o
AN
MacFORTH

A High Performance
Interactive Programming
Environment for the

Apple Macintosh, Computer

Level One

CREATIVE SOLUTIONS

Problem Solving for Business and Computer Applications

Aot S N

MacFORTH™

User and
Reference Manual

Copyright 1984
Creative Solutions, Inc.

All Rights Reserved

Both this physical document and the right to use it is owned
exclusively by Creative Solutions, inc. Use of this document by
others is licensed by Creative Solutions under the terms of the
MacFORTH Software License Agreement. This document may not be
reproduced in any form either in part or in whole without the
express written consent of Creative Solutions, Inc.

Acknowledgments:

Portions of this document are derived and sometimes directiy copied from the
documentation provided to the authors by Apple Computer, Inc. This has been
done to ensure technical accuracy, and is used with their permission.

This document was entirely prepared and produced on a Macintosh™ under
MacWrite™. All output was produced on an Imagewriter™ printer.

MacFORTH was designed by Don, Dave, and Steve; implemented by Don and
Dave; and documented by Dave, Don, Richard, Chris,and Tara.

Yersion 1.0 April 1984

VYersion 1.1 June 1984
VYersion 1.2 October 1984

MacFORTH is a trademark of Creative Solutions, Inc.

Macintosh, MacWrite, and Imagewriter are trademarks of Apple Computer, Inc.

Introduction Pagei- 2 August 27, 1984

Creativity is more than just being different...
Anybody can play weird —— that’s easy.

What's hard is to be as simple as Bach.
Making the simple complicated is commonplace...
Making the complicated simple

—— awesomely simple;

That’s creativity.

-- Charles Mingus, jazz musician (1922-1979)

The MacFORTH project is dedicated to Alexander Ramsay,
and proudly bears the Ramsay tartan on its cover. In his
9g0th year, he is a continuing source of inspiration for the
road ahead.

Introduction Pagei- 3 August 27, 1984

Introduction Pagei- 4 August 27, 1984

Chapter 1
Table of Contents

Dedication Chapter 2
Table Of Contents
introduction Chapter 3

Users Guide:

Chapter 4
Chapter 1: Installation
Chapter 2: Going FORTH Chapter 5
Chapter 3: Program Editing
Chapter 4 Getting Started Chapter 6
Chapter 5: Getting Results
Chapter 6: Graphic Results Chapter 7
Reference Guide: Chapter 8
Chapter 7: Menus
Chapter 8: Windows/Events Chapter 9
Chapter 9: File System
Chapter 10: Printing/Serial Interface Chapter 10
Chapter 11: Advanced Topics
Chapter 11
Chapter 12: Error Handling
Chapter 13: Glossary Chapter 12
Index
Appendix: ASCII Chart Chapter 13
Introduction Pagei- S5 August 27, 1984 Index

Introduction

To

MacFORTH™

WELCOME! we are about to make what you do with a computer more fun.
we'll do it by meking you more productive with results that are easier to
attain. The Apple Macintosh™ (or more fondly "Mac’} represents a revolution in
the way that people interface to computers. Few computer users who have
experienced the Mac's graphics, windows, menus, or mouse will choose to go
back to the same old alpha screen and keyboard interface.

In order to provide a consistent user interface across all applications, Apple
has included a large amount of softwaere features in read-only memory (ROM)
built into every Macintosh. MacFORTH has been specifically tailored to put
these functions at your disposal.

Regardless of your prior programming experience, you will find writing
programs for the Macintosh to be & new and exciting experience. The
objective of this manual and the MacFORTH product is to equip you with the
necessary tools to write programs which fits comfortably within the
Macintosh environment.

Learning how to effectively use the Macintosh is in many ways similar to
learning FORTH. Each is based on extensions to a small set of simple
concepts. Each requires you to re-orient your approach to computer related
applications, and both provide better results with less effort.

In order to learn how to use the Macintosh, you will first learn how to write

programs in MacFORTH, and then how to use such programs to interface to the
Macintosh.

Introduction Pagei- 6 August 30, 1984

We have included a Computer Aided Instruction Course called “Going FORTH",
The course is designed to start novice FORTH users and programmers solving
problems with MacFORTH. Even if you are an old hand at FORTH, go through the
course to review some of the basics of MacFORTH and the Macintosh.

Creative Solutions has been producing 68000 based FORTH systems since
1979. The MacFORTH product is a derivative of our Multi-FORTH™ product
line, specifically tuned to take maximum advantage of the Macintosh features
and facilities.

€SI 68000 FORTH Products have been used to solve problems across a wide
spectrum of applications:

Airborne Radar Systems

AT&T Circuit Analyzers

General Accounting Systems

Video Games

Nuclear Power Plant Pipe Testers

Spread Sheet Programs

Data Base Managers

Hospital Operating Room Patient Monitoring
and some of the world's largest ROBOTS

Introduction Pagei- 7 August 30, 1984

The MacFORTH product line is divided into three areas:
Level |

For the hobbyist or those just getting started with the Macintosh. The
Level 1 product has been designed to put the tremendous power of the
Macintosh at your fingertips, without your having to know a lot about
programming or computers. This and all levels of the MacFORTH
product line provide stand-alone programming capabilities with the
Mac, with trace, debug and toolbox access. The serial interface and
sound synthesizer are also supported.

Level {1

For the Professional who will be using MacFORTH in her/his work. The
Level 2 product includes many enhancements such as more advanced
graphics commands, a full 68000 in-line assembler, floating point,
and more documentation ellowing further access to the toolbox. It is
specifically designed to meet the needs of the professional user.

Level Il

For software developers thinking of either converting existing
programs to run on the Mac or developing new programs. Level 3
allows you to do all of your program development on the Mac, and then
generate run-time only versions of your product (contact CS! for
details on royalties and other arrangements). This version includes
support from CSi, additional documentation and 250 “right to execute”
licenses.

Introduction Pagei- 8 August 27, 1984

The Macintosh: An Appliance Computer

The Macintosh is intended to be the first mass-market personal computer. It
is designed to appeal to an sudience of non-programmers, including people
who have traditionally feared and distrusted computers. To achieve this goal,
the Macintosh must be friendly; it must dispel any notion that computers ere
difficult to use. Two key ingredients combine in making a system easy to use:

familiarity and consistency.

Familiarity means the user easily understands and is comfortable with what
is expected of her or him at all times. Most Macintosh applications are
oriented towards common tasks: writing, graphics and paste-up work, ledger
sheet arithmetic, chert and graph preparation, and sorting end filing. The
actual environment for performing these tasks aelready exists in people’s
offices and homes; we mimic that environment to an extent which makes
users comfortable with the system. Extensive use of graphics plays an
important part in the creation of a familiar and intuitive environment.

Consistency means a uniform way of approaching tasks across applications.
For example, when users learn how to insert text into a document, or how to
select a column of figures in one application, they should be able to take that
knowledge with them into other applications and build upon it. Uniformity and
consistency in the user interface reduces frustration and makes a user more
at ease with the task at hand.

Years of software deveiopment, testing, and research have gone into the
definition of the Macintosh user interface. On many other computers, since
little or no user interface aids are built in, each applications programmer
invents a new and original interface for each program. This leads to many
different (and usually conflicting) interfaces.

Apple has attempted to avoid this situation on Macintosh by building tools for
a versatile, well-tested user interface and placing them in ROM to be used by
all application programs. There's no strict requirement that an applications
program must use any or all of the supplied interface tools; but programmers
who create their own interface do so at the expense of their own development
time, useable data space, and the overall consistency of the application.

MacFORTH is able to directly access the built-in toolbox functions. Since the
toolbox has been designed for general applicability, often the amount of
set-up required to perform even a simple function (like adding a window or
menu item) is extensive. We have factored out the most common functions
(menu, window, mouse, and file operations) and provided you with cleer and
simple FORTH operators which make them easy to use.

Introduction Pagei- 9 August 27, 1984

MacFORTH:
A High Performance, Interactive Programming Environment

FORTH is a language, but it is also a tailorable operating system and a set of
tools for developing and debugging your programs interactively. Since FORTH
is all of these things at once, it has been accurately described as a
“programming environment”.

we feel that FORTH matches the process of human thought more closely than
any other programming method. Defining your own commands as you go along,
and using these commands in defining further commands, you actuslly create
your own personalized programming environment that is natural to the way
you think.

FORTH gives you as much or as little control over the computer as you want,
at any level -- from the most powerful applicetion commands down to the
machine code instructions. Figure i-1 illustrates the various levels at which
comparable programming languages operate.

Philosophically, FORTH takes a substantially different approach to developing
computer applications from other languages and opereting systems. Most
other programming systems were designed to teach students how to solve
simple, self-contained problems on large timesharing or batch mainframe
computers. FORTH was developed specifically by and for the use of scientific
and engineering professionals in the solution of difficult real time data
acquisition and process automation problems. Since its inception over ten
years ago, FORTH has been hammered into its current form on the hard anvil of
actual applications experience. What has emerged is & system which
encourages competence and technical responsibility by the user and delivers
unbridied performance.

MacFORTH is & very powerful 32-bit implementation of FORTH which includes
the traditional features of FORTH as well as many ney innovations.

MacFORTH puts the power of the computer in your hands. If you choose to
execute an endiess loop or overwrite your program with data, MacFORTH will
not stand in your way. Consider the analogy of a power saw. The saw
substantially reduces the time required to cut a piece of wood to a desired
size. It does not protect you however, from cutting in half the sawhorse on
which the board rests. Avoiding such an obvious error is your responsibility.
Consider the cost of a saw which was able to detect sawhorses and turned
itself off whenever it encountered one. This is similar to the tremendous
overhead involved in many “traditional” computer langueges.

Introduction Pagei- 10 August 27, 1964

¥hile using MacFORTH, you will occasionally ceuse an error which will
require a restart of the system (for example the "bomb" alert box). This is
the natural result of the learning process. As you become more proficient,
this will occur less frequently.

d Assembly
§ Language

Sgstem
Languages
{(ie:C,PL/M) |

Gerl Programming
Languages
{ ie: BASIC, PASCAL)

Application Specific
Languages
(ie: APT, PERT)

FORTH

[FORTH

Assembly FORTH'S High Level Language
Language ,

Low High

Language Level

Figure i-1

introduction Pagei- 11 August 27, 1984

Iterative Orgenization

The oldest progremming approach was simply to write code until you finished.
Later the fashion was to organize a program into "modules”, then to code each
of the modules. This approach was named "top down design®, and the older
approach was dubbed "bottom up”.

FORTH uses a still newer approach. Modularization is part of the method, but
the “modules™ (or skeletal versions of the modules) are actually coded and
tested at the same time they are designed. You can code a "sketch™ of the
applications, and test to see if your general solution to the problem is
correct. If not, you simply rewrite the simple outline, and continue testing
until you're satisfied. Then you can "flesh out™ the outline with more detail.

This process is called “iterative development.” On each iteration you solve
the problem at a deeper level and gether information necessary to avoid
problems at the next lower level. If you reach a point where insufficient
information is available, it is easy to interactively explore elternative
approaches, selecting the best solution at that level.

We have utilized a similar approach in this manual. The manual is divided
into two main sections: the User's Guide and the Reference Guide. The
beginning chapters of the User's Guide show you to how to interact with
MacFORTH: creating, editing and saving. Later chapters of the User's Guide
valk you through successively more comprehensive examples, building on
previously developed skills and introducing the MacFORTH interface to each of
the major Macintosh features and facilities.

The reference guide provides in-depth discussion of the MacFORTH interface
to each of the following Macintosh features: Menus, Windows/Events, the File
System, and the Printing/Serial Interface. We also discuss some advanced
topics, the error handling used by MacFORTH, and provide a glossary of all
words in the system (words which are provided in source form -- like the
editor —- are not included in the glossary).

Introduction Page i~ 12 August 27, 1984

we hope our approach makes learning MacFORTH easy. We know you'll be happy
with the results.

We actively solicit any comments in reference to the form, content, or
accuracy of this manual. Your responses will allow this documentation to
evolve to better meet the needs of our customers. Please send your comments
to:

MacFORTH Product Menager
Creative Solutions, Inc.

4701 Randolph Road, Suite 12
Rockville, MD 20852
301-984-0262

Introduction Pagei- 13 August 27, 1984

introduction Pagei- 14 August 27, 1984

Chapter1: Installation

Overview

This chapter will show you how to install MacFORTH™ on your computer. It
will also discuss the files found on your MacFORTH system disk.

License Agreement

Before opening the package which contains the MacFORTH System Disc,
carefully read the License Agreement on the cover of the package. Briefly, it
states . .. '

MacFORTH, including this manual and supplied diskette and contents of
both, is owned exclusively by Creative Solutions, inc. A copyright is
registered with the United States Copyright Office, for both the manual
and the accompanying object code. After paying the license fee,
agreeing to the terms of the license agreement, and returning the
attached registration card, you are licensed to use MacFORTH on a
single computer system.

You may not provide copies of CS| supplied materials to anyone else for
any reason. If you transfer your right to use MacFORTH to anyone else,
you are then no longer licensed to use it yourself.

We're quite serious about this. The MacFORTH product is the result of an
enormous amount of work. We have foregone any hardware copy protection
scheme for your convenience ; we simply encode a serial number on each disk.
This allows you to always have a backup in the event of a media or hardware
failure and allows us to trace the source of illegal copies. We feel that we
have produced an outstanding product for the price, and that our customers
will respect our efforts and the law by adhering to these terms.

if the cover to the manual that you are reading does not include the
distinctive MacFORTH red, white and black logo, you are utilizing a copy which
was produced in violation of US copyright laws. Contact your attorney for
instructions on how to return this illegally produced material to Creative
Solutions.

Installation ' Page 1 - August 27, 1984

Be sure you make a backup of your MacFORTH system disk
before you use the systemi

Making a Backup

Be sure to write protect your original MacFORTH disk before you make a
backup. This is described in your Macintosh System documentation (on page 89
- "Locked Disks"). Place the MacFORTH disc in your drive and follow the
instructions in your Macintosh System documentation (on page 81 - "Copying
an Entire Disk™). When you have made a backup, store the original disk in a
safe place and use your backup disk. This will protect you in the event of a
disc related error.

Loading MacFORTH

Before you just start experimenting with the system, you should proceed
through this manual, trying each example. Feel free to try other examples of
your own as the topics are being presented. The Macintosh is like no other
computer. There are many unique features you need to know about to make the
best use of this new computer. You can avoid most common mistakes and
misunderstanding by just working your way through the entire manual the
first time you use the system.

When you are ready to 1oad MacFORTH, place the MacFORTH system disk in the
drive and reset your computer (either press the programmer's reset button, or
turn the computer off, then back on).

Loading the MacFORTH System
To load the MacFORTH system (which loads MacFORTH and the editor), double

click on either the "MacFORTH" icon or the "FORTH Blocks™ icon. "FORTH
Blocks™ is a MacFORTH decument and will load the MacFORTH sytem first, then
load the source code contained in the "FORTH Blocks™ file itself. When you
double click "MacFORTH" it automatically 1oads the "FORTH Blocks" file.

The MacFORTH window will appear and you will see the soon-to-be-familiar
"ok™. The arrow cursor will turn into a wristwatch, indicating you should
wait while the system is extended to include the editor (you will notice that
whenever source code is loaded from disk, the cursor will turn into a
wristwatch temporarily). Finally, you will be asked to enter your initials
(this is for the editor and is explained in more detail in the "Program Editing"
chapter). Enter your first, middle, and last initials.

Instatiation Page | - 2 August 27, 1984

Loading Only MacFORTH
If you want to load the MacFORTH system itself, without the editor or any -

other “extras”, edit block 1 of the "FORTH Blocks" file and delete (or comment
out) any commands which load other code {(editing a block will be explained in
detail in the Program Editing chapter).

etti acF0 as the " " File
Finder 1.1 (the current level of the Macintosh operating system) allows you to
select a file to be automatically loaded when the computer is reset (or turned
on). To select MacFORTH as the auto-load file, from the Finder, select the
"MacFORTH" icon (it will become inverted), and then select the “Set Startup”
item from the "Special” menu. To verify that MacFORTH will be automatically
oaded, turn your computer off then on and watch MacFORTH load.

Loading_the MacFORTH Demos

The demos provide a few graphic and music examples for your amusement as
well as examples of MacFORTH source code. To load the demos from the
Finder, double click on the "Demo Blocks™ file. To load the demos from
MacFORTH, execute the phrase

INCLUDE" Demo Blocks"

By the time you have completed the Users Guide section of this manual, you
will have an understanding of how to write programs similar to the demos.

To select the demo you like, activate its window (by clicking the mouse down
inside its window) or pull down the music menu. You can see the source code
for the demos by simply editing or printing the “Demo Blocks® file (as
described in the Program Editing chapter).

We provide the source code to the demos for you to use as examples. Feel free

to modify the code for the purpose of experimentation. We discuss how to do
this in the Editing chapter.

installation Page 1 -3 August 27, 1984

The demos provided are:

1.) Approach
Spins in the MacFORTH logo. Shows the rotation and scaling features
of the MacFORTH graphics package.

2) Clock
Displays the current time (as read from the internal clock) in the
format of an analog clock. Shows real time update of the window.
You can change the size of the clock by resizing its window.

3.) Dark Beams
Displays a series of lines which can create some facinating results.
Try resizing the window.

4.) Bouncer
Displays & bouncing ball in the window. Resize the window for
different bouncing patterns.

S.) Spirels
Displays some geometric doodling. Shows the speed and power of the
MacFORTH graphics package. The code for this demo fits easily in one
block of source code.

6.) Sound
Plays Bach's Two Part invention *#8.

installation Page 1 -4 August 27, 1984

Contents of the MacFORTH System Disk
In case you're wondering what each of the files on the disc are:

1.) "MacFORTH"
Contains the MacFORTH system itself. When opened from the Finder
(by double-clicking or the Open item of the File menu) MacFORTH is
loaded. It then loads the "FORTH Blocks™ file.

2.) "FORTH Blocks"
MacFORTH blocks file which contains the source code for some useful
utilities. It is loaded to extend the MacFORTH system. Modify block
one of this file if you went to load your application automaticelly
yrhen MacFORTH is loaded.

3.) "Going FORTH"
MacFORTH blocks file which contains the source code for the Going
FORTH tutorial. Double-click on this file to ioad the computer-aided
instruction course.

4) “GF Data™
Contains the text used in the Going FORTH tutorial.

5.) "Demo Blocks"
MacFORTH blocks file which contains the source code for the demos.
Double click on this icon to load just the demos.

6.) "MacFORTH Foider™
A Mac folder used to hold files used by MacFORTH. The Finder and
system are contained in this folder to avoid cluttering up the screen.

7.) "More Examples”
A MacFORTH blocks file containing examples in source form.

You may want to delete the "Going FORTH", "GF Data", and "Demo Blocks™ files
on your backup disc for more space.

Installation Page 1 -5 August 27, 1984

MacFORTH Customer Support Hotline: (301) 984-3530

e have established the "MacFORTH Hotline” to assist you with questions
and/or problems you have concerning the MacFORTH product. Help is available
between the hours of 1 pm. and 5 p.m. Eastern Standard Time, Monday thru
Friday at (301) 984-3530 on a first-come-first-served basis.

The following guidelines have been established for the MacFORTH Hotline:

1.) Only_MacFORTH customers who have signed and returned their
registration cards may use the MacFORTH hotline. If you haven't

signed and returned your card (the one attached to the disk envelope)
yet, do it now.

2.) Know your serial number (its on the original MacFORTH disk you
received). You need to tell the person answering the hotline your
name and disk number before you can ask your questions.

3.) Have your questions written down in front of you. We allow a
maximum of 5 minutes per call when others are waiting. This is
ample time to answer even a long list of questions if they are clear
and written down.

4) Please don't use the hotline for marketing questions. This is for
technical support only.

We are happy to support valid, registered users who have questions about
MacFORTH.

You can also direct any questions/comments/suggestions in writing to:
MacFORTH Product Manager
Creative Solutions, inc.
4701 Randolph Road, Suite 12
Rockville, MD 20852

Installation Page 1 -6 August 27, 1984

Chapter 2: Going FORTH

Topic Page
Overview 2
Preparation 2
Running the Course 2
Stopping and Restarting the Course 3

Going FORTH Page 2 - 1 August 30, 1984

Overview

This chapter provides the instructions for running the Going FORTH computer
aided instruction course which is supplied on the MacFORTH system disc.

The tutorial is designed for everyone. The novice FORTH programmer will
learn the basics of FORTH, more experienced FORTH programmers will get a
flavor for running MacFORTH on the Macintosh.

It is important that you run through the course, as many Macintosh specific
terms are introduced there. We will assume you have run the course
and use these terms throughout the manual.

Preparation

To run the course, power up your Macintosh with the MacFORTH system disc in
the drive. Open the "Going FORTH" document (by double clicking in it). While
it is loading, you will get the message "Loading the Going FORTH Tutorial.” Be
sure you read this chapter before you begin the course (and remember to
re-size the window).

Once the course is loaded, you need to shrink the size of the MacFORTH
window by dragging its size box over to the left. Figure 2.1 shows what your
screen should 1ook like while running Going FORTH.

Running the Course

When you uncover the Going FORTH window, the course will start
automatically, displaying the first frame. On the right hand side of the
window you will notice the scroll bar. To move on to the next frame, click
the arrow in the lower right side of the window. To review previous
material, click the arrow in the upper right side of the window.

To move from chapter to chapter, click the mouse down in the shaded area
above or below the scroll box (the scroll box is the white box in the shaded
area of the scroll bar). You can also move the scroll box to any position
within the course by dragging the scroll box up or down.

If you press any keys while in the Going FORTH window, the Mac will beep at
you, reminding you that you caen only enter keystrokes in the MacFORTH
window while you are completing the tutorial.

Going FORTH Page 2 - 2 August 30, 1984

If you close the Going FORTH window, you can re-enter the course by selecting
the “Going FORTH" item from the "Tutorial” menu.

That's it That's all you need to know; the tutorial will give you any
additional instructions you need, now get going FORTH!

Going FORTH Tutorial

R %g%m«%««s% g
@1984 C§i

Going FORTH

&
Computer-Aided fnstruction
Course on MacFORTH

fiy

Creative Solutions, Inc
Capyright 1984

folick the arrow in the Tower right
corner to continug}

=i

Figure 2.1

Stopping and Restarting the Course

If you don’t compiete the course in one sitting, restarting where you left off
is easy. To leave the course, make a note of where you are in the course (the
chapter and page), and select the "Exit MacFORTH" item from the *Options”
menu. when you want to restart where you left off, run the course (as
described in "Running the Course” in this chapter) and move the thumb down
until you find where you left off.

Going FORTH Page 2 - 3 August 30, 1984

Going FORTH Page2-4 August 27, 1984

Chapter 3: Program Editing

Topic

Overview
Preparation
Selecting 8 File for Editing
Displaying File Assignments
Using a Different File to Edit
Selecting a Different to Edit
Entering the Editor
Exiting the Editor
Block Buffers
Using the Editor
Practice Editing Block
Editor Window
Experimenting with the Editor
Close Box
Scrolling
Edit Menu
insertion Point
Selection Range

CTSODNNNOAUDDAANUNNNN E
3]

Loading Blocks
Error Detection while Loading a Block 11
Listing Programs 12
Copying Blocks 13
Singie Block Copying 13
Multiple Block Copying 13
Copying Blocks from One File to
Another 13
Blank Filling Blocks 14
Cutting and Pasting to/from the Desk
Accessories 14
A Final Note 14

Program Editing Page 3 - 1 August 27, 1984

Overview

This chapter introduces you to one of the most used features of MacFORTH,
the editor. Using the editor, you can create and save your programs on disc.
This allows you to create and modify program source code without retyping it
each time you load the system. The MacFORTH editor uses an editing
technique similar to MacWrite, so if you are familiar with MacWrite, you will
be right at home using the MacFORTH editor.

The MacFORTH editor is used to edit program source files on the disc. We will
introduce some of the file system commands you will use normally with the
editor. For an in-depth discussion of the file system and its commands, refer
to the File System chapter.

Preparation

To start this session load the MacFORTH system by resetting your Macintosh
{(power off then on or press programmers reset button on the left side of your
machine) . With your MacFORTH disc in the drive, double click on either the
"MacFORTH" or the "FORTH Blocks™ file in the window that appears on your
screen {if you have set the MacFORTH file as the startup file, MacFORTH will
be loaded automatically). When this file loads, it also loads the editor from
the file “"Editor Blocks™ automatically. (Remember to enter your initials when
asked.)

we'll stress again the importance of the editor to your effectiveness with
MacFORTH and urge you to spend the time now to understand how it works.
Try each example in this chapter before continuing.

Be sure to restart your computer as instructed above so that the examples in
this chapter make sense.

Selecting a File for Editing

When you loaded MacFORTH from the Finder {if you don't know what the Finder
is, refer to your Macintosh manuals), MacFORTH assigned the file “FORTH
Blocks™ to file number O, opened it and selected it as the current "blocks file".
The MacFORTH editor allows you to edit the current "blocks file” only. (File
assignment, opening, selection and file numbers are discussed in more detail
in the File System chapter. For now, just execute the examples to practice
using the editor.)

Program Editing Page 3 -2 August 27, 1984

Displaeying File Assignments
You can see what files are assigned and opened by executing:
IFILES

You cen see that "FORTH Blocks™ is assigned to file number 0, that it is open
(by the capital "0%), and that it is the current "blocks file” {by the capital "B7).

Since the "FORTH Blocks” file is the file you are going to work with in this
chapter, you don’t need to do anything eise to continue. For future reference,
we will discuss how to select a different file for editing.

Using a Different File to Edit

if you want to use a different file for editing, execute the USE™ command in
the following format:
USE" <file nome>"

USE" aésigns the file specified by the name <file name> to the first available
file number, opens it, and selects it as the current blocks file for editing {if
it is a blocks file). For example, to specify the MacFORTH demos source file
for editing (contained in the file "Demo Blocks"), execute:

USE" Demo Blocks"

Selecting a Different File to Edit

Once a file has been opened {via the USE™ command, for example), you can
re-select it as the file to edit with the SELECT command. SELECT is used in
the following format:

<file number> SELECT

For now, you just want to edit the program source code contained in the file
assigned to file number O (the "FORTH Blocks" file), execute:
8 SELECT

SELECT acts on a file which has already been assigned a number. USE"

should be used when that file has not yet had a number assigned to it (ie. the
first time you use the file after entering MacFORTH).

Program Editing Page 3-3 August 27, 1984

Entering the Editor
There are three ways to enter the editor:

1) Execute the EDIT command in the following format:
<block®> EDIT

Try:
9 EDIT
Then exit the editor by clicking in the MacFORTH window.
2) Activate the editor window by clicking in it with the mouse.
3) Pull down the "Edit” menu and select the “"Enter Edit" item
{(or execute its equivalent keystroke, 36E).
Exiting the Editor

There are three ways to exit the editor:

1) Pull down the "Edit” menu and select "Exit Editor™ item (or
execute its equivalent keystroke, J6E) .

2) Click in another window with the mouse.

3) Close the editor window by clicking in its close box.

Block Buffers

When a block is edited, it is read from disk into memory. The area of memory
it is kept in during the editing process is called a "block buffer®. Each time a
change is made to the block, it is modified in the block buffer only. ‘When you
exit the editor, or select another block to edit, data in the block buffer is

then written to disk.

Program Editing Page 3 - 4 August 27, 1984

Using the Editor

The files you will edit are called "block files” because they are made up of a
sequence of "blocks™ (old-time FORTH progremmers may prefer the term
“screens”). A block is the fundemental unit of disc storage used by MacFORTH.
It is simply a fixed length record containing 1024 characters for programs.
The "FORTH Blocks™ file on the MacFORTH system disc contains the source
code for some MacFORTH utilities, as well as empty space for your use.

You should organize your program source code logically into files by
categories. For example, you can see that we put the MacFORTH utilities in
the "FORTH Blocks™ file, the demo programs in the "Demo Blocks™ file, and the
Going FORTH tutorial source code in the "Going FORTH™ file. By logically
organizing your source code into files you will find program development
greatiy simplified.

Practice Editing Block
In order to illustrate the use of the editor, we have provided a practice block

for you to work with while completing this chapter. Begin by displaying the
practice block with the editor. Execute
5 EDIT

You should now see on your screen an edit yindow which looks like figure 3.1
below: :

E(=——== BIk# 5 of 23 ; File=Forth Blocks
{ Sample Editing Practice Block)

CR ." Leading Editor Proctice Block.."”

¢ LPLUS { ni\nZ -- | add n! to nZ and display the result)
CR QGUER . ." plus " DUP . + ." eguals " . ;

CF ." Editor Practice Block Loaded,”

Figure 3.1

Program Editing Page 3-5 August 27, 1984

Editor Window
The MacFORTH editor uses its own window. The window is large enough to

display one block of source code in a format 16 lines by 64 characters each for
a total of 1024 characters {as you can see in Figure 3.1). The following list
points out the features of the editor :

- Title Bar
Displays the current block number being edited, the total number of
blocks in the file and the file name. Each time you edit a different
block this information is updated to show you exactly what you are
editing.

- Close Box
Lets you close the editor window by clicking in its close box. The
editor window will reappear the next time you enter the editor.

- Drag Region
Allows you to drag the edit window to a new position on the screen
(remember to keep the entire window visible when editing).

- Scroll Bar
The vertical bar on the right hand side of the window is the scroll bar.
It allows you to scroll up and down within the current program file,
selecting different blocks for editing.

- Up Arrow
Selects the previous block {numbered one less than the current
block) as the block to edit. Stops on the first block in the file.

- Down Arrow
Selects the next block {numbered one more than the current block)
as the block to edit. Stops on the last block in the file.

- Scroll Box
Drag the scroll box to select another block to edit. Move it up to
edit lower numbered blocks and down to edit higher numbered ones.

- Shaded Aresa

Click inside the shaded area above or below the scroll box to move
3 blocks at & time in either direction {up or down).

Program Editing Page 3-6 August 27, 1984

Experimenting with the Editor
Let's try a few of the editor features:

Closge Box
First, click inside the close box. The editor window disappears and the
MacFORTH window becomes the active window. To make the editor window
reappeer, re~enter the editor by executing (from the MacFORTH window):

S EDIT

Scrolling
With the edit window now the active window, here's how to move up in the

file to block 4: click the up arrow in the scroill bar on the right side of the
window. Click it once and it will move you up one block in the file ("up in the
file” meaning to a lower numbered biock). You'll see the title of the window
change to

Blk* 4 of 23; File= FORTH Blocks

indicating that you are now dispiaying block number 4. Return to block S for
editing by clicking the down arrow in the scroll bar once. You can see that
you have returned to block 5 by the titie of the editor window:

Blk* S of 23; File= FORTH Blocks

You can also move 3 blocks at a time in either direction in the file by clicking
within the shaded area above or below the scroll box. Click in the shaded area
below the scroll box once. You are now editing block 8 {you were previousiy
on block 5).

Each time you edit a new block, the scroll box is moved up or down. Iiis
position tells you what block you are editing relative to the start and end of
the file.

By dragging the scroll box up or down within the shaded area, you can position
the editor to edit any block in the file. Try dragging the scroll box to several
different positions now. Simply drag it to a new location and release the
mouse button to display the block being edited.

Moving the scroll box to the top position in the shaded area will position you
to edit block O of the file. The bottom position in the shaded area positions
you to edit the last block in the file. You can locate a particular block by
positioning the scroll box in the approximate location from the beginning or
end of the file. For example; since there are 24 (numbered O through 23)
blocks in the "FORTH Blocks™ file, if you wanted to edit block 12 you would
position the scroll box approximately half way between the top and bottom of
the scroll bar. Try to find block 12 now using the above technique.

Program Editing Page 3-7 August 27, 1984

Edit Menu

The Edit menu provides you with the following options while editing. Each
item in the menu provides a powerful function at your fingertips (dont try
these features just yet; simply read through the list to familiarize yourselif
with them):

Undo (32
Undoes the previous cut, copy, or paste operation (including any
changes since the last operation). It actually restores the contents
of the block to the version since the last cut, copy or paste operation.

Cut (3%)
Cuts the current selection range (discussed later in this chapter)
from the text and places it on the clipboard. {Cut, copy and paste use
the clipboard just like other Macintosh applications).

Copy (3C)
Copies the current selection renge (discussed later in this chapter) to
the clipboard.

Paste (38V)
inserts the contents of the clipboard to the block at the current
cursor position and/or replaces the current selection range.

Stamp (39)
Stamps the current block with the current date, as read from the
internal clock, and initials stored in the user variable INITIALS. Use
the word @INIT to change the value in INITIALS. DATE displays the
current initials and date stamp. If the first three characters in
INITIALS are non-printable ASCIl characters or blanks, the stamp
function is disabled.

Clean
Biank fills the contents of the block currently being edited. Use this
command with caution as you cannot undo it.

Revert
Resets the contents of the current block back to the version saved on
the disc. Use this command with caution as you cannot undo it.

Enter/Exit Editor (3¢E)
Allows you to enter or exit the editor.

Program Editing Page 3 - 8 August 27, 1984

Insertion Paint
Any time the editor window is active, you will see a flashing vertical ber.
This is called the 7mseriian peinl. Enter the editor to edit block 5 (use
any of the methods described in the Entering the Editor section) and try typing
the phrase (type it in only, do not press Return):

This is the insertion point.

and you'll see it inserted at the insertion point. Everything to the right of the
insertion point is shifted over each time a character is typed. Characters in
the last position on the right are pushed right out of the window. Now delete
what you just inserted by pressing the Backspace key once for each character
you just entered (the key will repeat automatically if you hold it down).

You can change the insertion point by pointing with the mouse to the position
where you want to insert text and clicking once. In the edit window, the
cursor becomes an "I-beam” instead of an arrow to make it easier to select an
insertion point between characters. Try moving the insertion point to several
different places in the window now. Remember, position the i-beam cursor
and click once. Each time you reposition it, the insertion point will be
marked by the flashing vertical bar.

Try repositioning the insertion point to several places egain, but this time,
each time you position the cursor, type the phrase "abc™ and backspace it
away to get a feel for inserting and deleting text.

You can also insert a line at any point by positioning the insertion point and
pressing the Return key. For example, position the insertion point between
the words "Sample”™ and "Editing” in the first line in block 5 and press Return.
Everything on the line to the right of the insertion point is shifted down to
the beginning of the next line, all lines below it are shifted down one line.
Press the Backspace key once to "glue” the lines back together. When you
pressed the Return key, you inserted a carriage return. Pressing Backspace
deleted it.

When you insert text in a line, all text to the right of it is shifted to the
right. If you insert a Return, the text after the insertion point and all lines
below are shifted down one line. You can recover the text that was pushed off
the end of a line or the bottom of the screen by deleting some text (if off to
the right) or deleting some lines (if off the bottom). To delete a blank line,
just position the cursor against the left edge of the editor window and press
Backspace.

Program Editing Page 3-9 August 27, 1984

while you can recover the text that has been pushed out of the window while
you are editing, only the visible text is saved on the disc when you exit
the editor. After any operation that saves the data in the disk buffers (stamp,
clean, undo, etc. -- explained next) you cannot recover any text that you can't
see.

The MacFORTH editor uses a simple, yet powerful “cut and paste™ style of
editing (similar to MacWrite). By now, you can see how to insert and delete
text at the insertion points by typing in new text or backspacing it away.

Selection Range

If you are familiar with MacWrite this description will be a review. Cut, Copy
and Paste operate on a range of selected information (ie: a text string). To
select items for edit the I-beam cursor should be placed at the beginning of-
the desired text and dragged to the end of the "selection range”.

For example, try entering the following line in the block (put it anywhere you
like):
Helcome to the world of MacFORTH editing!!!

Now remove the word "MacFORTH" by selecting it and "cut"ting it out: click at
the beginning of "MacFORTH", drag to the end of the word (it is now displayed
in inverse characters) and release the mouse button when the entire word is
selected (entirely in inverse characters). Select the "Cut” item from the
"Edit” menu; the selection range is now deleted and saved on the clipboard.
Bring it back by selecting "Paste” from the "Edit" menu.

You can now reposition the insertion point and paste the word "MacFORTH"
anywhere in the current block. You can even move to & different block and
paste it in thet block! This should give you an idea of the power of the editor.

You can cut or copy a selection from any block and paste it into any other
block.

Program Editing Page 3 - 10 August 27, 1984

Loading Blocks

To 1oad a block from disc, execute the LOAD command in the following form:
<block®*> LORD

For example, to ioad the block you were editing, go back to the MacFORTH
window and execute
S LOAD

When a block is loaded, the source code on the screen is interpreted just as if
you had typed it in from the keyboard. This enables you to mix definitions
and commands to be executed immediately. When a block is loaded, the cursor
autometically is changed to a wrist watch. After the block has finished
loading it reverts back to the arro cursor.

Error Detection While Loading a Biock

If MacFORTH encounters an error while loading a block (an undefined word, a
typo, missing delimiter, etc.), it will abort immediately and issue an error
message. To find where the error occurred, simply enter the editor. The
insertion point (flashing vertical bar) will be located just after the error.
For example, if you have the sequence

QUERTY

in a block (and it was not a defined word) when you loaded the block, the
insertion point would be one space after the "¥". This feature is invaluable
for locating the cause of an error during loading because it shows you where
MacFORTH encountered the error.

After an error has been detected, the variable R* is set to the position just
after the error. The initial position of the insertion point is determined by the
value in R¥. If you want to have the insertion point at the upper left corner of
the edit window, execute

R® OFF

from the MecFORTH window.

Program Editing Page 3 - 11 August 27, 1984

Listing Programs

The following words list your programs to the display and/or printer. If you
have an Apple Imagewriter connected to your Mac, select the "Printer” item
from the "Options” menu to turn it on. All output to the screen will be sent to
the printer as well (refer to the Printer/Serial chapter for & discussion on
using other printers).

LIST
Displays the specified block. The date, screen numbers, and lines of the
block {numbered 0-15) are displayed. For example:
18 LIST
would list the contents of block 10.

INDEX
Displays the first line of a range of blocks. If you follow the convention
of using the first line of each block as a comment describing the
contents of the block, INDEX will allow you to see quickly what a
range of blocks contains. For example:
5 15 INDEX

vrould display the first line of blocks 5-15, with the block numbers
displayed on the left.

TRIAD

Displays three sequential blocks on one page, starting with a block that
is evenly divisible by three. You specify the number of any block in the
"triad” that you want to display. For example:

18 TRIAD
displays blocks 9, 10 and 11. This enables you to update your program
listings with only the screens that have changed. The icon used for
MacFORTH blocks {program) files contain three rectangles to designate
triad listings.

SHOU
Displays a range of blocks (as a series of triads). Given the starting
and ending blocks to display, SHOW generates a listing of triads. For
example:
18 28 SHOH
yrould generate a listing of three blocks per page containing the
specified range of blocks (it would actually list blocks 9-20).

Program Editing Page 3 - 12 August 27, 1984

Copying Blocks

The following routines allow you to copy the contents of one block (or blocks)
to another (or others).

Single Block Copying

when copying limited numbers of blocks, use the COPY command in the
following format:
<source block®> <destination block®> COPY

For example, to copy the contents of block 6 to block 5, you would execute:
65 copy

Multiple Block Copying
If more than a couple of blocks need to be copied, @ copying utility program is

available. Load these routines by loading block 10 of the "FORTH Blocks" file.
To copy a series of blocks from one location on the disc to another, use the
COPY.BLOCKS in the following format:

<first> <last> <target> COPY.BLOCKS

For example, to copy blocks 3 thru 7 to screens 12 thru 16, execute (just an
example, do not try this now):
3 7 12 COPY.BLOCKS

During the copying procedure, you are shown which screens are being accessed
yith the following message:

sss ~> ddd
where sss is the source block number and ddd is the destination block being
copied.

Copying Blocks from One File to Another
Load the block transfer routines by loading block 12 of the "FORTH Blocks”

file. The word XFER.BLOCKS will allow you to copy blocks between files,
promting you to enter the required information. You will be asked for the file
numbers of both files as well as the range of blocks to be transferred.

Program Editing Page 3 - 13 August 27, 1984

Blank-Filling Blocks

To blank-fill a single block, select the "Clean™ item from the “Edit” menu
while editing the block. If you want to blank-fill a series of blocks, load the
block copy routines (if you have already loaded them, you don't need to re-load
them). You now have the word CLEAR.BLOCKS. It is used in the following
format:

<first> <last> CLERAR.BLOCKS

For example, to blank-fill blocks 20 thru 25 in the current blocks file, you
would execute {don't try this example):
28 25 CLEAR.BLOCKS

Each time a block is cleared, the message
ccc Cleared
is displayed, where ccc is the number of the block being cleared.

Cutting and Pasting to/from the Desk Accessories

You can cut, copy and paste selected text to/from the Desk Accessories. This
allovs you to share ASCI| data between MacFORTH and any other Macintosh
system.

To move ASCII data from MacFORTH to the Notepad for example, enter the
editor and cut {or copy) the desired text. Select the Notepad item from the
apple menu and paste the selected text into the Notepad.

To move ASCII data from the Notepad to MacFORTH, select the Notepad item
from the apple menu and cut (or copy) the desired text. Enter the editor in
MacFORTH and paste the selected text into a block.

A Final Note

If you have modified block 5 (the example block) you should go back now and

edit it so it looks like figure 3.1. This makes it easier if you need to go back
and try the exampies again later.

Program Editing Page 3 - 14 August 27, 1984

Chapter 4: Getting Started

Topic Fage

Overview 2

N

Preparations

Finger Paint Example Program
Create a Window
Track the Mouse
Define the Windoy Program
Finger Painting
Re-title the Window
Printing the Picture
Define the Pen Size Menu

BN~~~ ANWWNW

=]

Summary

Getting Started Page 4 - 1 August 27, 1984

Overview

This chapter will give you first-hand experience in programming the
Macintosh. You will enter a sample program, try it out, make some changes,
and try it again to see the differences. Don’t try to understand each command
now. The intent of this chapter is to give you a feel for programming the
Macintosh, not to give a comprehensive description of each command. Later
chapters will fill in the missing information. For now, just enter the example
program and enjoy.

By the time you finish this chapter, you will have created a new window,
defined a program to be executed for the window, tracked the mouse, created
some graphics pictures (and printed them if you have an Apple Imagewriter
printer), and defined a menu.

Preparations

By now you should have completed the Going FORTH tutorial, if you haven't, do
$0 how before you continue. You will be instructed to edit some source code
into the "FORTH Blocks™ file. If you skipped the Program Editing chapter, read
it now before you continue.

It is important that you complete this chapter in one sitting.

The only thing you'll need is about 20 minutes of time, your Mac, MacFORTH,
and you.

Restart your computer {by turning the power off then on) and load MacFORTH
by opening the “FORTH Blocks™ document from the Finder (by double clicking
it). when MacFORTH loads, enter your initials when asked and you'll get “ok".
You are now ready to start.

Getting Started Page 4 - 2 August 27, 1984

Finger Paint Example Program

The example program you will be entering will allow you to create pictures in
a new window using the mouse. Press the Return key a few times to see
where your cursor is (some more “ok"s will appear).

Prior to typing in the following example, resize the MacFORTH window and
drag it down to the lower one-third of your screen, keeping the whole yindow
on the screen (your screen should be similar to figure 4.2, except the Finger
Paint window won't be present yet). This will expose the editor window.
During the course of the following example another window (the Finger Paint
window) will be defined and will appear in the upper left corner of the screen.

One other reminder before you start typing; spaces separate words in FORTH,
so pay careful attention to spacing in this example (particularly after
quotation marks).

You will use biocks 2 thru 4 of the "FORTH Blocks™ file to enter the source
code for this example. If there is already source code in any of the blocks,
clean the block by selecting the “Clean” item from the “Edit” menu (be sure
that you are editing the correct block before you clean it).

Finally, remember to put the comment (in parentheses) in the topmost line of
the block.

Create a Window
Edit the following source code into block 2:

{(Finger Painting Window Definition)

NEW.HINDOH SHEET
* Finger Paint Hindow" SHEET W.TITLE

68 5 286 380 SHEET H.BOUNDS
SIZE.BOX CLOSE.BOX + SHEET MW.ATTRIBUTES
SYS . WINDOW SHEET U.BEHIND

SHEET ADD.UWINDOW

Getting Started Page 4- 3 August 27, 1984

Your block should now look like the block in figure 4.1. If there are
differences use the editor to correct them before you continue:

E[[Z==——== Blk# 2 of 23 ; File=FGRTH Blocks
](Finger Painting Window Definition)

HEW, WEHDOW SHEET
" Finger Point Hindow" SHEET M. TITLE

60 5 Z00 300 SHEET U, BOUNDS
SIZE.608 CLOSE.BOX <+ SHEET W ATTRIGBUTES
SYS RO SHEET W.BEHIND

SHEET RDDLUIHOOW

Figure 4.1

Now load the block by executing:
2 LOAD

At this point a new window will appear in the upper left corner of the screen.
Your screen should now look just like figure 4.2.

Getting Started Page d4- 4 August 27, 1984

| & Options Edit
Bik# 2 of 23 : File=FORTH Blocks

Finger Paint Window
E
oS
IBUTES
1O

MacFORTH™ 1.2 @1984 CS|

Z LOAD ok

Figure 4.2

If you click in the new window the system will just beep at you. Click back
ingide the MacFORTH window and continue.

Track the Mouse
Edit the following source code into the top of block 3:

(Finger Painting Source Code)
: TRACE.FINGER (--- | word to follow the mouse when down)

HIOE.CURSOR
BEGIN STILL.DOMN WHILE @HOUSERY DOT REPERT

SHOW.CURSOR

Getting Sterted Page 4- 5 August 27, 1984

Define the Window Program

Edit the following source code into the bottom of block 3 (under the source
code for TRACE.FINGER):

FINGER.PAINT { activate flag —- | program for SHEET)
IF BEGIN DO.EVENTS

CASE MOUSE.DOWN OF TRACE.FINGER ENDOF

IN.SIZE.BOX OF PAGE ENDOF
ENDCASE
AGAIN
ELSE 7 SYSBEEP { beep on deactivation)}
THEN ;

SHEET ON.ACTIVATE FINGER.PRINT

Your block should now look like the block in figure 4.3.

If there are
differences, use the editor to correct them before you continue.

E[==——= BIk# 3 of 23 ; File=FORTH Blocks
[Finger Painting Source Code)

. TRACE. FINGER

HIDE .CURSOR

BEGIN STILL.DOWN

SHOW CURSOR

{ ——= | word to follow the mouse when down }

UHILE enOUsSEXY 00T REPERT

1

¢ FIMGER.FAINT (activate flag -- | progrom for SHEET)
IF BEGIN OO0.EVEHTS
CHSE NOUSE.DOMN OF TRACE.FINGER ENDOF
IN.SIZE.B0K OF PAGE ENDOF
ENGCASE
AGARIN
ELSE 7 SYSBEER

{ beep on deactivation)
THEH

SHEET O RCTIUATE FIHGER,PRINT

Figure 4.3
Load the block by executing:

3 LOAD
Getting Started Page 4- 6

August 27, 1984

Finger Painting

Activate the finger paint window by pointing to it with the mouse and
clicking down inside it. When you drag the mouse around in that window, the
cursor disappears and a line follows where you move the mouse. You can even
drag outside the window and come back in. When you release the mouse
button {ie. stop dragging), the cursor re-appears and you don't get a line
following you anymore.

Try moving the cursor and clicking in the MacFORTH window now. The Mac
beeps at you when you de-activate the SHEET window (its title is “Finger
Paint Window") as you told it to do in FINGER.PAINT. Now resize the SHEET
window so your drawing space is larger (but leave both windows visible).

when you resize the SHEET window, the picture you drew is erased and you
are given a clear space to work in.

Hide the sheet window (by clicking in its close box at the top left corner). To
make it re-appear, execute {from the MacFORTH window):
SHEET SHOW.WINDOW

You can now activate the SHEET window (by clicking in it} and do some more
drawing.

Re-Title the Window
Go back to the MacFORTH window (by clicking in it). Now change the title of
the new window to your neme. For example, if your neme is Marge, execute:

" farge's Artwork"” SHEET SET.WTITLE

or Harry:

* Harry's Impressions” SHEET SET.WTITLE
or, if you prefer:

" My Uery Own Easel™ SHEET SET.UTITLE

Printing the Picture

You can even print your work of art if you have an Apple Imagewriter printer.
If you have one connected to your Mac, execute 3$ (hold down the §§, shift,
and 4 keys simultaneously) If the Caps Lock key is up, only your sheet is
printed, if the Caps Lock key is down, the entire screen is printed.

Getting Started Page 4- 7 August 30, 1984

Define the Pen Size Menu

As the final addition to the progrem, create a menu to change the size of the
pen you are dravving with. Edit the folloving code into block 4:

{ Pen Size Henu }
T CONSTANT FINGER.SIZE.MENU

: FINGER.MENU (---) FINGER.SIZ2E.MENU DELETE.MENU
8 ® Finger Size " FINGER.SIZE .MENU NEN.HEHU
" Small;Medium;Large” FINGER.SIZE.MENU APPEND.ITEHS
DRAW. MENU. BAR
FINGER.SIZE.MENU MENU.SELECTION: & HILITE.MENU
GET.WINDOW >R SHEET HINDOW
CASE 1 OF 1 1 PENSIZ2E ENDOF
2 OF 3 3 PENSIZE ENDOF
3 OF 5 5 PENSIZE ENDOF
ENDCASE R> WINDOW ;
F INGER.HENU

Your block should now look like the block in figure 4.4. If there are any
differences, go back into the editor now and correct them before you continue.

S=———=— Blk# 4 of 23 ; File=FORTH Blocks
{ Pen Size Menu)
7 COMSTANT FINGER.SI2E.HENU

{2E MENU DELETE . HENU
|ZE, HEHU NEN . MEHU
1ZE NMEHU APPEND. ITENS

. FINGER.MENY { ---) FINGER.S
i " Finger Size " FIMGER.S
" Small;Medium;Lorge” FINGER.S
ORAK. MENL, GRA
FINGER . SIZ2E.MENU MEHU.SELECTION: 0O HILITE.MEHU
GET.WIHDOW B SHEET WIHDOW

CASE 1 OF 1 1 PERSIZE ENDOF

2 0OF 3 3 PENSIZE EHDOF

3 OF 5 9 PENSIZE EHDOF

ENDOCASE R> HINDOW ;

FINGER HENU

Figure 4.4

Getting Started Page4-8 August 27, 1984

Now 1oad the block by executing:

4 LOAD
Now you will see the "Finger Size™ menu on your menu bar line. Pull it down
and select a new finger size. Activate the SHEET window and draw a few
lines. Return to the "Finger Size™ menu and select a new finger size. Draw a
few more lines and re-select a new finger size.

¥When you get tired of the current pattern, re-size the window and start all
over if you like.

Summary

You've seen how simple it is to create a new window, assign a program to the
window, track the mouse, creste graphics pictures (and possibly print the
result), and create a new menu.

That's it! As we said at the beginning, our intent in this chapter was simply

to introduce you to some of the features of the Macintosh, not to give a
detailed description of each function.

Getting Started Page4-9 August 27, 19684

Getting Started Page 4- 10 August 27, 1984

Chapter 5: Getting Results

Topic Page
Overyiew 2
Set Up a Work File 3
windows 5
Error Handling 7
Forgetting a Window 7
Window Attributes 8
Changing the Window Title 8
Closing a Window g
Hiding and Showing a Window 9
window Bounds 10
Hiding the Cursor 10
Modifying the Cursor 11
Directing Output to a Window 12
The Mouse 13
Text Output 13
Creating a String 14
Keyboard Input 1S
input of Strokes 15
Number input 15
String Input 16
wWindow Function 17
Assigning a Program to a Window 18
window Function Template 19
Multiple Windows 19
Menus 19
Sound Generation 20
Arrays 21
Creating an Array 21
initializing th Array 22
Accessing Data in an Array 22
Memory Allocation 23
Displaying the Amount of Memory
Available 24
Resizing Memory 24

Getting Results Page 5- 1 August 30, 1984

Overview

There are some basic features of the Macintosh you need to understand before
you can use it effectively. To illustrate these features, we will present a
series of examples, similar to the method used in Getting Started, but giving
a more detailed explanation of the commands as they are presented.

Many of the commands you will use in this chapter will be easy to understand
at first glance. The example in which the command was introduced should
make its usage clear. Others will require more explanation. We will explain
the topic being presented and give any additional information you need to
know to understand the example. If you want to know more about a particular
command, refer to either the appropriate reference chapter of this manual or
the glossary.

As you go through this chapter, be sure that you try each example before you
go on to the next, as we will use each step to build the next (very much like a
FORTH program).

Some of the examples are short enough that you can execute them directly
from the keyboard without saving them (you will be instructed to “execute”
the example). Others are longer and you may be asked to modify them later.
To avoid re-typing the entire example, you will be instructed to save the
example in a block on disc (using the editor -- you will be instructed to "edit”
the example, then “load" it). If you skipped over the Editor chapter, stop now
and read it. We will assume that you know how to use the editor to complete
this chapter.

when MacFORTH words are included within text, they are printed in bold face
capital letters to differentiate them from the rest of the text. We use the
convention of capitalizing all MacFORTH words. This is by no means
mandatory, as MacFORTH does not discriminate between upper and lower case
FORTH words (WORDS is equivalent to words or Words, or even WoRdS)
vrhen executing the ngme of a definition. If this is important to you, refer to
the Advanced Topics chapter discussion of the LOWER.CASE option.

Getting Results Page 5-2 August 27, 1964

Set Up a Work File

we begin this section by creating & blocks file for you to use. |f you or
someone else has already gone through this chapter, the file may already
exist.

Displaying the Disk Directory
Look at the contents of the disc by executing
INTERNAL DIR

This will display the directory of the disc in the internal drive.

if the File Exists
If the file "Work File Blocks” already exists (it is in the directory listing),
someone else has created it, execute

USE" Hork File Blocks”

You can now edit the "Work File Blocks” file.

If the File Dgesn't Exist
if the file "Work File Blocks” doesn't exist (it doesn't appear in the directory
listing), you need to create it. Execute the following (don't forget a space
after the quotation marks):

12 " Uork File Blocks" MEW.BLOCKS,FILE CONSTANT WORK.FILE

This will give you a working file named "Work File Blocks™ with 12 blank
blocks to use as you complete this chapter. (You may want to keep it around
as you go through the manual in order to keep any examples you might want to
reload.)

File Commands Used
NEW BLOCKS.FILE creates a new blocks file with the specified name and

number of blocks. If successful, it returns the file number of the new file. If
an error occurs while creating the new file, an error message is displayed,
and processing is aborted.

The constant WORK.FILE is used as a convenient reference to the newly

created file. You should use a constant when referring to a file for the sake
of readability.

Getting Results Page 5-3 August 27, 1984

Windows

One of the most innovative features of the Mac is its ability to create and
display windows. Each window can be used for a different purpose and can
run its own program. Let's begin this example by resizing the MacFORTH
window to about two inches high at the bottom of the screen.

Drag the size box upwards to shrink the window to about two inches high.
Next drag the entire MacFORTH window down to the bottom of the screen.
Your screen should novr 1ook like figure 5.1 below.

%

gptions dil

BIk# 23 of 23 ; File=FDRTH Blocks

MacFORTH™ 1.2 21984 (5| ===

Figure 5.1

Next create a new window named TEST.WINDOW and add it to the display.
Execute the following:

NEW.WINDOW TEST.WINDOW

TEST.NINDOW ADD.UINDOM

At this point the new window will appear and become the active window.
Click in the MacFORTH window and continue.

Getting Results Page 5-4 August 27, 1984

NEW.WINDOW created e window definition named TEST.WINDOW. Each
window created in MacFORTH has an array associated with it which contains
information about the window. Information about the size, starting location,
program to execute, text font, size, mode and style, etc. that pertains to the
window is stored in this array. The address of this array (the “window
pointer”) is left on the stack when you execute the name of the window. When
you want to reference your new window, use the MacFORTH word
TEST.WINDOW which you just created. TEST.WINDOW will place the
“window pointer” {or "wptr" in stack notation) for this window on the stack.
The MacFORTH routines which manipulate windows require the window
pointer for the window to be on the stack.

All windows that can be displayed are kept in a list of windows maintained by
the Macintosh. ADD.WINDOW inserts the window specified (by its window
pointer) into the Mac's list of windows, displays it, and makes it the active
window.

Only one window can be active at a time. All input/output is by default sent
to the active window. To activate a new window, simply click the mouse
down in the window that you want to become active. Click down in the new
window and then back in the MacFORTH window.

The default action of any window when it is activated is to beep for all user
events {(mouse down, keystrokes, etc.). The ON.ACTIVATE command allows
you to specify the program to execute when the window is activated.
Execute:

TEST.HINDOW ON.ACTIVATE QUIT

to specify the program QUIT to execute when TEST.WINDOW is activated.
QUIT is the program which runs MacFORTH itself {it waits for input, executes
it, and responds "ok"). Now try clicking in TEST.WINDOW and pressing
Return. Go back to the MacFORTH window (by clicking in it) and continue.

You can also activate another window by using the SELECT.WINDOW
command. SELECT.WINDOW expects the window pointer of the window to be
selected on the stack. For example, to activate the new window from the
MacFORTH window, execute:

TEST.UINDOW SELECT.WINDON

and go back to the MacFORTH window by clicking in it.
Try dragging each window around on the screen (if you don't know how to do

this, run the Guided Tour provided with your Macintosh). Place them in any
position you like, but be sure each window is visible when you are done.

Getting Results Page 5-5 ‘ August 27, 1984

Error Handling

When an error occurs in a window other than the MacFORTH window, the
MacFORTH window is activated. The error message (if any) is displayed in the
MacFORTH window, not the window the error occurred in.

This enables you to do any debugging from the MacFORTH window, allowing
you to see when and how the error occurred. For example, activate
TEST.WINDOW and execute:

QUERTY

and you will see the error message
QUERTY ?

appear in the MacFORTH window because MacFORTH doesn't understand the
word QWERTY.

Forgetting a Window

¥hen you forget a window, it is removed from the Macintosh window list and
taken off of the display (if visible). Forget your new window now by
executing: :

FORGET TEST.WINDOH

Any references to TEST.WINDOW, as with any other forgotten FORTH word,
will not be understood by MacFORTH as it has been removed from the
dictionary.

Getting Results Page 5-6 August 27, 1984

¥Window Attributes

You can see that the MacFORTH window has both a size box and a close box;
the editor window has only a close box, and the new window has neither.
These are all attributes about a window that can be included or left off,
depending on what you want the window to do.

Let’s continue by creating a new window to work with. Edit the following
example into block 2 of your "Work File Blocks™ file:
{ Hew Uindow Example)
HEM.WINDOH EX.WINDOM
* Example Hindow" EX.UINDON W.TITLE
CLOSE.BOX SIZE.BOX + EX.WINDOH W.ATTRIBUTES

EX.UIHDOW ADD.UINDOM

Now load it by executing
2 LOAD

EX.WINDOW has two new features that the previous window you created
didn’t have: & close box and a size box. The word W.ATTRIBUTES allows you
to define the features of a window when it is created. These features were
given to the window when you executed:

CLOSE.BOX SIZE.BOX + EX.WINDOM W.ATTRIBUTES

Refer to the Window chapter for a complete listing of all possible window
attributes.

The default title for a window is "Untitled” (as you saw in the first window
you created). W.TITLE allows you to assign your own title to a window.
W.TITLE expects a string address on the stack (the string address was left
on the stack by the word ") under the window pointer. By executing

" Example Hindow" EX.UINDOM W.TITLE

in the above example, you assigned the title "Example Window" to the window
EX_WINDOW (we refer to windows by their FORTH name for clarity.)

Getting Results Page 5-7 August 27, 1984

Changing the Window Title

You can also change the window title after it has been displayed using the
word SET.WTITLE. For example, execute the following to change the name
of the new window to "Example Workspace™:

" Example Horkspace" EX.WINDOW SET.UTITLE

Activate the editor window now (by either clicking in it or choosing the
“Enter Edit" item from the "Edit” menu). Its title is:
Bik# 2 of 11; File = WORK FILE BLOCKS

Now edit block 1 by clicking the up arrow of the editor control bar. The title
of the menu changes to:
Blk# 1 of 11; File = WORK FILE BLOCKS

The MacFORTH editor uses the SET.WTITLE command to change the title of
the editor window each time a different block is displayed.

Closing a Window

when you close a window by clicking in its close box, it is hidden from view.
The window closest to the “front” of the display (the "top™ window is then
activated. Select EX.WINDOW by executing

EX.HUINDOW SELECT.HINDON

Now click in its close box. When EX.WINDDW disappeared, the "top™ window
became active. Be sure the MacFORTH window is active now by clicking in it.

Hiding and Showing a Window

From the above example, you saw hoy you can hide a window by clicking in its
close box. To make a window re-appear, use the SHOW.WINDOW command.
SHOW.WINDOW re-displays the window specified by the window pointer
given. Execute the following to make EX.WINDOW re-appear:

EX.UINDOH SHOW.UINDOW

EX.WINDOW is now there, but it is behind the active window, in this case, the
MacFORTH window. To see EX.WINDOW, close the editor window (enter the
editor and click in its close box), then close the MacFORTH window by clicking
in its close box. There it isl Remember, SHOW.WINDOW makes the specified
window visible, but not active. A "visible” window is on the desktop, but may
be currently under another window.

Getting Results Page 5-8 August 27, 1984

You can also hide a window with the HIDE.WINDOW command. Like
SHOW.WINDOW, HIDE.WINDOW expects a window pointer on the stack.
Return to the MacFORTH window by selecting the "MacFORTH Window™ item
from the “Options” menu. Execute the following to make the MacFORTH
window disappear:

SYS.HINDOW HIDE.WINDOW

Return to the MacFORTH window by selecting the "MacFORTH Window" item
from the "Options” menu.

Window Bounds

You can also set the initial position and size of a window using the
W.BOUNDS command. Edit the following example into block 3:
{ New Hindow TEST.HUINDOW2 Example)

NEW.HINDOW TEST.WINDOW2
* Test Window 2" TEST.WINDOH2 W.TITLE
186 158 3689 488 TEST.WUINDOWZ W.BOUNDS

TEST.WINDOW2 ADD.HINDOH

Now load it by executing
3 LOAD

You created a new window named TEST.WINDOW2, gave it the title "Test
Window 2", set its starting position to 100,150 relative to the top left corner
of the screen (which is at 0,0) and made it a window 200 dots (300-100=200)
by 250 dots (400-150=250).

The values 100 150 300 400 defined the window size by giving its "tibr" (top,
left, bottom, right) values. This is easy to remember, because windows have
four sides: top, left, bottom, and right. So in the example, the top of the
window is100 dots from the top of the screen, the left side of the window is
150 dots from the left side of the screen, the bottom of the window is 300
dots from the top of the screen, the right side of the window is 400 dots from
the left side of the screen.

The default window bounds are
188 188 208 388 U.BOUNDS

Getting Results Page 5-9 August 27, 1984

Modifying the Cursor

You can change the type of cursor (currently an arrow) using the SET.CURSOR
command. For example, to change the cursor to the wristwatch cursor (the
cursor displayed when the Mac wants you to wait), execute:

HATCH SET.CURSOR

Return to the arrow cursor by executing:
INIT.CURSOR

The optional cursors you can select with SET_CURSOR are:
IBEAN (the cursor used in the editor)
WATCH (the wristwatch)

You can also fetch the current cursor with GET.CURSOR. This is useful for
the times you want to change the cursor during a specific operation and then
restore it to its previous image. The following example changes the cursor to
a wristwatch during a delay loop, then restores the cursor to its previous
image (enter it into block * 4):
DELRY (---)
GET.CURSOR (save the current cursor on the
stack)

HATCH SET.CURSOR

16988 6 DO LOOP (a delay loop that does nothing)

SET.CURSOR ; (restore the cursor)

Load it by executing
4 LOAD

and try a few tests:
INIT.CURSOR DELAY
IBEAN SET.CURSOR DELRY

Remember, if you try)
HATCH SET.CURSOR DELAY

you yron't know when the test is complete until you get "ok".

Execute
INIT.CURSOR

to return the cursor to the arrow before you continue.

Refer to the "More Examples” file for more examples of cursors.

Getting Results Page 5- 10 August 27, 1984

Hiding the Cursor

You can hide the cursor {make it invisible) by executing the HIDE.CURSOR
command. To make it reappear, execute the SHOW.CURSOR command. These
commands are useful when you don't want the cursor to interfere with the
process being performed. We used them in the Getting Started chapter finger
painting example.

Use them with one important caution in mind, however. The user expects to
see the cursor move when she or he moves the mouse. If the cursor is hidden,
it will appear that the system is not responding. If you hide the cursor, be
sure to make it reappear when you are done.

Directing Output to a Window

There are times you want to get information or change some characteristic of
a window without activating it. The commands WINDOW and GET.WINDOW
allow you to access the information about a window without activating the
window. WINDOW selects a specified window for output, and GET.WINDOW
returns the window pointer of the current window.

For example, the window EX.WINDOW was created with the default text font
and mode (these characteristics are discussed in detail in the Graphic Results
chapter). The MacFORTH window uses text font 4, and text mode 2. To set the
EX.WINDOW text font and text mode to be the same as the MacFORTH window,
edit the following definition into block five:

CHANGE . TEST (---)

GET.WINDOW (save current wptr on the stack)

EX.UINDOU MWINDOM (select EX.WINDOW)
CR ." Before..."

4 TEWTFONT (select the text font)
2 TEXTHODE (select the text mode)
CR .* After”

UINDOW ; (restore the window)
CHANGE . TEST

Load and test it via
5 LOAD

Getting Results Page S- 11 August 27, 1984

When WINDOW is executed, it makes the selected window the current window
for output. If you execute WINDOW outside of a definition (via the keyboard),
be sure to re-select the MacFORTH window before you press return (the name
of the MacFORTH window is SYS WINDOW). If you don't re-select the
MacFORTH window, all output is directed to the other window until you
execute

SYS.WUINDOW WINDOW

You can see that the word "Before™ was displayed in the default Macintosh
font. "After” was displayed in the MacFORTH default textfont.

The Mouse

You can read the current position of the mouse at any time with the word
@MOUSEXY. The x and y coordinates of the mouse are returned on the stack
(% under y). Here's a word to follow the mouse and report its current position
reletive te the scitive windew:
TRACK.MOUSE (---)
BEGIN CR ." House At: " BNOUSEXY SHRP . . AGRIN ;

TRACK . HOUSE

This will send you into an infinite loop which prints the current position of
the mouse. Try it out. Move the mouse all over the screen and you'll see the
position change.

To get out of this word {or to escape from any endless loop that displays
output), select the "Abort™ item from the "Options™ menu (or press J8A).

Text Output

So far, we have used = exclusively as the way to output character data. You
can also type a string from memory or emit a single character. The word
EMIT displays the ASCII character given on the stack (refer to the ASCII
Chart on the last page of the manual for specific ASCII characters). For
example, to output an asterisk, execute (in decimal):
42 ENIT

To type a string from memory, use the words COUNT and TYPE. MacFORTH
strings contain the length of the string in the first character position,
followed by the string itself. Given the address of a string, COUNT returns
the address of the first character in the string under the length of the string
(in bytes). TYPE displays a string given an address and length on the stack.

Getting Results Page 5- 12 August 27, 1964

Creating a String
There are many ways to create strings in MacFORTH. Here are the two most

common methods:

a.) The word " creates a string in the object area (delimited by ") and leaves
its address on the stack. You have already used this technique when
defining window and file names earlier in this chapter. The format for
this method is:

* <string>"

Remember, the leading quote is a MacFORTH word, it must have a space

before and after it. The space after it is not included in the string, it

separates the string from the forth word = . The delimiting quote does

not need a space before or after it (we recommend you leave a space

after it for readability). For example, to create and display a string

containing the name of the first NASA Space Shuttle, you would execute:
* Columbia® COUNT TYPE

Note: The string address is left on the stack and cannot be re-calculated.
If you need to use the address more than once, duplicate the address
before using it.

b.) You can create a named string using CREATE and ,” in the following
format:
CREATE <string name> ," <string>"

Like © , you must have a space immediately following ,” . The advantage
to this method is that you can refer to the string by name. For example,
to create a string containing the name of the second NASA Space Shuttle,
execute:

CREATE SHUTTLE$," Challenger”

To display the name, execute:
SHUTTLES COUNT TYPE

Getting Results Page 5- 13 August 27, 1984

Keyboard Input

MacFORTH allows you to control input from the keyboard from the level of a
single keystroke at a time to input of numbers and strings.

Input of Keystrokes
The word KEY captures ASCII keys from the keyboard (command keys are

executed automatically} and returns the character value on the stack (refer to
the ASCII chart appendix for the ASCIl character values). For example,
execute:

KEY .

and press the “** key (shifted 8), and you'll see that the ASCII character value
for asterisk is 42. When KEY executes, it does not display the keystroke (as
you saw, the * was not displayed). If you want the keystroke displayed,
duplicate the value (with DUP) and EMIT it. This word is handy for words
like:
: ANSWER.Y/N (-- flag | flag = -1 if ¥, 8 if anything else)
." Answer Yes or No (Y/H) ->* KEY DUP EMIT 89 (¥ } = ;

Now try executing ANSWER.Y/N and responding with uppercase Y or N. The flag
returned on the stack is true if a capital ¥ was pressed. Now try it out.
Execute

ANSUER.Y/N

and press uppercase Y. Now try the same test, but this time press a different
key.

If you wanted to look for either an upper or lowercase Y {(uppercase ¥ has
ASCIl value 89, lowercase y has ASCH value 121), you could modify
ANSWER.Y/N and replace the phrase

89 (V)=

with:
DUP 89 (v)= SWAP 121 (y)} = OR

Note: KEY traps the following keys:
Return (converts it to 8)
Backspace (ignores it and beeps)
Tab {converts it to an ASC!I space)

Refer to the "Handling Keystrokes” section of the Windows chapter for more
information.

Getting Results Page5- 14 August 30, 1984

Number input

To input a number using MacFORTH, use INPUT.NUMBER. INPUT.NUMBER
accepts a number of up to the width specified (in digits). After you press
Return, the number is converted from a string to binary. If the string is a
valid number, the number is returned on the stack under a true fiag. |f the
string is not a valid number, a zero is returned under a true flag. |f no number
is input (the operator just pressed Return) a false flag is returned. Try:

S INPUT.HUMBER CR . .

After you press Return, MacFORTH will be waiting for input. Input the number
123, then press Return. The numbers on the top of the stack are -1 and 123,
This indicates a number was input, and the number is 123. Now try another
example. Execute:

S5 INPUT.NUMBER CR . .

Again, after you press Return, MacFORTH will be waiting for input. This time,
input an invalid number. Input
puD

Since "DUD" is not a valid number, a 0 was returned on the stack under a -1,
indicating a string had been input, but it was invalid.

During conversion of the string to binary, if an invalid numeric character {not
0 thru 9 or minus sign) is encountered, MacFORTH will stop converting the
string to a number. The number converted up to that point will be returned on
the stack under a true flag. If the first character is invalid, a zero is
returned under a true flag.

If nothing is input (the operator just presses Return), a zero flag is returned.
If this seems like a lot of things to remember for just inputting a number, you
could define a word like:
ASK.NUMBER (-- n)
BEGIN CR ." Input Number ->" 3 INPUT.NUMBER UNTIL ;

wWhen ASK.NUMBER is executed, it will repeat the prompt “Input Number -»"
until a number is entered, and leave the converted number on the stack.

Getting Results Page 5 - 15 August 27, 1984

String Input

The word INPUT.STRING accepts a string of characters from the keyboard. It
takes an address to store the string under the maximum number of characters
to input (up to 255). This way you can control how many characters can be
input. When INPUT.STRING is executed, the system will stop what it is doing
and wait for a string to be input. The following example will input a string of
up to 12 characters to PAD (the MacFORTH scratchpad buffer), and then
display it. Remember, once you execute INPUT.STRING (by entering the
following phrase}, the system will wait for a string to be input. Now try:

PAD 12 INPUT,STRING

After you press Return, MacFORTH will wait for you to input a string. Input
the string (up to 12 characters) and press Return. To see the string you input,
execute:

PAD COUNT TYPE

You can also use INPUT.STRING to input into a string variable. The following
example will create a string variable named NAME$ and input a string into it:
CREATE HAMES ," Bill Smith"
NAME$ COUNT TYPE

After you enter the next line, the system will wait for you to enter the name
string, so input the name Joan Jones.

NANE$ 18 INPUT.STRING

NAME$ COUNT TYPE

Warning: If you try to enter a string longer than the original string into a
string variable, you will overwrite part of the object area and may cause the
system to crash. Be sure that the string variable you are using is long enough
by counting the number of characters in it. An easy way to create a string
variable of the proper length is to use numbers in the string. For example, to
create a string variable 18 characters long, you could execute:

CREATE hv¥$," 123456789812345678" (18 char string)

If you aren't sure of the current length of a string, just fetch the count. For
example, to fetch the length of MY$ you would execute
nvg ce

Getting Results Page 5 - 16 August 27, 1984

Window Function

The default program for a newly created window when it is activated is to
just beep at all mouse clicks or keystrokes. You can assign a program to a
yindow using the ON.ACTIVATE command. When the window is activated,
the program assigned to it is executed.

When a window is activated, its program is passed a flag telling whether it is
being activated (a true flag) or deactivated (a false flag). The program then
determines what to do and runs.

¥hen a window is deactivated (by activation of another window, or by closing
the window), the progrem it is running is aborted immediately, and the
activated window is given control to run its program.

To illustrate this point, activate the MacFORTH window and execute the
following:
t TEST {(-—)
1868 00 I . LOOP CR ." Test Done" ;

TEST

As you would expect, TEST displayed the numbers O through 99, output a
carriage return and displayed "Test Done™.

Execute TEST eagain, but this time, before it completes, activate EX.WINDOW
(by clicking in it). As soon as you activated EX.WINDOW, did you see that
TEST stopped executing and control was passed to EX WINDOW? Re-activate
the MacFORTH window and you'll get "ok", indicating TEST was aborted, and
MacFORTH is waiting for your next request.

Assigning a Program to a Window

You assign a program to a window using the ON.ACTIVATE command. This
program will replace the default program. Any program assigned to a window
will be passed a flag when the window is activated telling it whether the
window was activated (a true flag) or deactivated (a false flag). This allows
you to do any initialization when the window is activated, and perform any
clean up when the window is deactivated. Your program must be aware of this
flag and handle any special cases for activation or deactivation.

Getting Results Page 5 - 17 August 27, 1984

To illustrate this feature, assign a program to EX.WINDOW and watch it run.
Edit the following example into block *6 (and then load it):

: TEST.ACTIVATE (flag --)
IF ." Hindow Activated!!" 3 SYSBEEP WORDS
ELSE ." Hindow Deactivated!!" 3 SYSBEEP
THEN ;

EX.UINDON ON.ACTIVATE TEST.ACTIVUARTE
ON.ACTIVATE assigned the program TEST.ACTIVATE to EX.WINDOW.

Activate EXWINDOW by either clicking in it or using SELECT.WINDOW.
when the window is activated, it will run the program TEST.ACTIVATE,
which displays the message "Window Activated!l”, and executes WORDS. When
WORDS has completed, it will pass control back to the MacFORTH interpreter,
which will display "ok".

Now click down in another window. When the window is deactivated,
TEST.ACTIVATE will be executed again, but this time a false flag is passed,
indicating the window is being deactivated. The message "Window
Deactivated!I” will be displayed, and control is passed to the newly selected
window.

Window Function Template

Each program assigned to a window should be similar to the following
template:
¢ WINDOW.FUNCTION (activate flag --)
IF {activate code>
ELSE <deactivate code>
THEN ;

This is discussed in more detail in the Windows chapter.

Multiple Windows
The number of vrindoyrs you can have and display at the same time is limited

only by the amount of memory available. When a window is activated, its
program will run until it completes or another window is activated.

Getting Results Page 5 - 18 August 27, 1984

Menus

Another important innovation of the Macintosh is the use of menus. Menus
allow you to present a large number of options to the user while at the same
time not requiring him or her to go through several layers of traditional
menus or remember a large number of commands.

The menu examples presented in the previous chapter should have given you a
good foundation for creating your own menus. For an in-depth discussion of
menus, refer to the Menus chapter.

Sound Generation

The Macintosh supports a wide range of sound capabilities. MacFORTH
provides access to the ROM sound driver for complex sounds (free form and 4
voice wave form) as well as versatile support for simple square wave tone
generation.

Simple Tone Generation
In order to generate distinctive sounds to alert the operator or play simple
melodies, MacFORTH provides the word TONE. TONE expects three things on
the stack:

duration\volume\frequency

Duration is expressed in increments of 1/60 of a second "ticks” and is in the
range O through 256 (0-45 seconds).

Yolume is expressed in a scale from 1 through 255, with 255 representing the
loudest. The volume is also determined by the value you have chosen in the
control panel. '

Erequency is expressed in hertz * 10.

For example,
68 128 1888 TONE

will generate a tone of 100 Hz at half volume for 1 second. Here are a few
others to try:

68 128 180 TONE

68 128 18088 TONE

128 64 38888 TONE

Getting Results Page 5 - 19 August 27, 1984

Detecting Sound in Progress

The word ?SOUND lets you check to see if a tone or series of tones is
currently being sounded.

Aborting Sound in Progress
The word HUSH allows you to abort any sounds currently being generated.

Rest Notes
A frequency of 0 waits the supplied duration with no sound output.

Note/Frequency Equivalence
The following table provides frequency equivalence for notes in an 8 octave

human tempered scale:
Octave (frequency*10)

_Hote 8 1 2 3 4 3 1] ?
C 164 327 634 1388 2616 5233 18466 28938
c* 173 348 693 1386 2772 5544 11887 22175
D 164 367 734 1468 2937 3873 11747 23493
D® 194 389 718 1556 3111 6223 12445 24898
E 286 1412 824 1648 3296 6593 13185 26398
F 218 437 873 1746 3486 6985 13969 27938
F* 231 162 925 1858 3788 7788 14888 29688
] 245 498 988 1968 3926 7848 156868 31360
6® 268 519 1838 2872 4153 8389 16612 33224
fA 215 558 1180 2200 4488 G860 176688 35288
As 291 583 1165 2331 4662 9323 18647 37293
B 389 617 1235 2469 4939 9876 19755 39511

Getting Results Page 5 - 20 August 30, 1984

Arrays

Arrays are simple! An array is just an area of memory you set aside to store
data in. You decide what is kept in the array and how the data is accessed.
This can range from & very simple, one dimensional array storing single
characters to a multi-dimensional array storing complex data items.

Creating an Array
To create an array, you simply assign a name to an area of memory and
allocate the amount of space you need. Use CREATE to name the area and
ALLOT to allocate the space. For example, to allocate space for an array
which will hold the ages of 10 of your employees, you would execute:

CREATE AGES 18 ALLOT

You now have an area of memory allocated (10 bytes) to the array AGES.
Since the values in this array will each fit into 1 byte (0-255), only 10 bytes
are needed.

If you wanted to create another array which would keep track of their
salaries (in the range $15,000-$75,000), each element in the array would
require 4 bytes (a 32-bit integer). You could create an array named
SALARIES for this information:

CREATE SALARIES 18 4* ALLOT

wWhy did we specify 10 4* instead of 407 Which do you think more clearly
describes 10 elements, each 4 bytes long?

Initializing the Array
You can initialize an array in many ways. The MacFORTH words ERASE and
BLANKS are convenient for zero and blank filling arrays. Try zero filling the
AGES array now by executing:

AGES 14 ERASE

Refer to the MacFORTH Glossary entry FILL for a general purpose word to fill
memory with any character.

Getting Results Page 5 - 21 August 30, 1984

Accessing Data in an Array
Given the base address of the array (given by its name), you can add the
appropriate offset to calculate the address of any element in the array. For
example, to get the first element in the AGES array (with subscript 0), you
would execute:

AGES Ce ,

and you'll see that the value is zero. To read the second element in the AGES
array (with subscript 1), you would execute:
AGES 1+ (@

and so on. Remember, the subscript of an element is zero based, meaning that
the first element is subscript 0, the second, subscript 1, the third, subscript
2, and so on. This is logical if you think of the start of the array as the base
of the array, and each element is just an offset from the base. The first
element is located at the base, the second is located one up from the base,
and so on...

Storing data in the AGES array is just as easy. For example, to store 27 in
the third element (subscript 2), you would execute:
27 AGES 2+ C!

Since each element in the ABES array is one byte long, calculating the
address of any element is as easy as adding its subscript to ABES. In the
SALARIES array, it is almost as easy.

Each element in SALARIES is 4 bytes, so you need to multiply the subscript

by 4 (the length of each element) to get the address of any element in the

array. For example, to get the first element (subscript 0), you would execute:
SALARIES @ . (or) SALARIES B 4% + @ .

To get the third element (subscript 2), you would execute:
SALARIES 2 4* + @

Wwhy did we use 2 4% + instead of 87 The first expression (2 4%) tells you
that you were getting the second 4-byte element, the second (8) is ambiguous.

Here's a word to display each element in the ABES array:
: SHOW.AGES (---)
tg#8 DO CRI . ." =" AGES I+C@ . LOOP ;

or, each element in the SALARIES array:

: SHOW.SALARIES (---)
18800 CRI, .“=" SALARIES I 4+ @ . LOOP ;

Getting Resuits Page 5 - 22 August 27, 1984

You've noticed by now that MacFORTH doesn't check to see if you are using a
valid subscript when accessing an array. This saves the tremendous overhead
of checking each and every subscript each and every time an element in the
array is accessed. It is your responsibility to check the values when
necessary.

As we said, what you do with an array and the data you keep in it is
completely up to you. Arrays in MacFORTH are free-form areas of memory. |f
you are new to FORTH programming, some interesting words to remember
when using arrays (or any time you are manipulating memory) are:

@ e <he ! ce c! CHOVE

FILL ERASE BLANKS

Getting Results Page 5 - 23 August 27, 1984

Memory Allocation

Memory in the Macintosh is allocated from a pool of available memory called
the "heap.” Although most memory allocation is handled automatically by
MacFORTH, there are two areas which you must be aware of and explicitiy
control: the object and current vocabulary areas. e leave the allocation of
memory up to you in order to give you more control of this resource.

when a new word is created in MacFORTH, the name is placed in the current
vocabulary area (usually the FORTH vocabulary). The parameter field (which
includes data, memory addresses or 68000 instructions} is placed in the
object area.

If you need more room while compiling & program and you get one of the
following error messages:
VOCABULARY FULL!
or
OBJECT FULL!
you will need to resize the appropriate space.

Displaying the Amount of Memory Available
You don't have to wait until you get one of these errors in order to resize the

appropriate space. You can monitor both areas as you add definitions by
executing the word ROON . See how much room you have allocated and
available now by executing

RooOH

and you will see the display:
aasa OF bbbb Object Bytes Available
ccce OF dddd Current Vocabulary Bytes Available
eeee Heap Bytes Available

aaaa is the number of unused object bytes available and bbbb is the total
number of object bytes allocated. Subtracting assa from bbbb will give you
the number of object bytes used).

ccec is the number of unused bytes in the current vocabulary and dddd is the
total number of bytes allocated. Subtracting cccc from dddd will give you the
number of current vocabulary bytes used).

eeee is the amount of heap space available. This tells you how much memory
is available for use. This is actually the maximum amout of available heap
space, including purgable resources (like fonts). If you allocete all of this
space, the current font will default back to the system font

Getting Results Page 5 - 24 August 30, 1984

Resizing Memory
You explicitly specify the amount of space to be used by either the object

space or current vocabulary space. This way you can increase or decrease
either as you needs require.

To resize the object space, use the command RESIZE.DBJECT, specifying the
amount of space to allocate to the area. For example, to allocate 10,500
bytes to the object area you would execute:

18568 RESIZE.OBJECT

To resize the current vocabulary space, use the command RESIZEVOCAB,
specifying the amount of space to allocate to the area. For exampie, to
allocate 9500 bytes to the current vocabulary space you would execute:

9548 RESIZE.VOCAB

After resize either memory ares, it is wise to verify the change by executing
ROOM. You will notice the amount of heap bytes available change as well as
the amount of space allocated to the area modified.

You can also resize the vocabulary and object area with HIKINUN.YOCAB and
NININUN.OBJECT respectively. Suppose you need at least 1500 bytes of
object space to load a particular program. You could execute ROOM and
calculate the appropriate value for RESIZE.OBJECT. MINIMUM.OBJECT will
do all that work for you. All you vwould need to do is execute:

1588 MININMUM.OBJECT

1f you try to allocate more space than is available, or to shrink either memory
area smaller than its current contents, MacFORTH will issue an error
message. Refer to the Error Handling chapter for more information when one
of these errors occurs.

Getting Results Page 5 - 25 August 27, 1984

Page 5 - 26

Getting Results

Chapter 6: Graphic Results

Topic Page
Overview 2
Preparation 2
QuickDraw™: A Solid Base 2
Your Window, Your Canvas 3
The MacFORTH Window 3
Graphics Initialization 4
The Native QuickDraw Coordinate System 4
Cartesian Coordinate System 4
The QuickDraw Coordinate System 5
The Magic of QuickDraw 6
Range of Coordinates 7
A Handy Tool 7
Line Drawing 8
Window Pen Characteristics 9
Text Output 14
Character Font 14
Text Style i6
Text Mode 17
Text Size 18
Line Height 18
Moving the Origin 19
Background Pattern 20
QuickDraw Shapes 20
Rectangles 21
Ovals 22
Rounded Corner Rectangles 22
Arcs and Wedges 23
Relative Line Drawing 24
Scaling to User Coordinates 25
Rotate to User Coordinates 26
Point Pairs o Rectangle Coordinate Conversion 27
Integer Trig Functions 27
Finding Dut What's There 28
Drawing to Other Windows 28
Demo Programs 29

Graphic Results Page 6 - 1 August 30, 1984

Overview

This chapter discusses how to produce graphics images on the Macintosh. It
is intended to introduce you, through examples, to each of the features of the
MacFORTH graphics package. In our examples, we frequently use the enalogy of
drawing with a pen on a piece of paper for clarity.

Preparations

It's a good idea to complete this chapter in one sitting (it should take you
20-30 minutes). If you have read straight through the preceding chapters you
may want to take a break, then come back to this chapter.

As you go through this chapter, let your imagination run free. Explore. Be
creative! Our examples are intended to trigger your own examples. Of all the
wonderful things that Macintosh graphics packege is, perhaps the most
important feature is that it's fun to use!

QuickDraw™: A Solid Base

QuickDraw is the underlying graphics package from which the Macintosh User
Interface (ie. menus, windows, etc.) is constructed. Written by Bili Atkinson,
QuickDraw represents many major innovations in graphics software
technology.

QuickDraw lives up to its name! It's very fast. You can do good guality
animation, fast interactive graphics, and complex yet speedy text displays
using the full features of QuickDraw. Using QuickDraw, you can divide the
Macintosh screen into a number of individual windows. Within each window
you can draw:

- Straight lines of any length and width.

- Text characters in a number of proportional and fixed spaced fonts,
with variations that include boldface, italics, underline, shadow,
and outline.

- A variety of shapes, either solid or hollow, including rectangles with
or without rounded corners, ovals, arcs, and wedges.

- An arbitrary shape or collection of shapes, either solid or hollow.

Graphic Results Page 6 -2 August 30, 1984

In addition, QuickDraw has some other abilities that you won't find in many
other graphics packages. These features take care of most of the
“housekeeping” -- the trivial but time-consuming and bothersome overhead
that's necessary to keep things in order:

- The ability to define many distinct windows on the screen, each with
its own complete drawing environment -- its own coordinate system,
drawing location, character set, location on the screen, and so on. You
can easily switch from one window to another.

- Full and complete "clipping” to arbitrary areas, so that drawing will
occur only where you want. You don't have to worry about accidentally
drawing over something else on the screen, or drawing off the screen
and destroying memory.

MacFORTH provides you with direct access to most of the features of
QuickDraw. Upon this strong foundation we have buill & two dimensional
graphics package capable of translating pictures and images which are
expressed in natural user coordinates (ig; feet, miles, furlongs, centimeters)
into actual images on the screen. The images that you create may be offset,
rotated, and scaled with respect to the window in which you are drawing.

Your Window, Your Canvas

All drawing occurs within the content region of a window. The content region
of a window is the area inside the window excluding the title bar, grow box
and any control bars. Each window is @ complete and separate drawing
environment that defines how snd where graphic operations will have their
effect. Each window has it's own coordinate system, drawing pattern,
background pattern, pen size and location, and character font size and style.
You may instantly switch between windows for graphic output.

The MacFORTH ¥Window

In the following examples, you will use the MacFORTH window for graphics
output. Although both interactive transactions with MacFORTH and graphics
output will occur on the same window, we will later discuss how to do each
in separate windows.

Now, resize the MacFORTH window to take up most of the available deskiop
space. (If you don't understand how to do this, run the Guided Tour to
Macintosh and review the preceding chapters).

Graphic Results Page 6 -3 August 30, 1984

Graphics Initialization

Before you begin drawing, execute
GINIT

This will restore the state of the graphics system to it's default state. If,
while trying the examples in this chapier, you become confused as to what is
going on (e.g. drawing in white ink on a white background) use GINIT to
restore the system to a known state - black ink on white background. You will
notice that the cursor moves immediately to the upper left corner of the
window.

The QuickDraw Coordinate System

GIHIT also resets coordinate interpretation to QuickDraw native mode (which
we call “native coordinates™), and places the pen at 0,0. Let's move the origin
to the center of the screen and display the xy-axis. Execute

CENTER XYRKIS

Take Noteld! QuickDraw native coordinates are different from the normal
Cartesian coordinates that you may have learned in school:

Cartesian Coordinate Sytem

Here's a diagram of the coordinate system most people learned in school. As
you would expect, increasing y-axis values progress upward, increasing
X-axis values progress to the right.

Higher'y
VA
i
I
1(0,0)

Lower ¥ {—————- > Higher X’

|
|
]
N

lower’y

Graphic Results Page 6 -4 August 30, 1964

QuickDraw Coordinate System

Here's 8 diagram of the QuickDraw coordinate system. Notice the difference?
tn QuickDraw, as in Cartesian coordinates, x-axis values progress to the right.
The difference is that y-axis values progress downward.

lewer’y
AN
|
|
|
Lower ' <(—————————m————— » Higher ‘¥’
1(0,0)
I
l
LY
Higher'y

¥hen you executed
CENTER RYRRIS

you directed MacFORTH to center the coordinate system and draw an #y-8xis.
Look carefully at the xy-axis on the screen. The '+ sign for the y-a%is (up an -
down direction) is at the bottom, not the top (where it would be in Cartesian
coordinates).

GINIT restores the position of the point (0,0} to the upper left corner of the
window {which you changed by executing the word CENTER). The diagram
below shows how your window relates to the coordinate system in native
QuickDraw coordinates:

{ top left corner of screen -~)}

v
————————————————— > higher ‘g’
| o
1100 |
I Mac I
Il Window]
| | orPageof |
Il Text |
| e !
|

\/

higher 'y’

Graphic Results Page 6 -5 August 31, 1984

Execute the following example:
18 18 NOUE.TO0 58 58 DRAW.TO

This will move the pen to 10, 10 and draw a line to 50, S0. Motice the line
slopes downward.

MOVE.TO expects two values on the stack (the x and y coordinate of a point),
and moves the starting point for drawing to that position. If you think of
drawing lines with a pen, MOVE.TO simulates lifting the pen off of the paper
and moving it 1o the specified location.

DRAW.TO expects two values on the stack (the % and y coordinate of a point),
and draws a line from the current point to the specified point. The new
location becomes the starting point for the next operation. If you think of
drawing lines with a pen, DRAW.TO simulates keeping the pen down as you
move it to the specified location.

The Magic of QuickDraw

Most major innovation is the result of relaxing traditionally accepted
constraints and discovering new ways of looking at a problem. By relaxing
the Cartesian y-axis constraint, Bill Atkinson was able to construct &
mathematically pure model capable of expressing a two dimensional
coordinate system on bit-mapped graphics screens. Much of the startling
performance of the (QuickDraw package is the result of the far simpler
arithmetic relationships between points in graphics memory and QuickDraw
coordinates rather than Cartesian coordinates.

But don't panicl You don't have to learn a new method of drawing points if you
don't want to. MacFORTH allows you to express points in the Cartesian
coordinate system if you prefer. Try the following example;

CARTESIAN OM (specify the Cartesian system)
PAGE { clear the window)

CENTER (center the xy axiz in the window)
KYAXIS { display the xy axis)

16 16 NOUE.TO 56 58 DRAW.TO { draw a line)
The line that was drawn slopes upward, just as you would expect it to when
drawn in & Cartesian coordinate system. To go back to the native QuickDraw
coordinate system, execute:

CARTESIAH OFF

That's how easy it is to change between the two coordinate systems!

Graphic Results Page 6 -6 August 31, 1984

Range of Coordinates

Coordinate values are between -32768 and +32767 for both % and y. Based
upon where you place the axis origin, points that are calculated to appear
within the window will be displayed; all others are not. Execute:

CARTESIAN OH

CENTER { discussed later)

16 16 MOUE.TO 1987 1900 DRRU.TO

Notice that the line was drawn right off of the window. Now execute:
26 18 NOUE.TO 189808 188888 DRAW.TO

Numbers greater then 32767 “wrap sround” to the negative end of the
coordinate system. Coordinate values outside the range +32767 are invalid
Refer to the "Scaling to User Coordinates” section of this chapter for how to
deal with larger numbers.

A Handy Tool

Enter the following definition to save yourself some typing:
i CLEAN { ---) PAGE CENTER CARTESIAN ON KYAKIS ;

Try it out now, execute:
CLERK

** Programming Tip ** when writing and testing MacFORTH programs, any
sequence of commands you use a 1ot should be defined and given a name.

In examples in the rest of this chapter, we will ask you to execute CLEAN 1o
be sure you are in a known state. Remember, if you re-boot MacFORTH, or
FORGET the word CLEAN, you will need to re-enter the definition. From now
on we'll just use CLEAN to clean up the display and redraw the gy-axis.

Graphic Resulis Page 6 -7 August 31, 1984

Here's a quick summary of the commands we have presented so far:
CARTESIAN OFF Sets mode to native QuickDraw coordinates
CARTESIAN O Sets mode to cartesian coordinates
CENTER Positions the xy origin in the center of the window

CLEAH Wipes the display and places the wxy-axis in
Cartesian coordinates on the screen
{this word is only present if you enter the definition
given on the previous page)

DRAU.TO Draws with the pen to the specified location from
the current location
{for now use MOVETO before every DRAW.TO on the
same ling)

GINIT Reverts to Macintosh native coordinates and piaces
the xy origin in the upper left corner of the window

MOUE.TO Moves the pen to the specified location
PAGE Clears the screen
HYRKIS Displays the xy-anis

Line Drawing

As you have seen, lines are defined by two points: the current pen location
and a destination location. When drawing a line, QuickDraw moves the pen
{actually the top left corner of the pen) along the calculated line from the
current location to the destination.

if you draw a line to a location outside your window the pen location will

move there, but only the portion of the line that is calculated to be ingide the
window will actually be drawn. This is true for all drawing procedures.

Graphics Results Page6-8 August 31, 1984

Window Pen Characteristics

The graphics “pen” associated with each window has the following unigue
characteristics:

a location

a size and shape

a drawing pattern

8 drawing mode

Pen Location

The pen location is a point in the coordinate system of the window and is
where QuickDraw will begin drawing the next line, shape, or character.
Within the range of coordinates there are no restrictions on the location or
placement of the pen. Remember, if you position the pen outside of the
window, you won't see part of the next line or shape drawn (if you leave it
there).

As you have already seen, MOVE.TO positions the pen at the specified
location, and DRAW.TO draws from the current location to the specified
point.

Notice the emphasis that DRAW.TO draws from the current location. To
illustrate this point, execute the following example (on three separate lines):
CLEAH
18 18 NMOUE.TO
108 188 DRAW.TO

what happened?? Let's try it again, one step at a time. Execute:
CLERH

You see that the window was cleared, the »y-axis was displayed, and the “ok”
was displayed in the upper 1eft corner. Next, execute:
18 18 NOVE, TO

look at the wy-axis, where the point (10,10} is. See the “ok*? This tells you
where the pen location was moved to. After MacFORTH processed the
command, it output the "ok” and then moved the pen to the start of the next
line {at the current cursor position). Each time you enter a character, the pen
location is moved to the right {(at the position of the cursor). So, when you
exuecte:

186 186 DRAW.TO

wWhere was the current location when the command was processed? Al the
cursor position, just to the right of the DRAW.TO command.

Graphics Resulis Page6-9 August 31, 1984

This is why you were given examples with MOVE.TO and DRAW.TO on the
same line. Now tru:

CLEAN

18 16 NOVE.TO 189 188 DRAK.TO

and you'll see the line you expected. Remember, the current pen location is
changed when MacFORTH finishes what you just asked in interactive (or
interpretive) mode. While running a program, your pen will move only to
where you specify.

Pen Drawing
You've already seen how to draw using the commands MOVE.TO and DRAW.TO.
If you slready know the starting and ending positions of a line, you can
simplify drawing it with the word VECTOR. VYECTOR draws a line between 2
specified points. For example, to draw the same line two different ways, you
could execute either:

8 5 MOUE.TO 188 188 LINE.TO
or:

4§ 8 198 189 UECTOR

If you only want to display a single dot, you can use the word DOT. DOT
expects the % and y coordinate of the dot you want to display. Try displaying
a few dots by executing:

CLERN

28 28 DOT

18 18 00T

38 58 DOT

-18 35 DOT

In MacFORTH, it is easy to define your own shapes. For example, here's 4
definition to draw & small box (you may want to edit this definition into a
block and then load it):
: BO¥ (--- | draows a square on the screen)
14 18 MOUE.TO -18 14 DRAW.TO
-1 -1 DRAW.T0 18 -18 DRAK.TO
14 18 DRAU.TO ;

Now try it out by executing:
CLEAN BO¥

Feel free to modify the definition for BOX to create some graphics shapes of
your own. You may want to increase the size of the box, or make & diamond, or
whatever...

Graphics Results Page 6 - 10 August 31, 1984

Pen Size and Shape

The pen is rectangular in shape, and has a user-definable width and height.
The default size (reset by GINIT }is a 1 by 1 bit square; the width and height
can range from 0, 0 (no pen show), all the wayup to 32,767, 32,767 (a very,
very thick pen). If either the pen width or the pen height is less than 1 the
pen will not draw on the screen.

You can modify the size of a pen by specifying its width and height in terms
of dots to the word PENSIZE . For example,
5 18 PENSIZE

would specify a pen 5 dots wide and 10 dots high. To see what effect this
has, try a few examples:

CLERN

1 1 PENSIZE 188 188 DOT

5 18 PENSIZE 58 58 DOT

1 1 PENSIZ2E 8 8 -58 -58 UECTOR

18 3 PENSIZE 6 8 188 -188 UECTOR

CLERN
1 1 PENSIZE BOX

CLEAN
1 5 PENSIZE BO¥

CLERH
5 1 PENSIZE BOY

CLEAN

The pen appears as a rectangle with its top left corner at the pen location; it
hangs below and to the right of the pen location. You can see this by
executing:

18 18 PENSIZE & & DOT

Think of the coordinate plane as a grid. Individusl dots are separated by the
lines of the grid. As the pen moves across the grid, only dots below and to the
right of the pen which fall within the pen size rectangle are affected by the
pen.

Graphics Resulis Page 6 - 11 August 31, 1984

Pen Mode and Pen Pattern Characteristics
The pen mode and pen pattern characteristics determine how the bits under
the pen are affected when lines or shapes are drawn. The pen pattern is an
§-bit by B-bit pattern that is used like the "ink” in the pen. Five patterns are
predefined: (WHITE, LTGRAY, GRAY, DKGRAY, BLACK). Try a few examples:

CLEAN

19 18 PENSIZE

GRAY PENPAT

-199 189 -19 18 UECTOR

DKGRAY PENPAT

-126 188 -28 18 UECTOR

For fun try:
CLEAN
CREATE <BRICKS>
HEX ©808880FF , BG68886FF , DECINAL

CLERH 28 28 PENSIZE
<BRICKS> PENPAT
18 18 186 188 UECTOR

Some of the other patterns that we have worked with include:
HEX
CREATE <SPIRAL> BBFEB2FA BABAG2FE

CREATE <CHECKS> CCCC3333 , CCCC3333 ,
CREATE <BIG,CHECKS> FBFOFBFS , OFBFBFAF ,
CREATE <SIGHAS> BAC4426 , 1828447C ,
CREATE <HERVE> Fg742247 , BF172271 ,
CRERTE <MARBLES> 778968F6F , 7798FBF8 ,
CREATE <WAFFLES> BFCBBFBF , BABOBBBY ,

DECIMAL

As you can see, the pen pattern is used to fill in the bits that are affected by
the drawing operation.

Pen Mode

The pen transfer mode determines how the pen pattern is to affect those dots
which pass under the pen. When the pen draws, QuickDraw first determines
what bits of the bit map will be affected and finds their corresponding bits in
the pattern. it then does a bit-by-bit evaluation based on the pen mode, which
specifies one of eight boolean operations to perform. The resulting bit is
placed back into memory.

Graphics Results Page 6 - 12 August 31, 1984

The word PENMODE allows you to specify the current pen mode. Choose the
pen mode from one of the following constants {each mode specified below is
represented by a MacFORTH constant, of the same name}:

Dot was Dot was
Mode Black ¥hite
PRTCOPY Force Black Force White
PRTOR Force Black No Change
PRTXOR Invert No Change
PATBIC Force White Mo Change
NOTPATCOPY Force White Force Black
NOTPRTOR Mo Change Force Black
NOTPATXOR Mo Change Invert
NOTPATBIC No Change Force White

For each type of mode, there are four basic operations -- Copy, Or, Xor, and
Bic. The Copy operation simply replaces the dots in the destination with the
dots in the pattern , “painting” over the destination without regard for what
is already there. The Or, Xor, and Bic operations leave the destination dois
under the white part of the pattern or source unchanged, and differ in how
they affect the dots , thus "overiaying” the destination with the biack part of
the pattern . Xor inverts the dots under the black part. Bic erases them to
#hite.

Each of the basic operations has an alternate form in which every pixel in the
patiern is inverted before the operation is performed. Each mode is defined
by name as a constant in MacFORTH, eqg. (PATCOPY} . The best way to
understand each mode is to experiment with them. Try the following
examples to start with, and then try some of your own:

CLERN

<BRICKS> PENPAT

PATHOR PENIODE

28 28 PENSIZE

8 9 198 -188 UECTOR

BLACK PEWPAT
8 4 56 -58 UECTOR

Graphics Results Page 6- 13 August 31, 1984

Text OQutput

MacFORTH allows you to output in any text font, style, mode, or size available
on the Macintosh. Text drawing does not use the pensize pen pattern or pen
mode, but 1t does use (and modify) the pen location. Each character is placed
to the right of the current pen location, with the left end of its base line at
the pen's Jocation. The pen is moved to the right to the location where it will
draw the next character. Enter:

GINIT CLEAH

168 186 DRAK,TO

All text drawn on the screen is drawn by QuickDraw. As & result, when the
word DRAW.TD was echoed back to the user as it was typed in, the current
point advanced and was 1eft at the end of the text. The line was then drawing
from that point to 100 100 (from the center of the window).

Text echoed back to MacFORTH is & special case, and only effects graphics
drawn interactively in the MacFORTH window. When a carriage return or line
feed is output, MacFORTH determines where to put the next line of text. Text
advances down along the QuickDraw native ¥ coordinate until the next line
would be partially off of the window. MacFORTH then scrolls the window up
to make room for the new line. Enter:

CLEAH

186 108 MOUE.TO ." How is the time "
-184 188 NOVE.T0 5

To move text around the screen, use MOVE.TO and then ouput the text. If you
attempt to output & line feed st & point which is not currently in the window,
MacFORTH will force it back onto the screen. This is so that all error
messages will appear on the display.

Any text which occurs within a window is drawn according to the currently
specified font, style, transfer mode and size. OuickDraw can draw characlers
as quickly and easily as it draws 1ines and shapes, and in many prepared fonts.

Character Font

A character font is defined as & collection of bit images: these images make
up the individual characters of the font. The characlers can be of unequal
widths {proportional space cheracters). A font cen consist of up to 256
distinct characters, yet not all charscters need be defined in & single font.
Each font contains a missing symbol to be drawn in case of & request to draw
a character that is missing from the font {usually O -~ & hollow rectangle).
Each font is assigned & specific reference number. I you have deleted any

Graphics Resulis Page 6 - 14 August 31, 1984

fonts from the MacFORTH disc (as explained in the Macintosh Users manual
provided with your computer}, they won't be available from MacFORTH. The
word TEXTFONT allows you to specify the current text font. Choose the text
font from one of the following values {no MacFORTH constants are provided
for the text fonts):

Font Value
Chicago 0 (System font)
Application 1 {Wew York)
New York 2
Geneva 3
Monaco 4 (fixed space -~ the default MacFORTH font)
Venice 5
London 6 {Gothic}
Athens 7

San Francisco 8 (ransom notes)
Toronto 9
For example, those of you who are hooked on television police shows will
recognize:
CR 8 TEXTFONT ." Have your goldfish, send cash or tartar sauce”
4 TEXTFONT

And English history buffs will think of:
CR 6 TEXTFONT ." King Richard 111"

To return o the normal MacFORTH system font execute:
4 TEXTFOHT

To read the value of the currently selected textfont, execute:
GET,TEXTFONT .

Graphics Results Page 6- 15 August 31, 1984

Text Style
The text style controls the appearance of the font. The following styles are

available: bold, italic, underline, outline, shadow, condense, and extend. You
can apply these either alone or in combination. Most combinations usually
look better on a larger character size.

If you specify bold, each character is repeatedly drawn one bit to the right an
appropriate number of times for extra thickness.

/t&/ic adds an italic slant to the characters. Character bits above the base
line are skewed right; bits below the base line are skewed left.

Underline draws a line below the base line of the characters. If part of a
character descends below the base line (ie: p} the underline is not drawn
through the dot on either side of the descending part.

You may specify either GURTIRE or BREEIAW. Outline makes & hollow outlined
cheracter rather than & solid one. ‘With shadow, not only is the character
hollow and outlined, but the outline is thickened below and to the right of the
character 10 achieve the effect of a shadow. If you specify bold along with
putline or shadow, the hollow part of the character is widened. For both of
these type styles, the text mode (discussed next) must be SRCOR or
SRCXOR.

Condensed and extended affect the horizontal distance between all
characters, including spaces. Condensed decreases the distance between
characters and extended increases it.

The word TEXTSTYLE allows you to specify the current text style. Choose
the text style fram one of the following constants {each style listed is
represented by a MacFORTH constant of the same name):
Style git* Hex Yalue
PLATH n/a
BOLD 8
ITALIC
UHDERLINE
OUTLINE
SHAGOW
CONDENSED
EXTENDED

Ch BN -
——

For example, try:
BOLD TEXTSTYLE ." Somple *
BOLD UMDERLINE + TEXTSTYLE ." Sample "

Graphics Results Page 6 - 16 August 31, 1984

To read the current text style, execute
GET.TEXTSTYLE .

For example, to enhance the current text style with bold face, you would
execute:
GET.TEXTSTYLE BOLD + TEXTSTYLE

Reset the text style to the default {plain setting) enter:
PLAIN TEXTSTYLE

Text Mode

The text mode controls the way characters are placed on a bit image. It
functions much like a pen mode: when a character is drawn, QuickDraw
determines which bits of the bit image will be affected, does a bit-by-bit
comparison based on the mode, and stores the resulting bits into the bit
image.

The word TEXTMODE allows you to specify the current text mode. Chose the
text mode from one of the following constants {(each mode listed is
represented by a MacFORTH constant of the same name):

SRCCOPY (source copy)

SRCOR {source or)

SRCXOR {source exclusive or)

SRCBIC (source bit clear)

The best way to understand each text mode is to experiment with each. The
default text mode is SRCXOR. Try the following examples to get started,
then continue with a few of your own:

SRCKOR TEKTMODE (be sure its the defoult)

PAGE

188 188 MOUE.TO " HELLD"

{press Return an extra time here to avoid overwriting the previous line)
181 181 MOUE.TO ." HELLO"

(again, press Return a few times to avoid overwriting the previous lines)
SRCCOPY TEXTHODE
189 188 HMOUE.TO ." HELLO®

Return to the default text mode when you finish experimenting by executing:
SRCAOR TEXTHODE

Finally, clean up the window by executing:
PAGE

Graphics Results Page 6 - 17 August 31, 1984

Text Size

The text size specifies the type size for the font in points ("points” here is a
printing term meaning 1/72 inch). Any size may be specified. If the
Macintosh Font Manager does not have the font in a specified size, it will
scale g size it does have in order to produce the size desired. A value of O
directs the Font Manager to select the size from among those it has for the
font; it will choose whichever size is closest to the system font size
{12-point).

The word TEXTSIZE allows you Lo specify the text size. For example, to set
the text size to be 20, you would execute:
28 TEXTSIZE

You can read the current text size by executing
GET. TERTSIZE .

Here are a few exampies to try:
34 TEXTSIZE
21 TEKTSIZE
5 TEXTSIZE
19 TEXTSIZE

and finally, return to the default text size by executing:
12 TEXTSIZE

You can see that when you increase the size of the font, it overwrites letters
on previous lines. This is due to the line height for output, explained next.

Line Height

The line height determines how far to advance down the page or scroll up
when a8 linefeed is encountered. Line height should normally be a little larger
than the text size {usually 3 points larger).

The word LINE.HEIGHT allows you to specify the line height,
GET.LINE.HEIGHT returns the current line height. Here are a few examples
to try

15 LINE.HEIGHT 12 TEXTSIZE (the default values)

28 LINE. HEIGHT

38 LINE.HEIGHT

15 LINE.HEIGHT

Execute GINIT to restore text size and line height.

Graphic Results Page 6 - 18 August 31, 1984

Moving the Origin

MacFORTH allows you to move the origin for graphics output around on your
window. As you have already seen, XYAXIS draws the xy-axis around the
center of the coordinate system. Execute

PAGE

CENTER

CARTESIAN ON

HYAKIS

and you'll see the ®y-aris drawn in the center of your window. You can also
select the upper and lower left corner of the window as the origin. Try:

PAGE

LOWER.LEFT XYRXIS

and you'll see the wy-axis (only the upper right guadrant) displayed in the
lower left corner of your window. Now try:

PAGE

UPPER.LEFT XYAXIS

and you'll see the xy-axis (only the lower right quadrant) displayed in the
upper left corner of your window.

From any of these new origins, you can draw graphics just as you did from the
center of the window. As before, only those points that are inside the bounds
of the window will be displayed.

You can take moving the xy origin one step further and position it anywhere
{inside or sutside the window). The word XYOFFSET allows you to express
the offset from the upper left corner of your window in native QuickDraw
coordinates for your %y origin. For example, to position your origin 150 dots
from the left and 75 dots from the top of your window (the content region},
you would execute:

158 75 AYOFFSET

Now verify this by executing:
AYARIS

Try out your new origin location by executing:
PAGE
KYAKIS
9 7 188 -188 UECTOR

and you can see that the origin has indeed been moved.

Graphic Results Page 6 - 19 August 31, 1984

Background Pattern

The default pattern for the background of a given window is white. You can
change this to any pattern you like using the word BACKPAT. Here are a few
examples to try (the word PAGE simply fills the background with the current
background pattern):

SRCCOPY TEXTMODE { so you can see what you type)}

DKGRAY BACKPAT PAGE

<BRICKS> BACKPAT PAGE

GRAY BACKPAT PAGE

BLACK BACKPAT PAGE

And finally, return to the default background pattern by executing:
WHITE BACKPAT PAGE
SRCKOR TEXTHMODE

QJuickDraw Shapes
QuickDraw supports a number of predefined shapes:

Rectangles

Ovals (includes circles)
Rounded Corner Rectangles
Arcs (includes wedges)

tach shape may be FRAMEd, PAINTed, CLEARed, INVERTed or PATTERNed.

The outlines of FRAMEd shapes are drawn with the current pen size, shape
maode, and pattern. As the pen traces just inside the boundaries of the shape,
dots to the right and below the pen (within the pen size} are rodified. The
pen location is not affected.

Dots within the boundaries of PAINTed shapes are filled with the current pen
pattern and mode. The pen location is not effected.

Dots within the boundaries of CLEARed shapes are set to the background
pattern in pattern copy mode.

Dots within the boundaries of INVERTed shapes are 1oggled. Dots that were
black become white and white dots become black.

Dots within the boundaries of PATTERNed shapes are filled with the supplied
pattern in pattern copy mode.

GGraphic Results Page 6 - 20 August 31, 1984

Rectangles
Rectangles are defined by two points at opposing corners. For example:

GINIT PARGE

58 56 288 288 FRANE RECTANGLE
209 189 198 288 INUERT RECTRNGLE
CARTESIAN OM

CENTER PAGE
RYARIS
-108 -198 186 188 GRAY PATTERN RECTANGLE

If you still have bricks around, try:
PAGE
-138 -268 138 -188 <BRICKS> PRTTERN RECTAHGLE

{If you have forgotten <BRICKS), execute:
HE¥
CREATE <BRICKS> 8OBABAFF , AOBBAGFF ,
DECINAL
and then try the previous example again.)

The stack arguments for a rectangle are:
{ X1y 1\x2\y2\[patternjsmode --)

Notice the top two stack items. The pattern parameter is optional. This
convention holds true for the standard QuickDraw patterns. |f you use one of
the standard modes, you don't specify a patiern. Standard QuickDraw modes
are:

FRAME PAINT CLEAR INUERT

(as explained in the beginnning of this section}. In the previous example, to
draw a framed rectangle, you executed:
58 54 288 208 FRAME RECTANGLE

{f you use a pattern (like WHITE, GRAY, DKGRAY, BLACK, or one you have
created -- like the <BRICKS> example), you need to supply the patiern
address and specify the mode as PATTERN. In the previous example, to draw
8 gray rectangle, you executed:

-180 -188 1498 188 GRAY PATTERN RECTANGLE

Graphic Results Page 6 - 21 August 31, 1984

Ovals
Ovals are drawn within a specified rectangle. A square rectangle resultsins
circle. For example:

CLEAN
8 8 268 188 IHUERT OUAL

<BRICKS> PENPART
-28 -28 8 B PAINT OUAL

DKGRRY BACKPAT
-188 8 186 188 CLEAR OUAL

BLACK PENPAT WHITE BACKPAT
~-158 -158 189 189 FRAME DUAL
The arguments to an oval are the same as those 1o a rectangle.
Rounded Corner Rectangles
A rounded corner rectangle is specified by a rectangle and the height and
width of an oval which describes the corners.
For example:
CLERN
58 59 1268 128 28 18 INUERT RRECTANGLE
-58 -58 28 28 5 5 FRANE BRECTANGLE
The stack srguments for 8 rounded rectangle are
% 1% 1\x2\y2\oval width\oval height\[pattern]\mode --
The oval width and height specify the oval the corners of the rectangle lie

within. If this seems confusing, experiment with these two values on a
rounded rectangle a few times -- a picture really is worth a thousand words!

Graphic Results Page 6 - 22 August 31, 1984

Arcs and Wedges
Arcs are specified by an enclosing rectangle, and the starting angle of where

the arc begins and the arc angle of the extent of the arc. The angles are
treated modulo 360 and may be expressed in positive or negative degrees. A
positive angle proceeds clockwise, a negative angle, counter clockwise. As
with the rounded rectangles, this may seem confusing at first, but
experimenting with a few makes them much clearer.

while you are experimenting, if you imagine the screen is the face of a clock:
g degrees is at 12:88
96 (or -278) degrees is at 3:88
188 (or -188) degrees is ot 6:88 etc.

Arcs use the following stack arguments:
(x1\y1\x2\y2\start angleNarcangleh[patternf\mode -- }

For example:
CLEAN
5 5 PENSIZE BLACK PENPAT
28 28 198 188 98 128 FRAME ARC
-190 -168 198 188 -45 246 GRAY PATTERH ARC

Graphic Results Page 6 - 23 August 31,1984

Relative Line Drawing

Frequently, groups of lines and dots are more related to each other than to
their position on the screen. For example, the relationship between the lines
that make up a particular character make more sense described in terms of
each other. If the starting point is moved, then all relative lines and points
can be redrawn without converting all of the points to the new location. For

example:

CLERN

: RBO¥ (--- | draw the sides relative to eachother)
5 5 RAMOVE -16 7 RDARU
~18 RDRAN 19 9 RDRAW
B 18 RORARK ;

1 1 PENSIZE PATCOPY PENMODE

28 286 HWOUE.TO RBOX

49 36 MNOUE.TO RBOK

Here's a definition to draw & symbol for FORTH (you may want to edit this

definition into an empty black in your work file):

: 4TH { --- | draw an abstract symbol for FORTH)}
58 8 RMOVE 8 -20 RDRAU
-3 8 RMOUE B 42 RDARAW
-28 8 RMOUE B -48 RORAW
-28 8 RMOUE B 48 RDRAU
-36 B RMOUE 8 -28 RORAW
186 B RORAU ;

Now move to any position and draw it. For example, try:

CLEAN
18 19 PENSIZE
184 186 NOVE.TO

11 PENSIZE
8 NOUE.TO 4TH

CLERH

Graphic. Results

4TH

Page 6 - 24

August 31, 1984

Scaling to User Coordinates

MacFORTH allows you to scale your drawings to arbitrary user coordinates.
You can think of "scaling” as expressing values in terms of a percentage of
another value. The word XYSCALE allows you to set the scale for both the x-
and y-axis. The default xy scale is 100,100, Try a few examples to illustrate
this:

For example:
CLEAN HYARIS

18 18 MOUE.TO 4TH
188 59 ¥YSCALE

18 18 MOUE.TO 4TH
198 288 KYSCALE
19 18 MOVE.TO 4TH

188 188 ¥YSCALE
-58 -58 18 18 GRAY PATTEAN RECTANGLE

25 158 KYSCALE
-5 -58 18 18 DKGRAY PATTERN RECTANGLE

If you wanted to draw the dimensions of a plot of 1and, expressed in feet, how
would you map this to a Macintosh window? 'If the window is 100 % 100 dois
and the maximum dimension of the plot of land was 500 feet, you could set
the scale to:

28 28 ¥YSCALE

and enter the coordinates in feet (each dot equals S feet). MacFORTH will
automatically scale the data and display it for you.

Graphic Results Page 6 - 25 August 31, 1984

Rotate to User Coordinates

MacFORTH also allows rotation of the coordinate system around the origin. By
temporarily offsetting the origin, other objects may be rotated. The word
XYPIVOT allows you to set the angle of rotation (in degrees) for the xy axis.
For example, try rotating the 4TH symbol 30 degrees:

PAGE CENTER

38 KYPIUOT

HYARIS

58 58 188 188 UECTOR

Now try:
g #YPIUOT
XYRKIS
58 58 188 188 UECTOR

and you can see how the first line and axis was rotated 30 degrees.

Here's a definition to spin the 4TH symbol by just changing the pivot:
SPIN (--- | spin the 4TH symbol }
PAGE PATXOR PENMODE
CENTER CRARTESIAN ON 368 &
DO I KYPIUOT
g 9 NOUE.TO 4TH B @ NMOUE.TO 4TH
3 +LOOP

By simply rotating the xy axis, you were able to rotate the 4TH symbol
without modifying the word 4TH itself. Mow try

5 5 PENSIZE SPIN

188 288 KYSCALE SPIN

288 188 KYSCRLE SPIH

Remember, only user defined shapes are rotated. QOuickDraw shapes {using
RECTANGLE, OVAL, and RRECTANGLE) are not rotated.

Grephic Results Page 6 - 26 August 31, 1584

Point Pairs to Rectangle Coordinate Conversion

Converting between two points (x1,y1,22,y2} and QuickDraw rectangles
(top,left,bottom,right) is periodically necessary.

while most use of QuickDraw shapes for drawing purposes will occur in user
coordinates (x1\y1\x2\y2), most toolbox operations actuslly expect point
pairs (ie. a rectangle) to be expressed in QuickDraw coordinates
{top\left\bottom\right). MacFORTH normally takes care of this conversion
for you, and lets you deal in point coordinates. As your use of QuickDraw
graphics and other functions which use them (such as windows and controls)
increases, you will have to be more aware of both formats. The MacFORTH
word X¥><TLBR performs the conversion for you (either way -- given
top\left\bottom\right, it returns x1\y1\x2\y2 and vice-versa).

integer Trig Functions

Included in the MacFORTH graphics are two integer trig functions: sine and

cosine. The words SIN and COS each convert an angle, expressed in degrees,

into the angle's sine or cosine scaled up by 10,000, For example, the phrase
45 51IH .

tells us that the sine of a 45 degree angle is 7071 {7071 times 10,000 is
7071}

Define a8 word to plot one complete cycle of a sine wave. Since the input 1o
51N is an angle, we can set up a DO..LOOP that runs from O to 360, and use the
index as the argument for SIN. This will return all the results from -10,000
to +10,000, since SIN is scaled up by a factor of 10,000, If our window is
only 200 x 200, you clearly cannot fit a full scale sine wave on the display.
By scaling the data, however, it will easily fit. Try the following example:
WRUE (--- | draw a scaled sine wave }
~-1888 DUP SIN MOUE.TO
1888 -1998 D0 I I SIN DRAW.TO LOOP ;

Now try:
GINIT CLERM
PHTOR PENMODE
15 1 KYSCALE HAUE

Graphic Results Page 6 - 27 August 31, 1984

Finding Out What's There

The word GET.PIXEL lets you find out the state of any dot on the screen.
Given an %y position in QuickDraw coordinates, GET_PIXEL returns a true flag
if the dot at that coordinate is black, a false flag otherwise. The xy
coordinates are expressed in Quickdraw coordinates relative to the upper left
corner of the screen. For example, to determine if the dot at 100,100 is on,
you would execute:

188 188 GET.PIXEL

Drawing to Other Windows

Anything that can be done in the graphics system window can be done in
another window. { Resize MacFORTH window to & wide rectangle at the bottom
of the screen like you did in the Getting Started chapter -- for figure 4.2).
First, create a new window:
NEW, WINDOW ERSEL
48 48 288 3586 EASEL W.BOUNDS
" EASEL " EASEL MW.TITLE
EASEL ADD,WINDOU

Now click in the MacFORTH window to continue. The following definitions are
used as & shorthand method for specifying the current window (your
fingertips will thank us).

: OE { --- | select Easel window) EASEL WINDOW
: WM { --- | select MacFORTH window) SYS.UINDOW WINDOW ;

Note: If an error occurs while switching between wmdow execute >M to
return output to the MacFORTH window.

Mow, resize the MacFORTH window so that both it and the EASEL windows are
visible. Then try the following examples:

>E GINIT CENTER RYARIS >N
>E 18 18 58 38 GRAY PATTERH RECTANGLE >N

¢ THIST { ---)
GINIT CENTER CRRTESIAN ON
368 8 DO I ¥YPIUOT 8 @ MOUE.TO S8 S8 DRAW.TO LOOP ;

*E THIST >f

Graphic Resulis Page 6 - 23 August 31, 1984

Try some examples of your own. Remember pulling down ABORT in the
options menu or entering the 3A keystroke will return you to the MacFORTH
system window.

Deme Programs

We have included some demo programs on your system disc. To load them,
execute
INCLUDE" Demo Blocks”

{or, you could double click the Demo Blocks icon from the finder). The demo

programs are provided in source form so you can see the technigues used.

Feel free to examine the demos (and make changes if you like}. Have funl we

certainly did when we wrote them! To edit the demo source code, execute:
USE* Demo Blocks"

and then edit whichever block you like. Block 1 of the file will give you a
good ides of where specific demos are located.

Graphic Resulis Page 6 - 29 August 31, 1964

Graphic Results Page 6 - 30 August 31, 1984

Chapter 7: Menus

Topic Page

Overview 2
Menu Example 2
Menu List 3
Menu Creation 3
Menu Insertion Point 3
Menu 1D 3
Menu Title 3
Menu items 4
Item List 4
Special Characters 4
Special Strings S
Separating Menu Items 3
Displaying the Menu 5
Menu Item Selection 6
Menu {tem Numbers 6
Menu item Execution 6
Menu Highlighting 7
Modifying Menu Execution 7
Modifying Menu tems 8
Deleting a Menu 9
Disabling a Menu 9
Appendix A: Example Menu 1

Menus Page 7 - 1 August 30, 1984

Overview

MacFORTH allows you to define and control menus easily. You can specify the
order of the menus on the menu bar, their titles, and the items in each menu.
Menu items can be selected via the mouse or command keys, disabled,
highlighted, deleted, or even have their function changed.

This chapter discusses how to create, activate, de-activate, and delete menus
from the menu bar. Using MacFORTH, you can create and use up to 31 menus
simultaneously, each having up to 16 items; howsver, ten to twelve items per
menu are all that will usually fit.

Menu Example

In order to simplify the presentation of this material, try the following
example first. It creates and displays a sample menu, showing how easily
menus can be defined. You may find it easier to edit this code into a blank
block and then load it . That way if you make a typing error you don't have to
re-type the whole example.

18 CONSTANT EXANMPLE { for “example meru®)}

: WW.HENU (--- | menu creation using menu id 18)
8 " My Menu “ EXANPLE NEW.MEHU (create the menu)
{ append the items to the list:)}
" Item 1<B<U;Item 2/2;1tem 3<I(" EXANPLE
APPEND. ITENS
DRAW.MENU . BAR (draw the menu bar)
{ define the action to take place)
EXAMPLE MENU.SELECTION:
CASE 1 OF CR ." Item 1| Selected!” ENDOF
2 OF CR ." Item 2 Selected!” ENDOF
3 OF CR." Item 3 Selected!” ENDOF
ENDCARSE & HILITE.HEHU ;
ny . HEHU

Now try each of the items in "My Menu" by selecting them with the mouse (or
as shown for item 2; 32 -- hold down the 3§ key and press 2).

Menus Page 7 - 2 August 30, 1984

Menu List

The menus displayed by MacFORTH are maintained in 8 “menu list.” Each entry
in the list has a menu id (a number assigned to a menu), and its position in the
list determines the order of the menus in the menu bar. Note that this list is
not maintained in numeric order, but in the order of display in the menu bar.

Menu Creation

The word NEW.MENU creates a new menu and inserts it into the menu list.
NEW.MENU is used in the following form:
<menu insertion pointy <"menu title"y <menuid> NEN,MENU

So, in our example, we created a new menu, inserted it at the end of the menu
list, called it "My Menu", and assigned it menu number 10 with the phrase
(remember, EXAMPLE is a constant with value 10):

g " My Menu " EHANPLE HEW.MENU

Menu Insertion Point

This is the menu id that the newly defined menu is to be inserted before in
the menu list. Specifying the menu insertion point of O is a special case; it
means that you want the menu to be inserted at the end of the menu bar.

Menu ID
The menu id is any number from 1 to 31 that you choose to refer to your new

menu as. We recommend that you use a CONSTANT for your menu ids for later
reference to the menu (like we did with EXAMPLE). You can choose any
number you like, but we recommend that you use numbers greater than 10 in
order to avoid possible conflicts with system menus. In case of a conflict,
the system will use the first menu it finds with the menu id given.

Menu Title

The title you choose for your menu is a string of up to approximately 80
characters (as long as it fits on the screen). You should use concise,
meaningful names for your menu titles.

Menus Page 7 - 3 August 30, 1984

Menu items

Each of the available selections in a menu is referred to as a "menu item.” The
items in "My Menu” (*Item 17,"Item 2" and “Item 3"} were appended to "My
Menu” with the word APPEND_ITEMS used in the following form:

<"item list"> <menu id> APPEND.ITEMS

In our example, the phrase
“ Ttem 1<B<U;Item 2/2;1tem 3<I(* EXANPLE APPEWD.ITEMNS

passed the item list (the quoted string} to APPEND.ITEMS for menu id 10
(using the constant EXAMPLE).

Item List

The item 1ist from our example may seem strange at first, but take a closer
look. You can see the menu items listed ("ltem 1”, 2 and 3}, which contain
some special character suffixes. The following are special characters used
as suffixes and cannot be specified as part of an item in the item list:

Special
Character Mesning
; Separates items in the list (eg. " ftem 1;ltem 2;item 3").
< hightights the preceding item according to the character
following <. The available highlight characters are:
B for Bold {letters must be uppercase)
| for /ig/ic
0 for Betlims
S for Shadan
U for Underline
{eg. " Item 1<B<U;ltem 2<0;")
{ Disables the preceding item, displaying it in light gray.
The item cannot be selected until it is enabled.
{eg. " Function 1; Function 2(; Function 3(;")
/ Assigns the key immediately following the / as the

38 key sequence for that menu item.
{eg. " Attack/A;Retreat/R;")

! Precedes the item with the character immediately
fallowing the ! {eg. " Firel*;")

Menus Page 7 - 4 August 30, 1984

Now, using the above table, let's go back and look at the item string again.
The first item:

Item 1<B<U;
specified the string "item 1" as the menu item and made it bold faced,
underlined. The second item:

item 2/2
specified the string “Item 2" as the menu item and assigned the $2 key to it.
when the 32 key is pressed , Item 2 will be executed. The third item:

Item 3<I(
specified the string “Item 3" as the menu item and italicized it. The ("
disabled the item, preventing the operator from accessing it.

Special Strings You can display the Apple logo (apple with a bite), a check
mark, any of the special characters, or any of the displayable characters on
the Mac by cresting a string and modifying it directly. For example, the Apple
logo is character 20 (decimal) (a check mark is decimal 18). Try finding that
key on the keyboard! (You can't, it doesn’t exist.) To create a string with the
apple in it you could execute:

CREATE APPLES 1 C, (for the count } 28 C, { logo character)

You could then use APPLES$ in your menu defintion in place of the quoted
string:
APPLES EXRNMPLE APPEND.ITENS

Separating Menu Items You can separate items in 8 menu with a horizontal
bar by using 8 "-" character and disabling it as an item. For example, the
string
* Item 1;-(;Item 2" <menu %> APPEND.ITEHNS

passed to APPEND.ITEMS would separate Item 1 and item 2 with a line. Note
that the line is considered an item in the list when a menu item is selected.
This means that in the above item list, "item 1" would be item *1, the line
would be item #2, and "item 2" would be item #3.

Displaying the Menu

DRAW . MENU.BAR displays the new menu bar. Your menu is now active and
ready to be used just like any other menu. If you are adding several menus,
use DRAW.MENU.BAR after you have created and inserted the menus in the
menu 1ist 1o avoid having the menu bar flash each time 8 menu is added.

Menus Page 7 -5 August 30, 1984

Menu Item Selection

The word MENU.SELECTION: determines what action is taken when an item
is selected in your new menu and is used in the form:
<{menu id> MENU.SELECTION: <action to take>

where the menu id is the id you assigned to the menu. When an item is
selected, the item number of the selection is passed to the code following
MENU.SELECTION: for execution of the appropriate action.

Menu tem Numbers Each menu item is assigned a number when it is appended
to the menu. The numbers start at 1| and are incremented by one for each
item. For clarity, in our example, we numbered the items according to their
item number. This means that our “Item 1" selection is actually item number
1, "Item 2" is item number 2 and so on. When an item selection occurs, this is
the number which determines the action to take.

Menu ltem Execution When a menu item is selected, the code immediately
following MENU.SELECTION: for that menu is executed with the item
number on the stack. The code executed is usually a case statement which
tests the value on the stack and executes the appropriate code.

To make this more clear, let’s examine what happened when you clicked Item
1in "My Menw.” The system saw a mouse click on menu item one and passed
control to the MENU.SELECTION: code for menu 10 {which was defined with
the EXAMPLE MENU.SELECTION: ... phrase). The code for menu 10's menu
selection is the following case statement:
CASE 1 OF CR ." Item 1 Selected!" ENDOF
2 OF CR ." Item 2 Selected!” ENDOF
3 OF CR ." Item 3 Selected!” ENDOF
ENDCASE B8 HILITE.MENU

which executed case 1 of the statement and returned to what you were doing
before the mouse click occurred. The items in a menu are executed
transparently, returning immediately to what was executing before the
selection occurred.

Menus Page 7- 6 August 27, 1984

Menu Highlighting
The word HILITE.MENU serves two purposes: (1) to highlight a menu, and (2)
to unhighlight all others. HILITE.MENU highlights (inverts the title of) the
menu whose menu id is on the stack. For example, to highlight the “Options”
menu (its menu id is 3}, execute

3 HILITE.NERU

To un-highlight it, execute
8 HILITE.MENU

Since there is no menu with id 0, all the menus were unhighlighted when the
above command was executed.

After selection of a menu item, the menu title remains highlighted. This
allows you to indicate to the operator that the selected item is still
executing. You need to unhighlight the menu under program control. That is
why we execute

8 HILITE.NMENU

after the case statement in our example menu.

Modifying Menu Execution You can modify the function of a menu by simply
re-defining the menu selection definition. Try the following to change the
execution of our example menu:
NEW.ERANPLE.FUNCTION (---)
EKAMPLE MENU.SELECTION:
CASE 1t OF CR ." New Function 1" ENDOF
2 OF CR ." New Function 2 ENDOF
3 OF CR ." New Function 3" ENDOF
ENDCRSE & HILITE.MENU ;

HEW . EXAMPLE . FUNCTION
Mow try the items in "My Menu” and you'll see the new functions executed

when you make your selections. This powerful feature allows you to change
the function of any menu at any time.

Menus Page 7 - 7 August 27, 1984

Modifying Menu Items

You can modify the menu items (type style, enable/disable, add/delete check
marks or characters, etc.) with the following functions (each function takes
item* and menu id, where the item* is the item number in the menu; menu id
is the number of the menu):

ITEM.STYLE allows you to change the style of the item. Used in the form:
<item*> <style> <menu id> ITEM.STYLE
where <style> is one or a combination of the following styles:

PLAIN
BOLD
ITALIC
UNDERLINE

Style Yalue
0
1
2
4
8
16

ST

To get multiple styles, add the vslues together. For example, to get
underlined shadow as the style, you would execute:
<item®> UNDERLINE SHADOW + <menu®> ITEM.STYLE

ITEM.MARK allows you to attach to or remove a character from an item.
Used in the form:

<item®> <mark> <menu id> ITEM.MARK
where <mark> is the character to append to the item. If <mark> is zero, any
character currently appended is removed. <mark> is any valid ASCI! character
or special Mac character {ie: 20 is the Apple logo).

ITEM.CHECK allows you to append to or remove a check mark from a menu
item based on a flag value. Used in the form:

<item®> <flag> <menu id> ITEN.CHECK
where <flag> is a boolean flag. If <flag> is -1, & check mark is appended to
the item, if <flag> is O, the check mark is removed.

ITEM.ENABLE allows you to enable or disable any item in the menu. Used in
the form:

<item#> <flag> <menu id> ITEN.ENABLE
where <flag> is a boolean flag. If <flags is -1, the item is enabled, if <flag is
0, the item is disabled.

SET.ITEMS allows you to change the string associated with any menu item.
<Item®> <string addr> <Henu#> SET.ITEH$

Menus Page 7 - 8 August 30, 1984

Deleting & Menu

You can delete a menu from the menu list by executing the word

DELETE MENU . Given a menu number on the stack, DELETE.MENU deletes the

menu from the menu list and re-draws the menu bar, removing the menu.
<menu %> DELETE.MENU

It is a good idea to execute DELETE.MENU for the menu number you are about
to add (with NEW.MENU). This ensures that you won't inadvertently add the
menu twice and is a good way to insure against multiple menus with the same
number.

The apple menu (the solid apple with a bite taken out of it) has menu id 1; the
Options menu has menu id 3. You can delete either or both of these menus
using DELETE.MENU. To re-install them, execute APPLE.MENU or
OPTIONS.MENU for the apple and Options menus respectively.

Disabling a Menu
You can enable/disable a menu at any time using the command MENU_ENABLE
in the following form:

<flag> <menu id> MENU.ENRBLE

where <flag> is a boolean flag. If <flag> is true, the menu is enabled, if <flag>
is false, the menu is disabled.

Menus Page 7- 9 August 27, 1984

Appendix A: Example Menu

The following menu example is provided for you to use as a template for your
menus. It creates a menu that is similar to the MacFORTH Options menu.

13 CONSTANT OP.MENU
OPTIONS.MENU (--)
8 " OPTIONS * OP.MENU NEUW.MENU
" TRACE/T;DEBUG/D;UORDS ;RBORT/R" OP.MENU APPEND.ITENS
DRAW.MENU.BAR OP.MENU MENU.SELECTION: 8 HILITE.MENU
CASE
1 OF TRACE € NOT DUP TRACE ! 1 SHAP OP.MENU
ITEM.CHECK ENDOF ,
2 OF DEBUG @ HOT DUP DEBUG ! 2 SWAP OP.MENU
ITEN.CHECK ENDOF
3 OF WORDS ENDOF
4 OF 1 ERROR" ABORTED!!" ENDOF

ENDCASE ;

Menus Page 7 - 10 August 27, 1984

Chapter 8: Windows/Events

Topic Page
Overview 2
Defining a Window 2
window Components 3

Window Title 3

Window Bounds 3

Window Attributes 4

window Tupes 4

window Program 5

Closing a Window 5

Sizing a Window 6

Event Handling in a Window 6
The Mouse Interface 7
Dynamic Mouse Operations 7

Dynamic Mouse Position in User Coordinates 7

Dynamic Mouse Position in Screen Coordinates 8

Point in Rectangle Computation 9

Dynamic Mouse Button Monitoring 10
Event Related Mouse Operations 11

Format of the Mouse Down Record i1

Event Related Mouse Button Operations 11

Detecting Double Clicks 12

Example 12

Handling Keystrokes 13
Default Event Actions 14
Complete Events List 15
Event Masking 15

Event Precedence 16
Events During Text Input or Output 17

Windows/Events Page 8- 1 August 30, 1984

Overview

This chepter discusses window and event management using MacFORTH. By
now you should have completed both the Getting Started and Getting Results
chapters which introduce and give examples of windows and event handling.
The intent of this chapter is to provide you with an in-depth reference guide
to windows and events.

The concept of windows and event handling is very important in the Macintosh
environment and MacFORTH allows you to control virtually every aspect of a
these features (or leave it to the default handlers).

MacFORTH does all the hard work relating to using windows and events in 8
fashion compatible with the Macintosh user interface. Default event handlers
provide for what you should expect to happen when a particular event occurs.
You can, of course, override the default operations to handle special cases.

Defining a Window

The command NEW.WINDOW creates and defines a new window structure for
MacFORTH. To create a new window, simply execute NEW.WINDOW followed
by the name you want to call the new window. For example:

NEKW.HINDOM NY.WINDOW

creates a new window named MY.WINDOW with the standard MacFORTH
defauits. These defaults are:

8.) title = “Untitled Window"

b.) bounds = (100,100) (200,300)

c.) no close box or size box

d.) the action of the window is to beep when en event occurs

NEW.WINDOW can only be executed; you cannot use it inside & colon
definition.

Windows/Events Page 8- 2 August 28, 1984

Window Components

A window is made up of one or more of the following components:

Window Title
The title assigned to a document window is displayed in the titie bar scross
the top of the window. You cen choose any title you like for & window and
assign it using the W.TITLE command during the definition of the window in
the following format:

" <title string>” <window pointer> W.TITLE

For example, to assign the title "My Very Own Window" to & window named
MY.WINDOW, you would execute
* Hy Uery Own Hindow" HY UINDOH W.TITLE

You can also re-assign & title to a window with the SET WTITLE command
used in the following format:
* <title string>” <window pointer> SET.HTITLE

¥hen SET.WTITLE is executed, the title bar of the window is immediately
redrawn with the new title.

¥Window Bounds
To set the initial position and size of a window, use the W.BOUNDS command

when the window is defined. Use the following format:
<top> <left> <bottom> <right> <windos pointer> U,BOUNDS

The <top> <left> <bottom> and <right> values are the coordinates of the
rectangle for the window, relative to the upper left corner of the screen. For
example:

168 158 388 350 NV, UINDOM W.BOUNDS

will set the upper left corner of MY.WINDOW (used for example only) to be
100 dots from the top of the screen, 150 dots from the left side of the
screen. The lower right corner of the windoy is 300 dots from the top of the
screen, 350 dots from the left of the screen.

windows/Events Page8-3 August 28, 1984

Yindow Attributes
When a window is defined, you can set the attributes for it with the
W.ATTRIBUTES command. The attributes for a window are:

a.) CLOSE.BOX gives the window a close box
b.) NOT,VISIBLE makes the window invisible
c.) SI2E.BOX gives the window a size box

d.) SCROLL . UP /DOUN gives the window a vertical scroll bar
e.) SCROLL.LEFT/RIGHT gives the window e horizontal scroll bar

To set the attributes for a window when defining it, select the attributes you
waont the window to have and add them before executing W ATTRIBUTES. For
example, to give the window MY .WINDOW s close box and size box, you would
execute:

CLOSE.BOX SIZE.BOX + MY.UINDOW U.ATTRIBUTES

when you define the window.

¥indow Types

Another attribute of a window is the window type. The default window type
is the one you are the most familiar with, a document window (e rectangle
with a title bar/drag region). There are three other types:

Type 1 is a simple frame. A thick rectangle outlined by a thin rectangle. Try
the following example:
NEW.UINDOM WIN1
1 WINt W.TYPE
HINT RDD.HINDOU

Click back in the MacFORTH window to continue.
Type 2 is a thin rectangle. Try the following example:
NEU.WINDON WIN2
2 HIN2 W.TYPE
HIN2 ADD.WINDOUW
Click back in the MacFORTH window to continue.
Type 3 is a shadowed rectangle (like an alert box). Try the following example:
HEW.WINDON WIN3
3 WINT W.TYPE
HIN3 ADD.UINDOW

Click back in the MacFORTH window to continue.

Windows/Events Page 8 - 4 August 26, 1984

Window Program
Use ON.ACTIVATE to define the function of a window. ON.ACTIVATE
specifies the word to be executed when a window is activated. The default
for this function is
a word which will just beep when any event occurs within 8 window. Use
ON_ACTIVATE in the following form:

<window name> ON.ACTIUATE <word to execute>

For example, to assign the word MY.PROGRAM to a window named
MY_WINDOW, you would execute
MY.UINDOW ON.ACTIUATE MY.PROGRAMN

As we discussed in the Getting Results chapter, when a window is activated,
the word specified by ON.ACTIVATE for the window is passed a flag. This
flag is true (-1) if the window was activated and false (0) if another window
is activated (hence the current window is deactivated). This allows you to
start up your program when the window is activated and perform any clesnup
when the window is deactivated. It is important to check this flag as the
first thing when you execute your program. Any programs you assign to a
window should follow a template similar to:

WINDOUW . PROGRAN { activate flag --)
IF { code for activate)
ELSE { code for deactivate)
THEN

If you FORGET the word which defines the function of a window, and attempt
to select the window without redefining it, you will get unpredictable results
when the window is activated. If you don't specify a word following
ON.ACTIVATE (ie. you just press return) you will get the error message
"ATTEMPTED TO REDEFINE NULLI".

Closing 8 Window

¥hen a window is closed by a click in its close box, MacFORTH automatically
hides the window from view and returns an IN.CLOSE.BOX event from
DO.EVENTS. You don't need to be concerned with hiding the window, as it has
already been hidden before you are notified that the close box has been
clicked. This lets you perform any cleanup that should occur when 8 window
is closed. Since the window is hidden, the next occurence of DO.EVENTS will
select the window closest to the front of the display.

Windows/Events Page8-5 August 28, 1984

Sizing @ oy

¥hen a wmdow is resized by dragging its size box, MacFORTH will
automatically handle the resizing for you and return an IN.SIZE.BOX event
from DO_EVENTS. You don't need to be concerned with actually resizing the
window, as it has already been resized before you are notified of the event.

Event Handling in a Window

The Macintosh is an event driven computer. This means that gour programs
should be aware of the events occurring when they ere executing. The word
DO.EVENTS hendles this automatically for you, performing sny defeult
actions (resizing a window, hiding it when a close box is clicked, accepting
keystrokes, etc.) and notifying you that the event occured. If you ignore
events as they occur, your program may not be consistent with the Macintosh
environment. To maintain consistency, your programs should be running an
endless loop that checks for the occurence of events by executing
DO_EVENTS.

with this in mind, you should expand the sbove template to be:

HINDOW. PROGRAN (activate flag --)
IF BEGIN DO.EVENTS
(code for activate which checks the events)
AGRIN
ELSE (code for deactivate)
THEN

The code for activation should check the code returned by DO.EVENTS against
a list of any events you care about.

The following MacFORTH constants contain the event codes for the most used
events that occur (refer to the end of this chapter for a complete listing of
event codes):

MacFORTH Congtant Event

NOUSE . DOUN mouse button pressed

IN.CLOSE. 50X mouse click inside the close box
IN.SI2E .BOX mouse click inside the size box

Windows/Events Page 8- 6 August 28, 1984

The Mouse Interface

An important feature of the Macintosh user interface is the mouse. it provides
a highly flexible, easy to use method of input/choice selection. The current
mouse position and state of the button (up or down) are automatically
monitored by the Macintosh operating system. System related functions (like
menu selection; activation of another window; closing, resizing, and dragging a
window) are handled automatically for you -- you are notified of the event
after the default action has been taken.

We have broken down our discussion of the mouse interface into two areas:
dynamic mouse operations and event related mouse operations.

Dynamic Mouse Operations

Dynamic mouse operations provide a real-time glimpse of the position of the
mouse and/or the state of the mouse button (up or down).

Dynamic Mouge Pogition in User Coordinates

©GMOUSEXY returns the current position of the mouse in “user coordinetes”.
User coordinates refer to a point relative to the currently active window,
taking into account the values of XYPIVOT, XYSCALE, and XYOFFSET. Here's
@ definition to display the current mouse position:
: PMOUSE (--- | display the current mouse position)
BEGIN 13 EMIT PMOUSERY SWAP , . AGAIN ;

{Since this is an endless loop, you'll need to select Abort from the Options
menu -- or 38A to stop output.) Now try:

GINIT SRCCOPY TEXTHODE (to overwrite the old)

7MOUSE

You can now see the position of the mouse in QuickDraw coordinates being
displayed continuously. Move the mouse around now. If you move it up, you cen
see the y-exis value decrease, if you move it to the right, you cen see the
x-axis value increase. Abort by selecting Abort from the Options menu.

windows/Events Page 8- 7 August 28, 1984

Try the following to display the mouse coordinates in Cartesian coordinates:
CARTESIAN OH PAGE
CENTER XYAXIS
7HOUSE

Now move the mouse around. You can see that the mouse position is reported
to you in Cartesian coordinates now; if you move the mouse up, the y-axis
value increases.

A word like ?MOUSE is helpful for digitizing the points of a graphics image
you have (or would like to) produce. It's also a good learning tool for showing
the difference between Cartesian and QuickDraw coordinates.

Remember to abort ?MOUSE before continuing (by either pressing 384 or
selecting Abort from the Options menu).

Dynemic Mouse Position in Screen Coordinates

Most Macintosh toolbox operators that deal with the position of the mouse
expect to deal with a “point” relative to the current window in local
coordinates.

A "point” is simply two 16-bit values (x and y) packed into one 32-bit long
word {(one item on the stack). The y coordinate is in the high-order 16-bits of
the long word, the X coordinate is in the low-order 16-bits. We have provided
two operators to simplify working with “point” values: POINT>XY and
XY>POINT. POINT>XY converts the point on the stack to its x and y
coordinate values. XY>POINT converts the x and y coordinate values on the
stack to a point.

Coordinates for the mouse are expressed in two basic forms: local and global.
Local coordinates use the upper left corner of the content (under the drag
region} region of the current window as the origin (0,0) in QuickDraw
coordinates. Global coordinates use the upper left corner of the screen as the
origin (0,0) in QuickDraw coordinates.

The word @MOUSE returns the current point of the mouse in local coordinates.
Try:

8MOUSE DUP .

POINT>RY SUAP . . (need to SWAP to display it as x,y)}

Here's a word to try using @MOUSE and POINT>XY:

: SCAH.MOUSE { -—-)
BEGIN 13 EMIT ®MOUSE POINT>XY SWAP . . AGRIN ;

wWindows/Events Page 8 - 8 August 30, 1984

Now execute
GINIT PRGE
HYARIS (the xy-axis is drawn in the upper left corner)
SCAN, NOUSE

Move the mouse around. MNotice that as you go up, as you wrould expect in
QuickDraw coordinates, the y-axis value decreases. |f you move up above the
content region of the window, the y-axis velue goes negative. Abort
SCAN_MOUSE and continue.

Point in Rectangle Computation
Frequently it is necessary to determine if a point is within the bounds of a
given rectangle. This is useful for controlling the cursor (as in the editor,
where we use an i-beam if the mouse is in the content region of the window,
otherwise an arrow cursor), determining the selection made by an operator, or
just following the mouse. Used in the form:

<{point> <rect> PTIHRECT

PTINRECT (for "point in rect”) checks a given point to see if it is within the
bounds of & specified rectangle. A true flag is returned if the point is within
the rectangle, otherwise a false flag is returned. Edit the following example
into a blank block:

{ Mouse Tracking Example)

18 38 50 188 RECT BOX

: FOLLOW.MOUSE (---)
PAGE GINIT KYRXIS BOX @RECT XY><TLBR FRAME RECTANGLE
BEGIN 158 158 MOUE.TO
@MOUSE BOYX PTINRECT

IF ." Mouse in Box!!"
ELSE ." Mouse Mot in Box!!"
THEN

AGAIN

Load the block and execute FOLLOW.MOUSE. Move the mouse around inside and
outside the framed rectangle and watch the message change.

Windows/Events Page 8- 9 August 30, 1984

Here are & few more examples of tracking the mouse. Edit them into blank
blocks, 1oad them and try each one:

{ Game Board Template Example)

180 158 286 258 RECT GAME.BOARD

: GANE (--- | simulate changing of the cursor on a game board)
{ ** this is the method used in the editor **)
(press any key to end the loop)
GINIT PAGE ' GRME.BOARD PRECT RY><TLBR FRAME RECTANGLE
BEGIN ®MOUSE GANME.BOARD PTINRECT
IF IBEAM SET.CURSOR ELSE INIT.CURSOR THEN
?TERHINAL
UNTIL

{ Hide Cursor Example)

: HIDDEN.CURSOR (--- | hide the cursor if the mouse moves)
(outside the content region of the window)
{ End the loop by pressing any key. Rlso,)

(try resizing the window and watch the cursor)
BEGIN SHOUSE LOCAL>GLOBAL FIND.WIHDOW 3 =

SHAP SYS.WINDOW = AND
IF (in content region of SYS.WINDOW)
INIT.CURSOR
ELSE HIDE.CURSOR
THEN ?TERMINAL
UNTIL IKIT.CURSOR ;

Dynamic Mouse Button Monitoring

You can read the current state of the mouse button with MOUSE BUTTON.
MOUSE.BUTTON returns a true flag if the mouse button is down, a false flag
if the mouse button is up.

Windows/Events Page 8 ~ 10 August 28, 1964

Event Related Mouse Operations

when DO.EVENTS is executed, MacFORTH places the next event from the event
queue into the EVENT.RECORD array. Mouse down events copy the event
record to the mouse down record, mouse up events copy the event record to the
mouse up record. Event related mouse operations operate on the contents of
either the mouse up or mouse down records following notificetion by
DO_EVENTS that a mouse related event has occurred. Refer to the Event
Masking section of this manual for how to mask mouse related events.

Format of the Mouse Down Record
The following table describes the contents of the mouse down record:

Offset Length Description
0 4 event code (1)
4 4 message (relevant wptr set by MacFORTH)
g 4 when (in ticks}
12 4 where (point in global coordinates)
16 2 modifiers (special key state)

The modifier bits are:
Bit* Mask (hex) Meaning

7 80 mouse button down
8 100 38 key down
9 200 Shift key down
10 400 Caps Lock key down
11 800 Option key down

MacFORTH provides two operators that access the mouse down record "where”
field: MOUSE.WAS_. returns the point in global coordinates, @MOUSE.DN
returns the point in local coordinates. Each operator returns the point where
the mouse button was last pressed.

Event Related Mouse Button Operators

wWhen executed after a mouse down event, STILL.DOWN tests to see if the
mouse button is still down. It returns a true flag if the button is down and
there are nor more mouse events in the event queue. This is a true test if the
button is still down from the original press (unlike MOUSE.BUTTON which
simply gives you the current state of the mouse button).

WAIT MOUSE.UP works just like STILL.DOWN, except that if the mouse
button is not still down from the original press, WAIT.MOUSE.UP removes the
corresponding mouse up event before returning a zero flag.

wWindows/Events Page 8- 11 August 30, 1984

Detecting Double Clicks
To determine if & double click has occurred, use the word ?DOUBLE.CLICK.
?DOUBLE.CLICK returns a true flag if a double click has occurred. Try the
following example:
: DOUBLE.TEST (--- | test for clicks until a key is pressed)
BEGIN DO.EUENTS HOUSE.DOUN =
IF ?DOUBLE.CLICK
IF ." Double” ELSE ." Single® THEN
." Click"™ CR
THEN ?KEYSTROKE
UNTIL DROP ;

Example
In order to further illustrate tracking the mouse, closing a window, and sizing
a window, try the following example (edit it into 2 blank blocks on disc):
(Finger Paint Window Example)
NEW.UINDOU SHEET
" Finger Paint Window" SHEET MW.TITLE
49 46 288 208 SHEET W.BOUNDS
CLOSE.BOX SIZE.BOX + SHEET W.ATTRIBUTES

SHEET ADD.WINDOW

: TRACE.FINGER { ---)
HIDE.CURSOR

BEGIN STILL.DOMN HHILE eHMOUSEXY DOT REPERT
SHOM.CURSOR

{ Finger Paint Example Continued)
: FINGER.PRINT (activate flag --)
IF BEGIN DO.EUENTS

CASE MOUSE . DOUN OF TRACE.FINGER ENDOF
IN.SI2E.BOX OF .” WUindow Resized!" ENDOF
IN.CLOSE.BOK OF 7 SYSBEEP ENDOF
ENDCARSE
AGRIN
ELSE ." Hindow Deactivated”
THEN ;

SHEET OH.ACTIUATE FINGER.PRINT

windows/Events Page 8- 12 August 28, 1984

Handling Keystrokes
If you want to input data from the keyboard in another window, you should look

for keystrokes in the activate portion of your program. Input of keystrokes are
handled differently from other events in that you can check for the presence of
8 keystroke (if one has been pressed) and get the key at any time in the
activate loop part of the progrem.

The word ?KEYSTROKE checks for a keystroke (returned by DO.EVENTS) and
returns either a false flag indicating no keystroke was pressed, or a key value
under a true flag if a key was pressed.

Here's an example which modifies the finger painting example to include check
for input of an "S™ key for skinny mode, "M" key for medium mode, or "F” for fat
mode:
DO.FINGER.KEY (key value --)
CASE 83 ("s*) OF 1 1 PENSI2E ENDOF
77 ("M*) OF 3 3 PENSIZE ENDOF
% ("F") OF 5 5 PENSI2ZE ENDOF
7 SYSBEEP
ENDCASE

Now modify FINGER PAINT to be:
FINGER.PAINT (activate flag --)
IF BEGIN DO.EVENTS
CASE MOUSE.DOWN OF TRACE.FINGER EMDOF
?KEYSTROKE IF DO.FINGER.KEY THEN
EHDCASE
RGAIN
ELSE 7 SYSBEEP ." Finger Painting Finished”
THEN ;

SHEET ON.ACTIUATE FINGER.PAINT

Now when you activate the Finger Paint window, you can change the pen size
by pressing the S, M or F key.

Another use of 2KEYSTROKE is to trap any non-3§ keys {(remember KEY traps
Return, Enter, Tab and Backspace). Here's a word which will trap any non-3§
keys:
: ALL.KEY (-- key®)}
BEGIN DO.EVENTS DROP 7KEYSTROKE UNTIL ;

Now execute ALL.KEY and press Return (value 13), or Enter (value 3}, or Tab
(value 9), or Backspace (value 8).

Windows/Events Page 8 - 13 August 30, 1984

Default Event Actions

MacFORTH executes a default operation for each event, within DO.EVENTS,
prior to returning an event code to the user. The default operation typicaliy
handles all of the messy details required by the Mac User Interface and just
returns an event code to let you know what happened. The default actions are
summarized below for each event.

Common to all events: If a keystroke has been received but not picked up by
the user (via KEY) no further keystroke events are allowed until the current
one is cleared. Type-ahead characters are thus accumulated in the event
queue. If 8 mouse down event occurs outside the content region of the current
window, events 17-24 are systhesized to indicate & special mouse down
event.The following events have special default actions:

MacFORTH

Event Constant Default Action

MOUSE , DOUN Checks for events 17-23 and if appropriate returns
that code instead. A code of 1 indicates a mouse
downh in the content region of the current windoy and
the event record is copied to the mouse down record.

MOUSE . UP The event record is copied to the mouse up record.

KEY.DOUN The event record is copied to the keystroke array.

UPDARTE.EVENT Begins update, passes control to the window update
token, and ends the update event.

HINDOU Passes control to the window's activate token.
CONMMAND . KEY Simulates a menu event.
IN.DESKTOP Beeps.

IN.SYS. HINDOU Passes control to the execution procedure posted for
the menu by MENU.SELECTION:.

IN.LOWER . WINDOW Activates the lower window.
IN.DRAG. BOX Drags the window.
IN.512E.BOX Resizes the window.
IN.CLOSE .BOX Hides the window.

Windows/Events Page 8 - 14 August 31, 1984

Complete Events List

DO.EVENTS always returns one of the following event codes:

Code Event Code Event
8 HULL . EUENT 18 NETWORK.EUENT
1 NOUSE , DONN 11 DRUR,EUENT
2 MOUSE . UP 16 COMMAND.KEY
3 KEY . DOUN 1?7 IN.DESKTOP
4 KEY.UP 18 IN.MENU.BAR
5 AUTO.KEY 19 IN.SYS.WINDOH
6 UPDATE . EVENT 286 IN.LOMER.WINDOMW
? DISK.EVENT 21 IN.DRRG.BOX
8 ACTIVARTE ,EVENT 22 IN.SIZE.BOX
9 RBORT . EVENT 23 IN.CLOSE.BOX

Note: Refer to “Inside Macintosh” documentation from Apple for the meaning
of events not described in this chapter.

Event Masking

MacFORTH maintains an event mask in the variable EVENTS. This mask is
used by DD.EVENTS to retrieve the next available event from the event queue.
The bit number within the mask corresponds to the event number. You can
convert an event code to 8 mask bit by executing:

<event code> | SWAP SCALE

Since we use this quite frequently in the upcoming examples, here's a word to
do the conversion:
: EUENT.BIT { event code -- bit ®)} 1| SURP SCALE ;

If a keystroke is waiting in the keystroke array (indicated by
KEYSTROKE @

returning a true flag), DO.EVENTS masks the contents of EVENTS with the
result of

AUTO.KEY EVENT.BIT KEY.DOWN OR

KEY.UP OR -1 KXOR

1o avoid keyboard events overwriting each other. If you don't care, execute
KEYSTROKE OFF

prior to executing DO.EVENTS.
Event Precedence

Windows/Events Page 8 - 15 August 30, 1984

The Macintosh toolbox only supports 16 of MacFORTH's 24 event types. When a
keystroke or mouse down event occurs, MacFORTH automatically synthesizes
one of the other event types if appropriate.

Event (Code) Synthesized Event (Code)
KEY.DOUN (3) COMMAND . KEY (16)

MOUSE.DOMN (1) IN,MENU.BAR (18)
IN.SYS.HINDOW (19)
IN.LOWER . MINDOW (28)
IN.DRAGBOX (21)
IN.SIZE.BOX {22)
IN.CLOSE.BOX (23)

in order to enable an event produced by KEY.DOWN or MOUSE.DOWN, you need
to enable the respective producing event. For example, if you choose to
disable all events, you would execute:

EUENTS OFF

To re-enable all events, execute
EUENTS ON

The MacFORTH text interpreter automatically executes
EUENTS ON

to avoid the problem of having all events disabled (which would hang the
computer).

To enable only one event, for example, a mouse down in the menu bar, you
would execute:
: MENUS.ONLY (--- | allow only mouse doens in menu bars)
MOUSE.DOWN EVENT.BIT
IN.MENUBAR EUENT.BIT OR EUEWTS ! ;

: MENUS.ONLY EXAMPLE (---)
NENUS. ONLY
BEGIH DO,EVENTS DROP AGRIN
EUENTS ON (re-set the events)} ;

Windows/Events Page 8 - 16 August 30, 1984

Events During Text Input or Output

MacFORTH executes DO.EVENTS after every string is output, as well as every
time 2TERMINAL is executed (as in KEY). When an event occurs during text
1/0, its defeult action is taken, and the event record is removed from the
queue. Two strategies are available for handling events during text 1/0:
masking and event detection.

- Event Masking During Text |/0

Masking simply ignores any specified events which you don't went discarded
by DO.EVENTS. The simplest case is:

EUENTS @ EUENTS OFF

" NHow is the time *

EUVENTS !

in the above example, we politely restored the event mask the way that we
found it. You can also selectively enable or disable events with a mask.

Event Detection During Text /0
You can also set a8 flag which will change if an event is serviced. The
contents of the first four bytes of the following event data structures will be
modified if an event occurs:

KEY.STROKE KEY.UP.RECORD

HOUSE . DOWN,RECORD HMOUSE . UP .RECORD

For example:
: EVENT.TEST (---)
NOUSE . DOUN ,RECORD OFF
BEGIN CR ." Text Output™ MOUSE.DOUM.RECORD @ UNTIL ;

Note that the mouse down event has, by default, setup for MOUSE.WAS.. and
eMOUSE.DOWN.

windows/Events Page 8§ -17 August 28, 1964

Windows/Events Page 6 - 18 August 28, 1984

Chapter 9: File System

Yopic

@
"=}

Overview
File 1/0 Operation Result Codes
File Assignment
File Numbers
Displaying File Assignments
Opening a File
Alternate Volumes
Displaying the Disk Directory
MacFORTH File Types
Data Files
Creating a Data File
Allocating Space in a Data File
Reading/Writing in a Data File
Fixed Record Data Files
Specifying Record Size
Accessing Records
Text Files
Rewinding s Text File
Reading Records in a Text File
¥riting Records in a Text File 10

W0 W 00O -~ OO U1 U S BB S W

Virtual Files 11
Accessing Data in a Virtual File 11
Blocks Files 12
Creating a Blocks File 12

Changing the Size of a Blocks File 12
Accessing Program Source Code

in a Blocks File 13

MacFORTH Blocks File Structure 13
Including & File 14
Closing a File 14
Deleting a File 14
Ejecting a Disk 15
Mounting & New Volume 13
References to Volumes 15

File System Page 9 - 1

August 31, 1984

Topic Page

Advanced File System Topics 16

File Control Blocks 16

File Pointer 16

Position Modes 16

File Name Length 17

Yolume Name Length 17

Maximum File Length 17

Appendix A: Example File Usage 18
Appendix B: File System 1/0 Result

Codes 20

File System Page 9 - 2 August 30, 1984

Overview

This chapter discusses how MacFORTH interfaces to the Macintosh file
system. Using MacFORTH, you can creste, read and write any standard
Macintosh file. This allows you to share data among applications.

You can have up to 9 files assigned and open at a time for accessing the data
within a file. MacFORTH supports two file types: data and program (or
“blocks™) files. The records within a data file can be one of three types: fixed
length records, text records and virtuel dets files (free-format records). The
records within a progrem file are fixed length records, each containing 1024
characters.

We refer to program files as "blocks” files because they are made up of source
code blocks (as explained in the Editor chapter).

File Input/Output Operation Result Codes

For each file operation a result code is returned in the variable 10-RESULT.
This result code allows you o check the operation to see if it completed
successfully, and if not, why not.

Each of the 1/0 result codes are listed in Appendix B of this chapter for your
reference. If the file operation is successful, the result code is 0, otherwise
the value indicates an error condition. This allows you to menitor the resuit
of each file operation. You can then set the level of error checking from no
checking to full error checking/re-try attempts, etc. If you aren’t concerned
with the result of the operation, ignore it.

The word ?FILE.LERROR is provided to handle most file operation error
conditions. You should execute ?FILE.ERROR immediately following a file
operation and, if an error occurred, it will abort the current task displaying
the appropriate error message. For example if you executed the phrase (don't
try it now):

OPEN" Hy File® ?FILE.ERROR

and the file named "My File™ was not found (1/0 result code -43), the current

task would be aborted and the error message “File Not Found!” would be
displayed.

File System Page 9 - 3 August 28, 1984

File Assignment

The Macintosh file system is based on assigning files (using their names) to e
file number and using that number in referring to the file. In MacFORTH, we
recommend that you use a CONSTANT value to refer to the file number to make
your programs more readable.

File Numbers

MacFORTH allows you to access up to 9 files using file numbers 0-8. If you
use a file number outside of the range 0-8, MacFORTH will issue the error
message "I1legal File*". The "file number” is just an index into a table of file
contro! blocks (FCBs} which contein information aebout eech file. When we
refer to an FCB we mean the address of the FCB for the specified file. When
we refer to 8 file number, we mean the index of the FCB.

You don't need to be concerned with what the actual file number is for a given
file, as MacFORTH cen sutomatically assign it to the next available FCB for
you. If you want to know the index of the next available FCB, the word
NEXT_FCB will leave it on the stack. The error message "No FCBs Availablel”
indicates all of the FCBs are in use. (We'll discuss the REMOVE command
later in this chepter which is used to free up an FCB).

Displaying File Assignments
You can display the current file assignments by executing the ?FILES
command. Each file number is displayed with its associated file name. A
capitalized "0" next to the number implies the file is open. A lowercase “b”
indicates it is a blocks file, a capitalized "B next to a file number indicates
it is the current blocks file.

Opening a File
If a file already exists on disc, you can open it with the OPEN" command in
the following format:

OPEN" <file name>"

OPEN" will attempt to open the file named <file name>. If successful, the
FCB index is left on the stack so you can reference the file. If there is an
error during the attempt to open the file, an appropriate error message is
displayed, and the system aborts execution. For example, here's a phrase
which will try to open the file named "Salary File", and create a constant
named SALARY.FILE if the file is opened correctly:

OPEN" Salary File" CONSTANT SALARY.FILE

File System Page 9 - 4 August 28, 1984

You can reference the file using the constant SALARY.FILE. [f you aren‘t
concerned with the file number, you can just DROP it from the stack after
opening the file.

OPEN" is similar in function to USE", except that it will open any type of file
{blocks and non-blocks files), it returns the file number, and does not select
the opened file.

Alternate Yolumes

You cen access files on another (previously mounted) volume by simply using
the volume name as a prefix to the file name in the OPEN" statement. For
example, to open the file named "Employee Selary” on the volume nemed
"Employee Information®, you would execute:
OPEN" Employee Information:Employee Salary”
CONSTANT SALARY.FILE

¥hen you access the file later, you will be prompted to insert the "Employee
Information” disk if it is not in the drive.

Displaying the Disk Directory

The DIR command displays the contents of the disk directory of the disc in
the specified drive. To display the directory of the disk in the internal drive,
execute: INTERNAL DIR

To display the directory of the disk in the external drive (if present), execute:
EXTERNAL DIR

The following information is presented when you use the DIR command:
1.) volume neme
2.) number of files
3.) amount of space available
4.) volume creation date
5.) volume last modified date
6.) for each file:
a.) file name (first 19 characters)
b.) file attributes
i.) "L" for locked, “-" for unlocked
ii.) “U" for in use, "~* for not in use
c.) file type
d.} file size
e.) file creation date
f.) file last modified date

File System Page 9 -5 August 28, 1984

MacFORTH File Types

There are two standard types of files you will use with MacFORTH: data files
and blocks files. Deta files contain data in a free-formst. Blocks files
contain progrem source code in sequential fixed length records.

From the Finder, you can distinguish between these two file types by their
icons. Date file icons are the standard file icon used (plsin rectanguler
document icons). Blocks file icons are rectangular document icons with three
rectangles within the bounds of the icon. These rectengles represent the
three blocks of source code you can print out on a sheet of paper using the
word TRIAD (explained in the Editor chapter).

You can load a blocks file from the Finder by double clicking it. When a blocks
file is loaded in this manner, MacFORTH is loaded first, then block 1 of the
selected file is 1oaded (more about this later).

Data Files

Data files contain data in whatever formet you specify. The data can be
stored as a virtual array with no particular format all the way up to fixed
fields within fixed records.

reating g Data File
If the file you have assigned aiready exists on the disk, there is no need to
re-create it; go on to “Read/writing in a Data File".

To create a new data file on disc, use the NEW.FILE commend in the following
form:
¢size> " <file nome>" NEW.FILE

This will create the file on disc and place it into the disc file directory as a
"DATA" type file with the specified size. If the file was successfully
created, its file number is returned on the stack. If an error was encountered
during creation of the file (eg. enough room on the disk, in the catalog, no
naming conflicts, etc.) the appropriate error message is displayed, and the
system aborts. For example, to create a file named "My Data File™ with initial
size 100, assigning its file number to the constant DATA.FILE, you could
execute:
188 " My Data File® MEW.FILE CONSTANT DATA.FILE

Future references to the newly created file can be made using the constant
DATA.FILE.

File System Page9 -6 August 28, 1984

Allocating Space in e Data File
There are three methods you can use for allocating space in data:
a) Allocate the space when you create the file (with the NEW.FILE
command)
b} Don‘t {let the system do it for you)
c) Both a) and b)

¥hen you create a data file, you can to allocate space for it by specifying the
size. Suppose you wanted to allocate enough space for 100 records, each SO
characters in length. The number of bytes needed is S000 (100 * 50).

To create some space using method b), you can simply start writing data into
the file. This appends dats to the file, allocating space for the data as
needed. Each time you write data into the file, the furthest write operation
into the file sets the end-of-file pointer. You can write past the end-of-file
pointer (and re-set it}, but you can't read past it. This simply means that you
should write data to the last position in the file you will access before trying
to read from it.

You can also combine both methods to create space in your file. You may want
to allocate a minimum amount of space when you create the file and as the
file grows, simply append data to the end, increasing its size.

Reading/Writing in a Data File

MacFORTH supports three data file record types: fixed, text, and virtual. Each
type has is own best use and you are free to use any type you like within an
application. Fixed record files are the simplest and most useful, text record
files make efficient use of disk space for text storage, and virtual record
files are the most flexible.

The MacFORTH file system reads and writes data records from a record buffer
from/to a file. A record buffer is simply an area in memory that you specify
for reading/writing records. To create a record buffer, simply allocate the
amount of space needed for the longest record you will read or write.

File System Page S -7 August 30, 1984

For example, if you will be accessing data records in a file and know that the
maximum record length is 60 bytes, you could create a record buffer by
executing:

68 CONSTANT REC.BUF.SIZE

CRERTE REC.BUF REC.BUF.SIZE ALLOT

This phrase created a record buffer called REC.BUF and allocated 60 bytes
for it. If you create a record buffer smaller than your record size
and read data into it, you could crash the system. ¥hen the data is
read from the file, it will continue to overwrite your dictionary, so be sure to
allocate enough space. That is why we created the constant REC.BUF SIZE in
the above example. ¥hen reading or writing, you can specify the size of the
buffer as a constant to be sure you use the right size.

You may also use the scratchpad buffer, PAD, but be sure to use a reasonable
record size to avoid overwriting the end of the object space.

Fixed Record Data Files

Fixed files are made up of records of the same size. This format allows you
to access any record in the file by its record number. The records in a fized
file are in sequence starting at record number O through the last record in the
file.

Specifying Record Size After you assign a fized file, before you can read or
write data in the file, you need to specify the size of each record in the file.
Use the SET.REC_LEN command in the following format:

<max rec size> <file®> SET.REC.LEN

For example, if you were using fixed record lengths of 37 in fized file *3
(using the constant MYFILE) you would execute:
37 MNMYFILE SET.REC.LEN

This is the value used by the MacFORTH system when reading/writing records
in a fixed file. if you don't specify the record size, you'll get the error
message "Fixed Record Length = 01" when you try to read or write records in
the file.

File System Page 9 - 8 August 30, 1984

Accessing Records Once you have assigned and opened the file, and allocated
a record buffer for the file, accessing records within the file is simple. To
read a record into your buffer, you supply the buffer address, record number
and file number to the command READ.FIXED . For example, to read record 5
from file *3 (represenied by the constant MYFILE) into a buffer named
REC_BUF, you would execute:

REC.BUF 5 MYFILE RERD.FIXED

Similariy, to write a record, you use the same format. For example, to write
record 12 to file * MYFILE from a buffer named REC.BUF, you would execute:
REC.BUF 12 MYFILE WRITE,.FIXED

Text Files

Text files are made up of a sequence of text (ASCIl characters) records
separated by carriage returns. This is an efficient way to store text files
because only the space needed for the text is used (no wasted space as may be
found in using fixed records for variable length text storage).

Because the records in a text file are variable length, you won't know how
long & particular record is until you have read the entire record into your
buffer.

Rewinding a Text File
To rewind a text file (set its position pointer to point to the start of the
file), use the word REWIND in the following format:

<file®> REWIND

For example, to rewind file # MYFILE (where MYFILE is simply a constant
containing the file number), you would execute
HYFILE REWIND

Reading Records in a Text File
Once you have opened the text file you want to use, and created a record
buffer for the records, reading and writing records from/to the file is simple.
For example, to read the first text record in file number MYFILE into a record
buffer named REC.BUF with length of REC_.BUF.LEN, you would execute:
UYFILE REHIND
REC.BUF REC.BUF.LEN HNYFILE READ.TEXT

File System Page 9 -9 August 30, 1984

To read the next record in the file, you would execute:
REC.BUF REC.BUF.LEN MYFILE RERD.TEXT

and so on. After each read operation in a text file, the file pointer is
positioned to the first byte of the next record. Subsequent read operations
read the next record in the file automatically.

What if your buffer isn't long enough for the record being read? Unlike the
fixed record files, you can use a buffer that is shorter than the length of the
record being read. (We recommend you use record buffer long enough to accept
the longest text record in the file for simplicity) Let’s look at an example to
illustrate this point. Suppose that the next record in the text file you are
reading from is 10 characters in length, consisting of the following:

Char*: 1 2 3 45 6 7 8 9 10

Chars: B o b Smit h«wn

if you read this record into a buffer of length 10 or more, you will get the
entire record and can continue. But, on the other hand, if you read this record
into 8 record buffer of length, say 7, you will only get the first seven
characters. To get the rest of the record { "t", *h", and the carriage return},
perform a read command just as if the rest of the record was the next record
in the file. The read will terminate on the carriage return, so only the 3
characters remaining will be read.

when MacFORTH reads a text record into a buffer, it transfers characters to
the buffer one at a time until it encounters a carriage return in the file
{"normal” termination) or until the record buffer is full. If the record buffer
is full prior to encountering a carriage return, the file pointer is left pointing
at the next character to be read from the current text record. Subsequent
reads will begin at that character (just as if it were the first character in
the record).

Writing Records in a Text File To add records to a fext file use the
WRITE.TEXT command as follows:
<buffer addr> <record length> <file®*> URITE.TEKT

For example, to add the record in the buffer REC.BUF which is 10 bytes long
(including a carriage return at the end) to file number MYFILE, you would
execute:

REC.BUF 18 MYFILE WRITE.TEXT

When writing text records, you must append a carriage return to the end of
the record (EOL). For example, to append a carriage return to the record just
written {from the above example}, you could execute:

CRLF 1 MYFILE WRITE.TEXT

File System Page 9 - 10 August 30, 1984

Virtual Files

virtual files are the most flexible file format of the three types supported by
MacFORTH. Using virtual files, you could re-write each of the existing file
structures or create your own new file types. To MacFORTH, & virtual file is
simply e virtual array of characters. You can manipulate this erray in any
way you like.

Accegsing Data in a Virtual File
To read data within the file to a buffer, use READ.VIRTUAL in the following
format:

<buffer addr> <length> <file addr> <file %> READ.VIRTUAL

The only new parameter you may not recognize is <file addr>. This is the
offset from the start of the file where you would like to stari reading data.
For example, to read 100 bytes from the file number 6 (represented by the
constant MYFILE} starting at the beginning of the file into the record buffer
REC BUF, you would execute:

REC.BUF 188 @ NYFILE READ.VIRTUAL

To read 7 bytes from the same file, starting at the 23rd element in the file
into the record buffer REC.BUF, you would execute:
REC.BUF 7 23 MYFILE RERD.UIRTUAL

Writing data into the file is done in & similar manner using the word
YWRITE.VIRTUAL in the following format:
<buffer addr> <length> <file addr> <file®> URITE.UIRTUAL

For example, to write 30 bytes of data from PAD, starting at position 100,

you would execute:
PRD 38 186 MYFILE WRITE.UIRTUAL

File System Page 9 - 11 August 30, 1984

Blocks Files

Blocks files contain program source code. Each file is made up of & sequence
of blocks (1024 bytes) numbered from zero through the maximum block in the
file.

Creating a Blocks File
If the file you have assigned already exists on the disk, there is no need to
re-created it; go on to "Opening & Blocks File.”

To create a new blocks file, use NEW.BLOCKS.FILE in the following format:
<® of blocks> " <file name>" NEH.BLOCKS.FILE

This will create a new blocks file on disk and place it into the disc file
directory. If the file was created and allocated successfully, the file number
for the new file is 1eft on the stack. If an error is encountered in the process,
an error message is displayed and the system aborts.

As with the NEW_FILE command, you may want to create a constant value for
the file number, or if you aren't going to use it, simply drop it from the stack.
Here's an example to create a8 new blocks file named "Game Blocks”, allocating
12 blocks 1o it and creating the constant GAME.BLOCKS for future references
to the file:

12 " Game Blocks" HNEW.BLOCKS.FILE CONSTANT GAME.BLOCKS

Changing the Size of a Blocks File
Once you have allocated space to a blocks file, you can change the size of the

file with the APPEND.BLOCKS command used in the following format:
<* of blocks> <file*> APPEND.BLDCKS

where <*of blocks> is positive to add blocks, or negetive to delete biocks
from the specified blocks file. For example, to add 6 blocks to the file
identified by the constant MY.FILE, you would execute

6 NMY.FILE APPEND.BLOCKS

or to delete 3 blocks from that file:
-3 MY.FILE APPEND.BLOCKS

File System Page 9 - 12 August 30, 1984

Accessing_ggggram Source Code in a Blocks File
To access the data within the file as a blocks file, you select it as the

“current blocks file” To select a file, use the SELECT command in the
following format:
<file®> SELECT

This command selects the specified file as the current file for block access.
Once opened, you can select any blocks file to be the current blocks file with
this command. If you try to select a data file as the current blocks file, the
error message "Not a8 Blocks Filel” is displayed. We recommend that you use
the word "blocks” in the name of your file to distinguish it from other files on
your disk (ie. "Graphics Blocks” or "Checkbook Blocks”, etc.).

When executed, SELECT saves the block buffers and the fite information out
on the disk, insuring that any unwritten data from the previous blocks file is
saved, and then selects the specified file as the current blocks file.

The MacFORTH word USE" is provided for convenience when you want 1o edit a
blocks file. Used in the form
USE" <file name>"

the file specified is opened, and selected as the current blocks.

MacFORTH Blocks File Structure

MacFORTH reserves the first two blocks in a file (blocks 0 and 1) for a special
purpose. Block 0 is used as a comment block for the file and can’'t be loaded.
Block 1 is used as a load block for the entire file.

Use block 0 to make notes about the file, current revision of the program, etc.
This is handy for later reference.

Use block 1 as a load block for your application. This important because when

you open (by double clicking) a MacFORTH blocks file from the Finder,
MacFORTH selects the file and 1oads block 1.

File System Page 9-13 August 30, 1984

Including a File
The word INCLUDE" allows you to load another blocks file. The specified file
will be opened and loaded (by loading block 1). You can use INCLUDE" from
any file to load another file, then continue loading the original file. For
example, if you had the source code to a file named "Checkbook Blocks”, you
could load it by executing

INCLUDE® Checkbook Blocks”

INCLUDE" may be nested . This means that a file that is being included can
include a file itself.

when INCLUDE" is executed, the specified file is assigned to the first
available FCB.

Closing a File

¥hen you have finished using a file, you should close it. This ensures thet all
data is written to the disk and that the file system updates all necessary
informstion about the file. To close a file, simply execute the CLOSE
command using the file number to be closed. For example, to close file* 7,
you would execute:

7 CLOSE

You should always check the 1/0 result code when you close a file to be sure
it was properly closed.

Deleting a File

To remove a file from the disk (and destroy all date contained in the file}, use
the DELETE command. Once a file is deleted, you cannot recover the data
from it, so use this command with caution. To delete a file from the current
disk, execute the DELETE command as follows:

<file*> DELETE

File System Page 9 - 14 August 30, 1984

Ejecting a Disk

You can eject a disk from the drive with the command
INTERNAL EJECT

To eject the disk in the external drive (if present) execute
EXTERNAL EJECT

Mounting a New VYolume

To mount a new volume, simply eject the disk that is in the drive and insert
the desired disk (volume). MacFORTH will automatically mount the new
volume.

References to Yolumes

As we have said, you can reference a volume by name when opening a file by
simply inserting its name followed by a colon before a file name. A volume
may also be referenced by volume number. Yolume numbers 0, 1 and 2 refer to
whatever volume was the boot volume (volume *0), and the volumes residing
in the internal drive (volume *1) and the external drive {volume #2).

Agsignment of specific volume numbers start at O for the default drive and
increase by -1 in the order order that each new volume is mounted (ie. the
first volume mounted is 0, the second is -1, the third is -2, and so on).

Specific volumes may be ejected, or have their directories displayed by using
the volume number.

File System Page 9 - 15 August 30, 1984

Advanced File System Topics

This section -discusses some of the inner workings of the MacFORTH file
system. It is intended for the advanced user. You do not need to read this
section to use the file system.

File Control Blocks MacFORTH uses an array for each file number used. The
information in this array is required by the Macintosh file commands. You can
examine and alter (st your own riskl) any information about a file by
examining its file control block.

The command >FCB returns the address of the fcb array for the given file
number. Each array is 90 bytes long.

File Pointer The basis of the MacFORTH file system is the word POINT which
points into a file. PDINT allows you to point anywhere in a file, randomly,
sequentially, relative to the front, back or anywhere in-between. POINT is
used in the following format:

<position> <position mode> <file*> POINT

Position Modes There are four position modes for use with POINT :

Mode Position Type

FROM.START position relative to the start of the file
FROM.END position relative to the end of the file
FROM.CURRENT position relative to the current file position
VIRTUAL position to any specified location in the file

To clarify this point, let's look & some exsmples {we'll use the dummy
constant FILE® to represent a valid file number):

a) position at the start of the file:
B FROM.START FILE® POINT
b} position at the end of the file
B FROM.END FILE® POINT
c) position at the 17th character in the file
17 FROM.START FILE® POINT
d) position 4 characters before the current position in the file
-4 FROM.CURRENT FILE® POINT

File System Page 9 - 16 August 30, 1984

Note: The above three operators set the file mode to text. This means that
the file pointer will be positioned where you specify, but until you change the
mode (if text is not the desired mode), you will be reading and writing text
records (terminating on carriage returns).

You can also use the position mode VIRTUAL to point to any byte in the file.
Using the above examples:

a) position at the start of the file
g VIRTUAL FILE* POINT
b) position at the end of the file
<max ® of bytes in file> UIRTURL FILE® POINT
) position at the 17th character in the file
17 UIRTURL FILE® POINT
d) position 4 characters before the current position in the file
CURRENT.POSITION 4 - VIRTUAL FILE® POINT

File Name Length The name given to a file is any string of up to 255
characters in length. Invalid characters include colon (:} and double quote (*).

¥Yolume Mame Length A volume name is any string of up to 26 characters in
tength and terminated by a colon ().

Maximum File Length For practical purposes, the maximum file size is
limited only by the amount of available space on a disc. The absolute file size
maximum is 16 megabytes (16,722,216 bytes}. The maximum record size to
be read at one time is 64 kilobytes (65,535 bytes), but is currently limited to
the amount of memory available.

File System Page 9 -17 August 30, 1984

Appendix A: Example File Usage

in order to simplify your task of using the file system in your application, we
present the following simple example as a template. The example is a simple
system of keeping track of three people (by their last names) and their ages
in the fixed file "Ages File". Their names and ages are:

Neme Age
SMITH 26
JONES 35
WILSON 31

and we will translate them to:
CREATE REC1 26C, ,"SMITH"
CREATE REC2 38C, ," JONES "~
CREATE REC3 31 C, " wWILSON"

{Note that we are simply placing the data into the dictionary for the purpose
of example. This data would normally be accessed via another file or input
directly from the keyboard.)

How, continue with creating and opening the file:
8 " fAges File" MNEW.FILE CONSTANT AGES.FILE

The buffer used to read the records into:
& CONSTANT AGES.REC.SIZE
CREATE AGES_BUF AGES.REC.SIZE ALLOT

Set the fixed record size:
AGES .REC.SIZE AGES.FILE SET.REC.LEN

Next, we'll write the records into the file:
RECT 1 AGES.FILE WRITE.FIXED <7FILE.ERROR

REC2 2 ARGES.FILE HWRITE.FIKED 7?FILE.ERROR
REC3 3 AGES.FILE MHRITE.FIXED 7FILE.ERROR

{Notice that we didn't need to set the end of file pointer; it was done

automatically by writing data at the end of the file each time. The file
system automatically increased the file size)

File System Page9 - 18 August 30, 1984

Here's a word which will read each record and print the information:

DISPLAY.RECORD (--- | display data for the current rec)
AGES_BUF 1+ COUNT TYPE { display the name)

" is " AGES_BUF C® (display the age)

* years old.” ;

SHOW.AGES (---) 4 1
D0 AGES_BUF I AGES.FILE READ.FIXED ?FILE.ERROA
CR DISPLAY.RECORD
LOOP

Suppose you wanted to change JONES' age to 397

AGES_BUF 2 AGES.FILE READ.FIXED { read Jones' record)
39 AGES_.BUF C! (change the age)
AGES_BUF 2 AGES.FILE WRITE.FIXKED { re-write the record }

File System Page 9 - 19 August 30, 1984

Appendix B: File System 1/0 Result Codes

The following result codes are returned by the system ROM after an
Input/Output operation has taken place:

Result
Code

Mesning

0
-33
-34
-35
-36

-37
-38
-39
-40
-41

-42
-43
-44
-45
-46

-47
-48
-49
-50
-51

-53
-54
-55
-56

-57
-58
-59

-60
-61

File System

Mo error. Operation completed successfully.
Directory full
Disc full

Mo such volume
Disc 1/0 error

Bad filename

Fork not open

End of fork

Position error. Tried to position before start of file.
Memory full

Too many forks - more than 12 forks open
File not found

Disc write protected

File locked

Yolume locked

One or more files are opened

Duplicate file name

Fork already opened with read/write permission

No drive number specified

No file agssigned, reference number specifies nonexistent
access path

Yolume not on-line

Locked volume can't be written to

Volume already mounted and on-line in drive

Invalid drive number - number specified doesn’t match an
existing drive

Invalid disc directory

External file system; can't recognize volume

Problem during rename

Master directory block is bad

Read/write or open permissions - writing not allowed

Page 9 - 20 August 30, 1584

Chapter 10: Printer/Serial

Tonic Page
Overview 2
Text Output 2
window/Screen Output 3
Other Printers 3
Interfacing to Another Printer 4
Printer Port Configurations 4
Graphics Output 4
Serial interface 5
Serial Communications with a Host Computer 5
Serial Interface iImplementation Details 6

Printer/Serial | Page 10 - 1 August 28, 1984

Overview

MacFORTH allows you to output anything that you can put on the screen, both
characters and graphics, to an Apple Imagewriter printer. if you have any
other type of printer, refer to the "Other Printers” section of this chapter.

Text Output

Any character output to the screen can also be output to the printer. To do
this, use one of three methods:
a.) Select the "Printer” item from the "Options” menu. Output is then
directed to both the printer and the screen.

b) Press ¥P (a shortcut for selecting the “Printer” item from the
“Options” meny).

c.) Execute PRINTER ON to activate the printer.

To disable output to the printer, you can use A or B above (they actually
toggle the printer function) or execute
PRINTER OFF

If you are doing any special formatting on the printer and don't want the
output to appear on the screen, execute:
PRINTER.OHLY COHSOLE !

To return output to both the printer and the screen, execute:
MAC.CON CONSOLE !

PRINTER.ONLY does what its name implies. In the event of an error or if the
end of the input is reached MacFORTH always returns to the console as the
output device.

You can also direct any string to the printer with the word PRINT. PRINT
works just like TYPE, only the string is output to the printer instead of the
display.

Many printers need & termination character {(like CR or LF) before they will
print the data sent to them. To output a carriage return or line feed execute
CRLF 2 PRINT (CR,LF)
CRLF 1 PRINT { just CR)

Printer/Serial Page 10 - 2 August 30, 1984

Window/Screen Qutput
MacFORTH allows you to dump the contents of either only the active window

or the entire screen to an Imagewriter printer. There are two methods of
dumping the entire screen:
a) Depress the caps lock key and press shifted §§4

b) Execute PRINT.SCREEN

To dump only the contents of the front window use one of the following two
methods:
a) Release the caps lock key and press shifted 34

b) Execute PRINT.UINDOW

It is also possible to print just a portion of the current window with the
word PRINT BITS. Used in the form
<top> <left> <bottom> <right> <bitmap addr> PRINT.BITS

the rectangle specified by <top> <left> and <bottom> <right> in the active
window will be printed. The bitmap for & window is offset 2 bytes into the
window record, so the eddress for the bitmap is GET.WINDOW 2+

For example, to print the contents of the upper left corner of the window,
execute:
8 8506 68 GET.WUINDOW 2+ PRINT.BITS

Other Printers

For best results, we strongly suggest you purchase en Apple Imagewriter
printer. If you choose to use another type of printer, you will have to either
provide your own cabling and printer configuration or arrange with someone
who can.

Note: CS! does not guarantee that the instructions provided will enable you to
interface to any printer other than the Imagewriter. The following
information is intended to provide background information to individuals who
have fabricated cables for and interfaced printers to other computers. It is
not something that be attempted by inexperienced users. Beyond supplying
this background information, CSI will not support non-imagewriter printers.

Printer/Serial Page 10-3 August 28, 1984

interfacing to Another Printer

In order to interface your non-imagewriter printer to the Macintosh, you will
need the following:
a) a printer with an RS-232C Serisl interface, and

b) & specially fabricated cable to connect between the printer and
the Mac (refer to ST.MAC Magazine, 1984, pg.44 for Mac pinouts)

c) be sure to satisfy the control signal requirements of your printer
(ie. DSR, CD, RTS)

Printer Part Configurations
Default text output to the printer port occurs at 9600 baud, no parity, § data
bits, 1 stop bit. Handshake protocol for output flow control is XON/XOFF. If
your printer cannot be configured to this format, you will need to reconfigure
the Mac printer port to a formet your printer is capable of. Use:

<8stop bits> <parity> <%bits> <baud rate> CONFIGURE.PRINTER

where $stop bits 1,2 = | stop bit, 2 stop bits
parity 8,1,2,3 = none,odd,none,even
$hits 5,6,7,8 = % of data bits
baud rate = 75 - 57680

For example:

1 8 8 1268 CONFIGURE.PRINTER

reconfigures the printer port for 1 stop bit, no parity, 8 data bits, 1200 baud.

Graphics Output
Unfortunately, the industry hes no reel standerds for dumping graphics to a

printer. In order to output graphics deta to your printer, you will need the
following:
a) The ability to output text as described above (consider a printer buffer
if necessary).

b) A complete understanding of the way in which your printer accepts
graphics information.

c) You will then have to write & program which determines which bits
are set in the desired display srea, format them into a output buffer
which will be compatible with your printer, and then dump successive
output buffers to the printer. Use the MacFORTH graphics word
GET.PIXEL to determine the state of each dot on the screen.

Printer/Serial Page 10-4 August 28, 1984

Serial Interface

Starting on block 15 of the "FORTH Blocks™ file on the MacFORTH system disc
contain source code for the Macintosh serial communications port (the phone
icon). This code is followed by an exasmple of a minimal terminal emulator
program capable of communicating over the serial port with a remote host
computer, as well as upline and downline loading of text files. In the
remainder of this section we will discuss each of the primitive serial
interface operators, and discuss how they are used in the terminal emulstor
program.

We have provided the serial communications in source code form for three
reasons:

First, it is optionally loadable. If you don't want to use it, you erent
penalized in memory usage.

Second, many users of MacFORTH are newcomers to FORTH. This provides
another example of FORTH source code. We encourage you to follow our
example of spreading your applications source code over meny blocks, leaving
plenty of “white space” in your blocks. MNote that each word is commented
with both what is expected on the stack and a brief description of the action
it takes. Many novice FORTH progremmers try to crem as much as possible
into a single block of source code, making it unreadable. Disks are cheap
compared to the headache of trying to unravel an overstuffed block!!

Third, for those users who have "inside Macintosh®, this is a good example of
how to interface to a device driver entirely in high level FORTH.

Printer/Serial Page 10 -5 August 28, 1984

Serial Interface Primitives

SERIAL FILE® -- addr
Variable containing the file number to use for serial 1/0 operations.
Actually, two files are required to support full duplex operations.

SERIAL.IN -~ file*
Returns the file number for the input side of the serial interface.

SERIAL.OUT --file*
Returns the file number for the output side of the serial inteface.

INPUT .SIZE --size
Constant containing the size of the serial input type ahead buffer.
Change it to suit your requirements.

INPUT .BUFFER -- eddr
Returns the address of the input buffer.

SERIAL.OPTIONS -- addr
Returns the addres of the array used to configure the serial
interface protocol.
Offget (bytes) Description
XON/XOFF handshake enabled if byte is non-zero
CTS handshake enabled if byte is non-zero
XON character for software handshake
XOFF character for softyare handshake
Input abort codes:
bit 4= parity error
bit 5= overrun error
bit 6 = framing error
5 Status change generates event
bit 7= BREAK state change
bit 5= CTS state change
6 Enable XON/XOFF input flow control if byte is
non-zero

BDUHUN O

After modifying the contents of this array, use BAUD (discussed
later) to put the new options into effect.

Printer/Serisl Page 10 -6 August 28, 1984

OPEN.SERIAL addr\cnt\file* --
Opens serial device driver on the specified file®. (Note: 2FILES
will show the serial files as "AIN" and "AOUT") addr and cnt
specify the address and length of the input buffer to be used for
type ahead. This buffer is used to make up for the time it tekes to
scroll up all bits within the window.

To change from the comm port {phone icon) to the printer port
{printer icon), replace "AIN" and "AOUT" with "BIN" and "BOUT"
within the definition of OPEN.SERIAL.

STYPE addricnt --
Analagous to TYPE or PRINT. Output is sent to the serial port.

S.EXPECT addr\cnt --
Analagous to EXPECT. No cheracter editing (eg. backspace) is
performed.

S.?TERMINAL --n
Returns n as the number of characters available in the input buffer.
Returns 0 if none are available.

S.STATUS -- stat2\stati

Returns the serial device status.

Stett;
bit 30 framing error
bit 29 hard overrun
bit 28 parity error
bit 24soft overrun (input buffer overfiow)
bits 16-23 non-zero: XOFF received to stop input data
bits 8-15 read command pending
bits 0-7 write command pending

Stat 2:
byte Onon-zero XOFF flag
byte tnon-zero CTS flag

S.7READY -- flag
Returns a true flag if the serial driver is able to output (not held off
by CTS or XOFF).

Printer/Serial Page 10 -7 August 28, 1984

S.KEY -- char
Reads char from the serial port. If no characters are available,
S.KEY waits until one is sent.

S.EMIT char --
Writes char to the serial port. Waits if not ready until ready for
output.

S.BREAK ---
Transmits a break signal to the remote computer.

BAUD baud rate --
Opens the serial port if necessary and sets the baud rate, input
buffer, and communications options.

Using the Serial Interface
Before attempting to input or output to the serial port, you first need to set

the baud rete. For example
3688 BAUD

initializes the serial port, setting the baud rate and communications options.
Serial Qutput
To output a character to the serial port, use S.EMIT. For example

65 S.ENIT

will transmit the character "A" out to the serial port. Refer to the ASCIi
chart at the end of the manual for a complete listing of ASCII codes.

To output a string to the serial port, use STYPE. For example
CRLF 1 S.TYPE
* LOGON" COUNT S.TYPE

will output a carriage return, then the string "LOGON" to the serial port.

Printer/Serial Page 10 -8 August 28, 1984

Serial Input

S.?TERMINAL returns the number of characters available in the input buffer.
To input a single character use S.KEY. To input a string of characters, use
S.EXPECT.

You can combine the function of S.2TERMINAL and S.EXPECT to input the
entire string in the serial input buffer:
PAD S.?TERMINAL S.EXPECT

Using the Terminsal Emulator

Refer to the first screen of the terminal emulator code {(at the end of the
serial interface code) for instructions on how to operate it.

Printer/Serial Page 10 -9 August 28, 1984

Printer/Serial Page 10 - 10 August 28, 1984

Chapter 11: Advanced Topics

In this chapter we will discuss a variety of MacFORTH features which you
will find useful in the course of programming.

Topic Page
Time and Date Functions 2
Timer Functions 2
TRACE and DEBUG Features 3
Interrupt Button Support 3
DEBUG Option 3
TRACE Option 4
UNIQUE.MSG Option 5
LOWER.CASE Option 5
OQUIET Option 6
User Specified Error Handlers 7
Error Recovery 7
Disabling Error Recovery g
Unconditional Error Recovery 9
Recovery Stack Frame Chart 10
Memory Allccation 12
Macintosh/MacFORTH Memory Map 13
Yocabulary Data Structure 14
YYocabulary Data Structure Diagrami5
Character Cursor Symbaol 16
Cutting and Pasting Between
Applications 17
Macintosh Toolbox interface 1]
Pre-Requisites 18
Review of Pascal Data Types 18
Toolbox Traps 16
0S Traps 18
Pascal Procedures 19
Pascal Functions 19
Complex Sound Generation 20

Advanced Topics Page 11-1 August 31, 1984

Time and Date Functions

Your Macintosh maintains a count of the number of seconds that have passed
since Januery 1, 1904 in its own internal counter. This counter is updated
every second automatically by the computer and can be read by executing the
word @CLOCK. To facilitate using this feature, we have provided you with
the following words to display the time and date:

TIME$S ---
Displays the current time (as read from the internal clock) and
displays it in the following format:
HH:MM:SS XM
.DATES -—--
Displays the current date (as read from the internal clock) and
displays it in the following format:
MM/DD/YY

GET.TIME$S addr —-
Copies the 11 byte time field ("HH:MM:SS XM"} to addr. Be sure
that you have 11 available bytes at addr as it will be
overwritten.

GET.DATES addr --
Copies the 8 byte date field ("MM/DD/YY"} to addr. Be sure that
you have 8 available bytes at addr as it will be averwritten.

For more information on using the internal clock for display of time and date,
refer to the MacFORTH Glossary entries for:

FMT.DATE$ FMT.TIME$ DAYS> ?SECONDS 7DAYS
Timer Functions
You can also use the clock as a timer. For example, to see how long it takes
to display the entire words list of the current dictionary, you could execute:

®CLOCK HORDS @CLOCK SWAP - CR . ." Seconds”
or to wait a specified number of seconds before continuing:

: WAIT { ® of seconds --)

gcLock +
BEGIN @CLOCK OUER = UNTIL DROP

38 URIT

Advanced Topics Page 11-2 August 31, 1984

TRACE and DEBUG Features:

To facilitate debugging your program (if it has any bugs), we have provided
you with an extensive set of tools for tracing and locating the problem.

Interrupt Button Support
When the user presses the interrupt button {(the second button on the
programmers buttons on the left side of the Mac) while MacFORTH is in
control, MacFORTH locks out interrupts for a few seconds and then aborts the
current operation. This action will recover from most unterminated loops and
return control to the MacFORTH window. For example, try a definition like:

: ENDLESS BEGIN CR.” again and again..." AGAIN ;

ENDLESS

Now reach around and press the interrupt button (pet the reset button).

DEBUG Option
The debug option is present on the options menu bar. A check mark indicates
the debug option is active. The keyboard equivalent command is command D.

when the debug option is on, the text interpreter will check the stack depth
after completion of each request. If any items are left on the stack, they are
displayed using .S in the following format

[depth] \ 3rd stack item \ 2nd stack item \ top stack item

The 3rd and 2nd stack items are only displayed if they exist. Refer to the
trace option for other features of the debug option.

Advanced Topics Page 11-3 August 31, 1984

TRACE Option

The trace option provides a compile time elective trace feature. Basically
this option instructs the compiler to compile new definitions in such a way
that when they are executed, the name of each word will be printed along
with the depth and contents of the stack. The trace option may be set and
cleared via the options menu bar. Pull down TRACE to toggle this function.

For example, execute
DEBUG ON
TRACE ON

: TEST 18800 " *"
TEST

Because the definition was compiled with the trace option on, when it
executes, each word that is executed is preceded by printing its name and
followed by printing the contents of the stack. (You can use the Menu Bar to
halt and resume output.}

The debug option enables and disables the run-time trace option’s output.
Now execute

DEBUG OFF

TEST

and you will see that the trace feature was not executed because the debug
option was off.

MNOTE: The trace option forces compilation of the trace feature into each word
when it is turned on. The trace output is generated st run-time. This means
that a great deal of overhead is carried with each word when it is executed
with the trace option on. To get accurate timing information in time-critical
operations, and for production applications code, disable the trace feature and
re-compile the code.

Remember, the TRACE option is altered by command D. You can toggle the

trace function on and off during output by pressing command D {or by
selecting the Debug item from the Options menu).

Advanced Topics Page 11-4 August 31, 1984

UNIQUE MSG Option
The text interpreter searches the current words in the dictionary when a new

definition is creasted. If a8 new entry with a name field the same as & prior
entry is created, the interpreter can optionally display the error message
ISH'T UNIQUE
The phrase
UNIQUE.MSG ON

enables output of this warning message when a word is re-defined {or given
the same name as a prior word). The phrase
UNIQUE.MSG OFF

disables output of this message. For example, execute the following
UNIQUE.MSG ON
TEST
TEST

UNIQUE.NSG OFF
TEST

You normally want to operate with the UNIQUEMSG option enabled, however,
when loading production code with known re-definitions, you may choose to
disable this message.

LOWER.CASE Option
If you enter MacFORTH words in lower case, the text interpreter normally
converts them to upper case before looking them up or creating a new
dictionary entry. This allows you to reference a word by typing its name in
upper or lower case. The phrase

LOUER.CASE ON

defeats this automatic conversion and allows you to define MacFORTH words
in lower case that have different name fields than their upper case
equivalents. The phrase

LOWER.CASE OFF

causes words to be again converted to upper case. The default state of this
syitch (at startup) is OFF.

Advanced Topics Page 11-5 August 31, 19684

QUIET Option
MacFORTH normally sounds the beeper to attract your attention to an error. In
some environments, this noise may be inappropriate. To quiet the beeper on
errors, enter

QUIET ON

to sound the beeper on errors, enter
QUIET OFF

Default setting for this switch is OFF at startup.

Advanced Topics Page 11 -6 August 31, 1984

User Specified Error Handlers

MacFORTH allows you to dynamically install and remove handlers which
intercept errors defined by ABORT" or ERROR™ . Error handler entry points,
specified by TRY and ON.ERROR , are dynamically installed and remain active
for the current definitions. If an ABORT" occurs or a RECOVER attempt is
made within that defintion or any definition which it executes, the specified
error handler will be invoked (unless another handler has been invoked at a
lower level). When the current definition completes, error handling specific
to that definition is replaced by that of the next higher level. Thus, error
recovery is fully nested, and the scope of any error handler specified within
a definition is relevant only to that definition {or those it references). For
example,
0OPS! @ 8 W/MOD ;
oopPs!

invokes a division by zero processor exception handler to execute the
following (by default):
ABORT" Z2ERG DIVIDE TRAP ! *

Error Recovery

Because no exception handler was specified, the default error action occurred.
By using ON.ERROR to specify e new handler, you can override the default

action. Try
: TEST (---)
ON.ERROR ." TEST ABORTED " ABORT RESUME
." TEST STARTED " ODOPS!
" TEST COMPLETED * ;
TEST

what happened? In the definition of TEST, you created an error handler to
process any abort conditions (defined using ABORT" or ERROR"). The phrase:
ON.ERROR ." TEST ABORTED " ABORT RESUME

defined the error handler to display the message "TEST ABORTED" and then
execute ABORT when an error occurred.

when the zero divide trap (caused by executing DOPS!) was encountered,
MacFORTH executed the new error handlier (that you installed in TEST) instead
of the default. Try

00PS!

Advanced Topics Page 11 -7 August 31, 1984

Newly defined error handiers are in place only during execution of the word
which defines them with ON.ERROR. After the word finishes execution, the
new error handier is discarded. This allows you to nest error recovery
routines.

In TEST, the new error handler executed ABORT, which aboried execution
back to the interpreter. Your error handier will re-execute the code following
RESUME if you don't execute ABORT (or some equivalent). For example, try:
: TRYRTRY.AGAIN { —-—- }
ON.ERROR CR ." New Error Handler..." RESUHE
CR ." Try & try again code...” DOPS!
" Finished!!"

TRY&TRY .AGAIN

TRY&TRY.AGAIN will continue executing until you execute 3§A (or select
"Abort” from the "Options” menu). Why? Take a close look at the code. First,
a new error handler was installed via

ON.ERROR CR . New Error Handler...® RESUNHE

Notice that there is no ABORT to halt execution. After MacFORTH executes
00PSI, it is directed to execute the new error handler, then resume executing
the code after RESUME, which executes

CR ." Try & try again code...” O0OPS!

which causes an abort, which causes the new error handler to execute, which
resumes, and so on (and so on...}.

(Notice that the end of TRY&TRY.AGAIN -- the message “Finishedll” -- will
never be executed.)

Advanced Topics Page 11 -5 August 31, 1984

Disabling Error Recovery

How does MacFORTH know if you have posted (defined) your own error
handler? The variable RETRY points to the current error handler. If RETRY
is zero, it implies that MacFORTH should use the default error handler.
Mon-zero RETRY tells MacFORTH you have posted your own error handler (it is
actually the address of the new error handler).

You can cancel a posted error handler at any point with the phrase
RETRY OFF

As we explained above, this will instruct MacFORTH to use the default error
handler. For example, try:
¢ TRY.ONCE (--- 3}
ON.ERROR CR ." Error Encountered!!" CR RETRY OFF
RESUNE
CR ." Trying... " OOPS! ;

TRY . ONCE

Let's follow what happened when you executed TRY.ONCE;
ON.ERROR CR ." Error Encountered!!" CR RETRY OFF
RESUNME

set up the new error handler;
CR .* Trying..."

displayed the message "Trying...", and
0opPs!

caused an error condition to occur.

The first time through, the new error handier was installed, the message
“Trying..” was displayed, and OOPS! caused an error. ‘When the new error
handler was executed, it displayed the message “Error Encountered!”, disabled
itself (by setting RETRY to zero), and then continued after RESUME.

The second time through (executing the code after RESUME), the message
“Trying..” was again displayed and OOPS! caused an error. This lime,
however, MacFORTH saw that RETRY was zero and executed the default
handler which caused the system to abort with the message "ZERO DIVIDE
TRAP I,

Advanced Topics Page 11 -9 August 31, 1984

Setting RETRY to zero only affects the most recently defined error handler
{which is automatically removed at the end of the current definition anyway).
Any previously defined error handler will be re-installed when the current
definition is completed, allowing nesting of error handling routines.

Unconditional Error Recovery
You can unconditionally recover at the most recently specified error handler
with the word RECOVER. Try the following example:

RECOUER.TEST (f --)

ON.ERROR RETRY OFF 1 ABORT* Aborting RECOUER.TEST *

RESUME
IF RECOUER ELSE 2@ SYSBEEP THEN

& RECOVER.TEST
1 RECOUER.TEST

MacFORTH can even detect when you try to fool itll
NICE.TRY! ." ¥¥* RECOVER ;
NICE.TRY!

The error message “ILLEGAL RECOVERY ATTEMPTED" indicates that an
attempted was made to recover with no handier posted.

Here's another way to specify an error handler:

TRY.IT (---)
2 TRY 1- " KK" DUP
IF NICE.TRY! THEN
A
TRY.IT

ON_ERROR posts a handler and jumps over it, TRY posts a handler and
continues to execute. In either case the stack pointer is returned to the depth
that it was when the error handler was identified. This technique is most
often used to identify the last ditch error hendier in a fault tolerant system.
TRY may be used to restart the current program function in caese of an
unexpected error condition,

Advanced Topics Page 11 - 10 August 31, 1984

|

! I <--

I | | Recovery Stack Frame
/7 7

I | |

| | |

| Prior Retry —|

| |

| Recouery SP I

| | User Uariable
| Recovery IP | RETRY

I |

| | | |

| Address of NO.RETRY | <---------] |

! I R

| |

/7 /

I |

| I

| |

This stack frame approach allows you to specify your own error handler at
any level without disrupting a handler posted at a higher level. When the
current definition completes, the posted handler is automatically replaced by
the immediately higher level {if present}.

The list of stack frames is terminated by zero which, when RETRY points to it
{the zero entry), indicates that the default error handier is to be used.

Advanced Topics Page 11 - {1 August 31, 1984

Memory Allocation

Macintosh memory is partitioned into the five major areas shown in the
Macintosh and MacFORTH Memory Maps that follow. The areas titled
“Application Heap” and the stack are all that you need concern yourself with.
The remaining areas support system functions normally outside the scope of
applications programs. The applications heap area is a chunk of memory under
the control of the toolbox memory manager.

when writing MacFORTH programs, you control the amount of memory
allocated to your current object and vocsbulary data structures. When
MacFORTH ig lsaded into memory from disc, it is placed by ihe tooibox
memory meanager at the base of the applications heap. The applications heap
is just a pool of memory from which programs can request variable length

chunks.

The memory manager will attempt to satisfy your request by looking at all of
the available pieces in the heap and if a big enough piece isn't available, it
will reshuffle the heap until it can put together enough smaller chunks to
satisfy your request. You can also ask the memory manager to increase or
decrease the size of an existing chunk of memory.

After it is loaded, and the desktop window is initialized, MacFORTH asks the
memory manager to allocate s chunk of memory to put programs and data in.
Because the object area will contain executable code, it must be locked down
in memory, while its size may still grow and shrink.

A default allocation of 8K of object space and 9.5K of FORTH vocabulary space
is made.

Advanced Topics Page 11 - 12 August 31, 1984

Macintosh
Memory Map

MacFORTH
Memory Map

Display Memory

Block Buffers

TIB \ Return Stack

Stack

Application
Heap

STALCK
{(grows down)

HEAP
{grows up)

System
Heap

[Other VYocabularies

Resizable
MacFORTH Vocabulary

Resizable
MacFORTH Object

Desktop Window

Globals
and
VYectors

Advanced Topics

MacFORTH
PreCompiled
Object

User Area

Page 11- 13

Handles

August 31, 1984

Vocabulary Data Structure

MacFORTH departs significantly from other FORTH systems in how it handles
word lists (vocabularies). Most other FORTH systems intermingle name, code
and data structures within the dictionary. While this technique greatly
simplifies reclaiming dictionary space via FORGET, it requires that you
metacompile production programs to separate name fields from code and data
structures. MacFORTH maintains name fields in a separate relocatable heap
data structure.

A compile program is then able to purge thic data structure from the heap,
effectively reclaiming the space typically required by FORTH name fields.

When a word is defined in MacFORTH, its "head” (the text for the name it its
associated token) is placed into the CURRENT vocabulary. The “body” (its
execution and data structures) are placed into the object area.

CONTEXT, CURRENT, and TRUNK contain the address of a handie to a
vocabulary data structure within the vocabulary. The first four bytes contain
a self relative offset to the token field of the most recent definition. Token
fields may occur on odd byte boundaries, and are followed by the name of the
word (which is preceded by its length). Bits 6,7, and § of the count buyte are
used by MacFORTH to contain word precedence. Because MacFORTH uses
natural length names (up to 32 bytes long), there is no typical FORTH link
field, as the location of the next token can be computed from the name field.
A zero token at the bottom of the vocabulary signifies the end.

The following MacFORTH words relate to vocabulary management:

UOCABULARY -LATEST
RPPEND BEHERD
DEFINITIONS AKE
RES1ZE.UOCAB FIND
MININMUN. UOCAB NFA

Advanced Topics Page 11 - 14 August 31, 1984

MacFORTH
Vocabulary Structure

Zero Token indicates
0000) ___..—--"'""" end of Vocabulary List

|
X First Name in Vocabulary
/ EXIT
E
04

Token for First Name in
TOKEN / Vocabulary

!
N :l Names and Tokens Between
First and Latest

/ Latest Name in VYocabuiary
03

/ Token for Latest Name
r— TOKEN NEW

L]
]] 3 — Available Space in Vocabulary
. —— .
FENCE ————e Forget Barrier: Relative to
Start of Vocabulary. Use
i SIZE SET.FENCE to copy LATEST to
LATEST) Fence
Context .
I I Current Yocabulary Size
Handle ¢
I I I Self Relative pointer to
Latest NAME.

Advanced Topics Page 11 - 15 August 31, 1984

Character Cursor Symbol

when MacFORTH is waiting for text from the keyboard, a flashing cursor is
displayed at the point where the text will be placed. The flash rate is set via
the control panel. ‘

Any character font may be used as the cursor. The variable CURSOR.CHAR
contains the font* in the first 16 bits and the character in the second 16 bits.

For example:
HE¥ SF CURSOR.CHAR ! DECIMAL

sets the cursor to the default underline cursor.
BL CURSOR.CHRR !

sets the cursor to blank (invisible)
HEX 7C CURSOR.CHAR ! DECIMAL

sets the cursor 1o a vertical bar {as in Macwrite) and
HEX 878841 CURSOR.CHAR ! DECIMAL

sets the cursor to character 41 (A) of font#7.
Changing the cursor symbol is a good way of alerting the user when the

system is in some special mode. Some of the different character cursors we
have experimented with are listed below:

Hex Value Symbol
1 command key symbol (§6)
12 checkmark
13 diamond
14 solid apple
C6 triangle
BO infinity symbol
BD omega

Advanced Topics Page 11 - 16 August 31, 1984

Cutting and Pasting Between Applications

One of the more innovative features of the Macintosh is its ability to cut and
paste between applications. This is done utilizing a facility known as the
Desk Scrap. The Desk Scrap is maintained by the Toolbox Desk Manager.
MacFORTH currently supports two types of scrap entries: TEXT and PICT.

MacFORTH Level 1 supports cutting and pasting of text data between the text
editor and the desk accessories, or other applications. This is built in to the
editor and explained in the Program Editing chapter. Unless you need to
handle text larger than fits on a block of source code, you don't need to
concern yourself with the desk scrap.

Accessing the Scrap
The following words are available for accessing the desk scrap (refer to their
definitions in the glossary for more information on eachj:

SCRAP ., LEH SCRAP ,HANDLE SCRAP . COUNTER
2ERO . SCRAP GET.SCRAP PUT.SCRAP
UNLDAD. SCRAP LOAD. SCRAP "TERT

“PICT

The text editor source code is a good example of accessing the desk scrap.
Refer to the source code in the "Editor Blocks” file.

Advanced Topics Page 11 - 17 August 31, 1984

Macintosh Toolbox Interface

This section documents the facilities to directly call routines in the
Macintosh toolbox from high level MacFORTH.

Pre-requisites

The objective of this section is neither to document the contents of the
Macintosh toolbox, nor explain the interworkings of Mac/Lisa Pascal. To gain
insight into those areas you need to obtain a copy of “Inside Macintosh.”

As a minimum, you will need to read and understand the "Programming
Macintosh Applications in Assembly Language” section of the manual. Add to
this any paris of the togibox that you want to access.

Review of Pascal Data Types
The following data types are used throughout:

Boolean: 16-bit word with LS bit set in the high order byte to
indicate true or false (true = 1)

Byte: 16-bit word with byte in LS 8 bits

Char: same as Byte

Integer: 16-bit word

Long Integer: 32-bit word

Pointer: 32-bit address

Handle: 32-bit pointer to an address which contains a 32-bit
pointer

Toolbox Traps

Macintosh toolbox traps occur in 3 areas:

0S Traps: All 0S traps uniformly expect an 1/0 buffer pointer in A0 and
return an 170 result in DO. The MacFORTH defining word OS.TRAP creates a
new word, which when later executed, pops the top item of the stack into AQ,
executes the trap, saves the result in the user variable I0-RESULT, and then
executes NEXT. 0S traps are defined in the following form:

HER

fgs2 0S.TRAP READ { buf ptr --)
A182 0S.TRAP ASYNC.READ (buf ptr --)
DECINMAL

and may be used in the form:
' ! »FCB READ 7FILE.ERROR

(Refer to the File System chapter for details on each command.)

Advanced Topics Page 11 - 18 August 31, 1984

Pascal Procedures: Pascal procedures are a little more complicated. There
may be more than one argument passed and they may be of jumbled data types
(16-bit values, including booleans, bytes, or words intermixzed with 32-bit
values). Fortunately, the majority of toolbox procedures either expect all
32-bit items or only the last one or two items are 16-bit values.

Uniform 32-Bit Procedure Calls: Because MacFORTH works with 32-bit stack
data, Pascal procedures which expect 32-bit arguments may be easily defined
with MT. For example:

HE¥ A915 MT HIDE.UINDOM (wptr --) DECIMAL

vwhen HIDE.WINDOY is executed, the trap AS15 (hex) is executed with wptr
on the stack.

Note: When passing parameters to Pascal procedures, just leave them on the
stack in the order described in the Apple documentation (left is deepest stack
item).

Procedure Call with 1 16-bit {tem on the Top of the Stack: Enough of these
exist to warrant a special operator.:

HEX A9C8 WXMT SYSBEEP (duration) DECIMAL

This operator works for all cases in which all arguments below the top of the
stack (if any) are 32-bits.

Procedure Call with 2 16-bit {tems on the Top of the Stack: Enough of these
exist to warrant a special operator:
HEX AB893 2W>NMT (LINE.T0) ({ x\y -- } DECINMAL

Mote; The trap values shown differ from those in the Apple documentation (ie.
ADCE for SysBeep, AC93 for LineTo, etc.). The 11th bit set in the Apple
documentaion is an artifact of a prior generation Pascal compiler. Don't ask
why, just use the correct lower value. It's what the new compiler uses.

Pascal Functions: Unfortunately, Pascal functions expect space reserved to
return the result under any passed arguments. This means we have 1o pop off
all of our arguments, push space into the stack for the returned result, and
the push back the arguments. This is further complicated by the fact that the
result may be either 16 or 32-bits in length. As you may have guessed, some
of your favorite toolbox traps (like NEW.WINDDW which takes 9 parameters!)
are function calls. ‘

MacFORTH provides toolbox trap defining words for simple function calls. For
more complex calls, you'll either have to include a zero in your argument list

Advanced Topics Page 11 - 19 August 31, 1984

(to reserve space for the resylt), or write in with the Level 2 MacFORTH
668000 assembler. The following function traps are supported:

FUNC>Ww returns a 16-bit result

(eg. AB61 FUNC>H RAHDOM)
FUNC»L returns a 32-bit result
W>FUNC>L 16-bit parameter, 32-bit result
L>FUNC>L 32-bit parameter, 32-bit result
L>FUNC>W 32-bit parameter, 16~-bit result

Complex Sound Generation

MacFORTH provides access to the Macintosh 0S sound driver. The sound driver
provides three different sound synthesizers:
- square wave synthesizer: produces a pre-programmed series of tones
- four tone synthesizer: produces simple harmonic tones {with up to 4
voices)
- free form synthesizer: produces complex music and speech

When the system is loaded, MacFORTH opens the device driver "SOUND” and
assigns it to its own FCB called SOUND.FCB. The Getting Resulis chapter
discusses how to generate simple tones via the sound driver. For more
complex sounds, you will need to create your own waveform record. For
instructions on how 1o construct any desired free form or four-tone
synthesizer record, refer to the in-depth discussion on sound generation in
the Apple documentation.

A MacFORTH cound record consists of a synthesizer record proceded by a
16-bit word containing the length of the following synthesizer record. Two
operators are available to play your synthesizer record:

PLAY sound record address --
Plays the desired synthesizer record, hangs the cpu until it finishes.

APLAY sound record address —-
Asynchronously plays the desired synthesizer record. The processor
continues execution and the sound is generated concurrentiy.

Refer to the source code of the demos for examples of how to define you own
music using the square wave synthesizer.

Advanced Topics Page 11 -20 August 31, 1984

Chapter 12 : MacFORTH Error Handling

This section discusses the method MacFORTH uses to handle errors. The
topics discussed in this section are:

Topic Page
Overview 2
Compiler and interpreter Errors 3
File Errors and Processor Exceptions 4
MacFORTH Default Error Message Summary 5

Error Handling Page 12 -1 August 28, 1984

Overview

By default, when MacFORTH encounters an error condition, an error message
is displayed, the current operation is aborted, and control is returned to the
system window. Error conditions occur in the following categories:

Interpreter
Compiler
Utility
File
Processor

Yoii can override any defauil exception error handier. All of the messages in
the preceding sections are listed in alphabetical order in the back of this
section with accompanying text discussing the probable cause of the error
and what action to take.

The errors suppiied by the Macintosh that are specific to file handling are
listed in Appendix B of the File System chapter.

Compiler and Interpreter Errors

Compiler and interpreter errors can be divided as follows:

interpreter Errors

?

STACK EMPTY

MISSING STRING DELIMITER
DECLARE VOCABULARY
MISSING IFEND OR OTHERWISE

Compiler Errors

?

COMPILATION ONLY, USE IN A DEFINITION
CONDITIONALS NOT PAIRED

DEFINITION INCOMPLETE

DICTIONARY FULL

EXECUTION ONLY

MISSING STRING DELIMITER

ATTEMPTED TO REDEFINE NULL

Error Handling Page 12 -2 August 28, 1984

Because these errors are more pertinent to the program development
process rather than run time applications, they are defined with the word
ERROR" . An example of ERROR" is

8 < ERROR* Illegal fArgument”

If the value of the stack is non-zero, the console buzzer is sounded {if the
QUIET option is ON}, a carriage return is output followed by the most
recently interpreted word and the error message. If the error occurs while
interpreting text from disc, the screen® and offset are placed in the user
variables SCR end R* . When you enter the editor the cursor will
positioned immediately after the error.

Processor Exceptions

ADDRESS ERROR TRAP AT XXXXXX
BUS ERROR TRAP AT XXXXXX
ILLEGAL INSTRUCTION TRAP !
OVERFLOY TRAP !

ZEROD DIVIDE TRAP !

These errors are defined with the word ABORT" . An example of ABORT" is
8= ABORT" Illegal Argument”

If the value on the top of the stack is non-zero, and no user supplied
recovery stack freme has been established (discussed in next section), the
default error handler outputs the message text and executes ABORT to
return control to the console. While the default handler works well in the
normal program development process, you will often choose to supply your
own error handlers to recover from device errors and processor exceptions
in actual applications.

Error Handling Page 12 -3 August 28, 1984

MacFORTH Default Error Message Summary

when a system error is encountered, the MacFORTH sustem stops and outputs
an error message. All system error messages and a discussion of their
probable csuse is provided below.

File 1/0 errors are discussed separately in the File System chapter.

Message ~ Probable Cause

<string> ?
The text inierpreter was unabie to find <string> in the CONTEXT or
TRUNK vocabularies and was unable to convert it to & number.
Probably a typo or the word has not been loaded.

ABORTED FROM KEYBOARD
A keyboard abort event occurred.

ADDRESS ERROR TRAP AT XXXXXXX
An attempt was made to fetch or store a 16-bit or 32-bit value at
odd address XXXXXXX {(displayed in hex). The 68000 hardware does
not allow this. Either align the data structure on an even word
boundary (using ?ALIGN) or use CMOVE.

ATTEMPED TO REDEFINE NULL

MacFORTH prevents the user from inadvertently redefining the end
of line function (NULL) by typing : followed by & carriage return,
as this would cause the system to respond to carriage returns in
an unpredictable manner. If you truly wish to redefine the
function of NULL , and understand fully the overall system impact,
use the following:

: ¥ <your definition for null> ;

HEX ARB828 TOKEN.FOR X NFR WU!

BUS ERROR TRAP AT XXXXXXX
An attempt was made to access data at address XXXXXXX which is
invalid. Neither memory nor hardware is capable of responding at
the address.

CANNOT CLOSE SYSTEM WINDOW !

¥While it is possible to hide the MacFORTH window, you cannot
close it.

Error Hendling Page 12-4 August 28, 1984

Message Probable Cause

CANNOT LOAD BLOCK O !
Block O of each file is reserved for data or comments. You are
unable to load it. Use a higher block number.

COMPILATION ONLY USE IN A DEFINITION !
The offending word was encountered in execution state. The word
is a compiler primitive and has no meaning when not compiling (ie:
DO IF LOOP BEGIN).

CONDITIONALS NOT PAIRED
The text interpreter expects all conditionals to be properly nested.
A terminating conditional (THEN , UNTIL , REPEAT , AGAIN,
LOOP , +LOOP) was encountered for which there was not a
corresponding acceptable initializing conditionel (IF, ELSE, DO ,
BEGIN , WHILE) at the correct nesting level.

DEFINITION INCOMPLETE !
The stack depth changed inside a colon definition. This is normally
the result of an unpaired conditionel (ie: @ missing THEN). It may
however, result from using a literel inside a definition to compile
a literal value that was left on the stack prior to defining a word.
in this case modify the user variable CSP to indicate the
difference, ie: one item dropped from the stack requires
[4 CSP +]

Warning: Conditionals leave various information (address,
conditional type) on the stack at run time. Be aware of this when
placing literals inside colon definitions.

DICTIONARY FULL !
Less than 260 {(decimal) bytes exist in the object dictionary. If
allowed to continue, scratch pad buffers above dictionary could
overwrite the end of the object space. FORGET to free up
dictionary space or resize the object area.

EXECUTION ONLY !
The offending word may not occur while compiling.

FILEERROR *# ___

An unidentified file error occurred. Refer to the File System
chapter for identified file errors.

Error Handling Page 12 -5 August 28, 1984

Message Probable Cause

FILE NOT OPEN'!
An attempt was made to access a file that was not open. Open the
file and continue.

FIXED RECORD LENGTH = 0!
FORTH blocks are merely fixed length records within a file. In
order to access them, the record length for the file must be 1024.
You probably attempted to read a text file as blocks.

ILLEGAL FILE NUMBER !
MacFORTH file numbers range between O and 9, any other value is
illegal. Check the order of your operands.

ILLEGAL INSTRUCTION TRAP!
The 68000 attempted to execute an invalid {unrecognizable)
instruction probably due to accidentally overwriting the
dictionary. Try to locate erroneous code which overwrites
dictionary.

ILLEGAL RECOVERY ATTEMPTED !
An Attempt was made to recover from an error condition with no
ON.ERROR recovery handler posted.

ILLEGAL VOLUME !
The MacFORTH DIR command expects either a drive name (internal
or external) or a volume reference number to produce a directory.

ISNT UNIQUE
A word was created in the dictionary which is not unique in the
CURRENT , CONTEXT , or TRUNK vocabularies and the UNIQUE.MSG
switch is on. The most recent definition will be used for future
references. The prior definition probably cannot be found. This
warning message may be disabled when loading production code by:
UNIQUE.MSG OFF

MISSING (STRING DELIMITER !
The input stream wes exhausted (null encountered) before a
delimiting right paren was found. See the MISSING STRING
DELIMITER error message also.

Error Handling Page 12 -6 August 28, 1984

Message Probable Cause

MISSING { STRING DELIMITER
The input stream was exhausted (null encountered) before a
delimiting right brace was found. See the MISSING STRING
DELIMITER error message also.

MISSING IFEND OR OTHERWISE
MacFORTH does not allow IFTRUE .. OTHERWISE.. IFEND.. or
IFTRUE...IFEND conditional compilation sequences to cross either
input line or block boundaries. Reorganize your text to start and
end such sequences on the same source block or input line.

MISSING STRING DELIMITER
The input stream was exhausted (null encountered) before the
required delimiter was found. Delimited strings may not cross
block or terminal input line boundaries. Insert trailing delimiter
in source text.

NO FCB'S AVAILABLE
All FCB's were in use when the NEXT.FCB commeand was executed.

NOT A BLOCKS FILE!
An aettempt was made to select a non-blocks file as the current
blocks file for editing.

NOT ENOUGH STACK ITEMS ¢
Insufficient stack items where placed on the stack before
executing the most recently entered word. MacFORTH selectively
contains a few operators which provide this check. In applications
code use:
X NEEDED
where X is the number of items required to properly execute.

OBJECT DICTIONARY FULL !
Object dictionary space is full. Use ROOM end RESIZE.OBJECT to
allocate more object space from the heap.

OBJECT WON'T FIT!
An attempt was made to resize the object dictionary into a
memory segment which is too smail.

OVERFLOYW TRAP |
Default handler for exception caused by TRAPY . instruction - see
Motorola documentation.

Error Handling Page 12 -7 August 28, 1984

Message Probable Cause

RANGE TRAP 1
User assembly code generated a range TRAP from a CHK,
instruction. See MacFORTH Level 2 Assembier documentation.

STACK EMPTY |
Text interpreter found the stack pointer greater than the top of
the stack . An attempt was made to access nonexistent stack data.
NOTE: There is no run-time check made by the address interpreter.
when executing code underflows the stack, the contents of the
text input buffer and eventually the return stack are unpredictable.
A buffer zone of 2 bytes is reserved for minor underflows.

SOUND ERROR!
The sound generation driver reported an error to MacFORTH.

UNABLE TO RESIZE OBJECT !
The memory manager vas unable to increase the size of the object
space due to the placement of a fixed/locked memory segment
immediately behind it. Refer to the Advanced Topics chapter for a
discussion of memory allocation and resizing.

UNABLE TO RESIZE YOCABULARY !
The memory manager was unable to increase the size of the
vocabulary space due to the placement of a fixed/locked memory
segment immediately behind it. Refer to the Advenced Topics
chapter for a discussion of memory allocation and resizing.

VOCABULARY FULL !
The current vocabulary is full. Use RESIZE.YOCAB to allocate more
vocabulary space. ROOM displays current allocation. Refer to the
Advanced Topics chapter for more information on memory
allocation.

YOCABULARY WONT FIT!
An attempt was made to resize the vocabulary into a memory
segment which is too small.

WARNING: Disc full at block *
ADD.BLOCKS encountered an end of volume condition. No more
space exists on the disk. All available space is allocated.

ZERO DIVIDE TRAP !
The 68000 attempted to divide by zero in hardware.

Error Handling Page 12-8 August 28, 1984

CHAPTER 13: MacFORTH Glossary

This chapter is broken down into three parts:

1.} An ASCH sorted index to each waord in the glossary (with the page
number the word's definition is on) for quick reference. For finding
a word which starts with a special ASCl character (like ! or ") you
will probably find it easier to look it up in this index to find which
page it is on (instead of flipping through the glossary itself).

2.} A listing of the words by category. We have broken down the words
in the system and organized them into groups for your convenience.
This is helpful when you are working with a certain class of words
{like Numeric Conversion) to see what other commands are
available. As with the ASCII sorted index, each entry gives the page
number in the glossary where the definition is found.

3.) All MacFORTH system words sorted in ASCI| ascending sequence,
with their stack contents and a description of the action of the

word.

we have spent a great deal of time putting this glossary together so it is easy
to use and understand. In order to get the most out of your MacFORTH system,
we recommend that you read through the entire glossary (yes, from start to
finish) to get an idea of the wide range of capabilities thet are available.

Glgssary Key

The following symbols are used in the glossary to indicate the contents of
the parameter stack before and after execution of the particular word:

ymbol

W

addr

MacFORTH Glossary

Meaning
Prefiz used to indicate a string field
operation. By itself, it indicates s
string address. As & prefix to cnt
{$cnt) it indicates & string field
count.

A memory address. A number suffix is
used to differentiate between
addresses.

Page 13 - 1 August 31, 1954

Symbol
bool

char

cnt

dest

false
fcb

file*

file$

flag

nhorun

pos mode

src

MacFORTH Glossary

Meaning

A boolean flag. A value of zerp
indicates a false flag;, non-zero
indicates true. MacFORTH words which
return pure boolean results use -1 as
a true flag (all bits set).

An 8-bit character value.

A count value. Usually used with an
addr symbol to designate the start-

: ri ——s oS
ing address snd count for an array of

string value. Also used to designate
the width of a field.

Refers to a destination address.

A boolean false flag (0).
A file control block address.

A valid file number (0-8) referring to a
file.

The string address of a file name.

A special flag value. The specific
meanings for different flag values are
discussed in the text of the defin-
itions for the word which uses the
flag.

A 32-bit integer. A number suffix is
used to differentiate between num-
bers. The prefix u indicates the
number is unsigned.

The positioning mode used for file
system operations (ie. FROM.START).

Refers to a source address.

Page 13 -2 August 28, 1984

Symbol
true

wptr

Llorl.)

Meaning
A boolean true flag (-1).

A 16-bit integer. A number suffix is
used to differentiate between num-
bers.

Refers to the pointer to a window
yrhich contains all of the information
about the window needed by the system.
This value is returned by a window
specifier (its name).

Delimits items on the stack. It is pro-
nounced “under”. For example,

ni\n2 -- addr
is read "n1 under n2 leaves addr" .

Indicates different possible stack
outcomes. For example, the word ?DUP
duplicates the top item on the stack
if it is non-zero. It's stack notation is
n -- [n\n] or [n]

Indicating an integer is expected
on the stack and leaving either two
items (n under n) or the original
integer itself.

In some of the definitions, we have used a more mnemonic name for a
parameter instead of & standard symbol for clarity For example, “index” is
used to indicate an index value, "token” refers to the token of a word, “blk*"

refers to a block number, and so on.

Always refer to the text of the definition for a more compiete explanation of

the required parameters.

Glossary Size

Most FORTH glossaries are noted for their small size (typically less than 250
items). The MacFORTH glossary contains about 900 entries. This is due to the
extensive access to the Macintosh toolbox provided by MacFORTH.

MacFORTH Glossary

Page 13- 3 August 28, 1954

ASCII (Alphabetic) MacFORTH Glossary Index

The following list sorts the MacFORTH Glossary entries in ASCII seguence.
Each word is listed in ASCII order with the page number (in the glossary) that
its description is found.

Page®

age
38

K}

32

33

34

Hord

!

ICSP
IPENSTATE
IPOINT
IRECT

ISR

“BLKS
"DATA
“*M4TH
*PICT

“TERT
s

L2
SFILES
SFIND
85
$A0DR
$LIT

*INTERPRET

(
{(10N.ACTIVATE)
(10N.UPDATE)
($LIT)
{(RBORT))

((ERROR))
{(+L0OP)

(.")

(.9)
(;CODE®)
{>CODE)
(ABORT")
(RBORT)

{i1)]
(ERROR")

MacFORTH Glossary

35

36

31

39

Page* Hord

(ERROR)
(EXCPT)
(FIND)
(GET)
(GET.FILE)
(LINE)
(LINE.TO)
(LooP)
(MENU. SELECTION:)
(HOUE)
(HOVE. T0)
(OF)
(ON.ERROR)
(PENSTZE)
(PUT.FILE)
(/W)
(TERTSIZE)
(TRACE)
(TRACK. CONTROL)
(MORD)
YCONSTANT
i

x/

* /10D

+

+
+CARTESIAN
+FIND
+FOLLOMER
+HBAR
+LORD
+LOOP
+NAX . BLK®
+ON. ACTIUATE
+ON.UPDATE

Page 13-4

Page*

48

41

42

43

44

Hord
+POINT
+PRINTER
+REC.SIZE
+SCR®
+THRU
+TUISRECT
+UBAR
+l . ATTRIBUTES
+{{.BEHIND
+U.LINK
+W. TYPE
+HBOUNDS
+{CBOUNDS
+WFILE .PTR
+ULINE . HEIGHT
+UREFCON
+0TITLE
+XYBIAS
+RYOFFSET
+KYPIUOT
+XYPOS
+KYSCALE

-=>
-1

-2

-3

-4

-FIND
~FOURD
-KEYBORRD
~LATEST
~-NULL
~POINT

August 28, 1984

Page®* Hord Page* Hord Page* Word

44 -STRING 20up e
-TEXT 20UER ?
-TRAILING 25HAP 7ALIGN
: 24nT ?BLOCKS.FILE
S 3 conpP
45 .RBORT 3+ csp
.DATES 3- 70RYS
.FILE.ERROR 4 ?00UBLE.CLICK
R 4% 20UP
.5 4+ 53 ?EOF
.TINES 4- TEVENT
.TYPE 4/ 7EREC
/ 49 5+ ?FILE.ERROR
46 /noD 5- TFILES
B 6+ 7HEAP.SIZE
8¢ 6- 7IH.CONTROL
8= T+ 7KEYSTROKE
8> 7- 7LORDING
BBRANCH B* 54 70PEH
BHAR 8+ 7PAIRS
1 8- 7PUNCT
1+ 8/ 7RO0N
1- 8 7SECONDS
18+ ; 750UND
18- < 75TACK
47 12HOURS s 7TERMINAL
16% e ?TRACE
16+ = 55 7WORD
16- =CELLS e
16/ =DROP ee :
10AyY 51 > BCLOCK
1HOUR >.FILE.ERROR< BEVENT
2 >FCB SFILE.NANE
2! >IN BINIT
2* >JSR SHOUSE
2+ SLISTC SMOUSE . DN
2- >R 56 SHOUSERY
2/ YRECT EPEN
22 >S¥S . WINDOU @PENSTATE
45 2DROP 52 UK BPOINT

MacFORTH Glossary Page 13 -5 August 28, 1984

Page?

56

57

58

59

Hord
@RECT
esR
ABORT
RBORT"
ABORT . EVENT 61
ABS

RCTIVATE . EVENT
RDD.BLOCKS
RDD.CONTROL

0D, RES. NENY

AOD. HINDON

AGRIN

ALIT

ALLOCATE 62
ALLOT

AND

APLRY

RPPEND
APPEND , BLOCKS
APPEND., ITENS

APPLE .NERU

RAC

ASSIGN

RUTO.KEY 63
RXE

B/BUF

BACK

BACKPAT

BASE

BEGIN

BHEAD

BL

BLACK 64
BLANKS

BLK

BLOCK

BLOCK-FILE

BOLD

BOOLEAN

BRANCH

MacFORTH Glossary

Page* Hord

BRING.TO.FRONT

BS 65
BUFFER

BYE

ct

C,
c/L
ce

CARTESIAN

CASE

CENTER

CHRRUIDTH 66
CHECK ., BOX

CIRCLE

CLEAR

CLIP>CONTENT

CLOSE

CLOSE.ALL

CLOSE .BOX
CLOSE . WINDOW

CHOVE

CHOUE> 67
CNT

CHTR

coL

COMMAND . KEY

COMPILE

COMPILING

CONDEMNSED
CONFIGURE . PRINTER
CONSOLE

CONSTANT 68
CONTEXRT

CONVERT

copy

cos

COUNT

CR

CREATE 69
CREATE.BLOCKS.FILE

Page 13- 6

Page* Hord

CREATE.FILE
CALF

csp

CURRENT
CURRENT-FILE
CURRENT.POSITION
CURSOR

CURSOR. CHAR
DAYS>

DEALLOT

DEBUG
DEBUG . ONLY
DECIHAL
DEFRULT.ACTIVATE
DEF INITIONS
DELETE
DELETE.BLOCKS
DELETE.HENU
DEPTH
DEVICE.CONTROL
DEVICE.STATUS
DFLT.CONTROL
DFLT.WINDOW.TRIL
DIGIT

DIR

DIRECTORY
DISCARD . UPDATES
DISK

DISK.EVENT
DISPOSE.CONTROL
DKGRAY

]

DO.EVENTS

DOES>

Dot

DOWN.BUTTON

bp

pPL

DRAN.CHAR
DRAW ., CONTROLS

August 28, 1984

Page*
69

8

71

72

13

74

Hord
DRAW. MENU . BAR
DRAW. TO
DRAWSTRING
DROP

DRUR. EVENT
pup

DUP>R

EJECT

ELSE

ERIT

EHPTY
ENPTY-BUFFERS
ENCLOSE
ENDCARSE
ENDOF
ENTER.FLAG
ERASE
ERASE . RECT
ERAOA

ERROR*
EVENT.LOOP
EUVENT . RECORD
EVENT. TRBLE
EVENTS
EXECUTE
EXIT

EXPECT
EXTENDED
EXTERHAL
FALSE
FCB.LEN
FENCE

FIELD
FILE.ERROR.NSGS
FILE.TYPE
FILL

FIND
FIND.CONTROL
FIND.HINDON
FIRST

Page*

75

6

"

78

MacFORTH Glossary

Word

FLUSH
FLUSH.EVENTS
FLUSH.FILE
FLUSH. uoL
FHT.DATES
FNT.TINES
FOLLOWER
FORGET

FORTH

FRANE

FRON. CURRENT
FROM.END
FRON. HEAP
FRON.START
FRONT . HINDOW
FUNC>L
FUNC>H

GET
GET.CONTROL
GET.CURSOR
GET.DRTES
GET.EOF
GET.FILE.INFO
GET.FILE.TYPE
GET.ICON 61
GET.ITEH
GET.LINE.HEIGHT
GET.PICTURE
GET.PIKEL
GET.REC.LEN
GET.SCRAP
GET.TEXTFONT
GET. TEXTHODE
GET.TEXTSIZE
GET.TEXTSTYLE
GET.TIMES
GET.WINDOU
GET.KYOFFSET
GET.XYPIUOT
GET.RYSCALE

9

88

82

Page 13 - 7

Hord
GINIT

GLOBAL >LOCAL
GRAY
HANDLE.SI12E
HANDLER
HBAR . BOUNDS
HERE

HEX
HIDE.CURSOR
HIDE.PEN
HIDE.HINDOU
HILITE.CONTROL
HILITE.HENU
HILITE.WINDOW
HLD

HOLD

HUSH

I

I!

I+

I+!

1+@

1+i!

I+4e

1~

e

IBEAN

Ict

ice

10.

IF

IFEND

IFTRUE
ILLEGAL.FILE
IHHEDIRTE
IN.BUTTON
IN.CHECKBOR
IN.CLOSE . BOX
IN.DESKTOP
IH.DRAG.BOX

August 28, 1984

Page®* Hord
83 IN.HEAP

IN.LOUER. UIHDON

IN.HEHUBAR
IN.SIZE.BOX
IN.SYS . UINDOU
IN. THUMB
INCLUDE"
THDEX
INIT.CURSOR
INITIALS
84 INPUT.NUNBER
INPUT.STRING
INTERNAL
INTERPRET
INUALID.RECT
THUERT
10-RESULT
ITALIC
ITEN. CHECK
85 ITEM,EHRBLE
ITEN, ICON
ITEN. MARK
ITEM.STYLE
J
KEY
KEY.DOUN
KEY.STROKE
KEY.UP
KILL.CONTROLS
86 KILL.IO
L>FUNCYL
LYFUNC>H
LAST. TOKEN
LATEST
LEAUVE
LINIT
-LINE®
LINE, HEIGHT
87 LIST
LIT

MacFORTH Glossary

Page® Hord

88

98

91

LITERAL

LMOVE

LHOUE>

LOAD

LOAD . SCRAP

LOCAL >GLOBAL
LOCK.FILE 92
LOCK.FONT
LOCK . HANDLE

Loop

LOKWER. CASE
LOMER.LEFT

LTGRAY

H*

/100 93
HAC.CON

HAC, CONSOLE
MAC.FILES

HAC.R/U

MAKE . RECT
MAKE . TOKEN
HMASK . HANDLE

NATCH

NAX

HAK.K 94
HAX.v

HENU. ENABLE
MENU . HANDLE

MENU. SELECTION:
HENUS

ny

HINIRUM. OBJECT
MININUN, UOCAB

Ly

HONTHS 95
HOUSE .BUTTON
HOUSE . DOUN
MOUSE . DOKN. RECORD
HOUSE . UP
HOUSE . UP . RECORD

Page 13- 8

Page®

Hord
HOUSE . HRS. .
MOUE.TO

nr

HT>d

MUNGER
NEEDED
NEGATE
NETUORK . EUENT
NEW.BLOCKS.FILE
NEW.FILE
HEW. MENU
HEU.STRING
HEW. TOKEN
HEW. WINDOW
HEXT.FCB
HEXT.PTR

NFA

NO.CLIP
NOG.ECHO
NO.FENCE
NO.RETRY

HON . PURGABLE
HOT
NOT.VISIBLE
NOTPATBIC
HOTPATCOPY
NOTPATOR
HOTPATHOR
NOTSRCBIC
NOTSACCOPY
NOTSRCOR
HOTSRCXOR
HULL .EVENT
HUNBER
OBJECT,FULL!!
OBJECT . HRNDLE
OBJECT.ROON
OF

OFF

OFF . CONTROL

August 28, 1984

Page* Hord
95 OFFSET
ON

ON.ACTIVATE

96 ON.CONTROL
OH.ERROR
ON.UPDATE
OPEN
OPEN"
OPEN.DA

OPEN.DEVICE

OPEN.PORT

OPEN.PRINTER

OPEN.RSRC
97 OPEN.SOUND

OPTIONS . HENU

OR
0S.TRAP
OTHERWISE
OUTLINE
OUAL
OUER
PRD
PAGE
PAGE . DONN
98 PAGE.UP
PAINT
PATBIC
PRTCOPY
PATOR
PATTERN
PATXOR
PRUSE
PEN. HORNAL
PENNODE
99 PENPART
PENSIZE
PFA
PICK
PLAIN
PLAY

MacFORTH Glossary

Page®

188

181

182

183

Hord
PLOT.ICON
PNTR

POCKET

POINT
POINT>RY
POLYGON
POSITION.FIXED
POST.EVENT
PREU

PRINT
PRINT.BITS
PRINT.FCB
PRINT.SCREEN
PRINT.HINDOW
PRINTER
PRINTER.ONLY
PTINRECT
PURGE . MENUBAR
PURGE . HINDOUS
PURGABLE
PUSH.BUTTON
PUT.SCRAP
QUERY

QUIET

QuIT

R®

R/U

RE

R>

R>DROP

Re
RADIO.BUTTON
RANDON

RANGE
RANGE , OF
RDRAAK
READ.FIXED
READ. TEXT
RERD.VIRTUAL
REAL .FONT?

Page 13- 9

184

185

186

187

Page* Word

RECOUER
RECOUER, HANDLE
RECT
RECTANGLE
REG.SET
REGION
RELEASE
REMOVE

RENAHE

REPERT
RESIZE . HANDLE
RESIZE.OBJECT
RESIZE .UOCRB
RESUHNE

RETRY

REHIND

RHOVE

ROLL

ROON

ROT

RP!

hpe
RRECTANGLE
RSRUNEN
RST.PRINTER
58
SAVE-BUFFERS
SCALE
SCALE>KY
SCALE>Y

SCAN. FRON

SCR
SCRAP . COUNTER
SCRAP. HANDLE
SCRAP.LEN
SCRATCH
SCREEN.BITS
SCREEN. BOUNDS
SCROLL

SCROLL .LEFT/RIGHT

August 28, 1984

Page® Uord Page* Word Page® Hord

187 SCROLL.UP SRCKOR TERTSIZE
SCROLL .UP/DOUN STACK .ERROR TEXTSTYLE

188 SEED START .FLAG 115 THEN
SELECT STATE THIS.CONTROL
SELECT.HINDOU STATUS THIS.PART
SEND.BEHIND STILL.DOWN THRU
SET.CONTROL STRINGUIDTH TIB
SET.CONTROL . MAX SHAP TICKCOUNT
SET.CONTROL.MIN 112 SYS.FILE TO.HEAP
SET.CONTROL . RRNGE SYS.WINDOM TOGGLE
SET.CURSOR SYSBEEP TOGGLE . CONTROL
SET.EOF SYSPARMS TOKEN.FOR
SET.FENCE SYSTEM.EDIT TOKEN>ADOR
SET.FILE.INFO TAB.STOPS 116 TONE

189 SET.ITEN$ TEACTIVATE TRACE
SET.ORIGIN TECALTEXT TRACE . TOKEN
SET.REC.LEN TECLICK TRACK . CONTROL
SET.STRING TECOPY TRIAD
SET.HTITLE TECUT TRUE
SETUP,SERIAL TEDEACTIVATE TRUNK
SHADOW TEDELETE TRY
SHOW 113 TEDISPOSE TYPE
SHOW,CONTROLS TEIDLE UNDERLINE
SHOW. CURSOR TEINSERT 117 UNIQUE.NSG
SHOM. PEN TEKEY UNLOAD. SCRAP

118 SHOW.HINDON TENEU UNLOCK.FILE
SIGN TEPRSTE UHLOCK . HANDLE
SIN TERECORD UNTIL
SIZE.BOX TESCROLL UP.BUTTON
SIZE.UINDOU TESET. JUST UPDATE
SHUDGE TESET.SELECT UPDATE . EVENT
SOUND.FCB TESET. TEXT UPPER
SP! TEST.CONTROL 118 UPPER.LEFT
SPg TEUPDATE USE
SPACE TEXT.BOX Use*®
SPACES 114 TERT.CLICK USER

111 SORT TEXT.FIELD URRIRABLE
SRCBIC TEXT.RECORD UBAR. BOUNDS
SRCCOPY TEXTFONT UECTOR
SRCOR TEXTHODE UERSION

MecFORTH Glossary Page 13- 10 August 28, 1984

(=

Page* Hord Page® Hord
118 UERSION® 123 ZERD.SCRAP
UIRTUAL [
119 UOCABULARY [CONPILE]
! 1
T {
H,
W.RTTRIBUTES
H.BEHIND
W.BOUNDS
W.LINKAGE
128 W.TITLE
W.TYPE
u/
H/MoD
W>FUNCHL
HoHT
e
WAIT
HAIT.MOUSE.UP
HATCH
HCONSTANT
121 WHILE
HHITE
WINDOW
WLIT
HHOD
HORD
122 UORDS
WRITE.FIXED
WRITE.TEXT
WRITE.VIRTUAL
KEXPECT
KLATE
XOR
RY><TLBR
KY>POINT
KYAKIS
123 RYOFFSET
KYPIUOT
KYSCALE

MacFORTH Glossary Page 13 - 11 August 28, 1984

MacFORTH Glossary Page 13- 12 August 28, 1984

MacFORTH Glossary Index by Subject

This index lists the words in the MacFORTH glossary into the following
logical groups:

1.) Stack Manipulation 13.) Menus

2) Comparison 14 windows

3) Arithmetic and Logical 15.) Graphics

4) Memory 16.) String Manipulation

5.) Control Structures 17.) User Interface

6.) Console Input/Output 18.) Machine Interface

7.) Numeric Conversion 19.) Trace and Debug

8.) Mass Storage 20.) Printer and Serial

9) Vocabularies and Dictionary 21.) Event Related
Management 22.) Misc. Constants

10.) Compiler 23.) Sound Driver

11.) Toolbox Interface 24 Misc. Toolbox Words

12.) Error Handling

1. Stack Manipulation:

Hord Page® Hord Page®
20R0P {48) R> {192)
20UP (48) R>DROP {192}
20UER {48) Re (182)
2sHAP (48) ROLL (185)
=DROP (58 ROT (185)
>R (51 RP! (186)
SRECT (51) RPE (186)
70UP (52) Se (186)
DROP (69) SP} (118}
pup (69) SPe {(118)
DUP>R {69) SUAP (111)
OUER {97}

PICK (99}

RG (192}

2. Comparison:

UHord Page* Hord Page®
-STRING (44) < (58)
4 {46) - (50)
8= {46) > (51)
8> {46) RANGE (182)

MacFORTH Glossary Page 13 - 13 August 28, 1964

3. Arithmetic and Logical:

Uord Page® Hord Page*
* (37) I (49)
x/ (37) 1- (49)
*/H0D (37) i (49)
+ (38) g+ {49)
- (42) 8- {49)
/ {45) 8/ (49)
/10D (46) =CELLS (58)
anAx (46) ABS (57)
1+ (46) AND {58)
1- {16) BOOLERAN (68)
18+ {46) cos {64)
18- (46) FALSE (13)
16% {47) I* (88)
16+ (47) n/HoD (88)
16- {47) HAX {89)
16/ {47) HIN (98)
2% {47) 10D {98)
2+ (47) NEGATE (92)
2- (47) NOT {93)
2/ (47 OR , (97)
3+ {(48) RANDON {182)
3- (48) TRUE {116)
4 (48) 0/ (128)
4+ {(48) U/H0D (128)
4- (48) uHoD (121)
4/ (48) XOR (122)
5+ {49)

5- {49)

6+ {49)

6- {49)

MacFORTH Glossary Page 13- 14 August 28, 1984

4. Hemory:

Hord

)CONSTANT
u
+!

+FOLLOWER

7HERP.SIZE
e

e

BCLOCK

c!

ce
FRON.HERP
HANDLE . SIZE
I

I+

I+!

I+8

I+U!

1+e

I-

e

IC!

MacFORTH Glossary

Page® Hord
(38) ice
{(30) IN.HEAP
(37 LHOVE
(38) LHOVE>
(38) LOCK. FONT
(47 LOCK . HANDLE
(17 NON. PURGRBLE
(58) OFF
{52) ON
{52) PURGABLE
(53) RECOVER. HANDLE
{55) RESIZE .HANDLE
{55) RRECTANGLE
{55) RSRUHEH
{61 T0. HERP
{61) TOGGLE
(76) UNLOCK . HRNDLE
(79) W
{88) u*
{88) e
{88}
(88}
(88)
{88)
{81)
(81)
{81)
Page 13- 15

Page®
(81)
{83)
{87)
(87)
(88)
{(88)
{93)
{95)
(95)
(181)
{183)
(184)
{186)
{186)
{115)
{115)
(17
{119)
(119)
(128)

August 28, 1984

5. Control Structures:

Hord Page®* Hord Page*
(+LOOP) (33) I (88)
(00) (31 IF {81}
(LOOP) (35) IFEND (81)
(OF) (36) IFTRUE (82)
+L0oP (39) J (85)
BBRANCH (46) LERVE (86)
AGARIN (57) Loop {(88)
BACK (59) OF (95)
BEGIN (59) OTHERWISE (97
BRANCH (68} RANGE . OF (183)
CASE (61) REPEAT (184)
0o (68) THEN (119)
ELSE (8) UNTIL (1)
ENDCASE (8) HHILE (121)
ENDOF (0
ERIT (72)

6. Console Input/Output:
Uord Page* Uord Page?
. TYPE (45) MAC. CON (89)
?KEYSTROKE (53) HAC . CONSOLE (89)
?TERHINAL (54) NO.ECHO (93)
CNT (62) PRGE (97)
CNTR (63) PNTR (99)
coL (63) QUERY (181)
CONSOLE (63) SCROLL (187)
CR (64) SCROLL.UP (187)
CURSOR.CHAR (65) SPACE (118)
DFLT.CONTROL (67) SPACES (118)
EHIT (78) TRB.STOPS {(112)
ENTER.FLAG () TYPE (116)
ERPECT (?2) RERPECT (122)
KEY (85)
LINE® (86)

MacFORTH Glossary Page 13 - 16 August 28, 1984

7. Numeric Conversion:

Hord Page® Hord Page®
2 (31) FHT.DATES {5)
25 (31 FNT.TINES (5)
. {44) GET.DATES {76)
.DATES {45) GET.TINES (8)
.R (45) HEX (79)
.TIHES (45) HLD (88)
s (58) HOLD (88)
? {52) HONTHS (98)
2DAYS (52) NUHBER (94)
2PUNCT (54) SEED {188)
7SECONDS (54) SIGN (118)
BASE (59) SIN (118)
CONVERT {64) SQRT {11
DAYS> (65) TICKCOUNT {115)
DECINAL {66)

DIGIT {67)

DPL {68)

ENCLOSE {78)

8. Hass Storage:

Hord Page* Hord Page?
SFILES (31) 20PEN {5¢)
{GET.FILE) (35) @FILE. NAME {55)
{LINE) (35) ADD.BLOCKS {57)
{PUT.FILE) (36) ALLOCATE {57)
(R/W) (36) APPEND. BLOCKS (58)
+HAR . BLK® {(39) ASSIGN (58)
+REC.SIZE (48) BLOCK (68)
+SCR® (48) BLOCK-FILE {68)
> .FILE.ERROR< (s1) BUFFER (68)
>FCB (s1) CLOSE.ALL {62)
?BLOCKS.FILE (52) coey {64)
?EOF {(53) CREATE.BLOCKS.FILE {64)
?FILES (53)

MacFORTH Glossary Page 13 - 17 August 28, 1984

((8. Mass Storage Continued))

Hord Page* Hord Page*
CREATE.FILE {64} OPEN" (96)
CURRENT-FILE {65) OPEN.RSRC {96)
CURRENT.POSITION {65) POINT {99)
DELETE {66) POSITION.FIRED (188)
DELETE.BLOCKS {66) PREV {188)
DISK {67) R/H {182)
EJECT {69) RERD.FIKED {183)
ENPTY-BUFFERS (78) RERD. TEXT (183)
EXTERNAL (73) RERD.VIRTUAL (183)
FCB LEN {73} RENOUE {i84)
FILE .ERROR.NSGS {73) RENRHE {184)
FILE.TYPE (?3) REUIND (185)
FIRST (1) SAVE-BUFFERS (186)
FLUSH (1) SELECT {188)
FLUSH.FILE {14) SET.EOF (188}
FLUSH. VoL {74) SET.FILE.INFO (188)
FROM . CURRENT {5) SET.REC.LEN {189)
FROM.END {73) SYS.FILE {(112)
FRON.START {76) UNLOCK.FILE (1)
GET.EOF {16) UPDATE (1o
GET.FILE.INFO {(7?) USE (18
GET.FILE.TYPE {7) USE" (118)
GET.ICON () UIRTUAL {118)
GET.PICTURE (?7) HRITE.FIKED {122)
GET.REC.LEN () HRITE.TERT {122)
ILLEGAL.FILE {82) WRITE.UVIRTURL (122)
INCLUDE" (83)

INTERNAL (84)

10-RESULT (64)

KILL.IO (86)

LINIT (86)

LOCK.FILE (88)

HAC.FILES {89)

HAC.R/H (89)

NEUW.BLOCKS.FILE {92)

NEU.FILE {(92)

NEXT.FCB {93)

OFFSET (95)

OPEN {96)

MacFORTH Glossary Page 13- 18 August 28, 1984

9, Yocabularies and
Dictionary Hanagement :

Hord Page?® Hord Page®
SFIND {31) NFR {93)
' {32) 0BJECT.FULL!! (95)
(FIND) (35) OBJECT . HRNDLE {95)
+FIND (38) 0BJECT . ROON {(95)
) (42) PFR (99)
)" (42) RESIZE.0BJECT {184)
-FIND (43) RESIZE . VOCAB (185)
-FOUND (43) SET.FENCE - {188)
-LATEST (43) TRUKK {116)
?ALIGH (52) UDCRBULARY (119)
ALLOT (58) W, (119)
APPEND (58)

AXE (59)

BHERD {59)

c, (61)

CONTEXT (64)

CURRENT (65)

DEALLOT (65)

DEFINITIONS (66)

opP (68)

ENPTY {(18)

FENCE (13)

FIND (13)

FORGET (75)

FORTH {(15)

HERE (19)

LATEST {86)

MINIMUM.OBJECT (98)

MININUN.UOCAB (98)

MacFORTH Glossary Page 13- 19 August 28, 1984

18. Compiler:

Hord Page® Uord Page?
1CSP (38) LORD (87)
* INTERPRET (32) NAKE . TOKEN (89)
((32) NEU. TOKEN (92)
{;CODER) (34) NEXT.PTR (93)
{>CODE) (34) NO.FENCE (93)
{HORD) {37) POCKET (99)
+LOAD (39) PURGE . HENUBRR {181)
+THRU (48) PURGE . HLINDOUS (181)
- {43) QUIT {181)
-NULL {44} SCAN.FROI {ig7)
(58) SHUDGE (118)
; (58) STATE {1y
>IN {51) THRU (115)
?LORDING (53) TIB (115)
ALIT {(57) TOKEN.FOR {115)
BLK (68) TOKEN>RDDR (115)
CONPILE (63) USER (118)
COMPILING (63) URRIABLE (118)
CONSTANT {63) HCONSTANT (128)
CRERTE {64) HLIT (121)
DOES> ' (68) HORD {121)
EXECUTE (72) [(123)
FIELD (?3) [COMPILE] {123)
IHNEDIATE {82)] (123)
INTERPRET (84) { (123)
LAST. TOKEN (86)
LIT (8?7)
LITERAL (87)

11. Toolbox Interface:

Hord Page* Hord Page®
20T {48) HTOH (91)
FUNCOL (76) OPEN.DR (96)
FUNC>H (76) 0S.TRAP (97)
LOFUNCSL (86) HOFUNCOL (128)
LOFUNCH (86) WHT (128)
nr (91)

MacFORTH Glossary Page 13 - 20 August 28, 1984

12. Error Handling:

Hord
({RBORT))
((ERROR))
(RBORT")
(ABORT)
(ERROR")
(ERROR)
(EXCPT)
(ON.ERROR)
.ABORT
.FILE.ERROR
.S

cone

CsP

7EREC
?FILE.ERROR
2PRIRS
?STRCK

13. Henus:

Hord

(MENU,SELECTION:)

APPEND. ITENS
DELETE.HENU

DRAU.MENU . BAR.

GET.ITEN
HILITE.NMEHU
IN. HENUBAR
ITEf. CHECK
ITEM.ENRBLE
ITEN. ICON
ITEN. HARK
ITEN.STYLE

MacFORTH Glossary

Page*
(33)
(33)
(30)
(30)
(30)
(340)
(35)
(36)
{45)
(45)
(45)
(52)
(52)
{53)
(53)
(54)
(54)

Page®
(35)
(58)
(66)
(69)

A7)

(79)
(63)
(84)
(85)
(85)
(85)
(85)

Hord Page®
ABORT {56)
ABORT" (56)
csP (65)
ERROR ()
ERROR" (N
NO.RETRY (93)
ON.ERROR {96)
RECOVER {183)
REG.SET {184)
RESUNE {185)
RETRY (18%)
TRY {116)
HENU. ENABLE (98)
HEHU. HANDLE {98)
HENU, SELECTION: (98)
HENUS (99)
HEW. HEHU (92)
OPTIONS. NENU (97)
SET.ITENS - {189)
SYSTEN.EDIT (112)
Page 13 - 21 August 28, 1984

14, Hindows:

Hord Page® Hord Page®
{10N.ACTIVATE) (32) HIDE . HINDOW (79)
{!0M.UPDATE) (33) HILITE.HINDOW (88)
+HBAR {(38) IH.CLOSE ., BOX {62)
+0N.ACTIVATE (39) IN.DESKTOP (82)
+0N.UPDATE (39) IN.DRAG . BOX (82)
+UBAR (48) IN.LOWER. HINDOW (83)
+W.ATTRIBUTES (48) IN.SI2E.BOX (83)
+U.BEHIND (48) IN.SYS. WINDOW (83)
+H LINK (41) INUALID.RECT (84)
+ii, TYPE {41) LINE .HEIGHT (86)
+UBOUNDS (41) HEW . HINDOM {92)
+HCBOUNDS (41) NO.CLIP (93)
+WFILE.PTR {41) NOT.UVISIBLE (93)
+ULINE . HEIGHT (41) ON.ACTIVATE (95)
+HUREFCON (41) ON.UPDATE (96)
+UTITLE (41) SCREEN. BOUNDS (187)
+XYBIAS (42) SCROLL.LEFT/RIGHT (187)
+XYOFFSET (42) SCROLL . UP/DOMN (187)
+KYPIVUOT (42) SELECT.HINDOW (198)
+XYPOS (42) SEHD.BEHIND (198)
+XYSCALE (42) SET.MTITLE (189)
>SYS . WINDOW (51) SHOW . CURSOR (199)
21N, CONTROL (53) SHOW. PEN {189)
ADD . HINDOW (57) SHOW., WINDOW (118)
BRING.TO.FRONT (68) SIZE.BOX (118)
CHECK . BOX (61) SIZE.HINDOW (118)
CLIP>CONTENT (62) SYS.WINDOM (112)
CLOSE (62) UBAR. BOUNDS (118)
CLOSE . BOK {62) W.ATTRIBUTES (119)
CLOSE . HINDOU (62) H.BEHIND (119)
DEFAULT.ACTIVATE (66) U.BOUNDS . (119)
DFLT.WINDOM. TRIL (67) . LINKAGE (119)
DISCARD. UPDATES (67 W.TITLE (128)
FIND.CONTROL (74) H.TYPE (128)
FIND. HINDOM (?4) HINDOM {121)
FRONT . LINDOW {76)

GET.UINDOM (78)

HBAR. BOUNDS (79

MacFORTH Glossary Page 13- 22 August 28, 1984

1S, Graphics:

Hord
IPENSTATE
IPOINT
'RECT
(LINE.T0)
(MOVE)
(MOVE.TO)
(PENSIZE)
(TEXTSIZE)
+CRATESIAN
+POINT
-POINT
@PEN
@PENSTATE
ePOINT
BRECT

ARC
BACKPAT
BLACK

BOLD
CRRTESIAN
CENTER
CHARWIDTH
CIRCLE
CLEAR
CONDENSED
CURSOR
DKGRAY

Dot

DRAW. CHAR
DRAKW. TO
DRAUSTRING
ERASE . RECT
EXTENDED
FRANE
GET.CURSOR

GET.LINE . HEIGHT

GET.PIREL
GET. TEXTFONT

MacFORTH Glossary

Page*
(38)
(38)
(38)
(35)
(36)
(36)
(36)
(36)
(38)
(39)
(44)
(56)
(56)
{(56)
{56)
(58)
(59)
(59)
(68)
{61)
(61)
(61)
(62)
(62)
(63)
(65)
(67)
(68)
{69)
(69)
(69)
{(71)
(72)
(75)
(76)
()
(1)
()

Hord
GET.TEXTHODE
GET.TEKTSIZE
GET.TEXTSTYLE
GET . XYOFFSET
GET.KYPIVOT
GET.XYSCALE
GINIT

GLOBAL >LOCAL
GRAY
HIDE.CURSOR
HIDE.PEN
IBEAN
IHIT.CURSOR
TNUERT
ITALIC

LOCAL >GLOBAL
LOMER, LEFT
LTGRRY

MAKE. RECT
HAX. ¥

HAK.Y
HOVE.TO
HOTPATBIC
NOTPATCOPY
NOTPATOR
HOTPATKOR
HOTSRCBIC
NOTSRCCOPY
NOTSRCOR
HOTSRCKOR
OPEN.PORT
OUTLIKE

OURL

PAINT

PATBIC
PATCOPY
PATOR
PATTERN

Page 13 - 23

Page®
(77
(78)
(78)
(78)
{78)
(78)
(78)
(78)
(78)
(79)
(79)
(81)
(83)
(84)
(84)
(88)
(88)
(88)
(89)
(89)
(98)
{91)
(94)
(94)
(94)
(94)
(94)
(94)
(94)
(94)
(96)
(97)
{97}
(98)
(98)
{98)
(98)
{98)

August 28, 1964

{{15. Graphics Continued))

Hord Page® Hord Page®
PATXOR (98) SHADOW (189)
PEN. NORMAL (98) SRCBIC (111)
PENMODE (98) SRCCOPY (111)
PENPAT (99) SRCOR (111)
PENSIZE {99) SRCKOR (111)
PLRIN {99) STRINGHIDTH (111)
PLOT. ICON (99) TEXTFONT (114)
POINT>RY (99) TEXTHODE (114)
POLYGON (188) TEXTSIZE {114)
PTINRECT (i81) TEXTSTYLE (114)
RORAW (183) UNDERL INE (116)
REAL.FONT? (183) UPPER.LEFT (118)
RECT (184) UECTOR (118)
RECTAHGLE (184) HATCH (128)
REGION {184) WHITE (121)
RMOVE (185) KLATE (122)
SCALE (186) XY><TLBR (122)
SCALE>RY {186) RY>POINT (122)
SCALE>Y {186) KYAXIS (122)
SCREEN.BITS (187) KYOFFSET (123)
SET.CURSOR (188) KYPIVOT (123)
SET.ORIGIN (189) KYSCALE (123)

16. String Hanipulation:

Hord Page* Hord Page*
" (38) CHOVE (62)
$A0DR {32) CHOVE> (62)
$LIT {32} COUNT (64)
{$LIT) (33) CRLF {65)
.") {33) ERASE (71}
-TEXT {44) FILL {13
~-TRAILING (44) MATCH {89)
o {44) PRD (97)
7HORD {55) UPPER (11?)
BLANKS (68)

MacFORTH Glossary Page 13- 24 August 28, 1984

17. User Interface:

Hord Page® Hord Page*
{GET) (35) STATUS {111)
>LIST< (s1) STILL.DOHN (nmm
?RO0N {54) TRIAD (116)
RINIT (55) VERSION (118)
eNOUSE (55) UERSION® {(118)
@HOUSE . DN (55) HAIT {128)
BNOUSEXY {(56) HORDS (122)
BVE (68)

DIR (67}

DIRECTORY (67)

FOLLOUWER (75)

GET {76)

ID. {81)

MOUSE . BUTTOM (98)

RELERSE {184)

SHOU {189)

18. Hachine Interface:

Hord Page®
ISR (38)
>JSR {(51)
@SR {56)
DEVICE . CONTROL (66)
DEVICE.STATUS (66)
START.FLAG (nn

MacFORTH Glossary Page 13 - 25 August 28, 1984

19. Trace and Debug:

Hord Page® Hord Page*
(.5) (33) RooM {185)
{ TRRCE) (36) SCR {187)
?TRACE (54) SCRRTCH (197)
DEBUG ~ (65) STACK.ERROR (111)
DEBUG.ONLY {66) TRACE (116)
DEPTH {66) TRACE . TOKEN - (118)
HANDLER (79) UNIQUE.NSG {(17)
INDER (83)

INITIALS (83)

INPUT HUMBER {84)

INPUT .STRING (84)

LIST (8?)

LOWER.CRSE {88)

NEEDED (91)

PRUSE (98)

QUIET {181)

R* (182)

28. Printer and Serial:

Hord : Page®

+PRINTER (39)

CONFIGURE .PRINTER (63)

OPEN.DEVICE (96)

OPEN.PRINTER (96)

PRINT {188)

PRINT.BITS {188)

PRINT.FCB (188)

PRINT.SCREEN (188)

PRINT.HINDOW (188)

PRINTER {188)

PRINTER.ONLY {181)

RST.PRINTER {186)

SETUP.SERIAL (189)

MacFORTH Glossary Page 13 - 26 August 28, 1984

21. Event Related:

Hord Page* Hord Page®
-KEYBORRD (43) KEY . DOUN {(85)
?DOUBLE . CLICK (52) KEY.STROKE {85)
2EVENT {53) KEY.UP (85)
BEVENT (55) MOUSE . DOKN {91)
ABORT .EVENT (56) MOUSE .DOWN.RECORD (91)
ACTIVATE . EVENT (57) HOUSE . uP (91)
APPLE . MENU {(58) MOUSE .UP .RECORD {91)
AUTO.KEY (58) HOUSE . UAS. . (91)
CONMMAND . KEY (63) NETWORK , EVENT (92)
DISK.EUENT (67) NULL . EVENT {94)
DO.EVENTS {68) POST . EVENT (188)
DRUR. EVENT {69) UPDATE . EVENT (1
EVENT. LOOP (1) HRIT.HOUSE . UP (128)
EUENT .RECORD (72)

EVENT. TABLE (72)

EVENTS {12)

FLUSH.EVENTS (1)

22. Hisc. Constants:

Hord Page* Hord Page®
“BLKS (38) 1HOUR (47)
“DATA {31) 2 (47)
"N4TH (31) 3 (48)
"PICT (31) 4 (48)
“TEXT (31) B/BUF {59)
* (31) BL {(59)
-1 (43) BS (68)
-2 (43) c/L {61)
-3 {(43)

-4 {43)

8 (46)

1 {46)

12HOURS {47)

10RY (47)

MacFORTH Glossary Page 13 - 27 August 28, 1984

23. Sound Driver:

Hord
?SO0UND
APLAY
HUSH
OPEN.SOUND
PLRY
SOUND.FCB
SYSBEEP
TONE

Page®

{54)
(58)
(a8)
(97)
{99)
(118)
(112)
{116)

24. Hisc. Toolbox Hords:

Hord

{ TRACK.CONTROL)

+TUISRECT
RDD. CONTROL
RDD. RES. NENU

DISPOSE . CONTROL

DONN.BUTTON
DRAW. CONTROLS
GET.CONTROL
GET.SCRAP
HILITE.CONTROL
IN.BUTTON
IN.CHECKBOX
IN. THUHB

KILL .CONTROLS
LORD . SCRAP
NASK . HANDLE
HUNGER
NENW.STRING
OFF .CONTROL
ON.CONTROL
PAGE . DOHN
PRGE . UP

MacFORTH Glossary

Page® Hord
{37) PUSH.BUTTON
{(48) PUT.SCRAP
{57) RADIO.BUTTON
(57) SCRAP .COUNTER
{67) SCRAP . HANDLE
(68) SCRAP.LEN
{69) SET.CONTROL
(76) SET.CONTROL . MAX
() SET.CONTROL.MIN
(79) SET.CONTROL . RANGE
(82) SET.STRING
(82) SHOW. CONTROLS
(83) SYSPARNS
(85) TEACTIVRTE
{(87) TECALTEXT
{89) TECLICK
{(91) TECOPY
{92) TECUT
(95) TEDEACTIVATE
{96) TEDELETE
{97) TEDISPOSE
{98) TEIDLE

Page 13 - 28

Page*
{181)
(181)
(182)
{187)
(187)
(187)
(188)
(188)
(188)
(188)
(189)
(189)
{(112)
{112)
(112)
{(112)
{112)
(112)
(112)
(112)
(113)
(113)

August 28, 1984

((24. Nisc. Toolbox Words Continued))

TEINSERT (113)
TEKEY (113)
TENEW (113)
TEPASTE (113)
TERECORD (113)
TESCROLL (113)
TESET. JUST (113)
TESET.SELECT (113)
TESET.TEXT (113)
TEST.CONTROL (113)
TEUPDATE (113)
TEXT.BOR (113)
TEXT.CLICK (114)
TEXT.FIELD (114)
TEXT.RECORD (114)
THIS.CONTROL (11%9)
THIS.PART (115)
TOGGLE . CONTROL (115)
TRACK.CONTROL (116}
UNLOAD. SCRAP (117)
UP.BUTTON mn
ZERO. SCRAP (123)

MacFORTH Glossary Page 13 - 29 August 28, 1984

i n\addr --
Store n at addr. "store”
The error message "ADDRESS ERROR TRAP AT addr® indicates addr is
odd {addr is displayed as a hexadecimal value) Refer to the Error
Handling chapter for a further explanation. See also w! Cl

ICSP
Save the current stack position in the user variable CSP . This is used
as part of the compiler security to ensure the stack does not change
during compilation of a word. "store-c-s-p”

IPENSTATE 20 bytes (5 stack items) --
Restores the prior penstate from the stack. See @PENSTATE .
“store pen state”

IPOINT x\y\addr -~

Packs the 16-bit values % and y into a 32-bit integer and stores the
value at addr.

IRECT top\eft\bottom\right\addr --
Packs the rectangle coordinates on the stack into 4 16-bit values and
stores them at addr. Packed rectangle contains 4 16-bit elements in
top-ieft-bottom-right sequence. “"store rect”

ISR n--
Directly stores the least significant 16 bits of n into the 68000
hardware status register. The supervisor and trace modes, interrupt
level, and condition codes are affected. "store-s~r"

" -- addr
Compiles a8 string delimited by ", leaving its address when the word
is later executed. Used during compilation in the form:

" «¢string titeralb>”

to compile ($LIT) followed by <string literal> with its count in the
first position. When later executed, ($LIT) places the address of
<string literal> on the stack, advancing the instruction pointer to the
word following the string literal. See $LIT , ($LIT),.", "
"quote”

"BLKS --n

32-bit constant containing the 4 character ASCH string "BLKS™ . Used
to designate the blocks file type. "quote B-L-K-5~

MacFORTH Glossary Page 13 - 30 August 28, 1984

"DATA --n
32-bit constant containing the 4 character ACSil string "DATA" . Used
as a file or resource type. "quote DATA "

“M4TH -n
Constant MacFORTH File creator id code. Placed in the creator field of
all files created by MacFORTH. "qgoute M-4th”

"PICT --n
32-bit constant containing the 4 character ASCH string "PICT". Used
to designate a picture file or resource types. “quote P-1-C-T *

“TEXT --n
32-bit constant containing the 4 character ASCII string "TEXT" . Used
to designate text files or resource types. "quote TEXT "

nl -- n2
Uses n1 to generate the next ASCH character for numeric output,
leaving n2 as n1/BASE. The result n2 is maintained for further
processing. Unchecked error if not used between <* and #> . See <*
and *> . “sharp”

#* n -- addricnt
End pictured numeric output conversion. Drop n from the stack and
leave the address and count of the text string created during numeric
conversion. “sharp-greater”

#FILES --n
Constant specifing the maximum number of files that can be opened at
a time.

#FIND -1'\woc addr 1\..\voc addr n -- [token\ien\true] or [false]

Yocabulary search primitive. Searches the -1 terminated vocabulary
list for the word in input stream. If the word is not found during the
search, leaves a false flag. If the word is found, leaves its token,
length byte and a true flag. Voc addr is the handie of the vocabulary
token. "hash-find”

#S un -- 0

Converts all digits of unsigned un. Each is added to the pictured
numeric output string until the remainder is zero. A single zero is
added to the output string if un was initially zero. “sharp-s”

MacFORTH Glossary Page 13 - 31 August 28, 1984

$ADDR -- addr
Skips over following in-ling string literal, leaving address on stack.
“string address"

$LIT -- addricnt
Executes ($LIT) . Necessary to match nesting level (return stack
depth) for other inline string literal operators such as (ABORT") and
(ERROR") which also use ($LIT) . See ($LIT) . "string-1it”

-- pfa

Used in the form:
' <name>

to get the pfa of <name>. If executing, leave the pfa of the next word
in the input stream. If compiling, compile this pfe as a relocated
literal; later execution will place it on the stack. Issue an error
message if the word is not found after a search of the CONTEXT and
then the CURRENT vocabularies. Within a colon definition

' <name>
is identical to

[' <name>] LITERAL
Error if the following word is not found in the dictionary. The system
will print the name followed by & question mark. "tick”

'INTERPRET ---
Begin interpretation of the input stream pointed to by >IN and BLK . If
BLK is non-zero, >IN points to the character within the block pointed
to by BLK . If BLK is zero, the input stream is taken from the
Terminal Input Buffer. See >IN ,BLK,TIB. "tick-interpret”

{ —
Accepts and ignores comment characters from the input stream until
the next right parenthesis. Used in the form:
{cce) or (cec)
The left parenthesis must be followed by at least one space (as with
all FORTH words). It may be used freely while compiling or executing.
The error message
MISSING { STRING DELIMITER !
indicates the input stream has been exhausted before the delimiting
right parenthesis was encountered. “paren”
The delimiter {right parenthesis) is pronounced: “close-psren”
(ION.ACTIVATE) --

Runtime word for IDN.ACTIVATE . Use ION.ACTIVATE .

MacFORTH Glossary Page 13 - 32 August 28, 1984

('ON.UPDATE) --
Runtime word for ION.UPDATE . Use ION.UPDATE .

($LIT) -- addr
Fetches the inline string literal address from the return stack,
leaving the string address on the stack. The value on the return stack
(the instruction pointer) is incremented to point just past the string,
so when ($LIT) executes EXIT , execution will continue beyond the
string literal. "paren-string-1it”

((ABORT)) ---
Default version of ABORT (initially placed in (ABORT)). Empties the
data stack, sets BASE to DECIMAL, copies TRUNK to CONTEXT and
CURRENT, and finally QUITs, which aborts execution and returns
control to the console. “paren-paren-abort”

((ERROR)) addricnt --

Default error handler (initially placed in (ERROR)). If QUIET is off,
sounds the console’'s buzzer, outputs a CR LF and the most recently
interpreted word (from POCKET) followed by the string at the addr
and cnt given. The data stack is cleared. If BLK is non-zero
(compiling from disc), SCR is set to BLK , and R* is set to >IN , so
that entry into the editor will point to the location of the error.
Finally, QUIT is executed, aborting the current task and returning
control to the console. See (ERROR} , POCKET , BLK , >IN , WHERE .
"paren-paren-error”

(+LOOP) n--
The run-time procedure compiled by +LOOP. It increments the loop
index by n and tests for loop completion. See +LOOP
“paren-plus-loop”

(")
The run-time procedure compiled by Outputs the string
immediately following it in the dictionary. See .”
“paren-dot-quote”

(.9) --=
Non-destructive stack display primitive. No CR before execution.
Displays the contents of the stack using the following format:
[d] c\bha
where d is the stack depth, and a b and c are the top three stack
items. If d is less than 3, only the stack items present are displayed.

MacFORTH Glossary Page 13 - 33 August 28, 1984

(,CODE@) ---
Stores the supplied cfa into the cfa of the latest word. The supplied
cfa is pointed to by the value on the return stack.

{>CODE) ---
Jumps to the address contained in the IP. Compiled by >CODE .

(ABORT") flag --
Primitive routine compiled by ABORT" which precedes the inline
string literal. When executed, if flag is true, the string is output and
ABORT is executed. If flag is false, flag is dropped from the stack
and execution resumes at the ward following the string litersl
“paren-abort-quote”

(ABORT) -- addr
User variable containing the cfa to be executed by ABORT .
"paren-abort”

(DO) ni\n2 --

The run-time procedure compiled by DO , which moves the loop control
parameters to the return stack. See DO . "paren-do”

(ERROR") fiag --
Compiled by ERROR" prior to an inline error message string. When
executed, if flag is true, the most recently executed word {in POCKET)
is displayed, followed by the inline error message string. If flag is
false, flag is dropped from the data stack and execution continues
beyond the string. See $LIT , ($LIT) , ERROR" , ABORT"
"paren-error-quote”

(ERROR)} -- addr

User variable containing the address of the word to be executed when
an error is detected by the text interpreter. "paren-error”

MacFORTH Glossary Page 13 - 34 August 28, 1984

(EXCPT) ---

Code definition which copies the contents of the 68000 registers to
the array REG.SET . The first 16 bytes on the return stack {(hardware
stack pointer) are also moved. This routine is called by all of the
processor and unimplemented instruction handiers during exception
processing before they execute ABORT , providing & snapshot of the
registers and the supervisor stack when the exception occured. The
loadable utility REGS { MacFORTH Level 2) will give you a formatted
dump of this information. Use the Motorola Processor Exeception
Documentation to interpret the supervisor stack contents.
“paren-except”

(FIND) addrivoc handle -- [token\prec flag\true] or [faise]
Vocabulary search primitive. Searches the vocabulary for a match
with the name found at addr. If a match is found, the token and
precedence flag for the word are returned under a true flag, otherwise
only a false flag is returned. “paren-find"

(GET) addr —-

Multitasking stub for source compatibility with future CSI MacFORTH
products.

(GET.FILE) n1\n2\n3\n4\nS\ --
Standard file hook for uniform access to the Macintosh standard file
package. Unsupported inLevel {. “paren GETFILE "

(LINE) x\y --
QuickDraw line primitive. X and Y are esxpressed in local window
QuickDraw coordinates and are unaffected by XYSCALE, XYPIVOT, or
XYORIGIN. “paren line"

(LINETO) x\y--

QuickDraw relative line drawing primitive. X and Y are in local
window QuickDraw coordinates and are unaffected by XYSCALE,
XYPIVOT, or XYORIGIN. "paren line-to”

(LOOP) ===

The run-time procedure compiled by LOOP which increments the loop
index and tests for loop completion. See LOOP . "paren-loop”

(MENU SELECTION:) --

Run time code for MENU.SELECTION: retained for clarity during tracing.
“paren menu selection”

MacFORTH Glossary Page 13 - 35 August 28, 1984

(MOYE) X\Y --

QuickDraw line drawing primitive. X end ¥ are in local window
QuickDraw coordinates and are unaffected by XYSCALE, XYPIVOT, or
XYORIGIN. "paren move”

(MOVE.TO) x\wv--
QuickDraw line drawing primitive. ¥ and Y are in local window
QuickDraw coordinates and are unaffected by XYSCALE, XYPIVOT, or
XYORIGIN. "paren move-to”

(OF) n1\n2 -- [ntlor (]
Run-time code compiled by OF . See OF .

(ON.ERROR) ---

Pushes the recovery stack frame into the return stack. It then
branches over the error recovery code.

(PENSIZE) w/n--
Sets PENSIZE regardless of XY scale. "paren pen size”

(PUTFILE) n1\n2\n3\n4 --

Standard file hook for uniform access to the Macintosh standard file
package. Unsupported in Level 1. “paren PUT.FILE"

(R/W) -- addr

User Variable containing the address of the word which obtains a
requested block from the disc. “paren-r-slash-w"

{TEXTSIZE) size--

Sets physical text size regardless of ¥ scaling. “paren textsize”

(TRACE) ---

Routine which executes the trace function of the compiler. Compiled
by the interpreter before every token if the TRACE option switch is
oh. When the iater executed, if the DEBUG option switch is on, output
is tabbed to column 16, the stack is displayed (using (S)). A CRLF is
output, and the name field of the following inline token is displayed.
If the DEBUG option switch is off, no output is generated. See TRACE ,
DEBUG . “paren trace”

MacFORTH Glossary Page 13 - 36 August 28, 1984

(TRACK.CONTROL) n1\n2\n3 -- flag
MacFORTH Level 2 controls primitive. Refer to MacFORTH Level 2
documentation.

(WORD) char\addr -- addr
Moves the string delimited by char from the input stream to addr.
“paren-word”

JCONSTANT n--
Creates a relocatable constant. Similar to CONSTANT, used in the
form:
n JCONSTANT <name>

to create a relocatable constant with name <name> and value n. When
created, NEXT.PTR is subtracted from the stored 32 bit value. When
the constant is later used, the saved value is summed with NEXT.PTR
to produce the actual physical address.

W addr -- n
Converts the user area address given to the offset from the base of
the user area. |t is simply defined as:
;W STATUS -
It is used to access the bootup literal area. "close-paren-u”

* ni\n2 -- n3
Leaves the product of (n1*n2). Error if the product is greater than
31-bits plus sign. System response is to truncate the product to
32-bits with no error message. “times”

*x/ ni\n2\n3 -- n4
Leaves the result of the product n1 times n2 divided by n3. The result
n4 is rounded toward zero. The intermediate product {ni1*n2), is
maintained as a 64-bit value for greater precision than the otherwise
equivalent sequence: nl n2 * n3 /
Error if division by zero, or quotient overflows, with NO system
check. "times-divide”

%*/MOD n1\n2\n3 -- n4\n5
Multiply n1 by n2, divide the result by n3, leaving the remainder nd
and quotient n5. A 64-bit intermediate product is used (as for */).
The remainder has the same sign as ni. Error if division by zero, or
quotient overflows with NO system check. "times-divide-mod”

MacFORTH Glossary Page 13 - 37 August 28, 1984

+ n1\n2 -- n3
Add n1 to n2 and leave the result n3. Error if the sum overflows
resulting in 8 32-bit truncated unnormalized sum with no system
check. "plus”

+1 n\addr --
Add n to the 32-bit value at addr according to the convention for +.
Error if the sum overflows with no system check (see +). The error
message "ADDRESS ERROR TRAP at addr™ indicates addr is odd (see !).
"plus-store”

+CARTESIAN wptr -- addr
Returns the address of & variable in the window record (for the
window specified by wptr) whose contents determine whether
coordinate points for the window are to be interpreted in QuickDraw
or Cartesian coordinates (see the Graphics Results chapter). When the
variable is TRUE, all coordinates are expressed in Cartesian
coordinates. "plus Cartesian”

+FIND -~ [token\T1aghtrue] or [false]

Dictionary search primitive. Searches the dictionary for a match on
the next word in the input stream. The next word in the input stream
is extracted using WORD and placed in POCKET . If the word is Tound
in the CONTEXT , CURRENT , or TRUNK vocabularies, the token for the
word, its precedence flag and true flag are returned. The precedence
flag is true if the word is an immediate word and should be executed
when compiling (ie. DO, IF, ."). If the word is not found, only a false
flag is returned. See IMMEDIATE , CREATE , WORD , POCKET .
“plus-find”

+FOLLOWER nt -- n1+FOLLOWER
Returns the sum of ni plus the offset to the user variable FOLLOWER
from the base of the user area.

+HBAR wptr -- wptr+offset
Returns the address of a variable within a window record which
contains the handle for a horizontal scroll bar control which is
attached to the window specified by wptr. Refer to MacFORTH Level 2
Controls documentation for further information.

MacFORTH Glossary Page 13 - 38 August 28, 1984

+LOAD relative scr* --
Loads the screen number given relative to the current screen being
loaded. For example, the sequence
10 +LOAD
encountered while loading screen 100 would cause screen 110 to be
loaded. “plus-load"

+L00P n--

Add the signed increment n to the loop index using the convention for
+ and compare the total to the limit. Return execution to the
corresponding DO until the new index is equal to or greater then the
limit (for n»>0), or until the new index is less than the limit (for n<Q).
Upon exit from the loop, discard the loop control parameters from the
return stack and pass control to the word following +LOOP . The error
message "CONDITIONALS NOT PAIRED" indicates the +LOOP was not
matched with a DO . See DO . "plus-loop”

+MAXBLK# fcb -- addr
Returns the address of trhe maximum block number field (32-bits) in
the file control block. For example,
8 >FCB +MAX.BLK* @
returns the maximum number of blocks in the blocks file with file
number 0.

+ON.ACTIYATE wptr -- addr
Returns the address of the field within the window record (specified
by wptr) which contains the token to be executed when the window is
activated.

+0ON.UPDATE wptr -- addr

Returns the address of the field within the window record {(specified
by wptr) which contains the token to be executed when the window is
updated.

+POINT KINYIAK2ZNY2 —- X1+X2\Y 1+Y2
Returns the sum of two points.

+PRINTER addricnt --
If the value of the variable PRINTER is true, the string at addr for cnt
bytes is output to the printer, then to the display. If the value of
PRINTER is false, the string is only displayed. “plus-printer”

MacFORTH Glossary Page 13 - 30 August 28, 1984

+RECSIZE fcb -- addr
Returns the address of the record size element (16-bits) in the
specified file control block. For example:
g >FCB +REC.SIZE W@
returns the record size of the file with file number zero.

+SCR# fcb -- addr
Returns the address of the block {or "screen”) number field (32-bits)
in the specified file control block.

+THRU relative start\relative end --
Load screens start through end reletive to the current screen. For
example, the sequence
515 +THRU .
encountered while loading screen 10 would cause screens 15 through

25 to be loaded. “plus-thru”

+TYISRECT text record addr -- addr
Returns the address of the visible rectangle field within the text edit
record. Refer to MacFORTH Level 2 Text Edit interface documentation
for further details.

+YBAR wptr -- addr
Returns the address of a variable within the window record which
contains the handle for a vertical scroll bar control which is attached
to the window. Refer to MacFORTH Level 2 Controls documentation
for further infarmation..

+W_ ATTRIBUTES wptr -- addr

Returns the address of the 16-bit field within the window record
{specified by wptr) which contains the window attributes to be
assigned when the window is created: '

bit@ CLOSE.BOK bit1 MNOT.UISIBLE

bit2 SIZE.BOX bit3 SCROLL.UP/DOUN

bit4 SCROLL.LEFT/RIGHT bitS TEKXT.RECORD

bits 6-13 Reserved

+W.BEHIND wptr -~ addr

Returns the address of the field within the windew record (specified
by wptr) which contains the wptr to place the new window behind
when it is created. O places it up front, -1 places it at back.

MacFORTH Glossary Page 13 - 40 August 28, 1964

+W LINK wptr -- addr
Returns the address of the field within the window record (specified
by wptr) which contains the address of the prior chronologically
defined window. This linked list is traversed, during FORGET, to close
any windows which are about to be forgotten,

+W.TYPE wptr -- addr
Returns the address of a 16-bit field within the window record which
contains the window type. Type O is a document window, type 1 isa
dialog box window, tupe 2 is a rectangle, and type 3 is a shadowed
ractangle.

+WBOUNDS wptr --addr
Returns the address within the window record {specified by wptr) of
a rectangle to be used as the window bounds when the window is
created.

+WCBOUNDS wptr -- addr
Returns the address within the window record of the current content
area rectangle for the window. This rectangle is kept current when
the window is resized, and refiects the presence or absence of scroll
bars.

+WFILEPTR wptr -- addr
Returns the address within the window record of a field which
contains the file number of file which is associated with the
specified window.

+WLINE HEIGHT wptr -- addr
Returns the address within the window record of a field which
contains the current line height. Windows are scrolled by the value
contained in this fieid bits up at the end of the screen.

+WREFCON wptr -- addr
Returns the address within the window record of a field which
contains the window reference constant. This field normally contains
the address of the handie for the current Text Edit record. Refer to
MacFORTH Level 2 Text Edit documentation for further information.

+WTITLE wptr -- addr
Returns the address within the window record of a variable which
contains the address of a string to be used as the window title.
Executed when the window is created with ADD.WINDOW .

MacFORTH Glossary Page 13 - 41 August 28, 1984

+XYBIAS wptr -- addr
Returns the address within the window record of a 32-bit field which
containg the integer 16-bit sine and cosine of the current XYPIVOT
angle.

+XYOFFSET wptr -- addr
Returns the address within the window record of a 32-bit field which
contains the 16-bit ¥ and X offsets which are applied to all
coordinates relating to the window.

+XYPIYOT wptr -- addr
Returns the address within the window record of a 16-bit field which
contains the angle of rotation to be applied to all coordinates relating
to the window. ‘

+XYPOS wptr -- addr ,
Returns the address within the window record of a 32-bit field
containing the current XY position. This is used for all relative
coordinates.

+XYSCALE wptr -- addr

Returns the address within the window record of a field which
contains the current XYSCALE to be applied to all window coordinates.

n -
’
Allot 4 bytes in the dictionary, storing n there. An error is reported if
insufficient object space is available. “"comma”

Compiles a string literal into the dictionary. Extracts the following
string, terminated by * (double quote), from the input stream and
emplaces it into the dictionary preceded by its count byte. For
example:

CREATE TEST.STRING ," THIS IS R TEST" TEST.STRING COUNT TYPE
will output

THIS IS R TEST
This operator is generally used to emplace string literals into the
dictionary for words like .” , ABORT" , ERROR" , etc. "comma-quote”

- ni\n2 -- n3
Subtract n2 from ni1 and leave the difference n3. Error if the
difference overflows. Returns a 32-bit value similar to that of the
case of overflow from addition with no system check. See +. "minus”

MacFORTH Glossary Page 13 - 42 August 28, 1984

- -

Continue interpretation on the next sequential block. May be used in a
colon or code definition that crosses a block boundary. “next-block”

-1 ---1
Constant containing the value -1.

-2 -2
Constant containing the value -2.

-3 —-3
Constant containing the value -3.

-4 - -4
Constant containing the value -4. '

-FIND -- [token\flag\true] or [false]
Dictionary search primitive. Searches the dictionary for a match on
the next word in the input stream. Extracts the next word in the input
stream (via WORD), placing it in POCKET . If the word is found in the
CONTEXT or TRUNK vocabularies, the token for the word, its
precedence flag, and a true flag are returned. The precedence flag is
true if the word is immediate and should be executed when compiling
(ie. DO, IF,."). If the word is not found, a false flag is returned.
See IMMEDIATE , INTERPRET .
"dash-find"

-FOUND token --

Reports an error ™ ?" if token is zero.

-KEYBOARD --n
Constant mask which allows all but keyboard events to be received.
This value is ended with the contents of EVENTS if & keystroke
already exists prior to execution of DO.EVENTS allowing type-ahead.
"minus-keyboard”

-LATEST --
Removes the latest token, name, and object space from current
dictionary. It ignores the smudge bit.
“minus-latest”

MacFORTH Glossary Page 13 - 43 August 28, 1984

-NULL -
Aborts 1f the first byte at POCKET equals zero with the message
"ATTEMPTED TO REDEFINE NULL!"

-POINT R 1Ny 1N&28y2 ~- k1-x2\Y1-y2
Returns the difference of two points. See +POINT .

-STRING addri\addr2 -- flag
Returns a non-zero flag if the string at addr1 is not equal to the
- string at addr2. The first byte of each string contains its length.
Case and diacritical marks are ignored (eg. “Task” and “TASK" are
considered equal).

-TEXT addr1\cnt\addr2 -- flag
Compares the two strings at addr1 and addr2 for cnt bytes. The flag
returned is zero if the strings are eguivalent, otherwise the flag
equals the difference between the last two characters compared, as
follows: addri(i) - addr2(i)
"dash-text”

-TRAILING addricnt1 -- addricnt2
Strips trailing blanks from the string at addr. Adjusts the character
count cnt1 of a text string beginning at addr to omit trailing blanks
(ie. the characters from addr+cnt! to addr+cnt2 are blanks). Error if
cnt1 is negative with no system check.
"minus-trailing”

. n--

Displays n. n is converted according to BASE in & free formst field
with one trailing blank. Displays a negative sign if n is negative.
"dot”

Outputs a string of text delimited by " . Executed or compiled in the
form

." anasaaaa”
Accept the following text from the input stream, terminated by ”
{double-quote). If executing, transmit this text to the selected
output device. [f compiling, compile so that later execution will
transmit the text to the output device. Up to 255 characters are
allowed in the text. The error message "MISSING STRING DELIMITER"
indicates the input stream was exhausted before the delimiting
double quote was encountered. “dot-quote”
The double guote delimiter is pronounced "quote”

MacFORTH Glossary Page 13 - 44 August 28, 1984

ABORT n--
Prints the number n in hexadecimal, and aborts.

DATES -
Displays the current date from the internal clock in the following
format: MM/DD/YY

FILE.ERROR error number --
Displays the appropriate file error message for the given file error
number. Unknown error numbers are printed with the message “File
Error *".

R n\width --
Displays n right-justified, blank-filled. The field is width characters
wide, and n is displayed according to BASE. If width is less than 1, no
ieading blanks are supplied. "dot-r"

S

Non-destructively displays the current contents of the stack. The
number of items on the stack is first displayed, enciosed in brackets,
followed by the top three stack items (the top stack item is furthest
to the right) after a carriage return. For example, if you enter
123 .8
you will see
[31v1N203
If you then add another stack item (say 4 for example), you will see
[418v2V304
"dot-g”

.TIMES ---

Displays the current time as read from the internal clock in the
following format: HH:MM:SS XM

TYPE addri\cnt --

Default Macintosh console output operator. Scrolis up at the bottom
of the screen.

/ nivn2 -- n3

Divide n1 by n2, leaving the quotient n3. n3 is rounded toward zero
{truncated). Error on division by zero with no system check. “divide”

MacFORTH Glossary Page 13 - 45 August 28, 1984

/MOD n1\n2 -- remainder\quotient
Divide n1 by n2 and leave the remainder under the gquotient. The
remainder has the same sign as n1. Error on division by zero with no
system check. "divide-mod"

0 -0
Constant containing the value 0.

0« n-- flag
Returns a true flag if n is less than zero (negative). "zero-less”

0= n -- flag
Returns a true flag if n is equal to zero. "zero-equals”

0> n-- flag
Returns a true flag if n is greater than zero. "zero-greater”

OBRANCH flag --

The run-time procedure used for conditional branching. If flag is
false (zero), the following in-line parameter is added to the
interpreter pointer to branch shead or back. Compiled by IF , UNTIL ,
and WHILE . “zero-branch”

OMAX n -- Inl or [0]
Code routine which returns the maximum of n or 0. “zero-max”

1 -1
Constant containing the value 1.

1+ n--n+1
Increments the top stack item by one.

1- n--n-1
Decrements the top stack item by one.

10+ n--n+10
Increments the top stack item by ten.

10- n--n-10
Decrements the top stack item by ten.

MacFORTH Glossary Page 13- 46 August 28, 1984

12HOURS --n
Constant returning the number of seconds in 12 hours.

16% n--n*16
Muitiplies the top stack item by sixteen.

16+ n--n+16
Increments the top stack item by sixteen.

16- n--n-16
Decrements the top stack item by sixteen.

16/ n--n/16
Divides the top stack item by sixteen.

1DAY --n
Constant returning the number of seconds in one day.

THOUR --n
Constant returning the number of seconds in one hour,

2 -2
Constant containing the value 2.

21 n1\n2\addr —-
Stores n2 at addr, n1 at addr+4.

2% n--n*2
Multiplies the top stack item by 2.

2+ n--n+2
Increments the top stack item by 2.

2- n--n-2
Decrements the top stack item by 2.

27 n--n/2
Divides the top stack item by 2.

2@ addr -- n1\n2
Fetches n2 from addr, n1 from addr+4.

MacFORTH Glossary Page 13 - 47

August 28, 1984

2DROP ni\n2 --
Drops n1 and n2 from the stack.

2bup n1\n2 -- n1\n2\n1\n2
Duplicates n1 and n2.

20VER n1\n2\n3\nd -- n1\n2\n3\nd\n1\n2
Copies n1 and n2 to the top of the stack.

2SWAP n1\n2\n3snd -- n3\nd\n1\n2
SWGDS ni,n2 with n3,n4.

2%W>MT nt --
Macintosh Tooltrap interface word. See the Advanced Topics toolbox
interface section for more information.

3 -3
Constant containing the value 3.

3+ n--n+3
Increments the top of the stack by three.

3- n--n-3
Decrements the top of the stack by three.

4 -4
Constant containing the value 4.

4% n--n*4
Multiplies the top of the stack by four.

4+ n -- n+4
increments the top stack item by 4.

4- n--n-4
Decrements the top stack item by 4.

4/ n--n/4
Divides the top stack item by 4.

MacFORTH Glossary Page 13 - 48 August 28, 1984

5+

8x

8+

87

MacFORTH Glossary

n--n+S
Increments the top stack item by 5.

n--n-5

Decrements the top stack item by 5.

n--n+6
Increments the top stack item by 6.

n--n-6

Decrements the top stack item by 6.

n--n+7
Increments the top stack item by 7.

n--n-7

Decrements the top stack item by 7.

n-- n*g
Multiplies the top stack item by 8.

n--n+8
Increments the top stack item by 8.

n--n-8

Decrements the top stack item by 8.

n--n/g
Divides the top stack item by 8.

Page 13 - 49

August 28, 1984

<#

<WE

Begins compilation of a new definition. A defining word used in the
form:
: <naome> . . . ;

Set CONTEXT to CURRENT and create a dictionary entry for <name> in
the CURRENT vocabulary. Words thus defined are "colon definitions”
and the compilation address of subsequent words from the input
stream which are not immediate are compiled into the dictionary to
be later executed when <name> is executed. IMMEDIATE words are
executed as encountered. Words encountered that are not found in the
dictionary (CONTEXT and TRUNK vocabularies) cause compilation to
stop with a question mark printed after the offending word. The
warning message "ISNT UNIQUE" indicates that a previous definition
for <name> exists. “"colon”

Terminate a colon definition and stop compilation. The error message
"DEFINITION INCOMPLETE" indicates the stack depth changed within
the current colon definition. "semicolon”

ni\n2 -- flag
Returns a true flag if n1 is less than n2. "less-than”

Initialize pictured numeric output. The foliowing group of words are
used to convert a number to its ASCII string equivalent:

¥ *5 *# *5 HOLD SIGN

"less-sharp”

addr -- n
Fetches the 16-bit contents at addr and sign extends it to 32-bits.
An address error trap will result if add is odd. Use >W®< for odd or
even addresses.
"extended-word-fetch”

ni\n2 -- flag
Returns a true flag if n1 is equal to n2. "equals”

=CELLS nt --n2

Ensures n1 is even by adding one to it if it is odd. "equais-cells”

=DROP ni\n2 -- [n1\n2] or [n1]

Drops n2 if n1=n2. "equals-drop”

MacFORTH Glossary Page 13 - 50 August 28, 1984

b4 ni\n2 -- flag
Returns a true flag if n1 is greater than n2, “greater-than"

> FILEEERROR< error code --

Default file error handler. Displays the appropriate error message for
the error code given.

>FCB file* -- fcb
Returns the file control block address for the file number specified.

>IN -- addr
User variable pointing to the current character in the input stream.
Error if the value stored is outside the range 0 to 1023 with no
system response. See: WORD ' (." and FIND . "to-in"

>JSR addr --
Jumps to the assembly code subroutine at addr. Registers A0-A2,
DO-D3 are available; A3-A7, and D4-D7 should be saved and restored
by the assembly routine if they would be modified. The JSR
instruction places the address {containing NEXT) on the return stack
(A7). Return to FORTH via an RTS instruction. NOTE: MacFORTH
expects to run in supervisor state, NOT user state. "to-j-s-r~

>LIST« ---

indirectly references the word to execute at the top of every listed
screen. Used to time and date stamp listings.

>R n--
Pushes the top stack item onto the return stack. Remember, DO . . .
LOOP's affects the return stack. (DO pushes 2 items, LOOP pops them).
Error if not balanced inside of a colon definition or inside a DO . . .
LOOP structure with a matching R> with an unpredictable system
response. "to-r"

>RECT ® 1%y 1\x2\y2 -- RBAMLT\SP@
Returns the address within the stack of the reformatted rectangle
x1\y1\x2\y2. Rectangle coordinates are translsted and offset
according to XYSCALE, XYPIVOT, and XYOFFSET before reformatting
occurs. The rectangle is in QuickDraw top,left, bottom, right format.

>SYS.WINDOW -
Directs output to system window.

MacFORTH Glossary Page 13 - 51 August 28, 1984

Wk n\addr --
Stores the 16-bit value n at addr. Addr may be an odd address.

>WE< ‘addr -- n
Fetches the 16-bit value at addr. Addr may be an odd address.

? addr --
Displays the 32-bit value at addr. "question mark”

7ALIGN ==

Forces the dictionary pointer to an even address. The user variable DP
is incremented by one if it is odd. "query-align”

?BLOCKSFILE file* -- flag

Returns a true flag if the specified file is a BLKS type file.
"query blocks file”

2C0MP -
Verifies compilation state. Issues the error message "COMPILATION
ONLY! USE ONLY IN A DEFINITION" if STATE does not indicate
compilation mode. “query-comp”

?2CSP
Verifies the stack did not change during compilation. The error
message "DEFINITION INCOMPLETE I" indicates the value in the user
variable CSP is different from the current stack position. See CSP .
“query-c-s-p”

7DAYS nt --n2

Converts n1 seconds into n2 days. n1 is divided by the number of
seconds in one day, leaving the result n2.

?DOUBLE.CLICK --flag

Following a mouse down event, detects if a double click occurs within
the time period set on the control panel. If a double click occurs, flag
is true, otherwise false.

?DUP n == [n\n] or [n]
Duplicate n if it is non-zero. "query-dup”

MacFORTH Glossary Page 13 - 52 August 28, 1984

?EOF -- flag
Returns a true flag 11 the end-of-file marker of the current file has
been reached for the file that was most recenty accessed.

PEVENT record\mask -- event code
Copies the next event that passes the mask to record, returning the
event code of the event. The event is not removed from the event
queue. "query-event”

?EXEC -

Yerifies execution state. Issue the error message EXECUTION ONLY
if STATE does not indicate execution mode. "query-exec”

?FILEERROR ---

Checks the value of 10-RESULT and aborts the current task, displaying
an error message if 10-RESULT is non-zero.

?FILES -—-
Displays the current file control block assignments.

?HEAPSIZE -- size
Returns total amount of space available in heap, including any grow
region. Refer to Apple Developer's documentation for further detail
Reference: FreeMem

?IN.CONTROL --flag
Returns a true flag if most recent MOUSEDOWN even occurred in a
control attached to the currently active window. The variable
THIS.CONTROL contains the handle to the affected control. The
variable THIS.PART contains the relevant control part code. Refer to
MacFORTH Level 2 Controls documentation for further details.

?KEYSTROKE -- [key\true] or [false]

Checks for a keystroke from the Mac keyboard. Returns & key value
under a true flag if a key was pressed, otherwise just returns a false
flag.

?LOADING ---

Verifies loading from disc. Issue the error message "CANT USE FROM
TERMINAL I" if a word is executed from the terminal which should only
be executed from disc. "query-loading”

MacFORTH Glossary Page 13 - 53 August 28, 1964

?0PEN file® -- flag
Returns 8 true flag if the specified file is open.

?PAIRS ni\n2 --
Verifies conditionals were paired in the latest definition. The error
message "CONDITIONALS NOT PAIRED” indicates n1 is not equal to n2,
meaning compiled conditionals do not match. "query-pairs”

?PUNCT addr -- flag
Checks for valid punctuation. Returns a true flag if the ASCH
character ot addr is one of the following:
s

"query-punct”

?RO0OM ---
Reports the amount of space available in the heap, object and
vocabulary memory areas.

?SECONDS n1--n2
Converts n1 seconds into n2 seconds since midnight of the current
day. ni is divided by the number of seconds in one day, leaving the
remainder n2.

?S0UND --flag

Returns a true flag if sound driver is active asynchronously.

?7STACK -
Checks for underflow of the parameter stack. The message "STACK
EMPTY!" indicates the parameter stack underflowed.
“query-stack”

?TERMINAL - f1ag

Returns a non-zero flag if a key has been pressed, otherwise false.
“query-terminal”

?TRACE ---
Compile {TRACE) into the dictionary if the TRACE option switch is on.
"query-trace”

MacFORTH Glossary Page 13 - 54 August 28, 1984

?WORD char -- addr

ee

Parses a string from tie input stream. Performs the same function as
WORD (see WORD), except it aborts with the error message "MISSING
STRING DELIMITER! if the input stream is exhausted before the
delimiter was encountered. "query-word”

addr --n
Returns the 32-bit contents of addr. The error message "ADDRESS
ERROR TRAP AT addr” indicates addr was odd. If you need to fetch
data from odd addresses, use CMOVE or >W@< .
"fetch”

addr --n
Returns the 32-bit contents of the contents pointed to by addr. The
error message "ADDRESS ERROR TRAP AT addr” indicates addr or its
contents were odd.
"fetch-fetch”

@CLOCK --n

Returns the number of seconds since 12:00 am 01/01/04 as read from
the internal clock.

@EVENT record\mask -- event code

Copies next event from event queue to record. Returns event code if it
applies to current window, otherwise 0.

@FILENAME file* -- file$

Returns the address of the name string for the specified file.

@INIT -

Asks for input of the user's initials. The message:
ENTER YOUR INITIALS [XXX] -->
The initials input are stored in the user variable INITIALS.

@MOUSE -- point

Returns the current location of mouse in local coordinates.
See POINT>XY LOCAL>GLOBAL

@MOUSEDN --point

Returns the location of where the mouse last went down (button
pressed) in local coordinates. See POINT>XY LOCAL>GLOBAL

MacFORTH Glossary Page 13 - 55 August 28, 1984

@MOUSEXY --x\y
Returns mouse position in user window coordinates. Sensitive to
CARTESIAN flag and XYOFFSET.

@PEN -- %\y
Returns the current pen position in local coordinates to the currently
active window.

@PENSTATE -- 20 bytes (5 stack items)
Fetches the current pen size, pen pattern, pen location, and pen mode
to the stack. (see IPENSTATE)

@POINT adar -- x\y
Fetches 32-bit value from addr and unpacks to % and y coordinates.

@RECT addr -- t\I\b\r
Unpacks rectangle at address. Top Left Bottom Right are pushed into
stack.

@SR --n
Returns the contents of the 68000 hardware status register. This
16-bit value is contained in the least significant bits of n.
"fetch-s-r"

ABORT ---

Aborts the current task. Clears the data and return stacks and returns
control to the console in execution mode.

ABORT" flag --
Aborts the current task with the supplied message if flag is true and
RETRY is zero. Used in the form:

ABORT" <user message>”

Compiles (ABORT") followed by <user message> preceded by its count
byte. At execution time, if flag is true, <user message> is displayed
in the MacFORTH window, and ABORT is executed. If flag is false, no
action is taken. If RETRY is non-zero, error recovery occurs at the
stack frame in the return stack pointed at by RETRY .
See the Advanced Topics chapter and ABORT , (ABORT") , RETRY .
“abort-quote”

ABORTEYENT --n
Constant event code returned by DO.EVENTS on an abort event.

MacFORTH Glossary Page 13 - 56 August 28, 1984

ABS nl --n2
Returns n2 as the absolute value of ni. Error occurs when the
argument is the most negative 32-bit number. That argument is
returned unchanged with no error message. "absolute”

ACTIVATEEVENT --n
Constant event code returned by DO.EVENTS on an activate event.

ADDBLOCKS #blocks\file* --
Primitive used by APPEND.BLOCKS to add *blocks to the specified
blocks file.

ADD.CONTROL xxx -- xxx
Refer to MacFORTH Level 2 Controls Documentation,

ADDRES.MENU type\menu id --

Appends as items the name of all resources in the current resource
file of the specfied type to the specfied menu.

ADD.WINDOW wptr --
Builds a window from w.title, w.bounds, w.type, and w.attributes, and
links it into window list and displays it if visible. W.BEHIND
determines where window will appear in the window list.
See NEW.WINDOW

AGAIN -=-

Marks the end of an infinite loop structure. Causes an unconditional
branch back to the start of a

BEGIN . . . RGAIN
loop construct. it is equivalent to
BEGIN . . . & UNTIL

See BEGIN , UNTIL .

ALIT -- address

Pushes the sum of the next 32-bit value in the interpretation stream
and NEXT.PTR into the stack. Advances over the value. Compiled by °
to relocate a literal address.

ALLOCATE file size\file* --
Allocates the specified number of bytes to the specified file.

MacFORTH Glossary Page 13 - 57 August 28, 1984

ALLOT n--

increments the dictionary pointer by n. Aborts if object area is too
small to contain n additional bytes.

AND ni\n2 -- n3
Returns n3 as the bitwise logical AND of n1 and n2.

APLAY addr --

Passes addr+2 to the Macintosh sound driver. Addr contains the
16-bit size of the waveform record at addr+2. The sound is generated
asynchronoously.

APPEND token\$addr --
Appends the string with token to the current vocabulary. An error
message is generated if insufficient space is available in the
vocabulary. Resize the vocabulary with RESIZE.VOCAB .

APPEND BLOCKS n\file * --
Appends n blocks to the blocks file specified by file*.

APPEND.ITEMS item$\menu id --

Appends elements in the item$ (separated by ';) to the specified
menu.

APPLEMENU ---

installs the Apple desk accessory menu on the menu bar.

ARC %13y 1\x2\y2\sa\ca\[pattern addr]\mode --
Draws an arc within the rectangle (x1,y1,x2,y2) starting at angle sa
(start angle) and ending at angle ca (completion angle). The pattern
addr is required for the PATTERN mode.

ASSIGN file$\file® --

Assigns the file name specified to the file number specified. Any file
previously assigned to file* is closed before the new file is assighed.
See OPEN"

AUTOKEY --n

Constant event code returned by DOEVENTS on an auto key (repeat)
event.

MacFORTH Glossary Page 13 - 58 August 28, 1984

AXE -—
Looks up and removes the next word in the input stream from the
current vocabulary. The vocabulary is closed up to recover space.
Object space for the word is not affected.

B/BUF --n

Returns the number of bytes per block buffer (1024).
"B-slash-buf”

BACK addr --
Calculates the backward branch offset from HERE to addr. it is then
compiled into the next available 16-bit memory cell in the dictionary.

BACKPAT pattern addr —-

Sets the QuickDraw background pattern to the supplied pattern
address.

BASE -~ addr

User variable containing the current 1/0 numeric conversion base.
Error if the value in BASE is outside the range 2 through 70 with no
system check.

BEGIN ---

Marks the start of a loop structure for repetitive execution. Used in a
colon definition in one of the following forms:

BEGIN . . . UNTIL

BEGIN . . . AGRIN

BEGIN . . . WHILE . . . REPERT
The words after UNTIL and REPEAT {(remember, BEGIN ... AGAIN is an
endless loop -- see AGAIN) will be executed after the loop

terminates. The error message "DEFINITION {NCOMPLETE 1" indicates
the BEGIN was not matched with an UNTIL , AGAIN , or WHILE ..
REPEAT sequence.

BEHEAD token --

Removes the name and token fields for the supplied token from the
current vocabulary.

BL -- 32 {decimal)
Returns the value for the ASCI! blank character. “b-1"

BLACK -- addr
Returns the address of the black pattern.

MacFORTH Glossary Page 13 - 59 August 28, 1984

BLANKS addricnt --
Fills memory at addr for cnt bytes with ASCII blanks. See FILL

BLK -~ addr
User variable containing the block currently being interpreted as the
input stream. If BLK is zero, the input stream is coming directly from
the terminal. "b-1-k"

BLOCK . block* -- addr

Returns the buffer address of the requested biock number. If the
requested block is not already in a block buffer, it is transferred from
mass storage into the least recently accessed buffer. If the previous
data in that buffer has been UPDATEG, it is written out to mass storage
before the new block is read in. Only data within the latest block
referenced by BLOCK is valid due to sharing of the block buffers.

BLOCK-FILE -- addr
Variable containing the file number of the current blocks file.

BOLD -1
Constant bit mask for bold text attribute.

BOOLEAN n -- true or faise

Converts n to a true flag (-1} if n is non-zero.

BRANCH -

The run-time procedure to unconditionally branch. An inline offset is
added to the interpreter pointer, IP , to branch ahead or back. BRANCH
is compiled by ELSE , AGAIN , and REPEAT .

BRING.TO.FRONT wptr --
Brings the window specified by wptr to the front.

BS -- 08 (decimal)
Returns the value for the ASCII backspace character.

BUFFER block* -~ buffer addr
Returns the addr of an available block buffer for the block number
given.

BYE --
Exits MacFORTH, passing control to Finder.

MacFORTH Glossary Page 13 -60 August 28, 1984

o] char\addr --
Stores the 8-bit value char at addr. "c-store”

C, char --
Emplaces char into the dictionary. Stores the 8-bit value into the
dictionary at the current dictionary pointer value, and increments the
dictionary pointer by 1.

C/L -n
Returns the number of characters per line (64) ih a block of source
code.
“c slash 1"

ce addr -- char

Returns the 8-bit value char located at addr. "c-fetch”

CARTESIAN -- addr
Returns the address of the Cartesian coordinate flag. When this flag is
true {on), coordinates are interpreted in Cartesian coordinates
(positive y up). When flag is false {off), QuickDraw coordinates
{negative y up) are used. Refer to the Graphics Results chapter for a
complete discussion of this feature.

CASE n--n
Marks the beginning of a case statement. Used in the form:
CASE X OF ... ENDOF
¥ OF ... ENDOF
ENDCASE

CENTER ---
Sets the graphics XYOFFSET to 1/2 MAX.X , 1/2 MAX.Y, the center of the
current window.

CHARWIDTH cher -- width

Returns the width (in pixels) for the specified character in the current
text font.

CHECK.BOX ni1\n2\n3\ndi\n5 --

Check boy control definition word. Refer to MacFORTH Level 2 Controls
documentation.

MacFORTH Glossary Page 13 -61 August 28, 1984

CIRCLE x\y\radius\[pattern addr]\mode --
Draws a circle of radius at XY within current window according to
mode. The pattern addr is neccessary for PATTERN mode only.

CLEAR -2
QuickDraw fill mode that specifies using the background pattern to fill
the specified shape.

CLIP>CONTENT wptr --
Clips all drawing in the specified window to the content region.
Controls will not be updated. Refer to NOCLIP .

CLOSE filg* --
Closes the specified file.

CLOSE.ALL ---
Closes all files.

CLOSEBOX --n
Constant containing bit mask for close box attribute in window
attribute field.

CLOSE.WINDOW wptr --
Closes the window specified by wptr. All window-related heap data
structures are returned to the heap and the specified window is
removed from window linked list. You cannot close SYS.WINDOW, use
HIDE.WINDOW to hide the MacFORTH window.

CMOYE src addrdest addricnt --
Moves cnt bytes from src addr to dest addr. The transfer begins in low
memory and moves toward high memory (ie. the byte at src addr is
moved to dest addr, then the byte at src addr+i is moved to dest
addr+1, etc.). Error if the count is less than one; the system drops the
parameters from the stack and no movement occurs. "c-move"

CMOYE> src addridest addricnt --
Moves cnt bytes from src addr to dest addr. Starts at the end of the
string and proceeds toward low memory. See CMOVE "c-move-up”

CNT -~ addr
User variable containing the total count of characters transferred by
TYPE or EXPECT. Immediately following execution of EXPECT, CNT
contains the actual number of bytes received. "¢c-n-t"

MacFORTH Glossary Page 13 -62 August 28, 1984

CNTR -- addr
User variable containing the current count of characters to be
transferred. This number counts toward O for both input and output
operations. "c-n-t-r"

COL -- addr

User variable containing the current output column position.
"col”

COMMANDKEY --n
Constant event code returned by DO.EVENTS when a menu item is
selected from the keyboard.

COMPILE —
Used to compile the token for @ word into the dictionary. When a word
containing COMPILE is executed, the token for the word following
COMPILE in the defintion is compiled into the dictionary. An unchecked
error exists if the word foliowing COMPILE is not found in the
dictionary or convertible to a number.

COMPILING --flag

Returns a true flag if STATE is non-zero. STATE = non-zero indicates
compilation mode, STATE = zero indicates execution mode.

CONDENSED --32

Constant bit mask for condensed text attribute.

CONFIGURE.PRINTER #stop bits\parity* data bits\ baud rate --
Used to custom configure the printer port for non-imagewriter
printers. Refer to the Printer chapter for more information.

CONSOLE -- addr
User variable containing the address of the current console device
table.

CONSTANT n--

Creates a constant with value n. A defining word used in the form:

n CONSTANT <name>
to create a dictionary entry for <name>, which when later executed will
legve n on the top of the stack. nis compiled into the pfa of <name>.
See JCONSTANT

MacFORTH Glossary Page 13-63 August 28, 1984

CONTEXT -~ addr
User variable containing the handle for the vocabulary where dictionary
searches are to begin during interpretation of the input stream.

CONYERT nivaddr1 -- n2\addr2
Converts the ASCIl string at addri+1 to its binary equivalent. The
number is accumulated into n1 and returned as n2. Addr2 is the address
of the first unconvertible character. See NUMBER <* * #S *> HOLD

COPY src bik*\dest bik* --
Copies src bik* into dest blk* in the current blocks file.

cos angle -- cosing * 10000
Returns integer cosine of angle * 10000 (4 digits of precision).

COUNT addr -- addr+1\cnt
Returns the address and count of the text string st addr+1. The count
byte is at addr and text is at addr+1 on. The range of n is 0 - 255.

CR
Emits a CR LF to the current cutput device. "c-r"

CREATE -
A defining word to create a dictionary entry for the name given. Used
in the form:

CREATE <name>
to create a dictionary entry for <name>, allocating 2 bytes for the
token. When <name> is later executed, the address of <name>'s
parameter field is left on the stack. If the UNIQUEMSG is on (true} and
the word already exists in the CONTEXT or TRUNK vocabularies, the
message "ISN'T UNIQUE" is displayed. See UNIQUE MSG

CREATEBLOCKS.FILE file* --
Creates the specified file as a blocks file on disc. The file is specified
as a MacFORTH blocks file and can be lpaded from the Finder.

CREATEFILE fite* -~
Creates the specified file as a data file on disc.

MacFORTH Glossary Page 13 -64 August 28, 1984

CRLF -- addr
Returns the address of a literal string containing a CRLF sequence. Used
in the form:
CRLF 2 TYPE
to output a CR LF sequence. See CR. "c-r-1-1~

csP -- addr
User variable which temporarily holds the value of the stack pointer
during compilation for error checking. “c-s-p”

CURRENT -~ addr

User variable which contains the handle for the vocabulary into which
newly created words are appended. This is the second vocabulary to be
searched during a dictionary search (after CONTEXT).

CURRENT-FILE -- addr
Scratch variable used in the file system operators.

CURRENT_POSITION file* -- current file position
Returns the current position of the file pointer for the specified file.

CURSOR -~ addr
variable containing the address of the current cursor array.

CURSOR.CHAR -- addr
Variable containing the text font for the cursor symbol in the first
16-bits and the character code for the symbol in the second 16-bits.

DAYS *days since 01/01/04 -- year\days\month
Converts the number of days since 01/01/04 to days to year, days,
month since 01/01/04.

DEALLOT token --
Deallots object space for and above the specified token.

DEBUG -~ addr
User Variable containing the flag which indicates the debug mode.
When DEBUG is on (true), items left on the stack during execution are
displayed with .S and words being executed have their name and stack
implications displayed, if they where compiled with TRACE mode set.
See TRACE and the Advanced Topics chapter.

MacFORTH Glogsary Page 13 -65 August 28, 1984

DEBUG.ONLY ---
Exits the current definition if DEBUG 15 zero.

DECIMAL ---
Set the 1/0 numeric conversion base to decimal. See BASE .

DEFAULT.ACTIVATE --
Default activate function for all defined windows. Beeps on activate,
(mouse down) nothing on deactivate.

DEFINITIONS ---
Determines the vocahulary new definitions are compiled in. Sets

CURRENT to the CONTEXT vocabulary so that subseduent definitions will
be created in the vocabulary previously seiected as CONTEXT.

DELETE file* -~
Deletes the specified file from disc.

DELETE.BLOCKS *blocks\file* --
Primitive used by APPEND.BLOCKS to delete blocks from a blocks file.

DELETEMENU menuid --
Deletes the specified menu from the menu bar and redraws the menu
bar.

DEPTH --n

Returns the number of stack items (32-bit values) currently on the
stack (before n was added).

DEYICE.CONTROL parm1\parm2\cmdifch --
Primitive device controlling word.
Stores: 16 BitCMD at FCB+26
32 Bit PARM1 at FCB+28
32 Bit PARMZ at FCB+32
0 at FCB+36
Issues: 0S CONTROL TRAP with FCB .

DEYICESTATUS cmd\fcb -- parm1\parm?2
Primitive device status word.
Stores: 16 Bit CMD at FCB+26
lssues: 05 STATUS TRAP with FCB
Fetches: 16 Bit PARM1 from FCB+32
32 Bit PARM2 from FCB+28

MacFORTH Glossary Page 13 - 66 August 30, 1984

DFLT.CONTROL ---
Default word used to handle control characters on input and output for
special console devices.

DFLT.WINDOW.TAIL -- addr

Array containing the default values for the MacFORTH extension to the
standard window record.

DIGIT char\base -- [n\true] or [false]
Converts the ASCII character char, using the base given, to its binary
equivalent. If the conversion was valid, n is left as the binary
equivalent under a true flag, otherwise only a false flag is returned.

DIR drive * —-
Displays the catalog for the media in the specified drive.
See INTERNAL EXTERNAL

DIRECTORY -- addr

Returns the address of the user variable which contains the disc
directory load screen. Currently not used.

DISCARD.UPDATES --

Discards any pending update events for the current window. Used to
eliminate double flash at window activation if ACTIVATE code redraws
the window contents anyway.

DiIsSK -- addr
Multitasking stub for source compatibility with future products.

DISKEVENT --n
Constant event code returned by DO.EVENTS on a disk inserted event.

DISPOSE.CONTROL n--

Disposes control. Unsupported in Level 1. Refer to MacFORTH Level 2
Controls documentation.

DKGRAY -- addr
Returns the address of the dark grey pattern.

MacFORTH Glossary Page 13 -67 August 28, 1984

DO

upper limit\lower limit -~
Marks the beginning of a finite loop structure. Used in a colon definition
in the form:
Do ... LOOP or DO ... n +LOOP

Begins a loop which will terminate based on the upper and lower limits
given. DO .. LOOP's may be nested as tong as each DD is matched with 8
corresponding LOOP or +LOOP within the same colon definition. The
error message “DEFINITION INCOMPLETE I" indicates a DO was not
matched with a corresponding LOOP or +LOOP . See LOGOP and +LOGP .

DO.EYENTS -- event code

Removes the next event from the event queue. Executes any supplied
default token in the events list, and returns the event code.

DOES> -

DOT

Defines the run-time action within a high-level defining word. Used in
the form:
: <name> ... CREATE ... DOES> ... ;

It marks the termination of the defining part of the defining word
<name> and begins the definition of the run-time action for words that
will later be defined by <name>. On execution of a word defined by
<name>, the words between DOES> and ; will be executed, with the
parameter field address of the new word on the stack. "does”

{ x\y --)
Draws a dot at (x,y). Pen pattern, size, and mode determines effect on
dots below and to the right of (x,y). The point is rotated, scaled and
translated within the window according to the values in XYPIVOT,
KYSCALE and XYOFFSET.

DOWN.BUTTON -- part code

DP

DPL

Constant containing the part code for a mouse button down part code.
Refer to MacFORTH Level 2 Controls documentation.

-- addr
User variable containing the current value of the dictionary pointer.
This value may be read using HERE and altered using ALLOT . See HERE
and ALLOT . "d-p”

-- addr
User variable containing the number of places after the decimal point
for numeric input conversion.

MacFORTH Glossary Page 13 -68 August 28, 1984

DRAW.CHAR char --
Draws char at the current pen position with the current text transfer
mode in the current textstyle textfont and textsize. See EMIT

DRAW.CONTROLS wptr --
Draws controls associated with the specified window. Refer to
MacFORTH Level 2 Controls documentation.

DRAW. MENUBAR --

Redraws the menu bar from the current menu list. Execute this word
after adding or deleting items to or from the menu list.

DRAW.TO ®\Y ==
Draws to the supplied (x,u) coordinate. Dots to the right and below the
pen are modified according to the current pen size, shape, pattern, and
mode.

DRAWSTRING addr --

Draws string at addr with count in first position at current pen
position according to the current text style, mode, size and font.

DROP n--
Drops the top stack item.

DRYREYENT --n
Constant event code returned by DO.EVENTS on & DRIVER event

pup n--n\n
Duplicates the top stack item. “dupe”

DUP>R n--n
Duplicates the top item on the stack and places it on the top of the
return stack.

EJECT drive® --
Ejects media in drive. See INTERNAL EXTERNAL

MacFORTH Glossary Page 13 - 69 August 28, 1984

ELSE -=- :
Marks the beginning of the "else portion” of a conditiona! structure.
Used in a colon-definition in the form:
IF ..ELSE .. THEN

If the conditional for the IF is true, when the ELSE is encountered, it
passes control to the word following THEN . If the conditional for the IF
is false, control is passed to the word following ELSE. The error
message "DEFINITION INCOMPLETE 1" indicates the control structure was
missing its THEN . The error message "CONDITIONALS NOT PAIRED"
indicates the control structure was missing its IF .

EMIT char --
Outputs char. See DRAWCHAR

EMPTY -
Removes all words and vocabularies above the currently specified
task-dependent FENCE from the dictionary.
See (FORGET), FENCE , SET FENCE

EMPTY-BUFFERS --
Clears the contents of the disc buffers, marking all buffers as unused.

ENCLOSE addr\delim -- addr\offset 1\offset2\offset3

Text parsing primitive. Given an address to parse from and a delimiter,
this operator skips over leading delimiters returning the address under
offset to the first non-delimiter (offset1), under the offset to the last
non-delimiter {offset2), under the offset to the following delimiter
{offset3). The enclosed test starts at addr+offset2. Parsing for the
next word should begin at addr+offset3. A null {zero) character always
acts as a delimiter regardless of the specified delimiter.

ENDCASE n--
Terminates a case statement. Used in the form:
CASE X OF .. ENDOF
ENDCASE
. Completes the case statement by dropping n and resolving all
unresolved branch addresses {left on the stack by ENDOF) to pointer
after ENDCASE .

MacFORTH Glossary Page 13 -70 Augqust 28, 1984

ENDOF -—-
Terminates a conditional within a case statement. Used tn the form:
CASE
X OF ... ENDOF
ENDCASE
If the OF portion of the statement is true, ENDOF branches to the first
instruction after ENDCASE. See CASE OF ENDCASE

ENTER.FLAG -- addr
Variable containing the enter key flag. This flag is set when the enter
key is used to terminate a line of input. The user is responsible for
clearing and checking this flag. It is set by EXPECT .

ERASE addr\n
Zero fills memory at addr for n bytes. I nis less than or equal to zero,
take no action. See FILL BLANKS

ERASE.RECT address --
Fills the contents of rectangle at address with the current background
pattern. The rectangle is 4 16-bit values representing the top, left,
bottom, and right sides.

ERROR addricnt --
Executes the token contained in the user variable (ERROR). Addr and cnt
point to a string to be output. See (ERROR) , ({ERROR)) , (ERROR") , and
ERROR" .

ERROR" flag --

Aborts the current task, displays the name of the word executed and
the supplied message if flag is true. Used in the form:
ERROR" <user error message>"

Compiles (ERROR") followed by the inline literal string. If flag is true
when (ERROR") executes, the name field of the most recently
interpreted word (in POCKET) is displayed, followed by the string <user
error message>, finally the system ABORTs, returning control to the
console. If flag is false, control is passed to the word following the
string literal. “error-quote

EVENT.LOOP --

Default loop which dispatches to the next active window. If all
windows are deactivated, this word executes DO.EVENTS until a window
activate event occurs.

MacFORTH Glossary Page 13 -71 August 28, 1984

EYENT.RECORD -- addr
Array containing the event record for the current event.
bytes: 8- 1 contain the event code
2- 5 contain the event message
6- 9 contain the mouse
18-13 contain the time in ticks when the event occured
14-15 contain the modifiers bits (kbd state)

EVENT.TABLE -- addr
Array containing default tokens to be executed for each of the 24
standard events. DO.EVENTS always executes this token whenever the
appropriate event occurs. The caller to DO.EVENTS is also notified with
an event code.

EVENTS -- addr

Returns the address of the variable containing the mask for all events.
EUENTS OFF

Disables all events. No events are enabled when DO.EVENTS is called.
EVENTS ON

Enables all events.

NOTE: If a keystroke is waiting in the keystroke array, the contents of

EVENTS is ended with the constant -KEYBOARD , effectively disabling

keyboard events until the keyboard data is read. This allows for type

ghead.

EXECUTE token --
Execute the dictionary entry whose token is on the stack.

EXIT -—-
Terminates execution of a definition. When compiled into a colon
definition, causes the word to terminate at that point when later
executed. An unchecked error exists if used within & DO .. LOOP
structure or a >R .. R> pair.

EXPECT addrimax cnt --

Accepts up to max cnt characters from the terminal and stores them at
addr. Input terminates on receipt of either a carriage return or max
cnt characters. No action is taken for max cnt less than one. The user
variable CNT is set to the actual number of charaters received.

EXTENDED --64

Constant bit mask for extended text attribute.

MacFORTH Glossary Page 13-72 August 28, 1984

EXTERNAL --2
Constant drive number for the external drive. Use with EJECT , DIR

FALSE -0
Boolean false constant.

FCBLLEN --n
Constant containing the length of a file control block.

FENCE -- addr
Returns the address containing a pointer below which FORGETting is
prevented. to FORGET below this point, alter the value in fence or use:
NO.FENCE . Note: FENCE is set by the system to prevent FORGETting of
interrupt handlers and vectored words so use caution when changing its
value. See SET.FENCE FORGET ND.FENCE

FIELD n--

MacFORTH field defining word. Creates a 16-bit constant which will
add itself to the ward on the top of the stack when executed. Used in
the form:

n FIELD <field name>
to create a field definition <field name> which, when later executed
will add n to the value on the top of the stack.

FILEERRORMSGS -- addr
String array containing file/os error messages.

FILETYPE filetype\file*
Sets the file type for the file. For example:
"TEXT 1 FILE.TYPE
would set file number 1 to a text file type.
See “TEXT "DATA "4TH "PICT

FILL addricnt\char —-

Fills memory at addr for cnt bytes with char. No action taken for cnt
less than one.

FIND -~ [token] or [0]
Returns the token for the next word in the input stream. If that word
cannot be found in the dictionary after a search of CONTEXT or TRUNK
vocabularies, returns a zero.

MacFDORTH Glossary Page 13-73 August 28, 1984

FIND.CONTROL point\wptr -- [control.handie\control part code] or [0]
Given a point (in local window coordinates) and window pointer, if the
point is within a control region for the window, returns the control
handle and part code of the control. If the point does not lie witin a
control region, a zero is returned. The available part codes are {refer
to their glossary entries for more information):

IN.BUTTON IN.CHECKBOX UP.BUTTON DOUN. BUTTON
PRGE. UP PAGE . DOWN Iit, THUNB
As with other controls, this information is more completely
documented in MacFORTH Level 2 Controls documentation.

FIND.WINDOW point -- wptriwindow part code
Given a point {in global coordinates), returns the window pointer and
part code for the window. The window part codes are one of the
following:
Location Window Part Code
desktop
meny bar
system window
content region of active window
drag region of active window
grow box of active window
close box of active window

DA DWW —-O

FIRST -- addr
Returns the address of the first block buffer.

FLUSH -

writes all blocks that have been UPDATEd to mass storage. Identifies
all blocks as 7FFFFFFF (hex) to force any new block to be re-read from
mass storage.

FLUSHEVENTS --
Flushes all pending events from the event queue.

FLUSHFILE fite* --
writes the file control block of the specified file out to disc.

FLUSH.YOL volume * --

Writes the volume infarmation for the specified volume (use the file
number of any file on the desired volume) out to disc.

MacFORTH Glossary Page 13-74 August 28, 1964

FMT.DATES +days\flag -- addr\cnt
Formats a date string for output. The date formatted is in terms of
*days since 01/01/04. If the flag is true the month, day and year are
separated by slashed (*/"). The formatted string is placed at addr for
cht bytes.

FMT.TIMES addr --
Formats the time output string at addr in the following format:
HH:MM:SS XM

FOLLOWER -~ addr
Multitasking stub used for compatibility with future products.

FORGET ---

Removes entries from the dictionary. Used in the form:
FORGET <name>

to delete all entries added after and including <name> from the
dictionary (in the CONTEXT vocabulary). Forgotten Menus or windows
are removed from their respective lists and purged from the display. If
<name> is not found in the CONTEXT or TRUNK vocabularies, an error
message is issued (<name> is displayed followed by "?"). FORGETting is
terminated at the FENCE. See SET.FENCE EMPTY NO.FENCE

FORTH ---

The name of the primary vocabulary. Wwhen executed, FORTH becomes
the CONTEXT vocabulary.

FRAME -0
QuickDraw shape mode attribute. Shape will be drawn in outline mode.

FROM.CURRENT -- position mode
Constant used to indicate that file positioning should be done relative
to the current file position.

FROM.END -- position mode ,
Constant used to indicate that file positioning should be done relative
to the end of the file.

MacFORTH Glossary Page 13 -75 August 28, 1984

FROMHEAP size -- handle

Requests the memory manager to allocate a relocatable data structure
in the heap of size bytes. The handle returned is non-zero 17 successful
and contains the address of a pointer to the allocated data structure.
The contents of the handle changes dynamically with the heap, however
the address of the handle will never change. Refer to the Apple
Developer's documentstion for further details. Reference: NewHandle.
See 81s0: IN.HEAP, TO.HEAP, RESIZE HANDLE

FROM.START -- position mode
Constant used to indicate that file positioning should be done relative
to the start of the file.

FRONT.WINDOW -- wptr
Returns wptr to currently active {or front) window.

FUNC>L n--
Defining word used to for function calls to the Mscintosh toolbox.
Refer to the Advanced Topics Toolbox interface section.

FUNC> W n--

Defining word used to for function calls to the Macintosh toolbox.
Refer to the Advanced Topics Toolbox interface section.

GET addr --
Multitasking stub for source compatibility with future products.

GET.CONTROL n--n
Not supported in Level 1. Refer to MacFORTH Level 2 Controls
documentation.

GET.CURSOR --
Returns the address of the cursor in use (0 indicates default NW arrow).

GET.DATES addr --
Formats the current date into a string in the format MM/DD/YY and
places it at addr.

GET.EOF file® -- #*bytes
Returns the number of bytes in the specified file (its end of file
pointer).

MacFORTH Glossary Page 13 -76 August 28, 1984

GET.FILE.INFO file* —-
Reads the file information from disc for the specified file. The
information is read into the files FCB.

GET.FILETYPE file* -- file type
Returns the file type of the specified file.

GET.ICON res id -- handle
Reads the |CON specified by res id from the resource file. The handle to
the ICON is returned. See PLOT.ICON .

GET.ITEM menu handleNitem*\$ addr --
Returns text for the specified menu item at $ addr.

GET.LINEHEIGHT -- line height
Returns the line height for the current window. See the Graphics
Results chapter.

GET.PICTURE res id -- handle

Reads the picture specified by res id from the resource file, returning
its handle. '

GETPIXEL (x\y-- fiag)
Returns TRUE if the pixel at (x,y) in the current window is on. The
specified (x,4) position must be in QuickDraw coordinates.

GET.RECLEN file* -- rec len

Returns the fixed record length of the fixed file specified by file®. If
the specified file is not a fixed file type, the rec len returned will be
an arbitrary value.

GET.SCRAP handle\res type -- io result
Fetches the contents of the desk scrap specified by res type to handie.
I the jo result is zero, the contents were fetched successfully.

GET.TEXTFONT -- font*

Returns text font number for current window. See the Graphics Results
chapter.

GET.TEXTMODE -- mode

Returns text mode for current window. See the Graphics Resuits
chapter.

MacFORTH Glossary Page 13-77 August 28, 1984

GET.TEXTSIZE -- text size
Returns current text size. See the Graphics Results chapter.

GET.TEXTSTYLE -- style bits
Returns text style bits for the current window. See the Graphics
Results chapter.

GET.TIMES addr --
Stores the formatted time string (in the format HH:MM:SS XM) at addr.

GET.WINDOW -- wptr

Returns the window pointer of the currently active window,

GET.XYOFFSET --x\y .
Returns the offset in QuickDraw coordinates ta the origin (0,0) of the
current window.

GET.XYPIVOT --angle
Returns the current XYPIVOT angle for the current window.

GET.XYSCALE -- x scale\y scale
Returns the X and ¥ scale factors for the current window.

GINIT -
initializes graphics parameters for the current window. The following
defaults are set:
®YPOS --> XYBIRS erased
188 188 XYSCALE
g KYPIUOT
12 TEXTSICE
15 LINE.HEIGHT
11 PENSIZE BLACK PENPRT
B B RYOFFSET
B 0 NOVE.TO

GLOBAL>LOCAL point (globai) -- point {local)
Converts & point in global coordinates to a point in local coordinates
for the currently active window.

GRAY -- addr
Returns the address of the gray pattern.

MacFORTH Glossary Page 13 -78 August 28, 1984

HANDLE.SIZE handle -- size
Returns the size of a relocatabie data structure in the heap.
Reference APDEVDOC: GetHandleSize

HANDLER -- addr
Multitasking stub maintained for compatibility with future products.

HBAR.BOUNDS wptr -- t\1\b\r

Returns rectangle for harizontal scroll box within window. Refer to
MacFORTH Level 2 Controls documentation.

HERE -- addr
Returns the address pointed to by the dictionary pointer. It is the next
available memory location in the dictionary.

HEX -—=
Sets the current numeric 1/0 base to hexadecimal.

HIDE.CURSOR --
Hides the cursor. Increments the cursor level, which is decremented by
SHOW.CURSOR. When the cursor level is 0, the cursor is visible. Use
INIT.CURSOR to reset the cursor level.
See INIT.CURSOR SHOW.CURSOR

HIDE.PEN -
Hides the pen. Decrements the pen level in the current graphport, which
is incremented by SHOW PEN.
See SHOW.PEN

HIDE.WINDOW wptr --
Hides the specified window. Clears the visible flag in the window
record, and the window disappears from the screen.

HILITE.CONTROL nisn2 --
Refer to MacFORTH Level 2 Controls Documentation.

HILITEMENU n--

Highlight menu n . Where n is an invalid menu id (Jike 0), no menus are
highlighted. Normally used to turn off menu highlight which is auto-
matically done when a menu item is selected.

MacFORTH Glossary Page 13- 79 August 28, 1984

HILITEWINDOW flag\wptr --
Window primitive. Hilights the specified window based on flag.

HLD -~ addr
User variable which holds the address of the latest character of fext
during numeric output conversion. "h-1-d"

HOLD char --

inserts char into a pictured numeric output string. May only be used
between <* and *> . An unchecked error occurs when used outside <*
and *»> . See <* and *> .

HUSH ---
Immediately terminates any sound being produced by the sound driver.

| --n
Copies the loop index {maintained on the top of the return stack) onto
the data stack. Must be used only within a DO ... LOOP structure.
Unchecked error occurs if used outside a DO ... LOOP or DO .. +LOOP
structure. Warning: if you use R> or >R inside a loop, the 1oop indices
may be altered.

! n--
Stores n at the address corresponding to the current value of the loop
index. "i-store”

1+ n -- n+(loop index)
increments the top of the stack by the current loop index.

{+1 n\offset --
Equivalent to | + !

+@ offset -- n
Equivalentto | + @

|+Wi n\offset --
Equivalent to | + W!

+we offset -- n
Equivalent to | + W@

MacFORTH Glossary Page 13 - 80 August 28, 1984

|- n -- n~(loop index)
Decrements the top of the stack by the current loop index.

@ -n
Fetches n from the address corresponding to the current value of the
loop index. "i-fetch”

IBEAM -- addr
Returns the address of the i-beam cursor array.

I1CH char —-
Stores char (using C!) at the address corresponding to the current value
of the 1oop index. "i-c-store”

ice -- char
Fetches char {using C@) from the address corresponding to the current
value of the loop index. "i-c-fetch”

1D. nfa --
Prints the name field of the definition whose nfa is given. "i-d-dot”

IF flag --

Marks the beginning of the "true pertion” of a conditional structure.
Used in a colon definition in the form:

IF ... THEN
or

IF .. ELSE ... THEN
If flag is true, the words following IF until the ELSE (if present) or
THEN (if ELSE is not present) are executed. If flag is faise, control is
passed to the words following ELSE (if present) or THEN (if ELSE is not
present). The error message "DEFINITION INCOMPLETE I indicates the IF
was not matched with a THEN . See ELSE and THEN .

IFEND -—-
Marks the end of an executable conditional structure. Executed in the
form:
IFTRUE ... OTHERWISE .. IFEND or |FTRUE .. IFEND
Execution version of the compiled IF .. ELSE .. THEN structure. This
word is used as a marker for IFTRUE and OTHERWISE and if executed
does nothing. See IFTRUE and OTHERWISE . "if-end"

MacFORTH Glossary Page 13 - 81 August 28, 1984

IFTRUE flag --
Marks the beginning of the "true portion” of an executable conditional
structure. Executed in the form:
IFTRUE .. OTHERWISE ... IFEND or IFTRUE .. IFEND

Execution verston of the compiled IF ... ELSE ... THEN structure. IFTRUE
performs the execution version of IF in the compiled version. If flag is
true, the words following IFTRUE up to the OTHERWISE {if present) or
IFEND {if OTHERWISE is not present) are executed. If flag is false,
control is passed to the words following OTHERWISE (if present) or
IFEND (if OTHERWISE is not present). The error message “MISSING
OTHERWISE OR IFEND" implies the input stream was exhausted before an
OTHERWISE or IFEND was encountered. See IFEND and OTHERWISE .

ILLEGALFILE ---
Displays the message "I1legal File®” and aborts the current task.

IMMEDIATE ---

Marks the most recently defined word as "immediate”. The word will be
executed when encountered during compilation rather than compiled
into the dictionary.

INBUTTON --n
Refer to MacFORTH Level 2 Controls Documentation.

IN.CHECKBOX --n

Refer to MacFORTH Level 2 Controls Documentation.

INCLOSEBOX --n

Constant event code returned by DO.EVENTS when a mouse down occurs
in the close box of the currently active window.

INDESKTOP --n

Constant event code returned by DO.EVENTS when & mouse down occurs
on the desktop.

INDRAGBOX --n

Constant event code returned by DO.EVENTS when a mouse down occurs
in the drag region of a window.

MacFORTH Glossary Page 13 - 82 August 28, 1984

INHEAP -—-
Marks the latest word as containing a heap handie in its parameter
field. when the word 15 later forgotten, the handle will be
automatically returned to the heap.

INLOWER WINDOW --n
Constant event code returned by DO.EVENTS when a mouse down occurs
in a non active window.

INNMENUBAR --n
Constant event.code returned by DO.EVENTS when a mouse down occurs
in the menu bar.

INSIZEBOX --n
Constant event code returned by DO.EVENTS when a mouse down occurs
in the size box of the currently active window.

INSYS.WINDOW --n

Constant event code returned by DO.EVENTS when a mouse down event
occurs in a system {desk accessory) window.

INTHUMB --n

Refer to Level 2 Controls Documentation.

INCLUDE" ---
Used in the form:
INCLUDE" <blocks file name>"
to include (load) the contents of the specified blocks file, by loading
the first block in the file.

INDEX first block*\last block* --
Displays the first line of each block over the range given. The first line
of each block should be a comment describing the contents of that
block.

INIT.CURSOR --
Resets the cursor level to O and displays the default northwest arrow
cursor. See HIDE.CURSOR SHOW.CURSOR

INITIALS -- addr
User variable containing the user's initials.

MacFORTH Glossary Page 13 - 83 August 28, 1984

INPUT.NUMBER width -~ [n\true] or [false]
inputs a number of up to the width specified. 17 nothing is entered (the
operator just pressed return), a false flag is returned. If & number is
entered, the number is returned under a true flag. Invalid characters
{non 0-9 or "-"), terminate number conversion when encountered.

INPUT.STRING eddricnt --
Inputs a string to a string variable (or any address). After the string
has been input, the number of characters entered is stored at addr, the
string at addr+1 on.

INTERNAL -1

Constant drive number for the internal drive.

INTERPRET ---

Executes 'INTERPRET . You may use an alternate text interpreter (for
example, one that accepts floating point numbers) by storing the token
of your nevr interpretation word into the pfa of INTERPRET . The actual
definition of INTERPRET is simply:

: INTERPRET 'INTERPRET .

INVALID.RECT addr --
Marks the rectangie at addr within the current window as not requiring
updates.

INYERT -=n

QuickDraw shape mode attribute shape will be drawn with all bits
inverted in the destination. ‘

10-RESULT -~ addr

Variable containing the /0 result code of a file operation.

ITALIC --n

Constant bit mask for italic text attribute.

ITEMS -- addr
Returns the address of the 32-byte array used by MacFORTH to
manipulate item strings such as desk accessories.

ITEM.CHECK item\check flag\menu id --
Sets or clears the check mark associated with the specified meny item.

MacFORTH Glossary Page 13 - 84 August 28, 1984

ITEMENABLE item\fiag\menu id --

Enables or disables the specified menu item. Disabled items cannot be
selected.

ITEMICON item\icon\menu id --
Displays the selected icon with the specified menu item.

ITEMMARK item\mark\menu id --

Attaches a mark (like a check mark or apple) to associate with the
specified menu item.

ITEM.STYLE item\style char\menu id
Setects the text style for the specified menu item from style
character. Refer to the Menu chapter for a listing of style characters.

J --n
Returns the index of the next outer finite loop construct. May used only
within a nested DO .. LOOP (or DO .. +LOOP). An unchecked error occurs
if used outside a DO ... LOOP or DO ... +LOOP structure.

KEY -- char

Returns the ASCIil value of the next available character from the
current input device. Waits until a key is pressed if no keystroke is
waiting in the type ahead buffer.

** Note ** Return (CR) and Backspace (BS) are ignored.

See 7KEYSTROKE

KEYDOWN --n

Constant event code returned by DO.EVENTS on a key down event.

KEY.STROKE -- addr

Array containing the event record for the most recent keystroke. A two
byte filler is added to the front of the record so that the first four
bytes may be used as a flag.

See EVENT.RECORD for the field layout

KEY.UP --n
Constant event code returned by DO.EVENTS on & Key up event

KILL.CONTROLS wptr --

Refer to MacFORTH Level 2 Controls Documentation.

MacFORTH Glossary Page 13- 85 August 28, 1984

KILL.IO buf ptr --
Aborts any pending i/o0 transaction on device sssociated with buf ptr.

L>FUNC>L n--
Defining word used to access Macintosh function calls. Refer to the
Advanced Topics chapter.

L>FUNC>W n--
Defining word used to access Macintosh function calls. Refer to the.
Advanced Topics chapter.

LAST.TOKEN -- addr
Variable containing the negative token table offset to the most
recently allocated token. The least sighificant 16-bits of this variable
are actually the value of the latest token. LAST.TOKEN - 4 is a
variable containing the maximum negative token table offset.

LATEST -- nfa
Returns the nfa of the most recently defined word in the CURRENT
vocabulary.

LEAVYE -
Forces termination of a finite 1oop structure at the next LOOP or +LOOP.
Sets the loop limit equal to the current value of the index. The index
itself remains unchanged and execution proceeds normally until the
loop terminating word (LOOP or +LOOP) is encountered. An unchecked
error occurs if used outside of a DO .. LOOP or DO .. +LO0OP with
unpredictable results.

LIMIT -~ addr
Returns the address just above the highest memory available for a disc
buffer. This is usually the highest system memory.

LINE# -- addr

User variable containing the number of lines output. This variable is
incremented by CR and set te zero by PAGE Useful for page
formatting.

LINEHEIGHT n--
Sets line height ton.

MacFORTH Glossary Page 13 - 86 August 285, 1984

LIST block* --
Lists the contents of the given block number. The value in OFFSET is
taken into account. See OFFSET .

LIT --n
Places the compiled number follawing it on the stack. Within a colon
definition, LIT is automatically compiled before each literal number
encountered in the input stream. Later execution of LIT causes that
number to be placed on the stack. If LIT is compiled, the following
32-bit value (usually a compiled cfa) will be pushed on the data stack
at run time.

LITERAL n--
If compiling, compile n as a literal humber, which when later executed
takes the number off of the data stack at compile time. For example, to
compile the number of the current block, you could execute:
[BLK @] LITERAL
This would return the block number that the definition was compiled
into at run time.

LMOYE addr 1\addr2icnt --
Moves cnt 32-bit words from address! to address2. See CMOVE

LMOVYE> src addridest addr\cnt --
Moves cnt long words (32-bit, 4 byte) from src addr to dest addr. Starts
at the end of the array and proceeds towards low memory.
See CMOVE> “"move-up”

LOAD block* --

interprets the contents of block*. Begins interpretation of the block
number given by making it the input stream and preserving the current
contents of >IN and BLK . If interpretation is not terminated explicitly,
it will be terminated when the input stream is exhausted. Controil then
returns to the input stream containing LOAD , determined by the input
stream locators >IN and BLK . The value in the user variable OFFSET is
added to the block® given. Error if the specified block cannot be
loaded from mass storage. See BLOCK , >IN, BLK , and OFFSET .

LOAD.SCRAP --ioresult

Loads the clipboard file from the system disc into the desk scrap
memory.

MacFORTH Glossary Page 13 - 87 August 28, 1984

LOCAL>GLOBAL point (local) -- point (global)
Converts point in coordinates local in the currently active window to
global screen coordinates.

LOCK.FILE file* --
Locks the specified file.

LOCK.FONT font* --

Locks the specified font in memory. Will not be lost on heap
compression.

LOCK.HANDLE handie --

Marks the specified handle as locked. See Apple Developer's
documentation for further details. Reference: HLock

LooP -

Terminates a finite loop structure. Used in the form:

DO .. LOCP
increments the DO ... LOOP index by one, terminsting the loop if the new
index is equal to or greater than the loop limit. The error message
"CONDITIONALS NOT PAIRED” indicates the LOOP was not preceded by &
matching DO . See DO and +LOOP .

LOWER.CASE -- addr

User variable containing a flag which, when true, causes FIND to
convert all interpreted strings to upper case.

LOWERLEFT ---

Sets the graphics XYOFFSET to the lower left corner of the current
window.

LTGRAY -- addr
Returns the address of the light gray pen pattern.

M* n1\n2 -- d
Returns the signed 64-bit product of the two signed 32-bit numbers
given. "m-star”

M/MOD d\n -- remainderi\quotient

Divides the 64-bit number d by the 32-bit number n, returning the
32-bit signed remainder and quotient. "m-divide-mod”

MacFORTH Glossary Page 13 - 88 August 28, 1984

MAC.CON -- addr
Array containing console device 1/0 vectors for Macintosh console. See
CONSOLE

MAC.CONSOLE --
Sets Macintosh console as default console device.
See MAC.CON CONSOLE

MACFILES ---
Sets the file read/write operator for blocks to MAC.R/W.
See MAC.R/W, (R/W)

MACR/W addri\block*\flag --
Primitive used for blocks file 1/0. Standard Macintosh block file
read/write primitive. If flag is non-zero, Block is read to address, if
flag is zero, block is written from address.

MAKERECT x1\y1\x2\y2 -- wy\xy\ addr
Compresses XY coordinate pairs into a TLBR rectangle. The address of
the rectangle within the stack is left on the stack.

MAKE.TOKEN addr -- token
Converts the address on the stack to a 16-bit token. If the address is
greater than NEXT PTR+32k, a new entry is made in the token table, and
the relative offset to the token table entry (below NEXT.PTR) is
returned. All tokens are 16-bit values, Taken table offsets are negative
from NEXT PTR. See NEXT.PTR, NEwW.TOKEN, TOKEN>ADDRESS.

MASKHANDLE handle -- addr

Converts the contents of a handle to an address by ANDing off the
high-arder byte (used for memory manager flags).

MATCH $\$ cnth\addricnt -- [O\addr+cnt+1] or [true\$+$ cnt+1]
String comparison routine to find & match on the string at § (its
address) for $ cnt bytes over the range addr for cnt butes.

MAX ni\n2 --n3
Leaves the maximum of n1 and n2. "max”

MAX.X - X

Returns the maximum %-axis value of the content region of the current
window in QuickDraw coordinates.

MacFORTH Glossary . Page 13- 89 August 28, 1984

MAXY -y
Returns the maximum y-axis value of the content region of the current
window in QuickDraw coordinates.

MENUENABLE flag\menu id --
If menu is non-zero, the specified menu is enabled, otherwise it is
disabled, and cannot be selected.

MENUHANDLE menu id -- menu handle
Returns the menu handle for specified menu.

MENUSELECTION: menu id --

Exits the current definition, placing the following address into the
menus array at menu id*4. When the menu is later executed, control is
passed to the following address.

MENUS -~ addr

Array containing the sddresses to execute for each of the possible
active menus.

MIN nisn2 -- n3
Leaves the minimum of n1 and n2. "min”

MINIMUM.OBJECT size --

If the current object size is less than the specified size, MacFORTH
attempts to resize the object image to the specified size.
See RESIZE.OBJECT

MINIMUM.YOCAB size --

{f the current vocabulary size is less than the specified size, MacFORTH
attempts to resize the vocabulary image to the specified size.
See RESIZE.VOCAB

MOD ni\n2 -- n3
Returns the remainder of n1 divided by n2, with the same sign as ni.
Error if division by zero (see */). "mogd”

MONTHS -- addr
Table containing the number of days in each month.

MOUSE.BUTTON -- flag

Returns the state of the mouse button. True when down.

MacFORTH Glossary Page 13 - 90 August 28, 1984

MOUSE.DOWN --n
Constant event code returned by DO.EVENTS if a mouse down event
occurs. See EVENT.RECORD for field layout.

MOUSE.DOWN.RECORD -- addr

Array containing the event record for the most recent mouse down
event. A two byte filler is added to the record so that the first four
bytes may be used as a flag. See EVENT .RECORD for field layout.

MOUSEUP --n
Constant event code returned by do.events if a mouse up event occurs.
See EVENT.RECORD for field layout

MOUSE.UP.RECORD -- addr

Array containing the event record for the most recent mouse up event. a
two byte filler has been added to the start of the record so that the
first 4 bytes may be used as a flag. See EVENT.RECORD for field layout.

MOUSE.WAS.. -- point
Returns the point location of where the mouse last went down (in
global coordinates). See @MOUSE.DN GLOBAL>LOCAL

MOYE.TO x\y --
Moves the pen to the supplied (x,y) position.

MT n--

Defining word to call Macintosh toolbox rooutines. Refer to the
Advance Topics chapter.

MT>W n--
Defining word to call Macintosh toolbox rooutines. Refer to the
Advance Topics chapter.

MUNGER handle\of fset\addr1\cnt 1\addr2\cnt2 -- result
Macintosh universal string operator. Refer to /nsige Mecintash

NEEDED {n--)
Aborts the current definition with the error message "Not Enough Stack
items!” if less than n items are on the stack.

MacFORTH Glossary Page 13 - 91 August 28, 1984

NEGATE n---n

Returns the two's complement of n. Error if n is the most negative
integer, system response ig to return the same value given.

NETWORK.EVENT --n
Constant event code returned by DO.EVENTS on a network event.

NEW BLOCKSFILE #blocks\file$ -- file*
Used in the form:
<gize> " <file name>" NEW.BLOCKS.FILE
to create a new blocks file with the specified number of blocks and file
name. If the file is successfully created, it is opened and selected as
the current blocks file and its file number is returned on the stack.

NEW FILE size\file$ -- file*
Used in the form:
<sizey " <file name>" NEWFILE
to create a new data file with the specified length and file name. |f
the file is successfully created, it is opened and its file number is
returned on the stack.

NEW.MENU positionstitie$smenu id --
Defines a new menu and links it into menu list. Menu id must be in the
range 0-31, title$ is the title for the menu, and position of O places
item on the left, -1 on the right. See the Menu chapter for examples.

NEW.STRING str addr -- handle
Allocates new handle from heap for a string and copies the string into
the handle. The handle of the string is returned on stack. Use INHEAP
to tag any word defined with this handle in order to deallocate handle
when word is forgotten.

NEW.TOKEN addr -- token
Converts addr on stack to an indirect token. &n entry is made in the
token table, and the negative relative address to NEXT PTR of the token
table entry is returned. Used by NEW.TOKEN to handle addresses >
NEXT.PTR+32k.

NEW.WINDOW --

MacFORTH window defining word. Creates a named window record
which will return its wptr when executed.

MacFORTH Glossary Page 13 - 92 August 28, 1984

NEXTFCB -- file*

Returns the file number for the next available file control block for
assignment. Aborts with the error message “No FCBs Avaflablel” if all
FCBs are in use.

NEXTPTR --addr
Returns the address contained in the relocation base register A4,

NFA token -- nfa
Converts the token given to the nfa for the definition. "n~-f-8"

NO.CLIP wptr --
Disables clipping within window bounds. Note that controls may only
be drayn or updated if CLIP>CONTENT is active.

NO.ECHO -- addr
User Variable containing a flag which is used by EXPECT. When NO.ECHO
is non-zero, EXPECT does not echo keystrokes to the console. GUIT
resets this flag to the default cleared. Uses include: passwords,and
fully intrepreted text fields (ie: left zero fill calculator type text
entry) NO.ECHO ON disabled keystroke echo, NO.ECHO OFF echoes
keystrokes in EXPECT.

NO.FENCE ---
Reseis the fence to the top of the top of the current vocabulary.

NO.RETRY -
Procedure which pops the recovery stack frame from the return stack.
Pushed onto the return stack at the bottom of the recovery frame.

NON.PURGABLE handie --
Marks a relocatable heap data structure (8 “handle”) as non~purgable.
See Apple Developer's documentation for further details: reference:
HMoPurge

NOT flag -- -flag
Reverse the boolean value of the flag given. See 0= .

NOT.¥YISIBLE --n
Constant bit mask for not visible window attribute.

MacFORTH Glossary Page 13 -93 August 31, 1984

NOTPATBIC --n
Constant specifying bit transfer mode. The current psattern is
complemented and used to clear corresponding bits in the destination.

NOTPATCOPY --n

Constant specifying bit transfer mode. The current pattern is
complemented and copied directly into the destination.

NOTPATOR --n

Constant specifying bit transfer mode. The current pattern is
complemented and Or'ed into the destination.

NOTPATXOR --n
Constant specifying bit transfer mode. The current pattern is
complemented and Exclusive Or'ed into the destination.

NOTSRCBIC --n

Constant specifying bit transfer mode. The source pattern is
complemented and used to clear corresponding bits in the destination.

NOTSRCCOPY --n

Constant specifying bit transfer mode. The source pattern is
complemented and copied directly to destination.

NOTSRCOR --n
Constant specifying bit transfer mode. The source pattern is
complemented and Or'ed with the destination. ‘

NOTSRCXOR --n

Constant specifying bit transfer mode. The source pattern is
compiemented and exclusive Or'ed with destination.

NULLEYENT --n
Constant event code. No events posted.

NUMBER addr -- n
Attempts to convert the string at addr+1 to a number. The character
immediately following the numeric string must be an ASCI blank. If
successful, n is returned, otherwise an error is generated indicating
that the string was not recognized as a number in the current base.

MacFORTH Glossary Page 13- 94 August 28, 1984

OBJECT.FULLW ---
Aborts with the error message "Object Full! if the object area is full,

OBJECT HANDLE -- sddr
User variable which contains the address of the handle pointing to the
base of the current object area. The object area is allocated from the
heap and is set up as locked and nonpurgable. This area may be resized
with the RESIZE.OBJECT operator &s long as no other non-relocatable
memeory allocation has occured above this address.

OBJECT.ROOM -- * bytes
Returns number of bytes available in the current object space.

OF nisn2 -- [ntlor |l

Marks the beginning of a conditional branch within a case statement.
Used in the form:

CASE ...

X OF ... ENDOF

ENDCASE
if n1 is egual to n2, both arguments are dropped, and execution
continues through ENDOF and then skips just past the next ENDCASE . If
nl is not equal to n2, n2 is dropped and execution continues after
ENDOF.

OFF addr --
Stores a 32-bit zero at addr (eq. DEBUG OFF). See ON

OFF.CONTROL n--

Refer to Level 2 Controls Documentation.

OFFSET -- addr

User variable containing the block offset value. Used by BLOCK to
determine the actual physical block number to be accessed. See BLOCK

ON addr --
Stores a 32-bit -1 at addr. See OFF

ON.ACTIYATE wptr —-
Defines token to execute when window is activated. Used in the form:
<wptrs ONACTIVATE <procedures
When <procedure> is later invoked {as a result of the window becoming
active) g flag is 1eft on the stack. If the flag is true, it is an activate
event, if false, it is a deactivate event.

MacFORTH Glossary Page 13- 95 August 28, 1984

ON.CONTROL n--
Refer to Level 2 Controls Documentation.

ON.ERROR ---
Establishes the recovery stack frame. Compiles (OMERROR} to
establish this frame and branches over the recovery code past the
delimiting RESUME . Used in the form:
DN.ERROR <recovery code> RESUME
Refer to the Advanced Topics chapter for more information.

ON.UPDATE wptr --

Defines the token to be executed when an update event occurs for the
specified window. Used in the farm:

wptr ON.UPDATE xx
when an update event occurs, xx will be executed to perform any update
action for the specified window.

OPEN file* -~
Opens the specified file.

OPEN" -~ file*
Used in the form:
OPEN" <file name>”
to open the specified file. If the file is opened successfully, the file
number it is assigned to is returned on the stack.

OPEN.DA $ addr -~
Opens the desk accessory whose name matches the supplied string.

OPEN.DEYICE name$\fcb --
Attempts to open the device named name$ using the specified feb.

OPEN.PORT wptr --
Initializes the graphport at wptr.

OPENPRINTER ---
Opens the printer device driver.

OPEN.RSRC file* --
Opens the resource fork of the specified file.

MacFORTH Glossary Page 13 - 96 August 30, 1984

OPEN.SOUND ---

Opens the sound device driver.

OPTIONS.MENU ---
Installs the MacFORTH "Options” menu on the menu bar. See APPLE.MENU

OR n1\n2 -- n3
Leave n3 as the bitwise inclusive-OR of n1 and n2.

O0S.TRAP n--
Defining word used to access the Macintosh toolbox. Refer to the
Advanced Topics chapter.

OTHERWISE ---

Marks the beginning of the "else portion” of an executable conditional
structure. Used in the form
IFTRUE ... OTHERWISE ... IFEND
Equivalent in control flow to ELSE in the compiled
IF .. ELSE .. THEN
construct. See IFTRUE IFEND IF ELSE THEN

OUTLINE -- 08
Constant bit mask for outline text attribute.

OVAL %1\ 1\x2\y2\[pattern addrl\mode --
Draws an oval within the rectangle (%1,y1,x2,y2) according to mode.
Pattern addr is need if the mode is PATTERN.

OVER n1yn2 -- n1\n2int
Copy the second stack item over to the top of the stack.

PAD -~ addr
Returns the address of & scratchpad area. Used to hold character
strings for intermediate processing, as well as a scratchpad area for
other tasks. The minimum capacity of PAD is 64 characters.

PAGE ---

Qutputs a form feed to the current display devices. This clears the
consols display and ejects a page on any attached printers.

PAGEDOWN --n

Refer to MacFORTH Level 2 controls documentation.

MacFORTH Glossary Page 13 - 97 August 30, 1984

PAGE.UP --n
Refer to MacFORTH Level 2 controls documentation.

PAINT -1
QuickDraw shape mode attribute which specifies that the figure will be
drawn filled with the current pen pattern.

PATBIC --n
Constant specifying bit transfer mode. The current pattern is used to
clear corresponding bits in the destination.

PATCOPY --n
Constant specifying bit transfer mode. The current pattern is directly
copied into the destination.

PATOR --n
Constant specifying bit transfer mode. The currrent pattern is OR'ed
into the destination.

PATTERN pattern -- pattern\4
QuickDraw shape mode atiribuie shape will be filed with supplied
pattern.

PATXOR --n

Constant specifying bit transfer mode. Current pattern is exclusive
OR'ed into destination.

PAUSE -

Multitasking stub for source compatability with future products.

PEN.NORMAL --
Resets the state of the pen in the current graphport:
pensize =1,1
penmode = patcopy
penpat = black

PENMODE n--

Sets pen transfer mode. Allowable modes include:
PRTCOPY PATXOR PATOR PATBIC
NOTPRTCOPY WOTPATXOR NOTPRTOR NOTPATBIC

See individual modes for definition of function.

MacFORTH Glossary Page 13 - 98 August 28, 1584

PENPAT addr --
Sets the pen pattern for current window.

PENSIZE width\height -~
Sets pen size to width and height scaled by XYSCALE.

PFA token -- pfa
Convert the token of a compiled definition to its pfa. "p-f-a”

PICK nt--n2
Return the stack item nJl items from the top (not including ni). For
example, 2 PICK is functionally equivalent to OVER ; 1 PICK is
functionally equivalent to DUP . An error condition exists for ni less
than 1, system response is to leave n1 on the stack.

PLAIN --n

Constant for no text enhancements.

PLAY addr --

Passes addr+2 to the Macintosh sound generator. Addr contains 16-bit
length of the waveform description record at addr+2 on. System will
wait until the sound is completed.

PLOT.ICON rect\handle --
Plots icon &t handle within supplied rectangle.

PNTR -- addr

User variable containing the address to which characters are
transferred. “p~-n-t-r"

POCKET -- addr

User area array used for parsing text strings from the input stream.
WORD uses this 256 byte area when extracting strings from the input
stream.

POINT position mode\positionifile® --
Positions the file pointer to the specified location in the specified file
(it “points” intg the file).

POINT>XY point -- x\y
Unpacks point into x under y.

MacFORTH Glossary Page 13- 99 August 28, 1984

POLYGON handie --
Refer to Level 2 advanced graphics documentation.

POSITION.FIXED rec*\file* -- rec len\file*
Primitive used for fixed length record file access. Positions the file
pointer at the start of the specified record in the specified file.

POSTEVENT event.code\event.msg --

Places event of type event.code into event gqueue with message of
event.msg. BE CAREFUL not to post events for such things as activate or
update events as these ore sure to crash the system. Normally posted
events should be limited to user designated range 12-15.

PREY -- addr

Variable which points to the disc buffer most recently referenced. The
UPDATE command marks this buffer as changed so it is later written to
disc when needed.

PRINT addricnt --
Sends the string of characters starting addr for cnt bytes to the
printer.

PRINTBITS tu1ub\ribit map --
Prints the pixels within the top, left, bottom, right rectangle of bitmap
to an Apple Imagewriter printer. bitmap is wptr+2.

PRINT.FCB -- addr

Returns the address of the printer device driver FCB.

PRINT.SCREEN ---

Transmits the contents of the screen to the Apple Imagewriter printer.

PRINT.WINDOW ---
Transmits the contents of the currently active window to the Apple
imagewriter printer.

PRINTER -~ addr

Returns address of printer resource variable. Used to turn on and off
duplicating screen output to the printer. PRINTER ON turns on printer
PRINTER OFF turns off printer.

MacFORTH Glossary Page 13 - 100 August 28, 1984

PRINTER.ONLY -- addr
Returns the address of the device console tabie which directs sutput to
the printer only.

PTINRECT point\rect addr -- flag
Returns a true flag if point is within the specified rectangle.

PURGABLE handie --
Marks the specified handle as purgable by the memory manager.

PURGE.MENUBAR addr --
Removes all menu entries between addr and HERE from the menu list.

PURGE.WINDOWS addr --
Closes and deletes all windows between addr and HERE.

PUSHBUTTON n1\n24n34%nd\ns --
Refer to Level 2 controls documentation.

PUT.SCRAP addr\cnt\res type -- io result
Writes cnt bytes from addr to the desk scrap and marks it with res
type.

QUERY -

Accepts input of up to 80 characters from the keyboard. A carriage
return will stop input when encountered. The string is stored in the
terminal input buffer. Two nulls are appended to the input stream and
CNT contains the actual number of characters input. A space is output
when a CR is entered. WORD may be used to accept text from this
buffer as the input stream by setting >IN and BLK to zero. See TiB ,
WORD , >IN, and BLK .

QUIET -- addr
User variable mode switch. When non zero, indicates the buzzer is not
to sound when a user-defined error condition is encountered (ie. using
ERROR"). QUIET ON enables quiet mode. QUIET OFF disables quiet
mode.

QuIT -—-
Siops execution of the current task, clears the return stack and returns
control to the terminal. The dala stack is preserved.

MacFORTH Giossary Page 13 - 101 August 28, 1984

R/W addr\block\flag --
Mass storage read/write primitive. Addr specifies the source or
destination block buffer, block is the number of the referenced block,
and flag determines the operation to take place (0 implies write, |
implies read). Execution is vectored through the user variable (R/W) to
the user specified read/write handler.

RO -- addr
User variable containing the initial location of the return stack.
See RPI “r-zero”

R> --n
Pops the top item off of the return stack and pushes it onto the data
stack. MUST be matched with a >R within the same colon definition or
an unpredictable error will occur. See >R
“r-from”

R>DROP ---
Code routine which drops the top item from the return stack.
“r-from-drop”

R@® --n
Copies the top of the return stack to the data stack. Should only be used
between a >R ... R» sequence. "r-fetch”

RANDOM --n
Returns a psuedo random number between 0 and 32767. See SEED

RANGE n\min\max -- n\bool
Performs a range check for min <= n <= max. Bool is the boolean result
{true if min <= n <= max}.

RADIO.BUTTON ni1\n2\n3\nd\nS --
Refer to MacFORTH Level 2 controls documentation.

MacFORTH Glossary Page - 102 August 30, 1984

RANGE.OF ni\min\max -- [n1] or []
Marks the beginning of a conditional branch within a case statement.
Used in the form:
CASE ..
{miny <max> RANGE.OF ... ENDOF
ENDCASE
1T nt is <= max and >= min, all arguments are DROPped and execution
continues through ENDOF and then skips past the next ENDCASE . If nt is
not with min and max, min and max are DROPped and execution
continues after ENDOF . See OF , ENDOF , CASE , and ENDCASE .

RDRAW dx\dy --
Relative draw. Draws from current XY position to XY position at ¥ + dx,
y + dy dots to the right of and below the pen are modified according to
the pen size, shape, pattern and mode.

READ FIXED addrvrec*\file* --
Reads the fixed length record rec® from the specified file to addr.

READ.TEXT addricntifile* —-
Reads the data record from the specified file at the current file
position to addr, for a maximum of cnt bytes. If the record is larger
than cnt butes, the pointer in the file is left pointing at the last byte
transferred. The next read (without adjusting the pointer), will begin
with the rest of the record.

READ.VIRTUAL addr\cnt\file addr\file* --
Reads data from the specified file to addr for a maximum of cnt bytes
starting at the file addr given.

REALFONT? font*\size -- fiag
Returns true if font is an actual rather than synthesized font.

RECOYER --

Unconditionally recovers at the most recently specified recovery stack
frame. Refer to the Advanced Topics chapter for more information.

RECOYER. HANDLE ptr -- handle

Returns handle for address if eaddress corresponds with a valid
relocatable data structure in the heap. Reference APPDEVDOC:
RecoverHandie

MacFORTH Glossary Page 13- 103 August 28, 1984

RECT tAINDAF --
Creates rectangie data structure which will place it's address on the
stack when executed (1ike variable). Used in the form:
<top> <left> <bottom> <right> RECT «<rect names
To create a rectangle data structure called <rect name».

RECTANGLE x1wy1\x2\y2\[pattern addr]\mode --
Draws a rectangle.

REGSET --eaddr

Returns the address of a register snapshot array. Contains a snapshot
of the 68000 registers and the last 16 bytes of the parameter and
return stacks when the last exception occurred. See (EXCPT) .

REGION -
Refer to Level 2 advanced graphics documentation,

RELEASE addr —-
Muititasking stub for source compatibility with future products.

REMOVE file® --

Removes the specified file from the list of file control blocks.

RENAME new file$\file* --
Renames the specified file with the new name.

REPEAT e
Terminates a finite control structure. Used within a colon definition in
‘the form:
BEGIN . .. WHILE .. . REPEAT
Returns control to the word following the corresponding BEGIN . The
error message "CONDITIONALS NOT PAIRED” indicates the structure is
missing either a BEGIN or WHILE command.

RESIZE HANDLE handie\size -- flag
Attempts to resize the specified handle in the heap. Returns non-zero if
unsuccessful. Reference APDEYDOC: realioc.handle

RESIZE.OBJECT size --
Attempts to resize the current object space. An error message results
if insufficient heap space exists or if the requested size is unable to
contain the current object image. Use the ROOM function to determine
the current object space allocation. See MINIMUM.OBJECT ROOM

MacFORTH Glossary Page 13- 104 August 28, 1984

RESIZE.YOCAB size --
Attempts to resize the current vocabulary to the requested size. An
error message is generated if insufficient heap space is availabie or if
the vocabulary is currently larger than the requested size.
See MINIMUM.VOCAB ROOM '

RESUME ---
Terminates a user specified error handler. See ON.ERROR

RETRY -~ addr
User variable pointing to the most recently specified error recovery
frame. See ABORT" , RECOVER , ON.ABORT .

REWIND file* --
"Rewinds” the specified file’s pointer to the beginning of the file.

RMOYE dx\dy --

Relative move. Moves the current pen position to current position plus
the supplied offset.

ROLL nt --n2
Extracts the stack item nt from the top (not including nt). The
remaining stack items are moved into the vacated position. For
example, 3 ROLL 1is equivalent to ROT 2 ROLL is equivalent to
SWAP. Errorif ni is less than or equal to one with no action taken.

ROOM ---

Displays the amount of remaining memory available for use. The
message displayed is

xxxxxxxx Object Butes Available

yuyyyyyy Current Vocabulary Bytes Available

2222222z Heap Bytes Available
Where xxxxxxxx represents current object area (pointed to by
OBJECT HANDLE), uyyuyyuyy represents the amount of space in the
CURRENT vocabulary (pointed to by CURRENT) and zzzzz2zzz represents
the total amount of space remaining in the HEAP.

ROT n1%n2\n3 -- n2\n34n1

Rotates the top three stack items. The third item is brought to the top.
“rote”

MacFORTH Glossary Page 13 - 105 August 28, 1954

RP!
Initializes the return stack to point to the value contained in the user
variable RO . "r-p-store”

RPE@ -- addr
Returns the address of the top of the return stack.

RRECTANGLE x1\y1\x2\y2\ch\cw\[pattern]\mode --
Draws a rounded rectangle with ch by ch radius rounding.

RSRYMEM size -~ io result
Requests the memory manager to reserve size bytes in the heap for an
upcoming, relatively static or locked data structure. See Apple's
Developer's documentation for further details. Reference: ResryMem

RSTPRINTER ---

Resets the Apple Imagewriter printer by sending an esc ¢ sequence.

SO -~ addr
User Yariable containing the address of the top of the stack when it is
empty. "s-zero”

SAYE-BUFFERS ---
Writes all UPDATEd blocks to disc. The contents of the block buffers
remain unchanged and available. See BLOCK , UPDATE , and FLUSH .

SCALE ni\n2 -- n3
Arithmeticaliy shifts n1 according to the value of n2. If n2 is negative,
nil is shifted right, if n2 is positive, ni is shifted left. The absolute
value of n2 determines the actual shift. For example:
¢ NEW.2* (n -- n*2) 1 SCALE
is equivalent to 2% Error if n2 is greater than 31; system responds by
leaving n3 as zero.

SCALE>XY x\y--x\y
Scales the x and y coordinates given as follows:
x' = x 188 * x-scale /
y' =y 188 * y-scale /

SCALE>Y n-- n* 100\ scale
Scales n to y-axis coordinates.

MacFORTH Giosserg Page 13 - 106 August 28, 1954

SCAN.FROM -- addr
Computes the address within the input stream of the next word. addr is
either TIB + >IN or BLK + >IN if BLK 15 non- zero. See BLK , TIB , and >IN .

SCR -- addr
User variable containing the number of the block (or "screen”) most
recently LISTed or EDITed. "s-c-r"

SCRAP.COUNTER --n
Returns the number of times the desk scrap has been zeroed.

SCRAP.HANDLE -- addr
Returns the address containing the desk scrap handle.

SCRAPLEN -- addr
Returns the address containing the 16-bit length of the desk scrap.

SCRATCH -~ addr
User variable used to hoid the most recently referenced option bit
switch. All switch references set the appropriate bit at this location.

SCREEN.BITS -~ addr

Returns the address of the entire screen bitmap.

SCREEN.BOUNDS -- addr
Returns the address of the rectangle which contains the maximum
screen coordinates.

SCROLL scroll rectidh\dviupdate handle --
Refer to MacFORTH Level 2 Advanced Graphics documentation for more
information.

SCROLLLEFT/RIGHT --n

Constant bit mask for the horizontal scroll bar window attribute.

SCROLL.UP ---
Scrolls the current window up the number of pixels contained in the
current Tine height of the window. See GET LINE.HEIGHT LINE.HEIGHT

SCROLL.UP/DOWN --n

Constant bit mask for the vertical scroll bar window attribute.

MacFORTH Glossary Page - 107 August 30, 1984

SEED -- addr
Returns the address of the random number generstor seed. The previous
seed i5-saved at SEED +2.

SELECT fite* --
Selects the specified file as the current blocks file.

SELECT WINDOW wptr —-
Selects the specified window as the currently active window.

SENDBEHIND wptr\behind wptr --
Re-links the window specified by wptr behind the window specified by
behind wptr.

SET.CONTROL ni1\n2 --
Refer to MacFORTH Level 2 Controls documentation.

SET.CONTROL.MAX ni\n2 --

Refer to MacFORTH Level 2 Controls documentation.

SET.CONTROL.MIN ni\n2 --

Refer to MacFORTH Level 2 Controls documentation.

SET.CONTROL RANGE ni1\n2\n3 --
Refer to MacFORTH Level 2 Controls documentation.

SET.CURSOR cursor address —-
Sets cursor to supplied address (0 indicates default NW arrow).
See INIT.CURSOR CURSOR

SETEOF *hytes\file* --
Sets the size of the specified file to *bytes.

SETFENCE --
Sets the FENCE to point to the current dictionary offset within the
relocatable vocabulary structure. FENCE is stored at CURRENT @@ 8+ .
The current vocabulary offset pointer is stored at CURRENT @@

SETFILE.INFO file* --
Writes the information from the specified file's fcb to disc.

MacFORTH Glossary Page 13 - 108 August 28, 1984

SETITEMS item\new item$\menu id --
Replaces the current menu item string with supplied string.

SET.ORIGIN x\y --
Establishes window origin in QuickDraw screen coordinates.

SET.REC.LEN recien\file* --
Sets the fixed record length for the specified fixed file.

SET.STRING handie\$ addr --
Places string into handle. Prior handie contents are lost.
See NEW.STRING

SET.WTITLE § addr\wptr --
Sets the window title to supplied string. If the window is visible, its
title will be updated immediately.

SETUP SERIAL * stop bits\parity* data bits\baud rate\FCB addr --
Sets up the serial interface. Refer to the Printer/Serial Interface
chapter.

SHADOW -- 16
Constant bit mask for shadow text attribute.

SHOW starting block*\ending block* --
Generate a listing of TRIADs between the starting and ending block
numbers given. See TRIAD .

SHOW.CONTROLS wptr --

Displays controls for window. Refer to MacFORTH Level 2 Controls
documentation.

SHOW.CURSOR --
Decrements the cursor level. when the cursor level is 0, the cursor is
vigible. Use INIT.CURSOR to reset cursor level to 0. See HIDE.CURSOR

SHOWPEN --
increments the pen level in the current window. When the pen level is
0, drawing functions are displayed on the screen. This is used when
defining regions, or pictures where the pen is used to depict a region or
picture without actually drawing the outline on the screen.
See HIDE PEN

MacFORTH Glossary Page 13 - 109 August 28, 1984

SHOW . WINDOW wptr --
Sets the visible flag in the specified window. Yisible portions of the
window wil} appear on the display immediately.

SIGN n--
Insert the ASCIl negative sign into the pictured numeric output string
if nis negative. *** Note: You must retain the sign of the original value
being converted and place it on the stack before executing SIGN . Error

if used outside of <* and *> pair with no system response. See <* and
*>.

SIN angle -- sine * 10000
Returns integer sine of angle * 10000. (4 digit precision).

SIZEBOX --n
Constant bit mask for size.box window attribute.

SIZE.WINDOW wptr --
Recalculates the specified window's content region, allocating space
for only desired scroll bars.

SMUDGE ---
Used during word definition to toggle the "smudge bit" in a definition’s
name field. This prevents the incomplete definition from being found
during dictionary searches, until compilation is completed without
error.

SOUNDFCB -- addr
Returns the address of the sound driver FCB.

SP1 -
Procedure to initialize the stack pointer to SO . See S0 . "s-p-store”

SP@ -- addr
Returns the address of the top of the stack just before SPR was
executed. "s-p-fetch”

SPACE ---
Outputs an ASCII space.

SPACES n--

Qutputs n spaces. No action is taken for n less than one.

MacFORTH Glossary Page 13 - 110 August 28, 1984

SART { n -- square root)
Computes 8 16-bit square root from 32-bit square n.

SRCBIC -3
QuickDraw bit transfer mode. Bits set in the source pattiern are cleared
in the destination.

SRCCOPY -4
QuickDraw pattern transfer mode. All bits set in the source pattern are
copied to the destination.

SRCOR --4
QuickDraw pattern transfer mode. Bits set in the source pattern are
set in the destination.

SRCXOR -3
QuickDraw bit transfer mode. Bits set in the source pattern are
inverted in the destination.

STACK.EERROR (flag--)
Aborts with " Not Enough Stack Items” error message if flag is true.

STARTFLAG --n
Constant used by MacFORTH to determine if the system has been booted.

STATE -- addr
User variable containing the compilation state. A non-zero value
indicates compilation mode, zero indicates execution.

STATUS -- addr
Returns the base address of the user ares.

STILLDOWN --flag

Returns true while the mouse is still down. if the mouse comes up and
goes down between samples, returns false.

STRINGWIDTH addr --n
Returns the width, in pixels of the string at addr.

SWAP nisn2 -- n2ini
Swaps the top two stack items.

MacFORTH Glossary Page 13- 111 August 28, 1984

SYSFILE -- addr
FCB address used for system related file functions.

SYS.WINDOW -- wptr
Default interactive MacFORTH Window.

SYSBEEP duratioh --
Sounds the buzzer for the number of specified 1/60 sec ticks.

SYSPARMS -- addr

Returns the low memory address of data copied from battery backed-up
memory.

SYSTEMEDIT n--flag

Allows the desk manager to respond to editing functions pressed while
a desk accessory is active. |f flag is true, the event was handled by the
desk manager, and no user action is required. Refer to the supplied
Macforth editor source code for examples.

TAB.STOPS -- addr
Variabie containing the number of spaces between tab stops.

TEACTIVATE
Refer to MacFORTH MacFORTH Level 2 TE interface documentation.

TECALTEXT
Refer to MacFORTH MacFORTH Level 2 TE interface documentation.

TECLICK
Refer to MacFORTH MacFORTH Level 2 TE interface documentation.

TECOPY
Refer to MacFORTH MacFORTH Level 2 TE interface docurmentation.

TECUT
Refer to MacFORTH MacFORTH Level 2 TE interface documentation.

TEDEACTIYATE
Refer to MacFORTH MacFORTH Level 2 TE interface documentation.

TEDELETE
Refer to MacFORTH MacFORTH Level 2 TE interface documentation.

MacFORTH Glossary Page 13- 112 August 28, 1984

TEDISPOSE
Refer to MacFORTH MacFORTH Level 2 TE interface documentation.

TEIDLE
Refer to MacFORTH MacFORTH Level 2 TE interface documentation.

TEINSERT
Refer to MacFORTH MacFORTH Level 2 TE interface documentation.

TEKEY
Refer to MacFORTH MacFORTH Level 2 TE interface documentation.

TENEW
Refer to MacFORTH Level 2 TE interface documentation.

TEPASTE
Refer to MacFORTH Level 2 TE interface documentation.

TERECORD
Refer to MacFORTH Level 2 TE interface documentation.

TESCROLL
Refer to MacFORTH Level 2 TE interface documentation.

TESET JUST
Refer to MacFORTH Level 2 TE interface documentation.

TESET.SELECT
Refer to MacFORTH Level 2 TE interface documentation.

TESET.TEXT
Refer to MacFORTH Level 2 TE interface documentation.

TEST.CONTROL
Refer to MacFORTH Level 2 TE interface documentation.

TEUPDATE
Refer to MacFORTH Level 2 TE interface documentation.

TEXT.BOX

Refer to MacFORTH Level 2 TE interface documentation.

MacFORTH Glossary Page 13 - 113 August 28, 1984

TEXT.CLICK
Refer to MacFORTH Level 2 TE interface documentation.

TEXT.FIELD
Refer to MacFORTH Level 2 TE interface documentation.

TEXTRECORD --n

Constant bit mask for window attribute which indicates that a text
record is pointed to by the refcon field of the window. Refer to
MacFORTH Level 2 TE documentation.

TEXTFONT n--

Selects the current text font. Font O is reserved for the system, font |
is the default for user applications. MacFORTH uses font 4 (fixed space
Monaco).

TEXTMODE text mode --

Sets the current text bit transfer mode. Valid modes include:
SRCCOPY SRCOR SRCROR SRCBIC
NGTSRCCOPY NOTSRCOR NOTSRCXOR NOTSRCBIC

TEXTSIZE gize --

Sets the text size for current window. MacFORTH windowe maintain
LINEHEIGHT for scrolling and general text output. If you set texteize
greater than LINE.HEIGHT you will overwrite data on the prior line.

TEXTSTYLE n--
Selects the text style. Each of the first 7 bits enable a particular text

enhancement:
Bit* Hex Value Text Mode (MacFORTH Constant)
g 1 BOLD
1 2 ITALIC
2 4 UNDERL INE
3] QUTLINE
4 16 SHADOU
5 32 CONDENSED
) 64 EXTENDED

MacFORTH Glossary Page 13- 114 August 28, 1584

THEN ---
Marks the end of & conditional structure. Used within a colon definition
in the form:
{F..ELSE .. THEN or IF .. THEN
The word following THEN is executed after the code for IF or £LSE (if
present). The error message "CONDITIONALS NOT PAIRED" indicates
there was ho preceding IF .

THIS.CONTROL -- addr
Refer to MacFORTH Level 2 Controls documentation.

THISPART -- adar
Refer to MacFORTH Level 2 Controls documentation.

THRU starting block*\ending biock* --
Loads screens between and including the starting and ending block
numbers given.

TiB -~ addr
User variable containing the address of the terminal input buffer.

TICKCOUNT -- tick count
Returns real time clock ticks (in 60ths of a second).

TOHEAP handle --
Returns the specified handle to the heap manager.

TOGGLE addrimask --
Complements the B-bit value in addr by the bit mask given.

TOGGLE.CONTROL --n
Refer to MacFORTH Level 2 Controls documentation.

TOKEN.FOR -- token

Inputs the next word in the input stream and converts it to a token. If
no token is found, O is returned instead.

TOKEN>ADDR token -- addr

Converts a relocatable token to a physical address.

MacFORTH Ginssary Page 13- 115 August 28, 1984

TONE duration\volume\frequency * 10 -~
Dutputs a tone via the sound generator. duration (0-255) 15 1/60ths of
& second, volume (0-255) is a relative volume, and freguecy is
hertz*10.

TRACE -- addr
Compiler Mode switch. When enabled, the compiler emplaces the token
{TRACE) into the dictionary prior to every token that would otherwise
normally be compiled. At run-time, (TRACE) tests the state of DEBUG,
and if true, displays the stack contents with .5 and the name of the
following token. {See (TRACE}, DEBUG, and ?TRACE)
TRACE ON enables trace mode. TRACE OFF disables trace mode.

TRACE.TOKEN -- addr

Returns the address of the variable containing the token to be compiled
when the trace switch is on. See TRACE

TRACK.CONTROL n14n2 -~ flag
Refer to MacFORTH Level 2 Controls documentation.

TRIAD block® -~
Displays the triad containing block®. The three blocks include block*,
beginning with a block number evenly divided by three. Output is
suitable for source text records and can be used to replace only updated
blocks in the master listing.

TRUE ---1
Constant for boolean true value.

TRUNK -- addr
User variable containing the task unigue address of the task's FORTH
vocabulary.

TRY -—-
Pushes the recovery stack frame into the return stack. See RECOVER ,
ABORT" .

TYPE addricnt --

Outputs a string. Transmits cnt charscters beginning st addr to the
current output device. No action is taken for cnt less than 1.

UNDERLINE --04
Constant bit mask for underline text attribute.

MacFORTH Glossary Page 13- 116 August 28, 1984

UNIQUEMSG -- addr
User variable containing flag which when true, causes CREATE to issue
the warning message "ISN'T UNIQUE" when a newly created word name
field is not unique within CONTEXT and TRUNK .

UNLOAD.SCRAP --ioresult
Writes the desk scrap to disc under the file name "CLIPBOARD".

UNLOCKFILE file* —-
Unlocks the specifield file.

UNLOCK HANDLE handie --
Marks the specified handle as unlocked. See Apple Developers
documentation for further details. Reference: HUnlock

UNTIL flag --

Terminates a finite control structure. Within a colon definition, marks
the end of a BEGIN ... UNTIL loop which will terminate based on the
value of flag. if flag is true, the loop is terminated and control is
passed to the word following UNTIL . If flag is false, the loop continues
and control is passed back to the word foliowing BEGIN . BEGIN ... UNTIL
loops may be nested freely as long as each BEGIN is paired with an
UNTIL or WHILE..REPEAT . The error message "CONDITIONALS NOT
PAIRED V" may indicate an UNTIL is not paired with a BEGIN . See BEGIN ,
WHILE , and REPEAT .

UPBUTTON --n :
Refer to MacFORTH MacFORTH Level 2 Controls documentation.

UPDATE -
Mark the most recently referenced block buffer as modified. The block
will subsequently be written to mass storage when its buffer is needed
for storage of a different block, or when SAVE-BUFFERS or FLUSH is
executed.

UPDATEEVENT --n

Constant event code returned by DO.EVENTS on & update event.

UPPER addricnt —-
Converts lowercase characters to uppercase. Any lowercase ASCIH
alpha charscters in the string at addr for ent bytes are converted to
uppercase ASCl| alpha characters.

MacFORTH Glossary Page 13- 117 August 28, 1984

UPPER.LEFT (--)
Sets the graphics XYOFFSET to the upper left corner of the current
window.

USE -- addr
Variable containing the address of the block buffer to use next. This is
the least recently written block buffer.

USE" ---

Used in the following format:
USE” <blocks file name>"
to assign, open and select the specified blocks file.

USER n--
User variable defining word. Used in the form:
n USER <hame>
to create a user variable named <name>. nis the cell offset within the
user area where the value of <name> is stored. Execution of <name>
leaves its absolute user area storage address.

YARIABLE ---
Defining word to create variable definitions. Used in the form:
YARIABLE <name>
to create 8 dictionary entry for <name> and aliot four bytes for storage
in the parameter field. When <name> is later executed, it will place the
pfa of <name> on the stack.

YBARBOUNDS wptr —- t\lsbyr
Refer to MacFORTH Level 2 Controls documentation.

YECTOR {21\ I\x2\y2 -~)
Draws a line from {(x1,y1) to (x2,42).

YERSION ---
Types the current software version number and CSI copyright notice.
Used in TRIAD and COLD .

YERSION# --n
Constant containing the specific version of the software release.

VIRTUAL -- position mode
Constant for the virtual file positioning mode. See POINT

MacFORTH Glossary Page 13- 118 August 23, 1984

YOCABULARY size --
A defining word to create 8 new vocabulary. Used in the form:
¢5ize> VOCABULARY <name>

to create {in the CURRENT vocabulary) a dictionary entry for <name>,
which specifies & new ordered list of word definitions. Subsequent
execution of <name> will make it the CONTEXT vocabulary. when <name>
becomes the CURRENT vocabulary (see DEFINITIONS), new definitions
will be created in that 1ist (vocabulary). size represents the desired
initial size of the vocabulary.

Wi whaddr --
Stores the 16-bit value w at addr. The error message "Address Error
Trap at addr” indicates addr is odd. See >Wik

"w-store”

wx wiiw2 -- n3
Returns the signed 32-bit product of the signed 16-hit numbers w1 and
w2. "w times”

. W ==

Emptaces w into the dictionary. Stores the 16-bit value in the
dictionary at the current dictionary pointer value and increments the
dictionary pointer by 2.

W ATTRIBUTES attributes\wptr --
Sets window sttributes before window is displayed. Yalid attributes
include:
CLOSE.BOR NOT.UISIBLE SIZE.BOR
SCROLL . UP/DOUN SCROLL.LEFT/RIGHT TEXT.RECORD

W_BEHIND front wptriback wptr --
Sets window order before window is displayed. The back wptr will be
placed behind front wptr when the window is added {0 the window list.

¥.BOUNDS t\INDAr\wpLr -
Determines the position and size of a window before it is added to the
window list and displayed.

W LINKAGE -- addr

Yariable containg the latest pointer to a linked list of windows in
chronoiogical order. This list is traversed during FORGET to close any
window which is about to be forgotten.

MacFORTH Glossary Page 13- 119 August 28, 1984

W.TITLE $addri\wptr —-
Sets title for window before window is displayed.

WwW.TYPE w.typei\wptr --
Sets window type for window before it is displayed.

W/ ni\n2 -- quotient
Divides 32-bit n1 by 16-bit n2 leaving a 16-bit quotient. This routine
uses the 68000 signed divide hardware instruction for speed
"w-divide”

w/MOD n1sn2 -- remainder\quatient

,,,,,,,,,,,

Divides the 32-bit signed number n1 by the 16-bit sighed number n2,
leaving the 16-bit remainder and quotient. This routine directly
utilizes the 68000 signed divide hardware instruction. "w-divide-mod”

W>FUNC>L n--
Defining word for creating Macintosh function calls. Refer tg the
Advanced Topics chapter.

W>MT n--
Defining word for cresting Macintosh function calls. Refer to the
Advanced Topics chapter.

we addr -- w
Return the 16-bit value at addr. The error message "Address Error Trap
at addr” indicates addr is odd. See >W@< “"w-fetch”

WAIT n--

Stub used to maintian source compatability with later products.

WAIT.MOUSE.UP -- fiag

wWaits for mouse buttoh to come up. Returns false if button is alresdy
up.

WATCH -~ addr
Returns the address of the watch cursor array.

WCONSTANT n--

16-bit constant defining word. When later executed, pushes signed
16-bit value on the stack.

MacFORTH Glossary Page 13- 120 August 28, 1664

WHILE flag --
Marks the beginning of the "true portion” of & finite loop construct.
Used in a colon definition in the form:
BEGIN ... WHILE ... REPEAT

On a true flag, continue execution through to REPEAT , which then
returns control back to the word following the BEGIN . On a Talse flag,
skip to the word following the REPEAT , exiting the control structure.
The error message CONDITIONALS NOT PAIRED indicates the WHILE
was not nested within 8 BEGIN .. REPEAT control structure within the
current definition.

WHITE -~ addr
Returns the address of the white pattern.

WINDOW wptr --

Directs output to the specified window.

WLIT --n

Pushes the next 16 bit value in the interpretation stream into the stack
and advances the interpreter pointer over it.

wMOD n\w -- remainder
Divides 32-bit n by 16-bit w leaving the 16-bit remainder of the
division. This routine uses the B800Q0 signed divide hardware
instruction for speed. "w-mod”

WORD char -- addr

Parses a string from the input stream. Parse characters from the input
stream until the non-zero delimiting character {(char) is encountered,
or the input stream is exhausted, ignoring leading delimiters. The
characters are stored as a packed string with the character count in
the first position. The actual delimiter encountered {char or null) is
stored at the end of the text string, but not included in the count.

If the input stream was exhausied as WORD was executed, a zero length
string will result. The address 1eft on the stack points to the beginning
of the string (the count byte), the text is placed within the user ares at
POCKET . An error condition exists if the string length exceeds 255,
leaving only the last 255 characters availabie. An unchecked error
occurs if the char given is 0.

MacFORTH Glossary Page 13- 121 August 28, 1984

WORDS -
List the CONTEXT vocabulary starting with the most recent definition.
{Some old-time FORTH programmers may call this function "YLIST")

WRITEFIXED sddrirec*\file® --
Writes the data at addr to the fixed record rec® in the specified file.

WRITETEXT addricnt\file* —-
Writes the data at addr for cnt bytes {remember to append a carriage
retuyrn to text records) into the specified file at the current file
pointer location.

WRITE.YIRTUAL addr\cntirile addririte* --
wWrites the data at addre for cnt bytes into the specified file starting
at the Tile addr given.

XEXPECT addricnt --
Primitive Mac console string input operator (see EXPECT). Flashes the
cursor, allows Backspaces to edit the input string and terminates on
Return, setting CNT to the actual number of characters received.

XLATE PAVTEE Ty
Rotates, scales and transiates the point {x,u) according to the current
window XYPIVOT (angle), X¥SCALE , and XYOFFSET . [f the cartesian flag
is true, the ¥ coordinate is negated. (x',y’) are expressed in QuickDraw
coordinates relative to the current window.

XOR ni\n2 -- n3
Leave the bitwise exclusive-or of n! and n2. "x-or"

XY><TLBR xi\y1'x2\y2 -- top\ieftibottomiright
<Cor o
top\iefti\bottom\right -- x 1%y 1\x2\y2
Converts two xy point pairs to tibr form, or vice-versa.

XY>POINT «\y-- point

Packs x under y into 32 bit point. ¥ resides in high order word, x in low
order.

XYAXIS -

Displays a 100 x 100 cross hair at the current screen origin. Positive %
and y are marked with '+, negative with '-".

MacFORTH Glossary Page 13- 122 August 28, 1984

XYOFFSET x\y--
Sets the offset to the center of the coordinate system to % dots from
the right and y dots from the top of the current window.

XYPIVOT angle --

Causes all subsequenl line and dot coordinates within the current
window to be pivoled to angle degrees. Shapes are not pivoted.

XYSCALE % scale\y scale --

Causes all points in the current window to be scaled by the specified x
and y scale. Full scale is 100 100.

ZERO.SCRAP --ioresult
Zeroes the desk scrap and increments SCRAP.COUNTER .

[—
Begin execution mode. The text from the input stream is subsequently
executed. See . "left-bracket”

[COMPILE] ---
Forces compilation of an immediate word. Used in a colon- definition
in the form:

{COMPILE] <name>

where <name> is an immediate word. This allows compilation of a
compiling word when it would otherwise be executed.
“bracket-compile-bracket”

] ---
Begin compilation mode. The text from the input stream is
subsequently compiled. See ["right bracket”

{ --—-

Accepls and ignores comments from the input stream until the next
delimiting right brace. VYery similar in usage to { , but can be used
when multiple occurrances of parentheses are desired in & comment.
For example:

{ wun (xR) RRu® { KR) wKust)
is a valid comment. "brace”

MacF ORTH Giossary Page 13 - 123 August 28, 1684

MacFORTH Glossary Page 13- 124 August 26, 1984

MacFORTH Index

Accessing Tiles
Acknowledgements
Activating a window
allocation

of file space

of memaory
Alternate volumes (disks)
Applications
Arcs
Arrays
ASCH output
Assigning Files
Auto-load

Background pattern

Backups

Beeper

Bitmaps, printing

Blanks, filling with

Blocks files
accessing source code
allocation
buffers
creating
inciuding
loading
structure

-A-

Chapter 8
i-2
5-5,8-5

-7.12
~24,11-10
-5,9-14,15

O gt o

T3
\J

| 1
N — B

--\Dl'..ll'l(_nl:!\
WHhHh =N N

Booting MacFORTH see loading MacFORTH

Buffers
block
record

Index

Page |- 1

August 31, 1984

Cartesian coordinates
Case statement

Catalog of files see Directory

Character fonts
Closing a window
Comments
Compilation
Computer-aided course
Coordinate range
Coordinate system
Copying blocks
Creating

files

menus

windows
Current vocabulary
Cursor

modifying

hiding

showing
Cutting and Pasting

Data files
allocating space in
fixed record
reading/writing
Debugging
Deletion of
files
menus
windows
Demos, editing
Dictionary
Directory
Disks
accessing other
ejecting
Double clicks

Index

c

6-4
Going FORTH

6-14

8-5

Going FORTH
Going FORTH

3-14,11-16

August 31, 1984

Editor
entering
exiting
menuy
scrolling
editing a file
Ejecting a disc
Erasing blocks
Error conditions, default
Errors
frequency
messages
compiler
interpreter
processor exceptions
recovery
summary
while Joading
Error handling
overview
Event
actions, default
constants
during text 1/0
list
masking
precedence
External disks

File control blocks

File pointers

Files
assignments
blocks files
closing files
data files
errors
examples

index

|
m
1

1
— e N OB

N W

—(N&Du(rlww“«l

i-11
9-3,20;12-4
12-2

12-2

12-3

11-6

12-4

3-11

12-2

g-14
g-14
g-17
8-15
8-15
g6-16
9-5

August 31, 1984

Files {cont)
MacFORTH interface
170 result codes

magimum size
name length
numbers
opening files

pointer position modes

-F- {cont)

program files See Files, block

reading/writing data

record huffers
text

types

virtual
volumes

Fixed-length record files

buffer size

Fonts, character
Forgetting windows
Frequency tabie

Glossary contents
Going FORTH
stopping and restarting
Graphics initialization
Graphics features
Graphics output

Hotline

Index

Page | -4

August 31, 1984

IF statement
Including a File
input

from keybosrd

number

string
insertion point
Interrupt, user
installing MacFORTH
1/0

events

error result codes
Item execution

Keystrokes

Levels 1,23
Licensing information
Line drawing

Line height

Listing programs
Loading blocks
Loading demos
Loading MacFORTH
Loops

Lower case

Index

Going FORTH
9-13

5-14
5-15
5-16
3-9

-+
o}

Going FORTH
11-5

—a—-w(fo‘.m—

Page | -5 August 31, 1984

MacFORTH environment i-9
Matrices see Arrays
Memory allocation 11-10
Memory available 9-24,25
Memory maps 11-11
Menu items
attributes
item numbers
modifying characteristics
modifying execution
number nossible
separating
Menus
creation
deletion
disable/enable
display
example
execution
hightighting
ID
insertion point
list
number possible
order
titie
Mounting a Yolume
Mouse
button state
click in rectangle
coordinates
double clicks
dynamic operations
event related operations

SN NN
N~ D

-~
1
<

| I T A N | 1
— W W NN W W NN DO W

O NN NN NN N

n

1
o

=G - R e
O R o Y =
- N

interface -

position 4-5, 8-7

record g-11

tracking 4-5,8-7,9,10
Multiple windows 2-18

Index Page | -6 August 31, 1984

Notepad
Number input

Object space
Opening a file
Operations on shapes
DOptions
Origin
Qutput
text
to other windows
graphics
window
Ovals

PAD

Pen characteristics
Pen modes
Philosophy of MacFORTH
Point, definition
Point conversion
Pointers to files
Printer output
Printers

Printing a window
Processor exceptions

QuickDraw system

index

Page 1 -7

5-12,10-2
5-11,6-28
10-4
10-3
6-22

6-2, 6-4

August 31, 1984

Re-titling a window
Rectangles

Relative graphics
Release dates

Recovering text (REVERT)

_R-

4-7,5-8
6-21
6-24

i-2

3-8

Resetting a file, See Rewinding text files

Rewinding text files
Room in memory
Rotating coordinates

Scaling coordinates
Scrapbook
Scrolling

Selecting a File
Serial interface
Serial primatives
Shapes, Quickdraw
Sound

Special characters
Special strings
Subscripts

Storage map
Strings

System disk contents

Terminal emulator
Text
characteristics
1/0 events
mode
output
size
style

Indey

9-9
5-24
6-26

|
£

10-9

6-14
8§-17
6-17
5-12,6-14,10-2
6-18
6-16

Page | -8

August 31, 1984

Text files
buffer size
rewinding
reading
writing

Timer

Toolbox Interface

Trig functions

TRACE

Tracking the mouse

Virtual files

accessing data
Vocabulary size
Vocabulary structure (FORTH)

WHILE statement
wWindow/Screen output
Windows
activate flags
assigning a program
attributes
bounds
changing & title
closing a8 window
creating
event constants
event handling
example

Index

-T- (cont)

-V-

2-11
9-11
5-24
11-12, 11-14

w

Going FORTH
10-3

oo~
7o

[N
Ul

-

0 o
pm
NS

~

OO WO WO~ -t
]

x}mmbmmmmmm

3,& 12

Page 1-9

August 31, 1984

windows (continued)
default values
defining
forgetting
function template
hiding a window
program
resizing
show
sizing
title
tracking the mouse
types

work Tiles

wrap around

writing records

Ry-axis

Indeyx

-¥- (continued)

[
O O e = PSR

JZ:U‘!L{IUID)O:I
[ful

,9-19,8-5

[}]
.

&OO’-U’!OJJlkLHOt)U‘lCO
podin BV BRI IR RS B = =
OIJDJ
o
w
=

[
L

Page |- 10

&ugust 31, 1984

ASCIl CODE CHART

MSD
(HEX) 0 1 2 3 4 5 6 7
B1 1
B2 | % o %0 09 |9, 0 o a1,
LSD B 0 1 0 1 0 1 0 1
mexy | BT
CONTROL
B4 BS B6 B7,
o lolololo] NUL|DLE| SP | 0 | @ P \ p
0 (0)| 10 (16){ 20 (32){ 30 (481140 (64)] 50 (80)] 60 (96} 70 {112)
1 Jo|olo|1| SOH | DC1 ! 1 A Q a
1 (1! 11 (171121 {32)] 21 {49)141 {65)] 51 {811] 61 87i71 (113)
2 |o|o|1]o] STX | DC2 " 2 B R b r
2 (2112 (18)[22 {34)| 32 (50)}42 {66)} 52 (82){ 62 (98)| 72 {114N%
3 lolol1]1] ETX | DC3 | # 3 C S c)
3 (3){13 {19)|23 {35)| 33 (51)]43 (67)] 63 (83)]63 (994 73 (115)
a |o|1]/o|o] EOT | DC4 $ q D T d t
4 (4){14 {20}]| 24 {36)]| 34 (52){44 {68)] 54 (84)]64 (100)| 74 (116}
s |ol1lof1] ENQ | NAK| % 5 E U e u
5 (5)}156 (21)| 25 {37)| 35 (53)145 (69)] 55 (85)}65 (101)}75 {117}
6 {o}1}1]e] ACK | SYN & 6 F v f v
6 (6)}16 (22){26 (38)| 36 {54)] 46 {70)] 56 (86)]68 {102)]76 (118)
7 lol1]|1{1| BEL | ETB / 1 G w g w
7 (7)117 (23)| 27 (39)] 37 (56) |47 {(71)1 67 (871167 (103}77 {119)
g |1/olo]lo}l BS | CAN (8 H X h X
8 (8)]18 (24) |28 {40){38 (56){48 (72){ 58 (88){68' (104)} 78 (120)
9 [1{ojo|1| HT | EM) 9 | Y | i Y
9 (9)§19 (25) |29 (41){39 (57) |48 (73)] 59 (89)]69 (105)] 79 (121)
a |tjolr]o| LF | SUB| » | :+ | J | Z | j | 2
A (10)[1A {26} | 2A (42)| 3A (58)14A (74)| 5A (90)[6A (1064 7A (122)
8 |1|o|1|1] VT | ESC| + ; K | [k {
8 {11){18 (27) |28 (43} 3B (69){4aB (75) 5B {81)j68 (107)}78B (123)
¢ |1|1lolo] FF FS ' < | L \ | d
(o] {(12)}1C (28} | 2¢C (44){ 3C (60)|4C (76)|6C (92){ec (108)]7C (124)
o [1fifofr| CR|GS | = | = | M|] | m/| }
D (13){1D0 (29)| 2D {45)| 3D (61) |aD {77)|5D (93}i6D (109)| 7D {125)
e |111l1l0] SO RS . > N A n ~
E {(14)1ME {30}1 2 (46)] 3E (62){4E {78))5E (94)]6E (110)] 7€ {126)
RUBOUT
F 11111 SI US / ? 0 — 0 (DEL
F {16)]1F (31)| 2F {47)] 3F (63)|4F (79)f5F (95)} 6F (111 7F (127)

CREATIVE SOLUTIONS

4701 Randolph Road, Suite 12
Rockville, Maryland 20852
(301) 984-0262

bl19o

