- DTC MICRO FILE
Assembler

ONE-PASS ASSEMBLER

This document describes the implementation
and operation of the one-pass assembler that
executes on the DTC MICRO FILE System. It
assembles a compatible sub-set of the Intel-
defined 8080 microprocessor Assembly Language.

Refer to the INTEL 8080 Assembly Language

Programming Manual for a complete definition
of the instruction set.

Copyright Micro Systems Software, September 1975

II.

ITT.

Iv.

V.

TABLE OF CONTENTS

INTRODUCTION
ASSEMBLER SPECIFICATIONS

Labels

Op-Codes

Operands

Comments

One-Pass Characteristics
Summary of Op-Codes/Functions
Not Recognized

ASSEMBLER USAGE
ERROR MESSAGES

CONSOLE SESSION EXAMPLE

PAGE NO.

U NN N

w

12

INTRODUCTION

This document describes the characteristics
and usage conventions of a one-pass assembler
that executes on the DTC MICRO FILE and assembles
object code directly into memory, with an optional
bias value.

An assembler program is a language processor.
It simply translates statements of a 'source'
program into their machine language counterparts.

Source programs are created as text files with
the DTC Editor and then submitted to the assembly
process with the command 'AS'. The console session
example at the end of this document illustrates the
use of the assembler

IT.

ASSEMBLER SPECIFICATIONS

The assembly language is a compatible sub-set
of the language defined by Intel Corp. for its
8080 microprocessor. Any source program assembled
by this assembler will also assemble on the Intel-
provided resident or cross-assembler (note the
':' convention described below).

Labels

Labels are comprised of 1 to 5 alpha-numeric
and special characters. A label must begin in
column 1. The placement of a colon (:) after a
label is optional. If a label is longer than 5
characters, only the first 5 are retained. Almost
any special character may be used in a label but
the user should restrict himself to only those
special characters defined by Intel (@ and ?) if
he wishes to maintain transportability.

Op-Codes

All of the Intel-defined instruction mnemonics
are valid. An instruction mnemonic or pseudo-op
may begin in any column except column 1. If a
label is present, it must be separated from the
label by one or more spaces.

The following pseudo-ops are valid:
(Label) ORG operand

Establishes the storage location to be occupied
by subsequent instructions and data.

The label is optional and, if present, assumes
the value of the operand field. The operand field
must be a self-defining or previously-defined term.

(label) EQU operand
Assigns a value to a label.

The label field must be present. The
operand field must be a self-defining or
previously-defined term.

(label) DS operand
Reserves a block of storage.

The label field is optional. The operand
must be a self-defining or previously-defined
term which is the number of bytes of storage
to be reserved.

(label) DB operand, operand,. . ., operand
Defines 'bytes' of data.

The label field is optional. The operand(s)
must be a self-defining or previously-defined
term or it may be a character string bound by
apostrophes. The value of a 'single-byte'
operand must be between 0 and 255.

(label) DW operand
Defines 'words' of data

The label field is optional. The operand
is any self-defining, previously-defined, or
yet-to-be-defined symbol. Note that only
one operand is permitted.

PON

Restores the output for subsequent state-
ments to the listing option specified by the
command statement (See section III). Label
and operand fields are ignored.

POFF

Suppresses the listing output for sub-
sequent statements until a PON statement -is
encountered. Label and operand fields are
ignored.

END
This statement signals the end of the

program. Neither a label field or an operand
field is relevant.

—-3-

Operands

Operands may take one of the following forms:

1. Reserved Symbols. Reserved symbols are
A, B, C, D, E, H, L, M, SP, PSW.

2. Decimal constants. Decimal constants
begin and end with decimal numbers.
e.g. 34, 192, 7429. The suffix 'D'
is not permitted.

3. Hexadecimal constants. Hexadecimal
constants begin with a numeric and end
with the letter 'H' e.g. 47H, O0A42H,
0OF34AH.

4. Character constants. Character
constants are surrounded by single
quote marks, e.g. 'K', 'T', '%'.

A single apostrophe is represented
within a string by two adjacent
apostrophes.

5. Labels. Labels need not be defined
before they are referenced if the
referencing field is 16 bits. If the
referencing field is 8 bits, they
must be defined at the time of reference.

Operands may not contain expressions. That
is, operands must be single terms and cannot
contain an operator, e.g. DOG+3, 254/8 are not
permitted.

Operands must be separated from the op-code
field by one or more spaces.
Comments
Comments may appear in one of three places:
1. After an operand field.

2. After an op-code field, if the op-code
does not require an operand.

3. As the only statement on a line. If
this is the case, the comment must
start in column 1.

Comments may be separated from the operand
field (or op-code field if no operand is required)
by one or more spaces. The semi-colon character
denotes the beginning of the comment field.

-4-

One-Pass Characteristics

The assembler uses RAM as a buffer for
'holding' the object code as source statements
are being processed. This means you must typically
use a bias parameter which causes the object code
to be stored into RAM in a different location than
the one in which it will ultimately be executed.
Also, the assembler can accommodate a program only as
large as it can 'hold' in RAM. Very large programs
require a large RAM capacity.

Referencing of yet-to-be-defined symbols works
as follows:

When such a reference is made, the assembler
creates a 'link-chain' of references for that symbol.
When the symbol is defined, the 'chain' is 'un-
linked' and each reference to the symbol is resolved
and filled in with the proper value. The result
for the user, is that when an undefined symbol is
referenced, a 'link-chain' address is placed in
memory and printed on the assembly listing device.
The fact that this is a link rather than the value
itself, is denoted by the appearance of an asterisk(*)
immediately after the address field in the object
code listing. A further benefit of this feature is
that it gives the user a 'cross-reference' listing
for his referenced-but-not-defined symbols.

Summary of Op-codes/Functions Not Recognized

A summary of excluded functions, op-codes, and
features is given in this section. This section
assumes that the user is familiar with the Intel-
specified 8080 assembler language.

1. The following pseudo-ops are not recognized:

SET
MACRO
ENDM
IF
ENDIF
TITLE

Expressions (e.g. A+3, DOG/94, SHR 8, etc.)
are not permitted.

Multiple operands in the DW pseudo-op are
not permitted.

Binary and octal constants are not allowed.

The suffix 'D' after a decimal constant is not
allowed.

The operand 'self' (i.e. $) is not allowed.

III.

ASSEMBLER USAGE

I
Asl| FNAME (DN (HEXBIAS))

F

This command activates the Assembler program.
The assembler reads source statements from the file
FNAME T and assembles the equivalent machine
instructions directly into RAM. The RAM is simply
used as a large buffer to hold the assembled code,
with the symbol table being stored in upper RAM,
below the stack. The assembler resides in RAM
between the addresses 2700H and 30FFH, when loaded.

WARNING -

You must be very careful to provide a HEXBIAS
parameter such that the resultant storage address
is above 30FFH. Otherwise, the assembler will be
aborted with an error message: ASSEMBLER ABORT...
RAM CONTENTION. This action is also taken if the
program object data starts to overlay the assembler's
symbol table. This means you must know, in advance,
where the program being assembled is ORG'ed so you
can provide the proper HEXBIAS value. You can
acquire this information by PRINTing the text file
through the first ORG statement.

Options

The third character of the command statement
above, has the following meanings:

1 = Assemble the program without a program
listing, except for detected errors.

2 = Assemble the program with a "short"
program listing, except for detected
errors.

other = Assemble the program with a full program

listing.

Statements which are flagged with error codes
are always printed in full, regardless of the
listing option selected.

The symbol table occupies 16641, bytes on
the minimum 8K ROM/8K RAM system (3980H to 3F80H).
This space accommodates 208 symbols and leaves
2K bytes for program storage (3100H to 38FFH) .

The amount of storage reserved for the symbol
table increases by 512 bytes for each 4K bytes of
additional RAM.

Iv.

ERROR MESSAGES

All assembly-detected error messages are
listed in this section. Error messages are denoted
by the occurrence of a single character in column 1
of the listing.

One type of error is not detected. That is
an address error whose value exceeds 16 bits. All
addresses/constants are evaluated module 65536.
Hence an address of 65539 is generated as a value
of 00003 and no error condition is flagged.

E - Expression error

Something is wrong with the construct of an
operand. Typically this may be caused by an
incorrect designation of a character constant.

Example:

MVI A,'CR'
F - Format error

This message indicates that something is wrong
with the format of a statement. This could be
caused by a missing or invalid operand.

Example:

MOV A,

MVI ,'T!
I - Tllegal characters

This error is caused when an invalid character
appears in an operand field. This is typically a
hex or decimal constant which does not contain a
valid digit.

Example:

LXI H,74MH
LXI D,2B

L - Missing label

This message occurs when an instruction or
pseudo-op that requires a label does not have
one.

Example:

EQU 42
M - Multiply-defined symbol

This message indicates that the label on the
statement has also appeared as the label on one
or more preceding statements.

Q - Questionable syntax

This message is usually caused by a missing
or misspelled op-code or mnemonic.

Example:
A 34

Mva M,A
R - Register error

This message specifies that something is
wrong with the register designation in an
instruction.

Example:

MOV M,M (both operands cannot reference memory)
T - Table overflow

This message indicates that the amount of
space allocated for the symbol table is inadequate.
The table must be enlarged (additional RAM) or
the number of symbols in the program reduced
before the assembly can be accommodated.

-10-

U - Undefined symbol

This means that a symbol is being referenced
for an 8-bit field whose value has not yet been
defined. All 8-bit value fields must be defined
before they can be referenced. This is not true
of 16-bit value fields.

V - Value not in range

This error message indicates that the value of
a symbol is incorrect for the op-code or that
an 8-bit field has a value greater than 255.

Example:
RST 94
MVI A,929

-11-

CONSOLE SESSION EXAMPLE:

Creating a program:

The following console session illustrates the usage
of the Editor, Assembler, and the SAVE command to
create an executable program. The program is
functionally very simple, it types a message at the
console and then returns to the Monitor.

First, I must create a text file containing the
source statements of my program. This is done with
the Text Editor. I decide upon a name for my file
and which disk I wish to store it on. (I will name
it SAMP and store it on disk #1). Now I'm ready

to invoke the Text Editor:

DTC MICRO FILE

*EDIT SAMP D1
NEW FILE:
-I
ORG 2800H

TOUT EQU 824H

r

SYSTEM MSG OUTPUT ROUTINE

~e

LXI H,MSG ; MESSAGE ORIGIN
CALL TOUT ; OUTPUT THE MESSAGE
RET ; RETURN TO THE MONITOR

MSG: DB 24,'THIS IS A SAMPLE MESSAGE'

PEND: DS @ : END OF PROGRAM
END
-E
I now have a text file stored on disk #1. I can

list it with the PRINT command:

*PR SAMP D1
ORG 2800H

!
TOUT EQU 824H SYSTEM MSG OUTPUT ROUTINE

~e

7

LXI H,MSG ; MESSAGE ORIGIN

CALL TOUT ; OUTPUT THE MESSAGE

RET ; RETURN TO THE MONITOR
MSG: DB 24,'THIS IS A SAMPLE MESSAGE'
PEND: DS g ; END OF PROGRAM

END

-12-

I am now ready to assemble the program. I know that
my program origin is 2800H and that the assembler's
object program buffer begins at 3100H. Therefore,
I invoke the assembler with a bias value of 0900H

- (3100H-2800H) .

*ASM SAMP D1 09090

2800 ORG 2800H
0824 TOUT EQU 824H ; SYSTEM MSG OUTPUT ROUTINE
2800 210000 * LXI H,MSG ; MESSAGE ORIGIN
2803 CD24¢8 CALL TOUT ; OUTPUT THE MESSAGE
2806 C9 RET ; RETURN TO THE MONITOR
2807 18544849 MSG: DB 24,'THIS IS A SAMPLE MESSAGE'
2820 0000 PEND: DS) ; END OF PROGRAM
END
@@ ERRORS

At this point, the assembled object program resides

in RAM beginning at 3100H. I will store it as an
executable program on disk #0 and give it the same name
'SAMP':

*SAVE SAMP 3100 3120 2800

Now I can execute the program...

*RUN SAMP
THIS IS A SAMPLE MESSAGE

*

This concludes the console session.

Refer to the Programmer's Guide for more information about
system routines.

III. Assembler Usage
1

A§1| HEXBIAS PN FN1 FT1 DN1 (FN2 FT2 DN2)
2

This command activates the Assembler program. The assembler
reads source statements from the file(s) specified in the
command line. Source files are designated by name, type and
disk no. (FN FT DN). Several source files may be specified
which will result in a logical 'cancatenation' at assembly
time. This feature allows several small Programs to be
maintained seperately for ease of editing and/or as subroutines
and brought together at assembly time as a complete program,
The port number that is to receive the printed output is
designated by the parameter 'PN' and can be any legitimate
port designation. The assembler assembles the equivalent machine

"Instructions directly iInto RAM. Thée Rawx is simply

used as a large bufier to hold the asscubled code,

with the symbol table beiny stored in upper R,

bzlow the stack. The assembler resicdes in RaM

between the addrcsses 2788H and 3627, when loaded.

gkee 247 F
qO Df:

WARNINGS- Fos
FsosH

You must be very careful to nrovide a HEIXBILS
parameter sucp’that the resultant storace zdirecs
is above . Otherwise, the assenw.ier Wi.l be
gborted with an error messace: ASSENETER ASCRY...
RAM CONTENTION. This action is also taken if the
program object data starts to overlcy the assembler's
symbol teble. This means you must know, in advance,
whare the program being assembleé is ORG'ed so you
can provide the proper HEXBIAS value. You can
acquire this information by PRINTing the text file
through the first ORG statement.

Ontions

The toird character of the commeané stateaent
above, has the followiang meanings:

1 = Assemdle the program without a progran
listing, except for detected errors.
; . / I5)
2 = Assemble the program with a "short" (cbject ovly)
program listing, except for detected
€rrors.

Assemble the program with a full program
listing.

other

Statements which are flagged with error codes are always
printed in full, regardless of the listing option selected.
1€ [0 T R
The symbol table _occupies 14,592 bytes between the
addressed B6UOH and EEFFH. This accomodates 182%) symbols.
The remainder of RAM (3500H to B5FFH) is available for
program storage. Tas 77

	001
	002
	003
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	A-01
	A-02

