

• • • •• •• ••••• •• • •••• •• • • ••• •• • • • •• ••••• • •• • • • •• •• •• • •• • •• •• • •• •• • • • • • •
Co mputers and Thei r Applications
Series Editor:

a
BRIAN MEEK Director , Computer Unit
Queen Elizabeth College, University of London

THE DARTMOUTH TIME SHARING SYSTEM

The Dartmouth Time Sharing System (DTSS) is
important both for its historical position and for
its influence on time sharing systems throughout
the world ; and no less importantly for its ease of
use both to specialist and non-specialist users. Few
systems have the unique advantage of hav ing been
designed and developed from grass roots level
twice by the same personnel, and few systems can
match the efficiency, elegance of design, and the
simplicity of the DTSS.

This book documents the system in detail and
provides an overview with an introduction to
the main software modules and a brief description
of the hardware . The coverage of the user interface
gives the reader a "feel" for what the software is
implementing, and there is a broad view of the file
system, including types of files , file security, file
systems maintenance , and file sharing. There is a
large section on the operating system software ,
dealing with the first level virtual machine which
implements the file system and runs the hardware.
All the major aspects are covered tho roughly and
clearly , to the final chapter on systems operation,
an area which is often left uncovered in existing
literature.

The author, who has worked at Dartmouth in the
DTSS writing team, has provided here an elemen ­
tary yet broad text which will fill a need for
students studying operating systems and profes­
sionals involved in operating system design .

Readership : Undergraduates and post-graduates studying
computer operating systems, and all those working in
educational establishments. industry and commerce where
the DTSS system is in use.

- -------------- ------- -------------------- -

THE DARTMOUTH TIME-SHARING SYSTEM

THE ELLIS HORWOOD SERIES IN
COMPUTERS AND THEIR APPLICATIONS
Series Editor: BRIAN MEEK
Computer Unit, Queen Elizabeth College, University of London

The series aims to provide up-to-date and readable texts on the theory and practice of
computing, with particular though not exclusive emphasis on computer applications. Pref­
erence is given in planning the series to new or developing areas, or to new approaches in
established areas.

The books will usually be at the level of introductory or advanced undergraduate courses.
In most cases they will be suitable as course texts, with their use in industrial and commer­
cial fields always kept in mind. Together they will provide a valuable nucleus for a computing
science library.

Published and in active pUblication

THE DARTMOUTH TIME SHARING SYSTEM
G. M. BULL, The Hatfield Polytechnic

THE MICROCHIP AS AN APPROPRIATE TECHNOLOGY
Dr. A. BURNS, The Computing Laboratory, Bradford University

INTERACTIVE COMPUTER GRAPHICS IN SCIENCE TEACHING
Edited by J. McKENZIE, University College, London, L. ELTON, University of Surrey,
R. LEWIS, Chelsea College, London.

INTRODUCTORY ALGOL 68 PROGRAMMING
D. F. BRAILSFORD and A. N. WALKER, University of Nottingham.

GUIDE TO GOOD PROGRAMMING PRACTICE
Edited by B. L. MEEK, Queen Elizabeth College, London and P. HEATH, Plymouth
Polytechnic.

DYNAMIC REGRESSION: Theory and Algorithms
L. J. SLATER, Department of Applied Engineering, Cambridge University and
H. M. PESARAN, Trinity College, Cambridge.

CLUSTER ANALYSIS ALGORITHMS: For Data Reduction and Classification of Objects
H. SPATH; Professor of Mathematics, Oldenburg University.

FOUNDATIONS OF PROGRAMMING WITH PASCAL
LAWRIE MOORE, Birkbeck College, London.

RECURSIVE FUNCTIONS IN COMPUTER SCIENCE
R. PETER, formerly Eotvos Lorand University of Budapest.

SOFTWAR E ENGINEERING
K. GEWALD, G. HAAKE and W. PFADLER, SiemensAG, Munich

PROGRAMMING LANGUAGE STANDARDISATION
Edited by B. L. MEEK, Queen Elizabeth College, London and I. D. HILL, Clinical
Research Centre, Harrow.

FUNDAMENTALS OF COMPUTER LOGIC
D. HUTCHISON, University of Strathclyde.

SYSTEMS ANALYSIS AND DESIGN FOR COMPUTER APPLICATION
D. MILLINGTON, University of Strathclyde.

ADA: A PROGRAMMER'S CONVERSION COURSE
M. J. STRATFORD-COLLINS, U.S.A.

THE DARTMOUTH
TIME-SHARING

SYSTEM

GORDON M. BULL, F.B.C.S., M.Sc., Ph.D.
Reader in Com pu ter Science

The Hatfield Polytechnic

ELLIS HORWOOD LIMITED
Publishers . Chichester

Halsted Press: a division of
JOHN WILEY & SONS

New York· Chichester· Brisbane· Toronto

First published in 1980 by

ELLIS HORWOOD LIMITED
Market Cross House, Cooper Street, Chichester, West Sussex, P019 lEB, England

The publisher's colophon is reproduced from James Gillison's drawing of the
ancient Market Cross, Chichester.

Distributors :

Australia, New Zealand, South-east Asia:
Jacaranda-Wiley Ltd., Jacaranda Press,
JOHN WILEY & SONS INC.,
G.P.O. Bo~ 8?9, Brisbane, Queensland 40001, Australia

Canada:
JOHN WILEY & SONS CANADA LIMITED
22 Worcester Road, Rexdale, Ontario, Canada.

Europe, Africa:
JOHN WILEY & SONS LIMITED
Baffins Lane, Chichester, West Sussex, England.

North and South America and the rest of the world:
Halsted Press: a division of
JOHN WILEY & SONS
60S Third Avenue, New York, N.Y. 10016, U.S.A.

British Library Cataloguing in Publication Data
Bull, Gordon M.
The Dartmouth Time-sharing System. -
(Ellis Horwood series in computers and their applications).
1. Dartmouth Time-sharing System
I. Title
001-6'4404 QA76.53 80-41327

ISBN 0-85312-253-9 (Ellis Horwood Ltd., Publishers)
ISBN 0-470-27082-9 (Halsted Press)

Typeset in Press Roman by Ellis Horwood Ltd.
Printed in Great Britain by R. J. Acford Ltd., Chichester

COPYRIGHT NOTICE
© Ellis Horwood Limited 1980

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording or otherwise, without the permission of Ellis Horwood Limited, Market Cross
House, Cooper Street, Chichester, West Sussex, England.

Table of Contents

PREFACE .. 9

Chapter 1 - INTRODUCTION

1.1 Historical Development 13
1. 2 DTSS is Not Just Basic 17
1.3 Current Uses 17
1.4 References 18

Chapter 2 - OVERVIEW OF THE SYSTEM

2.1 Hardware Architecture 19
2.1.1 The processor 22
2.1.2 System controller 23
2.1.3 Input/output multiplexor (10M) 24
2.1.4 Peripheral processors 25
2.1.5 Terminal communications controller 25

2.2 Software Architecture 26
2.2.1 The Executive 28
2.2.2 Terminal communication controller interface (TCFACE) ... 29
2.2.3 LOGIN 30
2.2.4 Simple monitor (SIMON) 31

2.3 References 31

Chapter 3 - THE USER INTERFACE

3.1 The Current File ... ' 33
3.2 Elemenatary Commands 34

3.2.1 The LIST command 34
3.2.2 The NEW command 34
3.2.3 The SAVE and REPLACE commands 0 •••••••••••• 34

6 Table of Contents

3.2.4 The OLD command 35
3.2.5 The UNSAVE command 35
3.2.6 The RUN and SYSTEM commands 35

3.3 Other Commands 36
3.3.1 File commands 37
3.3.2 Program execution commands 38
3.3.3 Editing commands 38
3.3.4 Environment commands 38
3.3.5 Terminal mode commands 39
3.3.6 Information commands 39
3.3.7 Miscellaneous commands 39

3.4 Error Messages ' 39
3.5 Explain Files 40
3.6 File System and Libraries. .44
3.7 Perform Files. 45
3.8 Examples.................................... ... 48

3.8.1 Use of library programs 48
3.8.2 Use of library subprogram 52
3.8.3 Command errors and the EXPLAIN command 56
3.8.4 Perform files 61

3.9 Background Job Processing 63
3.10 References 70

Chapter 4 - THE FILE SYSTEM

4.1 . Types of File 71
4.1.1 Data fues 71
4.1.2 Catalogs 72
4.1.3 Device fues 72
4.1.4 Communication files 72
4.1.5 Job fues 72

4.2 A Job's View of Files 73
4.3 Catalog Entries 78
4.4 The Catalog Tree 86
4.5 Security System 88

4.5.1 User number protection 89
4.5.2 Access permissions 92
4.5.3 Passwords on mes 94
4.5.4 Master·trap programs 97
4.5.5 Slave-trap programs 103

4.6 File Sharing 107
4.7 File Migration 107
4.8 File System Backup 108
4.9 References 109

Table of Contents 7

Chapter 5 - MASTER-MODE OPERATING SYSTEM

5.1 Executive's View of a Job 111
5.2 Job-Executive Interface Mechanism 113

5.2.1 Nontrapping Executive Calls 114
5.2.2 Trapping Executive Calls 114
5.2.3 The ERASE Executive Call 116
5.2.4 The EXECUTE Executive Call 117
5.2.5 Trap-Handling Code 119
5.2.6 Fault Handling 120

5.3 Inter-Process Communication 122
5.3.1 Special Interrupts 123
5.3.2 Operations on Communication Files 125
5.3.3 The No-Trap Option 128
5.3.4 Reserving the Communication File 129
5.3.5 Special Interrupt Routing 129

5.4 Internal Structure of the Executive 134
5.5 The Executive's Queue Structures 137

5.5.1 The Run Queue 138
5.5.2 The Processing Queue 138
5.5.3 The Job Service Queue 138
5.5.4 Free Job Number Queue 139
5.5.5 In-Core Queue 139
5.5.6 Non-Core Queue 139
5.5.7 Task Queues 139
5.5.8 Executive Cycle 141

5.6 Scheduling 141
5.6.1 Scheduling Parameters 141
5.6.2 Scheduling Number 144
5.6.3 Partitioning 144

5.7 Swapping 145
5.8 Input/Output 148

5.8.1 10M Mailboxes 149
5.8.2 Interrupts 1 • •••••••••••••••••• 152

5.9 References 154

Chapter 6 - SLAVE-MODE ORERA TING SYSTEM

6.1 Terminal Communication Controller Interface (TCFACE) 155
6.1.1 Overall Structure of TCFACE 155
6.1.2 Communication File Control. 156
6.1.3 Message Formats and Protocol. 156
6.1.4 Message Flow Control 160

8 Table of Contents

6.2 LOGIN .. 160
6.2.1 User Validation 160
6.2.2 Command Interface 163

6.3 Monitors 164
6.3.1 SIMON 165
6.3.2 OPMON 183
6.3.3 BAK.MON 183
6.3.4 VALMON 195

6.4 References 196

Chapter 7 - COMMUNICATIONS
7.1 The 716 Processor and Line Controllers. 197
7.2 UMLC Control Software 205
7.3 Device Control Software 206
7.4 Character Input/Output 207
7.5 Synchronous Protocols. 209
7.6 The SWITCH Procedure 209
7.7 Processes in the 716 212

7.7.1 CIU ." 212
7.7.2 Input Segment of UMLC 212
7.7.3 Output Segment of UMLC 212
7.7.4DTSS 213
7.7.5 Telenet 213

7.8 Loading the 716 Software. 213
7.9 References 214

Chapter 8 - OPERATIONS
8.1 System Starting 215

8.1.1 Reasons for Booting the System 215
8.1.2 Disc Boot 215
8.1.3 Tape Boots 217
8.1.4 Environment File 218

8.2 System Shutdown ... 221
8.3 Software Release 223

8.3.1 Product Release Catalogs 224
8.3.2 Product Detail Files 225
8.3.3 Product Control User Number 228
8.3.4 Procedures for Updating DTSS 229
8.3.5 Procedures for Installing DTSS 230

8.4 Operator Interface to BAKMON 231
8~5 References 236

Index ... 237

Preface

In 1964 Dartmouth College in Hanover, New Hampshire, U.S.A., developed its
time-sharing system on combined GE-235 and Datanet 30 computers. In 1965·
General Electric (U.S.A.) marketed the first commercial time-sharing service
using the Dartmouth software (the GE-265, Mark I time-sharing system). This
world-wide service was responsible in part for the rapid growth of time-sharing.
In 1967 Dartmouth College and General Electric combined to produce time­
sharing software for the GE-635 computer. Using Dartmouth's multiple on-line
debugging system (MOLDS), designed for time-sharing system development,
the GE Mark II time-sharing system and the Dartmouth Time-Sharing System
emerged as similar but different products. General Electric went on to market
Mark II and eventually Mark III time-sharing systems. The Dartmouth Time­
Sharing System (DTSS) became operational in 1969 and is now operating at
eleven sites in the U.S.A., Canada and Europe.

Although there are many time-sharing systems operational throughout the
world today, DTSS is important for a number of reasons: firstly, for its historical
position and its influence on time-sharing; secondly, its major design goal was to
be easy to use for non-specialist users. Although this design goal is not unique
to DTSS, it can be argued that the DTSS user interface meets this goal better
than any other system. Thirdly, few systems have had the benefit of being twice
designed from the ground up (and by the same personnel). DTSS was designed
after the initial GE-265 system had been operational for three to four years
both in-house at Dartmouth and in numerous bureaux operated by GE and
others throughout the world. Finally, DTSS is a highly efficient system, whose
simplicity and elegance of design is a model worthy of study by system designers.
Up until now most of the systems available for study have been single-copy,
complex, 'state-of-the-art', or experimental, (or all four) which although impor­
tant give one little guidance on their applicability in the real world.

In writing this book I was reminded of a quote by Professor David Howarth,
one of the designers of the Atlas system, which has remained with me since the
day I first read it. He said:

10 Preface

'Our problem is that we never do the same thing again. We get a lot of
experience on our first simple system, and then when it comes to doing the
same thing again with a better designed hardware, with all the tools we
know we need, we try and produce something which is ten times more
complicated and fall into exactly the same trap. We do not stabilise on
something nice and simple and say "let's do it again, but do it very well
this time".' (Quoted in Operating Systems Techniques, Hoare, C. A. R.
and Perrott, R. H., Academic Press, 1972.)

DTSS is the product of doing it again and doing it very well and the outcome
is a superb software system worthy of serious study.

The first chapter is a historical overview and a statement of the design goals
of the system. Chapter 2 is an overview of the system and serves as an intro­
duction to the main software modules and a brief description of the hardware.
Chapter 3 is devoted to a discussion of the user interface. This is covered at this
point for two reasons. Firstly, because of the importance of this aspect of the
system, and secondly because it gives the reader the 'feel' for what the software
is implementing. Chapter 4 covers the me system in detail, since the concept of
a me is central to the whole system. All aspects of the me system are covered
including types of files, the catalog tree structure, me security, me system
maintenance, and fue sharing. Chapter 5 is the start of the description of the
software system. It deals with the software which provides the first level virtual
machine which implements the me system and runs the hardware (the Executive).
The structures of the Executive and the lob-Executive Interface are explained in
detail. Chapter 6 deals with the major elements of the operations system running
beneath the Executive. Chapter 7 deals with the communication subsystem,
dealing both with the structure and operation of the communication processor
software. This deals with the communication between the main system and the
Terminal Communication Controller, LOGIN and Monitors, including SIMON,
the Monitor which provides the general use interface. Finally, Chapter 8 looks at
the system from an operations point of view, an important aspect ignored by
most books on operating systems.

Such a book as this cannot hope to be definative in describing such a large
and complex system as DTSS, nor can it hope to be an accurate description of
the system forever, since like all major software systems DTSS is not a static
entity. Nevertheless, what I hope has been captured is a flavour of the system
and an accurate description of its underlying philosophies.

Some of the information in the book exists in various forms in one or more
Technical Memoranda, the major source of information on DTSS. However,
most of the inner details were revealed as a result of discussions with the staff of
the Kiewit Computation Center and of DTSS Incorporated. In particular I wish
to thank Stan Dunten, for his invaluable help in writing Chapter 7 and Polly
Cole, Alex Colvin, Lou Fernandez, Dick Green, Charlie Kaufman and Carl

Preface 11

Pedersen of DTSS Incorporated for the excellent training course I attended and
for numerous subsequent discusions. Many others commented on the manuscript
and i record my appreciation here. I give thanks to Bob Hargraves for letting me
talk him into this project and for his support throughout, and to Paula Lowery
and Lynn Sherburns for the typing of the manuscript on to DrSS and making
the numerous corrections.

In 1967, I spent six months at Dartmouth College as part ofthe team engaged
writing DTSS. My contribution was small (or even negative) since that was my
first brush with a major software system. It was therefore a great personal pleasure
to be able to return after ten years and through this book attempt to make
known to a wider audience the details of a superb time-sharing system. I make
no apologies if my enthusiasm for DTSS shows through.

Gordon M. Bull
Hatfield Polytechnic
England

CHAPTER 1

Introduction

1.1 HISTORICAL DEVELOPMENT

Computing at Dartmouth College started in 1959 when the college acquired a
Bendix LGP-30, a 4K drum machine. Out of the work on various software
projects for that machine, Profe~~ors Kemeny and Kurtz discovered that some
undergraduates could become expert programmers and could design and imple­
ment highly sophisticated software systems. Thus when the decision was taken
to design and implement a time-sharing system, the bulk of the work was done
by undergraduate programmers working in their spare time, with only minimal
supervision from faculty members.

Time-sharing was first proposed by Strachey in 1959 [1]. The earliest
operational systems were the CTSS system at Massachusetts Institute of Tech­
nology [2], and the SDC Q-32 system built by the Systems Development Cor­
poration [3]. A preliminary design for the Dartmouth time-sharing system was
prepared by an undergraduate junior in July 1962. Work began in earnest during
the summer of 1963 when detailed design of the system and some programming
was undertaken prior to the delivery of the hardware in February 1964. The
hardware chosen - General Electric 235 and Datanet 30 computers - was
standard product line equipment at the time and this was intentional. To quote
Kurtz [4]: 'The guiding primary purpose was to design a better interface between
the student and the computer, and not to engage in computer research. The
decision was therefore made to employ known programming techniques and
standard hardware equipment.' (What an understatement! Designing a better user
interface was, in my opinion, on of the most significant pieces of computer
research ever undertaken, influencing many thousands (millions?) of computer
users.) Fig. 1.1 shows the hardware configuration.

On 1st May 1964 at 4 am, the first program in BASIC ran successfully [5],
barely one and one half months after delivery of the hardware. By fall of 1964,
twenty users could use the system simultaneously and it was used to train
85% of the 1964 freshman class. A terminal was also installed in Hanover High
School. By summer of 1965, the system could support forty simultaneous users

14

Slave computer
(GE-235)

Card
reader

Card
punch

Introduction

Control Path

Master
computer
(Datanet-30)

40 lines

[Ch.l

About 60
teletypewriters

Phone system

35 on campus
10 in schools and college
15 miscellaneous

Fig. 1.1 - Hardware and communications for the first DTSS.

and it continued to do so until its departure from Dartmouth in September
1967.

The success of the system at Dartmouth led General Electric to recognise
its commercial potential and they renamed the hardware configuration as the
GE-265 and marketed the service, later renaming it the Mark I time-sharing
system. It can be argued that the early success of the Dartmouth/GE system in
the commercial marketplace was directly responsible for the growth of time­
sharing throughout the world.

The success of the initial system led to its downfall as more and more
people used the system and the need for more computing power was soon
felt. As a result of the success of the GE time-sharing business based on the
Dartmouth system, an agreement was reached whereby the GE-265 system was
replaced by a GE-635 system. This entailed the design of a new software system
which would (a) retain the successful, simple user interface, (b) satisfy the demands
created by the earlier system, and (c) correct defects found in the first system
[6]. The GE-635 system was delivered in November 1966. By October 1967, the
GE-635 system was providing a service based on what was known as 'Phase. I'
software. This was a jOint Dartmouth/GE project which GE subsequently
marketed as Mark II (and later with the addition of batch and transaction
processing as Mark III). The development of Phase I was much aided by a
Dartmouth software development system called MOLDS (multiple on-line
debugging system), produced early in 1967. In parallel with work on Phase I,
Dartmouth embarked in 1967 on the development of 'Phase II'. This project,
under the direction of Professor John Kemeny, was undertaken by faculty and
students and was the real successor to the GE-265 system. Phase II or the
Dartmouth Time-Sharing System, as it is now called, replaced Phase I on 1st
April 1969 at Dartmouth. In January 1976 the GE-635 was replaced by a
Honeywell 66/40 and with changes to the software went live in February 1976.
In order to give a clearer picture of the various stages of development of DTSS,
a year-by-year summary of various aspects of the systems is given below:

Sec. 1.1] Historical Development

1962 Initial design for an educational time-sharing system

1963 Program design and coding in preparation for delivery of hardware

1964 GE-235 and Datanet 30 system delivered February
3 user system running in May
20 user system running in September - BASIC only
ALGOL added by November

1965 40 user system
LISP added

1966 Preparatory work for new system
Coding of MOLDS
Coding of Phase I (GE Mark II)

1967 Coding of Phase I
Design and coding of Phase II (DTSS)
Phase I supersedes 265 system in September

1968 ALGOL 60 available
First support for graphics - TSP plotters
DTSS experimental

1969 1st April- DTSS supersedes Mark II at Dartmouth
Background system available
Run-off produced - first major word processing system on DTSS
Multi-terminal programs

1970 New FORTRAN
Compiled BASIC programs saveable

1971 Magnetic tapes in background
Second DTSS site at U. S. Naval Academy
Subprograms added to BASIC
COBOL available under GCOS simulator

1972 DTSS, Inc. established to market software
Sublibraries implemented
COBOL available under foreground
APL
SNOBOL 4
Project FIND - first data base system on DTSS
Third DTSS site (first commercial DTSS site)

1973 DYNAMO simJjlation language
Type setting system
DXPL
Telenet
4th and 5th DTSS sites
6000 series executive

15

16 Introduction [Ch.1

1974 716 front end processors
DTSS honoured at Pioneer's Day at the NCC
Perform files
Mail

1975 File archiving to tape
RJE
6th, 7th and 8th DTSS sites

1976 SBASIC
Graphics statements in BASIC
9th, 10th and 11 th DTSS sites

1977 New COBOL
PL/I

In order to give some idea of the reliability of the system, statistics from the
Dartmouth site are given in Table 1.1. Terminal hours is sum of the hours each
terminal was logged on. This number is given, since this is one measure of the
usage of the system and it is only through usage that bugs are found. Since
DTSS is now running at at least eleven sites, these terminal hours are but a small
fraction of the total. The percentage up- time is the percentage that the Dartmouth
site was available for use during scheduled time-sharing. The total number of
hours is the annual scheduled time-sharing time at Dartmouth in hours.

Table 1.1.

Fiscal Terminal Percentage
Scheduled

time-sharing
year hours up-time

hours

1968-69 105783 98.54 3936

1969-70 180933 98.62 4385

1970-71 242042 98.60 5321

1971-72 273842 98.69 5659

1972-73 309775 99.01 6258

1973-74 361284 98.68 6237

1974-75 362725 97.80 6118

1975-76 386138 98.97 6002

1976-77t 380000 98.92 6000

t Extrapolated from 11 months information.

Sec. 1.3] Current Uses 17

Thus is summary we see that the Dartmouth site has offered a service fOl
over 50000 hours over nine years; that the reliability of DTSS averages out at
98.65% available, or put the other way, in the last nine years it has only been
down for an average of seventy-five hours per year. During this time, over two
and one half million terminal hours of service have been supplied to its users at
Dartmouth and elsewhere. These figures are even more remarkable when one
considers that Dartmouth is the development site for the software; such sites
are traditionally fairly unreliable.

1.2 DTSS IS NOT JUST BASIC

One of the most widely held misconceptions about DTSS is that it only supports
BASIC. Of course BASIC played a central role in the development of time­
sharing at Dartmouth. It was developed in 1963/64 and was the only language
"available at first on the GE-265 system. However, by the fall of 1964, ALGOL
60 was available and this was followed by LISP and FORTRAN.

Most implementations of BASIC have been based on the Dartmouth version
at the time and have included the command language and the overall user inter­
face. Thus most BASIC systems around today distinguish commands from
program text by the absence or presence of a leading line number on each line
of text and sort the program text by line numbers, deleting lines with only a
line number and replacing lines with duplicate line numbers. This is taken to
be 'BASIC' by most users and implementors. In reality, it is the DTSS user
interface (provided by SIMON) plus the language BASIC. That is, DTSS provides
the above user interface for all its languages, not just BASIC but since this inter­
face has come to be regarded by non-DTSS users as BASIC, the misunderstanding
about DTSS supporting only BASIC is easy to understand. The current version
of DTSS supports many different languages including BASIC, ALGOL 60,
FORTRAN 76, COBOL 74, APL, DXPL, DYNAMO, GMAP, LISP, MIX, PL/I
and SNOBOL.

1.3 CURRENT USES

The eleven current sites may be grouped into three broad classes:

(a) Time-sharing bureax. Five sites offer a general purpose commercial time­
sharing service. Like the Mark I system on the GE-265 where more than
fifty copies were in operation, DTSS is highly competitive in this
market.

(b) In-house time-sharing. Four sites offer a general purpose in-house time­
sharing service.

(c) Academic service. Two sites use DTSS primarily for educational pur­
poses - teaching, reasearch and college administration.

18 Introduction [Ch.l]

1.4 REFERENCES
[1] Strachey, C. (June 1969), 'Time Sharing in Large Fast Computers', Proc.

International Conference on Information Processing, UNESCO, Paris,
France, pp. 336-341.

[2] Corbato, F. J., Merwin-Daggett, M., and Daley, R. C. (May 1962), 'An
Experimental Time-sharing System', Proc. AFIPS Fall Joint Computer
Conf., pp. 335-344.

[3] Schwartz, J. I., Coffman, E. G., and Weissman, C. (April 1964), 'A General
Purpose Time-sharing System', Proc. AFIPS Spring Joint Computer Conf.,
pp.397-411.

[4] Kurtz, T. E. (1971), 'Dartmouth College, Time-Sharing System', Encyclo­
pedia of Library and Information Science, pp. 434-439, Marcel Dekker.

[5] Kemeny, J. G., and Kurtz, T. E. (October 1968), 'Dartmouth Time-sharing',
Science, pp. 223-228.

[6] Hargraves, R. F., and Stephenson, A. G. (1969), 'Design consideration for
an Educational Time-sharing System', Proc. AFIPS Spring Joint Computer
Conf., pp. 657-664.

CHAPTER 2

Overview of the System

2.1 HARDWARE ARCHITECTURE [1]

DTSS was originally written to run on GE-600 series machines, using Datanct
30 communication processors. Subsequent versions use Honeywell 716 com­
munication processors and Honeywell 6000 series and series 60 level 66 main­
frames. In terms of the changes in the software this represents a rewrite of the
software in the communication front-end processors and a modification to the
Executive to deal with the handling of peripherals in the mainframe. Many of
the compilers and other subsystems have been modified to utilise the Extended
Instruction Set available on the level 66 machines. Fig. 2.1 shows the system
architecture of the level 66, together with the communication front-end.

Although it does not make a great deal of sense to consider the absolute
minimum hardware required to support DTSS, there are certain key elements
of the hardware which are necessary. At least 128K of memory is required in
the mainframe along with one tape and at least 24K of 716 memory. Such a
system might typically support thirty-two simultaneous users. In terms of
maximal systems, the software will support up to seven processors, 16M words
of main memory, and multiple 716 front-end processors. A large, multiple
processor system is shown in Fig. 2.2.

The hardware components that make up the central system are the central
processor (CPU), system control unit (SCU), memory unit, and the input/output
mUltiplexor (10M). The central processor performs all computations for the
system. The system control unit regulates communications between components
and services demands upon memory. The input/output multiplexor provides the
required level of input/output control between memory and the peripheral and
communication subsystems.

20 Overview of the System

~ modem L- telephone y I ! L- system

tape
handlers

memory

10M

SCU

CPU

terminals

memory

Fig. 2.1 - Honeywell series 60 level 66 architecture.

[Ch.2

C
H716 I

U

printer

Sec. 2.1]

66/40
Central
Processor

W
Disk
Storage
Units

Hardware Architecture

9 Track
Tape
Handlers

66/40
Central
Processor

Fig. 2.2 - Large DTSS system to support 200 users.

21

22 Overview of the System [Ch.2

2.1.1 The processor

The Honeywell level 66 is a 36-bit, word-orientated machine. It has a range of
programmable registers including a double length accumulator, eight 18-bit index
registers, and exponent register (for floating point operations), an indicator
register, and 8 address registers.

The central processor consists of a control unit, an operations unit, and a
decimal unit. The operations unit contains the logic to execute binary arithmetic
and logical operations. The control unit is the interface between the operations
unit and the SCU. It also performs instruction fetching, address preparation,
memory protection, data fetching and storing, and overall timing. The decimal
unit provides additional registers for address modification, decimal arithmetic,
character and bit string operation and formatting. The three units operate with
relative independence and varying degrees of overlap.

Most models in the level 66 series have a built-in, high-speed processor
cache memory that increases the overall rate of instruction execution. A 2048-
word buffer stores copies of information brought into cache on demand by the
processor. Subsequent accesses to cache are at a higher speed than main memory
access. Cache is controlled by a first-in, first-out replacement algorithm.

The processor operates in one of two modes - master mode or slave mode.
In slave mode, memory references are restricted to an assigned, contiguous

address space and are relative to a value held in a register called the base address
register. Program execution is limited to a subset of the total processor instruction
repertoire such that input/output, setting the base address register, setting the
timer and other special registers cannot be executed in slave mode. This mode of
operation is used to run user programs and less privileged parts of the DTSS
operating system.

In master mode, the entire memory may be accessed, input/output may be
initiated, the processor control registers may be set, and the entire instruction
set of the processor can be executed. This mode of operation is reserved solely
for one section of the DTSS operating system (the Executive).

As noted above, in slave mode, memory addressing is restricted to an assigned
continuous address space in memory. Such a facility is necessary if one process is
not to interfere with another, totally independent process, either inadvertently
or by design. This simple security is provided by the base address register. This
18-bit register contains two pieces of information.

The lower half of the base address register contains the number of 1024-
word blocks assigned to the slave process. The upper half of the base address
register contains the base of the address space, and is always a multiple of 1024.
All addresses generated by a process are in the range zero through n, where n is
the largest address in the process' address space. Each time a process running
in -slave mode generates an address, it is checked to ensure it lies within the
address space by comparing it with the lower half of the base register. If it does
not lie within the address space, a fault is generated and the process is halted.

Sec. 2.1] Hardware Architecture 23

If it is within the space, the upper half of the base address register is added to
the generated address to give the absolute memory address, and the memory
access is performed using this. This is shown diagramatically in Fig. 2.3.

BAR

base bounds 'j

slave
mode
program

memory

Fig. 2.3 - Base address register.

T
bounds

1

Processes are not bound to any specific locations in memory since the,
base address register contains the only specific reference to an actual memory
location, and its value may be changed by the Executive as and when a process
is relocated in memory.

2.1.2 System controller

The system control unit is the principal interface between all central system
components. It provides complete system interrupt control, which regulates
communication between components, and services all demands on memory
under priority control. The seu switches control signals, addresses, and data
in and out of the memory units, while monitoring data and control paths for
accuracy. It also provides memory protection. Processors and IOMs are con­
nected to, and also access memory through, the seu.

An seu has eight ports into which are plugged processors and input/output
multiplexor. Each system controller can have two independently accessible
memory units which can both provide access during a single access period.

24 Overview of the System [Ch.2

System controllers can be operated so that they fetch pairs of words rather than
single words in a single access, thus further increasing throughout.

Each input/output multiplexor generates interrupts to indicate such events
as completion of requested I/O operations. An interrupt request sets a program
interrupt cell in the system control unit. Each 10M sets the interrupt cell it has
been assigned. For each interrupt cell, two consecutive locations are provided
in memory, establishing an interrupt vector for each 10M.

The processor acknowledges an interrupt request when the interrupt cell is
in the seu. The SCU passes to the CPU the highest priority instruction pair
from the interrupt vector, thus initiating the interrupt service.

Each memory unit has separate addressing and memory registers. Two
words plus error detection and correction bits are accessed in each memory
cycle. The error dectection and correction bits allow single bit errors to 'be
corrected.

2.1.3 Input/output multiplexor (10M)

The 10M co-ordinates all input/output operations between the SCU, peripheral
subsystems, and the 716 communications processor. Data transfers between
peripheral devices and memory are handled by the 10M, in parallel with the
operation of the CPU. All peripheral operations are initiated by the Executive
(in master mode) and controlled by information stored in fixed locations in
memory, referred to as 10M mailboxes.

The 10M consists of the 10M central and a variable number of channels.
,The 10M central controls access to storage for each of the channels and can
perform one storage access cycle at a time through the appropriate SCU. Thus
the 10M central is time-shared by a number of channels operating concurrently.
The 10M provides complete memory protection for all 10M data transfers,
simultaneous operation of numerous peripheral subsystems, communication
with multiple independent SCUs, scratchpad storage for control words, and a
data transfer capability of six million characters/second.

Data channels transfer to all external peripheral devices information con­
trolling the instruction, data and status flow between the 10M and the peripheral
control unit. Data channel words are held in the 10M central scratchpad storage
to provide higher speed data transfers. The peripheral subsystem interface (PSI)
channel allows multiple logical channels for concurrent multiple unit operation.
There are a variety of special channels for such things as bootload and hardware
diagnostics.

The 10M uses the information passed to it by the Executive in the mailboxes
(called data control words - DCWs) to protect memory on all I/O transfers.
The Executive passes the contents of the job's base address register to the 10M
which uses it to perform all the necessary checks and relocations.

Sec. 2.1] Hardware Architecture 25

2.1.4 Peripheral processors

The various peripherals are interfaced to the 10M through, and controlled by, a
microprogrammed peripheral controller (MPC). There are three basic processors
(microprograms) - mass storage processors to control data transfers to and from
moving head discs, magnetic tape processors to control tapes, and unit record
processors to control printers, card readers and card punches.

2.1.5 Terminal communications controller

All user terminals are interfaced to the system through a Honeywell 716 com­
munications processor.

The 716 is interfaced to the 10M through a special interface called the
computer interface unit (CIU) or coupler. The 716 is a 16-bit machine and the
function of the coupler is to map 36-bit words into two, 16-bit words and vice
versa. This is shown in Fig. 2.4.

2 16-bit 716 words

o 7 8 15 0 78 15

~II~ ~
[I I I

H H H H I
o 1 8910 17 18 19 26 27 28 35

36-bit level 66 word

Fig. 2.4 - 716 to level 66 mapping.

The 716 is equipped with real-time clock and watch-dog timer. The universal
multiline controller (UMLC) will handle up to sixty-four synchonous and
asynchronous lines. The low-speed multiline controller (LSMLC) will handle up
to one hundred and twenty-eight asynchronous lines.

26 Overview of the System [Ch.2

2.2 SOFTWARE ARCHITECTURE

The software that makes up the DTSS operating system is both modular and
hierarchical. A single module, called the Executive, runs in master mode; all
others run in slave mode. The hierarchical structure of the operating system is
illustrated in Fig. 2.5. The major modules are briefly described below and a
memory map of these modules is shown in Fig. 2.6.

address a
1
2
3
4
5
I
I
I

I
MME instruction
allows
Slave Jobs
to call Exec

\

Executive
Only Master Mode Program
Peripheral I/O
Core Allocation
Job Control
Security
File Structure
Mass Storage Allocation
Billing & Statistics

SLAVE JOB

SLAVE JOB

SLAVE JOB

Fig. 2.5 - DTSS job tree.

- 1 word = 36 bits

Base Address Register

base I bou nds I
o 18 bits 17

Provides:

Memory Protection

Program Relocation

swap in

swap out

up to 16 million
words

TC FACE

LOGIN

Fig. 2.6 - DTSS memory map.

til
(t)
n

N

~

til
o

f
>
~
('i)
n = ~

N
.....:J

28 Overview of the System [Ch.2

~.2.l The Executive

The Executive is the only part of the operating system which runs in master
mode. The function of the Executive is to map the physical machine into a
virtual machine for each slave mode job. The virtual machine provided has
the following characteristics (throughout this text 'slave job' or 'job' will be
used rather than 'process' since the entire DTSS literature uses these terms):

(a) A single, slave-mode-only processor.

(b) A single, contiguous area of memory, starting at location zero and up to
a maximum of 192K words long.

(c) Access to a number of specific mes (mes are discussed in Chapter 4).
(d) Access to a clock from which certain timing information can be obtained.

(e) The ability to overlap processing and input/output to many different
files.

(f) The ability to create new processes.

In implementing many copies of this virtual machine on a physical machine
with fewer total resources than those required by the sum total of all the virtual
machines, the Executive carries out the following actions, in a manner that
makes them invisible to slave jobs:

(a) Allocates each processor as it becomes available to a slave job which is
waiting for it, setting the appropriate value in the base address register
and the maximum time for which that job may retain the processor in
a timer register.

(b) Swaps jobs between memory and disc and vice versa, allocating memory
space and disc space accordingly and calculating the appropriate value
for the base address register.

(c) Handles all communication with the 10M, to drive the peripherals.

The Executive is ultimately responsible for system security including such
things as controlling file access and inhibiting job interference. Some of the
information required for system statistics and for billing is also collected by the
Executive.

The mechanism used by a slave job to communicate with the Executive, for
example to request input/output, to ask for more memory, to ask for today's
date, is a single slave mode instruction called the master mode entry (MME)
instruction. The various requests are indicated by different values in the address
field of the instruction word and parameters are passed in the accumulators and
index registers. The Executive, which is about 35K words long resides from
absolute word zero of memory onwards. It is shown diagramatically in Fig. 2.7.

Sec. 2.2] Software Architecture 29

Executive Resident

35K
716 device file

CIJ- -CJ]--LJ}- TCFACE

Com mu nications
Resident

multiplexed dat~: Multiplex/Demultiplex
10K

SIMON ommunication files I ~

'"
Command processor
Runs jobs 15K

C
Resident

LOGIN
Validation
Billing & Statistics

Swaps

Monitor control 8K

Slave-Job
Memory

Fig. 2.7 - The DTSS Executive.

2.2.2 Terminal communication controller interface (TCFACE)

The primary function of TCF ACE is to interface slave jobs to users at terminals.
In doing so it multiplexes and demultiplexes the data stream to and from the
communication processors and the various jobs.

TCF ACE treats each terminal as a me and as a result most of its work is
concerned with reading and writing meso Since TCF ACE is only at intermediary
in passing data to and from the terminal and the associated job, a special type of
me, called a communication fIle (see section 5.3) is used. TCFACE holds the
master end of the communication me for each active terminal on the system.

30 Overview of the System [Ch.2

The communication between TCF ACE and the communications processors
is carried out in a cyclic manner, blocks of data that are ready for transmission
being sent at regular intervals.

TCF ACE controls to some extent the action of the software running in the
communications processor by sending messages to it to indicate the logical state
of each terminal under its control.

2.2.3 LOGIN

This module runs under TCFACE.lts main functions are:

(a) User validation - printing the prompt for the user number and checking
that the user number given by the user is valid and corresponds to the
given password. Each user of the system has a validation record which
contains the password associated with the user's user number. LOGIN
reads this validation record to make the check.

(b) When a user first signs on under a newly validated user number, LOGIN
creates a user catalog for that number, since no catalog is created when
a user is validated (see sections 6.2.1 and 6.3.4).

(c) TCFACE passes LOGIN an end of the communication me representing
the terminal. LOGIN passes this end of the communication me together
the user's catalog and job permissions (obtained from the validation
record) to the monitor which the user is going to run under. This is most
often SIMON (see section 2.2.4).

(d) LOGIN records the connect time of each user on the system and is also
responsible for collecting other statistics and billing information for
each user on the system. This information is collected by the monitor
which the user is running under and also by the Executive. Periodically
LOGIN asks each monitor and the Executive for all their statistics.
LOGIN then writes this information to a me for later processing by
other programs.

(e) Since there are many monitors running beneath LOGIN (see Fig. 2.S)
and some of them wish to communicate with one another (such as
SIMON and BAKMON when a user submits a job from his terminal for
later processing by BAKMON), it is simpler to have a single communi­
cation path between each monitor and LOGIN than a large number
of such paths between each of the monitors. Thus one of LOGIN's
functions is to provide this intermonitor communication facility. It uses
this same facility to request statistics and billing information form the
monitors.

LOGIN, although part of the operating system, is used so infrequently that it is
swapped in and out of memory.

Sec. 2.3] References 31

2.2.4 Simple monitor (SIMON)

Simple monitor (SIMON) is the monitor that serves as the primary user interface
for the Dartmouth Time-Sharing System. After a user has signed on to the
system and has been identified, the communication me representing his terminal
is passed to SIMON. The user may then start a 'conversation' with the system.

By giving commands to SIMON the user can initiate any of the tasks that
the system will perform for the general user. From SIMON's point of view (but
not from the user's, who sees a uniform interface) these tasks fall into two
categories. First, there are the simple tasks which it can perform unaided; these
tasks include elementary me operations such as building, altering, and saving
mes in the user's catalog. Second, there are more complex tasks which SIMON
initiates by running other modules; these tasks include compilation and execution
of source language programs, text editing, submission of background jobs, inter­
terminal communication, and so forth.

SIMON serves many users simultaneously (the way it accomplishes this is
discussed in Chapter 6).

2.3 REFERENCES

[1] 'Honeywell Series 60 Level 66 Summary Description' (1975), Honeywell
Information Systems, document DC64.

[2] Pedersen, L. C. (February 1976), 'How DTSS Works Slide Show', DrSS
System Memorandum 256.

[3] Green, R. L. (December 1977), 'Technical Overview of DTSS', DTSS
Incorporated System Programmer's Training Course Notes.

CHAPTER 3

The User Interface

One of, if not the most important, aspects ofDTSS is the cleanness and simplicity
of its user interface. This was one of the primary _design goals of the original
Dartmouth system and has remained central to the system throughJts many
evolutions and additions. One of the tributes, bothlo the original design and to
subsequent enforcement, is that even after more than ten years of growth the
user interface remains clean and simple to use.

This interface is provided by the principal monitor on DTSS - SIMON.
Other, more specialised interfaces are provided by other Monitors (see Chapter
6).

Most users of BASIC around the world are in fact familiar with the SIMON
interface. Most Basic implementation embed the language in an environment
which includes a filing system, a command language, and the concept of a
current file. This environment is most often a faithful copy of the original
Dartmouth user interface, or a modification (for the worse) of it.

3.1 THE CURRENT FILE

All information on the system is organised into files. One of the most important
files is the current file. Many actions on the system which involve a file, use the
current file by default. In its simplest form, a current me consists of lines of
ASCII text, each line prefixed with a unique line number which serves to order
the line within the file. A user may amend. the current file by entering line­
numbered lines of text. These lines are sorted into the file with the following
conventions. If no line previously existed with the line number just entered, the
line is entered, in line-number order in the file. If a line with the same line
number existed, the newly entered line replaces the old line. If the line just
entered consisted solely of a line number followed only by carriage-return, any
line with that line number is deleted from the file. Thus without the aid of an
explicit editor, the user may build and amend the current file. The current file,
or any other file, may contain other than line-numbered text.

34 The User Interface [Ch.3

3.2 ELEMENTARY COMMANDS [1]

Any line typed by the user when in command mode, that does not start with a
line number is taken by the system to be a command requesting some action.
In the command descriptions which follow, words in the command language
will appear in capital letters. Parameters to be supplied by the user will appear
in lowercase, surrounded by angle brackets. All commands, unless noted other­
wise, may be abbreviated to the first three characters. When the command has
completed (this or any command), the systems outputs the word:

READY

to the terminal to signify the user may enter either another command or line­
numbered text. This is called the ready-state. all commands are interpreted by
SIMON. The user interface is so designed that a user only needs to know a small
subset in order to do most things on the system. The philosophy of not requiring
the user to know about things not related to the job in hand pervades the whole
user interface as well as being incorporated into .BASIC. Thus throughout, one
is supplied with natural defaults. Only jf these defaults are not what is.required
must the user learn how to override them. The user may enter a command to
SIMON whenever the terminal is in ready-state. (The terminal is in ready-state at
other times than just following the word READY and before the next command,
but this description will suffice for the moment.) The end of a command is
signalled by entering carriage-return.

3.2.1 The LIST command

The user may list the contents of the current file on the. terminal using the
command:

LIST

line-numbered files are listed in line-printer order, with a heading consisting of
the name of the current file and the date and time.

3.2.2 The NEW command

The user may create a new, empty current file with a given name with the NEW
command, which takes the form:

NEU <filenatte)

The name of the current file becomes <filename>.

3.2.3 The SAVE and REPLACE commands

The user may save a copy of the current file by typing the command:

SAVE

Sec. 3.2] Elementary Commands 35

which will save a copy of the current file with.its current name in the user's
catalog. Had a fIle of the same name alreadY.existed in the user's catalog, then
attempting to save it in this way would have resulted in the message:

SAVE DENIED--DUPLICATE FILENAHE "1ilenaHe"; TYPE ~EXPLAIN SAVREP'

This is to protect the user from inadvertantly overwriting a fIle which happened
to have the same name as the current fIle. To replace a saved fIle with a copy of
the current fIle, the user may use the command:

REPLACE

Both SAVE and REPLACE may take filenames as parameters, overriding the
default which is the name of the current file.

3.2.4 The OLD command

The user may make a saved file the current file, using the command:

OLD <f ilenafte)

Thus, for example, if a user had previously saved a file (see section 3.2.3) called
ABC, to obtain a copy of this fIle as his current file, he would type:

OLD ABC

His current fIle would be called ABC and the saved version of ABC. would be
unaffected. On the other hand to obtain.a copy of a text formatting program
held in the public library, he would type:

OLD RUNOFF.**

where the three asterisks informs the system that the file should be looked for
in the public library.

3.2.5 The UNSAVE command

A user may delete a saved fIle using the command:

UN SAVE <filenafte)

This command has no effect on the current file. The named fIle is deleted from
the user's calalog. If the filename is omitted, the name of the current file is
assumed. (

3.2.6 The RUN and SYSTEM commands

If the current file contains text representing the source text of a program, the
user may have if compiled and executed using the single command:

RUN

36 The User Interface [Ch.3

The compiler used depends on a number of factors. The default compiler is
BASIC but it may be changed to some other language using the command:

SYSTEH (syste"na"e)

for example:

SYS COBOL

If the current file was obtained using the OLD command, then part of the infor­
mation held about the file is the system (language) to be used in compiling the
file and this information automatically overrides the default. The system infor­
mation for a saved file is generated at the time the file is saved and is normally
the system current at that time. The RUN command does not change the current
file. If the compiler detects any errors it does not go on to the execution stage.

With the above commands: LIST, NEW, OLD, SAVE, REPLACE, UNSAVE,
RUN, and SYSTEM, the user can accomplish a great deal of work. Indeed,
beginning and unsophisticated users need know no other commands, and if
they use only BASIC_they do not need to know about the existence of other
languages on the system.

Apart from the above commands, there are four special characters/keys
which are part of the user interface. Rubout deletes the previous character
typed on the current line and echoes a backslash; each rubout deletes one
character. Control-X deletes the entire line. When the system is outputting to
the terminal, control-X will delete about 250 characters of the output without
stopping the outputting job. Control-R will cause the current line to be output.
The break-key stops any running job and returns the terminal to the ready-state.

3.3 OTHER COMMANDS [2], [3]

There are over seventy commands available under SIMON, giving sophisticated
users the power they require. The user may enter several commands on the same
line by beginning the line with a delimiter, separating each command from the
next by the delimiter with which the line was begun. Such a line of commands is
called a command sequence. The delimiter may be any character other than a
letter or a digit. Thus the two sequences (a) and (b) below accomplish the same
thing. (The user input is underlined to identify it.)

(a) OLD XY2
READY
RUN
XYZ date tiMe

[input/output associated with the progra" run]

READY

Sec. 3.3]

(b) fOLD XYZ/RUN

XYZ date

Other Commands

tiMe

[input/output associated with the pro~raM run]

2) READY

37

SIMON begins obeying the commands, in the order in which they occur,
when the carriage-return at the end of the command sequence is entered. After
obeying a command sequence, SIMON prints out the number of commands
obeyed followed by READY. If all commands in the sequence were successful,
the number is equal to the number of commands in the sequence. If an error
occurs, or if the user stopped the execution of the command sequence, the
number preceeding the READY message tells how.many commands were success­
fully executed. If an error occurs during execution of a command sequence, an
error message is printed together with a number indicating the position of the
offending command in the list, and the sequence is terminated at that point.
For example, the sequence:

fOLD ABC/SAVE/OLD PUR/SAVE

assuming ABC was in the user's catalog, would produce the message:

2) DUPLICATE FILENAHE "ABC"; TYPE 'EXPLAIN SAVREP'
2) SAVE DENIED

and stop with ABC as the current fIle. The sequence:

fOLD ABC/REP XYZ/UNS ABX/OlD PUR/LIST

assuming ABC and XYZ exist in the user's catalog but that ABX does not
would give rise to the message:

J) "ABX" NOT SAVED

and ABC would be the current fIle.
In order to give a flavour of the range of facilities available, a few of the

more widely used commands, over and above those described in the previous
section, are outlined below.

3.3.1 File commands

In this category come LIST, NEW, OLD, REPLACE, SAVE, and UNSAVE. The
BUILD command allows the user to type in a fIle without line numbers. All text
is appended directly to the end of the current me. The user exists from build­
mode by typing two carriage-returns one after another. The RENAME command
allows the user to change the name of the current file. The SCRATCH command
allows the user to delete the entire contents of the current me without changing
its name.

38 The User Interface [Ch.3

3.3.2 Program execution commands [4]

In this category comes RUN. The COMPILE command allows the user to compile
the current me, replacing the source text in the current file by the resulting
object code. The program is not executed and the name of the current file is
changed to 'OBJECT'. The object code can subsequently be saved. Object
code files can be executed with the RUN command or the EXECUTE command
(see below). In either case, the object code file is recognised as such and no
compilation phase takes place.

The EXECUTE command allows the user to run a program (compile and
execute or just execute depending on the contents of the named file) which is
not the current file; this program may use the current file as data. The format of
the command is:

EXECUTE <filenafte)

The LINK command allows the user to initiate a named, multi-terminal con­
ference. Other users may join the conference by issuing a JOIN command with
the same name. An important use of this at Dartmouth is the ability to JOIN
CONSULT which puts a user in touch with the programming consultant on
duty.

3.3.3 Editing commands [5], [6]

These commands allow the user to use one of the editors on.the system. The
command name is the name of the editor. In each case the user supplies com­
mands to the editor, either as part of the edit command itself or following a
prompt from the editor. Thus if this subsection (3.3.3) were the current file and
the user wished to find the line with the text '(3.3.3)' the following sequences
(a) and (b) would both cause the line containing '(3.3.3)' to be printed:

(a) TEXT LOCATE (3.3.3)

(b) QED
(1(3.3.3)/

where in example (b) the '(' at the beginning of the second line is the prompt
from QED telling the user to enter a QED command string. Thus in (a), the
edit command forms part of the SIMON command, whilst in (b), the SIMON
command calls the editor, which issues a prompt for the edit function required.

3.3.4 Environment commands

In this category comes SYSTEM. The ENTER command allows the user to
change his current catalog. When a user signs on, the current catalog is the one
associated with the user number; commands such as OLD and SAVE pertain to
files in the current catalog. The ENTER command may be used to change to
another catalog such as a subcatalog within the user's catalog. To change catalogs

Sec. 3.4] Error Messages 39

may require certain privileges and knowledge of any password associated with
the catalog. The user may return to his user number catalog with the command:

ENTER *t1YCAT

3.3.5 Terminal mode commands

The BRIEF command allows the user to suppress the printing of such things as
system resource usage messages, filename, date and time headers from listings
and runs, and to obtain abbreviated versions of system messages. The word
READY is replaced by an *. This mode is not for novice users. The counter
command is NBRIEF.

3.3.6 Information commands [7]

The CATALOG command allows the user to obtain a print-out of information
describing files saved in a catalog. The simple version of the command gives an
alphabetical list of the names of the saved files in the current catalog, together
with a header which identifies the catalog and its length. A variety of options
are available to obtain additional information and to modify the format of the
output.

3.3.7 Miscellaneous commands

The MAIL command allows the user to send mail to another user on the system
who has indicated his willingness to receive mail. When the recipient signs on he
will be informed of the fact that he has mail. The CALCULATE command
provides the user with an on-line adding machine which evaluates arithmetic
expressions and prints the value.

The use of some, but not all the above commands is illustrated in section
3.8.

3.4 ERROR MESSAGES

Since all users make mistakes, an important aspect of the user interface is the
error reporting system. The philosophy of the system is to provide the user with
diagnostic information which is meaningful to him. This is achieved by using
words that are as free from jargon as possible. Where words which may be
unfamiliar to the user are included in the message, information about how to
obtain fuller explanation is given as part of the message. Thus of the fifty or so
messages generated as a result of command errors (that is, those error messages
generated by SIMON), thirty explicitly tell the user what to do or tell him how
to obtain more information pertaining to the problem. For example, following
a LINK command, the following error message may be given:

KEYUORD IIkeywol'd ll IS ALREADY IN USE; CHOOSE ANOTHER KEYUORD

40 The User Interface [Ch.3

indicating that someone else has already intitiated a conference using the same
keyword (conference name). The error is identified and the remedy given. A
similar example, given earlier, is when a SAVE command attempts to save a
fue with the same name as one already saved:

"SAVE DENIED--DUPllCATE FILENAHE "fi !enaMe"; TYPE -'EXPLAIN SAVREP'"

The EXPLAIN command is dealt with in the next section, but once again the
error is clearly identified and in this case further explanatory information is
available if the user does not understand. Of those which do not give further
information, a typical message is:

"filenaMe" IS NOT SAVED

which tells the user that the filename he typed with a REPLACE, UNSAVE,
SCRATCH or OLD command is not saved.

3.5 EXPLAIN FILES

There are over 750000 characters of information available to the user through
the EXPLAIN command. The form of the command is:

EXPLAIN <list of topics)

Thus, for example, if the user were to type:

EXPLAIN NOTAVAIL

the following output would be given:

"NOTAVAIL"

Uhen you receive the ~essage

"filenaMe" IS NOT AVAILABLE; TYPE "EXPLAIN NOTAVAIL'"

you have typed a COMMand of the forM

OLD *<user nUMber):(filenaMe)

and the file specified by U(filenaMe)" is unavailable for one of
the following reasons:

1. The file is not saved in the specified user catalog.

2. The file is saved in the specified user catalog, but is not
saved with group, public or fetch perMission. For further
inforMation on perMissions for saved files, type

EXPLAIN ACCESS

Sec. 3.5] Explain Files 41

3. The file is saved in the specified user catalog with group,
public or fetch perMission available provided the proper password
is specified. You either did not specify a password in your OLD
cOftftand, or you specified an incorrect password.

4. The user who owns the file is currently Modifying it via a
prograM or via a REPLACE, SCRATCH, or UN SAVE cOMftand.

5. The specified user catalog contains More than twice the
aftount of file storage that it should.

READY

The information within the explain system is structured, thus for example,
the CATALOG command has many parameters and it would be inappropriate to
get all the information by typing 'EXPLAIN CATALOG' since there is over
35 000 characters of information on the catalog command. The user is guided
down the tree if he doesn't know the explain system. Thus, a user might start
with:

EXPLAIN CATALOG

This is a fairly lengthy explanation, but within it are listed the various options
on the CATALOG command and a note which reads:

For a More cOMplete explanation of any option type

EXPLAIN CATALOG <option)

Thus the user might then type:

EXP CAT CURRENT

wishing to have the current option on the CATALOG command explained. This
would produce the following output.

"CURRENT"

The CURRENT option causes inforMation that would
nO~Mally be printed at the user/s terMinal to be
written into the user's current file. Since this
inforMation replaces whatever was previously in the
current file and the current file naMe is changed to
.RESULT., the user should be careful to preserve his
current file via a SAVE or REPLACE COMMand before
specifying the CURRENT option.

A similar set of explanations exist for the editors and their commands. Thus
typing:

EXP EDIT LOCATE

42 The User Interface [Ch.3

will explain the LOCATE command of the Dartmouth Editor. The total explain
database is implemented as a catalog tree, thus, exploiting the file structure on
DTSS. EXPLAIN files exist for most of the major applications systems also.
Thus, information about the FIND database system may be obtained by typing:

EXPLAIN <list of topics)

to FIND. Thus:

OLD FIND***
REAllY
RUN

FINlI

FINlI HERE!

13 DEC 1977

USAGE DATA IS BEING RECORDED

'r EXP lIATABASE

DATABASE

11: 07

A database is SiMply a collection of inforMation stored
in a specialised forMat which is acceptable to FIND.
The deMonstration database lIEHO is available to all
DTSS users and May be accessed by typing

BASE DEMO

when FIND requests a cOMMand.

DONE

IMPRESS, the social science data retrieval and analysis package, on the
other hand, takes a more interactive approach to providing information, as
shown below:

fOLD IHPRESS***/RUN

2) IMPRESS (COMPILED) 30 JAN 78 11:11

XIHPRESS, last Modified 26JAN78. **~Privacy warning***
Please report any difficulty to project IMPRESS
stcJff.
Thanks.

New IHPNEUS*** (12/14/77)

Do you want user's instructions? YES

Sec. 3.5] Explain Files

The following can be used to get help during a run 01
IMPRESS*** •
They are legal responses to any questions you will be
asked.

EXPLAIN -- A brief explanation ot the Meaning 01
the question being asked of you.

DETAIL -- A detailed explanation ot the question.

LIST -- The list of relevant variables (or
studies> will be printed.

1 -- Identical to EXPLAIN.

STOP -- Ends this run of IMPRESS***.

It is advised that novices follow the suggestions tor
beginners whenever they occur.

43

Another type of information made available to users is the location of
programs or packages relevant to their needs. A run of the public library pro­
gram called LIBINDEX*** is shown below:

JOLD LIBINDEX***/RUN

2) LIBINDEX (COMPILED) 13 DEC 77 14:30

FOR INSTRUCTIONS, TYPE A '1' AFTER 'ENTER KEYUORDS~

ENTER KEYUORDS 1 ?

LIBINDEX*** TRIES TO FIND ALL FILES IN THE PUBLIC PROGRAM
LIBRARY UHICH PERTAIN TO PARTICULAR TOPICS.

ENTER A SERIES OF KEY UORDS UHICH RELATE TO THE PROGRAMS YOU
ARE LOOKING FOR. SEPARATE THESE UORDS BY COMMAS.

FOR EXAMPLE, TO FIND THE NAHES OF (AND BRIEF DESCRIPTIONS
FOR) ALL THE FILES IN THE LIBRARY UHICH CONTAIN INFORMATION
ABOUT DTSS, YOU COULD USE THE KEYUORD 'DTSS'.

'ro FIND ALL FILES PERTAINING TO FINANCE, YOU COULD USE THE
KEYUORD 'FINANCE'. HOUEVER, THE LETTERS 'FINAN~ UOULD BE A
BETTER KEYUORD, BECAUSE THEY UOULD ALSO FIND FILES
PERTAINING TO FINANCIAL HATTERS. BECAUSE THE UORD 'FINANCE'
DOES NOT APPEAR IN THE UORD 'FINANCIAL', IT UOULD NOT HATCH
AS A KEYUORD.

44 The User Interface [Ch.3

THEREFORE, IN GENERAL, THE LESS SPECIFIC THE ~EY~ORD, THE
MORE ENTRIES UILL MATCH IT. HOUEVER, THIS CAN BE CARRIED TO
EXTREMES; THE USE OF THE SINGLE LETTER 'A' AS A KEYWORD WILL
PRODUCE REFERENCES TO NEARLY EVERY FILE IN THE LIBRARY!

TO STOP THIS PROGRAM, PUSH THE ~RETURN KEY~ UHEN ~ENTER

KEYUORDS' IS TYPED.

ENTER KEYUORDS 1

An example of the use of this program is given in the section of examples at
the end of this chapter. A similar program called TMINDEX*** performs the
same function on the DTSS Technical Memoranda. The file DOCUMENT***
lists the various documents available pertaining to the system or programs on the
system. Various other information files are available. CCNEWS*** gives news
about changes and improvements to the system. 'NEWS' files in various libraries
give news relevant to that library (for example, PLOTIB***: NEWS). The file
SUBLIBS*** gives a list of sublibraries together with any recent additions. The
flle NEWFILE*** records new additions to the program library.

Program files in the library contain information about themselves, informing
the user exactly what the program does, and how to use it.

Thus we see many levels of information available easily and quickly for the
user, ensuring that he is able to recover from errors, obtain information about all
aspects of the system and make full use of the library and documentation.

3.6 FILE SYSTEM AND LIBRARIES

A file is a block of information stored on DTSS. Filenames are from one to eight
characters long, composed of letters, digits, periods, and hyphens. A catalog is a
file which contains structured information about other files. Associated with
every user number there is a catalog; each file saved whilst using a given user
number becomes part of that number's catalog (although this can be overriden).
We shall see (Chapter 4) that the catalogs are organised in a tree structure. All
commands which refer to the filing system using simple filenames use the
current catalog as the place to look for the named files. Most users sign on under
a user number and that catalog becomes and remains their current catalog. Only
a few users change their current catalog using the ENTER command. Thus the
commands such as OLD, SAVE, REPLACE, UNSAVE when issued with a simple
fllename look for that filename in the current catalog.

An important concept is the distinction between a current file and a saved
file: these are always two separate entities. The current file, created by the
command NEW or OLD, existes only temporarily as the file presently being
used. Using a saved file, the current file is a temporary copy of the saved file.
As information is typed into the current file, that file is the only copy of the

Sec. 3.7] Perform Files 45

new information (until saved or replaced). As soon an another file is called up
or the user signs-off the system, the current file disappears; it is no longer in
existence.

A saved file is a file preserved in a catalog. When SAVE or REPLACE is
typed, a saved file is created which is a copy of the current file as it exists at
the moment. Once saved, the preserved version of the file remains unchanged
until a command to REPLACE it or to UNSAVE it is given. (The command
SCRATCH, as explained below, and certain programs which write information
into a saved file can also affect the contents of a saved me.) A current file
called via the command OLD is not the saved file itself but merely a temporary
copy of it; the saved file is still preserved and unchanged. Thus any changes
typed into a current me do not affect the saved version of the file in any way
until REPLACE is typed. Then and only then is the stored file replaced by the
revised current me. The editors work only on the current file and do not change
the saved version.

The command UNSAVE operates only on the saved version of a file. Typing
UNSAVE destroys the saved version of what is then the current me but does not
affect the current file itself. As long as the current file is not changed with a
NEW or OLD command, the temporary, current version of the file still exists.
The command form UNSAVE <filename>, specifying a me other than the
current one, allows the user to destroy the named stored me without affecting
the current file (or its stored version if any) in any way.

The SCRATCH command operates on the contents of either the current
or saved me depending on which of its two forms is used. Typing SCRATCH
erases the contents of the current file only; the saved version (if one e"xists) is
not affected. In the form SCRATCH <filename>, the command destroys the
contents of the saved me specified; the file remains saved in the catalog but
its length is set to zero. The current file is unaffected in this case.

File stored in public libraries are saved in such a way that users may make
access to them without having the ability to change the saved version in the
library. The user can make programs such as LIBINDEX*** his current file and
can then run it. Indeed, the user can save library files in his own catalog if this
proves to be useful. Programs in the DTSS library may be in source code or
object code. For those held in object code the source versions are in the catalog
SCODELIB*** and may be copied from there, modified if necessary and then
saved in the users catalog.

The use of sublibraries allows large libraries to be structured in a meaningful
way, making the indexing of mes easier and subsequently making it easier for
users to find and use them.

3.7 PERFORM FILES

A further dimension is given to the user interface through the use of perform meso

46 The User Interface [Ch.3

Perform files allow the creation of specialised user interfaces by allowing a series
of commands, and other terminal input to be replaced by a single PERFORM
command naming the perform file. The following description of the perform
system is that obtained by typing EXP PERFORM.

PERFORM <filena"e>
PERFORM <filena"e>;<arguMent>;<arguHent>; •••

The PERFORM command causes a PERFORM me to be executed. A PERFORM
file simulates the typing that you would do at the terminal to complete a task.
PERFORM files can contain commands to Simple Monitor, line-numbered lines,
input data, and special commands to the PERFORM system.

When a PERFORM command is typed, Simple Monitor begins executing the
commands in the PERFORM file. Simple Monitor commands in the file are
printed on the terminal as they are executed, along with any terminal output
they cause (such as 'READY', time and input/output messages). When the last
command in the PERFORM me is completed Simple Monitor prints the total
time and an extra 'READY'.

If there is a file named .SIGNON. saved in a user catalog, it is PERFORMed
automatically whenever the user signs on.

NUMBERED LINES AND THE CURRENT FILE

The contents of the current file may change as the commands in the PERFORM
file are executed. Any numbered lines in the PERFORM file will affect the
current file when the PERFORM file is executed, just as they would affect the
current file if they had been typed directly at the termina1. Thus a command to
Simple Monitor which is accidentally typed with a line number will not be
recognised as a command, but will modify the current file.

COMMANDS TO THE PERFORM SYSTEM

A PERFORM file can also contain commands to the PERFORM system. These
commands must begin with $. Possible commands are:

SREHARK (the rest of the line is ignored)
SPRINT (the rest of the line is printed on the terMinal)
SOUTPUT (treena"e) (ter"inal output will be diverted to the
specified file)
SNO OUTPUT (ter"inal output will be suppressed)

$OUTPUT with no <tree name> can be used to turn the output back on,
after a $-NO OUTPUT. $OUTPUT *TTY will redirect output to the terminal
after it has been diverted to a file.

Commands to the PERFORM system are not printed on the terminal during
the PERFORM, although the message is the $PRINT command is printed.
Commands may be abbreviated to their first three letters.

Sec. 3.7] Perform Files 47

Any dollar sign in the PERFORM file that does not designate a command to
the PERFORM system or an argument (see below) must be preceded by another
dollar sign.

INPUT FROM THE TERMINAL

If a PERFORM file runs a program which requests input from the terminal, a
question mark will be printed on the terminal at the appropriate time and input
can be entered as usual.

If output has been diverted from the terminal with a $OUTPUT command,
or suppressed by a $NO OUTPUT command, and input is requested from the
terminal by a program, PERFORM will print the message ***SUPPLY INPUT
on the terminal. A question mark will then be printed, at which time input can
be entered from the terminal as usual.

Input which a program requests from the terminal can alternatively be
entered from the PERFORM file. lines in the file which follow a RUN command
and begin with a question mark will be intercepted as inout to the program
that is being run. A sample PERFORM file which contains such an input line
follows:

OLD ADDUP

RUN
? 5286.5, 3572.43

The input line will be printed when the file is PERFORMed.

USING BUILD

If the PERFORM file contains a BUILD command, BUILD mode is entered.
Input to BUILD may be entered from the terminal or from the PERFORM file,
as in program input. BUILD can be terminated by a line in. the file containing
only a question mark.

PASSING ARGUMENTS TO THE PERFORM FILE

The PERFORM command can pass arguments to the PERFORM file. Arguments
are separated from <filename> and from each other by semicolons. If an argu..;
ment contains a dollar sign, it must be preceded by another dollar sign to show
it is literal.

In the PERFORM file a digit preceded by a dollar sign indicates that an
argument is expected; $1 is the first argument in the command, $2 is the second,
and so on to $9. Identical results will be obtained by the following two pro­
cedures; the one on the right uses an argument:

PERFORM cO/1/1dnd:
PERFORM RUNPROG

PERFORM file RUNPROG
OLD ADDUP
RUN

PERFOHH COMMand:
PERFORM RUNPROG; ADDUP

PERFORM file RUijPROG
OLD $1
RUN

48 The User Interface [Ch.3

THE CURRENT FILE AS THE PERFORM FILE

If no filename is specified in the PERFORM command, the current file will be
assumed. You should use the current file as a PERFORM file with caution, since
the contents are likely to be destroyed.

NESTING PERFORM COMMANDS

The PERFORM command can appear in PERFORM files; it is is the last line in
the PERFORM file, a chain (much as a CHAIN in BASIC) is produced. Also,
PERFORMs can be nested; this nesting can be about fifteen levels deep (until
PERFORM runs out of space).

3.8 EXAMPLES

3.8.1 Use of library programs

Suppose a user has written an SBASIC program and wishes to have its structure
displayed through indentation. (The content of the program is unimportant.)
Knowing that such a program exists on the library he uses LIBINDEX*** to
find it and then uses it. Thus, his program might be:

OLD XYZ
READY

LIS"T
XVZ 19 DEC 77 16:22

100 'PrograM to replace consecutive lines
110 'with forM-feeds in theM by a single line
120 'with a forM-feed in it.
130
140 'vector for change state~ent
150 DIH V(200)
'160
165 'open a scratch file
170 FILE 112: "*"
180 HARGIN 112: 132
190
195 'prOMpt for a file naMe
200 PRINT "FILE NAME";
210 INPUT F$
220 FILE 111: F$
230
240 'P notes if previous line was forM-feed
250 LET F' = 0
260
270 DO UHILE HORE til
280 LINPUT 111: N$ 'get next line of file
290 CHANGE N$ TO V

Sec. 3.8] Examples

300
310
;320
330
340
350
360
370
380
;390
400
410

IF V(O»O
THEN

AND V(1)=ASC(FF) 'check for for" feed

420

IF P=O
THEN
LET P=1
PRINT "2:
CONTINUE
ELSE
LET p=o
PRINT "2:
CONTINUE
LOOP

'for"-feed found
N$ /this is first one 50 copy it

"'unset "arker
N$ 'and copy line

430 ... transfer back to ori~inal file
440
450 RESET 112
460 SCRATCH 111
470 DO UHILE MORE 112
480 LINPUT "2: A$
490 PRINT tt1: A$
500 LOOP
510
520 END

READY

The user then has to call up LIBINDEX*** to find the indenting program:

OLD LIB1 NDEX:u:.
READY
RUN

LIBINDEX (COMPILED) 19 DEC 77 16:23

FOR 1NS1RUCTIONS TYPE A "'1' AFTER 'ENTER KEYUORDSv

ENTER KEYUORDS 1 INDENT

"INIIENTII

BKINDENT*** EMPHASISES THE STRUCTURE OF BACKGROUND PROGRANS
FINDENT*** ALLIGNS AND INDENTS INSTRUCTIONS IN FORTRAN
SOURCE CODE
INDENT*** BRINGS OUT STRUCTURAL ELEMENTS OF A BASIC PROGRAM
SBINDENT*** BRINGS OUT THE STRUCTURE OF SBAS1C PROGRAMS BY
INDENTATION

ENTER KEYUORIIS 1 STOP

REAllY

49

50 The User Interface

IOlD SBINDENT***/RUN
***SYSTEH CHANGED TO SBASIC

SBINDENT (COHPIlED) 19 DEC 77 16:23

Source file, output file--? XYZ, RNOUT

Scratch output file RNOUT before running SBINDENT***.

STOP
READY

[Ch.3

Not knowing what scratch means, the user asks for an explanation. from the
system:

EXP SCRATCH

"SCRATCH"

The SCRATCH co~~and erases the current version of your file.
After you type SCRATCH, both your current file and alter
file contain no inforftation. Saved files are not affected
by this co"~and and the current file na~e is not changed.
Another for" of the SCRATCH co""and, which should be used
with caution is:

SCRATCH <filenafte),<password>

This forft of the SCRATCH cOM~and is used to discard the
contents of a file saved in your catalog; the file reMains
saved but its length is set to zero. The current file is
not affected. If a password is required in order to allow
the saved file to be scratched and the password is not
supplied, a request for it will be ftade.

READY

The user now understands he must scratch RNOUT as requested and proceeds:

!3CR RNOUT
READY

RUN

SBINDENT (COHPILED) 19 DEC 77 16:24

Source file, output file--? XYZ,RNOUT
READY

IOlD RNOUT IllS

Sec.3.8} Examples

RNOUT 19 {lEC 77 16:24

100 'PrograH to replace consecutive lines
110 'with forH-feeds in theM by a single line
120 'with ~ forM-feed in it.
130
140 'vector for change stateMent
150 DIH V(200)
160
165 'open a scratch file
170 FILE 112: "*"
180 HARGIN "2: 132
190
190
200
210
220
230

/proHpt for a file naMe
PRINT "FILE NAME";
INPUT F$
FILE ttl: F$

240 /P notes if previous line was forM-feed
250 LET P = 0
260
270
280
290
300
310
320
330
340
350
360

DO UHILE HORE ttl
LINPUT 111: N$

CHANGE N$ TO V
/get next line of file

IF V(O)}O AND V(I)=ASC(FF)
THEN

IF p=o
THEN

/check for forn feed

LET P= 1 .. ' forM-feed found
PRINT 112: N$ 'this is first one so copy it

GotHINUE
370 ELSE
380 LET P=O 'unset Harker
390 PRINT 112: N$ /and copy line
400 CONTINUE
410 LOOP
420
430 /transfer back to original file
440
450 RESET tt2
460 SCRATCH 111
470 DO UHILE HORE tt2
480 LINPUT "2: A$
490 PRINT 111: A$
500 LOOP
510
520 END

READY

51

52 The User Interface [Ch.3

3.8.2 Use of library subprogram

Suppose a user wishes to write a date reminder program by processing a file
whose records consist of three fields - the first and second are four-digit fields
representing dates with the first two digits denoting the month and the second
two the day of the month, the third field is a free format text string. The pro­
cessing consists of checking to see if today's date lies between the first and
second date of each record and if so printing the text field together with the
second date field, reformatted. Thus a record might contain:

0217,0224, my birthday

and if the program were run between the 17th and 24th February 1977 the
output would be:

It's fty birthday on Thursday, 24 FEB 77

Before starting the user turns· to LIBINDEX*** to help locate any data
processing routines.

OLD LIBINDEX***
READY

RUN

LIBINDEX (COHPILED) 19 DEC 77 16:52

FOR INSTRUCTIONS, TYPE A '7' AFTER 'ENTER KEY~ORDS'

ENTER KEYUORDS 1 DATE

"[IATE"

BASICLIB***:DATESUBS SUBPROGRAMS FOR PROCESSING DATE STRINGS
DATE*** SURVEY OF YOUR DATE
TAXPOST*** UPDATE 'HASTER' & SCRATCH 'PAY' FILES IN TAX
BILLING SYSTEH
~ATPOSh** UPDA
STOP
READY

Stopping the output when he realises that first entry is the one he is looking for.
The user then calls up the file and attempts to list it.

OLD BASICLIB***:DATESUBS
READY

LIST

DATESUBS 19 DEC 77 16:53

"DATESUBS" HAY NOT BE LISTED; TYPE 'EXPLAIN LISTPERW".
READY

Sec. 3.8] Examples S3

Not knowing why it is not listable, he does as suggested. Note that even mis­
spelling the word works: Explain allows abbreviations, tells you about possible
misspellings, and logs all misspellings so system administrators can decide what
explanations should be added.

EXP LI STPRM

"LISTPERH"

To list a file, LIST access perMission Must be avail~ble on
the file. As you referenced it in your OLD cOMMand, LIST
perftission was not granted. (You May have forgotten to
supply a password in your OLD cOMMand.) For a cOMplete
explanation of LIST perMission, type

EXPLAIN ACCESS

Also note that it is not possible to LIST a cOMpiled file.
If your file is cOMpiled, and you called it up frOM the Main
prograM library (you typed SOMething like OLD PROGRAM***> or
frOM a Kiewit-Maintained sublibrary (you typed SOMething
like OLD SUBLIB***:PROGRAM), you May list the non-coMpiled
version of the file, which is saved in sublibrary
SCODELIB***. For exaMple, to obtain the listable source
code for SUGGEST***, type

OLD SCODELIB***:SUGGEST

and when the COMputer types READY, type

LIST.

READY

So he gets a copy from SCODELIB*** and lists that:

OLD SCODELIB***:DATESUBS
READY

LIST

DATESUBS 19 DEC 77 16:54

100 / NAHE: BASICLIB***:DATESUBS
110 ,.
120 /BY: Pearson, SMith, LOOMis, and LuerMann
130 l

140 /DESCRIPTION: A BASIC library file of subprograMs for
150 / handling strings which represent dates.
'160 /

54 The User Interface [Ch.3

170 ' INSTRUCTIONS: The subprograMs included in this file are:
180 '
"190 'DATCON
200 'SINCEO
210 'UEEKDAY
220 'DAYSINCE

240 'DATEFORH
250 'DATSTD
260 'DATEXP
270 '

Converts string of forH HH/DD/YY to YY""DD
Returns nUMber of days since Jan. 1, Year 0
Returns day of week for a date
Returns nUMber of days between two dates
(01/01/75,01/03/75 = 2)
Converts HH/DD/YY to DD HMH YY forMat
Converts H/D/Y to HH/DD/YY forMat
Converts YYHHDD to HH/DD/YY forMat

2BO 'To use any of the above subprograMs, the user Hust
290 'include in his prograM the 'LIBRARY~ instruction:
300 '
310 '100 LIBRARY IIBASICLIB***:DATESUBS"
320 '
330 'after which tiHe the user need only add a 'CALL'
340 'stateHent for the subprograH he wants to use.
350 '
360 'CATEGORY: TEXTCAT***
370 '
380 'LANGUAGE: BASIC(1)
390 '
400 'INDEX LINE:
410' !SubprograHs for processing !date strings
420 '
430 "REVISIONS:
440 '09/17177 Uarren Belding Hade Minor Modificat~ons to
450 "the header inforMation, indented the code for easier
460 'reading and resequenced the line nUMbers.
470 '
480 '
1000 'NAME: DATCON
1010 '
1020 "BY: Art LuehrHann
1030 "
1040 "DESCRIPTION; Converts a date string of the forMat
1050" HH/DD/YY tb a string of the forHat YYHHDD
1060 '
1070 'INSTRUCTIONS: DATCON takes two arguMents which are both
1080' strings. The input string Must be eight characters
1090' long, although no other checking is done. If the first
1100' string is not exactly eight characters long, the output
1110' string will be set equal to the word ERROR.
1120 '
'1130 '
1140 SUB IIDATCON II :D$,B$ 'Pass input string, output string
1150 IF LEN(D$)=B THEN 1200 'Only B-char. strings are ok
1160 LET B$=IIERR
STOP
READY

Sec. 3.8] Examples ss

The user realises the output may be a bit long so stops the listing and uses
the editor to find the highest line number in the file (the EDIT LIST command
lists the current me in descending line-number order).

(Note the format of the comments at the beginning of the library file
which is standard for all library mes.)

EDI LIS

3620 SUB END
3610 C
STOP
READY

He decides it would be better to get a listing on the local line-printer, so he
creates a background job me, saves it and submits it with the BACK command
for background processing;

NEU REH1
READY

10 PRINT SCODELIB~**:DATESUBS
20 USING REH1
30 END
SAVE
READY

BAC
:~**JOB ACCEPTED
READY

From the information he determines he needs to use DATCON, DATEXP,
DATEFORM, and WEEKDAY and writes the following program, using
SBINDENT*** to format it:

NEU DATES
READY

10 file "1: "dates" 'list of dates to check
15 library "basiclib***:datesubs"
16 file "2: "datesl"
18 input 02: U
20 let d$ = daU
22 if UOH
24 then
30 ctlll "datcon": d$,fS
40 let d1$ = seg$(f$,3,6)
45
50 do while "ore tt1

'get date last used
'get todays date
'skip if used today

'convert to YYMHDD forM
"get rid if YY

56

60
70
80
90
'100
'110
'112
'114
114
'117
'118
119
120
'130
140
'150
'160
165
'170
180
190
200

The User Interface [Ch.3

input Ml: as,bS,cS ~day-7,day,Messa~e

if as<=dlS and bS>=dl$ /check for todays date in range
then perfor" convert date

print "It"s "';cS;" on ";d2S;", ";e$
continue

loop

scratch tt2
print M2: d$

continue

define convert date

/write todays date

let k$ = seg(dS,7,S) 8 b$ ~put year on actual date
call "datexp": k$,"$ /convert YYHMDD to MH/DD/YY
call "datefor"": "$,e$ 'convert MH/DD/YY to DD HM YY
call "weekday": "$, d2$ " get day of week of actuctl dclte

defend

end

3.8.3 Command errors and the EXPLAIN command

Below are listed a few examples of user errors and the information available to
recover from them:

(a) Trying to save a me already saved:

OLD XYZ
READY

SAV
SAVE DENIED--DUPLICATE FILENAHE "XVZII; TYPE "'EXPLAIN SAVREP/.
READY

EXP SAVREP

"SAVREP"

There is a file saved per~anently under your user nUMber havin9
the sa~e na"e as that of your current file. If you want to
I'eplace this saved file wi th your current file, type "REPLACE".
Alternatively, you "ay change the na"e of your current file by
typing "RENAME" clnd then save it with this new na"e by typin',3
"SAVE".

Sec. 3.8] Examples

Other ~lternatives include:

1. typinS "REPALCE <filenaMe)" which l'eplaces the saved
copy of <filenaMe) with your current file and· does not
change the naMe of your current file.

2. typinS "SAVE (filenaMe)" which saves cl copy of your
current file with the naMe (filenaMe) but does not
change the naMe of your current file.

READY

(b) Giving an unknown EDIT command:

EDI REF
Function not ~vailable. lype: EDIT HELP

STOP

READY

EDI HELP

Available functions are: APPEND, DELETE, DESEOUENCE, EXTRACT,
INSERT, JOIN, LIST, LOCATE, MOVE, PAGE, RESEUUENCE, PRINT,
SEQUENCE, DUPLICATE, MERGE, EXPLAIN, HELP AND STRING.

For and explanation of a function, type:
EXPLAIN EDIT NAME

where InaMe" is the naMe of an EDIT function.

READY

57

(c) Giving an illegal option to the CATALOG command. Most users would
simply type CAT, but more sophisticated users may wish to find out
more information than just the names of the files. The CATALOG com­
mand is the most complex command on the system and this explains
the length of the explanation:

CAT XYZ

Illegal option: XYZ

STOP
READY

EXP CAT

58

"CAT"

/\ /\
/ \---/ \

()

(@ ~)

()

------ Y
()

(---------)

·Try

EXPLAIN CATALOG COMMAND
or

EXPLAIN CATALOG MEANING
READY

EXP CATALOG COMMAND
"COMMAND"
CATALOG
CATALOG (options)

The User Interface

CATALOG (options>;<filenaHe 1> <filenaMe 2> •••

[Ch.3

The CATALOG cOMMand is used to initiate printout of inforMation
describing files stored under your catalog. Typing the COMMand
CATALOG alone causes an alphabetical list of the naMes of your
sayed files to be printed (file naMes enclosed in parentheses are
naMes of files which have Migrated; typ~ EXPLAIN MIGRATE for More
inforMation). A header is also printed which gives sUMMary
inforMation about the catalog and the files saved within it.

You May specify a list of options which cause additional
inforMation to be printed along with the file naMes. NorMally,
the file naMes are arranged in alphabetical order, but it is
possible to suppress this sortin9, to sort in reverse order, or
to sort on other inforMation (see below).

If you list particular filenaMes following the option(s), then
inforMation will be printed only for the files specified.
Indiyidual options and filenaMes Hay be separated by a blank or
COMMa. A seMicolon Must separate the list of options and the
list of filenaMes.

Do not type the SYMbols < and> in your CATALOG cOMMand. These
SYMbols enclose inforMation you Hay supply.

The options May be abbreviated to their first three characters.

Sec. 3.8] Examples 59

The following options are the ones Host useful to the typical
user.

Opti on

ACCESS

ALL
DATES
DUt
DLU
EXPLAIN
LENGTH

MIGRATE

NAHE
NHIGRATE

RATIO
RSORT <argu"ent>

SYSTEM
USE

Explanation

Access perMissions; these deterMine how file
May be used by systeM cOMMands or prograMs
NAME, LEN, ACC, DLH, DLU, and USE
DLU and DLH
Date file was last Modified
Date file was last used
Explains options specified on saMe line
Length in words of files and catalo~
(a word is 4 characters in ASCII files)
Prints inforMation about only files which
have Migrated
Prints naMes of files stored in your catalog
Suppresses printing of inforMation about
files which have "igrated
Prints inforMation about files in the catal09
specified; for exa"ple, CATALOG LENGTH
OF SCODELIB***:BRIDGE would print inforMation
about the file BRIDGE in sublibrary SCODELIB**~
of the public prograM library; for a list of
sublibraries you May reference in the CATALOG
COMMand, type EXPLAIN SUBLIBS
% of days file has been used since DLH
Sorts inforMation in descending order
according to the arguMent specified; ar­
gu"ents are saMe as those for the SORT option
Sorts files before printing theM according
to the arguMent specified rather than by
naMe; allowable arguMents are ANAME,
APASSUORD, DLH, DLU, LENGTH, NAME, OLENGTH,
ONAME, PASSUORD, and USE; NAME is the
default arguMent
SysteM under which the file was saved
Gives nUMber of different days a file
was used since DLM

The options described below are not generally of interest to the
novice DTSS user.

Option

ANAHE
CLIHB
CURRENT

Explanation

Prints ASCII naMe; no octal conversion
Supplies inforMation about 5ubcatalogs
InforMation requested beCOMes your current
file and is not printed at your terMinal
.RESULT. is the new current file naMe

60

EVERYTHING

FIND

NFILES
NHEADER
NSORT
IlACCESSES
OLENGTH
ONAttE
IlSTORAGE
PREFERENCE

PRINTER
~rORAGE

The User Interface

NAttE, LEN, OLE, ACC, OAC, DAT, USE, ClI,
STO, OST, RAT, PRE, and SYS

[Ch.3

Searches catalog and subcatalogs for specified
files; type CAT EXP FIND
Prints catalog inforMation only
Suppresses header
Suppresses sorting of catalog
Octal representations of ACCESS
Octal representations of LENGTH
Prints octal representations of file naMes
Octal representations of STORAGE
Prints the file preference nUMbers; type
CAT EXP PREFERENCE
Prints 120 characters per line; not 75
Total length of all files in catalog
printed in header

Unless you have special privileges, the next options will work
only for a subcatalog saved in your user nUMber or for a
5ubcatalog (such as a sublibrary of the public prograM library)
for which you know the password. Note in particular that these
options will not work on files saved in your user nUMber.

option

APASSUORD
PASSIJORD

Explanation

Prints ASCII password of file
Prints password of file in octal

For a More COMplete explanation of any option type

EXPLAIN CATALOG <option)
For exaMple, for an explanation of the option LENGTH, type

EXPLAIN CATALOG LENGTH

A discussion of all CATALOG options is available in Technical
MeMO Ttt041, "The CATALOG COMMand", available frOM the DOCUMents
Centre, Keiwit COMputation Center, Hanover, NH 03755.

If a file naMe contains control characters, the file naMe will
appear when you type CATALOG as a slash followed by 24 digits.
These digits, taken in groups of three, are the octal nUMbers
which correspond to the B characters of the file naMe (if your
file naMe is less than B characters long the reMainder is filled
with spaces, octal nUMber 040). You can deterMine the characters
in the file naMe by referring to the list of ASCII code nUMbers
in section B.3 of TH075, "BASIC", or by running the library
prograM CHARS***.

In your CATALOG COMMand, you May specify a file or catalog naMe
in octal as a slash followed by 24 digits that are the

Sec. 3.8] Examples

octal representations of the ASCII characters in the naHe. ES,
CAT ~LL;/101102103040040040040040 is equivalent to CAT;ABC.

This inforHation was last updated 7/14/75.

RE~DY

3.8.4 Perform files

61

Perform files may be used for a number of things. In the most general sense it
may be used to change the user interface, but in practice it is primarily used to
save typing time. I regularly use three perform mes and these will serve as
examples of their application,

I use DTSS for a great deal of word processing using a text formatting
program called RUNOFF. I have a standard output me called RNOUT to which
I direct all output from RUNOFF. I then print this file on a dual-case line­
printer. The only parameter which varies is the name of the me to be processed.
Thus I have a perform file called UT-RNO which contains the following:

$NO OUTPUT
EXE RUNOFF***
'~$1 ,RNOUT,P
NEU LOUER
10 PRINT RNOUT
20 USING LOUER
30 FORH~T NSL
40 END
REP
$OUTPUT
BAC

which is called as follows:

PER UT-RNO;AGENDA

produces the following output:

BAC
:.uJOB ACCEPTED
READY

READY

and processes the file AGENDA. Another perform flie I use is one to produce
multiple copies of a fIle with a single banner page on either the dual-case line­
printer or a local line-printer called REMI. This fIle, called QNH, contains:

EXE tJT-C-NHD
PER XYZ

62 The User Interface

This expands into a sequence of events as shown below:

PER GNH
EXE UT-C-NHD
REM1 <Y OR N)'? Y
NSL <Y OR N)/ N
FILENAHE, COPIES'? MAJOR,2
ANY HORE FILES (Y OR N)'? Y
FILENAME, COPIES? CACH,4
ANY HORE FILES (Y OR N)1 N
READY

PER XYZ

EXE UT-C-1FF
FILE NAME? GHB-NH
READY

OLD REM1
READY

BAC
*:uJOB ACCEPTED
READY

READY

[Ch.3

First, the program UT-C-NHD is executed. This asks about the printer and
printing options and the names and number of copies of each file to be printed.
When all the files have been specified UT-C-NHD creates a file GMB-NH con­
taining the material to be printed, a background file REM1 (or LOWER) con­
taining a variant of:

"10 PRINT GHB-NH
20 USING REM1
30 FORMAT NSL
40 END

and a perform file XYZ containing:

EXE UT-C-1FF; GHB-NH
OLD REM1 (or OLD LOIJER)
BAC

The program UT -C-1 FF deletes multiple form- feeds from the file GMB-NH.
The whole sequence is somewhat clearer if the perform file is performed in
brief mode:

PER I1NH
EXE UT-C-NHD

Sec. 3.9]

REH1 (y OR to? N
NSL (Y OR N),? N

Background Job Processing

FILENAME, COPIES? HAJOR,2
ANY HORE FILES (Y OR N)? Y
FILE NAHE, COPIES? CACH,4
ANY HORE FILES (Y OR N)? N
*PER XYZ
:~EXE UT-C-1 FF
FILE NAME? GHB-NH
:fcOLD REH1
:ttBAC
:i:uJOB ACCEPTED
:It

63

The last example of the use of perform mes is my .SIGNON. file, which is
automatically performed at sign-on time. The contents of the file is:

IBRI/MAX/USE/EXE MYDATES
$NO OUTPUT
IOLDUPDATE/EDI EXT 10-30/REP/BAC

which turns the terminal into brief mode, sets the memory limit to the maximum
allowed in my validation record, prints out the number of users on the system,
and then executes the program MYDATES which is a date reminder program.
The output to the terminal is then shut off and a backgroundjob called UPDATE
is submitted which manipulates the file containing the date reminder. A typical
output from signing on is given below:

DARTHOUTH TIME-SHARING
LINE 2/0215 ON AT 14:29 20 DEC 77, 112 USERS
DTSS UNTIL 03:00 TODAY. LIST CCNEUS*** 11/22/77

USER NUHBER--B34360
IBRI/HAX/USE/EXE HYDATES

3)112 USERS
It's Harry's birthday on UEDNESDAY, 21 DEC 77

3.9 BACKGROUND JOB PROCESSING [8], [9]

The background job processing system has two components, the background
systems, which converts job requests into background job descriptions, and the
background monitor, BAKMON, (see section 6.3u3}which processes each job as
resources become available. This section focuses on the background system.

The background system is convenient for running long programs, listing
large files and making use of magnetic tapes.

64 The User Interface [Ch.3

Background programs describing activities to be performed are written in
a line-oriented background language. Each line in a program begins with a line
number consisting of a maximum of four digits. Messages appended to the
program by BAKMON are prefaced by consecutive five-digit line numbers begin­
ning with 10000 and refer to line numbers in the user's background program.

Each background program must contain an END statement. Activities
described before the END statement are compiled into the background job
description; lines occurring after the END. statement are ignored.

The current version of a background program must be saved in the user's
catalog. If it is saved with password protection, the background system asks the
user for the password (overprinting the password as it is entered) before accepting
the background job.

The background system determines from a user's validation information
which activities that user is allowed to perform in background. It also computes
limitations on run time and peripheral output. Users may specify, via the MAX
command, smaller upper limits for certain activities. This feature is designed to
allow a user to protect himself from a runaway program and also to supply infor­
mation which may aid BAKMON in scheduling activities to be performed. When
no MAX is specified for an activity and no limits are provided with. the RUN
command, small defaults are used; that is, a MAX of 32 seconds run time and
16K core. A user may find out what limitations are placed on his user number
by typing RUN· PER. BAKMON will allow four times the run time allowed in
foreground.

All files named in a background program must have been saved prior to
submission of the program. Neither the background system nor BAKMON
saves a file for a user. When a saved file is protected by a password, the user has
the option of identifying the file in his background program by typing:

<filename>, <password>

or

<filename>,

if he wishes to protect his password. In the latter case the background system
requests the user to enter the password for the file and then overprints it for
protection. For files without a password, the file name alone is supplied, as
usual.

File names ending in *** denote library files, with the following seven
exceptions:

(i) PRINTER*** denotes a zero-length scratch file which is provided by
Bakmon for the given activity and which is listed on the high-speed
printer upon completion of the activity.

Sec. 3.9] Background Job Processing 65

(li) REMn***, where 'n' is an integer between 0 and 9, denotes a zero­
length scratch file which is provided by Bakmon for the given activity
and which is listed on remote printer n upon completion of the activity.

(iii) SCRATCH*** denotes a zero-length scratch file which is provided by
the background monitor for the given activity and which is discarded
after completion of the activity.

(iv) TAPE*** denotes a scratch tape which is provided by Backmon for
a given activity and which is discarded after completion of the activity.

All four of the preceding special files may appear more than once in a background
activity.

(v) MYCAT*** denotes the user's catalog and is used to make mes in the
catalog available to Bakmon.

(vi) SCRATCHn ***, where 'n' is an integer between 0 and 9 inclusive,
denotes a scratch me to be provided by Bakmon which may be used by
more than one activity in a background program. This fue, known as a
system scratch me, is created as a zero-length scratch me the first time
it is referenced. IIi. all subsequent activities, the me contains whatever
data the user has written into it. The file is discarded after completion
of the last activity in which it is referenced. A particular system scratch
fue may appear only once in an activity.

(vii) TAPEn***, where 'n' is an integer between 1 and 6, inclusive, denotes
a scratch tape to be provided by Bakmon which may be referenced by
more than one activity in a background program. This tape, known as a
system scratch tape, is initially mounted with a write-permit ring and is
assumed to contain no information the first time it is referenced. In all
subsequent activities the tape contains whatever data the user has
written onto it. Upon completion of the last activity in which it
appears, the tape is released from the background job and made available
to other background programs. A particular system scratch tape may
appear only once in an activity.

Due to the nature of the background language, commands appear in a group
with their related specifiers following them, forming blocks. A library program
BKINDENT***, formats background programs in a manner which makes the
command blocks easy to see. The complete list of commands and specifiers are
given in Tables 3.1 and 3.2.

66 The User Interface [Ch.3

Table 3.1- Complete list of commands.

Execution commands Peripheral commands Miscellaneous commands

DEBUG COPY ABORT
o RUN PRINT END
RUN PUNCH ERROR
TEST READ NUM

SCRATCH REMARK
WRITE STATUS

WAIT

Table 3.2 - Complete list of specifiers.

Execution specifiers Peripheral specifiers

FILES AND
INPUT BANNER
LINPUT CTAB
MAX FORMAT
OLD FROM (FILE and TAPE)
OUTPUT IDENT
TAPE MODE

POSITION
REPORT
TO (FILE, PRINTER, PUNCH, and TAPE)
USING

A few of the more common commands are shown below as a way of illus­
trating the ease-of-use and power of the facility. Most programs are self expla­
natory. The simplest is the PRINT command, used to list a file on a printer.

100 REH PRINT 3 FILES UITH 10 PAGE MAXIMUMS
1 to
120 PRINT ALG1;ALG2;ALG3
130 MAX 10 PAGES
140 BANNER ALGOL60 'ADD BANNER
°150 END

Other specifiers to the PRINT command will be shown in other examples.
The RUN command is used to run the specified system.

Sec. 3.9] Background Job Processing 67

When any of the specifiers INPUT, LINPUT, OLD, or OUTPUT is used in
conjunction with a background RUN command, Bakmon performs a fore­
ground simulation. When a foreground simulation is performed, FORGSIM is the
module in charge of execution. The program runs in a manner paralleling that of
a foreground run.

In terms of implementation, this means that several conventions are followed.
First of all, Bakmon must be informed that a program is to be RUN by a state­
ment of the form:

RJN [<system name>] [<runtime limit>] [<core limit>K]

where all bracketed material is optional.
Next, the user must specify the program which is to be run using the state­

ment:

OLD <filename>

When a program is run in foreground, it may communicate with a user's
terminal. In a foreground simulation, the terminal is simulated by specifying
files from which input is to come (as when typing it) and to which output is
to go (as printed on the terminal). To specify an input file, the user specifies:

INPUT <filename>

Similarly, to specify an output file, the user uses a statement of the form:

OUTPUT <filename>

In addition, the user may specify a line of input by using the LINPUT
specifier, which is useful if only a small amount of input in necessary during the
program's execution. Its format is:

LINPUT <date>

where <data> contains the information as would be typed at the terminal
(including commas or other punctuation, if they would normally be necessary).
Note that if either INPUT or LINPUT is used, OUTPUT must also be used.

The following example runs RUNOFF*** in background, specifying as the
source the file SOURCE. It then prints the output on the high-speed printer:

., 00 RUN
110 OLD RUNOFF~~*
120 LINPUT SDURCE,TTY,P
130 OUTPUT SCRATCH1~*~
140 PRINT SCRATCH1*~*
150 FORHAT NPAGE
160 END

68 The User Interface

More examples of the RUN command are given below:

100 REM RUN A FORTRAN PROGRAM, FORTPROG
110 REM SPECIFYING A TIME LIMIT OF 64 SECONDS
120 REM AND MEMORY OF 40K UORDS
130 REM USING THE EXPERIMENTAL VERSION OF FORTRAN
140 RUN XFORTRAN 64 40K
150 OLD FORTPROG
160 INPUT DATA
170 OUTPUT OUTFILE
180 FILES DATA1;DAIA2
190 END

100 REM RUN BACKJOB, PRINT THE OUTPUT,
110 REM AND SCRATCH THE OUTPUT FILE
120 RUN
130 OLD PROGRAM
140 OUTPUT OUTFILE
150 PRINT OUTFILE
160 FORMAT NPAGE
170 SCRATCH OUTFILE
°180 END

100 REM PASS THE FILES DATAl, DATA2, AND
110 REM DATA3 AS M1, M2, AND ~3 FOR
120 REM THE PROGRAM AVERAGER UHEN IT IS RUN
130 REM THEN PRINT OUTPUT UITHOUT FORMATTED PAGES
140 RUN
150 OLD AVERAGER
160 OUTPUT SCRATCH1***
170 FILES DATAl; DATA2; DATA3
180 PRINT SCRATCH1***
190 FORMAT NSLEU
200 END

[Ch.3

The following examples all use magnetic tapes and serve to illustrate the
various ways they may be used:

100 REM THIS PROGRAM MAY BE USED TO SORT IN BACKGROUND
110 REM RUNS SYSTEM SORT PASSING ERROR FILE ERMES,
120 REM CONTROL FILE CONTRL, INPUT TAPE 0-000 (THE
130 REM FILE TO BE SORTED), AND OUTPUT TAPE 0-001
140 RUN SORT
150 FILES ERMES;CONTRL
160 TAPE Q-OOO
170 POSITION 10
180 TAPE Q-OOl
190 POSITION 5
200 END

Sec. 3.9] Background Job Processing

100 REH RUN SYSTEH GMAP SPECIFYING FILES
110 REH SOURCE, BINARY, AND SYMTABLE. THE
120 REH LISTING IS TO GO TO TAPE1***
130 REH MYCAT*** IS PASSED TO HAKE OTHER
140 REH FILES IN THE CATALOG ACCESSIBLE
150 REH FORHAT NPAGE IS USED IN PRINTING BECAUSE
160 REM GHAP CREATES ITS OUN FORHAT CONTROL CHARACTERS.
'170
180 RUN GHAP 64 J2K
190 FILES HYCAT***;SOURCE
200 TAPE TAPE1***
210 POSITION 1
220 FILES BINARY;PRINTER***;SYMTABLE
230 COpy
240 FROM TAPE1***
250 TO PRINTER
260 FORHAT NPAGE
270 END

100 REH CREATE A TAPE UHICH CAN BE READ
110 REH AT IBM INSTALLATIONS UITH 7-TRACK HANDLERS
120 REM OUTPUT IS 10 CARDS PER BLOCK
130 REM IN THE IBHEL SET.
140 REM NOTE THAT THE LABEL IS OVERURITTEN.
'150 COpy
160 FROH FILE XYZ
170 FORHAT ASCII
180 TO TAPE 02389;FOREIGNTAPE
190 FOR HAT NLABEL;NSERIAL;NRCU
200 FORHAT IBHEL;BLKSIZE 140;RECSIZE 14;FILREC
210 POSITION 1
220 END

69

The WAIT command is used to delay execution of a background program.
Background does not check the availability of resources requested until exe­
cution time:

100 REM CAUSE RUN TO UAIT UNTIL LATE AT NIGHT
110 REM UHEN HORE RESOURCES ARE AVAILABLE
120 UAIT UNTIL 01:00
130 RUN
140 OLD PROGRAM
150 INPUT DATAFILE
160 OUTPUT PRINTER***
170 HAX 256 SECS
180 HAX 32K CORE
190 END

The ABORT command halts the execution of the background job(s) speci­
fied in the list. The job which contains the ABORT command will not be aborted
even if its name is contained in the list, whereas other background programs of
the same name will be aborted:

110 REM FORGOT POSITION ON INPUT TAPE

120 ABORT TAPEJOB
130 READ HYFILE;DATA
140 FROM TAPE G-OOO
150 POSITION 5
160 END

An important aspect of background system is the checking of both the
syntax of the background program and the availability of the required sources.
This feature is designed to eliminate the frustration and delay caused by simple
errors in the job control file not being detected until the job is run at a time
when the user is not present. Nearly fifty errors are trapped, thus ensuring
that any job submitted to Bakmon has a high probability of running. It does not
of course guarantee anything about the programs which will be run nor the
integrity of any data used.

3.10 REFERENCES

[1] Hardy, S., and Mather, D. (1977), 'DTSS User Primer', DTSS Technical
Memorandum 022.

[2] Noyce, W., and Roberts, S. (March 1978), 'Simple Monitor', DTSS Technical
Memorandum 060.

[3] Mather, D., and Oden, T. (1975), 'System Command Reference Manual',
DTSS Technical Memorandum 085"

[4] Smith, L. (1973), 'Programming for the EXECUTE Command', DTSS
Technical Memorandum 046.

[5] Mather, D., Pedersen, C., and Thompson, C. (1974), 'DTSS TEXT Editor
Reference Manual', DTSS Technical Memorandum 004.

[6] Dunten, S. (1976), 'DTSS QED Editor Reference Manual', DTSSTechnical
Memorandum 036.

[7] Fernandez, G., Mather, D., and Smith, L. (1977), 'The CATALOG Com­
mand', DTSS Technical Memorandum 041.

[8] Mather, D. (March 1977), 'Introduction to Background', DTSS Technical
Memorandum 053.

[9] Fernandez, G., and Ugett, S. (September 1977), 'DTSS Background
Reference Manual', DTSS Technical Memorandum 0880

CHAPTER 4

The File System

4.1 TYPES OF FILE [1]

The concept of a file is central to the design of DTSS. Ajob communicates with
everything outside its own memory space as a file. There are a variety of types of
files which can be distinguished.

4.1.1 Data files
Data files are what the user typically calls 'files'. They are held on disc or mag­
netic tape. Such files can contain any information whatsoever. The space occupied
by data files is meaured in words. Data files can be further categorised in a
number of ways. Thus they may be catalogued or scratch files, that is, have an
entry in a catalog or not; migrated or not, that is, have moved from disc to tape
storage or not; and may be of a variety of structures according to the language
being used to process it (see Table 4.1), such structures are not indicated in the
catalog entry for the files but rather are determined by the run-time package
of the language.

Table 4.1- File formats supported under DTSS.

File format BASIC
FORTRAN

COBOL PL/I 76

Terminal format • • • •
Random string • •
Random numeric • •
Indexed sequential • •
Stream •
Literal • • •
Binary •
Formatted •
Unformatted •

72 The File System [Ch.4.

4.1.2 Catalogs

A catalog is a collection of descriptors. Each descriptor describes some sort of
file; the file may be a disc file, a catalog, a peripheral device, a core file, or one
of several other things. For each file about which the catalog contains infor­
mation, such things as the name of the file, its length, its password, access control
information, and the location of the fue are recorded. A catalog may contain
entries for both data files and other catalogs. If there exists an entry in a catalog
for a given file then that file is called a catalogued file. A scratch file differs from
a catalogued file by having no entry in any catalog corresponding to it. A catalog
with an entry in another catalog is called a catalogued catalog. Catalog entries
are made by users with commands such as SAVE; entries are changed with
commands such as REPLACE: and entries are deleted with commands such as
UNSAVE. In all cases, changes are only made in the catalog if the appropriate
permissions are available to the user/job attempting to make the changes.

4.1.3 Device fIles

All the non-allocatable devices on the system such as line-printers, card readers,
and magnetic tape drives are catalogued in the catalog PERCAT. The entries in
PERCAT are made by the Executive and are special catalogued files in that
they are permanent and unalterable; thus no job may change the contents of
PERCAT. That is, the files cannot be unsaved, appending data to them does not
change the length of the file, only one job may have append permission on these
or any non-catalog file to avoid two jobs appending at the same time. All the
non-allocatable devices on the system are (special) catalogued files and appear
to jobs as files. Thus information is written to a line-printer in the same way as
information is written to any other catalogued file on the system. Some non­
peripheral files are made to look like peripherals so as to have the properties of
special catalogued fues.

4.1.4 Communication fIles

Jobs on the system need to communicate with other jobs. Thus any job which
needs to transfer information to and from the user's terminal must communi­
cate with TCFACE. Inter-job communication is accomplished using communi­
cation fues (explained in detail in section 5.3) which are a super set of the
message system described by Brinch Hansen [2]. Communication files are not
catalogued.

4.1.5 Job fIles
When a job is created by another job (say by SIMON) it is created as a running
job file. Such files have various properties associated with them such as the
maximum amount of memory the job is allowed, and the time allotted to the
job.

Sec. 4.2] A Job's View of Files 73

4.2 A JOB'S VIEW OF FILES

Slave jobs on DTSS manipulate files by issuing calls to the Executive. These calls
are made by executing a special instruction called Master Mode Entry (MME)
with the address field coded to indicate what service is required by the slave job.
In almost all cases, the instruction word itself is insufficient to indicate what is
required and other information must be passed to the Executive. This infor­
mation is loaded by the job in various registers, using a predefined protocol,
prior to executing the MME instruction. When the MME instruction is executed,
control is transferred from the slave job to the Executive. The Executive analyses
the information passed to it and if it decides the operation is valid, initiates the
service. Control is then returned to the slave job at the location immediately
following the MME, the service mayor may not have been completed by that
time. A more detailed description of the various MME instructions is given in
Chapter 5. All file manipulations are specified by slave jobs using MME instruc­
tions. The way in which the slave job indicates which file is being referenced is
to specify a· file reference number as part of the parameters for the MME. Each
file available to a job has a unique file reference number for that job (that is,
unique for each job but not unique across the entire system; thus a given file
may be file reference number six for one job and file reference eight for another
job). File reference numbers are obtained by a job in a number of ways. Files
may be passed to the job by other jobs. For example, when a user types RUN
to SIMON, SIMON runs a new job and passes three files to the new job with
fixed fue reference numbers (FRNs):

FRN 1:
FRN2:
FRN3:

The user's terminal (communications file)
The current catalog
The current file

When an editor is run then five files are passed to the job:

FRN 1:
FRN2:
FRN3:
FRN4:
FRN5:

The user's terminal (communications file)
The current catalog
The current file
The output fue
The command-line file

For example, the command:

EDI JOIN ABC; XYZ

appends the file XYZ to the end of ABC and makes the result the current file.
SIMON carries out this command by running a job which:

Reads command lines from #5
Looks up ABC in #2
Copies to #4

74

Looks up XYZ in #2
Appends to #4
Makes #4 the current file
Closes #3

The File System

File reference numbers may be obtained by issuing a MME to:

Open a catalogued file or catalogued catalog.
Create a scratch file or scratch catalog.
Create a communications me with another job.

Executive

FeB
FeB
FeB

(
Job

Job

SV

SV

Job

~
Fig. 4.1 - Jobs and state vectors.

} Stata Vector

)
)

[Ch.4

Sec. 4.2] A Job's View of Files 75

A file reference number available to a slave job becomes invalid the slave job
issues a MME to close the file. Data written to a scratch file is lost when that file
is closed. Data written to a catalogued file is preserved after that file is ciosed
and may be recovered by re-opening the me. A scratch file may be changed to a
catalogued file by issuing a CATALOG MME. Part of the information supplied
with a CATALOG MME is the name of the file, the file reference number of the
scratch file to be catalogued and the file reference number of the catalog in
which the entry is to be made. A job obtains a file reference number for a
catalogued file by issuing an OPEN MME together with the name of the file
and the file reference number of the catalog in which the file is catalogued.
The UNCATALOG MME reverses the effect of the CATALOG MME deleting
the file from the catalog and making the file a scratch file. The parameter of
the UNCATALOG MME is the me reference number.

The file reference number is created by the Executive and is used by the
Executive in processing me MMEs to locate a block of information relating to
the file. This block of information is called a file control block (FCB). All the
file control blocks of the files which a job has open at a given time are grouped
together in a structure called a state vector. The state vector for a job may be
in memory or swapped out; it is not part of the slave job's memory and cannot
be manipulated directly by a slave job. Fig. 4.1 shows a number of jobs in
memory and their corresponding state vectors. When a job is swapped in, its
state vector is placed either just before it (that is, in lower memory), or just
after it, but the base address register is set up to exclude it from the job's memory.

Table 4.2 - File types.

o - Scratch file
1 - Scratch catalog
2 - Catalogued me
3 - Catalogued catalog
4 - Special scratch me
5 - Not used
6 - Special catalogued me (typically a peripheral)
7 - Not used

10 - .. Communications slave end
11 - Communications master end
12 - Running job
13 - Communications detached
14 - Migrated
15 - Not used
16 - File open in shared mode
17 - Not used

76 The File System [Ch.4

A state vector consists of three logical areas. The first area is a fixed length
block of sixty (octal) words which is used by the Executive to record infor­
mation about the job. For example, the jobs registers are stored here if the
Executive suspends the job. There are also entries which are used to control the
internal storage of the state vector. The second area is a variable length block of
pointers to the file control blocks which make up the third block. Thus a pointer
to file reference number three is always found in word sixty-three (60+3) of the

0

•

en

~ ~
Ie"! -
Ie"! --...-.;T

~1

free space chain header
length of FRN index table

0 0

FCB1

free space

FCB3

free space

FCB2

FCBS

free space

FCBO

Fig. 4.2 - DTSS state vector.

Information
about the job
useful to the
Executive

J
File reference
number index
table

File control
blocks

Sec. 4.3] Catalog Entries 77

0 8 9 17 32 35

0: Accesses file
type

1 : Unused
0 17 18 26 27 35

2:
Unique Maximum Trap
file index accesses bits

3: Unused

4:
Read/write pointer to next
record in the file

5: Length of file in words

6: First device address (DA 1)

7: DA 2

8: DA3

"-
'\.

"-
"-

'\.
"-,

1092 of logical record
size device address

number

0 7 12 17 18 35

Fig. 4.3 - File control block.

state vector. Each of the index words consists of two fields, a pointer to the file
control block and the length of the file control block is words. A state vector is
shown in Fig. 4.2.

A file control block is between six and thirty-two words long. Fig. 4.3
shows a typical file control block. The first two fields in word zero determine
the actions that can be performed on the file at present and are discussed in
more detail in section 4.5. The preference code is used to determine the type of
storage to be used for the file on disc. In particular, it indicates whether it is
to be stored on the center tracks of a moving head disc (which have the lowest
average seek latency) or on the inner or outer tracks (which have the highest
average seek letency). The file type is one of the types listed earlier and the
coding is given in Table 4.2. Word two contains a unique file index used by the
Executive to ensure two jobs don't try to write to the same file, together with

78 The File System [Ch.4

access information (see section 4.5). Word four contains a pointer to the next
word to be read or written. A file may be open for reading and for writing by a
given job, but the Executive maintains only a single pointer. Word five contains
the length of the file in words. Words six and higher contains the device addresses
of the various segments of the file. If the file is stored in one contiguous area
on a simple device then only one device address word is needed.

File reference number zero is special and does not conform to the normal
FCB format.

4.3 CATALOG ENTRIES [3]

Each entry in a catalog is a descriptor. The information held for each file in its
descriptor is made up of the information held in a state vector file control block.
Catalog descriptors are created by copying information from the state vector file
control block and appending three extra fields:

(i) The name of the file (specified in the CATALOG MME).
(ii) The password associated with the file, used to control access to the file

(also specified in the CATALOG MME) , together with other access
information.

(iii) Usage information generated by the Executive at the time of creation
and modified by the Executive on usage.

Each descriptor may be broken into two halves: one half contains logical
(device-independent) information, and the other specifies where the object is
stored by a list of device addresses. In general, the logical information may be
viewed and/or directly modified by slave programs, while the device addresses
may not be.

There are only two types of descriptors: catalog descriptors and 'file~

descriptors. Both types have eight words of logical information. Catalog des­
criptors include exactly one word for device addresses, while file descriptors may
have from zero to twenty -seven words for device addresses.

The device address (DA) in a catalog descriptor points to the first part of
the catalog it describes; this first part contains a catalog header which describes
storage for that catalog. A catalog header consists of eight words of logical infor­
mation and twelve DA's.

A DA is full word quantity specifying where part or all of an object can be
found. The format of a DA is shown in Fig. 4.4.

The device code and record number are internally mapped by the Executive
into the true physical addresses.

The device code (DC) is the most important part of a device address, for it
specifies what kind of peripheral the object is. Most objects are disc files/catalogs,
so the device code reflects which disc drive their data are stored on, Peripherals
such as printers, tape drives, card readers, and so on, all have their own device
codes. The device code is the only part of an object's description which specifies

Sec. 4.3] Catalog Entries 79

the physical type of the file. Since most slave jobs cannot look at device addresses
they cannot determine an object's physical type (whether it is a peripheral file,
etc.) from its description. They must open it and perform operations on it to
deduce its type.

o 7 8 11 12 17 18 35

\ EXP X DC RN I
EXP: log2 of the number of contiguous records in DA.
X:' (not used).
DC: logical Device Code (logical device number in

ENV deck, see section 8.1.4).
RN: Record Number of first record in DA.

Fig. 4.4 - Device address word.

The EXP (size) field is only used for disc files/catalogs. It contains the log
base two of the number of records in this device address, some or all of which
are used to hold a section of the file catalog. When the Executive allocates room
for a file/catalog on a disc, it finds areas of storage big enough to hold all the
data. The number of words in each area is a power of two. The device address
list, if read in order, contains the addresses of each section of the file in the
proper order.

If data is appended to the end of the file/catalog, the remaining unused
space in the area pointed to by the last DA is filled. When the area pointed to
by the last DA is completely filled, a new area is allocated and its DA appended
to the end of the list in the FCB. Then data is written into the area associated
with that DA.

Note that since FCB's may hold no more than twenty-seven device addresses,
files' sizes may be limited even though there is enough disc space to hold more
data. The Executive's algorithm for allocating various sized areas is designed to
minimise this problem, but has the side effect of reserving too much space for
files. This space is periodically regained by the Shuffle module which opens
files which are not optimally allocated, moves them into preallocated scratch
files, and then replaces the old files with the scratch files. When Shuffle opens
each scratch file, it can tell the Executive how long the scratch fille will be so
that the Executive may allocate device addresses optimally for it and avoid
wasted space.

Catalogs are always allocated on dics, and the twelve DAs point to the
various sections of the catalog. (Naturally, not all twelve need be used.) Two
special catalogs, the MFD and SMCORCAT, are allocated in memory.

Storage management within catalogs works as follows. Assume the picture
of a catalog as shown in Fig. 4.5.

'Holes' are created whenever objects are unsaved from catalogs. Holes are
simply unused descriptors. When a new descriptor is added to a catalog, the

80 The File System [Ch.4

Executive searches from the beginning of the catalog to find the first hole big
enough to put the descriptor in. If there are no holes big enough, the descriptor
is added to the end of the catalog and the catalog's length is updated.

t-------I header (20 words)

entry 1

2

(hole) 3

4

5

(unused)

Fig. 4.5 - Typical catalog.

Essentially the same thing happens when a file expands and needs a new DA
in its descriptor. The descriptor is moved to the first hole big enough, or is added
to the end of the catalog. Adjacent holes are never coalesced in a new, bigger
hole. This is because the Executive maintains a table of open files, and this table
contains the entry number of each file in its catalog. Entry numbers must
include holes, or removing a descriptor from a catalog would change the entry
numbers of an unknown number of open files in this table. Note that entries
(holes and descriptors) are essentially maintained on a sequential list. Thus
searches for a descriptor must proceed linearly through all entries until it is
found.

Finally, due to the field size allocated for entry numbers in the Executive's
table of all open files, catalogs may contain no more than 4095 entries (holes
and descriptors).

Sub catalogs may be nested within catalogs an arbitrary number of levels
deep (subject only to rules on storage quotas). However, entries more than 32
levels deep are not preserved by logical dump/logical load. (See section 4.8.)

Slave jobs may view a portion of each descriptor in a catalog, and may
obtain information about the catalog itself. The information they may see
includes information which governs access to the file, file identifiers, and so
forth. This information is summarised below, in the forms in which it can be
obtained by the READ CATALOG MME (see Chapter 5).

Information about all objects saved in a catalog may be gained by applying
a READ CATALOG MME to the catalog. The MME returns an eight word
block for each descriptor; this descriptor is not in the same format as the Execu­
tive maintains it internally, and does not provide the device addresses in each
descriptor.

Sec. 4.3] Catalog Entries 81

The zeroth entry returned on a READ CATALOG MME contains infor­
mation about the catalog itself. This information is shown in Fig. 4.6.

MAX

o

2

3

4

5

6

7

ACC

0

MAX

ALOC

0

0

PREF TYPE

NUMBER OF ENTR IES

0

LEN

pref: bits 26-31;
type: bits 32-35

Fig. 4.6 - Catalog header information.

The maximum length which the catalog may hold. This maximum and its effects
are described below.

ALOC

The current length of all objects contained in the catalog plus twer..ty words for
the catalog header, plus twelve words for each file descriptor in the catalog.
(Twelve is somewhat arbitrary, since file descriptors may range from eight to
thirty-five words long. It is chosen as a good average length.)

Every catalog contains a twenty word header describing the catalog, so the
minimum ALOC for a catalog is twenty words.

The length of each file in the catalog is added into the ALOC; but each
sub catalog has its MAX added into the ALOC. This means that changes to the
lengths of files in sub catalogs do not affect the ALOCs of all catalogs containing
the sub catalog.

Ace
The accesses with which the slave job has this catalog open.

PREF
The catalog's preference. See the discussion of preferences below.

TYPE

The file's type. Described in Table 4.2 and below.

82

#ENTRIES

The File System

The number of entries (descriptors and holes) in the catalog.

LEN

[Ch.4

The length of the catalog itself: twenty word header, descriptors, and holes.

The device addresses may be obtained by opening each object and applying
a PROVIDE DEVICE ADDRESS MME to the object. Jobs may only issue this
MME if they are Load-Dump enabled (see section 4.8), and so most jobs may
not see an object's device addresses. Since device addresses are the only way to
determine peripheral types, most jobs may not readily discover whether or not
a given catalog contains peripherals.

The descriptor is shown in Fig. 4.7.

o

2

3

4

5

6

7

NAME

~ NAME

~ PASSWORD

ACC

USAGE PREF I
DLU DLM

LEN or MAX

TYPE pref: bits 26-31 ;
type: bits 32-35

Fig. 4.7 - File descriptor.

The name is a unique identifier for this descriptor, and hence for the object it
represents. No two descriptors in a catalog may have the s,ame name, and the
name is the only identification for a descriptor.

PASSWORD
If a job supplies a password when trying to open a file, the password is com­
pared with this field, and no accesses are allowed if the password does not
match. If the access word has the slave-trapped bit set, then this field contains
the filename of a slave trap program (in the same catalog) to be run whenever
some job attempts to open this file. (See section 4.5.3 and 4.5.5.)

If the file is master-trapped, the password field is irrelevant. (See section
4.5.5.)

Sec. 4.3] Catalog Entries 83

ACC

This word contains access bits, which are used to determine how various jobs
may handle the object associated with this descriptor. (See section 4.5.2.)

USAGE

The usage field contains a count of how many different days the object associated
with the descriptor has been used since it was last modified. A file is 'used' when
it is opened. The day when the object was modified is not included in this count.

PREF
An object's preference determines which storage class its storage is allocated
from. In general, lower preference files are saved so they are faster to access, but
this is not an inherent property of preferences. They are simply a meap.::, of
partitioning storage. The various preferences and h0w they are used are:

o Allocated in memory
1 Swap storage
2 Monitor scratch files, and files in :SMCORCAT
3 Catalogs
4 - Normal scratch files
5 - Special data base
6 Normal saved files
7 - Permanent data bases

In general, if a file needs storage of some preference and none is available,
it will be allocated storage from the next higher peference which has room.

Most catalogs are preference three. MFD and SMCORCAT are preference
three to zero. However, jobs will always get preference three when they open a
scratch catalog.

TYPE

An object's type to a large extent determines what can be done to it.
The difference between a type six file and types zero through three files/

catalogs is that the device addresses for type zero through three files/catalogs
are drawn from a system-wide pool, and storage for these files forms a part of
the DTSS file system. Special catalogued files have their own preallocated device
addresses which point to storage which is dedicated to these meso

Peripherals are saved as special catalogued files, since their device addresses
point to the devices themselves. The Executive makes a special check for special
catalogued files, and does not update their lengths when data is written to them.
Also, special catalogued mes may not be unsaved or erased.

Migrated file descriptions contain no device addresses since the files they
represent have moved to tape.

84 The File System [Ch.4

DLM

This field contains the coded form of the date the object was last modified.
An object is modified when it it catalogued, its length changes, or when data is
written to it. The DLM of a catalog is modified when its MAX changes.

DLU

This field contains a coded form of the date last used. An object is 'used' when
it is opened, replaced, etc.

LENGTH (or MAX)

If the descriptor is for a file, this field contains the file's length in words. For a
catalog, this field contains the catalog's MAX as described earlier.

Associated with every catalog is a catalog maximum, which is specified
when the catalog is first created as a scratch catalog, and a catalog ALOC. The
catalog ALOC is the total length of all files in the catalog plus a small overhead
for the catalog itself. When a catalog is catalogued, the catalog maximum of the
sub catalog is added to the ALOC of the supracatalog.

A catalog's quotas are determined by the MAX wordin its header. A catalog's
MAX does not place any upper bound on its ALOC (length of its included files
and subcatalogs); rather it limits the accesses which jobs may obtain upon
opening a file when the ALOC>MAX. That is, if a job can open a file with
append permission, it can write as much data into the file as it wants, limited
only by the job's quotas (discussed in the next section).

Three cases are notable for the relations between ALOC and MAX:

(i) ALOC~MAX. A me may not be replaced if its new length would push
the allocated length over the catalog's maximum. But if a job can open
a file with append permission, the amount of data which it can append
is limited only by its job quota.

(ii) ALOC> MAX. Jobs may never get append permission on any objects
within the catalog. Objects, however, may be replaced with objects of
smaller lengths, or erased.

(iii) ALOC>(2*MAX). Files may not be opened. They may, however, be
erased or replaced with smaller files.

The catalog MAX also determines whether a user may catalog new files in
the catalog. Once a catalog exceeds its MAX, no further mes may be catalogued
in that catalog.

Jobs with special permissions may open scratch catalogs with infinite MAX's.
Infinite MAX's are flagged with the sign bit in the MAX field set; quota checks
are suspended for infinite MAX catalogs. Such catalogs may only be catalogued
within other infinite MAX catalogs, which then have the sign bit set in the
ALOC field to signal an infinite length catalog.

Sec.4.3] Catalog Entries 85

Note that scratch catalogs with infinite MAX's may be catalogued within
themselves, but may not then be catalogued elsewhere (since already catalogued).

To prevent jobs from running amok and filling all system storage with
unnecessary data by appending to files, each job has a quota of how many
words it may add to catalogued or scratch storage. For user's these quotas
are set by the monitor they are running under according to information from
validation files passed by LOGIN. These job quotas are equal to the user number
catalog quotas. (See section 4.5.1.)

The CATALOG command to SIMON [4] allows the user to display in a
variety of formats the information held in the descriptors in the catalog. Thus,
the command:

CAT All

might produce the following output:

HDK52500 27 Dec 77 16:44

Length 54268 Ha:{ 81920

.HAIL. 0 RlJAL RUAL
12127/77 12127177 0 6 SBASIC

.SIGNON. 20 RUAL RUALP
12127/77 11/29177 16 6 BASIC

C-UPDATE 826 RUAXCP RUAXCP
12127177 11/23177 16 6 SBASIC

CACHI 1498 RUAL RUAL
12123177 12122177 1 6 BASIC

RECIPES 4000 COSRUA OSRWA
12/23/77 12/23/77 0 0 ****
Storage used 51290

READY

where the entries for each file are as follows:

1. File name
2. Length in decimal
3. Letter code accesses available without a password
4. Letter code accesses available with a password

86 The File System [Ch.4

5. Date last used
6. Date last modified
7. Number of days used since date last modified
8. Preference
9. System under which the file was saved

The READ CAT ALOG MME is the Executive call which provides this
information.

4.4 THE CATALOG TREE

Since data files and catalogs may be catalogued in other catalogs, which may
in turn be catalogued in further catalogs, the fIling system as a whole has the
structure of a tree, and its known as the catalog tree. The root of the tree is the
master fIle directory (MFD) and this file is supplied to all jobs as file reference
number zero. In general, the closer a file is to the root the more likely a file is to
be a system related fIle, and, as such, likely to be available for public perusal.
The main exception is the Master User Directory (MUD), in which groups of user
numbers and user catalogs are saved. Here, since most user files are protected
against other users, it is usually impossible to get fIles from other user catalogs
without special arrangements (see Section 4.6). Fig. 4.8 shows a schematic
overview of the structure of the nTSS fIle system. Some of the more important
catalogs in the MFD are as follows:

The catalog DLIBRARY contains all fIles in the program library, including
sub libraries which are subcatalogs of DLIBRARY. PLOTLIB*** is an example
of a sub catalog within DLIBRARY.

The catalog SMSYSCAT contains the systems that may be run by Simple
Monitor for a user. The compilers for BASIC, FORTRAN, COBOL, APL, and
others are found here.

XSYSCAT is the counterpart of SMSYSCAT and contains experimental
systems. These versions of the SMSYSCAT systems are under development and
often contain new and useful features. There is usually an 'X' system for each
system in SMSYSCAT (for example, XBASIC and XFORTRAN).

PERCAT is the catalog in which the peripherals such as the card punch, the

line-printer and the magnetic tape handlers are catalogued.
The Master User Directory (MUD) contains catalogs called super groups.

Super group names are formed from the first three characters of the eight
character user number. The catalogs within a super group are called groups;
their names consist of the first five characters of a user number. Each group may
contain up to a thousand individual user catalogs. Each user catalog may, of
course, contain its own files and/~r catalogs. Other catalogs contain such fIles
as billing fIles (CAT BY), background-related fIles (BAKCAT), and monitors
(MaN).

"!j
~.

~

00
I

t:::l
1-1
00
00

~
(\)

~
(\)

?

HD4 (super-group
equals 1st
character of
user number)

MFD
(Master File Directory)

t'-l
(t)
n

~

±

;
(t)

~
~

e.
o

IJQ

~
~
(t)

00
-...l

88 The File System [Ch.4

A filename is part of the treename, since a filename shows the location of
the file in the catalog tree. A treename lists the catalogs which contain the file,
in the order in which the catalogs are encountered as you move down the tree
to reach the file, followed by the name of the file. Each section of the treename
is preceded by a colon. Thus the treenames of some of the files in Fig. 4.8 are
as follows:

: MFD:DLIBRARY: TEACHLIB: LIBCAT
:MFD :SMSYSCAT: BASIC

Since typing such long files is awkward, many parts of the system accept
certain abbreviations:

MYFILE The name of a file in the current catalog.

:MFD MFD is assumed to be the first catalog in any tree name and
thus may be omitted from a tree name. For example:

:SMSYSCAT:BASIC is short for:

:MFD: SMSYSCAT : BASIC

*** For files and catalogues in DLIBRARY. Three asterisks following
a file name indicate that the file is part of the Program Library,
DLIBRARY. Thus:

LIBINDEX* ** is short for:

:DLIBRARY: LIBINDEX

TEACHLIB*** :LIBCAT is short for:

:DLIBRARY:TEACHLIB : LIB CAT

For user catalogs in the Master User Directory. Instead of typing
the complete treename of a file saved in another user's catalog,
the user number may be preceded with an asterisk. For example:

*41734J: SURVEY is short for:

: MUD :HD4:HD417 :HD41734J : SURVEY

There is also a SIMON convention for referring to the catalog corresponding
to the user number under which the user is currently signed on, namely:

*MYCAT

4.5 SECURITY SYSTEM [5]

The objective of a security system is to allow user to do useful, legal work in an
easy and straightforward manner whilst maintaining the integrity of the system

Sec. 4.5] Security System 89

and the privacy of non-puplic information. Since everything is a file, control of
what a user can do to DTSS or on DTSS comes down to control of what a user
can do to files and in particular, what a user can do to specific files.

Because file protection needs vary greatly, there are several levels of security
with which files may be protected. Thus some protection can guard against
accidental destruction (by the owner or other users), while others can withstand
casual attempts to access or change a file, and still others can resist determined
efforts to access the file. The security system regulates the actions users may
perform on catalogs and files and controls which catalogs and files they may use.
Thus user catalogs are private in that other users may not normally retrieve files
saved in another user's catalog. Most non-user catalogs on the system are public
and users may enter them and call up files saved in them. Certain catalogs are
protected when confidentiality is required. Thus most users are unable to look
into the catalogs in which running background jobs are saved and cannot look in
sublibraries which have been protected at the request of that sublibrarian.

There are broadly five levels of protection of increasing power and these are
described below.

4.5.1 User number protection [6]

As stated above, files in user catalogs are not normally available to other users
and are only available to a user signed on under the given user number. If this is
to have any meaning in terms of security, the user numbers themselves must be
protected.

Each DTSS user has an eight-character identification code called a user
number. An arbitrary sequence of up to eight characters may be associated with
each user number; they must be supplied whenever the user attempts to sign on
to the system. This sequence is called a password; it provides an additional level
of security. At sign on, the user is asked for a user number and a password. The
password is either overtyped or entered on top of an overtyped area on the line
depending on how the user responds. This method of overprinting was chosen,
rather than echo suppressing, to deal with half duplex terminals. Since it is
possible to respond in such a way that the password is not obliterated, users may
choose a password consiting of non-printing characters. Users may not change
passwords themselves.

Some terminals have an identification device called an answerback drum,
which may be interrogated under computer control. Thus it is possible to deter­
mine the terminal from which a user is calling and to refuse him service if he is
attempting to access the system via a terminal he has not been authorised to use.

An additional control is provided by the time of day at which a user is
attempting to gain access to the system. Each user number has associated with it
a set of legal sign-on times defining those time periods during which that number
may access the time-sharing system. The sign-on times range from zero to twenty­
three in one-hour intervals, based on the twenty-four-hour clock.

90 The File System [Ch.4

The specific resources available to a user after he has successfully identified
himself to DTSS are controlled by various parameters associated with his number.

CATALOG STORAGE
The catalog storage allotment determines the amount of storage which a user or
group of users may occupy with saved programs and flies. This limit is specified
in multiples of 1024 (lK) words and may range from 0 to 65 million words.
The value MAX may be used to specify the system limit.

SCRATCH STORAGE

The scratch storage allotment determines the .maximum amount of temporary
uncatalogued storage that a user may employ while connected to DTSS. All
data in scratch storage are lost when the file is closed. This limit is specified in
multiples of 1024 words and may range from 0 to 65 million words. Scratch
quotas normally are eight times catalog quotas. The value MAX may be used to
specify the system limit.

RUNNING TIME
The running time allotment determines the maximum amount of computer
resource units (CRU) a user may obtain while executing anyone program. This
limit is specified in CRUs and may range from one second to approximately
four hours. The value MAX specifies unlimited CRUs. Internally, the number of
CRUs is stored as the log base 2 of the CRU time. If the number of CRUs
requested at validation time is not a power of two, the next higher power is
used.

PERMISSION
Each user number has a set of special permissions associated with it. These
permissions are of the on/off type, and control a wide variety of miscellaneous
functions such as the ability to use the background system, the ability of use the
Operations Monitor, the ability to use the high-speed printer, and so on. Each
permission occupies one bit position in full 36-bit word set aside for this purpose.
Table 4.3 briefly describes each of the available permissions.

Table 4.3 -Permission word entry.

Bit Name Meaning

0-5 User partition category.

The next six bits control the user's ability to use background and the various
peripherals.

6 I P$BAK I May run programs in background.
7 P$PUN May use card punch.

Sec. 4.5] Security System 91

Table 4.3 - continued.

Bit Name Meaning

8 Spare.
9 P$MTH May use magnetic tapes.

10 P$PRT May use high-speed printer.
11 P$GEC May use GECOS III simulator.

The next eight bits control miscellaneous privileges pertaining to the running
of programs.

12 P$SYS May run any system.
13 P$OPR Operator status.
14 P$LGC May use 24K memory.
15 Spare.
16 P$SLC May use 32K memory (128K in background).
17 P$PR5 May create preference 5 files.
18 Spare.
19 Spare.

The next nine bits are job access permissions. These bits determine which
privileged fIles and catalogs the user will be able to access when running a
job under SIMON.

20 A$VAL Protects validation files.
21 A$MUD Protects the Master User Directory (MUD).
22 A$BIL Protects billing catalog and files.
23 A$PER Protects peripherals.
24 A$BMC Protects background catalogs_
25 A$LIB Protects the public program library (:DLIBRARY).
26 A$MOS Protects monitor and system catalogs.
27 A$MFD Protects the Master File Directory (:MFD).
28 A$XSY Protects the experimental systems catalog.

Bits 29-35 control the user's ability to use privileged system monitors. Th~se
permissions are checked by LOGIN.

29 Spare.
30 P$FAST Allows access to the Priority Demonstration Queue

unless bits 29-33 and 35 are set.
31 Spare.
32 Spare.
33 P$NAN May access Validation Monitor.
34 P$CTY May access Operations Monitor from a control line.
35 P$SUP May access Super Monitor (a debugger).

92 The File System [Ch.4

4.5.2 Access permissions

Access permissions are the most fundamental means of protecting mes on DTSS.
They limit the actions which may be performed and facilitate selective access.

All files, including catalogs, have access permissions associated with them
that determine which operations may be performed and how the file maybe
retrieved. The permissions, their letter coge abbreviations, and meanings are as
follows:

A APPEND: Permits the user to add information to the end of the file.
In the case of a catalog this means entries may be added to the catalog.

C COMPILE: Added automatically when a me is compiled; X or R
must also be used, depending on the language in which the program is
written.

F FETCH: The flie may be retrieved by any program or system command,
even if the catalog in which the me is saved is not itself accessible (as
for other user numbers). The operations which may be performed on
the me depend on the permissions available.

G GROUP: If R permission is also present (or XC for compiled files), the
flie is available to user numbers in the same user group via the OLD
command. (A user group consists of any set of user numbers having the
same first five characters.)

L LIST: The file contains printable characters; if READ permission is
also available, it may be listed.

P PUBLIC: If R permission is also present (or XC for compiled mes), the
me is available to any user via the OLD command.

R READ: Permits the user to look at the contents of a file. In the case of
a catalog this means examine entries in the catalog.

S SHARED: Permits the me to be open by more than user for writing
(see section 4.6).

T TRAP: This specifies either that the file is a slave-trap program (when
in the protected accesses) or that it is protected by a slave-trap pr()gram
(when in the protected accesses). (See section 4.5.5 _ for more infor­
mation on slave-trap programs.)

W WRITE: Permits the user to change the contents of the file.
X EXECUTE: The me may be executed directly as machine-language

instructions; usually appears in conjunction with Compile permission.

Three permissions apply only to catalogs:

C CAT ALOG: The me is a catalog. Catalog permission can occur only
among accesses available without a password (see section 4.5.3). C
represents Compile permission when it appears as an access available
with a password or when it appears as a non-password access of a file
that is not a catalog.

Sec. 4.5] Security System 93

o OWNER: Used only with catalogs; means passwords may be read with
a READ CATALOG MME, password protection on files is ignored, and
the protected accesses are assumed to be RWAX.

S SEARCH: Used only with catalogs; allows access to files in the catalog.

No permission implies any other permission. Thus, for example, write per­
mission does not imply append permission.

In addition to the above access permissions, there are other ways in which
the system protects itself from mishap. That is, there are rules to prevent usage
conflict. These rules prevent access to partially updated information. They specify
that it is possible for any number of jobs to have a file open with Read or eXecute
permissions. However, any job. having Write permission prevents access by all
others seeking Read, Write, Append or eXecute permissions. A job which has
any permission on a file prevents access by jobs seeking Write permission.
Append prevents access by others seeking Append except when the file is a
catalog.

Table 4.4 is a list of some frequently used SIMON commands and the
minimum access permissions needed for successful completion of each command:

Table 4.4.

Command Minimum accesses required on file

LIST Rand L on current file.

OLD R (or XC for compiled files) on file to be called up. If the file is
saved in a catalog on which the user does not have search per-
mission (typically another user's catalog), then fetch, public or
group permission must also be available.

REPLACE R on current file and RWA on file to be replaced. If the file is

saved in a catalog on which the user does not have search
permission, then fetch permission must be available.

RUN R (or XC for compiled fIles) on the current fIle.

SAVE R on the current fIle; A on the current catalog.

SCRATCH None if SCRATCH without <filename>; RWA on saved fIle if
SCRATCH <filename>. If the file is saved in a catalog on
which the user does not have scratch permission, fetch per-
mission must be available in the file.

UNSAVE RWA on the fIle to be unsaved. If the file is saved in a catalog
on which the user does not have search permission, fetch per-
mission must be available on the fIle.

94 The File System [Ch.4

Thus the following are true:
• A user may not replace, scratch or unsave a file in DLIBRARY since

although the user has search permission on the catalog (to allow users to
access files in DLIBRARY) the files are not saved with RWA permission.

• A user may not in general replace, scratch or unsave a file in another
user's catalog although the file may be saved with RWA permission,
since the user will not have search permission and unless the owner of
the file has explicitly taken steps to give it, the file will not have fetch
permission. The access permissions on the current file depend on how
the current file was created. The NEW command creates a file with
RWAL. The OLD command creates a file with the permissions of the
saved file (but see section 4.5.3).

4.5.3 Passwords on files

Files may be saved with a password. This allows the user to restrict access to a
saved file. Anyone attempting to access the file may do so by specifying the file
name either with or without the password. Normally, the access permission
available to the user supplying the password is greater than to the user not
supplying the password. Indeed, it is possible to specify no access whatsoever
without the password.

The format of the SAVE command is:

SAVE [<filename>] [, < password] [;<accesses>]

The simple form of the SAVE command is without any options in which
case the file is saved with the current name, with a default password (of eight
spaces, created by SIMON) and default access permissions of RWAL both with
and without password. (The two sets of access permissions, without and with
password, are called the unprotected and protected accesses.)

Typing:

SAVE, -(pclS swol'd)

gives RWAL (the default access permission) with the password and no access
without it. Two sets of access permissions may be used to grant selective access
to password files. The two sets determine, respectively, which operations will be
allowed on the file when no password is supplied and which may be performed
with the correct password. The two sets are separated by a comma. The flie is
saved with the specified accesses, provided RWA accesses are part of one set.
Examples:

SAVE,PASS;RL,RUAL
SAVE HYFILE,PASS;RPL,RUAL
SAVE,PASS;,RUAL
The first example allows the user himself to read and list the file without

the password but the user himself must give the correct password (PASS) to
modify the file. The second example allows other users to call up the file using

Sec. 4.5] Security System 95

OLD and to list it. The last example is interpreted as no access permission
without the password.

Access permissions may be appended to the default permissions using the
SAVE command. Thus:

SAVE ;P

saves a file with RWALP, RWALP. The access permission with the SAVE command
are summarised in Table 4.5.

Table 4.5.

Accesses granted
When user types

Without password With password

SAVE DEFAULTt DEFAULTt

SAVE, password none DEFAULT

SAVE;accesses DEFAULT+acct DEFAULT+acct

SAVE, password;acc1,acc2 accl :j: acc2:j:

SAVE;octal accesses first half first half

SAVE, password; octal accesses first half first half

t For non-compiled files, DEFAULT accesses are RWAL; for compiled files, RWAXC or
RWAC is assigned instead of RWAL, depending on the system. In Basic, RWAXC is psed
for compiled programs and RWAC for compiled files of subprograms.

:j: RWA must be part of one set of accesses, unless the user has Owner permission on the
current catalog. By supplying the proper password, those in charge of sublibraries of the
program library may have Owner permission on their own catalogs.

The REPLACE command can be used to specify access permissions in a
similar way to the SAVE command. In particular the REPLACE command
can be used to change accesses. The access permissions with the REPLACE
commaIJd are summarised in Table 4.6.

Table 4.6.

Accesses gran ted
When user types

Without password With password

REPLACE UNCHANGED UNCHANGED

REPLACE, password UNCHANGED UNCHANGED

REPLACE;access DEFAULT+acct DEFAULT+acct

REPLACE;pass;accl,acc2 accl :j: acc2:j:

REPLACE;octal access first half second half

REPLACE, password accesses first half second half

t and :t: see footnotes to Table 4.5.

96 The File System [Ch.4

As shown in Fig. 4.7, word 4 of a catalog entry is the access word. It contains
information related to the operations which may be performed on the file or
catalog. The access word contains two sets of accesses; the upper half-word
represents those available without specifying a password and the lower half-word
those available if a password is supplied. These two sets have different meanings
when master-trap bits or slave-trap programs are used. See the descriptions in
sections 4.5.4 and 4.5.5 respectively for details.

The access word may be considered an octal number; the 36 bits representing
access information may be divided into two groups of six octal digits (the
two sets of accesses). In the first group are the accesses that determine which
operations can be performed on the file when no password is supplied. Usually,
the second group of accesses determine which operations can be performed on
the file when the correct password is supplied.

Each I8-bit group of access contains nine bits used by the Executive, and
nine 'user' bits used by simple Monitor. Fig. 4.9 indicates the bit positions in
the access word of a password-protected file.

c
T
-

o

Accesses without password
(bits 0-17)

Accesses with correct password
(bits 18-35)

0 A L P System - 0 A L P System
F W - G code - F W - G code
S R C - S R C
X X

3 6 9 12 14 18 21 24 27 30 32 35

Bit
Octal value Meaning for Meaning for
(bits 0-17) files catalogs

0 400000 - C (catalog)
1 200000 T (slave trap) -
2 100000 - -
3 40000 S (shared) o (owner)
4 20000 F (fetch) F (fetch)
5 10000 X (execute) S (search)
6 4000 A (append) A (append)
7 2000 W (write) W (write)
8 1000 R (read) R (read)
9 400 L (list) -

10 200 - -
11 100 C (compile) -
12 40 P (public) -
13 20 G (group) -

14-17 0-17 System code -

Fig. 4.9 - Access word bit.

Sec. 4.5] Security System 97

Several items should be noted. User bits (9 tluough 13) and system bits have
no meaning for catalogs.

Bits 21-35 of the passworded accesses have the same meaning as their
counterparts in the unpassworded accesses. Bit 18 is not used with password­
protected files. (The Catalog attribute occurs only with unpassworded accesses.)
Bit 18 has the special meaning that a file is trap-protected; bit 19 specifies the
type of trap (0 master, 1 = slave) (see sections 4.5.4 and 4.5.5).

The system code associated with a file is stored in bits 14-17 of the me's
access word. Not all systems have an assigned system code; files saved by Simple
Monitor while using such systems are assigned system code zero. For files having
system codes which have no associated system (presently codes zero and twelve),
the SYSTEM option of the CATALOG command prints **** for the system
name. Files may be saved under the systems listed in Table 4.7.

Table 4.7.

Octal code Octal code
System (bits 14-17) System (bits 14-17)

DATA 0 SNOBOL 10
BASIC 1 PL/I 11
ALGOL 2 Unassigned 12
FORTRAN 3 CPS 13
LISP 4 DXPL 14
APL 5 GMAP 15
FORTRAN 76 6 SBASIC 16
COBOL 7 DYNAMO 17

4.5.4 Master-trap programs

In order to protect system-related files, a capability based system of protection
is used. When a user number is created a number of master-trap permission bits
are assigned to it (bits 20-28 as shown in Table 4.3). These nine bits relate to
file protection. The capability system is invoked only if the master-trap bit
(bit 18) is set in the access word on a file. The inclusion of the master-trap bit
in the access word has two effects. It changes the meaning of bits 27 -35 of the
file access word (see Figs. 4.9 and 4.10) and it specifies that any attempted
access on the file will cause the master-trap program to be run. This program
compares the access bits in the file access word (27 tluough 35). The job accesses
are the logical and of (a) traps bits of file on which run was issued, (b) trap bits
in job access mask specified on the RUN MME by supra-job, and (c) job accesses
on subpra-job. If the job has all the bits specified in bits 27 -35 of the file access
word, the master-trap program grants the accesses on the right-hand side (bits

98 The File System [Ch.4'

21 through 26) of the access word. If the necessary job access bits are not
present, the accesses on the left-hand side (bits 3 through 8) are granted. Fig.
4.10 shows the one character abbreviation for the bit positions in the access
word of a trap-protected file. The meaning of each is described in Table 4.8.

Standard accesses

+ 0 A V P S
As above T F W M B I

(section 4.5.3) S R $ L X
X

o 17 18 21 24 27 30 33 35

Fig. 4.10 - Master-trap protection access word.

Table 4.8.

Bit
Octal value Letter

Meaning
(bits 27-35) code

27 400 V Validation files. Protects validation files as one
of nine bits. The reason for the protection by
nine bits is the fact that, given the ability to
change a validation file, a user may be able
to obtain any of the nine master-trap bits.
The VAL bit is used primarily to update
highly privileged modules (LOGIN, TCFACE,
OPMON, LOAD, DUMP, VAL) which need
to run with all nine bits, but by itself grants
no special privileges.

28 200 M Master User Directory. Allows owner per-
mission on any user catalog. The catalog
MUD itself is protected more heavily and
super-groups and groups within MUD are
trapped in a fairly complicated scheme which
maximises both security and flexibility.

29 100 $ Billing files. Protects billing files. This bit gives
Read permission on billing files and programs;
together with the MFD bit, it gives permission
to alter billing files.

30 040 P Peripherals. Protects PERCAT and device
files.

Sec. 4.5] Security System 99

Table 4.8 - continued.

Bit
Octal value Letter

Meaning
(bits 27-35) code

31 02 B Background catalogs - BMC. Protects files
which SIMON and other selected systems may
retrieve from a non-controlline (see below),
but which are denied to non-control line users:
for example :BAKCAT: SUBMIT and systems
which may only be run by a monitor.

32 010 L DLIBRARY. Protects files normally main-
tained by the program librarian.

33 004 S SMSYSCAT. Protects all official systems. By
itself, this bit gives Append permission on
various systems catalogs; with the MFD bit, it
permits updating official systems. No system
module should be protected with more than
the S bit, unless it specifically needs to run
with more bits.

34 002 ! Master File Directory. Protects MFD and
therefore gives Owner permission on catalogs
when combined with other trap bits. By itself,
this bit is worthless; it should not be used to
protect anything expect as one of nine.

35 001 X XSYSCAT. Protects experimental systems
and anything else which systems programmers
should be able to access (usually Read) from
a non-control line.

27-35 777 9 Protects only MUD, validation files, and those
few modules which need to run with all nine
trap bits. Use of all nine trap bits should be
rare.

In Fig. 4.10 the '+' (bit 18) specifies that a file is trapped. If both bits 18
abd 19 (+ and T) are set, a slave-trap program protects the file or catalog. If only
+ is set the me is master-trap protected.

Most users have no master-trap permissions and can do little to system
related files. SIMON is a non-privileged monitor, having only P, B and X per­
missions. Other monitors are privileged and have more permissions. In particular

100 The File System [Ch.4

OPMON, the operation monitor, is a copy of SIMON but with all nine master­
trap permissions. Since OPMON is so powerful, it must itself be protected. In
order to access OPMON two conditions must be met. Firstly, the user must have
the CTY bit in his permission word (see Table 4.3). Secondly, the user must be
using a terminal on a line designated a control line (usually restricted to two
terminals in the computer room or a secure office and thus subject to physical
security). In a similar way the validation monitor, VALMON, may only be
accessed by a user having both the NAN and CTY bits in his permission word.
Thus the security of the system is provided by a multilevel protection scheme
since a destructive user needs to know the user number and password of a very
highly privileged user and must also be using a terminal in a secure location.

A description of the scheme used to protect systems, catalogs and files
related to system maintenance is given below.

When only security is concerned, it is preferable to protect files rather than
catalogs. Read and Search permission should be generally available. MUD, the
Master User Directory, is a special case, since privacy as well as security is
necessary.

Most systems catalogs have three sets of accesses:

(i) Those available to anyone (usually CSR).
(ii) Those available only to authorised personnel, possibly on a non-control

line (usually CSRA)o
(iii) Those available only to authorised personnel on a control line (COSRWA).
Everything is trapped, noting the possibility of giving all trap bits except V,

M, B, and ! bits to non-control line users. Currently only XSY and PER are
available to non-control line users.

To do this, the Master File Directory (MFD) is trapped CSR, OSRWA+! and
other catalogs in the MFD are trapped CSR, SRA+<appropriate bit>. This
results in a three-tier access system if all control line users had the MFD bit.

Note that if a user is able to obtain Owner permission on MUD (that is, he
has all nine trap bits), all accesses are allowed on all structures below MUD.

MUD is a special case because it contains validation files. The ability to
examine or alter validation files effectively gives access to all bits (assuming a
control line is available). Therefore, consistency requires that these files be
protected with all bits. Since the ability to create new groups and supergroups
gives the ability to create validation files, MUD and supergroups must be
Append-protected by all bits. Anticipating the possibility of password user
catalogs with the password of the user number, Owner permission on groups
must be protected by all bits. The substructure within MUD is:

: MUD CSR OSRA+9
:MUD:DEFAULT R RWA+9
:MUD:*X C SR+M
: MUD: *XOO CSR SR
*XOOOOO COSRWA OSRWA
Validation file *** RWA +9

Sec. 4.5] Security System

Optionally, some groups and user numbers may be saved as:

*xooooo
*XOO

COSRWA FSRA (passworded user catalog)
CSR FSR (passworded group)

The following permissions are available:

101

(i) With no bits and no passwords: SR on MUD, Ron :MUD:DEFAULT.
(ii) With user catalog password: SRA on user catalog.
(iii) With group password: OSRWA on user catalogs in the group.
(iv) With the MUD bit: OSRWA on all user catalogs; SRon all substructures.

Catalogs in DLIBRARY are trapped in essentially two manners. Sublibraries
which are maintained by persons other than the program librarian are saved:

CS[R] OSRA (passworded)

[R] indicates that Read permission is optional. Sublibraries maintained by the
program librarian are saved with:

CSR [O]SR[A]+ L

Note that this also results in a three-tier scheme; those catalogs saved CSR
SR + L can only be modified by persons with the Owner (MFD) bit as well as
the Library bit. Information catalogs in SMSYSCAT are trapped:

CSROSRA+L

so that the librarian may alter mes in them without the official systems bit
which protects SMSYSCAT.

A typical accesses and protection system for mes is as follows:

(i) Files which contain 'programs' (source, object code, or instruction
input) are Write-protected by any trap bits that the program ever runs
with. This may take the form of protecting the catalog in which the
file is saved.

(ii) Files critical to the system are Write-protected by one of the following
bits: MUD, VAL, or MFD. These bits should never be available from a
non-control line.

(iii) Files are no more heavily protected than is necessary; no bit should be
added without careful consideration.

(iv) Due to the Executive's attempt to enforce (i) above, a me which is'
executed must be directly protected by all the bits it ever runs with.

While it is impossible to examine all the possible kinds of files on the system,
there are two main categories: system and information meso

It is possible to get a copy of any module on the system (to load under DDT,
for example) given only the XSYSCAT bit, but official systems are protected

102 The File System [Ch.4

from modification from non-control lines. Most modules are available without
the XSYSCA,T bit.

The following are typical ways of protecting systems:

(i) XC, RX + X. Official system where protection of 'trade secret' infor­
mation is deemed more important than allowing non-systems pro­
grammers to load it under DDT. Note: This cannot be done for systems
which 'go pure' (specify that a section of their code will not be modified
during the system's execution).

(ii) RXC, RX + X. Official without 'trade secret' protection.

Note: The two preceding accesses without the C bit indicates Run per­
mission is needed to be able to run the system.

(iii) RXC, RX + X[P] [B]. Official system which requires peripherals or
BMC. bit. If any such system must be protected for proprietary reasons,
a second copy should be saved Read-protected by only XSYSCAT
permission.

(iv) [R]X[C], RWAX + X[P] [B]. Experimental system (in XSYSCAT).
Should have [R] and [C] if the official version does.

(v) Privileged systems and monitors: [R]X RX +bits with which the
module runs. Copies might be made of those which are Read-protected
with more than X.

Representative information files are billing files, library programs, explain
files, etc. With a few exceptions, information files are protected by only a single
trap bit, if that. Typical file accesses are:

***[L]
R[L]

R[L]

R+$
R[L]
RWA+9
RWA+X

Confidential billing files
library files
Validation files
Experimental run-time packages

The overall trapping scheme is based on a few general concepts:

(i) The system should be secure. All files on which the system and its users
depend should be subject to modification only by a properly validated
user on a control line. Privacy of users should be similarly protected.
Access to proprietary information (important object modules) and all
systems resources should be protected by at least a password.

(ii) The protection system should be flexible. One should be able to create
user numbers with limited but useful domains; almost no one should
need all nine trap bits to get work done.

(iii) The system should be useable. Any use of the system which does not
comprise system reliability, user privacy, or proprietary information
should be allowed. Nothing should be protected without a good reason.

Sec. 4.5] Security System 103

(iv) The protection system should be consistent. No user should be able
to use his authorised trap bits(s) to get other unauthorised trap bits
indirectly.

4.5.5 Slave-trap programs

Slave-trap programs provide a sophisticated means of protecting saved files; they
allow users to associate with a file a personalised algorithm for determining
permissible accesses. A slave-trap program is a directly executable file which is
run by the Executive before any accesses are granted on the file being opened.
The slave-trap program receives information about the job attempting to open
the file for use in deciding which accesses to grant. Upon termination, the slave
trap informs the Executive of the accesses to grant on the slave-trapped file. This
feature was implemented to allow sophisticated file protection.

The following is a sample session in which a user saves two files, FILEI
and FILE2, which are to be slave-trap protected by the slave-trap program
TRAPPROG. The trap program grants Read and Fetch permissions to any job
requesting the file, but allow Fetch, Read, Write, and Append to user *C38734.
It also records information about the conditions under which the slave trap was
run. The trap program uses a subprogram in the library, SYSLIB***: TRAPSUB,
to obtain the necessary information and grant the desired accesses.

The following sequence calls up the source for the slave-trap program and
lists it:

OLD "TRPSOURC
READY

LIST

TRPSOURC 05 OCT 77 10:57

100 Library "SYSLIB***:TRAPSUB " Jlnsert utility prograM
110
120 ReM Get file naMe, password, user nUMber
130 ReM accesses requested, access type
140
150 Call "STINFO": N$,P$,U$,R~"U

160
170 ReM Set access to allow Read, Fetch
180
190 Let A$="RF"
200
210 ReM Check for our favourite user
220
230 If U$OIHDC3B734" then 290
240
250 ReM Also give hiM Write, Append
260

104

270 Let A$=A$ $ "~A"
280

The File System

290 File 1t1:"*C38734:LOG " 'Open our output file
:300 Print 1t1
310
320 ReM Save file naHe, password, user nu~ber
330 ReM for SiMplicity, password is not checked
340 Print 1t1': N$,P$,U$
350
360 ReM Save Access request, type, granted
370
380 Print 1t1: R$,T$,A$
390
400 ReM Record date and tiMe
410
420 Print 1t1: DAT$,CLK$
430
440 Call "STTERN": AS 'Tell the Executive what to allow
450 End

[Ch.4

Since a slave-trap program must be able to be executed directly, the source
must be compiled and the compiled version saved as the trap program.

COMPILE

TRAPSOURC 05 OCT 77 11:08

COMPILATION SUCCESSFUL
READY

SAVE TRAPPROG;TRYA,RUA
READY

The most significant access specified in the preceding example is the ~T'
(Slave-Trap) which, when placed in the unprotected accesses, as above, means
that the file is a slave-trap program. No other accesses are necessary for the file
to be a slave-trap program. Other accesses are only necessary if the slave-trap
program is to be accessed in any other way (via the OLD command in Simple
Monitor, for example). Read, Write, and Append permissions in the unprotected
accesses allow the user to un save or change TRAPPROG as necessary. This is
useful while debugging the slave-trap program. When debugging is complete, the
slave trap can be used to protect itself by resaving it with the accesses T,TRWA,
specifying itself as the slave-trap program.

Next two slave-trap-protected files are saved. For clarity, password over­
printing is not shown.

NEU FILE1
READY

Sec. 4.5]

SAVE, TRAPPROG;,TFRUA
READY

liEU FILE2
READY

SAVE,lRAPPROG;,TFRUA
READY

Security System 105

The access T on the right-hand side of the access word indicates that FILEI
and FILE2 are slave-trap protected. This gives their passwords special meaning.
Instead of being the password associated with the file, they specify the name of
the slave-trap program protecting them, which must be saved in the same catalog.
The remaining accesses on the right-hand side are the maximum accesses which
the slave-trap program may grant and this will be checked by the Executive.
Unprotected accesses are those which will be granted without running the
slave-trap program. They are left null (empty) here so that the slave-trap will
always be run. It would, for example, seem reasonable to save a file with Read
and Ust on the left hand, and TRWA on the right, to allow the file to be called
up without running the slave-trap. However, due to the way Simple Monitor
opens files, both R and X should be supplied on the left to avoid running the
slave-trap program. It is also necessary to specify desired user bits on the left
side, as they may not be included on the right (where they are master-trap
bits).

Given below are the results when FILEI is accessed by user C38734 and
FILE2 by C77800; the output file is also listed. Note that FILEI, FILE2 and
TRAPPROG are saved in user catalog C38734.

USER NUHBER--C38734,
NEU OR OLD--OLD FILE1,PUD1
READY

HELLO

USER NUHBER--C77800,
NEU OR OLD--OLD *C38734:FILE2,PUD2
READY

HELLO

USER NUHBER--C3B734,
liEU OR OLD--OLD LOG
READY

LIST

LOG 05 OCl 77 11:37

106 The File System [Ch.4

FILE1 PUD1 HDC38734
PXR OPEN RFUA
10/05/77 11 :20: 1 0

FILE2 PUD2 HDC77800
PFXR OPEN RF
10/05/77 11 :21: 30
READY

Note that the 'P' in the list of accesses requested for each file specifies that a
password was requested.

If a file is to be opened, and the requested accesses are not available from
the unprotected accesses of the file, the slave-trap program associated with the
file will be run, if one exists. There is one exception to this rule: programs with
all nine master trap bits which have Owner permission on a catalog may be
granted all permissions and bypass the slave trap. Slave-trap protection of a
catalog is usually irrelevant as files saved in the catalog may be 'Fetched' without
causing the slave-trap program to be run.

Due to the special manner in which a slave-trap program is run, it is passed
limited information. The slave trap may, however, determine the following
information about attempted accesses to a file:

(i) The name of the file being opened and the password supplied in the
attempt to open it;

(ii) The accesses requested by the opening job, including password check
request bit and the Fetch bit if Fetch is needed;

(iii) User number from which the open attempt is made;
(iv) Type of open (MME number).

To reduce the overhead caused by slave-trap programs, limitations are placed
upon the actions which a slave-trap program may perform. A slave trap may use
a maximum of one CPU second, may catalog a maximum of 2048 words, and
may utilise a maximum of 10240 words of scratch storage. The limit on job size
is 16K words of memory. Master-trap bits are limited to those possessed by both

'the opening job and the saved slave-trap program. The slave-trap program is
passed one scratch file when run but no current catalog. In the case of BASIC
slave-trap programs, this means simply that:

(i) PRINT statements will not appear on any teletype, but will be written
to scratch storage (effectively discarded), unless the PRINT statement
specifies the file number of a file which the BASIC program has opened
using a FILE statement; and

(ii) The argument of FILE statements must specify tree names.

In any case where the slave-trap program does not run to completion, it is
assumed that the slave trap disallowed all accesses. Once the trap has run, the

Sec. 4.7] File Migration 107

unprotected accesses are not available; whereas for master-trap protected files,
the unprotected accesses are granted if it is not possible to get the prote'Cted
accesses due to insufficient job access permissions.

4.6 FILE SHARING

One of the advantages of a time-sharing system is the ability to share programs
and data amongst users to the benefit of all. The previous section emphasised
how to control file access and indicated that the default accesses on a file
created by a user protected that file from all other users. However, if the file is
saved with P, G or F then the file may be read by other users. Public files are
made accessible by giving all users search permission on the catalog.

The reading of a file by a number of jobs at the same point in time is trans­
parent to those jobs. Thus many jobs may have a file open for reading without
interference since the Executive creates a file control block for each job using
the file (see Fig. 4.3), and each read pointer will keep track of where each job is
in the file. Unless a file is saved with shared permission it may be open by only
one job for writing. If a job has a file open and another job attempts to open the
file for writing then the second job will not be granted access. However, if a file
is saved with shared permission then more than one job may access the file
simultaneously including one or more jobs performing write operations. In such
a situation, the integrity of the data read or written is a function of the various
jobs using the file. This facility permits the implementation of multi-job trans­
actions on a file at the users own risk.

4.7 FILE MIGRA nON

In order to minimise the amount of disc storage required to run a DTSS system,
a file migration system is provided which copies files from disc to tape. The
migration system automatically copies files which have not been used for a
system specifiable period of time, from disc to tape. A user may also request
that named files of his own be migrated in order to reduce his use of catalog
storage, using the MIGRATE command. All migrated files are catalogued in the
users catalog and the CATALOG command indicates a file has migrated by
enclosing the name in parentheses when it prints it. Migrated files can be recovered
using the RECOVER command. Both the RECOVER and MIGRATE commands
have options which allow the user to find out which files are waiting to be
recovered or migrated, and to cancel the request to migrate or recover one or
more files.

The migration system is in two parts. One part runs under SIMON in response
to MIGRATE and RECOVER commands. This builds two files, one with a
list of migration requests and one with a list of recover requests. The second part
runs under OPMON. The restore module is run by the operator and processes the

108 The File System [Ch.4

file of recover requests. The migrate moldue is run by the operator and does two
things; it processes the migration request file and it runs another job which
climbs through the catalog tree migrating unused files. This is shown in Fig. 4.11.

SIMON

RESTORE MIGRATE

Fig. 4.11 - File migration system.

4.8 FILE SYSTEM BACKUP [7]

In order to minimise the effect of destruction of part or all of the filing system,
it is useful to checkpoint the system at regular intervals. There are three types of
checkpointing available. Full logical dump, where the entire catalog tree is
copied from disc to tape; incremental dump, where those files and catalogs
which have changed on or after some specified date are copied to tape; and
selective dump, where individual branches of the catalog tree are copied to tape.
The logical dump program used to do the checkpoint is called LDUMP and is
run under OPMON. Since LDUMP needs all nine master-trap permissions to
access all files, and since it is not desirable to give the operator all nine master­
trap permissions on his user number for security reasons, OPMON treats LDUMP
(and LOAD) in a special way. In order to run LDUMP the user must be on a
control line and must have the operator bit set in his permission word. If these
two conditions are met LDUMP is run by _OPMON with all nine master-trap
permissions regardless of the master-trap permissions of the user. Since running
LDUMP (and LOAD) is the only time an operator needs all nine trap bits

Sec. 4.9] References 109

(typically an operator needs the MUD bit to load files from cards into a users
directory, PER to operate tapes, and XSYSCAT to access experimental systems)
this improves system security.

The logical load program to recover files created by LDUMP is LOAD.
LOAD runs under OPMON and is designed to recover all or parts of the catalog
tree from tapes produced by LDUMP. Thus LOAD may be used to carry out a
full load of the entire catalog tree, or a selective load. This latter option is useful
in the event of files lost through user error.

4.9 REFERENCES

[1] Pedersen, L. C. (October 1975), 'Basic DTSS File System Concepts', DTSS
System Memorandum 214.

[2] Brinch Handen, P. (April 1970), 'The Nucleus of a Multiprogramming System',
CACM, Vol. 13, No.4.

[3] Elliot, B. (July 1977), 'DTSS Catalog Structure', Internal Memo.
[4] Fernandez, G., Mather, D., and Smith, L. (January 1977), 'The CATALOG

Command', DTSS Technical Memorandum 041.
[5] Fernandez, G., Franklin, H., and Kaufman, C. (January 1976), 'File Accesses

on the DTSS', DTSS Technical Memorandum 102.
[6] McGeachie, 1. S. (March 1975), 'Validation Monitor User's Manual', DTSS

Technical Memorandum 093.
[7] Keirn, 1. (November 1973), 'Logical Dump and Load', DTSS Technical

Memorandum.

CHAPTERS

Master-Mode Operating System

5.1 EXECUTNE'S VIEW OF A JOB

As stated in section 22.1, the Executive provides a virtual machine for each job
which consists of a slave-mode processor, a contiguous area of memory starting at
location zero, access to a number of files such as the current file and the current
catalog, and access to a clock. This represents the job's view of itself. The
Executive's view of a job is held in a number of places - the Executive job table,
Executive queues, and the job's state vector. The state vector was described in
Chapter 4 and the Executive queues will be discussed in section 5.5. The main
information held by the Executive about a job is contained in it's job table.
The job table is typically one hundred and twenty-eight entries long, with each
entry occupying sixteen words.

There is not a one-to-one correspondence between users and jobs (and hence
job numbers). A user only generates a new job, and hence needs an entry in the
Executive's job table, when SIMON does not contain the code within itself to
carry out the service requested by the command. Thus whilst a user is typing
in text to the current file, or issuing commands such as LIST, OLD, NEW,
RENAME, SAVE, and REPLACE, only the single entry in the job table for
SIMON, shared by all users running under SIMON, is required. Only when the
user issues commands such as EDIT, CATALOG, and RUN is a new entry made
in the job table; when the user returns to the ready-state following the completion
of such a command the job number is returned to the Executive for re-use by
another job. The twenty-two items (packed into sixteen words) in the job table
for each job are as follows:

1. User number of user attached to this job.
2. Length of job.
3. Location of job in memory.
4. Requested length of a swapped-out job.
S. Length of job's state vector.
6. Location of job's state vector.

112 Master-Mode Operating System [Ch.5·

7. Requested length of job's state vector.
8. Job number of supra job.
9. Address of swapped-out job.

10. Scheduling number.
11. Time at which to give real· time timer trap.
12. Time until run-time timer runout.
13. Total accumulated run·time.
14. Job type.
15. Pure procedure information.
16. Count of number of I/O operations which must complete before job

may be swapped (number of master holds).
17. Count of number of traps which must occur before continuing (number

of roadblocks).
18. Link on run queue.
19. Head of queue of Executive tasks for this job.
20. End of queue of Executive tasks for this job.
21. Head of queue of locked·out copies.
22. End of queue of locked-out copies.
23. Flag to indicate the job needs service.

The first thirteen entries are fairly obvious and will not be discussed further.
The job bits indicates the special privileges a job has and the maximum it may
have. The eight privileges are:

• Monitor privilege indicating a job runs at monitor level and influences the
scheduling of the job.

• Core resident privilege enables the job to be locked into memory and not
swapped.

• large state-vector privilege allows the job to have a larger than usual state
vector.

• Special catalog privilege needed by login to create new user catalogs.
• Load/dump privilege needed by LOAD and LDUMP.
• PDQ privilege ensures the job runs at very high priority.
• Crash privilege means that if the job aborts the system should be crashed.
• Log to console privilege allows a job to send messages to the operators

console; needed by background system to tell operator to mount tapes
etc.

Item 15 relates to the feature of being able to specify that a contiguous
section of a job's address space consists of pure procedure and hence need not
be swapped out since a copy will exist on the swapping device. The master hold
count is the number of I/O operations in progress to/from the jobs memory. The
roadblock count is the number of traps to wait for before continuing the job.
A job may be roadblocked without being master hold (for example, waiting for
an open to complete) or it may be master hold without being roadblocked (for

Sec. 5.2] Job-Executive Interface Mechanism 113

example, LDUMP writing to tape at the same time that it is running. Item 18 is
used to hold linkage information when the job is linked into the run queue (see
section 5.5). Item 19 and 20 are used by the Executive to maintain a queue of
tasks for this job to be carried out when the job is next serviced. Items 21 and
22 are used by the Executive to maintain a queue of copies outstanding for this
job. In general, the COPY MME (see section 5.2) will take place if the job is in
memory or swapped out but will be suspended if the job is in the process of
being swapped. This queue records copies which the Executive attempted to
service during the swap. Item 23 is a flag to indicate that the job is waiting for
service.

5.2 JOB-EXECUTIVE INTERFACE MECHANISM [1], [2]

When a slave job is in execution, it may perform any legal slave mode operations.
Whenever a processor leaves slave mode, the Executive gains control. The way in
which the processor leaves slave mode may signal the Executive that certain
actions or tasks are requested by the slave job. The job cannot perform these
tasks itself because it is in slave mode. Through the software features known as
traps, slave faults, and special interrupts, the Executive may, more or less at its
own initiative, convey information to the job. A slave mode fault vector at the
beginning of each job aids in this communication.

A job actually running (executing instructions) is not affected by the
Executive, except as noted below.

The base address register (BAR) limits memory references by the slave job.
The base portion of the register is set according to the location of the job in
memory, and may be reset by the Executive at any time that the job is inter­
rupted (is not actually executing instructions). The length portion is set according
to the length of the job, and changes only when the job issues a MEMORY
REQUEST MME.

The timer register is set according to the needs of the Executive, and may
change any time the job is interrupted. The slave job should not therefore depend
on the setting of the timer register.

An I/O activity requested by the job may proceed concurrently with its
execution. (I/O is requested with Executive calls, as described below.) A slave
job should not reuse an I/O buffer until it has been notified by the Executive
(by means of a trap) that the previously requested I/O has been completed on
that buffer.

The Honeywell 6000 hardware provides two general methods for leaving
slave mode: execute interrupts and faults. Execute interrupts cannot be generated
by a processor in slave mode. Certain types of faults can be generated deliberately
by a slave job; other types are due to outside causes. The action taken by the
Executive will depend on the type of interrupt or fault, and possibly on the
state of the job)s registers and memory when the fault occurs.

114 Master-Mode Operating System [Ch.5

Certain types of interrupts are normally transparent to a slave job. That is,
the job is restarted after the interrupt with all its memory and working registers
preserved, so that it need not even be aware that the interrupt occurred. Included
in this category are all execute interrupts, connect faults, timer runout faults,
and startup and shutdown faults. These events are not completely undetectable
by the slave job, though. Any time a job is interrupted, including transparent
interrupts, the Executive may take advantage of its opportunity to give a pending
trap, slave fault, or special interrupt (see below). It may also modify the BAR or
timer register as previously described.

If it is imperative to the slave job that not even these events occur, it may
prevent all transparent interrupts by the use of the inhibit bit. This hardware
feature prevents any of the transparent interrupts from occurring.

Slave jobs may request services from the Executive via the MME (Master
Mode Entry) instruction. The address field of the MME instruction contains a
code for the type of service to be performed, and the job's registers and memory
contain any additional parameters necessary.

Executive calls are of two types: non-trapping and trapping.

5.2.1 Non-trapping Executive calls

The action requested by a non.trapping call is performed by the Executive
before the slave job regains control. From the point of view, of the slave job, its
action is instantaneous. The action may include the modification of the slave
job's registers or memory, Examples of non-trapping MMEs are:

TIME OF DAY The current time of day in ASCII is loaded into a
pair of the slave job's registers.

JOB TIME The running time for the slave job is loaded into a
register of the slave job.

PAUSE The slave job is suspended until n (one of the par­
ameters of the PAUSE MME) traps have occurred.

MEMORY REQUEST Provided the request is within the memory limit of
the job, the base address register will be changed
to reflect the requested size.

5.2.2 Trapping Executive calls

Trapping MMEs are used to request Executive services which may require a
significant amount of time to perform, such as input/output requests. The
contents of index register six (X6) specifies the address of a trap block. When
the Executive responds to a trapping MME, it records the parameters associated
with it, including the address of the trap block. The service requested is then
initiated (if all the parameters were correct) and control is returned to the slave
job at the instruction immediately following the MME. The slave job may
continue processing, modifying any registers as necessary, and issue other trapping

Sec. 5.2] Job-Executive Interface Mechanism 115

or non-trapping MMEs. When the requested service has completed, the Executive
will notify the job by giving it a trap at the address specified in X6 at the time
the MME was issued.

The following sequence of events occurs when a slave job is trapped upon
completion of a trapping command:

(a) execution of the slave job is suspended;
(b) two words of status information are stored in the first two words of the

block pointed to by the slave job's X6 when the command was issued;
(c) the current value of the slave job's instruction counter (IC) and indicator

register (IR) are stored in the third word of the trap block; and
(d) the slave job is restarted at the fourth word of the trap block.

A trap block may contain any sequence of instructions starting in the
fourth word. This trap routine should end with an return instruction whose
address field points to the third word of the block in order to resume execution
of the code interrupted by the trap.

Normally, the code from the fourth word onwards will interrogate the status
information to determine the degree of success of the operation.

The general format of the status information is as follows:

Access (bits 0-8 of status word 1).

On access error (status 100), gives the access bit needed for successful com­
pletion of the command.

On OPEN, RELINQUISH, and REPl:ACE, gives the access with which the
file is open.

On RUN, EXECUTE and CONTINUE, gives termination access of infra job.

Zero in all other cases.

Status (bits 9-17 of status word 1).

o Successful.
20 Sta tus was reset.
40 Quotas exceeded.
60 System out of storage.
100 Access error.
120 Busy.
140 A register parameter error.
160 Q register parameter error.
200 XO parameter error.
220 Xl parameter error.
230 X2 parameter error.
260 X3 parameter error.
300 X4 parameter error.

116 Master-Mode Operating System

320 X5 parameter error.
360 X7 parameter error.
400 Recoverable error.
420 Unrecoverable error.

File reference number (bits 18-35 of status word 1).

On OPEN, gives file reference number of opened file.

[eh.5

On copy type commands, gives device status for recoverable errors (status
400) or device copies.

Zero in all other cases.

STATUS WORD 2

Typically used to return the length of a file or the number of words transferred.
A PAUSE MME may be used by a slave job to wait for an outstanding trap

to occur. All trapping MMEs (with adresses in the range 500100-500135)
have corresponding MMEs (with addresses in the range 500200-500235) which
function the same as their 100 series counterparts but also issue an automatic
PAUSE for one trap. This facility alleviates the need for a wait routine in some
non-multiprogramming jobs. The technique used by multiprogrammed jobs such
as SIMON is discussed in section 6.3.

5.2.3 The ERASE Executive call

As a simple example of a trapping MME, the ERASE MME is described. This
MME is used to delete a file/catalog from a specified catalog. The parameters
required are:

XO File reference number of initial catalog to search.
Xl Points to name of file/catalog to erase.
X3 Points to password (or is zero).
X4 (bits 0-8) must be zero (bits 9-17) trap bit mask.
X6 Trap location.
X7 Number of entries in tree name (if zero, then 1 is assumed).

The ERASE command attempts to open the specified file/catalog (with the
specified password if X3 is non-zero and without a password otherwise) in the
specified catalog with read, write, and append permissions. If it is successful it
then destroys the file/catalog together with its catalog entry.

Catalog quota checks are suspended for the ERASE command, hence,
it can be used to destroy files in catalogs whose quotas have been exceeded.
Conflict checks with accesses currently held by other jobs having the given file/
catalog open are suspended for all accesses except write. An ERASE command
may therefore be used to destroy a file/catalog which is open, provided that it
is not open with write access.

Sec. 5.2] Job-Executive Interface Mechanism 117

Upon completion of the command a trap occurs to the location specified
in X6.

The status returns of the ERASE MME are given in status word 1 as follows
(status word 2 is set to zero):

o Successful: the file/catalog was erased.
2 Lockout: the file/catalog is currently in use with write permission.
3 The desired file/catalog was not found in the searched catalog.
4 Protection violation: the specified password was wrong.
5 Fail: job could not have obtained read, write, or append permissions.
6 Bad tree name: search permission was available on some intermediate

catalog and the next entry in the tree name was not the last entry, but
was the name of a file which was not a catalog.

7 Fetch error: either (a) an error of type 3,4,5, or 6 occurred and search
permission was not available on the catalog in which the search was
being performed; or (b) search permission was not available on the
(N-I)st catalog and fetch permission was not available on the file.

11 ERASE disallowed: the name me/catalog is a device file.
120 Busy: another command is outstanding on the catalog.
200 XO parameter error: XO does not contain the file reference number of

a catalog.
220 Xl parameter error: the pointer to the name is out of bounds.
260 X3 parameter error: the pointer to the password is out of bounds.
300 X4 parameter error: bits 0-8 of X4 were non-zero.
320 X5 parameter error: X5 was non-zero.
360 X7 parameter error: X7 was greater than 10 (maximum of 10 names in

the list of entries pointed to by Xl).
400 Recoverable error: an error occurred in reading the catalog.
420 Unrecoverable error: information in the catalog has been destroyed.

5.2.4 The EXECUTE Executive call

A more complex MME is the EXECUTE MME. A simplified description of its
action is given below. The parameters for EXECUTE are:

XO File reference number of source file (binary image).
Xl Length of scratch area to append to source file.
X3 Partitioning category (bits 12-17).
X3 Job type (bits 0-8).
X4 Maximum amount of memory job is allowed.
X5 Pointer to run list.
X6 Trap location.
X7 Pointer to 8-word block containing job's initial registers.
A Time allowed to job.
Q Job access mask.

118 Master-Mode Operating System [Ch.5

The source file, which must be open with execute permission, is run as a
new job for the amount of time specified and with the files in the run list open
for it. The new job is started at location zero with the specified registers and
with all indicators off except the zero indicator, which is on.

A job file is created for the new job, and its file reference number is returned
in bits 18-35 of status word 1 of the trap block specified by X6 before execution
of the creating job is resumed. The job file retains all the accesses possessed by
the source file, and remains open until closed by the creating job.

The amount of memory with which the spawned job is run is determined
as follows: the length of the source file is rounded up to a multiple of lK(1024
words) and to this length is appended the length of the scratch area specified in
Xl, also rounded up to a multiple of lK. The spawned job can issue a MEMORY
REQUEST to change the size of its memory, but can request no more memory
than the minimum of the amount specified in X4 and the amount of memory
allowed to the job which issued the EXECUTE command.

Bits 0-8 of X3 are ANDed with the job type bits allowed to the job issuing
the EXECUTE to form the permissions allowed to the spawned job. (See the
description of the type bits in section 5.1 for a list of these permissions.) At
the time the job is run, the large state vector and permissions are automatically
enabled if they are allowed. The spawned job must enable itself for any other
allowable permissions by issuing an ENABLE command.

The run list pointed to by X5 must be at least five words long and be termin­
ated by a zero. The first two words in the run list are the identifying words for
the spawned job. These words can be read by the spawnedjob and all jobs which
are run below it by issuing a REQUEST STATUS on file reference number O.

The third and fourth words of the run list limit the number of words that
the spawned job can append to catalogued and scratch files. These limits should
be less than the limits of the supra job. If they are not, the Executive will
substitute the supra job's limits. The limits actually passed to the spawned job
will be indicated to the supra job in the third and fourth words of the run list.
If any file operation issued by the spawned job results in a situation where
these limits are exceeded, then that operation will be trapped with a status
return of 40 (quotas exceeded). The catalog and scratch word allotments for
the spawned job are subtracted from the corresponding allotments for the
spawning job. Upon termination of the spawned job, the job which ran it will
have its catalog and scratch word allotments incremented by the allotments
remaining for the terminating job.

The remainder of the run list contains a list of file/catalogs to be passed
to the new job. A zero word indicates the end of the list. Each word in the list
contains the following information:

Bits 0-8 Access to pass with file.
9-17 Preference (for created file).

18-35 File reference number or zero.

Sec. 5.2] Job-Executive Interface Mechanism 119

The nth word in this list causes the file/catalog with the file reference
number specified in bits 18-35 to be passed to the new job with the access
specified in bits 0-8. In the new job this file/catalog will have file reference
number n. If the file reference number in bits 18-35 is 0, then a file will be
created and passed to the new job. If bit 1 of the access is 0, then a scratch file
will be created with the preference specified in bits 9-17 and passed. If the
return bit is set in the access for a created scratch file then the file reference
number of the file for the creating job will be returned in bits 18-35 of the run
list entry before execution of the job is resumed.

Files which have been passed already or which are currently busy cannot be
passed to the new job. The file reference number of a file which has been passed
without the return bit set becomes invalid. Files which are passed with the
return bits set become busy until they are returned by the spawned job (except
for communication files). A file which has the return bit set in its access must be
passed with the return bit set. A scratch file which is passed without the return
bit set automatically has all accesses set for the new job. As opposed to files
passed by the PASS command, no messages accompany files passed through
the run list. The current setting of the read/write pointer for a file/catalog is
preserved when it is passed.

The job access mask of the issuing job is ANDed with the job access mask
specified in the Q register to form the access mask for the new job. The bits in
this access mask have the following significance:

Bits 0-9 Not used.
20-28 Permission bits for master trap program.
29-35 Specify which preferences may be assigned when creating scratch

file/catalogs.

The job file for a successfully spawned job remains busy until a trap occurs
to the location specified in X6. The lower half of status word 1 contains the file
reference number of the job file. Status word 2 contains the total running time
accumulated by the spawned job and any jobs which ran below it. The trap
occurs whenever the time allotted to the spawned job is exceeded, status is reset
'on the job file, or the job terminates or is aborted.

S.2.S Trap-handling code

Most non-multi programmed slave jobs wait after issuing a trapping Executive call.
The following sequence of instructions is typical:

EAX6
STZ
MME
INHIB

TRAP
2,6
(type)
SAVE, ON

Load X6 with address of trap block.
Clear trap block return word as flag.
Issue trapping Executive call.
Set bit of following instructions to inhibit interrupts
(whilst testing flag).

120

SZN
TNZ
LDXS
MME

INHIB
TRA
LDXO
ANXO
CMPXO
TNZ

•

Master-Mode Operating System [Ch.S

2,6
*+4
1,DU
PAUSE

RESTORE
*-R
TRAP
=0777,DU
GOOD,DU
ERROR

Check return word.
If not zero, trap has sprung.
Load a pause count of 1.
Wait for one trap, since this returns control to
Executive interrupts no longer inhibited.
Following instructions will not have inhibit bit set.
Check flag again.
Pick up status word 1.
Mask status field.
Check for expected status.
Go analyse error.

• remainder of program

•
TRAP: BSS 2

BSS 1
Two status words.
Return word.

RET *-1 Return immediately from trap.

This routine always waits after issuing an Executive call. Note that the trap
routine returns immediately through the return word, and the main routine
checks the status words. The return word is also used as a flag, since the Executive
will not put the IC/IR into this word until it springs the trap.

Note that INHIB ONis not a machine instruction but an assembler directive
which causes the inhibit bit to be set in assembled words following it up to an
INHIBIT RESTORE directive. Thus if the TNZ *+4 causes a transfer it will be
to an instruction without its inhibit bit set.

5.2.6 Fault handling

Since not all address fields of a MME instruction are defined and since it is
possible to pass invalid parameters on an Executive call (such as a trap address of
zero) the Executive needs a mechanism for informing the slave job that such'
a situation has arisen. Since the trap address may be the problem it is not possible
to handle this through the status return in the trap block. Moreover, such faults
are part of a large class of faults which a job can generate. To facilitate the
communication of the occurrence of a fault to the slave job which generated it,
each slave job has a forty (octal) word block, called the slave fault vector. This
block occupies the first forty words of the slave job's memory, and is divided
into two-word fault cells.

When certain faults occur, they are returned to the slave job which generated
them as slave faults. To give a slave fault, the Executive stores the job's IC and
IR registers at the time of the fault into the first word of the appropriate fault

Sec. 5.2] Job-Executive Interface Mechanism 121

cell in the slave fault vector. The job's IC is reset to point to the second word of
the fault cell. If the first word of the fault cell was zero before the IC/IR were
stored, the procedure is complete. However, if it was non-zero, the job had a
'dirty fault vector'. In this case, the job is 'aborted'; that is, it is suspended, and
the job which ran it is notified by a trap that the job had a dirty fault vector.
The supra job then has the option of continuing or terminating the aborted
slave job. This feature is intended to prevent an undebugged job from looping
indefinitely due to a fault in its fault processing routine.

The second word of a fault cell typically contains a transfer instruction to
the appropriate fault handling routine.

The following are returned as slave faults:

• Memory fault (generating an address outside the bounds specified by the
current setting of the base address register).

• MME fault (invalid address field, invalid parameter, or MME issued by a
job running in squeezed mode.

• Fault tag fault (a bit can be set in the isntruction word such that if the
instruction is executed a fault is generated).

• Command fault (attempting to execute a master mode instruction in
slave mode) (in special circumstances this generates a system crash).

• DRL fault (executing a DRL instruction).
• Lockup fault (running inhibited for longer than the time set by the

Executive as the maximum for running inhibited).
• megal op code fault (executing an instruction for which there is no

hardware definition).
• Operation not complete fault.
• Overflow fault (generating a number too large to be represented).
• Divide check fault (attempting to divide by zero).

Two software-simulated timers are available to a slave job. A run-time
timer is set by the Executive call STIME, and a real-time (elapsed time) timer
is set by the Executive call CLOCK. Both these calls are non-trapping. As soon
as possible after either of these timers counts down to zero, it is disabled and a
slave fault is given.

The first fault cell has a special use. Word zero is the initial entry point to
the job. When the job is first run, its IC is set to zero. Word one, together with
the fault cell at locations twenty/twenty-one are used for special interrupts
which are discussed in section 5.3.

As noted in the MME fault, one possible cause of this fault is a MME issued
by a job running in squeezed mode. This mode, obtained with a SQUEEZE
MME, set a pseudo base address register (smaller than the setting of orginal base
address register - hence the name) and also treats MMEs as faults, thus allowing
the squeezing job to appear to the squeezed job as an Executive.

122 Master-Mode Operating System [Ch.5

5.3 INTER-PROCESS COMMUNICATION [4]

Communication between a job and one or more jobs running beneath it in the
job tree is achieved through pseudo-files called communication files. Communi­
cation files are an inexpensive way (since in general they require no physical
input/ouput) for running jobs to communicate. The operating protocol for
communication files resolves most of the synchronisation problems inherent
in communication between independent processes.

The primary uses of communication files are:

• Communication between job and user terminals via TCF ACE.

• Communication between LOGIN and the monitors and hence inter­
monitor communication.

• Passing the user's command line by SIMON. to jobs running on the edit
interface.

• By the DO module, invoked by the SIMON PERFORM command, to
simulate a user terminal.

• Communication between BAKMON and jobs running under it.

• By FORSIM to simulate normal files to the jobs running under it.

A communication file is a scratch file which is represented. by file control
blocks in the state vectors of those jobs holding the file open, and by entries in
the Executive's table of open files. Each different file control block associated
with a communication file is called an end. Each end has a file reference number
and may be operated on as if it were an ordinary file. A single communication
file may have any number of simultaneously valid ends, where normally each
end is held by a different job.

A communication file may be created using the PASS MME or using the
implicit pass invoked by the EXECUTE or RUN MMEs. The job creating the file
obtains a file reference number for an end of the file which is called the master
end. This end cannot be passed; it remains with the job which created it until the
communication file is destroyed. The target of the pass may be any job running
below the issuing job or the single job above it. The job which was the target of
the pass will receive a file reference number for a slave end of the new communi­
cation me. The me reference number of the slave end is a function of the me
reference numbers already in use by the receiving job at the time of the pass and
bears no relation to the file reference number of the master end. A slave end of a
communication file may be passed to an infra-job. Whenever a job holding a slave
end passes the slave end, a new slave end is created for that communication file.
It is a unique feature of communication mes that operations may be issued and
completed at any end even though the file has been passed to another job. Data
exchanged on a comminication file is always between the master end and one

Sec. 5.3] Inter-Process Communication 123

of the slave ends. Thus it is not possible to transfer data from one slave end to
another.

5.3.1 Special interrupts

The mechanisms employed to co-ordinate activities at each end of a communi­
cation file is called a special interrupt. Special interrupts are primarily used for
communication file handling but are also used for passing and returning non­
communication files between jobs and for notifying a job that the Executive
attempted to give it a trap but found the trap address invalid (caused by releasing
memory containing the trap block before the trap occurs). In general a special
interrupt is used to inform one job of some action taken by another job. Thus a
special interrupt differs from a trap or a fault in that a special interrupt does
not normally result from an operation issued by the job receiving the interrupt
whilst a trap and a fault does. Special interrupts are handled in a similar way to
faults and use three locations (words one, twenty and twenty-one) in the slave
fault trap vector.

If word one is zero, then the job is not accepting special interrupts and will
never be given one. If word one is non-zero, then it is treated by the Executive as
a pointer to an area of memory used as a stack.

When the Executive gives special interrupts to ajob (in general, the Executive
will give all the specials it has for a job at one time) it stores a pair of words of
information on the top of the special interrupt stack, increments the stack
pointer by two and decrements the tally by one. It then stores the jobs Ie and
IR registers in word twenty of the slave fault vector and transfers to word
twenty-one, much like a fault. (The documentation calls this a connect fault
since it corresponds in location to the connect fault cell in the hardware fault
vector.) However, since a slave may not wish to be interrupted while it is in its
special interrupt handling routine, a special convention is used if the Executive
finds word twenty non-zero. Rather than generating a dirty fault vector abort as
it does with faults, the Executive simply adds the special interrupt information
to the stack but does not transfer to location twenty-one. By.leaving location
twenty non-zero the job may protect itself, but must examine the stack on exit
from its special interrupt handling routine to process any specials which need
processing. When no more specials require processing by the job it can set word
twenty back to zero and future specials will cause the Executive to transfer to
location twenty-one and hence back into the special interrput processing routine
in the normal way. If the job's special interrupt stack is full when the Executive
comes to give a job a special interrupt, the Executive will store the pairs of
words in the job's state vector and give them to the job as soon as TALLY
becomes non-zero.

The format of the two words of special interrupt information is shown in
Fig. 5.1.

124 Master-Mode Operating System

o 1314 1718 35

I TYPE I FRN

DATA

TYPE Type of special interrupt.
FRN Depending on the type of the special interrupt, this field

may contain a file reference'number. On drive specials,
this field contains the FRN of the end ofthe communi­
cation file held by the receiving job. On file closed
specials, the FRN of the former communication file
end is given.

DATA The use of this field depends on the type of the special
interrupt. For a drive special on a communication file,
the lower half of the DATA field always contains the
drive function data (from the lower half of the issuing
job's A register). Other uses of the DATA field are
listed below.

Fig. 5.1- Special interrup pair format.

[eh.5

A typical routine for handling special interupts is given below:

0: TRA INn
(SPTAU : TALLDY STAK,COUNT,2 SPECIAL TALLY

20 (SPRET): ZERO SPECIAL INTERRUPT
TRA SPINT PROCESS SPECIAL INTERRUPT

SPINT: SREG SPREG SAVE REGISTERS
LDA PSPTAL GET PROTOTYPE TALLY
STA TSPTAL SAVE IN UORKING LOCATION
INHIB SAVE,ON MAINTAIN CONSISTENCY

SPNEXT: lIlA SPTAL ARE UE ••
CMPA TSPTAL ••• DONE YET'?
TNZ SPINl GO PROCESS NEXT PAIR IF NOT
LDA PSPTAL UHEN DONE •••
STA SPTAL ••• RESET REAL SPECIAL TALLY
LDA SPRET GET RETURN ADDRESS
STA TSPRET SAVE IT
STZ SPRET ALLOU MORE CONNECT FAULTS
LREG SPREG RESTORE REGISTERS
RET TSPRET AND RETURN
INHIB RESTORE

PSPTAL: TALLYD S'TAK, COUNT, 2 PROTOTYPE SPECIAL TALLY

SPINl : LDAD TXPTAL,AD GET SPECIAL INTERRUPT PAIR
CALL SPROC ***PROCESS SPECIAL***

MAKE TSPTAL POINT "TO NEXT PAIR
TRA SPNEXT GET NEXT PAIR TO PROCESS

Sec. 5.3] Inter-Process Communication 125

Notice that new word pairs can be added to the special stack once out of the
inhibited portion.

5.3.2 Operations on communication files

Communication files are temporary entities, existing only as long as the master
end and at least one slave end exist. If either the master end or all slave ends are
closed, the communication file disappears. Thus the file reference number of an
end of a communication file is an invalid parameter for many Executive calls
dealing with the catalog structure, such as OPEN, ERASE, CATALOG, or
REPLACE. Intended for communication, the ends of communication files
cannot be 'run'. An attempt to do so will result in a parameter error status.
Many other Executive calls are similarly restricted to files other than communi­
cation files.

The COpy Executive call and its variants, READ and WRITE, are used to
perform the primary function of communication files: the direct transfer of
data between jobs. Generally speaking, data which is copied 'into' one end can
be copied 'out of' the other end. Data transfer is always initiated at a slave end.
The valid Executive calls are COpy, READ, WRITE, DRIVE, PASS, CLOSE,
REQUEST STATUS, RESET STATUS, TRUNCATE (or SCRATCH), and SET
POINTER. Associated with each of the valid Executive calls is a special interrupt
and the meaning of each is described in Table 5.1.

The only effect of TRUNCATE, SCRATCH or SET POINTER commands
when issued from a slave end job is to release the reservation on the communi­
cation file (see below).

Slave issued set mode, slave issued drive, slave issued truncate, and slave
issued set-pointer special interrupts simply inform the job holding the master
end of a communication file that the corresponding operation has been issued
at a slave end. The issuing job at the slave end is trapped immediately and no
further action is expected of the master end job.

Slave issued read, slave issued write, and slave issued request-status special
interrupts tell the job at the master end that the corresponding operation is
outstanding at the slave end. That is, the issuing job is not trapped immediately.
Normally, these operations are followed by a complementary operation at the
master end. A WRITE at the slave end is complemented by a READ at the
master end. READ and REQUEST STATUS at the slave end are complemented
by WRITE commands at the master end. The length of the data transfer requested
at the slave end is stored in the second word of the special pair by the Executive
for the master end job.

Note that a COpy at the slave end with a pointer specified will generate two
special interrupts at the master end. A slave issued set-pointer special interrupt
will precede the slave issued read or write special interrupt.

A slave issued reset special interrupt tells the job at the master end that a
slave operation which has not yet been completed is no longer outstanding due

126 Master-Mode Operating System [Ch.5

Table 5.1.

Type Mnemonic Use

0 STM Set mode - used to notify the job holding the master end
of a communication file that a slave end job issued a set
mode DRIVE. The lower half of DATA contains the
mode. A set mode DRIVE is used to specify directions
for the handling of data to be transferred through the
communication file. In particular, for terminal communi-
cation files, it is used to set input and .output modes. The
DRNE functions which may be issued on the slave end
of a communication file to TCFACE are:

000000 Set line-by-line input mode.
000001 Set file building input mode.
000002 Set file building mode for paper tape.
000003 Set direct input mode.
000004 Set command input mode.
000005 Set command mode for paper tape.
000007 Answer back drum request.
000020 Set full duplex output mode.
000021 Set half duplex output mode.
000022 Set direct output mode.
000023 Reset direct output mode.
000024 Set friden output mode.
000025 Reset friden output mode.
000026 Stop output.
001000 Output any currently pending warning.

1 RCF Read communication file - used to notify a slave end
job that the master end job has data which the slave end
should read. The master end job may not simply write
directly into the communication file, since only a slave
end may initiate data transfers. The lower half of DATA
contains the length of the data to be read.

2 SRS Slave issued reset - notifies the master end job that a
slave end job issued a RESET STATUS on a COpy to
which the master end job had not yet responded.

3 BRK Break - notifies a slave end job that the master end job
has issued a break DRIVE. The typical use of this is with
a terminal communication file, to indicate the receipt of
a break signal from the terminal.

Sec. 5.3] Inter-Process Communication 127

Table 5.1 - continued.

Type Mnemonic Use

4 PF Passed file - notifies the job that a (communication) file
has been passed to it via a PASS Executive call. This may
be the result of creating the communication file or passing
a slave end. The lower half of DATA contains the FRN
of the job file of the passing job.

5 RF Returned file - notifies the job that a (communication)
file which it passed with the return bit set has now been
returned to it. The lower half of DATA contains the
FRN of the job file to which the file being returned was
passed.

6 FCLO File closed - notifies the job that a communication file
of which it held an end has been destroyed because a
CLOSE was issued at another end.

13 R Slave issued read - notifies the master end job that a
read-type command was issued at the slave end. DATA
contains the requested length. The master end job should
issue a WRITE to transfer the data to the communication
file.

14 W Slave issued write - notifies the master end job that a
write-type command was issued at a slave end. DATA
contains the requested length. The master end job should
issue a READ to transfer data for the communication file.

15 RS Slave issued request status - notifies the master end job
that a REQUEST STATUS was issued at a slave end.
DATA contains the requested length of the status block.
The master end job should send status information using
a WRITE command.

16 T Slave issued truncate - notifies the master end job that
a TRUNCATE or SCRATCH command was issued at a
slave end. DATA contains the requested truncation length
(zero for SCRATCH).

17 SP Slave issued set pointer - notifies the master end job of
a SET POINTER command issued at a slave end. DATA
contains the requested pointer setting.

128 Master-Mode Operating System [Ch.5

to a RESET STATUS issued on the slave end. This special interrupt is generated
only if there was an operation outstanding. The communication file is left in a
busy state at this point, preventing further slave end operations until the job at
the master end issues a RESET STATUS on the fue.

Once a job has passed its slave end, it may not close or pass it again until the
newly created slave end is returned. From this it follows that there can be at
most one end of a given communication fue present at anyone level of the job
tree.

Moreover, only the lowest slave end can be closed. When the lowest end is
closed, that end disappears and the job holding the next lowest slave end is
notified by a 'returned file' special interrupt.

When the last slave end of the communication file is closed, the job at the
master end (the creator of the file) is given a file closed special interrupt. A file
closed special interrupt is also generated at all slave ends if the master end is
closed first.

5.3.3 The no-trap option
In order for data to be transferred between the ends of a communication file,
the master end job must issue a COpy (or READ or WRITE). The normal action
taken by the Executive is to transfer the data and then to trap the COpy at both
ends involved.

Consider what happens when a user calls up a file that is so large that it will
not fit into memory and then types LIST to SIMON. SIMON will simply issue a
COPY specifying the current file as the source and the user'ts terminal (a com­
munication file slave end) as the destination. This will generate a slave .issued
write special interrupt at the master end,held by TCFACE.

TCFACE needs to be able to read a portion of the file into its memory,
transfer it to the 716 and then repeat when the 716 has printed the data on the
user's terminal. This facility is implemented with the 'no-trap' option.

Normally, when the length specified on a slave _end WRITE is greater than
the length specified on the complementary master end READ only the minimum
of the two lengths is actually transferred and the slave end is trapped with a
'destination exhausted' status. The master end operation is trapped with a good
status. This rule is generalised for other complementary copies with mismatched
lengths. For example, if the job at the master end attempts to read more than
was written by the slave, it will be trapped with a 'source exhausted' status and
the slave end operation will be trapped with a good status.

If, however, the no-trap option is specified for the COPY issued at the
master end, then the slave end will not be trapped if the length of the master
end COpy is less than the length of the slave end COPY. The amount of data
specified by the job at the master end will be tranferred. The next COpy issued
at the master end will pick up where the previous one left off. The slave end

Sec. 5.3] Inter-Process Communication 129

COpy will trap when the number of words specified on the slave end COpy
have been completely transferred.

Thus the master end job can satisfy the slave end's request in a piecemeal
fashion.

5.3.4 Reserving the communication fIle

It is sometimes desirable for a job at one end ofa communication file to complete
a sequence of operations on the file without danger of interference from the
other ends. For example, one slave end job might wish to write a message to the
master and then read a reply, without the possibility that another slave end
might 'sneak in' between its operations and read its reply from the master
end. The process of reserving the communication file allows for uninterrupted
sequences of operations. Either a slave end or the master end may reserve the
file, but only one slave end can reserve it at any given time. Reserving by a slave
end has the effect of locking out all other slave ends from the communication
file. Only local operations can be issued at the other slave ends. When the master
end reserves the file, all slave ends are locked out.

Reserving is specified by setting the appropriate flag bit when issuing those
commands which allow communication files to be reserved. A slave end may
reserve a communication file on a COPY, READ, WRITE, or DRIVE command.
The master end may reserve the file only with a RESET STATUS command.
Once the file has been successfully reserved, it remains reserved until an operation
is issued at the reserving end which does not call for continued reservation. Any
operation which does not explicitly specify reserving will release an existing
reservation (by the same end), except that a REQUEST STATUS issued to the
master end will not release an existing master end reservation. Note that both
a slave end and the master end may have the file reserved at the same time,
providing the slave end reserves first. (If the master end reserves first, the slave
end will be locked out and will not be able to issue the reserving operation.)

The master end is not restricted by a slave end reservation. When the master
end has reserved the file, it appears busy to all slave ends. This gives the master
end job the ability to 'squelch' a runaway slave end job.

5.3.5 Special interrupt routing

When the master end job issues a DRIVE Executive command a special interrupt
is generated at a slave end. Since there may be more than one slave end the
question arises as to which slave end to give the special interrupt to. It was stated
earlier that if word one of the slave fault vector is zero, a job will not receive
special interrupts. A number of jobs, either for their entire life or for short
periods, do not accept special interrupts. Jobs may choose to not accept special
interrupts for the good reason that they have no need to. Thus, if a user types a
carriage-return to a running job which is not waiting for input, the running time

130 Master-Mode Operating System [Ch.5

for the job is returned to the user's terminal as a formatted sequence of ASCII
characters. Rather than have every job carry code to respond to the 'read com­
munication file' special interrupt which TCFACE generates in response to this,
and to generate the formatted string, SIMON undertakes this task (for jobs not
accepting special interrupts). Another reason for not accepting special interrupts
is that certain sections of code are time critical and one way of ensuring no
interference while in a time critical section is to not accept special irtterrupts for
that time.

The rules for the selection of the slave end to receive a special interrupt
generated by a DRIVE Executive command issued at by the master end job
are as follows. (The only other special interrupts given to a slave end job are
'passed file', returned file' and 'file closed'. Passed-file specials to jobs not
accepting special interrupts are discarded. Jobs not accepting special interrupts
cannot be informed of returned files and such special interrupts are discarded.
If a communication file is destroyed and a slave end job is not accepting special
interrupts the only way it will find out that the communication file has gone,
is by receiving a parameter error on an Executive command involving the file.)

In the case of a read communication file special interrupt, if the communi­
cation file is reserved to a slave end, the special interrupt is given to the job
holding that end if the job is accepting special interrupts. If the communication
file is not reserved to a slave end the special is given to the lowest job which is
accepting specials. If no job meets these criteria, the master end job has its
DRIVE trapped with a status of 'other end not accepting specials'.

In the case of a break special interrupt, if no slave end has reserved the
communication file, the special is given to the lowest job in the job tree which
holds a slave end open with break permission (since communication files may
not be executed, the execute permission bit is used to signify break permission
for communication files) and is accepting special interrupts. If a slave end has
reserved the file, the special is given to the lowest job meeting all these conditions
and which is also not lower than the job holding the reserving end. If no job can
be found meeting these criteria, no special interrupt will be given, and DRIVE
command is trapped with the status of 'other end not accepting specials'.

Thus the routing of special interrupts is also affected by slave end reser­
vations. This ensures that slave ends which are locked out of the file do not
receive special interrupts to which they are unable to respond. The general rule
is that if a slave end has reserved the communication file, special interrupts
generated by the master end DRIVE commands will be given to the job holding
that slave end, or not at all. The only exception comes in the case of a break
drive. In this case, if the reserving end does not have break permission, the break
special 'bounces' up the communication file until it finds a slave end which does
have break permission. Thus a reserving slave end job is not only guaranteeci that
no other slave end is stealing its data, but also that its special interrupts are not
being led astray.

Sec. 5.3] Inter-Process Communication 131

Suppose that job A has run job B, which has in turn run job C. The portion
of the job tree is shown in Fig. 5.2.

Fig. 5.2 - Job tree example.

Job A now issues a PASS command to job B, specifying a file reference
number of zero (create-type PASS) and access bits for read, write, append,
break (execute), and communication file. A communication file is thus created.
Job A receives the file reference number for the master end (suppose it is 5) in.
the trap of the PASS, and job B receives the file reference number of the slave
end (suppose it is 7) in a 'passed file' special interrupt. The file is now idle o

Upon receipt of the 'passed file' special interrupt, suppose job B wants
to get more information about its new file. It therefore issues a REQUEST
STATUS to its file reference 7 (the slave end), requesting ten words. A special
interrupt (slave issued REQUEST STATUS) is generated at job A, specifying a
length of ten words and file reference number 5 (job A's end). Job A then issues
a WRITE to FRN 5 (the master end) for four words, placing a standard status
block in the first three words and a special identifying code in the last word.
These four words are presented to job B as its status block. Job A's WRITE is
trapped with a status of 'successful', since all the data that job A requested
were transferred. But job B has its REQUEST STATUS trapped with a status of
'source exhausted', since only four of the ten words it requested were available.

Suppose now that upon examining the data received on its REQUEST
STATUS, job B decides the job C should have the slave end. It therefore issues
a PASS to job C, specifying FRN 7 (its slave end) and access bits for read, write,
append, return, and break.

Job C receives a passed file special specifying its FRN for the slave end
(suppose it is 3).

Suppose job C immediately issues a RUN on a new job, specifying FRN 3 as
the first file in the pass list, with access bits for read, write, append, and return.
Job D is thus run with a slave end as its file reference number 1. Since both
job B and job C set the return bit, they retain slave ends. The situation is shown
in Fig. 5.3.

132 Master-Mode Operating System

FRN 5 (all accesses)
A ~----------------------------~

Master End

FRN 7 (RWA, break)
B

Slave End 1

FRN 3 (RWA, return, break)

Communication
File

C ~ ______________________ -J

Slave End 2

FRN 1 (RWA, return)
o ~----~------------------~

Slave End 3 (lowest)

Fig. 5.3 - Communication file example.
\

[Ch.5

Job D now issues a COpy command from its memory to FRN 1 for twenty
words. A slave issued write special is generated at job A specifying FRN 5 and
a length of twenty. Job A issues a READ for ten words, specifying the no-trap
option. The first ten words are then transferred from job D's memory to job A's
memory, and job A is trapped with the 'successful' status. Job D is not trapped,
since the master end job specified the non-trap option.

Suppose job A now issues another ten-word READ, not specifying the
no-trap option. The last ten words are copied from job D to job A, and both
jobs are trapped with the 'successful' status. The communication file is now
idle again.

Suppose job C now issues a COpy from its FRN 3 to some other file (its
FRN 4, for example), for five words. Job A receives a 'slave issued read'special.
If job A then issues a WRITE for ten words, specifying the no-trap option, the
first five words will be transferred from job Ns core to job C's FRN 4. Job C
will then be trapped with the 'successful' status, while job A is trapped with the
status of 'destination exhausted'. The no-trap option had no effect, since the
status presented at the master end was not 'successful'.

Suppose job D now issues a READ to FRN 1. Job A is notified with a
slave issued read special interrupt. However, job A decides that a break drive
should be given. It issues the DRIVE command. The DRIVE is rejected with the
'inappropriate' status because the slave end has issued a copy-type command .
.Job A therefore issues a RESET STATUS requesting that the communication
"fIle be reserved. Job D's READ is trapped with a 'status was reset' status, and the
file becomes reserved to the master end. If job D attempts to reissue the READ,
it will receive the 'communication file busy' status. Job A now issues the break

Sec. 5.3] Inter-Process Communication 133

DRNE. The Executive discovers that job D does not have break permission on
its end of the communication file. Assuming job C is accepting specials, it will
receive a 'break special' and job A will be trapped with a 'successful' status. The
file becomes idle, since job A's DRIVE had the effect of releasing its reservation.
If job C issues a set mode DRIVE requesting reservation of the file ,job A receives
a 'set mode' special interrupt and the file is now reserved to job C.

Suppose job D now runs a new job (job E), passing it the slave end with the
return bit set. It may not pass break permission, since it does not have break
permission to pass. The situation is shown in Fig. 5.4.

FRN 5 (all accesses)
A ~------------------------------~

Master End

B
FRN 7 (RWA, break)

Communication File
Slave End 1

FRN 3 (RWA, break)
C ~----------------------~

Slave End 2

FRN 1 (RWA, return)
o ~----------------------------~

Slave End 3

E
FRN 1 (RWA, return)'

Slave End 4 (lowest)

Fig. 5.4 - Communication file reservation.

Job D's implicit PASS is legal, since it is a local operation. Any non-local
operation attempted by job D would be rejected, since the file is reserved to
job C's end.

Similarly, if job E now attempts to issue a REQUEST STATUS on the file
it was just passed, it will receive the 'communication file busy' status.

If job A now issues a 'read communication file' DRIVE, the special interrupt
will be given to job C (assuming it is accepting specials). This will be true even if
job E or D is accepting specials, since the file is reserved to job C's end. Suppose
that job C, on receipt of the 'read communication file' special, issues a READ
command, not specifying reservation. The reservation is released, and the file
becomes busy until job A issues 'the corresponding WRITE command. When it
does so, the data is transferred, and the file becomes idle.

134 Master-Mode Operating System [Ch.5

Job A now issues another 'read communication file' DRIVE. Since no slave
end has reserved the me, the Executive attempts to give the special interrupt to
the lowest slave end (at job E). However, suppose job E is not accepting specials ..
In that case, the 'read communication me' special interrupt will 'bounce' up to
job D. Assumingjob D is accepting specials, it will receive the special interrupt.

Suppose job A issues a RESET STATUS to reserve the file. It then issues a
CLOSE. Before the Executive can process job Ns CLOSE, suppose that job E
also closes its end of the communication me. Job D receives a 'returned file'
special interrupt due to the closing of job E's end. This special is closely followed
by a 'file closed' special as its FRN 1 is changed into a non-file by the master end
CLOSE. Jobs Band C still hold slave ends of the files, and jobs Band C receive
'file closed' special interrupts. No more slave ends exist, so job Ns CLOSE is
trapped. Job Ns FRN 5 becomes invalid.

Jobs B, C and Dare still left with non-meso Jobs Band D. issue a CLOSE
to their FRN 7 and 1 respectively, and their non-files disappear. Job C, though,
being a little slow to process its file closed special, attempts attempts to issue a
set mode DRIVE to what used to be its slave end (FRN 3). The DRIVE is
rejected with a parameter error status, since DRIVES are not legal on non-files.
Job C finally CLOSEs its FRN 3, and the last trace of the communication file
disappears from the system.

5.4 INTERNAL STRUCTURE OF THE EXECUTIVE [3]

The Executive consists of seven major modules together with a number of
queues. The inter-relationship of the modules is shown in Fig. 5.5.

The non-control Executive is so called because it is the part of the Executive
which runs in the non-control processors in a multiprocessor system (it also runs
in the control processor). The primary functions of the non-control Executive
is to respond to all slave generated faults and Executive calls. The non-control
Executive deals with the slave generated faults but does not provide the services
requested by the Executive calls, rather it calls the control Executive by generating
an interrupt in the control processor to be responded to by the control Executive.
The non-control Executive takes jobs from the run queue (a queue of jobs waiting
for a virtual machine) and runs them for the length of time determined by the
control Executive. When a job requires the attention of control Executive for
an Executive service, the non-control Executive puts the job on the processing
queue (see section 5.5).

The non-control Executive also responds to interrupts from the control
processor if the non-control processor is idle (since there are no jobs to run)
and the control Executive has put a job on the run queue. All other executive
routines run only in the control processor.

The job service routine either provides the services requested by valid
MME instructions or branches to other routines to provide them.

Sec. 5.4] Internal Structure of the Executive

CONTROL PROCESSOR
/' MUL TI·PROCESSOR

RUN QUEUE /

135

SLAVE JOBS

I
I

o
Fig. 5.5 - Structure of the DTSS Executive.

The catalog routines are called by job service to perform various catalog
manipulation functions such as opening a file, saving a file, replacing a file,
and un saving a file. Since the catalog routines manipulate files, in order to
maintain the integrity of the filing system only one task (MME) is carried out
at a time. To ensure this each task is put on the catalog queue. This queue is
a queue of tasks rather than jobs since one job may issue many MMEs, one after
another, and hence have many entries oIl: the catalog queue.

Since everything on DTSS is a file, almost all significant operations involved
the movement of data from one file to another. Thus the copy routine which
implements this is central to the whole system. The COpy MME has the following
parameters:

XO File reference number of source file.
Xl Points to pointer to starting location M1 in source file (used since index

registers are only 18 bits long and a 36-bit pointer is required).
X2 File reference number of desination file.

136 Master-Mode Operating System

X3 Points to pointer to starting location M2 in destination file.
X4 Flag bits.
X6 Trap location.
X7 Points to number of words N to copy.

[Ch.5

N words in sequence are transferred from the source file starting at word MI
to the destination file starting at word M2. All other words of the destination
file are unaffected. Read permission is required on the source file and write
permission is required on the destination file if any existing portion of the
file is to be modified; append permission is required if the file is to become
longer.

During the actual copy, if the end of the source file is reached, an end-of-file
condition occurs and data transmission stops. If any of the words transferred
to the destination file are outside the range of that file, the file is extended if it
is open with append permission. Otherwise, an end-of-file condition occurs and
data transmission stops. Upon completion of the copy, a trap occurs to the
location specified in X6.

If XO (X2) is zero, then the source (destination) file is assumed to be the
job file consisting of the issuing job's memory with read and write permission
set. If XI (X3) is zero, then the current position of the source (destination)
file's read/write pointer is used. Both XO and XI (X2 and X3) cannot be zero
at the same time. Upon completion of a copy, the read/write pointers for both
files are updated to point to the word following the last ones accessed.

If the source (destination) file in a COPY is a device file, then the destination
(source) file must be a core file, or a communication file whose other end is
being copied to or from a core file.

Upon initiation of a COpy into a scratch (catalogued) file which is open
with append permission, the job's scratch (catalog) word allotment is decre­
mented by the amount by which the destination file may be extended. At the
completion of the COPY, the job's scratch (catalog) word allotment is incre­
mented by the number of words charged to this allotment but not appended
to the destination file.

If the status return in status word one is not between 100 and 360 on
completion of the COPY, then status word two contains the difference between
the number of words transferred and the number of words requested (that is,
it contains the negative of the number of words not transferred). If the status
in word one is between 100 and 360, then status word two is zero. If either the
source of the destination file is a device file, then the lower half of status word
one contains the status return from that device.

If a job file is involved in the copy operation, it is locked in memory for the
duration of the copy.

The swapper, the physical input/output routines and the interrupt routines
are discussed in sections 5.7 and 5.8.

Sec. 5.5] The Executive's Queue Structures 137

5.5 THE EXECUTNE'S QUEUE STRUCTURES

The Executive maintains a number of queues on which appropriate jobs are held.
Not all jobs are on a queue at any given time. There are six major job queues
whose functions are discussed below. In addition to the job queues, the Executive
also maintains a number of task queues which are also discussed.

The space required to maintained the queues and for other functions of the
Executive requiring temporary space is provided by a block of memory composed
of areas called list elements. This block of memory overlaps and area set aside
for I/O buffers. When the Executive requires a list element it calls a subroutine
(GET) indicating the number of words required. The GET routine returns the
address of a list element of the requested length. Each list element carries with
it a prefix word which contains the length of the element. Thus n-word element
uses n+l words.

As an example of the use of list elements, consider what happens when a
job issues a COpy MME. In order that the job can proceed following the MME,
the Executive requires space to store the parameters passes on the COpy. It then
needs space to pass parameters to its COPY subroutine. The COpy subroutine
requires space to hold copies of the fue control block involved and finally, space
is required by the Physical I/O routines. Thus the sequence would be:

GETnl
GETn2
GETn3
GETn4
RELEASE
RELEASE (2)
RELEASE

RELEASE

, to save MME parameters
'for COpy control blocks
'for (2) FCBs
'for physical I/O
'when I/O finished
'both FCBs
, on exit from COpy subroutine
'status returned in MME list element
, after passing status and giving trap

The free list of elements is kept in memory address order to speed up the
coalescing of the elements. However, most requests for lists elements are for
elements whose size is less than twenty-four words. In order to speed up the
majority of GETs, the quick get area is maintained as twenty-four stacks, each
of which holds free list elements of exactly n words, n=l, 2, ... ,24. Thus if
the Executive requires a list element of twenty-four words or less it uses the
QUICKGET routine which looks at the quick get stack for the number of
elements requested and if it is not empty, returns the requested element. If the
stack is empty then the routine invokes GET and a list element is found from
the general pool.

If the list element block is full (that is, there are no free list elements) then
since this indicates a heavily loaded system, special action must be taken. In
particular, a system crash should be avoided. To handle this, a section of the list

138 Master-Mode Operating System [Ch.5

element block is set aside for just such a situation - the panic area. When
the list element block becomes full (that is, when the GET routine is unable
to get a requested list element) a global semaphore is set to stop any more
jobs running and the panic block is appended to the list element block. When
a certain amount of list element space has been returned as a result of job
service, the semaphore is reset. At some time in the future, when all the list
elements have been returned to the panic block, the panic block is removed from
the pool.

5.5.1 The run queue

The run queue is the list of slave jobs which are in memory and waiting to use a
processor. The jobs on the run queue are held in scheduling number order (see
section 5.7). Whenever a processor is free to run a job it takes the job on the
front of the run queue and runs it, removing it from the queue so that any other
processor will not find it and run it. Associated with each job on the run queue
is a quantum run time which is recorded in two words in the job's state vector.
When a job is first entered into the run queue the two words are set to .be the
same (300 ms is a typical value). When the job runs, a copy of the second word
is loaded into the timer register. The job is then run until either the timer runs
out or the job issues a MME instruction or faults. In either case, the job is
requeued on to the processing queue.

5.5.2 The processing queue

This queue contains all jobs waiting for processing by the Executive. It is access­
ible by all processors on the system and is protected by a semaphore. Jobs
are taken from the processing queue by the job service routine in the control
Executive and placed on the job service queue. The processing queue is processed
on a first-in-first-out basis.

5.5.3 The job service queue
Jobs joining this queue from the processing queue require one of three types of
service. If the job's timer has run out, the Executive charges the job for the
resources used, reallocates a quantum, checking that the running time for the
job has not been exceeded, increases the scheduling number according to the
resources used, and requeues the job on the run queue. If the job issued a MME
instruction or faulted, the Executive carries out the appropriate action, leaving
the job on the job service queue during this time. On completion of the MME
service (but not necessarily the MME itself since this may involve lengthy I/O)
the job is requeued to the run queue if the MME was a non-pause type, or
simply taken out of the job service queue if it is to pause.

Jobs are also added to the job service queue when the Executive needs to
trap a job or give it a special interrupt. Such jobs which are on the run queue or
are in memory but not on any queue at the time are placed on the job service

Sec. 5.5] The Executive's Queue Structures 139

queue. (The service they require is to have an entry on their Mlink queue processed,
which is described below.) All other jobs which need to be trapped or given a
special interrupt are so marked in the job table entry for the job. Those out of
memory are placed on the non-core queue, to bring them in memory. Those in
memory are so treated that they will return to the job service queue for some
other reason in the near future. For example, if the job is running it will go to
the processing and hence the job service queue in due course, if it is on the
processing queue it will be moved to the job service queue next, if it is in the
process of being swapped in it will be put on the job service queue since all
jobs are so transferred immediately after being swapped in. Thus jobs on the
non-core queue (see below) waiting to be swapped in will also, ultimately join
the job service queue. Jobs in the process of being swapped out are tested
immediately the swap out completes to see if the Executive wishes to trap
them or give them a special interrupt, and if it does the job is requeued on the
non-core queue.

5.5.4 Free job number queue

All jobs are referenced by the Executive by job number. When a job is initiated
it is allocated an arbitrary job number from the pool of free job numbers. When
a job terminates, its job number is returned to the pool. The free job numbers
are kept in the free job number queue in no particular numerical order (since the
job number value is of no significance).

5.5.5 In-core queue

This queue records the job numbers and location and size of all jobs which are
in memory. The ordering of this queue is not significant. This queue is used by
the Swapper as described in section 5.7.

5.5.6 Non-core queue

This queue holds all those jobs which are waiting to swap in. The queue is in
scheduling number order and is used by the swapper to determine which jobs
to swap in, as described in section 5.7.

5.5.7 Task queues

The Executive maintains a number of so called task queues. A task is an Executive
process or a subprocess of a job. It is not a job in that it does not have a job
number. The queues are used to record tasks which need to be done but which
cannot be done at the present moment. The master task queue is used by the
Executive to record tasks generated by other tasks. For example, the Executive
may be processing a task when an input/output interrupt occurs. The interrupt
is analysed and the task required to service the interrupt identified. The interrupt
service routine (task) is queued on the master task queue for later processing.
Similarly, in processing a MME from the job service queue, the Exective may

140 Master-Mode Operating System [Ch.5

discover it requires the catalog routines. This will result in a call to the catalog
routines. If the buffer space required by the catalog routines is not available
the task will be queued by the catalog routines, on the catalog queue. When an
operation in the catalog routines completes, realeasing the buffer space (typically
via an interrupt, whose service routine will first be queued on the master task
queue) the return from the catalog routine is put on the master task queue and
the catalog scanned to see if the catalog routines should continue processing or
not.

There is a similar queue for buffer space for the copy subroutine.
To illustrate the sequence of events, Fig. 5.6 shows the action following a

slave job executing an OPEN MME. In all cases.in the diagram, the simplest
situation is shown.

job to
OPEN MME ----)0 processing 0
with pause t

job to call
. job service O----)oMME processor

(JSO) which

previous ---~) task on MTO
cat routines I
operation t
interrupt to return (indirectly through

physical I/O routines) to
catalog routines
put task for previous
operation on MTO

calls catalog
routines

t
call catalog
routines (busy)

t
task on CATO

1
take job off JSO

take task off CATO ----+-) perform operation
including I/O

catalog routine~task on MTO
operation t
interrupt return to catalog routines

task on MTO

put ta~k on MlinkO
put job on JSO (assume in memory)

{-
put CB in state vector
spring the trap based on
MlinkO entry
put job on RUNO

Fig. 5.6 - Processing an OPEN MME.

Sec. 5.6] Scheduling 141

Associated with each device is a task queue and associated with each channel
is a task queue. Thus a task requiring access to a device must first queue for a
device (assuming it is busy) and then queue for t~e channel on which the device
operates (assuming it is busy), with the exception that when there is but a single
device on a given channel, in which case only a single queue is used.

As shown in Fig. 5.6, following the completion of the catalog routines,
the Executive puts the task on the Mlink queue. The Mlink queue is a queue of
tasks for the Executive to do before the job next runs and in particular is the
traps and special interrupts which the Executive wishes to give the job. Thus
when the Executive wishes to trap the job in the example in Fig. 5.6 following
the completion of the OPEN MME, it makes an entry on the job's Mlink queue
which consists of the status returns generated by the OPEN MME and the
address of the routine (task) in the Executive which will process it. Since the job
must be in memory in order to give it a trap, the Executive determines if it is
in memory and if so, places the job in the job service queue. As discussed earlier,
if the job is not in memory or is either actually running or in the processing
queue, the job is so treated that it is known it will end up in the job service
queue and is marked as requiring Mlink processing. When the job is serviced
from the job service queue, the Mlink processing routine puts the file control
block in the job's state vector, copies the status words and the job's IC/IR into
the trap block, and sets the job's IC to point to the trap code. The job is then
transferred to the run queue.

5.5.8 Executive cycle

Based on the queues, the control Executive organises its work by first processing
all entries in the Executive task queue. Only when this queue is empty does it
take jobs off the job service queue. When both these queues are empty it runs
the swapper and when has completed it services real-time timer tasks.

5.6 SCHEDULING [5]

Only three of the many queues around the system operate on other than a
first-in-first-out basis. Regulating how long jobs spend on the two non-FIFO
queues - the run queue and the non-core queue, is usually sufficient to control
the total resources consumed by a user.

5.6.1 Scheduling parameters

One of the files available to the Executive is an environment description file
called ENVINFO.

The scheduling algorithms allows a total of fourteen parameters to be specified
for it in ENVINFO. Most of them are in a sense 'noise words' in that small
changes in them will not noticeably affect system performance. Changes can be
made to give optimal behaviour when changing user loads or hardware available.

142 Master-Mode Operating System [Ch.S

The following is a list of parameters that may be set, the meanings of each,
and where possible a guide for determining the ideal values:

SWEEP: This parameter may be set to zero or one and determines which of
two possible swapping algorithms is used. SWEEP=O tells the swapper
to pick a job to swap out on the basis of scheduling number (how many
resources it has used recently) and whether the job is paused. SWEEP=1
tells the swap per to always pick the job just above the one most recently
swapped as the next one to swap (where memory is thought of as a
circular list excluding the Executive and memory resident jobs).

SWEEP=O works best on systems where memory is plentiful, jobs
are fairly uniform in size, and there is a great deal of variation in CPU
required by various jobs. SWEEP=1 works best on systems with less
memory where there is a great deal of variety in job sizes but CPU
requirements are fairly uniform.

MAXSWAPS: This parameter tells the swapper the maximum number of
jobs it should ever try to swap simultaneously. Typically this number
is set to the number of physical channels and the number of swapping
devices. Too large a value for this number may cause serious contention
problems for channels, thus slowing down I/O bound jobs. Too small
a value will slow response time for interactive jobs.

DECAY: This parameter tells the scheduler how quickly to forget the
quantity of resources used by the job. Scheduling number decays over
time and have a 'half-life'. The decay constant can be computed from
the desired half-life as follows:

DECAY =.S (.S/half-life in seconds) * 2~3S
(Expressed in octal)

A decay constant of 0.99, represents a half-life of 3S seconds. The
effect of a longer half-life is to run small jobs faster and large jobs
more slowly.

NCQRA TIO: This number specifies how much lower the scheduling number
of a job out of memory must be compared to a job in memory before
the two may exchange places. Too small a value will cause excessive
thrashing. Too large a value will cause" erratic response times. A value of
200 (octal) specifies that the job in core must have twice as large a
scheduling number to be forced out. A value of 140 specifies one and
one half times as large, etc. This number is best thought of in terms of
the decay half-life. A value of 200 will cause jobs to exchange places
every half-life, causing response time to long running jobs to be erratic
to that degree.

CRUNCHER: This number specifies the minimum memory size of a job
before it will be considered atypically large. It is used to reduce memory

Sec. 5.6] Scheduling 143

fragmentation, and thus is particularly valuable when SWEEP=O. Jobs
larger than the specified size are given somewhat more erratic service.

This number should be set high enough so that there are not
normally more than two or three crunchers competing for service at
any given moment. A value too high will cause excessive fragmentation
and degrade overall system performance. A value too low will cause the
Executive to waste CPU time doing unnecessary calculations.

FREECORE: This number specifies the amount of memory the swapper
will try to keep empty so that out of memory jobs can be swapped in
immediately upon request. Only jobs which have issued long pauses
are swapped out to make room.

EPSILON: This number specifies a value of scheduling number below
which values are considered negligible. Too small a value will make
response given to small interactive job slightly erratic. Too large a value
will make service given to small interactive jobs very consistent but on
average slower.

CPU, I/O, CORE, FAUTIME, SWAPCHG: These parameters determine the
formula for calculating computer resource units (CRUs). CPU, I/O,
and CORE give the relative weights of these considerations. The three
octal numbers should sum to 200000 (octal). They are scaled so that a
16K job using 60 I/O units per second of CPU will be charged the same
number of CRUs regardless of the relative weights. FAUTIME is the
number of milliseconds of CPU charged for each master mode request
the job makes. SWAPCHG is a factor which is multiplied by the number
of K words swapped and added to the scheduling number.

For scheduling purposes, CPU, I/O and CORE are optimally set
according to the average number of users waiting for the corresponding
resource. Looking at a snapshot of the job table, the number of users in
each category can be estimated as follows:

(i) In memory waiting for CPU: number of jobs 'RUNNING'
minus number of processors.

(ii) In memory waiting for I/O: number of jobs 'MASTER HELD'
minus number of I/O channels.

(iii) Out of memory waiting for CPU (I/O): number of jobs on
NCQ times percentage of jobs either RUNNING or MASTER
HELD which are RUNNING (MASTER HELD) times CPU
(channel) busy time percentage.

(iv) Waiting for memory: number of jobs on NCQ not accounted
for in (iii).

F AUTIME is optimally set at the actual time required by the Executive to
process the requests.

144 Master-Mode Operating System [Ch.5

SQUAN, LQUAN: These values tell the scheduler how much CPU to allow
a job in a single quantum. Too large a value will cause erratic response
time when jobs tie up the CPU for long periods. Too small a value will
cause increased overhead due to slicing.

Immediately following a MME, a job is given SQUAN milliseconds
with slightly increased priority. Thereafter, it gets LQUAN milliseconds
at a time until it issues another MME. Typical values used are 24 ms and
320 ms respectively.

5.6.2 Scheduling number

Every running job on DTSS has associated with it a scheduling number indicating
the quantity of resources consumed 'recently'. Whenever a job consumes a
resource - CPU, I/O, or CORE - a charge is added to the scheduling number.
The conversion factors used to convert these three factors to 'CRU's are input
in the environment file and should reflect the relative scarcity of the three.
Every half second, all scheduling numbers are multiplied by a decay constant
between zero and one, so the effect of resources consumed long ago slowly fades
away.

The run queue and non-core queue are kept sorted by scheduling number.
Whenever a CPU becomes idle, the job on the run queue with lowest scheduling
number is given control. The situation with memory is more complex, since the
Executive must act to make it available. This action is discussed in section 5.7.

Since some jobs represent the wishes of many users rather than just one
(monitors, etc;), they must be given priority access to resources. Associated with
this are two job type bits. These two bits form a priority number which over­
rides the scheduling number. Thus, monitors compete only among themselves for
resources; any resources left over are divided among the non-monitor jobs.

5.6.3 Partitioning

Over and above the scheduler, a high level system of resource control, called
partitioning, is provided.

Partitioning controls what portion of the system each of several groups of
users gets by controlling the response time given to each group. The scheduler
gives each job a startup quantum of resources. Jobs run very quickly while
consuming this initial quantum, and are largely unaffected by partitioning. Eighty
per cent of all jobs complete in their initial quantum and twenty per cent of all
system resources are consumed by them. The remaining eighty per cent of system
resources are divided among long running jobs. Without partitioning, all jobs are
given resources at the same rate. If partitioning is active, response time ratios are
set so as to keep group usage within bounds. By controlling response time given
to foreground users, partitioning controls what portion of available resources
are comsumed by each group. Partitioning has no effect on the allocation of
storage (a static resource) nor on who uses background. It does regulate total
consumption of the background system.

Sec. 5.7] Swapping 145

For efficiency and flexibility, the partitioning software is broken into two
pieces. The Executive has a six bit partitioning code for each running job. For
system overhead jobs this code is zero; for user jobs, the code comes from the
user's validation record (see Table 4.3). The Executive maintains a table of
total resources comsumed by each of the sixty-four partitioning categories. It
schedules jobs according to ratios supplies to it in a sixty-four word table. Every
two minutes, the PRIORITY module wakes up. It compares the amount of
resources each group has used in the last two minutes to its quota. It then
adjusts the response time ratios by a complex algorithm that ensures that each
group gets its fair share. The PRIORITY module is a short program written
in a high level language, which runs with BAKMON. Extensive changes to the
algorithm can be made and tested in a way that is safe to the system.

Every job belongs to a partitioning category. Partitioning categories are
numbered from zero to sixty-three. When a foreground user runs a job, the
category number comes from the user's, validation· record. When a job runs in
background, it runs in either category one, two, or three depending on whether
it is a Bulk Media Conversion activity (one), a run accessing tapes (two), or a run
which does not access tapes (three). When a job runs beneath a Monitor which
does not reliably supply partitioning information to the Executive, it runs in
category sixty-three. Jobs which run at the top of the job tree run in category
zero. Only jobs which category zero may specify a category other than their own
when running a job.

Associated with each partition category, is a total service quota and a response
time quota. The total service quota is the portion of the system to which the
group is entitled. The sum of all the service quotas is one hundred per cent. The
response time quota indicates the level of service which should be given to each
member of the group if the group is using less than its total service quota.

If a group is using less than its total service quota, the excess quota is
distributed to other groups.

Users may get a snapshot of partitioning effects and system responses by
typing EXPLAIN RESPONSE.

5.7 SWAPPING
To do almost anything, a job must reside in memory. Normally, all running jobs
will not simultaneously fit in memory, so some are written out to mass storage.
When a job not in memory wants to do something, it is put on the NCQ (Non­
Core Queue). It is the responsibility of the swapper to pick jobs in memory to
be written out and jobs on the NCQ to be read into memory.

The swap per normally writes out jobs which are not expected to be serviced
in the near future, either because of a high scheduling number or because the job
does not want service. It normally reads in the jobs wanting service with lowest
scheduling numbers first. The swapping algorithm is given below. The actual

146 Master-Mode Operating System [Ch.5

code in the Executive is called whenever a swap might be called for, so the
algorithm is best thought of as a continuously operating process. A detailed
explanation of each step of the algorithm follows:

begin
1. if donotswap = true

then exit
2. else if NCQempty = false
3. then headNCQ(job) 'front ofNCQ in job
4. do if core full = false
5. then initcopy

exit
6. else if coreresenabled(job) = true
7. then swapjob(blockingjob)

exit
8. else if skip (job) = true
9. then nextNCQ(job)

loop
swapout

else loopexit

10. else if enoughfreecore = true
then exit
else swapout

end

define swapout
11. select job (job) 'pick job most eligible to swap out
12. if motivation = true
13. then swapjob(job)

exit
else exit
defend

1. No additional swaps will be considered if any of the following conditions
hold: there are already at least MAXSWAPS swaps in progress; the system
is hung (the operator typed 'STOP'); there is a shortage of list elements
and at least one swap is in progress; or there are fewer than three memory
device addresses left for use as pointers in the copy.

2. If there are jobs waiting to enter memory, they will be considered before
swap outs are considered.

3. The NCQ is sorted by scheduling number within priority. The first job is
the one with highest priority/lowest scheduling number.

Sec. 5.7] Swapping 147

4. When looking for a space to put a job, the Executive must find a 'hole'
big enough to fit the job and its state vector. Normally, any place in
memory not occupied by the Executive or another job is considered.
If the job has enabled core-residence permission, it is only allowed to
swap into low memory abutting the EXEC or other core· resident jobs.
This avoids the fragmenting of memory by non-swapping jobs scattered
through it. If the SWEEP flag is set, jobs are only allowed to swap in
immediately above the job which most recently swapped in (or in low
memory just above core-resident jobs if there is not room between the
last job and the top of memory). This has the effect of cycling through
memory and avoiding fragmentation.

S. If the job fits in memory, the memory is allocated to the job, the job
is removed from the NCQ, and a read is initiated to get the job into
memory. The swapper then exits and the process of looking for another
job to swap begins again. When the read completes, the job is put on the
core queue (CQ) and is serviced.

6. If the job cannot fit in memory, the action taken depends on whether
the job has enabled core-residence permission.

7. If the job has enabled core-residence permission, it must swap into a
particular space in memory. The core queue is scanned for jobs occupying
that space. If any are found, they are swapped out. If none are found,
the swapper waits for any swaps in _ progress to complete. If there are no
swaps in progress, it means memory.is not big enough to hold all of the
core-resident jobs. A 'swap panic' message is printed on the console and
the highest core-resident job is swapped out. This enables the system to
'limp along' while the operator tries to fmd the cause of and correct the
excess of core-resident jobs.

8. If a job has not enabled core-residence permission and if it is very large
(bigger than CRUNCHER), the swapper may try to swap in a job with
higher scheduling number first. This will only happen when there would
not be enough memory available to swap the job even if all jobs in
memory with higher scheduling numbers were swapped out. Otherwise,
the swapper will try to find a job to swap out to make room.

9. If the above conditions are met, try to swap in the next job on the
NCQ.

10. Even if no jobs are currently waiting to swap in, the swapper may want
to swap out a job to make free space. Having free space available makes
it possible to swap in jobs immediately when they request service.
FREECORE in the ENV file specifies how much memory to try to keep
available.

11. Picking the job most eligible to swap depends on the value of SWEEP as
set in the ENV file. If SWEEP=I, the job chosen will be either the first
job in memory above the job most recently swapped in or if there is

148 Master-Mode Operating System [Ch.S

not one, the lowest non-core-resident job. If SWEEP=O, the job chosen
is the 'Long Paused' job which has been in memory the longest or if
there is not one, the job with the lowest priority/highest scheduling
number whose core ticker has run out. A job is 'Long Paused' if it has
done a Long Pause MME or if it has been suspended or roadblocked
without master holds for over one second of real time, The core ticker is
a guaranteed period of core-residency. When a job is swapped in, its core
ticker is set for one half second for each 16K or fraction of memory
size. The job may not swap. until the ticker runs out. The ticker is
disabled if the job issues a Long Pause MME.

12. Once the job most eligible to swap has been chosen the swapper decides
whether to swap it out. If it is considering a swap out only to make free
space (see 10), it will swap the job out only if no swaps are in progress
and the job is 'Long Paused'. If there is a job waiting and the job most
eligible is 'Long Paused', it will be swapped. If the job's core ticker has
not run out or if there are MAXFORCE swaps already in progress,. no
swap will be considered unless the job is 'Long Paused'. A job that is not
'Long Paused' will swap out only if a job on the NCQ has significantly
lower scheduling number. 'Significantly' is defined by NCQRATIO. The
default value is 1. 5, meaning that the job in core must have a scheduling
number at least 1. 5 times as large as that of a job on the NCQ.

13. When a job is chosen for swapping, the executive removes it from the
queue of jobs to be run, waits for any I/O on the job's memory to
expire, and/or waits for it to finish its quantum if it is running. Then it
initiates a copy to mass storage. When the copy completes, the memory
occupied by the job is deallocated.

5.8 INPUT/OUTPUT [6]

As noted in Chapter 2, and shown in Fig. 2.1, all input/output devices are
connected to an input/output multiplexor (10M). All input/output operations
are accomplished using a single instruction - connect I/O channel (CIOC). The
address field of the instruction is used to select a word in memory which contains
the address of the channels on the system control unit on which the appropriate
10M is connected. This generates a connect pulse on the 10M. When the 10M
wishes to signal its completion of an action, it interrupts the control processor.
There are thirty-two interrupt cells, each two words long which occupy the
first sixty-four words of memory. Most of these are unused by either the hard­
ware or the software. Each 10M is associated with four cells and the software
uses two other cells for inter-processor communication (slave processors signal
the master processor using an interrupt generated with a Set Memory Controller
Interrupt Cell (SMIC) instruction) and for crashing the system when the software
detects an inconsistency in its operation. Of the four cells associated with each

Sec. 5.8] Input/Output 149

10M one cell is used to signal errors associated with the CIOC instruction, one to
signal normal I/O completion, one for unsolicited interrupts such as a peripheral
being powered-up, and one is unused.

Information if transmitted to and from the 10M via the areas called 10M
mailboxes and the interrupt multiplex word (IMW). The 10M mailbox is a one
hundred twenty-eight word block for each 10M. The IMW table is a single
thirty-two word block shared by all laMs and corresponds to the thirty-two
interrupt cells.

5.8.1 10M mailboxes

Each 10M has a mailbox area of one hundred twenty-eight words. Since each
10M may have thirty-two channels, this gives four words per 10M channel.
Channels 10-37 are used to connect devices to, whilst channels 0-7 are special.
In particular, channel 2 is the connect channel through which all CIOC instruc­
tions are routed and channel 6 is the special status channel (see section 5.8.2).
The format of the connent channel mailbox is shown in Fig. 5.7.

LPW pointer to PCWA

unused

PCWA special if console channel

pcws channel number I
o 8

Fig. 5.7 - Connect channel mailbox format.

When the 10M acts on a CIOC, it picks up the LPW word from the connect
channel and, using the channel number in PCWB, transfers control to the appro­
priate channel routine. If the channel is the console, the one and only command
word (IDCW) is the one in the connect channel word PCWA. If the channel is a
common peripheral interface (the 716 is on such a channel), the 10M treats the
PCWA in the connect channel as the first of possibly many command words.
DTSS places a no-operation IDCW in the connect channel so that the handling
of common peripheral interface channels and peripheral subsystem interface
(PSI) channels, which ignore the PCWA in the connect channel, are treated the
same. Thus, in general, the 10M uses the mailbox of the channel named in PCWB
in the connect channel mailbox to perform the operation. The format of the
general mailbox is shown in Fig. 5.8.

150 Master-Mode Operating System [Ch.5

LPW address of DCW/IDCW list

unused

SCW address for status return

unused

Fig. 5.8 - Data channel mailbox format.

Each data transfer is controlled by a Data Control Word list that specifies
the areas of memory to or from which data is to be transferred. The DCW list
allows data to be gathered from, or distributed to, non-continuous locations in
memory. A DCW list consists of words of two formats. The list alternates an
IDCW word which is the command word (its format is shown in Fig. 5.9) and
some number of DCW words which are the pointer words (shown in Fig. 5.10).
A console channel IDCW (in the PCWA word of the connect channel) has a
similar format to that shown in Fig. 5.9.

This, for example, Fig. 5.11 shows the pointers set up to read from disc to
memory. Fig. 5.12 shows in detail the same situation assuming the read is for
6.1K words and seek is required before the read.

o 56 1112 1718 2021222324 2930 35

I CMD I DEV I AddX I 7 I XcH ~~~ I Count I
CMD Command - different codes for every type of

device.
Dev Physical device address on the channel.
Add X Address extension bits, concatenated with address

in DCW word for extended memory addressing.
Bits 18-20 Must all be 1 for a consistency check.
Bit 21 If set, use address extension.
Bit 22 If set, another mcw will follow after any DCWs.
Bit 23 If bits 22 and 23 are set, a marker (intermediate)

interrupt will be generated following this com­
mand; the channel will remain busy however.

Chan Cmd 0 = Single operation.
2 = Non-data transfer.
6 = Multiple operation.

Count Count of operations if Chan Cmd = 6.

Fig. 5.9 - IDCW format.

Sec. 5.8]

o

starting address
in memory

Input/Output

17 18 2021 22 23 24 35

Count

DCW type 00 = This is the last DCW in the chain.
01 = More DCWs to follow.
11 = More DCWs follow but ignore this address­

generate zeros if output, throwaway data if
input.

10 = Transfer DCW - get next DCW from named
location.

Count Count of number of words to transfer, maximum
is 4096 with single DCW.

Fig. 5.10 - DCW format.

connect mailbox

disc channel
mailbox

Status return words

DCW list

slave job area
to receive data
from disc

/
/

Fig. 5.11 - Pointers for a disc read.

151

disc area
to be read

152 Master-Mode Operating System

connect
,""""~'!r"7"'~L.,.-"~...,....,,......,,..-:I mailbox

physical address

read command I DeW

memory
address M

M + 4096

01 4K

00 2.1 K

Status return

words for channel

Fig. 5.12 - Seek, read on disc for 6.1K words.

5.8.2 Interrupts

[Ch.5

Status table
in Executive
for data
channels on 10M

When an operation completes, the 10M writes two words of status information.
The Executive maintains a forty-eight-wordstatus table for each 10M, with two
words allocated to each of the twenty-four data channels (channels 0-7 are
special channels which do not generate status returns handled in this way). The
SCW word of the data channel mailbox points to the position in this table. The
10M also writes information into the IMW table (whose position in memory is
determined by switch settings on the 10M itself which the 10M can read). The
format of the IMW table is shown in Fig. 5.13.

The IOMs on the system are numbered from zero, and 10M n leaves messages
in words 4 + n, 14 + n, 24 + nand 34 + n of the IMW table. The 10M turns on
a bit in the appropriate word according to which channel needs attention. Thus
bit twelve in word fourteen means initialisation or termination interrupt on

Sec. 5.8]

o
3
4

7
10
13
14

17
20

23
24

27
30

33
34

37

Input/Output 153

unused

System fault

unused

Init/term interrupt

unused

Marker interrupt

unused

Special interrupt

Fig. 5.13 - IMW table.

channel twelve of 10M zero. The word position in the IMW table times two is
the address of the correspondence interrupt cell. The 10M uses this to generate
an interrupt on the control processor which it does by carrying out the same
action as a Set Memory Controller Interrupt Cells (SMIC) instruction with the
address of the interrupt location calculated from the IMW table offset.

The control processor must then interrogate the appropriate IMW word
to discover the channel number and from this is able to pick up the status
information from the status table and hence service the interrupt.

The 10M sets bits in a word in the system fault section of the IMW table
when such things as parity error or mailbox words pointing out of memory
occur. Marker interrupts are set when bits twenty-two and three in the IDCW are
set as described in Fig. 5.9.

Special interrupts are generated when a device/channel needs attention but
is not the subject of a command. Thus mounting a tape or powering-up the card
reader are events generated as a result of operator action rather than program
action. The action on a common peripheral interface differs from the action on
a PSI channel.

When a non-PSI channel requires attention, it turns on its IMW special
interrupt bit and generates the appropriate interrupt, but no further information
is given. Thus for example if there were eight tapes on a non-PSI channel and
one goes ready, an interrupt is generated on the tape channel and the Executive
must request status on each drive to fmd out what happened.

On PSI channels, all special interrupts are routed through channel six of
the 10M (the special status channel). A word of data is provided by the MPC
(peripheral processor) which includes the channel number, the device number,

154 Master-Mode Operating System [Ch.5]

and the code for the cause of the special. This data is stored in a stack, with the
stack pointer in the special channel mailbox, the format of which is shown in
Fig. 5.14.

LPW

LPWX

sew

Dew

A

A

count

unused

count

A

Fig. 5.14 - Special status mailbox.

interrupt
stack

The DCW word contains the stack pointer. When the count gets to zero, the
stack pointer is reset from the second word of the mailbox, thus giving a circular
stack.

When the Executive gets the special interrupt, it uses the information on the
stack to process the interrupt. .

5.9 REFERENCES

[1] Pedersen, L. C. (October 1975), 'DTSS Job-Executive Interface', DTSS
System Memorandum 211.

[2] Garland, S., and Dwyer, A. (October 1974), 'DTSS Programming Reference
Manual', DTSS Technical Memorandum 059.

[3] Fernandez, L. F. (October 1975), 'DTSS Executive-Internal Structure',
DTSS System Memorandum 217.

[4] Pedersen, L. C. (1976), 'Communication Files', DTSS Internal Document.
[5] Kaufman, C. (June 1976), 'The DTSS Scheduling Algorithm', DTSSInternal

Document.
[6] Kaufman, C. (1977), 'Input/Output Notes', DTSS Internal Document.

CHAPTER 6

Slave-Mode Operating System

6.1 TERMINAL COMMUNICATION CONTROLLER INTERFACE (TCFACE)

This module is the interface between the terminal communication controller
(TCC - the 716 front-end processor), and hence between the user terminals,
and the slave jobs. In common with all other devices the user terminal looks like
a file to a job wishing to send or receive data to or from it. This is achieved with
a communication me, a slave end of which is held by the job and the master end
is held by TCF ACE.

·6.1.1 Overall structure of TCF ACE

TCFACE is organised into a cyclic section and a non-cyclic, interrupt driven
section. The cyclic section is concerned with sending and receiving data to and
from the TCC. This is shown in Fig. 6.1.

Since TCFACE holds the master end of communication files it receives all
the special interrupts for terminal output generated by slave jobs (see section
5.3) and the traps from the WRITE MMEs it issues to transfer data input from
the terminal. These asynchonous events are analysed and placed on queues for
processing in TCFACEs spare time.

Read blocks of
data from Tee.

t
Decode data blocks

and generate WR ITE
MME to send data

to appropriate
slave jobs.

t
Write data blocks

to Tee.

Fig. 6.1 - TCFACE cyclic routines.

156 Slave-Mode Operating System [Ch.6

6.1.2 Communication file control

The status of a communication file is controlled and monitored via a series of
bits in a table called TFR which is indexed by terminal number. The function
and purpose of the more important bits is described in Table 6.1.

The overall policy of TCF ACE is to run uninhibited whenever possible.
Traps and special interrupts are queued for later processing. IIi addition, tasks
which must be deferred because the communication file is busy are queued
as are tasks which must be deferred due to buffer allocation problems. Most
elements on such queues are held in a six word block whose general format is
shown in Fig. 6.2.

-4 Dependent on block usage

-3 Dependent on block usage

-2 Dependent on block usage

-1 Q~LlNK

o Q$ROUT I QSTRMNO

+1 Dependent on block usage

Q$LINK Pointer to next Q$ROUT. End of queue contains zero
or in the case of traps a transfer to routine to process
traps.

Q$ROUT Address of routine to process queue element.
Q$TRMNO Terminal number.

Fig. 6.2 - Generalised queue element.

6.1.3 Message formats and protocol

TCF ACE reads data to be sent to the terminals over communication files and
sets up message buffers which consist of a one-word header and an n-word data
block. The format of the header word is shown in Fig. 6.3. 'Multiple messages
are blocked together for transmission in a block with a maximum size of two
hundred and fifty-five words.

line message message line
1 # 1 1 1

extn. length type number

o 3 67£'910 171819 262728 35

Fig. 6.3 - Message header format.

Bits 0, 9, 18 and 27 are set to one to allow a consistency check to be carried
out. The line number field is split into two to retain consistency with the previous
TCC (an 18-bit Datanet 30) and is used to identify the terminal to which the
data following the header words is to be sent. The message length is the number

Sec. 6.1] Terminal Communication Controller Interface (TCFACE) 157

Table 6.1.

Name Description

BSTCN Terminal connect bit - on if the terminal is connected.

B$TDR Terminal drive sent bit - on if a DRIVE MME has been sent to
the slave end requesting a read, and the slave end has not yet
done so.

B$TOP Terminal output pending bit - on if the terminal has been sent
output and the TCC has not yet sent a BLB message to TCFACE
(see section 6.1.3).

B$TWS Terminal warning pending. bit - on if a warning message from
the operator has been received for this terminal but has not yet
been transmitted to the terminal.

B$WFR Wait for read bit - on if the slave end has reserved the com­
munication file. If this bit is on TCFACE will not DRIVE 'read
communication file', special interrupts to the slave end when
unsolicited input is received. Instead, it will wait for the slave
end to issue a READ.

B$RSS Reset status bit - on if a RESET STATUS MME was issued on
the communication file by TCF ACE while the file was busy and
the trap on the outstanding operation has not yet been sprung.

B$TIF Time-out field - this three bit field is incremented every eighteen
minutes provided B$SRO is set. If the count reaches six the
terminal file will be disconnected. The field is set to zero when­
ever a slave issues a READ or data is transferred to the slave end.

B$SRO Slave read outstanding bit - on if a slave end has issued a READ
and TCF ACE has not yet trapped it.

B$SWO Slave write outstanding bit - on if the slave end has issued a
WRITE and TCF ACE has not yet transferred all the information.

B$SCL Slave closed bit - on if a slave end has issued a CLOSE and
TCF ACE has not yet received an end of output message from
the TCC.

B$MSF Master state field - this three bit field is used to represent the
state of the master end of the communication file:

o - Master end idle.

1 - Master end busy.

2 - Master end reset.

3 - Master end closed.

158 Slave-Mode Operating System [Ch.6

of words following the header. The message type is used to control the protocol
between the TCC and TCF ACE.

When TCF ACE is transmitting data to a terminal, the message type is always
000 (continued transmission). The TCCdoes not acknowledge this but when the
TCC calculates it has only one seconds worth of data left to send to the terminal,
it sends a message consisting only of a header word with message type 021
(beginning last buffer - BLB). TCF ACE responds by reading more data from
the communication file proving the slave issued WRITE is still outstanding,
otherwise it will do nothing. When the TCC has completed the output to a
terminal it sends a message consisting only of a header word with message type
020 (end of output). TCFACE uses this to allow terminal input to commence
since it enforces a protocol whereby input and output from and to the terminal
may not proceed simultaneously.

A number of message types are sent by TCF ACE to the TCC as a result of
users issuing SIMON commands which control the action of the terminal. Thus,
for example, if a user issues the command FULLDUPLEX, SIMON DRNES
full-duplex mode on the user's terminal communication file. TCFACE in res­
ponding to the DRNE special interrupt will generate a message header word of
type 060 (set full- duplex mode). The TCC uses this to control the transmission
process to the terminal.

The TCC reads data from the terminals and sets up a message buffer for
each terminal which is inputting characters.

When the TCC is transmitting data to TCFACE, there are two common
message types which signal to TCFACE what action to take. The types may be
classified as 'here is some data because my buffer has overflowed' and 'here is
some data because the user has signalled this is the end of a logical transmission'.
The first type is message type 000 (continued transmission from this terminal)
and the second type is either 001 (break character received), 002 (end of BUILD
mode - two carriage-returns received) or 003 (end of line-by-line mode, end of
command mode). Thus, for example, when the user types BUILD to SIMON,
SIMON DRNESs build mode on the user's terminal communication file, prints
SPEAK!, and issues a COPY from the user's terminal communication file to the
end of the user's current file. This DRNE is passed on to the TCC by TCFACE
sending a message type 041 (set build mode). When the TCC detects two carriage­
returns in sequence from a terminal in build mode, it sends a message type 002.
TCF ACE responds by trapping SIMON's COPY to the user's current file.
SIMON responds to the trap on the COpy by returning the user's terminal
communication file to its normal state, driving command mode and printing
READY. TCFACE in response to the DRIVE sends a message type 040 (set
command mode) to the TCC.

A list of the more important message types are given in Tables 6.2 and 6.3."
All message blocks in both directions, are terminated with a message type

100.

Sec. 6.1] Terminal Communication Controller Interface (TCFACE) 159

Tab Ie 6.2 - TCC to TCF ACE message types.

000 Continued transmission from this terminal.
001 Break character received.
002 End of BUILD-mode.
003 Une-by-line or command mode ended.
004 Answer back drum read follows.

011 Carrier lost - user no longer there.
012 Carrier detect - new user identified.

020 End of output.
021 Beginning last buffer.

100 End of this transmission.
101 Hardware load.
102 Program load request.
104 Dump TCF ACE memory.

Table 6.3 - TCFACE to TCC message types.

000 Continued transmission.

040 Set line-by-line-normal program input mode
041 Set build mode.
042 Set tape mode for build mode_
043 Set direct mode.
044 Set command mode - normal SIMON mode.
045 Set tape mode for command mode.
046 Stop-options accepted (CTRL-X, S and BREAK).
050 Delete input buffer.
051 Next command is patch or dump.

060 Set full duplex mode.
061 Set half duplex mode.
062 Set direct output mode.
063 Reset direct output mode.
064 Set friden mode.
065 Reset friden mode.
066 Stop output - dump all buffers.

100 End of this transmission.
101 Hardware load.
102 Program load follows.
103 Reset all lines connected to TCC.
140 Dump.
141 Patch.
142 Validate a debugging user.

160 Slave-Mode Operating System [Ch.6

6.1.4 Message flow control

Fig. 6.4 shows the routing of messages from the userts terminal to a slave job.

2 3

Terminal J=[3=j TCFACE ~
6 3 4

Fig. 6.4 - Message Routing.

The flow control exercised over the six paths shown in Fig. 6.4 is as follows:

1. With asynchronous terminals there is no control (other than that exercised
by the user himself) and the TCC must accept each character as it arrives
and buffer it.

2. TCF ACE has no control over the message flow from the TCC. It must
accept all messages and buffer them. To ensure nothing is lost, TCF ACE
maintains an overflow area on disc for three messages per terminal to a
maximum of one hundred and twenty-eight words.

3. If a COPY is outstanding, the job has no control over the arrival time or
rate of terminal input. If no COpy is outstanding, and the terminal input
is unsolicited, the job will receive a special interrupt which it processes in
its own time and also issues any COpy to the communication file to read
the data in its own time. Thus TCFACE must buffer such data until the
job decides to read it.

4. TCFACE controls the rate of reading, based on the availability of its
buffer space, by issuing READS on the communication fue when it wants
to and also for the amount of data it is prepared to accept.

S. The TCC controls the flow of messages by sending beginning last block
or end of message types. TCFACE does not transmit until it receives
these messages,

6. The terminal must accept data asynchronously as it is sent by the TCC.

6.2 LOGIN

This module runs the various monitors and also validates each user at sign-on
time. In running the monitors it provides a command interface to the monitors
through which it provides a number of services the most important of which is
the maintenance of billing and statistics meso

6.2.1 User validation [1]

The validation records for all the user numbers in a given user group are stored
in a single validation file which is catalogued in the group catalog. The group

Sec. 6.2] LOGIN 161

catalog is in turn catalogued in a super-group which contains the group catalogs
for all user numbers in the same super group. Fig. 6.5 shows a brief schematic
of the DTSS file structure down to the user catalog leve1.

VALIDATION
FILE

Fig. 6.5 - User Catalogs and Validation Files in the DTSS File Structure.

There are a variety of different validation record formats within a validation
file, most of the variations being in the interest of conserving space. Only the
last three digits of the user number in are specified in a validation record. Each
record format is designated by a three-bit entry code in the first word of the
entry. Codes zero and one indicate entries for a single user number with no
special permissions.

A validation record may also be used to define a block of consecutive user
numbers with identical permissions. Entry codes two and three indicate records
containing blocks of continuous user numbers with no special permissions.

Entry codes four and five are used whenever special permissions or answer­
back drum entries are required, whether for a single user or a block of users.
Entry code four does not specify a password; entry code five is similar to entry
code four but with the addition of a password; it is shown in Fig. 6.6.

Entry code six is always used for the first validation record in a validation
file; it lists the common answerback drum entries for the user group (if any).

Finally, entry code seven is used as a terminator for the validation file.
LOGIN carries out the checks based on information supplied by the user

and information held in the validation record such as an answerback drum check
of a check against legal log-on times. Assuming the user passes the validation
check, LOGIN passes the slave end of the terminal communication file and the
user catalog to a monitor together with a message block which contains the
status on the user catalog together with the user number, the terminal number,
the permissions word (see Table 4.3) and the limits word (see section 4.5.1).
This message is shown in Fig. 6.7.

162 Slave-Mode Operating System [Ch.6

o 34 1112 1920 26272930 35

FIRST USER NUMBER IN BLOCK 5 I UC

LAST USER NUMBER IN BLOCK ZERO

PERMISSIONS

ZERO I LEGAL LOG-ON TIMES

MAX MAX CATALOG MAX STORAGE
TIME STORAGE STORAGE (LOG2)

SPARE

NUMBER OF WORDS IN THIS
VALIDATION RECORD

PASSWORD - CHARACTERS 1-4

PASSWORD - CHARACTERS 5-8

FIRST ANSWERBACK DRUM ENTRY

SECOND ANSWERBACK DRUM ENTRY

These words
are used only

if there are
any private
answerback

entries.

LAST ANSWERBACK DRUM ENTRY

Fig. 6.6 - Long format entry with passwords.

Access catalog open with I Preference info I Type

Catalog MAX

Read/write pointer

Maximum accesses available

User number

User number

Terminal number

Permission word (see Table 4.3)

Max CR Us I Max cat storage I Max scratch storage

Fig. 6.7 - Message block from LOGIN to monitor.

Sec. 6.2] LOGIN 163

6.2.2 Command interface

LOGIN provides four basic services via a command interface. These services are
gathering statistics and billing data from the monitors, making catalogs available
to monitors, transmitting messages between monitors, and controlling access to
the system. The commands associated with billing are:

BYE (and two other related commands) which is used to inform LOGIN
that a user has been disconnected from the system and to pass the
billing record to LOGIN;

HEL used to inform WGIN that a user wishes to change user catalogs or
monitors and to pass the billing record for the session so far to
LOGIN;

BIL used to pass billing information to LOGIN following a background
job.

The command associated with statistics is:

ST A used to pass statistics records to LOGIN in response to a request
from LOG IN for statistics.

LOGIN collects billing information for CPU usage and I/O units sent to it
by the monitors using commands such as BYE, HEL, MON, and BILand appends
to this connect time information which it holds for the user. These billing records
are written by LOGIN to the billing file for later processing by the billing
programs.

Every five minutes WGIN sends a 'read communication file' drive down
the communication file to each monitor. The monitor reads the file and finds a
message saying 'send me your statistics'_ The monitor, using the STA command
to LOGIN, send the statistics down the communication file. LOGIN also
collects statistics from TCFACE using a communication file and from the
Executive by reading Executive's memory directly. The statistics are written by
LOGIN into a file called the daily billing file for later processing by program
called BILLPG.

The name used for the daily billing file is the data which it was begun in
MM/DD/YY format. A given daily billing file will contain all usage information
for one 'DTSS Day'. A 'DTSS Day' begins the first time DTSS is booted on a
given date and continues until the system is booted on a different date.

The OPURGE module (run by the operator) is responsible for recording the
amount of storage associated with individual user catalogs, and this information
is stored in a file called STORAGE.

BILLPG is run on a regular basis to create a file called BILLSUM. At the
end of a monthly billing period, BILLSUM is copied to a monthly summary file.
Fig. 6.8 illustrates this sequence.

164 Slave-Mode Operating System

DA I LV BILLING FILES

Fig. 6.8 - Statistics and billing.

The command associated with catalog access is:

STORAGE

Display
Device

[Ch.6

CAT used, particularly by BAKMON, to access fues in catalogs other than
the current catalog.

The command associated with message passing.between monitors is:

MES used, for example, by SIMON to send wakeup messages to BAKMON
to inform it there is something for it to do.

There are a variety .of commands, valid only from OPMON, which are to do
with controlling system access during the period when the system is being closed
down, and to do with assigning which lines are to be designated as control lines.

Since LOGIN is used infrequently, it swaps, unlike the Executive, TCFACE,
and SIMON.

6.3 MONITORS

There are nine monitors running beneath LOGIN most of which, like LOGIN,
swap (SIMON does not). Most of these modules are designed to provide an

Sec. 6.3] Monitors 165

environment under which user jobs run. The monitor under which most users
run is SIMON, and this will be described in detail. The name and brief function
of each monitor is given below:

BAKMON This monitor processes job descriptions in the submission
catalog as resources become available. Jobs are placed in the
submission catalog by the background system, run by SIMON
when a user types the command BACK (see section 6.3.3).

CHEMON This monitor is solely for running chess playing programs. It
gives the user infinite run time but restricts access to chess
programs only. It also limits the number of users who can use
the monitor simultaneously.

MUXMON Use to control the datalink system (see section 7.6) for RJE
stations and computer-computer connections. It is also used
for down-line loading of remote minicomputers.

OPMON This monitor is the same code as SIMON but runs with more
privileges. It is used by the system operator.

RAM This is the restricted access monitor which is used to restrict
users to the use of specified resources such as a single appli­
cations program.

SIMON This is the general purpose, user interface to the system. It
processes commands from the user and provides the requested
services or runs jobs to provide the requested service. Most
users of the system interface to SIMON, which multiprograms
the users connected to it (see section 6.3.1).

SUPMON This is a special purpose monitor which is a copy of DDT
(the assembly language debugger) and is used for debugging
other monitors. AS such it is a highly privileged monitor.

TCL This special monitor does not run users but is the telecommuni­
cations loader, invoked when the front-end communication
processor requires reloading or dumping (see section 7.9).

VALMON This monitor is used to run privileged users who are setting up,
modifying or deleting user validation records. The validation
records specify the conditions under which a user may obtain
access to DTSS and the resources available after is granted (see
section 6.3.4).

6.3.1 SIMON [2]

SIMON (Simple Monitor) is the primary user interface for the Dartmouth Time­
Sharing System. When a user logs on to the system, control of his terminal is
normally passed to SIMON, which prints the message NEW OR OLD -. The
user may then start a conversation with. the system by giving commands to
SIMON.

166 Slave-Mode Operating System [Ch.6

A user under SIMON has two basic mes, a current me and _an alter file.
A user's current ftle may. at various times contain.a. program, a. document, a
block of data, etc. The user may.alter his current file via the NEW and OLD
commands, the various text-editing commands, the BUILD command, etc.
In addition, the user may alter his current file by typing in line-numbered text
from his terminal; SIMON appends such line-numbered text to the user's alter
file.

A sort consists of merging the user's alter file into .his current file in such a
way that the resulting current file is in ascending line-number order. If several
lines in the user's alter file begin with the same line number, only the last such
line is kept. A sort will be carried out only if the user's current me is in ascending
line-number order; if this is not the case, a message is printed and the current
file and alter me are left unmodified.

In general, if the execution of a user command will involve the user's
current ftle is some way, SIMON will run the Majorsort module to do a sort
before executing a command. If the execution of a command does not cause a
sort to take place, the user's current and alter mes are left unmodified; sub­
sequent alterations are simply appended to the alter me.

The manner in which many SIMON commands are executed depends upon
the settings of various parameters within the user's validation record. These
parameters ar~ passed to SIMON by LOGIN when a user signs-on to the system
and consist of two 36-bit words. The first of these is a permissions word, which
controls the user's ability to access certain.system facilities, such as privileged
catalogs, peripherals, etc. (see Table 4.7 and Fig. 6~7); If a bit is on, the user may
access the corresponding facility; if the bit is off, access is denied. The second
validation word passed to SIMON is a quotas word; it controls the amount of
CPU time and the volume of me storage that may be used in the execution of
a given command (see Fig. 6.7).

If a user has run permission, SIMON will allow him to issue a RUN,
COMPILE, or LINK command on any system. If a user does not have· run
permission, SIMON will allow him to issue a RUN, COMPILE, or LINK command
only on the official systems. The experimental counterpart of an official system
is also considered an official system; the experimental counterpart of a system is
formed by prefixing its name with the letter 'X' (for example, the experimental
counterpart of ALGOL is XALGOL).

The current official systems are:
7MAP DTSS 716 Marco Assembly Program
SMAP DTSS PDP-S Marco Assembly Program
9 MAP DTSS PDP-9 Marco Assembly Program
ALGOL DTSSALGOL
APL DTSSAPL
BASIC DrSS BASIC
CHESS Chess- playing Program

Sec. 6.3]

COBOL
COURSE
CPS
CROSREF
DDT
DMAP
DTRAC
DXPL
DYNAMO
FORTRAN
GMAP
LISP
MIX
PER
PILOT
PL
PLOT
SBASIC
SIX
SNOBOL

Monitors 167

DTSSCOBOL
IBM compatible COURSEWRITER III author program
'Complete Programming System' developed at Bates College
Program cross-references
Honeywell 600/6000 machine language testing program
DTSS Datanet-30 Macro Assembly Program
DTSS Text Reckoning and Compiling Program
DTSS XPL Translator Writing System
Simulation language
DTSS FORTRAN
Honeywell 600/6000 Macro Assembly Program
DTSS LISP
DTSS MIX Assembler
Gives a list of user permissions
DTSS PILOT course writer
DTSS PL/I
Graphics system for use with BASIC or SBASIC
Structured BASIC
FORTRAN 76
DTSSSNOBOL4

As a user under SIMON manipulates his current file, various bits of infor­
mation about the file are accumulated. For example, the file may become hon­
listable, it may contain source code pertaining to a specific compiler, or the user
may wish to specify that only .certain SIMON commands may be executed on
the file, or that only certain users should be allowed to access the file. When a
user saves his current file, SIMON preserves these information bits by setting
them into the access word with which the file is catalogued. Thereafter, each
time SIMON reopens the file for a user, it retrieves these information bits from
the file access word and uses them to control the way in which it executes
many user commands pertaining to the file. These information .bits are referred
to as the 'Simple Monitor User bits'.

The Simple Monitor User bits are accumulated for the user's current file
during the execution of RUN, COMPILE, EDIT, TEXTEDIT, STRINGEDIT,
SAVE, and SYSTEM commands. There are nine bit positions involved, and
SIMON maintains two complete sets of information bits for each saved file.
One set of information bits is used when the file is opened without a password,
and the other when the file is opened with a password. The two sets of infor­
mation bits are placed in the user bit positions (bits 9-17 and 27-35) of the
file's access word when the user saves his current file via a SAVE command.
The information bits are subsequently retrieved from either the no-password
side (bits 9-17) or the password side (bits 27 -35) of the file's access word when
the user opens the file via an OLD command.

168 Slave-Mode Operating System [Ch.6

The Simple Monitor User bits are divided into two fields:

Current file pennission bits (bits 9-13).
These bits control the way in which SIMON executes OLD, LIST, RUN,
REPLACE and SAVE commands pertaining to the user's current file, and
the way in which the various text editing systems perform editing functions
on the file. They are defined in Table 6.4.

Table 6.4.

Name Meaning

B$LIST or list The me may be listed.

B$COMP or compile The file is compiled object code though not
necessarily directly executable.

B$PUB or public The file is available to the public.

B$GROUP or group The file is available to the user's group (users
whose numbers differ only in the last three
characters).

System code (bits 14-17).
These bits indicate what the user's current system was when the file was
saved. Only compilers and interpreters are assigned unique system codes;
assemblers and other official systems are assigned a system code of zero (see
section 4.5.3). SIMON inspects a file's system code when the file is opened
via an OLD command.

A complete list of SIMON commands is given below:

Elementary file commands - The following SIMON commands perform
elementary file operations:

APPEND
BUILD
ENTER
IGNORE

LIST
MIGRATE
NEW
OLD

RECOVER
RENAME
REPLACE
SAVE

SCRATCH
SORT
UNSAVE

Program execution commands
execution of user programs:

The following commands initiate the

BACKGROUND
COMPILE
DEBUG

EXECUTE
GCOS
LINK

RUN
TEST

Sec. 6.3] Monitors 169

Editing commands - The following commands perform text editing functions:

EDIT
QEDIT

STRINGEDIT TYPEDIT
TEXTEDIT

Terminal mode commands - The following commands define the format of
the data stream to or from the user's terminal:

DIRECT
FRIDEN
FULLDUPLEX

HALF DUPLEX
KEYBOARD
NFRIDEN

NPARITY
PARITY
TAPE

Miscellaneous commands - The following commands do not fit neatly into
any other category:

ACCOUNT
BILL
BRIEF
BYE
CALCULATE
CATALOG

EXPLAIN
GOODBYE
HELLO
HELP
JOIN
LENGTH

PUNCH
SYSTEM
TTY
USERS

MAIL
MAXIMUM
MONITOR
NBRIEF
PERFORM
PREFERENCE

Diagnostic commands - The following diagnostic commands are available
only to users who have special system privileges:

ABORT
CLOSE

CORE
DIE

DUMP
PATCH

STATUS

SIMON communicates with its environment in the following ways:

SIMON communicates with the DTSS Executive via Executive calls. By
issuing an Executive call with various parameters, SIMON requests the
DTSS Executive to perform a given operation; the Executive performs the
requested operation and returns status information.

SIMON communicates with TCFACE via communication files. There is
one communication file between TCF ACE and SIMON for each user that
SIMON is servicing. TCF ACE handles the transfer of information between
the Terminal Communications Controllers (TCCs) and various slave mode
programs in the system.

SIMON communicates with LOGIN by means of a single communication
file and also via information accompanying user catalogs which LOGIN
passes to SIMON.

170 Slave-Mode Operating System [Ch.6

SIMON communicates with jobs running under it in various ways, including
communication files, parameters set when a job is run, and status returned
when a job terminates. Jobs which run under SIMON include compilers and
editors.

SIMON communicates with BAKMON via an intermonitor message facility
provided by LOGIN. The Background Monitor runs jobs which are not
connected to time-sharing terminals and handles the allocation of peripherals
to these jobs.

SIMON will service as many users as are passed to it by LOGIN. Information
about each user is maintained in a separate user control block known as a
JBLOCK; everything SIMON knows about a given user is contained in his
JBLOCK. Each JBLOCK is fifty-four words long (octal) and contains the
information/given in Table 6.5.

From SIMON's point of view a user is always in one of four states. He is
either:

(a) executing SIMON code (for example, having his command line scanned),
(b) on SIMON's processing queue waiting to resume execution,
(c) in limbo waiting for the trap of an Executive call to link him to the

processing queue (for example, waiting for a REPLACE MME to trap),
or

(d) on a subsidiary resource queue waiting to use a given subsidiary resource
(for example, waiting to use the sort buffer).

6.3.1.1 The processing queue

SIMON can execute only one instruction at a time, and thus can process only
one user at a time. A user becomes eligible for processing when an Executive call
traps, or when his JBLOCK reaches the front of a subsidiary resource queue.
In either case, SIMON does not process the user immediately, but places his
JBLOCK at the back of the processing queue. Before a JBLOCK is placed on this
queue, the address of the routine which will process it next and any parameters
necessary for this processing are recorded in it. Then when SIMON becomes free
to process a new task, either as a result of issuing a trapping Executive call, or
as a result of placing a JBLOCK on a queue, the JBLOCK at the front of the
processing queue is removed and the task recorded in it is executed.

6.3.1.2 Subsidiary resource queues

There are several resources other than processor time for which SIMON must
queue. SIMON maintains the following subsidiary resource queues:

Short buffer queue - This queue serialises use of a 2098-word buffer used
to search the user's current or alter file for a given line number in
response to a 'LIST <line number>' command.

Sec. 6.3]

Table 6.S

Word (octal)

a

1

2

3

4 (bits 0-8)

4 (bits 9-13)

4 (lower)

5 (upper)

5 (lower)

6 (upper)

6 (lower)

7 (upper)

Monitors 171

Contents

Trap status word one - The location in which the Executive
places status information at the completion of an Executive
call.

Trap status word two.

Trap interrupt IC/IR - The Executive preserves Simple
Monitor's instruction counter and indicators here when it
interrupts SIMON on completion of an Executive call.

Trap processing instruction - The Executive transfers to
this instruction after filling in trap words 0, 1, and 2 at
the completion of an Executive call. This instruction calls
SIMON's trap processing routine, which links the user
control block to SIMON's processing queue (see Resource
Queues below).

Index of current command - Offset into SIMON's com­
mand table of the user's last command.

Current file status - The current file's permissions (for
example, Read, list, Compile).

Restart address - Address at which to resume processing
when the JBLOCK reaches the front of the processing
queue.

JBLOCK link word - Pointer to the next JBLOCK on the
linked list containing all JBLOCKS (JCHAIN).

Terminal frn - File reference number of the user's terminal
communication file.

Multiterminal system link word - Pointer to the next
multi terminal system master on a linked list of all multiple­
terminal system masters.

Abortable frn - File reference number of a file which has
an operation pending on it which may be aborted (for
example, the frn of a job running under SIMON, the user's
current file frn when a LIST command is in progress).

Subroutine linkage number one - Location for return
address when calling a delaying subroutine which uses
subroutine linkage number two.

172 Slave-Mode Operating System [Ch.6

Table 6.S - continued.

Word (octal)
\

7 (lower)

10 (upper)

10 (lower)

11 (upper)

11 (lower)

12 (upper)

12 (lower)

13 (upper)

13 (lower)

14 (upper)

14 (lower)

15 (upper)

16-17

Contents

Current catalog frn - File reference number of user's
current catalog,

Subroutine linkage number two - Location for return
address when calling a delaying subroutine which uses
subroutine linkage number three.

Current fue frn - File reference number of user's current
file.

Subroutine linkage number three - Location for return
address for subroutines which do not call any delaying
subroutines.

Alter file frn -File reference number of user's alter file.

Input buffer address - Address of. general-purpose I/O
buffer currently allocated to this user.

Extra file frn - File reference number of a temporary
'extra' file (for example, an output file passed to an editor,
a user catalog during a fetching open).

Command sequence buffer address - Address of a buffer
containing the current command sequence (multiple
command line).

Communication file frn - File reference number of the
master end of a communication file to a job running under
SIMON.

Output buffer address - Address of a buffer containing
output for a user (for example, an' error message, the
'READY' prompt).

User catalog frn while user is entered - File reference
number of the user's own user catalog while he has entered
another catalog.

Pointer to current system name - Address of the table
entry for the user's current system. This table includes the
current system's name, file reference number, system code,
and length.

Current file name - The eight-character name of the user's
current file.

Sec. 6.3] Monitors 173

Table 6.5 - continued.

Word (0 ctal)

22-23

24

2S

26 (upper)

26 (lower)

27 (upper)

27 (lower)

30-37

40

41

Contents

Entered catalog name - Name of user's current catalog
while entered.

User permission word - Bit- coded word passed to SIMON
by LOGIN which controls the user's ability to access
various system facilities.

User quotas word - Quotas word passed to Simple Monitor
by LOGIN limiting number of Computer Resource Units
and amount of catalogued and scratch storage that a user
may employ while running under SIMON.

User's current memory limit - The current maximum
amount of main memory which a user may occupy while
running under SIMON. This value is initially the system
default but may be changed by the MAX command_

User's current resource limit - The current maximum
number of Computer Resource Units which a user may
employ while running under SIMON. This value is initially
the user's validated limit but may be reduced by the MAX
command.

Time since bootload at log-on - Time since bootload when
the user logged on under SIMON.

Time since bootload at alter file copy or transfer to com­
mand routine - Elapsed time since bootload when SIMON
began processing the user's last command, or when SIMON
initiated the last copy to the user's alter file, whichever
was later.

Temporary storage - Temporary storage used to pass infor­
mation between subroutines and to save information across
Executive calls.

Session's Computer Resource Units - The total number of
Computer Resource Units which the user has accumulated
since he logged on under SIMON.

Command Computer Resource Units - The number of
Computer Resource Units which the user has accumulated
during processing of the current SIMON command.

174 Slave-Mode Operating System [Ch.6

Table 6.S - continued.

Word (octal)

42

43

44

45

46 (bits 0-8)

46 (bits 9-35)

47 (bits 0-8)

47 (bits 9-35)

50

51 (upper)

51 (lower)

52 (upper)

52 (lower)

53 (upper)

53 (lower)

Contents

Command line Computer Resource Units - The total
number of Computer Resource Units accumulated by the
user during the current SIMON command sequence.

Command line Input/Output Units - The total number of
input/output units accumulated by the user during the
current SIMON command sequence.

Command line Central Processor Units - The total CPU
time accumulated by the user during the current SIMON
command sequence.

Command line Kilo-Core Seconds - The total number
of kilo-core seconds accumulated by the user during the
current SIMON command sequence.

Current command number - The number of the command
in the user's SIMON command sequence which is currently
being processed.

Current file length - The length of the user's current file.

Unrequested input length - Length of user's unrequested
input (current command length).

Alter file length -Length of the user's alter file.

User status flags - Bit-coded flags indicating presence or
absence of various files and buffers, a break received from
the user's terminal communication file, etc.

Run routine status flags - Bit-coded status flags for
SIMON's general run routine indicating edit run, compiled
current file run, compilation run, etc.

Executable system frn address - Address of the file
reference number of an executable system for SIMON's
general run routine.

Address of slave JBLOCK - Address of slave ('fake') user
during PERFORM command.

Address of master JBLOCK - Address of master ('real')
user during PERFORM command.

line number - System access line number assigned to the
user when he logged on.

Unused.

Sec. 6.3] Monitors 175

Catalog queue - This queue serialises use of the 'non-reentrant' RUN
subroutine.

LOGIN communication file queue - This queue serialises use of SIMON's
communication file to LOGIN, by which billing messages, requests for
user catalogs, etc. are transmitted. This queue is also used to serialise
certain log-on and log-off operations, to make sure that SIMON does
not become confused.

If a user wishes to use a subsidiary resource and that resource is not busy,
the resource is marked busy and is seized immediately. If a user wishes to use a
subsidiary resource and the resource is busy, the user's JBLOCK is placed at
the back of the given subsidiary resource queue. When a user finishes using a
subsidiary resource, the resource is realised it} one of two ways. If there are no
more JBLOCKS on the queue it is simply marked not busy. If there are more
JBLOCKS on the queue, the queue remains busy and the JBLOCK at the front
of the queue is moved to the back of the processing queue; when this JBLOCK
reaches the front of the processing queue, it seizes the resource.

The format of the head of a queue is given in Table 6.6. The format of a
queue block is given in Table 6.7. Fig. 6~9 shows the queue format.

Table 6.6 - Format of the head of a queue.

Word (octal) Contents

o (upper) First pointer - pointer to the link word of the first block
on the queue.

1 (upper) l..a.st pointer - pointer to the restart word of the last block
on the queue.

2 Count - The number of blocks current in the queue.

3 Maximum count - The maximum number of blocks which
have been in the queue since the last STA command was
received from LOGIN (at which time this word was zeroed).

4 Unused.

5 (upper) Busy pointer - Pointer to the block which currently holds
the queue.

6-7 Instructions to add a.block to the queue.

10-11 Instructions to sieze the queue.

12-13 Instructions to release the queue.

176 Slave-Mode Operating System [Ch.6

Table 6.7 - Format of a queue block.

Word (octal) Contents

0 Status word one - The location in which the Executive
places status information upon completion of an Executive
call.

1 Status word two.

2 Return word - The location in which the Executive pre-
serves SIMON's instruction register and indicator register
when it interrupts SIMON upon completion of an Executive
call.

3 (upper) Link word - Pointer to the next block on the queue. If
this is the last block on the processing queue this field is
zero.

4 (lower) Restart address - The address at which to resume pro-
cessing when this block reaches the front of the processing
queue.

S (n-I) The rest of the block, where n is its length.

First Queue Block Queue Block Last Queue Block

SW 1 SW 1 SW1

SW2 SW2 SW2

RET RET RET

LINK LINK LINK

L r---- RESTART RESTART RESTART

~ ; c c

Block-Holding
Queue Head Queue

First - SW 1

Last SW2

Count RET

Max Count LINK

(Unused) TRA

Busy

Fig. 6.9 - Queue Format.

Sec. 6.3] Monitors 177

The path that a user follows through SIMON is usually quite straightforward.
As soon as a user logs on, or as soon as the execution of a command has been
completed, the user is transferred to the command routine. From there the
typical user path is composed of the following steps:

(a) If a STOP message is required, print it and throwaway the rest of the
user~s command sequence.

(b) If there are more commands to be executed from the user's command
sequence, go to step (h); otherwise:

(c) Print any I/O and CPU time charges accumulated during execution
of the command sequence.

(d) Drive command mode on the user's terminal communication file.
(e) Print READY.
(f) Issue a copy from the user's terminal communication file to the user's

alter file.
(g) Read the user's command line to a buffer.
(h) Decode the user's next command and transfer to the proper command

processing subroutine.
(i) Execute the user's command.
(j) Return to the command routine, step (a).

The usual mode of communication between a user and SIMON is command
mode. SIMON sets command mode on the user's terminal by driving command
mode on his terminal communication file immediately before printing NEW or
OLD-, WHAT?, or READY. SIMON then issues a copy from the user's terminal
communication file to the end of his alter file.

In command mode, the TCC Executive sends all input lines that begin with
a line number to TCFACE, in blocks of 256 characters. TCFACE writes this data
to the user's terminal communication file with SIMON, but does not trap the
copy issued by SIMON. Thus the data are transferred from the user's terminal
to his alter file with no additional action being taken by SIMON Monitor.

When the TCC Executive receives a line of input that does not begin with a
line number, it informs TCFACE that command mode has terminated, and
TCF ACE traps SIMON Monitor's copy to the user's alter file. When SIMON
receives the trap indicating completion of the copy, it assumes that the next line
of input from the user's terminal communication file will be user command.

The TCe Executive sends the non-line-numbered line to TCFACE. As there
is no longer a copy outstanding on the .user's communication file with SIMON,
TCF ACE issues a drive out this file. SIMON receives this as a special interrupt
and responds by issuing a read on the appropriate communication file.

SIMON's read causes TCF ACE to receive a special interrupt, to which
it responds by writing the user's non-line-numbered line to the communication
file. SIMON receives this line and interprets it as a user command. If it is a valid
command, SIMON executes it, drives command mode on the user's terminal

178 Slave-Mode Operating System [Ch.6

communication file, and prints READY. If the command is not valid, SIMON
drives command mode and prints WHAT?

Thus, for example, if the user types RUN, the following actions take place
in SIMON:

TCF ACE sends a special type 1

SIMON issues a READ on the communication
file to get the command line

Executive traps the READ
SIMON queues the trap_block on processing queue

SIMON checks the command line and then
issues a RUN MME

Exective traps the RUN
SIMON queues the trap block on processing queue

SIMON issues a REQUEST STATUS to get run-time etc.

Executive traps REQUEST STATUS
Simon queues trap

and so on from step (c) in the path described above

When SIMON discovers an internal inconsistency, it requests a system 'crash'
by executing a master mode instruction. If the Executive allows SIMON to
interrupt time sharing, the crash-restart section of the Executive copies all
of memory (including SIMON's memory) into :DUMPCAT: CDUMP. If
SIMON is not allowed to interrupt time sharing, it copies its memory into
:DUMPCAT: SIMON, and terminates with a bad status.

Sec. 6.3] Monitors 179

SIMON copies its memory into a dump file to enable a systems programmer
to diagnose and correct the internal inconsistency which caused the dump. 'Tb
aid the systems programmer in this process, a dump formatter named.-SIMON
is saved in :DUMPCAT.

The dump formatter is run by the DUMP module whenever SIMON dumps
information into :DUMPCAT:SIMON. It is also run when SIMON causes a full
CDUMP by halting the system. The dump formatter can also be executed in
Foreground with a SIMON Core DUMP image as the current me. (In this case
output is directed to frn 4 and becomes the current me on termination). The
dump formatter formats the following information:

1. Type and location of fault.
2. Indicator register at time of fault.
3. Code causing fault.
4. Registers at time of fault.
5. Release date.
6. Assembly date.
7. Date and time of crash.
8. Checkpoint queue.
9. Master task (processing) queue.

10. LOGIN communication me queue.
11. Log-on request status queue.
12. Sort buffer queue.
13. Catalog queue.
14. Multiple-terminal system structure.
15. Special interrupt stack.
16. Free storage.
17. Initialisation request status data.
18. JBLOCK of user who caused crash.
19. Status of all users logged on to module at time of crash.

As was noted in section 4.2, when SIMON runs a job it passes a number of
files to the new job. The files and other information passed depend on the type
of job. Listed below are some of the various interfaces provided by SIMON to
the jobs it runs.

STANDARDISATION RUN INTERFACE

Fm Description
1 Terminal (Return, Read, and Append).
2 Current catalog (Return, Catalog, Owner, Search, Read, Append).
3 Current me (Return, Read, Execute).

180

Registers

XO-X3
X4-X7
AQ

Slave-Mode Operating System

Zero
Current catalog name (if entered); otherwise, user number.
Current me name.

E 400000 - Running an experimental system.
100000 - User is in Brief Mode.
040000 - User has entered a catalog.

EDIT INTERFACE

Frn Description

Terminal (Return, Read, Append).

[Ch.6

2 Current catalog (Return, Catalog, Owner, Search, Read, Append).
3 Current file (Return, Read, Execute).
4 Output file (Return, Read, Write, Append).
5 Communications me (Read).

Registers

XO Current me user bits and current system code.
XI-X3 Zero.
X4-X7 Current catalog name (if entered); otherwise, user number.
AQ Current file name.
E 400000 - Running an experimental system.

100000 - User is in Brief Mode.
040000 - User has entered a catalog.

Termination status

400000 Edit not successful.
200000 Swap output ftle with current file.
100000 Sort output file.
040000 Make output ftle not listable.
020000 Rename current file '.RESULT.'.

COMPILER INTERFACE

Frn Description

1 Terminal (Return, Read, Append).
2 Current catalog (Return, Catalog, Owner, Search, Read, Append).
3 Current me (Return, Read, Execute).
4 Output file (Return, Read, Write, Append).

Registers

XO 000003
000043 (,SIZE' option).

Sec. 6.3] Monitors

X3-X3 Zero.
X4-X7 Current catalog name (if entered); otherwise, user number.
AQ Current file name.
E 400000 - Running an experimental compiler.

100000 - User is in Brief Mode.
040000 - User has entered a catalog.

Termination status

181

200000 Compilation successful, swap output file and current file, rename
output file '.OBJECT.'.

010000 Object code is executable.

COMPILED CURRENT FILE INTERFACE

Frn

1

Description

2

Registers

,XO-X3
X4-X7
AQ
E

Terminal (Return, Read, Append).
Current catalog (Return, Catalog, Owner, Search, Read, Append).

Zero.
Current catalog name (if entered); otherwise, user number.
Current fIle name ..
400000 - Current system is an experimental system.
100000 - User is in Brief Mode.
040000 - Under has entered a catalog.

MAJORSORT INTERFACE

Frn Description

1 Terminal (Return, Read, Append).
2 Output fIle (Return, Read, Write, Append).
3 Alter file (Return, Read).
4 Current file (Return, Read, Execute).

Registers

XO 000001 - Sort only alter file.
X1-X3 Zero.
X4-X7 Current catalog name (if entered); otherwise, user number.
AQ Current fIle name.
E 400000 - Running experimental Majorsort.

100000 - User is in Brief Mode.
040000 - User has entered a catalog.

182 Slave-Mode Operating System

Termination status
040000 System storage exhausted.
020000 Scratch quotas exceeded.

[Ch.6

010000 Alter me empty (or alter me contained nothing but carriage return
-line feed pairs and/or nulls).

004000 Majorsort coding error.
002000 Current me out of order.
001000 File system error.

Do INTERFACE (For the PERFORM module)

Frn
1
2
3
4

Description
Terminal (Return, Read, Append).
User catalog (Return, Catalog, Search, Read, Append).
Command me (Return, Read, Execute).
Communications me (Read).

Registers
XO-X3
X4-X7
AQ

Zero.
Current catalog name (if entered); otherwise, user number.
Current me name.

E 400000 - Running experimental Do module.
100000 - User is in Brief Mode.
040000 - User has entered a catalog.

MULTIPLE TERMINAL SYSTEM INTERFACE

Frn Description
1 Terminal (Return, Read, Append).
2 Current catalog (Return, Catalog, Owner, Search, Read, Append).
3 Current me (Return, Read, Execute).

Registers
XO-X2
X3
X4-X7
AQ

Zero.
Number of joiners allowed.
Multiterminal subsystem name.
Current me name.

E 400000 - Running experimental multiple-terminal system.
100000 - User is in Brief Mode.
040000 - User has entered a catalog.

BACKSYS INTERFACE

Frn Description
1 Terminal (Return, Read, Append)_
2 User catalog (Return, Catalog, Search, Read, Append).
3 Current me (Return, Read, Execute).

Sec. 6.3]

Registers
XO-Xl
X2-X3
X4-X7
AQ
E

User permissions word.
User quotas word.

Monitors

User number (may not be entered).
Current me name.
400000 - Running experimental Backsys.
100000 - User is in Brief Mode.

Termination status
100000 Awake BAKMON.
020000 Awake SBKMON

6.3.20PMON

183

The Operations Monitor, OPMON, runs from the same source code as SIMON.
In order to use OPMON a user must have the P$CTY bit in his permissions word
(see Table 4.3) and must be using a terminal on a line designated a control line.
SIMON is a non-privileged monitor having only P, B, and X permissions, OPMON
is highly privileged, having all nine bits (see section 4.5.4). In addition, OPMON
will accept the following commands not valid under SIMON:

CTY
DCTY
DEDICATE
DISABLE
ENABLE
KILL
LCORE
LDUMP
LPATCH
NDCTY
PROTECT
PURGE
UNDEDICATE

Designates a port to be a control line.
Give access to TCC memory for debugging.
Restrict use of system to those running under OPMON.
Stop users or certain lines from logging on.
Permit users on certain lines to log on.
Stop a named monitor.
Dump LOGIN memory.
Print contents of specified location in LOGIN memory.
Patch LOGIN memory.
Cancel a DCTY.
Initiates DTSS shutdown.
Run the purge module.
Opens DTSS for general use.

6.3.3 BAKMON [3], [4], [5]
Background provides a facility for running programs which does not tie up the
user's terminal for the duration of the run. Under Background, the user submits
a file containing a request for a particular program or sequence of programs to
be run. The user may then sign off or continue to use his terminal for other
purposes while his background job is being processed.

184 Slave-Mode Operating System [Ch.6

Background has tw'o components. The background system (BACKSYS), the
interactive portion of background is run by SIMON in response to a BACK
command. It converts background job requests, written by users in the back­
ground language, into background job descriptions, which are placed in a special
submission catalog. The background monitor (BAKMON) is the non-interactive
component of background. It runs continuously and processes each job des­
cription in the submission catalog as resources become available.

A user submits a request for background service by signing on to nTSS under
SIMON and by composing a 'background program' which specifies the activities
to be performed. He then saves this program and issues a BACK command. This
command causes SIMON to run BACKSYS. As it compiles, it checks for errors
and user permissions and opens files specified in the program checking for pass­
\-"lOrds and tape names, if required. If any errors are detected by BACKSYS as
it compiles the user's program, BACKSYS types appropriate error messages and
returns control to SIMON. The user may then correct his mistakes, REPLACE
his program and type BACK once more. When his program is free of errors,
BACKSYS types

:tuJOB ACCEPTED

and returns control to SIMON. Note that this message implies nothing about the
correctness of programs to be run in background, but merely indicates that the
file containing the description written in the background language has no errors
in it. At this point the user us free· to do as he pleases; if he wishes, he may log
off the system.

Whenever BACKSYS successfully compiles a background program into a
background job description, the job description is catalogued in :BAKCAT
:SUBMIT. Later BAKMON un catalogs it, recatalogs it in :BAKCAT:RUNNING,
and proceeds to act on it. As system r~sources become available (that is, a
peripheral is freed or surplus central processor time is discovered), BAKMON
initiates the activities at the head of the queue for the free resources. These
activities are performed simultaneously with the normal time-sharing activity;
if operator assistance is required by any activity, for example, to mount a tape,
the BAKMON communicates with the operator via a control terminal or the
console typewriter.

As activities in a background job are completed or aborted, BAKMON
appends appropriate messages to the end of the user's saved background program.
If more activities remain in the background job, the monitor returns the remainder
of the background job description to the queue of jobs awaiting execution. If
the activity just completed is the last one in the background job description, the
monitor also appends a message indicating that the entire job has been completed.
If through writing to mes a user's catalog storage maximum is exceeded, the job
is aborted when BAKMON next attempts to append a message to the saved
background program. If the catalog is under two times its maximum, BAKMON

Sec. 6.3] Monitors 185

attempts to overwrite the last line of the job description by the error message
'QUOTAS EXCEEDED'. No further activities are executed.

When a user wishes to find out if his background job has been completed,
he signs on to the system, calls up his background program and list it (using,
say, EDIT LIST) to get the latest progress reports that BAKMON has appended.
If a user has been careless enough to unsave his background program before its
execution has been completed, the job is aborted when BAKMON next attempts
to append a message to the background program.

When a user's background job has terminated, he may obtain the output
from that job either by listing appropriate files or by picking up peripheral
output at the computation center. The user may also unsave his background
program at this point, though he may not wish to do so if he intends to submit
the same job again in the future.

BAKMON is responsible for allocating all peripherals during time-sharing.
A background user with appropriate validation permissions can access the
printer, magnetic tapes, remote peripherals and card punch via the appropriate
commands and specifiers.

The operator is able to inform BAKMON of the availability of peripherals
through a control terminal; BAKMON assumes that a set of peripherals is available
at the beginning of the day.

BAKMON is capable of running a large number of jobs at the same time.
These jobs run in the time-sharing environment and compete for computer
resources on an equal basis with foreground jobs. If BAKMON began running
every background job as soon as it was submitted, then foreground response
time would be very uneven and often very slow. Therefore, in order to maintain
reasonable response time for foreground users, BAKMON must limit the number
of running background jobs. The process that it uses to do this is called back­
ground scheduling.

A typical background job consists of several activities (job-steps) which
are to be run serially by BAKMON. When this typical background job is sub­
mitted, it joins a queue of background jobs that are waiting to be run. BAKMON
continually selects a job from this queue, runs the next activity of the job, and
then returns the job to the queue of waiting jobs. While carrying out this process,
BAKMON has two key decisions to make: how many jobs to run concurrently,
and which job to run next.

The rules used to make these decisions are called the background scheduling
algorithm. The scheduling algorithm controls how and when a job's activities are
initiated; once an activity is running it is no longer affected by the scheduling
algorithm.

There are three types of background activitiees, and BAKMON has a dif­
ferent scheduling algorithm for each type. The simplest type consists of the
miscellaneous activites (ABORT, STATUS, WAIT), which are initiated uncon­
ditionally. Next are the peripheral activities (COPY, PRINT, PUNCH, READ,

186 Slave-Mode Operating System [Ch.6

SCRATCH, UNSAVE, WRITE), which are initiated as soon as all the required
peripherals are available. Finally, there are the execution activities (DEBUG,
RUN).

Each execution activity in background has a maximum memory size and a
maximum number of CRU's which may be consumed. These resource maximums
may be specified in the optional fields of the RUN command or by a MAX
statement. If no maximums are specified, then the default maximums of 16K
words of memory and 32 CRU's are assumed.

A typical set of resource limits of BAKMON are shown in Table 6.8.

Table 6.8 - Typical set of resource limits ofBAKMON.

Time of day CRUlimit Memory limit

until 0700 1024 128K
0700-0800 512 128K
0800-1200 128 128K
1200-1300 512 128K
1300-1700 128 128K
1700-1900 1024 128K
1900-0100 unlimitedt 128K
0100-0200 1024 128K
.0200-0300 512 128K

On Saturday, Sunday and holidays:

0700-0100 unlimited t 128K
0100-0200 1024 128K
0200-0300 512 128K

t unlimited = 100000

BAKMON will not initiate any execution activity whose resource maximums
exceed the resource limits in effect at the time. The limits are set so that execu­
tion activities which consume large amounts of resources will not be initiated
just before system shutdown or during periods when forground use is normally
heavy.

BAKMON uses 'job slots' to limit the number and size of the execution
activities running at any given time. The number of job slots is a function of the
number of foreground users. A typical set of values is shown in Table 6.9.

Sec. 6.3] Monitors 187

Table 6.9.

Foreground Job
Per size

users slots
1 2 3 4 5

140- 2 0 1 1 0 0
120-139 3 1 1 0 1 0
100-119 4 1 1 1 1 0
80-99 6 1 2 1 1 1
60-79 9 2 2 2 2 1
40-59 13 2 3 3 3 2
20-39 16 2 3 3 3 5
0-19 28 2 2 2 2 20

BAKMON can run one execution activity of a certain size in each job slot.
The 'size' of the activity is the product of maximum memory size and the
maximum CRU of the activity as shown in Table 6.10.

Table 6.10.

Size CRU* CORE/10000

1 0-128
2 129-512
3 513-4096
4 4097-32768
5 32769-

For example, an activity which uses the default maximums of 16K memory
and 32 CRU is size 2, as determined by the equation (16K*32)/1000 = 512.
Such an activity could run in a job slot of size 2 or larger.

When BAKMON has an empty job slot, it examines the next activity of each
waiting job. The job selected to be run will be the first job which meets all of the
following criteria:

• the next activity is an execution activity;
• the size of the activity is less than or equal to the size of the available job

slot;
• all the required peripherals are available;

188 Slave-Mode Operating System [Ch.6

• the activity's resource maximums are less than or equal to BAKMON's
current resource limits.

The purpose of the job description is to specify to BAKMON and the various
modules running under BAKMON exactly what actions the user wishes to have
performed, and in what order.

The job description consists of a job description header and one or more
activity descriptions. Each activity description is divided into an activity des­
cription header and several file descriptions as shown in Table 6.11.

Table 6.11.

Job description header Activity description header

Activity description File description

Activity description File description

Activity description File description

Num program File description

The job description header is a fixed length (fourteen-word) block containing
information relating to the job description as a whole as shown below:

0:

1 :
2:

3:
4:

5:
6:

7:
10:

11:

12:

13:

user number

background job file name

background job flie password

job reference name

pointer to next activity job description length

progress report line number

name of the system which compiled this job description

Sec. 6.3] Monitors 189

where:

Word 10 upper: The location within the job description of the next activity
to be processed. Originally set to the first activity following
the job description header, it is reset to succeeding activity.

Word 11: The line number BAKMON will use when writing the next
progress report message. It is originally set to 10000, but is
altered by BAKMON as reports are appended.

Each activity description within the job description is prefixed by a variable
length activity description header containing information pertinent to this activity
alone.

The header is composed of:

• The name of the system to be run for this activity, for example BASIC or
PRINTER.

• Length of the activity header.
• Length of the activity description.
• The line number at which he major command for this avtivity may be

found in the user's background program.
• Memory size limit in words set by the user via a background MAX

command.
• Run-time limit in seconds for this activity set by the user via a background

MAX command.
• A binary number specifying the type of activity:

0- Old Foreground simulation.
1 - BMC (background media conversion).
2 - General run.
3 - GCOS simulation.
4 - SYSOUT run.
S - Abort activity.
6 - Wait activity.
7 - Status activity.
8 - Foreground simulation.
9 - Error.

• A set of activity flags specifying certain information about the activity.
The only bits currently in use for this purpose are:

000001 - Do not output a header to the output file in a foreground
simulation.

000002 - Executes next activity only (that is, cleanup).
000004 - A limit has been set by the user on run time. A check is

made for the value of the limit.
000010 - A limit has been set by the user on core size. A check is

made for the value of limit.

190 Slave-Mode Operating System [Ch.6

The max claim vector is an eight-word block used to prevent system dead-
locks. The entries are indexed by resource type as follows:

Word 0: Printer.
Word 1: Remote peripheral.
Word 2: Card punch.
Word 3: 9-track tape handler.
Word 4: 7 -track tape handler.
Word 5: Special printer.
Word 6: Scratch tape.
Word 7: Saved tape (not really a resource, used as a consistency check

against saved tape file descriptions).

Since scratch tapes are currently the only resource that can be saved from
one activity to the next, they are the only resource that can cause a system
deadlock. BAKMON will allocate resources so as to avoid system deadlocks if
the resource request vector R and max claim vector M for each activity A(i) is
set up as follows:

Let R(r) (upper) = the quantity of resources of type r that will be used in
activity A(i). The vector R(r), 0 ~ r ~ 7 is the resource request vector for
activity A(i) (see below).

Look at all activities A(j) such that a scratch tape is saved in activity A(p)
and not saved until activity A(q), p ~ i ~ q, and p ~j ~ q. Let the scratch
tape max claim M(6) (lower) for activity A(i) equal the maximum for
the scratch requests R(6) (upper) of activities A(j). For resource types
other than scratch tapes, the max claim for an activity simply equals the
resource request for that activity.

The resource request vector is an eight-word block and specifies exactly
which and how many of each resource are to be used in the activity. It is
indexed by resource type in the same way as the max claim vector. The
entry for each resource type has the format:

Upper: The number of resources of this type that are needed in the
activity.

Lower: Bits specifying which of the resources of this type may be used
to fill the request given in the upper half-word. If any of the
available resources of the given type may be used, this field is
set to zero. If only resource numbers x and y may be used,
then this field is set to 2 AX + 2 Ay.

The run register block is an eight-word block containing the initial registers
to be set when the system named in the activity description header is run.

The indent pointers block is a variable length block which exists only if the
activity is a BMC activity. It provides pointers to the file descriptions for the

Sec. 6.3] Monitors 191

files/peripherals (usually an input and an output file/peripheral) involved in
the data transfer. The block contains:

• Number of files in the data transfer (usually two).
• Pointer to the source file description, relative to the beginning of the

ident pointers block.
• Pointer to the destination me description, relative to the beginning of the

ident pointers block.
• Pointer to the next file description, relative to the beginning of the ident

pointers block.

The me description is a block of variable length consisting of a fiXed­
length (twelve-word) file description header and variable length (possible zero
length) ident block.

Each me description identifies a file or peripheral that will be passed to the
system that is run in the activity. The collection of file descritpions in an activity
description defines the pass list for the system to be run.

Foreground simulation and BMC activities each have a particular form for
the activity description, since certain special mes must be passed which are not
specified in the background program.

1. The general form of a foreground simulation activity is:

1 Activity header - FORGSIM is the system name.
2 File description for a communications file which BAKMON uses to fake

the operation of a terminal.
3 File description for the job description file.
4 File description for the user's catalog.
S File description for the source file (OLD me).
6 File description for the input me.
7 File description for the output me.
8

Extra me descriptions - mayor may not be here.
N
The me descriptions for the OLD, input and output mes may occur in
any order. If the user specifies an input me, he must specify an output me.
If he does not specify an OLD me, BACKSYS inserts a me description for
a dummy file with the name .NONAME ..

2. The general form of a BMC activity description is:

1 Activity header - contains a pointer block.
2 File description for a communications file which the module uses to issue

mounting instructions, send billing data, etc.
3 File description for the job description me which the module reads to

find format information, IDENT data, etc.

192 Slave-Mode Operating System [Ch.6

4 File description for the source file/peripheral.
5 File descritpion for the destination file/peripheral.
6-7 File description for conversion table. Their presence is indicated by the

D$CTAB bit in the input and output files file description header. Either
or both may be omitted.

8

: Extra file descriptions - mayor may not be here.
N
The file descriptions for the source desination files may occur in any order,
but both must be present.

3. The general form of an abort activity is:

1 Activity header - system name has name of job to be aborted.

4. The form of a general run is:

1 Activity header - no pointer block.
2
. File descriptions.

N

5. The form of a status activity is:

1 Activity header - system name has name of job whose status is to be
appended to the user execution report.

6. The form of a wait activity is:

1 Activity header - contains the date and time of the run in the first two
2 words.

There is a background job description formatting program available for
debugging purposes under the experimental version of the background system
XBACK. A sample run of this is shown below:

BRIEF
:~NEIJ BACKP.ROG
~10 PRINT HYFILE
20 USING LOUER
30 FORHAT NSLEU
40 END
SAVE
:t:RUN XBACK
:.**JOB ACCEPTED
~OLD :BACKCAT:XXSUBHIT:BACKPROG
:.RUN XJOBIIESC
job description file
'~

Sec. 6.3]

user nUMber:
job naMe:
password:
l'eference naMe:
next activity at word:
job desc. length:
report line nUMber:
cOMpiled by:

Monitors

HDK52500
BACKPROG

BACKPROG
14
152
10000
XBACK

activity description (begins at word 14)

systeM:
header length:
activity desc. length:
activity line nUMber:
core liMit:
l'untiMe liMit:
activity type:
activity flags:

resource requests
o printers
o reMote peripherals
o c,lrd punches
o 9-track handlers
o 7-track handlers
1 special printers
o scratch tapes
o saved tapes

XSPRINTR
42
136
10
o
o
BHC
000000

()

()

()

()

()

()

()

()

Ma>: claiM
o
o
o
o
o
1
o
o

indent pointers block (begins at word 32)
2 files involved in BHe
source file description begins at word 102
destination file description begins at word 124

file description (begins at word 56)

description length: 12
filenaMe:
PClssword:
accesses:
passlist position:
fi Ie type bits
o disc file

000000
" 0 (FRN 1)

o COMMunications file to BAKHON

file description (begins at word 70)

description length: 12
filenaMe:
password:

193

194 Slave-Mode Operating System

accesses:
passlist position:
file type bits
o disc file
o job description

000000
It 1 (FRN 2)

file description (begins at word 102)

description length:
filenclMe:
password:
accesses:
passlist position:
file type bits
o tally treenafte
o disc file

fi lena"e tally:
IIHYFILE"

22
NYFlLE

001000
It 2 (FRN 3)

2,6,0

ident block (begins at word 116)

for"at bits:
tape "ode bits:
user"'s li"its:
block size:
l'ecord size:
ident block length:
report text length:

000000000000
000000
o
o
o
o
o

file description (begins at word 124)
description length: 26
filenclfte:
Pclssword:
accesses:
passlist position:
file type bi ts
o peripheral

000000
It 3 (FRN 4)

file is a special printer ()

ident block (begins at word 136)

forMat bits:
tape "ode bits:
user"'s liMits:
block size:
l'ecord size:
ident block length:
report text length:
user nliMber:
file naMe:

000020000000
000000
o
o
o
o
o
HIIK52500
IiYFILE

[Ch.6

Sec. 6.3] Monitors 195

6.3.4 VALMON [1]

The Validation Monitor provides a mechanism for specifying the conditions
under which a user may obtain access to DTSS and the resources available after
access is granted. Access control is provided in order to prevent one user from
masquerading as another. Resource control is provided because time-sharing
systems operate by alloting a small portion of the total system to each user
for a short period of time; any user who absorbs too much of the system in
time, space, or I/O capacity may diminish the resources available to other users.

As noted in section 4.5.1, access control is provided by user-codes, answer­
back drums and legal log-on times; resource control is provided on catalog
storage, scratch s~orage, running time and special permissions. A design objective
of the Validation Monitor is to simplify the task of providing access controls
and resource limitations for a large number of users. A special effort is also
made to minimise the an:t0unt of storage required for each user's validation
parameters.

The validation information required for each user is called his validation
record. In order to reduce both the amount of typing and the storage space
required to hold validation records, a classification scheme is used which takes
advantage of the existence of large subsets of the user population with similar
requirments for storage space, running time, log-on times, permissions, and other
resources.

Each user is assigned a six-bit code which becomes an integral part of his
validation record. This code is completely independent of the group to which
the user belongs and places him into one of sixty-four categories having similar
permissions.

Since there are large subsets of users with similar requirements, it would be
wasteful to duplicate a lot of information in each validation record. Accordingly,
validation records have variable lengths, and any information not present in the
validation record is obtained at sign·on time from a special data file called
DEFAULT, catalogued in the Master User Directory. This me contains sixty-four
possible user codes. Each entry contains information pertaining to system
resource limitations and special permissions. Fig. 6.1 0 shows the format of a
default file entry

o 34 1112 1920 35

PERMISSIONS

ZERO I LEGAL LOG-ON TIMES

MAX
MAX CATALOG MAX SCRATCH RUN

TIME STORAGE STORAGE

SPARE

Fig. 6.10 - Default file entry.

196 Slave-Mode Operating System [Ch.6]

The Validation Monitor contains all the mechanisms necessary for the
generation of groups, user numbers, and default entries; for the specification of
passwords, legallog-on times, and answerback drum sequences (either common
to a group or pertaining to a particular user); and for the specification of system
resource limitations (permissions, run·time limits, etc.).

The Validation Monitor may be accessed only from a control terminal.
While commands are usually entered directly from one of the control terminals,
the ability to accept input from a saved file has been added in order to facilitate
the validation of large numbers of users at a time. This me can be created from
a non-control terminal and then used as input to the Validation Monitor.

There are two categories of validation commands: major commands and
minor commands. Major commands operate on groups, users, and default me
entries; they permit adding, changing, deleting, and printing as appropriate.
Minor commands modify a major command and specify additional information,
such as the particular run·time limits, permissions, and catalog quotas which are
to be assigned to a given user.

A group command causes the specified group to remain in effect for all
subsequent commands until a new group command is given.

A user command causes subsequent minor commands to apply to the
specified user number until either the end of the line is reached (in the case of
terminal input), or a new major command is give:

The validation files produced by VALMON are described in section 6.2.1.

6.4 REFERENCES

[1] McGeachie, J. S. (March 1975), 'Validation Monitor User's Manual', DTSS
Technical Memorandum 093.

[2] Roberts, S., and Noyce, W. (March 1978), 'SIMON', DTSS Technical
Memorandum 060.

[3] Fernandez, A., and Ugett, S. (September 1977), 'DTSS Background Refer­
ence Manual', DTSS Technical Memorandum 008.

[4] Kiewit Comments (November-December 1977), pp. 5-6, Volume II,
Number 2.

[5] Kozen, D. (June 1972), 'Background Job Descriptions', DTSS Technical
Memorandum 064.

CHAPTER 7

Communications

As noted in section 2.1.5, the Terminal Communications Controller (TCC) is
currently based upon a Honeywell 716 computer.

The 716 TCC Executive is a modular group of procedures, split broadly into
three levels. The lowest level is concerned with controlling the transmission of
data to and from the communications lines. This procedure is called UMLC, and
since it is concerned with the control of the hardware line controllers (the
UMLC and LSMLC), a description of these devices precedes a description of the
software. The second level of software is composed of a number of procedures
concerned with making the devices on the ends of the communication lines
appear to have uniform characteristics so that the software at the third level
may be device independent. The SWITCH procedure provides a great deal of
flexibility for a variety of communication situations. A simplified diagram of the
software structure is shown in Fig. 7.1.

7.1 THE 716 PROCESSOR AND LINE CONTROLLERS [1], [2]

The Honeywell 716 is a 16-bit machine. It has a range of programmable registers
including two accumulators (the A and B registers), a stack pointer (the S
register), an index register (the X register), and a program counter (the P register).
A hardware stack and vectored interrupts are provided as is a real-time clock.
The architecture of the 716 is shown in Fig. 7.2. Fig. 7.3 shows in more detail
the data paths between peripherals and the machine registers and memory.
Registers RI and RO are used by the Direct Memory Access (DMA) bus for
transfers to and from memory. Peripherals connected only to the Programmed
Input/Output (PIO) bus transfer to and from registers A and B via the arithmetic
unit.

The memory control unit provides a priority schema for resolving conflicts
in memory accesses. The priority structure is:

DMA break.
Real-time clock increment break.

UMLC
(Control
of UMLC)

Interrupt
Handling

SAVE

DEV
(Device
Control)

Free
Storage

FREE

DTSS

INPUT

Dialup/Hangup
or
Sp. Protocol

Process
Control

WAIT

Fig. 7.1 - Simplified software structure.

Timing

CLOCK

......
\0
00

n o
8
8 = e.
n
~
Q'
= rI'.I

~
......,J

Sec. 7.1]

CPU

Memory
Control
Unit

Memory

The 716 Processor and Line Controllers 199

UM UM
LC LC

DIRECT Memory Access Bus (DMA)

Fig. 7.2 - 716 architecture.

200 Communications [Ch. 7

A Register ~

B Register

X Register

S Register

P Register

Arithmetic Unit I-

Memory Vi RO
Control DMA PIO
Unit ~ RI

Device

Memory

Fig. 7.3 - Device connections.

Sec. 7.1] The 716 Processor and Line Controllers

Power failure interrupt.
Watchdog timer interrupt.
Stack overflow interrupt.
Peripheral interrupt.
Instruction execution in the CPU.

201

Those items called breaks do not change the contents of the P registers and
are therefore invisible to the operating program, except that they may lengthen
its execution time. Those items called interrupts change the contents of the P
register by generating an indirect jump-store through one of a number of dedi­
cated memory locations. These dedicated memory locations (the interrupt
vector) must be set up with pointers to the relevant interrupt handling routines.

There are two general controls over most interrupts. The primary control is
exercised by the inhibit interrupt and enable interrupt instructions. Interrupt
requests are also controlled by mask bits. The setting of a mask allows an inter­
rupt to reach the CPU, but an interrupt will only be generated if the CPU is
in the ENABLE mode. Interrupts only occur between instructions, with the
exception that power failure and watchdog timer interrupts may abort into
instruction execution if too many multilevel indirect cycles are encountered.
When an interrupt occurs the P register is saved automatically in the word
pointed to by the location in the interrupt vector corresponding to the interrupt
in question, and control is transferred to the location following that where the
P register is stored. The interrupt routine must save other registers so as to
protect the interrupted program's environment. On exit from the routine the
registers must be restored. Fig. 7.4 shows the interrupt control mechanism.

The watchdog timer contains a line clock, a crystal clock and a watchdog
timer. When the line clock is turned on it generates an interrupt request every
cycle of the power line. The crystal clock can be set under program control to
any period from 10 microseconds to over 40 milliseconds. It generates an indirect
request at the set rate until turned off or reset with another rate. The watchdog
timer, when turned on, must be reset within one second or it will cause an
interrupt which has all the features of a power failure interrupt except that it
occurs through a different location in the interrupt vector. The watchdog timer
is used to ensure that the software does not hang.

The four main sources of interrupts on the 716 (when used as a TCC to
DTSS) are the line controllers (when one runs out of tumble table space - see
below), the coupler between the 716 and the mainframe, the crystal clock, and
the control terminal.

The two line control modules available for the 716 computer, the Universal
Multiline Controller (UMLC) and the Low Speed Multiline Controller (LSMLC)
differ in that the LSMLC is for fixed speed asynchronous lines whilst the illALC
is for both synchronous and asynchronous line of varying speeds.

202 Communications [Ch.7

INTERRUPT INTERRUPT
CONDITION CONTROLS RESULT

WATCHDOG
TIMER JST.
INTERRUPT

JST OR JMP "1
INSTRUCTION

DEBUG
JST.

STACK -0" OVERFLOW ., JST. OR
UNDERFLOW

BITS

=0

POWER
JST. FAILURE

START
BUTTON

REAL.TIME
CLOCK JST.
INTERRUPT

MEMORY
PARITY
ERROR
(OPTION)

INTERRUPT
FROM DEVICE JST. WHOSE
ADDRESS ='1

INTERRUPT
FROM DEVICE
WHOSE
ADDRESS =
'60

NOTE MASKS ALLOW INTERRUPT REQUESTS IN THE 1 STATE AND INHIBIT THEM
IN THE 0 STATE. ALL INTERRUPTS PUT THE CPU IN THE EXTENDED ADDRESSING
MODE AND SET INH/ENB TO INH PREVENTING ANOTHER CONTOLLED INTERRUPT
UNTIL THE FIRST IS HANDLED.

Fig. 7.4 - Interrupt control.

'55

'56

'57

'60

'63

'64

Sec. 7.1] The 716 Processor and Line Controllers 203

Fig. 7.5 is a simplified block diagram of the UMLC. The UMLC is attached
to the 716 computer via the PIO bus and the DMA bus. The UMLC controls the
input and output of complete characters between the 716 memory and a maxi­
mum of 64 lines at rates determined by the UMLC internal clock and the speed
of the lines. These lines may be either synchonous or asynchonous. In the
UMLC memory, each line is assigned two memory locations for configuration
and transmit and two memory locations for receive.

Communications between the UMLC and its line modules are performed
serially. The UMLC scans through its memory, checking each line one at a time.
During the line scan, the UMLC checks each line for a transmit ready signal at
a rate of at least once every bit time. When a signal is detected, a data bit is
transferred out of memory and to the line module if the transmit enable for the
line is on. After the transmit operation is completed, the UMLC performs a
similar operation during which it checks for a received data ready signal from a
line module. If the receive enable bit for the line is on, the received data bit is
written into memory when the data ready signal is true.

Because of the wide range of synchronous line speeds, a differential line
scan is used in the UMLC. The high-speed syncronous lines are checked four
times during each complete memory scan, and the medium-speed lines are
checked twice. All other lines are checked only once during a line scan.

The UMLC performs a second type of scan, a character scan, which is
independent of the line scan. During the character scan, the UMLC checks
each line one at a time to ,see whether it is ready for the next transmit character
or whether an assembled receive character is ready to be transferred to the
716 memory. When a servicing requirement is detected, the UMLC generates
the necessary request as explained below and the character scan continues
until the next ready condition is detected. At that time, the character scan
is halted until the first request is serviced. Then the character scan is
continued.

Associated with each line is a dedicated location in an area of 716 memory
called the output vector. The base address of the output vector must be loaded
into the Transmit Address Register (TAR) in the UMLC. The dedicated location
in the output vector is found by adding the UMLC line number to the contents
of the TAR. Thus when a new transmit character is required, the line number
is stored in the character buffer register (CBR) and then added to the contents
of the TAR. The resultant address, along with a DMA output request is put on
the DMA bus. The character required is transferred out of the output vector in
the 716 memory to the UMLC, where it is placed in the CBR along with the
line number. The character is then written into the appropriate memory location
within the UMLC for the line.

During the transfer of an assembled receive character, the character and the
associated line number are transferred into the CBR when the CBR is available.
Then the UMLC puts the address of the location in the 716 memory where the

-51 I J UMLC

INTERRUPT AND STATUS REGISTER (16 BITS) 1
INTERN.

TRANSMIT ADDRESS REGISTER (16 BITS) CLOCK

RECEIVE ADDRESS REGISTER (16 BITS)

PIO TRANSFER I RECEIVE RANGE REGISTER (9 BITS)

I SYNCH REGISTER (16 BITS)
A DLE REGISTER (16 BITS)

ASYNCH CLOCK REGISTER NO.1 (16 BITS) .. I" ASYNCH CLOCK REGISTER NO.2 (16 BITS)

UNIVERSAL MULTILINE CONTROLLER

DEVICE ADDRESS DECODE
DEVICE IDENTIFICATION CODE UMLC MEMORY
BUS CONTROL LOGIC (PIO & DMA)

<!=O 2 LOCATIONS FOR ""'" PROGRAM REGISTER
LINE CONFIGURATION
AND TRANSMIT

I

I
I

TYPE 716
CENTRAL
PROCESSOR FOR EACH - -

OF 64
LINES

DMA ADDRESS
DMA TRANSMIT!
RECEIVE LOGIC

"
I 2 LOCATIONS FOR

DMA TRANSFER 'f V RECEIVE I
A "

(CHARACTER
BUFFER

'4 " REGISTER)

PIO TRANSFER DATASET
.iI .. CONTROL

AND STATUS . I
'I -V LOGIC L_- -~

Fig. 7.5 - Block diagram of UMLC.

MODEM

(NOT PART
OF UMLC)

t
""'" I-... (1 TRANSMIT BIT

1 RECEIVE BIT

FOR EACH
OF 2

f-"ONTRO'
LINES

REGISTER .
D. S. STATUS
BITS

LINE MODULE - ONE OF 32 (MAX)

tv
o
.j::..

(")
o
9
9 c::
= o·
~ -c·
= rJ!l

~
.....:I

Sec. 7.2] UMLC Control Software 205

character is to be stored on the DMA bus, thus transferring the character and its
associated line number to the 716 memory in an area called the tumble table.

The UMLC control procedure administers an area of memory called the
tumble table into which the UMLC device deposits characters and from which
the UMLC control procedure extracts characters. The 716 Executive conditions
the UMLC for operation via PIO instructions. The Receive Address Register
(RAR) must be loaded with the starting address of a tumble table. Receive
characters along with their associated line numbers are stored in this tumble
table as they mature, and RAR is incremented after each receive transfer. The
Receive Range Register (RRGR) must contain the last available address of the
tumble table. The UMLC compares RAR with RRGR to determine when the
tumble table is full. The UMLC control procedure makes only part (typically
half) of the tumble table memory available to the UMLC device. When the
comparison between RAR and RRGR indicates that the portion of the tumble
table available to the UMLC is full, a receive end-of-range interrupt is generated
and the UMLC control procedure makes the other half of the tumble table
available.

The UMLC control procedure extracts charcters and their associated line
number from the tumble table concurrently with the UMLC mling it by main­
taining a pointer itself which it compares with the value in the RAR to ensure
that only active areas of the tumble table are accessed.

line configuration information is output via PIO instructions by the 716
Executive. The configuration information is written to the appropriate UMLC
memory locations.

7.2 UMLC CONTROL SOFTWARE

When a line becomes active, such as when a user dials into the system, a process
data block (PDB) (see Fig 7.6) is allocated in which information regarding the
characteristics of the line are recorded along with other information. On noting
the new line, the procedure DTSS is activated and this procedure determines the
characteristics of line. This is done by checking the configuration me, and in
some cases by also asking the device control processes for information about the
line. IBM 2741 compatible terminals are identified by the transmission of a
special character as the connection is made and are routed to the 2741 device
control process. All other asynchronous terminals are routed through a variant
of ASYNC (depending only on the line speed). Synchronous lines are routed to
BLU (the Telenet line level protocol handler - see below and Fig. 7.8) which
attempts to run the line with the BLU protocol. If the device at the end of the
line does not respond appropriately, the BLU procedure assumes that it will be
handled by BISYNC and passes it to it. (A description of the software for
handling synchronous lines is given in section 7.3.) Having determined the line
type, DTSS tells TCFACE what sort of terminal it is and which monitor it

206 Communications [Ch.7

o stack
o stack pointer
o pointer to next PDB
o TCFACE number for this line
o pointer to UMLC output vector for this line
o pointer to device control process
o pointer to current location in input process
o pointer to current location in output process
o thread of PDBs outputting at this speed
o speed index for the line
o modem and line status and control flags
o mode settings for this line (from TCFACE)
o pointer to line buffer
o pointer to message buffer
o head of output chain
o general purpose work space
o variable length extension for synchronous lines

Fig. 7.6 - Outline of a process data block.

should be passed to (for example, SIMON for a user terminal and BAKMON
for a remote printer). The DTSS procedure sets up the pointer to the relevant
device control routine (ASYNC, BLU, etc.) in the PDB and calls the non­
interrupt code for that device control routine. When that routine is run, it calls
the UMLC control routine which puts the pointers to the input and output
routines in the PDB and goes to sleep.

The input segment of the UMLC control procedure is called by the CLOCK
procedure one hundred times per second. The input routine extracts character/
line number pairs from the tumble table and calls the corresponding line's 'get
next character' routine which passes the character to the device control procedure
for the line.

The output segment of UMLC is driven by the CLOCK process. All lines of
a given speed doing output are held on a chain linked through their PDBs. Each
entry on the chain uses the line number to index into the output vector. If the
entry in the vector for that line is zero, signifying that the line is ready for a
character, UMLC deposits a character in the appropriate location in the output
vector and requests another character from the device control process for this
line.

7.3 DEVICE CONTROL SOFTWARE [3], [4], [5]

One objective of the various device control procedures is to hide the device
dependent features of the various terminals.

There are currently five procedures at his level, although one has two
variants. The functions of the various procedures are as follows:

CTY This procedure controls the control terminal which is interfaced
directly to the Programmed Input/Output bus rather than through
an UMLC or LSMLC. The control terminal is used for monitoring
and debugging functions.

Sec. 7.4] Character Input/Output 207

2741 This procedure is for dealing with IBM 2741 compatible terminals
and their associated protocol.

ASYNC This is the general device dependent control procedure for asyn­
chronous terminals. There is a special version for handling 11 0
baud devices. Terminals running at 150,300 or 1200 baud use the
general ASYNC procedure. This procedure attempts to support
most ASCII terminals with minimum delays. A SIMON command
may be used to condition this process to generate longer delays on
the carriage control for those terminals which require such delays,
another SIMON command may be used to speed up the handling
of terminals where the carriage control functions are performed at
the same rate as other characters.

BLU There are two levels of protocol used for communication between
the 716 and Telenet: BLU level and TIU level. BLU stands for
Basic Unk Unit and TIU stands for Telenet Information Unit.

Blocks of data sent and received at the BLU level are called
BLUs. BLUs contain TIUs which are the messages sent and received
at the TIU level. Thus a BLU may be thought of as a package for
a TIU. The most important difference between BLUs and TIUs is
that there is a Virtual Connection Address associated with each
TIU. This address associates the TIU with one of the many possible
virtual connections which are multiplexed through a single physical
connection between a host and Telenet. BLUs have no associated
virtual connection address. The purpose of the BLU level of the
protocol is to ensure that TIUs are received without errors.

The BLU process implements the Telenet BLU protocol. This
protocol is also used to run the various remote printers and remote
TCCs.

(Both levels of the Telenet host interface protocol use the same
basic error recovery techniques as are used in the IBM Synchronous
Data Unk Control protocol. It is for this reason that the BLU level
of the protocol have come to be called 'SDLC' on DTSS. When the
term 'SDLC' is used in DTSS documentation it almost always
refers to the BLU level of the Telenet Host Interface.)

BISYNC The BISYNC process implements the IBM 2780 Binary Synchro­
nous protocol. This protocol is used both for connecting to 2780
Remote Job Entry stations or compatible devices and for con­
necting to an IBM system which supports 2780 RJE stations.

7.4 CHARACTER INPUT/OUTPUT

When the UMLC procedure gets a character from the tumble table for a non­
Telenet, non-remote TeC line, it passes it on to the appropriate device control

208 Communications [Ch. 7

procedure, which in turn passes it on to the INPUT procedure. INPUT puts the
character into a buffer for that line. The head of the line buffer is maintained
in the PDB for that line as shown in Fig. 7.7.

PDe

line buffer pointer-+-------I--_le_n~gt_h __ ___1

tail

10
characters

link to next

14
characters

link to next

up to 14
characters

o

Fig. 7.7 - Line buffer organisation.

The INPUT procedure checks to see if the character is in any way special.
In particular, if the character is control-X, control-R, delete, or carriage-return.
Delete, is taken to mean 'delete the previous character on this line' and control-X
is taken to mean 'delete the current line'. Thus INPUT uses these characters to
edit the line buffer. Control-R is taken to mean 'echo the current line'. When
INPUT receives a carriage-return, it copies the line buffer into the message
buffer for the line. When the message buffer is full, or when the mode setting on
the line dictates (see sention 6.1.3), INPUT passes the data into the Common

Sec. 7.6] The Switch Procedure 209

Input Chain for eventual transmission to TCFACE. The storage required by
INPUT for its buffers and that required by all other processes is controlled by
the process FREE, which maintains a bit map for each 8-word block of the
entire 716 memory.

When UHLC requests another character for output from the device control
procedure, the device control procedure gets the character from a message string
given it by the OUTPUT routine. When the message string is exhausted, OUTPUT
get the next from the output buffer for the line. The pointer to the next
character in the output buffer is held in the PDB for the line.

The CIU process maintains the CIU (Computer Interface Unit or coupler)
input and output buffers. As noted above, input from all lines is routed to the
Common Input Chain. The crn process takes information from the Common
Input Chain, puts it in the format required by TCF ACE, and then packs it in the
crn input buffer. This action is carried out whenever the CIUIO process requests
input to send to TCFACE. The CIUIO process controls the CIU hardware, much
as the UMLC procedure controls the UMLC.

Similarly, when the CIUIO process gets data from TCFACE, it places it in
the CIU output buffer and tells the CIU process to dispose of it. CIU unpacks
the data and distributes it to the various line output buffers, according to the line
numbers associated with each message.

7.5 SYNCHRONOUS PROTOCOLS [6]

One of the procedures in the 716 provides the Telenet Information Unit protocol.
This is the module TELENET in Fig. 7.8, which implements the TIU prototcol
by performing much the same functions as the INPUT and OUTPUT processes
described earlier, and by multiplexing and de multiplexing the data streams
within the TIUs.

The BLU prototcol is used not only for Telenet itself but also for remote
printers (controlled by Nova computers) and Remote TCCs. The remote printers
are routed through the BLU process. The remote TCCs are routed through the
DIRECT process, so named since it implements the same protocol as the 716-
TCF ACE protocol and can thus be transmitted through the 716 software directly
without change.

The Binary Synchronous protocol is used to run the Datalink system. This
is the BISYNC module in Fig. 7.9. The Datalink system allows users to access
IBM 360 or 370 systems in a manner similar to that used for 2780 RJE stations.

7.6 THE SWITCH PROCEDURE

The SWITCH procedure is central to the flow of both control and data within
the 716 Executive. By making appropriate calls to the SWITCH procedure, data
may be routed along a variety of paths. Thus, for example, it is possible to use

UMLC
BLU
(Telenet
Line
Protocol)

DTSS

Fig. 7.8 - Telenet protocol routines.

tv ..-
o

(";I
o
9
~
~.
~ o·
~

~
-l

UMLC

BISYNC
(IBM
Sync.
Protocol)

Fig. 7.9 - Binary synchronous protocol routines.

til
~

fl
-l

~

:;i
t'I)

tI'.l

~. -n =­
"'C a
n
~
Q..
e;
t'I)

N --

212 Communications [Ch.7

the control terminal on a local TCC to monitor a remote TCC by setting up the
following path (see Fig. 7.1):

Control terminal - CTY - INPUT - SWITCH - output buffer - DIRECT
- BLU - UMLC - output vector - communications line to remote TCC­
tumble table - UMLC - BLU - DIRECT - SWITCH - CTL - SWITCH -
output buffer - DIRECT - BLU - UMLC - output vector - communi­
cations line back to the local TCC - tumble table - UMLC - BLU -
DIRECT - SWITCH - output buffer - OUTPUT - CTY - Control terminal.

At present it is not possible to go out to another Telenet host from a
terminal on DTSS. However, this capability is being added to the TELENET
procedure and then a connection such as the following will be possible:

terminal - tumble table - UMLC - ASYNC - INPUT - line buffer -
message buffer - SWITCH - output buffer - TELENET - BLU - UMLC
- output vector - Telenet to remote host - (operations in host) - return
data through Telenet - tumble table - UMLC - BLU - TELENET -
message buffer - SWITCH - output buffer - OUTPUT - ASYNC - UMLC
- output vector - terminal.

7.7 PROCESSES IN THE 716

In the sections on the software in the 6000 mainframe, the terms 'slave job',
'job', and 'module' were used to describe various procedures and processes
within the system. In this chapter the term 'procedure' has been used to discuss
the functions of the various items of software which constitute the overall
communications software in the 716. It is appropriate to consider at this stage
the processes within the 716 (process being defined as the execution ofa program

with a given set of data).

7.7.1 crn
There is a single process which maintains the computer interface unit. All data to
and from the computer interface unit is handled by this single process.

7.7.2 Input Segment of UMLC

There is an instance of this process for each physical line controller (UMLC or
LSMLC).

7.7.3 Output Segment of UMLC

There is an instance of this process for each line speed.

Sec. 7.8] Loading the 716 Software 213

7.7.4 DTSS

There is one instance of this process for each user (other than those users entering
via Telenet).

7.7.5 Telenet

There is one instance of this process for each active Telenet line into the system.

7.8 LOADING THE 716 SOFTWARE [7], [8]

The 716 software performs a variety of consistency checks as part ofits operation.
If one of these fails the 716 sends a reload request message (102) to TCF ACE.
On receipt of the message, TCFACE runs the TCL monitor via Login. If the 716
fails to respond to TCF ACE at any point (for example, when the system is
started at the beginning of the day and the 716 is not running for some reason),
TCFACE initiates a reload sequence.

The TCL monitor issues a FORCED READ (one of the commands to the
CIU) to get the first 512 words of the 716 memory. Following this the 716
enters its bootstrap program and then waits in an idle loop for something to
happen. TeL then issues a FORCED WRITE to load the load/dump program
(CLOAD) into the 716. This causes the 716 to re-enter the bootstrap and exit to
CLOAD.

In the meantime the TCL monitor reads the 716 machine conditions and
the setting of sense switch 2, and then procedes to read the remainder of the 716
memory. Depending upon the setting of sense switch 2, TCL now loads either
the current TCC operating software or the previous version of the software. The
loading is check summed by both CLOAD in the 716 and by the TCL monitor.

The 716 is set running and it checks the setting of sense switch 3, transferring
either to the 716 Executive or to the debugger.

The TCL monitor files the TeC memory dump file in DUMPCAT. Every
fifteen minutes, BAKMON checks to see if there are any files in DUMPCAT, and
if so runs the dump formatter to produce a formatted dump on the printer.
TCF ACE waits for a special interrupt from the TeC to signal that communication
can continue.

Fig. 7.1 0 illustrates the above sequence of events.

214

BOOT

LOAD 716

Rest of
memory

Communications [Ch.7]

BOOTCAT

TCCEXEC ~ based on sel
t-------I switch 2

PTCCEXEC
I--------f

LOAD 716

DUMPCAT

TCCx

Fig. 7.10 - 716 reload sequence.

7.9 REFERENCES

[1] 'Programmers Reference Manual, System 700' (January 1972), Honeywell.
Information Systems, document 70130072575A.

[2] 'Honeywell Type 6322 Universal Multiline Controller Programming Manual'
(April 1972), Honeywell Information Systems, document 70130072689A.

[3] 'Host Interface Specification' (1975), Telenet Communications Corp.
[4] 'Binary Synchronous Communications' (February 1970), IBM Corp.,

document GA273004.
[5] Pedersen, L. C. (November 1977), 'Communications', DTSS Inc. Systems

Programmer's Training Course notes.
[6] Green, R. L., and Pedersen, L. C. (January 1977), 'DTSS Datalink System',

DTSS System Memorandum 291.
[7] Dunten, S. D., and Hargraves, R. F. (June 1976), '716 Hardware', DTSS

System Memorandum 278.
[8] '716 to 635/6000 Coupler Special Option Manual, Volume l' (February

1975), Honeywell Information Systems, document 70130072765A.

CHAPTER 8

Operations

The object of this chapter is to elaborate on the interface to the operating
system seen only by operators and systems programmers. Since both these groups
of people are ultimately responsible for the efficient, secure running of a system
and to some extent for the reliability of the system, this aspect of operating
system design is very important and yet neglected by almost every text on
operating systems.

8.1 SYSTEM STARTING

A system start-up is termed a 'boot' or 'bootload' since the operator at some
point presses the button labelled 'BOOTLOAD' on the console. There are a
variety of boots which can be performed depending on the situation. There
are a number of reasons for booting the system.

8.1.1 Reasons for booting the system

The system must be booted at initial installation or on installing a new release
of the system. This situation is described in section 8.3. After a field engineer
has had the machine to perform some form of maintenance or after some other
operating system (such as GECOS) has been in use, a boot must be performed.
The system must be rebooted after a configuration change (such as a device
going down or coming back on-line). The system is not designed to run continu­
ously for more than a few days: a time counter overflows in six days. The
normal mode of operation is to shut the system down daily and follow this
sometime later with a boot. Finally, if the fragmentation of storage on discs
becomes excessive, it is necessary to run a master-mode purge and following this
a boot is required.

8.1.2 Disc boot

The normal procedure used to start up DTSS following a normal shutdown (see
section 8.2) is a one-card boot. It is not possible to boot directly from a disc,

216 Operations [Ch.8

only a card reader or tape drive may be used as a boot device. During tape
start-up, the Executive creates and punches a single card which may be booted.
This card, when booted (that is, when the BOOTLOAD button on the operator's
console has been pressed), will read a disc boot program from a portion of the
reserved area of the disc. The disc boot program reads the Executive into memory
from the reserved area and transfers to the beginning of a large piece of it called
the disc start-up (DSTART). The functions performed by DSTART are as
follows:

1. Checks checksums on material just read in from reserved area by disc
boot program.

2. Checks control CPU fault vector address.
3. Determines memory size and initializes information used to allocate

space (for example, for swapper).
4. Checks to be sure all processors have a consistent view of memory.
5. Initialises interrupt vector and various tables for physical I/O.
6. Reads in core catalogs, most importantly the MFD, making sure that

checksums match.
7. Reads page tables and checks checksums in case system was shutdown

previously without doing a protect. Uses bad checksum as flag that page
table may be invalid. May result in CHECKSUM ERROR messages.
These messages may also result if packs were mounted on the wrong
drives. The operator is asked to verify correct pack locations. If previous
shutdown was unclean, a PURGE will be necessary to make new page
tables.

8. Resets page tables for devices with preferences lower than 3 to indicate
that all storage is free. Pref 0 is used for spare packs, Pref 1 is used for
swapping, and Pref 2 is used for high-speed scratch.

9. Initialises various variables and starts various continuous tasks. For
example, the timed task which displays statistics.

10. Deletes file with preferences less than 3 from core catalogs (they may
be catalogued only in core catalogs). This is because the associated
storage was freed.

11. Catalog entries for various special catalogued files are created. Most
importantly, entries are made in :PERCAT for all non-allocatable
devices, for example, printer, tapes, 7I6's.

12. At this point Disc Start-Up transfers control to a lower section of
memory and reads Slave Loader from the disc into the area of memory
just occupied by the previous portion of Disc Start-Up.

13. The job table is then initialised to make it look as if Slave Loader is
already running. A flag is set, however, which prevents jobs from
actually running.

14. 'EXEC UP' is displayed on the console.

Sec. 8.1] System Starting 217

15. At this point, the Executive simply waits for something to happen,
since it tells the operator to enter the data and time. When the operator
enters the date and time, the global flag is reset and Slave Loader is
allowed to 'continue' running.

16. Disc Start-Up is also entered after a 'crash'. When entrance is from
Crash/Restart, a flag is set such that Disc Start-Up will skip certain
functions, such as reading in core catalogs from the disc. Also, SYSTEM
CRASH is displayed instead of EXEC UP and the operator need not
enter the date and time.

8.1.3 Tape boots

There are three types of tape boots - a cold boot, a warm boot with patches,
and a warm boot.

The cold boot procedure, and the associated full logical load, is used when it
becomes necessary to reload the entire DTSS file structure, including the system
software modules. A cold boot is necessary following a system crash which
destroys critical data on the disc, when a new system is being created, and may
also be run from time to time to obtain more efficient allocation of system
storage. The cold boot procedure is described in section 8.3.

A warm boot is a subset of a warm boot with patches and is primarily used
as a substitute for a disc boot if for some reason the card-reader is not available.

. A warm boot with patches is used whenever the configuration is changed
or if the Executive needs to be patched. The patches and configuration changes
can be entered from the card reader or the console. Two tapes are used in the
operation - a warm boot tape and a scratch tape (which becomes a load tape).
The IOMTBOOT program (initiated by the BOaTLOAD button) copies the
warm boot tape to the load tape applying the patches and taking account of
the ENV deck information. The load tape is the one used to do a warm boot
without the use of the card reader. After the creation of the load tape, the
Executive and Slave Loader are read from it into memory and control is trans­
ferred to the Executive Tape Start-Up (TSTART), which performs the following
functions:

Configuration Checks:

1. Checks 10M.
Ensures that system was booted from 10M Zero (10M Number Switches).
Checks Mailbox area Location (10M Base Switches).

2. Checks IMW Area Location (Interrupt Base Switches).
Checks Fault Vector Address on Control CPU.

3. Polls all Memory Ports.
Makes sure that unused ports are masked off.
Makes sure there is only one 10M.
Counts Non-Control Processors, making sure there are not too many.

218 Operations

4. Computes Memory Size.
5. Adjusts for Extended Memory and other optional features.

Reads and processes Environment (ENV) deck (see below).
Data Control Word (DCW) Lists are set up for Crash/Restart.
Reserved Area on (secondary) system device is written to contain:

1. The Executive itself.
2. Disc Boot Routine to read in Executive.
3. Slave Loader.
4. DCW Lists for Crash/Restart.
5. :ENVINFO (a copy of the environment file).

A Disc Boot Card is punched.
A disc boot is simulated.

8.1.4 Environment file

[Ch.8

As noted above, memory size and system controller configurations are determined
at boot time. The configuration of the 10M is however specified by an ENV file.
Since the ENV file historically was held as a card file, the literature talks of ENV
decks and ENV cards rather than ENV files and ENV records. A typical ENV
deck is shown below:

ENV INSTALLATION XYZ
ENV CONFIGURATION HIS 66/20, 192K MOS MEM
ENV CTY 020722,020723
ENV PERCAT TYPE=CONSOLE,PREFIX=/l
ENV . PERC AT tYPE=READER,PREFIX=/3
ENV PERC AT TYPE=PRINTER,PREFIX=/120063
ENV PERCAT TYPE=MPC,PREFIX=MPOO,ACCESS=457777
ENV PERCAT TYPE=TAPE9,PREFIX=/2
ENV PERCAT TYPE H716,PREFIX=/6
ENV PERCAT TYPE MSU451 , ACCESS=457777 ,MAP=MSU451
ENV PERCAT TYPE MSU451,ACCESS=457777
ENV PERCAT TYPE=MSU45 1
ENV DEVOl TYPE=CONSOLE,PDA=0037,UNIT=00
ENV DEV04 TYPE=H716,PDA=0122,UNIT=02
ENV DEV06 TYPE=READER,PDA=0131, UNIT = 00
ENV DEV07 TYPE=PRINTER,PDA=0130,UNIT=00
ENV DEVI0 TYPE=TAPE9,PDA=0120,CODE=4,UNIT=01
ENV DEVIl TYPE=TAPE9,PDA=0220,CODE=4,UNIT=02
ENV XBAR01 101411 15 1216 13 17
ENV DEV30 TYPE=MSU451F,PDA=lXOl,PREF=6
ENV DEV31 TYPE=MSU451F,PDA=02X01,PREF=6
ENV DEV32 TYPE=MSU451F,PDA=03X01,PREF=6
ENV DEV33 TYPE=MSU451,PDA=04X01
ENV DEV40 TYPE=MPC,PDA=0020,FIRM=MTP601,UNIT=20
ENV DEV 41 TYPE=MPC,PDA=OOI 0,FIRM=MSU45 I,UNIT= 1 0

Sec. 8.1] System Starting 219

ENV DEV44 TYPE=MPC,PDA=0030,FIRM=URC002,PORTS=U203,UCRP,UNIT=30
ENV DEV70 TYPE=MSU451C,PDA=770030,PREF=4,SUFFIX=CO
ENV PHYSDEV TYPE=MSU451,RANGE=16646
ENV SYSDEV SECOND=30
ENV SCHEDULE SWEEP=O
ENV SCHEDULE MAXFORCE=1,MAXSWAPS=2
ENV SCHEDULE DECAY=375341217200,NCQRATIO=200,CRUNCHER=41
ENV CHARGES CPU=200000,CORE=600000,I/O=310000,IOTIM=O
ENV SCHEDULE CPU=20000,CORE=400000,I/O=60000
***EOF

The CTY card indicates the physical lines of the control terminals. The
PERCAT cards are used to generate entries in PERCAT, the peripherals catalog.
The name of each peripheral as it appears in PERCAT is a compound of the
PREFIX, UNIT and SUFFIX fields. The ACCESS field is used to generate the
ACCESS field in PERCAT. The DEV cards describe the type, location on the
10M and other aspects of the devices. The PDA field (peripheral device address)
is of the form xxyy where xx is the device number on the channel and yy is the
channel number o"n the 10M, or is of the form 7700dd where dd is a pointer to
device card DEVdd, or is of the form xxXbb where xx is the device number and
bb is a pointer to cross bar card XBARbb. Thus, DEV10 is a 9-track tape on
channel 20 on the 10M and is device 1 on that channel. DEV41 is a controller,
is device 0 on channel 10, its firmware is in the file OPCAT:MSU451 (MSU451
is the Honeywell product number for a moving head disc pack system). DEV30-
DEV33 are four MSU451 disc drives. DTSS regards disc drives as entire packs
(MSU451 as in DEV33), as file storage (MSU451F as in DEV30), or as center
tracks (MSU451 C as in DEV70). The PHYSDEV card defines the range regarded
as center tracks (forty tracks starting at the octal address specified). The PREF
field indicates the preference class (see section 4.3). Thus DEV70 is the catalog
(or center) tracks of all the MSU451 's starting at DEV30 (indicated by PDA
7700~Q) and going in sequence (that is, DEV30, DEV31, DEV32, DEV33) and
that it will be used for preference 0-4 files.

The XBAR card specifies logical channel numbers. The MPC provides a
number of logical channels over a single physical channel. The configuration
described in the above ENV deck is a dual channel system as shown in Fig. 8.1.
In this, channel 10 is addressable as 4 logical channels 10-13, and channel 14 as
14-17. Thus DEV30 has a number of legal peripheral device addresses, namely
0110,0111,0112, ... ,0117, that is, device 1 on any of channels 10-17.

The SYSDEV card indicates where the Executive will write the reserved
area (see section 8.1.3 above - TSTART), in this case on device 30 (DEV30).
The SCHEDULE cards are used by the installation to tune the scheduler. The
CHARGES card specifies the ratios for the changing algorithm.

If tape drive number 2 became inoperable, the required changes to the
ENV deck would simply be to delete card DEVIL If the MPC which provides

220

Disc
MPC

Operations

CPU

SCU

10M

Tape
MPC

Unit
Record
MPC

Fig. 8.1 - ENV deck configuration.

[Ch.8

Memory

Console

channel 10 and its associated logical channels became inoperable, the changes
required would be to substitute a new XBAR card of the form:

ENV XBAROI 14151617

If at some point, four more MSU451 drives are added, and that the file
tracks are to be preference 5 and the catalog tracks are to be preference 2, with
the fourth drive a second spare. The changes to the ENV deck would be the
addition of the following cards:

ENV DEV34 TYPE=MSU451F,PDA=05X01,PREF=5
ENV DEV35 TYPE=MSU451F,PDA=06X01,PREF=5

Sec. 8.2] System Shutdown

ENV DEV36 TYPE = MSU451 F,PDA=07XOl,PREF=5
ENV DEV37 TYPE=MSU45l,PDA=lOXOl
ENV DEV7l TYPE=MSU451C,PDA=770034,PREF=2,SUFFIX=Cl

8.2 SYSTEM SHUTDOWN

221

A typical sequence of events for system shutdown is as follows. The message and
warnings system is run and users are informed that the system is going down at
some time in the future. At the appropriate time, the operator types DEDICATE
to OPMON, to restrict use of the system to users who are under OPMON, and
the following sequence of events:

1. Operations Monitor writes a DED command to Login.
2. Operations Monitor writes a DIS ALL command to TCFACE.
3. Operations Monitor writes an ENA command to TCFACE specifying the

two current control lines.
4. Login responds to Operations Monitor's DED command by writing a

DED command to each monitor that is running.
S. When a given monitor receives Login's DED command, it writes accumu­

lated billing data for each user that it is servicing to Login and prints
SYSTEM CLOSED at each user's terminal. It then closes all user files and
terminates. Operations Monitor ignores Login's DED command.

6. Login writes 'OFF AT XX:XX' to each user's terminal communication
file as it is returned from a terminating monitor, and closes the slave end
of each such terminal communication file.

7. TCFACE, in response to Operations Monitor's ENA and DIS commands,
ignores all ringing phones except on the two control lines specified by
Operations Monitor. TCF ACE closes the master end of each terminal
communication file which is returned to it, and directs the TCC Executive
to disconnect each terminal involved.

8. As a result of the dedication procedure, users not connected with
Operations Monitor receive:

S)STEH CLOSED

OFF AT XX:XX

messages on their terminals and are disconnected from the system. Unless
a user is on one of the two current control lines, he is subsequently
unable to connect with the system.

At this point the operator runs an incremental Logical Dump to dump all
files modified since the last dump, and if the schedule calls for it, a full Logical
Dump to dump the entire DTSS file structure to tape.

222 Operations [Ch.8

Next a system called DAY is run to produce monthly and/or daily statistics
on the printer. A system called SHUFFLE may be run next to reorganise disc
storage in a more efficient manner.

At this point the operator types PROTECT to OPMON which initiates the
shutdown of DTSS. The following sequence of events occurs:

1. Operations Monitor writes a DIS ALL command to TCF ACE, causing
TCFACE to ignore all ringing phones. Thus no additional users may sign
on to the system.

2. Operations Monitor writes a PROTECT command to Login.
3. Login writes OFF commands to all monitors and sets a one-minute

timer.
4. In response to Login's OFF command, all monitors, including Operations

Monitor, write accumulated billing data to Login, close all user mes, and
terminate.

5. After one minute, Login aborts any monitors still running and sets a
thirty-second timer.

6. After thirty seconds Login terminates, with termination access set to
zero. TCFACE then terminates, signalling the DTSS Executive to shut
down. The Executive writes its storage allocation tables, core catalogs,
and other relevant information out to permanent storage and prints
'SYSTEM PROTECTED' on the machine room logging device ~

All of the above shutdown steps, from the initial message to users telling
them the system is going down in, say fifteen minutes, through to the PROTECT
command can be carried out by a PERFORM me without operator intervention
other than loading dump tapes.

The operator them communicates with the Executive through the system
console. The next action is to perform a consistency check on the filing system
and reconstitute the free-space tables. This is done using the master-mode
PURGE command. Following this the operator may type OFF if the system is
to be used for anything other than DTSS, in which case a disc boot will be
required some time in the future, or ONN which is equivalent to OFF followed
by a disc boot.

Following OFF or a boot the operator, and other users, can sign-on. The
first job is to type OPURGE to OPMON. The Purge module (so called since
before the archiving system one of it's functions was to un save user mes which
had not been used since a given date) creates a me of storage information used
by the billing program to charge users for the me storage they use.

Operations Monitor runs the Purge module using the Simple Monitor-Edit
Interface. Operations Monitor sets the following special run parameters for the
Purge module:

1. Infinite catalogued and scratch storage quotas.
2. Maximum run-time.

Sec. 8.3] Software Releases 223

3. Job access to all files and catalogs in the catalog tree.
4. Large state vector and load/dump job type.
S. Maximum core size if the system is dedicated.

Finally the operator runs the billing program to produce the billing files for
the day.

8.3 SOFTWARE RELEASES

The Product Release System is used for two purposes:

1. To export the current package of software products for updates at running
DTSS installations.

2. To install the operating system on new customer computers.

Both updates and installations may be accomplished using the same Software
Tape Set. Each Software Tape Set contains a fully integrated and tested version
of the Dartmouth Time-Sharing System.

DTSS releases are numbered sequentially as Release 01, Release 02, Release
03, etc. A particular release is referred to as RELXX where XX is the release
number. This scheme is used to classify software in the Product Release Catalogs
which are saved in the Master User Directory.

The Software Tape Set included with each release package consists of four
different types of magnetic tapes:

Warm Boot Tape
Slave Loader Input Tapes
Product Release Tape
Total System Tape

The Warm Boot Tape contains the latest version of IOMTBOOT, the Executive
and Slave Loader. It may be used to perform either a cold boot or a warm boot
of the system. Patches to be applied to Executive or Slave Loader may also be
on this tape.

Slave Loader Input Tapes contain working copies of the rest of the system
software. Slave Loader Input Tape I (SLT I) loads the DTSS operating system,
while SLT II loads :DLIBRARY and its sublibraries. Slave Loader Input Tape
(SLT) I will be loaded during the initial boot sequence using the Slave Loader
LOAD Hn command. Slave Loader will also read patches from SLT I and apply
them to the specified system software. The system will then qe protected and
re-booted via the Executive PROTECT and ONN commands. At this time the
next Slave Loader Input Tape will be loaded. This procedure is repeated until
all Slave Loader Input Tapes have been loaded.

The Product Release Tape contains only those files necessary to create
Warm Boot and Slave Loader Input Tapes. It is a Logical Dump of user group
*RELXX (where XX is the current release number). The user catalogs on this

224 Operations [Ch.8

tape contain just the binaries and sources that will be catalogued in the MFD
by Slave Loader. Product Detail Files in each catalog specify all mes necessary
to create the Warm Boot and slave Loader Input tapes. The Product Release Tape
is loaded using Logical Load after the unmodified system is up and running.
It will be used to create a modified version of DTSS.

The Total System Tape contains all official DTSS software products -
binaries, sources, assemblies, alter mes, symbol table files, detail mes, acceptable
tests, etc. This tape is created using LUPDATE and contains the same user
catalogs as the Product Release Tape, but in complete form. When re-assembly
or listing of a module is required, the module's Product Release Catalog must be
loaded from the Total System Tape using Logical Load. Some site-specific
modifications must be handled this way. Other modifications can be applied to
the binaries loaded from the Product Release Tape by using the DTSS Patch
File, which contains all system patches to be applied by Slave Loader at boot
time. Unless a module must be re-assembled or a listing produced to re-Iocate
patches, it should not be necessary to load its catalog from the Total System
Tape; the bulk of the software binaries comprising the Warm Boot and Slave
Loader Input Tapes will be loaded from the Product Release Tape.

8.3.1 Product Release Catalogs

The Product Release Catalogs on both the Product Release Tape and the Total
System Tape are classified as standard DTSS user catalogs. The REL supergroup
in :MUD contains all releases of DTSS software, thus serving as both a loading
location for the new version and backup facility for previous versions. :MUD:REL
contains a user group catalog for each release of DTSS: user group REL01
contains all Software for Release 01 and user group REL02 contains all software
for Release 01, and so on.

Within each group catalog, user catalogs serve as export mailboxes for indi­
vidual modules. The last three digits of the user catalog denote the module code.
Thus user catalog *RELOI056 contains the version of SIMON (module code
056) shipped in Release 01 and user catalog *REL02056 contains the version
of SIMON shipped in Release 02. Module codes are recorded in SYSLIB***
: SOFTWARE.

Each Release Catalog on the Total System Tape contains all mes necessary
to produce a binary copy of its module. Also included are information and
documentation mes concerning the use, requirements and history of the module.
File types are coded by a prefix letter followed by a dot (.) followed by as much
of the module name as will fit in the remaining six characters. For example,
B.EXEC is the binary me for the Executive; S.LUPDAT is the symbol-table
me for LUPDATE. The source me for a module is the only me whose name
does not follow the dot convention: source mes bear the module name. So
*RELOI005:BAKMON is the source treename for the Background Monitor
shipped in Release 01. Prefix letters have the meanings given in Table 8.1.

Sec. 8.3] Software Releases 225

Table 8.1.

Module name Source file

A.<module name> Alter File

B. <module name> Binary File

D. <module name> Documentation File

E. <module name> Error File

I. <module name> Information File

J. <module name> Background Job File

L. <module name> Listing File

P. <module name> Perform File

R. <module name> Product Detail File

S. <module name> Symbol Table File

In general, Release Catalogs loaded from the Product Release Tape contain
only B. and R. files (there are exceptions such as MSTAT and :DLIBRARY
which require that sources be written to the Slave Loader Input Tape). Only
the Total System Tape contains the complete set of files for each Product
Release Catalog.

8.3.2 Product Detail Files

The 'R.' file in each Release Catalog is the Product Detail File for the module.
It provides information used to create Slave Loader Input Tapes. Each line of
the detail file begins with a command followed by a list of arguments. These
commands will be translated into Slave Loader commands in the process of
creating the STAPEMKR input file. STAPEMKR will write the translated
commands and the specified files to the Slave Loader Input Tapes. Legal com­
mands for Product Detail Files are:

CATALOG Catalog a catalog
UPDATE Catalog (or replace) a file
INSTALL Catalog (but do not replace) a file
ERASE Erase a file or catalog
PATCH Patch a file
FILE
NOTE

Insert a Product Detail File
Comment follows

The following command formats apply to Product Deatail Files. Arguments
enclosed in <angle brackets> are required; arguments enclosed in [square
brackets] are optional:

226 Operations [Ch.8.

1. CATALOG<treename>;<accesses>;<max>[;<entry count>]

Creates a catalog with the specified <treename>, <accesses>and catalog
storage <max>. If an <entry count> is specified, it will be used in
allocating storage for catalog entries. Otherwise, a default value of ten
will be used. If the catalog already exists, its accesses will be changed to
those specified and, if the present catalog storage max is less than that
specified in the <max> field, it will be raised accordingly. Example:

CAT :DLIBRARY:DATALIB;411 00001100;100000;200 'SYSTEM
SUBLIBRARY

2. UPDATE <source location>; [<desination treename>];
[<accesses>] [;<pref> [;<aloc>]]

Causes the file named in the <source location> to be catalogued with
the <desination treename> and <accesses> specified. If the file is
already catalogued, it will be replaced. The <pref> field denotes the file
preference to be used and the <aloc> field denotes the preallocation
length. If these fields are not supplied, the default preference will be
six and the default preallocation length will be zero. The <source
location> field usually refers to a user catalog in the current release
group. A <source location> of *056:B.SIMON is valid since the '*'
will be replaced by *RELXX when the translator program (DETAIL)
is run for Release XX. Example:

UPD *006:B.BASIC;:SMSYSCAT:BASIC;010100411161 'BASIC
COMPILER

Some update commands may have no <desination treename> or
<accesses>. Such lines are used to flag files which must be catalogued
on the Product Release Tape. For example, the lines:

UPD *026: B.EXEC;;'EXECUTIVE BINARY
UPD *026: R.EXEC;; 'EXECUTIVE PRODUCT DETAIL FILE

appear in the Product Detail File for the Executive and specify that the
files names should be placed on the Product Release Tape.

3. INSTALL [<source location>] ;<desination treename>; <accesses>
[;<pref>[;<aloc>]]

Causes the file named in the source location to be catalogued with the
specified <desination treename> and <accesses>. If the file already
exists, it will not be replaced (however, the accesses will be changed
to those specified). If no <source location> is specified, a zero-length
file will be catalogued. <pref> and <aloc> are the same as for the
UPDATE command. Examples:

Sec. 8.3] Software Releases

INS *235: DEDFILE;: BAKCAT:MUXCAT:DEDFILE
;0410000447020 'DEDICATE FILE

INS ;: DUMPCAT:ALGOL;006001407001 'DUMP FILE

4. ERASE <treename>

227

Causes the file or catalog with the specified treename to be erased.
Example:

ERA :OPCAT: OPMOVE 'DELETE OBSOLETE SOFTWARE

5. PATCH <treename>

Causes the me with the specified tree name to be patched. Location and
contents of the patch or patches should follow the command line. If no
patches are included, the module will not be patched. Example:

PAT :HON:BAK 'Patch out GCOS siMulator requireMent
007241 000000011000 '(NOP 0) OK if GCOS source can't be erased
025261 025264710000 '(TRA 35264) OK if no GeOS
CAT:SOURCECT

Temporary patches or site-specific modification patches are put in the
DTSS Patch file only, so that the changes made to the system can be
identified.

6. FILE <treename>

Causes the specified file to be used as an insert file. This command is
used in the Master Product File to name the Product Detail Files to be
used for creating the Slave Loader Input Tapes. Example:

FILE *OOI:R.ALGOL 'Insert Algol detail file

7. NOTE <comment>

Used to place a comment on a line by itself. Example:

NOTE THIS IS A COMMENT

A sample product detail is shown below:

228 Operations [Ch.8

R.MUXHON 19 JUL 77 17:45

CAT*23S;457000057000;lNFINITE;20 /Product catalog
UPD *235:B.MUXHON;:MON:HUX;010077411260 /Binary
PAT :HON:MUX ~Patch DXPLRTP to accept specials
000001 000100000002 /Point to fake full specials stack
000020 777777777777 /No interrupts till we/re ready
CAT :BAKCAT:MUXCAT;411000415004;4096;20 /MUXMON Syst~M catalog
INS *235:DEDFILE::BAKCAT:HUXCAT:DEDFILE;041000447020 /Dedicate file
INS ;:DUHPCAT:HUXHON;006001407001 'DUMP file
UPD ;:DUMPCAT:.MUXMON;; /Detail file

8.3.3 Product Control User Number

The Product Control User Number is *RELXXOOO. The Product Control User
Number is validated for all permissions. It is used to create the modified Slave
Loader Input Tapes. The following is a list of files in *RELXXOOO:

DOCUMENTATION

PRODUCT
NPRODUCT
SPECIAL
HOLD
OBSOLETE
REPORT
FORMREP
PRTAPE
SOFTWARE
UPDATED

PRODUCTION

DETAIL

B.DETAIL
MASTER

NMASTER

DLIBMAS

DLIBMAS2

DLIBMAS3

Alphabetised list of products shipped.
Numerical list of products shipped.
List of files not on Slave Loader Input Tape.
List of products being held until next release.
List of products no longer being shipped.
LUPDATE report of Total System Tape.
Formatted LUPDATE report of Total System Tape.
Catalog of *RELXX as dumped to the Product Release Tape.
List of DTSS software modules (produced by RELPRINT).
List of modules modified since last release.

DXPL program to create ST APEMKR input file from Master
Product File.
Binary version of DETAIL.
Software Master Product File. Inserts Product Detail Files for
the Desired DTSS program products. Converted by DETAIL
into SLTI.
Same as MASTER, for NON-EIS sites. Converted by DETAIL
into NSLTI.
Master Product File for :DLIBRARY and sublibraries. Con­
verted by DETAIL into SLT2.
Same as DLIBMAS, for 7-track sites. Contains only
:DLIBRARY insert call. Converted by DETAIL into NSLT2.
Same as DLIBMAS, for 7-track sites. Contains only sub­
library insert calls. Converted by DETAIL into NSLT3.

Sec. 8.3]

PATCHES

WBT
NWBT
SLT1
NSLT2
NSLT3
SMCORCAT

UTILITY

FSTATFIX
.1 CLEAN

.5 CLEAN
CLEAN
B.CLEAN
. SCL
XCL

Software Releases 229

DTSS Patch File. Inserted by Software Master Product File,
so contents are written to Slave Loader Input Tape I. Patches
apply to binaries loaded from this tape.
ST APEMKR input file for Slave Loader Input Tape I.
Same as WBT, for IOC systems.
ST APEMKR input file for Slave Loader Input Tape II.
Same as :DLIBRARY portion of SLT2, for 7-track sites.
Same as sublibrary portion of SLT2, for 7-track sites.
The :SMCORCAT list to be catalogued automatically in
:SMSYSCAT.

Used to initialise :CATBV:FSTAT in an emergency.
Perform file reduces a Product Release Catalog to only flIes
specified by the Product Detail File.
Same as .1CLEAN, handles five catalogs at once .
DXPL program executed by above perform files.
Binary version of CLEAN.
Perform flIe used in CLEAN procedure .
Program executed by .SCL.

8.3.4 Procedures for updating nTSS

The procedure is divided into three phases:

_ 1. Loading the unmodified system.
2. Creating and loading the modified system.
3. Integrating the modified and official systems.

Loading the unmodified system

The system is first protected using OPMON's PROTECT command. A Cold Boot
Patch Card and the ENV deck are placed in the card reader. The DTSS Warm
Boot Tape and a scratch tape with write ring are mounted, and the INITIALIZE
and BOOT buttons on the console are pressed. The EXECUTIVE and Slave
Loader will be loaded from the Load Tape.

The Slave Loader Input Tapes are mounted and Slave Loader is run, and the
software will be loaded and finally DTSS should then begin operating.

Turning on a control-line terminal will cause the DTSS greeting to be printed
on the terminal. Since a cold boot has been performed and no :MUD was loaded
from the Slave Loader Input Tapes, the operator will be automatically signed-on
to OPMON with the MFD as his current catalog. Running LOAD and typing AC
*RELXX where XX is the current release number, mounting the Product Release
Tape when Logical Load asks and finally protecting the system and typing ONN
to initialise :MUD will produce a running Unmodified System.

230 Operations [Ch.8

Creating and loading the modified system

All site-specific alters and patches are consolidated. Product Release Catalogs
from the Total System Tape for modules that require re-assembly or relocation
of patches are loaded and re-assembled and/or listed using the '1.' mes in the
Product Release Catalogs. All site-specific patches are put in the Patch File
*RELXXOOO: PATCHES. The Master Product File is edited to delete any modules
not being updated. The program XRELXXOOO:B.DETAIL is run and the output
me will contain a STAPEMKR me. STAPEMKR is run to create Slave Loader
Input Tape 1.

DTSS is then cold booted using the new Warm Boot Tape. All modified
Slave Loader Input Tapes are loaded together with all those not requiring
modification. Logical Load is then run from a control-line terminal and the
Product Release Tape is loaded. This is followed by a disc boot using ONN and
:MUD is initialised.

Integrating the modified and official systems

There are two recommended ways of integrating the Modified and Official
Systems to complete the update. If the system has a large number of site­
maintained programs and mes scattered throughout the MFD, the Modified
System is warm booted over the Official System. This forfeits one major advantage
of the release, namely the cleanup of unnecessary meso Such mes must be
unsaved by hand. But if the system has few or no site-maintained programs
and mes, the Modified System is cold booted, then :MUD is loaded from the
current Dump Tapes.

8.3.5 Procedures for installing nTSS

One critical difference between updates and installations is that often the Front­
End Processor on new systems is not working. This necessitates installation under
the Front-End Simulator (FRESIM). To install DTSS under FRESIM, the steps
outlined earlier for loading the unmodified system are followed. When the
last Slave Loader Input Tape has been loaded, the following steps are taken:

The system is protected using the Executive PROTECT command. Typing
ONN will bring the EXEC up again. Typing LOAD T will force Slave Loader
to take commands from the console.

Entering the following records on the console:

UPD :D-30FACE:TCFACE;010000411777 (EON)
UITH :D-30FACE:D-30FACE (EON)
REP :D-30FACE:D-30FACE (EON)
UITH :D-30FACE:FRESIM (EON)
~**EOF (EON)

will bring up the Front-End Simulator using the console as a terminal.

Sec. 8.4] Operator Interface to BAKMON 231

Typing RUN :D-30FACE:FCFACE#ATT will bring DTSS up. Since no
:MUD exists, the operator will be signed in to OPMON with the MFD as his
current catalog.

LOAD is run to load the Product Release Tape. When running under
FRESIM, LOGIN uses :XSYSCAT as the MFD in which it searches for :MUD user
catalogs. When the load is finished, FILEMOVE is run to move :MFD:MUD to
:XSYSCAT:MUD.

8.4 OPERATOR INTERFACE TO BAKMON

BAKMON runs jobs which are not connected to time-sharing terminals, and
allocates processor time and peripherals to these jobs. Normally, BAKMON
does this automatically, and operator intervention is required only for the
handling of input and output materials. BAKMON does, however, accept one
control terminal to provide an interface with the system operator. Via this
interface the operator may check the status of jobs being processed, relinquish
and seize control of peripherals, and regulate the flow of jobs. This section
describes BAKMON's operator interface.

To establish communication with BAKMON, the system operator signs-on
on a control1ine and types:

NON BAK

The ABORT command causes the Background Monitor to abort the specified
job. The following message is sent to the user execution report:

JOB ABORTED BY OPERATOR

BAKMON automatically checks the background submission catalog every
fifteen minutes for new jobs to be processed. It also checks the submission
catalog every time a user submits a job from a time-sharing terminal.

In addition, BAKMON can be manually instructed to check the submission
catalog via the AWAKE command. This is useful when the oeprator wishes
BAKMON to begin processing immediately those jobs that have been submitted.

The maximum number of non-BMC activities that BAKMON will run at any
one time is determined by an internal job slot counter. BAKMON re-adjusts this
job slot counter every fifteen minutes according to the number of users connected
to the time-sharing system; as more users sign-on to the system, the counter is
lowered and fewer background jobs are run. BMC jobs are exempted from this
constraint because they require a very small amount of memory, and at any
given time only one BMC job may be in execution for each peripheral; thus
they place a very small load on the system.

The JOB command causes BAKMON to reset the job slot counter to the
specified value. For example, if the operator types:

,JOB 5

232 Operations [Ch.8

the job slot counter is set to five and the Background Monitor will run a maximum
of five non-BMC activities simultaneously. Note that the core count set by the
operator is not permanent; it will be reset automatically in fifteen minutes or
less.

The GET command causes BAKMON to take control of the specified
peripheral. If the peripheral is busy in foreground, the monitor will respond:

PERIPHERAL <peripheral abbreviation> BUSY

The KLIMIT command resets the limit on memory size for jobs submitted
by users with super-large-core permission. (All other jobs have a fixed memory
size limit set by the user's validation permissions.) Currently, BAKMON will not
set the super-large-core limit below 32K or above 128K, if no KLIMIT command
has been given, the memory size limit for both types of job is 32K.

If a job submitted by a user with super-large-core permission requests a
memory size greater than 128K, BAKMON will abort it; if the job requests a
memory size less than 128K but greater than the current super-large-memory
size limit, the job will be suspended until the operator specifies a large enough
memory size limit via the KLIMIT command.

The operator may determine of there are any unfulfilled requests for large
memory size via the RLIST command.

The OFF command causes BAKMON to terminate. Upon receiving this
command, the monitor will cease to accept new jobs from the SUBMIT catalog
and will halt execution of all running jobs. It will also send a message to the
console typewriter stating which jobs were halted; these jobs will be restarted
automatically when the monitor next comes to life.

The PST ATUS command causes BAKMON to print the status of the specified
peripheral (s). The argument for this command is either a specific peripheral
abbreviation or the argument ALL, which causes BAKMON to print the status
of all peripherals currently under its control. The various possible peripheral
statuses are as follows:

FREE

BAKMON has control of the peripheral, but no job is currently using it.

ALLC OPERATOR (RELEASED)

BAKMON does not have control of the specified peripheral, either because the
monitor never opened it, or because the operator has released it.

ALLC JOB XX, USER: <user number>, PROGRAM: <program name>

The peripheral is currently reserved for or being used by the stated job.

In addition to these statuses, there are two special variants of the FREE
status, which are supplied only for tape handlers:

Sec. 8.4] Operator Interface to BAKMON 233

FREE WITH UNUSED SCRATCH TAPE BAKSx

The named background scratch tape is mounted at load point, and will be
assigned to the next job that requires a scratch tape. The tape may be dis­
mounted by releasing the handler via the RELEASE command.

FREE WITH SAVED TAPE FOR JOB XX, USER: <user number>,
PROGRAM: <program name>

Tape handlers will maintain this status only for brief periods of time, so it is
unlikely that this message will be seen frequently. It indicates that the handler
is available for use by another job but that the specified job will soon again
perform operations on the tape.

The RELEASE command causes BAKMON to relinquish control of the
specified peripheral. If the peripheral is not in use, it is released immediately;
if a job is using the peripheral, it will not be released until the current activity
of that job has been completed. When the specified peripheral has been released,
BAKMON logs the following message to the console typewriter:

PERIPHERAL RELEASED: <peripheral abbreviation>

The RLIST command causes BAKMON to output a list of the resources for
which the specified job is waiting. This is printed in the format:

JOB XX: <number> <resource 1> «device list»
<number> <resource 2>
CORE SIZE <size>
RUN TIME <time>

F or exam pie:

JOB 03: 1 PRINTER
2 TAPE HANDLER(S) (0,3,4,5)
1 CORE UNIT<S)
CORE SIZE 144000

It should be noted that a job never seizes any resources until it can get all of
those for which it is waiting. Thus, some of the resources specified in response to
the RLIST command may already be available. In the above example, two of the
specified tape handlers and the printer may already be free, and the core size
limit for the given type of job may be above 144000; but because no core units
are available, the job must wait. It will wait until all five of the resources are
simultaneously available.

The RLIST command specifies all resources for which the job is waiting.
The RWAIT command however specifies only those resources for which the job
is waiting which are not presently under the control of BAKMON.

The RTIME command causes BAKMON to print the amount of run time

234 Operations [Ch.8

that the current activity in the specified job has accumulated. Run time is
printed in the format:

JOB XX: T.TT SEC. RUN TIME

If the job is not running (that is, no activities are in progress), the monitor
will respond:

JOB XX: NOT RUNNING

RUN <special activity name>

The RUN command causes BAKMON to initiate a special activity. A special
activity is a predefined background job which is run whenever the operator
requests it. The background job description for a special activity is permanently
catalogued in the catalog :BAKCAT:RUNNING.

When the special activity has been initiated, BAKMON logs the following
message to the console typewriter:

SPECIAL ACTIVITY (speci~l ~ctivity naMe) STARTED

On completion, the monitor logs:

SPECIAL ACTIVITY (special activity naMe) COMPLETED

A typical special activity is DUMP, and it runs the system Dump Module.
The DUMP special activity is also run by BAKMON every fifteen minutes with­
out operator intervention.

The RWAIT command causes BAKMON to list all jobs which are suspended
because they require the use of peripherals which are not under BAKMON's
control. The format of each entry in the monitor's reponse to the RWAIT
command is:

RESOURCE REQUEST FOR JOB XX, USER: <user number>, PROGRAM:
<program name > N <peripheral abbreviation> «device list»

For example:

RESOURCE REQUEST FOR JOB 05, USER: HDC51514,
PROGRAM: BACKS

1 TAPE HANDLER (0,3,5)

This message should be interpreted to mean that job 5 needs one tape
handler: either handler 0, handler 3, or handler 5. The operator should therefore
respond by typing GET HANO, or GET HAN3, or GET HANS.

Sec. 8.4] Operator Interface to BAKMON 235

Note that this same RESOURCE REQUEST message also appears on the
console typewriter (without operator intervention) when BAKMON first re~lises
that a job requires resources which are not available. The device list contains a
list of devices which would satisfy the request. •

The STATUS command causes BAKMON to print the status of the specified
job. This status report takes the form:

JOB: XXXXXX, USER: <user number>, PROGRAM: <program
name> <activity type> ACTIVITY <status>

where activity type is one of the following:

FOREGROUND = foreground simulation
RUN = general run
BMC = background media conversion
GCOS = GCOS simulation
SYSOUT = SYSOUT run
ABORT = abort initiated by user

and status is one of the following:

STARTING. The job is just starting up. No activity has yet been initiated.

RUNNING AT LINE LL. The activity at line LL in the user's background
program is running.

WAITING AT LINE LL. The activity at line LL in the user's background
program is waiting for resources.

ENDING. All activities have been completed and the job is nearly finished.

ABORTING. An error has occurred during the execution of the job, or the
user or operator has aborted it. The job will soon be removed from the
job stream.

The TELL command allows the operator to write a message to a user's
background job.

The TLIMIT command has the same format and options as the KLIMIT
command, but is used to limit the amount of time jobs are allowed to run.

The following commands are debugging aids and are not used during normal
operation:

DIE terminate with a memory dump
DIE NDUMP terminate without a dump
DMPURE declare BAKMON impure
DUMP dump memory location(s)
PATCH patch memory locations(s)
RCHECK check the resource waiting list
SNAP produce memory dump without terminating

236 Operations [Ch.8]

8.5 REFERENCES

[1] Harlowe, C. (April 1974), 'nTSS Operator's Manual', nTSS Technical
Memorandum 066.

[2] Pedersen, L. C. (November 1977), 'System Start-Up', nTSS Inc. Systems
Programmer's Training Course notes.

[3] Green, R. L. (July 1977), 'Loading nTSS Software', nTSS System Mem­
orandum 299.

Index

A
access 83,104,106,119,195
access bits 131
access permissions 92-94,95
access word 96,97,104,167
activity description 189, 190
alter file 166
answerback drum 89,161,196
asynchronous terminals 207

B
background job description 184-194
background job processing 63,64
background job queue 185
background scheduling 185
background system 63,64,184
BAKMON 63,64,122,164,170,183-194,

205,213,231-235
base address register 22,113,121
BASIC 13,33,34,106
billing 160,163
binary synchrnous protocol (BISYNC) 207
bootload 163,215,222,229,230
buffer queue 170

C
capability system 97
catalog 72, 78, 81, 82, 84, 86, 89, 96,169
catalog descriptor 78
catalog queue 135,140, 175
catalog routines 135, 140
catalog tree 86-88
center tracks 219
channel number 153,219
character buffer 203

character scan 203
CHEMON 165
claim vector 190
cold boot 217
command interface 160, 163-164
command mode 177
communication files 72,122-134,136,

155,156,158,160,169,170,175,177
communication lines 197
configuration file 205
control executive 134, 138
control line 100, 108, 196
control processor 134,153
copy routine 135, 137, 140
core queue 147
core resident 147
core ticker 148
coupler 201,209
crash 178
CRU (see resource units)
current file 33,34,35,44,111, 128, 166,

167

D
data channels 24
data files 71
datalink system 165,209
deadlock 190
device address 78, 79, 80
device code 78
device control routines 205,206-207,209
device files 72,136
disc boot 215-217
DLIBRARY 86,101
down-line loading 165

238 Index

E
environment file (ENV deck) 141, 144,

217,218-221
error messages 39,40
explain 40,50,53,56
Executive 23,28, 29, 73, 74, 75, 79, 80, 86,

107, 111-154,163,164,169, 178,216,
222

F
fault 113,114,123,134,138
fault cell 120, 121
fault handling 120-122
fault vector 113, 120,121,123
file control block (FCB) 74,75,76,77,107,

122,141
file descriptor 191
file migration 107 -108
file protection 89,100,101
file reference number 74,119,122,125,

131
file .sharing 107
file system 44
file type 81,83
fragmentation 143,147
free job number queue 139

G
General Electric 13, 14
GE-265 14
GE-635 14

H
Honeywell 66/40 14

. Honeywell 716 19,25,128,197-205
Honeywell level 66 22

in-core queue 139
incremental dump 108
information files 44
inhibit bit 120
input-output multiplexor (10M) 24, 148
input-output routines 136
installation procedures 230-231
inter-monitor messages 170
inter-process communication 122-134
interrupt 113,114,134,139,152-154,201
interrupt routines 136
10M (sec input-output multiplexor)

J
JBLOCK 170-175
job description 184-194
job-executive interface 113
job files 72,118,119
job interface 179-183
job number 139
job service queue 138-139,141
job service routine 134, 135
job table 111, 143
job tree 131
job type 118

K
Kemeny, J. G. 13,14
Kurtz, T. E. 13

L
libraries 44,45,48
line controllers 201
line scan 203
line element 137
logical dump 108,221
LOGIN 30,122,160-164,169,170,222

M
mailboxes 149-152
master-end 122,125,128,129,130
master file directory (MFD) 86,100
master mode 22
master mode entry (MME) 73, 74, 82, 86,

11~114,121,122, 134,13~139,141,

144
master task queues 139,140
master trap 82,96,97-103,108
master user directory (MUD) 86, 88, 100,

195
message buffers 156,158,208
message flow control 160
message type 158
MFD (see master file directory)
multiprocessors 134
Mlink queue 141
MME (see master mode entry)
monitors 164-196
MUD (see master user directory)
MUXMON 165

N
non-control executive 134-
non-control processor 134

Index 239

non-core queue 139,141,144,145
non-trapping MMEs 114

o
operator 184,185,215,221,222,231-235
OPMON 100, 108, 183,221,222
output vector 203, 206

p

panic block 138
partitioning 144-145
password 82,89,94-97,100,105,161, 184,

196
PERCAT 86,219
perform files 45,46,61
peripherals 185,187
peripheral processors 25, 153
permisssions 84,89-91,100,101,107,108,

118,136,161,166,184
preference 81,83,119
priority number 144, 146
process data block (PDB) 205, 206
processing queue 134,138,139,141,170
product detail file 224,225-228
product release tape 224
protection 89,100,101
protocol 158,205

Q
q uan tum run time 138
queues 111,134,137
queue block 175
quota 86,166

R
RAM 165
reliability 17
reservation 125, 129, 130
resource control 90, 144,184, 195,233
resource request vector 190
resource units (CRU) 143,187
response time 142, 144
response time quota 145
RJE stations 209
run list 118
run queue 134,138,141,144,170

S
saved file 45
scheduling 141-145

scheduling number 138, 142,143, 144,145,
146,147

security system 88-107
selective dump 108
semaphore 138
SIMON 17,31,33,34,39,73,88,93,96,99,

105,107,111,122,128,130,158,164,
165-183,205

slave end 122,125,129,130
slave fault 113
slave loader 224,225,229
slave mode 22
slave trap 82,96,103-107
SMSYSCAT 86,101
software releases 223-231
sort 166
special activity 234
special interrupt 113,114,121,123-125,

128,129-134,138,141,155,156,160
state vector 78,111,122,123,138,141
statistics 160,163,222
status return 117,136,141,170
status table 152
storage management 79
sublibraries 45
SUPMON 165
swapper 136,139,141,145-148
synchronisation 122
synchronous protocols 209-211
system catalogs 100
system control unit (SCU) 23
system reliability 16
system shutdown 221-223

T
tape boot 217-218
task 135, 139
taskqueue 137,139
TCFACE 29,122,128,130,155-160,163,

164,169,177,205,209,213,222
TCL 165,213
Telenet 207,209,212
terminal communications controller (TCC)

25,155,169,177,197-205
thrashing 142
total service quota 145
total system tape 224,230
trap 113,114,117,119,121,123,125,130,

138, 141, 156
trap bits 106, 108
trap block 114,115, 141

240

trap handling 119-120
trapping MMEs 114-120
treename 88
tumble table 205, 206, 207

U

UMLC software 205-206
universal multiline controller (UMLC) 25,

201-205
user bits 167,168
user catalog 86

Index

V
validation files 100, 160, 161
validation records 145,160,161,185,195
VALMON 100,195-196
virtual machine 28,111

W
warm boot 217
watchdog timer 201

Gordon Bull came into computing by accident.
After graduating in Mathematics from the Univer­
sity of London in 1961 , he joined an insurance
company as a trainee actuary . After one month he
concluded that working in an office was not for
him and resigned . Needing a job, he accepted a
post as a research assistant in the Mathematics
Department at Letchworth College, only to find
when he took up the appointment that it wasn't
mathematics at all , but that he was expected to
design and implement a programming language for
a computer being designed and built by the
college. In 1964 he moved to the Hatfield Poly­
technic where he has been ever since. He was
involved in the setting-up of the degree in computer
science and the selection of the first major time­
sharing system for education in the UK at Hatfield.

In 1967, in order to gain experience oftime-sharing,
he spent six months at Dartmouth College, New
Hampshire, U.S.A., working as part of the team
writing DTSS, which marked the beginning of a
long association with the College. Sandwich
students from Hatfield have spent industrial
periods at Dartmouth, contributing to the system;
and Gordon Bull has returned to Dartmouth many
times for brief visits. He recently spent a year
there as a Research Associate Professor working
for DTSS Inc. as an educational consultant, and
for the college helping with the design of a Masters
Program in Computer Science and with the speci ­
fication of the seventh version of BASIC .

He has written four previous books in the com­
puting field, numerous technical papers, and the
chapter on BASIC for Programming Language
Standardisation (edited by I. D. Hill and B. L.
Meek, Ellis Horwood Limited, 1980). Since 1971
he has been actively engaged in the standardisation
of BASIC, initially promoting the need for a
standard and, since 1974, as a member of ANSI,
ECMA and BSI committees and as a member of
the European Workshop on Industrial Computer
Systems (EWICS) committee, developing real ·time
BASIC. He also edits the EWICS newsletter.
He plays squash to keep fit and has been known to
cycle to work (weather permitting)!

Cover : Dartmouth College, New Hampshire, U.S.A.

• • ·OINoyo,;:_:u.J~AIoI~I&.a.::~
Edited by J . McKENZIE, University College London, R. LEWIS, Chelsea College, University
of London, and L. ELTON, University of Surrey
"_II organised volume of particular value to educators inter.tad in computer applications" - G. R.
Brubaker, Illinois Institute of Technology, in Joumlll of ChemiclIl Education.

• • • • ••
D. F. BRAILSFORD and A. N. WALKER, University of Nottingham

This powerful, concise and simple programming language is explained by two pioneers in its
teaching, leading from fundamental concepts, to practical applications by case studies and
examples. Many advanced features are discussed.

~1IT..:or::::I • • • lJl'Ii.r.:'Mm~
Edited by B. L. MEEK, Queen Elizabeth College, University of London and P. M. HEATH,
Programming Manager, Computer Centre, Plymouth Polytechnic

Brings together, in compact and assimilable form, guidance on every aspect of the
programmer's job, including analysis, design, testing, debugging, 'tuning' for greater
efficiency, coping with the limitations of a system, selection of language and the use of
language standards. A summary of good practice for the trainee or the experienced
programmer.

am~~~.~. . · · II '

H. SPATH, University of Oldenburg

Presents the current state of the art in practical cluster analysis, introducing and comparing
a wide variety of algorithms used to group together objects of similar characteristics as an
aid to classification and data reduction. Theoretical background included.

• REGRESSION :
M. H. PESARAN, Fellow of Trinity College, Cambridge and L. J. SLATER, Department of
Applied Economics, University of Cambridge

The first complete and thorough published treatment of the practical algorithms based on
dynamic regression theory. Algorithms in the form of four rigorously-tested Fortran
programs suitable for implementation on a wide range of computers are thus now made
available to the financial, statistical, industrial and academic worlds.

• •• • • lJ·~·!m!li.'1[b
LAWRIE MOORE, Birkbeck College, University of London

First-course text in computer programming in a refreshing straightforward style, blows the
dust off the outmoded notion that programming languages such as Pascal, used here as
being the leading introductory language, are formidable. A sound practical and theoretical
pathway, avoiding unfamiliar mathematics, explains concepts, design and structure. Teaches
us how to enjoy computer programming with the skill and pleasure of a craftsman .

.. , -,
Edited by I. D. HILL, Division of Computing and Statistics, Clinical Research Centre,
Harrow, and B. L. MEEK, Director, Computer Unit, Queen Elizabeth College, University
of London

A clear and thorough explanation of the aims and effects of standardisation at national and
international levels. Reviews the entire field, and includes lively and entertaining argument,
conveying the informal atmosphere of such discussions. Provides information and provokes
thought. For computer users, managers and programmers working in commercial, admini­
stration, industry and education.

published by
ELLIS HORWOOD LIMITED
Publishers Chichester

library Edition : ISBN 0-85312-253-9

distributed by
HALSTED PRESS a division of
JOHN WILEY & SONS
New York Chichester Brisbane Toronto

