AA61568-01

SERIES 6000
DISC OPERATING SYSTEM (DOS-II)

GENERAL SPECIFICATION

Reissued
July, 1972

Datacraft Corporation
1200 N. W. 70th Street P.O. Box 23550 Fort Lauderdale, Florida 33307 (305) 974-1700

| LIST OF EFFECTIVE PAGES |

TOTAL NUMBER OF PAGES IN THIS PUBLICATION IS 97

A

2
3
4
5
6
7
B
C

Page
No.

Title

i thruv
1=

1 thru 1=3
1 thru 2-8
thru 3-32

thru 6=5

1
1
1 thru 5-23
1
1 thru 7-12

A-1 thru A-2

1
1 thru C=3

CONSISTING OF THE FOLLOWING:

- Change Page Change

No. No. ' No.

Original
Original
Original
Original
Original
Original
Original
Original
Original
Original

Original

Original
Original

Original Issue,
July, 1971

Page Change
No. No.

Upon receipt of the second and subsequent changes to this technical document, personnel
responsible for maintaining this publication in current status will ascertain that all previous
changes have been received and incorpo.~ted. Action should be taken promptly if the
publication is incomplete.

Datacraft Corporation

CONTENTS

Section

I GENERAL DESCRIPTION

1-1 R Yoo o
-2 CRaraCter St CS « v o vt et ettt et ettt ettt et

Il - RESIDENT SYSTEM SERVICES

2-1 General v v e e e e e e e e
2-2 Inpui/oufpuf ...
2-3 ABORT c v e tm et e e e
2od EXIT v ve ettt e e
225 HOLD: « « v et e e et e e
2-6 CHAIN «t ettt et e e e e e
2-7 INFO « ottt ettt et e e
2-8 O/M (Operqtor Messqge)
2-9 Executive Trqps
2-9.1 Power Fail /Restore Option,
2-9.2 Program Restrict/Instruction Trap
2-9.3 Stall Alarm «v v
2-9.4 Interval Timer....... D
2-9.5 SAU Overflow/Underflow Trap «««ccvvvnnnennn ..
2-10 Foreground Debug

111 NON-RESIDENT SYSTEM SERVICES

3-1 General ...
3-2 JOb Control -« oot e e e e
3-3 F”e Ed]ﬁng ..
3-3.1 Processor File Editor « » c v v o vttt emie et tete st e e eeeeennenn.
3-3.2 Name File Bditor «« v v it it e it e e e e e,
3-3.3 Source File Editor « « v o vt ittt et e et e ee e e e e
3-3.4 L[brary File Eitor -« v vt i et ettt e e e e e e e s,
3-3.5 Library File Editor Error Message Codes
3-4 Object Time TraCe: « vttt it ettt e ettt i e e
3-5 DeEbUG « v e
3.6 Link Logder « v v ot e it e e e e e e e e e e,
3-6.1 S LINK Statement « « v v v it et et et et e e e et et e e e
3-6.2 Linking Across the 32K Boundary ««.-veveivrininniininnnn...
3-6.3 Common Memory AlloCation v ev ettt tenee e,
3-6.4 Block Data Subprogrqms
3-6.5 Ophons ..
3-6.6 Link qu ...
3-6.7 Code Processing « -« v v v ettt e e i e e e
3-6.8 Error Messqges ..
3-6.9 Link Exqmples ..
3-6.10 Inpuf and Code Placement « - c vt v i v ittt ittt ittt i i i e

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

CONTENTS (Cont'd.)

Section - : Page
v BACKGROUND PROCESSORS AND UTILITIES 4-1

\ LOGICAL FILES AND PHYSICAL DEVICES

5-1 File/Device Assignments viu s 5-1
5-1.1 File Assignments 5-1
5-1.2 Device Assignments 5-2
5-1.3 Blocked File Handling. 5-3

5-2 Input/Output Functions 5-8
5-2.1 All Devices i 5-8
5-2.2 Disc . L e, :5-10
5-2.3 Magnetic Tapeo i e, 5-12
5-2.4 Console Keyanrd S5-14
5-2.5 Console Printer 5=15
5-2.6 Paper Tape Reader 3-16
5-2.7 Paper Tape Punch 5-18
5-2.8 CardReaderttt 5-19
5-2.9 CardPunch. 5-21
5-2.10 Line Printer. 5-22

VI OPERATING PROCEDURES

6-1 Loading Procedurest 6-1

6-2 Operator Control Facilities 6-1
6-2.1 Abort Procedure, 6-1
6-2.2 Hold Recovery Procedure. 6-2

6-3 Using System Processors. 6-~2

6-4 Operator Messages.o u ittt 6-2

VIl SYSTEM GENERATION

7=1 General. 7-1

7-2 Preliminary Procedures 7-1
7-2.1 External Definition Table. 7-1
7-2.2 External Equivalence Table, 7-1
7-2.3 Service Linkage Table 7-2
7-2.4 Miscellaneous Parameter Table 7-2
7-2.5 Priority Interrupt Linkage Table, 74
7-2.6 I/O Handler Linkage Table 7-4
7-2.7 Physical Assignment Table 7-6
7-2.8 System Service Directory 76
7-2.9 Disc Extents Tcble o 7-6
7-2.10 Tape Options Table. 7-6

7-3 System Generation Procedures. uu.... 7-6
7-3.1 SGS Lloading Procedure e 7-6
7-3.2 SGS Operating Procedure e -7

CONTENTS (Cont'd.)

Section Page

VII SYSTEM GENERATION (Continued)

7-3.3 Processor File Development 7-7
7-3.4 Library File Development. 7-10
7-3.5 Name and Source File Initialization. 7=11
7-3.6 Processor File Expansion 7-11
7-3.7 File Listing e e e e e e e e e e e e e e 7-11
APPENDIX A Physical Characteristics of the Moving=Head Disc A-1
APPENDIX B Channel, Unit, and Interrupt Assignments e e e B-1

APPENDIX C Sample System Generation Job Stream C-1

ILLUSTRATIONS

Page
Code Placement FOrMat & . v oo vt oot et e e e e e e 3-30
Block Structure . . o . i e e 5-7
Memory Map . . . o o i e e e e e e 5-8.
Paper Tape‘ Boofstrap e 7-7
Cylinder and Track Relationships A-2

Table

—
[}
—_—

NNN
1
WN —

1 P
NOOAWN —

HhWN —

o
|

\ll\l\.!\l
HON—

TABLES

Page
DOS Memory Map 142
Resident SErvices « + ¢ v o et v v ot et o o s b s b e e e e e e e 2.1
Executive TI'GPS e e e e e e e e e 4 e e e e e e e s e e e e e e e 2?2<5
SAU Trqp Confrol .. 2-7
Job Confrol Statements R LI DR R R P s e e e e 3..42
Library File Editor Error Messages + « -« - v« v o v v v v i i i e i i 3-10
Debug Confrol Sfc”-emenfs 3...]5
Values of Link Parameters « « « « « « c o oo v v v it i i 316
Link LOGder Error Codes 3.,23
Link Loqder Inpuf Codes ----------------------------------- 3_43]
Link Loader Special Action Codes = + ¢+« « v« v v oo v v i v i L 3-32
Standard LogicalFile Numbers « « « v ot v v o v e e e e e e e e e e 541
Standard Physical Device Table« « + v - v v v v v v v v v v 543
Valid l/o Function Codes « « « « ¢« v v v v i e v it it ettt i e e e e e e e 5.9
Line Printer Carriage Control Characters - « - - -« o v oo v v v v i v i oL 5222
DOS Operator MeSSages « « = v v v s v ettt v oo bttt ot e 6-3
Standard Assignments, Service Linkage Table 7-2
Miscellaneous Parameter Table. « « . o« v« v 0 v i i ol o i 7-3
Standard Assignments, Priority Interrupt Linkage - - - -« . - v v oo 74
Standard Assignments, 1/O Handler Linkage Table « -« v - oo v oot 7-5
Sysfem Characteristics s « « + v o v o v o o i e i e b e e e e e e e e e A=l
Standard Channel/Unit and Interrupt Assignments « -+« « o« o oo oo n oL B-1

DOS-II General Specification

SECTION 1
GENERAL DESCRIPTION

1-1 SCOPE

This document contains the basic operational and programming considerations pertinent
to the Series 6000 Disc Operating System FDOS-II).

C1-2 CHARACTERISTICS

DOS is a real time, hardware=interrupt oriented, operating system designed for flexibility
and efficiency. Its organization, modularity and interrupt orientation permit custom system
development. DOS consists of a System Linkage Module, Foreground Executive Module, System
Service Module, 1/O Control System, Link Loader, Debug, and Disc Edit Modules. Object
Time Trace is a service that is optional with the system.

The I/O Control System, which remains resident with the other pertinent services, is
logical-file oriented and employs a simple scheme for communicating with background or
foreground. Single or double buffering is allowed under this scheme. The /O Control System
detects hardware trouble and user errors and initiates appropriate messages to the console
teletypewriter. Job Control, Debug, Trace, Link Loader, and Disc Edit Modules are loaded
from disc into a common non-resident service area of memory, when required. All processors
and utilities are /O independent and function in the background under DOS. (A memory
map of DOS is shown in Table 1-1.) '

Disc storage is divided into logical files (11 through n). Files 11 through 14 are
restricted system files and 15 through n are background work files. The processors on file 11
are in load module format. These processors may be requested externally through Job Control
or internally through the system service CHAIN (refer to Paragraph 2-6). A directory gives
direct access to load modules on the file.

File 12, Library File, contains subprograms only in link module format. This file is
searched by the Link Loader to satisfy external subroutine requests during a linking process.
File 13, Name File, is reserved for user programs or subroutines in link module format. File 14,
Source File, is for symbolic modules (card image) in a compressed and blocked format. File 15,
Link-Ready File, is a temporary work file for preparing link modules for linking or adding to
file 12 or 13. This file should be assigned to binary output for compilation or assembly. Files
16 through 22, Work Files, are for general use by background processors.

DOS uses the absolute sector number in referencing a specific location on the disc
(refer to Appendix A). The sector number is converted to a disc address before executing the
command word. The next available record address is calculated from the requested word
count and the current record address. This new address is tested against the extents of the
file before the disc I/O function is executed f»r the current address.

1=-1

DOS-II General Specification

Table 1-1. DOS Memory Map

Memory High
Foreground Work Area
This is a variable size area of memory (0 to n locations) which may be
defined and accessed by foreground as desired. This area is also used
by the memory file handler if included in the system.
Background
High
Background Area
This is a restricted area of memory allocated to background processors.
If the program restrict option is active, a processor in this area may not
alter memory outside its bounds. System services are accessible from
background through the Service Linkage table.
Background
Low

Approximately
330010

Locations

Memory Low

Non-Resident § s’rel'n Service Area
(approx.HYSO ocations

This area is reserved for Job Control, Link Loader, Debug, Trace, File
Edit and such system services which work in an overlay fashion.

Resident System Service Module
(approx.300 locations)

This module includes system information and initialization services,
chain loader, etc.

Resident I/O Control System
(approx.1500 locations)

The I/O control system contains an I/O control routine plus a handler
for each peripheral device specified in the handler linkage table.

Foreground Executive Modules
0 to- n locations)

Foreground executive modules are user defined routines for desired
foreground processing. plus executive interrupt processors.

Resident System Linkage Module
(approx.200 locations)

This module includes Service Linkage table, 1/O handler linkage table,
Physical Assignment table, Priority Interrupt Linkage table, disc file
extents and miscellaneous parameters.

1-2

DOS-II General Specification

A table of file extents is maintained in the resident system. This table contains the
first and last sector number for each disc file. The user may, at system generation, allocate
disc storage to suit the requirements of his particular system. Disc allocation may also be

modified via the $EXTENTS statement of Job Control (refer to Table 3-1 of Section III of
this document). .

Bookkeeping for sequential file processing is performed by the disc handler, with a full
- complement of logical functions allowed (refer to Paragraph 2=2). Special functions allow
random access of a file once it has been sequentially defined.

DOS-I1I General Specification

SECTION 1II
RESIDENT SYSTEM SERVICES

2-1 GENERAL

The resident system services are those system functions required to serve background
programs. Table 2-1 is a list of the resident system services and their functions. Background
programs may use these services through a Branch and Link Unrestricted (BLU) instruction. The
referenced service is accessed through the Service Linkage table contained in memory locations
0 through 37 (refer to Paragraph 7-2. 3).

Table 2-1. Resident Services

Linkage Address

(Octal) Identification Function
0 BLU S$ABORT Abort current background job.
1 BLU $I/O I/ O control routine.
2 BLU $EXIT Return to Job Control.
3 BLU $HOLD Output operator message and wait.
4 BLU $CHAIN Load absolute program module.
5 BLU $INFO Return system information.
6 BLU $O/M Stack an operator message and continue.

2-2 INPUT/OUTPUT

The Resident [/O Control System performs all /O functions on a priority interrupt basis,
providing the ability to overlap I/O operations and internal processing. Normal I/O requests
are made on logical files; physical devices may be assigned to logical files through Job Control.
Normal /O requests are made via the following sequence of instructions:

ALPHA TLO PARLIST . (K) = address of parameter list.
BLU $I/O . call /O control.

BON ALPHA . repeat request if busy.
. transfer has been initiated and will be
performed on an interrupt basis con-
current with processing.

PARLIST DATA *XXYY . XX=logical file, YY =function code.
DATA n . word count.
DAC BUFFER . buffer address.

BUFFER BLOK n . reserve n words of storage.

2-1

DOS-II General Specification

If a handler is busy when a request is received, a negative condition is returned to
ALPHA+2. If not busy, the request is interrogated for validity. On detecting an error, message
"E@ XXXXXX " is typed and processing is held in an idle state. The address XXXXXX points
to the invalid call (ALPHA+1), allowing the operator to make a correction via Debug and
continue. On being released by the operator, the handler returns a negative condition to
ALPHA+2 forcing the request to be repeated using the corrected parameters. If it is not
desirable to continue, the operator may abort the job.

Valid requests are initiated and a zero condition returned to ALPHA+2. This allows
processing to continue concurrent with a data transfer. Functions not requiring a parameter
list (word count and buffer address) may be executed via the following sequence:

ALPHA TNK ' XXYY . (K)=(logical file/function code).
BLU $I/0 . Call YO control.
BON ALPHA

This sequence may be employed to test status, open a file, etc.

Since operations are made on a priority interrupt basis and each handler maintains its
own busy/not busy status, multiple 1/O functions on different devices may be in process con=-
currently. Acceptable logical files (XX) and function codes (YY) are described in Section V
of this document.

2=-3 ABORT

The ABORT function provides the means whereby the current job can unconditionally be
terminated, either by program control or operator intervention (refer to Paragraph 6=2.1 for
operator initiated Abort considerations). When an Abort command is executed, all /O 'is
terminated, the status of all /O handlers is reset, and all priority interrupts are disabled except
those relating to the Operator Communications Device (OCD). The message "ABORT" is printed
on the OCD and control is transferred to Job Control. ABORT may be initiated under program
control by the following calling sequence:

BLU $ABORT

When ABORT is program initiated, the Job Stream logical device is not re-assigned.

2-4 EXIT

The EXIT function provides the means to terminate a background process without
affecting any 1/O operation that may be in progress. EXIT may be initiated only by program
control. When EXIT is program initiated, the Job Stream logical device is not re-assigned.

Assembly Language Call FORTRAN Call

BLU $EXIT CALL EXIT

DOS-II General Specification

2-5 HOLD

HOLD is an operator communications service wherein a process may be placed in an
"idle" state while a specified message is output to the OCD. The following is the calling sequence
to initiate the HOLD function:

TMK . MESSAGE
BLU $HOLD
MESSAGE f XX =" message text"

where: XX is the octal word count of the text message.

By depressing the control key BELL, the operator may release the current "idle" state
and return control to the point from which the last hold was issued (refer to Paragraph 6 -2. 2).

2-6 CHAIN

CHAIN allows a large program to be segmented into any number of absolute load modules
and "chain loaded" under program control for execution. Different Chain modules may reference
a common data pool and may call each other in any order. The last executdble module should
call EXIT. The CHAIN calling sequence is:

Assembly Language FORTRAN
BLU $CHAIN CALL CHAIN (6HXXXXXX)

DAC =" XXXXXX"
where: XXXXXX is the identification of the module being called.

To initiate a CHAIN sequence, the Job Control statement "LOADGO XXXXXX" is
issued (XXXXXX is the name of the first load module to be executed).
2-7 INFO

INFO provides background processors with system information such as date, lines per
page, options, flags, etc. An information request is as follows:

TOK n
BLU $INFO

DOS-II General Specification

Value of n Result References
1 The 24-bit Option word is returned in the A register. Table 3-1
$SOPTIONS
2 The 9-character date is returned in the E, A, and Table 3-1
I registers. $DATE
3 The lines per page integer is returned in the A register. Table 3-1
$LINES
4 The 24-bit Flag word is returned in the A register. Table 3-1
$FLAGS
5 The Current 6=character job name is returned in the Table 3-1
D register. $JOB
6 The double precision integer for the current run time

is returned in the D register. The time is in microseconds.

7 The background-low address is returned in the E register Table 3-1
and background-high address is returned in the A register. $BG. HI
The non-resident service address (NRS) is in I and
memory high is in J. The operator communications
linkage address, F. CP, is returned in register K. (Refer
to Table 7-2).

8 The link parameter pointers are returned in registers [, J, Table 3-1
and K. [contains the first address of the following $LINK
consecutive parameters: p. name, e . low, e. high, e. start,

I. low, l. high, and c.base. J contains the first address
of the System Service Directory and K contains the last
System Service Directory Address, plus one. This
information is for system processors such as the Link

Loader.

9 The disc file extents associated with the logical file Table 3-1
number specified in register I are returned in registers $EXTENTS
E and A.

The physical device number assigned to logical file 1
is returned in I. The condition register is negative for
an invalid device number and zero otherwise. E and A
are zero if the specified file is not assigned to a disc
file. Register J is negative if the specified file is
restricted. '

2-4

DOS~II General Specificdtion

2-8 O/M (Operator Message)

O/M is an operator communications service whereby a process may stack an operator
message using the following abbreviated calling sequence.

TMK MESSAGE
BLU $O/M
MESSAGE XX ~"message text"

where: XX is the octal word count of the text message.

2-9 EXECUTIVE TRAPS

The executive trap routines are a part of the Foreground Executive Module. The
standard interrupt assignments for the executive traps are defined in Table 2-2.

Table 2-2. Executive Traps

Linkage Address

(Octal) Group, Level Function
60 0,0 Power Down
61 0,1 Power Up
62 0,2 Program Restrict
63 0,3 Instruction Trap
64 0,4 Stall Alarm
65 0,5 Interval Timer
66 0,6 SAU Overflow/Underflow
67 0,7 Address Trap

2-9.1 Power Fail /Restore Option

When power fails, the Power Fail/Restore routine saves all registers and halts the CPU.
When power returns, a "Power Failure, Release to Continue" message is output to the Operator
Communications Device. A release will restore registers and continue the operation of the
current program.

2-9.2 Program Restrict/Instruction Trap

When the Program Restrict key swiich is enabled,the operating system has two modes
operation. The non-resident services such as Job Control, Link Loader, File Edit, and Trace
operate in an Unrestricted mode; that is, these services have access to any location in memory.
All other non-resident services or background programs operate in the Restrict/Unprivileged mode;

2-5

DOS-1I General Specification

that is, the programs may not reference any locations below the "execution low" address of the
program and above "background high". Programs operating in the Restrict/Unprivileged mode
are prevented from executing certain instructions as defined in the Computer System Reference
Manual. '

When a Program Restrict violation occurs the HOLD message "PR VIOLATION «
XXXXXX" is output to the Operator Communications Device where "XXXXXX" is the address
where the violation occurred. A release will generate an Abort.

When an Instruction Trap violation occurs, the HOLD message "IT VIOLATION (¢

XXXXXX" is output where "XXXXXX" is the address where the violation occurred. A release
will generate an Abort.

2-9.3 Stall Alarm

The Stall Alarm is enabled or disabled by the Stall Alarm key switch.
When a Stall Alarm violation occurs the HOLD message "SA VIOLATION @ XXXXXX"

is output to the Operator Communications Device where "XXXXXX" is the address where the
violation occurred. A release will generate an Abort,

2-9.4 Interval Timer

This option provides the system with a run-time service. This time is maintained as a
double-integer in microseconds; zero when the system is initialized and updated, using the
T-register, each second.

A processor may request the current time through the system service INFO as follows:

TOK 6
BLU $INFO

which returns time in register D, accurate to within 10 microseconds relative to the BLU.

This INFO service is used by the $JOB and $EQJ control statements to compute Job-
time.

2-9.5 SAU Overflow/Underflow Trap

223 The SAU Trap routine processes overflow/underflow conditions as described in Table

2-10 FORE GROUND DEBUG

Foreground Debug is a resident system service that can be used to output memory
locations in either octal or ASCII text. A .agister or any location in memory can be modified
with an input statement. Breakpoints can be set and reset in any area of memory. Specific
data configurations can be scanned for in memory. Refer to Section 111 for command definitions.

DOS-11 General Specification

Table 2-3. SAU Trap Control

Option Function
151 DISABLE TRAP
15=0 ENABLE TRAP
14-1 SUPPRESS UNDERFLOW HOLD MESSAGE
14-0 QUTPUT UNDERFLOW HOLD MESSAGE "SAU 4"
13-1 NO ABORT ON UNDERFLOW,; return X=F.P.Z
13=-0 ABORT ON UNDERFLOW
12-1 SUPPRESS OVERFLOW HOLD MESSAGE
12=0 OQUTPUT OVERFLOW HOLD MESSAGE
S 11=1 NO ABORT ON OVERFLOW
11=0 ABORT ON OVERFLOW
OVERFLOW MESSAGES AND RESULTS
"SAU 1" if SQUARE ROOT (-X); return X=F.S.P
"SAU 2" if FIX (X .GE. 2**23); return X=F.S.P
"SAU 3" if DIVISION BY 0; return X=F.S.P
“SAU 5" if EXPONENT OVERFLOW WITH POSITIVE MANTISSA;
return X=F.S. P
"SAU 6" if EXPONENT OVERFLOW WITH NEGATIVE MANTISSA;
return X=F. S. N
* "FER 6" if SIN or COS (X .GT. RANGE); return X-F.P.Z
* "FER 1" if LOG (X .LE. @); return X-F.P.Z
* "FER 2" if EXP (X .GT. 2**7); return X=F.S.P
* "FER13"if ATAN2 (@, B); return X=F.P.Z
10=0 * QUTPUT MESSAGE "ABORT FER 12" and ABORT on FORMATTED
READ ERROR
10=1 * OUTPUT MESSAGE "HOLD FER 12" and HOLD on FORMATTED

READ ERROR; retry after release

OUTPUT MESSAGE "FER 21" and ABORT if MORE THAN 10 FILES
DEFINED FOR FORTRAN RANDOM I/O

QUTPUT MESSAGE "FER 22" and ABORT if ACCESS IS REQUESTED
OF AN UNDEFINED RANDOM FILE

QUTPUT MESSAGE "FER 23" and ABORT if ACCESS IS REQUESTED OF
A RECORD NUMBER WHICH IS NOT ON THE SPECIFIED RANDOM
FILE

* Denotes a Software Triggered Interrupt.

denotes Full Scale Positive value ('37777777, '37777577)
denotes Floating Point Zero value ('00000000, '00000201)
F.S.N denotes Full Scale Negative value (60000000, '00000177)

DOS-II General Specification

Communication between the user and Foreground Debug must be activated with each
statement through the use of the Operator Communications input key (rub out). Once activated

a control statement can be input through the Operator Communications Device. The statement
is processed and control returns to the interrupted process.

The Foreground Debug routine is a part of the Foreground Executive Module. Linkage
of Foreground Debug with the operating system is optional at system generation (See Section 7).

2-8

DOS-II General Specification

SECTION 111
NON-RESIDENT SYSTEM SERVICES

3-1 GENERAL

The non=-resident system services are those service routines that reside on the Processor
File. They are loaded via Job Control statements and overlay the Job Control area of the
system. The Processor File has a directory that permits direct access to these routines. The
directory is entered into the non-resident service area to obtain the information necessary to
load and execute the routine.

The size of the non-resident service area is defined in the System Service module.
Background area begins where the non-resident service area ends. This area must be large
enough to contain any of the following routines: Job Control, Link Loader, EDITPF, and
Debug. The size of the directory must not exceed this area. The following routines use this
area, but may extend into the background area: INCLUDE, EDITLF, EDITNF, EDITSF, and
Trace.

3-2 JOB CONTROL

. Job Control is a non-resident routine without priority. It accepts and processes
commands that monitor the "batch flow" of the system. Job Stream commands are identified
by the presence of a dollar sign ($) in character position one of a symbolic source statement.
This implies that a background processor may not request input from the assigned Job Control
device that has this identification configuration. Should such a request be inadvertently made,
the assigned Job Control device handler moves the statement to a resident Job Control buffer
and transfers control to Job Control. This function prevents one job from interfering with
another job in the batch stream.

If a Job Control command or any of its associated parameters are invalid, the statement
is rejected and the message "ICS" (Illegal Control Statement) is output to the OCD and a "hold"
is performed. On being released (Control Key BELL), control is returned to Job Control for
another statement.

The format of all Job Control statements is as follows: Columnone (i.e., the first print
position) must contain a dollar sign ($); the next j columns contain the command followed by
one space; and the next k columns contain the parameter(s) associated with the command. If
there is more than one parameter to enter, commas will be used as separators. Imbedded blanks
are not permitted in the parameter string. Table 3-1 contains a list of acceptable statements
and a definition of each.

3-1

DOS-11 General Specification

Table 3=1. Job Control Statements

Statement

Definition

$JOB XXXXXX

The $JOB statement opans a new job and saves the 6-character name (XXXXXX). The Abort flag is
reset and the Restrict flag is set. (Once an Abort occurs, all subsequent Job Control statements are
rejected until a Job staterent is received.) The current job name may be acquired from background
through the service info (rofer to Paragraph 2-7).

$ASSIGN L,P,L,P

This statement causes physical device ' P' to be assigned to logical file ' L' . To suppress operations on
a logical file, the physical device number 0 is assigned to the particular file. For example, to suppress
binary output, the statemenit would be: $ASSIGN 50. Section V contains a description of logical file
and physical device assignments for DOS.

$DATE XXXXXKXXX

The S—character text { XX3XXXXXXX) is saved for subsequent reference by processing programs. The
data is acquired by a background processor through the service Info (refer to Paragraph 2-7).

$LINES n

This command sets the lines per page count to the specified number (n isa decimal integer), overriding
the lines per page count established when a $JOB statement is encountered. The count is acquired by
the service Info (refer to Paragraph 2-7).

$OPTIONS .0,1,2,3,...,n

This statement sets the spe=ified bits of a memory word; i.e., placesa 1 in the selected bit positions (n is
a decimal Integer less thar or equal to 23). The leading dot (.), if present, enters zeros in all bits of the
word prior to setting the specified bits. This word is acquired by the service Infor (refer to Paragraph
2-7).

SFLAGS .0,1,2,3,...,n

This command functions in the same manner as the $OPTIONS statement, except that a different memory
location is used.

$8G. HI n

-through the service Info (refer to Paragraph 2-7). The area between "background hig

The octal integer (n) is stored as "background high" for system use. Processor may ac vire this parameter
* and "memory
high" is reserved for the memory file handler or tor foreground use. By varying "background high", the
user may expand or comprass this area.

SINCLUDE name

If the name parameter is absent, the Include statement accepts link modules from the binary input flle
(04) and places them on the link ready disc file (15). 1f a name Is spacifiad, the include processor
searches the name Ffile for the specified name, then moves the link module to the link ready file. When
the Include processor encounters an ENDS$ record, an end-of-file is written and a record backspaced on
the link ready file in antizipation of subsequent Include statements. If a name is specified, only one link
module is moved from the name file. Should additional link modules be included within the same job,
then the last end-of=file will be overlaid with the newly encountered link modules. When any Lint
statement |s encountered, the link ready file is rewound and all link modules are loaded until an end-of-
file is encountered. Upon encountering the end-of-file, the link loader scans the library file for any
unsatisfied external requests.

SLINK 1. low, 1. high,e. low,
c.base

If the parameters are specified, they are stored for subsequent reference by the Link Loader. Parameters
"1, low" and "l.high" define an area of memory in which the core image of an executable program is
built from all link modules residing on the link ready file (15), plus any library routines they require
from the library file (12). The upper portion of this link area is used by the Link Loader as temporary
storage for developing and external linkage table. The parameter e, low" is a relocation bias for the
program being loaded into the link area. If "e. Jow" is not specified, it is assumed to be equal fo "l. fow'
By specifying different acidresses for "e. low" and "l.low", a program may be built in one crea of memory
to be executed in another area. For example, a program ma(be linked at 10000, relative to 20 and
dumped (see $DUMP) in bootstrap format. _If |, low" and "[. high" are outside the bounds of Background
and the system is restrictad (see SRESTRICT), the Hold message (ICS) is typed and the statement is
ignored. If "l.low" and "l.high" are not specified, “background low" and "background high" are
assumed and "e. low" is assumed fo be equal to "background low". On completion of a link load, the
parameters execution low, execution high, program start, and program name (if any) are retained by the
system for subsequent use by the $GO, gEDlTPF, $DUMP, or $DUMPBF command processors. (Refer to
Paragraph 3-6 for a desciiption of c. base.)

$LINKOL

The $LINKOL { Link Overlay) statement psrforms the $LINK function in the area specified by background
parameters with p. low set to overlay the non-resident service area after the link process Is completed.
A $GO is automatic.

$GO

The program restricts registers are set to "background low" and "hackground high" and cantrol is un~

conditionally transferred to the starting address (p. start) of the current-resident background program.

SLINKGO . low, 1. high,e. tow,

This statement combines the action of $LINK and $GO.

c.base
$RESTRICT This statement sets the Rastrict flag within the resident system. When thé fldg is'set, writin is'not -
permitted on system disc files.
SALLOW This statement resets the Restrict flag. When the flag Is reset, the system disc files can be modified.

$LOADGO name

This command causes the pre~-ssor file directory to be scanned for the spacified name. [f the name is
found, the program Is loade ‘ from the processor file and executed. If the name is not found on the
processor file directory, an eiror message, "ILR" is hrd and a Hold eendition is entered. The operator
may correct the card anc release the Hold, or abwrt the program. Note that this command applies only to
programs on the processor file.

SHOLD text When this command Is executed, the text is typed and the system enters a Hold condition untli the
operator intervenes.
$EQJ This statement signifies the end of the current job. When executed, this statement causes the current

job name and its running time in hours, minutes, and seconds to be output to the assigned !ist out fila.

3-2

DOS-I11 General Specification

Table 3-1. Job Control Statements (Cont'd.)

Statement

Defintion

$DUMP p. name,e. low
e. high,p. start,
d. low

An absolute load module is generated on the assigned binary output file. A load module consists of two
binary records. Record 1 contains the following six words:

Words 1 and 2 6~character name

Word 3 exécution low

Word 4 execution high

Word 5 program start

Word 6 checksum of program fow through programs high

Record 2 consists of n words (p. high-p. low + 1) from memory, starting at "d. low". If "d.low" is not
specified, it is assumed to be equal to "p. low". If pardmeters are not specified, the parameters
established by the last $LINK are used. A name may only be spacified and all other parameters will
be assumed.

SDUMPBF p. name, e. low,
e. high,p. start,

This function is the same as $DUMP except that record 1 { parameter record) is suppressed, producing a
bootstrap format.

d, low —
NOTE

The follqwing services permit the use of IOCS via job
Control statements (refer to Paragraph 5-2 for descriptions
of the functions performed).

$OPEN xx Open logical file xx (octal),

$CLOSE xx Close logical file xx (octal).

SREW xx Rewind logical file xx (octal).

$BSF xx Backspace a flle on logical file xx (octal),

$ADF xx Advance a file on logical file xx (octal).

$RPF xx Reposition current file on logical file xx {octal),

$SWEF xx Write End-of-File on logical file xx (octal).

$XXYY xxyy Perform function yy on logical file xx (octal).

NOTE

The following services are used for DOS system file
maintenance (refer to Paragraph 3-3 for descriptions
and use of these functions).

$EDITPF Call processor file edit routine in the non-resident service area.

$EDITLF Call library file edit routine into the non-resident service area.

$EDITNF Call name file edit routine into the non-resident service area.

$EDITSF Call source file edit routine into the non-resident service area.

$EXTENTS xx, S1, 52, R

$DEBUG

$TAPEOP transport,
mode, density, cpw

Establishes the file extents for logical disc file xx.

S1 = first record address (decimal sector ¥).
$2 = last record address.
R restrict code.

The presence of the letter "R" restricts the file.

It

This statement causes the Debug program to be loaded in the non-resident area of memory (refer to
Paragraph 3-5 for descriptions of the Debug commands).

Transport is 0, 1, 2, 3.
mode is: 0 for Binary or ASCII - symbolic.

1 for BCD or EXTENDED BCD.
density is: 0 for PEC-LOW or CDC~200 cpi.
1 for PEC-HI or CDC-556 cpi.

1 for 1 cpw,
2 for 2 cpw.
3 for 3 cpw.
4 for 4 cpw.

cpw is:

SREPSYS

This command replaces the L. . system on file 11 with the resident DOS.

3-3

DOS-II General Specification

3-3 FILE EDITING

There are four non-resident disc file edit processors. These processors permit the user to
edit the system Processor File (11), Library File (12), Name File (13), and Source File (14) through
Job Control.

The file edit processors are loaded for execution via the Job Control statements $ EDITPF,
SEDITLF, $EDITNF, and $EDITSF. Once loaded, the processor requests commands from the Job
Control logical device (00). Commands must start in column one and be terminated by a blank.

If @ name is used, it must appear as six consecutive characters following the command delimiter
(a blank). The EXIT command causes the processor to return to Job Control. '

3-3.1 Processor File Editor

The processor file (11) editor is loaded into the non-resident service area by the $EDITPF
Job Control statement.

Programs in link module format can be added to the processor file (11) with the following
procedure:

1) Rewind the link ready file (15) and place a link module (a main program
and any subroutines required) on file 15 via an assembly, compilation or the
$INCLUDE Job Control statement.

2) Link the program with a $ LINK Job Control statement as illustrated in
paragraph 3-6.1. Any requested library routines are linked from the
Library File. ' ’
3) Add the result of the link to the processor file (11) via the following
statements:
$ EDITPF
ADD name

The added load module may be loaded and executed by the $ LOADGO command.

The processor file (11) has a directory that allows direct access of records. The directory
is read into the background area and updated when the Add, Delete, Replace, and Squeeze
Commands are used. This means background is destroyed for all EDITPF functions except List.

EDITPF error messages are defined in Table 6-1. The processor file (11) is rewound by
the editor for each command. The following commands can be used with EDITPF.

ADD name If "name" is absent, the load module presently in memory is added
to the processor file (11), using the name generated via the NAME
pseudo-op. If "name" is present, it is used as the name of the
module being added. An operator message will be typed if a
processor with the specified name is already in the processor file
(11), or if the lcud module is not named.

DELETE name The load module name specified by the name parameter is deleted
from the processor file (11). The name parameter is required.

3-4

DOS-II General Specification

REPLACE name Repylcce is a combination of Delete and Add. The presence or
absence of the parameter causes the same action to be taken as
with the Add command.

SQUEEZE The processor file (11) is compressed, eliminating all préviously ’
deleted modules. Work file 16 is used as a temporary file for the
Squeeze function. :

LIST - The names of all modules on the processor file (11) are listed on
' ~ the list output file (). Deleted modules that still reside on the
file can be determined by a blank name in the output list.

NOTE
Do not ABORT the execution of Add, Replace,

or Squeeze commands because the physical end-of-
file may be lost by this action.

3-3.2 Name File Editor

The name file (13) editor is loaded into the non-resident service area via the $EDITNF
Job Control statement. ‘

The name file (13) is used to store main programs in link format. The INCLUDE processor
is used to move a link module from the name file (13) to the link ready file (15). The name file
editor and the INCLUDE processor can be used with blocked or unblocked files. (Refer to blocked
file handling.)

A name file (13) module is comprised of link format records that must begin with a name
definition in the first record and end with an END code in the last record. Name file modules
are identified by their name definitions as explained below.

A name definition is generatedby the Macro Assembler when the pseudo-operation " NAME"
is encountered, or by the FORTRAN IV Compiler when a "NAME" statement is received. If the
module does not have a name definition, the first external definition in the link module may be
used to identify the module.

EDITNF error messages are defined in Table 6-1. The name file (13) is rewound by the
editor for each command. The link ready file (15) is rewound by the editor when required. The
following commands can be used with EDITNF.

ADD name The link module specified by the name parameter which presently
resides on the link ready file (15) is added to the name file (13) using
the name which was generated via the NAME pseudo-op oran XDEF.
The name parameter is required.

DELETE name The link module specified by the name parameter is deleted from the
name file (i.e., the NAME pseudo-op or the first XDEF of the module
is changed to a L'ank name).

REPLACE name Replace is a combination of a Delete and Add. Presence or absence

of the parameter causes the saume action to be taken as with the Add
command.

3-5

DOS-II General Specification

SQUEEZE The name file (13) is compressed, eliminating all previously deleted
modules. Work file 16 is used as a temporary file for the Squeeze
function. ’

LIST The names of all modules on the name file (13) are listed on the list

output file (6). Deleted modules that still reside on the file can be
determined by a blank name in the output list.

NOTE
Do not ABORT the execution of Add, Replace,

or Squeeze commands because the physical end-of-
file may be lost by this action.

3-3.3 Source File Editor

The source file (14) editor is loaded into the non-resident service area by the $ EDITSF
Job Control statement.

The source file (14) is for symbolic modules in a compressed and blocked format. EDITSF
error messages are defined in Table é-1. The source file (14) is rewound by the editor for each
command. The work file (16) is rewound initially and when required.

The following commands can be used with EDITSF.

ADD name The source module on logical file 16 is coﬁnpressed and added to the
source file (14) and given the six-character name specified by the
name parameter. The name parameter must be present. The Add

function adds from file 16 until an end-of-file is reached.

DELETE name The source module specified by the name parameter is deleted from
the Source File (i.e., the module name is changed to a blank).

REPLACE name Replace is a combination of Delete and Add. The name parameter

is required.

SQUEEZE The source file (14) is compressed, eliminating all previously deleted
modules. Work file 16 is used as a temporary file for the Squeeze
function.

LIST The names of all modules on the source file (14) are listed on the list

output file (6). Deleted modules that still reside on the file can be
determined by a blank name in the output list.

UNBLOCK name The source module specified by the name parameter is searched for
on the source file (14). When found, it is copied onto logical file
16 in unblocked format (27 word records). An end-of-file is written
following the soiirce module on file 16. File 16 is rewound initially
by the EDITSF si~tement but not for additional unblock commands.
Additional source modules may be unblocked to file 16 with end-of-
files separating each module.

DOS-~II General Specification

If the name parameter is absent, the entire source file is unblocked

onto file 16.
COPY The entire source file is copied in blocked format from file 14 of
file 16.
NOTE

Do not ABORT the execution of Add, Replace,
or Squeeze commands because the physical end-of-
file may be lost by this action.

3-3.4 Library File Editor

The library file (12) editor is loaded into the non-resident service area via the $ EDITLF
Job Control statement.

A library module is comprised of link format records that must begin with an external

definition in the first record and end with an END code in the last record. Library modules are
identified by their external definition names.

An external definition is generatedby the Macro Assembler when the pseudo-operation

"XDEF" is encountered and by the FORTRAN IV Compiler when the statements " SUBROUTINE"
or "FUNCTION?" are received. :

Library modules on the link ready file (15) can be added to the library file (12). The
library and link ready files are rewound by the editor for each command. File 16 should be
assigned to a temporary work file before using the Order command.

The editor may be used with blocked or unblocked files. (Refer to blocked file handling).
The following commands can be used with EDITLF.

ADD name

Each module to be added must be externally defined at assembly or compilation time,

If "name" is absent, all modules on the link ready file (15) are added to the end of
the library file (12). The Add function adds from the link ready file (15) until an end-of-file
is reached. v

If "name" is present, the link ready file is scanned and the module specified is added
to the library file. Any external definitions within a module may be used as the referenced name.

DELETE name

The library module whose name is sy =cified by the parameter is deleted from the library
file (12). Any external definition within a module containing multiple definitions may be
referenced to delete the module.

DOS-II General Specification

REPLACE name

Replace is a combination of Delete and Add. Each module to be added must be
externally defined at assembly or compilation time. The modules on the library file (12)
that have external definitions the same as those being added from the link ready file (15) are
deleted.

If "name" is absent, all modules on the link ready file (15) are added to the end
of the library file (12). The link ready file must be terminated by an end-of-file.

If "name" is present, the link ready file is scanned and the module specified is added
to the end of the library file. Any external definition within a module can be used as its name.

RENAME namel, name 2

The library file (12) is scannec and the external definition specified as namel is replac
by name2. Any external definition within a module can be used as namel.

ORDER

The modules on the library file (12) are ordered, that is, modules are arranged such
that all external requests precede the module being requested. This allows the Link Loader

to satisfy all external requests from the library file in one pass.

Deleted modules are eliminated from the library file. File 16 is rewound by the
Order command and should be assigned to a temporary work file.

NOTE
Do not ABORT the execution of Add, Replace,
Order, or Squeeze commands because the physical
End-of-File may be lost by this action.
LIST
This command outputs to the list out file (06) a cross reference of the modules on
the library file (12) and continues with an alphabetic sort of the external definitions with

their corresponding module number. The format of the cross reference is as follows:

*XAX JJJJId KKKKKK YYY LLLLLL UNDEF
MMMMMM

where:
* indicates (if present) that the module is out of order (i.e., the
module requests an external definition which was previously
defined on the librc:- file).

XXX is the sequence number of the module.

JJJJJJ is the first external definition in module XXX.

3-8

DOS-II General Specification

KKKKKK . is the first external request in the module XXX.
YYY is the module number where KKKKKK is defined.
LLLLLL is the second external request in the module XXX.

UNDEF if present indicates that the request LLLLLL is undefined on the
. library file. '

MMMMMM is the second external definition in module XXX.

The following example illustrates the list output format:
1 AAAAAA BBBBBB UNDEF
DELETED
cccccce

DDDDDD

2
3
* 4 EEEEEE FFFFFF 5 CCcccc 3
5 FFFFFF | AAAAAA 1

AAAAAA
cccecc
DDDDDD
EEEEEE
FFFFFF

ndhbhw—

Note that module number two has been deleted causing module number one to have an
undefined request. Note that module number four is out of order because request CCCCCC is
defined in module number three.

A listing of the same library file after an Order command is given below:

1 EEEEEE FFFFFF 3 CCCCCC 2
DDDDDD

2 CCCCCC

3 FFFFFF AAAAAA 4

4 AAAAAA BBBBBB UNDEF
AAAAAA
CCCCCC
DDDDDD

EEEEEE
FFFFFF

W= =N M

DOS-II Gzneral Specification

3-3.5

Library File Editor Error Message Codes

During the editing process, extensive checking is performed to insure a valid library
file. If an error condition is detected, a message will be output to the list output logical
device (06) and the editing aborted. -

The format of the error message is as follows:

ELF
where:

XX

YYY
AAAAAA

XX MOD YYY AAAAAA

is a two-decimal digit error code. (Definitions of the error codes
are given in the table below.)

is a three-decimal digit module number in which the error occurred.
is the last encountered external definition. This will be blank if

the definition cannot be determined.

Table 3-2. Library File Editor Error Messages

Number Definition

1 There is insufficient background area to build the external definition
and external request tables.

2 Invalid control statement.

3 An external definition is missing from the beginning of a module being
added to the library file.

4 An attempt is being made to add a module which duplicates a name on
the library file.

5 The specified name is not on the link ready file.

6 The word count was not complete when a binary input record was
requested.

7 The modules being added will not fit on the library file. To increase
the size of the library file refer to $EXTENTS, Table 3-1.

8 A name was not specified in the control statement.

9 The specified name is not on the library file.

10 An attempt is bein:. made to add modules which exceed the 1000

module limit,

DOS =11 General Specification

Table 3-2. Library File Editor Error Messages (Continued)

Number : Definition

11 An invalid loader code was encountered on the input file.

12 : A source program error was encountered on the input file.

13 An end-of-file was encountered at an improper position on the
library file.

14 An end-of-file was encountered at an improper position on the link
ready file.

15 A checksum error was encountered on an input record from the
library file.

16 A checksum error was encountered on an input record from the
link ready file.

17 An end-of-file is present on the start of the library file, (i.e., no
program is on the library file).

18 An end-of-file is ﬁresenf on the start of the link ready file (i.e.,
no program is on the link ready file).

3-4 OBJECT TIME TRACE

The Series 6000 Object Time Trace is a versatile debugging tool that allows the user to
follow the execution of a program in such a manner as to permit the detection and correction of
programming errors. Detection of specified program states is accomplished with a conditional
statement in which virtually any combination of states may be examined in any specified order.
Trace also provides for the detection of stall alarm and memory restrict violations within the user's
program without operational hardware. Foreground debugging is permitted by allowing the user
to trace the progress of an interrupt subroutine connected to a specified interrupt level. Active
communication between the user and Trace is maintained at all times through the use of the System
Operator Communications input key.

Trace is in link module format and must be added to the processor file using the following
procedure:

1) Place the link module on the link ready file (15) via the $INCLUDE Job

Control Statement.
2) Link Trace using the following statement:

$LINK x,y,nrs

3-11

DOS-11 General Specification

where:
x = background low
y = background high
nrs = starting address of the non-resident service area.

These three parameters may be obtained by using the program INFO or by
noting a map of the operating system.(Non-resident service area is listed as
an external name.)

3) Add the result of this link to the processor file via the following statements:

$EDITPF
ADD

These procedures must be followed each time a new DOS is generated.

All trace input statements are received from the System OCD. Prior to inputing any
statement, the Operator Communications key (rub-out) must be depressed. If mcre than 72
characters are needed to complete an input statement, then a semi=colon (;), followed by a
carriage return, should be issued and the remainder of the statement be input on the next line.
Any characters input after the semicolon and before the carriage return will be ignored. This
process may be continued any number of lines until the statement is complete. If an error is
made on a continuation line, then only that line need be re-input. For example, the following
five lines of input:

ABCD;
FGH
EFGH;
IJK; XXX
LMN

are equivalent to:
ABCDEFGHIJKLMN

The program to be traced must reside on the link ready file (15) in link module format
(i.e., the binary output of an assembly or compilation). All options pertinent to the link
loader are to be set and the following job control statement is to be issued:

$LINKTR

The "link trace" statement causes the command processor of DOS to search the processor
file directory for the name "TRACE". If the name is not found, the message "IC5" will be output
to the System QCD and a hold condition will ensue. On finding the name "TRACE", the program
size (program hi-program low) will be addc~ to the address of the NRS (start of Non-Resident
Service area) and the resulting sum will be passed to the link foader as the link-low parameter.

DOS-11 General Specification

Linking will then take place in the usual manner with all applicable messages and
options. On completion of the linking process, the load module of Trace residing on the
processor file will be loaded overlaying the NRS area and a portion of the background area..
Control will then be passed to Trace which will open the list output logical device (06),
perform various initializations, and then wait for an input statement from the System OCD.

If the user desires to test an interrupt subroutine that was not generated into DOS,
the following procedure is performed:

1) Place the main program and the externally-defined interrupt subroutine
’ on the link ready file via the $INCLUDE statement.

2) Issue the following Job Control statements:
$OPTIONS .7
$LINKTR
3) Trace is now in control and the following directives should be issued:
ALL
I x,250YYYYY
RES

where: x is the address of the dedicated memory location of the group/
level to which the interrupt routine is to be subsequently connected and
YYYYY is the memory address of the entry point of the interrupt routine.
(This address may be obtained by referring to the link map output by the
link loader.) After this linkage has been established, a "CON" directive
may be issued,

For additional information, refer to Object Time Trace, General Specification,
AA61544.

3-5 DEBUG

Debug provides the ability to input or output memory locations or registers in an octal
format, set and reset program breakpoints, and scan memory for specified data configurations.
Debug should be loaded only after the background program has been loaded. Background
program loading may be accomplished with either the $LINK or the $LOADGO Job Control.
statement. If a $LOADGO statement is used, an Abort must be issued via the X-OFF control
key since execution takes place after loading. (The Abort does not disturb the memory in
which the program is now residing.) Regardless of which statement is used to load the back+
ground program, the starting address of the program must be noted. Debug is now to be loaded
via a $DEBUG or $LOADGO DEBUG Job Control statement. Once loaded, Debug requests an
input statement from the keyboard (device :i. The statement is then processed and another
input statement is requested unless the previous statement specified otherwise. To begin back-
ground program execution, a "c x" command must be issued to the starting address of the program.
Only memory locations within background low and background high may be specified as the
operand of Debug input, continue, or set break commands.

3~13

DOS-II General Specification

Debug error messages are as .follows:

"I1CS" - illegal control statement
"RAR" - restricted address reference
“BSO" - break stack overflow

A list of valid control statements is presented in Table 3-3.

3-6 LINK LOADER

The link loader is a special unrestricted processor of DOS that resides in the non-resident
service area when invoked. It processes link format records as produced by the DC-6024 Macro
Assembler or the DC-6024 FORTRAN 1V Compiler and produces, in memory, a program that will b
executable when re-loaded via a $LOADGO Job Control statement.

3-6.1 $LINK Statement

When linking is to be performed, four parameters are passed to the Link Loader. These
parameters are either specifically enumerated on the $LINK Job Control statement, preassumed

values, or a combination of both. The parameters may be specified in any one of five different
forms:

1) $LINK

2) $LINK a

3) $LINK a,b

4) $LINK a,b,c
5) $LINK q,b,c,d

where q,b,c and d are octal memory addresses with the following designations:

a = link low address

b = link high address

c = execution low address (relocation bias)
d = common base address

Table 3-4 shows the values of the parameters for each form of the $LINK statement.

3-14

DOS-11 General Specification

Table 3-3. Debug Control Statements

Statement

Definition

SRA address

This shatement establishes a relative address bias for + address specification.
The base address is added to any address that is terminated with an "R".

For example

SRA 20000
I 135R,0

causes the contents of memory location 20135 to be set to zero.

1 address,dato,dety, . . .

This statement (“Input") causes the system to accept octol dafa constants and store them in
sequential memory locations, starting from the specified address. 1f the specified address
is outside the background limits, an error message is typed and the statement is ignored.

O low, high

This statement (" Output") causes the contents of consecutive memory, from the specified
"low" through the specified "high", to be typed in octal, one word per line.

OD low, high

This statement ("Octal Dump") gensrates an octal dump to the list output device. The
format is on address, followed by 8 words of data per line.

OA low, high

This statement (" Output ASCII") types a line of ASCII text from the specified "fow" through
the specified "high". The text is limited to 24 words (72 characters).

S8 address

This statement (" Set Break") sets a breakpoint at the spacified address. Eight breaks (maximum)
are allowed at one time. A breakpoint Is set by saving the specified address and its contents
in a dedicated stack and replacing the contents of the address with a "BSL break". When a
break address is executed, the break routine saves registers |, J, K, E, A, and C, types

" ADDRESS", and waits for a new command.

RB

This stutement ("Reset Breaks") causes all breaks and the stack pointer to be reset.

This statement (“Initialize Breaks") initializes the breakpoint stack. This should be executed
priot to using "SB" and "RB" to avoid including superfluous breakpoint information in the
program.

C address

This statement (" Continye") without an address specification causes registers I,J,K,E, A, and C
to be restored from the last break, The instruction that belongs in the break address is then
executed (not restored) and the background process is continued at the break address plus one.
1f an address is specified, registers are restored and contro! is transferred diractly to the
specified address.

RC address

This statement (“Reset and Continue") without an address specification causes the last breck-
point to be reset, restores registers I, J, K, E, A, and C, and continues the background process
at the last break address. 1f an address is specified with the statement, control is tronsferred

directly to that address rather than the break address.

OR IJKEAC

This statement (" Qutput Registers") causes the contents of the specified registers (saved from
last break) to be output in octal. 1f a register specification is not included, all registers are
output.

OR XY

This statement causes the contents of the SAU registers X and Y to be output in octal as
follows:

X 12345670 123456 123 Y 128

where X is expressed as the most significant mantissa, least significant mantissa, and the exponent;
and Y is the 3 digit condition register.

X - 12345670,123456,123

This statement sets the most significant mantissa, the least significant mantissa, and the exponent
of the SAU-X register, respectively. Register Y is set as a function of X.

Y 123 This statement sets register Y as specified without changing X.
OR VH This statement causes the contents of the Boolean registers V and H to be output in
octal as follows:
V 123456 H 1
Vv 123456 This statements sets the 16-bit V register as specified.
H 1 This statement sets the 1-bit H register as specified.
0
1- data These statements cause the specified octal data to replace the current contents of the respective
J data register (refer to Statements C and RC above).
K data
E data
A dato
C data
Z low,high This statement ("Zero") causes the contents of memory, from the specified "low" through the

spacified “high", to be set to zero.

S low, high, word, mask

This statement (" Scan") causes the contents of memory, "low" through "high", to be searched
for the following « + iitions: ot

(Memory. AND. Mask) . XOR. word 0
Each time the condition is true, the memory address and its contents are typed. For example,

S 0, 10000,173,77777 compares only the least significant 15 bits of each word (0-10000) with
173; effectively, listing all reference to 173, disregarding command bits.

EXIT

This statement causes control to be returned to Job Control via the system linkage EXIT.

3-15

DOS-II General Specification

Table 3-4. Values of Link Parameters
FORM Link Low Link High Execution Low Common Base
$LINK Background Low | Background High | Background Low | Background High
SLINK a a Background High a | Background High
$LINK q,b a b a b
$LINK q,b, c a b c b
$LINK q,b,c,d a b c d

The area between link low and link high is used to develop the program. The memory

area outside these bounds is in no way modified by the Link Loader.
linked is built upward, starting at the link low address.

Loader is built downwards, starting at the link high address.
(execution low), then the program will be linked between link low and link high relative to

execution low.

(this is referred to as a

The program as it is being
The external table created by the Link

If a relocation bias is specified

ecified execution low address is not the same as the link low parameter
iased load), then the resulting program that resides between link low

and link high may not be executed. Rather, the program must be dumped via the $DUMP Job
Control statement or cataloged on the processor file via the $EDITPF Job Control statement.
Once dumped or cataloged, the program may now be reloaded at the execution low address and
be executed. The common base parameter is used as the initial common base (refer to Paragraph

3-6.3).

3-6.2 Linking Across the 32K Boundary

Provision is made in the Link Loacler for linking programs across the 32K memory partition.
If during the lirking process a module crosses the 32K boundary, the linking process is re-started
for that module (and that module only) at the beginning of the upper memory partition (' 100000).

This is accomplished with the DOS

O function code "set current record address" (17) and

hence, logical device 15 must be assigned to a disc file (generally * 15, the link ready file). If
the program being linked contains assembly language modules, then care should be taken that
external and common requests are made with 16-bit instructions and address constants. If the
program being linked was compiled with the DC 6024 FORTRAN 1V Compiler with option bit 9 set,
only 16-bit external and common requests are generated; therefore, linking will proceed

unimpeded.

When a link is performed in a machine with more than 32K of memory, the link parameters
must be such that a biased load (execution low .NE. link low) is not Eerformed across the

boundary.

In addition, biased loads may not be performed entirely wit

in one of the two memory

partitions if the execution low parameter is such that the linked program would overlap the
memory boundary at execution time.

3-16

DOS-I11 General Specification

3-6.3 Common Memory Allocation

The common base parameter of the $LINK Job Control statement specifies the memory
address to be used as the initial common base. When a common definition is encountered, the
common base is reduced by the size of the common block, and this address is used as the base of
the common block. As common requests are encountered, the associated displacement is added
to the base of the corresponding block name. The resultant sum then becomes the address of the
common request, whether or not the load is biased. The common base parameter need not lie
between the link low and link high parameters as data is not actually being loaded, only request
addresses are being satisfied (refer to Paragraph 3-6.4 for an exception to this). The only
requirement is that the common base be such that, when the program is loaded for execution,
the program does not overlap the common area. Hence, the area between the link low and
link high address need only be large enough to contain the program per se and the link loader's
external table. Note also that the common area may be assigned above or below a program s
long as no overlap occurs at execution time. A unique advantage is gained in assigning the
common base parameter below the program (specifically, at execution low); i.e., the common
area will be compressed against the program. However, Common should not be assigned below
a FORTRAN program that is to be loaded across the 32K boundary as common variables are
accessed via indexed references and must, therefore, be assigned above the referencing program.

The non-resident service area in which the Link Loader resides may also be chosen as
the common area. However, this area should not be used for the common area if multiphase .
programs are to be linked that are ultimately to be loaded via the DOS CHAIN loader. This
is due to the fact that the non-resident service area is used to contain the processor file
directory.

3-6.4 BLOCK DATA Subprograms

The BLOCK DATA subprogram is used to initialize data in a Common block. Since memory
is actually modified within the common area when this module is processed, the common base
parameter must be between the link low and link high specification. (The only area modified
at link time is the region between link low and link high.) In addition, care must be taken
that sufficient memory is available between the common block being modified and the link
high specification in order to contain the link loader's external table. (Five locations per
external, common, and external equivalence definition are required.)

BLOCK DATA subprograms must always be linked from the link ready file (15) and may
never reside on the Library file (12). This is due to the fact that there is no absolute manner
of determining the correspondence between the program being linked and a BLOCK DATA
subprogram if the BLOCK DATA subprogram is on the Library file.

3-6.5 Options

The DOS Link Loader recognizes two option settings (six and seven) as follows:

Option 6: reset - Causes END$records to be ignored on logical
device 15.

DOS-11 General Specification

set - Causes the message "ENDS$" to be output to the
Operator Communications Device on encountering
an END$ record on the Link Ready file. A release
(control key BELL) must then be issued to continue.
This option is generally used when logical device
15 is assigned to a paper tape input device.

Option 7: reset -~ On successful completion of the linking process,
exit will be made to the operating system.

set - On successful completion of the linking process,
a listing of the Link Loader's external table will
be output to the list output logical device (06)
before exit is made to the operating system.

3-6.6 Link Map

On successful completion of the linking process, a listing of the Link Loader' s external
table, which is referred to as a Link Map, will be output to the List Output logical device (06)
if option bit seven is set. Two side-by-side columns will be output which are in alphabetic and
numeric sequence, respectively. The link parameters that are returned to the operating system
and other special information is also output. The number of lines output per list output page is
controlled by an operating system parameter. This parameter is set via the $LINES Job Control
- statement.

The format of the Link Map is as follows:

P.NAME=LLLLLL

XXXXXX YYYYYY ZA XXXXXX YYYYYY
XXXXXX YYYYYY ZA XXXXXX YYYYYY
where: ' . .
LLLLLL is the name of the program (as defined by the first encountered NAME
definition).
XXXX XX is the external, external equivalence, or common block name.
z is a single character identifier which may be one of the following:

1) (blank) - indicates that the XXXXXX name is a Link Loader paramete

2) C - indicates that the XXXXXX name is a common block.

3) $ - indicates that the XXXXXX name is an external.

4) # - indicutes that the XXXXXX name is an external equivalenc
definition.

DOS-I1 General Specification

is a single character identifier which may be one of the following:

)] (blank) - indicates that the XXXXXX name was nof‘ multiply
defined.

2) M - indicates that the XXXXXX name was multiply defined.

The link parameters that are passed back to the operating system also appear as an
XXXXXX name with a special format. The first character of the XXXXXX name of a link
parameter is a special character ("* " or "."). These names and their meanings are as follows:

*LOW

*HIGH

*START

.BCOMM

. PASS

The YYYYYY value associated with this name is the low memory address
of the program when loaded for execution (not necessarily link low). | If
the common area is below the program, then the address of the lowest
common element will be output.

The YYYYYY value associated with this name is the high memory address
of the program when loaded for execution. If the program contains |
references to common that were assigned above the program, then the
common area will not be included in the high address. However, if the
common area was initialized via a Block Data subprogram then the.
highest initialized address will be output.

The YYYYYY value associated with this name is the starting address of
the program when loaded for execution.

The YYYYYY value associated with this name is the lowest address of
blank common if defined in the program.

The YYYYYY value associated with this name is the number of passes
through the Library file n_ecessarK to satisfy external requests. If this
value is greater than one, then the modules on the Library file are not
ordered.

All numeric values (YYYYYY) reflect the values which will be used when the program
is loaded for execution (refer to the examples in Paragraph 3-6.9 for illustrations of actual

Link Maps).

3-6.7 Code Processing

The following paragraphs describes some of the more important codes that are processed
by the Link Loader. The processor(s) that produces the code i< identified along with usage
considerations and the action taken by the Link Loader.

A.

External Definition

An external definition is generatea vy the DC 6024 Macro Assembler when the pseudo-
operation "XDEF" is encountered and by the DC 6024 FORTRAN IV Compiler when the state-
ments "SUBROUTINE" or "FUNCTION" are received. This code defines an address that is to

DOS-I1I General Specification

be associated with an external name. The name may be identical to an external equivalence or
Common block hame without conflict. If external definitions of the same name are encountered
in subsequent modules, then linkage will be made to the definition that was enccuntered first.

The module that contains the dup?icate external definitions will not be loaded if it is encounterec
on the Library file unless it also contains another definition that was previously requested but not
satisfied. If the module that contains the duplicate external definition resides on the Link Ready
file, then it will be loaded regardless. In either case, the fact that an external name was definec
more than once will be noted on the Link Map (refer to Paragraph 3-6.6).

A useful application of this functioning is in testing subroutines having the same name
as a routine on the Library file by placing the module to be tested on the Link Ready file along
with the calling program.

B. External Request

An external request is generated by the DC 6024 Macro Assembler when an operand is
encountered that is preceeded by a dollar sign ($). External requests are also generated by the
DC 6024 FORTRAN IV Compiler any time subroutines or functions are determined to be external
to the program. External requests are also identified as to whether or not they are to be
considered unconditional or conditional requests. Conditional external requests (denoted in
assembly language by preceeding the operand by two consecutive dollar signs) are satisfied
only if the requested name was previously unconditionally requested. If the name was not
unconditionally requested prior to the conditional request, then a BLU instruction to the system

service routine $ABORT will be substituted for the requesting instruction (refer to Paragraph
6-2.1).

C. System Service Requests

A system service request is generated by the DC 6024 Macro Assemblerwhen the
instruction BLU $XXX is encountered. It is also generated by the DC 6024 FORTRAN IV
Compiler when certain statements such as "CALL EXIT" are received.

If the requested external name is found in the Link Loader's External Name table
indicating that an external definition having that name has already been loaded, then a
BLL instruction is inserted and the linkage is satisfied. If the requested external name is not
found in the Link Loader's External Name table, and is in the DOS System Service table, a
BLU instruction to the associated dedicated memory location is inserted and the linkage is
satisfied. If the requested external name is not found in either table, a BLL instruction is
loaded and the external name is entered in the Link Loader's External Name takle. For the
linkage to be satisfied, the requested external name must follow in a module residing on the
Link Ready or Library file.

This functioning permits linkage to DOS System Services or user defined routines
irrespective of whether or not a particular service is resident within the operating system or
on the Library file. In addition, services r.ivy be added or deleted from the resident portion
of the operating system without re-assembling or compiling the requesting program,

3-20

DOS-II General Specification

D. External Equivalence Definition

External equivalence definitions are generated by the DC 6024 Macro Assembler when
the pseudo=-operation "XEQV" is encountered. This definition defines a 24-bit constant which
is to be merged with the corresponding external equivalence request when encountered. This
functioning is useful in externally defining data constants, channel/unit numbers of input/output
instructions, etc. The external equivalence name associated with the definition may be identical
to an external or common block name without conflict. If multiple external equivalence definitions
of the same name are encountered, the first one will be used as the definition and all subsequent
definitions of the same name will be ignored. However, the fact that the name was defined more
than once will be noted on the Link Map (refer to Paragraph 3-6.6). External equivalence:
definitions are similar to Common definitions in that the external equivalence definition must
precede any external equivalence requests.

E. External Equivalence Request

External equuvalence requests are generated by the D% 6024 Macro Assembler when dn
operand is encountered that is preceded by a number sign (' This request indicates that
the value associated with the previously encountered external equnvalence definition of fhe
same name is to be merged (24-bit ' OR') with the requesting frame

F. Common Definition

A common definition is generated by the DC 6024 Macro Assembler when the pseudo=
operation "COMM?" is encountered, or by tKe DC 6024 FORTRAN 1V Compiler when a .
"COMMON" statement is received. The common definition specifies the size of the common
area to the Link Loader so that subsequent common requests may be assigned an address (refer
to Paragraph 3-6.3). The definition of the overall size of a labeled common block must be
identical in all programs and subprograms in which it is defined. However, blank common
areas, defined in the various programs and subprograms to be linked, do not have to correspaond
in size. The only restriction is that the first blank common definition in a set of programs and
subprograms to be linked must be the largest block (this is an American National Standard |
requirement). The common block name associated with the common definition may be identical
to an external name or external equivalence name without conflict.

G. Common Request

A common request is generated by the DC 6024 Macro Assembler or DC 6024 FORTRAN IV
Compiler whenever a reference to a variable which has been declared to be in common is made.
The request carries the displacement from the common block name with which it is associated.
For example, if variables A, B, and C are declared to be in common (labeled or blank), then
their displacement from the block name is 0, 1, and 2 respectively. Common requests are
distinguished as to whether the address size is 15 or 16 bits, Hence, 15-bit common requests

must reference only those variables defineu ‘i the same memory bank as the request (refer to
Paragraph 3-6.3).

3-21

DOS-11 General Specification

H. Name Definition

A name definition is generated by the DC 6024 Macro Assembler when the pseudo-operation
"NAME" is encountered, or by the DC 6024 FORTRAN IV Compiler when a “NAME" statement is
received. This name is returned to the operating system and is used as an identification of the
program that has been linked. If multiple name definitions are encountered, then the first one
encountered will be returned to the operating system and all subsequent name definitions will be
ignored.

I. Source Program Error

A source program error code is generated by the DC 6024 Macro Assembler and the DC 6024
FORTRAN 1V Compiler when an irrecovercble error is detected. This code will immediately
terminate the linking process and an error message will be output.

J. Common Origin

A common origin code is generated by the DC 6024 FORTRAN IV Compiler when a BLOCK
DATA subprogram is encountered. This code temporarily resets the Link Loader's relative program
location counter so that data may be loaded into a common block (refer to Paragraph 3-6.4 for
considerations in using BLOCK DATA subprograms).

K. - END Code

An END code is generated by the DC 6024 Macro Assembler and the DC 6024 FORTRAN
IV Compiler when an "END" statement is received. This code defines the end of the link module
currently being processed and causes the Link Loader to prepare to accept another module.

L. END=-Jump Relative Code

An END-jump relative code is generated by the DC 6024 Macro Assembler when an "END"
pseudo-operation is received which contains a relative operand expression. This code defines for
DOS the relative starting address of the program being linked. If this code is not received, then
the starting address is assumed to be the program low parameter which is optionally specified on
the $LINK Job Control statement (refer to Paragraph 3=6.1). " If more than one END-jump relative
code is received, then the last one encountered will be returned to the operating system.

M. END-Jump Absolute Code
An END-jump absolute code is gererated by the DC 6024 Macro Assembler when an "END"

pseudo-operation is received which contains an absolute operand expression. This code is identica
to the END~jump relative code except that e address is not relocated before being passed to DO

3-22

DOS-I1 General Specification

N. ENDS$ Record ‘
An ENDS record is generated by the DC 2024 Macro Assembler or the DC 6024 FORTRAN

IV Compiler when an "END$" statement is received. This record is ignored if option bit 6 is
not set (refer to Paragraph 3-6.5).

3-6.8 Error Messages

During the linking process, extensive checkin? is performed to ensure a proper program
load. If an error condition is detected, a message will be output to the List Output logical
device (06). The format of the error message is as follows:

LNK XX @ ABSOLUTE YYYYYY, RELATIVE ZZZZZZ IN MODULE AAAAAA **LINK ABORTED**

where:

XX Is a two-decimal digit error code. (The meanings of the error codes
are given in Table 3-5.)

YYYYYY Is the memory address within the link low to link high bounds that the
error occurred. :

2277727 Is the address relative to the module being linked in which the error
occurred,

AAAAAA Is the last encountered external definition or name definition. If no

external or name definitions were encountered, "**MAIN" will be output.

For some of the error messages listed in Table 3-5, the module name AAAAAA could
possibly be deceptive and hence, caution should be exercised.

Table 3-5. Link Loader Error Codes

Error Number Meaning ‘
==
1 Insufficient room to link the program. (The program
is overlapping the external table.)
2 A BLOCK DATA subprogram was encountered with the

common base outside the bounds of link low to link high.

3 A 15-bit external request was encountered in the lower
32K memory partition without being satisfied in the
lower 32K memory partition.

4 An extern ii definition was encountered twice in the
same module.

5 The specified link high parameter is greater than
background high.

3-23

DOS-II General Specification

Table 3-5. Link Loader Error Codes (Cont' d.)

Error Number Meaning ‘ ' I

6 A biased load (execution low is not equal to link low)
is being attempted such that the resulting load module
would overlap the 32K memory partition.

7 The link parameters are such that a biased load
(execution low is not equal to link low) would be
performed across the 32K memory partition.

8 The link low parameter is less than background low.

9 An external equivalence request was encountered
for an undefined external equivalence name.

10 The specified link low parameter is greater than the -
‘ link high parameter.

11 An invalid special action code was received. (This
generally indicates a bad /O assignment, the lack
of an EOF on the link ready file, or a Segment code.)

12 A link of a program that contains an irrecoverable
Source Program error is being attempted.

13 A string boundary violation has occurred. (This
genero?ly indicates that an assembly language

program has caused the overlay of an external

request via an AORG or RORG pseudo-operation.)

14 The size of blank Common has been specified in
ascending order.

15 The sizes of identical labeled Common block names
do not match.

16 The allocated common region will overlap with the
program when loaded for execution.

17 A 15-bit common request was encountered in the
lower 32K memory partition for a common variable
in the upper 32K memory partition. '

18 A 15-bit external request was encountered in the
upper 32K memory partition for an external name
that was .utisfied in the lower 32K memory
partition.

3-24

Table 3=5.

DOS-I11 General Specification

Link Loader Error Codes (Cont'd.)

Error Number
19

20

21

"A word count was not complete when a binary input
record was requested. (This generally indicates a
bad /O assignment, a missing EOF on the Link Ready

file, etc.)

A BLOCK DATA subprogram was encountered on the

Library file.

A checksum error on a binary input was encountered
on either the Link Ready or Library file.

Meaning

3-6.9 Link Examples

The following examples illustrate some various linking situations. In each, the input

link parameters and the list output Link Map is shown.

Example #1

Given the following assembly language program:

000
001
002
003

000
001
002
003
004

CAT

CAT

NAME
XEQV
COMM
TMA
AMA
TAM
BLL
BUC
END
XDEF
COMM
TMA
MYA
TAM
BUC
277
END$

CAT

CAT, -1
/CAT/A,B,C
A

B

Cc
$CAT
CAT

CAT,CAT
/CAT/XY,Z
z

0,J
#CAT

which when linked with the following Job Control statement:
$LINK 20000,20100

will result in the following program residing in memory on completion of the link. Note
that the program is capable of execution since the link fow and execution low parameters

are the same.

3-25

DOS-11 General Specification

' 20000 TMA 120075
120001 AMA ' 20076
' 20002 TAM ' 20077
' 20003 BLL ' 20005
' 20004 BUC ' 20000
' 20005 TMA ' 20077
' 20006 MYA

' 20007 TAM ' 20077
'20010 BUC 0,J
120011 DATA -1

The following Link Map will be output to the List Output logical device if
option bit 7 is set: : .

P.NAME= CAT

*HIGH 20012 .PASS -0
*LOW 20000 *START 20000
*START 20000 *LOW 20000
.PASS 0 CAT 20005 $
CAT 77777777 # *HIGH 20012
CAT 20075 C CAT 20075 C
CAT 20005 $ CAT 77777777 #

Note that the name "CAT" is used in five different and unique contexts: as a symbolic
label, as a common block name, as a program name, as an external name, and as an
external equivalence name.

Example #2

Given the following assembly language program:

NAME TEST
COMM C

000 TMA A

001 AMA B

002 TAM C

003 BLU SEXIT

004 A DATA 0

005 B DATA 0
END$

which when linked with the following Job Control statement:
$LINK 20000,21000, 1000,21000

will result in the following program residing in memory on completion of the link. Note
that it is not capable of being executed in the area of memory in which it is Linked since
the execution low parameter is not equal to the link low parameter. However, if the

program is cataloged on the Processor file, it will be loaded at location * 1000 and will
then be capable of execution.

3=-26

' 20000
20001
' 20002
' 20003
' 20004
' 20005

TMA ' 10004
AMA ' 10005
TAM 120777
BLU 2
DATA 0
DATA 0

DOS-11 General Specification

The following Link Map will be output to the List Output logical device if

option bit 7 is set:

*HIGH
*LOW
*START

.BCOMM

. PASS

P.NAME= TEST
10006 .PASS
10000 *START
10000 *LOW
20777 C *HIGH
0 .BCOMM

0
10000
10000
10006
20777 C

Note that even though the load is biased that the common addresses are still relative
to the common base parameter.

Example #3

Given the following assembly language program:

000
001
002
003
004
005
006
010

ONE
PI

000
001
002
003

004 ONE

000
001
002
003
004
005

ONE

NAME
TMD
TLO
BLL
BLL
BLL
BLU
DATA
DATA
END
XDEF
TLO
BLL
BLL
BJL
DATA
END
XDEF
TLO
BLL
BIL
BuL
DATA
END}$

3-27

CROSS
ONE

PI
$FSDV44
$ROOTP1
$LOGMI
$EXI

1.0
3.14159

ROOTPI, A
ONE
FAD44
CSQRT
0

1.0

LOGMI1, A
ONE
FSU44
CLG10
0

1.0

DOS-1I General Specification

which when linked with the following Job Control statement:
$LINK 77762,100100

will result in the following progrom residing in memory on completion of the link.

177762 TMD 177770

V77763 TLO V77772

177764 BLL ' 100214

V77765 BLL ' 100000

177766 BLL ' 100006

177767 BLU 2

'77770 DATA ' 20000000
V77771 DATA ' 00000001

177772 DATA '31103755

V77773 DATA ' 00000002

' 100000 TLO ' 100004

' 100001 BLL ' 100014

' 100002 BLL ' 100414

' 100003 BJL 0

' 100004 DATA ' 20000000

' 100005 DATA ' 00000001

' 100006 TLO ' 100012

' 100007 BLL '100114

' 100010 BLL '101214

' 100011 BJL 0

' 100012 DATA ' 20000000

'100013 DATA ' 00000001

The following Link Map will be output to the List Output logical device if
option bit 7 is set:

P.NAME= CROSS

*HIGH 101314 . PASS 1
*LOW 77762 *START 77762
*START 77762 *LOW 77762
. PASS 1 ROOTPI 100000
C$ERR1 100614 LOGMI 100006
CS$ERR2 100514 F$AD44 100014
C$ERR3 100714 F$SU44 100114
C$LG10 101214 F$DV44 100214
C$SQRT 1004 14 SQRT 100314
F$SAD44 100014 C$SQRT 100414
F$DV44 100214 C$ERR2 100514
FSEROR 101014 CS$ERRIT 100614
F$SU44 100114 C$ERR3 1007 14
LOGMI 100006 F$SEROR 101014
ROQTP1 162500 C$LG10 101214
SQRT 100314 *HIGH 101314

Note that there is insufficient room to contain routine "ROOTP1" in the area

between the main program and the 32K boundary; hence, routine "ROOTP1" is assigned
to ' 100000. '

3-28

DOS-1I General Specification

3-6.10 Input And Code Placement

The following paragraph describes the input format of link module records as produced
by the DC 6024 Mdcro Assembler and the DC 6024 FORTRAN 1V Compiler. Also included are

the various codes that are accepted by the Link Loader and their placement within the input
record. '

An input record to the Link Loader is 55 words in length consisting of six 9-word
subfields and a one word hash-total checksum as the 55th word of the record. The first word
of each 9-word subfield contains eight 3-bit loader codes that determine the action to be taken
for each of the following eight words in the subfield (refer to Figure 3-1). Some loader codes
require the use of multiple words to describe a particular function, in which case, the codes
corresponding fo the extra words are set to zero. If word one and word 55 of the input record
are set to a minus one and all other words within the record are set to zero, then the record'is
considered to be an END$ record .

Table 3-6 lists the various codes which are accepted by the Link Loader and Table
3-7 lists the special action codes.

3-29

DQOS-11 General Specification

Word 1
Word 2
Word 3
Word 4
Word 5
Word 6
Word 7
Word 8
Word 9
Word 10
Word 11
Word 12
Word 13
Word 14
Word 15

Word 50
Word 51
Word 52
Word 53
Word 54
Word 55

SUBFIELD 2 SUBFIELD |

SUBFIELD 6

24 Bits

[Code 1

Code 2

Code 3 | Code 4

Code 5

Code 6

Code 7

Code 8

Load word 1

Load word 2

Load word 3

Load word 4

Load word 5

Load word 6

Load word 7

Load word 8

Code 1

Code 2

Code 3 | Code 4

Code -5

Code 6

Code 7

Code 8

Load word 1

Load word 2

Load word 3

Load word 4

Load word 5

Load word 4

Load word 5

| Load word 6

Load word 7

Load word 8

Checksum Word= Sum of words 1-54, Ignoring Overflow

Figure 3~1,

3-30

Code Placement Format

DOS-1I General Specification

Table 3-.6. Link Loader Input Codes

.Code Bit
Configuration Identification and Placement
000 Direct Load.
001 Memory Reference 15-bit.
010 External Definition - the first word contains the address to be
associated with the name which follows in the next two words.
011 External Request = the first word is the request frame with the
following bit settings:
BO = 0: 15-bit request.
BO = 1: 16-bit request.
B1 =0: Unconditional request.
B1=1: Conditional request.
The requested name follows within the next two words.
100 Memory Reference 16-bit.
101 Common Request 15-bit - The address field in the first word contdins
the displacement from the block name specified in the next two words.
110 Special Action bits 16 through 20 determine the action to be taken

111

(refer to Table 3-7).

Common Request 16-bit = The address field in the first word contains
the displacement from the block name specified in the next two words.

3-31

DOS-11 General Specification

Table 3-7. Link Loader Special Action Codes

Special Action
Bit Configuration

Identification and Placement

00000
00001
00010
00011

00100

00101

00110

00111

01000

01001

01010
01011

ORG absolute = bits 0=15 of the word contain the absolute address.
ORG relative - bits 0=15 of the word contain the relative address.
END

END-Jump Absclute - bits 0-15 contain the absolute address to be
passed as the starting address.

END-Jump Relative - bifs 0=15 contain the relative address to be
passed as the starting address.

Internal String Back = bits 0=15 contain the address of the first link
in the chain to be strung.

External String Back - bits 0=15 contain the address of the first link
in the chain; the next two words contain the external name.

Name Definition - the next two words contain the name to be
associated with the program.

Common Definition - bits 0=15 contain the size of the block; the next
two words contain the block name.

Common Origin - bits 0=15 contain the displacement from the block
name contained in the next two words into which data is to be loaded.

Source Program Error.

System Service Request - the next two words contain the requested
external name.

3-32

DOS-II General Specification

SECTION 1V
BACKGROUND PROCESSORS AND UTILITIES

Background processors and utilities reside on the disc processor file in absolute load
module format for quick access. All background programs are 1/O independent and request
/O and other system services (e.g., date, lines per page, options, time, etc.) by means of
a privileged system service request (refer to Section II).

User written background programs may be added to the processor file through the
Processor File Edit routine (refer to Paragraph 3-3). Detailed information pertinent fo each
standard background processor or utility is provided in the general specification for that product.
An example illustrating a typical background job stream follows:

$JOB PEANUTS

$DATE XX/YY/ZZ

$ASSIGH 7,7,10,16,6,6,5,5

SOPTIONS . 0,7

$ LINES 60

$LOADGO ASSEMBLER
IDEN SOURCE PROGRAM EXAMPLE
NAME SNOOPY

ENDS$. End of Program
$SWEF 5 . Terminate Binary Link File
$LINK . Link Program into Memory
SEDITPF . Activate Non-Resident Edit Routine
ADD SNOOPY . Add Program To Processor File
$LOADGO SNOOPY . Load and Execute New Program
$EOJ .End of Job

DOS-II General Specification

SECTION V
LOGICAL FILES AND PHYSICAL DEVICES

5-1 - FILE/DEVICE ASSIGNMENTS

A logical file number is a file reference number (00 = n) for input/output processing.
The I/O control routine exchanges a given logical file number for an assigned physical device
number for executing a table look=up, and then passes the I/O request to the handler that is
dedicated to the physical device number.

Physical device handlers are dedicated to a physical device number at system generation
time. By assigning (through Job Control) a physical device number to a logical file, the user
may switch /O devices without modifying his program. By assigning the physical device number
0 to a logical file number, the operator may nullify all operations to and/or from that logical
file (e.g., suppresses binary output).

5=1.1 File Assignments

A given logical file may have only one physical device number assigned at one time.
However, the same physical device number may be assigned to more than one logical file. For
consistency between processors and system services, certain logical file numbers are defined
and dedicated. These standard logical file numbers (LFN) are shown in Table 5-1. ;

Table 5-1. Standard Logical File Numbers

LFN (Octal) Definition

00 Job Stream (JS)
01 | Operator Communications (OC)*
02 Undefined
03 Undefined
04 Binary Input (BI)
05 Binary Output (BO)
06 List Qutput (LO)
07 ‘ Symbolic Input (SI)
10 Symbolic Qutput (SO)
11 ' Processor File (PF)
12 Link Library File (LF)
13 Link Name File (NF)
14 Cu.apress Source File (SF)
15 Link Ready File (LR)

16 - 22 Disc Work Files

23-n Open

*OC may not be reassigned.
5-1

DOS-II General Specification

JS (00) is the file number used by Job Control when requesting a job statement. This
file may have any input device assigned to it. OC (01) is the file number referenced by
Operator Communications (OC), both for input statements and output messages.

BI (04) is the file number referenced by the Include processor in preparing link modules
for loading. BO (05) is used by the assembler and compiler to create link load modules. LO
(06) is referenced for list output by the assembler and compiler. SI (07) is referenced for
symbolic input by all symbolic processors. SO (10) is referenced as a "scratch file" for storing
symbolic input records during pass one of an assembly, when option O is set. If the "scratch
option" is set, pass two input is taken from SO rather than SI. Logical file 10 should be
_assigned to a disc work file.

Disc storage is divided in to 10 logical files (11=22g). Files 11 through 14 are
restricted system files and 15 through 22 are background worE files. File 11, Processor File,
has an Absolute Disc Loader (sector @), a directory (sector 1 through 7), and load modules
beginning with DOS (sectors 8 through n), followed by the non-resident services. The
background processors on file 11 are also in load module format. These processcrs may be
requested externally through Job Control or internally through the system service CHAIN.
The Processor File has a directory that gives direct access to load modules on the file. The
standard directory allows 128 entries, each requiring six words. The six words are program
name (fwo wordg, execution low, execution high, execution start, and disc address.

File 12, Library File, contains subprograms only in link module format. This file is
searched by the Link Loader to satisfy external subroutine requests during a linking process.
File.13, Name File, is reserved for user programs or subroutines in link module format. File
14, Source File, is for symbolic modules (card image) in a compressed and blocked format.
File 15, Link-Ready File, is a temporary work file for preparing link modules for linking or
adding to file 12 or 13. This file is rewound by the control statement $JOB and should be
assigned to binary output for compilation or assembly. Files 16 through 22, Work Files, are
for general use by background processors.

File extents are established by system generation through the file extents table of the
System Linkage Module. Extents may also be temporarily changed via the Job Control
statement $EXTENTS, and will remain changed until the system is reloaded from disc via the
bootstrap. A file restrict flag may also be set for a file, permitting data to be protected
temporarily. Through system generation, the number of files can be increased, and the extents
and restrict flag can be permanently established.

Restricted files are accessible for writing only if the SALLOW statement has been given.

5-1.2 Device Assignments

Physical device numbers (PDN) are fixed at system generation according to the order
that physical device handler linkages are entered into the Handler Linkage table. With a few
exceptions, physical device numbers may b~ arbitrarily assigned at system generation time.

For convenience and consistency between vurious systems, a suggested Standard Physical Device
table is shown in Table 5-2.

DOS-II General Specification

Table 5-2. Standard Physical Device Table

PDN (Octal) : Device

01 Console Typéwri ter*

- 02 Console Tape Reader*
03 Console Tape Punch*
04 High-Speed Tape Reader
05 High-Speed Tape Punch
06 Line Printer
07 Card Reader
10 Card Punch

11-22 Disc Files*
23 Magnetic Tape Transport O

* Physical device number must not be changed.

5-1.3 Blocked File Handling

Blocking of data files is handled via a resident Blocked File Handler which serves
as an interface between a program and a physical device handler. The purpose of the Blocked
File Handler is to (1) increase I/O speed by reducing the number of physical read/write acgesses
and (2) to conserve mass storage by compressing data (i.e., deleting blanks from symbolic data)
and blocking data into large records.

Disc storage requirements for symbolic data are reduced approximately 10 to 1 by
blocking, and link module data requirements are reduced 2 to 1. By using a block size of
224 words, disc access time is reduced 4 to 1 for link modules and approximately 20 to 1 for
symbolic modules.

The handler permits linkage with up to 4 blocked files concurrently. System generation
linkage to these files is attained through the Handler Linkage Table at the desired physical
device entry. Blocked files must be sequential (e.g., 30,31,32,33) and the symbol BFIPDN
must be defined by an external equivalence definition within the System Linkage Module
(e.g., XEQV BFIPDN, '30). For example, the following will dedicate blocked files 1-4 to
physical device numbers 30-33.

PDH. 30 DAC $BF1 BLOCKED FILE ONE
PDH. 31 DAC $BF2 BLOCKED FILE TWO
PDH. 32 DAC $BF3 BLOCKED FILE THREE
PDH. 33 DAC $BF4 BLOCKED FILE FOUR

DOS-II General Specification

Because the handler is a buffered interface between the physical [/O and the user, a
double ASSIGN is employed. For example, to use blocked file one for symbolic input from disc
file 16: $ASSIGN 7,30,30,16. Blocked handlers may be bypassed by a single assignment
(e.g., 7,16); hawever, a data file that has been generated through the blocked handler should
also be accessed through it. The same blocking file need not be used to generate and access a
data file. For example, a file may be gerierated through the assignment 16,30,30, 16 and accessed
through the assignment 7,31,31, 16.

Blocking buffers are sequentially allocated downward from memory high; therefore, the use
must reserve area above background via the control statement $BG. HI n, prior to opening blocked
files. (Figure 1 is a memory map where four blocked files are used concurrently.) The standard
buffer size is 224 (two disc sectors); however, the user may change this during system specifica-
tion via the external equivalence table of the System Linkage Module (XEQV BLOKWC, n).

There are two types of data acknowledged by the Blocked File Handler: symbolic and
binary. Both types are packed as records within a block. When a block is filled it is written,
and data is automatically continued in the next block.

Blocked records are separated by a one-word record gap that contains a 12-bit backward
word count and a 12-bit forward word count. A backward word count of ' 7777 indicates the
start of a file (i.e., rewound position), and a faward word count of * 0000 is a premature block
terminator. If a * 0000 forward word count is detected during a read, word one of the next block
is assumed to be a new start of record gap.

And End-of-File is a physical EOF record. When a Write-EOF request is received,
the current block is terminated and written; then an EOF record is written on the physical
device.

Symbolic data compression is accomplished by packing three ASCII characters per word
and substituting a single 8-bit "negative blank count" for each string of consecutive "blanks"
(ASCII is 7-bit code). For input, symbolic data is decompressed and transferred to the user's
buffer at three characters per word until the requested word count is complete.

Suggested file assignments for use of the blocked handler with dedicated system disc files
are as follows:

Processor File (Disc File 11)

$ASSIGN 11,11 .No Blocking is permitted

Link Library File (Disc Fiie 12)

SASSIGN 12,30,30, 12 .Block File One

Link Ready File (Disc File 15)

$ASSIGN 15,31,31,15 .Block File Two
$ASSIGN 5,31 "BO" to Link Ready

5-4

DOS-II General Specification

Symbolic Output File (Disc File 16)

$ASSIGN 16,32,32,16 .Block File Three
$ASSIGN_ 10,32 "SO" to Symbolic Output

Link Name File (Disc File 13)

$ASSIGN 13,33,33,13 .Block File Four

Source File (Disc File 14)

$ASSIGN 14, 14 . EDITSF performs internal blocking and
' deblocking of file 14.

The blocked handler accepts all the standard functions honored by physical /O. Unac-
ceptable functions cause the abort message "INVALID BF REQUEST". Pertinent functions are
defined as follows:

OPEN (07) This function opens the assigned physical device, turns
off an internal Write flag, and returns the message
"BFOPEN" in register D and the number of sectors per
block in K. If sufficient space is not allocated between
background high and memory high, the operator message

"INSUFFICIENT BLOCK ALLOCATION" is typed.

CLOSE (10) If the Write flag is set from the previous request, the
current block is terminated and written on the assigned

device. The physical device is then closed.

REWIND (16)

If the Write flag is set, the current block is properly
terminated; then the assigned device is rewound and
blocking pointers initialized for a start of file condition.

SETCFA (21) - Set Current File Address saves the current record pointers
as a start of file address for subsequent repositioning.
RPF (11) - Reposition File terminates output if the Write flag is set;

then resets the current record pointers to the current file
address previously saved by a SETCFA or by the detection
of a physical EOF during a read. Functions 11 and 21 are
employed by the Assembler (for example) to make multiple
passes over modules within a single file.

SETCRA (17) Set Current Record Address terminates output if the Write

flag is set, then sets current record pointers to the values
specified as parameter one of the user's parameter list.

CRA is assuma~ to be one word, specifying a relative block
number in bits 0-13 and a relative word-of-block in bits
14-23. This is the format returned in register £ by a status
request. CRA may not be computed reliably for random access;

blocked files are sequentially processed.

5-5

DOS~-I1 General Specification

WEOF (06)

ADF (13)

BSF (12)

ADR (15)

BSR (14)

SR (OT)

SW (02)
BR (03) -
BW (04) -

STATUS (00)

Write EOF terminates output if the Write flag is set; then
writes an EOF record on the physical device.

Advance File terminates output if the Write flag is set; then
advances ¢ file on the physical device.

Backspace File terminates output if the Write flag is set;
then backspaces one physical EOF.

Advance Record advances blocking pointers forward one record.
If the Write flag is set, the block is written; then a normal
advance is executed.

Backspace Record moves blocking pointers backward one
record, terminating the current block first if the Write flag is
set. :

Symbolic Read decompresses the next sequential record until
depleted; the user's buffer is filled with trailing blanks if
necessary.

Symbolic Write compresses the specified buffer and blocks
data sequentially into the assigned blocking buffer.

Binary Read transfers the next sequential binary record to the
user's buffer.

Binary Write blocks the specified user buffer into the assigned
blocking buffer.

Returns the standard [/O status in register A (A23=Busy,
A22=WC incomplete, A21=ECF, A15-0=* of words transferred).
Current record address pointers are returned in register E
(relative word=-of=block in E23-14 and relative block number

in E13-0). Register C=f(A). Registers] and J contain the relative

extents of the assigned disc file (i.e., 1=0 and J=last sectorf -
first sector #).

Blocked File error messages are defined below. A program abort is initiated upon being

released.

"INVALID BF REQUEST"

"INSUFFICIENT BLOCK

ALLOCATION"

“USER WC. .GT.
BLOCKING BUFFER."

]

Function codes equal to '05 and greater
than '21 are invalid.

The space between background high and memory
high is insufficient for the blocking files.

= A specified word count greater than the internal
block buffer is assumed to be an error.

Block - Word 1

Block Word n

Block Word 1

Block Word n

Block Word 1

Block 1

Partial f Datawords

Block 2
Partial f Datawords
/e]
g DATAWORDS
9 /o000 _ 7]
Garbage
Block 3
| _0000_ /_ _ _h_ ___ |
h DATAWORDS
| _h_ /i]
etc
Block n+1
End-of—File

Figure 5-1. Block Structure

5-7

DOS-II General Specification

GAP - Start of File

GAP

GAP

GAP

Spill Record

GAP
GAP

Broken String
GAP

GAP

Physical EOF Record

DOS-11 General Specification

Memory High BLOCKING BUFFER 1
1792 Locations BLOCKING BUFFER 2
BLOCKING BUFFER 3
BLOCKING BUFFER 4
Background High
BACKGROUND

Background Low

RESIDENT SYSTEM

Memory Low

Figure 5-2. Memory Map
5-2 INPUT/OUTPUT FUNCTIONS

The following paragraphs define the valid /O function codes for each standard device.
The 2-digit octal code corresponds to yy in an [/O parameter list. Table 5-3 provides a
condensed list of /O functions and their relative to standard devices.

5=2.1 é_l_l__l?_e_a_vices

The current status (00) of the referenced [/O handler is returned in register A and the
condition register = f (A). If C is negative, status bits Ag through Ay, are not valid.
Dedicated status bits are as follows:

A3=ONE = Handler busy (the condition register will be set to "negative").

A22=ONE = Word count not compicie.

A91=ONE = End-of-file detected by last request.

A15-Ag = Number of words actually transferred.

VI //////////// == Ul T

O; sil WR:, //////////// /////////// ppppppppp i //////////// CCCCCCCCC

B P b //////////// " /////////// . ////////// WS

S %///////// ////////// //////////////////// = D ’///////////f///////////
S S = /=

nnnnn

Noll Nyl

6~G

o P ey /////////// ////////// = - ///////////

§
N
~

T e B /////////////// - //////////// 7///////////////////////)

9|qp]

$9p07) uol4oun O/I PYPA €-G
29 [[-SOQ

adg |pJeu

uo 1§D 141D

DOS-I1I General Specification

5-2.2 Disc

The following is a list of the I/O functions and their definitions for the disc:

Status (00) - Register A contains current status. The following registers

are also used:

i

First record address of the specified disc file.

It

Last record address of the specified disc file.

Current record address of the specified disc file.

The first and last record address are the absolute sector numbers for disc units

in the current system. An absolute sector number represents the address of a
specific drive, cylinder, track, and sector. The current record and file addresses
are relative sector numbers; that is, relative to the start of the file as defined by
the first record address.

Symbolic Read (01) - The specified number of words are transferred from the
next sequential disc sectors to memory. An end-of-file sector will terminate
the transfer; in which case,the number of words transferred is returned in register
A, along with an end-of-file status bit, when status is requested (refer to Status

(00)).

Symbolic Write (02) ~ The specified number of words are transferred from
memory fo fhe next sequential disc address.

Binary Read (03) - Same as Symbolic Read (01).

Binary Write (04) - Same as Symbolic Write (02).

Special Action (05) - Error Message "E@XXXXXX" is typed, indicating an
error af the address defined by "XXXXXX".

Write EOF (06) - An end-of-file sector is written at the next sequential
disc address.

Open File (07) - Null.

Close File (10) - Null.

Reposition File (11) - The current record address is set to the address of the
record following the previously encountered end-of-file record.

Backspace File (12) - The current record address is set to the address of the
previously encounfered end-of-file record. Multiple requests for this function
will not be affected since cily the single previous end-of-file address is saved.

Advance File (13) - A read one word of a sector is repeatedly executed until
an end-of-file status from a sector is detected. The current record address and
current file address are set to the new address.

5-10

DOS~II General Specification

Backspace Record (14) - A word count is required for the backspace of a
record greafer than one sector. The word count of the record is converted fo
sectors and the current record address is updated accordingly. If the address
is outside the file extents, the system will hold with the message "DFO XX".
The word count is specified as follows:

PARLIST DATA 'XXYY
DATA WORD COUNT

If a short request (TNK ' XXYY) is given, 10C forces the word count to 1.

Advance Record (15) - A word count is required for the advance of a record
greafer than one sector. The word count of the record is converted to a sector
count which determines the number of advances. A read one word of a sector
is repeatedly executed until the advance is complete or an end-of-file is
detected. The word count is specified as follows:

PARLIST DATA ' XXYY
DATA WORD COUNT

If a short request (TNK * XXYY) is given, IOC forces the word count to 1.

Rewind (16) ~ The current record address and the current file address are set
to zero because record addresses are relative to the given file extents.

Set Current Record Address (17) - Parameter two of the user's parameter ljst
is stored as the current record address of the specified disc file. This function
pemmits random access, The address is relative to the start of the file and is
specified as follows:

PARLIST DATA 'XXYY
DATA relative sector address (0-n)

Seek Current Record Address (20) - A disc "seek only" is performed for the
current record address.” Currenf record address is unchanged.

Set Current File Address (21) - This function causes the current record address
of the specitied disc file to be stored as the current file address. The primdry
purpose is to permit the assembler to set the current file address prior to record

1 of an assemEly, saving the reposition address for pass two, avoiding the
necessity for a scratch file.

5-11

DOS-II General Specifiécﬁon

5-2.3 Magnetic Tape

The following is a list of the /O functions and their definitions for the magnetic tape:

Status (00) - Register A contains current status. The following registers
are also used:
K = Current physical end-of-file number of the specified transport,

I

E Current record address within the current file.

Symbolic Read (01) - The specified number of words are requested from the
appropriate fransport. Mode and density are taken from a Tape Options table
corresponding to the specified transport (refer to the Control statement $TAPEOP
Table 3-1). For symbolic Read, 3 CPW must always be specified. After complet
of the transfer, assuming no errors, the mode bit is tested. If BCD mode was set,
a conversion is made within the user's buffer from BCD to ASCII (6-bit BCD for
7-track transport and Extended BCD for 9-track transports). If a read error is
detected, ten attempts are made to read the data, then a Hold message is typed
(URE T#). If released from the Hold condition, the data is treated as valid.

Symbolic Write (02) - If the BCD mode is specified, the user's buffer is
converted from ASCII to BCD (Extended BCD if a 9-track transport is
selected) at 3 CPW. The specified number of words are then transferred
according to the mode and density specified in the Tape Options table.

Ten attempts are made to recover from a write error. The first attempt is in
the same spot; subsequent attempts erase three inches first. If this is not
successful, a Hold message (UWE T#) is typed; if released, ten more attempts
are made. :

Binary Read (03) - The specified number of words are read according to the
Tape Opfions table.

Binary Write (04) - The specified number of words are transferred to the
selected fransporf according to the Tape Options table.

Erase (05) - Parameter two of the parameter list is used as a factor where

3.5n inches will be erased.

PARLIST DATA 'XXYY
DATA n

Write EOF (06) - End-of-file mark is written.

DOS-II General Specification

Open File (07) - Error count is set to zero.

Close File (10) - Error count is typed if not zero.

Reposition File (11) - The tape is repositioned to the first record of the
current file (end of the previous end-of-~file record).

Backspace File (12) - The tape is positioned to the start of the previous -
end=-ot=tile record.

Advance File (13) - The tape is positioned to the end of the next end-of-file
record.

Backspace Record (14) - The tape is positioned to the start of the previous
record.

Advance Record (15) - The tape is positioned to the end of the next record.

Rewind (16) - The tape is repositioned to load point. The current record
address and current file address are set to zero.

Set Current Record Address (17) = The tape is repositioned to the record
number specified in the parameter list. Load point or an end-of-file is
record zero of a file,

PARLIST DATA 'XXYY
DATA record number

Seek Current Record Address (20) = Null

Set Current File Address (21) = This function causes the current record |
address to be saved as a fake start of file so that a subsequent "reposition file"
will reposition the tape to this record address. This permits the assembler, |

for example, to assemble a string of programs without end-of-file separators,
making both passes from tape.

DOS-II General Specification

5-2.4 Console Keyboard

The following is a list of the I/O functions and their definitions for the console
keyboard (ASR-33, ASR-35, and KSR-35):

Symbolic Read (01) - Data is accepted on an interrupt basis (1 character
per inferrupl) Unfil a carriage return (C/R) character is detected or the
specified word count is complete. If a C/R is detected before the word
count is complete, the user's buffer is filled with blanks. The data is
converted to USASCII and packed 3 characters per word as it is received.
After the transfer is completed, the first character is tested for Job Control
($). Ifa$is detected and Job Stream has been previously assigned to the
keyboard (JS = 1), the record is passed to the resident command processor
for execution as Job Control. After control is returned from the command
processor, an input request is reinitialized for the user' s buffer, and the
background operation is allowed to continue. If an up=arrow (4) is detected
during input, the record is ignored and the input operation is reinitialized.
The control key (EOT) is considered to be an End-of-File (EOF).

Symbolic Write (02) - This function generates a Symbolic Write (02) to
to the console printer.

Binary Read (03) - Error message "E@XXXXXX" is typed, indicating an
error atf the address defined by " XXXXXX".

Binary Write (04) - Same as Binary Read (03).

Special Action (05) - Same as Binary Read (03).

Write EOF (06) - This function generates a Write EOF (06) to the console
prinfer.

Open File (07) - Null.

Close File (10) - Null.

Reposition File (11) - Null.

Backspace File (12) - Same as Binary Read (03).

Advance File (13) - Same as Binary Read (03).

5-14

DOS-II General Specification

Backspace Record (14) - Same as Binary Read (03).

Advance Record (15) - Same as Binary Read (03).

Rewind (16) - Null.

Set Current Record Address (17) « Same as Binary Read (03).

Seek Current Record Address (20) - Same as Binary Read (03).

Set Current File Address (21) - Null.

5-2.5 Console Printer

The following is a list of the I/O functions and their definitions for the console
printer (ASR-33, ASR-35, and KSR-35):

Symbolic Read (01) - This function generates a Symbolic Read (01)
request from the console keyboard. :

Symbolic Write (02) - The data characters are unpacked and transferred on
an inferrupt basis. An output record is truncated to 72 characters and all
trailing blanks are suppressed. The first character (Cp) in the user's buffer
is considered to be a carriage control character. If the first character is an
ASCII "1", three leading line feeds are issued as "Top-of-Form". If Cq is

a "0", two line feeds are issued for "double space". If Cyisa " ", one line
feed is used for single spacing and Cp is discarded. If Cg'is a "+", no line
feed is issued for overprinting and Cg is discarded; otherwise, a single line
feed is issued and Cg is typed to allow operator messages without a carriage
control character.

Binary Read (03) - Error message "E@XXXXXX" is typed, indicating an
error at the address defined by "XXXXXX".

Binary Write (04) - Same as Binary Read (03).

Special Action (05) = Same as Binary Read (03).

DOS-II General Specification

Write EOF (06) - End-of-File message "EOF" typed.

Open File (07) = Null.

Close File (10) - Null.

Reposition File (11) - Null.

Backspace File (12) - Same as Binary Read (03).

Advance File (13) = Same as Binary Read (03).

Backspace Record (14) - Same as Binary Read (03).

Advance Record (15) -~ Same as Binary Read (03).

Rewind (16) - Null.

Set Current Record Address (17) - Same as Binary Read (03).

Seek Current Record Address (20) = Same as Binary Read (03).

Set Current File Address (21) - Null.

5-2.6 Paper Tape Reader

The following is a list of the I/O functions and their definitions for the paper tape
reader (also console tape reader):

Symbolic Read (01) - Same as paragraph 5.2.4, Symbolic Read (01).

Symbolic Write (02) = Error message "E@XXXXXX" is typed, indicating an
error at the address define < by "XXXXXX".

5-16

DOS-I1I General Specification

Binary Read (03) - The binary tape format is four 6-bit frames per word.
Each binary record is preceded by an 8-bit line feed (L/F) and terminated

by an 8-bit carriage return (C/R). On detection of the L/F, data is accepted
and packed in the user's buffer 4 frames per word. On detection of the
End-of-Record (C/R), the transfer is terminated.-

Binary Write (04) - Same as Symbolic Write (02).

Special Action (05) - Same as Symbolic Write (02).

Write EOF (06) = Same as Symbolic Write (02).

~ Open File (07) - Null.

Close File (10) = Null.

Reposition File (11) - Message "RPF XX" is typed. ("RPF" is Reposition.
File and "XX™ is the physical device number.) Background is held until the
operator performs the function and executes the release command.

Backspace File (12) - Message "BSF XX" is typed. ("BSF" is Backspace
File and "XX" is the device number.) Background is held until the operator
performs the function and executes the release command. :

Advance File (13) - Characters are read and tested for an end-of-file
code (EOT).

Backspace Record (14) - Message "BSR XX" is typed. ("BSR" is the

Backspace Record and "XX" is the device number.) Background is held
until the operator performs the function and executes the release command.

Advance Record (15) - Tape is advanced until the next carriage return
(C/R) character is detected.

Rewind (16) = Null.

Set Current Record Address (17) = Same as Symbolic Write (02).

DOS-II General Specifi cation

Seek Current Record Address (20) ~ Same as Symbolic Write (02).

Set Current File Address (21) - Null,

5-2.7 Paper Tape Punch

The following is a list of the /O functions and their definitions for the paper tape
punch (also console tape punch):

Symbolic Read (01) - Error message "E@XXXXXX" is typed, indicating an
error af the address defined by "XXXXXX".

Symbolic Write (02) - Data is unpacked, converted to ASR-33 code, and
transferred on an interrupt basis until the word count is complete. A leading
line feed (L/F) and trailing carriage return (C/R) are generated by the
handler and transferred.

Binary Read (03) - Same as Symbolic Read (01).

Binary Write (04) =~ Data is unpacked, four 6-bit frames per word, and
transterred fo the paper tape. An 8-bit line feed is punched as a start-of -
record and a carriage return as end-of -record.

Special Action (05) - Same as Symbolic Read (01).

Write EOF (06) - Punches end-of-file (EOT="204) code (instead of L/F)
as the starf code, followed by C/R. Effectively, this generates a zero word
record with EOT as start-of -record.

Open File (07) = Punch power is turned on and 18 inches of leader (blank
tape) Ts generated.

Close File (10) - Punches end-of-file (EOT ="' 204) code, generates 18 inches
of trailer {blank tape), and turns off punch power.

Reposition File (11) - Saine as Symbolic Read (01).

DOS-II General Specification

Backspace File (12) = Null.

Advance File (13) - Same as Symbolic Read (01).

Backspace Record (14) - Same as Symbolic Read (01).

Advance Record (15) - Same as Symbolic Read (01).

Rewind (16) = Null.

Set Current Record Address (17) - Same as Symbolic Read (01).

Seek Current Record Address (20) - Same as Symbolic Read (01).

Set Current File Address (21) - Null.

5=2.8 Card Reader

The following is a list of the /O functions and their definitions for the card reader:.

Symbolic Read (01) - Card input is processed in a manner similar to keyhoard
inpuf. A 9-8 multipunch in column one is considered to be an end-of-file
indicator. A maximum of 80 characters may be transferred by a single request.
Hollerith code is converted to ASCII and packed 3 characters per word as it
is received. The user has an option of 026 or 029 code conversion. ;

Symbolic Write (02) - Error message "E@XXXXXX" is typed, indicating an
error af the address defined by "XXXXXX".

Binary Read (03) - No data is in card columns 1 through 6. Column 1 will

be blank except for an end-of-file code (9-8 multipunch) and a partial re¢ord
code (9-7 muﬁipunch). The partial record or continuation code causes
subsequent cards to be fed automatically until one is read without the code.
Columns 2 through 6 are open for a sequence number. Columns 7 through 80

are transferred (2 col/word) into the user's buffer until the specified word
count is complete or until un end-of-record is reached. If the word count is
complete prematurely, cards are ejected until an end-of-record card is reached.

Binary Write (04) - Same as Symbolic Write (02).

5-19

DOS~II General Specification

Hollerith Read (05) - 80 columns of data are packed 2 columns/word and
fransferred fo memory without conversion.

Write EOF (06) - Same as Symbolic Write (02).

Open File (07) - Null.

Close File (10) = Null.

Reposition File (11) - Message "RPF XX" is typed. ("RPF" is Resposition
File and "XX" is the physical device number.) Background is held until the
operator performs the function and executes the release command.

Backspace File (12) - Message "BSF XX" is typed. ("BSF" is Backspace

File and "XX" is the device number.) Background is held until the operator
performs the function and executes the release command.

Advance File (13) - Cards are fed and column 1 is checked for an
end-of-file code (9-8 multipunch).

Backspace Record (14) - Message "BSR XX" is typed. ("BSR" is Backspace

Record and "XX" is the device number.) Background is held until the
operator performs the function and executes the release command.

Advance Record (15) - One card is fed and ejected.

Rewind (16) - Null.

Set Current Record Address (17) - Same as Symbolic Write (02).

Seek Current Record Address (20) - Same as Symbolic Write (02).

Set Current File Address (21) - Null

5-20

DOS-II General Specification

5<2.9 Card Punch

The following is a list of the I/O functions and their definitions for the card punch:

Symbolic Read (01) - Error message "E@XXXXXX" is typed, indicating an
error at the address defined by "XXXXXX".

Symbolic Write (02) - Converts ASCII to card-code and punches.

Binary Read (03) - Same as Symbolic Read (01).

Binary Write (04) -~ One or more cards may constitute a binary record.
Column one of each card is reserved as a special action code. A 9-8
multipunch in column one indicates an End=-of=File record (one card).
A 9-7 multipunch indicates a partial record. Column 2 through 6 are
open for a sequence number.

Special Action (05) - Same das Symbolic Read (01).

Write EOF (06) -~ A 9-8 multipunch is punched in column 1.

Open File (07) - Null.

Close File (10) - Ejects one card.

Reposition File (11) - Same as Symbolic Read (01).

Backspace File (12) - Same as Symbolic Read (01).

Advance File (13) - Same as Symbolic Read (01).

Backspace Record (14) - Same as Symbolic Read (01).

Advance Record (15) - ©.me as Symbolic Read (01).

Rewind (16) - Null.

5-21

DOS-II General Specification

Set Current Record Address (17) - Same as Symbolic Read (01).

Seek Current Record Address (20) - Same as Symbolic Read (01).

Set Current File Address (21) = Null.

5-2.10 Line Printer

The following is a list of the [/O functions and their definitions for the line printer:

Symbolic Read (01) - Error message HE@XXXXXX" is typed, indicating
an error af fhe address defined by "XXXXXX".

Symbolic Write (02) - Cg is assumed to be a carriage control character and
the prinfer responds in the manner defined in Table 5-4. A "1", "0", " ", or
4t in Cq is replaced by the appropriate control character as indicated in
Table 5-4. The character "#" is, by hardware definition, a print command
and is therefore not printable.

Table 5~4. Line Printer Carriage Control Characters

Co Action
"@" or "+" 0 line advance
"A" or " " 1 line advance
"“B" or "O" 2 line advance
"cH 3 line advance
"o 15 line advance
"“P* or "1 Channel 1 advance (Top of Form)
"Q Channel 2 advance
"R" " Channel 3 advance
w Channel 8 advance

5-22

DOS-II General Specification

Binary Read (03) - Same as Symbolic Read (01).

Binary Write (04) - Same as Symbolic Read (01).

Special Action (05) - Same as Symbolic Read (01).

Write EOF (06) - Top-of-form.

Open File (07) - Top-of-form.

Close File (10) - Top-of-form.

Reposition File (11) - Same as Symbolic Read (01).

Backspace File (12) - Same as Symbolic Read (01).

Advance File (13) - Same as Symbolic Read (01).

Backspace Record (14) - Same as Symbolic Read (01).

Advance Record (15) - Same as Symbolic Read (01).

Rewind (16) - Top-of-form.

Set Current Record Address (17) -~ Same as Symbolic Read (01).

Seek Current Record Address (20) - Same as Symbolic Read (01).

Set Current File Address (21) - Null,

5-23

DOS-11 General Specification

SECTION VI
OPERATING PROCEDURES

6-1 LOADING PROCEDURES

DOS is loaded from the disc via the hardware loader or the following thumb-in:

Location Mnemonic Octal
0 TOA WC 62500012
1 OAW '500 00714500
2 TMA CW 05000011
3 OoCw '500 00700500
4 ISW '500 00730500
5 BNZ *-1 22600004
6 QBB B7 00110200
7 BNZ *-3 22600004
10 . BUC 120 21000020
" CcwW DATA '40000000 40000000
12 wC DAC '100 00000100
13 BA DAC '20 00000020

After the resident DOS is loaded from disc, the Operator Communications Device
(OCD), which is generally the console teletype, will print the message " ABORT". ‘State-
ments will then be read from the OCD. If, for example, the Job Stream device is the card
reader, the operator may then assign control to that device as described in Paragraph 6-2.1.

6-2 OPERATOR CONTROL FACILITIES
The operator can manually control the Job Stream of DOS by using two keys of the

OCD, X-OFF and BELL. -

6-2.1 Abort Procedure

To unconditionally terminate the current job, the operator.must actuate the control
key X-OFF. This will cause the message " ABORT" to be printed on the OCD and the Job
Stream device will then be assigned to the OCD. To transfer back to the main Job Stream
device, the following Assign statement must be entered by the operator:

$JOB
$ASSIGN 0,7

This statement assigns the logical file 00 (Joi) Stream) to physical device number 7, the card
reader (refer to Section V for a description of the logical file numbers and physical device
numbers of DOS).

6-1

DOS-11 General Specification

6-2.2 Hold Recovery Procedure

A hold condition can result from program control or from a Job Control statement.
Generally, a message is printed on the OCD when a hold is encountered. The message informs
the operator of action required before continuing. To release a hold condition, the operator
must actutate the control key BELL.

6-3 USING SYSTEM PROCESSORS

Operating procedures for each processor are documented separately. In general, a
processor is called and supported by the following control statements:

$JOB PEANUTS

$ DATE XX/YY/ZZ

$ ASSIGN I,p,I,p
$OPTIONS .1i,j,k
$LINES n

$ LOADGO processor

6-4 OPERATOR MESSAGES

Table 6-1 contains a summary and description of the DOS operator messages. For
a listing of Link Loader error messages, refer to Table 3-5 of this document.

6-2

DOS-11 General Specification

Table 6-1. DOS Operator Messages
Condition Message Action Taken if Released

Abort Background. ABORT A release is not necessary. The Job
Stream is assigned to the keyboard and
Job Control is called from disc.

Job Control encounters an ICS The statement is ignored and another

invalid control statément.. ‘ statement accepted.

Invalid load request for ILR-XXXXXX | Call Job Control from disc.

processor XXXXXX.

An erroneous system request E @XXXXXX | The condition register is set to

has been made at location NEGATIVE and control is returned to

XXXXXX. XXXXXX +1, This permits an I/O
request to be repeated after the para-~
meters are corrected.

Restricted address reference RAR The statement is ignored.

from Debug.

Rewind device XX is elec- REW XX Control, with a ZERO condition, is

tronically impossible. returned to the routine making the
request.

Backspace a file on device BSF XX Control, with a ZERO condition, is

XX is electronically impossible. returned to the routine making the
request.

Backspace a record on device BSR XX Control, with a ZERO condition, is

XX is electronically impossible. returned to the routine making the
request.

Reposition the current file on RPF XX Control, with a ZERO condition, is

device XX is electronically returned to the routine making the

impossible. request.

Advance a file on device XX is ADF XX The active process is continued without

electronically impossible. loss of data.

Advance a record on device XX ADR XX The active process is continued without

is electronically impossible. loss of data.

Attention device 5. Tape is ATN 05 A flag is set and punching is continued.

low on punch.

Attention device 6. Printer ATN 0% The active process is continued without

paper is low or yoke is open.

loss of data.

6-3

DOS-1I General Specification

Table 6-1. DOS Operator Messages (Cont'd.)
Condition Message Action Taken if Released

Printer parity error detected. P.E. 06 The print is repeated using "no line
advance" for carriage control.

Memory file overflow. MFO Abort.

Disc file overflow on DFO XX An EOF status is set. The function is

physical file XX. A request not executed and control, with a ZERO

was made to perform a condition, is returned to the routine
function outside the bounds of making the request.

the file.

Disc file status bit 2 Moving DFS 02 Repeat request.

head-file unsafe. Fixed

head-track address error.

Disc file status bit 3 Moving DFS 03 Repeat request.

head-seek error. Fixed

head-sector address error.

Disc file status bit 4 (read DFS 04 Repeat the request.

error).

Disc file status bit 23 (ABC DFS 23 Repeat the request.

word count not complete on a

read or write request with no

EOF detected).

Refer to Table 3-5. LNK XX Refer to Table 3-5.

A command has been given to INC 01 Control is returned to Job Centrol.

include a module which is not

on the name file.

Checksum error by Include. INC 02 The binary input file is backspaced and
an attempt is made to re-read the faulty
record.

Refer to Table 3-2, ELFXX Refer to Table 3-2.

A command has been given to EPF 01 The command is ignored and another

add a module which is already ENFOT1 Edit command is required from the

in the referenced file. ESF 01 job control file.

A command has been given to EPF 02 The command is ignored and another

Replace or delete a module ENF2 Edit command is required from the

which is not in the referenced ESF 02 job control file.

file

6-4

Table 6-1.

DOS-11 General Specification

DOS Operator Messages (Cont'd.)

only switch is on.

Condition Message Action Taken if Released

The Name parameter is missing EPF 03 The command is ignored and another
from the command statement ENFO3 Edit command is requested from the
when required. ESF 03 job control file.

A command has been given to ENFO04 The command is ignored and another Edit
search file 15 for a specific command is requested from the job control
program that is not on the file. file.

A recoverable read or write XXE Tn Data is good and operation proceeds
error occurred XX times on the normally.

tape transport n specified.

An unrecoverable read error has | URE Tn Ignore the error and assume data to be
occurred on the tape transport good.

n specified.
 An unrecoverable write error has | UWE Tn Ten additional attempts are made to
occurred on the tape transport recover.

n specified.

Physical end-of-tape has been EOT Tn Operation proceeds normally.
detected.

Transport n is off line. ATN Tn Operation proceeds normally.

Disc file restricted for DFR XX Abort.

physical file XX. A

write request for a

restricted file was

encountered.

Attention. Disc file read ATN DF Repeat request.

DOS-II General Specification

SECTION VII
SYSTEM GENERATION

7=1 GENERAL

‘System generation is the procedure used to configure a Disc Operating System to the
user' s application. A System Generation System (SGS) is provided with each DC 6024. This

program is in paper tape bootstrap format. SGS is a resident operating system with [/O handlers
for all standard peripheral devices.

7-2 PRELIMINARY PROCEDURES

Prior to generating a system, the user must determine which peripheral devices are to
be included in DOS, and the associated channel, unit and interrupt assignment for each device.
When the peripheral complement is established, a custom System Linkage Module (SLM) must be
created by updating and assembling the standard SLM source program. The modified SLM, after
being assembled, becomes the "main" program module of DOS. The SLM contains all the
pertinent parameters and external requests for the user's custom system. Information pertaining
to the contents and construction of the SLM tables is contained in the following Paragraphs. If
the user does not intend to generate a custom system at this time, then the procedure for
generating a standard system is described in Paragraph 7-3.

There are ten tables in the SLM. These tables contain various types of information
pertaining to the operation of DOS. Eight of the ten tables are core-resident. In an operational
DOS, the contents of the Miscellaneous Parameter table, Physical Assignment table, Tape Options
table, and Disc Extents table are often modified by Job Control statements, but the remaining

tables are not changed by any service or processor. The SLM tables are described in the following
paragraphs.

7-2.1 External Definition Table

The External Definition (XDEF) table contains external definitions for parameters within
the SLM. This table permits other DOS modules to make use of the SLM parameters; e.g., the
/O handlers and programs of the System Service Module use many of the parameters in the XDEF
table. If the user's foreground modules require inter-communication links, the names should be
entered in the XDEF table.

7-2.2 External Equivalence Table

The External Equivalence (XEQV) table defines absolute channel/unit number for each
peripheral in the system (refer to Appendix B). It also defines the number of words per sector,
sectors per track, tracks per cylinder, and cylinders per drive for the disc units in the system

(refer to Appendix A). These constants ar.: externally referenced by the I/O handlers and
satisfied at system generation time.

7-1

DOS-1I General Specification

7-2.3 Service Linkage Table

The Service Linkage table is contained in memory locations 0-37,. These locations
can be accessed only by a Branch and Link Unrestricted (BLU) instruction by a restricted -
processor. The contents of the table are assigned at system generation time. The Service
Linkage table contains unconditional branch (BUC) instructions to the various service processors
listed in the table. Any location in the table not containing a BUC to a processor must contain
a BUC to the system error routine. The referenced processor may be internal or external to
SLM. Standard service linkage assignmerits are shown in Table 7-1 (refer to Paragraph 7-2.8,
System Service Directory, for programming considerations).

Table 7-1. Standard Assignments, Service Linkage Table

Linkage
Address
(Octal) Identification Function
0 ABORT Abort current background job.
/O I/O control routine.
2 EXIT Return to Job Control. -
3 HOLD Output operator message and wait.
4 CHAIN Load absolute program module.
5 INFO Ret urn system information.
6 O/M Stack an operator message and
continve.
7-37 OPEN To be defined by user.

7-2.4 Miscellaneous Parameter Table

Memory address 40g =57 are arbitrarily used to define miscellaneous system parameters -
relative to a given system. Table 7-2 shows a list of parameters used by the standard DOS. The
user may supply other entries for use in a custom system.

DOS-II General Specification

Table 7-2. Miscellaneous Parameter Table

Parameter Format Definition

BG. LOW DAC $BGAREA Background Low

BG. HI DAC %17777 Background High

MEM. HI DAC '17777 Memory High

DF1PDN DAC 'l Disc File One is PDN
”8

SPIL DATA B8B9...Bn System Priority Interrupt
Levels

OCIL DATA B8 Operator Communica=
tions Interrupt Level

] DISCIL DATA B4 Disc Interrupt Level

CHA BUC $C026 For 026 card code
conversion.

or

CHA BUC $C029 For 029 card code
conversion.

ot

CHA BUC $C02629 For 026 ($OPTION
23) or 029 card code
conversion.

CBA BUC $B:A For BCD: ASCII request.

CAB BUC $A:B For ASCII: BCD request.

CEA BUC $E:A For EBCD: ASCII
request.

CAE BUC S$A:E For ASCII: EBCD
request.

BUC $S.ERR If no conversion is
_ desired.

F.CP BUC $F.DBUG Operator request link-
age to foreground
debug.

BUC 0,J ~ If linkage is not desired.

The location SPIL (System's Prioritv Interrupt Levels) is referenced by the service
module. SPIL must contain a ' 1' in each bii position that corresponds to an /O control
system priority interrupt level; e.g., if the system uses levels 8, 9, 10, 12, 13 and 14, then

SPIL would be defined as:

DOS-II General Specification

SPIL DATA B8B9B10B12B13B14
or
SPIL DATA '73400

It should be noted that foreground interrupt levels are not defined in SFIL. The fore-
ground level must be controlled by foreground executive modules.

7-2.5 Priority Interrupt Linkage Table

Memory addresses 60-1778 are dedicated to the eight executive traps and 72 external
interrupt levels, A subroutine call (BSL) is entered for each required level of interrupt to
establish linkage with the appropriate interrupt processor. Table 7-3 lists the standard inter-
rupt location assignments.

Table 7-3. Standard Assignments, Priority Interrupt Linkage

Linkage
Address
{ Octal) Group, Level Function
60 0,0 Power Down
61 0,1 Power Up
62 0,2 Program Restrict
63 0,3 Instruction Trap)
64 0,4 Stall Alarm Executive
65 0,5 Interval Timer Traps
66 0,6 SAU Overflow/Underflow
67 0,7 Address Trap
70-77 1,0-7 Not Assigned
100 1,& - Console Typewriter-Input Processor
101 1,9 Console Typewriter-Cutput Processor
102 1,10 Card Reader~Input Processor
103 1,11 Card Punch-Output Processor
104 1,12 Tape Reader-Input Processor
105 1,13 Tape Punch-Output Processor
106 1,14 Disc-Ready Status
107 i,15 Magnetic Tape-Ready Status
110-117 1,16-23 Not Assigned
120-147 2,0-23 Not Assigned
150-177 3,0-23 Not Assigned

F=2.6 /O Handler Linkage Table

The /O Handler Linkage table serves as a directory and linkage address table for

resident /O handlers.

The order in whicn the handler address i< entered in the table deter-

mines the physical device number to which re handler is dedicated. (This is not the same as
hardware channel/unit numbers which are defined in the external equivalence table.) For
example, the seventh entry in the standard SLM 1/O Handler Linkage table is

74

DOS-I1 General Specification

DAC $5.CR

which, by definition, assigns the card reader handler to physical device number 7 (refer to
Section V for standard physical device number assignments).

An external address reference (i.e., DAC $NAME)) to each handler required for the
system must be contained in the handler linkage table. A zero must be entered in each loca-
tion whe re the device associated with the physicdl device number is not present; e.g., the
seventh entry in the table would be

DAC O

if the system does not have a card reader. Table 7-4 shows the standard assignments contained

in the I/O Handler Linkage table. Note that the console typewriter is assigned to physical device
number 1 to facilitate operator communications. This assignment must not be changed; furthermore,
Job Control does not allow reassignment of logical bit 1.

Table 7-4. Standard Assignments, I/O Handler Linkage Table

PDN External Request ' Description
1 DAC $5.CT Console Typewriter
2 DAC $S.CTR Console Tape Reader
3 DAC $S.CTP Console Tape Punch
4 DAC $S.PTR Paper Tape Reader
5 DAC $S.PTP Paper Tape Punch
6 DAC $S. LP Line Printer
7 DAC $S.CR Card Reader

10 DAC $s.Cp Card Punch

11 DAC $S.DFH2 Disc File Handler

23 DAC $5. MTO Mag Tape Zero

The $ASSIGN statement (refer to Table 3-1) relates the Logical File Number (LFN)
of a device to a physical device number handler. The physical assignment table is modified
(by Job Control) to reflect the current Job I/O assignments. For example, when the statement

$ASSIGN 0,7,4,15
is encountered, the '7' is entered in the Physical Assignment table at location PAT+0 and the

'15' at PATH4 (assigning physical device number 7 to logical file number 0 and physical device
number 15 to logical file number 4). When IOCS obtains a logical file number from a calling

7-5

DOS-II General Specification

program, it is used as an index pointer to refrieve the assigned Ehysical device number from PAT.
The physical device number then becomes an index pointer to the Handler Linage table which
contains a linkage address to the associated physical device handler.

7=2.7 Physical Assignment Table

The Physical Assignment table (PAT) contains the physical device number assigned to
logical files 00-n in the standard SLM. Logical file 01 must be assigned to physical device
number 01 for operator communications. Other assignments may be preset as desired for system
generation.

7-2.8 System Service Directory

The System Service Directory contains the 3~character name for each entry in the
Service Linkage table (Table 7-1). The entries must be ordered to correspond in both tables.
The System Service Directory is scanned by the Link Loader when it detects a system service
request. If the entry is contained in the directory, the loader inserts a Branch and Link
Unrestricted (BLU) in the calling program to the appropriate service; if not, a BLJ is inserted
along with the external request (refer to Paragraph 3-6.7C for a description of the loader's
action concerning a system service request),

7-2.9 Disc Extents Table

This table contains the first and last sector number for each disc file. The user may,
at system generation, allocate disc storage to suit the requirements of his particular system.
Disc allocation may also be modified via the SEXTENTS statement of Job Control (refer to
Table 3-1).

7-2.10 Tape Options Table

The Tape Options table contains definitive information relative to each transport in
the system. This information includes type of transport (9~ or 7-track), transport number,
density, mode (BCD -even parity or Binary/ASCII = odd parity), and characters per word
(0, 2, 3, 4).

7-3 SYSTEM GENERATION PROCEDURES
A new disc pack should be initialized with the disc diagnostic before generating a DOS.
~ procedures are given in AA61569-00, Disc Diagnostic, General Specification, Appendix A.

This procedure is not necessary prior to each system generation.

7-3.1 SGS Loading Procedure

The System Generation System (SGS) is in paper tape bootstrap format. To load SGS,
the bootstrap in Figure 7-1 must be entered in memory and executed. (The automatic bootstrap
FILL SWITCH is optional.)

7-6

DOS-II General Specification

7-3.2 SGS Operating Procedure

SGS starts at location 0 and is self-initializing. The message "ABORT" will be typed
when SGS is properly loaded. The program is then in a Hold condition awaiting operator
action. When the BELL Key is actuated by the operator, control is transferred to the SGS
Job Control processor. Job Stream (LFN = 0) is assigned to the console teletype (PDN= 1),
During the system generation process, control will alternate between Job Control and the
SGS Link Loader. In the event that the operator needs to acquire control to the system during
a Link Loader Hold condition, he may do so by actuating the RUB OUT key (instead of the
$ key) followed by the desired control statement.

L3

Start TOA 110 00 62500110
ocw CuU 01 00700100*
IDW CuU 02 00720100*
COB 0 03 00140000
BOZ *-2 04 22200002

L1 TNJ 4 05 63200004

L2 LLA 6 06 00420006
IDW#* Cu 07 00724100*
BNZ * -] 10 22600007
BWJ L2 11 23200006
CZA 12 00240020
BOZ v20 13 22200020
TAM ¥20,1 14 15100020
BWI L1 15 23100005

* CU = 100 for High Speed Reader (Assumed above)

* CU = 000 for ASR

o Set Sense Switch 1 for ASR Input

Figure 7-1. Paper Tape Bootstrap

7-3.3 Processor File Development

The Processor file (LFN = 11g) starts at cylinder 0, track 0, and record 0 and is the
primary disc file of DOS. The Processor file contains the resident DOS and associated non-

resident services in load module format. Development of this file is the function of system
generation.

Processor File development procedures, assuming the user starts with an ABORT condition

(refer to Appendix C fora sample system generation job stream and associated Link Maps), are
as follows:

1) Release Job Control by actuating the control key BELL.

2) Open a job.
$JOB SYSGEN

DOS-II General Specification

3)

4)

5)

6)

7)

8)

Permit access to the restricted Processor File.
SALLOW

Assign binary input, binary output, and list output files to appropriate devices.
$ASSIGN 4,BL,5,11,6,LO

In SGS, physical device number 11g is dedicated to the Processor File; i.e., the
area of disc beginning at cylinder (?, track 0, and record 0. BI (binary input) is
PDN 4 for the high-speed tape reader and PDN 2 for the ASR reader. LO

(list output) is PDN & for the line printer and PDN 1 for the ASR printer.

Set the Link Map option.
$OPTION .7

Rewind binary output file.
$XXYY 051¢

Link the Absolute Disc Loader relative to location 20g and dump it in Bootstrap
format.

$LINK 10000,n,20
$DUMPBF
where: n is background high (37777 for 16K)

Link the Processor File Directory and dump it in Bootstrap format.

$LINK 10000
$DUMPBF

Link DOS modules SLM, FXM, IOCS, and SSM relative to location 0 and dump
DOS in Load Module format. User foreground modules may precede or follow
IOCS. SSM must be the last module linked.

The HOLD message, LNK 04, will be typed after each module is linked. When
the next module is positioned in the binary input device, linking may be
continued by actuating the control key BELL.

When linking is completed, a Link Map will be printed. It will be necessary
to reference this map before proceeding.

If linking is complete but all external requests are not satisfied, the map will
not be printed. An option 6 may be specified using the operator request key
RUB OUT instead of the $! :y. A release, with option 6 set, produces a

map of both defined and unaefined variables. The problem should be corrected
and system generation restarted.

$LINK 10000,n,0
$DUMP

DOS=-II General Specification

10) Dump Job Control in Load Module format. The Job Control routine occupies the
non-resident area of SSM and is in memory after performing the previous link.
The map parameters J. C.R and ENDJCR define the first and last address of Job
Control.

$DUMP J.C.R,q,b,c,a+10000

where: a = first address of the Job Control (J. C.R on Link Map)
b = last address of the Job Control (ENDJCR on Link Map)
¢ = a = starting address of Job Control
10000 is the base area into which DOS was linked

[R))] Link non-resident system service routines (Link Loader, Debug, Trace, and
File Edit) relative to the non-resident service address and dump in load moduyle
format. The non-resident service address is defined on the Link Map as NRS.

File Edit contains INCLUDE, EDITPF, EDITLF, EDITNF, and EDITSF on one
tape.

Execute the following statements for each service routine, where a = NRS from
the Link Map:

$LINK 10000, n,a
$DUMP

12) Link any desired background processors relative to BGAREA from the Link Map
of DOS, then dump them in load module format. If they do not have a name,
specify one in the DUMP statement.

This step may be omitted in preferance to Paragraph 7-3.6. It is desirable to
perform this step if the system being generated does not have a high-speed reader
and if configuration being used for generation does.

Perform the following for each Processor:

$LINK 10000,n,m
$DUMP name

where;: m is BGAREA and name is a character identification
if the map does not give one.

13) Terminate the processor file with an end-of-file record.
$XXYY 0506

14) Initialize the Processor File Directory by linking and executing the IPFD routine.
$LINKGO

DOS-II General Specification

- Once IPFD has been executed, the newlg developed DOS is self-supporting.
Further initialization of the system may be done under the control of DOS
rather than SGS. : '

Load DOS from disc via the automatic bootstrap fill switch or the thumb=-in
bootstrap shown in Paragraph 6 -1. When DOS is loaded, it will initialize
itself, type the message "ABORT", load the non-resident Job Control, and
assign Job Stream to the teletypewriter keyboard. The control statement
$JOB must be typed before Job Control will accept any other statement.

7-3.4 Library File Development

Transfer the FORTRAN Support Library to the DOS Library File from paper tape as
follows: ' '

$JOB

$ASSIGN 4,B1,15,12
SALLOW

SREW 15

$INCLUDE
$SRESTRICT

In the Assign statement, Bl is the physical device number for the binary input device
(4 for the high-speed tape reader and 2 for the ASR reader). Logical file number 15 is the
link ready file and physical device number 12 is dedicated to that area of disc allocated to the
library file. The Allow statement permits writing on a restricted library file.

Sequential binary records are transferred from paper tape to the disc library file and
terminated with an end-of-file record on detecting the END$ record.

If the library file is to be blocked the sequence should be as follows:

$JOB

$ASSIGN 4,B1,15,30,30,12
$BG.HI n

SALLOW

$REW 15

$INCLUDE

$RESTRICT

The double assignment 15,30,30, 12 assigns logical file 15 to disc file 12, through
Blocked File Handler One ("PDN" 30). The background high specification allows blocking
buffer between background and memory high.

DOS-II General Specification

If the library file is to be blocked the sequence should be as follows:

$JOB

$ ASSIGN 4,BI1,15,30,30,12
$BG.HI n

$ALLOW

$REW 15

$INCLUDE

$RESTRICT

The double assignment 15, 30, 30, 12 assigns logical file 15 to disc file 12, through

Blocked File Handler One ("PDN" 30). The background high specification allows blocking
buffer between background and memory high.

7-3.5 Name and Source File Initialization

Initialize the link name file (LFN 13) and compressed source file (LFN 14) as follows:

$ ALLOW
$REW 13
$WEF 13
$REW 14
$ WEF 14
$RESTRICT

7-3.6 Processor File Expansion

Desired background processors may be added to the processor file. The Assembler was
used in the example:

$ ASSIGN 4,B1,15,15
$REW 15
$INCLUDE
$OPTIONS .7

$ LINK

$SEDITPF

ADD name

The Include statement transfers the link module tape of the processor (ASSEMBLER) to
the link-ready disc file and terminates with an EOF record. The Link statement loads the
processor into memory at background low and saves the link parameters. The Link statement may
also have a relocation address. The Add statement dumps the core resident processor in load
module format and enters it's load parameter in the processor file directory. If the processor
has the desired name, a name need not be given in the Add Statement.

7-3.7 File Listing

After development of the system files, a name list for the contents of the processor and
library files may be desired. This may be acquired as follows:

7-11

DOS-II General Specification

$ EDITPF
LIST
$EDITLF
LIST

Refer to Paragraph 3-3 for System File Maintenance.

7-12

DOS-II General Specification

APPENDIX A
PHYSICAL CHARACTERISTICS OF THE MOVING-HEAD DISC

The Datacraft Disc Controllers, Models 5100, 5102, and 5104, employ a fixed-size
sector of 112 words (refer to Datacraft Manual TM61340-00, Disc Controller) Model 5100
handles 20,300 sectors per drive, Model 5102 handles 81,200 sectors per drive, and Model
- 5104 handles 162,400 sectors per drive (refer to Table A-1).

DOS uses the absolute sector number for its disc address. An absolute sector number
represents the address of a specific drive, cylinder, track, and sector. Data is written on
disc as sequential, variable length records (1 to n words per record) in a cylindrical fashion.
Data records may spill over sectors within a track, tracks within a cylinder, and from one
cylinder into the next adjacent cylinder without program intervention. Figure A=l shows the
disc track/cylinder relationship.

Table A=1. System Characteristics

L _____ ;r____f__L_O__Q___L 5102 51 O_Jfﬁ
Cylinders 203 203 406
Tracks/C 10 20 2C
Sectors/T 10 20 20
Words/'S 112 112 112
Bytes/W 3 3 3
Bytes/Pack 6,820,800 27,283,200 54,566,400

DOS-II General Specification

RACK 0 AF =R \’—'TRACKO, CYLINDER 0
m— R TRACK 0, CYLINDER 1

R/W HEAD TRACK 0, CYLINDER 202
TRACK 1 ya TRACK 1, CYLINDER 0
T | TRACK 1, CYLINDER 1
R/W HEAD TRACK 1, CYLINDER 202

TRACK n, CYLINDER O
—TRACK n, CYLINDER 1
TRACK n, CYLINDER 202

There are n+1 planar surfaces, each of which has a read/write head (n=2 for Model
5110 Disc Drive and n=19 for Models 5112 and 5114 Disc Drives). The read/write heads are
vertically aligned and mechanically locked together. The n read/write heads move incrementally
across boundaries called cylinders. There are 203 cylinders per unit for Models 5110 and 5112,
Model 5114 has 406 cylinders. A track is a one-plane cylinder and, conversely, a cylinder is
comprised of n vertically aligned tracks.

Figure A=1. Cylinder and Track Relationships

DOS-11 General Specification

APPENDIX B
CHANNEL, UNIT, AND INTERRUPT ASSIGNMENTS

1/O handlers are assigned specific channel/unit numbers and priority inferrupt levels.
Common assignments are shown in Table B-1 (refer to Paragraph 7-2.2 and Table 7-3 of
Section VII of this document).

DC 6024 external interrupts are organized in groups of 24 and are available in subgroups
of 4 levels. Priority interrupts for standard peripheral units are assigned to the middle 8 levels
of group 1. This provides 8 available levels above,and up to 56 levels below the standard

assignment. This permits foreground processors to operate at a lower or higher level than the
standard 1I/O.

Table B-1. Standard Channel/Unit and Interrupt Assignments

Physical Device C'hcmnel/Unif Interrupt Level

Console Typewriter input/output 0/0 8/9

Card Reader 4/0 10

Card Punch 6/0 | 1
High-Speed Tape Reader 1/0 12
High-Speed Tape Punch 1/1 13

Line Printer 3/0 none
Disc 5/0 14
Magnetic Tape 7/0 15

B-1

ARURT
5 JOB SYSGEN
SALLQY

SASSIGN A8555115651

SOPTIONS 7
SKXYY 6516

SLINK 10080, 17777,20

SDUMPRF
SLINK 190000
PFDIR

SDUNMPBF

1519171227

1geee

SLINK 16@GCs 1777750

LNK @4
LiNK ¢4

LNK G4
LN® @4
DOS
START na24ay
SLM ooene

S.HLT @zll¢
HOLD Cones
LRA o176
DTYPE 260643
5.I10C d@gase
S«INFO €3576
POVERU 0©313
TI¥YER (C356
S«CIP (2422
SeCT 03551
SPTP #2053
SeDF12 (3110
SeDF16 03114
SeDF22 (33120
SeI0E (530
SeCPF SACO3
IDLE (03551
ABORTs rap24
IRH (13b24
SDUVMP

16163061010}
ABORT (20000
BG.LOW pppac
SePAT G01383
INFO L0005
crA 21
SeSPIL $J9C44
CALLJC 04613
SeZRi BAS3N
FPREST £38374
ATRAP (0404
S.TRIFP Q1722
S5«CTR 00551
S.LP peT771
SeDF13 £3111
SeDF17 ©3115
S«BORT v¥3503
POY B5e04
SeCHA (02607
deColl (4103
GOFLAC 24023

APPENDIX C
SAMPLE SYSTEM GENERATION JOB STREAM

Greee

111¢0

05253

EXIT
BGeHI
555D
DELTIM
PRA
5.0CIL
S«HOLD
BGAREA
1TRAP
S.TIF
S«TPOP
S«CTP
S<CR
SeDF14
SeDFRO
TIME

S eRBG
FHeFLAG
ENDJCR
USFLAG

SDUNME JeCelinadlid355252,4103,14103

nae20

10009

apalelaty)
ngon2

RULE

Br1s56
CLa263
nR2ee
LEOLS
3541
25453
Gan1y
wilen
02175
GE551
02267
13112
#3116
3653
73564
Yapasb
65252
Gapae

DOS-I1 General Specification

I/0 eoeal
mEM«HI (G0AR
55SDE ¢d164
FRA V164
CFn 2pe34
F.CF coa4ans
SeCLDR 23671
POWERD (0265
STaLL @pac4a
S«TOP 142C
SeDIP £3277
S«PTR 01564
S<DF11 03107
S5«DF15 @3113
SeDF21 03117
UFMESS (10774

JCB Can3dl
SSM 3503
NS 64143

OPTIOUN 03645

DOS-I1 General Specification

CLINE LGOS, 1TTTT7s41063

LINKLC 04103

sDUME

SLINK 100G, 17777,41€3
TRACE g4a103

EDUNME

SLINK 10000,17777,4103
DEBUG 04103

SDUMP

SLINK 10000,17777,4103
INCLUD 041063

$DUMP

SLINK 1000@,17777,4103
EDITFF 4103

SDUMP

SLINK 10008,17777,4103 -
EDITLF P4183

SDMIMP

SLINK 10000,17777,4183
EDITNF 4193

SDUMP

SLINK 10000,17777,4103 :
EDITSF B4103

S5DUMP

SLINK 10000s17777,4103
IDISC p4a1e3

SPUNMP

SXXYY 2506

sLINKGO
IPFD P7326

g5€11

10676

25123

ga364

05825

V5055

95054

P5620

07443

vate

w

Q4163

P4103

04163

04103

04183

24163

24103

V4103

37326

DOS-I11 General Specification

ABORT

$JOB LIBRARY FILE DEVELOPMENT
$ASSIGN 4,4,15,12

SALLOW

SREW 15

SINCLUDE

REYW p4

SRESTRICT B

5J0B NAME & SOURCE FILE INITIALIZATION
SALLOV

REW 13

$REW 14

SWEF 13

SWEF 14

SRESTRICT

§JCB PROCESSOR FILE EXPANSION
FASSIGN 45,45,15,15

'SREV 15

$SINCLUDE

REVW @4

$OPTIONS o7

SLINK

SEDITPF

ADD ASSEMBLER

	0001
	0002
	001
	002
	003
	004
	005
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	4-01
	4-02
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	A-01
	A-02
	B-01
	B-02
	C-01
	C-02
	C-03
	C-04

