
Capability-Based
Computer Systems

HenryM Levy

Capability-Based Computer Systems

Capability-Based
Computer Systems

Henry M. Levy

mamaama
m

DIGITAL PRESS

iv

Copyright © 1984 Digital Equipment Corporation

All rights reserved. Reproduction of this book, in part or in whole, is
strictly prohibited. For copy information contact: Digital Press, 12
Crosby Dr., Bedford, Mass. 01730

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Documentation Number: EY-00025-DP
ISBN: 0-932376-22-3

Library of Congress Cataloging in Publication Data

Levy, Henry M., 1952-
Capability-based computer systems.

Bibliography: p. 205
Includes index.
1. Computer architecture. 2. Operating systems (Com­

puters) 3. System design. 1. Title.
QA76.9.A73L48 1983 621.3819'58 83-21029
ISBN 0-932376-22-3

Trademarks

Bell Laboratories: UNIX. Burroughs Corporation: B5000. Cam­
bridge University: CAP. Control Data Corporation: CDC 6400,
SCOPE. Digital Equipment Corporation: DEC, LSI-ll, PDP-I,
PDP-ll, TOPS-20. Hewlett-Packard Company: HP 3000. Intel Cor­
poration: iAPX 432, iMAX, Intel 8086. IBM: CPF, IBM 370, IBM
Systeml38, SWARD. International Computers Ltd.: Basic Language
Machine. Plessey Telecommunications Ltd. Plessey System 250.
Xerox Corporation: Smalltalk.

In Memory of Manny and Sonia

Preface

The purpose of this book is to provide a single source of infor­
mation about capability-based computer systems. Although
capability systems have existed for nearly two decades, only
recently have they appeared in architecture and operating sys­
tem textbooks. Much has been written about capability sys­
tems in the technical literature, but finding this information is
often difficult.

This book is an introduction, a survey, a history, and an
evaluation of capability- and object-based computer systems. It
is intended for students, computer professionals, and com­
puter~system designers. The book assumes a knowledge of the
assembly-level architecture of at least one computer, an under­
standing of memory addressing and virtual memory systems,
and some familiarity with operating systems. It can be used as
a tutorial or reference text in advanced undergraduate or grad­
uate courses in computer organization, computer architecture,
or operating systems.

Chapter 1 introduces the concept of a capability and exam­
ines the use of capabilities in computer systems. It compares
and contrasts simplified models of capability and conventional
addressing and protection systems. The object-based design
methodology is introduced, and the use of capabilities to sup­
port object-based systems is discussed.

Chapter 2 describes machines that preceded the formal defi­
nition of capabilities but had similar adldressing mechanisms.
Developed in the late 1950s and early 1960s, these machines
include the Burroughs B5000, the Rice University computer,
and the Basic Language Machine. Chapter 3 examines the
Dennis and Van Horn hypothetical supervisor that introduced vii

Preface

viii

the concept of capability, and the early university attempts to
implement that concept: the MIT PDP-l system, the Chicago
Magic Number Machine, and the CAL-TSS system.

Chapter 4 describes the Plessey System 250. Built in the
U. K., the Plessey 250 multiprocessor was the first commer­
cially available capability-based computer system. Also built in
the U.K., Cambridge University's CAP computer system, ex­
amined in Chapter 5, was the first successful university imple­
mentation of capability hardware.

Chapters 6 and 7 concentrate on two capability-based multi­
processor operating systems built at Carnegie-Mellon Univer­
sity: Hydra and STAROS. These systems were the first major
object-based systems and used capabilities to provide object­
level addressing and protection.

Chapters 8 and 9 examine the new generation of capability/
object-based systems designed for the commercial market­
place: the IBM System/38 and the Intel iAPX 432. The Sys­
teml38 is the first use of object-based methodology to build a
business-oriented computer system. The Intel 432 is the first
highly-integrated object-based microprocessor. Both systems
use object-based methodology to raise the level of the architec­
ture interface. This allows them to support sophisticated oper­
ating-systems operations in hardware.

Chapter 10 reviews many of the important design issues in
capability- and object-based systems in light of the implemen­
tations discussed throughout the book. Alternative implemen­
tation decisions and their implications are examined.

Each survey section presents the important features of a
particular system. For this reason, different systems may be
described at somewhat different levels. However, all systems
are discussed in sufficient detail to give the reader an under­
standing of both the concepts and the low-level capability ad­
dressing and object-support mechanisms. An important goal of
the book is examination of hardware and operating-system
implementations of capabilities. Although all of the syste.ms
begin with a similar conceptual view of capabilities, the imple­
mentations are vastly different.

All attempts have been made to see that the system presen­
tations are accurate, and most of the sections have been re­
viewed by one or more of the system's designers. Still, these
discussions should not be taken as the final word and the inter­
ested reader is referred to the latest technical literature for
more detailed study. Each section contains suggestions for fur­
ther reading, and a complete bibliography on capability and
object systems is included at the end of the book.

Acknowledgments

I was fortunate to have as reviewers many of the creative peo­
ple who helped design and build the systems described in the
book. I would like to thank them for providing an interesting
topic of study and for lending their valuable time. I was privi­
leged to have the benefit of the technical and historical insight
of Maurice Wilkes and Earl Van Horn. Pete Lee and Guy
Almes provided detailed reviews (and re-reviews) of the entire
manuscript. These contributed heavily to the book. I would
like to thank the many other people who provided critiques of
individual chapters.

This book is the result of a study that began when I was a
. Digital Equipment Corporation resident at the University of

Washington. I would like to thank Bill Strecker for supporting
my stay at Washington and for providing a creative working
environment at Digital:' Sam Fuller, Dieter Huttenberger, and
Dick Eckhouse also helped to make the residency a success. At
Washington, Guy Almes, Ed Lazowska, and John Bennett
provided helpful reviews of early drafts of this work. Finally, I
would like to thank Sandy Kaplan for her technical assistance,
encouragement, patience, and humor that made the writing
process more enjoyable.

ix

Contents

1 Capability- and Object-Based System Concepts

Capability-Based Systems 3
Memory Addressing in Computer Systems 5
The Context of an Address 9
Protection in Computer Systems 10

The Object-Based Approach 13
Capabilities and Object-Based Systems 15

Summary 17
For Further Reading 18

2 Early Descriptor Architectures 21

Introduction 21
The Burroughs B5000 22
The Rice University Computer 25
The Basic Language Machine 30
Discussion 34
For Further Reading 38

3 Early Capability Architectures 41
Introduction 41
Dennis and Van Horn's Supervisor 41
The MIT PDP-l Timesharing System 47
The Chicago Magic Number Machine 48
The CAL-TSS System 52
Discussion 57
For Further Reading 61

4 The Plessey System 250

Introduction 65
65

xi

Contents

xii

System Overview 66
Capability Addressing 66
Capability Register Usage 69
Inform and Outform Capabilities 69
Instructions and Addressing 71
Protected Procedure Calls 72
Operating System Resource Management 73
Input and Output 74
Discussion 75
For Further Reading 77

5 The Cambridge CAP Computer 79
Introduction 79
Hardware Overview 79
CAP Process Structure 80
CAP Addressing Overview 81
Capabilities and Virtual Addresses 83
Process Data Structures 85
Memory Address Evaluation 86
Subprocess Creation 87
The Capability Unit 89
Protected Procedures 90
Long-Term Storage and Long-Term Names 95
Discussion 96
For Further Reading 99

6 The Hydra System 103
Introduction 103
Hydra Overview 103
Hydra Objects and Types 105
Processes, Procedures, and Local Name Spaces 107
Hydra Operations 109
Capabilities and Rights 111
Supporting Protected Subsystems 113

Templates 113
Typecalls 116

Hydra Object Storage System 116
Capability Representation 120
Reference Counts and Garbage Collection 121
Discussion 122
For Further Reading 125

7 The Sr AROS System 127
Overview of STAROS 127
STAROS Object Support 129

STAROS Capabilities 130
Object Addressing 131
STAROS Abstract Type Management 133
Discussion 134
For Further Reading 135

8 The IBM System/38 137
Introduction 137
System Objects 139
Object Addressing 141

Virtual Memory 141
Pointers 142
Contexts 144
Physical Address Mapping 145

Profiles and Authority 147
Authority/Pointer Resolution 148

Programs/Procedures 150
The Instruction Stream 151
Program Activation and Invocation 152
Protected Procedures 153

Special Privileges 154
Discussion 154
For Further Reading 157

9 The Intel iAPX 432 159
Introduction 159
Segments and Objects 161
Object Addressing 163

Object Descriptors 163
Access Descriptors 165

Program Execution 167
Domains and Instruction Objects 168
Procedure Call and Context Objects 169
Instruction Operand Addressing 171
Context Allocation 172
Parameter Passing 173

Abstraction Support 173
Domains and Refinements 174
Creation of Typed Objects 176
Programmer-Defined Types 177

Storage Re:sources 179
Instructions 182
Discussion 184
F or Further Reading 186

Contents

xiii

Contents

xiv

10 Issues in Capability-Based Architectures
Introduction 187
Segmentation 188
Storage of Capabilities 189
Capability Representation 191
Objects 195
Protected Procedures and Type Extension 196
Object Lifetimes and Garbage Collection 197
Object Locking 201
Revocation 202
Conclusions 203

187

Capability and Object System Bibliography 205

Index 217

Figures

1-1. A Capability 3
1-2. Conventional Segment Address Translation 6
1-3. Capability Register Addressing 7
1-4. System Object Access Matrix 11
1-5. Access Control and Capability Lists 11

2-1. B5000 Program Reference Table 23
2-2. B5000 Descriptor Formats 24
2-3. Rice University Computer Codeword Format 27
2-4. Rice University Computer Memory Organization 29
2-5. Example of BLM Numeric Formats 32
2-6. Basic Language Machine Addressing 33
2-7. BLM Address and Codeword Formats 34

3-1. Processes, Computations, and C-lists 43
3-2. Protected Procedure Protection Spheres 46
3-3. Chicago Magic Number Machine Linkage Segment 52
3-4. CAL-TSS Object Addressing 55

4-1. Plessey System 250 Capability Formats 67
4-2. Plessey System 250 Capability Loading 68
4-3. System 250 Instruction Formats 71
4-4. Protected Procedure Resource Subsystem 74

5-1. CAP Process Hierarchy 81
5-2. CAP Process Addressing 82
5-3. CAP Capability and Access Rights Formats 83
5-4. CAP Virtual Address 84
5-5. CAP PRL Entry 85
5-6. CAP Process Base 86

5-7. Capability Unit Register Format 89 Contents

5-8. CAP Capability Unit 91
5-9. CAP Enter Capability and Enter PRL Formats 92
5-10. CAP Protected Object Implementation 94

6-1. Hydra Object and Type Object 106
6-2. Hydra Type Hierarchy 108
6-3. Hydra Capability III
6-4. Hydra Procedure Call 115
6-5. Hydra TypeCall 117
6-6. Active Fixed Part Directory 119
6-7. Hydra Capability Formats 121

7-1. A CM* Cluster 128
7-2. STAROS Capability and Capability Rights Word 130
7-3. STAROS Object Descriptor Format 132
7-4. STAROS Directory Structure 133

8-1. System/38 Implementation Layers 138
8-2. IBM Systeml38 System Object 140
8-3. System/38 Virtual Address 142
8-4. System/38 Virtual Address Translation 146
8-5. Systeml38 Example High-level Instruction 152

9-1. Intel iAPX 432 Structure 160
9-2. Intel 432 Segment 161
9-3. Intel 432 Storage Segment Descriptor 163
9-4. Intel 432 Access Descriptor 165
9-5. Intel 432 Address Translation 167
9-6. Intel 432 Domain and Instruction Objects 168
9-7. Intel 432 Context Object Representation 170
9-8. Intel 432 Access Selector Formats 172
9-9. Intel 432 Parameter Passing 174
9-10. Intel 432 Domain Refinement 175
9-11. Intel 432 Type Control Object Data Part 176
9-12. Intel 432 Dynamic Object Addressing 178
9-13. Intel 432 Storage Resource Object 179
9-14. Intel 432 Instruction Format 182
9-15. Intel 432 Reference Format 183

Tables

1-1. Major Descriptor and Capability Systems 2

3-1. Dennis and Van Horn Supervisor Capability Opera­
tions 44

3-2. Chicago Magic Number Supervisor Capability Opera­
tions 51 xv

Contents

xv;

6-1. Hydra Kernel-Implemented Types 107
6-2. Generic Object and Capability Operations 110
6-3. Capability and Generic Object Access Rights 111
6-4. Hydra Active and Passive Fixed Parts 118

7 -1. STAROS Representation Types 129
7-2. STAROS Capability Types 131

8-1. Systeml38 System Object Types 139
8-2. Systeml38 Pointer Instructions 144
8-3. System/38 Context Instructions 145
8-4. Systeril/38 Authority Management Instructions 149

9-1. Intel 432 System Object Types 162
9-2. Intel 432 Storage Segment Descriptor Fields 164
9-3. Intel 432 Access Descriptor Instructions 166

Capability-Based Computer Systems

Capability- and ObjE~ct-Based
System Concepts

Although the complexity of computer applications increases
yearly, the underlying hardware architecture for applications
has remained unchanged for decades. It is, therefore, not sur­
prising that the demands of modern applications have exposed
limitations in conventional architectures. For example, many
conventional systems lack support in:

1. Information sharing and communications. An essential system
function is the dynamic sharing and exchange of informa­
tion, whether on a timesharing system or across a network.
Fundamental to the sharing of storage is the addressing or
naming of objects. Sharing is difficult on conventional sys­
tems because addressing is local to a single process. Sharing
would be simplified if addresses could be transmitted be­
tween processes and used to access the shared data.

2. Protection and security. As information sharing becomes eas­
ier, users require access controls on their private data. It
must also be possible to share information with, or run pro­
grams written by, other users without compromising confi­
dential data. On conventional systems, all of a user's objects
are accessible to any program which the user runs. Protec­
tion would be enhanced if a user could restrict access to only
those objects a program requires for its execution.

3. Reliable construction and maintenance of complex systems. Con­
ventional architectures support a single privileged mode of
operation. This structure leads to monolithic design; any
module ne(!ding protection must be part of the single operat­
ing system kernel. If, instead, any module could execute
within a protected domain, systems could be built as a col­
lection of independent modules extensible by any user.

1

1

Capability- and
Object-Based System
Concepts

2

Over the last several decades, computer industry and uni­
versity scientists have been searching for alternative architec­
tures that better support these essential functions. One alterna­
tive architectural structure is capability-based addressing.
Capability-based systems support the object-based approach to
computing.

This book explains the capability/object-based approach
and its implications, and examines the features, advantages,
and disadvantages of many existing designs. Each chapter
presents details of one or more capability-based systems. Table
1-1 lists the systems described, where they were developed,
and when they were designed or introduced.

System Developer Year Attributes

Rice University Rice University 1959 segmented memory
Computer with "codeword"

addressing

Burroughs B5000 Burroughs Corp. 1961 stack machine with
descriptor addressing

Basic Language International 1964 high-level machine with
Machine Computers Ltd., U.K. codeword addressing

Dennis and Van MIT 1966 conceptual design for
Horn Supervisor capability supervisor

PDP-l Time- MIT 1967 capability supervisor
sharing System

Multicomputer/ University of 1967 first capability
Magic Number Chicago Institute hardware system
Machine for Computer Research design

CAL-TSS U.C. Berkeley 1968 capability operating
Computer Center system for CDC 6400

System 250 Plessey Corp., U.K. 1969 first industrial
capability hardware
and software system

CAP Computer University of 1970 capability hardware
Cambridge, U.K. with microcode support

Hydra Carnegie-Mellon 1971 object-based multi-
University processor O.S.

STAROS Carnegie-Mellon 1975 object-based multi-
University processor O. S.

Systeml38 IBM, Rochester, MN. 1978 first major commercial
capability system,
tagged capabilities

iAPX 432 Intel, Aloha, OR. 1981 highly-integrated
object-based micro-
processor system

Table 1-1: Major Descriptor and Capability Systems

Before surveying these systems at a detailed architectural
level, it is useful to introduce the concepts of capabilities and
object-based systems. This chapter defines the concept of ca­
pability, describes the use of capabilities in memory addressing
and protection, iintroduces the object-based programming ap­
proach, and relates object-based systems to capability-based
addressing.

Simplified examples of capability-based and convelltional
computer systems are presented throughout this chapter.
These examples are meant to introduce the capability model by
contrasting it with more traditional addressing mechanisms. In
fact, many design choices are possible in both domains, and
many conventional systems exhibit some of the properties of
capability systems. No one of the following models is repre­
sentative of all capability or conventional systems.

1.1 Capability-Based Systems

Capability-based systems differ significantly from conven­
tional computer systems. Capabilities provide (1) a single
mechanism to address both primary and secondary memory,
and (2) a single mechanism to address both hardware and soft­
ware resources. While solving many difficult problems in com­
plex system design, capability systems introduce new chal­
lenges of their own.

Conceptually, a capability is a token, ticket, or key that
gives the possessor permission to access an entity or object in a
computer system. A capability is implemented as a data struc­
ture that contains two items of information: a unique object
identifier and access rights, as shown in Figure 1-1.

The identifier addresses or names a single object in the com­
puter system. An object, in this context, can be any logical or
physical entity, such as a segment of memory, an array, a file, a

Access rights Unique oblecl Id<lnf/f/e~

LI An obiecl]

Figure 1-1: A Capability

1.1 Capability­
Based Systems

3

Capability- and
Object-Based System
Concepts

4

line printer, or a message port. The access rights define the
operations that can be performed on that object. For example,
the access rights can permit read-only access to a memory seg­
ment or send-and-receive access to a message port.

Each user, program, or procedure in a capability system has
access to a list of capabilities. These capabilities identify all of
the objects which that user, program, or procedure is permit­
ted to access. To specify an object, the user provides the index
of a capability in the list. For example, to output a record to a
file, the user might call the file system as follows:

PUT(file_capability, "this is a record");

The capability specified in the call serves two purposes. First,
it identifies the file to be written. Second, it indicates whether
the operation to be performed (PUT in this case) is permitted.

A capability thus provides addressing and access rights to an
object. Capabilities are the basis for object protection; a pro­
gram cannot access an object unless its capability list contains a
suitably privileged capability for the object. Therefore, the sys­
tem must prohibit a program from directly modifying the bits
in a capability. If a program could modify the bits in a capabil­
ity, it could forge access to any object in the system by chang­
ing the identifier and access rights fields.

Capability system integrity is usually maintained by prohib­
iting direct program modification of the capability list. The
capability list is modified only by the operating system or the
hardware. However, programs can obtain new capabilities by
executing operating system or hardware operations. For exam­
ple, when a program calls an operating system routine to create
a new file, the operating system stores a capability for that
file in the program's capability list. A capability system also
provides other capability operations. Examples include opera­
tions to:

1. Move capabilities to different locations in a capability list.
2. Delete a capability.
3. Restrict the rights in a capability, producing a less-privi­

leged version.
4. Pass a capability as a parameter to a procedure.
5. Transmit a capability to another user in the system.

Thus, a program can execute direct control over the movement
of capabilities and can share capabilities, and therefore, ob­
jects, with other programs and users.

It is possible for a user to have several capability lists. One
list will generally be the master capability list containing capa­
bilities for secondary lists, and so on. This structure is similar
to a multi-level directory system, but, while directories address
only files, capabilities address objects of many types.

1.1.1 Memory Addressing in Computer Systems

This section presents simplified models for both conven­
tional and capability-based memory addressing systems. Al­
though capabilities can control access to many object types,
early capability-based systems concentrated on using capabili­
ties for primary memory addressing. The first use of capabili­
ties for memory protection was in the Chicago Magic Number
Machine [Fabry 67, Yyngve 68], and an early description of
capability-based memory protection appeared in Wilkes' book
on timesharing systems [Wilkes 68]. Later, [Fabry 74] de­
scribed the advantages of capabilities for generalized ad­
dressing and sharing.

For purposes of a simplified model, consider a conventional
computer supporting a multiprogramming system in which
each prograin executes within a single process. A program is
divided into a collection of segments, where a segment is a
contiguous section of memory that represents some logical en­
tity, such as a procedure or array. A process defines a pro­
gram's address space: that is, the memory segments it can ac­
cess. The process also contains data structures that describe
the user, and a directory that contains the names of a set of
files. These files represent the user's long-term storage.

When a program is run, the operating system creates a proc­
ess-local segment table that defines the memory segments
available to the program. The segment table is a list of descrip­
tors that contain physical information about each segment. Fig­
ure 1-2 shows example formats for a process virtual address
and segment table descriptor. The operating system loads
various segments needed by the program into primary
memory, and loads the segment table descriptors with the
physical address and length of each segment. A process can
then access segments by reading from or writing to virtual
addresses.

Each virtual address contains two fields: the segment num­
ber and the offset of a memory element within that specified
segment. On each virtual address reference the hardware uses
the segment number field as an index to locate an entry in the

1.1 Capability­
Based Systems

5

Capability- and
Object-Based System
Concepts

6

I Virtual segment number I Element offset I Virtual Address

0

Segment Descriptors

~ Rights I Segment I Segment physical
length address

Memory
segment

[J

N

Process-Local Segment Table

Figure 1-2: Conventional Segment Address Translation

process segment table. This descriptor contains the physical
location of the segment. The length field in the descriptor is
used to check that the offset in the virtual address is within the
segment bounds. The rights field in the segment table entry
indicates the type of access permitted to that segment (for ex­
ample, read or write).

The model shown in Figure 1-2 has the following
properties:

1. The system supports a segmented process virtual address
space. A virtual address is local to the process and is trans­
lated through the process-local segment table.

2. A program can construct any virtual address and can at­
tempt to read or write that address. On each reference, the
hardware ensures that (a) the segment exists, (b) the offset is
valid, and (c) the attempted operation is permitted. Other­
wise, an error is signaled.

3. Loading of segment table entries is a privileged operation
and can be accomplished only by the operating system. In
general, a segment table is created at the time a program is
loaded. The program then executes in a static addressing
environment.

4. Sharing of segments between processes requires that the
operating system arrange for both process-local segment
tables to address the shared segments. If two processes wish
to use the same virtual address to access a shared segment,

the segment descriptors must be in the same locations in
both segment tables.

5. Any dynamic sharing of segments requires operating system
intervention to load segment descriptors.

A capability-based system also supports the concept of a proc­
ess that defines a program's execution environment. In the
capability system, each process has a capability list that defines
the segments it can access. Instead of the segment table de­
scriptors available to the conventional system hardware, the
capability addressing system consists of a set of capability regis­
ters. The program can execute hardware instructions to transfer
capabilities between the capability list and the capability regis­
ters. The number of capability registers is generally small com­
pared to the siz(! of the capability list. Thus, at any time, the
capability registers define a subset of the potentially accessible
segments that can be physically addressed by the hardware. A
simplified hardware model for this system is shown in
Figure 1-3.

The model shown in Figure 1-3 has the following
properties:

I

1. The system has a segmented virtual address space. A seg­
ment of memory can only be addressed by an instruction if a
capability for that segment has been loaded into a capability
register.

Capability register number I Element offset] Virtual Address

a

1

40- Rights I Segment identifier

Memory
M Segment

[]

Process Capability Registers

Figure 1-3: Capability Register Addressing

1.1 Capability­
Based Systems

7

Capability- and
Object-Based System
Concepts

8

2. While loading of a segment descriptor in the conventional
system is privileged, loading of a capability register is not.
Instead of controlling the loading of the register, the capa­
bility system controls the pattern of bits that can be loaded.
Only a valid capability can be loaded into a capability
register.

3. The capability system provides a dynamically changing ad­
dress space. The address space changes whenever the pro­
gram changes one of the capability registers.

4. A virtual address identifies a process-local capability regis­
ter. In this sense, a virtual address has similar properties to a
virtual address in the conventional system. Sharing a virtual
address does not in itself give access to the same segment.

S. A capability, however, is not process-local. Capabilities are
context independent; that is, the segment addressed by a capa­
bility is independent of the process using that capability. A
process can share a segment by copying or sending a capabil­
ity from its capability list to the capability list of a cooperat­
ing process. Each of the processes can then access the
segment.

One important difference between the conventional and
capability approaches involves the ability of a program to affect
system-wide or process-local objects. In the conventional sys­
tem, a program executes within a virtual address space defined
by a process. Every procedure called by that program has ac­
cess to the process address space, including segments and files.
Every procedure executes within an identical protection
environment.

In the capability system, a procedure can only affect objects
for which capability registers have been loaded. It is possible,
therefore, for different procedures called by the same program
to have access to different segments. Although all procedures
may have the potential to load capability registers from the
capability list, some procedures may choose to execute within a
very small addressing sphere.

The ability to restrict the execution or addressing environ­
ment of a procedure has several benefits. First, if a procedure
is allowed access only to those segments absolutely needed, the
hardware can detect any erroneous references. For example,
a reference past the end of an array might be caught before it
destroys another variable. Second, if a procedure is found to be
in error, it is easy to determine what segments might have been
affected. If the segments that could have been modified were
local to the procedure, recovery might be substantially easier.

Most capability systems go a step further by allowing each
procedure to have a private capability list. A procedure can

thus protect its objects from accidental or malicious access by
its callers, and a program can protect its objects from access by
called procedures. Every procedure can have, in effect, its own
address space. To permit a procedure access to a local object, a
program can pass a capability for the object as a parameter
when the procedure is called. Therefore, in a capability sys­
tem, every procedure can be protected from every other proce­
dure because each has a private capability list. When one pro­
cedure calls another, it knows that the called procedure can
access only local objects for which capabilities are passed.

1.1.2 The Context of an Address

Each object in a capability system has a unique identifier.
Conceptually, each object's identifier is unique for all time.
That is, an identifier is assigned when an object is created and
that identifier is never reused, even after the object is deleted.
During the obje(:t's lifetime, its unique identifier is used within
capabilities to specify the object. An attempt to use a capability
with an identifier for a deleted object causes an error.

In practice, the object identifier field of a capability must be
used by hardware to locate the object. From the hardware
viewpoint, the identifier is an address-either the address of a
segment or perhaps the address of a central descriptor that
contains physical information about the segment. The need to
handle addresses efficiently in hardware typically causes ad­
dresses to be small-16 or 32 bits, for example. For this rea­
son, identifiers tend to have too few bits to be unique for all
time. However, the choice of the number of bits in an identi­
fier is an important system design decision that dictates the
way in which capabilities can be used.

In conventional systems, an address is meaningful only
within a single process. In a capability system, addresses (capa­
bilities and their identifiers) are context-independent. That is,
the interpretation of a capability is independent of the process
using it. The unique identifier within a capability must have a
system-wide interpretation. Unique identifiers must be large
enough to addn:ss all of the segments likely to be in use by all
executing processes at any time. This allows capabilities to be
freely passed between processes and used to access shared data.

Addressing on most conventional systems is restricted in
terms of time as well as context. An address is meaningful only
within the lifetime of a single process. Therefore, addresses
cannot be used to name objects whose lifetimes are greater than

1.1 Capability­
Based Systems

9

Capability- and
Object-Based System
Concepts

10

the process creating the objects. If a process wishes to create a
long-term storage object, such as a file, it must interface to the
file system. Files typically require different naming, protec­
tion, and storage mechanisms than memory segments.

A significant advance made possible by capabilities is the
naming and protection of both long-term and short-term ob­
jects with a single mechanism. If the identifier field is very
large, it may be possible to implement identifiers unique for all
time. Each object is addressed by capabilities containing its
unique identifier, independent of whether it is stored in pri­
mary or secondary memory. The operating system or hardware
can maintain data structures that indicate the location of each
object. If a program attempts to access an object in secondary
memory, the hardware or operating system can bring the ob­
ject into primary memory so that the operation can be com­
pleted. From the program's point of view, however, there is
a single-level address space. Capabilities, as well as data, can
be saved for long periods of time and stored in secondary
memory.

There are, therefore, several contexts in which an address
can have meaning. For example, for:

1. Primary memory segments of a single process.
2. Primary memory segments of all existing processes.
3. All existing segments in both primary and secondary

memory.

Most conventional systems support only type 1, while capabili­
ties allow for any of the listed addressing types. More impor­
tantly, while conventional systems are concerned only with the
protection of data, capability systems are concerned also with
the protection of addresses. A process on a capability system
cannot fabricate new addresses. As systems become more gen­
eral in their addressing structure as in types 2 and 3, the protec­
tion of addresses becomes crucial to the integrity of the system.

1.1.3 Protection in Computer Systems

Lampson contrasts the capability approach with the tradi­
tional approach by showing the structure of protection infor­
mation needed in a traditional operating system [Lampson 71].
Figure 1-4 depicts an access matrix showing the privileges that
each system user is permitted with respect to each system ob­
ject. For example, user Fred has read and write privileges to
File 1 and no privileges to File2, while user Sandy is allowed to
read both files.

System Objects

File 1 File2 File3 ProcessJ Mailbox 10 •••

System
Users

Fred

Sandy

Molly

Read
Write

Read Read

Read Delete Send
Suspend
Wakeup

Send
Receive

Read Send
Write

Figum 1-4: System Object Access Matrix

One conventional approach to the maintenance of protec­
tion information is access control lists, in which the operating
system keeps an access list for each object in the system. Each
object's list contains the names of users permitted access to the
object and the privileges they may exercise. When a user at­
tempts to access an object, the operating system checks the
access list associated with that object to see if the operation is
authorized. Each of the columns of Figure 1-4 represents an
access control list.

The capability system offers an alternative structure in
which the operating system arranges protection information by
user instead of by object. A capability list is associated with
each user in the system. Each capability contains the name of
an object in the system and the user's permitted privileges for
accessing the object. To access an object, the user specifies a
capability in the local capability list. Each of the rows of Figure
1-4 represents a capability list. Figure 1-5 shows an access list

Access List for Mailbox 1 0

Fred(send)
Sandy(send, recE~ive)
Molly(send)

Capability list for Fred

File 1 (read, write)
File3(read)
ProcessJ(delete, suspend, wakeup)
Mailbox 1 O(send)

Figure 1-5: Access Control and Capability Lists

1.1 Capability­
Based Systems

11

Capability- and
Object-Based System
Concepts

12

and a capability list derived from the protection matrix in
Figure 1-4.

One important difference between the capability list and
access list is the user's ability to name objects. In the access list
approach, a user can attempt to name any object in the system
as the target of an operation. The system then checks that
object's access list. In the capability system, however, a user
can only name those objects for which a capability is held: that
is, to which some access is permitted.

In either case, the integrity of the system is only as good as
the integrity of the data structures used to maintain the protec­
tion information. Both access control list and capability list
mechanisms must be carefully controlled so that users cannot
gain unauthorized access to an object.

Similar protection options exist outside the computer
world. A useful analogy is the control of a safe deposit box.
Suppose, for example, that Carla wishes to keep all of her valu­
ables in a safe deposit box in the bank. On occasion, she would
like one or more trustworthy friends to make deposits or with­
drawals. There are basically two ways that the bank can control
access to the box. First, the bank can maintain a list of people
authorized to access the box. To make a transaction, Carla or
any of her friends must prove their identity to the bank's satis­
faction. The bank checks the (access control) list for Carla's
safe deposit box and allows the transaction if the person is
authorized. Or, instead of maintaining a list, the bank can
issue Carla one or more keys to her safe deposit box. If Carla
needs to have a friend access the box, she simply gives a key to
the friend.

A number of observations can be made about these two
alternative protection systems. The properties of the access list
scheme are:

1. The bank must maintain a list for each safe deposit box.
2. The bank must ensure the validity of the list at all times

(e.g., it cannot allow the night watchman to add a name).
3. The bank must be able to verify the identity of those asking

to use a box.
4. To allow a new person to use the box, the owner must visit

the bank, verify that he or she is the owner of the box, and
have the new name added to the list.

5. A friend cannot extend his or her privilege to someone else.
6. If a friend becomes untrustworthy, the owner can visit the

bank and have that person's name removed from the list.

1.2 The Object­
The alternative scheme involving keys has the following Based Approach

properties:

1. The bank need not be involved in any transactions once the
keys are given, except to allow a valid keyholder into the
vault.

2. The physical lock and key system must be relatively secure;
that is, it must be extremely difficult to forge a key or to pick
the lock on a safe deposit box.

3. The owner of a box can simply pass a key to anyone who
needs to access the box.

4. Once a key has been passed to a friend, it is difficult to keep
them from giving the key to someone else.

5. Once a friend has made a transaction, the owner can ask for
the key back, although it may not be possible to know
whether or not the friend has made a copy.

The advantage of the key-based system is ease of use for both
the bank and customer. However, if today's friends are likely
to become tomorrow's enemies, the access list has the advan­
tage of simple guaranteed access removal. Of course, the access
control list and the key (or capability) systems are not mutually
exclusive, and can be combined in either the computer or
banking world to provide the advantages of both systems for
increased protection.

1.2 The Object··Based Approach

Over the last few decades, several areas of computer science
have converged on a single approach to system design. This
approach, known as object-based computing, seeks to raise the
level Qf abstraction in system design. The events that have
encouraged object-based design include:

1. Advances in computer architecture, including capability sys­
tems and hardware support for operating systems concepts.

2. Advances in programming languages, as demonstrated in
Simula [Dahl 66], Pascal [Jensen 75], Smalltalk [Ingalls 78],
CLU [Liskov 77], and Ada [DOD 80].

3. Advances in programming methodology, including modular­
ization and information hiding [Parnas 72] and monitors
[Hoare 74].

This section introduces the object approach and discusses its
relationship to capability-based computer systems.

What is object-based computing? Simply stated, the object
approach is a method of structuring systems that supports ab- 13

Capability- and
Object-Based System
Concepts

14

straction. It is a philosophy of system design that decomposes a
problem into (1) a set of abstract object types, or resources in the
system, and (2) a set of operations that manipulate instances of
each object type.

To make this idea more concrete, consider the following
simplified example. Imagine that we are programming a traffic
simulation for a city. First, define a set of objects that repre­
sent, abstractly, the fundamental entities that make up the
traffic system. Some of the object types for the traffic simula­
tion might be:

• passenger
• bus
• bus stop
• taxi
• car

Then, for each object type, define the operations that can be
performed. Bus objects, for example, might support the
operations:

• PUT _BUS_INTO_SERVICE(bus_number)
• MOVE_BUS(bus_number, bus_stop)
• LOAD_PASSENGERS(bus-number, passenger_list)
• UNLOAD_PASSENGERS(bus-number, passenger_list)
• GET _PASSENGER_COUNT(bus-number)
• GET _POSITION(bus_number)
• REMOVE_BUS_FROM_SERVICE(bus-number)

Each bus operation accepts a bus number as a parameter. At
any time there may be many bus objects in the system, and we
identify each bus by a unique number. Each of these bus ob­
jects is an instance of the type bus. The type of an object identi­
fies it as a member of a class of objects that share some behav­
ioral properties, such as the set of operations that can be
performed on them.

What has been gained by defining the system in this way?
First, there now exist a fundamental set of objects and opera­
tions for the simulation. We can now implement the proce­
dures to perform the operations on each type of object. Since
only a limited number of procedures' operate on each object
type, access to the internal data structures used to maintain the
state of each type can be restricted. This isolation of the knowl­
edge of those data structures should simplify any future

changes to one of the object abstractions because only a limited
set of procedures is affected.

Second, and more importantly, we have raised the level of
abstraction in the simulation program. That is, we can now
program the simulation using buses, passengers, and bus stops
as the fundamental objects, instead of bits, bytes, and words,
which are normally provided by the underlying hardware. The
buses and passengers are our data types just as bits and bytes
are the data types supported in hardware. The simulation pro­
gram will consist mainly of control structures plus procedure
calls to perform operations on instances of our fundamental
objects.

Of course, in this example, the procedures implementing
the operations are programmed using lower-level objects, such
as bytes, words, and so on. Or, they may be further decom­
posed into simpler abstract objects that are then implemented
at a low level. Object-based systems provide a fundamental set
of objects that can be used for computing. From this basis, the
programmer constructs new higher-level object types using
combinations of the fundamental objects. In this way the sys­
tem is extended to provide new features by creating more so­
phisticated abstractions.

This methodology aims to increase productivity, improve
reliability, and ease system modification. Through the use of
well-defined and well-controlled object interfaces, systems de­
signers hope to simplify the construction of complex computer
systems.

1.2.1 Capabilities and Object-Based Systems

In the simulation example, each object is identified by a
unique number. To move a bus from one stop to another, we
call the MOVE_BUS operation with the unique number of the
bus to move. For purposes of the simple simulation, a small set
of integers suffices to identify the buses or other objects. No
protection is needed because these objects are implemented
and used by a single program.

The use of the object approach to build operating system
facilities presents different requirements. For example, sup­
pose we wish to build a calendar system to keep track of sched­
uled meetings, deadlines, reminders, and so on. The funda­
mental object of the calendar system, from the user's point of
view, is a calendar object. Our calendar management system
provides routines that create a new calendar, and modify,

1.2 The Object­
Based Approach

15

Capability- and
Object-Based System
Concepts

16

query, or display an existing calendar. Many users in the sys­
tem will, of course, want to use this facility.

Several familiar issues now arise: (1) how does a user name a
calendar object, (2) how is that calendar protected from access
by other users, and (3) how can calendars be shared under
controlled circumstances? Only the owner of a calendar should
be able to make changes, and the annotations in each calendar
must be protected from other users, since they might contain
confidential information. However, a user might permit se­
lected other users to check if he or she is busy during a certain
time, in order to automate the scheduling of meetings.

Capabilities provide a solution to these problems. When a
user creates a new calendar, the calendar creation routine allo­
cates a segment of memory for which it receives a capability.
This segment is used to store data structures that will hold the
calendar's state. The create routine uses this capability to ini­
tialize the data structures, and then returns it to the caller as
proof of ownership of the calendar. In order to later modify or
query the calendar, the user specifies the returned capability;
the capability identifies the calendar and allows the modify or
query procedure to gain access to the data structures. Only a
user with a valid capability can access a calendar.

A weakness with this scenario is that the calendar system
cannot prevent the calendar owner from using its capability to
access the data structures directly. The calendar system would
like to protect its data structures both to ensure consistency
and to guarantee that future changes in data format are invisi­
ble outside of the subsystem. In addition, if a user passes a
calendar capability to another user, the second user can then
modify the data structures or read confidential information.

These problems exist because the calendar system returns a
fully-privileged calendar capability to the user. Instead, what is
needed is a capability that identifies a specific calendar and is
proof of ownership, but does not allow direct access to the
underlying data structures. In other words, the calendar sys­
tem would like to return only restricted capabilities to its cli­
ents. However, the calendar system must retain the ability to
later amplify the privileges in one of its restricted capabilities so
that it can access the data structures for a calendar.

There are several ways of providing type managers with this
special ability. (These mechanisms are examined in detail
throughout the book.) However, given this power over capa­
bilities for its objects, a type manager can ensure that its clients
operate only through the well-defined object operation inter­
face. A client can pass a capability parameter to the type man-

ager when requesting a service, but cannot otherwise use the 1.3 Summary

capability to read or write the object it addresses. This facility
is fundamental to any system that allows creation and protec-
tion of new system types.

1.3 Summary

The capability concept can be applied in hardware and soft­
ware to many problems in computer system design. Capabili­
ties provide a different way of thinking about addressing, pro­
tection, and sharing of objects. Some of the properties of
capabilities illustrated in this chapter include their use in:

1. Addressing primary memory in a computer system.
2. Sharing objects.
3. Providing a uniform means of addressing short- and long­

term storage.
4. Support for a dynamic addressing environment.
5. Support for data abstraction and information hiding.

These, of course, are advantages of capability-based sys­
tems. The most important advantage is support for object­
based programming. Object-based programming methodology
seeks to simplify the design, implementation, debugging, and
maintenance of sophisticated applications. While capabilities
solve a number of system problems, their use raises
a whole new set of concerns. And, as is often the case in com­
puter system design, the concept is much simpler than the
implementation.

The remainder of this book is devoted to examining many
different capability-based and object-based designs. The char­
acteristics of each system are described with emphasis on ad­
dressing, protection, and object management. Each system
represents a different set of tradeoffs and presents different
advantages and disadvantages. When comparing the systems,
consider the differences in goals, technologies, and resources
available to the system developers.

The final chapter of this book considers issues in capability
system design common to all of the systems described. A few
of the questions to be considered follow. It may be useful to
remember these questions when examining each system
design.

1. What is the structure of an address?
2. How is a capability represented? How is a capability used to

locate an object? 17

Capability- and
Object-Based System
Concepts

18

3. How are capabilities protected?
4. What is the lifetime of a capability?
S. What types of objects are supported by the hardware and

software?
6. What is the lifetime of an object?
7. How can users extend the primitive set of objects provided

by the base hardware and software?

1.4 For Further Reading

The concept of capability is formally defined in the 1966
paper by Dennis and Van Horn [Dennis 66]. Chapter 3 exam­
ines this paper in some detail. The paper by Fabry [Fabry 74]
compares capability addressing and conventional segmented
addressing of primary memory, while Redell [Redell 74a] de­
scribes issues in capability systems and the use of sealing mech­
anisms that support the addition of new object types to a sys­
tem. These papers are a fundamental part of capability
literature.

Capability systems have been discussed in various contexts.
Two papers by Lampson [Lampson 69 and Lampson 71] de­
scribe the requirements for protection in operating systems
and the capability protection model. The surveys by Linden
[Linden 76] and Denning [Denning 76], which appeared in a
special issue of ACM Computing Surveys, describe capability
systems and their relationship to security and fault tolerance in
operating systems.

The architecture books by Myers [Myers 82] and Iliffe
[Iliffe 82] also discuss some of the systems described in this
book. Myers' book contains details of Sward [Myers 80], a
capability-based research system built at IBM that is omitted
here. A capability system model, as well as discussion of some
existing capability systems, appears in the book by Gehringer
[Gehringer 82]. Jones [Jones 78a] provides a good introduction
to the concepts of object-based programming.

The Burroughs B5000 computer. (Courtesy Burroughs Corporation.)

Early Descriptor Architectures

2.1 Introduction

During the late 1950s and early 1960s a host of architectural
experiments attacked significant problems in computer system
utilization. Most computers of that era were batch systems that
ran one program at a time. A program was loaded into a contig­
uous section of primary memory and run until completion;
then another program was loaded and run. This static execu­
tion and memory environment made inefficient use of the
costly processor, memory, and peripherals. In addition, pro­
grams had little flexibility for meeting dynamic programming
demands.

Multiprogramming systems showed increased processor uti­
lization as long as several runnable programs could be kept in
primary memory. However, multiprogramming required more
sophisticated memory management techniques and forced op­
erating systems to deal with dynamic storage allocation and
compaction. These tasks were greatly eased by the introduc­
tion of paged systems in which all storage units were the same
SIze.

Although paging helped the operating system to manage
storage, it did little to help the programmer with the task of
programming. A program still had to manage a conventional
linear address space. It was difficult to protect instructions or
data separately, to catch array bounds violations, to increase
the size of arrays and other data structures dynamically, or to
create new data structures dynamically.

The concept of segmentation, however, aided both the pro-

2

21

Early Descriptor
Architectures

22

grammer and the operating system. A segment is a contiguous
section of memory that represents some logical entity, such as a
procedure or array. The programmer views memory as a col­
lection of segments, each separately addressable. A program
addresses each memory element by a segment number and the
offset of that element within the specified segment. Because
each segment has a size, array bounds violations can be caught
by placing the array within a single segment.

An operating system can load each segment into memory
separately or relocate segments if needed (for example, to en­
large the size of the segment). However, for an operating sys­
tem to manipulate segments easily, it must ensure that physical
memory addresses are not embedded in the program. The sim­
plest way to isolate the program from its physical memory loca­
tion is to provide a level of indirection between program-gener­
ated addresses and the primary memory addresses of data
elements. Just as page tables provide this indirection in the
paged virtual memory system, segment descriptors-or seg­
ment base/limit registers in some hardware implementa­
tions-provide the indirection in a segmented system. A seg­
ment descriptor is a data element that contains the primary
memory address and size of a segment. An operating system
need only modify the relevant descriptors when relocating seg­
ments.

This chapter examines several early descriptor-based com­
puter designs: the Burroughs BSOOO, the Rice University Com­
puter, and the Basic Language Machine. Although these sys­
tems preceded the formal definition of capability, each system
implemented capability-like structures:in its addressing mech­
anisms. These machines were distinguished from their con­
temporaries by the generalized way in which they applied the
concept of descriptor.

2.2 The Burroughs B5000

Much of the innovation in commercial computer architec­
tures in the early 1960s emanated from the Burroughs Corpo­
ration. Introduced in 1961, the Burroughs BSOOO system had
several features unique for its time [Burroughs 61]. Most im­
portant was the use of segmentation for structuring memory
and the use of descriptors for addressing segments. Also, the
BSOOO was geared to execute high-level language programs,
particularly ALGOL and COBOL. In fact, assembly language
was not available to the user. The system was designed to com-

2.2 The Burroughs
pile and execute high-level languages efficiently, and relied on B5000

a stack-oriented instruction set to aid in expression evaluation
and procedure activation. The BSOOO supported multiprocess-
ing as well as multiprogramming by allowing connection of two
processing units.

On the BSOOO a program consists of many data segments
and code segments. Each executing program has a local ad­
dressing environment consisting of its memory segments, its
private stack, and a private Program Reference Table (PRT).
The Program Reference Table, up to 1024 48-bit words in
length, contains descriptors that locate the user's code and data
segments in memory, and values of scalar elements, as shown
in Figure 2-1. A tag field in each word in the table indicates
whether the entry is a descriptor or a scalar data element. All
memory references, including procedure calls, are made
through Program Reference Table descriptors; thus, the Pro­
gram Reference Table completely defines the domain of execu­
tion for each user program. When a program is running, a
hardware register holds the address of its Program Reference
Table.

The BSOOO supports three different descriptor types: data
descriptors, program descriptors, and input/output descrip­
tors. The formats of these descriptors are shown in Figure 2-2.
Data descriptors contain the size, primary memory address, and
drum unit number and address of a data segment. Program
descriptors are allocated for each procedure and every segment
of the main program. Reference to a program descriptor auto­
matically causes a procedure call. Input/output descriptors are

Tag

t
I

J
Data

Descriptor
l segment

I Descriptor Subroutine I
I code segment

Value

Descriptor I Data

I I segment

Value

PRT

Figure 2-1: B5000 Program Reference Table 23

Early Descriptor
Architectures

24

Segment
size

Drum
address

Data and Program Descriptor

I/O Descriptor

Figure 2-2: B5000 Descriptor Formats

Memory
address

command words for the operating system, specifying the size
and type of transfer and any special device control or format­
ting information. The operating system selects a physical unit
and allocates primary memory for the operation if needed.

The presence bit (P) in data and program descriptors indi­
cates whether or not the segment is currently in primary mem­
ory. If reference is made to a segment not in primary memory,
a trap occurs and the operating system automatically loads the
segment from drum.

The BSOOO is a stack machine and all instructions operate on
the stack. The stack is stored in memory; however, the top two
stack elements are held in hardware registers called the A and
B registers. As items are pushed onto the stack, they move first
into the A register, then to the B register, and finally into
memory as more items are pushed. As items are popped from
the stack, data moves from memory into the B register. All
ari thmetic operations are performed on operands held in the A
and B registers, leaving a single result in the B register.

Each 48-bit BSOOO instruction word :is divided into four 12-
bit instruction syllables. There are four types of instruction
syllables: operators, literals, operand calls, and descriptor
calls. An operator syllable operates on the top one or two ele­
ments of the stack, leaving a single-word result. A literal sylla­
ble simply causes a 10-bit literal field in the syllable to be
pushed on the stack.

A program executes an operand call syllable to load a data
item onto the stack. The operand call references an entry in the
Program Reference Table, with three possible results depend­
ing on the type of entry encountered. First, if the PR T entry is
a scalar, the scalar is pushed onto the stack. Second, if the PR T
entry contains a program descriptor, a subroutine call takes
place. Third, if the entry is a descriptor for a segment with
length greater than zero, then array indexing takes place as

follows. The contents of the B register, which contains the
array index, is validated against the length stored in the de­
scriptor. The index is then added to the segment base address
to locate the selected word in memory. The word is read from
memory and loaded into the B register, replacing the index.

Descriptors can also be loaded from the PR T onto the stack.
This is required, for example, to execute the STORE operator,
which saves the contents of the B register in the location ad­
dressed by the A register. A descriptor call syllable, used to
push an address onto the stack, operates in a mode similar to
the operand call. If the referenced PRT entry is a scalar, a
descriptor is constructed pointing to its location in the PRT. If
a PR T entry contains a descriptor, the descriptor is copied to
the stack, with possible address modification by an index value
in the B register. Reference to a program descriptor causes a
subroutine call.

BSOOO subroutines execute in subroutine mode which pro­
vides some special syllable formats. When a subroutine is
called, input parameters (as well as linkage information) are
saved on the stack by the caller. A hardware register is loaded
with the address of the next available stack location past the
saved parameters; this is the first location used by the subrou­
tine for its local variables. One of the subroutine mode sylla­
bles allows stack addressing relative to the register in the posi­
tive direction (to access locals) or the negative direction (to
access inputs). A subroutine can also address constants stored
in the subroutine code segment using a type of program
counter relative addressing. References to the caller's PRT are
still permitted within the subroutine.

The BSOOO's use of the stack, segmentation, descriptor ad­
dressing, and high-level languages made it one of the most
advanced systems of its time. These features have been ex­
panded and gem!ralized in later Burroughs systems and have
had an effect on other manufacturers' products as well. The
16-bit Hewlett-Packard 3000 [HP 72], in particular, is an out­
growth of early lBurroughs BSOOO ideas. More important, the
BSOOO Program Reference Tables and their use in addressing
and separation of process address spaces directly influenced
early capability thinking.

2.3 The Rice University Computer

In 19S9, development of a new machine began at Rice Uni­
versity. Called the Rice University Computer [Iliffe 62, Jodeit

2.3 The Rice
University Computer

25

Early Descriptor
Architectures

26

The Rice University computer. Jane Jodeit is seated at the control console
with Martin Graham looking on (Courtesy Dr. Martin Graham.)

68], this system was designed for the single-program environ­
ment and was never intended to support multiprogramming.
In fact, the original physical memory of the Rice machine was
only 8K 56-bit words. However, this computer-operational
until 1971-provided important experimentation with pro­
gram addressing of memory.

The Rice architecture focused on several deficiencies in con­
ventional linear address space machines. First, conventional
hardware did not support entities corresponding to high-level
programming objects. Second, for scientific problems, conven­
tional architectures did not support the addressing of single or
multidimensional arrays. Third, dynamic growth of data struc­
tures was difficult on conventional machines. Programmers
had to code the maximum possible size of each array into their
programs, so that contiguous storage could be preallocated.
Support of ALGOL-like languages, with array size determina­
tion at block entry time, was difficult.

To solve these problems, the Rice designers chose a seg­
mented architecture based on the use of codewords. Codewords
are descriptors for logical program entities; they can be stored
in the computer's memory or registers. Each program (as

15 12 1 1 1 8 15

L K F

F Physical address of the segment.

K Specifies one of eight index registers whose contents can be used
to select an array element at location F -I + (K).

P Valid bit, indicates whether physical storage is allocated or not.

Indirect bit.

X Specifies that the named segment contains codewords.

Index of the first array element (origin of the array).

L Length of the segment in words.

Figure 2-3: Rice University Computer Codeword Format

viewed by both the programmer and the machine) consists of a
collection of segments, called blocks or arrays in the Rice de­
sign. A segment contains instructions, data, or codewords and
is addressed indirectly by means of a codeword. Each segment
is homogeneous, and data types cannot be mixed within a sin­
gle segment. A single-bit tag within each codeword is set if the
addressed segment contains codewords.

In one sense, a codeword is simply a single-word descriptor
used to address a segment, similar to a segment base register or
Burroughs BSOOO descriptor. In anothe~ sense, a codeword
names the block of storage it addresses. The logical machine
address space seen by the program on the Rice system is totally
defined by a list of principal codewords that it can access. The
actual maintenance of codewords is provided by the operating
system. The basic structure of Rice codewords (omitting un­
used bits) is shown in Figure 2-3.

The physically addressable memory of the Rice machine is
divided into several fixed regions, as defined below:

• A 64-word table for accumulators, trap addresses, boot code,
etc.

• Two 64-word directories of codewords defining array blocks
for the operating system and programmer, respectively.
These are the principal codewords through which all other
storage is rea(;hed, including the following structures.

• A 128-word stack.
• A symbol table defining each named global object in the sys­

tem.
• A corresponding value table containing values for scalars and

codewords for arrays named in the symbol table.

2.3 The Rice
University Computer

27

Early Descriptor
Architectures

28

The remainder of memory is allocated dynamically to user pro­
grams and data, including those addressed through the value
table.

Figure 2-4 shows the structure of a Rice University Com­
puter sample procedure. Procedure instructions can address
variables within the procedure segment without reference to
codewords (that is, relative to the program counter). However,
external arrays, procedures, and variables are addressed
through linkage words stored at the end of the procedure seg­
ment. When a procedure is compiled, the linkage words are
initialized with the names of the global variables to be ad­
dressed. At procedure load time, the operating system locates
the names in the symbol table and modifies the linkage words
to point to the corresponding entries in the value table.

A value table entry can be a value if the object is scalar, or a
codeword if it is an array, requiring one or more additional
levels of indirection. Indirection is possible through a tree of
codewords, and each successive level can specify one of eight
index registers. For example, in addressing the two-dimen­
sional array (2DArray) shown in Figure 2-4, each codeword in
the secondary codeword segment addresses one row of the
array. Indirection terminates when a scalar object is found.
Measurements performed on the Rice University Computer
showed that 10-15% of total data references were made
through codewords.

Arrays can be extended in length by allocating additional
storage and modifying the codeword. Multidimensional array
addressing is aided by the fact that each codeword can specify
an index register. For example, a two-dimensional array can be
described by a primary codeword pointing to a table of code­
words, one for each row. No address computation is required
because the index registers are used to hold the column and
row indices. In addition, the rows can be of different lengths.

Although the designers stressed the importance of array
addressing and extensibility, perhaps more important is the
use of codewords as object names. Using the Rice scheme, a
procedure need only specify a codeword parameter to pass an
object to another procedure. The codeword completely defines
access to the object, including its address and length.

The Rice University Computer had several limitations, but
they were often due to implementation decisions. For example,
codewords contained the length of the block they defined, but
the length was not used by hardware to validate an array index.
Instead, a trap facility was provided to allow software to check

Principal Codewords

Codeword to
Value Table

Symbol Table Vaiue Tabie
Codeword to
Symbol Table "20Array" Codeword Codeword Row vector

Codeword to "VECTOR" - Codeword - Codeword I I - I main program I "VECTOR LEN " I I I 120 U Codeword to
user stack

Vector

Procedure I I
instructions

Linkage to
external
variables,
arrays, etc.
in Value Table

Figure 2-4: Rice University Computer Memory Organization

Early Descriptor
Architectures

30

array bounds. There was also no hardware-enforced memory
protection in the system; however, this was due to the simpli­
fied goals of the machine. One of the more troublesome short­
comings was that procedure return address links were stored as
physical addresses, so procedures could not be relocated easily.

niffe and J odeit suggest that extensions for multiprogram­
ming would be straightforward and require that each user have
a separate primary codeword list. Virtual arrays would be pos­
sible also, but the only secondary storage on the Rice computer
was a magnetic tape system. The Rice implementation of code­
words closely resembles the capability concept in the sense that
possession of the codeword (or knowledge of its address) is
required to access an object. The designers also suggest that
Rice codewords could be extended to include usage statistics
and that device controllers could be developed to understand
codeword formats. These additions were never made, but sev­
eral architectural advances were made in a follow-on design,
the Basic Language Machine.

2.4 The Basic Language Machine

The Basic Language Machine (BLM) [niffe 68, niffe 69]
attempted to extend the capabilities of the Rice University
Computer and correct some of its shortcomings. Like the Rice
University machine, the BLM incorporated a codeword mech­
anism, but it added data type tagging and address manipula­
tion as well. An additional goal of the BLM project was to
build a machine defined in terms of higher level functions,
hiding from the programmer the bit-level details of the ma­
chine. The Basic Language (not the familiar BASIC program­
ming language used today) defined this high-level architectural
interface in terms of an assembly-level command structure.
Design of the BLM was started in 1964, and an experimental
version was built by the research division of International
Computers Limited (ICL) in the United Kingdom.

The Basic Language Machine supports 8-bit byte, 32-bit
word, and 64-bit double-word information units. There are 16
general-purpose registers, each 64 bits long. One of the regis­
ters is the program counter (called the control number), one
points to a data structure containing the context local to the
current process (called the Process Base), and two are reserved
for special escape actions. Memory on the BLM is segmented,
the largest segment containing 64K elements of the largest in­
formation unit. The BLM supports a 24-bit physical address
space.

The BLM computer, (Courtesy International Computers Ltd,)

BLM segments are addressed through codewords, as on the
Rice computer. However, BLM codewords contain a type field
indicating the type of information elements stored in the seg­
ment they address. The defined data types are:

• 32-bit binary word,
• 8-bit byte,
• 64-bit long numeric,
• 32-bit short numeric,
• mixed type,
• instruction,
• absolute codeword, and
• relative codeword.

The type field also indicates what access is permitted to the
segment: data segments can be read-only or read/write; code­
word and instruction segments are read-only.

Most of the type encodings specify segments that are homo­
geneous, that is, segments with only one data type. If the
codeword type field specifies a mixed-type segment, the seg-

2.4 The Basic
Language Machine

31

Early Descriptor
Architectures

32

ment can contain elements of any type. However, in mixed­
type segments, each element must contain its own tag. A tag is
a field contained within the information unit indicating its in­
terpretation. All elements in a mixed-type segment are 64 bits
long and contain a 3-bit tag. The four tags defined are:

• 32-bit binary word,
• escape (an attempt to use such an element as an operand

causes a trap to software),
• 4S-bit address (stored in 64 bits), and
• 61-bit floating numeric element.

The BLM automatically performs conversion and tagging of
data elements on fetch or store operations. In homogeneous
sets, tags do not need to be stored with each data item, but are
constructed from the type stored in the codeword used to load
the item into a register. Therefore, homogeneous information
can be tightly packed without tagging overhead. The format of
32-bit and 61-bit numeric elements when stored in registers,
for example, is shown in Figure 2-5. The tag values of zero and
three in the figure indicate 32- and 61-bit numerics, respec­
tively. If an 8-bit byte is fetched, it is automatically sign­
extended to 32 bits, and the tag is set to zero.

The BLM is a multi programmed computer, and a Process
Base defines the execution environment for each process. It is
possible for several processes to share the same base and,
hence, share access to the same objects. The process address
space is composed of a collection of segments, each of which is
described by a codeword. The segments may be arranged in a
tree structure, but all nodes are reachable only through code­
words originating in the Process Base. That is, the terminal
nodes of the tree structure contain data or instructions, while
the intermediate or branching nodes are codeword sets. Code­
words are thus used both to separate user address spaces and to
separate logical entities within a program.

3 29 32

1
0

I
Not used n

61
A

3 I ,
131 Exponent Mantissa

Figure 2-5: Example of BLM Numeric Formats

2.4 The Basic
Relative codewords are provided so that, in situations where Language Machine

it is natural to do so, codewords can be stored in the same
segment with the data they describe. To simplify packing, rela-
tive codewords are only 32 bits long and can only reference
objects within 4096 bytes of their location. Relative codewords
allow efficient storage of related data structures. A program
can maintain several data structures in a single segment by
placing relative codewords for the data structures in the first
few segment locations.

Figure 2-6 shows a sample structure of a BLM process. In
this case, the Process Base contains codewords for instruction
segments, data segments, and codeword segments. The termi­
nal nodes are all data segments. One of the terminal nodes is a
mixed segment with relative codewords pointing to internal
data structures.

Codewords define the address space and are read-only; they
cannot be manipulated by users. BLM addresses, however, are
quantities derived from codewords that can be user-manipu­
lated.. Both addlresses and codewords contain the same infor­
mation, as shown in Figure 2-7: the address and length of the
defined set, its type, and a tag indicating an addressing ele­
ment. Once an address is derived from a codeword, through an
operation called codeword evaluation, it can be modified
through special instructions. MOD and LIM instructions ad­
dress a subset of the original segment by modifying the loca-

Process
Base

Codeword -----1
Codeword

Codeword

Codeword ----+-

Data

I segment

Codeword V

Instruction
segment

Data
segment

I Data
........ t--_Co_d_ew_o_rd_-:---~Il segments

Codeword
Codeword

Codeword
~,........--.........,

Relative codeword

Figure 2-6: Basic Language Machine Addressing

Relative codeword

Data
segment

33

I

Early Descriptor
Architectures

34

3 5 12 12

Tag Type Length Relative location I (32 bits)

Relative Codeword

3 5 24 16 16

Tag Type Location Not used Length I (64 bits)

Absolute Codeword and Address

Figure 2-7: BLM Address and Codeword Fprmats

tion and length fields-to remove a specified number of ele­
ments from the beginning or end of the segment, respectively.
Looping instructions are available to step addresses through
consecutive elements of a segment (performing an implicit
MOD by one each time) and to test when the last element has
been examined. Iliffe notes that it would be possible also to use
the 16 free bits in an absolute codeword to implement linked
data structures.

BLM addresses allow users to save intermediate address
computations through a tree of codewords. (In contrast, on the
Rice University Computer, a full address computation is re­
quired on each access to an indirectly referenced object.) On
the BLM, the programmer can compute the object address
once and save it. The address for a single element in a set can
also be computed and saved. Of course, relocation is difficult
because addresses as well as codewords must be examined
when an object is relocated; that is, BLM addresses are not
virtual but contain the primary memory location of a data ele­
ment.

The Basic Language Machine made several important ad­
vances over the Rice University Computer. First, it extended
the design to encompass multiprogramming, using a separate
Process Base for each process. Second, it provided a more gen­
eral addressing structure to give users flexibility in performing
address arithmetic and saving results. Third, it used a rela­
tively efficient typing mechanism to reduce the number of op­
erators in the instruction set. However, despite the advantages
of its structure, the experimental BLM was dismantled in 1970
and no product evolved from the research effort.

2.5 Discussion

The machines described in this section share two major
traits: segmentation and the use of descriptors (called code-

words in the Rice and BLM machines) for segment addressing. 2.5 Discussion
Segmentation of programs was used:

• to separate programs into logical entities (procedures and ar­
rays, for example),

• to separate Ulser processes from each other,
• to represent and address complex data structures in hard­

ware, and
• to allow relocation and dynamic growth of data structures.

In general, an address is specified by two parts: a segment
descriptor and an offset. However, different approaches for the
specifics of addressing and address manipulation were used for
each machine. For example, array addressing on the Bur­
roughs BSOOO required the index to be pushed onto the stack
before the array reference was made. Multidimensional array
address calculation required a series of index pushes and evalu­
ations. The Rice University Computer used index registers,
and multilevel indexed addressing was performed automati­
cally with an index register specified for each level in the ad­
dressing tree. With the BLM, this idea was abandoned and
replaced by address modification instructions that allow a con­
i:rolled form of user-modifiable codewords.

All three machines provide a single base segment that de­
fines a program's execution environment: the BSOOO Program
Reference Table:, the Rice University Computer primary code­
word list, and the BLM Process Base. The address of the base
segment is usually held in a hardware register. From the base
segment, the addressing mechanism provides for the represen­
tation of programs and data structures as tree structures. The
trees are slightly different in each case due to the differences in
addressing. The root of the tree is the base segment hardware
register, and the first level nodes are in the Process Base. Start­
ing at the Process Base, the branchpoints of the tree are code­
words or descriptors and the leaves are data elements (in the
case of the Rice University Computer) or data segments (in the
case of BSOOO or BLM). The BLM allows a program to tra­
verse several levels and save the intermediate address of a sub­
tree, but the Rice machine requires a complete multilevel scan
for each access. The tree structure allows the user to represent
complex data structures directly in hardware and to share
substructures. Different processes can share subtrees by shar­
ing subtree descriptor segments.

One of the major reasons for segmentation in these systems
was to simplify relocation of programs and data. Relocation is 35

Early Descriptor
Architectures

36

facilitated by forcing all references to flow through descriptors.
To relocate a segment, the operating system needed only to
modify its descriptors. The additional level of indirection pro­
vided by descriptors also made segments easily "virtualizable,"
that is, all segments did not have to occupy primary memory
while a program was running. Of course, the complexity of
relocation is greatly influenced by the generality with which
descriptors can be used. For example, if descriptors are stored
in a single descriptor table, relocation involves only a scan of
that table. However, if descriptors are stored in segments and
each descriptor contains a segment base address, then many
segments may need to be searched. Such a memory search can
be simplified if segments are typed, as on the BLM, because
only mixed or codeword segments would need to be examined.

Care must be taken in any scheme in which multiple copies
of the physical segment information can exist for a single seg­
ment. This problem could be reduced if the descriptors them­
selves referred indirectly to a second-level segment descriptor.
However, on the machines examined in this chapter, a descrip­
tor contains all of the physical information describing a seg­
ment. Thus, copying a descriptor duplicates the physical ad­
dress.

Descriptors on the BSOOO can be copied onto the stack, re­
quiring a possible stack search in order to relocate a segment.
However, because it is exclusively a high-level language ma­
chine, the use of descriptors can be restricted by the BSOOO's
compilers. The Rice University Computer allows descriptors
to exist in any segment of codeword or mixed type, so these
segments would need to be scanned. The BLM, on the other
hand, allows pure codeword segments and relative codewords
within other word-oriented segments. Both the Rice and BLM
machines require a tree search to find descriptors for segments
to be relocated.

Another problem in multiprogramming systems is control­
ling access to shared segments. A user (or 110 device) wishing
to perform a multistep transaction on a shared segment must
gain exclusive access to that segment. This can be achieved by
disabling interrupts or context switching (usually via executive
procedures), through the use of explicit software locks, or
through the use of a "lockout" or software trap bit in the de­
scriptor. If lockout bits are used, then the executive must find
all copies of descriptors for the target segment.

Another issue in descriptor design is the cost of indirection.

All of the examined machines allow tree-structured data. AI- 2.5 Discussion

though the Rice machine has automatic multilevel addressing,
the Burroughs and the BLM require several manual steps.
However, the Burroughs and the BLM allow for partial ad-
dress computations to be saved.

One of the perpetual debates in computer architecture is the
tradeoff between the use of tag bits in data elements and the
larger operation code set needed in non-tagged architectures.
The BLM scheme seems to answer the concern for tagging
overhead by only storing tags in the codeword or address for
homogeneous segments. However, for mixed or heterogeneous
structures, each element must still carry a tag. In addition, the
elements in a mixed set must all be of the same size as the
largest element in the set; that is, all elements must have the
same alignment to protect against addressilllg the middle of
some element and interpreting data bits as tags. This is not
particularly efficient because any segment containing a code­
word pointer must use 64 bits for each element. Still, there are
benefits to tagging besides the possible savings of operation
code bits, including automatic conversion and checking by the
hardware. A certain amount of error detection may also be
gained by self-tagging of information units.

A likely problem with these machines was that of garbage
collection. If a program can write a descriptor to a descriptor
segment, the descriptor previously occupying that memory
word could be overwritten. If the overwritten descriptor were
the only one referencing some segment, that segment would
then be unreachable. In general, this problem was prevented
by making descriptor segments read-only. The BSOOO PRT
was not read-only; however, this system relied heavily on the
compilers for proper system operation. User programs did not
have direct control of the PRT or descriptors. Garbage seg­
ments were considered a problem on the BLM, and a garbage
collection process was written to search for unreachable seg­
ments.

One of the more important gains from tht! use of descriptors
is the protection of procedures. If procedures can be invoked
only by referencing a descriptor, then two benefits are realized.
First, a procedure can only be invoked at its entry point con­
tained in the descriptor; it cannot be entered at a random
point. Second, procedure code is protected from accidental or
deliberate modification.

Despite their differences, all of these machines have a com- 37

Early Descriptor
Architectures

38

mon link to capability architectures: they all use descriptors to
name programming objects. The objects are generally simple,
for example, a segment containing an array, a procedure, or a
list. 110 operations are also described by descriptors on the
BSOOO.

It is important to note that all of these machines support
large word lengths. A single word is large enough to contain all
of the segment base and limit information as well as various
other bits. In general, although bytes may be supported as data
types, byte addressing is not provided; that is, memory is
word-addressable. The descriptor is a single word that contains
all of the physical information needed to locate the object in
primary or secondary memory. In retrospect, this fact is im­
portant because duplicating the descriptor duplicates all of the
segment niapping information. Descriptors are therefore dif­
ferent from virtual addresses or modern capabilities where a
second level of addressing is employed.

Although the Rice family of machines was not directly con­
tinued, the BSOOO led to many stack and descriptor machines
in the Burroughs family, and other manufacturers were also
influenced by its design. Whether or not they were long-lived,
these machines demonstrated the feasibility of using descrip­
tors and segmentation to greatly increase programming flexi­
bility for the user, the compilers, and the operating system.

2.6. For Further Reading

The Burroughs BSOOO is described in The Descriptor
[Burroughs 61], a remarkably modern document for the time it
was written. One section of the manual is devoted to the ad­
vantages of high-level language systems (ALGOL in this case),
such as reduced programming time, simplified debugging, and
program maintenance. Such goals are remarkably similar to
the objectives of today's object-based systems.

Two papers that discuss storage allocation in the Rice Uni­
versity Computer are [Iliffe 62] and [Jodeit 68]. A book is
available on the Basic Language Machine [Iliffe 68]; however,
it is unfortunate that more was not published on the machine's
design and use. Perhaps this indicates the fate of industry's
research projects that never become products. However, an
excellent discussion of the BLM within the context of modern
capability systems appears in [Iliffe 82].

Following the BLM, design of a third member of the Rice

computer family, called the Rice Research Computer, was
started at Rice University [Feustel 72]. The Rice Research
Computer was to be a high-performance tagged architecture,
but technological problems caused the termination of the proj­
ect in 1974. A discussion of the general advantages of tagged
architectures can be found in [Feustel 73].

2.6 For Further
Reading

39

Early Capability Architectures

3.1 Introduction

Although the Burroughs, Rice, and BLM systems included
capability-like addressing structures, the word "capability"
was not introduced until 1966, by Dennis and Van Horn of
MIT [Dennis 66]. Dennis and Van Horn defined a hypotheti­
cal operating system supervisor for a multiprogramming sys­
tem. Multiprogramming systems were already in us~ at that
time; however, many difficult problems had yet to be solved.
The MIT design used the concept of capability addressing to
provide a uniform solution to several issues in multiprogram­
ming systems, including sharing and cooperation between
processes, protection of processes, debugging, and naming of
objects.

The concept of capability addressing presented by Dennis
and Van Horn quickly found its way into several hardware and
software systems. This chapter first describes the Dennis and
Van Horn supervisor and its use of capabilities and then exam­
ines some of the early systems influenced by its design.

3.2 Dennis and Van Horn's Supervisor

Dennis and Van Horn's operating system supervisor is de­
fined by a set of objects and a set of operations for each type of
object. The operations, implemented by the supervisor, are
called meta-instructions. To describe this system and its meta­
instructions involves the introduction of the following terms:

3

41

Early Capability
Architectures

42

• segment-an addressable collection of consecutive
memory words,

• process-a thread of control through an instruction
stream, and

• computation-one or more processes that share an ad­
dressing environment and cooperate to solve a task.

A process is the basic execution entity. A process executes
within an environment called a sphere of protection or domain.
The sphere of protection for a process defines the segments
that it can address, the I/O operations that it can perform, and
other objects, such as directories, that it can manipulate.

As part of its state, a process in the Dennis and Van Horn
system contains a pointer to a list of capabilities, called a C-list
for short. Each capability in the C-list names an object in the
system and specifies the access rights permitted to that object.
The name is a pointer that the supervisor can use to locate the
object; however, the authors suggest that systems avoid the use
of physical attributes such as addresses for pointers. The name
is a unique bit string assigned to an object when it is created.
The naming of objects in an address-independent manner sim­
plifies relocation and management of memory.

The access rights in a capability are specific to the type of
object named. For example, the rights bits allow execute, read,
read/execute, read/write, or read/write/execute access for seg­
ments. Each capability also contains a single bit indicating
whether or not its possessor is the owner of the object. An
object's owner has special rights with respect to the object,
such as the ability to delete it.

Each process in the system, then, has a pointer to a single
C-list containing capabilities naming all of the objects it can
access. When executing a supervisor meta-instruction, the
process specifies capabilities by their index in the C-list. A
computation consists of several potentially cooperating proc­
esses that share a single sphere of protection. That is, the proc­
esses in a computation share the same C-list. Figure 3-1 shows
three processes that make up two distinct computations.

The supervisor allows the creation of tree-structured proc­
esses. Using a FORK operation, a process can create a parallel
process executing within its sphere of protection. In addition, a
process can create and control subprocesses, called inferior
spheres, that execute in separate subordinate domains. To
create an inferior sphere, a process executes a CREATE SPHERE

meta-instruction. As a parameter to the meta-instruction, the

T---'" Capability I--.-----t~ Segment

Capability I--.-----t~ Directory
Computation

Capability

C-list

Capability

Computation Capability --I Segment

Capability
---1 Segment

C-list

Figure 3-1: Processes, Computations, and C .. Lists

process specifies an entry in its C-list, in which the supervisor
places a capability for the inferior. This capability can then be
used to control the inferior process.

When a process executes a CREATE SPHERE meta-instruction,
the supervisor creates the inferior with an empty C-list. Using
its capability for the inferior, the parent process can execute
meta-instructions to:

• move capabilities from its C-list to the inferior's C-list,
• start and stop the inferior,
• examine or change the inferior's state, and
• remove capabilities from the inferior's C-list.

The creating process can construct any sphere of protection
desired for the il1ferior, with the restriction that the superior's
C-list must contain any capabilities to be copied to the inferi­
or's C-list. Table 3-1 lists the Dennis and Van Horn meta­
instructions that operate on inferior spheres, capabilities, and
directories (which are described in Section 3.6).

Inferior spheres are useful for debugging. When testing a
new procedure, a user might like to constrain the environment
in which the procedure can execute so that an error will not
accidentally destroy the user's objects. When a process creates
an inferior sphere, it specifies the address of a procedure to
handle any special conditions. If an error or exception is de-

3.2 Dennis and Van
Horn's Supervisor

43

Early Capability
Architectures

44

CREATE SPHERE create an inferior sphere and return a proc­
ess capability to the creator

GRANT copy a capability to an inferior's C-list with
specified access rights

EXAMINE copy inferior's capability into superior's C­
list

UNGRANT delete capability from inferior's C-list
ENTER call protected procedure with one capability

parameter
RELEASE remove capability from C-list
CREATE create a new segment, entry, or

directory
PLACE insert capability and text name into

directory
ACQUIRE search directory for text name and copy as­

sociated capability into C-list
REMOVE remove named item and associated capabil­

ity from directory
DELETE delete object specified by name
LINK obtain capability for another user's root di­

rectory and insert in C-list

Table 3-1: Dennis and Van Horn Supervisor Capability Operations

tected in the inferior, the supervisor creates a new process
within the sphere of the parent process to execute the error­
handling procedure. Or, the inferior can explicitly signal the
parent through special meta-instructions. This feature allows a
superior to build a supervisory environment for its inferior
which is equivalent to that provided by the superior's parent
(or by the supervisor).

Although C-lists provide for object addressing, they do not
satisfy the need for object naming. Users in a multiprogram­
ming system must be able to identify objects (particularly
long-term objects such as files) using mnemonic character
string names. They must also be able to share objects with
other users in the system. In order to allow users to name
objects and retain them indefinitely, the supervisor provides
primitives for the creation and manipulation of capability direc­
tories.

A directory contains a list of directory entries. Each entry
consists of a text name, an associated capability, and a single
bit specifying whether the entry is private or free. The
private/free bit allows a user to share a directory without per­
mitting access to all of the directory entries. Directory entries

3.2 Dennis and Van
are accessed by text name, and meta-instructions are provided Horn's Supervisor

to copy a directory capability to the user's C-list, place a C-list
capability in a directory along with an associated name, or re-
move a directory entry. The directory meta-insttuctions-
PLACE, ACQUIRE, REMOVE, DELETE, and LINK-are listed among
the capability operations in Table 3-1.

Each user has a single root directory that contains capabili­
ties for the user's permanent objects. When a user initiates a
session (that is, when the user logs into the system), the super­
visor creates a new process and places a capability for the root
directory in the process's C-list, giving the process access to
these objects. A process can then load capabilities from the
root directory into the C-list by executing an ACQUIRE meta­
instruction. The ACQUIRE specifies three parameters: the capa­
bility for the root directory, the text name of the object to be
loaded, and the C-list location in which to place the associated
capability.

New directories can be created and capabilities for direc­
tories can be stored in other directories .. Thus, a user can build
graph-structured directory mechanisms and share directories
or subdirectories. To facilitate object sharing, the supervisor
allows a process to obtain a capability for another process's root
directory. In turn, the root directory can be traversed to locate
subdirectories, and so on. However, when examining another
user's directory structure, only those entries marked as free
can be accessed.

The Dennis and Van Horn supervisor does not support a
separate concept of files. Any segment or directory is potenti­
ally long-lived and can be used to store information from ses­
sion to session or over system restarts. An object is maintained
by the system as long as a capability exists for that object.
Therefore, to make a segment or directory long-lived, a user
simply stores a capability for that object in the root directory or
any long-lived directory reachable through the root. The su­
pervisor automatically deletes an object when the last
capability for that object is deleted. Deleting any single capa­
bility for an object does not necessarily cause the object to be
deleted because other capabilities for the object may still exist.
The supervisor does support an explicit DELETE meta-instruc­
tion that can be used by a process with owner privileges to an
object.

One of the most important aspects of the Dennis and Van
Horn supervisor is its support for protected procedures.
Within a multiprogramming system, it should be possible for a 45

Early Capability
Architectures

46

user to create a procedure that provides service to many differ­
ent users. However, this procedure must be able to protect
local objects from its callers, and the callers may wish to guar­
antee that the procedure does not destroy or compromise any
of their local objects. The protected procedure meets both of
these needs.

A process creates a protected procedure by obtaining an
entry capability through a supervisor meta-instruction. The
entry capability contains a pointer to the C-list of the process
that created it. It also contains an index, i, and a range, n, for a
set of sequential procedure capabilities within the C-list of the
creating process. The entry capability can then be passed to
any process (through the directory mechanism, for example)
and used to call any of the n procedures. To call a protected
procedure, a process executes an ENTER meta-instruction speci­
fying:

• an entry capability,
• the index of one of the n procedures to be called, and
• a capability parameter to be passed to the protected proce­

dure.

The entry capability and capability parameter must be in
the caller's C-list. As a result of the ENTER instruction, the
supervisor creates a new process to execute the protected pro­
cedure. This new process executes in the sphere of protection
specified by the C-list pointer contained in the entry capability.
Figure 3-2 shows this change from the sphere of the caller to
the sphere of the protected procedure. The entry capability in
Figure 3-2 allows its owner to call one of two procedures de­
fined by capabilities in the protected C-list.

A protected procedure, then, executes in the domain de-

Caller
C-/ist

Directory capability

Entry capability r--

Segment capability

Sphere of Caller

r--

Protected Procedure
C-/ist

Segment capability

{

Procedure capability

Procedure capability

Directory capability

Entry capability

Sphere of Protected Procedure

Figure 3-2: Protected Procedure Protection Spheres

3.3 The MIT PDP-1
fined by the procedure's creator, not in the domain of the Timesharing System

caller. In this way, the caller and the protected procedure are
mutually isolated. The caller has no access to the protected
procedure's objects, and the procedure has no access to the
caller's objects, with the exception of those objects passed ex-
plicitly through Ithe capability parameter. Because this parame-
ter can be a directory capability as well as a segment capability,
a caller can pass a list of capabilities or an arbitrary data struc-
ture. A process possessing an entry capability can only use that
capability to call one of a sequence of procedures. Once that·
procedure begins execution, it has access to all of the objects
available in its private C-list.

The Dennis and Van Horn conceptual design became very
influential on later systems. However, there are many ways to
apply the concepts and many problems inherent in doing so.
The first system to incorporate the concept of capability was a
timesharing system at MIT, which is examined in the following
section.

3.3 The MIT PDP-1 Timesharing System

The first computer system to include Dennis and Van
Horn's capability operations was a timeshared operating sys­
tem constructed at MIT from Dennis' design [Ackerman 67,
MIT 71]. The system ran on a modified 12K-word Digital
Equipment Corporation PDP-1 computer, the first minicom­
puter. The timesharing system supported five "typewriters"
and used capabilities only to reference a few relatively high­
level system resources, such as terminals, tapes, and drums.
However, the operating system allowed users to extend this set
of resources by creating new protected subsystems. It is the
protected subsystem mechanism that is briefly examined here.

Each process running on the PDP-1 timesharing system has
a C-list (also called the program reference list, after the Bur­
roughs BSOOO), in which capabilities are held. The C-list is
actQally maintained in locations 0-77 of process address space.
These locations are protected against program examination or
modification and can only be manipulated by the operating
system. Each capability is addressed by its index in the list.

Capabilities are created by special supervisor instructions.
Each capability represents a resource object owned by the
process. The supervisor supports a small number of resource
types: 110 device, inferior process, file, directory, queue, and
entry. When the process wishes to perform an operation on a 47

Early Capability
Architectures

48

resource object, it invokes the object's capability through an
INVOKE instruction. The INVOKE instruction specifies: (1) the
C-list index of the capability to be invoked and (2) an operation
to perform on the object represented by the capability. The
INVOKE is similar to the ENTE~ instruction in the Dennis and
Van Horn design.

Dennis and Van Horn's supervisor allows a process to create
protected procedures that execute in private spheres of protec­
tion to protect local data from access by their callers. The
PDP-1 system goes a step further. It allows creation of con­
trolled subsystems that maintain different protected data ob­
jects on behalf of different processes, just as the operating sys­
tem maintains files, for example, on behalf of different
processes. To do this, the subsystem must be able to verify that
a process is permitted access to an invoked object.

A subsystem is accessed through entry capabilities in the
same way that protected procedures are accessed in the Dennis
and Van Horn supervisor. To identify different subsystem re­
source objects, however, the PDP-1 system allows a subsystem
to create different versions of its entry capabilities. The entry
capabilities for a given subsystem are equivalent except for a
transmitted word field that can be specified by the subsystem
when the entry is created. In this way, the subsystem can
maintain protected data structures on behalf of many proc­
esses. When a process calls the subsystem to create a new re­
source, the subsystem returns an entry capability with a trans­
mitted word uniquely identifying that resource. Subsequently,
when the user invokes an operation on that resource through
the entry capability, the subsystem interrogates the transmit­
ted word to determine which data structures to access. The
transmitted word field is 6 bits in size, allowing a subsystem to
support only 64 different objects; however, the PDP-1 sup­
ports a small user community.

The system was in operation for student use until the mid-
1970s. It was distinguished not only by its capability supervi­
sor but also by its space war game that ran on the PDP-l video
display. Following the MIT PDP-l system, a major step in
capability systems design took place at the University of Chi­
cago. This work was significant because it used capabilities as a
hardware protection mechanism.

3.4 The Chicago Magic Number Machine

In 1967 a group at the University of Chicago Institute for
Computer Research began work on the Multicomputer, later

called the Chicago Magic Number Machine [Fabry 67, Shep­
herd 68, Yngve 68]. The goals of the project were ambitious: to
provide a general-purpose computing resource for the Insti­
tute, to allow computer science research, and to interface to
new peripheral devices. The project was perhaps too ambi­
tious; in fact, the system was never completed. Nevertheless,
the Chicago effort was the first attempt to build an integrated
hardware/software capability system [Fabry 68]. The imple­
mentation of capability-based primary memory protection in
this machine was to serve as a model for several early capability
designs.

The Chicago machine provides a general register architec­
ture and a segm,ented memory space. Memory is addressed
through capabilities, and a process must possess a capability
for any segment it addresses. Capabilities can be stored in reg­
isters or in memory; however, they cannot be mixed with data.
Therefore, the machine supports two sets of registers-data
registers and capability registers, and two types of segments­
data segments and capability segments.

There are sixteen 16-bit, general-purpose data registers,
three of which can be used as index registers. Capabilities are
stored in six capability registers, each holding multiple 16-bit
fields because capabilities are longer than the machine's 16-bit
words. Several bits in each segment capability indicate whether
the addressed segment contains data or capabilities. Hardware
LOAD and STORE instructions allow programs to move capabili­
ties between capability registers and capability segments, but
programs are prohibited from performing data operations on
capabilities. A process can have many capability segments, and
capabilities can be copied freely between them.

For a program to access an element in a memory segment,
the program must first load a capability for that segment into a
capability register. The capability registers therefore act as a
hardware C-list. A capability for a memory segment describes:

• the segment base address,
• the segment length,
• the type of the segment (data or capability),
• an activity code, indicating whether the segm(~nt is in primary

memory or secondary store, and
• an access code, indicating how the segment may be used.

The access codes for data segments are read, read/execute,
read/write, and read/write/execute; the access codes for capa-

3.4 The Chicago
Magic Number
Machine

49

Early Capability
Architectures

50

bility segments are enter, enter/read, and enter/read/write. A
program with capability read and capability write access to a
capability segment can execute capability load and store opera­
tions on that segment, but cannot perform data operations on
the capabilities. A user is never given data access to a capability
segment, because that would allow the user to fabricate capa­
bilities. However, the operating system supervisor may keep
capabilities permitting data access to a user's capability seg­
ments. The supervisor uses these capabilities to perform
meta-instructions that create a new capability or modify a capa­
bility.

To access an operand in primary memory, an instruction
specifies a memory address using three components:

• a capability register containing a segment capability,
• a data register or literal value specifying the relative offset of a

data element in the segment, and
• an optional index register containing an index that can be

added to the supplied offset.

This allows, for example, addressing of an array that is located
within a data segment. The hardware computes the sum of the
two offsets and the base address contained in the capability to
generate the primary memory address. It also verifies that the
address lies within the segment, that the type of access is legal,
and that the segment is in primary memory.

Segments can be created, extended, and destroyed by exe­
cution of supervisor meta-instructions, as shown in Table 3-2.
A meta-instruction is also available to copy (snapshot) a seg­
ment onto secondary storage. The snapshot operation requires
as a parameter the number of days the copy should be main­
tained. The current state of a segment and all backup copies
are identified by the same capability, but the backups are dif­
ferentiated by the time and date the copy was made. When a
program retrieves a snapshot, the supervisor allocates a mem­
ory segment, copies the snapshot to that segment, and returns
a new capability for that new segment to the user.

The Magic Number Machine is a multiprogramming sys­
tem in which each process has as part of its state:

• a name,
• a capability for an account to be charged for its resource

usage,

CREATE SEGMENT create a new segment of given size and type
and return a capability for it

CHANGE SEGMENT SIZE

increase or decrease segment size
DESTROY SEGMENT delete segment
SNAPSHOT copy current segment state to backing stor­

age, marked with current time and date
RETRIEVE copy specified snapshot from backing store

into a new segment
CHANGE ACCESS CODE

produce a new version of a capability with
reduced access rights

EXAMINE CAPABILITY

several meta-instructions to allow inspection
of segment size, type, ID, access code, and
:activity code

CREATE PROCESS create a subordinate process and return a
process capability

MAIL send capability and associated text name to
specified user

Table 3-2: Chicago Magic Number Supervisor Capability Operations

• a capability for a base capability segment addressing the
user's objects, and

• a capability for a mailbox.

Interprocess communication takes place between process mail­
boxes. A mailbox consists of a capability segment and an asso­
ciated data segment. Using the MAIL meta-instruction, a proc­
ess can send a capability and an associated informational text
name to another process that can read, copy, or delete the
information.

In addition to the hardware registers and the information
listed above, each process has two segments associated with its
context: a process data segment and process capability segment.
Each of these segments has a fixed-sized storage region fol­
lowed by a stack for data or capabilities. Two capability regis­
ters are reserved to address these segments, and two data regis­
ters act as stack pointers, although there are no explicit stack
instructions (i.e., the registers must be manually updated).

A protected procedure mechanism in the Chicago Magic
Number Machine allows for efficient one-way protection; that
is, the procedure is protected from its caller but the caller is not
protected from the procedure. Each protected procedure con­
sists of at least one program segment and one capability seg­
ment, called the linkage segment, as shown in Figure 3-3. An

3.4 The Chicago
Magic Number
Machine

51

Early Capability
Architectures

52

Caller's root
capability segment

Segment capability

Segment capability

Entry capability

'---v-----'
Domain of Caller

Protected procedure
linkage segment

Procedure capability I Procedure j
l segment

Segment capability

Segment capability

Procedure capability

\~----------------------~----------------~)
Domain of Protected Procedure

Figure 3-3: Chicago Magic Number Machine Linkage Segment

entry capability for the procedure points to the linkage seg­
ment, which contains capabilities for all objects needed by the
procedure such as instruction segments, data segments, I/O
operations, and so on. The first capability in the linkage seg­
ment points to the procedure entry point. Possession of an
enter-only capability for the linkage segment allows the posses­
sor to call the procedure using this first capability, but permits
no other linkage segment access. Thus, the protected proce­
dure can execute in a richer environment than its caller because
it can access the entire linkage segment. Parameters can be
passed either on the stack or in the registers.

Work on the Chicago Multicomputer/Magic Number Ma­
chine was eventually abandoned due to lack of funding. Al­
though the project was never completed, the design was passed
on to others including a group at Berkeley who incorporated
some of its features into a new operating system, which is de­
scribed next.

3.5 The CAL-TSS System

Started in the summer of 1968 at the University of Califor­
nia at Berkeley's computer center, the CAL-TSS project was
an attempt to implement a general-purpose, capability-based
operating system on conventional hardware. CAL-TSS was
designed to supply timesharing services to several hundred
users of a CDC 6400 computer system, thereby replacing

3.5 The CAL-TSS
CDC's SCOPE operating system. Work on design and imple- System

mentation continued until the fall of 1971, when it became
clear that the system could not meet its goals in terms of service
and performance. Funding was stopped and the project aban-
doned. Since then, its designers have published several ap-
praisals of the project's successes and failures [Sturgis 74,
Lampson 76].

The CAL-TSS operating system is a layered design in which
each layer provides a virtual machine to the next higher layer.
Each layer is specified as a set of objects and operations on
those objects. This section examines the innermost layer of the
supervisor which handles capabilities and object addressing.

The basic unit of protection in the CAL-TSS system is a
domain, an environment containing hardware registers, pri­
mary memory, and a C-list. (A domain corresponds to the
sphere of protection in the Dennis and Van Horn supervisor.)
Access to objects outside the domain can occur only through
invocation of a C-list capability; the possessor of a capability
invokes an operation on the object it addresses by specifying the
capability, the operation to be performed, and other optional
parameters. A process is the execution entity of a domain, and
its C-list may contain capabilities for other subordinate proc­
esses over which it exercises control.

Capabilities in the CAL-TSS system have three compo­
nents:

• a type field that specifies the nature of the object addressed,
• an option bits field that indicates operations which can be per­

formed by the possessor of the capability, and
• a value field that identifies the object and contains a pointer to

the object.

Each capability occupies two 60-bit words in a C-list. A process
has a root C-list and can create new second-level C-lists. When
a process invokes a supervisor operation, it can specify capabil-
ities stored in either the root C-list or any second-level C-list as
parameters. A capability specification can therefore consist of
two indices: one to locate a C-list capability in the root C-list
and another for the target capability in a second-level C-list.

The CAL-TSS supervisor implements eight types of ob­
jects. A process can call supervisor operations to create and
manipulate the following object types:

• kernel files (simple sequential byte streams),
• C-lists,

-

53

Early Capability
Architectures

54

• event channels (interprocess communication channels),
• processes,
• allocation blocks (for accounting and resource control),
• labels (for naming short-lived objects and domains),
• capability-creating authorizations (user subsystems), and
• operations.

The last two supervisor-implemented types listed, capability­
creating authorizations and operations, will be discussed later.

One important advance of CAL-TSS over its predecessors is
in its physical object addressing. When the CAL-TSS supervi­
sor creates a new object, it assigns that object a unique identi­
fier. The identifier for that object is never reused, even after
the object is destroyed. The use of unique identifiers solves a
difficult system problem. If, for example, an object identifier
could be reused after object deletion, the supervisor would
have to guarantee that all capabilities for an object are de­
stroyed before the object is destroyed. Otherwise, the remain­
ing capabilities would be dangling references, that is, pointers to
an object that does not exist. Were the supervisor to reuse the
identifier later for a newly created object, such dangling refer­
ences could be used inadvertently to modify the new object.

The CAL-TSS kernel provides a second level of indirection
in addressing to greatly simplify relocation. Primary memory
addressing of objects occurs through a single system table: the
Master Object Table (MOT). The MOT is a kernel data struc­
ture that contains entries for every object in the system. Each
MOT entry holds the unique object identifier and the primary
memory address of one object's data. CAL-TSS capabilities do
not contain primary memory addresses. Instead, a capability
contains the unique identifier for the object it addresses and an
index into the Master Object Table.

Figure 3-4 illustrates a C-list capability and the Mas­
ter Object Table. The capability addresses a file object, as indi­
cated by the type field shown symbolically as ((File." The
capability's value field contains the index of the MOT entry,
M, which in turn contains the primary memory address of the
file. All capabilities for the same file will contain the same
MOT index. If the supervisor needs to relocate the file's pri­
mary memory segment, only a single MOT entry will have
to be changed.

Both the capability and the MOT entry shown in Figure 3-4
contain the file object's unique identifier, IDx. The supervisor
verifies that the identifiers in the capability and the MOT entry

G: lOy I U
"File"

I
lOx

lOx ~ M

Master Object
Table

File

Figure 3-4: CAL-TSS Object Addressing

Rights

M

C-/ist

File
capability

are identical for every operation invoked on the capability.
When an object is deleted, the supervisor increments the iden­
tifier field of the object's MOT entry. Any subsequent attempt
to use a capability for the deleted object (a dangling reference)
would fail because the identifiers would not match.

Note that the C-list in Figure 3-4 is also a supervisor object
and is addressed by the MOT entry at index G. The unique
identifier for the C-list is IDy, an identifier that would be
stored in any capabilities addressing the C-list.

The CAL-TSS system supports two object types that allow
users to extend the small set of supervisor-implemented ob­
jects. A capability-creating authorization is an object permitting
its possessor to create private capabilities for a private user­
defined subsystem. Each user subsystem implements a single
new type. To use this facility, a subsystem executes a supervi­
sor meta-instruction to receive a capability for a capability­
creating authorization object. The authorization object con­
tains a new system-wide, unique type field. The subsystem can
then present this capability to the supervisor, along with a 60-
bit value, and obtain a new capability containing the subsys­
tem's type and the specified value. The value inserted in the

3.5 The CAL-TSS
System

55

Early Capability
Architectures

56

capability corresponds to the transmitted word field that a sub­
system can insert into capabilities on the MIT PDP-1 supervi­
sor; it uniquely identifies an object implemented by the sub­
system.

Such private capabilities receive the same protection as sys­
tem capabilities, and can only be stored in C-lists and manipu­
lated by kernel meta-instructions. Thus, a private capability
can be passed to another domain to indicate ownership and
rights to an object protected by the subsystem. For example, a
user could implement a protected mail subsystem with the op­
erations CREATE MAILBOX, DESTROY MAILBOX,
READ MAIL, and WRITE MAIL. The subsystem would
first obtain a capability-creating authorization containing a
unique type field. Another domain calling the create mailbox
operation would receive a capability containing the mailbox
subsystem's type field and a unique value field to identify the
newly created mailbox. The possessor of the capability could
later present it to the mail system in order to read, write, or
delete that mailbox, but could not modify the capability or
directly access the mailbox representation. In this way, users
can build subsystems that extend facilities provided by the
base operating system.

A CAL-TSS operation is a supervisor-implemented object
that allows the possessor to request a kernel or private meta­
instruction; that is, to invoke a service. The operation object' is
a list describing the service to be performed, followed by speci­
fication of how the parameters are to be obtained. If the opera­
tion is for a private domain, that domain must be named along
with an indication of the service requested. The parameter list
specifies whether each parameter is: (1) data in the caller's
memory, (2) a capability in the caller~s C-list, (3) immediate
data in the operation list itself, or (4) a fixed capability stored
in the operation list.

The ability to contain immediate capabilities in the parame­
ter list of an operation object is a powerful feature. It allows the
called domain to receive a capability not available to the caller
and thus is similar to the Chicago machine linkage segment.
However, because the designers did not realize this advantage
of operation objects until sometime after the system was con­
structed, the feature was never used.

When the CAL-TSS project was finally terminated in 1971,
it had become clear that the system would never live up to
expectations for either performance or functionality. There
were many reasons for this, some being crucial design flaws.

One of the major design difficulties was the hardware base: a 3.6 Discussion

CDC 6400 with 32K 60-bit words of primary memory and
300K words of extended core storage (ECS). ECS is a memory
device used as high-speed secondary storage. It is not used for
execution, but data can be block-transferred between ECS and
main storage at rates of several megawords per second. Man-
agement of ECS was one of the principal design problems.
Equally troublesome was the 6400 memory management sup-
port, consisting of only a single base and limit register pair.
Nevertheless, much was learned from the CAL-TSS project
about the design choices available to capability system
implementors.

3.6 Discussion

This chapter has examined early attempts to define and
implement capability-based hardware and software systems.
All of the systems described were designed in the late 1960s.
These systems show one obvious relationship to the machines
examined in the previous chapter: capabilities are descriptors
used to address memory segments and other system objects. In
a sense, the difference is merely one of terminology. The con­
cept of capabilities and the C-list, as Dennis and Van Horn
state, follows from the BSOOO's descriptors and Program Refer­
ence Table. However, there are some significant conceptual
differences in the general way capability addressing is applied,
in the lifetimes of capabilities and the objects addressed, and in
the protected procedure mechanism that allows users to extend
the functions of the operating system supervisor.

Capabilities are protected addresses; that is, a process can
create new capabilities in its C-list only by calling a supervisor
meta-instruction. Once a process receives a capability, it can­
not directly modify the bits in the capability. The capabilities
accessible to a process at any time define its sphere of protec­
tion or domain. All of the addresses (that is, capabilities) which
a process can specify must either be contained in its domain at
the time the process is created or be obtained through interac­
tion with the kernel or other domains.

Because capabilities must be protected from user modifica­
tion, these systems chose to isolate them within C-lists. C-lists
are implemented as one or more segments that user processes
cannot directly write with data instructions. Capabilities can­
not be embedded in user data. This requirement is somewhat 57

Early Capability
Architectures

58

restrictive because complex data structures that include point­
ers cannot always be naturally represented. The problem often
can be circumvented by storing a C-list index in the data rather
than the capability itself. However, storing a C-list index in
place of a capability makes sharing data structures difficult if
the processes do not share the same C-list. Another problem
caused by the segregation of capabilities and data is the need
for separate stacks and registers. Machines that support capa­
bilities must have both data and capability stacks and data and
capability registers. An alternative would be to support tag­
ging, as in the BLM.

While the Dennis and Van Horn supervisor allows each
process to have only one C-list, users of the Chicago Magic
Number Machine and the CAL-TSS can store capabilities in
multiple capability segments, chaining them together as de­
sired to form complex tree or graph structures. The ability to
construct additional C-lists allows fine-grained sharing of capa­
bilities. Small C-lists can be created for sharing small collec­
tions of objects. The C-list addressing mechanism has a signifi­
cant affect on the sharing of capabilities and the protection of
objects. For example, if a procedure addresses its objects by
C-list index, the procedure cannot be shared unless the sharing
processes store the procedure's objects in the same locations in
their respective C-lists. However, if a procedure executes with
its own C-list, in which it places capabilities passed as parame­
ters by its callers, this problem does not arise.

To compensate for the single C-list, Dennis and Van Horn
allow capability directories for storage of capabilities and asso­
ciated text names. The capability directory concept is a power­
ful extension of the directories provided by most operating
systems. Even on most contemporary computers, directories
can only be used to name files. In contrast, a capability direc­
tory allows the user to name and store many different object
types. Directories can be shared between domains, and the
Dennis and Van Horn system allows any user to obtain a capa­
bility for another user's root directory. A user can protect di­
rectory entries from external examination by setting a private
bit associated with each entry. However, this mechanism in
itself is insufficient for selective sharing among several users,
because it is impossible to grant privileges to one user that are
denied to another.

An additional method for exchanging capabilities between
domains is the mail facility of the Chicago machine. Each do­
main has a local mailbox consisting of a capability and data

segment pair used to receive capabilities andl symbolic capabil- 3.6 Discussion

ity names. Mailing a capability is equivalent to transferring a
single directory entry between domains. It is unclear whether
any additional information is placed in the mailbox, but some
authentication information for the sender, either with the mes-
sage or added by the mail system, probably should be re-
quired.

All of the systems examined support subordinate process~s
and process tree structures. A superior process is given com­
plete control of an inferior that it creates. The superior defines
the domain of the inferior by granting capabilities. It has the
power to start, stop, modify the state of, generate simulated
interrupts to, and service faults for the inferior. Mechanisms
such as this allow users to build and test complex subsystems
and to debug inferior processes. It may also be possible to
simulate the kernel or hardware environment and, depending
on the completeness of the mechanism, to debug kernel proce­
dures.

Protected procedure mechanisms are available on all of
these early systems. Dennis and Van Horn provide protected
procedures through entry capabilities. The creator of the pro­
tected procedure obtains an entry and makes it public for users
of the service. The protected procedure executes in a separate
process in its creator's domain and receives a single capability
parameter from its caller. The caller and callee are isolated
from each other. In the CAL-TSS system, protected proce­
dures also execu.te in a separate domain, with an operation
object serving as the entry. The operation object specifies some
number of data and/or capability parameters and methods to
obtain them. The Chicago machine sacrifices two-way isolation
for the improved performance of a one-way mechanism. A pro­
tected procedure on the Chicago machine executes in the do­
main of its caller and has access to its caller's objects. The
protected procedure also has access to private capabilities con­
tained in its linkage segment. Parameters are passed on the
stack or in registers.

In addition to protected procedures, the MIT PDP-l and
CAL-TSS systems allow user processes to manufacture private
capabilities. This type-extension mechanism allows user pro­
grams to extend kernel facilities in a uniform manner by creat­
ing new object types. User-created operations are invoked in
the same way that supervisor meta-instructions are invoked.

The CAL-TSS capability-creating authorization and the
MIT PDP-l transmitted word facilities are sealing mecha- 59

Early Capability
Architectu res

60

nisms. A value is sealed in the capability that is not directly
usable by the possessor of that capability. When passed back to
the implementing subsystem, the subsystem-using a special
capability it maintains-can unseal the value to determine
which object the capability addresses. Sealing mechanisms are
also provided by the Chicago machine's linkage segments and
by CAL-TSS operations. In these systems, capabilities are
sealed inside of special linkage segments. An entry capability
for the linkage segment only allows its possessor to call proce­
dures through specific entries in the segment. As a result of the
CALL or ENTER instruction, the linkage segment is unsealed
and its capabilities made available to the called procedure.

Perhaps the most important generalization of addressing
provided by capabilities is support for long-lived objects. Ca­
pabilities allow uniform addressing of both short-term and
long-term objects. Traditional computer systems require dif­
ferent addressing mechanisms for primary memory, secondary
memory files, and supervisor-implemented objects. A capabil­
ity can be used to address abstract objects of any type and any
lifetime, implemented by either hardware or software. This
advantage of capability systems raises a number of issues: how
large must capabilities be to address the longer lifetime of ob­
jects, how can capabilities and objects be saved on secondary
storage, what happens if capabilities or objects are deleted,
how does the system know when an object can be deleted, and
so on?

The Dennis and Van Horn supervisor allows objects to live
an arbitrary length of time. An object exists until it is explicitly
deleted or until all capabilities pointing to the object are re­
moved. Thus, all objects are potentially long-lived, and the
system must be capable of determining when the last capability
for an object is deleted, or secondary storage will eventually
become filled with garbage objects. Directories are used to
keep track of long-term objects and their capabilities and 'to
allow user reference to these objects by symbolic names. In the
Chicago Magic Number Machine, snapshots are made of ob­
jects to force them to secondary storage. The objects can be
retrieved later, although the issue of storing capabilities was
not addressed by the design. When an object is retrieved from
disk in the Chicago system, it is not retrieved as the same
object but is placed in a new segment for which a new capabil­
ity is generated.

One of the critical shortcomings of the CAL-TSS system
was its failure to provide uniform addressing for permanent
storage. The CAL-TSS system differentiated between user

objects, which could be saved on secondary storage, and kernel 3.6 Discussion

objects, which could not be saved on secondary storage. More-
over, because user objects were stored merely as byte streams,
the CAL-TSS system could not save C-lists on disk while
maintaining protection syst.em integrity. The decision to sup-
port different object lifetimes, based on the belief that kernel
objects were short-lived and would not require permanent s1'or-
age, led to many quirks in the operating system.

Finally, one of the most important features in these systems
was the physical implementation of addressing. Like earlier
descriptor systems, the Chicago Magic Number Machine
maintained hardware location information in the capability it­
self. This led to the relocation problems of descriptor systems;
that is, relocation of a segment required a search for all capabil­
ities addressing that segment. CAL-TSS took an important
step by separating the capability from the addressing informa­
tion, as recommended by Dennis and Van Horn. The physical
relocation information is held in a central Master Object Table,
and the capability contains a MOT index and a unique object
identifier. Thus, relocation does not require a search for an
object's capabilities. Deletion of an object also requires no
search, because an attempt to use the capability for a deleted
object will fail when the kernel checks the unique identifier in
the MOT entry.

The Dennis and Van Horn supervisor defined the formal
concepts of capability addressing. The MIT PDP-I system,
the Chicago Magic Number Machine, and the CAL-TSS sys­
tem were the first trial implementations. The MIT timesharing
system was in operation for several years, providing service to a
small number of users, although capabilities were not a central
part of the system's design. The Chicago and CAL-TSS sys­
tems were much more ambitious in terms of design., implemen­
tation, and goals. Perhaps the problem with these systems was
the expectation that they would provide service to a large user
community. In this sense, both systems failed, because neither
was completed. However, when viewed as research projects,
these early systems explored the crucial design issues and dem­
onstrated both the advantages and difficulties of using an im­
portant new addressing technique.

3.7 For Further Reading

Dennis and Van Horn's publication paved the way for re­
search in capability- and object-based systems [Dennis 66]. It
provided the step from descriptors to more generalized ad- 61

Early Capability
Architectures

62

dressing. It is difficult to tell how radical the fundamental con­
cepts were when compared to systems like the Basic Language
Machine, which was never completely described in the litera­
ture. Is it just a matter of terminology? This issue is discussed
in Iliffe's letter to the Surveyors' Forum in the September 1977
issue of ACM Computing Surveys (Volume 9, Number 3) and
in Dennis' response.

The Chicago and CAL-TSS efforts, while not resulting in
finished products, did provide much insight about the design
of capability systems. Fabry's paper [Fabry 74], based on his
thesis [Fabry 68], is a detailed discussion of the advantages of
capability addressing over traditional segmented addressing
of primary memory. The paper by Lampson and Sturgis
[Lampson 76], in addition to its technical description of CAL­
TSS, provides an excellent discussion of the pitfalls of ambi­
tious research projects.

The Plessey 250 computer. (Courtesy Plessey Telecommunications Ltd.)

-The P/essey System 250

4. 1 Introduction

The second attempt to build a capability-based hardware
addressing system was made by the Plessey Corporation in the
United Kingdom. Plessey's System 250 [England 72a, England
74], examined in this chapter, was not only the first operational
capability hardware system but also the first capability system
sold commercially.

Initially the Plessey 250 was not designed as a capability
system. Maurice Wilkes of the University of Cambridge had
learned about capabilities during several visits to the Univer­
~ity of Chicago and had included a capability description in his
book on timesharing systems [Wilkes 68]. Wilkes sent a draft
of his book to Phessey's Jack Cotton who incorporated capabil­
ity concepts into the System 250. Because of the strong resem­
blance between the System 250 and the Chicago effort, Bob
Fabry (who had worked on the Chicago Magic Number Ma­
chine) later acted as a consultant for Plessey.

Unlike the systems examined thus far, the Plessey 250 was
not intended to be a general-purpose timeshared computer.
Instead, it was designed as a highly reliable, real-time control­
ler for a new generation of computerized telephone switching
systems [Cosserat 72, Halton 72]. The reliability goal was very
stringent: mean time between failures of 50 years [Hamer­
Hodges 72]. Meeting this goal required that the system be eas­
ily configured, tested, and modified while operating in the
field. Service improvements or performance upgrades would
have to be performed while the system was operational. Such

4

65

The Plessey System
250

66

needs led to a multiprocessing design that allowed connection
of many processors and memories, as well as traditional and
specialized 110 devices.

Although capabilities were used primarily for memory ad­
dressing and protection in the Plessey 250, the designers
viewed the capability mechanism as a means of restricting the
effects of faulty hardware and software components. Fault iso­
lation was a major concern in a multiprocessing environment
where several processors had access to a shared memory. One
faulty processor could potentially damage another processor's
computation. Capability addressing facilitated sharing among
processors, while also restricting each processor's domain to
the segments for which it possessed capabilities. The Plessey
250's designers also found that capabilities were useful in
structuring the operating system [England 72b, Cosserat 74].
Layering and data abstraction were important aspects of the
Plessey operating system design.

4.2 System Overview

The multiprocessing architecture of the Plessey 250 allows
connection of up to eight processors with up to eight storage
modules through separate per-processor data paths. Each stor­
age module consists of up to 64K 24-bit words. Multiprocess­
ing is symmetric, and any processor can perform any function
if another processing component fails. Peripherals are con­
nected and controlled through interfaces that allow the ad­
dressing of devices as memory. That is, device registers can be
read and written by standard LOAD and STORE instructions, and
no special 110 instructions are needed.

The Plessey 250's hardware and operating system support a
segmented memory space. A segment can contain capabilities
or data, but not both. The system has a general register archi­
tecture with eight 24-bit data registers (DO-D7) and eight 48-
bit capability registers (CO-C7). To access data in a memory
segment, a program must load one of the capability registers
with a capability for that segment. Programs can freely copy
capabilities between capability segments and capability regis­
terS using standard hardware instructions.

4.3 Capability Addressing

A Plessey 250 capability permits its possessor to access an
object in the system, where an object is a logical or physical
resource. The most basic object is a memory segment, and

hardware instructions can operate directly on segments
through segment capabilities. Capabilities can be stored in ca­
pability segments or capability registers, as noted above. For
each program, one of its capability registers (C6 by convention)
points to a Central Capability Block for the program. The Cen­
tral Capability Block is a capability segment that is the root of a
network of program-accessible segments. The closure of this
network completely defines the program's execution domain.

A capability in the Plessey 250 has two formats, depending
on whether it is stored in a capability segment or a capability
register, as shown in Figure 4-1. When stored in a 48-bit capa­
bility register, a capability contains three fields:

• A base address, which contains the primary memory location
of the segment. (The high-order bits specify the storage mod­
ule or interface, and the low order bits specify the storage
element within the module or interface.)

• A limit, indicating the size of the segment.
• An access rights field, specifying the type of operations per­

mitted on the segment by the owner of the capability. (The
six unary-encoded access rights are: execute, write data, read
data, enter capability, write capability, read capability.)

This 48-bit capability format, which includes a memory ad­
dress and limit, is used only when capabilities are loaded into
capability registers. When stored in a capability segment, a
capability is 24 bits and contains only the access rights field
and an index into a central system data structure, the System
Capability Table (SCT). Each processor has an internal register
that contains the address of the SCT. The SCT, which corre­
sponds to the CAL-TSS Master Object Table, holds the base
and limit information for all memory segments. In this way,

8 16

~_ii9_h_ts_ _. ______ S_C_T_in_d_ex _______ 1 Capability

Rights

Base address ~ ~ ____ +-____________ Cap,ability
Limit register

Figure 4-1: Plessey System 250 Capability F"ormats

4.3 Capability
Addressing

67

The Plessey System
250

68

physical addressing information is centralized and relocation of
segments is simplified. There is one SeT entry for each object
in the system. Because access rights for an object are stored in
the capabilities, different processes can possess capabilities
permitting different access rights to the same segment.

A program executes a LOAD CAPABILITY instruction to trans­
fer a capability from a capability segment: to a capability regis­
ter. Figure 4-2 shows how the capability register is formed.
The hardware first examines the SeT index in the specified
capability in memory. This index selects the SeT entry for the
segment, which is three words in size and contains a 24-bit
checksum and some special flag bits in addition to the base and
length fields. The 48-bit capability register is then constructed
from the rights field in the capability and the base and limit
information found in the selected SeT entry. The capability
segment from which the capability is loaded must itself be ad­
dressed by a capability register, as shown in the top left portion
of Figure 4-2.

When a program loads a capability register, the SeT index
from the loaded capability is saved in a process-local data struc­
ture called the Process Dump Stack. The dump stack is a two­
part process data structure containing fixed space for copies of
data and capability registers, and a stack used to save informa­
tion on procedure invocations. When a program executes a
STORE CAPABILITY instruction to move a capability from a regis­
ter to a capability segment, the saved SeT index is used, along
with the rights field in the register, to construct the capability

I Capability I
register I

Rights I SCT index

Process Capability
Segment

Figure 4-2: Plessey System 250 Capability Loading

Processor
SCT register

Checksum

Base address

I Length

System Capability
Table

in memory. The Process Dump Stack is thus used to hold the
SCT index for each capability stored in the eight capability
registers.

Because the SCT is shared by all of the processors, the relo­
cation of a segment or the modification of any SCT entry must
be synchronized. If several processors try simultaneously to
modify a single SCT entry, the entry could be placed in an
inconsistent state. In order to prevent this, the Plessey 250 has
a facility to trap programs accessing a particular entry. Thus, a
processor updating an SCT entry can prohibit other processors
from using the entry until the modification is complete.

4.4 Capability Register Usage

Of the eight general-purpose capability registers, several
have reserved uses. The first five capability registers, CO-C4,
can be freely used by the program to address any memory
segments to which the program has access. Register C5 points
to a data structure used to store dynamically allocated elements
associated with the current process execution. C6, as has been
mentioned, contains a pointer to the process's Central Capabil­
ity Block. This block defines all of the instruction, data, and
capability segments associated with the current process. Regis­
ter C7 contains a capability for the currently executing code
segment.

In addition to the eight program-accessible capability regis­
ters, each processor has five special-purpose capability regis­
ters. These registers hold capabilities that address the follow­
ing segments:

• The Process Dump Stack that contains backup register val­
ues.

• The System Capability Table that contains base/limit values
for all storage segments in memory.

• The Start-up Block used for restarting the system after fail­
lues.

• The System Interrupt Word that indicates what devices need
attention.

• The Normal Interrupt Block that contains device interrupt
information.

4.5 Inform and Outform Capabilities

The Plessey 250 operating system provides a virtual seg­
ment interface to programs; that is, a program can address its
segments independent of whether they are located in primary

4.5 Inform and
Outform Capabilities

69

The Plessey System
250

70

or secondary memory. Secondary storage is totally transparent
to the program. The operating system determines which seg­
ments are held in primary memory and which are held on disk
storage. When a program attempts to access a segment that is
not in primary memory, a trap occurs and the operating system
then loads the segment from disk.

Each segment has an associated disk address that is assigned
when the segment is created. A segment's disk address is used
as its unique identifier, because two segments cannot have the
same disk address. When a program creates a new segment,
the operating system assigns the secondary storage address for
the segment, allocates an SCT entry for the segment, and re­
turns a capability for the segment to the program. The operat­
ing system initializes the SCT entry to indicate that no primary
memory has been allocated. When the program first attempts
to reference the segment, a trap occurs and the operating sys­
tem allocates primary memory and stores the memory address
in the SCT en try.

Because all segments on the Plessey 250 are potentially
long-lived, the SCT could grow to enormous size if it had to
address every segment in existence. To constrain the size of the
SCT and maintain high memory utilization, the Plessey operat­
ing system allows SCT entries to be reallocated. At different
points in its lifetime, an object may be addressed by different
SCT entries. If a segment has not been referenced for a long
period of time, the segment can be moved to secondary mem­
ory (an operation known as passivation), and its SCT entry can
be used to address a newly created segment. Later, if the passi­
vated segment is needed, it can be returned to primary mem­
ory and an SCT entry (most likely a different one) is allocated.

Reallocation of SCT entries is complicated by the fact that
capabilities in memory contain SCT indices. If a segment's
SCT entry is reallocated while capabilities for that segment are
still in use, those capabilities would erroneously address a
different segment. Thus, an object's SCT entry cannot be
changed as long as capabilities that address the object are in
memory.

To allow SCT entries to be reallocated, the Plessey operat­
ing system uses a different format for capabilities that are
stored on disk. Capabilities in primary memory are known as
inform or active capabilities; these capabilities contain an SCT
index. Capabilities in secondary memory are known as outform
or passive capabilities; each of these capabilities contains a
unique identifier, which is the object's disk address. When a

capability segment is moved from primary to secondary mem­
ory (or the reverse), the operating system changes the form of
all the capabilities in that segment.

By changing capabilities from inform to outform, the oper­
ating system reduces the number of active references to the
SeT. When a segment is passivated, its SeT entry is retained
as long as active capabilities exist for that segment. If a seg­
ment stays passive for a long time, it is likely that the capabili­
ties for that segment will eventually be passivated also, allow­
ing the SeT entry to be reused. A special operating system
process, called the garbage collector, periodically searches the
capabilities in primary and secondary memory. The garbage
collection process will cause an SeT entry to be deallocated if
no active capabilities exist for that entry or will cause an object
to be deleted if no capabilities exist at all for that object.

4.6 Instructions and Addressing

A Plessey 250 instruction occupies a 24-bit word and is rep­
resented in one of two formats, as shown in Figure 4-3. The
first bit of the instruction selects the instruction mode. Store
mode instructions are used to access storage locations. The in­
struction specifies a capability register addressing the segment,
a 9-bit offset into the segment, and an optional index register

5 3 3 3 9

1
0

I
F I 0 M I c A 3 Store Mode

1 5 3 3 12

IT F I 0 M L I Direct Mode

F Function (opl3ration code).

D Data register.

M Data register to be used as address modifier (index).

C Capability register.

A Address offset.

L Signed literal (if L = 0 then M defines the second register of a
two-register instruction).

Figure 4-3: System 250 Instruction Formats

4.6 Instructions and
Addressing

71

The Plessey System
250

72

modifier. The primary memory address for the operation is
calculated by adding the base address contained in the capabil­
ity register to the sum of the 9-bit literal and the index register
contents. This address is validated using the limit field in the
capability; the type of access requested is verified against the
capability access rights field. Direct mode instructions do not
require memory access and are used for loading a 12-bit literal
or for register-to-register operations.

4.7 Protected Procedure Calls

The Plessey 250 System, unlike most traditional computers,
has no privileged mode of operation. The operating system
relies only on the protected procedure mechanism for its pro­
tection. This mechanism is available to any process and allows
a process to add to the facilities supplied by the standard oper­
ating system.

A protected subsystem is built by creating a Central Capa­
bility Block in which the subsystem will execute. The Central
Capability Block serves the same function for the subsystem as
for any process: it contains capabilities for code, data, and ca­
pability segments available to the executing process. Some of
the capabilities in the Central Capability Block are execute ca­
pabilities for the procedures that implement subsystem serv­
ices. To make these procedures accessible, the subsystem
passes an enter capability for its Central Capability Block to
appropriate users. The possessors of the enter capability can
call any of the procedures defined by execute capabilities in the
block, but cannot access capabilities in the block.

To call a protected procedure, a process executes a CALL

instruction, specifying an enter capability for a Central Capa­
bility Block and an offset in that block. The offset must locate
an execute capability for a procedure to be called. The CALL

instruction saves the instruction pointer and registers C6 and
C7 (defining the Central Capability Block and Current Code
Block) on the Process Dump Stack. Register C6 is then loaded
with a capability for the Central Capability Block specified in
the call; the C6 capability is given read access, permitting the
called procedure access to any of the objects addressed by the
central block. Register C7 is loaded with the capability for
the instruction segment containing the procedure specified in
the call.

Thus, the called procedure executes in its own domain as
defined by its Central Capability Block. It is protected from

the caller, and the caller is protected from the procedure. A
RETURN instruction restores the process to the previous domain
by restoring the state of C6, C7, and the program counter from
the stack.

4.8 Operating System Resource Management

The Plessey 250 operating system is constructed as a set of
protected subsystems that manage various types of resources. A
segment is one type of resource that users can create and ma­
nipulate through capabilities. Other logical resources, such as
files and interprocess communication ports, are also accessed
by capabilities. Unlike segment capabilities, which are oper­
ated on by hardware instructions, logical resource capabilities
are enter capabilities that allow the user to request services for
the resource.

The resources supported by the Plessey 250 operating sys­
tem are:

• storage segment
• process
• user
• job
• text file
• symbol directory
• data stream
• synchronizing flag

The last resource type listed, the synchronizing flag, is used
both for interprocess communication and for synchronization.
Processes that share capabilities for a flag can send messages to
the flag or wait for message reception. At any point, a flag can
have either a message queue or a queue of processes waiting for
new messages. Processes can also wait on multiple flags for one
of several events to be posted.

Users gain access to operating system services through a
Central Facilities Block that contains enter capabilities for sys­
tem resource allocation routines. Using these routines the
caller can create any of the supported system resources. The
creation routine returns an entry capability for the resource
that can be used to manipulate it.

The actual representation of a resource is defined by the
Central Capability Block pointed to by the enter capability re­
turned to the user. The Central Capability Block contains exe­
cute capabilities for procedures that manipulate the resource.

4.8 Operating System
Resource Management

73

The Plessey System
250

74

I Enter capability I .. Execute capability ~-I Open procedure I
Execute capability I Read procedure I
.Execute capability

RIW data capability ~-I Data block I
RIW data capability

Central Capability
Block for Resource

I

Figure 4-4: Protected Procedure Resource Subsystem

Data block I

It also holds capabilities for segments that contain data struc­
tures describing the state of the resource. For example, Figure
4 -4 shows a Central Capability Block created for a single file
object. The Central Capability Block contains capabilities for
file procedures and capabilities for file data segments. Note
that a separate Central Capability Block will exist for each re­
source (e.g., file) in the system; however, all resources of the
same type will share the same code segments.

4.9 Input and Output

The use of capabilities in the Plessey 250 I/O system is simi­
lar to capability usage in storage accesses. Input/output de­
vices are controlled by special device registers that exist in the
physical address space. To access device registers, a process
must have a capability for that memory space. For each device,
one device driver process possesses capabilities for the device
registers. This process can execute on any processor and still
perform its I/O functions.

Any processor must be able to handle device initiation and
completion. Because of this requirement, standard interrupts
are abandoned in favor of a polling scheme using shared mem­
ory. Approximately every 100 microseconds, each processor
examines certain I/O status words that are addressed through
two of the five special capability registers (the System Inter­
rupt Word and Normal Interrupt Block). The contents of these
locations indicate whether or not any action needs to be taken
and on behalf of what device. Other processors must be locked
while the examination is made.

4.10 Discussilon

Several facts make the Plessey System 250 an important
computer system:

1. It is the first functioning computer to use capability address­
ing.

2. It is the first capability-based computer produced by a com­
mercial manufacturer.

3. It is designed to meet critical real-time performance and reli­
ability needs.

4. It applies capabilities to a multiprocessor environment.

The Plessey 250 is similar to both the Chicago Magic Number
Machine and the CAL-TSS system. The use of capability reg­
isters as user-Ioadable segment/base registers is borrowed from
the Chicago project, while its addressing resembles the CAL­
TSS mechanism. When combined, these features result in a
capability design with the following attributes:

1. When stored in user segments, capabilities do not contain
physical addresses, but instead contain an index into a cen­
tral mapping table.

2. Capabilities can be stored on disk and are converted to a
different form when copied to disk.

3. A segment is represented by a unique identifier, which al­
lows conversion between inform and outform capabilities.

Because capabilities in primary memory do not contain
physical mapping information, they are small and can be com­
pactly stored. Only when a capability is loaded into a register
is it expanded to full 48-bit form. The disk address and disk
number for a segment provide a unique name for the segment.
Capabilities stored on disk contain a unique name, while capa­
bilities stored in primary memory contain a table index.
Plessey addressing differs from the CAL-TSS scheme, in
which both the capability and the Master Object Table entries
contain a segment's unique identifier.

Primary memory addresses are only stored in the SCT and
in the capability registers of executing processes. When an exe­
cuting process is pre-empted, its capability registers are not
saved. The Process Dump Stack contains the SCT index and
access rights for each capability register, from which the regis­
ter can be regenerated when the process is activated. There­
fore, to relocate a memory segment, the operating system need
only search the System Capability Table and the current proc­
ess capability registers for any active segment addresses.

4.10 Discussion

75

The Plessey System
250

76

The decision to handle virtual segments and provide a
mechanism for storing capabilities on disk greatly simplified
the design task and avoided many problems encountered in the
CAL-TSS system. The system does not need special naming
mechanisms for short-term objects that have second-rate sta­
tus. All objects are potentially long-lived. Allowing long-lived
objects makes garbage collection a necessity, and the Plessey
system has a background process responsible for de allocating
storage for segments with no remaining capabilities to address
them.

The Plessey 250 uses capabilities to simplify multiprocess­
ing. All processors in the system share a single primary mem­
ory space. A single table shared by all processors, the System
Capability Table, contains primary memory addresses for all
segments. Because a process's address space is defined by capa­
bilities that refer indirectly to this table, a process can address
its segments from any processor. No special action is required
on the part of a processor to initialize a process's memory envi­
ronment.

Capabilities also aid software error detection. Each process
possesses capabilities for only those segments absolutely
needed for its function. A process cannot address data outside
of its domain; therefore, any errors are limited to that domain.
Errors are frequently caught by the addressing mechanism,
either as illegal accesses or segment length violations.

A new concern created by capability addressing is the main­
tenance of capability integrity. On a standard virtual memory
system, for example, a I-bit error in the transmission of a
process virtual address is not likely to affect data outside the
scope of the process. An error in the transmission of a capabil­
ity, however, can affect any process in the system. Thus, all
hardware involved in holding or transferring capabilities must
be error-checked carefully.

The Plessey System 250 combines hardware and software
support to provide a uniform view of system resources. All
resources are addressed by capabilities; hardware executes op­
erations directly on segment resources while software executes
operations on other resources. From a program's point of view,
all resources are addressed and manipulated in the same way.
In the Plessey resource model, each resource in the system is
represented by a Central Capability Block and addressed by an
entry capability. The Central Capability Block defines the data
segments that contain the state of the resource and the proce­
dures that can manipulate the resource. Procedures are shared
among all instances of objects of the same type. The entry

capability to a resource's capability segment permits calling of
the resource manipulation procedures, but prohibits direct
access to the resource data segments.

Because the operating system is implemented as a collection
of resources and protected procedures, it is relatively easy to
extend the operating system in a uniform manner. New pro­
tected procedures can be created and addressed through the
System Capability Table. Such procedures can make new types
of resources available to programs.

As implemented, the Plessey 250 protected procedure call
has one weakness. Although a protected procedure call causes
a domain change, the called procedure still has access to any
capabilities left in registers CO through C4 by the caller. Like­
wise, the capabilities left in these registers by the called proce­
dure when it returns are available to the caller, presenting a
potential security violation. The tradeoff is one of perform­
ance, because the registers are an efficient mechanism for pass­
ing parameters between a calling and called procedure. Proce­
dures concerned with information leakage can explicitly clear
these registers; however, that is an unusual burden to place on
the caller of a procedure.

Finally, the Plessey 250 system integrates capability usage
into the 110 system in a consistent manner. This is possible
because of the memory-like nature of the 110 interface and
because of the requirement for processor-independent 110.
However, since VO devices are forced to be slaves, their power
is limited and additional strain is placed on the processors
using them.

The Plessey System 250 was not meant to be a general­
purpose multi-user computer system but, rather, was intended
for a very specific product area. The targeting of the product to
a limited role probably provided the key to any success the
System 250 has had-its simplicity. The Plessey 250 uses a
small number of simple mechanisms to provide for protection
from and isolation of failure. The Plessey System 250 is still in
use today in military communications systems in the United
Kingdom.

4. 11 For Further Reading

The principal descriptions of the Plessey System 250's hard­
ware and software are provided by [England 72b, England 74]
and [Cosserat 74]. Several papers on Plessey 250 can be found

_in rhe .. Proceedings of the International Conference on Computer
Communications, October 1972, and in The Proceedings of the
International Switching Symposium, June 1972.

4.11 For Further
Reading

77

Tf7e Cambridge CAP Computer

5.1 Introduction

In 1970, Roger Needham and Maurice Wilkes at Cambridge
University began a research project to construct a capability­
based machine. In contrast to the Chicago and Plessey designs,
which included program-load able capability registers, Need­
ham and Wilkes' design made registers invisible to the pro­
grammer. That is, the machine contained a set of internal reg­
isters that the hardware would automatically load when a
program specified a capability. Fortunately, the construction
of this machine was simplified by several events that had oc­
curred in the years since Wilkes' trip to observe the develop­
ment of the Chicago Magic Number machine. First, it was
possible to build reliable hardware from off-the-shelf TTL
components. Second, and more important, it was possible for
the computer to contain a reasonably large micro-control stor­
age. The micro-control storage was used to implement the
implicit loading of capabilities.

The result of the project, the CAP computer, has been oper­
ational at Cambridge since 1976. CAP (not an acronym) is a
fully functional computer with an operating system, file sys­
tem, compilers, and so on. The CAP system is the subject of
many papers and :a book [Wilkes 79], and the design decisions
are the topic of Robin Walker's thesis [Walker 73].

5.2 Hardware Overview

The basic CAP CPU consists of a microprogramming con­
trol unit, 4K 16-bit words of micro-control storage, and an

5

79

The Cambridge CAP
Computer

80

arithmetic unit. The CPU contains a 64-entry capability- unit
that holds evaluated capabilities, that is, capabilities and the
primary memory locations of the segments they address. These
64 capability unit entries are the registers implicitly loaded by
the microprogram. The CAP CPU also contains a 2 x 256-entry
cache and a 32-entry write buffer for performance enhance­
ment. All CAP 110, with the exception of a single control ter­
minal and paper tape, is performed by an associated minicom­
puter.

CAP's memory is organized into segments up to 64K 32-bit
words in size. A segment can contain data or capabilities, but
not both. Although a process can address up to 4096 segments,
an executing procedure can access a maximum of 16 capability
segments at any time. A protected procedure mechanism al­
lows different procedures to access different capability seg­
ments. The CAP system provides 16 general-purpose 32-bit
registers, BO through B15, for arithmetic and addressing; these
registers cannot be used to hold capabilities. Register B15 con­
tains the current instruction address; BO is a read-only register
that always contains zero. A single accumulator, capable of
holding an 8-bit exponent and 64-bit mantissa, is available for
floating point computation. In general, arithmetic functions
operate on 32-bit integer or floating point values.

CAP's instruction set includes over 200 instructions. Both
binary and floating point arithmetic are supported, as well as a
variety of logical and control instructions, and a small set of
capability manipulation instructions.

5.3 CAP Process Structure

A process is the basic execution and protection entity in the
CAP system. A process is defined by a set of data structures
that describe a collection of accessible segments and other re­
sources. CAP objects are addressed through capabilities con­
tained within a process's capability segments. Each executing
procedure in the CAP system operates within the context of a
process.

Like previous capability-based designs, the CAP system
provides a process tree structure, as shown in Figure 5-1. The
process structure is supported by an instruction that creates
subprocesses and an instruction that requests service from a
parent process. At the root of the tree is a process called the
Master Coordinator. The Master Coordinator controls all sys­
tem hardware resources, which it allocates among level-2 user

Level 1

Level 2

Level 3

Figure 5-1: CAP Process Hierarchy

processes. Each level-2 user process can, in turn, create further
subprocesses, actiing as a coordinator for them.

CAP's designers chose to use the process tree mechanism to
eliminate the need for a privileged mode of operation. Each
CAP process can control the addressing environment and exe­
cution of its subprocesses without special privilege or operating
system intervention. The desire to provide a very general proc­
ess tree structure led to a design that closely linked addressing
to process structure. This facility was probably overempha­
sized in the design and only two levels are actually used: the
Master Coordinator at level" 1 and the user processes at level 2.

5.4 CAP Addressing Overview

A high-level view of CAP addressing is useful before delving
into the detailed mechanism. As mentioned, addressing and
process structure are intimately related on the CAP system.
Figure 5-2 shows the addressing relationship between a process
and its subprocess. Two objects of interest are pictured for
each process: a capability segment and a data structure called
the Process Resource List (PRL).

On CAP, a pro(:ess must possess a capability for any object
to be accessed. Capabilities are stored in capability segments.
In contrast to the Plessey and CAL-TSS designs, in which
capabilities refer to entries in a system-wide table, capabilities

5.4 CAP Addressing
Overview

81

The Cambridge CAP
Computer

82

PRL entry

L>
Level N

Process Resource List

- PRL entry

Level N+ 1
Process Resource List

Figure 5-2: CAP Process Addressing

Capability ..--

Capability

Level N
Capability Segment

J Capability I
Level N+ 1

Capability Segment

on CAP refer to entries in a process-local table, the Process
Resource List. The Process Resource List differs from previ­
ous schemes in another important way. PRL entries do not
contain primary memory addresses, but instead refer to capa­
bilities in capability segments of the parent process. This upward
indirection is shown in Figure 5-2 by the arrow leading from
the level N + 1 PRL entry to the level N capability segment.
Indirection continues from there to the level N Process Re­
source List, and so on, until the Master Coordinator is reached
at the top of the tree. The Master Coordinator's Process Re­
source List contains the primary memory address for each seg­
ment.

The following sections describe this addressing structure in
more detail, but the reason for the extra indirection is worth
noting here: it provides a process with the freedom to control
its subprocesses. In the CAP system, a process can directly
write the PRL and capability segments of its subprocesses. In
this way, a process can dynamically control the addressing en­
vironment of its inferiors without operating system interven-

5.5 Capabilities and
tion. Permitting a process data access to its subprocesses' capa- Virtual Addresses

bility segments does not violate the protection system because
of the indirection in addressing. Ultimately, all capabilities and
PRL entries in a subprocess must refer to valid capabilities
held by its parent process. Therefore, althol;1gh a parent proc-
ess can create capabilities for its offspring, these capabilities
can only address objects that are accessible to the parent.

5.5 Capabilities and Virtual Addresses

Within a CAP process, an executing procedure addresses
segments through capabilities stored in its capability segments.
Capabilities can be specified by CAP instructions and manipu­
lated in controlled ways by user programs. Figure 5-3 shows
the CAP capability format. As described above, each capability
refers to one entry in the Process Resource List. Each capabil­
ity also contains a type field in the two high-order bits that
differentiates segment capabilities, enter capabilities, and so
on. The bits marked Wand U are set by hardware to indicate
that a segment has been written or accessed, respectively.

The encoding of the access field is shown also in Figure 5-3.
CAP permits read and/or write access to a capability segment,
or read, write, altld/or execute access to a data segment. Write
capability access permits a process to execute instructions to
move capabilities to a segment; it does not allow data opera­
tions on the segment. The base, size, and access fields in a
capability can be lJ.sed to refine access to a segment defined by a
PRL entry. For example, a program can create a new capabil­
ity with read-only access to a segment for which the PRL per­
mits read/write access. Or, using base and size, a capability can
be refined to address only a contiguous subset of a segment.
The REFINE instruction performs these operations.

PRL index Base

I Capability
Type wul Access Size

31 29 23 21 15 0

f
--A

\

[WC I RC R I w I E I Capability
Access Rights

21 20 19 18 17 16

Figure 5-3: CAP Capability and Access Rights Formats 83

The Cambridge CAP
Computer

B4

To reference a word in memory, the CAP programmer must
specify a capability for a segment and the offset of the word
within that segment. The capability is specified by an index
in one of the 16 capability segments. A complete CAP virtual
address, then, consists of three parts: a capability segment
number, a capability index, and an offset into the selected seg­
ment.

Figure 5-4 shows the format of a CAP virtual address when
stored in memory or a general register. The upper 16 bits of
the address are known as the segment specifier because they
select a capability for the addressed segment. The segment
specifier consists of two values: I, the number of one of the 16
capability segments, and F, the index of a capability within
that segment. The capability selected in Figure 5-4 contains
the index of PRL entry M, which points to a data segment
(although the addressing is indirect). The value K in the virtual
address is the offset of the target word in this data segment.

Note that each capability segment can hold a maximum of
256 capabilities because the capability index field in Figure 5-4

31

I:

M:

28 23 16 15 o
Virtual Address

Capability index within capability segment

Capability segment number

J:§
H Capability Segment I

KO Process PRL

Data Segment

Figure 5-4: CAP Virtual Address

5.6 Process Data
is 8 bits long. There are 16 capability segments, so the process Structures

can address a maximum of 4096 capabilities at a given time.

5.6 Process D,sta Structures

A CAP Proc(!ss Resource List defines all of the resources
available to a CAP process. Figure 5-5 shows the structure of
entries in a PRL. A PRL entry is identical in format to a capa­
bility, except that the PRL index of the capability is replaced
by the segment specifier field. The segment specifier selects a
capability in one of the capability segments of the parent proc­
ess. Just as the base, size, and access fields in a capability can
be used to refine the access permitted by a PRL entry, these
fields in the PRL entry can be used to refine the access permit­
ted by the parent's capability.

PRL entries resemble capabilities in structure; however, the
PRL is not a C-llist and differs from a C-list in two important
ways. First, PRL entries cannot be manipulated by programs
executing within the process. Second, the JPRL must contain
entries for objects needed by all procedures that the process
executes. In contrast, most capability systems allow proce­
dures to access private objects not available to the C-list of their
caller. Different procedures executing within a CAP process
can be restricted. to different capability segments and, hence,
to different objects; but all of the objects that they collectively
address must have entries in the PRL.

In addition to the PRL, each process has a data structure
called the Process Base, which contains the state of the process.
By convention, the first entry in the PRL addresses the Process
Base. The first 16 words of the Process Base define the 16
process capability segments by indicating the offset of the PRL
entry for each segment, as shown in Figure 5-6. The V bit in
each word specifies whether or not that capability segment
exists, and the 8-bit offset field indicates which PRL entry

Segment specifier Base

Type I I wu I Access Size

31 29 23 21 15

Segment specifier< 31 :28> = Parent capability segment
Segment specifier< 23:16> = Index of capability within specified

parent segment

Figure 5-5: CAP PFiL Entry

o

85

The Cambridge CAP
Computer

86

o

15

16

31

32

33

34

35

36

37

38

39

40

41

v I

V I

0

Capability segment pointers

0

80

General registers

815 (PC)

Microprogram storage/state

Accumulator high half

Accumulator low half

Count-down timer

EC instruction information

Microprogram register

Unused

Wakeup waiting switch

C-stack next entry

C-stack current frame

Used by software

Figure 5-6: CAP Process Base

I Offset

J Offset

addresses the corresponding capability segment. All capability
segments accessible to a process must, therefore, be addressed
through the first 256 PRL entries. The remaining words in the
Process Base contain copies of the general registers, a count­
down timer, and pointers to the C-stack-a data structure used
to save capabilities during procedure invocation.

5.7 Memory Address Evaluation

This section reviews the translation process from virtual
address to primary memory location. Because each process

5.8 Subprocess
owns all segments available to its children, the Master Coordi- Creation

nator at the root of the tree must have capabilities for all seg-
ments in the system. In fact, the Master Coordinator is the
only process that addresses memory directly. In the PRL of the
Master Coordinator, called the Master Resource List (MRL),
are capabilities similar in format to that shown in Figure 5-5;
however, word 0 of these MRL entries contains a memory
address in the low-order 20 bits. All capabilities ultimately
refe'r to these MRL entries.

The steps to translating an address are as follows:

1. Locate the specified capability segment in the process, and
select the capability in the index contained in the virtual
address.

2. Follow the capability link to the entry in 1the process PRL.
Minimize access rights through a logical AND operation,
and compute new base and length if required.

3. From the PRL entry, locate a capability in the parent proc­
ess's capability segment. Once again, apply rights, base, and
length minimization.

4. Follow this capability back to the entry in the parent's PRL.
5. Continue this process until the MRL is reached, at which

time the physical address can be calculated. Check the offset
supplied in the original general address for legality and make
the requested reference.

Certain facts are apparent about this mechanism. First, sev­
eral levels of indirection, and hence, several memory refer­
ences, are required before an actual operand can be accessed.
This problem can be handled with the special hardware that
the CAP provides. Second, because capabilities refer to a proc­
ess-local structure, the PRL, they cannot easily be transferred
between processes even at the same level of the hierarchy. Ca­
pabilities cannot be· copied between processes unless both
processes have identical PRLs. Third, capabilities cannot be
copied directly from parent to child, but must be passed by
constructing PRL entries and corresponding capabilities in the
child that refer to the parent capability. Fourth, because of the
indirection in both capabilities and PRL entries, a process is
totally free to create capability segments and PRL entries for
its subprocesses.

5.8 Subprocess Creation

Any CAP process is capable of creating subprocesses to
which it can pass access rights to various objects. The creation 87

The Cambridge CAP
Computer

88

of a subprocess is accomplished by the ENTER SUBPROCESS (ESP)

instruction. One operand of the ESP instruction is a segment
that will become the PRL of the new subprocess. Another op­
erand is the index of the PRL entry in that segment for the
subprocess's Process Base.

A parent process creates a subprocess PRL by allocating a
data segment and constructing PRL entries that refer to the
parent's capabilities. Because of the way PRL addressing is
implemented, the construction of subprocess PRL entries re­
quires no special privilege. It is impossible for the parent to
construct a PRL capability for its offspring that allows it to
address an object not addressable by the parent. Since the ac­
cess rights are minimized at each level during the address eval­
uation, it is also impossible to increase access rights to an
addressable object.

The ESP instruction allows any process to create a sub­
process, to define the resources of the subprocess, and to pro­
tect itself from the subprocess. Each parent can also service
requests from its subprocesses. The subprocess issues an
ENTER COORDINATOR (EC) instruction, specifying a code for the
operation to be performed. Execution of the EC instruction
causes resumption of the parent process at the instruction fol­
lowing the ESP that initiated the subprocess. The code is placed
in a general register specified by the original ESP.

Multiprogramming on the CAP system is implemented by
using the countdown timer stored in each Process Base. When
an ESP instruction is executed, control passes to the sub­
process. The subprocess continues execution until either its
timer expires or it executes an EC instruction, causing return
of control to the parent. The parent process can service the EC

or timer expiration, resuming the interrupted process or an­
other subprocess if it likes. The parent might also request serv­
ice from its own parent via an EC instruction. Before resuming
a subprocess by ESP, the parent resets the countdown timer in
the process base of the subprocess.

Thus, any process can coordinate the execution of its sub­
processes, relinquishing its own allotted processor time for
each subprocess to run. In fact, the current process is allowed
to run because a set of processes, rooted in the Master Coordi­
nator and terminating with the current process, have each re­
linquished processor time via ESP. Each process in the list is at
a different level of the process tree, and each executes under a
time limit specified by its parent. The CAP hardware must,
therefore, maintain timers for each level of the process tree

because a timer could expire at any level, thereby returning 5.9 The Capability Unit

control to the parent of the expiring process.

5.9 the Capability Unit

The CAP capability unit contains storage elements used by
the microprogram to enhance system performance. The stor­
age elements include 64 capability registers and 16 tag memory
registers, whose use will be described in this section. The prin­
cipal function of the capability unit is to n!duce the effect of
CAP's multiple levels of indirection. The capability unit acts as
a cache memory (or what is commonly called a translation
buffer) for storing recently used segment virtual addresses and
their corresponding segment physical addressing information.

Figure 5-7 shows the structure of a capability unit capability
register. Each capability register contains information about a
segment capability. The base, size, and access fields are used to
compute the primary memory address and to validate the at­
tempted memory access. Two tag fields uniquely identify the
capability within. the capability unit; the segment tag identifies
the capability segment that holds the capability, and the capa­
bility tag contains the capability's index within that segment.
The segment tag is the number of another capability register in
the capability unit. Each capability is contained in one of 16
capability segments, and to load a capability into a register, the
capability for its capability segment must also be loaded in a
register. The number of that register is used as the segment tag
field.

8

Capability tag

Segment tag

Base

Size

Access

Count

6 20 16 7 7

Segment ,
tag • Base Size Access Count

Contains the index of this capability within its
capability segment.

Identifies the segment containing the capability.

Contains the primary memory address of the segment.

Contains the size of the segment in words.

Indicates the permitted segment access rights.

Contains a count of the number of references to the
capability from within the capability unit.

Figure 5-7: Capability Unit Register Format 89

The Cambridge CAP
Computer

90

When a program attempts to access a virtual address, the
microprogram loads that address into the virtual address regis­
ter of the capability unit, as shown in Figure 5-8. The capabil­
ity unit then autonomously attempts to locate the capability
register containing the physical attributes of the segment ad­
dressed. If the capability is found, the capability unit validates
the requested access and performs the primary memory re­
quest. If the capability is not found, the capability unit notifies
the microprogram, which must then load the needed informa­
tion into a capability register.

The capability register search uses one of the 16-tag mem­
ory registers shown in Figure 5-8. Each of the 16-tag memory
registers corresponds to one of the 16-process capability seg­
ments. Whenever the microprogram loads a capability for ca­
pability segment I into a register, it also loads the number of
that register into the corresponding tag memory register.
Therefore, tag memory register I specifies the location of the
capability for capability segment I in the capability unit. A
valid bit in each tag memory register indicates whether or not
that register has been loaded.

From the virtual address presented to the capability unit,
the unit selects one tag memory register based on the capability
segment specifier (the upper 4 bits). The capability unit then
uses the tag memory register in an associative search. The ca­
pability unit searches for a capability register whose segment
tag field matches the contents of the tag memory register. If
the tag fields match, then the register contains a capability that
is stored in the correct capability segment. The unit must then
check the capability index field in the virtual address, shown as
J is Figure 5-8, with the capability tag field in the register. If
these fields match, the correct segment register has been
found. If the J fields do not match, the search continues. The
capability unit is able to examine four capability registers at a
time during the search.

5.10 Protected Procedures

The protected procedure is the principal CAP protection
mechanism. Although other capability systems execute pro­
tected procedures in a new process, all procedures called from
within a CAP process execute within that same process. How­
ever, different procedures may have access to different capabil­
ity segments and, hence, to different objects. The protected
procedure mechanism causes switching of capability segments
and, therefore, changes the access domain of a procedure.

Capability Segment
Valid Segment tag tag Base Size Access Count
bit tag

~EEj ~I r--, 1 1-

. l : II~J~~M~~--~ I
' ,--I -M I· (Match)

I 151 I (Ma:tch-;) ft --J..._.......L_---1_--.J--=~c=
Tag Memory

Registers 631 1 --

K

Virtual Address Register

Figure 5-8: CAP Capability Unit

Capability Registers

The Cambridge CAP
Computer

92

Protected procedures are used extensively both within the
CAP operating system and by user programs. All operating
system services are programmed as protected procedures, and
all compilers output protected procedures. The use of pro­
tected procedures to perform system functions is particularly
important within the CAP system. Although services could be
provided through ENTER COORDINATOR instructions to the
Master Coordinator, such instructions would cause a serial­
ization of service. That is, once the Master Coordinator is en­
tered, the service routine would have to complete before an­
other process could execute. By placing operating system
services within protected procedures available to every proc­
ess, several processes can execute service routines simultane­
ously.

A protected procedure can be called only through an enter
capability which the caller must possess. Figure 5-9 shows an
enter capability and the PRL entry to which it refers. The
execution of a protected procedure call causes 5 of the 16 capa­
bility segments to be changed. These new capability segments
form part of the new domain in which the protected procedure
executes. The enter PRL entry shown in Figure 5-9 contains
fields that define three of the new capability segments. The
creator of a protected procedure is free to use these segments in
any way; however, the conventional name and use of the new
capability segments are as follows:

A The argument capability segment contains capabilities passed
as parameters to the currently executing procedure.

N The new argument segment is used to construct an argument
list for a procedure to be called. This segment becomes the
A segment of the called procedure.

1 01 I
PRL Offset 0 Enter

Access
Capability

31 29 27 15 0

29 19 9

1:1
P R Enter

PRL
Access Entry

31 29 27 15 0

Figure 5-9: CAP Enter Capability and Enter PRL Formats

P The procedure segment contains capabilities for code and
data segments that are shared by all processes executing a
protected procedure.

I The interface segment contains capabilities that are used by
the procedure but are specific to the executing process, for
example, a process-local workspace.

R The resource segment contains capabilities specific to one
instance of the protected procedure. For example, the R
segment might be used to address the representation of an
object managed by a protected type manager. The represen­
tation would be accessible only to the protected procedure.

A program executes an ENTER instruction to call the pro­
tected procedure. The single operand to the ENTER instruction
is the location of the enter capability. Parameters are
passed in the N segment. The ENTER instruction then
changes the execution environment, using a data structure
called the C-stack to save information about the current proce­
dure. The C-stack is a segment in which the invocation stack
(the procedure-calling record) is maintained. Each procedure
call causes the hardware to place a new invocation frame on the
C-stack by updating the C-stack pointers in the Process Base.
The RETURN instruction restores information placed on the
C-stack, removing the current frame and returning control to
the caller.

In more detail, the ENTER instruction causes the following
events to occur:

• A new C-stack frame is allocated. This 6-word frame is loaded
with procedure state information, including the PRL indices
for the current P, I, and R segments.

• The PRL indices for the new P, I, and R segments, stored in
the enter PRL entry, are used to modify the three words in
the Process Base that address these three capability segments.

• The PRL index for the current A segment is saved on the
C-stack. The A segment slot in the Process Base is loaded
with the PRL index of the current N segment. The Process
Base slot for the N segment is invalidated.

• The current program counter (BlS) is saved on the C-stack.
• The access rights specified by the enter capability and the

enter PRL entry are ANDed and placed in B14, for examina­
tion by the procedure.

• The program counter is loaded with the address of the first
word of the segment addressed by the new P capability.

The protected procedure begins execution at the first word
of the P segment. It executes in the new domain created by the

5.10 Protected
Procedures

93

The Cambridge CAP
Computer

94

ENTER instruction and has access to new A, P, I, and R
segments. When the procedure is entered, no N segment
exists. Should the procedure wish to create a new argument
segment for a further procedure call, it executes a MAKEIND

instruction to specify the length of the new N segment. The N
segment is also allocated on the C-stack. Execution of a RE­

TURN instruction destroys the N segment and replaces the pre­
vious P, I, R, and A segments.

Each CAP user program is, in fact, a protected procedure,
and is restricted to a subset of the objects addressed by its
process' PRL. This subset is defined by the P, I, and R capa­
bility segments made available to the program by its enter ca­
pability. Other procedures callable by the program can have
access to different segments. The enter PRL entry for a pro­
tected procedure seals three capabilities, making them availa­
ble to the protected procedure when it is called.

The protected procedure mechanism supports the creation
of protected objects and object type managers. For example,
Figure 5-10 shows the implementation of a subsystem support­
ing protected objects of type message port. Each instance of a
port object is represented by a new instance of the port pro-

Enter
PRL Entry Port1 Resource Port1

for Port1 Capability Segment Data Segment

·1 P Data capability
Port
data

Data capability

R Send
procedure

Enter

Enter
PRL Entry

Enter
Receive

for Port2
Enter

procedure

P Port
Procedure Operation
Capability Procedures
Segment

R

Port
Data capability data

Data capability Port2

Port2 Resource
Data Segment

Capability Segment

Figure 5-10: CAP Protected Object Implementation

tected procedures. Each instance of the port system contains a
pointer to the port protected procedures and a pointer to the
segments containing the data structures for one port instance.
Figure 5-10 shows enter PRL entries for two ports. Both PRL
entries address the same P segment and share the procedures
that operate on the ports, but every object has a different R
segment that contains the representation of that object in­
stance.

To create a new object, then, the type manager creates an
instance of itself with a new R segment. All PRL entries for
objects of the same type share a P capability but have different
R capabilities for the segments containing the object's repre­
sentation. Processes are given enter capabilities that address
these PRL entries. The type manager defines and interprets
the access rights in its enter capabilities. Th(: ENTER instruction
makes those access rights easily accessiblt: by placing them
in a register.

5.11 Long-Ten" Storage and Long-Term Names

Like the Plessey 250, the CAP operating system provides
for long-term storage of objects. Three types of objects can be
preserved on secondary storage: segments, directories, and
Procedure Description Blocks. A Procedure Description Block
is a segment created by the operating system that defines how a
protected procedure should be constructed, including its seg­
ments and the capabilities in those segments.

CAP capabilities, like Plessey 250 capabilities, contain the
index. of a data structure in memory (the PRL). This index is a
short--term identifier for an object and is meaningful on the
CAP system only during the lifetime of a single process. There­
fore, in order to preserve and name objects with a long life­
time, each object must have a unique long-term name. When
object names are saved on secondary memory, they must be
stored as long-term names.

Each CAP object's long-term name is unique for the life of
that object. The long-term name is called the system internal
name of the object. An object's system internal name is con­
structed from the disk block address where the object is stored.
The CAP operating system maintains a list of all long-term
objects that includes the number of references to each object
on secondary storage. In addition, the operating system main­
tains a list for each CAP process that contains the system inter­
nal names for all objects addressed by that process's PRL.

5.11 Long-Term
Storage and Long­
Term Names

95

The Cambridge CAP
Computer

96

Every CAP user has one or more directories in which to
store text names of long-term objects and their associated sys­
tem internal names. Directories are managed by a protected
procedure known as the directory manager.

The operating system maintains the storage for an object as
long as a reference to that object exists in a directory, in a
Procedure Description Block, or in the PRL of an executing
process. When a process requests an object from a directory,
the system first checks the process-local system internal name
list to see if that object is currently in memory. If so, the proc­
ess will already have a PRL entry addressing the object and a
capability can be constructed. Otherwise, the system's long­
term system internal name list must be consulted and the ob­
ject fetched from secondary storage. This operation will cause
a PRL entry to be allocated, a capability to be constructed, and
a notation to be made in the process-local system internal name
list.

Protected procedures are stored on secondary memory as
Procedure Description Blocks. A protected procedure, as previ­
ously described, consists of three capability segments (proce­
dure, interface, and resource) that are made available as the
result of an ENTER instruction. These segments contain capa­
bilities that are used by the protected procedure but may be
hidden from other process procedures.

When a protected procedure is created, the operating sys­
tem constructs a Procedure Description Block containing sys­
tem internal names of the objects accessible to the protected
procedure. The operating system returns an enter capability
and places an enter PRL entry in the Process Resource List of
the creating process. The PRL entry is constructed so that a
trap will occur if an ENTER instruction attempts to use that
entry. If a trap occurs, the operating system builds the P, I,
and R capability segments from the system internal names in
the Procedure Description Block. In this way, such segments
do not need to be allocated unless the procedure is actually
called.

5.12 Discussion

The Cambridge CAP computer is the first successful uni­
versity-built hardware and software capability system. Unlike
previous university efforts, the CAP implementors completed
a system that serves both as a research tool and as a useful
service facility. The CAP system is interesting because of sev-

eral design aspects, including the addressing structure and the 5.12 Discussion

use of the microprogram and capability unit for implicit capa-
bility loading.

The most influential decision made in CAP's design was the
choice of a capability protection system based on a process
hierarchy. The goal was to allow any process complete freedom
to supervise the activities of its subprocesses. The CAP system
permits a process to control the processor scheduling as well as
the memory resources of its offspring. The ENTER SUBPROCESS

and ENTER COORDINATOR instructions operate at any level of
the tree, allowing any process to act as a complete coordinator.

CAP's addressing structure permits direct control of
subprocess addressing domains by a parent process. In con­
trast, a parent process on other capability systems must call a
supervisor service to place a capability in a subprocess's C-list.
On CAP, however, a process can have data access to its sub­
processes' capability segments. No protection violation occurs
because of the indirection in subprocess capabilities, although
this indirection reduces the efficiency of capability addressing.

An additional problem is caused by the local nature of the
Process Resource List. Because all capabilities address the
PRL, a process·-local structure, they cannot be passed easily
between processes. CAP capabilities are different from capabil­
ities on previous systems because they do not contain a global
context-independent identifier. Although each CAP object has a
system-wide unique name, a CAP capability contains a PRL
index which is a process-local object name.

Following thdr initial experience, CAP's designers felt that
the process tree had been much overemphasized in the design.
The generality of a multi-level process structure, while provid­
ing conceptual advantages, led to performance and implemen­
tation difficulties. Therefore, only two levels of process struc­
ture are actually used in the CAP-the Master Coordinator
and the level-2 processes. However, the effect of the process
tree design on addressing remains.

A more essential CAP mechanism is the protected proce­
dure. Protected procedures are widely used, both within the
operating system and by user programs. Most of CAP's operat­
ing system is implemented as protected procedures that exe­
cute within the domain of each process; this alleviates the bot­
tleneck that would be caused if all services were performed
directly by the Master Coordinator.

Protected procedures are also useful for implementing type
managers and protected objects. The procedure (P) segment 97

The Cambridge CAP
Computer

98

for the protected procedure specifies the protected object man­
agement routines, while the resource (R) segment can be used
to specify the representation of a single object instance man­
aged by those routines. When a new object instance is created,
the type manager creates a new instance of its protected proce­
dure system. This new instance is represented by a new enter
capability and enter PRL entry that have access to a new R
segment.

Although the protected procedure mechanism supports the
creation of protected objects, it is not extensively used for that
purpose within the operating system due to the cost of pro­
tected procedures. Using this mechanism for protected ob­
jects, a new instance of the type manager (that is, a new pro­
tected procedure with its enter PRL entry) must be created for
every new object. Creation of a new instance of a protected
procedure also causes creation of a new Procedure Description
Block, which involves both space and time overhead to the
system.

A less expensive mechanism is provided by software capa­
bilities (not described in the chapter). The operating system
uses software capabilities for addressing operating system ob­
jects. Software capabilities can be placed in process capability
segments and are protected in the same way that segment capa­
bilities are protected. The type field in the capability indicates
whether it is a software capability or another type of capability.
A protected procedure can return a software capability to a
process as proof of object ownership. The bits in a software
capability can be defined by the protected procedure and used
in any way. However, software capabilities can only be used by
operating system protected procedures because they rely on
convention to distinguish the type of object addressed by the
software capability.

CAP's capability unit serves to reduce the overhead refer­
ences required for address translation. A memory reference in
a level-2 user process requires four overhead references before
the word is accessed, because two capabilities and two PRL
entries must be read to compute the primary memory address.
The capability unit reduces this overhead by caching fre­
quently used segment capabilities and their segment primary
memory addresses.

Additionally, the use of tag memory registers and the struc­
ture of the capability register tags permit registers to remain
loaded over domain changes. That is, when a context switch or
protected procedure call occurs, only the tag memory registers

5.13 For Further
need to be changed. A call to a short protected procedure will Reading

not cause a turnover of registers in the capability store. How-
ever, the capability unit requires that a large number of evalu-
ated capabilities be loaded in registers before it can operate.
For example, for each process capability in the capability unit,
the unit must also hold evaluated capabilities for the segment
containing the capability, for the process PRL and Process
Base of the current process, and for the PRL and Process Base
of the parent process. The overhead is significant, and the 64-
register size of the store would make large process trees im-
practical.

Additional overhead always exists in capability manage­
ment, and this ,can be seen in light of the CAP addressing
structure. Because capabilities are defined indirectly, a parent
has the ability to modify or invalidate a capability to which a
junior process refers. Using this mechanism, it is possible to
revoke authority to an object previously allowed a subprocess
(and potentially, its juniors). Since the capability unit main­
tains translated copies of capabilities, however, it is possible
for a change at a higher level in the process tree to be made
while a lower level capability exists in the capability unit along
with its physical address. Therefore, each time a capability in
memory is modified, the capability unit must ensure that no
junior process capabilities are left in the unit that refer indi­
rectly to the modified capability. Although this is analogous to
the operation required on a virtual memory translation buffer
in any virtual memory system, the operation is more frequent
with capabilities because, while users can modify capabilities,
only the operating system can modify process page registers.

The CAP project has been successful for reasons related
both to the struclture of the hardware and the amount of useful
software available to its users. Since it became operational, the
CAP system has continued to be a useful research and compu­
tation facility at Cambridge University, and the base hardware
has proven flexible enough to allow further experimentation
with capability architecture [Herbert 78a].

5.13 For Further Reading

Much literature is available on the CAP system and its soft­
ware. A general discussion of capability addressing and the
CAP approach can be found in [Needham 72 and Needham
74]. The best overview of the CAP system is provided in the
paper by Needham and Walker [Needham 77a], the book by 99

The Cambridge CAP
Computer

100

Wilkes and Needham [Wilkes 79], and the thesis by Walker
[Walker 73]. The book describes the operating and filing sys­
tems as well as the hardware. The filing system is described
also in [Needham 77b, Birrell 78]. Performance evaluations of
the CAP system can be found in the papers by Cook [Cook 78,
Cook 78b].

Since the original CAP design, Herbert has experimented
with a new CAP capability architecture implemented by a
microprogrammed kernel running on the CAP hardware
[Herbert 78a, Herbert 78b, Herbert 79]. A version of [Herbert
79] is reprinted in [Wilkes 79]. Herbert's kernel corrects some
of CAP's problems and supports global naming and a form of
sealing as described by Redell [Redell 74a].

The Hydra/C.mmp computer. (Courtesy William Wulf.)

The Hydra System

6.1 Introduction

This chapter marks the transition from capability-based to
object-based computer systems. Although somewhat subtle,
the distinction is one of philosophy. The systems previously
described are primarily concerned with capabilities for mem­
ory addressing and protection, although they support abstrac­
tion and extension of operating system resources as well. The
principal concern of the systems discussed in the remaining
chapters is the use of data abstraction in the design and con­
struction of complex systems. In these systems, abstract objects
are the fundamental units of computing. Each system is viewed
as a collection of logical and physical resource objects. Users
can uniformly extend the system by adding new types of re­
sources and procedures that manipulate those resources.

The subject of this chapter is Hydra, an object-based oper­
ating system built at Carnegie-Mellon University. Hydra runs
on C.mmp (Computer.multi-mini-processor), a multiprocessor
hardware system developed at Carnegie. Hydra is significant
because of its design philosophy and the flexibility it provides
for users to extend the base system. This flexibility is sup­
ported by capability-based addressing.

6.2 Hydra Overview

In the early 1970s, a project began at Carnegie-Mellon Uni­
versity to investigate computer structures for artificial intelli­
gence applications. These applications required substantial
processing power available only on costly high-performance

6

103

The Hydra System

104

processors. At that time, however, relatively inexpensive mini­
computers were becoming available. Therefore, the project
sought to demonstrate the cost performance advantages of
multiprocessors based on inexpensive minicomputers.

The C.mmp hardware was designed to explore one point in
the multiprocessor space [Fuller 78]. Its hardware structure
differs from conventional multiprocessing systems in the use of
minicomputers, the large number of processors involved, and
the use of a crossbar switch for interconnecting processors to
main memory. C.mmp consists of up to 16 DEC PDP-ll mini­
computers connected to up to 32 megabytes of shared memory.
The memory is organized in 16 memory banks connected to
the processing units by a 16 x 16 crossbar switch.

Hydra [Wulf 74a, Wulf 81] is the operating system kernel
for the C.mmp computer system. Hydra is not a complete op­
erating system in the sense of Multics, Tops-20, or Unix™;
rather, it is a base on which different operating system facilities
can be implemented. For example, Hydra allows users to build
multiple file systems, command languages, and schedulers.
Hydra was designed to allow operating system experimenta­
tion: flexibility and ease of extension were important goals.
Experimentation is often difficult with traditional operating
systems because new subsystems require change to a privileged
kernel. Any error in privileged code can cause a system failure.
To avoid this problem, the designers of Hydra built a kernel on
which traditional operating system components could be im­
plemented as user programs. This facility has strong implica­
tions for the protection system because user programs must be
able to protect their objects from unauthorized access.

Two fundamental design decisions that permit experimenta­
tion on the Hydra system are:

• the separation of policy and mechanism in the kernel [Levin
75], and

• the use of an object-based model of computation with capa­
bility protection.

The separation of policy and mechanism allows experimen­
tation with policy decisions such as scheduling and memory
management. Basic mechanisms, such as low-level dispatch­
ing, are implemented in the kernel, while scheduling policy for
user processes can be set by (possibly multiple) higher-level
procedures. Because this part of the Hydra design is not re­
lated to the object system, it will not be described here.

Hydra's object model and its implementation are the subject of
the following sections.

6.3 Hydra Objects and Types

The philosophy that "everything is an object" is key to the
Hydra design. All physical and logical resources available to
Hydra programs are viewed as objects. Examples of objects are
procedures, procedure invocations (called local name spaces),
processes, disks, files, message ports, and directories. Objects
are the basic unit of addressing and protection in Hydra and
are addressed through capabilities. The Hydra kernel's main
responsibility is to support the creation and manipulation of (1)
new object types, (2) instances of those types, and (3) capabili­
ties.

Each Hydra object is described by three components:

• A name that uniquely identifies the object from all other ob­
jects ever created. The name is a 64-bit number constructed
from an ever-increasing system clock value and a 4-bit num­
ber identifying the processor on which the object was created.

• A type that determines what operations can be performed on
the object. The type is actually the 64-bit name of another
object in the system that implements these operations.

• A representation that contains the information that makes up
the current state of the object. The representation consists of
two parts: a data-part and a C-list. The data-part contains
memory words that can be read or written; the C-list contains
capabilities for other objects and can only be modified
through kernel operations.

Figure 6-1 shows an example of a Hydra object. Although
shown as strings, the object's name and type are actually 64-bit
binary numbers. The object's type is the name of another ob­
ject in the system-a type object. Hydra objects include capa­
bilities as part of their representation. By storing capabilities
for other objects in its C-list, an object can be built as a collec­
tion of several Hydra objects.

Each Hydra type represents a kind of resource. A type object
is the representative for all instances of a given resource. It
contains:

• information about the creation of new instances of the type
(for example, the initial C-list size and data-part size), and

• capabilities for procedures to operate on instances of the type.

6.3 Hydra Objects and
Types

105

Hydra Object

NAME: myport

TYPE: port

REPRESENTA TlON

Data-part C-/ist
Data-part

Figure 6-1: Hydra Object and Type Object

Hydra Type Object

NAME: port

TYPE: type

REPRESENTATION

Procedure capability

C-list

Send

Receive

PROCESS The basic unit of sched.uling and execution.
PROCEDURE The static description of an executable pro­

cedure.
LOCAL NAME SPACE (LNS)

The dynamic representation of an executing
procedure.

PAGE A virtual page of C.mmp memory that can
be directly accessed.

SEMAPHORE A synchronization primitive.
PORT A message transmission and reception facil­

ity.
DEVICE A physical 110 device.
POLICY A module that can make high-level schedul­

ing policy decisions.
DATA An object with a data-part only.
UNIVERSAL A basic object with both a C-list and data­

part.
TYPE The representative for all objects of a given

type.

Table 6··1: Hydra Kernel-Implemented Types

Thus, the type object is generally responsible for creating new
objects of its type and performing all operations on those ob­
jects. For example, to create a new message port, the user
issues a $CREATE call to the port type object. The port type
object creates a new port object, initializes its data-part and
C-list appropriately, and returns a capability for the object to
the caller. Table 6-1 lists the types directly supported by the
Hydra kernel for performance reasons.

To extend th{! Hydra operating system, users create new
type objects that support new kinds of resources. A user
creates a new type object by calling the type manager for type
objects. Figure 6-2 shows the three-level Hydra type hierar­
chy. Note that all objects are represented by a type object,
including the type objects themselves. The special type object
at the root of the hierarchy is called type "type"; that is, both
its name and type are "type." This specially designated object
is used to create and manipulate type objects.

6.4 Processes, Procedures, and Local Name Spaces

A process is the basic unit of scheduling in the Hydra sys­
tem. There is no explicit process hierarchy; any process can
create other processes and pass capabilities for those processes
to others. The access rights in a process capability determine
what operations can be performed on that process-for exam-

6.4 Processes,
Procedures, and Local
Name Spaces

107

TYPE: port
NAME: myport

Figure 6-2: Hydra Type Hierarchy

pIe, whether it can be stopped and started. A process with 6.5 Hydra Operations

suitably privileged capabilities can, therefore, schedule the
execution of other processes.

The Hydra protection system is procedure-based rather
than process-based. All Hydra procedures are protected proce­
dures that carry their own execution domains. The current
domain of a process depends on the procedure that it is execut­
ing. The process is the entity in which the procedure is sched­
uled, and it maintains the chain of procedure calls that have
occurred within tlhe process.

To differentiat{~ a procedure from its executing invocations,
Hydra supports two object types: the procedure object and the
local name space object. A Hydra procedure object is the static
representation of a procedure. The procedure object contains
instructions, constant values, and capabilities that are needed
by the procedure for its execution. The capabilities are main­
tained in the C-list of the procedure object.

The procedure object is actually a template from which an
activation is built when the procedure is called. A procedure is
called through a procedure capability. When a procedure call
occurs, the Hydra kernel creates a local name space object and
initializes it from information contained in the associated pro­
cedure object. The LNS is the activation record for the execut­
ing procedure; it represents the dynamic state of the proce­
dure's execution. Since procedures can be shared, several LNS
objects can exist to represent different activations of a single
procedure. Hydra allows both recursive and re-entrant proce­
dures.

The LNS defines the dynamic addressing environment for a
procedure. All of the objects that can be directly addressed by
the procedure must be reachable through capabilities in the
C-list of the LNS. The capabilities are initially obtained from
two places:

• the called procedure object (these are known as inherited ca­
pabilities), and

• capability actual parameters passed by the caller.

Within the executing procedure, capabilities are addressed by
their index in the LNS C-list. As the procedure executes, the
LNS changes as capabilities are acquired, copied, and deleted.

6.5 Hydra Oper.ations

C.mmp is constructed from PDP-ll minicomputers, which
do not support capabilities or virtual memory addressing. 109

The Hydra System

110

Therefore, all Hydra object operations are performed through
calls to the Hydra kernel. A procedure cannot manipulate the
data-part of an object with processor instructions. Instead, the
procedure performs a kernel operation to copy data from the
data-part into its local memory for examination or modifica­
tion. Another call to the kernel moves data from local memory
to the object's data-part. No direct copying is allowed to the
C-list.

Since a number of operations are common to objects of all
types, the kernel provides a set of generic operations that can be
applied to any object, assuming the caller has a sufficiently
privileged capability. Table 6-2 lists some of these object oper­
ations, as well as some of the standard capability operations.

A typical kernel call might specify several parameters that
are capabilities. In general, any parameter requiring a capabil­
ity will also allow a path to a capability. The path allows a user
to specify several levels of indirection to the target object. The
path is specified as a list of C-list indices, leading from a capa-

$GETDATA

$PUTDATA

$APPENDDATA

$MAKEDATA

$MAKEUNIVERSAL

$GETCAPA

$PUTCAPA

$APPENDCAPA

$COMPARE

$RESTRICT

$DELETE

$CREATE

Copy data from the data-part of a specified
object to local memory.
Copy data from local memory to the data­
part of a specified object.
Append data from local memory to the
data-part of a specified object, extending the
size of the data-part.
Create a new data object (data-part only)
initialized with N words from a local seg­
ment, and return a capability for the new
object.
Create a new universal object (data-part and
C-list) and return a capability for the new
object.
Copy a specified target capability (e.g., in a
specified object's C-list) to the current LNS
(local addressing environment).
Copy a capability from the current LNS to a
specified object C-list slot.
Append a capability from the current LNS
to a specified object's C-list, extending the
C-list size.
Compare two capabilities.
Reduce the rights in a spe¢ified capability.
Delete a specified capability.
Create a new object with the same type and
representation as another object. .

Table 6-2: Generic Object and Capability Operations

64-bit object name Generic rights Auxiliary rights

Figure 6-3: Hydra Capability

bility in the current LNS C-list, through a capability in the
C-list of the object selected, and so on.

6.6 Capabilities and Rights

Hydra capabilities contain an object's name and access
rights. The access rights are divided into two fields: a 16-bit
generic rights field and an 8-bit auxiliary rights field, as illus­
trated in Figure 6-3. (This figure is somewhat simplified; capa­
bilities have different formats which are shown in detail in
Section 6.9.) The generic rights, listed in Table 6-3, can be
applied to any Hydra object. In general, they control permis­
sion to execute the generic operations listed in Table 6-2. The
auxiliary rights field is type specific; its interpretation is made
by the procedures that operate on the specific object type.

The rights are single-bit encoded, and the presence of a bit
always indicates the granting of a privilege. This convention
simplifies rights restriction and rights checking and allows the

GetDataRts, PutDataRts, AppendDataRts
Required to get, put, or append data to
an object's data-part.

GetCapaRts, PutCapaRts, AppendCapaRts
Required to get, put, or append to an
object's data-part.

DeleteRts Allows this capability to be deleted from a
C-list.

KillRts

ModifyRts

EnvRts

UncfRts

CopyRts

Allows deletion of capabilities from the
C-list of the named object. The capability
to be deleted in that C-list must have
DeleteRts.
Required for any modification to an object's
representation.
Environment rights allows a capability to
be stored outside of the current LNS.
Unconfined rights allows an object ad­
dressed through a specified object to be
modified.
Required to execute the $copy operation.

6.6 Capabilities and
Rights

111

The Hydra System

112

kernel to verify that a capability has sufficient generic and aux­
iliary rights for a specific operation.

A type manager typically has the power, through possession
of a special capability, to gain additional privileges to an object
of its type passed by a caller. This facility, known as rights
amplification, will be described in Section 6.7. In some cases a
caller may wish to restrict a subsystem's use of capability pa­
rameters and the objects they address. In particular, the user
may wish to ensure that a called procedure does not:

• modify the representation of an object,
• retain the capability for an object following return of the call,

or
• copy information from an object into any memory that could

be shared with other programs.

These restrictions can be guaranteed through the use of three
special rights listed in Table 6-3: modify rights (ModifyRts),
environment rights (EnvRts), and unconfined rights (UncfRts)
[Cohen 75, Almes 80].

ModifyRts is required in any capability that is used to mod­
ify the representation of an object. For example, in order to '
write to an object's data-part, the executing procedure must
have a capability containing both PutDataRts and ModifyRts.
By removing ModifyRts from a capability parameter, a pro­
gram can guarantee that a called procedure will not modify that
object because, unlike the other generic rights, ModifyRts can­
not be gained through amplification.

EnvRts is required for a procedure to remove a capability
from its local name space. When a program removes EnvRts
from a capability that is passed as a parameter, it guarantees
that no copies of the capability can be retained by the called
domain following its return. Without EnvRts, it is impossible
for a called procedure to save a capability in a local object's
C-list to be used later. Although a capability without EnvRts
can be passed to another procedure as a parameter, that proce­
dure will once again find a capability in its LNS without EnvRts
and will not be able to save it. EnvRts also cannot be gained
through amplification.

Although EnvRts prohibits a procedure from saving a capa­
bility, it does not prohibit the procedure from copying all of
the possibly confidential information from that object into a
new object. UncfRts, when removed from a procedure capabil­
ity, restricts the storage of information by the called proce-

dure. If a procedure is called using a capability lacking
UncfRts, all capabilities copied from the procedure object into
the LNS will have UncfRts and ModifyRts removed. That is,
the procedure will be forced to execute in an environment in
which it cannot modify any of its own objects or any objects
reachable through its own capabilities. Therefore, it will not be
able to maintain any permanent state following its return. The
only objects that can be modified by the call are those passed
by capability parameters that contain ModifyRts.

6.7 Supporting Protected Subsystems

A major goal of the Hydra system is the support of the
object-based programming methodology. That is, facilities are
added to the operating system by creating new object types. A
type manager, represented by a Hydra type object, is a module
that creates new instances of its type and performs operations
on those instances. The objective of this methodology is to
localize knowledge of the representation and implementation
of each type to its type manager. Users can call type manager
procedures to create and manipulate objects, but cannot di­
rectly access an object's representation.

To support this programming style, a type manager must be
able to:

• create new object instances of its type,
• return a capability for a new instance to the caller requesting

its creation (this capability identifies the obj(!ct but must not
allow its owne:r to access the object's representation directly),
and

• retain the ability to access the object's representation when
passed a capability for an object it created.

The type manager must, therefore, be able to restrict the rights
in a capability that it returns to a caller and later amplify those
rights when the capability is returned. The amplified rights
permit the type manager to examine and modify the object's
representation. Amplification occurs during procedure calls
through a special type of capability owned by the type manager
called a template"

6.7.1 Templates

There are two common operations that the kernel performs
during Hydra procedure calls. First, the kernel verifies that
parameter capabilities have the expected type and required

6.7 Supporting
Protected Subsystems

113

The Hydra System

114

rights for the operation implemented by the procedure. Sec­
ond, the kernel can, under controlled circumstances, amplify
the rights passed in a capability parameter. This facility is re­
quired to allow subsystems to perform operations on an object
that are not permitted to the user of the object.

Both the type checking and amplification facilities are pro­
vided through a mechanism called capability templates. A tem­
plate is a kind of capability used by type managers to imple­
ment type systems. Templates do not address objects, but give
the possessor special privileges over objects or capabilities of a
specified type. As the name implies, the template capability is
a form used to verify the structure of a capability or to con­
struct a capability. Templates are stored in procedure C-lists
and can be manipulated with capability operations. There are
three types of templates: parameter templates, amplification
templates, and creation templates.

Parameter templates are used to verify the capability parame­
ters passed to a procedure. The procedure object's C-list con­
tains parameter templates as well as capabilities for procedure­
local objects. When a procedure call occurs, the kernel builds
the LNS C-list from the procedure object's C-list. The proce­
dure's C-list contains its own capabilities that are copied di­
rectly to the LNS C-list and parameter templates that repre­
sent slots to be filled in with capabilities passed as parameters.
The parameter template contains a type field and a required
rights field. When copying a capability parameter to the LNS,
the kernel verifies that the type matches the template's type
field and that the rights in the capability are at least as
privileged as those required by the template. Special templates
can also be provided that will match any type or rights.

The procedure C-list can also contain amplification tem­
plates. An amplification template contains a type field and two
rights fields: required rights and new rights. The type and
required rights fields of the amplification template are used to
validate the capability parameter in the same way that a param­
eter template is used. However, once validated, the kernel
stores the capability in the LNS with the new rights field speci­
fied in the amplification template. These rights can either am­
plify or restrict rights, as specified by the template.

Amplification templates can only be created by the owner of
a capability for a type object. In general, only a type object will
own the amplification templates for its own type. However, it
is possible for a subsystem to own amplification templates for
objects of several types. Figure 6-4 illustrates a Hydra proce-

$CALL (SEND_MESSAGE_PROCEDURE_CAPABILlTY,
PORT _CAPABILITY, MESSAGE_CAPABILITY)

Capability--.A - Capability--.A

Amplification -- Merge - Amplified
template port capability

Capability_B Capability_B

Parameter • Merge
Message

template capability e-
Procedure C-list LNS C-list

Figure 6-4: Hydra F)rocedure Call

dure call that uses both parameter and amplification templates.
The call sends a message, identified by a message object capa­
bility, to a port identified by a port object capability. The call
is made to the port type manager that must manipulate the
representation of the port object to indicate that a message has
arrived. In this example, the C-list of the procedure object
contains two inherited capabilities that are copied directly to
the new LNS. The procedure C-list has an amplification tem­
plate that is merged with the port capability actual parameter.
The merge operation verifies the type and rights of the capabil­
ity and stores a capability in the LNS with amplified rights.
The procedure C-list also has a parameter template that is
merged with the message capability parameter. In this case,
the merge operation simply verifies the type and access rights
of that capability and then copies the capability actual parame­
ter into the LNS.

The third template type, the creation template, is not used in
the procedure call mechanism, but can be used to create a new
instance of a specific type. A creation template contains an
object type and dghts. Using the $CREATE kernel operation,
an object with the specified type and rights can be created. In
general, subsystems do not provide creation templates; they
require that a user call the subsystem in order to create a new
instance. The subsystem then uses its private creation template
to create the new instance, which the subsystem initializes ap­
propriately .. The subsystem might then restrict some of the
rights in the capability returned for the new object and pass
that restricted capability to the user.

6.7 Supporting
Protected Subsystems

115

The Hydra System

116

6.7.2 Typecalls

A Hydra type manager can be thought of as a collection of
procedures that has the ability, usually through possession of
templates, to manipulate the representation of a particular ob­
ject type. A program calls these type management procedures
using procedure capabilities in the current LNS.

In fact, the concept of type manager is formalized by the
Hydra TYPECALL mechanism. A TYPECALL is a call to an
object's type manager that is made through the capability for
the object itself. Thus, a procedure capability is not needed for
a TYPECALL; only a capability for an object is needed. The
procedure capability is located in the C-list of the object's type
manager, which can be found indirectly through the object.

Figure 6-5 shows an example of the TYPECALL mechanism.
The TYPECALL invokes the second procedure in the type object
for the specified port object. Two parameters are passed to the
TYPECALL, the capability for the port object and the capability
for a message object. The capability for the port object is listed
twice: once as the object through which the TYPECALL is made
and once as a parameter to the TYPECALL.

The TYPE CALL mechanism supports abstraction in several
ways. First, the owner of an object does not need to possess
capabilities for its type object or for procedure objects to
manipulate that object. In effect, a TYPECALL requests that
the object perform an operation on itself. Second, if all objects
support a common set of generic operations at identical type
indices, a user can find information without knowing an ob­
ject's type. For example, if all type objects implement a "tell
me your type name" operation as the first procedure and "dis­
play yourself" as the second, then a user can apply those opera­
tions equally on all objects.

6.8 Hydra Object Storage System

A Hydra object, once created, has a lifetime independent of
the process that created it. As long as a capability exists for an
object, that object will be retained by Hydra and made avai~a­
hIe when referenced. Hydra stores most long-lived objects on
disk when they are not in use and brings them into primary
memory when a reference is made. Given a capability for an
object, a user can perform any legitimate operation without
concern for whether or not the object is currently in primary
memory.

$TYPECALL(PORT _CAPABILITY, 2, PORT _CAPABILITY, MESSAGE_CAPABILITY):

NAME: caller

TYPE: LNS

Port
capability

Message
capability

Other
capabilities

Caller LNS

I---

~I NAME:p2
I

TYPE: port

Port Object

Figure 6-5: Hydra TypeCal1

r-I NAME: port 1
TYPE: type

Procedure
capability

Procedure
capability

Port Type Object

r- NAME"end l
I I TYPE, procedure I

REPRESENTA nON:

I

I

Port Send Procedure

NAME: callee

TYPE:LNS

Port
capability

Message
capability

Send procedure
capability

NS

Called Procedure LNS

The Hydra System

118

Hydra, thus, provides a uniform single-level object address­
ing environment to its users. Although objects can be stored in
primary or secondary memory, the location of an object is in­
visible to the Hydra user. The Hydra kernel must, therefore,
manage the movement of objects between primary and second­
ary storage. The mechanism for storing and locating objects is
the Hydra Global Symbol Table.

The Global Symbol Table CGST) contains information
about every object reachable by the kernel. The GST is divided
into two parts: the Active GST and the Passive GST. The
Active GST maintains information about objects stored in pri­
mary memory, while the Passive GST maintains information
about objects stored in secondary memory. An object is said to
be active or passive depending on whether it is in primary or
secondary memory.

As previously stated, the representation of a Hydra object
consists of its C-list and data-part. In addition, the kernel con­
structs data structures called the active fixed part and passive
fixed part that contain state information for active and passive
objects, respectively. Table 6-4 shows the formats of the two
fixed parts. As their names imply, the fixed parts have a fixed
size for easy storage and access. Many object operations can be
satisfied by reference to the fixed part alone, and it is possible
for the active fixed part to be in primary memory while the
representation is still in secondary memory. In this case, the
object's fixed part is said to be active while the representation
is passive.

When a new object is created, Hydra stores its representa-

Passive Fixed Part
Global Object Name
Object Flags
Current Version Disk Address
Previous Version Disk Address
Type Name
Color (for garbage collection)

Active Fixed Part
Global Object Name
Object Flags
Current Version Disk Address
Previous Version Disk Address
Total Reference Count
Active Reference Count
Type Object Index
Checksum of Fixed Part
State
C-List Primary Memory Address
Data-Part Primary Memory Address
Mutex Semaphore (object lock)
Time Stamp (of last access)
Color (for garbage collection)

Table 6-4: Hydra Active and Passive Fixed Parts
-----~

tion in primary memory and allocates and initializes an active
fixed part. The kernel stores the object's active fixed part in a
data structure called the Active GST directory. The Active
GST directory is organized as an array of 128 headers of linked
lists, as shown in Figure 6-6. Each linked list contains active
fixed parts, and the appropriate list for an object's fixed part is
determined by a hashing function on the object's 64-bit name.

The divisiop_ of the~~tiv:e_GST_M~JDry joto 128 lists
serves two purposes. First, it speeds up the GST search, since
the linked lists can be kept relatively short. Second, it allows
parallelism in the access of the active fixed parts. Only one
processor can search a linked list and access a specific active
fixed part at a time. By dividing the Active GST into 128 lists,
a lock can be maintained separately for each list, allowing si­
multaneous searches of different lists.

There are two events that cause a Hydra object to be copied
to secondary memory. First, passivation can be triggered by a
kernel process that removes objects from primary memory ac­
cording to their last reference times. This is analogous to swap­
ping in traditional systems. Second, a program can perform an
explicit UPDATE function, requesting that an object's repre­
sentation be written to disk. In this case, the object remains
active with the guarantee that the active and passive copies are
identical. The UPDATE operation is used to ensure consistency
over system crashes, because any active representation
will be lost following a crash. UPDATE is used primarily by
type managers.

Two versions of each object are kept on secondary stor-

o

2

LOCK

I
I
I
I
I

t
Link

Link

Link

127 [I Link

Active Fixed Parts

I-----11 ~ .D---iD
--D -,

Figure 6-6: Active Fixed Part Directory

6.8 Hydra Object
Storage System

119

The Hydra System

120

age-a current version and a previous version. When an object
is passivated, its representation is written to secondary storage,
destroying the older of the two versions. If any failure occurs
during the write operation, the newer version on disk is left
intact. Following successful completion of the UPDATE, the
newly passivated image becomes the current version, with the
former current version becoming the previous version.

Passive objects are stored in the Passive GST. A passive
object is stored as a contiguous array of disk blocks containing
the passive fixed part, data-part, and C-list. To locate a passive
object, a search of the Passive GST directory is made. The
Passive GST directory is stored on a high-speed, fixed-head
disk and consists of copies of all of the passive fixed parts. The
passive fixed parts are organized in 256 blocks for the purpose
of synchronization and parallel search. The global object name
is used as a key in the search for the correct block.

Object activation occurs when the kernel fails to locate a
referenced object in the Active GST. The kernel must then
search the Passive GST directory. Activation can occur in two
phases. First, the object's fixed part is activated. The active
fixed part is constructed from information in the passive fixed
part. Many operations can be completed with activation of the
fixed part alone. Then, if the object's representation must be
activated, the C-list and data-part are read into memory.

6.9 Capability Representation

Just as Hydra objects can be active or passive, so Hydra
capabilities have both active and passive forms. These forms
are shown in Figure 6-7. Active and passive capabilities differ
in the format of the object address. An active capability con­
tains the primary memory address of the object's active fixed
part, while a passive capability contains the object's 64-bit
name. An object reference using an active capability is obvi­
ously more efficient, as it does not require a GST search.

An active capability cannot be stored on secondary memory
because it contains the primary memory address of the active
fixed part, which can be swapped out. When Hydra writes an
object to secondary storage, it converts all the capabilities in its
C-list to passive form. When Hydra activates an object, it
leaves capabilities in passive form until they are used. When a
program addresses an object through a passive capability, the
kernel searches the GST and converts that capability to active
form.

Word

15 8 7 o 15 8 7 o

AuxilialY rights I Flags o Auxiliary rights I Flags

Generic rights Generic rights

Primary memory address 2 Checksum I Unused

..- -
of active fixed part 3 Unused

Global name first word 4 Global name first word
..- - r-- -

Global name second word 5 Global name second word

Unused I Checksum
f---- -

Global name third word
f---- -

6

Type table index of type object 7 Global name fourth word

Active Capat>ility Passive Capability

Figure 6-7: Hydra Capability Formats

Because an active capability contains the primary memory
address of the active fixed part, an active fixed part cannot be
removed from memory as long as active capabilities exist for
the object. For this reason, an active reference count is main­
tained in the active fixed part:. The active reference count indi­
cates the number of physical addresses that exist for the fixed
part. When this count is decremented to zero, the active fixed
part (and the object's representation) can be passivated.

6.10 Reference. Counts and Garbage Collection

On systems such as Hydra, with long-term object storage, it
is difficult to know when an object can be deleted. An object
can have many users since capabilities can be freely passed
between processes. Users can also delete capabilities, and when
no capabilities exist for an object, the object should be deleted.
Objects that are no longer reachable are known as garbage ob­
jects and the general problem of finding them is known as
garbage collection.

Reference counts can help in the garbage collection prob­
lem, and Hydra maintains both an active reference count and a
total reference count in an object's active fixed part. The total
reference count indicates the total number of capabilities for an
object, including passive capabilities in the Passive GST. If the
total and active reference counts in an active fixed part become
zero, the kernel deletes the object because it can no longer be
referenced.

6.10 Reference Counts
and Garbage
Collection

121

The Hydra System

122

Reference counts in themselves are insufficient to stop the
accumulation of garbage objects for several reasons. First, ref­
erence counts cannot catch object reference cycles. For exam­
ple, if objects X and Y have capabilities for each other in their
C-lists but no other capabilities for X and Y exist, then both
objects are garbage and should be deleted. However, both ob­
jects will have reference counts of one. Second, because the
active and passive fixed parts for Hydra objects are not always
consistent, any total reference count maintained in the passive
fixed part can be in error following a crash. This inconsistency
occurs because it is not feasible to modify the passive fixed part
reference count on every capability copy operation.

Because of the insufficiency of reference counts, Hydra in­
cludes a parallel garbage collector [Almes 80]. The parallel gar­
bage collector consists of a collection of processes that execute
concurrently with normal system operation. The garbage col­
lector scans all objects, marking those that are reachable. The
color field in the active and passive fixed part is provided for
this purpose. Following the marking of objects, another scan is
made to locate objects that were not marked-those that
are unreachable and therefore are garbage. These objects are
deleted.

It is important to note that while the garbage collector is
running, capabilities can be freely copied and deleted. The
Hydra garbage collector must also cope with the dual residency
of objects in the Passive and Active GSTs.

6. 11 Discussion

Perhaps the best indication of Hydra's success is that much
of its philosophy now seems obvious. The object model and the
large single-level object address space have found their way
into contemporary products. These ideas did not completely
originate with Hydra, nor was their implementation on Hydra
totally successful (reflections on the Hydra/C.mmp system by
its designers can be found in [Wulf 78 and Wulf 81]). How­
ever, the basic philosophy has proven to be a valuable model
for system design.

Although previous capability systems provided primitive
objects, user-defined objects, and capability addressing, Hydra
is the first to present its users with a uniform model of the
abstract object as the fundamental system resource. All re­
sources are represented as objects, and objects can be protected
and passed from domain to domain. Users can create new re-

sources, represented by type objects, and can control instances 6.11 Discussion

of these resources through type-specific procedures.
As the designers point out, the system probably went too far

with the flexibility allowed for object protection [Wulf 81]. For
example, although direct operations on an object's representa­
tion can be restricted to the object's type manager, the protec­
tion system allows any user with a sufficiently privileged capa­
bility to access the object. To support this generality in a
controlled fashion, Hydra defines a large set of generic object
rights. In the usual case, however, only the type manager is
allowed to access the object, and it must amplify the needed
rights through an amplification template. In general, it would
be simpler to res1trict representation access to type managers
who are implicitly given all rights to their objects' representa­
tions.

Hydra also attempts to solve some complex protection prob­
lems with special rights bits. A caller can prevent a called pro­
cedure from modifying an object or "leaking" information
from the object. However, it is not always possible for a proce­
dure to operate correctly without some of the special rights (for
example, modify rights). Some subsystems may not be able to
operate in a confined environment. In addition, it is often diffi­
cult for the caller to know what effect the removal of special
rights will have on a called subroutine, although good docu­
mentation practic:es can help alleviate this problem.

Many of Hydra's shortcomings are a result of the hardware
base, induding the small address space and lack of hardware
capability support in the PDP-lIs. All capability and object
operations are executed by operating system software, and
even a type manager must copy data from the representation of
its objects to local memory for modification. A domain change
on Hydra, which requires creation of a new local name space
object, type and rights checking of capabilities, and so forth,
takes over 35 milliseconds. This severe penalty for a domain
change forces a programming style that is contrary to that
which is intended. That is, if domain changes are expensive,
programmers will tend to use them infrequently and programs
will not be written to execute in the small constrained protec­
tion domains originally envisioned.

In general, Hydra's objects are too expensive (in terms of
space overhead, time for creation, etc.) for their actual usage.
Measurements of Hydra show that over 98 percent of all ob­
jects are created and destroyed without ever being passivated
[Almes 80]. Hydra objects are, therefore, relatively short- 123

The Hydra System

124

lived. The same measurements show that the median object
size is 46 bytes for the data-part and 6 capabilities for the C­
list. The GST active fixed part overhead for such an object is
rather large, as is the cost of each capability.

An important feature of Hydra is the use of large object
names-its unique-for-all-time object identifiers. By using a
64-bit value for an object's name, the kernel avoids searching
for dangling references when an object is deleted. Although an
object's name never changes, capabilities are modified when
moved between primary and secondary storage. The change of
capability format is simply a performance optimization used to
reduce the overhead of Hydra's software-implemented capabil­
ity support. An operation on an object's capabilities, such as
the change from active to passive format, is simplified by the
fact that all capabilities are stored in a single C-list.

The Hydra GST is the mechanism for implementing a sin­
gle-level uniform address space. The single-level address space
greatly simplifies a number of problems for both users and the
operating system. Most programs do not need to know about
the existence of secondary storage. For type managers that
must ensure that an object's representation is preserved on
secondary memory, Hydra provides the UPDATE operation.

The Hydra developers succeeded in constructing a large,
functioning operating system (details of the development can
be found in [Wulf 75]). In addition, they were able to imple­
ment several useful subsystems outside of the kernel, as in­
tended. These included directory systems, file systems, text
editors, and command languages. Perhaps the greatest short­
coming of Hydra, however, was that it did not become a sys­
tem of choice among programmers at Carnegie-Mellon.
Lampson and Sturgis, in their retrospective on CAL-TSS,
state the common problem of many operating system research
projects:

... we failed to realize that a kernel is not the same thing as an
operating system, and hence drastically underestimated the
work required to make the system usable by ordinary program­
mers. The developers of Hydra appear to have followed us
down this garden path [Lampson 76].

Even so, a tremendous experience was gained from Hydra
that has passed to many follow-on systems. The C.mmp hard­
ware was finally dismantled in March 1980; however, still op­
erating at Carnegie-Mellon was a direct descendant of Hydra!
C.mmp, which is discussed in the next chapter.

6. 12 For Further Reading

The Hydra philosophy was first presented in the original
CACM paper on Hydra [Wulf 74a]. More recently, Wulf,
Levin, and Harbison have written an excellent book on the
Hydra system tha.t describes both the kernel and some of its
subsystems [Wulf 81]. The book also includes performance
measurements of Hydra and the C.mmp hardware. The paper
by Wulf and Harbison is a retrospective on the Hydra/C.mmp
experience [Wulf 78].

Three papers on Hydra appeared in the Proceedings of the
5th ACM Symposium on Operating Systems Principles in 1975.
These well-known papers describe the separation of policy and
mechanism in Hydra [Levin 75], the Hydra protection system
[Cohen 75], and the Hydra software development effort [Wulf
75].

Almes' thesis describes the Hydra garbage collector and also
presents measurements of the GST mechanism showing object
size and lifetime distributions [Almes 80]. The paper by Almes
and Robertson describes the construction of one of several
Hydra file systems [Almes 78]. Low-level details of the Hydra
kernel and its operations are documented in the Hydra Kernel
Reference Manual [Cohen 76].

6.12 For Further
Reading

125

The Cm* computer. (Courtes/Dr. Zary Segall.)

The STAROS System

7.1 Overview of STAROS

Carnegie-Mellon's Hydra/C.mmp project examined the use
of multiprocessors in the solution of artificial intelligence prob­
lems. C.mmp supported up to 16 processors and memories
connected through a crossbar switch. By 1975, however, it was
clear that multiprocessors involving hundreds of microproces­
sors would be possible. The C.mmp crossbar scheme, which
increases geometrical1y in complexity with the number of proc­
essing elements, was infeasible for such systems. Therefore,
the CM* project: [Jones 80a], started in 1975 at Carnegie-Mel­
lon, took a different approach to interconnection-one that
grows linearly in complexity with the number of processing
elements. By 1979, the CM* configuration contained 50 opera­
tional processors.

CM * consists of a large collection of computer modules, in
which each computer module is a DEC LSI-ll processor with
its bus, local memory, and peripherals. A computer module
cluster, shown in Figure 7-1, is formed by a set of computer
modules communicating through a map bus. Memory requests
generated in each computer module are routed by a switch,
either to local memory or to the map bus. The CM* system
consists of a set of clusters connected by an intercluster bus. A
computer module can issue addresses for local, intracluster, or
inter cluster memories.

The connection between clusters is managed by a unit called
the Kmap. The Kmap is a horizontally microprogrammed
processor that, in addition to supporting intercluster refer-

7

127

The STAROS System

128

Local
Devices

and
Memory

Local
Devices

and
Memory

Figure 7-1: A CM* Cluster

Intercluster Buses
to Other Clusters

Local
Devices

and
Memory

ences, is used to execute operating system functions. Perform­
ance-critical parts of the operating system, such as capability
operations, are therefore implemented in Kmap microcode.

Two operating systems were constructed to support distrib­
uted software for CM*: STAROS and Medusa [Ousterhout 80a,
Ousterhout 80b]. STAROS, the subject of this chapter, is an
object-based operating system that supports the execution of
task forces [Jones 78b]. A task force is a collection of cooperat­
ing processes executing concurrently to perform a single job.
Task forces are distinguished from most cooperating process
schemes by their dynamic nature. The structure of a task force
corresponds to the available resources rather than to the func­
tional requirements and can change with dynamic resource
changes.

In general, each of the processes within a task force is small
if measured by its resource requirements. A task force process
executes within a small domain and interacts with other task
force processes for many of its needs. STAROS objects reflect
the constrained needs of this environment, and the structure is
much simpler than that of Hydra. The following sections take
a brief look at object structure and addressing in the STAROS
operating system.

7.2 STAROS Object Support

All information in the STAROS system is contained within
objects. Each object has a type, and the type defines the opera­
tions that can be performed on the object:. As with Hydra,
objects are addressed by capabilities that name the object and
specify the permitted rights to the object.

A STAROS object contains two parts, a data portion and a
capability portion (or C-list). The portions are stored in a single
contiguous memory segment. Objects cannot grow dynami­
cally and therefore retain the size with which they were cre­
ated. The data portion is located at the low-address end of the
segment, and the capability portion is located at the high­
address end. A process possessing a suitably privileged object
capability can directly manipulate the data portion of the ob­
ject with processor data instructions.

A STAROS process can directly address 64K bytes of mem­
ory (local or remote) at any time. This limit is dictated by the
I6-bit PDP-II addressing architecture. STAROS partitions
this address space into 16 4K-byte windows. Each STAROS
object has a maximum size of 4K bytes in its data portion and
256 slots in its capability portion. A suitably privileged process
can request that an object's data portion be mapped into one of
its windows, allowing direct instruction access.

The STAROS kernel defines a small set of object types, as
listed in Table 7-1. These are known as representation types, and

BASIC OBJECT Segment with data portion and C-list.
C-LIST Basic object with capability portion only.
PROCESS OBJECT Schedulable entity that contains the root

C-list for addressing.
STACK OBJECT An object supporting PUSH and POP stack

operations.
DEQUE OBJECT A two-ended stack, supporting PUSH and

POP at head and tail.
DIRECTORY OBJECT

An object containing descriptors of physical
object information.

DATA MAILBOX An object for sending and receiving data
messages.

CAPABILITY MAILBOX
An object for sending and receiving capabil­
i ty messages.

DEVICE OBJECT The representation of a physical I/O device.

Table 7-1: STAROS Representation Types

7.2 STAROS Object
Support

129

The STAROS System

130

instances of these types are known as representation objects.
Operations on representation objects are supported by calls to
STAROS. All other objects are implemented by user-defined
type managers that construct other abstractions out of the basic
representation objects. These user-defined types are known as
abstract types and their instances are called abstract objects.
Thus, an abstract object has an abstract type, which indicates
the operations that can be performed on the object, and a rep­
resentation type, which indicates the kernel type from which
that object is constructed.

7.3 STAROS Capabilities

All references to STAROS objects, representation or ab­
stract, are made through capabilities. A STAROS capability is
32-bits long and contains a 3-bit type field, a 13-bit rights field,
and a 16-bit data word field, as illustrated in Figure 7-2. The
interpretation of the data word depends on the capability type.
STAROS supports several capability types, and the capability
type field specifies one of the types listed in Table 7-2. The
data capability is used to transmit small amounts (16 bits) of
information efficiently without requiring the creation of a basic
object and its overhead. The representation and abstract capa­
bilities contain unique 16-bit names in their data words. A type
manager token capability contains a unique 16-bit type identi­
fier in its data word, allowing the possessor to operate on ab­
stract objects of that type.

The capability rights field consists of several type-depend­
ent and type-independent fields, as illustrated in Figure 7-2.

31

I I Type I
r

Modify

Type--....I

Destroy -----'

Copy

Restrict

Rights

A

16 15

Data word

C-list write

C-list read

~-- C-list restrict

\

Figure 7-2: STAROS Capability and Capability Rights Word

0

Read data

Write data

REPRESENTATION CAPABILITY

Names one of the kernel-defined representa­
tion objects and contains kernel-interpreted
rights to the object.

ABSTRACT CAPABILITY

TOKEN CAP ABILITY

Names an abstract object and contains
type-specific rights.

Identifies the owner as the possessor of a
special privilege (for example, as the garbage
collection process or as the type manager for
a specific type).

NULL CAPABILITY Marks an empty slot in an object's capability
part.

DATA CAPABILITY Contains a 16-bit data value in its data word.

Table 7-2: STAROS Capability Types

Bits 0-7 of the rights word contain rights to the object ad­
dressed by the capability. For an abstract capability, this
8-bit field is defined and interpreted by the type manager. The
rights shown in Figure 7-2 are for a representation capability
for a basic object. Basic object rights permit reading and writ­
ing of the data part, loading and storing of capabilities in the
C-list, and restriction of capability rights in the C-list of the
object to which the capability points.

The copy and restrict rights apply to the capability itself and
indicate whether or not the capability can be copied or if rights
in it can be restricted. A capability without restrict rights can
never be deleted, so new copies of capabilities are always given
restrict rights. Finally, the modify and destroy rights are generic
object rights, and specify whether the addressed object can be
destroyed or modified in any way. Modify rights operate as in
Hydra-modification of an object requires modify rights in
each capability along the path to the target object.

7.4 Object Addressing

Each representation object or abstract object is addressed
through a capability that contains its 16-bit unique name. At
any time there can be many capabilities for an object, but there
is only one 16-byte descriptor for each object. The descriptor,
which corresponds to a Hydra active fixed part, is located on
the cluster on which the object is stored. The format of an
object descriptor is shown in Figure 7-3.

The garbage collection process uses the color field to indi-

7.4 Object Addressing

131

The STAROS System

132

15 8 7 o

Color I I Capability size

R 1 D 1 I CM I HI

Rep. type I Data limit

Base physical address (LOW)

Abstract type

Free chain I Usable chain

Encoded chains

Figure 7-3: STAROS Object Descriptor Format

cate the garbage collection status of the object (for example,
whether a capability for the object has been passed outside the
local cluster). The capability size and data limit fields specify
the size of the capability portion (in slots) and data portion (in
bytes) of the object. Since the object is stored contiguously,
these fields determine the total size of the object and the posi­
tion of the dividing line between data and capability portions.

The object's primary memory location is formed by con­
catenating the base physical address field with the 2-bit HI
field. This 18-bit address is local to the cluster processor speci­
fied by the computer module number (CM). An object must be
stored on the same cluster as its descriptor, although capabili­
ties for an object can be passed outside the cluster. Two type
fields contain the abstract type of the object and the represen­
tation type used to implement it. Finally, the chain fields are
used to form linked lists of descriptors, and Rand D are refer­
ence and dirty bits, respectively.

Descriptors are stored in directories. Each CM* cluster can
have up to 32 directories, each containing up to 256 descrip­
tors. A single root directory in each cluster contains descriptors
for itself and the 31 subdirectories. STAROS 16-bit object
names, contained in both abstract and representation capabili­
ties, directly locate an object descriptor in one of these direc­
tories. A unique name specifies a 3-bit cluster number, a 5-bit
directory number, and an 8-bit directory index, as shown in
Figure 7-4.

I Cluster I Directory I Directory index I

()

1

- ..
Descriptors

..... - Object

31
Dir ectory

Cluster Root Directory

Figure 7-4: STAROS Directory Structure

7.5 STAROS Abstract Type Management

As previously stated, a type manager creates each new ab­
stract object from one representation object (usually a basic
object). The type manager returns an abstract capability for a
new abstract object to a caller, but only the type manager can
operate directly on the representation object implementing the
abstraction. The possessor of an abstract capability can only
use it as a parameter in a call to the type manager to request an
object operation.

The key to a type manager's special ability is its type token,
one of the capabilities previously described. Every type man­
ager possesses a type token whose data word contains a unique
identifier for its type. The type token is nevt!r given out except
to procedures that are part of the type manager. The type man­
ager uses the type token in the following way:

• When a process wishes to create a new abstract object, it calls
the appropriate type manager. The type manager, through a
call to STAROS, creates a new representation object, for
which it receives a fully-privileged representation capability.
The type manager then uses this capability to initialize the
object as needed.

• After the object has been initialized, the type manager exe­
cutes an ASSOCIATE TYPE instruction, specifying the object's
representation capability and the manager's type token
as parameters. This instruction stores the abstract type field
from the token into the object's descriptor. The ASSOCIATE

7.5 STAROS Abstract
Type Management

133

The STAROS System

134

TYPE instruction thus creates an abstract object from a repre­
sentation object.

• Next, the type manager executes a DEAMPLIFY instruction
to transform its fully-privileged representation capability into
an abstract capability. The DEAMPLIFY instruction simply
changes the type field in the capability from "representation"
to "abstract."

• The type manager then returns the abstract capability to the
calier. This abstract capability identifies the holder as having
authority to request operations on that object. It cannot be
used to access the encapsulated representation object directly.

• To perform an operation on the object, the holder of the ab­
stract capability calls a type manager procedure, passing the
abstract capability as a parameter. The type manager then
executes an AMPLIFY instruction, specifying as operands
the abstract capability and the type manager's private type
token. If the type token's type matches the object's abstract
type, the AMPLIFY instruction turns the abstract capability
back into a fully-privileged representation capability, allow­
ing the type manager to access the representation object.

7.6 Discussion

It is interesting to note the ways in which STAROS differs
from the Hydra object model. STAROS limits direct access of
an object's representation to the type manager. Two basic
types of capabilities are provided: representation capabilities
used to access kernel types, and abstract capabilities passed to
users of type manager implemented objects. By turning a rep­
resentation capability into an abstract capability, the type man­
ager seals the capability with its special type token. Although
the abstract capability has the object ID sealed within it, it
cannot be used to access the object's representation. The type
token is the key used later to unseal the capability, returning a
representation capability that can manipulate the object. In
this way, the type manager always receives full privilege to
access any of the objects whose representation it controls.

Type tokens are a simplification of the Hydra amplification
template. Hydra permitted more precise control of object ac­
cess; an amplification template could be used to amplify only
those rights needed by the type management procedure. In
contrast, the STAROS type token mechanism always gives the
type manager complete access to one of its objects.

The type token is thus a special type of capability used to
seal or unseal another capability. Tokens are also used to iden­
tify specially privileged processes. Because tokens are capabili­
ties, they are stored in C-lists and therefore cannot be fabri-

7.7 For Further
cated by users. The data capability provides an efficient means Reading

for transmitting or sharing one word of information without
creating a single-word object. Data capabilities also allow small
amounts of data to be sent to a capability mailbox.

Another interesting feature of STAROS is its return to a
small object address space. An object's unique ID, 16 bits in
length, can be used to directly locate the descriptor for an ob­
ject, thus simplifying the manipulation of capabilities and ob­
jects. The structure of the ID implies that the system can sup­
port a maximum of 8K objects per cluster on each of 8 clusters.
The ID leads directly to a particular cluster. Of course, this
scheme makes it difficult to move an object from one cluster to
another because the address is not location independent. In­
deed, objects are never relocated in this way.

Finally, the implementation of operating system functions
in Kmap microcode had significant performance impact. For
example, a standard capability operation on STAROS takes 100
microseconds, while a similar operation on Hydra takes 1 milli­
second. The ability to access an object's data. portion directly is
more significant. Once an object is mapped through an ad­
dressing window (at a cost of about 70 microseconds), data
words can be accessed directly in several microseconds. The
Hydra overhead for copying data from and to the object data­
part is a millisecond.

7.7 For Further Reading

A more detailed description of STAROS is provided in
[Gehringer 81], and a description of CM* switching structure
and addressing can be found in [Swan 78]. The STAROS task
force concept is presented in [Jones 78b]. Performance meas­
urements for STAROS (in comparison with Medusa, a second
operating system developed on CM *) can be found in [Jones
80a], which also discusses CM* and some of its applications.

135

The IBM \System/38

8.1 Introduction

IBM's capability-based System/38 [Berstis 80a, Houdek 81,
IBM 8a, IBM 82b], announced in 1978 and delivered in 1980,
is an outgrowth of work that began in the late sixties and early
seventies on IBM's future system (FS) project. Designers at
the IBM Development Laboratory in Rochester, Minnesota
incorporated ideas from FS, modified by their needs, to pro­
duce a system for the commercial marketplace. It is interesting
that such an advanced, object-based architecture has been ap­
plied to a very traditional product space. Initially, only the
COBOL and RPG III languages were provided. The system,
which includes the CPF (Control Program Facility) operating
system, is intended to support transaction processing and data­
base applications constructed in commercial languages.

A major goal of the System/38 design is to maintain pro­
grammer independence from the system implementation
[Dahlby 80]; IBM wished to retain maximum flexibility to
modify System/38's implementation for future technologies
while supporting previously written System/38 programs. The
designers also wished to support a high level of integrity and
security at the machine interface and to support commonly
executed user and system functions efficiently, such as data­
base searches and memory management [[Hoffman 80]. To
meet these goals, IBM chose a layered machine structure with
a high-level programming interface. The layers of this design
are shown in Figure 8-1.

At the lowest level is a hardware machine that directly exe-

8

137

The IBM System/38

138

User Applications

Languages,
Data base, CPF

Utilities

::\:\:\:\:\i\\\\\t\t\\\\\\\\\\\\\\if\i\\\i\\\\\\\\\\\\\\\\\\\\\\\\\\\!\\\ff\\\\\\\t\\\\\\\\\\t\\\i\i\i\t\\\\\\\i\\\!\\\\\\I\i\i\1-High-'e/~~~~~~~tecture
Vertical Microcode

Horizontal Microcode

Hardware Machine

Figure 8-1: System/38 Implementation Layers

cutes 32-bit horizontal microcode. This horizontal microcode
implements a more-or-Iess standard 32-bit register machine
that executes vertical microcode. 1 The interface above the ver­
tical microcode, called the high-level architecture interface in
Figure 8-1, is the level described in this chapter; it supports
the user-visible (or CPF-visible) System/38.

This high-level architecture interface is supported across
implementations, while the structure of the underlying layers
can change. For example, performance-critical functions, such
as interprocess communication and memory allocation, are
handled by the horizontal microcode. The system object and
capability support is handled in part by both microcode layers.
Different functions can be moved between microcode levels or
into hardware in future versions, as performance experience is
gained. In fact, this movement has already occurred on newer
Systeml38 releases and models.

The CPF operating system and the vertical microcode are
implemented in PL/S, a PL/I-like system programming lan­
guage. There are approximately 900,000 lines of high-level
PL/S code and an additional 400,000 lines of microcode sup­
port needed to implement CPF and its program products. The
Systeml38 hardware includes a non-removable disk that holds
this large store of microcode.

The System/38's high-level architecture interface is actually
an intermediate language produced by all System/38 compilers.
Before a program is executed, CPF translates this intermediate
language into vertical microcode and calls to vertical microcode

lAlthough IBM calls this layer vertical microcode, it would generally not be
considered microcode because it resembles a traditional IBM 370-like 32-bit
instruction set and is programmed in a high-level language.

procedures. That is, the high-level interface is not directly exe- 8.2 System Objects

cuted. This translation process is described later.
IBM terminology is used throughout this chapter for com­

patibility with System/38 publications; it differs somewhat
from that used in previous chapters. In particular, IBM uses
the following terms: space for segment, pointer for capability,
authority for rights, and context for directory. These synonY1:lls
will be presented again as each of the terms is introduced.

8.2 System Ob:iects

Systeml38 instructions operate on two types of entities:
scalar data elements and system objects. The scalar types are 16-
and 32-bit signed binary, zoned and packed decimal, and char­
acter strings. The machine supports 14 types of system objects,
described in Table 8-1. A set of type-specific instructions is
provided for each system type.

SPACE

PROGRAM

USER PROFILE

CONTEXT

QUEUE

DATA SPACE

DATA SPACE INDEX

byte-addressable storage segment
procedure instructions and associated data
object containing information about user's
resource limits and authority to access any
system objects
directory of object names and capabilities
message queue for interprocess communica­
tion
collection of identically-structured records

object used to provide logical ordering for
data space entries

CURSOR direct interface to entries in a data space, or
indirect interface through a data space index

INDEX accesses data sequences based on key values
PROCESS CONTROL SPACE

object containing state information for a
process

ACCESS GROUP set of objects grouped together for paging
performance reasons

LOGICAL UNIT DESCRIPTION

object describing an 110 device
CONTROLLER DESCRIPTION

object describing the attributes of a device
controller

NETWORK DESCRIPTION

object describing a communications port

Table 8-1: System/38 System Object Types 139

The IBM System/38

140

Each system object consists of two parts: a functional por­
tion and an optional space portion, as shown in Figure 8-2.
The functional portion of an object is a segment containing ob­
ject state (its representation); the data in the functional portion
can be examined and modified only by microcode as a result of
type-specific instructions. Thus, the functional portion is said
to be encapsulated because it is not accessible to programs
[Pinnow 80]. Optionally, a space portion can be associated with
an object (IBM uses the word space to refer to a storage seg­
ment). The space portion is an attached segment for storing
scalars and pointers that can be directly manipulated by user
programs.

Every object in the system has several associated attributes.
First is a type that identifies it as one of the 14 system object
types listed in Table 8-1. (Objects can also have subtypes for
further software classification.) Second is a symbolic text name
chosen by the user to refer to the object. Last is a unique identi­
fier (ID) that uniquely specifies an object for the life of the
system. Object identifiers are never reused. When an object is
created, the object ID is assigned by the system, while the text
name and type are specified by the programmer.

Although the contents and format of the encapsulated data
in an object are not programmer accessible, programmers must
be able to specify initial object values or examine an object's
state. The Systeml38 instruction set uses templates to convey
initial information and communicate encapsulated data. A
template is simply a data structure with defined fields used to
transmit information at the instruction level. For example, the
CREATE QUEUE instruction needs to specify some information
about the maximum number of messages, the size of messages,
the queueing discipline, and so on. This information is

Figure 8-2: IBM System/38 System Object

conveyed by creating a template in a space and specifying a 8.3 Object Addressing

capability to that space as a parameter to the instruction.
Later, an instruction can be executed to produce a template
showing information about the queue. Although the architec-
ture fixes the format of the template used to communicate in-
formation at the high-level interface, it does not dictate how
that information is maintained once it is encapsulated within
the object.

The only object not containing a functional part is a space
object. A space object is a contiguous segment and is the only
object that can be manipulated at the byte level by scalar
instructions.

A system object, then, is an instance of an abstract data
type. System/38 instructions exist to create, manipulate, exam­
ine, and delete each of the system object types. The machine
provides an interface that hides the implementation of an ob­
ject from the user. An object's state is stored in one or more
segments; its attributes include a type that indicates what oper­
ations are allowed and an identifier that: uniquely specifies the
object. A base segment for each object contains pointers to any
other segments composing the object, as well as type and ID
information.

B.3 Object Addressing

Before examining object addressing in detail, it is necessary
to describe memory management and segment addressing on
the Systeml38. Object addressing, using capabilities, is based
on lower-level segment addressing mechanisms.

8.3.1 Virtual .Mr emory

The IBM System/38 architecture supports a flat, single­
level, 64-bit virtual address space. To the user at the high-level
interface (either the operating system or application program­
mer), all addressable objects and segments are in directly ac­
cessible memory; there is no concept of secondary storage. The
Systeml38 microcode is responsible for moving segments be­
tween primary and secondary storage to create this virtual
memory environment.

The structure of a 64-bit virtual address is shown in Figure
8-3. The System/38 segment size is 64K bytes. Each segment is
divided into SI2·-byte pages. The low-order 16 bits of the ad- 141

The IBM System/38

142

16

'I ~;;ocOd-;-
extended

24

Segment
identification

8 7 9

L _____________ __ __ _"-'

Figure 8-3: System/38 Virtual Address

dress thus provide the page number and byte offset for the
pages of a segment. For larger objects, up to 256 segments can
be grouped together into segment groups. The group ID field
specifies which 64K-byte segment is being addressed within a
16M-byte segment group. The next 24 bits of the address pro­
vide a unique segment ID for the segment group.

The System/38 hardware only supports 48-bit physical ad­
dresses composed of these fields. However, when an object is
created, the microcode extends the address to 64 bits by adding
an additional 16-bit field.

The full 64-bit address is stored in a special header with the
segment. When a 64-bit address is used to access a segment,
the upper 16 bits of the address are compared with the upper
16 bits of address in the segment's header. If a mismatch oc­
curs, the addressed object has been destroyed and the refer­
ence is not allowed. At anyone time, then, there can only be
224 or 16 million segment groups in existence.

Because the address space is so large, particularly with the
16-bit extension to the segment ID field, segment IDs are
never reused. The system assigns a new segment ID at creation
that is unique for the life of the system. If the object is deleted,
references to the segment ID are not allowed. The system need
not search for dangling references when an object is deleted.
The segment ID, therefore, provides a mechanism for deter­
mining the unique ID for system objects. System objects are
named with the unique ID of the first segment containing the
functional portion of the object. The unique ID is the upper
six bytes of the virtual address.

8.3 .2 Pointers

As in other capability systems, objects as well as scalar data
elements are addressed through capabilities. System/38 capa­
bilities are known as pointers. There are four types of pointers
in the System/38:

• system pointers address the 14 system object types (listed in
Table 8-1),

• space pointers address a specific byte within a space object
(segment),

• data pointers address a specific byte within a space and also
contain attribute information describing the type of element
(e.g., character or decimal), and

• instruction pointers address branch targets within programs.

Each Systeml38 pointer is 16 bytes long. In order to access an
object or an element within a segment, a program must specify
a pointer that addresses the object or segment element. Point­
ers can contain different information at various times, includ­
ing symbolic text names, authorization information (access
rights), the object type, and the unique ID for system pointers
or virtual address for data and space pointers. The information
within a pointer can be modified, for example, from text name
to unique ID, to allow for late binding of the pointer to the
object.

Unlike the systems previously examined, which use C-lists
for the storage of capabilities, Systeml38 pointers can be freely
mixed in segmen1ts along with scalar data. To allow storing of
capabilities with data in the same segment while still maintain­
ing capability integrity, the System/38 implements a memory
tagging scheme. Memory is byte addressable and words are
32 bits long. However, physical words of primary memory are
actually 40 bits wide. Invisible to the programmer are a I-bit
tag field and a 7··bit error correcting code. Pointers must be
aligned on I6-byte boundaries. When a pointer is stored in a
segment by a valid pointer instruction, the hardware sets the
associated tag bits. for the four consecutive 32-bit words used to
hold the pointer. Any instruction that requires a pointer oper­
and checks that the pointer is aligned and that the four tag bits
are set before using the element for addressing. Program data
instructjons can freely examine pointers. However, if a pro­
gram instruction modifies any data in a pointer, the microcode
turns "off the tag bit in the associated word or words, invali­
dating the pointer.

Table 8-2 lists some of the instructions that operate on Sys­
teml38 pointers. Note that a space object (a memory segment)
is a system object that is addressed by a system pointer. A space
pointer, on the other hand, is a capability that addresses a
particular byte in a space object.

8.3 Object Addressing

,·143

The IBM System/38

144

ADD SPACE POINTER

adds a signed offset to the byte address in a
space pointer

COMPARE POINTER FOR ADDRESSABILITY

compares two pointers to see if they address
the same object, the same space, or the same
space element

RESOLVE POINTER searches a directory (see Section 8.3.3) for a
named object and returns a pointer for that
object

SET DATA POINTER

returns a data pointer for an element in a
space

SET SPACE POINTER

returns a space pointer for an element in a
space

SET SPACE POINTER FROM POINTER

if the source is a space or data pointer,
creates a space pointer for the specified byte;
or if the source is a system pointer, returns a
space pointer for the associated space

SET SYSTEM POINTER FROM POINTER

if the source is a space or data pointer, re­
turns a pointer for the system object con­
taining the associated space; if the source is a
system pointer, returns a system pointer for
that same object

Table 8-2: Systeml38 Pointer Instructions

8.3.3 Contexts

Pointers are used to address objects; however, users refer to
objects by symbolic text names. System objects called contexts
implement directories for storing symbolic object names and
pointers. When a new object is created, its symbolic name and
an associated pointer are stored in a specified context. Table
8-3 lists the context instructions supported by the Systeml38.

The symbolic names stored in contexts are not necessarily
unique, and a user can possess several contexts containing the
same name but referring to different objects. This feature al­
lows for testing and logical object substitution. A program that
refers to an object by name can receive different objects de­
pending on what context is used for name resolution. When a
reference is made to a pointer containing an object name, the
system examines the user's Name Resolution List CNRL). The
NRL contains pointers to user contexts in the order that they
should be searched. By changing the context ordering or ma­
nipulating entries, the user can change the objects on which
the program operates.

CREATE CONTEXT

DESTROY CONTEXT

creates a new context object and returns a
system pointer to address it

deletes a context object
MATERIALIZE CONTEXT

returns name and pointer for one or more
objects addressed by a context

RENAME OBJECT changes the symbolic name for an object in a
context

Table 8-3: System/38 Context Instructions

8.3.4 Physical }lddress Mapping

Because of the large size of a System/38 virtual address,
standard address translation schemes involving indexing of
segment/page tables with the segment/page number address
field cannot be used. Instead, the Systeml38 hardware uses
hashing with linked list collision resolution to find the primary
memory address for a specified virtual address.

The basic units of physical and virtual storage are 512-byte
pages. A translation scheme is used to locate a page in primary
memory. The upper 39 bits of a 48-bit virtual address, encom­
passing the unique segment ID, specify a unique virtual page
address for the page. A hashing function is applied to these bits
to obtain an index into a data structure called the Hash Index
Table (HIT), shown in Figure 8-4. The hashing function is an
EXCLUSIVE-OR of low-order bits from the segment ID and
group ID fields, and reverse-order bits from the page number
field. This function provides uniform mapping from the sparse
address space to the HIT [Houdek 80].

The HIT entry contains an index of an entry in the Page
Directory Table (PDT). The PDT contains one entry for each
page of primary memory. Each entry contaill1s the virtual ad­
dress of a corresponding primary memory page. That is, the
index into the PDT is the page frame number for the virtual
address described in the entry. Each entry also contains a link.
The hardware checks the virtual address at the first entry
pointed to by the HIT and follows the linked list until a virtual
address match is found or the list ends. If a match is found, the
index of that entry is used as the page frame number in the
primary memory address. If no match is found, the page is not

8.3 Object Addressing

145

The IBM System/38

146

47 9 8 a

~ Virtual page address I Byte

(Hash)

~ Page directory index

-+ Virtual address I Link

I
~ (List search)

- Virtual address I Null

(POT index)

l Physical page frame I Byte

Figure 8-4: System/38 Virtual Address Translation

Virtual Address

Hash Index Table
(HIT)

Page Directory Table
(POT)

Physical Address

in primary memory and the hardware must load the page from
secondary storage.

The performance of this search depends on the uniformity
of the hashing function and the length of the lists in the Page
Directory Table. In order to shorten the list lengths, the Hash
Index Table is constructed to be twice the size of the Page
Directory Table.

Two optimizations are used to avoid this two-level table
search on every reference. First, the hardware contains a two­
way associative translation buffer to cache recent address trans­
lations (the buffer size is different for different System/38 mod­
els, typically 2 x 64 or 2 x 128 entries). To check the translation
buffer, the virtual page field is hashed to an offset that selects
one entry in each half of the buffer. The two selected entries,
which contain a virtual page address and translated primary
memory page frame number, are checked for a match. If the
virtual address matches, the page frame number is used to
construct the primary memory address. If no match occurs,

8.4 Profiles and
the table search proceeds, eventually replacing one of the se- Authority
lected translation buffer entries with its data, based on a least
recently used bit.

The second optimization is the use of resolved address regis­
ters in the hardware. These registers are used in the CPU to
hold virtual page, physical page, and byte offset information
while a page is being processed. As long as references are made
to the addressed page (e.g., during the sequential search of
elements of an array), the hardware need not search the trans­
lation buffer for consecutive accesses.

8.4 Profiles and Authority

The System/38 hardware provides a mechanism for ensur­
ing privacy and separation of data and for sharing information
between users. The basic unit of computation, from which
protection stems, is the process. Each user process is defined by
a Process Control Space object that contains its state. When a
user logs onto the system, a new process is created; a user pro­
file object is associated with that process based on the user's
name. The user profile contains:

• the user's name,
• the user's password,
• any special authorization or privileges the user possesses,
• the maximum priority,
• the maximum storage usage,
• an initial program to run upon log-in (if any),
• a list of objects that the user owns, and
• a list of non-owned objects that the user is authorized to ac­

cess, and the permitted authorities.

All authority to perform operations on objects is rooted in
the user profile. When an object is created, it is created with an
attribute stating whether the object is permanent or tempo­
rary. The profile associated with the process issuing the
CREATE operation on a permanent object becomes the owner
of the object. An owner has all rights to the object and can
perform any operations, including deletion. Temporary objects
receive no protection and have no owner. They are destroyed
when the system is booted.

The owner of an object can grant various types of access to
other user profiles in the system. There are a number of au­
thorities, or access rights, that a process can have with respect
to an object. The authorities define what object operations the 147

The IBM System/38

148

process can perform. The authorities also define what opera­
tions can be performed on pointers for the object. Object au­
thorities are divided into three categories:

• object control authority gives the possessor control of the ob­
ject's existence (for example, the right to delete or transfer
ownership),

• object management authority permits the holder to change
addressability (for example, to rename the object or grant
authority to other profiles), and

• operational management authority includes basic access rights
to the contents of the object, such as retrieve, insert, delete,
and update entry privilege.

The authority information for each object is thus profile-based.
Each user has a profile that indicates what objects are owned
and what access is permitted to other objects. If a user wishes
to allow access for an owned object to another user, the owner
grants authority for the object to the sharer's profile. To exe­
cute a GRANT AUTHORITY instruction, a user must own an
object or have object management rights. A user cannot grant
an authority that the user does not possess.

Table 8-4 lists some of the profile/authority management
instructions supported by the Systeml38. These instructions
allow a properly authorized user to grant access privileges to
other users, to examine what objects are authorized to him or
her, and to see what authorizations have been given to other
users for owned objects.

In addition to specific object authority granted to specific
profiles, each object can have an associated public authorization.
The object's owner grants public authority with the GRANT

AUTHORITY instruction by omitting the profile parameter.
The public authority is stored in the object's header and allows
any user to access the object in the permitted modes. When an
attempt is made to access an object, the public authority is
checked first. If the access is not permitted by the object's
public authority, the user's profile is then examined.

8.4.1 Authority/Pointer Resolution

Thus far, the System/38 protection mechanism has been
described from the perspective of the profile object. The pro­
file provides a standard Access Control List mechanism. The
owner of an object can explicitly permit other profiles to have
access to that object and can later revoke that access.

CREATE USER PROFILE

builds a new user profile (this operation is
privileged)

DESTROY USER PROFILE

GRANT AUTHORITY

deletes a profile

grants specified authorities for an object to a
specified user profile

MATERIALIZE AUTHORIZED OBJECTS

returns list of all owned objects or author­
ized objects

MATERIALIZE AUTHORIZED USERS

returns a list of owning or authorized users
for a specified object

RETRACT AUTHORITY

revokes or modifies authority for an object
from a specified user profile

TEST AUTHORITY tests if specified authorities are granted to
the current process for a specified object

TRANSFER OWNERSHIP

transfers ownership of an object to another
profile

Table 8-4: Systeml38 Authority Management Instructions

The ability to revoke object access is an important part of
the Systeml38 design; this feature has not been provided in any
of the previously examined systems. Revocation is, in fact, a
difficult problem in capability systems and is generally expen­
sive to implement in terms of addressing overhead. The IBM
System/38 design allows an object's owner to decide whether
revocation is needled for the object. The Systeml38 provides
two pointer formats: one for which access can be revoked and
another for which access cannot be revoked. An object's owner
can decide which type of pointer to use for each object in each
instance depending on the relative importance of revocation
and addressing efficiency.

In order to access an object in the Systeml38 a process must
possess a pointer for that object. Pointers can be stored in two
formats: unauthorized and authorized. An unauthorized pointer
contains an object's unique identifier but does not contain au­
thorizations (i.e., access rights) to the object, When an unau­
thorized pointer is used to access an object, the hardware
checks the profile of the executing process to verify that the
requested operation is permitted. Without this check, revoca-

8.4 Profiles and
Authority

149

The IBM System/38

150

tion of authority would be impossible. An unauthorized
pointer, then, cannot be used in the way that traditional capa­
bilities can be used. Additional overhead is added to pointer
usage because of the profile check.

In cases where revocation is not required or higher perform­
ance is needed, access rights can be stored in a pointer, creat­
ing an authorized pointer. An authorized pointer acts as a capa­
bility, and reference to an object with an authorized pointer
does not require a profile lookup. The RESOLVE SYSTEM

POINTER instruction is used to create authorized pointers.
An authorized pointer can only be created by a user whose
profile has object management authority for the object; the
created pointer cannot have rights not available to the creating
profile. Once constructed, an authorized pointer maintains
authority to access an object for the life of that object. The
pointer can be stored and passed to other processes. Because
the profile check is avoided with authorized pointer usage, au­
thority cannot be revoked later.

8.5 Programs/Procedures

IBM uses the term program to refer to what is typically
called a procedure or subroutine. A System/38 program is an
executable system object. A program object is created by a
CREATE PROGRAM instruction, which specifies a template con­
taining System/38 instructions and associated data structures.
The CREATE PROGRAM instruction returns a system pointer al­
lowing the program to be called.

As noted previously, the System/38 source language (i.e.,
the high-level architecture interface shown in Figure 8-1) is
really an intermediate language produced by compilers. The
effect of the CREATE PROGRAM instruction is to compile
this intermediate language source into microcode that can be
executed on the next lowest "level" of the machine. Source
instructions, depending on their complexity, either compile
directly into System/38 vertical micro-instructions or into
micro-procedure calls. The compiled program is thus encapsu­
lated in the program object, and the form of the micro-machine
is hidden by the CREATE PROGRAM instruction. Once en­
capsulated, the format of a program object cannot be exam­
ined.

Thus, the Systeml38 high-level architecture is never directly
executed. It is a specification for a language that all System/38
implementations support; however, that language is translated

8.5
into a proprietary vertical micro-language before execution. Programs/Procedures
The format of the encapsulated program in this micro-lan-
guage cannot b{~ examined and can be different on different
Systeml38 implementations.

8.5.1 The Instruction Stream

The program template presented to the CREATE PROGRAM

instruction consists of three parts:

• a program consisting of a sequence of instructions,
• an Object Definition Table (ODT), and
• user data.

Each instruction consists of a number of 2-byte fields in­
cluding an operation code, an optional operation code ex­
tender, and one to four operands. The operands can specify
literals, elements in space objects, pointers to system objects,
and so on. The: information about operand addressing and
characteristics is stored in the Object Definition Table in­
cluded in the template. The ODT is"a dictionary that describes
operands for the instruction stream.

Each instruction operand contains an index into the Object
Definition Table. The ODT actually consists of two parts: a
vector of fixed-length (4-byte) elements called the Object Di­
rectory Vector (ODV), and a vector of variable-length entries
called the ODT Entry String (OES). An operand is either com­
pletely described by its 4-byte ODV entry, or the ODV entry
has a partial description and a pointer into the OES, where the
remaining description is found. Most commonly occurring
cases are handled by the fixed-length ODV itself. SeveralODV
entries can point to the same OES entry. The ODT can contain
information such as operand type (e.g., fixed-length decimal
string), size, location, allocation (static or dynamic), initial
value, and so on. Figure 8-5 shows an example of an instruc­
tion with three operands. The operands index ODT informa­
tion defining their type and location.

Each instruction operand consists of one or more 2-byte
fields. The first 2-byte field contains a 3-bit mode field and a
13-bit ODV index. The mode field indicates what type of ad­
dressing is required and what additional 2-byte fields (called
secondary operands) follow in the instruction stream to de­
scribe the operand completely. For example, a string operand
may require three 2-byte fields to describe a base, index, and
length. 151

The IBM System/38

152

Instruction
Stream

Object
Definition
Table
(ODT)

Opcode Operands Opcode

Figure 8-5: System/38 Example High-level Instruction

Operands

Since the ODT completely describes each operand, the sca­
lar opcodes are generic. For example, there is only one ADD

NUMERIC instruction that operates on all numeric data
types. The machine interprets the ODT entry to decide how
the operation should be performed and what conversions are
required.

The Object Mapping Table (OMT) is the final data structure
that is part of the encapsulated program (although not
included in the initial template). It contains 6-byte mapping
entries for each entry in the ODV that maps to a space.

8.5.2 Program Activation and Invocation

A program, then, is a system object that represents a sepa­
rately compiled unit of execution (typically known as a proce­
dure). Programs are called by the CALL instruction. There are
actually two parts to the initiation of a program on the Sys­
teml38: activation and invocation.

Before a program can be invoked (called), it must be ac­
tivated. Activation of the program causes static storage for the
program to be allocated and initialized. Also, any global varia­
bles in program static storage are made addressable. A process
data structure called the Process Static Storage Area (PSSA)
contains an activation entry for each activated program in the
process. The activation entry contains status information, a
count of the number of invocations using the activation, the

8.5
size of static storage, and the storage itself. The first entry in Programs/Procedures

the PSSA contains headers for the chain of activation entries
and a free space chain.

Invocation occurs as the result of a transfer of control to the
program. At invocation time, program automatic (that is, dy­
namic) storage is allocated and initialized in a process data
structure called the Process Automatic Storage Area (PASA).
Each invocation entry contains status information, a pointer to
the previous invocation entry, a pointer to the program, and
the automatic storage. After the invocation entry is allocated
and initialized, control is transferred to the program at its entry
point.

Activation can occur implicitly or explicitly. If invocation is
requested of a program that has not been activated, activation
is done automatically by the hardware.

8.5.3 Protected Procedures

The IBM System/38 provides a mechanism for creating pro­
tected subsystems. As on previous systems, at protected subsys­
tem mechanism must allow programs to execute in an ampli­
fied protection environment. That is, some programs must be
able to access objects not available to their caller. Since the
Systeml38 profile object defines a domain of protection, pro­
tected subsystems are provided through profile-based facilities
called profile adoption and profile propagation.

The authority of each System/38 process is determined by
its profile. When a process calls a program, that program gen­
erally gains access to the process's profile and, therefore, to the
process' objects. However, it is possible to construct System/38
programs that can access additional objects not available to the
caller. When a program is created, the program's owner can
specify that the program retain access to the owner's profile, as
well as its caller's profile. This feature, called profile adoption,
allows a called program to access objects not available to the
caller and can be used to construct a protected subsystem.

Although the general calling mechanism allows a called pro­
gram access to its caller's profile, a calling process can also
restrict this ability. When a program is created, the program's
owner can specify whether its profile should be propagated to
programs on calls. Thus, a program can also see that its own­
er's profile is protected from access by programs further down
the call chain. 153

The IBM System/38

154

8.6 Special Privileges

It is worth noting that there are some special privileges in
the SystemJ38 authorization system. In addition to object­
based authorities stored in a user profile, there may be other
permitted authorities that are not connected with any particu­
lar object. For example, the ability to create user profiles, diag­
nose the hardware, or create objects representing physical I/O
devices can be controlled by authorizations in a user profile.
Also, the ability to dump and load objects to removable storage
is protected, as well as the ability to execute operations to mod­
ify or service system hardware attributes. Finally, some ob­
jects, such as user profiles and device descriptions, receive spe­
cial protection and can only be addressed through a special
machine context (directory).

8.7 Discussion

The IBM System/38 is a complex architecture constructed
from several levels of hardware, microcode, and software. Be­
cause of its commercial orientation and the fact that it is availa­
ble from IBM, the SystemJ38 is probably destined to become,
at least in the immediate future, the most pervasive object
architecture.

The most interesting feature of the System/38 , from the
viewpoint of capability systems, is its use of tagging. Capabili­
ties and data can be freely mixed in segments with no loss of
integrity. The. ability to mix data and capabilities generally
permits more natural data structuring than the C-list approach.
A single tag bit associated with each 32-bit word indicates
whether or not the word is part of a capability. This tag bit is
hidden from the programmer and accessible only to the mi­
crocode. To be used for addressing, a pointer must be aligned
on a 16-byte boundary and have all four tag bits set. The align­
ment requirement prohibits the user from specifying four con­
secutive words with tags set that lie within two contiguous
capabilities.

The integrity of a capability system must be ensured on
secondary storage as well as in primary memory, and the
pointer tags must be saved on secondary storage. On the Sys­
temJ38, each disk page is 520 bytes long and stores a 512-byte
data page and an 8-byte header. The 8-byte header for each
block contains the virtual address for the page, an indication of
whether or not the page contains any pointers, and if so, which
16-byte quadword contains the first pointer in the page. Each

page can contain, at most, 32 pointers; therefore, only 32 bits 8.7 Discussion

are required to specify whether each quadword contains a
pointer. If a page contains pointers, the tag bits are stored
within some unused bytes in the first 16-byte pointer on the
page. When a page is written to disk, the hardware automati-
cally writes the disk block header. When a page is read into
primary memory, the header is automatically removed and the
tags are reconstructed.

The System/38 architecture provides a large single-level
address space. The details of memory management, 110, and
so on are hidden from the programmer. There is no need for a
traditional file system. All objects can be declared permanent
when created, can be stored for long periods of time, and can
be addressed at any time as if they were in primary memory.
Addressing is independent of the object's memory residency
characteristics. One problem with schemes that remove the
abstraction of secondary storage is in transaction systems or
reliable data'base operations. In some instances, the program­
mer may wish to ensure that the latest copy of a segment or
object is checkpointed onto long-term storage. The one-level
memory scheme has removed the ability to express the thought
of writing the segment to disk. To solve this, CPF allows an
object attribute that states how frequently data is to be backed
up for a particular object.

The System 38 permits revocation by adding an access con­
trol list mechanism to the capability addressing mechanism.
Two types of pointers, authorized and unauthorized, can be
used depending on whether or not revocation is required. Au­
thorized pointers are traditional capabilities because they con­
tain access rights and can be freely copied. Passing an author­
ized pointer passes both the addressing rights and privileges.
The ability to resolve a pointer to load the access rights is
controlled by an authorized pointer authorization. Only suita­
bly privileged profiles can create an authorized pointer.

In contrast, an unauthorized pointer is not a capability in
the traditional sense. The same unauthorized pointer can per­
mit different types of access when used by different processes.
This is because the authorization rights an! fetched from the
process's profile when a reference is made. This extra step in
pointer address evaluation permits explicit control over author­
ity and combines the advantages of standard capability systems
and access control lists. The user can specify (and determine
at any time) what other profiles are allowed access to the
user's objects. If only unauthorized pointers have been distrib- 155

The IBM System/38

156

uted, access can be revoked by removing authorization from
other profiles.

Unauthorized pointers permit revocation but add complex­
ity to the handling of pointers. For example, to pass a pointer
to another process, the possessor of the pointer must be aware
of whether that pointer is authorized or unauthorized. Unau­
thorized pointers, unlike capabilities, are not context inde­
pendent. If the pointer is unauthorized, passing it to another
process will not permit object access unless permission has
been granted to the other process's profile. Also, unauthorized
pointers cannot easily be used to build and share data struc­
tures. For example, if a user wishes to build a tree structure of
segments and pass the tree or subtrees to other processes, the
authorization scheme requires that authorization for each seg­
ment be granted separately to each profile involved.

The structuring of System/38 authorizations permits close
control of pointers. Given the division of authority into object
control, management, and access, it is possible for one user to
be able to affect the propagation of addresses but not be able to
access object data. Another user may be able to read and write
but not propagate pointers.

The large size of the Systeml38 address space simplifies
many problems. Segment identifiers are large enough that they
are never reused. This allows use of the segment ID as a
unique name for an object. Since the ID is never reused, there
is no problem with dangling references. An attempt to access a
deleted object simply causes an exception. Large IDs also sim­
plify the implementation of the one-level memory system.
There is no separation of long-term unique ID and address.
The unique ID is the virtual address used to access a specific
object, segment, or byte. There is no need for separate inform
and outform capabilities or for transforming capabilities in
memory when a segment is removed from memory.

Although the Systeml38 instruction stream and Object Def­
inition Table are never used for direct execution, this interface
has some interesting features. The ODT provides a form of
tagging somewhat different from the tagged architectures ex­
amined earlier. Each data element is tagged; however, the tag
is part of the operand, not part of the element. This allows for
several different views of the same data element; different in­
structions can treat the same word as different data types. Op­
eration codes can be generic, and conversion, truncation, etc.
can be performed based on type information in the ODT. The
information stored in the ODT and I-stream may not be ex-

8.8 For Further
tremely compact, but the program in this form need not be Reading

retained after a program object is created.
Finally, IBM has used the object programming approach to

allow isolated construction of components of a very complex
system. The object approach is intended to hide from the pro­
grammer the implementation details of the System/38 hard­
ware, so that future System/38 implementations can take ad­
vantage of advances in technology without affecting existing
programs. Although this has been a goal of other architectures,
the System/38 has used the object approach to place the
userlsystem boundary at an unusually high level, hiding many
details of the machine. For example, the System/38 high-level
architecture has no registers, although the vertical microcode is
free to use registers or to use different numbers of registers in
different implementations.

The initial System/38 product, with its limitation to com­
merciallanguages, does not stress the architecture. It will be
interesting in future years to see if IBM approaches other mar­
kets with this object-based machine structure.

8.8 For Further Reading

Detailed information about the Systeml38 high-level archi­
tecture can be found in two IBM manuals [IBM 80a, IBM 82].
IBM has also packaged a collection of 30 short technical pa­
pers, mostly dealing with hardware and implementation issues,
into a document called IBM Systeml38 Technical Developments
[IBM 80b]. Several papers describing the addressing and pro­
tection features of System/38 have also been published in tech­
nicalliterature [Berstis 80a, Houdek 81, Soltis 79, Soltis 81].

157

The Intel iAXP 432 computer. (Courtesy Intel Corporation.)

The Intel iAPX 432

9.1 Introduction

In 1981, Intel introduced the first object-based microproc­
essor, the iAPX 432 [Intel 81, Rattner 81, Organick 83]. Like
the IBM Systeml38, the Intel 432 implements many operating
system functions in. hardware and microcode, including proc­
ess scheduling, interprocess communication, and storage allo­
cation. The integration of such software operations in hard­
ware is particularly impressive when considered with the Intel
432's VLSI implementation.

The Intel 432 design effort began in 1975 with an attempt to
implement in silicon a system much like Carnegie-Mellon's
Hydra operating system [Wulf 74a]. Three chips compose the
Intel 432 processing elements. The central processing unit,
called the General Data Processor (GDP), is implemented on
two 64-pin VLSI chips. Together, the GDP chips contain over
160,000 components. The Interface Processor (IP), responsi­
ble for communication and data transfer between the Intel 432
and its 110 subsystems, is the third 64-pin chip. Design and
layout of the chip set took more than 100 man-years.

The 432 is a multiprocessor system that can accommodate a
total of six processors, each either a GDP or IP. The general
structure of the 432 multiprocessor system is shown in Figure
9-1. All of the processors are connected to a single multiproces­
sor message bus through which they communicate with each
other and with shared system memory. The IPs connect the
multiprocessor system to Intel Multibus subsystems. Each
Multibus is controlled by an associated processor, such as an

9

159

The Intel iAPX 432

160

I GOP I I GOP 1 ... I GOP r Memory I

I Multiprocessor message bus I

I IP 1

1
Multibus 1

1 Memory I I
8086

1 t I/O devices 1
Figure 9-1: Intel iAPX 432 Structure

Intel 8086, that connects to local memory and some number of
I/O devices. The IPs transfer data between Intel 432 memory
and Multibus local memory; all 110 is actually performed by
the associated processor.

The Intel 432 instruction set provides two types of instruc­
tions: scalar and object-oriented. The scalar instruction set
consists of a small set of move and store operators, boolean
arithmetic, binary and floating point arithmetic, and compari­
son operations. Scalar instructions operate on 8-bit characters,
16- and 32-bit signed and unsigned integers, and 32-, 64-, and
80-bit floating point numbers. The 432 has a stack architec­
ture; instruction operands can be fetched from the stack and
results can be pushed onto the stack. There are no general-pur­
pose registers.

An object-oriented instruction set provides operations on
abstract objects that are managed by a combination of hard­
ware and software. The following sections examine many of
those object types and the details of object addressing on the
Intel 432. It should be noted that the Intel 432 architecture has
evolved since its introduction; this chapter reflects the system
as of revision 3 [Intel 82].

9.2 Segments and Objects

The concepts of object-based computing are deeply imbed­
ded in the Intel 4.32. All system resources are represented as
objects; for example, a processor object maintains the state of
each GDP or IP in the system. Each processor object then
contains a queue of process objects, which represent work to be
scheduled and executed. All objects are addressed through
capabilities which, on the Intel 432, are called access descrip­
tors (ADs). (The vendor's terminology is used in this chapter
for compatibility with Intel literature. The notation "AD" is
used throughout for "capability.")

At the lowest level, objects are composed of memory seg­
ments, and a memory segment is the most fundamental object
(called a generic object on the Intel 432). Each Intel 432 segment
has two parts: a data part for scalars and an access part for ADs,
as shown in Figure 9-2. Objects requiring both data and access
descriptors can be stored in a single segment. Segments are
addressed through ADs, as the figure illustrates. The data part
grows upward (in the positive direction) from the boundary
between the two parts, while the access part grows downward
(in the negative direction) from the dividing line. The hard­
ware ensures that only data operations are performed on the
data part and that AD operations are performed on the access
part.

Each part of a segment can be from 0 to 64K bytes in size.
Data elements in the data part are addressed as byte displace­
ments from the dividing line. ADs, which are 32-bits long, are
addressed by integer indices from the dividing line. The access
part can therefore contain up to 16K ADs. Both data elements
and ADs are addressed as positive indices within the segment;

i

8
4 (Byte offset)

Data elements 0

Access descriptor ~ Access descriptors
0
1 (AD index)

2
,

Figure 9-2: Intel 432 Segment

9.2 Segments and
Objects

161

The Intel iAPX 432

162

the hardware determines the part of the segment to access
based on the type of the required operand.

In addition to basic storage segments, the Intel 432 hard­
ware supports a number of system object types, listed in Table
9-1. The representation for an instance of a system object is
maintained in a storage segment. Operating system type man­
agers are responsible for creating new instances of system ob­
jects. A type manager creates and sets the type for an object
through the CREATE TYPED OBJECT instruction. The operands
for this instruction specify the object's type, the data part size,
and the access part size. The instruction returns an AD for the
new object, which the type manager uses to initialize the object
appropriately.

For each system object type, the 432 architecture specifies
the meaning of some of the data and/or access fields. These
processor-defined fields are stored in the low-index portions of
the two segment parts, adjacent to the boundary. A type man­
ager is free to allocate additional data or access descriptor space
in higher address parts of the two regions for object informa­
tion needed by software.

GENERIC SEGMENT basic storage for data and access descriptors
(capabilities)

DYNAMIC SEGMENT

storage segment created by a programmer­
defined type manager

INSTRUCTION SEGMENT

PROCESS

PROCESSOR

DOMAIN

CONTEXT

MESSAGE PORT

CARRIER

TYPE DEFINITION

TYPE CONTROL

segment containing executable code
basic unit of scheduling
432 GDP or IP
module or package
dynamic state for a procedure invocation
interprocess communication object
extension of a message used to queue it to a
port
object containing information about a spe­
cific object type
object permitting creation of specific object
types

STORAGE RESOURCE

OBJECT TABLE

source of primary memory for object storage
allocation
mapping table of object descriptors

Table 9-1: Intel 432 System Object Types

9.3 Object Addressing

As in previous capability-based systems, there are two com­
ponents to the Intel 432 addressing structure. First, a single
descriptor contains the physical mapping information for each
object. These descriptors, on the Intel 432, are called object
descriptors. Second, programs specify access descriptors to refer
to objects that they wish to manipulate. All ADs for an object
refer to that object indirectly through its single object descrip­
tor. The following sections describe first object descriptors and
then access descriptors.

9.3.1 Object Descriptors

For each Intel 432 object there is a single object descriptor.
The object descriptor contains information about the physical
location and state of the object. The purpose of the object de­
scriptor is to locate this physical object information in a single
place so that objects can be easily relocated or synchronized.
Each object descriptor is 16 bytes long. There are several types
of object descriptors, but the most common is a storage seg­
ment descriptor, shown in Figure 9-3. Table 9-2 describes the
fields in the storage segment descriptor.

I
127 112 96

~ 1 x TOO-AD Image

I x I Object Type

95 80 79
73 L. 64

63 48 47 32

AP Length I DP Length

Base Address I x 1 x I x I x I x l x J 11

31 8

~
"-----

Figure 9-3: Intel 432 Storage Segments Descriptor

Completed

Copied

Entry Type

00 Valid

OP Valid

Allocated

Windowed

Altered

Accessed

9.3 Object Addressing

163

The Intel iAPX 432

164

ENTRY TYPE

OD VALID

DP VALID

ALLOCATED

WINDOWED

ALTERED

ACCESSED

BASE ADDRESS

DP LENGTH

AP LENGTH

OBJECT TYPE

COPIED

LEVEL

TDO-AD IMAGE

COMPLETED

indicates that this is a storage descriptor
specifies whether the object descriptor can
be used for addressing
indicates whether or not the object has a
data part
specifies whether or not storage is allocated
for this object
indicates whether or not this object is being
mapped by an IP
set to 1 whenever the object is written
set to 1 whenever the object is accessed
primary memory address of the first byte of
the segment's data part
length in bytes (minus one) of the segment's
data part
length in bytes (minus one) of the segment's
access part
type of the object, consisting of a 5-bit sys­
tem type field (specifying system objects,
shown in Table 9-1) and a 3-bit processor
type field (specifying whether a GDP or IP
owns the object)
set to 1 whenever an AD referencing this
object is copied
level of this object (generally the call depth
at which it was allocated)
AD that defines the type manager that cre­
ated this object
used by software in object initialization

Table 9-2: Intel 432 Storage Segment Descriptor Fields

Each object descriptor is contained in an object table. The
Intel 432 object table corresponds to the central capability
table of previous systems. Unlike previous systems, however,
there are many object tables in existence at any time. In gen­
eral, every process executing in the 432 has an associated object
table. Or, several processes can share a single object table. An
object table therefore contains information about objects local
to one or more processes.

In addition to the many process object tables, there is a
single system-wide Object Table Directory. The Object Table
Directory contains object descriptors that address each of the
process object tables. Object tables are thus objects themselves
and can be swapped out or relocated like other objects.
The Object Table Directory, however, must always reside in

primary memory. Each processor object contains the primary 9.3 Object Addressing

memory address of the Object Table Directory.

9.3.2 ilccess l)escriptors

While each object has only one object descriptor, many ac­
cess descriptors can be used to address the object. ADs are
32-bits long and specify addressing and access rights to an ob­
ject. To execute an instruction that manipulates an object, the
programmer specifies the location of an AD for the object. The
AD is specified by its index in the access part of a segment.
The collection of ADs accessible to a procedure define that
proced.ure's execution environment: that is, the set of objects
the procedure can address and manipulate.

An AD, illustrated in Figure 9-4, contains access rights to
an object along with two 12-bit mapping indices. The read,
write, and type rlights fields are rights with respect to the ad­
dressed object. Type rights are type depend.ent and their en­
coding is different for each object type. Some type rights for
system objects are defined by the architecture and evaluated by
hardware instructions. The delete rights bit permits the pos­
sessor to delete the AD itself. An attempt to delete an AD with
this bit set to zero causes a fault. The unchecked copy rights
bit, indicating whether the object was allocated from a global
or local storage pool, is used to avoid dangling references
(described in Section 9.6).

Table 9-3 lists the instructions that operate on ADs. Note
that ADs can be freely copied to the access part of any accessi­
ble segment. The INSPECT ACCESS DESCRIPTOR instruction cop­
ies the image of an AD to a segment's data part for examina­
tion. Of course, an AD image stored in a data part cannot be
used as an AD.

Locating an Intel 432 object through an AD requires two
steps. The AD, in addition to the rights bits, contains two
indices: an index into the system-wide Object Table Directory

31 16 15 0

Directory index Segment index

Write rights Delete rights Valid bit

Read rights Unchecked copy Type rights
rights

Figure 9-4: Intel 432 Access Descriptor 165

The Intel iAPX 432

166

COpy ACCESS DESCRIPTOR

Copies an AD from one segment's access
part to another.

NULL ACCESS DESCRIPTOR

Invalidates an AD.
INSPECT ACCESS DESCRIPTOR

Copies the information in an AD into a seg­
ment's data part.

INSPECT OBJECT Copies the information from an AD and the
object descriptor to which it refers into a
segment's data part.

AMPLIFY RIGHTS Amplifies the rights in an AD under control
of a Type Control Object.

RESTRICT RIGHTS Removes rights specified by an AD.
CREATE OBJECT Creates a segment with specified data part

and access part lengths, and returns an AD
for the segment.

CREATE TYPED OBJECT

Creates a segment of the specified type with
specified data part and access part lengths,
and returns an AD for the segment.

Table 9-3: Intel 432 Access Descriptor Instructions

and an index into an object table. This mapping is shown in
Figure 9-5. The first index locates the object descriptor for an
object table. The second index locates the object descriptor for
the specified object in the selected table.

Each access to a byte in a segment potentially requires four
references, one each to:

• the access descriptor in an access segment,
• the Object Table Directory,
• the object table, and
• the byte itself.

With the exception of the access to the AD, the two-level map­
ping overhead is comparable to the overhead required on any
conventional virtual memory system. Of course, caches can be
used to decrease this overhead substantially. The first imple­
mentation of the 432 has several small on-chip caches to re­
member recently used translations.

Since AD index fields are 12 bits, an object table can have a
maximum of 4096 (212) object descriptors. In addition, there'

12 4 12 4

I Directory index I I Segment index I I
32-bit

xxxx xxxx access
descriptor

I-...Jo Object descriptor

(16 bytes)
-+ Object descriptor

I I Object Table
Directory (16 bytes)

Object Table Object

Figure 9-5: Intel 432 Address Translation

can be a maximum of 4096 object tables in the system at any
time. Combined with the fact that a segment has a maximum
size of 64 K byt(!S, the total size of the address space is 240

bytes. However, the maximum address space available to a
procedure at anyone time is 232 bytes.

9.4 Program E),recution

Several system objects exist to support the representation
and execution of procedures on the Intel 432, including:

• the domain object, which defines a module, package, or set of
related procedures,

• the instruction object, which defines a single executable proce­
dure, and

• the context object, which provides the execution environment
for an executing procedure.

These objects can be grouped into two classes-those that de­
scribe the static representation of procedures (the domain and
instruction objects) and those that describe the dynamic execu­
tion of procedures (the context object). An instruction object
corresponds to a Hydra procedure object, while the context
object corresponds to a Hydra local name space object. At any
time, there may be several context objects that represent differ­
ent invocations of a single instruction object. The following
sections describe these program objects in more detail.

9.4 Program Execution

167

The Intel iAPX 432

168

9.4.1 Domains and Instruction Objects

A domain object, illustrated in Figure 9-6, contains ADs for
the instruction objects and local objects used within a module.
The Intel 432 architecture specifies the format of the first two
ADs in a domain. These ADs address instruction objects that
handle fault and trace conditions for all procedures in the do­
main. In the event of a fault or trace condition, the hardware
automatically branches to the first instruction in the fault or
trace object specified in the domain of the currently executing
procedure. The remainder of a domain's access part contains
ADs for procedures and objects needed by the domain; these
ADs are defined by the software system (usually a compiler)
creating the domain.

One of the objects typically addressed by a domain is a seg­
ment containing scalar constants used by the domain's proce­
dures. Each instruction object, shown in Figure 9-6, contains
the domain index of its scalar constants segment. This segment
is needed because Intel 432 instructions do not have literal
operand values embedded within the instruction stream. The
instruction object also specifies the size of the context object to
be produced as the result of the procedure call. The initial

Software
defined
data part ,

Fault object AD Instructions

Trace object AD Constants index

Instruction Initial stack pointer
object AD

Instruction
Context access part

object AD
length

Data constants
Context data part

AD
length

Domain-local Instruction Object
object AD

Domain Object

Figure 9-6: Intel 432 Domain and Instruction Objects

stack pointer index is the displacement to the start of the data 9.4 Program Execution

stack in the context object. The use of these fields will become
apparent in the following discussion of context objects.

Instruction objects contain only a data part. Because Intel
432 instructions are bit-addressable and can start on arbitrary
bit boundaries, instructions are addressed as bit offsets into
instruction objects. The first instruction in each instruction
object begins at bit displacement 64, following the header of
four 16-bit predefined fields. The maximum size of an instruc­
tion segment is 64K bits, or 8K bytes, due to the bit address­
ing. Although there is generally one instruction object for each
procedure in the domain, procedures larger than 8K bytes re­
quire additional instruction objects. The BRANCH INTERSEG­

MENT instruction can be used to transfer control to another
instruction object within the same domain.

9.4.2 Procedure Call and Context Objects

To transfer control to a procedure, a program executes a
CALL instruction, causing the procedure to be invoked. On exe­
cution of a CALL instruction, the hardware constructs a new
context object. The context object is the procedure invocation
record and defines the dynamic addressing environment in
which the procedure executes. All addressing of objects and
scalars occurs through the context object, and the context is
the root of all objects reachable by the procedure. The struc­
ture of the context object is illustrated in Figure 9-7.

Although somewhat complicated, it is important to examine
the context object in more detail to understand the addressing
environment of the Intel 432. The context object has both a
data part and an access part. The data part contains pointers
that describe the current instruction execution. The domain
index locates the AD for the executing instruction object
within the current domain; the instruction pointer contains the
bit offset of the current instruction in that instruction object.
At the high-address end of the context object's data part is the
operand stack. This stack is used by instructions for computa­
tion and intermediate storage of scalar values. The current
stack pointer is also stored in the data part.

The context object's access part contains ADs that define
the addressing environment for the procedure. Included are
ADs for the current domain, which was specified by the CALL

instruction, and the AD for the local constants segment, which
was specified in 1the called instruction object. The global con- 169

Data Part

!

Operand stack

Working storage

Trace control area

Instruction pointer

Domain index of current
instruction object

Operand stack pointer

Context status

Current context AD :J
(Environment 0)

Global constants AD
Input Parameter

Context message AD Object

Current domain AD

hi I Procedure
Code

Local constants AD and object
ADs Current

Environment 1 AD - Instruction

Environment 2 AD-. Domain Object Object

Environment 3 AD - 1 l 1 Scalars

Calling context AD

Constants Data
Context link AD Segment

Descriptor stack AD 1 Access rn
Interprocess message AD ~escrlPlors r
Static link AD

Other ADs Environment Objects Addressable
Object

~

Access Part

Figure 9-7: Intel 432 Context Object Representation

stants AD allows addressing of a process-wide data segment; 9.4 Program Execution

the procedure explicitly loads this AD, if needed, through the
COPY PROCESS GLOBALS instruction. The calling context AD ad-
dresses the caller so that a RETURN can be executed.

Interprocess communication is provided by instructions
that send messages to and receive messages from port objects.
Execution of a RECEIVE MESSAGE instruction causes the AD for
the received message to be copied to the inter process message
AD in the context object's access part. In this way, the pro­
gram has immediate addressability to the message. The static
link AD, which follows the interprocess message AD in the
context, is provided to support languages that use static lexical
scoping.

9.4.3 Instruction Operand Addressing

The important context object ADs from the addressing
point of view are those named current context and environments
1, 2, and 3 in Figure 9-7. As previously stated, an instruction
must specify the location of an AD in order to manipulate any
object. If the instruction manipulates one or more data ele­
ments, it must provide ADs for the segments containing those
elements. In general, then, every instruction operand specifies
one or more ADs that provide addressability to that operand.

At any moment during a procedure's execution, ADs speci­
fied by instructions must be located in one of four environment
objects. Environment object 0 is the context object itself. In­
structions can specify any of the ADs within the context ob­
ject's access part; for example, to refer to the domain or the
constants data segment. The three remaining environments,
environments 1 through 3, are defined dynamically by the pro­
cedure. A procedure loads an AD for any object into the envi­
ronment slots in lthe context object to make ADs in that object
addressable. The ENTER ENVIRONMENT instructions are pro­
vided for this purpose.

Therefore, to address an AD, an instruction specifies one of
the four environment objects and an index to an AD in the
object's access part. Environment 0 is the context access part
itself, which is self-addressed through the current context AD
in the context object. Environments 1 through 3 are addressed
through the three environment ADs in the context object. An
instruction reference to an AD in one of the four environments
is called an access selector. Figure 9-8 shows the three access
selector formats. The low-order two bits in each selector spec- 171

The Intel iAPX 432

172

232

3 2

Displacement

7 2

I Displacement

15 2

Displacement

0
0
1
1

Figure 9-8: Intel 432 Access Selector Formats

o

0

0

0
1
0
1

Short
Direct

Long
Direct

I Long
Indirect

-- Current Context
-- Environment 1
-- Environment 2
-- Environment 3

ify the environment object; the three formats allow for 2-, 6-,
or 14-bit displacements to an AD in the selected environment.

The four environment segments thus provide efficient ad­
dressing of ADs. An instruction can specify an immediate 4- or
8-bit access selector describing the location of an AD for an
operand. Or, it can specify the location of a 16-bit access selec­
tor located in memory or on the stack. The short direct format
efficiently addresses any of the first four ADs in any of the four
environments. This includes the ADs for the global constants,
context message (calling parameters), and current domain
within the current context. All of the processor-defined ADs
within the context object's access part can be addressed using
an 8-bit access selector.

9.4.4 Context Allocation

On an earlier version of the Intel 432 architecture, each
CALL instruction caused dynamic allocation of the memory
segment in which the new context object was constructed. Be­
cause this allocation was time-consuming, the latest version of
the Intel 432 supports pre allocation of contexts on a per-proc­
ess basis. The operating system allocates a linked list of fixed­
sized context object segments to each process. The contexts are

linked through the context link field in each context object.
When a call occurs, the processor reads the context link

field to find the AD for the next context object to use. The
length of this object is compared with the length fields stored
in the called instruction object. If the instruction object re­
quires a context object larger than the preallocated size, a fault
will occur. The operating system can then allocate a context of
the needed size. Or, if the context link is null, indicating that
the preallocated contexts have been consumed, a fault will
allow the operating system to perform additional allocations.
Otherwise, the hardware quickly constructs the new context
object from the linked segment.

9.4.5 Parameter Passing

Parameter passing on the Intel 432 is associated with the
preallocation of contexts and is handled by software. In addi­
tion to the defaUllt context object size, associated with each
process is a default data part size and access part size of a
parameter segment to be passed between contexts on procedure
calls. However, instead of allocating a separate parameter seg­
ment, an area of the data part and access part of each context
object is reserved for parameter passing. When the operating
system constructs the linked list of contexts, it places in the
context message field of each context, an AD for a refinement of
the previous context object. This refinement provides address­
ability to the parameter data and access fields as if they were a
single contiguous segment.

Figure 9-9 illustrates how a procedure accesses parameters
passed by its caller. The calling procedure places its data and
access parameters in the predefined parameter fields of its con­
text object. The operating system had previously created a re­
finement object descriptor for these parameter spaces and
placed an AD for the refinement in the next context object.
When the call occurs, the called context can access its parame­
ters through its context message AD.

9.5 Abstraction Support

The principal goal of the Intel 432 is support for
object-based programming. As previous1y described, the Intel
432 provides a set of basic system object types. Each of the
system object types is controlled by a type manager that is
implemented partially in hardware-through a set of type-spe­
cific instructions--and partially in operating system software.

9.5 Abstraction
Support

173

The Intel iAPX 432

174

..

Operand stack

Parameter data space ~

Processor-defined
data fields Refinement I+-- Context message AD

r- object

Processor-defined
descriptor

access fields

Parameter access space - Called Context Object
Other ADs

,
Calling Context Object

Figure 9-9: Intel 432 Parameter Passing

To extend the set of basic types, the Intel 432 provides mecha­
nisms for the creation of programmer-defined types and pro­
grammer-defined type managers. Since all objects are accessed
through a high-level language, the programmer uses the same
interface when dealing with system objects and with program­
mer-defined objects. A programmer is free to create new types
and type managers, adding to the set of available abstractions.

There are three system object types involved in type man­
ager support:

• the domain, which defines the procedures and objects local to
a single module of the type manager,

• the Type Control Object (TCO), which is used in creation of
system and programmer-defined objects, and

• the Type Definition Object (TDO), which defines a particu­
lar type manager.

This section describes the use of these objects for the creation
and manipulation of system and programmer-defined objects.

9.5.1 Domains and Refinements

A domain object defines a collection of procedures and asso­
ciated objects accessible to those procedures. By using the 432
refinement mechanism, a programmer can create a protected

procedure environment with a domain object. That is, a pro­
grammer can construct a set of callable procedures that will
have access to objects not available to their callers.

Figure 9-10 shows a domain that consists of a collection of
procedure ADs and object ADs. To construct a protected sub­
system, the creator of the domain divides the domain into two
sections: a pub~ic section and a private section. The public
section consists of ADs for procedures that will be callable by
users of the dornain. The private section consists of ADs for
procedures and objects that will be available only to called pro­
cedures executing within the domain.

Through the CREATE REFINEMENT instruction, the domain's
owner construc1ts a refinement of the domain that addresses
only the public section-the section that win be visible to users
of the domain. The CREATE REFINEMENT instruction returns an
AD for this refinement. The AD for the domain refinement
can be made available to other programmers, who can use this
AD to call any of the public procedures. However, a possessor
of this refinement AD has access only to the domain's public
part.

This use of domain refinement creates a protected subsys­
tem because of the action of the CALL instruction. When a CALL

instruction is executed, the hardware places an AD for the
called domain in the new context object, where it is accessible
to the called procedure. The hardware always loads an AD for

~ for domain refinement I

Public {
Part

Procedure AD I Code L
Procedure AD

~ I Code
Procedure AD

Private {
Part

Local procedure AD

I Code

Local object AD n Local object AD I Segment I I
Domain Object

Figure 9-10: Intel 432 Domain Refinement

I

I

9.5 Abstraction
Support

175

The Intel iAPX 432

176

the complete domain, even if the CALL was made through a
refinement. Therefore, a procedure invoked through a refine­
ment of a domain will have access to all of the ADs in its
domain through its context object. Once executing, the proce­
dure can manipulate private data objects or call private domain
procedures.

9.5.2 Creation of Typed Objects

The Intel 432 supports two kinds of object types: system
types and programmer-defined types. The system types were
listed previously in Table 9-1; instances of system types are
identified by the 8-bit system type field in their object table
object descriptors. Two of the system types are generic object,
which is a basic segment object with no special attributes, and
dynamic object, which is an object controlled by a program­
mer-defined type manager.

Typed objects of any kind are created through the CREATE

TYPED OBJECT instruction. Execution of the CREATE TYPED OB­

JECT instruction requires possession of the AD for a type control
object (TCO). A TCO permits its possessor to create and ma­
nipulate objects of a specific type. The data part of a TCO is
illustrated in Figure 9-11.

Creation of a system object (with the exception of generic
objects) requires possession of a TCO whose object type field

r----

r--- U

I
12 x I x I x x

8 I 4 I x x x x x

L

Unused

Write Rights

Read Rights

nchecked Copy Rights

Delete Rights

Dynamic/System

Type Rights

Type Testing Control

Unused

Object Type

Figure 9-11: Intel 432 Type Control Object Data Part

contains the 8-bit type value of the system type to be created.
In addition, the dynamic/system bit (bit 0) of the TeO must
indicate that the TeO is for a system object. Teas for the
creation of specific system object types are constructed by the
operating system and given to the operating system type man­
agers for those types. The type manager for a system object is
privileged only .in its possession of the TeO for its type.

Possession of a TeO for a specific type also allows the type
manager to execute an AMPLIFY RIGHTS instruction for objects
of its type. In this way, the type manager can return restricted
ADs to its clients. These restricted ADs cannot be used to
access the objects to which they refer. When a client returns an
AD to a type manager as a parameter, however, the type man­
ager can use its TeO to amplify the rights in the AD. Given an
AD for an object and an AD for a TeO with matching type,
the AMPLIFY RIGHTS instruction ORs the rights bits specified in
the TeO with the rights in the object AD, creating an AD with
additional privileges. If the TeO and AD types do not match,
the AMPLIFY RIGHTS instruction will cause a fault.

9.5.3 Programmer-Defined Types

To build a private type management system, a programmer
obtains a type definition object (TDO) from the operating sys­
tem. A TDO has no processor-defined fields, although its ac­
cess part will typically be used to hold ADs for the domains
that implement the type manager. The basic function of the
TDO is to be the representative "type" for its objects. That is,
while the type of a system object is specified by an 8-bit system
object type field, the type of a dynamic object is specified by an
AD for a TDO. All objects created by a specific type manager
have an image of the AD for the type manager's TDO stored in
their object table object descriptor (shown as TDO-AD in Fig­
ure 9-3).

Once a type manager has obtained a TDO, it then obtains a
TeO from the operating system for its type. This TeO will be
for a dynamic object, as specified in its system type field and in
the dynamic/system field. A TeO for a dynamic object con­
tains an additional field-a single AD in its access part. This is
the AD for the defining TDO. When the type manager exe­
cutes a CREATE TYPED OBJECT instruction to allocate a segment
for the object's representation, it specifies its TeO and the size
of the segment to allocate. The hardware copies the TDO ac­
cess descriptor from the Teo into the object descriptor for the

9.5 Abstraction
Support

177

The Intel iAPX 432

178

new segment, thereby "typing" the segment. Figure 9-12
shows this addressing structure; the object descriptor for the
new dynamic object contains the physical storage information
for the object and the AD for the TDO.

The programmer-defined type manager, like the system
object type manager, protects its objects using restriction and
amplification. When a client requests the creation of a new
object, the type manager creates the object using the CREATE

TYPED OBJECT instruction. The type manager then initializes
the object appropriately and uses the RESTRICT RIGHTS instruc­
tion to produce an AD to be returned to the client. This AD
does not allow direct access to the object. When the client later
specifies this AD as a parameter, the type manager amplifies
rights in the AD to regain access to the object's representation.
Once again, the key to amplification is the possession of a
TeO. The type manager executes an AMPLIFY RIGHTS instruc­
tion specifying its private TeO and the AD for the object. If
the TeO and the object descriptor for the object both contain
the same TDO AD, the instruction will amplify the rights in
the object AD.

It is not necessary for programs to maintain ADs for all
possible type managers. Given an AD for an object, a program
can execute the RETRIEVE TYPE DEFINITION instruction; this
instruction returns the AD for the TDO associated with the
object. With the TDO AD, the program can access the AD for
the domain implementing the type manager and can call type
management procedures available through that domain. The
domain AD stored in the TDO will typically be a refinement of
the type manager's domain.

,....----~--_+l.! Domain AD I I Dynamic object AD It-------,~ TOO AD
t---------~ TOO

Typed object
storage -----,

information IL-+r----.
Object Descriptor • _____ ~

Storage Segment

Figure 9-12: Intel 432 Dynamic Object Addressing

9.6 Storage Resources

Previous sections have described the creation of storage seg­
ments through the CREATE OBJECT and CREATE TYPED OBJECT

instructions; however, they have not described the mechanism
by which primary memory is allocated. The abstraction of pri­
mary storage is encapsulated in Intel 432 storage resource objects.
A storage resource object (SRO) is a system object from which
memory is allocated. Every memory allocation instruction
specifies, either explicitly or by default, an SRO from which its
primary memory is taken.

Figure 9-13 illustrates the structure of an SRO and its asso­
ciated objects. The representation of an SRO consists princi­
pally of the AD for a physical storage object that describes a pool
of available primary memory, and an AD for an object table.
Each storage specifier in the physical storage object contains
the primary memory address and size of a single contiguous
block of free system memory. Initially, each physical storage
object has one storage specifier for a single large block. As
storage is dynamically allocated and deallocated from an SRO,
its memory becomes fragmented and new storage specifiers
must be created to address the discontiguous pieces.

Storage specifier ~J
Physical storage ~ Storage specifier

object AD

Object table AD r--
Current block

(Other ADs)
Beginning block

Storage Resource
Object Physical Storage Object

Object descriptor

Object descriptor

Object Table

Figure 9-13: Intel 432 Storage Resource Object

-I Memory

-I Memory

9.6 Storage Resources

I

I

179

The Intel iAPX 432

180

When a program executes a CREATE OBJECT instruction, it
specifies an SRO from which the storage is to be taken. The
hardware allocates primary memory on a rotating first-fit basis
from the SRO's storage specifiers. After allocating the mem­
ory, the hardware allocates an object descriptor for the new
object in the SRO's object table; an AD is returned that ad­
dresses the object through that object descriptor.

The SRO in Figure 9-13 is known as a global heap SRO and
is used to allocate relatively long-lived objects. Storage allo­
cated from a global SRO can be returned at any time. The
SRO's object table contains a descriptor that is the head of a
list of unused object descriptors in the table. This list is used
both for locating an empty table slot when an object is created
and for returning an object descriptor when an object is de­
stroyed. Returned storage is either combined with an adjacent
free block in the SRO, or a new storage specifier is constructed
to address it.

Global heap SROs provide great flexibility for dynamic stor­
age allocation. The disadvantage of global heaps, however, is
that they require garbage collection for deallocation of storage.
Although the overhead of garbage collection is acceptable for
long-lived objects, it is prohibitive for short-lived objects. In
particular, most objects created during the lifetime of a proce­
dure could be more efficiently deallocated when the procedure
terminates. For this reason, the Intel 432 provides a second
type of storage resource called a local stack SRO. A local stack
SRO supports efficient allocation and deallocation of short­
lived storage during the lifetime of a procedure.

A local stack SRO is not a separate object, but is associated
with a process object. Each process object contains a local stack
SRO, which consists of an AD for an object table and an AD
for a physical storage object. This physical storage object is
similar to that shown in Figure 9-13; however, it contains a
single storage specifier for a single storage block. This storage
block and the associated object table are used in a stack-like
(LIFO) fashion for allocation of short-lived local storage. The
local object table does not use a free list; instead, object
descriptors are allocated consecutively.

During a procedure invocation, each short-lived object is
allocated from a local stack SRO; each new object receives the
next contiguous object descriptor and the next contiguous sec­
tion of the storage block. When the procedure returns, all of
the objects and object descriptors for short-term objects cre­
ated by the procedure can be deallocated. This deallocation is

simple when compared with global heap deallocation because 9.6 Storage Resources

both the object table and storage block are managed as stacks.
All of the short-t(~rm objects and descriptors allocated during a
procedure call can be quickly deallocated by returning the ob-
ject table and physical storage objects to their pre-call states.

Local stack SROs are therefore more efficient for allocation
and deallocation than global heap SROs, although they cannot
accommodate objlects of different lifetimes. The more difficult
problem presented by local stack SROs is the control of ADs
for local objects. Objects allocated from global heap SROs are
only deallocated by a garbage collector. The garbage collector
ensures that no ADs remain for an object before its storage and
object descriptor are deallocated. If an object with an existing
AD were deallocated, the AD would become a dangling refer­
ence. For example, suppose that AD X addresses object Y
through object descriptor Z. If object Y and object descriptor
Z are deallocated while X still exists, AD X will be a dangling
reference. Eventually, object descriptor Z will be reused to
address a newly created object, and AD X could be used erro­
neously to access that object.

This problem is compounded in the case of local stack SROs
by the rate at which object descriptors are reused. An object
descriptor deallocated by a procedure return will very likely be
reused by the next procedure call. Therefore, the Intel 432
must be able to ensure that when a procedure returns, no ADs
remain for short-term objects allocated during that call. To
prevent such dangling references, the Intel 432 controls the
propagation of ADs. The hardware prevents the storing of an
AD into a segment whose lifetime is longer than the lifetime of
the object addressed by that AD.

The lifetime of an object is determined by the level number
stored in its object descriptor. Each process has a current level
number; the level number is first initialized when the process
is created and is incremented by one at each procedure call.
When an object is created, the current level number is stored
in its object descriptor. An attempt to copy an AD for an object
created at level N into a segment created at level N -1 or lower
will cause a fault. When an object allocated from a local stack
SRO is destroyed on procedure return, the system can guaran­
tee that no ADs for that object remain; that is, all of the storage
into which the AD could have been copied must have been
destroyed when the object was destroyed.

Any object that is to be passed to other processes or stored
in a more global segment must be allocated from a global heap 181

The Intel iAPX 432

182

SRO instead of the default local stack SRO. The architecture
ensures that only correct copying of ADs takes place. The un­
checked copy rights bit in Intel 432 ADs provides an optimiza­
tion for the required level check. The unchecked copy flag
indicates whether the object was allocated from a level-O global
heap. If so the level check can be avoided; otherwise, the level
numbers in the object descriptors must be checked.

9.7 Instructions

The Intel 432 has a repertoire of about 225 instructions that
operate on characters, integers, floating point numbers, and
system objects. There are no general registers. Each context
has a private operand stack that can be used for storing scalar
temporaries. Scalar operands for instructions can be located
either on the stack or in memory, and memory-to-memory
operations are allowed.

One of the unique features of the Intel 432 is its instruction
encoding. Instructions are bit-variable in length and can start
on any bit boundary. The instruction pointer thus contains the
bit offset into the current instruction segment, which can be up
to 8K bytes in size. An instruction consists of up to four fields,
as shown in Figure 9-14. The fields themselves are also varia­
ble-length and highly encoded.

The 4- to 6-bit class field specifies the number of operands
and their sizes. For example, the class may indicate that an
instruction requires three 32-bit operands or two 16-bit oper­
ands. Next, the 0- to 4-bitformat field specifies whether each of
the operands is (1) to be found on the stack or (2) to be speci­
fied explicitly by a reference in the references field, and (3) if
specified explicitly, which reference corresponds to which op­
erand. The references field specifies where the (one to three)
operands are to be found. A stack operand requires no refer­
ence field entry, and a single reference may refer to two oper­
ands, as specified by the format field. For example, an operand
that is both a source and destination requires only one refer­
ence field to define its location. Finally, the 0- to 5-bit opcode
specifies the operation to perform.

Opcode References Format

Figure 9-14: Intel 432 Instruction Format

Class
Least
Significant
Bit

(Variable length) (Variable length)

Displacement component Access component

Displacement Length Indicator -

Access Component Control --------'

Data Reference Mode ----------'

Figure 9-15: Intel 432 Reference Format

The references field is the most important with respect to
object addressing and requires the most complex encoding.
The size of the references field depends on the number of oper­
and references and the addressing mode for each. An instruc­
tion operand can be either a scalar operand (e.g., integer, char­
acter, floating point) or an object-level operand (e.g., process,
domain, message port). If the instruction operand requires a
scalar, the reference specifies its location. If the instruction
operand requires an object-level operator, the reference speci­
fies an AD for the object.

The general format of a single reference is shown in Figure
9-15. The length and format of the variable-length access and
displacement components are determined by the leading con­
trol fields. For example, in the case of a scalar operand, the
instruction must specify two components needed to locate the
scalar:

• the location of an AD for the object containing the scalar, and
• the displacement of the scalar within the object's data part.

The access component field locates the AD for the object; it is
a 4- or 8-bit field whose format was shown in Figure 9-8. The
displacement component, in the simplest addressing mode, is a
7- or 16-bit integer displacement.

Several addressing modes are allowed that provide for indi­
rect specification of the access and displacement components;
that is, the access and displacement specifications for the refer­
ence can be found in memory. For example, in the case of an
indirectly specified displacement, the displacement field of the
reference must itself contain an access and displacement part.
Such general addressing modes provide for flexibility but can
require many memory accesses in order to manipulate a single
data element. Thus, a reference to an element of a dynamically
allocated one-dimensional array might indicate:

9.7 Instructions

183

The Intel iAPX 432

1B4

• an access selector for the segment containing the array,
• the displacement of the array in the segment,
• an access selector for a possibly different segment containing

the array index, and
• a displacement of the index in this second segment.

Many options are provided for each part of the specification
and, in general, commonly occurring options can be efficiently
encoded. Stack operands save the most instruction space be­
cause they require no reference field bits. Space can also be
saved in the reference field if operands are located at the start
of a segment because this requires no offset. There is a large
variance in instruction size-a three-operand instruction can
take from 10 to more than 300 bits, depending on where the
operands are to be found.

9.B Discussion

The Intel iAPX 432 is certainly one of the most sophisti­
cated architectures in existence. By using the object-oriented
approach throughout the development effort, the Intel '432
designers have produced an extremely uniform and tightly-in­
tegrated hardware/software system. This uniformity of hard­
ware and software systems is due to the use of a consistent
philosophy. Everything in the Intel 432 is an object. All objects
have associated types that specify the operations that can be
performed on those objects. Some objects have hardware-de­
fined operations while others do not. However, from a lan­
guage viewpoint, all objects are accessed in the same way.

All objects, whether hardware-supported or not, are con­
trolled by type manager modules. Programmers can freely add
new types to the system by creating new type managers. The
mechanisms of domain refinement and type definition object
provide a way for type managers to exhibit privilege over their
objects and the environments in which their procedures exe­
cute. A type manager can restrict and later amplify privileges
in ADs for its objects by using a privately held type control
object. By permitting client access to type management proce­
dures through a refinement, an executing type management
procedure can obtain access to a richer environment than its
caller.

There are no special privileges in the Intel 432 system. The
mechanisms used by programmer-defined type managers are
identical to those used by operating system type managers.

In addition, the concept of programmer-defined type is an 9.8 Discussion

integral part of the addressing system, in that each object
descriptor has space for a TDO access descriptor. Few pre-
vious systems have allocated sufficient space to integrate
programmer-defined objects so tightly into the hardware
architecture.

The designers of the Intel 432 have closely adhered to the
concept of separate procedure address spaces, as presented in
the Dennis and Van Horn model. Each procedure invocation
causes the construction of a new context object that defines the
procedure's addressing environment. This is true even of calls
to procedures within the same domain,. for which both proce­
dures will have access to a similar set of objects.

Although an initial implementation of the Intel 432 had sep­
arate data segments and capability segments, the current ver­
sion supports segments with both a data part and a capability
part, as on STAROS. The object descriptor addresses the bar­
rier between the two parts and contains the size of each part.
Refinements are provided that allow the construction of what
appears to be a single two-part segment from contiguous sub­
sets of the two parts of a segment. Two-part segments do not
allow the flexibility provided by tagging; however, they effec­
tively reduce the number of needed segments by a factor of
two. This affects performance by reducing the number of seg­
ment allocations required to create a new object.

Another performance enhancement has resulted from the
pre allocation of context objects. When a procedure call occurs,
the hardware simply follows the context link to the next wait­
ing context object. That object has already been prepared with
a refinement of the parameter space in the calling context. In
addition, the use of local stack SROs for allocating short-lived
objects reduces the need for garbage collection. These changes
to the CALL instruction have reduced its execution time from
300 microseconds on early prototypes to under 100 microsec­
onds on the cur:rent version of the Intel 432.

Capabilities on the Intel 432 are 32 bits in size. Of this, 24
bits form the actual ID or address part of the capability. Thus,
there are a maximum of 224 objects at any time. Segments have
a maximum (data part) size of 64K, which is relatively small
when compounded by the lack of cross-segment addressing.
That is, due to the structure of Intel 432 addresses, it is not
possible to transparently cross a segment boundary by incre­
menting the address. Therefore, the compiler must produce
special code for objects whose data parts cannot be held in a 185

The Intel iAPX 432

186

single segment. This is true also of procedures that are larger
than 8K bytes, although this is probably a rare occurrence.

The instantaneous address space of the Intel 432 is 232

bytes, based on the use of the four environment ADs stored in
the context object. These environment ADs act somewhat like
capability registers, and, in fact, the Intel 432 GDP has special
internal registers to hold their values. At any time, ADs in use
by a procedure must be stored in one of the four environment
objects. To access objects located indirectly through the envi­
ronments, the procedure must explicitly traverse the structure,
loading ADs for each level in the tree.

The Intel iAPX 432 is an ambitious system in terms of both
architecture and implementation. It is particularly impressive
when considered in relation to the other available single-chip
processors. But it is fair to say that the Intel 432 has not been
a commercial success. Although there were over 100 Intel 432
systems in the hands of universities and customers by 1983,
this is a small number by microprocessor standards. The com­
mercial problems of the Intel 432 are probably due in part to
premature (and somewhat overzealous) marketing of the prod­
uct before its implementation and software were ready. The
initial version of the Intel 432 had performance problems,
which have been corrected to some extent by later versions of
the architecture. Still, whether or not the Intel 432 succeeds as
a product, it has opened a new era of microprocessor design.

9.9 For Further Reading

The book by [Organick 83] presents the most comprehen­
sive description of the Intel 432. It describes the major compo­
nents of the Intel 432 system-the Ada compiler, the iMAX
operating system, and the iAPX 432 hardware architecture­
and provides Ada programming examples as well. In the pub­
lished literature, the paper by Pollack, Kahn, and Wilkinson
describes the philosophy behind the Intel 432 object filing sys­
tem [Pollack 81], and the paper by Cox, Korwin, Lai, and
Pollack discusses the Intel 432 interprocess communication
facility used for both message passing and process scheduling
[Cox 83]. Storage management on the Intel 432 is discussed in
[Pollack 82]. The Architecture Reference Manual [Intel 81,
Intel 82] contains detailed descriptions of the Intel 432 archi­
tecture.

10

Issues in Capability-Based
Architectures

10. 1 Introduction

Previous chapters have followed the transition from early
descriptor-based computer architectures to the latest in com­
mercially available capability systems. The examination began
with the Burroughs BSOOO and the Rice University computer.
Both of these machines used descriptors, or user-addressable
base/limit registers, to define a program's addressing environ­
ment. Capability systems extended this idea in several signifi­
cant ways:

1. Capabilities are protected addresses. They can be freely cop­
ied, passed as parameters, and transmitted from domain to
domain, but cannot be forged or modified by users.

2. Capabilities are context-independent. They address the same
object independent of the domain or process in which they
are used.

3. Capabilities contain access rights as well as addressing infor­
mation.

4. The address or identifier in a capability is independent of
the physica1 base and limit information used for memory
mapping. This identifier is used to locate a single physical
descriptor for the addressed object.

S. Capabilities and the objects they address can be saved in
long-term storage. They have a lifetime longer than the ex­
istence of the process that created them.

6. Capabilities provide a uniform mechanism for naming all
types of objects in the environment, both hardware and soft­
ware supported. This enables users to extend the facilities
provided by the hardware and vendor-supplied operating
system software. Moreover, they provide run-time support
for abstraction and object-based programming. 187

Issues in Capability­
Based Architectures

ISS

Of course, these capability concepts did not appear at once but
evolved over time. Each new system was able to benefit from
experience gained in previous systems-even those that were
short-lived.

This chapter discusses some of the design issues in capabil­
ity-based systems. Although each topic could be a chapter in
itself, the discussions here are relatively brief. Where possible,
tradeoffs are examined in the light of the various systems de­
scribed.

10.2 Segmentation

This book began by examining the objectives of early sys­
tems in diverging from the conventional linear address space.
Because each of the systems examined includes a segmented
memory space, it is fitting to begin the discussion with a review
of segmentation. Segments are the fundamental objects in ca­
pability systems; they provide the units of addressing and shar­
ing.

The reasons for segmentation are much the same today as
they were in 1960:

1. Segments correspond to logical program entities. They can
be used to decompose programs and data structures into
units that are meaningful to the programmer.

2. Segmentation allows the logical entities to grow or shrink.
3. Segmentation supports memory relocation and virtual

storage.
4. Segments provide logical units of separation, protection,

and sharing, both between programs and processes and
within a single program or process. Moreover, segments
allow for a dynamically changing memory environment.

On early machines, a segment was addressed through a de­
scriptor-usually contained in a descriptor segment. Iliffe's
Basic Language Machine included a type for each segment to
indicate the kind of information contained there. The type was
stored in the descriptor for a segment; it allowed automatic
conversion and tagging when data elements were moved from
memory into registers.

On current object-based machines, abstract objects are
composed of one or more segments. For multi segment objects,
a capability for a base segment serves to address the object as a
whole. This base segment contains pointers to the other seg­
ments forming the object. Segments are thus the basic units
addressed by capabilities.

Although segments are the fundamental units of storage al­
location, paging can be provided along with segmentation, as
in the IBM System/38. Each segment is divided into fixed­
sized pages that can be independently located. Paging adds
additional storage overhead for the system data structures that
maintain information about the memory state. However, the
division of physical and virtual storage into fixed-sized units
simplifies memory management by removing the memory
shuffling and compacting problems.

10.3 Storage of Capabilities

Capability systems have no privileged mode of operation.
All privileges, including those permitted to the operating sys­
tem, are derived from the possession of capabilities. The integ­
rity of the entire system depends on the fact that users cannot
forge capabilities or modify them directly. For this reason, the
hardware must be able to detect and prohibit any attempt to
modify a capability with data instructions. Two different
schemes have bt!en used to provide this capability protection:
C-lists and tagging.

Most systems have chosen to implement C-lists-often im­
plemented as c:apability segments-to protect capabilities.
U sing this protection mechanism, capabilities are stored only
in capability segments where they are segregated from user­
modifiable data. Separation of capabilities can complicate the
construction of record-oriented data structures in which it is
natural to mix data and pointers (capabilities). However, a
compiler can mask this problem by implementing the structure
in two parts or by storing a specifier for the capability, such as
the C-list index, instead of the capability itself.

The implemt!ntation of C-lists is technologically simpler
than tagging; it requires no special hardware on a per-informa­
tion-unit basis. A single bit in the physical mapping informa­
tion for each segment indicates whether the segment contains
capabilities or data. Or, as is often the case, the distinction is
maintained in the access rights of capabilities used to address a
segment. Each segment capability indicates whether capability
or data access is allowed to that segment. The operating system
is privileged because it possesses capabilities that allow data
access to user's capability segments.

In addition to implementation advantages, C-lists can pro­
vide added efficiency in capability addressing. For example,
capabilities can be specified by their index in a C-list. If multi-

10.3 Storage of
Capabilities

189

Issues in Capability­
Based Architectures

190

pIe C-lists are allowed, then multiple indices may be needed.
Or, if the number of directly addressable capability segments
can be restricted (e.g., the Intel 432's 4 environments or CAP's
16 capability segments), a small number of bits appended to
the index can specify which C-list to use. Short forms of ad­
dressing can be provided for cases where the most frequently
used capabilities are stored at small displacements from the
start of the C-list. Thus, C-list schemes often result in a reduc­
tion of the number of bits needed to refer to a capability, as
compared to the number of bits needed for a general memory
address.

The second method of capability protection requires the use
of tag bits. Tagging allows capabilities to be stored with user
data. The ability to combine capabilities and data can simplify
data structuring for the user. Tagging probably has not been
used much in the past because of the added memory cost and
implementation complexity. Still, several early descriptor sys­
tems used tagging when memory was scarce. Certainly mem­
ory cost should not be an issue today.

The storage cost of tagging depends on the size of the tagged
information units: the smaller the tagged unit the greater the
overhead. Most modern systems are byte addressable, but tag­
ging on a byte basis is probably overly expensive. On the Sys­
teml38 there is one tag bit for each 32-bit word. In a case where
tags are not provided on the smallest addressable information
unit, capabilities must be aligned on the boundary of a tagged
unit, such as a 32-bit word. If capabilities are larger than the
tagged unit, as they are with 16-byte System/38 capabilities,
alignment must be on larger units.

The System/38 requires that capabilities be aligned on 16-
byte boundaries and that the tag bits associated with the four
consecutive words be set. The alignment requirement prohib­
its a user from addressing four consecutive tagged words that
do not form a valid capability. For example, two consecutively
stored capabilities will cause eight tag bits to be set. A user
could address four consecutive words consisting of the last two
words of the first capability and the first two words of the
second capability. This four-word item is not a valid capability
even though the associated tags are set. The alignment require­
ment could be eliminated at the cost of a second tag bit with
each 32-bit word. The second tag bit would indicate whether
or not the associated word is the first word of a multi-word
capability.

Tag bits can be either part of a data element, which reduces

the number of bits in the element, or part of a special storage
area associated with each element. The System/38 chose to
store the tags outside of the data element in an area accessible
only to microcode. When a segment is written to disk, the
hardware extracts the tags and stores them in a compact form
along with the segment. They are later reinserted when the
segment is read back into memory.

STAROS and the Intel 432 have chosen a scheme combining
advantages of both tagging and C-lists. These systems support
two-part segments that contain a data portion and a capability
portion. The descriptor for the segment indicates the size
of each portion and the position of the dividing line. Address­
ing occurs as with separate segments; the type of an operand
determines in which portion it is contained. This design re­
duces the number of segments and mapping descriptors. Since
most objects require both a data part and a capability part, the
two-part segment scheme halves the number of segments
needed to hold an object's representation.

The tagged memory approach is appealing in terms of gen­
erality; it allows capabilities to be freely mixed with data, just
as pointers or addresses are freely mixed in virtual memory
systems. A single stack can serve for local storage of both data
and capabilities. The actual implementation of a tagging
scheme has a number of complexities. The C-list approach is
appealing in its simple implementation and in the addressing
efficiencies that can be gained. C-lists can reduce the number
of bits needed to address capabilities. Another advantage of
C-lists (which will become apparent in later sections) is that
they reduce the time required to search for capabilities.

In his comparison of the two techniques, Fabry claims that:

... the advantages ofthe partition approach are all techno­
logical, while some of its disadvantages are intrinsic.
Thus one might expect the tagged approach to dominate
in the long run [Fabry 74].

It may be too soon to tell, but so far, the partition (C-list)
approach has dominated. Credit is probably due to current
high-level languages, whose use masks the intrinsic disadvan­
tages of C-lists.

10.4 Capability Ilepresentation

A fundamental decision in capability system design is the
physical representation of capabilities. A capability contains
two parts:

10.4 Capability
Representation

191

Issues in Capability­
Based Architectures

192

1. an identifier or name for an object, and
2. some access rights or privileges to that object.

The implementation of these fields influences the generality
with which the capability can be applied, the work required to
manage capabilities in both hardware and software, and the
lifetime of objects and capabilities. In evaluating the evolution
of the DEC PDP-ll minicomputer, Bell and Strecker state
that:

There is only one mistake that can be made in a computer
design that is difficult to recover from-not providing
enough address bits for memory addressing and memory
management [Bell 76].

This applies to capability systems as well as conventional com­
puters such as the PDP-ll. The capability identifier corre­
sponds directly to the address on conventional machines.

Early descriptor and codeword machines used single-word
descriptors to address segments. Each descriptor contained all
of the mapping information for the segment. Copying of a de­
scriptor caused duplication of the mapping information. This
duplication of memory base and limit values for a single seg­
ment added complexity to the task of relocation, which the
descriptor was meant to simplify.

Two characteristics of these machines simplified the imple­
mentation of descriptors. First, the machines had large words
and were word addressable. Second, they had relatively small
memory spaces. Therefore, the base and limit information
could be easily packed into a single word of the word-address­
able machine. This removed the need for special alignment of
descriptors.

New capability systems must contend with smaller word
sizes, larger address spaces, byte address ability , and the
greater volume of information needed to manage the system
efficiently (e.g., usage and garbage collection bits). An addi­
tional problem is the long lifetime of objects on capability sys­
tems, in contrast to conventional machines where an object
only exists for the lifetime of a program. The longer the object
lifetime, the more bits needed for an object's address. These
issues have forced an important distinction between the capa­
bility itself and the physical mapping information for the ob­
ject. Thus, we see a separation between the capability, which
contains an identifier, and the mapping descriptor, which is
generally located in a centralized system table. This distinction

is exemplified in the separation of information between Intel
432 access descriptors and object descriptors.

An importanlt component of capability operation is the
structure of the identifier. Each object or segment is given an
ID at the time of its creation. This ID is often generated by a
sequential counter, a clock, a disk address, or the values of
indices used to locate the object's descriptor. The number of
bits in the ID partly determines the number of objects that can
exist at one time. Depending on the number of bits used, the
ID can be unique for all time, unique for the life of the object,
or unique during the object's residency in primary memory.
Each of the possibilities has potential problems.

On most capability systems an object's ID is a direct index
into a system ma.pping table. The mapping table contains de­
scriptors for the object, giving its physicallocation~ size, and so
on. For example) capabilities on the Plessey 250 contain a 16-
bit index into the System Capability Table. The use of this
index as an object's ID places two restrictions on the system.
First, the maximum number of addressable segments (at least
in primary memory) at anyone time is 216 or 64K. Second, the
System Capability Table must always be resident in physical
memory. On the Plessey 250, the mapping table for 64K de­
scriptors occupies about 589K bytes of storage.

The Intel 432 uses a two-level indexing structure, where the
ID is 24 bits, allowing for 16 million objects. The 24-bit ID is
divided into two 12-bit table indices. The first selects a de­
scriptor in the central Object Table Directory. This descriptor
addresses an object table in which the second index locates the
descriptor for tht! object (this structure was shown in Figure
9-5). The two-level scheme allows the second-level object ta­
bles to be swapped out, reducing the amount of required stor­
age overhead. Only the Object Table Directory, which has a
maximum size of 64K bytes, need always be memory resident.

Both the Plessey and Intel mechanisms provide for a limited
number of objects relative to the lifetime of the system. There­
fore, object IDs must be reused when objects are destroyed.
One problem with reuse of IDs is knowing what IDs are availa­
ble to be reused. Since an object's ID is an index in the map­
ping table, a link(!d list of free table slots can be kept and used
to assign new IDs and descriptors. When a new object is cre­
ated, a free descriptor is taken and its index becomes the ob­
ject's ID.

A second problem with reusable IDs is dangling references.
When an object is deleted, outstanding capabilities for that

10.4 Capability
Representation

193

Issues in Capability­
Based Architectures

194

object will still reference the mapping table descriptor slot for
the object. If a new object is assigned to that descriptor slot,
the old object's capability could be used to gain access to the
new object. This implies that (1) an object cannot be deleted
(or its descriptor reallocated) while capabilities exist for the
object, or (2) all capabilities for an object to be deleted must be
found and disabled. This problem is discussed further in Sec­
tion 10.7 on object lifetimes and garbage collection.

Several capability systems have tried to alleviate the prob­
lems inherent in indexing schemes by implementing a unique­
for-aU-time ID space. On such systems, the ID is sufficiently
large that the IDs are never used up. For example, object IDs
on Hydra are 64 bits, allowing for over 1019 objects (it is left as
an exercise for the reader to determine how long this address
space would last if the system creates, for example, 100 new
objects every millisecond). The IBM Systeml38 architecture
also provides a large address space. A 40-bit ID, or segment
number, provides for over one trillion segments. This number
of segments is not likely to be consumed in the lifetime of most
systems. Another unusual feature of the Systeml38 is that ca­
pabilities contain a virtual address that can reference a specific
byte. In contrast, on most systems the capability identifies a
segment, and a separate byte offset must be supplied inde­
pendently. This feature is reminiscent of the earlier descriptor
machines.

Of course, with a large address space, locating an object's
descriptor from its unique ID is more complex than with direct
indexing. The Hydra system hashes the unique ID to select
one of 128 lists of active object entries in the Active Global
Symbol Table. If the object is not found, a search of the Pass­
ive Global Symbol Table is made. Because the IBM Systeml38
uses paging, mapping information is associated with each page
of a segment. A Page Directory Table contains the unique vir­
tual page number of each page of primary memory. A hashed
lookup is made in the Page Directory Table. If the lookup fails,
a page fault occurs and the page must be read in from disk.
Systeml38 capabilities retain the same form whether or not the
segment is in primary memory.

All of these schemes require a one- or two-level table lookup
to translate a capability identifier into a memory address. This
overhead is comparable to the overhead involved in any seg­
mented or virtual memory system. However, access via capa­
bilities may incur additional overheads in order to validate
type, access rights, and offset. Also, schemes that allow indi-

rection in capabilities may require additional lookups. On the 10.5 Objects

IBM Systeml38, some references require a user profile search
to validate access rights to the object. References on the Intel
432 may require access to an object selector in memory that
specifies the location of a capability operand. Those systems
that do not have explicit or implicit capability registers always
require an extra memory reference to fetch the capability from
memory.

With the use of caches, translation buffers, and other proc­
essor-internal registers, there are probably no inherent per­
formance disadvantages of capability system addressing rela­
tive to conventional virtual memory systems. All sophisticated
modern systems require several levels of addressing indirection
and rely on specialized high-speed memory to reduce the ap­
parent overhead.

10.5 Objects

One of the more interesting developments in computer ar­
chitecture is the relationship between capability hardware and
object-based software. Capabilities provide a uniform naming
mechanism for all types of objects. In addition to simple seg­
ments, capabilities are used to address abstract objects whose
representations are stored in segments. This ability to uni­
formly address complex objects allows the programmer to ex­
tend the architectural interface in order to support high-level
operating system or application functions.

All object-based systems supply a basic set of system ob­
jects. These objects usually provide for low-level resource
management and interprocess communication. For example,
message ports and processes are common system-supported
objects. The IBM Systeml38 also includes a number of system
objects that aid in the construction of database systems. Hard­
ware support of object operations increases performance and
hides object implt!mentation.

One possible disadvantage of supporting many objects at
the hardware level is the added complexity of the machine.
The Intel 432 and IBM Systeml38 architectures are surely
among the most complex in existence. The chances for error in
hardware or microcode design and implementation are great.
In addition, any high-level mechanism that is moved into hard­
ware must be carefully considered. Because the mechanism
and its interface cannot easily be changed, an ill-designed
mechanism will simply waste valuable resources. The tradeoff 195

Issues in Capability­
Based Architectures

196

of whether or not to support a particular type in hardware is
one of performance and integrity versus machine complexity.

10.6 Protected Procedures and Type Extension

One of the strengths of capability systems is that they allow
operating systems and users to extend the hardware interface
in a uniform way. This facility is available because capabilities
can address operating system and user-implemented objects, as
well as hardware supported objects. The only difference is that
software-implemented operations are obtained through a CALL

or ENTER instruction, while hardware-implemented operations
are obtained through hardware instructions.

There are several requirements for a system that allows
users to construct their own type managers: that is, protected
subsystems that create and manipulate protected objects.

1. A user must be able to construct a type manager: an execu­
tion environment consisting of type management procedures
and private data segments and objects. This private environ­
ment is usually called a domain. The domain is the static
representation of the type management system.

2. The type manager must be able to distribute controlled ac­
cess for its execution environment to its clients. Access is
passed through a capability that permits invocation of public
procedures but gives no access to any of the private objects
in the domain.

3. The hardware must supply a mechanism to invoke the envi­
ronment. Using the capability for the domain, a client must
be able to cause execution of one of the public procedures in
the domain. The invocation creates the dynamic type man­
agement environment in which the executing procedure has
access to domain-local procedures and objects not available
to its caller.

4. A type management procedure executing within the domain
must be able to create new objects. It must be able to allo­
cate segments in which the representation for new objects
can be stored.

5. A type management procedure must be able to return to a
client a sealed capability for an object. The sealing mecha­
nism must prohibit the client from directly accessing the
object's representation. Thus, the client holds the capability
as proof of ownership and can pass it on to other users. Any
operations on the object are performed by passing the capa­
bility as a calling parameter to a type management proce­
dure. The type manager must retain the privilege to unseal
capabilities of its type, thus gaining access to their represen­
tations.

Capability systems have implemented the addressing of pro­
grammer-defined type managers in several ways. One common
mechanism is to provide a new instance of the type manager for
each new object. When an object is created, the type manager
returns an enter capability for a new instance of itself. This
capability addresses a domain that includes capabilities for
type management procedures along with a capability for the
representation of the new object instance. The object is manip­
ulated by calling type management procedures through the re­
turned domain capability. The Plessey System 250 Central
Capability Block and CAP Enter PRL scheme are examples of
this mechanism.

A second mechanism is the use of restriction and amplifica­
tion of capabilities. The type manager returns restricted capa­
bilities for new object instances to its clients. These restricted
capabilities cannot be used to access an object's representation,
although they contain type-specific rights. The type manager
retains a private capability that permits it to amplify all capa­
bilities of its type. Clients of such a type manager must either
have a separate capability for the type management domain or
be able to access the domain indirectly through the object capa­
bility. The Hydra and Intel 432 systems use restriction and
amplification. The Hydra TYPECALL mechanism allows the
possessor of the capability for an object to call the object's type
manager. The Intel 432 RETRIEVE TYPE DEFINITION instruction
returns to the caller a capability for the type management do­
main of a specified object capability.

Whatever the mechanism, a system must be able to (1) de­
fine a procedure execution environment that is distinct from
the environment in which the procedure was called and (2)
protect the representation of an object so that only its type
manager can directly modify its storage. A system that permits
users to create such. environments simplifies the construction
and extension of operating systems by eliminating the notion of
privilege that exists in conventional systems. Thus, modules
traditionally constructed as part of a monolithic privileged ker­
nel can be implemented and debugged independently as user
programs.

10.7 Object Lifetimes and Garbage Collection

The object concept has dramatically changed the conven­
tional concept of secondary storage. Traditional systems have
stream-, record-, or block-oriented file systems that preserve

10.7 Object Lifetimes
and Garbage
Collection

197

Issues in Capability­
Based Architectures

198

information. Program-addressable entities are by default not
long-lived; preservation of short-lived entities requires that
they be converted to a format acceptable to the file system. On
object-based systems, it is natural to wish to preserve objects
on secondary storage-that is, to provide a virtual object stor­
age system.

Many capability systems distinguish temporary and perma­
nent objects. The CAL-TSS system became overly complex to
some extent because of the decision not to handle secondary
memory in the kernel and the inability to name temporary
objects in the same way as permanent objects. Plessey 250 pro­
vided a virtual segment interface to the user and handled stor­
age of capability segments on disk. Hydra presented a large,
flat, object address space. Object storage is provided by both
the Systeml38 and the Intel 432. Both of these systems also
have temporary objects that have special treatment. The Sys­
teml38 reserves part of its address space for temporary objects;
these objects do not receive normal protection and are deleted
when the system is booted. The Intel 432 gives temporary sta­
tus to objects allocated out of local stack storage; these objects
are implicitly deleted when the procedure in which they are
allocated returns.

Object destruction is a difficult problem in capability sys­
tems. On the Systeml38, each object has an owner and the
owner can delete the object explicitly. However, on most capa­
bility systems there is no concept of an object's owner. An
object has some number of users, and each user possesses a
capability for the object. Since capabilities can be easily deleted
or passed from user to user, the set of users for an object can
change dynamically.

It is often difficult to tell when an object is no longer
needed. Garbage objects must be deleted or the system's disk
or memory will eventually overflow with useless objects. The
solution to this problem is garbage collection. A garbage collec­
tion process (or processes) is responsible for finding and delet­
ing garbage objects. An object is garbage when it can no longer
be accessed by any user. In the simplest case, if all capabilities
for the object have been deleted, the object can never be refer­
enced and can safely be destroyed.

One method of garbage detection is to maintain a reference
count with each object. The reference count indicates the num­
ber of capabilities for the object and must be updated when­
ever a capability for the object is copied or deleted. When a
reference count is decremented to zero, the object can be de­
leted.

There are at least two problems with reference counts that
make them insufficient to solve the garbage collection problem
completely. First, circularities can exist in the object structure.
For example, if object A contains a capability for object B,
while object B contains a capability for object A, then both will
have reference counts of at least one. However, if no other
capabilities exist for either object, then A and B are not accessi­
ble and should be deleted. Second, it is difficult to maintain
the integrity of reference counts over system crashes. It would
be costly to update a reference count on secondary storage for
each capability copy or delete operation. If reference counts are
only updated periodically on disk, a system crash can intro­
duce inconsistencies.

Object-based systems must, therefore, resort to garbage col­
lection. A simplified garbage collector would operate as follows.
The garbage collection process starts with a set of root objects.
In general, each user of the system has a principal C-list or
directory that is the root of all objects the user can access; these
lists or directories form the roots. The garbage collector first
marks every object in the system as being unreachable (there
must be some way of locating all objects through a master di­
rectory). The garbage collector then marks all objects in the
root directories as being reachable. The C-lists of these objects
must then be scanned to see if they refer to other objects to be
marked as reachable, and so on recursively. Eventually all ob­
jects will be marked as reachable or unreachable, and a pass
can be made to delete the unreachable objects.

Garbage collection is complex because it must operate con­
currently with normal system processing. That is, a garbage
collector must operate while objects and capabilities are being
created, copied, and deleted. On some systems,. such as
STAROS, the garbage collector must be concerned with parti­
tioning of the system. It must be able to operate while some
nodes are unreachable and still guarantee that it will not delete
an accessible object (worse than not deleting a garbage object).
Similar problems exist on any system with multiple secondary
storage devices in which one or more devices can be off-line at
a given time. The garbage collector must be capable of finding
objects that are not referenced at all, as well as objects that are
members of unreachable cycles. Studies of garbage collection
systems and algorithms can be found in [Bishop 77], [Dijkstra
78], and [Almes 80].

A related problem is garbage collection of the address space;
that is, the reuse of descriptor slots in object mapping tables,
such as the Plessey 250 System Capability Table and the Intel

10.7 Object Lifetimes
and Garbage
Collection

199

Issues in Capability­
Based Architectures

200

432 object tables. These table slots must be reallocated because
the table, which must be resident in physical memory, cannot
map all objects known to the system. Therefore, on most sys­
tems, the mapping tables are used only to hold descriptors for
objects resident in primary memory. This implies that an ob­
ject can have different IDs during its lifetime if it is repeatedly
moved between primary and secondary storage.

Systems such as Plessey and Intel solve this problem by
using two formats for capabilities, an active form and a passive
form (sometimes called an inform and outform). A simplified
model of the use of active and passive capabilities follows.
When each object is created, it is assigned an ID that is guaran­
teed to be unique for at least the life of the object (although not
for all time). This ID might be generated by the physical disk
address of the secondary storage for the object. All capabilities
for the object, when stored on secondary memory, are kept in
passive form. Passive capabilities contain this long-term ID.

When an object is brought into primary memory, it is allo­
cated a mapping table descriptor. The mapping table index
provides the short-term ID for that period of primary memory
residency. When a capability is used as a reference, the hard­
ware or software must be able to detect whether the capability
is active or passive. An active capability will contain a short­
term ID and can be used to directly access an object. A capabil­
ity in passive form will cause a trap. The software can then
examine the long-term ID in the passive capability and con­
vert it to the short-term ID for the object in memory. Or, if the
object is not currently in memory, it is swapped in and a de­
scriptor and short-term ID are assigned.

When an object is removed from primary memory, its capa­
bilities are converted to passive form for storage on disk. How­
ever, the system must ensure that no active capabilities exist
for the object before its mapping table descriptor can be reallo­
cated. Any remaining active capabilities must be in primary
memory since they cannot be stored on disk. Therefore, the
system can either maintain a reference count for active capabil­
ities or search the C-lists of all resident processes to passivate
any active capabilities for the object.

Another design decision to be made in managing secondary
object storage is determining how and when an object's sec­
ondary storage copy will be updated. The operating system can
manage virtual object storage, automatically moving objects
between primary and secondary memory. This corresponds to
swapping in conventional systems. However, this transparent

storage mechanism does not ensure that an object's secondary 10.8 Object Locking

memory copy is always up to date. Some applications need to
guarantee that certain modifications will not be lost by a crash.
Another scheme, then, is for the system to provide explicit
checkpointing operations for type managers. A type manager
performs temporary object modifications in memory and
atomically outputs the object to permanent storage by request-
ing a checkpoint.

An additional problem with object storage is the use of
transportable media. Object IDs may be unique for a single
system, but are typically not unique for all systems. Moving an
object from one computer system to another creates problems
because the object's ID may be duplicated on the other system.
Backup of objects provides a similar problem. Maintaining
capability integrity on transportable media or over networks is
an additional concern.

10.8 Object Locking

One advantage of capability systems is the ease with which
objects can be shared among several users. This sharing poses
problems when users of a shared object must perform multi­
step atomic transactions. That is, a user may need to execute
several object operations with the assurance that no other user
can access the same object until the transaction is complete.
Exclusion is also required to prohibit a process from operating
on inconsistent data when an 110 device is transmitting to ob­
ject storage. Thus, locking facilities are provided in many ca­
pability systems.

The Intel 432 provides instructions to lock and unlock ob­
jects. A lock is simply a 16-bit field stored within the data part
of a segment; the llock contains a 14-bit process ID and a 2-bit
lock type. Objects can be locked either by hardware or soft­
ware. Some system objects have locks in the processor-de­
fined object data part. Hardware manipulates these locks to
obtain exclusion when performing certain operations. Software
uses the LOCK OBJECT and UNLOCK OBJECT instructions to obtain
mutual exclusion to an object. Execution of a LOCK OBjECT

instruction checks if the lock is free; if it is free, the process ID
of the current process is stored in the lock and it is marked
busy. The instruction returns a boolean result to indicate
whether or not the instruction succeeded in obtaining the lock.

The IBM System/38 has a set of higher level lock operations
to allow increased concurrency for database operations. Ob­
jects can be locked in one of five modes: 201

Issues in Capability­
Based Architectures

202

1. shared read-user can read, other users can read or write
2. shared read only-user can read, other users can read
3. shared update-user can read or write, other users can read

or write
4. exclusive allow read-user can read or write, other users can

only read
5. exclusive no read-user can read or write, other users can­

not access

The LOCK OBJECT instruction requests one or more locks on one
or more objects. The instruction will either succeed in obtain­
ing all locks specified or no locks will be held; that is, if a lock
cannot be obtained, all previous locks obtained by the instruc­
tion are released. The instruction can specify that the program
either wait for locks that are currently unavailable or return
immediately. There is also a time-out parameter that indicates
the maximum time that the instruction should contend for a
lock.

The horizontal microcode on the Systeml38 maintains a
data structure that indicates (for each object for which a lock is
held) the type of lock being held and the ID of the requester.
Several locks may be held for a single object; this will be indi­
cated in the data structure. The System/38 provides instruc­
tions to examine all locks held by a process or an object.

There are, thus, several basic types of locking facilities,
including implicit and explicit locks. Implicit locks occur as
the result of hardware manipulation of an object; this operation
usually requires mutual exclusion. Software may request mu­
tual exclusion or with more sophisticated mechanisms may
request only certain types of exclusion to allow maximum con­
currency.

10.9 Revocation

One strength of capability systems is the ability to copy and
transmit object access rights freely between processes. This
strength can also be a weakness when a user needs to restrict
access to an object for which capabilities have previously been
distributed. In this case, a revocation mechanism is needed to
retract or cancel the outstanding capabilities. A good examina­
tion of such mechanisms is provided by Redell [Redell 7 4a] .
With the exception of the System/38, none of the systems ex­
amined have attempted to support revocation.

The System/38 provides revocation through user profiles.
Some Systeml38 capabilities (unauthorized capabilities) do not

contain access rights. An object access that specifies such a 10.10 Conclusions
capability requirt:s a process-local profile table lookup to check
the permitted access. The owner of an object can later revoke
the object's access rights stored in another process's profile.
This scheme combines the concept of access list with capability
addressing. However, it adds some complexity to the use of
capabilities because unauthorized capabilities require a profile
search while authorized capabilities do not. Unauthorized ca-
pabilities are not context-independent and, therefore, cannot
always be shared with other processes.

A program may wish to restrict capability access in other
ways. For example, a calling procedure might want to ensure
that a called program does not retain or pass on a capability
parameter. The Hydra system provides access rights bits in the
capability that specify whether a capability can be stored in a
C-list with longer life than the procedure invocation.

Restriction of capability copying can be handled by access
rights, but revoc:ation is a more difficult problem. Only the
System/38 has considered revocation an important facility to
provide. Perhaps other systems have not been willing to pay
the cost of the additional overhead. Or, more likely, they were
not as concerned with the security and protection problems
brought on by the easy propagation of capabilities. These
problems will become more important to solve as capability
systems find more acceptance in commercial applications.

10.10 Conclusions

This book has followed the history of capability systems
from early descriptor machines and Iliffe's codewords, through
the first designs by Dennis and Van Horn at MIT and Fabry at
Chicago, to the most recent commercial systems by IBM and
Intel. Capability systems are of great interest today because of
the object approach that is affecting the design of languages,
operating systems, and hardware. The object approach prom­
ises to influence to a large extent the way in which software is
produced in the future.

There are a number of benefits to be gained from capability
systems. Although many of these benefits have been described
previously, some of the most important ones are restated here.

1. Capability systems permit great flexibility in dynamic shar­
ing of information. This flexibility is due to the global, con­
text-independent interpretation of capabilities, and the abil­
ity of users to copy and transmit capabilities freely. Sharing 203

Issues in Capability­
Based Architectures

204

of data structures does not require operating system inter­
vention for mapping shared structures or for buffering in­
formation between processes.

2. Capabilities provide a single uniform mechanism for naming
objects of all types. Most traditional systems require many
different naming schemes for operating system objects as
well as hardware objects.

3. Capability systems provide a good basis for protection and
isolation of software components. A procedure's domain can
be restricted to include only those objects absolutely re­
quired for operation. Different procedures, even in the same
subsystem, can execute in disjoint, overlapping, .or identical
domains. This protection mechanism aids in software relia­
bility.

4. There is nothing "privileged" about protection on a capabil­
ity system; that is, there is generally no privileged mode of
operation. The ability to access objects is defined by the
execution domain. Traditionally privileged software systems
can thus be implemented as standard user programs. Users
can add functions to the operating system base in a uniform
way without requiring special privilege.

5. Capability systems support a long-term, single-level object
storage system that removes the concept of secondary stor­
age file systems.

6. Capability systems make an explicit distinction between
addresses and data. This distinction makes garbage collec­
tion of objects possible.

In addition to these advantages, there are a number of associ­
ated problems.

1. Capabilities and their associated mapping information can
consume additional storage space. For example, System/38
capabilities require 16 bytes of storage. Intel 432 capabilities
are only 32 bits in size, but the mapping tables require 16
bytes per object.

2. Garbage collection of the object space may be required to
locate objects that are no longer accessible. Garbage collec­
tion is a complex and resource consuming task.

3. Garbage collection of the name space may be required to
avoid dangling references whenever an object is destroyed.
The required capability search is particularly difficult on a
system that uses tagging of capabilities, because all memory
segments can potentially contain capabilities. On a system
using C-lists, only the capability segments need to be
searched, but this can still be a costly operation.

4. The advantages of protection and isolation are gained
through the use of a protected procedure mechanism. The
call or enter mechanism used to invoke a protected proce­
dure can be expensive, since a new addressing environment

must be constructed. (A call on a capability system is analo­
gous in many ways to a context switch on a conventional
system.) This cost can force a programming style contrary to
that intended. Although these mechanisms provide excellent
support for small domains, they may prove expensive for
subsystems that need to pass large, complex information
structures.

5. Capability systems can be costly in the number of memory
references needed to access an operand. Every operand ref­
erence requires access to a capability and to several mapping
tables (although this overhead exists on any segmented or
paged system). Systems with explicit capability registers
seem better in this respect, and caches can help as well.

6. Whether or not capabilities can be used to build a secure
system is still an open issue. Capability systems typically
support unre:stricted passing of information, while secure
systems require controls on information passing. It is diffi­
cult in most capability systems (with the exception of Sys­
teml38) to determine who has access to an object.

These lists indicate that capability mechanisms may in­
crease programming generality and protection at the possible
cost of performance. Although capability systems may simplify
the construction of complex systems, they add new complexi­
ties to the hardware and operating system implementation.
Still, the performance problems suffered by many early capa­
bility systems were often due to peculiarities of the individual
designs or to hardware poorly matched to the task. There is
probably no inherent reason why a capability-based system
cannot perform as well as a conventional architecture machine.

It is the success or failure of the object-based programming
approach that will eventually determine the success or failure
of capability architectures. Although object-based program­
ming can be supported by specialized languages on conven­
tional machines, capability addressing provides run-time pro­
tection and error detection. Capabilities can support an
environment with a mix of different object-based and conven­
tional languages on the same machine. Whether or not the
object approach allows programmers to handle the complexity
inherent in sophisticated applications better remains to be
demonstrated. We have surely seen only the first generation of
object-based and capability-based systems to appear in the
commercial marketplace.

10.10 Conclusions

205

Bibliography

[Ackerman 67]
W. B. Ackerman and W. W. Plummer. An Implementation of a

Multiprocessing Computer System. In Proceedings of the ACM
Symposium on Operating System Principles. October 1967.

[Almes 78]
G. Almes and G. Robertson. An Extensible File System for Hydra.

In Proceedings of 3rd International Conference on Software Engi­
neering, pages 288-294. ACM, May 1978.

[Almes 80]
G. T. Almes. Garbage Collection in an O~ject-Oriented System.

Ph.D. thesis, Carnegie-Mellon University, June 1980.

[Bell 76]
G. Bell and W. D. Strecker. Computer Structures: What Have We

Learned From the PDP-II? In Proceedings of the 3rd Annual
Symposium on Computer Architecture, pages 1-14. January 1976.

[Bennett 82]
J. K. Bennett. A Comparison of Four Object-Oriented Systems. Tech­

nical Report TR 82-11-03, Department of Computer Science,
University of Washington, 1982.

[Berstis 80a]
V. Berstis. Security and Protection of Data in the IBM System/38.

In Proceedings of the 7th Symposium' 'on Computer Architecture,
pages 245-252. May 1980.

[Berstis 80b]
V. Berstis, C. D. Truxal and J. G. Ranweller. System/38 Address­

ing and Authorization. In IBM System/38 Technical Develop­
ments. IBM GSD G580-0237-1, 1980. 207

Bibliography

208

[Bierman 81]
E. M. Bierman. A Comparative Study of Network-Based Object-Ori­

ented File Systems. Master's thesis, University of Washington,
1981.

[Birrell 78]
A. D. Birrell and R. M. Needham. An Asynchronous Garbage Col­

lector for the CAP Filing Systems. Operating Systems Review
12(2):31-33, April 1978.

[Bishop 77]
P. B. Bishop. Computer Systems with a Very Large Address Space and

Garbage Collection. Ph.D. thesis, MIT, May 1977.

[Brinch Hansen 78]
P. B. Hansen. Distributed Processes: A Concurrent Programming

Concept. Communications of the ACM 24(11):934-941, Novem­
ber 1978.

[Burroughs 61]
The Descriptor-a Definition of the B5000 Information Processing

System. Burroughs Corporation, Detroit, Michigan, 1961.

[Cohen 75]
E. Cohen and D. Jefferson. Protection in the Hydra Operating Sys­

tem. In Proceedings of the 5th Symposium on Operating Systems
Principles, pages 141-160. November 1975.

[Cohen 76]
E. Cohen, W. Corwin, D. Jefferson, T. Lane, R. Levin, J. New­

comer, F. Pollack, and W. Wulf. Hydra Kernel Reference Manual.
Department of Computer Science, Carnegie-Mellon University,
1976.

[Cook 78a]
D. Cook. The Cost of Using the CAP Computer's Protection Facili­

ties. Operating Systems Review 12(1), April 1978.

[Cook 78b]
D. J. Cook. The Evaluation of a Protection System. Ph.D. thesis,

University of Cambridge, 1978. .

[Cook 79]
D. Cook. In Support of Domain Structure for Operating Systems.

In Proceedings of the 7th Symposium on Operating Systems Princi­
ples, pages 128-130. December 1979.

[Cosserat 72]
D. C. Cosserat. A Capability Oriented Multi-Processor System for

Real-Time Applications. In Proceedings of the International Con­
ference on Computer Communications. October 1972.

[Cosserat 74]
D. C. Cosserat. A Data Model Based on the Capability Protection

Mechanism. In Proceedings of the International Workshop on Pro­
tection in Operating Systems. August 1974.

[Cox 83] Bibliography
G. W. Cox, W. M. Corwin, K. K. Lai, and F. J. Pollack. Inter-

process Communication and Processor Dispatching on the Intel
432. ACM Transactions on Computer Systems 1(1), February 1983.

[Dahl 66] 1

O. J. Dahl and K. Nygaard. Simula-An Algol-Based Simulation
Language. Communications of the ACM 9(9), September 1966.

[Dahlby 80]
S. H. Dahlby, G. G. Henry, D. N. Reynolds, and P. T. Taylor.

System/38-a High-Level Machine. In IBM System/38 Technical
Developments. IBM GSD G580-0237-1, 1980.

[Denning 76]
P. J. Denning. Fault-Tolerant Operating Systems. Computing Sur-

veys 8(4), December 1976. .

[Dennis 66]
J. B. Dennis and E. C. Van Horn. Programming Semantics for

Multiprogrammed Computations. Communications of the ACM
9(3), March 1966.

[Dennis 80]
T. D. Dennis. A Capability Architecture. Ph.D. thesis, Purdue Uni­

versity, May 1980.

[Dijkstra 78]
E. W. Dijkstra, L. Lamport, A. M. Martin, C. S. Scholten, and

E. F. M. Steffens. On-the-Fly Garbage Collection: An Exercise
in Cooperation. Communications of the ACM 21(11), November
1978.

[DOD 80]
Reference Manual for the Ada Programming Language. United States

Department of Defense, 1980.

[England 72a]
D. M. England. Architectural Features of System 250. In Infotech

State of the Art Report on Operating Systems. Infotech, 1972.

[England 72b]
D. M. England. Operating System of System 250. In Proceedings of

International Switching Symposium. June 1972.

[England 74]
D. M. England .. Capability Concept Mechanism and Structure in

System 250. In Proceedings of the International Workshop on Pro­
tection in Operating Systems. August 1974.

[Fabry 67]
R. Fabry. A User's View of Capabilities. In ICR Quarterly Report,

pages CI-C8. U. of Chicago Institute for Computer Research,
November 1967. 209

Bibliography

210

[Fabry 68]
R. S. Fabry. Preliminary Description of a Supervisor for a Machine

Oriented Around Capabilities. In ICR Quarterly Report, pages
BI-B97. U. of Chicago Institute for Computer Research, August
1968.

[Fabry 71]
R. S. Fabry. List-Structured Addressing. Ph.D. thesis, University of

Chicago, March 1971.

[Fabry 74]
R. S. Fabry. Capability-Based Addressing. Communications of the

ACM 17(7):403-412, July 1974.

[Feustel 72]
E. A. Feustel. The Rice Research Computer-A Tagged Architec­

ture. In Proceedings of the Spring Joint Computer Conference,
pages 369-377. IFIPS, 1972.

[Feustel 73]
E. A. Feustel. On the Advantages of Tagged Architectures. IEEE

Transactions on Computers C-22(7):644-·656, July 1973.

[Fuller 78]
S. H. Fuller and S. P. Harbison. The C.mmp Multiprocessor. Tech­

nical Report, Department of Computer Science, Carnegie-Mel­
lon University, 1978.

[Gehringer 79]
E. F. Gehringer. Variable-Length Capabilities as a Solution to the

Small-Object Problem. In Proceedings of the 7th Symposium on
Operating Systems Principles, pages 131-142. December 1979.

[Gehringer 81]
E. F. Gehringer and R. J. Chansler, Jr. STAROS User and System

Structure Manual, Department of Computer Science, Carnegie­
Mellon University, 1981.

[Gehringer 82]
E. F. Gehringer. Capability Architectures and Small Objects. UMI

Research Press, 1982.

[Goldberg 83]
A. Goldberg and D. Robson. Smalltalk-80: The Language and Its

Implementation. Addison-Wesley, 1983.

[Goodenough 75]
J. B., Goodenough. Exception Handling: Issues and a Proposed

Notation. Communications of the ACM 18(12):683-696, Decem-
ber 1975. .

[Graham 72]
G. S. Graham and P. J. Denning. Protection-Principles and Prac­

tice. In Proceedings of the Spring Joint Computer Conference, pages
417-429. 1972.

[Halton 72] Bibliography
D. Halton. Hardware of the System 250 for Communication Con-

trol. In Proceedings of International Switching Symposium. June
1972.

[Hamer-Hodges 72]
K. J. Hamer-Hodges. Fault Resistance and Recovery Within Sys­

tem 250. In Proceedings of the International Conference on Com­
puter Communications. October 1972.

[Hamilton 79]
J. Hamilton. Location Dependencies in Distributed Operating Sys­

tems. In Proceedings of the Louisiana Computer Exposition. March
1979.

[Hansen 82]
P. M. Hansen, M. A. Linton, R. N~Mayo, M. Murphy, and D. A.

Patterson. A Performance Evaluation of the Intel iAPX 432.
Computer Architecture News 10(4): 17-26, June 1982.

[Harrison 75]
M. A. Harrison, W. L. Ruzzo, and J. D. Ullman. On Protection in

Operating Systems. In Proceedings of the 5th Symposium on Oper­
ating Systems Principles, pages 14-24. November 1975.

[Herbert 77a]
A. J. Herbert, editor. CAP Hardware Manual. Computer Labora­

tory, University of Cambridge, 1977.

[Herbert 77b]
A. J. Herbert, editor. CAP System Programmer's Manual. Com­

puter Laboratory, University of Cambridge, 1977.

[Herbert 77c]
A. J. Herbert, editor. CAP Operating System Manual. Computer

Laboratory, University of Cambridge, 1977.

[Herbert 78a]
A. J. Herbert. A New Protection Architecture for the Cambridge

Capability Computer. Operating Systems Review 12(1), January
1978.

[Herbert 78b]
A. J. Herbert . . A Microprogrammed Operating System Kernel. Ph.D.

thesis, University of Cambridge, 1978.

[Herbert 79]
A. J. Herbert. A Hardware-Supported Protection Architecture. In

D. Lanciaux, editor, Operating Systems. North Holland, 1979.

[Hoare 74]
C. A. R. Hoare. Monitors: An Operating System Structuring Con­

cept. Communications of the ACM 17(10):549-557, October
1974. 211

Bibliography

212

[Hoch 80]
C. Hoch and J. c. Browne. An Implementation of Capabilities on

the PDP-11145. Operating Systems Review 14(3), July 1980.

[Hoffman 80]
R. L. Hoffman and F. G. Soltis. Hardware Organization of the

System/38. In IBM Systeml38 Technical Developments. IBM
GSD G580-0237-1, 1980.

[Houdek 80]
M. E. Houdek and G. R. Mitchell. Translating a Large Virtual

Address. In IBM Systeml38 Technical Developments. IBM GSD
G580-0237-1, 1980.

[Houdek 81]
M. E. Houdek, F. G. Soltis, and R. L. Hoffman. IBM System/38

Support for Capability-Based Addressing. In Proceedings of the
8th Symposium on Computer Architecture. ACM/IEEE, May 1981.

[HP 72]
HP 3000 Computer System Reference Manual. Hewlett-Packard

Company, Cupertino, California, 1972.

[IBM 80']
IBM Systeml38 Functional Reference Manual. IBM GA21-9331-3,

1982.

[IBM 82a]
IBM Systeml38 Technical Developments. IBM GSD G580-0237-1,

1980. (A collection of 30 short papers on System/38).

[IBM 82b]
IBM Systeml38 Functional Concepts Manual. IBM GA21-9330-1,

1982.

[Iliffe 62]
J. K. I1iffe and J. G. J odeit. A Dynamic Storage Allocation

Scheme. Computer Journal 5(3):200-209, October 1962.

[Iliffe 68]
J. K. Iliffe. Basic Machine Principles. American Elsevier, Inc., New

York, 1968.

[Iliffe 69]
J. K. Iliffe. Elements of BLM. Computer Journal 12(3):251-258,

August 1969.

[Iliffe 82]
J. K. Iliffe. Advanced Computer Design. Prentice/Hall Interna­

tional, 1982.

[Ingalls 78]
D. H. H. Ingalls. The Smalltalk-76 Programming System Design

and Implementation. In Proceedings of the 5th ACM Symposium
on Principles of Programming Languages. January 1978.

[Ingalls 81] Bibliography
D. H. H. Ingalls. Design Principles Behind Srnalltalk. Byte 6(8),

1981.

[Intel 81]
iAPX 432 General Data Processor Architecture Reference Manual.

Preliminary edition, Intel Corp., Aloha, Oregon, 1981.

[Intel 82]
iAPX 432 General Data Processor Architecture Reference Manual.

Revision 3 (Advance Partial Issue) edition, Santa Clara, Califor­
nia, 1982.

[Jagannathan 80]
A. Jagannathan. A Technique for the Architectural Implementa­

tion of Software Subsystems. In Proceedings afthe 7th Symposium
on Computer Architecture, pages 236-244. May 1980.

[Jensen 75]
K. Jensen and N. Wirth. Pascal User Manual and Report.

Springer-Verlag, 1975.

[Jodeit 68]
J. G, Jodeit. Storage Organization in Programming Systems. Com­

munications of the ACM 11(11), November 1968.

[Jones 73]
A. K. Jones. Protection in Programmed Systems. Ph.D. thesis, Car­

negie-Mellon University, June 1973.

[Jones 78a]
A. K. Jones, R. J. Chansler, Jr., I. Durham, K. Schwans and S. R.

Vegdahl. STAROS, A Multiprocessor Operating System for the
Support of Task Forces. In Proceeding of the 7th Symposium on
Operating Systems Principles, pages 117-127. December 1978.

[Jones 78b]
A. K. Jones. The Object Model: A Conceptual Tool for Structuring

Software. In H ... Bayer, R.M., Graham, and G. Seegmuller, (edi­
tors), Operating Systems-AniAdvanced Course. Springer-Verlag,
1978.

[Jones 80a]
A. K. Jones and E. F. Gehringer, editors. The Cm* Multiprocessor

Project: A Research Review. Technical Report, Department of
Computer Science, Carnegie-Mellon University, July 1980.

[Jones 80b]
A. K. Jones. Capability Architecture Revisited. Operating Systems

Review 14(3), July 1980.

[Kaehler 81]
T. Kaehler. Virtual Memory for an Object-Oriented Language.

Byte 6(8), August 1981. 213

Bibliography

214

[Kahn 81]
K. C. Kahn, W. M. Corwin, T. D. Dennis, H. D'Hooge, D. E.

Hubka, L. A. Hutchins, J. T. Montague, and F. J. Pollack.
iMAX: A Multiprocessor Operating System for an Object-Based
Computer. In Proceedings of the 8th Symposium on Operating Sys­
tem Principles. December 1981.

[Krasner 81]
G. Krasner. The Smalltalk-80 Virtual Machine. Byte 6(8), 1981.

[Lampson 69]
B. W. Lampson. Dynamic Protection Structures. In Proceedings of

Fall Joint Computer Conference, pages 27-38. IFIPS, 1969.

[Lampson 71]
B. W. Lampson. Protection. In Proceedings of the Fifth Princeton

Symposium on Information Sciences and Systems, pages 437-443.
March 1971. Reprinted in Operating Systems Review, 8(1), Janu­
ary 1974.

[Lampson 76]
B. W. Lampson and H. E. Sturgis. Reflections on an Operating

System Design. Communications of the ACM 19(5):251-265, May
1976.

[Lampson 80]
B. W. Lampson and D. P. Redell. Experience with Processes and

Monitors in Mesa. Communications of the ACM 23(2):105-117,
February 1980.

[Lazowska 81]
E. D. Lazowska, H. M. Levy, G. T. Almes, M. J. Fischer, R. J.

Fowler, and S. C. Vestal. The Architecture of the Eden System.
In Proceedings of the 8th Symposium on Operating Systems Princi­
pies. December 1981.

[Levin 75]
R. Levin, E. Cohen, W. Corwin, F. Pollack, and W. Wulf. Policy/

Mechanism Separation in Hydra. In Proceedings of the 5th Sympo­
sium on Operating Systems Principles, pages 132-140. November
1975.

[Levin 77]
R. Levin. Program Structures for Exceptional Condition Handling.

Ph.D. thesis, Carnegie-Mellon University, June 1977.

[Levy 81]
H. M. Levy. A Comparative Study of Capability-Based Computer

Architectures. Master's thesis, University of Washington, 1981.

[Linden 76]
T. A. Linden. Operating System Structures to Support Security

and Reliable Software. Computing Surveys 8(4), December 1976.

[Liskov 77]
B. Liskov, A. Snyder, R. Atkinson, and C. Schaffert. Abstraction

Mechanisms in CLU. Communications of the ACM Bibliography
20(8):564-576, August 1977.

[Liskov 79a]
B. H. Liskov and A. Snyder. Exception Handling in CLU. IEEE

Transactions on Software Engineering (6):546--558, October 1979.

[Liskov 79b]
B. Liskov, R. Atkinson, T. Bloom, E. Moss, C. Schaffert, B.

Scheifler, and A. Snyder. CLU Reference Manual. Technical
Report LCS/TR-225, MIT, October 1979.

[Luniewski 79]
A. W. Luniewski. The Architecture of an Object Based Personal Com­

puter. Ph.D. thesis, MIT, 1979.

[MIT 71]
PDP-I Computer Instruction Manual, Part 5--MTA's and IVK's.

Electrical Engineering Department Document PDP-35-1, MIT,
Cambridge, Mass., 1971.

[Morris 73a]
J. H. Morris, Jr., Types Are Not Sets. In Sympostum on the Princi­

ples of Programming Languages, pages 120-121. October 1973.

(Morris 73b]
J. H. Morris, Jr. Protection in Programming Languages. Communi­

cations of the ACM 16(1): 15-21, January 1973.

[Myers 80]
G. J. Myers and B. R. S. Buckingham. A Hardware Implementa­

tion of Capability-Based Addressing. Operating Systems Review
14(4), Octobe:r 1980.

[Myers 82]
G. J. Myers. Advances in Computer Architecture, Second Edition.

John Wiley & Sons, 1982.

[Needham 72]
R. M. Needham. Protection Systems and Protection Implementa­

tions. In Proceedings of the Fall Joint Computer Conference, pages
571-578. 1972.

[Needham 74]
R. M. Needham. and M. V. Wilkes. Domains of Protection and the

Management of Processes. The Computer Journal 17(2), 1974.

[Needham 77a]
R. M. Needham and R. D. H. Walker. The Cambridge CAP Com­

puter and its Protection System. In Proceedings of the 6th Sympo­
sium on Operating System Principles, pages 1-10. November 1977.

[N eedham 77b]
R. M. Needham. The CAP Project-an Interim Evaluation. In

Proceedings of the 6th Symposium on Operating System Principles,
pages 17-22. November 1977. 215

Bibliography

216

[Needham 77 c]
R. M. Needham and A. D. Birrell. The CAP Filing System. In

Proceedings of the 6th Symposium on Operating System Principles,
pages 11-16. November 1977.

[Organick 83]
E. I. Organick. A Programmer's View of the Intel 432 System.

McGraw-Hill, 1983.

[Ousterhout 80a]
J. K. Ousterhout, D. A. Scelza, and P. S. Sindhu. Medusa: An

Experiment in Distributed Operating System Structure. Commu­
nications of the ACM 23(2), February 1980.

[Ousterhout 80b]
J. K. Ousterhout. Partitioning and Cooperation in a Distributed Mul­

tiprocessor Operating System: Medusa. Ph.D. thesis, Carnegie­
Mellon University, April 1980.

[Parnas 72]
D. L. Parnas. On The Criteria To Be Used In Decomposing Sys­

tems Into Modules. Communications of the ACM 15(12), Decem­
ber 1972.

[Pashtan 82]
A. Pashtan. Object Oriented Operating Systems: An Emerging

Design Methodology. In Proceedings ofACM 82, pages 126-131.
October 1982.

[Pinnow 80]
K. W. Pinnow, J. G. Ranweller, and J. F. Miller. System/38 Ob­

ject-Oriented Architecture. In IBM Systeml38 Technical Develop­
ments. IBM GSD G580-0237-1, 1980.

[Pollack 81]
F. J. Pollack, K. C. Kahn, and R. M. Wilkinson. The iMAX-432

Object Filing System. In Proceedings of the 8th Symposium on
Operating System Principles. December 1981.

[Pollack 82]
F. J. Pollack, G. W. Cox, D. W. Hammerstrom, K. C. Kahn,

K. K. Lai, and J. R. Rattner. Supporting Ada Memory Manage­
ment in the iAPX-432. In Proceedings of the Symposium on Archi­
tectural Support for Programming Languages and Operating Sys­
tems, pages 117-131. March 1982.

[Rattner 81]
J. Rattner and W. W. Lattin. Ada Determines Architecture of 32-

bit Microprocessor. Electronics 54(4), l:;'ebruary 24, 1981.

[Redell 7 4a]
D. D. Redell. Naming and Protection in Extendible Operating Sys­

tems. Ph.D. thesis, University of California, Berkeley, Septem­
ber 1974. Available also as MIT project MAC TR-140.

[Redell 7 4b] Bibliography
D. Redell and R. Fabry. Selective Revocation of Capabilities. In

International Workshop on Protection in Operating Systems. IRIA,
August 1974.

[Saltzer 74]
J. H. Saltzer. Protection and the Control of Information Sharing in

Multics. Communications of the ACM 17(7):388-402, July 1974.

[Saltzer 75]
J. H. Saltzer and M. D. Schroeder. The Protection of Information

in Computer Systems. Proceedings of the IEEE 63(9), September
1975.

[Shepherd 68]
J. H. Shepherd. Principal Design Features of the Multi-Computer.

In ICR Quarterly Report, pages CI-C13. U. of Chicago Institute
for Computer Research, November 1968.

[Snyder 79]
A. Snyder. A Machine Architecture to Support an Object-Oriented

Language. Ph.D. thesis, MIT, March 1979.

[Soltis 79]
F. G. Soltis and R. L. Hoffman. Design Considerations for the

IBM System/38. In Proceedings of Compcon 79. Spring 1979.

[Soltis 81]
F. G. Soltis. Design of a Small Business Data Processing System.

Computer, September 1981.

[Spier 73]
M. J. Spier, T .. N. Hastings, and D. N. Cutler. An Experimental

Implementation of the Kernel/Domain Architecture. In Proceed­
ings of the Fourth Symposium on Operating System Principles, pages
8-21. October 1973.

[Sturgis 74]
H. E. Sturgis.ll Postmortem for a Timesharing System. Ph.D. thesis,

University of California, Berkeley, 1974. Reprinted as Xerox
Parc report CSL-74-1.

[Swan 78]
R. J. Swan. The Switching Structure and Addressing Architecture of an

Extensible Multiprocessor: Cm*. Ph.D. thesis, Carnegie-Mellon
University, August 1978.

[Walker 73]
R. D. H. Walker. The Structure of a Well-Protected Computer. Ph.D.

thesis, University of Cambridge, 1973.

[Wilkes 68]
M. V. Wilkes. Time-Sharing Computer Systems. American Elsevier,

Inc., New York, 1968. 217

Bibliography

218

[Wilkes 79]
M. V. Wilkes and R. M. Needham. The Cambridge CAP Computer

and its Operating System. North Holland, New York, 1979.

[Wilkes 82]
M. V. Wilkes. Hardware Support for Memory Protection. In Pro­

ceedings of the Symposium on Architectural Support for Program­
ming Languages and Operating Systems, pages 107-116. March
1982.

[Wulf 74a]
W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson,

and F. Pollack. Hydra: The Kernel of a Multiprocessor Operat­
ing System. Communications of the ACM 17(6), June 1974.

[Wulf 74b]
W. A. Wulf. Alphard: Toward a Language to Support Structured Pro­

grams. Technical Report, Carnegie-Mellon University, Computer
Science Department, 1974.

[Wulf 75]
W. Wulf, R. Levin, and C. Pierson. Overview of the Hydra Oper­

ating System Development. In Proceedings of the Fifth Symposium
on Operating Systems Principles, pages 122-131. November 1975.

[Wulf 78]
W. A. Wulf, and S. P. Harbison. Reflections in a Pool of Proces­

sors: An Experience Report on C.mmp. In 1978 National Com­
puter Conference. AFIPS Press, 1978.

[Wulf 81]
W. A. Wulf, R. Levin, and S. P. Harbison. HYDRAIC.mmp: An

Experimental Computer System. McGraw-Hill, New York, 1981.

[Yngve 68]
V. H. Yngve. The Chicago Magic Number Computer. In fCR

Quarterly Report, pages BI-B20. U. of Chicago Institute for
Computer Research, November 1968.

[Zeigler 81]
S. Zeigler, N. Allegre, R. Johnson, and J. Morris. Ada for the Intel

432 Microcomputer. Computer 14(6):47-56, June 1981.

Access control list;) 148
Addressing

on Basic Language Machine, 33
on CAL-TSS, 54
on CAP, 81, 84, 86
on Chicago Magic Number

Machine, 50
011 Hydra, 120
011 Intel 432, 163
on Plessey 250, 71
on STAROS, 131
on System/38;) 141, 145

Basic Language Machine, 30
Burroughs B5000, 22

C.mmp, 103-105, 127
CAL-TSS system, 52
Cambridge CAP computer, 79
CAP capability unit, 89
Capabilities, 187, 191

on CAL-TSS:) 53
on CAP, 83, 92
on Chicago Magic Number

Machine, 49
on Dennis and Van Horn

Supervisor, 42
on Hydra, 111, 120
on Intel 432, 165
on MIT PDP-l System, 47

Index

on Plessey 250",67
on STAROS, 130
on System/38, 142

Capability operations
on Chicago Magic Number

Machine, 50
on Dennis and Van Horn

Supervisor, 43
on Hydra, 110
on Intel 432, 166
on System/38, 144

CDC 6400,52
Chicago Magic Number Machine, 48
CM*, 127
CPF, 137
Codewords

on Basic Language Machine, 31
on Rice University Computer, 26
See also Descriptors

Data tagging
on Basic Language Machine, 32

Dennis and Van Horn, 41
Descriptors

on B5000, 23
See also Codewords

Directories, 44, 132
Domain, 42

on CAL-TSS, 53

219

Garbage collection, 121, 131, 197
Global Symbol Table, 118

Hydra System, 103

Intel 8086, 160
Intel iAPX 432, 159

Local name space, 109
LSI-11, 127

Medusa, 128
MIT PDP-1 timesharing system, 47
Multiprogramming, 21

Object locking, 201
Object Table Directory, 164
Objects, 195

on Hydra, 105
on Intel 432, 162
on STAROS, 129
on Systeml38, 139

Operations, See Capability operations

PDP-I, 47
PDP-11, 104, 109, 192
Plessey System 250, 65
Pointer resolution, 148
Process resource list, 85
Profile adoption, 153
Program Reference Table, 23

220

Protected procedures, 196
on CAP, 90
on Chicago Magic Number

Machine, 51
on Dennis and Van Horn

Supervisor, 45
on Hydra, 113
on Intel 432, 173
on MIT PDP-1 System, 48
on Plessey 250, 72
on Systeml38, 153

Reference counts, 121
Revocation, 148, 202
Rice University Computer, 25

Segmentation, 21, 188
Sphere of protection, 42
STAROS, 127, 128
Systeml38, 137

Tag, 32
Task forces, 128
Type extension, 196

on CAL-TSS, 55
on CAP, 94
on Hydra, 113
on Intel 432, 176
on MIT PDP-1 System, 48
on Plessey 250, 73
on STAROS, 133

TYPECALL,116

COMPUTER PROGRAMMING AND ARCHITECTURE: The VAX-II,
Henry M. Levy and Richard Eckhouse, Jr. Focusing on the VAX-II, this
unique book offers a comprehensive system viewpoint to the program­
ming and organization of today's computers. The first part discusses
the architecture of a computer as seen by the assembly language
programmer. The second part considers the more sophisticated archi­
tectural support of an operating system and the strategies used by an
operating system to manage hardware resources.

THE THEORY AND PRACTICE OF RELIABLE SYSTEM DESIGN,
Daniel P. Siewiorek and Robert S. Swarz. This book introduces a broad
range of concepts and techniques in reliability. It examines twelve real­
life implementations of reliable computer hardware design and provides
methodology for configuring reliable computing strategies.

For information about these and other titles write:

Digital Press
Digital Equipment Corporation
12 Crosby Drive
Bedford, MA 01730

order number EY-00011-DP
ISBN 0-932376-22-3

