- From:

To:

September 29, 1964

Potential ALGOL Users

Stephen J. Garland, Dartmouth College, Hanover, N.H.

(Revised by D. W. Scott, March 3, 1965)

A working ALGOL Compiler is now incorporated within the
Time-Sharing System. At present, the following restrictions
are made (most of these will be eliminated once the compiler
is completed):

1. Own variables are not permitted yet, though all other block
eclarations are permissable; local variables are truly local
and may not have the same value on re-entry to a block.

20
30

Dynamic array declarations are not permitted.

Unsigned integers may not be used as labels.,

Apart from these restrictions, the full generality of ALGOL is
permitted; e.g., if you like you may write for statements with
arrays for running variables, recursive switches, switches whose
elements are designational expressions, etc., to your heart's
content.,

1.

" and, or, equiv,

As for grubby details, the following conventions must be
obeyed when writing a program:

Line numbers of ome to five digits generally followed by
blank must be typed at the beginning of each line. However,
these numbers are used solely for the purposes of editing
and referencing in error messages, and are not considered as

part of the program.

abcdefg. . ..xyz
0123456789
+»°)*,/s1\»\

=, =/’ <’<=’>’>=

true, false

imply, not
goto, if, then, else, for, do

step, until, while, comment

2. The character set for ALGOL is transliterated as follows:

capital letters only

digits

arithmetic operations (\ stands
for ¢+ and you will find it
over the L, using the shift)

relationals (/= may be used in
place of =/)

logical constants

logical operations

sequential operators

-separators (the $ stands

for the symbol 10)

-2 -

> .o » i ; .
N begin, end, (,), Ej, " brackets (the " is used
Ermme ' as both the left and
right string quote.
Land] are found above
: K and M, using shift.)
own, boolean, integer, real declarators
array, switch, procedure

data .
string, label, value specificator (string is not
implimented.

ALGOL words in the above list are recognized by the compiler by the
fact that they are spelled without spaces and are both. preceeded and
succeeded by a non-alphanumeric character. Note that go to will not be
recognized. ALX worda are made of capital letters, not underlined.

3. 1Identifiers may be any combination of letters and digits
starting with a letter and less than thirty characters in
length. Imbedded spaces are ignored (e.g., '"mext number in
list" is a legal indentifier and is identical with
"nextnumberinlist'"). However, care must be taken to insure
that none of the above ALGOL words are set off by spaces in
an idegtifier (1.e., "endoflist" is legal, but "end of list"
is not).

4, Aside from the restrictions in (2), spaces may be used at will
to improve the appearance of a program. Carriage returns are
likewise ignored by the compiler (though they do act as spaces).
Any number of atatements (that will fit)my be typed as one
line, and one statement may be broken up onto several lines.

5. Numerical constants should be expressed with a decimal point
if they are used as type real and without if not; up to 9
significant digits are alYowed. : '

Input-output at present is handled By the following set of
procedures: For input, a new type declaration has been added to
ALGOL; namely, data. The format is as follows:

data block:= 376, -96.1, 14$-7, .000003, true, false;

i.e,, the word data followed by an identifier, the := sign, and a
list of numbers. In Backus normal form,

<data list> ::= <number> | <data list>, <number>
<data declaration> ::= data <identifier> := <data list>

—— v

In a procedure call, real numerical constants must have a decimal
point or a dollar sign.

.3 -

Data declarations are local to the block in which they occur,
though they do not have to be given in the block heading and

the appearance of such a declarations within a compound statement
which contains no other declarations does not cause that compound
statement to become a block. 1I.e,, data declarations operate
similar to the declarations of lableYs by the sign:.

The data type declaration is utilized by the procedure
"readata", which is a procedure of an arbitrary number of
arguments, the first of which must be a data name and the
rest of which may be simple or subscripted variables. The
action of the procedure readata is to assign to each variable
occurring as a parameter the next number in the data block;
successive calls of the procedure do not reset the pointer in
the block, and the program will be terminated when any data block
runs out of data. Care must be exercised by the programmer to be
sure that the types of the parameters in the readata list match
the types of the numbers in the data list as the compiler does not
check for mismatches. It is suggested, therefore, that real,
integer, and boolean data be kept in separate blocks.

Output is accomplished through the procedure "print".
Again, "print" may have any number of parameters. The action
of print is to tab first to the beginning of the next field of
15 characters (with no tab occurring if the type bar is at the
beginning of a field) and then to print the number ala BASIC.
Logical values are also printed. The ")" terminating the procedure
call generates a carrilage return. Strings may be printed by
enclosing them in quotes and using the resulting string as a
parameter. Print will check to make sure the string will £it on
the current line, and if not, it will generate a carriage return.
Strings being inputted through the teletypes may occupy more than
one line (provided when they are printed they will fit on one line),
with every space, except the first one, following line numbers of
successive lines being counted as part of the string.

Tab and carriage return suppression is possible. To suppress
a tab before printing, insert an empty string "'" as a parameter
before the number; to suppress a carriage return, a "" should be
the last parameter in the list. The following are examples of
print statements, and with a little fiddling at the teletype,
their mysteries may become transparent:

print(x, afi,], 3*sin(z), O<i or j=17):

print ("anwer =", """, x): (tab suppressed)

for i := 1 step 1 until 10 do princ("" ,alil, ")

print("Now is the time for all good men to come
to the aid of their party"):

-l -

The following procedures are also incorporated in the
coapiler:

sin

cos

arctan

1in (natural log)

exp As in the ALGOL report

sqrt |

abs

sign

entier (integer part of)
plus "random" which is a no-argument real procedure. It should

also be pointed out that P behaves as ALGOL says it should, with
multiplications being performed whenever possible,

-5 -

Since it is beyond all expectations that everyone will always

write perfect ALGOL programs, the compiler has been equipped with
a set of (sometimes) informative error messages. These messages
are subject to the following interpretations:

10

10,

11.

12,
13()

“storage exhausted' -- The compiler allows 5000 words for

program and array storage, with this message resulting when
this area is exceeded.

“identifier too long" -~ A wmaximum of thirty letters and digits
is allowed in one identifier, not counting imbedded spaces.

"too many symbols" -~ The compiler has room for approximately
170 identifiers each of which is three characters gong or less.
Longer identifiers decrease thecapacity accordingly. Various
alternatives, short of §1ving up, are possible: you may try
eliminating some variables through the use of arrays, or you

may break the program up into blocks and use the same identifier
with different local connotations. This error message may also
occur when too many symbols are defined at once in the same
block, in which case more local variables should be used.

"expression too complex" -- The nesting of parentheses,
brackets, and other separators has become too deep for the
poor compiler to keep track of. Stop trying to type your
whole program on one line and give the compiler a chance.

"missing operand or delimiter" ~-- The compiler has found two
adjacent expressions, which seems to indicate that you have
left out a symbol. Good bets for missing symbols are * and;.

""too many digits in constant" -~ Only nine-significant digits
are allowed.

"illegal constant format'" -- You either have two decimal points
in one constant or an illegal character following the § sign.

"exponent of constant too large' -- The maximum exponent
allowable in the GE~235 is 75. (In normalized form

"too many constants" -- 64 distinct source program constants
are permitted, not counting those which appear in array
declarations and data declarations.

""illegal symbol after expression' -~ Again a symbol like; is
probably missing.

'"illegal symbol sequence" -- This time you have probably left
out a variable between two operation symbols.

"two nots" -- The construction not not p is not legal ALGOL.

"two relations together" -- Neither is the construction x=y<z.

‘6-

14, '"array not subscripted' -~ A variable declared as an array
does not have a subscript expression.

15. "illegal left part variable" -- A constant or an expression
occurg to the left of an := sign.,

16. "illegal subscript" -- Arrays may not have boolean subscripts.

17. "“error -- suspect missing 1* -- This is the best hunch, though
' you may be missing some other separator.

18. '"incorrect number of subscripts'" -- Check the declaratien
of the array once more (or once procedures are implemented,
make sure all formal parameters which are arrays occur with
the same number of subscripts each time).

19. "error -- suspect missing "then" " -- Again the best hunch,
though a missing (or [may also be the cause.

20. '"non-boolean expression following "if" " -- Just that,

21. "“messy conditional" -- You did something wrong, perhaps
like combining a conditional statement and a conditional
expression in the same conditional. Or perhaps it was
something less sophisticated like a wrong parenthesis count.
At any rate check the coding around the conditional carefully.

22. "illegal label" -- You are attempting to use a variable or
some other identifier illegally as a label.

23, "error ~-suspect missing)'"' -- Same as for 1,

24, 'data block name missing"” -~ The first parameter in a readata
call was not the name of a data block.

25, "error in procedure call" -- At present, this means you have
the wrong number of parameters in a procedure call, or that
your separator count within a parameter is off.

26, ‘'"trouble" -- This message will be improved, but at present
it covers the following multitude of sins: You may be missing
a (in a left part variable, or you may be missing some other
separator such as an if, an := sign, etc. Or somewhere in the
program you have some extra variables lying around (for instance,
a BASIC type print or data statement will generate this error
since "print x" and "data 15" look like identifiers to the
compiler). If this latter is the case, the line number
printed out will correspond to the line containing the end of
the block in which the error occurs.

-7 -

27. '"illegal declaration' -- Check the format of your declarations
against the ALGOL report. Specific errors in declarations are
covered by some of the following messages.

28. '"symbol already defined" =-- Either a symbol appears in two
declarations in the same block, or upon exit from a block, it
is discovered that a label used within that block but not
local to it has still another significance in the outer block.

29. "“bound pair error -- too many colons" -- Check for missing
commas in an array declaration.

30.- “no colon in bou.d pair" -- Try putting one in.

31. ‘''upper bound less than lower bound" =-- You did something
like array a [10;1]:

32, "compiler error" -- You should never get this one, but
if you do bring it to the attention of the authorities as it
most likely indicates a machine malfunction, and only very
improbably a compiler error.

33. "not in" ~-- Short and sweet for “wait until we get it written";
i.e,, you are attempting to use a part of ALGOL which is not
yet implemented.

34, '"undefined label in program" -~ This should be interpreted loosely
to mean that somewhere in the program there is an undefined label,
switch, or data name.

35, "spurious quote" =-- strings may appear only as parameters to
procedure print. All other occurrences generate this message.

May also be caused by missing commas or parenthesis.
36, '"program incomplete" =-- Not enough ends's are in the program.

37 "error in for statement" -~ Again the separator count is off.
-+~ Check the whole statement carefully. a

The following messages apply at run time:

38, " xTy" ~-=- The arguments x and y as printed result in an
undefined result, , '

39. "ln of x" -- x as printed is either 0 or negative.
40, .“sqrt of x" -- x as printed is negative.

41, 'subscript out of bounds" -- A subscript does not fall
within its declared bounds.

.8 -

42, "integer too large" =-- In trying to compute a subscript,

the computer found an integer greater than 2130, which must
surely have been out of bounds.

43, “overflow' -- A floating point number larger than 24(218)
has exceeded the capacity of the machine.

Most error messages are followed by "at line no. xxx" or
"near line no. xxx". These messages tend to localize the error,
though in the '"near'variety, the error may have occurred in a
previous line with the compiler picking it up only in the line
given., One thing to watch for is that the compiler will not
recognize an end immediately followed by a carriage return until
after it has recorded the next line number, At run time, the

. line number given is the last one that the flow of the program.
has encountered; i.e., a goto a label does not cause the line
number to be updated to the Iine containing the label.

At present, all error messages are terminal and the program
must be corrected and restarted. In the near future, the compiler
will be quipped to recover from most errors in order to look for
others. Any complaints as to mis- or un-informative error
messages should be brought to the attention of those in command,
as it is extremely difficult to anticipate all the mistakes
programmers may make, so that the job of providing intelligent
error messages is a never-ending task.

And for the curiouso.,..o

Some types of programs will tend to run slowly in ALGOL due
to the generality allowed. The cutstanding example occurs in
for statements, where the evaluation of everything in sight 1is
dynamic. In most cases, efficient coding is produced where
efficient coding is possible, yet the following pointer is
provided for speed demons: the while type element is faster than
the step until. In programs involving long arithmetic statements,
very clean coding is produced, so that the lack of speed in for -
statements is somewhat offset.

COMING ATTRACTIONS -- an intermediate inmput procedure which will
make possible game playing routines and other programs involving
human interaction; an elapsed time procedure for timing loops
and other computations; more and better error messages; a eneral
formatted output procedure; and other assorted goodies. If you
have any suggestions concerning features you would like to see
implemented in a compiler, let some one know; it's most likely

impossible, impractical, or a darn nuisance, but it doesn't hurt
to try. ~

	1
	2
	3
	4
	5
	6
	7
	8

