DTC MICRO FILE
Programming
Guide

II.

IIT.

Iv.

DTC MICRO FILE

PROGRAMMER'S GUIDE

2&54 N’.
Memory Overview -}
. ~1
Program Environment
z

Physical Boundaries -

Monitor/Program Relationship - Z-

Parameter Passing

System Entry Point Definitions

'Snapshot' Activity

System Program Interfaces

Terminal/Line I/O
Logical I/0

Physical Disk 1/0

Real Time Clock

Digital Display Control

Miscellaneous Routines

Disk Layout and File Structures

Micro File Device Addresses

-7

-3

—1&
-9

—Fe
~Ac

,—3’

~ 35

Data Terminals & Communications
1190 Dell Avenue

Memory Overview

The Micro File memory is used by the various components
of the system as follows:

ROM-

0000 - O7FF Monitor

0800 - OFFF Terminal and Line I/0O

1000 - 17FF Disk I/0, Logical I/0, Real-time clock routine
1800 - 1BFF Monitor Extensions

1C00 - 1FFF Reserved

2000 - 223F Terminal and line I/O Control and Buffers
2240 - 224F File Control Block Pointers

2250 - 25FF Monitor and Disk I/O Control and Buffers
2600 - 26FF EXEC Program Area

2700 - 27FF Transient System Command Program Area
2800 - TOP Applications Program Area and Stack

IT.

Applications Program Environment

Physical Boundaries-

The applications program is typically loaded and
executed at 2800H and may extend up to 3FFFH, in the
minimum system, excluding a reasonable space for the program
"stack". This is a 6K region. The program communicates
with the "outside world" by calling various system routines
which permit reading and writing to the disk, the terminal,
and to the line.

It is important to note that certain "control" infor-
mation is contained in RAM between the addresses 2000H
and 27FFH. If the applications program inadvertently
stores data into certain of these control elements, it can
be disastrous to the Micro File system.

Monitor/Program Relationship-

Each program is "called" by the monitor (or EXEC
process) as if it were a subroutine. This means that the
program relinquishes control at program completion time
simply with the RET instruction. The program must of
course maintain the proper stack alignment for this technique
to work. An alternate method of restoring control to the
Monitor is to jump directly to the MON entry point. This
method should only be used in error situations since it
effectively terminates an active EXEC process.

Parameter Passing-

When a program acquires control it may access the
statement which invoked it and glean its parameters from
the statement. The program must handle parsing of the
parameters, itself. At program entry the following conditions
exist:

Register pair BC - Points to the first character of the
"program name" term of the statement.

Register D = Number of characters in the statement,
excluding the CR/LF sequence.

Example-

The following statement would give the program (XPROG)
control with BC containing a pointer to the character X
and a count of 1779 in the D register.

RUN XPROG AAA BBB CCC

Certain system subroutines, described in Section III,
are available to ease the parsing problem. The following
routines are useful in dealing with parameters in command
statements.

STBNB - Scan to blank, then to non-blank.
HEX - Get a hex field.

GNAME - Get a file name.

DNUMB - Get a disk number.

System Entry Point Definitions-

Entry to the system routines have been provided at the
beginning of each of the three major sections of ROM. Each
entry point is a jump instruction to the proper routine.
This allows a section to change internally without affecting
the programs which use the routines. The following list of
EQU statements defines the system entry points. You must
include the applicable statements in your source program
(Also, don't forget the ORG 2800H).

Registers are generally not preserved by called system
routines. Exceptions are so noted in Section III.

Monitor Entry Points:
MON EQU 40H H Monitor Primary Entry Point
WMAPS EQU 43H

RMAPS EQU 46H
GMSS EQU 49H

Write Allocation Maps
Read Allocation Maps
Get A Sector

~e

~e

RMSS EQU 4CH ' Release A Sector

CLEAN EQU 4FH ' Clean-Up Allocation Maps

SERR EQU 52H H System Error

DERR EQU 55H : Disk Error

CDERR EQU 58H : Command Error

STBNB EQU 5BH ; Scan To Blank, Then To Non-Blank
HEX EQU 5EH ; Get A Hex Field

GNAME EQU 61H H Get A File Name

DNUMR EQU
MOVE EQU
GENT EQU
GHOLE EQU
EROS EQU
COMP EQU
EXENT EQU
OVERL EQU
EXEN3 EQU
GLERR EQU
Terminal/Line
TGET EQU
LGET EQU
TGETE EQU
LGETE EQU
TPUT EQU
LpUT EQU
TBRK EQU
LBRK EQU
TIN EQU
LIN EQU
TOUTX EQU
LOUTX EQU
TOUT EQU
LOouT EQU
?2TIO EQU
INIT EQU
ABORT EQU
TIMON EQU
Terminal/Line
TCAUX EQU
LCAUX EQU
TRBUF EQU
LRBUF EQU
TXBUF EQU
LXBUF EQU

64H
67H
6AH
6DH
70H
73H
76H
79H
7CH
7FH

~e ~e ~e ~e ~e ~e ~e ~e ~e

-e

Get A Disk Number

Move Subroutine

Scan Directory For A File Entry
Scan Directory For A Hole

Erase Function

Compare Subroutine

EXEC "Call"

Overlay Function

Special Entry For Snapshot
'LOAD'~ABORT

I/0 Entry Points:

800H
8038
806K
809K
80CH-
80FH
8121
815H
818H
81BH
S1EH
821H
824xH
8278
82aH
82DH
8308
833H

I/0 Control

200FH
2017H
201FH
2125H
20A2H
21A8H

~e ~e ~e ~e ~e ~e ~e ~e ~e ~e

~e

~e ~e ~e ~s ~e

~e

“s

~e

~e ~s

~e

Get Char From Terminal

Char From Line

Char From Terminal W/Echo
Char From Line W/Echo

Char To Terminal

)]
0]
ﬁ
L A

Put Char To Line)
Send Break To Terminal

Send Break To Line

Get A Text Line From Terminal

Get A Text Line From Line

Put A Text Line To Terminal

Put A Text Line To Line

Put A Text Line to Terminal With CR/LF
Put A Text Line To Line With CR/LF

USART Interrput
Terminal/Line Initialization
Test For Operator Break
USART Checking Routine

Elements

- Terminal Control Block

Line Control Block
Terminal Receive Buffer
Line Receive Buffer
Terminal Transmit Buffer
Line Transmit Buffer

Disk I/O Entry Points:

UNLOD EQU 1000H Unload A Head

~e

READ EQU 1003H ; Read A Sector
WRITE EQU 1006H ; Write A Sector
FORM EQU 1009H ; Format A Sector
RTZ EQU 100CH ; Reset To Track 00
ZSECT EQU 100FH ; Zero A Sector

HEDS EQU 1012H Unload All Heads

~e

Real-time Clock Routines:

?RTC EQU 1015H ; Real-Time Clock Interrupt

Logical I/O Entry Points:

OPEN EQU 1018H
CLOSE EQU 101BH H Close A File

CREAT EQU 101EH Create A File

ERASE EQU 1021H Erase A File

RENAM EQU 1024H Rename A File

TOP EQU 1027H Go To Top Of The File
ALLOC EQU 102aH ; Acquire A Sector
DEALL EQU 102DH
DREAD EQU 1030H
DWRIT EQU 1033H

Open A File

~e

~e ~e ~e

~e

Release A Sector
Read A Sector Of The File
Write A Sector To The File

~e ~e

~e

System Control Elements:

UTIMR EQU 2007H User Timer Value
XTIM EQU 200AH ; User Timer Action Address
MCDSK EQU 2250H ; Active Disk Number

SFILE EQU 2252H Active File Name And Type (6 Chars)

~e

~e

Digital Display Control:

DSPZ EQU 1800H ; Zero Display
DSPHL EQU 1803H ; Display HL Contents
DSPP EQU 1806H ; Increment Display

DSPM EQU 1809H ; Decrement Display

Snapshot Sample:

*AS SHOT D@ 09840

(Program to illustrate

2808 ORG 2800H

2800 3EAA MVI A,@AAH snapshot)

2802 FF DB @FFH

2883 @1CCBB LXI B,@BBCCH

2806 FF DB OFFH

2887 11EEDD LXI D,@DDEEH

280A FF DB @FFH

280B 21FFFF LXI H,0FFFFH

280E FF DB @FFH

280F C9 RET
*SAVE SHOT 3100 310F 2880 (Save the program)
*RUN SHOT :
2803 AR 46 2506 0406 2800 3FFD e D e e T
2887 AA 46 BBCC 8406 2808 3FFD
280B AA 46 BBCC DDEE 2888 3FFD
280F AA 46 BBCC DDEE FFFF 3FFD
*ED SNAP (Create SNAP T)
NEW FILE:
-I MD 2868 2819
~I MD 3168 3112
-E

(Execute with SNAP T)

*RUN SHOT
2803 AA 46 2506 0406 2800 3FFD
280¢ 3E AA FF g1 CC BB FF 11 EE DD FF 21 FF FF FF C9
2810 BB 29 CD AE 38 7E B7 F8 23 7E FE 28 CA 91 36 21
3180 7E 71 BF C9 23 7E E6 7F FE @A 3E @D C2 F2 38 D1
311 E1 B7 C9 21 27 31 CD 19 31 5E 23 56 23 7E 23 12
2807 AA 46 BBCC 0406 2808 3FFD
2800 3E AA FF 91 CC BB FF 11 EE DD FF 21 FF FF FF C9
281@¢ BB 29 CD AE 38 7E B7 F8 23 7E FE 28 CA 91 36 21
3186 7E 71 BF C9 23 7E E6 7F FE @A 3E @D C2 F2 38 D1
3118 E1 B7 €9 21 27 31 CD 19 31 5E 23 56 23 7E 23 12
280B AA 46 BBCC DDEE 2880 3FFD
2800 3E AA FF 91 CC BB FF 11 EE DD FF 21 FF FF FF C9
2810 BB 29 CD AE 38 7E B7 F8 23 7E FE 20 CA 91 36 21
3108 7E 71 BF C9 23 7E E6 7F FE @A 3E @D C2 F2 38 DI
3116 E1 B7 €9 21 27 31 CD 19 31 5E 23 56 23 7E 23 12
280F AA 46 BBCC DDEE FFFF 3FFD |
280@ 3E AA FF 81 CC BB FF 11 EE DD FF 21 FF FF FF C9
2818 BB 29 CD AE 38 7E B7 F8 23 7E FE 20 CA 91 36 21
3100 7E 71 BF C9 23 7E E6 7F FE @A 3E 6D C2 F2 38 D1
3116 E1 B7 C9 21 27 31 CD 19 31 5E 23 56 23 7E 23 12

*

6A

Miscellaneous:

SNAPS EQU 180CH ; Initiate Snapshot Activity
EROS EQU 180FH ; Erase Function
MFI EQU 1812H ; 'FILES' Command Process

The 'Snapshot' Activity-

This feature is used to debug application programs. It
is automatically activated when an RST 7 (0OFFH) instruction
is encountered in a program. When activated, it prints the
snapshot location and the contents of all registers and the
condition flags at that point. 1In addition, it activates
and EXEC*-like program (S$SNAP) which executes the statements
in the text file SNAP T.

Finally, control is returned to the program with the machine
state restored.

Generally, SNAP T contains one or more MD statements to
dump relevant blocks of memory. If a file SNAP T does not
exist, just the registers and condition flags are printed
before returning control to the program.

Usage-

The programmer uses the EDIT command to create a text
file on disk 0 whose name is SNAP T. He then inserts RST 7
instructions into his program at strategic points, either by
patching or at assembly time. Next, he loads and executes
his program. The program will execute normally except for
snapshot data being printed at the terminal.

*Refer to the Operator's Manual

-6-

III.

féoTY TOUTX

fep.

peeT /TOUT

System Program Interfaces

Terminal/Line I/0

The program communicates with the terminal or line in
terms of messages or individual characters. The message
level is principally used for typing instructions to the
operator and for reading his responses. The character level
is only used with the program as a special need that is
not provided by the message level, such as the monitoring
of an incoming character stream for special control
characters. The various entry points are described in pairs
since a basic function applies either to the local terminal
or to the line.

Message Level Routines-

There are six routines at this level, providing the
indicated functions:

Output messages to the terminal, followed by CR/LF.
LOUT

Output messages to the line, followed by CR/LF,

Output message to the terminal, without CR/LF.

LOUTX - Output message to the line, without CR/LF.
fTe TIN - Retrieve message from the terminal.
LIN - Retrieve message from the line.

The message output routines are used in the following
manner:

Calling Sequence:

LXI H,MSG ; Point To Message
TOUT

CALL ggggx ; Output The Message
LOUTX

JINZ BREAK ; Detect Break

Where MSG is the beginning of a "message" consisting of a
single byte character count of the number of characters in
the text of the message, followed by the message itself.
Messages are usually created at assembly time with DB
statements:

MSG: DB 17, 'This is a Message'

XS ijVT Qoo (i qip flean me BE o fALrET C-REc

Upon return from one of the output routines:

If condition = 0, the message text was transmitted
successfully.

If condition # 0, a "break" occurred during transmission.

A message input routine retrieves a line of text, performs
CWL editing on it, and deposits it in the caller's buffer.

Calling Sequence:

LXI H,Buff Buffer Origin

~e

MVI M,SIZE : Set Buffer Size

CALL TIN H Retrieve the Message
LIN

JNZ EXCEP ; Break or Buffer Exhaust

Upon return from one of the input routines:

If condition # 0,....
and A = 1 - Dbuffer was exhausted.
and A =-1 -~ a "break" occurred.

If condition = 0, the message resides in the caller's
buffer in the following form:

BUFF + 0 = Buffer size as established prior to the
CALL.
BUFF + 1 = Number of characters of text input,
including the trailing CR and LF.
BUFF + 2 = Text of message plus CR and LF.
TO
BUFF + N
/BCHFK ~ CHECH 1y R SR < (9: He 3 -y
[TcHp cTEST mdAn CHPRE i g pE S b T T e '/OTHU/ s
e
! "\ TBUFE TEYT O 2ds 00T PuT ROUFEFA Fapr, S Spr Tz me)
Prody S sMIVieces 4 eyt
i L R
\ CABRYT TR p o C, T
TEoHE |
TP ' £5 % / 2 v fesT ria i rE
“~TBHFE \

~)

NEFL

System Interface-

TUAUX and LCAUX receive the BREAK signa
terminal or line. A BREAK received, sets
location non-zero.

from the

—iaT

1
the associated

Data is bidirectionally buffered via -RBUF (receive)
and -XBUF (send). It is not recommended that buffer
pointers be manipulated except via calls to the system
I/0 routines (TIN, TGET, etc). The transmit buffers,
in particular, contain extra information for the sending
of BREAK and for delays following line-feed and tab.

It is possible, by looking at buffer pointers, to
determine that data is in the buffers. All buffers are
structured as follows:

Buffer: Size (bytes) -one byte, value 4-255
(system uses 128)
+1 ouT -Index (0> size-1)
+2 IN -Index (0> size-1l)
+3 D
+4 A ;
T z
A
Vw\f’\’vw\w,u
V\/V_/\-"\-"'\A-‘Vw
DATA
+3+ (size-1) .

. A "circular buffering" technique is used to maintain

the buffers. "IN" indexes to the next free (empty) byte

in the buffer. As data is put into the buffer, IN is
advanced. The next byte after the last buffer location is
the first buffer location (wrap-around). Likewise, "OUT"
indexes to the next da.a byte to be removed from the buffer.

Whenever "IN" # "OUT", data is in the buffer. A

situation where "IN" = "OUT" indicates an empty buffer
(no data).

-9A~

Character Level Routines-

{6ET
TGET - Get a single character from the terminal.
LGET - Get a single character from the line.

These routines retrieve a single character from the
proper input buffer and present it to the caller in the
A register. If a break occurs, the A register and condition
flag are set to zero.

PCETE
TGETE - Get a single character from the terminal w/echo.
LGETE - Get a single character from the line w/echo.

Get a single character from Terminal/Line receive buffer.
Echo it if Full Duplex or Echoplex, except if it is a
character, word, or line delete character (but echo such a
character if it is in transparent mode from the terminal).

Upon return:

A

Character. If a break is seen, return is made with

A = 0. In such a case echoing may not have been done.

Proy
TPUT - Put a single character to the terminal.
LPUT - Put a single character to the line.

Put a single character to the Terminal/Line transmit
buffer. Checks for (NUL), (TAB,LF), and other things which
require special action.

Input condition:

A contains character to be sent.

Return conditions:

0 = Character was put
Non 0 = Break stopped put
P bt
TBRK - Send a break to the terminal.
ILBRK - Send a break to the line.

Logical 1I/0

The routines described in this section provide access
to the files in the system and relieve the programmer of the
need to know about the physical characteristics of
recorded files, such as linkage conventions and directory

format etc....

Most of the routines require that a File Control Block
(FCB) be provided by the program which describes the file
to be accessed.
routine is called.

A pointer to the FCB is provided when the

Summary of routines:

OPEN

CLOSE
CREAT
ERASE
RENAM
TOP -

DREAD
DWRIT
ALLOC

DEALL .

Opens a file

Closes a file

Creates a file

Erases a file

Renames a file

Positions to top of the file
Reads next sector of the file
Writes next sector of the file
Allocates a sector

Deallocates a sector

The success or failure of a request is indicated to the
calling program by the status of the zero condition flag and
the contents of the A register.

If condition = 0, the requested operation was successful.

If condition # 0, the requested operation was not

successful and the specific reason
for its failure is encoded in the A
register.

0 Control Flags
1 ~Spare— bk #
Iser H
2 bDisk—#
3-7719 File Name
8 -1 File Type
First Sector
9101417
Of File
SFetok — TEACI
. .,| Current Sector
11~71T .
Of File
Spretor - TRAC
Ry Next Sector
13- Of File
SFcren — TA MK
e Buffer
15-16"
Address
3727 | User-Defined T
Extents

FILE CONTROL BLOCK

-11-

OPEN - Open a File

This routine opens a file. The caller provides an FCB
with the filename and filetype filled in. The disk number
may also be provided if known. If not known, it should
be set to -1 and the routine will searchall disks starting

at disk @. ’
pmAaX

Calling Sequence:

LXI H,FCB
CALL OPEN

The Return Codes are:

= Open Successfully Done
= Unrecoverable I/0 Error
= 1Invalid FCB parameter

= File not found

= File already open

n s W N o
|

= Maximum 'Opens' already exist

CLOSE - Close a File

This routine closes a file. The file must have previously
been opened.

Calling Sequence:

LXI H,FCB
CALL CLOSE

The Return Codes are:

= File Successfully Closed
= Unrecoverable I/O Error

= 1Invalid FCB parameter

w N = O
|

= File Not Open

-12-

CREAT - Create a File

Create a file and allocate its l1lst sector. This routine
creates a file as requested by the caller. The caller
supplies the disk No., Filename and Filetype.

Calling Sequence:

LXT H,FCB
CALL CREAT

The Return Codes are:

0 = Create Successful
1 = Unrecoverable I/0O Error
2 = 1Invalid FCB Parameter
3 = File Already Exists
4 = Disk is Full
ERASE - Erase a File

This routine erases a disk file, recovers the space and
re-writes the directory record with a hole. The caller
supplies the Filename, Filetype and Disk No.

Calling Sequence:

LXT H,FCB
CALL ERASE

The Return Codes are:

= File Erased

= Unrecoverable I/0 Error

Invalid FCB Parameter

= File Not Found

= File Is Currently Active (is open)

> w N = O
I

-13-

RENAM - Rename a file
This routine alters the name of an existing file.

Calling Sequence:

LXI H,PARMB
CALL RENAM

The parameter block (PARMB) has the following format:

PARMB (+) 0-1 - Not Used
2 - Disk Number
3-7 - 014 File Name
8 - 014 File Type

9-13 - New File Name
14 - New File Type

The Return Codes are:

= Rename Successful

= Unrecoverable I/0 Error

= 1Invalid PARMB Parameter

= '01d' File Does Not Exist
= 'New' File Already Exists

U s W NN - O
|

= '0ld' File is Currently Active

TOP - Go to top of file

This routine positions the file pointer to the top of

the file. The next 'Read' command will result in the
record of the file being read.

Calling Sequence:

ILXI H,FCB
CALL TOP

The Return Codes are:

= 'Top' Operation Successfully Done

Unrecoverable I/0 Error

Invalid FCB Parameter
File Not Open

w N = O
!

1st

DREAD - Read the next sector

This routine reads the next sector from the file into
the users buffer. The FCB disk addresses are used and
updated.

Calling Sequence:

LXI H,FCB
CALL DREAD

The Return Codes are:

0 = Read Successfully Done
1 = Unrecoverable I/0 Error
2 = 1Invalid FCB Parameter
3 = End-0Of-File
4 = File Not Open

DWRIT - Write the next sector

This routine writes the next sector of a file. It assumes
an 'Append' type of write. It updates the FCB pointers.

Calling Sequence:

LXI H,FCB
CALL DWRIT

The Return Codes are:

= Write Successful

= Unrecoverable I/0 Error

Invalid FCB/Buffer-Link Parameters
= Disk is Full

> w N O
I

= File Not Open
ALLOC - Allocate a sector

This routine allocates a disk sector to the caller. The
Disk No. for which the caller is requesting is passed to the
A-Reg. The sector address (if request is successful) is
passed back to the caller in H & L.

Calling Sequence:

MVI A,DISKNO
CALL ALLOC

-15-

The Return Condition Codes are:

Allocation Successful
Disk is full or I/0 Error

Zero

Non-Zero
DEALL - Deallocate a sector

This routine returns a disk sector to the available
pool. Upon entry, the A-Reg contains the Disk No. and

H & L contain the sector address.

Calling Sequence:

LHLD DADDR {(Get Disk Sector Address)
MVI A,DISK NO (Get Disk Number)
CALL DEALL

Return Condition Codes are as follows:

Deallocation Successful

Zero

Non-Zero Invalid Contents of A, H and/or L - or -

unrecoverable I/O Error.

Physical Disk I/0

All data transfers to and from the disk(s) are handled
by the Disk I/O Driver. There are six entry points to the
Disk I/O Driver, as described in the following paragraphs.
The caller must set the parameters which describe his
requested operation into the proper registers and then CALL
the desired routine.

Entry Point Summary:
RTZ - Reset to track 00

UNLOD - Unload a head
HEDS - Unload all heads
WRITE - Write a sector
ZSECT -~ Zero a sector
FORM - Format a sector
READ - Read a Sector

All registers except the A register are preserved by these
routines. The A register is used to pass the return code to
the caller.

Parameters are passed to these routines in the registers
as follows:

A = Disk Number (0 or 1)
D&E = Track and Sector numbers, respectively
H&L =

Data Buffer Address

-16-

Return Codes-

Upon return to the caller, immediately after the CALL
instruction, the contents of the accummulator and the
condition code reflect the success or failure of the request.
The caller must therefore supply a JIJNZ instruction to his
own error routine to take appropriate action for the
indicated return code. If the zero condition is set it
means the command was completed successfully. -

Return Code Meanings

= The command was successfully executed.

= The drive-not-present status bit is high.
= The file-inoperable status bit is high.
The file-busy status bit is high.

= The disk-ready status bit is low.

g s w N O
It

= The disk is write-protected. (Only after WRITE
FORM or ZSECT.

6 = The sector-error status bit is high.
This generally means the disk has not been formatted.

7 = The CRC-error status bit is high.

8 = Position Error.
This generally means the recorded track or sector
number is inconsistent with what should be recorded
on the sector.

9 = Command Error

A parameter provided by the caller is incorrect in
one of the follow ways:

A) The disk number given is beyond the Disk I/O
Driver's configuration.

B) The track number is too large.
C) The sector number is too large.

D) The Read operation is not valid. The caller's
data buffer address is too low. It points to
ROM or a control block area.

10 = Data Error after WRITE.
Error Recovery-
Error recovery is an integral part of the disk I/O driver
and occurs transparently to the caller before control is

returned to him.

The disk I/O driver provides error recovery for "soft"
errors as follows:

-17-

Read-

A re-read is attempted 10 times or until successful.
If not successful, after 10 attempts, the head positioner
is stepped in the same direction 1 track position and then
in the opposite direction 1 track position. The read is
then attempted as many as 10 additional times. If still not
successful, it is a hard error.

The "re-positioning" of the head is by-passed if positioned
on the outermost or innermost track of the disk.

Write-
The command is attempted 10 times or until successful.

If not successful after 10 attempts it is a hard error.

Routine Descriptions-

RTZ - Reset to track 00

This routine moves the positioner arm of the drive to
track O.

Required parameter:

A = Disk Number

UNLOD - Unload a head

This routine moves the head away from the recording
surface. This routine is used when prolonged inactivity
for the disk is anticipated.

Required parameter:

A = Disk Number

HEDS - Unload all heads

This routine makes multiple calls to UNLOD to move all
heads away from the recording surfaces.

Required parameters:

None

-18-

FORM - Format a sector

This function is functionally similar to WRITE except
that it does not verify track position before the write
and does not perform a read-back after the write. This
routine is used exclusively by a Disk Formatting Program.

Required Parameters: Same as WRITE

72SECT - Zero a sector

This routine is functionally similar to WRITE except
that it writes all zeros to the specified sector and does
not perform a read-back. It is used by the sector
deallocation mechanism to ensure that sectors that are
available for subsequent allocation are zeroed. This
routine should not be used by an applications program.

Required Parameters:

A = Disk Number

D&E = Track and Sector Numbers, respectively

Real Time Clock

The Real-Time Clock is available to the user for timing
purposes. To use it, first store an action address at
XTIM and a timer value into UTIMR. When the time interval
has expired, control will be transferred to the address in
XTIM via a CALL. The interrupt system is active, but the
interrupt priority is such that only the panel reset button
is still active. Therefore, the timer action routine should
be very short. Return from the timer action routine to
re-enable the full interrupt system.

The time interval is measured in units of léms. UTIMR
is loaded with the number of intervals (+0, -1) to wait.
UTIMR is counted down by one each clock period until it
reaches zero. Because the clock is usually running, the
store to UTIMR should be made with interrupts disabled, or
with an SHLD.

-19-

Digital Display Control-

There are four routines for manipulating the digital
display on the front panel:
DSPZ - Zero the display
DSPHL
DSPP
DSPM

Display HL contents

Increment Display (Decimal)

Decrement Display (Decimal)
Registers D & E are not used by these routines.
When a program acquires control, the display has been

set to zeros.

Miscellaneous Routines

MON - Monitor primary entry point
This routine performs the following tasks:

1) Sets the stack pointer to the top of RAM.

2) Establishes the interrupt level and enables interrupts.
3) Pushes a vector to MON into the stack (pseudo CALL).

4) Types the operator prompt (*).

5) Waits for a command from the terminal.

6) Upon receipt of a command, zeros the display and
dispatches to the proper process.

MON acquires control after the "reset" greeting message.
Thereafter, it acquires control after each system command
or program has completed its task. The single exception
to this occurs when the program has been activated by a
statement from a file (EXEC process), in which case control
is returned to the EXEC process.

A program uses this entry point directly (with a JMP)
only when an error condition has been encountered which
requires operator intervention. However, a program restores
control to this point indirectly, at the completion of its
task, with an RET instruction. This is true so long as
commands are being supplied individually by the operator
(not EXEC).

SERR - System Error

This routine types 'SYSTEM ERROR AT XXXX' and then
jumps to MON, terminating the current activity. XXXX
is an address retrieved from the stack which simply shows
the point in the program where the error was detected.

A program calls this entry point when a situation is
encountered which should never occur, and if processing
were allowed to continue, would produce indeterminate or
disastrous results.

Normal usage is:

CMP B ; Compare
CNZ SERR ; Exit if NE, system error

DERR - Unrecoverable disk error

This routine types 'DSKERR N AT XXXX' then jumps to MON,
terminating the current activity.

A program calls this entry point when the return
condition from a call to a physical disk I/0 routine is
intolerable.

Normal usage is:

CALL WRITE H Write a sector
CNZ DERR ; Exit if not successful

CDERR - Command Error

This routine types 'CMDERR' and jumps to MON, terminating
the current activity.

A program jumps to this entry point if it encounters an
error in content, or form of the activating command statement.

Normal usage is:

CALL STBNB ; Scan To Next Non-Blank String
JZ CDERR ; Command Error If Not There
COART - totr SN ELp ENce /e o iidw caenn OR300 D L0

-21-

N

L
—

ABORT - Test for Operator or Line Break

This routine is called to determine if the operator has
depressed the break key or if a break has occurred on the
line. If either has occurred, control is given to entry
point MON of the monitor. Otherwise, control is returned
to the caller.

Normal usage:

CALL ABORT : Terminate if break

OVERL - Overlay Function

This routine is used to retrieve and execute a program
overlay.

Input conditions:

A MEPSK contains the disk number

B¢ SF¥EE contains the 5-character file name followed by
the filetype 'P'.

This routine is either CALLed or executed by a direct
JMP. Since program overlays typically terminate with an
RET instruction, you can either CALL this routine to regain
control when the program overlay is finished, as in a "main"
program, Or you may use a JMP instruction, which will return
control to the next outer level when the program overlay
is finished.

STBNB - Scan To Blank, Then to Non-Blank

This routine scans the command statement to the beginning
of the next character string, maintaining the pointer in BC
and the residual character count in D. It sets the condition
code to indicate whether a string was found or not.

A program calls this routine during his command statement
parsing activity.

Input conditions:

BC points to a character position of the command statement.

D contains the residual character count of the command
statement.

-22-

Return conditions:
If condition #¥ 0,

BC points to the first character of the string.

D contains the residual character count.
If condition = 0,

The statement was exhausted without encountering a
character string.

Registers E, H & L are not used.

Note:

The calling program must maintain BC and D if subsequent
calls to STBNB are to be made.

HEX - Get a hex field equivalent

This routine translates a 1 to 4 character text string
of hexadecimal digits in the command statement to its
binary equivalent, maintaining BC and D. All registers are
used:

Input conditions:

BC points to the first character of the string.
D contains the residual character count of the command
statement.

Return conditions: N
Tr e £y, mute AN Effen 1N HEx FTELDR

HL contains the binary equivalent of the string.

BC and D are updated to the terminating blank character
position.

Other:

A jump to CDERR (Command error) occurs if one of the
following conditions is detected:

1) Hex string is longer than 4 digits.

2) A non-hexadecimal character is encountered other than
a blank.

-23-

CLAT - et IST LiNE A opre

LA N uaBen .if T ATHC e L
E(‘i‘lfz\f . HL = FC L \/’uS RS w 13:54" R Y &< YA 4 g -,-V‘(x.)\
. "N?) —
FFevq =S M cAheer Fw ey s
=3 - E', (/ D IS PPUTS Do AL Al
GNAME - Get a file mame_/-- .,
L
) /

This routine moves £iwe characters of a character string
from the command statement to a &fdrage areajdesignated
by the caller, padding with blanks on the right if fewer
%han~£Lve~eharacters-a‘é‘in"tbemstfing, BC and D are main-

tained. /"“4‘3"’ Fle Comy lete (e Spe< . e.p. BIZY paypred e o &7

-

v

All registers are used.
Input conditions:

BC points to the first character of the string.
D contains the residual character count.

HL points to the caller's storage area. ing)
Return conditions:

BC points to the string terminator character
D contains the residual character count

HI]15 s] sen J' ne sment i] 5 coudl‘i"‘-—

22 Dle cpes Ok

Coctes:

Normal usage:

LXI H,SFILE File name destination

CALL GNAME

TN ESrroers

Ic Lo 1ot
DNUMB - Get the disk number

AR

This roq;{ﬁe establishes the active disk number for
subsequent /processing. It stores the default disk number
(0) into , and calls STBNB to scan the command statement
to the disk number parameter. If the parameter is present,
it translates the parameter to its internal code and stores
it into MCDSK. BC and D are maintained.

~e

Retrieve name from text

~e

Registers E, H & L are not used.
Input conditions:

BC points to the preceding text string or its terminating
blank.

D contains the residual character count.

Return conditions:
S N L R FV TR S SO TP Y
If condition = 0, a parameter string was not found, the
default disk number is in effect.

If condition # 0, the disk number was explicitly declared
with a parameter.

VAl -)

- LF ¥4 M ”

PNU:\AE l fol ~ . o pPr K[?‘-’I?N Co L& ZAws AT
[ASSEs wiew popt it oo '

ENTIYYY.

Other:

A jump to CDERR (Command error) occurs if one of the
following conditions is detected:

1) The parameter does not begin with 'D’.

2) The second character is not a numeric, or is larger
than the largest valid disk number.

Note:

This routine can only be used when the disk number para-
meter is required in the "next" parameter position or when
it is optional as the last parameter of the command statement.

MOVE - Move routine

This routine simply moves a block of data from one
location to another.

Registers D & E are preserved.
Input conditions:

BC points to the source data block
HL points to the destination
A contains the count of the number of bytes to be moved.

Normal usage:

MVI A,50 Get block size
LXI B,FROM Get block location
LXI H,TO : Get destination

~e

~e

CALL MOVE ; Move the block
v w ,;4 .
Cidse - Cleses pll Lle S dahows s pessed R
- , N oa Ll e
UJVV\F - '3’;[.(—h '-»\Ja."S ,’.ar 5"/5”:‘~v PRI \ AR A ;j {rw ree

' \ ¢ nroih
RrMr - Ca Ll A release 5\/54-"\»; re seuries D) g, s

-25-

COMP - Compare routine
This routine compares one data block with another.
Input conditions:

BC points to the first data block
HL points to second data block
E contains a count of the number of bytes to be compared.

Return conditions:

If condition = 0, the first data block equals the second
data block, and BC and HL point to the
byte positions just beyond their
respective data blocks.

If condition # 0, the data blocks are not equal, and BC
and HL point to the bytes which yielded
the unequal result.

Normal Usage:

MVI E, 36 ; Size of compare

LXI B,BLKl ; First block location
LXI H,BLK2 ; Second block location
CALL COMP ; Compare

JZ EQUAL ; Jump if a match

GENT - Scan directory for a file's entry

Yy (in for the entry which represents the specified file
4 (in . If a matching entry is found, the track/sector
address of the first sector of the file is returned to the
caller. All registers are used.

fez A(Fep)
Input conditions:

AFR__ Thi outine scans the directory of the specified disk
égCDsgg

A MEPSK contains the disk number

rep ApDDnEJSS

Bic 8P¥EE contains the H~character—file name—and-l-character
APUe(Feg) £33 Le—£ypes

HEu [A Y DSt P Tewpay THAT

-26-

Return conditions:

If conditions = 0,

-DE-——contains—thetrack/sector -address—of +the first
-sectorof-the file-
pE <
DLINK contains the track/sector address of the

directory sector which holds the entry.
Ceuyat vt ADpekss &f VTLLETTET FrTEY

WBUFi//HeLd/\the/&rfECt”xy/sectmr/aata‘
NFE(-
If condition #=8, a matching entry for the specified file
name was not found in the directory.

lﬁ (o-n(}\‘wa > o T+ /1 a J/J/C eNrtor cocle
7

GHOLE - Get a hole in the directory for a new entry

This routine finds or creates a slot for a new directory
entry on the specified disk.

All registers are used:
Input conditions:

A-vey MCPSK- contains the disk number
Hee Difimemn s Tocmen i
Return conditions:

If condition = 0,

HL points to the usable entry location

DIE

PEENK contains the track/sector address of the
directory sector which holds the entry

forfon

‘WBHYF1 holds the directory sector data

CALL FrY

MNEGATIVF
If condition # €, disk space was exhausted when attempting
to add a sector to the directory.

T Co«uln('m\ 0 s A df:[€rror coele
Normal usage:

A program calls this routine only after calls have been
made to GENT to determine if the file already exists, and to
RMAPS to prepare for the possibility of sector allocation
to extend the directory.

-27-

EROS - Erase a file
This routine calls GENT to determine if the specified
file exists and, if it does, changes the directory entry
to an "avallable slot" for subsequent use and restores
the sectors of the file to the sector allocation map.
All registers are used:

Input conditions:

A-¢ic MEDSK contains the disk number
p¢¢ SFILE contains the file name and type

Hit BOFFEL APIRESS Ton PEADTHC DISK LFCEpLEs Trtvéd
Return conditions:
HECAT\WWE

If condition #-6, the specified file is not represented
in the directory.

If condition = 0, the file has been erased.

I—(\ f[)-wll“’\o"\ >0 , f“' IS o 1”35}(Cvror coele
RMAPS - Read the allocation maps

f/routlne reads the sector allocagdon maps from the
spec1§ ied. disk 1gto the sector allocatrbn map buffers.

program u s this roptlne in conjunctlon W1th GMSS,

, and WMAP RMAPS is called as' a first gtep before

mzking calls GMSS and/or RMSS, whlch alter the number
avallable/sectors, /

//
- [/ g /(‘;/

/ The program must et the proper disk number into MGBSK
"prior to galling PS. / ,
Regr;ters B, C/ D E, H & L are preserved
, / B
Upon return: / / .
/ / / / .
/ ’/ 4 ’ ;," . .
Lf condition # 0, the A register’ contains an error code
/ / as feturned ffrom READ.
/ / / / : (,/' :
Normal usagé: / /
’ gé 7 /

CALL RMAPS
CNZ DERR

~e

Reaa the mapsg
: /

Trap disk errors

~e

-28-

GMSS - Get a sector

This routine examines the resident sector allocation
map buffers and returns the next available sector to the
caller, deleting that sector's bit from the resident map.

This routine presupposes that a call to RMAPS has been
provided by the program prior to its being called and
further, that a call to WMAPS will ultimately follow.

Az DiISk N

Register B+—€, H & L are preserved.

Upon return:
M reprios
If condition # @, disk space has been exhausted.
n e
If condition = 0, D & E = Track number and sector number,
respectively, of allocated sector.
IL condidion >0 , iFis a oisle ermr code

Normal usage:

CALL GMSS ; Get a sector
JNZ EXH ; Space-exhaust routine

RMSS - Release a sector
By
This routine epSures that the track number and sector
number passed in“D & E are valid and then restores the
sector's bit to the resident map. The released sector is
then written with zeros.

The routine presupposes that a call to RMAPS has been
provided by the program prior to its being called and that a
call to WMAPS will ultimately follow.

A= DTS Né.
Registers B, C, D, E, H & L are preserved.

Upon return:

If condition # 0, the A register contains one of the

following error codes:
I ~10 - "l’dﬁ?‘\#w EIJ'{L Tle [lode.

11 = Non-valid track or sector number,
or the resident allocation map
has been destroyed.

12 = The sector being released is already
represented in the map.

Normal usage:

LHLD SECT ; Get the sector ID
XCHG ; To proper registers
CALL RMSS ; Release it

JNZ ERR3 ; Error Routine

-29-

/
b
/
/

WMAPS - Wfite the allocation maps

This routlne examines the "write" flags of the sector
allocation map buffers and approprlately updates the sector
allocatlon maps on the disk.

A program,uses this routine in conjunction with RMAPS,
GMSS, and RMSS. WMAPS is called as a final step after

/pne or moré calls to GMSS or RMSS have altered the resident
s

ector aliocatlon map.
A
The/ﬁrogram must set the proper disk number into MEPSK
prlor/to calllng ‘WMAPS. ‘

Régisters B, C, D, E,¢ﬁ & L are preserved.

s
s

Upbn return" /

rd

If conditlon # 0, /the A register contains an error code
, as returned from WRITE.

Normal usage: /

CALL WMAPS /; Write the maps
CNZ DERR, ; Trap disk errors

1

CLEAN - Clean-up allocation maps

This routine determines if allocation maps are currently

 resident Which have not been written to their disk and, if

so, wrltes them.

A pKOgram calls this routine as a housekeeping measure
to ensure that an 1mproper or incomplete sector allocation/
deallbcation activity is properly "closed-out" on the disk.

/

Régisterskare not preserved.
/This routine stores a disk number into MCDSK if the maps

are written.

/
/

-30-

IV. Disk Layout and File Structures

1)

2)

3)

4)

Each disk that enters the system is formatted in such a
manner as to enable certain system routines to manage the
space and files that will reside on the disk. 1In other
words, each disk has a pre-defined "structure" comprised
of the following items:

Label Sector -

Directory Sectors -

Allocation Map Sectors -

File Storage Sectors -

-31-

Track 0, Sector 0 of every disk
contains the label of the disk.
The label is in the standard
output message form and is written
when the disk is formatted or
when the LABEL command is used

to re-label the disk.

These sectors contain an entry
for each file stored on the

disk. Entries are added as

files are created and "deleted"
when they are erased. The entry
effectively points to the beginning
sector of the file it represents.
Directory sectors are assigned
near the mid-point of the
positioner-arm travel to minimize
"seek" time.

These sectors contain bit patterns
which represent the unused
sectors on the disk. Each

sector of the disk is represented
by a single bit in the allocation
map in a particular position.
When a sector is allocated, its
corresponding bit in the
allocation map is set to zero and
the updated map is written to

the disk. Conversely, when a
sector is released, its bit in
the map is set to one, etc.
Allocation map sectors are
assigned near the mid-point of
the positioner-arm travel to
minimize "seek" time.

The remainder of the disk consists
of unassigned sectors or sectors
containing files. Unassigned
sectors are written with all zeros
when the disk is initially formatted
and are also written with all zeros
when they are released. Therefore,
any sector containing non-zero

data is part of a file or is part

of one of the above items.

Directory Sectors Structure -

When the disk is formatted, it is written with a directory
that occupies 4 sectors. The first 4 directory sectors
are on track 39, sectors 1, 9, 17, and 25. The 4 logically-
linked sectors are separated from each other so that the
entire directory can be scanned in one disk revolution.
The directory is empty at this time but contains enough
space to accommodate 60 entires. (The directory automati-
cally expands to additional sectors if more than 60 files
are stored).

Each directory sector has the following format:

I
0 Sector Track
" I - Link to next directory sector
or zero if this is the last
directory sector.
!
2 0 [0
4 Entry #1
12 Entry #2
| ENTRY:
I
| File
I
Name
Entry #15 4 File
Type
6 |Sector | Track
|

-32-

Directory sectors are initially written with all fields
set to zero except the link field.

When a file is added, an entry is created and inserted
into the directory in the first available entry "slot"
scanning from the first directory sector to the last.
When a file is erased, its entry is found and the first
byte of the entry is set to zero, thereby becoming a slot
in the directory for subsequent re-use by a new entry.

A schematic that shows the relationship between the
directory and the files is given below:

File 1 |__
Sect. we—— g [File 1 -
Sector 1 \/
File 2 |—— ' __ |/ [ilel
_____ ile 2 Sector 2
Sect. [
Sector 1

L‘* File 2

|

|

|

| .

| Sector 2 \\\
| R B
|) .

I

; File 2
\“\} Sector 3

-33-

Allocation - Map Sectors Structure

When the disk is formatted, it is written with an
allocation map that occupies 4 sectors. The allocation
map sectors are on track 39, sectors 0, 8, 16 and 24.

Each of the sectors represents a portion (approx 1/4) of
the total available sectors on the disk. Each potentially
available sector on the disk is represented by a particular
bit position in one of the allocation map sectors. If the
bit is =1, the sector is available for allocation, if it is
=0, the sector is already in use. Each allocation map
sector has the following format:

0 FIRST DIR. OF — 1 or -1
TRACK # ALLOCATION
2 LAST
TRACK # 0
4 SECTOR COUNT ——— Number of sectors
available in -the bit map.
6 AVAILABLE- —— Each 4 bytes represents
SECTOR 1 track of storage
BIT MAP "

Sectors are allocated within a track in the following
order:

o, 4, 8, 12, 16, 20, 24, 28,

1, 5, 9, 13, 17, 21, 25, 29,

2, 6,10, 14, 18, 22, 26, 30,

3, 7,11, 15, 19, 23, 27, 31,

-34-

Program-File Sectors Structure

Each program file (P) consists of sectors in the
following format:

First Sector: 0 | Sector # Link to next sector or

zeros if last sector.

1l | Track # 2 SEcTor
HETT T
42 | Byte Count = Number of bytes of valid

i data following this byte.
vz | Program Load

Address

78 | _Paim <a17F
q -4 -
1271' Data T

Subsequent sectors of the file differ from the first one
in that there is no Program Load Address field. Program
data then starts in the byte #% positionj

o ,ojn $ise

Text File Sector Structure

Each text file (T) consists of sectors in the following
format:

0 Sector # ILink to next sector or zeros
if last sector.

1 Track #

2 Sector #

if first sector
3 Track #

4 Byte Count - Number of bytes of valid data
following this byte
5 Text o
| Data
/1 -

The text data of the file consists of character strings
bounded by CR/LF pairs. A sector may therefore contain
part of a string or several strings.

-35-

Link to preceding sector or zeros

BASIC~-File Sector

Struction

Each BASIC file (B) consists of sectors in the following

format:
0 | Sector #
1 | Track #
2 | Byte Count
3
—l-Program _L_
127 Data

- Link to next sector or zeros if
last sector

- Number of bytes of valid data
following this byte

Program data is a compressed form of the BASIC source program,

as saved by a "SAVE" command.

Random File Sector Structure

Each random file (R) consists of sectors in the following

format:
Master Directory O | Sector #
Sector (First
sector of file) 1| Track #
2 | Sector #
3 | Track #
126 | Sector #
127 | Track #
Subdirectory 0} Sector #
Sectors (for i=64x 1
master index) 2| Track #
3| Sector #
Track #
126[Sector #
127} Track #

[N A

location of subdirectory of
indices 0-63

location of subdirectory for
indices 64-127

location of subdirectory for
indices 4032-4095

location of data sector i+0

location of data sector i+l

location of data sector i+63

Data Sectors 0| Arbitrary
—- User —

127 Data

If a data sector is absent, the subdirectory pointer is zero.
If no data sectors exist for any entry in a particular sub-
directory, the subdirectory is released and the master directory

entry is zero.

The index range is 0 to 4095

-37-

V.

MICRO FILE DEVICE ADDRESSES

00
01
02-03
04-07
08
09
oA
0B
0cC
0D-0F
10-18
18-1cC
1D-1F
20
21
22
23
24
25
26
27
28-2F
30-37
38-3F
40
41

42-43
44-45
46-47

Interrupts
Real Time Clock
Reserved
Spare
Read Disk Status - Write CMDS INFT 1 (DO + D1)
Read Chars - Write Chars
Read Sect Under Head - Req Disk XFER
- Write Strobes
- Head Position

Reserved
Spare
INTF 2 (D2 + D3)
Reserved
Data in - Data Out
Status in - Function Out TERMINAL
Speed/Parity in - Clk Speed Out USART 1
Echo/Delay in - Reset Out
" "
" " LINE
" " USART 1
" "
USART Board 2
" " 3
" " 4
Status in -~ Indicators Out Board 1

" - Term/Line Parity &
Reset-Format-Enable
Function

" " Board 2
" " Board 3
" " Board 4

-38-

Panel Switches and Lights

The panel switches are accessed with I/0 Port: 40H

Input from 40H reads the switches
Output to 40H sets the lights as follows:

INPUT: b7 b6 b5 b4 b3 b2 bl b0

Unused HOST Switch ON=HOST

FORMAT ENABLE ON=enablée

TRAMIFPARE HT
—— BINARY ON = yes

Control Suppress ON = yes

OUTPUT: b7 b6 b5 b4 b3 b2 bl b0

R Ef£9%7—ﬁisk—§i%ew0
fFo D)
| g crr s

— 80%‘full disk fite-0

s »
/[) (7) Ll oAl 4 e b
) I 4
14
A i

| ! 7 P e

(10 Luil, dusle Lrle g -
Tefm&&a%—fESAR$+mefrer

e .)f;/ t’rrur/ —~—
2
ﬁz((-’r’l(PJ/J/’I Ty ~ -

— 806%-full, dlsk flle—i

. ~ ’

@c v/ Lot sl e
e . . ~ n / i ’:
(908)—fulT, disk—fite1-) ;.| { [

(g07) ~«ll vl e \
Hne—{USARE)— }

-39~

In addition, there is a 4 digit decimal display that can
be set:

I/0 port : 42H

Output word: ssss dddd

steering bits———bcd digit

0001 units
0010 tens
0100 hundreds
1000 thousands

-40-

I/0 PORT DEFINITIONS & USE OF INTERRUPTS FOR THE DTC MICRO FILE

Interrupt System

2

From the programmer's point of view, there are /8 interrupt
levels, 0-7, arranged in a priority scheme with 0 the highest
priority ardd 7 the lowest. The priority interrupt chip is
an output device, controlled as follows:

I/0 Port # : O
b7 b0
Output word: xxxx0sss

SSS is a binary level number. When sent to the interrupt
chip, it enables all interrupt levels, 888—=a=md below.
E.G: to enable all levels use: 6-G)

MVI A,7

our INTRP
Once an 1nterrupt has been acknowledged, you must function
some level in order to re-establish interrupts (The priority
chip locks out further interrupts until refunctioned).

Currently Assigned Interrupt Levels:

"R"$ Level RST Address Use

R7 0 00H Power on

R6 1 08H Front Panel Reset

R5 2 10H Real Time Clock

R4 3 18H USARTs

(R2 26 28H Disk Drive) - Provisional

-41-

Real Time Clock

The Real Time Clock can provide interrupts at 4, 8, 16
For the Micro File System, 16 ms. is
The clock is controlled as follows:

or 32 ms.
selected.

intervals.

I/0 Port #: 1

Output word:

Normal Use is:

MVI A,3

Bit 0: 0 =
1 =
Bit 1: 0 =
1 =

Disable RTC
Enable RTC

OUT CLOCK To start the clock

USARTS

Two USARTs are provided,
have port numbers:

"Terminal"
20y and 24y, respectively.

and "Line".

and functions are allocated as follows:

PORT# INPUT
Port+0 USART data (RCV)
Port+l USART status
Port+2 Oppp Osss
, L—Speed
parity
Port+3 ddddd eee
l---duplex
“Delay
sss - Speed Code
000 - 110
001 - 150
010 - 300
01T - 1200
100 - 2400
101 - 4800
110 - 9600 ,
yo ¥ oA vy . N 4’!(“ L
2] R
¥ e A e YO

OUTPUT

USART data (XMT)
USART function

0000 ssss

Reset Interrupt Request
Leave Interrupt Request

They

The sub-ports

—— Clock Speed

Asidt

q Loee P

00000001 clears all

XMT interrupt requests

Port 23 only o EUFRL
I- Ctlpdy
. W LR
ppp - Parity
N 7 - CLFIAR
000 - EVEN
001 - oODD
010 - MARK
011 - SPACE
100 - NONE (8-bit)

DSAT

(s AET 3 7

4

L

Yy

ddddd

Delay

00001
00010
00100
01000
10000

NO DELAY

100
200
400
800

ms
ms
ms

ms

-43-

eee Duplex
001 Half

010 Echoplex
100 Full

	001
	002
	01
	02
	03
	04
	05
	06A
	06
	07
	08
	09A
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43

