
ATTACHED RESOURCE
COMPUTING SYSTEM

ARC
User's Guide

Version 1

December 1, 1977

Model Code No. 50299

DATAPOINT a ~ION

The leader in dispersed data processing ™

COPYRIGHTC> 1977 BY DATAPOINT CORPORATION. PRINTED IN U.S.A.

ATTACHED RESOURCE COMPUTING SYSTEM
ARC

User's Guide

Version 1

December 1, 1977

PREFACE

This document describes the Datapoint ARC (Attached Resource

Computer) System. This product makes it possible to construct a

highly flexible, extremely powerful dispersed multiprocessing

system using Datapoint's Advanced Business Processor series of

computers. Anywhere from two to hundreds of processors may be

incorporated, interconnected via an advanced new interprocessor

data distribution subsystem. Most user programs, even those

written in assembler language, ~ill need no modifications to run

on the Attached Resource Computer.

i

TABLE OF CONTENTS

1. INTRODUCTION
1.1 Mainframe Batch Processing
1.2 Timesharing
1.3 Transaction Processing and Interactive Inquiry
1.4 Networks
1 .5 ARC

2. ARC CONCEPTS AND OVERVIEW
2.1 ARC -- Hardware vs. Software
2.2 The File Processor Concept
'2.3 The Applications Processor Concept
2.4 Resource Interface Modules
2.5 Active Hubs
2.6 Passive Hubs
2.7 Scope of Volume Access
2.8 Use of Subdirectories
2.9 Data Security
2.10 Clock and Calendar Services
2.11 Write Prritected Volumes

3. COMMANDS AND PROCEDURES
3.1 Establishing a File Processor
3.2 Taking Down a File Processor
3.3 Down-Line Loading
3.4 Applications Processors and the MOUNT Command

3.4.1 The Display Mode
3.4.2 The Move Mode
3.4.3 Taking a Volume Logically Offline
3.4.4 Bringing a Local Volume Online
3.4.5 Bringing a Remote Volume Online
3.4.6 The WAIT option
3.4.7 The STATUS Option
3.4.8 The NAME Option
3.4.9 The CODE Option
3.4.10 The ZAP Option

3.5 The ARCCODE File
3.6 Auto-Execute under ARC

3.6.1 The AUTOCLR Command
3.7 Write-Protected Volumes

3.7.1 The PROTVOL Command
3.8 ~he ARCrD Command

, 3.8.1 Selecting Volumes
3.8.2 Assigning Volume Names

ii

page

1-1
1-1
1-2
1~3
1-4
1-5

2-1
2-2
2-4
2-4
2-5
2-6
2-7
2-9
2-9

2-11
2-12
2-12

3-1
3-1
3-2
3-2
3-3
3-4
3-5
3-6
3-6
3-7
~-8
3-8
3-9
3-9

3-10
3-10
3-12
3-13
3-13
3-14
3-15
3-15
3-16

3.8.3 Changing the Name of Named Volumes
3.8.4 Examining User 'Codewords
3.8.5 Adding User Names
3.8.6 Changing a User Name
3.8.7 Removing Valid User Names
3.8.8 Changing Codewords
3.8.9 What if I Forget?
3.8.10 Returning to DOS

3-16
3-17
3-17
3-17
3-18
3-18 -
3-19
3-19

4. CONFIGURING AN ARC SYSTEM 4-1
4.1 Basic RIM Constraints 4-1
4.2 File ,Residency Options 4-2
4.3 How Many File Processors? 4-3
4.4 How Many Applications Processors? q-3
4.5 How About Dial-Up Access? 4-4

5. UPDATING OF SHARED FILES 5-1
5.1 Exclusive Use (Enqueue) Timeout 5-1
5.2 Multiple Level Enqueuing 5-2
5.3 Requesting Exclusive Use 5-2
5.4 Releasing an Enqueued Resource 5-4
5.5 Exclusive Updating of ISAM Files 5-4
5.6 Reduction of Safe Enqueue Time 5-5

Appendix A. SELECTING AN ARC CONFIGURATION A-1
A.1 From One to Two Processors A-2
A.2 More than Two Processors A-2
A.3 Many More than Two Processors A-3

Appendix B. RIM AND 1/0 BUS ADDRESS ASSIGNMENTS B-1
B.1 RIM 1/0 Bus Addresses B-1
B.2 Several RIMS on a Single Processor B-1
B.3 RIM Bus Addressing B-1
B.4 One Processor Straddling Several Busses B-2

Appendix C. SETTING UP A FILE PROCESSOR C-1
C.1 Loading the ARCICMD File C-1
C.2 Building the ARCCLOCK/TXT File C-1
C.3 Defining Valid User Names C-2
C.4 Defining the Valid User Codewords C-2

Appendix D. ACCESSING ARCIFP CLOCK AND CALENDAR SERVICES D-1
D.1 Structure of the ARCCLOCK File D-1
D.2 Accessing the Clock and Calendar from Databus D-2
D.3 Accessing ClocklCalendar from BASIC D-3

Appendix E. ARC/FP CONSOLE COMMANDS E-1
E.1 Performance Monitoring Commands E-1

iii

E.2 Security-related Commands

Appendix F. USING THE ARCBOOT DISKETTE
F.1 Contents of Release Diskette
F.2 ARC Operation on Diskette-Based Processors

Appendix G. USING 3800 AND 6000 SERIES COMPUTERS

Appendix H. ASSEMBLY LANGUAGE SYSTEMS UNDER ARC
H.1 Memory Residency
H.2 Addressing the Disk
H.3 Use of Foreground
H.4 Stack Usage
H.5 Multiprocessing Environment

INDEX

iv

E-2

F-1
F-1
F-1

G-1

H-1
H-1
H-1
H-1
H-2
H-2

CHAPTER 1. INTRODUCTION

Now that the concepts of dispersed data processing have been
widely accepted, it should no longer be necessary to discuss in
detail the many advantages and improvements that can be achieved
by distributing business data processing tasks among a large
number of smaller computers. However, in order to fully understand
the concept and purpose behind the Attached Resource Computer, it
is first necessary to start from the past techniques of business
electronic data processsing. From there, one may proceed to what
Datapoint Corporation believes to represent the ultimate direction
of dispersed data processing for business.

1.1 Mainframe Batch Processing

The first computers were single-process devices. Initially
no more than calculating tab card equipment, these machines
accepted a batch ot' input data, generally on cards, performed some
process upon it, and generated a batch of output. Then a
different program would be loaded, and this cycle repeated. Long
delays resulted between data preparation and the availability of
results. Inventory reports would almost inevitably be out of date
before they even finished printing. And the processing resources
of the machine frequently were very poorly utilized.

In order to make better utilization of the costly central
processing units, multiprogramming operating systems were designed
for the mainframes. These very complex software systems allowed
more than one process to use the mainframe at a time, so that
peripheral device delays, such as disk accesses, could be
overlapped with CPU processing requirements associated with other
processes. Memory requirements rapidly escalated as the number of
processes co-resident in the machine went up by factors of three,
five, or more. Eventually the processor would still bog down as
the total processing tasks expanded to consume every available
machine cycle. And in attempting to gain additional performance,
more complex operating systems consumed higher and higher
percentages of machine cycles, leaving even fewer for actual user
program processing.

As the load increased toward machine saturation, there were
two choices. The first was to just trade in the older machine for
a bigger one. The second was to buy another machine and transfer
some of the processing tasks over to it. But problems of common

CHAPTER 1. INTRODUCTION 1 - 1

\ .. ~, .. '

~

files needea by many ot' the application systems frequently made it
difficult to split the proce~sing up among many independent
processors, so a big new mainframe would be required. A while
back, upgrading to a larger mainframe was a horrifying prospect,
since it frequently meant rewriting entire application systems for
the different instruction set ot" the larger machine.

Then came the age ot' the compatible mainframes. This
concept, in theory,made it possible to upgrade from one mainframe
to the next in the series without program changes, since the
series all used the same instruction set. This concept almost
worked, except for the fact that as one advanced through the
series, the operating systems were not compatible. Business users
having gone through this operating system conversion know how much
fun (ahem!) it was.

But the basic Droblem still remained. Eventually, the limits
associated with the size and capacity of a single mainframe are
reached. Mainframes keep getting faster, but the maximum capacity
one can expect to get from a single processor is within sight.
And what happens when that point is reached?

1.2 Timesharing

Another development ot" the multiprogramming concept was
timesharing. This approach is another way to attempt to get more
utilization from a single processor. Even more significant is
that timesharing (with its inherent interactive approach to
computing) tended to "humanize" computers and make them more
responsive to user needs. Users responded by finding more ways in
which they could apply the benefits or computing to their own
areas, and again the load grew. Timesharing services can simply
buy more computers and assign the user base among a larger number
of" machines. But if many ot' those users are sharing a set of
CODm~~ files, then those flIes generally must be duplicated for
each machine. And ir the users each need to be able to update the
common files, such as inventory, order entry, or accounts
receivable, tben duplicated files can sometimes become very
difficult to deal with.

/r
I ,
. !

~~ ~~~\~ ~~,
: .

1.3 Transaction Processing and Interactive Inquiry

As a result 01" the time sharing approach, business began to
observe that the time value ot' data is sometimes quite
significant. Airlines were perhaps among the first users to set
up on-line, transaction-oriented processing systems to handle
reservations and other processing requirements. These systems
attached many hundreds ot' terminals, allot' which could access and
modify common files, with immediate response to varied inquiries
and literally up-to-the-second information. These systems
typically used large mainframes for support, generally running
specially written operating systems. Since the success of these
early on-line systems, business has started realizing more and
more that data is more valuable i1" it is current than it' it is
days or weeks old. When a customer calls and wishes to place an
order, it is more desirable to know that an item is in inventory
than to know that there had been one in inventory two weeks ago.
When a customer wishes to know his account balance, it is much
better to give him his current balance, rather than what his
balance had been three weeks ago.

Some businesses printed thousands ot' pages 01' voluminous and
expensive reports that were frequently obsolete before they
finished printing. These reports would try to pre-answer every
question an executive might want to know. The report would be
delivered to his o1'fice, perhaps in triplicate. Then any time he
had a question, all he had to do was try to find the answer,
somewhere in a thousand pages ot' printout. And when he found his
answer~ it was probably no longer current anyway.

As a result ot' the dlfficulty created by trying to print
literally tons ot' reports, there developed The Great Printer Race.
The mainframes could (and did) generate reports faster than any
existing printer could put the reports onto paper, so the
mainframe companies developed printers that could print at almost
unbelievable rates, hundreds 01' pages per minute, or more. This
technological tour-de-force made it possible to print reports so
fast that all the employees of the company, working together,
couldn't begin to read them all. This was called progress. And
gradually management came to the realization that of the tons of
costly reports they were producing, only a small fraction were
ever even being looked at by human eyes. But, the reports had to
be printed. And distributed. And stored Or did they? Or has
the availability 01" dispersed data processing made many printed
reports, previously believed essential, as obsolete as electronic
calculators have made books of tables of trigonometric functions,
logarithms and square roots?

CHAPTER 1. INTRODUCTION 1-3

So transaction processing and interactive inquiry grew. If
an executive has a quick inquiry to tne data base, the computer
itself should do the looking. Giving an up-to-the-minute answer.
One which permits better decisions to be made on more timely
information. And saving costly paper and machine resources.
Source data capture and data base inquiry are just two of many
prominent business functions which derive substantial benefits
from an on-line transaction processing approach.

But, lo! The big machines with their orientation to batch
processing and their complicated multiprogramming operating
systems do not lend themselves favorably to online transaction
processing. They bog down badly under moderate transaction loads.
They require huge, multi-million dollar mainframes to support the
necessary number ot' terminals. And wors's or all, whf;n the b:i.g
mainframe goes down, all the data processing tasks going on
throughout the company -- including every terminal in the place -
goes down with it.

1.4 Networks

The ultimate solution ot' the problems described above is
clearly not simply an infinitely fast machine. With a little
thought it is obvious that the only way to achieve an arbitrarily
grea t amount or processing throughput is wi th arbi trari,ly many
processors. Also, using a number or relatively independent
processors would seem to provide a solution to the downtime
problem, Slnce (if the system were designed properly) a. failure in
one processor would affect at most only a limited portion of the
total processing going on.

So it behooves one to set about finding some way to apply
large numbers or processors to solving typical business problems.
The concept or a network -- using a number or smaller computers
which cooperate to collectively process large amounts of
information -- seems like the solution to many or the problems
mentioned above. U.S. Navy Captain Grace Hopper, a legend in her
own tjrne i has a favorite analogy. lf a farmer has a wagon in
whiCh he takes his produce to market, and that wagon becomes too
heavy for one horse to pull, the solution is clearly not to sell
his horse and buy a stronger one (even if stronger ones are
available!). The solution is obviously to get another horse to
help with the load. By doing this, several advantages are
realized. ~irst, it is not necessary to retrain another horse

~from the beginning. Current operating procedures are disrupted
either minimally or not at all. Second, one can proceed to buy a
third horse, and a fourth, and so on. The system is ope~-ended,

1-4 ATTACHED R~SOURCE CuMPUTING SYSTEM

ana can grow to match the increasing load. Third, the incremental
c'osts ot" increased capacity are both small, and known. Small,
mass-producea processors deliver better bang-for-the-buck than
large, costly, mainframes --- the incremental costs ot" adding
additional processing power are low. Fourth, when the increased
load no longer fits on one wagon, the farmer can buy a second
wagon and simply split up his team of horses. The system can be
easily and flexibly ~earranged to fit changing needs. Fifth, it'
one 01' the horses gets sick, the farmer can probably still get his
load to town by hitching up the others. It is much less likely
that some single misfortune will block the continuing operation of
the business.

All that is required to make computers perform together like
a team or horses is the appropriate organization and linkage that
allow them to work together er"ficiently. Most networks, however,
require major changes in operating procedures and applications
programming. ~'requently, entirely different approaches are
required. And by the time a firm's data processing has matured to
the point where they recognize the advantages 01' a networked
approach to their processing requirements, so many programs have
been written making so many assumptions about the processing
environment that it is almost unthinkable to throwaway this
investment in applications programming and start allover, no
matter how attractive it seems for other reasons.

1.5 ARC

What is needed is a Simple, straightforward way to distribute
a modern, on-line transaction or batch processing load among a
variable number 01' processors. One which allows additional
processors to be added easily as required. One which need not
depend absolutely upon the continued availability of some single
critical central controlling machine. One which can be
implemented without changes to existing applications systems. One
that does not disrupt operations. One whose components are
treated as building blocks that can be rc~rranged as a firm's data
processing needs change.

ARC is Datapoint's solution to these problems.

CHAPTER 1. INTRODUCTION 1-5

CHAPTER 2. ARC CONCEPTS AND OVERVIEW

ARC is basically different from conventional processor
networking systems. Traditional multiprocessor networking systems
break the terminal-computer-database path between the terminal and
the computer, leaving all tne actual processing at the place where
the data is stored. Terminals, printers, card readers, and other
unit record equipment in general may be near the user, but this is
essentially still a timesharing or RJE situation. It's not very
good at disguising tne fact that the processing is still really
occurring somewhere else, regardless of whether the user has local
"intelligence" or not. And the "main computer", wherever it is, is
still a critical component whose failure takes down everything,
everywhere.

I
I
I
I

FIGURE 1.

In typical computer systems, all the
processing is done where the data is
stored. Terminals are just that.

ARC is different because the ARC system breaks the
terminal-computer-database path between the computer and the
database. All applications computing occurs in the processor from
which the processing request originates. The actual data files
being used may be off somewhere else, where they may be referenced
by somebody else simul taneously, it' desired. One of the major
differences between other networks and ARC is that ARC permits
more raw CPU processing power to be attached to a database than
woula be practical to provide (or try to utilize) in a single
processor.

CHAPTER 2. ARC CuNCEPTS AND OVERVIEW 2-1

FIGURE 2.

In ARC, the data processing load is dispersed
to where the users are. The ccmmon data files
are stored away from the appl'lcations pro:ess:>rs.

One main reason why this approach has not been used before is
that this approach typically results in very heavy data transfer
requirements among processors in the system, and data
communications has traditionally been slow, error prone, heavy in
overhead, generally expensive to implement and with major software
changes being required.

2.1 ARC -- Hardware vs. Software

The product which comprises AHC consists ot' both a hardware
and a software product. Both products work together to provide a
series ot' novel solutions to traditionally nasty data processing
problems.

The hardware product consists ot' an extremely high speed,
error-controlled, independent packet-switching system for
reliable, short haul, low cost multiprocessor interconnection.
This subsystem consists ot' RIM (Resource Interface Module)
adapters which attach to the standard 1/0 bus ot' Datapoint
Advanced Business Processors and permit communication between
processors at millions ot" bits per second over lengths of
inexpensive, shielded single-conductor coaxial cable. This
system, the outgrowth ot' years or Datapoint's experiments in
distributed multiprocessor interconnection, contains its own
dedicated, high speed processors which monitor and completely
control the operation ot' the link, including data transmission,
buffer management, error control, automatic subsystem

2-2 ATTACHEv RESOURC~ COMPUTING SYSTEM

reconfiguration, and related tasks. As a result, the computers to
wtich the RIM adapters (hereafter simply RIMs) are attached
require zero processor overhead for llnk control, leaving the
computers free for applications programs and other useful work.

The ARC software component erficiently utilizes the RIM
subsystem (sometimes referred to as the Interprocessor Bus) to
provide essentially transparent access to disks (and therefore
files) stored elsewhere as though the disks were directly attached
to the processor's 1/0 bus. This permits many different
processors to be running independent tasks on any mix of local
(private) disks, unit record devices, and communications or
terminal equipment while at the same time accessing disks which
are concurrently being accessed by other processors executing
other programs.

Once an ARC system is assembled, there are essentially three
classes defining the status ot' each Advanced Business Processor at
any given instant:

1. Non-participating. No change in operating procedures
whatsoever is required due to a processor's simply being attached
to ARC's Interprocessor Bus. Processors may be bootstrapped,
powered down, powered up, serviced, or anything else, completely
independently ot' the fact that they are attached to the Bus.
Active utilization ot' the RIM subsystem is completely voluntary.
Any program that could be run on the configuration before the RIMs
are attachea can be run exactly the same way afterwards.

2. Participating, Applications Processor. This status
occurs when a processor logically "mounts" a remote volume and
begins accessing it via the RIM subsystem. A local disk mayor
may not be present, depending upon the local configuration of the
applications processor.

3. Participating, File Processor. This status occurs when a
computer is serving as a shared file resource. When a computer is
acting as a File Processor, it is making its local disks available
to applications processors. File processors do not run
application programs while they are serving as File Processors,
since the computer is quite busy in servicing the requests made of
its shared flle resources by applications processors.

CHAPTER 2. ARC CONCEPTS AND OVERVIEW 2-3

SY S TE.JVl P-::>

FIGURE 3.

A simple ARC system with three applications
processors and only one file processor.

2.2 The File Processor Concept

SYSTEM C FILE PROCESSOR

One basic concept behind the File Processor approach is that,
by performing actual computing related to data separately from
where it is stored, tne only processing at the storage site is
that required for simply the actual retrieval and storage of the
data. This makes it possible to increase total processing
capability associated with a single file to much more than would
be practical within a slngle processor.

The File Processor's function is to buffer data, optimize use
of its shared disk resources, resolve access conflicts, coordinate
data base update transactions, provide data security, and service
incoming data requests. Again, no applications programs run on a
processor while it is serving as a File Processor.

The only requirements for a processor to serve as a File
Processor are that it be running DOS.D versions 2.4 or above, be
attached to a RIM, and that it have a 9370-series or 9374-series
disk system attached to its 1/0 bus.

2.3 The Applications Processor Concept

Applications processors are the computers which actually
process the jat?, either ~~der the control 01" user applications
programming, systems utilities, or other programs. These
computers can be equipped wlth any complement ot' local 1/0 devices
desired, including disks, tapes, communications adapters,
printers, card readers, local (or remote) terminals, or any other
supported devices. (Note that since ARC supports DOS.D only,

2-4 ATTACHED R~SOURCE CUMPUTING SYSTEM

local diskettes and 9350-series cartridge disks can be used under
ARC only for limited purposes, such as COPYFILE to transfer files
from these devices into the global ARC data structure for further
processing).

Under ARC, the applications processor gains substantial new
flexibility. DOS.D allows up to sixteen volumes to be on line at
any given time, and under ARC these can be local drives or remote
drives, either 9370-series or 9374-series, in any combination.
Local disks or remote disks can be transferred from one logical
drive to another without physically moving the packs. Disks can
be taken offline or returned to online status either physically or
logically or both, depending upon processing requirements. Names
of volumes online and their logical drive numbers at any given
time can be displayed. Remote disks (those resident at a File
Processor within the RIM subsystem) can be logically mounted for
access as if they were directly attached, and logically dismounted
with the same ease.

2.4 Resource Interface Modules

The RIM is the basic hardware component which interfaces an
Advanced Business Processor to the coaxial cable system to allow
interprocessor data interchange. The RIMs attached to the coaxial
cable (RIM bus) collectively monitor and control the entire
operation of the total RIM subsystem. A complete assemblage of
RIMs, the interconnecting coaxial cable system, and any associated
hubs (be patient) are referred to collectively as an
Interprocessor Bus.

One important aspect of the Interprocessor Bus is the method
of addressing employed within the system. Each RIM has two
eight-bit addresses associated with it. The first is the 1/0 bus
address. This is the address which the computer must send down
its 1/0 bus to give instructions to the RIM. The second is the RIM
bus address. This is the address determining which RIM receives a
given packet transmitted through the Interprocessor Bus. Both
addresses are determined by strapping options within the RIM and
can be changed in the field by a customer service representative.

These addresses are completely internal to the ARC system
software, and applications programs have no knowledge of them
whatsoever. All addressing requirements are taken care of
automatically by ARC. The only time that a user must consider the
address structure of his multiprocessing system is during the time
that addresses are being chosen when his configuration is being
established. Once the installation is complete, operators and

CHAPTER 2. ARC CONCEPTS AND OVERVIEW 2-5

programmers running within the Attached Resource Computer need no
knowledge ot' actual actdressing details.

RIMs are connected by lengths of low-cost, shielded,
single-conductor·RG-b2 coaxial cable. A minimum RIM link would be
two RIMs connectect by a single run of coaxial cable (coax). RIM
systems including more than two RIMs require one or more "hubs".
Hubs come in two basic types, and these are referred to as either
"active hubs" or "passive hubs".

2.5 Active Hubs

Active hubs are the devices which permit interconnection of'
many RIMs to form large RIM systems. Active hubs perform signal
conditioning functions for improved reliability ot' the
Interprocessor Bus. In addition, active hubs provide the
connecting points for eight (or optionally sixteen) lengths of'
coax. Lengths of up to 2000 feet of coax may be used between any
RIM and its corresponding active hub.

More than sixteen processors can be interconnect~d by running
a length ot' coax from the first active hub to a second active hub,
which will then allow attaching a total of up to thirty processors
(fifteen per hub, since one cable port per hub is used for
connecting the two hubs together). In like manner, more active
hubs may be attached, each up to 2000 feet apart, with individual
processors each up to 2000 cable feet from their respective active
hub. In this fashion, very large systems 01" interconnected
computers can be established, subject to the restriction that the
two most distant points within the Interprocessor Bus be within
about four cable miles of' each other (maximum'of ten active hubs
along the longest path between RIMs).

Th~ total number 01" processors that can be directly attached
to the same Interprocessor Bus is 255. However, multiple
Interprocessor Busses can be attached to each computer and
therefore disjoint Interprocessor Busses can share common
applications processors and/or File Processors. Hence, the
aggrega te throughput ot" an ARC system is essentially ·unlimi ted ..

2-b ATTACHED RESOURCE COMPUTING SYSTEM

2.6 Passive Hubs

In systems where four or fewer computers are to be
interconnected, a special, lower-cost "passive hub" can be used.
The passive hub is similar to an active hub, except that it can be
used to attach no more than four RIMs together and does not
perform the signal conditioning functions as performed by active
hubs.

When using a passive hub, since passive hubs do not perform
signal conditioning functions, a few special rules apply. First,
passive hubs may not be attached to active hubs on the same
Interprocessor Bus. Second, they may not be attached to other
passive hubs. They may only be directly connected to RIMs.
Third, the lengths or the longest two cables attached to any given
passive hub must total less than 200 feet.

CHAPTEH 2. ARC CONCEPTS AND OVERVIEW 2-7

-------- - - - - - -...

FIGURE 4. 16M 3100/3-;0
A more complex ARC system with fourteen applications Cornpitc!r
processors, eight file processors, and a mainframe.
This ARC also has many local disks, CRT workstations,
two printer spoolers and incorporates a local subnet.

2-b ATTACHED RESOURCE COMPUTING SYSTEM

FIl..,F ...
PROCSSSOR.

~llC
~" e _

FIlL
PROC6SS0R.

B

2.7 Scope of Volume Access

The set ot' volumes accessible at any given time by an
applications processor is determined by use of the MOUNT command,
to be described in a later chapter, which is issued from the
console ot" the applications processor.

Volumes accessed through the Interprocessor Bus are always
(initially at least) referenced by volume name. Volume names can
be up to eight bytes long and follow the same naming conventions
as standard DO~ file names. Each time a volume is mounted, it is
placed into some one ot" logical drives 0-15, where it remains
until either it is actively dismounted, replaced by another
volume, or physically taken otOfline. Once a volume has been
logically mounted, it can be accessed either by referencing the
volume name, or the logical drive number in which the volume is
mounted.

DOS.D assumes that local volume names are unique; that is,
no two volumes directly online to an applications processor may
have the same volume name. At any given File Processor, the same
assumption applies. Under ARC, it is possible to have multiple
volumes ot' the same name at each ot" two or more File Processors on
the same RIM system under certain conditions. Which volume is
referenced when a MUUNT command is issued is determined by the
user name and which of those duplicate named volumes that user is
authorized to use. In general, it is a good practice to keep
volume names unique within the network.

2.B Use of Subdirectories

Any given volume may have up to 31 subdirectories, the first
two of which are SYSTEM and MAIN. Under ARC, access to
subdirectories on local disks (those directly attached to an
applications processor) is exactly as normal under standard DOS.D
operation. Subdirectories on local disks may be created, renamed,
removed; the current subdirectory may be changed, and files moved
readily from subdirectory to subdirectory, using the standard SUR
and NAME commands.

In order to prevent file naming conflicts on shared disks at
File Processors, different users of a shared volume are placed
into different subdirectories at the time the volume is mounted.
(Under DOS.D, up to thirty files on any given volume may all have
the same name, as long as they are in different subdirectories
other than SYSTEM. See the DOS USER'S GUIDE for a further
dis c u s s ion 0 to sub d ire c tor i e s) .

CHAPTER ~. ARC CUNCEPTS AND OVERVIEW 2-9

The subdirectory into which the user is placed is determined
by his user name. For example, if a user's name is PAYROLL, his
application processor will be automatically placed into
subdirectory PAYROLL on the volumes mounted at a File Processor.
Different users which intend to use files of the same name on
shared volumes must therefore be in different subdirectories to
guarantee against file naming conflicts.

Since each subdirectory has individual codeword protection
under ARC, changing the "current subdirectory" without going
through the appropriate security procedures (a proper volume
MOUNT) is inhibited. This implies that current subdirectories on
remotely accessed volumes, once mounted, cannot be changed via the
SUR command. Likewise, subdirectories on remotely accessed
volumes may not be renamed, created, or deleted, as this might
adversely affect other concurrent users of the volume.

However, files can be moved from a user's current
subdirectory to that of another user (even SYSTEM or MAIN) using
the NAME command. As under ordinary DOS, files in SYSTEM can be
accessed by all users of the volume, regardless of user name.

Since ARC normally prohibits use of user names SYSrEM or MAIN
on remotely accessed volumes, SYSTEM may be used as a sort of
public-access mode for selected files, while MAIN may be used for
special files on the volume which are not to be accessed by any
user during ARC operation (such as codeword files or files which
are used only for local operations while the owning machine is not
running as a File Processor). It is generally a good idea to
write-protect files in SYSTEM subdirectory to help avoid their
inadvertently being changed by multiple users, except for those
files specifically intended for that type of processing.

The important fact to notice about the different users of a
shared volume being in different subdirectories is that they may
independently run system utilities, such as CHAIN, SORT, or EDIT,
with all scratch files on a common volume if desired. No conflict
of name usage will occur, since the work files will all be in
different subdirectories. When the ARC file processor monitor
program (ARC/FP) is later taken down, files associated with each
user remain in that user's subdirectory to simplify disk backup
and maintenance operations.

2-10 ATTACHED RESOURCE COMPUTING SYSTEM

SU~J~ECrORY NA-"2~.F ___ ~S~~E NAME

b·-pres~~~
:. SYSTEM SYSTEMO/SYS,SYSTEM 1/SYS,SYSTEM2/SYS.

SYSTEM3/SYS,SYSTEM4/SYS,SYSTEM5/SYS.
~ be. ilL. SYSTEM6/SYS,SYSTEM7/SYS,UTIUTY/SYS,
su.bdir~ ~f.h,~AILBAG/TXT~ d .fik, a.c.c~ to aI1lA.Ser!?

~MAIN ARCC60E/TXT.AR"t/CMD {7UJ. ~fLiL:J:,-
MYSUB ~: MYFILE/TXT~MYPROG/OBC ~~%~iao~
YOURSUB i YOURFILE/TXT.YOURPROG/DBC.MYFILE/TXT-PAYROLL~' i EM PLOYEEfTXT,TIMECARDfTXT,TAXRATEfTXT,

\):. DEDUCTS/TXT,TIMEEDIT/OBC.JOURNAL/DBC.
u.:5U' subclirectonf!.:S CHECKS/OBC,REPORTS/DBC,914A/OBC,

W2PRINT IDBC,SETUP/OBC

FIGURE 5.

Different files in different subdirectories. Note
the two different files both named MYFILE/TXT.

In the above figure, note that the file MYFILE/TXT exists in
both MAIN and YOURSUB subdirectories. These two different MYFILE
files are distinct and independent, since they both exist in
lower-level (anything other than SYSTEM) subdirectories.

2.9 Data Security

Data security has also been taken into consideration in the
design of ARC. First, local disks (those directly attached to an
applications processor) are absolutely private, with access under
ARC limited to only that processor. (This applies to ARC on~y;
other interprocessor data communication, such as Datashare
networking, which can be used concurrently, is of course not
affected). Access to remote disks (at those machines then serving
as File Processors) requires a volume name, a user name
corresponding to a subdirectory name on that volume, and the valid
codeword associated with that volume and U3cr name. Different
volumes may have different combinations of valid user names if
desired, and user names may use different codewords on different
volumes. The degree of security desired can therefore be selected
by appropriate assignments of users and files to various volumes
and user name subdirectories. Security across volumes is much
greater than that among different users within a single volume.

CHAPTER 2. ARC CONCEPTS AND OVERVIEW 2-11

2.10 Clock and 'Calendar Services

Under ARC, the active File Processors cooperate to maintain a
time-of-day clock ana a perpetual calendar. The clock and
calendar may be accessed (from any Datapoint-supported language)
by reading the desired values from a file called ARCCLOCK/TXT.
The file(s) may be on any File Processor volume(s), in
subdirectory SYSTEM. The date is available as month, day, year
and day ot" week. The time is gl.ven as hours, minutes, and
seconds. More detailed information on the format of this data,
and examples on how it may be accessed from various languages, can
be found in the appendix entitled, "Accessing ARC/FP Clock and
Calendar Services".

2.11 Write Protected Volumes

Volumes which contain especially critical, read-only data, or
programs that are not to be modified, may be marked as "write
protected". This write protection, determined by the VOLIDPRO
field in the DOS VOLID sector, prevents File Processors from
permitting any change to the data stored on the protected volume.
A command at the File Processor console (issued while the File
Processor is active) can change the volume protection status
temporarily, or the VOLIDPRO field may be changed on disk by using
the PROTVOL command (described in a later chapter).

2-12 ATTACHED RESOURCE COMPUTING SYSTEM

CHAPTER 3. COMMANDS AND PROCEDURES

The command structure and procedures for operating ARC have
purposely been kept simple for ease or use and flexibility. This
chapter describes procedures for the many operations that can be
performed under ARC.

3.1 Establishing a File Processor

Refer to Appendix C for a description ot" how to prepare a
disk for use from a File Processor. After the disks have been
prepared with user names and codewords, to allow the disks at a
given computer to be accessed via ARC, the operator at the system
console simply enters:

ARC

This command starts the AHC/FP Monitor, which accepts and
services various requests from the applications processors via the
Interprocessor Bus.

When ARC/FP comes up, it places the File Processor machine
into subdirectory MAIN on all drives. Therefore, any files which
ARC uses on dlSk volumes (such as AHC/CMD or ARCCODE/TXT) should
generally be in subdirectory MAIN on their respective volumes.
(An exception is AHCCLOCK/TXT, which should always be in
subdirectory SYSTEM).

When a File Processor initially comes up, all volumes which
are online at the File Processor become eligible for access by
applications processors. Any disk at a File Processor may be
physically removea and replaced with a different one as long as
the disk is not being used. (Subsequent accesses to that disk, if
any, will result in "drive offline" status being returned to the
application program). Once a disk comes physically online, it
should become eligible for appl~cations processor access within
about fifteen seconds.

Each disk that comes on line is treated by the File Processor
as a completely new volume, (or set of logical volumes) and any
volume which is taken orf and brought back on line also comes on
as a new volume. References to the old volume are not redirected
automatically; to reference the newly online volume, it must be
remounted by the applications processor.

CHAPTER j. COMMANDS AND PROCEDURES 3-1

3.2 Taking Down a File Processor

Once an operator is certain that all remote access to a File
Proce~sor's disks has comp~~ted, ARC/FP is taken down by simply
rebooting the File Processor machine, which returns it to normal,
standalone DOS.D operation. Subsequent applications processor
access to its disks, it" any, results in "drive offline" status
being returned to the applications processor program requesting
the access.

Note that any glven processor can be either a File Processor
or an applications processor at any given time, and
interchangeably. Ihe only criteria determining which ot the two
it is, is the software in use. Also, note that an ARC system is
not llmited to only a single File Processor. There may be as many
File Processors as desired, up to the limit of 255 processors per
Interprocessor Bus. (Remember, however, that Slnce DOS.D supports
only sixteen logical drives on line, any given applications
processor may only deal with flIes at up to sixteen File
Processors concurrently). Specific configuration details are
discussed in greater detail later in this User's Guide.

3.3 Down-Line Loading

Under ARC, it is not required for an applications processor
to have a disk controller or local disks at all. All accesses,
including DOS bootstrap, can be accomplished through the ARC·
system. (Obviously, a down-line loaded applications processor
cannot serve as a File Processor).

To bootstrap such a processor via ARC, place the ARC boot
tape in the rear deck and reboot the machine normally. This
causes the computer to search the RIM system(s) for an active File
Processor from which it can be bootstrapped. As it performs this
searching, a periodic clicking noise wlll indicate the cycling.
Once the initial bootstrap has completed successfully, the user
~ust e~ter hi~ ~~er name, codeword, and the name or the volume
from which he wishes to load the DOS system.

')

If the information entered is correct and the volume
requested is located at an active File Processor, DOS comes up as
normal and from then on, operation is exactly as it a local disk
were present. If no such disk is found, or the user has given
invalid user names and/or codewords, then ARC will ask again for
the correct' names.

If upon booting the ARC boot tape, a loud howling sound

3-2 ATTACHED RESOURCE COMPUTING SYSTEM

occurs, then either no RIM is present on the computer or something
is wrong with it. (Perhaps the RIM is unplugged).

If the bootstrap results in a slow, regular clicking sound
(about once per second), and no ARC signon message occurs (and the
cassette is not moving), then either no File Processor is up (or
has a valid ARC/CMD file, see below) or else there is trouble of
some sort in the RIM's connection to the rest ot' the system. The
coaxial cable may be disconnected, or perhaps a failure within the
hub is indicated. If only one File Processor is available, a
failure in its RIM may be indicated.

The bootstrap information that is transmitted from a File
Processor in response to a bootstrap request is resident in the
ARC library flle ARC/CMD. As long as AHC/CMD is resident on one
or more or the disks at File Processor (in MAIN or SYSTEM
subdirectories), the File Processor is eligible to support
down-line loading.

If the bootstrap results in very infrequent clicks but still
no ARC signon message, this indicates a very high error rate or
excessive loading down or the RIM bus. If the condition persists,
call a Customer Service Representative to diagnose the problem.

3.4 Applications Processors and the MOUNT Command

Applications processors which have local disks (and RIMs, of
course) require no preliminary preparation ot" their local disks
for ARC applications processor operation. The only requirement is
that the MUUNT command be resident on a disk at the applications
processor so that the commana can be used.

Once the DOS is up and running, whether down-line loaded or
booted from a local disk, the MOUNk command can be used to examine
or change the set or volumes available for access to the
applications processor. Running the MOUNT command (in any of its
forms) establishes the executing processor as an ARC applications
processor, it" it has not been so established already.

Being established as an ARC applications processor
essentially means that the ARC Multiprocessing System Interface
software has been loaded into main memory and initialized. This
software resides in System Memory and 4K of user memory. The 4K
of user memory required by AHC is removed from the upper end of
memory (0130000-0137777) on 554b and 1170 model computers, and
hence programs which expand to use all or user memory will
normally still operate within the slightly reduced 44K user memory

CHAPTER j. COMMANDS AND PROCEDURES 3-3

area.

There are many variants and options on the MOUNT command.
First, the different functions and options will be described.
Examples will follow section by section. It all sounds a great
deal more complicated than it actually is, but should readily
become understood arter a few minutes or experimentation.

3.4.1 The Display Mode

The display mode or MOUNT performs a function analogous to
the CAT command and works much the same way. In the display mode,
MOUNT will show the volume name or the volume(s) mounted in either
the specified or all logically online drives.

To obtain a dlsplay or the volumes in all (logically) online
drives, it is only necessary to enter from the system console:

MOUNT

To obtain a slmilar dlsplay but only for the single volume in
a specific logical drive, enter:

MOUNT :1)n

where n is the logical drive number to be displayed. Note
that the same form of this command has a different function if the
specified drive is logically orfline when the command is issued
(see below).

To simply find out the logical drive number in which a
specific (already mounted) volume resides, enter:

MOUNT :volumename

Drives which are logically orfline are not displayed when the
all-drive display form of' MOUNT is used. Logical drives which are
online but dlrected to physically orfline disk units (or disks
without Volume IDs) are indicated by the number of the physical
drive, and the legend "LOCAL".

3-4 ATTACHED RESOURCE COMPUTING SYSTEM

3.4.2 The Move Mode

The MOUNT command can also be used to logically move a volume
from one logical drive to another. The drive from which the
volume is moved is taken logically orfline upon completion of the
move. Any volume which may have been accessed via the destination
drive is logically dlsmounted before the move. The subdirectory
ot' the volume being moved does not change as a result of the
operation. Both source and destination drive numbers may be
specified either by volume name or by logical drive number. Also
note that the MUUNT command can be used to move local disks from
one logical drive to another even when no RIM is present, since
ARC can run wlth all-local disks (and no RIM) just as well as with
all-remote disks (and no local disk controller or drives).

As an example ot" the move mode ot" the MOUNT command, moving
the volume in logical drive three to logical drive one only
requires entering the command:

MOUNT :D3,:D1

Note again that this operation removes the volume previously
mounted in drive one (if any) and leaves drive three logically
offline.

As another example, let's assume that a file processing run
has completed, and it is now desired to mount the disk containing
the new master file in the same drive that used to contain the
original master file. This can be accomplished by simply
entering:

MOUNT :<newvolume>,:<oldvolume>

where <newvolume> is the volume name ot' the volume containing
the revised master file, and <oldvolume> is the volume name of the
volume containing the original master file.

Of course, one can also specify either the destination or
source drive by volume name and the other by drive number in any
combination, as needs dictate.

Moving remote volumes from drive to drive using the MOUNT
command in no way interferes with their drive number locations or
otherwise dlsturbs any other applications processor concurrently
using those volumes.

CHAPTER j. COMMANDS AND PROCEDURES 3-5

3.4.3 Taking a Volume Logically Offline

Any 01 the sixteen logical drives may be taken logically
offline (regardless or whether or not it is physically present
with or without a disk spinning in it) by simply moving no drive
into the drive to be taken oIfline. That sounds more confusing
than it is to do. For example, if' the volume in drive eleven is
to be taken 01'fline, whether remote or local, the operator simply
enters:

MOUNT ,:Dl1

Likewise, the volume to be taken orfline may be specified by
volume name, for example:

MOUNT ,:volumename

3.4.4 Bringing a Local Volume Online

There are two forms of "online" that determines the
availability or local volumes. One is logically online, the other
is physically online. Both must be true for a disk to be
accessable. If a local drive is logically online, then it is only
necessary to mount a disk in the drive and bring it physically
online to access that dlsk. However, once a local drive has been
taken logically offline, the MOUNT command must be used to bring
that drive back logically online before access is possible to any
disk that may be in it. To bring logical drive five back online,
enter at the system console:

MOUNT :DR5

If that drive is already logically online, the request is
simply treated as a display mode request, and the volume name (if
any) of' the volume is displayed. If the drive is logically online
but physically offline, the local physical drive number being
referenced through the specified logical drive number is
indicated, with the reminder "LOCAL" also being displayed.

Since the drive being brought online was previously offline,
of course the actual drive number to use must be given (the local
drive to be brought online cannot be specified by volume name).

3-6 ATTACHED RESOURCE COMPUTING SYSTEM

3.4.5 Bringing a Remote Volume Online

To bring a remote volume (i.e. one resident at a File
Processor) online, several key things must be known by ARC.
First, the volume name to be mounted must be known. Second, a
user name and codeword must be available. ARC remembers the first
valid user name and codeword combination it is given, and these
are used as default values for subsequent MOUNT operations unless
they are overridden for specific mounts. (The "ZAP" option,
described later, allows establishing new default values if
desired). The user name and codeword to be overridden, if
applicable, are specified using options described below.

The basic form of a MOUNT request for a remote volume
consists of only a volume name and a drive number where the disk
is to be mounted. For example:

MOUNT MYDISK,:D12

Note especially that the volume name, MYDISK, is not preceded
by a colon, and that this distinguishes the mounting of a remote
volume from the moving of an already mounted volume to a different
logical drive, as discussed in a previous section.

This command will attempt to locate a volume named MYDISK
which the previously established user name and codeword has
permission to use. A regular clicking sound indicates the
progress of the search for the volume. After several unsuccessful
tries through each RIM online to the applications processor, an
error message is given and MOUNT will simply return to the
operating system. The WAIT option, described later, makes it
possible to require completion of the mount operation before
continuing (which is useful especially for MOUNTs contained in
chain files).

The drive in which the remote volume is to be mounted may be
specified either by the logical drive number or by the volume name
of the volume already in the specific logical drive. If it
doesn't matter particularly which drive the volume is to be
mounted in, it is not necessary to specify the destination drive.
In this case, ARC will choose a drive in which to mount the remote
disk. In picking the default destination drive, ARC looks first
for logically offline drives, then for physically offline drives.
If all sixteen logical drives are in use, ARC does not presume to
know which ones are no longer needed, but will then require that a
specific drive be indicated.

CHAPTER 3. COMMANDS AND PROCEDURES 3-7

3.4.6 The WAIT option

One ot" the options to the MUUNT command is the "WAIT" option.
This option is only meaningful when a remote volume is being
mounted. Without the option, several attempts to locate the
desired volume are made through each of' the one or more attached
RIM systems before giving an error message and returning to the
DOS. Ir" the WAIT option is specified, the MOUNT command will wait
indefinitely for the mount to succeed, or until the operator at
the applications processor aborts the operation by holding down
the KEYBOARD key until the abort has been acknowledged. The abort
should be acknowledged within an average of less than five seconds
per RIM attached (directly) to the applications processor.

Volume mounts can fail for a variety of reasons. Obvious
ones include an incorrectly entered volume name, user name, or
codeword. Volume mounts may also fail on occasion due to heavy
loading ot" the File Processor or RIM system. This occurs when the
File Processor misses the mount request message (which can occur
if its buffers are full wnen the request is made) or when heavy
loading down of the File Processor having the desired volume makes
it impossible for the File Processor to respond within about four
seconds. It" the problem persists, it may also indicate problems
with the Interprocessor Bus and should be referred to either a
Customer Service Representative or a Systems Engineer for
diagnosis.

All options are entered by keying the full option name,
separatea by commas if more than one is used, after a semicolon.
The semicolon follows any volume parameters. For example, to
mount volume SYSTEM (using the default user name and codeword)
with the WAIT option, it is only necessary to enter:

MOUNT SYSTEM;WAIT

3.4.7 The STATUS Option

The STATUS option requests tnat the status of the destination
drive be displayed upon successful completion of the MOUNT
command. if no specific destination drive is applicable, then the
mounted volume status of all logically online drives is displayed.
The format ot" the display is the same as the standard display form
ot" the MOUNT command, described above. This option is primarily
useful to verify that the desired MOUNT operation has in fact been
performed, without having to enter the display operation as a
separate step.

3-~ ATTACHED R~SOURCE CUMPUTING SYSTEM

3.4.8 The NAME Option

The NAME option allows the user to override the default name,
for the specific MOUNT command operation only, with a different
one. (If no user name has yet been established, the name supplied
becomes the default name for subsequent mounts). The name"may be
supplied directly on the command line, for example:

MOUNT volser;NAME=username

If supplied in this format, the user name may be supplied
from a chain file, if desired. User names supplied in this
fashion must adhere to DOS file name rules. User names which do
not adhere to these rules may optionally be entered directly from
the keyboard, bypassing any CHAIN-programmed responses, by simply
specifying the NAME option by itself, with no immediate value
specified. For instance:

MOUNT vOlser;NAME

This results in a prompt appearing on the screen to which the
console operator must key in the user name to be used for the
volume mount. This can be useful if it is preferred not to leave
valid volume names with matching user names laying around in chain
files on disk.

3.4.9 The CODE Option

The CODE option works exactly like the NAME option except it
allows the specification of the codeword to be used for the MOUNT
operation. For many users, the best procedure will be to use the
NAME=username option and the CODE option on the command line from
their chain files. This way, it is possible to give the correct
subdirectory name (user name) from the chain file, but still
require the operator to key in the correct codeword from the
console, helping to guard against unauthorized usage.

If both NAME and CODE options are specified without immediate
values, the values are requested from the operator in the order
the options were specified, scanning from left to right.

As an alternative way of supplying the codeword, the codeword
may also be specified as the third item on the command line,
immediately after the destination drive specifier (if present) and
separated from it by a comma. (In order to use either this form
or the CODE=newcodeform, the codeword must follow DOS file name
conventions). For example,

CHAPTER 3. COMMANDS AND PROCEDURES 3-9

MOUNT volser,:DR2,MYCODE;NAME=SCHMUCK

When the codeword is entered as the third command line item
in this fashion, the command line is erased immediately upon the
MOUNT command being issued (to help to avoid accidental disclosure
ot' the cbdeword to bystanders). This can be especially useful
when MUUNT commands are enclosed in a CHAIN file, and it is
desired not to leave the MOUNT command lines, showing user names
and codewords, sitting on the screen to be seen by passers-by.

3.4.10 The ZAP Option

The ZAP option causes the previous default values for user
name and codeword to be forgotten. The user name and codeword
specified elther in the same or a following invocation of the
MOUNT command will supercede the old defaults.

For example, to establish a new set 01" defaults for user nane
and codeword, the following command:

MOUNT ;ZAP,NAME=newname,CODE=newcode

will cause the newly specified name and codeword to replace the
ones previously in use. If the NAME and CODE options are not
specified, the default name and codeword establishment is deferred
until a user name or codeword is specified in a subsequent MOUNT.
Names and codewords are separate defaulted items as far as this is
concerned, so the ZAP, NAME, and CODE options may' be used in any
combination desired.

3.5 The ARCCODE File

Access to files at File Processors is protected by several
levels of access protection. One of these levels is the codeword
required for each user to gain access to a given File Processor
volume.

For each user name on a given volume, there is precisely one
eight-byte codeword matching that name which will permit access to
the volume. These codewords are stored in a file named
ARCCODE/TXT in a manner exactly similar to the way the user names
(subdirectory names) are stored in the first data sector of
SYSTEM7/SYS. There are twenty-nine available user subdirectories
and therefore twenty-nine codewords. They are eight bytes long,
each, and stored adjacent to each other starting in physical byte
nineteen (user data byte sixteen) of the sector. (The first

3-10 ATTACHED RESOURC~ COMPUTING SYSTEM

si~~teen data bytes are where the codewords for SYSTEM and MAIN
su~directories go if they exist). The sector is terminated with
an 015 and a 3, just like any standard non-space compressed text
sector. (The ARCCODE/TXT file is terminated with a standard EOF
mark). The fact that this sector follows standard DOS conventions
permits users to create programs of their choice, using DATABUS,
DATASHARE, CUHOL, R~G, BASIC, or ASSEMBLER, to manipulate and
modify the codeword sector. In this way, users can custom-tailor
their codeword maintenance programs to provide any facilities they
find useful in implementing their own installations' security
conventions.

A sample DATABUS program, named DSARCID, that can manipulate
these tables is included with the ARC release package.

SYSTEM

MAIN

GORDON

HARRY

GEORGE

[:~~~~q

MAINTAIN

SECRETeD

ANDELLA2

GEORGE CD

e

(SYSTEM needs no codeword)

(For maintenance use only)

(an imbedded unused entry)

, I I L_________ first sector of ARC CODE/TXT
I ,
~------------------------------ first sector of SYSTEM7/SYS

FIGURE 6.

Diagrams of the user name and codeword sectors. The
sectors can be processed using high level languages.

In the above diagram, note the one-for-one relationship
between user names and codewords. Also, note that deleted user
names are indicatea by fields of spaces. It would be invalid to
move following user names up to close up the gap, since their
location within the sector determines the corresponding
subdirectory number which is used internally by DOS. Also note
that the codewora for each user name begins in the same location
within its sector 01" AHCCODE/TXT as the user name itself appears

CHAPTEH 3. COMMANDS AND PROCEDURES 3-11

within the first sector ot" SYSTEM7/SYS.

The codeword file ARCCODE/TXT, one being associated with each
volume at a File Processor, allows users to have different
codewords for each of' their volumes for added securi ty. (If no
ARCCODE/TXT file exists on a volume at File Processor, the user
name is simply used again as the codeword for the volume as well).

In any case, however, codeword maintenance cannot be dorie
while the owning File Processor is operating. Any attempt to
access (for elther reading or writing) the ARCCODE/TXT codeword
sector will result in a "DRIVE OFFLINE" status being returned from
the File Processor. (The same status is returned for any attempt
being made to modify the subdirectory sector of' SYSTEM7/SYS). To
help protect against accidental attempts to access the ARCCODE/TXT
file while File Processor is active, it is suggested that the file
be placed into sUbdirectory MAlN. In this way it can still easily
be maintained while the owning processor is not running as a File
Processor.

3.6 Auto-Execute under ARC

Since individual users or a shared volume at a File Processor
may wish to auto-execute different programs (or even have no
program set for auto-executing), AHC permits each subdirectory
(user) 01' File Processor volumes to have individual auto-execute
indicators. (The auto-execute feature 01' DOS is described in the
DOS USER'0 GUIDE). The ARC auto-execute table record is the
second record in the AHCCODE/TXT file on each volume. This table
contains, for each user subdirectory, an auto-execute PFN as an
octal ASCII number. This permits each user to independently
employ the DOS AUTO, AUTOKEY, and MANUAL commands in whatever
fashion his or her needs dlctate.

A few special considerations do apply when using auto-execute
under ARC, however. The first is important only when using the
DOS AUTOKEY command. The AUTOKEY command stores the AUTOKEY
command line into the ,AUTOKEY/CMD file itself. In order for
different users to be able to AUTOKEY different command lines,
each suCh user must have his own copy of the AUTOKEY command. One
way to do this is to rename the standard AUTOKEY/CMD file to
something else, such as "AUTOKEYC/CHD". This file should be in
subdirectory SYSTEM, so all users can access it. When it is
desired to AUTOKEY a command line, first the user simply copies
AUTOKEYCICMD into a new file, AUTOKEY/CMD, which will then be in
his private subdirectory. This copy of' the AUTOKEY command may
then be rUD or AUTO'ed exactly as normal.

3-12 ATTACHED RESOURCE COMPUTING SYSTEM

3.6.1 The AUTOCLR Command

The other special consideration has to do with volume
reorganization. The BACKUP command ordinarily clears the
auto-execute flag (in the CAT) for volumes which are the result of
a reorganiza tion. This is necessary since' the reorganiza tion may
reassign completely dlfferent physical file numbers (PFNs) which
bear no relationship to those the corresponding files had before
the reorganization. Reorganizing a File Processor's disk volumes
(when the File Processor is not active, of course), while
correctly clearing the auto-execute flag in the CAT, will not
clear the auto-execute PFN table in ARCCODE/TXT. If this
condition is not altered, users logging on to the reorganized
volume as their system volume will find that they may be auto'ed
on the wrong programs. If tois occurs, the users may simply
reboot, suppress the incorrect auto-execution with the KEYBOARD
key, and then issue the MANUAL command, which will clear the
invalid auto-execute PFN. Alternatively, the AUTOCLR command will
clear all the AHC user auto-execute PFNs on the drive specified,
by entering:

AUTOCLR :volumename

The AUTOCLR command should be run from the File Processor
console while the File Processor is not active. AUTOCLR can, of
course, be run from a CHAIN file it' desired.

3.7 Write-Protected Volumes

As mentioned previously, File Processors recognize a special
field (named VOLIDPRO) in the DOS VOLID record. If this field is
set to a "w" upon the volume coming online at the File Processor,
the volume is marked as being write-protected. This status is
in d i cat e d a t F i 1 e Pro c e s so r by the leg end "t W)" a p pea r i n gat' t e r
the volume name on the display. An attempt to modify any sector
on a write-protected volume results in a beep at the requesting
applications processor, followed by the same result as if the
volume had gone momentarily orfline.

Write-protected volumes are also special in that all
write-protected volumes are forced by File Processor to have a
fully-allocated DOS cluster allocation table. This makes
n6n-specific-volume file PREP operations automatically skip across
any write-protected volumes. New files will then default to being
placed on the first (lowest numbered logical drive),
non-write-protected volume.

CHAPTER j. COMMANDS AND PROCEDURES 3-13

3.7.1 The PROTVOL Command

The VOLIDPRO field in the VOLID sector is set or cleared with
the PROTVOL command. This command works much like the DOS
"CHANGE" command. For example, the command to write protect a
volume would be:

PROTVOL :volumename;W

Likewise, the command to clear the volume write protection is
entered:

PROTVOL :volumename;X

The write-protect status ot' the volume may be displayed by
simply entering:

PROTVOL :volumename

Once a volume has come on line at a File Processor, ARC/FP's
internal write protect bit for the volume may be modified (without
affecting the VOLID sector copy on the disk) by a command issuable
at the File Processor console. For example, to temporarily write
protect the volume XYZ1234, the operator at the ARC/FP console
would enter:

DISABLE WRITES Tu XrZ1234

The success of the operation is confirmed by the appearance
of the volume write-protect flag "(W)" next to the volume name on
the ARC/FP display.

Predictably, there is a similar command to temporarily remove
the write-protection oro a write-protected volume. To temporarily
permit writes to volume MYDISK3, the operator at the ARC/FP
console might enter:

ENABLE W~ITES TU MYDISK3

Just as predictably, success of the command is indicated by
the disappearance ot' the volume write protect indicator next to
the volume entry for MYDISK3.

Note that the write-protecting of a volume using the VOLIDPRO
field does not affect the ability to write on the volume using
standalone DOS when ARC/FP is not active.

3-14 ATTACHED RESOURCE COMPUTING SYSTEM

3.8 The ARCID Command

The ARCID command enables an operator to readily name and
rename disk volumes, as well as establish, inspect, modify and
delete user names and codewords.

The ARCID command is intended to be run at a file processor
while it is not actively participating in ARC. The ARCID command
is started by entering the command:

ARCID :drivespec

The drive spec in the command line only serves to provide
ARCID with an initial volume for processing. It is, of course,
simple to select other volumes once ARCID is active.

One of the first things which ARCID does upon accessing a
volume is to create an ARCCODE/TXT file on the volume if none is
already present. The file will be automatically moved into
subdirectory MAIN upon completion of ARCID via a CHAIN file.

Once the ARCCODE/TXT file has been created, ARCID displays
MAIN and the twenty-nine user names on the selected volume. Next
to each user name, any corresponding codeword is displayed as a
field of asterisks.

Following this, it asks the user for one or more of a series
of commands which tell it what operations to perform. The format
of these various commands and what they do is described in the
following sections.

3.8.1 Selecting Volumes

ARCID deals with one volume at a time. The user may change
the. currently selected volume at any time by simply entering a
valid drive spec defining the desired volume. The volume may, of
course, be specified either by drive number or by volume name.
Rem~mber to enter a leading colon before the drive spec, just as
for a DOS command line. The colon is how ARCID knows that what
you are typing is a drive spec and not a user name.

CHAPTER 3. COMMANDS AND PROCEDURES 3-15

3.8.2 Assigning Volume Names

ARCID may be used to assign volume names to disk volumes,
along with optional owner-supplied information. The additional
information is strictly for administrative purposes. The only use
DOS makes of this additional information is to display it during
such commands as FILES to aid in identification of the specific
disk volume.

To assign a volume name of TESTPAY to the disk in drive two,
simply enter a drive spec defining the drive in which the disk to
be named is located, and then the new volume name, separated by a
left corner bracket:

:DR2(TESTPAY

The user-specified identification information, if it is to.be
supplied, should follow the new volume name, separated from it by
a single comma. For example, to supply a name of ARCSYS to the
disk in drive zero, and to record on the disk the date on which it
was established, the operator might enter:

:DO(ARCSYS,FORMATTED 12/1/77

Certain of the commands under ARCID, including all commands
to name and rename disk volumes, are referred to as "deferred
commands". These commands are queued and do not actually get
fully processed until ARCID finishes and returns to DOS, at which
point a CHAIN file is started which processes all the deferred
commands.

In addition to assigning the volume name, which is a deferred
operation, this command will also select the indicated volume for
subsequent ARCID operations.

3.8.3 Changing the Name of Named Volumes

Likewise, changing the name of a disk volume can be
accomplished by the same technique. The main difference is that,
since the disk being renamed is already accessable by volume name,
it is not necessary to specify the physical drive in which the
disk to be renamed is located.

For example, to rename volume NEWPAY to OLDPAY, the operator
only need enter:

:NEWPAY(OLDPAY,user information

3-16 ATTACHED RESOURCE COMPUTING SYSTEM

Again, recall that the commands which name and rename volumes
are deferred, and therefore do not actually get processed until
ARCID completes its operations and returns to DOS. The only
immediate effect of the volume renaming command is to select the
volume specified for processing by later commands.

3.8.4 Examining User Codewords

User codewords may be displayed, one at a time, for
inspection by simply entering the user's name. The codeword will
be displayed next to the corresponding user's name on the CRT.
The codeword will remain displayed either until the next command
is entered, or until the operator presses the ENTER key.

3.8.5 Adding User Names

A new user name for the selected volume may be estabiished by
simply entering the new name desired. Optionally, the new user's
codeword may be assigned during the same operation by simply also
entering the new codeword, separated from the user name by a
comma:

NEWUSER,NeW code

Since subdirectory names (user names) are scanned by the
operating system routine SCANFS, all user .names must agree with
the DOS file naming standard. That is, they may consist of from
one to eight alphameric characters. All alphabetics must be upper
case only. On the other hand, codewords (while they must be eight
bytes long) may contain any character enterable from the keyboard,
including imbedded spaces and punctuation. In the example above,
notice how the codeword specified contains both upper and lower·
case letters, along with an embedded space.

3.8.6 Changing a User Name

Changing a user name, predictably, looks a lot like changing
a volume name. Simply enter the user name to be ~hanged, a left
corner bracket, and the new name. Again, the codeword may also be
changed in the same operation by placing it after the new codeword
and separated from it by a comma.

Changing a user name and a code word in this fashion does not
change the files which the user has available to him within his
subdirectory. No files are lost or misplaced during the renaming

CHAPTER 3. COMMANDS AND PROCEDURES 3-17

operation. In other words, every file in the user's subdirectory
before the operation will still be in his subdirectory afterwards.
The only difference is that the user must enter the new name and
codeword to access the volume.

3.8.7 Removing Valid User Names

Removal of user names is a deferred command like volume
naming. This implies that user names which are deleted will
continue to appear on the display while the ARCID progra~ is still
active. The reason why user names are not deleted until
afterwards is that the user being deleted might have one or more
files in his subdirectory on the volume, and if so, just removing
the user name directly would leave his files on disk in a
non-existent subdirectory. By deferring the command, all files
belonging to the user are automatically moved into subdirectory
MAIN at the time the user name is deleted from the volume.

To remove a valid user name, simply enter the name of the
user to be removed, followed by only a left corner bracket.
Literally, this amounts to replacing a valid user name with a
"null" name. For example, to remove TOM from the list ot.
authorized users of some volume, the command might look like:

TOM<

As an additional check when removing a user, an arrow appears
on the display next to the user name to be deleted. The user must
verify the operation by entering a "Y" before the command to
delete the user n~me becomes queued.

3.8.8 Changing Codewords

Chariging a user codeword is as simple as entering the user
name,. a comma, ~nd the new codeword. For example:

ACTSRECV,over*duE

3-18 ATTACHED RESOURCE COMPUTING SYSTEM

3.8.9 What if I Forget?

If the user forgets the exact form for the command desired,
simply entering a "1" will display a list of commands available
within ARCID.

3.8.10 Returning to DOS

As per DOS convention, entering a "*" causes ARCID to exit
back to DOS. Any deferred commands which were requested will be
executed after ARCID returns to the operating system.

CHAPTER 3. COMMANDS AND PROCEDURES 3-19

CHAPTER 4. CONFIGURING AN ARC SYSTEM

Due to the extremely great flexibility that is available when
configuring a system such as AHC, it would be impossible in these
pages to describe all possible configurations. Rather, the
principles that must be adhered to and other considerations will
be detailed. Even once an ARC system is installed, it can be
reconfigured in many dlfferent ways to give either more or less
cost for more or less performance.

Appendix A contains a few examples or how to design ARC
configurations for various applications.

4.1 Basic RIM Constraints

Each RIM has eight-bit 1/0 bus and RIM bus addresses, as
mentioned previously. The eight-bit RIM bus address permits up to
255 RIMs. to be attached per single RIM system. (No t.wo RIMs
within the same Interprocessor Bus may have the same RIM bus
address). Six different liD bus addresses have been assigned for
use by RIMs under ARC.· These addresses are, primary address
first: U23Q, 0232, 0231, 0254, 0252, and 0251. This 'means that
each applications processor or File Processor can participate
concurrently in up to six distinct RIM systems. Alternately, one
or more oX the six RIMs may be connected to the same
Interprocessor Bus (with different RIM bus addresses). This can
be useful, on File Processors, to permit higher total data
transfer rates than might be possible with only a single RIM. An
additional benefit of having more than one RIM on the same bus for.
a file processor is that doing so will reduce the number of missed
MOUNT requests.

The choice or RlM bus addresses is not completely arbitrary.
When multiple RIMs are attached to a single processor within· the
same Interprocessor Bus, these RIMs should all have consecutive,
monotonically increasing RIM bus addresses. In other words,~no
other RIMS on the same bus on any other processor should have a
RIM bus address between the smallest and largest RIM bus address
in use on the subject processor. This nullifies the erfect or
multiple path uncertainties in message routing within ARC, which
could otherwise result in indefinite postponement and other system
software failures. In order to allow provision for future use of
multiple RIMs per processor, it is suggested to allow several
unused RIM bus addresses on either side of each allocated one.

CHAPTER ~. CONFIGURING AN AHe SYSTEM 4-1

4.2 File Residency Options

One factor that can greatly arfect the throughput of the
Attached Resource Computer is where files are located. Files
which are very small but accessed heavily by a number of users are
frequently best placed on a shared disk at a File Processor. This
is because File Processors perform least-recently-used buffering
ot' sectors read from their disks, and therefore could have the
requested sector already in me~ory. This would eliminate having
to read it from the local disk. If, on the other hand, the File
Processor ia extremely busy, it may be preferable to duplicate the
file on a local disk for each applications processor which needs
it. A third alternative, again for flIes which are accessed on a
read-only basis, would be to place copies of the file on each of
several volumes at different File Processors. This would help by
distributing the file load across more access paths (the RIMs at
the different File Processors), and more file processing power to
deal with the heavy request load.

On example or a situation in which the technique just
mentioned might be helpful is in the case or a large,
ISAM-organized data file which is to be used by several dozen or
more applications processors throughout the company
simultaneously. ~uch a flle might be a master part description
file, which could be usea by Purchasing, Order Entry, Spare Parts,
Accounts Payable, Inventory Control, Engineering and Manufacturing
systems, all simultaneously. Perhaps it is indexed in several
different ways, for example by part number, vendor code and vendor
part number, ana stock room location and bin number. Since ISAM
indices are always enqueued (requested on an exclusive-use basis)
during the ISAM lookup operation, this would prevent access to the
index by more than one applications proce~sor at any given
instant. Duplicating the file and indices at more than one file
processor would permit accesses to the file at ~ach of the file
processors to proceed in parallel, resulting in a higher
throughput and better overall performance.

File residency and how it affects cost, throughput, disk
storage requirements, privacy and response times all vary for
different specific processing loads and applications, so
generalizations are difficult to make. Imaginative use of the
'unusual flexibility and facilities of ARC make it uniquely
adaptable to fit almost any transaction-oriented business
processing requirements.

4-2 ATTACHED R~SOURCE CUMPUTING SYSTEM

4.3 How Many File Processors?

The minimum number or File Processors reqtiired to take
advantage of ARC's shared volume accessing facilities is one. A
single File Processor can accommodate up to almost 200 million
bytes of disk storage, on sixteen logical drives. Again, however,
interesting alternatives exist which allow AHC to adapt to
individual processing requirem~nts.

Distributing a set.ot· fi~es used heavily by a large number of
users among more than one File Processor can result in
considerable improvements in performance. This permits the total
disk transaction load to be distributed among more than one disk
controller, permitting total overlap of disk transfers. Having
additional File Processors also spreads the request load among
them, resulting in lighter average loads at each File Processor
and therefore better overall performance.

Another, less Obvious, benefit is that, for each File
Processor there is a separate, large, least-recently used list
reflecting the most recently referenced disk sectors. Increasing
the number of disk controllers and File Processors relative to the
amount ot· disk space present results in a higher percentage of the
total disk space being resident already in buffers at a File
.Processor, which can improve performance substantially.

Having multiple File Processors also brings with it the
advantages ot" additional reliability. When multiple processors
may be used as File Processors, this provides additional
protection against system downtime. One File Processor being
inoperable, with adequate backup facilities designed into the
configuration, can probably be reduced to the level of a minor
annoyance rather than a catastrophic business interruption.

On the other hand, if the applications processors each have
their own local disk systems and only use the File Processor
intermittently to access, say, one common file, then one File
Processor may be quite adequate.

4.4 How Many Applications Processors?

This question depends almost entirely on the level of
throughput required. One applications processor may be quite
satisfactory for handling sixteen terminals under Datashare, but
in cases where more processing speed is required, these same
sixteen terminals will probably experience substantially better
performance it" spread out among anywhere from two up to sixteen

CHAPTEH 4. CONFIGURING AN ARC SYSTEM 4-3

applications processors.

If more than one applications processor is desired in a
single place, all referencing volumes via ARC, while still having
a set of "local" common volumes accessed only among those several
applications processors, there are several options. One is to set
up another File Processor, locally, to control the string of
shared local disks and coordinate their use among the si~teen
applications processors. This new File Processor may be on the
same bus as the original, remote File Processors. Alternatively,
if the data in the files is extremely sensitive (for example,
payroll or costing information) and ~t is not desired to have its
owning File Processor by any means accessible from, perhaps,
applications processors in another department, a File Processor
could be established on a local RIM system which would attach
through'an additional RIM on each processor to be allowed access
to the sensitive data. In this way, each of the secured
department's processors has "free access (if permitted by the
volume name, user name, codeword security checking) to the
department's private data (via the department's local RIM system)
while still maintaining easy access, just as before, to data
accessible via the Interprocessor Bus (one or more) coming into
the department from outside.

This approach of using multiple, partially-overlapped RIM
systems (such RIM systems are referred to as "conjoint" if they
share one or more common processors, and "diSjoint" if not) allows
unparalleled versatility to match virtually any data processing
requirement.

4.5 How About Dial-Up Access?

DH~ to the unusually high speed and structure of ARC, it is
not really practical at the current time to directly extend full
ARC features across the painfully slow facilities currently
available within the switched telephone network. However, other
data communications software already supported by Datapoint, such
as Datapoll, RJE terminal emulators, UNITERM, MTE, MULTILINK,
Datashare Networking, and the myriad of user-supplied data
communications packages can be used from ARC applications
processors, in almost infinitely many combinations, to help
front-end remote Datapoint or other computers into the ARC
multiprocessing system.

Since each applications processor under ARC can access up to
almost two hundred million bytes of high-speed disk storage within
ARC's storage hierarchy a~ any given time, and can execute

4-4 ATTACHED RESOURCE COMPUTING SYSTEM

communications programs or- virtually any kind independently of
other applications processors, the primary limiting factor of
configuration flexibility available is the imagination of the
user.

CHAPTER q. CONFIGURING AN AHC SYSTEM 4-5

CHAPTER 5. UPDATING OF SHARED FILES

In any system which allows multiple concurrent processes to
update shared data items, the problem or how to coordinate these
updates is present. This problem is complicated since deciding
whether or not an update should be made may depend upon many other
data items, and it may be necessary to know the precise
instantaneous sta te 01" allot" them bet"ore a valid upda te will be
possible. If several of these are being concurrently updated in a
haphazard fashion by dlfferent people, it is easy to see that
things could become· very confused.

This chapter describes the use or the portion of ARC which
resolves this dilemma. This portion ot" ARC is called the
Enqueue/Dequeue Subsystem, and something performing its function
exists in all multi-process operating systems supporting shared
data updating. the diScussion in this chapter.is intended for
systems-oriented programmers who are familiar with assembly
language programming; others who are interested may read the
chapter purely out of curiosity. In any case, DATASHARE programs
which are properly written for multi-port environments using "PI"
instructions will automatically invoke the mechanisms described in
this chapter (thanks to the DATASHARE system) without further ado.

5.1 Exclusive Use (Enqueue) Timeout

One important aspect 01"" the design ot" AHC is to ensure that
the system never becomes locked up in a state known as "indefinite
postponement". this frustrating situation occurs when two
processes each wait indefinitely for the other to finish. Since
any processor could theoretically fail at any given time, it is
not possible to simply turn over a file (or set of files) to any
given applications processor for its unlimited private updating.
Doing so would lock out access to those files for updating by
other programs, and ir the first processor were to never finish
its operation due to some unforseen failure, this lockout might be
permanent. This cannot be allowed to occur.

Therefore, under ARC, all permissions to update one or more
files on an exclusive basis expire after a short time, about one
minute. This allows multiple processes to perform update
transactions upon shared files, as long as these update
transactions are not so lengthy as to monopolize the resource.
The user is responsible for ensuring that any updates performed,

CHAPTEH 5. UPDATING OF SHARED FILES 5-1

therefore, do not require over one minute, total wall-clock time.
After one minute has passed from the beginning of the granting of
exclusive update permission, that permission is relinquished
(without further warning). Normally, the user's transactions will
require only a few seconds each, and the completion of his
transaction (as indicatea by Datashare's PI statement count
expiring, to use a Datashare program as an example) will
automatically release exclusive use of the resource so that it may
be immediately allocated to any other user requesting permission
to use it.

5.2 Multiple Level Enqueuing

Under ARC, provision exists for enqueues at several different
levels. These levels correspond to the naturally nested functions
occuring as a result 01' requests made by applications programs.
These levels are categorized as follows:

Level 1. Operating system level. This level corresponds to
various DOS operations, including but not limited to Disk Storage
Management. Applications programs never use enqueue level one
directly. One or more transactions at level one could occur
during a level two transaction.

Level 2. Individual access level. This level corresponds to
one ISAM file access or the like. (e.g., one Datashare
statement). One or more transactions at level two could occur
during a level three transaction.

Level 3. Multiaccess transaction level. This level
corresponds to Datashare PI statements. This level of enqueue
supports transactions which may include a number of individual
acce~ses, some of which might result in DOS Disk Storage
Management functions being performed.

5.3 Requesting Exclusive Use

Exclusive use 01' a resourc~ (a flle or a voluee containing
many files) involves t \-J C step s . The fir s t2. s r ~ q u ~; ~ til: g t. h e
exclusive use, known as enGueuing (')ron0ur;~ed n-q-ing) anc the
second is known as jeauelling (pronouncea d-q-ing). One e~a ueues
the resource before beglnning to look a t the da ta i terns ~ihich ,must'
not change during the course 'J1 the upda te. Then, when the upda te
is complete, one dequeues the resource to release it for Jse ~y
others, who might 3.1 so ha ve upda te req ues ts pend ing for tr.-:.='
resource.

5-2 ATIACEED R~SOURCE CUMPUTING SYSTEM

To enqueue a resource, ARC must be given an enqueue level
(corresponding to the numbers above), and an identification of' the
resources desired. Resources are described by logical drive
number and physical flie number, both quantities that can be found
for opened files by looking within the DO~ Logical File Table.
(See the DOS U~ER'S GUIDE for a discussion ot' the LFT). A System
Call instruction is used to invoke the ARC Enqueue/Dequeue
mechanism. When the System Call instruction is executed, the L
register contains a binary three, indicating that an
Enqueue/Dequeue request is being made. The C register contains
the Enqueue level, in binary. Enqueue levels two and three are
used for applications programs, as mentioned above. Enqueue
requests must be properly nested; one cannot enqueue a resource
at level three while a level two enqueue is still current. The DE
register pair when the System Call instruction is executed points
to a parameter list in main memory, which consists of' byte pairs
terminated by a byte pair of (0377,0377). The first byte of each
pair is the physical file number or the file being enqueued. The
secona byte ot' each pair is the logical drive number where the
file resides (0-15). Physical file number one, being always
reservea for system use, has a special function under ARC.
Enqueuing PFN 1 on a drive requests the enqueue ot' all files on
the volume. Up to sixteen byte pairs, plus the terminating pair,
may appear in the parameter llst.

Upon return from the system call, the CARRY and ZERO flags
indicate the overall status of' the operation, as follows:

CARRY FALSE indicates that no failure occurred. In this
case, it' ZERO is also TRUE, this means that the Enqueue/Dequeue
operation was a success. The resource is available for updating
(or has been released if' dequeuing, see below). If ZERO is FALSE,
this indicates that the Enqueue operation must be retried. The
Enqueue was not granted, but not due to any failure on the part of
the requesting program.

CARRY TRUE indicates that the Enqueue/Dequeue request failed.
If ZERO is also TRUE, this indicates that the failure was a
failure ot" the RIM interconnection. This might be caused by a
hardware or software failure within the RIM system or the ARC
software interfacing to the RIM system. If Z~RO is FALSE, this
indicates a logical failure or inconsistent request, which will
not succeed it" retried. This might occur, for example, if the
drive containing a requested file has been taken offline from the
owning File Processor. Retrying an Enqueue/Dequeue operation
which has returnea with Carry True is generally fruitless.

Again, note that these enqueue requests can be nested.

CHAPTER 5. UPDATING OF SHARED FILES 5-3

However, the total time the outermost enqueue will last is a
maximum ot" one minute. Also, no new items may be requested at
level two; any items requested at level two must be logically a
subset of items requested at level three. For example, if a
program requests a file at level two, it must have previously
requested either that file or the volume on which it resides
(except in the special case ot" ISAM files, described below) at
le~el three, if any level three enqueue has been previously
granted to the given applications processor. Note, however, that
level two enqueues can of course enqueue any desired items when no
level three enqueue is outstanding.

Also, note that all enqueue requests at a given level must be
given within one enqueue system call. It is an error to attempt
to enqueue a resource at a glven level when any resource already
is enqueued at that level or below (equal or smaller enqueue level
number) .

5.4 Releasing an Enqueued Resource

Releasing an enqueued resource is similar to enqueuing it,
~xcept that the D~ pair (instead of pointing to a parameter list
in memory) simply contains binary zero. The level number for the
dequeue operation is in C as before, and corresponds to the value
in C when the Enqueue was requested. The return conditions are
also the same as for Enqueue operations.

5.5 Exclusive Updating of ISAM Files

When enqueuing ISAM files for update, several special
considerations should be taken into account.

First, one ISAM data file may be associated with many ISAM
index (/ISI) files. However, to enqueue any ISAM file, one need
only enqueue the related data file. This has the effect of
enqueuing all related ISAM index files. The IISI file(s) should
not be enqueued.

Second, a level two enqueue should be performed on an indexed
file.e/before starting a search (or any other opera tion) through an
!ndexfor the file. Otherwise, a concurrently executing program
cO:lld modify the index file being searched, whiCh might cause the /
search to yield an invalid resul t. /"~

Third, the one-minute time limit on enqueues makes it
especially important to keep ISAM indices well-organized. If the

5-4 ATTACHED RESOURCE COMPUTING SYSTEM

ISAN index trees get so badly out ot" balance that updating
transactions (e.g. inserts) take many minutes, this will result in
applications processors' enqueues running out before their
operations are completed, resulting in possible invalidation of
the data flle. It is most important that these time limits on
enqueues be respected.

5.6 Reduction of Safe Enqueue Time

When multiple File Processors are in use, the total time
available before an enqueue starts to run out may be reduced by
the amount ot" time required to satisfy other enqueues requested at
the same time. For example, if sixteen File Processors are all in
use, and sixteen flIes are being enqueued (one at each File
Processor), the first enqueue which is granted starts timing out
as soon as it is granted by the first File Processor. It may take
up to a second or so (worst case) for each successive enqueue to
be granted by its respective File Processor, resulting in a total
or perhaps 45 seconds ot' wall-clock time available for the
transaction.

This is only one or many reasons why update operations (and
enqueued time) should be kept as short as absolutely possible.
Unusually heavy processing loads or the like could result in
extended transaction times, so the less time spent in enqueues,
the better. The other major reason for keeping enqueued time to a
minimum is that, by definit~on, enqueuing a resource seriously
impacts the additional throughput gains that would otherwise be
achieved through the overlapping or multiple concurrent processing
tasks. Minimizing resource enqueued time can result in
considerably improved system throughput, especially when heavy
contention exists for the use ot" a small number or heavily used
resources.

CHAPTER ? UPDATING Or' SHARED FILES 5-5

APPENDIX A. SELECTING AN ARC CONFIGURATION

This appendix gives a few detailed examples of how ARC
systems can be configured for various purposes.

The ARC system is an extremely versatile and highly flexible
system. As with anything which is so flexible, a bit of care taken
initially will payoff handsomely later as the configuration
expands to fulfill increased processing loads. Since the
eight-bit RIM bus addresses must be unique within one
Interprocessor Bus, for example, some coordinating authority
within the user organization ought to be available to ensure
proper address assignments and carefully thought out cabling
patterns. This coordinating authority is on the order of the job
responsibility of a "data base administrator".

Good systems analysis techniques can also be helpful in
determining which users share specific volumes, and the best
techniques for maintaining shared files. Some files may be best
kept on an applications processor's local disks .. Others might
profit by being kept at a File Processor, but within the user's
private subdirectory. Still others may be best kept in
subdirectory SYSTEM on a volume which a number of users may share.
Changes in optimum file storage approaches may occur as the extent
and applications of the ARC system grow and adapt to changing
needs.

The following paragraphs give some guidelines for analyzing
system tasks and choosing an appropriate ARC configuration.
Careful analysis of system workload will result in an optimum
system configuration. However, one of the strengths of ARC is
that the system is extremely flexible; few, if any, irrevocable
decisions must be made. Designers can shift the location of data,
index, and program files, or adjust the mix of file procesors and
applications processors, to obtain the best possible performance
under ~hanging conditions. forgiving; few (if any) irrevocable
decisions must be made, and users should feel free to experiment
with various locations for data files, index files, program files,
and various such aspects of their own ARC environment.

Therefore, this section deals, of necessity, with many
generalities. Hopefully, the section will help the user to
develop some feel for the way ARC reacts, and the almost
instinctive understanding which may result is the best aid in
optimizing a user's own configuration.

APPENDIX A. SELECTING AN ARC CONFIGURATION A-1

A.1 From One to Two Processors

Perhaps many new AHC users will move to ARC from a heavily
loaded, single 5500 processor Datashare system. Let us assume
that they have sixteen workstations at which a variety of
transactions against several different data files are made.
Transactions may include lookups into large indexed sequential
filee, such as customer or inventory files. The user may desire
improved response time, better throughput, concurrent RJE to
another computer, spooled printing, or more terminals. What paths
are open to them within ARC?

The simplest multi-processor ARC system would be to add two
RIMs and a second 5500. One RIM would be attached to each
processor. The existing 5500 could serve as the File Processor,
and the multiport communications adapters would be moved to the
new 5500, which would serve as the applications processor. This
upgrade might be expected to improve lookup times on the user's
ISAM files (since higher-level ISAM index sectors would tend to
become resident in the LRU list at the File Processor), and reduce
time spent loading frequently used pages ot" Datashare code (also
due to the LRU list maintained at File Processor).

From this simplest AHC configuration, the next upgrade path
becomes less clear. If the user's Datashare system tends to be
compute-bound, doing a lot ot' arithmetic, logical and character
handling functions, the best approach might be to upgrade the
applications processor to either a 6000 series processor, or two
5500s and dividing the terminals between them. If the Datashare
system is heavily liD bound, perhaps the "working set" of disk
'secto~s is larger than the LRU list at the File Processor. In
this case, upgrading the File Processor to a 6600 (which has two
to three times as large an LRU list as a 5500) might make a
considerable improvement in total performance.

A.2 More than Two Processors

A still larger LRU list can be achieved by dividing the disks
at a File Processor among two or more File Processors. This
approach, using a separate disk controller for each File
Processor, not only increases the size of the total LRU list
(since each File Processor has its own list), but can also help
(in multiple applications processor systems) by permitting
multiple simultaneous disk transfers to disks at different File
Processors.

A-2 ATTACHED R~SOURCE CUMPUTING SYSTEM

A.3 Many More than Two. Processors

In general, then, compute-bound systems can best profit by
adding more applications processors and dividing the processing
load among them. Individual workstations can generally be easily
divided among almost any number of applications processors, as
required. Additional applications processors may be employed for
printing, remote job entry, tape or card reader handling, program
generation, communications, or other functions.

Systems which are suffering under heavy disk 1/0 loads can
probably benefit the most by dividing the disk drives among more
File Processors, and even dividing the files across more disk
volumes it· necessary. Moving all IISI files onto a volume of
their own, at their own 6000 series File Processor, for example,
effectively guarantees that more than 300 sectors worth of ISAM
indices will be resident in the File Processor's LRU list,
permitting ·rapid access to those sectors without any disk seeks
being required for subsequent access. Programs which perform
numerous lookups in large ISAM files during each transaction may
net large performance improvements by using this approach.

Improved reliability and less sensitivity to hardware
breakdown can also be achieved by configuring multiple File
Processors. If, for example, the user's system has three File
Processors ana a total of' twelve 9370-series disk drives (four per
File Processor), adding two more drives per File Processor would
give sufficient spare spindles tha~ a failed File Processor's disk
volumes could be moved to the spare drives and processing
restarted, allowing processing to continue while the down system
is being serviced.

APPENDIX A. SELECTING AN AHC CuNFIGURATION A-3

APPENDIX B. RIM AND liD BUS ADDRESS ASSIGNMENTS

As mentioned earlier, both liD bus addresses and RIM bus
addresses are determined by internal jumpers within the RIMs.
These addresses can be modifiea by Datapoint customer service
representatives. However, it is necessary for the CSR to be told
which addresses the RIMs are to be strapped for.

B.1 RIM liD Bus Addresses

The first RIM on each processor is normally assigned an liD
bus address of 0234. Subsequent RIMs on the same processor are
normally assigned 1/0 bus addresses 01" 0232, 0231, 0254, 0252 -and
0251, in that order. MOUNT operations search through the RIMs in
that sequence, so using earlier 1/0 bus addresses from the set for
the RIMs through which the most frequent MOUNTs occur reduces time
required to mount those volumes. (Note that speed of access -is the
same, regardless of the RIM's 1/0 bus address, after the volume is
initially mounted).

B.2 Several RIMS on a Single Processor

When attaching multiple RIMs to a single processor, the RIMs
may be connected to either the same, or different, Interprocessor
Busses. (The Interprocessor Bus, to clarify, is the coaxial cable
which connects to other RIMs through hubs. The RIM liD bus is the
standard, multi-conductor processor 1/0 bus which connects the
processor to the RlM and other 1/0 devices). Connecting more than
one RIM between a processor and a single Interprocessor Bus is
most useful for File Processors, where a very heavily loaded File
Processor in a large system can achieve higher RIM throughput and
fewer missed volume mounts.

B.3 RIM Bus Addressing

When connecting multiple RIMs between a processor and the
same RIM bus, the RIM bus addresses should be consecutive.
Therefore, when initially assigning RIM bus addresses, reserving
six consecutive RIM bus addresses for each processor may be a good
idea. For example, the very first processors in a newly installed
ARC system (where only a single RIM per processor, and only a
single RIM bus, are used) might be assigned RIM bus addresses of

APPENDIX B. RIM AND 1/0 BUS ADDRESS ASSIGNMENTS B-1

1, 7, 015, 023, 031, and so on. This approach allows up to forty
processors to be attached to the single RIM bus before any
breaking up ot· six-address groups is required. Subsequent RIMs
might be assigned addresses of 4, 012, 020, 026, 034, and so
forth, still leaving each processor with three consecutive RIM bus
addresses available.

B.4 One Processor Straddling Several Busses

The more typical case of more than one RIM per processor is
when one or more ot" the RIMs attach to separate RIM busses. This
allows connecting any given applications processor or File
Processor into as many as six different RIM bus systems
concurrently.

When configuring multiple RIMs on a single processor, each
RIM attaching to different Interprocessor Busses, each such RIM
should be given the same RIM bus address as its neighbors on that
same applications processor.

B-2 ATTACHED R~SOURCE COMPUTING SYSTEM

APPENDIX C. SETTING UP A FILE PROCESSOR

Preparing a system for use as a File Processor is a
straightforward operation. First, the ARC system software must
reside on some disk volume(s) that will be mounted during ARC
operation. Volumes can be mounted and dismounted freely, as long
as some volume is always up that has the ARC File Processor system
file (ARC/CMD) on it, in sUbdirectory MAIN (or SYSTEM).

C.1 Loading the ARC/CMD File

The ARC/CMD file contains both the File Processor system
monitor and the ARC initializing program which is down-line loaded
to applications processors not having their own local disks. The
file ARC/CMD is generally kept in subdirectory MAIN. This permits
File Processors (which always run in subdirectory MAIN) to find
the file, so that down-line loading can be supported. In
addition, it helps to ensure against accidental naming conflicts
or other accidental misuse ot' the file by participating
applications processors.

For example, to load the ARC system to the volume "PAYROL01"
at File Processor, (while File Processor is not active), place the
ARC release cassette into the front deck and enter at the system
console:

SUR MAIN:PAYROLOl
MIN ;AO:PAYROLOl
NAME AHC/CMD:PAYROL01, ,MAIN

C.2 Building the ARCCLOCK/TXT File

The file ARCCLOCK/TXT, if one is present, should be in
subdirectory SYSTEM. This allows File Processor to see the file,
as well as applications processors. The file on disk is never
actually changed by the File Processor, so whatever contents the
user places in the file during initialization will remain there
indefinitely. Normally, the file is initialized to a time record
containing seven three-byte fields, each consisting of two spaces
and an ASCII '0'. ThiS format permits the file to be read easily
from any Datapoint language, including languages supporting
unformatted reads (such as BASIC, which uses the intermediate
spaces between numbers as delimiters).

APPENDIX C. SETTING UP A FILE PROCESSOR C-1

The ARCCLOCK file can be easily constructed by using the DOS
"BUILD" command as follows:

BUILD ARCCLOCK/TXT:volumename;*
a a a 0 a 0 a

Note that, as mentioned before, each zero is preceded by two
spaces, and there are seven zeros in all.

C.3 Defining Valid User Names

Each user which is to be permitted access to a given volume
must have a subdirectory matching his user name on that volume.
For this, the standard DOS "SUR" command may be used to create
named subdirectories on the specific volumes as required.

For example, the following command would establish "TCARLSON"
as a valid user name on volume "XYZ":

SUR TCAHL~ON/NEW:XYZ

Alternatively, the ARCID command may be used, as will be
described in the next section.

Once the subdirectories for the volume have been established
(thereby determining who will be allowed to MOUNT the volume),
then. user codewords must be assigned.

C.4 Defining the Valid User Codewords

The easiest way to initially establish user names and
codewords is to use the ARCID program. Let us assume that one has
four volumes at a file processor and wishes to name these ACTPAY1,
ACTPAY2, ACTPAY3, and SPOOLACT. There are an assortment of users
to establish on each volume. In addition, a printer unspooling
processor will be used to print reports which have been generated
(in standard print-file format) onto the volume named SPOOLACT.

To accomplish the.above, the sequence of commands the
operator would enter might look like:

ARCID :lJRO
:DRO<ACTPAYl
SUSAN,SUS CODE
KAREN,KAREN'Sc

C-2 ATTACHED R~SOURCE COMPUTING SYSTEM

THOMAS,02/13/51
ROBERT,820339~
:DR1<ACTPAY2
SUSAN,SUS CUDE
JAMES,123*4~ R
KAREN,KAH~N'Sc

ROBERT,~20339~
:DR2<ACTPAY3
SUSAN,SUS COD~
JAMES,123*45 R
KAREN,KAREN'Sc
ROBERT,8203398
THOMAS, 021 13/5"'
:DR3<SPOOLACT
SUSAN,DIFFERnT
KAHEN,KAHEN'Sc
THOMAS,02/13/51
ROBERT,APPLEPIE
UNSPOOL,SOMECOD~

*
Note especially how not all users are permitted access to the

same volumes, and how some users might have different codewords on
different volumes.

APPENDIX C. SETTING UP A FILE PROCESSOR C-3

APPENDIX D. ACCESSING ARC/FP CLOCK AND CALENDAR SERVICES

As mentioned previously, File Processors cooperate to provide
clock and calendar services to the applications processors
participating under ARC. This information is provided in the form
of a file, called ARCCLOCK/TXT, which applications programs may
read from any volume resident at an active File Processor. The
file must be in subdirectory SYSTEM. This file should be
write-protected, and must not be moved, created, or deleted while
the File Processor is active.

The reason for the ARCCLOCK file not being created or moved
is that the File Processor will try to find the ARCCLOCK/TXT file
on each disk as it is brought on line. If none is found, the fact
is recorded at the File Processor and the fact that one is
subsequently created is not recognized by the File Processor.
Likewise, if the file were to be K~LLed, the File Processor would
not realize that either, and any file subsequently created
overlapping the same space on disk previously occupied by
ARCCLOCK/TXT would be treated as if it were still .part of the
ARC CLOCK file.

D.1 Structure of the ARCCLOCK File

The file contains one or more logical records. The first of
these is a 21-byte record containing seven three-byte fields.
Each field contains at least one leading space followed by a one
or two byte, right-justified ASCII decimal number. The record is
not space compressed. The seven fields, in order from left to
right, are as follows:

1. YEAR, last two digits, (0, 77-99).
2. MONTH, (1-12).
3. DAY OF MONTH, (1-31).
4. DAY OF WEEK, (0(=Sat)-6(=Fri)).
5. HOUR, (0(=midnite)-23).
6. MINUTES, (0-59).
7. SECONDS, (0-59).

If the year is set to zero, this implies that either the
ARCCLOCK file is not on a File Processor volume (perhaps it is on
a local volume), or the clock at that File Processor has not been
set. This convention, that of recognIzIng a year zero as an unset
year, is the reason why it is suggested to initialize all seven

APPENDIX D. ACCESSING ARC/FP CLOCK AND CALENDAR SERVICES D-1

values 01' the file on dlsk to zeros when ARCCLOCK/TXT is
originally built.

The ARCCLOCK/TXT files at different File Processors may
differ due to both imprecise initial time settings and errors
developing due to irregularities in the File Processors' internal
crystal clocks. Also, delays within the File Processor or RIM
system due to heavy loading or other causes can cause some jitter
with regard to the time value returned. Therefore, the ARCCLOCK
value should not be used for tlming events lasting only very short
times, since significant errors could occur. Normally, the
ARCCLOCK values returned from different File Processors connected
to the same RIM bus will be within a few seconds of each other.

D.2 Accessing the Clock and Calendar from Databus

It might be appropriate to give some examples showing how
program segments in each 01" several languages might be able to
access the wall time clock and calendar information in the
ARCCLOCK/TXT file.

Example DATABUSIDATASHARE program segment:

CLOKFIL
YEAR
MONTH
DAY
WKDAY
HOUR
MINS
SECS
JUNK
SEQ

FILE
FORM
FORM
FORM
FORM
FORM
FORM
FORM
D IlV!

FORM

2
2
2
1
2
2
2
1
"_1"

OPEN CLOKFIL,"ARCCLOCK"
GOTO ERROR 11" OVER
READ CLOKFIL,SEQ;JUNK,YEAR,JUNK,MONTH:

JUNK,DAY,JUNK,JUNK,WKDAY:
JUNK,HOUR,JUNK,MINS,JUNK,SECS

COMPARE "0" TO YEAR
GOTU NUCLOCK 11" EQUAL

In the above program, the JUNK data item is used to prevent
wasting additional unused digit space in the other data items.
Intermediate spaces in the clock record are read into the JUNK
data item. This also makes it somewhat simpler to output the 'time
or date using two-byte, right-justified and zero-filled formatting

D-2 ATTACHED R~SOURCE COMPUTING SYSTEM

if desired.

While the Datashare system normally supplies a clock and
Julian calendar, the ARC CLOCK file eliminates the need to
tediously convert Julian dates to month/day format and likewise
eliminates the need to compute the day of the week.

D.3 Accessing Clock/Calendar from BASIC

An especially simple example using BASIC:

25 OPEN 111 ,"ARCCLOCK"
30 READ 111,YEAR,MONTH,DAY,WKDAY,HOURS,MINS,SECS
35 IF EOF#l THEN STOP
40 IF YEAR=O THEN GU TO ...

These few examples should be adequate to demonstrate a few of
the many techniques for reading the c~ock and calendar information
from the ARCCLOCK file.

APPENDIX D. ACCESSING AHC/FP CLOCK AND CALENDAR SERVICES D-3

APPENDIX E. ARC/FP CONSOLE COMMANDS

This appendix defines the commands available from the console
of the ARC/FP Monitor. These commands include commands which are
useful both for performance monitoring and for administrative
purposes. The commands can essentially be grouped into two major
classes, the first being performance monitoring commands and the
second being security-related commands.

'E.l Performance Monitoring Commands

This group or commands enables audible feedback to give an
indication of ARC/FP activity of several different varieties. An
audible "click" can be caused when one or several possible
operations occurs. These operations include the receipt of a
message through the Interprocessor Bus, the transmission of a
message through the Interprocessor Bus, a request from an
applications processor to read a sector from a volume, likewise to
write a sector to a volume. Clicks can also be enabled while
enqueue requests are pending, or when dequeue requests are
processed. The general forma t for these commands are as -follows:

ENABLE CLICK ON <occasion> or
DISABLE CLICK ON <occasion>

The <occasion> can be anyone 01":

RECEIVE
TRANSMIT
READ
WRITE
ENQUEUE
DEQUEUE

Some examples 01" valid commands are:

ENABLE CLICK ON RECEIVE
DISABLE CLICK ON ENQUEUE
ENABLE CLICK ON WRIT~
DISABLE CLICK ON R~AD

The different occasions are defined as follows:

1. RECEIVE. When this click option is enabled, a click is

APPENDIX E. AHC/FP CONSOLE CUMMANDS E-1

sounded for each message received through the Interprocessor Bus.
This includes messages which may later be discarded without reply
by ARC/FP.

2. TRANSMIT. This click option, when enabled, causes a
click to sound upon each packet transmitted from ARC/FP through
the Interprocessor Bus.

3. HEAD. The READ click option causes a click for each
sector read processed by ARC/FP. The click occurs even if the
sector is found in the LRU list and not physically read from the
disk volume to satisfy the request.

4. WRITE. This click option causes a click for each sector
write request packet received by ARC/FP.

5. ~NQUEUE. This click option occurs whenever an enqueue
request is processed by ARC/FP. This option will cause irregular
clicks when enqueues are being processed at normal rates, but an
enqueue blocking action (which occurs when a processor request~ a
resource already in use by another processor) will result in a
rapid sequence of these clicks. This can be useful to get an
intuitive feel for the degree ot" system degradation occurring due
to conflicting enqueue requests being processed.

6. DEQUEUE. This option results in a click sounding for
each dequeue request processed by ARC/FP.

In addition to the individual options, there are master
commands which enable or disable all click options as a group.
These two commands are:

ENABLE ALL CLICKING and
DISABLE ALL CLICKlNG

'These commands, as their names imply, turn on and turn off
all or the individual click options, respectively.

E.2 Security-related Commands

The uther commands are useful for administration and
maintenance of the disks at the File Processor. These commands
have each been described earlier in this document, and are
mentioned here primarily so that all the console commands will be
available together in this appendix for easy reference.

The first such security-related commands allow one to turn on

E-2 ATTACHED R~SOURCE CUMPUTING SYSTEM

and off the volume write protection for individually specified
volumes. As described earlier, these commands do not actually
change the write-protect flag on the volume (although, using
PROTVOL, it too could be changed while the volume is temporarily
write-enabled via the console command). Instead, these commands
merely temporarily enable or disable writes by setting or
resetting ARC/FP's copy of the volume write protect flag in
memory. The form ot' these commands is:

ENABLE WRITE~ TO <volumename> and
DISABLE WHITES TU <volumename>

An example or a valid command for a volume named PAYDATA
would look like:

ENABLE WRITES TU PAYDATA

The other security-related command allows the operator to
momentarily permit applications processors to mount a single
volume (at a time) in subdirectory MAIN. This allows a user at an
applications processor (if he has the correct code word and knows
exactly when to issue his MOUNT request) to mount a volume giving
him access to subdirectory MAIN. This can be of use for
administrative purposes to allow (carefully) updating of
stand-alone program files which are maintained in that
subdirectory. Once the volume is mounted into subdirectory MAIN
by an applications processor, the operator at the ARC/FP console
can safely "close the window" without interfering with the
already-mounted applications processor's access to subdirectory
MAIN on the glven volume.

The console command to temporarily enable access to
subdirectory MAIN looks like:

ENABLE MAlN ON <volumename>

Upon acceptance ot' this command, user logons to MAIN on the
indicated volume are accepted until the operator again presses the
ENTER key (in response to the reply "PRESS "ENTER" TO DISABLE AND
CONTINUE"), which "closes the window".

APPENDIX E. ARC/FP CUNSOLE CUMMANDS E-3

APPENDIX F. USING THE ARCBOOT DISKETTE

While it is not possible to use an 1150 or 1170 series
computer as an ARC File Processor, these may be used as
non-Iocal-disk Applications Processors. This appendix describes
the characteristics peculiar to the use of a diskette-based
computer when used as an ARC Applications Processor.

F.1 Contents of Release Diskette

The ARCBOOT diskette release consists of a diskette
containing the bootstrap program, called ARCBOOT/ABS. This
program must be loaded and executed to down-line load ARC and
DOS.D from an active File Processor. To run the program, it is
necessary to first bootstrap the diskette operating system in the
normal manner. Then, the LGOPROG command (released separately)
must be used to load and execute ARCBOOT/ABS. The use of the
LGOPROG command is described in the LGOPROG User's Guide.

F.2 ARC Operation on Diskette-Based Processors

Bootstrapping ARC from diskette in this manner may be
simplified somewhat by using the DOS "AUTO" and "AUTOKEY" commands
to automatically invoke LGOPROG and run the ARCBOOT program. If
this technique is employed, it is possible to make a diskette
which automatically brings up ARC by merely pressing the RESTART
and RUN keys.

Once the file ARCBOOT/ABS has been executed via the LGOPROG
command, operation of ARC is just as it would be if ARC had been
loaded from the ARC boot tape on a 5500 series processor.

It is possible to use the COPYFILE command to copy files from
the local diskettes into files maintained under DOS.D at a File
Processor. However, ARC does not support the use of COPYFILE to
transfer files from a File Processor's disks to local diskettes on
an applications processor. The only way that COPYFILE can
directly transfer files in that direction is to attach a diskette
unit to the File Processor and use COPYFILE at that machine while
it is not active as a File Processor.

Since it is not possible to use the Datapoint 1150 or 1170 as
a File Processor, the ARCBOOT diskette release, as noted above,

APPENDIX F. USING THE ARCBOOT DISKETTE F-1

i~cludes only tne bootstrap program. The ARC cassette release,'
cJntaining ARC/FP and Applications Processor commands, is also
~eJuir€~ for ARC system operation.

F-2 ATTACHED RESOURCE COMPUTING SYSTEM

APPENDIX G. USING 3800 AND 6000 SERIES COMPUTERS

Datapoint 3800 and 6000 series computers, including the 3810,
3820, 6010, and 6020, may also be used as applications processors
under ARC. These machines automatically bootstrap from ARC and
the Interprocessor Bus, since they have no cassette tape drives.
Other than the source of the initial bootstrap, and the fact that
cassette tape software is inoperable, these models behave just the
same as has been described earlier.

APPENDIX G. USING 3800 AND 6000 SERIES COMPUTERS G-1

APPENDIX H. ASSEMBLY LANGUAGE SYSTEMS UNDER ARC

In general, assembly language systems that use the DOS for
their disk operations and generally adhere to the DOS programming
conventions discussed in the DOS USER'S GUIDE should run under ARC
without modifications. The differences from normal DOS operation
that might interfere with a currently operating user-written
assembly language system are detailed in the sections which
follow.

H.1 Memory Residency

The ARC system uses just under 8K of memory in the
Applications Processor. Therefore, the appropriate DOS FUNCTION
shculd be used to determine the upper bound of user-program usable
memory. (In general, the size of memory available after ARC
system software is loaded is the amount of memory physically
addressable below 0160000 (which 4K is referred to as System RAM),
minus 4K. A further 4K is removed for 3800 series processors,
which require the 4K sector of memory at 0150000 for buffers and
other system information). User programs must not use any memory
above their allotted space for any purpose.

H.2 Addressing the Disk

Since there may be no 9370-series Mass Storage Disk attached
to the 1/0 bus of the computer, programs running under ARC
obviously must not attempt to address the disk controller or do
any form of access to the disk system themselves. T,his includes
the use of the DOS routine DSKWAT, which references the "currently
selected" disk drive. The results of calling DSKWAT while ARC is
active are undefined.

H.3 Use of Foreground

ARC does not use the DOS foreground handling mechanism at
all. It uses foreground time only for event timing during
transfers through the Interprocessor Bus to other computers and
even during these times the processor time involved is less than
50 microseconds per millisecond. Therefore, user foreground
routines should generally require no changes to run under ARC.
ARC uses only the firmware millisecond interrupt vector in the

APPENDIX H. ASSEMBLY LANGUAGE SYSTEMS UNDER ARC B-1

:,0170000 sector of ~emory to support its foreground timing
'operations.

H.4 Stack Usage

Under ARC, some of the DOS routines, including most disk
operations, use one stack level more than the corresponding

,- rQutines use when running in a standalone mode. Applications
systems programmed in assembly language which use everyone of the
sixteen available hardware stack locations will probably need to
be mOdified to save one or more stack levels at one or more places
internally to achieve reliable operation under ARC.

H.5 Multiprocessing Environment

Any programs, whether written in assembly language or
otherwise, which rely upon the fact that they have exclusive use

'of any file, may encounter conflicts under ARC when those files
are at a File Processor and are concurrently being modified by
another Applications Processor. Either the ARC Enqueue/Dequeue
facility must be employed, as described in an earlier chapteri or
the file may be protected against concurrent access by locating it
in a user's private subdirectory.

In general, these restrictions are Minimal, and should only
affect a very few users.

H-2 ATTACHED RESOURCE COMPUTING SYSTEM

INDEX

ADDRESS 2-5, 4-1
ARC 1-5, 2-1, 2-2, 2-3, 2-4, 2-5, 2-6, 2-9, 2-10, 2-11, 2-12,

3-1, 3-2, 3-3, 3-5, 3-7, 3-12, 3-13, 4-1, 4-2, 4-3, 4-4, 5-1,
5-2, 5-3

ARCCLOCKITXT 2-12, 3-1
3-1, 3-10, 3-11, 3-12, 3-13

3-13
ARCCODEITXT
AUTO 3-12,
AUTO-EXECUTE
AUTOCLR 3-13
AUTOKEY 3-12

3-12, 3-13

BACKUP 2-10, 3-13, 4-3
BEEP 3-13
BOOTSTRAP 3-2, 3-3
BUFFERS 2-2, 2-4, 3-8, 4-2, 4-3
CABLE 2-2, 2-5, 2-6, 3-3
CALENDAR 2-12
CARTRIDGE DISKS 2-5
CHAIN FILES 3-7, 3-9
CLICKS 3-2, 3-3, 3-7
CLOCK 2-12
COAX 2-6
CODE OPTION 3-9
CODEWORD 2-10, 2-11, 3-2, 3-7, 3-8, 3-9, 3-10, 3-11, 3-12, 4-4
CONSOLE 2-9, 2-12, 3-1, 3-4,3-6, 3-9, 3-13, 3-14
COPYFILE 2-5
DATAPOLL 4-4
DEFAULTS 3-7, 3-8, 3-9, 3-10, 3-13
DEQUEUE 5-4
DISABLE 3-14
DISKETTES 2-5
DISPLAY MODE 3-4, 3-6
DOWN-LINE LOADING 3-2, 3-3
ENABLE 3-14
ENQUEUE 5-2, 5-3, 5-4, 5-5
EOF,MARK 3-11
ERROR RATE 3-3
HUBS 2-5, 2-6, 2-7
1/0 BUS ADDRESSES 2-5, 4-1
1/0 DEVICES 2-4
ISAM 5-2, 5-4, 5-5
LEVEL 4-3, 5-2, 5-3, 5-4
LIMIT 3-2, 5-4
LOCAL DISKS 2-3, 2-5, 2-9, 2-11, 3-?, 3-3, 3-5, 4-4

LOGICALLY ONLINE 3-4, 3-6, '3-8
LOGICALLY OFFLINE 3-4, 3-5, 3-6, 3-7
MAXIMUM 1-2, 5-4
MEMORY 1-1, 3-3, 3-4,4-2, 5-3, 5-4
MINIMUM 2-6, 4-3, 5-5
MOUNT COMMAND 2-9, 3-3, 3-4, 3-5, 3-6, 3-8, 3-9, 3-10
MOVE MODE 3-5
MULTILINK 4-4
MULTIPLE RIMS 4-1
NAME OPTION 3-9
NAMING CONFLICTS 2-9, 2-10
NON-PARTICIPATING 2-3
OFFLINE 2-5, 2-9, 3-1, 3-2, 3-4, 3-6, 3-7, 3-12, 3-13, 5-3
OPTION 3-7, 3-8, 3-9, 3-10
PATH 2-1,2-6,4-1
PERFORMANCE 1-1, 4-1, 4-3
PI 5-2
PREP 3-13
PRIVATE 2-11, 3-12, 4-4, 5-1
PROTECTION 2-10, 2-12, 3-10, 3-12, 3-14, 4-3
PROTVOL 2-12, 3-14
RELIABILITY 2-6, 4-3
REORGANIZATION 3-13
REQUIREMENTS 1-1, 1-3, 1-5, 2-2, 2-4, 2-5, 4-2, 4-3
RIM ADAPTERS 2-3
RIM BUS ADDRESSES 2-5, 4-1
SECURITY 2-4, 2-10, 2-11, 3-11, 3-12, 4-4
STATUS 2-3,2-5,2-12, 3-1, 3-2, 3-8, 3-12, 3-13, 3-14, 5-3
SUBDIRECTORIES 2-9, 2-10, 2-11, 3-3, 3-10, 3-11
SYSTEM7/SYS 3-10, 3-12
THROUGHPUT 1-4, 2-6, 4-2, 4-3, 5-5
USER NAME 2-9, 2-10, 2-11, 3-2, 3-7, 3-8, 3-9, 3-10, 3-12, 4-4
VOLID 2-12, 3-13, 3-14
VOLIDPRO 2-12, 3-13, 3-14
VOLUME NAME 2-9, 2-11, 3-4, 3-5, 3-6, 3-7, 3-8, 3-13, 3-14, 4-4
WAIT 3-7, 3-8, 5-1
ZAP 3-10

Manual Name ______________________________________ __

Manual Number ____________________________________ __

READER'S COMMENTS

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized? Please make suggestions for
improvement.

Name _______________________________________ Date ______________________________ __

Organ ization ___ __

Street __ ----------------_

City ______________ --___ State __________ Zip Code ______________________ _

All comments and suggestions become the property of Datapoint.

Fold Here

Fold Here and Staple

BUSINESS REPLY MAIL
No Postage Necessary if mailed in the United States

Postage will be paid by:

DATAPOINT CORPORATION
Product Marketing
8400 Datapoint Drive
Sah Antonio, Texas 78284

First Class
Permit
5774

San Antonio
Texas

