
DATAPOINT

TM

DASL

User's Guide

50807

NOVEMBER 14, 1984

Document No. 50807-01. 11/84
Copyright © 1984 by DATAPOINT Corporation. All

rights reserved The "D" logo, DATAPOINT, DATABUS,
DATAFORM, DATAPOLL, DATASHARE, Lightlink, Integrated
Electronic Office, DATACCOUNTANT, ARC, Attached
Resource Computer and ARCNET are trademarks of
DATAPOINT Corporation registered in the U.S. Patent and
Trademark Office. AIM, Associative Index Method,
ARCGATE, ARCLINK, DASP, RMS, Resource Management
System, EMS, DASL, RASL, NOSL, EASL and DATASORT are
trademarks of DATAPOINT Corpora tion.
System features and technical details are subject to change
without notice.

ii

Preface

The DASL USER "s GUIDE, Vol. is another reference in
the DASL library. Vol. III describes the NOSL I/O package.

This work is a DATEC production. NOSL I/O was written on
a DATAPOINT processor using an experimental writing
tool. Then, the masters for printing were produced on a
DATAPOINT 9660 Laser Printer.

Please forward your comments on this document to:

DATEC Publications
DATAPOINT Corporation
9725 Datapoint Dr. MS T-72
San Antonio, Texas 78284

iii

iv

TABLE OF CONTENTS

1. INTRODUCTION

OVERVIEW
INTRODUCTION TO NOSL
NOSLS AND STREAMS

2. INCLUDING NOSL

OVERVIEW
INCLUDE NOSL DEFINITION FILE
INCLUDE NOSL RELOCATABLE LIBRARY

3. THE NOSL FUNCTIONS

OVERVIEW

n$apen
n$read .
n$write
n$tell
n$seek .
n$size
n$trunc
n$status
n$flush .
n$clase .

n$farmat

4. THE NOSLS

OVERVIEW
SELECTING A NOSL
Disk NOSL
DiskId NOSL
DiskR NOSL
VirFil NOSL
BufPag NOSL
Decamp NOSL
CmpOut NOSL
WORKSTATION INPUT NOSLS

v

1 - 1

1 - 3

1-4

2 - 1

2 - 2

2 - 3

3 - 1

3-4

3 - 5

3 - 6

3 - 7

3 - 8

3 - 9

3-10

3 - 11

3 - 1 3

3-14

3 - 1 5

4-1

4 - 3

4-6

4-9

4 - 1 2

4 - 1 5

4 - 1 7

4-19

4-22

4-24

WORKSTATION OUTPUT NOSLS
Print NOSL
Pipe NOSL
Split NOSL .. .

Mem NOSL.
Null NOSL

5. NUMERIC SCANNERS

OVERVIEW ...
STRING SCANNERS
FIELD SCANNERS

6. MEMORY MANAGEMENT

OVERVIEW
VIRTUAL FILES
OVERLAYS

7. ERROR HANDLING

OVERVIEW
CUSTOMIZING ERROR HANDLING

vi

4-34

4-43

4-46

4-48
4-50

4-52

5 - 1

5 - 2

5 - 7

6-1

6-2

6 - 3

7 - 1

7 - 3

Chapter 1.
INTRODUCTION
OVERVIEW

About this manual

This manual describes the NOSL I/O package. It contains
general information about the NOSL I/o package for
programmers who are unfamiliar with NOSL, and contains
instructions for including NOSL, calling sequences for the
NOSL functions, and descriptions of the internal memory
manager and error handler.

Intended audience

This manual is intended for programmers writing software
in DASL on the RMS operating system.

It contains code segments of DASL programs that reference
the RMS operating system.

Chapter 1. INTRODUCTION 1-1

OVERVIEW

How this manual is organized

This manual is divided into seven chapters.

Chapter Content

1 An introduction to the NOSL 1/0 package.

2 The procedures for including the NOSL 1/0
package into your DASL program.

3 A description of the NOSL functions.

4 A description of the different types of nosls
and instructions for opening a nosl.

5 A description of the numeric scanners that are
part of the NOSL 1/0 package.

6 A description of the NOSL internal memory
manager and its relationship to virtual files
and overlays.

7 A description of the NOSL error handler and
instructions for customizing error handling.

1-2 DASL USER'S GUIDE 50807-01

INTRODUCTION TO NOSL

Int roduct ion

As a DASL programmer, you are probably aware that DASL
has no internal I/o facility. In order to generate I/O, you
must use one of the RMS I/O packages, or create your own
I/O package.

NOSL has been written as an easy to use, but powerful I/O
package for the DASL programming language.

NOSL sets up tables and buffers

Performing I/o under RMS often requires you to provide
memory for tables and buffers. The fields in these tables
must in turn be initialized.

NOSL allocates memory for these tables and buffers, and
initializes the tables with common default values, while
giving you the flexibility to override the default values.

NOSL has common interfaces called nosls

NOSL provides a common interface to access a variety of
devices.

Individual modules, called nosls, interface to the different
devices. For every device supported by the NOSL I/O
package, there is a corresponding nosl.

Chapter 1. INTRODUCTION 1 - 3

NOSLS AND STREAMS

Introduction

The term "device" is often used to refer to printers,
keyboards, and screens. In the previous section we
learned that there is a corresponding nasI for every device
supported by the NOSL I/O package.

In this section, we will find out that a nos! can also
interface to another nos!. Because "device" does not
accurately describe this interface, the term "stream" will
be used to describe all NOSL interfaces instead.

Definition of a stream

A stream is anything whose contents can be treated as a
sequence of bytes. Some examples of streams are

It a text file,
.. a printer,
.. a keyboard, and
.. a nasI.

n$Stream type

1-4

NOSL provides a type, n$Stream, to describe a stream. The
NOSL open function returns a variable of this type, while
the other NOSL I/o functions require a variable of this type
as an input parameter.

Example:

lin n$Stream;

DASL USER'S GUIDE 50807-01

(

NOSLS AND STREAMS

Streams are sequences of bytes

A stream is treated as a sequence of bytes.

The length of a stream is always measured as the number
of bytes from the beginning to the ending of a stream.

Stream pointers

NOSL maintains a pointer to the current byte position of
each stream. This stream pointer advances whenever
reading or writing is performed on the stream, and can be
examined and changed on certain streams.

Note: The first byte in a stream is at position zero. The
stream pointer is generally set to zero when a stream is
opened.

Nosls translate data to and from streams

Nosls are used to translate data to and from a stream.
Since data is formatted differently within each stream, the
nosls will

• remove device dependencies from input streams, and
• add device dependencies into output streams.

Example: The Decomp nosl translates compressed text from
an input stream into uncompressed text. The CmpOut nosl
translates uncompressed text into compressed text.

Chapter 1. INTRODUCTION 1-5

NOSLS AND STREAMS

Nosls may be layered

1-6

Nosls may be layered on top of one another if more than
one translation of a stream is needed.

Example: In order to read a standard RMS text file, a text
decompression nosl must be layered on top of a binary disk
nosl which inputs the compressed RMS text file.

Compressed
RMS Text File

Binary Disk
Nosl

Text
Decompression
Nosl

DASL USER'S GUIDE 50807-01

Chapter 2.
INCLUDING NOSL
OVERVIEW

Introduction

This chapter contains the procedures that are needed to
include the NOSL I/o package into your DASL program.

Overview of the procedure

The procedures for including the NOSL I/o package are
outlined in the following table. A description of each
procedure in this table is included in this chapter.

Task Action

1 Include the NOSL definition file into your DASL
program.

2 Include the NOSL relocatable library in your LINK
directives.

Chapter 2. INCLUDING NOSL 2 - 1

INCLUDE NOSL DEFINITION FILE

Introduction

The NOSL definition file must be included in the INCLUDE
portion of your DASL program.

Task Action

1 Include the NOSL definition file into your DASL
program.

What is the NOSL definition file

Example

2-2

The NOSL definition file is a text file that contains
definitions and external references that are needed to
reference the NOSL I/O package.

Its name is "N$/DEFS".

INCLUDE(D$ INC)
INCLUDE(D$RMS)
INCLUDE(N$/DEFS)

: (rest of the program)

DASL USER'S GUIDE 50807-01

INCLUDE NOSL RELOCATABLE LIBRARY

Introduction

The NOSL relocatable library must be included by the
LIBRARY directive in LINK.

Task Action

2 Include the NOSL relocatable library in
directives.

Selecting the correct NOSL library

your LINK

There are a couple of copies of the NOSL relocatable
library that support two of the DATAPOINT instruction
sets. Use this table to select the proper NOSL library for
your instruction set.

If you are writing for the . .. then use . ..

5500 instruction set NS/RELS

6600 instruction set NS/REL

Also include the CUFs library

NOSL uses several of the common user functions, CUFs.
The appropriate CUFs relocatable library must be included
after the NOSL relocatable library in your LINK directives.

Chapter 2. INCLUDING NOSL 2-3

INCLUDE NOSL RELOCAT ABLE LIBRARY

Example

2-4

If you had selected N$/REL, your LINK directives might
look like this:

SEGMENT MYPROG
INCLUDE DASLASM
INCLUDE DSLIB.D$START
LIBRARY N$
LIBRARY $CUFS
LIBRARY D$LIB
LIBRARY RMSUFRS

DASL USER'S GUIDE 50807-0l

Chapter 3.
THE NOSL FUNCTIONS
OVERVIEW

Introduction

Description

This chapter contains descriptions of the eleven NOSL
functions that may be called by your DASL program to
access the nosls.

The NOSL functions are a set of functions that give you the
ability to open, close, and manipulate a stream.

Note: A description of the individual nosls are found in the
next chapter.

Parameterization of the NOSL functions

Parameters in some of the NOSL functions are optional.

Optional parameters are enclosed in square brackets for
identification in the function diagrams. They may be
ignored by omitting them completely, or by replacing them
with a comma if a later parameter is to be specified.

Chapter 3. THE NOSL FUNCTIONS 3-1

OVERVIEW

NUMBER type

3-2

NOSL defines a type, NUMBER, which represents the
addressable memory area of a machine. This type is used
in the NOSL read and write functions.

On machines with 16 bit pointers, NUMBER is defined as
follows:

Type Definition Description

TYPDEF NUMBER UNSIGNED; Addressable memory area of
machine.

Note: On machines with 32 bit pointers, NUMBER is defined
as LONG.

a

DASL USER'S GUTDE 50807-01

OVERVIEW

Selecting a NOSL function

Use the following table to determine which NOSL function
to use.

If you want to ... then use . ..

open a stream nSopen.

read from a stream nSread.

write to a stream n$write.

determine position of a stream nStell.

position to a location in a stream n$seek

determine the size of the stream n$size

truncate a stream n$trunc

determine the status of a stream n$status

empty internal buffers of a stream n$flush

close a stream n$close

output formatted data to a stream nSformat

Chapter 3 . THE NOSL FUNCTIONS 3 - 3

page

3-4

3-5

3-6

3-7

3-8

3-9

3-10

3-11

3-13

3-14

3-15

n$open

n$open function

3-4

n$open opens a stream.

Note: The n$open function is the only function that is
parameterized differently for different nosls. See the next
chapter for the different parameterizations.

All stream types support n$open.

Function Syntax Input Output

n$open (
st StreamType. Type of stream

to open.

[eF 1\ n$ErrorFunc 1. Address of a
function to call
if an error
occurs.
Note: See Error
Handling.

[eD 1\ n$ErrorData 1. Address of data
to pass into the
error function.
Note: See Error
Handling.

[other parameters 1 Other parameters
depending on the
type of stream
opened.

) n$Stream; Opened stream.
NIL if unable
to open the
stre.am.

See the next chapter for examples.

DASL USER'S GUIDE 50807-01

n$read

n$read function

n$read reads bytes from an input stream.

Some nosls do not support n$read.

Function Syntax Input

n$read (
s n$Stream, Stream to read from.

p 1\ BYTE, Address of the first
byte to store the
data read from the
stream.

len NUMBER Number of
read.

) NUMBER;

Example:

in n$Stream;

function () :;
VAR string [8lJ CHAR;

n BYTE;

bytes to

Output

Number of bytes
actually read.
Note: o if
end-of-file.

n :; n$read(in, &string{O] , SIZEOF string);

Chapter 3 . THE NOSL FUNCTIONS 3 - 5

n$write

n$write function

3 - 6

n$write writes bytes to an output stream.

Note: If there is already data where the stream is
positioned, it will be overwritten.

Some nosls do not support n$write.

Function Syntax Input

n$write (
s n$Stream, Stream to write to.

p A BYTE, Address of the first byte
write to the stream.

len NUMBER Number of bytes to write.
) ;

Example:

out n$Stream;

function () : =

VAR STATIC s [] CHAR := 'Hello';
{

n$write(out, &s{O}, SIZEOF s);

DASL USER'S GUIDE

Output

to

50807-01

n$tell

n$tell function

n$ tell returns the current position of the stream in bytes.

Some nosls do not support n$tell.

Function Syntax Input

nStell (
s n$Stream Stream to determine

the current
position.

) LONG;

Example:

file nSStream;

function () :=
VAR pos LONG;
(

pos := n$tell(file);

byte

Output

Current byte
position of
stream.

Chapter 3. THE NOSL FUNCTIONS 3 - 7

the

n$seek

n$seek function

n$seek positions the stream to a certain byte position.

3-8

Some nosls do not support n$seek.

Function Syntax Input

n$seek (
s n$Stream, Stream to change

byte position.

pos LONG Byte location
position to.

) LONG;

Example:

file n$Stream;

function () : =
VAR pos LONG;
(

pos := n$seek(file, 0);

to

DASL USER'S GUIDE

Output

the

New byte position.

50807-01

(

n$size

n$size function

n$size returns the size of a stream in bytes.

Some nosls do not support n$size.

Function Syntax Input

nSsize (
s n$Stream Stream to

the size.

) LONG;

Example:

file n$Stream;

function () :=
VAR size LONG;
(

determine

size ;= n$size(file);

Output

Size of the
in bytes.

Chapter 3. THE NOSL FUNCTIONS 3-9

stream

n$trunc

n$trunc function

3-10

n$trunc truncates the stream to the current position.

Some nosls do not support n$trunc.

Function Syntax Input

n$trunc (
s n$Stream Stream to
) ;

Example:

file n$Stream;

function () : =
{

n$trunc(file) ;

truncate.

DASL USER'S GUIDE

Output

50807-01

n$status

Description

n$status includes a type, n$Status, that defines the
different stream statuses, and a function, n$status, that
returns the current status of a stream.

n$Status type

n$Status is defined as follows:

Type Definition Description

TYPDEF n$Status SETW (I

n$busy, Stream is busy with another I/O.

n$EOR, Stream is positioned between
logical records.

n$EOF Stream is positioned at the end
of the stream.
Note: Positioned just past the
last character of the stream.

) ;

Chapter 3 . THE NOSL FUNCTIONS 3 - 11

n$status

n$status function

3 - l2

n$status returns the current status of the stream.

All nosls support n$status.

Function Syntax Input

n$status (
s n$Stream Stream to

status.

) n$Status;

Example:

file n$Stream;

function ()
(

LOOP (

Output

check the

Status
stream.

WHILE - (n$status(file) && n$EOF);

DASL USER'S GUIDE

of the

50807-0l

n$flush

n$flush function

n$flush flushes any internal buffers used by the stream.

• Read buffers are simply marked empty, and
• Write buffers are dumped to the underlying stream or

device.

All nosls support n$flush.

Func tion Syntax Input

n$flush (
s n$Stream Stream to flush.
) ;

Example:

out n$Stream;

function () : =
{

n$flush(out);

Output

Chapter 3. THE NOSL FUNCTIONS 3 - 1 3

n$close

n$close function

3-14

n$close completes all pending operations and closes the
stream. Any storage that was allocated by the nosl is
released.

All nosls support n$close.

Function Syntax Input

n$c1ose (
s n$Stream, Stream to close.

Output

mode BYTE RMS close mode unless otherwise
stated by the particular nos1.

) ;

Example:

out n$Stream;

function () : =
(

n$c1ose(out, $CMCHOP);

DASL USER'S GUIDE 50807-01

n$format

Description

The n$format function outputs formatted data to an output
stream.

n$format is actually a macro that calls other NOSL
functions to perform various operations.

n$format function

n$format outputs formatted data to the output stream.

Since n$format is a macro that calls n$write and n$flush,
any nos! that does not support n$write and n$flush will not
support n$format.

Function Synta.x Input Out:put

n$format (
s n$stream. Stream to write formatted

data to.

I other parameters 1 Up to eight n$format
output specifications.

) ;

Chapter 3. THE NOSL FUNCTIONS 3 - 1 5

n$format

n$format output specifications

There are several n$format output specifications. Use the
following table to select the type of formatted output
needed for your data.

If you want to ... see

output a single character

output a string

output a quoted string

output a decimal number

output an octal number

output a hexadecimal number

output a real number

output an end of line character

n$flush the output stream

page ...

3-17

3-18

3-19

3-20

3-21

3-22

3-23

3-27

3-27

3-16 DASL USER'S GUIDE 50807-01

n$format

Single character output

The "e" output specification outputs up to seven single
characters.

Note: If more than one character is specified, the
characters are stored in a temporary array and written with
a single n$write.

n$format Syntax Description

C (
character CHAR, A single character to output

output stream.

[characters I Up to six more characters to

to the

output
to the output stream separated by
commas.

)

Example:

function (v, h BYTE) :=

(

n$format(out. C($CP, v+$WSTL, h+$WSLC, '*'));

Chapter 3. THE NOSL FUNCTIONS 3 - 1 7

n$format

String output

3-18

The "s" output specification outputs an "object in memory"
(typically an array of characters but can be an INT,
STRUCT, etc).

n$format Syntax Description

S (
object in memory, The string or object to output.

Note: n$format expects the
actual object and not the address
of the object.

[length UNSIGNED I Number of characters to output.
Note: If this parameter is not
specified, SIZEOF the object will
be used as the length.

)

Example:

function () : =
VAR STATIC array IJ CHAR := 'Hello';
(

n$format(out, S(array));

DASL USER'S GUIDE 50807-01

n$format

Quoted string output

The quoted string output specification outputs the
characters within single quotation marks.

n$format Syntax Description

• string' Quoted

Example:

function () : =
{

string

n$format(out, 'Hello');

to output.

Chapter 3. THE NOSL FUNCTIONS 3 - 1 9

n$format

Decimal number output

3-20

The "D" output specification outputs the decimal value of a
number in ASCII format.

n$format Syntax Description

D (
number LONG, Number to output in decimal.

Note: Negative numbers are output
with a preceding minus sign.

[length UNSIGNED I Minimum length of the field where
the number is output.
Note: The number is right
justified and padded with blanks
on the left if it is smaller than
the minimum length.

)

Example:

function () : =
{

n$format(out, D(4000, 10));

Result:

4000

DASL USER'S GUIDE 50807-01

n$format

Octal number output

The "0" output specification outputs the octal value of a
number in ASCII format.

n$format Syntax

0 (
number LONG,

[length UNSIGNED

)

Example:

function () : =
(

1

Description

Number to output in octal.
Note: The number is treated as an
unsigned LONG. That means a -1
will be output as a 037777777777.
The number may be cast to a BYTE
or UNSIGNED to suppress this.

Minimum length of the field where
the number is output.
Note: The number is right
justified and padded with zeros on
the left if it is smaller than the
minimum length.

n$format(out, O(4000, 10));

Result:

10000007640

Chapter 3 . THE NOSL FUNCTIONS 3 - 2 1

n$format

Hexadecimal number output

3-22

The "HI! output specification outputs the hexadecimal
value of a number in ASCII format.

n$format Syntax

H (
number LONG,

[length UNSIGNED

)

Example:

function () : =

{

I

Description

Number to output in hexadecimal.
Note: The number is treated as an
unsigned LONG. That means a -1
will bE output as a FFFFFFFF. The
number may be cast to a BYTE or
or UNSIGNED to suppress this.

Minimum length of the field where
the number is output.
Note: The number is right
justified and padded with zeros on
the left if it is smaller than the
minimum length.

n$format(out, H(4000, 10));

Result:

IOOOOOOOFAO

DASL USER'S GUIDE 50807-01

n$format

Real number output

There are three real number output directives. Use the
following table to determine which real output directive to
use.

If you want to . .. see

output a real number using scientific
notation

output a real number using floating point
notation

output a real number using the shorter of
the two notations, scientific and floating
point

page ...

3-24

3-25

3-26

Chapter 3. THE NOSL FUNCTIONS 3 - 2 3

n$format

Real number output in "e" format

3-24

The "Re" output specification outputs a real number in
ASCII scientific notation.

n$format Syntax Description

Re (
number DOUBLE, Real number to output in the form

[-]m.nnnnnnE[-]xxx

places UNSIGNED, Number of digits to output
following the decimal point.

[length UNSIGNED] Minimum length of the field where
the number is output.
Note: The number is right
justified and padded with blanks
on the left if it is smaller than
the minimum length.

)

Example:

function () : =
{

n$format(out, Re(1234.56789, 2, 20));

Result:

1.23E3

DASL USER'S GUIDE 50807-01

n$format

Real number output in "f" format

The "Rf" output specification outputs a real number in
ASCII floating point notation.

n$format Syntax Description

Rf (
number DOUBLE, Real number to output in the

(-jmmm.nnnnnn

places UNSIGNED, Number of digits to output
following the decimal point.

[length UNSIGNED j Minimum length of the field
the number is output.
Note: The number is right

form

where

justified and padded with blanks

)

Example:

function () : =

{

on the left
the minimum

if it is smaller
length.

n$format(out, Rf(1234.56789, 2, 20));

Result:

1234.57

Chapter 3 . THE NOSL FUNCTIONS 3 - 2 5

than

n$format

Real number output in "g" format

3-26

The "Rg" output specification outputs a real number in the
shorter of the two ASCII notations, scientific and floating
point.

n$format Syntax Description

Rg (
number DOUBLE, Real number to output in the

or "f" format, whichever is
shorter.
Note: Does not output
--

ins ignif ican t zeros.

places UNSIGNED, Number of digits to output
following the decimal point.

[length UNSIGNED 1 Minimum length of the field
the number is output.
Note; The number is right

"e"

where

justified and padded with blanks

)

Example:

function () ;=

(

on the left
the minimum

if it is smaller than
length.

n$format(out, Rg(1234.56789, 2, 20));

Result:

1. 23E3

DASL USER'S GUIDE 50807-01

n$format

New line output

The "LN" output specification outputs a single $LEOR.

n$format Syntax Description

LN

Example:

I
function () :=

{ n$format(out, LN);

Flush n$format internal buffers

The "F" output specification causes an n$f1ush to be
performed on the output stream.

Syntax

Example:

Ifunction () :=

{ n$format(out, F);

Chapter 3. THE NOSL FUNCTIONS 3 - 2 7

3-28 DASL USER'S GUIDE 50807-01

Chapter 4.
THE NOSLS
OVERVIEW

Introduction

This chapter contains a description of the individual nosls
and a guide for selecting a nosl.

Each nosl is a tool

The philosophy of NOSL is that of a toolbox. Each nosl
described in this chapter is a small, easy to understand
tool, designed to handle a particular job.

Parameterization of the NOSL open call

Each of the nosls in this chapter will include a description
of their nosl open calls. Several parameters in each nosl
open call are optional.

Optional parameters are enclosed in square brackets for
identification in the function diagrams. They may be
ignored by omitting them completely, or by replacing them
with a comma if a later parameter is to be specified.

Chapter 4. THE NOSLS 4-1

OVERVIEW

NUMBER type

As mentioned in the previous chapter, NOSL defines a
type, NUMBER, which represents the addressable memory
area of a machine. In this chapter, this type is used to
define the buffer size in the NOSL open function.

On machines with 16 bit pointers, NUMBER is defined as
follows:

Type Definition Description

TYPDEF NUMBER UNSIGNED; Addressable memory area of
machine.

Note: On machines with 32 bit pointers, NUMBER is defined
as LONG.

NOSL open error parameters

The NOSL open function contains two optional parameters
<eF and eD) that may be used to customize error handling
for each nosl. See the Error Handling chapter for further
details.

a

4-2 DASL USER'S GUIDE 50807-01

(

SELECTING A NOSL

Overview

This section contains the description of a function that
determines the device kind of an RMS filename, and a table
of the different nosls available.

n$fKind function

n$fKind returns the device kind of an RMS filename.

This function is useful for programs that do not know what
kind of input or output device to read or write until run
time.

Function Syntax Input Output

n$fKind (
sfentP /\ $SFENT, Address of the file

entry table of the
file to determine
the device kind.

[pSubKind /\ BYTE 1, Address of a Ini tialized
byte. with subkind

code.

[eF /\ n$ErrorFunc 1, Address of error
function.

[eO /\ n$ErrorOata 1 Address of error
data.

) BYTE; RMS device
kind.
Exam[lle:
$OKOISK

Chapter 4. THE NOSLS 4-3

SELECTING A NOSL

n$fKind function (continued)

4-4

Example: The following program segment scans an output
device from the command line and calls an appropriate
function based upon the device kind returned.

fileSpk $FILESPK := (
(• IN

$FILNAMR, $NOADR,
J;

function () : =

VAR dK BYTE;
(

&'TEXT' ,&'
• J,

IF $SCANFLS(&fileSpk, 1) && D$CFLAG THEN $ERMSG();
dK := n$fKind(&fileSpk.$FSOSFT);
CASE dK (

$DKPIPE openPipe();
$DKPRINT openPrinter();
DEFAULT errore);
I;

DASL USER'S GUIDE 50807-01

SELECTING A NOSL

Which nasi?

Use the following table to determine which nasi to use.

If you want to . .. then use . .. page

input/output to a binary disk file Disk, or 4-6
Diskld nosl. 4-9

input from a binary disk file DiskR nos1. 4-12

input/output to a virtual file VirFil nosl. 4-15

provide a buffer for another nosl BufPag nos1. 4-17

decompress an input text nos1 Decomp nos1. 4-19

compress to an output text nosl CmpOut nos1. 4-22

input from the workstation Workstation 4-24
input nosls.

output to the workstation Workstation 4-34
output nos1s.

output to a printer Print nosl. 4-43

output to a pipe Pipe nosl. 4-46

duplicate output to two nosis Split nosl. 4-48

input/output to memory Mem nos1. 4-50

ignore nos1 operations Null nos1. 4-52

Chapter 4. THE NOSLS 4-5

Disk NOSL

Introduction

NOSL provides the Disk nosl for input and output of binary
data to a disk file.

End-ot-file pointer

The Disk nosl uses the RMS end-of-file pointer to define
the end-of-file rather than the first occurrence of a $ LEOF
character.

NOSL function support

The Disk nosl supports all of the NOSL functions.

4-6 DASL USER'S GUIDE 50807-01

Disk NOSL

Disk nasi n$open

This function diagram describes the parameterization of
the n$open for the Disk nos!.

Function Syntax Input

n$open (
Disk. Binary disk I/O stream

indicator.

I eF 1\ n$ErrorFunc J. Address of error
function.

I eD 1\ n$ErrorData J. Address of error data.

sfentP 1\ SSFENT. Address of the file entry
table of the file to
open or create.

I formatP 1\ BYTE J. Address of a byte.
Specifies file format if
creating a file.
Note: Defaults to
SFFMTTXT.

(mode BYTE I. RMS open mode.
Note: Defaults to
$OMREAD.

I bufSize NUMBER J. Size of buffer to use in
bytes.
Note: Defaults to 2048. --

[openPTP 1\ $OPENPTP J Address of an open
parameter table.
Note: Sector length and
increment default to 200.
formatP takes precedence
over openPTP format.

) n$Stream;

Chapter 4. THE NOSLS 4-7

Output

File
format
of file
opened.

Opened
stream.

Disk NOSL

Disk nosl n$open (continued)

4-8

Example:

out n$Stream;

fileSpk SFILESPK := {
{ 'OUT

$FILNAMR, $NOADR,
I;

function () : =

(

, },

&'TEXT' ,&'

IF $SCANFLS(&fileSpk, 1) && D$CFLAG THEN $ERMSG();
out := n$open(Disk" , &fileSpk.$FSOSFT" $OMPREp);

DASL USER'S GUIDE 50807-01

Diskld NOSL

Introduction

In addition to the Disk nosl, NOSL provides the Diskld nosl
for input and output of binary data to a disk file that is
already open.

The file is opened by FAVID

The Diskld nosl opens the disk file by its file access
variable (FAVID).

Uses for the Diskld nosl

The DiskId nosl is useful for

• opening several nosls on the same file, or
• keeping several files open while using a single set of

buffers.

NOSL function support

The Diskld nasi supports all of the NOSL functions.

Chapter 4. THE NOSLS 4-9

Diskld NOSL

NOSL function results

The following NOSL functions have unique results when
used with the DiskId nosI.

Function Results

n$close closes the nosl. but not the file.

Diskld nosl n$open

This function diagram describes the parameterization of
the n$open for the Diskld nosi.

Function Syntax Input

n$open (
Diskld. Binary disk FAVID I/O

stream indicator.

Output

[eF 1\ n$ErrorFunc I. Address of error function.

[eD 1\ n$ErrorData I. Address of error data.

id UNSIGNED. File access variable ID
of an open file.

[bufSize NUMBER 1 Size of buffer to use in
bytes.
Note: Defaults to 2048. --

) n$Stream; Opened
stream.

4-10 DASL USER'S GUIDE 50807-01

Diskld NOSL

Diskld nasi n$open (continued)

Example: This program segment opens two nosls on one
disk file.

fI $PFDB;

fi1eSpk $FILESPK := {
{ 'OUT

$FILNAMR, $NOADR,
} ;

openPT $OPENPT := {

&fI,

&'TEXT' ,&'

&fileSpk.$FSOSFT.$SFTENV[Ol,
&<$NAMEEXT>fileSpk.$FSOSFT.$SFTNAM
} ;

in1 n$Stream;
in2 n$Stream;

function () :=
VAR fay UNSIGNED;
{

, },

IF $SCANFLS(&fileSpk, 1) && D$GFLAG THEN $ERMSG();
IF $OPEN($OMREAD, &openPT) && D$GFLAG THEN

$ERMSG();
fay := openPT.$OTPFDBA.$PFVID;
inl := n$open(Diskld", fav, 4096);
in2 := n$open(Diskld", fav, 256);

Chapter 4. THE NOSLS 4-11

DiskR NOSL

Introduction

NOSL provides the DiskR nosl for reading data from a disk
file. It is a read only version of the Disk nosl.

NOSL function support

The DiskR nosl supports all of the NOSL functions except

• n$write,
• n$trunc, and
• n$format.

4-12 DASL USER'S GUIDE 50807-01

DiskR NOSL

DiskR nosl n$open

This function diagram describes the parameterization of
the n$open for the DiskR nosl.

Function Syntax Input Output

nSopen (
DiskR, Binary disk input

stream indicator.

[eF A n$ErrorFunc J, Address of error
function.

[eD 1\ n$ErrorData J, Address of error
data.

sfentP 1\ $SFENT, Address of the file
entry table of the
file to open.

[formatP A BYTE 1, Address of a byte. File format
of file
opened.

[mode BYTE J, RMS open mode.
Note: Defaults to
SOMREAD.

[bufSize NUMBER J, Size of buffer to use
in bytes.
Note: Defaults to
2048.

[openPTP 1\ $OPENPTP J Address of an open
parameter table.

) n$Stream; Opened
stream.

Chapter 4. THE NOSLS 4 - 1 3

DiskR NOSL

DiskR nasi n$open (continued)

Example:

in n$Stream;

fi1eSpk $FILESPK := {

{ 'IN
$FILNAMR, $NOADR,

I;

function () : =

, },

&'TEXT' ,&'

IF $SCANFLS(&fi1eSpk, 1) && D$CFLAG THEN $ERMSG();
in n$open(DiskR", &fiieSpk.$FSOSFT",4096);

4-14 DASL USER'S GUIDE 50807-01

(

VirFiI NOSL

Introduction

NOSL provides the VirFil nosl as a virtual file facility. The
VirFil nosl simulates a virtual file for both input and
output.

Definition of a virtual file

A virtual file is a file that looks and acts like a real file,
except it is maintained in memory. Input and output to a
virtual file is therefore much faster than a disk file.

Note: The memory used by a virtual file is released by the
virtual file handler when the virtual file is closed. If more
than one virtual file is in use, the memory will not be
released until all of the virtual files have been closed.

The spill file

If the virtual file runs out of memory, a "spill file" is
created on disk to hold the data that did not fit in memory.
Multiple virtual files will all use the same spill file if they
run out of memory.

Note: NOSL will delete the spill file when all virtual files
are closed.

Improving performance

VirFil may realize a performance improvement by opening
a BufPag nosl over the VirFil nos 1.

Chapter 4. THE NOSLS 4-15

VirFil NOSL

NOSL function support

The VirFil nosl supports all of the NOSL functions.

VirFil nosl n$open

This function diagram describes the parameterization of
the n$open for the VirFil nosl.

Function Syntax Input

n$open (
VirFil. Virtual binary disk 1/0

stream indicator.

Output

[eF 1\ n$ErrorFunc I. Address of error function.

4-16

[eD 1\ n$ErrorData I Address of

) n$Stream;

Example:

virtual n$Stream;

function () : =
(

virtual := n$open(VirFil);

DASL USER'S GUIDE

error data.

Opened
stream.

50807-01

BufPag NOSL

Introduction

NOSL provides the BufPag nosl for buffering the data input
or output from another nosl.

Performance improvement

The BufPag nosl is useful for improving performance by
reducing the number of operations of another nosl.

Note: The potential improvement in performance is bought
at the price of memory allocated from your address space.

NOSL function support

The BufPag nosl supports all of the NOSL functions except
n$trunc.

NOSL function results

The following NOSL functions have unique results when
used with the BufPag nosl.

Function Results

n$open the position of the nosl stream is the same
as the position of the underlying stream.

n$close the nosl is closed, but the underlying stream
is not.

Chapter 4. THE NOSLS 4-17

BufPag NOSL

BufPag nosl n$open

This function diagram describes the parameterization of
the n$open for the BufPag nosI.

Function Syntax Input

n$open (
BufPag. Page aligned buffer stream

indicator.

[eF 1\ n$ErrorFunc 1. Address of error

[eD 1\ n$ErrorData 1. Address of error

under n$Stream. Stream to buffer.

[bufSize NUMBER 1 Size of buffer to
bytes.
Note: Defaults to --

) n$Stream;

Example:

buff n$Stream;

function () : =

VAR virtual n$Stream;
{

virtual n$open(VirFil);

function.

data.

use in

256.

buff := n$open(BufPag", virtual, 512);

Output

Opened
stream.

4-18 DASL USER'S GUIDE 50807-01

Decamp NOSL

Introduction

NOSL provides Decamp as a text decompression nasi for
decompressing text read in from one of the binary disk
nosls.

End-of-file pointer

The Decamp nasi defines the end-of-file as the position
specified by the RMS end-of-file pointer or the first
occurrence of a $LEOF character, whichever comes first.

NOSL function support

The Decomp nosl supports all of the NOSL functions except

• n$write,
• n$trunc, and
• n$format.

Chapter 4. THE NOSLS 4-19

Decomp NOSL

NOSL function results

The following NOSL functions have unique results when
used with the Decomp nosl.

Function Results

n$open the position of the nosl stream is the same
as the position of the underlying stream.

n$read • stops reading if a $LEOR character or the
maximum number of characters is read.

• sets the n$EOF status but does not return
the $LEOF if a $LEOF terminates the read
rather than a $LEOR. The n$EOR status is
not set in this situation.

n$tell • only valid when n$EOR status is set.
• returns position of $LEOF if current

position and $LEOF are separated by $LDELs
or $LEOBs.

n$status returns n$EOF status if current position and
$LEOF are separated by $LDELs or $LEOBs.

n$seek force n$EOR status.
n$flush

n$close the nosl is closed, but the underlying stream
is not.

4-20 DASL USER'S GUIDE 50807-01

Decomp NOSL

Decomp nosl n$open

This function diagram describes the parameterization of
the n$open for the Decomp nosl.

Function Syntax Input

n$open (
Decomp, Text decompression stream

indicator.

[eF 1\ n$ErrorFunc J, Address of error function.

[eD 1\ n$ErrorData J, Address of error data.

under n$Stream Text stream to decompress.

) n$Stream;

Example:

in n$Stream;
decomp n$Stream;

fi1eSpk $FILESPK := {
{ 'IN

$FILNAMR, SNOADR,
J;

function () : =

(

&'TEXT' ,&'

Output

Opened
stream.

, },

IF SSCANFLS(&fileSpk, 1) && D$CFLAG THEN $ERMSG();
in := n$open(DiskR", &fileSpk.$FSOSFT",4096);
decamp := n$apen(Decomp", in);

Chapter 4. THE NOSLS 4 - 2 1

CmpOutNOSL

Introduction

NOSL provides CmpOut as a text compression nosl for
writing compressed text to one of the binary disk output
nosls.

NOSL function support

The CmpOut nosl supports all of the NOSL functions except
n$read.

NOSL function results

The following NOSL functions have unique results when
used with the CmpOut nosl.

Function Results

n$open the position of the nosl stream is the same
as the position of the underlying stream.

n$tell forces a n$flush before performing normal
n$seek operations.
n$size
n$trunc

n$close the nosl is closed, but the underlying stream
is not.

4-22 DASL USER'S GUIDE 50807-0l

CmpOutNOSL

CmpOut nosl n$open

This function diagram describes the parameterization of
the n$open for the CmpOut nasI.

Function Syntax Input

n$open (
CmpOut, Text compression stream

indicator.

[eF 1\ n$ErrorFunc J, Address of error function.

[eD 1\ n$ErrorData 1, Address of error data.

under nSStream Text stream to output
compressed text to.

) nSStream ;

Example:

out nSStream;
cmp nSStream;

fileSpk SFILESPK := {

{ 'OUT
SFILNAMR, SNOADR,

l;

function () :=
(

& 'TEXT' ,&'

Output

Opened
stream.

, l,

IF SSCANFLS(&fileSpk, 1) && DSCFLAG THEN SERMSG();
out nSopen(Disk", &fi1eSpk.$FSOSFT" $OMPREP);
cmp := n$open(CmpOut", out);

Chapter 4. THE NOSLS 4-23

WORKSTATION INPUT NOSLS

Introduction

NOSL provides several input nosls to input data from the
workstation.

The workstation input nosls are WSIn, ChaIn, BWSIn, and
BChaIn.

Unbuffered and buffered input

The workstation input nosls can be separated into
unbuffered, WSIn and ChaIn, and buffered, BWSIn and
BChaIn input nosls. When doing an n$read,

• the unbuffered nosls will read up to 81 characters from
the workstation. They will accept no more than the
number of characters specified by the n$read .

• the buffered nosls will read up to 81 characters to fill
the buffer and then return the number of characters
specified by the n$read. If more characters were
entered into the buffer than were specified by the
n$read, the characters are retained in the buffer and
returned on subsequent reads.

Predefined stream constants

4-24

Each of the workstation nosls have a corresponding
predefined stream constant. These constants may be used
as the stream parameter to the NOSL functions.

The only reason to actually "open" the workstation nosls,
instead of using these stream constants, is to specify an
optional parameter with a value other than their defaults.

DASL USER'S GUIDE 50807-0l

WORKSTATION INPUT NOSLS

NOSL function support

The workstation input nosls support all of the NOSL
functions except

• n$write,
• n$tell,
• n$seek,
• n$size,
• n$trunc, and
• n$format.

Which nosl?

Use the following table to determine which nosl to use.

If you want to ... then use ...

input data from the keyboard WSIn.

input data from either the keyboard ChaIn.
or chain file if chaining is active

buffer input from the keyboard BWSIn.

buffer input from either the keyboard BChaIn.
or chain file if chaining is active

Chapter 4. THE NOSLS 4-25

page

4-26

4-28

4-30

4-32

WORKSTATION INPUT NOSLS

WSln nosl

The WSln nosl inputs from the keyboard.

n$WSln constant

4-26

n$WSln is a constant that is available for you to use.

Constant Definition

n$WSln n$Stream;

Example:

function () : =

VAR n BYTE;
s [811 CHAR;

Description

Predefined WSln input

n := n$read(n$WSln, &s[OJ, SIZEOF s);

DASL USER'S GUIDE

stream.

50807-01

WORKSTATION INPUT NOSLS

WSln nos I n$open

This function diagram describes the parameterization of
the n$open for the WSIn nosl.

Note: This function will return a stream with the same
value as the n$WSIn constant described above.

Function Syntax

n$open (
WSln,

[eF 1\ n$ErrorFunc

[eD 1\ n$ErrorData

[noEnter BOOLEAN

) n$Stream;

Example:

in n$Stream;

function () : =

VAR n BYTE;

I,

I,

1

s [811 CHAR;

Input

Workstation input stream
indicator.

Address of error function.

Address of error data.

TRUE disables a $LEOR
from being written to the
workstation every time one
is read from the keyboard.
Note: Default is FALSE. --

in := n$open(WSIn, , , TRUE);
n := n$read(in, &s[OI, SIZEOF s);

Chapter 4. THE NOSLS 4-27

Output

Opened
stream.

WORKSTATION INPUT NOSLS

Chain nosl

The ChaIn nasI inputs from either the keyboard or chain
file if chaining is active.

n$Chaln constant

n$ChaIn is a constant that is available for you to use.

Constant Definition Description

n$ChaIn n$Stream; Predefined ChaIn input stream.

4-28

Example:

function () :=
VAR n BYTE;

s [81] CHAR;

n .= n$read(n$Chaln, &s[O], SIZEOF s);

DASL USER'S GUIDE 50807-01

WORKSTATION INPUT NOSLS

Chain nosl n$open

This function diagram describes the parameterization of
the n$open for the ChaIn nosl.

Note: This function will return a stream with the same
value as the n$ChaIn constant described above.

Function Syntax

n$open (
ChaIn,

[eF " n$ErrorFunc

[eD " n$ErrorData

[noEnter BOOLEAN

) n$Stream;

Example:

in n$Stream;

function () : =
VAR n BYTE;

] ,

] ,

]

5 [811 CHAR;

Input

Chain input stream
indicator.

Address of error function.

Address of error data.

TRUE disables a $LEOR
from being written to the
workstation every time one
is read from the keyboard
or chain file.
Note: Default is FALSE.

in := n$open(Chaln", TRUE);
n := n$read(in, &5[0], SIZEOF 5);

Chapter 4. THE NOSLS 4-29

Output

Opened
stream.

WORKSTATION INPUT NOSLS

BWSln nasi

The BWSln nosl buffers input from the keyboard.

n$BWSln constant

4-30

n$BWSIn is a constant that is available for you to use.

Constant Definition

nSBWSIn nSStream;

Example:

function () : =

VAR n BYTE;
s [811 CHAR;

Description

Predefined BWSIn input

n nSread(n$BWSIn. &s[Ol. SIZEOF s);

DASL USER'S GUIDE

stream.

50807-01

WORKSTATION INPUT NOSLS

BWSln nasi n$open

This function diagram describes the parameterization of
the n$open for the BWSln nasI.

Note: This function will return a stream with the same
value as the n$BWSln constant described above.

Function Syntax Input

n$open (
BWSln, Buffered workstation input

stream indicator.

[eF /\ n$ErrorFunc J, Address of error

[eD /\ n$ErrorData J Address of error

) n$Stream;

Example:

in n$Stream;

function () : =

VAR n BYTE;
s [81J CHAR;

in := n$open(BWSIn, titerrorF);
n := nSread(in, &5[OJ, SIZEOF s);

function.

data.

Chapter 4. THE NOSLS 4 - 31

Output

Opened
stream.

WORKSTATION INPUT NOSLS

BChaln nosl

The BChaIn nosl buffers input from either the keyboard or
chain file if chaining is active.

n$BChaln constant

4-32

n$BChaIn is a constant that is available for you to use.

Constant Definition

n$BChaln n$Stream;

Example:

function () : =

VAR n BYTE;
s [811 CHAR;

Description

Predefined BChaln input

n := n$read(n$BChaln. &s[OI. SIZEOF s);

DASL USER'S GUIDE

stream.

50807-01

(

WORKSTATION INPUT NOSLS

BChaln nosl n$open

This function diagram describes the parameterization of
the n$open for the BChaln nosl.

Note: This function will return a stream with the same
value as the n$BChaln constant described above.

Function Syntax Input

n$open (
BChaln, Buffered chain input

stream indicator.

[eF A n$ErrorFunc) , Address of error function.

[eO A n$ErrorOata) Address of error

) n$Stream;

Example:

in n$Stream;

function () :=
VAR n BYTE;

s (81) CHAR;

in := n$open(BChaIn, &errorF);
n := n$read(in, &s[O), SIZEOF s);

data.

Chapter 4. THE NOSLS 4-33

Output

Opened
stream.

WORKSTATION OUTPUT NOSLS

Introduction

NOSL provides several output nosls to output data to the
workstation.

The workstation output nosls are WSOut, Line25, and
LogOut.

Common buffer

4-34

The workstation output nosls share a common buffer.
This buffer is flushed when

• the buffer is full,
• an n$read operation is performed by the n$WSln or the

n$Chaln nosl,
• an $LEOR character is written, or
• a write is performed on one of the other two output

nosls.

Note: The common buffer is initialized with a $NL (newline
character) which causes the first output to the screen to be
written on its own line.

DASL USER'S GUIDE 50807-01

WORKST ATION OUTPUT NOSLS

Writing $LEORs

When a $LEOR is written to one of the workstation output
nosls,

• the common buffer is flushed first, and
• a $NL is left as the first character in the common buffer.

Note: This treatment of $LEORs enables you to write to the
workstation exactly as if it was a file.

WSIO control code support

The following WSIO control codes are not supported by the
workstation output nosls.

• $WSIS,
• $WSISI,
• $WSIN,
• $WSINI,
• $WSIDOCS, and
• $WSCONFD.

Predefined stream constants

Each of the workstation nosls have a corresponding
predefined stream constant. These constants may be used
as the stream parameter to the NOSL functions.

The only reason to actually "open" the workstation nosls,
instead of using these stream constants, is to specify
optional parameters with values other than their defaults.

Chapter 4. THE NOSLS 4 - 3 5

WORKSTATION OUTPUT NOSLS

NOSL function support

The workstation output nosls support all of the NOSL
functions except

• n$read,
• n$tell,
• n$seek, and
• n$size.

Note: n$trunc is supported but performs no function.

Which nasi?

Use the following table to determine which nos I to use.

If you want to . .. then use . .. page

output to the workstation screen WSOut. 4-37

output to a pseudo 25th line on the Line25. 4-39
workstation screen

output to the workstation screen LogOut. 4-41
and log file if logging is active

4-36 DASL USER'S GUIDE 50807-01

WORKSTATION OUTPUT NOSLS

WSOut nasi

The WSOut nasI outputs to the workstation screen.

n$WSOut constant

n$WSOut is a constant that is available for you to use.

Constant Definition

n$WSOut n$Stream;

Example:

function () :=
{

Description

Predefined WSOut output stream.

n$format(n$WSOut, 'Welcome to NOSL', LN);

Chapter 4. THE NOSLS 4-37

WORKSTATION OUTPUT NOSLS

WSOut nasi n$open

This function diagram describes the parameterization of
the n$open for the WSOut nosl.

Note: This function will return a stream with the same
value as the n$WSOut constant described above.

Function Syntax

n$open (
WSOut,

[eF 1\ n$ErrorFunc

[eD 1\ n$ErrorData

) n$Stream;

Example:

out n$Stream;

function () : ~
{

Input

Workstation output stream
indicator.

I, Address of error function.

I Address of error data.

out := n$open(WSOut, &errorF);
n$format(out, 'Welcome to NOSL', LN);

Output

Opened
stream.

4-38 DASL USER'S GUIDE 50807-01

WORKSTATION OUTPUT NOSLS

Line25 nasi

The Line25 nosl outputs to a pseudo 25th line on the
workstation screen for status and operator entertainment
messages.

After a message has been displayed by this nosl, the
common buffer is primed with a $EEOL (erase to end of
line) which will cause the message to disappear when
something is written by one of the other workstation
output nosls.

n$Line25 constant

n$Line25 is a constant that is available for you to use.

Constant Definition !DescriPrion

n$LineZS n$Stream; Ipredefined Line25 output stream.

Example:

function () : =
(

n$format(n$Line25, 'Waiting for a message', LN);

Chapter 4. THE NOSLS 4 - 3 9

WORKSTATION OUTPUT NOSLS

Line25 nos I n$open

This function diagram describes the parameterization of
the n$open for the Line25 nosl.

Note: This function will return a stream with the same
value as the n$Line25 constant described above.

Function Syntax

n$open (
Line25,

[eF 1\ n$ErrorFunc

[eD 1\ n$ErrorData

) n$Stream;

Example:

out n$Stream;

function () : ~
{

Input

Pseudo 25th line output
stream indicator.

J, Address of error function.

J Address of error data.

out := n$open(Line25 , &errorF);
n$format(out, 'Waiting for a message', LN);

Output

Opened
stream.

4-40 DASL USER'S GUIDE 50807-0l

WORKSTATION OUTPUT NOSLS

LogOut nosl

The LogOut nos I outputs to the workstation screen and log
file if logging is active.

n$LogOut constant

n$LogOut is a constant that is available for you to use.

Constant Definition

n$LogOut n$Stream;

Example:

function () : =

(

Description

Predefined LogOut output stream.

n$format(n$LogOut, 'Processing labels', LN);

Chapter 4. THE NOSLS 4-41

WORKST ATION OUTPUT NOSLS

LogOut nosl n$open

This function diagram describes the parameterization of
the n$open for the LogOut nos!.

Note: This function will return a stream with the same
value as the n$LogOut constant described above.

Function Synta.x Input

n$open (
LogOut, Log output stream

indicator.

Output

I
I

[eF 1\ n$ErrorFunc l, Address of error function.

4-42

[eD 1\ n$ErrorData 1 Address of error data.

) n$Stream;

Example:

out n$Stream;

function () : =
{

out := n$open(LogOut, &errorF);
n$format(out, 'Processing labels', LN);

DASL USER'S GUIDE

Opened
stream.

50807-01

Print NOSL

Introduction

NOSL provides the Print nasI to output data to a printer.

NOSl function support

The Print nasI supports all of the NOSL functions except

• n$read,
.. n$tell,

• n$seek,
It n$size, and
• n$trunc.

Chapter 4. THE NOSLS 4-43

Print NOSL

Print nosl n$open

This function diagram describes the parameterization of
the n$open for the Print nasI.

Function Syntax Input

n$open (
Print. Printer output stream

indicator.

[eF A n$ErrorFunc 1. Address of error
function.

[eD A n$ErrorData 1. Address of error data.

sfentP A $SFENT. Address of file entry
table to open.

[bufSize NUMBER 1. Size of buffer to use in
bytes.
Note: Defaults -- to optimum
size declared by the
printer.

[offLineF A D$CALLF 1 Address of a function to
call if the printer is
offline or out of paper.
Note: Will display
"Printer not ready"
through Line25 nosl if
function not specified.

) n$Stream;

Output

Opened
stream.

4-44 DASL USER'S GUIDE 50807-0l

Print NOSL

Print nasi n$open (continued)

Example:

prt n$Stream;
prtSFT $SFENT := {

'PRT ',' $LP 'PRT' 'L
J;

function () :=

prt:= n$open(Print, , , &prtSFT);

Chapter 4. THE NOSLS 4-45

Pipe NOSL

I nt roduct ion

NOSL provides the Pipe nosl to input and output data to a
pipe.

NOSL function support

The Pipe nosl supports all of the NOSL functions except

• n$tell,
• n$seek,
• n$size, and
• n$trunc.

NOSL function results

4-46

The following NOSL functions have unique results when
used with the Pipe nosl.

Function Results

n$read • causes a flush of any pending write data.
• stops after the last character in the pipe

message or the maximum number of characters
is read. If there is no current pipe
message when a n$read is performed, an RMS
physical read is performed on the pipe.

n$write discards any remaining read data.
n$format

n$status • returns a n$EOR status when an entire pipe
message has been read.

• There is no n$EOF status for pipes.

DASL USER'S GUIDE 50807-01

Pipe NOSL

Pipe nasi n$open

This function diagram describes the parameterization of
the n$open for the Pipe nos!.

Function Syntax

nSopen (
Pipe,

[eF 1\ n$ErrorFunc J,

[eD 1\ n$ErrorData I,

sfentP /\ $SFENT,

[bufSize NUMBER J,

[timeout BYTE J

) n$Stream;

Example:

pipe n$Stream;
pipeSFT $SFENT := {

Input

Pipe 1/0 stream indicator.

Address of error function.

Address of error data.

Address of file entry
table to open.

Size of buffer to use in
bytes.
Note: Defaults to 256. --

Number of seconds before
a pipe operation will time
out.
Note: Default is $FOREVER.

'PIPE ,'MY_PIPE NAME', 'PIPE', '
} ;

function () :=

pipe := n$open(Pipe, , , &pipeSFT);

Chapter 4. THE NOSLS 4-47

Output

Opened
stream.

Split NOSL

Introduction

NOSL provides the Split nosl for duplicating output to two
other nosls.

NOSL function support

The Split nos I supports all of the NOSL functions except

• n$read,
• n$tell,
• n$seek, and
• n$size.

NOSL function results

The following NOSL functions have unique results when
used with the Split nosl.

Function Results

n$trunc performs n$trunc on both "under" nosis.

n$status always returns O.

4-48 DASL USER'S GUIDE 50807-0l

Split NOSL

Split nosl n$open

This function diagram describes the parameterization of
the n$open for the Split nosl.

Function Syntax Input

n$open (
Split, Output splitter stream

indicator.

[eF 1\ n$ErrorFunc 1, Address of error function.

[eO 1\ n$ErrorOata 1, Address of error data.

underl n$Stream, First stream to split
output data to.

under2 n$Stream Second stream to split
output data to.

) n$Stream;

Example: The following program segment opens a split
nosl that will duplicate output to a disk file and the
workstation screen.

outO n$Stream;
out n$Stream;

fileSpk $FILESPK := {
('OUT

the

the

$FILNAMR, $NOADR, &'TEXT' ,&'
I;

function () : =

(

Output

Opened
stream.

,),

IF $SCANFLS(&fileSpk, 1) && D$CFLAG THEN $ERMSG();
outO := n$open(Oisk", &fileSpk.$FSOSFT" $OMPREP);
out := n$open(Split", n$WSOut, outD);

Chapter 4. THE NOSLS 4-49

Mem NOSL

Introduction

NOSL provides the Mem nosl for input and output to a block
of memory.

Uses for the Mem nosl

The Mem nosl is primarily useful in conjunction with
n$format for producing strings of text, as well as decimal,
octal, hexadecimal, and floating numbers in memory.

NOSL function support

The Mem nosl supports all of the NOSL functions.

4-50 DASL USER'S GUIDE 50807-01

Mem NOSL

Mem nasi n$open

This function diagram describes the parameterization of
the n$open for the Mem nasI.

Function Syntax

n$open (
Mem,

[eF /\ n$ErrorFunc J,

[eD /\ n$ErrorData J,

buffP /\ BYTE,

buff Size UNSIGNED

) n$Stream;

Example:

mem n$Stream;
buffer [80J BYTE;

function ()
{

Input

Memory I/O stream
indicator.

Address of error function.

Address of error data.

Address of the first byte
of memory to use.

Number of bytes in the
memory buffer.

Output

Opened
stream.

mem := n$open(Mem", &buffer[O] , SIZEOF buffer};

Chapter 4. THE NOSLS 4 - 5 1

Null NOSL

Introduction

NOSL provides a nosl that will ignore all nosl operations.

The Null nosl is a "do nothing" nos1. All operations to the
Null nosl are ignored.

Uses for the Null nos I

The null nosl may be used as a replacement of an optional
disk file or printer nos1.

Example: A program that creates an output file if a certain
option is specified on the command line can use the Null
nosl if the option is not specified. This will alleviate
having to check whether the option was set or not before
every write, flush, etc ...

Predefined stream constant

The Null nosl has a corresponding predefined stream
constant. This constant may be used as the stream
parameter to the NOSL functions.

The only reason to actually "open" the Null nosl,
instead of using this stream constant, is to specify an
optional parameter with a value other than the defaults.

NOSL function support

The Null nos 1 supports all of the NOSL functions.

4-52 DASL USER'S GUIDE 50807-01

Null NOSL

NOSL function results

The following NOSL functions have unique results when
used with the Null nos!.

Function Results

nSopen does nothing.
n$write
n$trunc
n$flush
n$close
n$format

n$read returns O.
n$tell
nSseek
n$size

n$status returns status n$EOR and n$EOF.

n$Nuil constant

n$Null is a constant that is available for you to use.

Constant Definition

n$Null n$Stream;

Example:

function () : =
VAR n BYTE;

s [811 CHAR;

Description

Predefined Null input

n nSread(n$Null, &s[OI, SIZEOF s);

Chapter 4. THE NOSLS

stream.

4-53

Null NOSL

Null nasi n$open

4-54

This function diagram describes the parameterization of
the n$open for the Null nos!.

Function Syntax

n$open (
Null,

[eF 1\ n$ErrorFunc] ,

[eD 1\ n$ErrorData I,

) n$Stream;

Example:

prt nSStream;
prtSFT $SFENT := {

'PRT ','$LP
I;

Input

Null stream indicator.

Address of error function.

Address of error data.

'PRT' 'L

Output

Opened
stream.

optP $OPTION
optT $OPTTAIL

'PRINT 0, $OPTVCLR, 0 };

function () :=
(

$OPTTERM, 0 I;

IF $SCANOS(&optP) && D$CFLAG THEN $ERMSG();
prt := optP.$OPTFLG && $OPTFDEF

n$open(Print", &prtSFT)
n$open(Null);

DASL USER'S GUIDE 50807-0l

Chapter 5.
NUMERIC SCANNERS
OVERVIEW

Introduction

In addition to the actual NOSL I/O functions, several
numeric scanning functions are provided in the NOSL
library.

Operate on strings in memory

For reasons of both efficiency and flexibility, the numeric
scanning functions deal with strings in memory rather than
directly with streams.

String and field scanners

The numeric scanning functions are divided into two
categories,

• string scanners, and
• field scanners.

The following pages contain a detailed description of the
numeric string and field scanners.

Chapter 5. NUMERIC SCANNERS 5 - 1

STRING SCANNERS

Description

The string scanners parse a string in memory looking for a
number.

Numeric string format

The numeric string may contain leading

• blanks,
• minus sign, and
• in the case of hexadecimal, the characters "OX" or "Ox".

The number must be terminated by a

• space,
• comma, or
• $LEOR.

String scanning functions

Use the following table to determine which string scanning
function to use.

If you want to . .. then use . ..

scan a decimal string n$scanD.

scan an octal string n$scanO.

scan a hexadecimal string n$scanH.

scan a real string n$scanR.

page

5-3

5-4

5-5

5-6

5 - 2 DASL USER'S GUIDE 50807-01

STRING SCANNERS

n$scanD function

n$scanD converts a decimal string number into its
numerical equivalent.

Function Syntax Input

n$scanD (
ppCh AA CHAR, Address of a

pointer to the
first character
in the string.

pStatus A BOOLEAN Address of a
boolean.

) LONG;

Example:

function (pC A CHAR) :=
VAR status BOOLEAN;

d LONG;

d n$scanD(&pC, &status);

Output

Points to the
terminator if a
number was
found. Unchanged
if no number.

TRUE if a number
was found. FALSE
otherwise

Decimal number
scanned.
Note: 0 if number
~-

was not found.

Chapter 5. NUMERIC SCANNERS 5 - 3

STRING SCANNERS

n$scanO function

n$scanO converts an octal string number into its numerical
equivalent.

5-4

Function Syntax Input

n$scanO (
ppCh /\/\ CHAR, Address of a

pointer to the
first character
in the string.

pStatus /\ BOOLEAN Address
boolean.

) LONG;

Example:

function (pC /\ CHAR) :=
VAR status BOOLEAN;

o LONG;

of a

o := n$scanO(&pC, &status);

DASL USER'S GUIDE

Output

Points to the
terminator if a
number was
found. Unchanged
if no number.

TRUE if a number
was found. FALSE
otherwise

Octal number
scanned.
Note: 0 if number
was not found.

50807-0l

STRING SCANNERS

n$scanH function

n$scanH converts a hexadecimal string number into its
numerical equivalent.

Function Syntax Input

n$scanH (
ppCh /,,' CHAR, Address of a

pointer to the
first character
in the string.

pStatus 1\ BOOLEAN Address of a
boolean.

) LONG;

Example:

function (pC 1\ CHAR) :=
VAR status BOOLEAN;

h LONG;

h n$scanH(&pC, &status};

Output

Points to the
terminator if a
number was
found. Unchanged
if no number.

TRUE if a number
was found. FALSE
otherwise

Hexadecimal
number scanned.
Note: 0 if number
was not found.

Chapter 5. NUMERIC SCANNERS .5 - 5

STRING SCANNERS

n$scanR function

n$scanR converts a real string number into its numerical
equivalent.

5 - 6

Function Synta.x Input

n$scanR (
ppCh /\/\ CHAR, Address of a

pointer to the
first character
in the string.

pStatus /\ BOOLEAN Address
boolean.

) DOUBLE;

Example:

function (pC /\ CHAR) :=
VAR status BOOLEAN;

r DOUBLE;

of a

r := n$scanR(&pC, &sta.tus);

DASL USER'S GUIDE

Output

Points to the
terminator if a
number was
found. Unchanged
if no number.

TRUE if a number
was found. FALSE
otherwise

Floating point
number scanned.
Note: 0 if number --
was not found.

50807-0l

FIELD SCANNERS

Description

The field scanners parse a fixed field in memory looking
for a number.

They are actually low level routines called by the string
scanners.

Numeric field format

The numeric field may contain a leading

• minus sign, and
• in the case of hexadecimal, the characters "OX" or "Ox".

The number must completely fill the field. No trailing
spaces are allowed.

Field scanning functions

Use the following table to determine which field scanning
function to use.

If you want to . .. then use . ..

scan a decimal field $scanD.

scan an octal field $scanO.

scan a hexadecimal field $scanH.

scan a real field $scanR.

Chapter 5. NUMERIC SCANNERS 5 - 7

page

5-8

5-9

5-10

5-11

FIELD SCANNERS

$scanD function

5 - 8

$scanD converts a fixed field, decimal string number to its
numerical equivalent.

Function Syntax

n$scanD (
pCh 1\ CHAR,

size UNSIGNED,

pStatus 1\ BOOLEAN

) LONG;

Example:

function () :;
VAR n BYTE;

Input

Address of the
first character
in the string.

Width of the
field size.

Address of a
boolean.

field [40] CHAR;
d LONG;
status BOOLEAN;

Output

TRUE if a number
was found. FALSE
otherwise

Decimal number
scanned.
Note: Undefined
--

if number was
not found.

n nSread(n$WSln, &field[O], SIZEOF field);
d $scanD(&field{O] , n, &status};

DASL USER'S GUIDE 50807-01

FIELD SCANNERS

$scanO function

$scanO converts a fixed field, octal string number to its
numerical equivalent.

Function Syntax

n$scanO (
pCh " CHAR,

size UNSIGNED,

pStatus " BOOLEAN

) LONG;

Example:

function () :;
VAR n BYTE;

Input

Address of the
first character
in the string.

Width of the
field size.

Address of a
boolean.

field [40J CHAR;
o LONG;
status BOOLEAN;

Output

TRUE if a number
was found. FALSE
otherwise

Octal number
scanned.
Note: Undefined
if number was
not found.

n n$read(nSWSln, &field[OJ, SIZEOF field);
o $scanO(&field[O} , n, &status);

Chapter 5. NUMERIC SCANNERS 5 - 9

FIELD SCANNERS

$scanH function

5 - 10

$scanH converts a fixed field, hexadecimal string number
to its numerical equivalent.

Function Syntax

n$scanH (
pCh A CHAR,

size UNSIGNED,

pStatus A BOOLEAN

) LONG;

Example:

function 0 : =

VAR n BYTE;

Input

Address of the
first character
in the string.

Width of the
field size.

Address of a
boolean.

field [40] CHAR;
h LONG;
status BOOLEAN;

Output

TRUE if a number
was found. FALSE
otherwise

Hexadecimal
number scanned.
Note: Undefined
--

if number was
not found.

n nSread(nSWSIn, &field[O], SIZEOF field);
h $scanH(&fieldrO] , n, &status);

DASL USER'S GUIDE 50807-01

FIELD SCANNERS

$scanR function

$scanR converts a fixed field, real string number to its
numerical equivalent.

Function Syntax Input

n$scanR (
pCh A CHAR, Address of the

first character
in the string.

size UNSIGNED, Width of the
field size.

pStatus A BOOLEAN Address of a
boolean.

) DOUBLE;

Example:

function () :
VAR n BYTE;

field [40J CHAR;
r DOUBLE;
status BOOLEAN;

Output

TRUE if a number
was found. FALSE
otherwise

Floating point
number scanned.
Note: Undefined
if number was
not found.

n n$read(n$WSln, &field[OJ, SIZEOF field);
r $scanR(&field[O] , n, &status);

Chapter 5. NUMERIC SCANNERS 5 -ll

5 - l2 DASL USER'S GUIDE 50807-0l

Chapter 6.
MEMORY MANAGEMENT
OVERVIEW

Introduction

NOSL has an internal memory manager for managing the
buffers, internal control blocks, and data space used by the
nosls.

This chapter contains information about the memory
manager and important considerations when using virtual
files and overlays.

Uses $BUDDY and $BUFFER CUFs

NOSL does most of its memory management through the
$BUDDY memory management CUF. The virtual file nasi,
VirFil, is the only exception as it manages memory directly
through the $$MEMGET and $$MEMREL UFRs.

The $BUFFER CUF, which calls the $BUDDY CUF, is also
used for memory management.

Incompatibility with the memory management UFRs

Because the memory management UFRs allocate all
available logical memory when initialized, they are not
compatible with NOSL.

The $ALLOC and $BUDDY CUFs are compatible with NOSL
and may be used instead.

Chapter 6. MEMORY MANAGEMENT 6-1

VIRTUAL FILES

Introduction

The virtual file nosl, VirFil, will allocate as much memory
as is needed to maintain the file in memory.

Memory limited by the PCR

The memory allocated by VirFil is limited by the maximum
task memory limit set in the program communications
region, peR.

Caution when using virtual files

6-2

Because there is the potential for VirFil to allocate all of
the available memory, you should insure that all of the
streams you are going to use in a program are open before
writing to a virtual file. Otherwise, NOSL may not have
enough memory available to open the streams.

DASL USER'S GUIDE 50807-01

OVERLAYS

Introduction

DASL programs with overlays may use NOSL but should be
careful when overlaying code.

Indirect calls through pointers

All of the NOSL functions, except n$open, do indirect calls
through pointers. This means that the functions that are
called indirectly must be accessible whenever the nosl is
accessed.

Accessing a nasi in multiple overlays

If you have a nosl that is opened, and then overlayed with
code that accesses the nosl, you must insure that the NOSL
code is LINKed into an area of memory that is present
during the execution of both overlays.

Chapter 6. MEMORY MANAGEMENT 6 - 3

6-4 DASL USER'S GUIDE 50807-0l

Chapter 7.
ERROR HANDLING
OVERVIEW

Introduction

NOSL contains internal error handling routines as well as a
provision for customizing error handling.

This chapter describes the NOSL error handler and contains
instructions on how to customize error handling.

When NOSL uses the error handler

NOSL calls the error handler from any NOSL function that
detects a fatal error when it is processing a stream.

The default error handling routines

If you do not customize error handling, and a fatal error
occurs, the nasi functions will call the default error
handling routines.

The default error handling routines call $ERMSG on any
error.

Chapter 7. ERROR HANDLING 7 - 1

OVERVIEW

Major reason to customize error handling

7-2

The major reason for customizing error handling is to
recover from errors that may not be considered fatal by
your program,

Example: n$open will generate a fatal error if an open is
performed on a nonexistent file, Quite often, this is not
considered a fatal error,

DASL USER'S GUIDE 50807-01

CUSTOMIZING ERROR HANDLING

Overview

This section contains the information needed to customize
error handling.

Error codes

NOSL updates the standard RMS error code, $ERRC, which may be
used by your error routines.

• $ERRC.$FUNC contains
• the system code number for RMS system call errors,
• the UFR class for UFR errors, and
• the NOSL function code for NOSL errors.

• $ERRC. $CODE contains the error number.

Symbolic values for $ERRC. $FUNC may be found in
D$ERRNUM/TEXT. Symbolic values for $ERRC. $CODE may
be found in D$ERRCODE/TEXT.

State of a stream

Determining whether an error is fatal or not should partly
depend on the state of the stream after the error. A stream
will be left in a defined state following a fatal error if

• a n$open failed because of a nonexistent file, or
• an illegal NOSL operation was attempted, such as a

n$read on a Print nosI.

Otherwise, the stream is left in an undefined state.

Chapter 7. ERROR HANDLING 7-3

CUSTOMIZING ERROR HANDLING

n$ErrorData type

7-4

The n$ErrorData type is a type that must be defined by
you. Variables of this type may be used to store
information that will be passed into the error handling
routines when a fatal error occurs.

Example: This example uses n$ErrorData to store a pointer
to the filename related to each stream. This filename can
later be displayed by the error handling routines on a fatal
error.

ITYPDEF n$ErrorData A $NAMEEXTENV;

DASL USER'S GUIDE 50807-0l

CUSTOMIZING ERROR HANDLING

n$ErrorFunc type

Use the n$ErrorFunc to declare functions that will be called
by the NOSL functions when an error occurs.

Note: Do not call any NOSL functions from the error
function.

n$ErrorFunc is defined as follows:

Type Definition Description

TYPDEF n$ErrorFunc (
eD A n$ErrorData Address of data that you define.

The address of the data passed to
nSopen when a stream is opened
will be passed as this parameter
if an error occurs.

) ;

Example: The following program segment defines an error
function that will call $ERMSG on anything other than an
open error.

function n$ErrorFunc
(

IF $ERRC.$FUNC -~ SC$OPENENV
& $ERRC.$CODE ~ $UECOPNl THEN $ERMSG();

};

Chapter 7. ERROR HANDLING 7 - 5

CUSTOMIZING ERROR HANDLING

Specifying error parameters to n$open

The NOSL function n$open, may be passed the address of
an error function and error data. If a fatal error occurs on
that nosl during the nosl open or any other NOSL function,
the error function will be called and the address of the
error data will be passed as a parameter to the error
function.

Example:

out n$Stream;

function () : ~
(

out :~ n$open(WSOut, &errorF, &errorD);

Specifying error parameters to n$fKind

The NOSL function n$fKind also accepts the address of an
error function and error data as parameters. If a fatal
error occurs during n$fKind, the error function will be
called and the address of the error data will be passed as a
parameter to the error function.

Example:

fileSpk $FILESPK :~ {
{ 'IN

$FILNAMR, $NOADR,
} ;

function 0 : ~
VAR dK BYTE;
(

&'TEXT' ,&'
, },

IF $SCANFLS(&fileSpk, 1) && D$CFLAG THEN $ERMSG();
dK n$fKind(&fi1eSpk.$FSOSFT" &errorF, &errorD);'

7-6 DASL USER'S GUIDE 50807-01

