AA61649-00

SERIES 6000
MACRO ASSEMBLER

GENERAL SPECIFICATION

July, 1972

Datacraft Corporation
1200 N. W. 70th Street P.Q. Box 23550 Fort Lauderdale, Florida 33307 (305) 974-1700

LIST OF EFFECTIVE PAGES

TOTAL NUMBER OF PAGES IN THIS PUBLICATION 1S 45
CONSISTING OF THE FOLLOWING:

Page Change Page -Change Page Change

No. No. No. No. No No.
Title Original
A Original
i thru ii Original
1-1 Original
2-1 thru 2-2 Original

]

1 thru 3=5 Original

1 thru 4-13 Original
5-1 thru 5-5 Original

1 thru 6-3 Original
7-1thry 7-3 Original
A-1 thru A-9 Original

Upon receipt of the second and subsequent changes to this technical document, personnel
responsible for maintaining this publication in current status will ascertain that all previous
changes have been received and incorporcied. Action should be taken promptly if the
publication is incomplete.

Datacraft Corporation

Section

1

11

11

v

CONTENTS

Page
INTRODUCTION
1-1 Scope of Specification « -« - - . v o oL oL oL 1-1
1-2 General Descri pﬁon 1-1
SOURCE LANGUAGE FORMAT
2-1 Scope s e e e e .. 2-1
2-2 Label Field (Columns 1-7) oo it 2-1
2-3 Operation Field (Columns 9-12) I |
2-4 Operand and Comments Field (Columns 15-72) 2-1
2-5 Sequence Field (Columns 73-80) 2-2
OPERAND FORMATS
3-1 Scope ... 3-1
3-2 Current Location (*) - -« -« c o o i it it i e e e e 3-1
3-3 Symbolic Labels: - « v v v it e e e e e e e e e e e e e . 3-1
3-4 Absolute Constants « - « + v v v i e i i e e e e e e e e e e e e e e e e 3-1
3-5 Address Arithmetic . « « « v v v i i i i i e e e e e e e e e e e e e e 3-1
3-6 Indexed Address Reference e et e et e e m e e e 3-2
3-7 TOXt ¢ v v v e 3-2
3-8 Literal Address « « « v v ot e e e e e e 3-2
3-9 External Request « - - . o o o v it i e e 3-3
3-10 External Equivalence Request e e 3-3
3-11 Memory Referencing Boolean Instructions (Bit Processor) - - 3-4
PSEUDO-OPERATIONS
4-1 Scope ... 4.1
4=2 AORG: « e e 4-1
4-3 RORG v vt e v e et e e e e e e e e e 4-1
Bod BLOK « v v oot e e e 4-2
4-5 EQIV « v vttt e 4-2
46 FORM: v v o vttt e et e e e e e e 4-2
47 DATA « - v e v 4-3
4-7.1 Single Infeggr 4-3
4-7.2 Double Integer -+ - - - o oo oo 4-4
4-7.3 Single_Precision Real « + v v v o v o i i e e e 4-4
4-7.4 Double-PrecisionReal- - - - . - - o o .o oo oL 4-4
4-7.5 Single-Precision Fixed-Point - - . - .« L. 4-4
4-7.6 Double-Precision Fixed-Point- - - 4-5
4-7.7 Octal Constants « « « o v v v it e e e e e e e e 4-5
4-7.8 Binqry CoNStANES « o v o ¢ ¢ ¢t o e it et e e e e e e e e e 4-5
4-7.9 Formatted Data Constant « « « -+« « « v v v e i i i e 4-6
4-7.710 Text -« v v v v .. U e 4-6
4-7. 11 Truncated TeXt » « « = « ¢ ¢« o v o bt et e e e e e e e e 4-6

Section

1V

\2

V11

CONTENTS (CONT'D.)

Page
PSEUDO-OPERATIONS (CONTINUED)
4-8 = 7 N T 4-6
4-9 COMM: « c o e e e e e e e e e e e e s e e e e e e e e e e e e 4-7
P T 1] =3 =2 4-8
4-11 XEQWV ¢ - v vt e e e e e e s e e e e e e e e e e e e e e e 4-8
4-12 NAME: « -+ c oot e tm et i e e e 4-9
4-13 DAC ¢ ¢ vt v e vt e e e e 4-9
414 BAC =+ - v vttt e e e e e e e e e e e 4-9
4-15 FFK e e e e e e e 4-10
B-10 777 « + o o e 4-10
4-17 Octal OperationCode « -+ -« « v v v v it il il 4-10
4-18 o L 1 T T 4-10
4-19 EdC T e« v ot e v e e e e et e e et e e e e e e e e e e s e e e e 4-10
420 IDEN-: « « o v v e e e e e e e e e e e 4-10
4-21 Conditional Assembly Pseudo-Operations- -« - . . . R LRI 4-1
4-22 END « «++ v v v e v vt e e e e e e e e e e 4-13
4223 ENDS - < o o v v v oo e e e e 4-13
MACRO DESCRIPTION . '
5.1 Scope ... 5-1
5.2 angque Specificaﬁon 5-1
5"'2. 1 _ Bdsic Sfrucfure 5_]
5_2. 2 MG cro quamefers 5_2
5..2. 3 LOCGI Symbols 5_3
5_2‘ 4 Nesfed MGCI'O Cal Is. 5_4
5-2.5 Macro Librar), 5_5
LISTING OPTIONS
6-1 Scope ... 6-1
6-2 List Confrol 6-1
6-3 Macro Listing Opﬁons 6-1
6-3.1 Opfions 6-1
6-3.2 Chqnging List Opﬁons 6-2
6-3.3 Default Opﬁons 6-2
6-3.4 Examples e 6-2
ASSEMBLER OPTIONS AND OUTPUTS
7-1 o o) = 7-1
7-2 Assembler Opﬁons 7-1
7=3 Assembler OUprfS 7-1
7-3.1 List OUprf Formats - - « v ¢ o o o v e e e e e e e e e e e e e 7-=1
7-3.2 Error Codes and '/fessages« « « « « « v v vt et v 7-2
" Appendix A. Supplemental Information. o . L. A-1

SECTION 1
INTRODUCTION

1-1 SCOPE OF SPECIFICATION

This document contains a detailed description of the pseudo-operations, macro capabilities
and formats employed by the Series 6000 Macro Assembler. Examples of usage of the various
pseudo~-operations are given as well as examples of macro definition and calling modes.

This specification does not contain instruction descriptions or assembler or computer
operating instructions.

1-2 GENERAL DESCRIPTION

The Series 6000 Macro Assembler is a two-pass processor system. For the most part,
source language statements provide a one-to-one map into machine language instructions and single
or multiple data word configurations.

Source statements may contain a symbolic label, a mnemonic instruction or pseudo-
operation, an operand field, and o comments field. Target language is Series 6000 machine
language which is listed as a binary file whose record format is identical to the input record
format of the Link Loader.

1-1

SECTION 11
SOURCE LANGUAGE FORMAT

2-1 SCOPE

This section describes the format for source input statements to the Series 6000 Macro
Assembler.

2-2 LABEL FIELD (COLUMNS 1-7)

The label field may contain an asterisk (*) in column 1 or a symbolic label, or may be
left entirely blank.

An asterisk in column 1 causes all succeeding columns in the line to be treated as com-
ments. No binary output will be generated. A plus (+) or minus (-) sign immediately following
the asterisk affects the listing. Refer to Section 6 (Listing Options) for the exact effect.

v When using a sgmbolic label, the first character must be alphabetic. Any succeeding
characters may be alphabetic, numeric, or special symbols. When a label is encountered, it is
assigned the address of the instruction or pseudo-operation being labeled.

NOTE

The arithmetic operators "+" and "-", a comma (,) or a
blank may not be used in a symbolic label.

Examples (valid labels):

ENTRNCE
EXIT2/2 BUC £,K
T$A#43 TMA* DACBI1

2-3 OPERATION FIELD (COLUMNS 9-12)

The operation field may contain a three-character computer instruction mnemonic, or a
three~ or four-character seudo~-operation (see Section V), or a one-to-six chcracter macro
reference (see Section V).

An asterisk (*) in column 12 is used to indicate an indirect memory reference except in
the case of the computer input/output instructions, where the asterisk is used as an Override or
Merge specification. These special cases are defined in the Appendix in Table A-14.

2-4 OPERAND AND COMMENTS FIELD (COLUMNS 15-72)

This field may contain an operand constant, address, etc., as dicated by the particular
instruction. (Reference Tables A~4 through A-19 in the Appendix for a detailed listing.) The
operand must begin in column 15 and must be separated from the comments by at least one blank
column. For those instances where no operand is required, column 15 must remain blank.

2-1

2-5 SEQUENCE FIELD (COLUMNS 73-80)

The sequence field may contain ch identification (e.g., a card sequence number) the
user desires. This field will be ignored by the Assembler, but will be output as part of the listing.

2-2

SECTION 111
OPERAND FORMATS

3-1 SCOPE

This section describes the operand formadts used with the Series 6000 Macro Assembler.
A list of the Series 6000 instruction mnemonics and their permissible operand formats is contained
in Tables A-4 through A-19 in the Appendix.

3-2 CURRENT LOCATION (*)

An asterisk (*) in the operand field indicates that the location of the current instruction
is to be used as the operand address.

3-3 SYMBOLIC LABELS

A symbolic label in the operand field indicates that the address associated with the
label is to be used as the operand address. A symbolic label may be declared as a common -
variable by the use of the "COMM" pseudo-operation (reference: Section 1V).

3-4 ABSOLUTE CONSTANTS

Absolute constants in the operand field indicate that the constant (octal or decimal) is
to be used as the operand address.

3-5 ADDRESS ARITHMETIC

Any combination of current location (*), symbolic labels, or absolute constants may be
joined by the plus (+) or minus (=) operators to define an address. Such a combination is referred
to as an "operand expression".

An expression of the form XX*YYY may be used. This allows a limited multiplication
capability. XX must be a constant and YYY must be a symbol whose mode is absolute. This
form may be combined with other partial operand expressions by plus (+) or minus (=) operators.

EXPRESSION MODE

The mode (absolute or relative) of any given label is
determined by the AORG or RORG pseudo-operation :
most recently encountered prior to the label being defined.
Therefore, any label encountered after an AORG pseudo-
operation is conside =d absolute and any label after an
RORG is relative. The current location (*) tag is also
subject to these rules.

3-1

In determining the mode of any operand expression,
consider only relative labels. " If the arithmetic operators
(address arithmetic) preceding relative labels do not bal -
ance (i.e., the number of plus and minus signs are not
equal), the resulting expression is relative. If the
arithmetic signs preceding relative labels are in balance,
the resulting expression is considered absolute.

Examples of relative and absolute expressions:

RORG 0

CAT e

DOG % kk

MICE ok
TMA CAT+1 relative expression
TMA MICE-CAT+1 absolute expression

TMA - MICE-CAT+DOG relative expression

3-6 INDEXED ADDRESS REFERENCE

An operand address may be appended with an index reference by placing a comma (,) in
the column to the immediate right of the operand address and following the comma with the index
specification (1, J.or K), e.g. TMA f,K .
3-7 TEXT

Alphanumeric text may be used as an operand by the use of leading and following quota-
tion marks ("....... "). The text will be right-justified in the instruction operand and any unused

portion of the operand will be filled with ZEROs. Text may not be used with address arithmetic.

Examples of operand text:

TOA "AB" will generate ' 62540502
azn e These show the completely
cOB A will generate ' 00140132 } assembled instruction .

TOB e will generate ' 00030044

3-8 LITERAL ADDRESS

A literal address is indicated by an equal sign (=), in column 15, followed by a constant.
The literal address allows a data constant (see Section IV) to be assigned a nonprogram location
and permits the address of that assignment to be used as the operand address.

NOTE
The expression mode (relative or absolute) of a literal

address is the same as the mode of assembly upon
encountering an END pseudo-operation (see Section 1V).

3-2

If the machine representation of a constant is more than one word, the assigned address
of the first word is used as the operand address. Any identical constants are assigned the same
location to conserve storage.

Any memory reference instruction using a literal address may not be appended with
indirect or index references.

Examples of literal addresses:

TMA =B1B12B23

TMD =12.5D-10

TMR ="1/O CALL ERROR"
TMI =/"22,40,' 77/

3-9 EXTERNAL REQUEST

An unconditional external request is indicated by a "dollar sign" ($), in column 15,
followed by one to six alphanumeric or special characters (except "+", "-", a comma or a
"blank"). The first character must be alphabetic.

A conditional external request is indicated by two "dollar signs", in columns 15 and 16,
followed by a one to six character name.

NOTE
A conditional external request will be satisifed by the
link loader only if an unconditional external request

of the same name has preceded it.

Address arithmetic may not be used with external requests; however, indirect and index
references may be employed depending on the instruction.

Examples of external requests:

BSL $FLOAT unconditional external request
TMA* $CAT, J unconditional external request
BLL 3A22 conditional external request

3-10 EXTERNAL EQUIVALENCE REQUEST

The purpose of an external equivalence request is to merge an externally defined data
constant with the frame word of the instruction.

An external equivalence request is indicated by a number sign (#) in column 15,
followed by one to six alphanumeric or special characters (except "+", "-", a comma, or a
blank). The first character of the name mu-! be alphabetic.

Examples of external equivalence requests:

TOA #CBITS
OCW #c/u

During the loading process, all external equivalence requests must have been preceded
by their corresponding external equivalence definitions (refer to Paragraph 4-11).

3-11 MEMORY REFERENCING BOOLEAN INSTRUCTIONS (BIT PROCESSOR)

FORMAT |
MEN XY
where: MEN is the three character mnemonic.
X is an absolute expression indicating the bit specification.

Y is an absolute expression indicating the non-negative displacement from the contents
of base register V,

Examples of Format 1

FBUF BLOK 3

FLGSETI EQIV 0

FLGSET2 EQIV 1

FLGSET3 - EQIV 2

F1 EQIV 0

F2 EQIV 1

F3 EQIV 2

F4 EQIV 3

F24 EQIV 23
TLO FBUF
TKV :
QBM ~ F1, FLGSET
QBM 3, FLGSET2

QBM 19,2

34

FORMAT 11
MEN X
where: MEN is the three character mnemonic.

X is an absolute expression indicating the bit specification and the displacement from
the contents of base register V.

Examples of Format

BO EQIV 0
B1 EQIV 256
B2 EQIV 257
B3 EQIV 258
B23 EQIV 278
FLAGBUF BLOK 256
FLAGEND EQlV *
AORG 0
FLAGI EQIV BO+*
FLAG2 EQlv B1+*
FLAG24 EQIV - B23+*
AORG 1
ALPHA EQIV BO+*
BETA EQIV B1+*
DELTA EQIV B2+*
RORG FLAGEND
TLO FLAGBUF
TKV
QBM FLAG2

QBM DELTA

SECTION IV
PSEUDO-OPERATIONS

4-1 SCOPE

This section describes the pseudo-operations that will be processed by the Series 6000
Macro Assembler.

4-2 AORG

The AORG pseudo-operation sets the mode of all following labels to absolute and sets
the program location of the next instruction to the contents of the absolute expression in the
operand field. If a label is present, it is assigned the value of the operand expression. If
symbolic labels are present in the operand expression, they must have been previously defined.
If an operand error is encountered, the letter "O" will be placed in the error field of the list
output and all subsequent binary output will be suspended.

Examples of AORG statements:

AORG J4 program location set to absolute @
A DATA)] _
DATA g
B DATA /|
AORG B-A+'1000 'program location set to absolute ' 1002
4-3 RORG

The RORG pseudo-operation sets the mode of all following labels to relative and sets
the next instruction's program location to the contents of the absolute or relative expression in
the operand field. Initially, the mode of the assembly is set to relative and the program location
counter is set to zero. If a label is present, it is assigned the value of the operand expression.

If symbolic labels are present in the operand expression, they must have been previously defined.
If an operand error is encountered, the letter "(g" will be p?;ced in the list output error field
and all subsequent binary output will be suspended.

Examples of RORG statements:

RORG 0 . program location set to relative g
DATA 2
DATA j i}
A DATA J4
I.QORG A+l program location set to relative 3

4-1

4-4 BLOK

This pseudo-operation reserves a block of storage (n locations). (n = the value of the
absolute expressions in the operand field.) If a label is present, it is assigned the first location
in the block. If symbolic labels are present in the operand expression, they must have been
previously defined. If an operand error is encountered, the letter "O" will be placed in the
list output error field and all subsequent binary output will be suspended.

Examples of BLOK statements:

A TMA 1000, 1
TAM 12000, 1
NOP
B BSL ROUTINE
éLOK B-A+1 reserve 4 locations
BLOK 100 reserves 100 locations
4-5 EQIV

This pseudo-operation assigns the value and mode of the operand expression to the labe!
in the label field. All labels in the operand field must have been previously defined.

Examples of EQIV statements:

RORG J
A * %k %
B * kK
X EQIV B X is assigned a relative value of 1
Y EQIV ' 0403 Y is assigned an absolute value of ' 0403
Z EQIV B-A+1 - Zis assigned an absolute value of 2
4-6 FORM

The FORM pseudo-operation specifies the inner fields to be created within a 24 -bit
word. The items of any subsequently-encountered formatted data constants will then be aligned
(right-justified) within their respective inner fields (see Formatted Data Constant).

The format of the FORM pseudo-operation is as follows:

FORM N],NQ, N

where: Nk is a non-zero unsigned decimal integer
n
and »° N.=24 1< n <24
i=1
N1 causes a left-justified inner field consisting of

N, bits to be established.

4-2

N, causes a left-justified (to the N subfield) inner
fiezld of N2 bits to be established.

N causes a left-justified (to the N -1 subfield) inner
fidld of Nn bits to be established. " :

If an improper operand is specified, the letter "O" will be placed in the list output
error field and a form of 24 will be established. [If a symbolic label is encountered in the label
field, it will not be assigned.

Examples of FORM statements:

FORM 12,12

DATA /1,1/ will generate * 00010001

FORM 6,6,6,6 N

DATA /1,1,1,1/ will generate ' 01010101
9/ 1141515 i

DATA /1330,0,'02,"15,'01/ will generate ' 33004641

4-7 DATA

When using the DATA pseudo-operation, the operand field may contain any number and
combination of the data constants defined in the following paragraphs.

If more than one item is present (items are separated by commas), they will occupy

sequential memory locations. If a label is present, it will be assigned the location of the first
data items.

4-7.1 Single Integer

A single integer data constant consists of an optional sign (+ or -) and 1 to 7 decimal
digits. ‘

Examples of single integers:

DATA +428 will generate ' 00000654
DATA 1 will generate ' 00000001

4-7.2 Double Integer

A double interger constant consists of an optional +or - sign and 1 to 12 decimal
digits, followed by the letter "D". Two words will be stored in sequential memory locations.

Examples of double integers:

DATA 10234876293D will generate ' 00002304 -' 02750605

DATA 1D will generate ' 00000000~' 00000001

DATA -1D will generate ' 77777777 -* 37777777

4-7.3 Single-Precision Real

A single-precision real data constant consists of an optional sign (+or ~), 1to 7
decimal digits mixed with a decimal point and/or followed by a decimal exponent.

The exponent consists of the letter "E" preceding a decimal number (with optional
+ or - sign) between +37 and -37. :

Two words will be stored in sequential memory locations.

Examples of single-precision real constants:

DATA +24 .4 will generate ' 30314632 -' 00000005
DATA 5.0E-10 will generate ' 21134060-' 00000342
DATA 2.4E+5 - will generate ' 35230000-' 00000022
DATA OEO will generate ' 00000000-' 00000201

DATA 1EO will generate ' 20000000~' 00000001

4-7.4 Double-Precision Real

A double-precision real constant consists of an optional sign (+ or -), 1 to 12 decimal
digits mixed with a decimal point, and/or followed by a decimal exponent.

The exponent consists of the letter "D" preceding an optionally-signed decimal number
between +37 and -37.

Two words will be stored in sequential memory locations.

Examples of double-precision real constants:

DATA 12.D0O will generate ' 30000000-' 00000004

DATA -1D-10 will generate '44406200-' 23050337
DATA 5.56185D0 will generate ' 26176526-' 15475003 ,

4-7.5 Single-precision Fixed-Point

A single-precision fixed-point data constant consists of an optional sign (+or-), 1107
decimal digits mixed with an optional decimal point and followed by the letter "B" and an unsigned
2-digit decimal integer. This 2-digit number indicates the scaling position; i.e., a power of two

by which the number is to be multiplied.
4-4

One word will be stored.

Examples of single-precision fixed-point constants:

DATA 15.2B5 will generate ' 00000746
DATA 1B6 will generate ' 00000100
DATA -5.3B12 will generate ' 77725464

4-7.6 Double-Precision Fixed~Point

A double-precision fixed-point data constant consists of an optional sign 1 to 12
decimal digits mixed with an optional decimal point, and followed by the letter "X" and an
unsigned 2-digit decimal integer. This 2-digit number indicates the scaling position; i.e.,
a power of two by which the number is to be multiplied.

Two words will be stored in sequential memory locations.

Examples of double-precision fixed-point constants:

DATA 15.2X5 will generate ' 00000000-' 00000746
DATA 1X32 will generate ' 00001000-~' 00000000

DATA -5.3X28 will generate '77777526-' 14631464

4-7.7 Octal Constants

An octal data constant is designated by an apostrophe (') followed by 1 to 8 octal digits

(0-7).

Examples of octal constants:

DATA 77 will generate ' 00000077
DATA ' 12345670 will generate ' 12345670

4~7.8 Binary Constants

A binary data constant is designated by the letter "B" followed by a decimal integer

(<23) indicating the unitary bit position (0-23) that is to be set. Any number of binary constants
may be strung together; however, no spaces or blanks are permitted between constants in a string.

Examples of binary constants:

DATA BOB10B22 will generate ' 20002001
DATA B23 will generate ' 40000000

4-5

4-7.9 Fomatted Data Constant

The assembly format for formatted data constants is as follows:

JApAY . A/

where: A, is an octal constant, an optionally signed decimal constant, or text
(consisting of 2 or less characters).

The constants within the slashes are truncated to match the number of bits specified in
the most recently encountered FORM pseudo-operation. They are then placed in a 24-bit word
according to the format specified in the FORM pseudo-operation.

Example:
FORM 19,5
DATA /-1, "K"/ will generate ' 77777753
4-7.10 Text

Alphanumeric text may be designated as a data constant by the use of leading and
following quotation marks ("...... "). The text will be left-justified, 3 characters per word,
in the generated word(s). Any unused bytes will be filled with blanks.

4-7.11 Truncated Text

Truncated alphanumeric text may be designated as a data constant by placing the letter
“T" in front of the leading quotation marks. The text will be left-justified, 4 characters per

word, in the generated word(s). Any unused poritions of a word will be filled with truncated
blanks.

Examples of truncated text:

DATA T"HOLD"
DATA T"ALL GOOD MEN"
4-8 RDAT
The format for the RDAT pseudo-operation is as follows:
RDAT X(CpCoreennn ,C)

where X is a non-zero, unsigned, decimal constant indicating the number of times the following
constant string is to be generated, and Ci is a valid DATA statement constant.

Examples of RDAT pseudo-operati sns:

RDAT 5('40,"ABCD",B1B13, 12.5)
RDAT 100" ")

4-9 COMM
A COMM statement is of the form:
COMM /X]/A]/XQ/A /Xr/A

where each A is a non-empty list of symbolic labels which may be subscripted. Subscripting
takes the form: -

A(i)
where i is a non-zero, unsigned octal or decimal constant.

Each X is a one to six character name, the first character of which must be alphabetic.
Any succeeding character may be alphanumeric or special characters except "+", "= " " v,
"4, or "(". X may also be empty indicating that blank common is the name. If Xy is empfy, 'the
first two slashes are. optional. Each X is a block name, a name that bears no relationship to any
symbolic label having the same name.

In any given COMM statement, the entities occuring between block name X and the
next block name (or the end of the statement if no block name follows) are declared to be in
common block X. All entities from the beginning of the statement until the appearance of a
block name, or all entities m the statement if no block name appears, are declared to be in
"blank or unlabeled common"

A given common block name may occur more than once in a COMM statement or in a
program unit. The assembler will string together in a given common block all entities so assigned
in the order of their appearance. The first element of subscripted label will follow the immediately

preceding entity, if one exists, and the last element of a subscripted label will immediately !
precede the next enhry, if one exists.

If an operand error is encountered, all COMM statements within a program unit will be
fisted with an "O" in the list output error field and all binary output will be suspended.

Examples of the COMM statements:
COMM /ALPHA/A, B/BETA/Y 50),Z2

COMM I, J/ALPHA/C(' 100),D

where has an associated from

common variable: displacement of: block name:
A 0 ALPHA
B 1 ALPHA
Y 0 BETA
4 50 BETA
I 0 (blank)
J] (blank)
C 2 ALPHA
D '102 ALPHA

4-7

4-10 XDEF

The XDEF pseudo-operation causes an external definition to be issued. The XDEF
statement has the following format:

XDEF NAME, ADDR

where: NAME is the external name being defined, consisting of one
to six alphanumeric or special characters (except "+", "-",
"," or " ") the first of which must be alphabetic.

ADDR is the relative expression specifying the address to be
associated with the name.

The XDEF statement must precede all other assembler statements other than comments.

If ordering is not observed or if an operand error is encountered, the letter "O" will be placed
in the list output error field and all subsequent binary output will be suspended.

Examples of the XDEF statement:

XDEF SUBIT, *

XDEF TABLE1, TABLE1

XDEF TABLE2, TABLE1+10
4-11 XEQV

The purpose of the XEQV pseudo-operation is to define a 24-bit external equivalence
data constant.

The format of the XEQV pseudo-operation is as follows:

XEQV NAME, X

where: NAME is the external equivalence name being defined, consisting
of one to six alphanumeric or special characters (except "+", "-",

a comma, or a blank), the first of which must be alphabetic.

X is an absolute expression specifying the data constant o be
associated with the name.

Examples of XEQV pseudo-operations:

XEQV CBITS, ' 301
XEQV C/U, ' 0401

4-12 NAME

The NAME pseudo-operation defines, for the system, the name of the load module.
The NAME statement has the following format:

NAME XXXXXX
where: XXXXXX is the module name being defined, consisting

of one to six alphanumeric or special characters (except
Hgn, man mon or v 1Y) the first of which must be alphabetic.

4-13 DAC

The DAC pseudo-operation is considered ds a 16-bit memory reference instruction,
however, any indirect or index specifications are placed in bit positions 21 through 23 to con-
form to the indirect memory reference format as defined in the Series 6000 Computer System’

Reference Manual.

Example of the DAC pseudb—operaﬁon:

DAC* TABLE,I

4-14 BAC

The BAC pseudo-operation is used to create a byte address. The generated word can
be loaded to index regls’rer I or J for use with the RBM, EMB, BBI, or BBJ instruction. The byte
specification is placed in bits 22 and 23 of the generated word. The rest of the word is genemted
as either a 22-bit absolute value or a 16-bit relocatable memory reference. If the mode is |
absolute, the value may be positive or negative. External addresses are legal if the byte dis- -
placement is 2 or less. The format of the operand is:

base-address, byte-displacement from the initial character.

Examples of the BAC pseudo-operation:

BAC 0,1 v
BAC =10123456789",7

The second example generates a byte address that points to the character "7" in the
literal string.

Example of Use:

The following sequence of instructions will set the buffer starting at byte 2 of location
'100 through byte 3 of location '102 to blanks:

TOB i
™I XX
RBM 1100 +3
BBI *_1

XX BAC -3, 2

4-15 * Kk k

This pseudo-operation reserves one word of storage, which will be set to zero.

4-16 27

The pseudo-operation is considered as a 15-bit memory reference instruction containing
an operation code of '00, which may be cappended with indirect and index references.
4-17 OCTAL OPERATION CODE

An octal operation code is indicated by placing an apostrophe (') in column 9 and is
to be followed by a two-digit octal constant. It will be considered as a 15-bit memory reference

operation code and must include an operand. It may be appended with indirect or index references.

Examples of Octal Operation Codes:

'24 ALPHA + 10
'24* BETA,I

4-18 HOLD

The HOLD pseudo-operation causes assembly to be suspended until an operator response
is received. This is accomplished via a call to the system service § HOLD. (Refer to the appro-
priate operating system general specification.) The contents of the operand field will be listed
on the operator communiocations device. The HOLD statement itself will not be listed, however,
its presence will be reflected in the card sequence field. '

The HOLD statement will be recognized within a conditional assembly block regardless
of the skip condition (reference: Paragraph 4-21). .

Examples of the Hold pseudo-operation:

HOLD PLACE TAPE 2 IN READER

4-19 EJCT

EJCT pseudo-operation causes a Top of Form command to be issued to the list output
device preceding the next line of output. The EJCT statement itself will not be listed; however,
its presence will be reflected in the card sequence field.

4-20 IDEN

The IDEN pseudo-operation causes the entire Operand and Comments field (columns
15-72), followed by two blank lines, to be ,~inted as the heading on each page of the list output
device. A top of form command will be issued to the list output device prior to the next line.
The IDEN statement itself will not be listed; however, its presence will be reflected in the card
sequence field.

Example of the IDEN pseudo-operation:
IDEN USER'S PROGRAM IDENTIFICATION

4-21 CONDITIONAL ASSEMBLY PSEUDO-OPERATIONS

These pseudo-operations cause all ensuing statements to be skipped by the assembler if
the condition specified in the operand field is true. Assembly will resume upon encountering an
ESKP (End Skip) pseudo-operation corresponding (i.e., on the same "nesting level") to the
particular Skip pseudo-operation. ’

The relationship between Skip pseudo-operations and ESKP pseudo-operations is such
that the first ESKP encountered defines the range of the last Skip encountered, the second ESKP
defines the range of the next-to-last Skip, etc. This relationship is referred to as a conditional
assembly block. All Skip pseudo-operations may be "nested" to any level.

If a skip condition is true for a specific conditional assembly block, any inner blocks
(i.e., on a lower "nesting level") will be skipped regardless of their condition. '

The conditional Skip pseudo-operations and the terminator pseudo-operation defined is
as follows: '

SKOS -- Skip if Operand Set -~ will cause "skipping" if the value of the absolute
expression in the operand field is non-zero.

SKOZ -- Skip if Operand Zero -- will cause "skipping" if the value of the absolute
expression in the operand field is zero.

SKFS -~ Skip if Flags Set -~ will cause "skipping" if all system flags specified by the
binary constant in the operand field are set (non-zero).

SKFZ -- Skip if Flags Zero -- will cause "skipping" if all system flags specified by
the binary constant in the operand field are zero.

SKOP -- Skip if Operand Positive -- will cause "skipping" if the value of the
absolute expression in the operand field is greater than zero.

SKON -~ Skip if Operand Negative -- will cause "skipping" if the value of the
absolute expression in the operand field is less than zero.

SKOB -- Skip if Operand Blank -~ will cause "skipping" if column 15 if blank.

SKNB -~ Skip if Operand Not Blank -- will cause "skipping" if column 15 is not
blank.

SKOI -~ Skip if Operands Identical -~ will cause "skipping" if the two operands

are identical. The operands must not contain a comma or a blank and there must be
two operands. However, there is ... other restriction on the characters in the operands,
and they may in fact be null operands.

SKOD -~ Skip if Operands Different ~- will cause "skipping" if the two operands
are not identical. The operands are subject to the same restrictions as in SKOI.

4-11

ESKP -- End Skip -- signifies the end of a conditional assembly block.

If a symbolic label is present in the label field of a conditional assembly or terminator
pseudo-operation, it will not be assigned. If an imbalance exists between Skip pseudo-operations
and their respective ESKP pseudo-operations, or of an operand error is encountered, assembly will
be terminated and control will be returned to the system. L

Examples of SKips that cause the code following them to be "skipped".

SKOP 4-3

SKON 3-4

SKOB

SKNB $

SKOI A, At
SKOD ABC, ABCD

- Examples of SKips that cause the code following them to be assembled.

SKOP 5-5
SKON 23
SKOB 2
SK NB

SK Ol A,B
SKOD ,

Examples of "nested" Skip pseudo-operations:

Assume the system flags are set as follows: '00204631(i.e.,BOB3B4B7B8B11B16).

A EQlv g
B EQIV 1

statement | éKFS BOB2
statement J .;SKOZ A Z
statement K ESKP e e
statement L .SKFZ B2
) O,
statement M SKOS B-A+2
. ®
statement N ESKP ——
statement O éSKP
statement P I.ESKP

The preceding statements, considered individually, specify the following:

1) Statement [(SKFS) specifies that all statements between I and P are to be
assembled;

2) Statement J (SKOZ) specifies that all statements between J and K are to be
skipped;

3) Skfafement L (SKFZ) specifies that all statements between L and O are to be
skipped;

4) Statement M (SKQOS) specifies that all statements between M and N are to be
assembled.

The next effect on the preceding examples, considered together, cause the following
statements to be assembled:

1) Statements I + 1 through J - 1;
2) Statements K + 1 through L - 1; and
3) Statements O + 1 through P - 1.

Note that the SKOS at statement M is overridden by the SKFZ at statement L which is
on a higher "nesting level".

4-22 END

The END pseudo-operation terminates assembly of the current program and reinitializes
to accept another program or subprogram. If a label is present in the label field, it is assigned
the address of the first available location following the literal table. If an optional operand
(relative or absolute) is present in the operand field, its value will be presented to the link loader
signifying the starting address of the program. This address will be passed to the operating
system upon completion of the loading process. 1f no operand is present in the operand field, then
the link loader will pass the starting load address of the program to the operating system as the
starting address of the program. ' ’

4-23 END$

This pseudo-operation indicates that an End-of-File is to be written on the binary output
logical device (B/O-5)and then backspaced over. This functioning permits the assembly to be
followed by either a Link operation or other compilations, includes, etc. without manually having
to write an EOF. In addition, the source output logical device (S/O-'10) is rewound (if the
scratch option is set) and all 1/O devices in use are closed. Exit is then made to the operating
system. Labels or operands on the END$ statement are treated in the same manner as those
encountered on an END pseudo-operation.

4-13

SECTION V
MACRO DESCRIPTION

5-1 SCOPE

The macro capability of the Series 6000 Assembler provides a powerful and useful
method of defining instruction and data sequences at assembly time. The macros are user
defined and provide flexibility in selectively generating machine code. The macro prototype
and the calling parameters determine the machine code generated.

5-2 LANGUAGE SPECIFICATION

5-2.1 Basic Structure
A macro definition is of the form:
NAME MACRO
(Macro instructions)
MEND

Macro calls are made by using the macro name as the op code, i.e.,

LABEL - NAME XY, Z,...
Example:
WAIT MACRO
, TNK ' 0700
BLU $1/O
BON *.2
MEND

Then the programmer need only write the op code:
WAIT

which will then be automatically expanded into the sequence:

TNK ' 0700
BLU $I/O
BON *-2
The macro is not a subroutine call. In-line code is generated when the macro is

referenced. Macro definitions may appear anywhere in the program as long as they appear
before the first reference to them.

5-1

5-2.2 Macro Parameters

Parameters on the Macro Call may be obtained by the Macro at the time of expansion
by a structure of the form :DD, where DD is the parameter number. The label on the call to the
Macro is available as :00; if no label is present, :00 has a null "value". In addition, the
length (in chatacters) of a parameter may be obtained by a structure of the form § DD, where DD
is as above. The maximum number of parameters in a single macro is 20. Note that parameter
references are considered as character strings and may be concatenated with any character
strings desired (see Example 3).

Example 1:

XYZ MACRO

TMA :01
AOA :02
TAM :01
MEND

then a call of the form
XYZ A,250

would be expanded into:

TMA A
AOA 250
TAM A

Example 2:

ABC MACRO

TMA .01
AOA $01
MEND

then a call of the form
ABC ALPHA

would be expanded into:
TMA ALPHA
AOA 05

Example 3:

MAC MACRO

TMA A:01:02D,1
AOA 10501
MEND

than a call of the form
MAC B,C

would be expanded into:

TMA ABCD,1
AOA 1001

Since blanks and commas are used as delimiters, a special form has been implemented to
allow blanks and/or commas within a parameter. When desired, a parameter can be enclosed
within parentheses. When this is done, the actual parameter is assumed to be the character
string beginning with the first character after the opening parenthesis and ending with the last
character before the matching closing parenthesis.

Example 4:

R MACRO
TMI .01
™J :02
TMK :03
MEND

S MACRO
R :01
R :02
MEND

then a call of the form
S (A,B,C),(X,Y,Z)

would be expanded into:

T™MI A
T™J B
TMK C
T™I X
™J Y
TMK y4

5-2.3 Local Symbols

In order to avoid possible name conflicts, local names within Macros must be assured of
being unique. To do this, a special label form is implemented. This of the form /XY, where
XY consists of exactly two characters; X must be alphabetic and Y must be a character which is
legal within a label. The generation number of the current Macro is appended after the pseudo-
label to assure a unique label. The generation number of a Macro is a count of the number iof
macro expansions done within the program unit. If the generation number is less than 10000 then
the pseudo-label is of the form XY/GGGG where GGGG is the generation number. If the
generation number is greater than or equal to 10000 and less than 20000 then the pseudo-label
is of the form X/YGGGG where GGGG is the generation number mod 10000. Creation of
labels during generations greater than 19999 may cause erroneous results.

Lln
w

Example:

WAIT MACRO
/WA TNK :0100
| BLU $1/0
BON *22
MEND

than a sequence of calls of the form

WAIT '07
WAIT '05
(12345 T intervening calls)
WAIT 106
would be expanded into:
WA/0001 TNK . '0700
BLU $I/0O
BON * w2
WA/0002 TNK '0500
BLU SO
BON *-2
(12345 Y intervening macro references)
W/A2348 TNK 0600
BLU $1/0
BON * -2

5-2.4 Nested Macro Calls

Any Macro may, within its definition, call any other Macro,including itself. Thus a
full recursive Macro structure is possible. Fifty levels of nesting and/or recursion are permitted.

Example:
FACTOR MACRO

SKOZ :01
MYO :01
FACTOR :01-1,:02
ESKP
SKOS :01
TAM :02
ESKP
MEND

than a call of the form
FACTOR 2K
would be expanded into:

MYO 3
MYO 3-1
MYO 3-1-1
TAM X

Note that skips are not shown. This is because skips are not normally listed (see
Section VI, Listing Options). For more involved listing of this macro call, see Paragraph 6-3. 4.

5-2.5 Macro Library

: A facility for keeping libraries of Macro definitions is part of the system. To reference
a library, the pseudo-op MLIB is used. The operand field of the MLIB pseudo-op must contain
an absolute expression whose value is a logical file number.

When the MLIB pseudo-op is encountered, the operand is evaluated. The operand is
assumed to refer to a file containing source line images. This file is opened, rewound and then
scanned for Macro definitions. If any Macro definitions are found, they are included as if they
had been read from Symbolic Input. Any source images not part of a Macro definition (not
between a MACRO and a MEND pseudo-op pair) are ignored. If a Macro definition is encountered
that was previously defined via Symbolic Input, then the Macro definition in the library is
ignored. When an End-of-File is detected, scanning stops and the file is closed.

5-5

SECTION VI
LISTING OPTIONS

6-1 SCOPE

This section describes the assembler facility for listing control.

6-2 LIST CONTROL STATEMENTS

To turn on the listing, columns 1 and 2 should confain an exclamation point and a plus
sign, respectively (1+), and column 15 should be blank. This statement will not be listed; however,
its presence will be retlected in the card sequence field. '

To turn off the listing, columns 1 and 2 should contain an exclamation point and a
minus sign, respectively (:-); and column 15 should be blank. This statement will not be listed;
however, its presence will be reflected in the card sequence field.

Any errors detected during an assembly will be listed regardless of listing options. A
non-zero error count will also be unconditionally listed. If the listing is off when the END or
END$ pseudo-operation is encountered, the listing of the literal table is also suppressed.

There is no restriction on where or how often these cards may be included. Listing is
initially on, so it is not necessary to precede an assembly with a list-on card to obtain a listing.

6-3 MACRO LISTING OPTIONS

In addition to the normal listing options, six listing options are available to aid in the
readability of Macro expansions.

6-3.1 Options

NEST - When on, causes the listing of the Macro call itself (not the expanded
code). This option-only affects a Macro that has been called by a
Macro, that is, a nested call.

MACRO - When on, causes the listing of the main Macro call (see NEST).
MEND - When on, causes the listing of all MEND's as part of the expansion.
CODE - When on, causes the listing of the expanded code produced by a Macro call.

MACDEF - When on, causes the listing of the Macro definition.

SKIP — When on, causes the listing of all SKip and ESKP pseudo-ops and any code
that is SKipped; this only has an effect during the expansion of a macro.

6-1

6-3.2 Changing List Options
To turn on one or more options:

+ OPTI,...,OPTN

Column 1 Column 15
To turn off one or more options:

- OPT1,000,0OPTN

Column 1 Column 15

6-3.3 Default Options

The default options are:

NEST - off
MACRO - on
MEND - off
CODE - on
MACDEF - on
SKIP - off

6-3.4 Examples

The following is the list output of a sample run:

1 FACTOR MACRO
2 SKOZ :01
3 MYQO :01
4 FACTOR :01-1,:02
5 ESKP
6 SKOS . .01
7 TAM :02
8 ESKP
9 MEND
10 FACTOR 3, X
10 000000 60000003 O MYO -3
10 000001 60000002 O MY O 3-1
10 000002 60000001 O MY O 3-1-1
10 000003 15000010 1 TAM X
11 L+ NEST, SKIP, MEND
12 FACTOR 3,X
12 SKOZ 3
12 000004 60000003 O MYO 3
12 FACTOR 3-1,X
12 SKOZ 3-1
12 000005 60000002 O MYO 3-1
12 ' FACTOR 3-1-1,X
12 SKOZ 3-1-1
12 000006 60000001 O MY O 3-1-1

6-2

000007

000010
000011

15000010

00000000
00400000

1

0
6

X

6-3

FACTOR
SKOZ
MYO
FACTOR
ESKP
SKOS
TAM
ESKP
MEND
ESKP
SKOS
TAM
ESKP
MEND
ESKP
SKOS
TAM
ESKP
MEND
ESKP
SKOS
TAM
ESKP
MEND

* %k

END$

WwWwww
-—-‘l—l—l.—l
—Jl—l—l_l
AL

> W

7-1

7-2

7-3.1

SECTION VI
ASSEMBLER OPTIONS AND QUTPUTS

- SCOFPE

This section describes the information supplied to the assembler by the operating system
and the list output formats and error messages generated by the assembler.

ASSEMBLER OPTIONS

The assembler requests the following information from the operating system. This
information is provided by the system service $INFO (refer to appropriate system reference).

1

2)

3)

Lines — specifies the total number of lines to be presented to the list output
device prior to intiating a Top-of-Form request. Included is the heading line:
followed by two blank lines.

Date —— a three-word (9-character) date placed on the heading line of each
list output page.

Options —— a 24-bit word indicating the following conditions:

BO - if set, the assembler will present all statements encountered on pass 1 to-
the source output device and will receive its input from this device on pass 2,
(Scratch Option).

B1 - is set, only pass 2 of the assembler will be executed. If this option is set,

it is assumed that the symbol table is intact from a previous run. This will be
true only if a normal assembly (i.e., option B1 reset) was previously completed,
and there were no intervening processor executions or re-loading of the assembler
prior to assembly with option B1 set. This option may not be used when the
source input includes macro definitions or references.

ASSEMBLER OUTPUTS

List Output Formats

The general format of the list output line of the assembler is as follows:

AAAA BBBBBB CCCCCCCC LE DDDD....

where: AAAA = a 4-digit (Jdecimal) card sequence number

BBBBBB = a 6-digit (octal) program location

CCCCCCCC = an 8-character (octal) binary output frame word or EQIV
value

7-1

7-3.2

L=a single octal character loader code for the output frame word

E = a single alphabetic character error code (may be "U", "M", ."O",
IiLH' IIPII’ " F", "C", or " ll)

DDDD.. .. = the source input statement

There are certain assembler pseudo-operations where some of the above information is
meaningless and is therefore suppressed. These pseudo-operations and their respective list output
formats are as follows:

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

CCCCCCCC E LABEL EQIV OPERAND
E FORM OPERAND
E COMM OPERAND
CCCCCCCC LE XDEF OPERAND
CCCCCCCC LE XEQV OPERAND
E SKip OPERAND
E ESKP OPERAND

*COMMENT CARD

Error Codes and Messages

The fo
1)

2)

3)

Ilowing is-a list of the Series 6000 Macro Assembler error codes and messages.

M — signifies that the operand contains a reference to a label that has a
multiple definition or the attempted redefinition or a macro label.

U — signifies that the operand contains a reference to a label that has

not been defined.

O —— indicates one of the following:

a) operand syntax error
b) improper index specification
- c) improper indirect specification
d) improper literal usage
e) improper text usage
f) improper expression mode
g) improper external specification
h) operand address exceeds permissible limits
C —— signifies that the contents of the operation field contains an unrecognizable

J)
6)

operation code.
L — signifies the absence of a required label in the label field,

F —— signifies incorrect card format (i.e., column 8 must be blank on all
statements other than comment cards).

P —— signifies a macro parameter error:

a) greater than 20 parameters in a single call (the rest are ignored).

b) expansion of a statement caused column 72 to be exceeded.

7-2

?)

10)

1)

12)

13)

c) on a parameter enclosed in parentheses the terminal right parenthesis
is not followed by a comma or a blank (following characters are
ignored up to a comma or blank).

ASSEMB 1 —— indicates that insufficient storage is available for the
assembler symbol table and that the job in progress will be aborted upon
issuing a RELEASE command. (Each label encountered in the label field
requires three locations of storage. Every two words of literal code requires
three locations of storage. Macro definitions requires approximately six
locations per line of source code.)

ASSEMB 2 —— indicates that the number of distinct common block names
encountered has exceeded 25. (The number of common variables is unlimited.)
Upon issuing a RELEASE command the job will be aborted.

ASSEMB 3 indicates that an operand error encountered in a SKip
pseudo-operation. Upon issuing a RELEASE command the job will be aborted.

ASSEMB 4 —— indicates that an excess number of ESKP pseudo-operations
were encountered. Upon issuing o RELEASE command the job will be
aborted. ’

ASSEMB 5 —— indicates that an insufficient number of ESKP pseudo-operations
were encountered upon completion of pass 1. Upon issuing a RELEASE command
the job will be aborted.

ASSEMB 6 —— indicates that the expansion of a macro resulted in an overflow

of the macro temporary storage area. (Nesting level is too deep or the total
number of characters in the macro calling parameters is too great.)

7-3

APPENDIX A

- SUPPLEMENTAL INFORMATION

Table A=1. Definition of Loader Codes
Bit
Config. Name Function Use

000 Direct Load Load the word into the memory | Direct loading of constants
location specified by the RPL. | absolute memory referencing
Increment RPL by 1. instructions, absolute

address constants both 15-
bit and 16-bit, and non-
memory referencing
| instructions.
001 Memory Reference Increment the right most Relative memory referencing
15-bit address 15-bits of the word by BASE instructions.
' and perform a direct load.

010 | External Definition Increment the address by External names, linkages
BASE and enter into external ‘between independently
table along with the next 2 assembled programs.
words as a 6-character ASCII
name. Satisfy all requests.

011 External Request If defined, replace address with | Memory reference to

BO=0: 15-bit address | table address; if undefined, set | external address.
BO=1: 16-bit address | up for stringing. Bit O of the
B1=0: unconditional load word specifies a 15-bit or
request 16-bit address. Bit 1 specifies
Bi=1: conditional whether conditional or uncon-
request ditional request.
100 | Memory Reference Add MAPBIT to the word and Relative memory referencing
16-bit address execute memory reference for 16-bit address instruc-
(oom). tions and all address
constants.
101 Common Request Add common address to this Memory reference to
15-bit address address and execute direct location within a common
load. Next 2 words contain block for internal and/or
common name. external use.

110 | Special Action Use bits 16 thru 20 of word to Define absolute mode,

111

Common Request
16-bit address

determine type of action to be
taken.

Add the 16-bit common address
and execu'~ direct load. Next
2 words contain common name.

relocatable mode, end,
end jump absolute or
relative, internal string
back. (See special action
table, A-2.)

16-bit memory reference
to location within a
common block

Table A=2.

Link Loader Special Action Codes

Bit

Config. Name Function Use

00000 | ORG dabsolute Set RPL to the 16-bit address | Define or redefine
in this word. absolute loading address.

00001 | ORG relative Set RPL to BASE + 16-bit Define or redefine
address in this word. relative loading address.

00010 | END Execute end of module pro- Define end of program

: cedures. module.

00011 | End Jump Absolute Set starting location to 15-bit Define end of program
address of this word and exe- module and starting
cute end of module procedures. |address or programs.

00100 | End Jump Relative Set starting location to BASE Define end of program
+ 15-bit address of this word module and starting
then execute end of module address of programs
procedures.

00101 | String Reblace the address of location |Forward referencing for

‘ ‘ specified by this 15-bit address |one-pass processors.
with the present contents of
RPL. Replace this address with
the former address of the loca-
tion specified. If this address
and the address of the location
are equal, terminate this string.
If not, re-execute string.
00110 | External String If defined, perform string; if Efficiency
Back undefined, link strings.
00111 | Module Name If this is the first link module, To define a module
Definition use the 6-character ASCII name |name to the system.
contained in the next two load
words as the name of this load
module, Otherwise, ignore.

01000 | Common Definition Calculate common origin using |Defining a common block
address as size, enter into ex- for internal and external
ternal table. Next 2 words con-|use.
tain the common block name.

01001 | Common Origin Set the RPL to the address in Loading block data

this word added to the address
of the common block specified
by the next 2 load words.

info common.

Table A-2.

Link Loader Special Action Codes (Cont'd.)

Bit
Config.

Name

Function

Use

01010

01011

01101

01110

Source Error

System Service
Request

External Equivalence
Definition

External Equivalence
Request

Causes the Link Loader to
abort loading.

To provide linkage with
system service routines,

The next two words contfain a
name, the third word contains
a 24-bit constant. Enter into
external table and set sign bit
of first word of name to
negative.

The next two words contain a
name. The third word is an
instruction frame and is ORed
with the external table entry
matching the name. A direct
load is then performed.

To prevent loading and
execution of programs

that contain irrecoverable
errors discovered by the
Assembler.

If the Externcl Request is
found in the Link Loader's
External Name table (i.e.,
has been previously
defined), a BLJ instruction
is inserted and the linkage
is satisfied.

If the External Request is
not found in the Link
Loader's table, the
"System Service" table is
scanned. If the External
Request is found in the
"System Service" table, a
BLU instruction is inserted
and the linkage is satisfied.

If the External Request is
not found in either table,

a BLJ instruction is inserted
and the Name is inserted in
the Link Loader's External
Name table. For the
linkage to be satisifed, the
external definition must now
be loaded.

Defining a constant
for external reference.

Preparing an instruction,
channel., Unit no.,
interrupt level, or group,
all or part of which has
been defined in another
module.

A4

Table A-3.

total checksum as the 55th word of the record.

Link Loader Input Record Format

Record length ~ 55 words, consisting of six 9-word subfields and a one-word hash-

The first word of each 9-word subfield contains eight 3-bit loader codes which

determine the action to be taken for each of the following eight words in the subfield.
24 Bits

Word 1
Word 2
Word 3
Word 4
Word 5
Word 6
Word 7
Word 8
Word 9
Word 10
Word 11
Word 12
Word 13
Word 14
Word 15

Word 50
Word 51
Word 52
Word 53
Word 54
Word 55

SUBFIELD 2 SUBFIELD 1

SUBFIELD 6

e

N

Code 1

Céde 2

Code 3

Code 4

Code 5

Code 6

Code 7

Code 8

Load word 1

Load word 2

Load word 3

Load word 4

Load word 5

Load word 6

Load word 7

Load word 8

| Code 1

Code 2

Code 3

Code 4

Code 5

Code é

Code 7

Code 8

Load word 1

Load word 2

Load word 3

Load word 4

Load word 5

Load word 4 ' e .

/

W

A\

Load word 5

gt

Load word 6

Load word 7

Load word 8

~ Checksu_m Word

the permissible operand formats pertinent to the Series 6000 Macro Assembler.

Tables A-4 through A-19 (located on the subsequent pages of this appendix) contain

*Table A-4.

15-Bit Positive Absolute or Relative Expression
External Requests (Conditional or Unconditional)
Common Requests

Index Specification

Indirect Specification

AAM, AEM, AUM, BUC, EXM, TBM, TDM, TRM, TXM, TrM

*Table A=5.

15-Bit Positive Absolute or Relative Expression
External Requests (Conditional or Unconditional)
Common Requests

Index Specification

Indirect Specification

Literal Address

AMA, AMB, AMD, AME, AMX

CMA, CMB, CME

DMA, DVM, DMX

IMA, IME

MYM, MMX

OMA

SMA, SMB, SMD, SME, SMX

TMR, TMB, TMD, TMX, TME, TMA, TMx
XMA

*Table A-6.

15-Bit Positive Absolute or Relative Expression
External Requests (Conditional or Unconditional)
Common Requests

Indirect Specification

AxM, BLx, CZM, HTx, RBM, TFM, TZM

*Table A=7.

15-Bit Positive Absolute or Relative Expression
External Requests (Conditional or Unconditional)
Common Requests

Indirect Specification

Literal Address

AMx, CMx, IMx, SMx, TM(, EMB

*Refer to NOTES, page A-9.

A-6

*Table A-8

15~Bit Positive Absolute or Relative Expression
External Requests (Conditional or Unconditional)
Common Requests

AOr, BWx, BNc, BOc, BcS, BeR, BOX,
BBI, BBJ, BWx, DVO, MYO
TOr, TNr ¢

*Table A-9

16-Bit Positive Absolute or Relative Expression
External Request (Conditional or Unconditional)

Common Requests ‘
Indirect Specification

BLL, BRL, BSL, BUL

*Table A-10

16-Bit Positive Absolute or Relative Expression
External Request (Conditional or Unconditional)
Common Request

BJL

*Table A-11

16-Bit Positive Absolute or Relative Expression
External Request (Conditional or Unconditional)
Common Request

Literal Address .

TLO

*Table A-12

8-Bit Absolute Expression
External Request

BLU

*Table A-13

11-Bit Absolute Expression (Channel Unit Specification)

IAW, OAW, ISW, ODW

*Refer to NOTES, page A-9.
A-7

*Table A-14

11-Bit Absolute Expression (Channel Unit Specification)
Indirect Specification (Merge, Override)

IDW, OCW

*Table A=15
Unitary Bit Operands
QBB, QSS

*Table A-16

8-Bit Absolute Positive Expression

AOB, COB, DOB, OOB, SOB, TOB, XOB, TOC
LRA, LRD, LLA, LLD, LAA, LAD
RRA. RRD, RLA, RLD, RAA, RAD

*Table A-17

8-Bit Absolute Positive or Negative Expression

AOM, AOW, AOX, COW, DOX, DV2, MOX, SOX, TOW,
TOY, USP

*Table A-18

Double Operand (Bit Processor)

First Operand: 5-Bit Absolute Expression less than or equal to 23
Second Operand: Blank or 8-Bit Positive Expression

or:
Single Operand: 13-bit absolute Expression

DMH, DNH, FBM, OMH, ONH, QBM
THM, TMH, XMH, XNH, ZBM

*Refer to NOTES, page A=9.

A-8

Table A-19

No Operand (Column 15 is Blank)

Arr, AAX, ADX

Crr, CDX, CZD, CZX, CZr

DAX, DDX, Drr, DVx, DVT

ESA, ESB, EZB

FAX, FXA, FNO

HIT, HLT, HSI, HXI

INX, Irr, IDX

Krr

MAX, MDX, MYr

NBB, NDD, Nrr, NSr, NXX, NHH, NOP
Orr

PBB, PDD, Prr, PXX

QBH

RCT, PPT, RSI, RXI, Rrr

SAX, SDX, SEX, SRE, SRT, SRX, Srr

TD1, TD2, TD3, TD4, TD5, TDé, T1D, 12D, T3D, 74D, 15D, T6D
TDL, TLD, TFH, TZH, TKV, TVK, TZD, TYA
Trr, TrB, TSr, TZr, TXD, TDX, TZX

UA1, UA2, UA3, UDI1, UD2, UD3, UE1, UE2, UE3, UIl, UI2, UI3
Xrr

» NOTES: (Tables A~4 thru A-19)
r - general register (I, J, K, E, A, or T)
x - index register (I, J, or K)
¢ - condition code (P, N, Z, or O)

External Equivalences are legal on all instructions except
those with no operand.

_ Text is legal as an operand for most instructions, however, an
attempt has been made to detect some instances where the use of
text is meaningless. For example:

BSL IIAII

	0000
	0001
	001
	002
	1-01
	1-02
	2-01
	2-02
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	6-01
	6-02
	6-03
	6-04
	7-01
	7-02
	7-03
	7-04
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10

