)

Product specification and
hardware reference manual

86D

Datapoint

FRONT

8600 PROCESSOR

20.0 in.

(50.8 cm)——————————»

DATAPOINT 8400

f ' 8.9 in.

(22.6 cm)

Copyright © 1982 Datapoint Corporation. All rights reserved. Document No. 61115. Rev. 5/82.

The “D" logo, Datapoint, Attached Resource Computer, and DATASHARE are trademarks of Data-
point Corporation, registered in the U.S. Patent and Trademark Office. Resource Management
System and ARC are trademarks of Datapoint Corporation.

System features and technical details are subject to change without notice.

SIDE

14.5in. >

(36.8 cm.)

PREFACE

The computer-oriented user will find this manual useful in
cvaluating the capabilities of the Datapoint 8600 processor.
However, only the hardware considerations are covered in
this manual. The full utility of the Datapoint 8600 cannot be
appreciated until the available software support for the
machine is reviewed.

A complete family of software packages available for the
8600 processor includes items such as high-level languages,
operating systems, source code and text editors, communica-
tions programs, and utility programs. Please refer to the
latest issue of the Datapoint Software Catalog for the most
complete information.

This page intentionally left blank.

PART 1

PART 2

PART 3

TABLE OF CONTENTS

GENERAL FEATURES
1.1 Introduction 1
1.2 KDSModule 2
1.3 Bus Architectureoo i 2
1.4 MeEmOrY . .o 2
1.5 PIOCESSOT 3
1.6 DiskInterface 3
1.7 Multiport Communications Adapter (MPCA)ouuui i 3
1.8 Multifunction Communications Adapter (MFCA)o oo 3
1.9 Ancillary EQUIDIENt 3
1.10 General Specifications. 3
1.11 Peripherals. 3
1.12 Model Codeso 3

KEYBOARD AND DISPLAY SUBSYSTEM (KDS)

2.1 General 5
2.2 Keyboardo 5
2.2.1Keyboard Control 8
202 Special Key Sequence Controls i 8
23DISPIAY . . . 8
2.3.1Display Character FOrmatooui 9
2.3.2Video AtIIDULES oottt 9
233 Character Font Load 9
2.4 Serial I/O PO, 10
2.5 KDS Programming Considerationsuoe i 10
2.5.1Keyboard and Screen 10
2.5.1.1Commands 10
2.5.2Speaker Commands 11
2.5.3Video AtribULES 11
2.5.48erial I/OPOIt . ..o 12

BUS ARCHITECTURE
3.1 General 13
3.2 Common Bus. 13
20 INMEITUPES « oot 13
3.2.2 Direct MeMOTY ACCESS . « . ..t e ettt et e e e e e e e e e e e 13
3.23Common Bus Signals 13
3.2.3.1Multiplex Signalso 13
3.23.2CYCle CONLIOLS . .o oottt e e 13
3.2.33 Interrupt Control Signals 13
3.234DMA Control Signalso o 14
3.2.3.5Miscellaneous Signals. 14
3.24Read/Write CyCles . . . oo oot 14
3.2.50Interrupt CYCIes . ..ooo 14
3.2.6 Priority Transfer Cycle 14
3.3 Peripheral Bus 14
3.3.1Control Characters.ouut et 14
332AAAressingo 14
34 MiCrobus 14
340 Microbus Signalsooon 15
3.4.2Microbus TIMING ... oottt 15
3.4.3 Microbus Input/OQutput Cycles oo 15
3.4.4Microbus Interrupt Cycle.o 15

I

PART 4

PART 5

PART 6

PART 7

MEMORY
4.1 (€= 1 1= -1 AR O S 17
4.2 MEMOTY CYCIES .« vttt t ettt ettt e 17
42 1 WOrd Reado o ettt ettt et e e 18
422BYte Readttt e 18
4.2 3 WOIRd WIItE . oo ittt ettt ittt ettt e te e et ea et ia i en e 18
R 3 oo 17 18
43 RefTesh CYCleS . . oottt e 18
4.4 Cycle ArbItTation. . ..o\ o ittt 18
4.5 ErrOr DeteCtiON . . o o ot ottt ettt ettt e e et e e 18
PROCESSORS
5.1 GEIETAL o . ottt et et e e e e e 19
5.2 2T 111 ¢3S 19
5. 2. 1 USEr REGISIET . ..ottt it e 19
5.2.2Condition Code Flagsvtnitiintii ittt ittt e e 20
5.2.3 SYSEEM SEALUSottt t e ittt s 20
5.2.4 Systemn Control RegisSter. ittt e i i 21
5.2.5 BaSE REISIET . .o ittt tteiee ettt s 21
5.3 SECtOr TablES . . ot i vttt e e e e 21
5.4 Address GENeration oottt ettt ettt ettt te e e i e 21
5.5 oL 7-Y <A P 21
5.6 INPUL/OULDUL . oottt ittt et a i a e 22
5.7 01173 o). - S T I 22
5.7.1 Millisecond INEITUDPLottt ettt it i et e e 22
5.7, 2 ReStart InterTUDL. . . oot i et ittt i e e 23
Ly AR I =) ¢ o) o 1 17=) o] A 23
5.7.4 VectOr IMtEITUDE « .. oottt t ettt it it it it it i e 23
5.8 28 1. R 23
5.9 DireCt MEMOTY ACCESS .« o v v vvve et e e e s e ettt e et inaa et ae e etoannes s 24
5.10 System/Auxiliary ROM e 24
5.1 000 g 01150 o B = A 24
5.11.1 Presentation FOIMAtvtitntn ittt ie e eee e ettt nanene s 24
5.11.2Category 1 —Load GIoupooiiiininittiiiiit i 25
5.11.3 Category 2 — Stack Control it i 26
5.11.4 Category 3 — Byte Arithmetic, ARegister i, 27
5.11.5 Categoryd — Word Arithmetic.t e e 29
5.11.6 Category 5 — Jumps, Calls, Returns.ooiiiii i e 32
5.11.7Category 6 — I/O GroUP oot ii ittt ittt et e s 33
5.11.8 Category 7 — System INStructionso iurimmiiniineiin e renaennns 35
5.11.9 Category 8 — String Operationsttt 36
DISK INTERFACE
6.1 (@< 7= 1 [O OGO 41
6.2 Peripheral Input/Output Module e 41
6.2.1 Transmitter LOZiCot ettt e 42
6.2.2 RECEIVET LOIC. oottt ettt e 42
6.3 Microbus Interface ModUleottt i i e et e e e e 42
6.3.1 Common Bus INterface oottt ittt ittt et it i i it e 43
6.3. 2 MiCrobUS NI acet ottt e e e 43
6.3.3 Data TranS er « o o ettt ettt e e e e e e e 43
6.3.4 Polling FUNCLIONottt it 43
MULTIPORT COMMUNICATIONS ADAPTER (MPCA)
7.1 (@ 1= 1= - P 45
7.2 MCTOPTOCESSOT - . o v vt et e et e e e e ettt et e ettt aeaaa e et 45
7.3 1Y (5 11T) /2 46
7.4 US A RT ottt e et et e et e e e e e e e e 46
7.5 Baud Rate GenEIatOrS . . . oo vttt ettt e e aeaeensnentenennenenssseneneeseneenensan 46
7.6 CPU IO aCE .« . o o . e ottt e e e e e e e e e e 46
7.7 INEEITUPE SITUCTUTE . . o oottt ettt et ittt et ie et ie e ia e ea et iiaaane s 46
7.8) 319 003 22 ¢ <2 AU 46
7.9 DAAENOSHICS .+ .+« 2 v oot e et et e et e e e e ettt ettt e 46

PART 8 MULTIFUNCTION COMMUNICATIONS ADAPTER (MFCA)

8.1 (€= 1= ¢ | 47
8.2 1Y 113 0 o) a1 =3 o PP 48
8.3 Serial INter ace. . . .ot e 48
8.4 Counter/Timer CITCUILttt et e ittt e ettt e e e e et e et 48
8.5 1\ ()0 03 o /0 48
8.6 I erTUPt S UG UTE . ..ottt ettt ettt et ettt et et et e ettt 48
8.7 19 100 7) (PP 48
8.8 LT o Lo (ot 48
PART 9 SYSTEM FIRMWARE
9.1 INtrOdUCH O e e 49
9.2 INItaliZation 49
9.3 P T Uo 1 (ot 49
9.4 System RAM VettOrs . ..ottt ittt it e ettt et e e e 49
9.5 IPL BloCK Loader i e e e e e e e e 50
9.6 Keyboard/Display ROULINESottt ettt et ettt ettt iie e 50
0.6.1 SBOKE Y IN ... i e e e e e e e 50
0.6, 2 880K DS I e e e e e e e e 50
0.6.3 886CHRLD i e e e e e e 50
0.6.4 886D S PII e e e 50
0.6.5 8BODS P LY e 51
0.6.6 88O R S D it e e e 51
0.6.7 B8O IO .. ottt e e 51
0.6. 8 88OR ST R T ... i 52
0.6.9 8BODOSK Yot e e 52
9.7 DU . . .\t e e e e e e e e 52
. T L ENtry to DebUgo e e e 52
9.7.2Savingthe Machine State i i i i e e 52
9. 7.3 Display FOrmat. i e e e 52
9.7.4Command SyNMtax.ot 52
9.7.5Input Command Listttt it ittt e e e e s 53
APPENDIX A. ANCILLARY EQUIPMENT
A.l (@151 =1 S P 55
A2 POWer SUPDIY. . oo e e 55
A2 L PrOteCtion CirCUILS. . o\ vttt ettt et ettt it ettt et e e e e ee et e 56
A2 2 Power Fail Alarm e e e, 56
Al Motherboard oo e e e e e e 56
A.3.1Signal Configurationttt i i i e e e e 56
A.3.20pen Collector Signalsoiin it i i e e 56
A3 B Ground Plane e e e, 56
A3.4Powerand I/O INterCOMMECE. vttt ittt it ittt et et et ettt et et et 56
A.3.5DMAPriority Daisy Chain.t i e 56
APPENDIX B. INSTRUCTION TIMINGS e i 57

LIST OF FIGURES AND TABLES

Figure 1-1: 8001 Processor . ..o v ittt i i e e e e e 1
Figure 1-2: 8602 ProCesSOrottt e e 2
Figure 2-1: KDS Moduleo e e 5
Figure 2-2: General Purpose Keyboard e 6
Table 2-1: General Purpose Keyboard Coding. o e ettt e teame e 7
Figure 2-3: Character ROWo i et e e e e s 9
Figure 2-4: Status Register. oo e e e 12
Figure 2-5: Command Register oottt ittt et e e e e 12
Figure 2-6: Mode Register 1.ot i ittt e e ettt et e e 12
Figure 2-7: Mode Register 2.ottt e e e e 12
Figure 4-1: 128K M eImOry . . . vttt ettt e et ettt et ettt ettt et e e e e 17
Figure 5-1: Central Processor/Arithmetic Logic Unit and Central Processor/ControlBoards 19
Figure 5-2: Central Processor/RIM Board. i et e e 20
Figure 5-3: Address Generation Diagram.t e e e 22
Figure 5-4: Stack Information After Interrupt. i e 22
Figure 5-5: Vector Interrupt Table Format i i it e e e 23
Figure 5-6: Interrupt Mask Byte Format o e e e e e 23
Figure 6-1: Peripheral Input/Output Module i i i i i et 41
Figure 6-2: Microbus Interface Boardo ittt e e e e 42
Figure 7-1: Multiport Communications Adapter Board e 45
Figure 8-1: Multifunction Communications Adapter Board i i 47
Figure 9-1: System RAM VeCIOrS.ottt ettt et ettt ettt et ittt e 49

Figure A- L Power SUPDLY . . .ottt e e e e e e 55

PART 1
GENERAL FEATURES

1.1 Introduction

The Datapoint® 8600 is a versatile, high-performance pro-
cessor featuring a large-screen amber display and an
ergonomic housing. The 8600 supports both of Datapoint’s
operating systems (Disk Operating System and Resource
Management System™) in a variety of configurations. Basic
memory size is 128K, expandable to 256K. The 8600 is con-
figurable for standalone, ARC™ (Attached Resource Com-
puter®), or DATASHARE® environments.

All 8600 logical subassemblies reside on printed circuit
boards that are contained in an internal ten-slot card cage.
The basic 8600 processor includes a three-card central pro-
cessor, 128K of memory, a Keyboard/Display Subsystem
(KDS) module, with an internal Resource Interface Module
(RIM). Additional boards can be added for memory expan-
sion, disk interface, terminal support, and data communica-
tions. A serial port is included. The 8600 also includes an in-

CENTRAL PROCESSOR;RIM

ternal power supply that provides DC power for the
keyboard, CRT, and logic boards. These components are
linked internally by a common bus.

The 8601 processor is designed to perform as an ARC ap-
plications processor in environments requiring full processor
power in a single workstation. The only configurable option
in an 8601 is memory size (maximum of 256K).

The 8602 processor supports all feature options including
additional memory, Multiple Port Communications Adaptor
(MPCA), Multiple Function Communications Adaptor
(MFCA), and disk interface. The 8602 is also available in
system configurations with either the Datapoint 9301 or 9310
disk drives for standalone or RMS ARC operation. An 8601
can be converted to an 8602 with a field upgrade kit. Block
diagrams of the 8601 and 8602 processors are given in Figures
1-1 and 1-2. The following sections in this portion introduce
the basic elements of the 8600 processor family.

128K/256K RAM MEMORY

~——— T —_——— T —
| RAM |
ARC | CP/RIM CP/ALU [m| cPicTRL RAM MEMORY [
> BOARD BOARD [« BOARD MBEON;'\%’BY BOARD
| | opTIoNAL) | |
| Bl — e —
COMMON BUS >
+5V
+12v
12V
CRT
MONITOR
POWER KEYBOARD
SUPPLY DISPLAY
SUBSYSTEM
- | KEYBOARD

Figure 1-1: 8601 Processor

—3 SERIAL IO CHANNEL

CRT
] MONITOR
CENTRAL PROCESSOR/RIM 128K/256K RAM MEMORY
RIM l— ————————————— —‘ ——————————
INTERPROCESSOR | |
BUS | | RAM il
ARC | cPAm Ll ceau Lyl ceeTRL | Il ram wemory || |KEYBOARD/
SYSTEM BOARD |€] BOARD [g] BOARD {| MEMORY BoARD | | DISPLAY | KEYBOARD
| | BOARD (OPTIONAL) | | SUBSYSTEM|
I i | J SERIAL 110
ey ———— T — — = p CHANNEL
SERIAL VO DEVICE
(PRINTER ETC.)
< COMMON BUS (MOTHERBOARD) >
+5V
v UPTO 3 UP TO 2
ey MPCA BOARDS MFCA BOARDS MODEM
RS-232C
MULT- MULTI- LINK
POWER MICROBUS PERIPHERAL PORT FUNCTION [
INTERFAGE INTERFACE COMM COMM COMM
SUPPLY BOARD BOARD ADAPTER ADAPTER M CHANNEL
BOARD BOARD
Y ﬂu 3
AUTO-CALL
*MICRO- *PIIO
BUS BUS
B
RS-232C DEVICE
> { 8200 TERMINAL
MODEM
L
9310/ 1401 8301

*A processor may have either
a Microbus interface or
a Peripheral interface

1.2 KDS Module

The KDS module provides interface between the keyboard
and the processor. The KDS also controls the CRT display
and provides a serial 1/0 port for interface to a Datapoint
serial printer or terminal.

The 8600 is equipped with the Datapoint General Purpose
Keyboard, which contains a 55-key typewriter pad, an 11-key
numeric pad, and a 10-key function pad. The keyboard
provides a multi-key roll-over characteristic for ease of
typing. The keyboard is detached and can be placed up to one
meter from the processor.

The display is a magnetically deflected raster scan with an
amber screen CRT. It provides a display of 1920 characters,
organized as 24 rows of 80 characters each. Character
attributes such as inverse video, underlining, two-level video
and blink on a character by character basis are available
under software control. The display uses a standard
128-character set or a user-definable font. The viewing area is
5.4 X 8.9 inches (13.7 X 22.6 cm), and standard characters
are produced using an 8 X 12 dot matrixina 9 X 12 field. The
display/refresh rate is 60/50 frames/second (line
synchronized). Display brightness can be set to one of 16
levels from the keyboard. Beep and click are available under
software control.

Figure 1-2: 8602 Processor

1.3 Bus Architecture

The 8600 uses an internal bus to provide the interface
between the processor, memory, and peripherals. This bus is
implemented on the CP/RIM module through the
motherboard and is referred to as the common bus.

To communicate with disk storage systems, the 8600 uses
one of two external buses: either the peripheral bus or the
microbus. An external bus interfaces directly to one of two
types of internal logic boards (either a PIO module or a
MIFM module, as explained in Section 1.6), which in turn
interfaces to the processor and main memory.

The peripheral bus is a high performance 12-bit
asynchronous NRZ format serial bus that provides character
or block transfers, and a single parity bit for error detection.
The peripheral bus is compatible with the Datapoint 9301
series compact disk drives.

The microbus is a parallel asynchronous bus that is used to
connect the processor to the Datapoint 9310 disk or 1401
diskette.

1.4 Memory

Basic 8600 memory is 128K expandable to 256K. Each
memory module contains 128K bytes of data plus parity and
interfaces to the common bus. The memory can be software
configured for word or byte accesses.

1.5 Processor
The central processor is implemented on three logic boards:

CP/CTRL (Control) — contains the instruction
decode, control store, and sequencer.

CP/ALU (Arithmetic Logic Unit) — encompasses
most of the processor registers and handles data flow
for the machine.

CP/RIM (Resource Interface Module) — contains the
system/auxiliary ROM, sector tables, and an integral
RIM for interface to a Datapoint ARC system.

The processor implements the Datapoint 6600 user mode
instruction set. The processor is driven by vectored interrupts,
which means that it responds directly to interrupting devices.
Access protect and/or write protect can be performed on 4K
blocks of memory. Four sector tables are organized into
system and user areas. The processor uses a 32-word stack
located in main memory and can use a stack exchange for
multiple stacks. System/auxiliary ROM contains system
functions such as power-up, keyboard/display drivers, inter-
rupt, debug, and diagnostic routines.

1.6 Disk Interface

Interface to a disk system is accomplished through an inter-
nal printed circuit board. The processor supports two types of
disk interface boards: the Peripheral Input/Output module
(P10O) and the Microbus Interface module (MIFM). The P1O
module provides interface to the Datapoint 9301 series com-
pact disk drives through the peripheral bus. The MIFM
module provides interface to the Datapoint 9310 disk drive
and the 1401 diskette drive through the microbus. The 8600
processor is available with either type of interface.

1.7 Multiport Communications Adapter (MPCA)

The MPCA logic board houses four serial asynchronous
RS-232C compatible communications ports. Each port has
full duplex transmit and receive capability. Data transfer rates
are software programmable from 50 to 19200 baud.
Character lengths and the number of stop bits are individ-
ually programmable. The MPCA provides parity bit genera-
tion and detection. The MPCA also includes a Z80-A
microprocessor, local memory, four USARTSs (Universal
Synchronous Asynchronous Receiver/Transmitter), and
baud rate generators. An 8600 can be configured with a
maximum of three MPCAs.

1.8 Multifunction Communications Adapter (MFCA)

The MFCA logic board provides a means of syn-
chronous or asynchronous by-directonal information
transfer between the processor and an RS-232C compatibe
communications channel with reverse channel. The MFCA
may be connected to an external modem and/or an RS-366

compatible Automatic Calling Unit (ACU) and can
communicate over switched or leased lines using the
following protocols: BISYNC, SDLC, HDLC, ADCCP,
or GENSYNC. Baud rates are programmable from 110 to
56K. The MFCA includes a 280-A microprocessor, a serial
input/output channel, a counter/timer circuit, and 16K of
local memory. And 8600 can be configured with a
maximum of two MFCAs.

1.9 Ancillary Equipment

In addition to the components discussed above, the 8600
includes an internal power supply and motherboard. The
power supply is housed in the internal card cage and provides
DC power for the keyboard, CRT, and logic boards. The
motherboard is a nine-card backplane that implements the
8600 common bus.

1.10 General Specifications

Power Requirements:
120 or 240 VAC (+/- 10%)
50 or 60 Hz (+/- 1 H2)
230 watts (785 Btu/hr)

Equipment Dimensions:
Keyboard:
Width 20.0 inches (50.8 ¢cm)
Height 2.75 inches (6.9 ¢m)
Depth 8.9 inches (22.6 ¢cm)

Terminal:
Width 20.0 inches (50.8 cm)
Height 13.2 inches (33.5 cm) without base
Depth 14.5 inches (36.8 cm)

Total Weight 60 pounds (22.4 kg)

Operating Environment:
50 to 100 degrees F
10 to 38 degrees C
20 to 90 percent relative humidity, non-condensing

1.11 Peripherals

The 8600 will accommodate a wide variety of peripherals
including the Datapoint 9301 series compact disk drives, 9310
disk drive, 1401 diskette drive, printers, and communications
equipment. Refer to the Datapoint Equipment Catalog
(Model Code 60001) for a complete description of
peripherals.

1.12 Model Codes

8601 Applications Processor, 128K-256K memory
8602 Standalone/Data Resource Processor, 128K-256K
memory

This page intentionally left blank.

PART 2
KEYBOARD AND DISPLAY SUBSYSTEM (KDS)

2.1 General

The Keyboard and Display Subsystem (KDS) is a logic
board that provides interface between the keyboard and the
central processor. The KDS also controls the CRT display
and provides a serial I/0 port for interface to a Datapoint
serial printer or terminal. The KDS includes local RAM for
screen memory, row pointers, the cursor pointer, and
character font storage. A block diagram of the KDS module
is shown in Figure 2-1.

The KDS is accessed through I/0 address space. Common
bus reads or writes to the KDS are allowed at any time during
the video cycle.

2.2 Keyboard

The 8600 processor is equipped with the Datapoint General
Purpose Keyboard, which contains a 55-key typewriter pad,
an 11-key numeric pad, and a 10-key function pad. The
keyboard is used for data entry and control of the 8600. The
keyboard is detached and may be placed up to one meter
from the processor. Figure 2-2 illustrates the general purpose
keyboard. Keyboard coding is given in Table 2-1.

INTERNAL ADDRESS BUS

! 4 A A 4 A A -
Y
/ ROW
UPPER COUNTER
ADDRESS
y Y
COMM BUS | RECEIVER) SCREEN SCREEN PHASE
ADR 8-15 BUFFERS CRT
RAM RAM CONTROLLERf®] LOCK
' 1Kx12 1Kx12 LOOP
COMM BUS | eSS }
CONTROL >
LOGIC
r LINE COUNTER OUTPUT
COMM BUS INPUT | LOWER | usarT TO SERIAL
ADR 0-7 BUFFER ADDRESS > (2661) [1O PORT
BIDIRECTIONAL DATA
DRIVER KEYBOARD/ |e— TO KEYBOARD
! DisPLAY
4 CONTROLLER [~ TO SPEAKER
1 DATA IN
> FONT
‘ | MUX = gam 2kx8
> LATCH A
A 1 7 SHIFT | VIDEO
DATA OUT DRIVER
LATCH RECEIVER
A BUFFERS
A A
| y y y

=

INTERNAL DATA BUS

Figure 2-1: KDS Module

\

DEDICATED
KEYS FUNCTION KEYS

TAB KEY

AAEARARBARARER
ARHRRHARHHRA

HRHEBEAER F
ABRARARRARAHE 2
?
HEAREBRA 1 AR
[[)
SHIFT
LOCK KEY SPACE CURSOR @ @
SHIFT KEY C?(f‘gYRSOL
SHIFT KEY RETURN KEY f
(ENTER KEY)
FUNCTION KEYS
F1 through F5
NOTE: ARROWS POINT TO EDIT (SOFTWARE CONTROLLED)
AND CONTROL KEYS

Figure 2-2: General Purpose Keyboard

Table 2-1 General Purpose Keyboard Coding

This table represents the octal equivalents of all characters on
the keyboard. The values to the left of the character are the
translated codes; those to the right are the untranslated codes.

T 8] T

101 A 101 141 a
102 B 102 142 b
103 C 103 143 ¢
104 D 104 144 d
105 E 105 145 e
106 F 106 146 f
107 G 107 147 g
110 H 110 150 h
11 1 111 151 i
112 J 112 152 j
113 K 113 153 k
114 L 114 154 1
115 M 115 155 m
116 N 116 156 n
117 O 117 157 o
120 P 120 160 p
121 Q 121 161 q
122 R 122 162 r
123 S 123 163 s
124 T 124 164 t
125 U 125 165 u
126 V 126 166 v
127 W 127 167 w
130 X 130 170 x
131 Y 131 171 y
132 7 132 172 z
Numeric Pad
Symbol Unshifted

T U

. 056 256

0 060 260

1 061 261

2 002 262

3 063 263

4 004 264

5 065 265

6 006 266

7 067 267

8 005 270

9 071 271

* Unshifted representation

T
072
073
0714 <
075 =
076 >
077 ?
100 @
133 [
135]
136 A
137 _
173 ¢
174 |
175 }
176 ~
033 Tab
036 Tab
015 Return
035 Return
010 Backspace
020 Backspace
037 Insert
177 Delete

U
053
073
074
137
076
077
042
100
140
135
075
174
046
134
175
033*
233
015*
215
100*
210
133
173

134 Command 136*
136 Command 176

Function Keys

U T 8]
141 060 0 060
142 061 1 061
143 062 2 062
144 063 3 063
145 064 4 064
146 065 5 065
147 066 6 066
150 067 7 067
151 070 8 070
152 071 9 071
153 040 Space 040
154 041 ! 041
155 042 " 052
156 043 # 043
157 044 $ 044
160 045 % 045
161 046 & 047
162 047 ' 072
163 050 (051
164 051) 000
165 052 * 050
166 053 + 177
167 054 , 054
170 055 — 055
171 056 . 056
172 057 / 057
Shifted Symbol
T U

056 256

060 360 F5
061 361 F4
062 362 F3
063 363 F2
064 364 F1
065 365 RESTART
066 366 ATT
067 367 INT
070 370 KBD
071 371 DSP

Unshifted

D**

300
302
304
306
310
301
303
305
307
311

R**

320
322
324
326
330
321
323
325
327
331

Shifted
D** R**

340
342
344
346
350
341
343
345
347
351

** D is the code for depression; R is the code for release.

320
322
324
326
330
321
323
325
327
331

2.2.1 Keyboard Control

The keyboard contains a number of control and function
keys. These keys are defined below.

RETURN (ENTER) — The Return key is under soft-
ware control. It is normally programmed to do a car-
riage return, accept data, control entry, and/or start
execution.

SHIFT — The Shift key causes the keyboard to pro-
duce uppercase character code. When this key is not
pressed, the keyboard will produce lowercase character
code.

SHIFT LOCK — The Shift Lock key locks the Shift
key in the uppercase position. When Shift Lock is ac-
tivated, the LED on this key cap will be illuminated.

TAB — The Tab key is used in word processing to ad-
vance the cursor to pre-defined or user-defined tabular
fields within text. When not used for word processing,
this key acts as a Cancel key to move the cursor to the
start of a line.

INSERT/DELETE — The Insert/Delete key is used in
word processing to open text for an insert when un-
shifted or to delete text when shifted. When not used
for word processing, this key advances the cursor one
position to the right, leaving a space.

COMMAND — The Command key is used in word
processing to enter selected commands. When not used
for word processing, the key produces an accent (/)
when unshifted and a backslash (\) when shifted.

BACKSPACE — This key backspaces the cursor one
position, erasing the preceding character.

CURSOR CONTROL — These keys are used in word
processing to move the cursor up, down, left, and right
when unshifted. When shifted, these keys produce the
indicated numerals. When not used for word process-
ing, these keys produce only numerals.

INT (Interrupt) — The INT key, when pressed with the
CTRL key, causes the processor to halt and execute the
restart routine contained in system ROM. This key is
also used in conjunction with the CTRL and DSP keys
to cause entry to debug.

CTRL (Control) — The CTRL key works in conjunc-
tion with other function keys to initiate special action.

ATT (Attention) and KBD (Keyboard) — These keys
are used in conjunction with the CTRL key to increase
or decrease display brightness.

DSP (Display) — The DSP key causes entry into
debug when used with the CTRL and INT keys.

F1, F2, F3, F4, F5 — Each of the function keys is under
software control.

The INT, CTRL, ATT, KBD and DSP keys can be detected
under software control.

2.2.2 Special Key Sequence Controls

The 8600 processor has six functions that can be initiated
through the use of special keyboard keys, held down together
to perform unique functions. These functions are listed
below, followed by a group of keys that must be held down
together to control the functions.

Restart
Restart (RIM boot)

CTRL, INT

KBD, DSP, CTRL, INT
(release CTRL and INT)
CTRL, ATT (release ATT)
CTRL, KBD (release KBD)
Depress the CTRL key while
entering the TAB key, zero to
four character lock code keys,
and then the ENTER key.
Release the CTRL key.

same as Keyboard Lockout,
Same as Keyboard
Lockout, except shifted
ENTER key is pressed.
Check for presence of
lockout key depressing
CTRL and DSP; release
DSP. Processor will beep
if lockout is set.*

Same as Restart Lockout.*
DSP, CTRL, INT (release
CTRL or INT)

Brightness Increase
Brightness Decrease
Keyboard Lockout

Keyboard Unlock
Restart Lockout

Restart Unlock
Debug

* These features available after July, 1982.

The brightness level of the display can be set from the
keyboard to one of 16 levels. To increase brightness, press the
CTRL key followed by the ATT key. Every release of ATT,
while CTRL is down, will increase the brightness by one level.
After a brightness level of zero has been reached, this com-
mand will be ignored.

To decrease brightness, press the CTRL key followed by
the KDB key. Every release of KBD, while CTRL is down,
will decrease the brightness by one level. After a brightness
level of 15 has been reached, this command will be ignored.

2.3 Display

The display uses a magnetic deflection technique with an
amber screen CRT. It provides a display of 1920 characters,
organized as 24 rows of 80 characters each. The character
font is generated through the use of RAM memory. A stan-
dard font is loaded into RAM from ROM after power-up.
Other character fonts may be loaded as desired under soft-
ware control. Up to 128 different individual 8 X 12 dot matrix
characters may be produced. (Standard dot matrix is 7 X 9
for upper case letters. Lower case are 7 X 11 for descenders.)
The display/refresh rate is 60/50 frames/second (line
synchronized).

The screen refresh memory is organized as 2K bytes in I/O
memory space located at address 0140000 octal. It contains
the cursor pointer, row pointer, and video information re-
quired for screen refresh.

The lower 64 bytes of the screen memory are dedicated for
the cursor and row pointers. The cursor pointer is stored in
locations 0000 and 0001. Any of the 1920 character locations
can be loaded into these locations to display the cursor at any
of the character locations.

The address of the first character of each of the 24 rows is
stored in locations 0002-0061, with the first character address
pointer for the first row at 0002 and 0003, and the first
character address pointer for the last row at 0060 and 0061.
The display can be manipulated by storing different character
addresses in the row pointers. The cursor and row pointers
must always be loaded as an even byte followed by an odd
byte. All addresses are relative to a base address of KDS
(0140000).

2.3.1 Display Character Format

Every display character is stored in the screen memory as a
byte using its ASCII value. The lower seven bits represent the
ASCII value of the display character; the eighth bit is a video
attribute. The seven ASCII bits are used to obtain the start
address of the character font in the display font RAM. The
video attribute bit is used for inverse video on a character by
character basis.

2.3.2 Video Attributes

The character by character attributes are inverse video,
underline, two-level video, and blink. Inverse video is the
most significant bit of the screen memory data location.
When this bit is set (1), the character is displayed in inverse
video. The character is displayed in regular video when the bit
is reset (0).

Underline, two-level video, and blink are discussed in
Section 2.5.3.

Character O

8 7 6 5 4 3 2 1 0

y

2.3.3 Character Font Load

Displayed characters are generated from a loadable RAM
memory, providing for intenational character sets and other
user-selected character set variations. The RAM is down-line
loaded through optional ROM software by the main pro-
gram. The character generation RAM is a 2048 by 8 memory
organized as 128 characters of twelve bytes each.

The display font is addressed by using the ASCII value of
the character. The ASCIHI character value is shifted left four
bits, and the result is added to the base address of 0140000 to
obtain the start address of the character font. The RAM ad-
dress for the display font may be separated into fields as
follows:

Base Address ASCII (7 bit) Video Line
A A AA

A AAAA A A
9 8 7 6 5

A A A A A
15 14 13 12 11 10 4 3210
The top line of the display character is defined by the
eight bits of data at the start address. The next lines of the
character define the next nine memory bytes. The last line
of the character is contained in the eleventh memory ad-
dress. The first and twelfth data locations are filled with
zeros so that a border can be formed for the inverse
video. Twelve lines, total, can be loaded.

80 Characters —

Character 79
8 7 6 5 4 3 2 1 0

. 7/
1
2
3
4
5
6
7
. ‘
9
10
" 7
Normal Character Vi

Scan Line No.
0
1-10
11

Inverted Character

Always Zero (Firmware)

Video Lines
Always Zero (Firmware)

Figure 2-3: Character Row

[Na)

2.4 Serial 1/0 Port

The KDS is equipped with one standard RS-232C serial
interface for connection to a Datapoint printer or workstation.
The baud rate is software controlled from 50 to 19200 baud.
All control signal detection and character formatting is
handled by an on-board USART (Universal Synchronous
Asynchronous Receiver/Transmitter). When running a
terminal off the KDS I/0 port, the transmit and receive
baud rates must be the same.

2.5 KDS Programming Considerations
2.5.1 Keyboard and Screen

Status and commands for the keyboard and display are ac-
cessed by reading from base page 1/0 address 031 for status
or writing it for commands. The status word format follows.
Once the appropriate command has been issued and executed
by the KDS, any requested status will be placed in the Data
Bus Buffer (DBB) at base page I/0 address 030.

MSB LSB

[B7 IB6 [Bs [B4| B3 [B2 [B1] Bo]

OBF

IBF

\————F0

‘"————F1

Keyboard Key

Display Key

DTX

Keyboard
Character

The following descriptions explain the bits.

Bit 0 — Output Buffer Full (OBF). This is set by hardware
whenever the KDS outputs a byte to the master in
the DBB. It is cleared when the master reads a byte.

Bit 1 — Input Buffer Full (IBF). This is set by hardware
when the master writes a byte to the KDS in the

DBB. It is cleared when the KDS reads it.

Bit 2 — The FOQ busy flag is set by the KDS firmware t¢ in-
dicate that it is busy servicing a command. It is
cleared when the KDS is ready to service a new
command.

Bit 3 — The F1 flag is set by the hardware to the state of ad-
dress line 0 and is used by firmware to distinguish
between commands and data.

Bit 4 — If this bit is set, it indicates that the keyboard key is
depressed.

Bit 5 — If this bit is set, it indicates that the display key is
depressed.

Bit 6 — Data Transmit Ready (DTX). If this bit is set, the
KDS is ready to transmit a character to the
keyboard.

Bit 7 — If this bit is set, the KDS has a keyboard character
available for the master upon request.

2.5.1.1 Commands

There are three commands associated with the keyboard
and display control: read request commands, screen com-
mands, and restart clear commands.

READ REQUEST COMMANDS

MSB LSB
BzlBelBsIB4] 0 J oo o)

The bits are defined as follows:

Bit 0-Bit 3 — 0000 informs the KDS that it is a read request
command.

Bit 4-Bit 7 — 0000 commands the KDS to reset.

0001 commands the KDS to present the
keydown status in the DBB.

0010 commands the KDS to present the
screen/status byte in the DBB.

0100 commands the KDS to present the
keyboard character into the DBB.

1000 commands the KDS to present the
keyboard type in the DBB.
The format for the individual status bytes is shown below:

MSB LSB
IB7]Be [Bs|B4] B3| B2 [B1] B0]

Reserved

Reserved

Reserved

Reserved

0= Block Cursor,

1 =Underline Cursor
0=No Controi Key
Filter, 1 =Control
Key Filter

0 =Normal Screen,

1 =RBlank Screen

0 =Screen Mode

1 =Font Load Mode

The Keyboard type byte is shown below:

MSB LSB
[B7IBe [Bs[B4 B3] B2 [B1] B0]

Reserved

Reserved

I = General Purpose
Keyboard, 0= Any

other keyboard

Reserved

Reserved

Reserved

Reserved

Reserved

The keydown status byte is shown below. Each status bit
will be a one when the corresponding key is depressed and will
‘emain a one until the key is released.

MSB [B7IB6]Bs [B4] B3| B2[BI[B0] 8

F1 Key
F2 Key

F3 Key

F4 Key

F5 Key
CTRL Key
ATT Key
INT Key

SCREEN COMMANDS

The reception of this control word informs the KDS to per-
‘form certain screen manipulations

LSB

MsB [B7] B6] Bs[Ba] o] o] 1 Jo]

Screen Control Word
Underline/Block Cursor
Control Key Filter/Not Filter
Blank/Normal Mode
Load/Normal Mode

Bits 0-3 — 0010 informs the KDS that it is a screen control
word.

Bit4 — When this bit is set to 1, the KDS will set the
underline cursor mode. When it is a 0, the KDS
will set the block cursor mode. On power up, the
cursor is set to the block mode.

Bit5 — When this bit is set to 1, the KDS will not send
control key codes to the master. When this bit is
reset to 0, all key codes are sent to the master, ex-
cept for the special key sequences and the
CTRL key code (see Section 2.2.2).

Bit6 — When this bit is set to 1, the KDS blanks the
screen. When it is set to 0, the screen operates in
normal mode.

Bit7 — When this bit is set to 1, the KDS overlays the 2K
character font RAM on the screen buffer. When
this is cleared, the screen enters normal mode. On
power up, normal mode is set.

Brightness Control

MS LSB

’ LBL71361B5|BJ4I 9! o] [1]

T
Brightness Control Byte

Brigh'mess

Bits 0-3 — 0011 informs the KDS that it is a brightness con-
trol byte.

Bits4-7 — These bits control the brightness of the screen.
The brightness can be set to any one of the sixteen
levels, O being the highest brightness and 15 being
the lowest.

Restart Clear Command

MS LSB

' I o T o]
Lﬁ[_l

Reserved

Bits 0-3 — 0100 informs the KDS that it is a restart
acknowledge byte. Upon receipt of this com-
mand, the KDS clears the restart pulse.

Bits 4-7 — Reserved

2.5.2 Speaker Commands

Speaker control is initiated by writing to base page 1/0 ad-
dress 031. The byte format is as follows:

MS LSB

? (B7IBe]Bs B4l 0T 0o Jo 1]

Reserved

Upon receipt of this command, the KDS initiates the beep
or click operation. The beep is a 1200 Hz tone generated for a
duration of 250 milliseconds. The click is an 800 microsecond
pulse with a minimum of 800 microseconds guaranteed bet-
ween clicks.

Bits 0-3 — 0001 informs the KDS that it is a speaker control

word.

Bits 4-5 — Reserved.

Bit6 — When this bit is set, it commands the KDS to in-
itiate a beep operation.

Bit7 — When set, this bit commands the KDS to initiate a

click operation.
2.5.3 Video Attributes

Underline, two-level video, and blink are programmed by
writing to the attribute RAM. Screen character locations run
from 0140100 to 0143777, and attribute RAM extends from
0144000 to 0147777. Attribute data for a particular screen
byte will reside at a 04000 offset from the screen RAM loca-
tion. Therefore, screen data at location 0140100 will have its
attributes at extended 1/0 address 0144100 and so on. The bit
positions for attributes are shown below:

MS LSB

8 [B7IB6| B5]| Ba] B3| B2[B1 [BO]

Underline
‘;-Two—level
o Blink
Reserved
Reserved
Reserved
Reserved
Reserved

As mentioned in Sections 2.3.1 and 2.3.2, the inverse video
attribute bit is controlled by manipulation of the most signifi-
cant bit of the screen RAM byte for a particular character.

2.5.4 Serial 1/0 Port

The KDS serial 170 port is accessed through base page 1/0
address 034 to 037.

The RS-232C signals supported are Transmit Data, Receive
Data, Secondary Receive Line Signal Detect (printer busy),
Data Set Ready, and Data Carrier Detect. Control of all
signals is handled by a USART.

Connections to the USART and the function of each signal
are as follows. Transmit and receive data are self-
explanatory. Emptying of the transmit holding register or fill-

3.2.3.4 DMA Control Signals

These signals provide for the transferring of bus control
between devices.

CBDMAREQ/ DMA Request - Negative True

CBBUSY/ Busy - Negative True
CBPRII DMA Priority Input - Positive True
CBPRIO DMA Priority Out - Positive True

3.2.3.5 Miscellaneous Signals

CBRESET/ System Reset - Negative True
CBALARM/ System Power Alarm - Negative True
CBRESTART/ Restart - Negative True

CBLFCLK Line Frequency Clock

3.2.4 Read/Write Cycles

Four types of read/write cycles are defined for the com-
mon bus:

®* Memory read/write word
* Memory read/write byte
® /O read/write word

® /O read/write byte

Memory cycle bus timings are identical. For 1/0O opera-
tions, a single wait state is automatically inserted.

3.2.5 Interrupt Cycles

The interrupt sequence provides an entry address (interrupt
vector) to the processor. The bus sequence is identical for
each of the three cycles that make up the interrupt
acknowledge sequence.

3.2.6 Priority Transfer Cycle

A priority cycle is one that is initiated by a request from a
DMA device. The requesting device becomes the bus master
when the processor relinquishes control of the bus.

3.3 Peripheral Bus

The external peripheral bus is a high-performance, general
purpose serial bus. Commands and data are transferred bet-
ween the processor and multiple attached peripherals over
two sets of individually shielded twisted pair wires at distances
of up to 100 feet. The wires are driven and received by RS-422
differential devices. The bus also includes additional wires for
an interrupt request line, a power-on indication, and logic
ground. All wires are enclosed in an overall jacket to com-
plete the cable assembly.

Peripherals interface to the bus in a multi-drop fashion,
and physical connection is via an ‘“‘IN’’ and “OUT”’ connec-
tor on each peripheral in a daisy-chain fashion. The last
peripheral in the chain has a terminator attached to its
“OUT”’ connector. One twisted pair wire set is used for com-
munication from the processor to the peripherals, while the
second wire pair is used for transfer from the peripherals to
the processor. Data transfer over the cable is half-duplex.

Characters are transferred over the bus in a 12-bit asyn-
chronous format at 13.055 Mbits/second, which is compati-
ble with the transfer rate of the Datapoint 9301 disk. This
corresponds to a maximum continuous transfer rate of 1.088
Mbytes/second over the bus. A single parity bit is included in
the 12-bit character format for error control. Data is encoded
in NRZ format, and character synchronization is achieved by
using a precision edge-triggered oscillator tuned to the proper
frequency. Data transfers may be on a character or block
basis.

The twisted pair wire set that is not used for data transfer
during a communication is used as a ‘‘handshake line,”
which allows matching of the transfer rate of the processor to
any peripheral on a character-by-character basis.

3.3.1 Control Characters

Control characters are used to address devices, issue com-
mands, read status, and for bus control functions. Control
characters are uniquely identified by the control/data bit
being a logical 1 in each control byte. This allows any 8-bit
binary value to be sent as a control character.

3.3.2 Addressing

All peripherals on the bus will power-up de-addressed and
will become de-addressed if issued a bus reset or a de-address
control byte. When a peripheral receives an address com-
mand, it will compare the address field of the command
against its own address. If the addresses match, the peripheral
will become addressed. If the addresses do not match, the
peripheral will become or remain de-addressed. Once ad-
dressed, the peripheral will automatically go to transmit mode
and send the interrupt status byte before returning to receive
mode.

When a peripheral is not addressed, its corresponding in-
terface module will accept only an address control byte or a
bus reset.

Four bits of addressing are provided to access one of
several peripherals that can be attached to the peripheral bus.
No permanent address assignments exist. Each peripheral,
regardless of its type, is simply assigned the next sequential
figuring peripherals is that each device have a unique address
before the system is powered up. The processor will deter-
mine the peripherals that are present by polling all addresses
and reading the interface type status byte during power-up
initialization.

3.4 Microbus

The microbus is an external bus that provides interface be-
tween the processor’s MIFM module and as many as four
peripheral devices. The microbus handles block data transfer
rates of S00K bytes per second. Maximum block length is 256
bytes.

The microbus is composed of an eight-bit command and
address bus, an eight-bit bi-directional data bus, two com-
mand strobes, an interrupt acknowledge strobe, an interrupt
request line, and a +5 volt power indication.

3.4.1 Microbus Signals

The microbus provides four bits of peripheral device ad-
dress (AO-A3). Four command lines provide unique com-
mands for each of two transfer strobes (USTB 1 & 2). A third
strobe (IACK) is used to acknowledge an interrupt request.
The content of the command and address lines is not defined
during the IACK strobe. Decoding of the peripheral device
address lines is determined by jumpers in each device. No two
devices may have the same address on the same microbus.

The eight bi-directional lines are used to transfer data to
and from the peripheral device under control of the processor
and the MIFM. The drivers are open collector type. The data
drivers in the MIFM are enabled only during an MIFM write
cycle. The data drivers in the peripheral device are active only
when commanded to be by the MIFM.

3.4.2 Microbus Timing

The address, command, and data lines are stable for at
least 100 ns before the leading edge of the transfer strobe, and
remain so for at least 100 ns after the trailing edge. The
transfer strobes are a minimum of 400 ns wide. During a
microbus input cycle, the peripheral device will put stable
data on the data lines at least 100 ns prior to the end of the
transfer strobe and hold it for 100 ns after the end of the
transfer strobe.

[IACK strobe timing differs from that of the transfer
strobes since it is propagated through each peripheral in a
daisy-chain fashion. The pulse width of the IACK strobe is
jumper selectable to provide a maximum of 1400 ns, which is
required when four peripheral devices that use the microbus
interrupt line are present on the bus.

3.4.3 Microbus Input/Output Cycles

During an output cycle the MIFM loads the address, com-
mand register, and data lines with the appropriate informa-
tion and enables the bus drivers. A transfer strobe is then
generated. The peripheral device, by decoding the address
lines, determines if the command and data information is to
be latched, and completes the transfer on the trailing edge of
the transfer strobe.

During an input cycle, the MIFM loads the command and
address register with the appropriate information and enables
the bus drivers. A transfer strobe is then generated. The
peripheral device, by decoding the address and command in-
formation, determines what information to place on the data
bus. The peripheral device disables its bus drivers after detec-
ting the trailing edge of the transfer strobe.

The peripheral device completes the specified command
and is ready to accept additional commands at the rate of one
every two microseconds. Commands requiring longer than
this are associated with a busy status bit.

3.4.4 Microbus Interrupt Cycle

An interrupt cycle is initiated on the MIFM whenever a
peripheral device pulls the microbus IREQ line low, or when
the polling sequence detects an expected condition and
generates an interrupt. The processor may respond at any
time to the IREQ by initiating the microbus IACK strobe.
The IREQ line is independent of all other activity on the
microbus.

The peripheral device that initiated the IREQ responds to
the IACK strobe by placing its device address and other infor-
mation (as determined by the peripheral device) on its data
lines. The peripheral device releases the data lines on the trail-
ing edge of the IACK strobe.

4.2.1 Word Read

The word read cycle begins when the memory detects that
it has been selected for access by decoding the proper address
and memory cycle request bits off of the common bus during
the time that Address Strobe is present. This information is
latched on the trailing edge of Address Strobe thus generating
the Row Address Strobe (RAS). The Address Mux Signal
(MUX) and Column Address Strobe (CAS) are generated
from delayed versions of RAS. The RAS signal input to the
memory array is further decoded to select the proper bank of
the array. All of these signals are terminated at the same time
when the CAS signal has met the minimum pulse width
specification. This allows the cycle to run free of any bus
timing restraints and only requires Address Strobe to initiate
a cycle. Data is enabled onto the bus when Transfer Strobe
has been detected during a read cycle and the board has been
selected. If during the course of the cycle the RAM INHIBIT
signal is detected, the output drivers are not enabled although
the cycle runs to completion.

4.2.2 Byte Read

The byte read cycle is identical to the word read cycle ex-
cept for the case of an odd byte access. In this case the odd
byte is physically located in the upper byte of the memory
word and, upon access, is driven to the lower byte where
the bus master is expecting the data. These bits are also
driven on the most significant part of the bus, although no
device will receive them. During even byte reads, the cor-
responding odd byte is driven to the MSB of the bus,
although it is assumed no device will receive it.

4.2.3 Word Write

The word write cycle is similar to the word read cycle ex-
cept that when the Write Strobe and Transfer Strobe are
present on the bus and the board has been selected, a write
pulse is generated and sent to the memory array. Even
parity is generated over each byte of the data to be written
and is subsequently written into the array with the data.

4.2.4 Byte Wriie

The byte write cycle is similar to the word write cycle ex-
cept that the write pulse is sent only to the selected byte in-
stead of the entire word. A read-modify-write cycle is not
required, since parity is generated over the byte.

4.3 Refresh Cycles

The refresh controller is synchronized to the system bus
clock that runs at a nominal frequency of 4MHz. A
counter is implemented such that a refresh request is
generated every 15 microseconds.

The address selection jumper on the board is used to off-
set the refresh counter so that systems with two 128K
modules will not refresh their respective arrays
simultaneously.

A refresh is performed by selecting one of 128 rows in
the memory and strobing the chip with RAS. A counter on
the board is used to select the row to be refreshed. If no cy-
cle is in progress and a refresh request is detected (by the
15-microsecond timeout), a refresh cycle is initiated. At
this time the counter outputs are gated to the memory ar-
ray, and RAS is generated from the bus clock. RAS is one
cycle wide. Its completion increments the row counter and
resets the refresh request condition.

4.4 Cycle Arbitration

Bus access cycles and refresh cycles cannot have
simultaneous memory access. Bus master requests to
memory are deferred during a refresh cycle; refresh re-
quests are deferred during a bus access cycle. Cycles will
proceed upon demand during those times that arbitration
is not required. The refresh logic provides 128 refresh
cycles every two milliseconds to ensure the validity of data
within the memory.

4.5 Error Detection

The memory carries parity over each eight-bit byte.
When a write to memory occurs, a ninth bit (for each byte)
is generated via a parity generator and written to the
memory. The parity is checked when the data is read from
memory. If the parity checking logic does not compute the
correct parity, an error condition signal is placed on the
common bus.

PART 5
PROCESSOR

5.1 General

The processor in the 8600 is implemented on three printed
circuit boards that reside in the internal card cage:

CP/CTRL (Control) — contains the instruction

decode, control store, and sequencer.

CP/ALU (Arithmetic Logic Unit) — encompasses
most of the processor registers and handles data flow
for the machine.

CP/RIM (Resource Interface Module) — contains the
system/auxiliary ROM, interrupt controller, sector
tables, and a RIM for interface to a Datapoint ARC
system.

Block diagrams of the CPU board set are shown in Figures
5-1 and 5-2. Figure 5-1 illustrates the CP/CTRL and
CP/ALU boards. Figure 5-2 illustrates the CP/RIM board.

5.2 Registers

5.2.1 User Registers

The 16 user-accessible registers are implemented as two
banks of eight, referred to as alpha and beta mode registers.
Each group of registers has a corresponding group of condi-
tion flags. The registers are referred to as A, B, C, D, E, H,
L, and X. The registers are normally assigned the following
functions:

A Accumulator
B,C,D,E General Purpose
H,L Memory Pointers

The X register is a working page register and is used to
form the upper eight bits of the address for paged address
mode.

P/CTRL BOAR CP/ALU BOARD
FROM DATA IN CP/CTRL BOARD |
REG ON D-BUS I
Y-BUS
y : J 1
PREFETCH
I REEGISTSH l Y CARRY IN MEMORY ADDRESS
] —> I LOW COUNTER
) i > i y
NTERRUPTS INSTRUCTION 4»«1&‘ T MEMORY DATA 2 !o 1 o
> ALU H->1 —» CP/RIM
REGISTER | UT REGISTER MUX
> [Foncrion || 2903 | OUT REGIS ADOO-7
’ j| oecooe {
| ES(';OORSE; | F(x) 44 j j 1 MEMORY ADDRESS o
| > | HIGH COUNTER 2 J8x1 o M
» ' ADO8-15
INSTRUCTION |23
DECODE l MPLICIT $o
: REGISTER - | ADDER
LI A & § 1 ‘
. 3701 RC f LAST MEMORY
MUX 2q | il stack SYSTEM CARRY ADDRESS LOW
32 POINTER STATUS oUT
57 | Y y
! LAST MEMORY
il 3 o FLAGS ADDRESS HIGH
2910 om | o i
w -4
CONTROLLER STH | 29 ok o
| 3T f oA S >{ Fix) > CP RIM
[Y | - CONTROL
>Tm <) =)
w m k
mi®|®{®P=< w8 no he} b | 4
ol B ool » > »m
olalalz|alAlrdzzl 22|5]5) 53 | o ALPHA/BETA
g 5%82’38883 521214 S azoH | =iy MODE SWAP
[e R Ke] = o] (s
L;(')'l 2|9 gé 45 (z)m A m Do 1 (éo REGISTER
IR m
=] (=]
¥ ¥ Y Y L
! N 1 D-BUS
¥ f ! o TmE |
BASE
STATE TIME I LATCH _____ggg:‘:ﬂ
DECODES BASE T ChAM

Figure 5-1: Central Processor/Arithmetic Logic Unit and Central Processor/Control Boards

RIM

INTERPROCESSOR
BUS
> ALU AND CTRL
S BOARDS INTERFACE
ﬁ A A
@ o TIME DIRECT MEMORY | _ -
g e BASE ACCESS CONTROL >
> o
> (@]
X
» -
ANALOG RiM €
CIRCUITRY - \
ADDRESS: READ ONLY STATUS STATUS
DATA MEMORY |«
l INDICATORS
\A CONTROL
TIMEOUT _ RIM CONTROL
SWITCHES = | MICROPROCESSOR y \4
% SECTOR
< AUXILIARY SYSTEM READ - TABBLAE
READ ONLY || ONLY MEMORY ||} RA
MEMORY o | (FIRMWARE)
RIM 1.D. b
SELECT > = >
1.D. Z0 \
SWITCHES seLecT 1> 3 ’:?:': e
CoNTROL| 23§ 2 »| SECTOR TABLE
202 i/O ADDRESS
| P22 CONTROL
RIM < go
BUFFER I BT
MEMORY - < =Xn]
INTERRUPT ™ D DRESS/DATA 2T
ADDRESS/DATA N CONTROLLER | NG
ol o CONTROL 2|3
3 9 gl Almg | Power on
ol 3 - z| Sla @ RESET
»l = 3 3| o CIRCUITRY
s| © m ol »
1 2 i A
= Py w| >
> c c| of |
o w| C
@ 2
|._._"_.._._.__ —— X Y™ RESET
COMMON BUS INTERFACE
VOLTAGES
Figure 5-2: Central Processor/RIM Board
5.2.2 Condition Code Flags P Parity - set if there is an odd number of ones in the

There are four condition code flags for each of the two

result of an arithmetic or logical operation.

user register banks. The Carry, Sign, Zero, and Parity All logic within the processor is 2’s complement.

flags reflect the results of the data following certain in-

structions: 5.2.3 System Status

C Carry - set if there is a carry out of or a borrow into The system status is an 8-bit, read-only register that reflects
the most significant byte (MSB) of the result of an the state of the interrupt enable, alpha/beta, and user mode
arithmetic operation. It is cleared on logical opera- flip-flop, as follows:
tions.

Bit 7: System Interrupt Enable. When equal to 1, vector

S Sign - reflects the MSB of the result of an arithmetic
or logical operation.
Bit 6:
z Zero - set if all bits of an arithmetic or logical opera-
tion are zero. Otherwise, it is cleared.

interrupt requests will cause an interrupt trap.

Millisecond Interrupt Enable. When equal to 1, a
millisecond timeout will cause the processor to
take the millisecond interrupt trap.

Bit 5: User Mode. When equal to 1, execution of a
priviledged instruction code will cause an error in-
terrupt and causes the selection of the user sector
tables if they are enabled.

Bit 4: Beta Mode. When equal to 1, beta user register
set and flags are selected; otherwise, alpha
registers and flags are selected.

Bits 3-0: These bits are reserved and are always read back

as a zero.

All bits of the system status register are set to zero after reset
or restart. Also, system status bits 6 and 7 will always be set to
the same value, so that Millisecond and Vector Interrupts are
always enabled and disabled together.

5.2.4 System Control Register

The system control register is an 8-bit read/write register
that controls basing and sector table selection. Bits 7-3 are
loaded by an LKA instruction only if bit 2 is equal to 1.

Bit 7: Enable System Data Segment. When equal to 1, it
selects system data sector table on data read or
write memory cycles.

Bit 6: Enable User Segments. When equal to 1, it selects
user sector tables when in user mode.

Bit 5: Enable User Data Segment. When equal to 1, it
selects the user data sector table when in user
mode and when control bit 6 is equal to 1.

Bit 4: Enable Instruction Segment Base. This bit causes
logical address to be based when set to 33 if the
memory cycle is an instruction fetch and when the
address is in the range from 0100000 to 0137777
when set.

Bit 3: Enable Data Segment Base. This bit causes logical
address to be based when it is set to 1 if the
memory cycle is a data cycle with an address in
the range of 0100000 to 0137777 when set.

Bit 2: Control Load Enable. This bit is not saved in
the control register but rather, when equal to 1
in the data being loaded, allows control register
bits 7-3 to be loaded. If it is equal to O in the
load data, only bits 0 and 1 are loaded. Bit 2 is
always read back as a 1.

Bits 1-0: Sector Table Load Select. These bits determine

which of the four sector tables is selected for a

sector table load or read operation as follows:

00 System Instruction Sector Table
01 System Data Sector Table

10 User Instruction Sector Table
11 User Data Sector Table

All control register bits are cleared to zero after the
system is reset.

5.2.5 Base Register

The Base Register is an 8-bit, read/write register used in
physical address generation. This register is added to the
most significant 8-bits of the logical memory address if this
feature is selected by the control register and if logical ad-
dress is in the range from 0100000 to 0137777.

5.3 Sector Tables

The 8600 processor contains four sector tables: System
Instruction, System Data, User Instruction, and User
Data. Physical memory address is generated by one of the
four segments depending on the machine state. The tables
allow for complete separation of user and system programs
and their respective data areas. In addition, the sector
tables allow 4K-byte blocks of memory to be access pro-
tected (in user mode only) and/or write protected.

MSB LSB
[B7[B6 [Bs | B4] B3| B2 B1 | BoJ

ADDR Bit 16
-ADDR Bit 17
L——Access Enable

‘Write Enable
ADDR Bit 12
-ADDR Bit 13
-ADDR Bit 14
ADDR Bit 15

5.4 Address Generation

The processor transforms a 16-bit logical address into an
18-bit physical address through the use of the sector tables.
Multiple sector tables allow 128K bytes accessibility in the
system mode, and 128K bytes accessibility in the user
mode. Each 128K byte area is further sub-divided into a
64K byte instruction area and a 64K byte data area. The
translation mechanism is illustrated in Figure 5-3.

Addresses are generated based on the type of cycle (In-
put/Output or Memory) that the processor is to perform. In-
put/Output cycles use the 16 address/data lines directly to
form the 170 address. Memory cycles use the S1 and S2 out-
puts to select one of the four sector tables and map address
lines A12-Al5 through a high speed RAM to produce a
physical sector select of six bits.

The sector tables are formed via high speed 64 X 9
memory, which allows the based logical address to be
transformed into a physical address. Parity is generated with
the 8 bit transfer, and is compared to parity calculated on the
9 bit word that is present during memory accesses. Errors in
the comparison produce a sector table parity error that pro-
vides a system level interrrupt to the processor.

5.5 Stack

The processor has a 32-entry stack that is located in main
memory and is accessed through the System Data sector
table. An entry always consists of two bytes. A special in-
struction (STKMYV) allows multiple stacks to be located
throughout memory. The stack pointer is decremented by one
before each byte write and incremented by one following each
byte read.

BASE ENABLE
FROM
CTRL REGISTER

BASE
REGISTER

SECTOR PARITY BIT

TABLE _/ WRITE ENABLE
2 i %ACCESS ENABLE
2

2 2} ,2_17__

| I
YYVYVYYYYY 2 e
2 (0] —-
215 —¢- > »lA S —{, °
> »|D 56 >
—3 - R 5 p
2
» 04 »| 2 2
- + o
8 i
2 > >
»f2°
2’ »{2’
2O - 20
LOGICAL
X”DES"'R%ZE PHYSICAL
MEMORY
ADDRESS

Figure 5-3: Address Generation Diagram

5.6 Input/Output

The processor has a maximum 1/0 space accessibility of
64K bytes. Base page 1/0 is provided to allow the more com-
mon peripherals to reside in the first 256 locations of 1/0
space. Pcriphcrals in this area are accessed by means of the
“‘short 170"’ (CBSOUT and CBSIN) instructions that require
less execution time at the system level than the 1/0 instruc-

tions that provide full 16 bit addresses.
5.7 Interrupts

The 8600 processor is capable of supporting four types of
interrupts: millisecond, restart, system error, and vectored. If
any of these interrupts is present and unmasked, an interrupt
trap occurs. This means that normal instruction execution is
interrupted, current machine state information is pushed on
the stack, and the System Interrupt Enable, Millisecond In-
terrupt Enable, and User Mode bits are cleared; instruction
execution resumes at a pre-defined address in system ROM.
The format of the information pushed on the stack is shown
in Figure 54,

The condition code save value shown has the same format
as the output of the condition code save instruction.

All Interrupts
Except Error

Error Interrupts
Higher Memory

Addresses
error address
MSB
error address
LSB
[PC — MSB] PC_— MSB]
(BC _ LSB] [PC_LSB]
condition code Lerror status |
L___save)
Isystem status Je——stack pointer———| system status

after interrupt

Figure 5-4: Stack Information After Interrupt
5.7.1 Millisecond Interrupt

The 8600 maintains a timer that runs continuously and
times out every 1000 microseconds. When a time-out occurs,
a millisecond interrupt request is made to the processor which
is held until the interrupt is taken by the processor. The inter-
rupt will only be taken if the Millisecond Interrupt Enable bit

in the system status is a 1 and the processor finishes executing
an instruction. After the interrupt trap occurs, instruction ex-
ecution resumes at 0170000 in system ROM.

5.7.2 Restart Interrupt

The Restart Interrupt allows the operator to regain control
of the processor without having to perform a power-
down/power-up procedure. Restart is not maskable by soft-
ware, but it is masked after reset or restart until the execution
of an IRET instruction unmasks it again. On the 8600, restart
is initiated by a boot load or debug keyboard key sequence or
by a thermal failure detected from the power supply or power
fail alarm.

5.7.3 Error Interrupt

An Error Interrupt may occur during program execution
due to a variety of fault conditions described below. The er-
ror interrupt trap causes an error status code and sometimes
an error address to be pushed on the stack as shown in Figure
5-4. After the error interrupt trap occurs, instruction execu-
tion resumes at 0170004 in system ROM. System ROM uses
the error status code on the stack to decode the error vector in
system RAM to jump to; it also substitutes the condition code
save value for the error status value on the stack before jump-
ing to the error vector. See Part 9, System ROM, for more
details.

The error address on the stack is the based-logical address
of the memory cycle that actually gives rise to the error condi-
tion while the PC is the logical address of the instruction that
was executing at the time. For priviledged op violation and
unassigned instruction violation, the error address is not
pushed on the stack since this will be the same as the PC
value.

5.7.4 Vector Interrupt

Vector Interrupts allow the processor to respond directly
to an interrupting common bus attachment by causing the
processor to jump to a vector interrupt table in memory
after the interrupt trap is taken. The format of this table is
shown in Figure 5-5. The vector interrupt table base ad-
dress must be on a 32-byte boundary in logical system in-
struction address space. Normally, a jump instruction
pointing to the interrupt service routine is placed in the
table for each device that asserts a common bus interrupt.
(See Section 3.2.1 for these interrupt assignments.)

Lower Memory
Addresses

Vector Interrupt
Table Base Address

000 common bus interrupt 0
004 common bus interrupt 1
010 common bus interrupt 2
014 common bus interrupt 3
020 common bus interrupt 4
024 common bus interrupt 3
030 common bus interrupt 6
034 common bus interrupt 7

4+t

Higher Memory
Addresses

Figure 5-5: Vector Interrupt Table Format

Vector Interrupts are implemented by a Programmed In-
terrupt Controller (PIC) that must be initialized before it
can be used. On an 8600, the following initialization se-
quence should be used:

[VTABLE (1sb).AND.0340].OR.PICIW]——CBPICO

VTABLE (msb) »CBPICI1 1/0
port adress

+CBPIC1 1/0
port adress

PICIW4

where VTABLE is the 16-bit address of the 8-entry vector
interrupt table with 4 bytes of executable code per entry
and where:

CBPICO EQU 0000 1/0 Port Address for PIC,
Register 0

CBPIC1 EQU 0001 I/0 Port Address for PIC,
Register 1

PICEOI EQU 0040 End of Interrupt Code

PICIW1 EQU 0037 PIC INIT WORD #1

PICIW4 EQU 0014 PIC INIT WORD #4

PIC interrupt is accomplished by writing a mask byte to
address CBPIC1 after the interrupt controller has been
initialized. The format of this mask byte is shown in Figure 5-
6. Each bit in the mask byte inhibits the corresponding in-
terrupt level when set to a 1 and enables the interrupt when set
to 0.

[7leisTisf]i2fnnjio]

Ix = Mask bit for Interrupt level x

Figure 5-6: Interrupt Mask Byte Format

When an interrupt trap occurs for an unmasked interrupt
level, control is normally transferred to a software service
routine. Before exiting this service routing (normally by an
IRET instruction), the PIC must be cleared by sending the
End-of-Interrupt as follows:

PICEQI————— CBPICO (1/0 port address)
5.8 RIM

The RIM provides standard interface to a Datapoint ARC
system. Though the RIM physically resides on the CP/RIM
board, it interfaces directly to the common bus and functions
independently of other CP logic. The RIM appears to the
processor as a peripheral device located within the 64K 1/0
space. Communication between the processor and RIM oc-
curs through programmed 1/O instructions.

The RIM is accessed via the Status/Mask Register located
at 1/0 address 042 and the Command Register located at I/O
address 043. The RIM buffer memory is located at I/0 ad-
dress 074000-077777. Two bytes, at 1/0 address 040 and 041,
are used to enable or disable the various RIM buffers that can
exist in the system. Address 040 is used to enable the
CP/RIM module RIM buffer. Any data written to this ad-
dress will enable the CP/RIM module RIM buffer. A write to

address 041 is required to disable it. Writing a 0 to 041 will
disable all RIM buffers. 170 address 041 is used to enable
RIM buffers that do not reside on the CP/RIM board. Five
additional RIMs may exist within an 8600 so that a three-bit
code will be used to select the proper buffer for the RIM. To
enable one of the five additional RIMs, a value (001-005) is
written to I/0 address 041. This selects the RIM buffer in-
dicated by the value and disables the CP/RIM buffer. Only
one buffer is enabled at any time in the system. I/O addresses
044-055 are status and command for RIMs 1-5.

5.9 Direct Memory Access

The processor has the ability to release control of the
system bus to allow other bus master devices to gain access to
various bus slave devices. The bus may be relinquished
following any memory cycle, at which time the processor
ceases its execution. Execution is stopped, since the processor
is a memory bound device. The processor assumes control of
the bus when it has determined that no device requires the
system bus.

5.10 System/Auxiliary ROM

System ROM contains power-up, interrupt, debug, and
other routines that are required by the processing system. The
4K bytes of system ROM are addressed only in system mode
at octal addresses 0170000-0177777. See Part 9 of this
manual for a complete description of system ROM.

Auxiliary ROM is 4K bytes, starting at 0120000, 8K bytes
starting at 0110000, or 12K bytes, starting at 0100000.
It is used for the storage of diagnostic routines. Auxiliary
ROM is mapped into system memory space through an 1/0
command only during the power-on-reset firmware sequence
and when firmware diagnostics are run. It is also mapped in
during firmware disk and tape loads. During normal system
operation, this memory does not overlap other memory in the
system.

5.11 Instruction Set
The 8600 processor supports the 6600 user mode instruc-

tion set. The instructions have been grouped into eight
categories for convenience of presentation:

Category 1 Load Group
Category 2 Stack Control
Category 3 Byte Arithmetic
Category 4 Word Arithmetic
Category S Jumps, Calls, Returns
Category 6 1/0 Group

Category 7 System Instructions
Category 8 String Operations

5.11.1 Presentation Format

A description of each 8600 instruction is given in the
following sections. The symbols and abbreviations listed
below are used in the presentation of the instructions.

Operation:

Op Code:
Entry:
Exit:

\

p

p+1
(vwv)

(adr)
(ch

(exp)
data

loc

PPP

Symbolic representation of instruction
description.

Operation Code, expressed in octal.
Conditions necessary before execution.
Conditions existing after execution.

The contents of.

Is transferred to.

Is compared with.

Logical ‘“‘Or’’ operation.

Logical “‘Exclusive Or’’ operation.
Logical ‘““AND”’ operation.
Concatenation operator.

8-bit processor registers

Contents of memory location designated by
the specified register pair. HL is used if no
pair is designated.

Program counter.

Location relative to first byte of instruction.
The pushdown stack.

One of eight ALU operations (AD, AC, SU,
SB, ND, XR, OR, CP).

A source general register (ABCDEHL)(s =0
to 6)

A destination general register
(ABCDEHL)(d =0 to 6).

A general register (ABCDEHLX) (sor d =
0to 7).

One of the pairs of registers (BC DE HL
XA).

A register select op code. No byte is
necessary for selection of the A register;
however, A =022 may be used. Otherwise,
the following values are used: B=0111,
C=062, D=0113, E=0174, H=0115,
L=0176, X=117.

A register pair select op code. No byte is
necessary for the selection of HL; however,
HL =0176 may be used. Otherwise, the
following values are used: BC =062,

DE =0174, XA =022,

BC=0113, DE=0115, HL=0117, XA =0111.

An 8-bit immediate value used in an instruction.

A 16-bit immediate value used in an instruction
with the LSB first, followed by the MSB.
Condition flags (CZSP) (c=0 to 3).

External command.

An expression reducing to an 8-bit immediate
value.

An expression reducing to a 16-bit address
(LSB, MSB).

An 8-bit immediate value specifying a port
number for 1/0 operations.

5.11.2 Category 1—Load Group
LOAD IMMEDIATE L(r)

Op Code: 0r6 (vvv)
Operation: (vvv)—(1)

This instruction transfers the value of the given operand to
the register specified by bits 3-5 (d) in the Op Code. The con-
dition flags are unaffected.
LOAD L(rd)M, L(rd)M(rp)

L(rd)(rs)
LM(rs), LM(ts)(rp)

For L(rd)M, Lrd)M(p)
Op Code: 3d7, rp 3d7 d<6
Operation: (M)—s(rd)
For L(rd)(rs)
Op Code: 3ds
Operation: (rs)—(rd) s<6, d<6
For LM(rs), LM(rs)(rp)
Op Code: 37s, rp 37s s<6
Operation: (rs)—(M)

This instruction transfers the operand from the source
specified by bits 0-2 of the Op Code to the destination
specified by bits 3-5 (d) of the Op Code. The source is unaf-
fected. If a memory access is required, the HL. pair or the
specified register pair will contain the memory address. The
condition flags are unaffected.

PAGED LOAD PL
Mnemonic Op Code
PL A, (loc) 105 LSB
PL B, (loc) 114 LSB
PL C, (loc) 124 LSB
PL D, (loc) 134 LSB
PLE, (loc) 144 LSB
PL H, (loc) 154 LSB
PLL, (loc) 164 LSB

Operation: (X | LSB)—»r

These instructions load the register specified by bits 3-5 of
the op code from the memory location specified by the data
given in the instruction (LSB) and the X register (MSB). The
flags are unaffected.

PAGED STORE PS
Mnemonic Op Code
PS A, (loc) 107 LSB
PS B, (loc) 116 LSB
PSC, (loc) 126 LSB
PS D, (loc) 136 LSB
PSE, (loc) 146 LSB
PSH, (loc) 156 LSB
PSL, (loc) 166 LSB

Operation: r—(X | LSB)

These instructions store the register specified by bits 3-5 of
the op code in the memory location specified by the data
given in the instruction (LSB) and the X register (MSB). The
flags are unaffected.

DOUBLE LOAD DL
Mnemonic Op Code
DL DE,HL 047
DL BC,HL 111 047
DL BC,BC 062 047
DL BC,DE 113 047
DL DE,BC 174 047
DL DE,DE 115 047
DL HL,BC 176 047
DL HL,DE 117 047
DL HL,HL 057

Operation: (M, M + 1)—e1p

These instructions load the register pair specified by the
first operand from the memory locations pointed to by the
register pair specified by the second operand. The LSB
register (C, E, or L) is loaded from the specified memory
location, and the MSB register (B, D, or H) is loaded from
the next higher memory location. The flags are unaffected.

DOUBLE STORE DS

Mnemonic Op Code

DS DE,HL 027

DS BC,HL 111 027

DS BC,DE 113 027

DS DE,BC 174 027

DS HL,BC 176 027

DS HL,DE 117 027

Operation: rp—s(M, M +1)

These instructions store the register pair specified by the
first operand in the memory locations pointed to by the
register pair specified by the second operand. The LSB
register (C, E, or L) is stored in the specific memory loca-
tion, and the MSB register(B, D, or H) is stored in the next
higher location. The flags are unaffected.

DOUBLE PAGED LOAD DPL
Mnemonic Op Code
DPL BC, (loc) 111 124 LSB
DPL DE, (loc) 113 144 LSB
DPL HL, (loc) 115 164 LSB

Operation: (X | LSB, X | LSB+ 1)=—+r1p

These instructions load the specified register pair from the
memory locations specified by the data given in the instruc-
tion (LSB) and the X register (MSB). The C, E, or L
register is loaded from the specified memory location, and
the B, D, or H registeris loaded from the next higher loca-
tion. The flags are unaffected.

DOUBLE PAGED STORE DPS

Mnemonic Op Code

DPS BC, (loc) 111 126 LSB
DPS DE, (loc) 113 146 LSB
DPS HL, (loc) 115 166 LSB

Operation: rp—s(X | LSB, X | LSB+1)

These instructions store the specified register pair in the
locations specified by the data given in the instruction (LSB)
and the X register (MSB). The C, E, or L register is stored
in the specified location, and the B, D, OR H register is
stored in the next higher location. The flags are unaf-
fected.

DOUBLE PAGED LOAD REVERSED DPLR(rp),loc
Mnemonic Op Code
DPLR BC, loc 062 114 LSB
DPLR DE, loc 174 134 LSB
DPLR HL,loc 176 154 LSB

Operation: (X | LSB+1, X | LSB)—sr1p

These instructions load the specified register pair from the
memory locations specified by the data given in the instruc-
tion (LSB) and the X register (MSB). The B, D, or H
register is loaded from the specified memory location, and
the C, E, or L register is loaded from the next higher loca-
tion. This is similar to the DPL instruction except that the
order in which the registers are loaded is reversed. The
flags are unaffected.

DOUBLE PAGED STORE REVERSED DPSR(rp),loc
Mnemonic Op Code
DPSR BC, loc 062 116 LSB
DPSR DE, loc 174 136 LSB
DPSR HL, loc 176 156 LSB

Operation: rp—=(X | LSB+1, X | LSB)

These instructions store the specified register pair into the
locations specified by the data given in the instruction (LSB)
and the X register (MSB). The B, D, or H register is stored
into the specified memory location, and the C, E, or L
register is stored in the next higher location. This is similar
to the DPS instruction except that the order in which the
registers are stored is reversed. The flags are unaffected.

REGISTER STORE REGS

Op Code: 055
This instruction stores all of the registers for the currently

selected mode in the field pointed to by the top entry of the
stack. The registers are stored in reverse, decrementing the

top entry in the stack after each register is stored. When the
instruction terminates, the top entry of the stack will be the
address of the last byte minus one.

For example, if entry is made with the top entry of the
stack pointing to location 02007 (octal), the registers are
stored as follows:

02000:A
02001:B
02002:C
02003:D
02004:E
02005:H
02006:L
02007:X

In the above example, the top entry of the stack will be
01777 when the instruction terminates. The flags and the con-
tents of the registers are not affected.

REGISTER LOAD REGL

Op Code: 111 055

This instruction loads all of the registers for the currently
selected mode from the field pointed to by HL. The registers
are loaded in reverse order, decrementing the address after
each byte is transferred. In this manner, the registers can be
reloaded from values stored by the REGS instruction. In the
example given for the REGS instruction, if the REGL in-
struction were entered with HL =02007, the registers shown
would be loaded from the locations shown. The condition
flags are not affected by this instruction.

5.11.3 Category 2—Stack Control
POP POP(rp)

Op Code: 060 or rp 060
Operation: (Stack)—srp

This instruction pops the most recent stack entry into the
specified register pair. If no pair is specified, the destination
defaults to the HL register pair. The flags are unaffected.

PUSH PUSH(rp)

Op Code: 070 or rp 070
Operation: rp—Stack

This instruction pushes the contents of the specified register
pair onto the stack. If no pair is specified, the source defaults
to the HL register pair. The flags are unaffected.

PUSH IMMEDIATE PUSH loc

Op Code: 051 (adr)
Operation: (adr)—sStack

This instruction pushes the value of the operand onto the
stack. The flags are unaffected.

STACK STORE STKS

Op Code: 065

This instruction POPs a specified number of stack entries
and stores them (LSB followed by MSB) in the field pointed
to by HL. HL is incremented after each byte is transferred. C
is decremented after each stack entry is stored. This instruc-
tion is interruptible after each stack entry is stored.

HL =first location in the storage area.

C= the number of entries to be POPped and
stored (1 through 16; 0 or 16 implies 16).

Exit: HL =address of last byte stored plus one.

C=modulo 16 zero.

Entry:

Condition flags are not affected.

STACK LOAD STKL

Op Code: 111 065

This instruction pushes onto the stack the specified number
of entries from the field pointed to by HL. The entries are
loaded in reverse order to allow restoring the stack from loca-
tions stored using the STKS instruction. HL is decremented
after each transfer; C is decremented after each stack entry.
This instruction is interruptible after each byte is stored on the
stack.

HL =last location in the storage area.

C= the number of entries to be pushed (1
through 16; 0 or 16 implies 16).

Exit: HL =address of the last byte pushed minus one.

C=modulo 16 zero.

Entry:

Condition flags remain unchanged.
5.11.4 Category 3—Byte Arithmetic, A Register

ADD IMMEDIATE Ad (rd) data
Op Code: 004 (vvv), r 004 (vvv)
Operation: (r) + vwv—sr

This instruction adds the value of the operand to the
specified register. If no register is specified, the A register is
used. All flags are set based on the result of the ADD
operation.

ADD AD(rs), AD(rs)(rd)
ADM, ADM (rd),

For AD(rs), r AD(rs)
Op Code: 20s, r 20s
Operation: (r) + (1s)—er
For ADM, r ADM
Op Code: 207, r 207
Operation: (r) + (M)—sr

This instruction adds the value of the source (rs or M) to
the specified register. If no register is specified, the A register
is used. All flags are set based on the result of the ADD
operation.

ADD WITH CARRY IMMEDIATE AC (rd) data
Op Code: 014 (vvv), r 014 (vvv)
Operation: (r) + vvv + Carry—sr

Adds the Carry bit and value of the operand to the
specified register. If no register is specified, the A register is
used. All flags are set based on the result of the operation.
ADD WITH CARRY AC(rs), AC(rs)(rd)

ACM, ACM(rd),

For AC(rs), r AC(rs)

Op Code: 21s, r 21s

Operation: (r) + Carry + (1s)—r
For ACM, r ACM

Op Code: 217, r 217

Operation: (r) + Carry + (M)—r

Adds the Carry bit and the source (rs or M) to the specified
register. If no register is specified, the A register is used. All
flags are set based on the result of the operation.
SUBTRACT IMMEDIATE SU (rd) data
Op Code: 024 (vvv), r 024 (vvv)

Operation: (r) - vvv—er

Subtracts the value of the operand from the contents of the
specified register. If no register is specified, the A register is
used. All flags are set based on the result of the operation. A
borrow out sets the carry flag.

SU(rs), SU(rs)(rd)
SUM, SUM(rd),

SUBTRACT

For SU(rs), r SU(rs)
Op Code: 22s, 1 225
Operation: (r)-(rs)—r
For SUM, r SUM
Op Code: 227, r 227
Operation: (r)-(M)—»r

Subtracts the source (rs or M) from the specified register. If
no register is specified, the A register is used. All flags are set
based on the result of the operation. A borrow out sets the
carry flag.

SUBTRACT WITH BORROW IMMEDIATE SB (rd) data

Op Code: 034 (vvv), r 034 (vvv)
Operation: (r)-vvv-Carry—sr

Subtracts the value of the operand and the Carry bit from
the specified register. If no register is specified, the A register
is used. All flags are set based on the result of the operation.
If a borrow out occurs, the Carry flag is set.

SUBTRACT WITH BORROW SB(rs), r SB(rs)

SBM, r SBM

For SB(rs), r SB(rs)
Op Code: 23s, r 23s
Operation: (1)-(rs)-Carry—r
For SBM, r SBM
Op Code: 237, r 237
Operation: (r)-(M)-Carry—sr

Subtracts the source (rs or M) and the Carry bit from the
specified register. If no register is specified, the A register is
used. All flags are set based on the result of the operation. If
a borrow out occurs, the Carry flag is set.

AND IMMEDIATE ND data, r ND data
Op Code: 044 (vvv), r 044 (vvv)
Operation: (r) —/|— vw—r

Forms the logical product of the specified register with the
value of the operand. If no register is specified, the A register
is used. The Carry flag is reset upon completion. All other
flags are set based on the result of the operation.

AND ND(rs), r ND(rs)
NDM, r NDM

For ND(rs), r ND(rs)
Op Code: 24s
Operation: (r) —/|— (rs)—s1
For NDM, r NDM
Op Code: 247, r 247
Operation: (r) —/|— (M)—sr

Forms the logical product of the specified register with the
source (rs or M). If no register is specified, the A register is
used. The Carry flag is reset upon completion. All other flags
are set based on the result of the operation.

OR IMMEDIATE OR data, r OR data
Op Code: 064 (vvv), r 064 (vvv)
QOperation: (r) V vvv—er

Forms the logical sum of the specified register and the
value of the operand. If no register is specified, the A register
is used. The Carry flag is reset upon completion. All other
flags are set based on the result of the operation.

OR OR(rs), r OR(rs)
ORM, r ORM
For OR(rs), r OR(rs)
Op Code: 26s, r 26s
Operation: () V (rs)}—sr
For ORM, r ORM
Op Code: 267, r 267
Operation: (r) V (M)—er

Forms the logical sum of the specified register with the
source (rs or M). If no register is specified, the A register is
used. The Carry flag is reset upon completion. All other flags
are set based on the result of the operation.

EXCLUSIVE OR IMMEDIATE XR data, r XR data
Op Code: 054 (vvv), r 054 (vwv)
Operation: (r) -V— vvv—»r

Forms the logical difference of the specified register and
the value of the operand. If no register is specified, the A
register is used. The Carry flag is reset upon completion. All
other flags are set based on the result of the operation.
EXCLUSIVE OR XR(rs), r XR(rs)

XRM, r XRM

For XR(rs), r XR(rs)
Op Code: 25s, r 25s
Operation: (r) -V— (rs)—»r1
For XRM, r XRM
Op Code: 257, r 257
Operation: (r) -V— (M)—er

Forms the logical difference of the specified register from
the source (rs or M). If no register is specified, the A register
is used. The Carry flag is reset upon completion. All other
flags are set based on the result of the operation.
COMPARE IMMEDIATE CP data, r CP data
Op Code: 074 (vvv), r 074 (vvv)

Operation: (r) : vvv

The value of the operand is subtracted from the specified
register but the results are not restored. If no register is
specified, the A register is used. All flags are set as if the in-
struction had been a SUBTRACT IMMEDIATE.
COMPARE CP(rs), r CP(rs)

CPM, r CPM

For CP(rs), r CP(rs)
Op Code: 27s, r 27s
Operation: (r):(rs)

For CPM, r CPM
Op Code: 277, 1 277
Operation: (r):(M)

The source (rs or M) is subtracted from the ispecified
register but the results are not restored. If no register is
specified, the A register is used. All flags are set as if the in-
struction had been a SUBTRACT.
SHIFT LEFT CIRCULAR SLC, rSLC

Op Code: 002, r 002
Operation: r(N-1)—r1(N), r7—10, r7—sCarry

Shifts the contents of the specified register left one bit in a
circular fashion. The most significant bit is moved to the least
significant bit, as well as to the Carry bit. If no register is
specified, the A register is used. The Carry bit is the same as
bit 0 upon completion. Zero, Sign, and Parity flags are not
affected.

SHIFT RIGHT CIRCULAR SRC, r SRC
Op Code: 012, r 012
Operation: r(N)—r(N-1), r0—17, r0—Carry

Shifts the contents of the specified register right one bit in a
circular fashion. The least significant bit is moved into the
most significant bit, as well as to the Carry bit. If no register
is specified, the A register is used. The Carry bit is the same as
bit 7 upon completion. The Zero, Parity, and Sign flags are
not affected by this instruction.
SHIFT RIGHT EXTENDED SRE, r SRE
Op Code: 032, r 032
Operation: r(N)—1(N-1), Carry—r7, rO—Carry

The specified register is shifted right one bit with the most
significant bit being replaced by the Carry bit and the least
significant bit replacing the Carry bit. If no register is
specified, the A register is used. The carry bit is set as described
above. The Zero, Parity, and Sign flags are not affected by this
instruction.

SINGLE PAGED

TO REGISTER OPERATIONS P(op)(r),loc

Mnemonic Op Code

PAD (n),loc Ir] 106 LOCLSB
PAC (r),loc Ir| 112 LOCLSB
PSU (r),loc Ir] 122 LOCLSB
PSB (1),loc Ir] 132 LOCLSB
PND (r),loc [r] 142 LOCLSB
PXR (r),loc [r| 152 LOCLSB
POR (1),loc [r] 162 LOCLSB
PCP (r),loc [r] 172 LOCLSB

These instructions perform the indicated operation bet-
ween the 8-bit value in the memory location specified by the
last byte in the instruction (LSB) and the X register (MSB)
and the 8-bit value in the specified register with all, except the
comparison operation, depositing the result in the specified
register. The COMPARE instruction performs the subtract
operation but does not store the result. All flags are set based
on the result of the specified operation. The logical opera-
tions cause the Carry flag to be reset.

5.11.5 Category 4—Word Arithmetic

INCREMENT REGISTER PAIR INCP
Mnemonic Op Code
INCP HL 015
INCP HL,2 117 015
INCP HL,A 017
INCP BC 062 015
INCP BC,2 113 015
INCP BC,A 062 017
INCP DE 174 015
INCP DE,2 115 015
INCP DE,A 174 017
INCP XA 022 015
INCP XA,2 111 015
INCP XA A 022 017

These instructions increment the indicated register pair by
one, two, or the contents of the A register. The increment
value is added to the LSB register and then the carry is added
to the MSB register. The Carry flag reflects the carry out of
the MSB. All other flags are indeterminate.

DECREMENT REGISTER PAIR DECP
Mnemonic Op Code
DECP HL 035
DECP HL,2 117 035
DECP HL,A 037
DECP BC 062 035
DECP BC,2 113 035
DECP BC,A 062 037
DECP DE 174 035
DECP DE,2 115 035
DECP DE,A 174 037
DECP XA 022 035
DECP XA,2 111 035
DECP XA,A 022 037

These instructions decrement the indicated register pair by
one, two, or the contents of the A register. The decrement
value is subtracted from the LSB register and then the borrow
is subtracted from the MSB register. The Carry flag reflects
the borrow out of the MSB. All other flags are indeterminate.

DOUBLE MEMORY

TO REGISTER OPERATIONS D(op)M(rp)
Mnemonic Op Code
DADM (rp) | rp | 013
DACM (rp) | rp | 310
DSUM (rp) | rp | 033
DSBM (rp) | rp | 330
DNDM (rp) | rp | 043
DXRM (rp) | rp | 053
DORM (rp) | rp | 063
DCPM (rp) | rp | 073

These instructions perform the indicated operation between
the 16-bit value at the memory location pointed to by the HL
register pair (LSB at the location pointed to and MSB at the
next higher location) and the 16-bit value in the specified
register pair (BC, DE, HL, or XA). In subtraction and
comparison, the value in the register pari. In all operations
except comparison, the result is deposited in the register pair.
The Carry, Sign, and Zero condition flags reflect the entire 16-
bit result. The logical operations cause the Carry flag to be
reset.

21

DOUBLE PAGED

TO REGISTER OPERATIONS D(op)P(rp),loc

Mnemonic Op Code

DADP (rp),loc | rp+1 013 LOCLSB
DACP (rp),loc | rp+1| 310 LOCLSB
DSUP (rp),loc | rp+1 | 033 LOCLSB
DSBP (rp),loc | rp+1]330 LOCLSB
DNDP (rp),loc | rp+1 | 043 LOCLSB
DXRP (rp),loc | rp+1 | 053 LOCLSB
DORP (1p),loc | rp+1 | 063 LOCLSB
DCPP (rp),loc | rp+1|073 LOCLSB

These instructions perform the indicated operation be-
tween the 16-bit value at the memory pointed to by X (MSB)
and LOCLSB (L.SB), and the 16-bit value in the specified
register pair. In subtraction and comparison, the value in
memory is substracted from the value in the register pair. In all
operations except comparison, the result is deposited in the
register pair. Carry, Sign, and Zero reflect the entire 16-bit
result. The logical operations cause the Carry flag to be reset.

DOUBLE IMMEDIATE

TO REGISTER OPERATIONS D(op)I(rp),data

Mnemonic Op Code

DADI (rp),data | rp | 110 LSB MSB
DACI (rp),data [rp | 311 LSB MSB
DSUI (rp),data | rp | 130 LSB MSB
DSBI (rp),data | rp | 331 LSB MSB
DNDI (rp),data | rp | 140 LSB MSB
DXRI (rp),data | tp | 150 LSB MSB
DORI (rp),data | rp | 160 LSB MSB
DCPI (rp),data | rp | 170 LSB MSB

These instructions perform the indicated operation be-
tween the 16-bit operand (LSB, MSB) following the Op Code
and the 16-bit value in the specified register pair. In subtraction
and comparison, the value of the operand is subtracted from
the value in the register pair. In all operations except com-
parison, the result is deposited in the register pair. Carry, Sign,
and Zero reflect the entire 16-bit result. The logical operations
cause the Carry flag to be reset.

DOUBLE REGISTER

TO MEMORY OPERATIONS DM(op)(rp)
Mnemonic Op Code
DMAD(p) | rp+1]110
DMAC((p) | p+1]311
DMSU (rp) | rp+11]130
DMSB (rp) | rp+1] 331
DMND(rp) | rp+1] 140
DMXR (rp) [rp+1] 150
DMOR (1p) | rp+1 | 160
DMCEP (rp) | p+11]170

These instructions perform the indicated operation be-
tween the specified registe pair and 16-bit value pointed to by
the HL register pair. The LSB is at the indicated location, and
the MSB is at the next higher location. In subtraction and
comparison, the value in the register pair is subtracted from the
value at the memory location. In all operations except com-
parison, the result is deposited in the memory location pointed
to by the HL pair (LSB, MSB). Carry, Sign, and Zero reflect
the entire 16-bit result. The logical operations cause the Carry
flag to be reset.

DOUBLY LINKED LIST DELETE LLDEL

Op Code: 111 051

A doubly linked list construct appears as follows:

ITEM1 DA ITEM2 forward pointer
DA ITEM3 backward pointer

ITEM2 DA ITEM3 forward pointer
DA ITEM1 backward pointer

ITEM3 DA ITEM1 forward pointer
DA ITEM2 backward pointer

ITEM4 DA 00000 item to be inserted
DA 00000

When the linked list delete instruction is performed with
HL pointing to ITEM2, the instruction deletes ITEM2 from
the list by moving its forward pointer to the forward pointer
of ITEM1 and its backward pointer to the backward pointer
of ITEM3. When the instruction completes, the entry value
of HL has not been changed, while the DE register is left
pointing to ITEM1 and BC is left pointing to ITEM3. The
flags are not affected.

DOUBLY LINKED
LIST INSERT LLINS
Op Code: 062 051

This instruction inserts a list item into a linked list con-
struct. Using the example shown for the LLDEL instruction,
if the insert instruction is performed with DE pointing to
ITEM2 and HL pointing to ITEM4, the instruction exits with
ITEM2’s forward pointer pointing to ITEM4, ITEM4’s for-
ward pointer pointing to ITEM3, ITEM3’s backward pointer
pointing to ITEM4, and ITEM4’s backward pointer pointing
to ITEM2. Finally, the entry values of the DE and HL
register are unchanged and the BC register is left pointing to
ITEMS3. The flags are not affected.

INTEGER MULTIPLY:
HLDE = HL * BC

IMULT

Op Code: 111 011

This instruction multiplies the unsigned values in HL and
BC, putting an unsigned result in the HLDE register quadru-
ple MSB in H and LSB in E). The A, B, C, and X registers
are not changed by this instruction. The Zero flag reflects the
result in the HL register pair. The Carry flag is set if the sign
bit in the D register is a one. Sign and Parity flags are
undefined.

DOUBLE INTEGER DIVIDE: DIDIV

HLDE/BC => Q(DE),R(HL)
Op Code: 111 031

This instruction produces an error indication with the
Carry condition flag set if the BC register pair is less than or
equal to the HL register pair (in unsigned arithmetic). Other-
wise, it divides the unsigned HLDE register quadruple by the
BC register pair, placing the quotient in the DE register pair
and the remainder in the HL register pair. The A, B, C, and
X registers are unchanged by this instruction. The Carry flag
is cleared to indicate a successful division. The Zero flag
reflects the remainder in the HL register pair. The Sign and
Parity flags are undefined.
INTEGER DIVIDE: IDIV
DE/BC == Q(DE)R(HL)

Op Code: 062 031

This instruction loads the HL register pair with zeros, then
it divides the unsigned quadruple HLDE by the BC register
pair, placing the quotient in the DE register pair and the re-
mainder in the HL register pair. The A, B, C, and X registers
are unchanged by this instruction. The Carry flag is reset,
while the Zero flag reflects the remainder in the HL pair. The
Sign and Parity flags are undefined.

TWOs COMPLEMENT

A REGISTER PAIR COMP(rp)
Mnemonic Op Code
COMP BC 062 011
COMP DE 174 011
COMP HL 176 011

This instruction first clears bits 0-6 of the A register. If the
sign bit of the A register is set, this instruction performs a 2’s
complement upon the specified register pair. The flags are
undefined.

TWOs COMPLEMENT

A REGISTER PAIR COMPS(rp)
Mnemonic Op Code
COMPS BC 113 011
COMPS DE 115 011
COMPS HL 117 011

This instruction first clears bits 0-5 of the A register and
duplicates bit 7 in bit 6. If the sign bit (bit 7) is set, this in-
struction performs a 2’s complement upon the specified
register pair. The flags are undefined.

INCREMENT AND DECREMENT INDEX INCI,DECI
Mnemonic Op Code
INCI (disp),(index) 005 LSB(i)
DECI (disp),(index) 025 LSB()
INCI* (disp),(index) 111 005 LSB MSB(i)
DECI* (disp),(index) 111 025 LSB MSB()

The processor has a construct called an index, which is a
16-bit value kept in memory. The concept is similar to index
registers, except that all the values are kept in the page of
memory pointed to by the X register. The index is specified by
a single byte in the instructions, shown as (i) above, which
points to the memory location containing the LSB of the
index value, the MSB being in the next higher memory loca-
tion. The LSB of the index address is specified by (i), while
the MSB of index address is specified by the X register. The
instruction also contains a displacement, shown as (disp)
above, that is either one or two bytes in length, depending
upon the op code. These instructions either increment or
decrement the value of the index by the value of the displace-
ment. The Carry flag is set based on the 16-bit result. The
other flags are indeterminate.

LOAD FROM INDEX

INCREMENTED OR DECREMENTED LFIL,LFID
Mnemonic Op Code

LFII BC, (disp),(index) 062 005 LSB(i)
LFID BC, (disp),(index) 062 025 LSB()

LFII BC,* (disp),(index) 113 005 LSB MSB(i)
LFID BC,* (disp),(index) 113 025 LSB MSB(i)
LFII DE, (disp),(index) 174 005 LSB()
LFID DE, (disp),(index) 174 025 LSB(i)

LFII DE,* (disp),(index) 115 005 LSB MSB(i)
LFIDDE,* (disp),(index) 115 025 LSB MSB(i)
LFIIHL, (disp), (index) 176 005 LSB(i)
LFID HL, (disp),(index) 176 025 LSB()

LFII HL,* (disp), (index) 117 005 LSB MSB(i)
LFIDHL,* (disp),(index) 117 025 LSB MSB(i)

The processor has a construct called an index, which is a
16-bit value kept in memory. The concept is similar to that of
index registers, except all the values are kept in a page of
memory pointed to by the X register. The index is specified by
a single byte in the instruction, shown as (i), which points to
the memory location containing the LSB of the index value,
the MSB being the next higher memory location. The letter (i)
specifies the LSB of the index address, while the X register
specifies the MSB of the index address. The instruction also
contains a displacement, shown as (disp) above, that is either
one or two bytes in length, depending on the opcode.

These instructions are similar to the INCI and DECI in-
structions, except that they increment or decrement the value
of the index and deposit it in the specified register. The Carry
flag is set based on the 16-bit result in the specified register
pair. The other flags are indeterminate.

31

32

5.11.6 Category S—Jumps, Calls, Returns

UNCONDITIONAL JUMP JMP loc
Op Code: 104 (adr)
Operation: (adr)—»P

This instruction represents an unconditional transfer of
control. The second byte of the instruction represents the
LSB of the jump address, while the third byte of the instruc-
tion represents the MSB. The flags are not affected.

JUMP IF CONDITION TRUE JT(cf) loc
Op Code: 1(c + 4)0 (adr)
Operation: If condition true, (adr)—sP

This instruction examines the flag designated by c. If the
flag is set, control is transferred to (adr). If it is reset, the next
sequentially available instruction is executed. The flags are
not affected.

JUMP IF CONDITION FALSE JF(cf) loc
Op Code: 1c 0 (adr)
Operation: If condition false, (adr)—sP

This instruction examines the flag designated by c. If the
flag is reset, control is transferred to (adr). If it is set, the next
sequentially available instruction is executed. The flags are
not affected.
NOP JUMP NOJ loc

Op Code: 045 (adr)
Operation: P + 3—sP

This instruction increments the P-counter twice. It is useful
for overstoring jump instructions which might be executed
while being overstored. The procedure to overstore a jump in-
struction would be to first overstore the Op Code with an 045
(NOP JUMP) and then update the address portion. Then the
Op Code could be overstored with the appropriate jump in-
struction. The primary use of this instruction is for overstor-
ing the interrupt vector jump instructions for the interrupts
which cannot be disabled (such as MEMORY PARITY
FAULT) and which might occur while the jump is being
overstored. The flags are not affected.
SUBROUTINE CALL CALL loc
Op Code: 106 (adr)

Operation: P +3—Stack, (adr)—=P

This instruction transfers the address of the next sequen-
tially available instruction to the pushdown stack, and
transfers control to the address specified by the contents of
the two memory locations immediately following the Op
Code. The first byte following the Op Code is the LSB of the
address and the next byte is the MSB. The flags are not
affected.

SUBROUTINE CALL
IF CONDITION TRUE CT(cf) loc
Op Code: 1(c+4) 2 (adr)

Operation: If condition true, P +3—Stack, (adr)—sP

Examines the flag designated by c. If the flag is set, the in-
struction transfers the address of the next sequentially
available instruction to the pushdown stack and transfers
control to (adr). If it is reset, the next sequentially available
instruction is executed. The flags are not affected.

SUBROUTINE CALL
IF CONDITION FALSE CF(cf) loc
Op Code: 1c2 (adr)

Operation: If condition false, P + 3—sStack, (adr)—eP

This instruction examines the flag designated by c. If the
flag is reset, the instruction transfers the address of the next
sequentially available instruction to the pushdown stack and
transfers control to (adr). If it is set, the next sequentially
available instruction is executed. The flags are not affected.
SUBROUTINE RETURN RET
Op Code: 007
Operation: (Stack)—»P

This instruction transfers control to the address specified
by the most recent entry in the pushdown stack and deletes
that entry from the stack. The flags are not affected.

SUBROUTINE RETURN
IF CONDITION TRUE RT(cf)
Op Code: 0 (c+4)3

Operation: If condition true, (Stack)—s P

This instruction examines the flag designated by c. If the
flag is set, control is transferred to the address specified by the
most recent entry in the pushdown stack and that entry is
deleted. If the flag is reset, the next sequentially available in-
struction is executed. The flags are not affected.

SUBROUTINE RETURN
IF CONDITION FALSE RF (cf)
Op Code: Oc 3

Operation: If condition false, (Stack)—sP

This instruction examines the flag designated by c. If the
flag is reset, control is transferred to the address specified by
the most recent entry in the pushdown stack and that entry is
deleted. If the flag is set, the next sequentially available in-
struction is executed. The flags are not affected.

SYSTEM CALL SC
Op Code: 067

This instruction clears the bits in the system status register,
the User Mode System Interrupt Enable, and Millisecond In-
terrupt Enable flags. It pushes the current program counter,
status, and flags onto the stack and performs a jump to
170020 in system ROM. This is the mechanism by which the
user would communicate with the operating system incor-
porating the User mode. The flags are not affected.

BREAKPOINT BP
Op Code: 052

This instruction clears the User Mode, System Interrupt
Enable, and Millisecond Interrupt Enable flags. It pushes the
current program counter, status, and flags onto the stack and
performs a jump to 170024 in system ROM. The flags are not
affected.

USER RETURN UR
Op Code: 111 102

This instruction sets the User Mode flag, transfers control
to the most recent entry on the stack, and deletes that entry
from the stack. This is a privileged instruction. The flags are
not affected.

ENABLE INTERRUPTS AND JUMP EJMP(oc)

Op Code: 111 050 (adr)

This instruction sets the System Interrupt Enable flag and
Millisecond Interrupt Enable flag, enabling interrupts after
the next instruction. It then transfers control to (adr). This is
a privileged instruction. The flags are not affected.

ENABLE INTERRUPTS AND RETURN EUR

Op Code: 062 050

This instruction sets the System Interrupt Enable flag,
Millisecond Interrupt Enable flag, and the User Mode flag. It
then transfers control to the most recent entry on the stack
and deletes that entry. This is a privileged instruction. The
flags are not affected.

INTERRUPT RETURN IRET

Op Code: 161

This instruction POPs the top entry of the stack into the
system status register and flags. It then executes an uncondi-
tional return to the address specified by the second entry on
top of the stack, enabling interrupts after the next instruction.
This is a privileged instruction. The flags are not affected.

5.11.7 Category 6—1/0 Group

EXECUTE BEEP EX BEEP

Op Code: 151

This instruction activates a tone producing mechanism. It
causes the system status to be saved and control to be
transferred to system ROM. The ROM then activates a tone
producing mechanism. CAUTION: Three stack entries are
used during execution.

EXECUTE CLICK EX CLICK

Op Code: 153

This instruction activates an audible click producing
mechanism. It causes the system status to be saved and con-
trol to be transferred to system ROM. The ROM then ac-
tivates a click producing mechanism. CAUTION: Three
stack entries are used during execution.

COMMON BUS OUTPUT CBOUT

Op Code: 145, r 145

This instruction places the contents of the specified register
on the data bus while placing the DE pair on A15-A0 as a
port number. If no register is specified, the A register is used.
This instruction is used to operate on peripheral attachments
used on the Datapoint common bus (CB). This is a privileged
instruction. The tiags are not aftected.

COMMON BUS INPUT CBIN

Op Code: 141, r 141

This instruction reads the contents of the data bus into the
specified register after placing DE on A15-A0 as a port
number. If no register is specified, the A register is used. This
instruction is used to operate on peripheral attachments used
on the CB. This is a privileged instruction. The flags are not
affected.

COMMON BUS SHORT OUTPUT CBSOUT

Op Code: r 147 PPP

This instruction places the specified register on the data bus
and uses PPP as a port number (forces zero on upper eight
bits). If no register is specified, the A register is used. This in-
struction can only deal with the first 256 ports. This is a
privileged instruction; the flags are not affected.

COMMON BUS SHORT INPUT CBSIN

Op Code: r 143 PPP

This instruction sends PPP (forces zero on upper eight bits)
out as a port number and reads the data bus into the specified
register. If no register is specified, the A register is used. This
instruction can only deal with the first 256 ports. This is a
privileged instruction; the flags are not affected.

33

34

COMMON BUS BLOCK INPUT BLKIN

Op Code: 171

This instruction copies a block of bytes from the I/0 ad-
dress specified by the DE register pair to the memory address
specified by the HL register pair. The block length is con-
tained in the C register. Transfer will stop if a character is
stored which is equal to the 2’s complement of the B register,
if B is not equal to zero. The HL and DE register pairs are in-
cremented, and C is decremented after each byte is transfer-
red. This instruction is interruptible after each byte is
transferred. It is a privileged instruction.

Entry: HL =memory address of first destination byte.
DE =1/0 address of first source byte.
C =number of bytes to move (C=1 to 255;
C =0 implies 256).
B =2’s complement of terminating character.
B =0 implies no terminating character.
Exit: HL =destination address of last byte stored plus
one.
DE =source address of last byte stored plus
one.
C =zero or count before termination character
found.

B, A, X = entry value.
The flags are not affected.

COMMON BUS BLOCK OUTPUT BLKOUT

Op Code: 173

This instruction copies a block of bytes from the memory
address specified by the HL register pair to the I/0 address
specified by the DE register pair. The block length is con-
tained in the C register. Transfer will stop if a character is
copied which is equal to the 2’s complement of the B register,
if B is not equal to zero. The HL and DE register pairs are in-
cremented, and the C register is decremented after each
transfer. This instruction is interruptible after each byte is
transferred. It is a privileged instruction.

Entry: HL =memory address of first source byte.
DE =1/0 address of first destination byte.
C =number of bytes to be transferred (C=1 to
255, C =0 implies 256).
B =2’s complement of terminating character.
(B =0 implies no terminating character.)
Exit: HL =source address of last byte moved plus
one.
DE =destination address of last byte moved
plus one.
C =zero or count before terminating character
found.

B, A, X=entry value.

The flags are not affected.

COMMON BUS
MODIFIED BLOCK INPUT MBLKIN
Op Code: 111 171

This instruction copies a block of bytes from the 1/0 ad-
dress specified by the DE register pair to the memory address
specified by the HL register pair. The block length is con-
tained in the C register. Transfer will stop after a character is
stored which is equal to the 2’s complement of the B register,
if B is not equal to zero. The HL register pair is incremented,
and the C register is decremented after each byte is transfer-
red. This instruction is privileged and is interruptible after
each byte is transferred.

Entry: HL =memory address of first destination byte.
DE =1/0 address of the source.
C =number of bytes to be moved (C=1 to 255;
C =0 implies 256).
B = 2’s complement of the terminating character.
(B =0 implies no terminating character).

Exit: HL =destination address of last byte stored plus

one.

DE =entry value.

C =zero or count before terminating character
is found.

B, A, X = entry value.

The flags are not affected. This instruction is designed to
assist in programming the MIFM common bus attachment.

COMMON BUS
MODIFIED BLOCK OUTPUT MBLKOUT
Op Code: 111 173

This instruction copies a block of bytes from the memory
address specified by the HL register pair to the I/O address
specified by the DE register pair. The block length is con-
tained in the C register. Transfer will stop after a character is
copied which is equal to the 2’s complement of the B register,
if B is not equal to zero. The HL register pair is incremented
and the C register is decremented after each byte is transfer-
red. This instruction is privileged and is interruptible after
each byte is transferred.

Entry: HL =memory address of the first source byte.
DE =1/0 address of the destination.
C =number of bytes to be transferred (C=1 to
255, C=0 implies 256).
B = 2’s complement of the terminating character.
(B =0 implies no terminating character).
Exit: HL =memory address of last byte transferred

plus one.
DE =entry value.
C =zero or count before terminating character
is found.
B, A, X = entry value.

The flags are not affected. This instruction is designed to
assist in programming the MIFM common bus attachment.

5.11.8 Category 7—System Instructions

SYSTEM INFORMATION INFO

Op Code: 111 010

This instruction is used to differentiate the 8600 from other
Datapoint processors. In the 5500, this instruction performs
no operation. In the 6600, this instruction loads a 1 into the A
register and the revision number of the microcode ROM into
the B register. In the 8600, INFO loads the A register with a 5
and leaves the B register unchanged. None of the other
registers are affected by this instruction. The flags are not
affected.

PROCESSOR TYPE CAPABILITIES INFOx
Mnemonic Op Code
INFO2 062 010
INFO3 113 010
INFO4 174 010
INFOS5 115 010
INFO6 176 010
INFO7 117 010
INFO8 022 010

The functions of this instruction are reserved for future
use.

HALT HALT
Op Code: 000, 001 or 377
Operation: The processor halts

These instructions PUSH the current system status, flags,
and program counter (address following the HALT) onto the
stack. They clear the USER, SIE, and MIE status and jump
to 170030 in system ROM. These are privileged instructions,
and the flags are not affected.

ENABLE INTERRUPTS EI
Op Code: 050

This instruction sets the System Interrupt Enable and
Millisecond Interrupt Enable bits in the status register. Inter-
rupts cannot occur until one instruction after EI is executed.
This is a privileged instruction, and the flags are not affected.

DISABLE INTERRUPTS DI
Op Code: 040
This instruction clears the System Interrupt Enable and
Millisecond Interrupt Enable bits in the status register, disabl-
ing interrupts immediately. This is a privileged instruction,
and the flags are not affected.
CONDITION CODE SAVE CCS,CCS(1)

Op Code: 042, r 042

This instruction loads the register (r) with a value such that
if the value is added to itself using the AD(r) operation, the
condition flags will all be restored to their state before the
CCS instruction was executed. The logic equations for the
value loaded into (r) are:

A7 = Carry
A6 = Sign
AS =A4 =A3=A2=0

Al
A0

Not Zero and Not Sign
Not Zero and Not Parity

This instruction does not alter the state of any of the condi-
tion flags. If (r) is not specified, the A register is used.

BASE REGISTER LOAD BRL,BRL(r)

Op Code: 072, r 072

This instruction loads the base register from the specified
register. If no register is specified, the A register is used. This
is a privileged instruction, and the flags are not affected.

BASE REGISTER SAVE BRS

Op Code: 062 163

This instruction loads the A register from the base register.
This is a privileged instruction.

LOAD SYSTEM CONTROL LKA

Op Code: 163

This instruction copies the contents of the A register into
the system control register. Bits 3 through 7 are loaded only if
bit 2 of the A register is equal to 1; otherwise, only bits 0 and
1 are loaded. This is a privileged instruction; the flags are not
affected.

LOAD A FROM SYSTEM CONTROL LAK

Op Code: 111 163

This instruction loads the A register from the system con-
trol register. Bit 2, the control register load enable bit, will
always be set to a one when read back. Thisis a privileged in-
struction. The flags are not affected.

SAVE SYSTEM STATUS LAS

Op Code: 165
This instruction copies the contents of the system status

register into the specified register. This is a privileged instruc-
tion. The flags are not affected.

STACK MOVE STKMV
Register Pair Op Code
BC 062 065
DE 174 065
HL 176 065

This instruction swaps the current value of the stack
pointer and offset with the contents of the specified register
pair. This allows the location of the old stack area to be read
and a new stack area substituted. This is a privileged instruc-
tion. The flags are not affected.

SECTOR TABLE LOAD STL

Op Code: 077

This instruction loads up to 16 entries of the sector table
from a byte string pointed to by HL. The entries are loaded
from entry O to entry 15. The memory address is incremented
after each byte is transferred. The sector entry is output on
A15-A12, and the entry location is incremented with each
transfer. This is a privileged instruction.

Entry: HL =location of first byte.
C =number of entries to be loaded (0 to 16; 0
implies no loads to be performed).
Exit: No registers are changed.

The flags are not affected.

SECTOR TABLE

LOAD STARTING AT OFFSET STLO(r)
Mnemonic Op Code
STLO A 022 077
STLO B 111 077
STLO C 062 077
STLO D 113 077
STLOE 174 077

This instruction loads up to 16 entries of the sector table
from a byte string pointed to by the HL. The offset is con-
tained in the most significant four bits of (r). It is output on
A15-A12 and incremented after each byte is transferred. The
memory address is also incremented after each transfer. This
is a privileged instruction.

Entry: HL =location of first byte in a table of up to
16 sector table entries to be loaded.

C =number of entries to be loaded (0 though 16
0 implies no load takes place).

(r) =starting sector table entry (upper four bits 0
through 15; the lower four bits of (r) can be
any value).

Exit: Sector table loaded.

No registers are changed. The flags are not affected.

NOTE: For the special case of STLOC where the C register
contains both the offset and number of entries to load, a load
count of 16 is not possible.

SECTOR TABLE READ STR
Mnemonic Op Code
STR A 022 055
STR C 062 055
STR D 113 055
STRE 174 055
STR H 115 055
STR L 176 055
STR X 117 055

This instruction loads the specified register from the sector
table entry contained in the high order four bits of the B
register. The sector table selection is made from control
register bits 1 and 0 (S2, S respectively). The flags are not
affected.

SELECT ALPHA MODE ALPHA

Op Code: 030

This instruction selects the alpha mode registers and con-
trol flip-flops. This is a privileged instruction. Flags are swit-
ched to alpha mode.

SELECT BETA MODE BETA

Op Code: 020

This instruction selects the beta mode registers and control
flip-flops. This is a privileged instruction. The flags are swit-
ched to beta mode.

5.11.9 Category 8—String Operations

BLOCK TRANSFER
OR BLOCK TRANSFER REVERSE BT,BTR
Op Codes: 021 for BT, 111 021 for BTR

The Block Transfer instructions move the number of bytes
specified in the C register from the fieid pointed to by HL to
the field pointed to by DE, while adding the contents of the A
register to each byte transferred. BT causes the pointers to be
incremented after each transfer, while BTR causes the
pointers to be decremented after each transfer. If the B
register is not zero, the transfer will stop if a character that is
equal to the 2’s complement of the B register is stored in the
destination field (stops after the matching character is
moved). These instructions are interruptible upon completion
of each transfer.

Entry: HL =location of first source byte.

DE =location of first destination byte.

C =number of bytes to move (C = 1 to 255; 0
for 256).

B =2’s complement of terminating character if
not 0.

A =8-bit value added to each byte as it is
moved.

Exit: HL =location past last source byte.
DE = location past last destination byte.
A =entry value.
B =entry value.
C =zero or count before termination character
found.

The flags are indeterminate.
BLOCK CONVERT BCV
Op Code: 062 021

Block Convert is a variation of Block Transfer, where the
field pointed to by the DE registers is translated byte-by-byte
using the translate table pointed to by the HL registers. DE is
incremented after each transfer. The translation is performed
by adding the source byte to the value of the L register (the
addition is performed in the A register) and using the
resulting value (H | L+s) as a memory address to the
translate string. The translated value is compared to the B
register (if B does not equal zero), and early termination oc-
curs if the byte matches in 2’s complement form. This instruc-
tion is interruptible upon completion of each transfer.

Entry: HL =location of the translate table (must not
cross a page boundary).
DE =location of the first byte to be translated.
C =number of bytes to move.
B =2’s complement of terminating character if
not 0.
A =no entry value used.
Exit: HL = undefined.
DE =location of last source byte translated plus
one.
A =LSB of last table position used for
translation.
B =entry value.
C =zero or count before termination character
found.
Algorithm: 1. Get the byte pointed to by DE.
2. Set A to the sum of the byte added to L.
3. Get the byte pointed to by HA. This is the
table’s translated byte.
4. Store the translated byte where DE points.
5. Increment DE.
6. B is added to the translated byte.
7. Stop if the Carry and Zero conditions are
true—a match is found.
8. Decrement the C register. (Add - 1.)*
9. Go to step 1 if the result is non-zero.

*A decrement operation is actually an add of -1.
The flags are indeterminate.

BINARY FIELD ADD WITH CARRY

OR SUBTRACT WITH BORROW BFAC, BFSB

Op Code: 011 for BFAC, 031 for BFSB

These instructions take the field pointed to by HL and
either add it to or subtract it from the field pointed to by DE,
leaving the result in the field pointed to by DE. The fields
may be 1 through 16 bytes in length as determined by the
lower four bits of the C register. Each string is stored in
memory with the MSB at the smallest address to the LSB at
the largest address. HL and DE are decremented after each
transfer. This instruction is interruptible after the addition or
subtraction of each byte takes place.

HL =location of LSB of the operand field.
DE =location of LSB of the accumulator field.
C =number of bytes in the field (1 through 16;
0 implies 16).

Exit: HL =address of operand MSB minus one.

DE =address of accumulator MSB minus one.

C =modulo 16 zero.

Algorithm: 1. Load the implicit register from C.

2. Get the byte pointed to by HL.

3. Add it with carry or subtract it with
borrow from the byte pointed to by DE;
store the result where DE points.

4. Decrement HL. and DE by one.

. Decrement the implicit register by one.
6. Go to step 2 if the implicit register is not
now Zzero.

Entry:

(]

Carry is carry or borrow from the last operation. Other
flags are indeterminate.

DECIMAL FIELD ADD WITH CARRY DFAC

Op Code: 111 041

A zoned BCD number is one that contains two distinct sec-
tions within a single byte. The lower four bits are the actual
BCD number, while the upper four bits are a code unique to
that given system of numbers. Thus, compatible zoned BCD
numbers are those with matching zone sections (bits 4-7).
This instruction takes a field of zoned BCD digits pointed to
by the HL register pair, adds it to the field of zoned BCD
digits pointed to by the DE register pair, and stores it in the
field pointed to by the DE pair. HL and DE are decremented
after each transfer. The zone bits are set to those contained in
the B register. Each string is stored in memory with the MSB
at the smallest address and the LSB at the largest address. The
fields may be 1 to 16 bytes in length, as determined by the C
register. This instruction is interruptible after each byte addi-
tion takes place.

Entry: HL =location of LSB of the operand field.
DE = location of LSB of accumulator field.
B = zone information (bits 0-3 must be 0, bits
4-7 must be other than zero).
C =number of bytes in the field (1-16, 0 implies
16).
Exit: HL = address of operand MSB minus one.

DE = address of accumulator MSB minus one.
B =entry value.
C =modulo 16 zero.

Algorithm: 1. Load the implicit register from C.
2. Get the byte pointed to by HL.
3. Add it with carry to the byte pointed to by
DE.
4. Strip away the zone bits.
5. Clear the Carry and go to step 7 if the result
is less than 10.
6. Subtract 10 from the result and set the
Carry.
7. Set the zoning bits.
8. Store the result where DE points.
9. Decrement HL and DE by one.
10. Decrement the implicit register by one.
11. Go to step 2 if the implicit register is not
ZEro.

Carry is carry from the last operation. Other flags are in-
determinate.

DECIMAL FIELD SUBTRACT WITH BORROW DFSB
Op Code: 062 041

This instruction takes a field of zoned BCD numbers
pointed to by the HL register pair, subtracts it from a field of
zoned BCD numbers pointed to by the DE register pair, and
stores the results in the field pointed to by the DE register
pair. HL and DE are decremented after each transfer. The
zone bits of the two fields must be identical. The zone bits of
the result are set to those contained in the B register. The
fields may be from 1 to 16 bytes in length, as determined by
the C register. Each string is stored in memory with the most
significant byte at the smallest address and the least signifi-
cant byte at the largest address. This instruction is interrupti-
ble after each subtraction takes place.

Entry: HL =location of LSB of operand field.
DE =location of LSB of accumulator field.
B =zone information (bits 0-3 must be 0, bits
4-7 must be other than zero).
C =number of bytes in the field (1 to 16, 0 im-
plies 16).

HL =address of operand MSB minus one.
DE =address of accumulator MSB minus one.
B =entry value.
C =modulo 16 zero.
Algorithm: 1. Load the implicit register from C.

2. Get the byte pointed to by HL.

3. Subtract it, with borrow, from the byte

pointed to by DE.
- Go to Step 6 and clear the Carry if the byte
result is not negative.

5. Add 10 to the result and set the Carry.
6. Set the zone bits to those in the B register.
7. Store the result where DE points.
8
9

Exit:

H

. Decrement HL and DE by one.
. Decrement the implicit register by one.
10. Go to step 2 if the implicit register is not
zero.

Carry is borrow from the last operation. All other flags are
indeterminate.

BLOCK COMPARE BCP

Op Code: 041

This instruction matches two strings of bytes from the
MSB to the LSB until either a mismatch is found or the
specified maximum number of bytes has been scanned. HL
and DE are incremented after each byte. This instruction is
interruptible after each byte is compared.

HL =location of MSB of the subtracting field.
DE =location of MSB of the field subtracted
from.
C =the maximum number of bytes to scan (1
through 255; 0 implies 256).
Exit: IF A MISMATCH WAS FOUND:

HL =location of the mismatch plus one in the

subtracting field.

DE =location of the mismatch plus one in the

field subtracted from.

C=entry value minus number of bytes that
matched. Condition flags all reflect the
result of the subtract instruction that
found the two bytes differing. Zero is
clear.

IF ALL BYTES MATCHED:

HL =location of the last byte plus one in the

subtracting field.

DE =location of the last byte plus one in the

field subtracted from.

C =zero.

Algorithm: 1. Get the byte pointed to by HL.

. Subtract it from the byte pointed to by DE.
. Increment DE and HL.

. Exit if the Zero condition is false.

. Decrement C. (Add -1.)

. Go to Step 1 if C is not equal to zero.

. Exit with the Zero condition true.

Entry:

NN bW

The Zero flag is set. Other flags reflect the result of the last
significant operation.

BINARY FIELD SHIFT LEFT BFSL

Op Code: 075

This instruction shifts a field of bytes in memory left one
bit position as if all of the bytes made up one continuous
word. HL is decremented after each byte shifts. This instruc-
tion is interruptible after each byte is processed.

Entry: HL =location of LSB of the field.
C =the field width (1 through 16; 0 or 16 im-
plies 16).
Carry =bit shifted in on right.
Exit: HL =location of MSB minus one of the field.

C =modulo 16 zero.
A =indeterminate.

Carry bit contains the most significant bit of the MSB. All
other flags are indeterminate.

BINARY FIELD SHIFT RIGHT BFSR

Op Code: 111 075

This instruction shifts a field of bytes in memory right one
bit position, as if all of the bytes made up one continuous
word. HL is incremented after each byte shifts. This instruc-
tion is interruptible after each byte is processed.

Entry: HL =location of MSB of the field.
C =the field width (1 through 16; 0 or 16 im-
plies 16).
Carry = bit shifted in on left.
Exit: HL =location of LSB plus one of the field.

C =modulo 16 zero.
A =indeterminate.
Carry = bit shifted out on the right.

Carry flag contains the least significant bit of the LSB. All
other flags are indeterminate.

BINARY FIELD

LEFT TO RIGHT OPERATIONS BFLR(op)
Mnemonic Op Code
BFLRAD 111 006
BFLRAC 111 016
BFLRSU 111 026
BFLRSB 111 036
BFLRND 111 046
BFLRXR 111 056
BFLROR 111 066

These instructions perform the indicated operation
between the field pointed to by the HL pair and the field
pointed to by the DE pair, leaving the result in the field
pointed to by the DE pair. These instructions increment
HL and DE after each byte transfer. This instruction is in-
terruptible after each byte is processed.

Entry: HL =location of operand field.

DE =location of accumulator field.

C =field width (1 to 16; 0 implies 16).

Carry =carry or borrow into the operation.
Exit: HL =location of last byte plus one of operand.

DE =location of last byte plus one of ac-
cumulator field.

C =modulo 16 zero.

Carry =carry or borrow out of the operation.

Flags reflect the results of the last operation. All logical
operations cause the Carry flag to reset.

39

42

6.2.1 Transmitter Logic

The transmitter logic idles in the non-transmit mode (RCV
mode). Whenever a character is loaded into the Data Output
Register and the Data In line pair is at a mark, the transmit
logic will load the transmit shift register and transmit bit
counter, thus transmitting the character. When the transmit
shift register is loaded, the start, stop, control/data and parity
bits are also loaded. Whenever a character is loaded into the
Data Output Register, the transmit logic goes into the
transmit mode and transmits the character. After the
character is transmitted, the transmit logic reverts to the
receive mode. However, during DMA output cycles, the
transmit logic goes into the transmit mode as the first word is
loaded into the Data Output register and remains in the
transmit mode until the last character of the DMA output cy-
cle has been transmitted.

6.2.2 Receiver Logic

The receiver logic assembles characters transmitted by the
addressed peripheral, checks for parity errors and then
latches the character into the Data Input register. The receiver
logic, upon receiving a start bit, enables the gated oscillator
and sets the Data Out line pair to a space if a second character

cannot be handled by the hardware immediately following the
first. In the non-DMA mode, only single characters can be
handled, while in the DMA mode two characters are needed
to make up a word for a DMA transfer. Thus in the DMA
mode, the Data Out line pair remains at a mark until the start
bit of the second character is detected. Once the DMA
transfer has written the word from the Data In register into
memory, the Data Out line pair will be driven to a mark
allowing another byte or word of data, if any, to be
transmitted.

6.3 Microbus Interface Module

The Microbus Interface Module (MIFM) provides the elec-
tronic hardware necessary to connect the internal common
bus to the external microbus. The MIFM contains a program-
mable polling feature that provides enhanced system opera-
tional capability such as processor interrupt. The block data
transfer rate is 500 kilobytes per second, and the maximum
block length is 256 bytes. A block diagram of the MIFM is
shown in Figure 6-2.

For detailed information on ports, registers, and program-
ming, see the respective product specifications for the 9310
Disk Drive (Document No. 60876) and the 1401 Diskette
Drive (Document No. 61031).

COMMON BUS
INTERFACE
ADDRESS STROBE STROBE » STROBE 1
COMM BUS DECODE DRIVER
= 20MHz OSC DECODE L
ADR 8-15 ADDRESS AND INTERNAL STROBE 2
—»| LATCH TIME BASE INT ACK
l T—]—T ADDRESS ADDRESS
YYVYY COMMAND —> anD
COMMBUS . DATA 9 DRIVER COMMANDS
ADR 0-7 RECEIVER 23
—40
m g
m
U-BUS
DATA
DATA | ‘ DRIVER
DRIVER [u-BUS
l DATA
o
5 U-BUS
INVERT m o&— DATA pe—
COMM B8US CONTROL E 7 RECEIVER
RECEIVER
CONTROL =i AND
SIGNALS LOGIC ___I
LOGIC | » UBUS
C&,"%Z‘.ﬁs - 2 DRIVER INT ACK
ADDRESS 3
> COMMAND m ¥
BYTE I’
\ Y
L
BUFFER
ADDRESS BUFFER COMPARE >
COUNTER > 6axs > BYTE XOR
REGISTER
y
MASK N U-8US
o AND/OR N REo
COMM BUS)|
INTREQ

Figure 6-2: Microbus Interface Board

6.3.1 Common Bus Interface

The common bus provides internal synchronous interface
between the CPU, memory, and peripherals. The MIFM uses
the vectored interrupt capability on the common bus. All
peripheral devices attached to the MIFM have their microbus
interrupt lines wired to one common bus line, CBIREQO. The
MIFM decodes its own selectable address and enables other
common bus signals to perform their functions.

The interrupt sequence provides a means whereby a
peripheral device may asynchronously gain the attention of
the processor. The interrupt originates either in the peripheral
device or in the MIFM status polling logic. The processor
handles the interrupt scheduling in its master interrupt
controller. It responds to the interrupt with a specially
coded read instruction to determine the nature of the
interrupt and to identify the appropriate interrupt
handling routine.

6.3.2 Microbus Interface

The microbus is an external parallel interface bus that con-
nects the peripheral to the MIFM. The microbus is composed
of an eight-bit command and address bus, an eight-bit bi-
directional data bus, two command strobes, an interrupt
acknowledge strobe, an interrupt request line, and a +5 volt
power indication.

During an output cycle, the MIFM loads the com-
mand/address register and data lines with the appropriate in-
formation and enables the bus drivers. The peripheral device
completes the specified command and is ready to accept addi-
tional commands every two microseconds. Commands re-
quiring longer than this are associated with a ‘‘busy’” status bit.

During an input cycle, the MIFM loads the command/ad-
dress register with the appropriate information and enables
the bus drivers. The peripheral device disables its bus drivers
after detecting the trailing edge of the transfer strobe.

An interrupt cycle is initiated whenever a peripheral device
pulls the microbus IREQ line low. The processor may res-
pond at any time to the IREQ by initiating the microbus
IACK strobe. The IREQ line is independent of all other ac-
tivity on the microbus.

6.3.3 Data Transfer

All data transfer between the processor and the MIFM is
under software control. Six I/0 instructions are provided for
data transfer: DMPIN, DMPOUT, BLKIN, BLKOUT,
UBIN, and UBOUT. (These instructions are explained fully
in Section 5.11.7 of this manual.) The MIFM requires 1K
words of I/0 address space. Allocation is determined by
jumpers or switches in the MIFM. This provides addressing
flexibility and allows multiple MIFM modules to reside on the
same common bus.

6.3.4 Polling Function

The MIFM includes timing, control, and storage logic to
provide a programmable peripheral device polling function.
This function permits peripheral devices that do not support
interrupts to be used in a real-time environment and enhances
the operation of those that do support interrupts.

The MIFM polling function is organized around a 64-byte
random access memory (RAM) that provides the needed
storage for address/command, strobe, compare, and mask
bytes. Polling, when enabled, is initiated by the start of a pro-
cessor memory cycle and is controlled by an internal time
base generator. Polling logic handles one interrupt at a time.

Scanning from the buffer is done in a sequential fashion,
however, loading of the buffer is under software control and
the order of device addresses is arbitrary. Bytes in the buffer
may be written/read individually or on a block basis. The
MIFM buffer must be initialized before polling is enabled.

The polling sequence generates a microbus operation of
600 ns (400 ns plus 100 ns for both setup and hold). Timing is
initiated when the start of a memory cycle is detected on the
common bus and polling is enabled. The sequence of events
after initiation is controlled by the time base generator in the
MIFM to ensure completion of the polling cycle before the
start of a processor 1/0 cycle or the next memory cycle.

43

46

7.3 Memory

The MPCA has the capability of addressing 2K X 8 of
static RAM and 8K x 8 of ROM. The MPCA micro-
processor accesses ROM and RAM by performing Z80
memory cycles.

RAM resides at location 020000-023777 and is addressed
by the CPU at I/0 070000-0737777. It provides for
the individual Receive and Transmit FIFOs, translation
tables, and associated staging buffers for each port. The
RAM also contains all pointers, status bytes, command bytes,
interrupt information bytes, and the MPCA controller stack.
Both the CPU and the Z80 have access to the RAM.

The ROM resides at location 00000-07777. Approximately
2K of ROM is used for program execution by the MPCA
controller. The remaining 2K segment is used for on-board
diagnostics. The CPU does not have access to ROM.

7.4 USART

The MPCA provides interface between the CPU and each
of the serial RS-232C channels via eight-bit data buffers.
Each serial port is driven by its own Universal Syn-
chronous Receiver/Transmitter (USART) integrated
circuit that converts the eight-bit bytes to and from the
CPU to serial data. On the MPCA side, the USARTS feed
64-byte FIFO buffers which in turn feed 32-byte staging
buffers. In the translaton mode, the receive FIFOs are
reduced to 32 bytes to make room for the translation table.

7.5 Baud Rate Generators

Programming of baud rates is done by the Z80 upon re-
quest by the CPU. Transmit baud rate clocks are generated
by external chip baud rate generators. Receive baud rates are
generated by the USART internal baud rate generator.
Any programming difference between the two baud rate
generators is transparent to the CPU.

7.6 CPU Interface

The CPU has access to the MPCA through Base Page 1/0
addressing for control related data only, and through extend-
ed 1/0 addressing for character transfers as well as additional
control commands.

Addressing of the MPCA at the board level is accomplish-
ed by the CPU writing out a board select code prior to initial
data and control transfers. This address is common on all
MPCA cards in the system, and each card will sample and
compare this code to see if it has been selected. Once a board
has been selected, it will remain so until another MPCA
board select code is written out. Each MPCA card shares the
same interrupt request line.

Commands for the MPCA are written by the CPU to on-
board RAM space in extended 1/0. After the command data
has been written, the CPU will issue a maskable command
service interrupt to the MPCA controller by writing to an ad-
dress in base page /0. Command information can take up to
four bytes in the RAM command section depending on what
instruction is to be implemented. All instructions will use byte
0 of the command section in RAM.

7.7 Interrupt Structure

Interrupt-related information is stored primarily in the on-
board RAM in the CPU’s extended 1/0 space. The CPU
polls each MPCA in the processor to determine which boards
(and which ports on each board) are requesting service. Once
this has been determined, the CPU services the interrupt and
then writes the Interrupt Service command. This causes the
interrupt request bits of the ports serviced to be reset. If an in-
terrupt is pending for a port, the Z80 will wait until the Inter-
rupt Service command has been written before filling receive
staging buffers or emptying transmit staging buffers. If the
interrupt request line is not being asserted for a port on the
same MPCA card (in the case of multiple MPCAs), then the
Z380 will write the port service code and assert the interrupt re-
quest line if staging buffer service is needed. If the interrupt
request line is high, the Z80 will write the port service code to
the address set aside in on-board RAM.

7.8 Firmware

Operating firmware for the MPCA is contained in on-
board ROM. The firmware is responsible for initialization,
diagnostics, polling loop, and command execution.

The initialization sequence is invoked by a common bus
POR, or by a restart or reset from the CPU. This routine
brings the USARTS to a known state and initializes the on-
board RAM.

The polling loop is the main operating loop in the firm-
ware. It runs continuously except when interrupted by the
CPU to execute special commands. (Command interrupts are
disabled between individual port polling sequences.) The loop
polls each port in turn for needed USART, FIFO, and staging
buffer service.

7.9 Diagnostics

MPCA diagnostic code resides in on-board ROM. It allows
the MPCA microprocessor to test board components. Inter-
nal testing is done for the MPCA RAM, ROM, USARTs,
various hardware registers, and for the microprocessor
itself. Hardware failures are reported to the CPU, and the
polling loop is entered if possible.

PART 8
MULTIFUNCTION COMMUNICATIONS
ADAPTER (MFCA)

8.1 General local memory with parity. A block diagram of the MFCA
is shown if Figure 8-1.
The Multifunction Communications Adapter (MFCA) is a The 8600 MFCA includes the following features:
printed circuit board that resides in the 8600 processor’s inter-
nal card cage. The MFCA provides a means of bi-directional ® Synchronous/asynchronous operation, full or
information transfer between the processor and an RS- half duplex.
232C compatible communications channel with reverse * BISYNC, SDLC, HDLC, ADCCP, and GENSYNC
channel. The MFCA may be connected to an external protocols.
modem or an RS-366 compatible Automatic Calling Unit * Programmable baud rates (110 to 56K).
(ACU). The processor can be equipped with a maximum of ¢ Programmable internal or external clock.
two MFCAs. The MFCA includes a microprocessor; a ® Programmable NRZ or NRZI data.
serial input/output channel, a counter/timer circuit, and a ® Programmable sync characters and stop bits,

¢ Hardware CRC generation/checking.

{ 2MHz 4
EXTERNAL CLOCK DRIVERS/ [1
CLOCK » 16K »| RECEVERS L 5y
GENERATOR RAM CLOCK OUT
— |
{MOSPHI (4 MH2) L y Q 1 CH A SINGLE I
| I %
Z80 [TXMIT/REC FULL CHANNEL _ |
MICRO- ﬁ - —> > cLock [- »! DRIVERS/ |
> SELECT - RECEIVERS
ST I g el |
I
SELECT | o |
—&r > s, |
- z| 2 REVERSE
3 =
3 = 2 g Blle 1 3 L o3 DRIVERS/ | CHANNEL |
° 4 z 3 SR g 3 8 =3 3 *1 RECEIVERS
o o} h g v < |
—
< Y J ¥ 3 L4 |
* MFCA DATA BUS A l | | A]
} MFCA ADDRESS BUS | ¥ 1|
MFCACONTROLBUS | § § | § oo7 1 W20 z80 :
DMA 1o |
GATE ' ADDRESS | >
ARRAY DECODE |
DRIVERS/
A RECEIVERS| |
- |
) '
i
B DRIVERS | |
Qg RECEIVERS
(o]
=7 !
D » 8 =
rQ > z0
e y &3
- | COMM BUS | o1 9z
110 DECODE or
D
COMM BUS K comm Bus
L v READ WRITE N
Ui COMMON BUS o

Figure 8-1: Multifunction Communications Adapter Board

48

8.2 Microprocessor

The MFCA contains an on-board Z80A microprocessor
that runs at 4 MHz and uses its own internal address and data
buses for communication with the other components on the
board. The microprocessor derives its clock from a crystal
controlled clock source contained on the MFCA.. It supports
maskable and non-maskable interrupts along with DMA
(Direct Memory Access) and has its own internal refresh logic
for use with dynamic RAMs. (Note: In the following sec-
tions, the MFCA microprocessor is referred to as the Z80 and
the 8600 central processor is referred to as the CPU.)

8.3 Serial Interface

The MFCA contains a Z80A SIO (Serial Input/Output)
and supports one full communication channel and one
reverse channel. In addition to the communication channel,
the SIO provides an RS-366 compatible ACU. The drivers
and receivers are located on the MFCA I/0 panel. One
version of the I/0 panel is available: it supports the RS-
232C channel.

8.4 Counter/Timer Circuit

Baud rates are program selected through Z80 1/0 com-
mands and are provided by a Z80A Counter/Timer Circuit
(CTC). Separate programmable transmit and receive clocks
are provided. The CTC derives its clock from the 4 MHz
source used to drive the Z80 and the internal timing of the
CTC. The CTC also acts as a real-time clock and an interrupt
controller.

8.5 Memory

The memory space is organized as 16K X 9 RAM, 4K X 8
ROM, and 16K DMA addressing space. The RAM provides
storage for the code that is down-line loaded from the CPU
memory. The RAM also provides buffer space for received
and transmitted data. Dynamic RAM supports odd parity
and begins at address 040000 in Z80 memory space.

The ROM resides at location 000000-07777 and contains

1 + A3 300 Tha fiemecaea
system firmware and sclf-test Giagnosiics. 11nc rirmwairc iin-

itializes the MFCA and facilitates the downloading process of
CPU resident code into the MFCA RAM. A checksum,
stored in the last byte of the ROM, is used to check ROM in-
tegrity.

The MFCA uses memory-mapped DMA for rapid transfer
of data to and from CPU main memory. The DMA is tran-
sparent to the Z80 and begins at address 0140000.

Access to the MFCA RAM is provided only to the Z80
through the internal address and data buses. MFCA opera-
tional code is transferred into MFCA RAM from main
memory through a combination of 1/0 registers, MFCA

firmware, and DMA. The 1/0 registers appear in the I/0 ad-
dress space of both the Z80 and the CPU and are loaded by
the CPU with the download command and registers. The
firmware monitors these registers, accepts the command
parameters, and then begins loading the MFCA RAM by ac-
cessing CPU memory through DMA.

The DMA controller consists of the Z80 in combination
with a custom gate array common bus state controller. When
accessed as memory, the DMA controller asserts wait to the
Z80 and then gains control of the common bus as a bus
master using the priority transfer scheme. As soon as the
needed byte is transferred to or from CPU main memory, the
780 is taken out of wait and continues processing.

8.6 Interrupt Structure

The MFCA may be operated in polled or interrupt mode.
The Z80 itself supports both maskable and non-maskable in-
terrupts from various sources including the 1/0 interface to
the CPU, CTC, and SIO. The interrupt to the CPU is issued
via the common bus interrupt signal level 6 (CBIREQ6). Each
MFCA in the 8600 (maximum of two) is tied in common to
this interrupt level, and conforms to the common bus tim-
ings. Interrupts to the CPU through thes common bus are
used for CPU-to-MFCA communication. Internal interrupts
to the Z80 are used for specialized functions of the Z80 and for
communication between the Z80 and special devices such as
the SIO.

8.7 Firmware

The MFCA ROM-resident firmware drives the I/0 inter-
face and provides initialization, downloading, execution, and
diagnostic commands as well as various essential routines
such as reset, power-up, and abort. It also provides a soft-
ware protocol necessary to allow the passing of these com-
mands and data back and forth between the MFCA and the
CPU.

8.8 Diagnostics

The MFCA includes on-board diagnostic capabilities im-

plemeinted with hardware and {irmware.

The firmware diagnostics provide self-test routines to
check out every major hardware block in the MFCA in-
cluding a check of the ROM by testing the checksum loaded
in the last byte of the ROM.

PART 9
SYSTEM FIRMWARE

9.1 Introduction

The 8600 processor has 4K of system ROM that resides on
the CP/RIM board. The system ROM is addressed only in
System Mode at addresses 0170000-0177777. The major func-
tions of system ROM are:

® Initialization

* Diagnostics

® System RAM Vectors

¢ Initial Program Loader

¢ Keyboard/Display Routines
* Debug

These modules are presented in the following sections of
Part 9.

9.2 Initialization

System initialization consists of power-on reset (POR) and
restart. On power-up, the CP transfers control to the POR
routine by causing a jump to the POR Trap Vector. The
routine then performs a series of functions to bring the pro-
cessor into an operational mode. Upon completion, the POR

Memory Address Vector Type Default Action

0167400 Memory Parity Error *E1 MEMORY

PARITY ERROR*
0167406 Input Parity Error *E2 INPUT PARITY
ERROR*
0167414 Output Parity Error *E3 QUTPUT
PARITY ERROR*
0167422 Write Protect *E4 WRITE
Violation PROTECT ERROR*
0167430 Access Protect *ES ACCESS
Violation PROTECT ERROR*
0167436 Privileged Instruction *E6 INSTRUCTION

Violation ERROR*

sequence passes control to the restart routine, which performs
a save of the system state and determines whether a debug or
bootload request has occurred. Restart can also be initiated
from the keyboard or from a software routine.

9.3 Diagnostics

Diagnostics in system ROM are used to detect, isolate, and
recover from faults in the 8600. Fault testing is done upon
POR. The diagnostic routine checks the processor, sector
tables, ROM, RAM, RAM buffers, RIM interface, KDS,
PIO, and MIFM.

Once the POR diagnostics have successfully run to comple-
tion, control is transferred to the operating firmware to com-
plete initialization. If any component is found to be faulty, a
status message is issued with the sign-on message. If an
operable system cannot be configured, a status message will
appear on the screen and control will be transferred to debug.

9.4 System RAM Vectors

The system RAM vectors shown below may be trapped by
software. If not, they transfer control to system firmware
default routines. With the exception of the One Millisecond
Interrupt, these vectors are non-maskable.

Memory Address Vector Type Default Action

0167444 One Millisecond POPs stack and
Interrupt jumps to zero
0167452 System Call *E7 INSTRUCTION
ERROR*
0167460 Breakpoint Saves status and
enters debug
0167466 Unassigned *E8 INSTRUCTION
Instruction ERROR*
0167474 Sector Table Parity *E9 SECTOR
Error PARITY ERROR*
0167502 Power Failure Trap *POWER FAIL*
0167510 Halt *HALT*

Figure 9-1: System RAM Vectors

50

9.5 IPL Block Loader

The loader searches for the presence of operational devices
from which to perform an Initial Program Load (IPL). An
IPL can be performed from any compatible device attached
to the PIO, MIFM, or RIM. The loader searches peripheral
storage devices for a valid IPL block. The search is perform-
ed in the following order:

A—Tapes (9301)

B—Disks (9301)

C—Drive 1 of 9302 extended disks
D—Drive 2 of 9302 extended disks
E—Drive 3 of 9302 extended disks
F—Drive 4 of 9302 extended disks
G—Removable disks (9320)

H—Drive 0 of 1401 and 1403 diskettes
J—Drive 1 of 1401 and 1403 diskettes

If a tape, disk, or diskette is not in place, the corresponding
drive is skipped.

When a functioning device is found on-line with media in
place, the search sequence stops and a block load from the
on-line device is performed. A check of the loaded data is per-
formed to determine its validity. If the IPL block is invalid,
the search sequence continues. This is not a wrap-around
search, and control is transferred to the RIM loader routine if
the search sequence completes without finding a valid IPL
block. Peripheral device search may be passed by holding the
KBD and CTRL keys down when initializing Restart. The
loader is initiated via external entry point 0170115.

9.6 Keyboard/Display Routines

The KDS module contains several subroutines that are used
by system ROM to control the keyboard and display func-
tions of the 8600 processor. The following routines have ex-
ternal entry points.

Entry Routine Description

Point Name

0170070 $86KEYIN Input Translated Keyboard Entry

0170073 $86KDSII Initialize the Keyboard and
Display

0170076 $86CHRLD Load the Display Character Font

0170101 $86DSPII Initialize the Display

0170104 $86DSPLY Display the Character String
Pointed to by HL

0170107 $86CRSLD Blink the Cursor at Screen Coor-
dinates in DE

0170112 $86CLOC Calculate the Display Buffer
Address

0170115 $86RSTRT Reboot the Machine

0170120 $86DOSKY Input Untranslated Keyboard
Entry

9.6.1 $86KEYIN

Entry point: 0170070

Registers: Entry: None.

Exit: A has keyboard character. H, L,

and BC are scratched. All others
are preserved.

Flags: The zero flag is set if no character is available. The zero
flag is not set if the character is presented. All others are
indeterminate.

Stack: Three levels are used.

Exit: Return to calling routine.

This subroutine will obtain a character from the keyboard.
Depending upon the entry point used, the character will be
translated or untranslated. If the translated entry point is
used, the A register will contain the ASCII character on exit.
Otherwise, the A register will contain the character as
entered.

9.6.2 $86KDSII

Entry point: 0170073

Registers: A,_ B, C, D, E, H, and L are scratched at
exit.

Stack: Three levels are used.

Exit: Return to the calling routine.

This subroutine initializes the keyboard and display to a
blank screen, cursor off, and the abbreviated, default charac-
ter font.

9.6.3 $86CHRLD

Entry point: 0170076

Registers: Entry: HL points to font load table.
Exit: All registers are scratched.

Stack: Three levels are used.

Exit: Return to calling routine.

This subroutine loads the character font RAM from a
character font data string pointed to by HL. The screen is
blanked during the font load operation and is restored upon
completion.

Format of font data string is:

ASCII, 12 bytes of font
ASCII, 12 bytes of font

ASCII, 12 bytes of font
9.6.4 $86DSPII

Entry point: 0170101

Registers: Entry: no requirement.

Exit: A, D, E, H, and L are scratched.
Stack: Two levels are used.
Exit: Return to calling routine.

This subroutine initializes all display line pointers, sets the
screen to normal mode with block cursor, and blanks the en-
tire screen.

9.6.5 $86DSPLY
Entry Point: 0170104
Registers: DE points to the beginning cursor
location [D = Horizontal (0 to
79), E = Vertical (-12 to 11.)
HL points to the string to be

displayed. B contains the display
attributes.

Entry:

Exit: DE points to the ending cursor
position + 1. HL points to
ending string position + 1.

All others are scratched.

Stack: Five levels are used.

Exit: Return to calling routine.

The DISPLAY subroutine displays, on the screen, the
character string pointed to by HL. The screen location for the
start of the display may be in DE, or it may be embedded in
the string before the first displayable character. The display
options are available by setting their corresponding bits in the
B register high:

Bit O Underline

Bit 1 Two Level

Bit 2 Blink

Bits 3-5 Not used

Bit 6 Non-destructive blanks
Bit 7 Inverse video

In addition to characters to be displayed, the character
string may contain the following embedded control se-
quences. All codes are represented in octal.

$NS AAA AAA $NS (0203) =New String Address follows,
where AAA AAA is the new address.

$H HHH $H (011) =New horizontal cursor position
follows, where HHH is the new horizontal
position.

$V VVV $V (013) =New vertical cursor position
follows, where VVV is the new vertical
position,

$RU $RU (023) =Roll screen up one line.

$RD $RD (024) =Roll screen down one line.

$EEOL $EEOL (022) =Erase to End of Line.

SEL $EL (015)=End of Line. Carriage return

and line feed with roll-up one line if
already on the bottom line and ends the
string.

$SEEOF $SEEOF (021) =Erase to End of Frame.
Erase to end of this line and all screen

lines below this one.

$BP $BP (007) =Beep.

$F $F (033) =Force display of next character.

$CK $CK (0207) = Click.

$HA $HA (0211) =Horizontal adjustment
follows.

$VA $VA (0213) = Vertical adjustment follows.

$HU $HU (0223) = Home Up. The cursor
returns to the home position, the upper
left-hand corner.

$HD $HD (0224) =Home Down. The cursor
returns to the home down position, the
lower left-hand corner.

$0 $0 (0233) = New Options follow. The op-
tion bits are described above.

$ES $ES (003) =End of string.

Each display string must be terminated by a $ES character
(003) or by a $SEL (015).

9.6.6 $86CRSLD

Entry Point: 0170107

Registers: Entry: DE cursor coordinates (see 9.6.5).
Exit: DE unchanged.
A, B, and C are scratched.
X, H, and L are preserved.
Stack: Three levels are used.
Exit: Return to calling routine.

This subroutine positions the cursor to the screen coor-
dinates passed to it in DE.

The $86CRSLD subroutine positions and displays the cur-
sor to the screen coordinates contained in DE. It is invoked
by several firmware routines and may be invoked by a soft-
ware call to $86CRSLD. Loading DE to an invalid cursor
location, such as -1, will turn the cursor off.

9.6.7 $86CLOC

Entry point: 0170112
Registers: Entry: DE contains cursor coordinates
(see Section 9.6.5).
Exit: DE contains the screen buffer ad-

dress. C,A is scratched. All others
are preserved.

51

52

Stack: One level is used.

Exit: Return to calling routine.

This subroutine converts cursor coordinates to the cor-
responding screen buffer address.

9.6.8 $86RSTRT
Entry Point: 0170115

Registers: Entry: None.

Exit: None.
This subroutine reboots the system when called externally.
9.6.9 $86DOSKY

Entry point: 0170120

Registers: Entry: None.

Exit: A has keyboard character. H, L,
and C are scratched. All others
are preserved.

Flags: The zero flag is set if no character is
available. The zero flag is not set if the
character is presented. All others are indeter-
minate.

Stack: Three levels are used.

Exit: Return to calling routine

This subroutine will obtain a character from the keyboard.
Depending upon the entry point used, the character will be
translated or untranslated. If the translated entry point is
used, the A register will contain the ASCII character on exit.
Otherwise, the A register will contain the character as
entered.

9.7 Debug

The immediate accessibility of debug crcates a flexible
debugging interface between user and machine. The 8600
debug routines are similar in function to the 5500/6600 debug
routines; however, some commands have been changed, add-
ed, or deleted.
9.7.1 Entry to Debug

There are six methods of entry to debug:

1. Manual depression of the DSP, CTRL, and INT keys,
followed by a release of the CTRL or INT key.

2. Execution of a dynamic breakpoint set through debug.

3. Execution of a breakpoint instruction embedded in the
user program.

4. At the completion of a firmware interrupt trap routine.

5. Execution of a return instruction following a debug
call command.

6. As a consequence of an irrecoverable error during
diagnostic execution.

9.7.2 Saving the Machine State

Upon entry, debug saves the active register set, the condi-
tion flags, the processor control register, the KDS screen con-
trol/interrupt byte, and the base register.

When entry to debug is accomplished by one of the first
four methods listed above, the processor will push the flags
and the status register onto the stack following the program
counter. Debug will retrieve the status and save it. The pro-
cessor will disable interrupts and switch to system mode.

When a return instruction is executed following a debug
call command, the status register is not available and the
status register value that was last saved will be used. This
method of entry will not work with a user mode routine,
because the RET will not force the system out of user mode
and user memory space.

In all cases, debug will switch to the debug stack to preserve
the system stack. All debug commands use the contents of the
registers upon entry to debug.

Upon exit from debug (through the C, E, or J commands),
all registers and flags are restored to the values they contained
upon entry. If these values were altered, then the altered
values are restored. This means that the machine state is
totally restored to the condition at debug entry, except for the
values that were intentionally altered. The two bottom levels
of the stack are scratched.

9.7.3 Display Format

The 8600 debug maintains two current addresses
(CURADR), one for memory access and the other for 170
space. The basic debug display consists of five lines in the
lower right corner of the screen:

RRRRRR = CURADR offset from origin
AAAAAA = CURADR absolute address
* NNN = The value stored at CURADR

MMMMMM = LSB,MSB address formed at
CURADR
nnnnnn* = Command input line

The top two lines are displayed in inverted video if 1/0
space is selected. The relative address (RRRRRR) is com-
puted by subtracting the origin bias from CURADR, and is
displayed only if the origin bias is non-zero and origin mode
is selected. The asterisk (*) represents the display or input of
ASCII alpha characters.

9.7.4 Command Syntax
Debug command syntax uses the following notation:
Indicates an optional sequence of octal

digits not to exceed the number of n’s
given.

nnn

(nnn)nnn

nnnnnn

12345

Indicates an optional sequence of octal
digits of either three or six n’s in length.
If input argument contains more than
eight bits of significance, special results
will occur. In general, two bytes of
memory will be affected by the command:
either a register pair or a memory address
in LSB,MSB format.

Indicates a 16-bit argument. If no digits
are present, default values will be used.

Indicates a special command whose ac-
cidental execution is inhibited by the re-
quirement that it contain this unique
argument.

9.7.5 Input Command List

The complete set of debug commands is presented below.
Command definitions are given for unshifted and shifted

values.

Unshifted Debug Commands

nnnnnnA

nnnnnnB

nnnnnnC

nnnnnnD

nnnnnnE

nnnnnnl

nnnnnnJ

nnnkK

Set current 1/0 space address to nnnnnn
and display that location. If memory
space is selected, switch to 1/0 space with
no origin. If nnnnnn is not given, use last
current I/0 space address.

Set a breakpoint at nnnnnn. If nnnnnn is
not given, set a breakpoint at CURADR.

Call the given or current address. The
machine state is restored before control is
passed to the subroutine. A RETURN
from the called subroutine results in
debug being re-entered and the machine
state being saved.

Decrement CURADR (1/0 space or
memory space as currently selected) by
one or nnnnnn.

Continue execution from nnnnnn. If
nnnnnn is not given, use top system stack
entry. Status is restored to the condition
existing prior to debug entry.

Increment CURADR (I/0 space or
memory space as currently selected) by
one or nnnnnn.

Jump to given or current address.

Set the control register to nnn. An error
will result if nnn is not specified. (This
command sets the control register, not the
saved value.)

(nnn)nnnM

nnnnnnN

nnO

nnnnnnP

12345Q

Modify the contents of the current address
location (I/O space or memory space as
currently selected). If nnnnnn x 0377,
modify two bytes, LSB followed by MSB.
If no argument is specified, it is treated as
if 000 had been entered.

Set current memory address to nnnnnn
absolute. If 1/0 space is selected, set
memory space with no origin.

Set origin table pointer and origin mode.
If nn is not specified, origin mode will be
cleared for memory or 1/0 space.

Load the base register with the upper
eight bits of nnnnnn—0100000. (This
command loads the base register, not the
saved value.)

Load the sector table selected by the con-
trol register. CURADR points to a table
whose first entry contains the following
information:

. The number of entries to be loaded into

the sector table is in the four last signifi-
cant bits.

. The offset of the first entry into the sec-

tor table is in the four most significant
bits.

Note: During power-up, system firmware initializes the sector
tables so that entries 015 and 016 (octal) point to RAM loca-
tions 0150000 through 0167777 used by the debugger and
other firmware routines. Changing these entries causes the
debugger to enter an undefined state due to the loss of its

RAM memory.

R

nnS

nnnT

12345T

nnnY

z

Perform Alpha/Beta Switch. The saved
registers are reloaded, the switch is per-
formed, and the newly active registers are
saved.

Display stack entry nn. If nn is not given,
display stack entry 0. An error will result
if nn > 037.

Display sector table entry nnn where the
first n selects the sector table (0-3), and
the second and third n’s select the entry
(0-15). If nnn is not given, sector table
0/entry 0 will be displayed.

Start memory self-test.
Modify or display the saved system status.

Display all registers and register pairs (in
the format shown below):

FFF AAA BBB CCC DDD EEE HHH LLL XXX

BBBCCC DDDEEE

HHHILLL XXXAAA STKP

53

54

Shifted Debug Commands

(nnn)nnna

nnnb
(nnn)nnnc
nnnd
(nnn)nnne
nnf
(nnn)nnnh

nnnnnni

nnnk

nnnl

nnnnnno

nnnnnnp

Modify saved Register A value to nnn and
display. If no nnn is specified, display the
saved value.

Modify/Display Register B value.
Modify/Display Register C value.
Modify/Display Register D value.
Modify/Display Register E value.
Modify/Display condition code flags.
Modify/Display Register H value.

Set addressing bias to nnnnnn and select
170 space.

Alter the saved control register value to
nnn and display. If nnn is not specified,
display only.

Modify/Display Register L value.

Set addressing bias to nnnnnn and select
memory space.

Load the saved base register with the up-
per eight bits of nnnnnn — 0100000.

Display base register (saved value).

nnr

nnnnnns
12345¢
12345u
nnnx

nnnnnn
ENTER

CANCEL
BACKSPACE

(nnn)nnn.

(nnnnnn)A

POP stack (nn) times. Error if out of
range.

PUSH nnnnnn onto the stack.

Go to KDS invokable test.

Go to invokable PIO loopback test.
Modify/Display Register X.

Set relative address in memory or 1/0
space. CURADR = relative address +
origin bias. If nnnnnn is not specified, set
to current address.

Cancel the command input line.
Backspace one space on input line.
Modify memory and increment
CURADR. If nnnnnn < 0400, modify one
byte and increment by one. If nnnnnn >
0377, modify two bytes and increment by

two. No nnnnnn is treated as 000.

Same as ‘“ . ”’ but save nnnnnn. If no
nnnnnn, use the last nnnnnn saved.

Clear all active debug set breakpoints.
Display processor identification data (pro-

cessor type, macro ROM version,
microcode version).

The processor will beep and return to the command inter-
preter when an error occurs.

APPENDIX A
ANCILLARY EQUIPMENT

A.1 General

In addition to the primary components presented in
previous sections of this manual, the 8600 processor includes
a power supply and a motherboard. These two items are
discussed in this Appendix.

A.2 Power Supply

The power supply is a single-ended, pulse width
modulated, forward converter that operates at 40 KHz. The
power supply resides in the processor’s internal card cage and
operates directly from the rectified AC line using a voltage
doubler at 120 VAC or a full wave bridge rectifier at 240
VAC. The 5 volt secondary of the 40 KHz power transformer
is rectified, filtered, and applied to the processor. The control
loop is closed on the +5 VDC output. The + 12 and -12 volt

outputs are derived from series regulators that receive rec-
tified and filtered 16 VDC from additional secondary wind-
ings. A block diagram of the power supply is given in Figure
A-1.

The power supply operates from nominal power of either
120 VAC or 240 VAC, 50/60 Hz. The power input circuit is
field changeable for operation at either voltage. The power
input circuit consists of two fuses, a line filter, and a power
switch. Voltage is taken from the power input circuit to run
the processor cooling fan. All output voltages are regulated.

The power supply produces the following voltages at the
specified maximum rated current:

+5 VDC at 23 amps
+12 VDC at 4 amps
- 12 VDC at 1 amp

»] RECTIFIER >

> +15VDC, 23A

FILTER
AC LINE RECTIFIER | 300 VDG | 1
120/240VAC AND
FILTER XFMR —L
RECTIFIER] 16vDC SERIES
»| FILTER > CEGULATOR » +12VDC, 4A
12 VDC
RECTIFIER]-16vDC
40KHZ »| FILTER > Regﬁ?_ffon » -12VDC, 1A
POWER -12vDC
SWITCH
POWER
CONTROL | 4+15vDC 5V SENSE FAIL POWER
L»! POWER »| CONTROL ™ ALARM [T FAL
SUPPLY +5VDC ALARM
LINE LINE
»| FREQ FREQ
CLOCK cLOCK

Figure A-1: Power Supply

56

A.2.1 Protection Circuits

The power supply has five protection circuits that prevent
damage from certain conditions. The circuits are explained
below.

Output over voltage circuit — ensures that the +35
VDC output voltage does not exceed 7.0 VDC.

Output over current circuit — protects against a
continuous overload or short circuit to ground on
any output.

Input under voltage circuit — protects against
input voltages of less than 85 VAC or less than 170 VAC.

Input over voltage circuit — protects against input voltage
surges of 125 percent of nominal line voltage for no
longer than ten seconds

Thermal protection circuit — protects against a heatsink
temperature of greater than 165 degrees F.

If a circuit detects an undesirable operating condition, it
will shut off the power supply and generate a power fail alarm
signal.

A.2.2 Power Fail Alarm

The power fail alarm circuit senses the primary AC voltage
through the 40 KHz power transformer. When the threshold
is detected, an alarm signal is produced. Good power is
guaranteed for two milliseconds after the alarm signal is
produced.

A.3 Motherboard

The motherboard is a double-sided printed wiring board
that contains ten 88-pin edge connectors. One is dedicated to
the power supply, while the remaining nine implement the
common bus.

A.3.1 Signai Configuration

Motherboard signals are routed parallel with one another
on the top side of the PWB. A guard land is placed between
those signals that are located closest to one another to reduce
cross-talk between adjacent signals. The guard lands are con-
nected to ground via feed-throughs at one point only, and are
open-ended at the opposite end of the board.

All signals and power are supplied to the individual cards
through means of 88-pin, wave solderable edge connectors.
All contact pins have a three-amp rating and are gold plated.

A.3.2 Open Collector Signals

The motherboard supports both open-collector type and
three-state type signals. Most of these signals require a passive
pull-up resistor. These resistors are supplied by the mother-
board by means of 1K ohm SIP packages and are located on
one side of the signal land.

A.3.3 Ground Plane

The ground plane on the bottom side of the motherboard
serves three functions. It reduces noise in the system, provides
a uniform connection between all signals attached to it, and
provides a uniform characteristic impedance for all logic
signals.

A.3.4 Power and 1/0 Interconnect

In addition to the nine slots dedicated for use by the pro-
cessor logic cards, the motherboard provides a tenth 88-pin
edge connector for the power supply.

The +5 volt current is distributed to the logic cards along
two buses that are located at opposite ends of the top side of
the PC board. The width of the buses minimizes the voltage
drop to the farthest side of the board.

The +12 and -12 volt signals are single buses on the top
side. Of the 88 pins available on the power supply connector,
36 are for + 5 volts, 6 are for + 12 volts, 2 are for -12 volts,
42 are for voltage return (ground), and 2 provide the signals
CBALARM/ and CBLFCLK from the power supply.

A.3.5 DMA Priority Daisy Chain

The processor uses a daisy chain priority system for
implementing direct memory access between various
peripherals, which means that a particular peripheral has a
DMA priority based upon its physical location in the
motherboard.

The system requires three signals for implementation:
CBDMAREQ/, CBPRII, and CBPRIO. CBDMAREQY/ is
common between all connectors; the other two signals are
not. In general, each CBPRIO of a particular connector is
connected to the CBPRII of the next connector. This
forms the chain. Each logic card is responsible for using
this system (if DMA is required) or for passing it along to
the next card by shorting CBPPRIO together (if DMA is
not required).

APPENDIX B
INSTRUCTION TIMINGS

zZ

The following are instruction timings for the 8600 and the Instruction 8600 Timing 6600 Timing
6600. All times are represented in microseconds (us).
AD(r)data 2.25 2.45
Instruction 8600 Timing 6600 Timing AC(r)data 2.25 245
SU(r)data 2.25 2.45
L(rd)M 1.50 1.75 SB(r)data 2.25 2.45
L(rd)M(rp) 2.25 2.60 ND(r)data 2.25 2.45
LM(rs) 1.50 1.75 XR(r)data 2.25 2.45
LM(rs)(rp) 2.25 2.60 OR(r)data 2.25 2.45
L(rd)(rs) 0.75 1.00 CP(r)data 2.25 2.30
L(r)data 1.50 1.45
SLC 1.00
AD(rs) 0.75 1.15 SRC 1.00
AC(rs) 0.75 1.15 SRE 0.75
SU(rs) 0.75 1.15
SB(rs) 0.75 1.15 SLC(r) 1.75 2.00
ND(rs) 0.75 1.15 SRC(r) 1.75 2.00
XR(rs) 0.75 1.15 SRE(r) 1.50 2.00
CR(rs) 0.75 1.15
CP(rs) 0.75 1.00 JMP loc 2.25 2.05
Jce loc 2.25 2.25
AD(rs)(rd) 1.50 2.00 Jce loc (fall thru) 1.75 1.10
AC(rs)(rd) 1.50 2.00 EJMP loc 3.50 3.40
SU(rs)rd) 1.50 2.00 NOJ loc 1.75 1.00
SB(rs)(rd) 1.50 2.00 NOP 0.75 0.70
ND(rs)(rd) 1.50 2.00
XR(rs)(rd) 1.50 2.00 CALL loc 3.75 2.20
IR(rs)(rd) 1.50 2.00 Ccc loc 3.75 2.45
CP(rs)(rd) 1.50 1.85 Ccc loc (fall thru) 1.75 1.20
ADM 1.50 2.10 RET 3.25 1.30
ACM 1.50 2.10 Rcc 3.25 1.50
SUM 1.50 2.10 Rcc (fall thru) 1.00 0.80
SEM 1.50 2.10 UR 4.00 2.45
NDM 1.50 2.10 EUR 4.00 3.15
XRM 1.50 2.10
ORM 1.50 2.10 IN 5.00
CPM 1.50 1.95 IN(r) 5.85
PIN 5.00
ADM(rd) 2.25 2.95 PIN(r) 5.85
ACM(rd) 2.25 2.95 EX(exp) 7.00
SUM(rd) 2.25 2.95 EX(r)(exp) 7.85
SEM(rd) 2.25 2.95 EX BEEP 7.00
NDM(rd) 2.25 2.95 EX CLICK 7.00
XRM(rd) 2.25 2.95 MIN 2.95 + 8.30
ORM(rd) 2.25 2.95 MOUT 2,95 + 8.30
CPM(rd) 2.25 2.80 BETA 4.75 1.20
ALPHA 4.75 1.20
AD data 1.50 1.60 DI 1.00 1.20
AC data 1.50 1.60 El 1.00 1.20
SU data 1.50 1.60 POP 2.25 1.45
SB data 1.50 1.60 POP(rp) 3.00 2.30
ND data 1.50 1.60 PUSH 2.25 1.15
XR data 1.50 1.60 PUSH(rp) 3.00 2.00
OR data 1.50 1.60 PUSH loc 3.75 2.05
P data 1.50 1.45

58

Instruction 8600 Timing 6600 Timing Instruction 8600 Timing 6600 Timing
BT(A=B=0) 1.50 + 1.50N 6.70 + 1.60N INCI(dsp),(idx) 5.50 3.65 or 5.10
BT(A,B=0) 1.50 + 2.25N 6.00 + 2.35N DECI(dsp),(idx) 5.50 3.65 or 5.10
BTR(A=B=0) 2.25 + 1.50N 7.85 + 1.60N INCI*(dsp),(idx) 7.00 7.25
BTR(A,B=0) 2.25 + 225N 6.95 + 2.35N DECI*(dsp),(idx) 7.00 7.45
BCV(A=B=0) 1.25 + 3.00 7.55 + 2.50N LFII(rp),(dsp),
CBV(A,B=0) 1.25 + 3.00 6.85 + 2.50N (idx) 4.75 5.60
BCP (if match) 1.75 + 2.00N 5.35 + 1.95N LFID(rp),(dsp),
CBP (mismatch) 2.25 + 2.00N 4.85 + 1.95N (idx) 4.75 5.80
LFII(rp),(dsp),
BFAC 1.00 + 2.25N 5.35 + 2.15N (idx) 5.25 6.25
BFSB 1.00 + 225N 5.35 + 2.15N LFID(rp),*(dsp),
DFAC 2.00 + 3.25N 6.20 + 3.45N (idx) 5.25 6.45
DFSB 2.00 + 3.25N 6.30 + 2.90N
BFSL 1.25 + 2.00N 3.00 + 1.70N BRL 0.75 1.00
BFSR 2.00 + 2.00N 3.40 + 1.55N BRL(r) 1.50 1.85
STL 2.00 + 1.50N 2.70 + 1.25N
STKS 1.25 + 3.25N 1.55 + 1.70N
STKL 1.25 + 3.25N 3.60 + 1.70N SC 5.00 1.80
REGS 10.00 9.10 BP 5.00 2.00
REGL 7.25 9.85 HALT 5.25
CCS 1.00 1.65 to 2.45
CCS (1) 1.75 2.50 to 3.30 IMULT 15.75-32.50 26.20-77.55
DIDIV 21.50-31.50 57.75-82.55
INCP HL 1.25 1.40 or 1.95
INCP HL,A 1.25 1.55 or 2.10 IDIV 22.00-32.00 5.75-82.55
INCP (rp) 1.50 2.45 or 3.00
INCP (rp),2 2.50 2.50 or 3.05 DPLR 3.75 3.80
INCP (rp),A 1.50 2.40 or 2.95 DPSR 3.75 3.80
DECP HL 1.25 1.40 or 1.95 STLO 3.00 + 1.50N 3.70 + 1.25N
DECP HL,A 1.25 1.55 or 2.10
DECP (rp) 1.50 2.45 or 3.00 INFO 2.00 2.50
DECP (rp),2 2.50 2.50 or 3.05
DECP (rp),A 1.50 2.40 or 2.95 BFLR 2.25 + 2.25N 6.80 + 2.15N
DL DE, HL 2.25 2.50 D(op)M(rp) 3.00 or 3.25 4.60 to 5.65
DL BC, HL 3.00 3.95 D(op)P(rp),loc 3.75 or 4.00 5.15 t0 6.20
DL BC, BC 3.00 3.75 D(op)I(rp),datal 3.00 or 3.25 4.00 to 5.05
DL BC, DE 3.00 3.90 DM(op)(rp) 4.50 or 4.75 5.30 to 6.35
DL DE, BC 3.00 3.75 DMCP(rp) 4.50
DL DE, DE 3.00 3.90 P(op)(r),loc 3.00 3.40 (3.25 for CP)
DL HL, BC 3. 3.75
DL HL, DE 3.00 3.90 LLDEL 6.75 9.40
DL HL, HL 2.25 2.50 LINS 9.00 10.80
DS DE, HL 2.25 2.50 COMP(rp) 2.25 3.70 or 4.75
DS BC, HL 3.00 3.95 COMPS(rp) 2.50 4.15 or 5.20
DS BC, DE 3.00 3.90
DS DE, BC 3.00 3.75 LKA 1.25
DS HL, BC 3.00 3.75 LAS 1.25
DS HL, DE 3.00 3.90
CBOUT 1.75
PL (r),loc 2.25 2.20 CBOUT(r) 2.50
PS (r),loc 2.25 2.20
DPL (rp),loc 3.75 3.80 CBIN 1.75
DPS (rp),loc 3.75 3.80 CBIN(r) 2.50

Instruction

"BSOUT
_BSOUT(r)

CBSIN
CBSIN(r)

STKMV
IRET

STR
BLKIN
BLKOUT
MBLKIN
MBLKOUT

MS INTR

VECTORED INTR
RESTART INTR
ERROR INTR

8600 Timing 6600 Timing

2.50
3.25

2.50
3.25

2.00
4.75
2.25

1.75
1.75
1.75
1.75

5.00
7.75
5.25
7.50

+ 2.00N

+ 2.00N

+ 2.00N

+ 2.00N
1.80
1.80
1.80

Notes on the instruction timings:

All Common Bus (CB) cycles include one wait state. In-
structions include CBOUT, CBOUT(r), CBIN, CBIN(r),
CBSOUT, CBSOUT(r), CBSIN, BLKIN, BLKOUT, and
"ECTORED INTERRUPT.

59

This page intentionally left blank.

APPENDIX C
8600 COMMON BUS 170 ADDRESSES

The following addresses are for the common bus 1/0. All 070-073 MPCA
addresses not mentioned are reserved for future use.
200-207 MFCA #1
I/0 ADDRESS FUNCTION 210-217 MFCA #2
000-001 CP/RIM Interrupt Controller 2000-3777 UBUS Card
0002 Aux Enable
0003 CP/RIM LEDs 72000-73777 MPCA 1K Dual Port Memory
0004 CP Status (Alarm & Burn-in)
074000-077777 2K RIM Buffer
010-017 Peripheral 170
140000-143777 Screen Buffer (if in screen mode)
030-031 KDS Font Buffer (if in character front
034-037 Printer Port USART mode)
040 RIM #0 Enable (CP/RIM Board) 144000-147777 Attribute Buffer
041 RIM 1-5 Enable
042-043 RIM 0 STAT-CMD
044-045 RIM 1 STAT-CMD
046-047 RIM 2 STAT-CMD
050-051 RIM 3 STAT-CMD
052-053 RIM 4 STAT-CMD
054-055 RIM 5 STAT-CMD

61

A

= Ny S

WL_H_,_
|

Kl IS
[
i
1

4

	0001
	0002
	001
	002
	003
	004
	005
	006
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	xBack

