
Capability-Based 
Computer Systems 

HenryM Levy 



Capability-Based Computer Systems 





Capability-Based 
Computer Systems 

Henry M. Levy 

mamaama
m 

DIGITAL PRESS 



iv 

Copyright © 1984 Digital Equipment Corporation 

All rights reserved. Reproduction of this book, in part or in whole, is 
strictly prohibited. For copy information contact: Digital Press, 12 
Crosby Dr., Bedford, Mass. 01730 

Printed in the United States of America 

10 9 8 7 6 5 4 3 2 1 

Documentation Number: EY-00025-DP 
ISBN: 0-932376-22-3 

Library of Congress Cataloging in Publication Data 

Levy, Henry M., 1952-
Capability-based computer systems. 

Bibliography: p. 205 
Includes index. 
1. Computer architecture. 2. Operating systems (Com­

puters) 3. System design. 1. Title. 
QA76.9.A73L48 1983 621.3819'58 83-21029 
ISBN 0-932376-22-3 

Trademarks 

Bell Laboratories: UNIX. Burroughs Corporation: B5000. Cam­
bridge University: CAP. Control Data Corporation: CDC 6400, 
SCOPE. Digital Equipment Corporation: DEC, LSI-ll, PDP-I, 
PDP-ll, TOPS-20. Hewlett-Packard Company: HP 3000. Intel Cor­
poration: iAPX 432, iMAX, Intel 8086. IBM: CPF, IBM 370, IBM 
Systeml38, SWARD. International Computers Ltd.: Basic Language 
Machine. Plessey Telecommunications Ltd. Plessey System 250. 
Xerox Corporation: Smalltalk. 



In Memory of Manny and Sonia 





Preface 

The purpose of this book is to provide a single source of infor­
mation about capability-based computer systems. Although 
capability systems have existed for nearly two decades, only 
recently have they appeared in architecture and operating sys­
tem textbooks. Much has been written about capability sys­
tems in the technical literature, but finding this information is 
often difficult. 

This book is an introduction, a survey, a history, and an 
evaluation of capability- and object-based computer systems. It 
is intended for students, computer professionals, and com­
puter~system designers. The book assumes a knowledge of the 
assembly-level architecture of at least one computer, an under­
standing of memory addressing and virtual memory systems, 
and some familiarity with operating systems. It can be used as 
a tutorial or reference text in advanced undergraduate or grad­
uate courses in computer organization, computer architecture, 
or operating systems. 

Chapter 1 introduces the concept of a capability and exam­
ines the use of capabilities in computer systems. It compares 
and contrasts simplified models of capability and conventional 
addressing and protection systems. The object-based design 
methodology is introduced, and the use of capabilities to sup­
port object-based systems is discussed. 

Chapter 2 describes machines that preceded the formal defi­
nition of capabilities but had similar adldressing mechanisms. 
Developed in the late 1950s and early 1960s, these machines 
include the Burroughs B5000, the Rice University computer, 
and the Basic Language Machine. Chapter 3 examines the 
Dennis and Van Horn hypothetical supervisor that introduced vii 
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the concept of capability, and the early university attempts to 
implement that concept: the MIT PDP-l system, the Chicago 
Magic Number Machine, and the CAL-TSS system. 

Chapter 4 describes the Plessey System 250. Built in the 
U. K., the Plessey 250 multiprocessor was the first commer­
cially available capability-based computer system. Also built in 
the U.K., Cambridge University's CAP computer system, ex­
amined in Chapter 5, was the first successful university imple­
mentation of capability hardware. 

Chapters 6 and 7 concentrate on two capability-based multi­
processor operating systems built at Carnegie-Mellon Univer­
sity: Hydra and STAROS. These systems were the first major 
object-based systems and used capabilities to provide object­
level addressing and protection. 

Chapters 8 and 9 examine the new generation of capability/ 
object-based systems designed for the commercial market­
place: the IBM System/38 and the Intel iAPX 432. The Sys­
teml38 is the first use of object-based methodology to build a 
business-oriented computer system. The Intel 432 is the first 
highly-integrated object-based microprocessor. Both systems 
use object-based methodology to raise the level of the architec­
ture interface. This allows them to support sophisticated oper­
ating-systems operations in hardware. 

Chapter 10 reviews many of the important design issues in 
capability- and object-based systems in light of the implemen­
tations discussed throughout the book. Alternative implemen­
tation decisions and their implications are examined. 

Each survey section presents the important features of a 
particular system. For this reason, different systems may be 
described at somewhat different levels. However, all systems 
are discussed in sufficient detail to give the reader an under­
standing of both the concepts and the low-level capability ad­
dressing and object-support mechanisms. An important goal of 
the book is examination of hardware and operating-system 
implementations of capabilities. Although all of the syste.ms 
begin with a similar conceptual view of capabilities, the imple­
mentations are vastly different. 

All attempts have been made to see that the system presen­
tations are accurate, and most of the sections have been re­
viewed by one or more of the system's designers. Still, these 
discussions should not be taken as the final word and the inter­
ested reader is referred to the latest technical literature for 
more detailed study. Each section contains suggestions for fur­
ther reading, and a complete bibliography on capability and 
object systems is included at the end of the book. 
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Capability- and ObjE~ct-Based 
System Concepts 

Although the complexity of computer applications increases 
yearly, the underlying hardware architecture for applications 
has remained unchanged for decades. It is, therefore, not sur­
prising that the demands of modern applications have exposed 
limitations in conventional architectures. For example, many 
conventional systems lack support in: 

1. Information sharing and communications. An essential system 
function is the dynamic sharing and exchange of informa­
tion, whether on a timesharing system or across a network. 
Fundamental to the sharing of storage is the addressing or 
naming of objects. Sharing is difficult on conventional sys­
tems because addressing is local to a single process. Sharing 
would be simplified if addresses could be transmitted be­
tween processes and used to access the shared data. 

2. Protection and security. As information sharing becomes eas­
ier, users require access controls on their private data. It 
must also be possible to share information with, or run pro­
grams written by, other users without compromising confi­
dential data. On conventional systems, all of a user's objects 
are accessible to any program which the user runs. Protec­
tion would be enhanced if a user could restrict access to only 
those objects a program requires for its execution. 

3. Reliable construction and maintenance of complex systems. Con­
ventional architectures support a single privileged mode of 
operation. This structure leads to monolithic design; any 
module ne(!ding protection must be part of the single operat­
ing system kernel. If, instead, any module could execute 
within a protected domain, systems could be built as a col­
lection of independent modules extensible by any user. 

1 
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Over the last several decades, computer industry and uni­
versity scientists have been searching for alternative architec­
tures that better support these essential functions. One alterna­
tive architectural structure is capability-based addressing. 
Capability-based systems support the object-based approach to 
computing. 

This book explains the capability/object-based approach 
and its implications, and examines the features, advantages, 
and disadvantages of many existing designs. Each chapter 
presents details of one or more capability-based systems. Table 
1-1 lists the systems described, where they were developed, 
and when they were designed or introduced. 

System Developer Year Attributes 

Rice University Rice University 1959 segmented memory 
Computer with "codeword" 

addressing 

Burroughs B5000 Burroughs Corp. 1961 stack machine with 
descriptor addressing 

Basic Language International 1964 high-level machine with 
Machine Computers Ltd., U.K. codeword addressing 

Dennis and Van MIT 1966 conceptual design for 
Horn Supervisor capability supervisor 

PDP-l Time- MIT 1967 capability supervisor 
sharing System 

Multicomputer/ University of 1967 first capability 
Magic Number Chicago Institute hardware system 
Machine for Computer Research design 

CAL-TSS U.C. Berkeley 1968 capability operating 
Computer Center system for CDC 6400 

System 250 Plessey Corp., U.K. 1969 first industrial 
capability hardware 
and software system 

CAP Computer University of 1970 capability hardware 
Cambridge, U.K. with microcode support 

Hydra Carnegie-Mellon 1971 object-based multi-
University processor O.S. 

STAROS Carnegie-Mellon 1975 object-based multi-
University processor O. S. 

Systeml38 IBM, Rochester, MN. 1978 first major commercial 
capability system, 
tagged capabilities 

iAPX 432 Intel, Aloha, OR. 1981 highly-integrated 
object-based micro-
processor system 

Table 1-1: Major Descriptor and Capability Systems 



Before surveying these systems at a detailed architectural 
level, it is useful to introduce the concepts of capabilities and 
object-based systems. This chapter defines the concept of ca­
pability, describes the use of capabilities in memory addressing 
and protection, iintroduces the object-based programming ap­
proach, and relates object-based systems to capability-based 
addressing. 

Simplified examples of capability-based and convelltional 
computer systems are presented throughout this chapter. 
These examples are meant to introduce the capability model by 
contrasting it with more traditional addressing mechanisms. In 
fact, many design choices are possible in both domains, and 
many conventional systems exhibit some of the properties of 
capability systems. No one of the following models is repre­
sentative of all capability or conventional systems. 

1.1 Capability-Based Systems 

Capability-based systems differ significantly from conven­
tional computer systems. Capabilities provide (1) a single 
mechanism to address both primary and secondary memory, 
and (2) a single mechanism to address both hardware and soft­
ware resources. While solving many difficult problems in com­
plex system design, capability systems introduce new chal­
lenges of their own. 

Conceptually, a capability is a token, ticket, or key that 
gives the possessor permission to access an entity or object in a 
computer system. A capability is implemented as a data struc­
ture that contains two items of information: a unique object 
identifier and access rights, as shown in Figure 1-1. 

The identifier addresses or names a single object in the com­
puter system. An object, in this context, can be any logical or 
physical entity, such as a segment of memory, an array, a file, a 

Access rights Unique oblecl Id<lnf/f/e~ 

LI An obiecl] 

Figure 1-1: A Capability 

1.1 Capability­
Based Systems 
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line printer, or a message port. The access rights define the 
operations that can be performed on that object. For example, 
the access rights can permit read-only access to a memory seg­
ment or send-and-receive access to a message port. 

Each user, program, or procedure in a capability system has 
access to a list of capabilities. These capabilities identify all of 
the objects which that user, program, or procedure is permit­
ted to access. To specify an object, the user provides the index 
of a capability in the list. For example, to output a record to a 
file, the user might call the file system as follows: 

PUT( file_capability, "this is a record" ); 

The capability specified in the call serves two purposes. First, 
it identifies the file to be written. Second, it indicates whether 
the operation to be performed (PUT in this case) is permitted. 

A capability thus provides addressing and access rights to an 
object. Capabilities are the basis for object protection; a pro­
gram cannot access an object unless its capability list contains a 
suitably privileged capability for the object. Therefore, the sys­
tem must prohibit a program from directly modifying the bits 
in a capability. If a program could modify the bits in a capabil­
ity, it could forge access to any object in the system by chang­
ing the identifier and access rights fields. 

Capability system integrity is usually maintained by prohib­
iting direct program modification of the capability list. The 
capability list is modified only by the operating system or the 
hardware. However, programs can obtain new capabilities by 
executing operating system or hardware operations. For exam­
ple, when a program calls an operating system routine to create 
a new file, the operating system stores a capability for that 
file in the program's capability list. A capability system also 
provides other capability operations. Examples include opera­
tions to: 

1. Move capabilities to different locations in a capability list. 
2. Delete a capability. 
3. Restrict the rights in a capability, producing a less-privi­

leged version. 
4. Pass a capability as a parameter to a procedure. 
5. Transmit a capability to another user in the system. 

Thus, a program can execute direct control over the movement 
of capabilities and can share capabilities, and therefore, ob­
jects, with other programs and users. 



It is possible for a user to have several capability lists. One 
list will generally be the master capability list containing capa­
bilities for secondary lists, and so on. This structure is similar 
to a multi-level directory system, but, while directories address 
only files, capabilities address objects of many types. 

1.1.1 Memory Addressing in Computer Systems 

This section presents simplified models for both conven­
tional and capability-based memory addressing systems. Al­
though capabilities can control access to many object types, 
early capability-based systems concentrated on using capabili­
ties for primary memory addressing. The first use of capabili­
ties for memory protection was in the Chicago Magic Number 
Machine [Fabry 67, Yyngve 68], and an early description of 
capability-based memory protection appeared in Wilkes' book 
on timesharing systems [Wilkes 68]. Later, [Fabry 74] de­
scribed the advantages of capabilities for generalized ad­
dressing and sharing. 

For purposes of a simplified model, consider a conventional 
computer supporting a multiprogramming system in which 
each prograin executes within a single process. A program is 
divided into a collection of segments, where a segment is a 
contiguous section of memory that represents some logical en­
tity, such as a procedure or array. A process defines a pro­
gram's address space: that is, the memory segments it can ac­
cess. The process also contains data structures that describe 
the user, and a directory that contains the names of a set of 
files. These files represent the user's long-term storage. 

When a program is run, the operating system creates a proc­
ess-local segment table that defines the memory segments 
available to the program. The segment table is a list of descrip­
tors that contain physical information about each segment. Fig­
ure 1-2 shows example formats for a process virtual address 
and segment table descriptor. The operating system loads 
various segments needed by the program into primary 
memory, and loads the segment table descriptors with the 
physical address and length of each segment. A process can 
then access segments by reading from or writing to virtual 
addresses. 

Each virtual address contains two fields: the segment num­
ber and the offset of a memory element within that specified 
segment. On each virtual address reference the hardware uses 
the segment number field as an index to locate an entry in the 

1.1 Capability­
Based Systems 
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I Virtual segment number I Element offset I Virtual Address 

0 

Segment Descriptors 

~ Rights I Segment I Segment physical 
length address 

Memory 
segment 

[J 

N 

Process-Local Segment Table 

Figure 1-2: Conventional Segment Address Translation 

process segment table. This descriptor contains the physical 
location of the segment. The length field in the descriptor is 
used to check that the offset in the virtual address is within the 
segment bounds. The rights field in the segment table entry 
indicates the type of access permitted to that segment (for ex­
ample, read or write). 

The model shown in Figure 1-2 has the following 
properties: 

1. The system supports a segmented process virtual address 
space. A virtual address is local to the process and is trans­
lated through the process-local segment table. 

2. A program can construct any virtual address and can at­
tempt to read or write that address. On each reference, the 
hardware ensures that (a) the segment exists, (b) the offset is 
valid, and (c) the attempted operation is permitted. Other­
wise, an error is signaled. 

3. Loading of segment table entries is a privileged operation 
and can be accomplished only by the operating system. In 
general, a segment table is created at the time a program is 
loaded. The program then executes in a static addressing 
environment. 

4. Sharing of segments between processes requires that the 
operating system arrange for both process-local segment 
tables to address the shared segments. If two processes wish 
to use the same virtual address to access a shared segment, 



the segment descriptors must be in the same locations in 
both segment tables. 

5. Any dynamic sharing of segments requires operating system 
intervention to load segment descriptors. 

A capability-based system also supports the concept of a proc­
ess that defines a program's execution environment. In the 
capability system, each process has a capability list that defines 
the segments it can access. Instead of the segment table de­
scriptors available to the conventional system hardware, the 
capability addressing system consists of a set of capability regis­
ters. The program can execute hardware instructions to transfer 
capabilities between the capability list and the capability regis­
ters. The number of capability registers is generally small com­
pared to the siz(! of the capability list. Thus, at any time, the 
capability registers define a subset of the potentially accessible 
segments that can be physically addressed by the hardware. A 
simplified hardware model for this system is shown in 
Figure 1-3. 

The model shown in Figure 1-3 has the following 
properties: 

I 

1. The system has a segmented virtual address space. A seg­
ment of memory can only be addressed by an instruction if a 
capability for that segment has been loaded into a capability 
register. 

Capability register number I Element offset ] Virtual Address 

a 

1 

40- Rights I Segment identifier 

Memory 
M Segment 

[] 

Process Capability Registers 

Figure 1-3: Capability Register Addressing 

1.1 Capability­
Based Systems 
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2. While loading of a segment descriptor in the conventional 
system is privileged, loading of a capability register is not. 
Instead of controlling the loading of the register, the capa­
bility system controls the pattern of bits that can be loaded. 
Only a valid capability can be loaded into a capability 
register. 

3. The capability system provides a dynamically changing ad­
dress space. The address space changes whenever the pro­
gram changes one of the capability registers. 

4. A virtual address identifies a process-local capability regis­
ter. In this sense, a virtual address has similar properties to a 
virtual address in the conventional system. Sharing a virtual 
address does not in itself give access to the same segment. 

S. A capability, however, is not process-local. Capabilities are 
context independent; that is, the segment addressed by a capa­
bility is independent of the process using that capability. A 
process can share a segment by copying or sending a capabil­
ity from its capability list to the capability list of a cooperat­
ing process. Each of the processes can then access the 
segment. 

One important difference between the conventional and 
capability approaches involves the ability of a program to affect 
system-wide or process-local objects. In the conventional sys­
tem, a program executes within a virtual address space defined 
by a process. Every procedure called by that program has ac­
cess to the process address space, including segments and files. 
Every procedure executes within an identical protection 
environment. 

In the capability system, a procedure can only affect objects 
for which capability registers have been loaded. It is possible, 
therefore, for different procedures called by the same program 
to have access to different segments. Although all procedures 
may have the potential to load capability registers from the 
capability list, some procedures may choose to execute within a 
very small addressing sphere. 

The ability to restrict the execution or addressing environ­
ment of a procedure has several benefits. First, if a procedure 
is allowed access only to those segments absolutely needed, the 
hardware can detect any erroneous references. For example, 
a reference past the end of an array might be caught before it 
destroys another variable. Second, if a procedure is found to be 
in error, it is easy to determine what segments might have been 
affected. If the segments that could have been modified were 
local to the procedure, recovery might be substantially easier. 

Most capability systems go a step further by allowing each 
procedure to have a private capability list. A procedure can 



thus protect its objects from accidental or malicious access by 
its callers, and a program can protect its objects from access by 
called procedures. Every procedure can have, in effect, its own 
address space. To permit a procedure access to a local object, a 
program can pass a capability for the object as a parameter 
when the procedure is called. Therefore, in a capability sys­
tem, every procedure can be protected from every other proce­
dure because each has a private capability list. When one pro­
cedure calls another, it knows that the called procedure can 
access only local objects for which capabilities are passed. 

1.1.2 The Context of an Address 

Each object in a capability system has a unique identifier. 
Conceptually, each object's identifier is unique for all time. 
That is, an identifier is assigned when an object is created and 
that identifier is never reused, even after the object is deleted. 
During the obje(:t's lifetime, its unique identifier is used within 
capabilities to specify the object. An attempt to use a capability 
with an identifier for a deleted object causes an error. 

In practice, the object identifier field of a capability must be 
used by hardware to locate the object. From the hardware 
viewpoint, the identifier is an address-either the address of a 
segment or perhaps the address of a central descriptor that 
contains physical information about the segment. The need to 
handle addresses efficiently in hardware typically causes ad­
dresses to be small-16 or 32 bits, for example. For this rea­
son, identifiers tend to have too few bits to be unique for all 
time. However, the choice of the number of bits in an identi­
fier is an important system design decision that dictates the 
way in which capabilities can be used. 

In conventional systems, an address is meaningful only 
within a single process. In a capability system, addresses (capa­
bilities and their identifiers) are context-independent. That is, 
the interpretation of a capability is independent of the process 
using it. The unique identifier within a capability must have a 
system-wide interpretation. Unique identifiers must be large 
enough to addn:ss all of the segments likely to be in use by all 
executing processes at any time. This allows capabilities to be 
freely passed between processes and used to access shared data. 

Addressing on most conventional systems is restricted in 
terms of time as well as context. An address is meaningful only 
within the lifetime of a single process. Therefore, addresses 
cannot be used to name objects whose lifetimes are greater than 

1.1 Capability­
Based Systems 
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the process creating the objects. If a process wishes to create a 
long-term storage object, such as a file, it must interface to the 
file system. Files typically require different naming, protec­
tion, and storage mechanisms than memory segments. 

A significant advance made possible by capabilities is the 
naming and protection of both long-term and short-term ob­
jects with a single mechanism. If the identifier field is very 
large, it may be possible to implement identifiers unique for all 
time. Each object is addressed by capabilities containing its 
unique identifier, independent of whether it is stored in pri­
mary or secondary memory. The operating system or hardware 
can maintain data structures that indicate the location of each 
object. If a program attempts to access an object in secondary 
memory, the hardware or operating system can bring the ob­
ject into primary memory so that the operation can be com­
pleted. From the program's point of view, however, there is 
a single-level address space. Capabilities, as well as data, can 
be saved for long periods of time and stored in secondary 
memory. 

There are, therefore, several contexts in which an address 
can have meaning. For example, for: 

1. Primary memory segments of a single process. 
2. Primary memory segments of all existing processes. 
3. All existing segments in both primary and secondary 

memory. 

Most conventional systems support only type 1, while capabili­
ties allow for any of the listed addressing types. More impor­
tantly, while conventional systems are concerned only with the 
protection of data, capability systems are concerned also with 
the protection of addresses. A process on a capability system 
cannot fabricate new addresses. As systems become more gen­
eral in their addressing structure as in types 2 and 3, the protec­
tion of addresses becomes crucial to the integrity of the system. 

1.1.3 Protection in Computer Systems 

Lampson contrasts the capability approach with the tradi­
tional approach by showing the structure of protection infor­
mation needed in a traditional operating system [Lampson 71]. 
Figure 1-4 depicts an access matrix showing the privileges that 
each system user is permitted with respect to each system ob­
ject. For example, user Fred has read and write privileges to 
File 1 and no privileges to File2, while user Sandy is allowed to 
read both files. 



System Objects 

File 1 File2 File3 ProcessJ Mailbox 10 ••• 

System 
Users 

Fred 

Sandy 

Molly 

Read 
Write 

Read Read 

Read Delete Send 
Suspend 
Wakeup 

Send 
Receive 

Read Send 
Write 

Figum 1-4: System Object Access Matrix 

One conventional approach to the maintenance of protec­
tion information is access control lists, in which the operating 
system keeps an access list for each object in the system. Each 
object's list contains the names of users permitted access to the 
object and the privileges they may exercise. When a user at­
tempts to access an object, the operating system checks the 
access list associated with that object to see if the operation is 
authorized. Each of the columns of Figure 1-4 represents an 
access control list. 

The capability system offers an alternative structure in 
which the operating system arranges protection information by 
user instead of by object. A capability list is associated with 
each user in the system. Each capability contains the name of 
an object in the system and the user's permitted privileges for 
accessing the object. To access an object, the user specifies a 
capability in the local capability list. Each of the rows of Figure 
1-4 represents a capability list. Figure 1-5 shows an access list 

Access List for Mailbox 1 0 

Fred(send) 
Sandy( send, recE~ive) 
Molly(send) 

Capability list for Fred 

File 1 (read, write) 
File3(read) 
ProcessJ(delete, suspend, wakeup) 
Mailbox 1 O(send) 

Figure 1-5: Access Control and Capability Lists 
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and a capability list derived from the protection matrix in 
Figure 1-4. 

One important difference between the capability list and 
access list is the user's ability to name objects. In the access list 
approach, a user can attempt to name any object in the system 
as the target of an operation. The system then checks that 
object's access list. In the capability system, however, a user 
can only name those objects for which a capability is held: that 
is, to which some access is permitted. 

In either case, the integrity of the system is only as good as 
the integrity of the data structures used to maintain the protec­
tion information. Both access control list and capability list 
mechanisms must be carefully controlled so that users cannot 
gain unauthorized access to an object. 

Similar protection options exist outside the computer 
world. A useful analogy is the control of a safe deposit box. 
Suppose, for example, that Carla wishes to keep all of her valu­
ables in a safe deposit box in the bank. On occasion, she would 
like one or more trustworthy friends to make deposits or with­
drawals. There are basically two ways that the bank can control 
access to the box. First, the bank can maintain a list of people 
authorized to access the box. To make a transaction, Carla or 
any of her friends must prove their identity to the bank's satis­
faction. The bank checks the (access control) list for Carla's 
safe deposit box and allows the transaction if the person is 
authorized. Or, instead of maintaining a list, the bank can 
issue Carla one or more keys to her safe deposit box. If Carla 
needs to have a friend access the box, she simply gives a key to 
the friend. 

A number of observations can be made about these two 
alternative protection systems. The properties of the access list 
scheme are: 

1. The bank must maintain a list for each safe deposit box. 
2. The bank must ensure the validity of the list at all times 

(e.g., it cannot allow the night watchman to add a name). 
3. The bank must be able to verify the identity of those asking 

to use a box. 
4. To allow a new person to use the box, the owner must visit 

the bank, verify that he or she is the owner of the box, and 
have the new name added to the list. 

5. A friend cannot extend his or her privilege to someone else. 
6. If a friend becomes untrustworthy, the owner can visit the 

bank and have that person's name removed from the list. 
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properties: 

1. The bank need not be involved in any transactions once the 
keys are given, except to allow a valid keyholder into the 
vault. 

2. The physical lock and key system must be relatively secure; 
that is, it must be extremely difficult to forge a key or to pick 
the lock on a safe deposit box. 

3. The owner of a box can simply pass a key to anyone who 
needs to access the box. 

4. Once a key has been passed to a friend, it is difficult to keep 
them from giving the key to someone else. 

5. Once a friend has made a transaction, the owner can ask for 
the key back, although it may not be possible to know 
whether or not the friend has made a copy. 

The advantage of the key-based system is ease of use for both 
the bank and customer. However, if today's friends are likely 
to become tomorrow's enemies, the access list has the advan­
tage of simple guaranteed access removal. Of course, the access 
control list and the key (or capability) systems are not mutually 
exclusive, and can be combined in either the computer or 
banking world to provide the advantages of both systems for 
increased protection. 

1.2 The Object··Based Approach 

Over the last few decades, several areas of computer science 
have converged on a single approach to system design. This 
approach, known as object-based computing, seeks to raise the 
level Qf abstraction in system design. The events that have 
encouraged object-based design include: 

1. Advances in computer architecture, including capability sys­
tems and hardware support for operating systems concepts. 

2. Advances in programming languages, as demonstrated in 
Simula [Dahl 66], Pascal [Jensen 75], Smalltalk [Ingalls 78], 
CLU [Liskov 77], and Ada [DOD 80]. 

3. Advances in programming methodology, including modular­
ization and information hiding [Parnas 72] and monitors 
[Hoare 74]. 

This section introduces the object approach and discusses its 
relationship to capability-based computer systems. 

What is object-based computing? Simply stated, the object 
approach is a method of structuring systems that supports ab- 13 
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straction. It is a philosophy of system design that decomposes a 
problem into (1) a set of abstract object types, or resources in the 
system, and (2) a set of operations that manipulate instances of 
each object type. 

To make this idea more concrete, consider the following 
simplified example. Imagine that we are programming a traffic 
simulation for a city. First, define a set of objects that repre­
sent, abstractly, the fundamental entities that make up the 
traffic system. Some of the object types for the traffic simula­
tion might be: 

• passenger 
• bus 
• bus stop 
• taxi 
• car 

Then, for each object type, define the operations that can be 
performed. Bus objects, for example, might support the 
operations: 

• PUT _BUS_INTO_SERVICE( bus_number) 
• MOVE_BUS( bus_number, bus_stop) 
• LOAD_PASSENGERS( bus-number, passenger_list) 
• UNLOAD_PASSENGERS( bus-number, passenger_list) 
• GET _PASSENGER_COUNT( bus-number) 
• GET _POSITION( bus_number) 
• REMOVE_BUS_FROM_SERVICE( bus-number) 

Each bus operation accepts a bus number as a parameter. At 
any time there may be many bus objects in the system, and we 
identify each bus by a unique number. Each of these bus ob­
jects is an instance of the type bus. The type of an object identi­
fies it as a member of a class of objects that share some behav­
ioral properties, such as the set of operations that can be 
performed on them. 

What has been gained by defining the system in this way? 
First, there now exist a fundamental set of objects and opera­
tions for the simulation. We can now implement the proce­
dures to perform the operations on each type of object. Since 
only a limited number of procedures' operate on each object 
type, access to the internal data structures used to maintain the 
state of each type can be restricted. This isolation of the knowl­
edge of those data structures should simplify any future 



changes to one of the object abstractions because only a limited 
set of procedures is affected. 

Second, and more importantly, we have raised the level of 
abstraction in the simulation program. That is, we can now 
program the simulation using buses, passengers, and bus stops 
as the fundamental objects, instead of bits, bytes, and words, 
which are normally provided by the underlying hardware. The 
buses and passengers are our data types just as bits and bytes 
are the data types supported in hardware. The simulation pro­
gram will consist mainly of control structures plus procedure 
calls to perform operations on instances of our fundamental 
objects. 

Of course, in this example, the procedures implementing 
the operations are programmed using lower-level objects, such 
as bytes, words, and so on. Or, they may be further decom­
posed into simpler abstract objects that are then implemented 
at a low level. Object-based systems provide a fundamental set 
of objects that can be used for computing. From this basis, the 
programmer constructs new higher-level object types using 
combinations of the fundamental objects. In this way the sys­
tem is extended to provide new features by creating more so­
phisticated abstractions. 

This methodology aims to increase productivity, improve 
reliability, and ease system modification. Through the use of 
well-defined and well-controlled object interfaces, systems de­
signers hope to simplify the construction of complex computer 
systems. 

1.2.1 Capabilities and Object-Based Systems 

In the simulation example, each object is identified by a 
unique number. To move a bus from one stop to another, we 
call the MOVE_BUS operation with the unique number of the 
bus to move. For purposes of the simple simulation, a small set 
of integers suffices to identify the buses or other objects. No 
protection is needed because these objects are implemented 
and used by a single program. 

The use of the object approach to build operating system 
facilities presents different requirements. For example, sup­
pose we wish to build a calendar system to keep track of sched­
uled meetings, deadlines, reminders, and so on. The funda­
mental object of the calendar system, from the user's point of 
view, is a calendar object. Our calendar management system 
provides routines that create a new calendar, and modify, 

1.2 The Object­
Based Approach 

15 



Capability- and 
Object-Based System 
Concepts 

16 

query, or display an existing calendar. Many users in the sys­
tem will, of course, want to use this facility. 

Several familiar issues now arise: (1) how does a user name a 
calendar object, (2) how is that calendar protected from access 
by other users, and (3) how can calendars be shared under 
controlled circumstances? Only the owner of a calendar should 
be able to make changes, and the annotations in each calendar 
must be protected from other users, since they might contain 
confidential information. However, a user might permit se­
lected other users to check if he or she is busy during a certain 
time, in order to automate the scheduling of meetings. 

Capabilities provide a solution to these problems. When a 
user creates a new calendar, the calendar creation routine allo­
cates a segment of memory for which it receives a capability. 
This segment is used to store data structures that will hold the 
calendar's state. The create routine uses this capability to ini­
tialize the data structures, and then returns it to the caller as 
proof of ownership of the calendar. In order to later modify or 
query the calendar, the user specifies the returned capability; 
the capability identifies the calendar and allows the modify or 
query procedure to gain access to the data structures. Only a 
user with a valid capability can access a calendar. 

A weakness with this scenario is that the calendar system 
cannot prevent the calendar owner from using its capability to 
access the data structures directly. The calendar system would 
like to protect its data structures both to ensure consistency 
and to guarantee that future changes in data format are invisi­
ble outside of the subsystem. In addition, if a user passes a 
calendar capability to another user, the second user can then 
modify the data structures or read confidential information. 

These problems exist because the calendar system returns a 
fully-privileged calendar capability to the user. Instead, what is 
needed is a capability that identifies a specific calendar and is 
proof of ownership, but does not allow direct access to the 
underlying data structures. In other words, the calendar sys­
tem would like to return only restricted capabilities to its cli­
ents. However, the calendar system must retain the ability to 
later amplify the privileges in one of its restricted capabilities so 
that it can access the data structures for a calendar. 

There are several ways of providing type managers with this 
special ability. (These mechanisms are examined in detail 
throughout the book.) However, given this power over capa­
bilities for its objects, a type manager can ensure that its clients 
operate only through the well-defined object operation inter­
face. A client can pass a capability parameter to the type man-



ager when requesting a service, but cannot otherwise use the 1.3 Summary 

capability to read or write the object it addresses. This facility 
is fundamental to any system that allows creation and protec-
tion of new system types. 

1.3 Summary 

The capability concept can be applied in hardware and soft­
ware to many problems in computer system design. Capabili­
ties provide a different way of thinking about addressing, pro­
tection, and sharing of objects. Some of the properties of 
capabilities illustrated in this chapter include their use in: 

1. Addressing primary memory in a computer system. 
2. Sharing objects. 
3. Providing a uniform means of addressing short- and long­

term storage. 
4. Support for a dynamic addressing environment. 
5. Support for data abstraction and information hiding. 

These, of course, are advantages of capability-based sys­
tems. The most important advantage is support for object­
based programming. Object-based programming methodology 
seeks to simplify the design, implementation, debugging, and 
maintenance of sophisticated applications. While capabilities 
solve a number of system problems, their use raises 
a whole new set of concerns. And, as is often the case in com­
puter system design, the concept is much simpler than the 
implementation. 

The remainder of this book is devoted to examining many 
different capability-based and object-based designs. The char­
acteristics of each system are described with emphasis on ad­
dressing, protection, and object management. Each system 
represents a different set of tradeoffs and presents different 
advantages and disadvantages. When comparing the systems, 
consider the differences in goals, technologies, and resources 
available to the system developers. 

The final chapter of this book considers issues in capability 
system design common to all of the systems described. A few 
of the questions to be considered follow. It may be useful to 
remember these questions when examining each system 
design. 

1. What is the structure of an address? 
2. How is a capability represented? How is a capability used to 

locate an object? 17 
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3. How are capabilities protected? 
4. What is the lifetime of a capability? 
S. What types of objects are supported by the hardware and 

software? 
6. What is the lifetime of an object? 
7. How can users extend the primitive set of objects provided 

by the base hardware and software? 

1.4 For Further Reading 

The concept of capability is formally defined in the 1966 
paper by Dennis and Van Horn [Dennis 66]. Chapter 3 exam­
ines this paper in some detail. The paper by Fabry [Fabry 74] 
compares capability addressing and conventional segmented 
addressing of primary memory, while Redell [Redell 74a] de­
scribes issues in capability systems and the use of sealing mech­
anisms that support the addition of new object types to a sys­
tem. These papers are a fundamental part of capability 
literature. 

Capability systems have been discussed in various contexts. 
Two papers by Lampson [Lampson 69 and Lampson 71] de­
scribe the requirements for protection in operating systems 
and the capability protection model. The surveys by Linden 
[Linden 76] and Denning [Denning 76], which appeared in a 
special issue of ACM Computing Surveys, describe capability 
systems and their relationship to security and fault tolerance in 
operating systems. 

The architecture books by Myers [Myers 82] and Iliffe 
[Iliffe 82] also discuss some of the systems described in this 
book. Myers' book contains details of Sward [Myers 80], a 
capability-based research system built at IBM that is omitted 
here. A capability system model, as well as discussion of some 
existing capability systems, appears in the book by Gehringer 
[Gehringer 82]. Jones [Jones 78a] provides a good introduction 
to the concepts of object-based programming. 





The Burroughs B5000 computer. (Courtesy Burroughs Corporation.) 



Early Descriptor Architectures 

2.1 Introduction 

During the late 1950s and early 1960s a host of architectural 
experiments attacked significant problems in computer system 
utilization. Most computers of that era were batch systems that 
ran one program at a time. A program was loaded into a contig­
uous section of primary memory and run until completion; 
then another program was loaded and run. This static execu­
tion and memory environment made inefficient use of the 
costly processor, memory, and peripherals. In addition, pro­
grams had little flexibility for meeting dynamic programming 
demands. 

Multiprogramming systems showed increased processor uti­
lization as long as several runnable programs could be kept in 
primary memory. However, multiprogramming required more 
sophisticated memory management techniques and forced op­
erating systems to deal with dynamic storage allocation and 
compaction. These tasks were greatly eased by the introduc­
tion of paged systems in which all storage units were the same 
SIze. 

Although paging helped the operating system to manage 
storage, it did little to help the programmer with the task of 
programming. A program still had to manage a conventional 
linear address space. It was difficult to protect instructions or 
data separately, to catch array bounds violations, to increase 
the size of arrays and other data structures dynamically, or to 
create new data structures dynamically. 

The concept of segmentation, however, aided both the pro-
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grammer and the operating system. A segment is a contiguous 
section of memory that represents some logical entity, such as a 
procedure or array. The programmer views memory as a col­
lection of segments, each separately addressable. A program 
addresses each memory element by a segment number and the 
offset of that element within the specified segment. Because 
each segment has a size, array bounds violations can be caught 
by placing the array within a single segment. 

An operating system can load each segment into memory 
separately or relocate segments if needed (for example, to en­
large the size of the segment). However, for an operating sys­
tem to manipulate segments easily, it must ensure that physical 
memory addresses are not embedded in the program. The sim­
plest way to isolate the program from its physical memory loca­
tion is to provide a level of indirection between program-gener­
ated addresses and the primary memory addresses of data 
elements. Just as page tables provide this indirection in the 
paged virtual memory system, segment descriptors-or seg­
ment base/limit registers in some hardware implementa­
tions-provide the indirection in a segmented system. A seg­
ment descriptor is a data element that contains the primary 
memory address and size of a segment. An operating system 
need only modify the relevant descriptors when relocating seg­
ments. 

This chapter examines several early descriptor-based com­
puter designs: the Burroughs BSOOO, the Rice University Com­
puter, and the Basic Language Machine. Although these sys­
tems preceded the formal definition of capability, each system 
implemented capability-like structures:in its addressing mech­
anisms. These machines were distinguished from their con­
temporaries by the generalized way in which they applied the 
concept of descriptor. 

2.2 The Burroughs B5000 

Much of the innovation in commercial computer architec­
tures in the early 1960s emanated from the Burroughs Corpo­
ration. Introduced in 1961, the Burroughs BSOOO system had 
several features unique for its time [Burroughs 61]. Most im­
portant was the use of segmentation for structuring memory 
and the use of descriptors for addressing segments. Also, the 
BSOOO was geared to execute high-level language programs, 
particularly ALGOL and COBOL. In fact, assembly language 
was not available to the user. The system was designed to com-
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pile and execute high-level languages efficiently, and relied on B5000 

a stack-oriented instruction set to aid in expression evaluation 
and procedure activation. The BSOOO supported multiprocess-
ing as well as multiprogramming by allowing connection of two 
processing units. 

On the BSOOO a program consists of many data segments 
and code segments. Each executing program has a local ad­
dressing environment consisting of its memory segments, its 
private stack, and a private Program Reference Table (PRT). 
The Program Reference Table, up to 1024 48-bit words in 
length, contains descriptors that locate the user's code and data 
segments in memory, and values of scalar elements, as shown 
in Figure 2-1. A tag field in each word in the table indicates 
whether the entry is a descriptor or a scalar data element. All 
memory references, including procedure calls, are made 
through Program Reference Table descriptors; thus, the Pro­
gram Reference Table completely defines the domain of execu­
tion for each user program. When a program is running, a 
hardware register holds the address of its Program Reference 
Table. 

The BSOOO supports three different descriptor types: data 
descriptors, program descriptors, and input/output descrip­
tors. The formats of these descriptors are shown in Figure 2-2. 
Data descriptors contain the size, primary memory address, and 
drum unit number and address of a data segment. Program 
descriptors are allocated for each procedure and every segment 
of the main program. Reference to a program descriptor auto­
matically causes a procedure call. Input/output descriptors are 

Tag 
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Descriptor 
l segment 

I Descriptor Subroutine I 
I code segment 

Value 

Descriptor I Data 

I I segment 

Value 

PRT 

Figure 2-1: B5000 Program Reference Table 23 
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Data and Program Descriptor 

I/O Descriptor 

Figure 2-2: B5000 Descriptor Formats 

Memory 
address 

command words for the operating system, specifying the size 
and type of transfer and any special device control or format­
ting information. The operating system selects a physical unit 
and allocates primary memory for the operation if needed. 

The presence bit (P) in data and program descriptors indi­
cates whether or not the segment is currently in primary mem­
ory. If reference is made to a segment not in primary memory, 
a trap occurs and the operating system automatically loads the 
segment from drum. 

The BSOOO is a stack machine and all instructions operate on 
the stack. The stack is stored in memory; however, the top two 
stack elements are held in hardware registers called the A and 
B registers. As items are pushed onto the stack, they move first 
into the A register, then to the B register, and finally into 
memory as more items are pushed. As items are popped from 
the stack, data moves from memory into the B register. All 
ari thmetic operations are performed on operands held in the A 
and B registers, leaving a single result in the B register. 

Each 48-bit BSOOO instruction word :is divided into four 12-
bit instruction syllables. There are four types of instruction 
syllables: operators, literals, operand calls, and descriptor 
calls. An operator syllable operates on the top one or two ele­
ments of the stack, leaving a single-word result. A literal sylla­
ble simply causes a 10-bit literal field in the syllable to be 
pushed on the stack. 

A program executes an operand call syllable to load a data 
item onto the stack. The operand call references an entry in the 
Program Reference Table, with three possible results depend­
ing on the type of entry encountered. First, if the PR T entry is 
a scalar, the scalar is pushed onto the stack. Second, if the PR T 
entry contains a program descriptor, a subroutine call takes 
place. Third, if the entry is a descriptor for a segment with 
length greater than zero, then array indexing takes place as 



follows. The contents of the B register, which contains the 
array index, is validated against the length stored in the de­
scriptor. The index is then added to the segment base address 
to locate the selected word in memory. The word is read from 
memory and loaded into the B register, replacing the index. 

Descriptors can also be loaded from the PR T onto the stack. 
This is required, for example, to execute the STORE operator, 
which saves the contents of the B register in the location ad­
dressed by the A register. A descriptor call syllable, used to 
push an address onto the stack, operates in a mode similar to 
the operand call. If the referenced PRT entry is a scalar, a 
descriptor is constructed pointing to its location in the PRT. If 
a PR T entry contains a descriptor, the descriptor is copied to 
the stack, with possible address modification by an index value 
in the B register. Reference to a program descriptor causes a 
subroutine call. 

BSOOO subroutines execute in subroutine mode which pro­
vides some special syllable formats. When a subroutine is 
called, input parameters (as well as linkage information) are 
saved on the stack by the caller. A hardware register is loaded 
with the address of the next available stack location past the 
saved parameters; this is the first location used by the subrou­
tine for its local variables. One of the subroutine mode sylla­
bles allows stack addressing relative to the register in the posi­
tive direction (to access locals) or the negative direction (to 
access inputs). A subroutine can also address constants stored 
in the subroutine code segment using a type of program 
counter relative addressing. References to the caller's PRT are 
still permitted within the subroutine. 

The BSOOO's use of the stack, segmentation, descriptor ad­
dressing, and high-level languages made it one of the most 
advanced systems of its time. These features have been ex­
panded and gem!ralized in later Burroughs systems and have 
had an effect on other manufacturers' products as well. The 
16-bit Hewlett-Packard 3000 [HP 72], in particular, is an out­
growth of early lBurroughs BSOOO ideas. More important, the 
BSOOO Program Reference Tables and their use in addressing 
and separation of process address spaces directly influenced 
early capability thinking. 

2.3 The Rice University Computer 

In 19S9, development of a new machine began at Rice Uni­
versity. Called the Rice University Computer [Iliffe 62, Jodeit 

2.3 The Rice 
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The Rice University computer. Jane Jodeit is seated at the control console 
with Martin Graham looking on (Courtesy Dr. Martin Graham.) 

68], this system was designed for the single-program environ­
ment and was never intended to support multiprogramming. 
In fact, the original physical memory of the Rice machine was 
only 8K 56-bit words. However, this computer-operational 
until 1971-provided important experimentation with pro­
gram addressing of memory. 

The Rice architecture focused on several deficiencies in con­
ventional linear address space machines. First, conventional 
hardware did not support entities corresponding to high-level 
programming objects. Second, for scientific problems, conven­
tional architectures did not support the addressing of single or 
multidimensional arrays. Third, dynamic growth of data struc­
tures was difficult on conventional machines. Programmers 
had to code the maximum possible size of each array into their 
programs, so that contiguous storage could be preallocated. 
Support of ALGOL-like languages, with array size determina­
tion at block entry time, was difficult. 

To solve these problems, the Rice designers chose a seg­
mented architecture based on the use of codewords. Codewords 
are descriptors for logical program entities; they can be stored 
in the computer's memory or registers. Each program (as 
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F Physical address of the segment. 

K Specifies one of eight index registers whose contents can be used 
to select an array element at location F -I + (K). 

P Valid bit, indicates whether physical storage is allocated or not. 

Indirect bit. 

X Specifies that the named segment contains codewords. 

Index of the first array element (origin of the array). 

L Length of the segment in words. 

Figure 2-3: Rice University Computer Codeword Format 

viewed by both the programmer and the machine) consists of a 
collection of segments, called blocks or arrays in the Rice de­
sign. A segment contains instructions, data, or codewords and 
is addressed indirectly by means of a codeword. Each segment 
is homogeneous, and data types cannot be mixed within a sin­
gle segment. A single-bit tag within each codeword is set if the 
addressed segment contains codewords. 

In one sense, a codeword is simply a single-word descriptor 
used to address a segment, similar to a segment base register or 
Burroughs BSOOO descriptor. In anothe~ sense, a codeword 
names the block of storage it addresses. The logical machine 
address space seen by the program on the Rice system is totally 
defined by a list of principal codewords that it can access. The 
actual maintenance of codewords is provided by the operating 
system. The basic structure of Rice codewords (omitting un­
used bits) is shown in Figure 2-3. 

The physically addressable memory of the Rice machine is 
divided into several fixed regions, as defined below: 

• A 64-word table for accumulators, trap addresses, boot code, 
etc. 

• Two 64-word directories of codewords defining array blocks 
for the operating system and programmer, respectively. 
These are the principal codewords through which all other 
storage is rea(;hed, including the following structures. 

• A 128-word stack. 
• A symbol table defining each named global object in the sys­

tem. 
• A corresponding value table containing values for scalars and 

codewords for arrays named in the symbol table. 

2.3 The Rice 
University Computer 

27 
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The remainder of memory is allocated dynamically to user pro­
grams and data, including those addressed through the value 
table. 

Figure 2-4 shows the structure of a Rice University Com­
puter sample procedure. Procedure instructions can address 
variables within the procedure segment without reference to 
codewords (that is, relative to the program counter). However, 
external arrays, procedures, and variables are addressed 
through linkage words stored at the end of the procedure seg­
ment. When a procedure is compiled, the linkage words are 
initialized with the names of the global variables to be ad­
dressed. At procedure load time, the operating system locates 
the names in the symbol table and modifies the linkage words 
to point to the corresponding entries in the value table. 

A value table entry can be a value if the object is scalar, or a 
codeword if it is an array, requiring one or more additional 
levels of indirection. Indirection is possible through a tree of 
codewords, and each successive level can specify one of eight 
index registers. For example, in addressing the two-dimen­
sional array (2DArray) shown in Figure 2-4, each codeword in 
the secondary codeword segment addresses one row of the 
array. Indirection terminates when a scalar object is found. 
Measurements performed on the Rice University Computer 
showed that 10-15% of total data references were made 
through codewords. 

Arrays can be extended in length by allocating additional 
storage and modifying the codeword. Multidimensional array 
addressing is aided by the fact that each codeword can specify 
an index register. For example, a two-dimensional array can be 
described by a primary codeword pointing to a table of code­
words, one for each row. No address computation is required 
because the index registers are used to hold the column and 
row indices. In addition, the rows can be of different lengths. 

Although the designers stressed the importance of array 
addressing and extensibility, perhaps more important is the 
use of codewords as object names. Using the Rice scheme, a 
procedure need only specify a codeword parameter to pass an 
object to another procedure. The codeword completely defines 
access to the object, including its address and length. 

The Rice University Computer had several limitations, but 
they were often due to implementation decisions. For example, 
codewords contained the length of the block they defined, but 
the length was not used by hardware to validate an array index. 
Instead, a trap facility was provided to allow software to check 
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array bounds. There was also no hardware-enforced memory 
protection in the system; however, this was due to the simpli­
fied goals of the machine. One of the more troublesome short­
comings was that procedure return address links were stored as 
physical addresses, so procedures could not be relocated easily. 

niffe and J odeit suggest that extensions for multiprogram­
ming would be straightforward and require that each user have 
a separate primary codeword list. Virtual arrays would be pos­
sible also, but the only secondary storage on the Rice computer 
was a magnetic tape system. The Rice implementation of code­
words closely resembles the capability concept in the sense that 
possession of the codeword (or knowledge of its address) is 
required to access an object. The designers also suggest that 
Rice codewords could be extended to include usage statistics 
and that device controllers could be developed to understand 
codeword formats. These additions were never made, but sev­
eral architectural advances were made in a follow-on design, 
the Basic Language Machine. 

2.4 The Basic Language Machine 

The Basic Language Machine (BLM) [niffe 68, niffe 69] 
attempted to extend the capabilities of the Rice University 
Computer and correct some of its shortcomings. Like the Rice 
University machine, the BLM incorporated a codeword mech­
anism, but it added data type tagging and address manipula­
tion as well. An additional goal of the BLM project was to 
build a machine defined in terms of higher level functions, 
hiding from the programmer the bit-level details of the ma­
chine. The Basic Language (not the familiar BASIC program­
ming language used today) defined this high-level architectural 
interface in terms of an assembly-level command structure. 
Design of the BLM was started in 1964, and an experimental 
version was built by the research division of International 
Computers Limited (ICL) in the United Kingdom. 

The Basic Language Machine supports 8-bit byte, 32-bit 
word, and 64-bit double-word information units. There are 16 
general-purpose registers, each 64 bits long. One of the regis­
ters is the program counter (called the control number), one 
points to a data structure containing the context local to the 
current process (called the Process Base), and two are reserved 
for special escape actions. Memory on the BLM is segmented, 
the largest segment containing 64K elements of the largest in­
formation unit. The BLM supports a 24-bit physical address 
space. 



The BLM computer, (Courtesy International Computers Ltd,) 

BLM segments are addressed through codewords, as on the 
Rice computer. However, BLM codewords contain a type field 
indicating the type of information elements stored in the seg­
ment they address. The defined data types are: 

• 32-bit binary word, 
• 8-bit byte, 
• 64-bit long numeric, 
• 32-bit short numeric, 
• mixed type, 
• instruction, 
• absolute codeword, and 
• relative codeword. 

The type field also indicates what access is permitted to the 
segment: data segments can be read-only or read/write; code­
word and instruction segments are read-only. 

Most of the type encodings specify segments that are homo­
geneous, that is, segments with only one data type. If the 
codeword type field specifies a mixed-type segment, the seg-

2.4 The Basic 
Language Machine 
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ment can contain elements of any type. However, in mixed­
type segments, each element must contain its own tag. A tag is 
a field contained within the information unit indicating its in­
terpretation. All elements in a mixed-type segment are 64 bits 
long and contain a 3-bit tag. The four tags defined are: 

• 32-bit binary word, 
• escape (an attempt to use such an element as an operand 

causes a trap to software), 
• 4S-bit address (stored in 64 bits), and 
• 61-bit floating numeric element. 

The BLM automatically performs conversion and tagging of 
data elements on fetch or store operations. In homogeneous 
sets, tags do not need to be stored with each data item, but are 
constructed from the type stored in the codeword used to load 
the item into a register. Therefore, homogeneous information 
can be tightly packed without tagging overhead. The format of 
32-bit and 61-bit numeric elements when stored in registers, 
for example, is shown in Figure 2-5. The tag values of zero and 
three in the figure indicate 32- and 61-bit numerics, respec­
tively. If an 8-bit byte is fetched, it is automatically sign­
extended to 32 bits, and the tag is set to zero. 

The BLM is a multi programmed computer, and a Process 
Base defines the execution environment for each process. It is 
possible for several processes to share the same base and, 
hence, share access to the same objects. The process address 
space is composed of a collection of segments, each of which is 
described by a codeword. The segments may be arranged in a 
tree structure, but all nodes are reachable only through code­
words originating in the Process Base. That is, the terminal 
nodes of the tree structure contain data or instructions, while 
the intermediate or branching nodes are codeword sets. Code­
words are thus used both to separate user address spaces and to 
separate logical entities within a program. 
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Figure 2-5: Example of BLM Numeric Formats 



2.4 The Basic 
Relative codewords are provided so that, in situations where Language Machine 

it is natural to do so, codewords can be stored in the same 
segment with the data they describe. To simplify packing, rela-
tive codewords are only 32 bits long and can only reference 
objects within 4096 bytes of their location. Relative codewords 
allow efficient storage of related data structures. A program 
can maintain several data structures in a single segment by 
placing relative codewords for the data structures in the first 
few segment locations. 

Figure 2-6 shows a sample structure of a BLM process. In 
this case, the Process Base contains codewords for instruction 
segments, data segments, and codeword segments. The termi­
nal nodes are all data segments. One of the terminal nodes is a 
mixed segment with relative codewords pointing to internal 
data structures. 

Codewords define the address space and are read-only; they 
cannot be manipulated by users. BLM addresses, however, are 
quantities derived from codewords that can be user-manipu­
lated.. Both addlresses and codewords contain the same infor­
mation, as shown in Figure 2-7: the address and length of the 
defined set, its type, and a tag indicating an addressing ele­
ment. Once an address is derived from a codeword, through an 
operation called codeword evaluation, it can be modified 
through special instructions. MOD and LIM instructions ad­
dress a subset of the original segment by modifying the loca-
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Figure 2-7: BLM Address and Codeword Fprmats 

tion and length fields-to remove a specified number of ele­
ments from the beginning or end of the segment, respectively. 
Looping instructions are available to step addresses through 
consecutive elements of a segment (performing an implicit 
MOD by one each time) and to test when the last element has 
been examined. Iliffe notes that it would be possible also to use 
the 16 free bits in an absolute codeword to implement linked 
data structures. 

BLM addresses allow users to save intermediate address 
computations through a tree of codewords. (In contrast, on the 
Rice University Computer, a full address computation is re­
quired on each access to an indirectly referenced object.) On 
the BLM, the programmer can compute the object address 
once and save it. The address for a single element in a set can 
also be computed and saved. Of course, relocation is difficult 
because addresses as well as codewords must be examined 
when an object is relocated; that is, BLM addresses are not 
virtual but contain the primary memory location of a data ele­
ment. 

The Basic Language Machine made several important ad­
vances over the Rice University Computer. First, it extended 
the design to encompass multiprogramming, using a separate 
Process Base for each process. Second, it provided a more gen­
eral addressing structure to give users flexibility in performing 
address arithmetic and saving results. Third, it used a rela­
tively efficient typing mechanism to reduce the number of op­
erators in the instruction set. However, despite the advantages 
of its structure, the experimental BLM was dismantled in 1970 
and no product evolved from the research effort. 

2.5 Discussion 

The machines described in this section share two major 
traits: segmentation and the use of descriptors (called code-



words in the Rice and BLM machines) for segment addressing. 2.5 Discussion 
Segmentation of programs was used: 

• to separate programs into logical entities (procedures and ar­
rays, for example), 

• to separate Ulser processes from each other, 
• to represent and address complex data structures in hard­

ware, and 
• to allow relocation and dynamic growth of data structures. 

In general, an address is specified by two parts: a segment 
descriptor and an offset. However, different approaches for the 
specifics of addressing and address manipulation were used for 
each machine. For example, array addressing on the Bur­
roughs BSOOO required the index to be pushed onto the stack 
before the array reference was made. Multidimensional array 
address calculation required a series of index pushes and evalu­
ations. The Rice University Computer used index registers, 
and multilevel indexed addressing was performed automati­
cally with an index register specified for each level in the ad­
dressing tree. With the BLM, this idea was abandoned and 
replaced by address modification instructions that allow a con­
i:rolled form of user-modifiable codewords. 

All three machines provide a single base segment that de­
fines a program's execution environment: the BSOOO Program 
Reference Table:, the Rice University Computer primary code­
word list, and the BLM Process Base. The address of the base 
segment is usually held in a hardware register. From the base 
segment, the addressing mechanism provides for the represen­
tation of programs and data structures as tree structures. The 
trees are slightly different in each case due to the differences in 
addressing. The root of the tree is the base segment hardware 
register, and the first level nodes are in the Process Base. Start­
ing at the Process Base, the branchpoints of the tree are code­
words or descriptors and the leaves are data elements (in the 
case of the Rice University Computer) or data segments (in the 
case of BSOOO or BLM). The BLM allows a program to tra­
verse several levels and save the intermediate address of a sub­
tree, but the Rice machine requires a complete multilevel scan 
for each access. The tree structure allows the user to represent 
complex data structures directly in hardware and to share 
substructures. Different processes can share subtrees by shar­
ing subtree descriptor segments. 

One of the major reasons for segmentation in these systems 
was to simplify relocation of programs and data. Relocation is 35 
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facilitated by forcing all references to flow through descriptors. 
To relocate a segment, the operating system needed only to 
modify its descriptors. The additional level of indirection pro­
vided by descriptors also made segments easily "virtualizable," 
that is, all segments did not have to occupy primary memory 
while a program was running. Of course, the complexity of 
relocation is greatly influenced by the generality with which 
descriptors can be used. For example, if descriptors are stored 
in a single descriptor table, relocation involves only a scan of 
that table. However, if descriptors are stored in segments and 
each descriptor contains a segment base address, then many 
segments may need to be searched. Such a memory search can 
be simplified if segments are typed, as on the BLM, because 
only mixed or codeword segments would need to be examined. 

Care must be taken in any scheme in which multiple copies 
of the physical segment information can exist for a single seg­
ment. This problem could be reduced if the descriptors them­
selves referred indirectly to a second-level segment descriptor. 
However, on the machines examined in this chapter, a descrip­
tor contains all of the physical information describing a seg­
ment. Thus, copying a descriptor duplicates the physical ad­
dress. 

Descriptors on the BSOOO can be copied onto the stack, re­
quiring a possible stack search in order to relocate a segment. 
However, because it is exclusively a high-level language ma­
chine, the use of descriptors can be restricted by the BSOOO's 
compilers. The Rice University Computer allows descriptors 
to exist in any segment of codeword or mixed type, so these 
segments would need to be scanned. The BLM, on the other 
hand, allows pure codeword segments and relative codewords 
within other word-oriented segments. Both the Rice and BLM 
machines require a tree search to find descriptors for segments 
to be relocated. 

Another problem in multiprogramming systems is control­
ling access to shared segments. A user (or 110 device) wishing 
to perform a multistep transaction on a shared segment must 
gain exclusive access to that segment. This can be achieved by 
disabling interrupts or context switching (usually via executive 
procedures), through the use of explicit software locks, or 
through the use of a "lockout" or software trap bit in the de­
scriptor. If lockout bits are used, then the executive must find 
all copies of descriptors for the target segment. 

Another issue in descriptor design is the cost of indirection. 



All of the examined machines allow tree-structured data. AI- 2.5 Discussion 

though the Rice machine has automatic multilevel addressing, 
the Burroughs and the BLM require several manual steps. 
However, the Burroughs and the BLM allow for partial ad-
dress computations to be saved. 

One of the perpetual debates in computer architecture is the 
tradeoff between the use of tag bits in data elements and the 
larger operation code set needed in non-tagged architectures. 
The BLM scheme seems to answer the concern for tagging 
overhead by only storing tags in the codeword or address for 
homogeneous segments. However, for mixed or heterogeneous 
structures, each element must still carry a tag. In addition, the 
elements in a mixed set must all be of the same size as the 
largest element in the set; that is, all elements must have the 
same alignment to protect against addressilllg the middle of 
some element and interpreting data bits as tags. This is not 
particularly efficient because any segment containing a code­
word pointer must use 64 bits for each element. Still, there are 
benefits to tagging besides the possible savings of operation 
code bits, including automatic conversion and checking by the 
hardware. A certain amount of error detection may also be 
gained by self-tagging of information units. 

A likely problem with these machines was that of garbage 
collection. If a program can write a descriptor to a descriptor 
segment, the descriptor previously occupying that memory 
word could be overwritten. If the overwritten descriptor were 
the only one referencing some segment, that segment would 
then be unreachable. In general, this problem was prevented 
by making descriptor segments read-only. The BSOOO PRT 
was not read-only; however, this system relied heavily on the 
compilers for proper system operation. User programs did not 
have direct control of the PRT or descriptors. Garbage seg­
ments were considered a problem on the BLM, and a garbage 
collection process was written to search for unreachable seg­
ments. 

One of the more important gains from tht! use of descriptors 
is the protection of procedures. If procedures can be invoked 
only by referencing a descriptor, then two benefits are realized. 
First, a procedure can only be invoked at its entry point con­
tained in the descriptor; it cannot be entered at a random 
point. Second, procedure code is protected from accidental or 
deliberate modification. 

Despite their differences, all of these machines have a com- 37 
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mon link to capability architectures: they all use descriptors to 
name programming objects. The objects are generally simple, 
for example, a segment containing an array, a procedure, or a 
list. 110 operations are also described by descriptors on the 
BSOOO. 

It is important to note that all of these machines support 
large word lengths. A single word is large enough to contain all 
of the segment base and limit information as well as various 
other bits. In general, although bytes may be supported as data 
types, byte addressing is not provided; that is, memory is 
word-addressable. The descriptor is a single word that contains 
all of the physical information needed to locate the object in 
primary or secondary memory. In retrospect, this fact is im­
portant because duplicating the descriptor duplicates all of the 
segment niapping information. Descriptors are therefore dif­
ferent from virtual addresses or modern capabilities where a 
second level of addressing is employed. 

Although the Rice family of machines was not directly con­
tinued, the BSOOO led to many stack and descriptor machines 
in the Burroughs family, and other manufacturers were also 
influenced by its design. Whether or not they were long-lived, 
these machines demonstrated the feasibility of using descrip­
tors and segmentation to greatly increase programming flexi­
bility for the user, the compilers, and the operating system. 

2.6. For Further Reading 

The Burroughs BSOOO is described in The Descriptor 
[Burroughs 61], a remarkably modern document for the time it 
was written. One section of the manual is devoted to the ad­
vantages of high-level language systems (ALGOL in this case), 
such as reduced programming time, simplified debugging, and 
program maintenance. Such goals are remarkably similar to 
the objectives of today's object-based systems. 

Two papers that discuss storage allocation in the Rice Uni­
versity Computer are [Iliffe 62] and [Jodeit 68]. A book is 
available on the Basic Language Machine [Iliffe 68]; however, 
it is unfortunate that more was not published on the machine's 
design and use. Perhaps this indicates the fate of industry's 
research projects that never become products. However, an 
excellent discussion of the BLM within the context of modern 
capability systems appears in [Iliffe 82]. 

Following the BLM, design of a third member of the Rice 



computer family, called the Rice Research Computer, was 
started at Rice University [Feustel 72]. The Rice Research 
Computer was to be a high-performance tagged architecture, 
but technological problems caused the termination of the proj­
ect in 1974. A discussion of the general advantages of tagged 
architectures can be found in [Feustel 73]. 

2.6 For Further 
Reading 

39 





Early Capability Architectures 

3.1 Introduction 

Although the Burroughs, Rice, and BLM systems included 
capability-like addressing structures, the word "capability" 
was not introduced until 1966, by Dennis and Van Horn of 
MIT [Dennis 66]. Dennis and Van Horn defined a hypotheti­
cal operating system supervisor for a multiprogramming sys­
tem. Multiprogramming systems were already in us~ at that 
time; however, many difficult problems had yet to be solved. 
The MIT design used the concept of capability addressing to 
provide a uniform solution to several issues in multiprogram­
ming systems, including sharing and cooperation between 
processes, protection of processes, debugging, and naming of 
objects. 

The concept of capability addressing presented by Dennis 
and Van Horn quickly found its way into several hardware and 
software systems. This chapter first describes the Dennis and 
Van Horn supervisor and its use of capabilities and then exam­
ines some of the early systems influenced by its design. 

3.2 Dennis and Van Horn's Supervisor 

Dennis and Van Horn's operating system supervisor is de­
fined by a set of objects and a set of operations for each type of 
object. The operations, implemented by the supervisor, are 
called meta-instructions. To describe this system and its meta­
instructions involves the introduction of the following terms: 

3 
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• segment-an addressable collection of consecutive 
memory words, 

• process-a thread of control through an instruction 
stream, and 

• computation-one or more processes that share an ad­
dressing environment and cooperate to solve a task. 

A process is the basic execution entity. A process executes 
within an environment called a sphere of protection or domain. 
The sphere of protection for a process defines the segments 
that it can address, the I/O operations that it can perform, and 
other objects, such as directories, that it can manipulate. 

As part of its state, a process in the Dennis and Van Horn 
system contains a pointer to a list of capabilities, called a C-list 
for short. Each capability in the C-list names an object in the 
system and specifies the access rights permitted to that object. 
The name is a pointer that the supervisor can use to locate the 
object; however, the authors suggest that systems avoid the use 
of physical attributes such as addresses for pointers. The name 
is a unique bit string assigned to an object when it is created. 
The naming of objects in an address-independent manner sim­
plifies relocation and management of memory. 

The access rights in a capability are specific to the type of 
object named. For example, the rights bits allow execute, read, 
read/execute, read/write, or read/write/execute access for seg­
ments. Each capability also contains a single bit indicating 
whether or not its possessor is the owner of the object. An 
object's owner has special rights with respect to the object, 
such as the ability to delete it. 

Each process in the system, then, has a pointer to a single 
C-list containing capabilities naming all of the objects it can 
access. When executing a supervisor meta-instruction, the 
process specifies capabilities by their index in the C-list. A 
computation consists of several potentially cooperating proc­
esses that share a single sphere of protection. That is, the proc­
esses in a computation share the same C-list. Figure 3-1 shows 
three processes that make up two distinct computations. 

The supervisor allows the creation of tree-structured proc­
esses. Using a FORK operation, a process can create a parallel 
process executing within its sphere of protection. In addition, a 
process can create and control subprocesses, called inferior 
spheres, that execute in separate subordinate domains. To 
create an inferior sphere, a process executes a CREATE SPHERE 

meta-instruction. As a parameter to the meta-instruction, the 
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process specifies an entry in its C-list, in which the supervisor 
places a capability for the inferior. This capability can then be 
used to control the inferior process. 

When a process executes a CREATE SPHERE meta-instruction, 
the supervisor creates the inferior with an empty C-list. Using 
its capability for the inferior, the parent process can execute 
meta-instructions to: 

• move capabilities from its C-list to the inferior's C-list, 
• start and stop the inferior, 
• examine or change the inferior's state, and 
• remove capabilities from the inferior's C-list. 

The creating process can construct any sphere of protection 
desired for the il1ferior, with the restriction that the superior's 
C-list must contain any capabilities to be copied to the inferi­
or's C-list. Table 3-1 lists the Dennis and Van Horn meta­
instructions that operate on inferior spheres, capabilities, and 
directories (which are described in Section 3.6). 

Inferior spheres are useful for debugging. When testing a 
new procedure, a user might like to constrain the environment 
in which the procedure can execute so that an error will not 
accidentally destroy the user's objects. When a process creates 
an inferior sphere, it specifies the address of a procedure to 
handle any special conditions. If an error or exception is de-

3.2 Dennis and Van 
Horn's Supervisor 

43 



Early Capability 
Architectures 

44 

CREATE SPHERE create an inferior sphere and return a proc­
ess capability to the creator 

GRANT copy a capability to an inferior's C-list with 
specified access rights 

EXAMINE copy inferior's capability into superior's C­
list 

UNGRANT delete capability from inferior's C-list 
ENTER call protected procedure with one capability 

parameter 
RELEASE remove capability from C-list 
CREATE create a new segment, entry, or 

directory 
PLACE insert capability and text name into 

directory 
ACQUIRE search directory for text name and copy as­

sociated capability into C-list 
REMOVE remove named item and associated capabil­

ity from directory 
DELETE delete object specified by name 
LINK obtain capability for another user's root di­

rectory and insert in C-list 

Table 3-1: Dennis and Van Horn Supervisor Capability Operations 

tected in the inferior, the supervisor creates a new process 
within the sphere of the parent process to execute the error­
handling procedure. Or, the inferior can explicitly signal the 
parent through special meta-instructions. This feature allows a 
superior to build a supervisory environment for its inferior 
which is equivalent to that provided by the superior's parent 
(or by the supervisor). 

Although C-lists provide for object addressing, they do not 
satisfy the need for object naming. Users in a multiprogram­
ming system must be able to identify objects (particularly 
long-term objects such as files) using mnemonic character 
string names. They must also be able to share objects with 
other users in the system. In order to allow users to name 
objects and retain them indefinitely, the supervisor provides 
primitives for the creation and manipulation of capability direc­
tories. 

A directory contains a list of directory entries. Each entry 
consists of a text name, an associated capability, and a single 
bit specifying whether the entry is private or free. The 
private/free bit allows a user to share a directory without per­
mitting access to all of the directory entries. Directory entries 
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are accessed by text name, and meta-instructions are provided Horn's Supervisor 

to copy a directory capability to the user's C-list, place a C-list 
capability in a directory along with an associated name, or re-
move a directory entry. The directory meta-insttuctions-
PLACE, ACQUIRE, REMOVE, DELETE, and LINK-are listed among 
the capability operations in Table 3-1. 

Each user has a single root directory that contains capabili­
ties for the user's permanent objects. When a user initiates a 
session (that is, when the user logs into the system), the super­
visor creates a new process and places a capability for the root 
directory in the process's C-list, giving the process access to 
these objects. A process can then load capabilities from the 
root directory into the C-list by executing an ACQUIRE meta­
instruction. The ACQUIRE specifies three parameters: the capa­
bility for the root directory, the text name of the object to be 
loaded, and the C-list location in which to place the associated 
capability. 

New directories can be created and capabilities for direc­
tories can be stored in other directories .. Thus, a user can build 
graph-structured directory mechanisms and share directories 
or subdirectories. To facilitate object sharing, the supervisor 
allows a process to obtain a capability for another process's root 
directory. In turn, the root directory can be traversed to locate 
subdirectories, and so on. However, when examining another 
user's directory structure, only those entries marked as free 
can be accessed. 

The Dennis and Van Horn supervisor does not support a 
separate concept of files. Any segment or directory is potenti­
ally long-lived and can be used to store information from ses­
sion to session or over system restarts. An object is maintained 
by the system as long as a capability exists for that object. 
Therefore, to make a segment or directory long-lived, a user 
simply stores a capability for that object in the root directory or 
any long-lived directory reachable through the root. The su­
pervisor automatically deletes an object when the last 
capability for that object is deleted. Deleting any single capa­
bility for an object does not necessarily cause the object to be 
deleted because other capabilities for the object may still exist. 
The supervisor does support an explicit DELETE meta-instruc­
tion that can be used by a process with owner privileges to an 
object. 

One of the most important aspects of the Dennis and Van 
Horn supervisor is its support for protected procedures. 
Within a multiprogramming system, it should be possible for a 45 
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user to create a procedure that provides service to many differ­
ent users. However, this procedure must be able to protect 
local objects from its callers, and the callers may wish to guar­
antee that the procedure does not destroy or compromise any 
of their local objects. The protected procedure meets both of 
these needs. 

A process creates a protected procedure by obtaining an 
entry capability through a supervisor meta-instruction. The 
entry capability contains a pointer to the C-list of the process 
that created it. It also contains an index, i, and a range, n, for a 
set of sequential procedure capabilities within the C-list of the 
creating process. The entry capability can then be passed to 
any process (through the directory mechanism, for example) 
and used to call any of the n procedures. To call a protected 
procedure, a process executes an ENTER meta-instruction speci­
fying: 

• an entry capability, 
• the index of one of the n procedures to be called, and 
• a capability parameter to be passed to the protected proce­

dure. 

The entry capability and capability parameter must be in 
the caller's C-list. As a result of the ENTER instruction, the 
supervisor creates a new process to execute the protected pro­
cedure. This new process executes in the sphere of protection 
specified by the C-list pointer contained in the entry capability. 
Figure 3-2 shows this change from the sphere of the caller to 
the sphere of the protected procedure. The entry capability in 
Figure 3-2 allows its owner to call one of two procedures de­
fined by capabilities in the protected C-list. 

A protected procedure, then, executes in the domain de-
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Figure 3-2: Protected Procedure Protection Spheres 
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caller. In this way, the caller and the protected procedure are 
mutually isolated. The caller has no access to the protected 
procedure's objects, and the procedure has no access to the 
caller's objects, with the exception of those objects passed ex-
plicitly through Ithe capability parameter. Because this parame-
ter can be a directory capability as well as a segment capability, 
a caller can pass a list of capabilities or an arbitrary data struc-
ture. A process possessing an entry capability can only use that 
capability to call one of a sequence of procedures. Once that· 
procedure begins execution, it has access to all of the objects 
available in its private C-list. 

The Dennis and Van Horn conceptual design became very 
influential on later systems. However, there are many ways to 
apply the concepts and many problems inherent in doing so. 
The first system to incorporate the concept of capability was a 
timesharing system at MIT, which is examined in the following 
section. 

3.3 The MIT PDP-1 Timesharing System 

The first computer system to include Dennis and Van 
Horn's capability operations was a timeshared operating sys­
tem constructed at MIT from Dennis' design [Ackerman 67, 
MIT 71]. The system ran on a modified 12K-word Digital 
Equipment Corporation PDP-1 computer, the first minicom­
puter. The timesharing system supported five "typewriters" 
and used capabilities only to reference a few relatively high­
level system resources, such as terminals, tapes, and drums. 
However, the operating system allowed users to extend this set 
of resources by creating new protected subsystems. It is the 
protected subsystem mechanism that is briefly examined here. 

Each process running on the PDP-1 timesharing system has 
a C-list (also called the program reference list, after the Bur­
roughs BSOOO), in which capabilities are held. The C-list is 
actQally maintained in locations 0-77 of process address space. 
These locations are protected against program examination or 
modification and can only be manipulated by the operating 
system. Each capability is addressed by its index in the list. 

Capabilities are created by special supervisor instructions. 
Each capability represents a resource object owned by the 
process. The supervisor supports a small number of resource 
types: 110 device, inferior process, file, directory, queue, and 
entry. When the process wishes to perform an operation on a 47 
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resource object, it invokes the object's capability through an 
INVOKE instruction. The INVOKE instruction specifies: (1) the 
C-list index of the capability to be invoked and (2) an operation 
to perform on the object represented by the capability. The 
INVOKE is similar to the ENTE~ instruction in the Dennis and 
Van Horn design. 

Dennis and Van Horn's supervisor allows a process to create 
protected procedures that execute in private spheres of protec­
tion to protect local data from access by their callers. The 
PDP-1 system goes a step further. It allows creation of con­
trolled subsystems that maintain different protected data ob­
jects on behalf of different processes, just as the operating sys­
tem maintains files, for example, on behalf of different 
processes. To do this, the subsystem must be able to verify that 
a process is permitted access to an invoked object. 

A subsystem is accessed through entry capabilities in the 
same way that protected procedures are accessed in the Dennis 
and Van Horn supervisor. To identify different subsystem re­
source objects, however, the PDP-1 system allows a subsystem 
to create different versions of its entry capabilities. The entry 
capabilities for a given subsystem are equivalent except for a 
transmitted word field that can be specified by the subsystem 
when the entry is created. In this way, the subsystem can 
maintain protected data structures on behalf of many proc­
esses. When a process calls the subsystem to create a new re­
source, the subsystem returns an entry capability with a trans­
mitted word uniquely identifying that resource. Subsequently, 
when the user invokes an operation on that resource through 
the entry capability, the subsystem interrogates the transmit­
ted word to determine which data structures to access. The 
transmitted word field is 6 bits in size, allowing a subsystem to 
support only 64 different objects; however, the PDP-1 sup­
ports a small user community. 

The system was in operation for student use until the mid-
1970s. It was distinguished not only by its capability supervi­
sor but also by its space war game that ran on the PDP-l video 
display. Following the MIT PDP-l system, a major step in 
capability systems design took place at the University of Chi­
cago. This work was significant because it used capabilities as a 
hardware protection mechanism. 

3.4 The Chicago Magic Number Machine 

In 1967 a group at the University of Chicago Institute for 
Computer Research began work on the Multicomputer, later 



called the Chicago Magic Number Machine [Fabry 67, Shep­
herd 68, Yngve 68]. The goals of the project were ambitious: to 
provide a general-purpose computing resource for the Insti­
tute, to allow computer science research, and to interface to 
new peripheral devices. The project was perhaps too ambi­
tious; in fact, the system was never completed. Nevertheless, 
the Chicago effort was the first attempt to build an integrated 
hardware/software capability system [Fabry 68]. The imple­
mentation of capability-based primary memory protection in 
this machine was to serve as a model for several early capability 
designs. 

The Chicago machine provides a general register architec­
ture and a segm,ented memory space. Memory is addressed 
through capabilities, and a process must possess a capability 
for any segment it addresses. Capabilities can be stored in reg­
isters or in memory; however, they cannot be mixed with data. 
Therefore, the machine supports two sets of registers-data 
registers and capability registers, and two types of segments­
data segments and capability segments. 

There are sixteen 16-bit, general-purpose data registers, 
three of which can be used as index registers. Capabilities are 
stored in six capability registers, each holding multiple 16-bit 
fields because capabilities are longer than the machine's 16-bit 
words. Several bits in each segment capability indicate whether 
the addressed segment contains data or capabilities. Hardware 
LOAD and STORE instructions allow programs to move capabili­
ties between capability registers and capability segments, but 
programs are prohibited from performing data operations on 
capabilities. A process can have many capability segments, and 
capabilities can be copied freely between them. 

For a program to access an element in a memory segment, 
the program must first load a capability for that segment into a 
capability register. The capability registers therefore act as a 
hardware C-list. A capability for a memory segment describes: 

• the segment base address, 
• the segment length, 
• the type of the segment (data or capability), 
• an activity code, indicating whether the segm(~nt is in primary 

memory or secondary store, and 
• an access code, indicating how the segment may be used. 

The access codes for data segments are read, read/execute, 
read/write, and read/write/execute; the access codes for capa-
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bility segments are enter, enter/read, and enter/read/write. A 
program with capability read and capability write access to a 
capability segment can execute capability load and store opera­
tions on that segment, but cannot perform data operations on 
the capabilities. A user is never given data access to a capability 
segment, because that would allow the user to fabricate capa­
bilities. However, the operating system supervisor may keep 
capabilities permitting data access to a user's capability seg­
ments. The supervisor uses these capabilities to perform 
meta-instructions that create a new capability or modify a capa­
bility. 

To access an operand in primary memory, an instruction 
specifies a memory address using three components: 

• a capability register containing a segment capability, 
• a data register or literal value specifying the relative offset of a 

data element in the segment, and 
• an optional index register containing an index that can be 

added to the supplied offset. 

This allows, for example, addressing of an array that is located 
within a data segment. The hardware computes the sum of the 
two offsets and the base address contained in the capability to 
generate the primary memory address. It also verifies that the 
address lies within the segment, that the type of access is legal, 
and that the segment is in primary memory. 

Segments can be created, extended, and destroyed by exe­
cution of supervisor meta-instructions, as shown in Table 3-2. 
A meta-instruction is also available to copy (snapshot) a seg­
ment onto secondary storage. The snapshot operation requires 
as a parameter the number of days the copy should be main­
tained. The current state of a segment and all backup copies 
are identified by the same capability, but the backups are dif­
ferentiated by the time and date the copy was made. When a 
program retrieves a snapshot, the supervisor allocates a mem­
ory segment, copies the snapshot to that segment, and returns 
a new capability for that new segment to the user. 

The Magic Number Machine is a multiprogramming sys­
tem in which each process has as part of its state: 

• a name, 
• a capability for an account to be charged for its resource 

usage, 



CREATE SEGMENT create a new segment of given size and type 
and return a capability for it 

CHANGE SEGMENT SIZE 

increase or decrease segment size 
DESTROY SEGMENT delete segment 
SNAPSHOT copy current segment state to backing stor­

age, marked with current time and date 
RETRIEVE copy specified snapshot from backing store 

into a new segment 
CHANGE ACCESS CODE 

produce a new version of a capability with 
reduced access rights 

EXAMINE CAPABILITY 

several meta-instructions to allow inspection 
of segment size, type, ID, access code, and 
:activity code 

CREATE PROCESS create a subordinate process and return a 
process capability 

MAIL send capability and associated text name to 
specified user 

Table 3-2: Chicago Magic Number Supervisor Capability Operations 

• a capability for a base capability segment addressing the 
user's objects, and 

• a capability for a mailbox. 

Interprocess communication takes place between process mail­
boxes. A mailbox consists of a capability segment and an asso­
ciated data segment. Using the MAIL meta-instruction, a proc­
ess can send a capability and an associated informational text 
name to another process that can read, copy, or delete the 
information. 

In addition to the hardware registers and the information 
listed above, each process has two segments associated with its 
context: a process data segment and process capability segment. 
Each of these segments has a fixed-sized storage region fol­
lowed by a stack for data or capabilities. Two capability regis­
ters are reserved to address these segments, and two data regis­
ters act as stack pointers, although there are no explicit stack 
instructions (i.e., the registers must be manually updated). 

A protected procedure mechanism in the Chicago Magic 
Number Machine allows for efficient one-way protection; that 
is, the procedure is protected from its caller but the caller is not 
protected from the procedure. Each protected procedure con­
sists of at least one program segment and one capability seg­
ment, called the linkage segment, as shown in Figure 3-3. An 
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Figure 3-3: Chicago Magic Number Machine Linkage Segment 

entry capability for the procedure points to the linkage seg­
ment, which contains capabilities for all objects needed by the 
procedure such as instruction segments, data segments, I/O 
operations, and so on. The first capability in the linkage seg­
ment points to the procedure entry point. Possession of an 
enter-only capability for the linkage segment allows the posses­
sor to call the procedure using this first capability, but permits 
no other linkage segment access. Thus, the protected proce­
dure can execute in a richer environment than its caller because 
it can access the entire linkage segment. Parameters can be 
passed either on the stack or in the registers. 

Work on the Chicago Multicomputer/Magic Number Ma­
chine was eventually abandoned due to lack of funding. Al­
though the project was never completed, the design was passed 
on to others including a group at Berkeley who incorporated 
some of its features into a new operating system, which is de­
scribed next. 

3.5 The CAL-TSS System 

Started in the summer of 1968 at the University of Califor­
nia at Berkeley's computer center, the CAL-TSS project was 
an attempt to implement a general-purpose, capability-based 
operating system on conventional hardware. CAL-TSS was 
designed to supply timesharing services to several hundred 
users of a CDC 6400 computer system, thereby replacing 
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CDC's SCOPE operating system. Work on design and imple- System 

mentation continued until the fall of 1971, when it became 
clear that the system could not meet its goals in terms of service 
and performance. Funding was stopped and the project aban-
doned. Since then, its designers have published several ap-
praisals of the project's successes and failures [Sturgis 74, 
Lampson 76]. 

The CAL-TSS operating system is a layered design in which 
each layer provides a virtual machine to the next higher layer. 
Each layer is specified as a set of objects and operations on 
those objects. This section examines the innermost layer of the 
supervisor which handles capabilities and object addressing. 

The basic unit of protection in the CAL-TSS system is a 
domain, an environment containing hardware registers, pri­
mary memory, and a C-list. (A domain corresponds to the 
sphere of protection in the Dennis and Van Horn supervisor.) 
Access to objects outside the domain can occur only through 
invocation of a C-list capability; the possessor of a capability 
invokes an operation on the object it addresses by specifying the 
capability, the operation to be performed, and other optional 
parameters. A process is the execution entity of a domain, and 
its C-list may contain capabilities for other subordinate proc­
esses over which it exercises control. 

Capabilities in the CAL-TSS system have three compo­
nents: 

• a type field that specifies the nature of the object addressed, 
• an option bits field that indicates operations which can be per­

formed by the possessor of the capability, and 
• a value field that identifies the object and contains a pointer to 

the object. 

Each capability occupies two 60-bit words in a C-list. A process 
has a root C-list and can create new second-level C-lists. When 
a process invokes a supervisor operation, it can specify capabil-
ities stored in either the root C-list or any second-level C-list as 
parameters. A capability specification can therefore consist of 
two indices: one to locate a C-list capability in the root C-list 
and another for the target capability in a second-level C-list. 

The CAL-TSS supervisor implements eight types of ob­
jects. A process can call supervisor operations to create and 
manipulate the following object types: 

• kernel files (simple sequential byte streams), 
• C-lists, 

-
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• event channels (interprocess communication channels), 
• processes, 
• allocation blocks (for accounting and resource control), 
• labels (for naming short-lived objects and domains), 
• capability-creating authorizations (user subsystems), and 
• operations. 

The last two supervisor-implemented types listed, capability­
creating authorizations and operations, will be discussed later. 

One important advance of CAL-TSS over its predecessors is 
in its physical object addressing. When the CAL-TSS supervi­
sor creates a new object, it assigns that object a unique identi­
fier. The identifier for that object is never reused, even after 
the object is destroyed. The use of unique identifiers solves a 
difficult system problem. If, for example, an object identifier 
could be reused after object deletion, the supervisor would 
have to guarantee that all capabilities for an object are de­
stroyed before the object is destroyed. Otherwise, the remain­
ing capabilities would be dangling references, that is, pointers to 
an object that does not exist. Were the supervisor to reuse the 
identifier later for a newly created object, such dangling refer­
ences could be used inadvertently to modify the new object. 

The CAL-TSS kernel provides a second level of indirection 
in addressing to greatly simplify relocation. Primary memory 
addressing of objects occurs through a single system table: the 
Master Object Table (MOT). The MOT is a kernel data struc­
ture that contains entries for every object in the system. Each 
MOT entry holds the unique object identifier and the primary 
memory address of one object's data. CAL-TSS capabilities do 
not contain primary memory addresses. Instead, a capability 
contains the unique identifier for the object it addresses and an 
index into the Master Object Table. 

Figure 3-4 illustrates a C-list capability and the Mas­
ter Object Table. The capability addresses a file object, as indi­
cated by the type field shown symbolically as ((File." The 
capability's value field contains the index of the MOT entry, 
M, which in turn contains the primary memory address of the 
file. All capabilities for the same file will contain the same 
MOT index. If the supervisor needs to relocate the file's pri­
mary memory segment, only a single MOT entry will have 
to be changed. 

Both the capability and the MOT entry shown in Figure 3-4 
contain the file object's unique identifier, IDx. The supervisor 
verifies that the identifiers in the capability and the MOT entry 
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are identical for every operation invoked on the capability. 
When an object is deleted, the supervisor increments the iden­
tifier field of the object's MOT entry. Any subsequent attempt 
to use a capability for the deleted object (a dangling reference) 
would fail because the identifiers would not match. 

Note that the C-list in Figure 3-4 is also a supervisor object 
and is addressed by the MOT entry at index G. The unique 
identifier for the C-list is IDy, an identifier that would be 
stored in any capabilities addressing the C-list. 

The CAL-TSS system supports two object types that allow 
users to extend the small set of supervisor-implemented ob­
jects. A capability-creating authorization is an object permitting 
its possessor to create private capabilities for a private user­
defined subsystem. Each user subsystem implements a single 
new type. To use this facility, a subsystem executes a supervi­
sor meta-instruction to receive a capability for a capability­
creating authorization object. The authorization object con­
tains a new system-wide, unique type field. The subsystem can 
then present this capability to the supervisor, along with a 60-
bit value, and obtain a new capability containing the subsys­
tem's type and the specified value. The value inserted in the 
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capability corresponds to the transmitted word field that a sub­
system can insert into capabilities on the MIT PDP-1 supervi­
sor; it uniquely identifies an object implemented by the sub­
system. 

Such private capabilities receive the same protection as sys­
tem capabilities, and can only be stored in C-lists and manipu­
lated by kernel meta-instructions. Thus, a private capability 
can be passed to another domain to indicate ownership and 
rights to an object protected by the subsystem. For example, a 
user could implement a protected mail subsystem with the op­
erations CREATE MAILBOX, DESTROY MAILBOX, 
READ MAIL, and WRITE MAIL. The subsystem would 
first obtain a capability-creating authorization containing a 
unique type field. Another domain calling the create mailbox 
operation would receive a capability containing the mailbox 
subsystem's type field and a unique value field to identify the 
newly created mailbox. The possessor of the capability could 
later present it to the mail system in order to read, write, or 
delete that mailbox, but could not modify the capability or 
directly access the mailbox representation. In this way, users 
can build subsystems that extend facilities provided by the 
base operating system. 

A CAL-TSS operation is a supervisor-implemented object 
that allows the possessor to request a kernel or private meta­
instruction; that is, to invoke a service. The operation object' is 
a list describing the service to be performed, followed by speci­
fication of how the parameters are to be obtained. If the opera­
tion is for a private domain, that domain must be named along 
with an indication of the service requested. The parameter list 
specifies whether each parameter is: (1) data in the caller's 
memory, (2) a capability in the caller~s C-list, (3) immediate 
data in the operation list itself, or (4) a fixed capability stored 
in the operation list. 

The ability to contain immediate capabilities in the parame­
ter list of an operation object is a powerful feature. It allows the 
called domain to receive a capability not available to the caller 
and thus is similar to the Chicago machine linkage segment. 
However, because the designers did not realize this advantage 
of operation objects until sometime after the system was con­
structed, the feature was never used. 

When the CAL-TSS project was finally terminated in 1971, 
it had become clear that the system would never live up to 
expectations for either performance or functionality. There 
were many reasons for this, some being crucial design flaws. 
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CDC 6400 with 32K 60-bit words of primary memory and 
300K words of extended core storage (ECS). ECS is a memory 
device used as high-speed secondary storage. It is not used for 
execution, but data can be block-transferred between ECS and 
main storage at rates of several megawords per second. Man-
agement of ECS was one of the principal design problems. 
Equally troublesome was the 6400 memory management sup-
port, consisting of only a single base and limit register pair. 
Nevertheless, much was learned from the CAL-TSS project 
about the design choices available to capability system 
implementors. 

3.6 Discussion 

This chapter has examined early attempts to define and 
implement capability-based hardware and software systems. 
All of the systems described were designed in the late 1960s. 
These systems show one obvious relationship to the machines 
examined in the previous chapter: capabilities are descriptors 
used to address memory segments and other system objects. In 
a sense, the difference is merely one of terminology. The con­
cept of capabilities and the C-list, as Dennis and Van Horn 
state, follows from the BSOOO's descriptors and Program Refer­
ence Table. However, there are some significant conceptual 
differences in the general way capability addressing is applied, 
in the lifetimes of capabilities and the objects addressed, and in 
the protected procedure mechanism that allows users to extend 
the functions of the operating system supervisor. 

Capabilities are protected addresses; that is, a process can 
create new capabilities in its C-list only by calling a supervisor 
meta-instruction. Once a process receives a capability, it can­
not directly modify the bits in the capability. The capabilities 
accessible to a process at any time define its sphere of protec­
tion or domain. All of the addresses (that is, capabilities) which 
a process can specify must either be contained in its domain at 
the time the process is created or be obtained through interac­
tion with the kernel or other domains. 

Because capabilities must be protected from user modifica­
tion, these systems chose to isolate them within C-lists. C-lists 
are implemented as one or more segments that user processes 
cannot directly write with data instructions. Capabilities can­
not be embedded in user data. This requirement is somewhat 57 
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restrictive because complex data structures that include point­
ers cannot always be naturally represented. The problem often 
can be circumvented by storing a C-list index in the data rather 
than the capability itself. However, storing a C-list index in 
place of a capability makes sharing data structures difficult if 
the processes do not share the same C-list. Another problem 
caused by the segregation of capabilities and data is the need 
for separate stacks and registers. Machines that support capa­
bilities must have both data and capability stacks and data and 
capability registers. An alternative would be to support tag­
ging, as in the BLM. 

While the Dennis and Van Horn supervisor allows each 
process to have only one C-list, users of the Chicago Magic 
Number Machine and the CAL-TSS can store capabilities in 
multiple capability segments, chaining them together as de­
sired to form complex tree or graph structures. The ability to 
construct additional C-lists allows fine-grained sharing of capa­
bilities. Small C-lists can be created for sharing small collec­
tions of objects. The C-list addressing mechanism has a signifi­
cant affect on the sharing of capabilities and the protection of 
objects. For example, if a procedure addresses its objects by 
C-list index, the procedure cannot be shared unless the sharing 
processes store the procedure's objects in the same locations in 
their respective C-lists. However, if a procedure executes with 
its own C-list, in which it places capabilities passed as parame­
ters by its callers, this problem does not arise. 

To compensate for the single C-list, Dennis and Van Horn 
allow capability directories for storage of capabilities and asso­
ciated text names. The capability directory concept is a power­
ful extension of the directories provided by most operating 
systems. Even on most contemporary computers, directories 
can only be used to name files. In contrast, a capability direc­
tory allows the user to name and store many different object 
types. Directories can be shared between domains, and the 
Dennis and Van Horn system allows any user to obtain a capa­
bility for another user's root directory. A user can protect di­
rectory entries from external examination by setting a private 
bit associated with each entry. However, this mechanism in 
itself is insufficient for selective sharing among several users, 
because it is impossible to grant privileges to one user that are 
denied to another. 

An additional method for exchanging capabilities between 
domains is the mail facility of the Chicago machine. Each do­
main has a local mailbox consisting of a capability and data 
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ity names. Mailing a capability is equivalent to transferring a 
single directory entry between domains. It is unclear whether 
any additional information is placed in the mailbox, but some 
authentication information for the sender, either with the mes-
sage or added by the mail system, probably should be re-
quired. 

All of the systems examined support subordinate process~s 
and process tree structures. A superior process is given com­
plete control of an inferior that it creates. The superior defines 
the domain of the inferior by granting capabilities. It has the 
power to start, stop, modify the state of, generate simulated 
interrupts to, and service faults for the inferior. Mechanisms 
such as this allow users to build and test complex subsystems 
and to debug inferior processes. It may also be possible to 
simulate the kernel or hardware environment and, depending 
on the completeness of the mechanism, to debug kernel proce­
dures. 

Protected procedure mechanisms are available on all of 
these early systems. Dennis and Van Horn provide protected 
procedures through entry capabilities. The creator of the pro­
tected procedure obtains an entry and makes it public for users 
of the service. The protected procedure executes in a separate 
process in its creator's domain and receives a single capability 
parameter from its caller. The caller and callee are isolated 
from each other. In the CAL-TSS system, protected proce­
dures also execu.te in a separate domain, with an operation 
object serving as the entry. The operation object specifies some 
number of data and/or capability parameters and methods to 
obtain them. The Chicago machine sacrifices two-way isolation 
for the improved performance of a one-way mechanism. A pro­
tected procedure on the Chicago machine executes in the do­
main of its caller and has access to its caller's objects. The 
protected procedure also has access to private capabilities con­
tained in its linkage segment. Parameters are passed on the 
stack or in registers. 

In addition to protected procedures, the MIT PDP-l and 
CAL-TSS systems allow user processes to manufacture private 
capabilities. This type-extension mechanism allows user pro­
grams to extend kernel facilities in a uniform manner by creat­
ing new object types. User-created operations are invoked in 
the same way that supervisor meta-instructions are invoked. 

The CAL-TSS capability-creating authorization and the 
MIT PDP-l transmitted word facilities are sealing mecha- 59 
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nisms. A value is sealed in the capability that is not directly 
usable by the possessor of that capability. When passed back to 
the implementing subsystem, the subsystem-using a special 
capability it maintains-can unseal the value to determine 
which object the capability addresses. Sealing mechanisms are 
also provided by the Chicago machine's linkage segments and 
by CAL-TSS operations. In these systems, capabilities are 
sealed inside of special linkage segments. An entry capability 
for the linkage segment only allows its possessor to call proce­
dures through specific entries in the segment. As a result of the 
CALL or ENTER instruction, the linkage segment is unsealed 
and its capabilities made available to the called procedure. 

Perhaps the most important generalization of addressing 
provided by capabilities is support for long-lived objects. Ca­
pabilities allow uniform addressing of both short-term and 
long-term objects. Traditional computer systems require dif­
ferent addressing mechanisms for primary memory, secondary 
memory files, and supervisor-implemented objects. A capabil­
ity can be used to address abstract objects of any type and any 
lifetime, implemented by either hardware or software. This 
advantage of capability systems raises a number of issues: how 
large must capabilities be to address the longer lifetime of ob­
jects, how can capabilities and objects be saved on secondary 
storage, what happens if capabilities or objects are deleted, 
how does the system know when an object can be deleted, and 
so on? 

The Dennis and Van Horn supervisor allows objects to live 
an arbitrary length of time. An object exists until it is explicitly 
deleted or until all capabilities pointing to the object are re­
moved. Thus, all objects are potentially long-lived, and the 
system must be capable of determining when the last capability 
for an object is deleted, or secondary storage will eventually 
become filled with garbage objects. Directories are used to 
keep track of long-term objects and their capabilities and 'to 
allow user reference to these objects by symbolic names. In the 
Chicago Magic Number Machine, snapshots are made of ob­
jects to force them to secondary storage. The objects can be 
retrieved later, although the issue of storing capabilities was 
not addressed by the design. When an object is retrieved from 
disk in the Chicago system, it is not retrieved as the same 
object but is placed in a new segment for which a new capabil­
ity is generated. 

One of the critical shortcomings of the CAL-TSS system 
was its failure to provide uniform addressing for permanent 
storage. The CAL-TSS system differentiated between user 
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objects, which could not be saved on secondary storage. More-
over, because user objects were stored merely as byte streams, 
the CAL-TSS system could not save C-lists on disk while 
maintaining protection syst.em integrity. The decision to sup-
port different object lifetimes, based on the belief that kernel 
objects were short-lived and would not require permanent s1'or-
age, led to many quirks in the operating system. 

Finally, one of the most important features in these systems 
was the physical implementation of addressing. Like earlier 
descriptor systems, the Chicago Magic Number Machine 
maintained hardware location information in the capability it­
self. This led to the relocation problems of descriptor systems; 
that is, relocation of a segment required a search for all capabil­
ities addressing that segment. CAL-TSS took an important 
step by separating the capability from the addressing informa­
tion, as recommended by Dennis and Van Horn. The physical 
relocation information is held in a central Master Object Table, 
and the capability contains a MOT index and a unique object 
identifier. Thus, relocation does not require a search for an 
object's capabilities. Deletion of an object also requires no 
search, because an attempt to use the capability for a deleted 
object will fail when the kernel checks the unique identifier in 
the MOT entry. 

The Dennis and Van Horn supervisor defined the formal 
concepts of capability addressing. The MIT PDP-I system, 
the Chicago Magic Number Machine, and the CAL-TSS sys­
tem were the first trial implementations. The MIT timesharing 
system was in operation for several years, providing service to a 
small number of users, although capabilities were not a central 
part of the system's design. The Chicago and CAL-TSS sys­
tems were much more ambitious in terms of design., implemen­
tation, and goals. Perhaps the problem with these systems was 
the expectation that they would provide service to a large user 
community. In this sense, both systems failed, because neither 
was completed. However, when viewed as research projects, 
these early systems explored the crucial design issues and dem­
onstrated both the advantages and difficulties of using an im­
portant new addressing technique. 

3.7 For Further Reading 

Dennis and Van Horn's publication paved the way for re­
search in capability- and object-based systems [Dennis 66]. It 
provided the step from descriptors to more generalized ad- 61 
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dressing. It is difficult to tell how radical the fundamental con­
cepts were when compared to systems like the Basic Language 
Machine, which was never completely described in the litera­
ture. Is it just a matter of terminology? This issue is discussed 
in Iliffe's letter to the Surveyors' Forum in the September 1977 
issue of ACM Computing Surveys (Volume 9, Number 3) and 
in Dennis' response. 

The Chicago and CAL-TSS efforts, while not resulting in 
finished products, did provide much insight about the design 
of capability systems. Fabry's paper [Fabry 74], based on his 
thesis [Fabry 68], is a detailed discussion of the advantages of 
capability addressing over traditional segmented addressing 
of primary memory. The paper by Lampson and Sturgis 
[Lampson 76], in addition to its technical description of CAL­
TSS, provides an excellent discussion of the pitfalls of ambi­
tious research projects. 





The Plessey 250 computer. (Courtesy Plessey Telecommunications Ltd.) 



-The P/essey System 250 

4. 1 Introduction 

The second attempt to build a capability-based hardware 
addressing system was made by the Plessey Corporation in the 
United Kingdom. Plessey's System 250 [England 72a, England 
74], examined in this chapter, was not only the first operational 
capability hardware system but also the first capability system 
sold commercially. 

Initially the Plessey 250 was not designed as a capability 
system. Maurice Wilkes of the University of Cambridge had 
learned about capabilities during several visits to the Univer­
~ity of Chicago and had included a capability description in his 
book on timesharing systems [Wilkes 68]. Wilkes sent a draft 
of his book to Phessey's Jack Cotton who incorporated capabil­
ity concepts into the System 250. Because of the strong resem­
blance between the System 250 and the Chicago effort, Bob 
Fabry (who had worked on the Chicago Magic Number Ma­
chine) later acted as a consultant for Plessey. 

Unlike the systems examined thus far, the Plessey 250 was 
not intended to be a general-purpose timeshared computer. 
Instead, it was designed as a highly reliable, real-time control­
ler for a new generation of computerized telephone switching 
systems [Cosserat 72, Halton 72]. The reliability goal was very 
stringent: mean time between failures of 50 years [Hamer­
Hodges 72]. Meeting this goal required that the system be eas­
ily configured, tested, and modified while operating in the 
field. Service improvements or performance upgrades would 
have to be performed while the system was operational. Such 
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needs led to a multiprocessing design that allowed connection 
of many processors and memories, as well as traditional and 
specialized 110 devices. 

Although capabilities were used primarily for memory ad­
dressing and protection in the Plessey 250, the designers 
viewed the capability mechanism as a means of restricting the 
effects of faulty hardware and software components. Fault iso­
lation was a major concern in a multiprocessing environment 
where several processors had access to a shared memory. One 
faulty processor could potentially damage another processor's 
computation. Capability addressing facilitated sharing among 
processors, while also restricting each processor's domain to 
the segments for which it possessed capabilities. The Plessey 
250's designers also found that capabilities were useful in 
structuring the operating system [England 72b, Cosserat 74]. 
Layering and data abstraction were important aspects of the 
Plessey operating system design. 

4.2 System Overview 

The multiprocessing architecture of the Plessey 250 allows 
connection of up to eight processors with up to eight storage 
modules through separate per-processor data paths. Each stor­
age module consists of up to 64K 24-bit words. Multiprocess­
ing is symmetric, and any processor can perform any function 
if another processing component fails. Peripherals are con­
nected and controlled through interfaces that allow the ad­
dressing of devices as memory. That is, device registers can be 
read and written by standard LOAD and STORE instructions, and 
no special 110 instructions are needed. 

The Plessey 250's hardware and operating system support a 
segmented memory space. A segment can contain capabilities 
or data, but not both. The system has a general register archi­
tecture with eight 24-bit data registers (DO-D7) and eight 48-
bit capability registers (CO-C7). To access data in a memory 
segment, a program must load one of the capability registers 
with a capability for that segment. Programs can freely copy 
capabilities between capability segments and capability regis­
terS using standard hardware instructions. 

4.3 Capability Addressing 

A Plessey 250 capability permits its possessor to access an 
object in the system, where an object is a logical or physical 
resource. The most basic object is a memory segment, and 



hardware instructions can operate directly on segments 
through segment capabilities. Capabilities can be stored in ca­
pability segments or capability registers, as noted above. For 
each program, one of its capability registers (C6 by convention) 
points to a Central Capability Block for the program. The Cen­
tral Capability Block is a capability segment that is the root of a 
network of program-accessible segments. The closure of this 
network completely defines the program's execution domain. 

A capability in the Plessey 250 has two formats, depending 
on whether it is stored in a capability segment or a capability 
register, as shown in Figure 4-1. When stored in a 48-bit capa­
bility register, a capability contains three fields: 

• A base address, which contains the primary memory location 
of the segment. (The high-order bits specify the storage mod­
ule or interface, and the low order bits specify the storage 
element within the module or interface.) 

• A limit, indicating the size of the segment. 
• An access rights field, specifying the type of operations per­

mitted on the segment by the owner of the capability. (The 
six unary-encoded access rights are: execute, write data, read 
data, enter capability, write capability, read capability.) 

This 48-bit capability format, which includes a memory ad­
dress and limit, is used only when capabilities are loaded into 
capability registers. When stored in a capability segment, a 
capability is 24 bits and contains only the access rights field 
and an index into a central system data structure, the System 
Capability Table (SCT). Each processor has an internal register 
that contains the address of the SCT. The SCT, which corre­
sponds to the CAL-TSS Master Object Table, holds the base 
and limit information for all memory segments. In this way, 
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physical addressing information is centralized and relocation of 
segments is simplified. There is one SeT entry for each object 
in the system. Because access rights for an object are stored in 
the capabilities, different processes can possess capabilities 
permitting different access rights to the same segment. 

A program executes a LOAD CAPABILITY instruction to trans­
fer a capability from a capability segment: to a capability regis­
ter. Figure 4-2 shows how the capability register is formed. 
The hardware first examines the SeT index in the specified 
capability in memory. This index selects the SeT entry for the 
segment, which is three words in size and contains a 24-bit 
checksum and some special flag bits in addition to the base and 
length fields. The 48-bit capability register is then constructed 
from the rights field in the capability and the base and limit 
information found in the selected SeT entry. The capability 
segment from which the capability is loaded must itself be ad­
dressed by a capability register, as shown in the top left portion 
of Figure 4-2. 

When a program loads a capability register, the SeT index 
from the loaded capability is saved in a process-local data struc­
ture called the Process Dump Stack. The dump stack is a two­
part process data structure containing fixed space for copies of 
data and capability registers, and a stack used to save informa­
tion on procedure invocations. When a program executes a 
STORE CAPABILITY instruction to move a capability from a regis­
ter to a capability segment, the saved SeT index is used, along 
with the rights field in the register, to construct the capability 
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Figure 4-2: Plessey System 250 Capability Loading 
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in memory. The Process Dump Stack is thus used to hold the 
SCT index for each capability stored in the eight capability 
registers. 

Because the SCT is shared by all of the processors, the relo­
cation of a segment or the modification of any SCT entry must 
be synchronized. If several processors try simultaneously to 
modify a single SCT entry, the entry could be placed in an 
inconsistent state. In order to prevent this, the Plessey 250 has 
a facility to trap programs accessing a particular entry. Thus, a 
processor updating an SCT entry can prohibit other processors 
from using the entry until the modification is complete. 

4.4 Capability Register Usage 

Of the eight general-purpose capability registers, several 
have reserved uses. The first five capability registers, CO-C4, 
can be freely used by the program to address any memory 
segments to which the program has access. Register C5 points 
to a data structure used to store dynamically allocated elements 
associated with the current process execution. C6, as has been 
mentioned, contains a pointer to the process's Central Capabil­
ity Block. This block defines all of the instruction, data, and 
capability segments associated with the current process. Regis­
ter C7 contains a capability for the currently executing code 
segment. 

In addition to the eight program-accessible capability regis­
ters, each processor has five special-purpose capability regis­
ters. These registers hold capabilities that address the follow­
ing segments: 

• The Process Dump Stack that contains backup register val­
ues. 

• The System Capability Table that contains base/limit values 
for all storage segments in memory. 

• The Start-up Block used for restarting the system after fail­
lues. 

• The System Interrupt Word that indicates what devices need 
attention. 

• The Normal Interrupt Block that contains device interrupt 
information. 

4.5 Inform and Outform Capabilities 

The Plessey 250 operating system provides a virtual seg­
ment interface to programs; that is, a program can address its 
segments independent of whether they are located in primary 
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or secondary memory. Secondary storage is totally transparent 
to the program. The operating system determines which seg­
ments are held in primary memory and which are held on disk 
storage. When a program attempts to access a segment that is 
not in primary memory, a trap occurs and the operating system 
then loads the segment from disk. 

Each segment has an associated disk address that is assigned 
when the segment is created. A segment's disk address is used 
as its unique identifier, because two segments cannot have the 
same disk address. When a program creates a new segment, 
the operating system assigns the secondary storage address for 
the segment, allocates an SCT entry for the segment, and re­
turns a capability for the segment to the program. The operat­
ing system initializes the SCT entry to indicate that no primary 
memory has been allocated. When the program first attempts 
to reference the segment, a trap occurs and the operating sys­
tem allocates primary memory and stores the memory address 
in the SCT en try. 

Because all segments on the Plessey 250 are potentially 
long-lived, the SCT could grow to enormous size if it had to 
address every segment in existence. To constrain the size of the 
SCT and maintain high memory utilization, the Plessey operat­
ing system allows SCT entries to be reallocated. At different 
points in its lifetime, an object may be addressed by different 
SCT entries. If a segment has not been referenced for a long 
period of time, the segment can be moved to secondary mem­
ory (an operation known as passivation), and its SCT entry can 
be used to address a newly created segment. Later, if the passi­
vated segment is needed, it can be returned to primary mem­
ory and an SCT entry (most likely a different one) is allocated. 

Reallocation of SCT entries is complicated by the fact that 
capabilities in memory contain SCT indices. If a segment's 
SCT entry is reallocated while capabilities for that segment are 
still in use, those capabilities would erroneously address a 
different segment. Thus, an object's SCT entry cannot be 
changed as long as capabilities that address the object are in 
memory. 

To allow SCT entries to be reallocated, the Plessey operat­
ing system uses a different format for capabilities that are 
stored on disk. Capabilities in primary memory are known as 
inform or active capabilities; these capabilities contain an SCT 
index. Capabilities in secondary memory are known as outform 
or passive capabilities; each of these capabilities contains a 
unique identifier, which is the object's disk address. When a 



capability segment is moved from primary to secondary mem­
ory (or the reverse), the operating system changes the form of 
all the capabilities in that segment. 

By changing capabilities from inform to outform, the oper­
ating system reduces the number of active references to the 
SeT. When a segment is passivated, its SeT entry is retained 
as long as active capabilities exist for that segment. If a seg­
ment stays passive for a long time, it is likely that the capabili­
ties for that segment will eventually be passivated also, allow­
ing the SeT entry to be reused. A special operating system 
process, called the garbage collector, periodically searches the 
capabilities in primary and secondary memory. The garbage 
collection process will cause an SeT entry to be deallocated if 
no active capabilities exist for that entry or will cause an object 
to be deleted if no capabilities exist at all for that object. 

4.6 Instructions and Addressing 

A Plessey 250 instruction occupies a 24-bit word and is rep­
resented in one of two formats, as shown in Figure 4-3. The 
first bit of the instruction selects the instruction mode. Store 
mode instructions are used to access storage locations. The in­
struction specifies a capability register addressing the segment, 
a 9-bit offset into the segment, and an optional index register 
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Figure 4-3: System 250 Instruction Formats 
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modifier. The primary memory address for the operation is 
calculated by adding the base address contained in the capabil­
ity register to the sum of the 9-bit literal and the index register 
contents. This address is validated using the limit field in the 
capability; the type of access requested is verified against the 
capability access rights field. Direct mode instructions do not 
require memory access and are used for loading a 12-bit literal 
or for register-to-register operations. 

4.7 Protected Procedure Calls 

The Plessey 250 System, unlike most traditional computers, 
has no privileged mode of operation. The operating system 
relies only on the protected procedure mechanism for its pro­
tection. This mechanism is available to any process and allows 
a process to add to the facilities supplied by the standard oper­
ating system. 

A protected subsystem is built by creating a Central Capa­
bility Block in which the subsystem will execute. The Central 
Capability Block serves the same function for the subsystem as 
for any process: it contains capabilities for code, data, and ca­
pability segments available to the executing process. Some of 
the capabilities in the Central Capability Block are execute ca­
pabilities for the procedures that implement subsystem serv­
ices. To make these procedures accessible, the subsystem 
passes an enter capability for its Central Capability Block to 
appropriate users. The possessors of the enter capability can 
call any of the procedures defined by execute capabilities in the 
block, but cannot access capabilities in the block. 

To call a protected procedure, a process executes a CALL 

instruction, specifying an enter capability for a Central Capa­
bility Block and an offset in that block. The offset must locate 
an execute capability for a procedure to be called. The CALL 

instruction saves the instruction pointer and registers C6 and 
C7 (defining the Central Capability Block and Current Code 
Block) on the Process Dump Stack. Register C6 is then loaded 
with a capability for the Central Capability Block specified in 
the call; the C6 capability is given read access, permitting the 
called procedure access to any of the objects addressed by the 
central block. Register C7 is loaded with the capability for 
the instruction segment containing the procedure specified in 
the call. 

Thus, the called procedure executes in its own domain as 
defined by its Central Capability Block. It is protected from 



the caller, and the caller is protected from the procedure. A 
RETURN instruction restores the process to the previous domain 
by restoring the state of C6, C7, and the program counter from 
the stack. 

4.8 Operating System Resource Management 

The Plessey 250 operating system is constructed as a set of 
protected subsystems that manage various types of resources. A 
segment is one type of resource that users can create and ma­
nipulate through capabilities. Other logical resources, such as 
files and interprocess communication ports, are also accessed 
by capabilities. Unlike segment capabilities, which are oper­
ated on by hardware instructions, logical resource capabilities 
are enter capabilities that allow the user to request services for 
the resource. 

The resources supported by the Plessey 250 operating sys­
tem are: 

• storage segment 
• process 
• user 
• job 
• text file 
• symbol directory 
• data stream 
• synchronizing flag 

The last resource type listed, the synchronizing flag, is used 
both for interprocess communication and for synchronization. 
Processes that share capabilities for a flag can send messages to 
the flag or wait for message reception. At any point, a flag can 
have either a message queue or a queue of processes waiting for 
new messages. Processes can also wait on multiple flags for one 
of several events to be posted. 

Users gain access to operating system services through a 
Central Facilities Block that contains enter capabilities for sys­
tem resource allocation routines. Using these routines the 
caller can create any of the supported system resources. The 
creation routine returns an entry capability for the resource 
that can be used to manipulate it. 

The actual representation of a resource is defined by the 
Central Capability Block pointed to by the enter capability re­
turned to the user. The Central Capability Block contains exe­
cute capabilities for procedures that manipulate the resource. 

4.8 Operating System 
Resource Management 
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Figure 4-4: Protected Procedure Resource Subsystem 
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It also holds capabilities for segments that contain data struc­
tures describing the state of the resource. For example, Figure 
4 -4 shows a Central Capability Block created for a single file 
object. The Central Capability Block contains capabilities for 
file procedures and capabilities for file data segments. Note 
that a separate Central Capability Block will exist for each re­
source (e.g., file) in the system; however, all resources of the 
same type will share the same code segments. 

4.9 Input and Output 

The use of capabilities in the Plessey 250 I/O system is simi­
lar to capability usage in storage accesses. Input/output de­
vices are controlled by special device registers that exist in the 
physical address space. To access device registers, a process 
must have a capability for that memory space. For each device, 
one device driver process possesses capabilities for the device 
registers. This process can execute on any processor and still 
perform its I/O functions. 

Any processor must be able to handle device initiation and 
completion. Because of this requirement, standard interrupts 
are abandoned in favor of a polling scheme using shared mem­
ory. Approximately every 100 microseconds, each processor 
examines certain I/O status words that are addressed through 
two of the five special capability registers (the System Inter­
rupt Word and Normal Interrupt Block). The contents of these 
locations indicate whether or not any action needs to be taken 
and on behalf of what device. Other processors must be locked 
while the examination is made. 



4.10 Discussilon 

Several facts make the Plessey System 250 an important 
computer system: 

1. It is the first functioning computer to use capability address­
ing. 

2. It is the first capability-based computer produced by a com­
mercial manufacturer. 

3. It is designed to meet critical real-time performance and reli­
ability needs. 

4. It applies capabilities to a multiprocessor environment. 

The Plessey 250 is similar to both the Chicago Magic Number 
Machine and the CAL-TSS system. The use of capability reg­
isters as user-Ioadable segment/base registers is borrowed from 
the Chicago project, while its addressing resembles the CAL­
TSS mechanism. When combined, these features result in a 
capability design with the following attributes: 

1. When stored in user segments, capabilities do not contain 
physical addresses, but instead contain an index into a cen­
tral mapping table. 

2. Capabilities can be stored on disk and are converted to a 
different form when copied to disk. 

3. A segment is represented by a unique identifier, which al­
lows conversion between inform and outform capabilities. 

Because capabilities in primary memory do not contain 
physical mapping information, they are small and can be com­
pactly stored. Only when a capability is loaded into a register 
is it expanded to full 48-bit form. The disk address and disk 
number for a segment provide a unique name for the segment. 
Capabilities stored on disk contain a unique name, while capa­
bilities stored in primary memory contain a table index. 
Plessey addressing differs from the CAL-TSS scheme, in 
which both the capability and the Master Object Table entries 
contain a segment's unique identifier. 

Primary memory addresses are only stored in the SCT and 
in the capability registers of executing processes. When an exe­
cuting process is pre-empted, its capability registers are not 
saved. The Process Dump Stack contains the SCT index and 
access rights for each capability register, from which the regis­
ter can be regenerated when the process is activated. There­
fore, to relocate a memory segment, the operating system need 
only search the System Capability Table and the current proc­
ess capability registers for any active segment addresses. 

4.10 Discussion 
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The decision to handle virtual segments and provide a 
mechanism for storing capabilities on disk greatly simplified 
the design task and avoided many problems encountered in the 
CAL-TSS system. The system does not need special naming 
mechanisms for short-term objects that have second-rate sta­
tus. All objects are potentially long-lived. Allowing long-lived 
objects makes garbage collection a necessity, and the Plessey 
system has a background process responsible for de allocating 
storage for segments with no remaining capabilities to address 
them. 

The Plessey 250 uses capabilities to simplify multiprocess­
ing. All processors in the system share a single primary mem­
ory space. A single table shared by all processors, the System 
Capability Table, contains primary memory addresses for all 
segments. Because a process's address space is defined by capa­
bilities that refer indirectly to this table, a process can address 
its segments from any processor. No special action is required 
on the part of a processor to initialize a process's memory envi­
ronment. 

Capabilities also aid software error detection. Each process 
possesses capabilities for only those segments absolutely 
needed for its function. A process cannot address data outside 
of its domain; therefore, any errors are limited to that domain. 
Errors are frequently caught by the addressing mechanism, 
either as illegal accesses or segment length violations. 

A new concern created by capability addressing is the main­
tenance of capability integrity. On a standard virtual memory 
system, for example, a I-bit error in the transmission of a 
process virtual address is not likely to affect data outside the 
scope of the process. An error in the transmission of a capabil­
ity, however, can affect any process in the system. Thus, all 
hardware involved in holding or transferring capabilities must 
be error-checked carefully. 

The Plessey System 250 combines hardware and software 
support to provide a uniform view of system resources. All 
resources are addressed by capabilities; hardware executes op­
erations directly on segment resources while software executes 
operations on other resources. From a program's point of view, 
all resources are addressed and manipulated in the same way. 
In the Plessey resource model, each resource in the system is 
represented by a Central Capability Block and addressed by an 
entry capability. The Central Capability Block defines the data 
segments that contain the state of the resource and the proce­
dures that can manipulate the resource. Procedures are shared 
among all instances of objects of the same type. The entry 



capability to a resource's capability segment permits calling of 
the resource manipulation procedures, but prohibits direct 
access to the resource data segments. 

Because the operating system is implemented as a collection 
of resources and protected procedures, it is relatively easy to 
extend the operating system in a uniform manner. New pro­
tected procedures can be created and addressed through the 
System Capability Table. Such procedures can make new types 
of resources available to programs. 

As implemented, the Plessey 250 protected procedure call 
has one weakness. Although a protected procedure call causes 
a domain change, the called procedure still has access to any 
capabilities left in registers CO through C4 by the caller. Like­
wise, the capabilities left in these registers by the called proce­
dure when it returns are available to the caller, presenting a 
potential security violation. The tradeoff is one of perform­
ance, because the registers are an efficient mechanism for pass­
ing parameters between a calling and called procedure. Proce­
dures concerned with information leakage can explicitly clear 
these registers; however, that is an unusual burden to place on 
the caller of a procedure. 

Finally, the Plessey 250 system integrates capability usage 
into the 110 system in a consistent manner. This is possible 
because of the memory-like nature of the 110 interface and 
because of the requirement for processor-independent 110. 
However, since VO devices are forced to be slaves, their power 
is limited and additional strain is placed on the processors 
using them. 

The Plessey System 250 was not meant to be a general­
purpose multi-user computer system but, rather, was intended 
for a very specific product area. The targeting of the product to 
a limited role probably provided the key to any success the 
System 250 has had-its simplicity. The Plessey 250 uses a 
small number of simple mechanisms to provide for protection 
from and isolation of failure. The Plessey System 250 is still in 
use today in military communications systems in the United 
Kingdom. 

4. 11 For Further Reading 

The principal descriptions of the Plessey System 250's hard­
ware and software are provided by [England 72b, England 74] 
and [Cosserat 74]. Several papers on Plessey 250 can be found 

_in rhe .. Proceedings of the International Conference on Computer 
Communications, October 1972, and in The Proceedings of the 
International Switching Symposium, June 1972. 

4.11 For Further 
Reading 
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Tf7e Cambridge CAP Computer 

5.1 Introduction 

In 1970, Roger Needham and Maurice Wilkes at Cambridge 
University began a research project to construct a capability­
based machine. In contrast to the Chicago and Plessey designs, 
which included program-load able capability registers, Need­
ham and Wilkes' design made registers invisible to the pro­
grammer. That is, the machine contained a set of internal reg­
isters that the hardware would automatically load when a 
program specified a capability. Fortunately, the construction 
of this machine was simplified by several events that had oc­
curred in the years since Wilkes' trip to observe the develop­
ment of the Chicago Magic Number machine. First, it was 
possible to build reliable hardware from off-the-shelf TTL 
components. Second, and more important, it was possible for 
the computer to contain a reasonably large micro-control stor­
age. The micro-control storage was used to implement the 
implicit loading of capabilities. 

The result of the project, the CAP computer, has been oper­
ational at Cambridge since 1976. CAP (not an acronym) is a 
fully functional computer with an operating system, file sys­
tem, compilers, and so on. The CAP system is the subject of 
many papers and :a book [Wilkes 79], and the design decisions 
are the topic of Robin Walker's thesis [Walker 73]. 

5.2 Hardware Overview 

The basic CAP CPU consists of a microprogramming con­
trol unit, 4K 16-bit words of micro-control storage, and an 
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arithmetic unit. The CPU contains a 64-entry capability- unit 
that holds evaluated capabilities, that is, capabilities and the 
primary memory locations of the segments they address. These 
64 capability unit entries are the registers implicitly loaded by 
the microprogram. The CAP CPU also contains a 2 x 256-entry 
cache and a 32-entry write buffer for performance enhance­
ment. All CAP 110, with the exception of a single control ter­
minal and paper tape, is performed by an associated minicom­
puter. 

CAP's memory is organized into segments up to 64K 32-bit 
words in size. A segment can contain data or capabilities, but 
not both. Although a process can address up to 4096 segments, 
an executing procedure can access a maximum of 16 capability 
segments at any time. A protected procedure mechanism al­
lows different procedures to access different capability seg­
ments. The CAP system provides 16 general-purpose 32-bit 
registers, BO through B15, for arithmetic and addressing; these 
registers cannot be used to hold capabilities. Register B15 con­
tains the current instruction address; BO is a read-only register 
that always contains zero. A single accumulator, capable of 
holding an 8-bit exponent and 64-bit mantissa, is available for 
floating point computation. In general, arithmetic functions 
operate on 32-bit integer or floating point values. 

CAP's instruction set includes over 200 instructions. Both 
binary and floating point arithmetic are supported, as well as a 
variety of logical and control instructions, and a small set of 
capability manipulation instructions. 

5.3 CAP Process Structure 

A process is the basic execution and protection entity in the 
CAP system. A process is defined by a set of data structures 
that describe a collection of accessible segments and other re­
sources. CAP objects are addressed through capabilities con­
tained within a process's capability segments. Each executing 
procedure in the CAP system operates within the context of a 
process. 

Like previous capability-based designs, the CAP system 
provides a process tree structure, as shown in Figure 5-1. The 
process structure is supported by an instruction that creates 
subprocesses and an instruction that requests service from a 
parent process. At the root of the tree is a process called the 
Master Coordinator. The Master Coordinator controls all sys­
tem hardware resources, which it allocates among level-2 user 



Level 1 

Level 2 

Level 3 

Figure 5-1: CAP Process Hierarchy 

processes. Each level-2 user process can, in turn, create further 
subprocesses, actiing as a coordinator for them. 

CAP's designers chose to use the process tree mechanism to 
eliminate the need for a privileged mode of operation. Each 
CAP process can control the addressing environment and exe­
cution of its subprocesses without special privilege or operating 
system intervention. The desire to provide a very general proc­
ess tree structure led to a design that closely linked addressing 
to process structure. This facility was probably overempha­
sized in the design and only two levels are actually used: the 
Master Coordinator at level" 1 and the user processes at level 2. 

5.4 CAP Addressing Overview 

A high-level view of CAP addressing is useful before delving 
into the detailed mechanism. As mentioned, addressing and 
process structure are intimately related on the CAP system. 
Figure 5-2 shows the addressing relationship between a process 
and its subprocess. Two objects of interest are pictured for 
each process: a capability segment and a data structure called 
the Process Resource List (PRL). 

On CAP, a pro(:ess must possess a capability for any object 
to be accessed. Capabilities are stored in capability segments. 
In contrast to the Plessey and CAL-TSS designs, in which 
capabilities refer to entries in a system-wide table, capabilities 

5.4 CAP Addressing 
Overview 
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PRL entry 
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- PRL entry 

Level N+ 1 
Process Resource List 

Figure 5-2: CAP Process Addressing 
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on CAP refer to entries in a process-local table, the Process 
Resource List. The Process Resource List differs from previ­
ous schemes in another important way. PRL entries do not 
contain primary memory addresses, but instead refer to capa­
bilities in capability segments of the parent process. This upward 
indirection is shown in Figure 5-2 by the arrow leading from 
the level N + 1 PRL entry to the level N capability segment. 
Indirection continues from there to the level N Process Re­
source List, and so on, until the Master Coordinator is reached 
at the top of the tree. The Master Coordinator's Process Re­
source List contains the primary memory address for each seg­
ment. 

The following sections describe this addressing structure in 
more detail, but the reason for the extra indirection is worth 
noting here: it provides a process with the freedom to control 
its subprocesses. In the CAP system, a process can directly 
write the PRL and capability segments of its subprocesses. In 
this way, a process can dynamically control the addressing en­
vironment of its inferiors without operating system interven-



5.5 Capabilities and 
tion. Permitting a process data access to its subprocesses' capa- Virtual Addresses 

bility segments does not violate the protection system because 
of the indirection in addressing. Ultimately, all capabilities and 
PRL entries in a subprocess must refer to valid capabilities 
held by its parent process. Therefore, althol;1gh a parent proc-
ess can create capabilities for its offspring, these capabilities 
can only address objects that are accessible to the parent. 

5.5 Capabilities and Virtual Addresses 

Within a CAP process, an executing procedure addresses 
segments through capabilities stored in its capability segments. 
Capabilities can be specified by CAP instructions and manipu­
lated in controlled ways by user programs. Figure 5-3 shows 
the CAP capability format. As described above, each capability 
refers to one entry in the Process Resource List. Each capabil­
ity also contains a type field in the two high-order bits that 
differentiates segment capabilities, enter capabilities, and so 
on. The bits marked Wand U are set by hardware to indicate 
that a segment has been written or accessed, respectively. 

The encoding of the access field is shown also in Figure 5-3. 
CAP permits read and/or write access to a capability segment, 
or read, write, altld/or execute access to a data segment. Write 
capability access permits a process to execute instructions to 
move capabilities to a segment; it does not allow data opera­
tions on the segment. The base, size, and access fields in a 
capability can be lJ.sed to refine access to a segment defined by a 
PRL entry. For example, a program can create a new capabil­
ity with read-only access to a segment for which the PRL per­
mits read/write access. Or, using base and size, a capability can 
be refined to address only a contiguous subset of a segment. 
The REFINE instruction performs these operations. 

PRL index Base 

I Capability 
Type wul Access Size 

31 29 23 21 15 0 
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To reference a word in memory, the CAP programmer must 
specify a capability for a segment and the offset of the word 
within that segment. The capability is specified by an index 
in one of the 16 capability segments. A complete CAP virtual 
address, then, consists of three parts: a capability segment 
number, a capability index, and an offset into the selected seg­
ment. 

Figure 5-4 shows the format of a CAP virtual address when 
stored in memory or a general register. The upper 16 bits of 
the address are known as the segment specifier because they 
select a capability for the addressed segment. The segment 
specifier consists of two values: I, the number of one of the 16 
capability segments, and F, the index of a capability within 
that segment. The capability selected in Figure 5-4 contains 
the index of PRL entry M, which points to a data segment 
(although the addressing is indirect). The value K in the virtual 
address is the offset of the target word in this data segment. 

Note that each capability segment can hold a maximum of 
256 capabilities because the capability index field in Figure 5-4 

31 

I: 

M: 

28 23 16 15 o 
Virtual Address 

Capability index within capability segment 

Capability segment number 

J:§ 
H Capability Segment I 

KO Process PRL 

Data Segment 

Figure 5-4: CAP Virtual Address 



5.6 Process Data 
is 8 bits long. There are 16 capability segments, so the process Structures 

can address a maximum of 4096 capabilities at a given time. 

5.6 Process D,sta Structures 

A CAP Proc(!ss Resource List defines all of the resources 
available to a CAP process. Figure 5-5 shows the structure of 
entries in a PRL. A PRL entry is identical in format to a capa­
bility, except that the PRL index of the capability is replaced 
by the segment specifier field. The segment specifier selects a 
capability in one of the capability segments of the parent proc­
ess. Just as the base, size, and access fields in a capability can 
be used to refine the access permitted by a PRL entry, these 
fields in the PRL entry can be used to refine the access permit­
ted by the parent's capability. 

PRL entries resemble capabilities in structure; however, the 
PRL is not a C-llist and differs from a C-list in two important 
ways. First, PRL entries cannot be manipulated by programs 
executing within the process. Second, the JPRL must contain 
entries for objects needed by all procedures that the process 
executes. In contrast, most capability systems allow proce­
dures to access private objects not available to the C-list of their 
caller. Different procedures executing within a CAP process 
can be restricted. to different capability segments and, hence, 
to different objects; but all of the objects that they collectively 
address must have entries in the PRL. 

In addition to the PRL, each process has a data structure 
called the Process Base, which contains the state of the process. 
By convention, the first entry in the PRL addresses the Process 
Base. The first 16 words of the Process Base define the 16 
process capability segments by indicating the offset of the PRL 
entry for each segment, as shown in Figure 5-6. The V bit in 
each word specifies whether or not that capability segment 
exists, and the 8-bit offset field indicates which PRL entry 

Segment specifier Base 

Type I I wu I Access Size 

31 29 23 21 15 

Segment specifier< 31 :28> = Parent capability segment 
Segment specifier< 23:16> = Index of capability within specified 

parent segment 

Figure 5-5: CAP PFiL Entry 
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Figure 5-6: CAP Process Base 

I Offset 

J Offset 

addresses the corresponding capability segment. All capability 
segments accessible to a process must, therefore, be addressed 
through the first 256 PRL entries. The remaining words in the 
Process Base contain copies of the general registers, a count­
down timer, and pointers to the C-stack-a data structure used 
to save capabilities during procedure invocation. 

5.7 Memory Address Evaluation 

This section reviews the translation process from virtual 
address to primary memory location. Because each process 



5.8 Subprocess 
owns all segments available to its children, the Master Coordi- Creation 

nator at the root of the tree must have capabilities for all seg-
ments in the system. In fact, the Master Coordinator is the 
only process that addresses memory directly. In the PRL of the 
Master Coordinator, called the Master Resource List (MRL), 
are capabilities similar in format to that shown in Figure 5-5; 
however, word 0 of these MRL entries contains a memory 
address in the low-order 20 bits. All capabilities ultimately 
refe'r to these MRL entries. 

The steps to translating an address are as follows: 

1. Locate the specified capability segment in the process, and 
select the capability in the index contained in the virtual 
address. 

2. Follow the capability link to the entry in 1the process PRL. 
Minimize access rights through a logical AND operation, 
and compute new base and length if required. 

3. From the PRL entry, locate a capability in the parent proc­
ess's capability segment. Once again, apply rights, base, and 
length minimization. 

4. Follow this capability back to the entry in the parent's PRL. 
5. Continue this process until the MRL is reached, at which 

time the physical address can be calculated. Check the offset 
supplied in the original general address for legality and make 
the requested reference. 

Certain facts are apparent about this mechanism. First, sev­
eral levels of indirection, and hence, several memory refer­
ences, are required before an actual operand can be accessed. 
This problem can be handled with the special hardware that 
the CAP provides. Second, because capabilities refer to a proc­
ess-local structure, the PRL, they cannot easily be transferred 
between processes even at the same level of the hierarchy. Ca­
pabilities cannot be· copied between processes unless both 
processes have identical PRLs. Third, capabilities cannot be 
copied directly from parent to child, but must be passed by 
constructing PRL entries and corresponding capabilities in the 
child that refer to the parent capability. Fourth, because of the 
indirection in both capabilities and PRL entries, a process is 
totally free to create capability segments and PRL entries for 
its subprocesses. 

5.8 Subprocess Creation 

Any CAP process is capable of creating subprocesses to 
which it can pass access rights to various objects. The creation 87 
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of a subprocess is accomplished by the ENTER SUBPROCESS (ESP) 

instruction. One operand of the ESP instruction is a segment 
that will become the PRL of the new subprocess. Another op­
erand is the index of the PRL entry in that segment for the 
subprocess's Process Base. 

A parent process creates a subprocess PRL by allocating a 
data segment and constructing PRL entries that refer to the 
parent's capabilities. Because of the way PRL addressing is 
implemented, the construction of subprocess PRL entries re­
quires no special privilege. It is impossible for the parent to 
construct a PRL capability for its offspring that allows it to 
address an object not addressable by the parent. Since the ac­
cess rights are minimized at each level during the address eval­
uation, it is also impossible to increase access rights to an 
addressable object. 

The ESP instruction allows any process to create a sub­
process, to define the resources of the subprocess, and to pro­
tect itself from the subprocess. Each parent can also service 
requests from its subprocesses. The subprocess issues an 
ENTER COORDINATOR (EC) instruction, specifying a code for the 
operation to be performed. Execution of the EC instruction 
causes resumption of the parent process at the instruction fol­
lowing the ESP that initiated the subprocess. The code is placed 
in a general register specified by the original ESP. 

Multiprogramming on the CAP system is implemented by 
using the countdown timer stored in each Process Base. When 
an ESP instruction is executed, control passes to the sub­
process. The subprocess continues execution until either its 
timer expires or it executes an EC instruction, causing return 
of control to the parent. The parent process can service the EC 

or timer expiration, resuming the interrupted process or an­
other subprocess if it likes. The parent might also request serv­
ice from its own parent via an EC instruction. Before resuming 
a subprocess by ESP, the parent resets the countdown timer in 
the process base of the subprocess. 

Thus, any process can coordinate the execution of its sub­
processes, relinquishing its own allotted processor time for 
each subprocess to run. In fact, the current process is allowed 
to run because a set of processes, rooted in the Master Coordi­
nator and terminating with the current process, have each re­
linquished processor time via ESP. Each process in the list is at 
a different level of the process tree, and each executes under a 
time limit specified by its parent. The CAP hardware must, 
therefore, maintain timers for each level of the process tree 



because a timer could expire at any level, thereby returning 5.9 The Capability Unit 

control to the parent of the expiring process. 

5.9 the Capability Unit 

The CAP capability unit contains storage elements used by 
the microprogram to enhance system performance. The stor­
age elements include 64 capability registers and 16 tag memory 
registers, whose use will be described in this section. The prin­
cipal function of the capability unit is to n!duce the effect of 
CAP's multiple levels of indirection. The capability unit acts as 
a cache memory (or what is commonly called a translation 
buffer) for storing recently used segment virtual addresses and 
their corresponding segment physical addressing information. 

Figure 5-7 shows the structure of a capability unit capability 
register. Each capability register contains information about a 
segment capability. The base, size, and access fields are used to 
compute the primary memory address and to validate the at­
tempted memory access. Two tag fields uniquely identify the 
capability within. the capability unit; the segment tag identifies 
the capability segment that holds the capability, and the capa­
bility tag contains the capability's index within that segment. 
The segment tag is the number of another capability register in 
the capability unit. Each capability is contained in one of 16 
capability segments, and to load a capability into a register, the 
capability for its capability segment must also be loaded in a 
register. The number of that register is used as the segment tag 
field. 
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Capability tag 
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Segment , 
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Contains the index of this capability within its 
capability segment. 

Identifies the segment containing the capability. 

Contains the primary memory address of the segment. 

Contains the size of the segment in words. 

Indicates the permitted segment access rights. 

Contains a count of the number of references to the 
capability from within the capability unit. 

Figure 5-7: Capability Unit Register Format 89 
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When a program attempts to access a virtual address, the 
microprogram loads that address into the virtual address regis­
ter of the capability unit, as shown in Figure 5-8. The capabil­
ity unit then autonomously attempts to locate the capability 
register containing the physical attributes of the segment ad­
dressed. If the capability is found, the capability unit validates 
the requested access and performs the primary memory re­
quest. If the capability is not found, the capability unit notifies 
the microprogram, which must then load the needed informa­
tion into a capability register. 

The capability register search uses one of the 16-tag mem­
ory registers shown in Figure 5-8. Each of the 16-tag memory 
registers corresponds to one of the 16-process capability seg­
ments. Whenever the microprogram loads a capability for ca­
pability segment I into a register, it also loads the number of 
that register into the corresponding tag memory register. 
Therefore, tag memory register I specifies the location of the 
capability for capability segment I in the capability unit. A 
valid bit in each tag memory register indicates whether or not 
that register has been loaded. 

From the virtual address presented to the capability unit, 
the unit selects one tag memory register based on the capability 
segment specifier (the upper 4 bits). The capability unit then 
uses the tag memory register in an associative search. The ca­
pability unit searches for a capability register whose segment 
tag field matches the contents of the tag memory register. If 
the tag fields match, then the register contains a capability that 
is stored in the correct capability segment. The unit must then 
check the capability index field in the virtual address, shown as 
J is Figure 5-8, with the capability tag field in the register. If 
these fields match, the correct segment register has been 
found. If the J fields do not match, the search continues. The 
capability unit is able to examine four capability registers at a 
time during the search. 

5.10 Protected Procedures 

The protected procedure is the principal CAP protection 
mechanism. Although other capability systems execute pro­
tected procedures in a new process, all procedures called from 
within a CAP process execute within that same process. How­
ever, different procedures may have access to different capabil­
ity segments and, hence, to different objects. The protected 
procedure mechanism causes switching of capability segments 
and, therefore, changes the access domain of a procedure. 
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Protected procedures are used extensively both within the 
CAP operating system and by user programs. All operating 
system services are programmed as protected procedures, and 
all compilers output protected procedures. The use of pro­
tected procedures to perform system functions is particularly 
important within the CAP system. Although services could be 
provided through ENTER COORDINATOR instructions to the 
Master Coordinator, such instructions would cause a serial­
ization of service. That is, once the Master Coordinator is en­
tered, the service routine would have to complete before an­
other process could execute. By placing operating system 
services within protected procedures available to every proc­
ess, several processes can execute service routines simultane­
ously. 

A protected procedure can be called only through an enter 
capability which the caller must possess. Figure 5-9 shows an 
enter capability and the PRL entry to which it refers. The 
execution of a protected procedure call causes 5 of the 16 capa­
bility segments to be changed. These new capability segments 
form part of the new domain in which the protected procedure 
executes. The enter PRL entry shown in Figure 5-9 contains 
fields that define three of the new capability segments. The 
creator of a protected procedure is free to use these segments in 
any way; however, the conventional name and use of the new 
capability segments are as follows: 

A The argument capability segment contains capabilities passed 
as parameters to the currently executing procedure. 

N The new argument segment is used to construct an argument 
list for a procedure to be called. This segment becomes the 
A segment of the called procedure. 

1 01 I 
PRL Offset 0 Enter 

Access 
Capability 
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1:1 
P R Enter 

PRL 
Access Entry 
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Figure 5-9: CAP Enter Capability and Enter PRL Formats 



P The procedure segment contains capabilities for code and 
data segments that are shared by all processes executing a 
protected procedure. 

I The interface segment contains capabilities that are used by 
the procedure but are specific to the executing process, for 
example, a process-local workspace. 

R The resource segment contains capabilities specific to one 
instance of the protected procedure. For example, the R 
segment might be used to address the representation of an 
object managed by a protected type manager. The represen­
tation would be accessible only to the protected procedure. 

A program executes an ENTER instruction to call the pro­
tected procedure. The single operand to the ENTER instruction 
is the location of the enter capability. Parameters are 
passed in the N segment. The ENTER instruction then 
changes the execution environment, using a data structure 
called the C-stack to save information about the current proce­
dure. The C-stack is a segment in which the invocation stack 
(the procedure-calling record) is maintained. Each procedure 
call causes the hardware to place a new invocation frame on the 
C-stack by updating the C-stack pointers in the Process Base. 
The RETURN instruction restores information placed on the 
C-stack, removing the current frame and returning control to 
the caller. 

In more detail, the ENTER instruction causes the following 
events to occur: 

• A new C-stack frame is allocated. This 6-word frame is loaded 
with procedure state information, including the PRL indices 
for the current P, I, and R segments. 

• The PRL indices for the new P, I, and R segments, stored in 
the enter PRL entry, are used to modify the three words in 
the Process Base that address these three capability segments. 

• The PRL index for the current A segment is saved on the 
C-stack. The A segment slot in the Process Base is loaded 
with the PRL index of the current N segment. The Process 
Base slot for the N segment is invalidated. 

• The current program counter (BlS) is saved on the C-stack. 
• The access rights specified by the enter capability and the 

enter PRL entry are ANDed and placed in B14, for examina­
tion by the procedure. 

• The program counter is loaded with the address of the first 
word of the segment addressed by the new P capability. 

The protected procedure begins execution at the first word 
of the P segment. It executes in the new domain created by the 

5.10 Protected 
Procedures 
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ENTER instruction and has access to new A, P, I, and R 
segments. When the procedure is entered, no N segment 
exists. Should the procedure wish to create a new argument 
segment for a further procedure call, it executes a MAKEIND 

instruction to specify the length of the new N segment. The N 
segment is also allocated on the C-stack. Execution of a RE­

TURN instruction destroys the N segment and replaces the pre­
vious P, I, R, and A segments. 

Each CAP user program is, in fact, a protected procedure, 
and is restricted to a subset of the objects addressed by its 
process' PRL. This subset is defined by the P, I, and R capa­
bility segments made available to the program by its enter ca­
pability. Other procedures callable by the program can have 
access to different segments. The enter PRL entry for a pro­
tected procedure seals three capabilities, making them availa­
ble to the protected procedure when it is called. 

The protected procedure mechanism supports the creation 
of protected objects and object type managers. For example, 
Figure 5-10 shows the implementation of a subsystem support­
ing protected objects of type message port. Each instance of a 
port object is represented by a new instance of the port pro-
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Figure 5-10: CAP Protected Object Implementation 



tected procedures. Each instance of the port system contains a 
pointer to the port protected procedures and a pointer to the 
segments containing the data structures for one port instance. 
Figure 5-10 shows enter PRL entries for two ports. Both PRL 
entries address the same P segment and share the procedures 
that operate on the ports, but every object has a different R 
segment that contains the representation of that object in­
stance. 

To create a new object, then, the type manager creates an 
instance of itself with a new R segment. All PRL entries for 
objects of the same type share a P capability but have different 
R capabilities for the segments containing the object's repre­
sentation. Processes are given enter capabilities that address 
these PRL entries. The type manager defines and interprets 
the access rights in its enter capabilities. Th(: ENTER instruction 
makes those access rights easily accessiblt: by placing them 
in a register. 

5.11 Long-Ten" Storage and Long-Term Names 

Like the Plessey 250, the CAP operating system provides 
for long-term storage of objects. Three types of objects can be 
preserved on secondary storage: segments, directories, and 
Procedure Description Blocks. A Procedure Description Block 
is a segment created by the operating system that defines how a 
protected procedure should be constructed, including its seg­
ments and the capabilities in those segments. 

CAP capabilities, like Plessey 250 capabilities, contain the 
index. of a data structure in memory (the PRL). This index is a 
short--term identifier for an object and is meaningful on the 
CAP system only during the lifetime of a single process. There­
fore, in order to preserve and name objects with a long life­
time, each object must have a unique long-term name. When 
object names are saved on secondary memory, they must be 
stored as long-term names. 

Each CAP object's long-term name is unique for the life of 
that object. The long-term name is called the system internal 
name of the object. An object's system internal name is con­
structed from the disk block address where the object is stored. 
The CAP operating system maintains a list of all long-term 
objects that includes the number of references to each object 
on secondary storage. In addition, the operating system main­
tains a list for each CAP process that contains the system inter­
nal names for all objects addressed by that process's PRL. 

5.11 Long-Term 
Storage and Long­
Term Names 
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Every CAP user has one or more directories in which to 
store text names of long-term objects and their associated sys­
tem internal names. Directories are managed by a protected 
procedure known as the directory manager. 

The operating system maintains the storage for an object as 
long as a reference to that object exists in a directory, in a 
Procedure Description Block, or in the PRL of an executing 
process. When a process requests an object from a directory, 
the system first checks the process-local system internal name 
list to see if that object is currently in memory. If so, the proc­
ess will already have a PRL entry addressing the object and a 
capability can be constructed. Otherwise, the system's long­
term system internal name list must be consulted and the ob­
ject fetched from secondary storage. This operation will cause 
a PRL entry to be allocated, a capability to be constructed, and 
a notation to be made in the process-local system internal name 
list. 

Protected procedures are stored on secondary memory as 
Procedure Description Blocks. A protected procedure, as previ­
ously described, consists of three capability segments (proce­
dure, interface, and resource) that are made available as the 
result of an ENTER instruction. These segments contain capa­
bilities that are used by the protected procedure but may be 
hidden from other process procedures. 

When a protected procedure is created, the operating sys­
tem constructs a Procedure Description Block containing sys­
tem internal names of the objects accessible to the protected 
procedure. The operating system returns an enter capability 
and places an enter PRL entry in the Process Resource List of 
the creating process. The PRL entry is constructed so that a 
trap will occur if an ENTER instruction attempts to use that 
entry. If a trap occurs, the operating system builds the P, I, 
and R capability segments from the system internal names in 
the Procedure Description Block. In this way, such segments 
do not need to be allocated unless the procedure is actually 
called. 

5.12 Discussion 

The Cambridge CAP computer is the first successful uni­
versity-built hardware and software capability system. Unlike 
previous university efforts, the CAP implementors completed 
a system that serves both as a research tool and as a useful 
service facility. The CAP system is interesting because of sev-



eral design aspects, including the addressing structure and the 5.12 Discussion 

use of the microprogram and capability unit for implicit capa-
bility loading. 

The most influential decision made in CAP's design was the 
choice of a capability protection system based on a process 
hierarchy. The goal was to allow any process complete freedom 
to supervise the activities of its subprocesses. The CAP system 
permits a process to control the processor scheduling as well as 
the memory resources of its offspring. The ENTER SUBPROCESS 

and ENTER COORDINATOR instructions operate at any level of 
the tree, allowing any process to act as a complete coordinator. 

CAP's addressing structure permits direct control of 
subprocess addressing domains by a parent process. In con­
trast, a parent process on other capability systems must call a 
supervisor service to place a capability in a subprocess's C-list. 
On CAP, however, a process can have data access to its sub­
processes' capability segments. No protection violation occurs 
because of the indirection in subprocess capabilities, although 
this indirection reduces the efficiency of capability addressing. 

An additional problem is caused by the local nature of the 
Process Resource List. Because all capabilities address the 
PRL, a process·-local structure, they cannot be passed easily 
between processes. CAP capabilities are different from capabil­
ities on previous systems because they do not contain a global 
context-independent identifier. Although each CAP object has a 
system-wide unique name, a CAP capability contains a PRL 
index which is a process-local object name. 

Following thdr initial experience, CAP's designers felt that 
the process tree had been much overemphasized in the design. 
The generality of a multi-level process structure, while provid­
ing conceptual advantages, led to performance and implemen­
tation difficulties. Therefore, only two levels of process struc­
ture are actually used in the CAP-the Master Coordinator 
and the level-2 processes. However, the effect of the process 
tree design on addressing remains. 

A more essential CAP mechanism is the protected proce­
dure. Protected procedures are widely used, both within the 
operating system and by user programs. Most of CAP's operat­
ing system is implemented as protected procedures that exe­
cute within the domain of each process; this alleviates the bot­
tleneck that would be caused if all services were performed 
directly by the Master Coordinator. 

Protected procedures are also useful for implementing type 
managers and protected objects. The procedure (P) segment 97 
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for the protected procedure specifies the protected object man­
agement routines, while the resource (R) segment can be used 
to specify the representation of a single object instance man­
aged by those routines. When a new object instance is created, 
the type manager creates a new instance of its protected proce­
dure system. This new instance is represented by a new enter 
capability and enter PRL entry that have access to a new R 
segment. 

Although the protected procedure mechanism supports the 
creation of protected objects, it is not extensively used for that 
purpose within the operating system due to the cost of pro­
tected procedures. Using this mechanism for protected ob­
jects, a new instance of the type manager (that is, a new pro­
tected procedure with its enter PRL entry) must be created for 
every new object. Creation of a new instance of a protected 
procedure also causes creation of a new Procedure Description 
Block, which involves both space and time overhead to the 
system. 

A less expensive mechanism is provided by software capa­
bilities (not described in the chapter). The operating system 
uses software capabilities for addressing operating system ob­
jects. Software capabilities can be placed in process capability 
segments and are protected in the same way that segment capa­
bilities are protected. The type field in the capability indicates 
whether it is a software capability or another type of capability. 
A protected procedure can return a software capability to a 
process as proof of object ownership. The bits in a software 
capability can be defined by the protected procedure and used 
in any way. However, software capabilities can only be used by 
operating system protected procedures because they rely on 
convention to distinguish the type of object addressed by the 
software capability. 

CAP's capability unit serves to reduce the overhead refer­
ences required for address translation. A memory reference in 
a level-2 user process requires four overhead references before 
the word is accessed, because two capabilities and two PRL 
entries must be read to compute the primary memory address. 
The capability unit reduces this overhead by caching fre­
quently used segment capabilities and their segment primary 
memory addresses. 

Additionally, the use of tag memory registers and the struc­
ture of the capability register tags permit registers to remain 
loaded over domain changes. That is, when a context switch or 
protected procedure call occurs, only the tag memory registers 



5.13 For Further 
need to be changed. A call to a short protected procedure will Reading 

not cause a turnover of registers in the capability store. How-
ever, the capability unit requires that a large number of evalu-
ated capabilities be loaded in registers before it can operate. 
For example, for each process capability in the capability unit, 
the unit must also hold evaluated capabilities for the segment 
containing the capability, for the process PRL and Process 
Base of the current process, and for the PRL and Process Base 
of the parent process. The overhead is significant, and the 64-
register size of the store would make large process trees im-
practical. 

Additional overhead always exists in capability manage­
ment, and this ,can be seen in light of the CAP addressing 
structure. Because capabilities are defined indirectly, a parent 
has the ability to modify or invalidate a capability to which a 
junior process refers. Using this mechanism, it is possible to 
revoke authority to an object previously allowed a subprocess 
(and potentially, its juniors). Since the capability unit main­
tains translated copies of capabilities, however, it is possible 
for a change at a higher level in the process tree to be made 
while a lower level capability exists in the capability unit along 
with its physical address. Therefore, each time a capability in 
memory is modified, the capability unit must ensure that no 
junior process capabilities are left in the unit that refer indi­
rectly to the modified capability. Although this is analogous to 
the operation required on a virtual memory translation buffer 
in any virtual memory system, the operation is more frequent 
with capabilities because, while users can modify capabilities, 
only the operating system can modify process page registers. 

The CAP project has been successful for reasons related 
both to the struclture of the hardware and the amount of useful 
software available to its users. Since it became operational, the 
CAP system has continued to be a useful research and compu­
tation facility at Cambridge University, and the base hardware 
has proven flexible enough to allow further experimentation 
with capability architecture [Herbert 78a]. 

5.13 For Further Reading 

Much literature is available on the CAP system and its soft­
ware. A general discussion of capability addressing and the 
CAP approach can be found in [Needham 72 and Needham 
74]. The best overview of the CAP system is provided in the 
paper by Needham and Walker [Needham 77a], the book by 99 
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Wilkes and Needham [Wilkes 79], and the thesis by Walker 
[Walker 73]. The book describes the operating and filing sys­
tems as well as the hardware. The filing system is described 
also in [Needham 77b, Birrell 78]. Performance evaluations of 
the CAP system can be found in the papers by Cook [Cook 78, 
Cook 78b]. 

Since the original CAP design, Herbert has experimented 
with a new CAP capability architecture implemented by a 
microprogrammed kernel running on the CAP hardware 
[Herbert 78a, Herbert 78b, Herbert 79]. A version of [Herbert 
79] is reprinted in [Wilkes 79]. Herbert's kernel corrects some 
of CAP's problems and supports global naming and a form of 
sealing as described by Redell [Redell 74a]. 





The Hydra/C.mmp computer. (Courtesy William Wulf.) 



The Hydra System 

6.1 Introduction 

This chapter marks the transition from capability-based to 
object-based computer systems. Although somewhat subtle, 
the distinction is one of philosophy. The systems previously 
described are primarily concerned with capabilities for mem­
ory addressing and protection, although they support abstrac­
tion and extension of operating system resources as well. The 
principal concern of the systems discussed in the remaining 
chapters is the use of data abstraction in the design and con­
struction of complex systems. In these systems, abstract objects 
are the fundamental units of computing. Each system is viewed 
as a collection of logical and physical resource objects. Users 
can uniformly extend the system by adding new types of re­
sources and procedures that manipulate those resources. 

The subject of this chapter is Hydra, an object-based oper­
ating system built at Carnegie-Mellon University. Hydra runs 
on C.mmp (Computer.multi-mini-processor), a multiprocessor 
hardware system developed at Carnegie. Hydra is significant 
because of its design philosophy and the flexibility it provides 
for users to extend the base system. This flexibility is sup­
ported by capability-based addressing. 

6.2 Hydra Overview 

In the early 1970s, a project began at Carnegie-Mellon Uni­
versity to investigate computer structures for artificial intelli­
gence applications. These applications required substantial 
processing power available only on costly high-performance 
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processors. At that time, however, relatively inexpensive mini­
computers were becoming available. Therefore, the project 
sought to demonstrate the cost performance advantages of 
multiprocessors based on inexpensive minicomputers. 

The C.mmp hardware was designed to explore one point in 
the multiprocessor space [Fuller 78]. Its hardware structure 
differs from conventional multiprocessing systems in the use of 
minicomputers, the large number of processors involved, and 
the use of a crossbar switch for interconnecting processors to 
main memory. C.mmp consists of up to 16 DEC PDP-ll mini­
computers connected to up to 32 megabytes of shared memory. 
The memory is organized in 16 memory banks connected to 
the processing units by a 16 x 16 crossbar switch. 

Hydra [Wulf 74a, Wulf 81] is the operating system kernel 
for the C.mmp computer system. Hydra is not a complete op­
erating system in the sense of Multics, Tops-20, or Unix™; 
rather, it is a base on which different operating system facilities 
can be implemented. For example, Hydra allows users to build 
multiple file systems, command languages, and schedulers. 
Hydra was designed to allow operating system experimenta­
tion: flexibility and ease of extension were important goals. 
Experimentation is often difficult with traditional operating 
systems because new subsystems require change to a privileged 
kernel. Any error in privileged code can cause a system failure. 
To avoid this problem, the designers of Hydra built a kernel on 
which traditional operating system components could be im­
plemented as user programs. This facility has strong implica­
tions for the protection system because user programs must be 
able to protect their objects from unauthorized access. 

Two fundamental design decisions that permit experimenta­
tion on the Hydra system are: 

• the separation of policy and mechanism in the kernel [Levin 
75], and 

• the use of an object-based model of computation with capa­
bility protection. 

The separation of policy and mechanism allows experimen­
tation with policy decisions such as scheduling and memory 
management. Basic mechanisms, such as low-level dispatch­
ing, are implemented in the kernel, while scheduling policy for 
user processes can be set by (possibly multiple) higher-level 
procedures. Because this part of the Hydra design is not re­
lated to the object system, it will not be described here. 



Hydra's object model and its implementation are the subject of 
the following sections. 

6.3 Hydra Objects and Types 

The philosophy that "everything is an object" is key to the 
Hydra design. All physical and logical resources available to 
Hydra programs are viewed as objects. Examples of objects are 
procedures, procedure invocations (called local name spaces), 
processes, disks, files, message ports, and directories. Objects 
are the basic unit of addressing and protection in Hydra and 
are addressed through capabilities. The Hydra kernel's main 
responsibility is to support the creation and manipulation of (1) 
new object types, (2) instances of those types, and (3) capabili­
ties. 

Each Hydra object is described by three components: 

• A name that uniquely identifies the object from all other ob­
jects ever created. The name is a 64-bit number constructed 
from an ever-increasing system clock value and a 4-bit num­
ber identifying the processor on which the object was created. 

• A type that determines what operations can be performed on 
the object. The type is actually the 64-bit name of another 
object in the system that implements these operations. 

• A representation that contains the information that makes up 
the current state of the object. The representation consists of 
two parts: a data-part and a C-list. The data-part contains 
memory words that can be read or written; the C-list contains 
capabilities for other objects and can only be modified 
through kernel operations. 

Figure 6-1 shows an example of a Hydra object. Although 
shown as strings, the object's name and type are actually 64-bit 
binary numbers. The object's type is the name of another ob­
ject in the system-a type object. Hydra objects include capa­
bilities as part of their representation. By storing capabilities 
for other objects in its C-list, an object can be built as a collec­
tion of several Hydra objects. 

Each Hydra type represents a kind of resource. A type object 
is the representative for all instances of a given resource. It 
contains: 

• information about the creation of new instances of the type 
(for example, the initial C-list size and data-part size), and 

• capabilities for procedures to operate on instances of the type. 

6.3 Hydra Objects and 
Types 
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Hydra Object 

NAME: myport 

TYPE: port 

REPRESENTA TlON 

Data-part C-/ist 
Data-part 

Figure 6-1: Hydra Object and Type Object 

Hydra Type Object 

NAME: port 

TYPE: type 

REPRESENTATION 

Procedure capability 

C-list 

Send 

Receive 



PROCESS The basic unit of sched.uling and execution. 
PROCEDURE The static description of an executable pro­

cedure. 
LOCAL NAME SPACE (LNS) 

The dynamic representation of an executing 
procedure. 

PAGE A virtual page of C.mmp memory that can 
be directly accessed. 

SEMAPHORE A synchronization primitive. 
PORT A message transmission and reception facil­

ity. 
DEVICE A physical 110 device. 
POLICY A module that can make high-level schedul­

ing policy decisions. 
DATA An object with a data-part only. 
UNIVERSAL A basic object with both a C-list and data­

part. 
TYPE The representative for all objects of a given 

type. 

Table 6··1: Hydra Kernel-Implemented Types 

Thus, the type object is generally responsible for creating new 
objects of its type and performing all operations on those ob­
jects. For example, to create a new message port, the user 
issues a $CREATE call to the port type object. The port type 
object creates a new port object, initializes its data-part and 
C-list appropriately, and returns a capability for the object to 
the caller. Table 6-1 lists the types directly supported by the 
Hydra kernel for performance reasons. 

To extend th{! Hydra operating system, users create new 
type objects that support new kinds of resources. A user 
creates a new type object by calling the type manager for type 
objects. Figure 6-2 shows the three-level Hydra type hierar­
chy. Note that all objects are represented by a type object, 
including the type objects themselves. The special type object 
at the root of the hierarchy is called type "type"; that is, both 
its name and type are "type." This specially designated object 
is used to create and manipulate type objects. 

6.4 Processes, Procedures, and Local Name Spaces 

A process is the basic unit of scheduling in the Hydra sys­
tem. There is no explicit process hierarchy; any process can 
create other processes and pass capabilities for those processes 
to others. The access rights in a process capability determine 
what operations can be performed on that process-for exam-

6.4 Processes, 
Procedures, and Local 
Name Spaces 

107 



TYPE: port 
NAME: myport 

Figure 6-2: Hydra Type Hierarchy 



pIe, whether it can be stopped and started. A process with 6.5 Hydra Operations 

suitably privileged capabilities can, therefore, schedule the 
execution of other processes. 

The Hydra protection system is procedure-based rather 
than process-based. All Hydra procedures are protected proce­
dures that carry their own execution domains. The current 
domain of a process depends on the procedure that it is execut­
ing. The process is the entity in which the procedure is sched­
uled, and it maintains the chain of procedure calls that have 
occurred within tlhe process. 

To differentiat{~ a procedure from its executing invocations, 
Hydra supports two object types: the procedure object and the 
local name space object. A Hydra procedure object is the static 
representation of a procedure. The procedure object contains 
instructions, constant values, and capabilities that are needed 
by the procedure for its execution. The capabilities are main­
tained in the C-list of the procedure object. 

The procedure object is actually a template from which an 
activation is built when the procedure is called. A procedure is 
called through a procedure capability. When a procedure call 
occurs, the Hydra kernel creates a local name space object and 
initializes it from information contained in the associated pro­
cedure object. The LNS is the activation record for the execut­
ing procedure; it represents the dynamic state of the proce­
dure's execution. Since procedures can be shared, several LNS 
objects can exist to represent different activations of a single 
procedure. Hydra allows both recursive and re-entrant proce­
dures. 

The LNS defines the dynamic addressing environment for a 
procedure. All of the objects that can be directly addressed by 
the procedure must be reachable through capabilities in the 
C-list of the LNS. The capabilities are initially obtained from 
two places: 

• the called procedure object (these are known as inherited ca­
pabilities), and 

• capability actual parameters passed by the caller. 

Within the executing procedure, capabilities are addressed by 
their index in the LNS C-list. As the procedure executes, the 
LNS changes as capabilities are acquired, copied, and deleted. 

6.5 Hydra Oper.ations 

C.mmp is constructed from PDP-ll minicomputers, which 
do not support capabilities or virtual memory addressing. 109 



The Hydra System 

110 

Therefore, all Hydra object operations are performed through 
calls to the Hydra kernel. A procedure cannot manipulate the 
data-part of an object with processor instructions. Instead, the 
procedure performs a kernel operation to copy data from the 
data-part into its local memory for examination or modifica­
tion. Another call to the kernel moves data from local memory 
to the object's data-part. No direct copying is allowed to the 
C-list. 

Since a number of operations are common to objects of all 
types, the kernel provides a set of generic operations that can be 
applied to any object, assuming the caller has a sufficiently 
privileged capability. Table 6-2 lists some of these object oper­
ations, as well as some of the standard capability operations. 

A typical kernel call might specify several parameters that 
are capabilities. In general, any parameter requiring a capabil­
ity will also allow a path to a capability. The path allows a user 
to specify several levels of indirection to the target object. The 
path is specified as a list of C-list indices, leading from a capa-

$GETDATA 

$PUTDATA 

$APPENDDATA 

$MAKEDATA 

$MAKEUNIVERSAL 

$GETCAPA 

$PUTCAPA 

$APPENDCAPA 

$COMPARE 

$RESTRICT 

$DELETE 

$CREATE 

Copy data from the data-part of a specified 
object to local memory. 
Copy data from local memory to the data­
part of a specified object. 
Append data from local memory to the 
data-part of a specified object, extending the 
size of the data-part. 
Create a new data object (data-part only) 
initialized with N words from a local seg­
ment, and return a capability for the new 
object. 
Create a new universal object (data-part and 
C-list) and return a capability for the new 
object. 
Copy a specified target capability (e.g., in a 
specified object's C-list) to the current LNS 
(local addressing environment). 
Copy a capability from the current LNS to a 
specified object C-list slot. 
Append a capability from the current LNS 
to a specified object's C-list, extending the 
C-list size. 
Compare two capabilities. 
Reduce the rights in a spe¢ified capability. 
Delete a specified capability. 
Create a new object with the same type and 
representation as another object. . 

Table 6-2: Generic Object and Capability Operations 
-------



64-bit object name Generic rights Auxiliary rights 

Figure 6-3: Hydra Capability 

bility in the current LNS C-list, through a capability in the 
C-list of the object selected, and so on. 

6.6 Capabilities and Rights 

Hydra capabilities contain an object's name and access 
rights. The access rights are divided into two fields: a 16-bit 
generic rights field and an 8-bit auxiliary rights field, as illus­
trated in Figure 6-3. (This figure is somewhat simplified; capa­
bilities have different formats which are shown in detail in 
Section 6.9.) The generic rights, listed in Table 6-3, can be 
applied to any Hydra object. In general, they control permis­
sion to execute the generic operations listed in Table 6-2. The 
auxiliary rights field is type specific; its interpretation is made 
by the procedures that operate on the specific object type. 

The rights are single-bit encoded, and the presence of a bit 
always indicates the granting of a privilege. This convention 
simplifies rights restriction and rights checking and allows the 

GetDataRts, PutDataRts, AppendDataRts 
Required to get, put, or append data to 
an object's data-part. 

GetCapaRts, PutCapaRts, AppendCapaRts 
Required to get, put, or append to an 
object's data-part. 

DeleteRts Allows this capability to be deleted from a 
C-list. 

KillRts 

ModifyRts 

EnvRts 

UncfRts 

CopyRts 

Allows deletion of capabilities from the 
C-list of the named object. The capability 
to be deleted in that C-list must have 
DeleteRts. 
Required for any modification to an object's 
representation. 
Environment rights allows a capability to 
be stored outside of the current LNS. 
Unconfined rights allows an object ad­
dressed through a specified object to be 
modified. 
Required to execute the $copy operation. 

6.6 Capabilities and 
Rights 
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kernel to verify that a capability has sufficient generic and aux­
iliary rights for a specific operation. 

A type manager typically has the power, through possession 
of a special capability, to gain additional privileges to an object 
of its type passed by a caller. This facility, known as rights 
amplification, will be described in Section 6.7. In some cases a 
caller may wish to restrict a subsystem's use of capability pa­
rameters and the objects they address. In particular, the user 
may wish to ensure that a called procedure does not: 

• modify the representation of an object, 
• retain the capability for an object following return of the call, 

or 
• copy information from an object into any memory that could 

be shared with other programs. 

These restrictions can be guaranteed through the use of three 
special rights listed in Table 6-3: modify rights (ModifyRts), 
environment rights (EnvRts), and unconfined rights (UncfRts) 
[Cohen 75, Almes 80]. 

ModifyRts is required in any capability that is used to mod­
ify the representation of an object. For example, in order to ' 
write to an object's data-part, the executing procedure must 
have a capability containing both PutDataRts and ModifyRts. 
By removing ModifyRts from a capability parameter, a pro­
gram can guarantee that a called procedure will not modify that 
object because, unlike the other generic rights, ModifyRts can­
not be gained through amplification. 

EnvRts is required for a procedure to remove a capability 
from its local name space. When a program removes EnvRts 
from a capability that is passed as a parameter, it guarantees 
that no copies of the capability can be retained by the called 
domain following its return. Without EnvRts, it is impossible 
for a called procedure to save a capability in a local object's 
C-list to be used later. Although a capability without EnvRts 
can be passed to another procedure as a parameter, that proce­
dure will once again find a capability in its LNS without EnvRts 
and will not be able to save it. EnvRts also cannot be gained 
through amplification. 

Although EnvRts prohibits a procedure from saving a capa­
bility, it does not prohibit the procedure from copying all of 
the possibly confidential information from that object into a 
new object. UncfRts, when removed from a procedure capabil­
ity, restricts the storage of information by the called proce-



dure. If a procedure is called using a capability lacking 
UncfRts, all capabilities copied from the procedure object into 
the LNS will have UncfRts and ModifyRts removed. That is, 
the procedure will be forced to execute in an environment in 
which it cannot modify any of its own objects or any objects 
reachable through its own capabilities. Therefore, it will not be 
able to maintain any permanent state following its return. The 
only objects that can be modified by the call are those passed 
by capability parameters that contain ModifyRts. 

6.7 Supporting Protected Subsystems 

A major goal of the Hydra system is the support of the 
object-based programming methodology. That is, facilities are 
added to the operating system by creating new object types. A 
type manager, represented by a Hydra type object, is a module 
that creates new instances of its type and performs operations 
on those instances. The objective of this methodology is to 
localize knowledge of the representation and implementation 
of each type to its type manager. Users can call type manager 
procedures to create and manipulate objects, but cannot di­
rectly access an object's representation. 

To support this programming style, a type manager must be 
able to: 

• create new object instances of its type, 
• return a capability for a new instance to the caller requesting 

its creation (this capability identifies the obj(!ct but must not 
allow its owne:r to access the object's representation directly), 
and 

• retain the ability to access the object's representation when 
passed a capability for an object it created. 

The type manager must, therefore, be able to restrict the rights 
in a capability that it returns to a caller and later amplify those 
rights when the capability is returned. The amplified rights 
permit the type manager to examine and modify the object's 
representation. Amplification occurs during procedure calls 
through a special type of capability owned by the type manager 
called a template" 

6.7.1 Templates 

There are two common operations that the kernel performs 
during Hydra procedure calls. First, the kernel verifies that 
parameter capabilities have the expected type and required 

6.7 Supporting 
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rights for the operation implemented by the procedure. Sec­
ond, the kernel can, under controlled circumstances, amplify 
the rights passed in a capability parameter. This facility is re­
quired to allow subsystems to perform operations on an object 
that are not permitted to the user of the object. 

Both the type checking and amplification facilities are pro­
vided through a mechanism called capability templates. A tem­
plate is a kind of capability used by type managers to imple­
ment type systems. Templates do not address objects, but give 
the possessor special privileges over objects or capabilities of a 
specified type. As the name implies, the template capability is 
a form used to verify the structure of a capability or to con­
struct a capability. Templates are stored in procedure C-lists 
and can be manipulated with capability operations. There are 
three types of templates: parameter templates, amplification 
templates, and creation templates. 

Parameter templates are used to verify the capability parame­
ters passed to a procedure. The procedure object's C-list con­
tains parameter templates as well as capabilities for procedure­
local objects. When a procedure call occurs, the kernel builds 
the LNS C-list from the procedure object's C-list. The proce­
dure's C-list contains its own capabilities that are copied di­
rectly to the LNS C-list and parameter templates that repre­
sent slots to be filled in with capabilities passed as parameters. 
The parameter template contains a type field and a required 
rights field. When copying a capability parameter to the LNS, 
the kernel verifies that the type matches the template's type 
field and that the rights in the capability are at least as 
privileged as those required by the template. Special templates 
can also be provided that will match any type or rights. 

The procedure C-list can also contain amplification tem­
plates. An amplification template contains a type field and two 
rights fields: required rights and new rights. The type and 
required rights fields of the amplification template are used to 
validate the capability parameter in the same way that a param­
eter template is used. However, once validated, the kernel 
stores the capability in the LNS with the new rights field speci­
fied in the amplification template. These rights can either am­
plify or restrict rights, as specified by the template. 

Amplification templates can only be created by the owner of 
a capability for a type object. In general, only a type object will 
own the amplification templates for its own type. However, it 
is possible for a subsystem to own amplification templates for 
objects of several types. Figure 6-4 illustrates a Hydra proce-
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Figure 6-4: Hydra F)rocedure Call 

dure call that uses both parameter and amplification templates. 
The call sends a message, identified by a message object capa­
bility, to a port identified by a port object capability. The call 
is made to the port type manager that must manipulate the 
representation of the port object to indicate that a message has 
arrived. In this example, the C-list of the procedure object 
contains two inherited capabilities that are copied directly to 
the new LNS. The procedure C-list has an amplification tem­
plate that is merged with the port capability actual parameter. 
The merge operation verifies the type and rights of the capabil­
ity and stores a capability in the LNS with amplified rights. 
The procedure C-list also has a parameter template that is 
merged with the message capability parameter. In this case, 
the merge operation simply verifies the type and access rights 
of that capability and then copies the capability actual parame­
ter into the LNS. 

The third template type, the creation template, is not used in 
the procedure call mechanism, but can be used to create a new 
instance of a specific type. A creation template contains an 
object type and dghts. Using the $CREATE kernel operation, 
an object with the specified type and rights can be created. In 
general, subsystems do not provide creation templates; they 
require that a user call the subsystem in order to create a new 
instance. The subsystem then uses its private creation template 
to create the new instance, which the subsystem initializes ap­
propriately .. The subsystem might then restrict some of the 
rights in the capability returned for the new object and pass 
that restricted capability to the user. 

6.7 Supporting 
Protected Subsystems 
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6.7.2 Typecalls 

A Hydra type manager can be thought of as a collection of 
procedures that has the ability, usually through possession of 
templates, to manipulate the representation of a particular ob­
ject type. A program calls these type management procedures 
using procedure capabilities in the current LNS. 

In fact, the concept of type manager is formalized by the 
Hydra TYPECALL mechanism. A TYPECALL is a call to an 
object's type manager that is made through the capability for 
the object itself. Thus, a procedure capability is not needed for 
a TYPECALL; only a capability for an object is needed. The 
procedure capability is located in the C-list of the object's type 
manager, which can be found indirectly through the object. 

Figure 6-5 shows an example of the TYPECALL mechanism. 
The TYPECALL invokes the second procedure in the type object 
for the specified port object. Two parameters are passed to the 
TYPECALL, the capability for the port object and the capability 
for a message object. The capability for the port object is listed 
twice: once as the object through which the TYPECALL is made 
and once as a parameter to the TYPECALL. 

The TYPE CALL mechanism supports abstraction in several 
ways. First, the owner of an object does not need to possess 
capabilities for its type object or for procedure objects to 
manipulate that object. In effect, a TYPECALL requests that 
the object perform an operation on itself. Second, if all objects 
support a common set of generic operations at identical type 
indices, a user can find information without knowing an ob­
ject's type. For example, if all type objects implement a "tell 
me your type name" operation as the first procedure and "dis­
play yourself" as the second, then a user can apply those opera­
tions equally on all objects. 

6.8 Hydra Object Storage System 

A Hydra object, once created, has a lifetime independent of 
the process that created it. As long as a capability exists for an 
object, that object will be retained by Hydra and made avai~a­
hIe when referenced. Hydra stores most long-lived objects on 
disk when they are not in use and brings them into primary 
memory when a reference is made. Given a capability for an 
object, a user can perform any legitimate operation without 
concern for whether or not the object is currently in primary 
memory. 
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Hydra, thus, provides a uniform single-level object address­
ing environment to its users. Although objects can be stored in 
primary or secondary memory, the location of an object is in­
visible to the Hydra user. The Hydra kernel must, therefore, 
manage the movement of objects between primary and second­
ary storage. The mechanism for storing and locating objects is 
the Hydra Global Symbol Table. 

The Global Symbol Table CGST) contains information 
about every object reachable by the kernel. The GST is divided 
into two parts: the Active GST and the Passive GST. The 
Active GST maintains information about objects stored in pri­
mary memory, while the Passive GST maintains information 
about objects stored in secondary memory. An object is said to 
be active or passive depending on whether it is in primary or 
secondary memory. 

As previously stated, the representation of a Hydra object 
consists of its C-list and data-part. In addition, the kernel con­
structs data structures called the active fixed part and passive 
fixed part that contain state information for active and passive 
objects, respectively. Table 6-4 shows the formats of the two 
fixed parts. As their names imply, the fixed parts have a fixed 
size for easy storage and access. Many object operations can be 
satisfied by reference to the fixed part alone, and it is possible 
for the active fixed part to be in primary memory while the 
representation is still in secondary memory. In this case, the 
object's fixed part is said to be active while the representation 
is passive. 

When a new object is created, Hydra stores its representa-

Passive Fixed Part 
Global Object Name 
Object Flags 
Current Version Disk Address 
Previous Version Disk Address 
Type Name 
Color (for garbage collection) 

Active Fixed Part 
Global Object Name 
Object Flags 
Current Version Disk Address 
Previous Version Disk Address 
Total Reference Count 
Active Reference Count 
Type Object Index 
Checksum of Fixed Part 
State 
C-List Primary Memory Address 
Data-Part Primary Memory Address 
Mutex Semaphore (object lock) 
Time Stamp (of last access) 
Color (for garbage collection) 

Table 6-4: Hydra Active and Passive Fixed Parts 
-----~ 



tion in primary memory and allocates and initializes an active 
fixed part. The kernel stores the object's active fixed part in a 
data structure called the Active GST directory. The Active 
GST directory is organized as an array of 128 headers of linked 
lists, as shown in Figure 6-6. Each linked list contains active 
fixed parts, and the appropriate list for an object's fixed part is 
determined by a hashing function on the object's 64-bit name. 

The divisiop_ of the~~tiv:e_GST_M~JDry joto 128 lists 
serves two purposes. First, it speeds up the GST search, since 
the linked lists can be kept relatively short. Second, it allows 
parallelism in the access of the active fixed parts. Only one 
processor can search a linked list and access a specific active 
fixed part at a time. By dividing the Active GST into 128 lists, 
a lock can be maintained separately for each list, allowing si­
multaneous searches of different lists. 

There are two events that cause a Hydra object to be copied 
to secondary memory. First, passivation can be triggered by a 
kernel process that removes objects from primary memory ac­
cording to their last reference times. This is analogous to swap­
ping in traditional systems. Second, a program can perform an 
explicit UPDATE function, requesting that an object's repre­
sentation be written to disk. In this case, the object remains 
active with the guarantee that the active and passive copies are 
identical. The UPDATE operation is used to ensure consistency 
over system crashes, because any active representation 
will be lost following a crash. UPDATE is used primarily by 
type managers. 

Two versions of each object are kept on secondary stor-
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Figure 6-6: Active Fixed Part Directory 
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age-a current version and a previous version. When an object 
is passivated, its representation is written to secondary storage, 
destroying the older of the two versions. If any failure occurs 
during the write operation, the newer version on disk is left 
intact. Following successful completion of the UPDATE, the 
newly passivated image becomes the current version, with the 
former current version becoming the previous version. 

Passive objects are stored in the Passive GST. A passive 
object is stored as a contiguous array of disk blocks containing 
the passive fixed part, data-part, and C-list. To locate a passive 
object, a search of the Passive GST directory is made. The 
Passive GST directory is stored on a high-speed, fixed-head 
disk and consists of copies of all of the passive fixed parts. The 
passive fixed parts are organized in 256 blocks for the purpose 
of synchronization and parallel search. The global object name 
is used as a key in the search for the correct block. 

Object activation occurs when the kernel fails to locate a 
referenced object in the Active GST. The kernel must then 
search the Passive GST directory. Activation can occur in two 
phases. First, the object's fixed part is activated. The active 
fixed part is constructed from information in the passive fixed 
part. Many operations can be completed with activation of the 
fixed part alone. Then, if the object's representation must be 
activated, the C-list and data-part are read into memory. 

6.9 Capability Representation 

Just as Hydra objects can be active or passive, so Hydra 
capabilities have both active and passive forms. These forms 
are shown in Figure 6-7. Active and passive capabilities differ 
in the format of the object address. An active capability con­
tains the primary memory address of the object's active fixed 
part, while a passive capability contains the object's 64-bit 
name. An object reference using an active capability is obvi­
ously more efficient, as it does not require a GST search. 

An active capability cannot be stored on secondary memory 
because it contains the primary memory address of the active 
fixed part, which can be swapped out. When Hydra writes an 
object to secondary storage, it converts all the capabilities in its 
C-list to passive form. When Hydra activates an object, it 
leaves capabilities in passive form until they are used. When a 
program addresses an object through a passive capability, the 
kernel searches the GST and converts that capability to active 
form. 
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Figure 6-7: Hydra Capability Formats 

Because an active capability contains the primary memory 
address of the active fixed part, an active fixed part cannot be 
removed from memory as long as active capabilities exist for 
the object. For this reason, an active reference count is main­
tained in the active fixed part:. The active reference count indi­
cates the number of physical addresses that exist for the fixed 
part. When this count is decremented to zero, the active fixed 
part (and the object's representation) can be passivated. 

6.10 Reference. Counts and Garbage Collection 

On systems such as Hydra, with long-term object storage, it 
is difficult to know when an object can be deleted. An object 
can have many users since capabilities can be freely passed 
between processes. Users can also delete capabilities, and when 
no capabilities exist for an object, the object should be deleted. 
Objects that are no longer reachable are known as garbage ob­
jects and the general problem of finding them is known as 
garbage collection. 

Reference counts can help in the garbage collection prob­
lem, and Hydra maintains both an active reference count and a 
total reference count in an object's active fixed part. The total 
reference count indicates the total number of capabilities for an 
object, including passive capabilities in the Passive GST. If the 
total and active reference counts in an active fixed part become 
zero, the kernel deletes the object because it can no longer be 
referenced. 

6.10 Reference Counts 
and Garbage 
Collection 
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Reference counts in themselves are insufficient to stop the 
accumulation of garbage objects for several reasons. First, ref­
erence counts cannot catch object reference cycles. For exam­
ple, if objects X and Y have capabilities for each other in their 
C-lists but no other capabilities for X and Y exist, then both 
objects are garbage and should be deleted. However, both ob­
jects will have reference counts of one. Second, because the 
active and passive fixed parts for Hydra objects are not always 
consistent, any total reference count maintained in the passive 
fixed part can be in error following a crash. This inconsistency 
occurs because it is not feasible to modify the passive fixed part 
reference count on every capability copy operation. 

Because of the insufficiency of reference counts, Hydra in­
cludes a parallel garbage collector [Almes 80]. The parallel gar­
bage collector consists of a collection of processes that execute 
concurrently with normal system operation. The garbage col­
lector scans all objects, marking those that are reachable. The 
color field in the active and passive fixed part is provided for 
this purpose. Following the marking of objects, another scan is 
made to locate objects that were not marked-those that 
are unreachable and therefore are garbage. These objects are 
deleted. 

It is important to note that while the garbage collector is 
running, capabilities can be freely copied and deleted. The 
Hydra garbage collector must also cope with the dual residency 
of objects in the Passive and Active GSTs. 

6. 11 Discussion 

Perhaps the best indication of Hydra's success is that much 
of its philosophy now seems obvious. The object model and the 
large single-level object address space have found their way 
into contemporary products. These ideas did not completely 
originate with Hydra, nor was their implementation on Hydra 
totally successful (reflections on the Hydra/C.mmp system by 
its designers can be found in [Wulf 78 and Wulf 81]). How­
ever, the basic philosophy has proven to be a valuable model 
for system design. 

Although previous capability systems provided primitive 
objects, user-defined objects, and capability addressing, Hydra 
is the first to present its users with a uniform model of the 
abstract object as the fundamental system resource. All re­
sources are represented as objects, and objects can be protected 
and passed from domain to domain. Users can create new re-



sources, represented by type objects, and can control instances 6.11 Discussion 

of these resources through type-specific procedures. 
As the designers point out, the system probably went too far 

with the flexibility allowed for object protection [Wulf 81]. For 
example, although direct operations on an object's representa­
tion can be restricted to the object's type manager, the protec­
tion system allows any user with a sufficiently privileged capa­
bility to access the object. To support this generality in a 
controlled fashion, Hydra defines a large set of generic object 
rights. In the usual case, however, only the type manager is 
allowed to access the object, and it must amplify the needed 
rights through an amplification template. In general, it would 
be simpler to res1trict representation access to type managers 
who are implicitly given all rights to their objects' representa­
tions. 

Hydra also attempts to solve some complex protection prob­
lems with special rights bits. A caller can prevent a called pro­
cedure from modifying an object or "leaking" information 
from the object. However, it is not always possible for a proce­
dure to operate correctly without some of the special rights (for 
example, modify rights). Some subsystems may not be able to 
operate in a confined environment. In addition, it is often diffi­
cult for the caller to know what effect the removal of special 
rights will have on a called subroutine, although good docu­
mentation practic:es can help alleviate this problem. 

Many of Hydra's shortcomings are a result of the hardware 
base, induding the small address space and lack of hardware 
capability support in the PDP-lIs. All capability and object 
operations are executed by operating system software, and 
even a type manager must copy data from the representation of 
its objects to local memory for modification. A domain change 
on Hydra, which requires creation of a new local name space 
object, type and rights checking of capabilities, and so forth, 
takes over 35 milliseconds. This severe penalty for a domain 
change forces a programming style that is contrary to that 
which is intended. That is, if domain changes are expensive, 
programmers will tend to use them infrequently and programs 
will not be written to execute in the small constrained protec­
tion domains originally envisioned. 

In general, Hydra's objects are too expensive (in terms of 
space overhead, time for creation, etc.) for their actual usage. 
Measurements of Hydra show that over 98 percent of all ob­
jects are created and destroyed without ever being passivated 
[Almes 80]. Hydra objects are, therefore, relatively short- 123 
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lived. The same measurements show that the median object 
size is 46 bytes for the data-part and 6 capabilities for the C­
list. The GST active fixed part overhead for such an object is 
rather large, as is the cost of each capability. 

An important feature of Hydra is the use of large object 
names-its unique-for-all-time object identifiers. By using a 
64-bit value for an object's name, the kernel avoids searching 
for dangling references when an object is deleted. Although an 
object's name never changes, capabilities are modified when 
moved between primary and secondary storage. The change of 
capability format is simply a performance optimization used to 
reduce the overhead of Hydra's software-implemented capabil­
ity support. An operation on an object's capabilities, such as 
the change from active to passive format, is simplified by the 
fact that all capabilities are stored in a single C-list. 

The Hydra GST is the mechanism for implementing a sin­
gle-level uniform address space. The single-level address space 
greatly simplifies a number of problems for both users and the 
operating system. Most programs do not need to know about 
the existence of secondary storage. For type managers that 
must ensure that an object's representation is preserved on 
secondary memory, Hydra provides the UPDATE operation. 

The Hydra developers succeeded in constructing a large, 
functioning operating system (details of the development can 
be found in [Wulf 75]). In addition, they were able to imple­
ment several useful subsystems outside of the kernel, as in­
tended. These included directory systems, file systems, text 
editors, and command languages. Perhaps the greatest short­
coming of Hydra, however, was that it did not become a sys­
tem of choice among programmers at Carnegie-Mellon. 
Lampson and Sturgis, in their retrospective on CAL-TSS, 
state the common problem of many operating system research 
projects: 

... we failed to realize that a kernel is not the same thing as an 
operating system, and hence drastically underestimated the 
work required to make the system usable by ordinary program­
mers. The developers of Hydra appear to have followed us 
down this garden path [Lampson 76]. 

Even so, a tremendous experience was gained from Hydra 
that has passed to many follow-on systems. The C.mmp hard­
ware was finally dismantled in March 1980; however, still op­
erating at Carnegie-Mellon was a direct descendant of Hydra! 
C.mmp, which is discussed in the next chapter. 



6. 12 For Further Reading 

The Hydra philosophy was first presented in the original 
CACM paper on Hydra [Wulf 74a]. More recently, Wulf, 
Levin, and Harbison have written an excellent book on the 
Hydra system tha.t describes both the kernel and some of its 
subsystems [Wulf 81]. The book also includes performance 
measurements of Hydra and the C.mmp hardware. The paper 
by Wulf and Harbison is a retrospective on the Hydra/C.mmp 
experience [Wulf 78]. 

Three papers on Hydra appeared in the Proceedings of the 
5th ACM Symposium on Operating Systems Principles in 1975. 
These well-known papers describe the separation of policy and 
mechanism in Hydra [Levin 75], the Hydra protection system 
[Cohen 75], and the Hydra software development effort [Wulf 
75]. 

Almes' thesis describes the Hydra garbage collector and also 
presents measurements of the GST mechanism showing object 
size and lifetime distributions [Almes 80]. The paper by Almes 
and Robertson describes the construction of one of several 
Hydra file systems [Almes 78]. Low-level details of the Hydra 
kernel and its operations are documented in the Hydra Kernel 
Reference Manual [Cohen 76]. 

6.12 For Further 
Reading 
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The STAROS System 

7.1 Overview of STAROS 

Carnegie-Mellon's Hydra/C.mmp project examined the use 
of multiprocessors in the solution of artificial intelligence prob­
lems. C.mmp supported up to 16 processors and memories 
connected through a crossbar switch. By 1975, however, it was 
clear that multiprocessors involving hundreds of microproces­
sors would be possible. The C.mmp crossbar scheme, which 
increases geometrical1y in complexity with the number of proc­
essing elements, was infeasible for such systems. Therefore, 
the CM* project: [Jones 80a], started in 1975 at Carnegie-Mel­
lon, took a different approach to interconnection-one that 
grows linearly in complexity with the number of processing 
elements. By 1979, the CM* configuration contained 50 opera­
tional processors. 

CM * consists of a large collection of computer modules, in 
which each computer module is a DEC LSI-ll processor with 
its bus, local memory, and peripherals. A computer module 
cluster, shown in Figure 7-1, is formed by a set of computer 
modules communicating through a map bus. Memory requests 
generated in each computer module are routed by a switch, 
either to local memory or to the map bus. The CM* system 
consists of a set of clusters connected by an intercluster bus. A 
computer module can issue addresses for local, intracluster, or 
inter cluster memories. 

The connection between clusters is managed by a unit called 
the Kmap. The Kmap is a horizontally microprogrammed 
processor that, in addition to supporting intercluster refer-
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ences, is used to execute operating system functions. Perform­
ance-critical parts of the operating system, such as capability 
operations, are therefore implemented in Kmap microcode. 

Two operating systems were constructed to support distrib­
uted software for CM*: STAROS and Medusa [Ousterhout 80a, 
Ousterhout 80b]. STAROS, the subject of this chapter, is an 
object-based operating system that supports the execution of 
task forces [Jones 78b]. A task force is a collection of cooperat­
ing processes executing concurrently to perform a single job. 
Task forces are distinguished from most cooperating process 
schemes by their dynamic nature. The structure of a task force 
corresponds to the available resources rather than to the func­
tional requirements and can change with dynamic resource 
changes. 

In general, each of the processes within a task force is small 
if measured by its resource requirements. A task force process 
executes within a small domain and interacts with other task 
force processes for many of its needs. STAROS objects reflect 
the constrained needs of this environment, and the structure is 
much simpler than that of Hydra. The following sections take 
a brief look at object structure and addressing in the STAROS 
operating system. 



7.2 STAROS Object Support 

All information in the STAROS system is contained within 
objects. Each object has a type, and the type defines the opera­
tions that can be performed on the object:. As with Hydra, 
objects are addressed by capabilities that name the object and 
specify the permitted rights to the object. 

A STAROS object contains two parts, a data portion and a 
capability portion (or C-list). The portions are stored in a single 
contiguous memory segment. Objects cannot grow dynami­
cally and therefore retain the size with which they were cre­
ated. The data portion is located at the low-address end of the 
segment, and the capability portion is located at the high­
address end. A process possessing a suitably privileged object 
capability can directly manipulate the data portion of the ob­
ject with processor data instructions. 

A STAROS process can directly address 64K bytes of mem­
ory (local or remote) at any time. This limit is dictated by the 
I6-bit PDP-II addressing architecture. STAROS partitions 
this address space into 16 4K-byte windows. Each STAROS 
object has a maximum size of 4K bytes in its data portion and 
256 slots in its capability portion. A suitably privileged process 
can request that an object's data portion be mapped into one of 
its windows, allowing direct instruction access. 

The STAROS kernel defines a small set of object types, as 
listed in Table 7-1. These are known as representation types, and 

BASIC OBJECT Segment with data portion and C-list. 
C-LIST Basic object with capability portion only. 
PROCESS OBJECT Schedulable entity that contains the root 

C-list for addressing. 
STACK OBJECT An object supporting PUSH and POP stack 

operations. 
DEQUE OBJECT A two-ended stack, supporting PUSH and 

POP at head and tail. 
DIRECTORY OBJECT 

An object containing descriptors of physical 
object information. 

DATA MAILBOX An object for sending and receiving data 
messages. 

CAPABILITY MAILBOX 
An object for sending and receiving capabil­
i ty messages. 

DEVICE OBJECT The representation of a physical I/O device. 

Table 7-1: STAROS Representation Types 

7.2 STAROS Object 
Support 
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instances of these types are known as representation objects. 
Operations on representation objects are supported by calls to 
STAROS. All other objects are implemented by user-defined 
type managers that construct other abstractions out of the basic 
representation objects. These user-defined types are known as 
abstract types and their instances are called abstract objects. 
Thus, an abstract object has an abstract type, which indicates 
the operations that can be performed on the object, and a rep­
resentation type, which indicates the kernel type from which 
that object is constructed. 

7.3 STAROS Capabilities 

All references to STAROS objects, representation or ab­
stract, are made through capabilities. A STAROS capability is 
32-bits long and contains a 3-bit type field, a 13-bit rights field, 
and a 16-bit data word field, as illustrated in Figure 7-2. The 
interpretation of the data word depends on the capability type. 
STAROS supports several capability types, and the capability 
type field specifies one of the types listed in Table 7-2. The 
data capability is used to transmit small amounts (16 bits) of 
information efficiently without requiring the creation of a basic 
object and its overhead. The representation and abstract capa­
bilities contain unique 16-bit names in their data words. A type 
manager token capability contains a unique 16-bit type identi­
fier in its data word, allowing the possessor to operate on ab­
stract objects of that type. 

The capability rights field consists of several type-depend­
ent and type-independent fields, as illustrated in Figure 7-2. 
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Figure 7-2: STAROS Capability and Capability Rights Word 
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REPRESENTATION CAPABILITY 

Names one of the kernel-defined representa­
tion objects and contains kernel-interpreted 
rights to the object. 

ABSTRACT CAPABILITY 

TOKEN CAP ABILITY 

Names an abstract object and contains 
type-specific rights. 

Identifies the owner as the possessor of a 
special privilege (for example, as the garbage 
collection process or as the type manager for 
a specific type). 

NULL CAPABILITY Marks an empty slot in an object's capability 
part. 

DATA CAPABILITY Contains a 16-bit data value in its data word. 

Table 7-2: STAROS Capability Types 

Bits 0-7 of the rights word contain rights to the object ad­
dressed by the capability. For an abstract capability, this 
8-bit field is defined and interpreted by the type manager. The 
rights shown in Figure 7-2 are for a representation capability 
for a basic object. Basic object rights permit reading and writ­
ing of the data part, loading and storing of capabilities in the 
C-list, and restriction of capability rights in the C-list of the 
object to which the capability points. 

The copy and restrict rights apply to the capability itself and 
indicate whether or not the capability can be copied or if rights 
in it can be restricted. A capability without restrict rights can 
never be deleted, so new copies of capabilities are always given 
restrict rights. Finally, the modify and destroy rights are generic 
object rights, and specify whether the addressed object can be 
destroyed or modified in any way. Modify rights operate as in 
Hydra-modification of an object requires modify rights in 
each capability along the path to the target object. 

7.4 Object Addressing 

Each representation object or abstract object is addressed 
through a capability that contains its 16-bit unique name. At 
any time there can be many capabilities for an object, but there 
is only one 16-byte descriptor for each object. The descriptor, 
which corresponds to a Hydra active fixed part, is located on 
the cluster on which the object is stored. The format of an 
object descriptor is shown in Figure 7-3. 

The garbage collection process uses the color field to indi-
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Figure 7-3: STAROS Object Descriptor Format 

cate the garbage collection status of the object (for example, 
whether a capability for the object has been passed outside the 
local cluster). The capability size and data limit fields specify 
the size of the capability portion (in slots) and data portion (in 
bytes) of the object. Since the object is stored contiguously, 
these fields determine the total size of the object and the posi­
tion of the dividing line between data and capability portions. 

The object's primary memory location is formed by con­
catenating the base physical address field with the 2-bit HI 
field. This 18-bit address is local to the cluster processor speci­
fied by the computer module number (CM). An object must be 
stored on the same cluster as its descriptor, although capabili­
ties for an object can be passed outside the cluster. Two type 
fields contain the abstract type of the object and the represen­
tation type used to implement it. Finally, the chain fields are 
used to form linked lists of descriptors, and Rand D are refer­
ence and dirty bits, respectively. 

Descriptors are stored in directories. Each CM* cluster can 
have up to 32 directories, each containing up to 256 descrip­
tors. A single root directory in each cluster contains descriptors 
for itself and the 31 subdirectories. STAROS 16-bit object 
names, contained in both abstract and representation capabili­
ties, directly locate an object descriptor in one of these direc­
tories. A unique name specifies a 3-bit cluster number, a 5-bit 
directory number, and an 8-bit directory index, as shown in 
Figure 7-4. 
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Figure 7-4: STAROS Directory Structure 

7.5 STAROS Abstract Type Management 

As previously stated, a type manager creates each new ab­
stract object from one representation object (usually a basic 
object). The type manager returns an abstract capability for a 
new abstract object to a caller, but only the type manager can 
operate directly on the representation object implementing the 
abstraction. The possessor of an abstract capability can only 
use it as a parameter in a call to the type manager to request an 
object operation. 

The key to a type manager's special ability is its type token, 
one of the capabilities previously described. Every type man­
ager possesses a type token whose data word contains a unique 
identifier for its type. The type token is nevt!r given out except 
to procedures that are part of the type manager. The type man­
ager uses the type token in the following way: 

• When a process wishes to create a new abstract object, it calls 
the appropriate type manager. The type manager, through a 
call to STAROS, creates a new representation object, for 
which it receives a fully-privileged representation capability. 
The type manager then uses this capability to initialize the 
object as needed. 

• After the object has been initialized, the type manager exe­
cutes an ASSOCIATE TYPE instruction, specifying the object's 
representation capability and the manager's type token 
as parameters. This instruction stores the abstract type field 
from the token into the object's descriptor. The ASSOCIATE 

7.5 STAROS Abstract 
Type Management 

133 



The STAROS System 

134 

TYPE instruction thus creates an abstract object from a repre­
sentation object. 

• Next, the type manager executes a DEAMPLIFY instruction 
to transform its fully-privileged representation capability into 
an abstract capability. The DEAMPLIFY instruction simply 
changes the type field in the capability from "representation" 
to "abstract." 

• The type manager then returns the abstract capability to the 
calier. This abstract capability identifies the holder as having 
authority to request operations on that object. It cannot be 
used to access the encapsulated representation object directly. 

• To perform an operation on the object, the holder of the ab­
stract capability calls a type manager procedure, passing the 
abstract capability as a parameter. The type manager then 
executes an AMPLIFY instruction, specifying as operands 
the abstract capability and the type manager's private type 
token. If the type token's type matches the object's abstract 
type, the AMPLIFY instruction turns the abstract capability 
back into a fully-privileged representation capability, allow­
ing the type manager to access the representation object. 

7.6 Discussion 

It is interesting to note the ways in which STAROS differs 
from the Hydra object model. STAROS limits direct access of 
an object's representation to the type manager. Two basic 
types of capabilities are provided: representation capabilities 
used to access kernel types, and abstract capabilities passed to 
users of type manager implemented objects. By turning a rep­
resentation capability into an abstract capability, the type man­
ager seals the capability with its special type token. Although 
the abstract capability has the object ID sealed within it, it 
cannot be used to access the object's representation. The type 
token is the key used later to unseal the capability, returning a 
representation capability that can manipulate the object. In 
this way, the type manager always receives full privilege to 
access any of the objects whose representation it controls. 

Type tokens are a simplification of the Hydra amplification 
template. Hydra permitted more precise control of object ac­
cess; an amplification template could be used to amplify only 
those rights needed by the type management procedure. In 
contrast, the STAROS type token mechanism always gives the 
type manager complete access to one of its objects. 

The type token is thus a special type of capability used to 
seal or unseal another capability. Tokens are also used to iden­
tify specially privileged processes. Because tokens are capabili­
ties, they are stored in C-lists and therefore cannot be fabri-
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cated by users. The data capability provides an efficient means Reading 

for transmitting or sharing one word of information without 
creating a single-word object. Data capabilities also allow small 
amounts of data to be sent to a capability mailbox. 

Another interesting feature of STAROS is its return to a 
small object address space. An object's unique ID, 16 bits in 
length, can be used to directly locate the descriptor for an ob­
ject, thus simplifying the manipulation of capabilities and ob­
jects. The structure of the ID implies that the system can sup­
port a maximum of 8K objects per cluster on each of 8 clusters. 
The ID leads directly to a particular cluster. Of course, this 
scheme makes it difficult to move an object from one cluster to 
another because the address is not location independent. In­
deed, objects are never relocated in this way. 

Finally, the implementation of operating system functions 
in Kmap microcode had significant performance impact. For 
example, a standard capability operation on STAROS takes 100 
microseconds, while a similar operation on Hydra takes 1 milli­
second. The ability to access an object's data. portion directly is 
more significant. Once an object is mapped through an ad­
dressing window (at a cost of about 70 microseconds), data 
words can be accessed directly in several microseconds. The 
Hydra overhead for copying data from and to the object data­
part is a millisecond. 

7.7 For Further Reading 

A more detailed description of STAROS is provided in 
[Gehringer 81], and a description of CM* switching structure 
and addressing can be found in [Swan 78]. The STAROS task 
force concept is presented in [Jones 78b]. Performance meas­
urements for STAROS (in comparison with Medusa, a second 
operating system developed on CM *) can be found in [Jones 
80a], which also discusses CM* and some of its applications. 
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8.1 Introduction 

IBM's capability-based System/38 [Berstis 80a, Houdek 81, 
IBM 8a, IBM 82b], announced in 1978 and delivered in 1980, 
is an outgrowth of work that began in the late sixties and early 
seventies on IBM's future system (FS) project. Designers at 
the IBM Development Laboratory in Rochester, Minnesota 
incorporated ideas from FS, modified by their needs, to pro­
duce a system for the commercial marketplace. It is interesting 
that such an advanced, object-based architecture has been ap­
plied to a very traditional product space. Initially, only the 
COBOL and RPG III languages were provided. The system, 
which includes the CPF (Control Program Facility) operating 
system, is intended to support transaction processing and data­
base applications constructed in commercial languages. 

A major goal of the System/38 design is to maintain pro­
grammer independence from the system implementation 
[Dahlby 80]; IBM wished to retain maximum flexibility to 
modify System/38's implementation for future technologies 
while supporting previously written System/38 programs. The 
designers also wished to support a high level of integrity and 
security at the machine interface and to support commonly 
executed user and system functions efficiently, such as data­
base searches and memory management [[Hoffman 80]. To 
meet these goals, IBM chose a layered machine structure with 
a high-level programming interface. The layers of this design 
are shown in Figure 8-1. 

At the lowest level is a hardware machine that directly exe-
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Figure 8-1: System/38 Implementation Layers 

cutes 32-bit horizontal microcode. This horizontal microcode 
implements a more-or-Iess standard 32-bit register machine 
that executes vertical microcode. 1 The interface above the ver­
tical microcode, called the high-level architecture interface in 
Figure 8-1, is the level described in this chapter; it supports 
the user-visible (or CPF-visible) System/38. 

This high-level architecture interface is supported across 
implementations, while the structure of the underlying layers 
can change. For example, performance-critical functions, such 
as interprocess communication and memory allocation, are 
handled by the horizontal microcode. The system object and 
capability support is handled in part by both microcode layers. 
Different functions can be moved between microcode levels or 
into hardware in future versions, as performance experience is 
gained. In fact, this movement has already occurred on newer 
Systeml38 releases and models. 

The CPF operating system and the vertical microcode are 
implemented in PL/S, a PL/I-like system programming lan­
guage. There are approximately 900,000 lines of high-level 
PL/S code and an additional 400,000 lines of microcode sup­
port needed to implement CPF and its program products. The 
Systeml38 hardware includes a non-removable disk that holds 
this large store of microcode. 

The System/38's high-level architecture interface is actually 
an intermediate language produced by all System/38 compilers. 
Before a program is executed, CPF translates this intermediate 
language into vertical microcode and calls to vertical microcode 

lAlthough IBM calls this layer vertical microcode, it would generally not be 
considered microcode because it resembles a traditional IBM 370-like 32-bit 
instruction set and is programmed in a high-level language. 



procedures. That is, the high-level interface is not directly exe- 8.2 System Objects 

cuted. This translation process is described later. 
IBM terminology is used throughout this chapter for com­

patibility with System/38 publications; it differs somewhat 
from that used in previous chapters. In particular, IBM uses 
the following terms: space for segment, pointer for capability, 
authority for rights, and context for directory. These synonY1:lls 
will be presented again as each of the terms is introduced. 

8.2 System Ob:iects 

Systeml38 instructions operate on two types of entities: 
scalar data elements and system objects. The scalar types are 16-
and 32-bit signed binary, zoned and packed decimal, and char­
acter strings. The machine supports 14 types of system objects, 
described in Table 8-1. A set of type-specific instructions is 
provided for each system type. 

SPACE 

PROGRAM 

USER PROFILE 

CONTEXT 

QUEUE 

DATA SPACE 

DATA SPACE INDEX 

byte-addressable storage segment 
procedure instructions and associated data 
object containing information about user's 
resource limits and authority to access any 
system objects 
directory of object names and capabilities 
message queue for interprocess communica­
tion 
collection of identically-structured records 

object used to provide logical ordering for 
data space entries 

CURSOR direct interface to entries in a data space, or 
indirect interface through a data space index 

INDEX accesses data sequences based on key values 
PROCESS CONTROL SPACE 

object containing state information for a 
process 

ACCESS GROUP set of objects grouped together for paging 
performance reasons 

LOGICAL UNIT DESCRIPTION 

object describing an 110 device 
CONTROLLER DESCRIPTION 

object describing the attributes of a device 
controller 

NETWORK DESCRIPTION 

object describing a communications port 

Table 8-1: System/38 System Object Types 139 
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Each system object consists of two parts: a functional por­
tion and an optional space portion, as shown in Figure 8-2. 
The functional portion of an object is a segment containing ob­
ject state (its representation); the data in the functional portion 
can be examined and modified only by microcode as a result of 
type-specific instructions. Thus, the functional portion is said 
to be encapsulated because it is not accessible to programs 
[Pinnow 80]. Optionally, a space portion can be associated with 
an object (IBM uses the word space to refer to a storage seg­
ment). The space portion is an attached segment for storing 
scalars and pointers that can be directly manipulated by user 
programs. 

Every object in the system has several associated attributes. 
First is a type that identifies it as one of the 14 system object 
types listed in Table 8-1. (Objects can also have subtypes for 
further software classification.) Second is a symbolic text name 
chosen by the user to refer to the object. Last is a unique identi­
fier (ID) that uniquely specifies an object for the life of the 
system. Object identifiers are never reused. When an object is 
created, the object ID is assigned by the system, while the text 
name and type are specified by the programmer. 

Although the contents and format of the encapsulated data 
in an object are not programmer accessible, programmers must 
be able to specify initial object values or examine an object's 
state. The Systeml38 instruction set uses templates to convey 
initial information and communicate encapsulated data. A 
template is simply a data structure with defined fields used to 
transmit information at the instruction level. For example, the 
CREATE QUEUE instruction needs to specify some information 
about the maximum number of messages, the size of messages, 
the queueing discipline, and so on. This information is 

Figure 8-2: IBM System/38 System Object 



conveyed by creating a template in a space and specifying a 8.3 Object Addressing 

capability to that space as a parameter to the instruction. 
Later, an instruction can be executed to produce a template 
showing information about the queue. Although the architec-
ture fixes the format of the template used to communicate in-
formation at the high-level interface, it does not dictate how 
that information is maintained once it is encapsulated within 
the object. 

The only object not containing a functional part is a space 
object. A space object is a contiguous segment and is the only 
object that can be manipulated at the byte level by scalar 
instructions. 

A system object, then, is an instance of an abstract data 
type. System/38 instructions exist to create, manipulate, exam­
ine, and delete each of the system object types. The machine 
provides an interface that hides the implementation of an ob­
ject from the user. An object's state is stored in one or more 
segments; its attributes include a type that indicates what oper­
ations are allowed and an identifier that: uniquely specifies the 
object. A base segment for each object contains pointers to any 
other segments composing the object, as well as type and ID 
information. 

B.3 Object Addressing 

Before examining object addressing in detail, it is necessary 
to describe memory management and segment addressing on 
the Systeml38. Object addressing, using capabilities, is based 
on lower-level segment addressing mechanisms. 

8.3.1 Virtual .Mr emory 

The IBM System/38 architecture supports a flat, single­
level, 64-bit virtual address space. To the user at the high-level 
interface (either the operating system or application program­
mer), all addressable objects and segments are in directly ac­
cessible memory; there is no concept of secondary storage. The 
Systeml38 microcode is responsible for moving segments be­
tween primary and secondary storage to create this virtual 
memory environment. 

The structure of a 64-bit virtual address is shown in Figure 
8-3. The System/38 segment size is 64K bytes. Each segment is 
divided into SI2·-byte pages. The low-order 16 bits of the ad- 141 
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Figure 8-3: System/38 Virtual Address 

dress thus provide the page number and byte offset for the 
pages of a segment. For larger objects, up to 256 segments can 
be grouped together into segment groups. The group ID field 
specifies which 64K-byte segment is being addressed within a 
16M-byte segment group. The next 24 bits of the address pro­
vide a unique segment ID for the segment group. 

The System/38 hardware only supports 48-bit physical ad­
dresses composed of these fields. However, when an object is 
created, the microcode extends the address to 64 bits by adding 
an additional 16-bit field. 

The full 64-bit address is stored in a special header with the 
segment. When a 64-bit address is used to access a segment, 
the upper 16 bits of the address are compared with the upper 
16 bits of address in the segment's header. If a mismatch oc­
curs, the addressed object has been destroyed and the refer­
ence is not allowed. At anyone time, then, there can only be 
224 or 16 million segment groups in existence. 

Because the address space is so large, particularly with the 
16-bit extension to the segment ID field, segment IDs are 
never reused. The system assigns a new segment ID at creation 
that is unique for the life of the system. If the object is deleted, 
references to the segment ID are not allowed. The system need 
not search for dangling references when an object is deleted. 
The segment ID, therefore, provides a mechanism for deter­
mining the unique ID for system objects. System objects are 
named with the unique ID of the first segment containing the 
functional portion of the object. The unique ID is the upper 
six bytes of the virtual address. 

8.3 .2 Pointers 

As in other capability systems, objects as well as scalar data 
elements are addressed through capabilities. System/38 capa­
bilities are known as pointers. There are four types of pointers 
in the System/38: 



• system pointers address the 14 system object types (listed in 
Table 8-1), 

• space pointers address a specific byte within a space object 
(segment), 

• data pointers address a specific byte within a space and also 
contain attribute information describing the type of element 
(e.g., character or decimal), and 

• instruction pointers address branch targets within programs. 

Each Systeml38 pointer is 16 bytes long. In order to access an 
object or an element within a segment, a program must specify 
a pointer that addresses the object or segment element. Point­
ers can contain different information at various times, includ­
ing symbolic text names, authorization information (access 
rights), the object type, and the unique ID for system pointers 
or virtual address for data and space pointers. The information 
within a pointer can be modified, for example, from text name 
to unique ID, to allow for late binding of the pointer to the 
object. 

Unlike the systems previously examined, which use C-lists 
for the storage of capabilities, Systeml38 pointers can be freely 
mixed in segmen1ts along with scalar data. To allow storing of 
capabilities with data in the same segment while still maintain­
ing capability integrity, the System/38 implements a memory 
tagging scheme. Memory is byte addressable and words are 
32 bits long. However, physical words of primary memory are 
actually 40 bits wide. Invisible to the programmer are a I-bit 
tag field and a 7··bit error correcting code. Pointers must be 
aligned on I6-byte boundaries. When a pointer is stored in a 
segment by a valid pointer instruction, the hardware sets the 
associated tag bits. for the four consecutive 32-bit words used to 
hold the pointer. Any instruction that requires a pointer oper­
and checks that the pointer is aligned and that the four tag bits 
are set before using the element for addressing. Program data 
instructjons can freely examine pointers. However, if a pro­
gram instruction modifies any data in a pointer, the microcode 
turns "off the tag bit in the associated word or words, invali­
dating the pointer. 

Table 8-2 lists some of the instructions that operate on Sys­
teml38 pointers. Note that a space object (a memory segment) 
is a system object that is addressed by a system pointer. A space 
pointer, on the other hand, is a capability that addresses a 
particular byte in a space object. 

8.3 Object Addressing 
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ADD SPACE POINTER 

adds a signed offset to the byte address in a 
space pointer 

COMPARE POINTER FOR ADDRESSABILITY 

compares two pointers to see if they address 
the same object, the same space, or the same 
space element 

RESOLVE POINTER searches a directory (see Section 8.3.3) for a 
named object and returns a pointer for that 
object 

SET DATA POINTER 

returns a data pointer for an element in a 
space 

SET SPACE POINTER 

returns a space pointer for an element in a 
space 

SET SPACE POINTER FROM POINTER 

if the source is a space or data pointer, 
creates a space pointer for the specified byte; 
or if the source is a system pointer, returns a 
space pointer for the associated space 

SET SYSTEM POINTER FROM POINTER 

if the source is a space or data pointer, re­
turns a pointer for the system object con­
taining the associated space; if the source is a 
system pointer, returns a system pointer for 
that same object 

Table 8-2: Systeml38 Pointer Instructions 

8.3.3 Contexts 

Pointers are used to address objects; however, users refer to 
objects by symbolic text names. System objects called contexts 
implement directories for storing symbolic object names and 
pointers. When a new object is created, its symbolic name and 
an associated pointer are stored in a specified context. Table 
8-3 lists the context instructions supported by the Systeml38. 

The symbolic names stored in contexts are not necessarily 
unique, and a user can possess several contexts containing the 
same name but referring to different objects. This feature al­
lows for testing and logical object substitution. A program that 
refers to an object by name can receive different objects de­
pending on what context is used for name resolution. When a 
reference is made to a pointer containing an object name, the 
system examines the user's Name Resolution List CNRL). The 
NRL contains pointers to user contexts in the order that they 
should be searched. By changing the context ordering or ma­
nipulating entries, the user can change the objects on which 
the program operates. 



CREATE CONTEXT 

DESTROY CONTEXT 

creates a new context object and returns a 
system pointer to address it 

deletes a context object 
MATERIALIZE CONTEXT 

returns name and pointer for one or more 
objects addressed by a context 

RENAME OBJECT changes the symbolic name for an object in a 
context 

Table 8-3: System/38 Context Instructions 

8.3.4 Physical }lddress Mapping 

Because of the large size of a System/38 virtual address, 
standard address translation schemes involving indexing of 
segment/page tables with the segment/page number address 
field cannot be used. Instead, the Systeml38 hardware uses 
hashing with linked list collision resolution to find the primary 
memory address for a specified virtual address. 

The basic units of physical and virtual storage are 512-byte 
pages. A translation scheme is used to locate a page in primary 
memory. The upper 39 bits of a 48-bit virtual address, encom­
passing the unique segment ID, specify a unique virtual page 
address for the page. A hashing function is applied to these bits 
to obtain an index into a data structure called the Hash Index 
Table (HIT), shown in Figure 8-4. The hashing function is an 
EXCLUSIVE-OR of low-order bits from the segment ID and 
group ID fields, and reverse-order bits from the page number 
field. This function provides uniform mapping from the sparse 
address space to the HIT [Houdek 80]. 

The HIT entry contains an index of an entry in the Page 
Directory Table (PDT). The PDT contains one entry for each 
page of primary memory. Each entry contaill1s the virtual ad­
dress of a corresponding primary memory page. That is, the 
index into the PDT is the page frame number for the virtual 
address described in the entry. Each entry also contains a link. 
The hardware checks the virtual address at the first entry 
pointed to by the HIT and follows the linked list until a virtual 
address match is found or the list ends. If a match is found, the 
index of that entry is used as the page frame number in the 
primary memory address. If no match is found, the page is not 

8.3 Object Addressing 
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in primary memory and the hardware must load the page from 
secondary storage. 

The performance of this search depends on the uniformity 
of the hashing function and the length of the lists in the Page 
Directory Table. In order to shorten the list lengths, the Hash 
Index Table is constructed to be twice the size of the Page 
Directory Table. 

Two optimizations are used to avoid this two-level table 
search on every reference. First, the hardware contains a two­
way associative translation buffer to cache recent address trans­
lations (the buffer size is different for different System/38 mod­
els, typically 2 x 64 or 2 x 128 entries). To check the translation 
buffer, the virtual page field is hashed to an offset that selects 
one entry in each half of the buffer. The two selected entries, 
which contain a virtual page address and translated primary 
memory page frame number, are checked for a match. If the 
virtual address matches, the page frame number is used to 
construct the primary memory address. If no match occurs, 



8.4 Profiles and 
the table search proceeds, eventually replacing one of the se- Authority 
lected translation buffer entries with its data, based on a least 
recently used bit. 

The second optimization is the use of resolved address regis­
ters in the hardware. These registers are used in the CPU to 
hold virtual page, physical page, and byte offset information 
while a page is being processed. As long as references are made 
to the addressed page (e.g., during the sequential search of 
elements of an array), the hardware need not search the trans­
lation buffer for consecutive accesses. 

8.4 Profiles and Authority 

The System/38 hardware provides a mechanism for ensur­
ing privacy and separation of data and for sharing information 
between users. The basic unit of computation, from which 
protection stems, is the process. Each user process is defined by 
a Process Control Space object that contains its state. When a 
user logs onto the system, a new process is created; a user pro­
file object is associated with that process based on the user's 
name. The user profile contains: 

• the user's name, 
• the user's password, 
• any special authorization or privileges the user possesses, 
• the maximum priority, 
• the maximum storage usage, 
• an initial program to run upon log-in (if any), 
• a list of objects that the user owns, and 
• a list of non-owned objects that the user is authorized to ac­

cess, and the permitted authorities. 

All authority to perform operations on objects is rooted in 
the user profile. When an object is created, it is created with an 
attribute stating whether the object is permanent or tempo­
rary. The profile associated with the process issuing the 
CREATE operation on a permanent object becomes the owner 
of the object. An owner has all rights to the object and can 
perform any operations, including deletion. Temporary objects 
receive no protection and have no owner. They are destroyed 
when the system is booted. 

The owner of an object can grant various types of access to 
other user profiles in the system. There are a number of au­
thorities, or access rights, that a process can have with respect 
to an object. The authorities define what object operations the 147 
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process can perform. The authorities also define what opera­
tions can be performed on pointers for the object. Object au­
thorities are divided into three categories: 

• object control authority gives the possessor control of the ob­
ject's existence (for example, the right to delete or transfer 
ownership), 

• object management authority permits the holder to change 
addressability (for example, to rename the object or grant 
authority to other profiles), and 

• operational management authority includes basic access rights 
to the contents of the object, such as retrieve, insert, delete, 
and update entry privilege. 

The authority information for each object is thus profile-based. 
Each user has a profile that indicates what objects are owned 
and what access is permitted to other objects. If a user wishes 
to allow access for an owned object to another user, the owner 
grants authority for the object to the sharer's profile. To exe­
cute a GRANT AUTHORITY instruction, a user must own an 
object or have object management rights. A user cannot grant 
an authority that the user does not possess. 

Table 8-4 lists some of the profile/authority management 
instructions supported by the Systeml38. These instructions 
allow a properly authorized user to grant access privileges to 
other users, to examine what objects are authorized to him or 
her, and to see what authorizations have been given to other 
users for owned objects. 

In addition to specific object authority granted to specific 
profiles, each object can have an associated public authorization. 
The object's owner grants public authority with the GRANT 

AUTHORITY instruction by omitting the profile parameter. 
The public authority is stored in the object's header and allows 
any user to access the object in the permitted modes. When an 
attempt is made to access an object, the public authority is 
checked first. If the access is not permitted by the object's 
public authority, the user's profile is then examined. 

8.4.1 Authority/Pointer Resolution 

Thus far, the System/38 protection mechanism has been 
described from the perspective of the profile object. The pro­
file provides a standard Access Control List mechanism. The 
owner of an object can explicitly permit other profiles to have 
access to that object and can later revoke that access. 



CREATE USER PROFILE 

builds a new user profile (this operation is 
privileged) 

DESTROY USER PROFILE 

GRANT AUTHORITY 

deletes a profile 

grants specified authorities for an object to a 
specified user profile 

MATERIALIZE AUTHORIZED OBJECTS 

returns list of all owned objects or author­
ized objects 

MATERIALIZE AUTHORIZED USERS 

returns a list of owning or authorized users 
for a specified object 

RETRACT AUTHORITY 

revokes or modifies authority for an object 
from a specified user profile 

TEST AUTHORITY tests if specified authorities are granted to 
the current process for a specified object 

TRANSFER OWNERSHIP 

transfers ownership of an object to another 
profile 

Table 8-4: Systeml38 Authority Management Instructions 
-------

The ability to revoke object access is an important part of 
the Systeml38 design; this feature has not been provided in any 
of the previously examined systems. Revocation is, in fact, a 
difficult problem in capability systems and is generally expen­
sive to implement in terms of addressing overhead. The IBM 
System/38 design allows an object's owner to decide whether 
revocation is needled for the object. The Systeml38 provides 
two pointer formats: one for which access can be revoked and 
another for which access cannot be revoked. An object's owner 
can decide which type of pointer to use for each object in each 
instance depending on the relative importance of revocation 
and addressing efficiency. 

In order to access an object in the Systeml38 a process must 
possess a pointer for that object. Pointers can be stored in two 
formats: unauthorized and authorized. An unauthorized pointer 
contains an object's unique identifier but does not contain au­
thorizations (i.e., access rights) to the object, When an unau­
thorized pointer is used to access an object, the hardware 
checks the profile of the executing process to verify that the 
requested operation is permitted. Without this check, revoca-

8.4 Profiles and 
Authority 
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tion of authority would be impossible. An unauthorized 
pointer, then, cannot be used in the way that traditional capa­
bilities can be used. Additional overhead is added to pointer 
usage because of the profile check. 

In cases where revocation is not required or higher perform­
ance is needed, access rights can be stored in a pointer, creat­
ing an authorized pointer. An authorized pointer acts as a capa­
bility, and reference to an object with an authorized pointer 
does not require a profile lookup. The RESOLVE SYSTEM 

POINTER instruction is used to create authorized pointers. 
An authorized pointer can only be created by a user whose 
profile has object management authority for the object; the 
created pointer cannot have rights not available to the creating 
profile. Once constructed, an authorized pointer maintains 
authority to access an object for the life of that object. The 
pointer can be stored and passed to other processes. Because 
the profile check is avoided with authorized pointer usage, au­
thority cannot be revoked later. 

8.5 Programs/Procedures 

IBM uses the term program to refer to what is typically 
called a procedure or subroutine. A System/38 program is an 
executable system object. A program object is created by a 
CREATE PROGRAM instruction, which specifies a template con­
taining System/38 instructions and associated data structures. 
The CREATE PROGRAM instruction returns a system pointer al­
lowing the program to be called. 

As noted previously, the System/38 source language (i.e., 
the high-level architecture interface shown in Figure 8-1) is 
really an intermediate language produced by compilers. The 
effect of the CREATE PROGRAM instruction is to compile 
this intermediate language source into microcode that can be 
executed on the next lowest "level" of the machine. Source 
instructions, depending on their complexity, either compile 
directly into System/38 vertical micro-instructions or into 
micro-procedure calls. The compiled program is thus encapsu­
lated in the program object, and the form of the micro-machine 
is hidden by the CREATE PROGRAM instruction. Once en­
capsulated, the format of a program object cannot be exam­
ined. 

Thus, the Systeml38 high-level architecture is never directly 
executed. It is a specification for a language that all System/38 
implementations support; however, that language is translated 
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into a proprietary vertical micro-language before execution. Programs/Procedures 
The format of the encapsulated program in this micro-lan-
guage cannot b{~ examined and can be different on different 
Systeml38 implementations. 

8.5.1 The Instruction Stream 

The program template presented to the CREATE PROGRAM 

instruction consists of three parts: 

• a program consisting of a sequence of instructions, 
• an Object Definition Table (ODT), and 
• user data. 

Each instruction consists of a number of 2-byte fields in­
cluding an operation code, an optional operation code ex­
tender, and one to four operands. The operands can specify 
literals, elements in space objects, pointers to system objects, 
and so on. The: information about operand addressing and 
characteristics is stored in the Object Definition Table in­
cluded in the template. The ODT is"a dictionary that describes 
operands for the instruction stream. 

Each instruction operand contains an index into the Object 
Definition Table. The ODT actually consists of two parts: a 
vector of fixed-length (4-byte) elements called the Object Di­
rectory Vector (ODV), and a vector of variable-length entries 
called the ODT Entry String (OES). An operand is either com­
pletely described by its 4-byte ODV entry, or the ODV entry 
has a partial description and a pointer into the OES, where the 
remaining description is found. Most commonly occurring 
cases are handled by the fixed-length ODV itself. SeveralODV 
entries can point to the same OES entry. The ODT can contain 
information such as operand type (e.g., fixed-length decimal 
string), size, location, allocation (static or dynamic), initial 
value, and so on. Figure 8-5 shows an example of an instruc­
tion with three operands. The operands index ODT informa­
tion defining their type and location. 

Each instruction operand consists of one or more 2-byte 
fields. The first 2-byte field contains a 3-bit mode field and a 
13-bit ODV index. The mode field indicates what type of ad­
dressing is required and what additional 2-byte fields (called 
secondary operands) follow in the instruction stream to de­
scribe the operand completely. For example, a string operand 
may require three 2-byte fields to describe a base, index, and 
length. 151 
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Figure 8-5: System/38 Example High-level Instruction 

Operands 

Since the ODT completely describes each operand, the sca­
lar opcodes are generic. For example, there is only one ADD 

NUMERIC instruction that operates on all numeric data 
types. The machine interprets the ODT entry to decide how 
the operation should be performed and what conversions are 
required. 

The Object Mapping Table (OMT) is the final data structure 
that is part of the encapsulated program (although not 
included in the initial template). It contains 6-byte mapping 
entries for each entry in the ODV that maps to a space. 

8.5.2 Program Activation and Invocation 

A program, then, is a system object that represents a sepa­
rately compiled unit of execution (typically known as a proce­
dure). Programs are called by the CALL instruction. There are 
actually two parts to the initiation of a program on the Sys­
teml38: activation and invocation. 

Before a program can be invoked (called), it must be ac­
tivated. Activation of the program causes static storage for the 
program to be allocated and initialized. Also, any global varia­
bles in program static storage are made addressable. A process 
data structure called the Process Static Storage Area (PSSA) 
contains an activation entry for each activated program in the 
process. The activation entry contains status information, a 
count of the number of invocations using the activation, the 
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size of static storage, and the storage itself. The first entry in Programs/Procedures 

the PSSA contains headers for the chain of activation entries 
and a free space chain. 

Invocation occurs as the result of a transfer of control to the 
program. At invocation time, program automatic (that is, dy­
namic) storage is allocated and initialized in a process data 
structure called the Process Automatic Storage Area (PASA). 
Each invocation entry contains status information, a pointer to 
the previous invocation entry, a pointer to the program, and 
the automatic storage. After the invocation entry is allocated 
and initialized, control is transferred to the program at its entry 
point. 

Activation can occur implicitly or explicitly. If invocation is 
requested of a program that has not been activated, activation 
is done automatically by the hardware. 

8.5.3 Protected Procedures 

The IBM System/38 provides a mechanism for creating pro­
tected subsystems. As on previous systems, at protected subsys­
tem mechanism must allow programs to execute in an ampli­
fied protection environment. That is, some programs must be 
able to access objects not available to their caller. Since the 
Systeml38 profile object defines a domain of protection, pro­
tected subsystems are provided through profile-based facilities 
called profile adoption and profile propagation. 

The authority of each System/38 process is determined by 
its profile. When a process calls a program, that program gen­
erally gains access to the process's profile and, therefore, to the 
process' objects. However, it is possible to construct System/38 
programs that can access additional objects not available to the 
caller. When a program is created, the program's owner can 
specify that the program retain access to the owner's profile, as 
well as its caller's profile. This feature, called profile adoption, 
allows a called program to access objects not available to the 
caller and can be used to construct a protected subsystem. 

Although the general calling mechanism allows a called pro­
gram access to its caller's profile, a calling process can also 
restrict this ability. When a program is created, the program's 
owner can specify whether its profile should be propagated to 
programs on calls. Thus, a program can also see that its own­
er's profile is protected from access by programs further down 
the call chain. 153 
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8.6 Special Privileges 

It is worth noting that there are some special privileges in 
the SystemJ38 authorization system. In addition to object­
based authorities stored in a user profile, there may be other 
permitted authorities that are not connected with any particu­
lar object. For example, the ability to create user profiles, diag­
nose the hardware, or create objects representing physical I/O 
devices can be controlled by authorizations in a user profile. 
Also, the ability to dump and load objects to removable storage 
is protected, as well as the ability to execute operations to mod­
ify or service system hardware attributes. Finally, some ob­
jects, such as user profiles and device descriptions, receive spe­
cial protection and can only be addressed through a special 
machine context (directory). 

8.7 Discussion 

The IBM System/38 is a complex architecture constructed 
from several levels of hardware, microcode, and software. Be­
cause of its commercial orientation and the fact that it is availa­
ble from IBM, the SystemJ38 is probably destined to become, 
at least in the immediate future, the most pervasive object 
architecture. 

The most interesting feature of the System/38 , from the 
viewpoint of capability systems, is its use of tagging. Capabili­
ties and data can be freely mixed in segments with no loss of 
integrity. The. ability to mix data and capabilities generally 
permits more natural data structuring than the C-list approach. 
A single tag bit associated with each 32-bit word indicates 
whether or not the word is part of a capability. This tag bit is 
hidden from the programmer and accessible only to the mi­
crocode. To be used for addressing, a pointer must be aligned 
on a 16-byte boundary and have all four tag bits set. The align­
ment requirement prohibits the user from specifying four con­
secutive words with tags set that lie within two contiguous 
capabilities. 

The integrity of a capability system must be ensured on 
secondary storage as well as in primary memory, and the 
pointer tags must be saved on secondary storage. On the Sys­
temJ38, each disk page is 520 bytes long and stores a 512-byte 
data page and an 8-byte header. The 8-byte header for each 
block contains the virtual address for the page, an indication of 
whether or not the page contains any pointers, and if so, which 
16-byte quadword contains the first pointer in the page. Each 
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are required to specify whether each quadword contains a 
pointer. If a page contains pointers, the tag bits are stored 
within some unused bytes in the first 16-byte pointer on the 
page. When a page is written to disk, the hardware automati-
cally writes the disk block header. When a page is read into 
primary memory, the header is automatically removed and the 
tags are reconstructed. 

The System/38 architecture provides a large single-level 
address space. The details of memory management, 110, and 
so on are hidden from the programmer. There is no need for a 
traditional file system. All objects can be declared permanent 
when created, can be stored for long periods of time, and can 
be addressed at any time as if they were in primary memory. 
Addressing is independent of the object's memory residency 
characteristics. One problem with schemes that remove the 
abstraction of secondary storage is in transaction systems or 
reliable data'base operations. In some instances, the program­
mer may wish to ensure that the latest copy of a segment or 
object is checkpointed onto long-term storage. The one-level 
memory scheme has removed the ability to express the thought 
of writing the segment to disk. To solve this, CPF allows an 
object attribute that states how frequently data is to be backed 
up for a particular object. 

The System 38 permits revocation by adding an access con­
trol list mechanism to the capability addressing mechanism. 
Two types of pointers, authorized and unauthorized, can be 
used depending on whether or not revocation is required. Au­
thorized pointers are traditional capabilities because they con­
tain access rights and can be freely copied. Passing an author­
ized pointer passes both the addressing rights and privileges. 
The ability to resolve a pointer to load the access rights is 
controlled by an authorized pointer authorization. Only suita­
bly privileged profiles can create an authorized pointer. 

In contrast, an unauthorized pointer is not a capability in 
the traditional sense. The same unauthorized pointer can per­
mit different types of access when used by different processes. 
This is because the authorization rights an! fetched from the 
process's profile when a reference is made. This extra step in 
pointer address evaluation permits explicit control over author­
ity and combines the advantages of standard capability systems 
and access control lists. The user can specify (and determine 
at any time) what other profiles are allowed access to the 
user's objects. If only unauthorized pointers have been distrib- 155 
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uted, access can be revoked by removing authorization from 
other profiles. 

Unauthorized pointers permit revocation but add complex­
ity to the handling of pointers. For example, to pass a pointer 
to another process, the possessor of the pointer must be aware 
of whether that pointer is authorized or unauthorized. Unau­
thorized pointers, unlike capabilities, are not context inde­
pendent. If the pointer is unauthorized, passing it to another 
process will not permit object access unless permission has 
been granted to the other process's profile. Also, unauthorized 
pointers cannot easily be used to build and share data struc­
tures. For example, if a user wishes to build a tree structure of 
segments and pass the tree or subtrees to other processes, the 
authorization scheme requires that authorization for each seg­
ment be granted separately to each profile involved. 

The structuring of System/38 authorizations permits close 
control of pointers. Given the division of authority into object 
control, management, and access, it is possible for one user to 
be able to affect the propagation of addresses but not be able to 
access object data. Another user may be able to read and write 
but not propagate pointers. 

The large size of the Systeml38 address space simplifies 
many problems. Segment identifiers are large enough that they 
are never reused. This allows use of the segment ID as a 
unique name for an object. Since the ID is never reused, there 
is no problem with dangling references. An attempt to access a 
deleted object simply causes an exception. Large IDs also sim­
plify the implementation of the one-level memory system. 
There is no separation of long-term unique ID and address. 
The unique ID is the virtual address used to access a specific 
object, segment, or byte. There is no need for separate inform 
and outform capabilities or for transforming capabilities in 
memory when a segment is removed from memory. 

Although the Systeml38 instruction stream and Object Def­
inition Table are never used for direct execution, this interface 
has some interesting features. The ODT provides a form of 
tagging somewhat different from the tagged architectures ex­
amined earlier. Each data element is tagged; however, the tag 
is part of the operand, not part of the element. This allows for 
several different views of the same data element; different in­
structions can treat the same word as different data types. Op­
eration codes can be generic, and conversion, truncation, etc. 
can be performed based on type information in the ODT. The 
information stored in the ODT and I-stream may not be ex-
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tremely compact, but the program in this form need not be Reading 

retained after a program object is created. 
Finally, IBM has used the object programming approach to 

allow isolated construction of components of a very complex 
system. The object approach is intended to hide from the pro­
grammer the implementation details of the System/38 hard­
ware, so that future System/38 implementations can take ad­
vantage of advances in technology without affecting existing 
programs. Although this has been a goal of other architectures, 
the System/38 has used the object approach to place the 
userlsystem boundary at an unusually high level, hiding many 
details of the machine. For example, the System/38 high-level 
architecture has no registers, although the vertical microcode is 
free to use registers or to use different numbers of registers in 
different implementations. 

The initial System/38 product, with its limitation to com­
merciallanguages, does not stress the architecture. It will be 
interesting in future years to see if IBM approaches other mar­
kets with this object-based machine structure. 

8.8 For Further Reading 

Detailed information about the Systeml38 high-level archi­
tecture can be found in two IBM manuals [IBM 80a, IBM 82]. 
IBM has also packaged a collection of 30 short technical pa­
pers, mostly dealing with hardware and implementation issues, 
into a document called IBM Systeml38 Technical Developments 
[IBM 80b]. Several papers describing the addressing and pro­
tection features of System/38 have also been published in tech­
nicalliterature [Berstis 80a, Houdek 81, Soltis 79, Soltis 81]. 
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The Intel iAPX 432 

9.1 Introduction 

In 1981, Intel introduced the first object-based microproc­
essor, the iAPX 432 [Intel 81, Rattner 81, Organick 83]. Like 
the IBM Systeml38, the Intel 432 implements many operating 
system functions in. hardware and microcode, including proc­
ess scheduling, interprocess communication, and storage allo­
cation. The integration of such software operations in hard­
ware is particularly impressive when considered with the Intel 
432's VLSI implementation. 

The Intel 432 design effort began in 1975 with an attempt to 
implement in silicon a system much like Carnegie-Mellon's 
Hydra operating system [Wulf 74a]. Three chips compose the 
Intel 432 processing elements. The central processing unit, 
called the General Data Processor (GDP), is implemented on 
two 64-pin VLSI chips. Together, the GDP chips contain over 
160,000 components. The Interface Processor (IP), responsi­
ble for communication and data transfer between the Intel 432 
and its 110 subsystems, is the third 64-pin chip. Design and 
layout of the chip set took more than 100 man-years. 

The 432 is a multiprocessor system that can accommodate a 
total of six processors, each either a GDP or IP. The general 
structure of the 432 multiprocessor system is shown in Figure 
9-1. All of the processors are connected to a single multiproces­
sor message bus through which they communicate with each 
other and with shared system memory. The IPs connect the 
multiprocessor system to Intel Multibus subsystems. Each 
Multibus is controlled by an associated processor, such as an 
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Figure 9-1: Intel iAPX 432 Structure 

Intel 8086, that connects to local memory and some number of 
I/O devices. The IPs transfer data between Intel 432 memory 
and Multibus local memory; all 110 is actually performed by 
the associated processor. 

The Intel 432 instruction set provides two types of instruc­
tions: scalar and object-oriented. The scalar instruction set 
consists of a small set of move and store operators, boolean 
arithmetic, binary and floating point arithmetic, and compari­
son operations. Scalar instructions operate on 8-bit characters, 
16- and 32-bit signed and unsigned integers, and 32-, 64-, and 
80-bit floating point numbers. The 432 has a stack architec­
ture; instruction operands can be fetched from the stack and 
results can be pushed onto the stack. There are no general-pur­
pose registers. 

An object-oriented instruction set provides operations on 
abstract objects that are managed by a combination of hard­
ware and software. The following sections examine many of 
those object types and the details of object addressing on the 
Intel 432. It should be noted that the Intel 432 architecture has 
evolved since its introduction; this chapter reflects the system 
as of revision 3 [Intel 82]. 



9.2 Segments and Objects 

The concepts of object-based computing are deeply imbed­
ded in the Intel 4.32. All system resources are represented as 
objects; for example, a processor object maintains the state of 
each GDP or IP in the system. Each processor object then 
contains a queue of process objects, which represent work to be 
scheduled and executed. All objects are addressed through 
capabilities which, on the Intel 432, are called access descrip­
tors (ADs). (The vendor's terminology is used in this chapter 
for compatibility with Intel literature. The notation "AD" is 
used throughout for "capability.") 

At the lowest level, objects are composed of memory seg­
ments, and a memory segment is the most fundamental object 
(called a generic object on the Intel 432). Each Intel 432 segment 
has two parts: a data part for scalars and an access part for ADs, 
as shown in Figure 9-2. Objects requiring both data and access 
descriptors can be stored in a single segment. Segments are 
addressed through ADs, as the figure illustrates. The data part 
grows upward (in the positive direction) from the boundary 
between the two parts, while the access part grows downward 
(in the negative direction) from the dividing line. The hard­
ware ensures that only data operations are performed on the 
data part and that AD operations are performed on the access 
part. 

Each part of a segment can be from 0 to 64K bytes in size. 
Data elements in the data part are addressed as byte displace­
ments from the dividing line. ADs, which are 32-bits long, are 
addressed by integer indices from the dividing line. The access 
part can therefore contain up to 16K ADs. Both data elements 
and ADs are addressed as positive indices within the segment; 

i 
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Access descriptor ~ Access descriptors 
0 
1 (AD index) 
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Figure 9-2: Intel 432 Segment 
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the hardware determines the part of the segment to access 
based on the type of the required operand. 

In addition to basic storage segments, the Intel 432 hard­
ware supports a number of system object types, listed in Table 
9-1. The representation for an instance of a system object is 
maintained in a storage segment. Operating system type man­
agers are responsible for creating new instances of system ob­
jects. A type manager creates and sets the type for an object 
through the CREATE TYPED OBJECT instruction. The operands 
for this instruction specify the object's type, the data part size, 
and the access part size. The instruction returns an AD for the 
new object, which the type manager uses to initialize the object 
appropriately. 

For each system object type, the 432 architecture specifies 
the meaning of some of the data and/or access fields. These 
processor-defined fields are stored in the low-index portions of 
the two segment parts, adjacent to the boundary. A type man­
ager is free to allocate additional data or access descriptor space 
in higher address parts of the two regions for object informa­
tion needed by software. 

GENERIC SEGMENT basic storage for data and access descriptors 
(capabilities) 

DYNAMIC SEGMENT 

storage segment created by a programmer­
defined type manager 

INSTRUCTION SEGMENT 

PROCESS 

PROCESSOR 

DOMAIN 

CONTEXT 

MESSAGE PORT 

CARRIER 

TYPE DEFINITION 

TYPE CONTROL 

segment containing executable code 
basic unit of scheduling 
432 GDP or IP 
module or package 
dynamic state for a procedure invocation 
interprocess communication object 
extension of a message used to queue it to a 
port 
object containing information about a spe­
cific object type 
object permitting creation of specific object 
types 

STORAGE RESOURCE 

OBJECT TABLE 

source of primary memory for object storage 
allocation 
mapping table of object descriptors 

Table 9-1: Intel 432 System Object Types 



9.3 Object Addressing 

As in previous capability-based systems, there are two com­
ponents to the Intel 432 addressing structure. First, a single 
descriptor contains the physical mapping information for each 
object. These descriptors, on the Intel 432, are called object 
descriptors. Second, programs specify access descriptors to refer 
to objects that they wish to manipulate. All ADs for an object 
refer to that object indirectly through its single object descrip­
tor. The following sections describe first object descriptors and 
then access descriptors. 

9.3.1 Object Descriptors 

For each Intel 432 object there is a single object descriptor. 
The object descriptor contains information about the physical 
location and state of the object. The purpose of the object de­
scriptor is to locate this physical object information in a single 
place so that objects can be easily relocated or synchronized. 
Each object descriptor is 16 bytes long. There are several types 
of object descriptors, but the most common is a storage seg­
ment descriptor, shown in Figure 9-3. Table 9-2 describes the 
fields in the storage segment descriptor. 
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Figure 9-3: Intel 432 Storage Segments Descriptor 
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ENTRY TYPE 

OD VALID 

DP VALID 

ALLOCATED 

WINDOWED 

ALTERED 

ACCESSED 

BASE ADDRESS 

DP LENGTH 

AP LENGTH 

OBJECT TYPE 

COPIED 

LEVEL 

TDO-AD IMAGE 

COMPLETED 

indicates that this is a storage descriptor 
specifies whether the object descriptor can 
be used for addressing 
indicates whether or not the object has a 
data part 
specifies whether or not storage is allocated 
for this object 
indicates whether or not this object is being 
mapped by an IP 
set to 1 whenever the object is written 
set to 1 whenever the object is accessed 
primary memory address of the first byte of 
the segment's data part 
length in bytes (minus one) of the segment's 
data part 
length in bytes (minus one) of the segment's 
access part 
type of the object, consisting of a 5-bit sys­
tem type field (specifying system objects, 
shown in Table 9-1) and a 3-bit processor 
type field (specifying whether a GDP or IP 
owns the object) 
set to 1 whenever an AD referencing this 
object is copied 
level of this object (generally the call depth 
at which it was allocated) 
AD that defines the type manager that cre­
ated this object 
used by software in object initialization 

Table 9-2: Intel 432 Storage Segment Descriptor Fields 

Each object descriptor is contained in an object table. The 
Intel 432 object table corresponds to the central capability 
table of previous systems. Unlike previous systems, however, 
there are many object tables in existence at any time. In gen­
eral, every process executing in the 432 has an associated object 
table. Or, several processes can share a single object table. An 
object table therefore contains information about objects local 
to one or more processes. 

In addition to the many process object tables, there is a 
single system-wide Object Table Directory. The Object Table 
Directory contains object descriptors that address each of the 
process object tables. Object tables are thus objects themselves 
and can be swapped out or relocated like other objects. 
The Object Table Directory, however, must always reside in 
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memory address of the Object Table Directory. 

9.3.2 ilccess l)escriptors 

While each object has only one object descriptor, many ac­
cess descriptors can be used to address the object. ADs are 
32-bits long and specify addressing and access rights to an ob­
ject. To execute an instruction that manipulates an object, the 
programmer specifies the location of an AD for the object. The 
AD is specified by its index in the access part of a segment. 
The collection of ADs accessible to a procedure define that 
proced.ure's execution environment: that is, the set of objects 
the procedure can address and manipulate. 

An AD, illustrated in Figure 9-4, contains access rights to 
an object along with two 12-bit mapping indices. The read, 
write, and type rlights fields are rights with respect to the ad­
dressed object. Type rights are type depend.ent and their en­
coding is different for each object type. Some type rights for 
system objects are defined by the architecture and evaluated by 
hardware instructions. The delete rights bit permits the pos­
sessor to delete the AD itself. An attempt to delete an AD with 
this bit set to zero causes a fault. The unchecked copy rights 
bit, indicating whether the object was allocated from a global 
or local storage pool, is used to avoid dangling references 
(described in Section 9.6). 

Table 9-3 lists the instructions that operate on ADs. Note 
that ADs can be freely copied to the access part of any accessi­
ble segment. The INSPECT ACCESS DESCRIPTOR instruction cop­
ies the image of an AD to a segment's data part for examina­
tion. Of course, an AD image stored in a data part cannot be 
used as an AD. 

Locating an Intel 432 object through an AD requires two 
steps. The AD, in addition to the rights bits, contains two 
indices: an index into the system-wide Object Table Directory 

31 16 15 0 

Directory index Segment index 

Write rights Delete rights Valid bit 

Read rights Unchecked copy Type rights 
rights 
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COpy ACCESS DESCRIPTOR 

Copies an AD from one segment's access 
part to another. 

NULL ACCESS DESCRIPTOR 

Invalidates an AD. 
INSPECT ACCESS DESCRIPTOR 

Copies the information in an AD into a seg­
ment's data part. 

INSPECT OBJECT Copies the information from an AD and the 
object descriptor to which it refers into a 
segment's data part. 

AMPLIFY RIGHTS Amplifies the rights in an AD under control 
of a Type Control Object. 

RESTRICT RIGHTS Removes rights specified by an AD. 
CREATE OBJECT Creates a segment with specified data part 

and access part lengths, and returns an AD 
for the segment. 

CREATE TYPED OBJECT 

Creates a segment of the specified type with 
specified data part and access part lengths, 
and returns an AD for the segment. 

Table 9-3: Intel 432 Access Descriptor Instructions 

and an index into an object table. This mapping is shown in 
Figure 9-5. The first index locates the object descriptor for an 
object table. The second index locates the object descriptor for 
the specified object in the selected table. 

Each access to a byte in a segment potentially requires four 
references, one each to: 

• the access descriptor in an access segment, 
• the Object Table Directory, 
• the object table, and 
• the byte itself. 

With the exception of the access to the AD, the two-level map­
ping overhead is comparable to the overhead required on any 
conventional virtual memory system. Of course, caches can be 
used to decrease this overhead substantially. The first imple­
mentation of the 432 has several small on-chip caches to re­
member recently used translations. 

Since AD index fields are 12 bits, an object table can have a 
maximum of 4096 (212) object descriptors. In addition, there' 
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Figure 9-5: Intel 432 Address Translation 

can be a maximum of 4096 object tables in the system at any 
time. Combined with the fact that a segment has a maximum 
size of 64 K byt(!S, the total size of the address space is 240 

bytes. However, the maximum address space available to a 
procedure at anyone time is 232 bytes. 

9.4 Program E),recution 

Several system objects exist to support the representation 
and execution of procedures on the Intel 432, including: 

• the domain object, which defines a module, package, or set of 
related procedures, 

• the instruction object, which defines a single executable proce­
dure, and 

• the context object, which provides the execution environment 
for an executing procedure. 

These objects can be grouped into two classes-those that de­
scribe the static representation of procedures (the domain and 
instruction objects) and those that describe the dynamic execu­
tion of procedures (the context object). An instruction object 
corresponds to a Hydra procedure object, while the context 
object corresponds to a Hydra local name space object. At any 
time, there may be several context objects that represent differ­
ent invocations of a single instruction object. The following 
sections describe these program objects in more detail. 

9.4 Program Execution 
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9.4.1 Domains and Instruction Objects 

A domain object, illustrated in Figure 9-6, contains ADs for 
the instruction objects and local objects used within a module. 
The Intel 432 architecture specifies the format of the first two 
ADs in a domain. These ADs address instruction objects that 
handle fault and trace conditions for all procedures in the do­
main. In the event of a fault or trace condition, the hardware 
automatically branches to the first instruction in the fault or 
trace object specified in the domain of the currently executing 
procedure. The remainder of a domain's access part contains 
ADs for procedures and objects needed by the domain; these 
ADs are defined by the software system (usually a compiler) 
creating the domain. 

One of the objects typically addressed by a domain is a seg­
ment containing scalar constants used by the domain's proce­
dures. Each instruction object, shown in Figure 9-6, contains 
the domain index of its scalar constants segment. This segment 
is needed because Intel 432 instructions do not have literal 
operand values embedded within the instruction stream. The 
instruction object also specifies the size of the context object to 
be produced as the result of the procedure call. The initial 
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Figure 9-6: Intel 432 Domain and Instruction Objects 



stack pointer index is the displacement to the start of the data 9.4 Program Execution 

stack in the context object. The use of these fields will become 
apparent in the following discussion of context objects. 

Instruction objects contain only a data part. Because Intel 
432 instructions are bit-addressable and can start on arbitrary 
bit boundaries, instructions are addressed as bit offsets into 
instruction objects. The first instruction in each instruction 
object begins at bit displacement 64, following the header of 
four 16-bit predefined fields. The maximum size of an instruc­
tion segment is 64K bits, or 8K bytes, due to the bit address­
ing. Although there is generally one instruction object for each 
procedure in the domain, procedures larger than 8K bytes re­
quire additional instruction objects. The BRANCH INTERSEG­

MENT instruction can be used to transfer control to another 
instruction object within the same domain. 

9.4.2 Procedure Call and Context Objects 

To transfer control to a procedure, a program executes a 
CALL instruction, causing the procedure to be invoked. On exe­
cution of a CALL instruction, the hardware constructs a new 
context object. The context object is the procedure invocation 
record and defines the dynamic addressing environment in 
which the procedure executes. All addressing of objects and 
scalars occurs through the context object, and the context is 
the root of all objects reachable by the procedure. The struc­
ture of the context object is illustrated in Figure 9-7. 

Although somewhat complicated, it is important to examine 
the context object in more detail to understand the addressing 
environment of the Intel 432. The context object has both a 
data part and an access part. The data part contains pointers 
that describe the current instruction execution. The domain 
index locates the AD for the executing instruction object 
within the current domain; the instruction pointer contains the 
bit offset of the current instruction in that instruction object. 
At the high-address end of the context object's data part is the 
operand stack. This stack is used by instructions for computa­
tion and intermediate storage of scalar values. The current 
stack pointer is also stored in the data part. 

The context object's access part contains ADs that define 
the addressing environment for the procedure. Included are 
ADs for the current domain, which was specified by the CALL 

instruction, and the AD for the local constants segment, which 
was specified in 1the called instruction object. The global con- 169 
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stants AD allows addressing of a process-wide data segment; 9.4 Program Execution 

the procedure explicitly loads this AD, if needed, through the 
COPY PROCESS GLOBALS instruction. The calling context AD ad-
dresses the caller so that a RETURN can be executed. 

Interprocess communication is provided by instructions 
that send messages to and receive messages from port objects. 
Execution of a RECEIVE MESSAGE instruction causes the AD for 
the received message to be copied to the inter process message 
AD in the context object's access part. In this way, the pro­
gram has immediate addressability to the message. The static 
link AD, which follows the interprocess message AD in the 
context, is provided to support languages that use static lexical 
scoping. 

9.4.3 Instruction Operand Addressing 

The important context object ADs from the addressing 
point of view are those named current context and environments 
1, 2, and 3 in Figure 9-7. As previously stated, an instruction 
must specify the location of an AD in order to manipulate any 
object. If the instruction manipulates one or more data ele­
ments, it must provide ADs for the segments containing those 
elements. In general, then, every instruction operand specifies 
one or more ADs that provide addressability to that operand. 

At any moment during a procedure's execution, ADs speci­
fied by instructions must be located in one of four environment 
objects. Environment object 0 is the context object itself. In­
structions can specify any of the ADs within the context ob­
ject's access part; for example, to refer to the domain or the 
constants data segment. The three remaining environments, 
environments 1 through 3, are defined dynamically by the pro­
cedure. A procedure loads an AD for any object into the envi­
ronment slots in lthe context object to make ADs in that object 
addressable. The ENTER ENVIRONMENT instructions are pro­
vided for this purpose. 

Therefore, to address an AD, an instruction specifies one of 
the four environment objects and an index to an AD in the 
object's access part. Environment 0 is the context access part 
itself, which is self-addressed through the current context AD 
in the context object. Environments 1 through 3 are addressed 
through the three environment ADs in the context object. An 
instruction reference to an AD in one of the four environments 
is called an access selector. Figure 9-8 shows the three access 
selector formats. The low-order two bits in each selector spec- 171 
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ify the environment object; the three formats allow for 2-, 6-, 
or 14-bit displacements to an AD in the selected environment. 

The four environment segments thus provide efficient ad­
dressing of ADs. An instruction can specify an immediate 4- or 
8-bit access selector describing the location of an AD for an 
operand. Or, it can specify the location of a 16-bit access selec­
tor located in memory or on the stack. The short direct format 
efficiently addresses any of the first four ADs in any of the four 
environments. This includes the ADs for the global constants, 
context message (calling parameters), and current domain 
within the current context. All of the processor-defined ADs 
within the context object's access part can be addressed using 
an 8-bit access selector. 

9.4.4 Context Allocation 

On an earlier version of the Intel 432 architecture, each 
CALL instruction caused dynamic allocation of the memory 
segment in which the new context object was constructed. Be­
cause this allocation was time-consuming, the latest version of 
the Intel 432 supports pre allocation of contexts on a per-proc­
ess basis. The operating system allocates a linked list of fixed­
sized context object segments to each process. The contexts are 



linked through the context link field in each context object. 
When a call occurs, the processor reads the context link 

field to find the AD for the next context object to use. The 
length of this object is compared with the length fields stored 
in the called instruction object. If the instruction object re­
quires a context object larger than the preallocated size, a fault 
will occur. The operating system can then allocate a context of 
the needed size. Or, if the context link is null, indicating that 
the preallocated contexts have been consumed, a fault will 
allow the operating system to perform additional allocations. 
Otherwise, the hardware quickly constructs the new context 
object from the linked segment. 

9.4.5 Parameter Passing 

Parameter passing on the Intel 432 is associated with the 
preallocation of contexts and is handled by software. In addi­
tion to the defaUllt context object size, associated with each 
process is a default data part size and access part size of a 
parameter segment to be passed between contexts on procedure 
calls. However, instead of allocating a separate parameter seg­
ment, an area of the data part and access part of each context 
object is reserved for parameter passing. When the operating 
system constructs the linked list of contexts, it places in the 
context message field of each context, an AD for a refinement of 
the previous context object. This refinement provides address­
ability to the parameter data and access fields as if they were a 
single contiguous segment. 

Figure 9-9 illustrates how a procedure accesses parameters 
passed by its caller. The calling procedure places its data and 
access parameters in the predefined parameter fields of its con­
text object. The operating system had previously created a re­
finement object descriptor for these parameter spaces and 
placed an AD for the refinement in the next context object. 
When the call occurs, the called context can access its parame­
ters through its context message AD. 

9.5 Abstraction Support 

The principal goal of the Intel 432 is support for 
object-based programming. As previous1y described, the Intel 
432 provides a set of basic system object types. Each of the 
system object types is controlled by a type manager that is 
implemented partially in hardware-through a set of type-spe­
cific instructions--and partially in operating system software. 

9.5 Abstraction 
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To extend the set of basic types, the Intel 432 provides mecha­
nisms for the creation of programmer-defined types and pro­
grammer-defined type managers. Since all objects are accessed 
through a high-level language, the programmer uses the same 
interface when dealing with system objects and with program­
mer-defined objects. A programmer is free to create new types 
and type managers, adding to the set of available abstractions. 

There are three system object types involved in type man­
ager support: 

• the domain, which defines the procedures and objects local to 
a single module of the type manager, 

• the Type Control Object (TCO), which is used in creation of 
system and programmer-defined objects, and 

• the Type Definition Object (TDO), which defines a particu­
lar type manager. 

This section describes the use of these objects for the creation 
and manipulation of system and programmer-defined objects. 

9.5.1 Domains and Refinements 

A domain object defines a collection of procedures and asso­
ciated objects accessible to those procedures. By using the 432 
refinement mechanism, a programmer can create a protected 



procedure environment with a domain object. That is, a pro­
grammer can construct a set of callable procedures that will 
have access to objects not available to their callers. 

Figure 9-10 shows a domain that consists of a collection of 
procedure ADs and object ADs. To construct a protected sub­
system, the creator of the domain divides the domain into two 
sections: a pub~ic section and a private section. The public 
section consists of ADs for procedures that will be callable by 
users of the dornain. The private section consists of ADs for 
procedures and objects that will be available only to called pro­
cedures executing within the domain. 

Through the CREATE REFINEMENT instruction, the domain's 
owner construc1ts a refinement of the domain that addresses 
only the public section-the section that win be visible to users 
of the domain. The CREATE REFINEMENT instruction returns an 
AD for this refinement. The AD for the domain refinement 
can be made available to other programmers, who can use this 
AD to call any of the public procedures. However, a possessor 
of this refinement AD has access only to the domain's public 
part. 

This use of domain refinement creates a protected subsys­
tem because of the action of the CALL instruction. When a CALL 

instruction is executed, the hardware places an AD for the 
called domain in the new context object, where it is accessible 
to the called procedure. The hardware always loads an AD for 
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the complete domain, even if the CALL was made through a 
refinement. Therefore, a procedure invoked through a refine­
ment of a domain will have access to all of the ADs in its 
domain through its context object. Once executing, the proce­
dure can manipulate private data objects or call private domain 
procedures. 

9.5.2 Creation of Typed Objects 

The Intel 432 supports two kinds of object types: system 
types and programmer-defined types. The system types were 
listed previously in Table 9-1; instances of system types are 
identified by the 8-bit system type field in their object table 
object descriptors. Two of the system types are generic object, 
which is a basic segment object with no special attributes, and 
dynamic object, which is an object controlled by a program­
mer-defined type manager. 

Typed objects of any kind are created through the CREATE 

TYPED OBJECT instruction. Execution of the CREATE TYPED OB­

JECT instruction requires possession of the AD for a type control 
object (TCO). A TCO permits its possessor to create and ma­
nipulate objects of a specific type. The data part of a TCO is 
illustrated in Figure 9-11. 

Creation of a system object (with the exception of generic 
objects) requires possession of a TCO whose object type field 
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contains the 8-bit type value of the system type to be created. 
In addition, the dynamic/system bit (bit 0) of the TeO must 
indicate that the TeO is for a system object. Teas for the 
creation of specific system object types are constructed by the 
operating system and given to the operating system type man­
agers for those types. The type manager for a system object is 
privileged only .in its possession of the TeO for its type. 

Possession of a TeO for a specific type also allows the type 
manager to execute an AMPLIFY RIGHTS instruction for objects 
of its type. In this way, the type manager can return restricted 
ADs to its clients. These restricted ADs cannot be used to 
access the objects to which they refer. When a client returns an 
AD to a type manager as a parameter, however, the type man­
ager can use its TeO to amplify the rights in the AD. Given an 
AD for an object and an AD for a TeO with matching type, 
the AMPLIFY RIGHTS instruction ORs the rights bits specified in 
the TeO with the rights in the object AD, creating an AD with 
additional privileges. If the TeO and AD types do not match, 
the AMPLIFY RIGHTS instruction will cause a fault. 

9.5.3 Programmer-Defined Types 

To build a private type management system, a programmer 
obtains a type definition object (TDO) from the operating sys­
tem. A TDO has no processor-defined fields, although its ac­
cess part will typically be used to hold ADs for the domains 
that implement the type manager. The basic function of the 
TDO is to be the representative "type" for its objects. That is, 
while the type of a system object is specified by an 8-bit system 
object type field, the type of a dynamic object is specified by an 
AD for a TDO. All objects created by a specific type manager 
have an image of the AD for the type manager's TDO stored in 
their object table object descriptor (shown as TDO-AD in Fig­
ure 9-3). 

Once a type manager has obtained a TDO, it then obtains a 
TeO from the operating system for its type. This TeO will be 
for a dynamic object, as specified in its system type field and in 
the dynamic/system field. A TeO for a dynamic object con­
tains an additional field-a single AD in its access part. This is 
the AD for the defining TDO. When the type manager exe­
cutes a CREATE TYPED OBJECT instruction to allocate a segment 
for the object's representation, it specifies its TeO and the size 
of the segment to allocate. The hardware copies the TDO ac­
cess descriptor from the Teo into the object descriptor for the 
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new segment, thereby "typing" the segment. Figure 9-12 
shows this addressing structure; the object descriptor for the 
new dynamic object contains the physical storage information 
for the object and the AD for the TDO. 

The programmer-defined type manager, like the system 
object type manager, protects its objects using restriction and 
amplification. When a client requests the creation of a new 
object, the type manager creates the object using the CREATE 

TYPED OBJECT instruction. The type manager then initializes 
the object appropriately and uses the RESTRICT RIGHTS instruc­
tion to produce an AD to be returned to the client. This AD 
does not allow direct access to the object. When the client later 
specifies this AD as a parameter, the type manager amplifies 
rights in the AD to regain access to the object's representation. 
Once again, the key to amplification is the possession of a 
TeO. The type manager executes an AMPLIFY RIGHTS instruc­
tion specifying its private TeO and the AD for the object. If 
the TeO and the object descriptor for the object both contain 
the same TDO AD, the instruction will amplify the rights in 
the object AD. 

It is not necessary for programs to maintain ADs for all 
possible type managers. Given an AD for an object, a program 
can execute the RETRIEVE TYPE DEFINITION instruction; this 
instruction returns the AD for the TDO associated with the 
object. With the TDO AD, the program can access the AD for 
the domain implementing the type manager and can call type 
management procedures available through that domain. The 
domain AD stored in the TDO will typically be a refinement of 
the type manager's domain. 
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t---------~ TOO 
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Figure 9-12: Intel 432 Dynamic Object Addressing 



9.6 Storage Resources 

Previous sections have described the creation of storage seg­
ments through the CREATE OBJECT and CREATE TYPED OBJECT 

instructions; however, they have not described the mechanism 
by which primary memory is allocated. The abstraction of pri­
mary storage is encapsulated in Intel 432 storage resource objects. 
A storage resource object (SRO) is a system object from which 
memory is allocated. Every memory allocation instruction 
specifies, either explicitly or by default, an SRO from which its 
primary memory is taken. 

Figure 9-13 illustrates the structure of an SRO and its asso­
ciated objects. The representation of an SRO consists princi­
pally of the AD for a physical storage object that describes a pool 
of available primary memory, and an AD for an object table. 
Each storage specifier in the physical storage object contains 
the primary memory address and size of a single contiguous 
block of free system memory. Initially, each physical storage 
object has one storage specifier for a single large block. As 
storage is dynamically allocated and deallocated from an SRO, 
its memory becomes fragmented and new storage specifiers 
must be created to address the discontiguous pieces. 
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When a program executes a CREATE OBJECT instruction, it 
specifies an SRO from which the storage is to be taken. The 
hardware allocates primary memory on a rotating first-fit basis 
from the SRO's storage specifiers. After allocating the mem­
ory, the hardware allocates an object descriptor for the new 
object in the SRO's object table; an AD is returned that ad­
dresses the object through that object descriptor. 

The SRO in Figure 9-13 is known as a global heap SRO and 
is used to allocate relatively long-lived objects. Storage allo­
cated from a global SRO can be returned at any time. The 
SRO's object table contains a descriptor that is the head of a 
list of unused object descriptors in the table. This list is used 
both for locating an empty table slot when an object is created 
and for returning an object descriptor when an object is de­
stroyed. Returned storage is either combined with an adjacent 
free block in the SRO, or a new storage specifier is constructed 
to address it. 

Global heap SROs provide great flexibility for dynamic stor­
age allocation. The disadvantage of global heaps, however, is 
that they require garbage collection for deallocation of storage. 
Although the overhead of garbage collection is acceptable for 
long-lived objects, it is prohibitive for short-lived objects. In 
particular, most objects created during the lifetime of a proce­
dure could be more efficiently deallocated when the procedure 
terminates. For this reason, the Intel 432 provides a second 
type of storage resource called a local stack SRO. A local stack 
SRO supports efficient allocation and deallocation of short­
lived storage during the lifetime of a procedure. 

A local stack SRO is not a separate object, but is associated 
with a process object. Each process object contains a local stack 
SRO, which consists of an AD for an object table and an AD 
for a physical storage object. This physical storage object is 
similar to that shown in Figure 9-13; however, it contains a 
single storage specifier for a single storage block. This storage 
block and the associated object table are used in a stack-like 
(LIFO) fashion for allocation of short-lived local storage. The 
local object table does not use a free list; instead, object 
descriptors are allocated consecutively. 

During a procedure invocation, each short-lived object is 
allocated from a local stack SRO; each new object receives the 
next contiguous object descriptor and the next contiguous sec­
tion of the storage block. When the procedure returns, all of 
the objects and object descriptors for short-term objects cre­
ated by the procedure can be deallocated. This deallocation is 



simple when compared with global heap deallocation because 9.6 Storage Resources 

both the object table and storage block are managed as stacks. 
All of the short-t(~rm objects and descriptors allocated during a 
procedure call can be quickly deallocated by returning the ob-
ject table and physical storage objects to their pre-call states. 

Local stack SROs are therefore more efficient for allocation 
and deallocation than global heap SROs, although they cannot 
accommodate objlects of different lifetimes. The more difficult 
problem presented by local stack SROs is the control of ADs 
for local objects. Objects allocated from global heap SROs are 
only deallocated by a garbage collector. The garbage collector 
ensures that no ADs remain for an object before its storage and 
object descriptor are deallocated. If an object with an existing 
AD were deallocated, the AD would become a dangling refer­
ence. For example, suppose that AD X addresses object Y 
through object descriptor Z. If object Y and object descriptor 
Z are deallocated while X still exists, AD X will be a dangling 
reference. Eventually, object descriptor Z will be reused to 
address a newly created object, and AD X could be used erro­
neously to access that object. 

This problem is compounded in the case of local stack SROs 
by the rate at which object descriptors are reused. An object 
descriptor deallocated by a procedure return will very likely be 
reused by the next procedure call. Therefore, the Intel 432 
must be able to ensure that when a procedure returns, no ADs 
remain for short-term objects allocated during that call. To 
prevent such dangling references, the Intel 432 controls the 
propagation of ADs. The hardware prevents the storing of an 
AD into a segment whose lifetime is longer than the lifetime of 
the object addressed by that AD. 

The lifetime of an object is determined by the level number 
stored in its object descriptor. Each process has a current level 
number; the level number is first initialized when the process 
is created and is incremented by one at each procedure call. 
When an object is created, the current level number is stored 
in its object descriptor. An attempt to copy an AD for an object 
created at level N into a segment created at level N -1 or lower 
will cause a fault. When an object allocated from a local stack 
SRO is destroyed on procedure return, the system can guaran­
tee that no ADs for that object remain; that is, all of the storage 
into which the AD could have been copied must have been 
destroyed when the object was destroyed. 

Any object that is to be passed to other processes or stored 
in a more global segment must be allocated from a global heap 181 
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SRO instead of the default local stack SRO. The architecture 
ensures that only correct copying of ADs takes place. The un­
checked copy rights bit in Intel 432 ADs provides an optimiza­
tion for the required level check. The unchecked copy flag 
indicates whether the object was allocated from a level-O global 
heap. If so the level check can be avoided; otherwise, the level 
numbers in the object descriptors must be checked. 

9.7 Instructions 

The Intel 432 has a repertoire of about 225 instructions that 
operate on characters, integers, floating point numbers, and 
system objects. There are no general registers. Each context 
has a private operand stack that can be used for storing scalar 
temporaries. Scalar operands for instructions can be located 
either on the stack or in memory, and memory-to-memory 
operations are allowed. 

One of the unique features of the Intel 432 is its instruction 
encoding. Instructions are bit-variable in length and can start 
on any bit boundary. The instruction pointer thus contains the 
bit offset into the current instruction segment, which can be up 
to 8K bytes in size. An instruction consists of up to four fields, 
as shown in Figure 9-14. The fields themselves are also varia­
ble-length and highly encoded. 

The 4- to 6-bit class field specifies the number of operands 
and their sizes. For example, the class may indicate that an 
instruction requires three 32-bit operands or two 16-bit oper­
ands. Next, the 0- to 4-bitformat field specifies whether each of 
the operands is (1) to be found on the stack or (2) to be speci­
fied explicitly by a reference in the references field, and (3) if 
specified explicitly, which reference corresponds to which op­
erand. The references field specifies where the (one to three) 
operands are to be found. A stack operand requires no refer­
ence field entry, and a single reference may refer to two oper­
ands, as specified by the format field. For example, an operand 
that is both a source and destination requires only one refer­
ence field to define its location. Finally, the 0- to 5-bit opcode 
specifies the operation to perform. 

Opcode References Format 

Figure 9-14: Intel 432 Instruction Format 

Class 
Least 
Significant 
Bit 



(Variable length) (Variable length) 

Displacement component Access component 

Displacement Length Indicator -

Access Component Control --------' 

Data Reference Mode ----------' 

Figure 9-15: Intel 432 Reference Format 

The references field is the most important with respect to 
object addressing and requires the most complex encoding. 
The size of the references field depends on the number of oper­
and references and the addressing mode for each. An instruc­
tion operand can be either a scalar operand (e.g., integer, char­
acter, floating point) or an object-level operand (e.g., process, 
domain, message port). If the instruction operand requires a 
scalar, the reference specifies its location. If the instruction 
operand requires an object-level operator, the reference speci­
fies an AD for the object. 

The general format of a single reference is shown in Figure 
9-15. The length and format of the variable-length access and 
displacement components are determined by the leading con­
trol fields. For example, in the case of a scalar operand, the 
instruction must specify two components needed to locate the 
scalar: 

• the location of an AD for the object containing the scalar, and 
• the displacement of the scalar within the object's data part. 

The access component field locates the AD for the object; it is 
a 4- or 8-bit field whose format was shown in Figure 9-8. The 
displacement component, in the simplest addressing mode, is a 
7- or 16-bit integer displacement. 

Several addressing modes are allowed that provide for indi­
rect specification of the access and displacement components; 
that is, the access and displacement specifications for the refer­
ence can be found in memory. For example, in the case of an 
indirectly specified displacement, the displacement field of the 
reference must itself contain an access and displacement part. 
Such general addressing modes provide for flexibility but can 
require many memory accesses in order to manipulate a single 
data element. Thus, a reference to an element of a dynamically 
allocated one-dimensional array might indicate: 
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• an access selector for the segment containing the array, 
• the displacement of the array in the segment, 
• an access selector for a possibly different segment containing 

the array index, and 
• a displacement of the index in this second segment. 

Many options are provided for each part of the specification 
and, in general, commonly occurring options can be efficiently 
encoded. Stack operands save the most instruction space be­
cause they require no reference field bits. Space can also be 
saved in the reference field if operands are located at the start 
of a segment because this requires no offset. There is a large 
variance in instruction size-a three-operand instruction can 
take from 10 to more than 300 bits, depending on where the 
operands are to be found. 

9.B Discussion 

The Intel iAPX 432 is certainly one of the most sophisti­
cated architectures in existence. By using the object-oriented 
approach throughout the development effort, the Intel '432 
designers have produced an extremely uniform and tightly-in­
tegrated hardware/software system. This uniformity of hard­
ware and software systems is due to the use of a consistent 
philosophy. Everything in the Intel 432 is an object. All objects 
have associated types that specify the operations that can be 
performed on those objects. Some objects have hardware-de­
fined operations while others do not. However, from a lan­
guage viewpoint, all objects are accessed in the same way. 

All objects, whether hardware-supported or not, are con­
trolled by type manager modules. Programmers can freely add 
new types to the system by creating new type managers. The 
mechanisms of domain refinement and type definition object 
provide a way for type managers to exhibit privilege over their 
objects and the environments in which their procedures exe­
cute. A type manager can restrict and later amplify privileges 
in ADs for its objects by using a privately held type control 
object. By permitting client access to type management proce­
dures through a refinement, an executing type management 
procedure can obtain access to a richer environment than its 
caller. 

There are no special privileges in the Intel 432 system. The 
mechanisms used by programmer-defined type managers are 
identical to those used by operating system type managers. 



In addition, the concept of programmer-defined type is an 9.8 Discussion 

integral part of the addressing system, in that each object 
descriptor has space for a TDO access descriptor. Few pre-
vious systems have allocated sufficient space to integrate 
programmer-defined objects so tightly into the hardware 
architecture. 

The designers of the Intel 432 have closely adhered to the 
concept of separate procedure address spaces, as presented in 
the Dennis and Van Horn model. Each procedure invocation 
causes the construction of a new context object that defines the 
procedure's addressing environment. This is true even of calls 
to procedures within the same domain,. for which both proce­
dures will have access to a similar set of objects. 

Although an initial implementation of the Intel 432 had sep­
arate data segments and capability segments, the current ver­
sion supports segments with both a data part and a capability 
part, as on STAROS. The object descriptor addresses the bar­
rier between the two parts and contains the size of each part. 
Refinements are provided that allow the construction of what 
appears to be a single two-part segment from contiguous sub­
sets of the two parts of a segment. Two-part segments do not 
allow the flexibility provided by tagging; however, they effec­
tively reduce the number of needed segments by a factor of 
two. This affects performance by reducing the number of seg­
ment allocations required to create a new object. 

Another performance enhancement has resulted from the 
pre allocation of context objects. When a procedure call occurs, 
the hardware simply follows the context link to the next wait­
ing context object. That object has already been prepared with 
a refinement of the parameter space in the calling context. In 
addition, the use of local stack SROs for allocating short-lived 
objects reduces the need for garbage collection. These changes 
to the CALL instruction have reduced its execution time from 
300 microseconds on early prototypes to under 100 microsec­
onds on the cur:rent version of the Intel 432. 

Capabilities on the Intel 432 are 32 bits in size. Of this, 24 
bits form the actual ID or address part of the capability. Thus, 
there are a maximum of 224 objects at any time. Segments have 
a maximum (data part) size of 64K, which is relatively small 
when compounded by the lack of cross-segment addressing. 
That is, due to the structure of Intel 432 addresses, it is not 
possible to transparently cross a segment boundary by incre­
menting the address. Therefore, the compiler must produce 
special code for objects whose data parts cannot be held in a 185 
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single segment. This is true also of procedures that are larger 
than 8K bytes, although this is probably a rare occurrence. 

The instantaneous address space of the Intel 432 is 232 

bytes, based on the use of the four environment ADs stored in 
the context object. These environment ADs act somewhat like 
capability registers, and, in fact, the Intel 432 GDP has special 
internal registers to hold their values. At any time, ADs in use 
by a procedure must be stored in one of the four environment 
objects. To access objects located indirectly through the envi­
ronments, the procedure must explicitly traverse the structure, 
loading ADs for each level in the tree. 

The Intel iAPX 432 is an ambitious system in terms of both 
architecture and implementation. It is particularly impressive 
when considered in relation to the other available single-chip 
processors. But it is fair to say that the Intel 432 has not been 
a commercial success. Although there were over 100 Intel 432 
systems in the hands of universities and customers by 1983, 
this is a small number by microprocessor standards. The com­
mercial problems of the Intel 432 are probably due in part to 
premature (and somewhat overzealous) marketing of the prod­
uct before its implementation and software were ready. The 
initial version of the Intel 432 had performance problems, 
which have been corrected to some extent by later versions of 
the architecture. Still, whether or not the Intel 432 succeeds as 
a product, it has opened a new era of microprocessor design. 

9.9 For Further Reading 

The book by [Organick 83] presents the most comprehen­
sive description of the Intel 432. It describes the major compo­
nents of the Intel 432 system-the Ada compiler, the iMAX 
operating system, and the iAPX 432 hardware architecture­
and provides Ada programming examples as well. In the pub­
lished literature, the paper by Pollack, Kahn, and Wilkinson 
describes the philosophy behind the Intel 432 object filing sys­
tem [Pollack 81], and the paper by Cox, Korwin, Lai, and 
Pollack discusses the Intel 432 interprocess communication 
facility used for both message passing and process scheduling 
[Cox 83]. Storage management on the Intel 432 is discussed in 
[Pollack 82]. The Architecture Reference Manual [Intel 81, 
Intel 82] contains detailed descriptions of the Intel 432 archi­
tecture. 
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Issues in Capability-Based 
Architectures 

10. 1 Introduction 

Previous chapters have followed the transition from early 
descriptor-based computer architectures to the latest in com­
mercially available capability systems. The examination began 
with the Burroughs BSOOO and the Rice University computer. 
Both of these machines used descriptors, or user-addressable 
base/limit registers, to define a program's addressing environ­
ment. Capability systems extended this idea in several signifi­
cant ways: 

1. Capabilities are protected addresses. They can be freely cop­
ied, passed as parameters, and transmitted from domain to 
domain, but cannot be forged or modified by users. 

2. Capabilities are context-independent. They address the same 
object independent of the domain or process in which they 
are used. 

3. Capabilities contain access rights as well as addressing infor­
mation. 

4. The address or identifier in a capability is independent of 
the physica1 base and limit information used for memory 
mapping. This identifier is used to locate a single physical 
descriptor for the addressed object. 

S. Capabilities and the objects they address can be saved in 
long-term storage. They have a lifetime longer than the ex­
istence of the process that created them. 

6. Capabilities provide a uniform mechanism for naming all 
types of objects in the environment, both hardware and soft­
ware supported. This enables users to extend the facilities 
provided by the hardware and vendor-supplied operating 
system software. Moreover, they provide run-time support 
for abstraction and object-based programming. 187 
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Of course, these capability concepts did not appear at once but 
evolved over time. Each new system was able to benefit from 
experience gained in previous systems-even those that were 
short-lived. 

This chapter discusses some of the design issues in capabil­
ity-based systems. Although each topic could be a chapter in 
itself, the discussions here are relatively brief. Where possible, 
tradeoffs are examined in the light of the various systems de­
scribed. 

10.2 Segmentation 

This book began by examining the objectives of early sys­
tems in diverging from the conventional linear address space. 
Because each of the systems examined includes a segmented 
memory space, it is fitting to begin the discussion with a review 
of segmentation. Segments are the fundamental objects in ca­
pability systems; they provide the units of addressing and shar­
ing. 

The reasons for segmentation are much the same today as 
they were in 1960: 

1. Segments correspond to logical program entities. They can 
be used to decompose programs and data structures into 
units that are meaningful to the programmer. 

2. Segmentation allows the logical entities to grow or shrink. 
3. Segmentation supports memory relocation and virtual 

storage. 
4. Segments provide logical units of separation, protection, 

and sharing, both between programs and processes and 
within a single program or process. Moreover, segments 
allow for a dynamically changing memory environment. 

On early machines, a segment was addressed through a de­
scriptor-usually contained in a descriptor segment. Iliffe's 
Basic Language Machine included a type for each segment to 
indicate the kind of information contained there. The type was 
stored in the descriptor for a segment; it allowed automatic 
conversion and tagging when data elements were moved from 
memory into registers. 

On current object-based machines, abstract objects are 
composed of one or more segments. For multi segment objects, 
a capability for a base segment serves to address the object as a 
whole. This base segment contains pointers to the other seg­
ments forming the object. Segments are thus the basic units 
addressed by capabilities. 



Although segments are the fundamental units of storage al­
location, paging can be provided along with segmentation, as 
in the IBM System/38. Each segment is divided into fixed­
sized pages that can be independently located. Paging adds 
additional storage overhead for the system data structures that 
maintain information about the memory state. However, the 
division of physical and virtual storage into fixed-sized units 
simplifies memory management by removing the memory 
shuffling and compacting problems. 

10.3 Storage of Capabilities 

Capability systems have no privileged mode of operation. 
All privileges, including those permitted to the operating sys­
tem, are derived from the possession of capabilities. The integ­
rity of the entire system depends on the fact that users cannot 
forge capabilities or modify them directly. For this reason, the 
hardware must be able to detect and prohibit any attempt to 
modify a capability with data instructions. Two different 
schemes have bt!en used to provide this capability protection: 
C-lists and tagging. 

Most systems have chosen to implement C-lists-often im­
plemented as c:apability segments-to protect capabilities. 
U sing this protection mechanism, capabilities are stored only 
in capability segments where they are segregated from user­
modifiable data. Separation of capabilities can complicate the 
construction of record-oriented data structures in which it is 
natural to mix data and pointers (capabilities). However, a 
compiler can mask this problem by implementing the structure 
in two parts or by storing a specifier for the capability, such as 
the C-list index, instead of the capability itself. 

The implemt!ntation of C-lists is technologically simpler 
than tagging; it requires no special hardware on a per-informa­
tion-unit basis. A single bit in the physical mapping informa­
tion for each segment indicates whether the segment contains 
capabilities or data. Or, as is often the case, the distinction is 
maintained in the access rights of capabilities used to address a 
segment. Each segment capability indicates whether capability 
or data access is allowed to that segment. The operating system 
is privileged because it possesses capabilities that allow data 
access to user's capability segments. 

In addition to implementation advantages, C-lists can pro­
vide added efficiency in capability addressing. For example, 
capabilities can be specified by their index in a C-list. If multi-
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pIe C-lists are allowed, then multiple indices may be needed. 
Or, if the number of directly addressable capability segments 
can be restricted (e.g., the Intel 432's 4 environments or CAP's 
16 capability segments), a small number of bits appended to 
the index can specify which C-list to use. Short forms of ad­
dressing can be provided for cases where the most frequently 
used capabilities are stored at small displacements from the 
start of the C-list. Thus, C-list schemes often result in a reduc­
tion of the number of bits needed to refer to a capability, as 
compared to the number of bits needed for a general memory 
address. 

The second method of capability protection requires the use 
of tag bits. Tagging allows capabilities to be stored with user 
data. The ability to combine capabilities and data can simplify 
data structuring for the user. Tagging probably has not been 
used much in the past because of the added memory cost and 
implementation complexity. Still, several early descriptor sys­
tems used tagging when memory was scarce. Certainly mem­
ory cost should not be an issue today. 

The storage cost of tagging depends on the size of the tagged 
information units: the smaller the tagged unit the greater the 
overhead. Most modern systems are byte addressable, but tag­
ging on a byte basis is probably overly expensive. On the Sys­
teml38 there is one tag bit for each 32-bit word. In a case where 
tags are not provided on the smallest addressable information 
unit, capabilities must be aligned on the boundary of a tagged 
unit, such as a 32-bit word. If capabilities are larger than the 
tagged unit, as they are with 16-byte System/38 capabilities, 
alignment must be on larger units. 

The System/38 requires that capabilities be aligned on 16-
byte boundaries and that the tag bits associated with the four 
consecutive words be set. The alignment requirement prohib­
its a user from addressing four consecutive tagged words that 
do not form a valid capability. For example, two consecutively 
stored capabilities will cause eight tag bits to be set. A user 
could address four consecutive words consisting of the last two 
words of the first capability and the first two words of the 
second capability. This four-word item is not a valid capability 
even though the associated tags are set. The alignment require­
ment could be eliminated at the cost of a second tag bit with 
each 32-bit word. The second tag bit would indicate whether 
or not the associated word is the first word of a multi-word 
capability. 

Tag bits can be either part of a data element, which reduces 



the number of bits in the element, or part of a special storage 
area associated with each element. The System/38 chose to 
store the tags outside of the data element in an area accessible 
only to microcode. When a segment is written to disk, the 
hardware extracts the tags and stores them in a compact form 
along with the segment. They are later reinserted when the 
segment is read back into memory. 

STAROS and the Intel 432 have chosen a scheme combining 
advantages of both tagging and C-lists. These systems support 
two-part segments that contain a data portion and a capability 
portion. The descriptor for the segment indicates the size 
of each portion and the position of the dividing line. Address­
ing occurs as with separate segments; the type of an operand 
determines in which portion it is contained. This design re­
duces the number of segments and mapping descriptors. Since 
most objects require both a data part and a capability part, the 
two-part segment scheme halves the number of segments 
needed to hold an object's representation. 

The tagged memory approach is appealing in terms of gen­
erality; it allows capabilities to be freely mixed with data, just 
as pointers or addresses are freely mixed in virtual memory 
systems. A single stack can serve for local storage of both data 
and capabilities. The actual implementation of a tagging 
scheme has a number of complexities. The C-list approach is 
appealing in its simple implementation and in the addressing 
efficiencies that can be gained. C-lists can reduce the number 
of bits needed to address capabilities. Another advantage of 
C-lists (which will become apparent in later sections) is that 
they reduce the time required to search for capabilities. 

In his comparison of the two techniques, Fabry claims that: 

... the advantages ofthe partition approach are all techno­
logical, while some of its disadvantages are intrinsic. 
Thus one might expect the tagged approach to dominate 
in the long run [Fabry 74]. 

It may be too soon to tell, but so far, the partition (C-list) 
approach has dominated. Credit is probably due to current 
high-level languages, whose use masks the intrinsic disadvan­
tages of C-lists. 

10.4 Capability Ilepresentation 

A fundamental decision in capability system design is the 
physical representation of capabilities. A capability contains 
two parts: 
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1. an identifier or name for an object, and 
2. some access rights or privileges to that object. 

The implementation of these fields influences the generality 
with which the capability can be applied, the work required to 
manage capabilities in both hardware and software, and the 
lifetime of objects and capabilities. In evaluating the evolution 
of the DEC PDP-ll minicomputer, Bell and Strecker state 
that: 

There is only one mistake that can be made in a computer 
design that is difficult to recover from-not providing 
enough address bits for memory addressing and memory 
management [Bell 76]. 

This applies to capability systems as well as conventional com­
puters such as the PDP-ll. The capability identifier corre­
sponds directly to the address on conventional machines. 

Early descriptor and codeword machines used single-word 
descriptors to address segments. Each descriptor contained all 
of the mapping information for the segment. Copying of a de­
scriptor caused duplication of the mapping information. This 
duplication of memory base and limit values for a single seg­
ment added complexity to the task of relocation, which the 
descriptor was meant to simplify. 

Two characteristics of these machines simplified the imple­
mentation of descriptors. First, the machines had large words 
and were word addressable. Second, they had relatively small 
memory spaces. Therefore, the base and limit information 
could be easily packed into a single word of the word-address­
able machine. This removed the need for special alignment of 
descriptors. 

New capability systems must contend with smaller word 
sizes, larger address spaces, byte address ability , and the 
greater volume of information needed to manage the system 
efficiently (e.g., usage and garbage collection bits). An addi­
tional problem is the long lifetime of objects on capability sys­
tems, in contrast to conventional machines where an object 
only exists for the lifetime of a program. The longer the object 
lifetime, the more bits needed for an object's address. These 
issues have forced an important distinction between the capa­
bility itself and the physical mapping information for the ob­
ject. Thus, we see a separation between the capability, which 
contains an identifier, and the mapping descriptor, which is 
generally located in a centralized system table. This distinction 



is exemplified in the separation of information between Intel 
432 access descriptors and object descriptors. 

An importanlt component of capability operation is the 
structure of the identifier. Each object or segment is given an 
ID at the time of its creation. This ID is often generated by a 
sequential counter, a clock, a disk address, or the values of 
indices used to locate the object's descriptor. The number of 
bits in the ID partly determines the number of objects that can 
exist at one time. Depending on the number of bits used, the 
ID can be unique for all time, unique for the life of the object, 
or unique during the object's residency in primary memory. 
Each of the possibilities has potential problems. 

On most capability systems an object's ID is a direct index 
into a system ma.pping table. The mapping table contains de­
scriptors for the object, giving its physicallocation~ size, and so 
on. For example) capabilities on the Plessey 250 contain a 16-
bit index into the System Capability Table. The use of this 
index as an object's ID places two restrictions on the system. 
First, the maximum number of addressable segments (at least 
in primary memory) at anyone time is 216 or 64K. Second, the 
System Capability Table must always be resident in physical 
memory. On the Plessey 250, the mapping table for 64K de­
scriptors occupies about 589K bytes of storage. 

The Intel 432 uses a two-level indexing structure, where the 
ID is 24 bits, allowing for 16 million objects. The 24-bit ID is 
divided into two 12-bit table indices. The first selects a de­
scriptor in the central Object Table Directory. This descriptor 
addresses an object table in which the second index locates the 
descriptor for tht! object (this structure was shown in Figure 
9-5). The two-level scheme allows the second-level object ta­
bles to be swapped out, reducing the amount of required stor­
age overhead. Only the Object Table Directory, which has a 
maximum size of 64K bytes, need always be memory resident. 

Both the Plessey and Intel mechanisms provide for a limited 
number of objects relative to the lifetime of the system. There­
fore, object IDs must be reused when objects are destroyed. 
One problem with reuse of IDs is knowing what IDs are availa­
ble to be reused. Since an object's ID is an index in the map­
ping table, a link(!d list of free table slots can be kept and used 
to assign new IDs and descriptors. When a new object is cre­
ated, a free descriptor is taken and its index becomes the ob­
ject's ID. 

A second problem with reusable IDs is dangling references. 
When an object is deleted, outstanding capabilities for that 
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object will still reference the mapping table descriptor slot for 
the object. If a new object is assigned to that descriptor slot, 
the old object's capability could be used to gain access to the 
new object. This implies that (1) an object cannot be deleted 
(or its descriptor reallocated) while capabilities exist for the 
object, or (2) all capabilities for an object to be deleted must be 
found and disabled. This problem is discussed further in Sec­
tion 10.7 on object lifetimes and garbage collection. 

Several capability systems have tried to alleviate the prob­
lems inherent in indexing schemes by implementing a unique­
for-aU-time ID space. On such systems, the ID is sufficiently 
large that the IDs are never used up. For example, object IDs 
on Hydra are 64 bits, allowing for over 1019 objects (it is left as 
an exercise for the reader to determine how long this address 
space would last if the system creates, for example, 100 new 
objects every millisecond). The IBM Systeml38 architecture 
also provides a large address space. A 40-bit ID, or segment 
number, provides for over one trillion segments. This number 
of segments is not likely to be consumed in the lifetime of most 
systems. Another unusual feature of the Systeml38 is that ca­
pabilities contain a virtual address that can reference a specific 
byte. In contrast, on most systems the capability identifies a 
segment, and a separate byte offset must be supplied inde­
pendently. This feature is reminiscent of the earlier descriptor 
machines. 

Of course, with a large address space, locating an object's 
descriptor from its unique ID is more complex than with direct 
indexing. The Hydra system hashes the unique ID to select 
one of 128 lists of active object entries in the Active Global 
Symbol Table. If the object is not found, a search of the Pass­
ive Global Symbol Table is made. Because the IBM Systeml38 
uses paging, mapping information is associated with each page 
of a segment. A Page Directory Table contains the unique vir­
tual page number of each page of primary memory. A hashed 
lookup is made in the Page Directory Table. If the lookup fails, 
a page fault occurs and the page must be read in from disk. 
Systeml38 capabilities retain the same form whether or not the 
segment is in primary memory. 

All of these schemes require a one- or two-level table lookup 
to translate a capability identifier into a memory address. This 
overhead is comparable to the overhead involved in any seg­
mented or virtual memory system. However, access via capa­
bilities may incur additional overheads in order to validate 
type, access rights, and offset. Also, schemes that allow indi-



rection in capabilities may require additional lookups. On the 10.5 Objects 

IBM Systeml38, some references require a user profile search 
to validate access rights to the object. References on the Intel 
432 may require access to an object selector in memory that 
specifies the location of a capability operand. Those systems 
that do not have explicit or implicit capability registers always 
require an extra memory reference to fetch the capability from 
memory. 

With the use of caches, translation buffers, and other proc­
essor-internal registers, there are probably no inherent per­
formance disadvantages of capability system addressing rela­
tive to conventional virtual memory systems. All sophisticated 
modern systems require several levels of addressing indirection 
and rely on specialized high-speed memory to reduce the ap­
parent overhead. 

10.5 Objects 

One of the more interesting developments in computer ar­
chitecture is the relationship between capability hardware and 
object-based software. Capabilities provide a uniform naming 
mechanism for all types of objects. In addition to simple seg­
ments, capabilities are used to address abstract objects whose 
representations are stored in segments. This ability to uni­
formly address complex objects allows the programmer to ex­
tend the architectural interface in order to support high-level 
operating system or application functions. 

All object-based systems supply a basic set of system ob­
jects. These objects usually provide for low-level resource 
management and interprocess communication. For example, 
message ports and processes are common system-supported 
objects. The IBM Systeml38 also includes a number of system 
objects that aid in the construction of database systems. Hard­
ware support of object operations increases performance and 
hides object implt!mentation. 

One possible disadvantage of supporting many objects at 
the hardware level is the added complexity of the machine. 
The Intel 432 and IBM Systeml38 architectures are surely 
among the most complex in existence. The chances for error in 
hardware or microcode design and implementation are great. 
In addition, any high-level mechanism that is moved into hard­
ware must be carefully considered. Because the mechanism 
and its interface cannot easily be changed, an ill-designed 
mechanism will simply waste valuable resources. The tradeoff 195 
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of whether or not to support a particular type in hardware is 
one of performance and integrity versus machine complexity. 

10.6 Protected Procedures and Type Extension 

One of the strengths of capability systems is that they allow 
operating systems and users to extend the hardware interface 
in a uniform way. This facility is available because capabilities 
can address operating system and user-implemented objects, as 
well as hardware supported objects. The only difference is that 
software-implemented operations are obtained through a CALL 

or ENTER instruction, while hardware-implemented operations 
are obtained through hardware instructions. 

There are several requirements for a system that allows 
users to construct their own type managers: that is, protected 
subsystems that create and manipulate protected objects. 

1. A user must be able to construct a type manager: an execu­
tion environment consisting of type management procedures 
and private data segments and objects. This private environ­
ment is usually called a domain. The domain is the static 
representation of the type management system. 

2. The type manager must be able to distribute controlled ac­
cess for its execution environment to its clients. Access is 
passed through a capability that permits invocation of public 
procedures but gives no access to any of the private objects 
in the domain. 

3. The hardware must supply a mechanism to invoke the envi­
ronment. Using the capability for the domain, a client must 
be able to cause execution of one of the public procedures in 
the domain. The invocation creates the dynamic type man­
agement environment in which the executing procedure has 
access to domain-local procedures and objects not available 
to its caller. 

4. A type management procedure executing within the domain 
must be able to create new objects. It must be able to allo­
cate segments in which the representation for new objects 
can be stored. 

5. A type management procedure must be able to return to a 
client a sealed capability for an object. The sealing mecha­
nism must prohibit the client from directly accessing the 
object's representation. Thus, the client holds the capability 
as proof of ownership and can pass it on to other users. Any 
operations on the object are performed by passing the capa­
bility as a calling parameter to a type management proce­
dure. The type manager must retain the privilege to unseal 
capabilities of its type, thus gaining access to their represen­
tations. 



Capability systems have implemented the addressing of pro­
grammer-defined type managers in several ways. One common 
mechanism is to provide a new instance of the type manager for 
each new object. When an object is created, the type manager 
returns an enter capability for a new instance of itself. This 
capability addresses a domain that includes capabilities for 
type management procedures along with a capability for the 
representation of the new object instance. The object is manip­
ulated by calling type management procedures through the re­
turned domain capability. The Plessey System 250 Central 
Capability Block and CAP Enter PRL scheme are examples of 
this mechanism. 

A second mechanism is the use of restriction and amplifica­
tion of capabilities. The type manager returns restricted capa­
bilities for new object instances to its clients. These restricted 
capabilities cannot be used to access an object's representation, 
although they contain type-specific rights. The type manager 
retains a private capability that permits it to amplify all capa­
bilities of its type. Clients of such a type manager must either 
have a separate capability for the type management domain or 
be able to access the domain indirectly through the object capa­
bility. The Hydra and Intel 432 systems use restriction and 
amplification. The Hydra TYPECALL mechanism allows the 
possessor of the capability for an object to call the object's type 
manager. The Intel 432 RETRIEVE TYPE DEFINITION instruction 
returns to the caller a capability for the type management do­
main of a specified object capability. 

Whatever the mechanism, a system must be able to (1) de­
fine a procedure execution environment that is distinct from 
the environment in which the procedure was called and (2) 
protect the representation of an object so that only its type 
manager can directly modify its storage. A system that permits 
users to create such. environments simplifies the construction 
and extension of operating systems by eliminating the notion of 
privilege that exists in conventional systems. Thus, modules 
traditionally constructed as part of a monolithic privileged ker­
nel can be implemented and debugged independently as user 
programs. 

10.7 Object Lifetimes and Garbage Collection 

The object concept has dramatically changed the conven­
tional concept of secondary storage. Traditional systems have 
stream-, record-, or block-oriented file systems that preserve 
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information. Program-addressable entities are by default not 
long-lived; preservation of short-lived entities requires that 
they be converted to a format acceptable to the file system. On 
object-based systems, it is natural to wish to preserve objects 
on secondary storage-that is, to provide a virtual object stor­
age system. 

Many capability systems distinguish temporary and perma­
nent objects. The CAL-TSS system became overly complex to 
some extent because of the decision not to handle secondary 
memory in the kernel and the inability to name temporary 
objects in the same way as permanent objects. Plessey 250 pro­
vided a virtual segment interface to the user and handled stor­
age of capability segments on disk. Hydra presented a large, 
flat, object address space. Object storage is provided by both 
the Systeml38 and the Intel 432. Both of these systems also 
have temporary objects that have special treatment. The Sys­
teml38 reserves part of its address space for temporary objects; 
these objects do not receive normal protection and are deleted 
when the system is booted. The Intel 432 gives temporary sta­
tus to objects allocated out of local stack storage; these objects 
are implicitly deleted when the procedure in which they are 
allocated returns. 

Object destruction is a difficult problem in capability sys­
tems. On the Systeml38, each object has an owner and the 
owner can delete the object explicitly. However, on most capa­
bility systems there is no concept of an object's owner. An 
object has some number of users, and each user possesses a 
capability for the object. Since capabilities can be easily deleted 
or passed from user to user, the set of users for an object can 
change dynamically. 

It is often difficult to tell when an object is no longer 
needed. Garbage objects must be deleted or the system's disk 
or memory will eventually overflow with useless objects. The 
solution to this problem is garbage collection. A garbage collec­
tion process (or processes) is responsible for finding and delet­
ing garbage objects. An object is garbage when it can no longer 
be accessed by any user. In the simplest case, if all capabilities 
for the object have been deleted, the object can never be refer­
enced and can safely be destroyed. 

One method of garbage detection is to maintain a reference 
count with each object. The reference count indicates the num­
ber of capabilities for the object and must be updated when­
ever a capability for the object is copied or deleted. When a 
reference count is decremented to zero, the object can be de­
leted. 



There are at least two problems with reference counts that 
make them insufficient to solve the garbage collection problem 
completely. First, circularities can exist in the object structure. 
For example, if object A contains a capability for object B, 
while object B contains a capability for object A, then both will 
have reference counts of at least one. However, if no other 
capabilities exist for either object, then A and B are not accessi­
ble and should be deleted. Second, it is difficult to maintain 
the integrity of reference counts over system crashes. It would 
be costly to update a reference count on secondary storage for 
each capability copy or delete operation. If reference counts are 
only updated periodically on disk, a system crash can intro­
duce inconsistencies. 

Object-based systems must, therefore, resort to garbage col­
lection. A simplified garbage collector would operate as follows. 
The garbage collection process starts with a set of root objects. 
In general, each user of the system has a principal C-list or 
directory that is the root of all objects the user can access; these 
lists or directories form the roots. The garbage collector first 
marks every object in the system as being unreachable (there 
must be some way of locating all objects through a master di­
rectory). The garbage collector then marks all objects in the 
root directories as being reachable. The C-lists of these objects 
must then be scanned to see if they refer to other objects to be 
marked as reachable, and so on recursively. Eventually all ob­
jects will be marked as reachable or unreachable, and a pass 
can be made to delete the unreachable objects. 

Garbage collection is complex because it must operate con­
currently with normal system processing. That is, a garbage 
collector must operate while objects and capabilities are being 
created, copied, and deleted. On some systems,. such as 
STAROS, the garbage collector must be concerned with parti­
tioning of the system. It must be able to operate while some 
nodes are unreachable and still guarantee that it will not delete 
an accessible object (worse than not deleting a garbage object). 
Similar problems exist on any system with multiple secondary 
storage devices in which one or more devices can be off-line at 
a given time. The garbage collector must be capable of finding 
objects that are not referenced at all, as well as objects that are 
members of unreachable cycles. Studies of garbage collection 
systems and algorithms can be found in [Bishop 77], [Dijkstra 
78], and [Almes 80]. 

A related problem is garbage collection of the address space; 
that is, the reuse of descriptor slots in object mapping tables, 
such as the Plessey 250 System Capability Table and the Intel 
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432 object tables. These table slots must be reallocated because 
the table, which must be resident in physical memory, cannot 
map all objects known to the system. Therefore, on most sys­
tems, the mapping tables are used only to hold descriptors for 
objects resident in primary memory. This implies that an ob­
ject can have different IDs during its lifetime if it is repeatedly 
moved between primary and secondary storage. 

Systems such as Plessey and Intel solve this problem by 
using two formats for capabilities, an active form and a passive 
form (sometimes called an inform and outform). A simplified 
model of the use of active and passive capabilities follows. 
When each object is created, it is assigned an ID that is guaran­
teed to be unique for at least the life of the object (although not 
for all time). This ID might be generated by the physical disk 
address of the secondary storage for the object. All capabilities 
for the object, when stored on secondary memory, are kept in 
passive form. Passive capabilities contain this long-term ID. 

When an object is brought into primary memory, it is allo­
cated a mapping table descriptor. The mapping table index 
provides the short-term ID for that period of primary memory 
residency. When a capability is used as a reference, the hard­
ware or software must be able to detect whether the capability 
is active or passive. An active capability will contain a short­
term ID and can be used to directly access an object. A capabil­
ity in passive form will cause a trap. The software can then 
examine the long-term ID in the passive capability and con­
vert it to the short-term ID for the object in memory. Or, if the 
object is not currently in memory, it is swapped in and a de­
scriptor and short-term ID are assigned. 

When an object is removed from primary memory, its capa­
bilities are converted to passive form for storage on disk. How­
ever, the system must ensure that no active capabilities exist 
for the object before its mapping table descriptor can be reallo­
cated. Any remaining active capabilities must be in primary 
memory since they cannot be stored on disk. Therefore, the 
system can either maintain a reference count for active capabil­
ities or search the C-lists of all resident processes to passivate 
any active capabilities for the object. 

Another design decision to be made in managing secondary 
object storage is determining how and when an object's sec­
ondary storage copy will be updated. The operating system can 
manage virtual object storage, automatically moving objects 
between primary and secondary memory. This corresponds to 
swapping in conventional systems. However, this transparent 



storage mechanism does not ensure that an object's secondary 10.8 Object Locking 

memory copy is always up to date. Some applications need to 
guarantee that certain modifications will not be lost by a crash. 
Another scheme, then, is for the system to provide explicit 
checkpointing operations for type managers. A type manager 
performs temporary object modifications in memory and 
atomically outputs the object to permanent storage by request-
ing a checkpoint. 

An additional problem with object storage is the use of 
transportable media. Object IDs may be unique for a single 
system, but are typically not unique for all systems. Moving an 
object from one computer system to another creates problems 
because the object's ID may be duplicated on the other system. 
Backup of objects provides a similar problem. Maintaining 
capability integrity on transportable media or over networks is 
an additional concern. 

10.8 Object Locking 

One advantage of capability systems is the ease with which 
objects can be shared among several users. This sharing poses 
problems when users of a shared object must perform multi­
step atomic transactions. That is, a user may need to execute 
several object operations with the assurance that no other user 
can access the same object until the transaction is complete. 
Exclusion is also required to prohibit a process from operating 
on inconsistent data when an 110 device is transmitting to ob­
ject storage. Thus, locking facilities are provided in many ca­
pability systems. 

The Intel 432 provides instructions to lock and unlock ob­
jects. A lock is simply a 16-bit field stored within the data part 
of a segment; the llock contains a 14-bit process ID and a 2-bit 
lock type. Objects can be locked either by hardware or soft­
ware. Some system objects have locks in the processor-de­
fined object data part. Hardware manipulates these locks to 
obtain exclusion when performing certain operations. Software 
uses the LOCK OBJECT and UNLOCK OBJECT instructions to obtain 
mutual exclusion to an object. Execution of a LOCK OBjECT 

instruction checks if the lock is free; if it is free, the process ID 
of the current process is stored in the lock and it is marked 
busy. The instruction returns a boolean result to indicate 
whether or not the instruction succeeded in obtaining the lock. 

The IBM System/38 has a set of higher level lock operations 
to allow increased concurrency for database operations. Ob­
jects can be locked in one of five modes: 201 
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1. shared read-user can read, other users can read or write 
2. shared read only-user can read, other users can read 
3. shared update-user can read or write, other users can read 

or write 
4. exclusive allow read-user can read or write, other users can 

only read 
5. exclusive no read-user can read or write, other users can­

not access 

The LOCK OBJECT instruction requests one or more locks on one 
or more objects. The instruction will either succeed in obtain­
ing all locks specified or no locks will be held; that is, if a lock 
cannot be obtained, all previous locks obtained by the instruc­
tion are released. The instruction can specify that the program 
either wait for locks that are currently unavailable or return 
immediately. There is also a time-out parameter that indicates 
the maximum time that the instruction should contend for a 
lock. 

The horizontal microcode on the Systeml38 maintains a 
data structure that indicates (for each object for which a lock is 
held) the type of lock being held and the ID of the requester. 
Several locks may be held for a single object; this will be indi­
cated in the data structure. The System/38 provides instruc­
tions to examine all locks held by a process or an object. 

There are, thus, several basic types of locking facilities, 
including implicit and explicit locks. Implicit locks occur as 
the result of hardware manipulation of an object; this operation 
usually requires mutual exclusion. Software may request mu­
tual exclusion or with more sophisticated mechanisms may 
request only certain types of exclusion to allow maximum con­
currency. 

10.9 Revocation 

One strength of capability systems is the ability to copy and 
transmit object access rights freely between processes. This 
strength can also be a weakness when a user needs to restrict 
access to an object for which capabilities have previously been 
distributed. In this case, a revocation mechanism is needed to 
retract or cancel the outstanding capabilities. A good examina­
tion of such mechanisms is provided by Redell [Redell 7 4a] . 
With the exception of the System/38, none of the systems ex­
amined have attempted to support revocation. 

The System/38 provides revocation through user profiles. 
Some Systeml38 capabilities (unauthorized capabilities) do not 



contain access rights. An object access that specifies such a 10.10 Conclusions 
capability requirt:s a process-local profile table lookup to check 
the permitted access. The owner of an object can later revoke 
the object's access rights stored in another process's profile. 
This scheme combines the concept of access list with capability 
addressing. However, it adds some complexity to the use of 
capabilities because unauthorized capabilities require a profile 
search while authorized capabilities do not. Unauthorized ca-
pabilities are not context-independent and, therefore, cannot 
always be shared with other processes. 

A program may wish to restrict capability access in other 
ways. For example, a calling procedure might want to ensure 
that a called program does not retain or pass on a capability 
parameter. The Hydra system provides access rights bits in the 
capability that specify whether a capability can be stored in a 
C-list with longer life than the procedure invocation. 

Restriction of capability copying can be handled by access 
rights, but revoc:ation is a more difficult problem. Only the 
System/38 has considered revocation an important facility to 
provide. Perhaps other systems have not been willing to pay 
the cost of the additional overhead. Or, more likely, they were 
not as concerned with the security and protection problems 
brought on by the easy propagation of capabilities. These 
problems will become more important to solve as capability 
systems find more acceptance in commercial applications. 

10.10 Conclusions 

This book has followed the history of capability systems 
from early descriptor machines and Iliffe's codewords, through 
the first designs by Dennis and Van Horn at MIT and Fabry at 
Chicago, to the most recent commercial systems by IBM and 
Intel. Capability systems are of great interest today because of 
the object approach that is affecting the design of languages, 
operating systems, and hardware. The object approach prom­
ises to influence to a large extent the way in which software is 
produced in the future. 

There are a number of benefits to be gained from capability 
systems. Although many of these benefits have been described 
previously, some of the most important ones are restated here. 

1. Capability systems permit great flexibility in dynamic shar­
ing of information. This flexibility is due to the global, con­
text-independent interpretation of capabilities, and the abil­
ity of users to copy and transmit capabilities freely. Sharing 203 



Issues in Capability­
Based Architectures 

204 

of data structures does not require operating system inter­
vention for mapping shared structures or for buffering in­
formation between processes. 

2. Capabilities provide a single uniform mechanism for naming 
objects of all types. Most traditional systems require many 
different naming schemes for operating system objects as 
well as hardware objects. 

3. Capability systems provide a good basis for protection and 
isolation of software components. A procedure's domain can 
be restricted to include only those objects absolutely re­
quired for operation. Different procedures, even in the same 
subsystem, can execute in disjoint, overlapping, .or identical 
domains. This protection mechanism aids in software relia­
bility. 

4. There is nothing "privileged" about protection on a capabil­
ity system; that is, there is generally no privileged mode of 
operation. The ability to access objects is defined by the 
execution domain. Traditionally privileged software systems 
can thus be implemented as standard user programs. Users 
can add functions to the operating system base in a uniform 
way without requiring special privilege. 

5. Capability systems support a long-term, single-level object 
storage system that removes the concept of secondary stor­
age file systems. 

6. Capability systems make an explicit distinction between 
addresses and data. This distinction makes garbage collec­
tion of objects possible. 

In addition to these advantages, there are a number of associ­
ated problems. 

1. Capabilities and their associated mapping information can 
consume additional storage space. For example, System/38 
capabilities require 16 bytes of storage. Intel 432 capabilities 
are only 32 bits in size, but the mapping tables require 16 
bytes per object. 

2. Garbage collection of the object space may be required to 
locate objects that are no longer accessible. Garbage collec­
tion is a complex and resource consuming task. 

3. Garbage collection of the name space may be required to 
avoid dangling references whenever an object is destroyed. 
The required capability search is particularly difficult on a 
system that uses tagging of capabilities, because all memory 
segments can potentially contain capabilities. On a system 
using C-lists, only the capability segments need to be 
searched, but this can still be a costly operation. 

4. The advantages of protection and isolation are gained 
through the use of a protected procedure mechanism. The 
call or enter mechanism used to invoke a protected proce­
dure can be expensive, since a new addressing environment 



must be constructed. (A call on a capability system is analo­
gous in many ways to a context switch on a conventional 
system.) This cost can force a programming style contrary to 
that intended. Although these mechanisms provide excellent 
support for small domains, they may prove expensive for 
subsystems that need to pass large, complex information 
structures. 

5. Capability systems can be costly in the number of memory 
references needed to access an operand. Every operand ref­
erence requires access to a capability and to several mapping 
tables (although this overhead exists on any segmented or 
paged system). Systems with explicit capability registers 
seem better in this respect, and caches can help as well. 

6. Whether or not capabilities can be used to build a secure 
system is still an open issue. Capability systems typically 
support unre:stricted passing of information, while secure 
systems require controls on information passing. It is diffi­
cult in most capability systems (with the exception of Sys­
teml38) to determine who has access to an object. 

These lists indicate that capability mechanisms may in­
crease programming generality and protection at the possible 
cost of performance. Although capability systems may simplify 
the construction of complex systems, they add new complexi­
ties to the hardware and operating system implementation. 
Still, the performance problems suffered by many early capa­
bility systems were often due to peculiarities of the individual 
designs or to hardware poorly matched to the task. There is 
probably no inherent reason why a capability-based system 
cannot perform as well as a conventional architecture machine. 

It is the success or failure of the object-based programming 
approach that will eventually determine the success or failure 
of capability architectures. Although object-based program­
ming can be supported by specialized languages on conven­
tional machines, capability addressing provides run-time pro­
tection and error detection. Capabilities can support an 
environment with a mix of different object-based and conven­
tional languages on the same machine. Whether or not the 
object approach allows programmers to handle the complexity 
inherent in sophisticated applications better remains to be 
demonstrated. We have surely seen only the first generation of 
object-based and capability-based systems to appear in the 
commercial marketplace. 

10.10 Conclusions 

205 





Bibliography 

[Ackerman 67] 
W. B. Ackerman and W. W. Plummer. An Implementation of a 

Multiprocessing Computer System. In Proceedings of the ACM 
Symposium on Operating System Principles. October 1967. 

[Almes 78] 
G. Almes and G. Robertson. An Extensible File System for Hydra. 

In Proceedings of 3rd International Conference on Software Engi­
neering, pages 288-294. ACM, May 1978. 

[Almes 80] 
G. T. Almes. Garbage Collection in an O~ject-Oriented System. 

Ph.D. thesis, Carnegie-Mellon University, June 1980. 

[Bell 76] 
G. Bell and W. D. Strecker. Computer Structures: What Have We 

Learned From the PDP-II? In Proceedings of the 3rd Annual 
Symposium on Computer Architecture, pages 1-14. January 1976. 

[Bennett 82] 
J. K. Bennett. A Comparison of Four Object-Oriented Systems. Tech­

nical Report TR 82-11-03, Department of Computer Science, 
University of Washington, 1982. 

[Berstis 80a] 
V. Berstis. Security and Protection of Data in the IBM System/38. 

In Proceedings of the 7th Symposium' 'on Computer Architecture, 
pages 245-252. May 1980. 

[Berstis 80b] 
V. Berstis, C. D. Truxal and J. G. Ranweller. System/38 Address­

ing and Authorization. In IBM System/38 Technical Develop­
ments. IBM GSD G580-0237-1, 1980. 207 



Bibliography 

208 

[Bierman 81] 
E. M. Bierman. A Comparative Study of Network-Based Object-Ori­

ented File Systems. Master's thesis, University of Washington, 
1981. 

[Birrell 78] 
A. D. Birrell and R. M. Needham. An Asynchronous Garbage Col­

lector for the CAP Filing Systems. Operating Systems Review 
12(2):31-33, April 1978. 

[Bishop 77] 
P. B. Bishop. Computer Systems with a Very Large Address Space and 

Garbage Collection. Ph.D. thesis, MIT, May 1977. 

[Brinch Hansen 78] 
P. B. Hansen. Distributed Processes: A Concurrent Programming 

Concept. Communications of the ACM 24(11):934-941, Novem­
ber 1978. 

[Burroughs 61] 
The Descriptor-a Definition of the B5000 Information Processing 

System. Burroughs Corporation, Detroit, Michigan, 1961. 

[Cohen 75] 
E. Cohen and D. Jefferson. Protection in the Hydra Operating Sys­

tem. In Proceedings of the 5th Symposium on Operating Systems 
Principles, pages 141-160. November 1975. 

[Cohen 76] 
E. Cohen, W. Corwin, D. Jefferson, T. Lane, R. Levin, J. New­

comer, F. Pollack, and W. Wulf. Hydra Kernel Reference Manual. 
Department of Computer Science, Carnegie-Mellon University, 
1976. 

[Cook 78a] 
D. Cook. The Cost of Using the CAP Computer's Protection Facili­

ties. Operating Systems Review 12(1), April 1978. 

[Cook 78b] 
D. J. Cook. The Evaluation of a Protection System. Ph.D. thesis, 

University of Cambridge, 1978. . 

[Cook 79] 
D. Cook. In Support of Domain Structure for Operating Systems. 

In Proceedings of the 7th Symposium on Operating Systems Princi­
ples, pages 128-130. December 1979. 

[Cosserat 72] 
D. C. Cosserat. A Capability Oriented Multi-Processor System for 

Real-Time Applications. In Proceedings of the International Con­
ference on Computer Communications. October 1972. 

[Cosserat 74] 
D. C. Cosserat. A Data Model Based on the Capability Protection 

Mechanism. In Proceedings of the International Workshop on Pro­
tection in Operating Systems. August 1974. 



[Cox 83] Bibliography 
G. W. Cox, W. M. Corwin, K. K. Lai, and F. J. Pollack. Inter-

process Communication and Processor Dispatching on the Intel 
432. ACM Transactions on Computer Systems 1(1), February 1983. 

[Dahl 66] 1 

O. J. Dahl and K. Nygaard. Simula-An Algol-Based Simulation 
Language. Communications of the ACM 9(9), September 1966. 

[Dahlby 80] 
S. H. Dahlby, G. G. Henry, D. N. Reynolds, and P. T. Taylor. 

System/38-a High-Level Machine. In IBM System/38 Technical 
Developments. IBM GSD G580-0237-1, 1980. 

[Denning 76] 
P. J. Denning. Fault-Tolerant Operating Systems. Computing Sur-

veys 8(4), December 1976. . 

[Dennis 66] 
J. B. Dennis and E. C. Van Horn. Programming Semantics for 

Multiprogrammed Computations. Communications of the ACM 
9(3), March 1966. 

[Dennis 80] 
T. D. Dennis. A Capability Architecture. Ph.D. thesis, Purdue Uni­

versity, May 1980. 

[Dijkstra 78] 
E. W. Dijkstra, L. Lamport, A. M. Martin, C. S. Scholten, and 

E. F. M. Steffens. On-the-Fly Garbage Collection: An Exercise 
in Cooperation. Communications of the ACM 21(11), November 
1978. 

[DOD 80] 
Reference Manual for the Ada Programming Language. United States 

Department of Defense, 1980. 

[England 72a] 
D. M. England. Architectural Features of System 250. In Infotech 

State of the Art Report on Operating Systems. Infotech, 1972. 

[England 72b] 
D. M. England. Operating System of System 250. In Proceedings of 

International Switching Symposium. June 1972. 

[England 74] 
D. M. England .. Capability Concept Mechanism and Structure in 

System 250. In Proceedings of the International Workshop on Pro­
tection in Operating Systems. August 1974. 

[Fabry 67] 
R. Fabry. A User's View of Capabilities. In ICR Quarterly Report, 

pages CI-C8. U. of Chicago Institute for Computer Research, 
November 1967. 209 



Bibliography 

210 

[Fabry 68] 
R. S. Fabry. Preliminary Description of a Supervisor for a Machine 

Oriented Around Capabilities. In ICR Quarterly Report, pages 
BI-B97. U. of Chicago Institute for Computer Research, August 
1968. 

[Fabry 71] 
R. S. Fabry. List-Structured Addressing. Ph.D. thesis, University of 

Chicago, March 1971. 

[Fabry 74] 
R. S. Fabry. Capability-Based Addressing. Communications of the 

ACM 17(7):403-412, July 1974. 

[Feustel 72] 
E. A. Feustel. The Rice Research Computer-A Tagged Architec­

ture. In Proceedings of the Spring Joint Computer Conference, 
pages 369-377. IFIPS, 1972. 

[Feustel 73] 
E. A. Feustel. On the Advantages of Tagged Architectures. IEEE 

Transactions on Computers C-22(7):644-·656, July 1973. 

[Fuller 78] 
S. H. Fuller and S. P. Harbison. The C.mmp Multiprocessor. Tech­

nical Report, Department of Computer Science, Carnegie-Mel­
lon University, 1978. 

[Gehringer 79] 
E. F. Gehringer. Variable-Length Capabilities as a Solution to the 

Small-Object Problem. In Proceedings of the 7th Symposium on 
Operating Systems Principles, pages 131-142. December 1979. 

[Gehringer 81] 
E. F. Gehringer and R. J. Chansler, Jr. STAROS User and System 

Structure Manual, Department of Computer Science, Carnegie­
Mellon University, 1981. 

[Gehringer 82] 
E. F. Gehringer. Capability Architectures and Small Objects. UMI 

Research Press, 1982. 

[Goldberg 83] 
A. Goldberg and D. Robson. Smalltalk-80: The Language and Its 

Implementation. Addison-Wesley, 1983. 

[Goodenough 75] 
J. B., Goodenough. Exception Handling: Issues and a Proposed 

Notation. Communications of the ACM 18(12):683-696, Decem-
ber 1975. . 

[Graham 72] 
G. S. Graham and P. J. Denning. Protection-Principles and Prac­

tice. In Proceedings of the Spring Joint Computer Conference, pages 
417-429. 1972. 



[Halton 72] Bibliography 
D. Halton. Hardware of the System 250 for Communication Con-

trol. In Proceedings of International Switching Symposium. June 
1972. 

[Hamer-Hodges 72] 
K. J. Hamer-Hodges. Fault Resistance and Recovery Within Sys­

tem 250. In Proceedings of the International Conference on Com­
puter Communications. October 1972. 

[Hamilton 79] 
J. Hamilton. Location Dependencies in Distributed Operating Sys­

tems. In Proceedings of the Louisiana Computer Exposition. March 
1979. 

[Hansen 82] 
P. M. Hansen, M. A. Linton, R. N~Mayo, M. Murphy, and D. A. 

Patterson. A Performance Evaluation of the Intel iAPX 432. 
Computer Architecture News 10(4): 17-26, June 1982. 

[Harrison 75] 
M. A. Harrison, W. L. Ruzzo, and J. D. Ullman. On Protection in 

Operating Systems. In Proceedings of the 5th Symposium on Oper­
ating Systems Principles, pages 14-24. November 1975. 

[Herbert 77a] 
A. J. Herbert, editor. CAP Hardware Manual. Computer Labora­

tory, University of Cambridge, 1977. 

[Herbert 77b] 
A. J. Herbert, editor. CAP System Programmer's Manual. Com­

puter Laboratory, University of Cambridge, 1977. 

[Herbert 77c] 
A. J. Herbert, editor. CAP Operating System Manual. Computer 

Laboratory, University of Cambridge, 1977. 

[Herbert 78a] 
A. J. Herbert. A New Protection Architecture for the Cambridge 

Capability Computer. Operating Systems Review 12(1), January 
1978. 

[Herbert 78b] 
A. J. Herbert . . A Microprogrammed Operating System Kernel. Ph.D. 

thesis, University of Cambridge, 1978. 

[Herbert 79] 
A. J. Herbert. A Hardware-Supported Protection Architecture. In 

D. Lanciaux, editor, Operating Systems. North Holland, 1979. 

[Hoare 74] 
C. A. R. Hoare. Monitors: An Operating System Structuring Con­

cept. Communications of the ACM 17(10):549-557, October 
1974. 211 



Bibliography 

212 

[Hoch 80] 
C. Hoch and J. c. Browne. An Implementation of Capabilities on 

the PDP-11145. Operating Systems Review 14(3), July 1980. 

[Hoffman 80] 
R. L. Hoffman and F. G. Soltis. Hardware Organization of the 

System/38. In IBM Systeml38 Technical Developments. IBM 
GSD G580-0237-1, 1980. 

[Houdek 80] 
M. E. Houdek and G. R. Mitchell. Translating a Large Virtual 

Address. In IBM Systeml38 Technical Developments. IBM GSD 
G580-0237-1, 1980. 

[Houdek 81] 
M. E. Houdek, F. G. Soltis, and R. L. Hoffman. IBM System/38 

Support for Capability-Based Addressing. In Proceedings of the 
8th Symposium on Computer Architecture. ACM/IEEE, May 1981. 

[HP 72] 
HP 3000 Computer System Reference Manual. Hewlett-Packard 

Company, Cupertino, California, 1972. 

[IBM 80'] 
IBM Systeml38 Functional Reference Manual. IBM GA21-9331-3, 

1982. 

[IBM 82a] 
IBM Systeml38 Technical Developments. IBM GSD G580-0237-1, 

1980. (A collection of 30 short papers on System/38). 

[IBM 82b] 
IBM Systeml38 Functional Concepts Manual. IBM GA21-9330-1, 

1982. 

[Iliffe 62] 
J. K. I1iffe and J. G. J odeit. A Dynamic Storage Allocation 

Scheme. Computer Journal 5(3):200-209, October 1962. 

[Iliffe 68] 
J. K. Iliffe. Basic Machine Principles. American Elsevier, Inc., New 

York, 1968. 

[Iliffe 69] 
J. K. Iliffe. Elements of BLM. Computer Journal 12(3):251-258, 

August 1969. 

[Iliffe 82] 
J. K. Iliffe. Advanced Computer Design. Prentice/Hall Interna­

tional, 1982. 

[Ingalls 78] 
D. H. H. Ingalls. The Smalltalk-76 Programming System Design 

and Implementation. In Proceedings of the 5th ACM Symposium 
on Principles of Programming Languages. January 1978. 



[Ingalls 81] Bibliography 
D. H. H. Ingalls. Design Principles Behind Srnalltalk. Byte 6(8), 

1981. 

[Intel 81] 
iAPX 432 General Data Processor Architecture Reference Manual. 

Preliminary edition, Intel Corp., Aloha, Oregon, 1981. 

[Intel 82] 
iAPX 432 General Data Processor Architecture Reference Manual. 

Revision 3 (Advance Partial Issue) edition, Santa Clara, Califor­
nia, 1982. 

[Jagannathan 80] 
A. Jagannathan. A Technique for the Architectural Implementa­

tion of Software Subsystems. In Proceedings afthe 7th Symposium 
on Computer Architecture, pages 236-244. May 1980. 

[Jensen 75] 
K. Jensen and N. Wirth. Pascal User Manual and Report. 

Springer-Verlag, 1975. 

[Jodeit 68] 
J. G, Jodeit. Storage Organization in Programming Systems. Com­

munications of the ACM 11(11), November 1968. 

[Jones 73] 
A. K. Jones. Protection in Programmed Systems. Ph.D. thesis, Car­

negie-Mellon University, June 1973. 

[Jones 78a] 
A. K. Jones, R. J. Chansler, Jr., I. Durham, K. Schwans and S. R. 

Vegdahl. STAROS, A Multiprocessor Operating System for the 
Support of Task Forces. In Proceeding of the 7th Symposium on 
Operating Systems Principles, pages 117-127. December 1978. 

[Jones 78b] 
A. K. Jones. The Object Model: A Conceptual Tool for Structuring 

Software. In H ... Bayer, R.M., Graham, and G. Seegmuller, (edi­
tors), Operating Systems-AniAdvanced Course. Springer-Verlag, 
1978. 

[Jones 80a] 
A. K. Jones and E. F. Gehringer, editors. The Cm* Multiprocessor 

Project: A Research Review. Technical Report, Department of 
Computer Science, Carnegie-Mellon University, July 1980. 

[Jones 80b] 
A. K. Jones. Capability Architecture Revisited. Operating Systems 

Review 14(3), July 1980. 

[Kaehler 81] 
T. Kaehler. Virtual Memory for an Object-Oriented Language. 

Byte 6(8), August 1981. 213 



Bibliography 

214 

[Kahn 81] 
K. C. Kahn, W. M. Corwin, T. D. Dennis, H. D'Hooge, D. E. 

Hubka, L. A. Hutchins, J. T. Montague, and F. J. Pollack. 
iMAX: A Multiprocessor Operating System for an Object-Based 
Computer. In Proceedings of the 8th Symposium on Operating Sys­
tem Principles. December 1981. 

[Krasner 81] 
G. Krasner. The Smalltalk-80 Virtual Machine. Byte 6(8), 1981. 

[Lampson 69] 
B. W. Lampson. Dynamic Protection Structures. In Proceedings of 

Fall Joint Computer Conference, pages 27-38. IFIPS, 1969. 

[Lampson 71] 
B. W. Lampson. Protection. In Proceedings of the Fifth Princeton 

Symposium on Information Sciences and Systems, pages 437-443. 
March 1971. Reprinted in Operating Systems Review, 8(1), Janu­
ary 1974. 

[Lampson 76] 
B. W. Lampson and H. E. Sturgis. Reflections on an Operating 

System Design. Communications of the ACM 19(5):251-265, May 
1976. 

[Lampson 80] 
B. W. Lampson and D. P. Redell. Experience with Processes and 

Monitors in Mesa. Communications of the ACM 23(2):105-117, 
February 1980. 

[Lazowska 81] 
E. D. Lazowska, H. M. Levy, G. T. Almes, M. J. Fischer, R. J. 

Fowler, and S. C. Vestal. The Architecture of the Eden System. 
In Proceedings of the 8th Symposium on Operating Systems Princi­
pies. December 1981. 

[Levin 75] 
R. Levin, E. Cohen, W. Corwin, F. Pollack, and W. Wulf. Policy/ 

Mechanism Separation in Hydra. In Proceedings of the 5th Sympo­
sium on Operating Systems Principles, pages 132-140. November 
1975. 

[Levin 77] 
R. Levin. Program Structures for Exceptional Condition Handling. 

Ph.D. thesis, Carnegie-Mellon University, June 1977. 

[Levy 81] 
H. M. Levy. A Comparative Study of Capability-Based Computer 

Architectures. Master's thesis, University of Washington, 1981. 

[Linden 76] 
T. A. Linden. Operating System Structures to Support Security 

and Reliable Software. Computing Surveys 8(4), December 1976. 

[Liskov 77] 
B. Liskov, A. Snyder, R. Atkinson, and C. Schaffert. Abstraction 



Mechanisms in CLU. Communications of the ACM Bibliography 
20(8):564-576, August 1977. 

[Liskov 79a] 
B. H. Liskov and A. Snyder. Exception Handling in CLU. IEEE 

Transactions on Software Engineering (6):546--558, October 1979. 

[Liskov 79b] 
B. Liskov, R. Atkinson, T. Bloom, E. Moss, C. Schaffert, B. 

Scheifler, and A. Snyder. CLU Reference Manual. Technical 
Report LCS/TR-225, MIT, October 1979. 

[Luniewski 79] 
A. W. Luniewski. The Architecture of an Object Based Personal Com­

puter. Ph.D. thesis, MIT, 1979. 

[MIT 71] 
PDP-I Computer Instruction Manual, Part 5--MTA's and IVK's. 

Electrical Engineering Department Document PDP-35-1, MIT, 
Cambridge, Mass., 1971. 

[Morris 73a] 
J. H. Morris, Jr., Types Are Not Sets. In Sympostum on the Princi­

ples of Programming Languages, pages 120-121. October 1973. 

(Morris 73b] 
J. H. Morris, Jr. Protection in Programming Languages. Communi­

cations of the ACM 16(1): 15-21, January 1973. 

[Myers 80] 
G. J. Myers and B. R. S. Buckingham. A Hardware Implementa­

tion of Capability-Based Addressing. Operating Systems Review 
14(4), Octobe:r 1980. 

[Myers 82] 
G. J. Myers. Advances in Computer Architecture, Second Edition. 

John Wiley & Sons, 1982. 

[Needham 72] 
R. M. Needham. Protection Systems and Protection Implementa­

tions. In Proceedings of the Fall Joint Computer Conference, pages 
571-578. 1972. 

[Needham 74] 
R. M. Needham. and M. V. Wilkes. Domains of Protection and the 

Management of Processes. The Computer Journal 17(2), 1974. 

[Needham 77a] 
R. M. Needham and R. D. H. Walker. The Cambridge CAP Com­

puter and its Protection System. In Proceedings of the 6th Sympo­
sium on Operating System Principles, pages 1-10. November 1977. 

[N eedham 77b] 
R. M. Needham. The CAP Project-an Interim Evaluation. In 

Proceedings of the 6th Symposium on Operating System Principles, 
pages 17-22. November 1977. 215 



Bibliography 

216 

[Needham 77 c] 
R. M. Needham and A. D. Birrell. The CAP Filing System. In 

Proceedings of the 6th Symposium on Operating System Principles, 
pages 11-16. November 1977. 

[Organick 83] 
E. I. Organick. A Programmer's View of the Intel 432 System. 

McGraw-Hill, 1983. 

[Ousterhout 80a] 
J. K. Ousterhout, D. A. Scelza, and P. S. Sindhu. Medusa: An 

Experiment in Distributed Operating System Structure. Commu­
nications of the ACM 23(2), February 1980. 

[Ousterhout 80b] 
J. K. Ousterhout. Partitioning and Cooperation in a Distributed Mul­

tiprocessor Operating System: Medusa. Ph.D. thesis, Carnegie­
Mellon University, April 1980. 

[Parnas 72] 
D. L. Parnas. On The Criteria To Be Used In Decomposing Sys­

tems Into Modules. Communications of the ACM 15(12), Decem­
ber 1972. 

[Pashtan 82] 
A. Pashtan. Object Oriented Operating Systems: An Emerging 

Design Methodology. In Proceedings ofACM 82, pages 126-131. 
October 1982. 

[Pinnow 80] 
K. W. Pinnow, J. G. Ranweller, and J. F. Miller. System/38 Ob­

ject-Oriented Architecture. In IBM Systeml38 Technical Develop­
ments. IBM GSD G580-0237-1, 1980. 

[Pollack 81] 
F. J. Pollack, K. C. Kahn, and R. M. Wilkinson. The iMAX-432 

Object Filing System. In Proceedings of the 8th Symposium on 
Operating System Principles. December 1981. 

[Pollack 82] 
F. J. Pollack, G. W. Cox, D. W. Hammerstrom, K. C. Kahn, 

K. K. Lai, and J. R. Rattner. Supporting Ada Memory Manage­
ment in the iAPX-432. In Proceedings of the Symposium on Archi­
tectural Support for Programming Languages and Operating Sys­
tems, pages 117-131. March 1982. 

[Rattner 81] 
J. Rattner and W. W. Lattin. Ada Determines Architecture of 32-

bit Microprocessor. Electronics 54(4), l:;'ebruary 24, 1981. 

[Redell 7 4a] 
D. D. Redell. Naming and Protection in Extendible Operating Sys­

tems. Ph.D. thesis, University of California, Berkeley, Septem­
ber 1974. Available also as MIT project MAC TR-140. 



[Redell 7 4b] Bibliography 
D. Redell and R. Fabry. Selective Revocation of Capabilities. In 

International Workshop on Protection in Operating Systems. IRIA, 
August 1974. 

[Saltzer 74] 
J. H. Saltzer. Protection and the Control of Information Sharing in 

Multics. Communications of the ACM 17(7):388-402, July 1974. 

[Saltzer 75] 
J. H. Saltzer and M. D. Schroeder. The Protection of Information 

in Computer Systems. Proceedings of the IEEE 63(9), September 
1975. 

[Shepherd 68] 
J. H. Shepherd. Principal Design Features of the Multi-Computer. 

In ICR Quarterly Report, pages CI-C13. U. of Chicago Institute 
for Computer Research, November 1968. 

[Snyder 79] 
A. Snyder. A Machine Architecture to Support an Object-Oriented 

Language. Ph.D. thesis, MIT, March 1979. 

[Soltis 79] 
F. G. Soltis and R. L. Hoffman. Design Considerations for the 

IBM System/38. In Proceedings of Compcon 79. Spring 1979. 

[Soltis 81] 
F. G. Soltis. Design of a Small Business Data Processing System. 

Computer, September 1981. 

[Spier 73] 
M. J. Spier, T .. N. Hastings, and D. N. Cutler. An Experimental 

Implementation of the Kernel/Domain Architecture. In Proceed­
ings of the Fourth Symposium on Operating System Principles, pages 
8-21. October 1973. 

[Sturgis 74] 
H. E. Sturgis.ll Postmortem for a Timesharing System. Ph.D. thesis, 

University of California, Berkeley, 1974. Reprinted as Xerox 
Parc report CSL-74-1. 

[Swan 78] 
R. J. Swan. The Switching Structure and Addressing Architecture of an 

Extensible Multiprocessor: Cm*. Ph.D. thesis, Carnegie-Mellon 
University, August 1978. 

[Walker 73] 
R. D. H. Walker. The Structure of a Well-Protected Computer. Ph.D. 

thesis, University of Cambridge, 1973. 

[Wilkes 68] 
M. V. Wilkes. Time-Sharing Computer Systems. American Elsevier, 

Inc., New York, 1968. 217 



Bibliography 

218 

[Wilkes 79] 
M. V. Wilkes and R. M. Needham. The Cambridge CAP Computer 

and its Operating System. North Holland, New York, 1979. 

[Wilkes 82] 
M. V. Wilkes. Hardware Support for Memory Protection. In Pro­

ceedings of the Symposium on Architectural Support for Program­
ming Languages and Operating Systems, pages 107-116. March 
1982. 

[Wulf 74a] 
W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, 

and F. Pollack. Hydra: The Kernel of a Multiprocessor Operat­
ing System. Communications of the ACM 17(6), June 1974. 

[Wulf 74b] 
W. A. Wulf. Alphard: Toward a Language to Support Structured Pro­

grams. Technical Report, Carnegie-Mellon University, Computer 
Science Department, 1974. 

[Wulf 75] 
W. Wulf, R. Levin, and C. Pierson. Overview of the Hydra Oper­

ating System Development. In Proceedings of the Fifth Symposium 
on Operating Systems Principles, pages 122-131. November 1975. 

[Wulf 78] 
W. A. Wulf, and S. P. Harbison. Reflections in a Pool of Proces­

sors: An Experience Report on C.mmp. In 1978 National Com­
puter Conference. AFIPS Press, 1978. 

[Wulf 81] 
W. A. Wulf, R. Levin, and S. P. Harbison. HYDRAIC.mmp: An 

Experimental Computer System. McGraw-Hill, New York, 1981. 

[Yngve 68] 
V. H. Yngve. The Chicago Magic Number Computer. In fCR 

Quarterly Report, pages BI-B20. U. of Chicago Institute for 
Computer Research, November 1968. 

[Zeigler 81] 
S. Zeigler, N. Allegre, R. Johnson, and J. Morris. Ada for the Intel 

432 Microcomputer. Computer 14(6):47-56, June 1981. 



Access control list;) 148 
Addressing 

on Basic Language Machine, 33 
on CAL-TSS, 54 
on CAP, 81, 84, 86 
on Chicago Magic Number 

Machine, 50 
011 Hydra, 120 
011 Intel 432, 163 
on Plessey 250, 71 
on STAROS, 131 
on System/38;) 141, 145 

Basic Language Machine, 30 
Burroughs B5000, 22 

C.mmp, 103-105, 127 
CAL-TSS system, 52 
Cambridge CAP computer, 79 
CAP capability unit, 89 
Capabilities, 187, 191 

on CAL-TSS:) 53 
on CAP, 83, 92 
on Chicago Magic Number 

Machine, 49 
on Dennis and Van Horn 

Supervisor, 42 
on Hydra, 111, 120 
on Intel 432, 165 
on MIT PDP-l System, 47 

Index 

on Plessey 250",67 
on STAROS, 130 
on System/38, 142 

Capability operations 
on Chicago Magic Number 

Machine, 50 
on Dennis and Van Horn 

Supervisor, 43 
on Hydra, 110 
on Intel 432, 166 
on System/38, 144 

CDC 6400,52 
Chicago Magic Number Machine, 48 
CM*, 127 
CPF, 137 
Codewords 

on Basic Language Machine, 31 
on Rice University Computer, 26 
See also Descriptors 

Data tagging 
on Basic Language Machine, 32 

Dennis and Van Horn, 41 
Descriptors 

on B5000, 23 
See also Codewords 

Directories, 44, 132 
Domain, 42 

on CAL-TSS, 53 

219 



Garbage collection, 121, 131, 197 
Global Symbol Table, 118 

Hydra System, 103 

Intel 8086, 160 
Intel iAPX 432, 159 

Local name space, 109 
LSI-11, 127 

Medusa, 128 
MIT PDP-1 timesharing system, 47 
Multiprogramming, 21 

Object locking, 201 
Object Table Directory, 164 
Objects, 195 

on Hydra, 105 
on Intel 432, 162 
on STAROS, 129 
on Systeml38, 139 

Operations, See Capability operations 

PDP-I, 47 
PDP-11, 104, 109, 192 
Plessey System 250, 65 
Pointer resolution, 148 
Process resource list, 85 
Profile adoption, 153 
Program Reference Table, 23 

220 

Protected procedures, 196 
on CAP, 90 
on Chicago Magic Number 

Machine, 51 
on Dennis and Van Horn 

Supervisor, 45 
on Hydra, 113 
on Intel 432, 173 
on MIT PDP-1 System, 48 
on Plessey 250, 72 
on Systeml38, 153 

Reference counts, 121 
Revocation, 148, 202 
Rice University Computer, 25 

Segmentation, 21, 188 
Sphere of protection, 42 
STAROS, 127, 128 
Systeml38, 137 

Tag, 32 
Task forces, 128 
Type extension, 196 

on CAL-TSS, 55 
on CAP, 94 
on Hydra, 113 
on Intel 432, 176 
on MIT PDP-1 System, 48 
on Plessey 250, 73 
on STAROS, 133 

TYPECALL,116 



COMPUTER PROGRAMMING AND ARCHITECTURE: The VAX-II, 
Henry M. Levy and Richard Eckhouse, Jr. Focusing on the VAX-II, this 
unique book offers a comprehensive system viewpoint to the program­
ming and organization of today's computers. The first part discusses 
the architecture of a computer as seen by the assembly language 
programmer. The second part considers the more sophisticated archi­
tectural support of an operating system and the strategies used by an 
operating system to manage hardware resources. 

THE THEORY AND PRACTICE OF RELIABLE SYSTEM DESIGN, 
Daniel P. Siewiorek and Robert S. Swarz. This book introduces a broad 
range of concepts and techniques in reliability. It examines twelve real­
life implementations of reliable computer hardware design and provides 
methodology for configuring reliable computing strategies. 

For information about these and other titles write: 

Digital Press 
Digital Equipment Corporation 
12 Crosby Drive 
Bedford, MA 01730 

order number EY-00011-DP 
ISBN 0-932376-22-3 


