Document DTI-UM-SP101-3
Price $25.00

User Manual

for

£P-161 ¥2
DILIP Reai-Time Peripherai Support
under

FORTRAN/RT-11

For use with RT-11 V4 and FORTRAN/RT-11 V2.5
SP-101 V02-01

Copyright 1979,1980

Data Translation, Inc.
100 Locke Drive
Marlboro, Massachusetts 01752

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in
any form by any means, electronic, mechanical, photocopying,

recording, or otherwise, without the prior written permission
of Data Translation Incorporated.

S8econd Edition
September 1980

Information furnished by Data Translation is believed to be
accurate and reliable. However, no responsibility is assumed
by Data Translation for its use; nor for any infringements of
patents or other rights of third parties which may result from
its use. No license is granted by implication or otherwise
under any patent rights of Data Translation Incorporated.

DTLIB is a trademark of Data Translation Incorporated.

LSI-11,LS8I-11/2,LS1-11/23,RT-11 are trademarks of Digital
BquipmentACOrporation.

PAGE 2

Preface

This manual describes the usage and configuration of -
DTLIB, Data Translation's library of real-time peripheral
support routines.

The manual is broken up into the following chapters:

Chapter 1 Using PPLIB

This chapter describes the procedures required to use
DTLIB with FORTRAN/RT-11 and the system requirements
and constraints.

Chapter 2 Performance Considerations and Appiications

This chapter discusses the system performance and
throughput considerations to be kept in mind by the

user to optimize program performance. Some
applications are discussed and sample programs
5 presented.
Chapter 3 Descriptions of DTLIB Routines and Functions

This chapter describes the parameter lists and calling
syntax of all of the subroutines and functions in
DTLIB.

Chapter 4 System Integration

This chapter covers the procedures to correctly
configure DTLIB for a given hardware arrangement. It
is important that the user read this chapter carefully
to fully understand how to configure the hardware
system and to have DTLIB operate correctly with the
given hardware configuration.

DTLIB Real-Time Peripherai Support

User Manual

Seetion Page

PIEface [] L] * L] L] L] L L L] L] L] L] L] L] L] L] L] L L] L] L] L] L] L[] L] 1

Chapter 1 Using DTLIB
1 . 1 INTRODUCT ION o o . . . e e o o o 1 -1
1.2 USING DTLIB CALLS IN FORTRAN PROGRAHS e o 1-3
1.3 COMPILING THE FORTRAN PROGRAM . « « « . . 1-3
103-1 Compile-time errors e o o e o o o o o o 1-4
104 LINKING THE FORTRAN PROGRAM . ¢« ¢ ¢ o o o 1"4
104.1 Llnk tlme €IYOILS o o o o o e o o o o o 1"5
1.5 EXECUTING THE FORTRAN PROGRAM e o o o o o 1-5
— 0501 Run-tlme errors e o o o o o e o o o o o 1-6
1.5.2 Summary of DTLIB €IIOLS o « o o o« ¢ ¢ o 1-6
1.6 - I REPORTING SOFTWARE DEFECTS . « « o ¢ o o 1-9
Chapter 2 Performance Considerations and Applications
2.1 INTRODUCTION e o o o o o ° @ o o o o o o 2-1
2.2 SYSTEM THROUGHPUT e e e o o o e o o o o o 2-1
2.3 BUFFER PARTIONING « ¢ o o o o o o o o o o 2=2
2.4 COMPLETION ROUTINES e o o e e o o o o o o 2"5
2.5 SAMPLE PROGRAMS . ¢« ¢ o o o ¢ ¢ ¢ o o o '.o 2-9
Chapter 3 Descriptions of DTLIB Routines and Functions
3) 1 . INTRODUCTION e e o o o o o o o o o o o o 3?1
3.1.1 Conventions e © o o o o o o o o e o o o 3-1
3.2 SUMMARY OF ROUTINES AND FUNCTIONS . « « . 3-2
3.2.1 IADC routine e o @ o o o o e o o o o o o 3-4
3-2.2 ISOADC routine e 6 o o o o e o o o e o o 3-5
3.2.3 RTS Ioutine e o ® o o o o o .o e o o o o 3-6
3.2.4 ISORTS routine e © o o o o o o o o o o oo 3-11
3.2.5 SETR toutine e e e o e o o o o o o o o o 3-15
3.2.6 HIST routine e ¢ e o e o o o e e o o o o 3-18
3.207 IDAC routine e © o e o o @ e o o o o o o 3"21
302-8 IDIR Ioutine ® © o e o o © o o o © ¢ o o 3-22
30209 IDOR toutine e ®© e @ ® o ® e o o o o o o 3-25

CONTENTS

(continued)
3.2.10 DRS routine ® & & & o ¢ o o & o e o e o 3-27
3.2.11 DPOLL routine e O e o o o o o o ¢ o o o 3-31
302012 FLTIG tOUtine ® o o ¢ ¢ o o o o o o e o 3-33
3.2.13 INTIG routine ® © o o o o o o o o o o 3_33
- 3-2.14 KBCDzB routine ® & ¢ o o ¢ o o o o o e o 3-33
3.2015 KBZBCD routine ® ©® o o o ¢ ¢ e o o o e o 3-33
302.16 LWAIT Ioutine @ & & o & 2 & 2T = 3 & @ e 3-34
3.2.17 CVSWG routine ® 6 o o o o o o6 o & © e o 3—34
302018 DISP routine ® © o o ¢ o 6 o o e o o e e 3-35
Chapter 4 System Integration
4.1 INTRODUCTION e e o ¢ 6 o o o e o o o 4‘1
402 INTER-BOARD CONNECTIONS e o o e o o o 4-2
4.3 PHYSICAL PLACEMENT OF INTERFACES o o o o 4-2
4.4 INSTALLING DTLIB . . . e o o o 4-3
4.4.1 Copying the dlstributlon d1skette e o o 4-3
4.4.2 Initializing the hardware configuration file
4-4
4.4.3 Describing analog input interfaces . . . 4-4
4.4.4 Describing isolated analog input interfaces
4-5
4.4.5 .Describing analog output interfaces . . 4-6
4.4.6 Describing point plotter interfaces . . 4-7
4.4.7 Describing real time clock interfaces . 4-8
4.4.8 Describing digital 1/0 interfaces . . . 4-8
4.4.9 Completing the configuration file . . . 4-9
4.4.10 Generating the DTLIB product 4-9
Appendix A Binary Distribution Kit Contents . . .« « A-1
Appendix B Sample Throughputs B-1
Appendix C Sample Configuration File . v ¢« o o « . . C=1
Appendix D Sample Program Listings « o o o o o o o . D-1
Dol N Example Progtam 1 ‘SETR HIST) ® o e o o o D-2
D.2 Example Program 2 (SETR) e e o o e ¢ o o D"6
D03 Example Progtam 3 (IADC) e o e e o o o o D-9
D.4 Example program 4 (SETR,RTS). « « « « . . D-11
D.5 Example Program 5 (SETR,RTS). « « « o . . D-14
DoSol COmpletlon Routlne ® o o o o © e o o o D‘lg
Appendix E Binary License Agreement E-1

Index L] L] L] L] L] L] L L4 L] L] L] L3 L] L] L] L] L J L] L] L] L] L] . L L] L] -I—-l

1-3

Hardware desSCripPtioOns ¢« « « « o o o o o o o o o

Errors, compile .
Executing . . « . . .
FLT16 routine .
FORTRAN compiler

HIST routine

- Errors, link
Etch revisions

Errors, run .

& AVAS Ad &

. 3-2, 3-4
« 3-2, 3-21

IADC routine
IDAC routine
IDIR routine
IDOR routine

L]

. 3-3, 3-25

Initializing the configuration file

Installing DTLIB
INT16 routine .

ooo-ooooooooo¢3-3’3-33

K]

L]
ctions .

nter~-board conne

Interface requirements

ISOADC routine

I

. 3"2 r 3-5

. 3-2, 3-11

ISORTS routine

« 3-3, 3-33
. 3-3' 3-33

KB2BCD routine

KBCD2B routine

KWv-11

e e e
L] L]
k.
o o e
. -

License agreement .

Link errors
Linkingo ,o" e o o

. 3-3 ’ 3"'34

LWAIT routine .

. 2-4, 2-7

MODIFY mode .

Reporting defects o « o o« ¢« o o o « o o o o «
RESET command . . »
RTS routine . . .

Revision levels . .
Run errors

Reporting bugs

Q'B-l

Saving distribution media « ¢« ¢« ¢ ¢« ¢ ¢ o . .

SETR r«:itine

[]

L] []

Sample throughputs

Software Installation .

Software defects
Sub-buffers .

Summary of routines « ¢« ¢ ¢ ¢ o o o
System layout « « « o ¢ ¢ ¢ ¢ o o 6 o o o o

[] e o L[]
. 1]
mao /]
. s +
o3 =]
s ©® Q
40 g
= o
[T = 3
> u o
(=3 v
O N T .
(SN 4) &
X B &
< o []
FTy +
s 1]
D Dy D Dy
uunn

Thtoughputs..................2—1,3-1

CHAPTER 1
Using DTLIB

l.1 Introduction

DTLIB is a real-time support package for Data
Translation's wide offering of laboratory and industrial
peripherals. Consisting of a single 1library of subroutines
that are called from user FORTRAN programs, DTLIB allows the
laboratory or industrial user to initiate and control
operations on the following types of hardware devices:

Mode} Ne:,K - - Hardware Description

DT2762 an analog-to-digital converter with 12,14,or 16 bit
.resolution and optional programmable gain amplifier.
Accepts 16 Single Ended or 8 Differential input
channels (up to 64 SE or 32 DI input channels with
DT2772 expander). Performance-enhanced version of
DEC ADV-11l option.

DT2764 a wide-range analog-to-digital <converter with
12,14,0or 16 bit resolution and optional programmable
gain amplifier, allowing full scale input ranges from
10 mV to 10 V. Accepts 16 Single Ended or 8

- Differential input channels (up to 64 SE or 32. DI
" input channels with DT2774 expander).

DT2765 an isolated-input analog-to-digital converter with 12
T bit resolution and optional programmable gain
amplifier. Accepts 4 Differential input channels (up
to 60 DI input channels with multiple DT2775
expanders) . Withstands up to 250 V common-mode

voltage on inputs.

DT2766 a four channel digital-to-analog converter with 4
digital output bits for plotter/CRT control. 12 bit
.- resolution. Performance-enhanced version of .DEC

AAV-11 option.

Tntroduction

DT2767
DT2768

- DRV-11 option.

DT2768-1:
H

4

DT2769

DT2771

DT2781

DT2782

DT2784

DT2785

identical to DT2766 except 8 bit resolution.

a general purpose 16-bit digital input/output
interface. Software and hardware compatible to DEC

-

Identical to DT2768 except that all input/output
lines are optically isolated. : y

a programmable clock/counter combination that
determines time intervals or counts events. Software
and hardware compatible to DEC KWV-11l option.

a high-speed Direct Memory Access digital-to-analog
converter designed for CRT graphics applications.
Captures "light pen" events. Two output channels and
full Z-axis control.

a combination analog input/analog output interface
system. Contains an analog-to-digital converter with
12 bit resolution accepting 16 S8ingle Ended or 8
Differential input channels. Also contains two
digital-to-analog output channels with 12 Dbit
resolution.

" a high-speed Direct Memory Access analog-to-digital

converter with 12, 14, or 16 bit resolution and
optional programmable gain amplifier. = Accepts 16
Single Ended or 8 Differential input channels.

. a Direct Memory Access wide range analog-to-digital

converter - with 12, 14, or 16 bit resolution and
optional programmable gain amplifier, allowing full
scale input ranges from 10 mV to 10 V. Accepts 16
Single Ended or 8 Differential input channels.

a combination analog input/analog output interface
system. Contains a wide-range analog-to-digital
converter with 12 bit resolution allowing full scale
input ranges from 10 mV to 10 V. Accepts 16 Single
Ended or 8 Differential input channels. Also

-contains two digital-to-analog output channels with

12 bit resolution.
Table 1s;1 Hardware Descriptions

In addition to providing easy control of peripheral

devices,

DTLIB also provides general purpose routines to

perform such functions as

convert
convert
convert
“convert

.t W

INTEGER*2 to Binary Coded Decimal (BCD)
Binary Coded Decimal (BCD) to INTEGER*2
REAL*4 to 16 bit straight binary (0-65535. range)
16 bit straight binary (0-65535. range) to REAL*4

wait for feal-time operation complete

Using DTLIB Page 1-3
f \troduction

1

1.2 Using DTLIB calls in FORTRAN programs

It is very simple to use the facilities provided by DTLIB
inside user FORTRAN programs. All that is necessary to call a
DTLIB routine is to include a statement such as

CALL name (argument list)
or
VARIABLE = name (argument list)

Not- all DTLIB routines can be called by both of the above forms
- see Chapter 3 for the exact calling sequences allowed for
each DTLIB routine.

If a call to a DTLIB routine is used as an argument to
another FORTRAN routine, the name of the DTLIB routine may have
to be declared EXTERNAL to prevent the FORTRAN compiler from
reporting an error. The DEC FORTRAN documentation discusses
this requirement in the section of the FORTRAN language
reference manual defining the EXTERNAL statement. Other than.
this requirement, it is not necessary to declare DTLIB names as
EXTERNAL names.

Each DTLIB routine expects to receive a series of
argquments when called. These arguments are passed in a list
enclosed by parenthesis immediately following the name of the
DTLIB routine. For example,

CALL IADC (argument list here)

If more than one argument is required, the arguments must be
separated by commas.

In some cases, certain arguments may be left blank
(defaulted). In these cases, the argument would be left out of
the list entirely. However, the commas both before and after
the blank argument must be left in. For example,

argument present: - -=-,IUNIT,---
argument blank: —— g ———

Chapter 3 contains a complete description of all arguménts
expected by each DTLIB routine and describes which arguments
may be left blank.

1.3 Compiling the FORTRAN program

Once the program text has been prepared with the text
editor, the program may be compiled. For information about how
to operate the FORTRAN compiler on the user program, consult
the DEC RT-11 documentation or the DEC FORTRAN/RT-11 User's

Using DTLIB Page 1-4
DTLIB inside FORTRAN programs

Guide. Note that it is extremely important that all DEC
mandatory patches and corrections to the compiler and to the
FORTRAN Object Time System (OTS) be implemented f£for proper
operation.

Compile the FORTRAN program containing the DTLIB calls
exactly as any other FORTRAN program might be compiled. No
special action is necessary. It s, however, strongly
recommended that the /NOSWAP option be specified to insure that
the RT-11 User Service Routines (USR) are not swapped into and
out of memory over the user's FORTRAN code while real-time
operations are active.

NOTE

In some cases, the flag variables passed to DTLIB
routines (described as ICMF and IBEF in Chapter 3) will
be optimized out of expressions and calls by the
FORTRAN compiler. This is done transparently with
respect to the user. To prevent the compiler from
performing optimizations on these flag variables,
execute a statement such as

EQUIVALENCE (<DTLIB flag variable>, <dummy name>)

This will. insure that the flag variable named in the
statement . - will not . be affected by compiler
optimization. -

1.3.1 Compile-time Errors

The only errors involving DTLIB routines that will be
reported by the FORTRAN compiler are those concerning the basic
syntax of the CALL statement or the usage of a DTLIB routine

- name as a function. Typically, these errors would be caused by
such typographical errors as leaving out a parenthesis or
typing a period instead of a comma. Failure to declare the
name of a completion routine used in a DTLIB call as an
EXTERNAL name will also generate an error.

1.4 Linking the FORTRAN program

Once the components of the final application program have
been separately compiled or assembled, the code modules must be
linked together to generate a copy of the program that RT-11
can execute. Consult the DEC RT-11 documentation and the

sing DTLIB Page 1-5
>mpiling, Linking

FORTRAN/RT-11 User's Guide for detailed information on how to
run the Linker.

All that is necessary to have the Linker supply the code
for the DTLIB routines called from a FORTRAN program is to
include the code module named "DTLIB.OBJ" in the list "of code -
modules passed to the Linker. It is not necessary to inform
the Linker that this code module (DTLIB.OBJ) is a library of
modules; the Linker will detect this by itself and process the
library properly. The position of DTLIB.OBJ in the 1list of
code modules to be linked is arbitrary - it can appear anywhere
as long as it is included in the 1list.

The Linker will only insert code from DTLIB for the
routines that are actually used - no extra code will be added
that will not be accessed. Only those routines referenced in
the FORTRAN program will be inserted in the final run-copy.
Note that both the FORTRAN Object Time System (OTS) and the
RT-11 FORTRAN IV system library must be properly installed.

l.4.1 Link-time Errors

The only errors that might be generated by DTLIB at

- link-time . would occur if the particular DTLIB.OBJ library that
‘was being used did not contain all of the DTLIB routines that
were called by ‘the FORTRAN program. This might occur if the
user deleted certain routines from the library module (not
recommended practice) and then referenced the deleted routines.

1.5 Executing the FORTRAN Program

Information about executing the final copy of the FORTRAN
program will be found in the DEC RT-11 documentation and the
FORTRAN/RT-11 User's Guide. FORTRAN-generated run-time errors
'will also be documented in those references. .

NOTE

The RT-11 SJ monitor will not make any attempt when a
user FORTRAN program exits to shut down active
interrupt-driven I/0. It is strongly recommended that
the user type the monitor RESET command after a program
exit to insure that all real-time sampling has stopped
before another program is loaded into memory. The FB
monitor uses a DTLIB-supplied table to explicitly stop.
all DTLIB peripherals. : o

Using DTLIB Page 1-6
Compiling, Linking

1.5.1 Run-time Errors

DTLIB performs all of its error-checking at run-time.
Syntax, argument values, hardware presence, and hardware usage
are all checked and any errors reported to the user. Most
DTLIB-detected errors will generate a printed message similar
to

?DTLIB~ <error message here)>

followed by a FORTRAN error code 0 message. The FORTRAN Object
Time System (OTS) will print the line number of the source code
containing the error.

In addition, if the DTLIB completion-routine scheduler
encounters a major scheduling problem (such as trying to queue
more than 32767 executions of a completion routine at once), a
message such as

?SYSLIB~-F-Interrupt overrun

will be printed followed by a FORTRAN error code 0 message.

NOTE

Leaving an arqument blank in a position where DTLIB
expects an argument may generate a FORTRAN 61 error
when certain DTLIB routines attempt to reference the
mandatory argument. This problem is generally caused
by a typographical mistake such as leaving out commas
in a DTLIB call where other arguments are defaulted.
This error may also be generated if the DTLIB object
library in use does not contain the correct information
about the hardware resident in the system.

1.5.2 Summary of DTLIB errors

vector protection conflict (FORTRAN error code 0 and DTLIB

message)
The interrupt vector of one or more of the péripherals
that DTLIB expects to control is already in use by the
other job under the FB monitor. Only one job can
control a single peripheral at a time.

wrong number of arguments (FORTRAN error code 16) -

Too many or too few arguments were passed to a DTLIB

{'sing DTLIB | Page 1-7
lompiling, Linking

routine.

syntax (FORTRAN error code 0 and DTLIB message)

There is some syntax error in the DTLIB call {such as
defaulting a mandatory argument, or not specifying the
minimum number of required arquments for a given mode).

argument value (FORTRAN error code 0 and DTLIB message)

One (or more) of the arguments passed to the DTLIB
routine have values that are illegal. Check the
description of the routine in Chapter 3 against the
offending source program 1line carefully to determine
which argument is in error.

buffer argument value (FORTRAN error code 0 and DTLIB message)

In the DTLIB routines that collect large quantities of
data (RTS, ISORTS, HIST, DRS), this error indicates
that one of the following conditions has occurred
during set-up:

l. IS1Z is negative or zero:

2. The address of IBUF + 1ISIZ is too large
(memory wrap-around)

3. NBUF is negative or zero
4. NREAD is zero
5. NBUF is larger than 1SIZ

Check the description of the routine in Chapter 3
against the offending source program line carefully to
determine which arqument is in error.

sub-buffer argument value (FORTRAN error code 0 and DTLIB
message)

In the DTLIB routines that collect large quantities of
data using more then one sub-buffer, this error
indicates that one of the following conditions has
occurred during set-up:

-

. 1. the user-specified sub-buffers will not hold
an integral number of data points. Remember

Using DTLIB Page 1-8
Errors, Reporting Defects

that under certain conditions many of the
routines require more than one INTEGER*2
location to store a data point.

2. NREAD does not represent an integral pumber of
sub-buffers. NREAD must be a multiple of the .
number of data points that will £ill a
sub-buffer. Only complete sub-buffers are
collected - no partial sub-buffers are
allowed.

3. the number of INTEGER*2 locations per
data-point is zero (e.q. NCCH=0 in an RTS
call).

Check the description of the routine in Chapter 3
against the offending source program line carefully to
determine which argument is in error.

device not present (FORTRAN error code 0 and DTLIB message)

A DTLIB routine has been called that references a
hardware interface that DTLIB does not believe exists
in the user system. Check the source program to see if
the correct .DTLIB call is being made, or check the
DTLIB configuration module to insure that all
peripherals to be controlled are included.

illegal hardware/software usage
(FORTRAN error code 0 and DTLIB message)

A DTLIB routine has been called in a particular mode of
operation that is illegal. In most cases, this
indicates that a routine is being called in- a new
set-up mode while there are still completion routines
queued for execution from a previous collection
operation. If completion routines are active, the
DTLIB routine that queued the completion routines .can
only be called in the special "MODIFY" mode.

In addition to the above errors, DTLIB will report an
error when a peripheral device under DTLIB control is
referenced simultaneously by an asynchronous sampling routine
and a program-driven sampling routine (e.g. calling IADC while
RTS is active). This type of message will look like

?DTLIB-F-IADC: A/D in use

followed by a FORTRAN error code 0 message.

{

sing DTLIB Page 1-9
‘rors, Reporting Defects

1.6 Reporting Software Defects

Should the user encounter a software defect in DTLIB while
under warranty, Data Translation will correct the defect at no
charge to the user. However, in order for this defect to be -
reported and corrected, a Software Performance Report form must
be completely filled out and returned to Data Translation.
Copies of this form are available from Data Translation.
Source distribution kits are not covered under this warranty.

NOTE

It is extremely important that some other potential
sources of errors be checked first before contacting
DTI. 1In particular, the DEC FORTRAN compiler and OTS
must be up to the current revision level with all DEC
patches. 1In addition, the user should try compiling
the suspect FORTRAN program with the /NOSWAP option or
with RT-11 set with the USR in NOSWAP mode before
reporting the problem to DTI. FORTRAN's choice of
where to swap the USR code can create serious problems
in certain real-time programs. See the RT-11 V4
Software Support manual (documentation volume SSM,
numbered 3B) for more information on FORTRAN and the
USR.

CHAPTER 2

Performance Considerations and Applications

2.1 Introduction

This chapter covers several topics. Starting with a
discussion of system data throughputs, the chapter continues to.
cover the use of completion routines, data collection
techniques, and finishes with the presentation of several
sample programs (source copies provided in machine readable
form with the binary distribution kits).

2.2 System Throughputs

Attempting to determine maximum data throughput rates for
DTLIB routines is a very elusive task. There are many
interacting factors which affect the maximum throughput rate.

To begin with, operating DTLIB under the Single Job (SJ)
RT-11 monitor will allow significantly higher data collection
rates than if the Foreground/Background (FB) monitor is used.
This is because of a 1large reduction of system software
overhead in the SJ monitor as compared to the FB monitor.
Unless other conditions force the use of the FB monitor, -the
user is urged to use the SJ monitor when collecting data.

System interrupt traffic will also affect data collection
rates. If any 1/0 activity is going on at all (disk transfers,
character I/0 to the terminal, 1line time clock operations),
high speed data rates will suffer. The degree to which the
rates must be decreased to eliminate data overrun errors will
vary according to the interrupt traffic being handled.

Users with older LSI-11 processors (quad height) that must
utilize either DMA refresh or microcode memory refresh will see
a marked performance degradation: every 2 mS the entire bus
becomes idle while a burst memory refresh occurs. Data
collection cannot occur at all during the refresh intervals -

Performance Considerations and Applications Page 2-2

thus, the maximum continuous rate must be able to handle these
bursts being inserted at any time in the sampling process. The
DMA refresh uses a distributed refresh arrangement - this
technique lessens the impact of refresh on data collection, but
will still lower the maximum rates. -

Although the use of completion routines (see later -
section) can improve the overall performance of DTLIB in
supporting complex data collection structures, completion
routines add system overhead and thus may decrease the hardware
maximum data rate.

In any case, if the wuser's application requires data
collection rates that approach the maximum that DTLIB can
support, the user is urged to start testing his software at the
lowest acceptable rate and increase the rate in small steps
until the desired performance is achieved or DTLIB can no
longer support the rate.

Appendix B contains tables that represent the maximum data
collection rates (throughput) achieved with several DTLIB
routines under actual operating conditions. The test
conditions and machine configurations are also given in
Appendix B. No completion routines were being used, and there
was no I/0 traffic at the time of the tests other than that
related to the test itself. The rates listed are the maximum
rates achieved before a data overrun condition was reported by
DTLIB. Again, the numbers in Appendix’' B will probably be
different on different systems. The rates are presented so
that the user can approximate what to expect.

Note that the primary speed 1limitation in processing
interrupt-driven sampling is software overhead: increases in
hardware speed have only a little impact on throughput. This
is because of the large maximum interrupt latencies of the
LSI-11 (up to 44 uS) along with the minimum operations required
by the interrupt handlers. Users with LSI-11/23 processors
will see a marked speed improvement due to both instruction
execution speed and reduced interrupt latency. There is a
"FAST SWEEP" mode in the RTS routine where interrupts are not

~used, but rather the processor remains in an extremely tight
code loop collecting data and doing nothing else. Maximum data
rates in this mode are 2.5 to 3 times faster than the
interrupt-driven mode, but at the expense of the processor
doing nothing but collecting data. The highest data rate in
this mode is achieve by locking out all interrupts during the
collection interval.

2.3 Buffer Partioning

DTLIB offers a powerful data buffer partitioning scheme
for use where data is to be separated into groups of data,

Performance Considerations and Applications Page 2-3
Buffer Partioning

where data is to be collected continuously, and where more data
is to be collected than will fit in memory at one time.

The key to this scheme lies in the arrangement of the data
buffer (IBUF array) used by the asynchronous sampling routines.
This buffer may be partitioned into N sections or sub-buffers.
Each sub-buffer holds an integral number of data points (note
that some routines collect data points that are more than one
word 1long). These N sub-buffers are all the same size, with
any excess words in the main buffer being ignored. For
example, if a buffer is 235 words, and 10 sub-buffers are
requested, each buffer would be 23 words long, with the last 5
words in the main buffer being ignored. DTLIB will report an
error if the number of subbuffers requested is larger than the
original main buffer, if each sub-buffer will not hold an
‘integral number of data points, or if DTLIB cannot partition
the main buffer for the requested number of sub-buffers.

Whenever any one of these sub-buffers is filled, a buffer
event flag is decremented automatically. This flag (described
as IBEF in Chapter 3) is preset by DTLIB at the start of
sampling to the number of sub-buffers available. Thus, at any
point, this flag indicates how many sub-buffers are 1left to
fill. It is the use of this flag in conjunction with
completion routines or special main program code that allows
DTLIB to support continuous sampling.

%¥. . The following diagram illustrates a main buffer partioned

- into 4 sub-buffers (NBUF=4), and indicates what occurs as the

buffer is filled with data. IBEF is decremented as soon as the

contents of the previous sub-buffer is valid. 1In addition, any

- completion routine scheduling that is requested is performed at
the same time (meaning at the end of each sub-buffer).

Storage Area description of action

IBUF--> {-- collection starts here
(IBEF is preset to 4)
sub-buffer 0

=== <-- IBEF is decremented by RTS here
sub-buffer 1

- <=- IBEF is decremented again

sub-buffer 2

—— <-- IBEF is decremented again

sub-buffer 3

el ———d ———¢ ——

- - = <-- IBEF is decremented, and -
collection either stops (if all done)
end of IBUF array or continues at sub-buffer 0. If

Ruffer Partioning

collection continues, the user
program or completion routine must insure that IBEF
never reaches 0 (indicating all sub-buffers full),
or DTLIB will report a DATA OVERRUN.

To sample data continuously, the user specifies a"negative
number of points to the particular DTLIB sampling routine
(NREAD < 0). This enables the continuous acquisition mode of
DTLIB. Hereafter, DTLIB will collect data continuously until
the buffer event flag becomes zero. Ordinarily, the user also
arranges for a completion routine to be executed every
sub-buffer to process the sub-buffer of data. When the
completion routine finishes execution, it increments the buffer
event flag, thus informing DTLIB that another sub-buffer is
available for data. As long as the average rate of completion
routine execution is equal to or greater than the average rate
of sub-buffer collection, data can be collected forever.
Should the buffer event flag ever reach =zero, though, DTLIB
will stop and report an overrun error, as this condition
indicates that all sub-buffers are full and no more space is
available for DTLIB to put data; the completion routine is not
emptying sub-buffers as fast as DTLIB is filling them. To stop
this continuous sampling, the routine is called in a special
stop mode (called "MODIFY MODE").

One note about this continuous mode of collection: DTLIB
operates in a ring-buffer fashion while filling sub-buffers.
‘When sub-buffer N-1 is full, DTLIB automatically starts again
with sub-buffer 0.

To collect more data than will fit in memory at one time,
an almost identical structure is used. In this case, however,
the user program passes the specific number of data points to
the DTLIB routine. The number of points to read in a case like
this would probably be much 1larger than the storage space
available to store the points. The same sort of handshaking
between completion routines/main program/DTLIB code occurs
through the buffer event flag. In this case, the completion
routine must still empty a certain number of sub-buffers before
DTLIB needs them again for re-use or an overrun error will be
flagged. :

If overrun errors occur using either of the two previous
structures, the problem can be partially alleviated by making
the sub-buffers larger (allows more ¢time between completion
routines).

. Each sub-buffer must contain an integral number of data
points, although each data point may require more than one IBUF
location for storage. For example, the following sub-buffer
structure resulted from a call to the RTS routine that
specified NCCH=5, meaning that each data-point represented a
sweep of five consecutive A/D channels:

-

Performance Considerations and Applications Page 2-5
ruffer Partioning

sub-buffer organization

--------- data-point consists of:
data-point 1 - -—
--------- channel N data
data-point 2 DJ--==-e-—e-- > channel N+1 data _
--------- channel N+2 data)
data-point 3 channel N+3 data
--------- channel N+4 data
data-point 4 === 0z @ =eescccccccccoo-
data-point 5 This data-point takes 5 words
T emesccee- (INTEGERs) to store, and each
data~-point 6 sub-buffer is to contain 6 data-
--------- points. Therefore, each sub-

buffer should be configured to
hold a total of 30 words. Since sub-buffer size
is equal to total buffer size (ISIZ) divided by
the number of sub-buffers (NBUF), in this case,
ISIZ/NBUF=30 or ISIZ=NBUF*30.

The DTLIB argument checking code requires that the
following conditions be met in partioning buffers:

1. sub-buffer size will be the integer result of
ISIZ/NBUF. ISIZ will then be reduced (if necessary)
so that ISIZ=NBUF*sub-buffer size.

* . 2. sub-buffer-size must contain. an integral number of

- data-points. Under RTS and ISORTS, this means that
(IS1Z/NBUF)/NCCH must result in an integer with no
remainder. Under HIST and DRS, a data-point takes
either one or two words of storage depending upon the
operating mode, so either ISIZ/NBUF = an integer or
(IS1Z/NBUF)/2 = an integer.

3. NREAD (if positive and therefore indicating the number
of data-points to take) must represent an integral
number of sub-buffers. In other words, NREAD divided
by the number of data-points in a sub-buffer must
result in an integer with no remainder. This means
that NREAD/((ISIZ/NBUF)*size of data-point) must be an
integer result with no remainder.

If either a buffer-argument error or a sub-buffer argument
error occurs, verify that the above requirements have been met.

2.4 Completion Routines

One of DTLIB's most powerful features is the use of
completion routines in conjunction with asynchronous sampling.
Asynchronous sampling is used by several DTLIB routines, and
represents ran operation that is initiated at one point in the

Performance Considerations and Applications Page 2-6
¢ mpletion Routines

user FORTRAN program, but then functions completely
independently of the user's program until the operation is
complete (see the programming examples at the end of this
chapter). The user's FORTRAN program continues to execute as
though nothing else was occurring, although the asynchronous
sampling is collecting data continuously. ~

Completion routines represent an important extension to
this idea of asynchronous data collection. The user can have
DTLIB schedule the execution of completion routines at
important points in the data collection process (such as the
filling of a sub-buffer with data). When the asynchronous
collection process reaches this point, the specified completion
routine is automatically executed. The data collection
continues even while the completion routine is executing unless
instructed to wait by the user.

Before continuing with this discussion, the term
"completion routine"™ must be clarified. A completion routine
is a FORTRAN subroutine that may contain any legal FORTRAN
sub-program statements. The routine may be long or short, and
it may set flags for the main program or process data itself.’
In short, the user may do virtually anything he wants to do in
the completion routine, subject to the constraints below. The
routine will not be executed until some DTLIB routine has
reached a program-declared important event. The actual
mechanism for scheduling completion routines will be described
in Chapter 3 when the DTLIB routines are .defined and discussed.

There are some restrictions on the use of sub-routines as
completion routines:

1. The completion routine must end with a FORTRAN RETURN
statement to return control to the DTLIB and RT-11
scheduler.

2. The name of the FORTRAN subroutine must be declared
EXTERNAL if it is to be passed to DTLIB for use as a
completion routine.

3. If the subroutine is to be used as a completion
routine, it may not be called as a regular subroutine
from anywhere in the user FORTRAN program. FORTRAN
does not support re-entrant subroutines - the user
must guarantee that the subroutine has fully completed
execution before another entry is made.

4. Because FORTRAN does not support re-entrant routines,
the completion routine should never call another
subprogram that could also be called simultaneously
from the main program (such as user-written functions
or subroutines, FORTRAN mathematics subprograms such
as SIN, and FORTRAN formatted I/0. If a DTLIB routine

- is.called from within a completion routine, it must
‘ either be called in the special MODIFY MODE or that

Performance Considerations and Applications Page 2-7
Completion Routines

particular DTLIB routine cannot be also called from
the main program.

5. No arguments may be passed directly to or from the
completion routine. All arquments or parameters that
are used by the completion routine must reside in a -
FORTRAN COMMON block.

6. Avoid including in a completion routine a request for
synchronous input or output from a slow (<9600 baud)
terminal. Such a request can cause a significant
delay before the completion routine can return control
to the DTLIB and RT-11 scheduler.

Although not recommended for general applications,
MACRO-11 subroutines may be used for completion routines also.
A partial list of requirements for this is as follows:

1. All registers must be saved - the routine cannot

return any modifed registers.

2. Any interaction with FORTRAN parameters or variables
must be handled by the user (you must be familiar with
the run-time environment).

v - 3. The name of 'the MACRO-11 routine must be declared
; EXTERNAL in the FORTRAN program.

4. The MACRO-11 code must be separately assembled, then
linked to the final FORTRAN program.

Completion routines can be visualized as FORTRAN-coded
interrupt handlers. The interrupt is actually a data
collection event rather than a hardware interrupt, but the
concept 1is the same: the main program is interrupted, the
interrupt handler (completion routine) is executed in response
to the service request, and the main program then continues as
though nothing had happened at all. It is important for the
user to distinguish between the details of the hardware
interrupt as opposed to the software completion routine.

Hardware interrupt:

No matter what type of program the processor is
currently executing, it always handles the interrupt
from a hardware device. The processor will handle all
outstanding hardware interrupts before returning to
continue execution of any user's program or
sub-program.

For example, if the interrupt is from an A/D converter,
the processor stops execution of the current program,
runs the DTLIB code that stores the A/D data in memory,

Performance Considerations and Applications Page 2-8
ompletion Routines

then dismisses the interrupt and returns to the
original program if no other hardware interrupts are
active, -

Compietion routine interrupt: .

When one of the DTLIB code modules that handle hardware -
interrupts from peripherals determines that a
completion routine is necessary (an important
collection event has occurred), the DTLIB code queues a
request for completion routine execution with the RT-11
- monitor. The RT-11 monitor will then handle these
queued requests as soon as time permits. There can be
several sources of hardware interrupts, and therefore
there can be many requests for completion routines,
- possibly occurring nearly simultaneously. The monitor
-queues all of these requests and processes them on a
time available basis.

The Single Job monitor and the Foreground/Background
monitor handle completion routines differently. 1In the RT-1l1l.
SJ monitor, completion routines are totally asynchronous:
completion routines can interrupt each other (last-in,
first-out arrangement). In the RT-11 FB monitor, completion
routines are queued and made to wait until the correct job is
running: completion routines cannot interrupt each other

{.;ffitst-in,, first-out basis). The order of execution priority
-is : .

foreground or background hardware interrupt requests
foreground completion routines

foreground main program

background completion routines

background main program

The user is urged to read the DEC RT-11 1literature on
completion routines and completion routine scheduling within
the monitor for much more detailed information about how the
monitor itself processes the completion routine queue.

NOTE

When a completion routine is executing, it executes at
the interrupt priority specified in the DTLIB call that
is scheduling that completion routine. It is
recommended that an interrupt priority of 0 be used for
completion routines, as this allows both system and
DTLIB interrupts to be serviced while the completion
routine is executing. IF HARDWARE INTERRUPTS ARE
LOCKED OUT DUE TO THE USE OF A HIGH INTERRUPT PRIORITY,
BOTH SYSTEM AND DTLIB DATA TRANSFERS WILL STOP
COMPLETELY UNTIL THE COMPLETION ROUTINE COMPLETES
EXECUTION. :

Performance Considerations and Applications Page 2-9
Completion Routines

The primary uses of completion routines within DTLIB are as
follows:

1. To process the data now available in the full
sub-buffer (scheduled every sub-buffer). -

2. To arrange for the last sub-buffer to be transferred
to disk or storage (scheduled every sub-buffer).

3. To handle any user defined protocol for synchronizing
data collection with the main program (in addition to
pre-defined DTLIB structures for synchronization).

4. To collect data continuously or to collect more data
than will fit in memory (see the next section on this
topic).

5. To determine if sampling should now stop because of
some special condition (such as data becoming too
large, too small, etc.)

2.5 Sample Programs distributed in release kits

Included with the binary distribution kits are several
sample FORTRAN ' programs that demonstrate the usage of some of
the DTLIB routines. Each sample program (the filename
extension will be ".FOR") contains lengthy internal comments,
describing each part of the program. The user is urged to look
these programs over (some consist of several code modules) if
additional questions are raised about DTLIB usage. Some of
these programs are reproduced in Appendix D of this manual.
Check your copy of the distribution kit for these programs.

CHAPTER 3

Descriptions of DTLIB Routines and Functions

3.1 Introduction

This chapter discusses the syntax details of calling DTLIB
routines and functions from within a FORTRAN program. There
are many subtleties and considerations involved with using
these routines in user applications - these considerations are
not discussed in this chapter. The user is strongly urged to
read the previous two chapters carefully to become aware of the
techniques for achieving the desired performance level.

3.2 Conventions

Throughout the remainder of this chapter the following
conventions will be followed:
Optional arguments:
Arguments that do not always need to be specified are shown
enclosed between square brackets. This indicates that the
argument may be left blank. For example,

argument present: ===,IUNIT,---
argument blank (defaulted): ———y -

In the syntax description, this is shown as ==--,[IUNIT],--- .
If the commas that separate arquments are also inside the
brgckets, the commas may be left out also.

Default values:

Where DTLIB substitutes a value for a blank argument, the
description of the argument will specify the value that DTLIB
will use. .

Argument types:

Descriptions of DTLIB Routines and Functions Page 3-2

All arguments are of type INTEGER*2 uniess otherwise stated;
It is important that the proper type of arguments be passed to
DTLIB routines or errors in operation may occur.

Fassing literals as arguments: -
It is permissible to pass literals (read-only parameters)
as arguments to DTLIB routines except in argument positions
that require read/write variables. If the argument will be
written into by DTLIB, the description of the argument will
state this. 1If a literal is passed as one of these read/write
arguments, the user program may be corrupted. For example,

read/write argument ~==,IUNIT,~--
literal argument —,7 -

3.3 Summary of DTLIB Routines and Functions

The following two tables summarize the names and functions
of the DTLIB routines supplied in the distribution kit. The
remainder of this chapter will deal exclusively with individual
descriptions of each of these routines.

" Routjine scriptio Hardware supported
IADC single A/D conversion DT2762,DT2772
DT2764,DT2774
DT2781,DT2785
DT2782,DT2784
ISOADC single A/D conversion DT2765,DT2775
on an isolated input channel -
RTS real-time sampling of the DT2762,DT2772
analog input channels DT2764,DT2774
DT2781,DT2785
DT2782,DT27 84
ISORTS real-time sampling of the DT2765,DT2775
isolated analog input channels
~ SETR set clock rate and mode DT2769
HIST collect data on Schmitt DT2769

Trigger #2 events

IDAC modify the value of a single DT2766,DT2767
: D/A output channel -

IDIR reading a digital input DT2768,DT2768-1
channel

?

2scriptions of DTLIB Routines and Functions Page 3-3
mmary of routines

IDOR loading a digital output DT2768,DT2768~1
channel

DRS digital read-in sampling DT2768,DT2768-1

DPOLL clock-driven digital input DT2768,DT2768~1
polling

DISP display data on XY scope or DT2771
XY plotter

Z2able 35} Summary of Peripheral Control Routines

Rout j B ot §
FLT16 convert unsigned INTEGER*2 to REAL*4
INT16 convert REAL*4 to unsigned INTEGER*2
KBCD2B convert BCD to binary
KB2BCD convert binary to BCD
LWAIT wait for real-time operation complete

CVSWG ' convert switch-gain data

Zable 352 Summary of General Purpose Routines

In addition to the routines described in the above two
tables, more routines and functions are contlnually being
developed by Data Translation. The routines documented in this
manual are those corresponding to the DTLIB version number on
the front cover of this manual.

The following sections in this chapter describe each
routine individually.

Descriptions of DTLIB Routines and Functions Page 3-4

IADC

3.3.1 IADC Single A/D Conversion

The IADC routine initiates a single A/D conversion on a
specified analog input unit on a specified channel. This
routine is synchronous - that is, the routine will not return
to the user's FORTRAN program until the data has been taken.

CALL IADC(ICHAN, IUNIT [,[IGAIN]I[,IVAR]])
- or
IX = IADC(ICHAN, IUNIT [,[IGAIN]I[,IVAR]])

ICHAN Specifies from which analog input channel the data is
to be taken. The channel number may range from 0-63,
but attempts to reference channels not installed on a
given analog input unit will be reported as errors.

IUNIT Specifies from which analog input unit the data is to.
be taken. See Chapter 4.

IGAIN If the analog input unit specified contains the
programmable gain instrumentation amplifier, IGAIN
selects the gain setting. There are two types of
software-programmable gain amplifiers: high level and
low 1level. Consult the appropriate hardware User
Manual for information on the type of amplifier on your
board (if any).

IGAIN Gain setting
high level,PGH 1low level,PGL
defaulted gain =] gain = 1
0 gain = 1 gain = 1
1 gain = 1 gain = 1
2 gain = 2 gain = 10
3 gain = 4 gain = 100
4 gain = 8 gain = 500

. IVAR If present in the argument list, the A/D data is stored

'in this INTEGER*2 variable in addition to being
returned as the value of the function call. Do not
pass a literal in this argument position.

When this routine is called as a function (IX=IADC(....)), the
data is returned as the value of the function. 1If called as a
subroutine (CALL IADC(....)), the data can only be stored in
the variable described as IVAR above. All data is returned in
16 bit format exactly as received from the A/D converter.
Depending upon how the A/D interface is configured, this data
will be in 2's complement notation (FORTRAN INTEGER*2
notation), 16 bit offset binary notation, or 16 bit straight
binary notation.

Jescriptions of DTLIB Routines and Functions Page 3-5
| aDC

3.3.2 ISOADC Single A/D Conversion

The ISOADC routine initiates a single A/D conversion on a
specified isolated analog input unit on a specified channel.
This routine is synchronous - that is, the routine will not
return to the wuser's FORTRAN program until the data has been
taken.

- CALL ISOADC(ICHAN, IUNIT [, [IGAIN][,IVAR]])
or
IX = ISOADC({ICHAN,IUNIT [,[IGAIN]I[,IVAR]])

ICHAN Specifies from which isolated analog input channel the
data is to be taken. The channel number may range from
0-60, but attempts to reference channels not installed
on a given isolated analog input unit will be reported
as errors.

IUNIT Specifies from which isolated analog input unit the
data is to be taken. See Chapter 4.

IGAIN If the isolated analog input unit specified contains
the programmable gain instrumentation amplifier, IGAIN
selects .the gain .setting. -

IGAIN Gain setting
defaulted gain = 1

0 gain = 1

1l gain =]

2 gain = 10

3 gain = 100

4 gain = 500

IVAR If present in the argument list, the A/D data is stored
in this INTEGER*2 variable in addition to being
returned as the value of the function call. Do . not
pPass a literal in this argument position. '

When this routine is called as a function (IX=ISOADC(....)),
the data is returned as the value of the function. If called
as a subroutine (CALL ISOADC(....)), the data can only be
stored in the variable described as IVAR above. All data is
returned in 16 bit format exactly as received from the A/D
converter. Depending upon how the A/D interface is configured,
this data will be in 2's complement notation (FORTRAN INTEGER*2
notation), 16 bit offset binary notation, or 16 bit straight
binary notation. N

Descriptions of DTLIB Routines and Functions Page 3-6
RTS

3.3.3 RTS Real-time Sampling of the A/D Converter

The RTS routine initiates and controls real-time sampling of
the analog input channels. The A/D converter can be sampled in
a variety of modes with the collected data being stored in an
input buffer. This routine is asynchronous - it is called once
to set up the sampling, then returns to the user's FORTRAN
program while the data is being collected via interrupt-driven
sampling "underneath"™ the FORTRAN program. The flag ICMF can
be " used to monitor the status of the sampling. Once sampling
is in progress, RTS can only be called in the special MODIFY
mode until sampling has come to a full stop. One exception:
FAST SWEEP mode operates synchronously - RTS does not return to
the user's program until all data has been collected.

CALL RTS([IBUF],IS12, [NBUF], [NREAD], [ISTCHN],

[NCCH] , [TUNIT*], [IGAIN], [MODE*] ,ICMF, IBEF

[, [INTCT*][, [CMPRTN*] [, [IPRIO*]]1]])) ~

IBUF Name of an INTEGER*2 single dimensional array to be
, used as an input buffer. If this parameter is left
blank (defaulted), the call is in the special "“MODIFY
MODE" and only those parameters followed by an asterisk
may be modified. This array will be used to store the

A/D data.

ISIz Total length (words) of IBUF used for the input buffer.
Chapter 2 discusses buffer partioning considerations,
and how NBUF and ISIZ are used. This parameters should
never be larger than the maximum size of the IBUF
array, although it may be less. This arqument is used
solely to check the legality of NBUF, NREAD, and NCCH.

NBUF Number of sub-buffers to be maintained. If left blank
(defaulted), a value of one will be substituted. NBUF
cannot be greater than ISIZ.

Small sub-buffers cause DATA OVERRUN errors when used
with fast sampling rates. The bigger the sub-buffer,
the smaller the chance of getting DATA OVERRUN errors.
The sampling rate (generated externally or by the Real
Time Clock) and the size of the sub-buffers are
directly related. Faster sampling rates require larger
sub-buffers.

NREAD Number of data points to take. A "data point®™ consists
of all the data read as the result of a sampling
trigger. NREAD is the total number of such data points
to collect. o

The number of INTEGER*2 values read per sampling

Descriptions of DTLIB Routines and Punctions Page 3-7

IS

ISTCHN

NCCH

.. TUNIT

IGAIN

MODE

trigger equals NCCH (see description of ISTCHN and NCCH
below for a more detailed explanation).

Starting channel for the sample. The default value is
zero. The channel number may range from 0-63, but
attempts to reference channels not installed on a given .
analog input unit will be reported as errors.

Number of consecutive channels to be sampled. The
default value is one. This value can range from 1 to
64, but its value must not exceed the number of
channels installed on the A/D unit. Sampling will
wrap-around: after the 1last channel installed is
sampled, the next channel sampled (if more are
requested) will be channel 0, etc.

Each external trigger will cause a "data point™ to be
taken. This data point actually consists of several
values: RTS will "sweep" the input channels, starting
at ISTCHN and sampling NCCH consecutive channels. If
NCCH=1 only a single channel will be sampled.

The total number of values (INTEGER*2 numbers) that
will be stored in IBUF is NCCH*NREAD under normal
sampling.

Specifies from.which analog input.unit'the data is to
be taken. See Chapter 4. 4

If the analog input unit specified contains the
programmable gain instrumentation amplifier, IGAIN
selects the gain setting. There are two types of
software-programmable gain amplifiers: high level and
low 1level. Consult the appropriate hardware User
Manual for information on the type of amplifier on your
board (if any).

IGAIN §ain getting
high level,PGH 1low level,PGL
defaulted gain = 1 gain =]
0 gain = 1 gain = 1
b gain = 1 gain = 1
2 gain = 2 gain = 10
3 gain = 4 gain = 100
4 gain = 8 gain = 500

Mode of sampling to be used. The STOP CODES recognized
(valid in MODIFY MODE only) are:

¥alue Meaning

-1 Halts all sampling and stops all queued
completion routine requests. :

-2 .. Halts all sampling and allows the completion

Descriptions of DTLIB Routines and Functions Page 3-8

PTS

. routines that have been queued to finish. It
does not queue any more requests.

-3 Completes operation on the current sub-buffer
and stops all queued completion_ routine
requests. ‘

-4 Completes operation on the current sub-buffer

and allows the completion routines that have
been queued to finish., It does not Qqueue any
more requests.,

Operating modes:
(add codes of all desired functions to generate MODE)

0

[

Cu
Cu
[

add 2

add 4

There

Sample upon events sensed by EXTERNAL TRIGGER (EXT
TRIGL) . Connect TTL trigger source to hardware EXT
TRGL.

to disable BURST MODE operation {applies to FAST SWEEP
and DMA modes only). BURST MODE uses the external
sampling trigger to start the first conversion, then
"sweeps' the rest of the channels (as specified by NCCH)
at maximum speed. After the sweep, RTS waits for the
next sampling trigger. If BURST MODE is disabled under
FAST SWEEP and . DMA modes, alit conversions will be
triggered under - external . control, regardless of the
number of channels to be "swept".

to use the REAL TIME CLOCK input (RTC 1INL) as the
trigger source rather than the EXTERNAL TRIGGER (EXT
TRIGL). Connect TTL trigger source to hardware RTC INL.

to enable FAST SWEEP mode. In FAST SWEEP mode, the
processor is dedicated to collecting data at the maximum
possible rate. Whereas the normal mode of collection is
interrupt-driven, FAST SWEEP does not use interrupts.
See Appendix B for throughput values.

are some restrictions regarding the use of FAST SWEEP:

NBUF must equal one (single buffer only). IBEF and
INTCT will be ignored (IBEF must still be present).

DMA mode cannot be selected simultaneously.

ISTCHN must specify the channel to be sampled. NCCH
will be ignored - FAST SWEEP will sample single channels
only.

CMPRTN must not be specified - completion routines are
illegal in FAST SWEEP mode. Leave CMPRTN blank. .-

IPRIO specifies the priority of the processor during the
sampiing interval. If defaulted, PRIORITY 0 will be

Descriptions of DTLIB Routines and Functions Page 3-9

H's

add 8

ICMF

IBEF

INTCT

CMPRTN

used. If interrupts are allowed during the sampling
interval, there will a drastic decrease in the maximum
sampling rate that can be supported without OVERRUN
errors. It is recommended that PRIORITY 6 be specified
in FAST SWEEP mode. -

to enable transfers to occur under Direct Memory Access -
(legal on DMA models only). This mode of data
collection will be almost two orders of magnitude faster
then the normal collection mode. Because of hardware
limitations, MODE 2 must also be specified.

the completion/error flag. The flag should be set to
zero by the user's program before calling RTS. This
flag is incremented by one after all points have been
read or after RTS is stopped by a stop code.

If an error occurs (either a hardware or software DATA
OVERRUN) , ICMF is set to a value of -1. A DATA OVERRUN
error may result from an insufficient number or size of.
sub-buffers, or from a hardware sampling rate that is
too high.

ICMF is a read/write argument - do not pass a literal
in this argument position.

the buffer event flag. IBEF keeps a count of the
number of sub-buffers currently available to store A/D
data. The RTS routine initially sets IBEF to the value
of NBUF (the number of sub-buffers). After each
sub-buffer has been filled, IBEF is decremented by one.
If the user is supplying completion routines to process
the data in sub-buffers, he should increment IBEF
(within the completion routine) to signal that a
sub-buffer has become free again.

If the RTS routine decrements IBEF to zero before the
last point is read, a DATA OVERRUN error is generated.

IBEF is a read/write argument - do not pass a literal
in this argument position. . '

the point interrupt count. For every INTCT points
gathered, a completion routine (if @presert) is
scheduled. However, this scheduling takes place only
at the end of sub-buffers regardless of the size of
INTCT. One completion routine execution is scheduled
for each INTCT points.

The dafault value for INTCT corresponds to a request at
the end of each sub-buffer. Thus, the default value is
equal to ISIZ/ (NBUF*NCCH). .-

the name of the user-supplied completion routine. This

Descriptions of DTLIB Routines and Functions Page 3-10

RTS

IPRIO

name must be declared EXTERNAL in the FORTRAN program
that contains the call to RTS or the FORTRAN compiler
will report an error. The completion routine itself
may be either a FORTRAN subroutine or a MACRO-11

subroutine. -

the interrupt priority level to be used by RTS when
executing completion routines. The default value is 0
(PRIORITY 0, PRO). Specify this value in a 0-7 range
(representing PRO to PR7 respectively).

“escriptions of DTLIB Routines and Functions Page 3-11
SORTS

3.3.4 ISORTS Real-time Sampling of the Isolated A/D

The ISORTS routine initiates and controls real-time sampling of
the isolated analog input channels. The isolated A/D converter
can be sampled in a variety of modes with the collected data
being stored in an input buffer. This routine is asynchronous
- it is called once to set up the sampling, then returns to the
user's FORTRAN program while the data is being collected via
interrupt-driven sampling “underneath"” the FORTRAN program.
The flag ICMF can be used to monitor the status of the
sampling. Once sampling is in progress, 1ISORTS can only be
called in the special MODIFY mode until sampling has come to a
full stop.

CALL ISORTS ([IBUF],1S1Z, [NBUF), [NREAD], [ISTCHN],
[NCCH] , [TUNIT*], [IGAIN], [MODE*], ICMF, IBEF
[, LINTCT*]1 ([, [CMPRTN*] [, [IPRIO*111]})

IBUF Name of an INTEGER*2 single dimensional array to be
used as an input buffer. If this parameter is left
blank (defaulted), the call is in the special "MODIFY
MODE" and only those parameters followed by an asterisk
may be modified. This array will be used to store the
A/D data.

IS12Z Total length (words) of IBUF used for the input buffer.
Chapter 2 discusses buffer partioning considerations,
and how NBUF and 1S1Z are used. This parameters should
never be larger than the maximum size of the IBUF
array, although it may be less. This argument is used
solely to check the legality of NBUF, NREAD, and NCCH.

NBUF Number of sub-buffers to be maintained. If left blank
(defaulted), a value of one will be substituted. NBUF
cannot be greater than ISiZz.

Small sub-buffers cause DATA OVERRUN errors when .used
with fast sampling rates. The bigger the sub-buffer,
the smaller the chance of getting DATA OVERRUN errors.
Note, though, that the maximum sampling rates provided
by the hardware are in the range of 20 samples/second.
Therefore, it should be difficult to generate DATA
OVERRUN errors.

NREAD Number of data points to take. A "data point"™ consists
of all the data read as the result of a sampling
trigger. NREAD is the total number of such data points
to collect.

The number of INTEGER*2 values read per sampling
trigger equals NCCH (see description of ISTCHN and NCCH

Descriptions of DTLIB Routines and Functions Page 3-12
ISORTS

below for a more detailed explanation).

ISTCHN Starting channel for the sample. The default value is
zero. The channel number may range from 0-60, but
attempts to reference channels not installed on a given
isolated analog input unit will be reported as errors.

NCCH Number of consecutive channels to be sampled. The
default value is one.

Each "data point" taken actually consists of several
values: ISORTS will “"sweep" the input channels,
starting at ISTCHN and sampling NCCH consecutive
channels. If NCCH=1 only a single channel will be
sampled.)

The total number of values (INTEGER*2 numbers) that
will be stored in IBUF is NCCH*NREAD. This total must
be equal to the value of ISIZ.

IUNIT Specifies from which isolated analog input unit the
data is to be taken. See Chapter 4.

IGAIN If the isolated analog input unit specified contains
the programmable gain instrumentation amplifier, IGAIN
selects the gain setting.

IGAIN Gain setting
defaulted gain = 1

0 _ gain = 1

1 gain = 1

2 gain = 10

3 gain = 100

4 gain = 500

MODE Mode of sampling to be used. The STOP CODES reéognized
(valid in MODIFY MODE only) are:

Value Meaning
o | Halts all sampling and stops all queued

completion routine requests.

-2 Halts all sampling and allows the completion
routines that have been queued to finish. It
does not queue any more requests.

-3 Completes operation on the current sub-buffer
and stops all queued completion routine
requests.

-4 Completes operation on the current sub-biffer

and allows the completion routines that have
been queued to finish. It does not queue any

escriptions of DTLIB Routines and Functions Page 3-13

FSORTS

more requests.

Operating modes (add codes of all desired functions)

0

ICMF

IBEF

INTCT

Start sampling immediately, and free-run at converters

maximum speed, collecting data according to the other .

parameters in the call (rate will be 20
conversions/second)

the completion/error flag. The flag should be set to
zero by the user's program before calling ISORTS. This
flag is incremented by one after all points have been
read or after ISORTS is stopped by a stop code.

If an error occurs (either a hardware or software DATA
OVERRUN) , ICMF is set to a value of -1. A DATA OVERRUN
error may result from an insufficient number or size of
sub-buffers, indicating that data is being collected
faster than it is being processed.

ICMF is a read/write argument - do not pass a literal
in this argument position.

the buffer event flag. IBEF keeps a count of the
number of sub-buffers currently available to store A/D
data. The ISORTS routine initially sets IBEF to the
value of NBUF (the number of sub-buffers). After each
sub-buffer has been filled, IBEF is decremented by one.
If the user is supplying completion routines to process
the data in sub-buffers, he should increment IBEF
(within the completion routine) to signal that a
sub-buffer has become free again.

If the ISORTS routine decrements IBEF to zero before
the last point is read, a DATA OVERRUN error is
generated. '

IBEF is a read/write argument - do not pass a literal
in this argument position.

the point interrupt count. For every INTCT points
gathered, a completion routine (if present) is
scheduled. However, this scheduling takes place only
at the end of sub-buffers regardless of the size of
INTCT. One completion routine execution is scheduled
for each INTCT points.

The default value for INTCT corresponds to a request at
the end of each sub-buffer. Thus, the default value is
equal to ISIZ/ (NBUF*NCCE).

Descriptions of DTLIB Routines and Functions Page 3-14

ISORTS

CMPRTN the name of the user-supplied completion routine. This

IPRIO

name must be declared EXTERNAL in the FORTRAN program
that contains the call to ISORTS or the FORTRAN
compiler will report an error. The completion routine
itself may be either a FORTRAN subroutine or a_MACRO-11

subroutine. '

the interrupt priority level to be used by ISORTS when
executing completion routines. The default value is 0
(PRIORITY 0, PRO). Specify this value in a 0-7 range
(representing PRO to PR7 respectively).

rescriptions of DTLIB Routines and Functions
ETR

Page 3-15

3.3.5 SETR Set Clock Rate and Mode

The SETR routine allows the user to select the operating rate
and mode of any of the Real Time Clocks in the system. Note .
that the Line Time Clock in the system is totally separate from
the Real-Time Clocks. SETR controls only the Real-Time Clocks.

CALL SETR((IRATE],[IUNIT*],MODE,PRESET,ICMF
[,TINTCT*][, [CMPRTN*][,[IPRIO*]]]])

IRATE the rate for the oscillator which drives the clock
counter system. If this parameter is 1left blank
(defaulted), the call is in the special "MODIFY MODE"
and only those parameters followed by an asterisk may
be modified. If IRATE is present, either an operating
rate or a STOP CODE may be specified. The STOP CODES
recognized are:

Yalue Meaning

-1 Halts the clock and stops all queued completion
routine requests,

-2 Halts the clock and allows the completion
routines that have been queued to finish. It
does not queue any more requests.

-3 Same as -1

-4 Same as -2

Operating rates:

0 Stop Clock (does not function 1like a stop
code) . Use this code to enable HIST routine
operation if the timing function of the clock
is not needed.

1 MHz count rate

100 KHz count rate

10 KHz count rate

1 KHz count rate

100 Hz count rate

Schmitt Trigger #1 input frequency

BEVNT line (BUS EVENT) - normally 50/60 Hz

NAUT R WA

-~

IUNIT Specifies which Real-Time Clock unit is to operated on
this call. See Chapter 4. T

Descriptions of DTLIB Routines and Punctions Page 3-16

SETR

MODE

the mode of clock operation. Select one of the four
basic modes from the table below, then add in any
additional special functions, also described below.

Basic Modes: =

Yalue
0

Meaning
Single interval mode. Clock will count PRESET
intervals, overflow, and stop.

Repeated interval mode. Clock will count
PRESET intervals, overflow, reload PRESET, and
count again. The cycle will continue until the
clock 1is stopped with a STOP CODE. This
generates a stable hardware timebase for use by
the A/D hardware, and provides a software
timebase for routines DRS and DPOLL.

External event timing mode. The counter is
initialized to zero, then counts at the’
oscillator rate. A Schmitt Trigger #2 event
will transfer the contents of the clock counter
into the Buffer/Preset register of the
interface (not the PRESET parameter). The
clock continues counting, with overflows
generating interrupts.

Event timing mode from zero base. Similar to

‘mode 2, except that the counter is cleared

after transferring the current count to the
Buffer/Preset register.

Additional functions:

add 4

add 8

add 16

starts clock operatihg upon a Schmitt Trigger
#2 event rather than starting immediately.

disable clock overflow interrupts. Use this
mode to generate hardware overflow pulses that
will occur too fast for the software interrupt
handler to process. 1In this mode, the 16 bit
software clock will not operate, nor will the
clock-overflow driven sampling provided by DRS
and DPOLL. The DRS routine can, however, be
used for digital-interrupt driven sampling.

low-overhead interrupt handling. This allows
faster interrupt rates to be supported, but at
the expense of DRS clock-driven sampling and
completion routine scheduling. The 16 - bit
software clock and the DPOLL sampling will
s8till function however.

Descriptions of DTLIB Routines and Functions Page 3-17
ETR

PRESET the interval count value for clock modes 0 and 1. It
must be equal to or less than 65535 (decimal). THIS

PARAMETER MDST BE A REAL*4 YALUE.

The clock overflow rate in modes 0 and 1_can be
determined by dividing the clock oscillator rate
(IRATE) by the PRESET value. Thus, an overflow rate of
500 Hz may be obtained by setting IRATE=3 (1 KHz rate)
with PRESET=2.0 (overflow = 1Khz / 2 = 500 Hz).

In clock modes 2 and 3, the value passed as PRESET will
not be used but still must be present.

ICMF the completion/error flag. The flag should be set to
zero by the user's program before calling SETR. This
flag is incremented by one oniy when the clock
overflows in mode 0, or when the clock is stopped by a
stop code.

If a CLOCK OVERRUN error occurs (clock rate too fast),
ICMF will be set to -1.

ICMF is a read/write argument - do not pass a literal
in this argument position.

INTCT the clock-overflow interrupt count. For every INTCT
clock interrupts, a completion routine (if present) is
scheduled.

The default value for INTCT corresponds to a request
after every clock overflow interrupt.

CMPRTN the name of the user-supplied completion routine. This
name must be declared EXTERNAL in the FORTRAN program
that contains the call to SETR or the FORTRAN compiler
will report an error. The completion routine itself
may be either a FORTRAN subroutine or a MACRO-11
subroutine.

IPRIO the interrupt priority level to be used by SETR when

B executing completion routines. The default value is 0
(PRIORITY 0, PRO). Specify this value in a 0-7 range
(representing PRO to PR7 respectively).

Note about the 16 bit software clock:

SETR maintains an internal 16 bit software clock for each
real-time clock. This clock is incremented by one after every
hardware overflow interrupt. When the clock reaches a value of
octal 177777 (decimal 65535, INTEGER*2 -1), it resets to zero
and continues to count up. DTLIB routines IDIR and IDOR may be
used to set and read this software clock, and the clock may
also be read in special modes under the DRS or HIST routines.

Descriptions of DTLIB Routines and Functions Page 3-18
HIST

3.3.6 HIST Collect Data on Schmitt Trigger #2 Events

The HIST routine allows time-interval data to be obtained from
the Real-Time clock, with the Schmitt Trigger #2 as the -
sampling trigger. Either 16 or 32 bit data may be obtained.
The routine also allows sampling memory locations on ST2
events. -This routine is asynchronous - it is called once to
set up the sampling, then returns to the user's FORTRAN program
while the data is being collected via interrupt-driven sampling
"underneath" the FORTRAN program. The flag ICMF can be used to
monitor the status of the sampling. Once sampling 1is in
- progress, HIST can only be called in the special MODIFY mode
until sampling has come to a full stop.

CALL HIST([IBUF],ISIZ, [NBUF], [NREAD], [IUNIT*],
[MODE*], [ISAMPL] , ICMF, IBEF
[,[INTCT*] [, [CMPRTN*] [, [IPRIO*]]]])

~

IBUF Name of an INTEGER*2 single dimensional array to be
used as an input buffer. If this parameter is left
blank (defaulted), the call is in the special "MODIFY
MODE" and only those parameters followed by an asterisk
may be modified. This array will be used to store the
sampled data.

IS12 Total length (words) of IBUF used for the input buffer.
Chapter 2 discusses buffer partioning considerations,
and how NBUF and I1SIZ are used. This parameters should
never be larger than the maximum size of the IBUF
array, although it may be less. This argument is used
solely to check the legality of NBUF, NREAD, and MODE.

NBUF Number of sub~buffers to be maintained. If left blank
(defaulted), a value of one will be substituted. NBUF
cannot be greater than ISIz.

Small sub-buffers cause DATA OVERRUN errors when used
with fast sampling rates. The bigger the sub-buffer,
the smaller the chance of getting DATA OVERRUN errors.
The sampling rate (Schmitt Trigger #2 events) and the
size of the sub-buffers are directly related. Faster
sampling rates require larger sub-buffers.

NREAD Number of data points to take. A "data point" consists
of all the data read as the result of a sampling
trigger. NREAD is the total number of such data points
to collect.

The number of INTEGER*2 values read per sampiing
trigger is either one or two depending upon the value
of MODE.

Descriétions of DTLIB Routines and Functions Page 3-19

[ST

IUNIT

MODE

ISAMPL

ICMF

Specifies from which Real-Time Clock the sampling
trigger will originate. See Chapter 4.

Mode of sampling to be used. The STOP CODES recognized
(valid in MODIFY MODE only) are: -

Value Meaning

-1 Halts all sampling and stops all queued
completion routine requests.

-2 Balts all sampling and allows the completion
routines that have been queued to finish. It
does not queue any more requests.

-3 Completes operation on the current sub-buffer
and stops all queued completion routine
requests.

-4 Completes operation on the current sub-buffer

and allows the completion routines that have
been queued to finish. It does not queue any
more requests.

Operating codes:

0 sample Real-Time Clock "Buffer/Preset register
on ST2 events. If the <clock is running in
modes 2 or 3, these values represent
time-interval data.

1 sample the memory location referenced as ISAMPL
on ST2 events. Note that ISAMPL is either a
variable that contains the address to be
sampled, or is a literal that represents the
address to be sampled. If ISAMPL is defaulted,
the software clock will be sampled.

add 2 to operate in 2 word mode, where the second
word returned is the value of the software
clock. In BIST mode 0 operation, this returns
32 bit time data - the high word is the
software clock overflow count and the low word
is the hardware count. Note that the software
clock is not cleared after ST2 events.

represents the memory location to be sampled in HIST
mode 1 operation. 1In HIST mode 0 with the special two
word mode enabled (+2), ISAMPL is the value used to
preset the software clock before starting ST2 sampling.

the completion/error flag. The flag should be set to

Descriptions of DTLIB Routines and Functions Page 3-20

HIST

IBEF

INTCT

CMPRTN

IPRIO

zero by the user's program before calling HIST. This
flag is incremented by one after all points have been
read or after HIST is stopped by a stop code.

If an error occurs (either a hardware or software DATA

OVERRUN) , ICMF is set to a value of -1. A DATA OVERRUN

error may result from an insufficient number or size of

ggb;buffers, or from an ST2 sampling rate that is too
igh.

ICMF is a read/write argument - do not pass a literal
in this argument position.

the buffer event flag. IBEF keeps a count of the
number of sub-buffers currently available to store
data. The HIST routine initially sets IBEF to the
value of NBUF (the number of sub-buffers). After each
sub-buffer has been filled, IBEF is decremented by one.
If the user is supplying completion routines to process
the data in sub-buffers, he should increment IBEF
(within the completion routine) to signal that a
sub-buffer has become free again.

If the HIST routine decrements IBEF to zero before the

‘last point is read, a DATA OVERRUN error is generated.

IBEF is.a read/write argument - do not pass a literal
in this argument. position.

the point interrupt count. For every INTCT points
gathered, a completion routine (if present) is
scheduled. However, this scheduling takes place only
at the end of sub-buffers regardless of the size of
INTCT. One completion routine execution is scheduled
for each INTCT points.

The default value for INTCT corresponds to a reéuest at
the end of each sub-buffer. Thus, the default value is
equal to 1S1z/(NBUF*# of words/ data point).

the name of the user-supplied completion routine. This
name must be declared EXTERNAL in the FORTRAN program
that contains the call to HIST or the FORTRAN compiler
will report an error. The completion routine itself
may be either a FORTRAN subroutine or a MACRO-11
subroutine.

the interrupt priority level to be used by HIST when
executing completion routines. The default value is 0
(PRIORITY 0, PRO). Specify this value in a 0-7 range
(representing PRO 0 PR7 respectively).

WEDVLAGLAWHD Vi WIMID INWULLIED Qlu T UWivLAIVUD FayYysc 97 &a

TOAC

Y o P R L2

IDAC Single D/A Conversion

The IDAC routine reads and modifies the output values_ of any
one of the installed D/A channels. This routine is synchronous
- all operations are completed before IDAC returns to the user .
program.

CALL IDAC(ICHAN, IUNIT [,IDATA])
or
- IX = IDAC(ICHAN, IUNIT [,IDATA])

ICHAN Specifies which analog output channel is to be read or
written. The channel number may range from 0-3, but
attempts to reference channels not installed on a given
analog output unit will be reported as errors.

IUNIT Specifies which analog output unit is to be accessed..
See Chapter 4.

IDATA If present in the argument list, the contents of IDATA
are loaded into the referenced analog output channel
and is returned as the value of the function. If IDATA
is defaulted (blank), no write operation occurs but

- rather the current value of the @ referenced output
channel is returned as the value of the function.

IDATA is an INTEGER*2 variable.

When this routine is called as a function (IX=IDAC(....)), the
data is returned as the value of the function. 1If called as a
subroutine (CALL IDAC(....)), no data can be returned. All
data is in FORTRAN INTEGER*2 two's complement notation
regardless of the configuration of the output unit. All
necessary data conversions are performed internally.

Descriptions of DTLIB Routines and Functions Page 3-22
IDIR

3.3.8 1IDIR Single Reading of a Digital Input Channel

The IDIR routine allows either memory 1locations or_ Digital
Input Channels to be read by a user program. In addition, IDIR -
allows the software clock to be read, and also allows the user
to perform bit shifts and byte swaps on INTEGER*2 variables.
The operation of IDIR is thus either in a Digital Sampling
Mode, or a Data Processing Mode. This routine is synchronous -
all- operations are completed before IDIR returns to the user
program.

CALL IDIR([ICHAN] ,IUNIT [,[MASK][,IMODE][,IVAR]]])
or

IX = IDIR([ICHAN] ,IUNIT [,[MASK][,[MODE][,IVAR]]])

Pigital Sampling Mode

In this mode, either a memory location or a digital input unit

is sampled. The sampled data is masked with the argument MASK,

and the result is returned as the value of the function call.

In addition, the bits from the sampled data that are masked out
. are checked, and the bit position of the rightmost non-zero bit
. is returned as.the value of IVAR.

To sample memory:

ICHAN must be a positive, non-zero number, and IUNIT
must be the even memory address to be used as the
sampling location.

To sample a digital input unit:

ICHAN must be zero, and IUNIT must specify the unit
number of the digital input unit to be sampled (range
of 0-7, see Chapter 4).

Data masking:

The argument MASK is used to select which bits to
return as the value of the function. Specifically, IX
= <value of register or memory location> .AND. <value
of MASK>. If MASK is defaulted, a value of -1 (all
bits set) will be substituted.

The remaining bits that were 1lost in the masking
process (that is, <value of register>.AND.(.NOT.MASK))
are examined. If IVAR is present, the bit number
(0-15) of the rightmost (or lowest) non-zero bit is
returned in IVAR (counting right to 1left, with -1
indicating that none of the remaining bits were set).

Tescriptions of DTLIB Routines and Functions Page 3-23
DIR

Data Format Conversion:

If the MODE argument is zero or defaulted, the input
data is converted from a four digit unsigned Binary
Coded Decimal format to a 16 bit straight binary
format. . If the MODE argument is non-zero, the input ,
data is returned exactly as received and no conversion
is performed.

To demonstrate the above, consider this example:

IX = IDIR (0,0,'1777,1,IVAR)

In this example, ICHAN=0, IUNIT=0, MASK= 1777 (base 8), MODE=1,
and IVAR is specified. This combination means

* sample the data in digital input unit 0

* use a mask of 0 000 001 111 111 111 (binary),
1777 (octal)

* do not convert from BCD to binary (MODE=1)

* indicate to caller through variable IVAR the
highest bit in the digital input unit that was
ignored due to masking by 1777

. If the digital input unit contains 51724 (octal), then IX will

.. be set to 1724 (octal), which is 51724.AND.1777. IVAR will be
set to 12 (decimal), indicating that the rightmost bit in the
digital input register that was not also in the mask was bit
number 12.

Although this example uses 1literals in the argument 1list,
variables could just as easily be used. Note however that
argument IVAR is a read/write argument - do not pass a literal
in this position.

Data Processing Mode
In this mode, the value passed in the MASK argument position is

processed according to the value of the MODE arqument., To
enable this mode of IDIR operation,

* ICHAN must be defaulted or equal to zero.

* IUNIT must be negative
(note: the actual value of IUNIT has meaning in certain
circumstances - see below).

MODE is zero:

The value passed as MASK is byte-swapped (that is, the
high and 1low bytes of the 16 bit value are swapped).
The result is returned as the value of the function’ and
also as thealue of IVAR, if given.

Descriptions of DTLIB Routines and Functions Page 3-24
IDIR

MODE is positive:

The value of MASK will be bit-shifted right MODE times.
Zeroes will be shifted in to fill the word, and bits
shifted out are 1lost. If IVAR is given, .TRUE.
(integer value =-1) is returned in IVAR if the last bit

shifted out was a one, .FALSE. (integer value 0) will
be returned if the 1last bit was a zero. The actual
shifted value is returned as the value of the function.

MODE is negative:

The value of MASK will be bit-shifted left MODE times.
Zeroes will be shifted in to fill the word, and bits
shifted out are 1lost. If IVAR is given, LTRUE.
(integer value -1) is returned in IVAR if the last bit
shifted out was a one, .FALSE. (integer value 0) will
be returned if the 1last bit was a zero. The actual
shifted value is returned as the value of the function.

MODE is defaulted:

The software clock of <clock unit #<(-IUNIT)-1> is
returned as the value of the function, and is also
returned in IVAR if given. The clock value is ANDed
with MASK before being returned. The software clock
itself is not modified.

To demonstrate the above, consider the following example:
Ix = IDIR ('-I,IDATA'4'IVAR)

In this example, ICHAN is defaulted, IUNIT=-1, MASK=IDATA,
MODE=4, and IVAR is specified. This combination means

data processing mode

use value of IDATA

shift right 4 bits (MODE= +4)
return status of last bit shifted
(IVAR specified)

* % % »

If IDATA=1763 (octal), 1011 (decimal), then IX will be set to
. 77 (octal), 63 (decimal). IVAR w111 be set to .FALSE. as the
last bit shifted out was a zero.

Although this example uses 1literals in the argument 1list,
variables could Jjust as easily be used. Note however that
argument IVAR is a read/write argument - do not pass a 1literal
in this position.

scriptions of DTLIB Routines and Functions Page 3-25
OR

3.3.9 IDOR Single Loading of a Digital Output Channel

‘The IDOR routine ailows either memory locations or. Digital
Output Channels to be loaded by a user program. In addition,
IDOR allows the software clock to be read and modified. The
operation of IDIR is thus either in a Digital Loading Mode, or
a Clock Data Processing Mode. This routine is synchronous -
all operations are completed before IDOR returns to the user
program.

CALL IDOR([ICHAN] ,IUNIT [, [MASK]I,[IWORD][,IVAR]]])
or
IX = IDOR([ICHAN] , IUNIT [,[MASK] [, [IWORD][,IVAR]]])

In this mode, either a memory location or a digital output unit
is loaded. The output data is a function of MASK and IWORD.

To write memory:

- ICHAN must be-'a positive, non-zero number, and IUNIT must be
- the even memory address to be written into. '

To load a digital output unit:

ICHAN must be zero, and IUNIT must specify the unit number of
t?e digital output unit to be loaded (range of 0~7, see Chapter
4).

Data masking:

The argument MASK is used to select which bits in the
output destination (either memory or a digital output
unit) are to be modified. 1If an output register bit is
selected by the presence of a one in MASK at the same
position, then the new state of the output bit is
determined by the same bit in IWORD. Specifically, for
a given bit position (numbers represent the value of
the bit, not the position),

MASK bit IWORDP bit Destination bit
0 don't care same state as before,
not changed
1l 0 set to 0
1 l set to 1

-

A logical expression that describes this process is
presented below:

Descriptions of DTLIB Routines and Functions Page 3-26
IDOR

(IWORD.AND.MASK) .OR. ((.NOT.MASK) .AND. (01d value in register))

The default value for MASK if MASK is left blank 1is -1 (all
bits set). The value substituted for IWORD if IWORD is
defaulted is zero. N

The value returned as the value of the function is the final
composite data written to the output destination. If IVAR is
present, this data is also returned in IVAR.

€lock pata Processing Mode

In this mode, the software clock of unit number <(-IUNIT)-1> is
read and possibly modified (see below). To enable this mode of
IDOR operation,

* ICHAN must be defaulted or equal to zero.
* JUNIT must be negative

The software clock of clock unit #<(-IUNIT)-1> is returned as
the value of the function, and is also returned in IVAR if
given. The clock value is ANDed with MASK before being
returned.

. After being read, the clock is loaded with the 16-bit value of
¢ ITWORD.. If IWORD is defaulted, the clock will not be loaded.
Thus, IDOR can read and write the clock, returning the old
value as the value of the function and in IVAR (if present),
while loading a new value into the clock.

Nescriptions of DTLIB Routines and Functions Page 3-27
RS

3.3.10 DRS Real-time Sampling of the Digital Inputs

The DRS routine initiates and controls real-time sampling of
the digital input channels. The digital input channels can be .
sampled in a variety of modes with the collected data being
stored in an input buffer. This routine is asynchronous - it
is called once to set up the sampling, then returns to the
user's FORTRAN program while the data is being collected via
interrupt-driven sampling "underneath"™ the FORTRAN program.
The flag ICMF can be used to monitor the status of the
sampling. Once sampling is in progress, DRS can only be called
in the special MODIFY mode until sampling has come to a full
stop. ‘

CALL DRS([IBUF],ISIZ, [NBUF], [NREAD],ICHAN,IUNIT,
MASK*, [MODE*] , ICMF, IBEF
[, [INTCT*] [, [CMPRTN*] [, [IPRIO*]]1])

IBUF Name of an INTEGER*2 single dimensional array to be
used as an input buffer. If this parameter is left
blank (defaulted), the call is in the special "MODIFY
MODE" and only those parameters followed by an asterisk
may be modified. This array will be used to store the
digital data. -

ISIz Total length (words) of IBUF used for the input buffer.
Chapter 2 discusses buffer partioning considerations,
and how NBUF and ISIZ are used. This parameters should
pever be larger than the maximum size of the IBUF
array, although it may be less. This arqument is used
solely to check the legality of NBUF, NREAD, and MODE.

NBUF Number of sub-buffers to be maintained. If left blank
(defaulted), a value of one will be substituted. NBUF
cannot be greater than 1SIz.

Small sub-buffers cause DATA OVERRUN errors when .used
with fast sampling rates. The bigger the sub-buffer,
the smaller the chance of getting DATA OVERRUN errors.
The sampling rate (generated externally or by the Real
Time Clock) and the size of the sub-buffers are
directly related. Faster sampling rates require larger
sub~-buffers.

NREAD Number of data points to take. A "data point"™ consists
of all the data read as the result of a sampling
trigger. NREAD is the total number of such data points
to collect. .
The number of INTEGER*2 values read per sampling
trigger is either one or two (see MODE description

Descriptions of DTLIB Routines and Functions Page 3-28

DRS

ICHAN

IUNIT

MODE

below).

When ICHAN is zero, IUNIT is interpreted as a unit
number to s8pecify which DT2768 unit is to be sampled
(see Chapter 4). Wuen ICHAN is a positive number,
IUNIT is interpreted as a memory address to be sampled. .

The meaning of this parameter depends upon the value of
ICHAN above. Note that when IUNIT is used to specify a
memory address, IUNIT must be an even number.

the 16-bit value that is 1logically ANDed with the
sample data just before the data is stored in IBUF.

Mode of sampling to be used. The STOP CODES recognized
(valid in MODIFY MODE only) are:

Yalue Meaning

-1 Halts all sampling and stops all queued
completion routine requests. .

-2 Halts all sampling and allows the completion
routines that have been queued to finish. It
does not queue any more requests.

-3 Completes operation on the current sub-buffer
and stops all queued completion routine
requests.

-4 - Completes operation on the current sub-buffer

and allows the completion routines that have
been queued to finish. It does not gqueue any
more requests.

Operating modes:
(add codes of all desired functions to generate MODE)

0

Input data is in Binary-Coded-Decimal format (BCD).
Convert to straight binary before storing data.

Input data is already in straight binary format. Store
data exactly as received.

Similar to mode 0 (BCD conversion), except that a second
word is also stored in IBUF immediately after the data
(this second word is described below).

Similar to mode 1, except that a second word is also
stored in IBUF immediately after the data (this second
word is described below).

-

The second word stored in modes 2 and 3 is an integer with a
‘value from¥0 to 15. This value represents the bit position of

Descriptions of DTLIB Routines and Functions Page 3-29
RS

the right-most non-zero bit in the data word (note that the
input data is ANDed with MASK before this calculation is done).
If a -1 is returned as this value, it indicates that there were
no set bits in the masked data.

" Unless otherwise specified, triggering will occur under DT2768
REQUEST A control.

add 4 to use REQUEST B as the trigger source rather than
REQUEST A.

add 16 to select clock overflow triggering (over-rides the
REQUEST B or REQUEST A software options)

In addition, if basic modes 0 or 1 have been selected, the user
can instruct DRS to return a "time-stamp"™ with each collected
point. This "time-stamp"” is simply the value of one of the
software clocks that count clock overflows. The clock value is
stored immediately after the collected data.

add 8 to have the software clock returned as the second word

If an operation is selected that uses one of the clocks, DRS
must be told which clock to use. The following table indicates
what to add to the MODE value to select one of the clocks for
either overflow-triggering or for the software clock value.

Add Clock Bnit
nothing Unit 0
32 Unit 1
64 Unit 2
96 Unit 3

Additional options:

add 128 to have the DT2768 CSR0 output bit set during the
sampling interval (useful as a sampling gate to user
hardware)

add 256 to have the DT2768 CSRl1 output bit set during the
sampling interval (useful as a sampling gate to user
hardware)

ICMF the completion/error flag. The flag should be set to
: zero by the user's program before calling DRS. This
flag is incremented by one after all points have been

read or after DRS is stopped by a stop code.

If an error occurs (either a hardware or software DATA
OVERRUN) , ICMF is set to a value of -1. A DATA OVERRUN
error may result from an insufficient number or size of
sub-buffers, or from a hardware sampling rate that is
too high.

pUescriptifils O VIiLlb RUULLINES aliv ruivtiavuo -mgw W ew

DRS

IBEF

INTCT

CMPRTN

IPRIO

ICMF is a read/write argument - do not pass a literal
in this argument position.

the buffer event flag. IBEF keeps a count of the
number of- sub-buffers currently available to store
digital data. The DRS routine initially sets "IBEF to .
the value of NBUF (the number of sub-buffers). After
each sub-buffer has been filled, IBEF is decremented by
one. If the user is supplying completion routines to
process the data in sub-buffers, he should increment
IBEF (within the completion routine) to signal that a

sub-buffer has become free again.

If the DRS routine decrements IBEF to zero before the
last point is read, a DATA OVERRUN error is generated.

IBEF is a read/write argument - do not pass a 1literal
in this argument position.

the point interrupt count. For every INTCT points

gathered, a completion routine (if present) is.

scheduled. However, this scheduling takes place only
at the end of sub-buffers regardless of the size of
INTCT. One completion routine execution is scheduled
for each INTCT points.

The default value for INTCT corresponds to a request at
the end of each sub-buffer. Thus, the default value is
equal to ISIZ/(NBUF*# of words/data point).

the name of the user-supplied completion routine. This
name must be declared EXTERNAL in the FORTRAN program
that contains the call to DRS or the FORTRAN compiler
will report an error. The completion routine itself
may be either a FORTRAN subroutine or a MACRO-11
subroutine.

the interrupt priority level to be used by DRS when
executing completion routines. The default value is 0
(PRIORITY 0, PRO). Specify this value in a 0-7 range
(representing PRO to PR7 respectively). :

nescriptions of DTLIB Routines and Functions Page 3-31
POLL

3.3.11 DPOLL Digital Input Polling

The DPOLL routine allows either memory locations or_ digital
input units to be monitored for positive bit transitions
(change from a 0 to a 1) every clock overflow interrupt. These -
transitions are recorded for examination later by user
software, allowing transient events to be captured. This
routine can also be used to 'debounce' digital inputs in this
same manner. Finally, DPOLL allows time-latency measurements
to- be taken - to measure the number of clock-overflow
interrupts that occur before a specific digital event occurs.

The DPOLL routine is used in conjunction with the SETR
routine. Only one memory location or digital input unit can be
polled at a time by a specific clock, but all clock units (up
to the maximum of four) can be performing polling at once.

The order of calling would be DPOLL to set-up polling,
then SETR to initiate sampling. SETR should be called in
repeated-interval mode, with either regular or low-overhead
interrupts. Once polling has started, additional calls can be
made to DPOLL to detérmine the status of polling.

CALL . DPOLL (ICLOCK, MODE [¢+ MASK])
or
IX = IDPOLL (ICLOCK, MODE [, MASK])

ICLOCK Specifies which Real-Time Clock is to be used in this
DPOLL call. This value can range from 0-3, but must
represent an installed clock.

MODE Specifies what operation is to be done, and how MASK is
' to be processed (if present) according - to the
following:

Polling Set-up

0 clear previous polling operation (if any), interpret
MASK as a digital I/0 unit number (range 0-7) to be
polled. -

1 clear previous polling operation (if any), interpret
: MASK as a memory address (must be an even number) to be
polled.

Polling Start

2 start input polling. MASK will be used as a 16 bit
mask to determine which bits to examine during- the
polling operation. The response register is cleared
before polling starts.

Descriptions of DTLIB Routines and Functions Page 3-32
NPOLL

3 start latency measurement. MASK will be used as a 16
bit mask to determine which bits to examine during the
latency measurement. The response register is cleared
before polling starts.

Sample Polling Results

4 read results of polling from response register. Use
MASK to select which bits to test in the response
register, but do not reset the bits that have been

. tested after testing. :

5 similar to (4), but reset the bits that have been
tested so that new events can be detected.

6 sample response register to check for a response

7 sample latency register to determine how 1long the
latency time was in real-time clock "ticks".

Stop Polling

8 stop polling operation. MASK ignored.

MASK optional INTEGER*2 argument that is used in certain
: modes by DPOLL. See the above descriptions for
E information. -

Note that the response register will only detect 0 to 1
transitions of the bits that are being monitored. When a 0-1
transition is detected, the equivalent bit is set in the

- response register. The response bit will remain set until
explicitly cleared, either by starting a new polling operation
or by sampling the response register in the "re-arm" mode (mode
5 above). This structure allows brief events to be captured,
in addition to insuring that very long events are only reported
once. Remember that all polling is done on the basis of the
clock interrupts generated by one of the real-time clocks
through the SETR routine.

D~scriptions of DTLIB Routines and Functions Page 3-33
T16,INT16,KBCD2B,KB2BCD

3.3.12 PLT16 Convert to REAL*4

The FLT16 will convert an unsigned INTEGER*2 "time" value such
as those produced by IDIR,IDOR,DRS, and HIST from the software .
clock, and convert it to a REAL*4 value in the 0-65535
(decimal) range.

X = FLT16 (1)

X is a REAL*4 variable and I is an INTEGER*2 variable. An
error will be generated if I is defaulted.

3.3.13 INT16 Convert to INTEGER*2

The INT16 will convert a REAL*4 value in the 0.0 to 65535.0.
(decimal) range into an unsigned INTEGER*2 value.

I = INT16(X)
X is a REAL*4 variable and I is an INTEGER*2 variable. An
- error will be generated if X is defaulted. If X is less than

zero, INT16 will return 0. If X is greater than 65535.0, INT16
will return 65535.0.

3.3.14 KBCD2B Convert BCD to Binary

The KBCD2B routine will convert a 4 digit Binary Coded ~ Decimal
number stored in an INTEGER*2 variable into straight decimal in
the 0-9999 range.

I = KBCD2B(J)
Both I and J are INTEGER*2 variables. An error will be

generated if J is defaulted. 1Invalid results will be returned
if J is not in BCD format.

3.3.15 KB2BCD Convert Binary to BCD

The KB2BCD routine will convert a straight binary number in the
0-9999 range into a four digit Binary Coded Decimal number.’

Descriptions of DTLIB Routines and Functions Page 3-34
FLT16 ,INT16 ,KBCD2B,KB2BCD

J = KB2BCD(I)

Both I and J are INTEGER*2 variables. An error will be
returned if I is defaulted, if the input data is negative, and
if the input data is larger than 9999, -

3.3.16 LWAIT Wait for Real-time Operation Complete

The LWAIT routine waits for the value of the first argument to
become different from the value of the second argument. The
routine will not return to the user program until the arguments
are different. When called as a function, the value of the
first argument is returned as the value of the function.

CALL LWAIT (I,J)
or
IX = LWAIT (I,J)

Both I and J are INTEGER*2 variables. An error will be
~returned if I or J is defaulted.

3.3.17 CVSWG_Convert Switch-Gain Data

The CVSWG routine is provided solely for compatability with
earlier versions of DTLIB. The routine converts the INTEGER*2
A/D data into a REAL*4 value. The IGAIN value is ignored. For
new programs, the user is urged to use the FORTRAN function
FLOAT(IDATA) instead.

RDATA = CVSWG (IDATA [,IGAINI)

Both IDATA and IGAIN are INTEGER*2 variables. RDATA is a
REAL*4 variable. An error is returned if IDATA is defaulted.

?escriptions of DTLIB Routines and Functions Page 3-35
1I[SP

3.3.18 DISP Display Data

The DISP routine displays data on an XY oscilloscope‘b; ‘an XY
plotter. . Data can be continuously refreshed (for an
oscilloscope), or be output just once (for a hardcopy plotter).

CALL DISP(MODE [,IBUF1,[IBUF2],IBUFO,
NPTS,NSTART, INCR])

MODE Mode of display to be used. Select one of the basic
codes, then add in any extra options desired. Note:
Options can not be added to the -1 code, the stop code.

Yaiue Meaning

=1 Halts any display of data currently in progress
(remainder of arguments ignored). .

0 Use the data in IBUF1 as x-channel data, the
data in IBUF2 as Y-channel data, generate
composite internal-format data in IBUF0, then
output a series of X-Y data values to the X and
Y D/A converters.

1 Use the data in IBUF1 as X-channel data, ignore
IBUF2, generate internal-format data in IBUFO,
then output a series of X data values to the X
channel D/A converter.

2 Use the data in IBUF1 as Y-channel data, ignore
IBUF2, generate internal-format data in IBUFO,
then output a series of Y data values to the Y
channel D/A converter. .

add 8 To display data once rather than continuously
(FLASH) .

add 16 To disable the internal software triggering of
the plotting process. Use this mode if the
interface is configured for external control of
point-plotting speed (for example, if a hard
copy plotter is being used).

IBUF1 INTEGER*2 array of 12 bit two's complement data
representing either X or Y channel data as indicated by
MODE. There are NSTART+(NPTS*INCR) words in this
array. - -

Descriptions of DTLIB Routines and Functions Page 3-36

DISP

IBUF2

IBUFO

NPTS

NSTART

INCR

INTEGER*2 array of 12 bit two's complement data
representing Y channel data (MODE 0 only). Ignored
(leave defaulted) in any mode other than mode 0. There
are NSTART+(NPTS*INCR) words in this array.

INTEGER*2 array used by DISP to buffer data "for the .
point plotter. This array must be of an appropriate
size:

MCDE O: NPTS*2 words
MODE 1: NPTS words
MODE 2: NPTS words

Number of points to plot. Note that this does not
necessarily indicate the size of the input arrays:
NSTART+ (NPTS*INCR) indicates how many real points are
contained in the input buffers - NPTS merely indicates
how many of these points will actually be displayed.

Number of first point to plot in input buffers. This
parameter is identical to the FORTRAN array reference -
a value of 1 indicates the first point.

Increment between points. For example, INCR=3 means
plot every third point. INCR=1 means plot all points.

CHAPTER 4

System Integration

4.1 Introduction

This chapter discusses in detail the procedures required
to cause DTLIB to operate properly given a particular
pPeripheral configuration. However, there are some 1limitations
on which DTI interface models and which etch revisions will
function completely correctly under DTLIB control. Before
attempting to configure and operate DTLIB with your set of
interfaces, check the revision level of the interface products
to insure .that they meet the minimum levels specified in Table

4.1. The interface may have a higher revision level - these
are the minimum levels.

Model No: EP No. Revision Level EE€O #
DT2762 EP-050 E 146
DT2762/57xx EP-050 F 177
DT2764 EP-050 E 146
DT2765 EP-050 E 146
DT2766 EP-043 D 153
DT2767 EP-043 D 153
DT2768 EP-058 C 167
DT2768-1 EP-058 C 167
DT2769 EP-057 J 273
DT2771 EP-075 E 270
DT2772 EP-089 B 196
DT2774 EP-089 B 196
DT2775 EP-089 B 196
DT2781 EP-074 Cc 203
DT2782 EP-073 E 223
DT2784 EP-073 E 223
DT27 85 EP-074 B 184

Zable 4:] Minimum Hardware Revision Levels

The Data Translation EP number and the etch revision lével
will be found on the solder side of the interface circuit card

System Integration Page 4-2

(the side that does pot have components protruding). Should
the interface system not meet the revision 1levels above,
-consult Data Translation. In many cases, interfaces can either

.. be operated at 1lower revision 1levels at some particular

" sacrifice in DTLIB performance, or can be field-upgraded to
current revision levels. The ECO (Engineering Change Qrder)
number listed above next to the etch revision level is the ECO
that wupgrades earlier revisions to the new etch level. Note:
Contact DTI for the correct ECO to field- or factory-upgrade
earlier revisions. The ECO numbers listed above are those that
upgraded the printed circuit board etch itself.

4.2 1Inter-board Connections

Most of the A/D interfaces supported by DTLIB allow a
software selectable trigger source. Many users hardwire the
two A/D trigger inputs to the outputs of the Real Time Clock.
Ordinarily the clock overflow output is connected to the A/D
RTC INL input, while the clock ST2 or ST1 output is connected
to the A/D EXT TRGL input. The Schmitt Trigger signal
conditioning circuitry on the Real Time Clock can be used to
generate a TTL output pulse to trigger the A/D when a certain
threshold and slope polarity is seen on an analog signal.

- Consult the DT2769 .User's Manual for more information on the

- operation of the Schmitt Triggers. DTLIB does not require such
interconnections: the only requirement is that a trigger
source of some kind be connected to the appropriate A/D
interface when DTLIB enables the particular trigger input.

4.3 Physical Placement of Interfaces

Because the LSI-11 determines interrupt priority of
simultaneous interrupt requests by the 1location of the
interrupting interfaces on the bus, the user can tailor the
interrupt response of his system by judicious arrangement of
interfaces.

By ranking all of a user's interfaces in order of
importance, an interrupt priority can be established. For
example, if the most important task in the machine is the
collection of data from a particular A/D interface, placing
this interface immediately adjacent to the processor card
insures that this interface will take priority over all other
simulataneous interrupts. This small change in system
configuration can allow higher data rates to be achieved.

" As a further example, consider a case where the seérial
~console interface is placed in a higher priority bus slot than

the A/D inteérface. Now, if both interfaces request service at

i
i

vstem Integration rayc «—-9
iterface Placement

the same time, the processor will handle the serial interface
first, temporarily ignoring the A/D request (lower priority).
Handling the s8erial interface request first may result in an
A/D data overrun error if another A/D trigger occurs before the
previous data was read by the processor. -

In summary, higher data acquisition performance will be
achieved if the data acquisition interfaces are placed in
higher priority bus slots than slower, less important
interfaces (printers, serial interfaces, etc.). The user is
urged to read the DEC microcomputer 1literature on interrupts
and. the LSI-11 bus for a more thorough understanding of system
layout.

NOTE

If your system contains a DLV11lJ, verify that its ECO
level is Rev E or above. Rev D and earlier boards may
randomly interact with I/0 and interrupt transactions
regardless of whether the DLV11J is being addressed.

4.4 Installing DTLIB.

The DTLIB binary distribution kit consists of a DEC RX0l
(single density) compatible diskette (LAB-DATAX software
distribution diskettes contain the same files, but are
distributed on RX02 double density diskettes). A directory of
the files contained on this distribution diskette will be found
in Appendix A. After the user verifies that the interface
hardware to be supported by DTLIB is all of the correct
hardware revision 1level, the DTLIB package must be installed.
The following sections should be read and the instructions
obeyed as the user configures a working DTLIB software library
customized for his system. ‘

4.4.1 Copying the distribution diskette

_ Set the DTLIB distribution diskette aside for a moment,
and prepare a new blank diskette by typing
INITIALIZE/BADBLOCKS <device where new diskette is located>

This initializes the directory of the diskette and also
scans the entire diskette surface for magnetic defects. Now,

“using the DTLIB distribution disk and the freshly prepared

blank diskette, copy the entire contents of the DTLIB diskette

System Integration Page 4-4
Installing DTLIB

. onto the blank diskette. Save the distribution diskette in a
safe place as a file copy. Use the newly copied diskette to
generate the operating version of DTLIB.

4.4.2 1Initializing the hardware configuration file

On the diskette containing the copied DTLIB files, use
EDIT, TECO, or KED to create a text file named "CONFIG.MAC" on
the diskette. This text file will eventually be used as input
to the RT-11 MACRO assembler - if the user desires to insert
comments in this file, each comment line must be preceded by a

semicolon. Appendix C contains a sample CONFIG.MAC file for
use as an example.

This text file must start with

«MCALL START
START

These two lines should be at the very beginning of the
text file. After these 1lines, each class of hardware
interfaces supported by DTLIB will be described by 1lines of
text. Do not mix types of entries; that is, do not mix
classes of interfaces.. All analog input . interfaces must be
described as a group, all clocks as a group, etc.

-~

NOTE

The configuration process automatically assigns
- software unit numbers to interfaces in a specific group
“ in the order in which multiple interfaces are declared.
These unit numbers (described as IUNIT in Chapter.3),
start from a zero-base. Therefore, the first interface
in a group is unit # 0, the second # 1, and so forth.

4.4.3 Describing analog input interfaces

The analog input interfaces (models DT2762, DT2764,
DT2782, DT2784 and the expanders DT2772, DT2774) along with the
input portions of the analog 1/0 interfaces (models DT2781,
DT2785) are described by an entry in the “"CONFIG.MAC" file in
the following format:

-

AINPUT BASE=<bb>,VECTOR=<vv>,NUMCH=<nn>

where <bb> is the octal base address of the interface, <vv> is

?vstem Integration Page 4-5
ixstalling DTLIB

the octal vector address of the interface, and <nn> is the
eectal number of installed A/D input channels (including any
expander interfaces). All three of these parameters must be
correct for the particular interface being described or
improper operation will result. B

If the particular interface being described has the
programmable gain amplifier option, add

» PG=PRESENT

to.the end of the AINPUT 1line. If the interface being
described is a model DT2782 or DT2784 with on-board DMA
interface, add

,DMA=PRESENT

to the end of the AINPUT line.

NOTE

Models that have both DMA and PG options 1lose the
ability (under DTLIB control) to scan multiple channels
and to operate in burst mode (applies only to RTS calls
that request the use of DMA).

~

The first AINPUT entry is assigned software unit number 0,
the second entry unit number 1, the third number 2, and the
fourth number 3. These unit numbers will be needed by user
FORTRAN programs to tell DTLIB which of the analog input
interfaces to use when performing A/D conversions. The user
may want to put small adhesive 1labels on the interfaces
themselves and/or on their connecting cables to allow easy
mapping from the software unit numbers to the actual
interfaces. There is a maximum of four entries describing
analog input interfaces - any additional entries will result in
errors when the user attempts to build his DTLIB library.

If there are no analog input interfaces in the target
system, do not enter any AINPUT declarations.

4.4.4 Describing isolated analog input interfaces

The isolated analog input interfaces (model DT2765 and
expander DT2775) are described by an entry in the "CONFIG.MAC"
file in the following format:

-

ISOLATED BASE=<bb>,VECTOR=<vv>,NUMCH=<nn>

System Integration Page 4-6
Installing DTLIB

- where <bb> is the octal base address of the interface, <vv> is
the octal ~vector address of the interface, and <nn> is the
octal number of installed A/D input channels (including any
expander interfaces). All three of these parameters must be
correct for the particular interface being described or
improper operation will result.

If the particular interface being described has the
programmable gain amplifier option, add

» PG=PRESENT

to the end of the ISOLATED line.

The first ISOLATED entry is assigned software unit number
0, the second entry unit number 1, the third number 2, and the
fourth number 3. These unit numbers will be needed by user
FORTRAN programs to tell DTLIB which of the isolated analog
input interfaces to use when performing A/D conversions. The
user may want to put small adhesive labels on the interfaces
themselves and/or on their connecting cables to allow easy-
mapping from the software unit numbers to the actual
- interfaces. There is a maximum of four entries describing
isolated analog input interfaces - any additional entries will
result in errors when the user attempts to build his DTLIB
library.

. 'If there are no analog input interfaces in the target
system, do not -enter any ISOLATED declarations.

4.4.5 Describing analog output interfaces

There are three distinct forms of the AOUTPUT declaration,
depending upon whether a model DT2781/DT2785 (output portion of
analog I/0), a model DT2766 (multiple outputs), or a model
DT2767 (multiple outputs) analog output interface is being
defined.

For a DT2781/DT2785:

AOUTPUT BASE=<bb>,NUMCH=2,TYPE=<tt>

where <bb> is the octal base address of the analog 1I/0
interface plus 4, <tt> is either the word UNIPOLAR or BIPOLAR
as appropriate for the interface.

For a DT2766:

AOUTPUT BASE=<bb>,NUMCH=<nn>,BITNUM=TWELVE, TYPE=<tt>

where <bb> is the octal base address of the analog output
interface, <nn> is the number of installed output channels

/stem Integration Page 4-7
1stalling DTLIB

(usually 4), and <tt> is either the word UNIPOLAR or BIPOLAR as
appropriate for the interface.

For a DT2767:
AOUTPUT BASE=<bb>,NUMCH=<nn>,BITNUM=EIGHT, TYPE=<tt>

where <bb> is the octal base address of the analog output
interface, <nn> is the number of installed output channels
(usually 4), and <tt> is either the word UNIPOLAR or BIPOLAR as
appropriate for the interface.

The first AOUTPUT entry is assigned software unit number
0, the second entry unit number 1, and so forth up to the
eighth entry which is assigned the number 7. These unit
numbers will be needed by user FORTRAN programs to tell DTLIB
which of the analog output interfaces to use when modifying an
output channel. The user may want to put small adhesive labels
on the interfaces themselves and/or on their connecting cables
to allow easy mapping from the software unit numbers to the
actual interfaces. There is a maximum of eight entries
describing analog output interfaces - any additional entries
will result in errors when the user attempts to build his DTLIB
library.

If there are no analog output interfaces in the target
system, do not enter any AOUTPUT declarations. Please note
that all channels on an interface system must be configured
UNIPOLAR or BIPOLAR together - DTLIB does not support mixed
channel types on a single interface, only on multiple
interfaces.

4.4.6 Describing point plotter interfaces

The point plotter interface (model DT2771) is described by
an entry with the following form:
PLOTTER BASE=<bb>,VECTOR=<vv>

where <bb> is the octal base address of the interface, and <vv>
is the octal vector address of the interface.

If there are no point plotter interfaces in the target
system, do not enter any PLOTTER declarations. Only one
PLOTTER entry will be allowed.

System Integration Page 4-8
Installing DTLIB

.4.4.7 Describing real-time clock interfaces

The Real Time Clock interface (model DT2769) is described
by an entry with the following form:

CLOCK BASE=<bb>,VECTOR=<vv>

where <bb> is the octal base address of the interface, and <vv>
is the octal vector address of the interface.

The first CLOCK entry is assigned software unit number 0,
the second entry unit number 1, the third unit number 2, and
the fourth entry unit number 3. These unit numbers will be
needed by user FORTRAN programs to tell DTLIB which of the Real
Time Clocks to use in a given operation. The user may want to
put small adhesive labels on the interfaces themselves and/or
on their connecting cables to allow easy mapping from the
software unit numbers to the actual interfaces. There is a
maximum of four entries describing real time clock interfaces -
any additional entries will result in errors when the user
attempts to build his DTLIB library.

If there are no Real Time Clock interfaces in the target
system, do not enter any CLOCK declarations.

4.4.8 Describing digital I/0 interfaces

The digital I/0 interfaces (models DT2768 and DT2768-1I)
are described by entries that take the following form:

DIGITAL BASE=<bb>,VECTOR=<vv>

where <bb> is the octal base address of the digital 1/0
interface, and <vv> is the octal vector address of the
interface.

If memory sampling is to be used under DRS control, a
special pseudo-digital unit must be declared before actual
hardware is described. 1In addition, this pseudo-unit may be
declared even if no actual digital hardware is installed to
allow DRS to sample memory under clock control. The form of
this special declaration is:

DIGITAL MEMORY=ACTIVE

This declaration must precede any actual digital hardware
declarations, but the declaration will not affect the software
unit numbering of later declarations.)
The first DIGITAL entry is assigned software unit number
0, the se:sand entry unit number 1, and so forth up to the

fystem Integration ' Page 4-9
astalling DTLIB

eighth entry which is assigned the number 7. These unit
numbers will be needed by user FORTRAN programs to tell DTLIB
which of the digital 1/0 interfaces to use when modifying an
output channel or reading an input channel. The user may want
to put small adhesive 1labels on the interfaces themselves
and/or on their connecting cables to allow easy mapping from
the software unit numbers to the actual interfaces. There is a
maximum of eight entries describing digital I/0 interfaces -
any additional entries will result in errors when the user
attempts to build his DTLIB library.

- If there are no digital 1/0 interfaces in the target
system, do not enter any DIGITAL declarations.

4.4.9 Completing the confiquration file

When all the hardware has been declared via entries, the
following two 1lines should be inserted at the very end of the-
file "CONFIG.MAC".

DONE
«END

A Once these lines are included, the file should be closed
~and the editor exited.

4.4.10 Generating the DTLIB product

With the file “CONFIG.MAC" filled with the correct
hardware description entries, the user can now build his
customized copy of DTLIB. ‘

To do this, the following logical device assignments must
be made:

ASSIGN <generation diskette device name> INP
ASSIGN <DTLIB object copy destination device name> ouP

Before continuing with the build procedure, the user must
make sure that the RT-11 utility programs MACRO and LIBR are
present on the system disk. With this accomplished, type

€INP:BUILD ’
to execute the command file that will build the DTLIB copy. If
any errors are reported, the user should check his file
CONFIG.MAC for correctness and try the build procedure again.,

The final result of this installation procedure is a file

System Integration Page 4-10
Installing DTLIB

named DTLIB.OBJ. This file contains the entire DTLIB library,
configured for the user's specific peripherals. Once
installed, this DTLIB.OBJ file is the only file needed to
utilize DTLIB, and is only needed when linking FORTRAN programs
(it need not be present when programs are actually rup). Save
both the original distribution diskette and the backup copy
made earlier in a safe place as a precaution against accidental
physical or magnetic damage. DTLIB modifications and
corrections distributed by Data Translation will require the
files found on these two copies.

-

APPENDIX A

Binary Distribution Kit Contents

The following directory indicates the files distributed with
DTLIB V02-01.

03-Sep-80

BUILD .COM 3P 03-Sep-80 CONLIB.ML 18P 03-Sep-80
EXMPL1.FOR 11P 03-Sep-80 EXMPL2.FOR 7P 03-Sep-80
EXMPL3.FOR 6P 03-Sep-80 EXMPL4 .FOR 9P 03-Sep-80
EXMPLS5 .FOR 12P 03-Sep-80 SAVEM .FOR 6P 03-Sep-80
ARG .OBJ 1P 03-Sep-80 ABLK .OBJ 2P 03-Sep-80
CMPRTN.OBJ 2P 03-Sep-80 INIT .OBJ 2P 03-Sep-80
ERROR .OBJ 2P 03-Sep-80 LWAIT .OBJ 1P 03-Sep-80
CVSWG .OBJ 1P 03-Sep-80 KBCD2B.OBJ 1P 03-Sep-80
KB2BCD.OBJ 1P 03-Sep-80 FLT16 .OBJ 1P 03-Sep-80
INT16 .OBJ 1P 03-Sep-80 IADC .OBJ 1P 03-Sep-80
ISOADC.OBJ 1P 03-Sep-80 RTS «OBJ 12P 03~-Sep-80
ISORTS.OBJ 4P 03-Sep-80 IDAC .OBJ 1P 03-Sep-80
DISP .OBJ 2P 03-Sep-80 SETR .0OBJ 4P 03-Sep-80
HIST .OBJ 7P 03-Sep-80 IDIR .OBJ 2P 03-Sep-80
IDOR .0OBJ 2P 03-Sep-80 DRS .OBJ 6P 03-Sep-80
DPOLL .0OBJ 2P 03-Sep-80

31 Files, 131 Blocks
355 Free blocks

APPENDIX B

Sample Throughputs

B.l Test Conditions

The following throughput tests were all made on Data
rranslation LAB-DATAX laboratory computer systems. These
systems all had the following in common:

1.

LSI-11/2 processor (which does not use microcode
refresh) equipped with floating point instruction set
(DTLIB does not explicitly use this option)

.KPV-11 pbwer',sequencer and - program-controlled Line

Time Clock

64 Kbytes of memory, of which 56 Kbytes can be
addressed by the processor

RX02-compatable floppy diskette system (1 Mbyte of
storage)

RT-11 V4 SJ monitor, as distributed by DEC (no’ SYSGEN
options)

FORTRAN/RT-11 V2.1 compiler with all DEC-distributed
patches to 8/11/80 .

Appropriate Data Translation analog and digital
peripherals with the LAB-DATAX BNC front-panel
connections.

Laboratory-grade test equipment as needed for signal
generation and measurement

Sample Throughputs
1»pendix B

B.2 RTS tests
RTS operating under FAST SWEEP mode

interface product IPRIO=7 IPRIO=0 -
DT2782 41.7 KHz 15.2 KHz
DT2762 23.3 KHz 11.1 KHz

(]
Notes:

Page B-Z

The above rates represent 4000-word transfers, with RTS

being called repeatedly without the error flag beco
(ICMF=-1) . The difference between IPRIO=7 and
represents the servicing of interrupts not related to
data collection taking time from the processor.

RTS under normal collection (mode 0 or 2)

Interface product NCCH=]1 NCCH=8 -
DT2782 11.1 KHz 1.58 KHz
DT2762 10.2 KHz 1.14 KHz

Notes:

The above rates represent 4000-word transfers

ming set
IPRIO=0
the A/D

under

interrupt driven - collection, occurring while both Line Time

Clock interrupts were being serviced along with termi
interrupts. These rates were achieved continuous
repeated RTS calls error-free. Higher rates could be
in bursts (for example, between 60 Hz LTC interrupts).

RTS operating under DMA

Burst Mode

Interface product NECH=1 NECH=8

DT2782 149.2 KHz 68.5 KHz
DT2762 : not applicable not applicable
Burst Mode Disabled

interface product NECH=1 NECH=8

DT2782 33.3 Hz 12.8 KHz
DT2762 not applicable not applicable
Notes:

The a/D converter on this interface is rated at 1

nal 1I/0
ly with
achieved

25 KHz.

Higher rates can be achieved on a single channel due to the

bypassing of the analog multiplexor inter-channel

settling

time. Under DMA with burst mode enabled, the entire buffer is

sampled in one sweep if NCCH=l. Thus, the 33
represents how often the entire 4000 word transfer

Hz " time
could be

Sample Throughputs Page B-3
Appendix B

accomplished (represents an effective 133 KHz conversion rate,
which is similar to the 149 KHz rate under non-burst, but
includes inter-buffer software overhead also, which lowers the
overall rate).

B.3 SETR tests

Using a +/- 10V triangle wave as an input to Schmitt Trigger #1
SETR (operating at STl rate)

simple compl. routine, mode 1 926 Hz

no completion routine, mode 1 4.17 KHz
low overhead interrupts 4,76 KHz

APPENDIX C

Sample Confiquration File

Sample DTLIB 6onfiguration file

Remember to precede all comment lines with semi-colons

In addition, all numbers typed will be interpreted as octal
numbers unless a decimal point is typed immediately after
the number. This is important to remember when typing the
number of channels.

Generate start of file

Ve Ve VG Ve N WO Ve W e W N

+MCALL START
START

define analog inputs

DT2762-PG-SE at factory standard addresses
will become analog input unit #0

P es e we wo e we

INPUT BASE=177000,VECTOR=130,NUMCH=16 ., PG=PRESENT

DT2782-8DI-C at factory standard addresses
will become analog input unit #1

D we %o we we

INPUT BASE=170400,VECTOR=400,NUMCH=8.,DMA=PRESENT
DT2781-8DI analog 1/0, define just the input part here

user-set addresses (not factory standard)
will become analog input unit #2

yso we we %e %o we

INPUT BASE=177010,VECTORé140,NUMCH=8.

DT2769 real-time clock
factory standard addresses
will become real-time clock unit #0

() ™0 %0 %0 wo % we

LOCK BASE=170420,VECTOR=440

Sample Configuration File Page C-2

DT2766 as analog output unit $0

bipolar, 12 bits, customer selected addresses
will become analog output unit #0

also define another si‘milar unit as unit #1

NS W W Ve N

AOUTPUT BASE=170450,NUMCH=4, TYPE=BIPOLAR
AOUTPUT BASE=170460,NUMCH=4, TYPE=BIPOLAR

; now define output portion of DT2781 mentioned earlier
£OQTPUT BASE=177014 ,NUMCH=2, TYPE=BIPOLAR

DT2771 point plotter at factory standard addresses
LOTTER BASE=170440,VECTOR=310

define pseudo-digital unit for DRS usage in sampling memory
IGITAL MEMORY=ACTIVE

define 3 digital I/0 units at customer selected addresses

we %o %o U ve e we w0 Ifne e we

DIGITAL BASE=170470,VECTOR=450
DIGITAL BASE=170500,VECTOR=460
DIGITAL BASE=170510,VECTOR=470

all done with sample (remember that all numbers will be
evaluated as octal numbers unless a decimal point follows
the number to indicate a decimal number).

N0 WO NS WP N9 N N

DONE
«END

APPENDIX D

Sample Programs

This appendix contains listings of the FORTRAN example
programs distributed with DTLIB. The listings begin on the
next page.

Sample Programs Page D-2

D.1 Example Program 1
PROGRAM EXMPL1

Example #1

e XoXe!

C Using DTLIB subroutines HIST and SETR to measure the

C frequency of an external frequency source. This example

C has been written assuming the frequency of the external

C signal to be approximately 1 KHz. For demonstration

C purposes a 1 KHz pulse train should be connected to the

C Schmitt Trigger #2 input of the DT2769 Real-Time Clock

C board.

C

C Signal connections:

C

C TTL level, without external level potentiometers connected
C to DT2769:

The TTL level select switch for ST2 (Sw#3 switch#4)
must be turned ON to select the TTL level for ST2
firing, and the variable level select switch (SW#3 -
switch#3) must be turned OFF. The firing polarity
switch can be in either the ON or OFF position.

non-TTL level or TTL level, but using either on-board

or off-board level potentiometers:

~ The TTL level select switch for ST2 (Sw#3 switch#4)
must be turned.OFF, and the variable level select
switch (Sw#3 switch#3) must be turned ON to select
variable control of the ST2 firing level. The firing
polarity can be in either the ON or OFF position.

Note: SW#3 switch #4 means switch pack #3, switch section #4
With these external connections and adjustments made the

user can start running this test program which will display
the frequency of the input signal on the user terminal. -

sieleXoloNeNo Yo NeNoeKeNeXoReXeXeXo Xe Ro X o)

C The procedure to measure the frequency will be to set up

C the HIST routine to take 10 readings of the Buffer/Preset

C Register in mode 3 clock operation running at 100 Khz. The

C SETR routine will be used to actually set the clock for

C mode 3 operation at 100 Khz. After the ten BPR readings are

C obtained, the count is converted to a time interval and then

C averaged over the ten readings. The final average time

C interval then represents the period of the input signal from

C which frequency is obtained by inversion.

C

C Above a 3 KHz rate there may be an increasing number of "hits"
C between the HIST routine performing sampling and the external
C signal, causing hardware flag errors on the Real Time Clock.

C In this sample program, this will cause the FREQUENCY TOO HIGH
C message to be displayed. -

imple Programs Page D-3
tample Program 1

Declare some required buffer space.

DIMENSION BUF(10),IBUF(10)

Number of BPR reading : NREAD=10 .

NREAD=10

Clock unit number (change to operate on another clock)

. IUNIT=0

Clock operation rate : IRATE=2 (100 KHz)

IRATE=2

Clock operation mode : MODE=3+4=7

where: 3=external event (ST2) from zero base
4=start clock on ST2

MODE=7

Tell user about program, then write freq of 0 message while
collecting first buffer of data

0000 00000 000 ann OO0 0o

WRITE(5,900) IUNIT,NREAD, IRATE, MODE
900 FORMAT(1H , 'Example program to measure the frequency of an'/

1H ,'external signal connected to the ST2-in line'/
1H ,'of clock # ',12,'. The period will be averaged'/
¢ 1H ,'over ',12,' readings with the clock IRATE = 'Y 11/
1B ,' and MODE = ',I11//7//)
FREQ=0.0
; GOTO 25
C
C Set all completion/error flags to zero
C
1 ICMF=0
IBEF=0
ICMF2=0
C
C - Set the ISIZ variable to the dimension
C . of the buffer array IBUF : ISIZ=10
C :
ISIz=10
C
C . Now call the HIST routine to set up the
C software for the required data,
c :
CALL HIST(IBUF,ISIZ,,NREAD,IUNIT,,'ICMF,IBEF)
C ;
C Now start the clock via SETR, the previous
C call to HIST set up all the HIST parameters
C

CALL SETR(IRATE, IUNIT, MODE, 0, ICMF2)

sample Programs Page D-4
Fxample Program 1

C
C Now wait until the HIST routine completes
C its data gathering. This will be signaled
C by the completion/error flag going to 1
C from the zero state. _
c -
CALL LWAIT(ICMF,0)
C
C Check for frequency too high (ST2 events too fast
C for software interrupts to handle)
C
- IF (ICMF .EQ. =-1) GO TO 30
C
C Now convert the input time readings of the BPR
o into real-numbers and then convert the numbers to
C milliseconds. The conversion of the clock counts
C to REAL*4 data is accomplished by means of the
C FLT16 function.
C
DO 10 I=1,NREAD
X=FLT16 (IBUF(I))
BUF (I)=X*0.01
10 CONTINUE
C
C Now average the period over the ten data points.
C
SUM=0.0
DO 20 I=1,NREAD
SUM=SUM+BUF (I)
20 CONTINUE
PERIOD=SUM/NREAD
c
€ Convert the average period into frequency.
C
IF (PERIOD.EQ.0) GOTO 1
FREQ=1.0/PERIOD
C
C Check for input frequency too low to be displayed
C
IF (FREQ .LT. 0.0l1) GO TO 40
C
C Print out the current value of the frequency
C on the terminal.
C
25 WRITE(5,1000) FREQ
1000 FORMAT(1H+, 'Frequency= ',F4.2,' KHz')

GO TO 50

ample Programs
xample Program 1

O000n

OOOOONOO

Messages for limits of frequency response.

WRITE(5,1001) A
FORMAT (1H+, 'Frequency too high 7)
GO TO 50

WRITE (5,1002)
FORMAT(1H+, 'Frequency too low ')

_ CONTINUE

Turn off the clock, so that it can be
restarted for the new iteration.

CALL SETR(-1,IUNIT,0,0,0) -

Go back for another iteration.
To stop the program, type two CONTROL-Cs,
which will exit back to RT-11l.
(Remember to do a RESET command in RT-11
before running another program)

GO TO 1
STOP
END

Page D-5

Sample Programs
Example Program 1

D.2 Example Program 2

OO0 OO0 aO0000O00O00O0LO

PROGRAM- EXMPL2

Example #2

This example illustrates how the SETR subroutine
is used to operate the Real-Time clock in an

non-interrupt driven mode to act as a programmable
pulse generator.

Declare the clock rate array

DIMENSION RATE(6)

Assign the 5 clock rates and a sixth stop rate
DATA RATE/1.0E6,1.0E5,1.0E4,1.0E3,1.0E2,0.0/

preset the clock unit # and tell user (change this
line to select other clocks)

IUNIT=0

WRITE(5,99) IUNIT

FORMAT(1H ,'Operating on clock unit ',Il/
1H ,'Enter a frequency of zero to exit.'/)

Query the user. for the required frequency .
WRITE(5,100)

READ(5,101) FREQ

FORMAT(1HS, 'Frequency? ')

FORMAT(E10.0)

Exit Check - if FREQ=0, exit

IF (FREQ .EQ. 0.0) GO TO 999

Page D-6

Sample Programs Page D-7
xample Program 2

C
C Start the IRATE and PRESET finding iteration.

C This iteration process will start at the fastest

C oscillator frequency and work its way down to)
C slower frequencies, trying to find the RATE/PRESET
C combination that will most accurately synthesize

C the requested frequency. If the frequency can't

C even be approximated, the program will report

C that fact to the user.

C

C

C

C

2

start at IRATE =], array RATE(i) = corresponding base
frequency

IRATE=0
IRATE=IRATE+1

determine the PRESET value needed to synthesize the
requested frequency with the main clock oscillator
set to IRATE.

PRESET=RATE(IRATE)/FREQ

if PRESET is less than 1 and we are at the 1MHz base
rate, then the requested frequency is too fast.

IF ((PRESET.LT.I.O).AND.(IRATE.EQ.I)) GO TO 3

L
C

C

C

C

C

C

C

C

C . .

C if PRESET is too large (>65535) and there are still more
C slower base rates to check, loop back and shift clock to
C next slower rate.

C

C

C

(o

C

C

C

(o

C

IF((PRESET.GT.65535.0).AND.(IRATE.LE.S)) GO TO 2

if we had to step all the way to 6, the requested frequency
is too slow - report.

IF(IRATE.EQ.6) GO TO 4

for later use, make PRESET rounded to the nearest integer value
while keeping it a REAL*4 value

PRESET=AINT (PRESET)

Sample thgrams Page D-8
Example Program 2

Here we have a PRESET and IRATE in range, S0
we first call SETR to turn off the clock
from the last set value, then we will call
SETR to set the clock running at the new
rate and preset. The clock must be turned
off before reseting it to avoid a device
conflict error (in case a previous SETR call
was still active on the clock). When SETR is
used to set the clock running at the new rate
the mode selected is 1+8=9 where
1 selects repeated interval
8 selects no interrupts
(we only need to generate hardware
signals, not software interrupts)

o¥eNeXeXeXeleKeXeNeKeXeNeEeleXe]

CALL SETR(-1,IUNIT,,,)
CALL SETR(IRATE,IUNIT,9,PRESET,ICMF)

After setting the clock for the new rate
we report the actual frequency synthesized to the
user, then return and query the user again.

anonnn

WRITE (5,170) FREQ,RATE(IRATE)/PRESET
GO TO 1

-0
~
o

FORMAT (1H ,'Requested frequency: ',Gl12.6,' Synthesized',
¢ ' frequency: ',Gl2.6)

The various error reporting code follows each
of which returns to the query point after the
error is reported.

WRITE(5,150)
50 FORMAT(1H ,'Requested frequency is too fast to synthesize'/)
GO TO 1

WRITE(5,160)
60 FORMAT(1H ,'Requested frequency is too slow to synthesize'/)
GO TO 1 :

O b HWOOOOON

C insure that clock has stopped before exiting (good programmin
practice)
C
999 CALL SETR(=-1,IUNIT,,,)
STOP
END

Sample Programs Page D-9
xample Program 2

D.3 Example Program 3
PROGRAM EXMPL3
Example #3 =

This sample program illustrates the usage of the

IADC subroutine for gathering A/D data. The program
will input data from a user specified channel and
display the reading as a voltage on the user terminal
in units of volts.

Variable declarations

eXeXeNo oo Yo e Ko Ko ke

INTEGER ICHAN,IUNIT,ISTAT,INPUT
REAL FSR,LSBVAL,VOLTS

Define the value of the Least Significant Bit from the A/D

Note that the A/D data returned is already in FORTRAN integer
form. You can display the number in octal, decimal, or whatever,
but the number itself represents the voltage as the number of
LSB pieces needed to duplicate the voltage. Therefore, to convert
this number into a number that represents standard engineering
units (volts, millivolts, etc) a numeric conversion is necessary.
:In this case, the A/D binary data will be converted to volts.

Declare the LSB weight for a +/- 10.0 volt system

FSR is the A/D converter's Full Scale Range. For a +/- 10 volt
converter, this means that its FSR is 20 volts. Change this
program line if a different FSR applies to your A/D.

FSR = 20.

with the Full Scale Range defined, the value of the Least Significant
bit is computed by dividing the FSR by the resolution of ‘the A/D
converter. For a 12 bit converter, this is 2°*12 or 4096. Change
this program line if a 14 or 16 bit A/D converter is being used.

 LSBVAL = FSR / 4096.
This line sets up the Job Status Word so that the ITTINR
subroutine will work under the FB monitor. For more
information, see the RT-11 Programmer's Reference, under
ITTINR.
CALL IPOKE("44,"100.0R.IPEEK("44))

Start out by querying the user for the unit and channel.

000 OO0 AOCONO0N sieleNoloNeXeReNeXeXeXe X XeXe o Ne)

WRITE(5,97)
FORMAT(1E ,'Entering -1 for the channel allows the'/
¢ 1B ,'unit to be reset. Use control-C to exit.'/)

o
~

Sample Programs
Example Program 3

C
5

98
99
C

10

100
101
C
C

C

-
o
N

OO OO0 OQO0OONONOOOOONONONOO

WRITE(5,98)
READ(5,99) IUNIT
FORMAT(1HS$,'Unit? ')
FORMAT(I2)

WRITE(5,100)
READ(5,101) ICHAN
FORMAT(1HS, 'Channel? ')
FORMAT(12)

C Unit humber reset check

IF (ICHAN .EQ. -1) GO TO 5
WRITE(5,102)

Page D-10

FORMAT(1H ,'Type a carriage return to modify the channel.'/)

For this example we will fix the gain to 1

which is accomplished by defaulting the gain
parameter in the IADC call. In this example

IADC is being used as a function, one could

just as easily use it as a subroutine by calling
it e.g. CALL IADC(ICHAN,IUNIT,,INPUT)

in the above call statement note that the gain

_parameter has been defaulted.

INPUT=TADC (ICHAN, IUNIT)

Convert the input to voltage by using the LSB
conversion weighting.

VOLTS=LSBVAL*INPUT

Print out the current voltage to reading to
the user terminal.

WRITE(5,120) VOLTS
FORMAT (1H+, 'VOLTAGE= ',F7.3)

Now check the TTY to see if the user wants to

. change the channel (signified by typing a

return) or not.

ISTAT=ITTINR()
IF(ISTAT.LT.0) GO TO 20
GO TO 10

STOP

END

Sample

Programs Page D-11

xample Program 3

D.

el ie koo oo oo e oo Re e NoeNo oo e Ro e NeXe Ko Ne Xe Xe e Xe Xe Xe XeXe Xe o XeXeXo de Yo Xe Xe o o N e

4 Example Program 4
PROGRAM EXMPL4

Example #4

This example is to illustrate the use of SETR and RTS in combination
to perform real-time clock-driven sampling. Although the CLOCK '
OVERFLOW signal is used in this example, any TTL trigger signal
(subject to the the requirements of the A/D board, see hardware
manual) could be used. If the clock is not used, remove the SETR
calls.

In this example the SETR routine will first be called to set the
DT2769 Real-Time clock running as a free-running pulse generator at a
1 Hz frequency so that the clock overflow pulses that will be used to
trigger the A/D system will trigger a conversion every 1 second.
After the clock has been set up as a hardware trigger source, the RTS
routine will then be called an instructed on how to collect A/D data.
Note that the RTS always requires some external hardware trigger
signal to actually trigger the A/D converter - in this example, the
Real Time Clock is being used to generate this hardware signal. The
user must insure that the CLOCK OVERFLOW signal from the clock is
connected to the RTC INL signal of the A/D converter (a special small
wire is shipped with all DTI real time clocks for this purpose).

The RTS routine will be used to collect 10 samples in the input

buffer. Since the clock is generating trigger signals every second,

this collection process will take 10 seconds. After the buffer is
filled the data obtained is displayed and a new sampling is done for
ten more points.

It is important to remember that under nearly all operating modes,
the RTS routine collects data asynchronously. That is, the RTS
routine will return back to the main-line FORTRAN program immediately
after setting up the sampling. While the FORTRAN program continues to
execute, DTLIB is collecting the data using the PDP-11 interrupt
structure from the A/D converter. This means that the data will
gradually £fill the input buffer as data is collected, but that the
data buffer initially is empty (contains random data). In order for
the FORTRAN program to determine when all of the data is ready and

‘that DTLIB has finished collecting data, the main program must

monitor the flag variable ICMF. When ICMF changes from the initial 0
to a 1, this means that DTLIB has finished collecting all the data
and the data buffer is now valid. If ICMF changes from the initial 0
to a -1, this means that DTLIB encountered some type of sampling
error while taking data, and that some or all of the data buffer may
not be valid.

Sample Programs Page D-12
Example Program 4

C
C Declare the buffer and other variables
C
DIMENSION IBUF(10)
INTEGER IBUF,ICMF, ICMF1,MODE, MODEl,IUNIT, IUNIT1 =
INTEGER IS1Z,NBUF,NREAD, ISTCHN,NCCH, IGAIN, IBEF
REAL PRESET
C
C talk to user
C
- WRITE(5,100)
100 FORMAT(1H ,'Sample program for real-time A/D operation'//)
C
C Start the clock for free running operation at a 1 Hz rate
C with no software interrupts (hardware overflow only)
C 8o MODE=1+8=9, PRESET=100. , IRATE=5
C
MODE1=9
PRESET=100.
IRATE=5
IUNIT1=0
ICMF1=0
CALL SETR(IRATE,IUNIT1,MODEl,PRESET, ICMF1)
C
C Now call RTS to perform the real time sampling
C for ten samples. Before RTS is entered the completion
C error flag must always be reset.
C
C The parameters used here are:
C
C IS1z = size of buffer = 10
C NBUF = #of subbuffers =1
C NREAD = #of data points = 10
C ISTCHN = start channel =0
C NCCH = consecutive chan =1
C IGAIN = amplifier gain =1
C MODE = CLK OVF driven = 2
Cc
ISIz=10
NBUF=1
NREAD=10
ISTCHN=0
NCCH=1
IGAIN=1
MODE=2
. ICMF=0
IUNIT=0

'make the call to RTS

o000 -

CALL RTS(IBUF,ISIZ,NBUF,NREAD,ISTCHN,NCCH,IUNIT,IGAIN,MODE,
¢ 1ICMF,IBEF) .-

Sample Programs Page D-13
tample Program 4

C
C Print out the waiting for data message
C
WRITE(5,110)
110 FORMAT(1H ,'Data acquisition in progress'/) .
C .
C Wait for the completion flag to be set
C
CALL LWAIT(ICMF,0)
c ‘
C The completion flag is set so data acquisition
C ~is complete, now print out the message that
C the data has been gathered and then print out the
C actual ten data values.
C
IF (ICMF.EQ.~1) GOTO 130
C
WRITE(5,115)
C
C Print the data. Note that the data is already in FORTRAN INTEGER
C form, so that any desired formatting may be used for output. In
C this case, the data is being displayed in octal.
C
WRITE(5,120) (IBUF(I),I=1,10)
115 FORMAT(1H ,'Data acquisition complete'/)
120 = FORMAT(1H ,‘'a/D= ',06)
. GO TO 1 '
C .
C error reporter
C
130 WRITE (5,140)
140 FORMAT (1H ,'Collection error'/)
GOTO 1

END

DQUNIPLT L LVYL Ao

Example Program 4

D.5 Example Program 5
PROGRAM EXMPL5

C
C***t*************t*********t*****t***************t****t**t**t********k

C* - *

C* Example program to demonstrate use of completion routines in~ *

Cc* conjunction with file data storage. *

C* *

C**t*************t**************************t*******t******************

C

C This program utilizes the RTS subroutine to collect large numbers

C of data points and store them on disk in an output file. The number

C of points and the file name can both be specified by the user.

C

C The data collection utilizes the sub-buffer feature of RTS; the main

C buffer is 1000 points, split into ten 100-point sub-buffers. RTS

C fills these buffers as if they were arranged in a ring, that is, it

C starts with sub-buffer number 0, then number 1, and so on up to

C number 9, then back to number 0 again. It continues looping around in

C this way until the desired number of data points have been collected.

C The variable IBEF indicates the number of buffers which are not

C filled with data at any given time. At the start of program
execution,

C this number should be 10; each time that RTS fills a buffer, IBEF
will

be decremented by one.

The subroutine SAVEM takes the data from the buffer and writes it out
to the user's file, one sub-buffer at a time; SAVEM is called by RTS
every time that a sub-buffer is filled.

The subroutine SAVEM is in a separate source file, and must be
compiled separatly. When linking, include both this object file
and the SAVEM object file in the list of modules to be linked.

Note: ;

Under the RT-11 operating system, this program should be compiled
with the /NOSWAP option; this will insure proper operation of the
system subroutine GETSTR.

**

e YeYeXeXeToTeteReRe e Xe ke Xe ke

Sample Programs

Page D-15

tample Program 5

CrERERRARRRARRE RN RRRRRRR AR R AR R R AR AR AR AR AR AR AR R AR SRR AR A AR ARk k ko kk

C
C
C

oXoNeXoNeNeXe]

Program declarations.

EXTERNAL SAVEM
COMMON/ SAVEM/ IBEF , NBUF ,NCNT, NSUBSZ,NLINE,

FORMAR(20) SCALE, NOUT,NREAD, IBUF(lOOO)
LOGICAL*1 INPSTR(15) lUsed to input the user's filename
LOGICAL*1 ERRFLG IAn error flag set by GETSTR

Initialize the program parameters.

The format of the output line: (in 4 char chunks, REAL*4
holds 4 char)

(1 ,9(F7.3,1X),F7.3)

DATA FORMAR(l),FORMAR(Z),FORMAR(B),FORMAR(4),FORMAR(5),

FORMAR(6)
/.(IH ""9(F".7o3'."1X)""F703.") ./

NBUF = 10 IThe number of sub-buffers

NCNT = 0 ' IThe number of the next sub-buffer

ISIZ = 1000 1Size of the buffer

NSUBSZ = 1ISIZ/NBUF IThe size of each sub-buffer

NLINE = 10 IThe number of data points printed
lon each line of the output file

SCALE = 20./4096 : !{Scale factor for +/- 10V inputs

NOUT = 0 IThe number of points in the file

Sample Programs Page D-16
Pxample Program 5

ChRrr AR AR AR AR AR R R AR R R R AR AR A AR R R R AR A AR AR AR R AR R AR R AR A AR AR Rk A Ak kkhhk

eNeXeXeNelp

10
900

(o
C Write

907

15
910

920

Open files and query user for number of points to collect

Get the output file name from the user and open it

WRITE(5,900)

FORMAT(1HS, 'Enter the name of the output file - ')
CALL GETSTR(5,INPSTR,14,ERRFLG)

IF (ERRFLG) GO TO 10

OPEN(UNIT=2,NAME=INPSTR, TYPE="'NEW')

header to file (will also set up all RT-11 file operations)
WRITE(2,905,ERR=12,END=12)

GOTO 15

FORMAT(1H ,'Data file written by DTLIB sample program EXMPLS5')
Some type of file error seen - report and try again
WRITE(5,907)

GOTO 10

FORMAT(1H ,'Error in opening/starting data file')

Get the desired number of data points from the user.

WRITE(5,910) -

FORMAT(1H ,'Enter the number of data points desired'/
1H$,'(>100 points, multiple of 100 points) =-- ')
READ(5,920) NREAD

FORMAT(I5)

IF (NREAD .LE. 100) GO TO 15 1If invalid number of points

umur.&b

G&U’me

§-ample Program 5

(ot 322212 22X 222 2 2222 2222 2222222222 222323222222 2222222322222 2222222322 X 2

C
C
c

aOOOOn 0 (o]

(e XeKeKeKe)

Set the.real-time clock for 100 Hz rate.

IRATE = 5
IUNIT1 = 0O
MODE = 9

PRESET = 1.
ICMFl1 = 0

1Set for 100 Hz count rate
1Set for clock unit #0
IRepeated interval mode; disable the
Isoftware clock

1Set to output pulse every count
IInitial completion flag

CALL SETR(IRATE,IUNIT1,MODE,PRESET,ICMFl)

For efficiency reasons, the number of points sampled by RTS must be

a multiple of NSUBSZ.

So the first step is to compute a new argument

IREAD, which is NREAD rounded up to the nearest multiple of NSUBSZ.

IREAD = (NREAD / NSUBSZ) * NSUBSZ {Rounded gdown value

IF (NREAD ,.GT.

IREAD) IREAD = IREAD + NSUBSZ

Setup the real-time sampling routine for a ten-ring buffer, -
to sample IREAD points, NSUBSZ at a time, and store them away using
the completion routine SAVEM.

ISTCHN = 0
NCCH = 1
IUNIT2 = O
IGAIN = 1
MODE = 2
ICMF = 0
IBEF = 0

IStarting channel of A/D input device

INumber of channels to sample

1Unit number of A/D input

IGain setting of A/D input

ISet mode to use real time clock input trigger
!Initialize completion flag

lInitial buffer event flag; will be set to NBUF

CALL RTS(IBUF,ISIZ,NBUF,IREAD,ISTCHN,NCCH,
$ IUNIT2,IGAIN,MODE, ICMF, IBEF, ,SAVEM)

Sample Programs Page D-18
Example Program 5

C***************************t*t**

C
C

c
940

anon

950

oONOENNOOO
N O
o

Wait for the data to be collected.

WRITE(5,940)
FORMAT(1H ,'Data acquisition in progress'/)
CALL LWAIT(ICMF,0)

If successful collection, indicate so to the user.

. IF (ICMF .EQ. -1) GO TO 20

WRITE(5,950)
FORMAT(1H ,'Data acquisition complete'/)

Close the output file.

CLOSE (UNIT=2)
STOP

Terminate here if an error occurs.

WRITE(5,120)
FORMAT(1H ,'Error in data acquisition'/)

Close the output file anyways, in case something was written
CLOSE(UNIT=2)

STOP '
END <

Qxaﬁpl
D

C

oleNoKoNoXe!

e Program 5

.5.1 Completion routine for Example 5

SUBROUTINE SAVEM
A I I Y e e s

This routine is designed to write data generated by the RTS
A/D sampling routine to an output file. It is intended to be
called using the completion routine mechanism, and receives its
arguments through the common block SAVEM:
COMMON/ SAVEM/ IBEF, IDTLIB Buffer Event Flag
L NBUF, INumber of sub-buffers
L NCNT, ICurrent output sub-buffer
$ NSUBSZ, 1Size of each sub-buffer
$ NLINE, INumber of data points per line
$ FORMAR(20), IThe format array
SCALE, IScale factor for data points
$ NOUT, INumber of data points already output
L NREAD, ITotal number of points to be output
$ IBUF (1) IThe buffer (Actual dimension unknown)

There are some initialization requirements:

NBUF and NREAD should be initialized to appropriate values as
detailed in the DTLIB documentation; note that these values should
not change between calls to SAVEM.

NCNT and NOUT should be initialized to 0.

NSUBSZ should be initialized to the sub-buffer size.

NLINE and FORMAR should be set to the desired output format.
SCALE should be set to the desired scale factor; this is usually
the voltage range divided by 2°N, where N is the number

of bits of data.

SAVEM considers NCNT and NOUT to be internal variables; they only
appear in the common block for the purpose of correct initialization.

The'following buffer is used to convert the input data from its
integer form to the real output form. Note that because it is
limited in size to 20, that NLINE should never exceed 20.

DIMENSION BUF (20)

A A L L e I R I I LI Y Y Y S Y S Y R R T

Sample Programs Page D-20
Completion routine for Example 5

C*********'k***********t**********t******************i***t**************

C
C

C

sXeXeXe

Compute the sub-buffer limit addresses.

INITAD = NSUBSZ * NCNT
IFINAD = INITAD + NSUBSZ - 1 °

Within double loop, convert the integer data to real,
then transmit it to the output file one line at a time.

DO 20 I = INITAD, IFINAD, NLINE
NLIMIT = MINO (NLINE, (NREAD-NOUT))
IF (NLIMIT .EQ. 0) RETURN

DO 10 K = 1, NLIMIT
BUF(K) = IBUF(I + K) * SCALE
CONTINUE

WRITE(2,FORMAR,ERR=800,END=810) (BUF(J), J=1,NLIMIT)
NOUT = NOUT + NLIMIT
CONTINUE

NCNT = NCNT + 1

IBEF = IBEF + 1

IF (NCNT .LT. NBUF) RETURN
NCNT = 0

RETURN

"Error return for bad file operation

WRITE(5,910)
FORMAT(lH ,'Error during write to data file'/)
RETURN

End-of-file encountered

WRITE(5,920)

FORMAT(IH ,'End-of-file encountered during write to f11e'/)
RETURN

END

APPENDIX E
DTLIB End User Binary License Agreement

This License Agreement, made in Massachusetts, is effective
from the date on which it is accepted by Data Translation
Incorporated, a Massachusetts Corporation (hereafter "DTI").
DTI agrees to license

Company or Universit

'Address

(hereafter "CUSTOMER") to operate DTLIB* (hereafter
"SOFTWARE"), a real-time software package supporting ‘analog
and digital peripherals under FORTRAN IV, on a single
Central Processing Unit as described by

T e e e e - —— - —————— e ——— . —— - —

Central Processor Serial Number and Model

——— eam e e - - ———— T e . - — — e ——— e ————

Address

(hereafter "cpu"), subject to the following terms:

* DTLIB is a trademark of Data Translation Incorporated.

JLLIB ENG User pilnary License aylLecucul _-—_—aT - -

1. This License is non-exclusive and non-transferable.

2. SOFTWARE is furnished for use only on specified CPU and
may only be copied, in whole or in part (with the proper
inclusion of copyright notic - on SOFTWARE), for use on such
CPU. -

3. SOFTWARE is furnished to operate in conjunction with
the Digital Equipment Corporation RT-11* operating system
(sJ or FB, Version 3B or greater) executing on an LSI-11* or
LSI-11/2* processor.

4. CUSTOMER warrants that he is 1licensed by Digital
Equipment Corporation to operate the selected operating
system on specified CPU.

Se SOFTWARE is furnished to operate in conjunction with
the Digital Equipment Corporation FORTRAN/RT-11 language
compiler, Version 2.1 or greater.

6. CUSTOMER warrants that he is 1licensed by Digital
Equipment Corporation to operate the selected language
compiler on specified CPU.

7. CUSTOMER shall not provide or otherwise make available
'SOFTWARE or any portion thereof to any third party without
the prior written approval of DTI.

8. Title to and ownership of SOFTWARE shall at all times
remain with DTI.

9. CUSTOMER‘shall pay to DTI a fixed fee of seven hundred
ninety-five dollars ($795.00) payable upon receipt of DTI
invoice.

10. CUSTOMER shall be responsible for all taxes arising
from this agreement, except for DTI income taxes.

11. DTI shall not be 1liable for any losses or damages
resulting from CUSTOMER'S use of SOFTWARE. 1IN NO CASE SHALL
PP?I BE LIABLE POR CONSEOUENTIAL DAMAGES:

12. DTI warrants that SOFTWARE operates as represented and
is free from defects. For a period of one year from the
date of execution of this agreement, all defects encountered
by CUSTOMER will be repaired without charge to CUSTOMER. NO

OFHER WARRANTY IS EXPRESSEP OR IMPLIED.

13. SOFTWARE and any subsequent modifications to SOFTWARE
will be distributed as binary files in RT-11 compatible form
on magnetic media purchased by DTI and billed to CUSTOMER.

-

* RT-11,LSI-11, and LSI-11/2 are trademarks of Digiial
Equipment Corporation.

TLIB End User Binary License Agreement Page E-3

The type of medium to be used is - ——--—-——------—-.-—

14, CUSTOMER shall provide DTI with the name(s) of CUSTOMER
personnel to contact concerning SOFTWARE should assistance
be required in using or repairing SOFTWARE.

Authorized Software Contact(s)

Telephone,TELEX, or TWX Number of Contact(s)

15. Each person executing this agreement on behalf of a
Corporation, Partnership, or Limited Partnership, as the case
may be, warrants that he is duly authorized by said entity to
execute this agreement.

terms will

16. Violation by CUSTOMER of any of the above

result in revocation of the 1license granted by this
agreement. Upon revocation of 1license, all copies of
SOFTWARE electronic, magnetic, or photographic and any
facsimiles thereof in possession of CUSTOMER must be

surrendered to DTI.

Responsible Signer, CUSTOMER

Name

Title

Date

ACCEPTED

Data Translation Incorporated

Name

Title

Date

Logged, DTI Software Support

INDEX

INDEX

AAV-11
ADV-11

Backplane layout

Binary-release kit

Buffer management . . .

Buffer partitioning . .

Bugs

.

L 4

~
MmMPEIMINTOVO~OTMM

3-34

el NS NLTM

e &€ o & & ¢ © o o & o o o+ o

[[] L) L] L . L] L] L) L . L] L] L]

e O o & ¢ o o o o o o
e 6 o o o o ¢ o o o oo
.o o 6 o o o o o 4) o o
3
e o o o o o 0 o) e o
=)
e & o ¢ o o o oci o o
e o o o o o o o DN o N
o] (4]
e ¢ o o o 4 e N O
3]
e e e 0o e 3NROLHO
QN © &
e o o o o £ (o JN1)
-0 ©UTHE
e o o o o -~ O Qi
o"ohm +
e s ¢ 00OV MY
0 e~ £~
Q o5 ¢ e @ ONO-H @
[= (o) nn.lsm.e
el 0ol o U} M@ O T o 7]
+ <+ []
D e @ e b oM MM
[N 4000000
1 2] el 0 4 G U U U Y
u g 3
Mu-+A eOCLOCC SR
- O W ~O000000O0
Qe ord ord sed v ord o
EH -0 SPPLOLDUIUIY
Qo oo mwmc T
[V =R T SN TR Vi Vi Sy]
(o N VI VIR I B e B B = o
Crimi< ODOOOOTO O
ol ord ol ol ed o] o ot ol ol
Qe QR QL
~EEEECccCcEL S
OO0 0000000O0
[SRSRSRSRSRSASRSRSRONS)

nuous sampling .

Copying diskette

1

Cont

CVSWG routine .

-2

-9

-3 [3-35
3-3, 3-31
3-3, 3-27
1-2

2
1
3

1-1, 3-2, 4-1
1-1, 3-2, 4-1
1-1’ 3"2' 4-1
1-1, 3-2, 4-1
1"2' 3"2' 4-1
1-2, 3-2, 4-1
1-2, 3-2, 4-1

1-2' 3-2' 4-17 4"2

1-2, 3-3, 4-1
1-1' 3"2, 4-'1
1"1' 3-2' 4-1
e 1-1, 3-2, 4-1
e 1-2, 3-2, 4-1
. 1-2' 3-2' 4-1
o 1"2' 3-2' 4-1
. 1"2’ 3"2' 4-1

O 1-6

e & & o o o e o ¢ o O O & © ¢ & ¢ o & ¢ O* o

L] [] L

[] L] L J L L] L
[] L] L] L] L]

* L] L] L J

Data collection .

Defects .
DPOLL routine .

DRS routine .

DISP routine
DRV-11

* L] * [] L] L] L J * L L

[L] [] [) L] L] L] L]

L]
L]
L)
L
L]
L
L

DT2762

DT2764

DT2765

DT2766

DT2767

DT2768

DT2768-1
DT2769

[] L] [] ® L]

[]

.

DT2771

DT2772

DT2774

DT2775

DT2781

DT2782

DT2784

L] [4

DT2785

L] ®

DTLIB errors

. 4"1

ECOs

. [N C
4 Strathmore Rd., Natick MA 01760

{DATA TRANSLATION}
(617) 655-5300 Telex 948474

	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	A-01
	B-01
	B-02
	B-03
	C-01
	C-02
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	D-15
	D-16
	D-17
	D-18
	D-19
	D-20
	E-01
	E-02
	E-03
	I-01
	xBack

