
DATAMAX UV-1
Zgrass LESSONS

October 27, 1981

(C) Copyright 1981
Real Time Design, Inc.

DATAMAX UV-1 Zgrass LESSONS
(C) Copyright 1981 Real Time Design, Inc.

October 27, 1981

LESSON a READ ME FIRST

Zgrass is a graphics programming language. It is
probably closer to BASIC than any other language, yet it is
much more flexible and general than BASIC. The presumption
in these lessons is that you already know how to program
BASIC (at least BALLY BASIC) and are familiar with loops,
IF's, GOTO's, variables, and so on, and are ready to learn
what makes Zgrass tick. The essential differences between
Zgrass and BASIC are:

1. Zgrass allows any number of programs and
subroutines, each named, and they can run in
series or parallel. BASIC has one unnamed program
and a lot of GOSUB's.

2. Zgrass has an interactive full-screen editor.
BASIC edits with line numbers.

3. Zgrass has good ways of passing arguments to
subroutines; BASIC has none.

4. Zgrass can construct programs and run them with
string manipulation features; BASIC cannot.

5. Zgrass has excellent debugging aids: single
step, run-time listing, and error trapping; BASIC
doesn't.

6. Zgrass has fast, advanced graphics commands;
most BASICs use peek and poke.

7. BASIC has FOR/NEXT. Zgrass does without.

In order to learn Zgrass, you will have to explore it.
Fortunately, this is not hard and is very rewarding. These
lessons are to help you start exploring. They don't teach
you how to program or write games, they just present the
tools to you and encourage you to build your own. The first
six lessons concentrate on defining the playing field. Pay
close attention!

If you find a word being used
understand, consult the Glossary. Once

that you do not
you get through the

10/27/81 DATAMAX UV-1 Zgrass LESSON 0 Page 2

lessons, read the Glossary in detail. You'll find yourself
understanding some of the esoterica. Some of the advanced
features you may never use or understand and it may take
awhile for you to see why some of the diversions from BASIC
were necessary. Before long, however, you will find going
back to BASIC unbearable.

Just to get you started, there's a test program called
NB in the system. Press the red RST on the UV-1 front panel
and answer Y. Then type the two letters NB and press the
RETURN key. An image will appear. Type NB and press RETURN
again. The image will undo itself. For more action, type
NB.B and press RETURN. You can stop this by pressing the
CTRL (called CONTROL on some keyboards) key, holding it down
and simultaneously pressing the C key. Have fun!

End of Lesson O.

10/27/8: DATAHAX IJV-1 Zgrass LESSON 1

LESSON 1 GETTING ST ARTED

When Zgras~ first starts up, you see a I>' on the
terminal screen. This is the "attention mark" and it means
Zgrass is waitin£ for you to type something. To make sure
it's liste~ing, press the RETURN key. It should put an
attention mJrk on the next line (if not, push the RST button
on the LJV-l front panel). \.<lhenever there is an attention
mark, you can type 8 COMMAND.

Aside frar: graphics output, the primary means of
communication from Zgrass to you is the PRINT COMMAND. It is
your window into Zgrass. \.<lhenever you what to find out what
something w::.ll evaluate to, type in PRINT plus that thing.
Separate PRI~T and the thing by a single space and press the
RETURN key to end the command. (The RETURN key performs the
same function as the GO key in BALLY BASIC, you might
observe.) Unless you've already pressed the RETURN key,
mistakes can be corrected by typing RUB to erase and
re-typine correctly. Try these:

PRINT 5
PP.INT 5*5
PRINT 5*2+2
PRIH 5*(2+2)
PRINT (5*2)+3
PRINT 100/3

The above exarrlples illustrate using Zgrass as an overweight
pocket calculator. When doing arithmetic in Zgrass, you
must observe the PRECEDENCE of OPERATORS. The OPERATORS
above are +,* and I. To discover the other operators in
Zgrass and their prece:ence, look up both OPERATOR and
PRECD::NCE ir: the Glossary now.

Zgrass has some operators that don't exist in BASIC.
The random n~~ber operator is the percent sign: %. It takes
the two nmbers on either side of it and yields (returns) a
nlJilber randomly chosen between them. The lower bound is
sometimes chosen but the upper never is, although it can get
very close. Try:

PRINT 11,5
several times. Notice that you get fractions.

"_II
Another operator in Zgr"ass

You car; type:
PRI";T A=iO~lCO

is the ASSIGNMENT operator,

and U:e nU'Tlt."':r rarv:orn: y chospr, betweer, 1 C and 100 will be
prir;ted and stored in VARIABLE A. Normally you do not want

10/27/81 DATAMAX UV-l Zgrass LESSON 1 Page 2

to see the printout every time you store something in a
variable so you leave out the PRINT:

A=101100
Zgrass does not like extraneous spaces, except at the
beginning of a line, so

A = 101100
will generate ERROR H20. Spaces on the end of a line are
tough to se~ because you can't tell where the NEXTLINE
character is. If you press CTRl down and press Y at the
same time (hereaftt>r referred to as CTRL+Y) an "!" will be
printed where the NEXTLINE's are so you can see them.
Another CTRL+Y turns this feature off, so it is called a
toggle after its similarity to toggle light switches.

In any event, you can always find out the current value
of A by typing:

fRINT A

The concept of an EXPRESSION is central to Zgrass. All
the thing~ you have typed followirg the PRINT's above are
expressions. PRINT always gives the value of an expression.
The smallest expression is a single number or variable and
lar~er expressions are made up of smaller expressions glued
together with operators. In fact, even "PRINT 10" is an
expression, as is every legal thing you can type in ZGRASS
besides CTPL characters. You can verify that "PRINT 10" is
an expression by:

PRIl:r PRINT 1 C
which will ~ri~t a lC then a 1. The one is the value of the
expression "PRINT 10" wr.ich the leftmost PRINT gives. It
prints a 1 because the PRI~: c~~and and all other commands
which hove nc:.!-:ing ~cr~ meaningful to evaluate to gi Vl: l' s
to indicate "success".

Evaluating to a value is often referred to as
"returning" a value depending on the context. In these
lessons, we will talk about returning values, which should
never be confused with the RETURN key. To avoid confusion
between the REItRN command which returns values and the
RETURN key, we no~ally call the character generated by the
RETURN key a "f4EXTLINE." That's why we say CTRL+Y puts "! '" s
where NEXTLINES are i~stead of where RETURN's are. (Many
people refer to NEXTLINES as "carriage .returns" which makes
no sense whatsoever on a cathode ray tube terminal.)

To drive home the point of returning values which PRINT
prints outt~ry:

PRINT PRINT PRINT 10

10121181 DATA~AX UV-1 Zgrass LESSON Page 3

Any Zgrass command can have its expressions put in
parentheses instead. Try:

PRINT(10)
PRINTCPRINTCPRINT(10»)

Note the lack of spaces. The 10 is called an "argl.JT\ent" by
computer folk and is an indication that computer languages
were developed by mathematicians, not social psychologist~
or artists. At any rate, argl.JT\erits are always separated by
commas:

PRINT 10,20,30
PRINT(10,20,30)

The parentheses are used to clarify the nesting. The only
reason we do not require them always is that they are a pain
to type all the time (if we did require parentheses, by the
W2Y, you would be able to type spaces anywhere, but we don't
so you can't). People seem to have an inordinate amount of
trouble accepting two different formats for enclosing
argur.ent~ to commands. Please make sure you re-read the
above few paragraphs until they are clear to you.

Try this last PRI~T evaluation:
FRINTCPRINTC1C)+PRINT(5»

Each print inside the parentheses returns a 1 after printing
its argument and the sum of the two 1's is printed by the
leftmost PRINT which prints 2. (The 1 it returns is lost
because it is not assigned or passed on to anything.)

There are, of course, more simple ways to arrive at one
2nd one are two, but understanding the connections between
arguments, commands and values returned is critical to
developing a feel for zooming around in Zgrass and seeing
how Zgrass is far mere powerful than BASIC. "

WHAT COMMANDS DO

In addition to printing 10 on the terminal, PRINT 10
returns a 1 to whatever called it because it had nothing
better to returr! than "success." That's reasonable because
it did its work as a side effect of returning that 1.
Commands generally are interesting because of what they do
rather tha~ what they return. Fer example, type:

HELP
Look at the last line. Now type (make sure there's no space
between the parentheses):

PRINT HELPC)
and you'll see a there. The point of this is that
commands cause other things to happen besides returning a
value. ~JNCTIONs are commands that return a value but
otherwize don't chanee anythir.e. It is possible to have
expressions which contain beth commands and functions since

10127/81 DATAMAX UV-l Zgrass LESSON 1 Page 4

the distinction is, in essence, artificial, but such
constructions are confusing, especially to someone else
trying to read your programs.

Functions are generally used as parts of complex
expressions and were invented because once you get past
about ten operators, you simultaneously run out of
punctuation symbols and the capacity to remember what they
do. Functions have names like commands (you are probably
familiar with SIN, COS, TAN, L(x;, cmd SQRT, for example) and
you can create your own functions and commands in Zgrass
quite easily. We'll show you how in the next lesson.

Meanwhile, l~t' s do some graphics commands. Try:
BOX 0,0,300,200,3
BOX 75,0,20,100,2
BOX -75,0,20,100,1
BOX 0,0,200,10,0

The BOX command draws' d filled-in rectangle defined by its
arguments:

BOX XCSNTER,YCENTEE,XSIZE,YSIZE,COLORMODE
X and Y ?-re the horizont2l and vertical coordinates and have
the ranges:

-160<X<1S9
-100<Y<100

The last argument to BOX is the COLORMODE. There are lots
of these, but for row, assume ° is white, 1 is red, 2 is
green and 3 js blue.

The POINT comrr.and allows you to draw points on the TV
screen. An individual pOint (from now on called a "pixel"
to avoid confusion with the POINT command) is sometimes hard
to see, especially if you are using a regular TV. Try:

BOX 0,0,320,200,3;POINT 100,20,0
Look up the POINT command if the arguments are not obvious
to you.

While looking up the POINT command, you might have
noticed a PCIt-;T functicn,too. When the COLORMODE is not
specifIed. Zgra~~; ;)SSlJmes yc·u wont it returned to you as a
value. The values range O-~ if the coordinate is on-screen
and -; is returned if the pixel specified is off-screen.
Try:

and:

CLEAR
BOX C,J,lCO,1Ca,3
BOX 0,0,50,50,2
POINT 0,0,1

PRINT POHO,C), POI(O, i), POlC 30,-30), POI<200,200)
So, POINT use:! 3S a fu~ction only returns a value while
POINT used as a command chan~es the screen

10/27/81 DATAMAX UV-1 Zgrass LESSON 1 Page 5

One last c~mand for this lesson: CLEAR. CLEAR erases
the TV screen. CLEAR. CRT (or CL.C for short) erases the
tenninal screen. The II.CRT" is called a switch. Switches
are used to modify some system commands and are separately
documented in the Glossary.

End of Lesson 1.

This page intentionally left blank

10/27/81 DATAMAX UV-l Zgrass LESSON 2

LESSON 2 WRITING MACROS

It's pretty difficult to find a programming language that doesn't deal with numbers coherently. However, the use and handling of alphanl.l!1eric text (called "character strings") so fundamental to our natural language communication, is, in fact, a clumsy add-on to most popular programrr.ing lar.g'...lae;es. Only the most primitive and ad-hoc constructs are availabl~ to the user in BA~IC or FORTRAN, for examp:p. Zgrass, on the other hand, uses character strings as its way of building and stori~g user programs so string manipulation is as much a part of the language as numerical computation.

S7RIi,Gs \ l')o~: l;P the defir.: ~io:J in t.he Glossary if it's a ne~ conc~p: to ycu) are defined much the same as numbers except yo~ need tc specIfy dalimiters (special punctuation)
whic~ first, in~icate that they are strings and second, say where th~y ene. Tne stri~g delimiters in Zgrass are: " , , , [, J • { and !
the last fc~r 0: which ca~ be nested. Try:

or
PRINT "HELLO!"

PRINT [HELD! j

To assign a 5tring to a variatle, type:
t.: [hSLLO ! J

and then try:
PRIN7 A,A,A,A,A

Unlike in BASIC, you do not ne~d to use a '$' to indicate a string variabl a ; Zgrass is pretty good at figuring it out. You may use '$' i-: a name- if yO'..l fir.d it comfortable. For the ti~e beIng, 8void ~aMes that star: with a $ and have exactly two addfticna! characte~s to eliminate possible conflict with DEVICE VARIABLE: names (see LESSON 7 and the Glossary). Also, do not ~se $CHAR1 as a name, since that is used by the TEXT cQ~~and.

Note that the~~ a~e spa~es betwe~n the HELLO! 's when prilited as above. PRI~:: always puts a space after the thing it prints. To el:~inate the spaces, try:
F~Ir-;T A&A&.:..&t.&.4

The '&' is the concatenation operator and it creates a string expressicr.

As st:te'::; befc;e, Zgr2ss stores your programs as strir-,gs. ''';c ;:;:::;:: ~ro~rar::s : Ii Zgrass 1I~·lP.CRCls. II So, to create

10/27/81 DATAMAX UV-1 Zgrass LESSON 2 Page 2

a macro. you assign the string that contains the commands to a variable. Try:
O=[BOX 0,0,100,100,2
BOX 50,50,100,100,3J

(Note the plus sign (+) which appears when a multi-line string is being typed and Zgrass is waiting for you to type the matching delimiter.)

To run this macro, just type 0 and press the RETURN key.

You sho~ld wonder why the letter 0 was used instead of A. If you use A as a name above, you will get ERROR #39 (try it). The reason is very important and the result of a great design difference between Zgrass and other languages: abbreviation. AbtTI"V ~2tio;, allows you to interact with Zgrass faster than if yo~ had to spell everything out all the time.

What you are doing in assigning the string to 0 is creating a macro, as we said. You can also think of it as creating your own can~and named Q. There aren't any system commands starting with 0 so Zgrass can tell right away that it is your command you want to run. Since Zgrass 2.1lows you to abbreviate, you will notice that H is enough for HELP, P for PRINT. etc. (HELP will tell you what the first command in each alphabetical grouping is and you can always get at it with its first letter.) Since H by itself always gets to MELP, you cannot have a macro named H and expect to be able to run it. You can have a string variable or number variable named H without any problems, but you can't run it if it's supposed to be a macro.
A few examples might help clarify:

P=100
PRINT P
P P
P P 10

The PRI~T ? and P P are the same. However, P P 10 is the same as PRINT PRINT 10 or PRINTCPRINT(10». It's that innocent little spac~ between the P and the 10 that causes Zgrass to look for commands instead of variables. And it always looks at system commands first. Watch out for extraneous spaces!

Why all this confusion? It's to help you avoid lots of typing. You can create a macro like this one:
OUANTIZED$SECOND$OEGREE$SPACE$INVADERS=[BOX 0,0,100,100,3) and run it by typing 0, assuming it's your only thing starting with a O. Even if you are a good typist, you will appreciate abbreviation once you get used to it. HELP can tell you what the system names are, and you can avoid

10127181 DATAMAX UV-l Zgrass LESSON 2 Page 3

abbreviations of them for macro names. If you do name a
macro BO, which is a abbreviation for BOX, just assign it to
another name:

MYBO::BC
and run MYBO.

Particularly error-prone names are WAIT, TIME, GET,
PUT, and ONE. Use HELP to figure out what commands these
are abbreviations for.

The command USEMAP lists all
use. Once you start using names
they show up in the USEMAP command.

ABC= 1 0
DEF=[SIRINGYTHINGY]
USEMAP

DELETE will remove them:
DEL ABC
USEM;.?

Let's do a simple macro:

MANYBCXES=[CLEAR
A=300
10 A::A-3
IF A>O,BOX O,0,A,A,A\4;GOTO 10]

the names cUrrently in
longer than one letter,
Try the following:

Run MANY BOXES. Notice that a comma is used to delimit the
conditional part of the IF command. The semi-colon allows a
second command eGOTO) to be in the scope of the IF command.
The ,\, is the modulus operator and assures the COLORMODE
will not exceed 3.

If you are a terrible typist and cannot get this
program in straight, persevere. The next lesson will show a
much more humane way to create macros. Line numbers are
used only as labels for GOTO's and have nothing to do with
line ordering. In fact, GOTO labels can have letters too,
as lonlS as they start with a number. lAGAIN, 3DEATH, 4TEEN
are a:l legal labels.Another example:

RAlIDJMCROSSES=[CLEAR
1 MORE X=-160% 159
Y=-100~lGO
LINE X-10, Y, 4
LINE X+lu,Y,3
LINE X,Y-10,4
LINE X,Y+10,3
GOTO lMORE]

This macro puts little crosses on the screen until you press
CTRL+C or BREAK. The 4 as colormode above places the
starting point of the line to be drawn each time. See the
LINE command l~ the Glossary.

10/27/81 DATAMAX UV-1 Zgrass LESSON 2 Page 4

Note that if you like to have your programs formatted
so that labels are at the left edge and commands indented a
little, you can use spaces as the first characters of the
lines you choose. You cannot use tabs, however. Use of
spaces does chew up memory, but you can do it.

Zgrass encourages you to write several small macros
rather than one large program as BASIC requires you to do.
Small macros are easier to configure as software tools. In
case you are tempted to write enormous programs, Zgrass, for
internal reasons, limits you to 99 SKIPS, GOTOS and IFS in a
single macro. Macros cannot exceed' 4000 characters either.
Even the EDIT command (next lesson) works best on small
programs. So break your bad BASIC habits!

End of Lesson 2.

10/27/81 OATAMAX UV-l Zgrass LESSON 3

LESSON 3 EDITING

Editing is the act of creating and changing a character
string. In the process of developing a complex graphics
simulation, for example, you do a lot of editing. In BASIC,
editing is done with line numbers. Zgrass allows you to
roam around a page of text on your terminal screen with the
ED IT command.

To start, type:
EDIT TEST

The screen should clear. Just start typing the following:
PH "THIS IS LINE 1"
PR "THIS IS LINE 2"
PR "THIS IS LINE 3"

Note that you do not put brackets or other string delimiters
in. EDIT does tha: automatically.

You move the cursor with the arrow keys. Now practice
getting the cursor under any character you choose.

Change the quotes in the first line to single quotes by
positioning the cursor under them one at a time and typing a
single quote each time. You can change any character by
typing over it.

Now press RE1lJRN. There's an open line now. Type:
THIS IS THE NEW LINE 2

Move the cursor dewn and change old line 2 to line 3, etc.

To change the 1 in the first line to ONE, position the
cursor under the 1 and type ONE. You have wiped out the end
II though, so type it in again. It's easy to type characters
at the end of a line.

To change it to "THIS IS NOT LINE ONE", position the
curser under the L, press the HOME key and type NOT plus a
space. Move the cursor down a line to get out of insert
mode.

To delete the word NOT, position the cursor under the N
and press ESC three times. Type it one time more to delete
the extra space.

Some other EDIT functions:

10127/81 DATAMAX UV-1 Zgrass LESSON 3 Page 2

-To delete a whole line, press the TAB key.
-To exit from EDIT, CTRL+E.
-To exit but ignore all changes made in EDIT, press BREAK. -To insert before the first line, press the HOME key and type away.
-To insert a NEXTLINE in the middle of a line,

press the HOME key first.

EDIT also allows you to move and copy lines or parts of lines. In order to do this, you must set two pOinters, one indicating the start and one past the last character to be copied or moved by positioning the cursor and typing CTRL+S each time. A single quote will appear temporarily to indicate the pointer. (If you make a mistake, type CTRL+T to erase the pointers.) Then position the cursor again to where you want the text to go and type CTRL+D to move the text there or CTRL+F to copy it there. If you confuse things horribly, press BREAK and try EDIT again.

After a while, using EDIT will become easy and you will be forever spoiled.

End of Lesson 3.

10/27/81 DAT~~ UV-l Zgrass LESSON 4

LESSON 4 MORE ON MACROS

All the macros in this lesson should be typed in with
EDIT. Remember to only type the characters between the
square brackets when in EDIT. Try:

TRIANGLES=[CLEAR
PRINT "LOa< AT THE TV!"
SIZE=O
1 UP 3IZE=31ZE+2
LINE 0,SIZE*2,U
LINE -S1ZE,-SIZE,l
LINE SIZE,-3IZE,2
LINE 0,SIZE*2,3
IF 3IZE<50,60TO lUP]

Run TRIANGLES. If there are any errors, check your macro
carefully and EDIT it.

You can speed up TRIANGLES a bit by COMPILing it:
COr~PILE TRIANGLES, CT

and then run CT as you would any macro or command.

For too many reasons to go i~to here, Zgrass has no
FOR/NEXT constru~t. You must build loops out of IF's and
GOTO's, explicit:y testing conditions. The iteration and
testing step can be combined, if you prefer:

IF (SIZE=SIZE+2)<50,GOTO lUP)
although this would necessitate SIZE to be initially set to
2 instead of O. and the removal of the IISIZE=SIZE+2" in the
line starting with lUP, in this particular case. It's ok to
have a label witho~t anything following it, by the way.

You should be wo~cering about that assignment inside
the IF. It's possible because Zgrass does not use the same
operatar for assignment and logical equals as BASIC does.
Zgrass uses ,--, (double equals) for logical equality
testi~g. It's 8nother minor deviation from BASIC to get
used to. Note its use:

COU NTDO~-lN= [A= 10
1LESS PRINT A
A=A-l
IF A==5, PP. "HALFWAY THERE"
IF A>O,GOTO lLESS
PRINT "BLASTOfF"]

Run this one and t~en edit it so the A==5 is A=5. The loop
will never end since A is continually assigned 5. To
further cl?rify:

10127/81 DATAMAX UV-l Zgrass LESSON 4

PRINT 5==5
PRINT 5==6

So, "true ll is 1 and "false ll is zero.

Page 2

IF takes the rest of the line if
and the comma eVoluates to non-zero.
"HI!" would always print HI!

the stuff between it
Therefore, IF 1 ,PRINT

The next macro will draw sweeping lines of random
colors forming an ellipse 300·150 pixels:

SWEEP=[ANGLE=O
CLEAR
X=SINCANGLE)*150
Y=COSC ANGLE) *75
LINE X, Y,4
LINE -X,-Y, 1~4
IF (ANGLE=ANG LE+2) (,SO, SKI P -4]

Note the SKIP -4 in the last line. It is a shorthand way of
doing GOIO's without the need for labels. It goes back four
lines. SKIP 2 ~ould go down two lines (not skip the next
two lines as you might thi~k, that would be SKIP 3). SKIP °
keeps executing t~e same line it is on.

As in BASIC, the INPUT cormnand is used to get responses
from the user of the macro:

FCwr-:';:!JYEClXES= [CLEAR
FROMPT "NUMBER OF BOXES TO DRAW?"
INPUT QUAj~

XCENTcR=-16G
BOX XCENIEfi=XCE~'TER+20,O, 18,18,3
IF (QUAN=QUAN-l»O,SKIP -1)

If you answer with too big a number for QUAN, boxes will be
dra~TJ off-screen.

To wra~ the boxes around in a grid, try:
GRIDBOXES=[CLEAR
PRO~1PT "NUM?::r. OF BOXES TO DRAW?"
INPUT QUA;~

Y C::NT ER= go
XCENTER=-16C
BOX XCENTER=XCEtITER ... 2C',.YCENTER, 18,18,3
IF (QUAN=QUAl~-l) ==0, RE11JRN
IF XCENTER==140,YCENTER:YCENTER-20;SKIP -3
SKIP -3]

after running GRIDBOXES, try:
GRIDBOXES 30

and notice that no prompt appears. If a macro is passed
arguments like the 30 above, the PRINT and PROMPT commands
are automatically sup~ressed. You can tell if there are
arguments passed with the ANYARGS cOr'"»pnand, just look it up.

with:

10127/81 DATAMAX UV-l Zgrass LESSON 4

Now try:
SINECURVE::[PROMPT "WHAT'S THE OFFSET TO BE?"
INPUT OFFSET
X::-160
ANGLE::O
POINT OFFSET+X,SIN(ANGLE)*80,3
ANGLE::ANGLE+2
IF (X::X+l)<159,SKIP -2]

SINF.CURVE 0
SINECURVE 30

Page 3

To show how macros can be used as subroutines for other
macros. try:

~lANYSINES=[PROMPT "FIRST OFFSET?"
PROr·1PT "LAST OFFSET?"
PROMPT "HCW MA~.rY?"
INPUT FIRST,LAST,QUAN
INCREMENT=(LAST-FIRST)/QUAN
SINECURVE FIRST
IF CFIRST=FIRST+INCREMENT)<=LAST,SKIP -1]

You can answer the questions by typing:
~iANYSINES

or specify arguments:

r-iA~'YSINES 0,100,5

If you choose to speed up SINECURVE, you can compile it, but
remember to change NANYSINES to refer to the compiled name:

COMPILE SINECIJRVE,FASTSINE

As a further note, you can also input strings. Use the
INPUT.STR command:

NAMES=(PROf·1PT "WHAT'S YOUR NAME?"
INP.STR XXXX
FRItH "THAT'S FUNNY!, ",XXXX," IS MY NAME TOO!"]

End of Lesson 4.

This page intentionally left blank

10127/81 DATAHAX UV-l Zgrass LESSON 5

LESSON 5 STORING MACROS ON TAPE AND DISK

With luck, by this point, you
worth saving. If you do not have a
send someone a tape copy, you need
GETTAPE and PUTT APE.

may have some macros
disk yet, or want to
to know how to use

Zgrass's audio tape storage has some advanced features when compared with standard BASIC tape handling. Zgrass allows you to ea~ily store several copies of a macro so that if an error is detected while reading it back, the next copy can be automatically retrieved. It also will print out a directory of the tape as it is looking for a file by name, if you wish.

PUTTAFE works on macros, arrays, swap modules and screen dumps. So far, you've only used macros. You cannot PUTTA?E compiled macros or number variables. Screen dumps are 16K byte blocks which are memory dumps of the screen, useful for storing pictures instead of the instructions to
dra~ the pictures. A screen dump gets PUTTAPED when you use the .TV switch and a name.

The required cable hookups for tape storage are described in the hardware manual for the UV-1.

To store a macro on tape, you need to specify three things:
PUTTAPE NUMBER,MACRONAME,[SOME DESCRIPTIVE MESSAGE] where the NUMBER is the number of times to write the file out (2 or more is suggested), and the message in brackets is supposed to be descriptive so that when you look at the tape three months from now you know what it's for. You can see the number count down in binary in console lights 8-15 as the copies are being put on tape.

For example, to PUTTAPE a macro called SHIRLEY, get the tape deck ready, type· in the following line but don't press the RETJRN key yet:
PUTTAPE 2,SHIRLEY,lSHIRLEY DRAWS PINK ELEPHANT HATS] set the tape deck in RECORD with the tape moving and then press RETURN. When you get the attention mark back, stop the deck.

Since Zgrass programming usually involves creating several macros as software tools, it's a good idea to have macros for ea~h major task that do nothing but GETTAPE and

10/27/81 DATAt-!AX UV-1 Zgrass LESSON 5 Page 2

PUTT APE all the pieces. You cannot conveniently reclaim
data space on an audio cassette, so always work in the mode
of reading all the parts in, change them as necessary for
debugging and write them out in order.

To GETTAPE a file named SHIRLEY, Simply type:
GETTAPE SHIRLEY

Press the RETURN key and start the audio tape up, making
sure that the cables are connected, of course.

If there is an error detected in the tape read, you
will see

BAD-AUTO RETRY
and the next copy will be gotten. You can test this feature
by turning the audio level down all the way during a GETTAPE
for an instant.

It's actually a good idea to rewir.d your tape, and type
GETTAPE XXXXX after you've PUTTAPED your macros, before you
RESTART the system. Assuming XXXXX is not a name on the
tape, GETTAPE will scan the entries, print the directory
information, verify the integrity of the data (if it doesn't
say BAD DATA, it r s ok), and keep go i ng. If you encounter
some errors, you can re-?JTTAPE the macros again. Get out
of GETTAPE or PUTTAPE by pressing the red button marked
"RST" on the UV-1 front panel.

If you are thorough and methodical about saving your
Zgrass macros, arrays and so .on, you will not lose your
temper when the power company glitches, or you find a bug in
Zgrass that erases all your macros in memory.

USING THE MICROPOLIS DIS~ AND DGET/DPUT

The Micropolis 5" floppy disk system suppl ied with
Zgrass units has a lot of software support. All disk
commands begin with a D. and ofter. only require two
characters (for example, DU works f8r DUSEMAP, DG for DGET,
etc.). These disks wil~ hold apprcximately 180,000 bytes on
each surface giving a total of over 700,000 bytes of storage
on-line.

The primary difference between tape and disk is random
access. Disks have diskmaps (sometimes called directories)
which tell you what is on them and the system where the data
is stored on the. disk. Unlike audio tape, access to
different parts of the disk is easy so it can jump around
alot. You do not have to store stuff sequentially as you do
with audio tape.

10127/81 DATAHAX UV-1 Zgrass LESSON 5 Page 3

Another difference is deletion. You can update stuff
simply by putting it out again. The DPUT command
automatically keeps one backup for you for safety. Of
course, the disk is much faster than audio tape as well.

One note: names stored on disks are generally referred
to as 'files' so do not get confused by the terminology.
Files are just things stored on the disk, nothing more.

The first thing you should do is insert your system
disk into drive O. You do this by gently pushing the disk
in the slot, keeping the label up and the little notch to
the left. Then push the lever with the blue on it down
until it catches. Then type:

DSETIJP 0
DUSEMAF

and you will see a listing of all the swap modules on your
systerr: disk. Now put a blank disk in drive 1. Type:

DSETIJF 1
DEaT 200

This will erase the disk and then initialize it to accept a
maximum of 200 names. Type DUSEMAF and you will see how
many sectors (each is 512 bytes) are left.

If you get an error when trying to DINIT, the disk may
not be formatted, in which case you must first DFORMAT it.
See the Glossary.

Now type:
DS ~ (the system starts up with disk 0 setup)
SAM=NB
DPUT SM1, [SAM IS A COpy OF NB]
DUSEMAP

and ycu will see SAM in the disk map. If Y9U RESTART then
type:

DGET SAM
l:SEMAP

you will see SAM in memory.

If you DPUT Sht·~ and then type DUSEMAP, you will see SAM
and a backup copy of SAM (type is listed as BAK). The
second and Subsequent times you DPUT something you do not
have to include a message (the stuff in square brackets)
unless you want to change the message. DPUT always
maintains one and only one BAK.

You can DGET a BAK with DGET.BAK NAME.

You can delete a name on the disk with DDELETE NAME.
!f you wa~t to save space on the disk, you can get rid of
BAKs wi th DDELETE. BAK NAME. There is also a command DBAKS
which removes all BAKs fror the disk. You only need to

10/27/81 DATAMAX UV-l Zgrass LESSON 5 Page 4

remove BAKs if you need the space, which is not normally the case.

The reverse side of disk 0 is called disk 4, so you use DSETUP 4 to get at it. Of course, it must have been DINIT'd at some previous time. The reverse of disk 1 is called disk 5. If you have two Hicropolis dual drives, you get disks 2,3 and 6,7 as well.

The Glossary has descriptions of the rest of the disk commands. One concept that has to be explained in detail, though, is the submap. Submaps are essentially little disk maps which you can use to partition your disk into areas specific to individual projects you are working on. Once you are working within a submap, all disk commands reference only that submap and cannot get from or put into any other submap. The only exception to the rule is that if DGET cannot find a name within the submap, it will go look
thro~gh the regular .diskmap (but not any other submaps) for the name, so you can DGET swap modules and any other 'tools' you often use that are stored in the regular disk map.

The way you get into a submap the first time is to type:
DCREATE SUBHA?NAME, [MESSAGE]

For example, try:
DCREATE PAINT,[PAINT PRCGRAM SUBHAP]
DUSEMAP

Nothing is there at present. If you DPUT a name, it will shO' up with DUSH'.AP. To get back to the regular disk map, type:
DSETtJP n

where n is the disk you're USing. To get back to the submap PAINT, type:
DSEruP n,PAlNT

The regular disk map holds entries for all the submaps so you can tell what their names are. You can actually store things under a submapnarre without having created the subnap with DCREATE but you will not know they are there unless you possess an extraordinary memory. You have to pay attention when you change disks, in particular, so you do not DPUT into submaps which have not been DCR£ATE'd on that disk. It would take an enormous amount of overhead to have Zgrass check each time for whether the subnap has been created.

DDSMAP, a swap module, will remove a submap and all its entries.

The disk commands turn off the rest of the system while operating so you cannot type ahead as you normally can.

10127/81 DATAMAX UV-1 Zgrass LESSON 5 Page 5

There are also two other artifacts: the stripe command temporarily freezes and the system timer device variables are suspended during disk access time. Control characters are not listened to either, so if you want to use CTRL+W with DUSEMAP, make sure you press the keys before the command starts going.

You should also check out DLOAD.

Please read about the other disk commands in the. Glossary at your leisure.

End of Lesson 5.

This page intentionally left blank

10/27/81 DATAMAX UV-l Zgrass LESSON 6

LESSON 6 DEBUGGING

This lesson is about what to do when your program
doesn't do what you expect it to do. There are several
classes of reasons for unexpected behavior. The first class
involves SYNTAX errors.

Syntax errors are essentially errors in spelling,
punctuation, abbreviation or specifying arguments to a
command. Syntax errors can always be fixed with EDIT.
Examples of syntax errors are:
Spelling errors:

MILP instead of HELP
help instead of HELP (is caplock key on?)
POINT instead of POINT (zero instead of 0)

Punctuation errors:
POINT 14;30,4 (';' shoulc be a ',')
SKIP-2 (needs a space)
POINT (14,30,2) (if parer.theses, no space allowed)
TEST="PRI~T '''''' (double quote inside double -:tuotes)
If A=10,PRINT "huh?" (this always prints. Use '==')

Be particularly careful to match parentheses and brackets.
Quotes, single and double, cannot be nested like brackets
and parentheses can. Although you might at first be more
comfortable with quotes from experience with BASIC, strings
defined with brackets (both curly and square) seem easier to
locate when you're debugging.

RECKLESS ABBREVIATIO~:

DOODLE CR1,CR2,CR3,CR4,CRS,CR6,CR7,CR8,CR9,CR10,CRll
will cause confusion because CRl is an abbreviation for CR10
and CR1l as well as, in this case, probably a variable name
itself. Use names like eROl if you have a names like CR10.

SIN fIRST,ORIGINAL
SIN is a systen function so you can't use it for a macro
name. If you get into this Situation, reassign the macro
name by typing:

SIN1=SIN
You can delete SI~ then, if you want to clean things up.
(Astute note: si~ce you created SINl after SIN, the
reference to SIN in DELETE SIN will find the first SIN, not
SIN1. If you typed DELETE SI~ again, it would get rid of
SIN1, of course. Since there is no way to pass system
corr~and names as arguments, you can': actually delete the
SINE command. ever. i f yc:~ try.)

10127/81 DATAMAX UV-1 Zgrass LESSON 6 Page 2

MISSING ARGUMENTS:

Often you omit something a command wants as an
argument. HELP gives you the arguments in brief for each
system command and function, and the Glossary gives
information in detail. Sometimes unbalanced parentheses or
brackets will confuse the argument scanner, other times it's
a misplaced comma or semi-colon. Proofreading is essential
in Zgrass sirce there is not nearly the redundancy present
in English or BASIC.

OTHER TYPES OF ERRORS:

There are
encounter: logic
out of space and
detail.

three other types of errors you will
errors, incorrect assumptions, and running

time. We will discuss all of these in

I~correct assumptions arise from poor documentation or
instruction on our part and bad guessing by you. It is
impossible to describe everything a programming language
does or can do (which is why they're so intriguing, of
course) so the best we can do is get you to a level at which
you can tell whether it is your problem or a shortcoming of
Zgrass when the unexpected happens.

DEBUGGING STEPS:

First, check for syntax errors. If there are none
apparent, check that the commands you are using actually do
what you expect them to do. If possible, use the command
outside a macro in its Simplest form. Use numbers instead
of expressions since the error will often be in your
expression. not in the command, something you should
discover as soon as possible.

Always debug in interpretive mode (non-compiled).
Anything that works as a macro should work as a compiled
macro (if it dcesn't, it's our fault unless it's
documented) .

Macros which make you unhappy do so because they
generate errors or don't do what they're supposed to. The
former are ea!ier to detect because Zgrass pOints them out
and gives you an error number which you can look up in the
Glossary. You can list the program as it is executing with
CTRL+X and you will see the last lines executed before the
error is generated. You can print the values of variables
and

10127/81 DATAMAX UV-l Zgrass LESSON 6 Page 3

see what's wrong. A second CTRL+X cancels list mode, as

will pressing CTRL+C or BREAK.

If you are still having trouble, once you get to the

part of the program causing the error, press CTRL+D. This

puts you into single step mode. Each time Zgrass sees a

NEXTLINE or semi-colon, it prints a '#' and acts like it's

in attention mode. You can type commands to see what's in

variables, and/or press RETURN to continue one step at a

time. A second CTRL+D plus a RETURN gets you out of single

step.

There is also a once-only CTRL+D. You get it by

pressing CTRL+Z. ft RETURN key press gets you back into the

macro.

Since it is easy to ED~T in Zgrass, put PRINT's in

crucial places to test your variables in a loop. You can

then use the pr ir;t. control characters (CTRL+O, CTP.L+Q) to

alter execution or printing of the variables. CTRL+O will

suppress output to the terminal but otherwize allow the

macro to execute so if you put a PRINT in a loop and don't

want to see it all the time, type CTRL+O to turn printing

off, another one to resume printing. CTRL+Q stops not only

the printing but the execution as well when ycur macro is

trying to print. It's good for waiting while you scratch

your head trying to figure out the problem. Another CTRL+Q

will resume printing. You can't type anythir.g when stopped

with a CTRL+Q, by the way, as you can in CTRL+Z or CTRL+D

modes.

CTRL+W is also useful for seeing a terminal screen-full

of information at a time. Press the RETuRN key to get 20

lines of text at a time after you press CTRL+W. Another

CTRL+W will get you out of this mode. (We used CTRL+W in

Lesson 1 to page through the HELP command.)

SPACE AND TIME PROBLE~S:

Zgrass has a lot of memory for a small system. If you

use a lot of arrays, syste~ swap modules, or many, many

large macros, you can run out of space. The only recourse

is to delete some of the stuff that's taking up all the

space. You may have to design some graphics sequences to

GETTAPE or DGET parts while running, deleting stuff that is

no longer needed.

Getting things to run faster is the real problem,

though. The compiler speeds things up, of course. If

you're really pressed for time, try modifying your macros to

10127/81 DATAMAX UV-l Zgrass LESSON 6 Page 4

do less computation, use less array
references. etc. Games programmers get paid very well for
their cleverness.

You now have the tools necessary to debug your
programs. It still isn't easy, but it's most of what we
call programming.

Fnd of Lesson 6.

10/27/81 DATAMAX UV-1 Zgrass LESSON 7

LESSON 7 DEVICE VARIABLES AND PORTS

Devices (also sanetimes called "peripherals") are
hardware gadgets that hang off the computer system and do
the communication with humans or other computers. So far
you've communicated with Zgrass by typing on a terminal and
it talked back with graphics on the TV and characters on the
terminal. There are several other devices available in
Zgrass some of which you access via DEVICE VARIABLES and
others you read/write via PORTs. Ports are a more primitive
way of accessing the hardware. Device variables have been
provided for hardware features that share ports in a complex
way and for timing-related software/hardware programming.
Simpler devices .(like the LED lights and switches, for
instance) can be set or read easily by the PORT command so
the overhead in providing device variables for them is not
justified •

Device variables do not show up in USE~AP. They all
start with a dollar sign and have two more letters.

You can have your ~r. variable names with dollar signs as
the first character, so you might want to always have three
or more characters following the dollar sign to avoid
conflict with device variables. Many device variables are
acted upon by the system every 1/60 second.

For instance. find a joysti.ck and plug it into the
leftmost joystick hole in the front panel. There are four
device variables which report the values received at each
hole sixty times a second. For hole 1 (notice that the
number on top of the joystick knob only corresponds if you
take the care to plug it intc the correct hole), the device
variables are as follows:

$Tl is zero if the trigger is out, 1 if in.
$K1 ranges from -128 to +127 when you turn the knob as

you would a volume control.

$X 1 is 0 .f'
1. the knob is in the center pOSition,

1 if the knob is pushed to the right and
-1 if the knob is pushed to the left

$Y1 is 0 if the knob is in the center pOSition,
1 if the knob is pushed away from you and

-1 if the knob is pulled toward you
assuming you hold the joystiCK with the trigger pointing
away from you.

10/27/81 DATA~~ UV-1 Zgrass LESSON 7 Page 2

The easiest way to discover the values of a device
variable is to print it in a loop while changing its values:

RANGE=[PRINT $Tl;SKIP 0)
and so on.

Let's write a simple drawing routine which puts a pOint
down whenever the trigger is pulled in:

DRAW=[IF $T1==1,POINT X=X+$X1,Y=Y+$Y1,3
SKIP -1)

This program needs improvement, though. You can't tell where
the point is going to be unless the trigger is in. You also
can't erase any points put down in error. Try:

DRAi~:[POH~T X=X+$Xl,Y=Y+$Yl,3
IF $T1==O,POINT X,Y,O
SKIF -2J

This DRAW will erase the point you see at the current
accLrnulated X,Y position unless the trigger is in. It's
st:ll pre:ty hard to see the dot, though, so let's put a
cursor in:

DRAW=[K=O
X=X+$Xl ;Y=Y+$Y1

BOX X,Y,1,20,5
BOX X,Y,20,1,5

IF (K=K+1)\2==1 ,SKIP -2
IF $T1==1,BOX X,Y,3,3,$K1/6~+2
SKIP -5J

This DRAv.' uses several tricks. First, COLORMODE 5 is used
with LINE to allow the red lines to flash without
overwriting already drawn blue points. If we used COLORMODE
1, the red lines would erase the blue points. Secondly,
COLORMODE 5 applied twice erases the red lines. Color modes
4-7 are done by special hardware in the system and will be
aiscussed in detail in the next lesson. The four LINE
commands are done twice by the testing of K modulo 2 which
evaluates to 0 or 1 each time. Finally; the $K1I64+2
evaluates to 0,1,2, or 3 and sets the COLORMODE of the pOint
drawn so you can erase with ° or draw with red, green or
blue by turning the knob.

It's less easy to figure out how to use device
variables you set instead of read. .The hue and brightness
associated with the four colors on the screen are set by
Zgrass sixty times a second based on what values you have
stored in $LO, $L1, $L2 and $L3. Print out the values of
these variables:

PRINT $LO,$L1,$L2,$L3
Zgrass automatically puts these values in $LO-$L3 when you
restart the system or type CTRL+E.

The colors are arranged in 8 brightness levels of 32
colors yielding a choice of 256 colors. Setting $LO to 127,

10127/81 DATAMAX UV-l Zgrass LESSON 7

for example, turns the screen to yellow. Try:
COLORS:[$LO:$LO.$Xl;SKIP 0]

Let's make finding your favorite colors easier:
CHOOSY: [PRINT "MOVE THE KNOB SIDE TO SIDE

TO CHANGE COLOR
AND TURN IT TO CHANGE BRIGHTNESS
PULL TRIGGER TO PRINT VALUE"
A:O

A:A.$Xl*8;IF A(O,A:O
IF A>248,A:248
$LO:A.$K1/32+4

IF $Tl::1,PRINT $LO
SKIP -4]

Page 3

The $K1/32+4 evaluates to a number in the range of 0-7 plus
a fraction. Since $LO is used as an integer value, the
fractional part is tossed away.

Now, look in the Glossary under DEVICE VARIABLES. Of
primary interest are $HB and $BC. Try setting them to
numbers within their ranges and see the results. When you
set $HB to 20, for example, the screen now shows the right
half colors $RO-$R3. Draw a set of color bars:

CBARS:[CL;A=-1 49;C=O;$HB=21
$RO:0;$Rl:82;$R2:43;$R3=249
$LO:7;$Ll=213;$L2:126;$L3:164
IF A(115,BOX A:A+45,O,46,202,C:<C.l)\3.1;SKIP 0]

You can easily make a pocket watch out of Zgrass with
the system time device variables:

CLOCK:[PRINT "INPUT HOUR,MINUTE,SECOND"
INPUT $HR,$MN,$SC
PRINT $HR,$MN,$SC;SKIP 0]

There are also ten system timers $ZO-$Z9 which you can
use to control things over time. Many device variables are
used for setting options in the software. See the Glossary
for complete details. $RD, for example, if 0, sets the
system to use degrees for angle movement; if 1, radians are
used. All device variables except the $LO-$R3 and $HB are
set to zero on RESTART, so the default settings are the ones
that correspond to the device variable being 0. See the
examples under DEVICE VARIABLES.

PORTS:

Use of the PORT command and function are documented in
the Glossary.
You must use ports to get at the console switches, light up

10127/81 DATAMAX UV-1 Zgrass LESSON 7 Page 4

the console lights, and to directly access the music
synthesizer. The rest of the ports you diddle at your own
software risk--yo~ can't break the hardware by setting
ports, of course.

End of Lesson 7

10127/81 DATAMAX UV-l Zgrass LESSON 8

LESSON 8 ARRAYS (Optional Lesson)

Computer programming languages have been largely built
around what computers do well. One thing they do well is
manipulate lists of things. A string is a list of
characters, as you know, one after another. Also common are
lists of numbers, and these are called ARRAYs. (There are
also string arrays in Zgrass, but let's ignore them for
now.)

An array with N elements looks like:

C
1
2
3
4

N-l

Before we get into the mechanics of accessing individual
array elements, let's discuss the benefits of using arrays.

First, it takes at least 16 bytes to store the name and
value of a named numeric variable. So 100 named variables
take up at least 1600 bytes. Second, you have to get
fancier than you presently know how to change all 100 of
them in a loop with less than 100 different assignment
statements, and it's not very fast anyway. BeSides, it's a
pain to type in so many names.

To create an array, use the array command:
AR RAY STUFF, 100

STUFF now has 100 elements called STUFF(O), STUFF(1),
••• ,STUFF(99). To ~ri~~ out the values of STUFF, you have
to write a macro:

PRSTUFF:[N:O
PRINT STUFF (N)
IF (N:N+l)<100,SK -1]

Run PRSTUFF. Of course, all values are O. Try:
STUFF(91):12345
PRSruFF

You'll see the 12345 in element 91. We'll pretty up the
array printing later on.

10127/81 DATAMAX UV-1 Zgrass LESSON S Page 2

The major negative aspects of using arrays are that
first, STUFF(9i) is not a very good name, compared with
GUNA!~GLE or BIGNURSE, for example, and, second, you wind up
typing a lot of parentheses.

Geometrical problems lend themselves to array-based
solutions. We will show you how to rotate a pyramid in 3-D
using arrays. Let's look at the x,y,z coordinates and the
color. The base is blue, and the lines going to the apex
are red and green:

X y
50 0
o 0
-50 0
o 0
o 50
o 0
o 0
o 50
-50 0

z
o
50
o
-50
o
50
-50
o

color
4
3
3
3
1
1
4
2
2

We will store the
o
40 numbers above in an array called PYRe

First, create it:
ARRAY PYP,40
X values are in PYRCO),
Y values are in PYR(1),
Z values are in PYR(2),
Colors are in PYR(3),

that is, for values of N from 0
X's are in PYRCN*4)
yls are in PYP(N*4+1)
Z's are in PYR(N*4+2)
Colors are in PYReN*4+3)

PYR(4),
PYR(5),
PYRe 6),
PYR(7) ,
to 9,

PYReS), •••
PYRe 9), •••
PYR(10), •••
PYRe'1), •••

Of course, we have to load up PYR:

,PYR(36)
, PYR(37)
,PYR(38)
,PYR(39)

ENTER:[PRINT "TYPE ENDPOINT NUMBER,
VALUES:"

X,Y,Z,COLOR

INPUT N,X,Y,Z,K
PYR(N*4):X
PYRe N*4+ 1) = Y
PYR(N*4+2)=Z
PYR(N*4+3):K
SKIP -6]

Run ENTER and type these values:
0,50,0,0,4
1,0,0,50,3
2,-50,0,0,3
3,0,0,-50,3
4,50,0,0,3
5,0,50,0,1
6,0,0,50,1

10/27/81 DATAHAX UV-l Zgrass LESSON 8

7,0,0,-50,4
8,0,50,0,2
9,-50,0,0,2

Page 3

If you make a mistake, just retype the number, x,y,z and
color. Use CTRL+C to get out.

Now let's print the values out in a table:
PRPYR::[N::O
L::O
PROMPT "PYR(n&(4*N+U&"):: n, PYRe 4*N+U
IF (L::L+1)<4,SKIP -1
PRINT
IF (N::N+1)<10,SKIP -4)

PRINT with no arguments prints just a NEXTLI~E. Be careful
of the punctuation! The '&'s are used to eliminate the
spaces that commas in the same place would cause. If any of
the element~ is incorrect when you run PRPYR, change it with
ENTER.

Store PYR on tape:
PUTTAFE 2,PYR,[PYRAMID ENDPOINT ARRAY FOR LESSON8)

Rewind the tape and type CTRL+N then:
GEiTA?E XXXXXX

to verify that PYR is stored without errors. If it doesn't
say BAD DATA, PYR is stored properly. If you have a disk,
DPUT PYR instead.

Now let's draw the contents of PYR. To see a 3-D
object on a 2-D screen, you have to do a projection. The
easiest proj€ction is done by throwing away the z-axis
coordinates. Just use the x, y and color values as
arguments to the LI~E command:

DRA',.,'PYR::[CLEAR
N::C
LINE PYR(N*4),PYRCN*4+1),PYR(N*4+3)
IF (N::N+1)<10,SKIP -1)

A straig~t-or projection like this is not very interesting,
of course. So, we'll rotate the image. If you don't
understand the SINE/COSINE math below, take it on faith.

To rotate PYR around the center of the screen (z-axis),
you change the endpoints by the following formula:

XNEW::X*COS(ANGLE)+Y*SIN(ANGLE)
YNEW::-X*SIN(ANGLE)+Y*COS(ANGLE)
ZNEW::Z

So our macro for z-axis rotation is:
ZROT::[A::O
BOX 0 0,110,110,0
S::511\ A)
C=COS A)
~::O

10127/81 DATAMAX UV-1 Zgrass LESSON 8 Page 4

L:N*4
LIN PYCL)*C.PYCL.1)*S,-PY(L)*S+PY(L.1)*C,PY(L.3)
IF CN:N.1)<10,SKIP -2
WAIT 1
A:A+6jSKIP -8]

Note that PY is being used as an abbreviation for PYR. If
you change the -8 to a -1 in the last line, you'll get a
built-up image. Compile ZROT to make it go faster:

COM ZROT,CZROT
eZROT

We still can't see the z-axis information because,
obviously, we haven't used any PYRCL.2)'s yet. We have to
rotate around different axes. Rotation around the x-axis is
given by:

XNEW:X
YNEW::.Y*COS(ANGLE)-Z*SIN(ANGLE)
2ND-J: Y*SINC ANGLE).Z*COSC ANGLE)

Of course, we are:;'t using ZNEW. But we will. Try:
XROT:[A:O
BOX 0,0,110,110,0
S:SINCA)jC:COSCA)
N:O
L:N*Ll
LINE PYRCL),PYR(L.1)*C-PYR(L.2)*S,PYR(L+3)
IF (N:N.1)<1C,SKIP -2
A:A+6 j SKI P -6]

Similarly, y-axis rotation is given by:
XNrw=X*COS(ANGLE).Z*SIN(ANGLE)
YNEW:Y
ZNEW:-X*SINCANGLE).Z*COS(ANGLE)

Rotating around two axes at once is more visually
inteiesting. First we compute the rotati~n around x then
apply the rotation around y. We need to use the
intermediate value of Z in the computation of the y
rotation:

DOUBLEROT:[A=O;B:O
10CLEAn IF $Tl::i,BOX 0,0,110,110,0
SA:SIN(A);SB=SIN(B);CA:COS(A);CB:COS(B)
N:O

.COMPUTE X ROTATION NEW X,Y,Z (THIS IS A COMMENT)
lMOVE XXROT:PYRCN*4)
YXROT:PYRCN*4.1)*CA-PYR(N*4.2)*SA
ZXROT:PYRCN*4.1)*SA.PYR(N*4+2)*CA

.COMPUTE Y ROTATION WITH NEW X,Y,Z
X:XXROT*CB.ZXROT*SB
Y:YXROT

• DRAVJ THE LINE
LINE X,Y,PYRCN*4.?)

10/27/81 DATAMAX UV-1 Zgrass LESSON 8

IF (N:N+l)<10,GOTO lMOVE
A:A+6;B:B+12;GOTO 10CLEAR]

Page 5

Note the addition of trigger control of image clearing. You
can tighten up DOUBLEROT by combining expressions, at the
expense of clarity. It will go faster compiled, of course.

Comments may be interspersed with code if the first
character is a period. The entire line is taken as a
comment and skipped, even if there is a ';' in the line.

Zgrass allows multi-dimensional arrays. We could have
defined PYR by:

ARRAY PYR 10,4
giving 40 elements:

PYRCO,O), PYRCO,l), PYRCO,2), PYRCO,3)
PYR (1 ,0), PYR C 1 , 1), PYR (1 ,2), PYR (1 ,3)

PYRC9,O), PY~(9,1), PYR(9,2), PYR(9,3)
This would eliminate the multiplication of N*4 each time, so
?RPYR would look like:

PRPYR=[N=O
L=O
PROMPT "PYR("&N&', '&L&")=",PYR(N,L)
IF (L:L+1)<4,SKIP -1
PRINT
IF (N:N+1),10,SK!P -4J

You may find thls conceptually clearer, but maybe not. The
following example uses a 2-D array well. Let's make an
array to hold th~ positions of pieces in a checkerboard.
Each array element will correspond to a square on the board.
A 0 means no piece, 1 means ree, 2 means red king, -1 means
black piece, -2 means olack king. The initial board setup
can be done by:

ARRAY CHECKERBOARD,8,B
DATA=[Y=O
INPUT CHECKERBOARCCX,Y)
IF CY=Y+1)<B,SKIP -1]
CHECKFILL=[X:n
DATA 1,0, 1 ,0,0,0, - 1 , °
X=X+1
DATA 0,1,0,0,0,-1,0,-1
IF (X=X+1)<8,SKIP -3]

Note the mimicking of 8ASIC's DATA statement. The rest of
the checkers game is up to you!

End of Lesson 8.

This page intentionally left blank

10127/21 DATAMAX UV-l Zgrass LESSON 9

LESSON 9 MORE ON GRA~-nCS

·Zgrass is a graphics language by design. It provides
high-level commands for creating and manipulating visual
informatjo~. The highest level commands in Zgrass are those
operating on arrays called "snaps" (after "snapshots") which
are saved parts of the tv screen, in essence. They are
defined by the S~~f..P command and drawn by the DISPLAY
command:

STES1'= [CLEJl.R
BOX 0,0,20,20,3
BOX 5,e,10,15,2
BOY -5,0,10,15,1
SNAP IT,O,O,20,20
DISPLAY IT,-160%159,-100%100,OjSKIP 0]

The last argment of DISPLA.Y is the DISPLAYMODE. ° means
plop the snap on the screen eraSing whatever was there
before. DISPLA H!ODE ° works just like COLORMODE 0-3. Now,
EDIT STEST so its last line reads:

DISPLAY IT,X=X~$X1,Y=Y+$Yl,O;SKIP °
Plug in a jc:rstick into the leftmost joystick socket and run
STEST. You'll notice that you "drag" the edge around. One
way to avoid th~s is to make the snap larger to include some
"white space ll around it. Change STEST as follows and run
it:

SNAP IT,O,O,24,2D
You can have any pa~tern stored in a snap as long as it fits
in the largest merliory segment left. The CORE command will
gi ve YOt; a list of tr,e memory segments. The largest snap you
can store is about a quarter of the screen. Larger snaps
display slower than srr.aller snaps, of course.

In the dra~ir,s ~rogram in Lesson 7, we used COLORMODE 5
to flash a crosshair cu~sor. We can do the same trick with
DISPLAYMODE 1:

DRAW:.;[CLEAR
LIl\E 10,0,4
LINE -10,0, i
LINE 0,-10,4
LINE 0, 10, ~
SNAP cURS,O,0,20,20
X=X+~X1 ;Y=Y+$~l
DrSp ClIRS,X~ Y, 1 ;DISP CURS, X, Y, 1
IF $Tl==l,POINT X,Y,$Kl/f,l.!+?
SKIP -3J

Two succpss~ vo? D:~,PU Yr~O;)E l' s will draw and erase the
crosshair curs(',r wi thou: affectir.g the point!3 you have drawn
by pullinE the tr~ff~~.

10/27/81 DATAMAX UV-1 Zgrass LESSON 9 Page 2

WHAT'S ACTUALLY GOING ON:

You can. in fact, construct any image possible on the
320x201 pixel TV screen with the colormodes you've learned
so far. However, to do the animated graphics required in
video games, several features were designed into the custom
Bally hardware. Zgrass uses these and adds software to give
you a rather complete set of graphic capabilities for what
you can do with two bits per pixel.

Plop (colormodes 0-3 and displaymode 0) works just like
assignment. The old value is replaced with the new one.
All other color and display modes are binary functions, that
is, they take two values and return a new value which is
placed on the screen. The first value taken is what is on
the screen at the given pixel, the second is given or
implied by the colc.r/display mode, and the function itself
is also given or implied by the color/display mode.

You might wonder just how many unique results you can
get from the functions of two two-pixel values. A lot.
We've tried to provide the most useful ones: 2i colormodes
and 15 displaymodes with 9 options each.

Rather than do a paragraph on each mode, we will show
you how to figure them out. Some are quite clear from a
verbal description (for example, displaymode 60 is "plop
only the green and blue portions of this snap"). Unless
you've tinkered with Boolean Algebra, some functions will be
new to you and unless you've done extensive graphics
already, the visual ramifications will be surprising.

We will explain several of the functions with TRUTH
TftBLEs. Truth tables are like multiplication tables except
they can show other things than show results of
mult.iplication.
The truth table for multiplication of numbers up to 4 is:

* I ~ I
I U I

o : 0 : 0 : 0 : 0 : C

2 : 0 : 2 : u : 6 : 8

3 : 0 : 3 : 6 : 9 :12

4 : C : 4 : E :12 :16

You have no trouble lcok:ng up tre value of 3it4, presumably.

10/27/81 DAT~~ UV-1 Zgrass LESSON 9 Page 3

Multiplication tables usually stop at 12*12, but could go on
forever. The truth tables we use are limited to two bit
results and thus have
only four values like the following truth table for addition
modulo 4:

\4 : ° : 1 : 2 : 3

o : ° : -1 : 2 : 3

2 : 2 : 3 : ° : 1

3 : 3 : ° : 1 : 2

The functions we will describe are commutative, that is, the
order of the values can be reversed without affecting the
result. (Addition and multiplication are commutativej
subtraction and division are not, for example.) If you wish,
you can adopt the convention that what's on the screen is
looked up along the left edge of the table and what is
indicated by the color/display mode is along the top edge.

Colormodes 4-7 and displaymode 1 are the hardest to
understand so we'll skip them and come back later. For now,
let's do logical OR and AND.

Colormodes 8-11 and display mode 2 do a logical OR
function between the value on the screen and the value
indicated by the colonnode (or the value in the snap at that
point for DISPLAY). Try the following:

BOX 0,0,100,100,2
BOX 0,-25,50,50,1
BOX 0,25,50,50,3
BOX -25,0,50,50,9

Colormode 9 is "OR with red" or, more precisely: "OR with
01." Let's explain that better. We have two bits at each
pixel, giving four possible values: 0, 1, 2, and 3. In
binary, they are 00, 01, 10 and 11 (pronounced zero-zero,
zero-one, one-zero and one-one, respectively). You may have
noticed that:

$LC corresponds to a pixel value of 00
$L1 corresponds to a pixel value of 01
$L1 corresponds to a pixel value of 10
$L2 corresponds to a pixel value of 11

When Zgrass comes up, the default colors are white, red,
green and blue. So when we refer to a pixel as green, we
mean it has a 10 binary value. You can confuse yourself
horribly if, for example, you switch the values of $L2 and
$L3 like thi~:

10/27/81 DATAMAX UV-1 Zgrass LESSON 9

A=$L2
$L2=$L3
$L3=A

Page 4

so don't do it, at least in this part of the lesson.
Whenever we refer to white, red, green or blue, it assumes
the default colors are in $LO-$L4.

Look at the boxes on the screen again. Now look up the
truth table for OR (it's under OR!) You can see why the
green box OR'ed with red turns blue by reading the table: 10
OR 01 is 11. You can also see that OR'ing anything with 00
doesn't change it and ORting anything with 11 changes it to
11. (Observation reveals that some of the colormodes are
redundant, by the way.) In wordS, OR produces a zero only if
both corresponding bits were zero. Otherwize it puts a one
there.

Let's try the AND modes (12-15):
BOX 0,0,100,100,1
BOX 0,-25,50,50,2
BOX 0,25,50,50,14
BOX -25,0,50,50,14

14 is AND with green (10). You should be able figure out
what's going on by looking at the truth table for AND. In
words. AND leaves a 1 in the bit only if both values had a 1
in that bit, otherwize it's zeroed.

XOR (exclusive-or) is the trickiest but most useful
color/display mode function besides plop. Look up the XOR
truth table. XOR yields a one when the corresponding bits
are different and a zero when they are the same:

10 XOR 10 IS 00
10 XOR 00 IS 10
10 XOR 01 IS 11
etc.

You can see that XOR on a blank screen is the same as plop
or OR on a blank screen. But try:

NB
NB

To see why the second NB erased the first, print NB:
PRINT NB

(NB is a system macro, by the way). Note that it assures
the colormode is betwp.en 5 and 7 by using the modulus
operator. The lowercase letters are local variables which
we'll explain in Lesson 11. Drawing anything twice with XOR
will undo it.

You ought to take som~ time out to experiment with the
colormodes and displaymodes. Here's a simple program by
Jane Veeder to do some drawing:

JANEDRAW=(PROMPT "WHAT'S THE XSIZE,YSIZE OF THE

10127/81 DATAMAX UV-1 Zgrass LESSON 9

DRAWING BOX?"
INPUT WIZE,HIZE

Page 5

PROMPT "WHAT'S THE SPACING FACTOR OF BOX CENTERS? <0
TO 10)"
INPUT SPACING
PROMPT "WHAT COLORMODE? (1 TO 15)"
INPUT KOLOR
PROMPT IICLEAR THE TV? (Y OR N)"
INPUT.STR ANSWERjIF ANSWER=='Y',CLEAR
PRINT "MOVE JOYSTICK KNOB TO POSITION, HOLD TRIGGER
TO DRAW"
X=O;Y=O
X=X.$X1*SPACING
Y=Y.$Y1*SPACING
BOX X,Y,WIZE,HIZE,7
BOX X,Y,WIZE,HIZE,7
IF $T1==0,SKIP -4
BOX X,Y,WIZE,HIZE,KOLORjSKIP -5)

Now that you've experimented a while with XOR, clear
the screen and we'll do something tricky. First type in:

BEHIND=[X=-100
Y=50
LINEX,Y,4
UNE X,-Y,2
IF (X=X.5)<51,SKIP -2
X=-100
BOX X,0,20,20,5
BOX X,0,20,20,5
IF (X=X.1)<51,SKIP -2]

When you run BEHIND, you will note that the green lines are
turned blue where the box is but are restored when the box
is erased. Type the following: .

$L2=$L3
The lines turn blue. Run BEHIND again. The red box appears
to be traveling behind the blue lines because we've made
both $L2 and $L3 the same color. When the red box is behind
the blue lines, the value of the blue pixels is 11; when it
is not there, the value is 10. So, by giving up a color,
you cary make one color appear to pass behind another. Now
type CTRL+B to restore the colors to default. Set $L1=$L3
and run BEHIND again. The box is now "in front of" the
lines.

You now have the skills to decipher the rest of the
color and display modes.

End of Lesson 9.

This page intentionally left blank

10/27/81 DATAMAX UV-t Zgrass LESSON 10

LESSON 10 SWAP MODULES

Zgrass is rather tightly crammed into 32K of read-only
memory (ROM). Some commands and functions we wanted to have
in ROM just wouldn't fit so we distribute them on tape to be
read in and executed just like macros. Such commands and
functions are called SWAP MODULES because you sort of swap
some of your random-access memory (RAM) for the privilege of
using them.

Besides allowing for more commands and functions than
can fit in 32K ROM, swap modules have twa other benefits:
they can be changed, updated, and added to by us without
having to send you new ROM's and, with the Zgrass assembler
(separate package and documentation), you or your friendly
neighborhood z-80 wizard can add your own commands written
in Z-80 assembler. Replacing a macro with a well-coded
swap module can result in speed increases of two to maybe a
thousand times depending on what you're doing. A skilled
person can even do things that Zgrass won't let you, like
put some of the information USEMAP gives you into variables,
for instance. .

If you do not have disks, the swap modules are
distributed to you in alphabetical order on audio tape. You
GETTAPE them just like anything else. You should copy your
swap module tape early on because repeated use of any
revolving mechanical recording medium will eventually result
in its failure. If you have disks, the swap modules are on
the disk we send you and you use DGET to bring them in.

Read about the TXT command in the Glossary and try the
following (substitute DGET for GETTAPE if you have disks):

GETTAPE TXT
XYAXES:[LINE 100,-80,4
LINE -140,-80,1
LINE -140,100,1
X:-146;Y:-88
N:O
TXT X,Y,1,1,3,O,O,N
X=X+20
IF (N:N+l)<15,SKIP -2
N:OjX:-146
TXT X, Y, 1 , 1 ,2, 0, ° ,~I
Y=1+20
IF (N:N+1)<10, SKIP -2]

10/27/81 DATAMAX UV-1 Zgrass LESSON 10 Page 2

Zgrass also has a rather complete string manipulation
package. Besides the concatenation operator (&), the
following are available: ASCII, STRING, BUMP, FORMAT, LEN,
LPAD, MATCH, REPLACE, SUBSTR. Some of these are swaps and
you should try out these and other swap modules once you
find a use for them.

Many of the disk utilities are swap modules. You will
find them under the D's in the Glossary.

fnd of Lesson 10.

10/27/8, DATAMAX UV-l Zgrass LESSON 11

LESSON 11 ADVANCED CONCEPTS

If you print out the system test macro NB:
PRINT NB

you will notice the lowercase variables a and b. Variables that begin with lowercase letters (a-z) are LOCAL VARIABLES, that is, they are known only to the macro they're in, just like labels for GOTOs. These variables are stored in a list attached to the memory automatically allocated to keep track of each macro call and are deleted whenever the macro returns. CTRL+C will also automatically delete all local variables.

Local variables have the following benefits:

1. They are zeroed whenever the macro is called.

? They go away when the macro returns.

3. Recursion is possible.

4. You can create software tools without having to worry about names conflicting with other macros.

5. They never conflict with system command names.

6. Local strings and arrays are allowed.

Local variables have the following difficulties, though:

1. They don't show up in USEMAP and cannot be interrogated by typing CTPL+Z and printing the
values. You have to put the PRINT !""ight in the
macro.

2. They are not known to called macros so you have to pass the values (this is actually good programming practice, anyway). In order to pass local variables that are not part of expressions,
use the? operator to force evaluation in the current macro context:

SAM:[a:l0
b:20
PRINT SQUAREM(?a,?b)]

10/27/81 DATAMAX UV-1 Zgrass LESSON 11

SOUAREM=(INPUT a,b
RETURN a*a+b*bJ

Page 2

The a,b in each case are different variables because
they are in different macros.

PARALLELISM:

Once you start communicating using animation, you
realize how important timing is. Zgrass has several
advanced features for controlling timing and sequencing of
execution.

You are, by now, quite familiar with typing commands
and running macros. When you are running a macro, you
cannot type a command and expect it to execute without
typing CTRL+Z. Zgrass has two modes of operation that allow
macros to run and accept commands from attention mode at the
same time. These modes give you the capability of
foreground and background parallelism. So far, you've only
used the middleground!

You can run a macro in the background by using the .B
switch on it. Try:

CHANGE=[$LO=$LO+$Xl*8
$L1=$Ll+$Yl*8
$L2=$Kl]
CHANGE.B
NB.B

Notice that even though NB is drawing, you can change $LO,
$L1 and $L2 with the joystick. You can also clear the
screen at will or type other command5, start other.B
macros. etc. (Note that variable b .in NB is not
re-initialized so it continues to increment until ERROR#23
eventually happens.)

Zgrass interleaves the command lines in CHANGE with
those in NB and also slips in anything you type at the
keyboard. Press CTRL+X and see the interleaving (press
CTRl+Q to stop/start the printing).

If you run a macro at normal (middleground) level, it
will suspend the .B macros until it is done. Thus, regular
macros have precedence over .B's. You can stop all.B
macros with CTRL+C or stop them selectively with the STOP
command. If you press CTRL+A, .B macros will be interleaved
with regular macros. You can set CTRL+A with the CONTROL
command, of course.

You can also run macros in the foreground with .F. A
.F macro has precedence over .B and regular macros. .F

10/21/81 DATAMAX UV-1 Zgrass LESSON 11 Page 3

macros are assumed to be short and not contain infinite
loops. They are restarted every 1/60 second or as fast as
possible. It is a good idea to compile .F macros for speed.

The TIMEOOT comnand allows you to have the • F macro
execute at multiples of 1/60 second. Say you want to draw
an XOR box every five seconds. Five times sixty is 300. Try
the following:

TIMEDBOX=[TIMEOUT 300
BOX 0,0,200,200,7]
COMPILE TIMEDBOX,CTIME
CTlME.F

You can have regular or.B macros running at the same time
(try NB!).
Some further notes:

1 .. S macros start over from the beginning
automatically unless STOPped. No SKIP or GOTO is
needed.

2. The interleaving of .S macros is on a
line-by-line basis. Semi-colons don't count,
blank lines do. so you can fine-tune the
interleaving.

3 •• F macros don't interleave. They are assumed
to be short.

4. Macros run from within a .S macro are not
interleaved unless run as .B. If called without a
.B, they are interleaved as if they were a single
line. If run with a .B, they run in parallel with
the macro they're run from. You can setup
variables to cause one .S macro to wait for
another to continue, of course.

5. You can .B or .F the same macro multiple times,
up to 128 times. You can have any number of .B
and .F macros running at once. Obviously, things
get pretty slow after a while.

6. It's a good idea to use local variables in .B
and .F macros, especially if you.B a macro twice
at the same time.

7. When executing in .B or .F mode, the local
variables are not re-initialized to zero when the
macro restarts at the beginning.

8. If your .B and .F macros have a lot of
time-consuming graphics, the interleaving will not

10/27/81 DATAMAX UV-1 Zgrass LESSON 11 Page 4

appear to be particularly smooth.

ERROR TRAPPING:

If you wish. you can trap error messages and process
them yourself, a useful feature for bulletproofing software
for naive users.

The ONERROR command takes a label like GOTO but the
label is only branched to when an error occurs. For
instance: .

UGH:(ARRAY SAM,10
A:-1
ONERROR 100T
PR SAM(A:A+1)jSKIP 0
10UT PRINT "SAM OUT OF BOUNDS"]

You can get the error number and command line in error into
variables with the GETERROR swap command. LOOPMAX is a
command used to catch infinite loops.

LOOPMAX and ONERROR do not work when compiled.

End of Lesson 11 and End of Lessons.

	Front Page

	Lessons

	0 - Read Me First

	1 - Getting Started

	2 - Writing Macros

	3 - Editing

	4 - More on Macros

	5 - Storing Macros on Tape and Disk

	6 - Debugging

	7 - Device Variables and Ports

	8 - Arrays

	9 - More on Graphics

	10 - Swap Modules

	11 - Advanced Concepts

