
Part No. 023-0039

CROMEMCO

MACRO ASSEMBLER

Instruction Manual

CROMEMCO, INC.
280 Bernardo Avenue

Mountain View, CA 94040

Copyright 1978
October 1978

This manual was produced on a
Cromemco model 3355 printer
using the Cromemco Word
Processing System.

•

. .

)
r

TABLE OF CONTENTS

CHAPTER PAGE

pART I. CROMEMCQ RELOCATABLE ASSEMBLER MANUAL

1. Getting Started in Assembly Language Programming ••••• 9

2. Calling the Assembler .•....•.••••••••....••••••••••• l?
Options Specified When Calling ASMB •••••••••...••..• 19
Summary of Defaults and Limits •••••••••••••••••••••• 27

3. Assembler Fields •••••••••••••••••.••••••••.........• 29
Names (Labels) •••••••••••••••••• •••• •••••••••••••••• 30
Ope ode Mnemonics •••••••••••••••••••••••••• ••••• • •••• 31
Operands •• 32
Remarks ••• 36

4. Pseudo-opcodes Recognized by the Assembler. •....•••. 39
Alphabetical List of Pseudo- ops •..• ••••••• 39
Source Code Segments •••••••••••••••••••.......•••••• 57

5. Mac ro and Cond i tional Assembly •••••••••••••...•..... 65
Macro Assembly (MACRO Definition and Calls) •...••••• 65
Condi tional Assembly (IF Statements) .••••••••••.•••• 74
Examples of Macro and Conditional Assembly .••••••••• 76

6. Assembler Error Messages ••.............•.•.••••••••• Bl
Error Messages Generated Following a Call to ASMB ••• Bl
Error Messages Generated During Assembly •••••••••••• B4

7. Assembler Print - Listings •........••....••••••••••••• 92
Sample Listing •.•••••••••..•••...•••.•.............. 93
Listing Columns •••••••••• ••• ... ••••...•••••••.•••••• 97
Lines of Listing ••••••••.••••••••••••.••.•.......... 98
Listing Symbols .•.......•.••••••••••.••••••••••••••• 99
Tables Following the Listing •.•.•••••.............. 100

PART II. CROMEMCO LINKER/LOADER MANUAL

1. Using the CROMEMCO Linker/Loader.
Command Fo rm at.
Link Switches .•........•.........

2. Format of LINK-Compa ti bl e Object

3. LINK Error Messages.

4.

Fatal Errors.
Warn i ngs

Examples of Li nk i ng Modules.

Fi 1 es.

PART III. CROMEMCO PROGRAM DEBUGGER MANUAL

1. Introduction to DEBUG.
Load ing DEBUG
Control Characters.
Command Fo rma t ...•.
@ Register •••••••••
Address Expressions.
Swath Opera tor.
Errors ...•.....

.105

.105

.106

.109

.111

.111
112

•. 113

.119

.119

.120

.120
• •• 121

.121

.122

.12 2

2. DEBUG Commands.123

3.

PART IV.

Summary of
Summary of

DEBUG Commands.
Register Names.

COOS PROGRAMMER'S MANUAL

1. Introduction to COOS System calls.
Memory Allocation ...•.••.•••••••••

2. Device I/O List of COOS System Calls.
CDOS Device Function Calls.
COOS Disk Function Calls.
Additional System Calls ••••

.137

.138

• •• 141
.141

..145
• .145

.150

.156

3. Summary of COOS Function Calls.159

I

PART V. ASSEMBLER LIBRARY ROUTINES

1. Routines Available in ASMLIB •••.•..•.... 163
Dec imal Conversion ••••••••••••••••••••••••••• • ..•.• 163
Hexadecimal Conversion ••••••••• • •• •••• • • ••••••••••• 164
Character I/O Routines . .•.•.•••••••••••••.••..••••• 165

2. An Example••••••••.•.. l71

PART VI. MISCELLANEOUS PROCEDURES

1. Procedure for Creating a New LUN Table for FORTRAN.178

2. Using ASMB and DEBUG to Program PROMs •••••••••••••• 181

3. 8080 to 280 Translator •...............•.. 184

CROMEMCO MACRO ASSEMBLER

CHAPTER 1:
GETTING STARTED IN ASSEMBLY LANGUAGE PROGRAMMING

The purpose of an Assembler is to provide a
means of translating easily understood mnemonics ,
which represent the instructions of a computer,
into object code which may be loaded into memory
and run as a program. The CROMEMCO Disk -Re sident
2-80 Relocatable Macro Assembler is a two pass
assembler which reads source code from a disk file,
assembles it , and produces a relocatable object
and/or a print-listing file. These files may be
sent to any of the disks , suppressed altogether, or
sent to the console (listing file only). The
CROMEMCO Relocating Linker/ Loader may then be used
to locate the assembled code anywhere in memory.
The completely assembled and linked machine code
may be saved in a disk .COM file for execution as a
command program.

The use of a relocatable assembler and linker
provides one of the most versatile ways of creat i ng
machine lang uage prog rams fa r the computer . The
time saved through their use is well - worth the time
spent in gaining familiarity. These two command
files allow one to create and assemble a number of
different modules separately, and then link them
together at run time. Or one can l i nk an assembled
user-program to an already existing libra ry of
useful object code files . In addition one may
assemble prog rams using a compiler (for example ,
assemble FORTRAN programs into machine code using
CROMEMCO ' s FORTRAN Compiler), and link these object
modules to existing machine code modules , programs,
or subroutines . At the same time the final program
may be located to run anywhere in memory.

The CROMEMCO Relocatable Assembler (hereafter
called ASMB or the Assembler) is both a Macro and a
Condi tional Assembler as well. A separate chapter
of this manual is devoted to these features . The
Macro capability allows the user to very easily
generate such things as multiple blocks of code ,
design added capabilities for the Assembler for a
particular purpose , and write much shortened
versions of source code by having a Macro library
searched for often-used routines. The Condi tional

9

CROMEMCO MACRO ASSEMBLER

(IF statement) assembly feature allows blocks of
code to either be included or not, depending on the
satisfaction of user-defined conditions. There are
also capabilities for INCLUDing other source code
files at assembly time and declaring other program
modules EXTernal to the main program, which are
then linked to it at run-time. All these features
are descr ibed further in the chapters on pseudo­
ops.

The CROMEMCO Relocatable Macro Assembler is
supplied to the user on diskette (large or small)
under the directory entry "ASMB.COM". The way the
Assembler is called is described in detail in
Chapter 2. A source code file to be assembled must
have the three-letter extension .280 to be found by
ASMB. To assure correct operation the Assembler
should be used with the following minimum hardware
configuration: 32K of contiguous RAM memory
beginning at location 0 and the CROMEMCO 4MHz 2-80
CPU card, along with the CROMEMCO Disk Operating
System (COOS) hardware and software. When called,
ASMB loads into memory at 100H and begins execution
there.

Since most users will be eager to tryout some
of the features of ASMB right away, this chapter
may be used as a step-by-step beginner 1 s manual for
the composition, assembly, link, and execution of a
simple 2-80 machine language program. The name of
the program is "TIMER" and its purpose is to ring
the console bell at approximately halfsecond (using
4MHz clock) intervals as determined by a timer
loop. It will not be necessary for those users
familiar with assembly language programming to read
this chapter. These persons may skip ahead to
Chapter 2 at this point.

The first step is to turn on the power to the
computer and boot-up the CROMEMCO Assembler Disk
(Model FDA) in drive-A. You will notice upon
typing out the directory that supplied along with
the Assembler (ASMB.COM) is the CROMEMCQ Text
Editor (EDIT.COM) and CROMEMCO Debug (DEBUG.COM)
programs. We will use the Text Editor to enter our
source code program. The Editor manual is also
suppl ied wi th the Assembler package and should be
used for questions and reference concerning EDIT.
However, some of the simple commands are explained
here for the benefit of the user who is unfamiliar
with the Editor.

10

CROMEMCO MACRO ASSEMBLER

The user can now call EDIT giving the name and
three-letter extension of the file we wish to
create by typing the following. (Note that before
typing the command line you should have the COOS
prompt for the drive you are using, for example
"A." for drive-A.)

EDIT TIMER.280

The Edi tor will then respond wi th:

CDOS EDITOR VERSo
NEW FI LE

xx.yy

The prompt for the Editor is an asterisk, "*",
and commands may be entered any time this prompt is
displayed. We now wish to enter the text of the
source program so we use the Insert command of
EDIT. This is done simply by typing the letter "I"
followed by a carriage return (CR). We can then
start typing lines of text, ending each line with a
carriage return. Mistakes can be corrected by
backspacing or can be corrected after we have
finished with Insert mode as explained below.
There are four fields which may be used in a line
·of source code: labels, opcodes, operands, and
remarks. Labels are followed by a colon and
remarks are preceded by a semi-colon. If there are
more than one operand, they are separated by a
comma. The instruction mnemonics or opcodes for
the various 2-80 instructions can be found in the
2-80 CPU Technical Manual published by Mostek and
2ilog along with an explanation of each. Note that
in the following text a tab was used to separate
the various fields; this is done in the Editor by
typing the CTRL-I on the console. Also note that
either upper-or lower-case are allowed. We now
type in the source code:

11

CROMEMCO MACRO ASSEMBLER

This program rings the console bell at approximately
half-second intervals determined by a timer loop.

BELL: EQU
EQU
EQU
EQU

7 console bell is ASCII 07
WRITE;
COOS;
TIMIT:

2
5
2FFH

,
write character to console
use system call to write

DURAT: EQU
,
; Ma in Prog ram

START;
LOOP;

TIM2:
TIM1;

;

LO
LO

LD
OEC
JR
OEC
JR
DJNZ
LO
LO
CALL
JP

Stack Area

BOTTOM;
STACK;

OS
EQU

0FFH

SP,STACK
BC,TIMIT

A,DURAT
A
NZ,TIMI
C
NZ , TIM2
TIM2
E,BELL
C,WRITE
COOS
LOOP

40H
$

END START

2 is no. of half-seconds;
FF (256) is no . of loops

; FF (256) is loop duration

initialize stack pointer
B is no. of half-sec.;

C is no. of loops
; get duration (256)

decrement and
loop til zero
decrement loop counter
unt il zero
countdown half-seconds

; set- up to ring bell
set-up to write console
call system
loop and repeat

; allow 64 bytes for stack
current location counter

equals top of stack

This code should be typed in exactly as it
appears here (although comments may be omitted if
desired). When the entire body of text has been
entered, end the Insert mode by pressing ESCape or
CTRL-Z. (You have left Insert mode when you again
get the asterisk prompt .) You now would like to
review what you have written to check for errors.
Move the character- pointer to the top of the file
by typing " B <CR> ". Then type out your file using
the T or P command. For example the command 10T
will type out 10 lines, or 0P will type out the
current page of 23 lines. The S or Substitute
command can now be used to make corrections . The
format of the command is:

S<oldtext>~[<newtext>Ar <CR>

12

•

CROMEMCO MACRO ASSEMBLER

where the ,, - [" character is an ESCape.
string for which you are substituting
exclusivei for example the command

SV[R~[

The tex t
must be

is not good because the
be changed to an " R" .
much better because the
of a kind string:

first " p " encountered will
The followi ng command i s
substitu t ion is for a one

The "-I " is the way EDIT prints CTRL - I's. When all
corrections have been made, you may Exit from the
Editor by typing " E (CR) " . When the " A. " prompt
is again displayed on the console , the created file
will have been saved on the disk under the filename
" TIMER. 280 " . If you desire mo r e i nformation about
editing files at this point, refe r to the Text
Editor Manual for complete descriptions of the
Editor commands. We will now proceed with
assembling the file.

The Assembler is called in a sim i la r manne r to
the Editor. The command line you should t ype is :

ASMB TIMER

The Assembler understands when it receives this
command line that it will find the source file on
the current drive, and that it will place the .REL
(relocatable) object file and .PRN (print) listing
file on the current drive as well. Our file
" TIMER.280" will now be assembled. When finished,
control will again be returned to CDOS and the " A. "
p r ompt given. Just prior to exiting, ASMB will
print on the console:

Er r o rs o

P rogram Length 005A (90)

end of assembl y

provided you have made no typing er r ors in editing
the file. If there a r e some errors, re-ed i t the
file and correct them as described above. Then re­
assemble as before. The numbers above give the
program length first in hexadec i mal and then
dec imal.

13

CROMEMCO MACRO ASSEMBLER

The Assembler will now have created the .REL
and .PRN files on the disk. If you would like a
listing of the program, type:

TYPE TIMER.PRN

and press CTRL -P (assuming you have a printer
correctly hooked up to parallel port 54H ; if you
have no printer, omit the CTRL-P) before typing the
carriage return. The listing will then be printed
on both the console and the pr inter. There is a
great deal of information contained in this
listing. Briefly, the listing consists of these
sections. The first column is the hexadecimal
address of the instruction, and the second column
may be one of three things: (1) the object code of
up to a four-byte instruction in hex, (2) the
object code of four bytes of data in hex , or (3)
the equivalent value of the ope r and expression in
parentheses. The third column gives the line
numbers of the source in decimal. The fourth,
fifth, and six th columns are the label, opcode , and
operand fields, r espectively.

The rest of each line contains the remark if
there is one. The complete listing which results
from the assembly of our given example source file
is given in Chapter 7 along with a detailed
description of every feature o f the listing.

The last step pr io r to r unning the
to load it into memory. This is done
CROMEMCO Linker/Loader. The command
should be typed is:

LINK TIMER

program is
using the
line that

The Linker will then prompt with an asterisk
(*) . This means that it is awaiting further
instructions. At this point you may either start
execution or exit to COOS, save the file, and
execute it as a command file . Let us choose the
second method. (For those who wish to try the
first method, simply type /G to the "*" prompt.)
To the asterisk type the characters IE which will
exit to CDOS. LINK will then print on the console
a message sim il ar to:

[1000 105A 16]

The first number is the starting address for

14

•

CROMEMCO MACRO ASSEMBLER

execution, the second number
highest add res s used by our
number gives the number of
create a command file. We
file by typing:

SAVE TIMER. COM 16

is one more than the
program, and the last
pages to be saved to
now create this .COM

Command files may be executed directly from
COOS simply by typing their name. They are then
loaded into memory beginning at l~~H and execution
begins there. The Linker has already placed the
necessary "J P 1~00H" for us at 10~H so we execute
the TIMER program simply by typing the word
"TIMER". The bell on your console should begin
ringing at approximately half-second intervals,
telling you that the machine language program we
have created is working!

Good assembly language programming practice
usually dictates that a program should be debugged
before executing it directly as we have done. By
this method the user can insert breakpoints to stop
execution so that the registers and memory contents
can be checked to determine if the program is
executing correctly. We have skipped the debugging
stage so as not to complicate the example
unnecessarily. However, when you create assembly
1 a ng uage pr 09 rams of your own, you can use th~
CROMEMCO Debugger program (DEBUG.COM) to execute it
using breakpoints. To do this you would first have
to save your program in a file as we have done
above ; then load it using DEBUG. See Part IlIon
the Debugger for several examples of the way to
debug a program.

The example program of this chapter is KNOWN
TO WORK if the source is created and assembled
according to the procedures outlined above. Should
you have any difficulties with any of the steps ,
try working through that step a second time. You
may also refer to the manual which describes that
function for a detailed description of the
procedure. This book is divided into a number of
dis tinct parts, which are listed in the table of
contents for reference. Parts I, II, and III are
the complete Assembler, Link, and Debug manuals,
respectively. Part IV is the COOS Programmer's
Manual, describing the many system calls which can
be made to CDOS for I/O and disk operations. Part
V is a description of the Library of relocatable

15

CROMEMCO MACRO ASSEMBLER

-'
modules which are supplied with the Assembler disk.

--/

16

CROMEMCO MACRO ASSEMBLER

CHAPTER 2: CALLING THE ASSEMBLER

The Assembler is called from disk simply by
typing "ASMB" followed by the filename of the
source code to be assembled. This sourcefile MUST
have the extension .280 to be found by the
Assembler, regardless of whether or not it consists
entirely of Z80 code. However, when calling ASMB,
the user may specify an optional 3-letter drive­
request for the filename which has NO relation to
the 3 - letter extension of the filename on disk.
Note that if this 3-letter drive instruction is
omitted, ASMB will default to the CURRENT drive for
all operations. This drive-request instruction is
of the form .QRS, where Q stands for one of the
letters, A, B, C, or 0, and is the drive on which
the SOURCE file is to be found; R stands for one of
the letters, A, B, C, 0, or Z, and is the drive on
which the relocatable OBJECT file is to be placed
during assembly (Z means do not create an object
file); and S stands for one of the letters, A, B,
C, 0, X, Y, or Z, and is the dr ive on which the
print-listing will be placed during assembly. In
the case of the print-listing Z means do not create
the listing, Y means send the listing to the
printer, and X means send the listing to the
console but not to the disk. Error messages will
as always be sent to the console if the Y
instruction is used. The Y instruction will start
and stop the printer at the correct times provided
the printer is turned on and selected before
assembly. This instruction has been provided for
those users having teletypes who would not wish to
have a listing sent to both the console and the
printer simultaneously. Note that you may use the
Control-P ("P) function of COOS, as always, to
cause the console listings to also be sent to a
printer. Also note that the relocatable object
file will be placed on the disk with the extension,
.REL, and the print-listing will be placed with the
.PRN extension.

the
An example will serve to illustrate

feat ures descr ibed above. Suppose the

17

further
file to

CROMEMCO MACRO ASSEMBLER

be assembled resides on disk drive A under the
filename USERFILE.Z80. If it is desired not to
have the .REL and .PRN files sent to drive A (for
lack of room on disk A, for example), the Assembler
might be called by the command line:

ASMB USERFILE . ABX <A p > <CR>

This will assemble the source file
create an object file on drive B,
print-listing to both the console and

on
and
the

drive A,
send the
printer.

A number of options may also be specified at
assembly time if desiredi their conventions are
described in detail in the following sections.
These options are specified s im ply by typing them
as part of the command line when calling ASMB ,
separated by spaces. Si nce there are quite a
number of options , it ' s possible to have the
command line exceed the line-length limit of the
terminal being used. If this is the case, a
Control-E (-E) may be issued to provide a physical
CR-LF so that the command line may be continued.
Note that a logical CR- LF (same as typing RETURN on
the console) terminate s the command and begins
assembly. If the terminal being used automatically
provides a logical CR- LF at the physical end of a
line, then a Control-E should be issued before the
end-o f - l ine has been reached. The total line
length is limited t o 128 c haracters by CDOS.

Options are specified only in the call to
ASMB. The only exceptions to this are the List
Options (see below), which may be used in slightly
different form as operands of the LIST pseudo- op.
Options may be specified in any order ; any number
of the allowable options may be specified at the
same time. Consider the following sample call of
the file THISFILE.Z80 by ASMB:

ASMB THISFILE RANGE PAGE=50 SYMB XREF OPCODE

Notice that the 3-letter drive-request instruction
was not used in this examplei this means that all
disk operations will involve the current drive.
The options specified ask ASMB to mark relative
jumps, format a listing page , and generate symbol
and cross reference tables. These are described in
more detail below under the respective options.

Throughout thi s manual , the symbols u< >" are

18

CROMEMCO MACRO ASSEMBLER

used to bracket quantities which are to be replaced
by user-quantities, usually names of files on the
disk. However, in NO cases are the bracket symbols
themselves to be entered with the quantity
involved. Also, throughout this manual, the
pseudo-ops are written in all-upper-case to set
them off. However, this does not mean that they
mus t be written this way in source-code. Both
upper-and lower-case are acceptable.

Options Specified When Calling ASMB

List Options

The List Options are similar to the operands
of the LIST pseudo-op which may be part of a source
file. However, the List Options as specified at
assembly time will overr ide ANY and ALL LIST items
given in source code. Following are the four
allowable List Options; they are specified by
typing the word(s) given here in the command line
calling ASMB. Note that if mistakenly both of a
pair Cond-Nocond or Gen-Nogen are specified, the
one which appears last on the command line has
precedence. An important point to note is that
NONE of the List Options changes the actual object
code assembled; they merely change what is sent to
the print-listing file on console or disk.

Cond

This option forces the generation and printing
of all blocks of code which are part of an IF
definition, whether the IF is true or false. The
default is Cond if no LIST pseudo-ops are present
in the source file; therefore, it would generally
be used as an option only to override all the
Nocond operands of LIST in the source . Note that
this has NO effect on whether the IFs are satisfied
or not.

19

CROMEMCO MACRO ASSEMBLER

Gen

This option forces the generation and printing
of the Macro which follows every Macro call. The
default is Gen if no LIST pseudo-ops are present in
the source file; therefore , it would generally be
used as an option only to override all the Nogen
operands of LIST in the source.

HEX and HEX=

The program LINK.COM supplied with this
ASSEMBLER package has the advantage of being able
to link in any order and load into memory a number
of relocatable modules. However, it has the
disadvantage that the final linked machine code
will be loaded beginning at the address 100H. The
Linker puts a jump instruction at 100H so that if
the program is saved as a command file (.COM), it
will still execute correctly from that location.
(Note that LINK locates any DATA areas BEFORE the
program and beginning at 100H; thus, program
execution may start at an address above 100H.)
This disadvantage of LINK may be partially
circumvented by assembling the source code as
ABSolute code which has been ORGed at an address in
memory at or above l00H; however, in this case the
program will no longer be in RELocatable format and
can thus not be linked to other modules.

For those users who wish to forgo
relocatabil i ty and would prefer instead to create
absolute code which may be ORGed anywhere in
memory, a non-relocating option for ASMB is now
included. This is the HEX or HEX= option , and is
specified when calling the Assembler. This section
is therefore in addition to Part I, Chapter 2 ,
Section I of the Assembler Instruction Manual
describing such options . The HEX option is given
on the command line which specifies a program to be
assembled, and informs the Assemble r to create a
.HEX output file INSTEAD OF a .REL (relocatable)
output file. This means that ASMB outputs the
object code to a file on the disk having the same
filename as that being assembled, but with the .H EX
extension. The object code is written to the disk
file in Intel hex format. Thus, it can NOT be
loaded into memory using LINK ; rather the CROMEMCO

20

CROMEMCO MACRO ASSEMBLER

Debugger program will load a hex-format object file
into memory provided it has the extension .HEX.
(Files having any othe r extens i on are loaded by
DEBUG exactly as they are sto r ed on the disk.)

The HEX= option is really an extension of the
HEX option described. It also causes the
generation of a .HEX output file; however, the
output file will be ORGed at the hex address
specified immediately following the " = " sign of the
option. The source program will remain so ORGed
ONLY until it encounte rs the first ORG pseudo-op of
the source program; that is to say , the ORG
statements of the source override the HEX= option.
However , there are advantages to be gained by
leaving any absolute ORG or ASS statements out of a
program , and then specifying the run address using
the HEX= option. For example, a program wh ich is
eventually to run out of ROM can be developed on
the same system in RAM by first assembling with a
RAM address , then working out any bugs, and finally
re-assembling with the correct run address for ROM .

Nocond

This option forces NO printing of I F or ENDIF
statements and NO print i ng of IF definitions (the
code following the IF) if the IF statement is
false . In other words if the IF statement equals
0, thus causing the code which is part of the IF
not to be assembled , the print-listing will
likewise not contain the unused IF code. If the IF
statement has a value other than 0 and is thus
true, the print-listing will not contain the IF or
ENDIF lines but will contain the code of the IF
definition ; therefore, the included portion of code
will appear contiguously with the rest of the
source code. The Nocond opt i on is u sed to override
all the Cond operands of LIST pseudo-ops in the
source file .

Nogen

This option forces NO printing of the code
following MACRO calls . However, NOTE that Macro
DEFINITIONS are always printed as are the Macro
CALLS themselves; it is only the code which the
Macros gene r ate , the Macro Expansions , which are
not printed. This opt i on prevents very long print-

21

CROMEMCO MACRO ASSEMBLER

listings when using multiple Macro calls. Since
the Macro code will not be printed, neither will
the object code which is printed on the same line;
however, Nogen does not in any way affect the
object code sent to the .REL file. The Nogen
option is used to override al l the Gen operands of
LIST pseudo- ops in the source file.

Macro=<d:filen ame. ext)

The Macro= option is one of the most powerful
features of the Assembler. It is used to specify
the name of a disk file which is to be searched to
satisfy any Macros required at assembly time.
During Pass 1, the Assembler forms a Mac r o
Definition Table (MDT) of the Macros defined in a
source program . (Remember that ASMB expects Macros
to be defined before they are called.) If the
Macro= option is specified , a table is formed of
the ADDRESSES of the Macros contained in this
library. NOw, when an opcode is encountered in a
source program , the MDT is the first place searched
to satisfy it. If it is not found there, the Macro
Address Table for the Macro Library (only when
using Macro=) is searched next; if the Macro is
found , then the Macro Defini tion is loaded into
memory from the disk. If the opcode is not found
in either of these places, the Opcode Defini ti on
Table (ODT) is searched last. Thus, because ASMB
searches for a Macro before an opcode , it is
possible to redefine 2-80 instruction s using Macros
(see the chapter on Macros). Another advantage of
this method of searching is that the entire Mac ro
Library specified does not become part of the
source code . Thus, you may speci fy a very large
Macro-library file , but only those Macros actual l y
used are included in the assembled code. Note that
this is dif f e r ent from the INCLUDE pseudo-op in
that the INC LUDE would include the entire file ,
needed or not .

The Macro= command should be typed exactly as
shown above , where the user would insert following
the "=", the filename . ext to be searched. The "d:"
represents the disk drive letter (on e of A-D) and
is optional; if not specified , ASMB defaults to the
current drive in its search for the Macro file .
The default for the Macro= option is , of course , no
Macro file searched; however, this does not in any

22

CROMEMCO MACRO ASSEMBLER

way affect the manner in which Macros intrinsic to
the source code are handled.

Opcode

The Opcode option, when specified, will create
a cross reference listing of OPCODES and MACROS
used, which will be sent to the console or disk
following the assembled-code listing. This cross
reference contains all of the opcodes used in the
assembled program along with the Macro names used,
in alphabetical order, and the line numbers of
their definitions and places of occurrence. The
first column following the column of opcodes and
labels is reserved for the line numbers of the
definition points of Macros, and is thus blank for
the opcodes. Subsequent entries contain the line
numbers of the places of occurrence of opcodes and
Macros. Note that opcode cross reference listings
are limited in width by the Width option. A line
will be stopped at the last complete entry which
will fit the specified width and will be continued
on the next line. The Opcode option is very useful
for debugging purposes as it allows you to find all
the occurrences of a particular opcode very
quickly. The default is no-Opcode cross reference
table.

The Opcode Cross Reference is implemented by a
disk sort. This means that when this option is
selected, ASMB creates a file on the CURRENT drive
called <filename>.$$0 where filename is the file
being assembled. Then, when assembly and the
opcode cross reference are complete, this file is
deleted from the disk. Note that if the current
dr ive does not have room for the opcode temporary
file, an error message is printed and assembly is
aborted (see also "write error" in the error
message chapter).

Page=<number decimal lines/page>

The Page option is used when generating a
printer-listing to cause the Assembler to calculate
and display a specified number of lines per page.
At the top of each page ASMB will also print a
heading, a title if specified, and a page number.
Note that even if several lines are longer than the
Width specification and wrap around, the Page

23

CROMEMCO MACRO ASSEMBLER

function will count these correctly, and will list
the exact number of lines specified per page
(including the heading). The default value is 60
and the limits are 10 to 254 lines. Note that the
page=, Top=, and Width= options must be typed
exactly as shown (no spaces) in order to be
interpreted correctly.

Parity

The Parity option is normally specified when
assembling code which was originally 8080 code and
has been entered using 280 mnemonics. This is
because the 280 and 8080 microprocessors treat the
parity flag slightly differently and the 280 may
not execute 8080 parity instructions correctly (the
280 treats parity as an overflow flag after
arithmetic instructions). By specifying the Parity
option, the user will be warned in the assembled
listing of possible problems along this line by the
letter 'pi preceding the line numbers of the
affected lines. It is up to the user to determine
whether or not the parity flag is used correctly in
a given situation. The instructions which will be
marked a~e: JP PE,nn; JP PO,nn; CALL PE , nn; CALL
PO,nn; RET PE; and RET PO. The default is no­
Pa~ity.

Range

The Range option is used to have the Assemble~
tell you all those places in code which currently
use absolute jumps which a~e "within range" for
doing relative jumps. When specified, the line
numbers of the affected jumps will be preceded by
the character "R". Thus, the next time the code is
edited for changes, the corresponding absolute
jumps may be replaced by relative jumps. Note that
the Assembler itself does NOT make the
replacements. The default is no-Range option.

Symbol or Symb

The Symbol option is used to cause the
Assembler to print the symbol table followi ng the
listing. The symbol table lists all program or
data label names in alphabetical order from left to
right in rows, and the hex address which is the

24

CROMEMCO MACRO ASSEMBLER

value of the label used by the Assembler followed
by the type of code segment there. For example the
entry:

LABEL 00A7'

means that LABEL has the value 00A7 in the
relative-code program area. (The symbols #, * , " ,
and I are defined in the section on code segments.)
If the label belongs to an EXTernal, the address
given is that of its last OCCURRENCE in the present
module, rather than its actual value. Similarly,
for a label defined by a OL (see Define Label), the
value listed in the symbol table is its last value
to occur in the source code. The width of the
symbol table in a printer listing will be the same
as that of the code listing preceding it; however,
the line length of the symbol table will be limi t ed
to include the last full label name and address
which can be fit within that width. The default is
no-Symb table option.

Top=<no. dec. lines before top>

The Top option is used to specify the number
of lines between the last line of one page and the
top or first line of the next page when creating
printer listings. This feature may be used to
specify the spacing between pages when creating
listings. If the value 0 is specified, formfeeds
are issued to the printer at the end of each page.
This is the default value and is the one ordinarily
used. Notice that the values of Page+Top should
equal the number of lines desired per page of
printed text. The limits are 0 to 255 lines.

Width=<number decimal columns>

The Width option is used to specify the number
of characters of printed text which will appear per
line of a listing. This feature is used to allow
the use of different widths of paper in printer
listings or to allow for terminals capable of
displaying di fferent numbers of characters per
line. The default value is 79, which should
accommodate all 80-character terminals. The limits
are 39 to 255 characters. If lines longer than
that specified are written, they will wrap around
and be continued on the next line of the listing.

25

CROMEMCO MACRO ASSEMBLER

Note that
opcode and
limited by

Xref

the symbol table, error listing, and
label cross reference tables are also

the width specification.

The Xref option, when specified, will create a
cross reference listing which will be sent to the
console, printer, or disk (as specified) following
the assembled-code listing. This cross reference
contains each of the label names used in the
assembled program, the line number of its
definition, and the line numbers in numerical order
of each of its places of occurrence. The first
column following the column of labels is the column
of line numbers of their definitions. Note that if
DL's (Define Labels) are used in the source code,
those label names may be defined more than once.
Thus, in the cross reference listing, the
subsequent defining line numbers are preceded by a I,' to set them off. Do NOT confuse this with the
'#' for Data areas defined elsewhere. The ENTRY
pseudo-op will also generate a doubly defined
label, once at the ENTRY point itself and once
where the label is actually defined. The Xref
option is very useful for debugging purposes as it
provides an alphabetical listing of the locations
of every label used in a program. The default is
no-Xref table. Note that cross reference listings
are limited in width by the Width option and that a
line will be limited to the last complete entry
which will fit within that specification; entries
will then be continued on succeeding lines.

The Xref Cross Reference is implemented by a
disk sort. This means that when this option is
sel ected, ASMB c rea tes a file on the CURRENT d rive
called <filename).$$$ where filename is the file
being assembled. Then, when assembly and the cross
reference are complete, this file is deleted from
the disk. Note that if the current drive does not
have room for the cross reference temporary file,
an error message is printed and assembly is aborted
(see also "write error" in Chapter 6).

26

CROMEMCO MACRO ASSEMBLER

Summary of Defaults and Limits

The default values and
options are summari ze d
reference .

Defaults
\

limits of
here for

the above
convenient

In the absence of specified options , ASMB will
default to these values: no-Range, no - Parity, no­
Xref , no - Symb, no Macro= , no-Opcode, Page=60 lines ,
Top=0 (formfeed), Width =79 characters, default to
List options specified within source code as
operands o f the LIST pseudo- op.

Limits

The paper-managing options f or generati ng
printer listings are limi t ed to the foll o wing
values : Page= 10 through 254 lines, Top= 0
(f ormfeed) through 255 lines, Width= 39 to 255
characters. The lowe r limits on Page and Width ar e
imposed to ass u re that at least some code is
printed on each page.

27

8l

H~18W3SSV OBJVW OJW3WOHJ

CROMEMCO MACRO ASSEMBLER

CHAPTER 3 : ASSEMBLER FIELDS

The Assembler recognizes four fields o r
different types of expressions. These are:
labels, opcode mnemonics, operands, and remarks.
The conventions which apply in the use of these
four fields are given below following remarks on
the syntax of ASMB. Any two of the four fields
must be separated from each other by at least one
delimiter ; these are: a tab , a space, a colon
(after labels only), a semi-colon (before r emarks
only) , or a CR-LF (to terminate lines). Multiple
delimiters may be used to impr ove readability.

Characters and Line Length

The Assembler accepts any printable ASCII
characters in lines of code . Specifically , this
means any ASCII character having a hex value
between 2@H and 7EH inclusive. In addition the
three control characte r s , CTRL-I, CTRL-N, and CR
are also recognized (" I is the t ab character which
is translated into up to eight spaces by ASMB, "N
is the character to expand a line on the printer ,
and CR is a carriage return). NO other control­
characters are recognized by ASMB . The maximum
length of a line accepted by the Assembler is 810
characters , where the last character is the CR.
Lines having more than 810 characters will be
trunc a ted.

Upper and Lower Case

It would be good to mention at this point that
the Assembler will accept ALL commands , options,
opcodes, pseudo-ops, filenames , or any of the other
Input it requires in both upper and lower case or a
combination of the two. This means that source
code files may be entirely lower case and will
still be unde r stood by ASMB. However, even though
internally ASMB treats them the same, when listing
out the opcode and cross reference tables, because

29

CROMEMCO MACRO ASSEMBLER

of the sort routine used, there will be as many
different entries as the r e are variations in the
label or opcode used. For example , the label BEGIN
will be a separate entry from the label Beg i n.
This is actually a useful feature i it is possible
to have sections of cod e which use the same data
labels, but still have the ENTRIES in the cross
reference table remain separate. Thus, it is
easier for the user to keep track of the two
sections while debugging. Note that the two labels
ar e ALWAYS equivalent to the Assemble r.

Names (Labels)

Names a re considered to be the labels of all
instructions as well as the operands of pseudo-ops
such as ENTR Y, EXT , and NAME. Lab e ls may be as
long as desired (if all on one line)i however , only
up to the first 6 characters are used by the
assembler . Thus , the fi rst six characters of a
label may not be duplicated in another label. The
first character of a label must be an alphabetic
character or " . " or "$"i the remain ing characters
may be n.", " $ ", or any alphanumeric (A-Z , a - z , 0-
9). The del i miter for a label is generally a
colon-space, colon- tab , or a colon-CR-LF. However ,
the colon may be eliminated IF the label begins in
column one . Note that this means that opcode
mnemonics may NOT begin in column one . The operand
may follow the colon immediately if desired.

The following
Assembler considers

labels are
them to be

ABC D E F H L I R
AF BC DE HL SP IX IY

ill egal
register

because
names:

the

These symbols are also illegal if written in lower­
case.

30

CROMEMCO MACRO ASSEMBLER

Opcode Mnemonics

The ASMB Assembler recognizes all standard Z-
80 mnemonics. For the reader who does not have
familiarity with these, they are well documented in
the Z-80 CPU Techn ical Manual publ i shed by both
Zilog and Mostek. The following mnemonics are
recognized by ASMB in BOTH the forms shown. ASMB
recognizes these opcodes in the form published by
Zilog and Mostek:

ADC A,s; ADD A,n; ADD A,r; ADD A,(HL); ADD A,(IX+d);
ADD A, (IY+d); SBC A,s; IN A,(n); OUT (n) ,A.

ASMB also recognizes them in this abbreviated form:

ADC s; ADD n; ADD r; ADD (HL); ADD (IX+d); ADD (IY+d);
SBC s; IN A,n; OUT n,A.

In addition the Assembler will allow either of the
formats shown for the following four instructions:

1M
1M
1M
DJNZ

o
1
2
nn

or
or
or
or

1M0
1M1
1M2
DJNZ ,nn

Opcodes may begin on any column of a line
EXCEPT column one. They may be preceded by a
label. They must be followed by a space or tab as
a delimiter between the opcode and the operands, or
if there are no operands and no remarks, the line
is terminated by a CR-LF.

Pseudo-opcodes are a special form recognized
only by the Assembler and for which no object code
is generated. The conventions of ASMB for pseudo­
ops are described in other sections. Some of the
common ones are ORG, EQU, EXT, ENTRY, DEFB, DEFS,
DEFM, and END.

A special type of opcode is the MACRO name;
when this is listed in a column of source code,
ASMB will insert the corresponding code of the
MACRO at assembly time. For more information on
this see the description of MACROs in Chapter 5.

31

CROMEMCO MACRO ASSEMBLER

Operands

Operands may consist of register names,
constants, label names, or expressions. Register
names include all standard 2-80 registers. These
are documented in the 2-80 CPU Technical Manual
published by 2ilog and Mostek for the reader who is
not familiar with their names or purposes.
Constants consist of one of the five types outlined
in the Constants section below. Names may include
DATA labels, program segment labels, subroutine
names, COMmon names, EXTernals, ENTRY names, EQUate
statement labels, or the like; they must be set up
as described in the Names section above. NOTE that
names of Macros may not be used as .operands;
instead, they are used as opcodes and the assembler
will substitute the correct code at assembly time.
Also note that "operands" for statements such as
the TITLE and *INCLUDE statements are not operands
in the sense descr ibed here and are subject to
other restrictions.

Constants

ASMB allows binary, octal, hexadecimal,
decimal, and ASCII constants according to the
following conventions:

Binary - Numbers formed from binary digits
(0,l) and terminated by the character 'B'.

Range:
11111111111111118(=n(=11111111111111118.
Example: LD BC,10l0ll0llll0l0B

Octal - Numbers formed from octal digits (0-7)
and terminated by the character 'Q'

Range: -177777Q<=n<=177777Q.
Example: LD BC,25572Q

Hex - Numbers formed from hexadecimal digits
(0 - 9 and A-F) and terminated by the character
'H'. A hex number beginning with a letter
MUST be preceded by a '0' to distinguish it
from a label or register name.

Range: -0FFFFH<=n<=0FFFFH.
Example: LD BC,2B7AH

32

CROMEMCO MACRO ASSEMBLER

Decimal - Numbers formed from decimal digits
(13-9) and EITHER left unterminated or

terminated by the character ID ' .
Range : - 65535<=n<=65535.
Example : LD BC , 11130

ASCII - Numbers represented by the ASCII
character(s) itself (themselves) enclosed in
single quotes .

Range: ' through .-1 which amounts to
the values 2121H through 7EH , including all
alphanumerics and punctuation.
Example: LD BC , '+z'

Note that each of the previous
produce the sa~value in the BC
assembly and execution.

exampl es
register

Current Program Counter - $

will
upon

The " $" character may be used in the operand
of any opcode allowing expressions as operands.
The " $" is used to represent the current location
counter of the Assembler. Note that "$ " points to
the BEGINNING of the instruction which contains it
and not to the end. An exampl e of the way t o use
it is:

DATA:
COUNT:

DB
EQU

121,11,3 , 2,7,24,17
$-DATA

The name COUNT thus has the value of seven, because
this is the number of entries in DATA (the address
of DATA subtracted from the current location). Now
elsewhere in the source program , the name COUNT can
be used to stand for the number of entries in DATA.
There is great advantage to this representation; if
it becomes necessary to change the number of
entries of DATA and re-assemble, the value of COUNT
will be changed automatically. Whereas if an
absolute 7 were used instead of COUNT, every
occurrence of the 7 in the source program would
have to be changed.

The " $ " is often used in another way which is
actually poor programming practice. That is t o use
the " $" in a relative jump instruction. The best
way to handle relative jumps is to label the
location to be jumped to, and use this label as the
operand of the jump instruction. ASMB will then

33

CROMEMCO MACRO ASSEMBLER

calculate the correct
error " in Chapter 6).
the location counter
instruction.

displacement (see also "range
Remember that " $ " represents

at the start of the CURRENT

Expressions and Operators

The Assembler allows expressions to be used as
operands, which it evaluates at assembly time and
places the calculated values in the object code.
These expressions may be used in place of either
address or constant operands, provided they do not
evaluate to an illegal quantity. The following
operators may be used to form expressions.
Operators which are symbols (eg, " + ") should NOT be
separated from their operands by a space.
Operators written as one or more letters MUST be
separated from their operands by a space . It is
sometimes desirable to group operations; however,
parentheses could cause confusion since they are
also used for memory references. Therefore,
brackets ("[" and "] ") are also acceptable to group
the operands of expressions. Parentheses may be
used provided they do not begin an expression or
enclose one. Some examples will illustrate this;
the following are legal expressions, but they may
be different from what the programmer wished:

LD
LD

A, (X+Y)/Z
BC, (Q+R-S)

In the first example the "/Z" is ignored and the
expression eva l uates to the contents of the address
X+Y. The expression of the second example means
the contents o f the address given by Q+R - S. These
examples may be rewritten s l ightly to change their
meanings:

LD
LD

A, [X+Yj/Z
Be, [Q+R- Sj

Now in the f irst example, the QUANTITY of X added
to Y and divided by Z is loaded into A, and not the
CONTENTS of this address. In the second example
also, the brackets mean QUANTITY, whereas
parentheses would mean CONTENTS. (Note that
nei ther brackets nor parentheses a r e required in
this example.) An example in which either
parentheses or brackets may be used because the
meaning is not ambiguous is:

34

CROMEMCO MACRO ASSEMBLER

ADD A, Zj(X+Y)

The following lists
expressions along wi th an

the legal operators
explanation of each:

fo r

+ Addi tion or plus - binary or unary

Subtraction or Negative - binary or unary

* Multiplication

/ Division

MOD Modulus - compute the remainder of a division
X MOD Y is defined to be X-(Y*INT(XjY»
if X=23 and Y=7 then X MOD Y=2

> or GT Greater Than - true if the left operand is
greater than the right operand

GE Greater Than or Equal - true if the left operand
greater than or equal to the right operand

< or LT Less Than - true if the left operand is
less than the right operand

LE Less Than or Equal - true if the left operand is
less than or equal to the right operand

= or EO Equals - true if the left and right
operands are equal

NE Not Equal - true if the left and right
operands are not equal

SHL n

SHR n

Shift Left Logical - shift n places
if X=2AH then X SHL 1=54H

Shift RIGHT Logical - shift n places
if X=2AH then X SHR 2=0AH

NOT Logical Not - unary

AND Logical And
if X=C0H and Y=47H then X AND Y=40H

OR Logical Or
if X=C0H and Y=47H then X OR Y=C7H

XOR Exclusive Or
if X=C0H and Y=47H then X XOR Y=87H

35

is

CROMEMCO MACRO ASSEMBLER

ASMB considers these operators to have a hierarchy
that determines which take precedence over others .
The list which follows gives this hierarchy,
progressing downward from those of highest priority
to those o f lowest priority; all those operations
on any given line are of e qual priority. Thus,
operators which are on the same line of the
hierarchy would be evaluated from left to right as
they occur in an expression. However, operators or
parts of expressions enclosed in parentheses or
brackets are evaluated first , beginning with the
innermost set. The hierarchy is:

* /,
+, -
+ , -
NOT
AND
OR ,XOR

MOD, SHL , SHR
(unary)
(binary)
(unary)

>, <, =, GT, LT, EQ , NE , LE , GE

All operations not marked are assumed to be
binary. If the resul t of an expression is 0, the
expression is false; if the result of an expression
is other than 0 (speci f ically - 1) , the expression
is true. Also two operands which are equal result
in a true expression; two that are not equal result
in a false expression. This information is
important for determining how to satisfy the IF
operand. See the chapter on Condi tional Assembly
and Macros for more information on the IF
statement. Also, see the chapter on Error Messages
(specifically "Expression Error") for information
on which of the above operators may be used wi th
labels belonging to relative (REL) program
segments.

Remarks

The remarks field is free - format including any
pr intable ASCII characters as long as the comment
is preceded by a ' . , The remark may fo llow an ,
opcode, operand, or label or may exi st on a line by
itself. The ' . , may be in column one if it is
desired to have the remark on a line by itself.
Multiple blanks or tabs may be used before or

36

CROMEMCO MACRO ASSEMBLER

within the remark to improve readability. A CR-LF
terminates the remark. Remarks may appear on any
line, i.e., following any of the legal opcodes or
pseudo-ops except TITLE and FORM.

37

8£

H318W3SSV OH~VW OJW3WOHJ

CROMEMCO MACRO ASSEMBLER

CHAPTER 4,
PSEUDO OPCODES RECOGNIZED BY THE ASSEMBLER

The following section contains an alphabetical
list of the pseudo-ops recognized by ASMB. They
are all listed here for convenient reference;
however, several of the pseudo-ops are described in
other sections. Certain of the pseudo-ops require
labels; others require no label. More information
on thi s may be found under "missing label " and
" label not allowed " in the chapter on error
messages. Macros and Conditional Assembly are
explained in detail in a separate chapter.

Alphabetical List of Pseudo-ops

ASS (Absolute code segment)

The ASS pseudn-op is described
Code Segments section at the end of

COM (COMmon code segment)

The COM pseudo-op is described
Code Segments section at the end of

DATA (Data code segment)

The DATA pseudo-op is described
Code Segments section at the end of

DB or DEFS (Define Byte)

in the Source
this chapter.

in the Source
this chapter.

in the Source
this chapter.

The DB pseudo-op is used to tell the Assembler
to reserve a byte or string of bytes as data in the
object code. The bytes may be specified using any

39

'~---

CROMEMCO MACRO ASSEMBLER

of the forms o f constants described in the
Constants section of Chapter 3, or as a series of
labels which have been previously defined or
EQUated to a value. NOTE that if the value of the
label or constant exceeds the range \11 to FFH (or
its equivalent representation in decimal, octal, or
binary), the DB will generate an expression error
and insert a null. Also note that either of the
terms DB or DEFB may be used. The format of the DB
pseudo-op is:

<Label:> DB <Item or List of Items>

where the label is optional and the item or list is
any of: a byte, a str ing of bytes separated by
commas, a string of ASCII characters, or an
expression or string of expressions following the
rules for expressions outlined in Chapter 3 (note
that the expression must be equivalent to an
absolute byte). The length of the string of bytes
is limited by the length of a line for ASMB (8\11
total characters). A string of ASCII characters
must be enclosed in single quotes. If it is
desired to represent the single quote itself in a
string, it must be given as two adjacent single
quotes (II). Some examples will illustrate the use
of DB:

DB Ihow are yoU?1 (the string will be
converted to ASCII
bytes and stored in
consecutive memory
locations in the object
code)

DB -2, - 4,-6 , 10 , 11,17 (in order the hex bytes
which will be stored
are: FE, FC, F'A, 0A,
\1IB, 11)

DL or DEFL (Define Label)

The OL pseudo-op is sim il ar to the EQUa te
statement and is used to define the value of a
label. The major difference between OL and EQU is
that OL can be used to set a label to different
va 1 ue s at different times in the assembly of a
particular program. The fo rma t of OL is:

<Label:> DL (Expression>

40

CROMEMCO MACRO ASSEMBLER

where both the label and the expression are
required. The expression may be in the form of
another label or an arithmetic expression which is
a combination of names or constants and which
follows the conventions for expressions outlined in
Chapter 3. However, note that the expression can
NOT be a string of bytes , nor can the expression
use any EXTernal names. The DL command is exactly
like the SET pseudo-op of some other assemblers.
An example of its use follows:

START:

COUNT

COUNT

LD

DL
LD

DL
LD

END

S P, • ••

4
A,COUNT

COUNT-I
B,COUNT

START

In this example COUNT is redefined later in the
source program from its original value. Note that
only the original definition of COUNT need be
changed for both of them to be changed upon re­
assembly.

It ' s important to note here that the DL
command is quite unlike the DB, OM, OS, and OW
commands although their formats are all similar .
These other commands all cause the Assembler to
reserve a specified number of bytes in the object
code, whereas DL is an Assembler DIRECTIVE, but
does NOT reserve any bytes. The DL statement is
used to define a value or values internally to
ASMB.

OM or DEFM (Define Message)

The OM pseudo-op is similar to the DB pseudo­
op except that the OM command sets the high bit
(Bit 7) of the last byte in the string of bytes
following the command, when this string is
converted to object code . This is a very
convenient feature for defining ASCII strings (in
which Bit 7 is not used) , provided the user-program

41

CROMEMCO MACRO ASSEMBLER

tests this bit to determine the end of a st ring.
Note that the DB command leaves the high bit of the
last byte unchanged. The format of DM is:

<Label :> OM <Item o r List of Items>

where the label is optional and the item or list is
any of: a byte , a string of bytes , a string of
ASCII characters , or any expression or string of
expressions following the rules for expressions
outlined in Chapter 3 (expression must evaluate to
be a - bi t absolute , however). As was the case for
DB, a string of ASCII characters must be enclosed
in single quotes (') . If it is desired to
represent the single quote itself in a string , it
must be given as two adjacent single quotes. An
example of the use of OM is:

EQU
EQU

0DH
0AH

STRING: OM 'this is a string ' ,CR,LF

In this example the last byte of the string (LF o r
"'AH) would be placed in the object code as BAH with
the high bi t set. Note that the length of a OM
command is limited to the 80-character total line
length of ASMB . Allowing for a space in column 1,
the characters " OM ", a space , the opening ''''', and
the CR at the end of the line i this means that the
maximum length of a single string using the OM
command is 74 characters. However, preceding DB
statements may be used to accommodate l onger
str ings.

OS or OEFS (Define Storage)

The OS
to reserve
obj ect code
insert any
bytes. The

pseudo-op is used to tell the Assembler
a specified number of bytes in the
fo r storage. Note that ASMB will not
particular values in these reserved

format of the DS command is :

<Label:> OS <Expression>

where the label is optional and the expression is
either a cons tant or an expression which evaluates
to an absolute and which follows the rules for

42

CROMEMCO MACRO ASSEMBLER

expressions outlined in Chapter 3. please note
that all the terms of the expression used MUST have
been prev iousl y defined in the source code or an
error will result. A constant value of 1 causes
ASMB to r eserve one byte . An example of DS is :

ADDRSTABL : os 2e

in which 20 bytes are reserved by a program to be
used as an Address Table of 10 entries (two bytes
per entry) . Note that ei ther of the terms DS or
DEFS is allowed by the Assembler.

DW or DEFW (Define Word)

The DW pseudo- op is used to tell the Assembler to
reserve a word or string of words in the object
code . A word is defined to be 2 bytes . Thus , the
DW pseudo- op might be used to specify a look - up
table of absolute addresses . The words may be
specified using any of the forms of constants
described in the Constants section above, or a
label which has been previously defined or EQUated
to a word . Note that either of the terms DW or
DEFW is recogni zed by ASMB . Also note that the
Assembler places the low byte FIRST, treating every
word of two bytes as though it were an address.
Fo r exampl e, the wo r d " 0C923H " would appear in the
object file as the two bytes , " 23H " followed by
" C9H " . Likewise, if LABELl had been previously
defined as " 0C923H ", a " DW LABELl " would generate
the same two bytes , " 23H " followed by " C9H " . This
follows the conventions described elsewhe re for
expressions or labels used as operands anywhe re in
the source code . In general the DW pseudo-op is
associated with addresses and the DB statement with
data; however , this is by no means an absolute.
The DW pseudo-op is a very convenient way for
entering addresses because the user does not need
to keep track of placing the low byte before the
high byte ; simply enter an address as it is
written. The format of DW is :

<Label:> DW <Item or List of Items>

where the label is optional and the item or 1 i st is
any of: a wo rd , a string of wordS , or an
expression or string of expressions following the
rules for expressions outlined in Chapter 3 and
eva l ua ting to an abso lu te word or string of wo rds .

43

CROMEMCO MACRO ASSEMBLER

The length of the string of words is limited to the
8~-character total line l,ength expected by ASMB.
However, successive ow commands may be given to
accommodate longer tables of words.

Unlike the DB statement, an expression which
exceeds the legal range for a ow will not cause an
"expression error". Instead, the expression will
be evaluated modulus 65,536. See " value error" in
the chapter on error messages for a further
explanation of this. Note, however, that with the
ow statement ASCII character strings longer than
two bytes are not allowed . Some examples will
illustrate these ideas:

ow 'AA'

ow ' A'

ow 'ABC'

(evaluates to 4141H)

(evaluates to 0041H)

(illegal
longer than

expression
one word)

OW 1~0H,IACH,-814 (multiple expressions,
evaluates to the hex
bytes, in order: ~0, ~l,

AC, 01, D2, FC)

END (End of assembly)

The
assembly
END is:

END
of a

pseudo-op is
block of source

used
code.

<Label:> END <Expression>

to
The

terminate
format of

where the label is optional and the expression is
subject to these rules: ONLY the main module of a
program should have an expression or name
following, and this module MUST have this
expression. The expression should be equivalent to
the entry point of the module at which execution
will begin. All other :nodules are then terminated
with the END statement alone and are thus
considered by ASMB to be sub-modules. The reason
for this convention is that the Linker/Loader must
know i:1 which of the modules and at what address to
begin execution. The quantity in the Expression
may contain any legal operators (see section on
Expressions in Chapter 3). Following is a sample

44

CROMEMCO MACRO ASSEMBLER

use of the END statement to terminate assembly of a
ma i n mod ul e :

MAIN:
ENTRY
LD

MAIN
SP,1800H

END MAIN

whereas this example shows termination of a sub­
module to be linked to the main module:

EXT
BEGIN, LD

END

MAIN
A,10

The END command is a signal to the Assembler
that a logical body of code is complete.
Therefore, only one END statement should appear in
a module. Should the END appear in the middle of a
block of code, everything following the statement
will be ignored by ASMB.

ENDIF (END of IF definition)

The ENDIF pseudo-op is used to terminate
Conditional Assembly of a block of code which
follows an IF statement. The formats of IF and
ENDIF are described in detail in the follOWIng
chapter on Macro and Conditional Assembly.

ENTRY (Entry point for these modules)

A program module may be assembled with
unresolved addresses providing they are declared
EXTernal in that module. Any address declared
EXTernal to one module must be declared an ENTRY in
another module. These two modules are eventually
linked. Since these addresses are unresolved, they
are represented in the EXT and ENTRY statements as
label names. The names then become a part of the
.REL file. The Linker/Loader reads the .REL files
at run time, determines the unresolved addresses,
and places their correct values in those bytes
which expect the addresses. If the Linker is
unable to resolve an address, it prints the
undefined label name on the console followed by an

45

CROMEMCO MACRO ASSEMBLER

asterisk (see Part II fo r more infonnation on
LINK) "

The ENTRY pseudo-op is used to declare in a
source-file that that file contains the entry
point(s) of the listed names. These names may be
label names of subroutines , or program or data
blocks. The format of the ENTRY command is:

(no label) ENTRY <Namel,Name2, •.• >

The number of names used as opera nd s of the
ENTRY pseudo-op is limited only by the total line
length (80 characters). Extra names in ENTRY not
actually defined in the source- file will produce
the error message " undefined symbol ". ENTRYs may
appear any\ ... here within a program module, but are
typically written at the top of a file to be easily
seen in the pr int-listing . ENTRY labels (standing
for cor r esponding addresses) can be referenced by
any other module which declares those names to be
EXTernal (see EXT section) . Refer to Part II on
the Linker for information on linking these modules
at run time.

Below is an
ENTRY statement
table of data :

exampl e of
to demark

a module which uses an
two subroutines and a

ENTRY METHIC , ENGLIS,CONTBL
METRIC: ;metric-to-English conversions

RET
ENGLIS: ;English-to-metric conversions

RET
CON"rSL, ;conversions table

END

The corresponding example
which calls these subroutines
description of EXTernals.

o f a prog ram modul e
is given with the

EQU (Eguate)

The EQU pseudo-op is used to
Assembler that two named quantities are
The format of EQU is:

<Label:> EQU <Item>

46

info:-m the
equivalent .

CROMEMCO MACRO ASSEMBLER

whe re the label is required and the item is any of:
a constant, an address , a label, or an expression
following the rules given in Chapter 3. Note that
all the terms of the expression MUST have been
previously defined. Also, the expression may NOT
involve the names of any EXTernals .

The EQU statement is used to equate a label to
a particular value. Once this label is defined, it
is defined for the entire sou rc e program. The DEFL
command shQuld be used fo r labels which are to
change within a module. EQU is a useful statement
for simplifying or clarifying source code. For
example suppose the ASCII characters for carriage
return (CR) and line feed (LF) were to be used
th roughout a source program . Instead of using
their values, a clearer procedure would be to enter
the lines:

CR:
LF :

somewhere
names " CR"

EQU
EQU

ODH
0AH

in the source program and then
and" LF" to stand for the values

STRING: DB ' end of text' ,C R,LF

use the
as in:

The EQ U statement is also very valuable for
changing a quantity quickly and in all places.
Suppose that it is desired to test a program with
different values for a timer . Suppose further that
this value is used 1 0 times throughout the source
code. If the original value is used in p.ach of
those 10 places, then all 10 will have to be
changed to change the timer. However, if each of
the 10 places uses the label " TIMER" and the
following statement appears somewhere in the
module:

TIMER: EQU <value>

then this statement can very easily be changed by
ed iting. This assures upon re-assembly that all
the places TIMER occurs will be chang ed.

EXT or EXTRN (these modules External)

with
u sed

Using ASMB,
unresolved
to declare

program modules may be assembled
addresses . The EXT pseudo-op is
in a source-file that that file

47

CROMEMCO MACRO ASSEMBLER

must depend on some other module(s) to sat isfy
certain EXTernal names. The EXT and corresponding
ENTRY names become parts of the two . REL files; the
addresses are then resolved at run time. Further
information about this is described in the first
paragraph under the ENTRY pseudo-op i information
about linking and running files is given in Part II
on the Linker. The format of the EXT command is:

(no label) EXT (Namel , Name2, ... >

whe r e the names may be label names of subroutines ,
or program or data blocks . Note that Module Names
under the NAME pseudo-op may NOT be used in the EXT
fields of other modules. The number of names used
as opera nds in an EXT pseudo- op is limited only by
the total line length of ASMB (80 characters) .
Either of the forms EXT or EXTRN is accepted by the
Assembler. EXTs may appear anywhere wi thin a
program module , but are typically wri tten at the
top of a file to be easily seen in the print­
listing. When the assembled modules are linked and
run, all EXTs must be satisfied by corresponding
ENTRYs in othe r modules or the Linker will return
an error message.

It is important to note that label names
declared EXTernal to a modu l e may be used as
operands within the module, but may NOT be used in
expressions. For example the following lines would
be legal :

EXT COUNT

LD A, COUNT

whereas the following would be illegal and generate
an error:

EXT COUNT

LD A,COUNT+3

Also note that a label name declared as an EXTernal
to a module may NOT be redefined (i .e . , used in the
label field) within that module.

48

CROMEMCO MACRO ASSEMBLER

Below is an example of a module which uses an
EXTernal statement to declare the names of two
outside subroutines and a table of data:

EXT METRIC,ENGLIS,CONTBL
START:

LD
LD
CALL

INC
LD
CALL
END

HL, CONTBL
A, (HL)
METRIC

HL
A, (HL)
ENGLIS
START

'fhe corresponding example of
contains these subroutines is
description of ENTRY pseudo-ops.

FORM (paper Formfeed)

the module which
given with the

The FORM command is used to advance the paper
in a print listing to the top of the next page.
The format of FORM is:

(no label) FORM (no operands)

FORM is used for clarity in a print-listing,
as the beginning of a routine can be more clearly
identified if it starts at the top of a page. The
FORM command in the source code will not be printed
on the listing. Multiple FORM commands may also be
used; however, each page will be numbered and
t i tl ed by ASMB. The command "EJECT" may be used in
exactly the same way as FORM to force a paper-feed
to the top of the next page.

The Assembler implements FORN by issuing a
series of linefeeds to the printer; the numbe r of
linefeeds needed to reach the next page is
determined by ASMB from the TOP~ and PAGE= options.
The only exception to this is that when TOP=~ has
been selected, an actual formfeed character is
issued to the printer. In this case the printer
will advance according to the paper size for which
it is designed.

49

CROMEMCO MACRO ASSEMBLER

II? (begin Conditional Assembly)

The IF pseudo-op is described in the following
chapter on Macro and Conditional Assembly.

*INCLUDE (Include the given disk file)

Th e *INCLUDE pseudo-op is
source-file on disk which is to
assembly of the present source.
*INCLUOE command is:

*INCLUDE <d:filename.ext>

used to specify a
be included in the

The format of the

where d stands for the disk dr ive letter (A-D), and
filename is the user's disk filenallle, which mayor
may not include a 3-letter extension. If the disk
drive letter is omitted, ASMB assumes the file is
on the current drive. It is IMPORTANT to note that
the *INCLUDE statement MUS'C begin with the asterisk
in column one. Hence, NO label field is permitted
with this opcode. The filename may follow the
*INCLUDE after at least one delimiter (space or
tab). Another impo rtant po int to notice about the
*INCLUDE is that all of the given file is included
in the present file. Hence, if the included file
has an END statement, this END statement will
terminate assembly of the present source when it is
encountered. An example will illustrate this;
suppose this is the source-file to he assembled:

BEGIN: LD SP, •••

*INCLUDE A:USERFILE.Z80
LD
LDIR
END

H L, •••

and suppose the follo· ing is USERFILE.Z80:

START: LD
LD
END

BC, •• •
DE, . -. .

Because th e USERFILE contains an END
statement, t he Assembler will never see the LO and
LDIR instructions of the source-file. Assembly

50

CROMEMCO MACRO ASSEMBLER

will be terminated following the inclusion of
USERFILE. To avoid this problem simply leave off
the END statements of files which are to be
INCLUDEd in the assembly of other files , or put the
*INCLUDE statement as the last one in a source
program and leave off that source's END statement.

The *I NCLUDE statement is particularly useful
in conjunction with Conditional Assembly blocks of
code (see the discussion of the IF statement in the
next chapter). For example a file may be INCLUDEd
depending on whether or not an IF statement is
satisfied. Also, the IF statement can be us ed to
determine which of several files will be INCLUDEd.
An example of this use of *INCLUDE follows; one of
three different files will be included and the
others ignored dependent on the value of the label
DECIDE (defined earlier in the source):

IF DECIDE EQ ~
*INCLUDE A:MOVROUTN.Z8~

ENDIF
IF DECIDE EQ 1

*INCLUDE B:SAVROUTN.Z8~
ENDIF
IF DECIDE EQ 2

*I NCLUDE LOADROUT.Z8~

ENDIF

where the first file would be found on drive A, the
second on drive B, and the third on the current
drive. The entire block of code above could be put
in a file of its own called DECIDFIL. The user
source file would initialize the variable DECIDE
using an EQU or DL statement and give the command
"*INCLUDE DECIDFIL". Then, based on the value of
DECIDE, the routine which would be included would
be either the move, save, or load routine above.

* INCLUDEs may be nested up to four levels;
wi 11 gener ate a nest i ng er ro r. The
illustrates two levels of nesting:

INCLUDEs the file DECIDFIL, which in
one of the files MOVROUTN, SAVROUTN,

more than this
example above
the user file
turn INCLUDEs
or LOADROUT.
program which

It is possible to write a source
consists of *INCLUDEs only.

51

CROMEMCO MACRO ASSEMBLER

LIST (use following commands to generate Listings)

The L IST pseudo - op is used to set the
Assembler print-listing options. This at NO TIME
affects the actual object code put out by ASMB. It
is simply used to suppr ess undesired or repetitive
sections of the listing file. The format of the
LIST statement is:

(no label) LIST <Optionl,Option2, ••• >

where the options a r e taken from the list of six
legal operands which follows this paragraph. The
numbe r of options wh i ch may be placed on a line is
limited only by the line length. Howeve r , 3
opt i ons is the pr actical I imi t because more than
this will result i n duplicate or conflicting
opt ions. Opt ions may be given in any 0 rder. If
conflicting options a r e given (conflicting options
are the pairs gen- nogen, cond-nocond, on- off), only
the last one of the pair on the line will be used.

The LIST command may be used as often as
desired throughout a sourcecode file. However,
note that if the List Options of Chapter 2 are
issued at the time of the CALL of ASMB, these will
overr ide any corresponding LIST commands given in
the SOURCE. For example if the List Option "Gen "
is specified when calling ASMB, all "Nogen"
operands of LIST in the source would be ov e rridden.
However , the OTHER operands of LIST in the source
would still be effective. Following are the six
allowable operands of the LIST pseudO-OPe
Informa t ion on the use of List Options when calling
ASMB will be found in Chapter 2.

OF F (turn Off assembly listing)

Suppress print- listing until end of code or an
ON option. Th i s option is de - selected when
assembly of a program begins (before encountering a
LIST pseudo- op) •

52

CROMEMCO MACRO ASSEMBLER

ON (turn On assembly listing)

List print-listing
until end of code or an
default when assembly of a

to disk-file or con ,:;ole
OFF option. ON is the
source file begins.

COND (begin listing Conditional Assemblies)

Force the generation and printing of all
blocks of code which d re parts of IF definitions,
until end of code or a NOCOND opt ion. COND is the
default when assembly of a source file begins;
therefore, it would generally be expressed only to
override a previous NOCOND option. Note that COND
forces the printing of IF statements but NOT the
assembly of them; that is determined by whether the
IF statement is true or false.

GEN (begin listing Generated Macros)

Force the printing of the Macro expansion
following every Macro call, until end of code or a
NOGE:N option. GEN is the default when assembly of
a source file begins; therefore, it would generally
be selected only to override a previous NOGEN
option.

NOCOND (do Not print Conditional Assemblies)

Force no printing of IF or ENDIF
and no printing of IF definitions
following the IF) if the IF statement is

statements
(the code
false .

In other words an IF definition which is not
assembled due to its being false will not be listed
in the print-listing either. This option will
remain selected until the end of code or a COND
option. The option is de-selected when assembly of
a program begins and thus must be first selected
using the LIST pseudo-op. Selection of NOCONO in
NO WAY affects the object code of an assembled
file.

53

CRO~EMCO MACRO ASSEMBLER

NOGEN (do Not print Generated Macros)

Force no printing of Macro expansions.
However , note that Macro definitions are always
printed as are the Macro calls themselves ; it is
only the code which the Macro generates which is
not printed. This option will remain selected
until the end of code or a GEN option . The option
is de-selected when assembly o f a progra:n begins
and thus must be first selected using the LIST
pseudo-oPe Selection of NOGEN in NO WAY affects
the object code of generated macros of an assembled
source file.

MACRO (begin Macro definition)

The MACRO pseudo - op is
f ollowing chapter on Macro
Assembly.

described in the
and Conditional

MEND (Macro definition End)

The MEND pseudo- op is used to terminate the
b l ock of code which fo rms a Macro Definition. The
formats of MACRO Definitions and Calls , and the
MEND statement are descr ibed in deta il in the
following chapter.

NAME (module Name)

The NAME pseudo-op is used to assign a name to
a particular module for use by the Linker. This
name is, however, written in alphanumerics so it is
also useful to the programmer for remembering the
purpose of the module . The format of NAME is:

(no label) NAME <Module Name> (1 - 6 characters)

where the module name should follow the same syntax
rules as for labels. The NAME statement is
optional; it is not required for linking of
modules. However, if the NAME statement is
omitted, the Assembler automatically assigns the
first six characters of the filename to be the
module name . Note that NAME is different from
TITLE. The TITLE s t atement me r ely tells ASMB to

54

CROMEMCO MACRO ASSEMBLER

print a heading at the top of each page of the
listing but has no effect on the object code; NAME
forces the name of the module to be saved as part
of the .REL file. Thus, a library manager program
is able to locate .REL files by name.

ORG (Or igin)

The ORG pseudo-op sets the Assembler location
counter and is used when it is desired to start
assembly of a block of code at a particular
address. This location may be set by the user to
be absolute, or it may be left up to the Assembler
to determine the value of the ORG. The location
counter may be set to a value as often as desired
in a source program; that is, multiple ORG
statements may be used. The format of the ORG is:

<Label:> ORG <ABS Address, Label Name, or Expression>

where the label is optional but the expression or
address is required. The VALUE of the ORG (i.e.,
the address of the first statement following the
ORG) is determined by the value of the label or
expression. Note that all the terms used in the
expression MUST have been previously defined. The
TYPE of code segment which will follow the ORG is
determined by the type of code segment to which the
label or expression belongs. For example, the
statement "ORG LEFTOFF" would continue a COMmon
area if LEFTOFF belonged to a COMmon area, and
would continue a RELocatable area if LEFTOFF
belonged to a RELocatable program area. In either
case, however, the value of the ORG would be
determined by the value of LEFTOFF. The statement
"ORG 100H" would begin an ABSolute program area
since the address is absolute. Note that the ORG
pseudo-op does not reserve any bytes, but merely
specifies an address at which those bytes are to
beg in.

REL (Relocatable code segment)

The REL pseudo-op is described in the Source
Code Segments section at the end of this chapter.

55

CROME11CO MACRO ASSEMBLER

REM (Remark beginning in column one)

The REM statement is another method of
designating a remark; however, REM assures that the
remark is always printed begining in column I of a
print- listing without any characters preced i ng (as
with the ";"). The REM pseudo-op itself is never
printed as is also the case with the FORM and TITLE
printer-controls. The format of REM is:

(no label) REM <Remark Phrase> (as many char. as will fit)

The Cromemco 37~3 Printer will expand a line
if the line contains the Control-N (0EH) character.
This is the reason for the REM statement, to be
able to give this character at the beginning of a
remark and have the printer expand the line to make
it more noticeable. However, when using the ~N
feature, the user must take care that the remark to
be pr inted does not exceed HALF the width
specification of the Width= option. For example
most listings use the default value of Width=79;
thus, the number of characters in the REM statement
which uses the ~N should not exceed 39. This is to
prevent the printer from printing off the side of
the paper. Also note that the max i mum length of a
REMark is 74 characters.

TITLE (Title to be printed at top of each page)

The TITLE pseudo-op is used to pr int a ti tIe
at the top of each page of a print- listing
beginning in column 1. The format is:

(no label) TITLE <Title phrase> (as many char. as fit)

As with the REM statement, the Title Phrase
may contain the character Control - N (0EH). On the
Cromemco 3703 Printer this character will expand
the line to twic,e its normal width. For this
reason when using the ~N in a TITLE statement, the
number of characters in the Title Phrase should not
exceed half the number of characters which will be
specified in the Width= option. The TI'l'LE command
should be the first line of a program in order to
be pr inted on Page I as well as the othe r pages.
Note that titles may be changed in the middle of a
source progra:n simply by giving a new TITLE

56

CROMEMCO MACRO ASSEMBLER

command. Also note that in such a case TITLE
causes an automatic FORM feed. The maximum length
of a Title Phrase is 72 characters: strings longer
than 72 are truncated. The Assembler inserts a
blank line where the Title phrase would be if TITLE
is not specified.

Source Code Segments

Perhaps the single most important feature of
the CROMEMCO Assembler is its ability to generate
relocatable code. This feature allows a user to
assemble a number of modules of source code
separately, and link them together in any order at
run time. It al so means tha t the obj ect code can
be executed at nearly any address in memory (it is
generally not advised to assemble and run programs
over portions of COOS). The Assembler can assemble
all data in locations separate from the program
area so that either area may be programmed into
ROM.

There are four special pseudo-ops which inform
the Assembler what type of object code to generate .
This section describes these four Source Code
Segment pseudo-ops and the ways they are used.
Explanations of the way relocatability works are
given in the following , and information on the
CROMEI1CO Linker/Loader may be found in Part II.

ABSolute

The ABS pseudo-op
which is to be assembled
addresses). The Linker
be non-relocatable. The

precedes a code segment
in absolute code (abso l ute

will consider this code to
format of ASS is:

(no label) ABS (no operand)

All the code following the ABS will be
considered to be absolute until another Code
Segment pseudo-op is given. The Assembler defaults
to REL upon start of assembly of a program; thus,
if no pseudo-op is given , the object code will be
relocatable. ASS areas are addressed contiguously
throughout a source program unless ASMB is told
otherwise by the use of ORG statements. At the

57

CROMEMCO MACRO ASSEMBLER

beginning of a program the program counter for ABS
is set to 0 (however, unless ABS is specified, ASMB
assumes the REL pseudo-op) unless the user
overrides it with an ORG. For subsequent ABS areas
the current contents of the program counter (which
is the address at which the last ABS left off) will
specify the loading address. Some examples will
help illustrate these ideas. Consider the
fo 11 owi ng :

ASS
START: LD

END

SP, •••

In this example the entire source program is to be
considered absolute and the addresses are to begin
at 0. If the same example were written:

ORG 1000H
START: LD SP , •••

END

the entire source program is again to be considered
absolute with the addresses beginning at l000H.
Now consider two ABS areas and a DATA scratch-pad
area between them:

In this
location

, .

ASS
START: LD SP, •••

STOP: LD H L, •.•
DATA

ADDRl: DS 2
ADDR 2: DS 2

ASS
NEXT: LD BC, •••

END

example assembly
o because no ORG

will begin at absolute
statement is specified.

58

CROMEMCO MACRO ASSEMBLER

Assembly of the second ABS area will begin with the
next address following the LO instruction at STOP.
Note that an ORG statement could have replaced
either ASS statement to cause the code segment
following to assemble elsewhere. The DATA area
will be assembled relocatable.

COMmon

The COM pseudo-op precedes a data segment
which is to be assembled common to more than one
module. The name and size of the COMmon(s) are
then saved in the .REL file; this enables the
Linker to load the addresses correctly at run time
such that the given area is common to several
program modules. The CROMEMCO Linker/Loader is the
same one used to link .REL files produced by the
CROMEMCO FORTRAN IV Compiler. Hence, COMmons are a
very convenient way of enabling a machine language
subroutine to use a FORTRAN data area, or as a fast
way to pass arguments between FORTRAN and machine
language programs. COMmons may be used in this way
for assembly language programs as well i two or more
program modules may use the same data scratch-pad
area for passing arguments. EXT and ENTRY
statements which apply to data areas may be
replaced by COMmons. (When interfacing FORTRAN to
machine language routines, allow four bytes for
Real, two bytes for Integer, and one byte for
Logical variables.) The format of COM is:

(no label) COM <Common Name> (l-6 characters)

Note that the full word COMMON is NOT allowed
by ASMB. The Common Name may be omi tted in the
above, and this is considered the blank common. If
the name is used, it should follow the rules for
labels given in Chapter 3. Following the COM
command are the labels and pseudo- ops allocating
storage. Note that when COMmons are used by more
than one program module, they must either be the
same length in every module, or the module which is
1 inked first must contain the longest COMmon
specification sq that LINK allocates at least that
number of bytes.

Also, note that the COMmons of different
modules DO NOT have to have the same labels on the
data. Thus, this COMmon in one module:

59

CROMEMCO MACRO ASSEMBLER

COM
ADORTB: OS
COMMTB: OS

DATA
20
10

and the following COMmon in another module:

COM
COUNT: OS
LOOKUP: OS

would assemble and
same length and the
the Linker.

link
data

DATA
4
26

correctly;
labels are

they are the
transparent to

There are 15 different COMmons of equal level
(i .e., there is no hierarchy) allowed by the
Assembler in anyone program; exceeding this number
will generate an error. All the code following the
COM will be considered to be a common until- another
Program Segment pseudo-op is given. A common may
also be continued later in the same program segment
by giving the COM command with the same name as
before. Using a different name will cause the COM
location counter for THAT common to start over at
zero. Remember that COMmons of the same name need
not be the same length in every module as long as
the module containing the longest COMmon
specification is linked first. An example will
illustrate some of the features of COM:

BEGIN: LD SP, •••

COM INSTRC
TABLEl: OS 50

REL
LD H L, •••

COM ADDRES
LOCATE: OS 20

COM INSTRC
TABLE2 : OS 50

END

Both TABLEI and LOCATE in the above will begin at
COM location counter zero; however, note that t~ey
are different commons. TABLE2 will begin at
location counter 50 for COM INSTRC (thus COM INSTRC
reserves 100 total bytes as storage). Also note

60

CROMEMCQ MACRO ASSEMBLER

the use of the REL statement to return to
RELocatable code following the end of the first
part of COM INSTRC. Generally the OS pseudo-op is
used to allocate storage area for a COMmon; if the
DB, DM, or OW statements are used, bear in mind
that the loaded bytes of the first COMmon may be
over - wr i tten by the second loaded COMmon when they
are linked.

DATA

The DATA pseudo-op precedes a program segment
which is to be assembled as a block of data. LINK
will consider this code to be relocatable. The
format of DATA is simply:

(no label) DATA (no operand)

All the code following the DATA will be
considered to be part of the data block until
another Code Segment pseudo-op is given. The DATA
pseudo-op is very similar to REL; DATA is provided
so that the user may maintain separate data and
program code segments in a source file. Thus, the
program segments may be programmed into ROM
following their being linked and loaded, and the
data segments may remain in RAM, for example. All
DATA segments of a program are based upon the DATA
location counter, which i s set to zero upon the
start of assembly. As is the case wi th ABS and
REL, all DATA segments in a program will be
addressed contiguously if ORG statements are not
used to change the addressing. Also, remember that
an ORG will cause assembly to continue wi th the
type of Code Segment to which the expression of the
ORG statement belongs. For example the following
section of a source code program:

DATA
LABELl: OS 10H

REL
LD A, •••

DATA
LABEL2, OS 10H

END

would be assembled in exactly the same way as this
section:

61

CROMEMCO MACRO ASSEMBLER

DATA
LABELl : DS 10H

REL
LI) A, .•.

ORG LABELl+16
LABEL2 : DS 10H

where the ORG
DAT1\ sta tement .
area , the ORG
assembling in
need fo r the
information on
above.

RF.Locatable

END

statement has replaced the second
Since LABELl belongs to a DATA

statement tells ASMB to return to
the DATA code segment without the
second DATA pseudo-op. For more
the ORG see the list of p3eudo-ops

The REL pseudo-op precedes a code segment
which is to be assembled in RELoc3table fo r m. The
Linker will recognize th i s code at run time, link
it with any other r elocatable !nodules, and load
them into the desired address in memory.
Relocatability works in this way: following
assembly , the .REL file contains the locations of
all bytes ""hich contain unresolved addresses . At
run time the Linker then determines the place at
~ hich the prog ram is to be run and correctly fills
in the unresolved addresses. As the modules are
linked, LINK also prints the nameS of any still
undefined labels (those declared in EXT
statements) .

The Assembler defaults to the REL code segment
upon start of assembly of a program and the REL
location counter is set to zero . Ho ... ,ever , other
code segment pseudo-ops may be specified throughout
the source, and REL issued to return to relocatable
code at the end of these segments. The format of
REL is:

(no label) REL (no operand)

The code following the REL will be considered
to be relocatable program area until another Code
Segment pseudo-op is given . REL areas are
addressed contiguously throughout a source program

62

-

CROMEMCO MACRO ASSEMBLER

unless ASMB is told otherwise by the use of ORG
statements. Note, however, that the ORC will cause
assembly to continue with the type of Code Segment
to which the expression of the ORC statement
belongs (see the example of this in the section
above on the DATA pseudo-op). The REL statement is
generally needed only to return to relocatable
program code following the use of another Code
Segment opcode. Note also that data may be
included in the REL area. The DATA and REL pseudo­
ops treat relocatable code in an identical manner;
therefore, unless there is a specific reason for
keeping the data and program areas separate, the
DATA statement{s) could be eliminated.

63

v9

H318W3SSV OHJVW OJW3WOHJ

CROMEMCO MACrtO ASSEMBLER

CHAPTER 5: MACRO AND CONDI'rIONAL .a.~'SEMBLY

Two of the most powe rful fe atures of the
CROMEMCO Relocatable Assembler are Macro and
Conditional Assembly. The purpose of this chapter
is to define and explain these two features and
illustrate their use with examples. However, the
user should bear in mind that these examples only
scratch the surface as illustrations of the uses of
r-1acros. It is left up to the readers to adapt
Macro and Conditional Assembly to their needs.

Macro Assemb~y (MACRO definition and calls)

Mac ros prov ide the user wi th a method of
producing a block of in-line code in a source file
wi thout having to generate this block of code each
time it is required. This block of code is known
as the Macro body. Macros also allow a great deal
more flexibility than in-line sou rce code because
of the ability to accept parameters. This means
the Macro may be tailored to suit a particular
purpose. For example suppose a user wishes to us e
a move routine which does a block move of 100
bytes. Later in the same program, a block move of
500 bytes is desired. Although these two routines
could be written separately, it would be much
easier to write a Macro which accepts the correct
parameters and generates the correct block move.
Some other advantages of the use of Macros are:

-Rewriting repetitive blocks of code is
not required. The code is written only
once in the Macro .

-Macros can be used
readability and to
skeleton programs.

to improve program
create easily-read

-Macros written by a number of
programmers can be collected in a Macro

65

CROMEMCO MACRO ASSEMBLER

I ibrary which may be
Eventually nearly entire
written using the Macros

used by all.
programs may be

in this lib r ary.

- New 2-80 instructions may be designed
using existing instructions in a Macro
(this is an instruction only to the
Assembler; it is not possible to add
instructions to the 2-80 Instruction
Set)

-An error found in a Macro need be
corrected only once regardless of the
number of times the Macro is called.

Some users may wonder how Mac r os dif f er f r om
sub r outines, since subroutines may also be used to
reduce the coding of frequently executed blocks of
code. One distinction between the two is that
subroutines branch to anothe r part of the program
while Macros generate in-line code. However, a
Macro does not necessa r ily generate the same source
code each time it is called . The source code the
Macro generates can be changed by changing the
parameters in the Macro Call. Also, Macro
parameters can be tested at assembly- time by the
Conditional Assembly (IF) statement. These two
features enable a general purpose Macro Definition
to generate customized source code for a particular
si t ua tion. Thus, the biggest di fference between
Macros and subroutines is that Macro expansion and
customized code result at assembly-time within the
object code. Subroutines, on the other hand,
reside in the source program, and require extra
execution time (especially if the subroutines do
any conditional operations). There is a trade-off ,
however, between the extra memory required for
Macros (in-line code) and the longer execution time
of subroutines. In most cases using a single
subroutine rather than multiple in- line Macros will
reduce the ove r all program size. However, the use
of Macros may be more efficient in situations
involving a large number of paramete r s. Note that
Macros can call subroutines, and subroutines can
contain Macro Calls.

An exampl e of a simple Macro Definition would
perhaps illustrate some of these points. Suppose
t ha t the r e we r e a number of times in a so ur ce
program that it was desired to exchange the upper
four and the lower four bits of the A register.

66

CROMEMCO MACRO ASSEMBLER

Although a subroutine could be written to do this ,
the associated CALLs and RETurns would slow down
execution time. Thus, to save typing when wr i ting
the source code, a Macro is used:

ROTATE : MACRO
RLCA
RLCA
RLCA
RLCA
MEND

The general format of a Macro Definition can
be seen from this example. The word ROTATE becomes
the Macro name. Thus, to CALL this Macro one would
simply use the word ROTATE as an opcode in the
source code, and the Assembler would insert the
four RLCA opcodes as in-l ine source code following
the ROTATE Mac r o opcode. This is known as the
Macro EXPANSION . The MEND statement informs the
Assembler that the Macro Definition is complete.
Suppose now that rather than be limited to having
the Macro exchange the high and low bi ts of the A
register only , it was desired to have it operate on
any of the 8-bit registers. The following Macro
Definition might be used in place of the above :

ROTATE: MACRO
RLC
RLC
RLC
RLC
MEND

#REGIS
#-REGIS
#REGIS
#REGIS
#REGIS

This Macro uses the pa r ameter REGIS, the value
of which it will determine when the ROTATE macro is
called. The u# " symbol is required to precede the
parameter(s) everywhere it appears in a Macro
Definition to distinguish it from other labels;
however, this symbol is NOT required when
specifying the parameter in a Macro Call. Since
ROTATE now expects one parameter, the form of a
Call would be:

ROTATE <register)

where the word " register " would
one of: A, B, C , 0 , E, H, or
would then generate in-line code

67

be replaced with
L. The Assembler
us i ng the correct

CROMEMCO MACRO ASSEMBLER

register name.
"ROTATE H" was
line code:

RLC H
RLC H
RLC H
RLC H

Fa r
used,

example if the Macro Call
ASMB would generate the in-

Based on the above examples we
complete format of a Macro Definition
Macro is defined by:

now
and

give the
Call. A

(Macro Name:> MACRO <#Parameterl,#Parameter2, .•. >
<opcodes and

operands which
may use the
parameters of
the Macro stateme.nt
and wh ich fo rm
the Macro body>

(no label) MEND (no operand)

where the parameters are optional and are limited
in number only by the length of a line for ASMB (80
characters). The Macro Name is required and is the
name used when calling a Macro. The MEND is the
Macro End statement and is required to inform the
Assembler that the source code of the Macro is
complete. The opcodes or pseudo-ops between the
MACRO and MEND statements comprise the Macro
Definition, and may be any legal 2-80 instructions,
calls to other Macros, or ASMB pseudo-ops.

There are a number of important points to note
about the above format of Macros. First, note that
when passing parameters to the Macro the parameter
name must be preceded by the symbol "#-" everywhere
it appears in the Definition; however, it is NOT
used to precede parameters in a Macro Call. The
parameters are actually dummy names; they stand for
a quantity which will be substituted at assembly
time. Therefore, the same parameter name may be
used in several separate Macro Defini tions (for
example #REGIS may be used more than once). The
parameters MUST follow the syntax rules for
whatever portion of code they represent. Note that
the text itself of the actual (not dummy) parameter
is substituted in the Macro Expansion. Thus,
reg i ster names can be used rather than a value

68

CROMEMCO MACRO ASSEMBLER

which stands for the register as in some other
assellblers. Se e the above example where the letter
H is used as the parameter . Another way this is
useful is to substitute for letters in the opcode
itself:

ROTATE : MACRO
R#DIRC
R#DIRC
R#DIRC
R#DIRC
MEND

#DIH, itHE":;IS
#REGIS
#REGIS
#REGIS
#REGIS

In this example either the command RLC or RRC
could be generated by assigning the letter " R" or
" L" to the first pa r ameter. However , if the lett e r
" Q" was used , this would generate the illegal
opcode "RQC ", causing an error message when the
Mac ro is e x panded. A last po int to be made about
parameters in Macros is that parameter names that
appear early in a list should NOT be subsets of
parameters that fall later in a list . This is
because dummy parameter names do not have a
delimiter (such as a colon) to inform the Assemble r
of their last characteri note that parameter names
do not follow the same syn t ax r ules as label names.
Dummy parameter names may be as many characte r s as
will fit on the line and be composed of any
printable ASCII characters. An example o f an
illegal use of paramete r s is :

LOAD: MACRO #OPER , #OPERND

where the
operation
illegal as
OPERND . A

user desired one parame t er to
and the other the operand .

be the
Thi sis

subset of it stands because OPER is a
correct e x ample is:

LOAD: MACRO lWPERAT , #OPER

Ano t her important point to be made about the
format of Macro Definitions conce r ns the way in
which labels are defined. Labels a ppea r ing in DL
s t a t ements within the Macro Definition are not
subject to the following restriction because they
can be multiply defined (see section on Conditional
Assembly for an example of the use of a DL and an
IF statement to cause conditional Macro assembly).
A label appearing on any other s t atement of a Macro
Definition will generate a multiple definition

69

CROMEMCO MACRO ASSEMBLER

error if that Macro is called mor e than once (the
second expans ion would also reproduce the label).
To avoid this problem a general label name for
Macros has been provided , which is used by
assig ni ng two letters to the label name followed by
the characters '' It-SYM ''. These four characters are
replaced by a four-digit number each time a Mac r o
is called. The four-digit number starts at 0000
and is in c remen ted by one each time ANY Mac ro is
called , whethe r or not it is the given Mac ro.
Thus, for example the dummy label name AA/I=SYM in
this Macro:

BITEST : MACRO

AAftSYM: LD H L , •••

JP AA#SYM

would be assig n ed the actual label name AA0000 i f
BITEST was the first Macro called in the program.
The next Macro call would increment this to AA000l,
and the next to AA0002, etc. In general do NOT use
#SYM as the name of a parameter in a Macro
Definition : the effect of this is that the current
value of #SYM will be used instead of the des ired
parameter.

The final point to be made concerning the
format of the Macr o Definition concerns nesting of
Macros. Ma cro Definiti ons may be nested
indefinitely; this means there can exist a Macro
Definition which completely contains a Mac r o
Definition which completely contains a Mac r o
Definition , and so on indefinitely. However, Mac r o
Calls may be nested to eight levels maximum . This
means there can exist a Macro Definition which
contains a Macro Call, whose Macro Definition
contains a Macro Call, whos e Macro Defin iti on
contains a Macro Call, and so on up to eight levels
deep. Exceeding this limit will generate a nesting
error. Note that a Macro may also call itself,
provided there is a Conditional way (see IF) of
ending the self-calling before the ninth level . An
example of nested Macro CALLS will be found in the
examples section later in this chapter .

Some special
Macro DEFINITIONS.

notes are necessary on nested
The Assembler does not evaluate

70

CROMEMCO MACRO ASSEMBLER

a Macro Def ini tion wi thin a larger, outside Macro
Definition until the larger definition is called.
This means that the outside Macro should be called
BEFORE the inside Macro to avoid generating a phase
error. The benefit of nesting Macro Definitions
may not be obvious ; the following example
illustrates one level of nesting used to define
several different Macros:

DEFINE : MACRO 11 , #2
EX#l#2: MACRO

PUSH 11
PUSH #2
POP #l
POP #2
MEND
MEND

This nested definitio n may then be called in a
source prog ram as follows:

DEF I NE BC,HL
START :

EXBCHL

The opcode " EXBCHL"
DEFINE; other calls

was defined by
to DEFINE could

the call to
define such

sourc e code seg ments as " EXAFBC " or "EXBCDE".
After the initial call to DEFINE the necessary
PUSHes and POPs to generate a double register
exchange will be inserted into the source code by
the call "EXBCHL" used as an opcode . The DEFINE
Macro could be resident in a Macro Library to
furth er save typing. Note , however, that DEFINE
must be called once for every Macro which it
defines and that this call must precede the call to
the nested Macro.

The above functions could also have been
implemented by the single /'1.acro :

71

CROMEMCO MACRO ASSEMBLER

EXCH: MACRO
PUSH
PUSH
POP
POP
MEND

The difference here is that the parameters must be
specified each time the Macro is called. For
example a Call in a program would be:

EXCH BC,HL

Either of the above examples could be used to
create a Macro to exchange register pairs. Note
the differences between them. There is a more
advanced example of nested Macro Definition"s in the
last section of this chapter.

The above sections describing the details of a
Macro Definition are provided for reference.
However, a better feeling for the ways in which
Macros may be used will come after these details
are illustrated by means of examples. The last
section of this chapter provides examples of the
uses and correct formats of Macro Definitions and
Calls. The last thing to be described in this
section is the format of the Macro Call:

<Label:> <Macro Name> <Parameterl,Parameter2, •.. >

The label is optional; the parameters are also
optional if none are specified in the Macro
Definition. That is, the parameters in the Macro
Call must match those in the Macro Definition in
number and order; they are NOT, however, preceded
by the "#" symbol (because these are the actual,
not the dummy parameters). The Macro Name should
match the name appearing in the label field of the
MACRO statement. At assembly time the Macro will
be expanded and the source code generated will be
printed on consecutive lines following the Macro
Call statement (unless NOGEN is selected--see List
Options and LIST pseudo-op). Each of these lines
will have a plus, "+", sign immediately following
the line number of the print-listing to distinguish
these lines as belonging to a Macro Expansion.
Note that Macro Call statements may appear anywhere

72

CROMEMCO MACRO ASSEMBLER

throughout a source program including within
another Macro Definition (beware of nesting to more
than eight levels deep, however).

An important point about Macro Calls and
Definitions i s that a Macro must be defined in a
source program BEFORE it is called. This is to
prevent a phase error from occurring. The general
practice is to give all Macro Definitions near the
beg inning of the source code, followed by the body
of the program itself. One of the most interesting
features of the CROMEMCO Relocatable Assembler is
that 2-80 instructions can be redefined (in terms
of other 2 - 80 instructions) using Macros. Of
course, such an instruction which is redefined can
not be used in its traditional sense again within
the same source program; however, there are
specialized cases in which it is desirable to
sl ightly modify the function of an instruction.
Note that the instruction itself cannot be
modified; it is merely redefined in terms of other
2-80 instructions.

The way ASMB interprets instructions is an
important part of understand i ng the Macro
capability. The Assembler forms a Macro Definition
Table (MDT) of the Macros residing in the source
program. This is the first place searched to
satisfy an opcode. The second place searched is a
table of addresses specifying the Macros which are
accessed by the source program and which reside on
disk (this table is formed ONLY if the Macro=
option is specified when calling ASMB). If an
opcode is found in this address table , the required
Macro Definition is read into memory from the disk
and added to the MDT. Finally , any still
unsatisfied opcodes are found in the Z-80 Opcode
Definition Table (DDT) . Thus , it is possible to
write an entire source program consisting only of
Macros. In expanding these Macros, ASMB then uses
the ODT to evaluate the 2- 80 instructions. This
feature means that ASMB may be used as a language
compiler by having a library of Macros which
translate the commands of the language into a
series of 2 - 80 instructions. To avoid wasting
memory and repeating Macros unnecessarily when
using such a scheme , Conditional Assembly may be
used in conjunction with Macros to automatically
generate subroutine calls. This feature, along
with the other features of Conditional (IF)
Assembly, are described in the following section.

73

CROMEMCO MACRO ASSEMBLER

At the end of this chapter is a section of examples
illustrating some of the features described in
these first two parts of the chapter.

Conditional Assembly (IF statements)

An often close associate of the Macro is the
Conditional Assembly or IF statement. The IF
statement allows the user to write a source program
in which certain blocks of code are assembled or
not depending on the satisfaction of particular
conditions. This is especially useful in
conjunction with the MACRO or *INCLUDE statements.
When using the IF statement with *INCLUDE,
particular files may be included or not depending
on values in the source program. Note that such a
file may be a series of Macros which are needed in
the source program only under certain conditions.
The IF statement is useful with MACRO definitions
as a means of determining the desired number of
levels of nesting of a Macro within itself (this is
illustrated in an example in the following
section). The feature may also be used to cause a
Macro to set up a subroutine the first time the
Macro is called, and to generate a subroutine CALL
upon subsequent Macro calls. The format of the IF
statement is as follows:

(no label)

(no label)

IF <Item>
<opcodes and

operands which
form the body
of code to be
assembled
condi tionally>

ENDIF (no operand)

The item following the IF may be any legal
label name, expression, or constant as described in
Chapter 3. (Note that an ASCII constant must be
limited to two characters. For example, IABI is
legal, while IABC I is not.) It will be evaluated
by the Assembler to determine whether it is True or
False; a False expression is one that evaluates to
0, and a True expression is one that evaluates to -
1 (0FFFFH). However, ANY non-zero value is
considered to be True. NOTE that the IF statement

74

CROMEMCO MACRO ASSEMBLER

evaluates the expression as a sixteen-bit quantity.
If the expression exceeds this limit (for example:
' 0000 ' is a 32-bit (4-byte) ASCII expression ; the
correct expression is : 0000 or simply 0) , it will
generate an error message . A constant which
exceeds the range will , however, be evaluated MOD
65 , 536 and will generate no error. Note that the
Expression in the IF statement may use the
operators described in Chapter 3. All the te r ms of
the expression MUST have been previo u sly defined to
avoid errors ; also , the expression must evaluate to
an absolute quantity. An example of an IF
statement with an expression i s:

IF COUNT EQ 0

This will generate a value of True (or -1) if COUNT
is equal to 0. The example could have been written
a different way :

COUNT : DL 1

IF COUNT

which will generate a value of True because in this
case COUNT has the value of 1 which also stands for
True (non- zero). Note the difference between these
two examples ; in the first case COUNT must equal 0
for the expression to be True, and in the second
case COUNT must equal anything but zero for the
expression to be True.

After evaluating the expression the Assembler
will then assemble the code following the IF
statement if and only if the expression eva l uated
to be True. If the expression was False, the block
of code bounded by the IF and ENDIF statements will
simply be ignored by ASMB. It is also possible to
suppress the print-l isting of such ignored code by
using either the NOCOND List Option or the LIST
NOCOND pseudo-op (see the appropriate sections for
more information). An ENDIF statement is required
for every IF statement in a source program to tell
the Assembler when Conditional Assembly is
finished .

IF statements may be nested up to eight levels
deep; more than this will generate an error
messag e. IF sta temen ts may also be nested in

75

CROMEMCO MACRO ASSEMBLER

Macrosj this makes it possible for a Macro to call
itself a number of times specified by the IF
statement (an example of this may be found in the
following section). Macro parameters may be used
in the expression of the IF statement. The
following example to do three rotates illustrates
this:

tDIREC ROTATE: MACRO
IF
RRCA
RRCA
RRCA
ENDIF
IF
RLCA
RLCA
RLCA
ENDIF
MEND

' #DIREC ' EO 'R'

' #DIREC ' EO ' L '

Note that the actual ASCII value of the
parameter may be specified by enclosing it in
single quotation marks as with any ASCII string.
The two IF statements check to see if the parameter
specified when calling ROTAT3 is " R" or "L"; if it
is neither, then no source code is assembled. If
one or the other , then the corresponding left or
right rotates will be generated.

Examples of Macro and Conditional Assembly

Many of the features of MACRO and IF
statements described above are made clearest by
illustrating them by means of examples. This
section is included to give the user some idea of
the many ways in which Macro and Conditional
Assembly may be used.

Example 1: Block Move Macro

The Macro Definition which
example of the use of a Macro.
a method for easily generating
portion of a program :

76

follows provides an
This Macro defines
a block-move of a

CROMEMCO MACRO ASSEMBLER

MOVE: MACRO
LD
LD
LD
LDIR
JP
MEND

ISOURCE,ISRCEND,IDESTIN
HL, #SOURCE
DE,#DESTIN
BC,#SRCEND-#SOURCE

#DESTIN

Note that three parameters are expected: a
starting and ending location for the source, and a
destination; this is of the same format as the M
(move) command of DEBUG. Thus, the Macro Call for
this example might be part of a program such as:

ORG
LOAD: MOVE
START: LD

STOP: END

2000H
START,STOP,100H

LOAD

In this example the program would begin
execution wi th LOAD, and would move the block of
code between START and STOP to absolute address
100H.

Example 2:
A Macro that Converts Itself into a Subroutine

In some cases the in-line coding which results
from many Macro Calls is undesirable due to memory
requirements. In such a case a Macro can be
created which converts itself to a subroutine.
Such a Macro has both the advantages of a Macro and
a subroutine. Following is the Definition for
SUBMAC, a Macro which calls itself:

77

CROMEMCO MACRO ASSEMBLER

TRUE:
FALSE:
FIRST:
SUBMAC:

FIRST:

SUBROT:

DONE :

EQU
EQU
DL
MACRO
IF
CALL
ENDIF
IF
DL
JP

RET
Nap
ENDIF
MEND

-1
o
TRUE

NOT FIRST
SUB HOT

FIRST
FALSE
DONE causes program to jump around

subroutine upon first call

program jumps here

The first three lines above are not part of the
Macro Definition, but the value of FIRST must be
initialized before it is used in the Definition.
The JP DONE in struction in the above is used to
cause a jump around the subroutine when it is
assembled in-line with the source upon the first
Call to SUBMAC. A sample program which might use
this Macro is:

START:

S UBMAC

SUBMAC

END START

The first Call to SUBMAC above would generate
the subroutine itself in-line. After the first
call the value of FIRST has been redefined to be
FALSE; hence , the second Call to SUBMAC would
generate simply the line: CALL SUBROT.

Example 3:
Nested Macro Definit i ons to Generate
Rotate Instructions

A number of interesting and useful functions
can be implemented by using nest ed Macro

78

CROMEMCO MACRO ASSEMBLER

Defi n itions or Calls.
example , making use of
Definitions to define a

ROTATE:
M#SHFT:
VALUE:

MACRO
MACRO
DL
#SHFT
IF
M#SHFT
ENDIF
MEND
MEND

The following is one such
one level of nested Macro

number of different Macros:

#SHFT
#NUM, #REG
#NUM-l
#REG
VALUE NE 0
VALUE, #REG

The Macro ROTATE may
numbe r of shi ft and rotate
inner Macros are not defined
called one time. Thus , at
program in which we wish to
necessary to i nitialize them

be used to define a
Macros; however , the
until ROTATE has been
the beginning of the
use the Macros , it is

by the Calls:

SETUP: ROTATE SRA
ROTATE RRC
ROTATE RR
ROTATE SRL
ROTATE RLC
ROTATE RL
ROTATE SLA

Note that this will define 7 additional Macros with
the names MSRA through MSLA. The M (or any other
legal character) is necessary in order to avoid
having the Macro names match 2-80 opcodes. (Note
that these same 2-80 opcodes are used wi thin the
Macro Definitions.) We can now call any of these
Macros, g i vi ng a numb e r and a register as
parameters :

START: LD
MSRA 4 , A
MRLC 8 , 8
MRR 3 , E
END START

The number in each of the above cases is the
number of shifts or rotates which will be
generated. Thus, the Macro Call "MSRA 4,A" will,
when expanded, generate 4 "SRA A" instructions in

79

CROMEMCO MACRO ASSEMBLER

the source code. Since the ROTATE Macro could be
contained in a Macro Library, the user's source
program could contain a Macro Call of this type.

80

CROMEMCO MACRO ASSEMBLER

CHAPTER 6: ASSEMBLER ERROR MESSAGES

The Assembler generates a number of error
messages while assembling to inform you of its
prog ress. These messages fall into two general
classes: those that involve the actual call to
ASMB, are generated shortly thereafter, and are
sent to the console; and those that are generated
while the source code is being assembled and which
inform the user of incorrect structures in the
code. These two classes are described below. The
user should note that in most cases the Assembler,
when encountering an error, will assemble the line
such that the correct number of bytes are reserved.
Thus, the addresses are still numbered correctly,
and the program may be loaded into memory and the
incorrect bytes changed using DEBUG. This saves
reassembling a very long program when the user
pI ans to debug it anywa y. of cour se, in the final
version of source code, the error should be
corrected.

Error Messages Generated Following a Call to ASMB

The following is a list of error messages,
followed by a brief description of their meanings.
Note that the errors are printed exactly as they
would be sent to the console, upper or lower case.
All the errors described in this section will ABORT
the assembly and return control to COOS. The user
should be aware that any temporary files created by
ASMB will remain on the disk following an abort;
these may be erased if desired, but this is not
required if the error is fixed and the file
reassembled.

81

CRQMEMCQ MACRO ASSEMBLER

source file not found

ge n era ted when ASMB
source file on the
the filename and the

Th i sis
specified
spelling of
the file.

cannot find the
disk . Check you r
disk d i recto r y for

n o directory space

This is gen erated when ASMB attempts to open an
output file (.REL or . PRN , for example) and finds
that there . are a lready 64 entries (the maximum
allowed by CDOS) on the disk . This is NOT the same
as running out of disk space (see following er ror
message). There may be 64 directory entries which
are all short files , and thus not all the available
kilobytes may be used (8 1 Kbytes for small and 241
Kbytes for large disks) .

write error , file - (filename . ext>

ASMB will open any files which it requires (. REL or
.PRN files , or the temporary files it opens to
manage the XREF and OPCODE listings), shortly after
being called. This message is generated if the
disk is full (81 Kbytes for small, 241 Kbytes for
large) when these files are opened, or if a file
being written to causes the disk to become full
dur ing assembly.

Note: The temporary files for XREF and OPCQDE
listings are created only if one or both of these
options are specified. The XREF file is named
<filename>.SS$ and the OPCODE file is named
<filename>.SS" , where <filename> is the one
specified in calling ASMB. These files are created
dur ing Pass I of the Assembler; they are remov ed
from the disk following completion of the assembly.

selected disk error

This message is generated if the 3-letter
drive-request instruction given after the filename
is incorrect, i.e., if it specifies a drive which
does not exist or is not one of the characters, " X"

82

CROMEMCO MACRO ASSEMBLER

or "Z". An example which will
message is: ASMB TESTFILE.ABE.
correct drive letter.

invalid option

generate this
"E" is not a

This message is generated if an invalid or
misspelled Option is specified following the
<filename) in a call to ASMB. This will also
appear if an invalid delimiter (such as ",") is
used between Options. One or more <space(s» is
the only valid delimiter to separate Options.

MACRO library not found

This is generated only if the
Macro=<d:filename.ext> option has been issued and
the filename cannot be found by the Assembler on
the specified drive.

MACRO library file error

This error will abort assembly of the source
program. The error message is printed to the
console as shown above. It is caused by the
Assembler encountering a MEND statement with no
matching MACRO definition statement in the source
code preceding it ONLY FOR THE MACRO LIBRARY if one
has been specified. On the other hand the "no
matching MACRO" message is printed if this
condition occurs with a MACRO present in the SOURCE
file and will NOT abort assembly. The primary
reason for the addition of this error message is to
inform you of mistakes in a MACRO library before
assembly occurs so that you will have the
opportunity to change it using EDIT.

out of memo ry

The Assembler program (ASMB.COM) is loaded
into memory at l00H and begins execution there.
Above itself in memory ASMB forms the symbol table,
which grows upward. Above the symbol table but
below COOS ASMB forms the Macro Definition Table
(MDT), which grows downward through memory. If a
user - program being assembled contains a great
number of Macros and/or symbols, the symbol table

83

CROMEMCO MACRO ASSEMBLER

and the MDT may grow together, thus generating the
"out of memory" error . The message will be printed
on the console and assembly will be aborted at this
point. The simplest solution to the problem if it
occurs is to edit the source code into two or mo r e
separate modules, assemble them separately, and
link them at run time.

Error Messages Generated During Assembly

The following list contains the error messages
generated during assembly of source code. They
inform the user of a wide range of incorrect
specifications such as misspelled opcodes or
invalid relative jumps. When an error occurs, ASMB
prints the error message which applies on the line
immediately following the error. The message is a
complete expression, not a symbol, and it occupies
the entire line in a print-list i ng.

It is set off by being preceded and followed
by a string of asterisks. If the print- listing is
sent to the disk or is not generated at all, any
errors occurring during assembly will still be
printed on the console; in this case the entire
line of code as generated in the listing along with
the error- type \Vill be printed. Following assembly
t he total number of errors will be printed. Also,
at the end of the listing will be printed a summary
of all the line numbers where errors have occurred
during assembly. This summary is printed (either
to the disk or to the console) in the form of a
table; the width= option will limit the length of
lines of characters in this table, but will not end
any line in the middle of an entry just as was the
case with the cross reference tables. Note that
for each type of error message up to Hl0 entries
will be printed in this table. The error summary
table is a very usef ul fea t ure fo r go i ng back and
editing the file for corrections. Below in
alphabetical order are the error messages which may
appear along wi th a brief explanation of each one.

84

CROMEMCO MACRO ASSEMBLER

instruction not allowed

This error message will be printed to the
console and the print- listing during assembly but
will not abort asse~bly. The er~or message will be
printed on the console exactly as shown above , but
ONLY if the HEX or HEX= option has been specified
in calling ASMB. It will follow one of these
pseudo-ops:

COM
ENTRY

DATA
EXT or EXTRN

REL
NAME

because these apply to several aspects of
RELocatable code, which is not produced under the
HEX option. Note that for the DATA, REL , and NAME
pseudo- ops this error message may be treated as a
wa r ning b e cause the r e will be no effect on the .HEX
output file due to its occurence. However, if the
message occurs following the COM , ENTRY, or EXT
pseudo-opcodes, the original source will have to be
re- edited to change these lines and any references
to label names appearing under them.

argument error

This arises whe n an invalid constant is used.
This might happen when a number is incorrect for
its base, or wh e n an ASCII character string is too
long f or an express i on. For example , the lines:

LD A, 108Q
LDHL ,' ABC '

(8 not valid octal character)
(too many ASCII chracte r s)

will both generate argument errors.

divide by zero error

This arises when an evaluated
involves an attempt to divide by zero.
is:

EQU 0FFF8H

LD HL , 255/(END+8)

85

expression
An example

CROMEMCO MACRO ASSEMBLER

Since the value of END+8 is 0, this would produce
the divide by zero error .

expr ession error

This applies to ope rand expressions which
involve certain illegal operat i ons with labels
belonging to REL, DATA , or COM code segments .
Expressions inv o lv ing relocatable la bels are
limited to the following opera tions:

RELNAM+ABSNAM
RELNAM-ABSNAM
RELNAM - nELNAM

(rel ocatable)
(relocatable)
(absolute)

where RELNAM stands for a label belongi ng to a
r elocatable code segment a nd ABSNAM stands for a
label belongi ng to an ASS code segment (see REL and
ASS in th e chapter on pseudo-ops). The type of
expression of the r esult of the given operat ion is
given to the right in parentheses . Also note that
in the last case above both RELNAMs must belong to
the same type of Code Segment or an error will also
be generated . (For exampl e a labe l belong ing to a
COMmon area may not be subtracted from a label
belonging to a REL area .) An expression error is
generated if any arithmetic is attempted (i.e., an
expression is formed) usi ng EXTernal names , as the
values of these are unknown to the Assembler. This
does not mean that EXTernals may not be u sed as
operands, of course. Relative jumps from one type
of Code Segment to anothe r will also generate
expression errors; for example it is illegal to
jump from a REL to a DATA area u sing a relative
jump. The reader should refer to the sect ion of
Chapter 3 on operators for mo re i nformation on the
use of expressions .

file not found

This message is printed following an INCLUDE
for which the file to be included cannot be found
on the disk. This error does not terminate
assembly , but fu rther errors may be generated if
the source code looks for labels belonging to the
missing file. Note the difference between this
message , which is printed in the listing, and the
" source file not found " a nd " MACRO library not

86

CROMEMCO MACRO ASSEMBLER

found"
printed

messages which
on the console .

abort

label error

assembly and are

This a r ises when a label contains or begins
with an illegal character. The characters 0-9 a r e
legal within a label but are illegal as the FIRST
character. Allowable characters for labels are A­
Z , a - z , " . " , and " $ " . All register names are also
illegal as labels; these are listed in Chapter 3
under the section on labels.

label not allowed

The following l i st of pseudo-ops do not ALLOW
labels to precede them b ecause of their nature.
This message is printed if a label i s used before
one of the following pseudo-ops:

ASS
COM
DATA
REL

FORM or
EJECT
ENDIF
ENTRY

EXT or
EXTRN
IF
LIST

MEND
NA ME
REM
TITLE

Note that this is NOT the error message which
is printed in the case of an illegal cha r acter in a
label (see " label error "). Although the " label not
allowed " message is printed and counted as an
e r ror , the source code will s t ill be assembled
correctly and the incorrect label will be ignored
by ASMS.

missing label

This message i s printed when the following
pseudo- ops are NOT preceded by a label: EQU and
DEFL or DL . Thi sis opposi te to the above case
(see " label not allowed ") ; note that these two
pseudo - ops REQUIRE a label to be assembled
correctly. A MACRO definition section of code also
requires a label in order to be used by the
Assembler . For more information on Macros see the
chapter devoted to them .

87

CROMEMCO MACRO ASSEMBLER

multiple definition

This message occurs any time a data or program
label is defined more than once. This is prone to
happen when using INCLUDEs , as the included file
may contain a label also used in the source file.
Simply re-edit one of the files and change the
label(s) involved.

multiple MACRO definition

This error is exactly similar
definition" above , but is caused
defined Macro name .

nesting erro r

to the
by a

"multiple
multiply-

This message appears whenever INCLUDEs,
MACROs, or IFs are nested beyond the levels allowed
by the Assembler. These are: 8 levels of nesting
for MACROs and IFs , and 4 levels of nesting for
INCLUDEs. Note that this means 8 levels of nesting
for Macro CALLS; Macro DEFINITIONS may be nested
indefinitely. However, be sure , when nesting Macro
definitions, to insert the correct number of MEND
(Mac ro END) pse udo-ops; the Assembler might
otherwise consider a p:>rtion of the source code to
be part of a Macro. Examples of both nested Macro
calls and definitions appear in the chapter on
Macros.

no matching IF

This message appears following
pseudo-op which has no corresponding IF
in the source code preceding it.

an ENDIF
statement

This
op which
statement

no matching MACRO

message appears following a MEND pseudo­
has no corresponding MACRO definition

in the source code preceding it.

88

CROMEMCO MACRO ASSEMBLER

opcode error

This follows an opcode which is illegal; this
may be because it is misspelled or because the user
intended for it to be a Macro and forgot to include
this Mac ro definition.

phase error

This error message follows a line containing a
name which was defined differently between Pass 1
and Pass 2 of ASMB. The most common cause of this
is that a label has been used as a value (such as
in an EQUate statement) before it has been defined.
An example is:

LABELl: EQU LABEL2

LABEL2: LD A,S

LABEL2 has been used in the EQU statement before it
was defined. The error is corrected by moving the
offending statement (in this case the EQU
statement) to follow the label definition. Other
causes of phase errors are (1) using a term in an
expression in a OS or IF statement which has not
been defined yet, and (2) calling a Macro before it
has been defined.

range error

This message follows a relative jump which
exceeds the range allowed for such jumps. This
range is -126 bytes to +129 bytes measured from the
address at which the relative jump is located; the
actual values generated by the Assembler are in the
range -128 to 127 because the 2-80 measures
relative jumps from the instruction following the
jump.

The Assembler requires an ADDRESS, usually
specified by means of a label, to be used as the
operand of a relative jump instruction. ASMB then
calculates the relative displacement of the jump
and places this value in the object code. Remember

89

CROMEMCO MACRO ASSEMBLER

that if a number is used, it will be considered to
be an absolute address, NOT a displacement. Note
that this may be different from the description of
relative jumps in the Z- 80 manuals by Mostek and
Zilog. Some examp l es will illustrate these
concepts; the statement:

JR NZ,l00

tells ASMB to generate a relative jump
100 or 64H, NOT to jump relative to
location by 100 bytes . To avoid this
better form would be:

JR NZ,LABEL

LABEL: LD A,3

to LOCATION
the pr esen t
confus ion a

for which ASMB will calculate the correct jump no
matter where LABEL happens to be located.
(However, if the label belongs to another type of
Code Segment , an expression error will be
generated; for example it is illegal to jump from a
REL area to a DATA area using a relative jump.)

syntax error

This error message covers a wide range of
ills; it generally appears when a quantity in one
of the four Assemb l er Fields (see Chapter 3) has
been misused. For example, writing a remark
without preceding it with a It;" on a line which
already contains a label , opcode , and operand will
produce a syntax error. If you don't know the
cause of the message , look up the expression or
opcode of which you are unsure.

too many COMnons

This message follows the use of more than the
allowable number of COMmons. ASMB allows a total
of 15 COMmons including one "blank" COMmon. The
te rm blank COMmon means that one of the COMmons
need not be named, not that there is nothing in it.
See the COM pseudo-op for more information on their
use.

90

CROMEMCO MACRO ASSEMBLER

undefined symbol

This message fo l lows a line conta i ning a l abel
name in the operand f i eld wh i ch h a s not been
defined . This is one of the most common of
assembly language mistakes : using a label name for
a data quantity and then forge t ting to define it.
Labels are defined by appear ing in the label field
of any opcode or pseudo-op which allows l abels.

value er r or

This message follows a line in which a value
is used which exceeds the range allowable for the
opcode used. This value may be a cons t ant or an
expression . Opcodes which expect one-byte
quantities will generate a value e r ror for any
expression whose value exceeds the range 0 to FFH
(o r its equivalent rep r esentat i on in decimal ,
octal , or binary). Opcodes which expect two-byte
quantities will not generate an error if the value
simply exceeds the numeric r ange (65 , 535); the
value will simply " wr ap around ". That i s , a value
of modulus 65 , 536 is r etur ned without an erro r
flaq. Some examples wil l illust r ate these ideas .
The following will generate a value error:

LD A, 3000H (a two- byte quantity used as one byte)

However, the line

LD HL,700013

will not
4464 0 r

gen e rate a value erro r; instead ,
1170H (which is 70000-65536)

the value
will be

gene r ated.

value errors will also be
BIT, SET , and ReS opcodes i f
expression used as an operand is
13 through 7.

91

generated
the value

by the
of t he

outside the r ange

CROMEMCO MACRO ASSEMBLER

CHAPTER 7: ASSEMBLER PRINT-LISTINGS

Following is the print-listing which results
from the assembly of the example in Chapte r 1
("Getting Started"). There is much valuable
information in this listing ; it is therefore given
here in a separate chapter so that the various
terms and symbols can be explained . The command
line which was typed to produce this assembly is
slightly different from the command line typed in
Chapter 1 . This is because several Assembler
Options have been specified here so the user can
see what type of listing they produce. The command
line which was typed to produce the following
assembly is:

ASMS TIMER SYMB XREF OPCODE RANGE

The SYMS option requests a Symbol Table, XREF
and OPCODE request Symbol and Opcode Cross
Reference Tables, and Range requests those absolute
jumps which are within range to be relative jumps.
The next four pages contain the listing that
results from this assembly. Following that is an
explanation of the terms and conventions used in
the l i sting.

92

CROMEMCO MACRO ASSEMBLER

CROMEMCO COOS z8~ ASSEMBLER version ~2.~2 PAGE ~~~l

0001 This program rings the console bell at approximately
0002 half-second intervals determined by a timer loop.
0003

(0007) 0004 BELL: EQU 7 console bell is ASCII 07
(0002) 0005 WRITE: EQU 2 wri te character to console
(0005) 0006 COOS: EQU 5 use system call to wr i te
(02FF) 0007 TIMIT: EQU 2FFH 2 is no. of hal f-seconds;

0008 FF (256) is no. of loops
(00FF) 0009 OURAT: EQU 0FFH FF (256) is loop duration

0010
0011 ; Main program
0012

~~~~' 315A~~' 0013 START: LD SP, S'rACK initialize stack pointer 
0003' 01FF02 0014 LOOP: LD BC,TIMIT 8 is no. of half-sec. ; 

0015 C is no. of loops 
~~~6' 3EFF 0016 TIM2: LD A,OURAT get duration (256) 
~~~8' 3D 0017 TIMI: DEC A decrement and 
~~~9' 2~FO 0018 JR NZ,TIMI loop til zero 
~~0B' 00 0019 DEC C decrement loop coun ter
000C' 20F8 0020 JR NZ,TIM2 ; until zero

~ 0~~E' 10F6 0021 OJNZ TIM2 countdown half-seconds
~~10' 1E07 0022 LD E,BELL set-up to ring bell
0012' 0E02 0023 LD C,WRITE set-up to write console
~0l4' CD0500 0024 CALL COOS ; call system
0017' C30300' R 0025 JP LOOP loop and repeat

0026
0027 Stack Area
0028

00lA' (0040) 0029 BOTTOY'! : OS 40H allow 64 bytes fo r stack
(005A ') 0030 STACK: EQU $ current location counter

0031 equals top of stack
005A' (0000') 0032 END START

Errors 0
Range Count 1
Pa r i ty Count 0

Program Length 0~ 5A (90)

93

CROMEMCO MACRO ASSEMBLER

CROMEMCO COOS Z8~ ASSEMBLER ve rsion ~2 . ~2

SYMBOL TABLE

BELL
STACK
WRITE

eee7
~~ 5A '
eee2

BOTTOM 9~lA '
START eeee '

COOS
TIMl

94

ee~5
9998 '

OURAT
TIM2

eeFF
9996 '

PAGE eee2

LOOP
TIMIT

11'11'93 '
e2FF

CROMEMCO MACRO ASSEMBLER

CROMEMCO CDOS Z80 ASSEMBLER version 02 . 02
CROSS REFERENCE LISTING

BELL
BOTTOM
CDOS
DURAT
LOOP
STACK
START
TIMl
TIM2
TIMIT
WRITE

A004
0029
0006
0009
0014
0030
0013
0017
0016
0007
0005

0A22

0024
0016
0025
0013
0032
0018
0020 0021
0014
0023

95

PAGE 0003

CROMEMCO MACRO ASSEMBLER

CROMEMCO CDOS 280 ASSEMBLER version 02.02
OPCODE CROSS REFERENCE LISTING

CALL 0024
DEC 0~17 0019
DJNZ 0021
OS 0029
END 0032
EQU 0004 0005 0006 0007 0009 0030
JP 0025
JR 0018 0020
LD 0013 0014 0016 0022 0023

96

PAGE 0004

CROMEMCO MACRO ASSEMBLER

This
col umns or

listing
fields.

Listing Columns

is divided
These are

up into
descr ibed

a number
be l ow.

of

Column I - This is a l6-bit address printed in
hex. If an absolute ORG statement has
not been given, the addresses will
start wi th 0. Since the modules are
relocatable , however , the subsequent
addresses are only relative to the
f inal program base when the program has
been loaded. Immediately following the
address is either a space or one of the
symbols : ," or * These are
desc r ibed below.

Co l umn 2 - If the statement is a pseudo-op which
generates a value (for example , the EQU
statement) , that value will be printed
here in parentheses. For all 2-80
opcodes this column will contain up to
four bytes of object code in hex. The
DB and OW pseudo- ops will also produce
object code in this column. If the
code being assembl e d is relocatable ,
all addresses will correspond to
relocatable addresses in column one,
NOT the actual addresses these byt e s
will have when the program is linked
and loaded into memory. Relocatable
addresses will be followed by one of
the symbols : "* , or #, described
below.

Column 3 - This column is usually not printed. If
the Range Option has been specified,
all absolute jumps which are within
range to be re l ative jumps are marked
with an " R" character in this colulnn.

Column 4 - This column contains the line numbers
of the source code in decimal beginning
with 0001. All lines will be numbered
including those containing only
remarks.

97

CROMEMCO MACRO ASSEMBLER

Column 5 - This is the label field of the original
source . See Chapter 3 of this Part for
a compl ete description .

Column 6 -

Column 7 -

Column 8 -

This is the opcode
or iginal source. See
complete description.

field
Chapter

This is the operand field
original source . See Chapter
complete description.

This is the remark
original sou rce. See
complete description .

Lines of Listing

fiel d
Cha pte r

of the
3 fo r a

of the
3 for a

of the
3 fo r a

The listing also contains useful information
on the lines printed out at its beg i nning and endo
These are described below.

Beginning , Line I - This line contains the
heading of the listing giving the
current version and release numbers of
ASMB o Also on this line is the page
number; listings are numbered
consecutively in decimal including the
symbol and other tables at the end.

Beginning , Line 2 - This line will contain the
title of the module being assembled i f
the user spec i f i ed one usi ng the TITLE
pseudo-opo A blank li ne is inserted if
no ti tIe is u sed 0 The Assembler also
inserts a blank line just before the
listing beg in s on every page.

Interspersed Lines - Error messages occupy one

End of

full line of a listing and are pr inted
immediately following the line in which
the error was first detected.

Listing, Line I -
errors which
is pr inted on

98

The to t al number of
occurred during Assembly
this line.

CROMEMCO MACRO ASSEMBLER

End of

End of

End of

Listing, Li. ne 2 - This line wi 11 be
printed only if the Range Option has
been specified, and it gives the total
number of jumps rna r ked by Range.

Listing, Line 3 - This line will be
printed only if the Parity Option has
been specified, and it gives the total
number of 8080-280 con fl icts found (see
Parity Option in Chapter 2) •

Listing, Line 4 -
program length (i.e.,
the object code) in
dec imal .

This gives total
the byte-count of
both hex and in

End of Listing, Line 5 - This and the
following lines list all those COMmons
which have been defined in the module
along with their lengths in both hex
and in dec imal. Up to 15 COMmons may
be listed.

Listing Symbols

There are four
a print-listing
info rmation. These

symbols which
which give
are desc r ibed

appear throughout
some additional
below.

Single Quotation Mark (I) This symbol
follows all addresses (column 1) which
belong to a REL area. The symbol also
follows all references to REL addresses
made in the object code. For example
the three bytes:

C31F00'

in the
address
code.

object code mean
00lF of the REL

to jump
segment

to
of

Double Quotation Mark (") This symbol
follows all addresses (column 1) which
belong to a DATA area. The symbol also
follows all references to DATA

99

CROMEMCO MACRO ASSEMBLER

addresses made in the object code.
Reme~ber that DATA program segments are
very similar to REL program segments.

Asterisk (*) This symbol follows all

Pound Sig n

addresses (in column 1) which belong to
a COMmon program segment. The symbol
also follows all references to COMmon
addresses made in the object code.

(#) This symbol appears only
following an address in the o bj ect
code, and marks those lines as ones
referencing EXTernals. The address
just preceding the pound sign is the
location that that EXT wa s last
referenced, or is e00e if it IS the
first time in the mod ule that the EXT
is referenced.

Note that addresses in
object which are not followed
symbols above belong to an
code.

column I or in the
by one of the four

ABSolute segment of

Tables Following the Listing

There are several
print-listing of the
described briefly below.

tables which may
Source code.

Symbol Table

fo 11 ow
These

the
are

The symbol table contains an alphabetical l ist
of all the symbols (labels) defined in the source
program. Each symbol will be followed by its value
and one of the four symbols described above to tell
the user to which program segment it belongs . The
value will be either the address at which the
symbol is defined or the value of the expression to
which it equates. Note that EXTernals listed in
the symbol table do not follow this rule. The
address listed following an EXT name is the address
of its first occurrence in the Source.

100

CROMEMCO MACRO ASSEMBLER

Cross Reference Table

The cross reference table contains an
alphabetical list of all symbols and the line
numbers of both their places of definition and
occurrence throughout the source program. The
symbols are listed in the first column, the line
numbers of their definition in the second column,
and the line ~u~bers of their occurrence are listed
by rows to the right of the first two columns.
Symbols which have been multiply-defined by the use
of DL statements will have the line numbers of
subsequent definitions listed to the right and
followed by the pound sign (it).

Opcode Cross Reference Table

'rhe opcode cross reference table contains an
alphabetical list of all opcodes and Macro names
along wi th the line numbers of their places of
o ccurrence (and places of definition for Macros).
The opcodes or Macro names are listed in the first
column, the line numbers of Macro definitions ONLY
are listed in the second column, and the line
nu~bers of their places of occurrence are listed by
rows to the right.

This completes the description of the
which make up an assembled print-listing.
also completes Part I of this manual.

101

items
This

l01

E~T

1vnNVW H3QV01/H3~NI1 OJW3WOH~

I I .LeI Vd

.01

H8aV01/H3~NI1 O~W3WOHJ

CROMEMCO LINKER/LOADER

CHArTER 1: USING THE CROMEMCO LI NKER/LOAnER

Command Fo rma t

The CROMEMCO Linker/Loader is used to link
assembled program modules together, load them into
memory, and begin execution there if desired. The
Linker is supplied to the user on diskette (large
or small) under the directory entry " LINK.COM " .
The command line to call LINK consists of a number
of filenames and switches according to the
follo\ving format :

LINK <d:filenaml.ext/s , d:filenam2.ext/s, ••• >

where d stands for the disk dr ive letter (A through
D) , s stands for one of the legal swi tches of the
Linker (see list in this chapter), and filename.ext
stands for a user filename plus its 3-letter
extension. The only quanti ty required above after
the word LINK is filenaml. LINK defaults to the
current drive if the disk drive letter is omitted ,
and it defaults to the extension . REL if the 3-
letter extension is omitted. The switches are not
necessarily required, and are used to give LINK
instructions regarding the files. The Linker will
accept commands in the order received, but does not
require a single command line. The prompt for LINK
is an asterisk , " * " ; any time the asterisk appears,
a command may be entered. Thus , the names of files
to be linked may be given one at a time rather than
on one command line. The example of Chapter 4 will
illustrate this further. After each line is typed ,
LINK will load or search the named file(s). When
LINK finishes this process, it will list all
symbols that remain undefined followed by an
asterisk.

The
variety

switches LINK accepts
of ways to control the

105

give the
linking

user a
process .

CROMEMCO LINKER/LOADER

For example the user may cause the Linker to search
special library files to satisfy undefined globals
by linking the filename to be searched followed by
IS. The 1M swi tch can be used to map a list of all
defined and undefined symbols. These swi tches are
described in the next section. Chapter 2 gives a
brief explanation of the operation and format of
LINK and associated .REL files for those who are
interested. It may be safely skipped, however, for
it contains no information on the actual use of the
Linker. Chapter 3 is a brief summary of the error
messages that occur and why, and Chapter 4 gives a
step-by-step example of the process of linking and
loading program modules.

LINK Swi tches

The Linker allows a number
specify actions affecting the
These switches are listed here:

E (Ex it to COOS)

of swi tches wh ich
loading process.

Exit to COOS upon completion of link and load.
Prior to exiting, LINK prints on the console the
start and stop execution addresses along wi th the
number of 256-byte pages of memory the program
occupies (in decimal), according to the following
fo rma t:

[xxxx yyyy zz]

where xxxx is the address at which execution will
start, yyyy is one more than the hiqhest location
used by the loaded object code, and zz is the
decimal nu~ber of pages required.

If it is desired after executing the /E to
save the file now located in memory, this can be
done using the SAVE command, which is one of the
CDOS intrinsic commands (see also CDOS manual).
The user would then type:

where
above

SAVE filename.ext zz

zz is the
(following

same number pr inted out
the issue of /E). The

106

by LINK
f i I en arne

CROMEMCO LINKER/LOADER

can be any legal name; however , if the name used
al r eady resides on the disk , the saved file will be
wr itten over this existing file. The 3-letter
extension is frequently .COM because t his procedur e
is often used to create command files; however , any
extension may be given. Note that other COOS
INTRINSIC commands may be given before the SlWE
command; for example , DIR may be typed to see about
available di r ectory space . However , execut i ng any
EXTRINSIC commands (XFER , EDIT, etc .) will change
the contents of the user-area. For a 32K system ,
zz=105 will save the entire user- area .

G (Go - start execution)

Start execution of the program as soon as the
current command line has been interp r eted. Prior
to execution , LINK prints on the console the start
and stop addresses and the number of 256-byte pages
occupied by t he object code , according to the
format shown above (see /E). Following th i s is the
message " (BEGIN EXECUTION] " at which point
execution is started by LINK. The Linker
initializes the stack pointer at the highest
address of the user-area in case this operation is
forgotten by the user program .

M (Map all symbols)

Li st both all the defined globals and thei r
values and all undefined globals followed by an
aste ri sk. The map may be sen t to the printe r by
typing Control-P (-P) following the LINK command
line. This printed map of symbols is very use fu l
for debugging the user- program. Once the object
code has been loaded into memo r y by LINK , /E can be
issued and the correct portion of the user - area
SAVEd in a file. Then the program DEBUG can be
called and used to load and debug the file just
created. The global map printed previously can be
used to reference addresses.

107

CROMEMCO LINKER/LOADER

R (Reset linker)

Put Loader back in its initial state. /R is
used to restart LINK if the wrong file was loaded
by mistake. /R will take effect as soon as it is
encountered in a command string.

S (Search file)

Search the disk file having the filename
immediately preceding the /S in the command string,
to satisfy any undefined globals. This is
convenient for having the Linker search a library
file of much-used routines. (Note that when using
LINK with CROMEMCO FORTRAN, the library file
FORLIB.REL is searched automatically to satisfy
undefined globals.)

U (list all Undefined globals)

List all undefined globals as soon as the
current command line has been interpreted and
executed. LINK defaults to this switch; therefore,
it is generally not needed unless it is desired to
reproduce this list more than once. For example
say that during link the list of undefined globals
is pr in ted to the console. The user could then
type Comtrol-P followed by "/U" to cause the
undefined globals to be listed a second time, this
time to the printer as well as the console.

108

CROMEMCO LINKER/LOADER

CHAPTER 2: FORMAT OF LINK-COMPATIBLE OBJECT FILES

The following is a description of the format
of .REL files which are to be compatible with the
CROMEMCQ Linker. This information is provided for
the interested programmer, but is not in any way
required reading for the person learning how to USE
the Linker.

LINK compatible object files consist of a bit
stream. Individual fields within the bit stream
are not aligned on byte boundaries except as noted
below. The use of a bit stream for relocatable
object files keeps the size of the files to a
minimum, thereby decreasing the number of disk
reads and writes. The first bit of a field is
either a one or a zero, and this is followed either
by an 8-bit byte or a 2-bit field having the
following meanings:

Bit Meaning

o load the following eight-bit byte as absolute code

1 read in the following two bit field:
11 Add sixteen-bi t offset to common base
10 Add sixteen-bit of fse t to data base
01 Add sixteen-bi t offset to program base
00 Special LINK item

Special LINK item fields begin with the bit
stream 100 as just explained. This is followed by
a four-bit control field, an optional A-field which
consists of a two-bit code specifying address type,
and an optional B-field which consists of 3 bits
giving a symbol length. The 2-bit address type has
the same meanings as the 2-bit field above except
00 specifies absolute addressing. The 3-bit symbol
length is followed by eight bits for each character
of the symbol. We can represent this bi t stream by
the following:

A- field B-field
1 00 xxxx <yy two-byte-value> <zzz characters-of-symbol-name>

where the spaces in the above show where the

109

CROMEMCO LINKER/LOADER

various
optional

fields end, the angular
quanti ties , and whe r e

brackets denote

xxx x is the four - bit control field
yy is the two - bit address type field
zzz is the three- bit symbol length field

The two-byte - value following yy will be eithe r
the 16 - bi t offset specif i ed or the absolute
address, and the characters - of - symbol - name
following zzz will be in ASCII , each character
occupying eight bits .

The four - bit control field will specify the
operation or function of the bit stream . It can
have the following values , where the four-bit value
is given in the left-hand column in decimal:

o
1
2
3
4

5
6

7
8
9

(The following LINK items have a B-field only)

Entry Symbol (name for search).
Select COMmon Block .
Program Name.
Reserved for Future Expansion.
Reserved for Future Expansion .

(The following LINK i terns have both an A-field and a B- field)

Define COMmon Size.
Chain External (A is head of address chain).
B is name of external symbol.
Define Entry Point.
Reserved for Future Expansion.
Reserved for Future Expansion .

(The following LINK items have an A-field only)

10 Define Size of Program Data Area .
11 Set Loading Location.
12 Chain Address.

A is head of chain; replace all entries i n chain with
current location counter. The last entry i n the chain
has an address field of absolute zero.

13 Define Program Size.
14 End Prog ram (fo rces to byte boundary) •

(The following LINK item has neither an A- nor a B-field)

15 End of File.

110

CROMEMCO LINKER/LOADER

CHAPTER 3: LINK ERROR MESSAGES

The Linker gives several error messages in
case of an illegal operation . These are listed
below in the summary along wi th an explanation of
each one. Note that there are two types of error
messages: fatal errors and warnings. Fatal error
messages are preceded by question marks (?) and
warning messages are preceded by percent signs (%).
A p r ogram will run in some cases when a warning has
been issued ; however , it is better practice to
correct the error and link again.

?No Sta r t Address

?Load ing Erro r

Fatal Errors

A /G swi tch is issued , but no
mai n program module has been
loaded. Remember when creat i ng
and linking machine language
p r og r ams that t he main module
must have an address or label
in its END statement . This
then becomes part of the . REL
file which in f orms LINK where
to begin execution (see also
the END pseudo-op).

The last file given
1 inked and loaded is
properly formatted LINK
file.

to be
not a
object

?Fatal Table Collision There is not
the

enoug h
given

?Command Error

?File Not Found

memory to load
prog ram (s) •

An unrecognizable LINK command
has been given . Type the
co r rect command o r re-link .

A file in
does not
specified.

111

the command str ing
exist as spelled or

Check to see if the

CROMEMCO LINKER/LOADER

file resides on the specified
drive. Often this message
results if the user forgets to
specify the dr ive letter , and
LINK looks on the current
drive.

Warnings

%2nd COMMON Larger /XXXXXX/ The first
definition of COMmon block
xxxxxx is not the largest.
COMmons do not have to be the
same si ze provided the module
containing the larger COMmon
specification is linked first
so that LINK allocates an
appropriate number of qytes for
data storage. To prevent this
error re-order the module
l oading sequence or change the
CQMnon block definitions.

%Mult . Def. Global YYYYYY More than one
definition for the global
(internal) symbol YYYYYY is
encountered during the loading
process. This message may
result if you redefine the LUN
table of FORTRAN ($LUNTS) and
then link with FORLIS.REL
wi thout specifying the /S
switch . The Linker then loads
both the redefined version of
$LUNTS and the version
contained in FORLIS.

112

CROMEMCO LINKER/LOADER

CHAPTER 4: EXAMPLES OF LINKING MODULES

Following are several examples of the process
of linking, loading, saving, and executing files.
The asterisk (*) in the following COI:1mand lines is
NOT user-typed; it is the prompt for LINK.

We would type the following cOr.lmand to load a
32-byte program called MYPROG into memory and begin
execution:

LINK I1YPROG/G

If the load is successful (no errors), the Linker
will respond wi th the message:

[1000 1020 16] [BEGIN EXECUTION]

This program will begin execution at HH:'l0H. If we
desired to save the program prior to execution, we
could type instead:

LINK MYPROG/E

to which the Linker would responc] with:

[1000 1020 161

follo\ved by a return to COOS and the issue of the
COOS prompt. This return to COOS does not change
the user area; hence, we could then save the
program by typing:

SAVE MYPROG.COM 16

Since we have named this a .COM file, we can
execute it directly from coos by typing the name
"MYPROG" •

Another example would
modules together as they are
Suppose we have the three
GRAPHX, MAIN, and SUBPLOT. We

113

be to link
loaded into
relocatable
first type:

several
memo ry.
mod u1 es

CROMEMCO LINKER/LOADER

LINK <CR)

to which LINK responds with the asterisk. We could
then type:

MAIN

The Linker would look on the current drive for MAIN
and t hen return the still-undefined symbols (each
one followed by an asterisk) and the address at
which they are referenced:

INITG* 122E
LINE* 1640
CURSR* 163E
STRIN * 131B
SUBROT* 1470
*

We then link the next module:

GRAPH X

and LINK again responds wi th the undefined symbols
and the prompt:

SUBROT* 1470

*
Finally, we link the last module:

SUBROT

to which link responds wi th the prompt. We could
now type /G or /E to run or exi t from the program
as we did in the first example. However, let's
first generate a map of all the symbols using the
/M LINK swi tch:

*/M

to which the Linker would respond:

114

CROMEMCO LINKER/LOADER

INITG 122E
LINE 164D
CURSR 163E
STRIN 1318
SUB ROT 1470
PAGE 17DF
DOT 180E
ANIMT 1558

Note that this is similar to the map of undefined
symbols; however, in this case symbols which are
not used, but have been defined in one of the
linked programs, are also listed.

The above example could also have been linked
directly, and without producing the maps of
undefined symbols, by typing the comnand line:

LINK GRAPHX,SUBPLOT,MAIN/M

Note also that this command line links them in a
different order than the first case since all of
the modules are relocatable. Thus, the map printed
to the console this till1e would have a different
ad'dress after each symbol.

The Linker can also be used to link machine
language subroutines to programs wri tten for and
compil ed wi th CRQrIEfIr]CO FORTRAN IV. The assembl y
language subroutine should be assembled with ASMB,
which forms a .REL file. The form of the link is
then exactly the same as for the previous example.
An important note is that LINK has been designed to
automatically search FORLIB.REL, the FORTRAN
Library file of subroutines. LINK looks for this
file on drive A, rather than the current drive.
The user can force the Linker to look for FORLIS on
another drive by typing a command like:

LINK FORTRAN,SUBROT,B:FORLIB/S

where FORTRAN is the user's compiled FORTRAN
program. Note the use of the /S switch following
FORLIS. This tells LINK to load into memory only
those routines which are actually needed rather
than the entire Library. It is important to use
this switch with library files in order to save
memo ry space.

115

CROMEMCO LINKER/LOADER

Finally , note that the user may return to coos
at any time while using LINK (to abort the linking
or loading process, for example) by typing Control ­
C ("C).

116

LIT

1VONVW H38nnS30 WVH90Hd O,:)\.\13WOHJ

III J.HVd

SIT

CROMEMCO PROGRAM DEBUGGER

CHAPTER 1 : INTRODUCTION TO DE8UG

The CROMEMCO DEBUG program makes it possible
t o test and debug use r programs. DEBUG is loaded
into memory and moved to the highest memory
available below coos . vlhen using a 32K COOS and
DEBUG, there is 20K left for the user program.

LOADING DEBUG

DEBUG is loaded by typing one of the following
commands from COOs.

DEBUG
DEBUG filename . ext

where " filename " is the name of the program to be
tested , and " ext " is the file extension. In both
cases, DEBUG is load ed into memory directly below
COOS . The COOS jump instruction located at
locat i on 5H is changed to jump to the sta r t of
DEBUG. This allows locat i ons 6H and 7H to st ill
po int to the lowe st available memory location.

The second comnand above is used to load the
fil e to be tes t ed in t o r:lemo r y . If the e x tension
(" ext ") is ". HEX ", then the file is read as an
INTEL HEX file. Any othe r extension is read as an
absolute binary file , loaded at location 100H.
Note that DEBUG does not load re10catable files.
lEan extension is " .REL" it will be loaded in as
if i t were binary and will not be executable .

119

CROMEMCO PROGRAM DEBUGGER

CONTROL CHARACTERS

Control characters
to help in entering
characters are the same

are used in DEBUG and TRACE
commands. These control
as CDOS uses.

Control-C I "C) go back to COOS
Control-H I"H) delete character
Control-U I "U) delete line
Control-X I"X) delete character
underscore delete character
RUBout I DEL) delete character

D uri ng
command) the

a printing (such
following characters

as
may

and backspace

and echo
and backspace
and backspace

from the
be used.

OM

Control-S ("S) stop/start printing. If

break

printing, this character will
stop the printing. If already
stopped, this character will
resume the printing.

(or any other character) will
abort the printing, prompt, and
wa it fa r the nex t command.

COMMAND FORMAT

DEBUG is controlled by one and two character
commands from the terminal. The format is free­
form with respect to spaces. Commas may be used in
place of spaces. In the following, the examples
all dump memory starting at location 1000H and
ending at location 10FFH.

OM1000 10FF ICR)
OM1000S100 ICR)
o M 1000 10FF ICR)
o M 1000 S 100 ICR)
OM1000,UFF ICR)
OM1000,S100 ICR)
o M 1000 , UP>' ICR)

120

on CRT

on CRT
on CRT

CHOMEMCO PROGRAM DEBUGGER

@ REGISTER

DEBUG was designed to give flexibility in
testing relocatable programs. The " @" register is
used to tell DEBUG where the module you wish to
debug is located. This address can be found f rom
the map gene r ated by the link i ng loader " LINK " . To
change the "@ " register, type " @ (CR) " on the
console. The computer will then type " @- xxxx "
(where xxxx is the cu~rent value of the register).
The computer will then wait for a new address. If
a CR only is typed, the register remains unchanged .
If an address and a CR is typed , then the register
will contain the new address. The " @" register may
now be used as part of an address. The following
example demonstrates its use .

G/@ @A3 1000

This is an example of the go command. Break
points will be set at the beginning of the current
module , relativ e location A3H in the current
nodule, and at location 1000H. This feature allows
you to test a module without having to calculate
absolute addresses.

ADDRESS EXPRESSIONS

For additional ease in specifying addresses an
e x pression can be used . Within thesd express i ons ,
addition, subtraction , the " @" register, and the
" $ " may be used. The " $ " is the current location
of the program counter (P register) If many
modules are being tested, add i tion can be used to
specify relative addresses .

G/232l+A3

The preceding example would set a break po int
at re lative location A3H if the module is located
at 2321H.

121

CROMEMCO PROGRAM DEBUGGER

SWATH OPERATOR

There are two way s to specify the add res s
range of many commands. The first is to simpl y
list the beg inn ing and end add resses (and where
appropriate , the destination address). For
example , the first command below programs the range
QI th rough l3FFH into PROMs starting at location
E40Q1H . The second command displays the contents of
memory between addresses E400H and E402H.

p0 13FF E400
DME400 E402

Another way
Swath operator ,
add ress range,
explicitly.

to do the same thing is to
" S", to specify the width

rather than state the end

P0 S1400 E400
DM E400S3

ERRORS

use the
of the

add ress

Any errors made during entering of a command
may be corrected by typing Control-U ,-U) to abort
the line or by backspacing and correcting the line .
If a CR has already been entered and DEBUG detects
an error , the line will no t be accepted and a " ? "
will be printed . Re - enter the line with the
incorrect data corrected.

122

CROMEMCO PROGRAM DEBUGGER

CHAPTER 2: DEBUG COMMANDS

DEBUG and
detail below.
prompt character

TRACE commands are described in
The operator must wait for the
("_") before entering the command.

A - Assemble into memory

This command allows in-line assembly language
to be assembled into memory. The command takes the
following format.

A beginning-addr (CR)

The user is prompted with the absolute
address, followed by the relative address. DEBUG
reads from the console the assembler mnemonics and
assembles the instruction into memory. The
mnemonics for the various Z-80 instructions can be
found in the Z-80 CPU TECHNICAL MANUAL published by
Mostek and Zilog. If there was no error in the
instruction, it is stored in memory and the user is
prompted for the next instruction. The rules for
address expressions apply to the addresses in the
assembler mnemonics. In the following example the
"@" register contains 1234H.

A@40
1274 0040' ADD B
1275 0041' CALL @93
1278 0044' JP 1032+95
1278 0047'

The A command terminates when the first blank line
or a line starting with a"."
console. If there is an error
it will not be accepted, a"?"
the console will be prompted
again.

123

is entered from the
in the input 1 ine,

will be printed and
wi th the addresses

CROMEMCO PROGRAM DEBUGGER

OM - DISPLAY MEMORY

The contents of memory are displayed in
hexadecimal form. Each line of the display is
preceded by the address of the first byte and
follOI ... ed by the ASCII representation of the
hexadecimal bytes . An example follows:

OM100 , S30
0100 40 41 42 43 44 45 46 47-48 49 4A 48 4C 40 4E 4P @ABCOE FGHIJI<LMNO
0110 50 51 52 53 54 55 56 57-58 59 SA 30 31 32 33 34 PQHSTUVWXYZ01234
012 0 35 36 37 38 39 00 00 00 - 00 00 00 ~0 00 00 ·00 00 56789 •• • . ••.

The formats of this command are as follows.

OM (CRl
OM beginnig-addr (CR)
OM beginning-addr ending-addr (CR)
OM beginning-addr S swath- width (CR)
DM , ending-addr (CR)
OM 5 swath- width (CR)

The first format displays memory from the
CURRENT display address, initially l00H , and
continues for 8 lines. The second format displays
from the beginning address and continues for 8
lines. The third format displays from the
beginning address to the ending address. The
fourth format displays from the beginning address
for a length specified by the swath-width . The
fifth format displays from the CURRENT display
address to the ending address . The sixth format
displays from the CURRENT display address for a
length specified by the swath -width.

If an " X " is
relative addresses
following example
contains HHIH.

OMXHJ0,S30

included after the "OM ", the
are also printed . In the

assume that the "@" reg ister

0100 0000 ' 40 41 42 43 44 45 46 47-48 49 4A 4B 4C 40 4E 4F
0110 0010 ' 50 51 52 53 54 55 56 57 - 58 59 SA 3~ 31 32 33 34
0120 0020 ' 35 36 37 38 39 00 00 00-00 00 00 00 00 00 00 00

124

@ABCDEFGHIJKLMNO
PQRSTUVWXYZ01234
56789 •

CROi'IIEMCO PROGRAM DEBUGGER

DR - DISPLAY REGISTERS

When DEBUG is re-entered from a break point,
the user registers are saved. The registers may be
displayed at any time by typing the following
command.

- DR (eR)
SZHVNCE A=0~ BC=~300 DE=0~00 HL=0000 S=~100 p=~10~ ~100' LD EfA
SZHVNC A '=~0 B'=0~00 D'=~~00 H'=~~~0 X=0000 Y=0000 1=00

The letters "SZHVNC" on the first row
represent the flags, while on the second row they
represent the prime flags. If the flag is on, it
is printed~ if the flag is off, a space is printed.
If only the carry and zero flag are set then ,. Z C"
would be printed. The flags are described below.

s -

z -

H -

v -

N -

e -

Sign flag, 5=1 if the MSB of the result
is one, i.e., the result is negative.

Zero flag, Z=l if the result of an
operation is zero.

Half-carry flag, H=l if the add operation
produced a carry into the 4th bit of the
accumulator or a subtract operation
produced a borrow from the 4th bit of the
accumulator.

parity or overflow flag. This flag is
affected by arithmetic and logical
operations. If an overflow occurs during
an arithmetic operation, the flag is set
to one. After a logical operation , the
flag is set to 1 if the result of the
operation has even parity.

Add/subtract flag, N=l if the last
operation was a subtraction.

Carry flag, C=l if the operation produced
a carry.

The E flag on the first line is
the interrupt enabled flip-flop
interrupts are enabled, the "E"
otherwise a space is printed.

the state of
(IFF). If

is printed,

125

CROMEMCO PROGRAM DEBUGGER

-DR (CR)

The A register is printed next, followed by
the BC , DE, and HL register pairs and the stack
pointer. The program counter value is then printed
in both absolute and relative. The opcode pointed
to by the program counter is then displayed as an
instruction.

On the second line, the prime registers are
displayed , F' (prime flags), A', BC ', DE', and HL '.
The IX, IY, and I (interrrupt page) registers are
printed next. If the disassembled opcode includes
an address, the relative value of this address is
printed as the last thing on the line.

S H NCE A=~~ BC=~~~~ DE=~~~~ HL=~~~~ S=~~~~ P=1234 ~~1~ '
S2 NC A ' =00 8 ' =0000 0'=0000 H'=0000 X=0000 Y=0000 1=00

CALL 1334
(~ll~ ')

E - EXAMINE INPUT PORT

The data port
hexadecimal number.

is
The

read and displayed as a
format of the command is:

E data-port (CR)

In the following example the data port 3 is
read and displayed on the console.

-E3 (CR)
23

EJ - EJECT DISK

The format of the command follows.

EJ d

Where d is the disk number (A, B, C,
designated disk is a CROMEMCO DUAL
model PFD, with the eject option, the
the disk drive will eject.

F - SPECIFY FILE NAME

D) •
DISK

If the
SYSTEM

diskette in

This command allows the operator to insert
filenames in the two default FCBs (at 5CH and 6CH)
and the command line into the default buffer (at

126

CROMEMCO PROGRAM DEBUGGER

80H). The example below loads FILEl.COM into the
first FCB and FILE2.COM into the second FCB. The
complete line is also loaded into the default
buffer.

-FFILEl.COM FILE2.COM OPTIONl OPTION2

This command can be used with the "R" command to
read in disk files.

G - GO

The GO command has the following format.

G (sta r ti ng-add r) / (breakpo in t-l) (breakpo in t-2) ••• (breakpo in t- 5)

Each of the addresses is optional. If the starting
address is omitted, then the contents of the
program counter is used. The registers are loaded
from the user registers (these are the values
displayed with the DR command). Execution begins
with the starting address or the contents of the
program counter. If break points were specified,
an RST 30H is inserted at the break point addresses
and a jump instruction is placed at location 30H.
When a breakpoint is executed, control is returned
to DEBUG, and all of the user registers are saved
(the registers may then be displayed with the DR
command). ALL breakpoints are then removed from
the user program. The program counter is displayed
after the breakpoint. Note the following about
breakpo ints:

(a) Breakpo ints can only be set in prog rams
residing in RAM. This is because an RST 3~H is
inserted at each break po in t location. (The
original contents of these locations are saved so
that they can be restored after a break po int is
executed.)

(b) Up to 5 break points can be set. If an
attempt is made to enter more than 5 break points,
the command will not be accepted.

(c) When
instruction is
locations 30H,
user program.

a break point is used, a jump
stored at location 30H. Therefore
31H, and 32H are not available to a

The GO command has an additional feature that

127

CROMEMCO PROGRAM DEBUGGER

is very helpful in debugging a program. A count is
allowed for each break - point. This count is
entered after the break-point and enclosed in
parentheses. This count is the number of times the
program reaches this address before control is
returned to DEBUG. A count of one says to break
the next time the address is reached. In the
example below execution begins at location 100H and
will break when address 109H is reached for the
second time or when 123H is reached for the first
time.

-G100/109(2) 123

Note that 123 and 123(1) means the same thing.
Also note that the count is a hexadecimal number.
Therefore 123(F) means to break after the address
has been executed for the 15th time.

H - HEXADECIMAL ARITHMETIC

Hexadecimal addition and subtraction may be
performed by this command. The first number to be
printed is the sum of the two input numbers . The
second number to be printed is the difference
between the first number and the second number. In
the example following, the first number is 1234 +
321, and the second number is 1234 -321.

-H1234,321
1555 0F13

L - LIST IN ASSEMBLER MNEMONICS

The list command is used to list the contents
of memory in assembly language mnemonics. The
formats for this command are.

L (CR)
L starting-addr (CR)
L starting-addr ending-addr (CR)
L starting-addf S swath-width (CR)
L,ending-addr (CR)
L S swath-width (CR)

The fi rst format lists 16 lines of
disassembled code starting from the current list
address. The second format lists 16 lines from the
starting address. The third format lists from the

128

CROMEMCO PROGRAM DEBUGGER

starting address to the ending address. The fourth
format lists from the starting address for a length
specified by the swath width. The fifth format
lists from the current list address to the ending
address. The sixth format lists from the current
address for a length specified by the swath
address.

The first address of the disassembly is the
absolute address. The second address is the
relative address. If the disassembled instruction
contains an address, the absolute address is
printed in the instruction in hexadecimal and the
relative address is printed to the right of the
disassembled line. In the example that follows,
the "@" register contains 2800H.

-L@800 812
3000 0800' ADD B
3001 0801' CALL 3200 (0A00')
3004 0804' CALL 3243 (0A43')
3007 0807' CALL 3333 (0833')
300A 080A' LD A,B
3008 080B' OR C
300C 080C' JR Z,3000 (0800')
300F 080F' INC HL
3010 0810 ' INC DE
3011 0811' INC BC
3012 0812 ' LD A,H

M - MOVE MEMORY

The formats of this command follow.

M source-addr source-end destination-addr
H source-addr S swath-width destination-addr

The first format moves the contents of memory
beginning with the source address and ending with
the source-end to the destination address. The
second format uses the swath width to determine the
length of the move.

The move is verified to insure that all bytes
were moved correctly. If an overlapping move was
made, errors will be reported. The error reporting
can be terminated by typing any character.

The move command can be used
of memory with a constant. In

129

to fill a block
the following

CROMEMCO PROGRAM DEBUGGER

example, a
using the
move zeros

zero has been entered into
SM command. The following
from location l00H through

-M100 57 101

location l00H
command will

108H.

ro",kfo 1).
Care should be taken not to move memory
TRACE or COOS.

over DEBUG,

a - OUTPUT TO DATA PORT

This command outputs data to a data port. The
following is the command fo rmat.

a data-byte port-number (CR)

P - PROGRAM PROMS

This command allows programming of PROMs. The
following are the command formats.

P source-addr source-end destination-add r
P source-addr S swath-width destination-addr

The first format programs PROMs starting with the
source address and ending with the source- end into
PROMs beginning at the destination address. The
second format determines the length from the swath
width.

If the length of the source is not a multiple
of 400H or if the destination does not begin at a
400H boundary, DEBUG will reject the command .
(Multiples of 400H end in '000', '400 ' , '800', and
1 C00' .)

Any number of 2708 or 2704 PROMs can be
programmed in the execution of one command as long
as there are enough BYTESAVERS to contain them.
Each PROM is verified with its source after all are
programmed and any discrepancies are printed out.
If no discrepancies are found, a prompt is printed
and the next command may be entered .

Softwa re can be loaded into a PROM in as small
increments as you desire, provided it is added to
previously unused areas of the PROM. This is done
by first using the Move command, "M", to transfer
the contents of the PROM to RAM, adding the new

130

CROMEMCQ PROGRAM DEBUGGER

software to an area of RAM which corresponds to the
unused portion of the PROM and finally using the
Program command, II p '', to reprogram the PROM with
the r esult . Athough the entire PROM must always be
programmed , it never hurts to rewrite the same data
over again. In gene r al , a 1 may be written over a
1, a 0 over either a 1 or a 0, but the only way to
change 0 ' s to l ' s is to erase the PROM with
appropriate UV light. (See the Cromemco BYTESAVER
II manual for details.)

R - READ DISK FI LE

This command al l ows the operator to read a
disk file. The " R" command is used with the " F"
command. The " F" command is used to specify the
filename , and the " R" command reads in the f i le.
If the file has an extension of " .HEX " , then the
file is an INTEL HEX file and will be read into
memory . Any other f ile is considered to be a
bina r y file and will be read directly into memory
beginning a t location 100H. The format of the " R"
commmands is:

R
R displacement

T he first format reads the file with no
displacement. The second format reads the file
with a displacement. If the input file is in HEX,
then the displacement is added to the addresses in
the file to determ i ne the addresses at which to
store the file. If the file is a binary file , it
will be stored at the displacement + 100H.

When the " RIt command is executed , DEBUG p r ints
either a " 7 " if there is an error (file not found,
checksum error, or file attempting to read above
highest available memory location) or with the
f ollowing message if there is no error:

NEXT = xxxx

where xxxx is the address of
memory location past the end of

131

the
the

next
file.

available

CROMEMCO PROGRAM DEBUGGER

SM - SUBSTITUTE MEMORY

This command is used to substitute memory.
The format of the command follows.

SM starting-addr

DEBUG prints the absolute address, followed by the
relative address, followed by the contents of the
memory byte. One of the following may then be
entered.

"@"

(a) data-byte value. The data byte value
is stored at the address of the
prompt. The add ress is then
increlilented by 1 and displayed on the
next line.

(b) string enclosed in quotes. The string
is stored bC9inning at the address of
the prompt. The address is then
incremented past the string and
displayed on the next line.

(c) Any number of (a) and (b) above can be
entered on one line. The address is
then incremented past the bytes that
were stored and the new address is
displayed on the next line.

(d) "-" A minus sign does not store a
byte. The address will be decremented
to the previous address. The minus
sign can be used to "back up" to a
previous location in case an error has
been made.

(e) (CR) only. If no entry is made on the
line, the memory byte remains
unchanged. The address is incremented
by 1 and displayed on the next line.

(f) period. A period ends the input mode
and returns to the command level.

In the example that
register contains the

-SM@100

132

follows, assume
value 2S00H.

tha t the

CROMEMCO PROGRAM DEF-HJGGER

2900 101010' 32 10
2901 10101' 17 010
2902 10102' 31 'THIS IS AN ASCI I STRING'
2919 10119' 7A 'AAAA' 0 10 1 2 3 4 5 6 7 8 9
2928 10128' 22
2929 0129' 29
292A 012A' 87 -
2929 10129' 29

Sr - SUBSTITUTE REGISTER

The Sr command alloltlS the user registers to be
altered. The letter " r " stands for the register
which is to be changed. The section SUMMARY OF
REGISTER NAMES gives a summary of the names that
can be substituted. When substituting the F and F'
flags, enter the command SF or SF ' . DEBUG will
then pr int the flags that are set and wai t for the
operator to enter the names of the registers that
are to be set. If the flags are NOT entered, the
flags are reset. In the following example, the
" SZHC " flags are set . After the example is
executed the " ZC " flags are set. The lower case
letters are entered by the operator.

-sf
SZ H C zc

When sustituting a one byte register, a one
byte value is accepted. When substituting a two
byte register , a two byte value is accepted. If no
value is entered, or if an error occurs, the value
of the register remains unchanged. In the
following example , the A register is changed to
contain 41H.

-sa
A=98 41

133

CROMEMCO PROGRAM DEBUGGER

T - TRACE

The format of trace is:

T (CR)
T number-of-lines (CR)

The first format traces the program through one
instruction. The second format traces the program
through "numbe r-of-l ines" inst ruct ions. After
every instruction traced, the values of the user
registers are printed in the same format as the
" DR" command.

You can trace only through RAM. The trace
command places a break point after the instruction,
loads the registers and executes the instruction .
The break point i s then executed and the registers
are resaved. The registers are printed, and the
next instruction is executed unless the count has
reached zero , in which case a prompt is printed and
you may enter the next command.

To abort the trace,
console. A prompt will be
enter the next command.

hit any
printed

TN - TRACE WITH NO PRINTING

key
and

on
YOLl

the
may

The
comm an d

"TN"
with

command i s the same as the "T"
the exception that after every

instruction is traced , the r egiste rs are not
printed . On ly the last traced instruction is
printed.

v - VERIFY MEMORY

Verify that the block of memory between souce
address and source end contain the same value as
the block beginning at destination address. The
add re sses and contents a re printed for each
discr epancy found. The following is the format of
thi s command.

V source-addr source-end destination-addr
V source-addr S swath-width destination-addr

134

CROMEMCO PROGRAM DEBUGGER

'rhis command works by reading bytes from the source
and destination and comparing them. If a
discrepancy is found, the memory is read again for
print-out. Thus, it can happen that a discrepancy
is printed-out with the source and the destination
contents indicated to be the same. This is caused
by a defective memory element.

A discrepancy is printed in the following
order, source address, source contents, destination
contents, destination address. In the example that
follows, memory locations 1003li and l008H are
defective.

-v 0 S 30 1000
0003 32 12 1003
0008 7A SA 1008

135

9ET

H39~n83a WVH90Hd OJW3WOBJ

CROMEMCO PROGRAM DEBUGGER

CHAPTER 3: SUMMARY OF DEBUG COMMANDS

'file following is an alphabetical list of the
DEBUG commands.

Command Description

A Assemble into memory

DM Di s pI ay Memo ry

DR Display Register

E Examine input port

EJ EJect disk

F specify disk File name

G Go

H Hexadecimal arithmetic

L List in assembler IJnemonics

M Move memory

D Output to data port

Prog ram PROMs

R Read disk f De

SM Substitute Memory

Sr Substitute register
(r = A , B , 0 , H, S, P,

A', B ', 0 ', H', X, Y, I)

T Trace

TN Trace with No print

v Verify memory

137

CROMEMCO PROGRAM DEBUGGER

SUMMARY OF ReGISTER NAMES

the
The
DM

command.

following register
command and sho uld

Reg is ter Dec ription

names are pr inted
be used wi th the

by
Sr

F Flags , the following flags may be changed.

S - §.ign flag
Z -Zero flag
H -Half carry flag
V -parity/oVerflow flag
N - subtractioN flag
C -farry flag

The interrupt enable flag ("E") may also be changed.

F ' The F' flags are the same as the 'tF" flags.
(note that the "E" flag may not be changed here.)

A accumulator

A' pr im e accumulator

S SC register pair

s t BC ' register pair

D DE regi ster pair

D t DE t register pair

H HL r egister pair

H' HL' r egister pair

S Stack pointer

P Program counter

X IX register

Y IY register

I Interrupt page register

138

6ET

1VONVW S I H3WWVH~Hd soa~

III ~H\id

0VT

1VON\:lW S I H3W"'l'iH~OHd sao::>

coos PROGRAMMER ' S MANUAL

CHAPTER I: I NTRODUCTION TO COOS SYSTEM CALLS

This section of the manual descibes the use of
COOS system calls. COOS handl e s disk files ,
performs device input and output, and contains a
number of useful subroutines .

Memory Allocation

COOS resides in high memory. It reserves
memory below HHIH for its own use. The user is
left all memory from 100H to the beginning of COOS
(see below).

A program with the extent " .COM " can be loaded
and executed by merely typing the program name .
The program must have its origin at 100H because
that is where COOS loads and executes it. (Note
that when saving files that have been linked using
the CROMEMCO Linker , they can be LINKed anywhe r e
u s ing the IP opt i on. This is because LINK
automatically puts the correct jump instruction at
100H.) After it is loaded, the program can use any
memory at all. Note however that if it alters the
COOS areas , it will have no way of communicating
with the disk or returning to COOS. (COOS '",ould
have to be reloaded by resetting the computer.)

COOS places a jump instruction at bytes 0 , 1
and 2. If a jump is made to location 0 , the COOS
warm start , control will be returned with the
prompt for the current drive (eg, " A. "). Command
I ines may then be entered from the console
keyboard. COOS places another jump instruction at
locations 5, 6 and 7. The normal way to make
system requests of COOS (those described below) is
to call location 5. The address stored at
locations 6 and 7 is the address of the beginning
of COOS and thus marks the upper 1 im i t of user
memory.

141

CDOS PROGHAMMER'S MANUAL

The following address map describes the memory
area from ~ to ~FFH. All addresses are in hex.

o ... 2 CDOS re- entry
3 I/O byte
4 r eserved
5 ••• 7 system request call
8 •• • 40 interrupt vecto rs
40 •• • 5B reserved
5C • •• 6B default File Control Block 1 (FCB- 1)
6C • • • 7B default File Control Block 2 (FCB-2)
7C • •• 7F re served
80 • • • FF defaul t command-line buffer

When a . COM program is run by typing the
program name on the console , the default command ­
line buffer and def a ult f ile control blocks are
used as follows . FCB - l will contain the first
filename , if any, typed after the program name.
FCB - 2 wi 11 con ta in the second filename , if any.
The default b u ffer will contain the entire command
line following the program name. Fo r example , if
this command l i ne is typed :

PROG FILE1.Z80 FILE2 .COM

CDOS will place " FILEIZS0 " in FCB - l , "FI LE2COM" in
FCB - 2 , " FILE!. Z80 FILE2.COM " in the command-line
buffe r, and load and execute PROG.COM at 100H.
Note tha t the second FCB s ta r ts befo re the end of
the first FCB. Before using FCB-l, FCB-2 should be
moved . If it is not moved , part of FCB-2 will be
destroyed.

The command line which
default buffer can be used to
f i lenames to a program , or to
prog r am wi th var i o us opt ions
following command line :

is p l aced in the
send more than two

start execution of a
spec i fied. For the

PROG FILE!.Z80 FILE2.COM OPTIONI OPTION2

the string of ASCII characters " FILEl.Z80
FILE2.COM OPTIONI OPTION2 " will be stored beg inning
at location SlH. The byt e at location 80H will
contain the length o f the string . The byte
followi ng the string will contain a nu l l (00).
PROG.COM can then look at the command line stored
in the default buffer to determine which options
were specified .

142

CDOS PROGRAMMER'S MANUAL

When a program is loaded, the disk buffer is
set to 80H, which is the default command buffer.
If the disk is then read to or written from, this
buffer will be altered. The program must either
reset the disk buffer to another area or move the
command line before accessing the disk, if it is
desired to save the command line.

143

vvI

CDOS PROGRAMMER'S MANUAL

CHAPTER 2: DEVICE I/O - LIST OF COOS SYSTEM CALLS

COOS has a set of system calls for device
input and output. ALL input and output should be
done through these calls. This allo~{s user
programs to be independant of physical devices. If
a change needs to be made in a device driver, it
has only to be done once in the system drivers.
This chapter gives a detailed description of the
CDOS syst~~ calls. They are roughly divided into
three sections: the first section covers device
I/O, where all devices are included except disk
drives. The next section covel-S the system calls
used to access disk files (disk I/O, opening and
closing files, etc.). The last section covers
several useful additional calls. To use one of
these routines the C register must be set to the
function number given below with the title of each
instruction. The other registers are set-up as
that function requires (for example the E or DE
reg isters usually contain the parameter passed),
and a "CALL 5" instruction is executed. [Remember
that COOS initializes location 5 with a jump
instruction. This is done so that the location of
cnos in memory is transparent to a user program. A
user pro9ram using the COOS system functions does
therefore not need to do a CALL to a particular
address in coos. J For a complete summary of the
COOS system calls, refer to Chapter 3. The system
calls given below are in numerical order in each of
the three sections.

coos DEVICE FUNCTION CALLS

These system calls involve device I/O with all
devices except disk drives. The number given
preceding each coos function is the number which
should be loaded into the C register prior to the
" CALL 5". The number is given fi rst in hex and
then in decimal in parentheses.

145

coos PROGRAMMER'S MANUAL

1 - READ CONSOLE (with echo)

This call is used to retrieve one byte from
the console. The byte will be returned in the A
register. COOS does not return to the user program
until a character is read and echoed back to the
console. The parity bit is set to~. Note that a
Control-Z (~Z) character is usually considered an
end of file mark.

2 - WRITE CONSOLE

This call is used to write one ASCII character
to the console. The character is placed in the E
register before the call. COOS will wait until the
console is ready to receive the character and then
print it.

After Control-P (~P) is typed all subsequent
characters are sent to both the console and the
pr in ter, un til a second Contro l-P is typed (thus
Control-P acts as a toggle swi tch). Control - vi also
causes subsequent characters to be sent to both the
console and the printer, and Control -T causes them
to be sent only to the console again. Control - W
and Control -T are usually edited into a file so
that when that file is typed out on the console, it
can stop and start the printer at the appropriate
places.

Control-I is the tab control. It is converted
to spaces so that the cursor is posi tioned at one
of the standard tab stops , 1, 9, 17, 25, 33, 41 , •••
However, the tab is still stored internally in a
file as the single ASCII character, 09H .

3 - READ READER

This call will read one character from the
paper tape reader. All 8 bits are read. The
character will be returned in the A register. If
it is the end- of-file character (Control-Z), the
ZERO flag is set.

146

COOS PROGRAMMER'S MANUAL

4 - WRITE PUNCH

This call will punch one character on the
paper tape punch. All 8 bits are punched. The
character is placed in the E register before the
call. COOS will wait until the punch is ready to
receive the character.

5 - WRITE LIST

This call will print a character on the
printer. Before the call, the character to be
printed is placed in the E-register. Tabs are not
expanded. COOS will wait for the printer to accept
the character before it returns.

For
provided.
but it is
function
register.

BIT

7 - GET I/O BYTE

extra I/O devices, an "IOBYTE" has been
This byte is not currently used by COOS,
provided for the user's programs. This
call returns the "IOBYTE" in the A
The format of the byte is:

7
PRN

6
PUNCH

5 4
READER

3 2 1
CONSOLE

Thus up to eight consoles can be designated, four
each of paper-tape punch and reader, and one
printer.

8 - SET I/O BYTE

This call allows the user program to set the
"IOBYTE". The E register contains the byte prior
to the call. See above for the format of the byte.

9 - PRINT BUFFER

This call ,'>'ill print a string of ASCII
characters which has been terminated with the "$"
character. The DE register pair is set up with the
address of the beginning of the string before the
call is made to coos. If the printer toggle is on,
the message will also be sent to the printer.

147

COOS PROGRAMMER'S MANUAL

10 (0AH) - INPUT BUFFERED LINE

This call will read an input 1 ine from the
console. The DE register must be pointing to an
available buffer before the call is made to COOS.
The first byte of the buffer must contain the
maximum length of the buffer. On return from this
call the second byte of the buffer will contain the
actual length entered. The line that is input will
be stored beginning at the third byte. If the
buffer is not full, the byte at the end of the line
will contain a zero.

When the line is being entered, the following
characters will have a special meaning:

Control - C ("'C)

Control-E ("'E)

Control-P ("'P)

Control-R ("'R)

Con trol-U ("'U)

Control-X ("'X)

RUBout

Abort. Warm boot back _to COOS.

Physical CR-LF. The line is
not terminated and nothing is
entered into the buffer. This
character is used to enter a
line longer than can be printed
on the console.

Toggle printer/console link.
When thi s character is fi rst
typed, the link is toggled ON.
All characters will then be
sent to the console and the
printer. The next time the
character is typed, the toggle
will be turne'd off. All
characters will then be sent to
the console only.

Repeat what has been typed so
far on the line.

Delete the entered line and go
back to beginning of buffer for
new line.

Delete the previous character
and echo the deleted character
(used for hard-copy terminals).

Delete the previous character
and back up the cursor (used

148

CDOS PROGRAMMER'S !1ANUAL

for CRT terminals).

DEL Same as RUBout.

Underseo re Same as RUBout.

Backspace ("H) Same as RUBout.

11 (0BH) - TEST CONSOLE READY

The console is tested to see if a character
has been typed. If a character has been typed ,
0FFH is returned in the A register. If no
character has been typed , 0 is returned in the A
register.

128 (80H) - nEAD CONSOLE (without echo)

This call is the same as " READ CONSOLE (with
echo) " except that it does not echo the cha r acter
after it is read . The byte i s returned in the A
register.

142 (SEH) - SET CURSOR ADDRESS

This call will set the cursor at the specified
add r ess. This command wil l o n ly work when the
console is a CRT with cursor addressing. The D
register is set up with the column address (1
through 80 for most CRT ' s) and t he E register is
set up with the row address (1 through 24 for most
CRT' s) .

149

CDOS PROGRAMMER'S MANUAL

CDOS DISK FUNCTION CALLS

COOS divides the disk into regions called
files. Files are referenced through file control
blocks (FCBs). FCBs are 33 bytes long and have the
following format, where each of the numbers below
stands for one byte:

FCBOK

FCBFN

FCBFT

FCBEX

FCBRC

FCBMP

FCBNR

Di sk desc r i pto r

File name

File type (extension)

File extent

Reserved

Record coun t

1 ••• 8

(0=current disk, l=drive-A,
2=B, 3=C, 4=0)

(right-filled with blanks)

9 . •• 11 (right-filled with blanks)

12 (initially 0; is incremented

13 ••• 14

15

by one in every new
extent of 16 Kbytes)

(total number of 128 - byte
sectors or records)

Cluster allocation map 16 ••• 31 (allocated clusters 2
through 24~)

Next reco rd 32 (next record to be read or
written; has the value
o through 127)

It should be noted that directory entries on
the disk consist of 32-byte FCBs. The last byte,
FCBNR, which points to the next record, is omitted.

12 (0CH) - DESELECT CURRENT DISK

The current disk is deselected. The COOS disk
driver can be changed to perform any desired
function at this time to deselect the disk.
Currently the driver outputs a 0 to port 34H when
this function is selected.

150

CDOS PROGRAMMER I S MAN UAL

13 (0DH) - RESET COOS AND SELECT DRIVE A

COOS is initialized, all disks are logged-off,
and drive A is selected as the current drive. The
other disks will be logged-on again as soon as they
are accessed.

14 (0EH) - SELECT DISK DRIVE

The disk dr ive number in
selected as the current disk.
the E register is 0 for drive
for drive C, or 3 for drive D.

the E register is
The drive number in

A, I for drive B, 2

15 (0FH) - OPEN DISK FILE

The FCB pointed to by the DE register pair is
opened to allow reading or writing to the file
whose name is specified in the FCB. The A register
returns with -1 (0FFH or 2550) if the file is not
found, or the directory block number if the file is
found. Block numbers start at 0 and there is one
block number for every four directory entries. The
HL register pair returns pointing to the directory
entry in memory.

16 (10H) - CLOSE FILE

The FCB pointed to by the DE register pair is
closed and the disk directory is updated. The file
described by the FCB must have been previously
opened or created; if it has not been, an
unpredictable directory entry will be written to
the disk. A file to which bytes have just been
written MUST be closed using this function or the
entire last extent will be unable to be read.

17 (llH) - SEARCH DIRECTORY

The directory is searched for the first
occurrence of the file specified in the FCB pointed
to by the DE register pair. ASCII "?" (3FH) in
the FCB matches any character. The block number
(see description of directory block numbers in 0FH
-Open Disk File, above) is returned in the A

151

CDOS PROGHAMMEH I S MANUAL

register if found; if the file is not found, -1
(0FFH or 255D) is returned in A. HL is returned
pointing to the directory entry in memory. An
important point to note about this call and the one
following (12H) is that they will get the directory
entry whether it has been erased or not: i.e.,
these calls do not check to see if a file has been
erased. Files are erased by placing a 0E5H in the
first byte (FCBDI<); the rest of the FCB is left
unchanged.

18 (12H) - FIND NEXT DIRECTORY ENTRY

This call is the same as llH (17) above except
that it finds the NEXT occurrence of the filename
in the directory. This may be either the next
extent of a file occupying more than one extent, or
another filename if the match-character, "?", was
used in the FeB. This call is made after function
17 and no other disk system call can be made
between these calls.

19 (13H) - DELETE FILE

The file specified by the FCB pointed to by
the DE register pair is deleted from the disk
directory. ASCII " ?" in the FCB matches any
character. The number of directory entries deleted
is returned in the A register.

20 (14H) - READ NEXT RECORD

The DE register pair points to a successfully
OPENED FCB. The next record (128 bytes) is read
into the current disk buffer. The FCBNR in the FCB
is incremented to read the next record. One of the
following codes is returned in the A register:

'" - read completed
I - end of file
2 - read attempted on unwritten cluster

(random access file only)

152

CDOS PROGRAMMER'S MANUAL

21 (ISH) - WRITE NEXT RECORO

The DE register pair points to a successfully
OPENED FCB. The next record (128 bytes) is written
into the file from the current disk buffer. The
FCBNR in the FCB is inc remen ted to be read y to
write the next record. One of the following codes
is returned in the A register:

o - write completed
1 - extent error (attempted to close an unopened extent)
2 - out of disk space (limited to 81K - small , 241K - large)

-1 - (0FFH or 255D) out of directory space (limited to
64 extents)

22 (16H) - CREATE FILE

The file specified in the FCB pointed to by
the DE register pair is created .on the disk . The A
register is returned containing the block number of
the directory entry (see 0FH -Open Disk File), or -
1 (0FFH or 255) if no more directory space is
available.

23 (17H) - RENAME FILE

This call will rename a disk file. The DE
register pair points to the FCB to be renamed. The
old file name and file type are in the first 16
bytes and the new file name and file type are in
the second 16 bytes of the FCB. ASCI I "?" in the
FCB will match with any character. The A register
returns containing the number of directory entries
renamed.

24 (ISH) - DISK LOG - IN VECTOR

The A register is returned specifying the
disks that are logged in. Each bit represents one
disk drive logged in. If the bit is a one, then it
is logged in; else it is off- line. The least
significant bit is the A drive, next most
significant (Bit 1) is drive B, etc. Since there
would be no more than four drives, the upper four
bits are 0's.

153

CDOS PROGRAMMER'S MANUAL

25 (19H) - CURRENT DISK

The number
returned in the A
B, 2 = d rive C, 3

of the current disk
register. 0 = drive A,
= drive D.

26 (lAH) - SET DISK BUFFER

drive is
1 = drive

The buffer pointed to by the DE register pair
is used for disk I/O. When a program is loaded,
the disk buffer is initially located at 80H.

27 (ISH) - DISK CLUSTER ALLOCATION MAP

The BC register pair returns pointing to a bit
map that corresponds to the allocated clusters on
the disk. The DE register pair returns containing
the capacity of the current disk in number of
clusters. The A register returns containing the
number of records or sectors per cluster (8). This
system call is used by "STAT".

131 (83H) - READ LOGICAL BLOCK

This system call will read a log ical block
from the disk without any attention to the files it
may contain (i.e., no FCB is specified). A block
is defined to be one sector or record of 128 bytes.
When this function is called, the DE register pair
should contain the block number and the B register
should contain the disk number (0 for current
drive, 1-4 for A-D). The high bit of the B
register contains a 1 for an interleaved and a 0
for a non-interleaved read. Interleaved means the
block which is read is found in the order CDOS
stores it (every fifth sector for small disks and
every sixth sector for large disks). Non­
interleaved means the block which is read is found
in sequential order, the order it is physically
stored on the disk. The A register is returned
with the status of the read according to the
following:

o - OK
1 -I/O error
2 -illegal request

154

COOS PROGRAMMER'S MANUAL

3 - illegal block

An example will help to illustrate these
points. COOS .oakes use of 716 sectors on the small
floppy disks. Therefore, the block numbers which
could legally be loaded into the DE register are 0
through 715 decimal, or 0 through 2CBH. Suppose
that DE is loaded with the value 2 and t he B
register with 0 (current disk, non-interleaved
read). Thus, since the sectors are numbered
beginning with 1, sector 3 I"ould be read into
memory in the disk buffer (located at 80H if it has
not been changed) . The same read with the B
register loaded with 80H (current disk, interleaved
read) would read sector 0BH (the third sector when
they are read every fifth one).

132 (84H) - WRITE LOGICAL BLOCK

This system call will write a logical block or
sector to the disk without any attention to the
file there (no FCB is specified). The registers
are set up and retur n ed in the same way as they
were for the Read Logical Block system call above.

134 (86H) - FORMAT NAME TO FeB

This system call will build a File Control
Block. The HL register pair points to the start of
the input line. The DE register points to the
place in memory where the FCB is to be built. The
input line is of the format:

d :filename .ext

where d stands for one of A-D, the filename is up
to 8 letters with a 3-letter extension. The FCB is
then built from this input line , converting lower
case to upper case. The input line is terminated
by an ASCII " /" or any character less than 21H
(such as a space or carriage return).

On return the HL register pair points to the
terminator that ended the build operation. The DE
register pair points to the start of the new FCB.

155

COOS PROGRAMMER'S MANUAL

135 (87H) - UPDATE DIRECTORY ENTRY

The last disk I/O function called must have
been function 17 or 18 , Search Directory or Find
Next Entry. The OE register pair points to the FCB
used in the function call 17 or 18. The directory
entry is then updated on the disk; this means that
the entry is written back to the disk without the
user having to specify a block . The user merely
specifies a filename when calling 17 or 18. This
is useful if it is desired to change a directory
entry and write it back to the disk.

139 (88H) - HOME DISK

The disk drive specified in the B register (0
for current drive and 1-4 for drives A-D) is sent a
command to "home " the head. The disk drive head
will return to track 0.

140 (8CH) - EJECT DISK

This call \.,.ill eject the disk ' hose number is
given in the E register (0 for current drive and 1-
4 for drives A-D, respectively), only if the disk
drive is a CROMEMCO Dual Disk Drive System, Model
PFD with the eject option. Otherwise, the call
will have no e f fect.

ADDITIONAL SYSTEM CALLS

Several additional COOS system calls have been
added for the programmer's convenience. These
calls are explained in this section.

o - ABORT

This call will abort the current program and
return control to COOS. This call has the same
effect as jumping to location 0.

156

CDOS PROGRAMMER'S MANUAL

129 (81H) - GET USER REGISTER POINTER

This call is provided for expansion of CDOS to
a multiprogramming system. The BC register pair
returns poin ting to the user register pointers.

130 (82H) - SET USER CONTROL-C ABORT

When Control-C (~C) is typed, the system
usually aborts and returrlS control to CDOS. This
call allows the prog rammer to assign an address to
which to jUI:1P when Control-C is typed (i .e., users
can assign their own function to Control-C). The
address is given in the DE register pair. Note
that if DE contains a zero, the system abort is
reset. Jumping to loca t ion " at any time still
causes a return to CDOS, also with the Control - C
being restored to its original function.

136 (88H) - LINK TO PROGRAM

This enables one command program to call
another. The default command-line buffer nnd
default FCBs for the new program must be set up
prior to this call if that program expects to be
able to use them. The DE register pair should
contain the address of the FCB of the new program
(which must have an extension of ".COM"). If the
new program is NOT found, the A register returns
containing -1 (0FFH or 255); also in this case the
first 80H bytes (from 100H to 17FH) will be
destroyed because this is used in reading the
di rec tory . Otherwise, execution begins at l00 H and
no return is made to the original program.

137 (89H) - MULTIPLY

This system call provides a 16-bi t multiply.
The HL and DE regi ster pairs contain the two 16-bit
factors, and the answer is returned in register DE
(i.e., DE = DE*HL).

157

COOS PROGRAMMER ' S MANUAL

138 (8AH) - DIVIDE

This system call provides a 16-bit divide.
The HL registe r pair should contain the dividend,
and the DE register pair, the divisor. The
quotient is returned in HL, and the remainder in DE
(ie , HL = HL/OE with DE = rema i nder) . DE contains
the r emainder .

141 (8DH) - GET VERSION NUMBER

This call
CDOS in the B
the C register .

will return
reg ister and

158

the
the

version-number
release- number

of
in

COOS PROGRAMMER'S MANUAL

CHAPTER 3: SUMMARY OF COOS FUNCTION CALLS

Following is a summary table listing all the system calls
in Chapter 2 along with their entry and return parameters. The
are listed in numerical order, i.e., by order of the number
loaded into the C register to achieve the desired function.

desc r ibed
funct i ons
which is

NUMBER FUNCTION

0 ABORT
1 READ CONSOLE

(with echo)
2 WRITE CONSOLE
3 READ READER

4 WRITE PUNCH
5 WRITE LIST
7 GET I/O BYTE
8 SET I/O BYTE
9 PRINT BUFFER
10 (0AH) INPUT BUFFERED

LINE
11 (0BH) TEST CONSOLE

READY
12 (0CH) DESELECT

CURRENT DISK
13 (0DH) RESET COOS AND

SELECT DRIVE A
14 (0EH) SELECT DISK
15 (0FH) OPEN DISK FI LE

16 (l0H) CLOSE FI LE
17 (lIH) SEARCH

DIRECTORY
18 (12H) FIND NEXT ENTRY

19 (13H) DELETE FI LE

20 (14H) READ NEXT
RECORD

21 (ISH) WRITE NEXT
RECORD

ENTRY PARAMETERS

none
none

E = character
none

E = character
E = character
none
E = I/O byte
DE = buffer address
DE = buffer address

none

none

none

E = disk drive
DE = FCB address

DE = FCB address
DE = FeB add ress

DE = FeB address

DE = FeB address

DE = FeB add ress

DE = FeB address

159

RETURN PARAMETERS

none
A = character

none
A = character
Z flag set = end of file
none
none
A = I/O byte
none
none
none

A = 0FFH (-1) if ready
A = 0 if not ready
none

none

none
A = directory block
A = 0FFH if not found
none
A = directory block
A = 0FFH if not found
A = directory block
A = 0FFH if not found
A = number of entries

deleted
A = 0 if ok
A = 1 if end of file
A = 2 if tried to read

unwritten records
A = 0 if ok
A = 1 if ex ten t error
A = 2 if out of disk

space
A = -1 (0FFH) if out

of directory space

COOS PROGRAMMER1S MANUAL

NUMBER FUNCTION ENTRY PARAMETERS

22 (16H) CREATE FILE DE = FCB address

23 (17H) RENAME FILE DE = FCB address

24 (18H)

25 (19H)
26 (lAH)
27 (lBH)

DISK LOG-IN none
VECTOR
CURRENT DISK none
SET DISK BUFFER DE = buffer address
DISK CLUSTER none

128 (8~H)

129 (81H)

130 (82H)

1 31 (83H)

ALLOCATION MAP

READ CONSOLE
(wi th no echo)

GET USER
REGISTER
POINTER
SET USER
CONTROL-C
ABORT
READ LOGICAL
BLOCK

132 (84H) WRITE LOGICAL
BLOCK

134 (86H) FORMAT NAME
TO FCB

UPDATE
DIRECTORY ENTRY

none

none

DE = address

DE = block number
B = disk number
B top bi t = 1 if

interleaved
DE = block number
B = disk number
Btopbit=lif

interleaved
HL = address of

s t ring
DE = FCB address
DE = FCB address 135 (87H)

136 (88H) LINK TO PROGRAM DE = FCB add ress

137 (89H) MULTIPLY

138 (8AH) DIVIDE

139 (8BH) HOME DISK
14~ (8CH) EJECT DISK
141 (8DH) GET VERSION

142 (8EH) SET CURSOR
ADDRESS

DE = factor 1
HL = factor 2
HL = dividend
DE = divisor
B = disk number
E = disk number
none

D = column address
E = row address

160

RETURN PARAMETERS

A = directory block

A = number of entries
ren amed

A = those disks
logged-in

A = disk number
none
BC = address of bitmap

DE = number of clusters
A = sectors/cluster
A = character

BC = pointer to user
register
po in ters

none

A=0ifok
A = 1 if I/O error
A = 2 if illegal request
A = 3 if illegal block
A = 0 if ok
A = 1 if I/O error
A = 2 if illegal request
A = 3 if illegal block
HL = address of

terminator
DE = FCB address
none

A = -1 if error , else
execute at 100H
DE = product

HL = quotient
DE = remainder
none
none
B = version-number
C = release-number
none

191

S3NI~nOH XHVH8Il H318W3SSV

A .LHVd

Z9T

S3NI~nOH XHVH811 H318W3SSV OJW3WOHJ

CROMEMCO ASSEMBLER LIBRARY ROUTINES

CHAPTER 1: ROUTINES AVAILABLE IN ASMLIB

The library file "ASMLIB.REL" has been
provided for your use in assembly language
prog ramming. There are three types of routines
(d ec imal convers ion, hexadec imal conversion, and
character I/O). An example of how to add these
routines to your program follows.

LINK PROG ,ASMLIB/S/G

This example will load a program called "PROG" and
then load only the routines in " ASMLIB" that are
required. See Part lIon LINK for more
information.

DECIMAL CONVERSION

ADEC - DECIMAL TO BINARY CONVERSION

This routine will convert a decimal string to
a binary number. The following example will
illustrate how to use this routine.

LD
CALL

BC,STRING
ADEC

;point to ASCII string
;convert to binary

The routine will return with the HL register pair
containing the 16-bit binary number and the Be
register pair pointing to the first non-digit.

into

BINDF, BINDB, BINDS, BIND -
CONVERT BINARY TO DECIMAL

These routines will
a decimal string.

163

convert a binary number
The routine "BINDF" will

CROMEMCO ASSEMBLER LIBRARY ROUTINES

zero fill, " BINDB " will fill wi th spaces , " BINDS "
will suppress printing of leading zeros, and " BIND "
will fill with the character in the A register . In
the following example leading zeros will be printed
as " + " s .

LD
LD
LD
CALL

HL , STRING
BC , (BINARY)
A , ,+ ,
BIND

;store ASCII string here
; this is b i nary number
; fill character
; convert to ASCII string

Six bytes must be reserved for the st r ing , unless
" BINDS " is used , in which case this routine will
use only the number of bytes that are not leading
zeros. The decimal numbers returned are in the
range 0 through +32767 (0H - 7FFFH) and - 32768
through -1 (8000H - FFFFH).

HEXADECIMAL CONVERSION

AHEX - ASCII TO HEX CONVERSION

Th i s r outine will convert a hexadecimal string
(which must be terminated by an ' H ') to a binary
number. The calling sequence is

LD
CALL

BC,STRING
AHEX

ipoint to ASCII string
iconv e rt to binary

The routine will return with the HL register pair
containing the binary number and the BC register
pair pointing to the first nonhexadecimal digit .

BINH4 - BINARY TO 4 HEX DIGITS

This routine will convert
the BC register pa i r to 4
calling sequence is

LD
LD
CALL

Be , (NUMBER)
H L , STRING
BINH4

164

the b i nary number in
ASCII digits. The

;get binary number
:store ASCII st r ing here
iconvert to ASCII

CROMEMCO ASSEMBLER LIBRARY ROUTINES

BINH2 - BINARY TO 2 HEX DIGITS

This routine will store 2 ASCII digits. The
calling sequence is

LD
LD
CALL

A, (NUMBEH)
HL,STRING
BINH2

;get binary number
; store ASCII string here

BINHI - BINARY TO I HEX DIGIT

This routine will sto r e I ASCII digit. The
calling sequence is

LD
LD
CALL

A, (DIGIT)
HL,STRING
BINHI

;ge t binary digit (lower 4 bits of A)
; store digit here

CHARACTER I/O ROUTINES

providing character I/O which is device
independent adds considerable power to a program .
These routines allow opening a file by symbolic
name (disk or device) and then calling the same
routines for I/O. There are routines for both
ASCII and BINARY data. The binary calls pass 8
bits of data. The ASCII calls pass only printable
characters plus carriage return , line feed, and
tab . All other characters are passed as two
characters (an up arrow and the corresponding
printable character; e.g. , Control-B would be
printed as "~B"). Devices are referenced by using
the following symbolic names ; all others are
considered disk files.

RDR: [#1 -r eader (0 •• 4)
PUN: [#1 -punch (~ .• 4)
LST: [#1 -printer (0 •• 1)
PHT: [#1 -printer (0 . • 1)
CON: [III -console (0 .• 7)
DUM: -dummy

165

CROMEMCO ASSEMBLER LIBRARY ROUTINES

The option number is set into the " IOBYTE " to
select dev ice units. The symbolic name " DUM: " is
used to throwaway output, or as end of file.

An extended FCB (XFCB) is used which includes
character pointers. When the XFCB is initialized,
the number of buffers are specified (each is 128
bytes). Only disk files use the buffers .

The format of the XFCB follows.

name

ZCNT
ZFCB
ZBPTR
ZBC UR
ZNBUF
ZFBUF

posi tion

~

2 •• 34
35 •• 36
37
38
39

length

1
33

2
1
1
1

4~

description

byte count (0 •• 127 or 255)
CDOS file control block (FCB)
buffer pointer (1st buffer)
current buffer
number of buffers
full number of buffers

total length

The byte count indicates a non-disk device if
it contains 255. ZFLG will then contain the system
call for that device. The following are the flags.

RDR: 3
PUN: 4
LST: 5
PRT: 5
CON: 1
DUM: ~

The initial format of an XFCB should be:

DEFB
DEFS
DEFW
DEFB

~
34
buffer address , (2I
number of buffers

FNAME - SET UP XFCB

This routine sets up an XFCB from an FCB. If
the routine is called with the A register equal to
0, then the extension in the FCB is used. If the A
reg ister is not equal to (21, then the A, B, and C
register s contain the extension that i s to be used .
The example below will set up an XFCB from the
system FCB at location 5CH with an implied

166

,

CROMEMCO ASSEMBLER LIBRARY ROUTINES

extension of ".PRN".
files only.

This routine is for disk

LD
LD
LD
LD
CALL

HL,5CH
DE,XFCBl
A, I P'
BC, 'RN '
FNAME

;point to system FCB
;point to XFCB
; ". PRN" extension

;build XFCB

XDISK - SET UP SPECIAL XFCB

This routine will modify an XFCB using a
letter in the A register. If the A register
contains A through W, this is considered to be a
disk identifier. If the A register contains "X",
the XFCB is converted to use the console. If it
contains a "Y", the XFCB is converted to use the
list device. If it contains a "Z", then the XFCB
is converted to use the dummy driver. This routine
allows the decoding of parameters such as the
assembler uses for its files. In the following
example the XFCB is converted to use the console.

LD
LD
CALL

DE,XFCB
A, I X I

XDISK

;point to the XFCB
;make it the console
;convert XFCB

ZNEW - OPEN NEW XFCB

This routine will delete any old file with the
same name and then create and open a new file. If
there is an error the ZERO flag is set and the HL
register pair points to an error message. In the
following example a new file is created.

LD
CALL
CALL

DE, XFCB
ZNEW
Z,ZIOER

;point to XFCB
;create a new file
;print error and abort

ZOPN - OPEN OLD XFCB

This routine will open an exist i ng file. If
there is an error the ZERO flag is set and the HL
register pair points to an error message. In the

167

CROMEMCO ASSEMBLER LIBRARY ROUTINES

following example an old file is opened.

LD
CALL
CALL

DE,XFCB
ZOPN
Z,ZIOER

;point to XFCB
;open the file
iprint error and abort

ZCLOS - CLOSE XFCB

This routine
following example a

will close a
file is closed.

file. In the

LD
CALL
CALL

DE,XFCB
ZCLOS
Z,ZIOER

;point to XFCB
iclose the file
iprint error and abort

PCHAR - PUT CHARACTER (BINARY)

This routine
characters. In the
is output.

is used
following

LD
LD
CALL
CALL

DE,XFCB
C, (HL)
PCHP.R
Z,ZIOER

to output binary
example a character

ipoint to XFCB
;get character to output
;output character
iprint error and abort

PUTC - PUT CHARACTER (ASCII)

This routine is used to output ASCII
characters to a disk file or a device such as the
console, a printer, etc. In the following example
a character is output.

LD
LD
CALL
CALL

DE,XFCB
c, (HL)
PUTC
Z,ZIOER

ipoint to XFCB
iget character to output
;output character
;print error and abort

GCHAR - GET A CHARACTER

This routine is used to input characters from
a disk file or a device. In the following example,
a character is returned in the A register.

168

,

CHOMEMCO ASSEMBLER LIBRARY ROUTINES

LD
CALL
CP
JP

DE,XFC8
GCHAR
1AH
Z,EOF

When an unwritten
trea ted as an end of

random
file.

;point to XFCB
;get a character
;Q, end of file
iyes, end of file

record is read, it is

ZIOER - PRINT FILE ERROR MESSAGE

This routine is the standard error routine.
When an error occurs in one of the file handling
routines, the HL register pair points to the error
message, the DE register pair points to the XFCB,
and the ZERO flag is set. This allows the
instruction " CALL Z,ZIOER" to follow a disk
handling routine. In the following example, a
character is Hritten. If there is an error, it
will be printed and control will be passed to COOS.

LD
LD
CALL
CALL

DE,XFCB
C, (HL)
PUTC
Z,ZIOER

ipoint to XFCb
;get a character
;output character
iprint error and abort

PFNAM - GET FIL8 NAME FOR PRINTING

This routine will extract the file name from
the XFC8 and form a printable string. The string
will be in the following format:

d: Eilename.ext

where d: is an optional disk number (A-D),
filenalile is the name of the user file (1 to 8
characters>, and ext is the filename extension (0
to 3 characters). The string is terminated by a
byte equal to zero. The length of the string is
returned in the A register. In the following
example a string is formed from the XFCB.

LD
LD
CALL
CALL

DE,XFCB
HL,BFLINE
PFNAM
PRNT

169

ipoint to XFCB
;store string here
;form string
;print the file name

CROMEMCO ASSEMBLER LIBRARY ROUTINES

PRNT - PRINT A LINE

This routine will print a string which ends
with either a zero-byte or a carriage return. If a
carriage return is found, the carriage return and a
line feed is output. In the following example the
str ing "THI S IS A STRING " is output.

LD
LD
CALL

STRING: DEFB

OE,XFCB
HL,STRING
PRNT

;set up for device
ipoint to string
; print the string

'THIS IS A STRING ',~

ABORT - ABORT USER PROGRAM

This routine will print a message and then
abort to COOS. The format of the message is the
same as in the previous example . In the following
example the message "*** END OF JOB *** " is output
to the co nsole and control is returned to COOS .

LD
CALL

STRING : OEFB

HL,STRING
ABORT

:point to string
iabort program

'*** END OF JOB ***' ,13

170

CROMEMCO ASSEMBLER L I BRARY ROUTINES

CHAPTER 2: AN EXAMPLE

The program "EXAMPLE .280" has been included as
an example. To run this example use the batch file
"EXAMPLE.CMD". The first line of -the example is
typed by the user. The rest of the example is
typed by the computer.

B.@ EXAMPLE
BATCH VERSION 00.02

B.ASMB EXAMPLE.AAX
CROMEMCO CDOS 280 ASSEMBLER version 02.02

171

CROMEMCO ASSEMBLER L U) i1.rd ~Y HOUTINES

CROMEMCO COOS 28121 ASSEMBLER version 1212.02
*** EXAMPLE ***

PAGE 0001

12100121' 3A5D00
0003' FE20
121005' CA6500'
12101218' 97
1211211219' 215CI2I0
000C' 117F00'
fHhH" CDI2I0I2II2I#
1211312' CD 121 121 121 121 #
00 15' CC0000#

0018' 3A6DI2I121
I2IfJ1B' FE2121
01211D' CA6500'
0020' 97
0021' 216C00
012124' l1A700'
12112127' C0100121it
121 121 2A , CD12I000#
012120' CC1600#

012130' 11A700'
0033' CD0000#
0036 ' FE1A
0038' 280C
003A' 117F0121'
0030' 4F
003E' CD0000#
0041' CC2E00#
1iI\~44' 18EA

0002
0101213 ;TI-lIS PROGRAM WILL INPUT FROM ONE
01004 ;DISK FILE OR DEVICE
0005 ;AND OUTPUT TO ONE DISK FILE OR DEVICE
001216 i
121007 iTO CALL THIS PROGHA:1 TYPE
0008 : " EXAMPLE filenaml.ext filenam2.ext" where
01211219 ;"filenaml.ext " IS THE OUTPUT FILE/DEVICE and
121010 :"filenam2.ext" IS THE INPUT FILE/DEVICE
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020

,

NAME
EXT
EXT
EXT
EXT
EXT
EXT
EXT
EXT

EXAMPL
FNAME
ZNEW
ZOPN
ZCL08,
ZIOER
ABons
GCHAR
PUTC

0021
0022
0023
0024
0025

; START OF PROGHANi

START:

0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
012143 ;
0044 LOOP:
0045
0046
0047
0048
0049
0050
0051
0(352

172

LD
CP
JP
SUB
LD
LD
CALL
CALL
CALL

LD
CP
JP
SUB
LD
LD
CALL
CALL
CALL

LD
CALL
CP
JR
LD
LD
CALL
CALL
JR

A, (5DI-l) , ,
Z,ERHOUT
A
HL,5CH
DE ,OXFCB
FNAME
ZNEW
Z,ZIOER

A, (6DB)

Z, ERR OUT
A
HL,6CH
DE,IXFCB
FNAi"lE
ZOPN
Z,ZIOER

DE,IXFCB
GCHAR
lAH
Z ,EOF
DE,OXFC Ij
C,A
PUTC
Z,ZIOER
LOOP

; SET UP XFCB
:OPEN NEW XFCB
: OPEN OLD XFCB
;CLOSE XFCB
iERROR ROUTINE
;END PROGRAM
;GET A CHARACTER
;PUT A CHARACTER

;IST BYTE OF FILENAME
;Q, BLANK FILE NAME
;YES, ERROR
;USE EXT FROM FCB
;PO INT TO 1ST FCB
;POINT TO OUTPUT XFCB
iBUILD XFCB
;CREATE A NEW FILE
; ERROR

;IST BYTE OF FILENAME
;Q, BLANK FILE NAME
; YES, ERROR
;USE EXT FROM FCB
; POINT TO 2ND FCB
;POINT TO INPUT XFCB
;BUILD XFCB
;O PEN OLD XFCB
;ERROR

iPOINT TO INPUT XFCB
; GE'f A CHARACTER
iQ, END OF FILE:
jiES
;POINT TO OUTPUT FCB
; GET CHARACTER
iPUT ASCII CHARACTER
; ERROR
;GET NEXT CHARACTER

CROMEMCO ASSEMBLER LIBRARY ROUTINES

0053
~ 0046 ' 117F00 ' 0054 EOF: LD DE,OXFCB ;CLOSE OUTPUT XFCB

0049 • CD0000# 0055 CALL ZCLOS
004C ' 215200 ' 0056 LD HL, EOFMSG ;POINT TO EOF MESSAGE
004F' CD0000# 0057 CALL ABORT ;ABORT PROGRAM

0058

173

CROMEMCO ASSEMBLER LIBRARY ROUTINES

CROMEMCO COOS 280 ASSEMBLER version 02.02
*** EXAMPL E ***

PAGE 8002

12112152 ' 2A2A2A2121
454E4420
4F462 04A
4F42202A
2A2A0D

0059 EOFMSG, DEFB

,

'*** END OF JOB ***',13

0060
0061
0062
0063
0064
0065
0066

;ERROR ROUTINE FOR MISSING FILES

00A6 '

00A7 '
00A8 '
I2II21CA '

1214CF '

216BI2I0 '
CD5000#

53504543
4946 4943
4154494 F
4E204552
524F520D

00
(0022)

CF00 '
0000
04

00
(0022)

CFI2I2 '
0000
04

(0200)
(0200)

(0000 ')

Errors

0067
0068
0069
0070
0071
00 72

0073
8074
8875
8876
0877
8078
8879

ERROUT: LD
CALL

ERRMSG: DEFB

•
; OUTPUT XFCB

OXFCB: DEFB
DEFS
DEFW

DEFB

; INPUT XFCB

IXFCB: DEFB
DEFS
DEFW

0880 DEFB
012181 ;
0082 OB UFF, DEFS
0883 IBUFF, DEFS
8884
8085 END

8

Program Length 04CF (1231)

end of ass embl y

B.LINK EXAMPLE , ASMLIB/S/E
[1888 18B6 24 J

B. SAVE EXAMPLE.COM 24

B.

174

HL, ERRMSG
ABORT

;POINT TO MESSAGE

' SPE CIFICATI ON ERROR ' ,13

8
34
OB UFF,0

4

o
34
I BUFF , 0

4

START

,OUTPUT BUFF ERS
i INPUT BUFF ER S

CROMEMCO ASSEMBLER LIBRARY ROUTINES

The program " EXAMPLE.COM " is now ready to be
executed. To use the program type in the name of
the program followed by an output file and an input
file. For example:

This
the

B.EXAMPLE NEWFILE.Z8~ EXAMPLE . Z8~

example will copy
file " NEWFILE . Z8~ " .

the file " EXAMPLE . Z80 " to

Device names may also be used. The following
example will type the file " EXAMPLE . Z8~ " on the
console.

B. EXAMPLE CON : EXAMPLE.Z80

175

•

9L1

•

LLT

S:Hin03:JOtld Sn03NV113:>SIW

IA .LHVd • •

MISCELLANEOUS PROCEDURES

PROCEDURE FOR CREATING A NEW LUN TABLE FOR FORTRAN

There have been a number of requests among our
customers for information on how to change the
driver dispatch table (LUN Table) to accommodate
other I/O drivers with CROMEMCO FORTRAN IV. The
purpose of this section is to explain the method
for doing this. The present LUN Table is located
in the FORTRAN Library file, FORLIS.REL, under the
name: $LUNTS. The Linker automatically searches
FORLIS when linking FORTRAN programs to satisfy any
undefined symbols. LINK then loads these needed
routines into memory. However, if the LUN Table
\.;ere defined PRIOR to the search of FORLIS, the
Linker would not load $LUNTS from FORLIS. This is
done by first composing the new LUN Table giving it
the same name ($LUNTS), then assembl ing it using
ASMS, and finally linking it prior to the lin k of
FORLIS. This procedure is demonstrated below.
However, first here is a duplicate of the LUN Table
which is presently used in CROMEMCO FORTRAN:

ENTRY $LUNTB
EXT $DRV3 , LPTDRV , DSKDRV

$LUNTB, DB 0BH
ONE: OW $DRV3
TWO, OW LPTDRV
THREE, OW $DRV3
FOUR: OW $DRV3
FIVE: OW $DRV3
SIX: OW DSKDRV
SEVEN: OW DSKDRV
EIGHT: OW DSKDRV
NINE: OW DSKDRV
TEN: OW DSKDRV

END

Note the use of the ENTRY statement to define
the module. The symbols $DRV3, LPTDRV, and DSKDRV
stand for the console driver, line-printer driver,
and disk driver modules, respectively. The labels
ONE through TEN are provided for convenient
reference; they mark the driver-address which

178

•
,

MISCELLANEOUS PROCEDURES

stands for each of the LUNs 1 through 10. As can
be seen from the above, LUNs 1 and 3-5 are
presently assigned to the console, LUN 2 is
assigned to the printer, and LUNs 6-10 are assigned
to disk files. (See FORTRAN IV Instruction Manual,
Appendix B and page 15 for more information on
Logical Unit Numbers.) Also note in the above that
the first byte of the module (DB 0BH) must be one
mo re than the max imum LUN (in thi s case 10).
Hence, more LUNs could be defined simply by adding
DW statements and by changing this first byte.

The present LUNs can be changed simply by
rearranging the driver addresses in each DW
statement above. (LUN 3 should be preserved as the
console driver, however, as that is the one used by
the system to pr int out error messages.) Users may
also write their own drivers in 2-80 assembly code,
assemble them with ASMB, and link them with the new
$LUNTB. To illustrate these ideas here is a sample
altered LUN Table:

ENTRY $LUNTB
EXT $DRV3,LPTDRV,DSKDRV,SPTDRV

$LUNTS: DB 21
ONE: OW $ORV3
TWO: OW $ORV3
THREE: OW $ORV3
FOUR: OW LPTDRV
FIVE: OW LPTDRV
SIX : OW SPTDRV
SEVEN: OW SPTDRV
EIGHT: OW DSKDRV
NINE: OW DSKDRV
TEN: OW DSKDRV
ELEVN : OW DSKDRV
TWELV: OW DSKDRV
THIRTN: OW DSKDRV
FOURTN: OW DSKDRV
FIFTN: OW DSKDRV
SIXTN: OW DSKDRV
SEVNTN: OW DSKDRV
EIGHTN: OW DSKDRV
NINETN: OW DSKDRV
TWENTY: OW DSKDRV

END

In this example the user has added an EXTernal
declaration for a serial line-printer, SPTDRV. The
LUN assignments have also been changed as follows:

179

MISCELLANEOUS PROCEDURES

LUNs 1 through 3 are assigned to the console , 4 and
5 are assigned to the parallel -port printer, 6 and
7 are ass igned to the serial -port printer, 8
through 10 remain assigned to disk files , and LUN s
11 through 20 have also been assigned to disk
files.

The driver for the serial printer should be of
the fo rma t :

ENTRY SPTDRV
START :

END

The LUN file which has been created can now be
assembled using ASMS simply by typing:

ASMB LUNTSNEW

where LUNTSNEW.Z80 is the name of this file on the
disk. The source file for the added driver
(SPTDRIVR.Z80) must also be assembled; ASMB will
create .R EL files for both these modules. These
two files can finally be linked to the FORTRAN by
typing:

LINK FORPROG,LUNTBNEW,SPTDRIVR

where FORPROG is the user's previously-compiled
FORTRAN IV program. LINK will automatically search
FORLIS, but will ignore the $LUNTS file there
because LUNTSNEW was linked first. Note that the
ENTRY statement for LUNTBNEW.Z80 must have the same
name as the original module (SLUNTS) .

180

•

•

MISCELLANEOUS PROCEDURES

USING ASMB AND DEBUG TO PROGRAM PROMS

The usual method for storing a program into
PROMs is to first load the program into RAM at a
different location from the ROM card containing the
PROMs to be programmed . Then DEBUG (the " P"
command) is used to actually do the programming.
However , DEBUG will attempt to load .HEX object
files at the location which was specified by the
ORG statement of the original program (or by the
address specified by the HEX= option in the absence
of an ORG), unless a loading offset is specified.
This offset is specified by the following
proced ure:

(1) Either ORG the source program at the location
desired for the PROMs to execute or use the
HEX= option (see above) at assembly time to
specify the address.

(2) Assemble the source using ASMB and the HEX (or
HEX=) opt ion to c rea te a • HEX obj ect f il e.

(3) Type " DEBUG (CR>" to call the Debugger
program.

(4) After receiving the DEBUG prompt (-), type

F(filename>.HEX

where filename is the name of your program on
the disk.

(5) Then type

R(di splacemen t>

where displacement is a hex number from ~ to
FFFFH which gives the amount of the
displacement from the location at which the
.HEX file is ORGed to the address in RAM at
which it is desired to load the object code
(displacement =loading address-run address).
This displacement should give a loading
address which is in available RAM. The
addition of the displacement to the source
address uses no carry and is limited to 16-

181

MISCELLANEOUS PROCEDURES

bits; this means that a displacement can be
given to " wrap around " FFFF H. (For example , a
program ORGed at 9200H will be loaded at 200H
if an " R7000" command is is s u ed because
9200H+7000H=10200H , a nd the " 1" is dropped.)
DEBUG will not allow a program to be loaded
over the area where DEBUG lies, and will issue
a question mark (?) instead of the usual
"N EXT=xxxx " message.

(6) Finally insert the PROM(S) to be programmed
and type the command

P<source-begin> <source- end> <destination­
beg i n>

to complete the process.

Note that when using this method, the PROM(s)
need not be located at the same address for
programming as they will be for execution . The
following example will help to illustrate the above
procedure. Suppose we wish to program a 27 08 PROM
with a monitor program to be run at D000H. Suppose
also that we have a CROMEMCO BYTESAVER board
currently addressed at E000H . We then insert the
PROM into the first available slot on the BYTESAVER
at F800H. We either ORG our monitor source program
(called MONITOR .ze0) at D000H and assemble it using
ASMB, or use no ORG statement in the source program
and use the HEX=D000 option when assembling , both
of which create a file called MONITOR.HEX on the
disk. We now enter DEBUG by typing

DEBUG <CR>

and load
followi ng

the .HEX file into
two commands to the

FMONITOR.HEX <CR>

R4000 <CR>

memory by typing
DEBUG prompt:

the

to which DEBUG will then respond with (assuming the
MONITOR program occupies 400H bytes exactly):

NEXT=1400

which means the object code file has been loaded
into RAM from 1000H to 13FFH . We can now program
the PROM at F800H by typing

182

"

-.

•

MISCELLANEOUS PROCEDURES

P1000 5400 F800

When the PROM is completely programmed , it may
be removed from the BYTESAVER and placed in memory
at D0"0H , its run address. Note that the PROM
could have been p r ogrammed while residing at D000H
if desired : that was not done here simply to
illustrate a few additional po i nts. Also note that
the swath length for the P command just above must
be a multiple of 40121H bytes ; for example the
command

P1000 1400 F800

will generate an error in DEBUG .
command is either

Pll2l12l0 l3FF F80121 or
P1000 5400 F800

as above.

183

The correct

,-~-------

MISCELLANEOUS PROCEDURES

~ TO Z80 TRANSLATOR

1 have portions of
For those user s who present y 00

their software written in 8080 code , an ~~~Q to lou
Translator program has been provided with the
Assembler package. This program resides on the
disk under the filename TRANSLAT.COM. The
Translator program may be used with source code
only. Its function is to translate the Bel8el
mnemonics of the original code into 28~ mnemonics
(those published by Mostek and Zilog) , and then
write this translated program back onto a file on
the disk. The translated program will then be in a
form such that it can be assembled by the CROMEMCO
280 Assembler (ASMB.COM).

Your original source program must ' have the
filename extension .ASM to be found by the
Translator; if it does not have this extension,
your file should be renamed before translating it.
TRANSLAT will create an output file having the same
filename but with the extension .280. The original
source file will be left unchanged on the disk.
TRANSLAT requires at least an equa l amount of disk
space for the output file as that used by the
sou rce file. Therefore, be sure that there is
suff icient space on the disk before calling the
Translator. For example , if the source file
requires 9K in 1 extent, the output file will also
occupy at least 9K in 1 extent (the output file may
use more disk space because 280 mnemonics tend to
have more characters than 8080 mnemonics). The
Translator gives three error messages having to do
with disk I/O:

OUTPUT FILE WRITE ERROR

This message occurs during the writing of a
record to the disk because of one of these
conditions: (1) out of disk space , more than 81K
for small and more than 241K for large disks; (2)
out of directory space, more than 64 extents; (3)
extent error, an attempt to close an unopened
extent .

NO SOURCE FILE PRESENT

184

,

•

•
MISCELLANEOUS PROCEDURES

The source filename was either misspelled or
the specified disk does not contain a file of that
name.

NO DIRECTORY SPACE

The output file (.280) cannot be opened
because there are already 64 files or extents
stored on the disk. Note that this is diffe r ent
from the first error . " OUTPUT FILE WRITE ERROR "
occurs after the file has been opened but during a
write to it.

The Translator will translate opcodes ONLY and
not pseudo-ops. Therefore any pseudo-ops in the
source which do not match corresponding ASMB
pseudo-ops should be changed by the user (using
EDIT) after translating but prior to assembling the
.280 source file . The most common of these is the
" SET" pseudo-op used wi th a number of 8080
Assemblers which should be changed to the " DL "
pseudo-op for use with ASMB.

TRANSLAT expects certain standard convent i ons
in the 8080 source. Remarks should be preceded by
semi-colons (;) so:newhere in the line. Labels
should be followed by colons (:); however, if the
colon is missing, TRANSLAT will insert it in the
output file. The opcodes which must be used are
the standard 8080 opcodes published by Intel.
Also , the opcodes and regi ster names must be given
in upper case, and registers must be specified by
their symbolic names (A, BC , SP, etc.) instead of
by values assigned to the registers as is used by
some Assemblers.

The Translator works by translating 8080
opcodes which it recognizes, and ignoring
essentially everything else in a line of code.
Pseudo- ops or other lines which do not contain 8080
opcodes are simply written to the output file
exactly as they appear in the source file. Be
aware that if the original 8080 source contains
syntax or spelling e rrors, the 280 output file will
contain these same errors. Therefore, the output
file may need to be edited following translation to
correct the errors; this step is not necessary if
the sou rce file is formatted according to the
guidelines described here.

185

INDEX

I N D E X

A
A - Assemble into memory , 123
ABORT , 156
ABORT - ABORT USER PROGRAM, 170
ABS (Absolute code segment) , 39
ABSolute , 57
ADDITIONAL SYSTEM CAL LS , 156
ADDRESS EXPRESSIONS , 121
ADEC - DECIMAL TO BINARY CONVERSION , 163
AHEX - ASCII TO HEX CONVERSION , 164
Alphabetical List of pseudo-ops , 39
argument error , 85

B
BIND - Convert Binary to Decimal , 163
BINDB - Convert Binary to Decimal , 163
BINDF - Co nv e rt Binary to Decimal , 163
BINDS - Convert Binary to Decimal , 163
BINHl - BINARY TO 1 HEX DIGIT , 165
BINH2 - BINARY TO 2 HEX DIGITS , 1 65
BI NH4 - BINARY TO 4 HEX DIGITS , 1 64

C
COOS DEVICE FUNCTION CALLS , 145
cnos DISK FUNCTION CALLS , 150
CHARACTER I/O ROUTINES, 165
Characters and Line Length , 29
CLOSE FILE , 151
COM (COMmon code segment) , 39
Command Format , 105, 120
COMmon, 59
Cond , 19
COND (begin listing Conditional Assemblies) , 53
Conditional Assemb l y (IF statements) , 74
Constants , 32
CONTROL CHARACTERS , 120
CREATE FILE , 153
Cross Reference Tab l e , 10 1
CURRENT DISK , 154
Cur rent Program Counter - $, 33

o
DATA , 61
DATA (Data code segment), 39
DB or DEFB (Define Byte) , 39
DECIMAL CONVERSION , 163
Defaults , 27
DELETE FI LE , 1 52
DESELECT CURRENT DISK , 15e

INDEX

DISK CLUSTER ALLOCATION MAP , 154
DISK LOG-IN VECTOR , 153
DIVIDE , 158
div i de by zero error , 85
DL or DEFL (Define Label) , 40
OM - DISPLAY MEMORY , 124
OM o r DEFM (Define Message) , 41
DR - DISP LAY REGISTERS , 125
OS or DEFS (Define Storage) , 42
OW or DEFW (Define Word) , 43

E
E (Exit to COOS) , 106
E - EXAMINE IN PUT PORT , 126
EJ - EJECT DISK, 126
EJECT DISK , 156
END (End of assemb l y) , 44
ENDIF (END of IF definition) , 45
ENTRY (Entry point for these modules), 45
EQU (Equate) , 46
Err o r Messages Gene r ated Du r ing Assembly , 84
Error Messages Generated Following a Ca l l to ASMB , 81
ERRORS , 122
Examples of Macro and Conditional Assembly , 76
e x pression e rro r, 86
Expressions and Operato r s , 34
EXT o r EXTRN (these modules External) , 47

F
F - SPECIFY FILE NAME , 126
Fatal Errors , III
f il e not found , 86
FIND NEXT DIRECTORY ENTRY , 152
FNAME - SET UP XFCB , 166
FORM (pape r Formfeed) , 49
FORMAT NAME TO FCB , 155

G
G (Go - start execution) , HI7
G - GO , 127
GCHAR - GET A CHARACTER , 168
Gen , 20
GEN (beg in listing Generated Macros) , 53
GET I/O BYTE, 147
GET USE R REG I STER POINTER , 157
GET VERS I ON NUMBER , 158

H
H - HEXADECIMAL ARITHMETIC , 128
HEXADECIMAL CONVE RSION , 164
HO"E DISK , 156

INDEX

I
IF (begin Conditional Assembly), 50
INCLUDE (Include the given disk file), 50
INPUT BUFFERED LINE, 148
invalid option, 83

L
L - LIST IN ASSEMBLEH MNEMONICS, 128
label error, 87
label not allowed, 87
Limits, 27
Lines of Listing, 98
LINK Switches, 106
LINK TO PROGRAM, 157
LIST (use following commands to generate Listings), 52
List Options, 19
Listing Columns, 97
Listing Symbols, 99
LOADING DEBUG, 119

M
M (Map all symbols), 107
M - MOVE MEMORY, 129
MACRO (begin Macro definition), 54
Macro Assembly (MACRO definition and calls), 65
MACHO 1 ibrary not found, 83
Macro=<d : filename.ext>, 22
Memory Allocation, 141
MEND (Macro definition End), 54
missing label, 87
multiple definition, 88
multiple MACRO definition, 88
MULTIPLY, 157

N
NAME (module Name), 54
Names (Labels), 30
nesting error, 88
no directory space, 82
no matching IF, 88
no matching MACRO, 88
Nocond, 21
NOCOND (do Not print Conditional Assemblies), 53
Nogen, 21
NOGEN (do Not print Generated Macros), 54

o
o - OUTPUT TO DATA POHT, 130
OFF (turn Off assembly listing), 52
ON (turn On assembly listing), 53
Opcode, 23

-,
INDEX

Opcode Cross Reference Table, 101
opcode error, 89
Opcode Mne~onics , 31
OPEN DISK FILE, 151
Ope rand s, 32
Options Specified When Calling ASMB, 19
ORG (Or igin), 55
out of memory, 83

p

P - PROGRAM PROMS, 130
Page=<number decimal lines/page), 23
Parity, 24
PCHAR - PUT CHARACTER (BINARY), 168
PFNAM - GET FILE NAME FOR PRINTING, 169
phase error, 89
PRINT BUFFER, 147
PRNT - PRINT A LINE, 17~

PUTC - PUT CHARACTER (ASCII), 168

R
H (Reset linker), 1~8

R - READ DISK FILE, 131
Range, 24
range error, 89
READ CONSOLE (with echo), 146
READ CONSOLE (without echo), 149
READ LOGICAL BLOCK, 154
READ NEXT RECORD, 152
READ READER, 146
REGISTER @, 121
REL (Relocatable code segment), 55
RELocatable, 62
REM (Hemark beqinning in column ol1e), 56
Remarks, 36
RENAME FILE, 153
RESET COOS AND SELECT DRIVE A, 151

S
S (Search file), 108
SSARCH DIRECTORY, 151
SELECT DISK DRIVE, 151
selected disk error , 82
SET CURSOR ADDRESS, 149
SET DISK BUFFER , 154
SET I/O BYTE, 147
SET USER CON'l'HOL-C ABORT , 157
SM - SUBSTI'rUTE MEMORY, 132
Source Code Segments, 57
source file not found, 82
Sr - SUBSTITUTE REGISTER, 133

INDEX

Summa ry of Defaults and Limits , 27
SUMMARY OF REGISTER NAMES, 138
SWATH OPERATER, 122
Symbol or Symb, 24
Symbol Table, 1~0
syntt3x error , 9~

T
T - 'i'fMCE, 134
Tables Following the Listing, 1~0
TEST CONSOLE READY, 149
TITLE (Title to be printed at top of e ach page) , 56
TN - TRACE WITH NO PRINTING, 134
too i1lany COMmons, 90
Top=<no. dec. lines before top>, 25

U
U (list all Undefined globals) , U"8
undefined symbol, 91
UPf)ATE DIRECTORY ENTRY, 156
Upper and Lower Cas e , 29

v
V - VERIFY MEMORY , 134
value ~rror , 91

W
Warnings, 112
Width=<number decimal columns> , 25
WRITE CO~SOLE , 146
write error , file - <fil~lvll"le.ext>, 82
WRITE LIST, 147
WRITE LOGICAL BLOCK, lSI)
WRITE NEXT RECORD, 153
WRITE PUNCH , 147

X
XDISK - SET UP SPECIAL XFC~, 167
Xref, 26

z
zeLOS - CLOSE XFC B, 168
ZIOER - PRINT FILE ERROR MESSAG E, 169
ZNEW - OPEN N C~! XFCB, 167
ZOP~ - OPEN OLD XFC8, 167

