Datapoint 2200

PROGRAMMERS' MANUAL

A product of COMPUTER TERMINAL CORPORATION
9725 Datapoint Drive '
San Antonio, Texas 78229

DATAPOINT 2200

PROGRAMMERS' MANUAL

August, 1971

COMPUTER TERMINAL CORPORATION
9725 Datapoint Drive

San Antonio, Texas 78229

TABLE OF CONTENTS

Reference Manualttt Section 1
The Operating System ittt eaeeeeaaannnnnnnn Secﬁon 2
The Source Code Editorcciiiiiiiiiiinnnnnnann. Section 3
The Assembler ittt ittt Section 4
Advanced Operating System Command and Subroutine Usage Section 5
LI 1 - T Section 6
Arithmetic SUbroUtinesoiieereeiiineeneeennnnnn. Section7?
Communications Subroutinesttt Section 8

Operating System Listing.o ittt Section 9

SECTION 1

DATAPOINT 2200

REFERENCE MANUAL

PART 1

GENERAL FEATURES

1.1 INTRODUCTION

The Computer Terminal Corporation Datapoint 2200 is an
integrated data system consisting of an alphanumeric key-
board for data entry, a cathode ray screen for data display,
two digital cassette recorders for bulk data storage, a general
purpose digital computer for control, and a communications
capability for interface with external devices and communi-
cations facilities.

Through programming of the control computer the Data-
point 2200 may be used for an infinite varity of data pro-
cessing applications.

The achievement of a small computer with integrated key-
board, display, storage and communications at such low cost
now makes possible computer sophistication for applications
not previously practical - particularly in the computer termi-
nal/data entry/communications area.

This manual describes the specific hardware details of the
Datapoint 2200. For information regarding specific applica-

tions the Datapoint 2200 Programmers’ Guide and specific
application manuals should be referred to.

1.2 SYSTEM ELEMENTS

There are four basic system elements in the basic Datapoint

2200 plus the capability of interface to a number of external
perpherial devices.

This manual covers the basic elements (c.r.t., keyboard, pro-

cessor, cassette tape decks) and one external device (commu-
nications adaptor).

1.3 CRT DISPLAY

The Datapoint 2200 CRT Display provides the following
features:

a. 7" x 2-1/2" viewing area;

b. 960 characters;

c. 80 character by 12 line format;
d. 4/32" x 3/32" character size;

e. Entire 94 character ASCII set;

1-1

f. 60 frame per second refresh rate;
g. 5x 7 matrix character generation;

h. 5 x 7 solid, blinking cursor, alternates with charac-
ter, nondestructive;

i. P31 green phosphor;

j. Single control line erasure, frame erasure, and page
roll-up; and

k. Direct control of all c.r.t. functions by the 2200
processor, providing tab, editing, form control, etc.

1.4 KEYBOARD

The integral keyboard provides a basic 41 key alphanumeric
key group, an 11 key numeric group and five system con-
trol keys.

The keyboard provides a unique multi-key roli-over charac-
teristic providing maximum ease of typing. Transfer of
characters from the keyboard is under control of the 2200
processor. An audible click providing an acoustical feedback

to the typist is available under processor control.

A programmable audio “’beep” is also provided when it is
desired to gain a typist’s attention.

1.5 PROCESSOR

The integral processor provides all control functions and
includes:

a. 28 different instruction types;
b. 7 addressable registers;

c. 7 deep pushdown stack;

d. 8 bit memory word length;

e. Up to 8192 word memory;

f. Complete parallel 1/0 system;

g. Automatic power-up restart.

1.6 CASSETTE TAPE DECKS

Two read-write tape decks are provided for program and
data storage. The deck accepts Norelco-type cassettes and
provides:

a. 47 characters per inch density;
b. Dual-capstan forward-reverse operation;

c. Processor controlled data transfer, direction control,
and high-speed rewind.

1.7 COMMUNICATIONS ADAPTOR

The communications adaptor is a unique feature of the Data-
point 2200 system. There are four versions of the adaptor:

a. EIA RS-232 interface for use with external data sets
or peripherals;

b. High-level keying interface for connection to telegraph-
type communications channels or equipment;

c. 103-type data set interface for direct connection to
common carrier lines, and including automatic dialing
and answering;

d. 202-type data set interface with 150 bit/sec supervisory
channel operation for direct connection to common
carrier lines, and including automatic dialing and
answering.

The adaptor permits program selection of the desired bit
rate, character length, and character set providing the most

versatile communications capability yet provided for a
remote terminal.

1.8 GENERAL SPECIFICATIONS

The Datapoint 2200 has the following general characteristics:
a. 105-13bv.a.c., 60 cycle, 180 watts, power input;
b. 47 pounds weight;

c. 9-5/8" high, 18-1/2" wide, by 19-5/8" deep outside
dimensions;

d. 0° to 50°C (32° to 122°F), 10 to 90 percent relative
humidity operation environment.

1.9 OPTIONAL PERIPHERALS
A number of optional peripherals are available (in addition

to the communications adaptor) for use with the Datapoint
2200 including a:

1-2

a. 132 column, 30 c.p.s. impact page printer; and a
b. IBM compatible magnetic tape deck.

For further information on these devices reference should
be made to their respective reference manuals.

PART 2

BASIC PROCESSOR

2.1 PROCESSOR ORGANIZATION

The processor contained in the Datapoint 2200 is comprised
of the Arithmetic/Logic Unit, 7 program accessible registers,
2K to 8K words of read/write memory, an instruction deco-
der and a seven-level hardware pushdown stack used in sub-

routine type operations.

2.2 ARITHMETIC/LOGIC UNIT

The Arithmetic/Logic Unit is capable of processing both
binary integers and logical operands. All arithmetic and logi-
cal operations may take place between the A-register and
any of the 7 program accessible registers (or between the A-
register and memory). The A-register always contains

the result of an arithmetic or logic operation, with the other
register (or memory cell) being unaffected. Arithmetic and
logic operations affect the Sign, Carry, Zero and Parity
Flip-flops.

2.3 PROCESSOR REGISTERS

A - The Accumulator register is used to hold the result of
all arithmetic and logical instructions. All data transfers
into or out of the computer take place through this register.

[7 654321 0] ARegister

B, C, D, E - These are general purpose registers which may
be used in conjunction with the Accumulator in arithmetic
and logical operations. Each register may be loaded from or
stored into memory or another register. When used in con-
junction with the A and H, L registers, the B, C, D and E
registers may function as indexes.

[7 6 54321 0] B,C,D,ERegisters

H, L - The H and L Registers are utilized to contain respec-
tively the most significant portion (MSP) and least signifi-
cant portion (LSP) of the address of a memory location
being referenced. All memory reference instructions utilize
these registers with the exception of CALL and JUMP
commands. However, the H and L Registers may be used
as general purpose registers when not being used as above.

[H@bis) | Lot |
MSP of address LSP of address
being referenced being referenced

P - The program register or "’Location Counter’’ contains
the address of the next instruction to be executed. This

register is stored in the pushdown stack upon the execu-
tion of a “CALL" instruction and is loaded with the
effective address upon execution of a “JUMP”, ““CALL" or
“RETURN" instruction. The P register is 13 bits in length
and is capable of addressing up to 8K of memory.

Ez P (13 bits) OJ

| - The | register is the register which holds the ““operation
code’’ of the instruction currently being executed. The
contents of | are gated through a decoding network to
determine what operation,internal or external, is to be
performed.

2.4 MEMORY

The basic Datapoint 2200 is supplied with 2048 eight-bit
words of memory. Additional modules of 2048 words
each may be incorporated with the total memory capacity
of the processor being 8192 words. Each 2K memory is
made up of 32 individual MOS shift registers with each one
having a capacity of 512 bits or 64 eight-bit words. These
registers are clocked at a rate of 1.2 MHz. Data is read out
in bit serial fashion with one word taking 8 microseconds.
During this period of time, two clock pulse times are
available for the processor to perform any necessary gating
or testing functions.

The Datapoint 2200 memory might be likened to a drum
type memory in some respects. |t takes approximately 1/2
millisecond for the memory to completely circulate. Thus,
if the current instruction referenced a memory location for
data access, there would be a 1/2 millisecond delay before
that instruction could be completed. However, unlike a
drum memory the MOS memory may be stopped during
instruction execution so that each succeeding instruction
may be read from memory without delay (in 8 usec.).

Physically, instructions require a variable number of cycles
for completion. In the first cycle, the instruction is fetched
from memory and decoded. If the instruction involves no

memory reference, it is then executed within 8 microseconds
for a total completion time of 16 microseconds.

“Immediate’’ type instructions are the same as instructions
requiring no memory reference and require a 16 usec
interval for the operand fetch and execute cycle. Jump and
Call type instructions require a variable amount of time for
execution, depending on the difference between the old
and new locations.

vl

BASIC
PROCESSOR

1/0 AND COMMAND BUS

KEYBOARD

CRT DUAL TAPE
DISPLAY DECK
FIGURE 2-1

DATAPOINT 2200
BLOCK DIAGRAM

EXTERNAL
DEVICES

2.5 PUSHDOWN STACK

A unique feature of a machine this size is the incorporation
into the processor’s structure of a pushdown stack which is
useful in any type of application which requires program
subroutines. The stack automatically stores the contents

of the P register upon execution of a “CALL" instruction
and automatically restores P upon execution of a
“RETURN". The stack is a group of “last-in/first-out”
registers and has a capacity of 7 CALLS. Note that ““CALLS"”
may be “nested’’, that is more than one CALL may be
made before the execution of a RETURN. The execution
of a “RETURN" will cause processor control to be given
to ihe next instruction following the last executed CALL.

Pushdown Stack

Address of CALL 5

Address of CALL 4 Maximum
Address of CALL 3 Capacity of
Address of CALL 2 7 CALLS

Address of CALL 1

13 Bits

2.6 CONTROL FLIP-FLOPS

Also contained in the basic processor are four control flip-
flops which reflect the state of the arithmetic logic unit

and which may be tested through the execution of a condi-
tional jump, call or return instruction. The flip-flop mnemo-
nics with their associated functions are as follows:

Cy Carry Flip-flop. Set when an arithmetic operation results
in either a carry (add) or borrow (subtract).” The Carry Flip-
flop also reflects the state of the most significant bit in the
accumulator after completion of a shift right instruction.
Likewise, it reflects the state of the accumulator least
significant bit after completion of a shift left instruction.

Zf-Zero Flip-flop. Set when the result of an arithmetic or
logical operation is equal to zero.”

S¢-Sign Flip-flop. This flip-flop reflects the state of bit 7
in the accumulator after an arithmetic type operation.™

P¢-Parity Flip-flop. Indicates the parity or “‘number of one
bits’’ contained in the accumulator. If this flip-flop is set
(true), the A register contains an odd number of one bits;
if it is reset (false), the A register contains an even number
of one bits.*

*In the event of a compare instruction the contents of
the accumulator are not changed; however, the control
flip-flops reflect the equivalent of a subtract instruction.

2.7 DATA FORMAT

Data is represented in the Datapoint 2200 in the form of
8-bit binary integers.

76543210 |
DATA WORD

2.8 INSTRUCTION FORMATS (GENERAL)

Instruction formats, dependent upon the operation to be
performed, may be eight, sixteen or twenty-four bits in
length.

Type-1- register to register, memory reference, arithmetic,
logical, shift instructions

OP CODE
8 bits

Type-2- immediate mode instructions

OP CODE
8 bits

OPERAND
8 bits

Type-3- JUMP & CALL instructions

ADDRESS
16 bits

OP CODE
8 bits

MOS

MEMORY
EXTERNAL .
COMMAND
ouUT
ALU A
INSTRUCTION -
DECODER : U <11z
./ |r|]s
DATA 1/0
N B
I
C
P
D
<
STACK
E
\
H
-~
MEMORY DATA
REFERENCE
L
FIGURE 2-2
BASIC PROCESSOR , S

PART 3

INSTRUCTION REPERTOIRE

3.1 PRESENTATION‘FORMAT

This section gives a detailed description of each of the Data-
point 2200 instructions. The use and operations of each in-
struction is presented as follows:

FUNCTION: Mnemonic Code

OPERATION: Symbolic representation of instruction

. description.

OP CODE: Operation Code, expressed in octal.
TIMING: Execution time. (Times are approximate).
DESCRIPTION: Definition of function of the instruction.

[7 6|5 4 3|2 1 0]
I 2nd Modifier

— 1st Modifier
Instruction Type

. INSTRUCTION FORMAT: Explanation of the function of
each part of the instruction word.

NOTE

Considerations in instruction use and further
definition of function.

Symbols and Abbreviations

The following symbols and abbreviations are used in the in-
struction format:

the contents of

is replaced by

is transferred to

is compared with

8 bit arithmetic register (accumulator)

Yo

8 bit general purpose registers

IMOO®@>P -

8 bit register used to specify most significant
portion of operand address
8 bit register used to specify least significant
portion of operand address
M memory location designated by contents of

H, L
r one of the following register designators: A, B,
C,D,E H L
designates operand source register (s=0-7)
rq designates operand destination register (d=0-7)
\) Logical “OR"’ operation
A Logical ““exclusive-OR"’ operation

-

/\ Logical “AND"’ operation

STACK Instruction counter (P) pushdown queue
P Program counter '

fe Flag flip-flop codes: Cy, Zy, Sy, Ps

RR Register to Register

IM Immediate (from P+1)

MR Memory Reference (Contents of memory

location designated by H, L)
| Instruction Register

TABLE 3-1.

SOURCE AND DESTINATION CODES (s and d)

SYMBOLIC
s/d CODE
0 A A Register
1 B B Register
2 C C Register
re/rg 3 D D Register
4 E E Register
5 H H Register
6 L L Register
M 7 M Memory lo-
cation speci-
fied by con-
tents of H&L
TABLE 3-2
FLIP-FLOP CODE (f,)
SYMBOLIC
c CODE NAME
0 Cs Carry
1 Z¢ Zero
2 S Sign
3 P¢ Parity

LOAD IMMEDIATE: Lrg

OP CODE: 0d6 TIMING: 16 usec.
OPERATION: (P+1) »>ry, P+2->P

DESCRIPTION: Transfers the contents of the memory
location immediately following the instruction, to the
register specified by bits 3-5(d) of the instruction.

INSTRUCTION FORMAT:
P+1

1.0]7 0
6 OPERAND

7 615 2

alh~|To
w

d: is the destination designator
d=7: is not allowed

NOTE

1. The contents of P+1 are unchanged.
2. None of the Flag Flip-flops are affected.
3. Refer to Table 3-1 for destination codes.

LOAD: LrgM, Lrgrg, LMrg

OP CODE: 3ds TIMING: 16 usec. for register
to register transfers, 520 usec.
for memory reference.

OPERATION: (M) = ry s=7, d<6 (LrgM)

(rg) >rg s<6, d<6 (Lryr,)

(rg) > M s<6, d=7 (LMr)
DESCRIPTION: Transfers the operand from the source
specified by bits 0-2 of the instruction word to the destina-
tion specified by bits 3-5 of the instruction word.

INSTRUCTION FORMAT:

~
(]
[é)]
Qlbh|T
w
N
-
o

d: designates the destination of
data.

s: designates the source. If either
s or d=7 a memory reference is
indicated and the contents of
registers H&L specify the address
of the memory location.

NOTE

1. The data source is unaffected.

s & d both = 7 results in a Halt instruction.

3. None of the Flag Flip-flops are affected by execution
of this instruction.

4. s=dresults in a NOP, except as stated in Note 2.

N

1-8

ADD IMMEDIATE: AD

OP CODE: 004 TIMING: 16 usec.
OPERATION: (A)+ (P+1) > A, P+2>P

DESCRIPTION: Adds to the contents of the A register the
contents of the memory location immediately following the
instruction, and retains the sum in the A register. Sets the Cs
Flip-flop if ADD overflow occurs, otherwise resets Cs.

INSTRUCTION FORMAT:

P P+1
7 6]5 4 3|2 10]7 0
0 0 4 OPERAND
NOTE

1. The Sign, Zero and Parity Flip-flops

will indicate the status of the A regis-

ter at completion.

The contents of P+1 are unchanged.

3. The Carry Flip-flop is cleared at the
beginning of this instruction.

N

ADD: ADry ADM
OP CODE: 20s TIMING: 16 usec. if RR, 520
usec. if MR

OPERATION: (A) + (ry) > Aor (A) + (M) > A
DESCRIPTION: This instruction is identical to ADD
IMMEDIATE with the exception of operand source.

INSTRUCTION FORMAT:

~
(2}
ol
[=2E-3 v}
w
N
-
o

s: specifies the operand source.
Refer to Table 3-1 for source
codes.

1-9

ADD WITH CARRY

IMMEDIATE: AC

OP CODE: 014 TIMING: 16 usec.
OPERATION: (A)+ (P+1) + (C¢) > A, P+2>P
DESCRIPTION: Adds the Cs bit and the contents of the
location immediately following the instruction to the con-
tents of the A register, and retains the sum in the A register.
If add overflow occurs, the Cs Flip-flop is set, otherwise Cs
is reset.

INSTRUCTION FORMAT:
P+1

2 1 0[7 0
4 OPERAND

7 6]5

ENENES
w

NOTE

1. The Sign, Zero and Parity Flip-flops
will indicate the status of the A regis-
ter at completion.

2. The contents of P+1 remain unchanged.

ADD WITH CARRY:
OP CODE: 21s

ACrg ACM

TIMING: 16 usec. if RR,
520 usec. if MR
OPERATION: (A) + (Cq) + (rg) > Aor (A) + (Cq) + (M) > A
DESCRIPTION: This instruction is identical to ADD WITH
CARRY IMMEDIATE with the exception of operand
souce.

INSTRUCTION FORMAT:

~N
]
(&)
=|H|TO
w
N
-
o

s: specifies the operand source.
Refer to Table 3-1 for source
codes.

SUBTRACT

IMMEDIATE: SuU

OP CODE: 024 TIMING: 16 usec.
OPERATION: (A)- (P+1) > A, P+2—>P

DESCRIPTION: Subtracts the contents of the memory
location immediately following the instruction from the
contents of the A register, and retains the difference in the
A register. The Cs¢ Flip-flop is set if underflow occurs.

INSTRUCTION FORMAT
P+1

1.0}7 0
4 OPERAND

2

~
[«2]
()]
N|&~|T
w

NOTE

1. The contents of P+1 is unchanged.

2. The Zero, Sign, and Parity Flip-flops
represent the status of the A register
at the completion of this instruction.

SUBTRACT: SUrg SUM
OP CODE: 22s TIMING: 16 usec. if RR, 520
usec. if MR

OPERATION: (A)- (rg) > Aor (A) - (M) > A
DESCRIPTION: This instruction is identical to SUBTRACT
IMMEDIATE with the exception of operand source.

INSTRUCTION FORMAT:

~N
(2}
(&)
N|H&~|T
w
N
—_
o

s: specifies the operand source.
Refer to Table 3-1 for source
codes.

1-10

SUBTRACT WITH
BORROW IMMEDIATE: SB
OP CODE: 034 TIMING: 16 usec.

OPERATION: (A)- (P+1)-(Cf) > A, P+2>P
DESCRIPTION: Subtracts the contents of the memory
location immediately following the instruction and the Ct
bit, from the contents of the A register. Sets the Cs bit

if underflow occurs, otherwise resets C.

INSTRUCTION FORMAT:

P+1
1 0]7 0
4 OPERAND

2

~
=]
o
wl|s|T
w

NOTE

-_

The contents of P+1 are unchanged.

2. The Zero, Sign, and Parity Flip-flops
represent the status of the A register
at the completion of this instruction.

SUBTRACT WITH
BORROW:
OP CODE: 23s

SBrg SBM
TIMING: 16 usec. if
RR, 520 usec. if MR
OPERATION: (A) - (rg) - (C¢g) > Aor (A) - (M) - (Cf) > A
DESCRIPTION: This instruction is identical to SUBTRACT
WITH BORROW IMMEDIATE with the exception of
operand source.

INSTRUCTION FORMAT:

~
(]
o
wW|H|T
w
N
-
o

s: specifies the operand source.
Refer to Table 3-1 for source
codes.

AND IMMEDIATE: ND

OP CODE: 044 TIMING: 16 usec.
OPERATION: (P+1)/\(A) > A, P+2~> P
DESCRIPTION: Forms the logical product of the contents
of the A register with the contents of the memory location

OR IMMEDIATE: OR

OP CODE: 064 TIMING: 16 usec.
OPERATION: (A) V (P+1) > A, P+2>P
DESCRIPTION: Forms the logical sum of the contents
of the A register and the contents of the memory location

immediately following the instruction, and places the results

immediately following the instruction, and places the
in the A register. E

result in the A register.

INSTRUCTION FORMAT: INSTRUCTION FORMAT:

P P+1 P P+1
7 6|5 4 3]2 1 0]7 0 7 6|54 3|12 1 0|7 0
0 4 4 OPERAND 0 6 4 OPERAND
NOTE NOTE
1. The Carry Flip-flop will be reset upon 1. The Carry Flip-flop will be reset at
completion of the operation. conclusion.
2. The Zero, Sign, and Parity Flip-flops 2. The Zero, Sign, and Parity Flip-flops

will represent the status of the A regis-
ter upon completion of the operation.

will represent the status of the A regis-
ter at completion of the operation.

SAMPLE OPERATION: SAMPLE OPERATION:

(A Reg) 0 0 1 1 (A Reg) 0 0 1 1
(P+1) 0 1 1 (P+1) 0 1 0 1
(A Reg) 0 0 0 1 (A Reg) 0 1 1 1
AND: NDr;, NDM OR: ORrg ORM
OP CODE: 24s TIMING: 16 usec. if RR, 520 OP CODE: 26s TIMING: 16 usec. if RR, 520
usec. if MR usec. if MR

OPERATION: (A)A\ (rg) > A, or (A) A (M)~ A
DESCRIPTION: This instruction is identical to AND
IMMEDIATE with the exception of operand source.

OPERATION: (A) V (rg) > A, or (A) V(M) > A
DESCRIPTION: This instruction is identical to OR
IMMEDIATE with the exception of operand source.

INSTRUCTION FORMAT: INSTRUCTION FORMAT:

P
7 6|54 31210 7 61564 3|12 10
2 4 s 2 6 s
s: specifies the operand source. s: specifies the operand source.
Refer to Table 3-1 for source Refer to Table 3-1 for source
codes. codes.

1-1

EXCLUSIVE OR
IMMEDIATE: XR
OP CODE: 054 TIMING: 16 usec.

OPERATION: (A) ¥ (P+1) > A, P+2—>P
DESCRIPTION: The logical difference of the contents of
the A register and the contents of the memory location
immediately following the instruction is formed, and the
result replaces the contents of the A register.

INSTRUCTION FORMAT:

p P+1
7 6]5 4 3[2 1 o]7 0
0 5 4 OPERAND
NOTE

1. The Carry Flip-flop will be reset at
conclusion.

2. The Zero, Sign and Parity Flip-flops
will represent the status of the A regis-
ter upon completion of the operation.

SAMPLE OPERATION:

(A Reg) 0 0] 1 1
(P+1) 0 1 0 1
(A Reg) 0 1 1 0

EXCLUSIVE OR: XRrg XRM
OP CODE: 25s TIMING: 16 usec. if RR, 520
usec. if MR

OPERATION: (A) V (rg) > A, (A)V (M) > A
DESCRIPTION: This instruction is identical to EXCLUSIVE
OR IMMEDIATE with the exception of operand source.

INSTRUCTION FORMAT:

~
(o]
(&3]
(20 B~ I]
w
N
_
o

s: specifies the operand source.
Refer to Table 3-1 for source
codes.

1-12

COMPARE

IMMEDIATE: cpP

OP CODE: 074 TIMING: 16 usec.
OPERATION: (A): (P+1),P+2—>P

DESCRIPTION: Compares the contents of the A register
with the contents of the memory location immediately
following the instruction. The flag flip-flops assume the
same state as they would for a Subtract instruction.

INSTRUCTION FORMAT:

P+1
1 0]7 0
4 OPERAND

2

~N
(2}
(8]
R BN lav)
w

NOTE

1. The contents of the A register are

unaffected.
COMPARE: CPrg CPM
OP CODE: 27s TIMING: 16 usec. if RR, 520
usec. if MR

OPERATION: (A) : (rg) or (A) : (M)
DESCRIPTION: This instruction is identical to COMPARE
IMMEDIATE with the exception of operand source.

INSTRUCTION FORMAT:

~
»
(&)
N~
w
N
—_
o

s: specifies the operand source.
Refer to Table 3-1 for source
codes.

UNCONDITIONAL

JUMP: JMP

OP CODE: 104 TIMING: Variable®
OPERATION: (P+1,P+2)—>P

DESCRIPTION: An unconditional transfer of control. The
contents of P+1 represent the least significant portion of the
address, while the contents of P+2 represent the most signi-
ficant portion.

INSTRUCTION FORMAT:

P P+1 P+2
7 6]54 3|21 0]7 0f7
1 0 4 LSP MSP
OP CODE ADDRESS

The three high order bits in the address are ignored, the re-
maining 13 bits specify the address to which control is to be
transferred.

NOTE

*Timing is variable dependent upon cyclic
difference between instruction and effective
address locations.

JUMP IF CONDITION

TRUE: JTf,

OP CODE: 1(c+4)0 TIMING: Variable if condition
true, 24 usec. if condition false.

OPERATION: If (f.==TRUE), (P+1 , P+2) - P. Otherwise,

P+3 — P.

DESCRIPTION: Examines the designated flip-flop. If set,

transfers control to the address designated by the contents

of the two memory locations immediately following the

instruction. If the selected flip-flop is reset, executes the

next sequentially available instruction.

INSTRUCTION FORMAT:

P P+1 P+2
7 615 4 3[2 1 0f7 017
1 ct4 0 LSP MSP
OP CODE ADDRESS

c: designates which flip-flop con-
dition is to be tested. Refer to
Table 3-2 for list of Flip-flop codes.

NOTE

1. The condition of the selected Flip-flop is
unchanged by this instruction.

1-13

JUMP IF CONDITION

FALSE: JFf,

OP CODE: 1c0 TIMING: Variable if condition
false, 24 usec. if condition true.

OPERATION: If (f.=FALSE), (P+1, P+2) > P. Otherwise

P+3 - P.

DESCRIPTION: Examines the designated flip-flop. If reset,

transfers control to the address designated by the contents of

the two memory locations immediately following the instruc-

tion. If the selected flip-flop is set, executes the next sequen-

tially available instruction.

INSTRUCTION FORMAT:

P P+1 P+2
7 6/5 4 3]210]7 0]7
1 c 0 LSP MSP
OP CODE ADDRESS

c: designates which flip-flop (condition)
is to be tested. Refer to Table 3-2 for
list of flip-flop codes.

NOTE

1. The condition of the selected flip-flop is
unchanged by this instruction.

SUBROUTINE CALL: CALL

OP CODE: 106 TIMING: Variable
OPERATION: P+3—>STACK, (P+1, P+2) > P
DESCRIPTION: Transfers the address of the next sequen-
tially available instruction to the Pushdown Stack, and
transfer control to the address specified by the contents of
the two memory locations immediately following the Op
Code.

INSTRUCTION FORMAT:

P P+1 P+2
7 6]5 4 312 1 0}7 0 0}7
1 0 6 LSP MSP
ADDRESS
NOTE

1. The Stack is open-ended in operation. If it
is overfilled, the deepest address will be lost.

1-14

CONDITIONAL SUBROUTINE CALL

IF CONDITION TRUE: CTf,

OP CODE: 1(ct+4)2 TIMING: Variable if condi-
tion true, 24 usec. if condi-
tion false.

OPERATION: If (f.==TRUE), P+3 > STACK, (P+1, P+2) = P.
Otherwise, P+3 > P.

DESCRIPTION: Examines the designated flip-flop. If set,
transfers the address of the next sequentially available instruc-
tion to the pushdown stack, and transfers control to the
address of the two memory locations immediately following
the Op Code. If the selected flip-flop is reset, executes the
next sequentially available instruction.

INSTRUCTION FORMAT:

P+1 P+2
7 615 4 3|12 1 0}7 0)7
1] ctd 2 LSP MSP
ADDRESS

c: designates which flip-flop (condition)
is to be tested.

NOTE

1. The condition of the selected flip-flop is
unchanged by this instruction.

2. The stack is open-ended in operation. |f
it is overfilled, the deepest address will
be lost.

3. Refer to Table 3-2 for list of flip-flop codes.

1-15

CONDITIONAL SUBROUTINE CALL

IF CONDITION FALSE: CFf;

OP CODE: 1c2 TIMING: Variable if condi-
tion false, 24 usec. if condi-
tion true.

OPERATION: If (f.=FALSE), P+3 -~ STACK, (P+1, P+2) - P.
DESCRIPTION: Examines the designated flip-flop. If reset,
transfers the address of the next sequentially available instruc-
tion to the pushdown stack, and transfers control to the
address of the two memory locations immediately following
the Op Code. If the selected flip-flop is set, executes the next
sequentially available instruction.

INSTRUCTION FORMAT:

P+1 P+2
7 6]5 4 3[2 1 0]7 o] 7
1 c 2 LSP MSP
ADDRESS

c: designates which flip-flop (condition)
is to be tested.

NOTE

1. The condition of the selected flip-flop is
unchanged by this instruction.

2. The stack is open-ended in operation. If
it is overfilled, the deepest address will
be lost.

3. Refer to Table 3-2 for list of flip-flop codes.

1-16

SUBROUTINE

RETURN: RETURN

OP CODE: 007 TIMING: Variable
OPERATION: (STACK) —~>P

DESCRIPTION: Transfer control to the address specified
by the most recent entry in the Pushdown Stack. Deletes
the most recent entry from the Stack.

INSTRUCTION FORMAT:

7 6|5

(=2 E=% Iu]
w
N

N -

NOTE

1. The effect of attempting more “RETURN"
than the Stack is capable of handling is
undefined.

CONDITIONAL SUBROUTINE RETURN

IF CONDITION TRUE: RTf;

OP CODE: 0(c+4)3 TIMING: Variable if con-
dition true, 16 usec. if
condition false.

OPERATION: If (fc=TRUE), Stack - P. Otherwise P+1 - P

DESCRIPTION: Examines the designated flip-flop. If set,

transfers control to the address specified by the most recent

entry in the pushdown stack. Deletes the most recent entry
in the stack. If the selected flip-flop is reset, executes the
next sequentially available instruction.

INSTRUCTION FORMAT:

7 615 4 3]2

10
1 ct+4 3

c: designates which flip-flop (con-
dition) is to be tested.

NOTE

1. The condition of the selected flip-flop
is unchanged by this instruction.

2. The effect of attempting more “RETURN"’
than the stack is capable of handling is
undefined.

3. Refer to Table 3-2 for list of flip-flop codes.

1-17

CONDITIONAL SUBROUTINE RETURN

IF CONDITION FALSE: RFf,
OP CODE: 0c3

TIMING: Variable if
condition false, 16 usec.
if condition true.

OPERATION: If (f.= FALSE), Stack - P. Otherwise,

P+1—>P

DESCRIPTION: Examines the designated flip-flop. If
reset, transfers control to the address specified by the
most recent entry in the stack. If the selected flip-flop
is set, executes the next sequentially available instruction.

INSTRUCTION FORMAT:

7

6|5

4

3

2

0

1

C

1
3

c: designates which flip-flop
(condition) is to be tested.

NOTE

The condition of the selected flip-flop

is unchanged by this instruction.

The effect of attempting more “RETURN"’
than the stack is capable of handling is

undefined.

Refer to Table 3-2 for list of flip-flop codes.

SHIFT RIGHT

CIRCULAR: SRC

OP CODE: 012 TIMING: 16 usec.
OPERATION: A~ A 1. Ag > A7, Ag~ Cs
DESCRIPTION: Shifts the contents of the A register right
in a circular fashion. Shifts the least significant bit into the
most significant bit position. Upon completion of the
operation, the Carry Flip-flop is equal to the most signifi-
cant bit.

INSTRUCTION FORMAT:

2 0

~N
(o]
(6]
=|h|TO
w

1
2

NOTE

None of the flag flip-flops other than Cg
is affected by this instruction.

SHIFT LEFT
CIRCULAR: SLC
OP CODE: 002 TIMING: 16 usec.

OPERATION: Ay =~ Aqtq, A7~ A, A7 > G
DESCRIPTION: Shifts the contents of the A register left
in a circular fashion. Shifts the most significant bit into the

least significant bit position. Upon completion of the opera-

tion, the Carry Flip-flop is equal to the least significant bit.

INSTRUCTION FORMAT:

2 0

~
(o]
[&)]
o~
w

1
2

NOTE

None of the flag flip-flops other than C¢
is affected by this instruction.

NO OPERATION: NOP

OP CODE: 300 TIMING: 16 usec.
OPERATION: P+1—>P

DESCRIPTION: No instruction is executed.

INSTRUCTION FORMAT:

~
2]
(&)
ol|+~|T
w
N

[} B

1-18

HALT:

OP CODE: 000,001,377
OPERATION:
DESCRIPTION: The computer halts. When the START
buttom on the console is depressed, operation resumes at
P+1.

HALT
TIMING: Execution Stops

INSTRUCTION FORMAT:

P
7 6]54 3|2 10
0 0 0
0 0 1
3 3 7
INPUT: INPUT
OP CODE: 101 TIMING: 16 usec.

OPERATION: (1/O Bus) > A
DESCRIPTION: Transfers the contents of the 1/0 Bus
to the A register.

INSTRUCTION FORMAT:

7 615

[=2 E- la]
w
N
Uy PN
o

EXTERNAL COMMAND:
OP CODE: 121-177 depending
on the specific command being
executed.

EX (exp)
TIMING:

16 usec.

OPERATION: Performs /0 control functions according

to (exp)

DESCRIPTION: These instructions perform the functions
necessary for control of the 1/0 system and external de-
vices. Many of these functions are specifically related to
operation of particular devices. The device oriented com-
mands for the Keyboard, CRT Display, Cassette Tapes,

and Communications Interface are explained in the sections

covering these devices.

INSTRUCTION FORMAT:

N3
6|54 3 2 1|0
1

7
0 x x x x x|1

T OP CODE

r _________ __ COMMAND CODE

Table 3-3is a list of External Commands used. For a detailed
discussion of their use, reference should be made to Part
4 (Input/Output Operations) and to descriptions of the

separate external devices.

TABLE 3-3

EXTERNAL COMMANDS

EX (exp)
COMMAND OCTAL DEVICE
NUMBER (exp) CODE | COMMAND DESCRIPTION ADDRESS
1 ADR 121 Address Selects device specified by ALL
A-register
2 STATUS 123 Sense Status Connects selected device status
to input lines
3 DATA 125 Sense Data Connects selected device data to
input lines
4 WRITE 127 Write Strobe Signals selected device that output
data word is on output lines
b COM1 131 Command 1 Outputs a control function to
selected device
6 COM2 133 Command 2 Outputs a control function to
selected device
7 COM3 135 Command 3 Outputs a control function to
selected device
8 CcoM4 137 Command 4 Outputs a control function to ALL
selected device
9 — 141 (Unassigned) _ -
10 - 143 (Unassigned) - —
1 - 145 (Unassigned) — —
12 — 147 (Unassigned) - —

1-19

TABLE 3-3

EXTERNAL COMMANDS

EX (exp)

(Continued)

COMMAND OCTAL DEVICE
NUMBER (exp) CODE | COMMAND DESCRIPTION ADDRESS
13 BEEP 151 Beep Activates tone producing 341

mechanism
14 CLICK 153 Click Activates audible click pro- 341
ducing mechanism
15 DECK1 155 Select Deck 1 Connects deck 1 to /O bus 360
16 DECK2 157 Select Deck 2 Connects deck 2 to 1/0 bus
17 RBK 161 Read Block Enables read circuitry and sets
tape in forward motion
18 WBK 163 Write Block Enables write circuitry and sets 360
tape in forward motion
19 — 165 (Unassigned) — —_
20 BSP 167 Backspace Backs up the selected tape 360
One Block one record
21 SF 171 Slew Forward Sets selected tape deck in
forward motion
22 SB 173 Slew Backward Sets selected tape deck in
backward motion
23 REWIND 175 Rewind Rewinds the selected deck to
beginning of tape
24 TSTOP 177 Stop Tape Halts motion of the selected 360

tape deck

1-20

TABLE 3-4

INSTRUCTION REPERTOIRE

op (0] OP

CODE MNEMONIC CODE MNEMONIC CODE MNEMONIC
000 HALT 050 120 JFS
001 HALT 051 121 EX ADR
002 SLC 052 122 CFS
003 RFC 053 RTZ 123 EX STATUS
004 AD 054 XR 124
005 055 125 EX DATA
006 LA 056 LH 126
007 RETURN 057 127 EXWRITE
010 060 130 JFP
011 061 131 EX COM1
012 SRC 062 132 CFP
013 RFZ 063 RTS 133 EX COM2
014 AC 064 OR 134
015 065 135 EX COM3
016 LB 066 LL 136
017 067 137 EX COM4
020 070 140 JTC
021 071 141
022 072 142 CTC
023 RFS 073 RTP 143
024 suU 074 cpP 144
025 075 145
026 LC 076 146
027 077 147
030 100 JFC 150 JTZ
031 101 INPUT © 161 EX BEEP
032 102 CFC 152 CTZ
033 RFP 103 153 EX CLICK
034 SB 104 JMP 154
035 105 155 EX DECK1
036 LD 106 CALL 156
037 107 157 EX DECK?2
040 . 110 JFZ 160 JTS
041 111 161 EX RBK
042 112 CFz 162 CTS
043 RTC 113 163 EX WBK
044 ND 114 164
045 115 165
046 LE 116 166
047 117 167 EX BSP

1-21

TABLE 3-4
INSTRUCTION REPERTOIRE

(Continued)

0] opP OP :
CODE MNEMONIC CODE MNEMONIC CODE MNEMONIC

170 JTP 240 NDA 310 LBA
171 EX SF 241 NDB 311

172 CTP 242 NDC 312 LBC
173 EX SB 243 NDD 313 LBD
174 244 NDE 314 LBE
175 EX REWND 245 NDH 315 LBH
176 246 NDL 316 LBL
177 EX TSTOP 247 NDM 317 LBM
200 ADA 250 XRA 320 LCA
201 ADB 251 XRB 321 LCB
202 ADC 252 XRC 322

203 ADD 253 XRD 323 LCD
204 ADE 254 XRE 324 LCE
205 ADH 255 XRH 325 LCH
206 ADL 256 XRL 326 LCL
207 ADM 257 XRM 327 LCM
210 ACA 260 ORA 330 LDA
211 ACB 261 ORB 331 LDB
212 ACC 262 ORC 332 LDC
213 ACD 263 ORD 333

214 ACE 264 ORE 334 LDE
215 ACH 265 ORH 335 LDH
216 ACL 266 ORL 336 LDL
217 ACM 267 ORM 337 LDM
220 SUA 270 CPA 340 LEA
221 SuB 271 CPB 341 LEB
222 Suc 272 CPC 342 LEC
223 SuUb 273 CPD 343 LED
224 SUE 274 CPE 344

225 SUH 275 CPH 345 LEH
226 SUL 276 CPL 346 LEL
227 SUM 277 CPM 347 LEM
230 SBA 300 NOP 350 LHA
231 SBB 301 LAB 351 LHB
232 SBC 302 LAC 352 LHC
233 SBD 303 LAD 3563 LHD
234 SBE 304 LAE 354 LHE
235 SBH 305 LAH 355

236 SBL 306 LAL 356 LHL
237 SBM 307 LAM 357 LHM

1-22

TABLE 3-4
INSTRUCTION REPERTOIRE

(Continued)

op oP OoP
CODE MNEMONIC CODE MNEMONIC CODE MNEMONIC

360 LLA 370 LMA

361 LLB 371 LMB

362 LLC 372 LMC

363 LLD 373 LMD

364 LLE 374 LME

365 LLH 375 LMH

366 376 LML

367 LLM 377 HALT

NOTE

OP Codes shown without Mnemonics are undefined.

1-23

PART 4

INPUT/OUTPUT OPERATIONS

4.1 GENERAL

The versatile input/output capability of the Datapoint 2200
permits it to communicate with external devices (such as the

2200 communications adaptor) through a parallel 1/0 system.

The keyboard, c.r.t. and tape decks that are an integral part
of the Model 2200 perform all operations over the same |/0O
system as external devices.

4.2 INPUT/OUTPUT INSTRUCTIONS

Two types of instructions provide for I/O operations. One is
the INPUT command (see section 3) which, upon execution,
transfers whatever is on the input bus to the A-register. The
second is the EXTERNAL command which is sub-divided
into 24 separate command operations (8 of which are avail-
able to devices physically external to the Model 2200). Each
EXTERNAL command produces a strobe pulse which may
be used for control external to the processor. The actual
control functions assigned to each external command are
listed in Table 3-3.

4.3 INPUT/OUTPUT CABLE

The parallel 1/0 cable carries data, input strobe, external
commands, and power between the 2200 processor and
external devices connected to it. A complete 1/O system
is structured by connecting external devices in partyline
fashion as shown in Figure 2-1. The 1/O cable contains 8
input data lines, 8 output data lines, 1 input strobe line, 8
(of the 24) external command lines, 1 clock line, and 7
power and ground lines.

4.4 1/0 DATA LINES

The data lines are broken into two groups. 8 lines are used
for output and 8 lines are used for input.

The data output lines are connected (at all times) to the
A-register in the processor and are used to perform three

basic functions:

a. To transfer an address to select an external device
(including the keyboard, c.r.t. and tape decks);

b. To transfer commands to an addressed device; and

c. To transfer data to an addressed device.

1-24

The data input lines are strobed into the A-register upon
execution of the INPUT instruction and used to perform
two basic functions.

a. To transfer status information from an addressed
external device; and

b. To transfer data from an addressed external device.

As shown in Figure 4-1, input data or status from the data
input lines is processed through input receivers and gated
into the A-register. Once in the A-register data can be
manipulated or stored as desired. Addresses, commands, or
data that is to be transferred to an external device must
first be loaded into the A-register. From the A-register it

is transmitted through output devices onto the data output
lines. The A-register, then, is used as a buffer register be-
tween the 2200 processor and external devices for all input
and output data transfers.

4.5 INPUT STROBE

The INPUT STROBE carries a signal (8 usec. pulse) from

the processor to the external device to indicate that what-
ever data is on the data input lines has been sampled and
transferred into the A-register. The trailing edge of the

pulse may be used by an external device to remove data
from the data input line or to clear a status bit. The INPUT
strobe is generated upon execution of the INPUT instruction.

4.6 EXTERNAL COMMAND STROBES

The eight EXTERNAL commands used by devices physi-
cally external to the Model 2200 are given function
assignments as follows:

Gqc-L

INPUT
) D
INSTRUCTION <— —>
INPUT ! INPUT ~ :
GATES | RECEIVERS , N
|
A-REGISTER
v >
l OUTPUT o 1
DRIVERS ' } ;
—————>
] E
|
>
MODEL 2200
PROCESSOR >
N
P
N
Pl
|
|
|
FIGURE 4-1

I/O SYSTEM, FUNCTIONAL DIAGRAM

8 DATA INPUT LINES

8 DATA OUTPUT LINES

INPUT STROBE

8 EXTERNAL COMMAND LINES

153.6 Kc CLOCK

7 POWER AND GROUND LINES

TABLE 4-1

EXTERNAL COMMANDS
EX (exp)
COMMAND OCTAL
NUMBER (exp) CODE | COMMAND DESCRIPTION

1 ADR 121 Address Selects device specified by A-register

2 STATUS 123 Sense Status Connects selected device status lines to data input bus

3 DATA 125 Sense Data Connects selected device data lines to data input bus

4 WRITE 127 Write Strobe Signals selected device that output data is on data
output lines

5 COM1 131 Command 1 Signals selected device that a control word is on data
output lines

6 COoM2 133 Command 2 Signals selected device that a control word is on data
output lines

7 CcCOM3 135 Command 3 Signals selected device that a control word is on data
output lines

8 com4 137 Command 4 Signals selected device that a control word is on data
output lines

Execution of an EXTERNAL instruction provides a pulse 8
microseconds long. No functions are performed within the

2200 processor during execution of an EXTERNAL instruc-

tion. The interpretation of each of the EXTERNAL instruc-
tions is as follows:

a. Address. The address command (EX ADR) is a signal
from the processor to all external devices to indicate
that the information on the data output bus is to be
interpreted as an external device address. Whenever
an address command is executed all external devices
should be disconnected from the 1/0 system except
the device whose address appears in the A-register.
(See paragraph 4.10 for discussion of address assign-
ments).

b. Sense Status. The sense status (EX STATUS) com-
mand is a signal from the processor to the selected
external device to place status information on the
data input lines. (Note: External devices should be
configured such that status is connected to the data
input line whenever the device is first addressed. It
is only necessary to use the EX STATUS instruction
when it is desired to sense status after an EX DATA
instruction has been used and a new address sequence
has not been executed).

c. Sense Data. The sense data (EX DATA) command is

a signal from the processor to the selected external
device to place its data on the data input lines.

1-26

d. Write Strobe. The write strobe (EX WRITE) com-
mand is a signal from the processor that data is
present on the data output lines for the selected
external device.

e. Command 1 through Command 4. Command 1
through Command 4 (EX COM1, etc.) have meaning
appropriate to the device selected. Reference should
be made to a description of each device for specific
function assignments.

4.7 CLOCK LINE

The clock line is crystal controlled 153.6 kilohertz square-
wave that is available to external devices for timing
purposes.

4.8 1/0 BUS ELECTRICAL SPECIFICATIONS

All signals in the I/O System operate with a voltage swing
of zero to +5 volts. Line drivers have a source impedance

of approximately 470 ohms and line receivers have an input
impedance in excess of 18,000 ohms and a decision thres-
hold of +1.7 volts. Figure 4-2 illustrates a typical output
line circuit.

All logic levels are True (logical 1) for zero (less than +1.7)
volts and False (logical 0) for +5 (greater than 1.7) volts.

4.9 DATA TRANSFER OPERATION

a. Data Output. Figure 4-3 illustrates the sequence of
events that occur when data is transferred from the

2200 processor to an external device. A typical pro- Device addresses used in the Model 2200 are given in

gram sequence to execute a transfer is as follows: the following table:
WDATA LA 0322 Load device address into A- TABLE 4-2
register
EX ADR DEVICE ADDRESS ASSIGNMENTS
INPUT Load device status into A-register :
SRC Shift desired status bit into C
flip-flop
JFC EXIT Exit if device not ready DEVICE NUMBER BINARY OCTAL
LAM Load A-register with DATA
EX WRITE Write Data to device
Cassette Tape 0 11110000 360
Once a device is addressed it remains addressed until another Decks
device is addressed so that succeeding commands may be CRT/Keyboard 1 11100001 341
transmitted to a device without re-addressing the device. Communica- 2 11010010 322
Transmitting a command to a device would follow a program tions Adaptor
sequence similar to a data transfer except that EX CoM,, 2200P Printer 3 11000011 303
would replace EX WRITE. 2200T Tape 4 10110100 264
Transport
b. Data Input. Figure 4-4 illustrates a sequence of events Unassigned 5 10100101 245
that occur when data is transferred from an external " 6 10010110 226
device to the 2200 processor. A typical program " 7 10000111 207
sequence is as follows: " 8 01111000 170
" 9 01101001 151
RDATA LA 0322 Load A-register with device " 10 01011010 132
address " 1 01001611 113
EX ADR " 12 00111100 074
INPUT Load device status into A-register " 13 00101101 055
SRC Shift status bit into C flip-flop " 14 00011110 036
SRC " 15 00001111 017
JFC EXIT Exit if device not ready
EX DATA Place data on input lines
INPUT Load A-register with data 4.11 1/0 POWER AND GROUND LINES
4.10 DEVICE ADDRESS NUMBERING The Model 2200 provides several power supply voltages
for use by external devices. Table 4-3 below lists the
Address assignments in the 1/0 system provides for up to 16 characteristics of each power and ground line.

devices external to the 2200 processor. The address word is
formulated such that the low-order four bits form the binary 4.12 1/O SYSTEM CONN ECTOR
value for the address and the high-order four bits form the
logical complement of the low order bits. For example device ~ Connection to the 1/0 system is made through an Am:-
number 6 would have an address word as follows: phenol 17-20500-1 connector. The mating 1/O cable
should have a 50-pin Amphenol 17-10500-1 connector.
u[o|o|1|o|1|1|o] A-Register

——— Table 5-5 lists the pin assignments.
LOGICAL
COMPLEMENT BINARY 6

BINARY 6

- J
NS

OCTAL 226

This addressing system permits any device to be coded for
its particular address with only a four-input gate strapped

to those output lines that are set to one during the address
command. In addition, all devices can be cleared by setting
the A-register to all zeros and executing an EX ADR instruc-

tion.

1-27

8c-L

DATA
INPUT
LINES

DATA
OUTPUT
LINES

ADDRESS
COMMAND

WRITE
COMMAND

STATUS FROM
SELECTED DEVICE

8-BIT ADDRESS
WORD

8-BIT DATA
WORD

FIGURE 4-3

TYPICAL DATA OQUTPUT
SEQUENCE

6¢-L

I (Tvpica
+5voLTs, ([YPICAL

INPUT LINE) +5VOLTS
4.7K n
- 18K n
+1.7 VOLT - - -
REFERENCE (TYPICAL

OUTPUT LINE)

+17 VOLT
CE

(SIGNAL REFEREN

GROUND)
I

.

I
|
| |
| I
| I
| |
l |
| |
[I
I I
T e
' |
' |
| I
| |
470N | l | 18K~
—_— l —_——
I I AVAVAVAS
l |
' [
I |
I |
' e
| |
l |
l |
| |
| |
| |
I |
|

DATAPOINT 2200 PROCESSOR EXTERNAL DEVICE

FIGURE 4-2

I/0 CABLE, ELECTRICAL CHARACTERISTICS

TABLE 4-3

I/0 POWER AND GROUND LINES

VOLTAGE MAX. CURRENT REGULATION
-12 Volts 0.5 amps *10%
- 5 Volts 0.1 amps 5%
+ b Volts 3.4 amps 5%
+12 Volts 0.5 amps +10%
+24 Volts 0.1 amps 5%
Power Ground — —
Signal Ground — —

TABLE 4-4
I/0 CONNECTOR PIN ASSIGNMENTS

ASSIGNMENT PIN NUMBER

Data output O 44

1 45

(A Bus Outputs) 2 46

3 29

4 30

5 31

6 32

7 33

Data Input O 1

1 2

(A Bus Inputs) 2 3

3 4

4 5

5 6

6 7

7 18

Input Strobe (Read) 12

Address Command 15

Sense Status Command 13

Sense Data Command 14

Write Command 19

Command 1 20

Command 2 21

Command 3 22

Command 4 23

153.6 KHz Clock 39

-12v 24

-bv 27

+5v 8,9, 10, 1

+12v 25

+24v 26
Ground (Power & Signal) 40, 41, 42, 43

1-30

LE-L

DATA
INPUT
LINES

DATA
OUTPUT
LINES

ADDRESS
COMMAND

INPUT
STROBE

SENSE DATA
COMMAND

FIGURE 44

TYPICAL DATA INPUT
SEQUENCE

PART 5

KEYBOARD

5.1 GENERAL DESCRIPTION

The keyboard on the Datapoint 2200 performs the functions
of data entry and processor control. The keys are divided
into three sections, each of which has it own function.

Section 1 consists of 41 standard alphabetic, numeric and
special character keys found in the ASCI| character set.
Figure 5-1 illustrates the keyboard layout.

Section 2 consists of an 11 key matrix which is identical to
a standard adding machine keyboard with the addition of a
decimal point (period). The keys in this section are dupli-
cates of certain keys found in Section 1 and are provided to
facilitate entry of large amounts of numeric data.

The keys in Section 3 are special function keys which exert
control over the processor. Their names and associated
functions are as follows:

RUN Momentary contact switch, which when de-
pressed, causes the processor to begin execu-
tion of the instruction located at the address
in memory currently addressed by the pro-
gram counter.

STOP Momentary contact switch which, when de-

pressed, causes instruction execution to halt

at the completion of the current instruction.

Care should be taken when using this switch,

because any tape operation which may be in

progress will be aborted.

KEYBOARD Momentary contact switch which sets a status
bit that may be tested at any time by the
processor.

DISPLAY Momentary contact switch with a function

similar to that of KEYBOARD switch.

Either one or both of these switches may

be depressed.

RESTART Momentary contact switch which causes the

processor to halt, rewind the system or pro-

gram tape mounted on Deck 1, load and
execute the first record found on tape.

5.2 OPERATION
The keyboard is addressed by the processor by loading the

A-register with 341g and executing an EX ADR command.
(The crt display also uses this address. Data transfers to the

1-32

processor are from the keyboard and transfers from the
processor are to the display). Following the address
sequence the c.r.t./keyboard status word can be loaded
into the A-register by executing an INPUT instruction.
Bit 1 of the A-register may be tested by the program to
determine if a character is ready for transfer from the
keyboard. Bits 2 and 3 will indicate if either the KEY-
BOARD or DISPLAY control switch is pressed.

|7[6|5|4|3|2|1|0J CRT/KEYBOARD
— L STATUS WORD

CRT WRITE READY
KEYBOARD READ READY
KEYBOARD CONTROL SWITCH

DEPRESSED

— DISPLAY CONTROL SWITCH
DEPRESSED

— UNASSIGNED

The External Commands associated with the operation of
the keyboard are as follows:

a. EX BEEP. This command produces a 1500 Hertz
tone for a duration of about 100 msec. The tone
could be used as an error or ready signal to the
keyboard operator.

b. EX CLICK. This command produces an audible click
which could be used to acknowledge receipt of a valid
character when a key is depressed.

c. EX COM1 (Command 1). Presents a control word
contained in the A-register to the keyboard. Bit 5
of the control word controls the KEYBOARD
switch light and bit 6 controls the DISPLAY switch
light as follows:

CRT/KEYBOARD

716 [s]4[3[2]1]0]
VT\J L CONTROL WORD
CRT -UNASSIGNED

CONTROL
KEYBOARD LIGHT (1=on, 0=0ff)
DISPLAY LIGHT (1=on, 0=0ff)
—UNASSIGNED

TABLE 5-1

KEYBOARD CODING (ASCIl)

A-101 a-141 0-060 . -072
B-102 b-142 1-061 . -073
C-103 c-143 2-062 < -074
D-104 d-144 3063 = -075
E-105 e -145 4-064 > -076
F-106 f -146 5-065 ? -077
G-107 g-147 6-066 [-133
H-110 h-150 7-067 ~ -176
I -111 i -151 8-070] -135
J-112 j -152 9-071 A 136
Space-040 — -137
K-113 k -153
L-114 | -154 1-041 @ -100
M-115 m-155 ".042 { 173
N-116 n-156 #-043 \ -134
0-117 0-157 $-044 © 140
P-120 p-160 2.045 | -174
Q-121 q-161 &-046 }-175
R-122 r -162 '-047 Enter-015
$-123 s -163 (-050 Cancel-030
T-124 t -164)-051 Backspace-010
U-125 u-165 *.052 Rubout (R.0.)-177
V-126 v -166 +-053
W-127 w-167 ,-054
X-130 x-170 --055
Y-131 y-171 .-056
Z-132 z-172 /-057

1-33

PART 6

CRT DISPLAY

6.1 GENERAL DESCRIPTION

The display unit on the Datapoint 2200 consists of a CRT
capable of displaying 12 lines of 80 characters each, a
character generator, 960 cells of refresh memory (refresh
rate 60 Hz), and a group of registers utilized to position
the cursor. Maximum character transfer rate to the CRT is
60 characters per second.

The character set utilized by the CRT display consists of
the full ASCII set with both upper and lower case alphabe-
tics and all numeric and special characters.

6.2 OPERATION

The CRT is addressed and status tested in the same manner
as the keyboard (see paragraph 5.2). Bit O of the status word
indicates that the CRT is ready to accept data or commands.
Characters are transferred to the screen by loading the A-
register with the character to be displayed and executing

an EX WRITE. The character will be displayed at the cur-
rent cursor location.

Control of the CRT is accomplished through the use of the
three external commands - Command 1, Command 2, and
Command 3. The functions performed by these commands
are as follows:

a. EXCOM1 (Command 1) Transfers a control word
contained in the A-register to the CRT. The appli-
cable bit assignments and their functions are as
follows:

[7]6]5[4]3]2]1]0] CRT/KEYBOARD
L CONTROL WORD

Unassigned
Erase from cursor to end of line
Erase from cursor to end of frame
Roll-up 1 line
- Cursor on/off (on=1, off=0)
— Keyboard Light
L Display Light
— Unassigned

The erase functions permit selective erasures on the screen
by limiting erasures to those character positions following
the current cursor position to the end of the line (or page).

The roll-up function causes all displayed characters (not

the cursor) to move up one line. The top line on the screen
is lost.

1-34

The cursor image may be turned on or off through the
control word. The cursor position is the same in either
case. The cursor image is automatically turned off when-
ever the processor is in the HALT state.

b. EX COM2 (Command 2) Positions the cursor to the
horizontal character slot designated by the contents
of the A-register. Character position 0-794(0-1 17g)
are valid.

¢. EX COM3 (Command 3) Positions the cursor to the
line designated by the contents of the A-register. Line
number 0-119q (0-13g) are valid.

In order to write a new character, the cursor must occupy
that character’s position on the screen. After the character
has been written, the cursor should then be moved to the
next horizontal (or vertical) position desired. The CRT
Write Ready status bit must be true before positioning the
cursor or displaying a character.

Both the CRT and keyboard utilize the standard ASCI|
character set. (See Table 5-1). Any invalid character code
will appear as a blank space on the CRT screen.

Ge-L

wislwiwly

j@@q;;ﬂnﬂsﬂ@ll OEE CT=
FLMIDHNEOLEEDNE HEE C
E[npnERnREnEE NEE I
IIU@HUluEm-m 0 =

| —

FIGURE 6-1
KEYBOARD LAYOUT

PART 7

CASSETTE TAPES

7.1 GENERAL DESCRIPTION

The Datapoint 2200 contains two cassette tape recording de-
vices for storage of programs and data. Since the hardware
RESTART (section 5.1) uses the rear deck (number one),
programs will typically be on it while data areas will be the
front deck (number two). However, once the machine is
initially loaded, either deck may be used for both purposes.

Data on the Tape is organized by record (of any length).
Records are written and read at 350 eight-bit characters per
second with a tape speed of approximately 7.5 inches per
second. See Table 7.1 for a list of the physical specifications.

7.2 OPERATION

Data is recorded or read in bit serial fashion on one track.
Each eight bit character is framed by three sync bits on
either side of the character:

I-|01lexxxxxxx|010|xxxxxxxx|010[-]

Sync Character 1 Sync Character 2 Sync
Code Code Code

The appearance of the correct sync code indicates that the
character is valid. Any other sync code causes special
action to be taken on data reads. Note that the sync codes
are valid for tape motion in either direction so the tape
may be read backwards although in the reverse direction
the data bits will apear reverse d (bit 0 will be bit 7, 1

will be 6 etc.)

A record is a group of successive valid characters. An inter-
record gap is indicated by the failure of the sync code to
be zero one zero and all mark code. (ones):

u010|xxxxxxxx|010|xxxxxxxx[111|xxx|-|

Sync Valid Sync Invalid Sync Inter

Code Character Code Character Code Record

Gap

Only valid characters will be presented as data from the tape
unit.

7.3 STATUS

The cassette tape unit is addressed by the processor by
loading the A-register with 360g and executing the EX
ADR instruction. Following this sequence, the tape unit

1-36

status can be loaded into the A-register by executing an
INPUT instruction. The bit assignments are as follows:

7l6]5]4]3]2]1]0] TAPE STATUS WORD

Deck Ready
End of Tape
Read Ready
Write Ready
L Inter-Record Gap
Unassigned
— Cassette in Place
— Unassigned

DECK READY Deck ready will be set whenever the
tape unit is ready to accept another
command. (Only the TSTOP command
should be issued if this bit is false). The
tape will be stopped, a cassette in the
selected deck and not wound to the
clear leader at either end, and the head
engaged when this bit is true. This bit
should be checked after selecting a deck.

END OF TAPE End of Tape indicates that the cassette
has run onto leader (in either direction).

READ READY Read Ready indicates that the selected
deck has read another character.

WRITE READY Write Ready indicates that the selected
deck is ready to write another charac-

ter.
INTER-RECORD Inter-Record Gap indicates the selected
GAP deck has come across an inter-record
gap (invalid sync code).
CASSETTE IN Cassette in Place indicates that a cassette
PLACE is physically in place in the selected deck.

7.4 CONTROL

When the cassette tape unit is addressed the following instruc-
tions will control the action of the tape:

a. EX TSTOP causes any motion of either deck to be
stopped, any read or write operations to be terminated.
When everything has settled, the ready status bit will
come true and operations may be resumed.

b. EX DECK!1 causes deck one (rear) to be the currently
selected deck. Before commanding a deck selection,
care should be taken that the currently selected deck
has completed all operations.

. EX DECK2 causes deck two (front) to be the currently
selected deck. Note the precaution in (b).

. EX RBK causes the currently selected deck to be set
in forward motion and, after 70 msec, for the read
circuitry to be enabled. The read ready status bit

will come true upon appearance on the tape of the
first valid character. Upon appearance of an invalid
sync code, the inter-record gap status bit comes true
and tape motion is automatically stopped. Note that
this will happen only after at least one valid charac-
ter has been found. Once the read ready status bit
comes true, the character must be taken within 2.8
milliseconds or it will be overwritten with the next
one. The tape read hardware double-buffers incoming
characters to allow the 2.8 msec character availability.

. EX BSP is similar to EX RBK except that tape motion
is in the reverse direction so the data bits will be
reversed.

EX SF is similar to EX RBK except the tape is not
stopped upon appearance of an inter-record gap, and
if allowed to continue will start to read the next
record on the tape. In this case, the read ready status
bit will come true again after the first character of
the next record is read. Only an EX TSTOP will stop
the motion initiated by EX SF.

. EX WBK causes the currently selected deck to be set
in forward motion and for all status bits except the
write ready to go false. A character must then be
presented within 2.8 milliseconds (the first character
will be accepted at once due to the buffering in the
tape hardware and then there will be a pause while
the tape comes up to speed), at which time the write
ready will go false until the writing circuitry is ready
to accept another character. An end of record is a
signalled to the hardware by withholding a character
for a period of time longer than 2.8 milliseconds

~specified above. When this is done, the write ready
will go false, an inter-record gap will be written, the
tape motion will cease, and the deck ready status bit
will come true again.

. EX REWIND causes the tape to be rewound to the
beginning on the selected deck. Worst case rewind
time is approximately 40 seconds.

PUNCH TABS, on the Cassette Cartridge are used for
“‘write protect’’ and “automatic restart’’. The punch
tab on the left (as you face the terminal) inhibits the
ability to write on tape, when punched. When the tab
on the right is punched, it causes an automatic restart
whenever a halt or power-up occurs.

1-37

Start/Stop Time (Inter-
Record Gap)

Start/Stop Distance (Inter- 2 inches
Recrod Gap)

TABLE 7-1

TAPE UNIT PHYSICAL SPECIFICATIONS

Density 47 characters/inch

Speed 7.5 ips

Recording Rate 350 c.p.s.

Capacity 130,000 characters (typical)

280 msec.

Rewind Speed 90 ips
Rewind Time (max 300 ft.) 40 sec.
Character Transfer Time 2.8 msec.

PART 8

COMMUNICATIONS ADAPTOR

8.1 GENERAL DESCRIPTION

The 2200 Communications Adaptor is an external device,
which when connected to the Datapoint 2200 Input/Output
System permits asysnchronous serial data interchange to
other remote systems or devices.

The Communications Adaptor consists of three basic parts:
a. The serial data transmitter and time base;
b. The serial data receiver and time base; and
c. The communications channel interface.

The communications channel interface may be one of four
types:

a. An EIA RS-232 type interface;

b. An isolated high-level neutral or polar telegraph Joop
interface;

c. A modem compatible with the Bell System 103 type
modems;

d. A modem compatibel with the Bell System 202 type
modems.

8.2 OPERATION

The serial data transmitter and receiver are addressed at the
same time (the address of the first used communications
adaptor is 322g - see Table 4-2). Additional adaptors may
be given. previously unassigned addresses.

To set the bit rate desired for the transmitter time base two
successive EX COM3 instructions are used to transfer two
8-bit masks from the A-register (See paragraph 8.6 for a
discussion of time base mask words). For the receiver EX
COM2 is used.

To set the character length for the transmitter and receiver

an EX COM4 command is executed with a character length
mask from the A-register (see paragraph 8.7 for a discussion
of character length mask words).

The status of the communications adaptor is transmitted to
the A-register with the following bit assignments:

1-38

[7]e]5]4]3]2]1]o

Communications Adaptor
Status Word

Transmit Ready
Receive Ready
Break Received
— *Clear to Send
*Carrier Present, Reverse Channel
L——*Ringing Present
—— *Carrier Present, Main Channel
L——*Dial tone present (originate mode)

*Data coupler ready (answer mode)

*Used with data set options.

Communications Adaptor Status Bit Description
Bit 0, Transmit Ready

The ““true” condition of this bit indicates that the serial
transmitter is ready to accept a new character for trans-
mission. Should another write command be issued to the
Communications Adaptor while this bit is “false”, i.e.
transmitter NOT ready, tiie previous character will be
written over,

Bit 1, Receiver Ready

The Receive Ready bit, in the true state, indicates the pre-
sence of a new received character. A read command to the
Communications Adaptor returns this bit to the false state.
If a read command is not issued before another new charac-
ter is received, the new character will replace the existing
character and the status will remain true.

Bit 2, Break Received

The Break Received status bit simply indicates that the
received data is in the “’space’’ or ‘“zero’”’ condition for
longer than one character time.

Bit 3, Clear to Send

The true state of Clear to Send status indicates that the
data set (internal or external) is prepared to accept data
for transmission. This bit has meaning only when an inter-
nal or external data set is in used.

Bit 4, Carrier Present - Reverse Channel

This status bit has significance only when operating half-
duplex with either an internal or external 202 type data set
(modem). The true condition indicates that the reverse
(supervisory) channel carrier is being received.

Bit 5, Ringing Present

The true condition of Ringing Present indicates that the
ringing of an incoming call has been detected. This bit has
,significance only when used with an internal or external
(with proper options) data set.

Bit 6, Carrier Present - Main Channel

The true condition of this status bit indicates that the main
channel carrier is being received. This status bit has meaning
only when used with an internal or external data set.

Bit 7, (1) Dial Tone Present (Originate Mode)
(2) Data Coupler Ready (Answer Mode)

(1) When originating a call, the true condition of this status
bit indicates that a dial tone is present and dialing may pro-
ceed; during dialing, the status will become false. Following
dialing, and a 2 to 5 second delay, this bit will return to the
true condition indicating connection to the telecommuni-
cation network (but does not indicate the called number has
answered).

(2) When answering a call, the true condition of this status
bit indicates that the data coupler is connected to the
telecommunications network.

8.3 DATA OUTPUT

After addressing the communications adaptor transmission
of each character is accomplished in the following manner:

a. Input the status word and verify that status bit O,
Transmit Ready, is set to 1 indicating that the adaptor
can accept another character.

b. Load the A-register with the byte to be transmitted.
c. Apply a write strobe (EX WRITE). Data present on
the A-bus will be loaded into the data transmitter and

data will be serially transmitted at the selected code
length and bit rate.

1-39

8.4 DATA INPUT

After addressing the communications adaptor, reception
of each character is accomplished in the following manner:

a. Input the status word and verify that status bit 1,
Receiver Ready, is set to 1, indicating that a charac-
ter has been received.

b. Execute an EX DATA instruction.

c. Execute an INPUT command, transferring the re-
ceived character to the A-register.

8.5 COMMAND WORD

Control of the communications adaptor is accomplished
through the use of a command word. The command word
is transmitted to the adaptor by executing EX COM1.

[7‘ 6 | 5 |4 | 3 l2 |1 M Communication Adaptor
Command Word

“Request to send (Transmit
Carrier)
Invert received serial data line
*Supervisory channel on

— Invert the transmitted serial data line
—*Off-hook/Data Terminal Ready
L —*Send 2025 Hz

*QOriginate/Answer
—*Send dial pulses

*Used with data set options

Communication Adaptor Command Word Description

Bit 0 - Request to Send

This command bit controls the transmit carrier of an internal
or external data set. A ““one’’ in this position turns on the
transmit carrier and indicates to the data set that it must
prepare for data transmission.

Bit 1 - Invert Received Serial Data Line

A “one’’ in this position permits data to be received nor-
mally when the received serial data line is inverted.

Bit 2 - Supervisory Channel On

This command is used only with a 202 type modem in half-
duplex operation. A ““one’’ in this command indicates to the
modem that the supervisory (or reverse) channel will be
operative, transmit or receive.

Bit 3 - Invert Transmitted Serial Data

A “one” in this command inverts the transmitted serial data.

Bit 4 - Off-Hook

A “one’ must be placed in this bit position any time a
telecommunication call is to be originated or answered.
This command allows connection to be made to the tele-
communication network with an internal modem and a
Bell System Data Access Arrangement. When using an
external modem, this command provides ‘‘Data Terminal
Ready’’ to the external modem, i.e., the system is pre-
pared for on-line communications. This command is used
only for the cases described above.

Bit 5 - Send 2025

This command is used only with an internal 202 type mo-
dem, half-duplex operation and ““answer’’ mode. The only
use of this command is described as follows:

1.) following receipt of Ringing Present, Status Bit 5,
the Off Hook Command, Command Bit 4, is set to a

I "

one .

2.) Next, Status Bit 7, Data Coupler Ready must
become “‘true”’.

3.) Send 2025 command must now be set to a ““one”’
only for a period of 1/2 second to 3 seconds to in-

form the calling data set of our response.

Bit 6 - Originate

This command is used only with internal data sets (modems).

A “one’’ in this command instructs the modem that the
system will originate a telecommunication call, A ““zero”’
tells the modem the system is prepared to answer a telecom-
munication call.

Bit 7 - Send Dial Pulses

This command is used only with internal data sets (modem:s)
and is set to ‘‘one’’ only when dialing. Its use is described as
follows:

1-40

1.) Off-Hook Command (Bit 4) is set to “‘one”’.
2.) Status Bit 7 - Dial Tone Present becomes “‘true’’.

3.) Bit 7, Bit 4 and Bit 3 (invert xmit), are now set
to ““one”’.

4.) When the last dial pulse is completely transmitted,
Bit 7 and Bit 3 must be returned to "“zero”’.

8.6 TIME BASE MASK WORDS

Both time base generators are programmed for their respec-
tive bit rates by the processor. Each time base is indepen-
dently controlled to allow transmission and reception at
different rates.

After addressing the communication interface, two eight-bit
mask words are loaded into the time base registers to
synthesize the selected bit rates. As each respective byte is
presented, a corresponding EX COM2 instruction must be
executed to load the receive time base and an EX COM3
instruction to load the transmit time base.

These two bytes are combined to form a 16 bit word which
is placed in a holding register. A counter is then set to the
value in the holding register. This counter is incremented

at the rate of 153,600 Hz. Each time the counter overflows,
i.e., goes from all one to all zeroes, a pulse is generated and
the counter is reset to the value in the holding register. The
time between pulses represents 1/2 clock period or 1/2 bit
time. Given a bit rate (bps), the following formula can be
used to determine the number N to be entered into the
holding register:

76,800>

N = 65,536 -(—b—ps‘

This number N may then be converted to a 16 bit binary
number and separated into the two 8-bit mask words.

The octal codes for some of the more frequently used rates
are listed below:

BIT RATE 1ST MASK WORD 2ND MASK WORD 8.7 CHARACTER LENGTHS
1) 100* 375 000 Character lengths for the transmit and receive sections and
2) 110 375 106 its output control bit are determined by a character length
3) 220 376 243 mask word which is transmitted to the communications
4) 440 377 121 adaptor with an EX COM4 instruction.
5) 150 376 000
6) 300 377 000 l7 |6 |5 |4 |3 |2 |1 m Character Length
7) 600 377 200 ~——~——~—— Mask Word
8) 1200 377 300 L_
9) 2400 377 340 Transmitted Character
10) 4800 377 360 Length Mask
11) 9600 377 370 Received Character Length Mask
Output Control
*(Dialing) — Unassigned
The functions of the mask bits are given in the following
tables:
TABLE 8-1
TRANSMITTED CHARACTER LENGTH MASK BITS
MASK BIT START INFORMATION STOP CODE BIT
POSITION UNITS UNITS UNITS POSITIONS
210 76543210
000 1 8 1 87654321
001 1 8 2 87654321
010 1 7 1 7654321
011 1 6 1 654321
100 1 5 1 54321
101 — — — _
110 — — — __

111

1-41

When codes having 5, 6, or 7 information units are to be
transmitted, the remaining high-order bits in the character
byte must be coded to 1.

When a two-unit stop pulse is required for characters having
5, 6, or 7 information bits, the next larger character length
is used; the remaining high-order bits (all coded 1) form the
stop pulses.

When received characters contain 5, 6 or 7 information bits,
the remaining low-order bits (as shown above) must be dis-
regarded.

One additional command bit, Bit 6 (output control) of the
Character Length Mask Word, is used to control the EIA
RS-232 Transmitted Data and the High-Level Keyer Trans-
mitted Data. A “one’” in this command bit enables serial
data to be transmitted only to the EIA RS-232 output or to

TABLE 8-2

RECEIVED CHARACTER LENGTH MASK BITS

MASK BIT START INFORMATION STOP CODE BIT
POSITION UNITS UNITS UNITS POSITIONS
543 76543210
000 1 8 1 or more 87654321
001 1 8 1 or more 87654321
010 1 7 1 or more 7654321x
011 1 6 1 or more 654321xx
100 1 5 1 or more 54321xxx
101 — - - -
110 - — — __
111 - — — I
the High Level Keyer. A “zero” in this command bit allows LEAD FUNCTION INPUT/OUTPUT
serial data to be transmitted only to an internal data set
(modem). 44 Supervisory Transmitted Output
Data (RS-232)
8.8 INTERFACE CONNECTOR 45 Data Carrier Detector Input
(RS-232)
This interface is provided through an Amphenol 17-10500-1 46 Supervisory Received Input
connector. Pin assignements are as follows: Data (RS-232)
49 Clock for 3300P Output
LEAD FUNCTION INPUT/OUTPUT 50 Transmit Bit Rate Clock Output
1 Protective Ground —_— 8.9 HIGH LEVEL OPTION
2 Protective Ground _
3 OH (Off Hook) Output Interface with telegraph-type current loops is provided with
4 +25v —_ the high level option. This option provides for completely
5 DA (Transmission Path Output isolated electronic neutral/polar output relay and a complete-
Request) ly isolated neutral/polar input relay. Loop voltage may be
6 R (Ring Indicator) Input as high as 400 voits across the relay and as high as 1000 with
7 CCT (Data Coupler Input respect to ground.
Ready)
9 DT (4 wire) Direct Loop resistance and power is not included with the option.
10 DT (2 wu.re) anvate For further information, refer to the Datapoint 2200
11 DR (2 wire) Line | .
. . nstallation Manual.
12 DR (4 wire) Connection
23 Clear to Send (RS-232) Input 8.10 103-DATA SET OPTION CHARACTERISTJCS
24 Transmitted Data Output
(RS-232) The 103-Data Set option provides for full duplex data trans-
28 Signal Ground ——— mission for rates up to 300 bits per second with a signalling
29 Signal Ground - system that is compatible with the Bell System 103 series
32 +bv - Dataphones. Connection to the common carrier lines would
33 +5v —— normally be made through a Bell System Access Arrangement
40 Request to Send Output type F-58118, CBT, or 1001B. Other connections are also
(RS-232) possible where automatic dialing or answering is not re-
41 Received Data (RS-232) Input quired.
42 Data Terminal Ready Output

(RS-232)

1-42

The data set may be placed in either the answer mode or
originator mode through the use of bit 6 of the communi-
cations adaptor command word (see paragraph 8.5). Bit
6 is set to O for answer mode and 1 for originator mode.
The request to send command bit (bit 0) is normally set
to 1 with the 103 option to maintain the transmit carrier
on.

Operation of the automatic dialing and answering features
discussed in paragraph 8.12 and 8.13.

Table 83 provides a summary of characteristics of the
103 Data Set option.

TABLE 8-3

103 DATA SET OPTION CHARACTERISTICS

Originate Mode

Carrier Frequencies: Transmit: Mark: 1270 Hz
Space: 1070 Hz
Receive: Mark: 2225 Hz
Space: 2025 Hz

Answer Mode
Carrier Frequencies: Transmit: Mark: 2225 Hz
Space: 2025 Hz
Recerve: Mark: 1270 Hz

Space: 1070 Hz

Keying Rate: Up to 300 bits per second
Transmit Level: 0to-10 dbm.

Impedance: 600 ohms nominal
Receive Sensitivity: +5 to -30 dbm.

8.11 202-DATA SET OPTION

The 202 Data Set option provides for either full or half
duplex data transmission for rates up to 1200 bits per
second (1800 bits per second on conditioned private lines).
This option is compatible with Bell System 202 series Data-
phones (including supervisory channel operation) and in
addition provides a 150 bit per second supervisory channel
when used with another Datapoint 2200 Data Set option
of the same type. Connection may be directly to private
lines or to common carrier lines through a Bell System
Access Assignment type F-58118, CBT, or 1001B where
access to the telephone switched network is desired.

Operation of the automatic dialing and answering are dis-
cussed in paragraphs 8.12 and 8.13 respectively.

Table 8-4 provides a summary of characteristics of the 202
Data Set option.

1-43

TABLE 8-4
202 DATA SET OPTION CHARACTERISTICS
Mark: 1200 Hz

Space: 2200 Hz
Soft Turn-Off: 880 Hz

Main Channel Frequencies:

Supervisory Channel
Frequencies: Mark: 387 Hz
Space: 470 Hz
Soft Turn-Off: 330 Hz

Special Command

Frequency: 2025 Hz
Main Channel Keying
Rate: Up to 1200 baud (1800 baud

on conditioned private lines.)
Supervisory Channel

Keying Rate: Up to 150 baud
Transmit Level: 0to-10 dbm
Impedance: 600 ohms nominal
Receive Sensitivity: +5 to -30 dbm

8.12 AUTOMATIC DIALING OPERATION

When using the Datapoint 103 or 202 data set options with
the Bell System Access Arrangement type F-58118, CBT,
or 1001B it is possible to automatically originate a call

into the telephone switches network. The procedure for
this function is as follows:

a. Set bits 4 and 6 of the communications adaptor
command word to 1 to provide an off-hook signal
to the telephone network and to prepare the modem
for originate operation.

b. Test bit 7 of the communications adaptor status
word for a 1 indicating dial tone present.

c. Set the transmitter time base to 100 bits per second
(see paragraph 8.6).

d. Set the character length mask word to all zeros (ten
bit length-see paragraph 8.7).

e. Set bits 3 and 7 of the command word to 1 thus
inverting the serial transmitter output and trans-
ferring this output to the dial pulse keyer.

f. Sequentially transmit the octal byte 360 for each
dial pulse required for each number (see paragraph
8.3-Data Output).

g. Program approximately 1 second delay between each
number and at the end of the last number transmitted.

h. Re-establish the correct code length and bit rate for
data transmission and set command word bits 3 and
7 to zero to restore the normal transmitter output.

8.13 AUTOMATIC ANSWERING OPERATION

When using the Datapoint 103 or 202 data set options with
the Bell System Access Arrangement type F-58118, CBT, or
1001B it is possible to automatically answer a call from the
telephone switched network.

Ringing is detected simply by testing bit 5 of the Communi-
cations Adaptor Status Word, Response to ringing would be
to set bit 4 of the Communications Adaptor Command
Word to 1 to provide an off-hook signal to the telephone
network.

If the 103 Option is used Command Word bit 0 is set to 1
and bit 6 is set to O turning on the transmit carrier and
selecting the answer-mode carrier frequencies.

If the 202 Option is used bit 5 of the command word is set
to 1 for 1/2 to 3 seconds to transmit a 2025 Hz tone to
disable echo suppressors and to inform the calling data set
of out sequence in the telephone network, after which
normal data transmissions occurs.

1-44

SECTION 2

DATAPOINT 2200

OPERATING SYSTEM

SECTION 2

THE OPERATING SYSTEM

The operating system is a conversational mode program for
the Datapoint 2200 user to have a means to catalog, load,
debug and run user programs and to provide other utilities
important to the use of the 2200. All other programs dis-
cussed in the ““Programmers Manual’’ such as the Program
Editor and the Assembler are programs which the user may
catalog onto an operating system tape and call into use as
required.

The operating system itself is a relatively long program
which is generally overlayed when user programs are called
in from tape (unless they are less than 2K bytes in length and
properly located). However, a family of resident utility
routines is loaded with the operating system that may be
used by user programs to simplify frequently used functions
such as reading from the keyboard, writing to the CRT
screen, reading and writing tape records, etc. The detailed
use of the routines and the makeup of the operating system
are described in Section 5—Advanced operating system
command and subroutine usage.

Section 1 will describe the command language for the
operating system and does not require any particular pro-
gramming skills.

Start-Up Procedures

When power is first applied to the Datapoint 2200, it is
incapable of performing any useful function except to load

a block of data from the rear tape cassette deck into the
processor’s memory and transferring control to it. In the
operating system, this first block of data is called a LOADER
and when control is transferred to it, it proceeds to the first
check itself to see if it was loaded properly and then to load
the next file on the same tape which is the rest of the operat-
_ing system program. This process can be executed at any
time (assuming a proper program tape is in the rear deck) by
pressing the RESTART key on the right hand side of the
2200.

This first block of data can be used to load programs other
than the operating system and is generally useful for all
applications of the 2200. In order to use the operating system,
a full 8K bytes of memory must be provided in the 2200, but
the loader alone can be used with any size memory.

When an operating system program tape is loaded, the first
thing that appears on the screen is:

COMPUTER TERMINAL OPERATING SYSTEM

21

READY

At this point, any of the operating system commands dis-
cussed below may be typed into the 2200.

Each command has to be in the form of a word followed by
the ENTER key, or a word followed by a space, or a dash
and a name, or a modifier. Each of the following are valid
operating system commands:

CATALOG
REPLACE RST4
REPLACE-RST4
RUN*

Only the first three letters of a command are actually decoded
so that the following are valid commands:

CAT
REP RST4

If an invalid command is typed the system responds with:
WHAT?

Operating System Commands:

CATALOG

The CATALOG command will print out a list of programs
currently available on that particular operating system tape.
Up to 14 programs may be cataloged on a tape under this
system and the order that they appear on the tape is the
order their names appear on the screen when the catalog
command is given. A typical catalog response might be:

CATALOG
RST4 CODER BANDIT ANNUIT
READY

Which would indicate that four programs are logged onto
the tape.

NAME

The NAME command allows any program in the system to
have its name changed. For example, the program named
BANDIT in the above example can be changed to GAME
with the command:

NAME-BANDIT, GAME

Names may have any combination of letters and digits up to
six characters in length and beginning with a letter. All of the
following are valid program names:

BOB
R12345
A
NAME

RUN

The RUN command causes the operating system to position
the cassette tape to the program named in the run command,
load the program into the 2200 memory and transfer control
to it. The program being run may overlay part or all of the
operating system. If it does, returning to the operating sys-
tem can only be done by reloading it. This can be done by
using the restart switch or by program control (See Section 5).

A run command would appear like this:
RUN-BANDIT

A program that has not been logged onto the system tape
may be run by placing an assembled form of the program on
the front deck and typing:

RUN*

IN

The IN command causes a program to be cataloged onto the
operating system tape. The program must be assembled and
the assembled program tape placed on the front deck. The
IN command is typed giving the name to be assigned to the
program as shown here:

IN RST4

The operating system tape (on the rear deck) will position
itself to the end of its program library and will then copy the
program from the front deck into place and add its name and
position to the system catalog.

DELETE

The DELETE command causes the program named in the
command to be removed from the system library. Unless
the program being deleted happens to be the last program

in the library, a SCRATCH tape will be required in the front
deck to copy part of the library out and back to the system
tape to CLOSE-UP the space. In this case, when the com-
mand is entered, the system will write a message back:

FRONT TAPE SCRATCH?

2-2

Then the processor will stop. The stop key on the right hand
side of the keyboard will be lighted. If there is a tape in the
front deck that can be recorded on, press the run key on the
right hand side and the system will proceed to delete the
named program for you.

This will generally take a little time. When the system is
through it will write READY on the screen.

REPLACE

The REPLACE command allows a program already in the
system catalog to be deleted and a new program to be put
in its place in the same order on the tape. The new program
does not have to be the same length as the old one. Again,
this command takes time to execute due to the amount of
“shuffling’’ of tape files to get everything in place.

AUTO

The AUTO command allows one of the programs in the sys-
tem library to be marked for an automatic RUN whenever
the operating system is restarted. Once a program has been
named in an auto command, it may be cleared by typing a
MANUAL command. The automatic feature may be over-
ridden during a restart by holding down the KEYBOARD
key on the right hand side of the keyboard.

The automatic program calling feature is particularly valuable
when the program is to be run in an unattended situation. If
the knock-out tab on the back of the operating system tape
is removed then whenever power is reapplied or the processor
is halted for any reason (including a programming halt), an
automatic restart is executed and, of course, the program
named in the auto command is reloaded and given control.

If the command AUTO is typed without a name then the
system will respond with:

NAME REQUIRED

If a program is already named in an auto command then the
system will respond with:

AUTO SET TO (PROGRAM NAME)

MANUAL

The MANUAL command will delete any program from the
auto mode.

ouT

The OUT command causes any named program to be copied
to the front tape causing any data already on the front tape
to be lost. This copy may then be cataloged onto some other

system tape or be saved for some future use. When using
the OUT command the system will write FRONT TAPE
SCRATCH? onto the screen and the processor will halt.
If you have a usable tape in the front deck, then press the
run key on the right hand side of the keyboard and the
system will continue.

If the command OUT $is typed, then the entire operating
system including the library is copied to the front deck. If
the command OUT ™ is typed, then the loader and the
library is copied to the front deck but the operating system
is deleted. This permits a program or family of programs

to be used on a Datapoint 2200 with less than the full 8K
of memory. (See Section 5 for details).

PREP

The PREP command causes the tape in the front deck to be
rewound and a NULL file to be written at the beginning of
the tape, effectively ERASING the tape and making it
ready for use by operating system tape routines. The operat-
ing system commands that write on the front deck execute
the PREP function automatically, however, USER PRO-
GRAMS WRITING DATA TO THE TAPE MAY REQUIRE
THE TAPE TO BE ““PREPed” IN ADVANCE.

2-3

HEX

The HEX command allows programs generated on other
machines that follow a specified hexadecimal format, to be
loaded into the Datapoint 2200. Users will not normally be
concerned with the HEX command. (See Section 5 for
details).

DEBUG

The DEBUG command transfers program control to a small
sub-program within the operating system that is used as a
programming aid to debug and modify programs that are
loaded into the 2200 memory. The debug sub-program allows
you to write the contents of memory locations to the screen,
modify memory locations, load programs into memory from
the library or from the front deck, transfer control to parts of
a program in memory and TRAP register values upon return
to the debug program. Instructions on the use of the debug
sub-program are given in Section 5.-

SECTION 3

DATAPOINT 2200

SOURCE CODE EDITOR

SECTION 3

ASSEMBLER SOURCE CODE EDITOR

The assembler source code editor program provides for the
preparation and editing of source data tapes in an assembler
compatible format.

The editor program is called by the Computer Terminal
Operating System (CTOS), if it is cataloged therein, by
typing the following command:

STEP 1
RUN EDIT
STEP 2

a) When the editor has been loaded, the following message
will appear on the screen:

Compressed Source Code Editor
Edit (E) or Convert (C)?

Type ‘C’ only if you have a tape generated by EDIT (1.1).
This version of the Editor generated unblocked string rec-
ords (using SSFWS$). The present version generates ‘‘com-
pressed source’’ records (using SNFW$).

If conversion is required, type ‘C’. The following message
will appear:

PLACE SYMBOLIC TAPE IN FRONT DECK-
WHEN READY PRESS RUN

Place the old tape in the front deck and push RUN. A con-
verted file will be generated in the scratch area of the CTOS
tape. When the 1st pass of the conversion is complete, the

following message will appear:

PLACE SCRATCH TAPE IN FRONT DECK-
WHEN READY PRESS RUN

To protect your original tape, use a new tape to record the
new compressed source code. Place the new tape in the front
deck and press run.

The conversion process may be repeated for several tapes.
The Editor will now accept only compressed source tapes.

b) Type 'E’ to EDIT, this message will appear on screen:

TYPE (:NEW,:OLD, OR:DUPLICATE)?

The meaning of the possible responses are as follows:

(NOTE:) All commands to the editor must begin with colons.

Indicates that the tape on the front deck
is to be treated as a new source data tape.
Any old data on this tape will be written
over by the editor program.

:NEW

Indicates that the front deck contains a
tape with assembler source data on it.
The operator will be allowed to edit this
tape, changing only those lines which
the operator specifies.

:OLD

Indicates to the editor that it should
copy the contents of the scratch file
to the source data tape. This provides
copies of a single source data file. It
also provides for recovery capability
should a system failure occur during
the editing process. See Step 4, Recov-
ery Procedures.

:DUPLICATE

STEP 3

a) If the response in Step 2 was :NEW the following ques-
tion will appear on the screen:

NEW NAME?

The operator may now enter a character string of up to 40
characters. This text will become the first record of the source
data tape and will appear as part of a comment line in the
assembled text.

b) If the response in Step 2 was :OLD the editor will read the
header record from the source data tape (front deck) and
display that header on the screen in the following format:

OLD NAME IS XXXX XXXX...XXXX

This old name header is also written to the scratch file and is
retained as the header record for the source tape.

c) If the response in Step 2b was :DUPLICATE the editor
will return to Step 2b after the copying operation has been
completed. See Step 4, Recovery Procedures.

After a) or b) above has been completed, a “READY’’ message
will be written on the screen and the cursor will appear at the
beginning of the bottom line. The editor is now ready to
accept new text data or a command. In order to enter text,
simply type the desired text. Upon pressing the enter key,

the typed line will be rolled up on the screen one iine and

the cursor will reappear on the bottom line and accept
another text line or a command. When a line of text rolls off

the top of the screen, it is written to the scratch file. Lines
will be written to the scratch file in the same order as they
appear on the screen, the top line being first in the file.

Commands which can be entered, and their respective func-

tions, are listed below. Command lines are distinguished from

text lines by a leading colon; therefore, it is necessary to be-
gin any command by typing a leading colon.

The “pointed line’’ referred to by some command descrip-
tions below, is the line currently being pointed to by the
visible pointer at the left side of the screen (col. 0). The
‘‘point’s’’ vertical position is controlled by the keyboard/
display keys. Specifically, pressing KEYBOARD causes
the pointer to move up one line, pressing DISPLAY moves
it down one line. Motion in either direction is circular

around the screen. (It wraps around).

Commands may be entered from the bottom line only and
must be preceded by a colon (:).

The functions available and their respective descriptions
are listed below:

MANUAL
SEARCH

(Not a typed command).
MANUAL SEARCH is like a continu-
ing find of the very next line. That is,

searching continues line at a time, with
the next new line going to the eleventh

line and the screen rolling up. It is un-
like a find in that the screen isn’t
cleared for each new line acquired. It

is useful for manually scanning through

the data to bring to the screen and,
therefore, into a position to edit the

data of interest. MANUAL SEARCH is

achieved by holding down the KEY-
BOARD and DISPLAY keys simulta-
neously. While held down, the search
will proceed until end of file at which
point the keys will become inoperable.
:FIND <TEXT> Where <text> represents n characters
of text data. The editor searches the
source data tape for the first match
with the desired n—<text> characters.
When the desired line is found it is dis-

played on the bottom line of the screen.

The search is circular through the data
files. If no match is found the text
which occupied the bottom line at the
time the command was issued is re-
stored. Leading blanks on data-lines
are ignored during the search. A FIND
or EOF in progress can be stopped by
the manual search operation.

3-2

:COPY or :COP

:DELETE or :DEL

:INSERT or :INS

:EOF

:END

:END/DEL

:SCRATCH or
:SCR

STEP 4

The pointed line is copied to the bot-
tom line and is simultaneously deleted
from its previous location. The cursor
will occupy the pointed line and will
accept new text at this position. Striking
the <enter> key returns the cursor to
the bottom line and rolls the screen up
one line.

The pointed line is deleted from the
screen and the scratch area. The cursor
will occupy the pointed line and will
accept new text at this position.
Striking the <enter> key returns the
cursor to the bottom line. The screen
is not rolled up.

The pointed line and all lines above
it are rolled up one line. The cursor
will now occupy the blank line
created and is ready to accept the
new text. Striking the <enter> key
returns the cursor to the bottom line.

The editor will search the source data
tape for an end-of-file. Upon finding it,
the last 11 text lines are on the screen
and the cursor occupies the bottom
line ready to accept new text or com-
mands. A FIND or EOF in progress
can be stopped by the manual search
operation.

Causes the screen and the remaining
source data to be copied to the scratch
file. The scratch file is then copied to
the source data tape.

The same as :END except that all data
on the source tape which follows the
current screen data is deleted.

Cause all lines between the top of the
screen and the pointer, inclusive, to be
deleted from the screen and the scratch
area. The cursor will occupy the pointed
line and will accept new text at this
position. Striking the <enter> key
returns the cursor to the bottom line.
The screen is not rolled up.

Recovery procedures using the :DUPLICATE command can
be implemented should the edit program be aborted during
its execution without benefit of having completed all
necessary copying and end of file writing.

Causes of difficulties which could require such action are:

Power failure during execution of the program

Turning off the power execution of the program
Striking the restart switch during execution
Encountering unrecoverable tape errors during execution
Removal of the tape cassette during execution

orON -

The EDITOR edits from one tape [the ““Source Tape,"”
containing old data] through the screen to the “‘scratch
tape.” The identity of the ‘“source’”” and “‘scratch’’ tapes

or files are reversed each time the current ‘‘source’ tape
reaches a file marker indicating end of file. Therefore, if an
even number of passes have been completed, the updated
file is on the front deck. If an odd number of passes have
been made, the CTOS scratch file, file 40g, is the updated
file. New programs are written on the front deck.

Understanding the activity of the data with respect to the
tapes will allow the operator to determine the course of
action should difficulty occur.

Should the operator encounter difficulty and be rather
vague as to which action to take, it is recommended that
the operator choose the most valuable data tape by the
following:

When unrecoverable difficulty arises, remove the
data tape and replace it with a new tape which will
be written over by the scratch area of the operating
system tape.

Run the edit program and type :DUPLICATE in
response to the original questions.

The scratch area will be deposited on the new tape.

Then the operator can manually search through the
two tapes as separate data tapes and make a decision
as to the most valuable to keep.

Special situations:

It is possible that the scratch area has the most valuable data
on it but it is missing any file termination record. This can
occur when the program was interrupted during data entry
and the previous scratch-to-data tape copy (if any) was so
far back as to render the scratch area the only desirable
data. Should this occur, the copy will proceed from scratch
to source until it runs out of data, in which case the operat-
ing system will encounter garbage on the tape. It will then
write end-of-file marks on the data tape at that point. This
will give a clean data tape suitable for beginning again. A
note of caution: it is usually advisable, when attempting to
recover valuable data, to use the two data tape approach
and visually compare the two to make a value judgment as to
which has the most desirable data.

3-3

SECTION 4

DATAPOINT 2200

ASSEMBLER

SECTION 4
THE ASSEMBLER

The 2200 assembly system consists of the ASSEMBLER,
EDITOR and the OPERATING SYSTEM.

The ASSEMBLER generates a block of absolute object code
which can be loaded by the operating system loader and
cataloged by the operating system. It generates the object
code from the symbolic source code which was generated
by the editor.

The ASSEMBLER makes two passes over the source code.

The first pass generates a symbol table from the labels in
the source code and checks for certain error conditions,
primarily syntax and form. The symbol table is maintained
in memory.

The second pass generates the program listing and the object
code on the tape. It also produces further diagnostics of a
more subtle nature.

Basically, the ASSEMBLER is a program that assigns numeri-
cal values to symbols and outputs these values upon input of
the associated symbols. Symbols in certain fields have pre-
assigned values such as the opcode mnemonics. The value
assigned to an instruction mnemonic is the binary bit con-
figuration recognized by the 2200 processor for that instruc-
tion.

For example, the following instruction mnemonics have the
following octal values:

MNEMONIC VALUE
ADB 201
RETURN 007
SsuB 221

Symbols in fields other than the opcode field may be defined
by the user. Pre-defined and user-defined symbols are kept
separately by the ASSEMBLER so that the user may define
symbols that are the same as the pre-defined symbols with-
out encountering any difficulties.

Along with relating symbols with numbers, another major
function of the ASSEMBLER is to enable one to reference
a symbol that is defined later in the program. This is called
FORWARD REFERENCING, and may be handled in a
variety of ways. One of the simplest is to look at the source
code twice. The first time determines the definitions of all
the symbols and the second time uses the symbols to pro-
duce the object code. Each ““look’ at the source code is
called a ""PASS"”’. Therefore, we end up with a two pass
assembly process.

4-1

Statements

A 2200 assembly code statement consists of a label field, an
instruction field, an expression field and a comment field.
An example:

1 2 3 4
LABEL1 JTC START THIS IS THE COMMENT FIELD

Field 1 is the label field

Field 2 is the instruction field

Field 3 is the expression or operand field
Field 4 is the comment field

The 2200 editor provides automatic formatting so that the
fields always are justified to begin in a certain column with
tabbing to that field automatic. However, the ASSEMBLER
only requires the following:

A non-space in the first column means that the first
field is a label, except for a leading period which
designates the entire line as a comment line.

A space in the first field means a null label and the first
field is an instruction.

Scanning proceeds from left to right with one or more
spaces serving as field delimiters.

Terminating fields by other than a space or a line
termination will result in E-flags during the assembly.

THE LABEL FIELD may consist of up to 6 characters. An
excess of 6 characters will be truncated. The first character
may be any alphabetic character or a $ sign. The other
characters may be any alphanumeric character or a $ sign.
For example:

LEGAL ILLEGAL

LABEL1 1LABEL (starts with numeric)
LABEL2 LABEL* (non-alphanumeric character)
LABELS$ LABEL. (non-alphanumeric character)
L1B2L3

THE INSTRUCTION FIELD may be any of the instruction
mnemonics listed in the Datapoint 2200 Reference Manual,
compound instruction (described later) or assembler directives.

The Instruction Field may be from two to four characters.
However, only the first three are scanned and consequently
the user may abbreviate. For example:

LEGAL ILLEGAL

CALL CALL2 (instructions have no more
than four characters or
numeric characters in the
field)

JTZ

SET

TP

THE EXPRESSION or OPERAND FIELD consists of any
number of strings, numbers or symbols with operators
between them. If a space or line end terminates a number
or a symbol, the expression is assumed to be ended. Num-
bers are assumed to be decimal (base 10) unless they have
one or more leading zeros, in which case they are taken to
be octal. That is, 123 is 123 decimal, whereas 0123 or
00123 (the octal number 123) is really 83 decimal.

String quantities are delimited (preceded and followed) by
apostrophies. In expressions, only the last character of a
string is used if more than one appears. If a string were to
be added to a number, only the last character of the string
would be added. The character value is the ASCI!I binary
number with the parity bit always a zero. A null string is
legal (' ") and results in a zero value. The forcing character,
#, is used in strings to indicate that the next character
should be taken as ASCII no matter what it is. This is useful
for getting the characters (*) and (#) themselves into the
string. For example:

"#' ##° is the character string ' #
There are three operators allowed in the expressions:

1. + This means addition

2. — This means subtraction

3. >8 This means shift right by 8. Use this to get the
MSP of an expression.

Expressions are evaluated from left to right and all opera-
tions are assumed to have the same priority.

The operand or expression is a symbolic expression which
is evaluated at assembly time and the value is used in
whatever manner is required by the opcode.

THE COMMENT FIELD begins immediately after the first
delimiter space after the operand. The comment field may
have any character including punctuation within it. It is
terminated by the end of the line which was written by the
editor. Comments may take over the entire line, in which
case that line must begin with a period.

ASSEMBLER DIRECTIVES are available for setting label
and location counter values to other than the normal
sequential location assignménts and for defining constants.
There are seven:

. EQU

. SET

. SK

. TP

. DC

. DA

. RP

EQUALS. Sets the value of the label on the
statement to the value of the operand ex-
pression.

SET. Changes the value of the location counter
to the value of the operand expression.

SKIP. Increments the value of the location
counter by the value of the operand expression.

TABULATE PAGE. Increments the value of
the location counter until it is a multiple of

256. This is useful for minimizing execution
time and for blocking out data areas address-
able by single precision.

DEFINE CONSTANT. Generates eight bit
object words from one or more expressions or
strings following the opcode. If the expression
is terminated by a space, the DC directive
returns control to the main assembly process
loop which obtains another instruction. If it
is terminated by a comma, another expression
or string is looked for. Another special excep-
tion is made for string items found in the DC
directive. All the characters of a string item are
significant and as many words as necessary are
generated to accomodate all the characters of
the given string. Again, a comma is looked for
after the closing apostrophe in a string item
to see if more expressions follow. This special
string item is in effect only if the expression
opened with an apostrophe. String items in
expressions still have only one character of
significance. For example:

DC 1,2+3,2+'A’,'ABC’

generates the following octal values:
1,5,103,101,102,103

DEFINE ADDRESS. Generates a two byte
constant which is the address, LSP first, of
the expression.

REPEAT. Will cause the following line to be

processed, the number of times, indicated by
the operand value. For example:

RP 5
LDA 0123

would produce the same code as:

LDA 0123
LDA 0123
LDA 0123
LDA 0123
LDA 0123

NOTE

Repeated statements which have a label on them
will result in multiple definition of that label and
all that entails, including the “’D’* error flags.

FORWARD referencing in the expression field
in assembler directives only is not permitted.

8. END END. Indicates that there is no more input
data to be processed and that the ASSEM-

BLER should complete generating the output.

The operand field has special significance in
the END statement. The value of the expres-
sion in the operand of the END statement is
the starting value of the execution of the
program. That is the starting address. This

is, of course, optional. When no operand is
specified, the results are indeterminate. It
should only be left vacant when the program
is to be loaded without direct transfer of
execution to the program such as an overlay.

Compound instructions are instructions which directly result
in the assembly producing a sequence of source code. In this
case, the 2200 ASSEMBLER has two: The HL instruction
and the DE instruction:

1. HL The HL compound instruction generates the
LABEL load H-REGISTER and load L-REGISTER
instruction necessary to place the address of
the label LABEL in the H-REGISTER and
L-REGISTER properly so that the load to

and from memory will operate to that address.

In doing the HL, it loads the most significant
byte of the value of LABEL into the H-
REGISTER and the least into L.

2. DE The same as with HL except loads into the
LABEL D and E registers.

THE ERROR FLAGS produced by the 2200 ASSEMBLER
are as follows:

The error flags can occur during either pass of the ASSEM-
BLER in response to bad statements.

They are:

1. D The D flag means DIFFERENT DEFINITION.

It is flagged if the label has been redefined to

a different value during the assembly. In that
case, it has the second value.

2.1 The | flag means INSTRUCTION MNEMONIC
UNKNOWN. The instruction was not an accept-
ed instruction in which case a zero is inserted
for this instruction.

3. E The E flag means that an error has occurred in
an expression or some unrecognizable character
appeared in the wrong place. In this case a zero
is substituted for the expression or in whatever
was unrecognizable.

4. U The U flag means UNDEFINED LABEL. It is
used whenever a label is referenced and is not
defined. This can occur in pass 1 when an
assembly directive is operating on an expression
containing a forward reference.

EXTERNAL COMMANDS & REFERENCES can be taken
care of in two ways:

1. Directly produce the numeric value in the expression field
corresponding to the reference external address (such as
an operating system subroutine resident in memory) or the
external command operand such as EX 1 instead of writing
EX ADR.

2. Equating labels to these referenced locations using the
EQU assembler directive and then referencing the labels,
This can be done for external references to operating
system subroutines by duplicating the operating system
subroutine entry point label in your program and equating
it to that address. i.e. instead of:

CALL 017000
to get the operating system keyboard string input routine,
a more meaningful listing can be obtained if, at the be-
ginning of the program, this was entered:

KEYIN$ EQU 017000
and then all references to this routine can be this way:

CALL KEYIN$

The same is true of the external commands used in the
2200. Rather than say:

EX1
it is more meaningful to say:

EX ADR

Since it is an external command address that is desired.

A list of the external commands and the operands which the
ASSEMBLER incorporates into the proper EX coding are
below.

The ASSEMBLER treats external command labels differently
to produce the octal command byte. For the commands, the
operands are as follows:

ADR 1
STATUS 2
DATA 3
WRITE 4
COoM1 5
COM2 6
CcCoM3 7
coM4 8
UNUSED 9
UNUSED 10
UNUSED 1
UNUSED 12
BEEP 13
CLICK 14
DECK 1 15
DECK 2 16
RBK 17
WBK 18
UNUSED 19
BSP 20
SF 21
SB 22
REWIND 23
TSTOP 24

It is recommended that for those external commands used,
the EQU to the table number is done at the start of the
source program and then the external command references
are done to the label.

Operating The Assembler

The A_SSEMBLER must have a symbolic source tape generated
by the 2200 editor.

Place this tape in the front tape deck.

Run the ASSEMBLER.

It will ask for printer speed. For the Datapoint 3300P, state
300. For a model 33 or 35 Teletype, state 110. For a model
37 Teletype, state 150. For no printer or no listing desired,
state 0.

The source deck will rewind and begin to read in.

At the end of the first pass the ASSEMBLER asks if the
second pass should proceed. It only requires a YES or NO.

This is a convenience, since many times many errors will be
uncovered by the ASSEMBLER already after the first pass
and the user will desire to correct those errors before pro-
ceeding to the second pass and the listing.

If the second pass begins, the tape will rewind and begin
accepting data again from the source tape, printing the
listing and writing the object file on the scratch .area of the
rear tape.

When the tape has reached the end of the source the second
time, assembly is complete and it only needs to copy the
object code block on the rear tape to the area on the front
tape just after the source code. This results in the rear tape
being backspaced to the beginning of the block of code and
then copying procéeding forward reading a block from the
rear deck and writing it on the front deck.

At the end of ASSEMBLY, the operating system will be
reloaded and come up running.

The front tape can be loaded into the machine to test using
the operating system command RUN™, inputted into
operating system catalog or loaded using the Debug program
by using the F command.

SECTION 5

DATAPOINT 2200

ADVANCED OPERATING SYSTEM COMMAND and SUBROUTINE USAGE

SECTION b

1. INTRODUCTION

The primary function of CTOS is to provide the user with
an easily accessible data environment which will greatly
facilitate program generation. This function is fulfilled
through the use of a file handling system which is available
both directly from the keyboard in the form of system
commands and through program calls to file handling input/
output subroutines. Note that the keyboard facility deals
mainly with the system (rear) tape (using the data (front)
tape mainly for input/output and scratch space) but that
the program routines are generalized to allow use of either
tape.

1.1 KEYBOARD FACILITIES

The keyboard accessible facility allows the user to fetch and
execute object files, which may be either system packages,

such as the editor and assembler, or files the user has generat-

ed with either the assembler or other code generating pro-
grams. This facility also allows the user to create new files,
alter or delete old ones, or perform certain utility functions.
The system tracks the files on the system tape in a symbolic
catalog which may be manipulated by the operator at the
keyboard or used in program linking.

1.2 PROGRAM FACILITIES

The program routines perform basic operations such as
reading and writing records with all parity checking and
generation handled for the user. Other operations such as
positioning to the beginning or end of a file, backspacing
over records, or rewinding the tape are also provided.
Parameterization is handled in a generalized way to make
subroutine usage easy and consistent.

1.3 PHYSICAL LAYOUT

The memory layout of the operating system is shown be-
low. The OS FILE HANDLER is the program accessible
facility mentioned above while the OS COMMAND HAND-
LER is the keyboard accessable facility. Note that only
017400 and up need be in memory if only the symbol
linker (which calls in an overlay by name so that its physical
file number may be changed without having to rewrite the
program calling in the overlay) is to be used, only 016200
and up need be in memory if only the debugging tool is to
be used, and only 014000 and up need to be in memory

if the keyboard facilities are not to be used (of course,
0-0777 is always reserved by the system). Also note that
the user may load a program designed to fit into a 2K
machine without overlaying any part of the full operating
system.

5-1

CTOS MEMORY USAGE MAP:

017777
SYMBOLIC LINKER
017600
CATALOG
017400
KEYBOARD DISPLAY
017000
DEBUG
016200
016200
OS FILE HANDLER
014000
OS BOOTBLOCK COPY
013000
OS COMMAND HANDLER
05000
2K UNUSED
01000
LOADER
0

2. THE LOADER

The loader is the heart of CTOS. It enables other programs

to load files from the tapes into memory without the tape
having to be at the beginning of the desired file and provides
extensive error protection. It is the routine used by the
bootstrap mechanism (indeed, it is part of the bootblock) to
load the initial program and is also the routine used in over-
lay and linkup operations both by CTOS and utility packages.

2.1 BOOTSTRAP ACTIONS

When a restart occurs, the rear deck is rewound and the first
block on the tape (called the bootblock) is loaded into
memory starting at location zero. The first 512 bytes of
memory (0 to 0777 octal) have been reserved for a per-
manently resident program which is loaded from the boot-
block. The first 40 bytes of this block constitute a program
which runs a parity check on the rest of the block that
should have been loaded. The processor is halted (note
auto-restart implications if the auto-restart tab on the cassette

is punched out) if this routine finds a fault in the check.
Otherwise, zeros are stored in the memory locations used
in the parity check routine. This will cause a halt if an
early data drop-out from the tape machine occurs during
the next bootstrap load (typically only one or two bytes
get loaded in this failure mode). After the low memory has
been cleared, a routine calls the loader, which has been
loaded in the bootstrapping operation, asking for file zero
to be loaded from the rear deck. If file zero cannot be
loaded for some reason, the program halts the processor
without a whimper (no bells or whistles in any of the boot-
strap operation), otherwise, it jJumps to the starting address
supplied with file zero. Note that if the auto-restart tab is
punched out of the rear cassette, any failure along the road
of bootstrapping will cause the whole process to be tried
again.

2.2 FILE ORGANIZATION

Once file zero has been loaded from the system tape, the
bootstrap program (locations O through 074) is never used
again until the next restart operation which will overlay it.
The loader, however, will be used many times. The physi-
cal layout of information on the system tape is as follows:

BOOTBLOCK/FILEO/FILE1/.. ./FILE15/FILE32/FILE127

File O is the one executed by the bootstrap and is typically
followed by a sequential {required to be sequential by the
loader) set of minimally increasing (file numbers go up by
only one at a time) files up to 15 (a CTOS catalog size
limitation, although the loader will load a file with any
positive number), followed by a file 32, which is a system
scratch file, followed by a file 127 (largest positive eight
bit number), which is a dummy to mark the logical end

of the tape.

2.3 FILE LAYOUT AND RECORD FORMAT

Each file is a group of records starting with a very special
four byte record. Every record used by CTOS starts with
two special bytes to indicate that it is one of three types:
file marker, numeric data, or symbolic data. The file
marker, which is the special four-byte record at the be-
ginning of a file, contains two additional bytes that denote
the file number. The use of two bytes for both the record
type and file number provides redundancy for error control,
since the second byte is simply the one’s complement of the
first. The record types are denoted by 0201 for file marker,
0303 for numeric data, and 0347 for symbolic data. The
following table summarizes all of the various data formats
used by the system. XP and CP denote the two longitudinal
parity checks and will be described later. FN denotes the
file number and —FN its one’s complement.

5-2

FILE MARKER RECORD: 0201 /0176 /FN / —FN

NUMERIC DATA RECORD: 0303/074 / XP/CP/
DATA

SYMBOLIC DATA RECORD: 0347 /030 / XP/CP/
DATA (with VRC)

FILE: FILE MARKER / DATA RECORD/ DATA
RECORD /... '

SYSTEM TAPE: BOOTBLOCK / FILEO/ FILE 1/
.../ FILE15/FILE 32/ FILE 127

DATA TAPE: FILEO/FILE1/.../FILE 127

2.4 LOADER ACTION

When the loader is told to load a given file, it begins searchihg»

- the tape (the loader can load files from either deck, depend-

ing upon which entry point is used) forward until it finds a
file marker record. Note that all records passed over must have
a valid type number pair or an error recovery procedure will
be initiated which will try up to three times to read the record
correctly and then make an error exit if failure occurred all
three times. Upon finding a file marker, the loader determines, .
from the number in that marker, whether the tape is posi-
tioned to the correct place (the number is equal to that re-
quested), is not positioned far enough forward (the number
is greater than that requested). If the tape is positioned to
the correct place, the loader proceeds to load all of the
numeric records it finds, obtaining the memory address of
where it is to put the data from the beginning of each record,
(symbolic records are ignored) until it runs across another
file marker. At this point it stops the tape (which was in slew
forward mode) and backs up over the file marker so a
succeeding call on the loader would cause a file marker to be
found immediately. If there were no numeric records in the
file, an error return is made. If the tape is not positioned

far enough forward, the loader searches forward for the next
file marker. If the tape is positioned too far forward, the
loader enters a reverse search mode. If, in this mode, the
loader finds a file marker that indicates that the tape is now
positioned to the correct place, tape motion is reversed and
the file is loaded as in the forward search case. If it finds

a file marker which indicates that the tape is not positioned
backward far enough, the loader continues searching in the
reverse mode for the next file. If, however, a file marker is
found that indicates that the tape has been positioned too
far backward, the loader decides that the file is not on the
tape and makes an error return. Error returns are also made
if a record can not be read without a parity failure or type
indicator discrepancy (the two characters are either not the
one’s complement of each other or are not one of the three
special numbers) occurring in all three trials or if loading

the record would overstore the loader. In all of these cases,
the carry condition will be true (a satisfactory load always
rendering the carry condition false) and the tape will be
positioned after any offending record.

2.5 PARITY CHECKING

The third and fourth bytes of every data record contain
longitudinal parity checks. These bytes are set up by the
record generation program such that the following exclusive
OR sums will yield zeros: the first byte with all the data
characters (data characters start with the fifth byte of the
record and proceed to the end) and the second byte with
the same characters except the sum is shifted right circularly
one place after each exclusive OR. In the case of symbolic
records, the additional condition of the vertical parity of
each character being odd must also be met. One thing not
mentioned in the discussion of the loader was that the

first four data characters (fifth through eighth bytes in the
record) are not really data but are the MSP and LSP of the
starting memory address followed by the one’s complement
of the MSP and LSP of the starting memory address of where
the data is to be loaded.

3. THE CATALOG, SYMBOLIC LOADER,
BASIC I/0, AND DEBUG

As mentioned above, the operating system maintains a catalog
of names which correspond to the files on the system tape.
This catalog may be used in manipulating the files from the
keyboard or in symbolically calling in overlays using the
symbolic loader from a user program.

3.1 CATALOG CHARACTERISTICS

Each name in the catalog must start with a letter and may
additionally contain from one to five alpha-numeric
characters. There is room in the catalog for up to fourteen
names so there is a limit of fourteen cataloged files on one
system tape. The symbolic loader contains routines which
will look up a given name up in the catalog and load the
corresponding file. This same lookup routine is used by
the command handler and is labeled LOOKUP.

3.2 UTILITY ROUTINES IN THE SYMBOLIC
LOADER

Other utility routines in the symbolic loader area are a
block transfer, labeled BLKTFR, and a routine, labeled
INCSWP, which increments the H and L register pair and
then swaps it with the D and E register pair. The block
transfer will move the number of characters specified by
the entry value in the C register from a memory address
starting with the entry values in the H and L registers to a
memory address starting with the entry values in the D
and E registers.

3.3 LOADING ROUTINES
To use the symbolic loading routine, one loads into the D

and E registers the address of the six characters of the de-
sired name (trailing blanks must be included) and calls

5-3

MLOADS. If the zero condition is false upon return, then
the given name was not in the catalog. If the zero condition
is true but the carry condition is false upon return the loader
could not either find or correctly load the file requested.
Note that one must be certain to place the call to MLOAD$
in a place that will not be overlayed since execution will
resume following the CALL instruction after the file has
been loaded.

3.4 OTHER SYMBOLIC LOADER FACILITIES

Another facility in the symbolic loader area will load and
execute a file whose number (not name) is in the B register
upon call. Calling MAUTOS$ will load the file from the
system tape and calling MAUT2$ will load the file from

the data tape. If the loader could not either find or load the
file, the operating system is automatically reloaded.

3.5 KEYBOARD AND DISPLAY ROUTINES

The operating system contains facilities to ease the burden of
communicating with the operator. Two routines exist. The
first accepts the characters from the keyboard, displays them
on the screen, and stores them into a memory buffer. The
second writes a string of characters from a memory buffer
onto the screen.

3.5.1 KEYBOARD INPUT

The keyboard input routine, labeled KEYINS, accepts a
specified maximum number of characters, given by the entry
value of the C register, from the keyboard and puts them
into memory starting at the entry value of the H and L
registers and onto the screen at a starting horizontal cursor
position of the entry value of the D register and vertical
cursor position {(which cannot be changed during the course
of one input) of the entry value of the E register. Note that
if the cursor collides with the right edge of the screen during
entry, characters other than backspace, cancel, and ENTER
will not be accepted, although they will print over each other
in the last display position. The ENTER character (015)
terminates input and is stored in the memory buffer to
specify the end of data but is not written to the screen.
Hitting the backspace key will delete the last character enter-
ed and move the cursor appropriately while hitting the
delete key will delete all characters entered and also move
the cursor appropriately. These two keys also back up the
buffer memory pointer appropriately. Note that if one has
typed a character at either the screen limit or at the maxi-
mum character count limit, hitting a backspace will cause the
previous character to be erased and leave the last character
still on the screen, although it will either not appear on the
memory buffer or be after the 015.

3.56.2 DISPLAY OUTPUT

The display routine, labeled DSPLYS, will display the string
of characters stored in memory starting at the address which
is the entry value of the H and L registers and terminating
with a character whose numerical value is either a 3 (ETX)
or 015 (ENTER). The cursor starts at the entry values in
the D (horizontal) and E (vertical) registers (a cursor posi-
tion that is off the screen will not be sent to the CRT) and
stops after the last character printed if the terminating
character was a 3 or at the beginning of the following line

if the terminating character was an 015. Note that, as in
KEYINS$, the cursor stops at the right edge of the screen
and the characters overwrite each other if more are available
after collision. Also note that if display was occurring on
the bottom line and the terminating character is an 015,
then the whole screen is rolled up to force the existence

of a following line and the information that was at the top
of the screen is lost. After return from the display routine,
the H and L registers will point to the location after the
terminating character and the D and E registers will reflect
the current cursor position. The cursor will be off while

the display routine is writing, but it is turned back on upon
exit even if it was off upon entry. Other special control
characters can cause cursor positioning, line/frame erasure,
and screen roll-up:

011 - a new horizontal position (0 to 79) follows
013 - a new vertical position (0 to 11) follows
021 - erase to the end of the frame

022 - erase to the end of the line

023 - roll the screen up one line

3.6 THE DEBUGGING TOOL

The debugging program allows the user to observe and modi-

fy any location in memory, to load files from either the
system or data tapes, and to start execution at any place in
memory. This allows him to load and debug programs with
surprising ease. The major debugging technique is to insert
RETURN instructions in critical places in memory so one
routine at a time may be checked using the CALL com-
mand. All but two (user specifiable) of the registers may
be saved upon return from the program being tested,
allowing the user to determine if the proper actions are
taking place by observing critical register and memory
values. The registers A, B, C, D, E (subject to the Hand L
commands in Section 3.6.3) are stored in locations 16770,
16771, 16772, 16773 and 16774 respectively upon a re-
turn to Debug from a program which was called from
Debug.

3.6.1 INPUT SYNTAX AND ERROR ACTION
The debugging program is entered from the command hand-

ler as explained in a later section or by processor execution
control being passed to the location labeled DEBUGS. At

5-4

this time the bottom line of the display will be erased and
the current location and its contents will be displayed there.
The program is now ready to accept input in the format

<number><command>. The number is assumed to be

octal and the absence of any digits between zero and seven
implies a value of zero for the number. Only sixteen bits of
significance are kept for the input value. If more are entered,
the first digits entered are lost. Some commands use only
the lower order eight bits. The number is terminated by the
first character that is not between zero and seven and this
character is taken to be the command. Note that leading
spaces are not permitted. This line is read in using the
KEYINS$ routine previously discussed, thus enabling the use
of the backspace and cancel keys but requiring the ENTER
key to be struck to obtain a response. In one case the
ENTER character is the command and in some others the
number is disregarded. If the command is not recognized,
the program simply ignores it and the old current address
and its contents are displayed again. After every command,
control is returned to the entry point of the debugging
program which will display the now current address and

its contents.

3.6.2 THE CURRENT ADDRESS

Two memory locations in the debug contain an address
(initialized to zero upon loading) which points to a memory
location which is the current center of interest. Available
commands allow one to change the contents of this memory
location and move the pointer as well as perform other
functions.

3.6.3 COMMAND MEANINGS

The following is a list of each command character with its
effect and the number (in parenthesis) of bits of the given
number used:

ENTER - set the current address to the number given (16)

| - increment the current address by one (0)

D - decrement the current address by one (0)

M - change the current address contents to the number
given (8)

.- do the M followed by the | command (8)

L - upon return from a C command, cause the L regis-
ter to be stored into the register whose number is
given (3)

H - same as the L command but for the H register (3)

G - load from the system tape the file whose number
is given (8)

F - load file one from the data tape (0)

0 - return to the operating system command handler (be
sure it is there) (0)

C - execute a CALL instruction to the location whose
number is given (16)

4. KEYBOARD FACILITIES (OS COMMAND
HANDLER)

The operating system contains a program which will inter-
pret user commands given at the keyboard and perform the
tasks indicated. These tasks mainly involve copying new
files from the data tape onto the system tape, copying files
from the system tape onto the data tape, deleting and up-
dating files on the system tape, and executing programs
kept in these files, as well as several other functions.

4.1 SYNTAX RULES AND ENTRY ERROR
ACTIONS

The command input format is purposely made quite strict
to reduce the chance of causing unwanted action which
could be catastrophic to the user’s data. The command must
start with the first character entered (leading spaces are
illegal) and any alphabetic after the third character is
ignored (thus DEBACLE will be interpreted as the DEB
command just as well as DEBUG). The first non-alphabetic
character must be either an ENTER, a space, or a dash
(minus sign). Some commands will not allow the ENTER
but typing a non-alphabetic other than these three will
always net you an error message of WHAT?. This will also
appear if a command that has legal syntax but is not one of
those defined is entered. If the command is to be para-
meterized, the first name must follow the dash or space
immediately and must be terminated with an ENTER if
that is the only parameter. The name must start with an
alphabetic but may contain any number of alpha-numeric
characters even though all after the six will be ignored. If
the command has two parameters, the first must be
terminated by an ENTER. If a name is terminated by
characters other than those specified, the error message
BAD NAME will be displayed. If a name is not supplied but
the command requires one, the error message NAME RE-
QUIRED will be displayed. If the name given is required

to be in the file catalog but is not, the error message NO
SUCH NAME will be displayed. If the inverse is true, the
error message NAME IN USE will be displayed.

4.2 OPERATING SYSTEM COMMAND IN-
STRUCTIONS

The following paragraphs describe the usage and effect of
each command in the system. Each paragraph is titled by
what must be entered to use the corresponding routine.
Note that, for clarity, more than just the necessary three
characters have been shown.

4.2.1 CATALOG

The CATALOG command lists the names of all files that
are currently on the system tape. They are listed across the
screen in the physical order in which the files appear on the
tape. Any parameters supplied are ignored.

55

4.2.2 NAME (old), (new)

The NAME command will change the name of the file
specified by the first name given to the second name given.
This command requires that the first and not the second
name be in the catalog. The catalog file on the system tape
(a one record file (number one) that immediately follows
the operating system file) will be overwritten with the new
catalog. Note that this leaves the system tape positioned
before the file marker of any existing first cataloged file.
This operation is performed by all commands that change
the catalog.

4.2.3 RUN (name)

The RUN command uses the loader to load the file specified
by the name given and then transfers processor control to the
starting address indicated to the loader by the file informa-
tion. Note that it is the responsibility of the loaded program
to return to or reload the operating system if this is desired.
There is a special case to the RUN command that breaks the
general syntax rules. If the name consists of exactly one
asterisk terminated by an ENTER (RUN-¥), the loader will
be directed to load physical file 1 from the data tape. This
provision is made to allow the user to run a program he has
generated without having to load it onto the system tape.
This, along with the F command in the debugging tool,
eliminates a lot of tape movement when debugging programs.

4.2.4 IN (name)

Note that exactly the characters shown must be typed to
execute this command since the space which must be the
third command character will also terminate the command.
This command will position the system tape after the last
cataloged file and the data tape to the beginning of physical
file 1. (The data tape convention is that physical file 0 will
be the first piece of information on the tape, containing the
users symbolic data for a given program, and that physical
file 1 will be the second piece of information on the tape and
will contain the users object data for a given program, and
all tape after this is to be considered a scratch area which is
properly terminated by physical file 127 to indicate the
logical end of the tape.) The command then copies all
records in the file from the data tape onto the system tape
creating a file on the system tape (a file marker being written
before the data was copied) which has the next available
physical file number. Following this new file, file markers
32 and 127 are written on the system tape to indicate the
new start of system scratch and logical end of tape. If the
system tape contained no cataloged files before this com-
mand was issued, the file entered will be physical file 2 and
immediately follow the catalog file. After the new file has
been wriftten, the new name is entered into the catalog and
the catalog file is updated as in the NAME command. Note
that if the catalog was full when the command was entered,
the error message LIBRARY FULL will be displayed and no

other action will occur. The name supplied must not al-
ready be in the catalog.

4.2.5 OUT (name)

The OUT command first executes the PREPARE command
to provide itself with a null data tape which can be handled
by the file handling routines. It then positions the system
tape to the beginning of the given file (the name must have
been in the catalog) and the data tape to the beginning of
physical file one and copies all the records.in the file on the
system tape onto the data tape. It then places a file marker
127 on the data tape and quits. Note that the catalog file

is not updated for this command. This command is pro-
vided to allow moving a file from one system tape to
another through the associated use of the IN command.

There are two special cases to the OUT command that break
the general syntax rules. If the name consists of exactly one
dollar sign terminated by an ENTER (OUT-$) then an
exact copy is made of the system tape up to file marker 32
at which time the copy is terminated by file markers 32
and 127 (which causes any scratch data on the old system
tape to be removed). If the name is exactly one asterisk
terminated by an ENTER (OUT-¥), the action is similar to
the previous case except physical files 0 and 1 (namely, the
operating system) are deleted and the file numbers of all
following data files (not file 32 or 127) are lowered by two.
Note that if this tape is now bootstrap loaded, the first
program loaded will be what was the first file cataloged in
the operating system. This is most useful in preparing
bootstrap tapes that will be used in machines with less than
8K of memory.

4.2.6 DELETE (name)

The DELETE command takes two different courses of
action depending on whether or not the file deleted is the
last one cataloged. If it is, the system tape is moved to the
end of the next to the last cataloged file and file markers

32 and 127 are written, thus logically destroying the last
file. The name is then deleted from the catalog and the
catalog file is updated. If the file is not the last one cataloged,
the PREPARE command is called to obtain a fresh data tape,
as in the OUT command, and the system tape is positioned
to the end of the named file. The rest of the system tape (up
to the file 32 marker) is then copied onto the data tape and
the data tape is terminated with a file marker 127. Note
that the data tape file numbers start out at one and increase
by one for each succeeding file copied onto the data tape.
These numbers are not used since all the copy back part
needs to know is file delimitation since it is getting its file
number information from catalog positions. The copying
onto the data tape is followed by the system tape being
positioned to the end of the file before the one named and
the data tape being positioned to the beginning of file one.
A file marker having a value one greater than the previous

5-6

marker is then written on the system tape and then the data
tape is copied back onto the system tape with every file
marker encountered on the data tape causing a file marker
of value one greater than the previous marker to be written
on the system tape. This process terminates when a file
marker 127 is encountered on the data tape which causes
file markers 32 and 127 to be written on the system tape.
The given name is deleted from the catalog, all following
entries are dropped down one place to correspond to the
similar shift in file numbers that took place, and the catalog
file is updated.

4.2.7 REPLACE (name)

The REPLACE command is quite similar to the DELETE
command except that instead of preparing the data tape
with the PREPARE command, it positions it to the end of
file 1 and then writes a file marker 2. Now, copying all

the files after the named one onto the data tape in a
fashion similar to the DELETE command and copying the
data tape back onto the system tape in exactly the same
fashion as in the DELETE command will replace the named
file by file 1 on the data tape, with any necessary physical
expansion or contraction taking place. Even though the
catalog is not changed in this operation, it is updated any-
way since this is an easy way to position the system tape
to a place before file marker 127. Without this, a succeeding
call on the loader would run into trouble since the system
tape would be left positioned after file marker 127 and the
loader always starts by searching a tape forward which in
this case would be off the logical end of the tape. The
loader starts with a forward search because the very first
time it is used, the tape is positioned just after the boot-
block and a backward search for a file marker would

cause trouble. The operating system routine which searches
for files can start with a reverse search to avoid the pro-
blem since the tape will never be resting before file zero.

4.2.8 AUTO or AUTO (name)

There is a word in the catalog which contains the physical
file number of a file which should be loaded and executed
immediately upon loading and execution of the operating
system. This enables a user program to be run after restart
without interaction with the operation system being re-
quired. If this word is a zero or the keyboard switch is
being depressed upon initial execution of the operating
system, the normal entry is made into the operating sys-
tem and the start up message and response request are
displayed.

If the AUTO command is given with no name and the auto
pointer is zero then the error message NAME REQUIRED
will be displayed. Otherwise the name of the file being
pointed to will be displayed in the message AUTO SET TO
(name). If the auto command is given with a name (which
must be in the catalog) and the auto pointer is a zero, the

pointer will be changed to the corresponding file number
and the catalog (which contains the pointer) will be up-
dated. |f the auto pointer is non-zero, the name is ignored
and the AUTO SET TO (name) will be displayed as in the
no-name case.

4.2.9 MANUAL

The MANUAL command will zero the auto pointer and up-
date the catalog if the auto pointer was non-zero. Other-
wise, the message AUTO NOT SET will be displayed.

4.2.10 PREPARE

The PREPARE command first asks the operator if the data
tape contains anything of value and then halts. (Note that
the auto-restart tab should not be broken out of the
operating system tape because it will prevent use of the
OUT, DELETE, or PREPARE commands since halting the
processor will cause an auto-restart.) After the operator
hits the RUN button as a response, it is assumed that the
data tape is of no value as it is rewound and file markers
0, 1, and 127 are written on it. This is needed since the
operating system routines require file markers for which
they can search in using the data tape.

4.2.11 HEX (name)

The HEX command is similar to the IN command except
that the data tape is formatted in symbolic records with
no parity checking. This is useful in loading onto the sys-
tem tape data produced by sources other than the 2200.
There are four types of records accepted. The type is
determined by the second character (the first must always
be an 012 (LF)): asterisk means ignore the record; pound
sign denotes the logical end of the tape; plus sign means
the following four hexadecimal characters are a new
starting address (these must be terminated by an 023
(XOFF)); and a hexadecimal character denotes a data
record. All other cases are assumed to be data read errors.
A data record must always contain an even number of only
hexadecimal (0 through 9 and A through F) characters
terminated by either an 023 or a plus sign. The characters
are paired up to form successive bytes of eight bit data.

If the terminating character is an 023 then the block of
data bytes is written out in loader format and the starting
address is incremented by the number of data bytes. If the
terminating character is a plus sign then the data remains
in the buffer and the following record will be appended to
it. This allows blocks of larger than 36 bytes (128 is the
upper limit) to be written when the device which writes the
tape is limited to lines of 72 characters. Note that there is
no buffer overflow protection and it is the responsibility
of the program generating the symbolic data to keep the
total number of continued bytes to 128 or less (128
hexadecimal character pairs). Also note that if a continu-
ation line is followed by a new address line, the data

will remain in the buffer but the starting address will
change. This combination will cause incorrect results

5-7

since even if the buffer did not overflow will also over-
write critical pointers which will cause the operating sys-
tem to produce an error message (because it will be called
with incorrect parameters when the critical pointers are
overwritten) and be reloaded. If a read error is detected,
the data tape is backspaced one record and read again.

This will go on until the data appears correctly or the
keyboard switch is depressed. Depression of the keyboard
switch causes the same action as reading from the data tape
a record starting with a pound sign.

4.2.12 DEBUG

The DEBUG command causes the debugging tool described
earilier to be entered.

4.3 SYMBOLIC OPERATING SYSTEM AND EX-
TENDED COMMAND INSTRUCTIONS

The overlay program SOSX is available to extend the operat-
ing system command set. The following paragraphs describe
the usage and effect of each new command. Each paragraph
is titled by what must be entered to use the corresponding
routine. Not that, for clarity, more than just the necessary
three characters have been shown.

4.3.1 CHOP (name)

The CHOP command deletes the named file and all subsequent
files.

4.3.2 INSERT (new, (old)

The INSERT command proceeds like a REPLACE command
except it includes the old named file as one of the files
written after file 1 on the front deck. When the front deck

is copied back onto the CTOS tape a new object file has been
inserted.

4.3.3 APPEND (name)

The APPEND command appends the object file from deck 2
onto the end of the named file on the CTOS tape. Like the
DELETE command, it has two possible courses of action,
depending on whether or not the file being appended is the
last cataloged file. If it is, the tape is positioned to the end of
the cataloged file and a new obiject file is copied from the
front deck. New file 32 and 127 markers are written. If the
named file is not the last cataloged file, the operation pro-
ceeds like REPLACE except that the CTOS tape is positioned
to the end of the named file before the copy is performed.

4.3.4 LGO (name [, name, name...])
The LGO command makes a tape with a loader and the named

file(s) in the sequence named in the command. The files will
have sequential file markers starting with 0. There is a limitation

of 23 characters on the command length, thus to name many
files in the LGO command it may be necessary to temporar-

ily rename the files with one character labels. LGO ™ is not

permitted. OUT * has the desired effect of generating a load

and go tape of all cataloged files.

4.35 SYMBOLIC (name)

The SYMBOLIC command adds a compressed source file
(file #0) to the CTOS tape (in a fashion similar to IN). The
name in the internal catalog will have an 'S’ in the seventh
(not displayed) position to identify the file as symbolic.

4.3.6 SREPLACE (name)

The SREPLACE, symbolic replace, command is performed
exactly as the REPLACE except the compressed source file
(file #0) is used instead of the object file. File 1 may be
overwritten.

4.3.7 SINSERT (new), (old)

The SINSERT, symbolic insert, command is performed
exactly as the INSERT except the compressed source file
is inserted instead of the object file. File 1 will be over-
written.

4.3.8 ATTACH (name [, name, name...])

The ATTACH command positions the front deck to the
end of file 0 and (without file markers) copies specified
file(s) from the CTOS tape to the front deck. When all
specified files are copied, the question ‘END (LABEL

OR :)?’ will appear. A six character label may be entered.
If “:" is typed no end statement will be added. The
ATTACH * form of the command will attach, in cataloged
sequence, all symbolic files to file 0 on the front deck.

5. PROGRAM FACILITIES (OS FILE HAND-
LER)

The operating system contains a set of routines which will
perform all of the various input/output functions needed
to maintain the files of data on the tapes. These routines
are packed in the upper 2K of memory and are made avail-
able to the user if he wishes to handle his mass storage
problems in conformance with the conventions of the
operating system. All routines are uniformly parameter-
ized and are accessed through an entry point table (a group
of JUMP instructions to the actual routine locations) so
any updates to the operating system will not have any
effect upon the user’s code.

5.1 ROUTINE PARAMETERIZATION

Routine parameterization consists of a memory location in
the D (MSB) and E (LSB) registers of the first byte of a group
of four bytes (called a packet) which parameterizes the call

5-8

more explicitly. This method reduces the number of memory
locations required to perform a routine call since, in a

typical program, one needs only a few different packets but
will have many different calls. The parameterization of some
routines is not as extensive as that of others, but the same
packet can generally be used for the different calls when
they are affecting the same file.

5.1.1 LOGICAL FILE NUMBERS

The first byte in the packet is the logical file number and
must be between zero and seven or an internal error H will
occur upon calling any routine using this packet. This error
condition usually occurs when the user has either failed to
load the D and E registers at all or has loaded them with an
erroneous value before calling the routine. The second and
third bytes in the packet contain the LSB and MSB (respec-
tively) of the first location in memory to be used as a data
buffer. Actually, the two bytes previous to this location
will be used by some of the routines as discussed later. This
data buffer may be located anywhere in memory. The
fourth byte in the packet specifies the length of the data
buffer when numeric data is being handled. Note that

using only one byte for the length implies that numeric
records may not contain more than 256 data bytes.
Actually, the maximum number of data bytes specified may
not be greater than 254 for reasons that are made clear in
the numeric routine instructions. The four bytes of the
packet may be located anywhere in memory.

5.1.2 PHYSICAL DEVICE AND FILE
NUMBERS

The logical file number specified in the packet is converted
by each routine, via an internal transformation table, into
physical file and device numbers. The physical device num-
ber specifies whether the operation is to be performed on
deck on (rear) or deck two (front) and the physical file num-
ber specifies which file is to be treated on the given deck.
Actually, not all routines use all of this information since,
for instance, when one is reading records from a file he
assumes that he is using the file to which the tape was last
positioned. The internal transformation table is initialized
at load time to the following values:

LOGICAL PHYSICAL PHYSICAL GENERAL
FILE FILE DEVICE USE
0 0 0 Unassigned
1 0 1 General deck one
2 0 2 General deck two
3 1 1 CTOS catalog
4 0 2 Symbolic data
5 1 2 Object data
6 0 0 Unassigned
7 32 1 System scratch

It is shown that logical files 1 and 2 are specified for use of
any physical file, even though 0 is shown in the table. This
can be done by use of a routine that will change the physi-
cal file number of a given logical file. A routine also exists
to allow the physical device number to be changed, thus
allowing the user to set up logical files in any physical con-
figuration needed. Note, however, that one must have
logical files 1 through 5 and 7 in the state shown (except
for the physical device numbers of logical files 1 and 2)

if one returns control to the operating system command
handler, since the loaded values are assumed by this pro-
gram. Logical files 0 and 6 may be used freely but must be
set before the first call utilizing them. The following is an
example of a packet usage as it would be expressed in the
assembler: (Note all calls to CTOS tape routines must, as
in the following example, be preceeded by a DE to the
forst byte of the packet. Note also that the packet con-
sists of 4 bytes: Logical file number, LSP of buffer, MSP
of buffer and length of buffer)

taken in the case of fatal errors, for which it is decided that
the only recourse is to reload the operating system. This is
called an internal error and the message INTERNAL
ERROR (letter) is written on the bottom line of the dis-
play before the system is reloaded. The various letters which
may appear are the following:

A - lllegal device specification -
B - lllegal record format

D - Unrecoverable parity error

G - Unfindable file

H - Illegal logical file specification

The other path is non-fatal and simply returns with certain
condition flags in states other than normal to indicate that
something unusual happened. Since every routine uses a
common subroutine (labeled GETPKT) to get the parameters
from the specified packet, common internal errors can occur.
If the logical file number is not between zero and seven, an

Set up logical file six to be used as physical file 3 on the
front deck

Position to the beginning of the file
Read a record of symbolic from it into BUFFER

Quit if to the next file marker

Action taken for each record

Action taken when file completely in

Room for parity check generation

LA 2
DE PACKET
CALL CPDN$
LA 3
DE PACKET
CALL CPFN$
DE PACKET
CALL PBOF$
LOOP DE PACKET
CALL SSFR$
JTC DONE
JFZ TERR Exit if type error
JMP LOOP
DONE
TERR
Type error action
PACKET DC 6 Logical file 6
DA BUFFER Buffer address
DC 0 Length (not used)
DC 0,0
BUFFER SKIP 128 Buffer area

5.2 ROUTINE USAGE INSTRUCTIONS

To use a routine, one sets up whatever is required for proper
parameterization and then calls the desired location in the
entry point table. The locations are labeled with the first
word in the following paragraph titles followed by a $. For
example, to call the serial numeric file read, one would say
CALL SNFRS$. The routine will either perform the requested
task or take one of two error exit paths. The first path is

5-9

internal error H occurs. If the physical device number is not
either a 1 or a 2, an internal error A occurs. Other than for
these error actions, the following paragraphs described the
effects of and the exact parameterization needed for each
routine.

5.2.1 SNFR - SERIAL NUMERIC FILE READ

This routine reads the next record from the specified device.

If the record is of type symbolic, the zero and carry conditions

are set false and return occurs with no parity checking or
data storage being performed. If the record is a file marker,
the carry condition is set true and the tape is backed up
to where it was before the routine was called. Again, re-
turn occurs with no data storage being performed. If the
type is numeric, the two parity bytes followed by the data
are read into the buffer. If the parity checking fails or

the record type is bad, three efforts are made at reading the
record by backing up to its beginning and starting over. If
recovery.is not made in one of these efforts, an internal
error D occurs. If the record is read successfully, return
occurs with the zero condition true, the carry condition
false, and the H and L registers containing the memory lo-
cation of the byte following the last one loaded from the
tape. To calculate the length of the buffer area used, one
must subtract the buffer starting address from returned
values in the H and L registers. Remember that the first
two characters in the buffer are not data characters but
are the two longitudinal check sums. To obtain the num-
ber of data characters loaded, one must subtract the
buffer starting address plus two from the returned values
in the H and L registers. The parity checks are stored
because the SBFW routine uses them instead of regenerat-
ing them from the data, thus shortening the time required
to copy numeric records from one deck to the other.

5.2.2 SSFR - SERIAL SYMBOLIC FILE READ

This routine reads the next record from the specified de-
vice. If the record is of type numeric or file marker, the
action taken will be the same as when SNFR reads a
symbolic or file marker record. Action similar to that
taken by SNFR is also taken if parity or type faults occur.
If the record is read satisfactorily, only data characters will
be in the buffer starting at the address specified. An 015
will mark the end of the data string and all vertical parity
bits will be zero. The same normal exit conditions as in
SNFR will occur.

5.2.3 SBFW - SERIAL BLOCK FILE WRITE

This routine writes a record of type numeric on the speci-
fied device. The total number of bytes, including the parity
initialization sums as the first two, must be in the fourth
byte of the packet. Note that inclusion of the parity initiali-
zation sums implies that the total number of actual data
bytes cannot exceed 254. This routine assumes that the
first two bytes in the buffer are the correct parity initiali-
zation sums since it does not generate them from the data.
There are no error exits from this routine which implies
that writing off the end of the tape will not be caught and
that read-after-write checking is not performed.

5.2.4 SNFW - SERIAL NUMERIC FILE WRITE

This routine performs in a fashion similar to the SBFW
routine except the two parity bytes are not included

5-10

in the data buffer and the length specifies the number of
actual data characters. The routine generates the two longi-
tudinal parity sum-initialization values and inserts them in
the two locations preceeding the buffer. It then writes on
the specified device a record of type numeric containing the
two parity bytes generated, followed by the number of data
bytes specified. Note that the length is adjusted to accomo-
date the two parity bvytes so, as in the SBFW routine, only
254 actual data bytes may be written. If one specifies a
length of 255 or 0, the only bytes (besides the record type)
written on the tape will be respectively the first or both
parity initialization sums. No error exits are made from this
routine.

5.2.56 SSFW - SERIAL SYMBOLIC FILE WRITE

This routine performs in a fashion similar to the SNFW
routine except that an 015 character in the data string

rather than a specified value is used to determine the buffer
length, vertical (in addition to longitudinal) parity generation
is performed, and a record of type symbolic rather than
numeric is written. The terminating 015 character is not
included in the set of characters written to the tape, but
remember that it will appear again if the SSFR routine is
used to read the record.

5.2.6 PEOF - POSITION TO END OF FILE

This routine searches forward on the specified device until it
finds a file marker. It then backspaces the tape until it is
between the next to the last and the last record in the file. It
then forward spaces the tape one record which puts it at the
end of the file, having arrived there via forward tape motion.
This forward arrival is important to observe when one plans
to append one record after another and still maintain physical
interrecord gap integrity. Note that every record passed over
by the PEOF routine must have a valid record type or it will
be read again in action similar to parity failure action in the
SNFR routine.

5.2.7 PBOF - POSITION TO BEGINNING OF FILE

This routine searches for a file marker in a fashion similar to
the loader except it starts by searching backwards. The file
number searched for is specified by the physical file number
supplied by the generalized parameterization. Note that since
this routine starts by searching backwards, it will not decide
that the requested file is not on the tape until it has found in
the search forward mode a file marker that specifies a file
number greater than the one desired, if indeed the file is not
on the tape. Also note that if the leader is found in the search
backward mode, the tape is positioned forward past the first
record and the backward search is continued. If the first
record is not a file marker (operating system convention re-
quires it to be) or is a file marker whose value is greater than
the one desired, the first record on the tape will be passed
over back and forth until external intervention is imposed.

Otherwise, all search rules and error exit conditions of the
loader routine apply here. |f, upon return, the carry condi-
tion is true, then the file was not found. Otherwise, the
tape will be positioned at the interrecord gap following the
file marker, having approached that point with forward
tape motion for the reasons expressed in the PEOF routine
instructions.

5.2.8 BSP - BACKSPACE

This routine simply backspaces the tape one record using
the hardware backspace function. No checking is made to
see if the record was of proper type or if the tape ran onto
the leader.

5.2.9 CPDN - CHANGE PHYSICAL DEVICE
NUMBER

This routine stores the entry value of the A register (note
the break from generalized parameterization) into the
physical device number entry for the specified logical file
in the internal transformation table.

5.2.10 CPFN - CHANGE PHYSICAL FILE
NUMBER

This routine stores the entry value of the A register (note
the break from generalized parameterization) into the
physical file number entry for the specified logical file

in the internal transformation table.

5-11

5.2.11 TRW - TAPE REWIND

This routine performs a hardware high speed rewind of only
the front deck. If the rear deck (physical device 1) is specified,
an internal error A will occur. Upon exit from this routine,
the tape will be positioned to the clear leader.

5.2.12 TFNR - TAPE FILE NUMBER READ

This routine acts in a fashion similar to PEOF until it finds the
file marker. At this point, it simply reads the value of that
marker and leaves the tape positioned after the marker record.
The value read is returned in the C register. Error exits similar
to the PEOF routine can occur.

5.2.13 TFNW - TAPE FILE NUMBER WRITE

This routine will write on the specified deck the special four
byte file marker record containing the physical file number
specified. No error exits will occur.

SECTION 6

DATAPOINT 2200

TRACE

SECTION 6

DATAPOINT 2200 TRACE PROGRAM
Introduction

TRACE is an interactive octal debugging aid for the Data-
point 2200. It operates under the Computer Terminal
Operating System (CTOS) and occupies memory space
between 56008 and 13777g. The normally resident operat-
ing system subroutines are not overlayed and are callable
by the program being traced.

TRACE accepts commands from the keyboard and displays
its results in the rightmost eight columns of the CRT dis-
play. It allows a user to trace the execution of a program,
to examine and change the contents of the registers and
memory.

Entering Commands

TRACE commands consist of up to two octal operands
followed by a single letter operation. If there are two
operands, a comma shall separate the two. An operand
may be a 13-bit address or an 8-bit byte value, either
expressed in octal. If the operand is an address, it may
be given in two parts, separated by a blank. The first
part consisting of the five most significant bits, and the
second part consisting of the remaining eight bits. An
address may also be given as a single octal number,

but it is displayed in two parts as described. Leading
zeros need not to be entered.

Examples:

TYPED VALUE DISPLAYED VALUE

FIRST SECOND
PART PART
101A - 101A
707J 01 307 J
0331, 1477W - 331,
{ 03 077 W

The command being entered is displayed on lines 10 and 11
of the CRT display, as shown in Figure 1. Line 10 shows the
first operand. Line 11 shows the second operand and opera-
tion. If there is only one operand, line 11 will be blank. If
there are no operands, line 11 shows only the operation and
line 10 will be blank. NOTE: In all ensuing examples, the

display format is used to exemplify the referenced operation.

If an illegal character is typed, the beep signal will sound
and the character will be ignore. The CANCEL key will
cause the command being entered to be discarded and
another command can be entered.

The ENTER key will cause the command just entered to be
executed. The command may be CANCELed at any time
before the ENTER key is depressed.

Command To Modify Registers Or Memory
A B C,DEH,L
The operations A, B, C, D, E, H or L take a single byte value

operand. The register specified by the operation is set to the
operand value.

Examples: 173B setsBto 173
00 1A sets A to001
375L setslL to 375
Operation F

The operation F takes a single address operand. The Zero,
Sign, and Parity flip-flops are set as if the lower 8 bits of the
address were the result in A of some arithmetic instruction.
The Carry flip-flop is set to the rightmost bit of the first
part of the address.

000 F sets Zero
resets Sign, Carry, and Parity

Examples:

01000 F sets Zero and Carry
resets Sign, and Parity

200 F sets Parity and Sign
resets Zero and Carry

Operation O

The operation O takes a single address operand. It opens the
specified location for possible modification. The contents of
the location are shown on line 12 of the CRT display. A
byte value can be entered followed by ;, <,or> followed
then by ENTER. The location is set to that value. If the
terminating character is ; , TRACE will accept another
command. If it is <, the previous location is now opened.

If it is >, the next location is opened. If the CANCEL key

is used, the currently open location remains open and any
modification for it is discarded. The modifying byte value

is shown as it is entered, following the contents of the open
location on the CRT display.

Examples:

01 1150 opens 01 115
< now opens 01 114
> reopens 01115
57, sets 01 115 to 057

00017 O opens 00 017

5> sets 0017 to 005,
opens 0020
20; sets 0020 to 20

Command To Displayed Memory
Operation M

The operation M takes two operands, both addresses. They
are the lower and upper bounds respectively of the region
of memory to be displayed. Sixteen bytes are displayed
across the entire width of the CRT display. The address

is given on one line followed by the memory contents on

a second line. The display continues being built and rolled
up unless the DISPLAY key is depressed. The display then
stops until the DISPLAY key is depressed again. The
KEYBOARD key terminates the memory display.

000, displays the first 256 bytes of
00377 M memory

Example:

Transfer Of Control Commands
Operation K

The operation K takes one address operand. It causes a
Call instruction to be performed to the address given as
the operand. Return is to TRACE.

02 000 K

Example: calls routine at 2 000

Operation J

The operation J optionally takes one address operand. If
the operand is absent, the content of the P register is used.
It causes a Jump instruction to be performed to the
address given as the operand or in P,

Examples: 03 101J jumps to 3 101
(octal 1501)

J jumps to address in P

Mode Setting Commands
Operation X

The operation X optionally takes two address operands.
They are the lower and upper bounds respectively of a
region in memory. Any Call instructions into this memory
region are actually executed rather than being simulated.
Since TRACE loses control at this point, it is imperative
that routines called in this region return. All registers are
properly set when the Call is performed. The contents of
H and L are lost on the Return. If the operation X is
given without operands, any region in effect is removed.

6-2

Example: 01000, setsthe special CALL region to
to 1000 to 3 377
03 377 X (octal 400 to 1777)
Operation W

The operation W optionally takes two address operands.
They are the lower and upper bounds respectively of a
region in memory. At the completion of any instruction
in this region, the registers contents are shown in the first
nine (9) lines of the CRT display as shown in Figure 1.
The contents of the Carry, Zero, Sign, and Parity flip-flops
are shown as the letters C, Z, S, and P respectively

on the right-hand side of the CRT display if set and blank
is reset. If the operation W is given without operands,

any region in effect is removed. If the regions for the X
operation and W operation overlap, the X operation takes
precedence.

Example: 12000, display the register contents after
12 377 W every instruction in 12 000 to
12 377 (octal 5000 to 5377)
Operation S

The operation S optionally takes one address operand. Be-
fore TRACE executes the instruction at the given address,
the register contents are shown as in a W operation region
and TRACE stops to accept commands. A J operation with
no operands will restart the program. If the S command is
given without an operand, any stop address in effect is
removed. If the stop address falls within an X operation
region, the X operation takes precedence.

70118 the program will stop before the in-
struction at 7 011 is executed

Example:

To stop a program when TRACE is in control, depress the
KEYBOARD and DISPLAY Keys at the same time. This
has the same effect as an S operation for the current pro-
gram address.

If a Halt instruction is executed by TRACE, the result is the
same, as if an S operation was set for the Halt otherwise
ignored.

Starting Trace

TRACE is loaded like any other program from the operating
system library (RUN TRACE). Once started, it will request
the name of the program desired to TRACE. The name of the
program must be typed, followed by ENTER. CANCEL will
cause TRACE to ask again. The named program will be
loaded .using the symbolic linker and loader in the operating
system, and TRACE will show the register contents as if the
program had been stopped at its entry point. P and | will be
the only registers with non-zero contents.

To TRACE a program already in memory, simply depress the
ENTER key without entering a program name, then jump to
the entry point of the traced program, using the J command.

To TRACE a program located on the front deck type * and
depress the ENTER key. The object file (file #1) from the
front tape will be loaded using the operating system loader,
and TRACE will show the register contents as if the program
had been stopped at its entry point. P and | will be the only
registers with non-zero contents.

Operational Summary

Display memory

Set special CALL region
Set register display region
Set stop address

A Set A to operand
B Set B to operand
C Set C to operand
D Set D to operand
E Set E to operand
H Set H to operand
L Set L to operand
F Set flip-flops from operands
(0] Open location

J Jump

K Call

M

X

w

S

6-3

9

M uocnesadQ | aunbi4

OOooOoooo

0 (110

E

Q00
200

1

g

A

SECTION 7

DATAPOINT 2200

ARITHMETIC SUBROUTINES

SECTION 7

7.1.1 INTRODUCTION

STATH is a subroutine package specifically designed to -
provide formatted keyboard input, screen display, checksum
and arithmetic operations on numeric strings. Each function
of STATH is obtained by calling the entry point associated
with that function.

Following is a list of the functions available through STATH.

The labels given to their entry points and the sections incor-
porating their usage parameters:

Entry Point Function

ADD$ Addition

COM$ Compare Magnitude

DIV$ Division

DSP$ Display on screen

KEY$ Keyboard formatted
Input

MOD10$ MOD 10 checksum
calculation

MOD11$ MOD 11 checksum
calculation

MOV$ Move string

MULS$ Multiply

SUB$ Subtract

7.1.1.1 INTRODUCTION TO STRINGS - NUMERIC
AND OTHERWISE

The purpose of a ‘string’ is to carry around a ‘package’ of
text. A string is an individual block of text and just like a
string it has a definite beginning and end. The composition
of the string is an uninterrupted sequence of ASCII charac-
ters. That is, between the beginning and end of the string
only ASCII characters are allowed. The ASCI!| character
may be any of the 95 plus space (blank) characters listed in
Section 1 of the Programmers’ Manual (2200 Reference
Manual).

The string is bounded at the beginning and end in different
ways. The end is determined by the first occurrence of the
ASCII "ETX’ whicn is equal to (003g) in the sequence of
characters called the string. The 003 tells STATH that the
string is ended. The CTOS will also accept a carriage return
character (015g) in place of the 003 but STATH only
accepts the 003.

The following are valid strings. The contents of the paren-
theses are intended to be the byte value of the ASCII
character for single character values or the octal value of
the octal triple such as 003.

(N) (O) (W) () (T) (1) (M)
(E) (003)

) (D (S) () (T) (H) (E) (

71

(0) (1) (2) (3) (4) (5) (B) (7) (8) (9) (0) (003)
Which are in octal:

116,117,127,040,111,123,040,124,110,105,040,124,111,
115,105,003 :

and
060,061,062,063,064,065,066,067,070,071,003

Although a string has an inherent end built into itself, the
003, there is no beginning. At least no beginning which
itself is part of the string of characters in memory. The
beginning is combined with the pointer to the string itself.
That is, a string is referred to by calling out a location

in memory. That location is the first character of the string.
In the above samples, for ‘now is the time’ to be referred to
beginning with the word ‘now’ the location of the letter ‘N’
would be specified. It is clear that specifying only the ‘N’
yields a complete description which is:

‘Begin with the character in the location specified and con-
tinue until a 003 is reached.’

Beginning with ‘N’ and continuing to the 003 gives: ‘Now
is the time’. If the location of the letter ‘W’ in now were
specified, the string string resulting would be ‘w is the time’.

Therefore, to specify a string to a routine (like STATH) which
is going to use the string, the user must only transfer the
address of the first character of the string or the character

in the string the user wants to begin the string (it may not

be the first) to the routine. Also, if the user created the

string, he must be assured that there is a terminating 003

byte immediately following the last character of the string

in memory.

STATH differentiates between two catagories of strings:

1) Numeric strings

and

2) Non-numeric strings

Where numeric strings are only regular strings with the
character set restricted the characters 012345689 with an
optional single period representing the decimal point and/or

a single hypen leading the string representing a minus sign.

A non-numeric string is any string which is not numeric by
the above definition.

A numeric string (ommitting temporarily the 003) can look -
like:

00000034567788888777.9999999999991
or

—123.45

or

34.5000000000

There is a size limit as to the number of characters a string
may have in STATH. This is not true of ordinary text strings
in CTOS where a string may, for some strange purpose, have
thousands of characters in it. STATH is a mathematic pack-
age and the numeric strings represent numbers. The largest
number of digits, therefore, is limited in STATH and that
limit is 126.

7.1.1.2 INTRODUCTION TO THE FUNCTIONS OF
STATH

STATH functions fall in the following four catagories. The
catagories are listed with their appropriate functions below.

Arithmetic Analysis Manipulative Input/Output

Addition Compare Move Keyboard format-
ted input
Subtraction MOD10 Display on screen
Check
Division MOD11
Check
Multiplica-
tion

The arithmetic functions are the normal functions with
which everyone is familiar.

The analysis functions permit decisions to be made on the
content of a number. MOD 10 and MOD 11 verify the check-
sum Modulo 10 or 11 as is used in many business applica-
tions. Compare will permit comparing two numbers to deter-
mine equality or relative magnitude.

The move function is necessary as a preparation for using
the multiplication and division functions in STATH, appli-
cable for general use in the user’s program to move numeric
strings from one location to another and to format and
round them in the process.

The input/output functions provide the user with simple
techniques for bringing numbers into memory from the key-
board and displaying string numbers in memory onto the
screen,

7-2

7.1.2 STATH FUNCTIONS AND ARGUMENTS

Each routine takes one or two arguments. An argument
consists of a CTOS-compatable string. The argument strings
are bounded at the end by an ASCII ETX (=003), and the
beginning boundry is determined by the address contained
in the register-pair associated with that argument. The
maximum size for any STATH string is 126 characters. This
means arguments and results are limited each to 126 digits.

Except for the routine DSP$, all strings must be ‘numbers’
which means a sequence only of ASCII numeric digits
(0123456789) with an optional decimal point. Optional
leading minus sign and optional leading blanks (an octal
040). The number must be right justified in the argument
string. All strings except for DSP$ set the condition flags
as follows:

Flag Indication
Zero The result was zero

Sign The result was negative
Carry An overflow occured

One or both arguments were improperly for-
matted

Parity

If parity is not set at the end of an operation, HL and DE
contain the addresses of the location in memory past their
respective ETX's. In the case of KEY$ and DSP$, D con-
tains the column and E contains the row of the position
immediately beyond the display area used. MUL$ and

DIV$ leave D and E with junk in them. MOD10 and MOD11
leave H and L containing the address of the check digit
position.
7.1.2.1 EXAMPLES ON THE USE OF STATH
Following is a 488-byte program which is a useful desk
calculator using STATH. It is included as an example of a
program calling STATH functions.

‘DCLAC’, the desk calculator, inputs a numeric string and
provides addition, subtraction, multiplication or division
of that inputted string against an accumulator. ‘DCALC’
always inputs the string from the keyboard into a string
labeled ‘input’. The accumulator is in a string labeled
‘accum’,

The four arithmetic operations performed in the program
are routines labeled as ‘ADDOP’, ‘'SUBOP’, ‘MULOP’, and
‘DIVOP’. The routines are very short but demonstrate the
use of STATH.

BOOT$
MOV$
ADDS$
SUBS
MUL$
DIV$
KEY$
DSP$
KEYIN$
DSPLY$
MLOAD$
BEEP
HEADING

DECPL
OVFMSG
BLANK
CLEAR
INPUT
ACCUM
DIVID
NAME1
OPCODE
DCALC

DCALCH

SET
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DE
CALL
JFZ
DE
HL
CALL
LD
LE
HL
CALL
LL

CALL

LL
CALL
LL
CALL
LL
LAM
SuU
LBA
LC
LA
SUB
LLA
LMC
LA
SUB
LLA
LMC
LAB
SLC

01000

064

010000

010003

010006

06000

06003

010014

010017

017000

0171561

017620

13
021,811,20,2200
013,5,011,31,'Total’
013,7,011,28,'Keyboard’
013,2,011,280To 9"’
‘Decimal Places?’

‘0,3
‘Overflow’,3
' "3
022,3

'0000000000°,3
00000000000°,3

0000000000000000000000°,3

‘Stath’
815
NAME1
MLOADS
BOOT$
0
HEADING
DSPLY$
51

2
DECPL
KEY$
INPUT
FILLIN
ACCUM
FILLIN
DIVID
FILLIN
DECPL

101

.

INPUT+10

ACCUM+10

7-3

DCALCL

ADDOP

OVFTST

NOOVF

LBR
LA
SUB
LLA
LMC
LD
LE
HL
CALL
DE
HL
CALL
LD
LE
HL
CALL
LD
LE
HL
CALL
LE
LE
HL
CALL
LC
LE
LE
HL
CALL
HL
LAM
CcP
JTZ
cP
JTZ
cp
J1Z
CcP
JTZ
CP
JTZ
CcP
JTZ
cP
JTZ
EX
JMP
DE
HL
CALL
JFC
LD
LE
HL
CALL
EX
JMP
LE

DIVID+20

28
2
CLEAR
DSPLY$
ACCUM
ACCUM
SUB$
38

5
ACCUM
DSP$
50

7
BLANK+6
DSP$
38

7
INPUT
KEY$

1

50

7
OPCODE
KEYINS
OPCODE

015
ADDOP
A
ADDOP
5
SUBOP
e
MULOP
D’
DIVOP
£
MOVOP
‘R
DCALCH
BEEP
DCALCL
INPUT
ACCUM
ADD$
NOOVF
36

3
OVFMSG
DSP$
BEEP
DCALCL
36

OVFTST JFC NOOVF

of the overflow test is the actual test: If the carry isn’t set
then there was no overflow resulting from the operation. If

the carry was set, in ‘DCALC’ the message ‘overflow’ is
printed on the screen as is seen from the code following

the "JFC NOOVF".

Subtraction behaves the same as addition except for the

CALL to SUBS.

Multiplication and division are slightly different from
addition and subtraction but operate similar to each other.
Observe the following code as taken from ‘DCALC'.

MULOP DE ACCUM
HL ACCUM
CALL MOV$
DE INPUT
HL ACCUM
CALL MULS$
JMP OVFTST

LE 3

HL BLANK

CALL DSP$

JMP DCALCL
SuUBOP DE INPUT

HL ACCUM

CALL SUB$

JMP OVFTST
MULOP DE ACCUM

HL ACCUM

CALL MOV$

DE INPUT

HL ACCUM

CALL MUL$

JMP OVFTST
MOVOP DE INPUT

HL ACCUM

CALL MOV$

JVP OVFTST
DIVOP DE ACCUM

HL DIVID

CALL MOV$

DE INPUT

HL ACCUM

CALL DIV$

Jvip OVFTST
FILLIN LAM

cpP 3

RTZ

LA ‘0’

LMA

LAL

. AD 1

LLA

JMP FILLIN

END DCALC

Observe the addition routine, ‘ADDOP’. To add together
the inputted string ‘input’ to the accumulator ‘accum’ the
user only writes the following code as found at ‘ADDOP’.

ADDOP DE INPUT
HL ACCUM
CALL ADD$

Executing this code will cause string ‘input’ to be added to
the string ‘accum’ with the result in the string ‘accum’. The
accumulator, it must be realized, is simply a string which
the writer of ‘DCALC’ is using as his result string and he
preferred to call it an accumulator.

Note that after each operation there is a jump to ‘OVFTST’

or as in ‘ADDOP’, the code is immediately after and executed
right after ‘ADDOP’. Observe that the first instruction

7-4

This demonstrates the requirement, as stated in 7.1.5, that,
in MUL$ and DIV$, the argument #2 must be the result

of the previous move. The reason for this is that multipli-
cation and division really require three ‘registers’ or strings:
The two strings being multiplied and the result. The ‘MOV$’
move operation makes a copy of whatever is being moved,
during the move, in an internal STATH ‘register’ string.
Therefore, note that the first three instructions in
‘MULOP’ cause the accumulator to be ‘MOV$’ moved to
itself. Frequently the user can save time by utilizing this
fact in making the last move before calling ‘MUL$’ a move
of a string involving argument #2. (Again, argument #2

is the argument associated with the H and L registers).

Also note that ‘"MULOP’ tests overflow using the same

routine that is used for the other three arithmetic routines
‘OVFTST’ as described above.

7.1.3 LOADING STATH

STATH may be loaded in memory in either of two ways:

1) Incorporating the source code of STATH into the prob-
lem source code.

2) Catalog STATH as an object file and call it in through the
operating system.

The second is preferred and simpler, as is done in ‘DCALC’.
Once cataloged, the following calls STATH into memory:

NAME1 DC 'STATH’
DE NAME1
CALL BOOT$

7.1.3 ADDITION

ADD$

10003 Octal

D-E Registers

H-L Registers

Argument #2

(Argument #2) = (Argument
#2) + (Argument #1)

Entry Point Name
Entry Point Address
Argument #1 Address
Argument #2 Address
Result Location
Arithmetic Function

Action:)
Adds two numeric string numbers, rounds, and installs
leading blanks and trailing zeros when needed in the result.

Typical calling sequence:

ADD$ EQU 010003
DE ARG1
HL ARG2
CALL ADD$
Arguments:

Arguments must be each numeric strings of less than 126
characters in length. Argument 1 is addressed by the D and
E Registers. Argument 2 is addressed by the H and L Regis-
ters and will contain the result.

Result:
The contents of argument 1 (D and E) will remain un-
changed.
The contents of argument 2 (H and L) will contain the
sum of arguments 2 and 1 and will have leading blanks
and trailing zeros when needed.

Changes:
The contents of argument 2 are changed to contain the
result.

Errors Recognized:
Improper argument format (parity bit set)
Overflow occurrence (carry bit set)

Comparison Flags:

Result was zero (zero bit set)
Result was negative (sign bit set)

75

7.1.4 SUBTRACTION

SUB$

10006 Octal

D-E Registers

H-L Registers

Argument #2

(Argument #2) = (Argument
#2) - (Argument #1)

Entry Point Name
Entry Point Address
Argument #1 Address
Argument #2 Address
Result Location
Arithmetic Function

Action:

Subtracts one numeric string number from another,
rounds and installs leading blanks and trailing zeros when
needed in the result.

Typical calling sequence:

SUB$ EQU 010006
DE ARG1
HL ARG2
CALL SUB$
Arguments:

Arguments must be each numeric strings of less than 126
characters in length. Argument 1 is addressed by the D and
E Registers. Argument 2 is addressed by the H and L Regis-
ters and will contain the result.

Result:
The contents of argument 1 (D and E) will remain un-
changed.
The contents of argument 2 (H and L) will contain the
difference of arguments 2 and 1 and will have leading
blanks and trailing zeros when needed.

Changes:
The contents of argument 2 are changed to contain the
result.

Errors Recognized:
Improper argument format (parity bit set)
Overflow occurrence (carry bit is set)

Comparison Flags:
Result was zero (zero bit is set)
Result was negative (sign bit is set)

7.1.5 MULTIPLICATION

Entry Point Name
Entry Point Address
Argument #1 Address
Argument #2 Address
Result Location
Arithmetic Function

Argument Restrictions

Action:

Multiplies two numeric string numbers, rounds and in-
stalls leading blanks and trailing zeros when needed in the

result.

MULS

6000 Octal

D-E Registers

H-L Registers

Argument #2

(Argument #2) = (Argument

#2) X (Argument #1)

Argument #2 must be result of
last MOV'$ call

Typical calling sequence:

MULS$ EQU

DE
HL
CALL

DE
HL
CALL

06000

ARG1
ARG2
MOV$

ARG1,
ARG2
MULS

Arguments:

Arguments must be each numeric strings of less than 126
characters in length. Argument 1 is addressed by the D and
E Registers. Argument 2 is addressed by the H and L Regis-
ters and will contain the result. Argument 2 must have been
involved in the previous move operation.

Result:
The contents of argument 1 (D and E) will remain un-
changed.
The contents of argument 2 (H and L) will contain the
product of arguments 2 and 1 and will have leading
blanks and trailing zeros when needed.

Changes:
The contents of argument 2 are changed to contain the
result.

Errors Recognized:
Improper argument format (parity bit set)
Overflow occurrence (carry bit set)

Comparison Flags:
Result was zero (zero bit set)
Result was negative (sign bit set)

7.1.6 DIVISION

Entry Point Name DIV$

Entry Point Address 6003 Octal

Argument #1 Address D-E Registers

Argument #2 Address H-L Registers

Result Location Argument #2

Arithmetic Function (Argument #2) = (Argument
#2) / (Argument #1)

Argument Restrictions Argument #2 must be result of
last MOVS$ call

Action:

Divides one numeric string number into another, rounds

and installs leading blanks and trailing zeros when needed
in the result.

Typical calling sequence:

MOV$ EQU 010000
DE ARG1
HL ARG2

CALL MOV$

DIV$ EQU 06003

DE ARG1
HL ARG2

CALL DIV$

7-7

Arguments:

Arguments must be each numeric strings of less than 126
characters in length. Argument 1 is addressed by the D and
E Registers. Argument 2 is addressed by the H and L Regis-
ters and will contain the result. Argument 2 must have been
involved in the previous move operation. .

Result:
The contents of argument 1 (D and E) will remain un-
changed.
The contents of argument 2 (H and L) will contain the
result of the division of argument 1 into argument 2 and
will have leading blanks and trailing zeros when needed.

The number of decimal places in the result is equal to
the number of decimal places in the dividend less the
number of decimal places in the divisor. This number
may not be negative and if it is, the number of decimal
places is extended to make the difference zero.

The size of the result equals the size of the extended
dividend less the size of the divisor.

Note that the string ‘10.0’ divided by the string ‘3.0’

is the string ‘3. It is rounded to ZERO decimal places.

. Changes: .
The contents of argument 2 are changed to contain the
result.

‘Errors Recognized:
Improper argument format (parity bit set)
Overflow-occurrence (carry bit set)

Comparison Flags:
Result was zero (zero bit set)
Result was negative (sign bit set)

7.1.7 COMPARE

COM$

10011 Octal

D-E Registers

H-L Registers

Arguments unchanged. Only
sets condition code
(cond-code) = (cond [(Argu-
ment #2) - (Argument #1)]

Entry Point Name
Entry Point Address
Argument #1 Address
Argument #2 Address
Result Location

Arithmetic Function
Action:

Compares two numeric string numbers as to magnitude.
No change to arguments results. Changes are only made to

the condition flags.

Typical calling sequence:

CcComM$ EQU 010011
DE ARG1
HL ARG2
CALL COM$
Arguments:

Arguments must be each numeric strings of less than 126
characters in length. Argument 1 is addressed by the D and
E Registers. Argument 2 is addressed by the H and L Regis-
ters and will contain the result.

Result:
The contents of both arguments will remain unchanged.
Only the condition code will change and will obtain the
exact same condition as if a call to SUB$ were done.
Therefore, the resultant condition flags will behave as if
the result were to be rounded.

Changes:
The contents of both arguments remain unchanged.
Only the condition flags are changed.

Errors Recognized:
Improper argument format (parity bit set)
Overflow occurrence (carry bit set)

Comparison Flags:
Result was zero (zero bit set)
Result was negative (sign bit set)

7.1.8 MOVE

MOV$

10000 Octal

D-E Registers

H-L Registers

Argument #2

(Argument #2) = (Argument
#1)

Entry Point Name
Entry Point Address
Argument # 1 Address
Argument # 2 Address
Result Location
Arithmetic Function

Action:

Replaces the numeric string number in argument 2 with
that of argument 1, rounds and installs leading blanks and
trailing zeros when needed in the result.

Typical calling sequence:

MOV$ EQU 010000
DE ARG1
HL ARG2
CALL MOV$
Arguments:

Arguments must be each numeric strings of less than 126
characters in length. Argument 1 is addressed by the D and
E Registers. Argument 2 is addressed by the H and L Regis-
ters and will contain the result.

Result:
The contents of argument 1 (D and E) will remain un-
changed.
The contents of argument 2 (H and L) will contain the
number of argument 1 rounded and reformatted if
necessary.

Changes:
The contents of argument 2 are changed to contain the
result.

Errors Recognized:
Improper argument format (parity bit set)
Overflow occurrence (carry bit set)
[Note that overflow can occur in a MOV$ if a move from
a larger to smaller field is attempted]

Comparison Flags:
Result was zero (zero bit set)
Result was negative (sign bit set)

7.1.9 MOD10 CHECKSUM CALCULATION

MOD10$

6006 Octal

H-L Registers

A-Register (no reforinatting
of argument)

(A Reg) = Check-MOD-10
(Argument #1)

Entry Point Name
Entry Point Address
Argument #1 Address
Result Location

Arithmetic Function

Action: .
Checks validity of Modulo 10 checksum of a numeric
string number.

Typical calling sequence:

MOD10$ EQU 06006
HL ARG1
CALL MOD10$

Arguments:

The argument must be a numeric string of less than 126
characters in length. Argument 1 is addressed by the H and
L Registers.

Result:
The contents of the argument remains unchanged.
The carry bit is set if the check digit is 10.
The zero bit is set if the check digit is not 10.
The check digit is in the A-Register upon return.

Changes:
The contents of the argument remain unchanged.

Errors Recognized:
Improper argument format (parity bit set)

Comparison Flags:
Check digit was 10 (carry bit set)
Check digit was not 10 (zero bit set)

7.1.10 MOD11 CHECKSUM CALCULATION

MOD11$

6011 Octal

H-L Registers

A-Register (no reformatting
of argument)

(A Reg) = Check-MOD-10
(Argument #1)

Entry Point Name
Entry Point Address
Argument #1 Address
Result Location

Arithmetic Function

Action:
Verifies the Modulo 11 checksum of the numeric
string number.

Typical calling sequence:
MOD11$ EQU 06011

HL ARG1
CALL MOD11$

Arguments:

The argument must be a numeric string of less than 126
characters in length. The argument is addressed by the H and
L Registers.

Result:
The contents of the argument remains unchanged.
The carry bit is set if the check digit is 11.
The zero bit is set if the check digit is not 11.
The A-Register contains the check digit.

Changes:
The contents of the argument remain unchanged.

Errors Recognized:
Improper argument format (parity bit set)

Comparison Flags:
Check digit was 11 (carry bit set)
Check digit was not 11 (zero bit set)

7.1.11 KEYBOARD FORMATTED INPUT

Entry Point Name KEY$

Entry Point Address 10014 Octal

Argument #1 Address H-L Registers

Extra Parameters (D Reg) = Column. (E Reg) =
Row for cursor

(Argument #1) = (Keyed in
number)

Screen format and, therefore,
keyed in number has same
format as originally in Argu-
ment #1

Input Function

Input Restrictions

Action:

Provides formatted input from the keyboard into a
numeric string. The format is maintained on the screen and
only a number fitting the format can be entered. The
inputted numeric string is placed in argument 1.

Typical calling sequence:

KEY$ EQU 010014
LD COLUMN
LE ROW .
HL ARG1

CALL KEY$

Arguments:
The argument must be a formatted numeric string.
The D and E Registers must contain the column and
row of the cursor position of the first character to be
typed in.

Result:
The contents of argument 1 are replaced by the inputted
number.
Striking the enter key with no input will cause the
argument to be replaced with a zero.
The H and L Registers are pointing immediately after
the ETX.

Changes:

The contents of the argument are replaced with the input-

ted string

Errors Recognized:
Improper argument format (parity bit set)

Comparison Flags:
Result was zero (zero bit set)
Result was negative (sign bit set)

7-10

7.1.12 DISPLAY STRING

Entry Point Name DSP$

Entry Point Address 10017 Octal

Argument #1 Address H-L Registers

Extra Parameters (D Reg) = Column. (E Reg) =
Row for cursor

(Display starting at.D,E) =
(Argument #1)

Input Functions

Input Restrictions
string

Action:
Displays a string onto the screen. String may be non-

numeric.

Typical calling sequence:

DSP$ EQU 010017
LD COLUMN
LE ROW
HL ARG1

CALL DSP$

Arguments:

The argument may be a numeric or non-numeric string
as long as it terminates with an ETX. The D and E Regis-
ters contain the column and row of the location of the
first character of the string.

Result:
The string in argument 1 is displayed on the screen
starting at the cursor location beginning with the
column and row specified by the D and E Registers.
The H and L Registers point the location immediately
after the ETX in argument 1.

Changes:
The contents of the argument remain unchanged.

Errors Recognized:
None

Comparison Flags:
None

None. May even be non-numeric

7.2.1 INTRODUCTION

FPAK is a subroutine package which gives the Datapoint
2200 the capability of performing numerical operations
with numbers in the range of -10°38 to 1037, This is
accomplished by representing all numbers in a form called
“floating point.”” Floating point notation is a shorthand
method of number representation and is very similar to the
familiar “‘scientific notation” used in technical work.

FPAK also provides conversion of floating point numbers
to and from 16 bit binary integers, particularly attractive
for analyzing binary data gathered by the 2200 from in-
strumentation systems.

Supplied with FPAK is FCON which supplies the user with
simple conversion of ASCII numeric string respresentation
(suitable for displaying or printing) to and from the internal
floating point representation.

The CTC 2200 floating point software consists of two main
sections: FCON, the conversion section and FPAK, the
arithmetic section. The conversion section converts a float-
ing point number to an ASCII string, and visa versa. ASCII
is the character code used by the 2200 keyboard and CRT
display, and this section of the floating point software
allows the user to interface with the computer. The user
can enter numbers in a form familiar to him and read the
results in a similar form. The ASCII string which the user
enters through the keyboard (or from tape or some other
means) is converted into the internal floating point form
outlined in Section 7.2.1.1. When all arithmetic operations
are completed, the user can request that the result be con-
verted back into ASCII for display on the CRT (or for
output to tape or for some other use).

7.2.1.1 INTRODUCTION TO FLOATING POINT RE-
PRESENTATION

A number (N) in floating point form consists of two parts
within the computer’s memory--the “exponent’’ (e) and the
“fraction’’ (f) --such that: N = £*2% (where the * denotes
the multiplication operation). The exponent occupies one
byte (word) in the 2200 and is an 8 bit signed integer. Thus,
exponents on the 2200 can have a range of 127 to -128.

The fraction (sometimes called the “mantissa’’) on the 2200
occupies three bytes and is a 24 bit signed quantity. Like a
decimal fraction (such as .5 or .0001), the fraction in a
floating point number has a ““decimal point,”” although
“‘decimal point’ is not what it is called. Its proper name, in
a binary fraction, is a “’binary point.” In the notation used
on the 2200, the binary point is located immediately to

the right of the sign bit (high order bit) of the fraction.
Thus, a picture of a 2200 floating point number would look
like this:

7-11

sign bit
for
—— exponent
+ r—— Sign bit for fraction
8 bits —pm 24 bits
A& 7 J
~ ~
exponent fraction

The exponent and the fraction are separate parts of the
number, and one can be positive while the other is negative.
On the 2200, negative numbers are represented in their

2's complement form. Since the floating point representa-
tion requires more than one byte (word) on the 2200, a
convention is used to address a floating point number in
memory. The address of a floating point number is the byte
(word) address of the exponent byte of the number. The
software will use the addressed byte, and the three bytes
immediately following, in whatever operation is being
performed. Later in the documentation, reference is made
to addressing floating point numbers. In such cases, this
means that the MSP of the address of the exponent should
be in the H or D register and the LSP of the address should
be in the L or E register, depending upon whether the HL or
DE pair is being used.

7.2.2 FCON - FLOATING POINT/STRING CON-
VERSION

7.2.2.1 INTRODUCTION TO FCON - FLOATING POINT/
STRING CONVERSION

LOCATION FUNCTION

FISC (0441) Floating Internal to String Conversion
entry point

FSIC (04444) Floating String to Internal Conversion
entry point

FSCE (04460) Floating Set Conversion Error Branch
entry point

OPER (013403) Location of Floating point number to
be converted to or from ASCII

7.2.2.2 FISC - FLOATING INTERNAL TO STRING CON-
VERSION

The Floating Internal to String Conversion routine has been
designed so that the user need not specify the type of num-
ber he is going to supply. That is, as long as the ASCII
characters being converted represent a valid, decimal num-
ber, the conversion routine can decide what type of num-
ber itis (i.e., integer, fraction) and perform the proper
conversion without any further instructions. This type of
input is referred to as "‘free form’’ input.

The result of all Floating Point Arithmetic routines end up
at location 013403, labeled ‘OPER’. The conversion routine,
FISC, converts floating point numbers at OPER into a

string beginning at the location specified by the H and L
Registers upon execution of the CALL to FISC.

For example, should OPER (and the subsequent 3 bytes)
contain the floating point number represented by
123,450,000,000,000,000,000 the string resulting from a
call to FISC would look like this: 1.2345E20 where the
ASCII number 1, an octal 61, would appear in the location
specified by H and L and the period (an octal 056) in

H and L plus 1 etc. A note of caution, FISC does not put

a terminating 003 or 015 after the string. To be compatible
with the CTOS string routines, the string must be terminated
with either 003 or 015. However, FISC, upon return from
being called, leaves the H and L registers pointing to the
location immediately after the last character in the string.
This enables the user to immediately store the terminating
character of his choice (003 or 015) in that location upon
areturn. The following call to FISC will illustrate:

7-12

FISC EQU 04441
HL String
CALL FISC
LA 015
LMA

Note the LA 015 and LMA will install a 015 as the termi-
nating character to the resultant string which is the ASCII
representation of the floating point number in OPER.

Name: Floating Internal to String Conversion (FISC)

Action:
Converts a floating point number to its ASCII character

representation.

Calling Sequence:

FISC EQU 04441
HL String
CALL FISC
LA 015
LMA
Arguments:

OPER contains the number to be converted to ASCII.
The H and L registers contain the address of the location,
in memory, where the first (leftmost) ASCII character
should be placed.

Result:

The floating point number in OPER is converted to its
ASCII representation, and the ASCII characters comprising
this representation are placed in memory, beginning at the
address specified by the contents of the H and L registers
and continuing in sequential memory locations. H and L
end up pointing to the next location after the last string
character enabling the user to store the string termination
character of his choice up on the return from FISC.

Changes:

The contents of OPER are destroyed; the previous con-
tents of the output string are destroyed. At the end of the
execution of this routine, H and L contain the address of
the memory location immediately after the last ASCI|
character in the converted number.

Errors Recognized:
None.

Comments:

Numbers are represented to six significant (decimal) digits
and are rounded where appropriate. The format of the out-
put is “free,”” with small integer in FORTRAN | format,
floating point numbers with decimal exponents between -6
and 6 in FORTRAN F format, and other numbers in
FORTRAN E format.

7-13

7.2.2.3 FSCI- FLOATING STRING TO INTERNAL CON-
VERSION

The Floating String to Internal Conversion routine has been
designed to convert floating point numbers into the proper
ASCII representation. If the floating point numeric string

is a small integer, it will be converted to an integer, with no
decimal point in the representation. |f the numeric string

is a large integer, or a noninteger, it will be converted into
scientific notation, or more precisely what is known as the
FORTRAN E format, such as 1.3456E17.

FSIC converts to internal floating point representation an
ASCII numeric string with optional leading minus sign,
optional decimal point, and optional trailing FORTRAN E,
type exponent, i.e. -1.2345E20. The H and L registers must
point to the first character of the string. The result goes into
the FPAK ‘register’ called OPER starting at 013403, ready
to be used by FPAK. FSCE, Floating Set Conversion Error
Branch, should be set first to cover format problems in the
string being converted. A simple call to FSCE with the D
and E registers specifying the location of your error recovery
routine will set the error branch.

Name: Floating String to Internal Conversion (FSIC)

Action:
Converts an ASCII string, which represents a decimal

number, into that number’s floating point form.

Calling Sequence:

FSIC EQU 04444
FSCE EQU 04460
DE ERROU Location of error

routine
CALL FSCE
HL String
CALL FSIC

Arguments:

The H and L registers contain the address of the first
byte (character) of the ASCII string which represents the
number to be converted.

Result:

The character string, if it represents a valid number, is
converted to a floating point number, and that value is left
in OPER. The result in OPER is normalized and rounded.

Changes:

The original contents of OPER are destroyed; the ASCI|
string is left unchanged, and upon successful conversion, the
H and L registers contain an address of the character which
caused termination of the number (i.e., was a character not
allowed in the ASCII representation of a number).

Errors Recognized:
Invalid character found while converting from ASCII to
floating point.

Comments:

The ASCII string may be in free form, that is, in
FORTRAN I, F, or E format. All of those formats will be
properly converted by this routine. Conversion stops when
an invalid character (something other than a digit, “’E”’, +,
—, or) is encountered after a valid number has been found.
An invalid character encountered before a valid number
has been found will generate an error. Some of the above
characters can be considered invalid if used incorrectly
(i.e.,a"."” in an exponent, such as 1.333E1.5, is an error)
and will generate an error condition.

7.2.2.4 FSCE - FLOATING SET CONVERSION ERROR
BRANCH
Name: Floating Set Conversion Error Branch (FSCE)
Action:
Specifies the location of the user’s routine to be branched
to in the event an invalid character is encountered while

converting an ASCI| representation of a number to the
floating point representation of that number.

Calling Sequence:

Location of error
routine

DE ERROU
CALL FSCE

Arguments:
The D and E registers contain the address of the error
routine.

Result:

The location in the floating point software which specifies
the location of the error routine is set to the address provided
by the user in the D and E registers.

Changes:
The previous error routine address is destroyed.

Errors Recognized:
None.

Comments:

In the event the user does not specify an error routine
location, the floating point software will execute a return
(RET instruction) if the error condition arises, and the
arithmetic routine called by the user will continue to com-
pletion. At the conclusion of that routine, the contents of
the A register will be non-zero, and the result in OPER
will, in general, be erroneous. The user’s error routine may
end with a return if the user wishes to continue execution
immediately after the call to the routine which generated
the error.

7.2.3 FPAK- FLOATING POINT ARITHMETIC
PACKAGE

7.2.3.1 INTRODUCTION TO FPAK - FLOATING POINT

ARITHMETIC PACKAGE
- LOCATION FUNCTION
FCMP (04422)
FADD (04400)
FSUB (04403)
FMUL (04406)

FDIV (04411)
FLOD (04414)

Floating Point Compare

Floating Point Addition

Floating Point Subtraction
Floating Point Mulitiplication
Floating Point Division

Floating Point Load [memory to
‘OPER’]

Floating Point Store [‘OPER’ to
memory]

Floating Point Negate [Two’s
complement]

Floating Point Absolute Value
Floating Point Set Tolerance [For
Equal Flag]

Floating Point Fix [to 16 bit
integer]

Floating Point Float Conversion
from 16 bit integer

Floating Point Set Overflow Error
Branch

Floating Point Set Underflow Error
Branch

Floating Point Set Divide Check
Error Branch

FSTO (04417)
FNEG (04425)

FABS (04430)
FSTL (04463)

FF1X (04433)
FFLT (04436)
FSOV (04447)
FSUN (04452)

FSDV (04455)

The second section of the floating point software is the
arithmetic part. This section contains the routines for per-
forming the common arithmetic operations of add, sub-
tract, multiply, divide, compare, negate, and absolute
value, and two routines for converting between integer

and floating point formats (an integer, in the floating point
software, is a 16 bit (2-byte) signed quantity which is
addressed by specifying the address of the high order byte).

Within the floating point software package is a 4-byte area
called OPER. OPER is to the floating point software what
the A register is to the 2200 processor. Floating point
operations are performed on numbers in OPER, or on pairs
of numbers, one of which is in OPER and the other in
memory. The software supplies two routines, FLOD and
FSTO which provide the user with the capability of
copying numbers from memory to OPER and from OPER
to memory.

With two exceptions, all of the routines in the arithmetic
part of the floating point software, which take floating
point numbers as their arguments, expect their operands
to be ““normalized.”” Normalization is nothing more than
an agreed upon standard for writing a floating point num-

7-15

ber. A number is considered normalized if the sign bit of
the fraction and the bit immediately to the right of the

sign bit (the high order bit of the fraction) are unequal.
Thus, a positive fraction (sign bit 0) has a 1 as its high order
bit, and a negative fraction (sign bit 1) has a 0 as its high
order bit. This convention makes sure that the maximum
precision possible is maintained in all floating point
operations.

As a rule, all routines expect their floating point operands
to be normalized. The significant exceptions to this rule
are the add and subtract routines, FADD and FSUB. If

the user is adding or subtracting two numbers, the numbers
should be normalized for a result with the greatest
accuracy possible. However, if the user has a floating point
number which is not normalized, he can convert the num-
ber to its normalized form by adding or subtracting a
“normal’’ 0 to or from the unnormalized number. A normal
0 has a fraction equal to 0 and an exponent of -128 (200
octal). Except in this case, it is not recommended that the
user perform operations on unnormalized numbers.

7.2.3.2 ERROR CONDITIONS

There are several error conditions that can arise during the
course of executing routines in the floating point software
package. These errors are:

exponent overflow
exponent underflow
divisor of 0 (in FDIV)

For these errors, a flag (see below) is set to 1 when the
error is detected. For all of these errors, an “‘error branch”
is provided. When the error condition arises, the appropriate
flag (or A register) is set, and a jump is made to a location
in the floating point software package. This location con-
tains a jump to the address of either a user-specified error
routine or a return instruction (the default case if the user
does not supply an error routine). There is a separate
location for each error condition, and there are three
routines -- FSOV, FSUN, and FSDV -- which are used to set
or change the address of the error routines.

The error conditions and their respective flags are:

Exponent Underflow UNFLO Location 013400
Exponent Overflow OVFLO Location 013401
Divide by 0 DVDCK Location 013402

If an error condition arises, the flag is set to 1 and a branch is
made to the error routine address. If no error condition arises,
the flag is set to 0, and a normal return from the routine
occurs.

7.2.3.2.1 FSOV - FLOATING SET OVERFLOW ERROR
BRANCH
Name: Floating Set Overflow Error Branch (FSOV)

Action:
Specifies the location of the user’s routine to be branched
to in the event an operation causes exponent overflow (the

value of the binary exponent in the result is greater than 127).

Calling Sequence:
Execute CALL instruction location 04447,
See 7.2.3.2.

Arguments:
The D and E registers contain the address of the error
routine.

Result:

The location in the floating point software which specifies
the location of the error routine is set to the address provided
by the user in the D and E registers.

Changes:
The previous error routine address is destroyed.

Errors Recognized:
None.

Comments:

In the event the user does not specify an error routine
location, the floating point software will execute a return
(RET instruction) if the error condition arises, and the
arithmetic routine called by the user will continue to
completion. At the conclusion of that routine, the appro-
priate error flag will be set to 1, and the result in OPER
will, in general, be erroneous. The user’s error routine
should not end with a return since that would cause
processing to continue in the floating point software with
incorrect values in the machine registers.

7-16

7.2.3.2.2 FSUN - FLOATING SET UNDERFLOW ERROR
BRANCH
Name: Floating Set Underflow Error Branch (FSUN)

Action:

Specifies the location of the user’s routine to be branched
to in the event an operation causes exponent underflow (the
value of the binary exponent in the result is less than -128).

Calling Sequence:
Execute CALL instruction to location 04452,
See 7.2.3.4.

Arguments:
The D and E registers contain the address of the error
routine.

Result:

The location in the floating point software which specifies
the location of the error routine is set to the address provided
by the user in the D and E registers.

Changes:
The previous error routine address is destroyed.

Comments:

In the event the user does not specify an error routine location,
the floating point software will execute a return (RET instruc-
tion) if the error condition arises, and the arithmetic routine
called by the user will continue to completion. At the con-
clusion of that routine, the appropriate error flag will be set

to 1, and the result in OPER will, in general, be erroneous.

The user’s error routine should not end with a return since

that would cause processing to continue in the floating point
software with incorrect values in the machine registers.

7.2.3.2.3 FSDV - FLOATING SET DIVIDE CHECK
ERROR BRANCH

Name: Floating Set Divide Check Error Branch (FSDV)

Action:

Specifies the location of the user’s routine to be branched
to in the event the divisor in a floating divide operation is O.

Calling Sequence:
Execute CALL instruction to location 04455.
See 7.2.3.7.

Arguments:
The D and E registers contain the address of the error
routine.

Result:

The location in the floating point software which specifies
the location of the error routine is set to the address provided
by the user in the D and E registers.

Changes:
The previous error routine address is destroyed.

Errors Recognized:
None.

Comments:

In the event the user does not specify an error routine
location, the floating point software will execute a return
(RET instruction) if the error condition arises, and the
arithmetic routine called by the user will continue to com-
pletion. At the conclusion of that routine, the appropriate
error flag will be set to 1, and the result in OPER will, in
general, be erroneous. The user’s error routine may end
with a return if the user wishes to continue execution
immediately after the call to the routine which generated
the error.

717

7.2.3.3 FLOATING COMPARE
Name: Floating Compare (FCMP)

Action:
Compares, algebraically, two floating point numbers.

Calling Sequence:

FSTL EQU 04463 Only necessary to EQU
FCMP EQU 04422 once per program
LA TLRNC Where TLRNC is the
CALL FSTL comparison tolerance
only necessary once per
program if tolerance
doesn’t change
HL NUMBER Number will be com-
CALL FCMP pared with OPER
Arguments:

OPER contains one of the floating point numbers being
compared, and the contents of the H and L registers address
the other floating point number being compared.

Result:

Floating Compare sets the Sign and Zero flip-flops as if
a subtraction of the floating point number addressed by the
contents of the H and L registers from the floating point
number in OPER had taken place. However, if the absolute
value of the difference is less than or equal to the tolerance
specified (see the description of the routine FSTL for an
explanation of how the tolerance is specified), then the Sign
and Zero flip-flops are set as if both floating point numbers
were found to be equal.

Changes:
Neither operand is altered by the Floating Compare
operation.

Errors Recognized:
None.

Comments:

Since representations of decimal fractions in a binary
machine are approximate, the Floating Compare operation
allows for an ““approximate’’ compare by allowing the user
to specify how close two numbers may be before they are
considered equal.

7.2.3.4 FLOATING ADD
Name: Floating Add (FADD)
Action:
Adds two floating point numbers, rounds and normalizes

the result.

Calling Sequence:

FSOV EQU 04447 Only necessary to EQU
FSUN EQU 04452 once ber program
FADD EQU 04400
DE OVERR Only necessary to set
CALL FSOV these once per program
or until it is desired to
change.
DE UNERR Where OVERR and
CALL FSUN UNERR are addresses
of user and recovery
routines.
HL NUMBER
CALL FADD Number will be added
to OPER
Arguments:

OPER contains one of the floating point numbers, and
the contents of the H and L registers address the other
floating point number.

Result:

The contents of OPER and the floating point number
addressed by the contents of the H and L registers are added
together with the result left in OPER.

Changes:

The contents of OPER are altered; the floating point num-
ber addressed by the contents of the H and L registers is un-
changed.

Errors Recognized:
Exponent overflow, exponent underflow.

Comments:

Maximum precision is maintained by having both operands
normalized; however, an unnormalized number may be con-
verted to its normalized form by using this routine to add a
“normal’’ 0 to the unnormalized number.

7-18

7.2.3.5 FLOATING SUBTRACT

Name: Floating Subtract (FSUB)
Action:

Subtacts two floating point numbers, rounds and
normalizes the result.

Calling Sequence:

FSUB is identical to FADD except the program must now
contain a FSUB EQU 04403 and the last statement in
calling sequence is:

Number will be sub-
tracted from OPER

CALL FSUB

Arguments:)
OPER contains the minuend and the contents of the H
and L registers address the subtrahend.

Result:

The floating point number addressed by the contents of
the H and L registers is subtracted from the floating point
number in OPER, and the result is left in OPER.

Changes:

The contents of OPER are altered; the floating point
number addressed by the contents of the H and L registers
is unchanged.

Errors Recognized:
Exponent overflow, exponent underflow.

Comments:

Maximum precision is maintained by having both operands
normalized; however, an unnormalized number may be con-
verted to its normalized form by using this routine to subtract
a “normal’’ 0 from the unnormalized number.

7.2.3.6 FLOATING MULTIPLY
Name: Floating Multiply (FMUL)

Action:
Multiplies two floating point numbers, rounds and
normalizes the result.

Calling Sequence:

FMUL is identical to FADD except the program must
now contain a FMUL EQU 04406 and the last statement
in the calling sequence is:

CALL FMUL Number will multi-
ply OPER

Arguments:
OPER contains the multiplicand, and the H and L
registers contain the address of the multiplier.

Result:

The floating point of OPER and the floating point num-
ber addressed by the contents of the H and L registers are
multiplied together with the result left in OPER.

Changes:

The contents of OPER are altered; the floating point
number addressed by the contents of the H and L registers
is unchanged.

Errors Recognized:
Exponent overflow, exponent underflow.

Comments:

This routine expects both operands to be normalized.
If one or both of the operands is not normalized, erroneous
results may occur.

7-19

7.2.3.7 FLOATING DIVIDE
Name: Floating Divide (FDIV)
Action:
Forms the quotient of two floating point numbers, rounds

and normalizes the result.

Calling Sequence:

FSOV EQU 04447 Only necessary to

FSUN EQU 04452 EQU these

FSDV EQU 04455 once per

FDIV EQU 04411 program
DE OVERR Only necessary to set
CALL FSOV these once per program
DE UNERR or when it is desired to

change recover routine.
Where OVERR, UNERR,
and CKERR are address-
es of user error recovery
routines.

CALL FSUN
DE CKERR
CALL FSDV

HC NUMBER
CALL FDIV Number divides OPER
Arguments:

OPER contains the dividend, and the H and L register con-
tain the address of the divisor.

Result:

The floating point number in OPER is divided by the
floating point number addressed by the contents of the H
and L registers with the result left in OPER.

Changes:

The contents of OPER are altered; the floating point num-
ber addressed by the contents of the H and L registers is
unchanged.

Errors Recognized:
Exponent overflow, exponent underflow, divisor equal to O.

Comments:

This routine expects both operands to be normalized. If one
or both of the operands is not normalized, erroneous results
may occur.

7.2.3.8 FLOATING LOAD
Name: Floating Load (FLOD)
Action:

Copies a floating point number from its location in

memory to OPER.

Calling Sequence:

FLOD EQU 04414 Only necessary to EQU
this once per program.
HC NUMBER
CALL FLOD Number is loaded into
OPER
Arguments:

The H and L registers contain the address of the floating
point number that is to be copied into OPER.

Result:
The floating point number addressed by the H and L
registers is copied into OPER.

Changes:

The original contents of OPER are destroyed. The float-
ing point number addressed by the contents of the H and L
registers is unchanged.

Errors Recognized:
None.

Comments:
None.

7-20

7.2.3.9 FLOATING STORE
Name: Floating Store (FSTO)

Action:
Copies a floating point number from OPER to memory.

Calling Sequence:

FSTO EQU 04417 Only necessary to EQU
this once per program.
HL NUMBER
CALL FSTO Number is loaded from
OPER
Arguments:

The H and L registers contain the address of the location,
in memory, to which the floating point number is to be copied.

Result:
The floating point number is copied into the location
addressed by the contents of the H and L registers.

Changes:

The original contents of memory (4 bytes) addressed by
the H and L registers are destroyed. The contents of OPER
are unchanged.

Errors Recognized:
None.

Comments:
None.

7.2.3.10 FLOATING NEGATE
Name: Floating Negate (FNEG)
Action:

Forms the two’s complement of the floating point num-
ber in OPER.

Calling Sequence:

FNEG EQU 04425 Only necessary to EQU
this once per program.
CALL FNEG OPER is negated
Arguments:

OPER contains the floating point number to be negated.

Result:

The number in OPER is converted to two’s complement
form and then this result is normalized. The final result is
left in OPER.

Changes:
The original contents of OPER are destroyed.

Errors Recognized:
Exponent overflow, exponent underflow.

Comments:
None.

7-21

7.2.3.11 FLOATING ABSOLUTE VALUE
Name: Floating Absolute Value (FABS)

Action:
Forms the absolute value of a floating point number.

Calling Sequence:

FABS EQU 04430 Only necessary to EQU
this once per program
CALL FABS OPER becomes the
absolute value of OPER
Arguments:

OPER contains the floating point number whose absolute
value is to be computed.

Result:

If the contents of OPER are greater than or equal to zero,
then they are left unchanged. Otherwise, the contents of
OPER are negated (see the description of FNEG). In the latter
case, the original contents of OPER are destroyed.

Changes: }
Contents of OPER are destroyed if they are less than zero;
otherwise, the contents of OPER are unchanged.

Errors Recognized:
Exponent overflow, exponent underflow.

Comments:
None.

7.2.3.12 FLOATING FIX
Name: Floating Fix (FFIX)

Action:
Converts a floating point number into a 16 bit integer.

Calling Sequence:

FFIX EQU 04433 Only necessary to EQU
this once per program
HL NUMBER Number and number+1
CALL FFIX will contain the 16 bit
integer made from
OPER
Arguments:

OPER contains the floating point number to be fixed
(converted to an integer), and the H and L registers con-
tain the address, in memory, of the high order byte (upper
eight bits of the integer) where the integer is to be placed.

Result:

The floating point number is converted to a 16 bit integer.
If the number has a fractional part, that part is lost. The 16
bit integer is stored in memory beginning at the byte address-
ed by the contents of the H and L registers.

Changes:

The original contents of the 16 bits addressed by the con-
tents of the H and L registers are destroyed. The contents
of OPER are unchanged.

Errors Recognized:
None.

Comments:

If the number in OPER is such that it cannot be repre-
sented in 16 bits, only the low order 16 bits are stored in
memory. Any higher order bits are lost.

7-22

7.2.3.13 FLOAT
Name: Float (FFLT)
Action:

Converts a 16 bit integer into a normalized floating point

number.

Calling Sequence:

FFLT EQU 04436 Only necessary to EQU
this once per program
HL NUMBER The 16 bit integer in
CALL FFIX number and number+1
will be converted to
floating point in OPER
Arguments:

The H and L registers contain the address, in memory, of
the high order byte (high order eight bits) of the 16 bit
integer that is to be converted.

Results:

The 16 bit integer is converted from its integer form to the
floating point form, and the result is normalized and left in
OPER.

Changes:
The original contents of OPER are destroyed. The 16 bit
integer addressed by the H and L registers is unchanged.

Errors Recognized:
None.

Comments:
None.

7.2.3.14 FLOATING SET COMPARE TOLERANCE
Name: Floating Set Compare Tolerance (FSTL)

Action:
Specifies a range in which the difference of two floating
point numbers must lie for the two numbers to be considered

equal.

Calling Sequence:
See 7.2.3.3.

Arguments:
The A register contains the tolerance as a positive eight
bit integer (the high order bit of the A register must be 0).

Result:

The location in the floating point software which speci-
fies the floating point compare tolerance is set to reflect the
value provided by the user in the A register.

Changes:
The previous value of the tolerance is destroyed.

Errors Recognized:
None.

Comments:

When the floating point package is initialized, the tolerance
is set as if the user had called FSTL with a 2 in the A register.
If the value in the A register is less than .0 when FSTL is
called, erroneous results may occur when using the floating
compare routine, FCMP.

7-23

SECTION 8

DATAPOINT 2200

COMMUNICATIONS SUBROUTINES

SECTION 8

1. INTRODUCTION

Interfacing the Datapoint 2200 with a wide range of commu-
nication facilities is a simple task. All that is needed is the
2210 ACA Communications Adaptor with the required data
set or keyer option and the necessary software subroutines to
drive it. The software subroutines may or may not have been
written for a particular application. However, it seems likely
that most users will choose to develop their own to fit their
particular needs. This chapter is devoted to aiding the user

in fulfilling this goal.

Understanding communications subroutines is useful for
many reasons. |t enables use of communication disciplines
not previously used to fill a specialized need. It enables a
user to develop routines that are most efficient for his parti-
cular application, it permits a user to modify previously
written routines for special purposes and provides greater
insight into how the communications system functions.

There is nothing difficult about the communications routines.
They are just another part of the user’s applications 1 ogram.
The routines are given special treatment here because they
are used so frequently and because the terminology and
hardware used for communication is foreign to many users.

In addition to the material covered in this chapter the user
should be familiar with material covered in other publica-
tions on the subject of data communications. Two references
that are highly recommended before embarking on any
communications oriented 2200 applications are:

Bell System Data Communications Technical Reference
Manual™

Martin, James; Teleprocessing Network Organization;
Prentice - Hall, 1970

2. TYPES OF SUBROUTINES

As in most modern computers, the input/output devices

used with the Datapoint 2200 are much slower than the

2200 processor. In order for an input/output (1/0) routine

to be efficient it must be possible for the processor to

perform other tasks (including other 1/0 operations) while

a given /O routine is active. One approach is to use an
interrupt system in the processor to stop one routine and

give control to another when an 1/O operation is needed.

The Datapoint 2200 does not have an interrupt system but

in its place it has a very powerful subroutine calling mechanism

which permits many separate 1/0 routines to be “scanned”’
during normal execution of a program so that several |/O
or other subroutines can be active at the same time.

This leads to the two possible types of.communications
subroutines: “in-line’” and “interleaved”. In-line subroutines
are those routines which are written in such a way that
whenever they are called they “‘capture’’ the processor

until their function is complete and hence do not permit
any other subroutine to be active at the same time. In many
situations in-line subroutines are all that is required (such as
during an automatic dialing operations when the 2200 has
no other functions to perform). Interleaved subroutines

are written in such a way that they return to the calling
routine at regular intervals while they are active - to be
called again to complete their work. Return points in
communications subroutines frequently occur following
status checks of external devices so that the communications
subroutine does not sit in a “‘tight-loop”” waiting for some
external operation to be completed.

All of the 1/0 routines in the CTOS (Operating System) are
in-line and would not be used during interleaved operations.

3. INPUT/OUTPUT OPERATIONS

In order to write any type of 1/0 subroutine for the Data-
point 2200 it is necessary to have a working knowledge of
the input/output section of the processor. All 2200 /0O
devices (including the CRT, keyboard and tape cassette
decks as well as the Communications Adaptor) operate
alike and have the same general 1/0 structure.

The basic physical details of the I/O structure are given in
Part 4 of the Datapoint 2200 Reference Manual. We will
deal with this system here from a programmer’s point of
view.

3.1 Data Buses
Data flow to and from the processor takes place over a
set of 1/0 data lines connected to the A-register in the
processor. Output data is transmitted from the A-register
by eight wires which at all times reflect the contents of
the A-register. Whenever the content of the A-register is
to be transmitted to an 1/O device, one of the external
command instructions is executed, which causes one of
the External Command Strobes to pulse a signal to the
I/0 device, informing it that the data on the output bus
is for it, and should be read.

*Obtained through Engineering Director—Data Communications, American Telephone and Telegraph Co.,

195 Broadway, N.Y., N.Y. 10007

Input data is transmitted to the A-register in the pro- ADR EQU 1
cessor by eight wires which form a bus connected to STATUS EQU 2
all 1/0 devices. Each 1/0 device is so arranged that DATA EQU 3
only the one currently addressed will have access to WRITE EQU 4
this bus. Normally, when an 1/0 device is first COM1 EQU 5
addressed, a status word is placed on this bus. The CcCOoM2 EQU 6
status word (or whatever is placed on the bus) is comM3 EQU 7
loaded into the A-register whenever an INPUT COM4 EQU 8

instruction is executed.
(In all examples following in this chapter it is assumed that

3.2 External Command Strobes ‘ all External Command labels have been defined.)
The Datapoint 2200 processor has 24 External Com-
mand Strobes in its 1/O structure, only eight of When an External Command is executed, physically all that
which are brought to devices outside of the 2200 pro- occurs in the processor is a pulse (or strobe) on the indicated
per (e.g. the Communications Adaptor) and need be command line. All other action occurs in one of the |/0
considered here. devices.
These eight command lines are physically identical, a. EX ADR is the only command strobe acted upon
and their functions are pre-assigned in the table by all 1/0O devices at the same time. All other command
below for the sake of consistancy between |/O strobes affect only the 1/0 device that is currently addressed.
devices.

EXTERNAL COMMAND

COMMAND OCTAL
NUMBER (exp) CODE COMMAND DESCRIPTION
1 ADR 121 Address Selects device specified by A-register
2 STATUS 123 Sense Status Connects selected device data lines to data
input bus
3 DATA 125 Sense Data Connects selected device data lines to data
input bus
4 WRITE 127 Write Strobe Signals selected device that output data is on
data output lines
5 COM1 131 Command 1 Signals selected device that a control word is on
data output lines
6 COM2 133 Command 2 Signals selected device that a control word is on
data output lines
7 COM3 135 Command 3 Signals selected device that a control word is on
data output lines
8 COM4 137 Command 4 Signals selected device that a control word is on
data output lines
When external commands are to be used in a program the b. EX STATUS causes the selected device to place its
names or labels for the commands used should be defined status word on the input bus (it may already be on the bus
to the assembler at the beginning of the source code listing in which case the EX STATUS does nothing).

as in the following example:

8-2

c. EX DATA causes the selected device to place its
data word on the input bus. This data will remain there
until an EX STATUS or an EX ADR is executed.

d. EX WRITE- The write strobe command is a
signal from the processor that data is present on the data
output lines for the selected external device.
3.3
e. EX COM1 thru EX COM4 are used generally to
load command words into 1/0 device command word
registers. Depending on the device, however, they may
be used for any purpose.

Device addressing in the Datapoint 2200 follows an unusual
convention which the programmer should be aware. Up to
16 devices may be addressed, and the first four (low order)
bits of the address word indicate which address is selected
(zero through fifteen). The second four (high order) bits of
the address word must contain the binary complement of
the first four bits. Some of the sixteen possible addresses
are reserved for specific devices. The remaining ones may
be assigned as needed for a particular application.

3.4

DEVICE ADDRESS ASSIGNEMENTS

DEVICE NUMBER BINARY OCTAL
Cassette Tape 0 11110000 360
Decks
CRT/Keyboard 1 11100001 341
Communica- 2 11010010 322
tions Adaptor
2200P Printer 3 11000011 303
2200T Tape 4 10110100 264
Transport
Unassigned 5 10100101 245
" 6 10010110 226
" 7 10000111 207
" 8 01111000 170
" 9 01101001 151
" 10 01011010 132
" 11 01001011 113
" 12 00111100 074
" 13 00101101 055
" 14 00011110 036
" 15 00001111 017

By way of example, to address (or select) the Communica-
tions Adaptor (and de-address all other devices) the following
instructions are all that is required:

LA 0322
EX ADR

The Input Command

In order to load the A-register with whatever is on the
input bus an INPUT instruction is executed. In addi-
tion to loading the A-register with a new value, it
transmits a strobe to the selected external device to
inform it that the input bus has been read. Generally,
if the status word is on the input bus, the input
strobe is of no interest to the 1/0 device. However, if
the data word from the 1/O device is on the input bus,
then the input strobe informs the 1/0 device that it
has been read by the processor and the device then
clears the read ready status bit.

Command Words

Through the use of the EX COM1 through EX COM4
strobes, it is possible to load command words in an 1/O
device, which causes the device to carry out specific
instructions, or to assume some specific configuration.
An excellent example of a command word structure

is shown in paragraph 8.5 of the Datapoint 2200 Refer-
ence Manual. Each bit of the command word affects
some aspect of the Communications Adaptor configura-
tion and the entire operating mode of the adaptor is
determined by the content of the Command Word
Register at any given time.

When an EX COMn is executed, all of the bits in the
affected command word register are loaded from the
A-register so care must be taken that all eight bits are
accounted for whenever a change is made in a command
word register. Generally, when a word is loaded into a
command word register, it remains there until another
one replaces it. In some devices, (not the Communica-
tions Adaptor) a bit set to one will return to zero
automatically when some function is carried out.

To give an example; suppose it was desired to instruct
the Communications Adaptor to go “‘off-hook’’ and
to ““send 2025 Hz"'. The device would be addressed:

’

’

LA 0322
EX ADR

and then a command word loaded

3.5

3.6

LA 060
EX COM1

’

Where 060 is the octal value of the command word.

The Status Words

The status word provides a means of communicating
to the processor the state of an 1/O device at any

given time. The status word is placed on the input bus
whenever an 1/0 device is addressed, and remains there
until the device is de-addressed or an EX DATA is
executed. If the status of the device changes while it

is selected, the value on the input bus changes with it,
and may be read into the A-register without re-address-
ing the device. Paragraph 8.2 of the 2200 Reference
Manual provides a detailed example of the status word
structure used in the Communications Adaptor.

If it were desired to jump to a subroutine if the “'Ring-
ing Present’’ bit of this status word were to come true
it could be coded as follows:

’

’

4. SIMPLE COMMUNICATIONS ADAPTOR
ROUTINES

In writing any routine for the Communications Adaptor
some simple rules must be followed. Reference should be
made to Section 8 of the Datapoint 2200 Programmer’s
Manual in order to understand the following discussion.

Whenever data is to be transmitted or received through the
Communications Adaptor, the device must first be configured
for the mode of operation to be used. This is generally done
with a prep subroutine which sets the Communications
Adaptor Command Word (EX COM1). The transmit and
receive time base registers (EX COM3 and EX COM2) and

the Character Length Mask Word (EX COM4).

4.1 External Printers
Suppose it is desired to drive an external printer
such as the Datapoint 3300P from the Communications
Adaptor (The Datapoint 2200P connects directly to
the 1/0 bus and does not use the Communications
Adaptor). The 3300P is an EIA RS-232 interface
serial printer, operates at 300 baud (bits/second)

ADDRESS DEVICE

LA 0322
EX ADR
INPUT

ND 040
JFZ

SUBR

,

Character Buffers

An 1/0 device generally has one or more registers or
buffers used to hold characters (also called “‘data”’)
which are being transmitted or received by the device.
Slow devices such as the keyboard usually have only
one character buffer since the processor has plenty

of time to read a character from the buffer before
another is loaded.

Faster devices such as the Communications Adaptor
have a double character buffer for transmitting or
receiving data so that the processor may be reading
(or writing) from one buffer while a data set (or some
other external equipment) is writing (or reading) to
the other buffer. This means that the processor always
has at least one full character time in which to service
the Communications Adaptor between data transfers.

Some even faster devices (such as the 2200T IBM
Compatible Tape Deck) buffer an entire string of
characters (up to 1024 in this example).

8-4

INPUT STATUS WORD
MASK OFF ALL OTHER BITS
JUMP TO SUBROUTINE IF A CONTAINS A ONE

uses an 8-information-bit code, and works best with
two stop units.

Referring to paragraph 8.5 of the Reference Manual
we see that the Command Word can be all zeros. (No
data set is involved and neither transmit or received
data is inverted).

Referring to paragraph 8.6 we see that to transmit
300 baud the transmit time base must be loaded with
377 followed by 000. The receive time base need not
be set since we are only transmitting to a printer.

Referring to paragraph 8.7 we see that the transmitted
character length mask must be 001 (binary) and the
receive character length can be 000 (binary) since we
are not going to receive anything. Bit 6 must be 1 since
we are using the EIA-RS-232 output. The binary value
of this word then is 01000001 (binary) or 101 (octal).

The following subroutine will therefore configure the
Communications Adaptor for the 3300P printer:

PREP1

LA

EX
LA
EX
LA
EX
LA
EX
LA
EX
RET

0322
ADR ADDRESS DEVICE

COoM1 SET COMMAND WORD
0377
COM3 SET TRANSMIT TIME BASE

COM3
0101
comM4 SET CHARACTER LENGTH

This routine need only be executed once at the start

of the use of the printer.

Once the Communications Adaptor is configured a
subroutine must be called to transmit data to the
printer. An in-line subroutine could look like this:

PRINT1 HL MSG
LOOP LA 0322
EX ADR
INPUT
ND 1
JTZ LOOP
LAM
EX WRITE
CcP 015
RTZ
CALL INCHL™
JMP LOOP

LOAD H AND L WITH BUFFER ADDRESS OF MESSAGE TO BE TRANSMITTED

ADDRESS DEVICE

MASK FOR TRANSMIT READY

LOOP BACK IF NOT READY

LOAD A FROM MEMORY IF READY

TRANSMIT TO COMMUNICATIONS ADAPTOR
COMPARE WITH END OF MESSAGE CHARACTER
RETURN IF END OF MESSAGE

INCREMENT H AND L

LOOP BACK IF NOT END OF MESSAGE

The above example assumes that a message has been
stored in a buffer area in memory and is transmitted
to the printer to the exclusion of all other activity.

A more general routine might be to transmit a single
character to the printer and the return to the calling
program for other activity while the printer is printing.
An example of this might be as follows:

PRINT LA 0322
EX ADR
INPUT
ND 1
RTZ
LAB
EX WRITE
OR 1
RET

ADDRESS DEVICE

MASK FOR TRANSMIT READY

RETURN TO CALLING PROGRAM WITH A ZERO IN A REGISTER IF PRINTER
NOT READY

IF PRINTER READY, LOAD A FROM B WITH CHARACTER TO BE PRINTED

MAKE SURE Z-FLAG ISSET TO 0
RETURN TO CALLING PROGRAM

*See end of chapter for frequently used utility routines

8-5

4.2

Before calling this subroutine, B is loaded with the
character to be printed and when the subroutine
returns the Z-flag can be tested to see if the printer
accepted the character.

Non-Automatic Data Sets

Data sets that are not automatically controlled from
the software such as acoustic couplers or external
data sets using private line connections are generally
the easiest to program and will be used as our first
examples of programming for data sets.

For anexample, let us program a Datapoint 2200 to
interface with an acoustic coupler which will be used
to call a time-sharing service and operate full-duplex at
110 baud. (This program will make the 2200 look like
a typical KSR teletype machine). The main program
might be written like this:

START1 CALL PREP2 CONFIGURE COMM ADAPTOR
LA 012 (LINE FEED)
CALL DISPLY CLEAR BOTTOM LINE OF CRT
SCAN1 CALL READ1 INPUTS CHAR FROM COMM
ADAPTOR IF ONE READY
JTZ SCAN2 GO TO KYBD CHECK
HDX CALL DISPLY WRITE CHAR IN A-REG TO CRT
SCAN2 CALL KEYIN INPUTS CHAR FROM KYBD
IF ONE READY
JTZ SCAN1 CHECK COMM ADAPTOR

CALL WRITE1 OUTPUT KYBD CHAR TO
COMM ADAPTOR
JMP SCAN1

This is all there needs to be to the main program. When
starting, a prep subroutine is called to configure the
Communications Adaptor. A scanning loop is then
entered which looks for characters from the Communi-
cations Adaptor or the keyboard and transmits them
to their respective destinations.

If it were desired to operate the program in a half-
duplex mode where the characters are displayed direct-
ly on the CRT rather than full-duplex where the
characters are transmitted back from the remote com-
puter then the last instruction in the main program
should be JMP HDX rather than JMP SCAN1.

In this particular mode of operation the Command
Word would have bits 0 and 4 set to one and all

others set to zero (Paragraph 8.5, 2200 Reference
Manual). The time base mask words would be 375 and
106 for both transmit and receive, and the Character
Length Mask word would be 111 (octal). (Bit 6 is set
to one since the acoustic coupler is an external data
set and uses the EIA-RS-232 interface.)

8-6

The PREP2 subroutines would therefore be coded as

follows:
PREP2 LA 0322
EX ADR ADDRESS DEVICE
LA 021 OUTPUT COMMAND WORD
EX com1 !
LA 0375 SET TRANSMIT AND RECEIVE
EX COM2 TIME BASESTO 110 BAUD
EX COM3 !
LA 0106 !
EX COM2 !
EX COM3 !
LA 0111 SET CHAR LENGTH MASK
EX COM4 TO 11-UNIT CODE
RET

To input characters from the Communications Adaptor
a subroutine READ1 is written. |t will test the Commu-
nications Adaptor to see if a character is ready, and if
so, read it. If no character is found the Z-flag is re-
turned set to 1 and if a character is read it is returned
set to zero. The code is as follows:

READ1 LA 0322
EX ADR ADDRESS DEVICE
IN CHECK READ READY AND
ND 2 RETURN IF NOT READY
RTZ
EX DATA PUT DATA ON INPUT BUS
IN TRANSFER CHAR TO A-REG
ORA SET Z-FLAG IFCHAR =0
RET

To output characters to the Communications Adaptor
a subroutine WRITE 1 is written. It will accept a
character in the A-register, transmit it to the Commu-
nications Adaptor, and return to the main program
when the task is finished with the character remaining
in the A-register. It is coded as follows:

WRITE1 LBA SAVEAIN B
LA 0322
EX ADR ADDRESS DEVICE
RETRY IN TEST FOR TRANSMIT READY
ND 1 AND RETRY IF BUSY
JTZ RETRY
LAB
EX WRITE SEND CHAR OUT
RET

The subroutines DISPLY and KEYIN are shown at the
end of this chapter for information purposes. Since
they do not involve the Communications Adaptor they
will not be discussed here.

8-7

4.3 The High Level Keyer
When the high level keyer is used it operates in every
respect like an external data set except that the Com-
mand Word is set to all zeros. Bit 6 of the Character
Length Mask is set to one.

5. AUTOMATIC DATA SET OPERATION

One of the major features of the Datapoint 2200 is its ability
to operate with the telephone network, providing completely
automatic call origination and answering.

5.1 Automatic DDD Network Call Origination.
Automatic Call origination requires the Communica-
tions Adaptor to be provided with either a 103 or
202 internal data set option. These data sets inter-
face with the telephone network through a Bell
System Direct Access Arrangment (DAA). (See the
Datapoint 2200 Installation Manual for specific
details).

To automatically originate a call the following events
must occur:

a. The DAA must have been on-hook long enough
to assure complete termination of any previous call.

b. The Communications Adaptor must be configured
for an automatic dialing mode.

c. The DAA must be set ’Off-hook’’ and the dial
tone present bit tested for ready (one).

d. The desired number transmitted.

e. The Communications Adaptor configured for
the type of data set used and the connection confirmed
(answered by another data set). (If the call is not confirmed
within a reasonable time, usually about 30 seconds, a retry
is probably indicated about 3 to 5 times).

f. Normal data transmission occurs.
g. The DAA is set to ““on-hook’ as soon as the con-
nection is no longer desired.

The following code (page 8-9) provides an example of a com-
plete automatic call origination sequence up to the point of

reconfiguring the Communications Adaptor for the particular

data set used (Step e. above). The number to be dialed is
assumed to have been previously stored in an ASCII charac-
ter sequence in a buffer area in memory beginning at NUM-
BER. An ASCII '*’ (052) between digits results in an extra
delay between dial pulses when such might be required to
obtain an outside line in a private exchange or for some
other reason. The end of the number is indicated by an
ASCII return (015). For example:

88

NUMBER DC '9%5125551234',015

would cause 9 to be dialed, then a pause, then 512-555-1234
to be dialed then control transferred to the calling program.

All other characters in the buffer area are ignored.

DIAL HL
LA
EX
SUA
EX
DE
CALL
LA
EX
LA
EX
LA
EX
EX
DTONE IN
ND
JTZ
JMP
NEXDIG CALL
LDIG LAM
cp
JFZ
DE
CALL
JMP
CMPR cp
RTZ
cp
JFS
cp
JTS
JFZ
LA
MASK ND
LBA
PLOOP IN
ND
JTZ
LA
EX
LAB
SuU
LBA
DE
JFZ
CALL
JMP

PHNUMB
0322
ADR

COM1
10000
DELAY
0330
coM1
0375
COM3
0
COM3 -
Ccom4

0200
DTONE
LDIG
INCHL

1%

CMPR
10000
DELAY
NEXDIG
015

‘O'+1
ERR1
o
ERR1
MASK
10
017

PLOOP
0360
WRITE

2000
PLOOP
DELAY*
NEXDIG

BUFFER POINTER
ADDRESS DEVICE
SET DAA ON-HOOK

DELAY 5 SECONDS

CONFIGURE FOR DIALING; OFF-HOOK,
INVERT DATA, SEND DIAL PULSES.
SET 100 BAUD (10 CPS) DIAL RATE

WAIT FOR DIAL TONE

’

GET FIRST DIGIT
INCREMENT H AND L

IF THE A-REG CONTAINS ‘*" THEN
CALL 5SECOND DELAY

RETURN IF END OF NUMBER
TEST FOR VALID DIGIT

’

’

CHANGE ZERO TO TEN
MASK-OFF HIGH ORDER BITS
SAVE A IN B

WAIT FOR TRANSMIT READY

SEND DIAL PULSE
DECREMENT PULSE COUNTER

DELAY ONE SECOND

Upon returning from the DIAL subroutine the Communica-
tions Adaptor should be reconfigured for the type of data
set used and the status bit tested for main channel carrier
present. If it is not received within 30 seconds the call
should be terminated and retried. The following code shows
how this could be done for a 103 type data set operating at

150 baud.

*See end of chapter for frequently used utility routines

89

CNFIRM LA 0322

EX ADR

LA o121

EX COM1

LA 0376

EX COoM2 RE-CONFIGURE COMMUNICATIONS ADAPTOR

EX COM3

LA 0

EX COoM2

EX COM3

DE - 60000 SET TIME COUNTER
MCCDET INPUT

ND 0100 RETURN IF MAIN CHANNEL CARRIER PRESENT

RFZ

LAE DECREMENT TIME COUNTER

SuU 1

LEA

LAD

SB 0

LDA

JFZ MCCDET

RET RETURN IF TIME OUT

This subroutine returns with the Z-flag O if the
carrier has been detected and 1 if it has not after
30 seconds.

The first part of a main program using these routines
might be coded as follows:

START LC 5 SET NUMBER OF CALL TRIES
RSTART LAC
SuU 1 DECREMENT CALL COUNTER
LCA
JTZ QuIT EXIT AFTER 5 TRIES

CALL DIAL
CALL CONFIRM
JTZ RSTART

! REMAINDER OF MAIN PROGRAM

’

’

NUMBER DC '9%5125551234',015

5.2 Automatic DDD Network Call Answering.
Answering a call from the DDD network is very sim-
ple and we will not repeat coding examples for this
function. The procedure is as follows:

a. Make sure the Command Word bit 4 is zero, main-
taining the DAA ““on-hook"’.

b. At regular intervals test bit 5 of the Status Word
for ringing present.

8-10

c. If ringing is detected configure the Communica-
tions Adaptor for the type of data set used and set Com-
mand Word bit 5 for off-hook (1).

d. Depending on the type of data set, test for a re-
ceived carrier (main channel in a type 103, main or super-
visory channel depending on initial direction of communi-
cations in a 202 type). If no carrier is received after 30
seconds return to step a. above). If normal carrier is
received then continue with normal communications.

6. FREQUENTLY USED SUBROUTINES

6.1 INCHL
This subroutine is used to increment the value stored
in the H and L register as a double precision (16-bit)
number.

INCHL LAL
AD 1
LLA

LA LAH
AC 0
LHA
RET

6.2 DELAY
This subroutine provides a means for a time delay up
to 30 seconds. Before calling the routine a double
precision number is loaded into the D and E registers
using the DE macro. This number is decremented at
a rate of 2000 counts per second until D and E are
zero and then the subroutine returns to the calling
program.

DELAY LAE
SuU 1
LEA
LAD
SB 0
LDA
JFZ DELAY
ADE
RTZ
JMP DELAY

6.3 DISPLY
This routine accepts a character in the A-register and
displays it on the CRT screen at the current cursor
position and then increments the cursor to the next
position. Characters are always entered on the bottom
line of the screen and the screen is rolled up one line
whenever an ASCII line-feed is received (012). The
character displayed is in the A-register when the
routine returns,

8-11

’

’

DISPLY LBA SAVEAINB

LA 0341 ADDRESS DEVICE
EX ADR
LAB LOAD A FROM B AND
ND 0177 MASK PARITY BIT
cpP 015 TEST FOR CR
JTZ CRDET
cpP 012 TEST FOR LF
JTZ LFDET
cp 040 TEST FOR VALID
RTS ASCIlI CHARACTER
cpP 0177 (RUBOUT)
RTZ
EX WRITE
HL CURPOS INCREMENT CURSOR POS
LAM
AD 1
cP 80
JFS OFDET
LMA SAVE CURSOR POS
LCA SAVEAINC
WCOMP IN TEST FOR WRITE DONE
ND 1
JTZ WCOMP
HL CMDWRD GET COMMAND WORD
LAM
EX COM1
LA 020
LMA RESTORE COMMAND WORD
LAC
EX COomM2 WRITE NEW CURSOR POS
LA 1 MAINTAIN CURSOR ON
EX COoM3 BOTTOM LINE
LAB RESTORE CHAR TO A
RET
LFDET HL CMDWRD
LA 030 SET NEW
LMA COMMAND WORD
HL CURPOS
LCM LOAD CURSOR POS
JMP WCOMP
LFDET HL CMDWRD
LA 030 SET NEW
LMA 030 COMMAND WORD
LC 0
HL CURPOS SET NEW CURSOR
LMC POSITION AND STORE
JMP WCOMP
CURPOS DC 0
CMDWRD DC 020
CRDET EQU LFDET

6.4 KEYIN
This subroutine is used to scan the keyboard and if a
character is present return it to the calling program
in the A-register. If the keyboard switch is held down
during a keyboard entry, bit six of the data word is
set to 0 allowing upper case ASCII characters to be
converted to ASCII control characters (e.g., upper case
J is converted to ASCII line-feed). The subroutines exits
with the Z-flag set to one if no character is input and
set to zero if a character is present.

KEYIN LA 0341 ADDRESS DEVICE
EX ADR
IN INPUT STATUS
LBA SAVE STATUS IN B
ND 2
RTZ RETURN IF READ NOT READY
LAB RESTORE STATUS
ND 4 MASK FOR KYBD SENSE SW
EX DATA
IN READ DATA FROM KYBD
JFZ CCONT JUMP IF KYBD SW SET
ORA RESET Z-FLAG
RET
CCONT ND 077 MASK BIT 6
RET

8-13

SECTION 9

DATAPOINT 2200

OPERATING SYSTEM LISTING

PAGE 4 2o0E OPERATING SYSTEM - @2/85-71 - LOADER H.

. PARITY CHECK THE BOGTSTRAPED DATA

OEEDE D66 B50 B56 GBG CKLOAD: HL PSTART

DO0ZY 36 SE LD $-% INITIALIZE %xOR CHECK
DODEE BHE DIE LE $-$ INITIALIZE CIRCLE CHECK
DoZ1E 387 CKLOOP: LAM GET A BYTE
ooE1l 328 LCA SAVE IT
BoZIZ 253 *RD ACCUMULATE THE XOR PARITY
Go14 322 : LAC
GBT1s & NRE ACCUMULATE THE CIRCLE PARITY
BoEiE @12 SRC
BOBL7 34D LEA
GODEG 326 LAL INCREMENT HL
Dozel B4 Bl HALT: AD 1
BOZES 368 LLA
BOZES @14 DD AC]
GoBE7 358 LHA
ooI3E B 2Ee cp PEND>& STOP WHEN PAST END
P2Z3E 110 @18 oD JHzZ CKLOOP
DBTEE 386 LAL -~
DOZ3E B4 D cP PEND
DOBHE 116 10 D JFZ CKLOOP
DOZHS B3B3 LAD CHECK THE PARITY ACCUMULATIONS
DB 264 ORE
BHZHS 116 222 Do JFZ HALT+1

OIS0 D66 B54 @56 DD PSTART: HL SCLOOP CLEAR LOW CORE TO HALT SHORT LOADS
DTS 358 SCLOCP: LAL DECREMENT MEMORY POINTER
GBEss Bed Bl U 1
BBEET? 366 LLA
ooEes 373 LMD CLEAR THE LOCATION
BBoEL 116 654 OB JZ BCLOGP B0 UNTIL LOCATION ZERO CLEAR

. BOOTSTRAP LOADS THE ZEROTHM FILE

DOBEH D16 DBE BOOT$+ LB] LOAD FILE ZERC !
DIEE 106 188 DD CALL LOADS
SEI7L 108 875 G5 JFC RUN$ EXECUTE IF LOAD WAS OKAY
GBE74 377 HALT
GOE7S 184 264 DD RUNSH JMP BOOTS OVERSTORED WITH STARTING ADDRESS

. 2EBE BINARY IMACGE FILE LOADER

. UPON ENTRY THE B REGISTER 3HOULD CONTAIN

. THE DESIRED FILE NUMBER (POSITIVE?

. FILE LABEL RECORD FORMAT: EB281-8176-N--N

. DATA RECORD FORMAT: @383-@74- <P CP-H L -H -L-DATAH. . .
. THE ©583-&74 INDICATES NUMERIC TYPE DATA

. H AND L DEFINE THE STARTING SDDRESS _

. XP IS THE xCOR PARITY AND CP IS THE CIRCULAR PARITY

. FOR THE CHARACTERS FOLLOWING THE CP

S

WG Doe 36D LOAD® LA LSEE ADDRESS THE CASSETTE MECHANISM

PAGE 2 229E OPERATING SYSTEM - @2-85-71 - LOADER H.3.P.

Gelee 121 Ex ADR
BU1ES 186 322 231 CALL STOP STOP ANY TAPE MOTICN
@olee 155 EX DECK1 SELECT THE 3YSTEM DECK
G017 134 121 205 JP LOAD
gg11e i 38 LORDESH LA G364 ADDRESS THE CASSETTE MECHANISM
wE114 121 ExX ADR
115 186 322 o1 CALL 3TCoP STOP ANY TAPE MOTION
o126 157 EX DECKZ SELECT THE DATA DECK
@izl 186 325 @@l LOAD: CALL DWAIT WAIT FOR DECK SELECTION
Poied 31 LAB THE REQUESTED FILE NUMBER MUST BE
GE1E5 265 ORA POSITIVE
DE12e 1668 278 o@1 JTS ARGH
DE131 @66 E77 256 2o HL RUN$+2 INITIALIZE THE STARTING LOCATION MSB
S0135 &5 XRA FOR “NOTHING LOADED” FLAG
G136 379 LMA
G137 184 G128 Bl JMP START
. SEARCH FOR THE DESIRED FILE
LDOi42 186 368 o1 FWAIT: CALL GETCH WARIT FOR END OF RECCRD
BG145 180 142 SO JC O FHAIT
BE15EG 186 358 2ol FNEXT: CALL RTINIT INITIALIZE THE RE-TRY COUNT
OU15S @26 BoE FREARD: LC & HWAIT FOR DATA OR LEADER
GE1ss 186 325 @1 CALL TWAIT
SO1ES 844 o2 ND z GQUIT IF LERDER
Goies 145 £76 851 JZ ARGH
DB1EE 186 363 @21 CALL GETCH GET THE RECORD TYPE
BE1ra 330 ' DA SAVE IT
BZ171 186 56O ol CALL GETCH GET THE RECORD TYPE COMPLEMENTED
oEl74 @54 377 xR g377 UN-COMPLEMEINT IT
Bei76 273 CPD THE TWC MUST MATCH
G177 110 244 200 JZ FSTOR
a@zge @4 303 cpP T353 IGNORE NUMERIC RECORDS
GEzEd 158 142 0D JTZ FWAIT
GIEET7 B4 347 cpP &347 IGNORE SYMBOLIC RECORDS
Bgel1l 158 142 255 JTZ FHAIT
Pgeld @74 281 cP gzl ELSE IT MUST BE AN EOF RECORD
118 2494 Do JFZ FsTOR
166 360 @51 CALL GETCH GET THE FILE NUMBER
535 LDA SAVE IT
186 365 S5l CALL GETCH GET THE FILE NUMBER COMPLEMENTED
gEd 377 XK G377 UN-COMPLEMENT IT
273 CPD MARE SURE THE TWO MATCH
118 244 s FZ STOP
186 360 @51 CAlLlL GETCH MAKE SURE THIE IS THE END OF THE RECCORD
1HJ 262 DDd JTC HCHNAY :
1ae 322 Gl STOP: CALL STOP STOP THE TAPE
167 Ex Bsp BACK UP OVER THE RECORD
1g6 334 @1 CALL DECRTC DECREMENT THE RE-TRY COUNT
168 278 Sl JTS ARGH QUIT IF TCO MANY RE-TRIES
171 EX SF RE-INITIATE FORWARD MOTION
i@4 153 005 HP FREAD
393 HWCHWAY: LAD SEE IF WE ARE THERE YET

PeEe3 271 CPB

PAGE

BDEBH
a7
PEE27E
BEE75
e 76
BE3E1
D3 1E
25313
BO314
515
Sl
5317
BI53E5
BIZ3EE
25331
o341
BEH3HE
BE3Es
GEE5H
D357
P35
DHISET7
D37
Wo371
237
e373
D374
SE376
L5377
oHEE

2421
BB
BE425
BE430

165
11@

171
1e4
186
161

186 3

166
173

124 3

3608

313

377

z=]
4 3D3

276
347
276
201
2

N
]

(RN

—nos

ol

158

ol
]
4

-l
)

S
Py

223 OPERATING SYSTEM - 8285771 - LOADER H.3.P,

FLIP:

T3
JTZ
CALL
Ex
CALL
LC
CALL
ND
Sz
LLH
LHE
LED
LDA
CALL
JC
CPL
JFZ
cCP
JTZ
cP
JTZ
P
JZ
LAL
xR
SUH
JFZ

iLc

LAH
SRC
LHA
LAl

LCA

JTS
JZ
CALL
Ex

CALL
Ex
CALL
JTS
Ex

FNEXT
NxTREC
3TOP
SE
RTINIT

&
THRIT
>
ARGH

GETCH
BREAD

a377

BSTOP
BRATT
347

BRATT
BSTOP

@377

B3TOP

5]

FLIP

ARGH
BHNATT
3TOP
SF
FNEXT
STOP
REK
DECRTC
ARGH
SB
EREAD

KEEP GOING IF NOT FAR ENOUSH
START LOADING IF THERE

ELSE STOP THE TAPE A
AND START SEARCHING BACKWARD
INITIATE THE RE-TRY COUNT
WAIT FOR DATA OR LEADER

QUIT IF LEARLER
PUSH THE CHAR ONTC THE 3TRCK

GET THE NEXT RECORD CHARACTER

GET THE RECORD TYPE COMPLEMENTED
UN-COMPLEMENT 1T

IT MUST MATCH THE TYPE

IGNORE NUMERIC RECORDS

IGNORE SYMBOLIC RECORDS

ELSE IT MUST BE AN ECF RECORD

GET THE FILE NUMBER COMPLEMENTED
UN-COMPLEMENT 1T

MAKE SURE IT MATCHES THE FILE NUMBER

FLIP OVER THE FILE NUMBER

COMPARE IT TO THE DESIRED FILE NUMBER

IT AINT THERE

WE HAVEN'T BONE BACK FAR ENOUGH
ELSE STOP THE TAPE

AND START GOING FORWARD AGHIN

TRY THAT RECORD IN REVERSE AGAIN
DECREMENT THE RE-TRY COUNT

QUIT IF TOO MANY RE-TRIES
RE-INITIATE BACKWARD MOTION

166
wze
16
1@e
144
1@6

273
118
g74
156
Zr4

g7y
118
186
1687
1@6
zes
3G7
=]
156
256
&7
166

356
o]
325
360
o247

S6F
377

34
347
Hz
3ES
139
21
354
.“;}e
323
g77

z27e

&
~
~l

256 B6E

2205 OPERATING SYSTEM - @2/@5-71 - LOADER H.5.

U
v

. READ IN A DATA RECORD HEADER

NKTREC:
NXTWAT :

NEXTRY

NXTONE £

CALL
Lc
CALL
CALL
JTC
LDA
CALL
xR
CPD
HZ
CcP
JTZ
cpP
JTZ
cP
Jz
CALL
Ex
CAlL
LAM
CRA
JTZ
RET
CALL
LHA
CALL
LLA
CALL
LDA
CALL
LEA
CALL
CPD
HzZ
CALL
JTC
CPE
FZ
LAL
LCH
HL
LME
e
LMD
LHD
LLE
Loc

RTINIT
%]
THAIT
GETCH
NEXTRY

GETCH
as77

AGAIN
2347
NXTWAT
2303
NXTONE
=]
AGAIN
sSTOP
B3p
DWAIT
RUNS+E

ARGH

GETCH
GETCH
GETCH
GETCH

GETCH
g377

AGAIN
GETCH

AGAIN
a377

AGAIN

RUNg+1

RUN$+&

INITIALIZE THE RE-TRY COUNT
HWAIT FOR IRG '

GET THE RECORD TYPE
WAIT FOR DATA

SAVE THE RECORD TYPE

GET THE RECORD TYPE COMPLEMENTED
UN-COMPLEMENT IT

THE TWO MUST MATCH

IGNORE SYEOLIC RECORDS

LOAD NUMERIC RECORDS

QUIT ON ECF MARKER

STOP THE TAPE
BACK UP TO THE END OF THE FILE

MAKE SURE SOMETHING WAS LOADED
ERRCOR EXIT IF NOT

ELSE SET THE ZERC CONDITION
AND QUIT

GET THE PARITY INITIALIZATION VALUES
IN H (xPY AND L (CP2

GET THE STARTING ADDRESS IN DE

GET IT AGAIN FOR A CHECK
IT I COMPLEMENTED THIS TIME

CATCH THE RECORD BEING OVER ALREADY
UN-COMPLEMENT

SAVE THE PARITY ACCUMULATORS »
STORE THE STARTING ADDRESS IN RUNS JUMP

SET STORAGE POINTER TC STARTING ADDRESS

. RESTORE THE PARITY ACCUMULATORS

PAGE

sEeie
GEels
2614
&e15
Go616
20617
1% 5241
BEEE]
GpEs2
SHESS

BEEEY
O" ‘7‘(’ '-,7
DE3E
BEE33
BBESH
SE635
36
637
GHDEHD
BEEH1
157 S
"y
SioeHS
BEE47

Digess -

BOES3
BHESH
BIESE
BEES7
oyt
g
GEEH
PBELS
BEE 76
BO673
BTETS
BBE76
BEE77
BP0
D701
G734
G757
BE710
E713

5716

717

=

255
@iz
256
@12
285
g1&
256
@iz
34T
35

166

146 ;

253
.‘-[7;:')
284
iz
34E
336
(=g
35
&34
16
372
3E5
363

CBEE

BA4
B
350
154
106
@64
B1z
257
264
150
106
167
166
166
171
16+

177

56

360

gl
Q]
~

<1
]

4
IRy
Q]

“n
S
=y N

wd
=

as7
328

276

a47

7775}

81
861

Q] E:[
= &
haalhay

] @
1 &
ey

@1
il

i1

2208 OPERATING SYSTEM - 82/85/71 - LOADER H.5.P.

XRH
SRC
XKL
SRC
XRH
SRC
LEA

ACCUMULATE IN THE STARTING ADDRESS

.- LOAD A RECORD ACCUMULATING PARITY

NXTEYT:

ARGH:

CALL
JTC
LCA
XRD
LDA
LAC
XRE
LEA
LAL
sU
3B
JTS
LMC
LAL
AD
LLA
LAH
AC
ND
LHA
CALL
oR

=

RET
LAD
ORE
JTZ
Ex
CALL
JT3
Eix
P

GETCH
EOR

PEND
PEND >&

ARGH

7]
@37

NXTBYT

NXTREC
STOP
BSP
DECRTC
ARGH
SF

NEXTRY

. UTILITY ROUTINES

éTOP:
DNAIT:

Ex
L

TSTOP
1

GET A BYTE COF DATA
CATCH END OF RECORD
ELSE SAVE IT
ACCUMULATE THE PARITIES

PREVENT LOADING INTO THE LOADER

STORE THE DATA IF ADDRESS OKAY
INCREMENT THE MEMORY ADDRESS

DO MEMORY WRAP-AROUND

GET THE NEXT DATA BYTE
STOP THE TAPE
INDICATE ABORTIVE EXIT WITH CARRY TOGSLE

CHECK PARITY ACCUMULATICONS

TRY THAT RECORD AGAIN

DECREMENT THE RE-TRY COUNT
QUIT IF TGO MANY RE-TRIES
RE-INITIATE FORWARD MOTION
AND TRY THE RECORD AGAIN

STCRP THE TAPE
WARIT FOR DECK READY

PAGE

2725
BE726
o727
BE730
DE733

D734
G737
SG743
DS 744
ST PHE
747

5754
DE75E
) e

[ty =]
LE7e1
Bw7es
LG7cH
SE7E7
SE7 7S
771
La77rs
LE7es
G774
G775
7 7e

D777

7 BT
[NR% 7 1

LONE

&

123
141

z4&

15

27

1ge
gy

1
3
3]

[¢Y]
RN
(0]

W)

NES
~ U

G)
[

oy
S
sy

377
Gis

b o@ied

ST

3}

220 OPERATING SYSTEM - B2/85-71 - LORDER H. S

THAIT:
WAITL:

DECRTC:

£ STATUS
I

NDC

JTZ HAITL
RET

CALL DiWaIT

L5

r
W
=
L}

STATUS

({5
T

HARIT FOR 1.0 CPERATICON
DECREMENT THE RE-TRY CCOUNT

INITIATE THE RE-TRY COUNT
TO TRY FOUR TIMES

GET A CHARACTER

ELSE GET THE CHARACTEKR

RE-TRér COUNT
END COF LORDER LOCATION

PAGE

S
B
eEEEe
EEES
EEEB16
G149
5817
e,
aEees
CEEES
G525
BEDSE
DEEEH
FEEE5
EEE36
EEE37
GEEHE
BEEHE
ERE51
EEE55
EEGED
FEEEH
76
EE7e
CEE7S
5161
e5184
5165
B51E6
5112
E114
5115
BE12E
512y
EELES
E5127
G513
5134
5137
@5141
5144
£5158
BE15E
@515
5157
5163
GE166
EE167
25171
5173
25174

7

g16
186
18E5
aes
14
2436
121
151
&44
1ig

37
Z6iD
31E
113
268
186
ZeE,
1EE
Z66
e
Z2e
186

1l
o5
131
o
BEE
376

ige 3

pip
307
o4

156 1

a74
15
g74
118
66
16
Z26
186
HE
les
586

Bt

D
36F
347

(724}
164
@17
iz
ZHE
341

i
4z
171

=3}
383
151
367
151
121
13
24
155
151

@14
gse
@37

@13

o &
[N
oM

g &
=
~ AN

&
Py
o

@_j
~

@is

200 OPERATING SYSTEM - @2/@5/71 - MAIN SECTICN H.

. OPERATING SYSTEM COMMAND DECCDER

BOCDL.«

OS¢
NOCAT:
NXTCMD:

FNDCMD;

SET
LB
CALL
JC
HL
JMP
LA
Ex
IN

CALL
H-
CALL

LE
Lc

CALL
Ex

i
LMA
CALL

"y
cp
JTZ2
JTZ
CcP
JZ
A
LB
Lc
CAlL.

CALL
LAk
ND
AD
LLA
LEM

1
LORDE
GCODL
BDCMSG
NCCAT
gs41
ADR

4
OS%
ALPFN

MAUTCS
OsMsG
DSPLYS
RD¥YMSG
DSPLY$
CHMOBUF
11
Z8
KEYINg
CRLF
ISPLY$

COoM1
INPTR
CMOBUF

GET3YM
SYMBOL+6

gis
FNDCMD

FNDCHMD

BADCHMD
SYMBOL+3
3

BLKSET
CMDLST
LOCKUP

G375
o

LOAD THE TAPE DIRECTORY

IT LOARDED OKAY
ELSE PRINT CAT UN-LOADABLE MSG

KEYBOARD SWITCH OVERRIDES AUTC-LGARD

RUN ANY AUTC-LOAD PROGRAM

PRINT THE START-UP MESSAGE
PRINT “REALDY
INPUT THE COMMAND

POSITICN THE CURSOR FOR ENTRY
ONLY RCCEPT 28 CHARACTER

DO CRLF AFTER COMMAND ENTRY

KEEP THE CURSCOR OFF

INITIALIZE THE SCANNER POINTER

GET THE COMMAND SYMBOL

CHECK THE TERMINATING CHARACTER

IT MUST BE AN ENTER

A DAsH

OR A SPARCE

USE ONLY THE FIRST THREE CHARACTERS

LOOK IT UP IN THE COMMAND LIST

POINT THE MEMORY PCQINTER TO THE

s

PAGE

5175
200
25291
5212
5213
£5216

G52 74
@277
B5306

5365
PE314

Z5367
25451
5431
457
473
#5541
ZE5E6
EE543
5557
£5566
5617

EELES
5626
#5631
256534
25635
meae
ZEBHD
5641

Fad

fe

166
337

FEE ;

374
o
373
186
14

266
184
265
164
164
266
164
268
164
@36

16
151
184

@11
163
Gil
@il
i1
12
114
118
116

116 1

181
161
@11

27

201
o
e
B
B3
Fore
166

ok

353

i3
115
@13
15
F13
1424
1@
1158
115
iz4
B
213
1&1

&
Py
n

&
fucy
A8}

£20 OPERATING SYSTEM - @2/85-71 - MAIN SECTICN ~H.s.

U
v

PUT THE ADDRESS IN THE JUMP INSTRUCTION

‘COMPUTER TERMINAL OPERATING 3SYSTEM . @E3.€E3. 823, 615

@11.8. 813,11, @22, ‘CATALOG UNLOADABLE " . @15

G111, 3. 13, 11, @22, "FRONT TAPE SCRATCH? . @15

DECK ONE IS LOGICAL FILE ONE

DECK TWG IS LOGICAL FILE THO

CATALGOG I8 LOGICAL FILE THREE

CALL INCHL

L.OM

HL CBI+1

LME

HL CBI+Z

LMD
CBI CALL BARDCMD

JMP NXTCMD

ERRCR MESSAGES

JMP BADSPL
NONAME: HL NONMSG

SMP BADSPL
BADNAM: HL BDNMSG

JMP EADSPL
CATFUL: HL CFLMSG

MP BARDSPL

JMP BRDSPL
BADCMD: HL BCM3G
BADSPL: LD 9]

LE 11

CALL DSPLY$

EX BEEP -

JMP NXTCMD
gsMsG: DC $11.,0.013. 8. 081, 811.23.013. 11

oC
CRLF: oC 211,9,813, 11,815
RDYMSG: DC 211,13, @13, 14. ‘READY . @515
BDCMSG: DC
BONMSG: DC ‘BAD NAME . @15
CFLMS3: DC ‘LIBRARY FULL’ .15
DUPMSG: DC ‘NAME IN USE’. @15
NRGMSG: DC ‘NAME REQUIRED.@15
NONMSS: DC TNO SUCH NAME© . @15
NOAMSG: Do TAUTO NOT SETY.@15
AUTMEG: Do ‘AUTO SET TO
AJTENT: DC ‘ L @15
CBTMSG: DC
BCM3G: [DC HWHAT? . @15
DA1PKT: DC 1

DA TFRBUF

oC 5]
DEePKT: DC 24

Dy TFRBUF

oC &
CATPAK: DC 3

DA CATH

oc ALPFN-CATHW+1
OBUPKT: DC 5

OBUECT FILE I8 LOGICAL FILE FIVE

PARGE

7 8
EEHY

G545
gaeq7
‘?‘,581: i
@5651
gees5e
FEeE4

5655
2566
ZE8Ees
25665
5687
5670
@5672
g5675
571
5754
25745
g5707
E5712
E5713
Z5715

5716
us7z2e
G572z
ZE726
E5731
L5733
5736
E745
5743
EE745
5758
5753
@g5755
85757
5761
egEr7es
g576e5
g5767
Es772
gs774

186

a4

118 Z:

266
357
74
15
46
128
306

155

336

27

gis
518
NI
316 @is3
15
£37 Jl&
172
T
£21 glz
16 E36
ee4 @37
7
235 B12
37
ERHD
a7
172 56
S D14
172
1@ 214
1@1
oz @14
133
oe2 B14
@37
e
B
g1E @14
e G4
&7z
35E ©13

2205 OPERATING SYSTEM - @2/@5/71 - MAIN SECTION H.3.P.

o6
bc

TFRBUF
]

: CALCULATE A PHYSICAL FILE NUMBER FROM CATALOG ADDRESS

NCALC: sU
SRC
SRC
SRC
D
RET,

CAT

z2

. SCAN OFF A NAME AND LOOK IT UP

GETNAMY CALL
GETNAN: CP
JzZ
L
LAM
CP
JTZ
as7 GETNAX: DE
CALL
LAL
ND
JTZ
LAL
ND
RET

GETSYM
@15
SYMBOL

NAMRER
CAT
LOOrUP

GET THE NAME
TERMINATING CHARACTER MUST BE AN @15
GET THE FIRST CHARACTER

THERE MUST BE A NAME
LOCK IT UP IN THE CATALGG

IT ISN'T THERE
SET TABLE POINTER TO BEGINNING GF ENTRY

: OPERATING SYSTEM LEXICAL SCANNING SUBROUTINES

GETSYM: LB
Lc
I37 HL
CALL
Lc
CALL
GETLTR: CP
JTS
P
JFs
GETNBR: LH
Lic
LMA
CP
LCA
cP
JTS
cP
JTS

7
SYMBOL
BLKSET
SYMBOL
GETCH

s Q s
GETERM
‘2741
GETERM
SYMBOL >&

SYMBOL+E
I

GETCH

- E o
GETERM
‘541
GETNBR

BLANK THE SYMBOL STORAGE

INITIALIZE THE SYMBOL STORAGE POINTER
GET THE FIRST CHARACTER
Or BETHWEEN A AND Z

STORE THE CHARACTER

BUMP THE STORAGE INDEX
UNLESS IT I& AT THE END OF THE 3TORAGE

GET THE NEXT CHARACTER
CHECK IT"8 RANGE BETWEEN & AND S

PAGE

577

BEDDE
CEDEE
SEBT7

LS5
ZBE14
SEF15
F6516
BEEED
Geigzl
EaEee
FREES
GEEEE
GEEEE
PEEE0
SEE31
RT3

G634

5635
637

GEHD
GETH1
SET

1 S)
SR T7
o Sty atl
[S

14 |

puonid
578
57

183
550
116
127
122
267
111

265
117
636
184
147
122
341

161

IS]
] g} =
= SR

191 1

@17

121 4

17
125
116
217
125
2eg
165
g2i

185

BEG
125

e

@13
7,215

a37

@15

SIS

g
(]

JMP GETLTR
GETERM: HL SYMBOL+6

LMA

RET

. GET THE NEXT CHARACTER

GETCH: H. INPTR

LAM
LEA

aD 1
LLB
LAM

P @15
RFZ »
L INPTR
U1
LMA

L @15
RET

22w "OPERATING SYSTEM - @2/85/71 - MAIN SECTION H.3.P.

STORE THE TERMINATING CHARACTER

GET THE INPUT POINTER

SAVE IT ,
BUMP IT TO THE NEXT CHARACTER

GET THE CHARACTER POINTED TO
EXIT IF NOT CR
FLSE DECREMENT THE CHARACTER POINTER

AND EXIT WITH ZERC CONDITION TRUE
AND WITH A 815

. SET A BLOCK OF CORE TO THE B REGISTER CONTENTS
. STARTING ADDRESS IN HL: NUMBER OF POSITIONS IN C

BLKSET: LMB

CALL INCHL
LAC

U 1

LCA

JFZ BLKESET
RET

. STORAGE

P

CMDLST: DC ‘CAT
DA CATCMD
DC » “NAM
DA NAMCMD
DC CRUN
DA RUNCMD
D CIN
DA INCMD
DC COUT ¢
DA OUTCMD
pC ‘DEL
DA DELCMD
DC ‘REP
DA REPCMD
DC AUT
D AUTCMD

COMMAND LIST

PAGE

PSP
oo
26518
2ES16
G652
£6526

7‘5“8

2E54E
26546
6558
26551
ZE577
%“bﬂ’ (7}
B6651
26612
26613
26614
BB
G705
G722

TPHHD
7
D7HIE
74457
@741l
G741z
Z7413
7447
7428
@742
G7HES
Gr4EE
D743
G432
G7435
27441
E7443
7446
@452
L7453
T @7HsY
7456
7481
7465
G470
7472
7476
Z7551
G755
L75EE

115
@31
12
agr3
11&
z58
14

g7]

o4z
264
B

o5

1@1
dES
izz
2e3
165

185
T34
52t
@iz

2]

118

GG

g6

=t

&
Puy
~l

YR
e
(AN

1l

@17

5

36

?C\l
)
li

248
245
248
4G
M

15

@15

@15

CINPTR:

200 OPERATING SYSTEM - @2/85/71 - MAIN SECTION - H.

—~
0.

CMDBUF ¢
CATPTR:
CSCPTR:
CATSPS:
ENTSAV:
PFNSEL :
PFNCTR:

EJBEEEERYEEEEEEEERER

TFRBUF: SKIP

e aes ~s&alh&

BADCMD

N

fa

. LIST THE CATALOG

CATCMD: HL
LA
LMA
L
MG
CATLOP: HL
LLM
LH

CATMOR: LE

CATPTR
CAT

CECPTR

CATPTR

CAT>8
CATEND
S
CATEND
CATSPS
&

BLKTFR
CSCPTR

73
CATMOR
CRLF
DSPLY$
11
CATSPS
DSPLY®
CECPTR

CATPTR

o

INPUT SCANNER INDEX

LIBRARY CATALOG POINTER -
CATALOG SCREEN POINTER
CATALOG NAME PRINT STRING
CATALOG ENTRY ADDRESS STORAGE
PHYSICAL FILE NUMBER SELECTED
PHYSICAL FILE NUMBER COUNTER

PARITY STORAGE FOR I-0 ROUTINES
I/0 TRANSFER BUFFER

INITIALIZE THE CATALGOG POINTER
INITIALIZE THE SCREEN POSITION
GET THE ADDRESS OF THE NEXT CAT ENTRY

GET THE FIRST CHARACTER

LISTING IS FINISHED IF IT IS A SPARCE
TRANSFER NAME INTC PRINT STRING

GET THE CURSOR POSITION

SEE IF WE NEED TO 8O TC A NEW LINE

PUT OUT CR LF IF 30

ALWAYS PRINT ON LINE 11
PRINT THE NAME

UPDATE THE CRUSCR POSITICN
UPDATE THE CATALOG ENTRY POSITION

PAGE

7516
7511
E7513
&7514
7517
g7526

g7es7
o7532
&7537
7541
grs4e
7544
B7547
§7553
&7556
@7557
@756l
g7565
S7566
@757
a7574
g757%
7577
E7680
D7E53
76105
Z761&
@7614
7615
7617
G762
U766
27531
L7632
7634
7637
76453
G7E44
S7646
7647
L7653
&7655
7665

L7663
7666

186 <

o4
116
686
3E7
&4
156
&6

186 ?

o
B44

156 ¢

335
356

st S

i)
375

GEE

373

1E6

g1e

13
362
151

74 515

11&
ZeE
357
&74
156

186 :

3@E

ZHY

116
o

i
337

g“ l" A

S
186
14

186 °

&17

=)
oy

556

@1z

&s7

@15~

y D37

&
Py
[¢)]

2280 OPERATING SYSTEM - @2/85/71 - MAIN SECTION H.S.

CATEND:

. CHANGE THE FILE NAME

NAMOMD:

. BRING
INCMD:

LAaM
AD
LMA
JMP
HL
CALL
RET

CALL
CcP
HZ
L
LAM
CcpP
JTZ
DE
CALL
LAL
ND
JTZ
LDH
LAl
ND
HL
LMA
L
LMD
CALL
Cr
Sz
HL
cpP
JTZ
oE
CALL
LAL
ND

i v
HL
LEM
e
LDM
HL
Lc
CALL
MMP

A NEW
CALL

8

CATLCP
CRLF
DSPLY$

GETSYM

SYMBOL
NAMREG
CAT

LOOKLP

>
NONAME

G375
CATPTR

CSCPTR

GETSYM
215

BADNAM
SYMEOL

NAMREQ
CAT
LOCKUP
7
DUPNAM
CATPTR
CSCPTR
SYMBOL
&
BLKTFR
UPCAT
CBJECT

INGET
OBUPKT

s
A

DO NEXT ENTRY
MAKE RCOOM FOR NEXT COMMAND

GET THE OLD NAME
IT MUST BE TERMINATED BY A COMMA

THERE MUST BE A NAME
LOCK IT P

IT MUST BE IN CATALGG
SAVE THE CATALGG POINTER

GET THE NEW NAME
THE NEW NAME MUST BE TERMINATED BY @15

THERE MU

IST BE A NEW NAME
IT MUST NOT AL

READY BE IN THE CATALOS

RESTORE THE CATALOG POINTER

TRANSFER THE SYMBOL INTO THE CATALOG

UPDATE THE CATALGG FILE

FILE INTC THE 3Y5GEM

DO THE PART COMMON WITH HEXCMD
GET TO THE BEGINNING OF THE INPUT FILE

PARGE

gre7z
gre7s

57700
57753
G775
57718
&7712
67713
G7715
g7728
@772y
87727
57731
G7734
67735

L g7737

G742

7743

grrd4
7746
g7
&7753
g7754
G776
G77ee
@775
ari7i
gr7ve
g77es

Gr7re

1025
18T+
18657
18613
10516
18Zez
1865
1@331
16@32
184335

18656
18541
18543
1BBHE,
1656
18053
18656
18E61
18665

12e
&74
153
3@6

112

335

366

44 .

]

68 :

370
&66
26
1@8
(7SS
357
126
375
ey
Z4e
166
ZHe
186
46
186
ZeE
357
186
og?

1&6

a4

158
a74
156
186
186
46
1@6

gi
[

[\
=
o
B

SA

345
ziz

245

g1
225
g33
2e5
175454
225
17
21z

174

3ie
[,5%24
166
o4y
166
2el
245
225

@33

Z I3

&
Py
M

s
]
&

)
~

&
~

&
N
[AN]

]
=~
AN

i

@ Q]
)
~

236
gse

o w
I =
Gow

]
uy
ur

15

&

@13

2205 OPERATING SYSTEM - @2/85-71 - MAIN SECTION H.5.P.

INGET:

INEXT:

CALL
JMP

CALL
CcP

LEA

§FERFgH

R ERERGRES

i

PBOF$
REPFIL

GETSYM
@15

BADNAM
SYMBOL

NAMRER
CAT
LOCKUP

¥
CATFUL

7
DUPNAM

a375
ENTSAY

SYMBOL
&

BLKTFR
ENTSAV

NCALC

1
DiPKT
CPFN$
DiPKT
PBCOF %
D1PKT
PECF$
ENTSAY

DiFNW

. OUTPUT AN ELEMENT

OUTCMD:

BETSYM
B3

OUTALL
£ $:
CUTALL
GETNAN
NCALC
D1PKT
CPFNg

GET THE NAME 3YMBOL
TERMINATING CHARACTER MUST BE @15
GET THE FIRST CHARACTER..

THERE MUST BE A NAME
LOOK UP THE NAME IN THE CATALOG

CATALGG FULL IF FIRST CHARACTER IS #

ENTRY MUST NOT BE IN' THE TABLE
PUT THE NEW NAME IN CATALOG
BUMP MEMORY PCOINTER TO START OF ENTRY

SAVE THE CATALOG ADDRESS

CALCULATE THE SELECTED FILE NUMBER - 1

SAVE THE SELECTED FILE NUMBER
POSITION DECK ONE TC THAT FILE

GET TO THE END OF THAT FILE
S0 READY TO APPEND THE NEW ONE
AFTER THE NEW FILE MARKER RECCORD

GET THE ELEMENT NAME
CHECK THE TERMINATING CHAR
COPY WHOLE SYSTEM TAPE IF #

COPY ALL BUT 03 AND CAT IF %

ELSE DO THE REST OF GETNAM
CALCULATE THE PHYSICAL FILE NUMBER
POSITION SYSTEM TAPE TO THAT FILE

PAGE 44 c2@3 OPERATING SYSTEM - @2/85-71 - MAIN SECTION H.5.P.
1876 @46 225 E36 @13 DE DiPKT

12674 186 B22 838 CALL PBOFS .

18377 186 G673 £823- CALL PRECMD PREP THE DATA TAPE

1B1@2 B46 241 @36 @13 LE OBJPKT POSITION TO THE OUTPUT FILE

iZ1ge 186 @22 @38 CALL PEBOFS

19111 846 225 @36 B13 CUTTFR: DE DiPKT PUT OUT THE FILE

1@115 166 286 &3 CALL SNFR$ READ A RECORD FROM THE SYSTEM TAPE
19128 148 145 @ee ’ JTC OQUTEND CATCH END OF FILE
1@123 306 LA CALCULATE THE LENGTH

1@124 224 PEe U TFREUF

1F126 BEE 244 #56 @13 HL CBUPKT+3 PUT IT IN THE GUTPUT FILE LENGTH
12132 378 LMA

18133 46 241 Z36 13 DE OB PKT WRITE OUT THE RECORD

16137 108 BE6 &30 CALL SBFWS$

10142 14 141 226 MP QUTTFR DO THE NEXT RECCRD

1F145 @46 £31 336 B13 OUTEND: DE DEPKT PUT FILE MARKER 127 ON OUTPUT FILE
18151 @e6 177 LA 127

16153 186 @533 @36 CALL CPFNs$

1P156 © B46 £31 P38 i3 DE LEPKT

18162 186 @44 @38 CALL TFNW$

10165 &7 RET

1@166 @66 172 CUTALL: LL SYMBOL THERE MUST NOT HAVE BEEN A NAME
18175 387 LAM

18171 ©74 S48 cP s

18173 118 £37 B18 JFZ BADNAM

1T176 66 166 E56 B13 HL CBTMSG MOKE SURE THE FRONT TAPE I3 SCRATCH
1@eEe 156 151 @36 CALL DSPLY$

1B285 451 Ex BEEP

1@2@6 377 HALT

18257 DB 366 L& 236 ADDRESS DECK 2

i@e11 124 Ex ADR

18212 186 146 D24 CALL DWAIT

18215 187 Ex DECKE

18216 106 146 224 CALL DWAIT

1gesr 175 Ex REWND REWIND THE TAPE

1PESE 1@6 146 BEY CALL DWAIT

10285 @65 BEE I58 BE6 FHL BCOTS WRITE THE BOOT BLOCK

1P831 @46 DOE @36 B35 DE BCOTE

1@E35 186 213 @83 CALL WRLOK

1@248 186 146 84 CALL DWAIT

10843 66 28T 056 @37 HL SYMBOL +6 SEE IF THIS IS A FULL COPY

1@247 3@7 LAM OR JUST FILES 2 TO THE END

15258 Ee4 B44 sU g

1@258 158 £57 BE5 JTZ OUTSYS START COPYING FROM FILE ZERC

18855 @6 PE2 LA 2 START COPYING FROM FILE THO

1PE57 46 2825 @36 ©13 OUT3YS: DE DAPKT

102683 186 @33 B33 CALL CPFN$

1EEE6 @B 225 36 @13 DE DiPKT

1GE7E 1@6 @E2 G338 CALL PBOFS$

1P875 B66 214 @56 315 HL PFNCTR COPY THE TAPE USING FIRST HALF OF UPDATE
18351 GE6 377 LA -

18383 378 LMa SET UP TO START WRITING FILE MARKERS AT Z
19334 186 346 @21 CALL UPDATE

18357 @6 177 LA 127 TERMINATE THE DATA TAPE

PAGE

18311
18315
16320
18324
18327
16332
16335
16336

18341
1&344
15358
1&35&
12353
18355
1E836E
1@364
1@365
1E@371
1@374
1849
1&gl
1T
1B
1426
1441
12413
18416
142
18425
18431
18432
18436
1@441
18445
1e5E
1457
18465
13464
184687
1E473
18476
18552
18525
1851&
i@s11
18513
18517
1852E
1@8554
1@827

G46
186
246
186
186

i@e
1&4

231
&33
£31

146

146

255
z1z
g1e

16
245
213
244
gez

212

[IRE RN
L E\‘l\ fu
s

-fon G

i
J &
&

AN
3

 uh

N

#

35

@36
T3
236
230
224

&
fuy
G

&
=
Gl

@ey

575y

1

3
3

171

5 @36

g3
gz1

215

o & oW
[
wom W

&
=y
G

o o &
=S B
G wum

]
puhy
[¢Y]

&
(o]

&
facy
[#3]

. REPLACE THE

REPCMD:

REPUP:

REPFIL:

DE
CALL
LE
CALL
CALL
Ex
CALL
JMP

CALL
HL
/D
LMA
sU
CALL
HL
LMA
DE
CARLL
LM
LH
LAM
CcP
JTZ
CP
JdT2
e
HL
LAM
DE
CALL
DE
CALL
LAM
LE
CALL
oE
CALL
DE
CALL
JTC
LAl
sy

LMA
OE
CAalLL
P

D2PKT
CPFN$
D2PKT
TFNWS
DWAIT
REAND
DHAIT
UPCAT
NAMED FILE
GETNAM
ENTSAV
c

-
NCALC
PFNSEL
OB PKT
PBOF &
ENTSAYV

i

CAT>

REPLF

¥
REPUF
CBUPKT
PECF$
PFNSEL

DEPKT
CPFIN&
DePKT
TFNHE
UPDATE
PFNSEL

DiPKT
CPFINg
D1PKT
PBCFg
CBUPKT
SNFR$
REPEND

TFRBUF
DIPKT+3

D1PKT
SEFiNg
REPFIL

| 2206 OPERATING SYSTEM - @2/@85/71 - MAIN SECTION H.3.P.

WITH FILE MARKER 127

REWNIND DECK 2

GET THE FILE NAME
SAVE THE CATALOG ENTRY ADDRESS

CALCULATE THE PHYSICAL FILE NUMBER
SAVE IT

POSITION TO THE INPUT FILE
SEE IF THIS IS THE LAST ENTRY IN THE CATA

DO SPECIAL UPDATE IF IT IS

PGSITION TO THE END OF THE INPUT FILE
PUT OUT A FILE MARKER AFTER IT

AND THEN DO THE NORMAL UPDATE
GET SELECTED FILE NUMBER

POSITION SYSTEM TAPE TO THAT FILE

READ AN INPUT RECORD

CATCH END OF FILE
CALCUATE THE LENGTH

WRITE THE RECORD
DG THE NEXT RECORD

PRGE

18534
18557
18541
1E5H

1E547
1g552
1E5E3
1557
1E563
1EEE7
1E575
18574
1E6iH0
10631
1267
1061&
iEeiz
19613
1G614
1g81&
1621
18628
1EBEY
1B8E27
1@e31
18634
1E63E
JEesl
1E84E
18847
18651
1Eesy
12655
18657
18685
10653
18687
1E872
1675
18731
1&7E2
1G4
1@716
18713
18717

18
1d6 174 @23
oEe 177
186 174 223
194 EB4 223
186 55 @13
=258
@15
@5E
S7E
BEs 171 256
zZZ
110 24 EE1
37
1 213 @21
12@ 215 @21
357
@Ed Dl
376
D Gl
osE @37
SeD
3E7
74 B4
274 252
158 275 @21
ZEE @lE
186 345 @37
357
B74 D
185G 254 @2l
74 252
119 234 P&l
364
375
186 873 GE3
ZHE 241 @38
124 s ZE&
5 U386
7]

186 Bez G333

Ps

ZEGE OPERATING !

SYSTEM - @E-85-71 - MAIN SECTION H.
3z FOLLON THE FILE BY FILE MARKERS
DIFNA 3&. AND 127
127
D1FNHN
IPCAT UPDATE THE CATALOG FILE

DELETE A NAMED FILE

DELCMD:

DELDEC:

DELAUT:

DEILEND:

CALL
LEA
LMA
CrALL
LA
v
SUM
JFZ
LMA
NP
JFE
33U
LMS
~D
LH
[
LA
CP
JTZ
=]
JTZ
Lc
ORI
LAM
JTZ
cP
LLE
LA
LM&
DE
CALL
JMF
LAM
sy
oE
CALL
DE
CALL

GETNAM
ENTSAY

PFNSEL

ALPFN
DELDEC

DELAUT
DELAUT

ey

PRECMD
OBJPKT
PBOF ¢

UPDATE
PFNSEL

i
DiPKT
CPFIN®
D1PKT
PBCF S

GET THE NAMED FILE
SAVE IT
SAVE THE CATALOG ENTRY ADDRESS

CALCULATE THE PHYSICAL FILE NUMBER
SAVE IT

KILL AUTO PTR IF IT 1S POINTING
TG THE FILE TO BE DELETED

DELETED FILE AFTER AUTO-PCINTED FILE
ELSE BUMP DOWN THE AUTC POINTER
TG CORRESPOND TO CATALOG SHIFT

SEE IF AN ENTRY FOLLOWS

TAKE SPECIAL ACTION IF NOT

SHIFT DOWN THE CATALOG

DONE. WHEN NO NEXT ENTRY

OR AT CATALOG STOP ENTRY
CLEAR THE LAST ENTRY YACATED
BY THE MOVE

FREP THE DATA TAPE
POSITICN FRONT DECK TO OBUECT FILE

ANN DO THE NCRMAL UPDATE

SCROG THE LAST FILE

PCSITION THE SYSTEM TAPE TO THE
SELECTED FILE MINUS ONE

[99)

PARGE

18722

15726
18731
16735
18756
1E748
15742
15745

15746
18752
15753
16755
16756
18762
16765
18771
15774
11666
11853
11866
11867
11611
11815
11616
11622
11825
118305
11834
11857
1164
11842
12845
11847
11853
11856
11862
11865

11666
11872
11873
11877
11180

11182

1116
11131
11115
11128
11183
11447

foy

Y]
g
&
1

&
woow

&

]
]

)

G

5
9]

&

&
Gy

346
58001
231
@33
231
ZHY

&
o

)

u

3

220 OPERATING SYSTEM - @2/85/71 - MAIN SECTION H.5.P.

DE
CALL
HL
LLM
LH
LM&
P

.

. UPDATE THE SYSTEM TAPE

UPDATE: HL
LAM
RO
LMA
DE
CAlLL
oE
CALL

UPDAT1: DE
CALL
JATC
LAL
sU

LPDATE: HL

LMA
AD

CALL
DE
CALL
CALL
LE
CALL

DiPKT
PEOF %
ENTSAY

CAT»&

REPEND

FFNCTR
1

DePKT
CPFN&
DEPKT
TFNHWE
D1PKT
SNFRE
UPDATZ

TFRBUF
DEPKT+3

DEPKT
SEFNG
UPDATL
DAPKT
TFNRE

32
UPDATE
52
DEPKT
CPFINS
DEPKT
TFNH$

FFNSEL
PFNCTFR

1
DAPKT
CPFNS
D1PKT
PEOF$
UPDAT1
OBJPKT
PEOF$

POSITION TO THE END COF THE FILE
DELETE THE ENTRY FROM THE CATALOG

TERMINATE TAPE AND UPDATE CATALOG

WRITE THE CURRENT PFN ON DECK TWO
INCREMENT THE CURRENT PFN

WRITE IT ON DECK 2
READ A RECCORD FROM DECK 1

CAHTCH ECF
CALCULATE ITS LENGTH

AND PUT IT IN THE WRITE PARCHET

MWRITE THE RECORD INCLUDING PARITIES
DO THE NEXT RECCRD
REARD FILE NUMBER FRCOM DECK 1

MORE TO 50 IF LESS THAN 3&
ELSE PUT FILE MARKER 3z ON DECK 2

GET THE SELECTED PHYSICAL FILE NUMBER

INITIALIZE THE PFN COUNTER

POSITION TC THE FILE AFTER THE ONE® SELECT

COPY SYSTEM TAPE TO DATA TAPE
POSITICN DATA TAPE TO THE CBUECT FILE

PAGE

1113z
11136
11137
11143
11144
11159
11153
11157
i1i62
11185
11171
14174
11266
i12@3
11z
11zE7
11211
11215
lizie
1izz2
11225
11236
11234
11235
11237
11895
11844
11247
11253
11&56
11287
lized
11264

11267
11272
11274
11877
113EE
11385
11386
113131
14313
11314
11316
11321
11325
113368
11334
11337
11341

2R
s

SEAN
4G
R

ME g

]
]

8
T LA

¢

§ LuE
8 E3E

AR NEONLY]
E J%Fw
= GO

P

@13

@13

Z2@6 OPERATING 3YSTEM - @2/85-71 - MAIN SECTION : H.8.P.

)

UPDATS:

UPDATY:

UPDATE:

| LOAD AND EXECUTE @ FILE

FUNCML:

RUNCBU

AD
LMA
oE
CALL
Le
CALL
LA
cP
JTE
P

CALL
cP
JTZ
CARLL
CAlL
LEA
JMP
L
LAM
G
JZ
CE
CALL
DE
CALL
LB
P

PFNSEL
PFNCTR

DiPKT
CPFN$
DIPKT
PBOF $
UPDATH
DIPKT
TFNW$E
LePKT
SNFRE
UPDATE

TFRBUF
DIPKT+3

DiPKT
SBFINE
UPDATH
PFNCTR

1

D1PKT
CPFN$
DEPKT
TFNRS

UPDATS
REPEND

GETSYM

By
RUNCBJ
GETNAN
NCALC

MAUTOS
SYMEOL

BADNAM
CEPKT
PEOF $
DEPKT
BSP%

1
MALTZS

RE-INITIALIZE THE FILE COUNTER

POSITION LECK 1 TG SELECTED FILE

WRITE A FILE NUMBER ON DECK 1
READ A RECCRD FRCM DECK 2

CATCH EOF

CALCULATE IT 3 LENGTH

PUT IT IN THE WRITE PACKET

WRITE THE FILE

INCLUDING THE PARITY CHARACTERS
DO THE NEXT RECORD

INCREMENT THE CURRENT PFN COUNTER

CHANGE THE PACKET NUMBER
READ THE NEXT FILE NUMBER FROM DECK 2

DO THE NEXT FILE IF IT IS LESS THAN 32
ELSE TERMINATE TAPE AND UPDATE CATALOG

GET THE FILE NAME
LOAD OBJECT FILE IF #
ELSE LOOK UP NAME
CALCULATE THE PFN
RUN IT

MAKE SURE THERE

WAS NO NAME BESIDES ¥

PCSITION THE FILE FOR THE LUORDER

RUN THE CBJECT FILE
ON THE FRONT DECK

PARGE

11344
11350
11351
11352
11355
113608
11362
11363
11364
11365
11357
11373
11574
11577
11431
11482
11433
11484
1146
11457
11411
11415
11417
11422
11426

11431
11435
11436
11437
11443
11446
11452
11453

11454
11463
11455
11467
11472

11473
11477
11582
115@3
11524

e

. 8y
3

N
< U1
1~ N

2§

'
=3

273

[y
N
G

171

1268
270
171

[CYRAN]

R
G

=6
g1z

WIS

83

(57
S3E

~
|

YR
b

g}

@37

3]
s
W

> 13

&
=
G

&
1
~J

&
ey
Gl

&
=
G

2@ CPERATING SYSTEM - @2-85-71 - MAIN SECTION

. SET THE AUTO-LOAD POINTER

AUTCMD: HL
LAM
CRA
JZ
CALL
suU
SRC
SRC
SRC
AD
HL
LMA
JMP
AUTDUF: sU
sLC
SLC
sLe
LA
iH
DE
Lc
CALL
JMP

ALPFN SET THE POINTER
AUTDUP ERRCR IF ALREADY SET
GETNAM ELSE GET THE NAME

CAT CALCULATE THE FILE NUMEER
ALPFN AND SET THE POINTER

UPCAT AND UPDATE THE CATALOG FILE
2 CALCULATE TABLE ADDRESS

AT

G

AUTENT

A

BLKTFR PUT TARBLE ENTRY IN STRING
AUTMSG

BADSPL AND PRINT IT

. RESET THE AUTO-LOAD POINTER

MANCMD: HL
LAM
ORA
0
JTZ
oy
XRE
LMA

ALPFN

NOAMSGE
BADSPL AUTO IS NOT SET
ALPFN

. UPDATE THE CATALCS FILE

UPCAT: LDE
CALL
oE
CALL
RET

CATPAK
PBOFE
CATPRK
SNFWE

. PREPARE A BLANK DATA TAPE

PRECMD: HL
CALL
Ex
HALT
DE

CBTMSG WAIT FOR BLANK TAPE
DSPLY$
BEEP

D2PKT REWIND THE DATA TAPE

3¢

PABE

11518
11518
11517
11821
11524
11536
11533
11537
11541
11544
11558
11855
11855
11581
11564
11572
11573

11574
11660
11683
1167
11612

11813
11814
11615
11818&
11617
11821
11624
iiegs
11626
11e27
11631
11832
11633
11635
11636
11637
11642
11643
1ie44
11847

11656
11653
11857

20
106 @36
46 231
BEE D
186 @33
e 231
186 44
46 231
177 I 79
186 B33
48 231
186 44
e 177
248 231
186 &33
e 231
186 44
267
e 225
186 @53
248 225
186 D44
57
163
317
123
1&1
44 G1E
15@ £415
S@1
127
365
D4 &1
563
3E5
14 &
35
273
118 214
3@5
274
118 214
257
186 3
48 51
106 @36

R
o]

&
uy
G

&
pac
G

]
facy
(05

]
fuy
Gl

[
ey
Y]}

&
iy
9]

&
fuy
Y]

&
facy
Gl

2200 OPERATING SYSTEM - @2/85-71 - MAIN SECTION

. WRITE
biFNH:

. WRITE
QBLGK:
WINEXT ¢
NHAIT:

CALL
DE
LA
CALL
DE
CALL
DE
LA
CALL
OE
CAaLL
LA
LEe
CALL
DE
CALL
RET

TR
DEPKT
9]
CPFN$
DEPKT
TFNH$
LDEPKT
1
CPFN®
LePKT
TFNW$
127
DEPKT
CPFN$
LCEPKT
TFNHNE

WRITE A FILE NUMBER & ON IT

WRITE A FILE NUMBER 1 ON IT

WRITE A FILE NUMBER 127 ON IT

A FILE MARKER ON DECK 1

oE
o
LE
CALL
RET

A BLOCK TO TAPE

EX
LEM
Ex
IN
ND
JTZ2
LAB
Ex
LAL
AD
LLA
LAH
AC
LHAS
CPD
FZ
LAL
CPE
HzZ
%ET

DiPKT
CPFN$
DiPKT
TFNH$

WEK
STATUS

Gi@
HHNAIT

HRITE
1

g

HNEXT

HNEXT

FIRE UP THE WRITE
GET THE DATA CHARACTER
WAIT FOR WRITE READY

WRITE THE DATA CHARACTER
BUMP THE MEMORY POINTER

SEE IF AT END OF BLOCK YET
NO CHANCE

TRY LSB
ELSE WE ARE DONE

3B TAPE INTO THE LIBRARY

CALL
oE
CALL

INGET
DEPKT
TRHW$

DO THE PART THAT 18 LIKE INCMD

w

PARCE Z1 © 2208 OPERATING SYSTEM - @2/85-71 - MAIN SECTICON H.5.P,

11662 186 157 @24 HEXASR: CALL HEXRBK SEARCH FOR THE FIRST STARTING ADDRESS
11665 @66 BE7 LL HEXBUF+1
11667 387 LAM
11676 &7 G653 P 4t THE FIRST CHARACTER MUST BE A +
11672 116 262 @23 . FZ HEXASR
11675 @66 G186 HEXGAD: LL HEXBUF+2 GET THE STARTING ADDRESS
11677 186 256 Ee4 CALL HEXCON
11782 148 123 @24 JTC HEXERR IT MUST BE FOUR GOOD HEX CHARACTERS
11705 321 LCB | SAVE MSB
11706 166 256 &24 CALL HEXCON
11711 148 123 @4 JTC HEXERR
, LL HEXADR SAVE THE ADDRESS
LMC
LL HEXADR+1
LMB
HEXREC: CALL HEXREK LOAD A RECORD
LL HEXBUF GET THE FIRST CHARACTER
LAM
cP @iz IT MUST BE A LINE FEED
FZ HEXERR
L HEXBUF+1 GET THE SECOND CHARACTER
LAM
oP IGNORE RECORD IF
JTZ HEXREC
cP 4° GET ADDRESS IF +
JTZ HEXGAD
£ CP H#” END OF FILE IF #
JTZ REPEND
LL HEXWEP CONVERT THE HEX IN HEXBUF
LEM TO BINARY IN HEXWEF

L HEXBUF+1

2 HEXCL: CALL HEXCON
ez JTC HEXEC QUIT IF NON-HEX CHARACTER
AL ‘ SHAP E AND L
LLE
LMB STORE BINARY NUMBER
LAL INCREMENT AND SHAP L AND E
AD 1
LLE
LEA
@es JMP HERCL DO NEXT HEX PAIR
HEXEC: LAM TERMINATING CHAR MUST BE ©23
CP BE3
BET7 &Y JTZ HEXWRT
b @53 CP “t UNLESS THIS BLOCK IS TO BE CONTINUED
123 Ge4y JZ HEXERR ;
114 L HExWBP IN WHICH CASE. JUST UPDATE
LME THE WRITE BUFFER POINTER

12824 164 322 @ES
12gz7 866 114 HEXWRT: LL HEXWBP ELSE RESET THE WRITE BUFFER PTR
12631 ©36 183 LD HEXWBF+4

:
:
(o]}

PARGE 22 220 OPERATING SYSTEM - @E-@5/71 - MAIN SECTION H.5.P.

12833 373 LMD '
12034 dos S [HEXADR PUT. THE STARTING ADDRESS IN BUFFER

12636 307 LAM

12837 @66 117 LL HEXWBF
12641 378 LMA

128492 @54 377 xR @377
12644 BEE 121 ; LL HEXWBF+2
12646 375 LMA

12047 BE6 BIES LL HEXADR+1
i@l 3E7 LAM

12052 BE6 128 . LL HEXWBF#1
18854 378 LA

12055 @54 377 xR @377
1E@E7 @66 122 LL HEXWBF+3
12@61 378 LMA

12668 304 LAE CALCULATE THE CORE BLOCK LENGTH
12663 84 185 SU HEXWEF+4
12865 348 LEA

12066 BBE BE5 LL HEXADR+1 UPDATE THE CORE ADDRESS
12676 @7 LAM

12871 24 ADE

12672 378 LM

128575 @66 BEH LL HEXADR
12675 367 LAM

12676 D14 G AC @

12106 378 LMY
12191 LAE CALCULATE THE WRITE BLOCK LENGTH
4 COMPENSATE FOR HL 3IVEN TWICE
. @55 285 HL HEXPRT+3 PUT THE LENGTH IN THE PACKET
36

GES oe HE=PKT WRITE THE BUFFER

1 838 CALL 3NH$
> 225 MMP HEXREC AND DO THE NEXT RECORD
24 HEXERR: CALL DRAIT TRY THAT RECCRD AGAIN
Ex B3P
5 ged CALL DWAIT . ,
LA @341 UNLESS KEYBOARD SWITCH DEPRESSED
EX ADR
IN
ND_
a3 JTZ HEXREC
221 P REPEND
DWAIT: LC 1 DECK WAIT LOOP
THAIT: Ex STATUS
IN
NDC:

JTZ THWAIT
RET

12157 &g 3685 HEXRBK: LA G366 MAKE SURE THE CASSETTE 15 ADDRESSED
12461 121 Ex ADR

1zi6E 166 146 24 CALL DWAIT READ A BLOCK

PAGE

12165
1z16€
12171
12175
12176
12296
1225
122E5
1221E
12211
1zz1e
12214
12218
izzie
12226
1zz21
i2zz4
12226
12231
12233
12236
12249
12243
12245
12258
12251
12852
12254
12285

12256
12287
1ze62
12265
1zze4
12265
12&66
1ze87
12276
12271
12273
12274
12275
12382
12301
123@e
1233
12364
12386
12387

12400

116

375

o4
‘Sb“ Ii
184

ze4
160
@74
160
ze4
168
@74
126
26
o7
ze4
z12
257

387
186
243
@12
@12
@12
gie
318
386
368

148
B,

@24
158
e
146

b 177

178

g

252

[

~H§@&
! =
N &

Y
0 &Y

\]

D51

P

i1

St
mn

Ex

CALL

HL
EX

;LD
CALL

ND
I a4
Ex
IN
ND
LMA
LAL
AD
LLA
P
JTS
CcP
JTE
suU
JTs
cP
J8
ORA
RET
OR
SRC
RET

LAM

CALL

RTC
SRC
SRC
SRC
SRC
LEBA

AD
LAM

CAalL

RTC
CKRB
LBA

LLA
RET

TP

DECKZ
DWAIT
HEXBLF
zey
TWAIT
zel
DWAIT
DATA

g177

< z <

HERLOW
HEXCEN
16

HEXGET

s

HEXGBET

223 OPERATING SYSTEM - @2/85/71 - MAIN SECTION

FROM DECK 2

INTC HEXBUF

WAIT FOR IRG OR DATA
QUIT IF IRG

ELSE PUT DATA INTO BUFFER
STRIP THE PARITY

BUMP THE MEMCRY POINTER

CONVERT HEX TO 4-BIT BINARY

CLEAR THE CARRY TISGLE
SET THE CARRY TIGGLE

GET THE FIRST CHARACTER
CONVERT IT TO BINARY

QUIT IF NOT HEX

PUT IT IN LEFT HALF OF BYTE

SAVE IT
BUMP THE MEMCORY POINTER

GET THE SECOND CHARACTER
CONVERT IT TO BINARY

QUIT IF NOT HEx

MERGE THE TWO HALVES

LEAVE RESULT IN B REBISTER
BUMP THE MEMORY POINTER AGAIN

e

PAGE

124056
124451
1243
124034
124486
12514
12515
12517
12523
12723
15860
i.ﬂﬁyﬁ -~
1406

DONE

=

1
117 @&5
75
G R

123
o5 B0
BO0 DD BT B0

22 OPERATING SYSTEM - @2/85-71 - MAIN SECTION

HEXPKT:

HEXADR:
HEXBUF :
HEXWBF «
HEXWBE ¢

BOOTS:
BOCTE:

HEXWBF

&

o

75
HEXINBF +4
2.9

.10, 5.0
128

=S

213008
1602
%

CUTPUT FILE IS LOGICAL FILE ONE
WRITE FROM WRITE BUFFER

CURRENT CORE ADDRESS
WRITE BUFFER POINTER
ROCOM FOR PARITY CHECKS

ROOM FOR H AND L
ROCM FOR THE DATA

ROOM FOR THE BOOT BLOCK

[§7)

PAGE

14856

14505
14663
PR
14011
14@14
14317
14622
1425
14536
14533

14736
14841
L4

14647

14852
14855
14585
14EES
L4EaE
I’u"7(.’7
14872
14574
14875
14185
141@e
14155
141&7
14112
14114
14117
1ldizz
141E3
14184
14125
14127
14136
14131
14133
14134
14137
14142
14143
14144
14145
14147

186
16
166
1&6
338
186
54
273
11
a4
15
G4

156.

G744
11&
16
356
37
i

355
152
g27
363
577

£17
ZB1

BES §

347
74
5E3
217
3E3

&1

220 COPERATING SYSTEM - @2/@85-71 - FILE HANDLING ROUTINES H.s

SET @14066
: OPERATING SYSTEM ROUTINE ENTRY POINT TABLE

ENFR&: JMP SNFRX
SSFR$&* JMP S5FRX
SBFWE: JMP SBFX
SNFNE# JMP SNFIHX
SSFWEE JMP S5FX
PECF$# JMP PEOFX
PBOF$% JMP PBOFX
S SPE JMP SPX

CPDNE% JMP CPDINX
CPFN&¥ JMP CPFNX

TRWEE JMP TRWX
TFNRS¥® JMP TFNRX
TFNWEF JMP TFNHX
ERRS® MP ERRX
. SERIAL NUMERIC FILE READ

SNFRX: CALL RTCI INITIALIZE THE RE-TRY COUNT
SNFRS: CALL GETPKT GET THE PACKET PARAMETERS

CALL RBK$ START READING THE RECCORD

CALL READS GET THE RECORD TYPE

LDA SAVE IT .

CALL READS BET THE RECORD TYPE COMPLEMENTED
xR ag377 UN-COMPLEMENT 1T

CPD MAKE SURE THEY MATCH

HZ ENFRR TRY AGAIN IF THEY DON'T

CcP [or=ank SEE IF IT I8 A FILE MARKER

JTZ FERCT QUIT IF IT I8

CP gs4q7 SEE IF IT 18 A SYMBOLIC RECORD
JTZ TERCT TYPE ERRCOR IF IT IS

CP T3E3 . MAKE SURE IT 18 A NUMERIC RECORD
CJFZ ENFRR

CALL READS GET THE PARITY CHECKS

LDA

LMA STORE PARITY IN FIRST BYTE OF BUFFER
LAL

RD 1

LA

LAH

AC 7]

LHA

CALL READS$

JTC BNFRR TRY AGAIN IF RECORD OVER ALREADY
LEA

LMA STORE PARITY IN SECOND BYTE OF BUFFER
LAL

AD 1

LA

PAGE 28 2E@E TPERATING SYSTEM - @2/85-71 - FILE HANDLING ROUTINES H.3.P.

14156 385 LAH

14151 B14 e o o

14153 358 , LHA

14154 186 363 ©32 SNFRL: CALL READS READ THE REST OF THE RECORD

14157 148 285 B35 JTC SNFRE QUIT IT AT END OF RECORD

14162 370 LMA STORE THE BYTE OF DATA

14165 328 LCA SAVE IT

14164 253 XRD ACCUMULATE THE PARITIES

14165 338 LDA

14166 322 LAC

14167 254 XRE

14178 @12 SRC

14171 348 LEA

14172 386 LAL BUMP THE MEMORY POINTER

14173 B4 B51 AD 1

14175 360 LLA

14176 305 LAH

14177 @14 GO AC B

14261 350 LHA \

14282 184 154 B36 JMP SNFRL DO THE NEXT BYTE

14205 303 SNFRE: LAD CHECK THE PARITY TOTALS

14206 264 ORE

14267 116 217 @58 JFZ SNFRR TRY AGAIN IF THEY ARENT BOTH ZERO

14212 186 B16 B33 CALL WAITS ELSE WAIT FOR THE OPERATION TO BE COMPLET

14215 258 XRA CLEAR THE CARRY TIGGLE

14216 @87 RET AND RETURN

14217 186 324 ©31 SNFRR: CALL DECRTC BACK UP AND TRY AGAIN

14222 126 @55 B30 FS SNFRS LESS RTC 1S NEGATIVE

14225 1@4 188 B32 JMP PEACT TN WHICH CASE. PARITY ERROR EXIT
. SERIAL SYMBOLIC FILE READ

14836 186 355 31 SSFRx: CALL RTCI INITIALIZE THE RE-TRY COUNT

14233 186 152 @32 SSFRS: CALL GETPKT GET PACKET PARAMETERS

14236 186 @27 833 CALL RBK$ START THE READ

14241 186 363 232 CALL READS GET THE RECORD TYPE

14244 338 LDA SAVE IT

14245 186 363 252 CALL READS GET THE RECORD TYPE COMPLIMENTED

14256 @54 377 xR @377 UN-COMPLEMENT IT

14252 273 CcPD THEY MUST MATCH

14253 116 365 258 JFZ SSFRR

14256 @74 201 P gesl QUIT IF IT IS AN EOF RECORD

14260 156 @62 B3E JTZ FEACT

14263 @74 303 P B3B3 TYPE ERROR IF IT IS A NUMERIC RECORD

14265 158 @74 @32 JTZ TEACT

14276 @74 347 CP 3347 MAKE SURE IT IS A SYMBOLIC RECORD

14272 110 365 238 FZ SSFRR

14275 186 365 B2 CALL READS INITIALIZE THE PARITY ACCUMULATORS

14306 338 LbA

14381 186 363 232 CALL READS

14304 340 LEA

14385 146 365 @36 JTC SSFRR TRY AGAIN IF THE RECORD IS OVER ALREADY

14316 186 363 £52 SSFRL: CALL READS READ THE REST OF THE RECORD

)
)

14313 145 356 956 JTC SSFRE QUIT IF THE RECORD IS ENDED

PAGE

14316
14317
14322
14323
14325
14326
14327
14338
14331
14332
14333
14334
14335
143386
14345
14341
14342
14344
14345
14358
14352
14353
14354
14355
14360
14363
14364
14365
14378
14373

14376
1441
14482

14485
14416
14413
14415
14417
14420
14425
14426
14431
14433
14436
14444
14443
149444
14447

26g
138
326
244
376
32

33E
322

g1z
]
366

364
35
14
358
164

37
@3
2e4
118
186

186
120
164

186
342
184

357
186
118
166
36
1de
gs6
186
337
186
326

365
177

21

318
@15

365
@16

324
233
12

152
@ee

152
277
775}
i
213
17
34
383

g74
oge

s g

g5E

e

iR

2208 OPERATING SYSTEM -~ @2/@85-71 - FILE HANDLING ROUTINES H.

SSFRR:

v

. SERIAL BLOCK FILE WRITE

SBFWX

. SERIAL NUMERIC FILE WRITE

SNF KX

SNFHL:

ORA
JP
LCA
ND

LMA
LAC
XRD
LDA
LAC
XRE

3

AD

$o350RE

LAD

Jz
cAaLlL
XRA
RET
CALL
Js
P

:

CALL
LEC
P

CALL
CALL
LD
LE

: LAM

CALL
JzZ
CALL
LD
CAalLL
LD
CALL
LDM

iy

35FRR
8177

SSFRL
215

S8FRR
WAITS

DECRTC
33FRS
PEACT

GETPKT
SEFWE

GETPKT
SAVHL
9]

]

PARGEN
SNFIWPG
WEKE
Z303
WRITES
&74
WRITES

HWRITES

(47}
R

CHECK THE VERTICAL PARITY
TRY AGAIN IF IT IS FALSE
SAVE THE BYTE

STRIP THE VERTICAL PARITY
STORE THE BYTE
ACCUMULATE THE PARITIES

BUMP THE MEMORY PCOINTER

DO THE NEXT CHARACTER
TERMINATE STRING WITH AN @15

CHECK THE PARITY SUMS

TRY AGAIN IF BOTH ARENT ZERC

ELSE WAIT FOR THE CPERATION TO COMPLETE
CLEAR THE CARRY TOGGLE

AND RETURN

BACK UP AND TRY AGAIN

UNLESS RTC IS NEGATIVE

IN WHICH CASE. PARITY ERROR EXIT

PUT THE LENGTH IN THE E REGISTER

GET THE PACKET PARAMETERS

SAVE THE BUFFER STARTING ADDRESS
INITIALIZE THE PARITY ACCUMULATORS
CENERATE THE PARITY TOTALS

START UP THE HWRITE

WRITE QUT RECORD TYPE NUMERIC
WRITE CQUT ITS COMPLEMENT

WRITE GQUT THE REST COF THE RECORD
BUMP THE MEMORY PCINTER

PAGE

14456
14452
14453
14454
14456
14457
14466
14462
14465
14466
14471

149472
14475
1455E
14582
14564
14585
14547
14512
14513
14518
14526
14521
14523
14526
14531
14534
14537
14544
14544
14548
14551
14553
14554
14556
14557
14566
14563
145685
14576
14573
14574
14575
146856
146861
14883
1464
14665
14&e47
14816

o

@14

34
zey
34
116
166
2a7

186
146
36
248
357
a4
158
263
17

37
(7=
186
184
1@6
186
36
16
36
186
48
34
ey
SHI
3@7
12
a4
118
186

333
186
366

360
35
g14
35
124

ig1

265

152
277
GG
o]

15
131

126
205

%4
213
184
232
a34
347
74
a3
Gig2

1% 54

174
@15
174
16

e

{27 7]
153

a32
a3z

@31
@31
@31
@31

@31
a33

a31
31
a33

@33

z31

Z22@6 OPERATING SYSTEM - 82/85/71 - FILE HANDLING ROUTINES H.5.P.
Aab 1
LLA
LAH
AC 0]
LHA
LAE DECREMENT THE BUFFER LENGTH COUNT
suU 1
Z SNFHL
CALL HWAITS WAIT FOR THE OPERATION TO BE COMPLETE
RET

. SERIAL SYMBOLIC FILE WRITE

SSF WX

SSFHPG:

SSFHPT:

SSFHPS:

CcAaLL
CALL
LD
LE
LAM
CcP
JTZ
ORA
JTP
xR
LMA
Lc
CALL
JMP
CALL
CALL
LD
CAlLL
LD
CALL
LE

3

GETPKT GET THE PACKET PARAMETERS
SAVHL SAVE THE 3TART OF BUFFER ADDRESS
& INITIALIZE THE PARITY ACCUMULATORS
&

GENERATE THE PARITY TOTALS
a1s CHECK FOR END OF BUFFER
SEFWPS

GENERATE THE VERTICAL PARITY BIT
SSFHPT
Gess

WRITE OUT CORRECTLY PARITIED CHAR
z FAKE OUT PARGEN LENGTH COUNTER
PARGEN
SSFHPG
PARSTO
WBK$ START P THE WRITE
a347 . PUT OUT RECORD TYPE SYMBOLIC
HWRITES®
G35 PUT OUT THE TYPE COMPLEMENTED
WRITES$
g DONT CHECK FOR @15 IN 43T TWO PARITY BYTE
1 DECREMENT FUDGE COUNTER

GET CHARACTER FROM BUFFER
SSFNAN EREG NOT NEG S0 DONT CHECK FOR @15
@15 CHECK FOR END OF STRING
S5FN NOT END OF STRING SO WRITE IT OUT
HWAITS ITS A @15 50 END OF STRING

S0 RETURN.

WRITE THE BUFFERED CHARACTER
WRITES
. BUMP THE MEMORY POINTER
&
SSFHL DO THE NEXT CHARACTER

PAGE

148613
14614
14615
14616
14617
14620
146821
146z£2
14625
14626
14630
14831
14632
14633
14637
1464445
14842
14643
14644
14646
14647
14652
14853
14854
14855
14664
14663
14666
14887
14872
146873
14877
14700
14784
14785
14718
14711
14713
14714
14717
14722
14723

14724
14727
14732
14736
14737
14741
14742
14748
14747

318
253
330
31

@12
54

1686 1

38
ey
326
13
366

227

320
3Ee
ey
320
18
34

345

184 :

186
186
374
186
373
266
347

337
16
32

346
126
186
250
2657

186
166
266
357
=
37

B(-\ t—~ I

347

@41
216
365

a1

e55

&3 E ¢

g6 @32

@31
32
a3e

736

58 @32
a3z

@36
o368

@33

56 831

258 @32
@56 832

2208 OPERATING SYSTEM - 22/@5-71 - FILE HANDLING ROUTINES H.3.P.

PARGEN:

PARSTG:

P3LOOP:

PSTORE:

. BACK UP AND

DECRTC:
DCORTC:

LBA
XRD
LDA
LAB
XRE
SRC
LEA
CALL
LAC
su
LCA
RrRFz
LAL
HL
Sm
ND
LCA
LAC
sU
LCA
JTS
LAE
sLC
LEA
JMP
CALL
CALL
LME
CALL
LMD
HL
LEM
HL
LDM
CALL
LAC
AD
LEA
CALL
CALL
XKRA
RET

CALL
CALL
H-
LAM
su
LMA
HL
LEM
HL

SAVE THE BYTE

INCHL
DECREMENT THE BUFFER LENGTH COUNT
1
DO NEXT BYTE IF NOT ZERO
CALCULATE NUMBER OF SHIFT MOD &
HLSAV+1
2
SHIFT CIRCULATING PARITY BACK THAT MANY
1
PSTORE
PSLOOP
RESHL STORE THE CIRC. PARITY
DECHL
DECHL STORE THE XOR PARITY
PKTADR GET THE PACKET PARAMETERS AGAIN
PKTADR+1
GETPKT
INIT THE BUFFER LENGTH
z COMPENSATE FOR THE THO PARITY ACCUMS
PUT LENGTH IN E-REGISTER
DECHL BACK UP BUFFER POINTER TO PARITY ACCUMS
DECHL

RETURN WITH ZERO CONDITION TRUE

DECREMENT THE RE-TRY COUNT

BK3P$ BACK UP ONE RECCORD

HWAITS WAIT FOR IT

RTC DECREMENT THF RE-TRY COUNT
1

PKTADR STORE THE PACKET ADDRESS
PKTADR+1

14753
14754

14755
14761
14763
14764

147685

14766
14771
14774

14775
1528
1523

1564
15057
15012
15015

15216
15817
15826
15821
15@e5

1563
1531
15832
15533
15637
15844
1564

15244
15646
15051
15852
15853
1554

@66
D6,
378
o7

186
a7

186
186
257

186

328
353
364
46
307
26l
166
g4
126

360
363

365 @56 @31
23

152 @32
316 @33

152 @3z
g56 @33

152 @32
@41 B33
g16 @33

257 @36 338
@37 &32

£68 U36 U322

247 832
216
247 @32

220 OPERATING SYSTEM - @2/85-71 - FILE HANDLING ROUTINES
LDM
RET
INITIATE THE RE-TRY COUNT

i-;%TCI: HL RTC SET THE RE-TRY COUNT TO THREE

LA 3
o
RET

RTC: DC @ RE-TRY COUNT STORAGE

. POSITION TO THE END OF THE FILE

PEOFx: CALL GETPKT
CALL PEF$
RET

. POSITION TO THE BEGINNING OF THE FILE (AFTER FILE NUMBER RE
PEOFx: CALL GETPKT
CALL PEF$
RET
. BACKSPACE ONE RECORD
BSPx: CALL GETPKT
CALL EBKSP$
CALL WAITS
RET

. CHANGE PHYSICAL DEVICE NUMBER

CPDNX: LCA SAYE THE PFN
LHD
LLE
DE LFT INIT THE LFT INDEX
JP CLFT THE REST IF LIKE CPFN$

: CHANGE PHYSICAL FILE NUMBER

CPFNX: LCA SAVE THE PFN
LHD
LLE
oE LFT+1 INIT THE LFT INDEX
CLFT: LAM GET THE LOGICAL FILE NUMBER
OrA
JT8 GDFMNER CHECK IT'S RANGE
CcP 8
JH3 GDFNER
aLc INDEX INTC THE LFT
ADE
LLA
LAD

U

PAGE 31 2200 OPERATING SYSTEM - @2/85-71 - FILE HANDLING ROUTINES H.S.P.
15355 @14 20 AC B

15657 358 LHA _

15068 372 LMC CHANGE THE PFN

15@61 @27 RET

. END ACTION RETURN POINTS

15862 186 41 233" FEARCT: CALL BK3P$ BACK UP TO THE END OF FILE

15@65 186 B16 @33) CALL WAIT® WAIT FOR IT

15576 @ed 201 R 1 SET THE CARRY TOGGLE

15672 @12 SRC

15673 a7 . RET

15@74 186 &16 3535 TEACT: CALL WAITS WAIT FOR RECORD TCO FINISH

15877 B64 @31 OR 1 TYPE ERROR RETURNS NON-ZERC
15181 @e7 RET

1512 o6 @4 PEARCT: LA 4 INTERNAL ERROR D IF PARITY ERRCOR

INTERNAL ERROR HANDLER
15184 @66 158 @56 @32 ERRx: H. ERRS

15416 @24 105 AD ‘AT-1

15112 374 LMA

15113 @66 125 @56 E32 HL ERRMSG

15117 1@6 151 &36 CALL DSPLY$

15122 164 @64 900 ‘ AP BOOTS

15125 @11 886 915 318 ERRM3G: DC ©11.0.813. 11. " INTERNAL ERRCR
15158 @48 215 ERRS: DC HPY 3 R

. GET THE DEVICE NUMBER IN THE B REGISTER
. THE PHYSICAL FILE NUMBER IF ‘PFN*

. THE LENGTH IN THE C REGISTER

. THE BUFFER STARTING ADDRESS IN HL

15152 @66 254 568 232 GETPKT: HL PKTADR SAVE THE PACKET ADDRESS

15156 374 LME

15157 @66 255 @56 @32 HL PRTADR+1

15183 373 LMD

15164 353 LHD GET THE LOGICAL FILE NUMBER

15165 364 LLE

15166 347 LAM

151687 28& CRA CATCH LOGICAL FILE NUMBER OUT OF RANGE
15178 168 247 @32 JTS GDFMNER

15173 @74 218 CP &

15175 12@ 247 @32 S GDFMNER

15206 o222 sLe INDEX INTCQ THE LOBICAL FILE TABLE
15281 @4 257 RD LFT

15263 36L LLA

15204 oBe I3 LA LFT>8

15286 @14 ol AC &

15218 358 LHA

15244 317 LEM GET THE DEVICE NUMBER IN THE B REGISTER
15212 186 3535 @356 CALL INCHL

15215 327 LCM GET THE PHYSICAL FILE Nk IN THE C REG
15216 @66 Z56 ' SAVE IT IN CORE

B
&
i
=
3
Z

PARGE

15225
15223
15224
15225
15236
15231
15234
15235
15245
18241
15242
15243
15246
15247
15251

15284
15256

15257
152€1
15263
15265
15267
15271
15273
15275

15277
15386
15381
15365
15366
15312
15313
15314
15315

15316
15322
15323
15327
15336
15331

15882

15.‘\.’\"

572
353
186

347

186 |

337

186 3

327
355

o241
[024
g
ZTe
1724
e
a1

=
316

379

766 3

371
361
355
aa7

37

@66

387
350
774

9]
¢

N &
BE

N
!
O}

@38
Z36
B32
235
58 332
55 @52
256 E52
@56 B32

z2gd OPERATING SYSTEM - £2/85-71 - FILE HANDLING ROUTINES H.

LMC
LHD
LLE
CALL
LEM
CALL
LDM
CALL
LCM
LHD
LLE
RET
GOFNER: LA

PKTADR:
PFN:

BE &

INCHL
INCHL
INCHL

3

[% (o4
*

[45]

GET THE BUFFER STARTING ADDRESS

GET THE LENGTH
PUT THE BSA IN HL

SELECT THE PROPER FHYSICAL DEVICE

LOGICAL FILE NUMBER CUT OF RANGE NETS
YOU AN INTERNAL ERROR NUMBER EIGHT

CURRENT PACKET ADDRESS STORAGE
CURRENT PHYSICAL FILE NUMBER STORAGE

. OPERATING SYSTEM LOGICAL FILE TABLE

l:.FT:

858

EEBEEE

PRRLE PSS
&:&H&H&QQ

. UTILITY ROUTINES

.
P
SAVHL :

3

LBL
HL

LMA
HL

LMB
LLB
LHA
RET

RESHL: HL
LaM
HL
LLM
LHA
RET

FLSAV: DA

HLSAv+1

HLSAY

HLSAYV+1

1]

. CASSETTE MECHANISM DRIVER

ADR$: LA

365

LFE IS A NJLL DEVICE

LF1 FOR DECK 1

LFZ FOR DECK &

LF3 IS CTCs CATALGG

LF4 IS CTOS DATA SOURCE FILE
LFS 15 CTOS DATA OBUECT FILE

LF7 18 ASM OBJUECT SCRATCH FILE

ADDRESS THE CASSETTE MECHANISM

PAGE

15336
15337
15548
185342
18345
15347
15352
15354
15357
15364
15361
15362

15363
15363
15364
15365
15367
15372
15373
15374
15375
15376
15377
15495
15461

154@2
15462
1549453
15484

15411
15442
15413
15414
15415

15416
15416
15423
15421
15422
15423
15426

15427
15427

121
391
Z74
158
74
156
e
14
155
a7
157
a7

123
181
B4
150
oo

o2
127
43
125
181
207

123
11
B4
15
giz

257

o1
357 @52
oe2
361 @32
ool
247 B30
g2y
365 @52
@11
ez B33
551
ZEEC @33
516 @35

CED OPERATING SYSTEM - £2/785-71 - FILE HANDLING RCOUTINES

DEK1AD:

DEKERD:

Ex
LAB
CcpP
JTZ
CP
JTZ
LA
HMP
Ex
RET
Ex
RET

1
DEK1AD
=4

1

ERRS
DECK1

DECKZ

SELECT THE PROPER DECK

BAD DEVICE NUMBER IS ERRCOR ‘A

SELECT DECK ONE
SELECT DECK THWC

. READ A CHARACTER INTC THE A REGISTER

READS:
DEKRED:

. WRITE

NRITES:
LDEKWRT:

i:ﬂIT&
DERWAT :
WAIT:

EX

STATUS

oe4d
DEKRED

DATA

WAIT FOR IRG OR RERD READY

QUIT IF INTER-RECORD GAP
ELSE GET THE CHARACTER

A CHARACTER FROM THE D REGISTER

Ex
IN
ND
JTZ
SkC
RTC
LAD
Ex
RET

Lc
Ex
IN
NDC
JTZ
RET

STATUS

@11
DEKWRT

HWRITE

1

STATUS

HARIT

. FIRE UP BLOCK READ

RBKE:
DEKRBK :

CALL DEKWAT

ERRCR IF DECK REARDY
WRITE THE DATA

WAIT FOR DECK READY

WARIT FOR THE DECK TC BE REALY

PAGE

18432
15433

15434
15434
15437
15445

15441
15441
15444
18445

15446
15446
15451
15452
15455

15456
15456
1546

15465
15466
15467

15472
15475
155645
15583
15566
15511
15512
15513
15516
15521
15524
15526
15531
15534
155636
15541
15543
15548
15547
15558

166
163
o7

106
167
257

186
175
186
o7

186 &
56 2

317
173
124

126
186
134
188

16

33
271
166
150
16
&6
184
126
Zea
128

118
365

<
=
(o]

16

ag1e

131
333
355
111
355

183
274
57
@47
385

=]
aze
256

(:1
[

&
]

&
4]

33
@33
@33
@31
@33

2208 OPERATING SYSTEM - @E/@5-71 - FILE HANDLING ROUTINES

Ex REK
RET

. FIRE UP BLOCK WRITE

WBK®:

DERWEK: CALL DEKWAT
ExX WBK
RET

. BACKSPACE ONE RECORD

.

FIRE UP THE READ BLCOCK

WAIT FOR THE DECK TO BE READY
FIRE UP BLOCK WRITE

: PCSITION TO THE BEGINNING OF THE FILE

BKEP%:
DEKBSP: CALL DEKWAT
EX ESP
RET
. REWIND THE TAPE
REWNDS: .
DEKREW: CALL DEKHNAT
Ex REWND
CALL DEKNAT
RET
PBF &:
DEKPBF: CALL LEKWAT
HL PFN
LEM
Ex 3B
JMP BWNGIT
BERCK: CALLL DEKSTP
JMP FSKIP
FNEXT: CALL RTCI
CALL DEKFNN
SKIP: LAD
CPB
JTS FNEXT
JTZ DEKTHE
CALL KSTP
LA 7
MP ERR$
BWAIT: CALL RTCI
Lc B
CALL WAIT
ND F4
W SSTOP
BREAD: LiH
LHE
LED

WAIT FOR ANY PREVIOUS OPERATICONS
GET THE DESIRED FILE NUMBER

START SEARCHING BACKWARDS

STOP THE TAPE
SEARCH FOR A FILE MARKER

INITIALIZE THE RE-TRY COUNT
SEARCH FOR NEXT FILE MARKER
SEE IF WE ARE THERE YET

STILL FURTHER TO GO
WE ARE THERE

ELSE STOP THE TAPE
ERROR EXIT SEVEN

INITIALIZE THE RE-TRY COUNT
HWAIT FOR READ READY CR LEADER

CATCH LEADER
PUSH THE CHARACTER ONTO THE STACK

VE]

PAGE 35 2206 OPERATING SYSTEM - @2/85-/71 - FILE HANDLING ROUTINES H.3.P.
15551 338 LDA

15582 1@6 363 832 . CALL DEKRED BET THE NEXT RECORD CHARACTER
15555 188 146 @33 JFC EREAD

15568 3@ LAE GET THE SECOND RECORD CHARACTER
15561 @54 377 xR @377 UN-COMPLEMENT IT

15563 273 CPD SEE IF IT MATCHES THE FIRST
15564 118 256 B33 JFZz EBsTOP

15567 @74 385 P @383 IGNORE NUMERIC RECORDS

15571 158 131 @33 JTZ BWAIT

15574 @74 347 CP @347 IGNORE SYMBOLIC RECORDS

15576 158 131 833 : JTZ BAAIT

156G1 @74 201 = ELSE IT MUST BE A FILE MARKER
15683 116 256 £33 JFZ BSTOP

15686 386 LAL GET THE FILE NUMBER COMPLEMENTED
15667 @54 377 xR @377

15611 275 CPH IT MUST MATCH THE FILE NUMBER
15612 118 £56 B33 FZ BSTOP

15615 @46 B0 LE @ FLIP OVER THE FILE NUMBER

15617 @36 @16 LD 8

15621 385 FLIP: LAH

15622 @12 SRC

15623 358 LHA

15624 34 LAE

15625 216 ACA

15626 348 LEA

15627 385 LAD

15636 @24 &1 U 1

15632 338 LDA

15633 116 221 333 JFZzZ FLIP

15636 3@4 LAE COMPARE IT TO THE DESIRED FILE NUMEER
15637 271 CPB

1564@ 168 G72 B33 JTS BBACK WE MUST GO IN THE OTHER DIRECTION
15643 116 131 B33 JFZ BWAIT WE AREN‘T BACK FAR ENOUGH

15646 186 335 B33 CALL DEKSTP ELSE STOP THE TAPE

15651 161 EX RBK POSITION TO AFTER THE FILE LABEL
15652 186 @16 B33 CALL DEKWAT WAIT FOR IT

15655 @57 RET AND QUIT

15656 186 335 B33 BSTOP: CALL (STP STOP THE TAPE

15661 161 Ex REK TRY THAT RECORD ABAIN

15662 186 341 B33 CALL DCKRTC DECREMENT THE RE-TRY COUNT

15665 165 G78 B34 JTS DEKBAD QUIT IT TOO MANY RE-TRIES

15678 173 Ex SB RE-INITIATE BACKWARD MOTION
15671 184 146 @33 JMP BREAD

15674 186 333 @33 DEKTHE: CALL DEKSTP STCP THE TAPE

15677 167 Ex Sp APPROACH THE GAP FROM FORWARD DIRECTION
15788 186 @16 B33 CALL DEKWAT

15703 161 Ex REK

15784 186 @16 B33 CALL DERWAT

15787 857 RET AND QUIT

: POSITION TO THE END OF THE FILE

1571 PEF$:
15718 186 355 £33 DEKPEF: CALL LEKFNS SEARCH FOR THE NEXT FILE MARKER

PAGE

15713
15716
15717
15722
15723
15726
15727
18732

15733
15734
15757

1574
15741
15744
15756
15751
15753
15754

15758
15760
15763
15764
15767
15772
15775
15777
16882
16085
168856
1611
16813
16614
168617
legz1
16224
1826
16831
16E33
18836
18841
18642
18845
16847
1655
16853

8

186

167
126
167
106
161
186
@7

177
146
1774

167
186

357
a2y
37
aa7

186
146
171
184
186
126
aee
186
166
330
186

273
118
a4
153
g74
156
G744
11
186
336
186
273
116
128

@16
365

51

355
ai1e

375
363
3687
o
ges
c‘sﬁ

.\6.H
377

gs7
33
367
347
367
21
@57
.\(;‘—‘

363
377

a57
363

1 G
N

@31
@53

a33

@33
g5z

@5 /-?

&35

i)

V7]

2208 OPERATING SYSTEM - @2/85-/71 - FILE HANDLING ROUTINES H.

CALL [DEKSTP STOP THE TAPE
Ex B3P POSITION IT TO AFTER THE LAST RECORD
CALL DEKWAT IN A FORWARD DIRECTION

Ex BSP

CALL DEKWAT

Ex RBK

CALL DEKWAT

RET

. STOP THE TAPE AND RE-SELECT THE PROPER DECK

DEKSTP: EX STOP STOP THE TAPE
CALL DEKWAT WAIT FOR IT TG STOP
RET

: BACK UP THE TAPE AND LECREMENT THE RE-TRY COUNT

LEKRTC: Ex B3P
DCKRTC: CALL DEKWAT

HL KTC
LA

SU 1
RET

. SEARCH FORWARD FOR A FILE MARKER

DEKFNS: CALL KRTCI INITIATE THE RE-TRY COUNT
DEKFNA: CALL DEKWAT WARIT FOR THE DECK TO BE READY
EX SF START FORWARD MOTION

P DEKFNN INSPECT THE NEXT RECCORD
DEKFNH: CALL DEKRED WAIT FOR BLOCK TC BE OVER
HC DEKFNW

DEKFNN: LC 4 WAIT FOR DATA

CALL HWAIT

CALL DEKRED GET THE RECORD TYPE

LDA SAVE THE CHARACTER

CALL DEKRED GET THE RECORD TYPE COMPLEMENTED
xR @377 UN-COMPLEMENT IT

CPD THEY MUST MATCH

JZ DEKFNE

CP T3S IGNORE NON-FILE MARKERS

JTZ DEKFNW

cP @347

JTZ DEKFNW

CP BEEl ELSE IT MUST BE A FILE MARKER
KZ DEKFNE

CAlLlL. DEKRED GET THE FILE NUMBER

LDA SAVE IT

CAlLL DEKRED GET THE FILE NUMBER COMPLEMENTED
xR @377 UN-COMPLEMENT IT

CPD THEY MUST MATCH

JZ DEKFNE

CALL DEKRED THIS MUST BE THE END OF THE RECCRD

16856
16E57
16@62
16865
16876
16872

16675
16165
16101
161a3
168185
16118
16113

16114
18117
16122
16125
1&126

16127
16132
1€135
16136
16148
16143
16145
16156
16154
16155
16160
16161
16163
16164
16167
16172

DONE

43
126
186
120

184

1@6
31
g4

110
186
(%774

186
186
186
323
/2 rd

1@6
186
183
a36
186
36
186
aee
337
186
3E3

35
186
186
aa7

333
."l’[i
364

@47

152

77 =
@31
247
246

152
355

SO0

152
gie

21
gige
176

£206 OPERATING SYSTEM - 82/¢5-71 - FILE HANDLING ROUTINES H.

RTC
DEKFNE: CALL DEKSTP
CALL DEKRTC
H5 DEKFMNA
DEKBAD: LA z
JMP ERR$

. SPECIAL TAPE ROUTINES

i’Rﬁ«rX: CALL GETPKT

LAB
P 2
LA 1
FZ ERRS
CALL REWNDS
RET

TFNRX: CALL GETPKT
TRNFNR: CALL DEKFNS
CALL DEKSTP
LCD
RET

TFNW<: CALL GETPKT
CALL DEKWAT

EX HBK

LD aegd
CALL DEKWRT
LD @176
CALL DEKWRT
HL PFN
LDM

CALL DEKWRT
LAD

XR 377
LDA

CALL DEKHWRT
CALL DEKWAT
RET

n

STOP THE TAPE

BACK UP AND COUNT TRY

TRY AGAIN IF NOT ALREADY TOO MANY
ELSE UNLOADABLE RECORD

REWIND THE TAPE

ONLY REWIND THE FRONT DECK

READ A FILE NUMBER

FIND A FILE MARKER

STOP THE TAPE AFTER IT

PUT THE FILE NUMBER IN THE C REGISTER
WRITE A FILE NUMBER

FIRE UP A WRITE
HWRITE QUT THE FILE MARKER

WRITE CUT ITS COMPLEMENT
WRITE CQUT THE FILE NUMEBEFR

HWRITE GUT ITS COMPLEMENT

TERMINATE THE WRITE CPERATION

16208
16234
16205
162&7
16216
16212
16214
16217
16221
16222
16224
16225
16226
16227
16231
16233
16237
16242
16244
16247
16251
16253
16256
16260
16263
16265
16270
16272
16275
16277
1632
168384
16367
16311
16314
16316
16321
16323
16326
16330
16333
16335
16348
16342
16345
16347
16352

16355
16357

)
(5]

766

266
337
226

1@6
oes
347
66
357
364
347
36
226
@66
166
EE6
186
wee
@es
186
@68
1@6
74
152
g4
152
a4
152
a4

g4
152
a4
152
g4
152
a4
152
g4
152
a4
156
g4
156
134

374

273 #56 @35
274

7%=
386
226 I35
273

274

G5
313
226
275
151
315
18

B

a35

N
)
n

J
1

3

315
155 855
g15
355 @34
111
184
aee B35
115
e 435
a56
@31 @35
114
121 @35
116G
144 @35
17
111 &35
186
181 &35
117
o4z @12
13
HE B35
205 534

273

2205 OPERATING SYSTEM - B2/85-71 - DEBUG ROUTINE

ITSEY
DEBUGS#

SET 16288
BITSEY DEBUS
HL CURADR
LEM

L CURADR+1
LDM

Lc =

L DEPADR+4
CALL CONBIN
L CURADR
LEM

L CURADR+1
LHM

LLE

LEM

LD g

Lc 3

HL DSPDAT+2
CALL CONBIN
L DIsP
CALL. DSPLY®
Ll INBUF
Lc 8

CALL KEYIN$
LL INBUF
CALL CONCCT
cP g1s
CTZ NEWADR
CcP ‘17
CTZ ING

CP ‘D
CTZ LDECADR
CcP ‘M
CTZ MODIFY
cpP L
CTz ENT

CcP L
CTz LSAVE
CP £ H s
CTZ HSAVE
CcP ‘G
CTZz GET

CP Y
CTZ FRONT
CcP ‘0
JTZ SE

CP oy
Jrz GOTO
JMP DEBUGS
e CURADR
LME

[¥7]

PAGE

1836&
18362
16363
18364
16366
168367
16371
16372
18374
18375
168377
1645
164@1
16428
18424
16455
16447
16418
16412
16413
168415
16418
16417
1642@
16422
18423
16425
18428
168427
18430
16431
18434
18436
16441
18442
16444
168445
16447
16455
18453
16454
18455
168461
1842
16464
168465
16467
18478
18472
18473
18475
168476

168551

39

566
373
287
266
357

378

37
@14
379

@68
357
fr=g
37
Zes

&34
378

oa7
337

357
363
374
aa7?
186
56
186
o7

374
e
373
186
35
vy
266
378

ZES

371

g(‘- r K

372

@66

373

266 !
374

274

273
a1
274
7753

a4

oes o35
@35

364 B3¢
51

7,254

7]

2206 OPERATING SYSTEM - 32-85-71 - DEBUG ROUTINE

INCADR:

DECADR:

MODIFY:

ENTER:

J
J
=
)]

BRANCH:
LSAYI:
HSAVI:

FRONT:

LE

CURADR+1

CURADR
1

CURADR+1

CURADR
CURADR+1

MODIFY
CURADR>&
INCADR
BRANCH+1
BRANCH+2

&

ASAVE
BSAVE
CSAVE
DSAVE
ESAVE
DEBUSS
1

7

18563
16586

16511
16512
16515
165186
18517
1652@

16521
16525
16527
16536
16532
16535
16534
16535
16537
16540
16541
16542
16543

168544
18558
18582

16555
18557
16568
16561
16564
18565
168587
16576
18572
18573
18575
18576
18577
166@1
186e@2
16663
18684
186E5
1666
18667
16816
16611
18612
16614

16
14

314
146

151
256
oa7

266
@16
334
a44
oo

a2
a4
@es
261
37
256
74

z66
16
14

343
317

186 1

31
74
@e3
g74
@63

320
333
15724
oo
338
304

34
&4
263

112
118

10

g53
386

g7

a7e

o544

35
127

27

a37

n&

ol
N
~N

@56 B35

56 @35
&35

2205 OPERATING SYSTEM - @2/@5-71 - DEBUG ROUTINE

GET:

BETLGD:

LSAVE:

HLSAVM:

HSAVE:

CALL
JMP

LBE
CALL
RTZ
Ex
XA
RET

H-
LB
LAE
ND
sLC
sLC
sLc
CcP
RFS
CRB
LMA
XRA
RET
HL
LB
HP

[95)

LCADES
GETLOD
LOADS
BEEP

SAVI
P06

7
g7e
HSAVI

G355
HLSAVM

. CONVERT OCTAL TO BINGRY

CONOCT:
CONLCP:

LD
LED
LEM
CALL
LAE
cp
RF3
cP
RTS
ND
LCA
LAD
ND
sLe
sSLC
sLc
LDA
LAE
3LC
sLC
sLe
LEA
ND
ORD

7]

INCHL

Vg

[VE

PAGE

166815
16616
16617
18621
ieezz
16623

16626
16627
16631
16633
166‘-"

16637
1664
16641
168642
16643
16645
L664e
16647
16658
16651
16652
16653
16655
18656
16657
16668
16662
16663
16664
16666
16667
16672

16673
ie675
1e7ez
16711
18715

18776
18778
18771
18772
18773
18774
18775

DONE

1777
g11

B4

ool
205
255
805
205
21

&37

Gos

[
9}

]

2205 OPERATING SYSTEM - @2-85-71 - DEBUG ROUTINE

LDA
LAE
ND

ORC
LEA
P

ag378

CONLCP

: CONVERT BINARY TO CCTAL (RIGHT TC LEFT?

CONBIN: LAE

. STORAGE

CURADR: DA
DISP: OC

DSPADR: DC
DSPDAT: DO
INBUF: DC

SET
ASAVE: Do
BSAVE: DC
CSAVE: DC
DSAVE: DC
ESAVE: DC

oc

ey
1]
~
2

]

H&&&&&Q

-

AN

[51]

PRGE 42 2206 OPERATING SYSTEM - @2/85-71 - KEYBOARD & DISPLAY ROUTINES H.S.P.
1 7 SET 2173068

. KEYBOPRD ENTRY ROUTINE

. ACCEPTS A STRING OF CHARACTERS FROM THE KEYBOARD AND PUTS

« THEM IN MEMORY STARTING WITH THE ADDRESS GIVEN IN THE H

. AND L REGISTERS AND AT A DISPLAY POSITION DESCRIBED BY THE |

. D (HORZ: AND E (VERT2 REGISTERS, THE MAXIMUM NUMBER CF '

. CHARACTERS ACCEPTED IS TAKEN FROM THE C REGISTER UPON ENTRY

. OVERFLOW OFF THE END OF A DISPLAY LINE IS8 NOT PERMITTED

., AND IF EITHER THE MAXIMUM COUNT OR DISPLAY BOUNDARY IS

. EXCEELED. SUCCESSIVE CHARACTERS WILL GO IN THE. LAST

. POSITION OVER AND OVER. AN ©15 WILL TERMINATE INPUT REQUEST
THE CURSOR I3 TURNED ON UPON ENTRY AND GFF UPON EXIT.

17608 S 341 KEYIN®F LA G341 ADDRESS THE KEYBOARD

17802 121 Ex ADR

17833 318 LBC LOAD THE MAx COUNT INTO THE CURRENT COUNT
17034 BBe 2o LA 7%} TURN ON THE CURSOR

17026 131 EX COM1

17067 186 326 @36 KILOOP: CALL CWAIT MAKE SURE THE DISPLAY IS READY
17812 123 KWLOOP: EX STATUS BET A CHARACTER FROM THE KEYBCOARD
17213 11 IN

17014 @44 @2 ND e

17816 158 @12 B36 JTZ2 KWLCOP

17821 185 Ex DATA

178z 161 IN

178623 @74 619 CP gi1g CATCH BARCKSPACE

17825 158 185 &3& JTZ2 KBSP

170536 G4 G35 CP g3E CATCH DELETE

17832 158 113 ©36 JTZ . KDEL

17835 @G74 10 CcP 1o REVERSE THE SHIFT KEY FUNCTION
17837 16 844 @36 JTE (STORE

17842 @54 @42 xR 2]

17844 378 KSTORE: LMA STORE THE CHARACTER

17845 &4 §15 cP 15 CATCH THE ENTER KEY

17847 156 182 936 JTZ KEND

17852 127 EX WRITE ELSE DISPLAY THE CHARACTER
17855 383 LAD CATCH CURSOR AT SCREEN BOUNDARY
17854 @74 117 CP 79

17656 125 B@7 636 J3 KILGGP -

17861 301 LAB DECREMENT THE CHARACTER COUNT
1762 @24 2ol sU 1

17664 165 @67 B3€6 JT8 KILOCF ALREADY ABOVE THE MAxXIMUM

178687 318 LBA

17676 SE3 LAD BUMP THE CURSOR POSITION FOR REAL
17871 O34 @61 AD 1

17873 336 LDA

17874 186 353 836 CALL INCHL BUMP THE MEMORY LOACTION

17877 164 @7 B36 P KILCOP DC THE NEXT CHARACTER

17102 &5 KEND: XRA TURN OFF THE CURSCOR

1713 131 EX Com1

171e4 @27 RET

PAGE

17165
17116
17113
17116
17121

17124

17185
171286
17127
17131
17132
17133
17135
17136
17141
17144
1714&
17147
17158

17151
17153
17154
17155
17156
17161
17182
17165
17166

168
164
186
118
14

31
272
253
fo 2
318
33
g2y
339
186
186
206
127
Z6d
oa7

121
250
131

124 @38

o7 836

124 236
113 @38
ea7 836

(7 /4]

o1
364 @36
326 36
G

i
)
§:"

1%.-

317

186 |

501

5
2

2opE OPERATING SYSTEM - @2/85/71 - KEYBOARD & DISPLAY ROUTINES H.S.

KBSP: CALL
JMP

KDEL: CALL
HZ
JMP

KBSPR: LAB
CPC
RTZ
AD
LBA
LAD
SU
LDA
CALL
CALL
LA
EX
ORA
RET

. CRT DISPLAY

KB3PR
KILOOP
KBSPR
KDEL
KILOGP

DECHL
CWAIT
oHE

WRITE

ROUTINE

(V4]
Y

BACKSPACE ONE CHARACTER
BACKSPACE TO THE BEGINNING OF THE ENTRY

INCREMENT THE CHARACTER COUNTER
UNLESS AT THE BEGINNING OF THE ENTRY

DECREMENT THE SCREEN POSITICN

DECREMENT THE MEMORY POINTER
MAKE SURE THE DISPLAY IS READY
ERASE THE CHARACTER

RETURN WITH ZERC CONDITICON FALSE

. DISPLAYS A STRING OF CHARACTERS WHICH ARE IN MEMORY STARTIN
. WITH THE ADDRESS GIVEN IN THE H AND L REGISTERS AND AT THE
. PCSITION DESCRIBED BY THE D (HORZ: AND E (VERTX REGISTERS.
. OVERFLOW OFF THE END OF A LINE IS NOT PERMITTED.

. SPECIAL CONTROL CHARACTERS TERMINATE THE LINE AND ALLOW

. MOVEMENT OF THE CURSOR.
. AND ROLL-UP OF THE ENTIRE SCREEN.

. ENTRY VALUES:

. EXIT VALUES:

. CONTROL CHARACTERS:

DSPLY$% LA
Ex

DOCOM: Ex

DLOCP: CALL
LBM
CALL
LAB
ND

g341
COM1
CHAIT
INCHL
8177

ERASURE OF THE SCREEN OR LINE.

D - HORIZONTAL CURSOR POSITION (& TO 79
E - VERTICAL CURSOR POSITION (@ TO 113}
HL - FIRST CHARACTER LOCATION IN STRING
DE - CURSOR POSITION AFTER LAST CHAR
HL - MEMORY LOCATION AFTER TERM CHAR

23
g11
13
@15
=4}
gez

7o

~ END CF THE STRING.

A NEW HORIZONTAL POSITICON FOLLOWS
A NEW VERTICAL POSITION FOLLOWS
END COF LINE (DOES CR-/LFZ

ERASE TO THE END OF THE FRAME
ERASE TO THE END OF THE LINE

ROLL (P THE SCREEN ONE LINE

ADDRESS THE DISPLAY

TURN OFF THE CURSCOR

DO THE CONTROL COMMAND

MAKE SURE THE DISPLAY IS READY
GET A CHARACTER FROM THE STRING
BUMP THE STRING POINTER

CHECK FOR CONTROL CHARACTERS
STRIP ANY PARITY

PAGE

17175
17172
17175
17177
17282
17264
172a7
17211
17214
17216
17229
17223
17226
17236
17233
17234
17235
17237
17244
17242

17245
17247
17256
17252
172535
17255
17266
17262
17264
17265
17276
17272
17273

17274
17275
1730&
17381
17304
173@7
17311
17314
17316
17321
17323

17326
17327
17336
17331
17334
17335
17336

4oy

74
158
@74
156
74
158
74
150
74
155
574
156
574
158
127
363
o74
214
330
164

z38
34
B
SHG
74
16@
246
286
131

166

206
131
o7

347
14
337
186
14
(503
104
73
184
a6
184

123
181
@12
1845
383
268
263

33
265
@11
S
13
274
gi15
245
221
357
gee
314
@23

321
117

156

391

353
156

155
155

g1
155

326

@36

Z36

u3e

g36
a38

o36
36

36

a36

22@ OPERATING SYSTEM - B2/85/71 - KEYBOARD & DISPLAY ROUTINES H.

ENDOS:

PVERT:

PHORZ:
NCHAR:

EECF:
EECL:
ROLLUP:

ChAIT:

cP
JTZ
cP
JTZ
cP
JTZ
CP
JTZ
cP
JTZ
ce
TZ
cP
JTZ
Ex
LAD
cP
AC
LDA
M

LD
LAE
AD
LEA
CP
JTS

3
ENDOS
G11
PHORZ
@13
PVERT
g15
ENDOL
=4
EECF
gez
EEOL
ges
ROLLUP
HWRITE

e
9]

DLGCP

12
ENDCOS
11
gl@
COoM1
CNAIT
=]
COoM1

CHWARIT

[V5)

P

END OF STRING

POSITION HORIZONTALLY
POSITION VERTICALLY

END OF LINE

ERQSE TC THE END OF THE FRAME
ERASE TC THE END OF THE LINE
ROLL UP THE SCREEN

PUT CGUT THE CHARACTER

BUMP THE CURSOR POSITION
UNLESS AT THE END OF THE LINE

RETURN CURSCR TO START OF NEXT LINE
BUMP THE LINE COUNTER

THERE IS ROOM FOR THE NEXT LINE
ELSE KEEP THE LINE COUNTER AT ELEVEN
AND ROLL THE SCREEN UP ONE LINE

MAKE SURE THE DISPLAY IS READY
TURN ON THE CURSOR

RETURN
SET THE VERTICAL POSITION

SET THE HORIZONTAL POSITION
BUMP THE STRING POINTER TO THE NXT CHAR

WAIT FOR THE DISPLAY TO BE READY

MAKE SURE CURSOR IS5 IN CORRECT POSITION
PREVENT CURSOR POSITIONS OUT OF RANGE

PAGE 45 220 OPERATING SYSTEM - @2-85-71 - KEYBOARD & DISPLAY ROUTINES H.S.P,

17337 &7 120 P A
17341 @23 RFS

17342 133 Ex Come

17343 314 LAE

17344 260 ORA

17345 @63 ~ RTS

17346 B74 @14 fo T

17356 @23 RFS

17351 135 Ex COM3

17352 @7 _ RET

17353 386 INCHL¥ LAL BUMP MEMORY POINTER UP
17354 @4 &o1 AD 1

17356 360 LLA

17357 365 LAH

17360 @14 2o AC B

17362 358 LHA

17363 @7 RET

17364 306 DECHL¥ LAL BUMP MEMORY POINTER DOWN
17365 o4 @l U 1

17367 36@ LLA

17376 305 LAH

17371 @34 o0 SE @

17373 358 LHA

17374 @@7 RE
DONE

-"

17434
17434
17455
174436
17457
17416
17416
17426
17436
17445
17452
174EG
17476
1756
17516
17526
17556
17548
17556
17561
17576

17571

17572

17651
17684
176857

17612
17615

1762
17621
17622
17626
17636
17633
17637
17642
17644
17645
17646
17658

@37
18
By ' I7
367

166
105
184

186
184

353
364
246
e6
166
@6
186
g4
@13
36
o4y
@z

40
4T

Y]

13
ag75
acy

112
24

172
o6
345
g1
ze4

376
g1

BHE BT

DA

DS
&37

836 @37
@57
@36 @37
@37

2205 OPERATING SYSTEM - @2/@5-71 - CATALOG & SYMBOLIC LINKER

| LIBRARY CATALOG

._‘

CATH#

"

FREREREEBEREREERREERY

ALPFN¥ DC

. END OF PHYSICAL FILE 1

SYMBOL¥ DC

17444
@37
12
@367
14

.';g_.‘

g

. LOAD AND EXECUTE

MAUTOS% CALL
MAUTO: JFC
Y

MAUTES% CALL
P

. SYMBOLIC FILE LOADER

M_CAD$¥ LHD
LLE
DE
Lc
CALL
DE
CALL
cP
RFZ
LAl
ND
sU

LOADS
RUNE
BOOTS

LOADES
MAUTC

SYMBOL
1
BLKTFR
CAT
LOOKUP

STARTING ADDRESS FOR LOARDER
STARTING ADDRESS COMPLEMENTED
SPACE FOR 14 ENTRIES

AUTO-LOAD PHYSICAL FILE NUMBER
ITEM SYMBOL STORAGE

LOAD THE GIVEN FILE
EXECUTE IT IF GOOD LOAD
ELSE RE-LOAD THE OPERATING SYSTEM

LOAD DECK TWO FILE

GET PACKET ADDRESS
PUT THE NAME IN THE LOOKUP ITEM

LOOK IT WP IN THE LIBRARY CATALGG

SEE IF IT I8 THE THE CATALGOG
ZERQ FLAG FALSE IF IT ISN'T
CALCULATE THE FILE NUMBER

H.3.P,

PARGE 47 | 2208 OPERATING SYSTEM - @2/85/71 - CATALOG & SYMBOLIC LINKER H.3.P,

17652 @12 SRC

17653 @12 SRC
17654 @12 SRC
17655 @04 o2 AD 2 FIRST ENTRY 1S PHYSICAL FILE TWO
17657 316 LBA
17668 186 100 GOG CALL LOADS
17665 @O7 RET
. SYMBOL LOOKUP ROUTINE

17664 353 LOOKUP% LHD CHECK FIRST ENTRY IN TABLE
17665 364 LLE
17666 184 334 @37 AP LSTART
17671 @66 172 @56 @37 LOOKPU: H. SYMBOL GET THE ITEM STARTING ADDRESS
17675 327 LSLOOP: LCM GET THE NEXT ITEM CHARACTER
17676 186 365 @37 CALL INCSWP GET THE NEXT TABLE ADDRESS
17701 387 LAM GET THE NEXT TABLE CHARACTER
17702 272 cPC
17783 116 322 B37 FZ LDIFF THEY DON‘T MATCH
17786 386 LAL SEE IF AT THE END OF THE ENTRY
17787 @44 @7 ND 7

P s

17744 @74 @5

17713 @53

17714 186 365 @37

17747 14 275 @37

17722 386 LDIFF:
17723 @44 370

17725 o4 @16

17727 366

17736 35

17731 @14 BB6

17733 356

17734 387 LSTART:
17735 @74 161

17737 63

17746 335

17741 346

1742 184 271 237

THE ITEM HAS BEEN FOUND IF 30O
INC3HWP GET THE NEXT ITEM ADDRESS
LSLOoP AND TRY THE NEXT CHARACTER
BUMP THE TABLE POINTER TO NEXT ENTRY

)
3
N

GET THE TABLE FIRST CHARACTER
‘AT END OF TABLE IF IT IS NOT ALPHA

SAVE THE TABLE ADDRESS
LOOKPU AND TRY NEXT TABLE ENTRY

SREZUEEREERBESS

. BLOCK TRANSFER FROM HL TO DE C CHARACTERS

17745 317 BLKTFRs# LBM GET A SOURCE CHARACTER

17746 186 365 &37 CALL INCSWP GET NEXT DESTINATION LOCATION
17751 371 LMB PUT IT IN A DESTINATION LOCATION
17752 186 365 @37 CALL INCSWP GET NEXT SOURCE ADDRESS

17755 3@2 LAC DECREMENT THE COUNT

17756 @24 ool U 1

17768 326 LCA

17761 116 345 &37 JHZ BLKTFR DO NEXT CHAR IF NOT ZERO

17764 e RET
. INCREMENT HL AND SWAP IT WITH DE
17765 386 INCSWP¥ LAL

PAGE 48 2205 DPERQTIN? SYSTEM - @2/85/71 - CATALOG & SYMBOLIC LINKER H.S.P.

177668 @34 @1
17776 364
17771 340
17772 3@5
17773 @14 &
17775 353
17776 330
17777 &7

1

G

	001
	002
	003
	004
	1-00
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	1-27
	1-28
	1-29
	1-30
	1-31
	1-32
	1-33
	1-34
	1-35
	1-36
	1-37
	1-38
	1-39
	1-40
	1-41
	1-42
	1-43
	1-44
	2-00
	2-01
	2-02
	2-03
	3-00
	3-01
	3-02
	3-03
	4-00
	4-01
	4-02
	4-03
	4-04
	5-00
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	6-00
	6-01
	6-02
	6-03
	6-04
	7-00
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	8-00
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	9-00
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07
	9-08
	9-09
	9-10
	9-11
	9-12
	9-13
	9-14
	9-15
	9-16
	9-17
	9-18
	9-19
	9-20
	9-21
	9-22
	9-23
	9-24
	9-25
	9-26
	9-27
	9-28
	9-29
	9-30
	9-31
	9-32
	9-33
	9-34
	9-35
	9-36
	9-37
	9-38
	9-39
	9-40
	9-41
	9-42
	9-43
	9-44
	9-45
	9-46
	9-47
	9-48

