ROS

RESIDENT OPERATING SYSTEM

CROMEMCO INCORPORATED

2400 Charleston Road, Mountain View,

Copyright 1977

California



CHAPTER 1:

CHAPTER 2:

Section 1

File Organization

INTRODUCTION

ROS COMMANDS

-

TABLE OF CONTENTS

File Organization and File

File Naming
File

Active

CFIL
LFIL
CURR
DFIL
VEFIL
MFIL

.

Using File

Section 2

LIST
TEXT
FORM
NFOR
AUTO
RENU
DELE

Section 3

LIOD
TJODR
DIOD
SYSI
LEAD
Read
WBIN
RBIN
WCBN
ECBN
RCBN
WCHX
ECHX
RCHX

»

°

-

.

Commands

-

.

Current File . . .

Text Editing Commands . .

.

-

Write Commands

Commands

. - -
. - - -
. -
-
-
° .
. . .
- - . .
» . .
- . .
- -
. .
- ® .
-
® . -
. e °
. .
. -
. ° .
. .
- .
. -
.
° .
-
.
. .
- .
. .



Section 4

DUMP
ENTE
MOVE
VMEM .
PRAM .
BANK

Section 5

ECUS . .
LCUS .
DCUS
RENA

Section 6

PSTA . .
STAB . .
ASMB . .
ASMO . .
ASMU .

Section 7

EXEC . .
PROM . .

CHAPTER 3:

TITLE . . .
EJECT . . . .
DEFS . . . . .
DEFB . . . . .
DEFW . . . .
ORG . . . . .
EQU . . . . .
END . . . . .

CHAPTER 4:

CHAPTER 5:

System Input Drivers
Assembler Input Drivers

Output Drivers

APPENDIX . .

A. Custom Commands with Parameters

Custom Commands

WRITING I/0 ROUTINES

-

.

USEFUL SYSTEM SUBROUTINES

-

Memory Access Commands

CONVENTIONS AND PSEUDO-OPS

Ll
L6
L6
L6
b
L8

L8
L9

50

57
57
58

59
59



Using Parameters in the Command Line
User Loading Instructions . .

Includes: I/0
PROM
PAPER TAPE

Special Functions of Keys . . . . .

Error Messages . . . . . .« .« <« « .« .
Table Format . . . . . . . . « . . .
System RAM . . . . . . . < + . < . .

Linkage to Common Routines . . . .

Paper Tape Loading Instructions . .
Glossary .« « « ¢« ¢ v e e e e e e e .
Assembler Error Codes . . . . . . .

60
62

63
6L
66
67

71
73



CHAPTER 1: INTRODUCTION

The Cromemco Resident Operating System (ROS) allows the user to
create and edit 7Z-80 source code, assemble the source code, and
produce object code files. ROS resides in 8K bytes of memory space
from address AOOO to BFFF. LK bytes of system RAM are required
from address DOOO to DFFF. User RAM may reside anywhere else in

memory space.

ROS is available from Cromemco either on paper tape (model ZA-PT)
or in PROM (model ZA-808). PROM may be used in the Cromemco
8K Bytesaver* memory board (model 8KBS) or in the Cromemco 16K
PROM board (model 16KPR). Loading instructions for the paper tape

are given in Appendix T.

Since you are no doubt anxious to begin using RO3 right away,
this chapter gives a detailed step-by-step example of the use
of ROS in the composition, assembly, and execution of a program.

Before attempting to use ROS be sure that you have RAM memory in

your computer from location D000 to DFFF (e.g. a Cromemco model

LKZ memory board). This memory space is allocated for ROS system
use. You will also need additional RAM in your system for storing
your source code and the assembled object code. This is called
the user RAM. For the purposes of the example in this chapter it
is assumed that there is LK of user RAM starting at location

zero 1ln memory.

Once ROS is resident in your computer, begin program execution
at memory location A000. UNext follow through the example given
in this chapter to learn how to use this powerful software system

for program development.



AN ILLUSTRATIVE EXAMPLE

Now let's consider a specific example of writing a
Z-80 assembly language program, assembling the program,
and executing the resultant machine code.

The title of the program is "ECHO". The purpose of
the program is simply to input a character from a keyboard
and echo it to a display. The program assumes standard
Cromemco I/0 convention of data exchange on I/0 port 1
with status information on input port 0.

To begin we must execute the ROS program that begins
at location A000 in memory. From the Cromemco Monitor
this is accomplished by typing:

G AQ00

After executing ROS at location A000 depress Carriage Return
on your console keyboard until the following response appears
on your display:

CROMEMCO ROS V.2.1

Our assembly language source code will be stored
as a "file" in the computer's memory. We must give a name
to this file and svecify the memory addresses in which the
file resides. This is accomplished with the CFIL command.
Suppose that we name the file "ECHO" and wish to have
the file begin at address 0100 in memory and extend no
farther than location 09FF in memory. Such a file can be
created by now entering this instruction from the keyboard:

CFIL,ECHO,100,9FF

After typing this and depressing carriage return on the
keyboard, ROS will resvond by stating the beginning and
ending address of system memory now being used:

D0CO DI1EB

When entering our assembly language program from the
keyboard we probably would prefer to be prompted with line
numbers rather than manually type the line number of each
line of the program ourself. It is common to begin with
line number 10 and to increment each sucessive line number
by 10. For automatic prompting of line numbers we type:

AUTO, 10,10

ROS will then prompt us with the first line number (a 10)
and we can proceed to enter the assembly language program.
After each carriage return we will be prompted with the next
line number. This is shown in the example on the following
page.



CRONMEMCO RLOS!
3G A0OOC

CROMEMCO ROS V.2.1

CFIL, ECHO» 1CO,9FF

DGCo

DIEB

AUTO, 10 10

0010
0020
0030
0040
0080
€060
0070
0080
¢090
ci00
0110
gieo
0130
0l40
0180
0160
0170
0180
0190
000
0210
0220
6230

JTH1S PROGRAM ECHOS THE KEYBOARD
3

LL SP,OEQOOH

START: CALL INPUT

CALL OUTPUT

JP START

3

INPUT: IN A,C

BIT RDA,A

JR Z, INPUT

IN A,1); INPUT CHARACTER
RET

3

OUTPUT: PUSH AF; SAVE CHARACTER
IN A,O

B8IT TRE,A

JR L, OUTPUT+!

POP AF3 RETRIEVE CHARACTER
OUT 1.4

RET

RDA: EQU 6

TBE: EQU 7

The above is a transcript of an actual session at
a keyboard using ROS. At this point we may wish to have
a formatted listing of our file. This can be done first
by depressing ESC or ALT-MODE on the terminal keyboard
to indicate that we are finished entering the assembly
language program. Then we type:

FORM
LIST

The resultant listing is shown on the next page.



FORM

LIST

0010 ;THIS PROGRAM ECHOS THE KEYBOARD

0020 3

0030 LD SP, OEQOQOH

0040 START: CALL INPUT

0050 CALL OUTPUT

0060 JP START

0070 3

0080 INPUT: IN As 0

0090 BIT RDA, A

0100 JR Z, INPUT

0110 IN Ayl 3 INPUT CHARACTER
0120 RET

0130 ;

0140 OUTPUT: PUSH AF 5 SAVE CHARACTER
c15b IN AsD

0160 BIT TBE, &

170 JR Z,0UTPUT+ |

0180 POP aF 3 RETRIEVE CHARACTER
0190 ouT 1A

0206 RET

0210 RDA: EQU 6

0220 TBE: EQU 7

This formatted listing of the assembly language
source code is produced by ROS following the FORM and
LIST commands as shown.



The assembly language program shown on the preceding
page is composed in the following way. Each line of the
assembly language code 1is made up of as many as five separate
items. The first item is the line number. In AUTO mode
ROS automatically supplies sucessive line numbers as we
enter the program. The second item that may appear on a

line is the label. If the line does have a label it is
always followed by a colon. The third item that may appear
is the instruction mnemonic. The mnemonics for the various

Z-80 instructions can be found in the Z-80 CPU TECHNICAL
MANUAL published by Mostek and Zilog.* The fourth item

that may appear on a line is the ovperand or operands of the
instruction. The first operand to appear must be separated
from the instruction mnemonic by at least one space. 1If
there is more than one operand the operands must be separated
by commas. The last item that may appear on a line is a
comment. A comment must always be preceded by a semi-colon.

Now that we have created a file and entered our
assembly language program we are ready to assemble the
program. We indicate to ROS that we are finished entering
the assembly language program by depressing the ESC or
ALT-MODE key on our terminal. To get a formatted assembly
output listing we type the command:

FORM

The command to assemble (ASMB) is followed by three parameters
to specify: 1l)the address at which the machine code is to be
executed, 2)the address at which the machine code is to

be put after assembly, and 3)an option code. (See Chapter 2
Section 6 of ROS manual for more details). Suppose we wish
to have the machine code that results from our assembly be
executable beginning at location 0 in memory. Suppose

we also wish to have the actual machine code stored at location
0 in memory following assembly. And say we wish a full
assembly listing (option 1). Then the command to assemble

our assembly language file is given by:

ASMB,0,0,1

After typing this command from our keyboard the assembly
will procede, and an assembly listing will be produced as
shown on the following page.

*¥ Note: Some manuals may show the following commands in this way:
ADC A,s; ADD A,n; ADD A,r; ADD A,(HL); ADD A,{(IxX+d); ADD A,(IV+d);
SBC A,s; IN A,(n); OUT (n),A. TIn ROS, shorter versions of these
commands are used ag listed here: ADC s; ADD nj; ADD r; ADD (HL);
ADD (IX+d); ADD (IY+d); SBC s; IN A,n; OUT n,A.



FORM

ASMB, 0, 0u 1

2~80 ASSEMBLER V.2.0

CROMEMCO
0co0

cooe

000C 31 00
0003 CD oC
0C06 CD 15
0009 C3 03
ococC

000C B 0O
0CCE CB 77
G010 28 FaA
coi2 DB 01}
0014 C9
0015

C0i5 FS
C0l6 DB 00
¢oi8 CB 7F
001A 28 Fa
0o1C Fli
Q0iID L3 0Ot
00IF C9

c006
0007

CE
00
GO
00

6010
0020
0030
0040
0050
0060
0070
0080
0090
c100
0110
o120
0i30
0140
0150
0160
Ci70
0180
Cl190
o200
6210
0220

3THIS PROGRAM
;

START:

.

2
INPUT:

2
OUTPUT:

RDaA:
TEE:

LD
CALL
caLL
JP

IN
BIT
JR
IN
RET

PUSH
IN
BIT
JR
POP
ouT
RET
EQU
EQU

ECHOS THE KEYBOARD

SP» CEQGCH
INPUT
OUTPUT
START

A, O

RDAs A

Z, INPUT

Al 3 INPUT CHARACTER

AF } SAVE CHARACTER

A0

TBE, A

Z,0UTPUT+ 1

AF 3 RETRIEVE CHARACTER
1,A

6
?

ROS produces this assembly listing and stores the
machine code object file at the location in memory specified
by the ASMB command (in this case location 0). There is a
great deal of information on each line of this assembly
listing as described on the next page.



10

-~ MEMORY ADDRESS

rMEMORY CONTENTS
I~ ERROR CODE

rLINE NUMBER
— OP CODE MNEMONIC
OPERAND

COMMENT

#BiB F1 o180 POP AF 3 RETRIEVE CHARACTER

This example line from the assembly listing on the
previous page shows that there are seven items of information
that can reside on each line of the assembly listing. If
the assembler detected an error in the composition.of the
line then an error code would be inserted in the line at
the position shown. The following error codes are used by
ROS:

Error Code Description

Argument error
Double definition
Label error
Missing label
Op-code error
Phase error

Range error
Syntax errcr
Undefined

Value error

<SCwBuomYO RO



11

PROGRAM EXECUTION

After using the ASMB command to assemble this example program,
you may wish to execute the program. this can be done by using the ROS
command EXEC. Since we put the program at location zero in memory
when we used the ASMB command, we would type EXEC,0. This causes
an unconditional CALL to location zero saving the ROS return
address on the stack. So now let's execute the example program
and see if it works:

EXEC, 0
THIS IS A TEST OF THE PROGRAM "ECHO". AS I TYPE ON THE
KEYBOARD IT IS ECHOED ON THE LISPLAY!!!!

SUMMARY

In this Chapter we have given one example of the use of
Cromemco's ROS Assembler so that you can start using your copy
of ROS right away. The following chapters describe the commands
and conventions of ROS in much greater detail, and should
answer any questions you had as you worked through this first
example.



12

CHAPTER 2: ROS COMMANDS

Section 1

FILE ORGANIZATION AND FILE COMMANDS

File Organization

Under ROS, user information is organized into files. The files
are further subdivided into lines. The user is provided with a set of
very comprehensive commands to manipulate his files. BAnother set of
commands ~ the text editor - allows the user to reorganize the contents
of his file, e.g. delete, replace, or insert an individual line. Each
line in a memory file must be numbered. The lowest numbered line will
always be placed at the beginning of a file, and numbering will con-
tinue upward to the end of the file.

File Command Formats

In the formats given for each command the following conventions
are used. If an entire word is capitalized, it is a key word and must
be used. User supplied information is designated by lower case. A
brace { } indicates the user must make a choice. Optional items are
enclosed by brackets [ ] . The horizontal ellipsis ... allows the item

to be repeated.
Example:

CFIL, file-name, beginning-file-address, endlng-flle—address}“

file-length

File Naming

A file name consists of one to six characters and can be any char-
acter, (except a control character), for which a code exists. Thus, the
file name #@AB4]1 is legal; however, it is recommended that names descrip-
tive of the file content be used. An entry of a file name longer than
six characters results in the first six characters being accepted as
the file name. For example, an entry of MYNEWFILE gives MYNEWF as the
file name. The number of user files is theoretically only limited by
space available in the system RAM area.

Active File - Current File




13

To avoid both the extra time involved in the user always having
to specify which file is being manipulated and the system overhead in
searching the RAM area, the concept of a current user file is intro-
duced. Any file may be made current by use of the CURR command. Files
are automatically current when they are created.

Optional I/0 Drivers

Command, parameters, driver-name

The ROS commands listed below have optional drivers associated
with them. If the driver is omitted, then a default is made to SYS@gg -
the system's I/0 (console device).

DUMP LCUS LIST TEXT
ECBN LEAD RBIN WBIN
ECHX LFIL RCBN WCBN
ENTE LIOD RCHX WCHX
Example:
LISY, 10,20, TTY List on TTY
LISY, 10,20, CRT2 List on CRT2

Create File

CFIL, file-name, beginning-file-address, ???é?g;i;iﬁ—address

The created file is entered in the File Name Table, which resides
in the system RAM area. A newly created file becomes the current
(active) file. All file commands which do not specifically designate
a file default to the new file. After each file creation, the new
boundaries of the system RAM are indicated. This reflects an entry
into the File Name Table. An attempt to allocate previously assigned
memory to a new file will result in the message: "MEMORY ALREADY
ALLOCATED".

In several of the files created below some text will be entered.
Each text line will be numbered by entering a number followed by a
space. Variations on this procedure are given in the section on text
commands.

Example:

CFHIL, A, 1000, S1000
BGOO D20B



14

A is now the current file. It starts at 12088 hex and is allotted
1999 hex locations; the limits of the file are 1g@@ to 1FFF. The system
responds with the new RAM boundaries D@@@ D2@B. Next, a new file is
created. A is no longer current but remains in the File Name Table
and can have data entered at any convenient time by making it current.

Example:

CrIL, AIR, 2000, 2FFF
DOQO D217

10 FILE AIR BEGINS AT 2000
<0 ENDS AT 2FFF

30 SUBSTITUTION OF S1000 FOR 2FFF
40 GIVES THE SAME RESULT '

Now an attempt is made to create a new file that extends into a
previously allotted area.

CKFIL, TOMCAT, 2500, S300
MEMORY ALREADY ALLODCATED

The files previously allotted are intact, and the file TOMCAT is
non-existent.

CFIL. TOMCATION, 3100, 31FF
ROOCG D223

The file TOMCAT is now current. The remaining letters ION are
ignored.

List File Names

LFIL, {driver-name]

A list of all the files in the File Name Table is provided by
entering LFIL. The first file listed is the current (active)} file.
Each file name is followed by the beginning address of the file, the
ending address of the occupied area, and the end of the allocated area.
The user can inspect the list of file names to determine if a proposed
name is a duplicate. This command provides the user with a map of his
files so that the user can decide on future memory allocation via file
creates and moves.



15

Example:
LFIL
TOMCAT 3100 3100 J3iFF
AIR 2000 20FA 2FFF
A 1000 1000 IFFF

TOMCAT is the active file, but as yet it is empty. AIR contains
FB bytes of information, and its allocated area is from 2@@g@ to 21FF.
A, which was allotted 1g¢@ bytes of memory by the swath command S1§§4,
ends at 1FFF.

Example:

LFIL,CRT1 Files will be listed on CRT1

Get Current File

CURR, file-to-be-made-current

Any file may be made current at any time the user is in the command
mode. By checking the first line of output from the List File command
LFIL, it can be determined which file is current. It usually is faster
just to make the desired file current. An attempt to make a non-existent
file current will give the message ERROR. After an error message, if

it is felt that the syntax of the command was correct, then use LFIL
to see if the file already exists.

Example:
CFIL.A, 1000, 8100 A is the current file
bBOOC D217
CFIt. B, 2000,51000 B is the current file
poQo D223 '
CURR, A ) A is now the current file

Delete File

DFIL, file-name

Any file may be deleted by the DFIL command. Files are deleted
one at a time. After a DFIL command is issued for the active file,
there is no active file. Deletion of a non-existent file gives the



16

message ERROR. Execution of the Delete File command is followed by the
system RAM boundaries.

Example:

Assume the files A, AIR, and TOMCAT exist, and that TOMCAT is the
current file.

DFIL, AIR

pOO0C D203 . system ram boundaries

DF IL., TOMCAT current file is deleted
DOOO DiIF7

10 888 can not enter text becavuse
NO CURRENT FILE no file is current
CURR. A

i0 888

DFIL. A, AIR, TOMCAT only A is deleted

po00 DI1EB

Validate File

VFIL

The validate command performs the following operations:

1) It checks that all lines within a file have a length;
2) It verifies that each line ends with a carriage return;
3) It checks the beginning of each line for a 4 digit line
number followed by a space;

4) It certifies that no control characters are part of the
text.

When a file passes validation, the name of the file is returned
with its starting address, ending address of textual material within
the file, and end of the region allocated for the file. 1If the file
contains errors, the byte location of each error is given followed by
the message FILE ERROR. It is assumed that typically the user only
wishes to validate a current file; therefore, the VFIL is not followed
by an operand, a file name.

Example:

VF 1L
AlR 2000 2072 2FFF File AIR is ok.

Assume at location 2001 the current file contains an error



17

VI- IL
<001
FILE ERROR

Move File

MFIL, file-name, beginning-address-of-receiving-area

An existing file may be moved to any existing memory location
providing the space is not occupied by another file or system informa-
tion. Attempts to move a file into another file's area will be greeted
by MEMORY ALREADY ALLOCATED. After a move, the file will no longer
exist at its previous location. The file to be moved need not be active.

Example:

MFIL ., TOMCAT, O The absence of an error message
following the move indicates a
successful move.

CHIL, STAT, 2000, 300

DOOO D203 :
MEIL, TOMCAT, 2000 Cannot move TOMCAT into area
MEMORY ALREADY ALLOCATED that is occupied by STAT.

Using File Commands

A short demonstration using file commands only follows.

CH1L, A, 1000, 51000

???? DIF7 System ram boundaries

A 1000 1000 1FFF File is empty.

R 2000 200A 2FFF

DFYL. A

DQOO D1EB system ram decreased by 12 bytes.
CEIL, A, 1000, 51000

BGCO DiF7

CEIL. B, 1000, 51000

F??L NAMES B was already defined

3 1000 1000 IFFF

B 2000 200A ZFFF

CURR, A Make A the current file

DERTL, A



DOOO D1EB

1 ABC

NO CURRENT FILE
CURR. B

1 ABC
CFIL., B, 3000, 5200
bDUP. NAMES

LFIL

B 2000 200A

CFIL,T1, 3000, 5200
DOO0 DiF7

MFIL.B, O

MFIL, T1,1000

LFIL

11 1000 1000
K 0000 000A

18

Accepted because there is a current file
The file name was already defined

2FFF

B and T! are now contiguous at low memory

11FF
OFFF



19

Section 2

TEXT EDITING COMMANDS

After creation of a file, the text commands allow the user to
manipulate the contents of the file. 1In addition to adding or deleting
the lines of a file, each line can be automatically numbered as it enters.
Text lines can also be renumbered. Whether a listing will be formatted
or unformatted is controlled by a flag in the monitor using the FORM and
NFOR commands. To understand the effect of formatting using tabs see
the section on the LIST command. Examples of assembly language will be
presented in this section. For assembly language conventions see the
section on assembly language.

List

LIST, [beginning—line—number], [ending—line—number], [driver—name]

In the absence of parameters the entire contents of the active file
are listed when the LIST command is used. If the formatting flag is set,
then the list is formatted according to tab settings for the I/0 driver.
The section on I/0 commands covers the setting of the tabs. When tabbing
is used in the example below, assume the conventions given below.

Example:

FIELD TYPE LABEL OPERATOR OPERANDS COMMENTS
COL UMN - 1 I 15 23
CONTENTS - START: LD HL, START i LOAD HL

. -When LIST is followed by one line number only, the indicated line
is listed. TIf two parameters - line numbers - follow LIST, all the text
lines from the first line number to the second line are listed.

Example:

CURR: B

1 888

LISY _ . ‘
0001 958 Notice, left zero fill is automatic



CURR. AIR
1XYZI80
LIBY

0001 XYZI80

CURR. B

10 LD A/ B

20 START:LD HL.,START

3C JP START; JUMP TD START
LIST

0001 888

0010 LD A.B

0020 START: LD HL.START
0030 JP START: JUMP TO START

FORM

LIST

0001 885

0010 LD A, B
0020 START: LD HL. START
0030 JP START
LISY, 10

0010 . LD A B
LIBY. 10,10

0010 LD A B
LISY. 1,20

0001 85585

0010 LD A B

0020 START: LD HL, START

List Without Numbers

20

The presence of a non—numeric character
Signals the end of a line number

Assume no fromatting

Turn on the formatting switeh

i JUMP TO START

TEXT, [beginning-line—number], [ending—line—number], [driver—name]

TEXT only differs from LIST in that line numbers are not printed.

Example:

TEXT: 1. 20

886

LD A'H

START: LD HL, START

Assume no formatting



21

FORM Turn on the formatting switch
TEXT, 20. 30
START: LD Hi, START

JP START i JUMP TO START

Format Switch On

FORM

The FORM command turns on the format switch. This switch activates
the tabbing associated with each I/0 driver. The FORM command affects
the LIST and TEXT commands and all assembler commands such as ASMB. The
tabs can be changed by using the IODR command. Other selected I/O
commands affect the tabbing by resetting tabs, e.g. SYSI. The FORM
command 1is regional, that is it remains in effect until the occurrence
of NFOR command. Further discussions of tabbing are covered under Assembly
Language commands and the LIST command.

Format Switch OFF

NFOR
The NFOR command deactivates the use of tabbing.

Examples of FORM and NFOR:

FORM

181,40, 60

00AQ BRNCHI: CALL START

0050 BRNCHZ2: JP START

0040 LD A B i 2-80

NFOR

£ 16T

0040 BRNCH1: CALL START
0050 BRNCHZ2: JP START
0040 LD A, B; Z2-80

Type Numbers Automatically

AUTO, [lowest—line—number], [increment], [maximum—line—number]



22

The AUTO command is provided to relieve the user of having to enter
line numbers. Four digit line numbers are automatically entered on the
left margin by the AUTO command. The user specifies the starting number,
the increment size, and the maximum line number. Any numeric value can
be entered for any of three parameters. The default parameters are one
for the starting number, one for the increment parameters, and 9999 for
maximum line number. If the start number exceeds the maximum line, only
one line will be printed and wrap around will not occur.

Example:

AUY0. 3,7, 20

0003 LD A, B

0010 START: LD HL. START
0017 JP START

AUTO MODE COMPLETE

The line numbers @gg@g3, gg18, #817 followed by a blank are printed
by the monitor; the user then enters the text.

Example:

AUTD, 40, 10, &0
0040 CALL START
0050 JP START

0060 LD A/ B

AUTO MODE COMPLETE

Line number 6§ was the limit given in the AUTO command so the monitor
message indicated completion. If you wish to leave the auto mode before
completion, press the ESC or ALT MODE key.

Renumber File

RENU, [starting—line—number], [increment-size]

Line numbers in the current file are renumbered by the RENU command.
The user specifies the starting number and the increment size. The
starting number is a line number from 1 to 9999, and the increment size
ranges from 1 to 25. When the renumbering reaches 9000, the increment
size is 1. Wrap around can occur when the line number reaches 9999;
the next line numbers then will be 0, 1, 2, etc. It is possible to have
two lines with the same number. Omission of either starting-line-number
or increment-size or both causes a default to 1.



273

Example:

D 2T

0006 LD A, B
0023 JP AGAIN
0042 CALL SUBX

RENUMBER, 20, 15
1 16Y

0020 LD A/B
Q035 JP AGAIN
00L0 CALL SUBX

Delete Lines

DELE, beginning-line-number, ending-line-number

With the DELE command all lines are deleted from the first line
number to the second line number, inclusively.

Example:

DELETL, 35,95 THE LINES FROM 35 TO 95 INCLUSIVE

WILL BE DELETED

DELE, 20 LINE NUMBER 20 WILL BE DELETED

DELE, 30, 153 NO LINE WILL BE DELETED



2L

Section 3

I/0O - INPUT/OUTPUT COMMANDS

The majority of commands in this section are related to routines
called drivers. These routines contain instructions that allow data
to be transferred in or out of the computer memory. The user is able
to change selected parameters relating to drivers. The input and out-
put addresses can be modified. The display of text through tabs and
page size is alterable by the user.

Three types of data representation are provided for, namely 1)
an unmodified binary representation of memory contents, 2) INTEL
hexadecimal, and 3) INTEL binary. In many of the examples given below
reference is made to the I/0 Driver Table and its parameters. These
parameters are covered in some detail under LIOD - List I/0 Drivers.

List I/0 Drivers

LIOD, [driver—name]

A table of I/0 assignments 1is kept in the system RAM area, some-
times referred to as the I/0 Driver Table. An entry of LIOD will
produce a listing of the table of I/0 arsignments. The example below
explains each parameter.

LIOD
SYS@@@ 6F36 6F3F 2 64 6 9 15 25
(1) (2) (3) (4) (5) (6) (7) (8) (9)

(1) Driver name; in the example SYS@@@ is the system driver.

(2) 1Input driver address.

(3) Output driver address.

(4) Number of nulls between each line. This allows time if
needed for a line feed to take place before printing the next
character on a hard copy device, e.g. teletype.

(5) Number of lines per page - used for assembler paging.

(6) Number of lines between pages - used for assembler paging.
If this number is @, a form feed is issued to advance to the top
of the next page; otherwise, this is the number of line feeds
that are issued to advance to the top of the next page.

(7) Beginning column number of operation instruction, pseudo-op,
etc. See explanation under LIST command.



25

(8) Beginning column number of operand.
(9) Beginning column number of comment.

Further examples of LIOD are shown under IODR and SYSI commands.

Define I/0 Drivers

IODR, see LIOD for complete description of parameters

Drivers may be either added or modified by the IODR command. Driver
names may be from one to six alphanumeric characters. Omitted parameters
are indicated by two adjacent commas or terminating the driver defini-
tion before all parameter positions are indicated. Immediately follow-
ing the I/O0 driver assignment the boundaries of the system RAM are

given; this occurs because the assignment of a new driver will expand
the system RAM area.

Example:
L1
BYHE000 AF38 AF41 ) 60 & 3 15 25
IUODR, DISKI, BF00
pDOOGO D22B

N
i

new driver DISKI is defined in the example above.
driver address is 8F0O0.

indicates defaulting to

The input
The absence of parameters between the commas
the system output driver address of AF41. The

number of nulls after line feed is five. All the remaining parameters
will be that of the system. To verify the assicnment the I/0 assignments
are listed b=liow.

Example:

L10D

GYS5000 AF38 AFA4l O &0 éa 2 15 29

DIGKIE BFQ0O AF41 0O &0 & 9 135 25

TODRYITY Assign I/0 driver TTY, default all

DOOG D23G parameters to system — SYS000.

L 10

8YS000 AF38 A&F41 0O &0 & 9 15 25

DBIGKI 8FQ0 AF41 0O &0 & g9 15 29

1y AF38 AF41 ) 60 & ? 15 25



26

Delete I/0 Driver Name

DIOD, driver name

The DIOD command deletes one driver from the I/0 driver table each

time @t is used. SYS@@@ cannot be deleted. The system RAM boundaries
are given after each successful deletion.

Change SYSIO to Name

SYSI, [driver name]

The system I/0 driver -~ the console device whose logical name is
SYS@g@P¥ - will have its parameters changed to the I/0O driver name follow-
ing the command SYSI. An entry of only SYSI returns the system I/0
driver to the parameters stored in the PROM. The examples given below

are a continuation of the results in previous section on Define I/0
Drivers.

Example:

SYSI. TTY SYSO00 will have the same parameters as TTY

IODR, YTY: ¢4+ . 0 Change number of lines between pages from
& to O for TTY. In affect delete the line
feeds and substitute a form feed.

LIOD

|SYS000 AF38 AFAl O &0 ) 4 15 29

DISKI 8F00 aAF41 0 60 1<) 2 15 25

Y AF38 AFAal O &0 0 9 15 25
Note difference between SYS0O00 and TTY.

SYSIL. TTY

LI10Db

8YS000 AF38 AF41 0 60 0O 9 15 29

DISKI gFO00 aF4tl Q &0 & 9 15 29

TTY AF38 AF41l O &0 0 9 15 29
There is now no difference.

8YS1 Reset SYS000O to parameters in the prom.

£ 10D

5¥S000 AF38 AF4l 0 &0 & 9 15 25

DISKI grFQ0 AaF4l O &0 & 2 15 29

TYY AF38 AF41 0 &0 0 9 15 25

Writq Leader

LEAD, [driver—name]



27

Following the issuing of the LEAD command, there is a five or ten
second wait, which allows time to turn on the punch; then 60 characters
of leader are punched. The wait is five seconds at four magahertz and
ten seconds at two megahertz. After punching the leader, control
transfers immediately to the system. The user is advised to turn off
the punch unit to avoid punching unwanted characters, such as control
instructions, on the tape.

Read and Write Commands

In reading a tape the operator places the first character to be
read directly over the read sprocket. At the conclusion of all reads
the teletype may generate extra characters. These characters can be
prevented from becoming a part of a memory file by pressing control X
of the teletype.

A five or ten second wait occurs after entry of any write command.

This allows the operator time to turn on the punch. The wait is five
seconds at four megahertz and ten seconds at two megahertz.

Tape Formats

There are three tape formats: 1) binary without a checksum, 2)
binary with a checksum, and 3) hexadecimal. One frame on a binary tape
represents one byte from memory; thus, a frame contains two hexadecimal
characters. The contents of a binary tape can be read directly into
memory and used without conversion. A hexadecimal tape uses two frames
per byte of memory. The hexadecimal tape is in ASCII format and can be
interpreted off~line by a hard copy device. The contents of this tape

cannot be used by a computer without conversion to hexadecimal.

The data on a hexadecimal tape is blocked into discrete records,
each record containing record length, record type, memory address, and
checksum information in addition to data. A frame-by-frame description
is as follows:

Frame 0 Record Mark: Signals the start of
a record. The ASCII character colon
(":" HEX 3A) is used as the record

mark.
Frames 1, 2 Record Length: Two ASCII characters
(0-9, A-F) representing a hexadecimal number in

the range of 0 to 'FF' (0 to 255).
This 1is the count of actual data
bytes in the record type or check-
sum. A record length of 0 indicates
end of file.

Frames 3 to 6 Load Address: Four ASCII characters
that represent the initial memory
location where the data following



will be
oyvte 1s v 7 St
pointed to by the oad g s
succeeding ‘
into ascending

T e g o
L G RESL O Y

i
.
-

Record Type: Twn
Currently, all
This field is
expansion.

.
[
o
=
(T

5 9 to HE2F Data: Each 8 bit S1tls
wrad Length) -1 represented by twoc frames
the ASCII character
F) to represent a
0 to '"FF'H (0

]
44!
¢}
o

T
@]
]

T3

9+2* (Record Checksum: The
to 9+2* {Record negative of the szun
+1 bytes in the record
mark (":") evaluat
That 1is, -
the 8 bit
out of an
checksum,

o

vy

coa , if memory locations one
the format of the hex file produced when G

:0300010053FRECCS

wd above axc

tape

memory
7

Ylowing read-writa commands are grouped as foll
Binary Format WCBN
P owithout <hecksum 20BN
. RCBN !

Iintel Hexadecimal




29

Example:

WBIN. 1000, 520 Write 20H bytes from memory
starting at location 1000H.

Read Binary Tape

ending—memory—address} [driver—

RBIN, starting-address-in-memory, {S length name]

A tape written by the WBIN command is read by the Read Binary Tape
command. The contents of each frame will be read directly into memory
without modification.

Example:

Read in 50H bytes starting at

RBIN, 2000, 204F memory location 204F.

Write Checksummed Binary Tape

. . ing-memory-address driver-
WCBN, starting-address-in-memory, [ ending-memory-addr }, [

1S length name]

The WCBN command allows the user to place a checksum at the end of

a binary tape. The checksum is generated by summing up all the frames
after the record mark.

Write EOF on Checksummed Binary Tape

ECBN, [driver—name]

After the WCEN command, an end-cf-file is written by ECBN. The

message ":" will be typed. A binary end-of-file cannot be interpreted
for hard copy.

Read Checksummed Binary Tape

RCBN, starting-address-in-memory, endlng—memory—address}, [drlver-

1S length name ]

The RCBN command allows the user to validate the contents of a
binary tape. A tape is validated by summing all the frames after the
record mark; carries are ignored. This sum is compared to the checksum
written previously at the end of the tape. If the two sums do not match,

- a1 — 7 o~ -



30

Write Checksum Hex Tape

WCHX, starting-address-in-memory, {:n?;gg;gemory—address}, [iE;Zfr_

The WCHX command will write an Intel hexadecimal tape with a check-
sum. The checksum is generated by summing up all the frames after the
record mark. The sum ignores carries and is written as the last frame
in the record.

Example:

WCHX, 1000, 520

Thirty—two bytes (20H) starting at location 1000H are written onto
a tape. The contents are reformatted into Intel hex code.

Write EOF on Checksummed Hex Tape

ECHX, [driver—name]

After the execution of the WCHX command, an end-of-file is written
by ECHX. The message ":@@" (which is an end-of-file command in hex) will
be typed.

Example:

ECHX
00

Read Checksummed Hex Tape

RCHX, starting-address-in-memory, {endlng—memory—address}, ([driver-

S length name |

The RCHX command allows the user to validate the contents of an
Intel Hexadecimal tape. A tape is validated by summing all the frames
after the record mark; carries are ignored. This sum is compared to the
checksum written previously at the end of the tape. If the two sums do
not match, the message "CS" is printed on the system I/0 device.



31

Section 4

MEMORY ACCESS COMMANDS

Commands which enter, move, delete, or report on the contents of
memory without regard to files or lines are classified as memory access
commands.

Dump Memory

. Co 3 ending-memory~address) [driver—
DUMP, beginning-memory-address, |S length ;, name]

The result of a dump is listed in hexadecimal byte by byte. Each
printed line contains a maximum of 16 bytes and is preceded by the
memory address of the first byte. The two allowable command formats are
demonstrated in the example below.

Example:

puMeE, 0,510 Dump 16 bytes of memory starting at
location O.

0000: 02 00 01 AB FE €3 FB FE 00 7B FE 5F 54 41 32 54

DUMP., O, 1D Dump 1DH bytes of memory

0000: 02 00 01t AB FE C3 F8 FE 00 7B FE 5F 54 41 32 54
0010: 20 00 OO0 BO 44 52 49 56 45 32 3F &6F 80 0O

Enter Memory

ENTE, beginning-memoryv-address, [driver—name]

The Enter Memory command allows the user to enter hexadecimal data
starting at any memory location. A carriage control does not terminate
the Enter Memory mode; thus, the user can continue to enter data line
after line. The entry of a one to four digit number followed by colon
will enter a new memory starting address. An attempt to enter an
illegal byte will be reported as an ERRCR after a line feed. All bytes

up to the incorrect byte will be accepted. When using this command end the
data input with a "/".



32

Single digit entries are filled with a zero on the left side while
an entry of more than two digits results in having the two rightmost

digits accepted.

Example:

ENTE. O
12 2 1415/
buMP, 0. 3

0000: 12 02 15

ENTE, O

i2 2 1415

23 &4

6 3000: 17 20
/

ENTE, 1000

Start entering data at address zero

The 2 has had a left zero added. and
13 was entered in the third byte.

17 and 20 will be entered in 3000 and 3001.

12 23 24 55 1G 23 44 55

ERROR

bume, 1000, S8

16 is an illegal entry

1000: 12 23 24 55 00 00 00 00

Move Memory

MOVE, beginning-sending-address, {

55 was the last legal byte

ending-address } beginning-
14

S length of move receiving-
address
The MOVE command moves a byte at a time. If either the sending or

receiving field exceeds the highest memory location, wrap around will
occur to memory location zero. Any character may be propagated through
a section of memory having the receiving address one greater than the

address location.

Examples:

MOVE, O, S200, 1000

ENMTE., O
30/
MOVE., O, 6, 1

After a move, the VMEM command is called automatically.

Move Z00H bytes from location O to location 1000h.

Enter 30H at location Q.

Propragate contents of lpcation O for & bytes



33

bumMP. Q. 8

0000: 30 30 30 30 30 30 30 F8 FE

Verify Memory

_ ' _ Lo heq] Lo
VMEM, beginning-sending-address, {:n?éggtiddress}' rggé?iigg—
address

The VMEM command matches the contents of a series of locations on
a byte by byte basis. Whenever a mismatch occurs, the first location
is given followed by its contents; followed by the contents of the
second location followed by its address. At the conclusion of a MOVE
the VMEM command is invoked automatically.

Example:

MOVE, 0, 51000, 1000

VMEM, 0, S1000, 1000

ENTE, 444

oy Change value of 2 bytes, now areas should not verify
VMEM, O, S10600, 1000

G444 P23 FF 1444 Errar in validation.

0445 45 E5 1445

Print System RAM Area

PRAM

The bounds of the system RAM area are printed the PRAM command.

Example:

PRAM
pOoO DE3B

Select Bank (s)

BANK, wvalue



34

One or more banks on Cromemco memory boards can be selected with
the BANK command. (When ROS is initialized, bank @ is selected). Bank
selection can be altered either with the BANK command or by outputting
a byte to port 4016. A particular bank n is selected by entering a byte
with bit n high as shown in the table below.

BANK Output byte or value

g1
g2
24
g8
19
29
49
84

More than one bank may be selected at the same time by adding the
values for the banks.

NondbdwihHE®™R

Example:

BANK, 80 Bank 7 is now on, all others are off
BANK, 88 Banks 3 and 7 are on



35

Section 5

CUSTOM COMMANDS

Customizing allows the user to use his own set of mnemonic names.
Those names may be one to four characters long. The user can equate
any allowable name to a memory location. This name, when entered,
becomes a command to begin execution at the designated memory location.
Either a user routine or a system routine can be evoked. Customizing
also allows the user to add his own name to call a monitor command.

The list of custom names is dynamic and may be added to or contracted
at any time.

Enter Custom Name

ECUS, custom-name, memory-address = transfer address

ECUS and RENA are the two commands that add custom names. ECUS is
used to equate a one to four character custom name to a memory location.
Whenever a successful entry is made, the system responds with the new
system RAM boundaries.

Example:
ECUS, QUIT, AOOC AQQOC is the reenter address.
DOOC D241
QUIT When QUIT is now typed in, ROS now transfers to AQQC.
ECUS. PROCES, 1000 The user has a process control program starting at
DOOO D247 location 1000H.
PROCESS The process control program is entered at 1000

List Custom Name Table

LCUsS, [driver~name]

The LQUS command will list the names in the custom command table.
Each name is followed by the transfer address associated with the name.
For examples of LCUS see the section on DCUS.



36

Delete Custom Name

DCUS, custom—-name

The DCUS command deletes one custom name from the custom table each

time it is used. The system RAM boundaries are given each successful
deletion.

Example:

tcus

QUIT AO00C PROC 1000
bCcuUs, PROCES

DOOO D241

LCUs

GUIT AO0OC
ECUS, AP, 1500

DOOC D247

ECUS, MATHX, 2000

DOOO D24D

DpCUS, SuMt

ERROR SUM was not in the table.

Rename System Command

RENA, system-command, custom-name

A duplicate custom name for a system command is obtained by using
the RENA command. The RENA command is particularly useful when used
to shorten the name of a frequently evoked routine.

Example:
RENAM. DUMP, D Two names now exist for DUMP
DO00O D253
D, 1,82 D now produces a dump

0001: 30 55

RENAM, DUMP, # Special characters are excepted.
PO0O0 D259 There are now three command that will dump
% 3,82 memory — DUMP, D, and #.

0003: 45 98



37

Section 6

ASSEMBLER COMMANDS

Assembler system commands enable the user to allocate memory for
the symbol table and to control assembly options. An assembly with
options allows the user to define the location of his source code and
the destination of his object code.

Three assembly options ASMB, ASMO, and ASMU have the same format.
The format is: Command, Parameter 1, Parameter 2, Parameter 3. While
Parameter 1 is the origin address of the assembly, Parameter 2 is the
actual memory location for the assembled code, and Parameter 3 1is an
assembly option indicated by a digit 1 to 4.

The options available under Parameter 3 are indicated by the follow-
ing numbers. Option 1 gives a complete assembled listing. Option 2
will list errors only. Option 3 will print a symbol table after the
listing. Option 4 provides a cross reference table in addition to
assembly listing. The commands FORM and NFOR are used in conjunction
with the formatting of an assembled listing.

Print Svmbol Table Allocation

PSTA

The PSTA command lists the beginning and end of the symbol table.
At the beginning of a program the symbol table is initialized to start
at the end of the system RAM. The upper boundary is at address DFFF.
Examples of PSTA are given under the STAB command.

Define Symbol Table Location

STAB

The STAB command can reallocate the symbol table in any memory area
not occupied by a file. The first parameter following the command is
the new beginning address of the symbol table. If the first parameter
is omitted, the beginning address will default to the next memory loca-
tion after the system RAM. The second parameter must always be given
and is either the amount of memory allocated or the upper address.

Example:



38

PRAM Print system ram boundaries.
DOOG D1EB
PGS A Print symbol table boundries.
DIEC DFFF

STAB. O, 4FFF

MEMORY ALREADY ALLOCATED
5TAB, 0, S1000

0000 OFFF This area available for symbol table
STQB..DFFF Default of first parameter is end
DIEC DFFF end of system ram.

Assemble

ASMB, assembly-origin-addr, addr-assembly-code, assembly-option

The ASMB command assembles without user interaction with respect
to the source or object allocation. However, the user does have the

option of choosing four types of assembly listing. These options are
described in the beginning of this section.

Example:

ASMB, 1000, 4000, 1 Complete assembler listing.
CROMEMCO Z-80 ASSEMBLER V. 2.0

1000 78 - Q010 LD A B
1001 B1 0020 ADD ¢

too2 €3 0% 10 0030 LAB1L: JP LAB3
1005 CD 02 10 0040 LAB3: calLl LAB1
1008 21 06 00 0050 LD HL.: &
100B 21 06 0O 0060 LD HL, 6H
AGMR, 1000, 4000, 2 tist errors only

CROMEMCO Z-80 ASSEMBLER V. 2.0

AGMB, 1000, 4000, 3 Assembler listing and symbol table
CROMEMCO Z-80 ASSEMBLER V. 2.0



39

1000 78 Q010 LD A, B
1001 81 0020 ADD c-
1002 €3 05 10 0030 LABIL: JP LAB3
1005 CD 02 10 0040 LAB3: caLlL LAB1
1608 21t 06 00 0050 LD HL. &
100B 21 06 Q0 0040 LD HL., &H

SYMBOL. TABLE

LAaBY 1002 LAB3 1005

AGMRB, 1000, 4000, 4 Assembler listing and crossreference
CRUMEMCO Z-80 ASSEMBLER V. 2.0

1600 78 0010 LD A, B
1001 81 0020 ADD C
jogz2 €3 05 10 0030 LABL: JP LAB3
1005 CD 02 10 0040 LABZ2: CALL LAB1
1008 21 06 00 0050 LD HL. &6
i00B 21 06 00 0060 LD HL, &H

CROSS REFERENCE

L ABR] 1002 0040
L &B2 1005 0030

Assemble with Options

ASMO, assembly-origin-addr, addr-assembly-code, assembly-option

The ASMO command allows the user to specify devices (drivers) for
the assembly listing, the assembly source code, and the output driver.
The user also specifies the form of the output to a device. The chart

on the next page indicates the choices available to the user. The
defaults for several options are given below.

Option Default

LIST= SYS@@g

READ= SYS@@Q

PUNCH= The driver specified

by LIST.



ASMO,180¢,4988,1

LIST = driver for. assembly listing

RTYPE
(specify assembly source)

{source code is from an =I
input device)
=M (source code from memory)

READ = driver for input
device

PTYPE
(disposition of assembler output)

{(ignore) {(output to memory) {output is Intel
hexadecimal checksum

tape) =B (output is

Cromemco binary

checksum tape)
O

PUNCH = punch driver



b1

An attempt to enter an undefined driver will result in the question

being repeated.

When an output tape is requested by PTYPE,

the assembly

listing is first listed on the LIST device followed by the punching of

the tape.

Example:

AGMQ, 4000, 1000, 1
LIST=TTH
LISY=T1TY

RTYPE=1

READ =DISKI
PIYPE=N

ASMD, 1000, 4000, 1
LIST =TTY
RTYPE=M

PTIYPE=H
PUNCH=TTY

Assemble Unnumbered I/0 File

ASMU, assembly-origin-addr,

‘ The ASMU command is identical to
will list unnumbered I/0 files. Only
an unnumbered file is listed, numbers
each line. Numbered files are listed

addr-

TTH has not been defined as a driver
TTY will be the driver for the listing
Source will be read from 1/0

DISKI will be the source driver

Ob ject code will not be generated

Source code is in memory
Produce Intel hex tape
Punch output tape using driver TTY

assembly~code, assembly-~option

the ASMO command except that it
I/0 files may be unnumbered. When
are placed at the beginning of
without modification by ASMU.



Section 7

MISCELLANEOUS COMMANDS

Execute at Given Address

EXEC, address

The EXEC command transfers CPU control to the given address by
executing an unconditional CALL instruction. A simple return to ROS,
the resident operating system, may be made if the user at the end of
his subroutine insures 1) that the address popped onto the stack by
the CALL is pointed to by the stack pointer, and 2) that the last
instruction executed in the subroutine is a return, RET. Performance
of the above steps allows execution of the next instruction in the
main program.

Burn PROM

end-address

PROM, starting-address, {s length

} destination address

A 2708 is burned by the PROM command using the Cromemco Bytesaver
card. The starting address does not have to begin on a 1K boundary.
The resident operating system, ROS, will burn FFjg into unused areas.
The unused areas are defined to be areas outside of the addressed areas
but contained within a 1K block. The FFjg and the new data are written
to the selected PROM 360 times to insure good programming.

To program a PROM, type the command PROM but do not depress the
carriage return. Next, turn the program power switch on the Bytesaver
to ON and then type carriage return. The front panel lights will
count down. When the light pattern becomes stable, your PROM is pro-
grammed. ROS now verifies that the PROM was correctly programmed.
Incorrect programming is indicated by displaying the nonverifying
addresses and their content in the same format as the VMEM command.
Remember to turn the program power switch of the Bytesaver to OFF
upon completion of the PROM command.

Example:

PROM. 1000, S40, 6040 Burn 2708 prom

DAUMP. 6030, S60



&030: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
6040: 30 30 30 30 30 30 30 30 53 OD OD 30 30 31 30 20
L050: 4C 44 20 41 2C 42 OD 18 30 30 32 30 20 53 54 41
L0&0: 52 54 3A 4C 44 20 48 4C 2C 53 54 41 52 54 OD 1D
65070: 30 30 33 30 20 4A 50 20 53 54 41 52 54 3B 4A 39
L080: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

This listing shows that after the PROM command has been executed

the PROM memory IC does contain information from address 6040 to
address 60TF (since in the PROM command it was specified to
program a swath just 40 bytes wide). The rest of the PROM has
not been programmed at all and thus reads "FF" in each address
location, which is the unprogrammed state.

b3



Ll

CHAPTER 3: CONVENTIONS AND PSEUDO-OPS

Formats
The most encompassing assembler format is shown below:

Formal Label: Operation Operands ; Comment
Actual COMP25; LD HL,VALUEIL ; Initialize HL

The label must be followed by a colon. The colon may be followed
immediately by the operation or one or more blanks. Labels need not
start in column one.

The maximum accepted length of a label is six alphanumeric charac-
ters. All labels must start with an alvhabetic character. All labels
in the label field must be followed by a colon. A label cannot be a
register name.

Correct Labels

T12345
Al
T123456 Last character is ignored

Incorrect Labels

A E Sp HL
B F AF IX
C H BC IY
D L DE R
I

4A5B Starts with a numeric character

An op-code may be preceded by a label. A space is not required be-
tween the label and the op-code. The op-code must be followed by at
least one space. The operands must be separated by commas. The length
is governed by the type of reference. A reference to a register pair
is typically two characters. A label as an operand is up to six alpha-
numeric characters, and a numeric literal may not exceed FFFF hexadecimal.
The op-code of an unlabeled code line may start in column 1.

Example:

LAHRLE: LD HL, 14263; 14623 1S BASE TEN AND LESS THAN OFFFFH



b5

LD HL, 14263, OPCODE (OPERATION) STARTS IN COLUMN 1
; NUMBER IS BASE TEN-DECIMAL

All comments must start with a semi-colon. Comments need not be
separated from the final operand by a space, although one or more spaces

are permitted.

Example:

PRT4&: ODUT DATA, A; QUTPUT CONTENTS OF ACCUMULATOR
PRI4: QUT DATA. A i SAME EFFECT AS LINE ABOVE

Data Representation

Any number is used in assembler code defaults to decimal in the
absence of a stated base. A number followed by an H is declared hexa-

decimal.

Example:

LD A, OFFH i LOAD MAXIMUM PERMITTED VALUE - OFFH
i INTO THE ACCUMULATOR

L.D A, 255 i MAXIMUM PERMITTED VALUE IN DECIMAL

LB HL, OFFFFH i MAXIMUM PERMITTED VALUE FOR A

i REGISTER PAIR

If a two byte operand exceeds 65,535, then a value of modulus 65,2536
is returned without an error flag. Arithmetic expressions are allowed
as operands. Computations are performed on both numbers and labels.

The operations of addition, subtraction, multiplication, and division
are allowed. The expression is evaluated from 1left +to right, The
expression 2 + 6 * 2 will evaluate to 16.

Example:
LD B, 2+46#2 load b with 14 ,
LD A, LOC1-L0OC2 If LOC1 is twenty locatians higher

than LOC2 then A is loaded
with 20.



S

A "$" references the address of the next instruction

LD HL, % Load HL with address of SETBC
SETBC: LD BC, $+15 Load BC with address of COMP+15

Assembler Listing Controls

TITLE

Label Code Operand

optional: TITLE ASCII string

An operand of up to 80 characters will appear as a header on all
successive pages until the occurrence of another TITLE command. The
ASCII string is not enclosed in quotes. The label field in this command
has no effect. TITLE causes an immediate EJECT.

Example:

EJECT
Label Code Operand
optional: EJECT none

The EJECT command, which advances the paper to the top of the next
page, is used for clarity in an assembly listing. A routine can be
identified more clearly if preceded by an EJECT.

Data Structure

DEFS - Define Storage

Label Code Operands
optional: DEFS expression
optional: DS expression

The define storage command reserves one or more bytes of storage.
The numeric value of the operand determines the number of bytes reserved.
Evaluation of the arithmetic expression is from right to left.

Example:

BL (ICKA: DEFS 20 i REBERVES 20 BYTES
BLOCKD: DS 20H i REGERVES 32 BYTES



L7

DEFS LAB1+2%#4 i IF LAB1 IS EQUAL TO 20 THEN
: 88 BYTES ARE RESERVED
DEFS LAB4~LAB3 ; COMPUTE DIFFERENCE OF LAB4 AND LAB3

Define Storage (BYTE) DEFB

Label Code Operands
optional: DEFB express%on
optional: DB expression

The define byte allows either a numeric expression or an ASCII
string to be generated. The numeric expression must be in the range

plus or minus 256. However, an ASCII string enclosed in quotes is
valid.
Example:
DB ‘ABCDEF / ASCII string occupies & bytes
DB ‘AT+3 The value 44H is generated
DEFB ‘ABC ‘+3 Illegal, arithmetic result too large
DB ‘ABC Y, “x 3 Several fields are allowed

Define Storage (WORD) DEFW

Label Code Operands
optional: DEFW expression
optional: DW expression

The define word allows a numeric expression or an ASCII string
to be defined. A numeric expression which exceeds 65,535 will be
evaluated modulus 65,536; overflow will be ignored. The ASCII string,

enclosed in gquotes, is limited to one word (two characters). The entire
line may be filled with operands.

Example:
DW LABl,LAB2 Labels OK
DW $ Current value of the location counter

To clarify the action of the dollar sion, consider the code below:

ORG O _
DB % The value of the location counter
15 1ero



L8

DB 7% The second byte has a value of 2
DW ‘AN Evaluates to 4141H

DW A Evaluates tao 0041H

DW %, ‘BD, LAB4 More than one expression permitted
DW ‘PDQ Illegal, too long

Assembly Directives

ORG - Origin

Label Code Operand
optional: ORG arithmetic ex-
pression
The ORG instruction sets the assembler location counter. The

counter may be set to a value more than once during assembly.

Example:

ORG 100H ; LOCATION COUNTER IS SET AT 100H
ADD A ; THIS INSTRUCTION ASSEMBLED AT 100H
ORG 200H ; THE LOCATION COUNTER IS NOW 200H

EQU - Eguate

Label Code Operand

label: EQU expression

The label field is equated to the operand. An EQU instruction must
have a label. The operand, if a label, should be a previously defined
label. Any arithmetic expression is allowed. The EQU is global; once
a label is defined, it is defined for the entire program

Example:
LAB2: EQU LAB1 i CORRECT IF LAB1 PREVIOUSLY DEF
i INED
LABLE: EQU 12%317+4

i ARITHMETIC EXPRESSION ALLOWED



a memnory
to end a ¢ : ol
, the carry flau is
of a file such as
oces

file being processed
1} . When both the ca:
be terminated.

curs wit
set.
a disk




50

CHAPTER 4: USEFUL SYSTEM SUBROUTINES

Selected system subroutines can aid the user in his programming.
A list of useful system subroutines with short descriptions are given
below. Before using any of the routines, index register IX must be
loaded with the address of BASE. This address is found under Linkage
to Common Routines.
RESTRT

This routine will restart ROS. ROS will be initialized providing

that it was not initialized previously. The command mode is entered.
This routine does not RETURN.

REENTR

The system is reentered without restarting. This routine is used
when the user routines are ended. It does not return to the caller.

CALINT

The resident operating system is initialized and a return is made
to the caller.

ACCES

This routine allows prcgram access to all system commands. The
HL register points to an input table. Each entry in the table is a
command string followed by a carriage return. A byte of zerc ends the
table. If there is an error, this routine will not return to the caller.

The example below demonstrates a user routine containing two system
commands, IODR and EXEC.

Example:
CROMEMCO Z-BO ASSEMBLER V. 2.0

2000 21 07 20 0001 START: LD HL., TABLE



51

2003 CD 12 AQ 0002 CALL ACCES

2006 (9 0003 RET

2007 0004

2007 49 4F 44 52 0005 TABLE: DB I0DR, DISKI,FCQO0’, 13

2C 44 4% 353
4B 49 2C 44
43 30 30 OD

2017 45 58 45 43 0006 DB *EXEC, AOOO*, 13
2C 41 30 30
30 oD
2021 00 0007 DB o
2022 0008
A012 0009 ACCES: EQU  0AO12H
SYSOUT

This routine is the system output routine. To output a character
to the current system output device, load the B register with the
character to be sent. Only the AF registers will be altered. This
routine will not return if an ESCAPE is read from the input device.

SYSIN

This routine will get a character from the current system input
device. The character will ke returned in the A and B registers. Only
the A, F, and B registers are altered. This routine does not return if
an ESCAPE is read from the input device.

P2HEX

The contents of the HL register are printed in hex on the system
output device. Only AF and BC are altered.

P1HEX

The contents of the A register are printed in hex on the system
output device. Only the AF and BC registers are altered.

P2HEXS

This routine calls P2HEX and then prints a space.



52

P1HEXS

This routine calls PlHEX and then prints a space.

PRTNUM

This routine will output characters to the system output device.
The HL registers are to be loaded with the address of the characters
to be printed and the D register loaded with the number of characters
to be printed. Only the AF, B, and D registers are altered.

READLN

This routine will read one line from the system input device using
all editing features of ROS. The HL register will return pecinting to
the new line and BC registers will contain the length.

GNAME

This routine gets a six character name from the input line. This
routine is used with custom commands to retrieve a name parameter from
the input line. On input IY must point to the current position in the
command line. This register has already been loaded when the custom
command was executed. On output the Z flag will be set if there is a
default, DE will point to the six character name padded with bhlanks,
and IY will point to the new position in the line.

SIOTAB

This routine will search the I/0 table. The name to be searched
for is to be loaded into the DE registers before execution of SIOTAB.
On return from the routine the Z flag will be set if found and the HIL
registers will point to the I/0 parameters for the name found.

GTHEXM

This routine is used with the custom commands to retrieve a HEX
VALUE parameter from the input line. Before calling the routine, IY
must point to the current position in the line. This register has
already been loaded when the custom command was executed. On return
the Z flag is set if default has occurred. The HL register contains
the HEX VALUE. This routine does not return on error.

GTDECM

Thisg routine is the same as GTHEXM except the parameter in the
custom command is decimal.



53

ERROR

This routine prints the word ERROR on system output and then enters
the command mode. This routine does not return.

MSGOUT

This routine is used to output a message to the system output device.
The HL registers are to contain a pointer to the message. Characters are
orinted until a carriage return is found. Only the AF, B, HL registers
are altered.

PRNTTB

The table pointed to by the HL registers is to be printed on the

system output device. The user may want to refer to the section on Table
Format.

COMPAR

The HL registers are to be loaded with a pointer to the first argu-
ment. The DE registers must point to the second argument. The length
of the compare is placed in the B register. When the routine returns,
the Z flag will be set if the two arguments were equal. If the first

argument was greater than the second argument, the carry flag will be
set.

SEARCH

This routine searches the table pointed to by the HL registers. The
DE registers point to the name to be found in the table. On return, if
the name is found, the 72 flag is set and HL points past the name to its
narameters. Otherwise, the Z flag is not set and the HL registers point
past the last entry in the table.

LOOK

This routine has the same function as SEARCH excepnt that if the name
being sought is found, then HL points to the entry in the table.

FILL

Execution of FILL fills each byte in a specified area of memory with
the value in the A register. The number of bytes to be filled is given

by the value in the BC registers and the starting address is contained
in the DE registers.



54

CLEAR
This routine will clear a specified area of memory by loading
srmaces into each byte. The number of bytes to be cleared is given by

the BC registers. The starting address is contained in the DE register
pair.

MBLNK

This routine will move the data starting at a location pointed to
by the HL registers to the area pointed to by the DE registers for a
length specified by BC or until a delimiter is encountered. The Z flag

will be set if a delimiter stops the move. System routine CDILM lists
the delimiters.

SBLNK

This routine increments the HL registers until they do not point
to a space.

SCHAR

This routine increments the HL registers until a delimiter is en-
countered. The delimiters are:

;I:+—/*)

plus space and carriage return.

CMBLNK

This routine calls CLEAR and MBLNK.

CNUM

This routine checks the A register for a numeric character. The
carry is set if not numeric.

GETHEX

A hexadecimal number is fetched from memory and entered into regis-
ters DE. The first byte of the number is pointed to by registers BC
and the byte following the number is pointed to by registers HL. If
an error occurs, e.g. a number that is not a valid hexadecimal number
is encountered, the carry flag is set.



55

GDECM

A decimal number is fetched from memory and entered into registers
DE. The first byte of the number is pointed to by registers BC and
the byte following the number is pointed to by registers HL. If an
error occurs, e.g. a number that is not a valid decimal number is en-
countered, the carry flag is set.

LEADER

Seventy nulls are written to the system output device after a five
second wait.

EINTEL

In this routine an end of file is written for an INTEL format tape.
Carry prime, in the auxiliary flag register - F', must be set for hex
tave. If carry prime is not set, then a binary end of file will be
generated. :

CHKCUR
This routine checks to see if a current input file is present. If
no input file is present, the message: "NO CURRENT FILE" will be typed,

and control will be returned to R0OS. Otherwise, the routine will re-
turn to the user.

WINTEL

In this routine an Intel format tave is written. On entry, regis-
ter D contains the record length, HL contains the address, 1Y points to
stored data, and carry prime is set if hex data is used and reset, #,
if binary data is used.

PRTONE

In this routine one line of data is printed using assembler tabs.
On entry HL points to the line. If the carry bit is set, the text with-
out a line number is printed. When the carry bit is reset, # line
numbers are printed with the text.

GTSTNG

In this routine a string of characters is obtained by calling
CMBLNK. Refer to CLEAR and MBLNK for additional parameter information.
HL is then incremented until pointing at a comma or carriage return.
Also, the routine puts the contents of HL in IY.



56

INTTAB

This routine initializes the routine GTENT. When entered, HL must
point to the table.

GTENT

In this routine an entry is obtained from a table whose position
is pointed to by HL. HL returns pointing to the next entry in the table.
The 2 flag is set at the end of the table. :
FUPACK

In this routine the four packed decimal digits in the DE registers
are unpacked into the area pointed to by the HL registers.
AFPACK

The four decimal digits in the DE register are added to the four
decimal digits in the HL registers. The result is left in HL and the
carry is set if the result is greater than 9999.

FPACK

The four decimal digits pointed to by the HL reglsters are packed
into the DE registers.

CDILM

This routine checks a specific byte to see if it is a delimiter.
The delimiters are:

Py o -/ * )
plus space and carriage return. HI, is loaded with the pointer to the

character to be tested. The Z flag will be set if the character is a
delimiter.

ADDAHL

The A register is added to the HL registers. The result is left
in the HL registers, and the carry flag will be set if overflow occurred.

SPACnn

This set of routines will print nn spaces to the system outoput
device. Only the AF and B registers are changed.



57

CHAPTER 5: WRITING I/O ROUTINES

The IODR command may be used to change I1/0 drivers., The input
driver address and output driver address are the first and second
parameters following the driver name (see List I/0 Driverg). By
changing the parameter addresses the user may reference his own
1/0 drivers.

System Input Drivers

A standard input driver routine first checks to see if a char-~
acter is ready to read. If a character is not available, the A
register is zeroed, the carry flag cleared, and the routine returns.
If there is a character available, it will be read into the A register
and the carry flag will be set. All registers except AF must be
preserved. A return is now made to the system. The example below
shows a system input driver.

AF 38 0001

AF 38 0002 ;i STANDARD INPUT DRIVER

AF 38 0003 ; OUTPUT ~ CARRY SET IF CHARACTER

AF 0B 0004 A CONTAINS CHARACTER

AR G8 0060S

AF38 DB {0 0G06 INPUT: IN YR i GET STATUS

AF3A E& 40 ooo7 AND 40H i CHECK FOR CHARACTER
AF3C C8B o008 RET z i NO CHARACTER
AF3D DB 01 olele by IN Al i INPUT CHARACTER
AFJOF 37 G010 SCF i SAY GOT CHARACTER
AF40 C9 0011 RET

Assembler Input Drivers

An assembly input driver differs from a system input driver in
handling flags and in accepting input from an external device as de-
scribed below. If on entry to the input driver the carry flag is
found to be set, a rewind of the input file is to be executed. For
example, if the input file is paper tape, the tape will be started
over again. The input routine does not return until a character is
received. The character is read into the A register, then the Z flag
is cleared, and the routine returns. When an end of file is sensed,
the Z flag is set before a return. All registers must be preserved.



58

In the input example below a carry flag is not used. When using
the teletype, the operator knows where to start loading the tape; re-
winding is not possible on a teletype, so a flag is superfluous.
However, a set carry flag could have been used to display a message.

On the other hand, if the file were a disk file, the carry flag could
be used to rewind the file. In the example a control Z, 1A hexadecimal,
is used to indicate the end of the file. If the END pseudo-op code is
used in the source code, a control Z is not necessary.

Example:

CROMEMCO Z-80 ASSEMBLER V. 2.0

1000 0001 ; \

1000 ‘ 0002 ; TELETYPE INPUT DRIVER FOR ASSEMBLER

1000 0003 ; INPUT - CARRY SET TO REWIND FILE

1000 0004 ;OUTPUT - A CONTAINS CHARACTER

1000 0005 Z FLAG SET IF END OF FILE

1600 0006 | :

1000 DB 00 0007 INTTY: IN A, O i GET STATUS

1002 E6& 40 o008 AND  40H i CHECK FOR CHARACTER
1004 28 FA 0009 JR Z, INTTY i NOT READY

1006 DB 01 0010 IN At i GET CHARACTER

1008 FE 1A 0011 cP 1AH ; CHECK FOR END OF FILE
100a C9 o012 RET

Output Drivers

The output driver expects the character to be written to be in
the B register. When the output driver returns, the A and B registers

should both contain the output character. All other registers must be
preserved.

Example:
AF41 0001
AF4&1 0002 ; STANDARD OUTPUT DRIVER
AF4&1 Q003 i INPUT - B CONTAINS CHARACTER
AF 41 0004 ; QUTPUT — A AND B CONTAIN CHARAGCTER
AFA1L 0005
AF41 DB 0O 0006 OUTPUT: IN A0 i GET STATUS
AFA3 E& BO 0007 AND 80H i GET TBE
AF45 2B FA | 0008 JR Z, QUTPUT i LOOP UNTIL READY
AF47 78 o : 0009 LD A, B ; GET CHARACTER
AF48 D3 01 0010 auT 1,4 i QUTPUT CHARACTER

AF4A C9 0011 RET



59

APPENDIX A

Custom Commands with Parameters

Custom—-name, [Parameter«l], [Parameter—Z] .+ . Input line

Before accessing the contents of the parameters listed above the
user first equates his custom-name to the entry point of a routine.
When the custom-name is executed, a call is made to the user routine,
and register 1Y will point to the first parameter in the input line.
The user may now call system subroutines (see Useful System Subroutines).
The system subroutines can perform tasks such a checking the existence
of the parameters or retrieving the contents of a parameter. Before
using any of the system subroutines, IX must point to BASE. The address
of BASE is obtained from Linkage to Common Routines (list is given in
Appendix G).



60

APPENDIX B

Using Parameters in the Command Line

In the code shown below the user ultimately references a routine
EXAM which will receive parameters from the command line. EXAM uses
several system routines. The first routine attempts to find the loca-
tion of the parameters pointed to by the IY register. If the parameter
is not found, an error message routine is called. The third routine
retrieves the contents of the parameter. In the sequence of events
the user first loads, perhaps via paper tape, a routine PLOT into the

starting memory address 1@@@H. Then the custom command PLOT is equated
to the location 1@g0.

ECUS, PLOT, 1899
Eventually, the user executes the command PLOT
PLOT, X, Y

When PLOT is called, the IY register will point to the first para-
meter, X. The routine PLOT contains two calls to EXAM.

PLOT: caLL EXAM i Y POINTS TO COMMAND L INE
LD {SAVEX ), HL i BAVE VALUE FOR X
caLL EXAaM
LD (SAVEY ), HL i SAVE VALUE FOR Y
CALL DAZLER i PUT DOT ON DAZZLER
RET s RETURN TO ROS

The subroutine EXAM is given below. The circled numbers refer to
commentary about each instruction.

EXAM: CALL GNAME i GET NAME PARAMETER 13
JR Z, ERROR i DID NOT FIND NAME 2}
CALL GTHEXM i GET HEX VALUE 3)



61

JR NZ, EXM300 i GOT HEX VALUE 4)
LD HL, O i DEFAULT VALUE 5)
EXM300: LD (SAVE1L ), HL: SAVE VALUE &)
RET 73
éAVEi: DS 2 ; SAVE AREA =}
GNAME: EQU 0AO2DH i GET NAME ROUTINE ?)
ERROR: EQU 0AQ39H i ERROR ROUTINE 10
CTYHEXM: EQU 0AQ33H i GET HEX ROUTINE i1)

1) A call is made to the system routine GNAME. Before the
call the user equates 9) GNAME to the address found under
Linkage to Common Routines in appendix H. The GNAME sub-
routine, as described under Useful System Subroutines, will
attempt to find the address of the parameter pointed to by
IY. If the search is successful, DE will contain the address
of the parameter, and the IY pointer is advanced to the next
parameter. An unsuccessful call is indicated by the Z flag.

2) When the Z flag is set, a jump is performed to the system
subroutine, ERROR. The ERROR subroutine prints or displays
the message "ERROR".

3) If a parameter is a hexadecimal value, the GTHEXM will
place this wvalue in the HL register. Failure to return the
value is indicated by setting the Z flag.

4) Jump to EXM3¢g if hexadecimal value 1s returned to HL.

5) A hex value was not returned to set HL to zero to signify
failure to user.

6) The HL register is freed for other uses by transferring
the hexadecimal parameter to memory location SAVE].

7} Return to caller.

9), 10), 11) Establish address for all system routines used
by using the Linkage to Common Routines table.



62

APPENDIX C

User Loading Instructions

I/0

ROS has the unique feature of initializing the baud rate of your
I/0 board. If you have a Cromemco TU-ART serial I/0 board, ROS will
initialize your I/0 for baud rates of 96@@, 2489, 3¢9, 158, or 114.
Other manufacturers have 1/0 boards which have software control of baud
rates, consult their user manual to f£find out if they have this capa-
bility. When ROS is initialized, hit the carriage return key several
times until the ROS message is printed. This allows ROS to determine
the correct baud rate. The I/0 board which you use must conform to the
drivers which can be found in Chapter 4.

PROM

First load the eight PROMs into your Cromemco BYTESAVER, making
sure that you get the PROMs correctly placed. These PROMs have been
preprogrammed and contain the Resident Operating System, ROS. Address
your BYTESAVER at location @A@@PH; this is done by using the DIP switch.
For technical details refer to the BYTESAVER instruction manual.

On your Cromemco ZPU card install a jumper wire connecting the
two pins marked "jump enable". Set the jump address switch to A. By
following the instructions in the next paragraph an automatic transfer
will be made to the ROS. The jump enable section in your Cromemco ZPU
manual gives complete details on the automatic jump feature.

Insert the BYTESAVER and ZPU cards into the computer. Turn the
power on and depress the run switch. When either the power is applied
to the system or reset is depressed, control will be transferred to the

Cromemco ROS. Depress the carriage control several times until the
message: "CROMEMCO ROS V.2.0." is displayed.
PAPER TAPE

Appendix I gives the full instructions for loading the Cromemco
ROS from a paper tape. The paper tape has been supplied in Cromemco's
binary checksummed tape format to insure high reliability.



63

APPENDIX D
Special Functions of Keys
ESCAPE When this key is depressed during

either input or output, any I/O is
ceased and ROS enters the command

mode.

ALT MODE This key has the identical function
as ESCAPE.

Control S This key only has an effect during

output. When depressed, the output
printing will be stopped. To resume
printing, depress any key.

RUBOUT This key deletes the previous charac-
ter when inputting. On a TTY a back
arrow will be printed. On some CRTs
an underline will be printed.

SHIFT O (back arrow) This key has the same function as
RUBOUT.
Control X This key will delete the line that

is being inputted. A carriage return
and a line feed will occur.



64

APPENDIX E

Error Messages

ERROR This is a general message for any
error condition not covered by more
specific error messages.

FILE ERROR This message is given by VFIL com-
mand to say that the file contains
an error.

Example:

3843
FILE ERROR

FILE FULL This message 1is given when the
current file cannot contain the new
line.

NO CURRENT FILE This message is given when an opera-
tion which automatically references
a current file is tried when no file
has been made current.

FILE TOO LARGE This message is given by the VFIL
command to indicate that the file
is larger than the space allocated
for it.

DUP. NAMES This message occurs when trying to
create a new file with a name al-
ready used by a previous file.

NO MORE ROOM This message is given when there is
no room left in the system RAM.

OK This message is received after the
paper tape is read correctly.

CS This is received when a checksum
error 1is detected from the paper
tape record.



SYMBOL TABLE FULL

65

This message is received when a
memory error occurs while reading
checksummed tape.

This message is given by the assembler
when no space remains for an entry in
the symbol table.



66

APPENDIX F

Table Format

Whenever a system subroutine uses a table, a particular format is
followed. It is important for the user to understand this format when
using a system subroutine. Some of these subroutines are PRNTTB, SEARCH,
LOOK, INTTAB, and GTENT. The first byte of the table contains the length
of the compare argument. The second byte of the table contains the
length of an entire entry. The table is ended with a bvte of zero.

Example:
TABLE: pB 7,8 1)

DB 'ENTRY 1°',7 2)

DB 'ENTRY 2',8 3)

DB # 4)
1) Each argument is seven bytes long, e.g. 'ENTRY 1' is
seven bytes. Each entry is eight bytes. The seven adds one
byte.
2), 3) Two seven byte arguments and their corresponding

values seven and eight.

4) End of table.



SYSTEM RAM

Bi-FE
DOGO

po4o
poH4
BOOL?

DoAC
DOAE
DOBO
DoBi
TOB2

B3
DOB4
DOBS
DOBA
OBS
DOHS
DOBA

poBaA

DORA
poBB

DORB
DOBR
DOBB
DOBB
DiBB

D1iBB

0040
p040
D040
0014
0005
0053
DCAC
0002
0002
0001
0601
0001
0001
0001
0001
0002

0002

DOBA

0000
0001

0000

0001
o002

0100

DFFF

2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
24463
2444
2465
2466
24467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477

67

APPENDIX G

System RAM

ORG
RAM: DEFS
STACK: EQU
SYSRAM: EQU
TEMP: DEFS

DEFS
RBUFF: DEFS
CURIO:. EQU
IDRIVE: DEFS
ODRIVE: DEFS
NULLS: DEFS
LINES: DEFS
TERMWD: DEFS
TAB1: DEFS
TaB2: DEFS
TAB3: DEFS
CURADR: DEFS
CURLEN: DEFS
BASE: EQu
STATUS: EQU

DEFS
BFORM: EQU
CURFLE: EGQU
SYM: EQU
i USER AREA
USER: DEFS
ENDRAM: EQU

H

ODOOOH

&4 i STACK AREA

%

% i START OF SYSTEM RAM

20 i TEMP AREA (LEAVE PRIOR TO RBUF
5 i AREA FOR NUMBER OF LINE
83 i READ BUFFER

2 i CURRENT 1/0 PARMS

2 i CURRENT INPUT DRIVER

2 i CURRENT OUTPUT DRIVER

1 i NUMBER OF NULLS

1 i MUMBER OF LINES/PAGE

1 i TERMINAL WIDTH

1 i TABS FOR ASSEMBLER

1

1

2 i CURRENT ADDRESS IN FILE
2 i CURRENT LENGTH

% ;i BABE FOR IX

0 i BTATUS BYTE

1

o i FORM FLAG

1 i CURRENT FORM FLAG

2 i SYMBOL TABLE FLAG

256

ODFFFH i END OF SYSTEM RAM



p1BB
D1BD
DiBF
DicCt
DiC3
D1CS
D1C7
D1Cc?7
B1CA
P1pD
DiEO
D1E3
DIE3
DiCc?
D1CF
DiD1
D1D3

0002
Q002
0002
0002
0002
0002

0003
0013
0003
0003

0006
oooz2
0002
0002

2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2474

FLTBPT:
IOTBPT:
CUTBPT:
SZTBPT:
SZTEND:
TABEND:

FLTBST:
10TBST:
CUTBST:
SZTBST:

CURFIL:
CFSADR:
CFLEND:
CFLALL:

DEFS
DEFS
DEFS
DEFS
DEFS
DEFS

DEFS
DEFS
DEFS
DEFS

ORG

DEFS
DEFS
DEFS
DEFS

IORHSIR LR LN IR LU N

QW= W

FLTBST+2

(SIS R

i
i
i
i
i

i
i
i
i
i
i
i
i

i

i

PTR TO
PTR TO
PTR TO
PTR TO
END OF
END OF

INITIAL
INITIAL
INITIAL
INITIAL

CURRENT
CURRENT
CURRENT
CURRENT
CURRENT

68

FILE TABLE

I/0 TABLE

CUSTOMER TABLE
ASSEMBLER SYMBOL TABLE
ALLOCATION, SYMBOL TABL
TABLES

FILE TABLE

I1/0 TABLE

CUSTOMER TABLE
ASSEMBLER SYMBOL TABLE

FILE AREA

FILE NAME

FILE START ADDRESS
FILE END ADDRESS

FILE ALLOCATION ADDRES



69

APPENDIX H

Linkage to Common Routines

LINK 10 BEYSTEM

biht 2494

DiDo 2497 5 LINKAGE TO SYSTEM

DIDL 2498

pIpn 2499 OrRG START

ACGO 0003 2500 RESTRY:. DEFS 3 i RESTART SYSTEM

AGOT 0009 2501 INIT: DEFS 9 i INITIALIZE SYSTEM

A0 00073 2502 REENTR: DEFS 3 ; REENTER SYSTEM

AL 2503

ADGH 2504  LINKAGE TO COMMON ROUTINES

AGOE 2505

aAG0F 0003 2504 CALINT: DEFS 3 i CALL INIT ROUTINE

AGlz 0003 2507 ACCES: DEFS 3 i ACCEES COMMANDEFS

A0tH 0003 2508 SYsQUT: DEFS 3 P SYSTEM DUTPUT ROUTINE
Aol 0003 2509 BYSIN: DEFS 3 i BYSTEM INPUT ROUTINE
AGIR 0003 2210 PZHEX: DEFS 3 i PRINT 2 HEX BYTES

A 0003 =511 PIHEX: DEFS 3 s PRINT 1 HEX RBYTE

AP 0603 2512 PZHEXS: DEFS 3 s PRINT 2 HEX BYTES AND SPACE
AGA 0003 232123 PIHEXS: DEFS 3 i PRINT 1 HEX BYTE AND SPACE
A7 0003 2214 PRTNUM:. DEFS 3 s PRINT CHARACTERS (# IN D!
G - 0003 2313 READLN, DEFS 3 i READ 1 LLINE OF INPUT
Al 0003 201é& GNAME: DEFS 3 i GET A NaAME PARM

AGB0O 060073 29517 ST10TAB: DEFS 3 » LOOK UP IN I/0 TABLE
A0 0003 2518 GTHEXM: DEFS 3  GET HEX PARM

LS 0003 23519 GTDECHM: DEFS 3 i GET A DECIMAL PARM

AQBT7 0003 2 ERROR: DEFS 3 s ERROR ROUTINE

00 0003 2 MEGQUT: DEFS 3 i QUTPUT MESSAGE

AGGl D003 251 PRNTYE: DEFS 3 i PRINT TABLE

AGA 0Q0T3 = COMPAR: DEFS 73 : COMPARE

AGah Doo3 = SEARCH. DEFS 3 » SEARCH TALLE

AGAR 00603 2920 LOOK: DEFS 2 P LOOK THRU TABLE

a0ap 0003 2524 FILL- DEFS 3 fFILL AREA WITH VALUE

A0A- 0003 2527 CLEAR. DEFS 3 i FILL AREA WITH SPACES
f0LY 0003 2928 MBLNK- DEFZ 3 P MOVE UNTIL DELIMETER

A0L4A 0003 2529 SHLNK: DEFS 3 i SHIP BLANKS

Ay 0003 2530 SCHAR: DEFS 3 ;2R IP CHARACTERE UNTIL DELIME
ALLA S 0003 2531 CHMBLMK. DEFS 3 s TLEAR ANT MBLNK

ALY D003 2033 CRUM DEFS 3 ;s CHECK NUMERIC

A0HD . 0003 2533 GETHEX. DEFS 3 CEET OHEX valLUE



AOQL3
AQLS
AaG6?
ADLC
AQ&LF
AQ72
AQ75
AO78
AO7B
AOQ7E
AOB1
AOB4
AOB7
AQBA
AQ8D
AOBD
A0S0
A093
AQRE
AOQ9?
ADC
AQ

0003
0003
0003
0003
0003
0003
0003
0003
0003
0003
0003
0003
0003
0003

0003
0003
0003
0003
0003
0003
0003
AOAZ2

2534
2535
2936
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2953
2554
2555
2556

GDECM:

LEADER:
EINTEL:
CHKCUR:
WINTEL:
PRTONE:
GTSTNG:
INTTAB:

GTENT:

FUPACK:
AFPACHK:

FPACK:
CDILM:

ADDAHL.:

SPACLB:
SPAC1Lé&:
SPACL2:
SPACES:
SPACE4:
SPACED:
SPACEZ:

SPACE:

DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS

DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
DEFS
EQU

PR ARANAEARAEANA R ANARARARANARANARANSRORARARA)

70

i GET DECIMAL VALUE
i WRITE LEADER

i END OF

FILE INTEL TAPE

i CHECK CURRENT FILE

i WRITE INTEL FORMAT

; PRINT ONE LINE USING TABS
i GET A STRING

i INITIALIZE GTENT

i GET AN
i UNPACK

ENTRY FROM TABLE
4 BCD DIGITS

i ADD 4 BCD DIGITS

i PACK 4

BCD DIGITS

i CHECK FOR DELIMETER
i ADD A TD HL

; QUTPUY
i OUTPUT
i QUTPUT
;i QUTPUT
; QUTPUT
; QUTPUT
i OUTPUT
i QUTPUT

18 SPACES
i& SPACES
12 SPACES
SPACES

SPACES
SPACES
SPACES
SPACE

PLUQALDT



APPENDIX I

71

Paper Tape Loading Instructions

CRUMEMCO Z~-80 ASSEMBLER V. 2.0

0000
0060
0000
0000
00GOo
G000
0600
0000
0000
0000
0000
0060
0000
000

DC
0000
0000
0000
0000
0000
0000
00C0o
Q000
G000
0000
0000
0000
0000
0000
0600

0000
0000
0000
0000
0001
0003

0001
0000
0040

@7
D3 52
3C

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
o012
0013
0014
0015
0016&
0017
0018
0019

0020

0021
co22
0023
0024
0025
00246
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0637

i

i TO LOAD YOUR PAPER TAPE COPY OF
i CROMEMCO ROS. FOLLOW THESE STEPS:

1

i 1) BE SURE YOU HAVE BK OF RAM AT LOCATION OAOOOH
i2) BE SURE YOU HAVE RAM AT LOCATION O

i3) KEY IN THIS LOADER AT LOCATION O

i 4) MOUNT THE PAPER TAPE IN THE READER

iB%) SET THE ADDRESS SWITCHES TO O

i &) PRESS STOP

i 7) PRESS EXAMINE
iB) PRESS RUN

i 9) START THE PAPER TAPE READER

’

i WHEN THE PAPER TAPE HAS FINISHED READING,
;i CROMEMCO ROS WILL BE STARTED. DEPRSS
i CARRIAGE RETURN UNTIL THE MESSAGE

i; ‘CROMEMCO ROS V. 2.0

IS TYPED.

i IF DURING READING THE PAPER TAPE, A CHECKSUM
FERROR OCCURS, A ‘C’ WILL BE TYPED.

i START ACAIN AT STEP 4. IF THERE IS BAD MEMORY

iA ‘M’ WNLL BE TYPED. CHECK YOUR MEMORY!'!

i REPLACE ANY BAD MEMORY AND START ACAIN AT STEP 1.

i IF YOU ARE USING ANOTHER MANUFACTUREERS 1/0 BOARD
i WHICH MNEEDS INITIALIZING, CHANGE THE INSTRUCTIONS
i AT THE LABLE INIT.

ORG
TTY: EQU
TTS: EGQU
DTR: EQu
i INITIALIZE
INIT: SUB
ouT
INC

o
1
0o
40H

TELETYPE
A

S4H, A
A

i TELETYPE DATA PORT
i TELETYPE STATUS PORT
i TELETYPE READY BIT

; SET TO DEVICE A ON CROMEMCO TU

i REGET TU-ART



0004
Q00&
0008
000B
0008
000B
000B
O00E
0010
0012
0014
0017
0018
001B

001C
001D
o020
0021
o024
o025
0028
0028

002D

o035

0037
00372
0038
003D
003D
O03F
0041
0043
0043
0045
0047
0047
COAB

o04cC
OOAF
0050
0051
0052
0053

b3
D3
31

CD
Eé
FE
20
cD
A7
CA
47

SF
CDh
&7
CD
&F
cD
CD
77
BE
20
23
10
ch
7B
A7
28
3
ig

3E
D3
18

DB
ES
28
DB
ce

cD
aF
83
5F
79
c9

o2
00
(610]

43
7F
3A
F7
4C

00

4c

4C

acC
4ac

OE

Fé&
4Cc

D2
43
o2

4D
01
FE

160)
40
FA
01

43

02

00

Qo

AO

0o

Co

00
00

0o

00

0040
0041
0042
0043
0044
0045
00464
0047
0048
0049
0050
0051
0052
0053

0054
0055
0056
0057
0058
005%%
00&0
0061
0062
0063
0064
00465
0066
0067
0068
0067
0070
0071

0072

0073
0074
0075
0074
0077
0078
0079
00BO
0081
00B2
0083
0084
0085
008é
o087
0088

- 0089

i

ouT
ouT
LD

2, A
TG, A
5P, 0200H

i START READING TAPE

!

WAIT:

LOOP:

MERROR:
CouT:

GCHAR:

i
GTBYT:

CALL
AND
cp
JR
caLl
AND
JP
LD

LD
cAaLL
LD
catl
LD
CALL
caLL
LD
CcP
JR
INC
DJNZ
CALL
LD
AND
JR
LD
JR

LD
ouT
JR

IN
AND
JR
IN
RET

CALL
LD
ADD
LD
LD
RET
END

GCHAR
7FH

NZ, WAIT
GTBYT

A

Z, OAQQOOH
B, A

£, A
GTBYT
H, A
GTBYT
LA
GYBYT
GTBYT
(HL), A
(HL)

72

 INIT BAUD RATE 70 110
i INITIALIZE STACK POINTER

i GET A CHARACTER

i CHECK FOR A COLON

i NOT FOUND, WAIT FOR A& COLON
i GET COUNT OF CHARACTERS

i CHECK FOR END OF TAPE

i FOUND

i SAVE COUNT

i INITIALIZE CHECKSUM

i GET HIGH BYTE OF ADDRESS

i GET LOW BYTE OF ADDRESS

i GET RESERVED BYTE
i GET DATA BYTE

i STORE BYTE

i MAKE SURE STORED

NZ, MERROR ; MEMDRY ERROR

HL.
L.ooP
GTBYT
A E

A

Z, WAIT
A, 'C”
couT

A, M7
TTY, A

$-2

&, TTS
DTR

Z: GCHAR
A TTY

GCHAR
Ci A
£
E:. A
A C

iPT TO NEXT MEMORY LOCATION
i COUNT DOWN AND LOOP
i GET CHECKSUM

i CHECKSUM OK
; CHECKBUM ERROR
i QUTPUT ERROR CODE

i MEMORY ERROR
i QUTPUT ERROR CODE
i LOOP UNTIL USER S5TOPS

i GET TTY STATUS

i LOOP UNTIL CHARACTER
i GET CHARACTER

i GET A CHARACTER

i SAVE CHARACTER

i ADD TO CHECKSUM

i SAVE CHECKSUM

i RESTORE CHARACTER



73

APPENDIX J

Glossary

ASCII American Standard Code for Informa-
tion Interchange. A method of en-
coding bits to represent a character.

Carriage Return Character When using the teletype for output
and a byte containing 13 is sensed,
a carriage control will occur, i.e.
a return to column one.

Checksum The checksum is the negative of the
sum of all eight bit bytes in the
record after the record mark evalu-
ated modulus 256. In other words,
if all the eight bit bhytes are added
together, ignoring carries out of an
eight bit sum, and then the checksum
ig added, the result is zero.

Command String A series of characters set off by the
string symbol (') which contains a
system command and its parameters.

Example:
'"EXEC,AQ03'

Control Characters All hexadecimal codes from @@ to 1F
are considered available as control
characters, e.g. linefeed.

Delimiter Any character which will terminate
a parameter or string. Frequently,
a delimiter functions as a separator,
e.g. the comma in EXEC,AJfZ separates
EXEC from A@gd.

Driver In order to use an Input/Output de-
vice, some body of code must: 1)
check to see if the device is avail-
able, 2) connect the computer to the
device, 3) prepare the device for a



Initialization

Linefeed

Memory boards

Mnemonic Name

Null

Object Code

Preservation of Registers

PROM

Pseudo-op

7l

transfer of data, 4) properly dis-
connect the device at the termination
of the transfer of data. A driver
may do all of the above. A simple
device such as a teletyve (TTY) has
a very simple driver. 1In contrast
a disk driver can be quite complex.

Basically, initialization clears all
the tables and sets SYSIO to its
standard setting.

When using the teletype for output,
if a byte containing 1 is sensed,
a paper advance of one line will
occur.

A board on which semiconductor
memory modules can be mounted. This
board can plug into a master board
called a mother board.

A name which the user can easily
associate with a desired machine
language op-code.

On a paper tape, a null is a frame
that will not contain data.

The machine readable code which was
translated from the user's source
code.

When a call is made to a subroutine,
the routine or the call may change
the contents of several registers.
The user may need to preserve the
contents of the registers by saving
them especially in the stack. Later
the registers can be restored from
the stack or whatever area they were
saved in.

Programmable Read Only Memory. Once
information is written into a PROM
by a special burn command, the PROM
contents cannot be easily changed.

A Cromemco PROM can be erased by
radiating the PROM with an ultra-
violet source.

A command, typically to an assembler,
which will not produce any executable



Region

ROS

Source Code
Swath
S length

TTY

75

code. For example, a TITLE command
will cause a page eject and place a
Title on the next page of an assembler
listing. A command like TITLE is not
like a load instruction which produces
code.

Random Access Memory. An area in
main storage which can be both written
into and read from.

A logical partition, hunk of memory.
The user's file can be said to be
assigned the region from 1@@@H to
15¢0H in memory.

The Cromemco Resident Operating
System once loaded needs no other
external routines to operate. In
contrast a disk based operating
system has a resident portion, the
nucleus, and the bulk of the system
on a disk.

The user written code.
The number of bytes to be processed.
Swath length.

A teletype.



76

APPENDIX K

ASSEMBLER ERROR CODES

There are ten classes of programming errors that can
be detected by the Cromemco assembler. If a line of code
is in error, this will be indicated by an error code letter
just to the left of the line number in the assembly listing.
The definitions of these ten error codes are given below:

Argument error
Double definition
Lable error
Missing lable
Op-code error
Phase error

Range error
Syntax error
Undefined

Value error

SCwnmmwYOoO XN o





