b lo A Sl

S e

el

 5501/5502 Reference Manual

"-—-frr_,.
it BT

LR & &

P P g e)

DATAPOINT CORPORATION

B T

g Ty

The leader indispersed data processing ™

b e Rk b e e o (e i g i i B d o aeec b 8 B

7 iy iy
i

5501/5502 Reference Manual

DATAPOINT CORPORATION

DATAPOINT CORPORATION
DATAPOINT 5501/5502

REFERENCE MANUAL

The computer-oriented user will find this manual useful for evaluation of the
Datapoint 5500 system capabilities and limitations. However, only the hardware
considerations are covered in this manual. The full utility of the Datapoint 5500
system cannot be appreciated until the available software support for the
machine has been reviewed.

There is a complete family of software packages available for the Datapoint
5500 system including high-level languages, operating systems, source code
and text editors, communications programs, utility programs, etc. Reference
should be made to the latest issue of the Datapoint 5500 system Software
Catalog for more complete information.

—

Table of Contents

. Summary .
. Keyboard .

2.1 Keyboard Operatlon .

. Display

3.1 Display Operatlon

. Cassette Tapes .

4.1 Cassette Operations .
4.2 Cassette Status Words .
4.3 Cassette Control .

. Processor .

5.1 Processor Reglsters .

5.2 Comparison with Datapomt 2200 System
5.3 Memory . .
5.4 Push-down Staok

5.5 Control Flip-Flops . .

5.6 System ROM Functions .

5.7 iInterrupt Handling .

5.8 Processor Instructions

. Input/Output .

6.1 Input/Output Physncal Connectlons .

6.2 Input/Output Electrical & Timing Requ:rements .

(hU'IUIU'i(Ia)(.ON-‘—‘
[¢,]

&

|
w

o N

1. SUMMARY

The Datapoint 5500 is a low cost versatile business
oriented data processing system. The Models 5501
and 5502 processors provide the basic processor
functions for this system and both include a keyboard,
display, dual cassette decks, and 12,288 bytes of
user program memory space in addition to the resident
system memory. User program memory space may be
expanded within the basic machine in increments of
12,288 bytes (with Model 5510 Memory Expansion
Units) up to 49,152 bytes. The models 5501 and 5502
have identical specifications, except that the 5501
specifies nominally 115 v.a.c. power and the 5502
specifies nominally 230 v.a.c. power. Both units operate
on 50 or 60 Hz power. ‘

The instruction set for these processors contains
all instructions used in the Datapoint 1100 and 2200
systems providing complete upward program and
input-output compatability. In addition 5501,/5502
processors provide:

e higher operating speed

e double precision arithmetic

e string arithmetic, moves, logic, etc.

¢ multiple-byte 1/0 transfers

e indexing and basing

e state saving and restoring instructions

o privileged instructions

¢ segmented and protected memory

¢ Memory and |1/0 parity

e additional registers
2. KEYBOARD

The integral keyboard provides a basic 55 key
alphanumeric key group, an 11 key numeric group and
five system control keys.

The keyboard provides a unique multi-key roll-over
characteristic providing maximum ease of typing.
Transfer of characters from the keyboard is under
control of the processor. An audible click providing an
acoustical feedback to the operator is available

under processor control.

A programmable audio "‘beep” is also provided
when it is desired to gain the operator’s attention.

The 11-key matrix may be optionally supplied with
control-key coding rather than numeric key coding and
with keytops engraved to customer specifications.

The control keys are special function keys which
exert control over the processor. Their names and
associated functions are as follows:

RUN Momentary contact switch, which when
depressed, causes the processor to begin
execution of the instruction located at the
address in memory currently addressed

by the program counter.

STOP Momentary contact switch which, when
depressed, causes instruction execution
to halt at the completion of the current
instruction. Care should be taken when
using this switch, because any cassette
tape operation which may be in progress

will be aborted.

KEYBOARD Momentary contact switch which sets a
status bit that may be tested at any time

by the processor.

DISPLAY Momentary contact switch with a function
similar to that of KEYBOARD switch.
Either one or both of these switches may

be depressed.

Momentary contact switch which causes
the processor to halt, rewind the system or
program tape mounted on Deck 1 (rear
deck), load and execute-the first record
found on tape. To protect against
accidential restart, the RESTART function
is inhibited unless the RUN key is
depressed simultaneously.

RESTART

KEYBOARD LAYOUT

|
b [l [l L] [e] e

’@@BIII
j|niainjninin|n|S|RjE
I@Bm@l

RESTARY

I‘ 8][]
@ﬂ CT]
OkRE C

s 100 [

HEGIEDMEMLE

DCE L

l l o8, AT

2.1 KEYBOARD OPERATION

The keyboard is addressed by the processor by
loading the A-register with 341, and executing an
EX ADR command. (The CRT display also uses this
address. Data transfers to the processor are from the
keyboard and transfers from the processor are to the
display.) Following the address sequence the
c.rt./keyboard status word can be loaded into the
A-register by executing an INPUT instruction. Bit 1 of
the A-register may be tested by the program to
determine if a character is ready for transfer from the
keyboard. Bits 2 and 3 will indicate if either the
KEYBOARD or DISPLAY control switch is pressed.

[7]e]5]2]3]2[1]o] CRT/KEYBOARD
I l_ STATUS WORD

CRT WRITE READY
KEYBOARD READ READY

KEYBOARD CONTROL SWITCH
DEPRESSED

— DISPLAY CONTROL SWITCH
. DEPRESSED

—UNASSIGNED

The External Commands associated with the

operation of the keyboard are as follows:

a. EX BEEP. This command produces a 1500 Hertz
tone for a duration of about 100 msec. The tone
could be used as an error or ready signal to the
keyboard operator.

b. EX CLICK. This command produces an audible
click which could be used to acknowledge receipt
of a valid character when a key is depressed.

c. EX COM1 (Command 1). Presents a control word
contained in the A-register to the keyboard.

Bit 5 of the control word controls the KEYBOARD
switch light and bit 6 controls the DISPLAY switch
light as follows:

+ls]211]o] E3NTRoL WoRD
—_

[7]e]s

CRT CONTROL

KEYBOARD LIGHT (1=on, 0=off)
DISPLAY LIGHT (1=on, 0=o0ff)
—UNASSIGNED

KEYBOARD CODING (ASCII)

A-101
B-102
C-103
D-104
E-105
F-106
G-107
H-110
[-111
J-112

K-113
L-114
M-115
N-116
0-117
P-120
Q-121
R-122
S-123
T-124
u-125
V-126
W-127
X-130
Y-131
Z-132

a-141
b-142
c-143
d-144
e-145
f-146
g-147
h-150
i-151
j-152

k-153
1-154
m-155
n-156
0-157
p-160
g-161
r-162
s-163

t-164

u-165
v-166
w-167
x-170
y-171
z-172

0-060
1-061
2-062
3-063
4-064
5-065
6-066
7-067
8-070
9-071
Space-040

1-041
”.042
#-043
$-044
%-045
&-046
’-047
(-050
)-051
*-052
-+--053
,-054
- -055
.-056
/-057

:-072
:-073
<-074
=-075
>-076
?-077
[-133
~-176
1-135
N-136
—-137

@-100

{-173

\-1 34

"-140

| -174

+-175
Enter-015
Cancel-030
Backspace-010
Del-177

SPECIAL NUMBER PAD OPTION

[.]1-016
[0]-020
[1]-021
[2]-022
[3]-023
[4]-024
[5]-025
[6]-026
[7]-027
[8]-030
[9]1-031

3. DISPLAY

The 5501/5502 display provides extended character
generation flexibility and maximum character transfer
rates. The display system includes: CRT Display of
12 lines of 80 characters, power line screen refresh
rate, 960 cells of random access memory holding the
screen image, a program loadable random access
character generation memory capable of producing 128
individual 5 by 7 dot matrix characters, a group of
registers utilized to position the cursor, and automatic
cursor increment provisions. The maximum character
transfer rate to the CRT is determined by processor
input/output speed.

3.1 DISPLAY OPERATION

The CRT is addressed by the processor by loading
the A-register with 341; and executing.an EX ADR
command. (Note that the keyboard also uses this
address, see section 2 above.) Following the address
sequence, the CRT/Keyboard status word can be
loaded into the A-register by executing an INPUT
instruction. The CRT status assignment is as follows:

[7]efs]4]3f2]1]0]
L 1L J LcRT WRITE READY
KEYBOARD USE

—UNASSIGNED

Bit 0 of the status word indicates that the CRT is
ready to accept data or commands if it is set to a
logical 1. (Note that this status Bit will indicate a logical
one if the cursor is positioned to an invalid screen
position.) Bits 1, 2 and 3 are used for keyboard status.

Control of the CRT is accomplished through the use
of the foliowing external commands:

a) EX COM1 (Command 1) transfers a control word
contained in the A-register to the CRT. The applicable
bit assignments and their functions are as follows:

[71els]4f3]2]1]0]

AO:

Al:

A2:

A3:

l_LROLL-DOWN 1 LINE

ERASE FROM CURSOR
TO END OF LINE

ERASE FROM CURSOR TO END
OF FRAME

L ROLL-UP 1 LINE
CURSOR ON/OFF (ON=1, OFF=0)
L.KEYBOARD LIGHT

~DISPLAY LIGHT

AUTO CURSOR INCREMENT MODE (1=AUTO INCREMENT)

Each execution of EX COM1 with this bit set
to 1 causes the roll-down operation to occur.
All displayed characters (not the cursor) are
moved down one line. The bottom line on the
screen is lost and the top line is filled with the
pattern in position 40 octal of the character
generation memory. The Write Ready status bit
goes false until the roll-down operation is
complete; another EX COM1 must not be issued
during this time.

Each execution of EX COM1 with this bit set to
1 causes erasure from (including) the current
cursor position to the end of the line. This
function writes 40 octal into these locations of
the screen image memory; the character
displayed in the erased positions is determined
by the pattern in position 40 octal of the
character generation memory. The Write Ready
status bit goes false untii this operation is
complete; another EX COM1 must not be issued
during this time.

Each execution of EX COM1 with this bit set to
1 causes erasure from (including) the current
cursor position to the end of the frame. This
function writes 40 octal into the screen image
memory; the character displayed in the erased
position is determined by the pattern in position
40 octal of the character generation memory.
The Write Ready status bit goes false until
this operation is complete; another EX COM1
must not be issued during this time.

Each execution of EX COM1 with this bit set to
1 causes the roll-up operation to occur. All
displayed characters (not the cursor) are moved
up one line. The top line on the screen is lost
and the bottom line is filled with the pattern in
position 40 octal of the character generation
memory. The Write Ready status bit goes false
until the roll-up operation is complete; another
EX COM1 must not be issued during this time.

A4: The cursor image may be turned on or off

through the control word. The cursor position

is the same in either case. The cursor image is

automatically turned off whenever the
processor is in the HALT state, and will be
turned on again when RUN is depressed if the
cursor was on prior to the HALT.

A5,A6:
A7:

Keyboard & Display Light—(See section 2)

When this bit is set to 1, the automatic cursor
increment feature is in effect. In auto cursor
increment mode, the cursor moves one
character to the right after each EX WRITE
command. The vertical position of the cursor
does not change. If the last character
(horizontal position 79) is written the cursor will
increment off the screen and the CRT write
ready status bit will stay true until the cursor

is repositioned back onto the screen.

b) EX COM2 (Command 2) positions the cursor to
the horizontal character slot designated by the contents
of the A-register. Character positions 0-79 (decimal)
or 0-117 octal are valid.

¢) EX COM3 (Command 3) positions the cursor to
the line designated by the contents of the A-register.
Line numbers 0-11 (decimal) or 0-13 (octal) are valid.

d) EX COM4 (Command 4) places the character
generator memory in the load mode and sets the load
pointer to the contents of the A-register. Character
positions 0-127 (decimal) or 0-177 (octal) are valid.

e) EX WRITE transfers the character in the A-register
to the screen image memory at the position indicated
by the cursor position. The cursor need not be on for
this transfer to occur. If the auto-cursor increment
feature is enabled the cursor position will be
incremented after the transfer. When the character
generation memory has been set to the load mode,
the above transfer is inhibited (as is the automatic
cursor increment) and EX WRITE transfers data from
the A-register to the character generation memory.
Execution of an EX WRITE (to either the screen image
memory or the character generation memory) causes
the Write Ready status bit to go false for up to 20
microseconds. Unless a delay of at least this duration
is guaranteed by the program, the Write Ready status
bit should be checked before execution of an
EXWRITE, EX COM1, EX COM2, EX COM3 or EX COM4
after a previous EX WRITE,

Five successive byte transfers are required to load a
complete 5 by 7 character dot pattern. The loading
format is illustrated by the following diagram which
illustrates the letter ""A"" loaded into memory:

A6 X X X

A5 X X
A—REGISTER A4 X X
DATA

A3 X X X X X

A2 X X

Al X X

A0 X X

1 2 3 4 5

TRANSFER
NUMBER
(EX WRITE)
For example, the procedure for loading the character
location 101 with an ""A” as illustrated would consist
of the following character transfers:

LA 0101

Set load pointer to
EX’ COM4 Location 101
LB 077
CALL DWRITE Load column 1
LB 0110
CALL DWRITE Load column 2
CALL DWRITE Load column 3
CALL DWRITE Load column 4
LB 077
CALL DWRITE Load column 5

The DWRITE subroutine below is used here instead of
an EX WRITE instruction to guarantee the 17
microsecond delay required between executions of
EX WRITE instructions:

LAB
EX
DWRITW IN
SRC
JFC
RET

After all five columns of a character have been
loaded, the character load pointer is automatically
incremented to the following character. In the case of
the above example the load pointer will be incremented
to location 102. Note that it is only necessary to issue
additional COM4's when non-sequential character

DWRITE
WRITE

DWRITW

locations are being loaded. The display logic card is
removed from the load mode by the execution of an
EX COM1.

As mentioned previously, the Write Ready status
bit goes false during the roll-up, roli-down,
erase-to-end-of-line and erase-to-end-of-frame
operations. The maximum periods during which Write
Ready will be false for each of these operations is
tabulated below for 60 Hz and 50 Hz primary power

frequency:

OPERATION 50 HZ 60 HZ
Roll Up 21.1 msec 17.8 msec
Roll Down 21.1 msec 17.8 msec
Erase to End of Line 21.1 msec 17.8 msec
Erase to End of Frame 35 msec 31.7 msec

4. CASSETTE TAPES

The 5501/5502 processors contain two cassette
tape recording devices for storage of programs and
data. Since the hardware RESTART uses the rear deck
(number one), programs will typically be on it while
data areas will be the front deck (number two).
However, once the machine is initially loaded, either
deck may be used for both purposes.

Data on the Tape is organized by record (of any
length). Records are written and read at 350 eight-bit
characters per second with a tape speed of
approximately 7.5 inches per second.

4.1 CASSETTE OPERATIONS

Data is recorded or read in bit serial fashion on one
track. Each eight bit character is framed by three sync
bits on either side of the character:

4 Oo1O0] xxxxxxxx}] 010 xxxxxxxx}010}-
SYNC CHARACTER 1 SYNC CHARACTER 2 SYNC
CODE CODE CODE

The appearance of the correct sync code indicates
that the character is valid. Any other sync code causes
special action to be taken on data reads. Note that
the sync codes are valid for tape motion in either
direction so the tape may be read backwards although
in the reverse direction the data bits will appear
reversed (bit 0 will be bit 7, 1 will be 6, etc.)

A record is a group of successive valid characters.
An interrecord gap is indicated by the failure of the
sync code to be zero one zero and the character
position on all mark code (ones):

010

XXXXXXXXPOTOfxxxxxxxxf111] xxx]|-

SYNC VALID
CODE CHARACTER CODE CHARACTER CODE RECORD

SYNC INVALID SYNC INTER

GAP

Oniy valid characters will be presented as data from
the tape unit.

4.2 CASSETTE STATUS WORDS
The cassette tape unit is addressed by the

processor by loading the A-register with 360, and

executing the EX ADR instruction. Following this
sequence, the tape unit status can be loaded into the
A-register by executing an INPUT instruction. The bit
assignments are as follows:

7]6|5]4]3]2]1| o] raPe sTATUS WORD

DECK READY
END OF TAPE
READ READY
WRITE READY
INTER-RECORD GAP
—UNASSIGNED
—-CASSETTE IN PLACE
—UNASSIGNED

DECK READY Deck ready will be set whenever the
tape unit is ready to accept another
command. (Only the TSTOP
command should be issued if this bit
is false). When Deck Ready is true
the tape will be stopped, a cassette
in the selected deck, and not wound
to the clear leader at either end,
and the head engaged. This bit
should be checked after selecting a
deck.

End of Tape indicates that the
cassette has run onto leader (in
either direction).

Read Ready indicates that the
selected deck has read another
character. .

Write Ready indicates that the
selected deck is ready to write
another character.

Inter-Record Gap indicates the

END OF TAPE

READ READY

WRITE READY

INTER-RECORD

GAP selected deck has come across an
inter-record gap (invalid sync code).

CASSETTE IN Cassette in Place indicates that a
PLACE cassette is physically in place in the

selected deck.

4.3 CASSETTE CONTROL

When the cassette tape unit is addressed the

following instructions will control the action of the tape:

a. EX TSTOP causes any motion of either deck to be
stopped and any read or write operations to be
terminated. When everything has settled, the ready
status bit will come true and operations may be
resumed.

b. EX DECK1 causes deck one (rear) to be the
currently selected deck. Before commanding a
deck selection, care should be taken that the
currently selected deck Has compieted all
operations.

i
i

1

C.

d.

EX DECK2 causes deck two (front) to be the
currently selected deck. Note the precaution in (b).
EX RBK causes the currently selected deck to be
set in forward motion and, after 70 msec, for the
read circuitry to be enabled. The read ready status
bit will come true upon appearance on the tape
of the first valid character. Upon appearance of an
invalid sync code, the inter-record gap status bit
comes true and tape motion is automatically
stopped. Note that will happen only after at least
one valid character has been found. Once the
read ready status bit comes true, the character
must be taken within 2.8 milliseconds or it will be
overwritten with the next one. The tape read
hardware double-buffers incoming characters to
allow the 2.8 msec character availability.

. EX BSP is similar to EX RBK except that tape

motion is in the reverse direction so the data bits
will be reversed.

EX SF is similar to EX RBK except the tape is not
stopped upon appearance of an inter-record gap,
and if allowed to continue will start to read the next
record on the tape. In this case, the read ready
status bit will come true again after the first
character of the next record is read. Only an

EX TSTOP will stop the motion initiated by EX SF.

. EX SB is similar to EX SF except that tape motion

is in the reverse direction and the data bits are
reversed.

. EX WBK causes the currently selected deck to be

set in forward motion and all status bits except
the write ready to go false. A character must then
be presented within 2.8 milliseconds (the first
character will be accepted at once due to the
buffering in the tape hardware and then there will
be a pause while the tape comes up to speed), at
which time the write ready will go false until the
writing circuitry is ready to accept another
character. An end of record is signaled to the
hardware by withholding a character for a period
of time longer than 2.8 milliseconds specified
above. When this is done, the write ready will go
false, an interrecord gap will be written, the tape
motion will cease and the deck ready status bit will
come true again.

i. EX REWIND causes the tape to be rewound to the

beginning on the selected deck. Worst case
rewind time is approximately 40 seconds.

. PUNCH TABS on the Cassette Cartridge are used

for “write protect’” and '‘automatic restart’”. The
punch tab on the left (as you face the terminal)
inhibits the ability to write on tape, when punched.
When the tab on the right is punched on the rear
deck, it causes an automatic restart whenever a
programmed halt or power-up occurs. A manual
halt (STOP key) will not initiate restart.

SUMMARY OF CASSETTE
PHYSICAL SPECIFICATIONS

Density 47 characters/inch
Speed 7.5 ips
Recording Rate 350 c.ps.
Capacity 115,000 characters (typical)
Start/Stop Time (Inter- 305 msec.
Record Gap)
Start/Stop Distance 2.2 inches
(Inter-Record Gap)
Rewind Speed 90 ips
Rewind Time 40 sec.
(max 300 ft.)
Character Transfer Time 2.8 msec.

5. PROCESSOR

The processor in the 5501 or 5502 is comprised of
two sets of eight 8-bit program accessible registers;
and two sets of 4 control flags, up to 65,536 bytes of
memory (49,152 of user program memory); a 16-bit
program counter; an 8-bit instruction register; an 8-bit
base register; a 16-level push-down stack; a special
4-bit instruction modification register; and a 16-word
memory sector table.

5.1 PROCESSOR REGISTERS

The eight programmable registers are named A,B,C,
D.EH,L, and X. The flag flip-flops are named C (carry),
Z (zero), S (sign), and P (parity). There are two sets
of these registers and access to them depends upon
the mode the processor is in. Upon restart or whenever
the Alpha mode instruction is executed all Alpha mode
registers and flags are accessible by the program.
Whenever a Beta mode instruction is executed, the Beta
mode registers and flags are accessible. No other
registers or functions within the machine are affected
by the processor mode.

The P register is the “location counter" for the
program and contains the address of ihe next instruction
to be executed. This register is stored in the pushdown
stack upon the execution of a “CALL" instruction and is
loaded with the effective address upon execution of a
“"JUMP", “CALL"” or “RETURN" instruction. The P
register is 16 bits in length and is capable of addressing
up to 64K of memory.

The | register is the register which holds the
“operation code” of the instruction currently being
executed. The contents of | are gated through a
decoding network to determine what operation interr.al
or external, is to be performed. It is 8 bits long.

Additional special purpose registers are discussed
below.

5.2 COMPARISON WITH DATAPOINT 2200 SYSTEM

5.2.1 Input/Output

Besides simply executing 1/0 instructions taster than
the 2200 system (input instructions are twice as fast and
output instructions are approximately the same speed).

the 5500 system 1/0O has parity checking while main-
taining control over compatibility with 2200 devices.

5.2.2 Input parity checking

A ninth wire has been added to the input and output
data paths of the 1/0 buses (there are several unused
wires in the 2200 |/0 cabie). A second INPUT
instruction (PIN) has been added which will cause an
interrupt if there are not an odd number of ones out of
the nine bits in the input bus when the data is strobed
into the processor. Note that if a non-existent device is
addressed and then a status check made, a parity fault
will occur because the status will be alil nine zeros,
which is an even number (zero) of ones. Also note that
using the old INPUT instruction will never cause a parity
fault interrupt, allowing all 2200 programs to execute
properly on the 5500 system (see Section 5.2.4).

5.2.3 Output parity checking

In addition to the output bus parity bit, there is
another input wire to the processor called the Output
Parity Fault Alert. If this wire is low during the parity
fault check window (about 40 nanoseconds wide
occuring 4 to 6 us after the trailing edge of any output
strobe), the output parity fault interrupt will occur.
A 5500 system 1/0 device can check for an even
number of ones out of the nine output bits at the leading
edge of the output strobe. If there are an even
number of ones, the device can hold the Output Parity
Fault Alert line low until the leading edge of the next
I/0 strobe, thus causing the output parity fault interrupt.

5.2.4. Compatibility with 2200 system peripherals

5500 system peripherals may not be compatible with
the 2200 because of the use of output parity checking.
2200 peripherals can be made to work on the 5500
system if the PIN (parity checking input) instruction is
not used. The three additional wires used in the 5500
system 1/0 bus are currently not used in the 2200
system 1/0.

5.3 MEMORY :

In addition to having more memory capability than
the 2200 system, the 5500 memory system features
parity checking and advanced memory space handling.

5.3.1 Parity checking

Each byte in the memory system has a ninth bit which
is used for parity checking. Even parity is written in
every location automatically when the machine is
powered up and in the given location whenever a data
byte is written (the words are written such that there are
always an even number of ones out of the total number
of nine bits). Whenever a data byte is read, a check for
even parity is made and a special interrupt invoked if
the check fails. This interrupt supplies the address of
the failing memory location for diagnostic purposes.
Note that if a non-existent memory location is accessed,
a parity fault will not occur because all zeros (even
number of ones) will be read. In addition to the RAM,

the 5501/5502 contains a ROM (read-only memory)
which is used for power initialization, RESTART,
debugging, memory testing, and other system
functions. The parity bit for ROM is generated artificially.

5.3.2 Physical layout

The 5501/5502 contains provisions for five memory
boards. The first four boards contain 12K bytes of RAM
each for a total user RAM capacity of 48K bytes. The
fifth board is reserved for the ROM and RAM which is
used exclusively for system control software.
MEMORY LAYOUT:

#200009
MODULE #5 | RESERVED FOR SYSTEM
ROM AND RAM
2140009
MODULE #4 12K BYTES RAM
g119009
MODULE #3 12K BYTES RAM
Poes0od
MODULE #2 12K BYTES RAM
230000
MODULE #1 12K BYTES RAM
goouaoy

5.3.3 Address generation

The above diagram is a picture of the physical
memory layout. This memory is referenced by what is
called a physical memory address. Board 1 is physical
locations @ through #27777 (octal), board 2 is #3gP00
through #57777, and so forth with the ROM and RAM
residing in the area above #137777.

User programs use what is called a logical memory
address. This is the 16-bit value created by the program
and is translated to the proper physical memory
address by a mechanism in the processor. The trans-
lation mechanism utilizes a base register and a memory
sector table as depicted by the following diagram.

BASE RESSER SECTOR WRITE ENABLE
ENABLE TABLE
[ACCESS ENABLE
23 /////’/
22
25 ———— 27 e] 215
— . | ——— D ———
I r————————— H 24 Srr——— 2|2
| I——
—————— + e 2l|
| TSN -
28 |- —
-] 28
27 i 27
L
1
i
-t
-
-
20 . 20
LOGICAL
MEMORY PHYSICAL
ADDRESS MEMORY

If the logical memory address is between @190000
-and B137777, its upper eight bits are added (two's
complement) to the eight bit base register. Otherwise,
the upper eight bits of the logical memory address are
unchanged by the adder. The new 16-bit value
consisting of the lower eight bits from the logical
memory address and the eight bits from the adder is
called the based logical memory address. Note that the
base register may be negative (two’s complement) for
creating based logical memory addresses lower
than #192000.

The upper four bits of the based logical memory
address form an address for the 16-word 6-bit sector
table. This table divides the 64K based logical memory
space into sixteen 4K byte sectors, each of which may
be translated to any physical 4K memory section and
may be protected from being accessed if the USER
mode flag is set or from being written into regardless of
the state of the USER mode flag (these protections are
indicated by two of the bits from the sector table).
(Note that many people in the computer industry refer
to the sector table as a page table. However, the
reference has been changed here to avoid confusion
with the term "‘page’’ used elsewhere to denote a
256 byte section of logical memory space starting at an
address of 0 modulo 256.)

The mapping of based logical memory space to

ADDRESS

physical memory space is achieved by having four of
the output bits from the sector table used for the upper
four bits of the physical memory address and the lower
twelve bits of the based fogical memory address used
for the lower twelve bits of the physical memory
address. The 16th entry in the sector table is always set
to point to the last 4K section of physical memory
(0170000 through 0177777) with USER access not
enabled to insure proper access to the information
above 0167777 when the machine is initialized.

With the address generation mechanism described
above, two major efficiencies can be realized. The first
is ease of reentrant coding for multiple user tasks.
The program can load into the base register the base
address (in multiples of 256 bytes) of his non-reentrant
data area minus 199993 and then all logical memory
references made between F190009 and @190P99 plus
the length of his data area will automatically be
translated into the proper based logical memory
location. The second major efficiency is afforded by the
sector table. Besides providing the ability to implement
a completely protected monitor, it provides ease in
running several independent partitions in
memory at once.

5.4 PUSHDOWN STACK

A feature of this machine is the incorporation into the
processor’s structure of a pushdown stack. This is
useful for subroutine calling, saving the value of register
pairs, calculating an address and then jumping to it
without having to overstore a JUMP instruction, making
an abortive exit from a subroutine (returning control to
a location other than the one after the CALL instruction),
and saving the state of the machine (if there is at least
one free stack location).

Information may be transferred between either the
P-counter and the stack or any register pair and the
stack. The stack is actually a separate scratch pad
memory of sixteen 16-bit words which is addressed by
a four-bit up/down counter. Whenever a CALL or PUSH
instruction is executed, the P-counter or indicated
register pair is written into the stack word pointed out
by the counter which is then incremented. The pointer
end-arounds to 0 if it is incremented past 15, Whenever
a RETURN or POP instruction is executed, the stack
pointer is first decremented (ending around to 15 if itis
decremented below 0) and then the P-counter or
indicated register pair is loaded from the pointed
location. Note that the above description implies that
the maximum subroutine nesting depth is sixteen and
will be less if data is also pushed onto the stack.

That is, the seventeenth CALL or PUSH will overstore
the value written in the first if no RETURN or POP
instructions intervene.

PUSHDOWN STACK

TOP
ADDRESS OF CALL 5
ADDRESS OF CALL 4 | oo
ADDRESS OF CALL 3 | CAPACITY OF
ADDRESS OF CALL 2 | 16 CALLS
ADDRESS OF CALL 1

BOTTOM

16 BITS

5.5 CONTROL FLIP-FLOPS

Also contained in the basic processor is eight
control (flag) flip-flops (four in Alpha mode and four in
Beta mode) which reflect the state of the arithmetic
logic unit and which can be tested through the
execution of a conditiona! jump, call or return instruc-
tion. The flip-flop mnemonics with their associated
functions are as follows:

C Carry Flip-flop. Set when an arithmetic operation
results in either a carry (add) or borrow
(subtract). *The Carry Flip-flop also reflects the
state of the most significant bit in the accumu-
lator after completion of a shift right instruction.
Likewise, it reflects the state of the accumulator

least significant bit after completion of a shift left
instruction. Cleared after all logical operations. .

YA Zero Flip-flop. Set when the result of an

arithmetic or logical operation is equal to zero.*

S Sign Flip-flop. This flip-flop reflects the state of

bit 7 in the accumulator after an arithmetic or
logical operation.*

P Parity Flip-flop. Indicates the parity of the accu-

mulator after any arithmetic or logical operation.
This is entirely separate from the 1/0 or
memory parity system referred to elsewhere.
If this flip-flop is set (true), the accumulator
contains an odd number of one bits; if it is reset
(false), the accumulator contains an even
number of one bits.*
*In the event of a compare instruction the contents of
the accumulator are not changed; however, the control
flip-flops reflect the equivalent of a subtract instruction.
5.6 SYSTEM ROM FUNCTIONS

The primary reason for using the ROM is simplifi-
cation of the processor as it no longer must perform
the logic of reading the bootstrap cassette from the
rear deck. However, once a ROM is included, it is easy
to implement even more sophisticated system control
programs. The ROM contains four major routines that
the user should be familiar with.

The first major ROM routine is executed whenever the
5501/5502 is supplied with power. This routine writes
zeroes in all of memory to cause the proper setting
of the parity bits and then halts the machine. Halting
the processor causes a jump to the restart routine if the
auto-restart tab is punched out on the cassette in the
rear deck. Otherwise, the processor will stay halted
until further operator action takes place.

The second major routine is the restart routine which
is invoked by either the above action or the depression
of the RESTART key. Actually, the process of manually
restarting the machine has been changed from the
2200 system slightly due to human engineering con-
siderations. On the 5501/5502, he RESTART key by
itself has no effect. To RESTART the machine, operator
must depress both the RUN and RESTART keys (thus the
operator must also depress the RUN key (thus
preventing accidental restarts because of depression
of the wrong key). Also, auto-restart is suppressed if
the STOP key is depressed (as opposed to a pro-
grammed halt or power-on halt), causing this key to
bring the machine to quiescense regardless of the
auto-restart tab in the rear deck.

The restart routine first checks to see if the
KEYBOARD or DISPLAY key is depressed. If so, the
debugging tool described in the following paragraph is
entered. Otherwise, the routine initializes the sector table
to make a one for one translation from based logical
space to physical space and for no protection set
(except for the 16th entry described above). Interrupts
are disabled, the processor set to ALPHA mode, and the
USER mode flag is cleared. The routine then waits for

10

a cassette to be present in the rear deck. When it is
present, it is rewound and the first block of information
read into memory-starting at logical location zero
(remember that at this point in time logical addresses
are equivalent to physical addresses). After the first
block has been loaded, execution is started at logical
location zero.

The third major ROM routine is a debugging facility
which can be operated without disturbing the user’s
program state. When RESTART is depressed with either
the KEYBOARD or DISPLAY keys depressed, the entire
state of the CPU (except for two stack locations) is
saved and the debugging routine is entered. This
routine is similar to software debugging tools released
for the Datapoint 2200. it allows the operator to examine
memory contents, CPU states, and 10 states from the
keyboard and display replacing the crude method of
most computers where information at such a level is
usually accessed using console switches and
indicator lights.

The debugging tool also allows the operator to
initiate the fourth major ROM routine which is a
generalized memory test. Having a memory test in ROM
allows all RAM storage to be checked without relying
upon the correct operation of some RAM storage.

5.7 INTERRUPT HANDLING

There are nine different interrupt events possible in
the 5501/5502. All except the power-up interrupt use
the System Call mechanism (see instruction
description) to the memory location explained below.
The System Call mechanism pushes the current value
of the P-counter onto the stack, turns off USER mode,
and forces execution to continue at the indicated vector
location. Note that one of the interrupts is actually the
System Cali (SC) instruction and that the other
interrupts use the same mechanism but jump to
different locations.

The following describe the interrupt vector entry point
locations. Note that all of these are into ROM locations.

#176998 MEMORY PARITY FAULT

This is caused by a memory read resulting in a nine
bit word with an odd number of ones. Before the
P-counter was pushed onto the stack by the System
Call mechanism, the based logical memory address of
the faulty memory cell was pushed onto the stack.

g170993 INPUT PARITY FAULT
This is caused by a PIN instruction (see instruction

explanation) resulting in a nine bit word from the /0
input bus with an odd number of ones. The PC valve
pushed onto the stack points to the PIN instruction.
g179086 OUTPUT PARITY FAULT

This is caused by the Output Parity Fault Line in the
I/0 bus being low during the parity fault check window
(about 40 nanoseconds occurring 4 to 6 us after the
trailing edge of any output strobe). The Output Parity
Fault Line can be held iow by 5500 System 1/0 devices
if they see an odd number of ones out of the nine bits
of the output bus.

System I,/0 devices if they see an odd number of ones
out of the nine bits of the output bus. The PC valve pushed
onto the stack points to the output instruction.
g17¢811 WRITE PROTECT VIOLATION
This is caused by a memory write operation being
attempted on a sector of memory for which the write
enable bit (A3 in the sector table entry) has not been set.
Systems software supplied with the 5500 system
provides routines for handling each of these interrupts.
Modification to these routines are possible by the user
and systems software documentation should be
consulted for further information.

g179914 ACCESS PROTECT VIOLATION

This is caused by the USER mode flag being set and
a memory operation being performed on a sector of
memory for which the access enable bit (A2 in the page
sector table entry) has not been set.

g178917 PRIVILEGED INSTRUCTION VIOLATION
This is caused by the execution of an 1/O instruction

(except BEEP and CLICK) or an instruction capable

of changing the sector table or base register while the

USER mode flag is set. The PC valve pushed onto the

stack points to the I/0 instruction which caused

the interrupt.

g179922 ONE MILLISECOND CLOCK

This is caused every 1000 microseconds. These
interrupts can be inhibited with the Dl instruction as in
the 2200 system (and are inhibited with RESTART
or POWER UP).

g17¢025 USER SYSTEM CALL
This is caused by the execution of an SC instruction.

g17¢930 BREAK POINT
This is caused by the execution of a BP instruction.

@179@33 RESTART
This is caused by the depression of the RESTART key.

g170936 POWER UP

This is caused by the application of power to the
5501,/5502. This interrupt is not invoked via the System
Call mechanism. When power is appiled to the
5501/5502, the one millisecond clock interrupts are
disabled, the USER mode flag is cleared, the ALPHA
set of registers is selected, and the base register
is set to zero.

5.8 PROCESSOR INSTRUCTIONS

The 5501/5502 processor instructions have been
divided into six categories for convenience of
presentation.

e Category one: All instructions contained in 1100

and 2200 system processors.

e Category two: 2200 system instructions which have
been enhanced with additional register
referencing capability

e Category three: Multi-byte (string) instructions.

e Category four: Instructions for saving and restoring
the state of the processor.

e Category five: Address manipulation instructions.
e Category six: Operating system control instructions.

5.8.1 Comparison to 2200 System Instructions

The 5501/5502 has a number of instructions not in
2200 system processors. Before these instructions can
be described, however, the new data paths in the
processor must be described. A new discrete register
(not part of the register stack containing the general
purpose registers) has been added. It is a working
register called the implicit register.

Many 2200 instructions reference the A register
implicitly (e.g., use it for an accumulator or load it from
the 1/0 bus). The register that is implicitly referenced in
the 5501/5502 in these cases is still the A register
unless an instruction is executed which changes the

implicitly referenced register for the following instruction

only. There are seven instructions (one byte long)
which allow the implicit register to be loaded with one
through seven (implying registers B, C, D, E, H, L, or X).
Once this is done, interrupts are inhibited until the
following instruction is completed. If the following
instruction would reference the A register implicitly in
the 2200, the 5501,/5502 will reference the register
implied by the implicit register instead. Notice the use
of the word "implied”’ as reference will be made to the
implied register in later descriptions.

The instructions which set the implicit register will not
be described separately since they are used only to
augment the function code (opcode) of the instruction
that follows. In some cases the value of the implicit
register will not determine a register reference but will
modify an operation action instead. The implicit register
is al ;0 used for a loop counter in many of the multi-byte
inst.uctions. Since the implicit register is only four bits
wide, the multi-byte instructions that do use it for a loop
counter are limited to executing the loop sixteen times
(usually meaning that fields are limited to sixteen bytes
in width). However, some of the multi-byte instructions
use a general purpose register for the loop counter
enabling them to loop 256 times. Note, however, that
the one millisecond interrupt can occur only during the
fetch of a new instruction if interrupts are enabled at all.
This means that for some of the longer multi-byte
instructions, interrupts can be disabled for as long as
850 microseconds. This would be iroublesome if one
was using the one millisecond clock for short-term time
critical work. The full 256 byte capability was included,
however, in the event that one might find it useful if
time critical work was not being performed.

Two additional general purpose registers have been
added to the 5501 /5502 processors. By general
purpose, it is meant that there is one for each mode
(Alpha and Beta) and that they reside in the register
stack along with the rest of the general purpose
registers. These new registers actually exist in 2200
system processors (register 7), but are not useful in
those machines because the only instruction which
works is the load immediate! (A 076 <v> in the 2200

1

processor will load the register 7 with <v> instead of
storing ‘<v>> into the memory location pointed to by
HL). In the 5501/5502, this register 7 in the general
purpose register stack is called the X register.

The X register is not quite as generally accessable
as the rest of the registers, due to the fact that register
number 7 is used to specify memory in many
instructions. However, the X register can be loaded
immediately as well as be accessed via the implicit
register mechanism and also by several instructions
which use the X register’s contents as the upper eight
bits of an address. The X register is generally used in
the 5500 system to indicate a working storage page in
memory. (Here the word “page” is used to denote a
256 byte section of logical memory space.)

The use of the X register enables several of the
instructions which provide afixed ‘memory address in
the instruction to be one byte shorter by not having

to specify the upper eight bits of the address (using the
contents of the X register instead). Experience in
programming the 2200 system has shown that one
working storage page is generally quite adequate to
hold most of the items accessed most often by a given
program and that these items are accessed often
enough to make the X register concept useful both in
terms of saving memory and increasing speed.

Additional programming conventions developed with
the 2200 system have been reflected in the new
instruction set. The BC and DE registers are often used
as pairs to form a sixteen bit value (B or D being the
MSB and C or E being the LSB). Several of the new
instructions treat these pairs specifically as sixteen
bit values.

12

5.8.2 Presentation Format

A description of each 5501/5502 instruction is given
below. In order to simplify the presentation, the
following symbols and abbreviations are used:

A
B
C
[E) 8 bit general purpose registers
H
L
X
M memory location designated by contents
of the designated register pair
P Program counter
(op) one of the eight ALU operations
(AD AC SU SB ND XR OR CP)
(rs) a source general register (ABCDEHLX)
(s=0to7)
(rd) a destination general register (ABCDEHLX)
(d=0to 7)

(r) a general register (ABCDEHLX)

(rp) one of the pairs of registers (BC DE HL)

{(v) animmediate value at P+1

(w) a two-byte immediate value at P+1, P+2

lr] aregister select opcode. No byte is necessary
for selection of the A register. Otherwise:
B-111 C-062 D-113 E-174 H-115 L-176 X-117.

lrp] a register pair select opcode. No byte is
necessary for selection of HL. Otherwise:
BC-062 DE-174 XA-022.

(ct) control flags (CZSP) (c =010 3)

5.8.3 Category 1—2200 System Instructions

ioad immediate
Mnemonic: L (rd) {v)—example LB 3

Opcode: 0Od6

Flags: Unchanged
Timing: 20

Length: 2 bytes

Operation: Transfers the contents of the memory
location immediately following the first byte of the
instruction to the register specified by bits 3-5 of the
first byte of the instruction.

Load

Mnemonic: L(rd)M, L(rd)(rs), LM(rs) —examples
LBE, LMA

Opcode: 3ds(dors=7 for M)

Flags: Unchanged

Timing: 1.2 (26if LM(rs))

Length: 1 byte

Operation: Transtfers the operand from the source
specified by bits 0-2 of the instruction word to the
destination specified by bits 3-5 of the instruction word.

Add Immediate

Mnemonic: AD (v)

Opcode: 004

Flags: C.Z.S, and P indicate the status of the A
register at completion.

Timing: 20

Length: 2 bytes

Operation: Adds to the contents of the A register the
contents of the memory location immediately following
the instruction, and retains the sum in the A register.
Sets the C Flip-flop if overflow occurs, otherwise
resets C.

Add

Mnemonic: AD(rs), ADM
Opcode: 20s

Timing: 1.4 (2.6 if ADM)
Length: 1 byte

Operation: Identical with Add Immediate except that
source is a register or separately addressed memory.

Add With Carry Immediate

Mnemonic: AC (v)

Opcode: 014

Flags: C.Z,S and P indicate the status of the A
register at completion.

Timing: 20 '

Length: 2 bytes

Operation: Adds the C bit and the contents of the
location immediately following the instruction to the
contents of the A register, and retains the sum inthe A
register. If overflow occurs, the C Flip-flop is set,
otherwise C is reset.

Add With Carry

Mnemonic: AC(rs), ACM

Opcode: 21s

Timing: 14(26if ACM)

Length: 1 byte

Operation: This instruction is identical to ADD WITH
CARRY IMMEDIATE with the exception of operand
source.

Subtract Immediate

Mnemonic: SU(v)

Opcode: 024

Flags: C.Z,S and P indicate the status of the A
register at completion.

Timing: 2.0

Length: 2 bytes

Operation: Subtracts the contents of the memory
location immediately following the instruction from the
contents of the A register, and retains the difference in
the A register. The C Flip-flop is set ifunderflow occurs.

Subtract
Mnemonic: SU(rs), SUM
Opcode: 22s

Timing: 1.4 (26if SUM)

Length: 1 byte

Operation: This instruction is identical to Subtract
Immediate with the exception of operand source.

Subtract With Borrow Immediate
Mnemonic: SB(v)

Opcode: 034

Flags: C.Z.S and P indicate the status of the A
register at completion.

Timing: 20

Length: 2 bytes

Operation: Subtracts the contents of the memory
location immediately following the instruction and the
C bit, from the contents of the A register. Sets the C bit
if underflow occurs, otherwise resets C.

Subtract With Borrow

Mnemonic: SB<(rs), SBM

Opcode: 23s

Timing: 1.4 (2.6 if SBM)

Length: 1 byte

Operation: This instruction is identical to Subtract With

Borrow Immediate with the exception of operand source.

AND Immediate

Mnemonic: ND (v)

Opcode. 044

Flags: Z.S, and P will indicate the status of the A
register on completion. The C flag will be
reset.

Timing: 20

Length: 2 bytes

Operation: Forms the logical product of the contents of
the A register with the contents of the memory location
immediately following the instruction, and places the
results in the A register.

AND

Mnemonic: ND (rs), NDM
Opcode: 24s

Timing: 1.4 (2.6 if NDM)
Length: 1 byte

Operation: This instruction is identical to And
Immediate with the exception of operand source.

OR Immediate
Mnemonic: OR (v)

Opcode: 064

Flags: Z2.S and P will indicate the status of the A
register on completion. The C flag will be
reset.

Timing: 2.0

Length: 2 bytes

Operation: Forms the logical sum of the contents of the
A register and the contents of the memory location
immediately following the instruction, and places the
result in the A register.

13

OR

Mnemonic: OR(rs), ORM
Opcode: 26s

Timing: 1.4 (2.6 if ORM)
Length: 1 byte

Operation: This instruction is identical to OR Immediate
with the exception of operand source.

Exclusive-OR Immediate
Mnemonic: XR(v)

Opcode: 054

Flags: Z.S and P will indicate the status of the A
register on completion. The C flag will be
reset.

Timing: 20

Length: 2 bytes

Operation: The logical difference of the contents of

the A register and the contents of the memory location
immediately following the instruction is formed, and the
result replaces the contents of the A register.

Exclusive-OR

Mnemonic: XR{rs), XRM

Opcode: 25s

Timing: 1.4 (2.6 if XRM)

Length: 1 byte

Operation: This instruction is identical to Exclusive-OR
Immediate with the exception of operand source.

Compare Immediate
Mnemonic: CP (v)

Opcode: 074

Flags: Same as SU instruction
Timing: 1.8

Length: 2 bytes :

Operation: Compares the contents of the A register witf
the contents of the memory location immediately
following the instruction. The flag flip-flops assume the
same state as they would for a Subtract instruction.

Compare

Mnemonic: CP (rs), CPM
Opcode: 27s

Timing: 1.2 (2.4 it CPM)
Length: 1 byte

Operation: This instruction is identical to Compare
Immediate with the exception of operand source.

Unconditional Jump
Mnemonic: JMP

Opcode: 104

Flags: Unchanged
Timing: 28

Length: 3 bytes

Operation: An unconditional transfer of control. The
contents of P+1 represent the least significant portion
of the new address, while the contents of P+2 represen
the most significant portion.

14

Jump If Condition True
Mnemonic: JT (cf)

Opcode: 1{c+4)0

Fiags: Unchanged
Timing: 3.0(1.4ifnojump)
Length: 3 bytes

Operation: Examines the designated flip-flop. If set,
transfers control to the address designated by the
contents of the two memory locations immediately
following the instruction. If the selected flip-flop is reset,
executes the next sequentially available instruction.

Jump If Condition False
Mnemonic: JF (cf)

Opcode: 1¢c)0

Flags: Unchanged
Timing: 3.0 (1.4 if no jump)
Length: 3 bytes

Operation: Examines the designated flip-flop. If reset,
transfers control to the new address designated by the
contents of the two memory locations immediately
following the instruction. If the selected flip-flop is set,
executes the next sequentially available instruction.

Subroutine Call
Mnemonic: CALL

Opcode: 106

Flags: Unchanged
Timing: 30

Length: 3 bytes

Operation: Transfers the address of the next
sequentially available instruction to the Pushdown
Stack, and transfers control to the new address specified
by the contents of the two memory locations immediately
following the Opcode.

Subroutine Call If Condition True
Mnemonic: CT (cf)

Opcode: 1(c+4)2

Flags: Unchanged
Timing: 3.2 (1.6 ifnocall)
Length: 3 bytes

Operation: Examines the designated flip-flop. If set,
transfers the address of the next sequentially available
instruction to the pushdown stack, and transfers control
to the new address of the two memory locations
immediately following the Opcode. If the selected
Hlip-flop is reset, executes the next sequentially available
instruction.

Subroutine Call If Condition False
Mnemonic: CF(cf)

Opcode: 1¢c)2

Flags: Unchanged
Timing: 32(16ifnocall)
Length: 3 bytes

Operation: Examines the designated flip-flop. If reset,
transfers the address of the next sequentially available
instruction to the pushdown stack, and transfers control

to the new address of the two memory locations
immediately following the Opcode |fthe selected
flip-flop is set, executes the next sequentially available
instruction.

Subroutine Return

Mnemonic: RET

Opcode: 007

Flags: Unchanged
Timing: 1.8

Length: 1 byte

Operation: Transfer control to the address specified
by the most recent entry in the Pushdown Stack and
deletes the most recent entry from the Stack.

Subroutine Return If Condition True
Mnemonic: RT (cf)

Opcode: 0(c+4)3

Flags: Unchanged
Timing: 1.8 (10ifnoreturn)
Length: 1 byte

Operation: Examines the designated flip-flop. {f set,
transfers control to the address specified by the most
recent entry in the pushdown stack. Deletes the most
recent entry in the stack. If the selected flip-flop is reset,
executes the next sequentially available instruction.

Subroutine Return If Condition False
Mnemonic: RF(cf)

Opcode: 0¢(c)3

Flags: Unchanged
Timing: 1.8 (1.0 if no return)
Length: 1 byte

Operation: Examines the designated flip-flop. If reset,
transfers control to the address specified by the most
recent entry in the stack and deletes that entry. If the
selected flip-flop is set, executes the next sequentially
available instruction

Shift Right Circular
Mnemonic: SRC

Opcode: ®12
Flags: Z.S,and P unchanged. The C flag
contains the most significant bit of
the A register after the operation is complete.
Timing: 1.4
Length: 1 byte

Operation: Shifts the contents of the A registerrightin a
circular fashion Shifts the least significant bit into the
most significant bit position. Upon completion of the
operation, the Carry Flip-flop is equal to the most
significant bit.

Shift Left Circular
Mnemonic: SLC

Opcode: 002
Flags: Z.S, and P unchanged. The C flag contains
the least significant bit of the A
register after the operation is complete.
Timing: 1.4
Length: 1 byte

Operation: Shifts the contents of the A register leftin a
circular fashion. Shifts the most significant bit into the.
least significant bit position. Upon completion of the
operation, the Carry Flip-flop is equal to the least
significant bit.

Halt

Mnemonic: HALT
Opcodes: 000, 001,377
Flags: Unchanged
Timing: Indeterminate
Length: 1 byte

Operation: The computer halts. When the RUN button
on the console is depressed, operation resumes at
P+1.This instruction causes a privileged instruction
interrupt if the USR mode flag is set.

Input

Mnemonic: INPUT
Opcode: 101

Flags: Unchanged
Timing: 50

Length: 1 byte

Operation: Transfers the contents of the 1/O Bus to the
A register. This instruction causes a privileged
instruction interrupt if the USER mode flag is set.

Pop

Mnemonic: POP
Opcode:- 060

Flags: Unchanged
Timing: 2.2

Length: 1 byte

Operation: Transfers the most recent entry of the stack
into the H&L registers. H =MSP, L = LSP and deletes
the most recent entry in the stack.

Push

Mnemonic: PUSH
Opcode: 070

Flags: Unchanged
Timing: 20

Length: 1 byte

Operation: Transfers the contents of the H&L registers
onto the PUSHDOWN stack. H = MSP, L = LSP.

Enable Interrupts
Mnemonic: El

Opcode: 050

Flags: Unchanged
Timing: 1.0

Length: 1 byte

Operation: Following the next instruction, will allow the
one millisecond clock interrupts to occur until a Disable
Interrupt instruction is executed.

Disable Interrupts
Mnemonic: DI

Opcode: 040

Flags: Unchanged
Timing: 1.2

15

Length: 1 byte

Operation: Prevents the one millisecond clock
interrupts from occurring until an Enable Interrupt
instruction is executed. This instruction causes a
privileged instruction interrupt if the USER mode flag
is set.

Select Alpha Mode

Mnemonic: ALPHA

Opcode: 030

Timing: 1.0

Length: 1 byte

Operation: Selects the Alpha Mode registers and
control Flip-flops.

Select Beta Mode

Mnemonic: BETA

Opcode: 020

Timing: 1.2

Length: 1 byte

Operation: Selects the Beta Mode registers and control
Flip-flops. This instruction causes a privileged
instruction interrupt if the USER mode flag is set.

External Commands
Mnemonic: EX (exp) (See Table)

Opcode: (See Table)
Flags: Unchanged
Timing: 9.2

Length: 1 byte

Operation: These instructions perform the functions
necessary for control of the 1/O system and external
devices. Many of these functions are specifically related
to operation of particular devices. The device oriented
commands for the Keyboard, CRT Display, Cassette
Tapes, and Communications Interface are explained in
the sections covering these devices. All of these instruc-
tions (except BEEP and CLICK) will cause a privileged
instruction interrupt if the USER mode flag is set.

16

EXTERNAL COMMANDS
EX (exp)
Ch?l;\ﬁMMBAE':‘D (exp) OC%T;EL COMMAND DESCRIPTION ADDED\QSSES

1 ADR 121 Address Selects device specified by ALL

A-register

2 STATUS 123 Sense Status Connects selected device status

to input lines

3 DATA 125 Sense Data Connects selected device data to

input lines

4 WRITE 127 Write Strobe Signals selected device that output

data word is on output lines

5 COM1 131 Command 1 Outputs a control function to

selected device

6 COM2 133 Command 2 Outputs a control function to

selected device

7 COM3 135 Command 3 Outputs a control function to

selected device

8 COM4 137 Command 4 Outputs a control function to ALL

selected device '

9 - — 141 (Unassigned) - — -
10 -— 143 (Unassigned) - — -
11 - — 145 (Unassigned) - — -
12 - — 147 (Unassigned) - — —
13 BEEP 151 Beep Activates tone producing ANY

mechanism
14 CLICK 153 Click Activates audible click pro- ANY
ducing mechanism
15 DECK1 155 Select Deck 1 Connects deck 1to 1/O bus 360
16 DECK2 157 Select Deck 2 Connects deck 2 to 1/O bus
17 RBK 161 Read Block Enables read circuitry and sets
tape in forward motion
18 WBK 163 Write Block Enables write circuitry and sets 360
tape in forward motion
19 - — 165 (Unassigned) - = -
20 BSP 167 Backspace Backs up the selected tape 360
One Block one record
21 SF 171 Slew Forward Sets seiecied tape deck in
forward motion
22 SB 173 Slew Backward Sets selected tape deck in
backward motion
23 REWIND 175 Rewind Rewinds the selected deck to
beginning of tape
24 TSTOP 177 Stop Tape Halts motion of the selected 360
tape deck

5.8.4 Category 2 — Augmented Category 1 Instructions

L(rd)M using'BC, DE, or XA for the address

Mnemonic: L<rd)M¢rp) —example: LEM BC uses BC

Opcode: [rp!3d7
Timing: 34
Length: 2 bytes

Operation: Identical to the L«rd)M instruction except
that the specified register pair instead of HL is used
for the memory address.

LM«rs) using BC, DE, or XA for the address
Mnemonic: LM(rs)(rp) —example: LMB DE uses DE

Opcode: [rp|37s
Timing: 34
Length: 2 bytes

Operation: Identical to the LM(rd) instruction except
that the specified register pair instead of HL is used
for the memory address

Arithmetic and logical operations to other than the
A register
Mnemonic: {op) (rs) (rd) —examples:

ADAB adds A toB ADMC adds (HL) to C
(op) {v),(rd) —example: ADC 26C adds

20toC
SRC«r) —example: SRCB shifts
B right
SLC«r) —example: SLCD shifts
D left
Opcodes: [ri2ps
[(r]0p4 vvv
[rj@12
[r] 002
Timing: Add 1.0 to equivalent category 1 instruction
timing
Length: 2 or 3 bytes

Operation: Identical to the category 1 arithmetic opera-
tions except that the specified register instead of the A
register is used for the accumulator.

Shift Right Extended

Mnemonic: SRE or SRE(r) —example SREB

Opceode: 032o0r {r 1032

Flags: Z,S,and P unchanged. C as described
below

Timing: 1.4 (2.4 if to other than A)

Length: 1 or 2 bytes

Operation: The accumulator is shifted right one place

with the left hand bit being replaced by the Carry and

The Carry being replaced by the right hand bit.

110 using other than the A register

Mnemonic: IN(rd) —example: INB loads into B
EX(rs) (exp)—example: EXC COM1

outputs C

Opcodes: [r] 101
[r1121,{r] 123, etc. (/O strobes)

Timing: Add 1.0 to equivalent category 1 instruction
timing

Length: 2 or 3 bytes

Operation: Identical to the 2200 1/0 operations except
the specified register instead of the A register is used.
Parity checking input

Mnemonic: PIN or PIN(rd)

Opcode: 103 or[r] 103
Flags: Unchanged
Timing: 54

Length: 1 or2 bytes

Operation: Identical to the INPUT instruction except
that if the nine bits of the 5500 system input bus contain
an odd number of ones, an interrupt will occur.

PUSH using BC, DE, or XA
Mnemonic: PUSH(rp) —example: PUSH DE

Opcode: [rp] 070
Timing: 2.8
Length: 2 bytes

Operation: Pushes the specified register pair onto the
stack.

PUSH Immediate
Mnemonic: PUSH (vv)

Opcode: 051
Timing: 28
Length: 3 bytes

Operation: Pushes the contents of the operand onto the
stack.

POP using BC, DE, or XA
Mnemonic: POP(rp)—example: POP BC

Opcode: [rp] 060
Timing: 30
Length: 2 bytes

Operation: Pops the stack into the specified register
pair.

5.8.5 Category 3—Multi-byte (string) operations

Block Transfer or Block Transfer Reverse

Mnemonic: BT or BTR

Opcode: 021 o0r111 021

Length: 1 0r2 bytes

Operation: The block transfer instructions move the
number of bytes specified in the C register from the field
pointed to by HL to the field pointed to by DE while
adding the contents of the A register to each byte trans-
ferred. BT causes the pointers to be incremented after
each transfer while BTR causes the pointers to be
decremented after each transfer If the B register is not
zero, the transfer will stop if a character which is equali
to the 2's complement of the B register is transferred
(stops after the matching character is moved)

Entry: HL=location of first byte

DE=location of first destination byte

C =number of bytes to move
(C=11t0255; 0 for 256)

B =2's complement of terminating character
if not @.

A =8-bitvalue added to each byte as it is
moved (for de-zoning and zoning
decimal numbers)

Exit: HL =) location past last source byte

DE=) location past last destination byte

A =entry value

B =entry value

C =zero or count after terminator character
found

Condition flags are all altered

Stack: 2 entries used
Timing: 48+C*3.0forBT
48+C*32forBTR
Caution: Since BT and BTR instructions can take up

to 820us to execute, care must be exercised in their use
it time critical interrupt driven programs are to be
simultaneously executed.

Binary Field Add with Carry or Subtract with Borrow
Mnemonic: BFAC or BFSB
Opcode: 911 0r 031

18

Length: 1 byte

Operation: These instructions take the field pointed to

by HL and either add it to or subtract if from the field

pointed to by DE, leaving the result in the field pointed
to by DE. The fields may be 1 through 16 bytes in length.

Entry: HL=location of right hand byte of the

operand field

DE =location of right hand byte of the

accumulator field

C =the field width (1 through 16; @ or 16

implies 16))

Carry=carry or borrow into the operation

HL =location of left of the ieft hand byte of

the operand field

DE =location of left of the left hand byte of

the accumulator field

C =indeterminate

Carry =carry or borrow out of the operation

(all the condition flags are altered)

1_Load the implicit register from C.

2. Get the byte pointed to by HL.

3. Add with carry it to or subtract with borrow
it from the byte pointed to by DE and store
the result where DE points.

4 Decrement HL and DE by one.

5. Decrement the implicit register by one.

6. Go to step 2 if the implicit register is not
now zero.

2 entries used

48+C*#(28)

Exit:

Algorithm:

Stack:

Timing:

Block Compare

Mnemonic: BCP

Opcode: @41

Length: 1 byte

Operation: This instruction matches two strings of bytes

from ieft to right untii either a mi i

specified maximum number of } s

Entry: HL=location of left hand byte of the
tracting field

DE =location of left hand byte of the sub-
tracted from field

C =the maximum number of bytes to scan
(1 thru 255; @ implies 256)

IF A MISMATCH WAS FOUND:

HL=location of left hand byte of the sub-
tracting field

DE =location of left hand byte of the sub-
tracted byte

C =entry value minus number of bytes that
matched

Condition flags all reflect the result of the
subtract instruction that found the two
bytes differing.

IF ALL BYTES MATCHED:

HL=location after the last byte in the sub-
tracting field

DE =location after the last byte in the sub-
tracted from field

Exit:

C =zero

Condition flags are all altered (Zero true)
1. Get the byte pointed to by HL.

2. Subtract from it the byte pointed to by DE
3. Increment DE and HL.

4. Stop if the Zero condition is false.

5. Decrement C.

6. Goto step 1 if C not equal to zero.

7. Exit with the Zero condition true.

2 entries used

7.0+N*(2.8) if N bytes matched before
mismatch

52+C#(2.8) if all C bytes matched.

BCP can take up to 722us to execute

Algorithm:

Stack:
Timing:

Caution:

Decimal Field Add with Carry
Mnemonic: DFAC
Opcode: 111041
Length: 2 bytes
Operation: This instruction takes the field of zoned BCD
digits pointed to by HL and adds itto the field of zoned
decimal digits pointed to by DE, leaving the result in the
field pointed to by DE. The zone bits of the result field
are set to the zone bits in the B register. The fields may
be 1 through 16 bytes in length.
Entry: Same as for the BFAC instruction except
Exit: Same as for the BFAC instruction.
B=output zoning (right 4 bits must be 0; le
4 bits must be other than 0000.) except A
register is destroyed. B=entry value
1. Load the implicit register from C.
2. Get the byte pointed to by HL.
3. Add with carry it to the byte pointed to
by DE.
4. Strip away the zona bits.
5. Clear the Carry and go to step 7 if the
result is less than 10.
6. Subtract 10 from the result and set the
Carry.
7. Set the zoning bits.
8. Store the result where DE points.
9. Decrement HL and DE by one.
10. Decrement the implicit register by one.
11. Go to step 2 if the implicit register is not
Now zero.
2 entries used.
54+C*¥4 .6 if a carry occurred on every digit.
54+C*4.4 if no carries occurred.
The binary values for the zoned BCD digits
with xxxx not equal to @00 are as follows (the
digits are not packed, i.e , only one digit

Algorithm:

Stack:
Timing:

Note:

per byte):

0: xxxx0000 5: xxxx0101
1: xxxx@001 6 xxxx0110
2: xxxx0010 7 xxxx0111
3: xxxx0011 8: xxxx1000
4: xxxx0100 9: xxxx1001

Decimal Field Subtract with Borrow
Mnemonic: DFSB
Opcode: 062 041
Length: 1 byte
Operation: This instruction takes the field of zoned BCD
digits pointed to by HL and subtracts it from the field of
zoned BCD digits pointed to by DE, leaving the result
in the field pointed to by DE. The zone bits of the two
fields must be identical. The zone bits of the result field
are set to the zone bits in the B register. The fields may
be 1 through 16 bytes in length.
Entry: same as for the DFAC instruction.
Exit: same as for the DFAC instruction
Algorithm: 1. Load the implicit register from C.

2. Get the byte pointed to by HL.

3. Subtract with borrow it from the byte

pointed to by DE.
4. Goto step 6 and clear the Carry if the
byte result is not negative.
- Add 10 to the result and set the Carry.
. Setthe zone bits to those in the B register.
. Store the resuit where DE points.
. Decrement HL and DE by one.
. Decrement the implicit register by one.
. Goto step 2 if the implicit register is not
now zero.

2 entries used
5.4 + c*4.0 if a borrow occurred on every
digit
5.4 + C*3.6if no borrows occurred.

O WO ~NOO,

Stack:
Timing:

Binary Field Shift Left

Mnemonic: BFSL

Opcode: 075

Length: 1 byte

Operation: This instruction shifts a field of bytes in
memory left one bit position as if all of the bytes made
up one continuous word.

Entry: HL = location of right hand byte of the field
C =thefield width (1 through 16, @ or 16
implies 16)
Carry = bit shift in on the right
Exit: HL = location left of the left hand byte of
the field
C =indeterminate
A = indeterminate
Carry = bit shifted out on the left (all other
flags are indeterminate)
Stack: 2 entries used
Timing: 38+C*22
Binary Field Shift Right
Mnemonic: BFSR
Opcode: 111075
Length: 2 bytes

Operation: This instruction is similar to BFSL except
the shift is in the opposite direction.

19

Entry: HL = location of left hand byte of the field.
C =field width (1 through 16: @ or 16
implies 16)
Carry = bit shifted in on the left
Exit: HL = location right of the right hand byte
of the field
C = indeterminate
Carry = bit shifted out from the right
{all other condition flags are altered)
Stack: 2 entries used
Timing: 42+C 20
Multiple Input
Mnemonic: MIN
Opcode: 061
Length: 1 byte

Operation: This instruction moves the number of bytes
specified in the C register from a buffered input device
to the field pointed to by HL. The number of bytes moved
is the number in the C register modulo 16. To make
transferring up to 256 bytes easy yet interruptable, the
full eight bit value of the C register is retained during
loop counting and exit is made with the C register
containing its entry value minus the number of bytes
transferred, HL containing its entry value plus the
number of bytes transferred, and the condition code
reflecting the eight bit result of the last decrementation
of the C register. Thus the interruptable loop for
transferring the number of bytes indicated by the eight
bit value in the C register yet not inhibiting interrupts
more than 155 microseconds would appear as follows:

LOOP LA DEVADR
DI
EX ADR
EX DATA
El
MIN
JFZ LOOP

Note that the device must be re-addressed for each
execution of the MIN instruction since an interrupt could
cause some other device to be addressed. The MIN
instruction causes an input strobe to be executed every
8.4 microseconds. This execution operates without
regard to any status bits of any kind. There is no existing
2200 system I/O device capable of using this instruction
and it is included for use with 5500 system /O devices
with faster buffers allowing them to be used at data rates
equivalent to DMA channels. The MIN instruction has

all of the advantages of a non-1/O device interrupting
system (lower software overhead in high throughput
situations, superior control over the occurrence

of events allowing provability of correctness in the
program logic and repeatability of event occurrance,
and simpler hardware using lower speeds and noise

20

filtered buses) and yet achieves DMA throughput rates.

Entry: HL = location of first destination byte
C =number of bytes to move (this number
is take modulo 16 and if it is ® modulo
16 then 16 bytes will be moved)
Exit: HL = location of entry value plus number of
bytes moved
C =entry value minus number of bytes
moved
Algorithm: 1. Execute an INPUT strobe
2. Store the bytes where HL points
3. Increment HL
4. Load the implicit register from C
5. Decrement C using the ALU
6. Decrement the implicit register
7. Exit if the implicit register is zero
8. Decrement the P-counter
9. Re-fetch the instruction without allowing
interrupts)
Stack: 1 entry used
Timing: 8.4 microseconds per byte transferred
Note: To input a block of 256 bytes using the loop
described under ‘Operation’ above would .
take 2550 microseconds if no interrupts
occurred (an average of 10 us per byte).
Multiple Output
Mnemonic: MOUT
Opcode: 071
Length: 1 byte

Operation: This instruction is similar to the MIN
instruction except for timing and the direction of
information flow. MOUT moves the number of bytes
specified in the C register from the field pointed to by
HL to a buffered output device. A byte is written using
the EXWRITE strobe every 8.8 us and interrupts can be
inhibited for a maximum of 161 microseconds. As with
MIN, there is no existing 2200 system |/O device
capable of being used with the MOUT instruction.
Timing: 8.8 microseconds per byte transferred.
Note: To output a block of 256 bytes using a loop
similarto the one described under
‘Operation’ in MOUT instruction description
would appear where a MIN instruction
appears in that example) would take 2650
microseconds if no interrupts occurred (an
average of 10.4 us per byte).

5.8.6 Category 4 — Processor state save and restore
Instructions

Stack Store

Mnemonic: STKS

Opcode: 065

Length: 1 byte

Operation: The Stack Store instruction POPs a specified
number of stack entries and stores them (LSB followed
by MSB} in the field pointed to by HL.

Entry: HL =first location in the storage area

C =the number of entries to be stored
(1 through 16; @ or 16 implies 16)

Exit: HL and C indeterminate
Condition flags unchanged

Timing: 16+C*24

Stack Load

Mnemonic: STKL

Opcode: 111065

Length: 2 bytes

Operation: The Stack Load instruction PUSHes onto
the stack the specified number of entries from the field
pointed to by HL. Upon entry, HL points to the right hand
byte and the entries are loaded in reverse order to allow
restoring the stack from locations stored using the STSK
instruction.

Entry: HL = last location in the storage area
C =the number of entries to be PUSHed
(1 through 16; @ or 16 implies 16)
Exit: HL = indeterminate
C =indeterminate
Condition flags unchanged.
Timing: 44+C*22

Register Store
Mnemonic: REGS
Opcode: 055
Length: 1 byte

- Operation: The Register Store instruction stores all of

the registers for the currently selected mode (Alpha or
Beta) in the field pointed to by the top entry of the stack.
This entry points to the right hand byte of the field and
the registers are stored in reverse order moving to the
left (XL HE D C B Afrom right to left). When the
instruction terminates, the top entry of the stack points
to the left of the left hand byte in the field. For example,
if entry is made with the top entry of the stack pointing
to location 02087 (octal), the registers are stored as
follows:
02000:
02001:
02002:
02003:
02004:
02005:
02006:
02007:
In the above example, the top entry of the stack will be
01777 when the instruction terminates. The contents of
neither the registers or the condition flags for the given
mode are altered by this instruction.
Timing: 13.2

XrImgogoOw>»

Register Load
Mnemonic: REGL
Opcode: 111855
Length: 2 bytes

Operation: The Register Load instruction loads all of
the registers for a given mode (Alpha or Beta) from the
field pointed to by HL. Upon entry, HL points to the right
hand byte of the field. The registers are loaded in
reverse order moving to the left in the field. In this
manner, the registers can be reloaded from values
stored by the REGS instruction. In the example given
for the REGS instruction, if the REGS instruction were
entered with HL = 02007, the registers shown would be
loaded from the locations shown. The condition flags
are not altered by this instruction.

Timing: 12.0

Condition Code Save
Mnemonic: CCS (r)
Opcode: [r] 042
Length: 2 bytes
Operation: This instruction loads register (r) with a
value such that if the value is added to itself using the
AD operation the condition flags will all be restored to
their state before the CCS instruction was executed. The
logic equations for the value loaded into (r) are as
follows:
A7 =Carry
A6 =Sign
A5=A4=A3=A2=0
A1 =Not Zero and Not Sign
AD = Not Zero and Not Parity
This instruction does not alter the state of any of the
condition flags. :
Timing: 2.4 to 3.0 depending upon the condition
flag states.

5.8.7 Category 5— Address Manipulation Instructions

Increment Register Pair
Mnemonics Opcodes Timing
INCP HL 015 28
INCP HL 2 117 015 2.8
INCP HLA 017 3.0
INCP BC 062 015 _ 26
INCP BC.2 113 015 28
INCP BCA 062 017 2.8
INCP DE 174 015 26
INCP DE,2 115015 2.8
INCP DE A 174 017 2.8

Operation: These instructions increment the indicated
register pair by either one, two, or the contents of the
A-register. The increment value is added to the LSB
register and then the carry is added to the MSB register.
All conditions are indeterminate. The A-register is

not changed.

Decrement Register Pair

Mnemonics Opcodes Timing
DECP HL 035 2.8
DECP HL?2 117 835 2.8
DECP HL A 037 3.0

21

DECP BC 062 035 2.6
DECP BC.2 113 035 2.8
DECP BCA 062 037 28
DECP DE 174 035 2.6
DECP DE2 115 035 28
DECP DE A 174 037 28

Operation: These instructions decrement the indicated
register pair by either one, two, or the contents of the
A-register. The decrement value is subtracted from the
LSB register and then the borrow is subtracted from

the MSB register. All condition flags are indeterminater
The A-register is not changed.

condition flags are indeterminate.

Double Load
Mnemonics Opcodes Timing
DL DEHL 047 34
DL BCHL 111 047 52
DL BCBC 062 047 46
DL BCDE 113 047 50
DL DEBC 174 047 46
DL DEDE 115 047 50
DL HLBC 176 047 46
DL HL,DE 117 047 5.0
DL HLHL 057 40

Operation: These instructions load the register pair
specified by the first operand from the memory location
pointed to by the register pair specified by the second
operand. The LSB register (C, E, or L) is loaded from
the specified memory location and the MSB register
(B, D, orH) is loaded from the next higher memory
location. Note that indirect addressing can be accom-
plished by loading a register pair from the locations
that the pair specify (DL HL HL for example).

Double Store
Mnemonics Opcodes Timing
DS DE HL 027 34
DS BCHL 111 027 52
DS BCDE 113 027 50
DS DEBC 174 027 46
DS HLBC 176 027 46
DS HLDE 117 027 50

Operation: These instructions store the register pair
specified by the first operand into the memory locations
pointed to by the register pair specified by the second
operand. The LSB register (C,E, or L) is stored in the
specified memory location and the MSB register

(B, D, or H) is stored in the next higher memory location.

Paged Load
Mnemonics Opcodes Timing
PL A loc) 105 LSP 30
PL B,¢loc) 114 LSP 30
PL C,(loc) 124 LSP 30
PL D,(loc) 134 LSP 30
PL E.<loc) 144 LSP 30
PL H,(loc) 154 LSP 30
PL L (loc) 164 LSP 30

22

Operation: These instructions load the specified register
from the memory location specified by the LSP given in
the instruction and the MSP given in the X-register

Paged Store
Mnemonics Opcodes Timing
PS A (loc) 107 LSP 30
PS B, (loc) 116 LSP 30
PS C,(loc) 126 LSP 30
PS D,(loc) 136 LSP ' 3.0
PS E.(loc) 146 LSP 30
PS H.(loc) 156 LSP 3.0
PS L,(loc) 166 LSP 3.0

Operation: These instructions store the specified
register in the memory location specified by the LSP
given in the instruction and the MSP given in the
X-register.

Double Paged Load
Mnemonics Opcodes Timing
DPL BC,¢loc) 111 124 LSP 48
DPL DE,(loc) 113 144 LSP 48
DPL HL,(ioc) 115 164 LSP 48

Operation: These instructions load the specified
register pair from the memory locations specified by
the LSP given in the instruction and the MSP given in
the X-register. The C, E, or L register is loaded from
the specified memory location and the B, D, or H
register is loaded from the next higher location.

Double Paged Store
Mnemonics Opcodes Timing
DPS BC,(loc) 111 126 LSP 48
DPS DE, (loc) 113 146 LSP 48
DPS HL,(loc) 115166 LSP 48

Operation: These instructions store the specified
register pair in the locations specified by the LSP given
in the instruction and the MSP given in the X-register.
The C,E, or L register is stored in the specified location
and the B, D, or H register is stored in the next higher
location.

Increment Index and Decrement Index

Mnemonics Opcodes Timing
INCI (disp).(index) 005 LSP [i] 7.6
DEC! (disp).(index) ©25 LSP [i] 78

INCI *(disp).(index) 111 005 LSP MSP [i] 96
DECI *(disp).{index) 111 025 LSP MSP |[i]| 98
Operation: The processor has a construct called an
index which is a 16-bit value kept in memory. The
concept is similar to index registers except that all the
values are kept in the page of memory pointed to by
the X-register. The index is specified by a single byte
in the instructions (shown as | i above) which points to
the memory location containing the LSB of the index
value, the MSB being in the next higher memory
location (|i| specifies the LSP of the index address
while the X-register specifies the MSP of the index
address). The instruction also contains a displacement

that is either one or two bytes in length {(depending upon
the opcode). These instructions either increment or
decrement the value of the index by the displacement
The carry condition flag reflects the carry or borrow

from the incrementation or decrementation. The rest

of the condition flags are indeterminate

Load from Index Incremented or Decremented

Mnemonics Opcodes Timing
LFIl BC,(disp),(index) 062 005 LSP |i| 74
LFID BC,(disp).(index) 062 025 LSP |{i| 76
LFIl BC(disp)(index) 113 005 LSP MSP [i| 84
LFID BC*(disp),(index) 113 025 LSP MSP |i| 86
LFIl DE.(disp).(index) 174005 LSP [i} 7.4
LFID DE, (disp),(index) 174 @25 LSP [i] 76
LFIl DE*(disp).(index) 115005 LSP MSP |i] 84
LFID DE *(disp).<index) 115025 LSP MSP |i|] 86
LFIl HL.(disp).(index) 176 005 LSP |i| 74
LFID HL (disp),(index) 176 025 LSP [i| 76
LFI HL*(disp),(index) 117 005 LSP MSP |i|] 84

LFID HL*(disp).(index) 117 025 LSP MSP [i|] 86
Operation: These instructions are similar to the INCI
and DECI instructions except that they load the specified
pair of registers with the result of adding or subtracting
the displacement to or from the index value instead of
updating the value of the index. The condition flags are
similarly affected.

Stack: 1 entry used

Base Register Load

Mnemonic: BRL(r)

Opcode: [r] 072

Length: 2 bytes

Operation: This instruction loads the base register from
the specified register. Note that the base register cannot
be saved. For this reason, loading the base register will
normally be a monitor function, allowing the monitor to
keep within itself the value of the base register for user
state storage purposes. This instruction will cause a
privileged instruction interrupt if the USER mode

flag is set.

Timing: 1.2

NOP Jump

Mnemonic: NOJ

Opcode: 045

Length: 3 bytes.

Operation: This instruction causes no operation to be
performed. It is useful for overstoring jump instructions
which might be executed while being overstored. The
procedure to overstore a jump instruction would be to
first overstore the opcode with an 45 (NOP Jump) and
then update the address portion. Then the opcode couid
be overstored with the appropriate jump instruction. The
primary use of this instruction is for overstoring the
interrupt vector jump instructions for the interrupts
which cannot be disabied (such as memory parity fauit)
and which might happen while the jump is being
overstored.

Timing: 1.4

5.8.8 Category 6 —Operating System Control

System Call

Mnemonic: SC

Opcode: 067 _

Operation: This instruction causes the USER mode flag
to be cleared, the last entry in the sector table to be set
to the last 4K section of physical memory space with
access protection, and a CALL to be performed to
jocation 8170025 (in the ROM). This is the mechanism
via which the user would communicate with an operating
system that used the USER mode.

Timing: 1.8

User Return

Mnemonic: UR

Opcode: 111102

Operation: This instruction is identical to the RETURN
instruction (opcode 007) except that additionally the
USER mode flag is set.

Timing: 20

Sector Table Load

Mnemonic: STL

Opcode: @77

Operation: This instruction loads the first 15 entries in
the sector table. This table contains six bits for each
entry. The right hand two bits are not used and should
always be set to zero. The 22 bit is set for access
enable. The 22 bit is set for write enable. The left

hand four bits are used to map that entry to particular
4K section of physical memory space. This instruction
will cause a privileged instruction interrupt if the

user mode flag is set.

Entry: HL = location first byte in table of 15 to load.
C = number of entries to load (0 to 15)

Exit: A = last value loaded

Stack: 1 entry used

Timing: 274

Breakpoint

Mnemonic: BP

Opcode: 0652

Timing: 1.8

Length: 1 byte

Operation: This instruction is similar to a system call
(SC) instruction except the call is performed to location
0170030. This will cause entry into the system DEBUG
routine if the vector location is not changed.

6. Input/Output

The 5500/5502 communicates with and exercises
program control over external devices via the Input/
Output System Bus. The keyboard, display and cassette
tapes, while internal, are also peripherals that operate
from this bus.

All external devices are connected to the Bus in
parallel, “daisy chain” fashion.

Each external device is assigned (by jumpers in
the peripheral device's controller) an Input/Output

23

“address’ which is unique to that device. At any time, one
device is designated by the processor as currently
addressed and communication between the processor
and that device only is possible. All other devices on
the Bus are logically, although not electrically,
disconnected from the Bus.

Signals in the Bus may be divided into six groups.
These are:

» Nine output lines designated AOUTO(-) thru
AQUTS8(-). The eight AOUTO(-) thru AOUT7(-) lines
carry data and control information from the processor
to the external device. AOUT8(-) is the parity bit for
these lines. The (—) signs indicate that the data is
logically inverted, i.e,, low voltage equals a binary one.

» Nine input lines designated AIN®(—) thru AIN8(—).
The eight AINO(-) thru AIN7(—) lines carry data and
status information from the external device to the
processor. AIN8(—) is the parity bit for the other 8 lines.

» Nine output control and data strobes.

» The system clock line.

» The output data parity error flag line from the
external devices to the processor.

» Twelve power and ground lines. Four of these are
ground lines and serve as signal ground for the Bus
and power ground for devices which obtain operating
power from the Bus.

6.1 Input/Output Physical Connections

The Input/Output System Bus connector on the
5501/5502 is a 50 pin Amphenol Series 17 receptacl
with female contacts, with provisions for screw lock
assemblies.

Each external device must have two 50 pin Input/
Output Bus connectors; one an Amphenoj Series 17
female plug with male contacts labelled "I/O Bus In"
and the other an Amphenol Series 17 male plug with
female contacts (same as the 5501/5502) labelled
“I/O Bus Out”. Both of these connectors must have
provisions for screw lock assemblies.

Datapoint Universal Input/Output cables have a male
connector at one end and a female at the other.

Connection is made from the 5501/5502 1/0
connector to the "I/O Bus In” connector of an external
device via a Universal |/O cable. If more than one
device is connected to the Bus, connection is made
from the “I/O Bus Out"” connector of the first device to
the “I/O Bus In" connector of the second device with a
Universal I/O Cable. The process is repeated for other
external devices.

Every external device must connect each of the 50
pins (including spares) of its “I/O Bus In" connector to
the corresponding pin of its *1/0 Bus Out” connector
in addition to connection to those lines required for the
particular device. This is required for continuity of all
signal, power and ground lines in the Bus.

The following table gives I/O Bus pin assignments:

24

110 Bus Pin Assignments

Signal Pin Number
AOUTO(-) 44
AQUTI(-) 45
AQUT2(-) 46
AQUT3(-) 29
AQUT4(-) 30
AOUTS(-) 31
AOUTH(-) 32
AOUT7(-) 33
AQUTS(—) (Parity Out) 34
INPUT(-) 12
EX ADR(-) 15
EX STATUS(-) 13
EX DATA(-) 14
EX WRITE(-) 19
EX COM1(-) 20
EX COM2(-) 21
EX COM3(-) 22
EX COM4(-) 23
SYSTEM CLOCK ‘ 39
AINO(-) 1
AIN1(-) 2
AIN2(-) 3
AIN3(-) 4
AIN4(-) 5
AINS(-) 6
AING(—) 7
AIN7{-) 18
AINS8(-) (Parity In) 17
PERR(-) (Parity Error Flag) 16
GROUND 40, 41,42, 43
+5V 8,9 10, 11
-5V 27
+12V 25
-12V 24
+24V 26

Spare (unused) 28,35, 36,37, 38,
47,48, 49,50

() indicates inverted logic

6.2 Input/Output Efectrical and Timing Requirements

This section describes interface circuits and timing
requirements for operation of external devices on the
5501,5502 Input/Output System Bus

6.2.1 Output Line Circuits
Three output line driver circuits are used in the
Datapoint 5500 These are all illustrated in Figure 6.1.
Figure 6 1-a is the driver used for the eight AOUTO(-)
thru AOUT7(-) data lines and the AQUTS8(-) parity line.
Figure 6.1-b is the driver used for the system clock
line and all strobe lines except the INPUT(-) strobe.
Figure 6 1-c is the driver used for the INPUT(-) strobe
ne
The external device must use the receiver shown in
Figure 1-d for all of these lines. This receiver is a

differential comparator whose reference voltage is

- +18volts DC The inputis filtered for transient noise

immunity and is diode clamped to the reference voltage
Resistive source impedance for the r<‘erence must be
less than 50 ohms and should be bypassed as required
for reliable operation.

Current flowing into the line input of the differential
comparator device (excluding current thru the clamp
diodes to the reterence voltage) must be less than
50 microamperes.

The minimum voltage slew rate at the line input to the
comparator device (after the resistor-capacitor rolloff
network) in response to a change of state of the 1/O Bus
signal is .7 volt per microsecond. Atthis slew rate, the
delay from the time the line input to the comparator
device is equal to the reference voltage (changing in
either direction) until the comparator output changes
state must be less than .2 microseconds.

In addition, plus and minus .1 volt hysteresis must be
incorporated in the receiver for any output strobes whose
transitions (versus level) are used by the interface logic
circuitry. This requirement prevents logic malfunctions
due to spurious receiver responses (multiple transitions)
to an output strobe signal.

6.2.2 Input Line Circuits

The eight AINO(-) thru AIN7(-) lines carry data or
status information from the selected external device to
the processor. Input line AIN8(-) is the parity bit for
the input data lines.

Each external device connects to each of these 9 lines
by means of the ‘tri-state’ gate circuit shown in Figure
6.2-a. When the device is enabled for data or status
input, the tri-state gates are enabled and the logic levels
for the AIN(-) lines are:

1 =0 volts
0 = +5 volts

Unless enabled, the external device must maintain
these gates in the ‘off’ (high impedance) state.

All external devices connect to the AIN(-) lines in
parallel with similar circuits.

Figure 6.2-b shows the circuit used for the parity error
return line PERR(-). It is an open collector gate circuit
and the conditions for its output are given in Section 6.2.5.

The +5 volt pullup voltage for the 4.7k pullup resistors
must be that provided by the 5501/5502 in the 1/O Bus,
so that even if the external device interface is powered
independent of the processor and is turned off, the Bus
will be operative. In addition, the tri-state gates used
for the AIN(-) lines must be powered from the I/O Bus
+5 volt line and must be maintained in the disabled
(high impedance) state when power is removed from
the external device. (Note the voltage variation range
of the I/O Bus +5 volt line in 6.2.3).

The 4.7 pullup resistor and the tri-state gate must be
present on alf AIN(-) lines even if the device does not
logically use the line.

Figure 6.2-c shows the line receiver used in the

+5V
470 Q)
TRI-STATE .
{> ANNA/————= ouTPUT
a7 0
74125 OR
EQUIVALENT

FIG 6.1-A AOUT(-) DRIVERS

g
>

D

7407 OR
EQUIVALENT

FIG 6.1-B STROBE (EXCEPT INPUT(-)) DRIVERS

+12V +5V

e —

7406 OR 1000
EQUIVALENT

FIG 6.1-C INPUT(—) STROBE DRIVER

18K DIFFERENTIAL

50 PF % % %
—— +1.8V

REFERENCE

FIG 6.1-D EXTERNAL DEVICE RECEIVER

25

26

5501/5502 for the nine AIN(-) lines and Figure 6.2-d
shows the circuit used for the PERR(-) line.
6.2.3 Power and Ground Lines

The Input/Output System Bus provides ground
{common signal and power) and various supply
voltages for operation of external devices on the Bus.

Each external device must connect all 12 power and
ground lines (see table in 6.1) between its ‘1/O Bus In’
connector and ‘I/O Bus Out’ connector in addition to
+5V and ground connections to its own circuitry.

Except as discussed in 6.2.2 above (+5 volts) current
must not be drawn from these voltages by the external
device.

The 1/O Bus +5 volt line may vary in voltage from +4.8
volts to +7.5 volts. The external device must operate
without damage or malfunction over this range.

Internal wiring, connectors and printed circuit board
connections must be adequate to insure that no damage
can occur to the external device if the /0O Bus +5 volt
and ground circuits are shorted in the device. Maximum
short circuit current for the 1/O Bus +5 volt circuit is
7 Amperes.

6.2.4 Device Address

The processor addresses an external device by
means of the EX ADR(-) strobe. The address of the
device to be selected appears on the AOUTO(-) thru
AQUT7(-) lines. As in all output operations, AOUT8(-)
provides odd parity information (i.e., the total number of
logic 1’s in the 9 AOUT®(-) thru AOUT8(-) lines is odd).

All AOUT(-) lines are stable from 2.0 microseconds
before the leading (negative) edge of the EX ADR(-)
strobe until 2.0 microseconds after the trailing (positive)
edge of the strobe.

Logic levels on the nine AOUT(-) lines are as follows:

Logic 1 =0 volts
Logic ®@ = +5 volts

The device whose address appears on the AOUTO(-)
thru AOUT7(-) lines must edge-trigger to the addressed
“state on the leading (negative) edge of the EX ADR(-
strobe if the 9 bit parity result is correct.

If the parity result is incorrect the device remains or
becomes unaddressed and indicates an |/O Bus parity
error by taking the PERR(-) line to @ volts. (See 6.2.5),
even if the presented address appears to be its own.

If the presented address is not its own but the parity
result is correct, the device merely remains or becomes
unaddressed:; it does not take the PERR(-) line to @ volts.

Once addressed, the device stays addressed until
another EX ADR(-) strobe occurs and the AOUT(-) lines
indicate an address other than its own.

The device must recognize output strobes (other than
EX ADR(-)) or place data or status information on the
AIN(-) lines only while addressed (see 6.2.5 and 6.2.6).

The device must be forced to the unaddressed state
by initial application of +5 volt power from the 1/O Bus
and must also be set to the unaddressed state by initial
apptication of its own logic supply voltage.

in addition, the device must insure that neither the
tri-state drivers on the AIN(-) lines (see 6.2.6) nor the
PERR(-) driver circuit (see 4.2.5) become erroneously
enabled for any period of time during application or
removal of the device logic supply vultage.

Although all eight AOUT®(-) thru AOUT7(-) lines are
used to carry address information, only 16 device
addresses are used. To simplify address strapping in
external devices, a four bit address code is employed.
The address itself appears on the least significant 4
bits AOUT®(-) thru AOUT3(-). (Note that these lines are
inverted; logic 1 = @ volts, logic @ = +5 volts). The
logical compiement of these four bits appear on
AOQOUT4(-) thru AOUT7(-). Thus, ‘'system address’ 3 is
represented as

3 0 3

A7 A6 A5 A4 A3 A2 A1 AD
1 1 06 o o o 1 1

3 3
inverse device no. device no.

The complete (8 bit) octal address here is 303.
Only a four input gate is required to detect any of
these addresses. Strapping must be arranged so that
each gate input connects to one of two AOUT lines as

follows:

Gate Input

Number To Or
1 AQUTO AOUT4
2 AQUT1 AQUTS
3 AQUT2 AQUT6
4 AQUT3 AQUTY

Typical logic implementation of these functions is
illustrated in Figure 6.3.

Address strapping will be provided by means of a
plug with selective wiring or mechanical posts to which
wires will be soldered. Standard pads on a printed
circuit board will not be used for connection of wires.

6.2.5 Data and Control Output
All data or control information is transferred from the
processor to external devices using one of the following
strobes:
EX DATA(-)
EX STATUS(-)
EXWRITE(-)
EX COM1(-)
EX COM2(-)
EX COM3(-)
EX COM4(-)
Each of these is a 2.0 microsecond negative pulse tQ
the 0 volt level.
Logic levels on the AOUTO(-) thru AOUT8(-) lines are
as follows:
1 =0 volts
0 = +5volts

1/O BUS
+5V
4.7K
H VCC -
[> !
ENABLE TPI-STATE 330

FIG 6.2-A EXTERNAL DEVICE STATUS/DATA DRIVER

27

OPEN COLLECTOR

_)° VYV —a OUT
330

7403 OR EQUIV.

FIG 6.2-B EXTERNAL DEVICE PERR(-) DRIVER

18K DIFFERENTIAL

COMPARATOR

N D>——
, +5V
47K

FIG 6.2-C STATUS/DATA LINE RECEIVERS

+1.8V
REFERENCE

+1.8V
REFERENCE

IN > VvV I
+5V 50 PF
470 Q I

FIG 6.2-D PERR(—) RECEIVER

28

EX ADR STROBE

(FROM LINE RECEIVER) \ @B
ADDRESS
JUMPERS
AP OUT
g e o
~
A4 OUT #/: C
A1 OUT
U ~
O-————
A5 OUT | o~
A2 OUT
—- 43\\
A6 OUT o - o
A3 OUT o T G| ADDRESSED_
o Das; ~ ¢
A7 OUT 0
A OUT LINES R
FROM LINE o]
RECEIVER ¢ J
GOOD
A8 OUT ODD PARITY PARITY
— CHECKER
/O BUS +5V POWER ON
RESET j >o
POWER ON
DEVICE +5V POWER ON RESET
(IF APPLICABLE) RESET

FIGURE 6.3 DEVICE ADDRESS LOGIC

Except for EX ADR(-), these strobes must not be
recognized by the device unless it is addressed.

Odd parity is used on the AOUT®(-) thru AOUTS(-)
lines; i.e., the state of AOUTS8(-) is such that the number
of logic 1's (@ volts) on these 9 lines is odd.

The processor is capable of two types of output
operation: normal and multiple.

In normal output mode, the nine AQUT(-) lines are
stable from 2.0 microseconds before the leading
(negative) edge of the strobe until 2.0 microseconds
following the trailing (positive) edge of the strobe.

In multiple output mode, up to 16 (program
determined) consecutive EX WRITE output strobes can
be executed using the timing shown in Figure 6.4-b.
The AOUT(-) lines are valid 2.0 microseconds before
the leading (negative) edge of the 2.0 microsecond
strobe as above, but only remain valid until the trailing
(positive) edge. The time from the leading edge of one
strobe to the leading edge of the next is 8.0 micro-
seconds and new data is presented on the AQUT(-)
lines with each strobe.

Devices required to utilize the muitiple output
operation must be able to accept data at the rate of one
byte every 8 microseconds. Buffered devices required
toutilize only the normal output operation must be able
to accept data at the rate of one byte every 20.0 micro-
seconds as long as buffer space is available and con-
ditions prevail which allow data to be placed in
the buffer.

In either normal or multiple output operations, the
device must edge-load the contents of the AQUT(-) lines
on the leading (negative) edge of the strobe.

If the external device is addressed when a strobe is
received and the 9 bit parity result is incorrect, the
device must set the PERR(-) line to @ volts on the lead-
ing edge of the strobe. This requirement pertains to
only those strobes used by the external device. If a
strobe is not used at all, the device may ignore parity
for the strobe. Note, however, that the device must check
parity on all strobes used even if the data given with the
strobe is not used. This is a validity check upon the
existence of the strobe.

In addition to setting the PERR(-) line to @ volts when
incorrect parity is detected, the device must i gnore the
strobe if it would cause an irreversable action in the
device. The definition of irreversability is device
dependent and is made specific in each device's
specification.

Once the PERR(-) line has been set to @ volts, the
device must maintain this state until another strobe
(including EX ADR(-)) is received with correct parity.

Figure 6.5 shows a typical logic implementation of
these functions.

PERR(-) must be initialized to the ‘off state upon
initial application of 1/O Bus +5 volts or the device
logic supply voltage.

29

6.2.6 Status/Data Input

Both data (if applicable) and status are transmitted
from the external device to the processor over the eight
AIN®G(-) thru AIN7(-) lines. Input line AINS(-) is the parity
bit for the other AIN(-) lines. The device must be con-
figured for odd parity; i.e., the number of logic 1's (0
volts) on these 9 lines must be odd.

The device is in status mode and will place status
information on the AIN(-) lines immediately after being
addressed or upon receipt of an EX STATUS(-) strobe.
The device is placed in data mode and will place data
on the AIN(-) lines immediately upon receipt of an
EX DATA(-) strobe. If the device is in data mode, either
an EX ADR(-) or EX STATUS(-) strobe returns it to status
mode.

All data/status mode changes must be activated by
the leading (negative) edge of the associated strobe.

The device must maintain all AIN(-) lines in the ‘off’
(high impedance) state while it is not addressed and for
1.5 microseconds (nominal) after becoming addressed.
The 1.5 microseconds delay prevents the tri-state drivers
from being enabled before the drivers of another device
become disabled. Note that this delay applies only to
to enabling the tri-state drivers; all other logic functions
on the interface may respond to becoming addressed on
the leading (negative) edge of the EX ADR(-) strobe.

An output-only device (such as a printer) which does
not transmit data to the processor need not incorporate
the two modes; rather, it may stay in status mode at all
times.

See Figure 6.6 for typical logic implementation of
these functions.

The processor is capable of two types of input
operation: normal and multiple.

In normal input mode, a negative going 2.0 micro-
second INPUT(-) strobe is generated by the processor
to indicate to the addressed device that the date or
status information on the AIN(-) lines has been taken.
The AINO(-) thru AINS(-) lines must be valid 3.5 micro-
seconds before the leading edge of the INPUT(-) strobe.
This time is with respect to the INPUT(-) strobe at the
processor /O Bus connector and does not include cable
or device line receiver delay.

The data lines are sampled by the processor on the
leading (negative) edge of the INPUT(-) strobe, so the
device may change the AIN(-) lines immediately after
detection of this edge.

In multiple input mode, up to 16 (program determined)
INPUT(-) strobes may occur at 8 ® microsecond intervals
(8.0 microseconds between leading edges). The device
must present new valid data within 4.5 microseconds
after the leading edge of the INPUT(-) strobe. This time
is with respect to the INPUT(-) strobe at the 10 Bus
connector and does not include cable or device line
receiver delays

Buffered input devices designed to work in normal
input mode only must present new valid data within

30

20.0 microseconds after the leading edge of the
INPUT(-) strobe (at the I/O Bus connector) if data still
resides in the buffer and conditions prevail which would
not inhibit its availability.

All devices must be able to present valid status or
data within 4.5 microseconds of the leading edge of any
1/O Bus strobe (at the 1/O Bus connector). This does not
mean that new data must be available within this time
but that the device must either give a status indicating
that new data is not ready or, once having indicated
that new data is ready, be able to produce valid data if
a strobe is given which demands that data. This is the
output to input strobe specification.

Figure 6.7-a shows normal input strobe timing. Figure
6.7-b shows multiple input strobe timing. Figure 6.7-c
shows output to input strobe timing.

6.2.7 System Ciock

The system clock signal is a 153.75 KHz square wave
provided by the 5501/5502 as a convenient, accurate
time base foruse by external devices. lts accuracy is
plus or minus .02%. It is not synchronized in any way
to any other signals on the Bus.

UUUUUUU
STROBE

LLLLL ‘

OOOOOOOOOOOOOOOO

20 20 4.0 20 20
I-. +|-< 2t —+ L -
us us us us us

++++++
SSSSSSSSS

DI901 ALiHVd ANV 380HLS tNdLNO §'9 3HNOIS

JL

QUTPUT
STROBES
FROM LINE
RECEIVERS

_ﬂ. GATED
. OUTPUT

Da

EXCEPT
EX ADR

ADDRESSED

STROBES
TO LOGIC

Il

o

L

o)
|

(FIG3)

GOOD PARITY BAD PARITY
(FIG 3)

EX ADR STROBE -n-

[>

{FIG3)

C PERR(-)
1/0 BUS
OPEN

COLLECTOR

ce

21907 LNdNIVIVA/SNLVLS 99 3HNOI4

TRI-

STATE GATES
9 PLACES

AN o
t'\/\/\q AIN1(-)
—— — AN\
8 DATA BITS AIN2(-)
t’\/\/\40
AN 3(-)
21 —9
MUX
(x8) f AA A AN 4(-)
A IN 5(-)
8 STATUS BITS r VVV .
. A IN 6(-)
EX STATUS t I VYV
(~)STROBE AIN 7(-)
SELECT I w '
—L—l_ TRI-STATE
+VCC
—ANVN— +5V
‘35 STATUS(+) ODD PARITY AINS8(-)
EX ADR | l_ D ° Qs GENERATOR —V\V\———
STROBE -
MODE
c
R
EX DATA i 1/0 BUS
(—)STROBE
st 'I p voc | enasLec
'(3%3 E MICROSECOND
DELAY OPEN

AINg(-)

COLLECTOR

+5V

LLLLL

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

35 20 25 . v 20)
|'- us + S ’l‘ S 4 -+- ig +T—I

LLLLL

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

OUTPUT }t 20 20 25 i 35 20 |
SSSSSS (=) us us l LS | us | us]

OOOOOOOOOOOOOOO

UUUUUUUUUUUUUUUUUUUUUUU

TTTTTTTTTTTT

NOTES

DATAPOINT CORPORATION

The leader in dispersed data processing ™

DATAPOINT CORPORATION
9725 Datapoint Drive

San Antonio, Texas 78284
(512) 696-4520

Sales Offices in Principal Cities

MODEL CODE 60181-01

@© 1974 Datapoint Corporation
PRINTED IN U.S.A.

	0001
	0002
	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	xBack

