sign may be omit­
ted.

8. If an address begins with + or -, the addition or subtraction is taken with respect to the current
line; such as, -5 is understood to mean .-5.

9. If an address ends with + or -, then 1 is added to or subtracted from the address, respectively.
As a consequence of this rule and of rule 8 immediately above, the address - refers to the line
preceding the current line. (To maintain compatibility with earlier versions of the editor, the
character A in addresses is entirely equivalent to -.) Moreover, trailing + and - characters have a
cumulative effect, so - refers to the current line less 2.

10. For convenience, a comma (,) stands for the address pair 1,$, while a semicolon (;) stands for
the pair .,$.

Commands may require zero, one, or two addresses. Commands that require no addresses regard the
presence of an address as an error. Commands that accept one or two addresses assume default
addresses when an insufficient number of addresses is given; if more addresses are given than such a
command requires, the last ones are used.

Typically, addresses are separated from each other by a comma (,). They may also be separated by a
semicolon (;). In the latter case, the current line (.) is set to the first address, and only then is the
second address calculated. This feature can be used to determine the starting line for forward and back­
ward searches (see rules 5 and 6 above). The second address of any two-address sequence must
correspond to a line that follows, in the buffer, the line corresponding to the first address.

In the following list of ed commands, the default addresses are shown in parentheses. The parentheses
are not part of the address; they show that the given addresses are the default.

It is generally illegal for more than one command to appear on a line. However, any command (except
e, f, r, or w) may be suffixed by I, n, or p, in which case the current line is either list~ numbered or
printed, respectively, as discussed below under the I, n, and p commands.

3 Release 2.0

ED{l)

(.)a
<text>

(.)e
<text>

(.,.)d

e file

Efile

r file

ED{l)

The append command reads the given text and appends it after the addressed line; • is left at
the last inserted line, or, if there were none, at the addressed line. Address 0 is legal for this
command: it causes the "appended" text to be placed at the beginning of the buffer. The
maximum number of characters that may be entered from a terminal is 256 per line (including
the new-line character).

The change command deletes the addressed lines, then accepts input text that replaces these
lines; • is left at the last line input, or, if there were none, at the first line that was not deleted.

The delete command deletes the addressed lines from the buffer. The line after the last line
deleted becomes the current line; if the lines deleted were originally at the end of the buffer,
the new last line becomes the current line.

The edit command causes the entire contents of the buffer to be deleted, and then the named
file to be read in; • is set to the last line of the buffer. If no file name is given, the currently­
remembered file name, if any, is used (see the f command). The number of characters read is
displayed; file is remembered for possible use as a default file name in subsequent e, r, and w
commands. If file is replaced by!, the rest of the line is taken to be a shell (sh(l» command
whose output is to be read. Such a shell command is not remembered as the current file name.
See MESSAGES.

The Edit command is like e, except that the editor does not check to see if any changes have
been made to the buffer since the last w command.

If file is given, the file-name command changes the currently-remembered file name to file;
otherwise, it prints the currently-remembered file name.

(1 , $)g1RElcommand list
In the global command, the first step is to mark every line that matches the given RE. Then,
for every such line, the given command list is executed with • initially set to that line. A sin­
gle command or the first of a list of commands appears on the same line as the global com­
mand. All lines of a multi-line list except the last line must be ended with a \; a, i, and c
commands and associated input are permitted The. terminating input mode may be omitted if
it would be the last line of the command list. An empty command list is equivalent to the p
command. The g, G, v, and V commands are not permitted in the command list. See BUGS
and the last paragraph before FILES below.

(l,$)GIREI
In the interactive Global command, the first step is to mark every line that matches the given
RE. Then, for every such line, that line is printed, . is changed to that line, and anyone com­
mand (other than one of the a. c, i, g, G. v. and V commands) may be input and is executed.
Mter the execution of that command, the next marked line is printed, and so on; a new-line
acts as a null command; an & causes the re-execution of the most recent command executed
within the current invocation of G. Note that the commands input as part of the execution of
the G command may address and affect any lines in the buffer. The G command can be ter­
minated by an interrupt signal (ASCII DEL or BREAK).

Release 2.0 4 SR-2011

ED(l)

SR-2011

h

H

(.)i
<text>

ED(l)

The help command gives a short error message that explains the reason for the most recent· ?
diagnostic message.

The Help command causes ed to enter a mode in which error messages are printed for all sub­
sequent ? diagnostics. It will also explain the previous ? if there was one. The H command
alternately turns this mode on and off; it is initially off.

The insert command inserts the given text before the addressed line; • is left at the last inserted
line, or, if there was none, at the addressed line. This command differs from the a command
only in the placement of the input text Address 0 is not legal for this command. The max­
imum number of characters that may be entered from a terminal is 256 per line (including the
new-line character).

(., .+I)j

(.)kx

(• , .)1

The join command joins contiguous lines by removing the appropriate new-line characters. If
exactly one address is given, this command does nothing.

The mark command marks the addressed line with name x, which must be a lower-case letter.
The address 'x then addresses this line; • is unchanged.

The list command prints the addressed lines in an unambiguous way: a few non-printing char­
acters (such as tab and backspace) are represented by (hopefully) mnemonic overstrikes. All
other non-printing characters are printed in octal, and long lines are folded. An I command
may be appended to any other command other than e, I, r, or w.

(., .)ma

(.,.)n

(.,.)p

p

q

Q

The move command repositions the addressed lines after the line addressed by a. Address 0 is
legal for a and causes the addressed lines to be moved to the beginning of the file. It is an
error if address a falls within the range of moved lines; • is left at the last line moved.

The n umber command prints the addressed lines, preceding each line by its line number and a
tab character; • is left at the last line printed. The n command may be appended to any other
command other than e, I, r, or w.

The print command prints the addressed lines; • is left at the last line printed. The p command
may be appended to any other command other than e, I, r, or w. For example, dp deletes the
current line and prints the new current line.

The editor will prompt with a • for all subsequent commands. The P command alternately
turns this mode on and off; it is initially off.

The quit command causes ed to exit No automatic write of a file is done (but see MESSAGES

below).

The editor exits without checking if changes have been made in the buffer since the last w
command.

5 Release 2.0

ED(I) ED(I)

($)r file
The read command reads in the given file after the addressed line. If no file name is given,
the currently-remembered file name, if any, is used (see e and f commands). The currently­
remembered file name is not changed unless file is the very first file name mentioned since ed
was invoked. Address 0 is legal for r and causes the file to be read at the beginning of the
buffer. If the read is successful, the number of characters read is displayed; • is set to the last
line read in. If file is replaced by !, the rest of the line is taken to be a shell command whose
output is to be read. (Refer to !shell command below.) For example, $r !Is appends current
directory to the end of the file being edited. Such a shell command is not remembered as the
current file name.

(.,.)slRElreplacementl or
(• , •)slRElreplacement Ig or
(., .)slRElreplacementln n = 1-512

(.,.)ta

u

The substitute command searches each addressed line for an occurrence of the specified RE. In
each line in which a match is found, all (non-overlapped) matched strings are replaced by the
replacement if the global replacement indicator g appears after the command. If the global
indicator does not appear, only the first occurrence of the matched string is replaced. If a
number n appears after the command, only the n-th occurrence of the matched string on each
addressed line is replaced. It is an error for the substitution to fail on all addressed lines. Any
character other than space or new-line may be used instead of I to delimit the RE and the
replacement; • is left at the last line on which a substitution occurred. See also the last para­
graph before FILES below.

An ampersand (&) appearing in the replacement is replaced by the string matching the RE on
the current line. The special meaning of & in this context may be suppressed by preceding it
by \. As a more general feature, the characters \n, where n is a digit, are replaced by the text
matched by the n-th regular subexpression of the specified RE enclosed between \(and \).
When nested parenthesized subexpressions are present, n is determined by counting
occurrences of \(starting from the left. When the character % is the only character in the
replacement, the replacement used in the most recent substitute command is used as the
replacement in the current substitute command. The % loses its special meaning when it is in
a replacement string of more than one character or is preceded by a \.

A line may be split by substituting a new-line character into it The new-line in the replace­
ment must be escaped by preceding it by \. Such substitution cannot be done as part of a g or
v command list

This command acts just like the m command, except that a copy of the addressed lines is
placed after address a (which may be 0); • is left at the last line of the copy.

The undo command nullifies the effect of the most recent command that modified anything in
the buffer, namely the most recent a, c, d, g, i,j, m, r, s, t, v, G, or V command.

(1, $)vlRElcommand list
This command is the same as the global command g except that the command list is executed
with • initially set to every line that does not match the RE.

(1,$)VIREI
This command is the same as the interactive global command G except that the lines that are
marked during the first step are those that do not match the RE.

(1, $)w file
The write command writes the addressed lines into the named file. If the file does not exist, it
is created with mode 666 (readable and writable by everyone), unless your umask setting (see

Release 2.0 6 SR-2011

ED(l)

x

($)=

ED(l)

sh(l) and umask(I» dictates otherwise. The currently-remembered file name is not changed
unless file is the very first file name mentioned since ed was invoked. If no file name is given,
the currently-remembered file name, if any, is used (see e and! commands); • is unchanged. If
the command is successful, the number of characters written is displayed. If file is replaced by
!, the rest of the line is taken to be a shell command whose standard input is the addressed
lines. (Refer to !shell command below.) Such a shell command is not remembered as the
current file name.

A key string is demanded from the standard input. Subsequent e, r, and w commands will
encrypt and decrypt the text with this key by the algorithm of crypt(1). An explicitly empty
key turns off encryption.

The line number of the addressed line is typed; • is unchanged by this command.

!shell command
The remainder of the line after the ! is sent to the UNICOS system shell (sh(I» by default or to
the value of the SHELL environment variable, if set and exported, to be interpreted as a com­
mand. Within the text of that command, the unescaped character % is replaced with the
remembered file name; if a ! appears as the first character of the shell command, it is replaced
with the text of the previous shell command. Thus,!! will repeat the last shell command. If
any expansion is perfonned, the expanded line is echoed; • is unchanged.

(.+ 1)<new-line>
An address alone on a line causes the addressed line to be printed. A new-line alone is
equivalent to .+lp; it is useful for stepping forward through the buffer.

If an interrupt signal (ASCn DEL or BREAK) is sent, ed prints a ? and returns to its command level.

LIMITATIONS

FILES

SR-2011

Size limitations: Large files generate larger editor temporary files and cost many processor cycles on
entry to ed. The buffer is limited to approximately 17 gigabytes (on the CRAY-2 Computer System).
Reasonable editing sessions should be kept under 10 megabytes. Lines are limited to 4096 characters.

When reading a file, ed discards AScn NUL characters and all characters after the last new-line. Files
(such as a.out) that contain characters not in the ASCII set (bit 8 on) cannot be edited by ed.

If the closing delimiter of a RE or of a replacement string (such as, I) would be the last character before
a new-line, that delimiter may be omitted, in which case the addressed line is displayed. The following
pairs of commands are equivalent:

/tmp/e#
ed.hup

s/sl/s2 s/sl/s2/p
gls1 glsl/p
?sl ?sl?

Temporary; # is the process number.
Work is saved here if the editor is killed with signal I; see signal(2).

7 Release 2.0

ED(I) ED(I)

MESSAGES

BUGS

? Command errors.
?file An inaccessible file.

If changes have been made in the buffer since the last w command that wrote the entire buffer, ed
warns the user if an attempt is made to destroyed's buffer via the e or q commands. It prints? and
allows one to continue editing. A second e or q command at this point will take effect. The­
command-line option inhibits this feature.

A ! command cannot be subject to a g or a v command.

The ! command and the ! escape from the e, r, and w commands cannot be used if the the editor is
invoked from a restricted shell (see sh(l).

The sequence \n in a RE does not match a new-line character.
The I command mishandles DEL.

Files encrypted directly with the crypt(l) command with the null key cannot be edited.

Characters are masked to 7 bits· on input.

If the editor input is coming from a command file (that is, ed file < ed-cmd-file), the editor will exit at
the first failure of a command that is in the command file.

For UNICOS running on CRAY X-MP or CRAY-l mainframes, ed truncates large files without warning.

SEE ALSO

crypt(l), grep(1), sed(l), sh(l)
regexp(3C) in the CRAY-2 UNICOS Libraries, Macros and Opdefs Reference Manual, publication
SR-2013
The UNICOS Primer, publication SR-2010

Release 2.0 8 SR-2011

ENV(1) ENV(l)

NAME

env - Sets environment for command execution

SYNOPSIS

env [-] [name=value] ... [command args]

DESCRIPTION

Env obtains the current environment, modifies it according to its arguments, then executes the command
with the modified environment. Arguments of the form name =value are merged into the inherited
environment before the command is executed. The - flag (hyphen) causes the inherited environment to
be ignored completely, so that the command is executed with exactly the environment specified by the
arguments.

If no command is specified, the resulting environment is printed, one name-value pair per line.

SEE ALSO

sh(l)
exec(2) in the UNICOS System Calls Reference Manual, publication SR-2012
profile(4F) in the UNICOS File Formats and Special Files Reference Manual, publication SR-2014

SR-2011 1 Release 2.0

EX(l) (CRAY X-MP ad CRAY-l computer systems only) EX(l)

NAME

ex - Invokes the ex text editor

SYNOPSIS

ex [-] [-v] [-t tag] [-r [file]] [-R] [+command] [-I] [-x] name ...

DESCRIPTION

SR-2011

The ex command invokes the ex editor. Ex is a line-based editor that you can use alone or as an exten­
sion of the screen-based visual editor, vi. If you are not familiar with these editors, please refer to
ed(l), and vi(l).

Ex can perfonn functions that vi alone cannot Ex is useful for making large-scale changes to more
than one part of a file, such as performing global text changes, moving text between files, or other
advanced editing procedures. You can also perform functions like writing your file without having to
quit the file. (However, many commands in ex duplicate commands in vi.)

You can access ex in one of two ways: on the command line, or from within vi.

Ex can be invoked on the command line like any other command. You will want invoke ex in this way
if you are using it alone. - Suppresses all interactive-user feedback. This is useful in processing editor
procedures.

-v
-t tag

-r [file]

-R
+ command

-I

-x

name

Invokes the vi editor

Allows you to edit the file containing the tag and position the editor at its definition

Recovers file after an editor or system crash. If file is not specified, a list of all saved
files is printed.

Sets read-only mode and prevents you from accidentally overwriting the file.

Allows you to begin editing by executing the specified editor search or positioning com­
mand.

Invokes LISP mode. Indents appropriately for lisp code, the 0 () [[and]] commands in
ex are modified to have meaning for lisp.

Invokes encryption mode; a key is prompted for allowing creation or editing of an
encrypted file.

Indicates files to be edited

Once you have opened a file with ex, you will get a colon (:) prompt, which indicates you are in com­
mand mode. At this point, you must give ex a command (see the Commands subsection).

Ex can be in one of the following modes at a time:

Command Normal and initial state. Input prompted for by :. Your kill character cancels a partial
command.

Insert

Visual

Entered by a i and c. You can enter arbitrary text once in this mode. Insert is normally
terminated by entering a • on a line by itself, or abnonnally terminated with an interrupt.

Invokes Vlby entering vi, terminates with Q or e.

To invoke ex once you've opened a file with vi (you must be within vi's command mode), type a colon
(:). At this point, a colon appears in the lower right-hand comer of the screen. Now you are in ex and
can type any ex command (see the Commands subsection). Ex returns control to vi after every com­
mand has completed The syntax of an ex command is as follows:

: [m],[n]command [argument] newline

1 Release 2.0

EX(l) (CRAY X-MP and CRAY-l computer systems only) EX(l)

where, m and n are the optional line numbers on which to perfonn the command, command is the com­
mand name from the list in the next subsection, argument specifies a file or text for some commands,
and newline is the newline character you need to enter to invoke the command. If you do not specify
line numbers on the commands that require them, the command performs the action on the current line.

Commands
Following is a list of command names and their aliases that ex accepts.

abbrev word string
alias: ab

Uses the abbreviation word for the character string string. When in visual mode, if word is typed
as a complete word, it is changed to string.

append
alias: a

Appends text and places it after the specified line. Terminated by a . (dot).

args
alias: ar

Prints the members of the argument list. The current argument is delimited by brackets ([D.

cbange
alias: c

Replaces specified lines with text. Tenninated by • (dot).

copy
alias: co

Copies the specified lines. For example, :1,10c020 copies lines 1 through 10 after line 20.

delete
alias: d

Deletes the specified line numbers. For example, :1,lOd deletes lines 1 through 10.

edit
alias: e

Edits either the current file, disregarding any changes made so far (:e!), or edits a new file (:e
file). Changes are not lost in the current file and control returns to the shell after editing the new
file.

file
alias: f

Prints the current file and line number.

global
alias: g

Prints certain lines; makes global searches and changes. For example, :gltext moves the cursor to
the last line in the file that contains text . You can also use g to print certain lines of the file:
:gltextlp or nu prints all lines containing text (if you specify no instead, it prints the line numbers
also.

The following command can be used to list, one at a time, each line containing text and change
to newtext as required (the editor prompts you if you want the change made. Respond with a y or
n): :gltextlsllnewtextlc

insert
alias: i

Places text before the specified line. Terminated with. (dot).

Release 2.0 2 SR-2011

EX(1)

SR-2011

join
alias: j

(CRAY X-MP and CRAY-l computer systems only)

Places text from specified lines on one line (that is, joins lines of text).

list
alias: I

EX(l)

Prints the specified lines with tabs shown as AI and the end of the line marked with a trailing $.
This does not change the contents of the edit buffer.

map lhs rhs
alias: map

Defines macros for use in visual mode. lhs is a single character; rhs is a sequence of ex com­
mands. When lhs is typed, it behaves as if rhs has been typed.

mark x
alias: ma

Marks the specified line with character x.

move
alias: m

Moves the specified line numbers. For example, :1,lOm32 moves line numbers 1 through 10
after line 32.

number
alias: nu

Prints the specified lines; each line is preceded by its (buffer) line number.

preserve
alias: pre

Preserves the buffer.

print
alias: p

Prints the specified line numbers. For example, :l,lOp prints lines 1 through 10. :p with no line
specifications prints the current line.

put
alias: pu

Puts back previously deleted or yanked lines (with delete and yank, respectively.

quit
alias: q

Exits the editor. Use :q! to quit without saving your changes.

recover
alias: rec

Recovers the buffer after a system crash, :pre, or disconnect.

rewind
alias: rew

Rewinds the argument list and edits the first file in the list.

set
alias: se

Sets editing initialization options. Options set with set last only while you are in the editor. Set
has the following syntax:

:set [argument] [option]

Set with no arguments shows the options you have changed. :set all shows the state of all

3 Release 2.0

EX(l) (CRAY X-MP ad CRAY-l computer systems only) EX(l)

options. :set x enables the x option. :set nox disables the x option. :set x=val gives the x option
the value of val. :set x? shows the value of the x option.

A list of options follows (the alias, if one exists is in parentheses):

autoindent(ai)
autowrite(aw)
ignorecase(ic)
lisp
list
magic
number(nu)
paragraphs(para)
redraw
scroll
sections(sect)
shiftwidth(sw)
showmatch(sm)
showmode(smd)
slowopen(slow)
window
wrapscan(ws)
wrapmargin(wm)

shell
alias: sh

Supply indent
Write before changing files
Ignore case when scanning
o () are s-expressions
Print AI for tab, $ at end of line
Turn on the normal metacharacter meaning of ., [, *.
Number lines
Option's value is the name of the macros that start paragraphs
Redraw the screen
Command mode lines
Specifies section macro names ...
Gives the width of a software tab stop used in reverse tabbing
Shows the matching to) and (as typed
Show insert mode in vi
Stop updates during insert
Visual mode lines
Searches using regular expressions will wrap around past eof
Automatically splits line n characters from right

Escapse to the shell without writing your file. Which shell you get is specified by the $SHELL
environment variable.

stop
alias: st

Suspends ex and returns control to the calling shell.

substitute
alias: s

Substitutes one string for another. For example, :s/y/x/[gcp] substitutes string y for string x. g,c,
andp respectively, change every occurrence in the line, confirm each change before it's made, and
print changed lines.

unabbrev word
alias: una

Deletes word from the abbreviation list.

read
alias: r

version
alias: ve

visual
alias: vi

Release 2.0 4 SR-2011

EX(I)

write
alias: w

xit
alias: x

(CRAY X-MP and CRAY-l computer systems only)

Writes changes if any have been made and not written, then quits.

yank buffer
alias: ya

EX(I)

Places specified lines in a buffer named buffer. These lines can be retrieved with the put com­
mand.

window
alias: (

escape
alias: !

undo
alias: u

print next
alias: <CR>

source
alias: so

rshift
alias: >

scroll
alias: CONTROL-D

Line Addressing Symbols
Ex accepts the following command addresses:

n
Line n

.(dot)
Specifies the current line

/pat
Goes to the next line containing the string pat

?pat
Goes to the previous line containing the string pat

SR-2011 5 Release 2.0

EX(l)

FILES

BUGS

/usr/lib/ex? . ?strings
/usr/lib/ex? . ?recover
/usr/lib/ex? . ?preserve
/usr/lib!* !*
$HOME/.exrc
./.exrc
/tmp!Exnnnnn
/tmp!Rxnnnnn
/usr/preserve

(CRAY X-MP and CRAY-l computer systems only)

Error messages
Recover command
Preserve command
Describes capabilities of terminals
Editor startup file
Editor startup file
Editor temporary
Temporary files for ex
Preservation directory

EX(l)

The undo command causes all marks to be lost on lines changed and then restored if the marked lines
were changed.

Undo never clears the buffer modified condition.

The z command prints a number of logical rather than physical lines. More than a screenfull of output
may result if long lines are present

File input/output errors do not print a name if the command line '-' option is used.

There is no easy way to do a single scan ignoring case.

The editor does not warn you if you put text in named buffers and do not use the text before exiting the
editor.

Null characters are discarded in input files and cannot appear in resultant files.

SEE ALSO

awk(l), ed(1), edit(l), grep(1), sed(1), vi(l).
term(4F), terminfo(4F) in the UNICOS File Formats and Special Files Reference Manual, publication
SR-2014

Release 2.0 6 SR-2011

EXDF(1) (CRAY X-MP and CRAY-l computer systems only) EXDF(l)

NAME

exdf - Transfers files to and from the IDS partition of the expander disk

SYNOPSIS

exdf [- { i I o} dirnamelfilename] [-r]

DESCRIPTION

Exdf can read or write a file on the IDS partition of the expander disk. The program determines from
the command line whether it is reading or writing an expander disk file. The -i option indicates input
from the expander disk, and the -0 option indicates output to a disk file. The dirnamelfilename is the
directory/file name entry as known to the IDS. All IDS directory file name combinations are automati­
cally forced to upper case letters. Standard input or output is used for the UNICOS file. UNICOS direc­
tory and file names can be specified through the normal redirect methods. Exdf can easily be used as a
link in a pipe to move files onto or off of the expander disk.

The -r option indicates whether a file being output to the expander disk can replace an existing file.
The default is to abort a transfer when the file already exists. The option is ignored. for files being read
from the expander disk.

WARNING

BUGS

SR-2011

The IDS has its own conventions for directory names, and file names. Please observe the conventions.

The IDS and Cray computer systems force full words to be transferred. This results in null characters
added to the end of files. This will be a problem with text files that you want to compile. The C
preprocessor blows up when it runs h,to the nulls. Exdf cannot filter the data because the last bytes in a
file are not always accompanied by the end of file status.

Character files on the IDS do not have carriage return and line feed as end of lines, but apparently just a
carriage return. Develop your own filter if this is a problem.

If exdf cannot write a file to the expander disk because the disk is write-protected, no error messages
are displayed.

1 Release 2.0

EXLP(1) (CltAY X-MP and CltAY-l computer systems only) EXLP(l)

NAME

exlp - Prints files on the expander line printer

SYNOPSIS

exlp [-p] [-r] [-S] [-w] [file ...]

DESCRIPTION

The exlp command takes standard input, a file, or a file list and prints the files on the expander printer,
Idev/lp. If a list of files is specified, the files are printed in the order specified with a blank page
between each file.

The -p option switches the expander printer into plot mode. The -r option prints the files rotated 90
degrees on the paper. The -s option is the silent switch, and will turn off warning messages. The-w
option is useful when the rotated option, -r, is also specified The -w option specifies that the files are
to be printed in 132 column mode. The default setting when only the rotate option is set is 80
columns. The maximum number of columns is 132 for all files printed without the rotate option set.

WARNING

BUGS

SR-2011

The exlp command ignores attempts to redirect output to other files or devices.

The exlp command can be terminated by the normal interrupt character (control-C) or the eof character
(control-D), but it takes a little while for the printer to be closed.

1 Release 2.0

EXPAND(l) EXPAND(l)

NAME

expand, unexpand - Expands tabs to spaces. and vice versa

SYNOPSIS

expand [-tabstop] [-tabl.tab2 •...• tabn] [file ...]
unexpand [-a] [file ...]

DESCRIYI10N

SR-2011

The expand command changes tabs into blanks in the named files (or the standard input if you do not
specify any files) and writes the files to standard output. Expand preserves backspace characters into
the output and decrements the column count for tab calculations. Expand is useful for pre-processing
character files (for example. before sorting. looking at specific columns.) that contain tabs.

If you specify a single tabstop argument. tabs are set tabstop spaces apart instead of the default 8. If
you specify multiple tabstops. then the tabs are set at those specific columns.

The unexpand command puts tabs back into the data from the standard input or the named files and
writes the result to the standard output By default. only leading blanks and tabs are reconverted to
maximal strings of tabs. If you specify the -a option. tabs are inserted whenever they would compress
the resultant file by replacing two or more characters.

1 Release 2.0

EXPR(1) EXPR(l)

NAME

expr - Evaluates arguments as an expression

SYNOPSIS

expr arguments

DESCRIPTION

The arguments are taken as an expression. After evaluation, the result is written on the standard output.
Terms of the expression must be separated by blanks. Characters special to the shell must be escaped.
Note that 0 is returned to indicate a zero value, rather than the null string. Strings containing blanks or
other special characters should be quoted. Integer-valued arguments may be preceded by a unary minus
sign. Internally, integers are treated as 64-bit, twos complement numbers.

The operators and keywords are listed below. Characters that need to be escaped are preceded by \.
The list is in order of increasing precedence, with equal precedence operators grouped within {) sym­
bols.

expr\1 expr Returns the first expr if it is neither null nor 0, otherwise returns the second expr.

expr\& expr
Returns the first expr if neither expr is null or 0, otherwise returns O.

expr (=, \>, \>=, \<, \<=, !=) expr
Returns the result of an integer comparison if both arguments are integers, otherwise returns
the result of a lexical comparison.

expr (+, -) expr
Addition or subtraction of integer-valued arguments.

expr (\., I, %) expr
Multiplication, division, or remainder of the integer-valued arguments.

expr: expr
The matching operator : compares the first argument with the second argument, which must be
a regular expression. Regular expression syntax is the same as that of ed(1), except that all
patterns are "anchored" (that is, begin with A) and, therefore, A is not a special character in
that context. Normally, the matching operator returns the number of characters matched (0 on
failure). Alternatively, the \(••• \) pattern symbols can be used to return a portion of the first
argument.

EXAMPLES

SR-2011

a=' expr $a + I' Adds 1 to the shell variable 8.

'For $a equal to either "/usr/abc/file" or just "fIle'"

expr $a : ' •• /\(•• \) \ I $a
Returns the last segment of a path name (that is, the filename). Watch out for I
alone as an argument; expr will take it as the division operator (see BUGS).

A better representation of example 2.

expr //$a : ' •• !V.. ... \)' The addition of the /I characters eliminates any ambiguity about the division
operator and simplifies the whole expression.

expr $VAR : '.*' Returns the number of characters in $V AR.

1 Release 2.0

EXPR(l) EXPR(l)

MESSAGES

syntax error Operator/operand errors

non-numeric argument Arithmetic is attempted on a non-integer string

As a side effect of expression evaluation, expr returns the following exit values:
o The expression is neither null nor 0
1 The expression is null or 0
2 Invalid expressions

BUGS

After argument processing by the shell, expr cannot tell the difference between an operator and an
operand except by the value. If $a is an =, the command:

expr $a = '='

looks like:

expr - - -

as the arguments are passed to apr (and they will all be taken as the = operator). The following
works:

expr X$a = X=

SEE ALSO

ed(I), sh(l)

Release 2.0 2 SR-2011

EXTD(l) (CRAY X-MP and CRAY-l computer systems only) EXTD(l)

NAME

extd - Transfers files to and from the IDS expander tape drive

SYNOPSIS

extd [- { i I o} message] [-r] [-8 filenumber]

DESCRIPTION

The Extd command can read or write a file on an expander tape. The program determines from the
command line whether it is reading or writing an expander tape. The -i option indicates input from an
expander tape. and the -0 option indicates output to a tape. Message is the mount message to be
displayed on the IDS console. The mount message can be up to 7 characters long. All lOS mount mes­
sages are automatically forced to upper case letters. Standard input or output is used for the UNICOS
file. UNICOS directory and file names can be specified through the normal redirection methods. The
extd command can easily be used as a link in a pipe to move files onto or off of an expander tape.

The -r option is the "remain in position" option; it forces the drive to not rewind on close. This option
can be used to read or write multiple files to a tape. The option should be used in conjunction with the
-8 filenumber to specify which file is being read or written. The -r option should not be used on the
last invocation of extd because the drive remains reserved in the IDS. The next user of the drive will be
denied access to the IDS.

The -8 option specifies the number of the file to be read or written on the tape. The first file is number
0, the second is 1, etc.

WARNING

SR-2011

The IDS has its own conventions for mount messages. Please observe the conventions.

Be aware that the drive does stay reserved for the pid of the user who invokes extd with the -r option
until the drive has been opened with rewind specified by that pid, or aborted at the IDS console. This
does provide some interlocking for the tape. but should be used with caution.

1 Release 2.0

FACI'OR(I) FACTOR(I)

NAME

factor - Factors a number

SYNOPSIS

factor [number]

DESCRIPTION

When factor is invoked without an argument, it waits for a number to be typed in. If you type in a
positive number less than or equal to 1.0 X 1014

, it will factor the number and print its prime factors;
each one is printed the proper number of times. Then it waits for another number. It exits if it
encounters a 0 or any non-numeric character.

If factor is invoked with an argument, it factors the number as above and then exits.

Maximum time to factor is proportional to {n and occurs when n is prime or the square of a prime.

MESSAGES

Ouch! Input out of range or garbage input

SR-2011 1 Release 2.0

FETCH(l) FETCH(l)

NAME

fetch - Requests a file from a front-end station

SYNOPSIS

fetch local path [-nSFN] [-iTERMID] [-mMF] [-dDe] [-fFM] [-t'TEXT]
[-uUSER]

DESCRIPTION

SR-2011

The fetch command creates a request file for USCP (UNICOS Station Call Processor). If any slot infor­
mation is associated with the requesting user, it is also copied into the request file. USCP uses station
protocol to make the request for a file from the designated station (specified by the -m option). The
fetch process then waits until the transfer status has been determined. The transfer status is returned
when a negative reply is received from the station (requested file did not transfer) or when a positive
reply is received from the station (requested file has been saved on the Cray computer system). It is
possible for the station to return a postpone status, in which case the fetch process resets the request for
USCP to find and again waits for the transfer status.

loealpath A path name (either full or relative to current working directory) where the requested file is
to reside when the transfer is complete. The local path must be a location where the request­
ing user has permission to write. This is a required argument.

-nSFN Name associated with requested file on the specified front end. This argument is stored in
the request record PDN field. Only 15 characters are significant. If you do not specify SFN,
this field is filled the filename from the loealpath.

-iTERMID The terminal ID associated with the requested file on the specified front end. The size limit
is 8 characters. If you do not specify TERMID, the default is the stored terminal ID associ­
ated with the requesting user on the front-end station from which the user originated.

-mMF MF is a two character front-end ID for a station that has access to the requested file. If you
do not specify the mainframe, the stored ID of the station from which the requesting user
originated is used.

-fFM FM is a two character file format code. Valid formats are :

-dDe

CB Character blocked; the default

CD Character deblocked

BB Binary blocked

BD Binary deblocked

TR Transparent

un UNICOS Data

For further descriptions of the valid format codes, see the Front End Protocol Internal
Reference Manual, CRI publication SM-0042.

A two character disposition code interpreted by the receiving system. Valid codes are:

IN File is executed as a job.

ST File is saved.

I Release 2.0

FETCH(l) FETCH(l)

-t'TEXT Text to be interpreted by the specified station for processing of the request. The field can
contain label infonnation, routing, etc., possibly in the fonn of control statements for the
station. Text field infonnation should be enclosed by single quotes C). If you do not
specify this option, the request text field is filled with binary 0' s.

-uUSER User ID associated with the requested file on the specified front end. If you do not specify
USER, this field is left blank for the request.

LIMITATIONS

If you are not accessing the Cray computer system through USCP, defaults for TERMID and MF do not
exist. The request is queued without regard to whether the mainframe ID specified belongs to a
currently active station. If the associated station is not active or has no streams assigned (that is,
interactive only station), . the user process waits indefinitely.

SEE ALSO

dispose(l), acquire(l), uscpintro(l)
Front End Protocol Internal Reference Manual, publication SM-0042.

Release 2.0 2 SR-2011

FILE(I) FILE(I)

NAME

file - Determines file type

SYNOPSIS

file [-c] [-r !file] [-m mfile] arg ...

DESCRIPTION

FILES

File performs a series of tests on each argument in an attempt to classify it If an argument appears to
be ASCII, file examines the first 512 bytes and tries to guess its language. If an argument is an execut­
able a.out, file will print the version stamp, provided it is greater than 0 (see ld(l)).

File uses the file fetc/magic to identify files that have some sort of magic number, that is, any file con­
taining a numeric or string constant that indicates its type. Commentary at the beginning of fetcfmagic
explains its format.

Options for file are:

-r The next argument is taken to be a file containing the names of the files to be examined.

-m Instructs file to use an alternate magic file.

-c Causes file to check the magic file for format errors. This validation is not normally carried out
for reasons of efficiency. No file typing is done under-c.

/etc/magic

SEE ALSO

Id(l)

SR-2011 1 Release 2.0

FIND(I) PIND(I)

NAME

find - Finds files

SYNOPSIS

find path-name-list (expression)

DESCRIPTION

SR-2011

Find recursively descends the directory hierarchy for each path name in the path-name-list (that is, one
or more path names) seeking files that match a boolean expression written in the primaries given below.
In the descriptions, the argument n is used as a decimal integer where +n means more than n, -n
means less than n. and n means exactly n.

-name file True if file matches the current file name. Normal shell argument syntax may. be
used if escaped (watch out for [, ? and *).

-perm onwn

-type c

-links n

-user uname

-group gname

-size n[c]

-atime n

-mtimen

-ctime n

-exec cmd

-ok cmd

-print

--cpio device

-.newer file

-depth

(expression)

True if the file permission flags exactly match the octal number onum (see
chmod(l». If onum is prefixed by a minus sign, more flag bits (07777, see stat(2»
become significant and the flags are compared.

True if the type of the file is c, where c is b, c, d, p, or f for block special file,
character special file, directory, fifo (named pipe), or regular file, respectively.

True if the file has n links.

True if the file belongs to the user uname. If uname is numeric and does not appear
as a login name in the file /etclpasswd, it is taken as a user ID.

True if the file belongs to the group gname. If gname is numeric and does not
appear in the file /etc/group, it is taken as a group ID.

True if the file is n blocks long (512 bytes per block). If n is followed by a c, the
size is in characters.

True if the file has been accessed in n days. The access time of directories in path­
name-list is changed by find itself.

True if the file has been modified in n days.

True if the file has been changed in n days.

True if the executed cmd returns a 0 value as exit status. The end of cmd must be
punctuated by an escaped semicolon. A command argument () is replaced by the
current path name.

Like -exec except that the generated command line is printed with a question mark
first, and is executed only if the user responds by typing y.

Always true; causes the current path name to be printed.

Always true; write the current file on device in cpio (4F) ascii format (5120-byte
records). Device can be a file.

True if the current file has been modified more recently than the argument file.

Always true; causes descent of the directory hierarchy to be done so that all entries
in a directory are acted on before the directory itself. This can be useful when find
is used with cpio(1) to transfer files that are contained in directories without write
permission.

True if the parenthesized expression is true (parentheses are special to the shell and
must be escaped).

1 Release 2.0

FIND(l) FIND(l)

The primaries may be combined using the following operators (in order of decreasing precedence):

I. The negation of a primary (! is the unary not operator).

2. Concatenation of primaries (the and operation is implied by the juxtaposition of two primaries).

3. Alternation of primaries (-0 is the or operator).

EXAMPLE

FILES

To remove all files named a.out or *.0 that have not been accessed for a week:

find / \(-name a.out -0 -name ' * .0' \) -atime + 7 -exec rm {} \;

/etc/group
/etc/passwd

SEE ALSO

chmod(I), cpio(I), sh(I), test(l) .
stat(2) in the UNICOS System Calls Reference Manual, publication SR-2012
cpio(4F), fs(4F) in the UNICOS File Formats and Special Files Reference Manual, publication SR-2014

Release 2.0 2 SR-2011

FINGER(l) (TCP lIP Network) FINGER(l)

NAME

finger - Provides user information

SYNOPSIS

finger [options] name ...
finger @ host

DESCRIPTION

FILES

SR-2011

By default, finger lists the login name, full name, terminal name, and write status (as an asterisk (*)
before the tenninal name if write permission is denied), idle time, login time, and office location and
phone number (if they are known) for each current user. (Idle time is represented in minutes if it is a
single integer, hours and minutes if a colon (:) is present, or days and hours if a lid" is present in the
date field.)

The finger command accepts the following options:

-b Briefer long form list of users

-f Suppress heading in the short and quick output format

-h Suppress printing of the .project file

-i Same as quick list but includes idle time

-I Force long output format

-m Match arguments only on user name

-p Suppress printing of the .plan file

-q Quick list with only login name, terminal name and login time

-s Short list of users

-w Suppress printing of the full name in the short list format

A longer list format also exists; .I finger uses it whenever a list of names is given. (Account names as
well as first and last names of users are accepted.) This fonnat is multi-line, and includes all the infor­
mation described above as well as the user's home directory and login shell, any plan that the person
has placed in the file .plan in their home directory, and the project on which they are working from the
file .project (note that text must begin on line 1 of the file or Iflfinger/tR will not read it) also in the
home directory.

The finger command can also be used as a network protocol by specifying a hostname or address or a
specific user at a host. The finger command displays information about a user or users on that host.
Instead of the username, any of the above options can be specified at a host.

letc/utmp
letc/passwd
-I.plan
-I.project

Who file
For user names, phone numbers, ...
Plan file
Projecct file

1 Release 2.0

FLODUMP(l) (eRA Y -2 computer systems only) FLODUMP(l)

NAME

ftodump - Displays ftowtrace data in 132-column format

SYNOPSIS

ftodump [-rATe] [jlowdataJile]

DESCRIPTION

The jlodump command interprets the jlowdataJile file that is produced by executing a program with
ftowtrace turned on. If you do not specify ajlowdataJile file,jlodump uses Bow.data by default (if you
want to specify a different default file, you can set the environment variable FLOWD AT A to the name
of the file to which the data should be written). For each function that is ftowtraced, the following
statistics are kept name, entry point, number of times called, who called it and how many times
(parents), who it called and how many times (children), time spent in the function exclusive of children,
and time spent including children. In addition, jlodump records the time spent executing FWWENTER
and FWWEXIT code.

The jlodump command prints the output in the same format as that provided under COS. It expects a
132-column display that understands form control in column 1.

The following options are available:

-r Reverses the order of the sort

-A Sorts alphabetically; the default

- T Sorts by time spent in function

-C Sorts by time spent in function and children

Enable the jlodump command by supplying the ftowtrace option at compile time. Use the ~r option
with clt(1) and the -F option with cc(l).

SEE ALSO

cc(l), cft(l), ftow(1)

SR-2011 1 Release 2.0

FLODUMP(l) (CRAY X-MP and CItAY-l computer systems only) FLODUMP(l)

NAME

flodump - Displays flowtrace data from a file named core

SYNOPSIS

ftodump

DESCRIPTION

FILES

BUGS

Flodump automatically prepares a flow trace report, on standard output, from a file named core (which
must be in the current directory) produced by abnonnal program termination. Flodump only produces
the report under the following conditions:

• If your program was compiled with the flow trace compiler option turned on

• If the report was generated with the same version of the flow trace subroutines as were the programs
in the core dump file

The report will be less accurate than if the programs tenninated normally. Flodump assumes that the
program tennination occurred at the last subprogram entry or exit it proces~ The distortion intro­
duced by this assumption can occasionally produce bizarre results, such as apparently negative runtimes.

core Program memory dump

Support for multitasked programs is not yet available.

SEE ALSO

cft(l), debug(l), pascal(l)

SR-2011 1 Release 2.0

FLOW(l) (CRA Y -2 computer systems only) FLOW(l)

NAME

flow - Displays flowttace data in 80-column format

SYNOPSIS

80w [-r ATCpctis] [jlowdata...file]

DESCRIPTION

The flow command interprets the specified flowdata...file file that is produced by executing a program
with ftowtrace turned on. The data from the ftowtrace is written in the 8ow.data file by default; how­
ever, you can specify a flowdata...file on the command. You can also override the default file name by
setting the environment variable FLOWDATA to the name of the file to which the data should be writ­
ten.

For each function that is ftowtraced, the following statistics are kept: name, entry point, number of
times called, who called it and how many times (parents), who it called and how many times (children),
time spent in the function exclusive of children, and time spent including children. In addition,
flowtrace records the time spent executing FLOWENTER and FLOWEXIT code.

The flow command prints the output so it may be viewed on an· 80-column screen. The flow command
also provides information about its children that is not provided by jlodump(l).

The following options are available:

-r Reverses the order of the sort

-A Sorts alphabetically

-T Sorts by time spent in function; the default.

-c Sorts by time spent in function and children

-p ~snotprintparen~

-c ~snotprintchildren

-t ~s not print call tree

-i ~s not print data about functions

-s ~snotprinttotals

Enable the flow command by supplying the flow trace option at compile time. Use the -er option with
cft(l) and the -F option with cc(l).

SEE ALSO

cc(l), cft(l), ftodump(l)

SR-2011 1 Release 2.0

FOLD(l) (CItAY X-MP and CItAY-l computer systems only) FOLD(l)

NAME

fold - Folds long lines of files for finite width output device

SYNOPSIS

fold [-width] [file ...]

DESCRIPTION

The fold command acts as a filter that folds the contents of the specified files, or the standard input (if
you do not specify files), breaking the lines to have maximum width width. The default for width is 80.
lf tabs are present, or if they need to be expanded (using expand(1) before coming to fold), the width
should be a multiple of 8.

BUGS

If underlining is present, it may -be messed up by the fold command.

SEE ALSO

expand(l)

SR-2011 1 Release 2.0

FSPLIT(l) FSPLIT(l)

NAME

fsplit - Splits Fortran files

SYNOPSIS

fsplit options files

DESCRIPTION

F split splits the named files into separate files, with one procedure per file. A procedure includes the
following program segments: blockdata, function, main, program, and subroutine. Procedure X is
put in file X .f, X.r, or X.e depending on the language option chosen, with the following exceptions:
main is put in the file MAIN.[err] and unnamed blockdata segments in the files blockdataN.[efr] where
N is a unique integer value for each file.

The following options are available:

-r Input files are f77 (default)

-r Input files are ratfor

-e Input files are eft
-s Strip f77 input lines to 72 or fewer characters with trailing blanks removed

LIMITATIONS

Ratfor and eft are not supported on UNICOS.
F77 is supported on UNICOS running on a CRAY X-MP or CRAY-l Computer System. However, thef77
option is useful for any Fortran program.

SEE ALSO

csplit(1), split(l)

SR-2011 1 Release 2.0

FrP(l) (TCP lIP Network) FfP(l)

NAME

ftp - Transfers files to and from a remote retwork site

SYNOPSIS

rtp [-v] [-d] [-i] [-n] [-g] [host]

DESCRIPTION

SR-2011

Ftp is the user interface to the ARPANET standard File Transfer Protocol (FfP). The program allows a
user to transfer files to and from a remote network site.

The client host with which Itp is to communicate may be specified on the command line. If this is
done, Itp will immediately attempt to establish a connection to an FrP server on that host; otherwise,
Itp will enter its command interpreter and await instructions from the user. When ftp is awaiting com­
mands from the user the prompt ftp> is provided the user. If insufficient command arguments are sup­
plied by the user, ftp will prompt for them.

Ftp may be interrupted, typically by striking the DELETE key or control-C key. If this is done while ftp
is attempting to carry out a command,ltp will revert to the command interpreter and display the "ftp>"
prompt Otherwise, ftp will be terminated.

Options may be specified at the command line or to the command interpreter.

The -v (verbose on) option forcesftp to show all responses from the remote server, as well as report on
data transfer statistics.

The -n option restrains ftp from attempting autologin upon initial connection. If auto-login is enabled,
ftp will check the .netrc(4F) file in the user's home directory for an entry describing an account on the
remote machine. If no entry exists, ftp will use the login name on the local machine as the user iden­
tity on the remote machine, and prompt for a password and, optionally, an account with which to login.

The -i option turns off interactive prompting during multiple file transfers.

The -d option enables debugging.

The -g option disables file name globbing.

The following commands are recognized by Itp. They may be given aliases as long as they remain
unique.

Invoke a shell on the local machine.

append local-file [remote-file]
Append local-file to a file on the remote machine. If remote-file is left unspecified, the name
of local-file is used in naming remote-file. File transfer uses the current settings for type, for­
mat, mode, and structure.

ascii Set the file transfer type to network ASCll. This is the default type.

beD Sound a bell after each file transfer command is completed.

binary Set the file transfer type to support binary image transfer.

bye Terminate the FrP session with the remote server and exit ftp.

cd remote-directory
Change the working directory on the remote machine to remote-directory.

close Terminate the FTP session with the remote server and return to the command interpreter.

delete remote-file
Delete the file remote-file on the remote machine.

I Release 2.0

FrP(l) (TCP lIP Network) FrP(l)

debug Toggle debugging mode. When debugging is on, ftp prints each command sent to the remote
machine, preceded by the string -->. For a list of the commands, see ftpd(8).

dir [remote-directory] [local-file]
Print a listing of the contents of remote-directory and, optionally, place the output in local-file.
If no directory is specified, the current working directory on the remote machine is used. If
local-file is not specified, output comes to the terminal.

form format
Set the file transfer form. to format. The default format is "non-print". At this printing, only
the default fonn is supported.

get remote-file [local-file]
Retrieve remote-file and store it on the local machine. If the name of local-file is not specified,
it is given the same name it has on the remote machine. The current settings for type, form,
mode, and structure are used while transferring the file.

hash Toggle hash-sign (" #' ') printing for each data block transferred. The size of a data block is
4096 bytes.

glob Toggle local file name globbing. With file name globbing enabled, each local file or path
name is processed for the she 1) metacharacters *, ?, [, An additional pair of metacharacters,
{ }, is also processed. This pair may enclose several comma-separated strings for each of
which a match is sought With globbing disabled all local files and path names are treated
literally. Globbing is always on with reference to remote files.

help [command]
Print an informative message about the meaning of command. If no argument is given, ftp
prints a list of the known commands.

led [directory]
Change the working directory on the local machine. If directory is not specified, the user's
home directory is used.

Is [remote-directory] [local-file]
Print an abbreviated listing of the contents of a directory on the remote machine. If remote­
directory is left unspecified, the current working directory is used. If local-file is not specified,
the output is sent to the terminal.

mdelete remote-files
Delete the specified files on the remote machine. If globbing is enabled, the specification of
remote-files will first be expanded using Is.

mdir remote-files local-file
Obtain a directory listing of multiple files on the remote machine and place the result in local­
file.

mget remote-files
Retrieve the specified files from the remote machine and place them in the current local direc­
tory. If globbing is enabled, the specification of remote files will first be expanded using Is.

mkdir directory-name
Make a directory on the remote machine.

mls remote-files local-file
Obtain an abbreviated listing of multiple files on the remote machine and place the result in
local-file.

mode [mode-name]
Set the file transfer mode to mode-name. The default mode is stream mode. At this printing,
only the default is supported.

Release 2.0 2 SR-2011

FrP(l)

SR-2011

(TCP/IP Network) FrP(l)

mput local-files
Transfer multiple local-files from the current local directory to the current working directory on
the remote machine.

open host [port]
Establish a connection to the specified host FTP server. An optional port number may be sup­
plied, in which case, ftp will attempt to contact an FTP server at that port. If auto login is
enabled (default), ftp will also attempt to automatically log the user in to the FTP server (see
below).

prompt Toggle interactive prompting. Interactive prompting occurs during multiple file transfers to
allow the user to selectively retrieve or store files. If prompting is turned off (default), a mget
or mput command will transfer all files.

put local-file [remote-file]
Store local-file on the remote machine. If remote-file is left unspecified, the name of local-file
is used in naming remote-file. File transfer uses the current settings for type, format, mode, and
structure.

pwd Print the name of the current working directory on the remote machine.

quit A synonym for bye.

quote argl arg2 ...
The arguments specified are sent, verbatim, to the remote FfP server. A single FTP reply
code is expected in return.

recv remote-file [local-file]
A synonym for get.

remotehelp [command-name]
Request help from the remote FTP server. If command-name is specified it is supplied to the
server as well.

rename [from] [to]
Rename the file from on the remote machine to the file to.

rmdir directory-name
Delete a directory on the remote machine.

send local-file [remote-file]
A synonym for put.

sendport
Toggle the use of PORT commands. By default,ltp will attempt to use a PORT command
when establishing a connection for each data transfer. If the PORT command fails, ftp will use
the default data port. When the use of PORT commands is disabled, no attempt will be made
to use PORT commands for each data transfer. This is useful for certain FrP implementations
which do ignore PORT commands but, incorrectly, indicate they've been accepted.

status Show the current status of ftp .

struct [struct-name]
Set the file transfer structure to struct-name. By default, file structure is used. At this print­
ing, only the default is supported.

tenex Set the file transfer type to that needed to talk to TENEX machines.

trace Toggle packet tracing.

type [type-name]
Set the file transfer type to type-name. If type is not specified, the current type is printed. The
three valid types are "tenex", "binary" and "ascii", which is the default.

3 Release 2.0

FrP(I) (TCP lIP Network) FfP(I)

user user-name [password] [account]
Identify yourself to the remote FI'P server. If password is not specified and the server requires
it, Itp will prompt you for it (after disabling local echo). If account is not specified, and the
FrP server requires it, you will be prompted for it Unless Itp is invoked with autologin dis­
abled, this process is done automatically on initial connection to the FI'P server.

verbose Toggle verbose mode. In verbose mode, all responses from the FrP server are displayed to the
user. In addition, if verbose is on, when a file transfer completes, statistics regarding the
efficiency of the transfer are reported. By default, verbose is off.

? [command]
A synonym for help.

Command arguments which have embedded spaces may be quoted with quote (") marks.

File Naming Conventions

BUGS

Files specified as arguments to Itp commands are processed according to the following rules.

1. If the file name - is specified, stdin (for reading) or stdout (for writing) is used.

2. If the first character of the file name is I, the remainder of the argument is interpreted as a shell
command. Ftp then forks a shell with the argument supplied, and reads (or writes) from stdout
(or stdin). If the shell command includes spaces, the argument must be quoted; for example, "I
Is -It". A particularly useful example of this mechanism is dir < directory name> Ipg.

3) Failing the above checks, if "globbing" is enabled, local file names are expanded as per the
glob command.

Many FfP server implementations do not support operations such as "print working directory".

The mget and mdelete commands should be used with caution. Specifying a directory where a plain file
name is expected could produce unexpected results.

SEE ALSO

ftpusers(4F) in the UNICOS File Formats and Special Files Reference Manual, publication SR-2014

Release 2.0 4 SR-2011

FfREF(l) (CRAY X-MP md CRAY-l computer systems only) FfREF(l)

NAME

ftref - Generates Fortran reference listing

SYNOPSIS

ftref [-ccb] [-ttree] [-rroot] [-eend] [-dom] filename

DESCRIPTION

SR-2011

The ftref command generates a listing that contains several forms of information about a Fortram pro­
gram. The ftref command reports on the common block variables used in the subroutines within the
program. It provides tabular information that consists of entry names, calling routines, and called rou­
tines for each subroutine. This information is displayed as a static calling tree. For multitasked pro­
grams, ftref summarizes the use of multitasking subroutines and reports whether a common variable or a
subroutine is locked when it is referenced or redefined.

The ftref command requires the output produced when -e is specified in a previous CFT statement. The
dataset to be processed by ftref may contain any number of modules used by the program. The more
program modules included in the dataset, the more complete the information output by ftref.

The following arguments are available:

-ccb Global common block cross references. The default is part. The cb argument can use the fol­
lowing routines:

part Identifies the routine names using a common block

full Details the use of the variables of a common block in a routine

none No output information

-ttree Produces information about the routines called and the static calling tree for the program. The
value ···LOOp··' indicates that an apparently recursive program exists. The tree argument can
use the following routines:

part Reports entry names, external calls, other routines that call the routine, and common
block names from the input dataset; the default.

full Reports the information that the part option provides plus the static calling tree

none No output infonnation

-rroot If you specified -f/ull, the -r directs root to be the root of the tree. The -r option can be used
to get a subtree for the program; it can also be used to request multiple subtrees, each beginning
at a different root. If you do not specify the -r argument, a routine that has not been called by
another routine is chosen by default. If there is more than one uncalled routine, the first routine
(by alphabetic order) is chosen as the root.

-eend If you specified -tfull, the -e argument directs routine end to terminate any branch of the tree in
which end is encountered. The value ···STOp··' is printed whenever the routine is found, and
that branch of the tree is terminated. By default, ftref generates a tree containing all subroutines
in the program.

-In If you specified -tfull, the -I argument indicates that the maximum length of any branch is n
levels deep. The default is the entire program. If both -I and -e are specified, ftref terminates a
branch of the tree at which ever state is encountered first

-d Selects modules to process or common blocks for ftref to check to determine whether a variable
is in a locked area. The standard input contains a set of directives that controls the processing
or check. The directives are taken from standard input The default is no directives to be read.

1 Release 2.0

FfREF(l) (CRAY X-MP md CRAY-l computer systems only) FfREF(l)

-0 Lists the subroutines in input order instead of alphabetic order. The default is alphabetic order.

-m Examines the source for uses of the multitasking subroutines and generates tables summarizing

Release 2.0

the subroutine's use within the program. Refer to the CRAY X-MP Multitasking Programmer's
Manual for more information.

2 SR-2011

GET(l) GET(l)

NAME

get - Gets a version of an sees file

SYNOPSIS

get [-rSID] [~cutoff] [-ilist] [-xlist] [-wstring] [-aseq-no] [-k] [-e] [-I [p]] [-p] [-m] [-0] [-s]
[-b] [-g] [-t] file

DESCRIPTION

SR-2011

Get generates an Asen text file from each named sees file according to the specifications given by its
keyletter arguments, which begin with a dash (-). The arguments may be specified in any order, but all
keyletter arguments apply to all named sees files. If a directory is named, get behaves as though each
file in the directory were specified as a named file, except that non-SeeS files (last component of the
path name does not begin with s.) and unreadable files are silently ignored. If a name of - is given, the
standard input is read; each line of the standard input is taken to be the name of an sees file to be pro­
cessed. Again, non-sees files and unreadable files are silently ignored.

The generated text is normally written into a file called the g-file whose name is derived from the sees
file name by simply removing the leading s.; (see also FILES, below).

Each of the keyletter arguments is explained below as though only one sees file is to be processed, but
the effects of any keyletter argument applies independently to each named file.

-rSID The sees IDentification string (SID) of the version (delta) of an sees file to be retrieved.
Table 1 below shows, for the most useful cases, what version of an sees file is retrieved (as
well as the SID of the version to be eventually created by delta(1) if the -e keyletter is also
used), as a function of the SID specified.

--ccutoff Cutoff date-time, in the form:

yy[MM[DD[HH[MM[SS]]]]]

No changes (deltas) to the sees file which were created after the specified cutoff date-time
are included in the generated Asell text file. Units omitted from the date-time default to
their maximum possible values; that is, --c7502 is equivalent to ~750228235959. Any
number of non-numeric characters may separate the various 2-digit pieces of the cutoff date­
time. This feature allows one to specify a cutoff date in the fonn: "~77/2/2 9:22:25". Note
that this implies that one may use the %E% and %U% identification keywords (see below)
for nested gets within, say the input to a send(1C) command:

-!get "-c%E% %U%" s.file

-e Indicates that the get is for the purpose of editing or making a change (delta) to the sees
file via a subsequent use of delta(1). The -e keyletter used in a get for a particular version
(SID) of the sees file prevents further gets for editing on the same SID until delta is exe­
cuted or the j Goint edit) flag is set in the sees file (see admin(l». Concurrent use of get
-e for different SIDs is always allowed.

If the g-file generated by get with an -e keyletter is accidentally ruined in the process of
editing it, it may be regenerated by re-executing the get command with the -k keyletter in
place of the -e keyletter.

sees file protection specified via the ceiling, floor, and authorized user list stored in the
sees file (see admin(1» are enforced when the -e keyletter is used.

1 Release 2.0

GET(l)

-b

-ilist

GET(l)

Used with the -e keyletter to indicate that the new delta should have an SIn in a new branch
as shown in Table 1. This keyletter is ignored if the b flag is not present in the file (see
admin(1» or if the retrieved delta is not a leaf delta. (A leaf delta is one that has no suc­
cessors on the sees file tree.)
Note: A branch delta may always be created from a non-leaf delta.

A list of deltas to be included (forced to be applied) in the creation of the generated file.
The list has the following syntax:

<list> ::= <range> I <list> , <range>
<range> ::= SID I SID - SID

SID, the sees Identification of a delta, may be in any fonn shown in the "SID Specified"
column of Table 1. Partial SIDs are interpreted as shown in the "SID Retrieved" column of
Table 1.

-x list A list of deltas to be excluded (forced not to be applied) in the creation of the generated file.
See the -i keyletter for the list fonnat

-k Suppresses replacement of identification keywords (see below) in the retrieved text by their
value. The -k keyletter is implied by the -e keyletter.

-I[p] Causes a delta summary to be written into an I-file. If -Ip is used then an l-file is not
created; the delta summary is written on the standard output instead. See FILES for the for­
mat of the l-file.

-p Causes the text retrieved from the sees file to be written on the standard output. No g-file
is created. All output which nonnally goes to the standard output goes to file descriptor 2
instead, unless the -s key letter is used, in which case it disappears.

-s Suppresses all output nonnally written on the standard output. However, fatal error mes­
sages (which always go to file descriptor 2) remain unaffected.

-m Causes each text line retrieved from the sees file to be preceded by the SID of the delta that
inserted the text line in the sees file. The fonnat is: SID, followed by a horizontal tab, fol­
lowed by the text line.

-0 Causes each generated text line to be preceded with the %M% identification keyword value
(see below). The fonnat is: %M% value, followed by a horizontal tab, followed by the text
line. When both the -m and -n key letters are used, the fonnat is: %M% value, followed by
a horizontal tab, followed by the -m keyletter generated format

-g Suppresses the actual retrieval of text from the sees file. It is primarily used to generate an
l-file, or to verify the existence of a particular SID.

-t Used to access the most recently created ("top") delta in a given release (such as, -rl), or
release and level (such as, -rl.2).

-w string Substitute string for all occurrences of It % w% It when using the get command on a the file.

-aseq-no. The delta sequence number of the sees file delta (version) to be retrieved (see sccsfile(4».
This keyletter is used by the comb(l) command; it is not a generally useful keyletter, and
users should not use it. If both the -r and -a keyletters are specified, the -a keyletter is
used. Care should be taken when using the -a keyletter in conjunction with the ~ keyletter,
as the SIn of the delta to be created may not be what one expects. The -r keyletter can be
used with the -a and -e keyletters to control the naming of the SID of the delta to be
created.

For each file processed, get responds (on the standard output) with the SID being accessed and with the
number of lines retrieved from the sees file.

Release 2.0 2 SR-2011

GET(l)

SID*

GET(l)

If the ~ key letter is used, the SID of the delta to be made appears after the SID accessed and before the
number of lines generated. If there is more than one named file or if a directory or standard input is
named, each file name is printed (preceded by a new-line) before it is processed. If the -i keyletter is
used included deltas are listed following the notation "Included"; if the -x keyletter is used, excluded
deltas are listed following the notation "Excluded".

TABLE I. Determination of sees Identification String

-b Keyletter Other SID SID of Delta
Specified Usedt Conditions Retrieved to be Created

none:f:
none:f:

R
R
R
R

R

R

RL
R.L

RL

R.L.B
R.L.B

R.L.B.S
R.L.B.S
R.L.B.S

SR-201 1

*

**

t

:f:

no R defaults to mR mR.mL mR.(mL+I)

yes R defaults to mR mR.mL mR.mL.(mB+I).I

no R>mR mR.mL R.I***

no R=mR mR.mL mR.(mL+I)

yes R>mR mR.mL mR.mL.(mB + 1).1

yes R=mR mR.mL mR.mL.(mB + 1).1

R<mRand hR.mL** hR.mL.(mB+I).1
R does not exist
Trunk succ.#
in release> R R.mL R.mL.(mB+I).I
and R exists

no No trunk succ. R.L R.(L+I)
yes No trunk succ. R.L RL.(mB+I).l

Trunk succ.
R.L R.L.(mB+I).l

in release ~ R

no No branch suee. R.L.B.mS R.L.B.(mS+I)
yes No branch suee. R.L.B.mS R.L.(mB+I).l

no No branch suee. R.L.B.S R.L.B.(S+I)
yes No branch suee. R.L.B.S R.L.(mB+I).l

Branch succ. R.L.B.S R.L.(mB+I).l

"R", "L", "B", and "S" are the "release", "level", "branch", and "sequence" components
of the SID, respectively; "m" means "maximum". Thus, for example, "R.mL" means "the
maximum level number within release R"; "R.L.(mB+l).l" means "the first sequence number
on the new branch (that is, maximum branch number plus one) of level L within release R".
Note that if the SID specified is of the form "R.L" , "R.L.B", or "R.L.B.S", each of the
specified components must exist.
"bR" is the highest existing release that is lower than the specified, nonexistent, release R.
This is used to force creation of the first delta in a new release.
Successor.
The -b keyletter is effective only if the b flag (see admin (1» is present in the file. An entry of -
means "irrelevant".
This case applies if the d (default SID) flag is not present in the file. If the d flag is present in
the file, then the SID obtained from the d flag is interpreted as if it had been specified on the
command line. Thus, one of the other cases in this table applies.

3 Release 2.0

GET (1) GET(l)

Identification Keywords

FILES

Identifying infonnation is inserted into the text retrieved from the sees file by replacing identification
keywords with their value wherever they occur. The following keywords may be used in the text stored
in an sees file:
Keyword
%M%

%1%
%R%
%L%
%B%
%S%
%D%
%H%
%T%
%E%
%G%
%U%
%Y%
%F%
%P%
%Q%
%C%

%Z%
%W%

%A%

Value
Module name: either the value of the m flag in the file (see admin(l), or if absent, the
name of the sees file with the leading s. removed.
sees identification (SID) (%R%.%L%.%B%.%S%) of the retrieved text.
Release.
Level.
Branch.
Sequence.
Current date (YY/MMIDD).
Current date (MM/DD!YY).
Current time (HH:MM:SS).
Date newest applied delta was created (YY/MM/DD).
Date newest applied delta was created (MM/DD!YY).
Time newest applied delta was created (HH:MM:SS).
Module type: value of the t flag in the sees file (see admin(l).
sees file name.
Fully qualified sees file name.
The value of the q flag in the file (see admin(l».
Current line number. This keyword is intended for identifying messages output by the pro­
gram such as "this should not have happened" type errors. It is not intended to be used on
every line to provide sequence numbers.
The 4-character string @(#) recognizable by what(l).
A shorthand notation for constructing what(1) strings for ex-os system program files.
% W% = %Z%%M%<horizontal-tab>%I%
Another shorthand notation for constructing what(l) strings for non-eX-OS system program
files.
%A% = %Z%%Y% %M% %I%%Z%

Several auxiliary files may be created by get. These files are known generically as the g-file, l-file, p­
file, and z-file. The letter before the hyphen is called the tag. An auxiliary file name is formed from
the sees file name: the last component of all sees file names must be of the form s.module-name, the
auxiliary files are named by replacing the leading s with the tag. The g-file is an exception to this
scheme: the g-file is named by removing the s. prefix. For example, S.XYZ.C, the auxiliary file names
would be xyz.c, l.xyz.c, p.xyz.c, and z.xyz.c, respectively.

The g-file, which contains the generated text, is created in the current directory (unless the -p keyletter
is used). A g-file is created in all cases, whether or not any lines of text were generated by the get. It
is owned by the real user. If the -k keyletter is used or implied its mode is 644; otherwise its mode is
444. Only the real user need have write permission in the current directory.

The l-file contains a table showing which deltas were applied in generating the retrieved text. The l-file
is created in the current directory if the -I keyletter is used; its mode is 444 and it is owned by the real
user. Only the real user need have write permission in the current directory.

Release 2.0 4 SR-2011

GET (l) GET(l)

Lines in the I-file have the following fonnat:

a. A blank character if the delta was applied;
* otherwise.

b. A blank character if the delta was applied or was not applied and ignored;
* if the delta was not applied and was not ignored.

c. A code indicating a "special" reason why the delta was or was not applied:
"I": Included.
"X": Excluded.
"C": Cut off (by a -c keyletter).

d. Blank.
e. sees identification (SID).
f. Tab character.
g. Date and time (in the fonn YY/MM/DD HH:MM:SS) of creation.
h. Blank.
i. Login name of person who created delta.

The comments and MR data follow on subsequent lines, indented one horizontal tab character.
A blank line terminates each entry.

The p-file is used to pass information resulting from a get with an ~ key letter along to delta. Its con­
tents are also used to prevent a subsequent execution of get with an ~ keyletter for the same SID until
delta is executed or the joint edit flag, j, (see admin(l» is set in the sees file. The p-file is created in
the directory containing the sees file and the effective user must have write permission in that direc­
tory. Its mode is 644 and it is owned by the effective user. The fonnat of the p-file is: the gotten SID,
followed by a blank, followed by the SID that the new delta will have when it is made, followed by a
blank, followed by the login name of the real user, followed by a blank, followed by the date-time the
get was executed, followed by a blank and the -i keyletter argument if it was present, followed by a
blank and the -x keyletter argument if it was present, followed by a new-line. There can be an arbi­
trary number of lines in the p-file at any time; no two lines can have the same new delta SID.

The z-file serves as a lock-out mechanism against simultaneous updates. Its contents are the binary pro­
cess ID of the command (that is, get) that created it. The z-file is created in the directory containing the
sees file for the duration of get. The same protection restrictions as those for the p-file apply for the
z-file. The z-file is created mode 444.

MESSAGES

BUGS

Use help(1) for explanations.

If the effective user has write permission (either explicitly or implicitly) in the directory containing the
sees files, but the real user does not, then only one file may be named when the ~ keyletter is used.

SEE ALSO

admin(1), delta(1), help(l), prs(1), what(1)
sccsfile(4F) in the UNIeos File Formats and Special Files Reference Manual, publication SR-2014

SR-2011 5 Release 2.0

GETOPT(l) GETOPT(l)

NAME

getopt - Parses command options

SYNOPSIS

set - getopt optstring $*

DESCRIPTION

Getopt breaks up options in command lines for easy parsing by shell procedures and checks for legal
options. Optstring is a string of recognized option letters (see getopt(3C»; if a letter is followed by a
colon, the option is expected to have an argument which mayor may not be separated from it by white
space. The special option - is used to delimit the end of the options. If it is used explicitly, getopt
will recognize it; otherwise, getopt will generate it; in either case, getopt will place it at the end of the
options. The positional parameters of the shell ($1 $2 ...) are reset so that each option is preceded by
a - and is in its own positional parameter; each option argument is also parsed into its own positional
parameter.

EXAMPLE

The following shell procedure fragment shows how one might process the arguments for a command
that can take the options a or b, as well as the option 0, which requires an argument:

set - getopt abo: $*
if [$1 != 0]
then

fi

echo $USAGE
exit 2

for i in $*
do

done

case $i in
-a I -b)
-0)

-)
esac

FLAG=$i; shift;;
OARG=$2; shift 2;;
shift; break;;

This code will accept any of the following as equivalent:

cnui -aoarg file file
cnui -a -0 arg file file
cnui -oarg -a file file
cnui -a -oarg - file file

MESSAGES

Getopt prints an error message on the standard error when it encounters an option letter not included in
optstring.

SEE ALSO

SR-2011

sh{l)
getopt(3C) in the eRA Y -2 UNICOS Libraries, Macros and Opdefs Reference Manual, publication
SR-2013

1 Release 2.0

GREP(l) GREP(l)

NAME

grep, egrep, fgrep - Searches a file for a pattern

SYNOPSIS

grep [options] expression [files]

egrep [options] [expression] [files]

fgrep [options] [strings] [files]

DESCRIPTION

NOTES

SR-2011

Commands of the grep family search the input files (standard input default) for lines matching a pat­
tern. Normally, each line found is copied to the standard output. Grep patterns are limited regular
expressions in the style of ed(l); grep uses a compact non-deterministic algorithm. Egrep patterns are
full regular expressions; egrep uses a fast deterministic algorithm that sometimes needs exponential
space. Fgrep patterns are fixed strings. The following options are recognized:

-v All lines but those matching are printed.
-x (Exact) Only lines matched in their entirety are printed ifgrep only).
-c Only a count of matching lines is printed.
-i Ignore upper !lower case distinction during comparisons.
-I Only the names of files with matching lines are listed (once), separated by new-line characters.
-0 Each line is preceded by its relative line number in the file.
-b Each line is preceded by the block number on which it was found. This is sometimes useful in

locating disk block numbers by context
-s The error messages produced for nonexistent or unreadable files are suppressed (grep only).
-e expression

Same as a simple expression argument, but useful when the expression begins with a - (does
not work with grep).

-f file The regular expression (egrep) or strings list ifgrep) is taken from file.

In all cases, the file name is output if there is more than one input file. Care should be taken when
using the characters $, ., [, A, I, (,), and \ in expression, because they are also meaningful to the shell.
It is safest to enclose the entire expression argument in single quotes ' ... '.

Fgrep searches for lines that contain one of the strings separated by new-lines.

Egrep accepts regular expressions as in ed(1), except for \(and \), with the addition of the following:

• A regular expression followed by + matches one or more occurrences of the regular expression
• A regular expression followed by ? matches zero or one occurrences of the regular expression
• Two regular expressions separated by I or by a new-line match strings that are matched by either
• A regular expression may be enclosed in parentheses () for grouping

The order of precedence of operators is [], then.? +, then concatenation, then I and new-line.

Contrary to expectation, /grep is the slowest of the three commands. Grep is the fastest.

1 Release 2.0

GREP(l) GREP(l)

MESSAGES

BUGS

Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or inaccessible files (even if
matches were found).

Ideally there should be only one grep, but there is not a single algorithm that spans a wide enough
range of space-time tradeoffs.

Lines are limited to BUFSIZ characters; longer lines are truncated. (BUFSIZ is defined in
lusr/include/stdio.h.)

Egrep does not recognize ranges, such as [a-z], in character classes.

If there is a line with embedded nulls, grep will only match up to the first null; if it matches, it will
print the entire line.

SEE ALSO

ed(l), sed(l), sh(l)

Release 2.0 2 SR-2011

HEAD(1) (CRAY X-MP and CRAY-l computer systems only) HEAD(l)

NAME

head - Prints the first few lines of a file

SYNOPSIS

head [- count] [file ...]

DESCRIPTION

The head command writes the first count lines of each of the specified files, or of the standard input if
you do not specify any files. If you omit count, head defaults to 10.

SEE ALSO

tail(l)

SR-2011 1 Release 2.0

HELP(l) HELP(l)

NAME

help - Provides explanation of messages and commands

SYNOPSIS

belp [arg ...]

DESCRIPTION

FILES

The help command finds infonnation to explain a message from a command or explain the use of a
command. Zero or more arguments may be supplied. If no arguments are given, help will prompt for
one.

The arguments may be either message numbers (which nonnally appear in parentheses following mes­
sages) or command names, of one of the following types:

Type 1 Begins with non-numerics, ends in numerics. The non-numeric prefix is usually
an abbreviation for the program or set of routines which produced the message
(for example, ge6, for message 6 from the get command).

Type 2

Type 3

Does not contain numerics (as a command, such as get)

Is all numeric (for example, 212)

The response of the program will be the explanatory information related to the argument, if there is
any.

When all else fails, try "help stuck".

lusr/lib/help

lusr/lib/help/helploc

Directory containing files of message text.

File containing locations of help files not in lusr/lib/help.

SEE ALSO

man(l)

SR-2011 1 Release 2.0

HOSTID(l) (TCP lIP Network) HOSTID(l)

NAME

hostid - Sets or prints identifier of current host system

SYNOPSIS

hostid [identifier]

DESCRIPTION

The hostid command sets or prints the identifier of the current host in hexadecimal. By default, the
value of identifier is O. This numeric value is expected to be unique across all hosts and is normally set
to the host's Internet address. The super user can set the identifier by giving a hexadecimal argument;
this is usually done in the startup script letclrcl.net.

SEE ALSO

SR-2011

gethostid(3W), setbostid(3W) in the CRAY-2 UNICOS Libraries, Macros and Opdefs Reference Manual,
publication SR-2013

1 Release 2.0

HOSTNAME (1) (TCP lIP Network) HOSTNAME(1)

NAME

hostname - Prints the name of current host system

SYNOPSIS

hostname [nameofhost]

DESCRIPTION

The hostname command prints the name of the current host. A user with super user privileges can set
the host name by giving an argument to hostname.

SEE ALSO

gethostname(2), sethostname(2) in the UNICOS System Calls Reference Manual, publication SR-2012

SR-2011 1 Release 2.0

ID(1)

NAME

id - Prints user and group IDs

SYNOPSIS

id

DESCRIPTION

ID(l)

The id command writes a message on the standard output giving the user and group IDs and the
corresponding names of the invoking process. If the effective and real IDs do not match, both are
printed.

FILES

fetc/passwd
fete/group

SEE ALSO

logname(l)
getuid(2) in the UNICOS System Calls Reference Manual, pUblication SR-2012

SR-2011 1 Release 2.0

JAD(l) (CRA Y -2 computer systems only) JAD(l)

NAME

jad - Job accounting daemon

SYNOPSIS

jad

DESCRIPTION

BUGS

The jad daemon collects selected accounting records from the system accounting file (/usr/adm/pacct)
and writes them to a job/session-related accounting file. The selection is done upon the job ID of the
calling process. Data collection is done in the background.

The jad daemon creates three files in the users HOME directory. Their names are generated using the
job ID, thus they are unique. The jad command creates the following files :

.<job id>.prot: job accounting file

.<job id>.prec: jad input pipe (for synchronization)

.<job id>.psnd: jad output pipe (for synchronization)

Upon nonnal tennination (SIGTERM or SIGHUP) jad removes all its files. However, files may not
get deleted immediately upon non-normal termination of jad.

During initialization jad removes old jad files (see above) in the HOME directory of the calling user.

If jad is started from a batch process, it is not notified about the tennination of the batch job, thus it is
the user's responsibility to terminate jad (see jar(l)).

Until the job ID concept has been implemented in UNICOS, jad will use the process group ID instead of
the job ID.

SEE ALSO

SR-2011

jar(l), kill(1), HOME variable in sh(l)
signa1(2)

1 Release 2.0

JAR(l) (CRA Y -2 computer systems only) JAR(l)

NAME

jar - Provides job accounting infonnation

SYNOPSIS

jar [-acdfhlmst] [-I file [-G gid] [-U uid] [-J job id]]

DESCRIPTION

SR-2011

The jar command provides infonnation about job/session-related accounting information. Upon normal
operation (-I not specified) input is taken from the job accounting file provided by jad(l). Due to the
asynchronous operation of the jad command, a synchronization has to take place to ensure that the
job/session accounting file holds current information. If you specify -I ,jar takes input from the given
file and no synchronization with jad(1) is performed.

Ther jar command can produce three kinds of reports by specifying different options (described below):

-a Same as specifying ~hs together.

~ Produces the command statistics report.

-d Provides information about device-specific 110 (if available); this results in multiple lines per
command, if ~ is set also.

-f Produces the process flow chart report

-h Precedes each report with a header.

-I Provides addition information for the command statistics and the process flow chart reports.

-m If you specify this in addition to ~, the output includes a user CPU time breakdown for I,
2,3, and 4 that are running parallel.

-s Produces the summary statistics report. This is default (with a header) if you do not specify
a report type.

-t Sends a termination request to jad. Other options are ignored and jad does not produce a
report.

-I file Takes input from the given file and performs no synchronization with jad. If you specify
this option, see the -GUJ options.

-G gid Provides the group ID.

-U uid Provides the user ID.

-J job id Provides th job ID. During nonnaI operation -GUJ are ignored.

The following infonnation may be output from jar:

Command statistics per process (~):

Command name (first 8 characters)
Starting time as hh:mm:ss
CPU time spent in user mode in seconds (4 fields if -m)
CPU time spent in system mode in seconds
I/O wait time in seconds
Elapsed time in seconds
Average execution-memory size in MegaWords (-I only)
Average I/O-wait-memory size in MegaWords (-I only)
No. of MegaBytes transfered (-I only)
No. of logical I/O requests (-I only)

1 Release 2.0

JAR(1)

BUGS

(CRA Y -2 computer systems only)

No. of real I/O requests (-I only)
Exit status (-I only)
Nice value (-I only)
Accounting Flags (-I only)
System Billing Units (SBUs)

JAR(l)

Device I/O breakdown (-d only); one line per major device number; each line gives the no. of
bytes transfered and the the number of logical I/O requests.

Process Flow Chart (-0
Relations between processes
SBUs (-I only)

Summary statistics (-s):
Input file name (-I only)
Selective gid (-G only)
Selective uid (-U only)
System identification
Job name (from NQS-supplied SUBMIT_REQNAME environment variable)
UserID
Group ID
Accounting ID Name
JobID
Least recent command starting time
Most recent command ending time
Accumulated CPU time in user mode
Accumulated CPU time in system mode
Accumulated CPU time for 1,2,3 and 4 CPUs (for multitasked processes)
Average CPU usage (for multitasked processes)
Accumulated I/O wait time
Total elapsed time
CPU time memory integral
I/O wait time memory integral
Accumulated MegaBytes transferred
Accumulated logical I/O requests
Accumulated real 110 requests
Number of commands
System Billing Units

Until the job id concept has been implemented in UNICOS, jad will use the process group id instead of
the job id.

SEE ALSO

acctcom(1)jad(1),sh(l)

Release 2.0 2 SR-2011

lOIN(l) lOIN(l)

NAME

join - Joins specified lines of files

SYNOPSIS

join [options] filel file2

DESCRIPTION

Join forms, on the standard output, a join of the two relations specified by the lines of file} and file2 .
If filel is -, the standard input is used.

File} and file2 must be sorted in increasing ASCII collating sequence on the fields on which they are to
be joined, normally the first in each line.

There is one line in the output for each pair of lines in filel and file2 that have identical join fields.
The output line normally consists of the common field, then the rest of the line from filel , then the rest
of the line from file2 .

The default input field separators are blank, tab, or new-line. In this case, multiple separators count as
one field separator, and leading separators are ignored. The default output field separator is a blank.

Some of the below options use the argument n. This argument should be a 1 or a 2 referring to either
filel or file2, respectively. The following options are recognized:

-an In addition to the normal output, produce a line for each unpairable line in file n, where n is 1
or 2.

-e s Replace empty output fields by string s.

-jn m Join on the mth field of file n. If n is missing, use the mth field in each file. Fields are num-
bered starting with 1.

-0 list Each output line comprises the fields specified in list, each element of which has the form n.m,
where n is a file number and m is a field number. The common field is not printed unless
specifically requested.

-tc Use character c as a separator (tab character). Every appearance of c in a line is significant.
The character c is used as the field separator for both input and output.

EXAMPLE

BUGS

The following command line joins the password file and the group file, matching on the numeric group
ID, and outputting the login name, the group name and the login directory. It is assumed that the files
have been sorted in ASCII collating sequence on the group ID fields.

join -jl 4 -j2 3 -0 1.1 2.1 1.6 -t /etc/passwd fete/group

With default field separation, the collating sequence is that of sort -b; with -t, the sequence is that of a
plain sort.

The conventions of join, sort, comm, and uniq are wildly incongruous.

File names that are numeric may cause conflict when the -0 option is used right before listing file
names.

SEE ALSO

eomm(l), sort(1), uniq(l)

SR-2011 1 Release 2.0

KILL (1) KILL(l)

NAME

kill - Terminates a process

SYNOPSIS

kill [-signo] PID .•.

DESCRIPTION

NOTE

Kill sends signal 15 (terminate) to the specified processes. This will normally kill processes that do not
catch or ignore the signal. The process number of each asynchronous process started with & is
reported by the shell (unless more than one process is started in a pipeline, in which case the number of
the last process in the pipeline is reported). Process numbers can also be found by using ps(I).

The details of the kill process are described in kill(2). For example, if process number 0 is specified,
all processes in the process group are signaled.

The process to be killed must belong to the current user; the super user can kill any process.

If a signal number preceded by - is given as first argument, that signal is sent instead of the terminate
signal (see signal(2)). In particular, "kill -9 PID" is a kill signal that cannot be caught or ignored.

The csh(1) command has a built-in kill command with slightly different characteristics. See csh(I).

SEE ALSO

ps(l), sh(1)
kill(2), signal(2) in the UNICOS System Calls Reference Manual, publication SR-2012

SR-2011 1 Release 2.0

LAST(l) (CRAY X-MP and CRAY-l computer systems only) LAST(l)

NAME

last - Indicates the last logins of users and teletypes

SYNOPSIS

last [num] [name ...] [tty ...]

DESCRIPTION

The last command looks in the wtmp file, which records all logins and logouts, for information about a
user, a teletype, or any group of users and teletypes. Arguments specify names of users or teletypes of
interest. Names of teletypes can be given fully or abbreviated. For example, last 0 is the same as last
ttyO. If you specify multiple arguments, last prints the infonnation applying to any of the arguments.
The last command prints the sessions of the specified users and teletypes, most recent first, indicating
the times at which the session began, the duration of the session, and the teletype on which the session
took place. If the session is still continuing or was cut short by a reboot, last so indicates.

If you specify num, the last command limits the report to N lines.

The pseudo-user reboot logs in at reboots of the system, thus

last reboot

gives an indication of mean time between reboots.

If last is interrupted, it indicates how far the search has progressed in wtmp. If interrupted with a quit
signal (generated by a control-\), last indicates how far the search has progressed so far, and the search
continues.

EXAMPLES

FILES

To list all of "root's" sessions as well as all sessions on the console tenninal:

last root console

To print a record of alllogins and logouts in (in reverse order), use

last

with no arguments.

/etc/wttnp Login data base

SEE ALSO

wtmp(4F)

SR-2011 1 Release 2.0

LASTCOMM (1) (CRAY X-MP and CRAY-l computer systems only) LASTCOMM (1)

NAME

lastcomm - Shows last commands executed in reverse order

SYNOPSIS

lastcomm [command name] ... [user name] ... [terminal name] ...

DESCRIPTION

The lastcomm command gives information on previously executed commands. With no arguments,
lastcomm prints information about all the commands recorded during the current accounting file's life­
time. If called with arguments, only accounting entries with a matching command name, user name, or
terminal name are printed. So, for example,

lastcomm a.out root ttyOO

would produce a listing of all the executions of commands named a.out by user root on the terminal
ttyOO, and

lastcomm root

would produce a listing of all the commands executed by user root.

For each process entry, the following are printed (in the order given).

The command name under which the process was called
The name of the user who ran the process
Flags, as accumulated by the accounting facilitites in the system
The tty name from which the command was executed
The amount of cpu time used by the process (in seconds)
The time the process exited

The flags are encoded as follows: "S" indicates the command was executed by the super-user, "F"
indicates the command ran after a fork, but without a following exec, and "M" indicates additional
accounting records were written for this process.

SEE ALSO

last(l)
acct(4F), core(4F) in the UNICOS File Formats and Special Files Reference Manual, publication SR-2014

SR-2011 1 Release 2.0

LD(l) (CRA Y -2 computer systems only) LD(1)

NAME

ld, fpld - Invokes the link editor for relocatable files

SYNOPSIS

Id [options] [files] [options with files]
fpld [options] [files] [options with files]

DESCRIPTION

SR-2011

The ld or fpld commands combine several relocatable files into one executable file. The difference
between their output files is that with fpld, the output file is intended for execution by the foreground
processor. Specifically, the foreground processor has smaller memory sizes, initialized data in a
separate memory, and has separated code and data areas. The services performed include relocating
code and data blocks, resolving external references, and writing symbol information for debugging.

With the exception of the -q option, all input files, libraries and options are processed in the order
listed. The distinction between hard and soft external references (see relo(4F») is supported; a module
is loaded from a library only if it resolves an outstanding hard external reference.

There are six character strings built into ld. First, "$start" is the default starting point for the resulting
executable. Second, any entry point with the primary entry bit set (see relo(4F») will be entered twice;
once with the specified entry name and once with the current primary entry name, which defaults to
main. The remaining four generate entry points that penn it the program and the debugger to locate
various areas within the program. These entry points are as follows:

o thru the value of "zzzzzztx" Program text

"zzzzzztx" thru "zzzzzzdt"

"zzzzzzdt" thru "zzzzzzcm"

o thru the value of "zzzzzzlm"

Initialized data blocks

Uninitialized data blocks

All allocations of local memory

Because zzzzzz symbols are added after the libraries have been searched, any user attempt to define one
of them fails.

The following options are recognized by ld family.

-a Calls the module align subroutine to cause the local code blocks from the next module to
be loaded on an instruction buffer boundary.

-A Toggles the module align flag. If the flag is one, the module align subroutine is called
before each relocatable module is processed.

-d x Uses the character string x to define a global symbol. The following four formats are possi­
ble.

--d =n2 The name n2 is entered as the second name for all symbols with the primary
entry bit set.

--d nl The name nl is entered as defined variable with value zero.

--d nl =nnn The name nl is entered as a defined variable with integer value nnn.

--d nl =n2 The name nl is entered as a variable aliased to n2.

-e name Sets the entry point address for the output file to be the address of the symbol name.

1 Release 2.0

LD(l) (CRA Y -2 computer systems only) LD(l)

-g Produces a global variable for each local block in each module. For local block "xxx" in
module "yyy", the name of the global variable is "#yyy#Xxx". The size of the block is in
the pdtecl field of the nlis_h structure where it may be accessed by future debuggers or by
the namelist library routine.

-Ix Identifies a library to be conditionally loaded. Symbol x represents a character string. If x
begins with a • or I, the library is the file named x. If x begins with any other character, the
library llib/libx.a is searched for the library file. If it is not found, the library
lusrlIiblIibx.a is then searched for the file.

-Lx Identifies a library to be conditionally loaded. The processing is as detailed above except
that the library is scanned repeatedly until no further modules in the library resolve
currently outstanding hard externals.

-m Toggles the map request flag. This flag is off at the beginning of pass 1 and pass 2. Plac­
ing a single -m as the first option gives a complete map listing on stdout. Placing a single
-m as the last option gives only the symbol listing. Using repeated -m options can pro­
duce partial maps.

-0 In Using In as the name of the output file overrides the default of a.out.

~ In Identifies an initial definition file. This file will be processed first It may be used to sup­
ply base addresses and global locations for the load step.

-r In Identifies a file name to contain a summary of the load. The -r file from one Id run may
be used as the ~ file for the next

-s Indicates that the debug symbol information is to be stripped from the end of the output
module.

-u nl Enters name nl in the symbol table as an outstanding hard external.

-6 Fortran programs can initialize common blocks more than once and can use common block
names that are the same as subroutine names. Both of these are direct violations of the
Fortran 77 standard. However, if multiple initializations are permitted for common blocks,
no common blocks will be loaded into the bss space. Thus, it is important to have the -6
option off if disk space is important. The -6 option is implemented to permit Fortran 66
programs to run.

Argument names without a preceding dash character are taken to be names of input files to
be included unconditionally.

SEE ALSO

as(1), cc(1)
relo(4F) in the UNICOS File Formats and Special Files Reference Manual, publication SR-2014

Release 2.0 2 SR-2011

LD(l) (CRAY X-MP and CRAY-l computer systems only) LD(l)

NAME

ld - Invokes the CRAY X-MP and CRAY-l link editor

SYNOPSIS

Id [-ooutfile] [-L dir] [-Ix] [-m] files ...

DESCRIPTION

FILES

Ld combines several object programs into one, resolves external references, and searches libraries. The
object file names must end in .0. In the simplest case, several object files are given; ld combines them,
producing an executable program.

Segldr(l) is used to link the object files into one executable program. A load map summary is pro­
duced in a file whose name has .map appended to outfile.

The options to ld are as follows:

-ooutfile
Override the default output file name, a.out, to be outfile.

-L dir Change the algorithm of searching for libx.a to look in the directory dir before looking in !lib
and lusrlIib. This option is only effective if it preceeds the -I option on the command line.

-h Search a library Iibx.o; x is up to nine characters. A library is searched when its name is
encountered, so the placement of the -I option is significant. By default, libraries are located
in !lib and lusr!lib.

-m Produce a load map in the file outfile.map (a.out.map by default)

file. 0

a.out
/lib/fortlib.o
/lib/libp.o
/lib/libc.o
/lib/libf.o
/lib/libm .0

/lib/libu.o
/lib/libio.o

Input object file
Executable output file
FORTRAN library
Pascal library
C library
FORTRAN library
FORTRAN math library
FORTRAN utility library
FORTRAN I/O library

MESSAGES

The error messages produced by segldr are self-explanatory. If further explanation is required, refer to
the Segment Loader (SEGLDR) Reference Manual, publication SR-0066.

SEE ALSO

as(I), cc{l), cft(1), segldr(l)

SR-2011 1 Release 2.0

LEX(l) LEX(l)

NAME

lex - Generates programs for simple lexical tasks

SYNOPSIS

lex [-rctvn] [file]

DESCRIPTION

SR-2011

Lex generates programs to be used in simple lexical analysis of text

The input files (standard input by default) contain strings and expressions to be searched for, and C text
to be executed when strings are found.

A file lex.yy.c is generated which, when loaded with the library, copies the input to the output except
when a string specified in the file is found; then the corresponding program text is executed. The actual
string matched is left in yytext, an external character array. Matching is done in order of the strings in
the file. The strings may contain square brackets to indicate character classes, as in [abx-z] to indicate
a, b, x, y, and z; and the operators *, +, and? mean respectively any non-negative number of, any
positive number of, and either zero or one occurrences of, the previous character or character class.
The character. is the class of all Ascn characters except new-line. Parentheses for grouping and verti­
cal bar for alternation are also supported. The notation r (d,e) in a rule indicates between d and e
instances of regular expression r. It has higher precedence than I, but lower than *, ?, +, and concate­
nation. The character A at the beginning of an expression permits a successful match only immediately
after a new-line, and the character $ at the end of an expression requires a trailing new-line. The char­
acter I in an expression indicates trailing context; only the part of the expression up to the slash is
returned in yytext, but the remainder of the expression must follow in the input stream. An operator
character may be used as an ordinary symbol if it is within " symbols or preceded by \. Thus
[a-zA-Z]+ matches a string of letters.

Three subroutines defined as macros are expected: inputO to read a character; unput(c) to replace a
character read; and output(c) to place an output character. They are defined in terms of the standard
streams, but you can override them. The program generated is named yylexQ, and the library contains
a mainO which calls it The action REJECT on the right side of the rule causes this match to be
rejected and the next suitable match executed; the function yymoreO accumulates additional characters
into the same yytext; and the function yyless(p) pushes back the portion of the string matched begin­
ning at p, which should be between yytext and yytext+yyleng. The macros input and output use files
yyin and yyout to read from and write to, defaulted to stdin and stdout, respectively.

Any line beginning with a blank is assumed to contain only C text and is copied; if it precedes % % it
is copied into the external definition area of the lex.yy.c file. All rules should follow a % %, as in
YACC. Lines preceding % % which begin with a non-blank character define the string on the left to be
the remainder of the line; it can be called out later by surrounding it with (). Note that curly brackets
do not imply parentheses; only string substitution is done.

The following options must appear before any files:

-r Indicates RA TFOR actions.

-c Indicates C actions and is the default.

-t Causes the lex.yy.c program to be written instead to standard output

-v Provides a one-line summary of statistics of the machine generated.

-n Will not print out the - summary.

Multiple files are treated as a single file. If no files are specified, standard input is used.

1 Release 2.0

LEX(l)

Certain table sizes for the resulting finite state machine can be set in the definitions section:

% p n number of positions is n (default 2000)

%0 n number of states is n (500)

% t n number of parse tree nodes is n (1 (00)

% a n number of transitions is n (3000)

LEX(I)

The use of one or more of the above automatically implies the -v option, unless the -0 option is used.

EXAMPLE

D
%%
if
[a-z] +
O{D}+
{D}+
It++"
It+It

It/*It

[0-9]

printf(ltlF statement\nlt);
printf(lttag, value %s\nlt,yytext);
printf(ltoctal number %s\nlt,yytext);
printf(It decimal number %s\n It ,yytext);
printf(ltunary op\nlt);
printf(ltbinary .op\n It);
{ loop:

while (inputO != '*');
switch (inputO)

{
case '1': break;
case '*': unput('*');
default: go to loop;
}

The external names generated by lex all begin with the prefix yy or YY.

LIMITATIONS

RATFOR is not supported on Cray systems.

SEE ALSO

yacc(l)
The UNICOS Support Tools Guide, pUblication SG-2016.

Release 2.0 2 SR-2011

LINE (1) LINE(l)

NAME

line - Reads one line

SYNOPSIS

line

DESCRIPTION

Line copies one line (up to a new-line) from the standard input and writes it on the standard output. It
returns an exit code of 1 on EOF and always prints at least a new-line character. It is often used within
shell files to read from the user's terminal.

SEE ALSO

sh(l)
read(2) in the UNICOS System Calls Reference Manual, publication SR-2012

SR-2011 1 Release 2.0

UNT(1) LINT(l)

NAME

lint - Invokes a C program checker

SYNOPSIS

lint [-abhlnpuvx] file

DESCRIPTION

SR-2011

Lint attempts to detect features of the C program files that are likely to be bugs, non-portable, or waste­
ful. It also checks type usage more strictly than the compilers. The following are currently detected:
unreachable statements, loops not entered at the top, automatic variables declared and not used, and log­
ical expressions whose value is constant. Moreover, the usage of functions is checked to find functions
which return values in some places and not in others, functions called with varying numbers of argu­
ments, and functions whose values are not used.

It is assumed that all the files are to be loaded together; they are checked for mutual compatibility. By
default, lint uses function definitions from the standard lint library llib-Ic.ln; function definitions from
the portable lint library llib-port.ln are used when lint is invoked with the -p option.

Any number of lint options may be used, in any order. The following options are used to suppress cer­
tain kinds of complaints:

-a Suppress complaints about assignments of long values to variables that are not long.

-b Suppress complaints about break statements that cannot be reached. (Programs produced by
lex or yaee will often result in a large number of such complaints.)

-b Do not apply heuristic tests that attempt to intuit bugs, improve style, and reduce waste.

-u Suppress complaints about functions and external variables used and not defined, or defined
and not used. (This option is suitable for running lint on a subset of files of a larger program.)

-v Suppress complaints about unused arguments in functions.

-x Do not report variables referred to by external declarations but never used

The following arguments alter lint's behavior.

-Ix Include additional lint library llib-Ix .In. For example, you can include a lint version of th~
Math libmry Uib-Im.ln by inserting -1m on the command line. This argument does not
suppress the default use of llib-Ic.ln. This option can be used to keep local lint libraries and is
useful in the development of multi-file projects.

-n Do not check compatibility against either the standard or the portable lint library.

-p Attempt to check portability to other dialects (IBM and GCOS) of C.

The -D, -U, and -I options of ee(1) are also recognized as separate arguments.

Certain conventional comments in the C source will change the behavior of lint:

/*NOTREACHED*/ At appropriate points, stops comments about unreachable code.

/*V ARARGSn */ Suppresses the usual checking for variable numbers of arguments in the
following function declaration. The data types of the first n arguments
are checked; a missing n is taken to be O.

/*ARGSUSED*/

/*LINTLIBRARY*/

Turns on the -v option for the next function.

At the beginning of a file, shuts off complaints about unused functions in
this file.

1 Release 2.0

LINT (1) LINT(l)

FILES

BUGS

Lint produces its first output on a per source file basis. Complaints regarding included files are col­
lected and printed after all source files have been processed. Finally, information gathered from all
input files is collected and checked for consistency. At this point, if it is not clear whether a complaint
stems from a given source file or from one of its included files, the source file name will be printed fol­
lowed by a question mark.

/usr/lib/lint 1
/usr/lib/lint2
/usr/lib/llib-lc.ln
/usr/lib/lli b-port.ln
/usr/lib/llib-lm.ln

/usr/tmp/* lint*

Programs
Programs
Declarations for standard functions (binary fonnat; source is in lusrlIiblIlib-lc)
Declarations for portable functions (binary format; source is in lusrlIiblIlib-port)
Declarations for standard Math Library functions (binary format; source is in
lusr/lib/Bib-Im)
Temporary files

Exit(2) and other functions that do not return are not understood; this sometime causes incorrect
analysis.

SEE ALSO

cc(l), cpp(l)

Release 2.0 2 SR-2011

LN(l) LN(l)

NAME

In - Links files

SYNOPSIS

In [-f] filel [file2 ...] target

DESCRIPTION

The file filel is linked to target. Under no circumstance can filel and target be the same (take care
when using sh(1) metacharacters). If target is a directory, then one or more files are linked to that
directory. If target is a file, its contents are destroyed.

If In determines that the mode of target forbids writing, it will print the mode (see chmod(2», ask for a
response, and read the standard input for one line. If the line begins with y, the In occurs, if permissi­
ble; if not, the command exits. No questions are asked and the In is done when the -f option is used or
if the standard input is not a terminal.

CAVEAT

The In command does not link across file systems.

SEE ALSO

cp(l), cpio(1), mV(l), rm(l)
chmod(2) in the UNICOS System Calls Reference Manual, publication SR-2012

SR-2011 1 Release 2.0

LOGIN(l) LOGIN(l)

NAME

login - Signs on

SYNOPSIS

login [name [env-var ...]]

DESCRIPTION

SR-2011

The login command is used at the beginning of each tenninal session and lets you identify yourself to
the system. It may be invoked as a command or by the system when a connection is first established.
Also, it is invoked by the system when a previous user has tenninated the initial shell by typing a
CONlROL-D to indicate an end-of-file.

If login is invoked as a command it must replace the initial command interpreter. This is accomplished
by typing:

exec login
from the initial shell.

Login asks for your user name (if not supplied as an argument), and, if appropriate, your password.
Echoing is turned off (where possible) during the typing of your password, so it will not appear on the
written record of the session.

After a successful login, accounting files are updated, the procedure letc/profile is performed, the
message-of-the-day, if any, is printed, the user-ill, the group-ill, the working directory, and the com­
mand interpreter (usually sh(l» is initialized, and the file .profile in the working directory is executed,
if it exists. These specifications are found in the letc/passwd file entry for the user. The name of the
command interpreter is - followed by the last component of the interpreter's path name (that is, -sh).
If this field in the password file is empty, then the default command interpreter, /bin/sh, is used. If this
field is *, then a chroot(2) is perfonned to the directory named in the directory field of the entry. At
that point, login is re-executed at the new level, which must have its own root structure, including
Ibin/login and letcJpasswd.

The basic environment (see sh(l» is initialized to:

HOME=your-lo gin-directory
PATH=:/bin:/usr/bin
SHELL=last-field-of-passwd-entry
MAIL=/usr/maiVyour-login-name
LOGNAME=your-login-name

The environment may be expanded or modified by supplying additional arguments to login, either at
execution time or when login requests your login name. The arguments may take either the fonn xu
or xu=yyy. Arguments without an equal sign are placed in the environment as:

Ln=xxx
where n is a number starting at 0 and is incremented each time a new variable name is required. Vari­
ables containing an = are placed into the environment without modification. If they already appear in
the environment, then they replace the older value. There are two exceptions. The variables PATH and
SHELL cannot be changed. People logging into restricted shell environments are thus prevented from
spawning secondary shells that are not restricted.

Login understands simple single-character quoting conventions. Typing a backslash in front of a char­
acter quotes it and allows the inclusion of such characters as spaces and tabs.

1 Release 2.0

LOGIN(l) LOGIN(l)

FILES

/bin/passwd
/bin/sh
/dev/tty·
/etc/dialups
/etc/d_passwd
/etc/passwd
/etc/utmp
/etc/wtmp
/usr/mai1/$LOONAME

Program to change passwords
Standard shell
Login devices
List of devices that need a dialup password
Dialup passwords for /etc/dialups
Password file
Accounting file
Accounting file
Mailbox for account $LOGNAME

MESSAGES

Login incorrect

No shell
or
Cannot open password fIle
or
No directory
No utmp entry.

SEE ALSO

The user name or the password cannot be matched.

Account may not be set up correctly; consult a CRI site analyst.
You must execute login from the lowest level she You attempted to exe­
cute login as a command without using the shell's exec internal command
or from other than the initial shell.

mail(1), passwd(1), sh(I), su(l)
chroot(1M), getty(lM) in the UNICOS Administrator Commands Reference Manual, publication SR-2022
passwd(4F), profile(4F) in the UNICOS File Formats and Special Files Reference Manual, publication
SR-2014

Release 2.0 2 SR-2011

LOGNAME(l) LOGNAME(l)

NAME

logname - Gets login name

SYNOPSIS

iogname

DESCRIPTION

The logname command uses cuserid(3S) to find the login name of the user and prints that name on the
standard output.

SEE ALSO

SR-2011

env(l), 10gin(1), sh(1)
cuserid(3S) in the CRAY-2 UNlCOS Libraries, Macros and Opdefs Reference Manual, publication
SR-2013

1 Release 2.0

LORDER(l) (CRA Y -2 computer systems only) LORDER(l)

NAME

lorder - Finds ordering relation for an object library

SYNOPSIS

lorder file ...

DESCRIPTION

The input is one or more object files. The standard output is a list of pairs of object file names. The
first file of the pair refers to external identifiers defined in the second. The output may be processed by
tsort(l) to find an ordering of a library suitable for one-pass access by ld(l). The lorder(l) command
may allow for a more efficient access of the archive during the link edit process.

EXAMPLES

FILES

The following example builds a new library from existing .0 files.

ar cr library 'lorder * .0 I tsort'

*symdef

*symref

Temporary file

Temporary file

SEE ALSO

ar(1), Id(1), tsort(1)

SR-2011 I Release 2.0

LS(l) LS(l)

NAME

Is - Lists contents of a directory

SYNOPSIS

Is [-RadCxmlnogrtucpFbqisf] [names]

DESCRIPTION

SR-2011

For each directory argumen4 Is lists the contents of the directory; for each file argument, Is repeats its
name and any other information requested. The output is sorted alphabetically by default. When no
argument is given, the current directory is listed. When several arguments are given, the arguments are
first sorted appropriately, but file arguments appear before directories and their contents. When no
arguments are given, files are listed one per line.

There are three major listing fonnats. The default format is to list one entry per line, the -C and -x
options enable multi-column fonnats, and the -m option enables stream output format in which files are
listed across the page, separated by commas. In order to determine output formats for the -C, -x, and
-m options, Is uses an environment variable, COLUMNS, to determine the number of character posi­
tions available on one output line. If this variable is not set, the terminfo database is used to determine
the number of columns, based on the environment variable TERM. If this information cannot be
obtained, 80 columns are assumed.

The following options are available:

-R Recursively lists subdirectories encountered.

-a Lists all entries; including entries whose names begin with a period.

~ If an argument is a directory, lists only its name (not its contents); often used with -I to get
the status of a directory.

-C Multicolumn output with entries sorted down the columns.

-x Multicolumn output with entries sorted across rather than down the page.

-m Stream output format.

-I Lists in long forma4 giving mode, number of links, owner, group, size in bytes, and time of
last modification for each file (see below). If the file is a special file, the size field will instead
contain the major and minor device numbers rather than a size.

-D The same as -I, except that the owner's UID and group's GID numbers are printed, rather than
the associated character strings.

-0 The same as -I, except that the group is not printed.

-g The same as -I, except that the owner is not printed.

-r Reverses the order of sort to get reverse alphabetic or oldest first as appropriate.

-t Sorts by time modified (latest first) instead of by name.

-u Uses time of last access instead of last modification for sorting (with the -t option) or printing
(with the -I option).

-c Uses time of last modification of the i-node (file created, mode changed, etc.) for sorting (-t)
or printing (-I).

-p Puts a slash (I) after each filename if that file is a directory.

-F Puts a slash (I) after each filename if that file is a directory and put an asterisk (*) after each
filename if that file is executable.

1 Release 2.0

LS(l)

Fll.ES

BUGS

-b

-q

-i

-s

-f

Forces printing of nongraphic characters to be in the octal \ddd notation.

Forces printing of nongraphic characters in file names as the character (1).

For each file, print the i-number structure in the first column of the report.

LS(l)

For eRA Y X-MP computer systems, give size in blocks, including indirect blocks (an approxi­
mation), for each entry. For CRAY-2 computer systems, give size in sectors for each entry.

Forces each argument to be interpreted as a directory and list the name found in each slot.
This option turns off -I, -t, -s, and -r, and turns on -3; the order is the order in which entries
appear in the directory.

The mode printed under the -I option consists of 10 characters that are interpreted as follows:

The first character is:

d If the entry is a directory;
b If the entry is a block special file;
c If the entry is a character special file;
p If the entry is a fifo (named pipe) special file;

If the entry is an ordinary file.

The next 9 characters are interpreted as three sets of 3 bits each. The first set refers to the
owner's permissions; the next to permissions of others in the user-group of the file; and the last
to all others. Within each set, the three characters indicate permission to read, to write, and to
execute the file as a program, respectively. For a directory, "execute" permission is inter­
preted to mean permission to search the directory for a specified file.

The permissions are indicated as follows:

r If the file is readable;
w If the file is writable;
x If the file is executable;

If the indicated permission is not granted.

The group-execute permission character is given as s if the file has set-group-ID mode; like­
wise, the user-execute permission character is given as s if the file has set-user-ID mode. The
indication of set-ID is capitalized (S) if the corresponding execute permission is not set.

When the sizes of the files in a directory are listed, a total count of blocks, including indirect blocks, is
printed.

/etc/passwd
/etc/group

Contains user IDs for Is -I and Is -0 •

Contains group IDs for Is -I and Is -g •

Unprintable characters in file names may confuse the columnar output options.

SEE ALSO

chmod(l), find(l)

Release 2.0 2 SR-2011

M4(1) M4(1)

NAME

m4 - Invokes a macro processor

SYNOPSIS

m4 [options] [files]

DESCRIPTION

SR-2011

The M4 command invokes a macro processor intended for use as a general-purpose front end for any
programming language. Each of the argument files is processed in order; if there are no files, or if a
file name is -, the standard input is reac!. The processed text is written on the standard output.

The options and their effects are as follows:

-e Operate interactively. Interrupts are ignored and the output is unbuffered. Using this mode
requires a special state of mind.

-s Enable line sync output for the C preprocessor (Iline ...)

-Bint Change the size of the push-back and argument collection buffers from the default of 4,096.

-Hint Change the size of the symbol table hash array from the default of 199. The size should be
prime.

-Sint Change the size of the call stack from the default of 100 slots. Macros take three slots, and
non-macro arguments take one.

-Tint Change the size of the token buffer from the default of 512 bytes.

To be effective, these flags must appear before any file names and before any -D or -U flags:

-Dname [=val]
Defines name to valor to null in val's absence.

-Uname
undefines name.

Macro calls have the fonn:

name(argl,arg2, ... , argn)

The (must immediately follow the name of the macro. If the name of a defined macro is not followed
by a (, it is deemed to be a call of that macro with no arguments. Potential macro names consist of
alphabetic letters, digits, and underscore _, where the first character is not a digit.

Leading unquoted blanks, tabs, and new-lines are ignored while collecting arguments. Left single
quotes (grave accent, ascii 96) and right single quotes are used to quote strings. The value of a quoted
string is the string stripped of the quotes.

When a macro name is recognized, its arguments are collected by searching for a matching right
parenthesis. If fewer arguments are supplied than are in the macro definition, the trailing arguments are
taken to be null. Macro evaluation proceeds normally during the collection of the arguments, and any
commas or right parentheses which happen to turn up within the value of a nested call are as effective
as those in the original input text. After argument collection, the value of the macro is pushed back
onto the input stream and rescanned.

M4 makes available the following built-in macros. They may be redefined, but once this is done the
original meaning is lost. Their values are null unless otherwise stated.

define The second argument is installed as the value of the macro whose name is the first argu­
ment. Each occurrence of $n in the replacement text, where n is a digit, is replaced by
the n-th argument. Argument 0 is the name of the macro; missing arguments are

1 Release 2.0

M4(1)

undefme

defn

pushdef

popdef

ifdef

shift

M4(1)

replaced by the null string; $# is replaced by the number of arguments; $* is replaced by
a list of all the arguments separated by commas; $@ is like $*, but each argument is
quoted (with the current quotes).

Removes the definition of the macro named in its argument.

Returns the quoted definition of its arguments. It is useful for renaming macros, espe­
cially built-ins.

Like define, but saves any previous definition.

Removes current definition of its arguments, exposing the previous one if any.

If the first argument is defined, the value is the second argument, otherwise the third. If
there is no third argument, the value is null. The words unix and CRA Y are predefined
on all UNICOS systems. Additionally, one of the words CRA Y2, CRA YI, or CRA YXMP
is predefined.

Returns all but its first argument. The other arguments are quoted and pushed back with
commas in between. The quoting nullifies the effect of the extra scan that will subse­
quently be performed.

changequote Change quote symbols to the first and second arguments. The symbols may be up to five
characters long. Changequote without arguments restores the original values (that is,
... ').

changecom Change left and right comment markers from the default I and new-line. With no argu­
ments, the comment mechanism is effectively disabled. With one argument, the left
marker becomes the argument and the right marker becomes new-line. With two argu­
ments, both markers are affected. Comment markers may be up to five characters long.

divert M4 maintains 10 output streams, numbered 0-9. The final output is the concatenation of
the streams in numerical order; initially stream 0 is the current stream. The divert macro
changes the current output stream to its (digit-string) argument. Output diverted to a
stream other than 0 through 9 is discarded.

undivert Causes immediate output of text from diversions named as arguments, or all diversions if
no argument. Text may be undiverted into another diversion. Undiverting discards the
di verted text.

divnum Returns the value of the current output stream.

dnl Reads and discards characters up to and including the next new-line.

ifelse Has three or more arguments. If the first argument is the same string as the second, then
the value is the third argument. If not, and if there are more than four arguments, the
process is repeated with arguments 4, 5, 6 and 7. Otherwise, the value is either the
fourth string, or, if it is not present, null.

incr Returns the value of its argument incremented by 1. The value of the argument is calcu­
lated by interpreting an initial digit-string as a decimal number.

deer Returns the value of its argument decremented by 1.

eval Evaluates its argument as an arithmetic expression, using 32-bit arithmetic. Operators
include +, -, *, I, %, A (exponentiation), bitwise &, /, A, and -; relationals; parentheses.
Octal and hex numbers may be specified as in C. The second argument specifies the
radix for the result; the default is 10. The third argument may be used to specify the
minimum number of digits in the result.

len Returns the number of characters in its argument

index Returns the position in its first argument where the second argument begins (zero origin),
or -1 if the second argument does not occur.

Release 2.0 2 SR-2011

M4(1)

substr

translit

include

sinclude

syscmd

sysval

maketemp

m4exit

m4wrap

errprint

dumpdef

traceon

traceoff

SEE ALSO

cc{l), cpp{l)

M4(1)

Returns a substring of its first argument The second argument is a zero origin number
selecting the first character; the third argument indicates the length of the substring. A
missing third argument is taken to be large enough to extend to the end of the first string.

Transliterates the characters in its first argument from the set given by the second argu­
ment to the set given by the third. No abbreviations are permitted.

Returns the contents of the file named in the argument

Identical to include, except that it says nothing if the file is inaccessible.

Executes the UNICOS command given in the first argument. No value is returned.

Return code from the last call to syscmd.

Fills in a string of:XXXXX in its argument with the current process ID.

Causes immediate exit from m4. Argument 1, if given, is the exit code; the default is O.

Argument 1 will be pushed back at final EOF; example: m4wrap(' cleanup()')

Prints its argument on the diagnostic output file.

Prints current names and definitions, for the named items, or for all if no arguments are
given.

With no arguments, turns on tracing for all macros (including built-ins). Otherwise, turns
on tracing for named macros.

Turns off trace globally and for any macros specified. Macros specifically traced by tra­
ceon can be untraced only by specific calls to traceo/!.

UNICOS Support Tools Guide, publication SG-2016

SR-2011 3 Release 2.0

MACHID(l) MACHID(l)

NAME

crayl, cray2, crayxmp, pdp I I, u370, u3b, u3b5, vax - Provides truth value about processor type

SYNOPSIS

erayl

eray2

erayxmp

pdpll

u370

u3b

u3bS

vax

DESCRIPTION

The following commands will return a true value (exit code of 0) if you are on a processor that the
command name indicates.

pdp11 True if you are on a PDP-Il/4S or PDP-I InO.

u3b True if you are on a 3B20S.

vax True if you are on a VAX-llnSO or VAX-lIngO.

u370 True if you are on a UNIX/370 System.

u3bS True if you are on a 3BS System.

eray1 True if you are on a CRAY-I Computer System with an I/O Subsystem.

eray2 True if you are on a CRA Y -2 Computer System.

erayxmp True if you are on a CRAY X-MP Computer System.

The commands that do not apply will return a false (non-zero) value. These commands are often used
within make (I) makefiles and shell procedures to increase portability.

SEE ALSO

sh(1), test(l), true(l)

SR-2011 1 Release 2.0

MAIL(l) MAIL(l)

NAME

mail, nnail - Lets you send or read mail

SYNOPSIS

mail [-epqr] [-I file]

mail [-t] persons

rmail [-t] persons

DESCRIPTION

SR-2011

The mail command without arguments prints a user's mail, message by message, in last-in, first-out
order. For each message, the user is prompted with a ?, and a line is read from the standard input to
determine the disposition of the message. The following commands are recognized:

<new-line>
+
d
p

Go on to next message.
Same as <new-line>.
Delete message and go on to next message.
Print message again.
Go back to previous message.
Save message in the named files (mbox is default). s [files]

W [files]
m [persons]
q

Save message, without its header, in the named files (mbox is default).
Mail the message to the named persons (yourself is default).

EOT <control-D>
Put undeleted mail back in the mail file (/usrlspool/$LOGNAME) and stop.
Same as q.

x Put all mail back unchanged in the mail file (lusrlspooV$LOGNAME) and
stop.

!command Escape to the shell to execute command.
* Print a command summary.

The optional arguments alter the printing of the mail:

-e causes mail not to be printed. An exit value of 0 is returned if the user has mail; otherwise, an
exit value of 1 is returned.

-p causes all mail to be printed without prompting for disposition.
-q causes mail to terminate after interrupts. Normally an interrupt only causes the termination of

the message being printed.
-r causes messages to be printed in first-in, first-out order.
-fjile causes mail to use file (such as mbox) instead of the default mail file.

-t Causes the message to be preceded by all persons the mail is sent to. Person is usually a user
name recognized by login(1). If a person being sent mail is not recognized, or if mail is inter­
rupted during input, the file $HOMFidead.letter will be saved to allow editing and resending.
This is a temporary file in that it is recreated each time it is needed, erasing the previous con­
tents of dead.Ietter • When persons are named, mail takes the standard input up to an end-of­
file (or up to a line consisting of just a .) and adds it to each person's mailfile. The message is
preceded by the sender's name and a postmark. Lines that look like postmarks in the message,
(that is, "From ... ") are preceded with a >.

1 Release 2.0

MAll..(l) MAIL(I)

FILES

BUGS

The mailfile may be manipulated in two ways to alter the function of mail. The other permissions of
the file may be read-write, read-only, or neither read nor write to allow different levels of privacy. If
changed to other than the default, the file will be preserved even when empty to perpetuate the desired
permissions. The file may also contain the first line:

Forward to person

which will cause all mail sent to the owner of themailfiletobeforwardedtoperson.This is especially
useful to forward all of a person's mail to one machine in a multiple machine environment In order
for forwarding to work properly, the mailfile should have "mail" as group ID and the group permission
should be read-write.

Rmail only permits the sending of mail.

When a user logs in, the presence of mail, if any, is indicated. Also, notification is made if new mail
arrives while using mail ..

/etc/passwd
/usr/maiV user
$HOME/mbox
/tmp/ma*
/usr/maiV* .lock
$HOME/dead.letter

To identify sender and locate home directory of user
Incoming mail for user; that is, the mailfile
Saved mail
Temporary file
Lock for mail directory
Unmailable text

Race conditions sometimes result in a failure to remove a lock file.

After an interrupt, the next message may not be printed; printing may be forced by typing a p.

SEE ALSO

login(l), write(l)

Release 2.0 2 SR-2011

MAILX(l) MAILX(l)

NAME

mailx - Electronic message processing system

SYNOPSIS

mailx [-deFHinNU] [-f filename] [-b number] [-r address] [-s subject]
[-u user] [name ...]

DESCRIPTION

SR-2011

Themailxcommandinvokesanelectronicmailsystem.Whenreadingmail.mailx lets you save.
delete. and respond to messages. When sending mail, mailx lets you edit. review. and perform other
modifications to the message as you enter them.

Mailx stores incoming mail in a standard file for each user. called the system mailbox for that user.
When you call mailx to read messages. the mailbox is the default place to find them. As mailx reads
messages. it marks them to be moved to a secondary file for storage, unless you specify that you want
something else done with them. This secondary file is called the mbox and is normally located in the
user's HOME directory (see MBOX in the (ENVIRONMENT VARIABLES section) for a description of
this file). Messages remain in this file until you remove them.

Any arguments to options are assumed to be destinations (or recipients). If you do not specify reci­
pients. mailx attempts to read messages from the system mailbox. The following command line options
are available:

-d Turns on debugging output. Neither particularly interesting nor recommended.

-e Tests for presence of mail. M ailx prints nothing and exits with a successful return
code if there is mail to read.

-f ffilename] Reads messages from filename instead of mailbox. If no filename is specified. the
mbox is used.

-F Records the message in a file named after the first recipient. Overrides the record
variable. if set (see the ENVIRONMENT VARIABLES subsection).

-h number The number of network "hops" made so far. This is provided for network software to
avoid infinite delivery loops.

-H Prints header summary only.

-i Ignores interrupts. See also ignore in the ENVIRONMENT VARIABLES subsection.

-n Does not initialize from the system default Mailx.rc file.

-N Does not print initial header summary.

-r address Passes address to network delivery software. All tilde commands are disabled.

-s subject Sets the Subject header field to subject.

-u user Reads user' s mailbox. This is only effective if user' s mailbox is not read protected.

-U Converts uucp style addresses to internet standards. Overrides the cony environment
variable.

When reading mail. mailx is in command mfJde. A header summary of the first several messages is
displayed. followed by a prompt indicating mailx can accept regular commands (see the COMMANDS
subsection). When sending mail. mailx is in input mode. If you do not specify a subject on the com­
mand line. a prompt for the subject is printed. As you type the message. mailx reads the message and
stores it in a temporary file. You can enter commands by beginning a line with the tilde r) escape
character followed by a single command letter and optional arguments. See TILDE ESCAPES subsection

1 Release 2.0

MAILX(I) MAILX(I)

for a summary of these commands.

At any time, mailx's behavior is governed by a set of environment variables. These are flags and
valued parameters that are set and cleared using the set and unset commands. See the ENVIRONMENT
VARIABLES subsection for a summary of these parameters.

Recipients listed on the command line may be of three types: login names, shell commands, or alias
groups. Login names may be any network address, including mixed network addressing. If the reci­
pient name begins with a pipe symbol (I), the rest of the name is taken to be a shell command to pipe
the message through. This provides an automatic interface with any program that reads the standard
input, such as lp(l) for recording outgoing mail on paper. Alias groups are set by the alias command
(see the COMMANDS subsection) and are lists of recipients of any type.

Regular commands are of the fonn:

[command] [msglist] [arguments]

If you do not specify a command in command mode, print is assumed. In input mode, commands are
recognized by the escape character, and lines not treated as commands are taken as input for the mes­
sage.

Each message is assigned a sequential number, and at any time the notion exists of a 'current' message,
marked by a '>' in the header summary. Many commands take an optional list of messages (msglist) to
operate 011, which defaults to the current message. A msglist is a list of message specifications
separated by spaces, which may include:

D Message number D.

$

•
D-m

user

Istring

:c

The current message.

The first undeleted message.

The last message.

All messages .

An inclusive range of message numbers.

All messages from user.

All messages with string in the subject line (case ignored).

All messages of type c, where c is one of:

d Deleted messages

n New messages

0 Old messages

r Read messages

u Unread messages
Note that the context of the command determines whether this type of message specification
makes sense.

Other arguments are usually arbitrary strings whose usage depends on the command involved. File
names, where expected, are expanded via the normal shell conventions (see sh(l». Special characters
are recognized by certain commands and are documented with the commands below.

At start-up time, mailx reads commands from a system-wide file (/usr/lib/mailxlmaiIx.rc) to initialize
certain parameters, then from a private start-up file ($HOMEI.mailrc) for personalized variables. Most
regular commands are legal inside start-up files, the most common use being to set up initial display
options and alias lists. The following commands are not legal in the start-up file: !, Copy, edit, rol­
lowup, Followup, hold, mail, preserve, reply, Reply, shell, and visual. Any errors in the start-up file

Release 2.0 2 SR-2011

MAILX(l) MAILX(l)

cause the remaining lines in the file to be ignored.

COMMANDS

SR-2011

The following is a complete list of mailx commands:

!shell-command
Escapes to the shell. See SHELL in the ENVIRONMENT VARIABLES subsection.

comment
Null command (comment). This may be useful in .mailrc files.

=
Prints the current message number.

?
Prints a summary of commands.

alias alias name .. .
group alias name .. .

Declares an alias for the given names. The names will be substituted when alias is used as a
recipient. Useful in the .mailrc file.

alternates name ...
Declares a list of alternate names for your login. When responding to a message, these names
are removed from the list of recipients for the response. With no arguments, alternates prints
the current list of alternate names. See also aHnet in the ENVIRONMENT VARIABLES subsec­
tion.

cd [directory]
chdir [directory]

Changes directory. If directory is not specified, $HOME is used.

copy rJilename]
copy [msglist] filename

Copies messages to the file without marking the messages as saved. Otherwise equivalent to
the save command.

Copy [msglist]
Saves the specified messages in a file whose name is derived from the author of the message to
be saved, without marking the messages as saved. Otherwise equivalent to the Save command.

delete [msglist]
Deletes messages from the mailbox. If autoprint is set, the next message after the last one
deleted is printed (see the ENVIRONMENT VARIABLES subsection).

discard [header-field ...]
ignore [header-field ...]

Suppresses printing of the specified header fields when displaying messages on the screen.
Examples of header fields to ignore are "status" and "cc." The fields are included when the
message is saved. The Print and Type commands override this command.

3 Release 2.0

MAILX(l) MAILX(l)

dp [msglist]
dt [msglist]

Deletes the specified messages from the mailbox and prints the next message after the last one
deleted. Roughly equivalent to a delete command followed by a print command.

echo string ...
Echos the given strings (like echo(l)).

edit [msglist]

exit
xit

Edits the given messages. The messages are placed in a temporary file and the EDITOR vari­
able is used to get the name of the editor (see the ENVIRONMENT VARIABLES subsection).
Default editor is ed(1).

Exits from mailx, without changing the mailbox. No messages are saved in the mbox (see also
quit).

file [filename]
folder [filename]

Quits from the current file of messages and reads in the specified file. Several special charac­
ters are recognized when used as file names, with the following substitutions:

% The current mailbox.
%user The mailbox for user.
The previous file.
& The current mbox.

The default file is the current mailbox.

folders
Prints the names of the files in the directory set by the folder variable (see the ENVIRONMENT
VARIABLES subsection).

followup [message]
Responds to a message, recording the response in a file whose name is derived from the author
of the message. Overrides the record variable, if set. See also the Followup, Save, and Copy
commands and outfolder in the ENVIRONMENT VARIABLES subsection.

Followup [msglist]
Responds to the first message in the msglist, sending the message to the author of each mes­
sage in the msglist. The subject line is taken from the first message and the response is
recorded in a file whose name is derived from the author of the first message. See also the fol­
lowup, Save, and Copy commands and outfolder in the ENVIRONMENT VARIABLES subsec­
tion.

from [msglist]
Prints the header summary for the specified messages.

group alias name .. .
alias alias name .. .

Release 2.0

Declares an alias for the given names. The names will be substituted when alias is used as a
recipient. Useful in the .mailrc file.

4 SR-2011

MAILX(l) MAILX(l)

SR-2011

headers [message]

help

Prints the page of headers that includes the message specified. The screen variable sets the
number of headers per page (see the ENVIRONMENT VARIABLES subsection). See also the z
command.

Prints a summary of commands.

bold [msglist]
preserve [msglist]

Holds the specified messages in the mailbox.

if sir
mail-commands
else
mail-commands
endif

Conditional execution, where s executes following mail-commands, up to an else or endif, if
the program is in send mode, and r causes the mail-commands to be executed only in receive
mode. Useful in the .mailrc file.

ignore header-field .. .
discard header-field .. .

list

Suppresses printing of the specified header fields when displaying messages on the screen.
Examples of header fields to ignore are "status" and "cc." All fields are included when the
message is saved. The Print and Type commands override this command.

Prints all commands available. No explanation is given.

mail name ...
Mails a message to the specified users.

mbox [msglist]
Arranges for the given messages to end up in the standard mbox save file when mailx ter­
minates normally. See MBOX in the ENVIRONMENT VARIABLES subsection for a description
of this file. See also the exit and quit commands.

next [message]
Goes to next message matching message. A msglist may be specified, but in this case the first
valid message in the list is the only one used. This is useful for jumping to the next message
from a specific user, since the name would be taken as a command in the absence of a real
command. See the discussion of msglists above for a description of possible message
specifications.

pipe [msglist] [shell-command]
I [msglist] [shell-command]

Pipes the message through the given shell-command. The message is treated as if it were read.
If no arguments are given, the current message is piped through the command specified by the
value of the cmd variable. If the page variable is set, a form feed character is inserted after
each message (see the ENVIRONMENT VARIABLES subsection).

5 Release 2.0

MAILX(I) MAILX(l)

preserve [msglist]
bold [msglist]

Preserves the specified messages in the mailbox.

Print [msglist]
Type [msglist]

Prints the specified messages on the screen, including all header fields. Overrides suppression
of fields by the ignore command.

print [msglist]
type [msglist]

quit

Prints the specified messages. If "crt" is set, the messages longer than the number of lines
specified by the "crt" variable are paged through the command specified by the PAGER vari­
able. The default command is pg(l) in the ENVIRONMENT VARIABLES subsection.

Exits from mailx, storing messages that were read in mbox and unread messages in the mail­
box. Messages that have been explicitly saved in a file are deleted.

Reply [msglist]
Respond [msglist]

Sends a response to the author of each message in the msglist. The subject line is taken from
the first message. If record is set to a filename, the response is saved at the end of that file
(see the ENVIRONMENT VARIABLES subsection).

reply [message]
respond [message]

Replies to the specified message, including all other recipients of the message. If record is set
to a filename, the response is saved at the end of that file (see the ENVIRONMENT VARIABLES
subsection).

Save [msglist]
Saves the specified messages in a file whose name is derived from the author of the first mes­
sage. The name of the file is taken to be the author's name with all network addressing
stripped off. See also the Copy, followup, and Followup commands and outfolder in the
ENVIRONMENT VARIABLES subsection.

save [filename]
save [msglist] filename

set

Saves the specified messages in the given file. The file is created if it does not exist. The
message is deleted from the mailbox when mailx terminates unless keepsave is set (see in the
ENVIRONMENT VARIABLES subsection and the exit and quit commands).

set name
set name=string
set name=number

Release 2.0

Defines a variable called name. The variable may be given a null, string, or numeric value.
Set by itself prints all defined variables and their values. See the ENVIRONMENT VARIABLES
subsection for detailed descriptions of the mailx variables.

6 SR-2011

MAILX(l) MAILX(l)

SR-2011

shell
Invokes an interactive shell (see SHELL in the ENVIRONMENT VARIABLES subsection).

size [msglist]
Prints the size in characters of the specified messages.

source filename
Reads commands from the given file and returns to command mode.

top [msglist]
Prints the top few lines of the specified messages. If the top lines variable is set, it is taken as
the number of lines to print (see in the ENVIRONMENT VARIABLES subsection). The default
is 5.

touch [msglist]
Touches the specified messages. If any message in msglist is not specifically saved in a file, it
will be placed in the mbox upon normal termination. See exit and quit.

Type [msglist]
Print [msglist]

Prints the specified messages on the screen, including all header fields. Overrides suppression
of fields by the ignore command.

type [msglist]
print [msglist]

Prints the specified messages. If "crt" is set, the messages longer than the number of lines
specified by the "crt" variable are paged through the command specified by the PAGER vari­
able. The default command is pg(1) in the ENVIRONMENT VARIABLES subsection).

undelete [msglist]
Restores the specified deleted messages. Will only restore messages deleted in the current mail
session. If autoprint is set, the last message of those restored is printed (see in the ENVIRON­
MENT VARIABLES subsection).

unset name ...

version

Causes the specified variables to be erased. If the variable was imported from the execution
environment (that is, a shell variable) then it cannot be erased.

Prints the current version and release date.

visual [msglist]
Edits the given messages with a screen editor. The messages are placed in a temporary file
and the VISUAL variable is used to get the name of the editor (see in the ENVIRONMENT
VARIABLES subsection).

write [msglist] filename
Writes the given messages on the specified file, minus the header and trailing blank line. Oth­
erwise equivalent to the save command.

7 Release 2.0

MAILX(l)

xit
exit

z[+I-]

TILDE ESCAPES

MAILX(l)

Exits from mailx, without changing the mailbox. No messages are saved in the mbox (see also
quit).

Scrolls the header display forward or backward one screen-full. The number of headers
displayed is set by the screen variable (see the ENVIRONMENT VARIABLES subsection).

The following commands may be entered only from input mode, by beginning a line with the tilde
escape character C). See escape (in the ENVIRONMENT VARIABLES subsection) for changing this spe­
cial character.

-! shell-command
Escape to the shell.

Simulate end of file (terminate message input).

-: mail-command

- _ mail-command

a

Perform the command-level request. Valid only when sending a message while reading mail.

Print a summary of tilde escapes.

Insert the autograph string Sign into the message (see the ENVIRONMENT VARIABLES subsec­
tion).

Insert the autograph string sign into the message (see the ENVIRONMENT VARIABLES subsec­
tion).

-b name ...
Add the names to the blind carbon copy (Bcc) list.

C name ...

e

Add the names to the carbon copy (Cc) list.

Read in the dead.letter file. See DEAD in the ENVIRONMENT VARIABLES subsection for a
description of this file.

Invoke the editor on the partial message. See also EDITOR in the ENVIRONMENT VARI­
ABLES subsection.

- f [msglist]

Release 2.0

Forward the specified messages. The messages are inserted into the message, without altera­
tion.

8 SR-2011

MAlLX(l) MAILX(l)

Prompt for Subject line and To, Cc, and Bcc lists. If the field is displayed with an initial
value, it may be edited as if you had just typed it.

-i string
Insert the value of the named variable into the text of the message. For example, - A is
equivalent to ,- i Sign.'

- m [msglist]

p

q

Insert the specified messages into the letter, shifting the new text to the right one tab stop.
Valid only when sending a message while reading mail.

Print the message being entered.

Quit from input mode by simulating an interrupt. If the body of the message is not null, the
partial message is saved in dead.letter. See DEAD in the ENVIRONMENT VARIABLES subsec­
tion for a description of this file.

-r filename

-< filename

- < !shell-corrunand
Read in the specified file. If the argument begins with an exclamation point (!), the rest of the
string is taken as an arbitrary shell command and is executed, with the standard output inserted
into the message.

-s string ...
Set the subject line to string.

-t name ...

v

Add the given names to the To list.

Invoke a preferred screen editor on the partial message. See also VISUAL in the ENVIRON­
MENT VARIABLES subsection.

-w filename
Write the partial message onto the given file, without the header.

x
Exit as with - q except the message is not saved in dead.Ietter.

-, shell-command
Pipe the body of the message through the given shell-command. If the shell-command returns
a successful exit status, the output of the command replaces the message.

ENVIRONMENT VARIABLES

SR-2011

The following are environment variables taken from the execution environment and are not alterable
within mailx.

9 Release 2.0

MAILX(I) MAILX(I)

HOME=directory
The user's base of operations.

MAILRC=jilename
The name of the start-up file. Default is $HOME/.maitrc.

The following variables are internal to mailx. You can import them from the execution environment or
set them via the set command at any time. Use the unset command to erase variables.

aUnet

append

askcc

asksub

All network names whose last component Qogin name) match are treated as identical. This
causes the msglist message specifications to behave similarly. Default is noallnet. See also
the alternates command and the "metoo" variable.

Upon termination, append messages to the end of the mbox file instead of prepending them.
Default is noappend.

Prompt for the Cc list after message is entered. Default is noaskcc.

Prompt for subject if it is not specified on the command line with the -s option. Enabled by
default.

autoprint

bang

Enable automatic printing of messages after delete and undelete commands. Default is noau­
toprint.

Enable the special-casing of exclamation points (!) in shell escape command lines as in viC!).
Default is nobang.

cmd=shell-command
Set the default command for the pipe command. No default value.

conv=conversion
Convert uucp addresses to the specified address style. The only valid conversion now is inter­
net, which requires a mail delivery program conforming to the RFC822 standard for electronic
mail addressing. Conversion is disabled by default See also "sendmail" and the -U command
line option.

crt=number
Pipe messages having more than number lines through the command specified by the value of
the PAGER variable (pg(l) by default). Disabled by default

DEAD=jilename

debug

Release 2.0

The name of the file in which to save partial letters in case of untimely interrupt or delivery
errors. Default is $HOME/dead.letter.

Enable verbose diagnostics for debugging. Messages are not delivered. Default is nodebug.

10 SR-2011

MAILX(l) MAILX(l)

SR-2011

dot
Take a period on a line by itself during input from a terminal as end-of-file. Default is nodot.

EDITOR=shell-command
The command to run when the edit or - e command is used. Default is ed(1).

escape=c
Substitute c for the - escape character.

folder=directory

header

hold

ignore

The directory for saving standard mail files. User specified file names beginning with a plus
(+) are expanded by preceding the filename with this directory name to obtain the real
filename. If directory does not start with a slash (j), $HOME is prepended to it. In order to
use the plus (+) construct on a mailx command line, folder must be an exported sh environ­
ment variable. There is no default for the "folder" variable. See also "outfolder" below.

Enable printing of the header summary when entering mailx. Enabled by default.

Preserve all messages that are read in the mailbox instead of putting them in the standard mbox
save file. Default is nohold.

Ignore interrupts while entering messages. Handy for noisy dial-up lines. Default is noignore.

ignoreeof

keep

Ignore end-of-file during message input. Input must be terminated by a period (.) on a line by
itself or by the -. command. Default is noignoreeof. See also "dot" above.

When the mailbox is empty, truncate it to zero length instead of removing it. Disabled by
default.

keepsave
Keep messages that have been saved in other files in the mailbox instead of deleting them.
Default is nokeepsave.

MBOX=/ilename

metoo

The name of the file to save messages which have been read. The xit command overrides this
function, as does saving the message explicitly in another file. Default is $HOME/mbox.

If your login appears as a recipient, do not delete it from the list. Default is nome too.

LISTER=shell-command

onehop

The command (and options) to use when listing the contents of the "folder" directory. The
default is Is(l).

When responding to a message that was originally sent to several recipients, the other recipient
addresses are normally forced to be relative to the originating author's machine for the

11 Release 2.0

MAlLX(l) MAILX(l)

response. This flag disables alteration of the recipients' addresses, improving efficiency in a
network where all machines can send directly to all other machines (that is, one hop away).

outfolder

page

Causes the files used to record outgoing messages to be located in the directory specified by
the "folder" variable unless the pathname is absolute. Default is nooutfolder. See "folder"
above and the Save, Copy, followup, and Followup commands.

Used with the pipe command to insert a form feed after each message sent through the pipe.
Default is nopage.

PAGER=shell-command
The command to use as a filter for paginating output. This can also be used to specify the
options to be used. Default is pg(I).

prompt=string

quiet

Set the command mode prompt to string. Default is "? ".

Refrain from printing the opening message and version when entering mailx. Default is
noquiet.

record=./ilename

save

Record all outgoing mail in filename. Disabled by default. See also "outfolder" above.

Enable saving of messages in dead.letter on interrupt or delivery error. See "DEAD" for a
description of this file. Enabled by default.

screen=number
Sets the number of lines in a screen-full of headers for the headers command.

sendmail=shell-command
Alternate command for delivering messages. Default is mai/(l).

sendwait
Wait for background mailer to finish before returning. Default is nosendwait.

SHELL=

showto

shell-command The name of a preferred command interpreter. Default is sh(l).

When displaying the header summary and the message is from you, print the recipient's name
instead of the author's name.

sign=string
The variable inserted into the text of a message when the - a (autograph) command is given.
No default (see also -i (TILDE ESCAPES)).

Sign=string
The variable inserted into the text of a message when the - A command is given. No default

Release 2.0 12 SR-2011

MAILX(l) MAILX(l)

FILES

BUGS

(see also - i (TILDE ESCAPES».

toplines=number
The number of lines of header to print with the top command. Default is 5.

VISUAL=shell-command
The name of a preferred screen editor. Default is vi(I).

$HOME/.mailrc
$HOME/mbox
/usr/maiV*
/usr/lib/mailx/mailx.help*
/usr/lib/mailx/maiIx.rc
/tmp/R[em qsx]*

Personal start -up file
Secondary storage file
Post office directory
Help message files
Global start-up file
Temporary files

Where shell-command is shown as valid, arguments are not always allowed. Experimentation is recom­
mended.

Internal variables imported from the execution environment cannot be unset.

The full internet addressing is not fully supported by mailx. The new standards need some time to set­
tle down.

Attempts to send a message having a line consisting only of a "." are treated as the end of the message
by mail(l) (the standard mail delivery program).

SEE ALSO

maiI(1), pg(1), Is(I).

SR-2011 13 Release 2.0

MAKE(l) MAKB(l)

NAME

make - Maintains9 Updates9 and regenerates groups of programs

SYNOPSIS

make [-f makefile] [-p] [-i] [-k] [-fi] [-r] [-0] [-b] [-e] [-t] [-d] [-q] [names]

DESCRIPTION

SR-2011

Maa executes commands in makefile to update one or more target names. Name is typically a pro­
gram. If no -f option is present. makefile. Makefile. s.makefile. and s.Makefile are tried in order. If
makefile is -, the standard input is taken. More than one -f makefile argument pair may appear.

Maa updates a target only if it depends on files that are newer than the target. All prerequisite files of
a target are added recursively to the list of targets. Missing files are deemed to be out of date.

The following is a brief description of all options and some special names:

-r makefile Description file name. Makefile is assumed to be the name of a description file. A file
name of - denotes the standard input The contents of makefile override the built-in rules
if they are present.

-p Print out the complete set of macro definitions and target descriptions.

-i Ignore error codes returned by invoked commands. This mode is entered if the fake target
name .IGNORE appears in the description file.

-k Abandon work on the current entry, but continue on other branches that do not depend on
that entry.

-s Silent mode. Do not print command lines before executing. This mode is also entered if
the fake target name .SILENT appears in the description file.

-r Do not use the built-in rules.

-0 No execute mode. Print commands, but do not execute them. Even lines beginning with
an @ are printed.

-b Compatibility mode for old makefiles.

-e Environment variables override assignments within makefiles.

-t Touch the target files (causing them to be up-to-date) rather than issue the usual com-
mands.

-d Debug mode. Print out detailed infonnation on files and times examined.

-q Question. The make command returns a zero or non-zero status code depending on
whether the target file is or is not up-to-date .

• DEFAULT If a file must be made but there are no explicit commands or relevant built-in rules, the
commands associated with the name .DEFAULT are used if it exists .

• PRECIOUS Dependents of this target will not be removed when quit or interrupt are hit

.SILENT Same effect as the -s option .

.IGNORE Same effect as the -i option.

Makefile contains a sequence of entries that specify dependencies. The first line of an entry is a blank­
separated. non-null list of targets, then a :. then a list (possibly nUll) of prerequisite files or dependen­
cies. Text following a ; and all following lines that begin with a tab are shell commands to be exe­
cuted to update the target. The first line that does not begin with a tab or I begins a new dependency
or macro definition. Shell commands may be continued across lines with the <backslash><new-line>

1 Release 2.0

MAKE(1) MAKE(1)

sequence. Everything printed by make (except the initial tab) is passed directly to the shell as is. Thus,

echo a\
b

produces:

ab

exactly the same as the shell.

The # symbol starts a comment and a new-line ends a comment.

The following makefile says that pgm depends on two files a.o and b.o, and that they in tum depend on
their corresponding source files (a.c and b.c) and a common file incl.h:

pgm: a.o b.o
cc a.o b.o -0 pgm

a.o: incl.h a.c
cc -c a.c

b.o: incl.h b.c
cc -c b.c

Command lines are executed one at a time, each by its own shell. The first one or two characters in a
command can be the following: -, @, ~, or @-. If @ is present, printing of the command is
suppressed. If - is present, make ignores an error. A line is printed when it is executed unless the -s
option is present, or the entry .Sll..ENT: is in makefile, or the initial character sequence contains a @.
The -n option specifies printing without execution; however, if the command line has the string
$(MAKE) in it, the line is always executed (see discussion of the MAKEFLAGS macro under Environ­
ment). The -t (touch) option updates the modified date of target files without executing any commands.

Commands returning non-zero status normally terminate make. If the -i option is present, or the entry
JGNORE: appears in makefile, or the initial character sequence of the command contains -, the error is
ignored. If the -It option is present, work is abandoned on the current entry but continues on other
branches that do not depend on that entry.

The -b option allows old makefiles (those written for the old version of make) to run without errors.
The difference between the old version of make and this version is that this version requires all depen­
dency lines to have a command (possibly null or implicit) associated with them. The previous version
of make assumed if no command was specified explicitly that the command was null.

An interrupt or quit signal received during execution of a command line causes the associated target to
be deleted unless the target is a dependent of the special name .PRECIOUS.

Environment
The environment is read by make. All variables are assumed to be macro definitions and are processed
as such. The environment variables are processed before any makefile and after the internal rules; thus,
macro assignments in a makefile override environment variables. The -e option causes the environment
to override the macro assignments in a makefile.

The MAKEFLAGS environment variable is processed by make as containing any legal input option
(except -f, -p, and -r) defined for the command line. Further, upon invocation, make "invents" the
variable if it is not in the environment, puts the current options into it, and passes it on to invocations
of commands. Thus, MAKEFLAGS always contains the current input options. This proves very useful
for "super-makes". In fact, as noted above, when the -n option is used, the command $(MAKE) is
executed anyway; hence, one can perform a make -n recursively on a whole software system to see
what would have been executed. This is because the -n is put in MAKEFLAGS and passed to further
invocations of $(MAKE). This is one way of debugging all of the makefiles for a software project
without actually executing anything.

Release 2.0 2 SR-2011

MAKE(l) MAKE(l)

Macros
Entries of the fonn stringl = string2 are macro definitions. String2 is defined as all characters up to a
comment character or an unescaped new-line. Subsequent appearances of $(stringl [:substl =[subst2]])
are replaced by string2. (A $$ is a dollar sign.) The parentheses are optional if a single character
macro name is used and there is no substitute sequence. The optional :substl =subst2 is a substitute
sequence. If it is specified, all non-overlapping occurrences of substl in the named macro are replaced
by subst2. Strings (for the purposes of this type of substitution) are delimited by blanks, tabs, new-line
characters, and beginnings of lines.

Internal Macros
There are four macros maintained internally that are useful in writing rules for building targets.

$* The $* macro stands for the filename part of the current dependent with the suffix deleted. It is
evaluated only for inference rules.

$@ The $@ macro stands for the full target name of the current target. It is evaluated only for expli­
citly named dependencies.

$< The $< macro is only evaluated for inference rules or the .DEFAULT rule. It is the module
which is out of date with respect to the target (that is, the "manufactured" dependent file name).
Thus, in the .c.o rule, the $< macro would evaluate to the .c file. An example for making optim­
ized .0 files from .c files is:

.c.o:
cc -c -0 $*.c

or:

.c.o:
cc -c -0 $<

$1 The $1 macro is evaluated when explicit rules from the makefile are evaluated. It is the list of
prerequisites that are out of date with respect to the target; essentially, those modules which must
be rebuilt

The $*, $@, and $< macros can have alternative forms. When an upper case D or F is appended to
any of these macros, the meaning is changed to "directory part" for D and "file part" for F. Thus,
$(@D) refers to the directory part of the string $@. If there is no directory part, J is generated.

Suffixes

SR-2011

Certain names (for instance, those ending with .0) have inferable prerequisites such as .c, .S, etc. If no
update commands for such a file appear in makefile, and if an inferable prerequisite exists, that prere­
quisite is compiled to make the target In this case, make has inference rules which allow building files
from other files by examining the suffixes and detennining an appropriate inference rule to use.

The internal rules for make are contained in the source file rules.c for the make program. These rules
can be modified locally. To print out the rules compiled into the make on any machine in a form suit­
able for recompilation, the following command is used:

make -fp - 2>/dev/null <ldev/null

The only peculiarity in this output is the (null) string which print/(3S) prints when handed a null string.

A rule with only one suffix (that is, .c:) is the definition of how to build x from x.c. In effect, the
other suffix is null. This is useful for building targets from only one source file (such as shell pro­
cedures and simple C programs).

Additional suffixes are given as the dependency list for .SUFFIXES. Order is significant; the first possi­
ble name for which both a file and a rule exist is inferred as a prerequisite. The default list is:

.SUFFIXES: .0 .c .y .1 .s .h .sh

3 Release 2.0

MAKE(l) MAKE(l)

Here again, the above command for printing the internal rules will display the list of suffixes imple­
mented on the current machine. Multiple suffix lists accumulate; .SUFFIXES: with no dependencies
clears the list of suffixes.

Inference Rules

FILES

BUGS

The first example can be done more briefly.

pgm: a.o b.o
cc a.o b.o 4) pgm

a.o b.o: incI.h

This is because make has a set of internal rules for building files. The user may add rules to this list by
simply putting them in the makefile.

Certain macros are used by the default inference rules to pennit the inclusion of optional matter in any
resulting commands. For example, CFLAGS and YFLAGS are used for compiler options to cc(l) and
yacc(l) respectively. Again, the previous method for examining the current rules is recommended.

The inference of prerequisites can be controlled. The rule to create a file with suffix .0 from a file with
suffix .c is specified as an entry with .c.o: as the target and no dependents. Shell commands associated
with the target define the rule for making a .0 file from a .c file. Any target that has no slashes in it
and starts with a dot is identified as a rule and not a true target

Makefile
makefile
s.Makefile
s.makefile

Some commands return nonzero status inappropriately; use -i to overcome the difficulty.
File names with the characters =, :, or @ do not work.
Commands that are directly executed by the shell, notably cd(l), are ineffectual across new-lines in
make.
This release of make does not have library support features built in for UNICOS.

SEE ALSO

cc(l), cd(1), lex(l), sh(I), yacc(1)
printf(3S) in the CRAY-2 UNICOS Libraries, Macros and Opdefs Reference Manual, publication SR-2013
UNICOS Support Tools Guide, publication SG-2016.

Release 2.0 4 SR-2011

MAKEKEY(l) MAKEKEY(l)

NAME

makekey - Generates encryption key

SYNOPSIS

lusrllib/makekey

DESCRIPfION

The malcekey command improves the usefulness of encryption schemes depending on a key by increas­
ing the amount of time required to search the key space. It reads 10 bytes from its standard input and
writes 13 bytes on its standard output The output depends on the input in a way intended to be
difficult to compute.

The first eight input bytes (the input lcey) can be arbitrary AScn characters. The last two (the salt) are
best chosen from the set of digits, 0, I, upper-case letters, and lower-case letters. The salt characters are
repeated as the first two characters of the output. The remaining 11 output characters are chosen from
the same set as the salt and constitute the output key.

The transformation performed is essentially the following: the salt is used to select one of 4,096 cryp­
tographic machines all based on the National Bureau of Standards DES algorithm, but broken in 4,096
different ways. Using the input key as key, a constant string is fed into the machine and recirculated a
number of times. The 64 bits that come out are distributed into the 66 output lcey bits in the result

Makelcey is intende.d for programs that perform encryption (such as ed(l) and crypt (1». Usually, its
input and output will be pipes.

SEE ALSO

crypt(I), ed(1)
passwd(4F) in the UNICOS File Formats and Special Files Reference Manual, publication SR-2014

SR-2011 1 Release 2.0

MAN(I) MAN(I)

NAME

man - Prints entries in this manual

SYNOPSIS

man [-oulbpr] [section] titles

DESCRIPTION

SR-2011

The man command locates and prints the entry of this manual named title in the specified section.
(The word "page" is often used as a synonym for "entry" in this context) The title is entered in
lower case. The section number may have a letter suffix or, for UNICOS running on a CRAY X-MP or
CRAY-l computer system, a two-digit suffix. If no section is specified, the whole manual is searched
for title and all occurrences of it are printed. The section may be changed before each title. On a
CRAY-2 computer system, the available sections are: I, 1m, 2, 3c, 3f, 3m, 3n, 3s, 3sci, 3q, 3w, 3z, 4d,
4f, and 4n. On a CRAY X-MP or CRAY-l computer system, the available sections are: I, 1m, 2, 3c, 3.1,
3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, 3.11, 3.12, 3.13, 3.14, 3.15, 3.16, 3.17, 3.18, 3.19, 4d, 4f, and
4n. Sections 3n, 3w, 3.18, and 4n are available only if your site is licensed for the TCPJIP networking
software.

Pre-formatted manual entries are stored in the lusr/man directory hierarchy. The fonnat style is
appropriate for terminals and line printers. The man command further processes the entries to make the
output more suitable for video displays. Options provide control of the processing done by man:

-0 Removes overstrikes intended to produce an emboldened effect

-u Removes overstrikes intended to produce underlining.

-b Removes all character-backspace sequences. The -0 and -u options remove most of these
sequences, but occasionally overstrike sequences are used to produce symbols that are not in the
ascii character set The -b option is useful for devices that do not handle the backspace charac­
ter.

-I Reduce all occurrences of two or more blank lines in sequence to a single blank line.

-p Paginate; print 18 lines of output, print a ':' prompt character, and wait for a RETURN or
CONTROL-d to be typed. Backspace-character sequences are used (unless option b is set), to
remove the ':' prompt when the CONTROL-d response is typed.

-r Reset all oulp options. These options are set by default when output is being sent to a tenninal
file. If the output of man is not directed to a terminal, no options are set by default. This type of
output is useful for printers.

As an example:

man man

reproduces this entry on the standard output. It also reproduces any other entries named man that may
exist in other sections of the manual.

1 Release 2.0

MAN(l) MAN(l)

FILES

/usr/man/man 1/*
in the UNICOS User Commands Reference Manual, publication SR-2011

/usr/man/manlm/*
in the UNICOS Administrator Commands Reference Manual. publication SR-2022

/usr/man/man2/*
in the UNICOS System Calls Reference Manual, publication SR-2012

/usr/man/man3c/*
in the CRAY-2 UNICOS Libraries, Macros and Opdefs Reference Manual, publication SR-2013, for
UNICOS running on a CRAY-2 computer system or the CRAY X-MP and CRAY-l C Library Reference
Manual, publication SR-0136 for UNICOS running on a CRAY X-MP or CRAY-l computer system

/usr/man/man3f/*
/usr/man/man3m/*
/usr/man/man3n/*
/usr/man/man3p/*
/usr/man/man3c:V*
/usr/man/man3s1*
/usr/man/man3sci/*
/usr/man/man3uc/*
/usr/man/man3uf/*
/usr/man/man3w/*
/usr/man/man3z/*
in the CRA Y-2 UNICOS Libraries, Macros and Opdefs Reference Manual, publication SR-2013, for
UNICOS running on a CRAY-2 computer system

/usr/man/man3.l/*
/usr/man/man3.2/*
/usr/man/man3.3/*
/usr/man/man3.4/*
/usr/man/man3.5/*
/usr/man/man3.6/*
/usr/man/man3.7/*
/usr/man/man3.8/*
/usr/man/man3.9/*
/usr/man/man3.10/*
/usr/man/man3.11/*
/usr/man/man3.12/*
/usr/man/man3.13/*
/usr/man/man3.14/*
/usr/man/man3.15/*
/usr/man/man3.16/*
/usr/man/man3.17/*
/usr/man/man3.18/*
/usr/man/man3.19/*
in the Programmer's Library Reference Manual, publication SR-0113, for UNICOS running on a CRAY
X-MP or CRAY-l computer system

Release 2.0 2 SR-2011

MAN(I) MAN(I)

NOTES

SR-2011

/usr/man/man4d/*
/usr/man/man4f/*
/usr/man/man4n/*
in the UNICOS File Formats and Special Files Reference Manual, publication SR-2014

All entries are formatted for display on a terminal. Some information is necessarily lost because of the
display limitations.

3 Release 2.0

MESO(l)

NAME

mesg - Permits or denies messages

SYNOPSIS

mesg [n or -0]
mesg [y or -y]

DESCRIPTION

MESO(l)

The mesg command with argument n forbids messages being written to the user's terminal via write(l)
by revoking non-user write permission. The mesg command with argument y reinstates permission. If
no arguments are given, mesg reports the current state without changing it

Fn.ES

/dev/tty*

MESSAGES

Exit status is 0 if messages are receivable, 1 if not, and 2 on an error.

SEE ALSO

write(l)

SR-2011 1 Release 2.0

MKDIR(l) MKDIR(l)

NAME

mkdir - Creates a directory

SYNOPSIS

mkdir dirname ...

DESCRIPTION

The mkdir command creates specified directories in mode 777 (unless altered by umask(l». The stan­
dard entries. (for the directory itself) and •• (for its parent) are made automatically.

Mkdir requires write pennission in the parent directory.

MESSAGES

Mkdir returns exit code 0 if all directories were successfully made; otherwise, it prints a diagnostic
message and returns a nonzero exit code.

SEE ALSO

sh(l), nn(l), umask(l)

SR-2011 1 Release 2.0

MORE(l) (CRAY X-MP and CRAY-l computer systems only) MORE(l)

NAME

more, page - Lets you peruse text one screenful at a time

SYNOPSIS

more [-(:dflsu] [-n] [+linenumber] [+/pattern] [name ...]

page more options

DESCRIPTION

SR-2011

The more command is a filter that lets you examine a continuous text one screenful at a time. It nor­
mally pauses after each screenful, printing --More-- at the bottom of the screen. If you then type a car­
riage return, one more line is displayed. If you hit the spacebar, another screenful is displayed. Other
possibilities are enumerated later.

The command line options are:

-n Specifies an integer that is the size (in lines) of the window, which more uses instead of the
default.

-(: Draws each page by beginning at the top of the screen and erasing each line just before draw­
ing on it. This avoids scrolling the screen, making it easier to read while more is writing.
This option is ignored if the terminal does not have the ability to clear to the end of a line.

-d Prompts the user with the message "Hit space to continue, Rubout to abort" at the end of each
screenful. This is useful if you are using more as a filter in some setting, such as a class,
where many users may be unsophisticated.

-f Counts logical, rather than physical screen lines. That is, long lines are not folded. This
option is recommended if nroff output is being piped through ul, since the latter may generate
escape sequences. These escape sequences contain characters that would ordinarily occupy
screen positions, but that do not print when they are sent to the terminal as part of an escape
sequence. Thus more may think that lines are longer than they actually are, and fold lines
erroneously.

-I Does not treat CONTROL-L (form feed) specially. If you do not specify this option, more
pauses after any line that contains a CONTROL-L, as if the end of a screenful had been
reached. Also, if a file begins with a form feed, the screen is cleared before the file is printed.

-s Squeezes multiple blank lines from the output, producing only one blank line. Especially help­
ful when viewing nroff output, this option maximizes the useful information present on the
screen.

-u Suppresses underline processing. Normally, more handles underlining such as produced by
nroff in a manner appropriate to the particular terminal: if the terminal can perform underlin­
ing or has a stand-out mode, more outputs appropriate escape sequences to enable underlining
or stand-out mode for underlined information in the source file.

+linenumber
Starts up at linenumher.

+/pattern
Starts up two lines before the line containing the regular expression pattern.

If more is invoked as page, then the screen is cleared before each screenful is printed (but only if a full
screenful is being printed), and k - 1 rather than k - 2 lines are printed in each screenful, where k is the
number of lines the terminal can display.

1 Release 2.0

MORE(I) (CRAY X-MP ad CRAY-l computer systems only) MORE(I)

The more commands looks in the lusrllib/terminfo directiory to determine terminal characteristics and
the default window size. On a terminal capable of displaying 24 lines, the default window size is 22
lines.

The more command looks in the environment variable MORE to preset any desired flags. For example,
if you prefer to view files using the -c mode of operation, the csh command

"setenv MORE -c"

or the sh command sequence

"MORE='-c' ; export MORE"

would cause all invocations of more, including invocations by programs such as man and msgs, to use
this mode. Normally, you place the command sequence that sets up the MORE environment variable in
the .cshrc or .profile file.

If more is reading from a file rather than a pipe, a percentage is displayed along with the --More-­
prompt This gives the fraction of the file (in characters, not lines) that has been read so far.

Other sequences that may be typed when more pauses, and their effects, are as follows (i is an optional
integer argument, defaulting to 1) :

i<space>
Displays i more lines, (or another screenful if no argument is given)

AD Displays 11 more lines (a "scroll"). If i is given, then the scroll size is set to i.

d Same as CONTROL-D

i z Same as typing a space except that i , if present, becomes the new window size.

i s Skips i lines and print a screenful of lines

if Skips i screenfuls and print a screenful of lines

q or Q Exits from more

= Displays the current line number

v Starts up the editor vi at the current line

h Help command; gives a description of all the more commands.

i /expr Searches for the i -th occurrence of the regular expression expr. If less than i occurrences of
expr exist, and the input is a file (rather than a pipe), then the position in the file remains
unchanged. Otherwise, a screenful is displayed, starting two lines before the pl~e where the
expression was found. You can use the erase and kill characters to edit the regular expression.
Erasing back past the first column cancels the search command.

in Searches for the i -th occurrence of the last regular expression entered.

(Single quote) Goes to the point from which the last search started. If no search has been per­
formed in the current file, this command goes back to the beginning of the file.

!command
Invokes a shell with command. The characters '%' and 'I' in "command" are replaced with the
current file name and the previous shell command respectively. If no current file name exists,
'%' is not expanded. The sequences '\%" and '\I" are replaced by "%" and "!" respectively.

i:n Skips to the i -th next file given in the command line (skips to last file if n doesn't make
sense).

Release 2.0 2 SR-2011

MORE(I) (CRAY X-MP and CRAY-l computer systems only) MORE(l)

FILES

i :p Skips to the i -tb previous file given in the command line. If this command is given in the
middle of printing out a file, then more goes back to the beginning of the file. If i doesn't
make sense, more skips back to the first file. If more is not reading from a file, the bell is rung
and nothing else happens.

:f Displays the current file name and line number.

:q or :Q Exits from more (same as q or Q).

(Dot) repeats the previous command.

The commands take effect immediately; that is, it is not necessary to type a carriage return. Up to the
time when the command character itself is given, the user may hit the line kill character to cancel the
numerical argument being formed. In addition, the user may hit the erase character to redisplay the -­
More--(xx%) message.

At any time when output is being sent to the terminal, the user can hit the quit key (normally Con­
trol-\). More stops sending output and displays the usual --More-- prompt. You may then enter one of
the above commands in the normal manner. Unfortunately, some output is lost when this is done, due
to the fact that any characters waiting in the terminal's output queue are flushed when the quit signal
occurs.

The terminal is set to noecho mode by this program so that the output can be continuous. Thus, what
you type does show on your terminal, except for the / and! commands.

If the standard output is not a teletype, then more acts just like cat(1), except that a header is printed
before each file (if there is more than one).

A sample usage of more in previewing nroff output would be

nroff -ms +2 doc.n I more -s

/usrllib/terminfo
/usr/lib/more.help

Terminal data base
Help file

SEE ALSO

csh(l), man{l), script(l), sh(l)

SR-2011 3 Release 2.0

MV(l) MV(l)

NAME

mv - Moves files

SYNOPSIS

mv [-f] filel [file2 •••] target

DESCRIPTION

FILES

NOTES

The file filel is moved to target. Under no circumstance can filel and target be the same (take care
when using sh(l) metacharacters). If target is a directory, then one or more files are moved to that
directory. If target is a file, its contents are destroyed.

If my determines that the mode of target forbids writing, it will print the mode (see chmod(2)), ask for
a response, and read the standard input for one line. If the line begins with y, the my occurs, if pennis­
sible; if not, the command exits. No questions are asked and the my is done when the -f option is used
or if the standard input is not a terminal.

The my command allows filel to be a directory, in which case the directory rename will occur only if
the two directories have the same parent; filel is renamed target. If filel is a file and target is a link to
another file with links, the other links remain and target becomes a new file.

lusr/lib/mv _dir mv assist program If filel and target lie on different file systems, my must copy the
file and delete the original. In this case any linking relationship with other files is lost

If filel and target lie on different file systems, mv must copy the file and delete the original. In this
case any linking relationship with other files is lost

SEE ALSO

cp(l), cpio(l), 1n(l), nn(l)
chmod(2) in the UNICOS System Calls Reference Manual, publication SR-2012

SR-2011 I Release 2.0

MXM(1) MXM(l)

NAME

mxm - Invokes the mod creation program

SYNOPSIS

mxm [-i filenames] [-I indirect] [-b basedir] [-p paths] -m modname

DESCRIPTION

SR-2011

Mxm is a source control program used in conjunction with scm(1). Mxm is similar to the MODECKS
utility available with the Cray operating system COS. It takes one or more edited source files and com­
pares them with the original source control modules created by scm. (See scm(l) for details of the
source control module.) Mxm creates a single output file in the current working directory. This file is a
mod that contains scm directives. This mod should contain everything needed to implement one bugfix
or add one new feature to the previous level of software.

The created mod can be edited to add the mod header, which is simply the scm comment directives that
document the bugfix or feature. Refer to the scm documentation for details of scm directives.

The keyletters and their meanings are:

-i filenames Specify one or more input source filenames. If more than one filename is specified.
they must be separated by commas with no intervening white space. This key letter is
required if the -I keyletter is not specified.

-I indirect Read a list of input source filenames from the file indirect. This keyletter is useful if
modifying many source files in a single run. This keyletter is required if the -i
keyletter is not specified.

-b basedir

-p paths These two keyletters are used together to specify the directory or directories mxm will
search to find the source control modules that will be compared to the input source files
named by the -i and -I keyletters. If only one directory is to be searched. it may be
specified with the -b keyletter alone. The default for -b is the current working direc­
tory. If more than one directory is to be searched, suffixes may be specified with the -p
keyletter. The path name suffixes paths must be separated by commas with no interven­
ing white space. The directory path names to search are derived by appending the -p
keyletter path names to the -b keyletter path name. The default for -p is "I".

-m modname The name of the created mod. and the name to use in the generated *m directive. This
keyletter is required.

Up to twenty-six input files may be specified; this limitation is due to the naming con­
vention used by scm, where a letter a-z is appended to the mod name.

Input files are specified with the -i and -I keyletter. Each input file must have a
corresponding source control module, which is searched for in the directory or direc­
tories derived from the -b and -p key letter. For example. input file foo.c must have a
corresponding source control module roo.c.m.

The output (mod) file will not be created if mxm detected any errors. Output files are
always placed in the current working directory. Mxm will never silently replace a file;
an error will be reported if an output file name would conflict with an existing file
name.

1 Release 2.0

MXM(l)

EXAMPLE

Contents of source control module lusrlsrclcmdlfoo.c.m:
foo.l 1* foo.c - program to print something. * /
foo.2
foo.3
fooA
foo.5
foo.6
foo.7
foo.8

#include <stdio.h>

mainO
(

printf("This is the future.\n");

Contents of edited source file foo.c:
/* foo.c - program to print something on stderr. */

#include <stdio.h>

mainO
(

fprintf(stderr, "This is the future.\n");

Using mxm to create a mod:
mxm -i foo.c -b /usr/src/cmd -rn foomod

MXM{l)

After scm has extracted a source file from the source control module, the file can be edited and
a mod created. This run of mxm takes edited source file roo.c and searches in directory
lusrlsrc1cmd for the corresponding source control module, foo.c.m. The mod is called foomod.

Contents of mxm output file foomod:
*m foomod
*f foo.c
*d foo.l
/* foo.c - program to print something on stderr. */
*d foo.7

fprintf(stderr, "This is the future.\n");

A mod header (additional *c directives) should be added after the *m directive. A mod trailer (more
*c directives) would be nice too. The mod file can then be added to the collection of mods targeted for
the next software release.

SEE ALSO

scm(l)

Release 2.0 2 SR-2011

NASA(l) NASA(l)

NAME

nasa - Adds ASA carriage control chaIacters for printing

SYNOPSIS

nasa [-t tabspace] [file]

DESCRIPTION

The nasa command provides the opposite function of the asa(1) command. It transfonns typical
UNICOS command text output to make it suitable for output to line printers that require ASA carriage
control characters. It processes either the file whose name is given as an argument or the standard input
if you do not specify a file name. Tabs are expanded to the appropriate number of spaces to position a
subsequent character at the next tab stop. Tab stops are every eigth character position by default or
every tabspace characters if you specify the -t option. Other transfonnations performed are as follows:

line feed becomes line feed, space

carriage return becomes line feed, +

form feed becomes line feed, 1

The nasa command forces the first line to start on a new page by starting its output with a 1. Back­
space characters (ASCII code 8), are properly compensated for to preserve the column position of sub­
sequent tab characters, but the destination printer may not accept them.

Below is one suggestion for preparing all the output of a job for printing on a line printer requiring car­
riage control:

(
set -v # print command names as they are executed
UNICOS commands

application I asa
echo '\f' # form feed

) 2>& 1 I nasa > tracefile

SEE ALSO

asa(l), expand(1), unexpand(1)

SR-2011 1 Release 2.0

NETSTAT(l) (TCP lIP Network) NETSTAT(l)

NAME

netstat - Displays network status

SYNOPSIS

netstat [-Aaimnrst] [interval] [system] [core]

DESCRIPTION

SR-2011

The netstat command symbolically displays the contents of various network-related data structures. The
options have the following meaning:

-A Shows the address of any associated protocol control blocks; used for debugging

-a Shows the state of all sockets; normally sockets used by server processes are not shown

-i Shows the state of interfaces that have been auto-configured (those interfaces statically
configured into a system but not located at boot time are not shown)

-m Shows statistics recorded by the memory management routines (the network: manages a
"private share" of memory)

-n Shows network addresses as numbers (normally netstat interprets addresses and attempts to
display them symbolically)

-r Shows the routing tables

-s Shows per-protocol statistics

-t Shows the timer value (when used with -i option)

The arguments, system and core allow substitutes for the defaults lunieos and Idevlkmem (not recog­
nized in UNICOS running on CRAY X-MP or CRAY-l systems).

If interval is specified, netstat will continuously display the information regarding packet traffic on the
configured network interfaces, pausing interval seconds before refreshing the screen.

There are a number of display fonnats depending on the information presented. The default display,
which is for active sockets, shows the local and remote addresses, send and receive queue sizes (in
bytes), protocol, and, optionally, the internal state of the protocol.

Address formats are of the form host.port or network. port if a socket address specifies a network but no
specific host address. When known the host and network addresses are displayed symbolically accord­
ing to the files letc/hosts (see hosts(4F) and letc/networks (see networks(4F), respectively. If a sym­
bolic name for an address is unknown, or if the -n option is specified, the address is printed in the
Internet "dot format"; refer to inet(3N) for more information regarding this format. Unspecified, or
wildcard, addresses and ports appear as an asterisk (*).

The interface display provides a table of cumulative statistics regarding packets transferred, errors, and
collisions. The network address (currently Internet specific) of the interface and the maximum
transmission unit in bytes (mtu) are also displayed.

The routing table display indicates the available routes and their status. Each route consists of a desti­
nation host or network and a gateway to use in forwarding packets. The flags field shows the state of
the route (U if "up"), and whether the route is to a gateway (G). Direct routes are created for each
interface attached to the local host The rerent field gives the current number of active uses of the
route. Connection-oriented protocols normally hold on to a single route for the duration of a connec­
tion, while connectionless protocols obtain a route then discard it The use field provides a count of the
number of packets sent using that route. The interface entry indicates the network interface utilized for
the route.

1 Release 2.0

NETSTAT(l) (TCP/IP Network) NETSTAT(l)

BUGS

When netstat is invoked with an interval argument, it displays a running count of statistics related to
network interfaces. This display consists of a column summarizing information for all interfaces, and a
column for the interface with the most traffic since the system was last rebooted. The first line of each
screen of information contains a summary since the system was last rebooted. Subsequent lines of out­
put show values accumulated over the preceding interval.

The notion of errors is ill-defined. Collisions mean something else to an IMP.

SEE ALSO

hosts (4F) , networks(4F), protocols(4F), services(4F) in the UNICOS File Formats and Special Files
Reference Manual, publi~tion SR-2014

Release 2.0 2 SR-2011

NEWACCT(l) (Deferred implementation on CRAY X-MP and CRAY-l computer systems) NEWACCT(l)

NAME

newacct - Changes account ID

SYNOPSIS

newacct [account name]
newacct -l

DESCRIPTION

FILES

The newacct command changes the account ID of the calling shell. If you do not specify account
name, it defaults to your account ID. If you specify an account name, newacct validates whether you
have permission to change the account ID to the requested value. If -I is specified, the current account
name is printed.

The newacct command is only supported if UNICOS is generated to use the UNICOS user context data­
base.

/etc/uentry
/etc/UID .map
/etc/ ACID.map

SEE ALSO

SR-2011

acctid(2) in the UNICOS System Calls Reference Manual, publication SR-2012
getpwent(3C), getpwnam(3C), getpwuid(3C)" id2nam(3C) , putpwent(3C) in the CRAY-2 UNICOS
Libraries, Macros and Opdefs Reference Manual, publication SR-2013, for UNICOS running on a CRAY-2
computer system
passwd(4F), uentry(4F) in the UNICOS File Formats and Special Files Reference Manual, publication
SR-2014

1 Release 2.0

NEWGRP(l) NEWGRP(l)

NAME

newgrp - Logs in to a new group

SYNOPSIS

newgrp [-] [group]

DESCRIPTION

FILES

BUGS

The newgrp command changes your group identification. You remain logged in and the current direc­
tory is unchanged, but calculations of access permissions to files are performed with respect to the new
real and effective group IDs. You are always given a new shell, replacing the current shell, by newgrp,
regardless of whether it terminated successfully or due to an error condition (that is, an unknown
group).

Exported variables retain their values after invoking newgrp; however, all unexported variables are
either reset to their default value or set to null. System variables (such as PS 1, PS2, PATH, MAIL, and
HOME), unless exported by the system or explicitly exported by you, are reset to default values. For
example, a user has a primary prompt string (pSt) other than $ (default) and has not exported PSt.
After an invocation of newgrp , successful or not, their PSt will now be set to the default prompt string
$. Note that the shell command export (see sh(l) is the method to export variables so that they retain
their assigned value when invoking new shells.

With no arguments, newgrp changes the group identification back to the group specified in your pass­
word file entry.

If the first argument to newgrp is a -, the environment is changed to what would be expected if the user
actually logged in again.

A password is demanded if the group has a password and you do not, or if the group has a password
and you are not listed in letc/group as being a member of that group.

/eu;/group
/eu;/passwd

System's group file
System's password file

There is no convenient way to enter a password into fetc/group. Use of group passwords is not recom­
mended, because they encourage poor security practices. Group passwords may disappear in the future.

SEE ALSO

SR-2011

login(l), sh(l)
groUP(4) , passwd(4) in the UNICOS File Formats and Special Files Reference Manual, publication
SR-2014

1 Release 2.0

NEWS(l) NEWS(l)

NAME

news - Prints news items

SYNOPSIS

news [-3] [-n] [-s] [items]

DESCRIPTION

FILES

The news command is used to keep the user informed of current events. By convention, these events
are described by files in the directory fusrfnews.

When invoked without arguments, news prints the contents of all current files in fusrfnews, most recent
first, with each preceded by an appropriate header. News stores the "currency" time as the
modification date of a file named .news_time in the user's home directory (the identity of this directory
is determined by the environment variable $HOME); only files more recent than this currency time are
considered "current." Valid options are as follows:

-3 Causes news to print all items, regardless of currency. In this case, the stored time is not
changed.

-0 Causes news to report the names of the current items without printing their contents and without
changing the stored time.

-s Causes news to report how many current items exist, without printing their names or contents,
and without changing the stored time. It is useful to include such an invocation of news in one's
.profile file or in the system's fetc/profile to report if there is news.

All other arguments are assumed to be specific news items that are to be printed.

If an interrupt signal is received during the printing of a news item, printing stops and the next item is
started. Another interrupt within one second of the first causes the program to terminate.

/etc/profile
/usr/news/·
$HOME/.news_time

SEE ALSO

sh(1)
profile(4F) in the UNICOS File Formats and Special Files Reference Manual, publication SR-2014

SR-2011 1 Release 2.0

NICE(l) NICE(l)

NAME

nice - Runs a command at low priority

SYNOPSIS

nice [- increment] command [arguments]

DESCRIPTION

The nice command executes command with a lower CPU scheduling priority. If the increment argu­
ment (in the range 1-19) is given, it is used; if not, an increment of 10 is assumed. An increment
larger than 19 is equivalent to 19.

The super user may run commands with priority higher than normal by using a negative increment,
such as -10.

MESSAGES

The nice command returns the exit status of the subject command

NOTES

The csh command has a built-in nice command with slightly different characteristics. See csh(1).

SEE ALSO

nice(2) in the UNlCOS System Calls Reference Manual, publication SR-20l2

SR-2011 1 Release 2.0

NM(1) (CRA Y -2 computer systems only) NM(l)

NAME

nm - Prints name list

SYNOPSIS

om -g [options] file

DESCRIPTION

The nm command prints the name list (entries and externals) of each object file in the argument list

Each symbol name is preceded by a value character (or by blanks if undefined) and either the letter U
(undefined, an external) or T (entry point, text segment symbol). The -g argument is required. It
prints only global (external) symbols; that is, entry names and external names.

The nm command accepts the following options:

-a Uses the sspecified filename instead of the PDT name.

-0 Prints the module name at the beginning of each line. This is in addition to the announcement
at the beginning of the module.

-u Prints only undefined symbols. This option causes entry symbols to be ignored.

-x Prints the filename after opening.

-c Includes common blocks in the output list. The character next to the name is 'C' if there is no
data initialization in the common block. If there is initialization, a 'D' is printed next to the
name. The number printed is the number of words in the common block (in octal). hk

SEE ALSO

BUGS

SR-2011

ar(1), lorder(l)
relo(4F) in the UNICOS File Formats and Special Files Reference Manual, publication SR-2014

This implementation was designed to make lorder(l) function so that some structure could be imposed
upon relocatable libraries.

1 Release 2.0

NM(l) (CRA Y X-MP md CRA Y -1 computer systems only) NM(l)

NAME

nm - Prints name list

SYNOPSIS

nm -g filenames

DESCRIPTION

BUGS

Nm prints the name list (entries and externals) of each object file in the argument list

Each symbol name is preceded by its value (blanks if undefined) and either the letter U (undefined. an
external) or T (entry point, text segment symbol).

The -g option is required. It prints only global (external) symbols; that is, entry names and external
names. The entries are printed with a value character for identification. The external names have no
value indicated by "U"; the text area symbol is indicated by "T".

This implementation is minimal at best, but it at least gives the user some idea what is in an object file.

SEE ALSO

reloc(4F) in the UNICOS File Formats and Special Files Reference Manual, publication SR-2014

SR-2011 1 Release 2.0

NMAB(l) (CRA Y -2 computer systems only) NMAB(l)

NAME

nmab - Produces a list of names and addresses from executable file

SYNOPSIS

omab [-Inwac] [-number] [files]

DESCRIPTION

BUGS

SR-2011

The nmab command produces a listing of the global names inside an executable file along with their
values and addresses. It may be used to generate load maps. If not named, the input file defaults to
a.out. The meanings of the options are as follows:

-I Produce a long listing. This includes file names and address space headers.

-0 Produce a listing sorted numerically. This turns off the default of producing both alphabeti-
cally and numerically sorted lists.

-a Produce a listing sorted alphabetically. This turns off the default of producing both alpha­
betically and numerically sorted lists.

-w Use word addresses with parcel modifiers rather than byte addresses.

-0 Produce a listing that includes the names from address space zero, common memory. This
turns off the default of producing lists for each address space.

-number As above for address space number. (nnumber=l • ... 7) For the CRAY-2 computer system,
address space 1 is local memory. The other address spaces are currently unassigned.

-c Produce a listing that includes the names and values of constants. This turns off the default
of producing a list for each address space. The constants may be considered address space
-1.

Constants are printed as addresses with an octal point. Thus, the constant 0314 would be printed as
031.4 if the -w option was not specified and as 03.14 if it was.

1 Release 2.0

NOHUP(l) NOHUP(1)

NAME

nohup - Runs a command immune to hangups and quits

SYNOPSIS

nohup command [argwnents]

DESCRIPTION

The nohup command executes command with bangups and quits ignored. If you do not redirect the
output, it will be sent to nohup.out. If nohup.out is not writable in the current directory, output is
redirected to $HOMElnobup;out.

NOTES

The csh command has a built-in nobup command with slightly different characteristics. See csh(l)

SEE ALSO

nice(1)
signal(2) in the UNICOS System Calls Reference Manual, publication SR-2012

SR-2011 1 Release 2.0

NQSINTRO (1) NQSINTRO (1)

NAME <:::
nqsintro - Introduction to the Network Queuing System (NQS)

DESCRIPTION

This introduction provides an overview of NQS capabilities and describes how to start using NQS. If you
are an NQS system administrator, see qmgr(lM) for a discussion of the internal operations and manage­
ment ofNQS.

This discussion refers to individual NQS commands which provide more detailed information.

NQS Overview
The UNICOS batch job processing capability is based on NQS, which was developed by Sterling
Software for the National Aeronautics Space Administration (NASA) Numerical Aerodynamic Simula­
tion (NAS) project NQS lets you submit, tenninate, monitor, and, within limits, control batch requests
submitted to the batch system. You can send batch requests to your own system or to other appropri­
ately configured computer systems in your facility's network.

NQS lets you perfonn the following activities:

• Submit requests to a batch queue with qsub(1). Qsub lets you specify numerous qualifications
for your batch request, including start time, memory and CPU resource limits, exporting of
environment variables, and the queue to which the request is submitted.

• Display the status of NQS queues with qstat(I). Qstat displays the ordering of NQS requests
and provides information about the requests in their respective queues.

• Delete or signal NQS requests with qde/(1).

• Display the status of NQS devices with qdev(l).

• Display supported batch limits and shell strategies for each host with qlimit(1).

• Submit a hard copy print request to NQS with qpr(1).

• Function as an NQS system administrator with qmgr(IM), if you have the required privileges.

GETTING STARTED

SR-2011

The first step in using NQS is to create a shell script of commands to execute a sequence of actions the
batch request performs. Within this file you can also include flags that qualify the qsub(l) command,
as long as the flags appear before the shell commands and are preceded by the #, @, and $ characters.
For example, the following batch request file specifies that the request is sent after 11 p.m. on Tuesday,
and a list of current system users is produced:

@$--a 11 pm Tuesday
who

The following is a slightly more complex example of a batch request file:

1 Release 2.0

NQSINTRO (1)

Slightly more complex

@$-q queue I # Queues request to queuel
@$-It 00:01:00 # Specifies a per-process CPU limit of I minute

qstat -I
cd junk
Is -I
cc -0 test homer ralph.c
test homer
Is -1
rm test.homer
Is -1

NQSINTRO (1)

You can use two methods to include data on which the shell commands must act. The first method is
to create a separate data file to which the command is linked, as follows:

sort < sortinput

In this example, sortinput contains lines of text that you want sorted. The second method of including
data within your batch request is to use the double-redirect operator, as follows:

sort« EOF
Robert Cohn was
once middleweight boxing
champion of Princeton.
EOF

This example sorts the specified lines of text. In contrast, the following shell script will not sort these
lines:

sort
Robert Cohn was
once middleweight boxing
champion of Princeton.

In this example, the sort command encounters an immediate end-of-file indicator when reading the
standard input file stdin, which defaults to dev/null.

After creating a batch request file, use qsub(l) to send the batch request for execution. Qsub lets you
specify several controlling factors, including per-process CPU time limits, time the batch request begins
execution, and the queue to which the batch request is submitted. For example, the following command
submits the file request! to queue I at II p.m. on the following day, and exports all environment vari­
ables:

qsub -a "Ilpm Tom." -q queuel -x requestl

Specify limits no larger than those required to execute your request, because NQS uses these limits for
batch request scheduling. For example, batch requests requesting large amounts of CPU time are gen­
erally run less often than batch requests requesting small amounts of CPU time.

Qsub also lets you interactively enter the commands to be executed by the batch request Exclude the
script-file from the qsub command line and press the carriage return. All lines that you enter in the

Release 2.0 2 SR-2011

NQSINTRO (1) NQSINTRO (1)

SR-2011

standard input buffer are then executed as the batch request. Signal the end of the standard input file
with a CONTROL-d, as follows:

$ qsub --a "Ilpm Tom." -q queuel
Is
who
(control-d)
$

If your batch request is successfully submitted, NQS returns a message that displays the request-id and
destination queue of your batch request. For example, the following message indicates that NQS
assigned your request a sequence number of 125, you are working on machine MH-Vax, and your
request was sent to queuel.

Request 125.MH-Vax submitted to queue: queuel.

By default, NQS also assigns a request-name to your batch request. The default NQS request name is
equivalent to the name of the script file you specified on the command line. The request name and the
request-id are associated with your request throughout the network.

After submitting the request, use the qstat(l) command to display the queue and batch request status, as
follows:

qstat queuel

If this command is entered soon after the previously submitted batch request is sent, it produces the fol­
lowing output

A_little@cray2; type=BATCH; [ENABLED, RUNNING]; PIPEONL Y; pri=50
o exit; 1 run; 0 stage; 0 queued; 0 wait; 0 hold; 0 arrive;
Run_limit = 10;
Queue Complex Membership: com I;

REQUEST NAME JID STATE NICE SIZE CPU CPUM OWNER NQSID

j 5420 R~G 0 o o o cda 4.cray2

See qstat(l) for more information on displaying the status of NQS batch requests.

Use the qdel(l) command to delete a running NQS batch request. To delete a batch request, you must
be the owner of that request, unless you have super user privileges or are an NQS manager. To delete a
batch request, specify the request-id, as follows:

qdel 4.cray2

This command deletes the batch request with request-id 4.cray2.

You can also use the qdev(I), qpr(I), and qlimit(l) commands to display the status of NQS devices, sub­
mit a hard-copy request, and display the NQS resource limits, respectively.

After the batch request completes processing on the executing machine, the stdout and stderr files are
returned, by default, to your home directory on the originating machine. By default, the name of the
standard output file contains the first 7 characters of the request-name, followed by the characters .0,

followed by the request sequence number of the request-id The standard error file has the same nam­
ing convention, except that the second set of characters is .e. For example, the standard output file of

3 Release 2.0

NQSINTRO (1) NQSINTRO(1)

the batch request submitted above is named request 1.04 , and the standard error file is named
requestl.e4.

SEE ALSO

qdel(l), qdev(l), qlimit(l), qpr(l), qstat(1), qsub(l)
qmgr(lM) in the UNICOS Administrator Commands Reference Manual, publication SR-2022

Release 2.0 4 SR-2011

OD(l) OD(I)

NAME

od - Produces an octal dump

SYNOPSIS

od [-bcdosxpBW] [file] [[+]offset[•][b]]

DESCRIPTION

SR-2011

The od command dumps file in one or more fonnats as selected by the first argument The file argu­
ment specifies which file is to be dumped. If no file argument is specified, the standard input is used.
If the first argument is missing, -0 is default The meanings of the fonnat options are:

-b Interpret bytes in octal.

-c Interpret bytes in ASCll. Certain non-graphic characters appear as C escapes: nul1=\O,
backspace=\b, fonn-feed=\f', new-line=\n, return=\r, tab=\t; others appear as 3-digit octal
numbers.

-d Interpret words in unsigned decimal.

-0 Interpret words in octal.

-s Interpret 16-bit words in signed decimal.

-x Interpret words in hexadecimal.

-p Print parcels as opposed to words.

-B Print address in bytes (default for -b and -c)

-W Print address in words (default for all except -b and-c)

The offset argument specifies the offset in the file where dumping is to commence. This argument is
normally interpreted as octal bytes. If. is appended to offset, the offset is interpreted in decimal. If b
is appended to of/set, the offset is interpreted in blocks of 512 bytes. If the file argument is omitted, the
offset argument must be preceded by +.

Dumping continues until the end-of-file is reached.

1 Release 2.0

PACK(l) PACK(l)

NAME

pack, peat, unpack - Compresses and expands files

SYNOPSIS

pack [-] [-f] name ...

pcat name ...

unpack name ...

DESCRIPrION

SR-2011

Pack attempts to store the specified files in a compressed form. Wherever possible (and useful), each
input file name is replaced by a packed file name.z with the same access modes, access and modified
dates, and owner as those of name. The·f option will force packing of name. This is useful for caus­
ing an entire directory to be packed even if some of the files will not benefit. If pack is successful,
name will be removed. Packed files can be restored to their original form using unpaek or peat.

Pack uses Huffman (minimum redundancy) codes on a byte-by-byte basis. If the - argument is used,
an internal flag is set that causes the number of times each byte is used, its relative frequency, and the
code for the byte to be printed on the standard output Additional occurrences of - in place of name
will cause the internal flag to be set and reset.

The amount of compression obtained depends on the size of the input file and the character frequency
distribution. Because a decoding tree forms the first part of each .z file, it is usually not worthwhile to
pack files smaller than three blocks, unless the character frequency distribution is very skewed, which
may occur with printer plots or pictures.

Typically, text files are reduced to 60-75% of their original size. Load modules, which use a larger
character set and have a more uniform distribution of characters, show little compression, the packed
versions being about 90% of the original size.

Pack returns a value that is the number of files that it failed to compress.

No packing will occur if:

• the file appears to be already packed
• the file name has more than 12 characters
• the file has links
• the file is a directory
• the file cannot be opened
• no disk storage blocks will be saved by packing
• a file called name.z already exists
• the.z file cannot be created
• an IJO error occurred during processing

The last segment of the file name must contain no more than 12 characters to allow space for the
appended .z extension. Directories cannot be compressed.

Peat does for packed files what cat(l) does for ordinary files, except that pcat can not be used as a
filter. The specified files are unpacked and written to the standard output. Thus to view a packed file
named name.z, use:

peat name.z
or just:

peat name

1 Release 2.0

PACK(t) PACK(l)

To make an unpacked copy, say nnn, of a packed file named name.z (without destroying name.z) use
the command:

peat name >nnn

Peat returns the number of files it was unable to unpack. Failure may occur if:

• the file name (exclusive of the .z) has more than 12 characters
• the file cannot be opened
• the file does not appear to be the output of pack

Unpack expands files created by pack. For each file name specified in the command, a search is made
for a file called name.z (or just name, if name ends in .z). If this file appears to be a packed file, it is
replaced by its expanded version. The new file has the .z suffix stripped from its name, and has the
same access modes, access and modification dates, and owner as those of the packed file.

Unpack returns a value that is the number of files it was unable to unpack. Failure may occur for the
same reasons that it may in peat, as well as for the following:

SEE ALSO

cat(1)

Release 2.0

• a file with the • • unpacked " name already exists
• if the unpacked file cannot be created

2 SR-2011

PASCAL(I) PASCAL(I)

NAME

pascal - Invokes Pascal compiler

SYNOPSIS

pascal [-i idn] [-I ldn] [-b bdn] [-() list] [-V] [-C list]

DESCRIPTION

SR-2011

The pascal command line invokes the Pascal compiler under UNlCOS. You select compiler parameters
either explicitly by listing them on the command line or implicitly by accepting the default values. All
parameters are optional and have default values. Options are:

-i idn Specifies the file containing the Pascal source code. When idn is not a complete path
name, the input file defaults to a working directory. The default is stdin.

-Ildn Specifies the file receiving the job's list output If -lOis specified, all list output is
suppressed. The default is stdout.

-b bdn

-0 list

-c list

Specifies the file receiving the binary load modules generated by the compiler; the default is
a.o.

Specifies compiler options, separated by commas, in effect at the beginning of the compila­
tion. The compiler options available under UNlCOS are generally the same as the compiler
options available under COS.

Specifies the characteristics of the eray computer system for which Pascal is to generate
code. The fonnat of the -c list is as follows:

-c [primary] (","characteristic)
primary can be one of the following:

Target
Machine Description

CRAY-X4

CRAY-X2

CRAY-Xl

CRAY X-MP

CRAY-IM

CRAY-IS

CRAY-IB

CRAY-IA

CRAY-l

Generates code for a four-processor
CRAY X-MP

Generates code for a dual-processor
CRAY X-MP

Generates code for a single-processor
CRAY X-MP

Generates code for a single-processor
CRAY X-MP that also runs on four-processor
and dual processor CRA Y X-MPs

Generates code for a CRA Y -1 Model M

Generates code for a CRA Y -1 Model S

Generates code for a CRA Y -1 Model B

Generates code for a CRA Y -1 Model A

Generates code for a CRA Y -1 Model A that
also runs on CRAY-l Models B, S, and M

1 Release 2.0

PASCAL(I) PASCAL(l)

characteristic can be one of the following traits:

Trrut Description

EMA Causes Pascal to generate 24-bit A register
immediate load instructions, where necessary, and allows
the use of common blocks larger than 4 million words

NOEMA Disables the generation of 24-bit A register

CIGS
NOCIGS

VPOP
NOV POP

READVL
NOREADVL

MEMSIZE

BDM
NOBDM

immediate load instructions and disallows the use of common
blocks larger than 4 million words

Enables compressed index and gather/scatter
Disables compressed index and gather/scatter

Enables vector population and parity
Disables vector length read instructions

Enables vector length read instructions
Disables vector length read instructions

The format of the MEMSIZE option is as
follows:

MEMSIZE = n ["K" I "M"]

MEMSIZE is n • 1024 words for nK and
n· 1048575 words for nM

Enables bidirectional memory
Disables bidirectional memory

The -C list option cannot be specified with a CRAY-2 computer system.

-V If present, this parameter writes the version number of the compiler being run and other sta­
tistical infonnation (such as compilation time, memory use, and the size of the relocatable
output) to the standard error file, stderr.

COMPILER OPTIONS

Compiler directives placed inside comments in the Pascal program override the initial settings. The
defaults on a CRAY-l or a CRAY X-MP computer system running UNICOS are as follows:

A-,BP-,BREG=8,BT -,C-,DMO,E+,G-.L+,O+'p-,P24,R+,RV -.ST -,T +.TREG=8,U-,V +,W -;X-;z.+

The defaults on a CRA Y -2 computer system are as follows:

SEE ALSO

A-,BP-,BREG=8,BT-,C-,DMO,E+,G-,L+.M2,O+,P-,P32,R+,RV-,ST-,T+,TREG=8,u­
,V+,W-;X-;z.+

The Pascal Reference Manual, publication SR-006O

Release 2.0 2 SR-2011

PASSWD(l) PASSWD(l)

NAME

passwd - Changes login password

SYNOPSIS

passwd [name]

DESCRIPTION

Fll..ES

The passwd command changes or installs a password associated with the login name.

Ordinary users may change only the password which corresponds to their login name.

Passwd prompts ordinary users for their old password, if any. It then prompts for the new password
twice. If the system administrator has entered the necessary encrypt string, the first time the new pass­
word is entered passwd checks to see if the old password has "aged" sufficiently, which means the
password cannot be changed until a specific length of time has passed. If "aging" is insufficient, the
new password is rejected and passwd terminates; see passwd(4F).

Assuming "aging" is sufficient, a check is made to ensure that the new password meets the construc­
tion requirements below. When the new password is entered a second time the two copies of the new
password are compared. If the two copies are not identical, the cycle of prompting for the new pass­
word is repeated at most two more times.

Passwords must meet the following requirements:

• Each password must have at least six characters. Only the first eight characters are
significant.

• Each password must contain at least two alphabetic characters; and on CRA Y -2 systems,
each passwd must contain at least one numeric or special character. In this case, "alphabetic"
means upper and lower case letters.

• Each password must differ from the user's login name and any reverse or circular shift of
that login name. For comparison purposes, an upper case letter and its corresponding lower
case letter are equivalent.

• The new password must differ from the old by at least three characters. For comparison pur­
poses, an upper case letter and its corresponding lower case letter are equivalent.

One whose effective user ID is zero is called a super user; see id(l) and su(I). Super users may
change any password; hence, passwd does not prompt super users for the old password. Super users are
not forced to comply with password aging and password construction requirements. A super user can
create a null password by entering a carriage return in response to the prompt for a new password.
N01E: This is not recommended

/etc/passwd

SEE ALSO

SR-2011

login(I), id(l), su(l)
crypt(3C) in the CRAY-2 UNlCOS Libraries, Macros and Opdefs Reference Manual, publication SR-2013
passwd(4F) in the UNICOS File Formats and Special Files Reference Manual, publication SR-2014

1 Release 2.0

PASTE(I) PASTE(I)

NAME

paste - Merges same lines of several files or subsequent lines of one file

SYNOPSIS

paste [-s] [-d list] filel file2 •••

DESCRIPTION

In the first two forms, paste concatenates corresponding lines of the given input files filel ,file2, etc. It
treats each file as a column or columns of a table and pastes them together horizontally (parallel merg­
ing). It can be considered the counterpart of cat(l) which concatenates vertically, that is, one file after
the other. In the last form above, paste combines subsequent lines of the input file (serial merging). In
all cases, lines are glued together with the tab character, or with characters from an optionally specified
list. Output is to the standard output, so it can be used as the start of a pipe, or as a filter, if - is used
in place of a file name.

The meanings of the options are:

-d The new-line characters of each but the last file (or last line in case of the -s option) are
replaced by a tab character. This option allows replacing the tab character by one or more
alternate characters (see below).

list One or more characters immediately following -d replace the default tab as the line concatena­
tion character. The list is used circularly, that is, when exhausted, it is reused. In parallel
merging (that is, no -s option), the lines from the last file are always terminated with a new­
line character, not from the list. The list may contain the special escape sequences: \n (new­
line), \t (tab), \\ (backslash), and \() (empty string, not a null character). Quoting may be
necessary, if characters have special meaning to the shell (for example,to get one backslash,
use -d "\\\\.).

-s Merge subsequent lines rather than one from each input file. Use tab for concatenation, unless
list is specified with -d option. Regardless of the list, the last character of the file is forced to
be a new-line character.

May be used in place of any file name to read a line from the standard input. (There is no
prompting).

EXAMPLES

Is I paste -d" " -

Is I paste - - - -

paste -s -d''\t\n'' file

MESSAGES

NOTES

Line too long
Too many files

list directory in one column

list directory in four columns

combine pairs of lines into lines

Output lines are restricted to 511 characters.
Except for the -s option, no more than 12 input files may be specified.

pr -t -m. .. works similarly, but creates extra blanks, tabs, and new-lines for a nice page layout.

SEE ALSO

cut(l), grep(I), pr(l)

SR-2011 1 Release 2.0

PO(l) PO(t)

NAME

pg - Lets you control scrolling of files while perusing them

SYNOPSIS

pg [files ...

DESCRIPTION

The pg command is a filter that allows the examination of files one screenful at a time on a terminal.
(If file is - or no arguments are specified, the pg command reads from the standard input.) The pg com­
mand prints 20 lines and then waits for a carriage return to be typed.

SEE ALSO

cat(l), pr(l), more(l)

SR-2011 1 Release 2.0

PLCOPY(l) (CRAY X-MP and CRAY-l computer systems only) PLCOPY(l)

NAME

plcopy - Converts COS PLs into UNICOS PLs

SYNOPSIS

plcopy [-i inpath] [-0 outpath]

DESCRIPTION

NOTES

Plcopy is a utility that converts COS PLs into UNICOS PLs under UNICOS. The COS PL must have the
new update(l) format, which is any PL created or modified with update version 1.06 or newer.

The keyletters for plcopy are as follows:

-i inpath Path and file name of the COS PL to be converted. This is a required keyletter.

-0 outpath Path and name of the file to receive the converted PL. This is a required keyletter.

If the COS blank compression character in the PL is not octal 33, plcopy will not work.

To convert a PL in the old UNICOS PL format use the following:

PLTMP [-i in path] [-0 out path]

-i inpath

-ooutpath

Path and directory of UNICOS PL to be converted

Path and name of the file to receive the converted PL.

SEE ALSO

update(l)
fortfiles(4F) in the UNICOS File Formats and Special Files Reference Manual, publication SR-2014

SR-2011 1 Release 2.0

PR(l) PR(l)

NAME

pr - Prints files

SYNOPSIS

pr [options] [files]

DESCRIPTION

SR-2011

The pr command displays the named files on the standard output If file is -, or if no files are
specified, the standard input is assumed. By default, the listing is separated into pages, each headed by
the page number, a date and time, and the name of the file.

By default, only one column is displayed. If multiple columns are specified (using the -k option), the
columns are by default of equal width, separated by at least one space; lines which do not fit are trun­
cated. If the -s option is used, lines are not truncated and columns are separated by the separation char­
acter.

If the standard output is associated with a terminal, error messages are withheld until pr has completed
printing.

The below options may appear singly or be combined in any order:

+k Begin printing with page k (default is I).

-Ie Produce k-column output (default is I). The options -e and -i are assumed for multi-column
output

-a Print multi-column output across the page.

-m Merge and print all files simultaneously, one per column (overrides the -Ie, and -a options).

-d Double-space the output.

-eek Expand input tabs to character positions k+l, 2*k+l, 3*k+l, etc. If k is 0 or is omitted,
default tab settings at every eighth position are assumed. Tab characters in the input are
expanded into the appropriate number of spaces. If c (any non-digit character) is given, it is
treated as the input tab character (default for e is the tab character).

-ick In output, replace white space wherever possible by inserting tabs to character positions k+ I,
2*k+l, 3*k+l, etc. If k is 0 or is omitted, default tab settings at every eighth position are
assumed. If e (any non-digit character) is given, it is treated as the output tab character
(default for e is the tab character).

-nek Provide k-digit line numbering (default for k is 5). The number occupies the first k+ 1 charac­
ter positions of each column of normal output or each line of -m output If e (any non-digit
character) is given, it is appended to the line number to separate it from whatever follows
(default for e is a tab).

-wk Set the width of a line to k character positions (default is 72 for equal-width multi-column out­
put, no limit otherwise).

-ok Offset each line by k character positions (default is 0). The number of character positions per
line is the sum of the width and offset

-Ik Set the length of a page to k lines (default is 66).

-h Use the next argument as the header to be printed instead of the file name.

-p Pause before beginning each page if the output is directed to a terminal (pr will ring the bell at
the terminal and wait for a carriage return).

1 Release 2.0

PR(t)

-f

-r

-t

-sc

PR(t)

Use fonn-feed character for new pages (default is to use a sequence of line-feeds). Pause
before beginning the first page if the standard output is associated with a terminal.

Suppress printing of diagnostic reports on failure to open files.

Suppress printing of the five-line identifying header and the five-line trailer nonnally supplied
for each page. Quit printing after the last line of each file without spacing to the end of the
page.

Separate columns by the single character c instead of by the appropriate number of spaces
(default for c is a tab).

EXAMPLES

FILES

Print filel and file2 as a double-spaced, three-column listing headed by "file list":

pr -3dh "file list" file1 file2

Write filel onfile2, expanding tabs to columns 10, 19,28, 37, ... :

pr --e9 -t <file1 >file2

/dev/tty* Suspends messages

SEE ALSO

cat(l), pg(l)

Release 2.0 2 SR-2011

PREMULT(l) (CRAY X-MP computer systems only) PREMULT(l)

NAME

premult - Invokes the premult preprocessor

SYNOPSIS

premult [-m mdn] [~ sdn] [-c cdn] [-I] filename

DESCRIPTION

The premult command invokes the premult microtasking preprocessor. The premult command interprets
preprocessing directives and rewrites your program. The following options are available:

-m mdn Specifies Fortran code that contains inserted microtasking primitives. If you do not specify
the routine, mdn defaults to multf.r.

-s sdn Specifies Fortran code containing no microtasking primitives. Microtasked subroutines also
exist in a nonmicrotasked version so they can be called from a microtasked routine.

-c cdn Specifies a CAL master routine for each microtasked subroutine. If you do not specify a
routine, cdn defaults to multc.s

-I Replaces the last character of an 8-character subroutine name with s or m. By default, the
preprocessor creates two subroutines from each routine you microtask and appends to their
names as much of mult and sngl as it can without making their names longer than 8 char­
acters. For example, joe becomes joemult and joesngl; and longjoe becomes longjoem and
longjoes. The premult command aborts if it finds an 8-character subroutine name in a pro­
gram. It is your responsibility to ensure that subroutine names thus created are unique.
Premult aborts if the original 8-character routine name ends in s or m.

filename Specifies the file to be preprocessed. The filename must be supplied.

SEE ALSO

CRAY X-MP Multitasking Programmer's Manual. publication SN-0222.

SR-2011 1 Release 2.0

PRINTENV (1) (CRAY X-MP and CRAY-l computer systems only) PRINTENV (1)

NAME

printenv - Prints out the environment

SYNOPSIS

printenv [name]

DESCRIPTION

The printenv commands prints out the values of the variables in the environment. If you specify a
name, printenv prints only its value.

If you specify a name and it is not defined in the environment, printenv returns exit status I, otherwise
it returns status O.

SEE ALSO

sh(l), csh(l)

SR-20ll 1 Release 2.0

PROF(l) (CRA Y -2 computer systems only) PROF(l)

NAME

prof - Displays profile data

SYNOPSIS

prof [-stz] [-m pdata] [-n nstars] [pro g]

DESCRIPTION

BUGS

The prof command interprets a profile file produced by the prof library. The prof then reads the symbol
table in the object file prog (a.out by default) and correlates it with the profile file pdata (prof.out by
default). The prof command generates eight columns of data. These are: label, label address, bucket
address, sees, hits, %prof time, %actual time, histogram. Addresses are all printed in parcel format with
o = a, 2 = b, 4 = c, and 6 == d. Only buckets with at least one hit are printed. The histogram
associates nstars (25 by default) stars with 100% in the %prof time column. The following options are
accepted by prof.

-s Attempts to print subtotals for each label

-t Does not print the actual buckets (should be used in conjunction with -s).

-z Prints all symbols, even if no bucket is associated with them.

To get a program ready for profiling you must implement the ld options as indicated; first load the pro­
gram with the -I prof option on the load line before the -Ie option (see Id(I». (When using ee(I), just
add "-Iprof' to the end of the ce line). When the program is invoked, profiling is automatically turned
on. The data is written out when the program terminates successfully. (This means if the job aborts,
no data is written out). There are three controllable parameters when profiling. These are:
PROF _ WPB (words per bucket), PROF _SADDR (starting parcel address), and PROF _EADDR (end­
ing parcel address). If any of these exist as an environment variable (see sh(1», then their value is con­
verted (see strtod(3», and used in place of the defaults.

The defaults are:

PROF _WPB = 0100
PROF _SADDR = 0
PROF _EADDR = end of text

Currently the clock rate is 100HZ and cannot be changed.
Currently profiling only works on CPU-A

SEE ALSO

Id(I), sh(l)

SR-2011 1 Release 2.0

PRS(1) PRS(I)

NAME

prs - Prints an sees file

SYNOPSIS

prs [-d[dataspec]] [-r[SID]] [-e] [-I] [-c[date-time]] [-a] files

DESCRIPTION

Prs prints. on the standard output, parts or all of an sees file (see sccsfile(4» in a user-supplied format.
If a name of - is given. the standard input is read; each line of the standard input is taken to be the
name of an sees file to be processed; non-SeeS files and unreadable files are silently ignored.

Arguments to prs. which may appear in any order. consist of keyletter arguments. and file names.

All the described keyletter arguments apply independently to each named file:

-d[dataspec] Used to specify the output data specification. The dataspec is a string consist­
ing of sees file data keywords (see DATA KEYWORDS) interspersed with
optional user supplied text

-r[SID] Used to specify the sees IDentification (SID) string of a delta for which infor­
mation is desired. If no SID is specified. the SID of the most recently created
delta is assumed. The format for the date is: mm/dd/yy [hh:mm:ss].

-e

-I

-c[date-time]

-3

Requests information for all deltas created earlier than and including the delta
designated via the -r key letter or the date given by the -c option.

Requests information for all deltas created later than and including the delta
designated via the -r key letter or the date given by the -c option.
[-c[cutoff]] Cutoff date-time. in the form:

YY[MM[DD[HH[MM[SS]]]]]

Units omitted from the date-time default to their maximum possible values; that
is, -c7S02 is equivalent to -c750228235959. Any number of non-numeric char­
acters may separate the various 2-digit pieces of the cutoff date in the form:
"-c77/212 9:22:2S".

Requests printing of information for both removed deltas. that is. delta type = R
(see rmdel(1» and existing deltas. that is. delta type = D. If the -3 keyletter is
not specified. information for existing deltas only is provided.

DATA KEYWORDS

SR-2011

Data keywords specify which parts of an sees file are to be retrieved and output All parts of an sees
file (see sccsfile(4F» have an associated data keyword. There is no limit on the number of times a data
keyword may appear in a dataspec.

The information printed by prs consists of: (1) the user-supplied text; and (2) appropriate values
(extracted from the sees file) substituted for the recognized data keywords in the order of appearance
in the dataspec. The format of 3 data keyword value is either Simple (S). in which keyword substitu­
tion is direct. or Multi-line (M). in which keyword substitution is followed by a carriage return.

User-supplied text is any text other than recognized data keywords.
A tab is specified by \t and carriage return/new-line is specified by \0. The default data keywords are:

":Dt:\t:DL:\nMRs:\o:MR:eOMMENTS:\o:C:"

1 Release 2.0

PRS(l) PRS(1)

TABLE 1. sees Files Data Keywords

Keyword Data Item File Section Value Format
:Dt: Delta information Delta Table See below· S
:DL: Delta line statistics :LI:/:Ld:/:Lu: S
:Li: Lines Inserted by Delta nnnnn S
:Ld: Lines deleted by Delta nnnnn S
:Lu: Lines unchanged by Delta nnnnn S
:DT: Delta type D orR S

:1: SCCS ID string (SID) :R:.:L:.:B:.:S: S
:R: Release number nnnn S
:L: Level number nnnn S
:B: Branch number nnnn S
:S: Sequence number nnnn S
:D: Date Delta created :Dy:/:Dm:/:Dd: S

:Dy: Year Delta created nn S
:Dm: Month Delta created nn S
:Dd: Day Delta created nn S
:T: Time Delta created :Th:::Tm:::Ts: S

:Th: Hour Delta created nn S
:Tm: Minutes Delta created nn S
:Ts: Seconds Delta created nn S
:P: Programmer who created Delta logname S

:DS: Delta sequence number nnnn S
:DP: Predecessor Delta seq-no. nnnn S
:DI: Seq-no. of deltas Incl., excl., ignored :Dn:/:Dx:/:Dg: S
:Dn: Deltas Included (seq #) :DS: :DS: ••• S
:Dx: Deltas excluded (seq #) :DS: :DS: .•. S
:Dg: Deltas ignored (seq #) :DS: :DS: ••• S
:MR: MR numbers for delta text M
:c: Comments for delta text M

:UN: User names User Names text M
:FL: Flag Ust Flags text M
:Y: Module type Bag text S

:MF: MR validation flag yes or no S
:MP: MR validation pgm name text S
:KF: Keyword error/warning Bag yes or no S
:KV: Keyword validation string text S
:BF: Branch flag yes or no S
:J: Joint edit Bag yes or no S

:LK: Locked releases :R: ••• S
:Q: User defined keyword text S
:M: Module name text S
:FB: Floor boundary :R: S
:CB: Ceiling boundary :R: S
:Ds: Default SID :1: S
:ND: Null delta Bag yes or no S
:FD: File descriptive text Comments text M
:BD: Body Body text M
:GB: Gotten body text M
:W: A form or what(l) string N/A :Z::M:\t:I: S
:A: A form or what(l) string N/A :Z::Y: :M: :I::Z: S
:Z: what(l) string delimiter N/A @(#) S
:F: SCCS file name N/A text S

:PN: SCCS file path name N/A text S

• :Dt: = :DT: :1: :D: :T: :P: :DS: :DP:

Release 2.0 2 SR-2011

PRS(l)

EXAMPLES

prs -d"Users and/or user IDs for :F: are:\n:UN:" s.file

may produce on the standard output:

Users amI/or user IDs for s.file are:
xyz
131
abc

prs -d"Newest delta for pgm :M:: :1: Created :D: By :P:" -r s.file

may produce on the standard output:

Newest delta for pgm main.c: 3.7 Created 77/12/1 By cas

As a special case:

prs s.file

may produce on the standard output:

o 1.1 77/12/1 00:00:00 cas 1 000000/00000/00000
MRs:
bI78-12345
b179-54321
COMMENTS:
this is the comment line for s.file initial delta

PRS(l)

for each delta table entry of the "0" type. The only keyletter argument allowed to be used with the
special case is the -a keyletter.

FILES

/tmp/pr?????

MESSAGES

Use help(1) for explanations.

SEE ALSO

admin(I), delta(1), get(l), help(l)
sccsfile(4F) in the UNICOS File Formats and Special Files Reference Manual, publication SR-2014

SR-2011 3 Release 2.0

PS(l) (CRA Y -2 computer systems only) PS(I)

NAME

ps - Reports process status

SYNOPSIS

ps [-eda8] [-c corefile] [-n namelist] [-t termlist] [-p proclist] [-u uidlist]
[-g grplist]

DESCRIPTION

SR-2011

The ps command prints certain information about active processes. Without options, infonnation is
printed only about processes associated with the terminal you are at. The output consists of a short list­
ing containing only the process ID, terminal identifier, cumulative time, and the command name. Oth­
erwise, the information that is displayed is controlled by the options.

Using lists as arguments, options can have the list specified in one of two forms: a list of identifiers
separated from one another by a comma, or a list of identifiers enclosed in double quotes and separated
from one another by a comma and/or one or more spaces.

The options are:
-e Prints information about all processes
-d Prints information about all processes, except process group leaders
-a Prints information about all processes, except process group leaders and processes not

associated with a terminal
-f Generates a full listing. (See below for meaning of columns in a full listing.)
-I Generates a long listing. See below.
-c corefile Uses the file corefile in place of /dev/mem
-0 name list Takes namelist as the name of an alternative system namelist file in place of /unicos.
-t termlist Restricts the listing to data about the processes associated with the terminals given in

termlist. You may specify terminal identifiers in one of two forms: the device's file
name (such as, tty(4) or if the device's file name starts with tty, just the digit identifier
(such as, 04).

-p proclist Restricts the listing to data about processes whose process 10 numbers are given in pro­
clist.

-u uidlist

-g grplist

Restricts the listing to data about processes whose user 10 numbers or login names are
given in uidlist. In the listing, the numerical user 10 is printed unless the -f option is
used, in which case the login name is printed.
Restrict listing to data about processes whose process group leaders are given in grplist.

The column headings and the meaning of the columns in a ps listing are given below; the letters f and 1
indicate the option (full or long) that causes the corresponding heading to appear; aU means that the
heading always appears. Note that these two options determine only what information is provided for a
process; they do not determine which processes will be listed.

F (I) Flags (octal and additive) associated with the process:
o Swapped
1 In core
2 System process
4 Locked in core (such as, for physical I/O)
10 Being swapped
20 Being traced by another process
40 Another tracing flag
100 Suspended
200 SIGCPULIMIT has been set

1 Release 2.0

PS(l)

FILES

s (I)

UID (f,l)

PID (all)

PPID (f,l)
CM (f,l)
PRI (I)
NI (I)
ADDR (I)
SIZE (I)
WCHAN (I)

TTY (all)
TIME (all)
COMMAND(all)

(CRA Y -2 computer systems only) PS(l)

1000 Connected to a CPU
2000 Semaphore flag was set on disconnect
4000 Process is being disconnected

The state of the process:
S Sleeping
W Waiting
R Running
I Intermediate
Z Terminated
T Stopped

The user ID number of the process owner; the login name is printed under the -f
option.
The process ID of the process; it is possible to kill a process if you know this
number.
The process ID of the parent process.
CPU mask; used to limit a process to one or more specified CPUs.
The priority of the process; higher numbers mean lower priority.
Nice value; used in priority computation.
The memory address of the process if resident; otherwise, the disk address.
The size in blocks of the core image of the process.
The event for which the process is waiting or sleeping; if blank, the process is runn­
able.
The controlling terminal for the process.
The cumulative execution time for the process.
The command name.

A process that has exited and has a parent, but has not yet been waited for by the parent, is marked
<defunct>.

/unicos
/dev/mem
/etc/passwd
/etc/ps_data
/dev

System namelist
Memory
Supplies UID information
Internal data structure
Searched to find terminal ("tty") names

MESSAGES

Exit status is 0 if ps finds processes to report and 1 otherwise.

BUGS

Some data printed for defunct processes are irrelevant.

SEE ALSO

kill(1), nice(l), tty(l)

Release 2.0 2 SR-2011

PS(l) (CRAY X-MP and CRAY-l computer systems only) PS(l)

NAME

ps - Report status information about a process

SYNOPSIS

ps [-eda8] [-t tlist] [-p proclist] [-g grplist] [-r rtime] [-R rtime]

DESCRIPTION

SR-2011

The ps command prints information, such as process ID, terminal identifier, execution time, and the
command name, about active processes. If you do not specify any options, information is printed
about processes associated with the current terminal. Otherwise, the information that is displayed is
controlled by the following options:

-e Prints information about all processes
-d Prints information about all processes, except process group leaders
-a Prints information about all processes, except process group leaders and processes not

associated with a terminal
-r Generates a full listing. (Normally, a short listing containing only process ID, tenninal

("uy") identifier, cumulative execution time, and the command name is printed.) See
below for meaning of columns in a full listing.

-I Generates a long listing. See below.
-t tlist Restricts the listing to data about the processes associated with the terminals given in

tlist, where tlist can be in one of two forms: a list of terminal identifiers separated from
one another by a comma, or a list of terminal identifiers enclosed in double quotes and
separated from one another by a comma and/or one or more spaces.

-p proclist Restricts the listing to data about processes whose process ID numbers are given in pro­
clist

-g grplist Restricts the listing to data about processes whose process groups are given in grplist
-r rtime Refreshes the current screen at rtime second intervals. (See the -R option for commands

while in refresh mode.)
-R rtime Refreshes and scrolls at rtime second intervals. The following commands are available

while in refresh mode:
+

>
<
r
R
Q (or "c)

Go to next screen
Go to previous screen
Increment refresh interval by 1 second
Decrement refresh interval by 1 second
Refresh current screen
Refresh with scroll
Quit display

The column headings and the meaning of the columns in a ps listing are given below; the letters r and I
indicate the option (full or long) that causes the corresponding heading to appear; all means that the
heading always appears. Note that these two options determine only what information is provided for a
process; they do not determine which processes will be listed. If you generate a long listing, the fol­
lowing columns are printed:

1 Release 2.0

PS(l)

FILES

BUGS

(CRAY X-MP md CRAY-l computer systems only) PS(l)

F (I) Flags (octal and additive) associated with the process:
01 In core
02 System process
04 Locked in core (such as, for physical I/O)
10 Being swapped
20 Being traced by another process
40 Another tracing flag
100 Connected to CPU
200 Suspended for single threading
2000 Suspended for deadlock
4000 Suspended by user
10000 CPU limit exceeded

S (I)
The state of the process:

UID (f,l)

PID (all)
PPID (f,l)
CPU (f,l)
PRJ (I)
NI (I)
ADDR (I)
SZ (I)
WCHAN (I)
TTY (all)
TIME (all)
COMMAND(all)

S Sleeping
W Waiting
R Running
I Intermediate
Z Tenninated
T Stopped
X Growing

The user ID number of the process owner; the login name is printed under the -r
option.
The process ID of the process; you can kill a process if you know this number.
The process ID of the parent process.
CPU number
The priority of the process; higher numbers mean lower priority.
Nice value; used in priority computation.
The memory address of the process if resident; otherwise, the disk address.
The size in clicks of the core image of the process.
The event for which the process is waiting or sleeping; if 0, the process is runnable.
The controlling terminal for the process.
The cumulative execution time for the process.
The command name.

Idev Searched to find terminal ("tty") names.

Things can change while ps is running; the picture it gives is only a close approximation to reality.
Some data printed for defunct processes are irrelevant.

SEE ALSO

kill(I), nice(I)

Release 2.0 2 SR-2011

PWD(l)

NAME

pwd - Prints working directory name

SYNOPSIS

pwd

DESCRIPTION

The pwd command prints the path name of the current (working) directory.

MESSAGES

Cannot open ..
or
Read error in ..

PWD(l)

Indicates possible file system trouble and a user should try the full path name (cd /name/name/)
followed by a pwd command. If the problem persists, then contact a Cray Research, Inc., site
analyst

SEE ALSO

cd(1)

SR-2011 1 Release 2.0

QDEL(l) QDEL(l)

NAME

qdel - Deletes or signals NQS requests

SYNOPSIS

qdel [-k] [-signo] [-u username] request-ill ...

DESCRIPTION

Qdel deletes or sends a signal to queued NQS requests specified on the command line. The -k flag, if
included, sends the default signal of SIGKILL(-9) to running requests specified on the command line.
This exits and deletes the receiving request. The -signo flag designates an alternate signal to SIGKILL.
In the absence of the -k and -signo flags, qdel does not delete a running NQS request.

To delete or signal an NQS request, you must be the owner of the request, unless you have superuser
privileges or are an NQS system administrator or system manager. If you are a user with these special
privileges, use the -u flag to specify the owner of the request you wish to signal or delete.

The request-id of any NQS request is displayed when the request is first submitted (unless the silent
mode of operation for the given NQS command was specified). You can also obtain the request-id of
any request with the qstat(1) command.

LIMITATIONS

When you signal an NQS request, the signal is sent to all processes in the NQS request that are in the
same process group. Whenever an NQS request is spawned, a new process group is established for all
processes in the request. However, should one or more processes of the request successfully execute a
setpgrp(2) system call, these processes do not receive signals sent by the qdel(1) command. This can
lead to rogue request processes that must be killed by other means, such as the kill(1) command. NQS
takes advantage of UNIX implementations that support the ability to lock a process into a single pro­
cess group.

SEE ALSO

nqsintro(1), qdev(l), qlimit(l), qpr(l), qstat(l), qsub(1), qmgr(lM)
kill (2) , setpgrp(2), and signal(2) in the UNICOS System Calls Reference Manual, publication SR-2012

SR-2011 Release 2.0

QDEV(I) QDEV(I)

NAME

qdev - Displays the status of NQS devices

SYNOPSIS

qdev [device-name] [device-name@host-name ...]

DESCRIYTION

Qdev displays the status of devices known to the Network Queuing System (NQS).

If no devices are specified, qdev displays the current state of each NQS device on the local host. Other­
wise, the response is limited to the devices specified. Devices may be specified either as device-name
or device-name@host-name. In the absence of a host-name specifier, qdev specifies the local host.

Qdev displays a device header with several headings for each selected device. The headings and their
associated values are as follows:

Device: Device name, in the form device-name@host-name

Fullname: Full path name of the special file associated with the device

Server: Command line used to execute the device server with execve(2)

Forms: Forms configured with the device

Status: General device state

The following paragraphs describe the two properties that represent the general device state.

The first property specifies whether the device will continue accepting queued requests. The following
values are possible:

Enabled Queued requests are accepted.

Disabled Queued requests are not accepted and the device is idle.

Enabled/Closed Queued requests are not accepted, but the device is not yet idle.

The second principal property of a device specifies whether the device is busy. The following values
are possible:

Active

Inactive

Failed

Device is busy.

Device is idle and not known to be out of service.

Device is idle and is out of service (applies to both hardware and software failures).

If a device is busy, information about the active device follows the device header. The qdev command
displays the request-name, request-id, and the name of the user who submitted the request

SEE ALSO

nqsintro(l), qdel(l), qlimit(l), qpr(l), qstat(l), qsub(l), qmgr(lM)

SR-2011 1 Release 2.0

QLIMIT(l) QLIMlT(l)

NAME

qlimit - Shows supported batch limits and shell strategy for the named host or hosts

SYNOPSIS

qlimit [host-name ...]

DESCRIPTION

Qlimit displays the batch request resource limit types that NQS can directly enforce and the batch
request shell strategy defined by the system administrator. Implementation of qlimit for systems other
than the local host is deferred.

If you do not specify a host-name, qlimit displays information relevant only to the local host. Other­
wise, qlimit displays the supported batch request limits and batch request shell strategy for each of the
hosts you include on the command line.

NQS Resourse Limits
NQS supports many batch request resource limit types that can be applied to a batch request However,
not all UNIX implementations support the rather extensive set of NQS limit types.

The set of limits applied to a batch request is restricted to the set of limits that can be directly sup­
ported by the underlying UNIX implementation. If a batch request specifies a limit that cannot be
enforced, the limit is ignored.

When you attempt to queue a batch request, each specified limit-value is compared against the limit­
value configured for the destination batch queue. If the batch queue limit-value is greater than or equal
to the corresponding batch request limit-value, the request can be successfully queued. If a request has
a limit-value of infinity, the corresponding queue limit-value must also be infinity.

These resource limit checks are performed regardless of the arrival mechanism, either by direct use of
the qsub(l) command, or by the indirect placement of a batch request into a batch queue through a pipe
queue. An NQS batch request cannot be queued if any of the resource limit checks fail.

If a request does not specify a value for a resource limit type that is supported on the execution
machine, the limit-value configured for the destination queue is the default

When a request is successfully queued, the set of limits under which the request will execute is frozen.

NQS . Shell Strategies

SR-2011

Qlimit also displays the shell strategy configured for the implied local host or named hosts. In the
absence of a shell specification for a batch request, NQS chooses the shell used to execute that batch
request NQS supports three different algorithms, or strategies, to solve this problem. The NQS system
administtator configures these shell strategies for each system, taking into account user needs and per­
formance criteria.

The three possible shell strategies and their meanings follow:

Fixed Specifies that the shell chosen by the system administrator is used to execute all batch
requests

Free The default NQS shell sttategy. Specifies that the user's login shell (as defined in the
password file) is executed; the login shell then chooses and spawns the appropriate shell
to run the batch request. This shell strategy runs the request exactly as if the shell com­
mands were entered interactively.

Login Specifies that only the user's login shell is executed to interpret the script

I Release 2.0

QLIMIT(l) QUMlT(l)

The fixed and login strategies are appropriate for host systems short on available free processes. In
these two strategies, a single shell is executed, and that same shell executes all commands in the batch
request shell script

When a system administrator configures a fixed shell strategy for a particular NQS system, qlimit
displays the designated shell.

SEE ALSO

nqsintro(l), qdel(1), qdev(l), qpr(1), qstat(l), qsub(1), qrngr(1M)

Release 2.0 2 SR-2011

QPR(1) QPR(l)

NAME

qpr - Submits a hard-copy print request to NQS

SYNOPSIS

qpr [-a date-time] [-I form-name] [-mb] [-me]
[-mu user-name] [-0 number-of-copies] [-p priority]
[-q queue-name] [-r request-name] [-z] [files]

DESCRIPTION

SR-2011

Qpr places files in an Network Queuing System (NQS) queue to be printed by a device such as a line
printer or a laser printer. If no files are specified, qpr reads from standard input.

In the absence of the -z option, qpr prints a request-id on the standard output upon successful queuing
of a request To determine the status of your request, compare this request-id with qdev(l) and qstat(l).
You can also use this request-id as an argument to qdel(l) to delete a request A request-id takes the
form seqno .hostname, where seqno refers to the sequence number NQS assigns to the request, and host­
name refers to the name of originating local machine.

The following qpr options may appear in any order and may be mixed within file names.

-a date-time
Submits at the specified date and time. In the absence of this option, qpr submits the
request immediately.

See qsub(l) for infonnation on how to specify the date-time variable.

-r form-name
Limits the set of acceptable devices to those devices loaded with the forms specified by
form-name. In the absence of this option, qpr submits the request only to a device that is
loaded with the default forms. If no default forms are defined, the request is submitted to
the appropriate output device regardless of the forms configured for the device. In any
case, only those devices associated with the chosen queue are considered.

-mb Sends mail to the user on the originating machine when the request begins execution. If the
-mo option is also present, mail is sent to the user specified by the -mu option instead of
to the invoking user.

-me Sends mail to the invoker on the originating machine when the request has ended execution.
If the -mo option is also present, mail is sent to the user specified by the -mu option
instead of to the invoking user.

-mu user-name
Specifies that any mail concerning the request is delivered to the user user-name. User­
name may be formatted either as user (containing no '@' character), or as user@machine.
In the absence of this option, any mail concerning the request is sent to the invoker on the
originating machine.

-0 numher-of-copies
Specifies the number of copies printed; the default is I.

-p priority Assigns an intraqueue priority to this request The specified priority must be an integer in
the range 0 through 127. A value of 127 defines the highest intraqueue request priority,
while a value of 0 defines the lowest. This priority does not determine the execution prior­
ity of the request. Rather, it determines the relative ordering of requests within a queue.

New requests on a queue are placed ahead of all existing requests of lower priority value.
The existing request takes precedence if two requests are of equal priority.

1 Release 2.0

QPR(1) QPR(l)

NQS assigns a midrange default value if you do not specify an intraqueue priority to your
request

-q queue-name
Specifies the queue to which the device request is submitted. If you do not designate a
queue, NQS searches your QSUB_QUEUE environment variable and sends the request to the
designated queue. If NQS does not locate QSUB_QUEUE, the request is sent to the default
batch request queue designated by the system administrator; otherwise, the request cannot
be queued.

-r request-name
Assigns a name to this request. In the absence of an explict -r request-name specification,
the default is the name of the first print file (leading path name removed) specified on the
command line. If no print files were specified, stdin is the default request-name.

If the request-name begins with a digit, the system prepends the character R to the request­
name. All request-names are truncated to a maximum length of 15 characters.

Be sure not to confu~ request-name with request-id.

-z Submits the request silently. If the request is submitted successfully, nothing is written to
stdout or stderr.

QUEUE ACCESS

NQS supports queue access restrictions. For each queue of queue type other than network, access may
be either unrestricted or restricted. If access is unrestricted, any request may enter the queue. If
access is restricted, a request can only enter the queue if the requester or the requester's login group
has been given access to that queue (see qmgr(lM». Requests submitted by root are an exception; they
are always queued, even if root has not explicitly been given access.

Use qstat(l) to determine who has access to a particular queue.

SEE ALSO

mail(l), nqsintro(l), qdel(I), qdev(I), qlimit(l), qstat(I), qsub(l), qmgr(lM)

Release 2.0 2 SR-2011

QSTAT(I) QSTAT(I)

NAME

qstat - Displays the status of NQS queues

SYNOPSIS

qstat [-a] [-I] [-m] [-u user-name] [-x]
[queue-name ...] [queue-name@host-name ...]

DESCRIPTION

Qstat displays the status of Network Queueing System (NQS) queues.

If no queues are specified, the current state of each NQS queue on the local host is displayed. Other­
wise, information is displayed for the specified queues only. Queues may be specified either as queue­
name or queue-name@host-name. In the absence of a host-name specifier, the local host is assumed.

For each selected queue, qstat displays a queue header (information about the queue itself), followed
by information about requests in the queue. Ordinarily, qstat shows only those requests belonging to
the invoker. The following options are available:

-8 Shows all requests

-I Requests are shown in a long format

-m Requests are shown in a medium-length format

-u user-name
Shows only those requests belonging to user-name

-x The queue header is shown in an extended format

The queue header always includes the queue-name, queue type, queue status (see following), an indica­
tion of whether or not the queue is pipeonly (accepts requests from pipe queues only), and the number
of requests in the queue. An extended queue header goes on to display the priority and run limit of a
queue, as well as the access restrictions, cumulative use statistics, server and destinations (if a pipe
queue), queue to device mappings (if a device queue), and resource limits (if a batch queue).

By default, qstat displays the following information about a request: the request-name, the request-id,
the owner, the relative request priority, and the current request state (see following). For running
requests, the UNICOS job identifier group is also shown, as soon as this information becomes available
to the local NQS daemon.

Qstat -m shows the following additional information: H the request was submitted with the constraint
that it not run before a certain time and date, the constraining time and date is also displayed.

Qstat -I shows the time at which the request was created, an indication of whether or not mail will be
sent, where mail will be sent, and the username on the originating machine. If a batch queue is being
examined, resource limits, planned disposition of stderr and stdout, any advice concerning the com­
mand interpreter, and the umask value are shown. If a device queue is being examined, the requested
forms are shown.

QUEUE STATE

SR-2011

The command displays a queue header with several headings for each of the selected queues. The first
heading is followed by the name of the queue formatted as queue-name@host-name.

The second heading, which appears as type=, is followed by the queue type. The queue type is either
BATCH (indicating a batch request queue), DEVICE (indicating a device queue), or PIPE (indicating a
queue that pipes NQS requests to other NQS queues or machines).

1 Release 2.0

QSTAT(l) QSTAT(l)

The third heading prefaces a display of the general queue state. The general queue state is defined by
two properties, which are described in the following paragraphs.

The first property determines whether requests can be submitted to the queue. The possible values fol­
low:

ENABLED Requests are accepted (enabled and the local NQS daemon is running).

DISABLED Requests are not accepted.

CLOSED Requests are not accepted (enabled with no local NQS daemon).

The second property indicates the following:

• Whether queued requests not currently running will be pennitted to run after the completion
of currently running requests

• Whether any requests are currently running in the queue

The following states are possible:

STOPPED Queued requests not currently running are blocked from running, and no
requests are currently in the queue.

STOPPING

RUNNING

INACTIVE

Queued requests not currently running are blocked from running, but at least
one job is running and will be allowed to complete execution.

Queued requests are permitted to run and one or more requests are currently
running.

Queued requests are permitted to run, but no requests are currently running.

SHUTDOWN The NQS daemon for the local host on which the queue resides is not running.

Below the queue header, all requests residing in that queue are displayed in either short or long form,
depending on the presence of the -I option. In both cases, however, the following information is
displayed concerning each queued request:

• Queue position

• Execution state

• Relative priority compared to other requests in that queue

• Job name, job identification, and job owner

If the request is running, the process group of the request is displayed when this information is avail­
able to the local NQS daemon. If the request is being held until a specified time or date, the time or
date is also displayed.

REQUEST STATE

The state of a request may be a"iving, holding, waiting, queued, staging, routing, running, depart­
ing, or exiting. A request is a"iving if it is being enqueued from a remote host Holding indicates
that the request is presently prevented from entering any other state (including the running state),
because a hold has been placed on the request A request is said to be waiting if it was submitted with
the constraint that it not run before a certain date and time, and that date and time have not yet arrived.
Queued requests are eligible to proceed (by routing or running). When a request reaches the head of a
pipe queue and receives service there, it is routing. A request is departing from the time the pipe

Release 2.0 2 SR-2011

QSTAT(l) QSTAT(l)

queue turns to other work until the request has arrived intact at its destination. Staging denotes a batch
request that has not yet begun execution, but for which input files are being brought on to the execution
machine. A running request has reached its final destination queue, and is actually executing. Finally,
exiting describes a batch request that has completed execution, and it will exit from the system after the
required output files have been returned (to possibly remote machines).

A batch request originating on a workstation and destined for the batch queue of a Cray computer sys­
tem would go through the following states -in a local pipe queue: queued, routing, and departing. It
would then disappear from the pipe. queue. From the point of view of a queue on the Cray computer
system, the request would first be arriving, then queued, staging (if required by the batch request), run­
ning, and finally exiting. Upon completion of the exiting phase of execution, the batch request would
disappear from the batch queue.

The ordering of requests within a queue does not always determine the order in which the requests are
run; the NQS request scheduler can make exceptions to the request ordering for the sake of efficiency.
Generally, however, requests appearing near the beginning of the queue have higher priority than
requests appearing later, and early requests are usually run before requests appearing later in the queue.

SEE ALSO

nqsintro(l), qdel(l), qdev(l), qIimit(l), qpr(l), qsub(l), qmgr(lM)

SR-2011 3 Release 2.0

QSUB(l) QSUB(l)

NAME

qsub - Submits an NQS batch request

SYNOPSIS

qsub [options] [script-file]

DESCRIPTION

SR-2011

Qsub submits a batch request to the Network Queuing System (NQS). For an introduction to the use of
NQS, see nqsintro(1).

If you do not specify the script file on the command line, the set of commands to be executed as a
batch request is taken directly from the standard input file stdin. In all cases, however, the script file is
immediately spooled so that later changes to the script file do not affect previously queued batch
requests.

If your batch request is successfully submitted and the -z option was not specified, NQS displays the
corresponding request-ide The request-id is a combination of the sequence number NQS assigns to your
request and the name of the originating machine. For example, a request-id of 71.C2 specifies that NQS
has assigned you a request sequence number of 71 and that you are working on a machine designated
as C2. This identifier uniquely identifies your batch request throughout the network. The name of the
queue to which the request is submitted is also displayed.

By default, NQS returns the output produced by your request (stdout) and any error messages (stderr)
to the machine and directory from which you submitted the request You can redirect both the stderr
and stdout files with the options described later in this discussion.

You can include options within the script file, provided that the options appear before any of the shell
commands executed as part of the batch request. The simplest method of including options within the
script file is to precede the option or options with the I, @, and $ characters, as follows:

I @$-a Ilpm tues.

This example specifies that the batch request should be submitted no earlier than 11 p.m. on Tuesday.
The @, $, and - characters must not be separated by white space.

You can include a comment line within the script file by preceding it with a I character, as follows:

It This comment is not processed.

You can also include comments on the same line as an option by preceding the comment with a I sign:

It @$-a Ilpm tues. I Sends job at II p.m. on Tuesday

Here is an extended example of the use of embedded options within the script file:

It
It Batch request shell script example:
It
It @$--q batchl It Queue request to queue: batch! by default.
It @$-z It Submits the request silently
It @$ It No more embedded options.
It
make all

I Release 2.0

QSUB(l) QSUB(l)

If the same option appears both in the batch file and on the command line, the command line option
takes precedence.

A summary of the options accepted by qsub follow:

FLAG DESCRIPTION

-a Runs request after stated time

-e Directs standard error output to the stated destination

-eo Directs standard error output to the standard output destination

-ke Keeps standard error output on the execution machine

-ko Keeps standard output output on the execution machine

-If Establishes per-process file-size limits

-1m Establishes per-process memory size limits

-1M Establishes per-request memory size limits

-In Establishes per-process nice execution value limits

-It Establishes per-process CPU time limits

-IT Establishes per-request CPU time limits

-mb Sends mail when the request begins execution

-me Sends mail when the request ends execution

-mn Sends mail for the request to the stated user

-Dr Specifies that the batch request is not restartable

-0 Directs standard output to the stated destination

-p Specifies intra-queue request priority

-q Queues requests in the stated queue

-r Assigns stated request name to the request

-re Remotely accesses the standard error output file

-ro Remotely accesses the standard output output file

-s Specifies shell to interpret the batch shell script

-x Exports all environment variables with request

-z Submits the request silently

Complete descriptions of the options follow:

-a date-time
Holds the batch request until the specified date and time. When you enter a date-time
specification separated by white space on the command line, enclose the specification within
double quotes, as follows: -a "July 4, 2026 12:31-EDT'. Double quotes cannot be used when
the date-time specification appears within the script file.

Release 2.0

You can specify a wide range of values for the date-time variable. If you do not specify a
date, the default value is the current day, month, or year. As a result, if you do not include a
date and the specified time is earlier than the current time, NQS processes the request immedi­
ately~ You can also specify the date as a weekday (for example, Tuesday) or with the words
today or tomorrow. Abbreviate weekdays and months by any three-or-more character prefix
(for example. tues or feb). A period can optionally follow abbreviated months or days.

2 SR-2011

QSUB(l) QSUB(l)

SR-2011

Specify the time of day using either the 24-hour clock or meridian (a.m. or p.m.) specifications.
The 24-hour clock, which is the default, is specified in the form hh:mm:ss. For example, 12am
on Friday is equivalent to 00:00:00 on Friday; 12n on Friday is equivalent to 12:00:00 on Fri­
day; and 12pm on Friday is equivalent to 24:00:00 on Friday. The words midnight and noon
are also accepted as time of day specifications; midnight is equivalent to 24:00:00 on the
specified day.

You can also include a time zone designation in the date-time specification; the default is the
local time zone. For example, April I, 1987 13:01-EST specifies Eastern Standard Time. NQS
accounts for daylight savings time, when appropriate.

Date and time specifications are not case-sensitive.

Some valid date-time examples follow:

01-Jan-1986 12am, PDT
Tuesday, 23:00:00
I1pm tues.
tomorrow MST 23

-e lmachine:}lllJpath/}stde"-filename
Directs the stderr file produced by the batch request to the specified machine, path, and
standard-error filename. The standard error file produced by the batch job is referred to as the
stderr file.

H you do not specify machine, and the path/filename does not begin with a /, the CWTent work­
ing directory is prepended to create a fully qualified path name, provided that the -ke option is
absent. In all other cases, any partial path/filename is interpreted relative to your home direc­
tory on the stderr destination machine.

You cannot specify this option when the -eo option is also specified.

H the stderr filename is not specified with the -eo and ~ options, all stderr output is sent to
a file named as follows: the first 7 characters of the request-name. followed by the characters
.e, followed by the request sequence number portion of the request-id discussed below. In the
absence of the -ke option, the stderr file is placed in the current working directory of the ori­
ginating machine. Otherwise, the stderr file is placed in your home directory on the executing
machine.

-eo Directs all output that would normally be sent to the stderr file to the stdont file for the batch
request This option is not valid when the -e lmachine:}ll/Jpath/} stde"-filename option is
present

-ke Leaves the stderr file on the execution machine; normally, the stderr file is returned to the
originating machine.

This option is invalid if the ~o option is specified or if an explicit machine destination is
given for the stderr parameter of the -e option.

-ko Leaves the stdont file on the originating machine; normally, NQS returns the stdout file to the
machine that originated the request.

Do not specify this option if an explicit machine destination is given for the stdont parameter
of the -0 option.

-If per-process file-size limit
Set a per-process maximum for files associated with the batch request.

H a maximum limit specification is comprised of two or more tokens separated by whitespace,
enclose the specification within double quotes or escape characters.

3 Release 2.0

QSUB(l) QSUB(l)

-1m per-process memory size limit
Specifies the maximum memory per process in a batch request.

See the LIMITS subsection for more informatiQn.

-1M per-request memory space limit
Specifies the maximum memory size allowed for a batch request. If the total memory used by
a request exceeds the specified limit, processes in the request are not allowed to allocate more
memory.

See the LIMITS subsection for more information.

-In per-process nice-value limit
Specifies the priority by which the batch request is processed on the executing machine.

The nice-value, which exists on most UNIX implementations, determines the execution-time
priority of a process relative to all other processes in the system.

Use the nice-value when you are executing a CPU-intensive batch request on a machine used
by a significant number of interactive users. By setting a low execution-time priority, you can
make a long-running batch request defer to higher-priority interactive processes during the day.

On most systems, increasingly negative nice-values increase the relative execution priority of a
process; increasingly positive nice-values decrease the relative priority. For example, a
specification of -In -20 assigns a higher execution priority than -In 20.

Because varying UNIX implementations support a different range of nice values, NQS lets you
specify values that are outside the limits for the executing machine. In such cases, NQS binds
the specified nice-value limit to a value within the necessary range.

Any nice-value specified by the use of this option must be acceptable to the batch queue in
which the request is ultimately placed (see the LIMITS subsection for more information).

-It per-process CPU time limit
Specifies the CPU time limit for all processes that constitute a batch request. If the CPU time
limit is exceeded, the offending process is terminated.

Not all UNIX implementations support per-process CPU time limits. If the executing machine
does not enforce this limit, the limit is ignored.

See the UMITS subsection for more information on the implementation of batch request limits
and for a description of the syntax of a per-process CPU time limit.

-IT per-request CPU time limit
Specifies the maximum cumulative CPU time limit allowed for a batch request If the CPU
time limit is exceeded, the request is tenninated by the executing system.

See the UMITS subsection for more information on the implementation of batch request limits
and for a description of the syntax of a per-request CPU time limit.

-mb Sends mail to the user on the originating machine when the request begins execution. If the
-mu option is also present, NQS sends mail to the user specified by -mu instead of to the
invoking user.

-me Sends mail to the user on the originating machine when the request has ended execution. If
the -mu option is also present, NQS sends mail to the user specified by -DIU instead of to the
invoking user.

-mu user-name

Release 2.0

Specifies that any mail concerning the request is delivered to the user user-name. User-name
may be formatted either as user (containing no '@' character) or user@machine. In the
absence of this option, NQS sends any mail concerning the request to the invoker on the ori­
ginating machine.

4 SR-2011

QSUB(l) QSUB(l)

SR-2011

-Dr Specifies that the request is nonrestartable; the request will not be restarted during system boot
if the request was running at the time of an NQS shutdown or system crash.

In the absence of -Dr, NQS assumes that all requests are restartable. However, you should
ensure that the request will execute correctly if restarted.

Requests that are not running at the time of a host crash or shutdown are always preserved for
later requeuing, with or without this option.

When an operator shuts down NQS, a SIGTERM signal is sent to the processes which comprise
all running NQS requests on the local host; all queued NQS requests are also barred from begin­
ning execution. After a predetermined time period, the processes comprising all remaining
running NQS requests are killed by SIGKILL.

To ensure that an NQS request is properly restarted after an NQS shutdown, you must not
specify the -Dr option and the spawned batch request shell must ignore SIGTERM signals
(which is done by default). Also, the spawned batch request shell must not exit before the
final SIGKILL arrives. The commands and programs spawned by the batch request must be
immune to SIGTERM signals, saving state as appropriate before being killed by the final SIG­
KILL signal.

See the LIMITATIONS subsection for more discussion concerning the restarting of NQS batch
requests.

-0 [machine:) lll)path/)stdout-jilename
Directs standard output to the designated machine, path name, and stdout filename.

If you do not specify 1fUJchine, the default is the machine that originated the batch request
(unless the -ko option is also specified).

If you do not specify machine and do not supply a fully qualified path name, NQS assumes
your current worldng directory (unless the -ke option is specified). In all other cases, any par­
tial path/filename is interpreted relative to your home directory on the stdout destination
machine.

By default, all standard output for the batch request is sent to a file named as follows: the first
7 characters of the request-name, followed by the characters .0, followed by the request
sequence number portion of the request-id. In the absence of the -ko option, NQS returns this
output file to the submitting machine in the directory from which you submitted the batch
request Otherwise, the file is placed in your home directory on the execution machine.

-p priority
Assigns an intraqueue priority to the request The specified priority must be an integer in the
range 0 through 127, with 127 representing the highest priority. This priority does not deter­
mine the execution priority of the request, but rather determines ordering of requests within a
queue.

New requests on a queue are placed ahead of all existing requests of lower priority value. The
existing request takes precedence if two requests are of equal priority.

NQS assigns a midrange default value if you do not specify an intraqueue priority.

-q queue-name
Specifies the queue to which the batch request is submitted. If you do not designate a queue­
name, NQS searches yqur environment variable set for QSUB_QUEUE and sends the request to
the designated queue. If the QSUB_QUEUE environment variable is not found, the request is
sent to the default batch request queue designated by the system administrator.

-r request-name
Assigns the specified request-name to the request. If you do not specify request-name, the
default is the name of the script file (leading path name removed) given on the command line.

5 Release 2.0

QSUB(l) QSUB(l)

If you did not specify a script file, the default request-name is stdin. The request-name cannot
begin with a digit

-re Specifies that the stderr output produced by the request is written to the final destination file as
output is generated, regardless of the networking cost This option is deferred for remote
machines.

By default, all standard error output generated by a request is spooled to a temporary file in a
protected directory which NQS maintains on the executing machine. When the batch request
completes execution, this file is spooled to its final destination, possibly on a remote machine.
This default spooling reduces the network traffic costs; the -re option overrides this default.

-ro Specifies that the standard output produced by the request is written to the destination file as
output is generated, regardless of the networking cost This option is deferred for remote
machines.

By default, all standard output generated by a batch request is spooled into a temporary file
residing in a protected directory on the executing machine. When the batch request completes
execution, this file is spooled to its final destination. This default spooling reduces the network
traffic costs; the -ro option overrides this default.

-s shell-name
Specifies the absolute path name of the shell used to intetpret the batch request shell script
This option overrides any shell strategy configured on the execution machine.

In the absence of this option, the NQS system at the executing machine uses one of three shell
strategies for batch request execution. See qlimit(1) for further information on these shell stra­
tegies.

-x Exports all environment variables.

When you submit a batch request, NQS saves the current values of the environment variables
HOME, SHELL, PATH, LOGNAME, MAIL, and TZ for later re-creation as the respective
environment variables QSUB_HOME, QSUB_SHELL, QSUB_PATH, QSUB_LOGNAME,
QSUB_MAIL, and QSUB_TZ. Unless you specify the -x option, no other environment vari­
ables are be exported from the originating host for the batch request If you specify the -x
option, all remaining environment variables whose names do not conflict with the automatically
exported variables are also exported. These additional environment variables are re-created
under the same name when the batch request is spawned.

~Z Submits the batch request silently. If the request is submitted successfully, no indicating mes­
sages are displayed. Error messages, however, are still displayed.

Sequence of Events
The following events occur in the specified order when you submit an NQS batch request:

Release 2.0

NQS creates the process that will become the process group for all processes comprising the
batch request

NQS sets the real and effective user-id of the process to your user-ide

NQS sets the real and effective group-id of the process to the group-id defined in your local
password file.

NQS sets the user file creation mask to the value existing on the originating machine when you
submitted the batch request.

If you used the -s option, NQS selects the specified shell to execute the batch request shell
script. Otherwise, a shell is chosen based on the shell strategy as configured for the local NQS

system.

6 SR-2011

QSUB(l) QSUB(l)

NQS sets the environment variables HOME, SHELL, PATH, LOGNAME, and MAIL from your
password file entry as though you have logged on directly to the executing machine.

NQS adds the environment string ENVIRONMENT=BATCH to the environment so that shell
scripts (and your .profile or .cshrc and .Iogin files) can test for batch request execution when
appropriate.

NQS adds the environment variables QSUB_ WORKDIR, QSUB_HOST, QSUB_REQNAME, and
QSUB_REQID to the environment These environment variables equate to the following: the
obvious respective strings of the working directory at the time that the request was submitted;
the name of the originating host; the name of the request; and the request request-id.

NQS adds all remaining environment variables saved for re-creation when the batch request is
spawned. When a batch request is initially submitted, the ClUTent values of the environment
variables HOME, SHELL, PATH, LOGNAME, MAIL, and TZ are saved for this purpose. When
they are recreated, however, NQS adds these variables to the environment under the following
names: QSUB_HOME, QSUB_SHELL, QSUB_PATH, QSUB_LOGNAME, QSUB_MAIL, and
QSUB_TZ. NQS also adds at this time all environment variables exported from the originating
host by the -x option. This renaming eliminates conflict with the local versions of these
environment variables.

NQS sets the current working directory to the home directory on the executing machine. The
chosen shell then executes the batch request shell script with the environment constructed as
outlined in the preceeding steps.

In all cases, NQS execs the chosen shell as though it were the login shell. If the Bourne shell executes
the script, the .profile file is read. If the C-shell executes, the .cshrc and .Iogin scripts are read.

If you did not specify a specific shell for the batch request, NQS chooses a shell script based on the
shell strategy configured by the system administrator. See qlimit(1) for a discussion of shell strategies.

In the absence of a specified shell, a free shell strategy instructs NQS to execute your login shell (as
configured in the password file). The login shell examines the shell script file and forks another shell of
the appropriate type to interpret the shell script, behaving exactly as an interactive invocation of the
script

Otherwise, no additional shell is spawned, and the chosen fixed or login shell sequentially executes the
commands contained in the shell script file until completion of the batch request

Queue Access
NQS supports queue access restrictions. For each queue of a type different than network, access may be
either restricted or unrestricted. If access is unrestricted, any request may enter the queue. If access is
restricted, a request can enter the queue only if the requester or the requester's login group has access
to that queue. Use qstat(l) to determine who has access to a particular queue.

Limits

SR-2011

NQS supports configurable limits that let you set resource limits within which your request executes.
These limits also let system administrators set queue-specific resource limits to which all batch requests
must adhere.

Finite limits are either time-related or nontime-related. Use the following syntax to specify the limit
value for finite CPU time-limits:

[[hours :] minutes:] seconds [.milliseconds]

White space can appear anywhere between the principal tokens, with the exception that no white space
can appear around the decimal point

Example time limit-values are as follows:

7 Release 2.0

QSUB(l) QSUB(l)

1234 : 58 : 21.29 1234 hours, 58 minutes, and 21.290 seconds
12345 12,345 seconds
121.1 121.100 seconds
59:01 59 minutes and 1 second

For all other finite limits (with the exclusion of the nice limit-value), use the following syntax:

.fraction [units]

or

integer [.fraction] [units]

where the integer and fraction tokens represent strings of up to 8 decimal digits, denoting the obvious
values. In both cases, the units of allocation may also be specified as one of the case insensitive
strings:

b
w
Kb
Kw
Mb
Mw
Gb
Gw

Bytes
Words
Kilobytes (2"10 bytes)
Kilowords (2" 10 words)
Megabytes (2"20 bytes)
Megawords (2"20 words)
Gigabytes (2"30 bytes)
Gigawords (2"30 words)

In the absence of any units specification, the units of bytes are assumed.

For all limit types, with the exception of the nice limit-value, you can designate an unlimited value by
specifying a limit-value of "unlimited," or any initial substring thereof.

If a batch request specifies a limit that cannot be enforced by the underlying UNIX implementation, the
limit is ignored, and the batch request operates as though no limit exists. Qmgr(1M) describes in detail
how NQS limits are interpreted by various architectures.

Limitations
When an NQS batch request is spawned, a new job is established. Subsequently, all processes of the
request exist in the same job. If you use qde/{l) to send a signal to an NQS batch request, the signal is
sent to all processes of the request in the created job.

All processes of an NQS request should catch any SIGTERM signals. By default, the receipt of a
SIGTERM signal causes the receiving process to die. NQS sends a SIGTERM signal to all processes in
the established process group for a batch request as a notification that the request should be prepared to
be killed. This signal is sent by a qmgr{l) abort queue command or because of a general host shut­
down.

The spawned shell ignores SIGTERM signals. If the current immediate child of the shell does not
ignore or catch SIGTERM signals, it is killed by the receipt of such, and the shell goes on to execute
the next command from the script (if there is one). In any case, the shell is not killed by the SIGTERM
signal, although the executing command is killed.

Mter receiving a SIGTERM signal delivered from NQS, a process of a batch request typically has 20
seconds before receiving a SIGKILL signal.

NQS considers all batch requests terminated because of an operator NQS shutdown request restartable,
unless the batch request specified the -Dr option. (Implementation of the -Dr option is deferred.) When
NQS is rebooted following a shutdown, eligible batch requests are requeued, provided that the batch

Release 2.0 8 SR-2011

QSUB(l) QSUB(l)

request shell process is still present at the time of the SIGKILL signal broadcast It is up to you, how­
ever, to ensure that the request is restartable.

There is no good method to echo commands executed by unmodified versions of the Bourne and C
shells. The C shell can be spawned so as to echo the commands it executes. It is, howevert difficult to
tell an echoed command from genuine output produced by the batch request, because no identifying
character is displayed before the echoed command.

Thus t an efficient method of writing shell scripts for a batch request is to place appropriate lines in the
shell script, as follows:

echo "explanatory-message"

SEE ALSO

mail(1), nqsintro(l), qdel(1), qdev(1), qIimit(l), qpr(1), qstat(l)
qmgr(lM) in the UNICOS Administrator Commands Reference Manual, publication SR-2022

SR-2011 9 Release 2.0

RCP(l) (TCP lIP Network) RCP(I)

NAME

rcp - Copies remote files

SYNOPSIS

rep filel file2
rep [-r] file ••• directory

DESCRIPITON

BUGS

The rep command copies files between machines. File arguments may refer to remote files, local files,
or directories; arguments may consist of either absolute or relative path names. Remote files are
specified in the form rhost:file, where rhost is a remote hostname or alias (described in hosts(4F)).
The local file name file may not contain a colon (:) unless it is preceded anywhere in the name by a
slash (I).

If the -r option is specified and any of the source files are directories, rep copies each subtree rooted at
that name; in this case the destination must be a directory.

If path is not a full path name, it is interpreted relative to your login directory on rhost. A path name
on a remote host may be quoted (using \ It, or ') so that metacharacters are interpreted remotely.

Rep does not prompt for passwords; your current local user name must exist on rhost and allow remote
command execution via remsh(l).

Rep handles third party copies, where neither source nor target files are on the current machine. Host­
names may also take the form rhost.rname to use rname rather than the current user name on the
remote host.

Rcp does not detect all cases where the target of a copy might be a file when only a directory should be
legal.
Rep is confused by any output generated by commands in a .profile file on the remote host.

SEE ALSO

ftp(1), remsh(l), rlogin(l)

SR-2011 I Release 2.0

RDIST(l) (CRAY X-MP and CRAY-l computer systems only) RDIST(l)

NAME

rdist - Remote file distribution program

SYNOPSIS

rdist [-DnqbRvwyhimr] [-r distfile] [~ var=value] [name ...]

rdist [-DnqbRvwyhimr] -c name ... host[.login] [:dest]

DESCRIPTION

SR-2011

The rdist command maintains identical copies of files over multiple hosts. It preserves the owner,
group, mode, and mtime of files if possible. It can update executing programs. The rdist command
reads the commands from distfile to update files and/or directories. If distfile is '-', the standard input
is used. If you do not specify -r, distfile is used for input. H you do not specify any names on the
command line, rdist updates all of the files and directories listed in distfile; otherwise, rdist only
updates the listed files. The following options are available:

-c Forces rdist to interpret the remaining arguments as a small distfile. The equivalent distfile is as
follows.

(name ...) -> host[.login]
install dest;

~ Defines var to have value. Use the -d option to define or override variable definitions in the
distftle. Value can be the empty string, one name, or a list of names surrounded by parentheses
and separated by tabs and/or spaces.

-0 Prints the commands without executing them. This option is useful for debugging distfile.

~ Invokes quiet mode. Files that are being modified are normally printed on standard output. The ~
option suppresses this.

-R Removes extraneous files. If a directory is being updated, any files that exist on the remote host
that do not exist in the master directory are removed. This is useful for maintaining truely identi­
cal copies of directories.

-v Verifies that the files are up to date on all the hosts. Any files that are out of date will be displayed
but no files will be changed nor any mail sent.

-m Invokes force directory mode. This will force an update of all remote directories into having the
same permissions as the master directory.

-r Follows symbolic links on the remote host. Normally a symbolic link will be overwritten if the
master isn't a symbolic link.

-w Invokes whole mode. The whole file name is appended to the destination directory name. Nor­
mally, only the last component of a name is used when renaming files. This will preserve the
directory structure of the files being copied instead of flattening the directory structure.

-y Invokes younger mode. Files are nonnally updated if their mtime and size (see stat(2» disagree.
The -y option causes rdist to only update files that are younger than the master copy. This can be
used to prevent newer copies on other hosts from being replaced. A warning message is printed
for files which are newer than the master copy.

-h Invokes follow symbolic links. Force rdist to install copies of the file pointed to instead of instal­
ling this symbolic link.

1 Release 2.0

RDIST(1) (CRAY X-MP and CRAY-l computer systems only) RDIST(l)

-i Invokes ignore links. This causes rdist to ignore all hard links. Normally they are installed.

-D Invokes debug switch. Rdist will output debugging information. This switch is only useful if you
need to debug rdist.

-b Invokes binary comparison. Perform a binary comparison and update files if they differ rather than
comparing dates and sizes.

Distfile contains a sequence of entries that specify the files to be copied, the destination hosts, and what
operations to perform to do the updating. Each entry has one of the following formats.

<variable name> '=' <Dame list>
<source list> '->' <destination list> <command list>
<source list> '::' <time_stamp file> <command list>

The first format defines variables. The second format distributes files to other hosts. The third format
makes lists of files that have been changed since some given date. The source list specifies a list of
files and/or directories on the local host that are to be used as the master copy for distribution. The
destination list is the list of hosts these files are to be copied to. Each file in the source list is added to
a list of changes if the file is out of date on the host being updated (second format) or the file is newer
than the time stamp file (third format).

Newlines, tabs, and blanks are only used as separators and are otherwise ignored. Comments begin with
'#' and end with a newline.

The source and destination lists have the following format

<name>
or

'(' <:zero or more names separated by white-space> ')'

The shell meta-characters '[', 'r, '{" '}" '*', and '?' are recognized and expanded (on the local host
only) in the same way as csh(1). The ,-, character is also expanded in the same way as csh but is
expanded separately on the local and destination hosts. When the -w option is used with a file name
that begins with '-', everything except the home directory is appended to the destination name.

The command list consists of zero or more commands of the following fonnat.

'install' <options> opcdescname ';'
'notify' <name list> ';'
'except' <name list> ';'
'special' <name list> string ';'

install copies out of date files and/or directories. Each source file is copied to each host in the destina­
tion list. Directories are recursively copied in the same way. Opcdescname is an optional parameter
to rename files. If no install command appears in the command list or the destination name is not
specified, the source file name is used. Directories in the path name will be created if they do not exist
on the remote host. The options are '-R', '-v', '-w', '-y', and '-b' and have the same semantics as
options on the command line except they only apply to the files in the source list. The login name used
on the destination host is the same as the local host unless the destination name is of the format
"hosLlogin" .

Notify mails the list of files updated (and any errors that may have occured) to the listed names. If no
'@' appears in the name, the destination host is appended to the name (e.g., namel@host, name2@host,
...).

Release 2.0 2 SR-2011

RDIST(l) (CRAY X-MP and CRAY-l computer systems only) RDIST(l)

Except updates all the files in the source list except for the files listed in name list. This is mostly used
to copy everything in a directory except certain files.

Special specifies shell commands that are to be executed on the remote host after the file in name list is
updated or installed. String starts and ends with "It and can cross multiple lines in distfile. Multiple
commands to the shell should be separated by';'. The special command can be used to create links,
rebuild private databases, and so on. after a program has been updated.

EXAMPLE

FILES

BUGS

HOSTS = (matisse arpa.root)

FILES = (/bin /lib /usr/bin /usr/games
/usr/include/ {* .h, {stand,sys, vax* ,pascal,machine }!* .h}
/usr/lib /usr/man/man? lusr/ucb lusr/local/rdist)

EXLIB = (Mail.re aliases aliases.dir aliases.pag crontab dshrc
sendmail.cf sen~ail.fc sendmail.hf sendmail.st uucp vfont)

${FILES} -> ${HOSTS}
install -r ;
except lusr/lib/$ {EXLIB} ;
except lusr/games/lib ;
except lusr/ucb/f ;
special lusr/ncb/finger "rm /usr/ucb/f; In /usr/ucb/finger lusr/ucb/f' ;

IMAGEN = (ips dviimp catdvi)
lusr/locaV$ {IMAGEN} -> arpa

install lusr/local/lib ;
notify ralph ;

${FILES} :: stamp.cory
notify root@cory ;

distfile Input command file
/tmp/rdist* Temporary file for npdate lists

Source files must reside on the local host where rdist is executed.

The names used to update specific files from distfile must match the expanded name (that is, rdist
"${FILES}" will not work).

SEE ALSO

csh(1)
stat(2) in the UNICOS System Calls Reference Manual, publication SR-2012

SR-2011 3 Release 2.0

RDROP(l) (CRAY X-MP and CRAY-l computer systems only) RDROP(l)

NAME

rdrop - Reloads a recoverable drop file

SYNOPSIS

rdrop [-I] pill

DESCRIPTION

The rdrop command reloads a recoverable drop file from either the system/drop device or the current
working directory. The -I option specifies the location from which the image is to be reloaded. If you
do not specify -I, the image is always reloaded from the system/drop directory. The pid argument is
the process id embedded in the drop file name. The format is: drop. XXXXXXX, where XXXXXXX is
the process ID. The pill argument is required.

SEE ALSO

wdrop(l)
wdrop(2), rdrop(2) in the UNICOS Systems Calls Manual, publication SR-2012

SR-2011 1 Release 2.0

REGCMP(l) REGCMP(l)

NAME

regcmp - Compiles regular expressions

SYNOPSIS

regcmp [-] files

DESCRIPI10N

Regcmp, in most cases, precludes the need for calling regcmp(3C) from C programs. This saves on
both execution time and program size. The command regcmp compiles the regular expressions in file
and places the output in file J. H the - option is used, the output will be placed in file .c. The format of
entries in file is a name (C variable) followed by one or more blanks followed by a regular expression
enclosed in double quotes. The output of regcmp is C source code. Compiled regular expressions are
represented as extern char vectors. File.i files may thus be included into C programs, or file.c files
may be compiled and later loaded. In the C program which uses the regcmp output, regex(abc ,line)
will apply the regular expression named abc to line.

EXAMPLES

name "([A-Za-z][A-Za-z0-9-1*)$0"

telno ',,«0,1)([2-9][01][1-9])$0\)(0,1) *"
"([2-9][0-9](2)$1[-] (0,1)"
"([0-9] (4)$2"

In the C program that uses the regcmp output,

regex(telno, line, area, exch, rest)

will apply the regular expression named telno to line.

SEE ALSO

regcmp(3C)

SR-2011 1 Release 2.0

REMSH(l) (TCP/IP Network) REMSH(l)

NAME

remsh - Invokes a remote shell

SYNOPSIS

remsh host [-I username] [-0] command

DESCRIPTION

BUGS

Remsh connects to the specified host and executes the specified command. Remsh copies its standard
input to the remote command, the standard output of the remote command to its standard output, and
the standard error of the remote command to its standard error. Interrupt, quit and terminate signals are
propagated to the remote command; remsh normally terminates when the remote command does.

The remote username used is the same as your local username, unless you specify a different remote
name with the -I option. This remote name must be equivalent (in the sense of rlogin(l) to the ori­
ginating account; no provision is made for specifying a password with a command.

If you omit command. instead of executing a single command, you will be logged in on the remote host
using rlogin(l).

Shell metacharacters that are not quoted are interpreted on local machine, while metacharacters that are
are quoted are interpreted on the remote machine. Thus, the command

remsh otherhost cat remotefile » localfile

appends the remote file remotefile to the localfile 10 calfile , while

remsh otherhost cat remotefile "»" otherremotefile

appends remotefile to otherremotefile.

Host names are given in hosts(4F). Each host has one standard name (the first name given in the file),
which is rather long and unambiguous, and, optionally, one or more nicknames. hosts(4F) in the
UNICOS File Formats and Special Files Reference Manual, publication SR-2014

If no input is desired, you must redirect the input of remsh to Idev/null using the -0 option.

SEE ALSO

rlogin(l) - deferred implementation

SR-2011 1 Release 2.0

RLOGIN(l) (TCP/IP Network - CRAY X-MP and CRAY-l computer systems only) RLOGIN(l)

NAME

rlogin - Invokes the remote login

SYNOPSIS

rlogin rhost [-e c] [-I username] [-8]

DESCRIPTION

BUGS

Rio gin connects your terminal on the current local host system Ihost to the remote host system rhost.
Your remote terminal type is the same as your local terminal type (as given in your environment TERM
variable). All echoing takes place at the remote site, so that the rio gin is transparent (except for
delays). Flow control via control-S and control-Q and flushing of input and output on interrupts are
handled properly. A line of the form -. disconnects from the remote host, where - is the escape char­
acter. A line of the form -z suspends the rlogin process and creates a local shell.

The -8 option allows the transmission of 8 bit data. A different escape character may be specified by
the -e option. There is no space separating this option flag and the argument character.

More terminal characteristics should be propagated.

SEE ALSO

remsh(l)

SR-2011 1 Release 2.0

RM(l) RM(l)

NAME

rm, rmdir - Removes files or directories

SYNOPSIS

rm [-rri] file •••
rmdir dir •••

DESCRIPTION

The rm command removes the entries for one or more files from a directory. If the removed entry is
the last link to the file, the file is destroyed. Removal of a file requires write permission in its direc­
tory, but neither read nor write permission on the file itself.

If a file has no write permission and the standard input is a terminal, its permissions are printed and a
line is read from the standard input. If that line begins with y the file is deleted, otherwise the file
remains. No questions are asked if the standard input is not a terminal.

If a designated file is a directory, an error comment is printed.

Options are:

-f Suppress questions on removal of file with no write permission

-r Recursively delete entire contents of specified directory and directory itself

-i Ask whether to delete each file; when used with the -r option, ask whether to examine each
directory.

Rmdir removes entries for the named directories. The named directories must be empty.

MESSAGES

NOTES

Error messages are generally self-explanatory.

The file •• cannot be removed, which avoids consequences of inadvertently doing something like:

rm -r.*

SEE ALSO

unlink(2) in the UNICOS System Calls Reference Manual, publication SR-2012

SR-2011 1 Release 2.0

RMDEL(l) RMDEL(l)

NAME

rmdel - Removes a delta from an sees file

SYNOPSIS

rmdel -rSID files

DESCRIPTION

FILES

The mulel command removes the delta specified by the SID from each named sees file. The delta to
be removed must be the newest (most recent) delta in its bnmch in the delta chain of each named sees
file. In addition, the specified delta must not be that of a version being edited for the purpose of mak­
ing a delta (that is, if a p-file (see get(1» exists for the named sees file, the specified delta must not
appear in any entry of the p-file).

If a directory is named, mulel behaves as though each file in the directory were specified as a named
file, except that non-SeeS files (last component of the path name does not begin with s.) and unreadable
files are silently ignored. If a name of - is given, the standard input is read; each line of the standard
input is taken to be the name of an sees file to be processed; non-Sees files and unreadable files are
silently ignored.

The exact permissions necessary to remove a delta are documented in the Source Code Control System
(SCCS) User's Guide. Simply stated, they are either (1) if you make a delta you can remove it; or (2)
if you own the file and directory you can remove a delta.

x/ile see delta(l)
z/ile see delta (1)

MESSAGES

Use help(l) for explanations.

SEE ALSO

SR-2011

delta(l), get(l), help(1), prs(l)
sccsfile(4F) in the UNleos File Formats and Special Files Reference Manual, publication SR-2014
the UNIeos Source Code Control System (SeeS) User's Guide, publication SG-2017

1 Release 2.0

RUPTIME(l) (TCP /W Network - Deferred Implementation) RUPTIME(l)

NAME

ruptime - Shows host status of local machines

SYNOPSIS

ruptime [-a] [-I] [-t] [-u]

DESCRIPTION

Fll.ES

For each machine on the local network, ruptime prints its namet the length of time it has been UPt and
the average number of processes in the run queue over the last fifteen minutes. These are formed from
packets broadcast by each host on the network once a minute.

Machines for which no status report has been received for five minutes are shown as being down.

Users who have been idle for an hour or more are not counted unless the -a flag is given.

NormallYt the listing is sorted by host name. The -I , -t , and -u flags specify sorting by load averaget
uptimet and number of userst respectively.

lusrlspooVrwho/whod. * data files

SEE ALSO

rwho(1) - deferred implementation

SR-2011 1 Release 2.0

RWHO(l) (TCP/IP Network - Deferred Implementation) RWHO(l)

NAME

rwho - Indicates who is logged in on local machines

SYNOPSIS

rwho [-a]

DESCRIPTION

FILES

BUGS

The rwho command produces output similar to who(1), but displays infonnation for all machines on the
local network. If no report has been received from a machine for five minutes, rwho assumes the
machine is down and does not report the status for the users last known to be logged into that machine.

If a user has not sent any characters to the system for a minute or more, rwho reports this as idle time.
If a user has not sent any characters to the system for an hour or more, this user will be omitted from
the output of rwho unless the -a flag is given.

/usr/spoo1/rwho/whod. * information about other machines

Rwho is unwieldy when the number of machines on the local net is large.

SEE ALSO

ruptime(l) - deferred implementation, who(1), rwhod(lM) - deferred implementation

SR-2011 1 Release 2.0

SACf(l) SACf(l)

NAME

sact - Print current sees file editing activity

SYNOPSIS

sact files

DESCRIPTION

Sact informs the user of any impending deltas to a named sees file. This situation occurs when get(l)
with the -e option has been previously executed without a subsequent execution of delta(l). If a direc­
tory is named on the command line, sact behaves as though each file in the directory were specified as
a named file, except that non-sees files and unreadable files are silently ignored. If a name of - is
given, the standard input is read with each line being taken as the name of an sees file to be pro­
cessed.

The output for each named file consists of five fields separated by spaces.

Field 1 specifies the SID of a delta that currently exists in the sees file to which changes
will be made to make the new delta.

Field 2 specifies the SID for the new delta to be created

Field 3

Field 4

Field 5

contains the logname of the user who will make the delta (that is, executed a get
for editing).

contains the date that get -e was executed.

contains the time that get -e was executed.

MESSAGES

Use help(l) for explanations.

SEE ALSO

delta(l), get(l), unget(l)
the UNICOS Source Code Control System (SCCS) User's Guide, publication SG-2017

SR-2011 Release 2.0

SAG(l) (CRAY X-MP and CRAY-l computer systems only) SAG(l)

NAME

sag - System activity graph

SYNOPSIS

sag [-s time] [~ time] [-i sec] [-f file] [- T term] [-x spec] [-y spec]

DESCRIPTION

The sag command graphically displays the system activity data stored in a binary data file by a previ­
ous sar(1) run. You can plot any of the sar data items singly or in combination, as cross plots or
versus time; simple arithmetic data combinations can be specified. The sag command invokes sar and
finds the desired data by string-matching the data column header (run sar to see what is available).
These following options are passed to sar:

-s time Selects data later than time in the form hh [:mm]. The default is 08:00.

-e time Selects data up to time. The default is 18:00.

-i sec Selects data at intervals as close as possible to sec seconds.

-f file Uses file as the data source for sar. The default is the current daily data file
lusr/adm/salsadd.

Other options:

- T term Produces output suitable for terminal term. If term is vpr, output is processed by vpr -p
and queued to a Versatec printer. The default for term is $TERM.

-x spec x axis specification with spec in the form shown under the -y option.

-y spec y axis specification with spec in the form:

"name [op name] .•. [10 JuT'

Name is either a string that matches a column header in the sar report, with an optional device name in
square brackets (for example, r+w/s[dsk-l]) or an integer value. Op is + - * or I surrounded by
blanks. You can specify up to five names. Sag does not recognize parentheses. Contrary to custom, +
and - have precedence over * and • Evaluation is left to right. Thus A / A + B * 100 is evaluated
(N(A+B»*I00, and A + B / C + Dis (A+B)/(C+D). La and hi are optional numeric scale limits. If
unspecified, they are deduced from the data.

A single spec is permitted for the x axis. If unspecified, time is used. Up to 5 specs separated by ;
may be given for -yo Enclose the -x and -y arguments in ". if blanks or \<CR> are included. The-y
default is:

-y "%usr 0 100; %usr + %sys 0 100; %usr + %sys + %wio 0 100"

EXAMPLES

SR-2011

To see today's CPU utilization:
sag

To see activity over 15 minutes of all disk drives:
TS=date +%H:%M
sar -0 tempfile 60 15
TE=date +%H:%M
sag -f tempfile -s $TS -e $1E -y "r+w/s[dsk]"

1 Release 2.0

SAG(l) (CRAY X-MP and CRAY-l computer systems only) SAG(l)

Fll..ES

/usr/adm/sa/sadd Daily data file for day dd.

BUGS

Sag produces a command file consisting of graphic commands and several data files. These must be
used on a machine that supports plots or graphs, such as a V AX. The scaling produced by sag is not
correct for eRA Y X-MP and eRA Y -I computer systems.

SEE ALSO

sar(l)

Release 2.0 2 SR-2011

SAR(1) (CRAY X-MP and CRAY-l computer systems only) SAR(1)

NAME

gar - Extracts operating system activity information according to a specified time interval

SYNOPSIS

sar [-upbdycwaqvA] [-0 file] t [n]
sar [-upbdycwaqv A] [-s time] [~ time] [-i sec] [-f file]

DESCRIPTION

SR-2011

The sar command, in the first instance, samples cumulative activity counters in the operating system n
times every t seconds. If -ofile is specified, sar saves the samples in file in binary format.

In the second instance, if you do not specify a sampling interval, sar extracts data from a previously
recorded file, either the one specified by the -f option or, by default, the standard system activity daily
data file, lusr/adm/salsadd, for the current day dd. The starting and ending times of the report can be
bounded through the -s and ~ time arguments using the 24-hour clock form hh[:mm[:ss]]. The-i
option selects records at sec second intervals. Otherwise, all intervals found in the data file are
reported.

In either case, subsets of data to be printed are specified by the following options:

-u Reports CPU utilization (the default):
%usr, %sys, %wio, %idle - portion of time running in user mode, running in system mode, idle
with some process waiting for block I/O, and otherwise idle, respectively.

-p Reports CPU utilization by processor:
%usr, %sys, %wio, %idle - portion of time running in user mode, running in system mode, idle
with some process waiting for block I/O, and otherwise idle, respectively.

-b Reports buffer activity:
bread/s, bwrit/s - transfers per second of data between system buffers and disk or other block
devices;
lread/s, lwrit/s - accesses of system buffers;
%rcache, %wcache - cache hit ratios, for example, 1 - bread/lread;
pread/s, pwrit/s - transfers via raw (Physical) device mechanism.

-d Reports activity for each block device, for example, disk or tape drive:
%busy, avque - portion of time device was busy servicing a transfer request, average number of
requests outstanding during that time;
r+w/s, blks/s - number of data transfers from or to device, number of bytes transferred in 512-
byte units;
avwait, avserv - average time in ms. that transfer requests wait idly on queue, and average time
to be serviced (which for disks includes seek, rotational latency, and data transfer times).

-y Reports ITY device activity:
rawch/s, canch/s, outch/s - input character rate, input character rate processed by canon, and out­
put character rate;
rcvin/s, xmtin/s, mdmin/s - receive, transmit, and modem interrupt rates.

-c Reports system calls:
scalVs - system calls of all types;
sread/s, swrit/s, fork/s, exec/s - specific system calls;
rchar/s, wchar/s - characters transferred by read and write system calls.

-w Reports system swapping and switching activity:
swpin/s, swpot/s, bswin/s, bswot/s - number of transfers and number of 512-byte units transferred

1 Release 2.0

SAR(I) (CRAY X-MP and CRAY-l computer systems only)

for swapins (including initial loading of some programs) and swapouts;
pswch/s - process switches.

-a Reports use of file access system routines:
iget/s, namei/s, dirblk/s.

-q Reports average queue length while occupied, and % of time occupied:
runq-sz, %runocc - run queue of processes in memory and runnable;
swpq-sz, %swpocc - swap queue of processes swapped out but ready to run.

-v Reports status of text, process, inode, and file tables:

SAR(I)

text-sz, proc-sz, inod-sz, file-sz - entries/size for each table, evaluated once at sampling point;
text-ov, proc-ov, inod-ov, file-ov - overflows occurring between sampling points.

-A Reports all data. Equivalent to -updqbwcayv.

EXAMPLES

FILES

To see today's CPU activity so far:

sar

To watch CPU activity evolve for 10 minutes and save data:

sar -0 temp 60 10

To later review disk and tape activity from that period:

sar -d -f temp

lusr/adm/sa/sadd Daily data file, where dd are digits representing the day of the month.

SEE ALSO

sag(I), sar(l)

Release 2.0 2 SR-2011

SC(t) SC(t)

NAME

sc - Invokes the front end for the scm source code conttol program

SYNOPSIS

sc keyword pi [parameters]

DESCRIPTION

SR-2011

The sc shell script is a front end to scm(l) that helps scm conttol source code similar to the UPDATE
utility available with the Cray operating systems COS and UNICOS. Sc invokes scm in the appropriate
directories and with the appropriate options.

A program library (PL) under sc control is simply a collection of scm source control files (.m suffix)
arranged in a directory structure parallel to the "vanilla" source files.

The environment variable SPREFIX must be set to the name of the directory containing the PLs before
calling sc. The options are as follows:

keyword Specifies the operation to be performed. keyword can be one of the following:

build Takes raw source files in SPREFIX/pl/.SCM. No parameters are
needed.

list parameter Lists various administrative files used by sc. Available parameters are:
pl,files, mods, index, and log.

addmocl modname
Installs an scm modset in the PL. The parameter is the name of the
modset, which must be in a file of the same name in the current direc­
tory.

delmod modname
Deletes an scm modset from the PL. The parameter is the name of the
modset.

addfile filename Adds a new module to the PL. The parameter is the name of the file to
be added. (the scm ·0 directive should be used instead of addfile.)

delfile filename Removes the named module from the PL

get filename

getx filename

Places an up-to-date copy of the given module in the current directory t
as well as the associated source code control (.m suffix) file.

This is the same as get, except the scm is invoked with the -z option,
which tells scm to use the basename of the module's name. This is
useful when modules are stored in subdirectories within the PI>
Without the -z option, all of the intervening subdirectories must be
present in the current directory before the given module can be
operated 00. With the -z option, the subdirectory names are discarded,
and the module is placed in the current directory directly.

yank modname Undoes the effects of the given modset without actually removing it
from the PL.

unyank modname
Reverses the effects of a yank.

1 Release 2.0

SC(t)

sync

SC(t)

Used intemally by most other operations to ensure the text version of
the module is consis~ent with the source control version and all applied
modsets.

pi Indicates the PL (relative to SPREFIX) on which the operation is to be performed. Typi­
cal choices for pi are cmd, include, and uts.

parameters Parameters vary depending on the operaton being performed. Usually the parameter is
the name of the module (for example, mv.c) on which to operate.

EXAMPLES

FILES

To put a file called myprogram.c into scm fonnat for the first time, assuming also that no sc directory
already exists, type the following after the scum% prompt:

setenv PREFIX 'pwd'
mkdir mypl
mv myprogram.c mypl
sc build mypl

To obtain a copy of myprogram.c for editing, edit that file, then place it back in the sc database (again,
type the following commands after the scum% prompt):

mkdir work
cd work
sc get mypl myprogram.c
vi myprogram.c
your editing session
mxm -i myprogram.c -m modname
sc addmod mypl modname

To obtain a list of the names of all files in the PL, type the following after the scum% prompt:

sc list mypl files

SPREFIX/pl
SPREFIX/pI.SCM
SPREFIX/pI.SCMfllelist
SPREFIX/pI.SCM/.modslist
SPREFIX/pI.SCM/.mods
SPREFIX/pI.SCM/.index

Directory for source files
Directory for scm control files
List of all files in the PL
List of all modsets in the PL.
Directory for modsets
List of modsets per file

SEE ALSO

scm(l), mxm(l)

Release 2.0 2 SR-2011

seeSDIFF (1) seeSDIFF (1)

NAME

sccsdiff - Compares two versions of an secs file

SYNOPSIS

sccsdiff -rSIDl -rSID2 [-p] [-sn] files

DESCRIPTION

FILES

Sccsdiff compares two versions of an secs file and generates the differences between the two versions.
Any number of sees files may be specified, but arguments apply to all files.

-rSID? SIDl"and SID2 specify the deltas of an sces file that are to be compared. Ver­
sions are passed to bdiff(l) in the order given.

-p pipe output for each file through pr(l).

-sn n is the file segment size that bdiff will pass to diff(l). This is useful when diff
fails due to a high system load.

/trnp/get????? Tempornry files

MESSAGES

file: No differences
The two versions are the same.

Use help(l) for explanations.

SEE ALSO

bdiff(l), get(l), help(l), pr(l)
the UNICOS Source Code Control System (SCCS) User's Guide, publication SG-2017

SR-2011 1 Release 2.0

SCM (1) SCM(I)

NAME

scm - Invokes the source control program

SYNOPSIS

scm [-cn] [-i modnames] [-I indirect] [-b basedir] [-p paths] [--q qnames]

DESCRIPTION

SR-2011

The scm command invokes a source control program similar to the UPDATE utility available with the
Cray operating systems COS and UNICOS.

Definitions. A source file is an input file containing C or other code. A compile file is an output file,
otherwise identical to a source file. A source control module can be an output or input file. It is an
ASCII text file that corresponds to a source file. Each line in the source control module has an identifier
associated with it

Scm performs two basic functions:

• Creates one or more "base" source control modules. Also called a creation run. A unique per­
manent identifier is assigned to each line of source. For example, source file foo.c would be con­
verted into source control module foo.c.m. This function is requested with the -0 option.

• Updates a source control module using a set of directives. Also called an update run. The direc­
tives are usually in files called mods. Each mod implements one change, or adds one new feature,
to one or more source control modules. The directives can add and delete lines of source. Any
new lines of source will be assigned unique permanent identifiers. For example, if a mod were
applied to source control module foo.c.m a new version of foo.c.m would be created. If desired, a
compilable version of foo.c would also be created. This function is requested by omitting the -0

option.

If there are no errors, scm creates one or more files in the current working directory (see also FILES).
Scm operates in either full mode or quick mode. A full run creates output for all source files named by
the input directives. A quick run creates output for only specific source files. A full run is the default;
a quick run is requested with the --q option.

If neither of the input options -i or -I are specified, directives will be read from stdin.

The options and their meanings are:

-c Compile file output If this is a full update run, all files named by the input directives will be
created. If this is a quick update run (--q option), only specific files will be created.

-0 Create new source control module(s). If this option is specified, this will be a creation run,
which means that each source file named by the input directives will be converted into a
source control module (with an extension of .m). The only directives allowed with the -n
option are *f and *c.

-i modnames
Specify one or more input mod filenames. If more than one filename is specified, they must be
separated by commas with no intervening white space.

-I indirect
Read a list of input mod filenames from the file indirect. This option is useful if applying
many mod files in a single run.

1 Release 2.0

SCM(I) SCM(I)

-p paths
These two options are used together to specify the directory or directories scm will search to find
files named by the ·f directive. If only one directory is to be searched, it may be specified with the
-b option alone. The default for -b is the current working directory. If more than one directory is
to be searched, suffixes may be specified with the -p option. The pathname suffixes paths must be
separated by commas with no intervening white space. The directory pathnames to search are
derived by appending the -p option pathnames to the -b option pathname. The default for -p is
"~I"~ .

-q qnames
Quick update run. One or more soW'Ce file names must be specified. If more than one source file
name is specified, they must be separated by commas with no intervening white space.

DIRECTIVES

·m modname
Specify mod name. There must be only one ·m directive in a mod file. It must be the first
directive in a mod file. The mod name is used to generate the unique identifier for each source
line added by a mod.

·ffilename
Specify source file name. In a creation run, one ., directive is used for each source file that is
to be converted to a source control module. No other directives (other than ·c) are required or
allowed. In an update run, the ., directive is used to name the source file that subsequent
directives will modify. For an update run, scm will search for the corresponding source control
module (filename.m). More than one ., directive may appear in a mod file; up to twenty-six
source files may be referenced by a single mod.

·nfilename
Specify source file name. In an update run, one ·0 directive is used for each source file that is
to be converted to a source control module. The·o directives can be intermixed with ., direc­
tives, but cannot rely on each other. The twenty-six source file limitation applies to the total
of ·0 directives and ., directives .

• j ident Insert the lines following this directive, up to the next directive, into the current source file
after the line with identifier ident.

*b ident
Insert the lines following this directive, up to the next directive, into the current source file
before the line with identifier ident.

·d identl [,ident2]

*c [text]

IDENTIFIERS

Delete one or more lines from the current source file, starting with identifier identl, and
optionally continuing up to identifier ident2. Optionally replace the deleted lines with the lines
following this directive, up to the next directive.

Comment line. Ignored.

Unique identifiers are assigned by scm to each line of source in a source control module. These
identifiers are of two types.

During a creation run, the ident is based on the filename. Therefore, the lines of file /oo.c would be
numbered/oo.l,/oo.2,/oo.3. and so on.

During an update run, the ident is based on the modname. Now, a mod can affect up to twenty-six

Release 2.0 2 SR-2011

SCM(1) SCM(I)

source control modules; the modname receives a suffix "au for the first file modified, "b" for the
second file modified, and so OD. Therefore, the lines added by mod foomod would be numbered
foomoda.l,foomoda.2,foomoda.3, and so on, for the first file; foomodb.l, foomodb.2,foomodb.3, and so
on for the second file.

EXAMPLE

SR-2011

Creation run:
scm -i modules -b /usr/src/os/ -p os,io -n

Creates two base source control modules in the current working directory, acct.c.m
and bio.c.m. The original source files are /usr/src/os/os/acct.c and /usr/src/os/io/bio.c.
The source control modules can then be moved to an appropriate directory. For the
following two examples we will assume that acct.c.m is moved into /usr/src/os/os, and
that bio.c.m is moved into /usr/src/os/io.

Full update run:
scm -i modI,m0d2 -b /usr/src/os/ -p os,io ~

Applies two mods to the source control modules, and creates four files in the current
working directory: new source control modules acct.c.m and bio.c.m; and compile files
acct.c and bio.c. This kind of update run could be used to obtain the source for a
large number of modules (Le. the entire kernel) with a specific set of mods applied.

Quick update run:
scm -i modI,m0d2 -b /usr/src/os/ -p os,io ~ -q bio.c

Applies the same two mods to the source control modules, but creates only two files
in the current working directory: new source control module bio.c.m, and compile file
bio.c. This kind of update run could be used to obtain just one source file for editing.
The edited source file could then be used to create a new mod (see mxm(l) for details
of this procedure).

Contents of creation run input file modules:
*f acct.c
*f bio.c

Contents of mod file modI:
*m modI
*c comments describing modI
*f acct.c
*i acct.123
1* new source line * /
*d acct.200,acct220
*f bio.c
*i bio.IO
1* new source line * /

Contents of mod file m0d2:
*m m0d2
*c comments describing m0d2
*f acct.c
*d modla.l

3 Release 2.0

SCM(1) SCMel)

FILES

BUGS

1* fix to somce line added in modI */

Input files are specified with the -i and -I options, and with the *f directive. A file named by the *f
directive is searched for in the directory or directories derived from the -b and -p options.

No output files are created if scm has detected any errors. Output files are always placed in the current
working directory. Scm never silently replaces a file; an error is reported if an output file name will
conflict with an existing file name. Two kinds of output file can be created Scm always creates a new
source control module. If the ~ option is selected, a "compile file" (updated source file) is created.

Scm does not sort directives. Thus if directives that add new lines to a source file are not in ascending
order, the resulting identifiers given to the new lines will not be in ascending order.

Currently, to delete a module, you must submit a mod to delete all the lines in the file, and then remove
the zero length .m module.

SEE ALSO

rnxm(l)

Release 2.0 4 SR-2011

SCPQSUB(l) (CRAY X-MP and CRAY-l computer systems only) SCPQSUB(l)

NAME

scpqsub - Allows you to submit jobs to NQS from USCP spawned job

SYNOPSIS

scpqsub [-d mf] [-t tid] filename

DESCRIPTION

The scpqsub command lets you submit jobs to NQS and specify the front end to which you want the
output returned if

• You submitted the job to NQS through USCP

• You are logged in interactively to UNICOS through USCP

Jobs submitted using scpqsub do not require a user ID record or a COS job or account card. A COS job
or account card causes the job to abort.

The following options are available:

-t tid

Specifies a two character alternate station ID mf. The output is directed to the specified sta­
tion. The default is the station of origin.

Specifies an alternate tid (up to 8 characters) to be used by the front-end station. The
default is the original tid.

MESSAGES

Returns a zero if successful and a nonzero if unsuccessful.

SEE ALSO

nqsintro(l), qsub(l)
COS Version 1 Reference Manual, publication SR-OOll
Front-end Protocol Internal Reference Manual, publication SM-0042

SR-2011 1 Release 2.0

SCPREROUTE(1) (CltAY X-MP ad CRAY-l computer systems only) SCPREROUTE(1)

NAME

scpreroute - Allows you to define station processing of job output

SYNOPSIS

scpreroute [-d rrf] [-t tid] [~ de] [-r 1m] [-s sf] [-i uid] [- T text]

DESCRIPrION

NOTE

The sepreroute command lets you supply information to the station with regard to the processing
required for a job's output files.

The following options are available:

-dmf
-t tid

~de

-rim
-ssf

-i uid

-T text

Two character station ID. The default is the station of origin.

Tenninal identifier (up to 8 characters).

Two character disposition code. The default is PR (disposed to printer).

Two character fonnat selection. The default is UD (Unicos Data).

Special fonos selection (up to 8 characters).

User identification (up to 8 characters).

Up to 240 characters of text infonnation for the station. This infonnation must be con­
tained within quotes.

This command is only available to jobs submitted to NQS using USCP. It is equivalent to the COS
deferred dispose, but applies only to stdout and stderr.

MESSAGES

Returns a zero if successful or a nonzero if unsuccessful.

SEE ALSO

SR-2011

dispose(l) COS Version 1 Reference Manual, publication SR-2011
Front-end Protocol Internal Reference Manual, publication SM-0042

1 Release 2.0

SCRIPT(l) (CRA Y -2 computer systems only) SCRIPT(l)

NAME

script - Makes typescript of tenninal session

SYNOPSIS

script [-a] [file]

DESCRIPTION

SR-2011

The script command makes a typescript of everything printed on your terminal. The typescript is saved
in a file, and can be sent to the line printer later with lpr. If you specify a file name with the file argu­
ment, the typescript is saved there. If you do not specify a file name, the typescript is saved in the
typescript file. The -a option causes the script to append to the typescript file instead of creating a
new file.

The script ends when the forked shell exits.

This program is useful when you are using a CRT but you desire a hard-copy record of the dialog (for
example, a student handing in a program that was developed on a CRT when hard copy terminals are in
short supply).

1 Release 2.0

SCRIPT(l) (CRAY X-MP and CRAY-l computer systems only) SCRIPT(l)

NAME

script - Makes a typescript of terminal session

SYNOPSIS

script [-n] [-S] [-a] [~] [-S shell] [file]

DESCRIPTION

BUGS

The script command makes a typescript of everything printed on your terminal. The typescript is saved
in a file and can be sent to the line printer later with lpr. If you specify a file name, the typescript is
saved there. If not, the typescript is saved in the file typescript.

To exit script, type CONTROL-d. This sends an end-of-file to all processes you have started up, and
causes script to exit For this reason, CONTROL-d behaves as though you had typed an infinite number
of CONTROL-ds.

This program is useful when you are using a CRT but you desire a hard-copy record of the dialog.

The options control what shell is used.

-0 Invokes the new shell

-s Invokes the standard shell

-a Causes script to append to the typescript file instead of creating a new file

~ Invokes "quiet mode", where the "script started" and "script done" messages are turned
off

-S shell Allows you to specify any shell you want. The default depends on the system: Ibinlcsh is
used where possible, otherwise Ibinlsh is used. If the requested shell is not available, script
uses any shell it can find.

file Specifies the file where the typescript is saved (the default is typescript)

Since UNICOS cannot write an end-of-file down a pipe without closing the pipe, you cannot simulate a
single CONTROL-d without ending script.

The new shell has its standard input coming from a pipe rather than a tty, so stty does not work, and
neither will ttyname.

When the user interrupts a printing process, script attempts to flush the output backed up in the pipe for
better response. Usually the next prompt also gets flushed.

The pty(4D) feature for the CRAY X-MP could be used to make script work right.

SEE ALSO

pty (4D)

SR-2011 1 Release 2.0

SDIFF(l) SDIFF(I)

NAME

sdiff - Side-by-side difference program

SYNOPSIS

sdiff [options ...] file1 file2

DESCRIPTION

Sdiff uses the output of diff(1) to produce a side-by-side listing of two files indicating those lines that
are different. Each line of the two files is printed with a blank gutter between them if the lines are
identical, a < in the gutter if the line only exists in file1 , a> in the gutter if the line only exists in file2,
and a I for lines that are different

For example:

x y
a a
b <
c <
d d

> c

The following options exist:

-w n Use the next argument, n, as the width of the output line. The default line length is 130
characters.

-I Only print the left side of any lines that are identical.

-s Do not print identical lines.

-0 output Use the next argument, output, as the name of a third file that is created as a user-
controlled merging of file1 and file2. Identical lines of file1 and file2 are copied to out­
put. Sets of differences, as produced by dijf(l), are printed; where a set of differences
share a common gutter character. After printing each set of differences, sdijJ prompts the
user with a % and waits for one of the following user-typed commands:

append the left column to the output file

r append the right column to the output file

s turn on silent mode; do not print identical lines

v turn off silent mode

e 1 call the editor with the left column

e r call the editor with the right column

e b call the editor with the concatenation of left and right

e call the editor with a zero length file

q exit from the program

On exit from the editor, the resulting file is concatenated on the end of output.

SEE ALSO

diff(1), ed(l)

SR-2011 1 Release 2.0

SHD(I) SEO(I)

NAME

sed - Invokes the stream editor

SYNOPSIS

sed [-n] [-e script] [-t sfile] [files]

DHSCRIPI10N

SR-2011

Sed copies the named files (standard input by default) to the standard output, edited according to a
script of commands. The -t option causes the script to be taken from file sfile; these options accumu­
late. If there is just one -e option and no -t options, the flag -e may be omitted. The -n option
suppresses the default output. A script consists of editing commands, one per line, of the following
fonn:

[address [, address]] function [arguments]

In nonnal operation, sed cyclically copies a line of input into a pattern space (unless there is something
left after a D command), applies in sequence all commands whose addresses select that pattern space,
and at the end of the script copies the pattern space to the standard output (except under -n) and deletes
the pattern space.

Some of the commands use a hold space to save all or part of the pattern space for subsequent
retrieval.

An address is either a decimal number that counts input lines cumulatively across files, a $ that
addresses the last line of input, or a context address, that is, a !regular expression! in the style of ed(l)
modified thus:

In a context address, the construction \?regular expression?, where? is any character, is
identical to !regular expression!. Note that in the context address \xabc\xdefx, the
second x stands for itself, so that the regular expression is abcxdef.

The escape sequence \n matches a new-line embedded in the pattern space.
A period • matches any character except the terminal new-line of the pattern space.
A command line with no addresses selects every pattern space.
A command line with one address selects each pattern space that matches the address.
A command line with two addresses selects the inclusive range from the first pattern space that

matches the first address through the next pattern space that matches the second. (If
the second address is a number less than or equal to the line number first selected.
only one line is selected.) Thereafter the process is repeated, looking again for the
first address.

Editing commands can be applied only to non-selected pattern spaces by use of the negation function !
described below.

In the following list of functions the maximum number of permissible addresses for each function is
indicated in parentheses.

The text argument consists of one or more lines, all but the last of which end with \ to hide the new­
line. Backslashes in text are treated like backslashes in the replacement string of an s command, and
may be used to protect initial blanks and tabs against the stripping that is done on every script line.
The rfile or wfile argument must terminate the command line and must be preceded by exactly one
blank. Each wfile is created before processing begins. There can be at most 10 distinct wfile argu­
ments.

1 Release 2.0

SED(l) SED(l)

(1)a\
text Append. Place text on the output before reading the next input line.
(2) b label Branch to the : command bearing the label. If label is empty, branch to the end of the

script.
(2)c\
text Change. Delete the pattern space. With 0 or I address or at the end of a 2-address range,

place text on the output. Start the next cycle.
(2) d Delete the pattern space. Start the next cycle.
(2) D Delete the initial segment of the pattern space through the first new-line. Start the next

cycle.
(2) g Replace the contents of the pattern space by the contents of the hold space.
(2) G Append the contents of the hold space to the pattern space.
(2) h Replace the contents of the hold space by the contents of the pattern space.
(2) H Append the contents of the pattern space to the hold space.
(I) i\
text
(2)1

(2)0

(2)N

(2)p
(2)P

Insert. Place text on the standard output.
List the pattern space on the standard output in an unambiguous form. Non-printing char­
acters are spelled in two-digit ASCII and long lines are folded.
Copy the pattern space to the standard output. Replace the pattern space with the next line
of input.
Append the next line of input to the pattern space with an embedded new-line. (The
current line number changes.)
Print Copy the pattern space to the standard output.
Copy the initial segment of the pattern space through the first new-line to the standard out-
put.

(1) q Quit Branch to the end of the script Do not start a new cycle.
(2) r rfile Read the contents of rfile. Place them on the output before reading the next input line.
(2) slregular expression/replacement /flags

Substitute the replacement string for instances of the regular expression in the pattern
space. Any character may be used instead of /. For a fuller description see ed(I). Flags
is zero or more of:

o n= 1 - 512. Substitute for just the n-th occurrence of the regular expres­
sion.

g Global. Substitute for all nonoverlapping instances of the regular expres­
sion rather than just the first one.

p Print the pattern space if a replacement was made.
w wfile Write. Append the pattern space to wfile if a replacement was made.

(2) t label Test. Branch to the : command bearing the label if any substitutions have been made since
the most recent reading of an input line or execution of a t. If label is empty, branch to
the end of the script

(2) w wfile Write. Append the pattern space to wfile.
(2) x Exchange the contents of the pattern and hold spaces.
(2) y/stringl/string2/

Transform. Replace all occurrences of characters in stringl with the corresponding charac­
ter in string2. The lengths of stringl and string2 must be equal.

(2)! function
Negation. Apply the function (or group, if function is () only to lines not selected by the
address(es).

(0): label This command does nothing; it bears a label for b and t commands to branch to.
(1) = Place the current line number on the standard output as a line.
(2) (Execute the following commands through a matching) only when the pattern space is

selected.

Release 2.0 2 SR-2011

SED(l)

(0)
(0)#

SEE ALSO

SED(l)

An empty command is ignored.
If a # appears as the first character on the first line of a script file, then that entire line is
treated as a comment, with one exception. If the character after the # is an 'n', then the
default output will be suppressed. The rest of the line after #n is also ignored. A script file
must contain at least one non-comment line.

ed(1), grep(l)

SR-2011 3 Release 2.0

SEGLDR(1) SEGLDR(l)

NAME

segldr - Invokes the segment loader (SEGLDR)

SYNOPSIS

segldr [-() obifile] [-V] file

DESCRIPTION

FILES

The segldr command links relocatable binaries together to produce an executable binary. Directives to
segldr are read from all the files named that do not end with .0. All files ending in .0 are assumed to
be relocatable input files (that is, bin=test.o). The listing and error messages are written to standard
output. An error message summary is written to standard error. The executable file will be execute­
enabled if no WARNING or FATAL errors occurred during the load.

The -0 objfile option indicates the file where the executable output is to be written. If the -0 option is
not used, the executable is written to the file named by the abs directive. If neither the -0 option nor
the abs is specified, the executable output is written to a.out. The -V option indicates that segldr
should output its version line to standard error.

stdout
stderr
SYMBOLS
a.out

segldr listing and eror messages
segldr version line and error summary
Symbol tables and debug table
Executable binary

MESSAGES

The full range of segldr error messages and proper response to each can be found in the Segment
Loader (SEGLDR) Reference Manual, publication SR-0066.

SEE ALSO

SR-2011

relo(4F) in the UNICOS File Formats and Special Files Reference Manual, publication SR-2014
All segldr directives are described in the Segment Loader (SEGLDR)Reference Manual, publication SR-
0066. Particular attention should be given to the bin and map directives.

1 Release 2.0

SH(l) SH(l)

NAME

sh, rsh - Shell, the standard/restricted command programming language

SYNOPSIS

sh [-acefhiknrstuvx] [args]
rsh [-aeefhiknrstuvx] [args]

DESCRIPTION

The sh invokes the command programming language that executes commands read from a terminal or a
file. The rsh command is a restricted version of the standard command interpreter sh; it is used to set
up login names and execution environments whose capabilities are more controlled than those of the
standard shell. See Invocation below for the meaning of arguments to the shell.

Definitions
A blank is a tab or a space. A name is a sequence of letters, digits, or underscores beginning with a
letter or underscore. A parameter is a name, a digit, or any of the characters *, @, I, ?, -, $, and !.

Commands

SR-2011

A simple-command is a sequence of non-blank words separated by blanks. The first word specifies the
name of the command to be executed. Except as specified below, the remaining words are passed as
arguments to the invoked command. The command name is passed as argument 0 (see exec (2)). The
value of a simple-command is its exit status if it terminates normally, or (octal) 200+status if it ter­
minates abnormally (see signal(2) for a list of status values).

A pipeline is a sequence of one or more commands separated by I (or, for historical compatibility, by
A). The standard output of each command but the last is connected by a pipe(2) to the standard input
of the next command. Each command is run as a separate process; the shell waits for the last com­
mand to terminate. The exit status of a pipeline is the exit status of the last command.

A list is a sequence of one or more pipelines separated by;, &, &&, or II, and optionally terminated
by ; or &. Of these four symbols, ; and & have equal precedence, which is lower than that of && and
II. The symbols && and II also have equal precedence. A semicolon (;) causes sequential execution
of the preceding pipeline; an ampersand (&) causes asynchronous execution of the preceding pipeline
(that is, the shell does not wait for that pipeline to finish). The symbol && (II) causes the list follow­
ing it to be executed only if the preceding pipeline returns a zero (non-zero) exit status. An arbitrary
number of new-lines may appear in a list, instead of semicolons, to delimit commands.

A command is either a simple-command or a conditional command. Unless otherwise stated, the value
returned by a command is that of the last simple-command executed in the command.

for name [in word ...] do list done
Each time a for command is executed, name is set to the next word taken from the in word
list. If in word ... is omitted, then the for command executes the do list once for each posi­
tional parameter that is set (see Parameter Substitution below). Execution ends when there are
no more words in the list.

case word in [pattern [I pattern] •••) list ;;] ••• esae
A case command executes the list associated with the first pattern that matches word. The
form of the patterns is the same as that used for file-name generation (see File Name Genera­
tion) except that a slash, a leading dot, or a dot immediately following a slash need not be
matched explicitly.

if list then list [elif list then list] ... [else list] Ii
The list following if is executed and, if it returns a zero exit status, the list following the first
then is executed. Otherwise, the list following elif is executed and, if its value is zero, the list
following the next then is executed. Failing that, the else list is executed. If no else list or

1 Release 2.0

SH(I) SH(I)

then list is executed, then the if command returns a zero exit status.
while list do list done

A while command repeatedly executes the while list and, if the exit status of the last command
in the list is zero, executes the do list; otherwise the loop terminates. If no commands in the
do list are executed, then the while command returns a zero exit status; until may be used in
place of while to negate the loop termination test.

(list) Execute list in a sub-shell.
{list;} list is simply executed.
name 0 {list;}

Define a function which is referenced by name. The body of the function is the list of com­
mands between { and }. Execution of functions is described below (see Execution).

The following words are only recognized as the first word of a command and when not quoted:

if then else elif fi case esac for while until do done { }

Comments
A word beginning with # causes that word and all the following characters up to a new-line to be
ignored.

Command Substitution
The standard output from a pipeline or command enclosed in a pair of grave accents (") may be used
as part or all of a word; trailing new-lines are removed.

Parameter Substitution
The character $ is used to introduce substitutable parameters. There are two types of parameters, posi­
tional and keyword. If parameter is a digit, it is a positional parameter. Positional parameters may be
assigned values by set. Keyword parameters (also known as variables) may be assigned values by writ­
ing:

name=value [name=value] ...

Pattern-matching is not performed on value. There cannot be a function and a variable with the same
name.

$ (parameter)
The value, if any, of the parameter is substituted. The braces are required only when parame­
ter is followed by a letter, digit, or underscore that is not to be interpreted as part of its name.
If parameter is • or @, all the positional parameters, starting with $1, are substituted
(separated by spaces). Parameter $0 is set from argument zero when the shell is invoked.

$ {parameter:-word}
If parameter is set and is non-null, substitute its value; otherwise substitute word.

$ {parameter:=word}
If parameter is not set or is null set it to word; the value of the parameter is substituted. Posi­
tional parameters may not be assigned to in this way.

$ {parameter: ?word}
If parameter is set and is non-null, substitute its value; otherwise, print word and exit from the
shell. If word is omitted, the message "parameter null or not set" is printed.

$ {parameter:+word}
If parameter is set and is non-null, substitute word; otherwise substitute nothing.

In the above, word is not evaluated unless it is to be used as the substituted· string, so that, in the fol­
lowing example, pwd is executed only if d is not set or is null:

echo $(d:-"'pwd"')

If the colon (:) is omitted from the above expressions, the shell only checks whether parameter is set or
not

Release 2.0 2 SR-2011

SH(I) SH(I)

The following parameters are automatically set by the shell:
II The number of positional parameters in decimal.

Flags supplied to the shell on invocation or by the set command.
? The decimal value returned by the last synchronously executed command.
S The process number of this shell.

The process number of the last background command invoked.

The following parameters are used by the shell:
HOME The default argument (home directory) for the cd command.
PATH The search path for commands (see Execution below). The user may not change

PATH if executing under rsh.
CDPATH

The search path for the cd command.
MAIL If this parameter is set to the name of a mail file and the MAILPATH parameter is not

set, the shell informs the user of the arrival of mail in the specified file.
MAILCHECK

This parameter specifies how often (in seconds) the shell will check for the arrival of
mail in the files specified by the MAILPATH or MAIL parameters. The default value
is 600 seconds (10 minutes). If set to 0, the shell will check before each prompt.

MAILPATH
A colon (:) separated list of file names. If this parameter is set, the shell informs the
user of the arrival of mail in any of the specified files. Each file name can be followed
by % and a message that will be printed when the modification time changes. The
default message is you have mail.

PSI Primary prompt string, by default "$ ".
PS2 Secondary prompt string, by default "> ".
IFS Internal field separators, normally space, tab, and new-line.
SHACCT

If this parameter is set to the name of a file writable by the user, the shell will write
an accounting record in the file for each shell procedure executed.

SHELL When the shell is invoked, it scans the environment (see Environment below) for this
name. If it is found and there is an 'r' in the file name part of its value, the shell
becomes a restricted shell.

The shell gives default values to PATH, PSI, PS2, MAIL CHECK and IFS. HOME and MAIL are set by
login (1).

Blank Interpretation
Mter parameter and command substitution, the results of substitution are scanned for internal field
separator characters (those found in IFS) and split into distinct arguments where such characters are
found. Explicit null arguments (" II or ") are retained. Implicit null arguments (those resulting from
parameters that have no values) are removed.

File Name Generation

SR-2011

Following substitution, each command word is scanned for the characters *, ?, and [. If one of these
characters appears the word is regarded as a pattern. The word is replaced with alphabetically sorted
file names that match the pattern. If no file name is found that matches the pattern, the word is left
unchanged. The character. at the start of a file name or immediately following a /, as well as the char­
acter / itself, must be matched explicitly.

* Matches any string, including the null string.
? Matches any single character.
[••. J Matches anyone of the enclosed characters. A pair of characters separated by -

matches any character lexically between the pair, inclusive. If the first character fol­
lowing the opening "[" is a "!" any character not enclosed is matched.

3 Release 2.0

SH(I) SH(l)

Quoting
The following characters have a special meaning to the shell and cause tennination of a word unless
quoted:

; & () I A < > new-line space tab

A character may be quoted (that is, made to stand for itself) by preceding it with a \. The pair \new­
line is ignored. All characters enclosed between a pair of single quote marks ("), except a single
quote, are quoted. Inside double quote marks (""), parameter and command substitution occurs and \
quotes the characters \ " ", and $. "$*" is equivalent to "$1 $2 ... ", whereas "$@" is equivalent to
"$1" "$2"

Prompting
When used interactively, the shell prompts with the value of PSI before reading a command. If at any
time a new-line is typed and further input is needed to complete a command, the secondary prompt
(that is, the value of PS2) is issued.

Input/Output
Before a command is executed, its input and output may be redirected using a special notation inter­
preted by the shell. The following may appear anywhere in a simple-command or may precede or fol­
low a command and are not passed on to the invoked command; substitution occurs before word or
digit is used:

<word
>word

»word

Use file word as standard input (file descriptor 0).
Use file word as standard output (file descriptor 1). If the file does not exist, it is
created; otherwise, it is truncated to zero length.
Use file word as standard output. If the file exists, output is appended to it (by first
seeking to the end-of-file); otherwise, the file is created.

<e:[-]word The shell input is read up to a line that is the same as word, or to an end-of-file. The
resulting document becomes the standard input. If any character of word is quoted, no
interpretation is placed upOn the characters of the document; otherwise, parameter and
command substitution occurs, (unescaped) \new-line is ignored, and \ must be used to
quote the characters \ $, I, and the first character of word. If - is appended to <, all
leading tabs are stripped from word and from the document.

<&digit

<&-

Use the file associated with file descriptor digit as standard input. Similarly for the
standard output using :>&digit.
The standard input is closed. Similarly for the standard output using :>&-.

If any of the above is preceded by a digit, the file descriptor which will be associated with the file is
that specified by the digit (instead of the default 0 or 1). For example:

... 2>&1

associates file descriptor 2 with the file currently associated with file descriptor 1.

The order in which redirections are specified is significant. The shell evaluates redirections left-to-right.
For example:

... l>xu 2>&1

first associates file descriptor 1 with file xu. It associates file descriptor 2 with the file associated with
file descriptor 1 (that is, xxx). If the order of redirections were reversed, file descriptor 2 would be
associated with the terminal (assuming file descriptor 1 had been) and file descriptor 1 would be associ­
ated with file xu. However, the proper syntax to direct output to a pipe (which is normally associated
with file descriptor 1) is:

cmdl 2>& 1 I cmd2

If a command is followed by & the default standard input for the command is the empty file Idev/null.
Otherwise, the environment for the execution of a command contains the file descriptors of the invoking
shell as modified by input/output specifications.

Release 2.0 4 SR-2011

SH(1) SH(I)

Redirection of output is not allowed in the restricted shell.

Environment
The environm£nt is a list of name-value pairs that is passed to an executed program in the same way as
a normal argument list. The shell interacts with the environment in several ways. On invocation, the
shell scans the environment and creates a parameter for each name found, giving it the corresponding
value. If the user modifies the value of any of these parameters or creates new parameters, none of
these affects the environment unless the export command is used to bind the shell's parameter to the
environment (see also set -a). A parameter may be removed from the environment with the unset com­
mand. The environment seen by any executed command is thus composed of any unmodified name­
value pairs originally inherited by the shell, minus any pairs removed by unset, plus any modifications
or additions, all of which must be noted in export commands.

The environment for any simple-command may be augmented by prefixing it with one or more assign­
ments to parameters. Thus:

TERM=450 cmd
and

(export TERM; TERM=450; cmd)

are equivalent (as far as the execution of cmd is concerned).

If the -k flag is set, all keyword arguments are placed in the environment, even if they occur after the
command name. The following first prints a=b c and then c:

echo a=b c
set -k
echo a=b c

Signals
The INTERRUPT and QUIT signals for an invoked command are ignored if the command is followed by
&; otherwise signals have the values inherited by the shell from its parent, with the exception of signal
11 (but see also the trap command below).

Execution

SR-2011

Each time a command is executed, the above substitutions are carried out. If the command name
matches one of the Special Commands listed below, it is executed in the shell process. If the command
name does not match a special command but matches the name of a defined function, the function is
executed in the shell process (note how this differs from the execution of shell procedures). The posi­
tional parameters $1, $2, are set to the arguments of the function. If the command name matches
neither a special command nor the name of a defined function, a new process is created and an attempt
is made to execute the command via exec (2).

The shell parameter PATH defines the search path for the directory containing the command. Alterna­
tive directory names are separated by a colon (:). The default path is :/bin:/usr/bin (specifying the
current directory, /bin, and lusr/bin, in that order). Note that the current directory is specified by a null
path name, which can appear immediately after the equal sign or between the colon delimiters any­
where else in the path list. If the command name contains a I the search path is not used; such com­
mands will not be executed by the restricted shell. Otherwise, each directory in the path is searched for
an executable file. If the file has execute permission but is not an a.out file (that is, a machine­
language binary file, exec(2», it is assumed to be a file containing shell commands. A sub-shell is
spawned to read it. A parenthesized command is also executed in a sub-shell.

The location in the search path where a command was found is remembered by the shell (to help avoid
unnecessary exec operations later). If the command was found in a relative directory, its location must
be re-determined whenever the current directory changes. The shell forgets all remembered locations
whenever the PATH variable is changed or the hash -r command is executed (see below).

5 Release 2.0

SH(l) SH(l)

Special Commands
Input/output redirection is now pennitted for these commands. File descriptor 1 is the default output
location.

No effect; the command does nothing. A zero exit code is returned .
• file Read and execute commands from file and return. The search path specified by PATH is used

to find the directory containing file.
break [n]

Exit from the enclosing for or while loop, if any. IT n is specified break n levels.
continue [n]

Resume the next iteration of the enclosing for or while loop. If n is specified resume at the
n-th enclosing loop.

cd [arg]
Change the current directory to arg. The shell parameter HOME is the default arg. The shell
parameter CDPATH defines the search path for the directory containing arg. Alternative direc­
tory names are separated by a colon (:). The default cdpath is <null> (specifying the current
directory). Note that the current directory is specified by a null cdpath name, which can
appear immediately after the equal sign or between the colon delimiters anywhere else in the
cdpath list. If arg begins with a / the search path is not used. Otherwise, each directory in the
cdpatb is searched for arg. The cd command may not be executed by rsh.

echo [arg ...]
Echo arguments. See echo(l) for usage and description.

eval [arg ...]
The arguments are read as input to the shell and the resulting command(s) executed.

exec [arg ...]
The command specified by the arguments is executed in place of this shell without creating a
new process. Input/output arguments may appear and, if no other arguments are given, cause
the shell input/output to be modified.

exit [n]
Causes a shell to exit with the exit status specified by n, where n is between 0 and 255. If n is
less than 0, the shell will complain of a bad exit number. If n is greater than 255, the exit
status is the remainder of n divided by 255 (n mod 255). If n is omitted the exit status is that
of the last command executed (an end-of-file will also cause the shell to exit.)

export [name ...]
The given names are marked for automatic export to the environment of subsequently-executed
commands. If no arguments are given, a list of all names that are exported in this shell is
printed. Function names may not be exported.

hash [-r] [name ...]
For each name, the location in the search path of the command specified by name is deter­
mined and remembered by the shell. The -r option causes the shell to forget all remembered
locations. If no arguments are given, information about remembered commands is presented.
Hits is the number of times a command has been invoked by the shell process. Cost is a meas­
ure of the work required to locate a command in the search path. There are certain situations
which require that the stored location of a command be recalculated. Commands for which
this will be done are indicated by an asterisk (*) adjacent to the hits information. Cost will be
incremented when the recalculation is done.

newgrp [arg ...]
Equivalent to exec newgrp arg See newgrp(l) for usage and description.

pwd Print the current working directory. See pwd (1) for usage and description.
read [name ...]

Release 2.0

One line is read from the standard input and the first word is assigned to the first name. the
second word to the second name, etc., with leftover words assigned to the last name. The
return code is 0 unless an end-of-file is encountered.

6 SR-2011

SH(I)

SR-2011

SH(I)

readonly [name ...]
The given name s are marked readonly and the values of these name s may not be changed by
subsequent assignment If no arguments are given, a list of all readonly names is printed. The
readonly attribute is not passed in the environment but is effective in "(list)" subshells.

return [n]
Causes a function to exit with the return value specified by n. If n is omitted, the return status
is that of the last command executed.

set [-aefbkntuvx [arg ...]]
-a Mark variables for export as they get modified or created.
-e Exit immediately if a command exits with a non-zero exit status.
-f Disable file name generation
-h Locate and remember function commands as functions are defined (function com-

mands are normally located when the function is executed).
-k All keyword arguments are placed in the environment for a command, not just those

that precede the command name.
-0 Read commands but do not execute them.
-t Exit after reading and executing one command or list of commands.
-u Treat unset variables as an error when substituting.
-v Print shell input lines as they are read.
-x Print commands and their arguments as they are executed.

Do not change any of the flags; useful in setting $1 to -.

Using + rather than - causes these flags to be turned off. These flags can also be used upon
invocation of the shell. The current set of flags may be found in $-. The remaining arguments
are positional parameters and are assigned, in order, to $1, $2, $3, If no arguments are
given, the values of all names are printed.

shift [n]
The positional parameters from $0+1 ... are renamed $1 If n is not given, it is assumed
to be 1.

test expr
[expr]
Evaluate conditional expressions. See test(l) for usage and description.

times
Print the accumulated user and system times for processes run from the shell.

trap [arg] [n] ...
The command arg is to be read and executed when the shell receives signal(s) n. (Note that
arg is scanned once when the trap is set and once when the trap is taken.) Trap commands are
executed in order of signal number. Any attempt to set a trap on a signal that was ignored on
entry to the current shell is ineffective. An attempt to trap on signal 11 (memory fault) pro­
duces an error. If arg is absent, all traps n are reset to their original values. If arg is the null
string, this signal is ignored by the shell and by the commands it invokes. If n is 0, the com­
mand arg is executed on exit from the shell. The trap command with no arguments prints a
list of commands associated with each signal number.

type [name ...]
For each name, indicate how it would be interpreted if used as a command name.

ulimit [-f] [n]
imposes a size limit of n
-f imposes a size limit of n blocks on files written by child processes (files of any size

may be read). With no argument, the current limit is printed
If no option is given, -f is assumed.

umask [nnn]
The user file-creation mask is set to nnn (see umask(2». If nnn is omitted, the current value
of the mask is printed.

7 Release 2.0

SH(I) SH(I)

unset [name ...]
For each name, remove the corresponding variable or function. The variables PATH, PSt, PS2,
MAILCHECK and IFS cannot be unset.

wait [n]
Wait for the specified process and report its termination status. If n is not given all currently
active child processes are waited for and the return code is zero.

Invocation
If the shell is invoked through exec (2) and the first character of argument zero is -, commands are ini­
tially read from fetc/profile and from $HOMEf.profile, if such files exist. Thereafter, commands are
read as described below, which is also the case when the shell is invoked as Ibinlsb. The flags below
are interpreted by the shell on invocation only; note that unless the -c or -s flag is specified, the first
argument is assumed to be the name of a file containing commands, and the remaining arguments are
passed as positional parameters to that command file:

-c string
-s

-i

-r

If the -c flag is present commands are read from string.
If the -s flag is present or if no arguments remain commands are read from the standard
input. Any remaining arguments specify the positional parameters. Shell output (except for
Special Commands) is written to file descriptor 2.
If the -i flag is present or if the shell input and output are attached to a terminal, this shell
is interactive. In this case TERMINATE is ignored (so that kill 0 does not kill an interac­
tive shell) and INTERRUPT is caught and ignored (so that wait is interruptible). In all
cases, QUIT is ignored by the shell.
If the -r flag is present the shell is a restricted shell.

The remaining flags and arguments are described under the set command above.

Rsh (Restricted Shell)

FILES

Rsh is used to set up login names and execution environments whose capabilities are more controlled
than those of the standard shell. The actions of rsh are identical to those of sh, except that the follow­
ing are disallowed:

changing directory (see cd(l»,
setting the value of $PATH,
specifying path or command names containing f,
redirecting output (> and »).

The restrictions above are enforced after .profile is interpreted.

When a command to be executed is found to be a shell procedure, rsh invokes sh to execute it Thus,
it is possible to provide to the end-user shell procedures that have access to the full power of the stan­
dard shell, while imposing a limited menu of commands; this scheme assumes that the end-user does
not have write and execute permissions in the same directory.

The net effect of these rules is that the writer of the .profile has complete control over user actions, by
performing guaranteed setup actions and leaving the user in an appropriate directory (probably not the
login directory).

The system administrator often sets up a directory of commands (that is, /usrfrhin) that can be safely
invoked by rsh. Some systems also provide a restricted editor red.

/etc/profile
$HOME/.profile
/tmp/sh*
/dev/null
a.out(4F), profile(4F) in the UNICOS File Formats and Special Files Reference Manual, publication
SR-2014

Release 2.0 8 SR-2011

SH(l) SH(l)

MESSAGES

NOTES

Errors detected by the shell, such as syntax errors, cause the shell to return a non-zero exit status. If
the shell is being used non-interactively execution of the shell file is abandoned. Otherwise, the shell
returns the exit status of the last command executed (see also the exit command above).

If a command is executed, and a command with the same name is installed in a directory in the search
path before the directory where the original command was found, the shell will continue to exec the
original command. Use the bash command to correct this situation.

If you move the current directory or one above it, pwd may not give the correct response. Use the cd
command with a full path name to correct this situation.

SEE ALSO

SR-2011

cd(l), csh(l), echo(l), env{l), login(l), pWd(l), test{l), umask(1)
duP(2) , exec(2), fork(2). pipe(2), signal(2), ulimit(2), umask(2), wait(2) in the UNICOS System Calls
Reference Manual, publication SR-2012

9 Release 2.0

SIM(1) (CRA Y -2 computer systems only) SIM(I)

NAME

sim - Invokes the interactive Cray Simulator

SYNOPSIS

sim [-dstv] [-mn] [file] [args]

DESCRIPTION

SR-2011

The sim command invokes an interactive Cray simulator. It can simulate user programs for CRAY-2
computer systems and can simulate UNICOS for the CRAY-2. The simulator builds an argument vector
when the program is loaded.

The following options are available:

-d Starts the simulator with display of tracing off

-mn Sets the debug message level to n

-s Starts the simulator in system mode. This is required to simulate UNICOS (CRAY-2 only). In
system mode, the simulator uses files in the current directory for the simulated disk
devices. These files are named simdev.nn, where nn is the phyical device number
(decimal) as known to the foreground processor. The simulator assumes phyical dev­
ice numbers below 20 to be 00-29 disks. Physical device numbers of 20 or more are
assumed to be 0-49 disks.

-t Starts the simulator with instruction timing on

-v Turns off Virtual Memory. Normally. the simulator keeps the entire absolute file in memory
but uses Virtual Memory pages for any BSS space and any space that the simulated program
requests. This option tells the simulator to keep the entire simulated image in memory.

file The name of an absolute binary file created by the loader

args Arguments for the simulated program

Once you invoke the simulator, you can give it a number of commands. Commands to sim are single
characters followed by other optional information. They fall into several categories:

• Execution control (for example, x22)
• Display control (for example, .a=100)
• Setting memory and registers (for example, sO=123)
• File manipulation (for example, f=file)

The following is a summary of the available commands.

AC CONTROL-C interrupts simulation and prompts for more commands.

AD CONTROL-D repeats the last command. This is especially useful for stepping through a pro­
gram several lines at a time.

![command]
Executes shell commands. If you do not specify an argument, the simulator starts a shell and
suspends execution until the shell reads an end of file. If you supply command, the simulator
spawns a shell to execute the command.

* [comment]
Allows commenting. This is especially useful when using an alternate command file.

? Displays available commands and their syntaxes

1 Release 2.0

SIM(l) (CRAY-2 computer systems only) SIM(l)

+[n] Scrolls the last display forward n octal words. The default is the display size.

-[n] Scrolls the last display backward n octal words. The default is the display size .

• [a[= [add] [type][,size] (format][llahe/]]]
Controls displays. There are twenty six displays available. They are named a-z and can be
individually set up. They are saved with checkpoints for convenience. A period specified
alone prints the current display setup. A period followed by a single letter (.a) prints that
display. Add can be a global symbol, an octal address, or an A or S register indicator (for
example, "!aO" uses contents of register AD). Type can be: c for Common Memory, I for Local
Memory, or v for vector register (for example, "I20v" is register VI, element 020). Size is the
octal number of words to print for the display. Format is the desired display format. The for­
mat can be: h for bit format, d for decimal format, f for floating point format, h for hexade­
cimal format, i fot instruction format, p for parcel format, or w for word format, The optional
label parameter allows the display to be labeled. This has no effect other than to be displayed
when listing displays.

/ symbol[=value]
Displays the location of symbol or optionally change the contents of that location. This value
can be a string of octal digits optionally followed by a parcel indicator (a, h, c, d). It can also
be a quoted string (for example, 'ABC'), which is right adjusted, zero filled.

<file Opens file and reads directives from it. Continues reading from standard input .when an end of
file is reached. The directive file can also specify another directive file, but there is no return
to the original directive file.

>[>][:Vile
Opens trace file. This creates the named file and begins duplicating all output onto this file. If
you specify the second '>', all output is appended if the file already exists. If you specify the
':', instruction traces are only written to the trace file and not to the terminal.

add[p]=val
Stores a value val into common memory address add. This value can be a string of octal
digits optionally followed by a parcel indicator (a, h, c, d). It can also be a quoted string (for
example, 'ABC'), which is entered right adjusted, zero filled. A parcel indicator p can be
appended to the address. This indicates that only one parcel is to be changed.

an=val Sets A register n to an octal value val.

b[n[=padd[llabel][(cond)][;cmds]]]
Controls breakpoints. If you specify b alone, all current breakpoints are listed. If you do not
provide a parcel address, the breakpoint is cleared. The parameter n is a single decimal digit.
P add can be an octal parcel address, a global symbol name, or an A or S register indicator
(example: "!aO"). COM is a condition expression. Conditional breakpoint expressions are of
the form (operand operator operand), where operand may be: a common memory location
(example: (100) or (symbol)), a local memory location (example: [200] or [symbol]), an A or
S register (example: a4 or s7), or a constant. Memory addresses and constants are assumed to
be octal. Operator can be one of: =, !=, <, <=, >, >=. Cmds is an optional string of com­
mands, separated by semi-colons, to be executed when the breakpoint is reached. These may
include setting other breakpoints (this is where using a register as a breakpoint address comes
in handy). This provides for a maximum of ten active breakpoints. Breakpoints remain active
until cleared. A breakpoint must be cleared before it is re-used. The optional label argument
allows the breakpoint to be labeled. This has no effect other than to be displayed when listing
breakpoints and when the breakpoint is hit.

c=file Creates a checkpoint of the current simulator state in file. The file is overwritten if it already
exists. All breakpoints and display set-ups are recorded in the checkpoint file.

Release 2.0 2 SR-2011

SIM(l)

SR-2011

(eRA Y -2 computer systems only) SIM(l)

d{ +,-,r}
Controls display of instruction tracing. The + turns on all tracing, - turns off all tracing, and r
turns on tracing of only return jumps.

f=jile [args]
Loads the absolute binary file. This file is the output from the loader. Args are the arguments
for the simulated program.

h Displays a history of how I got here. Sometimes known as a traceback.

i<(file] Provides the ability to redirect the simulated program's input from a file other than the termi­
nal. If you do no specify file, the input is read from the terminal.

i{b,d,iJ,p,t}

ladd=val

Prints infonnation about simulation. The b option displays the number of clock periods spent
waiting for instruction buffer loads (timing must be on). The d option displays device interrupt
status. This is only meaningful when simulating in system mode. The i option displays the
number of times each instruction was executed. The j option displays information aoout condi­
tional jump execution. The p option displays current virtual memory page imformation. The t
option displays current simulator time used.

This command is only valid on the CRAY-2 only. It stores a value val into local memory
address add. This value may be a string of octal digits optionally followed by a parcel indica­
tor (a, b, c, d). It may also be a quoted string (for example, 'ABC'), which is entered right
adjusted, zero filled.

m=n Sets the debug message level to n. The higher the message level, the more debug messages
that are printed.

o>[>[fzle]]
Sends the standard output of the simulated program to another file. If you specify the second
'>', the data is appended. If you do not specify file, the output is directed back to the terminal.

p=padd Sets the P register to a parcel address. Padd may be a global symbol or an octal parcel
address.

pn=n Changes the currently active processor number to processor n. The simulator provides the
capability to simulate multi-tasking programs. The TFORK system call activates another simu­
lated processor and makes a copy of the current register and local memory contents. The
simulator automatically switches between processors whenever the semaphore is cleared or
when a set semaphore is tested. This command allows switching on demand. The register and
local memory displays always display the contents of the currently active processor.

q Quit. Terminate the simulator.

r=file Restarts the simulation from a checkpoint in file.

sn=val Sets S register n to an octal value val.

t { +,-} Controls instruction timings. The + turns on instruction timings. It also zeroes the timer if
timing was already on. The - turns off instruction timings.

vnnn=val
Sets V register nnn to a value val. This value may be a string of octal digits optionally fol­
lowed by a parcel indicator (a, b, c, d). It may also be a quoted string (for example, 'ABC'),
which is right adjusted, zero filled.

vl=val Sets the vector length register to a decimal value val.

vm=val Sets the vector mask register to an octal value val.

3 Release 2.0

SIM(1) (CRA Y -2 computer systems only) SIM(l)

w[n[=[addl][I][,add2][(r,w)][Ilabel][(cond)]]]
Controls watchpoints. Watchpoints are memory addresses that are watched for a reference. If
the specified address or range of addresses is referenced, the simulator stops and prints a mes­
sage. If you specify w with no arguments, all current watchpoints are listed. If you do not
specify an address, the watchpoint is cleared. The parameter n is a single decimal digit. Add]
is the start address of the area to be watched. When the address is followed by I, this indicates
that local memory is to be watched. Add2 is the end address of the area to be watched. If
omitted, it is the same as the start address. The optional trailing letter gives the ability to
watch for only reads or only writes. If you specify r, only memory reads are watched If you
specify w, only memory writes are watched. The default is to watch both reads and writes.
The optional label parameter allows the watchpoint to be labeled. This has no effect other
than to be displayed when listing watchpoints and when the watchpoint is hit. Cond is a con­
dition expression. Condition expressions are the same as for breakpoints (explained above).
This mechanism provides for a maximum of ten active watchpoints. Watchpoints remain
active until cleared. A watchpoint must be cleared before it is re-used.

x[(n,· J,r,e)][(+,-)]

FILES

Executes instructions. You can specify a count n. The default is to execute one instruction.
An asterisk indicates infinity. The j option means to execute to the next jump instruction (this
includes return jumps and EXITs). The r option means to execute to the next return jump
instruction. The e option means to execute to the next EXIT instruction. The optional trailing
+ or - is available to override the current instruction trace status. If you use the - when
instruction tracing is currently on, the simulator will execute silently to the next stopping point,
but tracing will still remain on by default.

/usr/bin/sim Cray simulator

SEE ALSO

csim(l)

Release 2.0 4 SR-2011

SIZE(1) SIZE(l)

NAME

size - Prints section sizes of executable files

SYNOPSIS

size [-0] [-x] files

DESCRIPTION

The size command produces size information for each section in an absolute binary executable file.
The size of the text, data and bss (uninitialized data) sections are printed along with the total size of the
object file.

Numbers will be printed in decimal unless either the -0 or the -x option is used, in which case they
will be printed in octal or in hexadecimal, respectively.

SEE ALSO

as(l), cc(l), Id(1)
a.out(4) in the UNICOS File Formats and Special Files Reference Manual, publication SR-2014

SR-2011 1 Release 2.0

SLEEP(l) SLEEP(l)

NAME

sleep - Suspends execution for an interval

SYNOPSIS

sleep time

DESCRIPTION

Sleep suspends execution for time seconds. It is used to execute a command after a certain amount of
time, as in:

(sleep 105; command)&

or to execute a command every so often, as in:

while true
do

done

SEE ALSO

command
sleep 37

alann(2) in the UNICOS System Calls Reference Manual, publication SR-2012
sleep(3C) in the CRAY-2 UNICOS Libraries, Macros and Opdefs Reference Manual, publication SR-2013

SR-2011 1 Release 2.0

SNO(l) SNO(l)

NAME

sno - Invokes the SNOBOL interpreter

SYNOPSIS

sno [files]

DESCRIPTION

Sno is a SNOBOL compiler and interpreter (with slight differences). Sno obtains input from the con­
catenation of the named file s and the standard input. All input through a statement containing the label
end is considered program and is compiled. The rest is available to syspit.

Sno differs from SNOBOL in the following ways:

There are no unanchored searches. To get the same effect

a ** b unanchored search for b.
a *x* b = x c

There is no back referencing.

x = "abc"
a *x* x

unanchored assignment

is an unanchored search for abc.

Function declaration is done at compile time by the use of the (non-unique) label define. Exe­
cution of a function call begins at the statement following the define. Functions cannot be
defined at run time, and the use of the name define is preempted. There is no provision for
automatic variables other than parameters. Examples:

define f()
define f(a, b, c)

All labels except define (even end) must have a non-empty statement.

Labels, functions and variables must all have distinct names. In particular, the non-empty
statement on end cannot merely name a label.

If start is a label in the program, program execution will start there. If not, execution begins
with the first executable statement; define is not an executable statement.

There are no builtin functions.

Parentheses for arithmetic are not needed. Normal precedence applies. Because of this, the
arithmetic operators I and * must be set off by spaces.

The right side of assignments must be non-empty.

Either' or " may be used for literal quotes.

The pseudo-variable sysppt is not available.

SEE ALSO

awk(1)

SR-2011 1 Release 2.0

SORT(l) SORT(l)

NAME

sort - Sorts and/or merges files

SYNOPSIS

sort [-emu] [~output] [-y[kmem]] [-zrecsz] [-dfiMnr] [-btx] [+posl [-pos2]] [files]

DESCRIPTION

SR-2011

The sort command sorts lines of all the named files together and writes the result on the standard out­
put The standard input is read if - is used as a file name or no input files are named.

Comparisons are based on one or more sort keys extracted from each line of input By default, there is
one sort key, the entire input line, and ordering is lexicographic by bytes in machine collating sequence.

The following options alter the default behavior:

-e Check that the input file is sorted according to the ordering rules; give no output unless the file is
out of sort.

-m Merge only; the input files are already sorted.

-u Unique; suppress all but one in each set of lines having equal keys.

~utput

The argument given is the name of an output file to use instead of the standard output. This file
may be the same as one of the inputs. There may be blanks between -0 and output.

-y[kmemJ
The amount of memory used by the sort has a large impact on its performance. Sorting a small
file in a large amount of memory is a waste. If this option is omitted, sort begins using a system
default memory size, and continues to use more space as needed. If this option is presented with
a value, Janem, sort will start using that number of kilobytes of memory, unless the administrative
minimum or maximum is violated, in which case the corresponding extremum will be used.
Thus, -yO is guaranteed to start with minimum memory. By convention, -y (without an argu­
ment) starts with maximum memory.

-zrecsz
The size of the longest line read is recorded in the sort phase so buffers can be allocated during
the merge phase. If the sort phase is omitted via the -e or -m options, a popular system default
size will be used. Lines longer than the buffer size will cause sort to terminate abnormally. Sup­
plying the actual number of bytes in the longest line to be merged (or some larger value) will
prevent abnormal termination.

The following options override the default ordering rules.

-d "Dictionary" order: only letters, digits and blanks (spaces and tabs) are significant in comparis-
ons.

-f Fold lower case letters into upper case.

-i Ignore characters outside the AScn range 040-0176 in non-numeric comparisons.

-M Compare as months. The first three non-blank characters of the field are folded to upper case and
compared so that "JAN" < "FEB" < ... < "DEC". Invalid fields compare low to "JAN". The
-M option implies the -b option (see below).

1 Release 2.0

SORT(I) SORT(I)

-0 An initial numeric string, consisting of optional blanks, optional minus sign, and zero or more
digits with optional decimal point, is sorted by arithmetic value. The -0 option implies the -b
option (see below). Note that the -b option is only effective when restricted sort key
specifications are in effect

-r Reverse the sense of comparisons.

When ordering options appear before restricted sort key specifications, the requested ordering rules are
applied globally to all sort keys. When attached to a specific sort key (described below), the specified
ordering options override all global ordering options for that key.

The notation +posl -pos2 restricts a sort key to one beginning at posl and ending at pos2. The charac­
ters at positions posl and pos2 are included in the sort key (provided that pos2 does not precede posl).
A missing -pos2 means the end of the line.

Specifying posl and pos2 involves the notion of a field, a minimal sequence of characters followed by a
field separator or a new-line. By default, the first blank (space or tab) of a sequence of blanks acts as
the field separator. All blanks in a sequence of blanks are considered to be part of the next field; for
example, all blanks at the beginning of a line are considered to be part of the first field. The treatment
of field separators can be altered using the options:

-tx Use x as the field separator character; x is not considered to be part of a field (although it may be
included in a sort key). Each occurrence of x is significant (for example, xx delimits an empty
field).

-b Ignore leading blanks when detennining the starting and ending positions of a restricted sort key.
If the -b option is specified before the first +posl argument, it will be applied to all +posl argu­
ments. Otherwise, the b flag may be attached independently to each +posl or -pos2 argument
(see below).

Posl and pos2 each have the fonn m.n optionally followed by one or more of the flags bdfinr. A start­
ing position specified by +m.n is interpreted to mean the n+lst character in the m+1st field. A missing
.n means .0, indicating the first character of the m+lst field. If the b flag is in effect, n is counted from
the first non-blank in the m+lst field; +m.Ob refers to the first non-blank character in the m+1st field.

A last position specified by -m.n is interpreted to mean the nth character (including separators) after
the last character of the m th field. A missing .n means .0, indicating the last character of the mth field.
If the b flag is in effect n is counted from the last leading blank in the m+ 1st field; -m.l b refers to the
first non-blank in the m+ 1st field

When there are multiple sort keys, later keys are compared only after all earlier keys compare equal.
Lines that otherwise compare equal are ordered with all bytes significant.

EXAMPLES

While the above explanation of pos arguments is technically correct, it is rather difficult to understand.
The confusion seems to stem from the difference between +pos and -pos in the handling of their m part.
Consider the following line of input to sort:

abc: def: ghi
and assume that the : character is being used as a delimiter. Imagine that +pos and -pos are pointers to
characters on the input line so that the sort key begins with the +pos pointer and ends with the -pos
pointer. The rules are that +m is the first character of the m+l-st field, and -m is the last character of
the m-tb field. For example, the arguments +1 and -2 place pointers at the "d" and "f' characters,
respectively. Additional position control is provided by the n part, which moves the pointer forward by
the specified number of characters. For example, the arguments +1.1 and -2.2 would position the start
and end pointers to the "e" and "g" characters, respectively.

Sort the contents of in/lie with the second field as the sort key:

Release 2.0 2 SR-2011

SORT(1) SORT(I)

FILES

sort + 1 -2 intile

Sort, in reverse order, the contents of infile1 and infile2, placing the output in outfile and using the first
character of the second field as the sort key:

sort -r -0 outfile + 1.0 -1.2 infile I infile2

Sort, in reverse order, the contents of infile1 and infile2 using the first non-blank character of the second
field as the sort key:

sort -r +1.0b -1.Ib infilel infile2

Print the password file (passwd(4F) sorted by the numeric user ID (the third colon-separated field):

sort -t: +2n -3 letc/passwd

Print the lines of the already sorted file infile , suppressing all but the first occurrence of lines having the
same third field (the options -urn with just one input file make the choice of a unique representative
from a set of equal lines predictable):

sort -um +2 -3 infile

Remember that lines whose keys. are identical are ordered by sorting on the entire line.

lusr/tmp/strn 111

MESSAGES

Comments and exits with non-zero status for various trouble conditions (such as when input lines are
too long), and for disorder discovered under the -c option.

When the last line of an input file is missing a new-line character, sort appends one, prints a warning
message, and continues.

SEE ALSO

comm(l), join(I), uniq(1)

SR-2011 3 Release 2.0

SPLIT(l) SPLIT(l)

NAME

split - Splits a file into pieces

SYNOPSIS

split [-n] [file [name]]

DESCRIPTION

SR-2011

The split command reads file and writes it in n-line pieces (default 1000 lines) onto a set of output files.
The name of the first output file is name with aa appended, and so on lexicographically, up to zz (a
maximum of 676 files). Name cannot be longer than 12 characters. If no output name is given, x is
default.

If no input file is given, or if - is given in its stead, then the standard input file is used.

1 Release 2.0

STRINGS(l) (CRAY X-MP and CRAY-l computer systems only) STRINGS(l)

NAME

strings - Finds the printable strings in a object or other binary file

SYNOPSIS

strings [-] [-0] [-number] file ...

DESCRIPTION

BUGS

The strings command looks for AScn strings in the specified binary file. A string is any sequence of 4
(the default) or more printing characters ending with a newline or a null. Unless you specify the -
option, strings only looks in the initialized data space of object files. If you specify the -0 option, each
string is preceded by its offset in the file (in octal). If you specify the -number option, number is used
as the minimum string length rather than 4 (the default).

The strings command is useful for identifying random object files.

The algorithm for identifying strings is extremely primitive

SEE ALSO

od(1)

SR-2011 1 Release 2.0

STTY(l) (CRAY X-MP and CRAY-I computer systems only) STTY(l)

NAME

stty - Set the options for a terminal

SYNOPSIS

stty [-a] [-g] [options]

DESCRIPTION

The stty command sets certain terminalI/O options for the current standard input device. Without argu­
ments, it reports the settings of the following options: speed, erase, brkint, and echo. If you specify the
-a option, stty reports all of the option settings. If you specify the -g option, stty reports current set­
tings in a form that can be used as an argument to another stty command. Detailed information about
the modes listed in the first five groups below can be found in termio(4D). Options in the last group
are implemented using options in the previous groups. Note that many combinations of options make
no sense, but no sanity checking is performed. Select your termininalllO setup is selected from the fol­
lowing terminal options:

Control Modes
parenb (-parenb) Enable (disable) parity generation and detection

Select odd (even) parity parodd (-parodd)

es5 es6 cs7 esS Select character size (see termio(4D»

o Hang up phone line immediately

50 75 110 134 150200 300 600 1200 1800 2400 48009600 exta extb

hupel (-hupel)

hup (-bup)

estopb (-<:stopb)

eread (-cread)

c10cal (-clocal)

loblk (-Ioblk)

Set terminal baud rate to the number given, if possible. (Not all speeds are
supported by all hardware interfaces.)

Hang up (do not hang up) DATA-PHONE® connection on last close

Same as hupel (-hupel)

Use two (one) stop bits per character

Enable (disable) the receiver

Assume a line without (with) modem control

Block (do not block) output from a non-current layer

Input Modes

SR-2011

ignbrk (-ignbrk)

brkint (-hrkint)

ignpar (-ignpar)

parmrk (-parmrk)

inpek (-inpek)

istrip (-istrip)

inler (-inler)

igner (-igner)

iernl (-iernl)

Ignore (do not ignore) break on input

Signal (do not signal) INTR on break

Ignore (do not ignore) parity errors

Mark (do not mark) parity errors (see termio(4D»

Enable (disable) input parity checking

Strip (do not strip) input characters to seven bits

Map (do not map) NL to CR on input

Ignore (do not ignore) CR on input

Map (do not map) CR to NL on input

1 Release 2.0

SITY(1)

iucle (-iucle)

ixon (-ixon)

ixany (-ixany)

ixo" (-ixofl)

Output Modes
opost (-opost)

oleDe (-oleue)

onler (-onler)

oernl (-oeml)

onocr (-onocr)

onlret (-onlret)

orill (-ofill)

ordel (-or del)

erO erl er2 er3

nlO nil

tabO tabl tab2 tab3

bsO bsl

ft'Offl

vtO vtl

Local Modes
isig (-isig)

icanon (-ieanon)

xease (-xcase)

echo (-eeho)

eehoe (-eeboe)

eehok (-ecbok)

like (-like)

eehonl (-eebonl)

noflsh (-nofish)

Release 2.0

(CRAY X-MP and CRAY-l computer systems only) STIY(l)

Map (do not map) upper-case alphabetics to lower case on input

Enable (disable) START/STOP output control. Output is stopped by sending an
ASCII DC3 and started by sending an AScn OC 1.

Allow any character (only OC1) to restart output

Request that the system send (not send) START/STOP characters when the input
queue is nearly empty/full

Post-process output (do not post-process output; ignore all other output modes)

Map (do not map) lower-case alphabetics to upper case on output

Map (do not map) NL to CR-NL on output

Map (do not map) CR to NL on output

Do not (do) output CRs at column zero

On the tenninal, NL perfonns (does not perfonn) the CR function

Use fill characters (use timing) for delays

Fill characters are DELs (NULs)

Select style of delay for carriage returns (see termio(4D»

Select style of delay for line-feeds (see termio(4D»

Select style of delay for horizontal tabs (see termio(4D»

Select style of delay for backspaces (see termio(4D»

Select style of delay for fonn-feeds (see termio(4D»

Select style of delay for vertical tabs (see termio(4D»

Enable (disable) the checking of characters against the special control charac­
ters INTR, QUIT, and swrCH

Enable (disable) canonical input (ERASE and KILL processing)

Canonical (unprocessed) upper !lower-case presentation

Echo back (do not echo back) every character typed

Echo (do not echo) ERASE character as a backspace-space-backspace string.
Note: this mode erases the ERASEed character on many CRT tenninals; how­
ever, it does not keep track of column position and, as a result, may be confus­
ing on escaped characters, tabs, and backspaces.

Echo (do not echo) NL after KILL character

The same as eebok (-eehok); obsolete

Echo (do not echo) NL

Disable (enable) flush after INTR, QUIT, or SWTCH

2 SR-2011

STIY(1)

Control Assignments
control-character c

line i

Combination Modes
evenp or parity

oddp

(CRAY X-MP and CRAY-I computer systems only) STfY(l)

Set control-character to c, where control-character is erase, kill, intr, quit,
swteh, eo', min, or time (min and time are used with -ieanon; see termio(4».
If c is preceded by an (escaped from the shell) caret r), then the value used is
the corresponding CONTROL character (for example, ""d" is a CONTROL-d);
""?" is interpreted as DEL and ""-" is interpreted as undefined.

Set line discipline to i (0 < i < 127). Currently only line discipline implemented
is O. Nothing else works.

Enable parenb and cs7

Enable parenb, cs7, and parodd

-parity, -evenp, or -oddp
Disable parenb, and set esS

raw (-raw or cooked) Enable (disable) raw input and output (no ERASE, KILL, INTR, QUIT, SWTCH,
EOT, or output post processing)

nl (-01)

lease (-lease)

LCASE (-LCASE)

tabs (-tabs or tab3)

ek

sane

term

Unset (set) ierol, onler. In addition -01 unsets inler, igner, ocrol, and onlret.

Set (unset) xease, iucle, and oleue

Same as lease (-lease)

Preserve (expand to spaces) tabs when printing

Reset ERASE and KILL characters back to normal DEL and AU

Resets all modes to some reasonable values

Set all modes suitable for the terminal type term, where term is one of tty33,
tty37, vtOS, tn300, ti700, or tek

SEE ALSO

ioctl(2) in the UNICOS System Calls Reference Manual, publication SR-2012
termio(4D) the UNICOS File Fonnats and Special Files Reference Manual, publication SR-2014

SR-2011 3 Release 2.0

SUet) SUet)

NAME

su - Lets you become super user or another user

SYNOPSIS

su [-] [name [arg •••]]

DESCRIPfION

The su command allows one to become another user without logging off. The default user name is
root (that is, super user).

To use SU, the appropriate password must be supplied (unless one is already root). If the password is
correct, su will execute a new shell with the real and effective user ID set to that of the specified user.
The new shell will be the optional program named in the shell field of the specified user's password file
entry (see passwd(4F), or Ibinlsh if none is specified (see sh(l». To restore nonnal user ID privileges,
type an EOF (cntrl-d) to the new shell.

Any additional arguments given on the command line are passed to the program invoked as the shell.
For example, when sh(1) is used, an argument of the form ~ string executes string via the shell and
an a argument of -r will give the user a restricted shell.

The following statements are true only if the optional program named in the shell field of the specified
user's password file entry is like sh(1). If the first argument to su is a -, the environment will be
changed to what would be expected if the user actually logged in as the specified user. This is done by
invoking the program used as the shell with an argO value whose first character is -, thus causing first
the system's profile (/etc/profile) and then the specified user's profile (.profile in the new HOME direc­
tory) to be executed. Otherwise, the environment is passed along, with the possible exception of
$P ATH, which is set to Ibin:/etc:/usrlbin for root. Note that if the optional program used as the shell
is Ibinlsh, the user's .profile can check argO for -6h or -6U to determine if it was invoked by login(l)
or sU(l), respectively. If the user's program is other than Ibinlsh, then the program is invoked with an
argO of -program by both login(1) and su(l).

All attempts to become another user using su are logged in the log file lusr/adm/sulog.

EXAMPLES

SR-2011

To become user bin while retaining your previously exported environment, execute:

su bin

To become user bin but change the environment to what would be expected if bin had originally
logged in, execute:

su - bin

To execute command with the temporary environment and permissions of user bin, type:

su - bin -c "command args"

1 Release 2.0

SU(l)

FILES

/etc/passwd
/etc/profile
$HOME/.profIle
/usr/adm/suIog

SEE ALSO

env(l), login(l), sb(l)

System's password file
System's profile
User's profile
Log file

SU(l)

passwd(4F), profile(4F) in the UNICOS File Formats and Special Files Reference Manual, publication
SR-2014

Release 2.0 2 SR-2011

SUM(1) SUMO)

NAME

sum - Prints checksum and block count of a file

SYNOPSIS

sum [-r] file

DESCRIPTION

The sum command calculates and prints a 16-bit checksum for the named file and prints the number of
512-byte blocks in the file. It is typically used to look for bad spots or to validate a file communicated
over some transmission line. The option -r causes an alternate algorithm to be used in computing the
checksum.

MESSAGES

"Read error" is indistinguishable from end-of-file on most devices; check the block count

SEE ALSO

wc(1)

SR-2011 1 Release 2.0

SYNC(l) SYNC(l)

NAME

sync - Flushes file system cache to disk

SYNOPSIS

sync

DESCRIPTION

The sync command executes the sync system primitive. If the system is to be stopped, sync must be
called to ensure file system integrity. It will flush all previously unwritten system buffers out to disk,
thus assuring that all file modifications up to that point will be saved. See sync (2) for details.

SEE ALSO

sync(2) in the UNICOS System Calls Reference Manual, publication SR-2012

SR-2011 1 Release 2.0

TAIL(l) TAlL(l)

NAME

tail - Displays the last part of a file

SYNOPSIS

tall [± [number][tbe [f]]] [file]

DESCRIPrION

BUGS

SR-201 I

The tail command copies the named file to the standard output beginning at a designated place. IT no
file is named, the standard input is used.

Copying begins at distance +number from the beginning, or -number from the end of the input (if
number is null, the value 10 is assumed). Number is counted in units of lines, blocks, or characters,
according to the appended option I, b, or e. When no units are specified, counting is by lines.

With the -r ("follow") option, if the input file is not a pipe, the program will not terminate after the
line of the input file has been copied, but will enter an endless loop, wherein it sleeps for a second and
then attempts to read and copy further records from the input file. Thus it may be used to monitor the
growth of a file that is being written by some other process. For example, the command:

tail -f fred

will print the last ten lines of the file fred, followed by any lines that are appended to fred between the
time tail is initiated and killed. As another example, the command:

tail -15cf fred

will print the last 15 characters of the file fred, followed by any lines that are appended to fred
between the time tail is initiated and killed.

Tails relative to the end of the file are stored up in a buffer, and thus are limited in length.
Yarious kinds of anomalous behavior may happen with character special files.

1 Release 2.0

TAR (l) TAR(l)

NAME

tar - Tape file archiver

SYNOPSIS

tar [key] [files]

DESCRIPTION

SR-2011

The tar command saves and restores files on· magnetic tape. Its actions are controlled by the key argu­
ment The key is a string of characters containing at most one function letter and possibly one or more
function modifiers. Other arguments to the command are files (or directory names) specifying which
files are to be dumped or restored. In all cases, appearance of a directory name refers to the files and
(recursively) subdirectories of that directory.

The function portion of the key is specified by one of the following letters:

r The named files are written on the end of the tape. The c function implies this function.
x The named files are extracted from the tape. If a named file matches a directory whose con­

tents had been written onto the tape, this directory is (recursively) extracted. The owner,
modification time, and mode are restored (if possible). If no files argument is given, the
entire content of the tape is extracted. Note that if several files with the same name are on
the tape, the last one overwrites all earlier ones.

t The names of the specified files are listed each time that they occur on the tape. If no files
argument is given, all the names on the tape are listed.

u The named files are added to the tape if they are not already there, or have been modified
since last written on that tape.

c Create a new tape; writing begins at the beginning of the tape, instead of after the last file.
This command implies the r function.

The following characters may be used in addition to the letter that selects the desired function:

0, ••• ,9 This modifier selects the drive on which the tape is mounted. The default is 1.
v Normally, tar does its work silently. The v (verbose) option causes it to type the name of

each file it treats, preceded by the function letter. With the t function, v gives more infonna­
lion about the tape entries than just the name.

w causes tar to print the action to be taken, followed by the name of the file, and then wait for
the user's confirmation. If a word beginning with y is given, the action is performed. Any
other input means "no".

f causes tar to use the next argument as the name of the archive instead of Idev/mt? If the
name of the file is -, tar writes to the standard output or reads from the standard input,
whichever is appropriate. Thus, tar can be used as the head or tail of a pipeline. Tar can
also be used to move hierarchies with the command:

cd fromdir; tar cf - • I (cd todir; tar xf -)

b causes tar to use the next argument as the blocking factor for tape records. The default is 1,
the maximum is 20. This option should only be used with raw magnetic tape archives (see f
above). The block size is determined automatically when reading tapes (key letters x and t).

tells tar to complain if it cannot resolve all of the links to the files being dumped. If I is not
specified, no error messages are printed.

m tells tar to not restore the modification times. The modification time of the file will be the
time of extraction.

o causes extracted files to take on the user and group identifier of the user running the program
rather than those on the tape; this option is always on.

1 Release 2.0

TAR(I) TAR{I)

EXAMPLES

FILES

The following command backs up a user's entire directory to IDS expander tape on a CRAY X-MP or
CRA Y -I computer system:

cd; tar -cv .

The following command backs up a user's entire directory to online magnetic tape on a CRAY X-MP or
CRA Y -I computer system:

cd; tar; -cvf - . I bmxio -0 -b 4096

In the second example, a blocksize of 4096 was chosen so the tape can be read back with either online
or expander tape.

/dev/mt?
/tmp/tar*

MESSAGES

BUGS

Complains about bad key characters and tape read/write errors.
Complains if enough memory is not available to hold the link tables.

There is no way to ask for the n -th occurrence of a file.
Tape errors are handled ungracefully.
The u option can be slow.
The b option should not be used with archives that are going to be updated. The current magnetic tape
driver cannot backspace raw magnetic tape. If the archive is on a disk file, the b option should not be
used at all, because updating an archive stored on disk can destroy it
The current limit on file-name length is 100 characters.

SEE ALSO

cpio(1), bmxio(1)

Release 2.0 2 SR-2011

TARGET(1) (CRAY X-MP and CRAY-l computer systems only) TARGET(1)

NAME

target - Verify target CPU characteristics

SYNOPSIS

target [cpuname]

DESCRIPTION

SR-2011

The target command detennines and prints the CPU characteristic for the machine type specified by
cpuname. The cpuname argument may be any of the following (upper or lower case):

cpuname cpuname
host (or *host) cray-lm
target (or *target); the default cray-xmp
cray-l cray-xl (CRAY X-MP models II, 12, 14, and 18)
cray-la cray-x2 (CRA Y X-MP models 22, 24, and 28)
cray-lb cray x4 (CRAY X-MP models 48 and 416)
cray-ls cray-2

If the machine type is target, the current environment is checked for the TARGET environment vari­
able. If it is found, target parses the environment variable and displays the machine characteristics for
the target machine. If the machine type is host, the host machine characteristics are displayed. For any
other specified machine type, the machine type's default characteristics are given.

The target command does not make changes to the current environment variable TARGET (for more
infonnation on the TARGET environment variable, see the sh(1) command. The user must initialize
and/or make changes to this environment variable at the shell level when necessary. The target com­
mand verifies that the environment variable is syntactically correct.

To initialize the TARGET environment variable, enter

export TARGET

The fonnat to set up or change the TARGET environment variable is as follows:

TARGET=[cpuname] (,[charac])

The target machine represented by TARGET takes on the default machine characteristics specified by
cpuname, modified accordingly by any specified charac's. If you do not specify cpuname, the machine
characteristics of the host machine are used and modified. The cpuname and charac arguments on the
TARGET variable can be the following:

Same options as listed above. cpuname

charac These are possible features that may be specified for the given cpuname computer.

The CRAY-2 computer systems do not have special options.

The CRAY X-MP and CRAY-l computer systems let you specify logical and numerical traits as listed in
the following tables:

1 Release 2.0

TARGET(1)

SEE ALSO

sh(1)

(CRAY X-MP and CRAY-l computer systems only)

Logical Traits

ema Extended memory addressing
noema No extended memory addressing

cigs Compressed index and gather/scatter
nocigs No compressed index or gather/scatter

vpop Vector pop count
novpop No vector pop count

pe Programmable clock
nope No programmable clock

readvl Read vector length
noreadvl Do not read vector length

vrecur Vector recursion
novrecur No vector recursion

avl Additional vector logical
noavl No additional vector logical

hpm Hardware performance monitor
nohpm No hardware performance monitor

statrg Status register
nostatrg No status register

bdm Bidirectional memory
nobdm No bidirectional memory

cori Control operand range interrupts
nocori No control operand range interrupts

Numeric Traits

banks=n Number of memory banks

numcpus= Number of CPU's

ibufsize::n Instruction buffer size

memsize=n {k m) Memory size in words
k implies (n * 1024) words
m implies (n * 1,048,576) words

memspeed=n Memory speed in clock periods

clocktim=n Clock period in picoseconds

numclstr=n Number of clusters

bankbusy=n Number of clock periods that the memory bank reserved

exec(2) in the UNICOS System Calls Reference Manual, publication SR-2012

TARGET(I)

profile(4F) in the UNICOS File Fonnats and Special Files Reference Manual, publication SR-2014
System Library Reference Manual, publication SM-0114 (Machine Characteristics Routines)

Release 2.0 2 SR-2011

TEE(l) TEE(l)

NAME

tee - Duplicates output

SYNOPSIS

tee [-i] [-a] [file]

DESCRIPTION

SR-2011

Tee is a filter that transcribes the standard input to the standard output and makes a copy in file. The
-i option ignores interrupts; the -a option causes the output to be appended to file rather than overwrit­
ing it.

1 Release 2.0

TELNET(l) (TCP/IP Network - Deferred on CRAY X-MP and CRAY-l computer systems) TELNET(l)

NAME

telnet - User interface to the TELNET protocol

SYNOPSIS

telnet [host [port]]

DESCRIPTION

SR-2011

Telnet is used to communicate with another host using the TELNET protocol. If telnet is invoked
without arguments, it enters command mode. indicated by its prompt (telnet». In this mode, it accepts
and executes the commands listed below. If it is invoked with arguments, it performs an open com­
mand (see below) with those arguments. NOTE: Outbound telnet is not currently supported on CRA Y
X-MP and CRAY-l Computer Systems.

Once a connection has been opened, telnet enters input mode. In this mode. text typed is sent to the
remote host To issue telnet commands when in input mode. precede them with the telnet escape char­
acter, which is displayed at die beginning of the telnet session. When in command mode. the normal
terminal editing conventions are available.

The following telnet commands are available. Only enough of each command to uniquely identify it
need be typed.

? [command]
Get help. With no arguments. telnet prints a help summary. If command is specified. telnet
will print the help information available about the command only.

open host [port]
Open a connection to the named host. If the no port number is specified, telnet will
attempt to contact a TELNET server at the default port The host specification may be
either a host name (see hosts(4F» or an Internet address specified in dot notation (see inet
(3N)).

close Close a TELNET session and return to command mode.

quit Close any open TELNET session and exit telnet.

z Create a local shell.

escape [escape-char]

status

options

crmod

Set the telnet escape character. Control characters may be specified as A followed by a sin­
gle letter; for example. control-X is AX.

Show the current status of telnet. This includes the peer one is connected to, as well as the
state of debugging.

Toggle viewing of TELNET options processing. When options viewing is enabled, all TEL­
NET option negotiations will be displayed. Options sent by telnet are displayed as SENT,
while options received from the TELNET server are displayed as RCVD.

Toggle carriage return mode. When this mode is enabled any carriage return characters
received from the remote host will be mapped into a carriage return and a line feed. This
mode does not affect those characters typed by the user, only those received. This mode is
not very useful, but is required for some hosts that like to ask the user to do local echoing.

negotiate [command option]
Negotiate TELNET options over an open connection.

The negotiate command can be used to negotiate options over an open connection. The
following options are currently supported and available for negotiating:

1 Release 2.0

TELNET(l) (TCP/IP Network - Defe:ned on CRAY X-MP and CRAY-l computer systems)

binary Transmit in binary mode

sga Suppress "go ahead"

un Timing mark

echo Enable remote echoing

status Show current status of options

exopl Print extended options list

TELNET(l)

Currently no options are defined on the extended options lis~ but perhaps in the future (possibly distant
future), some options may be defined on the extended options list

Once a negotiate command is typed, telnet prompts you for an option. The list of options available can
be displayed by typing a question mark (?). The option must be preceded by a DO, DONT, WILL or
WONT command. Only enough of each command option to uniquely identify it need by typed.

The options negotiations follow the loop-preventing rules mentioned in the RFC 854 specifications. For
a detailed description of the options, see the TELNET specifications (RFC 854-861).

Release 2.0 2 SR-2011

TEST(l) TEST(l)

NAME

test - Performs a conditional evaluation

SYNOPSIS

test expr
[apr]

DESCRIPTION

SR-2011

The test command evaluates the expression expr and, if its value is true, returns a zero (true) exit
status; otherwise, a non-zero (false) exit status is returned; test also returns a non-zero exit status if
there are no arguments. The following primitives are used to construct expr:

-r file True if file exists and is readable

-w file

-x file

-f file

-dfile

-cfile

-bfile

-pfile

-ufile

~file

-kfile

-sfile

-t [fildes]

-z s1

-n s1

s1 = s2

s1 != s2

s1

n1 -eq n2

True if file exists and is writable

True if file exists and is executable

True if file exists and is a regular file

True if file exists and is a directory

True if file exists and is a character special file

True if file exists and is a block special file

True if file exists and is a fifo (named pipe) special file

True if file exists and its set-user-ID bit is set

True if file exists and its set-group-ID bit is set

True if file exists and its sticky bit is set. This is always false; there is no sticky
bit in UNICOS.

True if file exists and has a size greater than zero

True if the open file whose file descriptor number is fildes (1 by default) is asso­
ciated with a terminal device

True if the length of string s1 is zero

True if the length of the string s1 is non-zero

True if strings s1 and s2 are identical

True if strings s1 and s2 are not identical

True if s1 is not the null string

True if the integers n1 and n2 are algebraically equal; any of the comparisons
-ne, -gt, ~e, -It, and -Ie may be used in place of --eq.

These primaries may be combined with the following operators:

-a

-0

(apr)

unary negation operator

binary and operator

binary or operator (--a has higher precedence than -0)

parentheses for grouping

1 Release 2.0

TEST(l) TEST(l)

Notice that all the operators and flags are separate arguments to test. Notice also that parentheses are
meaningful to the shell and, therefore, must be escaped.

WARNING

In the second form of the command (that is, the one that uses [], rather than the word test), the square
brackets must be delimited by blanks.

SEE ALSO

find(l), sh(1)

Release 2.0 2 SR-2011

TFfP(1) (TCP/IP Network) TFfP(1)

NAME

tftp - Invokes the trivial file transfer program

SYNOPSIS

trtp [host] [port]

DESCRIPTION

SR-2011

The tftp command is the user's interface to the ARPANET standard Trivial File Transfer Protocol
(TFfP). The program allows you to transfer files to and from a remote networlc site using the User
Datagram Protocol (UDP). It defaults to the standard UDP port 69, which TFfP protocol uses.

The client host with which tftp is to communicate may be specified on the command line. If this is
done, tftp will immediately attempt to establish a connection to a TFrP server on that host; either way,
tftp will enter its command interpreter and await instructions from the user. When tftp is awaiting com­
mands from the user, the prompt trtp> is displayed. The following commands are recognized by tftp:

connect host-name [port]
Establish a connection to the supplied remote host

get remote-file [local-file]
Retrieve remote-file and store it on the local machine. If the name local-file is not
specified, it is the same as on the remote machine. Remote-file may have the format
host:remote-file, at which time a connection is established to the named remote host
and remote-file is retrieved.

mode [mode-name]
Set the file transfer mode to mode-name. The two possible modes are "ascii" and
"binary"; "ascii" is the default If mode-name is not specified, the current mode is
printed.

put local-file [remote-file]
Store local-file on the remote machine. If remote-file is left unspecified, local-file is
used in naming the remote file. If remote-file has the form host: remote-file, a connec­
tion is established to the named host and local-file is sent to the remote host and
named remote-file.

quit Terminate the TFfP session with the remote server and exit tftp.

status Show the current status of tftp.

trace Toggle packet tracing. By default, tracing is off.

verbose Toggle verbose mode. If verbose is on, when a file transfer completes, statistics
regarding the efficiency of the transfer are reported. By default, verbose is off.

? [command]
Print an informative message about the meaning of command. If no argument is
given, tftp prints a list of the known commands.

rexmt value
Set per-packet retransmission timeout to value seconds. Default value is five seconds.

timeout value
Set total retransmission timeout to value seconds. Default value is fifteen seconds.

1 Release 2.0

TIME(l) TIME(l)

NAME

time - Times a command

SYNOPSIS

time command

DESCRIPTION

The command is executed; after it is complete, time prints the elapsed time during the command, the
time spent in the system, and the time spent in execution of the command. Times are reported in
seconds and in the corresponding number of cpu clock cycles.

The times are printed on standard error.

NOTES

csh(l) has a built-in time with slightly different characteristics. See csh(l).

SEE ALSO

times(2) in the UNICOS System Calls Reference Manual, pUblication SR-2012

SR-2011 I Release 2.0

TIMEX(l) TIMEX(l)

NAME

timex - Times a command; reports process data and system activity

SYNOPSIS

timex [-pos] command

DESCRIPTION

When you invoke the timex command, the given command is executed; the elapsed time, user time, and
system time spent in execution are reported in seconds. Optionally, process accounting data for the
command and all its children can be listed or summarized, and total system activity during the execu­
tion interval can be reported.

The output of timex is written on standard error.

The timex accepts the following options:

-p Lists process accounting records for command and all its children. Suboptions f, h, k, m, r, and
t modify the data items reported, as defined in acctcom(1). The number of blocks read or writ­
ten and the number of characters transferred are always reported.

-0 Reports the total number of blocks read or written and total characters ttansfeITed by command
and all its children.

-s Reports total system activity (not just that due to command) that occurred during the execution
interval of command. All the data items listed in sar(l) are reported.

WARNING

Process records associated with command are selected from the accounting file /usr/adm/pacct by infer­
ence, since process genealogy is not available. Background processes having the same user-id, termid,
and execution is spuriously included.

EXAMPLES

A simple example:

timex -ops sleep 60

A terminal session of arbitrary complexity can be measured by timing a subshell:

timex -opskmt sh

session commands

EOT

SEE ALSO

acctcom(I), sar(1)

SR-2011 1 Release 2.0

T02(1) (CRA Y -2 computer systems only) T02(1)

NAME

t02, from2, tovax, fromvax - Copies files between VAX and CRAY-2

SYNOPSIS

t02 file ... target
tovax file ..• target
from2 file ... target
fromvax file ..• target

DESCRIPTION

When running on the VAX, use t02 to copy files to the CRA Y -2, and use /rom2 to copy files from the
CRAY-2. When running on the CRAY-2, tovax andfromvax work analogously.

With t02 and tovax, the file on the local machine is copied to target on the remote machine. With
Irom2 and fromvax, the file on the remote machine is copied to target on the local machine. If target is
a directory, then one or more files are copied to that directory. If file or target does not begin with a
'r, the current working directory name is prepended.

Protection is based on user name: if the user would be allowed to read and write the file when running
directly on the remote machine, the copy is allowed. If the target file already exists, copying a file into
target does not change its owner, group, nor mode. If the target file does not exist, its owner and group
are set to that of the user, and its mode is set to 0644 (or the local default).

T02, from2, tovax, andfromvax are alI shell files that execute a program called hyfcsend (HYPERchan­
nel file transfer send program). Hy/Csend waits until the logical channel is free, then if called by t02
or tovax, sends files over the channel to the receive daemon. Otherwise, if called by from2 or fromvax,
hyfcsend sends a request for files to the receive daemon which invokes the proper "to" program to
transfer the files back.

Before file transfers can take place, the super user must start up the receive daemon, hY/'crecv.

MESSAGES

BUGS

NOTES

Messages from t02 and tovax are sent to the standard error output Diagnostics from Irom2 and from­
vax are sent to the controlling tty. Diagnostic messages should be self explanatory.

Because from2 uses the shell (lbinlsb) to expand wildcard characters, grave accents C') are interpreted
and cause unpredictable results.

From2 and Iromvax always return successful exit status.

This version of hyfcsend operates synchronously. When the prompt returns, the file transfer is com­
plete.

The unsupported -d option prints (mostly unintelligible) extra diagnostic information which is some­
times useful for determining if the link is up.

SEE ALSO

hyft(lM)

SR-2011 1 Release 2.0

TOUCH(l) TODCH(l)

NAME

touch - Updates access and modification times of a file

SYNOPSIS

touch [-arne] [mmddhhmm [yy]] files

DESCRIPTION

The touch command causes the access and modification times of each argument to be updated. The
filename is created if it does not exist. If no time is specified (see date(1», the current time is used. If
no options are specified, touch updates the access times and modification times. Valid options follow.

-3 Causes touch to update only the access times (default is -am).

-m Causes touch to update only the modification times (default is -am).

-c Silently prevents touch from creating the file if it did not previously exist.

MESSAGES

The return code from touch is the number of files for which the times could not be successfully
modified (including files that did not exist and were not created).

SEE ALSO

date(1)
utime(2) in the UNICOS System Calls Reference Manual, publication SR-2012

SR-2011 1 Release 2.0

TPUT(1) (CRAY X-MP IUld CRAY-l computer systems only) TPUT(l)

NAME

tput - Makes terminfo data available to shell

SYNOPSIS

tput [- Ttype] capname

DESCRIPTION

The tput command uses the terminfo(4F) database to make terminal-dependent capabilities and informa­
tion available to the shell. Tput outputs a string if the attribute (capability name or capname) is type
string or an integer if the attribute is type integer. If the attribute is type boolean, tput sets the exit
code (0 for TRUE, 1 for FALSE) and does no output

The options and arguments to tput are as follows:

-Ttype Indicates the type of terminal. Normally this flag is unnecessary; the default is taken
from the environment variable TERM.

capname Indicates the attribute from the terminfo database. See terminfo(4).

EXAMPLES

FILES

SR-2011

The following example echoes a clear-screen sequence for the current terminal:

tputclear

The following example prints the number of columns for the current terminal:

tput cols

The following example prints the number of columns for the 450 terminal:

tput -T450 cols

The following example sets a shell variable "bold" to stand-out mode sequence for the current terminal:

bold= 'tput smso'

You can follow this with a prompt, as follows:

echo "${bold}Please type in your name: \e"

The following example sets the exit code to indicate if the current terminal is a hardcopy terminal:

tput hc

/etc/termnl*
/usr/include/term.h
/usr/include/curses.h

Terminal descriptor files
Definition files

1 Release 2.0

TPUT(l) (CRAY X-MP and CRAY-l computer systems only)

MESSAGES

Tput prints error messages and returns the following error codes on error:
-1 Usage error
-2 Bad tenninal type
-3 Bad capname

TPUT(l)

In addition, if a capname is requested for a terminal that has no value for that capname (for example,
tput -T450 lines), -1 is printed.

SEE ALSO

stty(l)
tenninfo(4F) in the UNICOS File Formats and Special Files Reference Manual, publication SR-2014

Release 2.0 2 SR-2011

TR(t) TR(t)

NAME

tr - Translates characters

SYNOPSIS

tr [-cds] [string1 [string2]]

DESCRIPTION

The tr command copies the standard input to the standard output with the substitution or deletion of
selected characters. Input characters found in string1 are mapped into the corresponding characters of
string2. Any combination of the options -cds may be used:

-c Complements the set of characters in string1 with respect to the universe of characters whose
ASCII codes are 001 through 377 octal.

-d Deletes all input characters in string1 .

-s Compresses all strings of repeated output characters that are in string2 to single characters.

The following abbreviation conventions may be used to introduce ranges of characters or repeated char­
acters into the strings:

[a-z] Stands for the string of characters whose ASCII codes run from character a to character z,
inclusive.

[a*n] Stands for n repetitions of 8. If the first digit of n is 0, n is considered octal; otherwise, n is
taken to be decimal. I n is zero or if n is omitted, it defaults to "huge"; string2.

The escape character \ may be used as in the shell to remove special meaning from any character in a
string. In addition, \ followed by 1, 2, or 3 octal digits stands for the character whose ASCII code is
given by those digits.

EXAMPLES

BUGS

The following example creates a list of all the words in file1 one per line in file2, where a word is
taken to be a maximal string of alphabetic characters. The strings are quoted to protect the special
characters from interpretation by the shell; 012 is the ASCII code for a new-line character.

tr -cs "[A-Z][a-z]" "N)12*]" <filel >file2

Tr does not recognize ASCII NUL in string1 or string2; it always deletes NUL from input.

SEE ALSO

ed(I), sh(l)

SR-2011 1 Release 2.0

TRUE(l)

NAME

true, false - Provides truth values about processor type

SYNOPSIS

true

false

DESCRIPTION

TRUE(l)

The true command does nothing, successfully; it returns a 0 as an exit code. False does nothing,
unsuccessfully; it returns a non-zero as an exit code. They are typically used in input to sh(l) such as:

while true
do

command
done

MESSAGES

True has exit status zero, false nonzero.

SEE ALSO

sb(l)

SR-2011 1 Release 2.0

TSET(1) (CRAY X-MP and CRAY-l computer systems only) TSET(l)

NAME

tset, reset - Terminal dependent initialization

SYNOPSIS

tset [-ec] [-kc] [-nlQ] [-m] [ident][test baudrate]:type] ... [type] [-]

reset ...

DESCRIPTION

SR-2011

The tset command sets up your terminal when you first log in to a UNICOS system. It performs termi­
nal dependent processing such as setting erase and kill characters, setting or resetting delays, and send­
ing any sequences needed to properly initialize the tenninal. It first detennines the type of terminal
involved, and then perfonns necessary initializations and mode settings. Type names for terminals can
be found in the terminfo(4) database. If a port is not wired permanently to a specific terminal (not
hardwired), it is given an appropriate generic identifier such as dialup.

If you do not specify any arguments, tset simply reads the terminal type out of the environment variable
TERM and reinitializes the terminal.

When used in a startup procedure (.profile for sh(l) users or .login for csh(l) users) it is desirable to
provide infonnation about the type of terminal you usually use on ports that are not hardwired. These
ports are identified as dialup, plugboard, or arpanet, and so on. To specify what terminal type you
usually use on these po~, the -m (map) option is followed by the appropriate port type identifier
(ident) , an optional baud rate specification (baudrate) , and the terminal type (type). (The effect is to
"map" from some conditions to a terminal type, that is, to tell tset "If I'm on this kind of port, assume
that I'm on that kind of terminal".) If you specify more than one mapping, the first applicable mapping
prevails. A missing port type identifier matches all identifiers. Any of the alternate generic names
given in terminfo can be used for the identifier.

A baudrate is specified as with stty(l), and is compared with the speed of the diagnostic output (which
should be the control tenninal). The baud rate test may be any combination of: >, @, <, and !; @
means "at" and ! inverts the sense of the test To avoid problems with metacharacters, it is best to
place the entire argument to -m within"'" characters; csh(1) users must also put a "\" before any
"!" used here.

Thus

tset -m 'dialup>3OO:adm3a' -m dialup:dw2 -m 'plugboard:?adm3a'

causes the terminal type to be set to an adm3 a if the port in use is a dialup at a speed greater than 300
baud; to a dw2 if the port is (otherwise) a dialup (that is, at 300 baud or less). If the type finally deter­
mined by tset begins with a question mark, you are asked if you really want that type. A null response
means you do want that type; otherwise, you can enter another type which is then used instead. Thus,
in the above case, you will be queried on a plugboard port as to whether you are actually using an
adm3a.

If no mapping applies and you specify a final type option (not preceded by a -m) on the command line,
that type is used; otherwise the identifier found in the environment is taken to be the terminal type.
This should always be the case for hardwired ports.

It is usually desirable to return the terminal type, as finally determined by tset, and information about
the terminal's capabilities to a shell's environment You can do this by using the - option. For exam­
ple, using the Bourne shell, sh(l):

export TERM; TERM='tset - options ... '

1 Release 2.0

TSET(l) (CRAY X-MP and CRAY-l computer systems only)

or using the C shell, csh(I):

setenv TERM 'tset - options ... '

With csh. it is convenient to make an alias in your .cshrc:

alias tset 'setenv TERM 'tset - \!*
Either of these aliases allow the command

tset 2621

TSET(l)

to be invoked at any time from your login csh. Note to Bourne Shell users: It is not possible to get
this aliasing effect with a shell procedure because shell procedures cannot set the environment of their
parent

These commands cause tset to place the name of your terminal in the variable TERM in the environ­
ment; see environ(4).

Once the terminal type is known, tset engages in terminal driver mode setting. This normally involves
sending an initialization sequence to the terminal, setting the single character erase (and optionally the
line-kill (full line erase» characters, and setting special character delays. Tab and newline expansion
are turned off during transmission of the terminal initialization sequence.

On terminals that can backspace but not overstrike (such as a CRT), and when the erase character is the
default erase character ('#' on standard systems), the erase character is. changed to BACKSPACE
(CONTROL-H).

The following options are available:

-ec Sets the erase character to the named character c on all terminals. The default is the backspace
character on the terminal, usually CONTROL-H. The character c can either be typed directly,
or entered using the hat notation used here.

-kc Sets the line Kill character to the named character c on all terminals; c defaults to CONTROL­
U. The kill character is left alone if -k is not specified. The hat notation can also be used for
this option.

-0 On systems with the Berkeley 4BSD tty driver, -n specifies that the new tty driver modes
should be initialized for this terminal. For a CRT, the CRTERASE and CRTKILL modes are set
only if the baud rate is 1200 or greater. See tty(4) for more details.

-I Suppresses transmitting terminal initialization strings

-Q Suppresses printing the "Erase set to" and "Kill set to" messages

Specifies the name of the terminal finally decided upon to be output on the standard output.
This is intended to be captured by the shell and placed in the environment variable TERM.

If tset is invoked as reset, it sets cooked and echo modes, turns off cbreak and raw modes, turns on
newline translation, and restores special characters to a sensible state before any terminal dependent
processing is done. Any special character found to be NULL or "-1" is reset to its default value.

This is most useful after a program dies leaving a terminal in an unusual state. You may have to type
"<LF>reset<LF>" to get it to work since <CR> may not work in this state. Often none of this will echo.

EXAMPLES

These examples all assume the Bourne shell and use the - option. If you use csh, use one of the varia­
tions described above. Note that a typical use of tset in a .profile or .Iogin also use the -e and -k
options, and often the -n or -Q options as well. (NOTE: some of the examples given here appear to
take up more than one line, for text processing reasons. When you type in real tset commands, you
must enter them entirely on one line.)

At the moment, you are on a 2621. This is suitable for typing by hand but not for a .profile, unless
you are always on a 2621.

Release 2.0 2 SR-2011

TSET(l) (CRAY X-MP and CRAY-l computer systems only) TSET(l)

FILES

export TERM; TERM~'tset - 2621'

You have an hl,9 at home that you dial up on, but your office tenninal is hardwired and known in
letc/ttytype.

expurt-i'EltM; TERM-'rser=-=m--di-alup:h 19'

You have a switch that connects everything to everything, making it nearly impossible to indicate on
which port you are coming. You use a vtl 00 in your office at 9600 baud, and dial up to switch ports at
1200 baud from home on a 2621. Sometimes you use someone elses tenninal at work, so you want it
to ask you to make sure what tenninal type you have at high speeds, but at 1200 baud you are always
on a 2621. Note the placement of the question mark, and the quotes to protect the greater than and
question mark from interpretation by the shell.

export TERM; TERM='tset - -m 'switch>1200:?vtl00' -m 'switch<=1200:2621'

All of the above entries will fall back on the tenninal type specified in the environment if none of the
conditions hold. The following entry is appropriate if you always dial up, always at the same baud rate,
on many different kinds of tenninals. Your most common tenninal is an adm3a. It always asks you
what kind of tenninal you are on, defaulting to adm3a.

export TERM; TERM='tset - ?adm3a'

If the environment is not properly initialized and you want to key entirely on the baud rate, the follow­
ing can be used:

export TERM; TERM='tset - -m '>12oo:vtlOO' 2621'

Here is a fancy example to illustrate the power of tset and to hopelessly confuse anyone who has made
it this far. You dial up at 1200 baud or less on a conceptlOO, sometimes over switch ports and some­
times over regular dialups. You use various tenninals at speeds higher than 1200 over switch ports,
most often the tenninal in your office, which is a vt100. However, sometimes you log in from the
university you used to go to, over the ARPANET; in this case you are on an ALTO emulating a
dm2500. You also often log in on various hardwired ports, such as the console, all of which are prop­
erly entered in the environment. You want your erase character set to control H, your kill character set
to control U, and don't want tset to print the "Erase set to Backspace, Kill set to Control U" message.

export TERM; TERM='tset --e -k"U -Q - -m 'switch<=1200:conceptloo' -m 'switch:?vtlOO'
-m dialup:conceptlOO -ffi arpanet:dm2500'

/usr/lib/terminfo tenninal capability database

SEE ALSO

SR-2011

csh(I), sh(I). stty(l)
terminfo(4), environ(4) in the UNICOS File Fonnats and Special Files Reference Manual, publication
SR-2014

3 Release 2.0

TSORT(l) (CRA Y -2 computer systems only) TSORT(l)

NAME

tsort - Perfonns a topological sort

SYNOPSIS

tsort [file]

DESCRIPTION

Tsort produces on the standard output a totally ordered list of items consistent with a partial ordering of
items mentioned in the input file . If file is not specified, the standard input is used.

The input consists of pairs of items (nonempty strings) separated by blanks. Pairs of different items
indicate ordering. Pairs of identical items indicate presence, but not ordering.

SEE ALSO

10rder(1)

DIAGNOSTICS

Odd data
There is an odd number of fields in the input file.

BUGS

Tsort uses a quadratic algorithm; not worth fixing for the typical use of ordering a library archive file.

SR-2011 1 Release 2.0

TTY(l) TIY(l)

NAME

tty - Gets the name of the terminal

SYNOPSIS

tty[-I][-s]

DESCRIPTION

The tty command prints the path name of the user's terminal. Valid options are:

-I Prints the synchronous line number to which the user's terminal is connected. if it is on an active
synchronous line.

-s Inhibits printing of the terminal's path name, allowing one to test just the exit code.

EXIT CODES

2 - Invalid options were specified
o - Standard input is a terminal
1 - Otherwise

MESSAGES

Not on an active synchronous line
The standard input is not a synchronous terminal and -I is specified.

Not a tty
The standard input is not a terminal and -s is not specified.

SR-2011 1 Release 2.0

UL(l) (CRAY X-MP and CRAY-l computer systems only) UL(l)

NAME

ul - Underlines text

SYNOPSIS

ul [-i] [-t terminal] [name •••]

DESCRIPTION

BUGS

The ul command reads named files (or standard input if no named files are given) and translates under­
scores to the sequence that indicates underlining for the terminal in use. The -t option overrides the
terminal type specified in the environment (by the environment variable TERM).

The file lusrllib/terminfo contains the appropriate sequences for underlining. If the terminal cannot
underline but is capable of a standout mode, then that mode is used. If the terminal can overstrike, or
can handle underlining automatically, ul degenerates to cat(1). If the terminal cannot underline, under­
lining is ignored.

The -i option causes ul to indicate underlining (with dashes '-') on a separate line than the affected
text This is useful when you want to look at the underlining present in an nroff output stream on a
crt-terminal.

Nroff usually outputs a series of backspaces and underlines intermixed with the text to indicate under­
lining. No attempt is made to optimize the backward motion.

SEE ALSO

man(l), nroff(1), colcrt(l)

SR-2011 1 Release 2.0

UMASK(l) UMASK(l)

NAME

umask - Sets file-creation mode mask

SYNOPSIS

umask [000]

DESCRIPTION

The user file-creation mode mask is set to 000. The three octal digits (000) refer to read/write/execute
penn iss ions for owner, group, and others, respectively (see chmod(2) and umask(2». The value of
each specified digit is subtracted from the corresponding digit specified by the system for the creation
of a file (see creat(2». For example, umask 022 removes group and others write pennission (so that
files nonnally created with mode 777 become mode 755 and files created with mode 666 become mode
644).

If 000 is omitted, the current value of the mask is printed.

Umask is recognized and executed by the shell.

SEE ALSO

chmod(1), sh(1)
chmod(2), creat(2), umask(2) in the UNICOS System Calls Reference Manual, publication SR-2012

SR-20II 1 Release 2.0

UNAME(l) UNAME(l)

NAME

uname - Prints name of current system

SYNOPSIS

uoame [-sorvma]

DESCRIPTION

The uname command prints the current system name on the standard output file. It is mainly useful to
determine what system one is using. The options cause selected information returned by uname (2) to
be printed:

-s Print the system name (default).

-0 Print the node name (the node name may be a name by which system is known to a communi-
cations network).

-r Print the operating system release number.

-v Print the operating system version number.

-m Print the machine hardware name.

-a Print all the above information in the format:
system node operating system version hardware

SEE ALSO

uname(2) in the UNICOS System Calls Reference Manual, publication SR-2012

SR-2011 1 Release 2.0

UNGET(l) UNGET(l)

NAME

unget - Undoes a previous get of an sees file

SYNOPSIS

unget [-rSID] [-s] [-nJ files

DESCRIPTION

Un get undoes the effect of a get -e done prior to creating the intended new delta. If a directory is
named, unget behaves as though each file in the directory were specified as a named file, except that
non-sees files and unreadable files are silently ignored. If a name of - is given, the standard input is
read with each line being taken as the name of an secs file to be processed.

Keyletter arguments apply independently to each named file.

-r SID Uniquely identifies which delta is no longer intended. (This would have been
specified by get as the "new delta"). The use of this keyletter is necessary only if
two or more outstanding gets for editing on the same sces file were done by the
same person (login name). A diagnostic results if the specified SID is ambiguous,
or if it is necessary and omitted on the command line.

-s Suppresses the printout, on the standard output, of the intended delta's SID.

-n Causes the retention of the gotten file which would nonnally be removed from the
current directory.

MESSAGES

Use he/p(l) for explanations.

SEE ALSO

delta(l), get(1), sact(1)
the UNIeos Source Code Control System (SeeS) User's Guide, publication SG-2017

SR-2011 1 Release 2.0

UNIQ(l) UNIQ(l)

NAME

uniq - Reports repeated lines in a file

SYNOPSIS

uniq [-ude [+ n] [- n]] [input [output]]

DESCRIP110N

The uiUq command reads the input file comparing adjacent lines. By default, uniq removes the second
and succeeding copies of repeated lines the remainder is written on the output file. Input and output
should always be different files. Note that repeated lines must be adjacent in order to be found; see
sort (1). If the -u option is used, only the lines that are not repeated in the original file are output. The
-d option specifies that one copy of only the repeated lines is to be written. The normal mode output is
the union of the -u and -d mode output

The -c option supersedes -u and ~ and generates an output report in default style but with each line
preceded by a count of the number of times it occurred.

The n arguments specify skipping an initial portion of each line in the comparison:

-n The first n fields together with any blanks before each are ignored. A field is defined as a
string of non-space, non-tab characters separated by tabs and spaces from its neighbors.

+n The first n characters are ignored. Fields are skipped before characters.

SEE ALSO

comm{l), sort(1)

SR-2011 1 Release 2.0

UNITS(l) UNITS(l)

NAME

units - Unit conversion program

SYNOPSIS

units

DESCRIPTION

FILES

The units command converts quantities expressed in various standard scales to their equivalents in other
scales. It works interactively in this fashion:

You have: inch
You want: em

* 2.540000e+OO
/ 3.937008e-{)1

A quantity is specified as a multiplicative combination of units optionally preceded by a numeric multi­
plier. Powers are indicated by suffixed positive integers, division by the usual sign:

You have: IS Ibs force/in2
You want: atm

* 1.02068ge+OO
/ 9. 797299e-O 1

The units command only does multiplicative scale changes; for example, it can convert Kelvin to Rank­
ine, but not Celsius to Fahrenheit. Most familiar units, abbreviations, and metric prefixes are recog­
nized, together with a generous leavening of exotica and a few constants of nature including:

pi Ratio of circumference to diameter
c Speed of light
e Charge on an electron
g Acceleration of gravity
force Same as g
mole Avogadro's number
water Pressure head per unit height of water
au Astronomical unit

Pound is not recognized as a unit of mass; Ib is. Compound names are run together, (such as, ligb.
tyear). British units that differ from their u.S. counterparts are prefixed thus: brgaUon. For a complete
list of units, type:

cat /usr/lib/unittab

You must hit CONTROL-d to exit the program.

/usr/lib/unittab

MESSAGES

NOTES

SR-2011

Conformability

Cannot recognize string

You specified mutually incompatible scales

Unknown keyword

To exit program, you must key in a CONTOL-d character.

1 Release 2.0

UPDATE(l) UPDATE(l)

NAME

update - Invokes the UPDATE utility

SYNOPSIS

update [-p pdfJ [-i idfJ [~cdfJ [-a xl x2 •.. xN] [-u udfJ [-d ifp] [-0 ndj] [-s sdj] [-x chr]
[-y chr] [-w dwv] [-m n] [-f -q qfl qf2 ... qfn] [-0 options]

DESCRIPTION

SR-2011

The update command is a source code maintenance utility that is also available under the Cray operat­
ing system COS.

The options for update are as follows:

-p pdf PL (program library) file name. This file is created by update and is intended to be used only
by update. The keyword alone is invalid. Omit the -p parameter for creation runs.

-i idf Input file name. Use of multiple input file names is deferred. The -i parameter must be
specified for creation runs. The keyword alone is invalid.

~ cdf Compile file name. For multiple compile files, the directory name is appended with a period
and a single letter as defined by default (f,s, p, and c) or specified by the -a parameter. The
file name and the following period and suffix should not exceed 14 characters (thus the input
file name must not exceed 12 characters). The files must not exist as they will be created by
update. The keyword alone is invalid. The default suffixes are assigned in the following
order:
f Fortran
s Assembly
p Pascal
c C

-ax1 x2 ... xN
Specifies the appended characters that are to be assigned to multiple compile files. Each
character must be unique and of the 62 alphanumeric characters. If xl is a single character,
the file name will be appended with a period followed by the character. The keyword alone
is invalid.

-u udf User common deck directory. Deferred implementation

-d ifp Defines names to be used with an IF directive (up to 8 characters may be used). Defined
names need not be unique from deck names, common deck names, or modification identifiers.
They are known only in the update run being processed. Up to 100 names may be defined
with the -d parameter. The keyword alone is invalid.

-0 ndf New PL file name. This file is created by, and used only by, update. For a normal update
run, -0 ndir must be specified and the -f and -q parameters omitted. The update mode
determines the contents of the new PL. The specified file must be empty as update will
create a PL in it. The keyword alone is invalid.

-s sdf Source file name. The update mode determines the contents of this file. The file can be the
input for a subsequent creation run, but the file name must not exist on input as it will be
created by update. The keyword alone is invalid.

-x chr Master character; the first character of directives read from the input file or written to the
source file. Invalid master characters are comma, period, colon, equal sign, and space. If the
character is a metacharacter, it must be quoted or escaped. For example, an • must be
represented in one of the following ways: '*, ".", or '.'. The keyword alone is invalid.

1 Release 2.0

UPDATE(l) UPDATE(l)

If omitted in a creation run, the master character for directives is·. If omitted in a
modification run, the master character is that used in the creation run for the PL.

-y chr Comment character that indicates a comment. If the character is a metacharacter, it must be
quoted or escaped. For example, an • must be represented in one of the following ways: '.,
•• ", or '.'. The keyword alone is invalid.

If omitted in a creation run, the comment character is /. If omitted in a modification run, the
comment character is that used in the creation run for the PL.

-w dwv Data width value; the number of characters of data written to each line in the compile and
source file. The dwv range is 1 through 256. The keyword alone is invalid.

If this keyword is omitted in a creation run, columns 1 through 72 contain data. Otherwise,
columns 1 through dwv contain data.

If -w '.' is specified in a creation run, variable length records are written to the compile and
source files. (1be asterisk is a metacharacter and must be quoted or escaped.)

In a modification run, if the PL was created with -w '.';. only -w '.' or no -w parameter
are accepted, and update continues to process variable length text lines for the PL.

In a modification run with -w unspecified, columns 1 through lastdw contain data; lastdw is
the -w value specified when the PL was written. If -w dwv is specified, columns 1 through
dwv contain data.

The number of characters per line written to the new PL is the maximum of either dwv, pldw,
or 80; pldw is the number of characters per line in the existing regular PL. For variable­
length record PLs, the same number of characters per line appears in the new PL as was in
the old PL.

For regular PLs, sequence information is provided as follows:

• When the data width value is omitted or specified as dwv, dwv+l through dwv+8 contain
an identifier, right-justified with leading spaces; dwv+9 contains a period; dwv+l0 through
dwv+15 contain a sequence number, left-justified with trailing spaces.

• When the data width value is specified as ldwv, the entire sequencing field of the compile
output is left-justified.

• For variable-length record PLs, no sequence information appears in the compile file.
Source file sequence information, if requested, appears a few spaces to the right of the
end of the text line.

-m n Message level; the highest level of severity for update listing messages to be suppressed.

Release 2.0 2 SR-2011

UPDATE(l) UPDATE(l)

SR-2011

The following levels are available:

Level Severity Description

1 COMMENT Currently unused
2 NOm Infonnation not related to errors
3 CAUTION Possible error
4 WARNING Probable error
5 ERROR Fatal error

For example, -m 1 allows CAUTION, WARNING, and ERROR messages to be printed to
stdout. The default used when -m is omitted is 3. The keyword alone is invalid

-f -q (omitted)
Full, quick, or nonnal update run. This determines the compile file contents, the source file,
and the new PL contents.

-f Full update mode; all active lines are processed. The PL Identifier Table determines
the sequence. No COMPILE directive is necessary. The keyword must be used
alone.

-q qf1 qf2 •.. qfn
or

-q'dl,d2, ... ,dj.dk, ... ,dn'
Quick update mode. Decks that are specified with the -q parameter and decks
specified by a COMPILE directive are written to the compile file and/or the source
file, and to the new PL. These decks must be uppercase. Externally defined com­
mon decks cannot be named with the -q parameter or the COMPILE directive. The
PL Identifier Table detennines the sequence unless the k option is used. Corrections
to decks that are not specified with the -q parameter or by a COMPILE directive are
not included.

In the first method shown, up to 100 decks can be specified. After all input has been
entered, unknown deck names are errors. The keyword alone is invalid.

In the second method shown, single decks are separated by commas, and ranges of
decks are separated by periods. After all input has been entered, unknown deck
names are errors. The maximum size of the string used with the second method is
96 characters. The two methods cannot be combined.

omitted Nonnal update mode. Decks specified by COMPILE directives, modified decks, and
decks calling modified common decks are written to compile and/or source files.
Externally defined common decks cannot be named with the COMPILE directive, and
they are not written to the source file. For a normal mode run, the -n parameter
must be specified; a new PL will be created.

-0 options (keyword only)
The following output options are available in the command line. Each option must be
separated by a space.

cd Write the generation directives for the compile file to stdout.

dc Declared modifications option. This ensures that modifications apply to the correct
deck or common deck. Declaration of PL modifications might be required.

ed Write the edited line summary to stdout.

id Write the identifier summary to stdout.

3 Release 2.0

UPDATE(l)

EXAMPLES

if

in

k

Write a conditional text summary to stdout.

List the input to stdout.

UPDATE(l)

Order all decks that are written to the compile filet as directed by the -q parameter
values on the control statement and the COMPILE directives. This option is ignored
in full and normal modes.

If a modification set affects two or more decks and the k option is in effectt the
sequence numbers of inserted lines can be inconsistent with sequencing that has
occurred without the k option.

na Do not abort if directive errors or modification errors occur. All requested files are
genentted. .

nr Do not "rewind" the source or compile files at the end of update execution.

os Suppress line sequence information in the compile files. SEQ and NOSEQ directives
are ignored when this option is used. Ns has no affect on the source file output and
is ignored for variable-length record PLs.

sq Update the source output that is provided with sequencing information. Sq has no
affect on the compile file output

um Write unprocessed modifications to stdout.

update -n newpl -i input -c cplfile

This example shows how a PL is created. The omitted -p parameter indicates that there is no
existing PL. The new PL is written to the file newpl and the input is read from input. The
compile output is written to cplfile; all decks are selected.

update -p plname -i mods --q DEClO DECK2 DECK4 -0 k na -c cplfile

SEE ALSO

This example shows a modification of a PL. The parameters indicate the following:

The PL flle is plname in the current directory.

• The input is read from the file mods in the current directory.

• Quick mode with the k output option. If a single COMPILE directive is used (*COMPILE
DECK1.DECK4)t DECKl through DECK4 are written to the compile file (-c cplfile) in the
following order:
DEClO DECK2 DECK4 DECKl

• Update does not abort if directive or modification errors occur.

The UPDATE Reference Manualt publication SR-0013

Release 2.0 4 SR-2011

UUCP(l) (CRAY X-MP and CRAY-l computer systems only) UUCP(l)

NAME

uucP. uulog, uuname - UNIX system to UNIX system copy

SYNOPSIS

uucp [-drcrjC] [-mfile] [-Buser] [-esys] source-files destination-file

uulog [-s[sys]] [-u[user]]

uuname [-I] [-v]

DESCRIPTION

SR-2011

The uucp command copies files named by the source-file arguments to the destination-file argument. A
file name may be a path name on your machine. or may have the form:

system-name!path-name

where system-name is taken from a list of system names that uucp knows about The system-name can
also be a list of names such as

system-name!system-name! ... !system-name!path-name

in which case an attempt is made to send the file using the specified route, and only to a destination in
PUBDIR (see below). Ensure that intermediate nodes in the route are willing to forward infonnation.

The shell metacharacters ? • and [•••] appearing in path-name are expanded on the appropriate sys­
tem.

Path names may be one of the following:

• A full path name

• A path name preceded by user where user is a login name on the specified system and is
replaced by that user's login directory

• A path name preceded by user where user is a login name on the specified system and is
replaced by that user's directory under PUBDIR

• Anything else is prefixed by the current directory

If the result is an erroneous path name for the remote system the copy will fail. If the destination-file
is a directory, the last part of the source-file name is used.

The uucp command preserves execute permissions across the transmission and gives 0666 read and
write permissions (see chmod(2».

The following options are interpreted by uucp:

-d Makes all necessary directories for the file copy (default)

-f Does not make intermediate directories for the file copy

-c Uses the source file when copying out rather than copying the file to the spool directory
(default)

-C Copies the source file to the spool directory

-mfile Reports status of the transfer in file. If file is omitted, sends mail to the requester when the
copy is completed.

-r Queues job but does not start the file transfer process. By default a file transfer process is
started each time uucp is evoked.

-j Controls writing of the uucp job number to standard output (see below).

1 Release 2.0

UUCP(l) (CRA Y X-MP and CRA Y -1 computer systems only) UUCP(l)

FILES

-Duser Notifies user on the remote system that a file was sent

~s Sends the uucp command to system sys to be executed there. (Note: this will only be success-
ful if the remote machine allows the uucp command to be executed by lusr/lib/oucp/uuxqt.)

The uucp command associates a job number with each request. This job number can be used by uusta!
to obtain status or terminate the job.

The environment variable JOBNO and the -j option are used to control the listing of the uucp job
number on standard output. If the environment variable JOBNO is undefined or set to OFF, the job
number is not listed (default). If uucp is then invoked with the -j option, the job number is listed. If
the environment variable JOBNO is set to ON and is exported, a job number is written to standard out­
put each time uucp is invoked. In this case, the -j option supresses output of the job number.

The uwog command queries a summary log of uucp and uux(l) transactions in the file
lusrlspool/uucp/LOGFILE.

The options cause uulo g to print logging information:

-s[sys] Prints information about work involving system sys. If sys is not specified, then logging infor­
mation for all systems is printed.

-u[user]
Prints information about work done for the specified user. If user is not specified then logging
information for all users is printed.

The uuname command lists the uucp names of known systems. The -I option returns the local system
name. The -v option prints additional infonnation about each system. A description is printed for each
system that has a line of information in lusr/lib/uucpl ADMIN. The format of ADMIN is: sysname tab
description tab.

/usr/spooVuucp Spool directory
/usr/spooVuucppublic Public directory for receiving and sending (PUBDIR)
/usr/lib/uucp/* Other data and program files

WARNING

NOTES

The domain of remotely accessible files can (and for obvious security reasons, usually should) be
severely restricted. You will very likely not be able to fetch files by path name; ask a responsible per­
son on the remote system to send them to you. For the same reasons, you will probably not be able to
send files to arbitrary path names. As distributed, the remotely accessible files are those whose names
begin lusrlspool/uucppub6c (equivalent to -DUUCP or just -).

In order to send files that begin with a dot (.profile) the files must by qualified with a dot. For example:
.profile, .proP, .profil? are correct; whereas *prof*, ?profile are incorrect.

The uucp command does not generate a job number for a strictly local ttansaction.

Release 2.0 2 SR-2011

UUCP(l) (CRAY X-UP and CRAY-l computer systems only) UUCP(l)

BUGS

All files received by uucp are owned by uucp.
The -m option only works sending files or receiving a single file. Receiving multiple files specified by
special shell characters ? • [•••] does not activate the -m option.
The -m option does not work if all transactions are local or if DDep is executed remotely via the ~
option.
The -n option functions only when the source and destination are not on the same machine.
Only the first six characters of a system-1Ul1TU! are significant. Any excess characters are ignored.

SEE ALSO

mail(1), uux(l).
cbmod(2) in the UNIX System Programmer Reference Manual.

SR-2011 3 Release 2.0

UUSTAT(l) (CRAY X-MP md CRAY-l computer systems only) UUSTAT(I)

NAME

uustat - Uucp status inquiry and job control

SYNOPSIS

uustat [-jkrjohn] [~oyhoUT] [-uuser] [~sys] [-mMmch] [-Oq]

DESCRIPTION

SR-2011

The uustat command displays the status of, or cancels, previously specified uucp commands. It will
also provide the general status on uucp connections to other systems. The following options are recog­
nized:

-jjobn

-kjobn

-rjobn

~hour

-ohour
-yhour
-uuser
-ssys
-mmch

-Mmch

-0

-q

Reports the status of the uucp request john. If all is used for jobn, the status of all uucp
requests is reported. An argument must be supplied otherwise the usage message is printed
and the request fails.
Kills the uucp request whose job number is john. The killed uucp request must belong to
the person issuing the uustat command unless one is the super user.
Rejuvenates jobn. That is, john is touched so that its modification time is set to the current
time. This prevents uuclean from deleting the job until the jobs modification time reaches
the limit imposed by uuclean.
Remove the status entries that are older than hour hours. This administrative option can
only be initiated by the user uucp or the super user.
Reports the status of all uucp requests which are older than hour hours
Reports the status of all uucp requests which are younger than hour hours
Reports the status of all uucp requests issued by user
Reports the status of all uucp requests which communicate with remote system sys
Report the status of accessibility of machine mch. If mch is specified as all, then the status
of all machines known to the local uucp are provided.
This is the same as the -m option except that two times are printed. The time that the last
status was obtained and the time that the last successful transfer to that system occurred.
Reports the uucp status using the octal status codes listed below. If you do not specify this
option, the verbose description is printed with each uucp request.
Lists the number of jobs and other control files queued for each machine and the time of
the oldest and youngest file queued for each machine. If a lock file exists for that system,
its date of creation is listed.

When options are omitted, uustat outputs the status of all uucp requests issued by the current user.
Only one of the options -j, -m, -k,~, -r, can be used with the rest of the other options.

For example, the command:

uustat -uhdc -smhtsa -y72

will print the status of all uucp requests that were issued by user hdc to communicate with system
mhtsa within the last 72 hours. The meanings of the job request status are:

job-number user remote-system command-time status-time status

where the status can be either an octal number or a verbose description. The octal code corresponds to
the following description:

1 Release 2.0

UUSTAT(1) (CRAY X-MP and CRAY-l computer systems only)

OCTAL STATUS
()()()()() 1 The copy failed, but the reason cannot be detennined

000002 Pennission to access local file is denied

000004 Pennission to access remote file is denied
()()()()10 Bad uucp command is generated
()()()()20 Remote system cannot create temporary file

000040 Cannot copy to remote directory
000100 Cannot copy to local directory

000200 Local system cannot create temj?Qrary file
000400 Cannot execute uucp
001000 Copy (partially) succeeded

002000 Copy finished, job deleted

004000 Job is queued
01()()()() Job killed (incomplete)
02()()()() Job killed (complete)

The meanings of the machine accessibility status are:

system-name time status

UUSTAT(I)

where time is the latest status time and status is a self-explanatory description of the machine status.

FILES

/usr/spooVuucp
/usr/lib/uucplL_stat
/usr/lib/uucp!R_stat

SEE ALSO

uucp(l)

Release 2.0

Spool directory
System status file
Request status file

2 SR-2011

UUTO(l) (CRAY X-MP and CRAY-l computer systems only) UUTO(l)

NAME

uuto, uupick - Public UNICOS-to-UNICOS system file copy

SYNOPSIS

uuto [-p] [-m] source-files destination
uupick [-s system]

DESCRIPTION

FILES

SR-20II

The uuto command sends source-files to destination. It uses the uucp (1) facility to send files, while it
allows the local system to control the file access. A source-file name is a path name on your machine.
Destination has the form:

systemlftuser

where system is taken from a list of system names that uucp knows about (see uuname). User is the
login name of someone on the specified system.

Two options are available:

-p Copies the source file into the spool directory before transmission
-m Sends mail to the sender when the copy is complete

The files (or sub-trees if directories are specified) are sent to PUBDIR on system, where PUBDIR is a
public directory defined in the uucp source. Specifically the files are sent to

PUB DlR/receive/user/mysystem/files.

The destined recipient is notified by mail (I) of the arrival of files.

The uupick command accepts or rejects the files transmitted to the user. Specifically, uupick searches
PUBDIR for files destined for the user. For each entry (file or directory) found, the following message
is printed on the standard output:

from system: [filejile-name] [dir dirname] ?

The uupick command then reads a line from the standard input to determine the disposition of the file:

<new-line> Go on to next entry.

d Delete the entry.

m [dir] Move the entry to named directory dir (current directory is default).

a [dir] Same as m except moving all the files sent from system.

p Print the content of the file.

q Stop.

EDT (control-d) Same as q.

!command Escape to the shell to do command.

* Print a command summary.

If uupick is invoked with the ~ system option, it only searches the PUBDIR for files sent from system.

PUBDIR /usr/spooVuucppublic Public directory

I Release 2.0

UUTO(l) (CRAY X-MP and CRAY-l computer systems only) UUTO(l)

NOTES

In order to send files that begin with a dot, the files must by qualified with a dot. For example: .profile,
.prof*, .profil? are correct; whereas *prof*, ?profile are incorrect.

SEE ALSO

mail(I), uucp(1), uustat(1), uux(1)
uuclean(1M) in the UNICOS Administrator Commands Reference Manual, publication SR-2022

Release 2.0 2 SR-2011

UUX(l} (CRAY X-MP and CRAY-l computer systems only) UUX(l)

NAME

uux - UNIX-to-UNIX/UNICOS-to-UNICOS system command execution

SYNOPSIS

DUX [-nj] [-mfile] [-] command-string

DESCRIPTION

SR-2011

The uux command gathers zero or more files from various systems, executes a command on a specified
system, and then sends standard output to a file on a specified system. For security reasons, many
installations limit the list of commands executable on behalf of an incoming request from uux. Many
sites pennit little more than the receipt of mail (see mail (1)) using uux.

The command-string is made up of one or more arguments that look like a shell command line, except
that the command and file names may be prefixed by system-name!. A null system-name is inter­
preted as the local system.

File names may be one of the following:

• A full path name

• A path name preceded by xxx where xxx is a login name on the specified system and is
replaced by that user's login directory

• Anything else is prefixed by the current directory

As an example, the command

uux "!diff usg!/usr/dan/fl pwba!/a4/dan/fl > !fl.diff"

will get the f1 files from the "usg" and "pwba" machines, execute a diff command and put the results
in fi.diff in the local directory.

Any special shell characters such as <>; I should be quoted either by quoting the entire command-string,
or quoting the special characters as individual arguments.

The uux command attempts to get all files to the execution system. For output files, the file name must
be escaped using parentheses. For eXample, the command

uux a!uucp b!/usr/file ,<c!/usr/file\)

sends a uucp command to system "a" to get lusr/file from system "b" and send it to system "c".

The uux command notifies you if the requested command on the remote system was disallowed. The
response comes by remote mail from the remote machine. Executable commands are listed in
/usr/lib/uucp/L.cmds on the remote system. The fonnat of the L.cmds file is:

cmd,machinel,machine2, ...

If you do not specify any machines, then any machine can execute cmd. If you specify machines, only
the listed machines can execute cmd. If the desired command is not listed in L.sys, it cannot be exe­
cuted.

Redirection of standard input and output is usually restricted to files in PUBDIR. Directories into which
redirection is allowed must be specified in lusr/lib/uucp/USERFILE by the system administrator.

The following options are interpreted by uux:

-n Sends no notification to user

-j Controls writing of the uucp job number to standard output.

-mfile Reports status of the transfer in file. If file is omitted, sends mail to the requester upon copy
completion.

1 Release 2.0

UUX(1)

Fll..ES

BUGS

(CRAY X-MP and CRAY-l computer systems only) UUX(I)

The standard input to uux is made the standard input to the command-string.

The uux command associates a job number with each request. This job number can be used by uustat
to obtain status or tenninate the job.

The environment variable JOBNO and the -j option controls the listing of the uux job number on stan­
dard output. If the environment variable JOBNO is undefined or set to OFF, the job number is not
listed (default). If uucp is then invoked with the -j option, the job number is listed. If the environ­
ment variable JOBNO is set to ON and is exported, a job number is written to standard output each time
uux is invoked. In this case, the -j option suppresss output of the job number.

/usr/spooVuucp
/usr/spooVuucppublic
/usr/lib/uucp/*

Spool directory
Public directory (PUBDIR)
Other data and programs

Only the first command of a shell pipeline may have a system-name !. All other commands are exe­
cuted on the system of the first command.
Only the first six characters of the system-name are significant. Any excess characters are ignored.
The shell metacharacter * will probably not do what you want it to do. The shell tokens « and » are
not implemented.

SEE ALSO

mail(1), uucp(1)
uuclean(1M) in the UNICOS Administrator Commands Reference Manual, publication SR-2022

Release 2.0 2 SR-2011

VALet) VALet)

NAME

val - Validates sees file

SYNOPSIS

val -
val [-s] [-rSID] [-mname] [-ytype] files

DESCRIPTION

Val detennines if the specified file is an sees file meeting the characteristics specified by the optional
argument list. Arguments to val may appear in any order. The arguments consist of keyletter argu­
ments, which begin with a -, and named files.

Val has a special argument, -, which causes reading of the standard input until an end-of-file condition
is detected. Each line read is independently processed as if it were a command line argument list.

Val generates diagnostic messages on the standard output for each command line and file processed and
also returns a single 8-bit code upon exit as described below.

The keyletter arguments are defined as follows. The effects of any keyletter argument apply indepen­
dently to each named file on the command line.

-s

-rSID

-mname

-ytype

The presence of this argument silences the diagnostic message nonnally gen­
erated on the standard output for any error that is detected while processing
each named file on a given command line.

The argument value SID (SeeS IDentification String) is an sees delta number.
A check is made to determine if the SID is ambiguous (such as, r 1 is ambigu­
ous because it physically does not exist but implies 1.1, 1.2, etc., which may
exist) or invalid (such as, r1.0 or r1.1.0 are invalid because neither case can
exist as a valid delta number). If the SID is valid and not ambiguous, a check
is made to detennine if it actually exists.

The argument value name is compared with the sees %M% keyword in file.

The argument value type is compared with the sees %Y% keyword infile.

The 8-bit code returned by val is a disjunction of the possible errors, that is, can be interpreted as a bit
string where (moving from left to right) set bits are interpreted as follows:

bit 0 = missing file argument
bit 1 = unknown or duplicate keyletter argument
bit 2 = corrupted sees file
bit 3 = cannot open file or file not sees
bit 4 = SID is invalid or ambiguous
bit 5 = SID does not exist
bit 6 = % Y%, -y mismatch
bit 7 = %M%, -m mismatch

Note that val can process two or more files on a given command line and in turn can process multiple
command lines (when reading the standard input). In these cases an aggregate code is returned - a log­
ical OR of the codes generated for each command line and file processed.

MESSAGES

Use help(l) for explanations.

SR-2011 1 Release 2.0

VAL(I) VAL(I)

LIMITATIONS

Val can process up to 50 files on a single command line. Any number above 50 will produce a core
dump.

SEE ALSO

admin(1), delta(1), get(l), prs(l)
the UNICOS Source Code Control System (SCCS) User's Guide, publication SO-2017

Release 2.0 2 SR-2011

VC(l) VC(l)

NAME

vc - Version control

SYNOPSIS

VC [-8] [-t] [-cchar] [-s] [keyword=value ... keyword=value]

DESCRIPTION

SR-2011

The vc command copies lines from the standard input to the standard output under control of its argu­
ments and control statements encountered in the standard input. In the process of perfonning the copy
operation. user declared keywords may be replaced by their string value when they appear in plain text
and/or control statements.

The copying of lines from the standard input to the standard output is conditional. based on tests (in
control statements) of keyword values specified in control statements or as vc command arguments.

A control statement is a single line beginning with a control character. except as modified by the -t
keyletter (see below). The default control character is colon (:). except as modified by the -c keyletter
(see below). Input lines beginning with a backslash (\) followed by a control character are not control
lines and are copied to the standard output with the backslash removed. Lines beginning with a
backslash followed by a non-control character are copied in their entirety.

A keyword is composed of 9 or less alphanumerics; the first must be alphabetic. A value is any AScn
string that can be created with ed(l); a numeric value is an unsigned string of digits. Keyword values
may not contain blanks or tabs.

Replacement of keywords by values is done whenever a keyword surrounded by control characters is
encountered on a version control statement. The -a keyletter (see below) forces replacement of key­
words in all lines of text An uninterpreted control character may be included in a value by preceding
it with \. If a literal \ is desired. then it too must be preceded by \.

Keyletter Arguments

-a

-t

-cchar

-s

Forces replacement of keywords surrounded by control characters with their
assigned value in all text lines and not just in vc statements.

All characters from the beginning of a line up to and including the first tab
character are ignored for the purpose of detecting a control statement. If one is
found. all characters up to and including the tab are discarded.

Specifies a control character to be used in place of :.

Silences warning messages (not error) that are normally printed on the diagnos­
tic output

Version Control Statements

:dcl keyword[, •••• keyword]
Used to declare keywords. All keywords must be declared

:asg keyword=value
Used to assign values to keywords. An asg statement overrides the assignment for the
corresponding keyword on the vc command line and all previous asg statements for that keyword.
Keywords declared. but not assigned values have null values.

I Release 2.0

VC(l) VC(l)

:if condition

: end

::text

:on

: off

Used to skip lines of the standard input If the condition is true all lines between the if statement
and the matching end statement are copied to the standard output If the condition is false, all
intervening lines are discarded, including control statements. Note that intervening if statements
and matching end statements are recognized solely for the purpose of maintaining the proper if­
end matching.
The syntax of a condition is:

<cond>
<01">
<and>
<exp>
<op>
<value>

::= ["not"] <01">
::= <and> I <and> "I" <01">
::= <exp> I <exp> "&" <and>
::= "(" <01"> It)" I <value> <op> <value>
::= "=" I ,,!=n I n<n In>"
::= <arbitrary AScn string> I <numeric string>

The available operators and their meanings are:

=
!=
&
I
>
<
()
not

equal
not equal
and
or
greater than
less than
used for logical groupings
may only occur immediately after the if, and
when present, inverts the value of the
entire condition

The > and < operate only on unsigned integer values (such as, : 012 > 12 is false). All other
operators take strings as arguments (such as, : 012 != 12 is true). The precedence of the opera­
tors (from highest to lowest) is:

= != > < all of equal precedence
&
I

Parentheses may be used to alter the order of precedence.
Values must be separated from operators or parentheses by at least one blank or tab.

Used for keyword replacement on lines that are copied to the standard output. The two leading
control characters are removed, and keywords surrounded by control characters in text are
replaced by their value before the line is copied to the output file. This action is independent of
the -a key letter.

Turn on or off keyword replacement on all lines.

:ctI char
Change the control character to char.

:msg message
Prints the given message on the diagnostic output

Release 2.0 2 SR-2011

VC(l) VC(l)

:err message
Prints the given message followed by:

ERROR: err statement on line _. (915)
on the diagnostic output V c halts execution, and returns an exit code of I.

MESSAGES

Use help(I) for explanations.

V c returns an exit code of 0 on normal termination and returns I if any error occurs.

SEE ALSO

ed(I), help(I)

SR-2011 3 Release 2.0

VIO) (CltAY X-MP and CltAY-l computer systems only) VI{t)

NAME

vi - Screen-oriented (visual) display editor based on ex(l)

SYNOPSIS

vi [-t tag] [-r [file]] [-I] [-wn] [-x] [-R] [+command] name ...
view [-t tag] [-r [file]] [-I] [-wn] [-x] [-R] [+command] name .. .
vedit [-t tag] [-r [file]] [-I] [-wn] [-x] [-R] [+command] name .. .

DESCRIPTION

The vi command (visual) invokes a display-oriented text editor based on an underlying line editor
ex(I). It is possible to use the command mode of ex from within vi and vice-versa. (If you are not
familiar with ex, please refer to ex(1).) Intelligent and high speed tenninals are very pleasent to use
with vi.

When using vi, changes you make to the file are reflected in what you see on your terminal screen.
The position of the cursor on the screen indicates the position within the file.

The following command line options are interpreted by vi:

-t tag Edit the file containing the tag and position the editor at its definition.

-r[file] Recover file after an editor or system crash. If file is not specified a list of all saved files
will be printed.

-I USP mode; indents appropriately for lisp code, the 0 () [[and]] commands in vi and
open are modified to have meaning for lisp .

-wn Set the default window size to n. This is useful when using the editor over a slow speed
line.

-x Encryption mode; a key is prompted for allowing creation or editing of an encrypted file.

-R Read only mode; the readonly flag is set, preventing accidental overwriting of the file.

+command The specified ex command is interpreted before editing begins.

name Indicates files to be edited.

The view command is the same as vi except that the readonly flag is set

The vedit command is intended for beginners. The report flag is set to I. and the showmode and
novice flags are set. These defaults make it easier to get started learning vi.

VI MODES

SR-2011

At anyone time. you are in one of the following modes within vi.

Command Normal and initial mode. Other modes return to command mode upon completion. ESC
(escape) is used to cancel a partial command

Input

Last line

Entered by a i A I 0 0 c C s S R. Arbitrary text can then be entered. Input mode is nor­
mally terminated with ESC or abnormally with interrupt

Reading input for : I ? or !; terminate with CR to execute, interrupt to cancel.

I Release 2.0

VIO) (CRA Y X-MP md eRA Y -1 computer systems only)

COMMAND SUMMARY

Following is a summary of commands vi accepts.

Sample commands
~J,t-7
bjkl
itextESC
cwnewESC
easESC
x
dw
dd
3dd
u
ZZ
:q!CR
ItextCR
AU AD

:ex cmdCR

Numbers before vi commands

arrow keys move the cursor
same as arrow keys
insert text abc
change word to new
pluralize word
delete a character
delete a word
delete a line
... 3 lines
undo previous change
exit vi, saving changes
quit, discarding changes
search for text
scroll up or down
any ex or ed command

VI(l)

Numbers may be typed as a prefix to some commands. They are interpreted in one of these ways.

line/column number z G I
scroll amount AD AU
repeat effect most of the rest

Interrupting, canceling
ESC

"'L
"'R

File manipulation
:wCR
:qCR
:q!CR

Release 2.0

:e nameCR
:e!CR
:e + nameCR
:e +nCR
:e fCR

:w nameCR
:w! nameCR
:sbCR
:!cmdCR
:oCR
:0 argsCR
"'G
:ta tagCR
A]

end insert or incomplete cmd
(delete or rubout) interrupts
reprint screen if A1 scrambles it
reprint screen if AL is -7 key

write back changes
quit
quit, discard changes
edit file name
reedit, discard changes
edit, starting at end
edit starting at line n
edit alternate file
synonym for :e #
write file name
overwrite file name
run shell, then return
run cmd, then return
edit next file in arglist
specify new arglist
show current file and line
to tag file entry tag
:ta, following word is tag

2 SR-2011

VI(I) (CItA Y X-MP and CRAY-l computer systems only) VI(I)

In general, any ex or ed command (such as substitute or global) may be typed, preceded by a colon
and followed by a CR.

Positioning within file
AF
AD
AD
AU
G
Ipat
?pat
n
N
Ipatl+n
?pat?-n
]]
[[
(
)
(
)
%

Adjusting the screen
AL
AR
zCR
z-CR
z.CR
Ipatlz-CR
zn.CR
AE
Ay

Marking and returning

mx
"x
'x

Line positioning
H
L
M
+

CR
J, or j
i ork

Character positioning

SR-2011

A

o
$
hor~

forward screen
backward screen
scroll down half screen
scroll up half screen
go to specified line (end default)
next line matching pat
prev line matching pat
repeat last I or ?
reverse last I or ?
noth line after pat
noth line before pat

next section/function
previous section/function
beginning of sentence
end of sentence
beginning of paragraph
end of paragraph
find matching () (or)

clear and redraw
retype, eliminate @ lines
redraw, current at window top
... at bottom
... at center
pat line at bottom
use n line window
scroll window down 1 line
scroll window up 1 line

move cursor to previous context
... at first non-white in line
mark current position with letter x
move cursor to mark x
... at first non-white in line

top line on screen
last line on screen
middle line on screen
next line, at first non-white
previous line, at first non-white
return, same as +
next line, same column
previous line, same column

first non white
beginning of line
end of line
forward

3 Release 2.0

VI(t) (CRA Y X-MP md CRA Y -1 computer systems only)

lor+- backwards
AU same as +-
space same as -+
fx find x forward
Fx fbackward
tx upto x forward
Tx back upto x

repeat last f F t or T
, inverse of;

I to specified column
% find matching (() or)

~ords, sentences,par.a~phs
w word forward
b back word
e end of word
) to next sentence
) to next paragraph
(back sentence
(back par.agr.aph
W blank delimited word
B back W
E to end ofW

Commands for USP Mode
) Forward s-expression
) ... but do not stop at atoms
(Back s-expression
{ ... but do not stop at atoms

Corrections during insert
AU erase last character
AW erase last word
erase your erase, same as AU
kill your kill, erase input this line
\ quotes AU, your erase and kill
ESC ends insertion, back to command
A? interrupt, terminates insert
AD backtab over autoindent
tAD kill autoindent, save for next
OAD ... but at margin next also
AV quote non-printing character

Insert and replace

Operators

a
i
A
I
o
o
rx
RtextESC

append after cursor
insert before cursor
append at end of line
insert before first non-blank
open line below
open above
replace single char with x
replace characters

VI(t)

Operators are followed by a cursor motion, and affect all text that would have been moved over. For
example, since w moves over a word, dw deletes the word that would be moved over. Double the

Release 2.0 4 SR-2011

VI(l) (CRAY x-MP.ad CRAY-l computer systems only) VI(l)

operator, for example, dd to affect whole lines.

d delete
c change
y yank lines to buffer
< left shift
> right shift

filter through command
= indent for liSP

Miscellaneous Operations
C change rest of line (c$)
D delete rest of line (d$)
s substitute chars (cI)
S substitute lines (cc)
J join lines
x delete characters (dl)
X ... before cursor (db)
Y yank lines (yy)

Yank and Put
Put inserts the text most recently deleted or yanked. However, if a buffer is named, the text in that
buffer is put instead.

p put back text after cursor
P put before cursor
"xp put from buffer x
"xy yank to buffer x
"xd delete into buffer x

Undo, Redo, Retrieve
u undo last change
U restore current line

repeat last change
"d p rettieve d'tb last delete

CAUTIONS AND BUGS

Software tabs using CONTROL-T work only immediately after the autoindent.

Left and right shifts on intelligent terminals do not make use of insert and delete character operations in
the terminal.

There should be an interactive help facility and a tutorial suited for beginners.

SEE ALSO

ex (I)

SR-2011 5 Release 2.0

WAIT(1) WAIT(l)

NAME

wait - Awaits completion of process

SYNOPSIS

wait

DESCRIPTION

The wait command waits until all processes started with & have completed and reports abnonnal termi­
nations.

Because the wait (2) system call must be executed in the parent process, the shell itself executes wait
without creating a new process.

Note that not all the processes of a 3-stage or more pipeline are children of the shell, and thus wait can­
not wait for these processes to start and complete.

SEE ALSO

sh(l)
wait(2) in the UNICOS System Calls Reference Manual, publication SR-2012

SR-2011 1 Release 2.0

WC(l) WC(l)

NAME

wc - Counts words, lines, and characters in a file

SYNOPSIS

we [-lwc] [names]

DESCRIPTION

SR-2011

The we command counts lines, words, and characters in the named files or in the standard input if no
names appear. It also keeps a total count for all named files. A word is a maximal string of characters
delimited by spaces, tabs, or new-line characters.

The options I, w, and e may be used in any combination to specify that a suhset of lines, words, and
characters are to be reported, respectively. All are printed by default.

When names are specified on the command line, they will be printed along with the counts.

1 Release 2.0

WDROP(l) (CRAY X-MP and CRAY-l computer systems only) WDROP(l)

NAME

wdrop - Writes recoverable drop file

SYNOPSIS

wdrop [-I] [-m] [pid]

DESCRIPTION

The wdrop command writes a recoverable image to either the system/drop device or the user's local
(current working) directory. The format of the file name is drop. XXXXXXX where XXXXXXX is the
process ID. The drop filename format is built in and cannot be changed at the user level.

If you specify the -I option, wdrop writes the drop file to the current working directory. If you specify
the -m option, the requesting process image will be written. If you do not specify a process id (piti),
wdrop writes the requesting process image. Subsequent writes of the same process to the same direc­
tory overwrites the previous process image in that directory.

The valid range of pid is from 0 to MAXPID. Super user privileges are required for a pid value of
l(INT).

If you do not specify any arguments with wdrop, it writes the current process image to the system/drop
directory.

SEE ALSO

rdrop(l)
wdrop(2), rdrop(2) in the UNICOS System Calls Reference Manual, publication SR-2012

SR-2011 1 Release 2.0

WHAT(l) WHAT(l)

NAME

what - Identifies secs files

SYNOPSIS

what [-s] files

DESCRIPTION

What searches the given files for all occurrences of the pattern that get(l) substitutes for %Z% (this is
@(I) and prints out what follows until the first ", >, new-line, \ or null character. For example, if the
C program in file f.c contains

char identD = "@(I)identification infonnation";

and f.c is compiled to yield r.o and a.out, then the command

what f.c f.o a.out

will print

f.c: identification infonnation

f.o: identificationinfonnation

a.out: identification infonnation

What is intended to be used in conjunction with the command get(I), which automatically inserts iden­
tifying information, but it can also be used where the information is inserted manually. Only one
option exists:

-5 Quit after finding the first OCCWTence of pattern in each file.

MESSAGES

BUGS

Exit status is 0 if any matches are found, otherwise 1. Use help(l) for explanations.

It is possible that an unintended occurrence of the pattern @(') could be found just by chance, but this
causes no harm in nearly all cases.

SEE ALSO

get(l), help(l)
the UNICOS Source Code Control System (SCeS) User's Guide, publication SG-2017

SR-2011 I Release 2.0

WHEREIS(l) (CRAY X-MP and CRAY-l computer systems only) WHEREIS(l)

NAME

whereis - Locates source, binary, and or manual for program

SYNOPSIS

whereis [-sbm] [-u] [-SBM dir ... --f] name ...

DESCRIPTION

The whereis command locates source/binary and manuals sections for specified files. The supplied
names are first stripped of leading pathname components and any (single) trailing extension of the form
".ext", for example ".c". Prefixes of "s." resulting from use of source code control are also dealt
with. The whereis command then attempts to locate the desired program in a list of standard places. If
you specify -b, -s or -m then whereis searches only for binaries, sources, or manual sections respec­
tively (or any two thereot). You can use the -u option to search for unusual entries. A file is said to
be unusual if it does not have one entry of each requested type. Thus' 'whereis -m -u *" asks for those
files in the current directory that have no documentation.

Finally, you can use the -B -M and -S options to change or otherwise limit the places where whereis
searches. The -f option tenninates the last such directory list and signal the start of file names.

EXAMPLE

FaES

BUGS

SR-2011

The following commands find all the files in lusr/bin that are not documented in lusr/manlmanll with
source in lusrlsrc/cmd:

cd /usr/bin
whereis -u -M /usr/man/manll -S /usr/src/cmd -f *

/usr/srcl*
/usr/man/*
/lib, fete, /usr/(lib,bin,ucb,lbin}

Since the program uses chdir(2) to run faster, path names given with the -M, -S, and -B must be full;
that is, they must begin with a "I".

I Release 2.0

WHO(l) WHO(l)

NAME

who - Reports who is on the system

SYNOPSIS

who [-uTlpdbrtasqH] [file]

who am i

DESCRIPTION

SR-2011

The who command can list the user name, terminal line, login time, elapsed time since activity occurred
on the line, and the process-ID of the command interpreter (shell) for each current UNICOS user. It
examines the file /etc/utmp to obtain its information. If file is given, that file is examined instead.
Usually, file will be Jetc/wtmp, which contains a history of all the logins since the file was last created.

The who command with the am i option identifies the invoking user.

Except for the default -s option, the general format for output entries is:

name [state] line time activity pid [comment] [exit]

The name is the user's login name. The state describes whether someone else can write to that termi­
nal. A + appears if the terminal is writable by anyone; a - appears if it is not. Root can write to all
lines having a + or a - in the state field If a bad line is encountered, a ? is printed The line is the
name of the line as found in the directory Jdev. The time is the time that the user logged in. The
activity is the number of hours and minutes since activity last occurred on that particular line. A dot
(.) indicates that the terminal has seen activity in the last minute and is therefore "current". If more
than twenty-four hours have elapsed or the line has not been used since boot time, the entry is marked
old. This field is useful when trying to determine whether a person is working at the terminal or not.
The pid is the process-ID of the user's shell. The comment is the comment field associated with this
line as found in letc/inittab (see inittab(4F». This can contain commentary information.

With options, who can list logins, logoffs, reboots, and changes to the system clock, as well as other
processes spawned by the init process. These options are:

-u Lists information about those users who are currently logged on the system.

- T Causes the state of the terminal line to be printed

-I Lists only those lines on which the system is waiting for someone to login. The name field is
LOGIN in such cases. Other fields are the same as for user entries except that the state field
doesn't exist.

-p Lists any other process which is currently active and has been previously spawned by init. The
name field is the name of the program executed by init as found in /etclinittab. The state, line,
and activity fields have no meaning. The comment field shows the id field of the line from
/etc/inittab that spawned this process. See inittab(4F).

-d Displays all processes that have expired and not been respawned by init. The exit field appears
for dead processes and contains the termination and exit values (as returned by wait(2), of the
dead process. This can be useful in determining why a process terminated.

-b Indicates the time and date of the last reboot.

-r Indicates the current run-level of the init process. Following the run-level and date information
are three fields which indicate the current state, the number of times that state was previously
entered, and the previous state.

-t Indicates the last change to the system clock (via the date(1) command) by root. See su(1).

1 Release 2.0

WHO(1) WHO(l)

FILES

-a Processes letc/utmp or the named file with all options turned on.

-s Is the default and lists only the name, line and time fields.

~ Prints the login names of the current users and gives the total number of users. This option is
available on CRAY-2 systems only.

-H Prints a header. This option is available on CRAY-2 only.

/etc/utmp
/etc/wttnp
/etc/inittab

SEE ALSO

date(l), 10gin(I), mesg(l), su(I), init(lM)
wait(2) in the UNICOS System Calls Reference Manual, publication SR-2012
inittab(4F), uttnp(4F) in the UNICOS File Formats and Special Files Reference Manual, publication
SR-2014

Release 2.0 2 SR-2011

WRITE(l) WRITE(l)

NAME

write - Lets you write to another user

SYNOPSIS

write user [line]

DESCRIPTION

FILES

The write command copies lines from your terminal to that of another user. When first called, it sends
the message:

Message from YOUTname (tty##) [date] ...

to the other person. When it has successfully completed the connection, it also sends two bells to your
own terminal to indicate that what you are typing is being sent.

The recipient of the message should write back at this point Communication continues until an end of
file is read from the teoninal or an interrupt is sent. At that point write writes EOT on the other termi­
nal and exits.

If you want to write to a user who is logged in more than once, the line argument may be used to indi­
cate which line or terminal to send to (such as, ttyOO); otherwise, the first writable instance of the user
found in Jetc/utmp is assumed and the following message posted:

user is logged on more than one place.
You are connected to "terminal".
Other locations are:
terminal

Permission to write to another user's terminal may be denied or granted by use of the mesg(l) com­
mand. Writing to others is normally allowed by default Certain commands, in particular pr(l) inhibits
messages in order to prevent interference with their output However, if the user has super-user peonis­
sions, messages can be forced onto a write-inhibited terminal.

If the chaIacter ! is found at the beginning of a line, write calls the shell to execute the rest of the line
as a command.

The following protocol is suggested for using write: when you first write to another user, wait for them
to write back before starting to send a line. Each person should end a message with a distinctive signal
(that is, (0) for "over") so that the other person knows when to reply. The signal (00) (for "over and
out' ') is suggested when conversation is to be terminated.

letc/utmp
/bin/sh

To fmd user
To execute !

MESSAGES

User not logged in
The person you are trying to write to is not logged in.

SEE ALSO

mail(1), mesg(l), pr(1), sh(l), who(l)

SR-2011 1 Release 2.0

XARGS(l) XAItGS(l)

NAME

xargs - Constructs argument lists and executes a command

SYNOPSIS

xargs [flags] [command [initial-arguments]]

DESCRIPTION

SR-2011

The xargs command combines the fixed initial-arguments with arguments read from standard input to

execute command one or more times. The number of arguments read for each command invocation
and the manner in which they are combined are determined by the flags specified.

Command, which may be a shell file, is searched for using the user's SPATH. IT command is omitted,
Ibin/echo is used.

Arguments read in from standard input are defined to be contiguous strings of characters delimited by
one or more blanks, tabs, or new-lines; empty lines are always discarded. Blanks and tabs may be
embedded as part of an argument if escaped or quoted: Characters enclosed in quotes (single or double)
are taken literally, and the delimiting quotes are removed. Outside of quoted strings a backslash (\) will
escape the next character.

Each argument list is constructed starting with the initial-arguments, followed by some number of argu­
ments read from standard input (exception: see -i flag). Flags -i, -I, and -n determine how arguments
are selected for each command invocation. When none of these flags are coded, the initial-arguments
are followed by arguments read continuously from standard input until an internal buffer is full, and
then command is executed with the accumulated arguments. This process is repeated until there are no
more arguments. When there are flag conflicts (such as -I with -n), the last flag has precedence. Flag
values are:

-In umber Command is executed for each non-empty number lines of arguments from standard input
The last invocation of command will be with fewer lines of arguments if fewer than
number remain. A line is considered to end with the first new-line unless the last character
of the line is a blank or a tab; a trailing blank/tab signals continuation through the next
non-empty line. IT number is omitted 1 is assumed. Option -x is forced when the -I
option is used.

-ireplstr Insert mode: The command is executed for each line from standard input, tak­
ing the entire line as a single argument, inserting it in initial-arguments for
each occurrence of replstr. A maximum of 5 arguments in initial-arguments
may each contain one or more instances of replstr. Blanks and tabs at the
beginning of each line are ignored. Constructed arguments may not be larger
than 255 characters. Option -x is forced when this option is used. () is
assumed for replstr if not specified.

-nnumber Execute command using as many standard input arguments as possible, up to
number arguments maximwn. Fewer arguments will be used if their total size
is greater than size characters, and for the last invocation if there are fewer than
number arguments remaining. IT option -x is also coded, each number argu­
ments must fit in the size limitation, otherwise xargs terminates execution.

-t Trace mode: The command and each constructed argument list are echoed to
standard error just prior to their execution.

-p Prompt mode: The user is asked whether to execute command each invocation.
Trace mode (-t) is turned on to print the command instance to be executed, fol­
lowed by a ? •• prompt. A reply of y (optionally followed by anything) will

I Release 2.0

XARGS(l)

-x

-ssize

-eeofstr

XARGS(l)

execute the command; anything else, including just a carriage return, skips that
particular invocation of command.

Causes xargs to terminate if any argument list would be greater than size char­
acters; -x is forced by the options -i and -I. When neither of the options -i,
-I, or -n are coded, the total length of all arguments must be within the size
limit.

The maximum total size of each argument list is set to size characters; size
must be a positive integer less than or equal to 470. IT -6 is not coded, 470 is
taken as the default. Note that the character count for size includes one extra
character for each argument and the count of characters in the command name.

Eofstr is taken as the logical end-of-file string. Underscore (_) is assumed for
the logical EOF string if -e is not coded. The value -e with no eofstr specified
turns off the logical EOF string capability (underscore is taken literaIly). Xargs
reads standard input until either end-of-file or the logical EOF suing is encoun­
tered.

Xargs will terminate if it receives a return code of -1 from command or if it cannot execute command.
When command is a shell program, it should explicitly exit (see sh(l» with an appropriate value to
avoid accidentally returning with -1.

EXAMPLES

The following will move all files from directory $1 to directory $2, and echo each mv(l) command just
before doing it:

Is $1 I xargs -i -t mv $I1I) $2/{}

The following will combine the output of the parenthesized commands onto one line, which is then
echoed to the end of file log:

(Iogname; date; echo $0 $*) I xargs »Iog

The user is asked which files in the current directory are to be archived and archives them into arch (1.)
one at a time, or (2.) many at a time.

I. Is I xargs -p -l ar r arch
2. Is I xargs -p -I I xargs ar r arch

The following will execute diff(l) with successive pairs of arguments originally typed as shell argu­
ments:

echo $* I xargs -n2 diff

SEE ALSO

find(l), sh(l)

Release 2.0 2 SR-2011

YACC(1) YACC(l)

NAME

yacc - Yet another compiler-compiler

SYNOPSIS

yaee [-vdlt] grammar

DESCRIPTION

FILES

The yacc command converts a context-free grammar into a set of tables for a simple automaton which
executes an LR(1) parsing algorithm. The grammar may be ambiguous; specified precedence rules are
used to break ambiguities. It produces the y.tab.e file as output.

The output file, y.tab.e, must be compiled by the C compiler to produce a program yyparse. This pro­
gram must be loaded with the lexical analyzer program, yylex, as well as main and yyerror, an error
handling routine. These routines must be supplied by the user; lex(1) is useful for creating lexical
analyzers usable by yacc.

Run-time debugging code is always generated in y.tab.e under conditional compilation control. By
default. this code is not included when y.tab.e is compiled.

Valid options for yacc are as follows:

-v The y.output file is prepared, which contains a description of the parsing tables and a report on
conflicts generated by ambiguities in the grammar.

~ The y.tab.h file is generated with the #define statements that associate the yacc-assigned "token
codes" with the user-declared "token names". This allows source files other than y.tab.e to
access the token codes.

-I The code produced in y.tab.e does not contain any #Iine constructs. This should only be used
after the grammar and the associated actions are fully debugged.

-t Changes the default to include run-time debugging code when y.tab.e is compiled

Whether or not the -t option was used, the run-time debugging code is under the control of YVDEBUG,
a preprocessor symbol. If YVDEBUG has a nonzero value, the debugging code is included. If its value
is 0, the code is not included. The size and execution time of a program produced without the run-time
debugging code is smaller and slightly faster.

y.output
y.tab.c
y.tab.h
yacc.trnp,
yacc.debug, yacc.acts
/usr/lib/yaccpar

Defines for token names

Temporary files
Parser prototype for C programs

MESSAGE

SR-2011

The number of reduce-reduce and shift-reduce conflicts is reported on the standard error output; a more
detailed report is found in the y.output file. Similarly, if some rules are not reachable from the start
symbol, this is also reported.

1 Release 2.0

YACC(l) YACC(l)

LIMITATIONS

Because file names are fixed, at most one yacc process can be active in a given directory at a time.

SEE ALSO

lex(l)

Release 2.0 2 SR-2011

READER COMMENT FORM

UNICOS User Commands Reference Manual SR-201l

Your comments help us to improve the quality and usefulness of our publications. Please use the space provided
below to share with us your comments. When possible, please give specific page and paragraph references.

NAME _________________________________ __

JOB TITLE _________________ _

FIRM _______________________ _

ADDRESS _______________________ ___
RESEARCH, INC.

CITY __________ STATE ____ ZIP ___ _

DATE ____________________________________ __

FOLD

.--~

111111

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO 6184 ST PAUl. MN

POSTAGE Will 8E PAID BY ADDRESSEE

RESEARCH. INC.

Attention: PUBLICATIONS
1345 Northland Drive
Mendota Heights, MN 55120

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

--~
FOLD

n
c
l>
r o
Z
G>
.....
:I:
c;;
r
Z
m

READER COMMENT FORM

UNICOS User Commands Reference Manual SR-20ll

Your comments help us to improve the quality and usefulness of our publications. Please use the space provided
below to share with us your comments. When possible, please give specific page and paragraph references.

NAME ____________________________________ __

JOB TITLE _______________ _

FIRM ______________________________ _

ADDRESS __________________ __
RESEARCH. INC.

CITY _________ STATE ____ ZIP ___ _

DATE ________________________ _

FOLD

.--~

111111

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO 6184 ST PAUL, MN

POSTAGE WILL BE PAlO BY AOORESSEE

RESEARCH. INC.

Attention: PUBLICATIONS
1345 Northland Drive
Mendota Heights, MN 55120

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

--~
FOLD

(")
C
-I
}>
r o
Z
G)

-I
:x::
Cii
r
Z
m

