AA61516-03C |

GENERAL SPECIFICATION

HARRIS FORTRAN COMPILER

Original
October, 1974

Revision A
February, 1975

Revision B
January, 1976

Revision C

June, 1976
HARRIS % COMMUNICATIONS AND
INFORMATION HANDLING
HARRIS CORPORATION Computer Systems Division

1200 Gateway Drive, Fort Lauderdale, Florida 33309 305/974-1700

Revision C

June, 1976
LIST OF EFFECTIVE PAGES
TOTAL NUMBER OF PAGES IN THIS PUBLICATION 1IS: 179
CONSISTING OF THE FOLLOWING:
Page Page Page
No. Change No. Change No. Change
Title C 3-1 A
A C 3-2 thru 3-4 Original
i Original 3-5 A
ii B 3-6 B
iii A 3-7 thru 3-18 C
iv thru viii C 4-1 Original
1-1 A 4-2 B
1-2, 1-3 C 4-3 thru 4-4 Original
2-1 thru2-3 A 4-5 B
2-4 thru 2-6 Original 5-1 thru 5-5 A
2-7 A 6-1 C
2-8 thru 2-14 Original 6-2 thru 6-13 Original
2-15 A 6-14 thru 6-16A B
2-16 Original 6-17 thru 6-20 Original
2-17 A 7-1 thru 7-19 C
2-18 thru 2-22 Original
2-22A A
2-23 thru 2-31 Original
2-32 thru 2-34 A
2-35 thru 2-36 Original
2-37 A
2-38 thru 2-42A B
2-43 Original
2-44 A
2-44A thru 2-45 B
2-46 thru 2-56 Original
2-57 A
2-58 thru 2-60 Original
2-61 B
2-62 Original
2-63 B
2-64 thru 2-66 Original
2-67 B
2-68 thru 2-79 Original
2-80 thru 2-80A B
2-81 A
2-82 thru 2-85 Original
2-86 B
2-87 thru 2-94 Original
Insert Latest Revision Pages. Destroy Superseded Pages.

HARRIS CORPORATION Computer Systems Division

A

Section

I

§

CONTENTS

Page
INTRODUCTION
1«1 SCOPE.....eiiiiiriinnnnennnnn. Crrecescsecsesesnsseset e 1-1
1-2 GENERAL DESCRIPTIONiviieivaieens B P
1-3 COMPILER ASSEMBLY OPTIONS..... eretteiaeseanetenaenenens 1-1
1=4 EXTENSIONS +tvitrreeriarenrearaossearcssssoscosonsonsnses 1-2
DC6024 FORTRAN LANGUAGE
2.1 GENERAL DESCRIPTION - v eteerraerenncosasnssnanssssnnnecss 2-1
2-2 FORTRAN PROGRAMS ¢ e vvvniieenstiencnsscncnnns termsesascas 2-1
223 DATA ceetnvraneenuensensensesnosnosnsensessensessaansaneen 2.3
Infeger DAt «cccveceeoncenssoesccasessssansoscsnsssncsse 2-3
Real Datg@ «ceceeeertirirenesiessssococsosnscnns sesenns 2-3
Double-Precision Data +cceevveecestocscersaccas Ceecene 2-3
Complex Data G o s asasiasesss e sesn s tanasans 2-4
Logical Data cevietinveneiineeenenas cetseseserasasns 2-4
Literal Datg «e:ovvevecosctacesacnannsen ceeerenns ceeans 2-4
ConStaNnts «cecevroetenrnosennnnns sesesstsecsenssseans 2-4
Integer Constants «.ceevvoeereeceenscocasansannns ceerans 2-4
Octal Constants «ccteeeersesasocassanscns seseresssrnes 2-4
Real Constants .eeeeeecrariosccsonsossscssnsonncs ceseas 225
Double~Precision Constants -..+... ctevsscerecasons ceee. 2-5
Complex Constants «cceeverensnn Ceresieieiieaneaaaaan 2-6
Logical Constants <« .covveniiivncanns Ceerterierenaninsnn 2-6
Literal Constants «.eeeeeevoarssceennss Ceeeeens ceerennans 2-6
Identifiers -« ceceeecencesscscncanas evetetsaceasrsasnae 2-7
Variables Cheeecesens Cecesaireeeracannenn 2-8
Scalars « vveevviecranns sececerans cesiesenecran cecaaaas 2-8
Arrays and Subscripts cecetseresasarrensessenanne 2-8
Arrays in Storage «...eeeiianecioenes Coerirecisensannaes 2-9
2-4 EXPRESSIONScocivvennn. Cetecececsiincean ioanenns P
Arithmetic expressions trerssnecrossans ceens 2-9
Arithmetic Operaterscciciveeecoceceennne ceeee 229
Evaluation Hierarchy cetsasssasiaseraeoe 2-10
Mixed Expressionscceeveenresecsnenacens ceeeens 2=11
Relational Expressionsceveviennn cetesecsssecanees 2=12
Logical Expressions tecesecsesencrsserias 2-13
Logical Operators ...ceevseriocerocroncsseracsanasacnns 2-14
Evaluation Hierarchy .covviiiieeiienieniininiinnanen, 2-14
Logical-Integer Operators «.oo.eeveeeeveneecnorasosannss 2-15

Revision B
January, 1976

CONTENTS (CONT'D.)

Section Page

I DC 6024 FORTRAN LANGUAGE (CONT'D.)

The . SHIFT. Operator « « « ¢ « v o v o 00 s s te et eseenses2=15
The .ROTAT. Operator e A [
Evaluation Hierarchy « . v« e v e e e v e e v e ans 2 V4
2-5 Assignment Statement....... e et et et .. 2-17
2-6 Control Statements e st e v e 2=19
Labels « ¢ v 00 v n ettt e c e et cecenees2=19
GO TO Statements « ¢« ¢ o v e v o o c et e e erecenreeee2=19
Unconditional GO TO Statements et . 2-20
Assigned GO TO Statements « « « o v e vttt v v v e e . 2-20
Computed GO TO Statemento v e v oo 2-21
ASSIGN Statement « « « v v v v v v v e ettt e e 2-21
Arithmetic IF Statements et et e e e 2-22
Logical IF Statemento v v vt it i it i e..2-23
CALL Statement « .« « c o e o et v oo oentoosesnssonsoenss 2-23
RETURN Statement « v « v v v v e e v vt eeovsocosonsasess . 2-24
DO Statement « « « o o o e o 00 o s s v s ssesoessansoses . o.2=25
CONTINUE Statement « « « « « e o o et oo s o sneosossssesss 2-29
PAUSE Statement « « « ¢ « v o o o o s o o s s s oo oenssoossesass 2-29
STOP Statement « « « « ¢ « o o s o e oo s s oo osensosonsosess 2-30
END Statement et e e et e e e e e e e . 2=30
2-7 Input/Output.....vooe.. T .. 2-30
/O List « ot v e vnerenennns e ettt s 2-31
Simple List ettt ee et . 2-31
DO-Implied Lists « .. .o oo un ettt e ¢ . 2-32
Free Format READ/WRITE « ¢ v v e v vt v ot nenennnnnss .. 2=33
READ Statement « v o ¢« e ¢ c et e v v ev e e e e 2-35
WRITE Statement. et et e e 2-36
FORMAT Statement0.. ettt 2-36
FRommat & v it i sttt ieeenneeeeonosoessannasanss 2-38
EFormatt eeesnnanons et e 2-39
DFormat .. vvveveennnnns et et e . 2-40
GFormat oo vvvveennns et e S . 2-41
IFormat ... v v evca v onenn c e s e e e e et e 2-41
OFormat ¢ e v oo v se e e e ettt et e e . 2=42
LFormat ... eveeevecens T, . 2-42
AFormat + oo i vt vt it eee e e e e e e et 2-42A
RFormat « .« e coeeeroeocsnnnse C e e e e e e 2-44
HFormat « « c v o v v et e ceooosesoossasssnssssssas 2-44
X Specification « e o 0o v v oo v cee et e it e e 2-45
T Specification e e s e oo s e e e e e s et e e e .o 2-46
PSpecificaﬁon 3
/Specificoﬁon 2-48
Parenthesized Format Specifications « e it 2-48
Numeric Input Stringst iineinerneanas . 2-49
FORMAT and List Interfacing ettt 2-50
FORMAT - Stored in Arrays . v o v v vt ov v oo vannesonns . 2=51

Revision A
February, 1975

CONTENTS (CONT'D.)

Section Page

II DC 6024 FORTRAN LANGUAGE (CONT'D.)

Auxiliary Input/Output Statements: « « e ¢ s v e v v v oo e onen 2-52
REWIND Stafement =« « ¢ ¢ ¢ ¢ ¢ s e s e v e s e e u e e e s et u e 2-52
BACKSPACE Statement « « « + « « e 6 s 6 8 s 66 6 e s e s e s 0 e s e . 2-52
END FILE Statement « « « « « P et s e e o e e et e e e e es e 2-53
OPEN Stafement « « - « « ¢ ¢ ¢t v o s as e o sososssssssosces 2-53
CLOSE Statement. i b e e e e e e e e e e+ 2-53
CALL EOFTST & ¢ttt vt e v s e v ossancsnsnssa e e e e 2-53
CALL SSWTCH et et e e e et e 2-54
CALL BTIME ¢ + ¢+t et e et et vennsosossnsesssncenos 2-54
CALLETIME . ¢ v et veneoannns e e 2-54
List Output Carriage Control « -+ ¢ v v e v e v e vt 2-54
Input/Qutput Logical File Assignments « « . . .« oo v v e e 2-55
Random Access /O « v v v v v vt v v v neenonns et 2-55
DEFINE FILE Statement « « « ¢ » « = ¢ s s ¢ 6 s e 0 s 0 0 s 0000 e o 256
Disc I/O Statements « = o o ¢ o ¢ o o o ¢ s s 20 00 00 000000 2-56
Random Access I/O - Disc I/O Statements « + o« e o o v 0 v oo 2-57 -
ENCODE/DECODE Statements « « « « + ¢ o e v ot oo v oo v v eeen 2-58
Asynchronous Input/Output « « « « oo vt v eveene e enns 261
2-8 Declaration STAtemeEnts « « » « « v o ¢ o o s o s s o s s s o ot s o oo on .. 263
Classification of Identifiers « « « ¢ ¢« v e e v v v v v o v v ev oo vs 2-63
Implicit Declarations. « « .« « s s e s e e st e s u e be e s 2-64
Explicit Declarations « « ¢ v e v e o v eie i 2-64
Conflicting and Redundant Declarations « -« - « -« R 2-65
Array Declarations « « « « oo v oo e i i ittt e 2-65
Array Storage « « -« e v v e s e s e s e s e e s e 2-66
Reference to Array Elements « « « « « c v e v v v v v cv i i venn v 2-66
DIMENSION Statement s « « ¢ ¢ o e e o t o ot o v o v v o onvassos 267
IMPLICIT Statement - « ¢ ¢ o ¢« e 6 ¢ v s s o 0 00 0 s o0 00 e oo o 267
Storage Allocation Statementse « « « « e v o v v v v oo 2-68
Allocation of Variable Types « ¢ ¢« v e oo v v vvvoveecnas 2-68
COMMONSfafemenf R R I R B A A 2_68
Labeled COMMON + # +* s s ot s estanssooneonnesanss 2.69
Blank COMMON s+t s e oo oonttotennnsnonnonens 2-70
Arrangement of COMMON: « # = et o s oo e neneneneens 2-70
MONITOR COMMON Statement: « ¢+ ¢+ oo v e e 0 v e oo e v 2-72
SPECIAL COMMON Statement =« = ¢ ¢+ s oo o e o v v v v v oo v« 2-73
EQUIVALENCE Statement « « + + » s v oo o v o v v v o vneeneons 2-73
COMMON and EQUIVALENCE Interactions =« « = ¢+ o e o e o 2-75
EXTERNAL Statement » « ¢ » ¢ ¢ e s o s s v ot o s o v o a oo e 2-78
DATA Statement = » « -+ o v s e e e v v e v oot ooeeooson 2-78
DATA Variable List + « ¢ o ecovoooeoeaennseennsanns 2-79
DATA Constant List ¢ o ¢ e e o oo e v o e o oo v o v oo oo oo oo 2-80

Revision C
June, 1976

CONTENTS (CONT'D.)

Section Page

I DC 6024 FORTRAN LANGUAGE (CONT'D.)

2-9 Programs and Subprogramso o e e e oot os o 2-81

Main Program. . . v et o os s v e e oo ettt 2-81
Subprograms. e et an s coeeeoseae s ceee.. 2-81
Functions .. .eeu e ces e e te e e e 2-81
Subroutings « co s eveee e s eeesecencesensss 2-81
Statement Functions. . « o c c e oo v e s e s e oossocooesnse cee.. 2-82
FUNCTION Subprograms . .. cevoeeossoesossonososanss 2-83
Library Functions .. v eeeeee oo Ceeecseaseeseosenases 2-84
SUBROUTINESubprograms..........,...... ceee.. 2-86
BLOCK DATA Subprograms . o« e o c oo v e vooosssesonssssss 2-88
ENTRY Statement . .. v ev v e v coessscess s s ceo e e e 2-88
Arguments and Dummies . .« v v v ve v it a oo o e e . 2-89
Dummy Scalars. e e o res e e sses e e na e c s 2-91
Dummy Arrays « . oo oeeeososssscosscecns ceseceene e 2-91
Adjustable Dimensions . .. vovovevcon e ceeereeeaae. 2793
Dummy Subprograms. . v v oo e o v e es s et s se ot 2-93
RECUR Statement . ..o+ eoveon c e e ces oo et e 2-94
NAME Statement . .. cooesesoeesscon Cee et 2-94

II1 FORTRAN DIAGNOSTIC MESSAGES

3-1 General Description ... ¢ccceeoo cescesscsressaas oo e 3-1
3-2 Compile-Time Diagnostics. .o e v e v coescoeecsooaransoecenes 3-1
3-3 Run-Time Diagnostics. . o« v v o v oo ceesecoesss s e ee e 3-5
3-4 In-Line Control Statements S 4
3-4.1 Conditional-compile Control Statements. - . o eevueeessns 39
3-4,1,1 Skip-Statements. o ae e e e 3-9
3-4.1.2 ESKP-SEQIEMENt & » » v v v e e veeonnnenn ceeee.. 3-10
3-4.1.3 Use of Conditional-Compilation, . . ccvvve v 3-11
3-4.2 Option Control Statements s essssasssscsesss 3-12
3-4,3 Initial Values of Compile-Time options . .. c.cvev e aanen 3-13
3-5 Compile-Time Options. cececscosaascasanac s e 3-13
3-6 Debug Statements o e e e s eseees e s sees a0 o ae e 3-17

v INTERFACING FORTRAN AND ASSEMBLER GENERATED MODULES

4-1 Calling FORTRAN Generated Subprograms . , vvee e evoonn.n 4-1
4-2 Calling of FORTRAN Functionsceeeeen e e e ne e e 4-1
4-3 FORTRAN-Callable Assembler Language Progroms 4-2
\ OPTIMIZATION
5-1 Generalcoveeeann P 5-1
5-2 Compiler Optimization.o veeeoeessenscosns ce e 5-1
5-2.1 Sub-Program Entries, o ee e et e e e 5-1

5-2'2 IF Sfctemen*s e ® o 0 5 8 20 ¢ 8 0 e 0 0 & o ® O o ¢ & » & @ ¢ 0 2 O 0 & & 0o 5-]

Section

\%

VI

Revision C

June, 1976
CONTENTS (CONT'D,)
Page
OPTIMIZATION (CONT'D.)
5-2.3 Immediate Instructions « « « o ¢ o« ot oo e o et e e e 5-1
5-2.4 Subscripts -« v v vt i i i i e i e e 5-1
5-2.5 Sub-Expression Optimization . . « ¢« v v v vi i v i i oL 5-2
5-2.6 Logical IF Optimization « « v v v o ve vt teve e tenecnona. 5-2
5-2.7 Intrinsic Functions. « « « « v v vt i it it b e it i s e e 5-2
5-2.8 Simple Integer Expressions . .« oo vv vttt i i i 5-2
5-2.9 Index Registers . « « « ¢« e v vttt ittt i e i e e 5-3
5-2. 10 Inter Statement Optimization.« v o0 v ie et e, 5-3
IN-LINE CODE
O6=1 Introduction.:. « « « ¢t v i o it bt bt e e o s e s s s s s ot s b s s 0 s 6-1
6-1.1 Scope of Extension - - e« oo v ettt 6-1
6-1.2 General Description « « v v v vi vttt it nn it onensnn. 6-1
6-2 Source Language Format « « « ¢« v et vt it i e e e e e e e 6-~1
6-2,1 Scope 6-1
6-2.2 Statement Number or Label Fieldo o 6-1
6-2.3 OperationField oo v it ii it i i, 6-2
6-2.4 Operand and Comments Field. oo 6-2
6-2.5 Sequence Field. - « v« e v i i ittt e e 6-2
6-3 Operand Formats. « « o v oo vt it et it e it et e 6-2
63,1 SCOPE« + v v v v oot it et e e e e 6-2
6-3.2 Current Location (¥*) .« et vt i i it ittt e 6-3
6-3.3 SymbolicLabelsot 6-3
6-3.3.1 COMMON « + v ¢t t v oo e v o s s o v e oo o oeseennnens 6-3
6=3.3.2 ArMay . -« ¢t ittt et e e 6-4
6-3.3.3 Data Reference - . v e et v vt v ev vt et vt e ann.n 6-5
6-3.3.4 Statement Number 6-5
6-3.3.5 Dummy . « « it e e e e 6-6
6-3.3.6 Variable. . v v« v v i it i i e e e e e e e e 6-7
6-3.3.7 FunctionResults . + « v c v v v it i it i it e e v e 67
6-3.3.8 External Requests oo v ii it it 6-7
6-3.4 Absolute Constants . « « « v ¢ c ¢t 6 v e v v 6 o s 0 s es s o e e 0 6-8
6-3.5 Address Arithmetic . . « v c v v vt e et o ot o s o vt osonoeons 6-8
6-3.6 Indexed Address Reference 6-9
6-3.7 TeXt « et it et it s it e e e e e e e 6-9
6-3.8 Literal . « c c c v o i i i e e e i e ettt bt e e e e e 6-9
6-3.9 FORTRAN External . « v v v v vt ot vt v et te oo e oo ceeannen 6-10
6-3. 10 Memory Referencing Boolean Instructions (Bit-Processor) 6-10
64 Pseudo-Operations ou it iit ettt eresensonnes 6-11
64,1 SCOPE. « v v et v et te et e e e e 6-11
6-4.2 RORG (Relative Origind; « « « v v v v vt vt v eieeenvneenn.. 6-11
6-4.3 BLOK (Reserve Memory)t iinn ... 6-11
64,4 DATA e e e i e e e e e e e e 6-12

Section

VI

VII

Revision C

June, 1976
CONTENTS (CONT'D.)
Page
IN-LINE CODE (CONT'D.)
6-4.4.1 SingleInteger . . v« v v v v i ittt i e e 6-12
6-4.4.2 Single-PrecisionReal L. 6-12
6-4.4,3 Double-PrecisionRealo v .. 6-12
6-4.4.4 Octal Constants . « « v v v v o v oo v vt oo nnoeonsns 6-13
6-4.4.5 Logical Constants. . « v v v v v e v i i i i 6-13
6-4.4.6 Complex. .« v vt i it ittt 6-13
b=4. 4.7 Hollerith -« v v v vt ot i et et bt e ee e et e enae e 6-14
6-4.4.8 Truncated Text. « v v o v v o s v et e v ot v v nneennsan 6-14
6-4,4.9 Binary « v oo v i it i i e e 6-14
6-4.5 DAC ..ttt it i s e e i e e 6-14
6-4.6 BAC. . it i it i it i e i et e e e e 6-15
X 6-14
64,8 ZZZ . i i ettt et et e e e e e e e 6-14
6-4.9 Octal Operation Code . « v v v v v vt vt ittt in e onnn 6-15
64, TO REEN . & vt i ittt it et e it ittt e e i e 6-15
6-4. 1T PORG . v it it it ittt b ie i i et etne e nnanasa e 6-16
6-4. 12 PDATA . ot ittt i e e e i e e 6-16
6-4. 13 PBLOK . . ¢t ittt i et it ittt e e e e e 6-16
6=4, 14 RDATt i i ittt it it it i e e e e e 6-16
6-4.15 PRDAT . i it ittt et e it e i i e e e 6-16
6-5 Compile-Time and Run-Time Options. . .. oo vt e i v i v ot 6-16A
6-5.1 SCOPE. « vttt it i i i e e e e e e 6-16A
6=5.2 List Control . . v v v i i it it it it i e i e e e 6-16A
6-5.3 Compile-Time Options . . v v vt i vt vivae ettt e 6-16A
6-5.4 Run-Time Options. . .« oo v vt e ittt ie e e vneeeeann oo 6-16A
6-5.5 Error Codes and Messages « . + v« v v v v v v v vt vt v i oo 6-16A
6-5.6 Run-Time Diagnostics. . « v v v v vt v vt vt v e e it i e 6-18
6-6 Miscellaneous . . v v vt it it i e e e e e 6-18
6=6.1 SCOPE vt it it e e e e e e e 6-18
6-6.2 DO Termingtion . . v vt v v it it i it en e e aoas e 6-18
6-6.3 Automatic Symbol Assignment L oL 6-19
6-6.4 Second Operand Field 6-19
6-6.5 Forward Reference Symbols 6-19
6-6.6 Path Diagnostic vv v i i it v ittt oo eenns e 6-20
6-6.7 Statement Function Dummies v i i i il 6-20
HARRIS STRUCTURED - FORTRAN LANGUAGE
7-1 General . . o it e e et e e e e e e 7-1
7-2 Structured Programs v o 0 o it i e e e e e e 7-1
7=2.1 SCOPE. o vttt it it i e e e e e e 7-1
7-2.2 Structured - FORTRAN Compiler 7-1
7-2.3 Block-Statements, Boundary-Statements and Exit-Statements 7-1
7-2.4 Blocksof aProgramUnit. i i, 7-2
7-2.5 Range(s)of aS-block. i 7-2
7-2.6 Initial=Statementst it e i e e 7-2

vi

Revision C

June, 1976
CONTENTS (CONT'D.)
Section Page
VII HARRIS STRUCTURED - FORTRAN LANGUAGE (CONT'D.)
7-2.7 Terminal-Statements ot vttt vt oeensonsennn 7-2
7-2.8 Alternative-Initial-Statements e e 7-2
7-2.9 Exit-Statementscve it e eeeoeeotonetanenness 7-3
7-2.10 S-Blocks and Associated Block Statements. 7-3
7-2.11 Block-Levelt it ittt it i et neeens 7-5
7-3 BOUNDARY-STATEMENT S . . . it it it i it ettt sttt cneonnnn 7-5
7=3.1 SCOPE. v vt v vttt ot te s sanestononceneas o 7-5
7-3.2 IF-Block . . v i v i i it e it i ettt et ittt e en oo nn e 7-5
7-3.2.1 Block-IF Statemento i it ittt it v e e 7-6
7-3.2.2 ORIF Statementt e eneeeesennnn 7-6
7-3.2.3 ELSE Statement ve et veneeeeeneeenns 7-7
7-3.2.4 Termination of Execution of a Range of an IF-block ... 7-7
7-3.2.5 ENDIF Statement. v v v vt et v e ev oo on v 7-7
7-3.2.6 Order of OR IF and ELSE Statements 7-7
7-3.3 WHILE-BLOCK. it it it ittt te st s e nnesoenns 7-8
7-3.3.1 WHILE Statement v it ittt it vt ettt ve vnn 7-8
7-3.3.2 END WHILE Statement. vt vt it vt vt vt ee o 7-8
7-3.4 DO-UNTIL-BLOCK. . . v it ittt et ettt s tsneenennn 7-9
7-3.4.1 Block-DO Statement v vv ve vttt ettt 7-9
7-3.4.2 UNTIL Statement i ittt v it et e vt e ennnn 7-10
7-3.5 FOR-Block . . v i it ittt ittt ittt e 7-11
7-3.5.1 FOR Stotement 7-11
7-3.5.2 LOOP-Control Processing of a FOR-block 7-11 |
7-3.5.3 END FORStatement i vt vt v vt veven e 7-12
7-3.5.4 Transfer Into the Range of a FOR-block 7-12
7-3.6 LOOP-BLOCK . . ittt ittt it ittt it ie et e e 7-13
7-3.6.1 LOOP Statement v vt ve et eeeeeeenens 7-13
7-3.6.2 Loop-Control Processing of a Finite=LOOP-block 7-14
7-3.6.3 END LOOP Statement v o v it vt vt v e e e 7-14
7-3.6.4 Iteration Count Specification of a Finite~LOOP-block . 7-14
7-3.6.5 Transfer into the Range of a LOOP-block. 7-14
7-4 Exit Statements. v i vt it ittt it e b e e e 7-15
74,1 SCOPE. .t vt v vt et e s st ottt 7-15 8
7-4.2 Unconditional-exit- Stcfemenfs 7-15
7-4.3 Conditional-exit=Statement.o vt vt vt vttt 7-15
7-5 Indented Listing i i it it iin it ettt ittt ees o 7-17
7-6 Compile-Time Diagnosticsttt it eenneenns 7-18

Revision C

June, 1976
ILLUSTRATIONS
Figure Page
2-1 FORTRAN Coding Sheet . . v v v v vt vt vt it ettt st it ei e ne s 2-2
2-2 An Example of Array Storage . . v v v v oo vt it b i i e i e 2-66
7-1 Indented Listing . ..o oo v ittt ittt it i it e e 7-19
TABLES

Table Page
2-1 Allowable Mixed Mode Exponentiation vvivve v v vt venennans 2-1
2-2 Evaluation of Logical Operators . . . v o v v v vt v ittt i ie e i e 2-14
2-3 Truth Table for Logical Operators . .« v v v v v vt vt vt it i it e oo 2-14
2-4 Expression Type for Mixed Variable Assignments. 2-18
2-5 List Output Device Carriage Control Characters. oo v v v v vt e v 2-54
2-6 Logical File Assignments. C e e e e e e et e e e 2-55
2-7 Storage Allocation Requirements ov vi i it ittt it it i 2-68
2-8 Library Functions . .. oo vt ittt i it it et ettt tece et ae e 2-85
2-9 Permissible Correspondence Between Arguments and Dummies 2-89
3-1 Compile Time Diagnostic Message . . . v v v v v v v v vt vt vt te i et nnnnnn 3-2
3-2 Run Time Diagnostics . v v v v ot i it i it it it i i it vt aas e 3-9
3-3 Compile-Time Options et e ettt i e e e 3-14
4-1 Register Location of Function Values0 ... et e e 4-2
7-1 S-Blocks and Associated Block-Statements ittt 7=3
7-2 A Structured Program . . oo it it i et e e e e e e e e e e e 7-4

viii

Revision A
February, 1975

SECTION I
INTRODUCTION

1-1 SCOPE OF SPECIFICATION

This specification contains the information required to write and execute Harris
FORTRAN programs. Also included are the requirements for interfacing FORTRAN and Harris
assembly language programs.

The material in this document is presented on a level that assumes the reader has previous
experience with the FORTRAN language.

T 1-2 GENERAL DESCRIPTION

The Harris FORTRAN system consists of a compiler and a FORTRAN library. The
computer translates FORTRAN programs and subprograms into relocatable modules. Compiler-

generated modules are accepted by the Harris Link Loader and can be externally linked with
FORTRAN or assembly language programs and subsequently executed. The FOR%'RAN library
is a set of subroutines, coded in assembly language, that provides: (a) all functions whose calls
are generated by the compiler; (b) run-time diagnostic messages; and (c) a set of mathematical
routines that includes USA standard FORTRAN functions as a subset. The entire FORTRAN

system operates within all the Harris Operating Systems.

1-3 COMPILER ASSEMBLY OPTIONS

The Compiler Assembly options consist of the following:

1. Basic Compiler (Assembled with FLAG 03 on) - Uses approximately 4000g words
of core less than the extended compiler.

2, Extended Compiler (FLAG 03 off). Has the following additional features:
Random Access 1/O.

The extended listing prints generated Mnemonics as well as octal code.
$OPTIONS 4 treats Real numbers as double precision.

Compile time errors print a message as well as a number.

NAME statement available.

RECUR statement available.

RETURN n.

Buffer In/Buffer Out.

i IMPLICIT statement.

je In-Line Assembly Code.

@ m9 ap T

1-1

Revision C

June, 1976
k. FORTRAN II I/O
I. Multiple Entry Points
m. Output TRIAD Option

3. DO option (FLAG O set) - the range of the DO loop will always be executed
ot lease once, even if conditions for termination are met initially.

4, SAU (FLAG 5 set) - for use on all machines with floating-point hardware.
5. VULCAN Compiler (FLAG 04 off). Must be used with VULCAN operating systems

6. DMS/DOS/TOS/ROS Compiler (FLAG 04 on). Must be used on DMS, DOS, TOS
and ROS operating systems.

statements in addition to normal FORTRAN statements. This extension is available

7. Structured-FORTRAN Compiler (FLAG 06 on) - Processes structured programming
in the Basic Compiler as well as the Extended Compiler.

1-4 EXTENSIONS

The Harris Compiler meets the requirements of the ANSI X3.9 specification and has
several extensions.

Random Access 1/O*
Buffer In/Buffer Qut*
Encode/Decode

Free Format 1/0O
FORTRAN II I/O
IMPLICIT Statement*
ENTRY Statement™
Recursion Statement™®
Multiple RETURN definition*
NAME Statement™*
Octal Constants

Mixed Mode Arithmetic
SHIFT Operator
ROTATE Operator
Exclusive OR Operator
Tab Specification
In-Line Assembly Code*

*Extended Compiler Only.

1-2

Revision C
June, 1976

In-Line Control Statements*
Conditional-Compilation of blocks of Statements*
Conditional-Compilation of Debug Statements*
Structured programming Statements**

Automatic Identation of Structured programs™*

*Extended Compiler Only.
**Structured FORTRAN Compiler only.

1-3

Revision A
February, 1975

SECTION II
HARRIS FORTRAN LANGUAGE

2-1 GENERAL DESCRIPTION
The Harris FORTRAN language is a super set of USA Standard FORTRAN X3.9 - 1966.

2-2 FORTRAN PROGRAMS

FORTRAN programs are comprised of an ordered set of statements that describe the
procedure to be followed during execution of the program and the data to be processed by the
program. Some data values to %e processed may be external to the program and read into the
computer during program execution. Similarly, data values generated gy the program can be
written out while processing continues. Statements are of one of two general classes:

1. Executable statements, which perform computation, input/output operations,
and program flow control.

2, Nonexecutable statements, which provide information to the computer about
storage assignments, data types, and program form, as well as providing infor-
mation to the program during execution about input/output formats and data
initialization.

Statements defining a FORTRAN program follow a prescribed format. Figure 2-1 is
a sample FORTRAN Coding Form. Each line on the form consist of 80 spaces or columns;
however, the last eight columns are used only for identification or sequence numbers and have
no effect on the program. Columns 1 through 72 are used for the statements.

The first field, columns 1 through 5, is used for statement labels. Statement labels
allow a statement to be referenced by other portions of the program. Labels are written as decimal
integers, with all blanks (leading, embedded, or trailing) ignored. A more extensive discussion
of statement labels is covered in Section 2-6.

The body of each statement is written in columns 7 through 72, but if additional space
is required, a statement may be continued on as many lines as necessary. Each continuation line
must contain a character other than blank or zero in column 6. The initial line of each statement
may contain only the characters blank or zero in column 6. If a statement is labeled, the label
must appear on the initial line of the statement, labels appearing on continuation lines will
generate a non-fatal error.

Column 1 may contain the character C to indicate that the line is to be treated as a
comment only, with no effect on the program. Comment lines may appear anywhere in the
program.

FORTRAN Coding Sheet
2-2

igure 2-1.

~ -

BipRifdd|SYSe]reledlas] 12104{69[89{29/9NGIiPY £9{29|19/09165!05] L5 95|5S(¥SIES|26| 16 0%i6|R| LM IPISHI PRI Cr| 20| Ivfov|6E[0c| 2|9l sl pelcel2e] 16]0el62] 82| £2]92]62[p2|€2|22] 12l0Z] 61 Q.T_ gt{Sriwfeifa|tiion|6{8{Li9§ c;—m 4
M T
: ; -
! ‘ m_z«m :
| siel olb[of i |
¥ol¥Y 3] | 3 sinvdl | szl .
EEREENREREE
tlolu 111 =1 Wnls] [alle! Wl T vwlalof4 !
oo i) uvwhjof || [le
(siih7 tvwielolaf i T
) u T H g 1S , m
wins ' 58 L
BEECUEINICDEE !
W RERE |
GID) v+ iwWinisi=winist 1 ol1
N =T 0L jola
ERCLE _
i ﬂ H T
ONCTOAT QT v [(8 7903 L T uim
UNCTO=I T CI v (7 z0javae
siz| P[L BB [(ololofs | U N"410 [t (13| N[J] |31
NGO iz alvlaly Gie
WS 7] (efololeDiv] (23 B[ITNIT
" 5 wWinis| [3[H[L] (L[N e|L[A|o] [aNIv 5
171 a0 WIIHTL] Tdlalv] | "MW aiR[L] TLfnjafiinio] T slaaRIINTI T3] NiMnTlo[a! Ivl alviaTy) D
111111 wivlip a4 NIvE[L e 3] [31T[d|Wv[s § o)
.ﬁ»»!& [S2|vLi€4 2L 12]0L]69] €8] 19| IMSHPII LY 29| 190V 65] 0S| 15| 9G[SS| v ESIZE| IS Io(OP| SHipP|SHZH] I¥|OP] 6C|0C] LE]9E SE|] €E 2€] 1E]OC]62182] 22192(C2{P2i€212F 12(02| 61 81|t tiGiiwij€i 21 n|oi} 6|0 n,u_ovn 24
WY04 ONIG0D NVYLNO4 uonB.I0d.10)
HBIOBIB(T

Harris FORTRAN Compiler

February, 1975

Revision A

Revision A
February, 1975

2-2 FORTRAN PROGRAMS (CONT'D.)

Statements may have blanks inserted as desired to improve readability, except within
literal fields (e.g., in Hollerith constants and FORMAT statements).

The set of characters acceptable to Harris FORTRAN is:

Letters: ABCDEFGHIJKLMNOPQRSTUVWXYZ
Digits: 0123456789
Special characters: +-*/=(). ,$ ' blank"

2-3 DATA

Numerical quantities (constants and variables) as distinguished in FORTRAN are a means
of identifying the nature of the numerical values encountered in a program. A constant is a
quantity whose value is explicitly stated. For example, the integer 5 is represented as 5", the
numberpi , to three decimal places, as "3.142". A variable is a numerical quantity that is
referenced by name rather than by its explicit appearances in a program statement. During the
execution of the program, a variable may take on many values rather than being restricted to
one. A variable is identified and referenced by an identifier.

All data processed by the Harris FORTRAN program can be classed as one of six
types; (1) integer, (2) real, (3) double-precision, (4) complex, (5) logical, and (6) literal.

Limits on Values of Quantities

Integer Data

9 eger do are precise representation of the range of integers from -8,388,608 to +8,388,607;
that is, -223 to +223-1, Integer data may only be assigned integral values within this range.

Real Data

Real data (also called floating-point data) can be assigned approximations of real
numbers with magnitudes within the range of 2.94 x 10-3? to 1.7 x 1098, A real datum may
acquire positive or negative values within the this range or the value zero. Real data have an
associated precision of 6+ significant digits. That is, the sixth most significant digit will be
zccurare, while the seventh will sometimes be accurate, depending on the value assigned to the

atum,

Double-Precision Data

Double-precision data may approximate the identical set of values as real data. However,
double-precision data have an associated precision of 11+ significant digits.

2-3

2-3 DATA {CONT'D.)

Limits on Values of Quantities (Cont'd.)

Complex Data

Complex data are approximations of complex numbers. These approximctions take the
form of an ordered pair of real data. The first of the two real data approximates the real part,
and the second real datum approximates the imaginary part of the complex number. The values
that may be assigned to each part are identical to the set of values for real data.

Logical Data
Logical data can acquire only the values "true" or "false".
Literal Data
Literal data are character strings. Like logical data, literal data do not have numeric

values. Any of the characters discussed under "Literal Constants" may appear in literal data.

Constants

Constants are data that do not vary in value and are referenced by naming their values.
There are constants for each type of data. Numeric constants may be preceded by a "+" or "-".
If not preceded by either of these, the constant is considered to be positive.

Integer Constants

Integer constants are represented by strings of digits. The magnitude of an integer
constant must not exceed 8,388,607.

Examples:
382 +997263 100000 000546 -8
+13 1961 3344224 372436 0

Octal Constants

Octal constants are represented by a string of digits from the subset of digits 0, 1, 2, 3,
4, 5, 6, 7 and preceded by an apostrophe ('). There must be no more than eight significant digits
in a string. If less than eight digits appear, the octal constant specified is right justified in the
24-bit word with leading zeros. An octal constant may be used interchangeably with an integer
constant,

2-4

2-3 DATA (CONT'D.)

Constants (Cont'd.)

Examples:
177777777 '0234 '40005
10020040 10000 12345770

Real Constants

Real constants are represented by strings of digits with a decimal point and/or an exponent.
The exponent follows the numeric value and consists of the letter E followed by a signed or unsigned
integer that represents the power of ten by which the numeric value is to be multiplied. Thus the
following forms are permissible;

n.m n. .m

n. mEte n.Ete .mEze nEte

where: n, m, and e are strings of digits, and the plus or minus sign preceding e is optional.

For example, .567E5 has the meaning . 567 x 10° and can also be represented by any of
the following equivalent forms: '

0. 567E+05 5.67E4 56700.
567000E-1 567E02 56700. 000E-00

The value of a real constant may not exceed the limits for real data. As many digits as
desired may be written in a real constant, but only 6+ most significant digits are retained.

Since any real constant may be written in a variety of ways, the user can choose the form
he prefers.

Examples:
5.0 7.6E+5 3. 1415926535897
0.01 6. 62E-27 5878550402984. 0

Double Precision Constants

Double-precision constants are formed exactly like real constants, except that the letter
D is used preceding the exponent instead of E. To denote a constant specifically as double-
precision, the exponent must be present. Thus, a double-precision constant may be written in
any of the following four forms:

n.mDze n.D+te .mDzte nDze

where: n, m, and e are strings of digits, the plus or minus sign preceding e is optional, and
D signifies a double-precision constant.

2-5

2.3 DATA (CONT'D.)

Constants (Cont'd.)

Double Precision Constants (Cont'd.)

The value of a double—precision constant may not exceed the limits for double-precision
data. As many digits as desired may be written in a double-precision constant but only the 11+
most significant digits are retained.

Complex Constants

Complex constants are expressed as an ordered pair of constants in the form (c1,¢2), whe
¢1 and c2 are signed or unsigned real constants. The complex constant (c,c2) is interpreted as
meaning c] + c2i, where i = ~£T. Thus, the following complex constants have values as indicate

(1.34,52.01) = 1. 34 + 52.01i
(98344, ,0. 34452E+02) 98344.0 + 34, 452i

(-1.,-1000.) = -1.0 + -1000. Oi

Neither part of a complex constant may exceed the value limits established for real
data.

Logical Constants

Logical constants may assume either of two forms:
. TRUE. . FALSE.

These forms have the logical values "true" and “false", respectively.

Literal Constants

A literal constant takes one of the following forms:

nHs 's s

where:

s is a Hollerith string. Note that blanks are significant in Hollerith strings. If it is
desired to use quotes (' or ") within either of the last two forms, the following technique should
used. If the quote that is used to delimit the string is fo be included in the string, then the quot
should be entered as two consecutive quotes:

' "t s equivalent to " ' " and """" is equivalent to '"'.

2-6

Revision A
February, 1975

2-3 DATA (CONT'D.)

Constants (Cont'd.)

Literal Constants (Cont'd.)

n is an unsigned integer specifying the number of characters in the string. Note that
if this form is used, then quotes may be freely included within the string without additional care:

nn nmu

1H' is equivalent to or and

T1H" is equivalent to or

Literal constants may be used freely in place of integer or real constants. The mode of
literal constants as determined by the first non-literal data which is associated with it. For

example:
I=1HA (literal is integer)
X =J + THS. (literal is integer)

I=1H3+ '8 + 1.5 (literal is real)

NOTE

Except as arguments to subprograms and in DATA
statements, Literal constants have a length limit-
ation. The total effective length of a literal
constant with a mode of integer is three. The
total effective length for a "real" literal con-

stant is six.

Identifiers

Identifiers are strings of letters and decimal digits used to name variables, subprograms
and COMMON blocks. An identifier in Harris FORTRAN consists of one to six alphanumeric
characters. The first of which must be a letter. '

Examples:
X A345Q STRESS J3 BOYER

Blank characters embedded in identifiers are ignored; therefore, BIG CAT and BIGCAT
are identical. There are no restricted identifiers in Harris FORTRAN; however, for clarity, it
is advisable not to use identifiers that correspond to Harris FORTRAN statement types (see 2-6
CONTROL STATEMENTS).

2-3 DATA (CONT'D.)

Constants (Cont'd.)

Identifiers (Cont'd.)

Identifiers having more than six characters are accepted but only the first six characters
are used. In this case, a warning message is output so that the user may determine the uniqueness
of all identifiers greater than six characters. Subsequent execution is not suppressed.

Variables

Variables are data whose values may vary during program execution and which are
referenced with an identifier. Variables may be any of the data types. There is no such entity a
a literal variable; any type of variable (except logical) may contain a literal string.

If a variable has not been assigned to a particular data type (refer to "2-8 DECLARATIC
STATEMENTS - Classification of Identifiers"), the following implicit typing conventions are
assumed:

1. Variables whose identifiers begin with letters I, J, K, L, M, or N are integer.

2, Variables whose identifiers being with any other letter are real.

Consequently, double-precision, complex, and logical variables must be explicitly de-
clared as such (refer fo Section 2-8, DECLARATION STATEMENTS - Explicit Type Statements).
The values assigned to variables may not exceed the limits established for the applicable data types.

NOTE
This implicit typing may be modified through the
use of the IMPLICIT statement (See Section 2-8).
Scalars

A scalar variable is a single datum entity and is accessed via an identifier of the
appropriate type.

Examples:

J1 NAME SCALAR EQUATE E NEW DHO XXX8

Arrays and Subscripts

A variable may be made to represent a one, two, or three dimensional array by adding
subscripts to the variable name. In FORTRAN, the variable name is followed by parentheses
enclosing the subscripts which are separated by commas. The subscripts determine the element
of the array to which reference is made.

Every subscripted variable must have the array size declared in a DIMENSION,
COMMON or Type statement.

Examples of array element references are:
A (1)

VECTOR (M)

B (2*1+5, 3*J-2)

C (4*INT)

YELLOW (I, J, K)

2-8

2-3 DATA (CONT'D.)
Arrays and Subscripts (Cont'd.)

A subscript may be any arbitrary expression whose final mode is real or integer. If the
mode is real, the value is converted to integer (the fractional part is not rounded) before the sub-
scripting operation is performed. The following array element references are valid:

AA(T)
BETA (SIN(X/Y)+0, 5)
ABC(4,FUNC(3. 4), TANH(W)/2)

Note that if a subscript expression contains another array element reference, then this nesting of
subscripts may be continued to a maximum depth of 10.

Arrays in Storage

Arrays are stored in column sequence, with the first subscript varying most rapidly and
the last varying least rapidly.

For example, the two dimensional array A is stored as follows; from lowest numbered
memory location to highest: '
Apnp A A A

A A

3] . . L]]2 22 A32 L . . A]n . . . Amn

Note that the first element of any array has a subscript of 1, not 0. An array name
must normally always have a subscript. In certain cases the subscript may be omitted. An
array name used without a subscript refers to the entire array.

ml

2-4 EXPRESSIONS

Expressions are strings of operands separated by operators. Operands may be constants
variables, or functions references. Operators may be unary or binary; i.e., they mc ;s operate on
a single operand or on pairs of operands.

An expression may be classed as arithmetic, logical, or relational. It may contain sub-

expressions. A subexpression is an expression enclosed by parentheses. An expression is single
value, that is, its evaluation has a unique result.

Arithmetic Expressions

An arithmetic expression is a sequence of operands (integer, real, double-precision,
complex, constant, variable, or function references) connected by arithmetic operators.

Arithmetic Operators

The arithmetic operators are:

Operator Operation
+ Addition (binary) or Positive (unary)
- Subtraction (binary) or Negative (Unary)
* Multiplication
/ Division

** Exponentiation

2-9

2-4 EXPRESSIONS (CONT'D.)

Arithmetic Operators (Cont'd.)

Some examples of arithmetic expressions are:

SHEET 0OF

Datacraft FORTRAN CODING FORM TOENTIFEATION
73 80
1j2j3|4fs ll? s|opofufr2lt3liafisie 17|10 |19 (20(21 2|23 |24 32 86 |57 62 V|r2{7al7ai7s (76(77 [Ta)79 180}
1L 2ol T
W9 ICMT 2!

1((s])- (M)

+4]12\xs e TI(Y|)/IP
1R %2 21MA) S, |2
(x+Y)Yed3li g, 1713116/¢lE -

Hmt e (AR

i

Evaluation Hierarchy

The evaluation hierarchy of arithmetic operators is as follows:

1.

The innermost subexpression, followed by the next innermost subexpression, until
all subexpressions have been evaluated.

The arithmetic operations, in the following order of precedence:

Operation Operator Order
Exponentiation *x 1 (highest)
Multiplication and * 2

Division /

Addition and + 3

Subtraction

Some additional conventions are necessary.

1.

At any one level of evaluation, operations of the same order of precedence are
evaluated from left to right. Consequently, I/J/K/L is equivalent to ((I/J)/K)/L

The sequence "operator operator" is not permissible. Therefore, A*-B must be
expressed as A*(-B).

As in algebraic notation, parentheses are used to define evaluation sequences
explicitly. Thus A + B is written as (A+B)/C.
C

2-10

2-4 EXPRESSIONS (CONT'D.)

Evaluation Hierarchy (Cont'd.)

Example:

The expression A* (B+C*(D-E/(F+G)-H)+P(3)) is evaluated in the following sequence:

g = F+G

ro =&/

r3 - D-I’2-H
rg= c* r

r5=B+r4+P(3)
l'6=A*r5

where the . indicates the levels of evaluation.

Mixed Expressions

Where an arithmetic expression contains elements of more than one type, it is known as a
mixed expression. Infeger, real, double precision, and complex elements may be mi> 'd in an
arithmetic expression using any of the arithmetic operators EXCEPT exponentiation.

Allowable mixing using exponentiation (**) is shown in Table 2-1. The entries in the
table give the variable type of the result, if allowed.

Table 2-1. Allowable Mixed-Mode Exponentiation

BASE ** EXPONENT = RESULT

Base Exponent Result Comment
Real Real Real
Integer Real
Double Precision Double Precision
Complex None Fatal Compile Time Error
Double Precision | Real Double Precision
Integer Double Precision
Double Precision Double Precision
Complex None Fatal Compile Time Error
Integer Real None Fatal Compile Time Error
Integer Integer
Double Precision None Fatal Compile Time Error
Complex None Fatal Compile Time Error

2-11

2-4 EXPRESSIONS (CONT'D.)

Mixed Expressions (Cont'd.)

Table 2-1. Allowable Mixed-Mode Exponentiation (Cont'd.)

Base Exponent Result Comment

Complex Real Complex
Integer Complex
Double Precision Complex Real Precision Result
Complex None Fatal Compile-Time Error

Within a mixed expression, elements of lower precedence type are converted fo the higher
type before being combined with other elements. Thus, for example, 33/4) is an integer expression
and has the value zero, while 3./4 is a real expression and has the value 0.75.

The following rules also apply to mixed expressions:

1.

Expressions appearing as subscripts are independent of the expression in which
the array appears. The subscript expressions are evaluated in their own mode
and neither affect the mode of the outer expression nor are affected by it.

With the exception of certain basic functions, the same rule applies to expressions
appearing as arguments as fo those appearing as subscripts. They are always
evaluated in their own mode; they may, however, affect the mode of the function
result and thus of the expression in which the result is used. See Table 2-8,
Library Functions.

Integer expressions that appear as exponents (i.e., to the right of an ** operator)
are evaluated in their own mode; that is, integer.

Integer, real, and double-precision values that appear in complex expressions are
assumed to have imaginary parts of zero.

Values of expressions, subexpressions, and elements may not exceed the limits
associated with the mode of the expression.

Relational Expressions

The form of a relational expression is

e] I'62

where e, and e, are arithmetic expressions and r is a relational operator.

Evaluations of relational expressions result in either of the two values "true" or "false",
i.e., a logical value.

24 EXPRESSIONS (CONT'D.)

Relational Expressions (Cont'd.)

Relational operators cause comparisons between expressions.

Operator Meaning
.LT. <Less than
.LE. < Less than or equal to
. EQ. = Equal to
. NE. # Not equal to
. GE. > Greater than or equal to

.GT. , > Greater than

When two arithmetic expressions are compared, using a relational operator, the two
expressions are first evaluated, each in its own mode, then the comparison is made in the mode
of higher precedence.

If the mode of either or both of the expressionsiscomplex, then the relational operator
must be . EQ. or . NE. If it is not, then an error will result. Complex values are considered equal
only if both the real and imaginary portions are equal.

Logical Expressions

Logical expressions are expressions of the form:

where the e, are logical elements and the c, are the binary logical operators.

Evaluations of logical expressions result in either of the two values "true" or "false".
p

Logical elements are defined as one of the following entities.

1.

2
3
4,
5
6

A logical variable or function reference

A logical constant

A relational expression

Any of the above enclosed in parentheses

A logical expression enclosed in parentheses

Any of the above, preceded by the unary logical operator . NOT.

2-13

2-4 EXPRESSIONS (CONT'D.)

Logical Operators

Logical operators are listed and evaluated in Table 2-2. Table 2-3 is a truth table for
the logical operators.

Table 2-2. Evaluation of Logical Operators

LOGICAL OPERATOR EXPRESSION
OPERATOR TYPE EXPRESSION EVALUATION
. NOT. unory” .NOT. e true only when e is false.
.AND. binary e; -AND. e, true only when both e, and e,
are true. -
.OR. binary e; -OR. e, true when either or both e; and e,
are trve. ~—
. XOR. binary e, -XOR. e, true when either but not both e
and e, are frue.
Table 2-3. Truth Table for Logical Operators
EXPRESSION
CONDITION EXPRESSION EVALUATION
e e, .NOT.e-I e].AND.e2 e].OR.e2 e].XOR.e2
True True False True True False
True False False False True True
False True True False True True
False False True False False False

Evaluation Hierarchy

The evaluation hierarchy for logical expressions are:

1.
2.
3.

arithmetic expressions
relational expressions (The relational operators are all of equal precedence.)

The innermost logical subexpressions, followed by the next innermost logical sub-
expression, efc.

2-14

Revision A
February, 1975

2-4 EXPRESSIONS (CONT'D.)

Evaluation Hierarchy (Cont'd.)

4. the logical operations, in the following order of precedence:

Operator Order
.NOT. " 1 (highest)
. AND. 2

. XOR.

. OR. 3

For example, the expression
L. OR. . NOT.M.AND. X.GE.Y
is interpreted as

L. OR. ((.NOT.M) . AND. (X.GE.Y))

Logical-Integer Operators

Harris FORTRAN allows integer typed variables and constants to be combined using the
standard FORTRAN logical operators plus two additional operators which are defined for integer
typed data only:

. SHIFT.

.ROTAT.

The . SHIFT. Operator

e.SHIFT.i

e is an integer arithmetic expression, and ,
i is an integer constant such that -24 < i < 24. The value of i specifies both the
magnitude and direction of the shift. If i is positive, the direction of the shift is left,
and if i is negative, the direction of the shift is right. This convention is adopted so
that using a shift operator on a word is equivalent to multiplying the 24 bit unsigned

word by 21,

2-15

2-4 EXPRESSIONS (CONT'D.)

The . SHIFT. Operator (Cont'd.)

Examples:

EXPRESSION

K.SHIFT. S
K. SHIFT.5
K. SHIFT. -5
K.SHIFT. -5

The .ROTAT. Operator
e.ROTAT.i

where:

i specifies both the magnitude and direction of rotation.

VALUE OF K

VALUE OF EXPRESSION

'77777777
03040506
77777777
03040506

177777740
42024300
‘01777777
'00061012

The value of i specifies both the magnitude and direction of rotation.

If i is positive, the direction of the rotation is left, and if i is negative, the direction

of the rotation is right, as in the shift operator.

Examples:
EXPRESSION
K.ROTAT.6

K.RCTAT.6
K.RCTAT. -6
K.RCTAT. -6

When the logical operators, . AND., .OR., and . XOR. are used on integer data, these
data are considered to be 24-bit machine words, and the effect of the operator is as follows:

I.AND.J is the bit by bit logical intersection (and) of the words I and J.

VALUE OF K

12345670
'40506070
12345670
40506070

VALUE OF EXPRESSION

34567012
50607040
'70123456
'70405060

I.OR.J is the bit by bit logical union (or) of the words I and J.

I.XOR.J is the bit by bit logical exclusive or of the words I and J.

Revision A
February, 1975

2-4 EXPRESSIONS (CONT'D.)

Evaluation Hierarchy

The evaluation hierarchy for logical-integer operators is:

Operator Order

. SHIFT. 1 (highest)
.ROTAT.

.AND. 2

. XOR.

. OR. 3

Note that the operator . NOT. is not included with the logical-integer operators. A
logical complement of an integer value can be obtained by an exclusive or with a constant
consisting of all ones; i.e., the logical (ones) complement of the integer I, can be obtained by
the expression:

I.XOR. '77777777 or 1. XOR. -1

Examples of the use of logical-integer operators for bit and byte manipulation and
testing are:

1. Move the left byte from word J into the middle byte of word K without disturbing
the left and right bytes of word K:

K = (K. AND. '77600377) .OR. (J.SHIFT. -8. AND. '177400)
The parentheses in example 1 are used for clarity, and are not necessary since the
hierarchical order of the operators guarantee performance of the operations in

the proper order.

2. Jump to statement number 750 if bit 20 of word J is on (i.e., contains a 1) other-
wise go to statement number 500: -

If (J . AND. '4000000) 500, 500, 750
3. If bit 3 of word J is off, turn on bit 5 of word K:
If ((J.AND. '4).EQ. 0) K=K .OR. '20

2-5 ASSIGNMENT STATEMENT
An assignment statement has the form:
v=e

where

v is a variable (a scalar or an array element of any type), and e is an expression of
appropriate type (see Table 2-4).

2-17

2-5 ASSIGNMENT STATEMENTS (CONT'D.)

The statement means, "assign to v the value of the expression e". The expression need
not be the same type as the variable, though in practice it usually is. When it is not, the expressicn
is evaluated in its own mode, independent of the type of the variable. Then, if permissible, it is
converted to the type of the variable according to Table 2-4 and assigned to the variable.

Table 2-4. Expression Type for Mixed Variable Assignments
VARIABLE = EXPRESSION

Variable Expression Type Result Comment
Integer Integer Integer
Real Integer (1)
Double Precision Integer (1)
Complex None Fatal Compile Time Error
Logical None Fatal Compile Time Error
Real Integer Real (2)
Redl Real
Double Precision Real (3)
Complex None Fatal Compile Time Error
Logical None Fatal Compile Time Error
Double Precision Integer Double
Precision (2)
Real Double
Precision (3)
Double Precision Double
Precision
Complex None Fatal Compile Time Error
Logical None Fatal Compile Time Error
Complex Integer Complex (2) Imaginary Part Set to O. O
Real Complex Imaginary Part Set to O. O
Double Precision Complex (3) Imaginary Part Set to O. O
Complex Complex
Logical None Fatal Compile Time Error
Logical Logical Logical
All other expression cause fatal compile Hlme errors,

(1) Converted to integer and truncated such that -8388608 < N < 8388607
(2) Converted to appropriate type.
(3) Precision adjusted to fit type.

ASSIGNMENT STATEMENT EXAMPLES

SHEET 0F

Datacraft FORTRAN CODING FORM ToEWTIFTCaTION

[W T S S T |
73 80

1213 4}s GIT]. ’!IO (§I2(13]ee 18 (161718 1920121 51 192|9384 [35|56157

1]r2|rafralrsirelzrre|7e ub]

n P~

(a2

)%*u u-ll) 11

£l 10)Cl :BB - N

[An) ol 3 Aﬁh S
IzJ_ .

N

b
n
-
3
.
=]
et
i
!
1
i

2-6 CONTROL STATEMENTS

Each executable statement in a FORTRAN program is executed in the order of its
appearance in the source program, unless this sequence is interrupted or modified by a control
statement.

Labels

If program control is to be transferred to a particular statement, that statement must be
identified. Statements are identified by labels, which are also called statement numbers.
Statement numbers consist of up to five decimal digits; they must be greater than zero; -
embedded blanks and leading zeros are not significant.

Examples:

400 99999 756 1 00500

GO TO Statements

GO TO statements transfer control unconditionally from one point in a program to another.
FORTRAN includes three forms of GO TO statements: unconditional, assigned, and computed.

2-19

2-6 CONTROL STATEMENTS (CONT'D.)

Unconditional GO TO Statements

This statement has the form
GO 7Ok

where k is a statement number. The result of the execution of this statement is that
the next statement executed is the statement whose label is k.

Example:
GO TO 502
98 X=Y

502 A =B

statement 502 will be executed immediately after the GO TO statement.

Assigned GO TO Statement

The format of the assigned GO TO statement is
GO TO v

or oplionally,

GO TO v, (kqs kos kg, <o ek)

where:

v is an integer variable that has been assigned the location of a statement via an ASSIGN
statement,

ki is a statement number.

b This statement transfers control to the statement whose location has been assigned to the
variable v.

If the optional form is used (i.e., the list of ki), each label appearing in the list must be
defined in the program in which the GO TO statement appears (i.e., must be the label of a
program statement). This form is provided for compatibility with other systems,

2-20

2-6 CONTROL STATEMENTS (CONT'D.)

Assigned GO TO Statements (CONT'D.)

Examples:

ASSIGN 5371 to LOC

GO TO LOC

GO TO LOC, (117, 56, 101, 5371)

The two GO TO statements transfer control to the statement labeled 5371,

Computed GO TO Statement

The computed GO TO statement is expréssed as
GO TO (ky, ko, kg oo k), i

where:

ki is a statement label, and

i is an integer.

This statement causes control to be transferred to the statement whose label is k. where
j is the integer value of the variable i for 1< j < n.]

Example:
STATEMENT VARIABLE TRANSFER TO
GO TO (98,12,405,3),N 3 405

ASSIG N Statement

The ASSIGN statement, used to assign a label to a variable, has the form
ASSIGN k TO v

where:
k is a statement label and

v is an integer variable.

Examples:

ASSIGN 5 TO JUMP
ASSIGN 222 TO M

2-21

2-6 CONTROL STATEMENTS (CONT'D.)

Arithmetic IF Statements

The format for arithmetic IF statements is

IF (e) k]’ k2, k3

where:

e is an expression of integer, real, double-precision, or complex mode, cnd

k], k2, and k3 are statement labels,

The arithmetic IF statement is interpreted to mean

IFe <0, GO TO k,

IFe=0, GO TO k,

IFe> 0, GO TO k3

Note that if e is a real or double pfecision expression, a test for exact zero may not be

meaningful on a binary machine. If the expression involves any amount of computation, a very
small number is more likely to result than an exact zero.

‘Examples:

Statement Expression Value Transfer To
IF(K) 1,2,3 47802 3
IF(3*M(J)-7)76,4,3 -6 76
IF(C(J,10)+A/4)23,12,12 0. 0002 12
IF(K* N**2-14* LIMIT) 78, 444, 78 -1000 78

IF (Z-B-3. 1416 + SQRT(X-2))3,3,7 23, 40669 7

If the expression is complex, then k. must be the same as k.. Otherwise, an error will
result, If K. is the same as ko, then the branch to k2 will only be tdken if both the real and
imaginary portions of the expression value are zero.)

2-22

Revision A

February, 1975

2-6 CONTROL STATEMENTS (CONT'D.)
Arithmetic IF Statements (CONT'D.)

It is also possible to omit one or two of the ki's. In this case, if the condition associated
with the omitted ki occurs, then execution proceeds with the statement following the IF statement.
If kii is omitted, then the trailing comma may also be omitted; if |<2 and k3 are omitted, then both

i

traiting commas may be omitted.
Examples:
IF(...) 1,2,3
IF (.) /2,3
IF(...) "3
IF(...) 1,,3
IF (.) 1,/
IF (..) 1
IF (...) 1,2

2-22A

2-6 CONTROL STATEMENTS (CONT'D.)

Logical IF Statement

The logical IF statement is represented as

IF (e) s

where:

e is a logical expression, and

s is any executable statement other than a DO or another logical IF.

The statement s is executed if the expression e has the value "true"; otherwise, the next
execufuble statement following the logical IF statement is executed. The statement following
the logical IF will be executed in any case after the statement s, unless the statement s causes a
transfer.

Examples:

IF (FLAG .OR. L) GO TO 3135

IF(W.OR. N. LT. U/S+ X3 (J,K)) R (J-8) = Q * ABS(X)

IF (OCTT * TRR .LT. 5.334E4) CALL THERML(N,Y(L, 5))

IF (ITB. EQ. 1. AND. NS.ROTAT. -1, LT. 0) IF (N-1) 43, 53, 63

CALL Statement

The CALL statement is used to call or transfer control to a SUBROUTINE subprogram,
SUBROUTINE ENTRY point or a FUNCTION ENTRY point (refer to "2-9 PROGRAMS AND
SUBPROGRAMS - SUBROUTINE Subprograms") and may take either of the following forms:

CALLp

CALL P (0], Q2, 03,. . .,an)

where:

p is the identifier of the subroutine and a; is an argument. Arguments may be constants,
variables, expressions, statement labels, or array or subprogram names (refer to "2-9 PROGRAMS
AND SUBPROGRAMS - Arguments and Dummies").

A subroutine is similar to a function except that it does not necessarily return a value
and must not, therefore, be used in an expression. Also, a function must have at least one argu-

ment, a subroutine may have none. For example,

CALL CHECK

2-23

2-6 CONTROL STATEMENTS (CONT'D.)

CALL Statements (Cont'd.)

Arguments that are scalars, array elements, or arrays may be modified by a subroutine
effectively returning as many results as desired.

A complete discussion of the usage and forms of arguments to subprograms is contained
in Section 2-9.

A subroutine name has no type (e.g., real, infeger) associated with it; it merely identi fies
the block of instructions to be executed as a result of the CALL. Therefore, the appearance of
a subprogram name in a CALL statement does not cause it fo take on any implicit type.

Other examples of CALL statements are given below. (Note that staternent labels are
identified by being preceded by a dollar sign).

SHEET OF

Datacraft FORTRAN CODING FORM o
[(REERIEEL] t'lll 9IOI1|I2I3]I4 i5|l|l7 (] lnou% : { : 55|56 {57 62 o lYZHNHj:uuu
[q EQErsT(a2],18
Y (XY [7], 1, (SR (A% iz)l/DIV)
L X (I».GT.Z m~) r
v

RETURN Statement

The RETURN statement causes an exit from a subprogram. It takes the form:
RETURN

or

RETURN n (Extended Compiler Only)

Where n is an integer variable dummy (refer to Section 2-9, Arguments and Dummies)
and n has been assigned a statement number by the calling program using an ASSIGN statement
(Section 2-6) or n corresponds to a statement number argument (i.e., $mmmm). This form of the
RETURN statement gives the user a non-normal return capability.

A RETURN statement must be logically the last statement executed in any subprogram;it
need not be physically the last. There may be any number of RETURN statements in a subprogram.
A RETURN statement in a main program will be treated as an error.

In a subroutine, the RETURN statement returns control from the subroutine to the first
executable statemert following the CALL statement that called the subroutine. Ina function it
causes the latest value assigned to the function name to be returned, as the function value, to the
expression in which the function reference appeared (see Section 2-9, PROGRAMS AND SUB-
PROGRAMS).

2-24

2-6 CONTROL STATEMENTS (CONT'D.)

DO Statement

The DO statement may be written in two ways:

DOk v= i], 32, i3
DOk v= i], in
where

k is a statement label,

v is a scalar variable of integer type,

i], i2, and i3 are integer variables or constants.

Integers iy and i, must appear. If i is not present, it is assumed to have the value 1.

A DO statement indicates that the block of statements following it are to be executed
repetitively. Such a block is called a DO loop, and all statements within it, except for the
opening DO statement, constitutes the range of the DO statement. The last statement in a DO
loop is the terminus and bears the statement label k.

The execution of a DO loop proceeds in the following manner:

1.
2,

4.
5.

The variable v is assigned the value of i

If the incremental value (i,) is an integer variable or positive integer constant, the
variable C is compared to ﬁ'e terminal value (i2). If v is greater than i2, control
is passed to the statement following the one whose label is k. If v is less than or
equal to ip, continue to step 3.

If the incremental value (i3) is a negative integer constant, the variable v is
compared to the terminal value (i2). If v is less than i, control is passed to the
statement following the one whose label is k. If v is greater than or equal to iy,
continue tfo step 3.

The range of statements is executed for one iteration.

The value of v is incremented by the value of is.

The process is repeated from Step 2.

The actual number iterations defined by the DO statements is given by

max

i2 - i-l
i3

+1,0

where the brackets represent the largest integral value not exceeding the value of the
expression.

2-25

2-6 CONTROL STATEMENTS (CONT'D.)

DO Statement (Cont'd.)

Note that if conditions for termination are met initially, the entire range of the DO
loop will not be executed.

The terminal statement of a DO range (i.e., the statement whose label is k) may be any
executable statement other than one of the following:

DO statement

GO TO statement
Arithmetic IF statement
RETURN statement
STOP statement

Note that logical IF statements are cllowed as terminal statements of a DO range.

Examples:

Datacraft FORTRAN CODING FORM o
|[z 3{afs 517 L] slltlu 1213141516 l‘rlll]u 202’{_2.2 23 24 L3 8 48{48[50 |5! 62 1|r2{r3|r4|75(re(77 |10 |79
22 ") RN 11

(sl L% sl o,
£ . A <. =@
AP RN -
G ~HAN3/r)5, 1S4, i
L= | EENEEEE
‘ K:;J 3 M') L.
(x]) e i
L MAP(TR V4R RES)
fﬂ h; M,. (ChNMEE
3 |
sl(x) 2] (k)
949 F CX) D o |G T e STGMANKS iy 4
, !
P
. .
450 - Eas

In the example that begins with statement 22, the range of statements 23 through 54 will
be executed 15 times, unless the arithmetic IF statement causes a transfer to statement 12. If all
15 iterations are completed, control is passed to statement 12 at the end of the fifteenth iteration

2-26

2-6 CONTROL STATEMENTS (CONT'D.)

DO Statements (Cont'd.)

The value of the variable v appearing in a DO statement depends on the number of
iterations completed. The value of v during any one iteration is

. T

i+ (i=1*i 3

where i is the number of the current iteration, and iy and i3 have the meanings discussed
above. If a transfer is made out of the range of a DO before all iterations have been completed,
the value of v will be that of the iteration during which the transfer occurred. However, should
the entire number of iterations be executed, the value of v is

. .

" +n I3

where n is the total number of iterations specified by the DO statement.

Thus, in the example beginning with statement 22, if all iterations are completed,
statement 12 will be equivalent to

12 L=Y (1§

However, if the arithmetic IF statement causes a transfer to statement 12 during the
eighth iteration, the statement will mean

12 L=Y (8

The value of the variable v may not be modified within the range of the D(3, nor may it
be modified by a subprogram called within the range of the DO.

5 DO 101=2,-2,-1
WRITE (6,1) I

1 FORMAT (X,13)

10 CONTINUE

Will Print:

2-27

2-6 CONTROL STATEMENTS (CONT'D.)

DO Statement (Cont'd.)

A transfer into the range of a DO may only occur if there has been a prior transfer out of
the DO range. For example:

DO 251=1,9

GO TO 8605
24 A=18
25 JGU =Y (I) **E

.

8605 R =SIN (G(I)) +JSU

8606 GO TO 24

is permissible; in fact, the statements 8605 through 8606 are considered part of the DO

range.

The sequence

GO TO 11

DO 32 J = 2,362
11 RWJ) = 47.E-7*T(J)
32 Td) = Q

is not valid because no transfer could possibly occur out of the DO range.

A DO loop may include another DO loop. That is, DO loops may be nested; however,
they may not be overlapped. In a nest of DO loops the same statement may be used as the terminal
statement for any number of DO ranges; transfers to this statement may be made only from the
innermost DO loop. There is no limit to the number of DO ranges that may be nested.

2-28

2-6 CONTROL STATEMENTS (CONT'D.)

CONTINUE Statement

This statement is written as

CONTINUE
and must appear in that form. The CONTINUE statement does not cause the compiler to generate
machine instructions, and consequently has no effect on a running program. The purpose of this
statement is to allow the insertion of a label at any point in a program.

For example:

DO 721=1,10

IF (X **1+0. 9999E-5) 72,72, 88
72 CONTINUE
88 H(33)=T(3,R,L,E)/22. 5

CONTINUE statements are most often used as the terminal statement of a DO range, as in the
above example.

PAUSE Statement

PAUSE statements are written as
PAUSE
PAUSE a
where
a is a set of 1 to 5 alphanumeric characters
This statement causes the program to cease execution temporarily, presumably for the
purpose of allowing the computer operator to perform some specified action. The operator can

signal the program to continue execution, beginning with the statement immediately after the
PAUSE. (See HOLD CONDITIONS in the Operating Systems, General Specifications).

" The literal constant, a, will be displayed on the operator communications device when
the program pauses.

2-29

2-6 CONTROL STATEMENTS (CONT'D.)

STOP Statement

STOP statements are written in the form

STOP

STOP a

where:

a is a set of 1 to 5 alphanumeric characters.

This statement terminates the execution of a running program. A message indicating

execution of a STOP statement and the literal a (if present) will be output to the list output
device.

END Statement

An END statement is used to inform the FORTRAN compiler that the physical end of a
program has occurred. The statement must appear in one of the forms:

END
ENDS$

If control reaches an END statement, the effect is that of a STOP statement except
that no message is output. An END statement may be labeled.

The following restriction applies to any statement that begins with the character string

EN D:

If, at the end of any FORTRAN line (which may be a continuation line) the compiler
has encountered only the characters E N D, the compiler assumes that the statement is an END
statement and will act accordingly.

The ENDS$ form is used by the FORTRAN compiler in the same manner as the DC 6024
Assembler, i.e., it is processed exactly like an end card after which all logical 1/O files are
closed and control is returned to the system.

2-7 INPUT/OUTPUT

FORTRAN input/output statements cause transmission of data between memory and
peripheral devices at program execution time. These statements specify a logical file number
that is associated with the peripheral device, and may contain an input/output list specifying
the data to be transferred, or a reference to a FORMAT statement which controls conversion
and editing of the transferred data.

2-30

2-7 INPUT/OUTPUT (CONT'D.)

I/O Lists

An input/output list defines the data that is to be processed by the input/output statement
in which the list appears.
Simple Lists

A simple list has the form

€188+ /€y

where each e. may be

a scalar or array element,

an array name,

another input/output list enclosed in parentheses.

Note that the last item implies that input/output lists may be nested to any level;
furthermore, redundant parentheses are permissible. However, parentheses are mandatory only
to enclose DO-implied lists.

Examples:

A

MATRIX (25,L)

MATRIX, T

RY, Y(N,M), (X23A, HB, XKE)

When an unsubscripted array name appears in an input/output list, it refers to all of the
elements in the array in storage order (see Section 2-3, DATA - Arrays in Storage). This means
that the elements are accessed beginning with the lowest subscript value for each dimension and
ending with the maximum subscript value for each dimension. In between the first subscript
varies most rapidly and the last subscript varies least rapidly. This is also called " columnwise"

ordering.

For example, if V is a 2x3x2 array, then the list item V is equivalent to the followi ng
elements in the order shown.

.~ W N o~

~ 0w~

- NN
N—=—WWN N ——
. = -~

-~
NNDNNDNN - ot o e s
N N S e et e " s et s e s

~
WwWwWwN
-~

-

Revision A
February, 1975

2.7

INPUT/OUTPUT (CONT'D.)

DO-Implied Lists

the form

A DO-implied list is a simple list followed by a comma and then by a DO-control of

v=lyinis
where
v is a DO-control integer variable,

iys i?, and i3 are DO-parameters as described in Section 2-6.

The meaning of a DO-control is similar to that of a DO statement, that is, all the items

in the simple list preceding the DO-control are repeated over and over while v is incremented
from iy to iy in steps of i,.

A DO-implied list enclosed in parentheses becomes a simple list item. Thus, an input/

output list may contain any number of nested DO-implied lists, with the provision that all the ne:
lists must be enclosed in parentheses.

list item.

Examples:

DO-implied lists Equivalent Simple Lists

X, 1=1,4) X(1), X(2), X(3), X(4)

(A(J), BW), J=1,3) A(1), B(1), A(2), B(2), A(3), B(3)

(G(2*N), N = 3,9,2) G(6), G(10), G(14), G(18)

T,(CW), J = 3,5), E,LENGTH T,C(3), C(4), C(5), E, LENGTH

(A1), 1=7,9,J=13) A7, 1), A8, 1), AG,1), A(Z,2), A(8,2),
A(9,2), A(Z,3), A(8,3), A(9,3)

(R, T(K), K= 2,3) R, T(2), R, T(3)

The DO-control variable in an input/output list is available and may also be used as a
The output list

(K, A(K), K=1,3), G(K)
is equivalent to the simple list
1, A(1),2,A(2), 3,A(3), G(4)

In Harris FORTRAN, a DO-implied list functions in the same manner as a DO statement

If the terminal conditions of a loop are met initially, it will be done "no times". Thus, the lists

2-32

Revision A
February, 1975

2-7 INPUT/OUTPUT (CONT'D.)

1/0 List = DO-Implied Lists (Cont'd.)

(G(K), K = 34, 22)
(J, XQ), J=10,9,1)

will not cause data to be read or written.

Free Format READ/WRITE

The free format 1/O statements permit 1/O operation within defined limits. Data conversion
takes place based on the variable type encountered in the list.

There are three statement forms available for use with the free format feature. They are:
READ(y, -)

WRITE(s,) st

READ(y,) .

WRITE(,) st

READ, (implied unit is 7)
PRINT, list (implied unit is 6)
PUNCH, (implied unit is 8)

Data to be read under free format consists of one or more records. Data values in the
input stream must be separated from each other by a comma and/or one or more blanks. Data
will be read until the list is satisfied.

The input data must be of the same type as the variable. Therefore, an integer must not
contain a decimal point and a logical variable must begin with a "T" to set the value TRUE and
any other character to set the value FALSE. Real, double precision and complex data must be
input in any of the forms acceptable under a formatted READ statement and if an exponent is

present in the data it must begin with an E or a D. The decimal point is optional and, if it is
omitted, it is assumed to be to the right of the last digit.

A printed line of free-format consists of 120 print positions. Since the formats used for
free-format output provide for at least two leading blanks, column 1 of the output line will al-
ways be blank. Thus, free-format output will be single spaced. Additional carriage control
must be provided by formatted output if it is desired.

The output field widths of the various variable types are as follows:

Integer -- 110

Logical -- L3

Real -- 1PET4.5

Double precision -- 1PD19.10

Complex =-- 1P2E14.5

2-33

Revision A

February, 1975

2-7 INPUT/OUTPUT (CONT'D.)
Free Format READ/WRITE (Cont'd.)

Note: The output accuracy for real, double precision and complex values is such that

all full digits of accuracy for the value are output.

output. This avoids output of numbers such as 1. 9999999999, where the value is effectively

2. 0000.

If the current line will not accommodate the list variable field width to be printed, a
new line will be started, e.g., five complex values cannot be printed on the same line, since
the total field width required is 140 columns. Therefore, only four complex variables will be
printed on the line.

The definition of the abbreviations used in the examples which follow are:

D = Double Precision Variable

C = Complex Variable

X = Real Variable

L = Logical Variable

I = Integer Variable

Example: The statement
READ (7,) (D(J), C(J), X (), LW), I(J), J = 1,3)

will read any of the following data sets:

1.2,2.,3.,3.1,F1,1.,6.,7.,4,,7,2,6.1,2.2,3. 3,4. 4 FALSE,3

1.0D0 0.0,3., 7.0, TRUE, 44
-3. 14D1 11.692,4,52, 3.81, FALSE, 88000
1.23E17 5,65 2.03 1.1198, TO, -786

13.8, 88.8, 91.6, 17.8
THISISATRUESTATEMENT 5
-200000000, . 000001

-. 0000023, 1.5, FALSE
8388607

The coding sheet which follows shows several examples of WRITE statements and the
resulting output format. All values shown are arbitrarily chosen for the sake of example.

Partial digits (least significant bits) are not

2-7 INPUT/QUTPUT (CONT'D.)

Free Format READ/WRITE (Cont'd.)

1

kR~ [~ =k -

7 j . T | I A I N
01234967890 44967 s;sio 1255456 T8O 7 34 iE s F0 1y p 457 1§, Lul_:_],l_5ﬂ7j%0_1_?
. " 1

g
S S 6 | e

READ Statement

The READ statement forms are:

READ f

READ f,k

READ (L,f)k

READ (L,f)

READ (L,f,END=S1,ERR=S2) k _J

READ (L) k
READ (L)

READ (L,END=S1,ERR=52)k

where:

formatted

unformatted

L is an integer variable or constant specifying a logical file. The logical file for the
card reader (LFN 7) is implied for the forms READ f and READ f, k.

f is the statement label of a FORMAT statement or a variable FORMAT specification

(see FORMAT - Stored in Arrays), and

k is an Input/Output list.

2-35

2-7 INPUT/OUTPUT (CONT'D.)
READ Statement (Cont'd.)

S1 is the statement number to be executed when an End-of-File is detected.

S2 is the statement number to be executed on a format error.
Either or both parameters may be present in any order.

The formatted form of the READ statement causes external symbolic data to be read and
converted intc internal form under control of the FORMAT statement specified by f. If no list
is specified, the READ statement may cause a record to be skipped, or cause data to be read
directly into the FORMAT statement.

The unformatted form of the READ statement causes external binary data to be read and
placed directly into the locations specified by the list, k. If no list is specified, the unformatted
read has the effect of skipping a record.

WRITE Statement

The Write statement forms are:

PRINT f
PRINT f,k
PUNCH f
PUNCH f,k F
WRITE (L, f)k
WRITE (L,f)

formatted

WRITE (L)k } unformatted

where:

L, f, and k have the same meaning as in the READ statement. The logical file for the
line printer (LFN 6) is implied for the PRINT statements, also the logical file for the card punch
(LFN 8) is implied for the PUNCH statements.

The formatted form of the WRITE statement causes internal data to be converted and
output under control of the FORMAT statement specified by f. If no list is specified, data may
be directly output from the FORMAT statement.

The unformatted form of the WRITE statement causes internal binary data located in
locations specified by the list, k, to be directly output to the logical file, L. Note that the
unformatted ferm of the WRITE statement must specify a list.

FORMAT Statement

The FORMAT statement is used to specify the conversion to be performed on data being
transmitted during formatted input/output operations. It is nonexecutable and may be placed
anywhere in the program. In general, conversion performed during output is the reverse of that
performed during input. FORMAT statements are expressed as

FORMAT (S], Sor Sare .,Sn)

Revision A
February, 1975

2-7 INPUT/OUTPUT (CONT'D.)

FORMAT Statement (Cont'd.)

where

S. is either a format specification of one of the forms described below or a repeated
group of such specifications in the form

r(S.I, Sor Sgreees Sn)
where
r is a repeat count as described below, and

S. is as described above; in other words, repetitions may be nested. The commas between
the Si1 are h\andofory, except when the Si is of the X of H form, in which case the comma is
optiohal.

Every FORMAT statement should be labeled so that references may be made to it by
formatted input/output statements. An entire FORMAT (the parentheses and the items they
enclose) may be stored in an array variable. In this case, the array itself is referenced by the
input/output statements (see FORMATS Stored in Arrays, Section 2-7, page 2-51).

Format specifications describe the type of conversion to be performed, specific data to
be generated, scaring of data values, and editing to be executed. Each integer, real, double
precision, or logical datum appearing in an input/output list is processed by a single format
specification, while complex data are operated on by two consecutive format specifications.
Format specifications may be any of the following forms:

rFw.d rlw nHs wX
rEw. d rLw 'St Tw
rDw. d rAw "St iP
rGw. d rOw

rRw
where:

The characters F, E, D, G, I, L, A, H, X, T, P, and (/) define the type of conversion,
data generation, scaling, editing, and FORMAT control.

r is an optional, unsigned integer that indicates that the specification is to be repeated
r times. When r is omitted, its value is assumed to be 1.

w is an unsigned integer that defines width in characters (including digits, decimal points,
algebraic signs, and blanks) of the external representation of the data being processed.

d for F, E, D, and G input specifications, d is an unsigned integer that specifies the
number of fractional digits appearing in the magnitude portion of the external field.

2-37

Revision B
January, 1976

2-7 INPUT/OUTPUT (CONT'D.)

FORMAT Statement (Cont'd.)

For G output specification, d is also an unsigned integer; but in this context it is used t
define the number of significant digits that appear in the external field. Therrefore, its value
should not be zero.

n is an unsigned, decimal integer that defines the number of characters being processed

i is a signed integer (plus signs are optional). The function of i is described under
X and P specifications.

s is a character string (see H format)

F Format (Fixed Decimal Point)

F format specifications are expressed as:
rFw.d

Real, double precision, or either part of complex data may be processed by this form
of conversion. Double-precision values are converted with full precision if sufficient width
is specified by w, and the value of d allows for the appropriate number of digits in the frac-
tional portion of the field.

OUTPUT - Internal values are converted to real constants, rounded to d decimal place
with an overall length of w. The field is right justified with as many leading blanks as necessal
Negative values are preceded with a minus sign. Consequently, for the specification F11.4,

273.4 is converted to 273. 4000

7 is converted to 7.0000

-.003 is converted to -. 0030

-442, 30416 is converted to -442, 3042

If o value requires more positions than are allowed by the magnitude of w, the entire
output field will be filled with asterisks. If an integer or logical value is output with this
format, the entire output field will be filled with question marks.

In order to insure that such a loss of digits does not occur, the following relation must
hold true:

w > d+2+n

where n is the number of digits to the left of the decimal point.

2-38

Revision B
January, 1976

2-7 INPUT/OUTPUT (CONT'D.)

F Format (Cont'd.)

INPUT - Input strings may take any of the integer, real, or double-precision constant
forms discussed under "Numeric Input Strings". Each string will be of length w with d characters
in the fractional portion of the value. If a decimal point is present in the input string, the
value of d is ignored, and the number of digits in the fractional portion of the value will be
explicitly defined by that decimal point. F-input data may optionally have exponent specified.
For the specification F10. 3,

33 is converted to .033
902142 is converted to 902, 142
. 34562 is converted to . 34562
-7.001 is converted to -7.001
2, 3E-2 is converted to .023

NOTE

During F format input, any blanks within the input
field will be processed as zeros. Thus, "1 . 2"
will be interpreted as 10, 02. This may be over-
ridden so that blanks are totally ignored thru an
execution time flag. Under VULCAN, this is done
with a Vulcanizer MODE 1B statement. Under
DMS/ROS/TOS/DQOS, this is done by setting
option 16 at execution time.

E Format

E format specifications are expressed as:

rEw.d

Real, double-precision, or either part of complex data may be processed by this form of
conversion. Do le-precision values are converted with full precision if sufficient width is
specified by w and the value of d allows for the appropriate number of digits in the fractional
portion of the field.

OUTPUT - Internal values are converted to real constants of the forms

+, dddd. . . dEtee

where dddd. . .d represents d digits and Etee is interpreted as a multiplier of the form:

10%ee

The leading sign (before the decimal point) is omitted if positive.

2-39

Revision B
January, 1976

2-7 INPUT/OUTPUT (CONT'D.)

E Format (Cont'd.)

Internal values are rounded to d digits, and negative values are preceded by a minus
sign. The external field is right justified and preceded by the appropriate number of blanks.
The following are examples for the specification E15,8:

90. 4450 is converted to 0. 90445000E+02
-435739015. is converted to -0. 43573902E+09
. 000375 is converted to 0. 37500000E-03

-1 is converted to -0. 10000000E+01

.2 is converted to 0. 20000000E+00

0.0 is converted to 0. 00000000E+00

The field includes the exponent digits, an exponent sign, the letter E, the mantissa
digits, the decimal point, and the sign of the value (minus or space). If an integer or logical
value is output with this format, the entire output field will be filled with question marks. If
a value requires more positions than are allowed by the magnitude of w, the entire output
field will be filled with asterisks. To prevent this from occurring, the value for w should be
at least 6 more than the value for d.

w > d+7
is satisfied by the specification.
INPUT - Forms permissible for strings of input characters are discussed under the heading

"Numeric Input Strings" in Section 2-7. Conversion is identical to F format conversion. In
particular, input fields for conversion in E format need not have exponents specified.

Examples:

Input Value Specification Converted to
~-113409E2 E11.6 -11. 340900
849935E-02 E10.5 . 0849935
23, 5+2 E8. 1 2350.0

First, the decimal point is positioned according to the specification; then, the value
of the exponerit is applied to determine the actual position of the decimal point. In the first
example, -113409E2 with a specification of E11.6 is interpreted as ~. 113409E02; which, when
evaluated (i.e., - 113409 x 10?), becomes -11. 340900,

D Format

D format specifications are expressed as:

rDw. d

2-40

Revision B
January, 1976

2-7 INPUT/OUTPUT (CONT'D.)

D Format (Cont'd.)

QUTPUT ~ This format is similar to E format, with the exception that for output, the
character D will be present instead of the character E. For example,

for E12.6, -667.334 is converted to -.667334E 03
and
D12,6, -667.334 is converted to -.667334D 03.

INPUT - Input under D format is the same as for E and F formats.

G Format

G format specifications are expressed as:

rGw.d

OUTPUT - The method of representation in the external output string is a function of
the magnitude of the value being converted. The following table shows the correspondence
between the magnitude of the value and the equivalent method of conversion that will be effected:

Magnitude of Datum Equivalent Conversion Effected

(w-d-4) Fw-4).d, 4X

0. 1_§_N 10
Otherwise Ew.d

Note that the effect of the scale factor (see P Specification) is suspended unless the magni -
tude of the datum to be converted is outside of the range that permits effective use of F conversion.

INPUT - The G input conversion is identical to the F input conversion. The numeric

field descriptor Gw.d indicates that the external field occupies w positions with d significant
digits. The value of the list item appears internally as a real or double precision value.

I Format (Integer)

I format specifications are expressed as:

rlw

OUTPUT - Internal values are converted to integer constants, The integers may contain
as many digits as are specified by w (or w-1 if negative). Negative values are preceded bﬁ a
minus sign, and the field will be right justified and preceded by the appropriate number of blanks.

If a value requires more positions than are allowed by the magnitude of w, the entire

output field will be filled with asterisks. If the value being output with this format is not an
integer, the entire output field will be filled with question marks.

2-41

Revision B
January, 1976

2-7 INPUT/OUTPUT (CONT'D.)

I Format (Cont'd.)

INPUT - External input strings must take the form of an integer constant or signed
integer constant in the external input field.

NOTE

During I format input, any blanks within the input
field will be processed as zeros. Thus "1 2 3"
will be interpreted as 10203. This may be over-
ridden so that blanks are totally ignored thru an
execution time flag. Under VULCAN, this is done
with a Vulcanizer MODE IB statement. Under
DMS/ROS/TOS/DOS, this is done by setting

option 16 at execution time.

O Format (Octal)

O format specifications are expressed as:

rOw

OUTPUT - Internal values are output as octal constants. The numbers may contain as
many digits as specified by w. The field will be filled with zeros up to 8. Over 8, the field is
right justified and filled with blanks. If a value requires more positions than are allowed by
the magnitude of w, the entire output field will be filled with asterisks.

INPUT - The input string must be less than 8 integer digits from zero (0) to seven (7),
inclusive.
NOTE

During O format input, any blanks within the input
field will be processed as zeros. Thus, "1 2 3"
will be interpreted as '10203. This may be over-
ridden so that blanks are totally ignored thru an
execution time flag. Under VULCAN, this is done
with a Vulcanizer MODE IB statement. Under
DMS/ROS/TOS/DOS, this is done by setting

option 16 at execution time.

L Format

L format specifications are expressed as:

rlw

Only logical data may be processed with this format specification.

242

Revizion B
January, 1976

2-7 INPUT/OUTPUT (CONT'D.)
L Format
L format specifications are expressed as:
rlw
Only logical data may be processed with this format specification.

OUTPUT - Logical values are converted to either a T or an F character for the values
"true" and "false", respectively. The T and F characters are preceded by w-1 blanks.

For example, using the specification L4,

. TRUE. is converted to BT
. FALSE. is converted to WBisF
where [represents the character blank.

If the value being output with this format is not logical, the entire output field will
be filled with question marks.

INPUT - The first non-blank character encountered in the next w characters determines
whether the value is "true" or "false". If the first non-blank character is a "T" the value is "True™.
If the first non-blank character is not a "T", the value is "false", For example, the following
input fields, processed by an L7 format, have the indicated values:

True False

T F
TRUE FALSE
T42 (blank)
TILT ZILCH

A Format

A format specifications are expressed as:
rAw

where r is the repeat specification and w is the external field width. A-format data is
represented internally as 8 bit ASCII characters, packed three to a word. Hence, the maximum
number of characters that can be stored in an integer element is 3, and in a real or double precision
element is 6, However, the field width, w, may be greater or less than these maximum internal
values. The following tables show how conversion is accomplished.

2-42A

2-7 INPUT/OUTPUT (CONT'D.)

A Format (Cont'd.)

QUTPUT - The output consists of the following:

Internal Representation

Integer Real

ABC ABCDEF
ABC ABCDEF
ABC ABCDEF
ABC ABCDEF
ABC ABCDEF
ABC ABCDEF
ABC ABCDEF

INPUT - The input consists of the following:

External
Field

ABCDEFG
ABCDEFG
ABCDEFG
ABCDEFG
ABCDEFG
ABCDEFG
ABCDEFG

Example:
DIMENSION B(2)
READ (7,1) B,1

Format Spec.

1 FORMAT (1A6,A2,12)

WRITE (6,2), B,1

2 FORMAT (1X,2A6,12)

card input starting in column 1

ABCDEFGH12
print out

ABCDEFG H $48¥12

Format
Spec.

Al
A2
A3
A4
AS
Ab
A7

2-43

External Field

Integer

A

AB

ABC
bABC
bbABC
bbbABC
bbbbABC

Real

A

AB

ABC
ABCD
ABCDE
ABCDEF
bABCDEF

Internal Representation

Integer

A
AB
ABC
BCD
CDE
DEF
EFG

Real

A

AB

ABC
ABCD
ABCDE
ABCDEF
BCDEFG

Revision A
February, 1975

2-7 INPUT/OUTPUT (CONT'D,)

A Format (Cont'd.)

If an array name is used in the 1/O list, the total number of words may be used to contain
A format data. For instance, if M is an integer array with dimensions M(4), then an A specification
of 4A3 may be used to read or write 12 consecutive characters from that array.

R Format

The R specification is similar to the A formatting specification. If the width specification
for the R format is not less than the number of characters which can be packed in an element (3 for
integer, 6 for real/double precision), then the R format is identical to the A format.

If the R format width specification is less than the maximum number of characters that can
be packed in the element, then the number of characters specified are processed right —justified
within the element. On input leading characters are filled with binary zeros; on output, they are
ignored.

Example:

External field Format width A format input R format input
ABC 3 '20241103 '20241103
ABC 2 '20241040 '00040502
ABC 1 '20220040 '00000101

where the characters have the following octal representations:

A" = '101
"B" = '102
"Cr o= '103
"o = 1040

H Format (Hollerith)

H format specifications are expressed as

nHs

2-44

Revision B
January, 1976

2-7 INPUT/OUTPUT (CONT'D.)

H Format (Hollerith) (Cont'd.)

OUTPUT - The n characters in the string s are transmitted to the external record. For
instance,

Specification External String
1 HE E

8HEKV AL UE: 6 VALUE:
5H$3. 95 $3. 95
PHX(2,5)=K X(2,5)6=K

where J§ represents the character blank.

Care should be taken that the character string s contains exactly n characters, so that
the desired external field will be created, and so that characters from other format specifications

are not used as part of the string.

INPUT - The n characters in the string s are replaced by the next n characters from the
input record. This replacement occurs as shown in the following examples:

Specification Input String Resultant Specification
3H123 ABC 3HABC

T0HN OWKISKTHE BTIMEKFORK 1OHETIMEKF ORK
5HTRUEK FALSE SHFALSE

6 HEKBE RANDOM 6HRANDOM

where

¥ = the character blank.

This feature can be used to change the titles, dates, column headings, etc., that are to
appear on an output record generated by the H specification.

Harris FORTRAN provides an alternate to the H specification for outputting alpha-
numeric data. Literal strings are accepted within Format statements and are only accepted for
output statements. The literal string takes either of the following forms:

IIs it

S

2-44A

Revision B
January, 1976

2-7 INPUT/OUTPUT (CONT'D.)

H Format (Hollerith) (Cont'd.)

where s is a string of ASCII characters. When enclosed in quotation marks ("), or
apostrophes ('), a quotation mark or apostrophe may be represented by two successive quotation
marks or apostrophes, respectively.

Examples:

"THIS IS A 'LITERAL STRING' "

'THIS IS A "LITERAL STRING"'

"' is equivalentto " ' "

X Specification (Skip)

X specifications are expressed as:
wX

This specification causes no conversions to occur. Instead, it causes w positions of the
external field to be skipped or ignored.

OUTPUT =~ The next w positions in the output record will be blanks.

INPUT - The next w characters from the input sfri ng are ignored (that is, they are skipped).

For example, with the specification

F5. 3, 6%, I3

and the input string

76. 411IGNORE697

the characters

IGNORE

will not be processed.

The field width specified for the "X" specification may be negative. In that case, then
next column from or to which data is to be transferred will be the specified number of columns
"backwards" of the current column. This specification can be used similarly to the "T" specification

(see next section). Note however, that the negative "X" specification references a column number
relative from the current column while the "T" specification references an absolute column number.

2-45

2-7 INPUT/OUTPUT (Cont'd.)

T Specification (Tab)

The T specification has the form:

Tw
where:
w specifies a character position within the input or output record.

The T specification causes no transfer of data, but merely resets the character position
at which the next processing will begin. For example, the following three FORMAT statements

are equivalent:
1 FORMAT (10X, F10.3,10X,110)
2 FORMAT (T11,F10.3,T31,110
3 FORMAT (T31,110,T11,F10. 3)

Note that it is permissible to tab either forward or backward.

P Specification (Scale Factor or Power of 10)

The P specification has the form:
iP
where -37 < P < 37.

The P specification causes the value of the scale factor to be set to i, where the scale
factor is treated as a multiplier of the forms

lOi for output, and
107 for input.

The scale factor is set to zero at the beginning of each formatted input/output operation.
Once a scale factor has been encountered it applies to all subsequently encountered F, E, D and
G field descriptions. Any number of P specifications may be present in a FORMAT statement,
causing the value of the scale factor to be changed several times during a formatted input/output
operation. If a FORMAT is re-scanned within a single input/output operation due to the number
of items in a list (see Section 2-7 "FORMAT and List Interfacing"), the value of the scale factor

is not reset to zero.

OUTPUT - The value of the list item is scaled by the multiplier 10'. This causes the
decimal point to be shifted right i places. On D- and E- type conversions, the exponent field
(+ee) is correspondingly reduced by i. Thus, for D- and E-type output, the external number is
equal to the internal value (except for rounding), while for F format output is not equal to the
internal value (unless i is 0). The following examples illustrate output scaling:

2-46

2-7

INPUT/OUTPUT (CONT'D.)

P Specification (Scale Factor or Power of 10) (Cont'd.)

Format External Field when Internal Value is:
2.71828 -2.71828
-2PF10.3 .027 -.027
-1PF10.3 .272 -.272
F10.3 2.718 -2.718
1PF10.3 27.183 -27.183
2PF10.3 271.828 -271.828
-2PE14.3 0.003E 3 -0.003E 3
-1PE14.3 0.027E 2 -0.027E 2
E14.3 0.272E 1 -0.272E 1
1PE14.3 2.718E0 -2.718E0
2PE14.3 27.183E -1 -27.183E -1

The examples for E conversion above are similar to those that would result from D
conversion and E~type G conversion. When G conversion uses the F form, however, scale factors
do not apply. Thus, a number output in G format always represents the internal value.

Note that when a scale factor is in effect, output rounding takes place after the scaling
has been performed.

INPUT - During F, E, D, and G input conversions, if the input string contains an
exponent field, the scale factor has no effect. However, when the input string does not contain
an exponent field, the value of the external field is scaled by 10-1; that is, the decimal point is
moved left i places. The following examples indicate the effect of scaling during an input
operation:

External Field Scale Factor Effective Value
-71.436 op -71.436

3P -.071436

-1P -714.36
-71.436E 00 3P -71.436

-1pP -71.436

It can be seen that, on both input and output, if the external number has an exponent
specified, it is equal to the internal value; if it does not, then

external value = internal value x 10!

Once a scale factor has been established during an input/output operation, it remains in
effect throughout the operation, unless redefined by an additional P specification. To reset the
scale factor to zero, it is necessary to write a OP specification.

2-47

2-7 INPUT/OUTPUT (CONT'D.)

/Specification (Record Separator)

The form of the / specification is

/

Each slash (/) specified causes another record to be processed. In the case of contiguous
slash specifications (i.e., ////.../), since no conversion occurs between each of the slash
specifications, records are ignored during input, and blank records are generated during output
operations.

 OUTPUT - Whenever a slash specification is encountered, the current record being
processed is output, and another record is begun. If no conversion has been performed when the
slash is encountered, a blank record is created.

INPUT - The effect of slash specifications during input operations is similar to the

effect for output, except that for input, records are ignored in the cases where blank records are
created during output.

Parenthesized Format Specifications

Within a FORMAT statement any number of specifications may be repeated by enclosing
them in parentheses, preceded by an optional repeat count, in the form shown below.

r(S]'SZZ’SB' . .,Sm)
where

r is an optional, unsigned integer that indicates that the specification is to be repeated
r times. When r is omitted, its value is assumed to be 1,

Si is a FORMAT specification and

m > 0.

For example, the statement

3 FORMAT (3(A3,F6. 2,3X), 312)

is equivalent to

3 FORMAT (A3, F6.2, 3X, A3, F6.2, 3X, A3, F6.2, 3X, 312)

There is no limit to the number of repetitions of this form that can be present in a
FORMAT statement.

During input/output processing each repetitive specification is exhausted in tum, as is
each singular specification.

The following are additional examples of repetitive specifications:

2-48

2-7 INPUT/OUTPUT (CONT'D.)

Parenthesized Format Specification (Cont'd.)
34 FORMAT (4%, 2(A8, X, 7G, 6.3), 14, 3 (D12.4,L5))
8 FORMAT (2(18, 2(3X, F12.9), F12.9), Al¢)

In the latter example, repetitions are nested. Nesting of this type is permissible to a
depth of ten levels.

The presence of parenthesized groups within a FORMAT statement affects the manner
in which the FORMAT is re-scanned if more list items are specified than are processed the first
time through the FORMAT statement. In particular, when one or more such groups have appeared,
the rescan begins with the group whose right parenthesis was the last one encountered prior to the
final right parenthesis of the FORMAT statement. A more complete discussion of this process is
contained in Section 2-7, INPUT/QUTPUT STATEMENTS - Format and List Interfacing.

Numeric Input Strings

The permissible kinds of input strings that may be processed by numeric conversions are
exactly the same for F, E, D, and G conversicn. Any field that can be read using one of these
formats can be read using any of the others. In other words, numbers for input with E format need
not have exponents, and numbers input with F format may have exponents.

A numeric input string consists of a string of digits with or without a leading sign, a
decimal point, and/or a trailing exponent. An exponent is normally specified as

Ete
where the plus sign is optional and e is a one- or two-digit number. The form e i also

accepted (without the E), in which case the plus sign is not optional. Thus, a variety of forms
may be used to express data for numeric input: '

in +n.m +n +.m
+nEte +n. mEte +n. Exe +. mEte
+nte +n. mte +n. te +. mte

where the plus signs are optional except in an exponent field without an E.

A D may be substituted for the E in an exponent field, with no change in meaning or
value. It is not necessary to indicate that data is double precision, nor is it necessary to use a
D format. Regardless of the format used or the form exponent (if any), a numeric string will be
converted with full double precision if the input list item to which it is to be assigned is double
precision.

Any numeric type of list item may be used with any numeric type of format specification,
with the exception of I format. In this case the input field must contain an integer constant, refer
to Section 2-3, DATA - Constants.

Leading, embedded and trailing blanks are ignored. The field terminates only when the
width specification is exhausted.

2-49

2-7 INPUT/OUTPUT (CONT'D.)

FORMAT and List Interfacing

Formatted input/output operations are controlled by the FORMAT requested by each
READ or WRITE statement. Each time a formatted READ or WRITE statement is executed, control
is passed to the FORMAT processor. The FORMAT processor operates in the following manner:

1. When control is initially received, a new input record is read, or construction
of a new output record is begun.

2. Subsequent records are started only after a slash specification has been processed
(and the preceding record has been terminated) or the final right parenthesis of
the FORMAT has been sensed. Attempting to read (or write) more characters on
a record than are (or can be) physically present does not cause o new record to
be begun; on output the extra characters are lost, on input they are treated as
blanks.

3. During an input operation, processing of an input record is termirated whenever
a slash specification or the final right parenthesis of the FORMAT is sensed, or
when the FORMAT processor requests an item from the list and no list items
remain to be processed. Construction of an output record terminates, and the
record is written on occurrence of the same conditions.

4. Every time a conversion specification (i.e., F, E, D, G, I, L, or A specification)
is to be processed, the FORMAT processor requests a list item. If one or more
items remain in the list, the processor performs the appropriate conversion and
proceeds with the next field specification. (If conversion is not possible because
of a conflict between a specification and a data type, an error occurs.) If the
next specification is one that does not require a list item (i.e., H,X,P,T, or /), it
is processed whether or not another list item exists. For example, the statement

WRITE (6, 12)
12 FORMAT (///4HABCD)

would produce three blank records and one record containing ABCD before
reaching the final right parenthesis. When there are no more items remaining

in the list and the final right parenthesis has been reached or a conversion
specification has been found, the current record is terminated, and control is
passed to the statement following the READ or WRITE statement that initiated the
input/output operation.

5. When the final parenthesis of a FORMAT statement is encountered by the FORMAT
processor, a test is made to determine if all list items have been processed. If the
list has been exhausted, the current record is terminated, and control is passed to
the statement following the READ or WRITE statement that initiated the input/output
operafion. However, if another list item is present, an additional record is begun,
and the FORMAT statement is rescanned. The rescan takes place as follows:

a. If there are no parenthesized groups of specifications within the FORMAT
statement, the entire FORMAT is rescanned.

2-50

2-7 INPUT/OUTPUT (CONT'D.)

FORMAT and List Interfacing (Cont'd.)

b. If, however, one or more parenthesized groups do appear, therescan is started.
with the group whose right parenthesis was fEe last one encountered prior to the
final right parenthesis of the FORMAT statement. In the following example, the
rescan begins at the point indicated:

r—'—“——v‘]

FORMAT (3X, (F7.2, A3), (3HABC (314, (G15.7//), A3)z, E29. 12, 3HXYZ)
rescan begins last Internal final right
here closing parenthesis
parenthesis of FORMAT.
6. Each list item to be converted is processed by one specification or one iteration of

a repeated specification, with the exception of complex data, which are processed
by two such specifications.

7. Each READ or WRITE statement containing a non-empty list must refer to a
FORMAT statement that contains at least one conversion (see step 4 above) speci-
fication. If this condition is not met, the FORMAT statement will be processed,
but an error will occur.

FORMAT - Stored in Arrays

As mentioned previously, a FORMAT, including the beginning left parenthesis, the
final right parenthesis, and the specifications enclosed therein, may be stored in an array. The
FORMAT must be stored as a Hollerith string (i. e., a string of characters). The string may be
"loaded" to the array by any of the methods that are normally used with numeric data. The
FORMAT may also be stored in a scalar variable. This should be done only if the FORMAT is
extremely short or if the ordering of other scalars (or arrays) is known (through EQUIVALENCE).

The format need not be stored starting in the first element of the array, however, it must
be stored in consecutive elements. If the FORMAT is not stored in the first element of the array,
then the starting element must be specified as the FORMAT specification.

Examples:
FORMAT stored in scalar X: WRITE (6,X) list

FORMAT stored in array A, starting in first element:
WRITE(8,A) list or
PRINT A, list

Format stored in array FMT, starting at fifth element:
READ (7,FMT(5)) list

Format stored in array WWW, starting at a calculated element:
READ WWW(I-J+7), list

2-51

2-7 INPUT/QUTPUT (CONT'D.)

FORMAT - Stored in Arrays (Cont'd.)

if the variable M is an integer array, the following method may be used to store a FORMAT in M:

M(1) = 3H(F8

M(2) = 3H. 5,

M(3) = 3H3HS

M(4) = 3HAM,

M(5) = 3HI3)
OR

READ (N,90) (M(1), I =1,5)
90 FORMAT (5A3)
External Input is: (F8.5, 3HSAM, 13)

Auxiliary Input/Output Statements

The following set of statements enable the user to manipulate magnetic tapes and
sequential disc files.

REWIND Statement

This statement is expressed as:
REWIND i
where i is an integer variable or constant.

Execution of a REWIND statement causes the units whose logical file number is the
integer value i to be rewound, or repositioned to the beginning of the file.

BACKSPACE Statement

The BACKSPACE statement has the form:
BACKSPACE i

where i is an integer variable or constant.

2-7 INPUT/OUTPUT (CONT'D.)

BACKSPACE Statement (Cont'd.)

When a BACKSPACE statement is executed, the file referenced by the integer value of i
is backspaced one logical record. In the case of binary tapes, a logical record may consist of
more than one physical record. A logical record is interpreted as all the information output by
one binary WRITE statement. Because of this, the BACKSPACE statement may not be used to
backspace over binary records that have not been produced by a DC 6024 FORTRAN binary
WRITE statement.

REWIND and BACKSPACE statements that are executed for files already positioned at
the beginning of the file have no effect.

ENDFILE Statement

This statement causes an end-of-file to be written on the specified file and has the form
of:
ENDFILE i

where i is an integer variable or constant whose value determines the unit on which the
end-of-file record is to be written.

Sometimes it is desirable to take a program that has been written for output on magnetic
tape and assign that logical unit number to some other device, such as a line printer. Since such
programs often write end-of-file and rewind their tapes at the end of the job, it is permissible to
specify an END FILE or REWIND operation on any device. Refer to the appropriate operating
system specification for the effect of these commands on various devices.

OPEN Statement
CLOSE Statement

These statements are expressed as:

OPENi PASSWD or OPEN i, PASSWD
CLOSE i

where i is an integer variable or constant whose value determines which file is opened
or closed. PASSWD is an optional é character name required to open files created with a pass-
word.

CALL EOFTST

A subroutine, EOFTST, has been added to the library to allow the FORTRAIN user the
ability to test for end-of-file. It is used as follows:

CALL EOFTST (file number, $stno)

2-53

2-7 INPUT/OQUTPUT (CONT'D.)
CALL EOFTST (Cont'd.)

Where the first argument is an integer variable, constant, or expression whose value is
the logical file number to be tested, and the second argument is a statement number (preceded by
$) indicating the statement to which control will be transferred if an end-of-file has been en-
countered during the last READ. If no end-of-file was encountered, control is returned to the
next sequential statement following the CALL.

CALL SSWTCH
A subroutine, SSWTCH, reads the status of the hardware sense switches. It is used asfollows:

CALL SSWTCH (number, status)

where:

number - is an integer variable or constant specifying which sense switch is to be tested.

status - is an integer variable into which will be returned the value 1 if the sense switch
is on, or 2 if the sense switch is off.

CALL BTIME

A subroutine, BTIME, reads the computer clock and saves the time. The routine is used
as follows:

CALL BTIME
The routine has no arguments.
CALL ETIME

A subroutine, ETIME, reads the computer clock, computes the elapsed time since the last
call to BTIME and outputs the time differential to the logical file assigned to the list out file in
the following format:

RUN TIME = XXHRS XXMIN XX. XXX000SEC

List Output Carriage Control

When formatted records are prepared for list output, the first character of the record is

not printed. Carriage control for List Output is performed according to the first character of the
record (see Table 2-5),

Table 2-5. List Output Device Carriage Control Characters

First Character Action before Printing
"a@" or "+" 0 line advance
"A" or "E" 1 line advance
"B" or "O" 2 line advance
"cH 3 line advance
"o 15 line advance
"pU oop MM Channel 1 advance (Top of Form)
"Q Channel 2 advance
"R Channel 3 advance
W Channel 8 advance

The "+", "B", "0" and "1" are generally honored. Only some Line Printers honor the
complete list.

2-54

2-7 INPUT/OUTPUT (CONT'D.)

Input/Output Logical File Assignments

The value of the parameter L in a READ or WRITE statement refers to a logical file to
which various physical devices can be assigned. See "ASSIGN" statement in the appropriate
operating system specification. The value of L is such that 0 <L < 64. Table 2-6 lists the
assignments usually associated with the value L. -

Table 2-6.. Logical File Assignments

File File Name Assignment
1 Operator Communications Console typewriter
2 Console Tape Reader*
3 Console Tape Punch*
4 Binary Input High Speed Paper Tape Reader
5 Binary Output High Speed Paper Tape Punch
6 List Output Line Printer
7 Symbolic Input Card Reader
8 Symbolic Output Disc File
* ROS, TOS and DOS Only. Will not operate with unformatted read/write.

Random Access /O (Extended Compiler Only)

This section applies only to those systems operating under disc oriented operating systems.

FORTRAN random access I/O uses a fixed sector size of 112 words. The record length
(L) in the define file statement determines the users record length and may be any integer va?ue

Random I/ O packs or divides the users records into groups of 112 words, overflowing in the middle
of the user'srecord to the next sector where necessary. This eliminates any wasted space on the
disc. If Lis 112, exactly one record per sector is read or written. If L is 28 four records are

put in each sector. If L is 100, to get the second record will require one read for the first 12 words
from the first sector and another read for the remaining 88 words from the second sector. If speed

is essential to the user, it might help to make L some multiple or even divisor of 112, such as 2, 4,
7, 8,14, 16 28, 56, 112, 224, 336, etc.

2-55

2-7 INPUT/OUTPUT (CONT'D.)

DEFINE FILE Statement

General Form;

DEFINE FILE a (m],L], U, v]),c:2 (m2, |?, U, v2)
or:

DEFINE FILE a, (m], L], v]), a, (m2, LZ’ v2)
where:

a is an integer variable or constant corresponding to the logical file fo be used. (Note
that DMS and DOS logical file numbers are assumed to be octal values, hence a value of a = 14 is
equivalent tc DOS logical file number 168).

m is an integer variable or constant that defines the maximum record number in this
file. The record number may vary from 0 to and including m.

L is an integer variable or constant that defines inwords the length of eachrecord in this file.

U is a fixed letter. This parameter may be omitted completely. DC 6024 FORTRAN
accepts it merely for compatibility with other systems.

v is an integer variable name. This variable is set to the next available record number
at the conclusion of each READ or WRITE statement.

NCTE: The DEFINE FILE statement must be executed prior to any READ, WRITE, or
FIND statement referencing that file.

Disc I/O Statements

General Form:

READ (a' b) list

WRITE (a' b) list

FIND (a' b)

where:

a is an integer variable or constant corresponding to the logical file number,

b is an integer variable or constant corresponding to the record number where transmittal
will start and its value may vary from 0 to and including m and list is any FORTRAN /O list.

list is a standard /O list.

2-56

Revision A
February, 1975

2-7 INPUT/OUTPUT (CONT'D.)

Disc /O Statements (Cont' d.)

Example:

Assume a disc file exists containing descriptions of items. The record number in the
file corresponds to the item number. The following program reads a card containing the item
number, reads the record from disc and prints the item number and description on the line
printer. The file data will be input as unformatted data, and output via a BUFFER OUT
Statement (the data is assumed to be packed 3 characters/word).

SHEET OF

Datacraft FORTRAN CODING FORM o
1|2|3[4}5(6]7|0 Q}IOlIIIIZ!IS 14115116 117118 I91202l R2|2y 32 33|34 (35)36(37 48/49(50 |51 152 ‘7‘"‘7 “‘-‘“__‘ 62 4 67(68 J697¢ I?z 7311‘ Hy 7%6(77|78 11132
INT DE. cgk. D AL 11 RERRRENEN
TN ((1), H L A s Jrl bk h
FILE (13)(l2@a, 210, 1 HESEE
e 7 i
P 43 B L RN
c/ | A D
g o(f2].15) T8 |
r(l[3) i i
cl Pbirl BirleM WMUMBER T IREEE |
CoDE s,Lgrma (zDan 1 _] L]
T. 4 4 - -
EF EC RoM P ,
(48] B)I(plelslc/ (U]], bk 3] 29)) i
¢ PRIT _LITN
3 ourl(l6, DiEisic), S|, 12/9), i) i (]
L, STATISI(G)) L] .
ol (5], 2ie], 15, n BEEENENEAN

r
o
13
H\
A

|

1 i A4 A4bL
el [a] | TUATION TEST clAN B TksseTiED lvia:riqg,L,fo LJEMC:QMSIATEMWT \EL.
'% T (I T;E‘) , T,

T

/g

1
N | . U .
5'7]3]9 0 ”||EI|3 1418|1617 118 192021 {22]2 7|28 [29(30{31 |32]33 4243144 (45146 |47 52 54 (55 7 162|863 68]69]70{71 |72|73]74| 75176 17 7(78{7B|80)

-
P
-
o

Random Access I/O - Disc I/O Statements

Note that file number and record number are separated by an apostrophe. No data
conversion is done on information transmitted via these statements.

2-57

2-7 INPUT/OUTPUT (CONT'D.)

ENCODE/DECODE Statements

The Encode/Decode statements provide memory -to-memory data conversion capability.
The statements operate on an input/output list, a format statement and a program-~-defined internal
buffer area.

The Encode statement is analagous to a WRITE statement and the Decode statement is
analagous to a READ statement.

The statements take the form:
ENCODE
DECODE

(nlflq) L

where:

n = number of characters in the buffer.

f = the FORMAT statement number or the name of the array or the array element or
the scalar variable which contains the format statement.

a = the "buffer" which contains the record to be ENCODE'd or DECODE'd. The
buffer must be an array name, an array element, or a scalar variable. The
record begins with the left most character position of "a" and continues for
“n" characters.

L = List

There are 3 ANSCII characters per word.
Examples:

ENCODE(3, 7, BUF) list

DECODE (28, IFMT, JBUF(27) list

DECODE (6, 13, XYZ) list
ENCODE (NUM, ALPHA(T), BETA((1+7)/3) list

where:

BUF, JBUF, and BETA are data buffer arrays, XYZ is a real variable
IFMT is an array containing a format

ALPHA is an array containing a format at the Ith element.

2-58

2-7 INPUT/OUTPUT (CONT'D.)

ENCODE/DECODE Statements (Cont' d.)

The ENCODE statement will transfer the |ist elements into the internal buffer while
performing the specified format conversion.

The following example illustrates the action of the ENCODE statement. The data
from arrays X and K are encoded into array MK. The example shows the arrangement of the
character string in MK.

o SNEET’ OF T
Datacraft FORTRAN CODING FORM
73 %
tj2|3fe Ili|7[ll!llolll II! 13|14 1516 17 lllIDIEOZIIE’ 23 : } } IL 13637 48|49{50 {51 |52|53(54 [55!56 |57 15# 60| ‘627 j 7“7 VZZTU N?S 1;7777?:;0:
§ l P (&), 211) BRSNS N
i35 IERRREEN
| 1 | 1
(f*?' 114)
BRI 1EN
nq‘sl 5(1 xi(2D)], X)), (D], d (2] (
NIEHEIRTIREN AL LW IRNENAR))]
’e .
] (2. 2], /31
{ = L1114 = lm“ U=] i
2= 6 2 l 7‘ 21| 3l s
sN=kj9l- 4 N 3)=] ikl
(a ! 4() = . | |
s | S])|= RERS _
PILa® i i i Pyl
et T L ;D_- 4 i _
I R et L 1
1EEREEE ONBRZTH]
i l i 1 LO)‘
j aann g »
'12 3|4 5];{? sf9ji0 llllz 13(14 l5ll6 i7]i8 |19]20(21 27 (28 129/30{31 (32 "Il Jst: 0]39 (4041 [42(43]44 4849150 |51 |52{53{54{55[56 |57 62163 7{68(69(70(71 Té ;;3}7&76 77{74|79180|

The DECODE statement will transfer the list elements from the internal buffer area to
the variables specified in the list while performing the conversion specified in the format state-
ment.

The DECODE feature permits the program to read the card (or other input record) more
than once. For example, if a card deck consists of randomly mixed alphabetic, alphanumeric and
numeric data cards, it is possible to determine, via a DECODE statement, what format conversion
is required for the card just read. The following example has provision for one of each type card,
input in any order.

2-59

2-7 INPUT/OUTPUT (CONT'D.)

ENCODE/DECODE Statements (Cont' d.)

Example: The card formats are:
ALPHA First character will always be X. Format will be 27A3

ALPHA- First character will always be A . Format will be 13A3, 3F7.2,415
NUMERIC

NUMERIC First character will be blank, sign or digit. Format will be 4F10. 3, 1014

SHEET oF

Daracraft FORTRAN CODING FORM SERTTICHTIoN

73 0

T213]als]el7 8.3 10im: 1213014 18116 701991|;on p2jzse 'IL 4”! E“..uun }: } : 1[e2]s3kalsslog|s7 2
DIMENS.TON Tl (2071)], IKALPINC[A3)], W uz'p+ LKkl (l2]7])
Al'rnmxx 3K

PE.

F ~

- T +

PEN,

| IREAN | “INLF] .
% \DI(T,, 4 &, ENDE KARD

MAT (ZTAZ jJERBENEN

r.f_ ' E:B.&T ﬂ&&cﬁiﬁ.ﬁ,_: s Wit ryleld ol "
L ThR S S T

c IC ._EOR _CN
!E‘]%:'(: LR XX)S0

mﬂz&,um INLP HANLN
TF(1.Ea. 'G‘O

T MUST BE MUMERT
‘ E&DLEJ !&”3»3

0

n
I

K|
m I
I ingcobe(8, 4

L HRMNT ﬂmsmdf
| o Ta Ade . .
L CL°'°*Q2”.4&1

=
"

Neert
r—
O
13
0
S0
—
N
~N
—

]
LA | |[-
nae]-I §j7i8]9 J_-I [\TTSIGI 0{21 {22|23(24]25 |26 27 [28 [29{30 31 |32 42(43l44 950 [5152{33(54 85 56 57 1{e2(63 6863 70|71 [r2[73] 14| 756 77 [re]re

o
~

2-60

Revision B
January, 1976

ASYNCHRONOUS INPUT/OUTPUT (Extended Compiler Only)

The asynchronous input/output feature provides a method of performing double buffered
input/output operations in either a symbolic or binary mode.

There are three statements which implement this function. They are:

BUFFER IN

(Ulalmlwlsln)
BUFFER OUT
CALL STATUS (v)

where:

v is the logical unit number

a is an array name, an array element, or a scalar variable specifying the starting
address for the operation.

m is the mode of operation

S = Symbolic
B = Binary

w specifies the number of words to be input or output (in the symbolic mode
3*w characters will be transferred)

"5 is an integer variable which will be set by a call STATUS request.

NOTE

Under DMS and VULCAN operating systems, the
value of S = T will never occur. A call tothe
STATUS routine will cause the system to wait for
I/O completion before returning to the user
program.

The variable s is set as follows:
S = 1 operation incomplete
S 2 successful completion
S 3 EOF encountered

n is an optionally present integer variable which will be set with the actual number
of words transferred when the operation is completed.

Il

Examples:

BUFFER IN (8, BUF,S, NUM, ISTAT, IWORDS)
BUFFER OUT (LFN, IBUF,B,112,JSTAT)
BUFFER OUT ('17,JBUF(I-J+3), B,N,II)
BUFFER IN (3,KBUF(5),S, KK,LL)

2-61

2-7 INPUT/OUTPUT (CONT'D.)

ASYNCHRONOUS INPUT/OUTPUT (Extended Compiler Only) (Cont' d.)

The BUFFER IN/ BUFFER OUT statements permit processing, both on input and output,
records of arbitrary length and format, without regard to the usual restrictions. It permits com-
plete program control of the data and enables such functions as: interpretating binary tapes
produced on other machines or by other programs, reading and writing binary cards, and in
conjunction with the ENCODE/DECODE functions, processing long formatted records.

Example:

Read a binary tape (9 track, 3 C/W, 800 bpi) of variable length records none of
which exceeds 500 words, terminated by End-of ~File.

The program will output the records 15 words per line in decimal. Each record
printed will be preceded by the record length. After all records have been printed, the
number of records in the file will be printed.

SHEET CF

Datacrafr FORTRAN CCDING FORM e
73 80
‘2);AT:src TRIC B ML 6 T 8820 z:fzm::uizms 27% i _\»IJ? "1“ 35 "1;7 !Ii!!?f{i{lj:j "L 4546 :711449 solls‘isz!”lu 551:-6 svlw 38 w}‘e ;‘ez 63 } i 7l68l6al70(71 {72 (7374|758 76177 |78 |79 80|
MENSION XBUF (isla) Pl i %.;J,Lt. TS O SR B QI
PEMN. o . iy SEERANERNEEER RGN B RTEN RN N BEDE Dy
opgM AL . L s et 1 1 ; : o
SWIND 4L S D S I 5 RIS S SR 1 (N R l
R ks o s pobd
+. ‘1444*. [, ‘—4I - i IS 4 % ‘44-‘*4 | TI | - +
Ec=@ el i ') .
5 [BUFFER IN(LL,KBUF.B, L bt
e [leart STATOS(AAD)i foc]afas et
Tao Z 2 i ; ‘ + S }
2 | WRITE(G, 24)N, CKROE(SDLUFL N,y X . a
2L LB "RECORD LENATH |2 (4 S o
; T T I VYGRS RE R R T I AR A S) BN ARRERRURENEN
... RO TOS g At Liiila] Moty ie
30 . CweiTe 6, 34)NREC o 1] (k e RN DRRRRRup
B TFoRMAT(ANL,” NUMRER of. REcoRrlols) =, Tig) | o
Lo EALL EXIT Ll i g e A b
Lot LJEN.D A -w,a.,,...;‘...,,e R R : . 1 : f
- e L. O T DR S 1. ookt ;
—»«««‘E e e e s e e e »n‘&fb1)*0%4—<4v¢—++———b—{ = +- T‘Y' :
ST — e e e e e by e T R = - [4 Q
P U U ; | - . . PR I I |
b — b et - .. i
. ERREEN i
T - H | RRE e :
. ~ g i T*ql_;‘, * Tt b * st
- ".:;:Tiz‘;:::“:;:;;T{!AS;];A_EQLGF;Tsllu :c‘nr‘;:‘4-’4:);‘%45;";4}15:‘«:)&5' ,5:?5!.e4|55 <6 ¢ [sa]*a) bv}d»;::}«]snﬁw:s-‘lu b o i ajral s[5 1777 [1s]oo]

Example:

A test program to generate the binary tape used in the preceeding example.

2-62

Revision B
January, 1976

2-7 INPUT/OUTPUT (CONT'D.)

ASYNCHRONOUS INPUT/OQOUTPUT (Extended Compiler Only) (Cont'd.)

SHEET o
Datacraft FORTRAN .CODING FORM weNTFGATIon
73 ”»
l2|3|s|8]|8|7 ll![l' s I4|I5 16 |17 pelisi20]21 32133 |34[35 36(37 130(39 |404! 52{5364 [55(98 |57 2 I(r2{rs|rai7s|26[7T |74)79 (o0}
1ot ol| ltlclsiolaD
lnlple . L
n| |2 q4 L
Cl |6 \ET] AEIL lole| QIEIC Wbl IRIECIoRID| ILlewie] (A]) . B
8 (1), (114D, QA4 |
1 Ti((T3)) N ‘
1 = {.. b 1— 4 -
i Argr
ITIIx])= o B
elelele ol (2] 1z, 18!, M, |L) i
12 ClalLlL St -rvﬂ(z) | RERE |
£((Ll. El@l- 12))ieio] trlo |
Gl |CIA RIEIC0\8 D |LlEwE TN 1
- A/] L ||
EI(M- LT |Llo) M= ii2i5] | | _ L
elowizivlule | _
DiFriLiE (414 -
X EXT!T | B A
S Pl L 1 1l
_ 1
tle13fa|s|e|[T|ojsfojifr2n3l1apis[&)17[18]19]20]21 [22 5126127 {28129[30131 [32]33[34|35{36[37|38{39|40[41 [42(a3(a4|a5]a6]a7i48(49[50 [5i {52]53|54|55|56 |57 ‘SE" ll|170“72731‘7575777?73“

OF 7?71

2-8 DECLARATION STATEMENTS

Declaration statements are used to define the data type of variables and functions, the
dimensions of arrays, storage allocation, initial values of variables, and to provide similar
information.

Classification of Identifiers

An identifier may be classified s referring to any of the following:

scalar

array

subprogram
dummy
COMMON block

2-63

2-8 DECLARATION STATEMENTS (CONT'D.)

Classification of Identifiers (Cont'd.)

The category into which an identifier is placed and the type (if any) associated with
it depend on the contexts in which the identifier appears in the program. These appearances
constitute explicit or implicit declarations of the way the identifier is to be classified.

Implicit Declarations

Unless specifically declared to be in a particular category or type, iclentifiers that
appear in executable or DATA statements are implicitly classified according to the following
set of rules.

1. When applicable an identifier is integer if it begins with I, J, K, L, M,or N. If
it begins with any other letter, it is real.

2. An identifier that is called with a CALL statement is a subprogram.

3. An identifier that appears in an expression, followed bz an argument list
enclosed in parentheses, is a subprogram, unless it has been explicitly deciared
as an array.

4. Anidentifier that appears to the left of an equal sign, followed by a dummy list
enclosed in parentheses, is a statement function definition if it also compiles
with the rules given in Section 2-9 "PROGRAMS AND SUBPROGRAMS -
Statement Functions". Otherwise it is an error. This does not apply to
declared arrays.

5. Any other appearance of an identifier in a executable or DATA statement (i.e.,
other than followed by a left parenthesis or in a CALL statement) causes it to be
classified as a scalar variable.

6. An identifier that appears in no executable or DATA statement, but does appear
in a COMMON or EQUIVALENCE statement, is classified as a scalar variable
unless explicitly declared as an array.

7. Intrinsic and basic external library functions have an inherent type associated
with them, as shown in Table 2-8, Library Functions. Inherent type is not
equivalent to implicit type. Section 2-9 contains a complete description of
library functions.

Explicit Declarations

All other declarations are explicit declarations. Explicit declarations are required in
order to classify an identifier in any way other than those described above. Explicit declarations
include:

array declarations

type declarations

2-64

2-8 DECLARATION STATEMENTS (CONT'D.)

Explicit Declarations (Cont'd.)

storage allocation declarations
subprogram declarations

subprogram definitions

Explicit declarations override implicit declarations. They must precede the first
executable or DATA statement of the program.

Conflicting and Redundant Declarations

Except where specifically noted to the contrary, definitions and declarations of the
classification of an identifier may not conflict. For example, an identifier may not be both a
subprogram name and an array name, both integer and real type, defined as a subprogram in
more than one place, etc. '

Array Declarations

Array declarations explicitly define an identifier as the name of an array variable and
have the form:

Y1 (d])l Vo (dz): V3 (d3):-- *Vm (dm)
where:

each v. is the identifier of the array, and
each d; is a set of 1, 2, or 3 integer constants separated by commas.

Examples:

X(10)

ARRAY (5,15,10)
PLANE (25,25)
CUBE (10,10,10)
LINE (14000)

When v is a dummy array in a subprogram, the d; may be integer variables in<tead of

constants (see Section 2-9, PROGRAMS AND SUBPROGRAMS - Adjustable Dimensions).
Array declarations may appear in

DIMENSION statements
Explicit type statements
COMMON statements

2-65

2-8 DECLARATION STATEMENTS (CONT'D.)

Array Storage

Although an array may have up to three dimensions, it is placed in storage as a linear
string. This string contains the array elements in sequence (from low address storage toward
high address storage) such that the leftmost dimension varies with the highest frequency, the
next leftmost dimensions varies with the next highest frequency, etc., i.e., 2-dimensional
arrays are stored "column-wise". Figure 2-2 contains a pictorial example of array storage.

array A (3, 3, 2)

Item Element
1 A(1,1,1)
2 A(2,1,1)
3 A(3 1,1
4 A(1,2,1)
) A(2,2,1)
6 A(321)
7 A(1,31)
8 A(2,31)
9 A(3,3,1)

10 A(1,1,2)

11 A(2,1,2)

12 A(3,1,2)

13 A(1,2,2)

14 A(2,2,2)

15 A(3,2,2)

16 A(1,3,2)

17 A(2,3,2)

18 A(3,3,2)

Figure 2-2. An Example of Array Storage for an Array Defined as A(3,3,2)

Reference to Array Elements

Reference to array elements must contain the number of subscripts that correspond to
the number of dimensions declared for the array (except as discussed for EQUIVALENCE
statements). References that contain an incorrect number of subscripts are treated as errors.

2-66

Revision B
January, 1976

2-8 DECLARATION STATEMENTS (CONT'D.)

Reference to Array Elements (Cont'd.)

Furthermore, the value of each subscript should be within the range of the corresponding
dimension, as specified in the array declaration. Otherwise, the references may not be to data
belonging to the set of elements that comprise the array.

DIMENSION Statement

This statement is used only to define the dimensions of arrays and has the form:
DIMENSION Vir Vor Vgree oV

where: v; are array declarations.

A DIMENSION statement does not affect the type or allocation of the arrays declared.
Example: _

DIMENSION MGO (16), LTO (14), BB (36, 22, 34)

IMPLICIT Statement

These statements are used to define, implicitly, the type of an identifier by the first
letter of the identifier. The IMPLICIT statement has the following form:

IMPLICIT E,, E E

]’ 2’. LK) n
where each Ei is a specification of the form:

type 51,52,. .. Sn

where type is one of five declarations: INTEGER, REAL, DOUBLE PRECISION,
COMPLEX, or LOGICAL. And each Si is a specification of the form: .

(I]’ 12’.) In)

where each I: is either a single letter or is a range of letters 15 - Iy, where I
alphabeficalfy follows I.

Only the identifiers beginning with the first letter in an IMPLICIT statement are affected
by the retyping. The typing of inirinsic, basic external functions or explicitly type identifiers
are not affected by the IMPLICIT statement. The letters I, J, K, L, M and N are typed as
INTEGER unless implicitly typed otherwise by an IMPLICIT statement. ‘

An IMPLICIT statement may only be preceded with a program unit by a NAME,
SUBROQUTINE, FUNCTION, another IMPLICIT statement or a comment card.

Examples:
IMPLICIT INTEGER (A-D,E,Y,X),(Z)
IMPLICIT REAL (I),(M-Q),(B)

Identifiers beginning with the letters A,C-H,J-L,X-Z are typed as INTEGER.
Identifiers beginning with the letters B,F-I, M-W are typed as REAL.

267

2-8 DECLARATION STATEMENTS (CONT'D.)

Storage Allocation Statements

These statements are used to arrange variable storage in special ways, as required by
the programmer. If no storage allocation information is provided, the compiler allocates all
variables within the program in the order in which they appear. The storage allocation state~
ments are:

COMMON statement
EQUIVALENCE statement

Allocation of Variable Types

To make proper use of the storage allocation statements, it is necessary to know the
amount of storage required by each type of variable. Table 2-7 indicates the size associated
with each type.

Table 2-7. Storage Allocation Requirements

Type Words
Integer 1
real 2
double-precision 2
complex 4
logical]

COMMON Statement

The COMMON statement is used to assign variables to a region of storage called
COMMON storage. COMMON storage provides a means by which more than one program or
subprogram may reference the same data.

The COMMON statement has the form;

COMMON Wi WorWa eow W

where:

w, has the form

S/ Ny Vor Vi v,

2-68

2-8 DECLARATION STATEMENTS (CONT'D.)

COMMON Statement (Cont' d.)

where:

c is either the identifier of a labeled COMMON block, or is absent, indicating blank
COMMON, and

Vi is a scalar or array name or array declaration.

When w (the first specification in the statement) is to specify blank COMMON, the
slashes may be omitted. In all other places, blank COMMON is indicated by two consecutive
slashes. For example:

COMMON MARKET, SENSE / GROUP3/X, Y, JUMP // GETIT, COLD
For each specification (w;), the variables listed are assigned to the indicated COMMON
block or to blank COMMON. The variables are assigned in the order they appear. Thus in the

above example MARKET, SENSE, GETIT, and COLD are assigned to blank COMMON, while
X, Y, and JUMP are placed in labeled COMMON block GROUP3.

Labeled COMMON

Labeled COMMON blocks are discrete sections of the COMMON region and as such
are independent of each other and blank COMMON.

Any labeled COMMON block may be referenced by any number of programs or subprograms
which comprise an executable program (see Section 2-9). References are made by block name,
which must be identical in all references. All labeled COMMON blocks need not be defined
in any one program; in fact, only those blocks containing data needed by the program require
definition.

The variables defined as being in a particular labeled COMMON block do not
necessarily have to correspond in type or number between the programs in which the block is
referenced. However, the definition of the overall size of a labeled COMMON block must
be identical in all the programs in which it is defined. For example:

SUBROUTINE A SUBROUTINE B
REALT, V, X (10) COMPLEX G, F(5)
COMMON /SET1/T, V, X , COMMON /SET1/G, F

Both references to the COMMON block SET] correspond in size. That is, both sub-
programs define the block SET1 as containing 24 words; the definition in subroutine A specifies
12 items of real type, and the definition in subroutine B declares 6 items of complex type.

2-69

2-8 DECLARATION STATEMENTS (CONT'D.)

Labeled COMMON (Cont'd.)

Reference may be made to the name of a labeled COMMON block more than once in
any program. A multiple reference may occur in a single COMMON statement, or the block
name may be specified in any number of individual COMMON statements. In both cases the
processor links together all variables, defined as being in the block, into a single labeled
COMMON block of the appropriate name.

Block names must be unique with respect to

1. Subprogram names defined, explicitly or implicitly, to be external references
(see Section 2-8, DECLARATION STATEMENTS - External Statement).

2. Other block names
A labeled COMMON block may have the same name as an identifier in any

classification other than the above; however, it is usually preferable to choose block names
that are totally unique.

Blank COMMON

There is only one contiguous area of memory assigned to blank COMMON, and empty
block name specifications always refer to it. Furthermore, as opposed to labeled COMMON,
blank COMMON areas, defined in the various programs and subprograms that comprise an
executable program (see Section 2-9), do not have fo correspond in size. The only restriction is
that the first blank COMMON definition in a set of programs and subprograms to be linked must
be the largest block (DOS, TOS, ROS systems only).

References may be made to blank COMMON any number of times within a program.
The multiple references may occur in a single COMMON statement or in several COMMON
statements. In either case, all variables defined as being in blank COMMON will be placed
together in the blank COMMON area. All COMMON statements must occur prior to the
first executable or DATA statement of a program.

Variables in blank or labeled COMMON may not be initialized by the DATA statement
except in a BLOCK DATA subprogram (see Section 2-9, PROGRAMS AND SUBPROGRAMS -
BLOCK DATA Subprograms).

Arrangement of COMMON

Each labeled COMMON block and the blank COMMON area contain, in the order of
their appearance, the variables declared to be in the labeled block or the unlabeled area. The
variables in each section of the COMMON region are arranged from low address storage towards
high address storage. That is, the first variable to be declared as being in a particular section
is contained in the low address word or words of that section, while the last variable to be
declared as being in the section is contained in the high address word or words of the section.
Array variables are stored in their normal sequence (see Section 2-3, DATA - Arrays in Storage)
within the COMMON block. For example, the statements:

2-70

2-8 DECLARATION STATEMENTS (CONT'D.)

Arrangement of COMMON (Cont'd.)
COMMON /E/W, X(3,3) //1, B, Q /E/J
COMMON K,M/E/Y//C(4),H,N(2),Z

cause the following arrangement of COMMON:

Item Block E Blank COMMON
1 w T

2 X(1,1) B

3 X(2,1) Q

4 X (3,1) K

5 X (1,2) M

6 X (2,2) c(mn
7 X (3,2) C (2
8 X (1,3) C (3)
9 X (2,3) C (4)
10 X (3,3) H

11 J N (1)
12 Y N (2)
13 y4

Note that, since a segment of the COMMON region may be defined differently in
each program, it may be quite important to be aware of which items in a segment contain certain
variables.

For example:

SUBROUTINE DOG SUBRQUTINE CAT SUBROUTINE PIG

COMMON /S/A,C,B (100) COMMON /S/A, X (51) COMMON /S/ALPHA (52)
COMMON /S/Y (50) COMMON /S/Y (50)

2-71

2-8 DECLARATION STATEMENTS (CONT'D.)

Arrangement of COMMON (Cont'd.)

will define the block S as follows:

Item DOG CAT PIG
A A ALPHA (1)
C X(1) ALPHA (2)
B(1) X(2) ALPHA (3)
52 B(50) X(51) ALPHA (52)
53 B(51 X(1) Y(1)
54 B(52) Y(2) Y(2)
102 B(100) Y(50) Y(50)

which allows the routines DOG and CAT to access the variable A by that identifier, the
routines CAT and PIG to access the array variable Y by that identifier, and yet the integrity of
the block S is maintained. (These examples assume A, B, C, X, Y, and ALPHA are of the same

type.)

MONITOR COMMON Statement (VULCAN compiler only)

The MONITOR COMMON statement is used to declare a labelled common block to be
a MONITOR COMMON block. A MONITOR COMMON block is a specialized type of file
which can be randomly and simultaneously referenced by several users in a multi -programming
environment. (See VULCAN system reference for a more detailed description.)

The form of the statement is:
MONITOR COMMON ¢, €5, €y ... €
17 =2" "3 n

where each c. is the name of a common block which is to be typed as a MONITOR
COMMON block. (The name is not enclosed within slashes.)

There may be any number of MONITOR COMMON statements within a program. Any
common block referenced within a MONITOR COMMON statement must also be defined within
a regular COMMON statement, however, it need not be defined prior to the MCONITOR
COMMON statement.

2-72

2-8 DECLARATION STATEMENTS (CONT'D.)

MONITOR COMMON Statement (VULCAN compiler only) (Cont'd.)

Examples:

MONITOR COMMON BLOCK1, BLOK2,BLOK3
MONITOR COMMON ABC

SPECIAL COMMON Statement (VULCAN compiler only)

The SPECIAL COMMON statement is used to declare a common block to be a SPECIAL
COMMON block. A SPECIAL COMMON block is allocated at or above 65K (200000g) within
the users logical address space. SPECIAL COMMON blocks may extend to the full ad«?ressable
space withinthe user's logical address space (256K, = 10000005 words).

When a common block is declared to be a SPECIAL COMMON block, then the code
generated to reference data within this common block is automatically modified to correctly
access the data. There is no further effort necessary on the part of the user. In particular, the
"L" option is not necessary to reference this data, however, it may be used if other data not in

SPECIAL COMMON but above 32K is to be accessed. (See Paragraph 3-4 for a further discussion
of compile time options.) '

The form of the statement is:

SPECIAL COMMON ¢,, ¢+, €Cq,...C
V-2 =3 n

where each c¢; is the name of a Common Block (or null if blank common is intended)
which is to be typed as a SPECIAL COMMON block. (The name is not enclosed

with slashes.)

There may be any number of SPECIAL COMMON statements within a program. Any
common block referenced within a SPECIAL COMMON statement must also be defined within a
regular COMMON statement, however, it need not be defined prior to the SPECIAL COMMON
statement.

Examples:

SPECIAL COMMON BLOKA, BLOKB, BLOKC
SPECIAL COMMON XYZ
SPECIAL COMMON (Blank common)

EQUIVALENCE Statement

The EQUIVALENCE statement controls the allocation of variables relative to one another.
Generally, it is used to assign more than one variable to the same storage location or locations.
It is expressed as:

EQUIVALENCE S1r 52/ 53/ -+ -1 Spy

where: each s; is an equivalence set of the form

(Vir v2r V3 oo vh V)

Each equivalence set specifies that all of the v; are to be assigned the same storage
location. The vi may be a scalar name or an array element. As an example:

2-73

2-8 DECLARATION STATEMENTS (CONT'D.)

EQUIVALENCE Statement (Cont' d.)
REAL B, C, A(3,3), X(4,3,2)
EQUIVALENCE (A(1,3), B), (C, X(21,2))

would make B and A(1,3) equivalent, and, similarly, C and X(2,1,2) equivalent.

The EQUIVALENCE statement also permits an element of a multi~dimensional array to
be expressed as its equivalent single dimensioned subscript value as defined by the "Array
Element Successor Function" which states that:

M(i,j, k) = M(i + A(j=1) +A-B (k=1))

where i, j, and k are subscript expressions, and A and B are declared dimensions of the
array M (A, B, C)

For example, the following statements effect the same equivalence as in the previous
example:

REAL B, C, A(3,3), X(4,3,2)

EQUIVALENCE (A(7), B), (C, X(14))

EQUIVALENCE references to variables of a type which occupy other than one word
per element (e.g., complex) are interpreted as referring to the first word of the first element,
The effect of the statements:

INTEGER M(8)

REAL A(4)

COMPLEX Z(2)

EQUIVALENCE (M(1), A(1), Z(1))

is to cause the indicated equivalence:

Word Variables
] M(1) A, Z(),
2 M(2) A(1)2 Z(])r2
3 M(3) A(2), Z(i,
4 M(4) A(2)2 Z(])i2
5 M(5) A(3)] Z(2)r]
6 M(6) A(3), Z(2)r,
7 M(7) A(4), Z(2)i,
8 M(8) A4, Z(2),

2-74

2-8 DECLARATION STATEMENTS (CONT'D.)

EQUIVALENCE Statement (Cont'd.)

No storage allocation declaration is permitted to cause conflicts in the arrangement of
storage. Each COMMON, and EQUIVALENCE statement determines the allocation of the
variables referenced in them. Therefore, no EQUIVALENCE set should contain references to
more than one variable which has previously been allocated, and COMMON statements should
contain references to any variable that has previously been declared to be in COMMON.

In an EQUIVALENCE statement, an unsubscripted array name appearing as an element
of an equivalence group has the same effect as specifying the first element of that array.

Example:

DIMENSION A(10, 10), B (50)
EQUIVALENCE (A, B (20))

has the same effect as:
DIMENSION A(10,10), B (50)
EQUIVALENCE (A (1,1), B (20))

COMMON and EQUIVALENCE Interactions

In all cases, the storage allocation sequence specified in a COMMON statement takes
precedence over any EQUIVALENCE specifications. Consequently, EQUIVALENCE statements
are not allowed to define conflicting allocations of COMMON storage.

Storage allocation of arrays by use of the EQUIVALENCE statement may vary, depending
upon whether or not the arrays are in a COMMON block. For example, if two arrays (not in
COMMON) are equivalenced:

DIMENSION A(3), B(5), C(4)

EQUIVALENCE (A(3), C(2))

storage allocation is assigned as follows:

2-75

2-8 DECLARATION STATEMENTS (CONT'D.)

COMMON and EQUIVALENCE Interactions (Cont' d.)

Item Variable
1 A(l
2 A(2)=C(1)
3 A(3) = C(2)
4 C(3)
5 C(4)
6 B(1)
7 B(2)
8 B(3)
9 B(4)

10 B(5)

However, if the arrays are in common:
COMMON A(3), B(5)

DIMENSION C(4)

EQUIVALENCE (A(3), C(2))

The array C is equivalenced as expected, but the original allocation specified by the
COMMON statement is not disturbed:

Item Variable
] A(T)
2 A(2) = C(1)
3 A(3) = C(2)
4 B(1) = C(3)
5 B(2) = C(4)
6 B(3)
7 B(4)
8 B(5)

The above examples assumes all variables are of the same data type.

2-76

2-8 DECLARATION STATEMENTS (CONT'D.)

COMMON and EQUIVALENCE Interaction (Cont'd.)

It is permissible for an EQUIVALENCE to cause a segment of a COMMON block to be
lenghtened beyond the upper bound established by the last item defined to be in that block..
However, it is not permissible for an EQUIVALENCE declaration to cause a block to be lengthened
beneath the lower bound established by the first ilem declared to be in that block. Both conditions
are demonstrated in the examples below:

COMMON /BLK1/A(5), B/BLK2/E (4), H, Y(4)

DIMENSION Z(10), V(5)

EQUIVALENCE (A(1), Z(1)), (V(4), E(2))

The first EQUIVALENCE set is a permissible extension of the block BLK1, whereas the

second set illegally defines an extension of the block BLK2. The declared storage allocation
would appear as shown below:

Item BLK1 BLK2 (illegal extension)
- V(1)
- V(2)
1 A(l)=2Z(1) E(1) = V(3)
2 A(2) = Z(2) E(2) = V(4)
3 A(3) = Z(3) E(3) = V(5)
4 A(4) = Z(4) E(4)

5 A(5) = Z(5) H

6 B =2Z(6) Y(1)
7 Z(7) Y(2)
8 Z(8) Y(3)
9 Z(9) Y(4)
10 Z(10)

assuming all items are of the same data type.

2-77

2-8 DECLARATION STATEMENTS (CONT'D.)

EXTERNAL Statement

The EXTERNAL statement has the form:
EXTERNAL Py Por Py« -1 Py

This statement declares that the identifiers listed are subprogram identifiers so that they
may be referenced externally.

The practical use of the EXTERNAL statement is that it declares, as subprograms, names
which might otherwise be classified implicitly as scalars, so that they may be passed as arguments
to other subprograms (see Section 2-9, PROGRAMS AND SUBPROGRAMS - Arguments and
Dummies). For example, if the subprogram name F appears in the statement

CALL ALPHA(F)

but appears in no other context to indicate that it is a subprogram, it would be implicitly
classified as a scalar. The EXTERNAL statement is used to avoid this. '

DATA Statement

The DATA statement has the form:

DATA S, Sor 53, cees Sn

where:

Si is a data set specification of the form

variable=list / constant=list /

The primary purpose of the DATA statement is to give names fo constants; instead of
referring to e as 2.71828 at every appearance, the variable e can be given that value with a

DATA statement and used instead of the larger form of the constant. This also simplifies modifying
the program, if a more accurate value is required.

Giving e a value with a DATA statement is somewhat different from giving it a value
with an assignment statement. With the DATA statement, the value is assigned when the program
is loaded, whereas with the assignment statement, it is done at execution time.

The effect of the DATA statement is to initialize the variables in each data set to the
values of the constants in the set, in the order listed. For example, the statement

DIMENSION IA(2)
DATA X, J, L/3.5,7, . TRUE./,ALPHA/9/,1A/6HABCDEF/

is equivalent to the assignment statements

2-8 DECLARATION STATEMENTS (CONT'D.)

DATA Statements (Cont'd.)

X =3.5

J=7

L =.TRUE.
ALPHA =9
IA(1) = 3HABC
IA(2) = ' DEF'

except that the DATA statement is not executable; its assignments take place upon
loading. '

DATA Variable List

A data variable list is a list containing names of scalar and/or array elements. Array
elements must have integer constant subscripts. Dummy arguments may not appear in a DATA
list. If a list contains more than one entry, the entries must be separated by commas.

When an unsubscripted array name appears as an element of a DATA variable list, it
has the same effect as if all of the elements of the array are specified in array element successor
function order.

Example:

DIMENSION A(2,3)

DATA A/6*0.0/

has the same effect as:

DIMENSION A(2,3)

DATA A(1,1), A(2,1),A(1,2),A(2,2),A(1,3),A(2,3)/6*0. 0/

An implied DO list may also be used as a list element. An implied DO list is a simple
list followed by a comma and then a DO -control of the form:

v = i], i2, |3
where v is a DO-control integer variable name. This name is used as a local varigble

within the DATA statement and will have no correspondence with any actual variable with
the same identifier.

i1, i9, i3 are DO-parameters as described in Section 2-6. These parameters must be
either constants or DO -control variables from outer implied DO's.

A list element in an implied DO list must be either an array element specification or
another implied DO list. All implied DO lists must be enclosed within parentheses, however
redundant parentheses may be used within implied DO's whenever desired. An array element
must have at least one non-constant subscript. All variables used within subscript expressions
must be DO-control variables of the DO-implied lists. A subscript expression may consist of
any number of constants and DO-control variables combined with "+", "=" or "*", The expression
must of course be a valid arithmetic expression and may not contain any other operations or
parentheses.

2-79

Revision B
January, 1976

2-8 DECI.LARATION STATEMENTS (CONT'D.)

DATA Variable List (Cont'd.)

Examples:
((A(1,J),J=1,10),1=1,10)
((A(3*1+5),1=9,7,-1)
(A1), (B(1,J), J=1,1), C(I), 1=8,10)
(((ABC(I+J,J+K), 1=J,K), J=1,5), K=2,3)

DATA Constant List

A DATA constant list is of the form:
C], C2, C3, ..., C

m
where:
the Ci are of the following form:

[o}

r*c

where:

r is an unsigned integer repeat count, whose value (non-zero) indicates the number of
times the constant is to be repeated, and

c is a signed or unsigned constant of an appropriate type as described in Section 2-3,
DATA - Constants.

The constants may be any of the forms described in Section 2-3, including literal constants.

NOTE

Since both octal constants and literal strings may
begin with a single quote, it is possible to generate
an ambiguous data constant(s). For example: /'77,
1H'/ could be interpreted as an octal constant
followed by a Hollerith literal or a 6 character
literal (delimited by single quotes). Care should
be taken to ensure that the desired constant string
is correctly compiled. The compiler will assume
any string delimited by single quotes to be a literal
if the terminal quote is followed by other than a
digit or a letter (ignoring blanks). Thus, the above
example will be interpreted as a six character literal.

In general, the type of the constant must be the same as the type of fhe variable that it
is initializing, However, the following rules apply in DATA statements.

1. Real and double-precision variables may be initialized with constants of either
of those types.

2-80

Revision B
January, 1976

2-8 DECLARATION STATEMENTS (CONT'D.)

2,

Literal constants may be used with any type of variable except logical. A literal
constant is broken up on a character by character basis, and depends on the number
of words of storage occupied by the variable (see Storage Allocation Statements

as described in this section). An integer variable may contain up to three charac-
ters, a real or double precision variable may contain up to six characters, and a
complex variable may contain up to twelve characters. A literal constant may not
have an effective length greater than the number of characters which will fit in
the corresponding list variable.

If an array name is used without subscripts, then a literal constant may be specified
which is Rc,)nger than a single element, but may not exceed the entire length of the
array. If the literal constant is not sufficient to initialize the entire array, then the
element which is last initialized will be blank filled. Additional elements, within
the array must then be defined with further DATA constants,

2-80A

Revision A
February, 1975

2-9 PROGRAMS AND SUBPROGRAMS

The complete set of program units that are executed together as a single job is called
an executable program. An executable program consists of one main program and all required
subprograms. Subprograms may be defined by the programmer, as described in this section, or
may be preprogrammed and contained in the FORTRAN library.

Main Program

A main program is comprised of a set of FORTRAN statements, the first of which (other
than comment lines) is not one of the following statements:

a FUNCTION statement
a SUBRQUTINE statement, or
a BLOCK DATA statement,

and the last of which is an END statement. Even if a program unit contains internal sub-
programs, it is classified as a main program as long as the first statement is not one of the three
listed above.

Main programs may contain any statement except a BLOCK DATA, FUNCTION, SUB-
ROUTINE, ENTRY or RETURN statement. Once an executable program has been loaded, execution
of the program begins with the first executable statement in the main program. Main programs
may also be written in assembly language (see part IV, INTERFACING OF FORTRAN AND
ASSEMBLER GENERATED MODULES).

Subprograms

Subprograms are programs that may be called by other programs. There are two broad
classifications of subprograms as described in the following.

Functions
1. Statement functions
2, FUNCTION subprograms
3. Library functions (see Table 2-8)
4, Assembly Language functions (see Section 1V)

Subroutines
1. SUBROUTINE subprograms
2, Assembly language subroutines (see Section IV)

Functions are referenced within expressions, and return a value; subroutines are referenced
with CALL statements and do not necessarily return a value. A large number of library functions
and subprograms are included in Harris FORTRAN (for further information refer to the DC 6024
FORTRAN Support Library, General Specification). Information concerning interfacing FORTRAN
programs with assembly language subprograms is contained in Section IV of this specification.

2-81

2-9 PROGRAMS AND SUBPROG RAMS (CONT'D.)

Statement Functions

Statement functions are functions that can be defined in a single expression. A
statement function definition has the form:

f(dy, dyy dg ..., d) =e

where:

f is the name of the function,

di is the identifier of a dummy scalar variable (see below), and

e is an expression of any mode that can legally be assigned to data of the type of f.

A statement function must have at least one dummy argument. Statement function
dummies are treated only as scalars; they cannot be dummy arrays or subprogrems (see "Arguments
and Dummies" in this section). The expression e should contain at least one reference to each
dummy. Other references in the expression are unrestricted except that the identifier f may

not appear. In particular, subscripted variables may appear, as mar references to other state-
ment functions, which have been previously defined. As an example:

: T o - N . o SHEET 0F
Datacrafr FORTRAN CODING FORM
73 80
1|2|3(a(5]61710(9 IOEH]IZ]!S 14 |:'o 1617 IIJI9[20 21 Rz[23 |24 (2% ’f{:‘? G 52} 341 3 7 ; t 10149 51 57 62 68 |69 (70(71172(73 (74|75 |76]77 78] 1:2
(ix) AR %2 4BIM X+
(TWETA)= (co:(f'r i it
tH (oMY = NAME(P) A ADIDI 11
SWITCHA, BLECD=FL m(lg; JELAGI(<)
5 g -
} BT R) S0 -
! SR R .
: { e 4"*”+f = . ~ ; 4
-+ i R N DN IS O A4 5 : -
j SRR RS

Since each dj is merely a dummy and does not actually exist, the names of statement
function dummies may be the same as the names of any other entities in the program, except for
the other dummies in the same statement function. Note, however, that if a statement function
dummy is named X, and there is another variable in the program called X, then the appearance
of X within the statement function expression refers to the dummy.

The statement function itself is typed like any other identifier: it may appear in an

explicit type statement; if it does not, it will acquire an implicit type (see Section 2-8,
DECLARATION STATEMENTS - Implicit Declarations).

2-82

2-9 PROGRAM AND SUBPROGRAMS (CONT'D.)

FUNCTION Subprograms

Functions that cannot be defined in a single statement may be defined as FUNCTION
subprograms. The subprograms are introduced by a FUNCTION statement of the form:

FUNCTION f] (d],dz,. .. ,dn),fz(d],dz,. e ,dn),. .. fn(d]'d2" . e ’dn)
or

type FUNCTION f] (d],dz,. ..,dn),... ,fn(d],dz,. e ,dn)

where:

f. is the identifier and the name of the entrance point of the function. The identifier
name f] is equated to the first executable statement of the function.

di is a dummy argument of any type of the forms described in "Arguments and Dummies".
The set of different d;'s for all of the fi's define the function's complete argument list. Only the
dummy argument list associated with the identifier f; is passed to the function in the order
specified by the list of elements in f;. Dummy arguments should be assigned values by a prior
call to an associated ENTRY statement before being used in a meaningful manner.

Type is an optional type specification, which may be any of the following: INTEGER,
REAL, DOUBLE PRECISION, COMPLEX or LOGICAL.

Every FUNCTION subprogram must have at least one dummy. Values may be assigned
to dummies within the FUNCTION subprogram with certain restrictions (see "Arguments and
Dummies").

A FUNCTION subprogram must contain at least one RETURN statement; a RETURN
statement should be logically the last statement in a FUNCTION subprogram; that is, it should
be the last statement executed for each execution of the FUNCTION. Control is returned to
the calling program which last called an identifier f;.

A RECUR statement must not be placed in a multiple entry FUNCTION subprogram.

Within the functionf;, the identifier of the f; FUNCTION subprogram is treated
as though it were a scalar variable and must be assigned a value during each execution of
the function. The value returned for a FUNCTION d; is the last one assigned to the f;
identifier prior to the execution of a RETURN statement.

FUNCTION statement examples:

DOUBLE PRECISION FUNCTION DIFFEQ(R,S,N)
REAL FUNCTION IWATT (W, X,Y,Z21,Z22)

FUNCTION EXTRA (N, A,B,C,V),EXTAR(N,A,B,C,V)
LOGICAL FUNCTION VERDAD(E,F,G,H,P)
FUNCTION FIRST (A,B,C,X,I),FAST(1,D,C),FASTERR)

2-83

2-9 PROGRAMS AND SUBPROGRAMS (CONT'D.)

FUNCTION subprogram examples:

SHEET OF

Datracraft FORTRAN CODING FORM

73 LY

Y T T
12314816 7]:. ’iloilllll]l}'ll L] l‘L”lLI! ulzozv}n 23124 "!“ 132 i il 52|53 /541655657 62 1|r2|73]74(75]76|77 |78 179 80]

TEGER EONCTION FNeTCRY [] (1]]]]

CTERLN

FACT = FNC

[’l’g! - . L L L S
L i 4 e

SHEET OF

Datacraft FORTRAN CODING FORM war TN

[S W -
73 80

5234567[l910u IZIJM!SIS[HI‘I!ZO?IZZNI 3233 34353613 1 51 {52|53]54 55]56 /57 62 697071 |72[73 (7473|7877

WelTi oW o FFiclal 8D k«.a&rc;m’,pkopu,o)

SITMaMCAD [T
ST

Pl

e

9

P :
Rtk i s

iy
S
W
(8]

%
-
~ 8
4
T

Library Functions

The DC 6024 FORTRAN library includes basic arithmetic functions, and support library
subroutines. The calling sequence of these routines are automatically generated by the FORTRAN
compiler. The library also contains the standard FORTRAN functions. Library subprograms
are discussed in the FORTRAN Support Library General Specification. Table 2-8 gives a brief
description of the standard FORTRAN library functions. The compiler recognizes the data type
of the function, and makes the appropriate conversions where necessary and allowed (see Section

24, EXPRESSIONS - Mixed Expressions).

2-84

Table 2-8. Library Functions

Function Definition Number of Type
Arguments Name Argument Function
Absolute Value | arg | 1 ABS Real Real
IABS Integer Integer
DABS Double Double
CABS Complex Real
Truncation Sign of arg Times 1 AINT Real Real
Largest integer INT Real Integer
< larg] IDINT Double Integer
Choosing Largest Max (carg],cxrg2 vel) >2 AMAXO0 Integer Real
Value - AMAX] Real Real
MAXO0 Integer Integer
MAX1 Real Integer
DMAX1 Double Double
Choosing Smallest | Min (cn'g],arg2 ced) >2 AMINO Integer Real
Value - AMINT1 Real Real
MINO Integer Integer
MINI1 Real Integer
DMINI1 Double Double
Float Conversion from 1 FLOAT Integer Real
Integer to Real
Fix Conversion from 1 IFIX Real Integer
Real to Integer
Transfer of Sign Sign of arg, Times 2 SIGN Real Real
| arg, | ISIGN Integer Integer
DSIGN Double Double
Positive Difference argy - Min (arg] 2 DIM Real Real
argz) IDIM Integer Integer
Obtain Most Sig- | arg. 1 SNGL Double Real
nificant part of
Double-Precision
Obtain Real Part 1 REAL Complex Real
of Complex arg
Obtain Imaginary 1 AIMAG Complex Real
Part of Complex
arg
Express Single- 1 DBLE Real Double
Precision arg. in
Double-Precision
Form
Express Two Real arg, + arg, V-1 2 CMPLX Real Complex
args in Complex
Form

2-85

Revision B
January, 1976

Table 2-8. Library Functions (Cont'd.)
Function Definition Number of Type_
Arguments Name Argument Function
Obtain Conjugate | For arg = X+iY,] CONJG | Complex Complex
of a Complex Arg | C=X-iY
Exponential (arg) 1 EXP Real Real
€ DEXP Double Double
CEXP Complex Complex
Natural Logarithm | Log_ (arg) 1 ALOG Real Real
€ DLOG Double Double
CLOG Complex Complex
Common Log Logm (arg) 1 ALOGI10 | Real Real
DLOG10 | Double Double
Trigonometric Sin (arg) 1 SIN Real Real
Sine DSIN Double Double
CSIN Complex Complex
Trigonometric Cos (arg) 1 COS Real Real
Cosine DCOS Double Double
CCOS Complex Complex
Hyperbolic Tanh (arg) 1 TANH Real Real
Tangent
Square Root ()1/2 1 SQRT Real Real
arg DSQRT Double Double
CSQRT Complex Complex
Arctangent Arctan (arg)] ATAN Real Real
1 DATAN Double Double
Arctan(arg]/argz) 2 ATAN? Real Real
2 DATAN2 | Double Double
Remaindering * arg, (mod crg?) 2 DMOD Double Double
i 2 AMOD Real Real
2 MOD Integer Integer
Trigonometric Tan (arg) 1 TAN Real Real
Tangent DTAN Double Double
Arcsine Arcsin (arg) 1 ASIN Real Real
DASIN Double Double
Arcossine Arccos (arg) 1 ACOS Real Real
DACOS Double Double

*The function MOD (org], arg,) is defined as arg; - [arg]/argi] *arg,, where [x] is the

integral part of x.

SUBROUTINE Subprograms

SUBROUTINE subprograms, like function subprograms, are self-contained programmed
procedures. Unlike FUNCTIONS, however, SUBROUTINE subprograms do not have values
associated with them, and may not be referenced in an expression. Instead, SUBROUTINE
subprograms are accessed by CALL statements (see Section 26, CONTROL STATEMENTS -
CALL Statement).

2-86

2-9 PROGRAMS AND SUBPROGRAMS (CONT'D.)

SUBROUTINE Subprograms (Cont'd.)

SUBROUTINE subprograms begin with a SUBROUTINE statement of the form
SUBROUTINE p, (d],dz,. . ,dn),pz(d],d2,. . 'dn)" .. ,pn(d],dz,. . ’dn)
or
SUBROUTINE Pyr Por e P,

where:

pi. is the identifier of the subroutine, and the name of the entrance point of the subroutine.
The identifier name Py is equated to the first executable statement of the function.

d; is a dummy argument, of any of the forms described in "Arguments and Dummies'.
The set of different d:'s for all of the p:'s define the subroutines complete argument list. Only
the dummy argument list associated with the identifier p; is passed to the subroutine in the order
specified by the list of elements in pj Dummy arguments should be assigned values by a prior
call to an associated ENTRY statement before being used in a meaningful manner.

Note that while a FUNCTION must have at least one dummy, a SUBROUTINE may
have none.

A SUBROUTINE program must contain at least one RETURN statement; a RETURN state -
ment should be logically the last statement in a SUBROUTINE subprogram; that is, it should be
the last statement executed for each execution of the SUBROUTINE. Control is returned to the
calling program which last called an identifier p;.

A RECUR statement must not be placed in a multiple entry SUBROUTINE.
A SUBROUTINE subprogram may return values to the calling program by assigning, values
to the d, or to variables in common storage.
SUBROUTINE statement examples:
SUBROUTINE CHECK
SUBROUTINE ONE (B,M,J,K), TWO (M,B,K), THREE (K,B,M,J)
SUBROUTINE START (A,B,C),NOARG

SUBROUTINE subprogram example:

SHEET oF

Datacraft FORTRAN CODING FORM DENTIFICATION

L
73 80

=

123‘551]!

9o |I2 3 ldllﬂlle i l!ll9 20/ 22’23! ‘E]32 33 35136137 9{70|71 |72{73]74175 17677 78179 |20

OWECE, M, UKD, To (M. Bl KDL, [z A e A0, 8L M, 00 L LT T T

ARG (gi]

.
S

FSSRS
I

w7l 14,1z,
7 al

mPe
N~
YN
~N

n
33

~ ISR

NN

2-87

2-9 PROGRAMS AND SUBPROGRAMS (CONT'D.)

BLOCK DATA Subprograms

The BLOCK DATA subprogram must be used to initialize data in a COMMON block via
the DATA statement. This subprogram contains only the DATA, COMMON, DIMENSION and
type statements associated with the data being entered. The BLOCK DATA subprogram may not
contain any executable statements. The first statement must be the BLOCK DATA statement.

Example:
SHEET OF
Datacraft FORTRAN CODING FORM IDENTIFICATION
Iﬁl_t__l_l_n_n._t.s.al
1{2]|3]4]% '17{.[9 I0]|I Izllllll 15{16 [17 118 |19 |20[2t R 2|23 32 37 2 52153 |54 55|56(57 62 68{63[70(71 [12|75|74175| 76|77 |78 |79(80]
T N
b 1BCs, N
c 4 L Cl/Ri Y
! v N A 4
(e 3,7 YL X(3DL/3) e e
c T LA , " 2 Cda(d AJ 7
0
C ANY STONED VAR | Mo PLAICED TN icl o
C| WL il rr“‘ xlLes Hijﬁlq
EN
| il

ENTRY Statement (extended compiler only)
The ENTRY statement is of the form:
ENTRY f; or ENTRY p;

where:

f: or pj is the identifier and the name of the entrance point of the FUNCTION or SUB-
ROUTINE subprogram. The identifiers f; or py may not be used as alternate entry points. The

dummy arguments if any specified by f; or p; are passed to or from the main program.

The ENTRY statement is nonexecutable and may be placed anywhere in the subprogram
except as the terminal statement of a DO loop. A statement number on an ENTRY statement is
optional even if an ENTRY statement immediately follows a RETURN statement. Passing control
to an ENTRY statement from within a subprogram does not transfer additional arguments and control
resumes with the first executable statement following the ENTRY statement.

ENTRY Examples:

SHEET OF

Datacraft FORTRAN CODING FORM DENTFICATION
\;iL_l_l_.L_A._L..L'.él

s
o
=
S
=

|2!45511‘

3

23 "‘{ {32[33134135136/37 {38 SQLWOI E 52(53(5455(56]57 [58/59 60|61 (62 1{72|T3[T4{75|76{77 | 7879 60|

|o1|‘|‘|2573!u {16 171 22 34 (35 1 Jo .
uféﬁ_awc B.10.10, [, 18, Ir, W I, 1, lAdamda, Ul PASiTER
Erupacl e, A T ,
L

CALL SETUAC,

RY, [FAST
R |

>
-
n

*-
XX

e Y WY
.~y
]

T
o
=)

2-88

2-9 PROGRAMS AND SUBPROGRAMS (CONT'D.)

Arguments and Dummies

Dummy arguments provide a means of passing information between a subprogram and the
program that called it, Both FUNCTION and SUBROUTINE subprograms may have dummy argu~
ments, but a SUBROUTINE need not have any, while a FUNCTION must have at least one. Dummies
are merely "formal" parameters, and are used to indicate the type, number, and sequence of sub-
program arguments. A dummy does not actually exist, and no storage is reserved for it; it is only
a name used to identify an argument in the calling program. An argument may be any of the
following:

a scalar variable
an array element
an array name
an expression
a statement label
a literal constant
a subprogram name
A dummy itself may be classified within the subprogram as one of the following:
a scalar variable
an array

a subprogram

Table 2-9 indicates the permissible kinds of correspondence between an argument and a

dummy.
Table 2-9. Permissible Correspondence Between Arguments and Dummies

: Dummy

Argument Scalar Array Subprogram
scalar or array element Yes Yes No
expression Yes No No
statement label Yes No No
array name Yes Yes No
literal constant Yes Yes No
subprogram name No No Yes

A statement label argument is written as:

$k

where:
k is the actual statement label, and

¢ distinguishes the item as a statement label (as opposed to an integer constant).

2-89

2-9 PROGRAMS AND SUBPROGRAMS (CONT'D.)

Arguments and Dummies (Cont'd.)

Within a subprogram, a dummy may be used in much the same way as any other scalar,
array, or subprogram identifier with certain restrictions; namely, dummies may not appear in
COMMON, EQUIVALENCE or DATA statements.

In general, dummies must agree in type with the arguments to which they correspond.
For example, the following situation is an error because the types of the arguments and the dummies

do not agree.

COMPLEX C FUNCTION F(LL CC)
LOGICAL L LOGICAL LL
X=F(CL) COMPLEX CC

Reversing the order of either the arguments in the calling reference cr the dummies in
the FUNCTION statement would eliminate the error in this example.

There are three exceptions to the rule of type correspondence.

1. A statement number passed as an argument must correspond to a dummy
variable of integer type. ‘

2. A SUBROUTINE name (as opposed to a FUNCTION name) has no type.

3. A literal constant also has no type and may be received by any type of dummy
array.

When a dummy corresponds to a variable in the calling argument list, a reference to
the dummy is actually a reference to the argument variable. Thus, not only will the dumm
initially have the value to which the argument variable was assigned at the time of the call,
but any value subsequently assigned to the dummy will actually be assigned to the argument
variable, thus returning a result through the argument list. For example:

xSRI, D] | L | 1 }

A (aB) T
ry E,Si.,.a,.-. B T -. B R -
SQRTDx SORT.(ANNZ-BML) | || V]

pme THAT, oX xRy, || IRRRRRRSRAEE
Tilkees 0 L ARRRRRERRRRRREY!

" o
! X
i
T

e +

=4l : Ci
THEN, @ TS £
o LlR 18 SEY
IQETD. HAS. THE VAL
AND, Y. WILL HAVE T

...... .14

i
P
T3 -Y -]

An T RRBIAR

T

f
O
S
k’
| DS TS S S S

t

2-90

2-9 PROGRAMS AND SUBPROGRAMS (CONT'D.)

Arguments and Dummies (Cont'd.)

where the values of Z and Q will be reversed whenever the initial value of Q is greater
than that of Z.

On the other hand, when a dummy corresponds to an expression, the expression serves merely
to initialize the value of the dummy, and consequently the value of the dummy should not be
changed within the subprogram. Note that a single constant is a form of expression, as is a
function reference (as opposed to a function name alone). For example, if X is a scalar
variable and F is a function:

CALL ALPHA(X, 4.6, F, F(X)) SUBROUTINE ALPHA (A,B,C, D)

the dummy scalars B and D must not be assigned values within ALPHA, while the dummy A
may be. The dummy C must be used within the subprogram as a subprogram identifier.

When a dummy corresponds to a statement label, the effect is the same as:
ASSIGN k TO d

where:

k is the statement label and d is the dummy.

A dummy, such as k, may be used in a GO TO statement.

Dummy Scalars

Dummy scalars are single valued entities that correspond to a single element in the calling
program.

Dummies that are not declared to be arrays, or subprograms, are treated as scalars.

Dummy Arrays

A dummy argument may be defined to be an array by the presence of its identifier in an array
declaration within the subprogram (the fact that a calling argument is an array does not in
itself define the corresponding dummy to be an array). As with all dummies, a dummy array
does not actually occupy any storage; it merely identifies an area in the calling program.
The subprogram assumes that the argument supplied in the calling statement defines the first
(or base) element of an actual array and calculates subscripts from that location.

2-91

2-9 PROGRAMS AND SUBPROGRAMS (CONTD.)

Dummy Arrays (Cont'd.)

Normally, a dummy array is given the same dimensions as the argument array fo which it
corresponds. This is not necessary however, and sometimes useful operations can be performed
by making them different. For example:

DIMENSION A(10,10) SUBROUTINE OUT(B)
CALL OUT (A(1,6)) DIMENSION B(50)

In this case, the 1-dimensional dummy array B corresponds to the last half of the 2-dimensional
array A i.e., elements A(1,6) through A(10,10). However, since an array name used without
subscripts as an argument refers to the first element of the array, if the calling statement were
CALL OUT (A)

the dummy array B would correspond to the first half of the array A.

Arguments that are literal constants are normally received by dummy arrays (they may also

be passed to assembly language subprograms). A literal constant is stored as a consecutive
string of characters in memory, and its starting location is passed as the argument address.
Thus, in the example:

CALL FOR (13HPHILIP MORRIS) SUBROUTINE FOR(M)
INTEGER M(5)

the following correspondences hold:

M(1) = 3HPHI
M(2) = 3HLIP
M(3) = 3HEMO
M(4) = 3HRRI
M(5) = 3HSKK
where:

K represents the character blank.

2-92

2-9 PROGRAMS AND SUBPROGRAMS (CONT'D.)

Dummy Arrays (Cont'd.)

Literal Constants are filled out with trailing blanks to the nearest double word boundary
(multiple of six characters). Therefore, passing such a constant to a dummy of a type that occupies
more than one word per element (e. g., double precision) will normally result in a valid definition
of the entire dummy. Thus, THX when passed to real variable has the same effect as 6H XBBYYE.
Note this does not always apply to a complex dummy, therefore it may result in an un-defined
imaginary part to the dummy.

If an array corresponds to something that is not an array or a literal constant, the latter
will correspond to the first element of the array. This is true whether the calling argument is an
array and the dummy is not, or vice versa. Thus, for example, if the calling argument is a scalar
and the dummy is an array, references in the subprogram to elements of the array other than the
first element will correspond to whatever happens to be stored near the scalar. Obviously, care
must be taken in creating correspondences of this nature, as they may depend upon a particular
implementation.

Adjustable Dimensions

Since a dummy array does not actually occupy any storage, its dimensions are used only
to locate its elements, not to allocate storage for them. Therefore, the dimensions of a dummy
array do not have to be defined within the subprogram in the normal manner. Instead, any or all
the dimensions of a dummy array may be specified by scalar variables rather than by constants.
This permits the calling program to supply the dimensions of the dummy array each time the sub-
program is called. The following statements demonstrate adjustable dimensions:

DIMENSION P(10,5), Q(9,3) FUNCTION SUM (R, N, M)
X = SUM(P, 10,5) DIMENSION R(N, M)
Y = SUM(Q, 9,3)

Only a dummy array may be given adjustable dimensions, and the dimensions must be
specified by integer scalars. These scalars must be dummies or COMMON variables only.

The variable used as adjustable dimensions may be referenced elsewhere in the sub-
program but should not be changed.

Dummy Subprograms

A dummy subprogram must correspond to an argument that is a subprogram name, and it is
the only kind of dummy that may do so. The dummy name merely serves to identify a subprogram
whose actual location is defined by the calling program. Therefore, a call on a dummy

2-93

2-9 PROGRAMS AND SUBPROGRAMS (CONT'D.)

Dummy Subprograms (Cont'd.)
subprogram is actually a call on the subprogram whose name is specified as the argument.
A dummy subprogram is classified in the same manner as any other subprogram (see Section
2-3, DATA - Identifiers).

Examples of dummy subprograms are:

EXTERNAL SIN, DSIN, SQRT, DSQRT FUNCTION DIFF(F,DF,Z)
A = DIFF (SIN, DSIN, X) DOUBLE PRECISION DF
B = DIFF(SQRT, DSQRT, Y) DIFF = DABS(F(Z) - DF(Z))
RETURN
END

A subprogram identifier to be passed as an argument must be identified as a subprogram. That
is, it must be used as a subprogram and/or appear in an EXTERNAL statement. Otherwise it
will be classified as a scalar variable.

RECUR Statement (Extended Compiler Only)

The RECUR statement simplifies writing of recursive subprograms in FORTRAN.
The format is:
RECUR n
Where n is an integer constant which specifies the maximum number of levels of recursion.
The code generated by the compiler saves the return addresses in a stack. If the subprogram

has arguments, the argument pointers are updated each time the subprogram is re-entered. Any
stacking of arguments or intermediate values must therefore be programrmed by the user.

NAME Statement (Extended Compiler Only)

The format for the NAME statement is as follows:
NAME n
Where n is an identifier. (See Identifiers, Section 2-3). The purpose of this capability is to

allow FORTRAN main Erogrcms to be cataloged by the DOS EDITPF processcr, or be cataloged
in the NAME file by the EDITNF processor.

2-94

Revision A
Februa.,. 1975

SECTION Il
FORTRAN DIAGNOSTIC MESSAGES

3-1 GENERAL DESCRIPTION

The Harris FORTRAN system includes an extensive set of compile-time and run-
time diagnostic messages. Compile-time diagnostics include in the message a complete phrase
which normally will indicate to the programmer the exact nature of the error as well as the point
in the source statement where the error was discovered. The run-time diagnostics do not produce
a verbose message, but attempt to pin point the location in the source program where the error
occurred. This section explains the format of both compile-time and run-time diagnostics, and
lists all possible reasons which might cause the error conditions to occur.

3-2 COMPILE-TIME DIAGN OSTICS

Diagnostic messages will appear on the list output file in-line with the source state-
ments. In most cases, the diagnostic message will appear on the line immediately following
the questionable statement. Although this is not always possible due to the one-pass nature of
the compiler, the "snapshot" feature should pinpoint the location of the questionable text.

The format of a compile-time diagnostic message is:

ERROR XX YYYYYY message

or

NOTE XX YYYYYY message

where:

XX is an octal number corresponding to the type of error, and

YYYYYY is the last six characters encountered within the statement when the discrepancy

was discovered.

The message may be up to 30 characters in length and generally indicates the exact nature
of the error. Table 3-1 is a list of all compile-time diagnostics and a description of all
conditions which might cause the error.

An ERROR outputs a code to the link loader to prevent loading. A NOTE allows linking
to proceed.

3-1

Table 3-1. Compile-Time Diagnostic Messages

Error
Number

Message

Cause

DATA POOL OVERFLOW

The entire data storage area available to the

compiler is filled. This includes symbol table and

all other table storage combined, since table storage
is allocated dynamically. This is the only error
condition which prevents compilation from continuing.

INVALID OPERATOR

a) 2 or more consecutive operators

b) A special character not recognized as an
operator

c) Using . NOT. as a leading operator following an
arithmetic or relational operator.

d) an attempt to shift or rotate by a value that is
not an integer constant whose absolute value is

less than 24.

INVALID CONSTANT

a) Too many digits in a constant.

b) Magnitude of a real or double precision constant
is out of range.

c) an octal constant contains an "8" or "9"

d) a constant appears where an identifier is
expected

e) A non-zero constant does not appear where
expected.

INVALID SYNTAX

The compiler has accepted the statement as a

legitimate FORTRAN statement, but the construction

of some particular element does not conform to the

rules of the language. In particular, this message

is caused by:

a) Incorrectly formed exponent in a real or double
precision constant.

b) Unrecognizable logical operator.

c) ldentifier with more than 6 characters.*

d) Invalid construction of a statement function

e) Invalid use of "=" (equal sign).

f) Invalid construction of a DO or ASSIGN state~
ment.

g) Two consecutive relational operators not separated
by a logical operator.

h) Invalid construction of an argument list.

MISSING OPERAND

An identifier or constant does not exist in the text
at a point where expected.

RETURN STATEMENT

a) A RETURN statement has been recognized in a
main program
b) A subprogram contains no RETURN statement.

* WARNING

3-2

Table 3~1. Compile-Time Diagnostic Messages (Cont'd.)

Error

Number

Message

Cause

6

INVALID STATEMENT
NUMBER

a) Incorrectly constructed statement number.

b) A statement number contains more than 5 numeric
characters.

c) A reference exists to an undefined statement
number. These errors are discovered immediately
following the output of the statement number map.

d) More than one statement has the same statement
number.

DATA IN COMMON

The variable list of a DATA statement contains an
item which has been allocated common storage and
the program is not a BLOCK DATA subprogram.

10

SUBSCRIPT USAGE

a) An array is declared using variable subscripts
which are not dummies (i. e., do not appear as
arguments of a subroutine or FUNCTION state -~
ment.

b) An array element is accessed whose number of
subscripts do not match the declared number of
subscripts for that array.

n

INVALID STATEMENT

The statement is not recognized as a Iegifimai'e:
FORTRAN statement or the source program was not
properly terminated with an END$ statement.

12

PARENTHESIS

a) A left or right parenthesis does not occur where
expected.

b) The number of left and right parenthesis within
an expression do not agree in number.

13

MIXED MODES

Invalid mixing of item modes (data types) within
a) an expression

b) an assignment statement

c) a DATA statement

14

INVALID DELIMITER

a) An invalid special character has caused the
processing of a statement to terminate.

b) The "/" character does not appear where :
expected in a DATA or COMMON statement.

c) In an expression, an invalid character follows

an array or SUBPROGRAM identifier. (Only

," and "(" are acceptable).

15

INVALID DATA
SPECIFICATION

a) A DATA statement variable list does not contain
the same number of items as its corresponding
constant list.

b) An H-specification is too large to fit into its
corresponding variable.

c) A DATA statement in a BLOCK DATA subprogram
is attempting to initialize data into a non-

COMMON variable.

3-3

Table 3-1. Compile-Time Diagnostic Messages (Cont'd.)

Error
Number Message Cause
15 INVALID DATA d) An H-specification that is preceded by a repeat -
SPECIFICATION (Cont'd) count is contained on more than one card by use
of a continuation line.

16 UNDEFINED VARIABLE a) An identifier has been used but not defined.

b) An ENTRY identifier is not defined in a sub-
program statement.

c) A subprogram identifier has not been referenced
by an ENTRY statement.

17 INVALID ITEM USAGE a) An identifier previously defined as a variable
subroutine or array is used in a context that
requires a different item usage.

b) A constant is used where an identifier is expected.
¢) An ENTRY point has multiple definition.

20 INVALID LOGICAL IF A logical IF statement is used as the executable

statement of a logical IF statement.

21 MISSING STATEMENTNO. | A FORMAT statement is unlabeled.

22 INVALID HSPECIFICATION| An H-specification is longer than the remaining

characters in the statement.

23 INVALID BLOCK DATA An executable statement has been detected in a

PROGRAM BLOCK DATA subprogram.
24 INVALID COMMON Multiply defined common variables.
USAGE

25 INVALID MODE a) Logical operation attempted using other than
logical or integer typed variables.

b) Arithmetic operation attempted on logical
variables.

26 FUNCTION NEEDS A FUNCTION statement has been encountered that

ARGUMENTS does not specify any arguments.

27 EQUIVALENCE a) Two items are equivalenced, both of which have

been allocated to a COMMON block.
b) An equivalence group demands the extension of a
COMMON block in a negative direction.
¢) Invalid construction of an EQUIVALENCE
statement.
d) Contradicting equivalence groups.
30 STATEMENT ORDER a) Specification statement follows DATA, state-

ment function, or executable statement.
b) DATA statement follows statement function or
executable statement,

Revision A
February - 1975

Table 3-1. Compile-Time Diagnostic Messages (Cont'd.)

[Error
Number Message Cause
30 STATEMENT ORDER c) Statement function follows an executable state-

(Cont'd.) ment. _
d) FUNCTION, SUBROUTINE, or BLOCK DATA

statement is not the first sta tement of a program.

31 NO PATH TO HERE An executable statement which is not labeled with a
statement number immediately follows either an

arithmetic IF or a GO TO statement. *

32 INVALID DO a) The terminal statement of a range of a DO isa
GO TO, arithmetic IF, RETURN, PAUSE, STOP,
or DO statements. :
b) Illegally nested DO statements.
c) An error in an implied DO within an 1/0O list.

33 MODULE OVERFLOW This segment has exceeded 32,767 decimal locations.

* WARNING

Scalar variables that appear only to the right of the equal sign in assignment statements cause
a WARNING message to be generated. Subsequent execution of the compiled program: is not
inhibited. The last line of compiler list output is formated as follows: !

XXX ERRORS SIZE YYYYY Z72727Z

Where XXX is the number of errors discovered during compilation. (This output does not appear
if no errors have been discovered.) YYYYY is the module size expressed as a decimal integer.
ZZZ7Z77 is the module size expressed as an octal integer.

3-3 RUN-TIME DIAGNOSTICS

If an error condition occurs during the execution of a FORTRAN program or any prpgram
that calls functions from the FORTRAN library, an error procedure is initiated. Depending bpon
the operating system and the status of the execution options, an error message will be output and/or
an abort will occur (see appropriate reference manual). The format of the error message (if present)
is one of the following:

SAU xx @ yyyyyy
FER xx @ yyyyyy
where:
xx is a two digit error number

yyyyyy is an octal address which is the return address of the routine in which the error
occurred.

Table 3-2 is a list of all run-time diagnostics. A description of the result of the operation
if not aborted is also given.

3-5

Revision B
January, 1976

3-3 RUN-TIME DIAGNOSTICS (CONT'D.)

An additional debugging aid is also provided for execution errors that are not readily
diagnosed. Upon the occurrence of a run-time error, in addition to the normal error message, a
source level error location may be produced. In order for this to occur, a compile time option
must be set during compilation of the program which is generating the error. If this option was
set during compilation (see option "W" or B11 in Section 3-4), and an error occurs, the following
message will be output:

~=> ERROR IN xxxxxx AT STATEMENT NUMBER yyyyyy + zzzzzz LINES.

where :

XXXKXXX

Yyyyyy

Z2ZZZ22Z

is the name of the FORTRAN routine in which the error occurred. *MAIN*
indicates that the error occurred in the main program. Note: If the error
occurred in a library routine or in a FORTRAN subprogram that was not
compiled with the "W" or B11 option, then this message will indicate the -
last statement executed in a module which was compiled with the "W" or
B11 option, prior to the error. -

is the last statement number encountered prior to the statement in which
the error occurred. If the error occurred in a statement with a statement
number, then yyyyyy is that statement number. Note, that in this context,
prior means the statement physically preceding and does not necessarily
indicate execution sequence.

is the number of the statement relative to yyyyyy in which the error
occurred. If the error cccurred in statement yyyyyy, then zzzzzz is 0.
If it occurred after yyyyyy, then zzzzzz is one more than the number of
physically intervening statements between yyyyyy and the statement in
error. For the purpose of this error message, the first statement of a
program or subprogram is consideredas " 0+ 1 LINES. "

Note: zzzzzz etc., does not include continuation statements, comment
cards or the object of a logical IF as additional statements.

If the error occurred in a subprogram which was called thru one or more levels of
subprograms from the main program, then each of these calls will be indicated by the following
message (if the calling routine was compiled with option "W" or B11 set):

-=> CALLED BY xxxxxx AT STATEMENT NUMBER yyyyyy + zzzzzz LINES.

where xxxxxx, yyyyyy and zzzzzz are as defined above.

3-6

Revision C

June, 1976
Table 3-2. Run-Time Diagnostics
Error Action if
Number Explanation Not Aborted
01 Square root or a negative number. result =0
02 An FXA instruction was executed such that result = FSP or FSN
the integer result could not be contained
in register A,
03 Division by zero. result = FSP
04 Arithmetic underflow (generated by add, result =0
subtract, multiply, divide or square).
05 Arithmetic overflow (generated by add, result = FSP or FSN
subtract, multiply, divide or square).
06 SIN or COS of a number so large that all result =0
significance is lost.
07 ATAN2 or DATANZ called with both result =0
arguments zero.
08 Logarithm of zero or a negative number. result =0
09 Underflow during EXP or DEXP. result =0
10 Overflow during EXP or DEXP. result = FSP
11 Underflow during exponentiation (X**Y). result =0
12 Overflow during exponentiation (X**Y), result = FSP or FSN
13 Exponentiation error (00**0 or neg**0). result =1
14 Exponentiation error (0**neg). result = FSP
15 Exponentiation error (neg**neg or neg**pos). result =0
16 ASIN or ACOS with |argument| >1. Q. resuft =0
41 Invalid output FORMAT specification. Output terminated
42 Invalid input FORMAT specification. Input terminated
43 Illegal character during input. Character ignored
44 Underflow during numeric input conversion. result =0

Revision C

June, 1976
Table 3-2. Run~Time Diagnostics (Cent'd.)
Error Action if
Number Explanation Not Aborted
45 Overflow during numeric input conversion. result = FSP or FSN
46 More than 10 BUFFER IN or OUT files. operation not performed
47 More than 10 files were defined via the operation not performed
DEFINE FILE statement.
48 Attempted READ, WRITE, or FIND a record operation not performed
on an undefined random access file.
49 Attempted READ, WRITE, or FIND a record operation not performed
number larger than the defined number of
records in the random access file.
NOTE: FSP = '37777777 for integer results

= 137777777, ‘37777577 for all SAU and Double

precision non-SAU results

= 137777777, ‘00000177 for Real non=SAU results

FSN = '40000001 for integer results

= 140000000, '00000577 for all SAU and Double

precision non-SAU results

= 140000001, '00000177 for Real non=-SAU results

- 3-8

Revision C
June, 1976

3-4 IN-LINE CONTROL STATEMENTS

The Extended Harris FORTRAN compiler processes in-line control statements. This
extension is not available in the Basic Harris FORTRAN compiler, An in-line control statement
is identified by a colon (:) in column 1 of a source statement. Like other FORTRAN statements,
columns 73-80 of in-line control statements are not processed. In-line control statements are
divided into two groups: '

1. Conditional-compile control statements, which provide means for skipping
(not compiling) a set of source stafements if a specified condition is true.

2, Option control statements, which provide means for turning various compile-
time options "on™ or "off" at any point in the program.

A program may contain any number of in-line control statements. Any error detected
in an in-line control statement terminates the processing of that in-line control statement. The
error is considered to be a non-fatal compilation error and a warning message is issued.

3-4.1 Conditional-compile Control Statements

Conditional-compile control statements provide means for conditional compilation of
source statements. They are divided into two groups: Skip-statements and an ESKP-statement.

A conditional -compile block consists of a set of statements, the range of the conditional- |
compile block, enclosed befween a skip-statement and an ESKP-statement.” A skip-statenient opens |
a conditional-compile block, while an ESKP statement closes it. A conditional-compile block —~ §
may contain any number of conditional-compile blocks in its range, i. e, conditional ~compile
blocks may be nested to any level. The range of a conditional-compile block may be empty.
When conditional-compile blocks are nested, the first encountered ESKP-statement -closes the
last opened conditional-compile block, the second ESKP-statement closes next-to-last opened
condliﬁonol—COmpile block, etc.. Each conditional-compile block opened in the program must
be closed.

3-4. 1.1 Skip-Statements
The skip-statement has the form:

:SKFS f1, f2, vue, fip oov) fn
or

:SKFZ f], f2, --o,fi, ...,fn

Where f; is a flag number, an unsigned integer constant, in the range of 0 and 23.

Examples:

:SKFS 1,10, 2,3
:SKFZ 20, 1
:SKFZ 2

Revision C
June, 1976

The list of flag numbers specified on a skip-statement constitute the skip condition for
the associated conditional-compile block. Compilation of a skip-statement causes evaluation
of the specified skip condition, If the skip condition is true, statements in the range of the
associated conditional -compile block are skipped (not compiled or ignored) by the compi ler.
Compilation is resumed at the ESKP statement of the skipped conditional-compile block. If the
skip condition is false, normal compilation sequence continues.

In case of an SKFS statement, the skip condition is true only if allflags specified by it
are "on". In case of an SKFZ statement, the skip condition is true only it all flags specified
by it are "off". In all other cases the skip condition is considered false.

If the skip condition is true for a specific conditional-compile block, any conditional -
compile blocks in its range will be skipped regardless of their skip condition. If an error is
detected in a skip-statement, a warning message is issued and the statement is ignored by the
compiler.

Under DMS/DOS/TOS/ROS, flags for compilation are specified using SFLAGS state-
ment of the Job Control.

Example:

$FLAGS .0,1
$ASSIGN 7, INPUT
$FORTRAN

| Under VULCAN, these flags are specified using the FLAGS specification on the Job

§ Control statement or processor call statement. It should be the last parameter on the statement,
I thus it should follow the AREANAME if an area name is specified. The form of this specification
g is:

FLAGS= N, Ny eees

where the n's are the flag numbers to be set during compilation. All other flags are
| reset.

Example:

$FO. EM, INPUT, FLAGS =0,1
$$*FORTRAN. E, F=2

3-4. 1.2 ESKP-Statement
The ESKP-Statement has the form:
:ESKP
Compi lation of an ESKP-statement does not have any effect. Normal compilation
| sequence confinues. An ESKP-statement must always close a conditional-compile block, i.e.,

each ESKP-statement must be preceded by a matching skip-statement. If an error is detected in
an ESKP-statement, a warning message is issued and the statement is ignored by the compiler.

Revision C
June, 1976

3-4.1.3 Use of Conditional-Compilation

The conditional -compilation technique may be used in producing different versions of
a program, each having different capabilities and characteristics. It provides an important tool
in producing diagnostic versions of a program. Using this technique, debug or diagnostic state-
ments are made a permanent part of the program source. These statements are placed in the
range of one or more conditional-compile blocks. Each of these blocks is controlled by one or
more compilation flags. These blocks may be set up in such a way as to provide different levels
of debugging information for different combinations of compilation flags. For normal execution
purposes, all debugging information is excluded from the program during compilation, by select-
ing an appropriate combination of compilation flags. A diagnostic version of the same program
may also be generated without making any changes in the program source. This is achieved by
recompiling the same program with appropriate compilation flags set to compile the desired
debugging information.

The following example illustrates the use of in-line conditional-compile control state-
ments:

Example:

DIMENSION ID (6)

DO 1 11,6

CALL GETCHR (ICHAR,MODE)
:SKFZ 2

WRITE (-, 100) I, ICHAR,MODE
100 FORMAT (16, A6, 16)
:ESKP
IF (MODE. LT.0) GO TO 2
ID (I)= ICHAR
1 CONTINUE
CALL GETCHR (ICHAR,MODE)
IF (MODE. GE. 0) CALL ERROR
2 CONTINUE
:SKFZ 1
WRITE (-,101) ID, ICHAR
101 FORMAT (6A1, A6)
:ESKP
The above example obtains a FORTRAN identifier in the singly dimensioned array ID

and its delimiter in ICHAR. Subroutine GETCHR returns next character from input stream and
its MODE. The example contains two conditional-compile blocks, set up to produce two levels

Revision C
June, 1976

} of debugging information. The first conditional-compile block is controlled by the compilation

§ flag number 2. If this flag is "on" ot compile time, the first conditional-compile block will be
compiled. This will cause 1, ICHAR, and MODE to be printed during each iteration of the DO-
 loop. If the flag number 2 is "off" at compile time, this output is not produced during execution,
d The second conditional-compile block is controlled by the compilation flag number 1. If this
flag is "on" at compile time, the second conditional-compile block will be compiled. This will
cause the identifier ID and the delimiter ICHAR to be printed. If the flag number 1 is "off" at
compile time, this output will not be produced during execution.

3-4.2 Option Control Statements

The Harris FORTRAN Compiler Erovides various options for compilation of source pro-
§ grams. These compile-time options may be turned "on" or "off" using in-line option control
§ statements.

The option control statement has the form:

MYy N veer Niyeuey Ny
or
:NO ny,ng, ooopnjy ooe, Ny

where n; is a compile-time cption name.

A compile-time option name consists of two or more alphanumeric characters, the first
of which is a letter. Only the first two characters of a compile-time option name are used to
identify the compile-time option.

The first form of the option ccntrol statement defines an option-on contro!l statement,
compilation of which causes the specified compile-time options to be turned "on™. The second
¥ form of the option control statement-defines an option-off control statement, compilation of
§ which causes the specified options to be turned "off", The ASsembly mode option or the ENd
§ assembly mode option may not be used in an option-off control statement.

Examples:

:LIST, OBJECT LISTING, TR
:NO OBJ,MAP OUTPUT, WALKBACK

Each compile-time option, excluding the ASsembly mode and ENd assembly mode

§ options, is assigned a bit in the Job Control option word.. Under DMS/DOS/TOS/RQOS, each

§ option-bit (0-23) is assigned a system cption number (0-23), and it may be turned "on" or "off"
using the SOPTION command of the Jeb Control. Under VULCAN, each option-bit (0-23) is
assigned a single character Job Control option (A-X), and it may be turned "on" or "off" using
the SO (Set Options) command of the Job Control. In this case, option-bits may also be turned
"on" using the options-specification field of Job Control commands or Processor Calls.

The value of a compile-time options remains unchanged during compilation until changed
using in-line option control statements. Most of the compile-time options may be changed
® (turned "on" or "off") at any point in the program. However, a group of compile-time options
1 may be changed for a new program unit (main program or subprogram) only before any FORTRAN

Revision C
June, 1976

statement, excluding comments, is compiled for the new program unit. That is, these compile-
time options may not be changed within a program unit. Compile~time options included in this
group are:

—_—
.

DOuble precision option
. LOng address generation option

WALK-back code generation option

W N

FATAL compilation errors only option

During compilation, option names specified on an option control statement are processed
from the left to right. After processing each option name, the associated compile time option is
turned "on" or "off". If an error is detected in an option control statement, processing of the
option control statement is terminated. However, any compile-time option changes perfaormed
prior to the occurrence of the error remain effective.

3-4,3 Initial Values of Compile-Time options

At the start of compilation of a program, the FORTRAN Compiler obtains the Job Con-
trol option word from the operating system. The value of each option-bit in the option word
determines the initial value of the associated compile-time option. In most cases, the compile-
time option is set to the value of the associated option-bit, i.e., if the option-bit is "on", the
associated compile-time option is turned "on", etc. In other cases, the compile~time option is
set to the opposite value of the associated option-bit, i.e., if the option-bit is "on", the
associated compile-time option is turned "off", etc. The ASsembly mode option and the
ENd assembly mode option are initially turned "off".

Table 3-3 lists all compile-time options with their two character option names, associ -

ated system option under DMS/DOS/TOS/ROS, associated Job Control option under VULCAN,

and the value of the compile-time option when the associated option is "on",

3-5 COMPILE-TIME OPTIONS
This section describes various compile-time options processed by the FORTRAN icompiler. |
1. DOuble precision option - (Extended Compiler Only) - If this option is "on" at

compile time, all implicit real variables and constants are typed as double pre-
cision, and calls to FORTRAN real functions are replaced by calls to their double
precision counterparts.
Example: If the Double precision option is "on",

A =SIN (B) +1.3
is equivalent to:

DOUBLE PRECISION

A = DSIN (B) + 1.3DO0

This option may not be changed within a program unit using in-line option control
statements.

3-13

Revision C
June, 1976

Table 3-3 Compile-Time Options

Associated Option
Option (A) under Relationship
OPTION name DMS/DOS/ between
(O) VULCAN| TOS/ROS Oand A

*Double Precision DO D 4 O=
Object Listing OB 0] 5 C=
Extended Object Listing EX X 6 O=
Map Output MA M 8 O=.NOT. A
*Long Address Generation LO L 9 O=
Triad Output TR T 10 O=
*Walk-Back Code Generation WA w 11 C=A
Abnormal Subscript Redefinition AB A 12 o=
Additional Subscript Optionization SU S 13 C=
Computed GOTO Checking Code

Generation GO I 14 C=.NOT. A
Debug Statement Compilation DE G 15 C=A
Ignore Blank Statements IG B 16 C=.NOT. A
Skipped Statement Listing SK K 17 OC=.NOT. A
Indented Listing IN P 18 O=A
Optional Control Statement Listing op R 19 O=.NOT. A
Source Statement Listing LI E 20 O=.NOT. A
Sequence Number on the Left SE N 21 O=A
Character Code Conversion CH Cc 22 O=A
*Fatal Compilation Errors Only FA F None O=A
Assembly Mode AS None Nome None
End Assembly Mode EN None None None

*These options may not be changed within a program unit using in-line control statement.

3-14

Revision C
June, 1976

OBject listing option - If this option is "on" at compile time, the code generated
by the compi?er is output to the list out device along with the normal FORTRAN
output, If the source statement Llsting option is "off", this oulput is suppressed.
The object listing format is:

AAAAA xxx YYYYY B ccccecce
where:

AAAAA is the relative address of the generated instruction,

xxx (Extended Compiler Only) is the instruction mnemonic,

yyyyy (Extended Compiler Only) is the link loader code (refer to link
loader documentation), and

ccccccecc is the link loader load word.

EXtended Object Listing Option - If this option is "on" at compile time, the code
generated by the compiler during the map output is output to the list out device i
along with the normal map output. This code includes string back definitions and
locations of various scalars and constants used in the program unit. This dutput is
in the same format as for the object listing output. This option is normally useful
only to a system programmer. If the OBject listing option or the MAp ouput option
is "off", this output is suppressed.

MAp output option - If this option is "on" at compile time, a map is output when

an END statement is detected. The map output contains all scalars, arrays, state-
ment numbers, etc., and their relative addresses. If this option is "off" at compile
time, the FORTRAN map output is suppressed. 4

LOng address generation option - If this option is "on" at compile time, the ccde
generated by the compiler correctly accesses data in common in the upper memory
map (over 32K). Programs or subprograms will also correctly access internal
arrays. This option may not be changed within a program unit using in-line option
control statements.

TRiad output option - If this option is set at compile time, several tables generated
by the compiler during an expression scan are output in a partially symbolic format. §
This option is normally useful only to a system programmer,

WAIk-back code generation option - If this option is "on" at compile-time,
additional code is output within each program module such that a source leve!
error message is output during any execution contingency. See Section 3+3 for
a more complete discussion. This option may not be changed within a program
unit using in-line option control statements.

ABnormal subscript redefinition option - If this option is "on" at compile time,
the automatic inter statement optionization performed by the compiler is disabled,
i.e., subscripts are recalcuated at each statement. This option is ufeful only if
redefinition of subscripts during execution occurs in an abnormal fashion. See
Section 5 for a more complete discussion.

Revision C
June, 1976

9.

Additional SUbscript optimization option - If this option is "on" at compile time,
saved subscript calculations using variables in COMMON are not determined to
be invalid after a subprogram call. This option should not be used if variables

in COMMON are used as subscripts and modified during subprogram calls. See
Section 5 for a more complete discussion.

Computed GOTO checking code generation option - If this option is "on" at
compile time, additional code is generated by the compiler to check the range
of the computed GOTO variable. If the value of the variable is out of range,
the additional code will transfer control to the statement following the computed
GOTO statement.

DEbug statement compilation option - If this option is "on" at compile time, the

™" in column 1 of a debug statement is replaced with a blank and the statement
is processed as a normal FORTRAN statement, If this option is "off" at compile

time, debug statements are treated as comments and ignored by the compiler. If
the ASsembly mode option is "on", this option does not have any effect.

IGnore blank statements option - If this option is "on" at compile time, blank
statements (columns 1-72 blank) are treated as comments and ignored by the
compiler. If this option is "off" at compile time, blank statements are treated
as normal FORTRAN statements.

SKipped statement listing option - If this option is "on" at compile time, con-
ditional -compile control statements, skipped statements of a conditional-
compile block, and skipped debug statements are listed by the compiler. If this
option is "off" at compile time, these statements are not listed by the compiler.
If the source statement Llsting option is "off", this option does not have any
effect.

INdented listing option - If this option is "on" af compile time, automatic
Tndentation is performed by the compiler while listing source statement. See
Section 2-5 for a more complete discussion on indented listing. If the source
statement LIsting option is "off", this option does not have any effect.

Listing Option of OPtion Control statements - If this option is "on" at compile
time, option control statements are listed by the compiler. If this option is
"off" ot compile time, option control statements are processed but not listed by
the compiler. If the source statement Llsting option is "off", this option does
not have any effect. .

Source statement Llsting option - If this option is "on" at compile time, FORTRAN
source statements are listed by the compiler. If this option is "off" ot compile
time, listing of valid statements (FORTRAN and in-line control statements) is
suppressed and only errors are listed.

SEquence numbers on left option - If this option is "on" at compile time, the source
Tine sequence number will be output to the left of the line, separated from the rest

of the line by a colon (:). This is useful if the output list device is a teletype or a

display terminal.

Revisian C
June, 1976

18. CHaracter code conversion option - If this option is "on" at compile time, the
U258 characters ?@% & * are converted to "'() += on input by the compiler. This
is for compatibility between various keypunch character sets.

19. FAtal compilation errors only (VULCAN only) - If this option is "on" at compile
fime, only fatal compilation errors result in o system error message. If this option
if "off" ot compile time, any compilation error results in a system error message.
Fatal errors always cause a system error message. This option may not be changed
within a program unit using in-line option control statements.

20. ASsembly mode option - If this option is "on" at compile time, all ensuing source
statements (excluding control statements) are treated as assembly language state -
ments. The compilation mode is returned to normal FORTRAN compilation mode
upon encountering an ENd assembly mode option on an option control statement.
This option may not be used in an option-off (the NO option prefix) control
statement. This option does not have any option-bit assigned to it.

21. ENJ assembly mode option - If this option is "on" at compile time, Assembly mede
is furned "off" and normal FORTRAN compilation is carried out. This option may
not be used in an option-off (the NO option prefix) control statement. This option
does not have any option-bit assigned to it.

3-6 DEBUG STATEMENTS

Debug statements, as the name suggests, provide an important tool in producing diagnos-
tic version of a program.” This extension is avdilagle only in the Extended FORTRAN Compiler.

A source input line having a "D" in column is defined as a debug statement. Compilation of
debug statements depends on the value of the DEbug statement compilation or B15 (DMS/DOS/
TOS/ROS) or "G" option. If the option is "on" at compile time, the "D" in column 1 of a debug
statement is replaced with a blank and the statement is processed as a normal FORTRAN statement.
If the option is "off" at compile time, debug statements are treated as comments and they are
ignored by the compiler.

A program may contain any number of debug statements. Debug statements may be used
as continuation lines of any statement, It must be noted that the statement number field of debug
statements is limited to only four columns. As compared to in-line conditional ~compile control
statements, the debugging information produced by debug statements is limited to only one level.
This is due to the fact that either all debug statements are compiled or all are skipped.

The following example illustrates the use of debug statements:
Example:

DO 100 I=1,N

TIME = TIME + DELTA

FORCE = FUNCI (TIME)

DISPL = FUNC2 (FORCE)
D PRINT, FORCE, DISPL
100 CONTINUE

Revision C
June, 1976

The above example contains a debug statement in the range of a DO-loop. During
each iteration of the DO=loop, the FORCE and DISPL are computed using functions FUNC1 and
FUNC2 respectively, If the DEbug statement compilation option is "on" at compile time, the
values of FORCE and DISPL are printed at the end of each iteration of the DO-loop. If the
option is "off" at compile time, the values are not printed.

3-18

SECTION |V
INTERFACING FORTRAN AND ASSEMBLER GENERATED MODULES

4-1 CALLING FORTRAN GENERATED SUBPROGRAMS

The FORTRAN compiler generates entrances to all subprograms with amechanism to pass
the arguments if any, whether subroutines, functions or statement Funch.ons. An FO.RTRAN sub~
routine expects to find the address of the calling instruction plus one in the (J reglster,fhp'refore
it should be called with a BLL instruction. An argument list should follow the BLL instruction
containing the addresses of the exact number of arguments that the subprogram is expecting.

For example, the FORTRAN subroutine that begins with the statement:

SUBROUTINE ALPHA (arg], argoy ++ s urgn)

should be called by an assembly language program in the following manner:

L BLL $SALPHA
L+1 DAC arg, address of first argument
L+2 DAC arg, address of second argument
L+n DAC arg address of nth argument
L+n+1 . control is returned to this location

4-2 CALLING OF FORTRAN FUNCTIONS

In addition to the subprograms generated by both the SUBROUTINE and FUNCTION
statements, FORTRAN functions (subprograms that begin with a FUNCTION statement) return a
function value via the registers. The particular register depends upon the data type of the
function. Table 4-1 lists the registers used for each data type.

4-1

Revision B
January, 1976

4-2 CALLING OF FORTRAN FUNCTIONS (CONT'D.)

Table 4-1, Register Location of Function Values

Result Register(s)**
Data Type SAU non-SAU
Integer ' (A) (A)
Logical ‘ (A) (A)
Real : (X) (D)
Double Precision (X) (D)
Complex (Real Part) (X) (D)
Complex (Imaginary Part) (D) (FSIMAG)*

*FSIMAG is a double word which resides in the FORTRAN library and is linked into FORTRAN
programs whenever complex operations are specified. Hence, this pseudo-register may be
accessed by an external reference to FIMAG.

**The appropriate condition register will also be set to reflect the result of the function call.

The user of FORTRAN library functions or FORTRAN compiler generated functions must
take this into account when calling these functions from assembly language programs.

4-3 FORTRAN-CALLABLE ASSEMBLER LANGUAGE PROGRAMS
The FORTRAN statement: CALL ALPHA (arg], arge, o os argn) generates the assembly

language equivalent of:

L BLL SALPHA

L+1 DAC arg, address of 1st argument
L+2 DAC arg, address of 2nd argument
L+n DAC arg address of nth argument
L+n+1 control must return to here.

The addresses in the argument list may be indirect, therefore the subprogram ALPHA
should access these addresses by use ot the GAP instructions.

4-3 FORTRAN-CALLABLE ASSEMBLER LANGUAGE PROGRAMS (CONT'D.)

To illustrate a method of accessing arguments supplied by a call from a FORTRAN compiler
generated program, the following is the assembly language equivalent of what the compiler
generates at the entry to a SUBROUTINE or FUNCTION with no multiple entry points and having
at least one argument:

The statement: SUBROUTINE OR FUNCTION ALPHA (arg],argz,. .. ,argn) generates:

XDEF ALPHA, ENTRY
RORG 0 (See Note 1)
BLOK n+1
ENTRY TNK n
GAP]
TIM ENTRY, K transfer argument list
BWK *-2
TIM ENTRY -(n + 1) save return

USER'S First Instruction

To illustrate a method of accessing a FORTRAN compiler generated program with no

arguments, the following is the assembly language equivalent of what the compiler generates at
the entry to a SUBROUTINE:

The statement: SUBROUTINE ALPHA generates:

XDEF ALPHA,ENTRY
RORG 0 (See Note 1)
BLOK]
ENTRY TJM ENTRY -1 save return

USER'S First Instruction

To illustrate a method of accessing arguments supplied by a call from a FORTRAN
compiler generated program with alternate entry points to the first named identifier:

The statement: SUBROUTINE OR FUNCTION ONE (arg],orgz,arg)r
TWO (arg4,arg2,arg]), THREE (curg],args,czrgz,urgé)3

XDEF
XDEF
XDEF
RORG
0 BUC
1 BUC
2 BUC
BLOK
ONE TNK
GAP
TIM
BWK
TJM

ONE,0

™WO, 1

THREE, 2

0 (See Note 1)

ONE

WO

THREE

n + | where n = number of different arguments (6)
m where m = number of arguments in first identifier (3)
1

ONE - (n-m),K transfer argument list

*-2

ONE - (n+ 1) save return as exit address

USER'S First Instruction

To illustrate a method of accessing arguments supplied by a call from a FORTRAN
compiler generated program to an alternate entry point:

The statement SUBROUTINE or FUNCTION ONE (arg,,arg,,arg,), TWO (arg,,arg
1 27793 470
arg]), THREE (arg],args,argz,qrgé)

assume the statement:

ENTRY THREE

then the following code would be generated:

BUC

THREE GAP
TIM
GAP
TIM
GAP
TIM

* + 2 (j) + 2 where j = number of arguments in the ENTRY
identifier's dummy list (4)

1
Exit address + arg, relative dummy number (1)
1
Exit address + args relative dummy number (5)

1

Exit address + arg, relative dummy number (2)

44

Revision B
January, 1976

GAP 1
TIM Exit address + arg, relative dummy number (6)
TIM Exit address

USER's First Instruction

To illustrate a method of accessing a FORTRAN compiler generated ENTRY point to
a program with no arguments:

assume the statement SUBROUTINE ...,NOARG,...
assume the statement
ENTRY NOARG
The the following code would be generated:
BUC * 42
NOARG TJM Exit address

USER's First Instruction

NOTE 1: The RORG is not necessarily at zero if the subprogram contains DIMENSION
or DATA statements.

From this point, any access to a dummy argument can be made safely by using an indirect
reference to the point in the newly generated argument list, since the GAP instruction has .
eliminated all indirect levels.

The previous examples suggest methods of accessing arguments, argument addresses
and alternate ENTRY points to SUBROUTINES or FUNCTION subprograms; the programmer
may use any method he wishes.

It must be remembered that if the calling FORTRAN program assumes that the subprogram
is a function (i. e., calls it within an expression as opposed to using a CALL statement), the
result of the function must appear in the proper register when control is returned to the calling
program (see Table 4-1). In addition the appropriate condition register must be set to reflect
the result of the function.

Revision A
Februorys, 1975

SECTION V
OPTIMIZATION

5-1 GENERAL

This section describes the object code optimization automatically performed by the
FORTRAN compiler.

5-2 COMPILER OPTIMIZATION

The FORTRAN compiler automatically produces optimized object code in several areas.
This optimization is all local, that is, each statement is optimized independently of other state-
ments. These optimizations take several forms.

5-2.1 Sub-Program Entries

For a sub-program with no arguments, the subprogram entry consists of a single store
instruction to save fheosiinkqge address. When there are three or more arguments, a four instruc ~
tion loop is set up to obtain argument addresses. If only one or two arguments are present, then
an expanded form of this loop is used which takes two instruction for one argument and four
instructions for two arguments. Thus with one or two arguments, no extra storage is used, and
execution time is decreased. An argument passing subroutine is not used.

5-2.2 IF Statements

The program flow branching performed after an arithmetic IF is optimized. If two of the
result branches to be used are the same, then the appropriate branch instruction is used to branch
on either result condition.

5-2.3 Immediate Instructions

The Harris Series 6000 computers contain an extensive set of immediate or operand
instructions. These instructions are automatically used by the compiler whenever possible. Their
use causes a decrease in memory access time since the constant is part of the instruction and does
not need to be independently fetched. A decrease in storage is also possible, since the constants
do not need to be stored.

5-2,4 Subscripts

When an array variable is subscripted with a constant, the element address referenced is
calculated at compile time. This enables an array references to be as efficienf:as a scalar reference,
if the subscript is a constant. If the subscripts of an array is a variable, but contains a constant
(e.g., A(1,3) or A(I+5)) then the constant is incorporated into the effective array base address.

Thus the subscript calculation is made more efficient.

5-1

Revision A
February, 1975

5-2.5 Sub-Expression Optimization

During the processing of a statement involving arithmetic computations, the FORTRAN
compiler recognizes calculation sequences that are similar. When such common sub-expressions
are recognized, the object code is optimized so that the sub-expression is calculated only once.
When it is calculated, the value is saved in a temporary location until it is needed in the second
expression. This optimization extends to all sub-expressions within the statement, including
subscript calculations.

5-2.6 Logical IF Optimization

If a logical IF is a simple logical IF, that is, if it consists of a single relational operator
and no . AND., . OR., . XOR., or . NOT. operators, then the normal creation of a logical value
is bypassed and a conditional branch is used immediately.

For example, the following logical IF will generate the following code:
IF (1.LT. J) GO TO 55

TMA I
SMA J
BON $55

5-2.7 Intrinsic Functions

Certain intrinsic functions are converted to in-line instructions. The resultant code will
save execution time and/or storage. In no case will either be sacrificed. The following intrinsic
functions are optimized:

ABS, DABS, IABS, FLOAT, IFIX, INT, IDINT, SNGL, DBLE and REAL

5-2.8 Simple Integer Expressions

Certain simple integer expressions will make use of some specialized machine opcodes.
A "TFM" or a "TZM" will be used when setting an integer to -1 or zero (or a logical variable to
.TRUE. or .FALSE.).

An "AAM" will be used when the variable being assigned is also added in to the
expression. As a special extension to this, "AUM" will be used if the increment is 1.

Examples:
FORTRAN Generated Code
I=0 TZM |
J=3-4 ™ J
| = K-J+I TMA K
SMA J
AAM |

Revision A
February, 1975

5-2.8 Simple Integer Expressions (Continued)

FORTRAN Generated Code

L =L+1 AUM L

L=L~1 TNA 1
AAM L

5-2.9 Index Registers

Whenever possible, array references are done thru index registers. This results in
storage and time savings for several reasons.

An indirect reference does not need to be made to the calculated element address, thus
saving the indirection time and the storage of the calculated value.

When calculating the subscript value, the array base need not be added in since it is
incorporated within the indexed reference.

Different arrays accessed with the same subscript may use the same index register. This
is also due to the incorporation of the array base address in the array referencing instruction,

Example:
IA(D) = 1A (1) + IB(l) *IC(l)

TMK I

TMA IC (0), K
MYM B (0), K
AAM IA (0), K

5-2,10 Inter Statement Optimization

Whenever possible, subscript calculations are not re-calculated from statement to
statement. This occurs with subseripts in index registers as well as complete array references
stored in temp locations.

At the termination of one statement and the initiation of the next, several tests are made
to determine the validity of saved subscripts. Depending upon the results of these tests; none,
or more, or all of the saved subscript calculations are determined invalid. Subscripts are
determined to be invalid if:

1. A variable which is defined by appearing on the left side of an equal
sign, is used in the subscript calculation.

2, A variable which appears in a calling sequence to a function or
subroutine, is used in the subscript calculation.

Revision A
February, 1975

5-2.10 Inter Statement Optimization (Continued)

3.

They were calculated in the object of a logical IF.

All saved subscript calculations are determined to be invalid if:

1.
2,

3.

The new statement has a statement number.
The previous statement was:

a) a statement function definition

b) an ENTRY statement

c) a DO statement

d) a DECODE statement

e) a READ statement

f) an I/O statement with an implied DO list

In-line assembly code has been entered or just exitted.

It is possible, however, for a subscript calculation to become invalid in spite of the
above tests. If a variable used in a subscript calculation is in COMMON it may be modified in
a subroutine call. A subscript variable may also be modified by being equivalenced to a variable
which is modified.

In this case, the inter statement optimization may generate erroneous results, If this
occurs, there are two methods to correct the problem.

1.

Place a statement number on all statements in which subscripts need
to be recalculated. This will cause all subscripts to be recalculated
as they are needed as explained above.

2, If method 1 is not desired because of program complexity, option "A"
or B12 (see Section 3-4) should be set during compilation. This will
cause subscripts to be recalculated at each statement. Note: It should
be carefully determined that the problem as described above is actually
occurring since the use of this option may significantly increase run-
time and core storage. Note: The "A" or B12 option only affects inter
statement optimization, it has no effect upon the optimization as
described in preceding paragraphs.

Example:

1A () = 14

TMK |

TOA 14

TAM 1A(0), K
BUJ) = 13.5

™J J

AJJ

TMX =13.5

TXM B(0), J

5-2.10 Inter Statement Optimization (Continued)

Example (Continued)

C(K) =
™

All

TMX
TMA
MAX
TXM

IA(l1+4)* B + 1)
K

B(1), J
1A (4), K

c(), I

Revision A
February, 1975

Revision C
June, 1976

SECTION VI
IN-LINE CODE

6-1 INTRODUCTION

6-1.1 Scope of Extension

This extension processes in-line assembly language mnemonics, symbolic labels, statement
numbers and operands embedded within a FORTRAN 1V main program, subroutine or function sub-
program.

6~1.2 General Description

The in-line extension to the Series 6000 Extended FORTRAN Compiler is a one pass
processor system. All source language statements provide a one~to-one map into machine language
instructions and single or multiple data word configurations.

The in-line assembly mode of the compiler is turned "on" using an in-line option
control statement containing "AS" (Assembly) as an option name. The in-line assembly
mode is tumed "off" using an in-line option control statement containing "EN" (End
Assembly) as an option-name. Any section of in-line assembly code may contain any
number of in-line control statements (See Section 3).

Source statements may contain a statement label, a mnemonic instruction or pseudo-
operation, an operand field, and a comments field. Target language is Series 6000 Machine
Language which is listed as a binary file whose record format is identical to the input record
format of the Link Loader.

6-2 SOURCE LANGUAGE FORMAT

6-2.1 Scope

This section describes the format for source input statements to the Series 6000 In-Line
Extension to the FORTRAN IV compiler.

6-2.2 Statement Number or Label Field

The statement number field may contain an asterisk (*) in column 1, a statement number,
a symbolic label or may be left entirely blank.

An asterisk in column 1 causes all succeeding columns in the line to be treated as
comments. No binary output is generated.

Statement numbers conform to the rules of FORTRAN IV. The statement number is
assigned the address of the instruction or pseudo-operation being labeled. Note that imbedded
blanks may not be present within the statement label.

A symbolic label must begin with an alphabetic character, contain not more than 6
characters and contain no delimiting characters as defined by the section "SYMBOLIC LABELS".
The label is typed either implicitly or explicitly and may be used in a FORTRAN statement pro-
vided the label does not contain special characters.

Examples (Valid)

'I *k Kk
2 RORG 2000
RATE2 DATA 3. 0E6
F$GO TOA 1
Examples (Invalid)
1.3 NOP Special Character
A+B BLOK 4 Delimiter
1ABC QSss '2 Not Numeric
=WXYZ TAM D3(20) First Char not Alpha

Note that a statement label (if present) must begin in column 1.

6-2.3 Operation Field

The operation field begins with the first non-blank column after the statement label
or the first non-blank column if no statement label is present (column 1 is blank). The operation
field may contain a three-character computer instruction mnemonic, or a three-or~four character
pseudo~operation code.

An asterisk (*) following a three character computer instruction mnemcnic is used to
indicate an indirect memory reference except in the case of the computer input/output instructions,
where the asterisk is used as an override or merge specification. These special cases are defined
in the Macro Assembler General Specification AA61649, Table A-14.

6-2.4 Operand and Comments Fields

The operand field begins with the first non-blank column after the operation field. This
field may not contain any imbedded blanks except within literal constants (e.g., " " or 3HA A).
The comments field begins with the first non-blank column after the operand field. If the instruc-
tion mnemonic requires no operand, then the comments field begins immediately after the opera-
tion field.

This field may contain an opercnd constant, address, etc., as indicated by the particular
instruction. (Reference the Macro Assembler General Specification AA61649, Tables A-4 to
A-19 for a detailed listing.) :

6-2.5 Sequence Field (Columns 73-80)

The sequence field may contain any identification (e.g., a card sequence number) the
user desires. This field is ignored by the in-line portion of the compiler.

6-3 OPERAND FORMATS
6-3.1 Scope

This section describes the opercnd formats used with the in~line extension of the FORTRAN
IV compiler. A list of the Series 6000 instruction mnemonics and their permissible operand formats

6-2

is contained in the Appendix of the Macro Assembler General Specification AA61649 manual.
Exceptions are noted as encountered in this document.

6-3.2 Current Location (*)

An asterisk (*) in the operand field indicates that the relative location of the current
instruction is used as the value of the asterisk (*).

Examples (Valid)

BUC *+2 SKIP THE NEXT INSTRUCTION
TOA LABEL-* ABSOLUTE DIFFERENCE

6-3.3 Symbolic Labels

A symbolic label in the operand field indicates that the address associated with the label
is to be used as the operand address. A symbolic label may be declared as common, an array,
data reference, statement number, dummy, variable, function results or external. Labels asspme
the type (REAL, INTEGER, etc.) as declared by the associated FORTRAN program. A symbolic
label must begin with an alphabetic character and is delimited by a plus (+), minus (=), quote ("),
blank (), comma (,), apostrophe ('), left parenthesis "(", or right parenthesis ")". Only the
first six characters are used to determine the uniqueness of the symbolic label.

Examples (Valid)

TMA RATE12 alphanumeric label

TME F/LOAD Note: Only in-line code allows
TLO A *e= special characters in the symbolic
BUC BSADD label

Examples (Invalid)

TMA 12A8 numeric

TME A'B delimiter

TLO A+B both must be defined first
BUC AR(AY subscript

6-3.3. 1 Common

Labeled and blank COMMON are used as defined by the associated FORTRAN program.
Should the user reorder or redefine the COMMON areas, then the generated addresses or values
are subject to change.

Examples (Valid)

COMMON ITOP,VOLT,WATT,COMARY(2,3,4),BOTTOM
COMMON/LABEL/AMP, POWER,POLE,POST
COMMON/DIFLAB/HOT,COLD,SOUTH, EAST, WEST,NORTH

6-3

Examples (Valid) Cont'd.

:ASSE
Z72Z* WATT, K position 3 indirect indexed
BSL 2+ AMP loc 2 of block label
TOA BOTTOM-ITOP-1 length of blank common

*THE OFFSET OF DIFFERENT LABEL COMMONS ADJUSTED BY BLANK COMMON
DM NORTH=-POWER+WATT position '13
TAM COMARY(3}+1 word 6 of COMARY
TOA HOT-COLD+3 positive 1

Examples (Invalid)

TLO LABEL new scalar variable
TOA HOT-COLD negative value

6-3.3.2 Array

Arrays are used as defined by the DIMENSION statement or other FORTRAN area
declaration statements of the associated FORTRAN program. An array is addressable as

1) NAME without subscripts refers to word 1 of the array.

2) NAME (C) with one level of subscripting for any n dimensional array. The
constant C references the first word of item C automatically adjusted by the
declared array type.

3) NAME (i,j,k) where i,j and k are constants and correspond to the correct
number of subscripts declared for the array NAME.

A durmy array name is not subscripted because ths address of the array is not known
until the execution of the related subprogram. The user should use indexing and/or indirecting
when referencing dummy array values.

Examples (Valid)

FUNCTION SUB (IDUM, ADUM)
DIMENSION DRPL (12), D3 (3,3,3), ARAY (10), ADUM (100)

:ASSE
TLO D3 address of first word
TMI D3+5 contents of word 6
BLOK D3(2)-D3(1) words per item
BLL D3(8) item 8
BRL D3(2,3,1) item 8 also
TNA ARAY(10)-DRPL+2 size of all dimensions

Examples (Invalid)

TOA D3(1)-D3(2) negative value

TMD D3(1,2) incorrect number of subscripts
TAM DRPL (-1) neg subscript

TME ADUM(2) dummy

6-4

6-3. 3. 3 Data Reference

Constants as defined by the FORTRAN DATA statement are referenced via the symbolic
identifier of the associated program. The symbolic label references the address of the first word
of the respective data item regardless of the assigned type.

Examples (Valid)

DATA INT, REL, RONG/2,3.0,5.0/

:ASSE
TMA INT integer 2 to A register
TOA REL-INT difference of 1 word apart
TMX RONG real 5.0 to SAU X register
TMB REL+1 exponent of 3.0

Examples (Invalid)

TOA INT-REL negative value
TME REL(2) not a dimension
TMD REL/RONG no label REL/RO

6-3. 3.4 Statement Number

The statement number is used to reference relative locations within the in-line code or
to reference the address of FORTRAN statements. If a statement number appears as a label within
a set of in-line code, then a path error is not issued following a decision type FORTRAN state-
ment. Operand statement numbers are preceeded by a dollar sign "$" and may not contain
embedded blanks. Statement number labels may not contain leading or embedded blanks.

Examples (Valid)

BUC $10 go to statement 10

345 TOA §$11-410 words between 11 and 10
LABEL TMA* §$345+5,1 5 words plus loc $345
20 BLOK 10 10 words
10 TMD $20+2 word 3 of blok 10
TND $10-LABEL+1 size of space
TLO $30 address of statement 30
RETURN
:ASSE
TLO D3
14 BUC *+2 no path error
:END

[=1+1

Examples (Invalid)

TME -$4 negative address
TMA $5+3 statement number 5 undefined
TLO $1AB delimiter
BUC $1 23 space terminates operand field
RETURN
:ASSE
TOA 5
TMA REL
TME D3 (1,2,3)-4
BUC INT
:END
I=1+1 path error

6-3.3.5 Dummy

Dummy arguments provide a means of passing information between a subprogram and the
program that called it. Dummies point to the relative address which contains the address of the
information desired. For details rererence the FORTRAN Compiler General Specification AA61516
"EORTRAN - Callable Assembler Language Programs' section 4-3. Dummy operands may be
address adjusted but not subscripted.

Examples (Valid)

SUBROUTINE TEST (A,1,J,K,B,C)
DIMENSION B(100)

:ASSE

TLO A+4 address of address of B

TMK C address of C in main program

TMA* I contents of I from main prog
*SIMULATE SUBSCRIPTING

TMK J address of J

TMA 4,K same as J(5)

TAM 3,K same as J(4) = J(5)
*NUMBER OF DUMMIES

TOA C-A+1 count of dummies

Examples (Invalid)

TMA A-C+1 negative value
TOE B(3) subscript
TME -1 negative value

6-6

6-3. 3.6 Variable

Variables are data whose values may vary during program execution and which are

referenced with an identifier. Variables may be any of the FORTRAN data types. Symbolic
labels or statement numbers may be used as variables.

Examples (Valid)

TEM ADDR single word

TAM ADDR+1

TMX I double word
Examples (Invalid)

TMA A'4 symbol syntax

TME B+2 if B not defined

T™I C(1) if not dimensioned

Note that under VULCAN, new variable names are immediately allocated. Thus if it is

desired fo create some special data structure within a variable, then it should be set up within the
in-line code before its first reference. For example:

:ASSEMB
ABC DATA 1,2,3,4,5
55 TMR ABC is valid, but
:ASSEMB
TMR ABC
BUC $56
ABC DATA 1,2,3,4,5 is not valid

6-3. 3.7 Function Results

Within a function the identifier of the function subprogram is treated as though it were
a scalar variable and must be assigned a value. The value returned for a function is the last one
assigned to its identifier nrior to the execution of a RETURN statement.

Examples (Valid)
FUNCTION DIFF (A,B,C)

:ASSE
TDM DIFF double word
TLO DIFF address of result
TMA DIFF first word of result
Examples (Invalid)
TAM DIFF+1 not defined
TME DIFF(3) not dimensioned

6-3. 3.8 External Requests

An external request instructs the Link Loader to search a library for the desired name
and load the named module. An unconditional external request is indicated by a dollar sign ($)
followed by a symbolic label. External labels may not be address adjusted.

Examples (Valid)

DAC $FSADD address of FSADD
TMA* $A*. B,I contents indexed
BAC $EXIT,2 byte external

Examples (Invalid)

TLO 5+$A
TIM $B+3
TMA $A-$B

DAC $3ABC

6-3.4 Absolute Constants

address adjusted
delimiter
delimiter

not frue symbolic

Absolute constants in the operand field indicate that the integer constant (octal or
decimal) is to be used as the operand address. The resultant value must be positive.

Examples (Valid)

TMA 5
TME '10

Examples (Invalid)

TAM =5

TMI 3.2
DAC 5-6
TME 2B1

TMA 12345678962573418

TME 18

6-3.5 Address Arithmetic

absolute location 5
absolute location '10

neg address
not integer
neg address
not numeric
too big

not all octal

Any combination of the current location (*), symbolic labels, statement numbers, or
absolute constants may be joined bg the plus (+) or minus (-) operations to define and address.

Symbolic labels and statement num

ers must have been defined before address adjustment is

allowed with the desired items. Such a combination is referred to as an "operand expression'.

The mode of an operand expression is relative if the number of plus and minus signs
preceding the relative labels (current location "*" included) are not equal. Otherwise, the mode

of the operand expression is absolute.
Examples (Valid)

A TMA A+5

B TOA B-A

C TMA D3(1,2,31+6
TMA B-A + C

Examples (Invalid)

A . TMA -A-5

B TOA A-B
TOA D3(1) - D3(2)
TME A-100

relative
absolute
relative
relative

negative
negative
negative
if negative

6=3.6 Indexed Address Reference

An operand address may be appended with an index reference by placing a comma (,)
in the column to the immediate right of the operand address and following the comma with the
index specification (I, J, K). For the details of the hardware indexing scheme refer to
Series 6000 REFERENCE MANUAL DC 6024 COMPUTER SYSTEM.

Examples (Valid)

TMA 0,K frue address in K
TME 51 I+ 5 locations
T™MI D3(1,2,3),J array indexed

Examples (Invalid)

TMA AH H not an index
TME B, ~J Syntax
™I C,1 1 not an index

6-3.7 Text

Alphanumeric text may be used as an operand by the use of leading and following -
quotation marks (".."). The text is right-justified in the instruction operand and any unused
portion of the operand is zero filled. Text operands may not be used with address arithmetic.

- Up to two characters of text may be entered. The first text character may be any valid character.
The second optional text character may be any character except a quote symbol.

Examples (Valid)

TOA “AB" AB

COB nn quote symbol
TOE AN blank A
TOA i quote comma

Examples (Invalid)

TOA "ABC" too many characters
TOA AN delimiter

TOE "B delimiter

CcosB "C"+ 5 Syntax

6-3.8 Literal

A literal is indicated by an equal sign (=) as the first character of the operand field,
followed by a data or logical constant (reference DATA Section 2-3) to be assigned a nonprogram
location and pemits the address of that assignment to be used as the operand address.

The expression mode of a literal is relative.

If the machine representation of a constant is more than one word, the assigned address
of the first word is used as the operand address. Any identical constants of the same type of either

FORTRAN or in-line origin which require at least one full computer word are assigned the same
location.

Any memory reference instruction using a literal may not be appended with an indirect,
index or address adjustment.

Examples (Valid)

TMD =12, 5D-10 double word
TLO =(3.0, 5.0) complex 4 words
TMA =1 one word

TME =. TRUE. logical

Examples (Invalid)

TAM =5 to memory

TMA =3+6 address adjusted
TLO =L ABEL symbol

TMA* =2 indirect

TME =3,K indexed

6-3.9 FORTRAN External

Symbols defined by a FORTRAN EXTERNAL statement are permitted as in-line operands
as outlined in this document under the topic of "Symbolic Labels - External Request".

6-3.10 Memcry Referencing Boolean Instructions (Bit - Processor)

Some of the bit-processor instructions require two operand fields separated by a comma.
The second operand field must be numeric and comply with the requirements of each operation
code. The operand requirements of the field sizes modes are listed in the Appendix of the Macro
Assembler General Specification AA61649. ' :

Examples (Valid)

DMH 1,1 and memory with H
QBM 19,2 query bit of memory

Examples (Invalid)

QBM LABEL relative

6-4 PSEUDO -OPERATIONS

6-4.1 Scope

This section describes the pseudo-operations that are processed by the in-line extention

of FORTRAN IV extended compiler.

6-4.2 RORG (Relative Origin)

The RORG pseudo-operation sets the next instruction's program location to the contents
of the absolute or relative expression in the operand field. If a symbolic label or a statement
number is present, it is assigned the value of the operand expression. If symbolic labels or state-

ment numbers are present in the operand expression, they must have been previously defined. If
an operand error is encountered a no operation instruction replaces the RORG pseudo-operation.

Examples (Valid)

RORG 5 relative five

RORG ARRAY (1,1,1)

RORG LABEL

RORG *-5 if not negative

RORG ARRAY(101)-ARRAY(1) rel 20010
Examples (Invalid)

RORG -5 negative

RORG 40000 too big

RORG $EXTRN external

6-4.3

This pseudo-operation reserves a block of storage (n locations).

BLOK (Reserve Memory)

(n = the value of the

absolute expression in the operand field.) If a symbolic label or statement number is present in

the tag field, it is assigned the first location in the block.
bers are present in the operation expression, they must have been previously defined.

If symbolic labels or statement num-
If an

operand error is encountered, the BLOK pseudo-operation code is replaced with a no operation

instruction.

Examples (Valid)

BLOK 10 octal 12 words
BLOK $11 -¢$10 if defined
BLOK ARRAY 2 - ARRAY 1 size * type

Examples (Invalid)

BLOK -10 negative
BLOK LABEL relative
BLOK $SIN external
BLOK 40000 too big

6-4.4 DATA

The DATA pseudo-operation operand field may contain any number and combination of
the data constants defined in the following paragraphs.

If more than one item is present (items are separated by commas), they are assigned
sequential memory locations. If a symbolic label or statement number is present, it is assigned
the location of the first data item. There is no relationship between the FORTRAN typing of a
symbolic label assigned to a DATA pseudo-operation and the operand field supplied by the user.
In-line constants are coded in the same format as FORTRAN constants. Identical constants yield
identical internal representation.

6-4.4.1 Single Integer

A single integer data constant consists of an optional sign (+ or =) and 1-7 decimal digits.

Single integer constants are contained in one computer word. The magnitude of an integer constant
must not exceed 8,388,607. .

Examples (Valid)

INT DATA +428 typed integer
REL DATA 1 fKe label REL is typed real

6-4. 4,2 Single-Precision Real

A single-precision real data constant consists of an optional sign (+ or =), 1ormore decimal
digits of whichonly 6+ most significant digits are retained, a decimal point, and followed by an
optional decimal exponent. The exponent follows the numeric value and consists of the letter E
followed by a signed or unsigned integer that represents the power of ten by which the numeric
value is3§o be multiplied. The magnitude of the range of real numbers is cgout 2. 94X10-39 to
1.7X109°, A single-precision real constant is contained in two computer words.

Examples (Valid)

INT DATA 3.14 the label INT is typed integer
REL DATA 17E5 typed real
DATA -3. 2E-10 not labeled

6-4. 4.3 Double-Precision Real

A double-precision real data constant consists of an optional sign (+ or =), 1 or more
decimal digits of whichonly the 11+most significant digits are retained, a decimal point, and
followed by an optional decimal exponent. The exponent follows the numeric value and consists
of the letter D followed by a signed or unsigned integer that represents the power of ten by which
the numeric value is to be multiplied. The magnitude of the range of real numbers is about
2. 94X10-39 to 1.7X1038, A double-precision real constant is contained in two computer words.

Examples (Valid)

INT DATA 3.14Dg the label is typed integer

REL DATA 17D5 typed real

*THE FOLLOWING EXAMPLE CONSISTS OF SIX WORDS UNLABELED
DATA -3.2D-10, 3.7D5, 4.6D-6

6-12

6-4.4.4 QOctal Constants

An octal constant is designated by an apostrophe (') followed by 1 to 8 octal digits (0-7).
Octal constants which are less than 8 digits are right justified in the 24-bit computer word with
leading zeros.

Examples (Valid)

INT DATA '77 typed integer

REL DATA 12345670 typed real

*THE FOLLOWING EXAMPLE CONSISTS OF FOUR WORDS UNLABELED
DATA '1, '3, '47, '256

Examples (Invalid)

DATA '-3 negative
DATA '384 the digit 8 is not octal
DATA 1123456712345 too many digits

6-4.4.5 Logical Constants
Logical constants may assume either of two forms:

. TRUE. which is equivalent to a DATA -1
or
. FALSE. which is equivalent to a DATA @

These forms have the logical values "true" and "false", respectively.

Examples (Valid)

DATA . TRUE. -1
DATA . FALSE. 0
DATA . TRUE., . FALSE. -1,0

6-4,4.6 Complex

Complex constants are expressed as an ordered pair of constants enclosed in parenthesis
in the form (a, b), where a and b are signed or unsigned real constants. The complex constant
(a, b) is interpreted as meaning a+bi, where i is equal to the square root of -1. A complex con-
stant is contained in four computer words.

Examples (Valid)

COMPLEX REL

:ASSE

INT DATA (1.34,52.01) typed integer

REL DATA (98344. ,0. 34E+02) typed complex

*THE FOLLOWING EXAMPLE CONSISTS OF 12 WORDS UNLABELED
DATA (1.0,2.0),(-1.0,-1000.),(3E7,4E-6)

:END

6-13

Revision B
January, 1976

Neither part of a complex constant may exceed the value limits established for real
data.

6-4.4.7 Hollerith

A Hollerith constant takes the form:

nHs or 3! et

or 's

where:
s is a Hollerith string. Note that blanks are significant in Hollerith strings.

n is an unsigned integer specifying the number of characters in the string. The maximum
number of characters per statement is 55,

The data are packed as three 8-bit ASCII characters per word, left justified and blank
filled. Each DATA Hollerith string begins with a new word. See Section 2-3, Literal Constants

for a more complete description.

6-4.4.8 Truncated Text

Truncated text may be used as a data constant. Truncated text is packed 4 characters
per word, left-justified, blank filled. A truncated text constant may generate one or more
words depending on the text string length. The format of a truncated text constant is:

T "string"

Examples (Valid)

DATA T"A"
DATA T"THIS IS A LONG TEXT STRING"

6-4.4.9 Binary

A binary data constant is designated by one or more bit specifications of the form: Bn,
where "n" is the unitary bit position (0 thru 23) that is to be set on.

Examples (Valid)

DATA BO
DATA BOB1B2, B23B22B21

6-4,5 DAC

The DAC pseudo-operation is considered as a 16-bit memory reference instruction,
however, any indirect or index specifications are placed in bit positions 21 through 23 to conform
to the indirect memory reference format as defined in the Series 6000 Computer System Reference

Manual.

Revision B
January, 1976

Examples (Valid)

INT DAC $10 the address of statement number 10
REL DAC TABLE,1I
DAC * the address of this word
ARRAY(1,2,3)
DAC SANGLE external address

6-4,6 BAC

Refer to the Macro Assembler General Specification AA61649 Section 4-25, Pseudo-
Operations BAC, :

6-4,7 ***
This pseudo-operation reserves one word of storage, which is set to zero.

The pseudo-operation is considered as a 15-bit memory reference instruction containing
an operation code of '00, which may be appended with indirect and index references.

Examples (Valid)

727 TABLE
177* TABLE+5,1

6-4.9 Octal Operation Code

An octal operation code is indicated by using an apostrophe (') as the first character of
the opcode and following it by a two-digit octal constant. An octal operation code is processed
as 15-bit memory reference instruction and must include an operand. The operation code may
be appended with indirect or indexed references.

Examples (Valid)

'24 ALPHA+10
'24* BETA,I

Examples (Invalid)

'38 ALPHA 8 is not an octal digit
'4 BETA operation is not two digits
123 BETA+1 operation is more than two digits

6-4.10 REEN (VULCAN compiler only)

The REEN pseudo-operation is used if in-line code is used, but the re-entrancy of the
FORTRAN program has not been violated. A REEN load code is normally output by the compiler
if no in-line code is present, or if a REEN pseudo-op is encountered someplace within "in-line"
code. For a further discussion of "REEN", see the MACRO Assembler General Specification
AA61649,

6-15

Revision B
January, 1976

6-4.11 PORG (VULCAN compiler only)

The PORG pseudo-operation is used to switch the location counter mode to the PORG
or data area mode. This mode is used for instructions or data which may be modified by the pro-
gram during execution. The format of the pseudo-op is the same as for the RORG pseudo-op. To
return to the instruction location counter mode, the RORG pseudo-op is used. For a further
discussion of "PORT", see the MACRO Assembler General Specification.

6-4,12 PDATA (VULCAN compiler only)

The PDATA pseudo-operation is used to temporarily switch the location counter mode to
the PORG mode. If the current location mode is already POR'G, then this pseudo-op is identical
to the DATA pseudo-operation. Othe rwise, the PDATA pseudo-op is equivalent to the following
sequence of operations:

PORT *
DATA ..
RORG *

6-4.13 PBLOK (VULCAN compiler only)

The PBLOK pseudo-operation is used to temporarily switch the location counter mode to
the PORG mode. If the current location mode is already PORG, then this pseudo-op is identical
to the BLOK pseudo-operation. Otherwise, the PBLOK pseudo-op is equivalent to the following
sequence of cperations:

PORG *
BLOK “ o
RORG *

6-4,14 RDAT

The RDAT pseudo-operation is used to generate a string of data constants a specified
number of times. The format of this pseudo-op is:

RDAT X (CyCyCs...C)
where X is a positive integer constant indicating how many times the following constant
list is to be repeated. Each C; is a constant which may be of any form that is allowed with the
DATA pseudo -operation.

Examples (Valid)

RDAT 5(0)
RDAT 10(. TRUE. ,'A',BOB5)

6-4.15 PRDAT (VULCAN compiler only)

The PRDAT pseudo-operation is used to temporarily switch the locaticn counter mode to
the PORG mode. If the current location mode is already PORG, then this pseudo-op is identical
to the RDAT pseudo-operation. Othervise, the PRDAT pseudo-op is equivalent to the following
sequence of operations.

Revision B
January, 1976

PORG *
RDAT “ ..
RORG *

6-5 COMPILE-TIME AND RUN-TIME OPTIONS
6-5.1 Scope
This section describes the in-line facility for listing control, messages and diagnostics.
6-5.2 List Control
See Section 1II, FORTRAN Diagnostic Messages - Compile-Time and Run-Time Options.
Exception to option B5S set.

At compile time, the code generated by the in-line extension is output to the list out
device along with the in-line statements.
The in-line generated output format is:

AAAAA B ccccecccce

where AAAAA is the relative address of the generated operation or pseudo-operation code,
B is the link loader code (refer to Link Loader documentation), and cccccccc is the link loader
load word.

6-5.3 Compile-Time Options
See Section III, FORTRAN Diagnostic Messages - Compile-Time and Run-Time Options.
NOTE

External requests are not converted to the double
precision mode when OPTION B4 is set. However,
DATA constants are converted to the double pre-
cision format.

Examples
BLL $SIN not converted to DSIN
BLL COS new scalar name COS
DATA 3.60E0 converted to double type

6-5.4 Run-Time Options

Reference the desired operating system.
6-5,5 Error Codes and Messages

All diagnostics associated with the rules ot in-line coding produce warning messages.
Even though the message may begin with the word "ERROR" an abort code is not issued to the

loader. The stringing of the load address of undefined identifiers is maintained where possible
by the use of a relative no operation instruction and the undefined identifier as the operanc.

6-16A

The following supﬁlementcl diagnostics apply to specific in-line code violations. = Other
diagnostics may appear within a set of in-line coding due to system violations or being superseded
by a FORTRAN 1V violation.

Error
Number Message Cause

1 INVALID OPERATOR a) Invalid computer instruction mnemonic or pseudo-
operation code.

b) Octal operation code has incorrect number of
digits, should be ftwo.

¢) Indirecting or Indexing a literal constant.

2 INVALID CONSTANT An arithmetic address adjustment is not an integer.

3 INVALID SYNTAX a) Invalid mode of operation expression.
b) Incorrect number of operand fields.

) Identifier construction error.

) Literal constant as a variable.

e) Negative resultant operand.

f) No operand or indirecting or indexing expected.

g) Magnitude of Operand to large.

h) Text as relative expression.

i) Text construction error.

4 MISSING OPERAND a) Operand missing or not beginning in column 15,
b) Index not I, J, or K.

6 INVALID STATE- a) Duplicate statement numbers.
MENT NUMBER b) Multiply defined identifiers.

10 SUBSCRIPT USAGE a) Incorrect number of subscripts.

b) Not positive integer constants.

11 INVALID STATEMENT Incorrect ordering of ":" control statements.

12 PARENTHESIS a) Literal constant not complex.
b) Incorrect subscript construction.

c) Data constant not complex.

13 MIXED MODES a) Address adjusted undefined identifier.
b) Address adjusted external request.

c) Multiple undefined identifiers in an expression.

6-17

Error

Number L Message Cause
14 INVALID DELIMITER a) Consecutive delimiter.

b) Undefined identifier, literal constant, external,
text, or undefined statement number not followed
by a blank or comma.

¢) Embedded blank in an operand expression.

d) Operand exceeded column 72 and incomplete at
column 72,

e) Dummy array subscripted.

f) Missing comma in two operand expression.

17 INVALID ITEM USAGE a) An identifier is used where a constant is expected.
b) FORTRAN EXTERNAL identifier as a variable.

c) Byte external second operand greater than two.

30 STATEMENT ORDER FORTRAN specification statement following an

in-line statement,

31 NO PATH TO HERE No label or statement number following (not
necessarily immediately) a FORTRAN logical path
for execution. Reference this document Miscellan-
eous - Path diagnostic.

6-5.6 Run-Time Diagnostics

Reference the desired operating system.
6-6 MISCELLANEOUS

6-6.1 Scope

This section describes several items which are unique to the operation of the in-line
coding.

6-6.2 DO Termination

FORTRAN DO statements may terminate within an in-line section. However, extra code
is generated after the processing of the in-line statement. If the in-line statement is a pseudo-
operation instruction such as a BLOK, then the user must provide for a logical path of execution.
Neither the contents of the condition register nor the A Register are preserved.

Example (Valid)

DO 11=1,10

:ASSE
TMI I 1 to index |

1 AME TARAY(1)-1,1 sum contents of IARAY to E
TEM TANSWR answer

:ENID

Example (with caution)

DO 2 I=1,10,2
:ASSE

TMK I I to index K

AMD RATE(50)-2,K sum five values of rate (X)
*NOTE USE OF A REGISTER
*NOTE DISCONTINUQUS INSTRUCTIONS IN MEMORY
2 BLOK 20 skip 20 memory locations
*THE USER MUST PROVIDE FOR A LOGICAL PATH
* AROUND THE BLOK 20 TO THE DO LOGIC.

6-6.3 Automatic Symbol Assignment

Any symbolic label encountered within the operand expression is declared as having been
properly used by the user and is assigned storage according to its FORTRAN type. These labels
do not appear in the memory map as undefined variables. _

Example (Valid)

:ASSE
*DEFINE AND USE TEMPORARY STORAGE
TDM T$SAVE unique to in-line
. not necessary to
allocate by data or
] any other method.
TMD T$SAVE
:END
Example (Invalid)
:ASSE
*DEFINE AND USE INCORRECTLY
TDM T$SAVE correct
TMB T$SAVE+] undefined address adjusted
*THE ABOVE STATEMENT IS IN ERROR "DELIMITER"
:END

6-6.4 Second Operand Field

The second operand field must be either an index (I, J, or K) or a positive integer.
Reference the individual instruction for the specific format.

6-6.5 Forward Reference Symbols

-Symbolic labels which have not been assigned a memory location are termed as forward
reference symbols. Statements which assign memory locations are the DIMENSION,COMMON,
EQUIVALEKICE, DATA, FUNCTION dummies, and SUBROUTINE dummies. Statement labels
which define a memory location are statement numbers in columns 1-5 of both FORTRAN and
in-line and symbolic Kubels in columns 1-6 of an in-line statement. Since the relative address
of a forward referenced label is not known at compile time the label may not have address
arithmetic.

6-19

Example

DATA A/1.0/
10 B=C
:ASSE
TMD A valid
TMB A+1 valid
TMD B valid
TMB B+1 invalid
BUC $10+2 valid
BUC $11+3 invalid
:END
STOP
END$

6-6.6 Path Diagnostic
The FORTRAN diagnostic message "NOTE 31 xxxxxx NO PATH TO HERE" is issued after

the first FORTRAN statement following a set of in-line code which contains no statement labels
and are not in the logical path for execution by the previous FORTRAN statement.

Example (Valid)

GO TO 10
:ASSE
TMA I statement label may
TNK 5 appear anywhere within
11 TAM J(6), K an in-line set of code
BWK * -
:END

Example (Invalid)

GO TO 10
:ASSE

TMD D this section of code

TDM E is not in a FORTRAN logical
:END path for execution

6-6.7 Statement Function Dummies

Statement subprogram dummies are self contained and are therefore not addressable as
dummy variables.

6-20

Revi.ion C
June, 1976

SECTION VII
HARRIS STRUCTURED - FORTRAN LANGUAGE

7-1 GENERAL

The Harris Structured - FORTRAN language is a superset of the Harris FORTRAN
language. It adds structured programming capabilities to FORTRAN language.

7-2 STRUCTURED PROGRAMS

7-2.1 Scope

This section describes various terms used in this chapter in describing the structure
and execution of structured programs.

7-2,2 Structured - FORTRAN Compiler

The Structured - FORTRAN Compiler processes the Harris Structured - FORTRAN
language. This structured programming extension can be incorporated in any Harris FORTRAN
compiler by setting the FLAG 6 "on" during the assembly of the compiler.

7-2.3 Block-Statements, Boundary-Statements and Exit-Statements

The Harris Structured - FORTRAN language provides additional statements foricon-
structing blocks of a struc tured program with minimum or no use of the GOTO statements and
statement numbers. These additional statements are called block-statements. Block statements
are classified into five groups:

1. Block-IF, WHILE, block-DO, FOR, and LOQOP statements.
2. ENDIF, END WHILE, UNTIL, END FOR, and END LOOP statements.
*3. OR IF and ELSE statements,
**4, EXIT IF, EXIT WHILE, EXIT DO, EXIT FOR, and EXIT LOOP statements.
**5. EXIT IF IF, EXIT WHILE IF, EXIT DO IF, EXIT FOR IF, and EXIT LOOP IF

statements.

Block -statements of groups 1 through 3 are called boundary -statements, Block -statements
of groups 4 and 5 are called exit-statements. '

* The keyword ELSE IF may be used in place of the keyword OR IF.
** The keyword ESCAPE may be used in place of the keyword EXIT.

Revision C
June, 1976

A program unit may contain any number of block-statements, intermixed with other
FORTRAN statements, satisfying the structural and nesting restrictions. Like any other FORTRAN
statement, a block-statement may be assigned a statement label. All block -statements are
executable statements. During execution of a program, control may be transferred to any block-
statement,

7-2.4 Blocks of a Program Unit

A program unit may be viewed as consisting of one or more blocks of statements, placed
one after another and/or one within ariother. Blocks are one of two general classes:

1. A FORTRAN-block or F-block consists of one or more statements, none of which
s a block-statement.

2. A Structural-block or S-block consists of two or more boundary -statements enclosing
other statements.

7-2.5 Range(s) of a S-block

A range of a S-block consists of the executable statements following a boundary -statement
of the S-block up to but not including, the next boundary-statement of the same S-block.

A S-block having N boundary -statements has (N-1) ranges. If a S-block Sy appears
within a range R of another S-block S, the entire S-block S; must be within the range R of the
outer S-block So. A range of a S-block may be empty. A S-block may contain any number of
S-blocks within'its range(s).

7-2.6 Initial -Statements

The first statement of a S-block is always a boundary -statement. A boundary -statement
which is valid as the first statement of a S-block is called an initial statement. An initial-
statement opens a S-block and identifies the block-type of the S-block opened by it. The
Structured - FORTRAN language permits five different initial-statements and correspondingly
there are five block-types available. Boundary-statements of group 1 described earlier in this
section, represent the available initial-statements.

7-2.7 Terminal-Statements

The last statement of a S-block is always a boundary -statement. A Boundary -statement
which is valid as the last statement of a S-block is called a terminal statement. A terminal-
statement closes a S-block. Associated with each block-type there is a different terminal -
statement. ~A Tferminal -statement may be used to close a S-block of associated block-type only.
Boundary -statements of group 2 described earlier in this section represent the available terminal-
statements.

7-2.8 Alternative-Initial-Statements

A boundary -statement which is neither an initial =statement nor a terminal-statement is
called an alternative-initial -statement. Associated with each block-type there are zero or more

Revision C
June, 1976

alternative-initial statements. An alternative-initial-statement may be used as a boundary-
statement for a S-block of associated block-type only. A S-block may have any number of
associated alternative-initial-statements as its intermediate boundary -statements. Boundary -
statements of group 3 described earlier in this section represent the available alternative-initial -
statements.

7-2.9 Exit-Statements

An exit-statement provides means for exiting a S-block or terminating execution of a
S-block. That s, it provides means for transferring control to the statement following the term- |
inal-statement of the S-block. An exit-statement always specifies the block-type of the S-block ¥
to be exited. Associated with each block-type there are two exit-statements: |

1. An unconditional -exit-statement, which provides unconditional exit from the
S-bTock. Block-stafement of group 4 described earlier in this section represent
available unconditional -exitstatements.

2. A condition-exit-statement, which specifies a condition for exit. Block-
stafements of group 5 described earlier in this section represent one availeble
conditional-exit-statements.

An exit-statement, unconditional or conditional, must be within a range of a S-block
of specified block type. A S-block may contain any number of associated exit-statements.
When an exit-statement occurs in a range of more than one S-block, only the innermost S-block
of specified block-type is exited.

7-2.10 S-Blocks and Associated Block Statements
Table 7-1 lists available block-types with associated block-statements.

Table 7-1. S-Blocks and Associated Block-Statements

Alternative-
Initial- Terminal Initial- Exit
Block-type Statement Statement Statements Statement
IF Block-IF END IF OR IF, ELSE EXIT IF
EXIT IF IF
WHILE WHILE END WHILE None EXIT WHILE
EXIT WHILE IF
DO-UNTIL Block-DO UNTIL None EXIT DO
EXIT DO IF
FOR FOR END FOR None EXIT FOR
EXIT FOR IF
LOOP LOOP END LOOP None EXIT LOOP
EXIT LOOP IF

Revision C
June, 1976

Two or more S-blocks may not use the same statement as their boundary -statement.
This is an important difference between S-blocks and FORTRAN DO-loops, where nested DO-
loops may use the same terminal-statement.

Table 7-2 illustrates various terms defined in this section. It shows a portion of a
structured program consisting of two nested S-blocks: a FOR-block enclosing an IF-block. The
type and block-level of each statement in the program is indicated on the right of the statement

The IF-block constitutes the range of the FOR-block. The IF-block has two ranges.
The first range consists of the CALL SUB1(DONE) statement and the conditional -exit-statement.
The second range consists of the CALL SUB2 statement and the unconditional-exit-statement.
Note l:f)hcxf each of the exit-statements specifies a FOR-block for exit and is in the range of the
FOR-block. :

Table 7-2. A Structured Program

Program Statement-Type Block-Level
DIMENSION IDATA(10) FORTRAN -Statement 0
LOGICAL DONE FORTRAN -Statement 0
FOR I=1, 10 Initial -Statement 1

IF(IDATA(I). GT.0) Initital -Statement 2
CALL SUB 1 (DONE) FORTRAN -Statement 2
EXIT FIR IF (DONE) Conditional-Exit-Statement 2

ELSE Alternative-Initial-Statement 2
CALL SUB2 FORTRAN -Statement 2
EXIT FOR Unconditional -Exit-Statement Z

END IF Terminal-Statement 2

END FOR Terminal-Statement 1

Revision C
June, 1976

7-2.11 Block-Level

The block-level of a statement S is defined as the difference between the number of
initial statemenfts from the beginning of the program unit up to and including S, and the number
of terminal-statements in the program unit preceding S.

For a correctly structured and nested program unit, the following restrictions must be
observed:

1. The block-level of every statement must be non-negative.
The block-level of the END statement must be zero.

The block-level of each block-statement must be positive.

Ll S

A block-statement must not be used as the terminal-statement of a FORTRAN
DO-loop or as the object of a FORTRAN logical IF statement.

5. An alternative-initital -statement S, and the nearest preceding boundary+
statement S9, having the same block-level as S} must be valid boundary -
statements for the same block-type. The statements, if any enclosed between
Sy and S, constitute a range of the S-block.

6. An exit-statement must be within a range of a S-block of specified block-type.

7. The block-level of a FORTRAN DO statement and its terminal statement musi‘
be the same.

It must be clear from the definitions of S-block and block-level, that all boundary -
statements of a S-block must have the same block-level.

7-3 BOUNDARY-STATEMENTS

7-3.1 Scope

This section describes the form and execution of boundary -statements cnssocml‘ed with
block-types available in the Structured-FORTRAN Compiler.

7-3.2 IF-Block
An IF-block has the general structure:
BLOCK-IF Statement (Initial -Statement)
. (First-range of the IF-block)
bR IF Statement (Alternative-initial -statement)

(Alternative-range of the IF-block)

Revision C

June, 1976
ELSE Statement (Alternative-initial-statement)
(Last-range of the IF-block)

iEND IF Statement (Terminal -statement)

The IF-block provides means for executing one range out of its one or more ranges.
The range to be executed is selected by making alternative tests in the specified order. The
OR IF and ELSE statements are optional in an IF-block.

7-3.2.1 Block-IF Statement
The block-IF statement has the form:
IF (e)
or
IF (e) THEN
where e is a logical expression.

Execution of a block-IF statement causes evaluation of the logical expression e. If the
value of e is true, normal execution sequence continues and the execution of the first range of
the IF-block begins. If the value of e is false, control is transferred to the next OR IF, ELSE,
or END IF statement that has the same block-level; that is, control is transferred to next boundary -
statement of the IF-block. '

Examples:

IF (MORE) THEN

IF (T. LT. TMAX)

IF (I. AND.J .NE.O) THEN

7-3.2.2 OR IF Statement
The OR IF statement has the form:

OR IF (e)
or
OR IF (e) THEN

where e is a logical expression.

Execution of an OR IF statement causes evaluation of the logical expression e. If the
value of e is true, normal execution sequence continues and execution of the following alterna-
tive range of the IF-block begins. If the value of e is false, control is transferred to the next

OR IF, ELSE, or END IF statement that has the same block-level. That is, control is transferred
to the next boundary -statement of the IF -block.

Revision C
June, 1976

Examples:
OR IF (I. EQ. 2)
ELSE IF (T. GT. TMAX)THEN
OR IF (NEXT)
7-3.2. 3 ELSE Statement
ELSE

Execution of an ELSE statement has no effect. Normal execution sequence continues
and the execution of the last range of the IF-block begins.

7-3.2.4 Termination of Execution of a Range of an IF-block
If execution of the last statement of a range of an IF-block does not result in a transfer |

of control, control is transferred to next END IF statement having the same block-levelas the

first statement following the range. That is, control is transferred to the terminal-statement of
the IF-block.

7-3.2.5 END IF Statement
The END IF statement has the form:
END IF

Executions of an END IF statement does not have any effect. Normal execution
sequence continues.

7-3.2.6 Order of OR IF and ELSE Statements

An IF-block may contain any number of OR IF statements and/or only one ELSE state-
ment having the same block-level as the initial-statement of the IF-block. After an ELSE
statement, an END IF statement having the same block-level must appear before the appearance)
of next OR IF statement having the same block level.

IF-block Example:

Structure-FORTRAN FORTRAN
IF(ICOM. EQ. 'ADD.) THEN IF(ICOM. NE. 'ADD') GOTO2
OP1 = OP1+OP2 OP1=OP1+OP2
OR IF (ICOM. EQ. 'SUB") GOTO 4
OP1 = OP1-OP2 2 IF (ICOM. NE. 'SUB') GO TO 3
ELSE OP1 = OP1-OP2
CALL ERROR GO TO 4
END IF 3 CALL ERROR
' 4 CONTINUE

Revision C
June, 1976

In the above example, statements on the left illustrate o use of the IF-block and state-
ments on the right represent its equivalent in the standard FORTRAN. The exomple computes the
B sum ('ADD' command) or difference (‘SUB' command) of two operands OP1 and OP2, If the com-
mand ICOM is neither an 'ADD' command nor a 'SUB' command, an error condition is detected

and the subrcutine ERROR is called.

| 7-3.3 WHILE-BLOCK
i The WHILE-block has the general structure:
WHILE Statement (Initial -Statement)
(Range of the WHILE-block)
'END WHILE Statement (Terminal -Statement)
The WHILE-block provides means for executing its range repetitively as long as (While)

| the specified condition is true. The test for the condition is made before each execution of the
WHILE-block range. Thus, it is possible that the range of a WHILE-block may not be executed

at all.

§ 7-3.3.1 WHILE Statement
The WHILE statement has the form:
WHILE (e)
where e is a logical expression.
Execution of a WHILE statement causes evaluation of the logical expression e. If the
| value of e is true, normal execution sequence continues and execution of the range of the WHILE -
block begins. If the value of e is false, control is transferred to the statement immediately
d following the END WHILE statement heving the same block-level as the WHILE statement. That
is, control is transferred to the statement following the WHILE-block.

Examples:

WHILE (ICOUNT. NE. 0)

WHILE (. NOT. EOF)

WHILE (T. LE. TMAX)

¥ 7-3.3.2 END WHILE Statement

The END WHILE statement has the form:

END WHILE

Revision C
June, 1976

Execution of an END WHILE statement results in the transfer of control to the nearest
preceding WHILE statement that has the same block-level. That is, control is transferred to the
initial -statement of the WHILE-block.

WHILE-block Example:

Structured-FORTRAN FORTRAN
DIMENSION A(100),LIN K(100) DIMENSION A(100), LINK (100)
SUM = 0. SUM = 0.

NEXT = LSTART NEXT = LSTART
WHILE(NEXT. GT. 0) 1 IF (NEXT.LE.0) GO TO 2
SUM=SUM+A(NEXT) SUM=SUM+A(NEXT)
NEXT=LINK(NEXT) NEXT=LINK(NEXT)
END WHILE 2 GO TO1
CONTINUE

In above example, statements on the left illustrate a use of the WHILE-block and state-
ments on the right represent its equivalent in the standard FORTRAN. The example computes the B
SUM of elements of a linked-list A. Array LINK is used to store the link to the next element in
the linked-list. A zero or negative value for the link indicates the end of the linked-list. Note |
that a test for the end of the linked-list is made before each iteration of the WHILE-block.

7-3.4 DO-UNTIL-BLOCK
The DO-UNTIL-block has the structure:
Block-DO Statement (Initial-statement)
(Range of the DO-UNTIL-block)
UNTIL Statement (Terminal-Statement)
The DO-UNTIL-bléck provides means for executing its range repetitively unti| the
specified condition is true. The test for the condition is made after each execution of the DO-

UNTIL-block range. Thus, the range of a DO-UNTIL-block will always be executed at least
once.

7-3.4.1 Block-DO Statement
The Block-Do statement has the form:
DO

Execution of a block-DO statement does not have any effect. Normal execution
sequence continues and execution of the range of the DO-UNTIL -block begins.

Revision C
June, 1976

7-3.4.2 UNTIL Statement
The UNTIL statement has the form:
IUNTIL (e)
where e is a logical expression.
Execution of an UNTIL statement causes evaluation of the logical expression e. If the
value of e is true, normal execution sequence continues and the DO-UNTIL-block is exited. If
the value of e is false, control is transferred to the nearest preceding block-DO statement that

has the same block-level. That is control is transferred to the initial-statement of the DO~

UNTIL-block.

Examples:

UNTIL (ICOUNT. EG. 0)
UNTIL (EOF)

UNTIL (T. GT. TMAS)

DO-UNTIL-block Example:

Structured-FORTRAN FORTRAN
DATA IBLANK/3H / DATA IBLANK/3H /
DO 1 CALL GETCHR(ICHAR)
CALL GETCHR (ICHAR) IF (ICHAR. EQ. IBLANK) GO TO 1

UNTIL(CHAR. NE. IBLANK)

In the above example, statements on the left illustrate a use of the DO-UNTIL-block
and statements on right represent its equivalent in the standard FORTRAN. The example skips
over leading blanks and gets the next non-blank character from an input buffer. During each
iteration of the DO-UNTIL-block, the next character from the buffer is obtained in ICHAR by
calling the subroutine GETCHR. Next, ICHAR is checked for a blank. If ICHAR is a blank, the
DO-UNTIL block is executed one more time, i.e., the blank is ignored. If ICHAR is not a blank,
the DO-UNTIL-block is exited, i.e., execution continues with the statement following the
UNTIL statement.

7-10

Revision C
June, 1976

7-3.5 FOR-Block
The FOR-block has the structure:

FOR Statement (Initial Statement)
(Range of the FOR-block)

END FOR Statement (Terminal Statement)

The FOR-block is functionally equivalent to the FORTRAN DO-loop.

7-3.5.1 FOR Statement

The FOR Statement has the form:

FOR v=i1,i2,i3

or

FOR v=il,in

where v is a scalar variable of integer type, i1, ip and i3 are scalar variable or con-
stants of integer type. Integers iy and ig must appear. If ig is not present, it is assumed to have
the value 1. :

The FOR statement is similar to the DO-statement of a DO-loop. The DO statement
specifies a statement label to identify the terminal statement of the DO-loop; however, the FOR
statement does not specify any statement label. The terminal-statement of a FOR-block is

always the next END FOR statement that has the same block-level.

Execution of a FOR statement activates the FOR-block and defines the FOR-variable
v with the value of the initial parameter i1 Next, loop-control processing begins.

Examples:

FOR I=1, 10

FOR IVAR =1, J, K
FOR J =1, K, -1

7-3.5.2 LOOP-Control Processing of a FOR-block

Loop-control processing determines if further execution of the range of the FOR-block
is required. If the incremental value i3 is an integer scalar variable or positive integer constant,
the variable v is compared to the terminal value i2. If v'is less than or equal to i2, normal execu- |
tion sequence continues and execution of the range of the FOR-block begins. If v is greater than [§
i2, control is transferred to the statement following the terminal-statement of the FOR -block and
the FOR-block becomes inactive.

7-11

Revision C
June, 1976

K If the incremental value i3 is a negative constant, the variable v is compared with the
| terminal value 2. If v is greater than or equal to i2, normal execution sequence continues. If
B v is less than ig, control is transferred to the statement following the terminal-statement of the

| FOR-block and the FOR-block becomes inactive.

| 7-3.5.3 END FOR Statement
| The END FOR statement has the form
END FOR
Execution of an END FOR statement results in incrementing the value of v by the value
 of incremental value i3. Next, execution continues with the loop-control processing of the

FOR-block.

The value of the variable v may not be modified within the range of the FOR-block.

‘ 7-3.5.4 Transfer Into the Range of a FOR-block

The control may be transferred into the range of or to the terminal statement of an
§ active FOR-block only.

FOR-block example:

Structures-FORTRAN FORTRAN
DIMENSION A(10, 10) DIMENSION A(10,10)
FOR I=1,9 DO 1 I=1,9

11=I+1 I =11
FOR J=I1, 10 DO 1 J=I1, 10
TEMP = A(L,J) TEMP = A(L,J)
A(1,J) = A(J,T) A (1,J) = A(J,T)
A(J,I) = TEMP A(J,]I) = TEMP
END FOR 1 CONTINUE
END FOR

In cbove example, statements on the left illustrate a use of the FOR-block and state -

ments on the right represent its equivalent in the standard FORTRAN. The example computes
the transpose of a 10X10 by matrix A. Note that two separate END FOR statements are required
to close two FOR-blocks: the first END FOR statement closes the inner FOR-block with J as its
loop—k:/lariable and the second END FOR statement closes the outer FOR-block with I as its loop-
§ variable.

Revision C
June, 1976

7-3.6 LOOP-BLOCK
The LOOP-block has the structure:

LOOP Statement (Initial =Statement)

(Range of the LOOP-block)

END LOOP Statement (Terminal-Statement)
There are two types of LOOP-blocks:

1. A Finite~-LOOP-block specifies the number of times its range is to be executed.

2. An Infinite-LOOP-block does not specify the number of times its range is to be
executed. The range of an infinite LOOP-block is repetitively executed until
the LOOP-block is exited.

7-3.6.1 LOOP Statement
The LOOP statement has the form:
LOORP (i)
or
LOOP

where i is a scalar variable or constant of integer type. It is called the iteration count |
specification.

The first form of the LOOP statement identifies a Finite-LOOP-block; the second form
identifies an Infinite~-LOOP-block.

Execution of the LOOP statement of a Finite-LOOP-block initializes the iteration §
count for the LOOP-block to the value of the iteration count specification. Next, loop-control |}
or processing begins. ' ‘

Execution of the LOOP statement of Infinite-LOOP-block does not have any effect.
Normal execution sequence continues and execution of the range of the LOOP-block begins.

Examples:
LOOP
LOOP (100)

LOOP (I)

Revision C
June, 1976

R 7-3.6. 2 Loop-Control Processing of a Finite~LOOP-block

Loop-Control processing determines if further execution of the range of the Finite-
LOOP-block is required. The iteration count is tested. If the iteration count is positive,
execution of the statement immediately following the LOOP statement begins. If the iteration
8 count is not positive, the LOOP-block becomes inactive and control is transferred to the state-
ment immediately following the next END LOOP statement that has the same block-level. That
is, control is transferred to the statement following the Finite~-LOOP-block.

l 7-3.6.3 END LOOP Statement
The END LOQOP staftement has the form:
END LOOP

: Execution of an END LOOP statement of a Finite-LOOP-block results in the decrement-
f ing of its iteration count by one. Next, execution continues with the transfer of control to the
§ loop-control processing of the same loop-block.

‘ Execution of an END LOOP statement of an Infinite~LOOP-block results in the transfer
¥ of control to the statement immediately following the nearest preceding LOOP statement. That
is, control is transferred to the initial -statement of the Infinite-LOOP-block.

I. 7-3.6.4 Iteration Count Specification of a Finite-LOOP-block

The iteration count specification i of a Finite-LOOP-block is used to establish the
iteration count of the LOOP-block. If i is an integer scalar variable, a change in its value
| does not affect the remaining iteration count of the associated active Finite-LOOP-block.
Similarly, the decrementing of the iteration count during execution of the END LOOP statement
does not affect the value of the associated i.

7-3.6.5 Transfer into the Range of a LOOP-block

Control may be transferred into the range of or to the terminal statement of an active
l Finite-LOOP-block only. There are no restrictions on the transfer of control to any executable
l statement in an Infinite-LOOP-block.

Finite-LOOP-block Example:

Structured-FORTRAN FORTRAN
NCNES =0 NONES =0
LOOP (24) DO 1 I=1,24
I.SBIT= IVAL. AND. 1 LSBIT = IVAL. AND. 1
NONES = NONES+LSBIT NONES = NONES+LSBIT
IVAL= IVAL. SHIFT. -1 IVAL = IVAL. SHIFT. -1
END LOOP 1 CONTINUE

Revision C
June, 1976

In above example, statements on the left illustrate a use of the Finite~-LOOP-block
and statements on the right represent its equivalent in the Harris standard FORTRAN. The
example computes the number of 1's in the binary representation of a number IVAL, The LOOP-
block is iterated 24 (the word-length in a series 6000 machine) times. During each iteration of
the LOOP-block, the following sequence takes place:

1. The Is count NONES is incremented by an amount equal to the least significant
bit (0 or 1) of the current representation of IVAL.

2. The number IVAL is shifted to the right by one bit position.

7-4 EXIT STATEMENTS

7-4.1 Scope

This section describes the form and execution of exit-statements.

7-4,2 Unconditional-exit-Statements
An unconditional-exit-statement has the form:
EXIT type
where type is one of five block types:
IF, WHILE, DO, FOR, or LOOP.
Execution of an unconditional -exit-statement results in the transfer of control to the
statement following the next terminal statement of specified block-type. That is, the innermost
S-block of specified block-type enclosing the unconditional-exit-statement is unconditionally

exited.

A S-block may contain any number of associated unconditional-exit-statements. Each
unconditional -exit-statement must be in a range of a S-block of specified block-type.

Examples:
EXIT IF

EXIT FOR
EXIT DO

7-4.3 Conditional-exit-Statement
The conditional -exit-statement has the form:
EXIT type IF (e)

where: type is one of five block types: IF, WHILE, DO, FOR, or LOOP, e is a
logical expression.

Revision C
June, 1976

‘ Execution of a conditional-exit-statement causes evaluation of the logical expression
| e. If the value of e is true, control is transferred to the statement following the next terminal-
| statement of specified block-type. That is, the innermost S=block of specified block-type is

| conditionally exited. If the value of e is false, normal execution sequence continues.

; An S-block may contain any number of associated conditional-exit-statements. Each
§ conditional-exit-statement must be in a range of a S<block of specified block-type.

Examples:

EXIT WHILE IF (I. LE. 0)
EXIT FOR IF (T. GT. TMAX)
EXIT LOOP IF (DONE)

Exit-Statement Example:

Structured-FORTRAN FORTRAN
LOOP
READ, NUM 1 READ, NUM

EXIT LOOP IF (NUM. LE. 0)
CALL SEARCH(NUM,MOCE)
IF (MODE. LE. 0)

IF(NUM, LE.0) GO TO 3
CALL SEARCH(NUM,MODE)
IF(MODE.GT.0) GO TO 2

CALL ERROR CALL ERROR
EXIT LOOP GO TO 3
ELSE 2 CALL PROCES
CALL PROCES GO TO 1
END IF 3 CONTINUE
END LOOP

; In above example, statements on the left illustrate a use of exit-statements and state-

l ments on the right represent its equivalent in the standard FORTRAN. The example contains two
! S-blocks: a LOOP block enclosing an IF-block. The LOOP-block contains two exit-statements
} in its range: a conditional-exit-statement and an unconditional-exit-statement. The uncon-

§ ditional-exit-statement also occurs in a range of the inner IF-block. During each iteration of
the LOOP-block, a number NUM is read from the input device. A non-positive value for NUM
signals the end of input data and the LOOP-block is exited. This is achieved using a conditional-
exit-statement., If NUM is positive, the subroutine SEARCH is called to locate NUM in the

§ data-base. The result of the search is returned in MODE. A non-positive value for NUM
indicates that NUM is absent in the data-base. This causes an error condition and the subroutine
| ERROR is called to process the error. After return from ERROR, the LOOP-block is exited using

| an unconditional-exit-statement. If NUM is present in the data-bose, the subroutines PROCES
is called to process the data base. Next, the LOOP-block is iterated for a new value of NUM.

Revision C
June, 1976

7-5 INDENTED LISTING

The Structured=FORTRAN Compiler provides a compile-time option to produce indented §
listing of a structured program. If the INdented listing or B18 (DMS/DOS/TOS/ROS) or "P"
(VULCAN) option is "on" at compile time, source statements are automatically indented in the
source listing produced by the compiler., The indentation of a source statement is defined as the
number of columns by which columns 7-72 of the statement are shifted to the right in the source
listing. The indentation is determined as follows:

1. The indentation of a comment line, an in-line control statement, an in-line
assembly statement, or a skipped statement is zero.

2. The indentation of a boundary -statement is proportional to its block-level minus
1, i.e.,

Indentation = 3* (block-level -1)
Columns 73-80 of such a statement are omitted in the indented listing.

3. The indentation of an exit-statement or a normal FORTRAN statement is propor -
tional to its block-level, i.e.,

Indentation = 3* block-level
Columns 73-80 of such a statement are omitted in the indented listing.

4, The indentation of a continuation line is same as the indentation of its initial
line. Columns 73-80 of a continuation line are omitted in the indented listing.

If the INdented listing option is "on" at compile time, the following conditions prevail:

1. The source line sequence number is placed on the left of the line regardless of
the value of the SEquence numbers on the left or B21 (DMS/DOS/TOS/ROS) or
"N" (VULCAN) option.

2. The continuation character (column 6) of a continuation line is replaced with a
plus sign (+).

3. Adot (.) is placed as an indentation-indicator in every third column, starting
from the first column, of the indentation space of an indented line.

4, The maximum indentation of any source line is limited to 39 columns. A source
line having greater indentation is listed with an indentation of 39 columns. It
must be noted that, however, there is no upper limit on the nesting depth of

S-blocks.

5. Blank statements are processed as normal FORTRAN statements regardless of the
value of the IGnore blank statements or B16 (DMS/DOS/TOS/ROS) or "B"
(VULCAN) option.

7-17

Revision C
June, 1976

Comment lines may not oe inserted between an initial line and its first continuation
line or between two continuation lines. That is, comment lines cre treated as
statement separators,

If the DEbug statement compilation or B15 (DMS/DOS/TOS/ROS) or "D" (VULCAN)
option is "off" at compile time, debug statements are treated as statement separators.

If the OBject listing or B5 (DMS/DOS/TOS/ROS) or "O" (VULCAN) option is
"on" at compile time, the listing of the code generated for a statement will appear
before the listing of the statement.

Listings of a program with the INdented listing option "on" and "off" are shown in

Figure 7-1.

7-6 COMPILE-TIME DIAGNOSTICS

The Structured-FORTRAN compiler performs an extensive error checking of structured

programs.

In addition to normal diagnostic messages issued by the compiler, the following two

compile-time diagnostic messages apply only to programs using structured programming extensions:

1.

The FORTRAN Diagnostic Message
ERROR 40 xxxxxx STRUCTURALLY INVALID STATEMENT

is issued by the compiler whenever a block~statement violotes any of the nesting
restrictions discussed earlier in the section. A structurally invalid statement
produces a fatal error condition; however, it does not affect the structure of the

program.
The FORTRAN Diagnostic Message
ERROR 41 bbbbb: BLOCK OPENED AT LINE nnn IS NOT CLOSED

is issued by the compiler whenever a S-block is not closed before an END
statement is encountered for the program unit. In the message:

bbbbb specifies the type of the S-block, i.e., IF, WHILE, DO,
FOR, or LOOP, and ‘

nnn specifies the source line number for the initial-statement of
the S-block.

A separate diagnostic message is issued for every S-block, starting from the outer-
most S-block and moving down to the innermost S-block, remaining open at the end.

7-18

— b s
W= C TN N LN -
65 es 06 8¢ Ss 04 se ee e os ee ee o8

-—
=
s

152

-
o
.

172

OO0

[ol

SUBROUTINE MATMUL(A,B,C,M,N,P)

INTEGER P

DIMENSION A(M,N),B(N,P),C(M,P)

FOR I=1,M

FOR K=1,P
SUM=0.
FOR J=1WN

END FOR
C(I,K)=SUM
. END FUR

e o SUMESUM+A(I,J)*B(J,K)

AN EXAMPLE OF "INDENTED LISTING" OPTION

LISTING WITH "INDENTED LISTING" OPTION "ON"

AN EXAMPLE OF "INDENTED LISTING"

SUBROUTINE MATMUL(A,B,C,M,N,P)
INTEGER P

DIMENSION A(M,N),B(N,P),C(M,P)
FOR I=1,M

FOR K=1,P

SumM=0.

FOR J=1,N
SUM=SUM+A(1,J)*B(J,K)

END FOR

C(I,K)=8uUM

END FOK

END FOR

RETUKN

END

OPTION

LISTING WITH "INDENTED LISTING" OPTION "OFF"

Figure 7-1. Indented Listing

7-19

Revision C

June, 1976
MATMUL
MATMUL
MATMUL

MATMUL 1
MATMUL 2
MATMUL 3
MATMUL 4
MATMUL S
MATMUL 6
MATMUL 7
MATMUL 38
MATMUL 9
MATMUL 10
MATMUL 11
MATMUL 12
MATMUL 13
MATMUL 14
MATMUL 15
MATMUL 16
MATMUL 17

	0001
	0002
	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-22a
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-42a
	2-43
	2-44
	2-44a
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	2-51
	2-52
	2-53
	2-54
	2-55
	2-56
	2-57
	2-58
	2-59
	2-60
	2-61
	2-62
	2-63
	2-64
	2-65
	2-66
	2-67
	2-68
	2-69
	2-70
	2-71
	2-72
	2-73
	2-74
	2-75
	2-76
	2-77
	2-78
	2-79
	2-80
	2-80a
	2-81
	2-82
	2-83
	2-84
	2-85
	2-86
	2-87
	2-88
	2-89
	2-90
	2-91
	2-92
	2-93
	2-94
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-16a
	6-17
	6-18
	6-19
	6-20
	6-22
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20

