
DataBase
ManageOlent

Whats It All About?

By
Mike O'Connell

Digital Equipment Corporation

Copyright © 1975, 1976, 1977 by Digital Equipment Corporation

Table of Contents
Preface

Chapter 1
File Management
Reviews the basics of File Management, including
sequentially organized files, relatively organized files,
and keyed files.

Chapter 2
Popular "Data Base Management Systems"
Describes the concepts embodied in popular systems
labelled "Data Base Management" and compares them
with the File Management techniques presented in
Chapter 1.

Chapter 3
Data Base Management
Defines Data Base Management and its evolution from
File Management.

12

17

Preface
This book is intended for the technically oriented user who wishes to
have a little light shed on the subjects of File Management and Data
Base Management.

Before the magic words "data base" appeared on the scene, every­
one seemed to understand what files were all about. But now, with
common use of true Data Base Management systems on the horizon,
confusion has replaced understanding. Many products on the market
have been labelled "Data Base Management," when in fact they
consist of nothing more than minor features thrown into the same old
File Management systems that have been around since the early
1950s.
Part of the problem is terminology. Data base technology hasn't been
around long enough for the industry to settle on a set of common
terms that we all understand the same way. This book introduces
some new terms and defines them in the manner that is becoming
accepted in the industry.
The other major factor in the problem is the mystique of data base.
No user wants to be told that his problem is simple enough to be
handled by File Management techniques, so many software vendors
have labelled pseudo data base systems as true data base systems,
and the user is delighted to find that his problem is indeed a serious
one, which can be solved by only the very newest technology. Data
base is exciting; file management is old hat.

If you finish this book with the ability to discern the difference between
a jazzy file system and a true data base system, and can also deter­
mine which type of system is required to solve a given user problem,
then this book will have achieved its goal.

Please note that, although the author has been associated with
Codasyl since 1968, the material in this book does not state the
opinion of, nor imply support of, Codasyl.

Chapter

File Management
Although this book assumes that you know quite a bit about File
Management, we'll review some of the basics just to provide a proper
perspective for the more advanced material to follow.

File Management is the software that provides the user with the ability
to manipulate files. Now, what are files? A file is a collection of data
records related to each other in some way known to the user. For
example, a file of inventory master records contains all information
needed to describe the parts stocked by the user's company. But of
course the File Management system doesn't have any idea of how
the records in the file are related to each other or to other files in the
installation. (Keep that in mind, because it is one of the characteristics
that sets File Management apart from Data Base Management.)

With a File Management system, the user must ask the software to
retrieve a record by providing it either with the location of the record
in the file or with the unique contents of some pre-defined field in
that record. When the user has retrieved the desired record, the job
of retrieving the next desired record is no easier-the File Manage­
ment system must again be given the same kind and same amount
of information. File Management systems simply don't have the ability
to recognize that some data records are logically related to other
data records (possibly in a different file) as seen by the user.

We all recognize that the data records in the user's files represent
some real events that have taken place in the conduct of the user's
business. The user, whether a manager who uses output reports or a
programmer, knows that various events in the conduct of the business
are related to other events in the conduct of the business. For
example, the user knows that a file of payroll master records is related
to a file of time worked records and also to a file of labor distribution
records.

But where must the user imbed the knowledge of those real world
relationships? In the application program, that's where. The application
program must contain the proper read statements and compare
statements to make sure the right records from the right files are
available to the program before it begins to make calculations and
produce reports for management. The responsibility for insuring that
the proper records contribute to the proper calculations is in the
application program. Any other application program that must use
those same records must have the same algorithm coded into it to
insure that the same records are used. That process is time consum­
ing and error prone, but we've lived with it for a long time. (Data Base
Management overcomes that problem, among others.)

Let's look now at the three possible methods of organizing a file:
sequential, relative, and keyed. A file's organization is specified at the
time the file is initially created.

SEQUENTIALLY ORGANIZED FILES
Sequentially organized files (Figure 1) are the oldest and simplest in
the industry. Most devices-card readers, printers, magnetic tape, and
terminals-support only sequentially organized files. A sequentially
organized file is one in which each record is retrieved by successively
retrieving all the records that physically precede it. Records can only
be added to the end of a file, or deleted from the end of a file,
because the physical location of each record is fixed in relationship to
the record preceding and succeeding it.

Figure 1

SEQUENTIAL FILES

EACH RECORD IS RETRIEVED IN ORDER BY ITS PHYSICAL LOCATION.

EXAMPLE: GET THE NEXT RECORD.

2

RELATIVELY ORGANIZED FILES
Slightly more complex and powerful, relatively organized files (Figure 2)
permit random access to their records. For this reason, these files are
normally stored on a random access device, such as a disk. Each
record in a relatively organized file is identified by its position in the
file, relative to the beginning of the file. Each user request to retrieve
a record must specify the relative record number of the desired
record.

Like sequential files, relatively organized files depend on the physical
placement of records for retrieval. Like sequential files, the records
in a relative file may also be retrieved sequentially, by successively
asking for record number one, record number two, etc.

Figure 2

RELATIVE FILES

EACH RECORD IS RETRIEVED RANDOMLY BY ITS LOCATION RELATIVE TO
THE BEGINNING OF THE FILE.

EXAMPLE: GET THE 47th RECORD

2 3 4

KEYED FILES
Neither sequentially nor relatively organized files permit their records
to be retrieved by any method other than physical location of the
record. That isn't too handy for an application where the user needs
the record for its customer Nabisco, but hasn't the foggiest notion
where that record might exist in the file. Even if the file is in order by
customer name, there is no relationship between customer name and
the physical location of the customer's record. The user is stuck with
reading the entire file sequentially until the right record is found, or,
if the file is a relative one with the records stored in customer name
order, using the hunt and peck method. Or a binary search could be
used to try to zero in on the right record.

3

Users recognized long ago that neither sequential nor relative
methods were too fruitful, so the third file organization, keyed, was
invented. In a keyed file, each record is retrieved based on the
contents of some field, called a key field, in the record. When the file
is initially created, the field to be used as the key must be pre-defined
and must remain the key field for the life of the file. This is the only
file organization that allows information useful in the user's business,
like an employee number or customer name, to be given to the File
Management system with a request to find the matching record.

Keyed files (Figure 3) are implemented in two different ways, hashing
and indexing, each having its strong and weak points. Let's look now
at those two ways.

Figure 3

KEYED FILES

EACH RECORD IS RETRIEVED RANDOMLY BY THE VALUE OF A FIELD
IN THE RECORD (THE KEY)

EXAMPLE: GET THE RECORD IN WHICH CUSTOMER NAME = 'NABISCO'

PRUDENTIAL

Hashing
Hashing is a term used to describe a software algorithm that takes
some piece of user information and churns it into a relative record
number (Figure 4). There are a lot of different algorithms for doing
this conversion; the pages of the ACM publications are full of them.
For our purposes, just believe that there are methods of transforming
the name "Nabisco" into the relative record number "1369" or some­
thing comparable. From there on, the File Management system just
treats the file as a relatively organized one, and retrieves the desired
record by getting the right relative location.

Hashing can be a very good method for rapidly retrieving records,
because in most cases only one disk read must be performed to find
the right record. However, complications in the hashing process can
lead to many disk reads. It is not possible to guarantee in any hashing
algorithm that two different inputs might not produce the same out­
put. In other words, both "Nabisco" and "Prudential" might produce
record number 1369, and both records cannot possibly be stored in
the 1369th relative record position in the file. When this happens, we
have what is known as the synonym problem.

4

The most common method of resolving synonyms when storing new
records is to see if the desired record location is empty; that is, deter­
mine if some earlier record with a different key has already been
stored in the spot. If it has, the File Management system searches for
the first available location to put the new record. When retrieving a
record, the record at the computed relative location is retrieved, and
the File Management system determines if the contents of that
record's key field matches the key asked for by the user. If they don't
match, the File Management system searches the next available
locations until the "matching" record is found. When synonyms occur
often, the performance of the system suffers because so many disk
accesses are required to store new records and to retrieve old ones.

Figure 4

HASHING

HASHING USES SOME MATHEMATICAL METHOD OF CONVERTING THE
USER'S KEY VALUE INTO A RELATIVE RECORD NUMBER. THEN THE
RELATIVE ACCESS METHOD IS USED.

EXAMPLE: GET THE RECORD IN WHICH CUSTOMER NAME = 'NABISCO'

I BROWNING I

1

5

~r------ HASHING ROUTINE

'NABISCO' rl,--_X-------'r 2

NABISCO

2

PRUDENTIAL

3

I TENNECO I

4

Indexing
Indexing is a method similar to that used by book publishers. By
definition, an index (Figure 5) is an ordered list of key words, each
entry of which is associated with the location of the data in the book.
If you have a history book and wish to look up information about
Napoleon, you look in the index under "N" to get a page reference.
Then, you can go directly to the right page and read about Napoleon.

An indexed file uses the same principle: the data records are arranged
in a random physical order, but an index is maintained in order by
key contents (Figure 6). Each entry in the index references a relative
record number instead of a book page, but the idea is the same. If
you want to know about your customer Nabisco, you ask the File
Management system to retrieve the record in which the customer
name field (the key field) is equal to "Nabisco." The File Management
system consults the index, which is in order by customer name, then,
after finding the right index record, uses the relative record number
found there to retrieve the right data record. The data records
themselves are, in effect, in a relatively organized file.

Note that random access to keyed files (both hashed files and
indexed files) really uses relatively organized files. The only difference
with keyed files is that the File Management system uses some
additional facilities to get at the proper relative location in the file,
instead of asking the user to know the relative location. Thus, the user
can use values familiar to the running of the business, like "Nabisco"
or "BOLT-93," instead of having to use relative record numbers like
"1569" or "145."

One of indexing's weak points is that each request for a record means
a disk access, probably more, to find the right index record, then one
or more accesses to retrieve the desired record from the data file.
This usually cuts down on the performance of indexed systems
compared to hashed systems, but the indexed systems offset this by
providing more power to the user.

One of the most useful functions available in an indexed file but not
available with a hashed file is sequential access to the data records.
By using the index, which is ordered by the values in the key field,
it is possible to retrieve the data records in that same order. The File
Management system simply reads one index record, turns the
corresponding data record over to the user, then reads the next
physical record in the index, which points to the next logical record
in the data file. Thus, indexed files provide sequential access for the
user, even though the File Management system is accessing the data
records in a physically random order. Without the presence of an
index, this would not be possible. For this reason, indexed files are
usually referred to as Indexed Sequential files, or ISAM files. (ISAM
means Indexed Sequential Access Method.)

You may have seen advertisements for hashed systems that claimed
that sequential access was supported. What they mean is that you
can read through the hashed file in physical sequence. That is obvious
when you realize that the hashed file is really just a relatively organized
file with some software to hash key values and generate relative
record numbers. But retrieving data records by physical sequence is
not the same capability as retrieving them in logical order by the
contents of the key field. That capability exists only if an index exists
for the file.

6

Figure 5

INDEXING

INDEX

BROWNING PAGE 4

NABISCO PAGE 2

PRUDENTIAL PAGE 3

TENNECO PAGE 1

Figure 6

DATA

CUSTOMER
BOOK

INDEXING BY KEY CONTENTS

INDEX DATA

TENNECO
BROWNING RECORD 4

NABISCO RECORD 2 NABISCO

2

PRUDENTIAL RECORD 3 PRUDENTIAL

3

TENNECO RECORD 1

I
BROWNING

4

SINGLE KEY ISAM
Now let's talk about some of the recent improvements that have been
made in providing services to the user with ISAM files. In the begin­
ning, there were ISAM files in which the user specified one key field.
When the file was created and as it was maintained, the File Manage­
ment system kept all the values contained in that key field in the
index. But only one field in the data records could be the key field. It
was somewhat like having a book index that referenced only people's
names, but no place names or event names. To reuse the earlier
example, if you wanted to look into your history book for references
to Napoleon, the index solved your problem. However, if it was an
index containing only people's names, any desire to look up refer­
ences to Waterloo or insanity would be doomed to failure, unless you
were willing to scan each page of the book looking for the references.

7

NAME DIRECTORY: BROWNING

DATA: 1- TENNECO

Figure 7

CUSTOMER NAME INDEX

NABISCO

2

PRUDENTIAL

3

TENNECO

I BROWNING

4

MULTIPLE KEY ISAM
The solution to this problem is very simple, but it took years before
vendors began to supply it. To see how the problem was solved, look
at Figure 7. ISAM is implemented with an index (or directory, if you
wish) for each key field. In Figure 7, there is a data file of customer
records, with the customer name chosen as the key field. The File
Management system builds a directory of names, along with relative
record numbers.

That's what we've already seen. Now look at Figure 8. We've decided
that we need to retrieve customer records by using the customer
number as well as the customer name. Without changing the data
file, or even the customer name index, we simply create a second
index file which points to the same data file. The second index file
contains entries for each customer number, and is kept in customer
number order. A user who wants the record for customer number 600
would get the Nabisco record, as would a user who asks for the
customer record for the customer name Nabisco.

This same idea can be used to create an index for every field in the
data records, so that a user can retrieve a record by knowing the
value in anyone field of the entire record.

Note that this method, known as Multiple Key ISAM, does not provide
the ability to access a record by more than one field for anyone user
request. For a given request, the user must specify one key field and
one value to be retrieved in that field. Of course, the application program
can be written to provide for more complex searching algorithms,
such as "retrieve a record for customer 606 in state Massachusetts."
The application program, using the ISAM file in which customer number
is a key field, simply retrieves every record for customer 606 and
compares the state field in each record to see which one contains
the value "Massachusetts."

Building an index for a file is known as "file inversion," because the
traditional process is to access a record and then discover the contents
of its fields. With indexed files, that process is "inverted" in that the
user already knows the contents of a field and wants to access the
record. If not all of the fields in the data records are designated as keys,
the file is said to be "partially inverted," and if all the fields are keys,
the file is "fully inverted."
Multiple Key ISAM systems are now in wide use, with many products
to choose from. Each product has its own bells and whistles, but they
are all basically the same.

GENERIC KEYS
Some applications would find it useful to retrieve records without the
program knowing the full contents of the key values. For example, a
company could design its part numbers such that the first three digits
of the part number represented the vendor from whom the part was
purchased. If the inventory master records are stored in an ISAM file
with part number as the key, normally the application would have to
supply the entire part number to the File Management system in order
to retrieve a record. In most cases, that isn't a problem, because most
requests include the part number. But what about the application that
needs to print a listing of all the parts on hand that were purchased
from vendor 854?

.....
o Figure 8

CUSTOMER NAME AND NUMBER INDEX

NAME DIRECTORY: NABISCO PRUDENTIAL

DATA:

2 4

NUMBER DIRECTORY: 100 500 600 800 4

To satisfy this need, File Management systems can permit "generic
keys," that is, keys that consist of the value of a group of records,
instead of values that identify only one record. To provide this capability,
the File Management system accepts the short, or generic, key from
the application program, then, using only the high order characters of
the index, makes a normal search of the index. The first (lowest) index
record that matches on the characters in the generic key value is the
one used to retrieve for the user the proper data record.

In the example above, giving the File Management system the generic
key value "854" would result in the application being given the record
for part number 854000486, or 854000003, or 854098468, or whatever
inventory record existed with the lowest part number starting with the
digits 854. Once the File Management system has returned a data
record to the user, further requests by the user can proceed as if the
user had initially supplied the full key value. In this example, the appli­
cation program, after printing the first record retrieved, could simply
request each successive sequential record, until all records beginning
with 854 have been retrieved.

APPROXIMATE KEYS
With an index, it is possible that the File Management system could
return, to the program, records that contain the key value requested,
or the next highest value if the requested value doesn't exist in the
file. This is not difficult to provide; it simply means that the File Manage­
ment system, in searching the index for the requested key value,
stops when it finds either the requested value or a value that exceeds
the requested value.

The ability to provide generic keys and approximate keys depends
upon the presence of an index that is in order by key value. A file that
is accessed by a hashing algorithm can provide neither of these capa­
bilities, since the nature of the hashing method depends upon the
user supplying a value that can be manipulated to yield a relative record
number. Supplying either a value shorter than the one used to store
the record, or an approximate value, simply cannot obtain the proper
relative record number to retrieve the desired record. The ability to
access records sequentially by their key values also depends upon
the presence of an index that is built and maintained in that order.

If the File Management system was forced to search the index sequen­
tially to locate the entry corresponding to the desired record, the
performance of the system would not be acceptable. To overcome
this problem, various methods are used to shorten the search time
and the num ber of disk accesses required to find the proper index record.

The most commonly used method is to build a hierarchy of index
records instead of a simple sequential index. The implementation and
manipulation of these hierarchies can be quite complex, but the user
need never concern himself with how the index is put together since
the File Management system is responsible for controlling the index
structure. The user simply asks the File Management system for a
record containing the proper key, and lets the File Management system
worry about how to locate it.

11

Lhapter

Popular "Data
Base Management
Systems"
The last few years have seen the introduction of numerous systems
labelled "Data Base Management" by their vendors. With few excep­
tions, these systems have provided essentially the same capabilities.
This chapter will describe the concepts embodied in these systems
and will compare them with the File Management techniques discussed
in Chapter One.
Let's see what capabilities these systems provide to the user. First,
these systems use two kinds of files. We'll call them Master Files and
Detail Files. The data of interest to the user is stored in the Detail Files;
the Master Files provide a means of gaining access to the Detail Files
of interest.

MASTER FILES
A Master File contains records with one key field. Each Master File
contains one record (and only one record) for each value that appears
in one key field of a Detail File. Each record in a Master File also. con­
tains a pointer, which can't be accessed by the user, which points to a
record in a Detail File which contains the same key value that the
Master File record contains. In Figure 9, we see two Master Files: one
called "Name," which contains a record for every customer name in
our data, and one called "Number," which contains a record for every
customer number in our data.
It is also possible for the user to place data in the Master File records.
If the user chooses, then, a Master File could be defined to contain
one key field, some non-key fields, and "hidden" pointers to Detail Files.
Because Master Files are keyed files, either a hashing or an indexing
approach could be used to access their records. Vendors have chosen
hashing in every case, for performance reasons. To access the desired
record in a Detail File, the user must first access the proper Master
File, in order to find the record there containing the proper key, which
contains the pointer to the proper Detail File record. The designers of
these systems have chosen not to further add to the number of reads
required, which would have occurred if the Master File were an indexed
file.
Hashing, then, is used with the hope that the 1/ 0 overhead will be less
than that required for an indexed file, but if the synonym problems
mentioned in the last chapter occur, even the hashed file will suffer
performance penalties.

12

Figure 9

MASTER FILES

---.. EACH MASTER FILE HAS ONE KEY FIELD.

---.. EACH RECORD IN A MASTER FILE HAS A UNIQUE KEY VALUE.

---.~ HASHING IS USED TO ACCESS ITS RECORDS.

MASTER FILE: NAME

KEY FIELD: CUSTOMER NAME

MASTER FILE: NUMBER

KEY FIELD: CUSTOMER NUMBER

13

DETAIL FILES
Detail Files contain the "real" data of interest to the user. Each Detail
File can have several key fields. In Figure 10, the Detail File called
Customer has two key fields: customer name and customer number.
The Detail File is a relatively organized file, with the records stored in
random order.

For each key field specified in a Detail File, there must be a Master
File with the same key field. If two or more Detail Files have the same
key fields, it is possible to build only one Master File for those key
values and let each Master File record point to a record in both Detail
Files that contain that key value.

Each record in a Detail File also contains a "hidden" pointer, accessible
only by the system, for each key field in the record. The pointer paints
to the next record in that file which contains the same key value in
that key field. That means that all the records with the same key value
in a given key field are linked together through these pointers, and the
Master File record for that key value points to the first Detail File
record in the group.

Now let's put the three files in our example together (Figure 11). We
have a Detail File (Customer) for which we have specified two key
fields: customer name and customer number. We have a Master File
(Name) in which each record has as its key a customer name, along
with a pointer to the relative record in the Detail File for that customer
name. We also have a Master File (Number) for which customer
number has been defined to be the key.

By turning over to the system a key value, the user of these systems
can request that the system find a desired record in a specific Master
File. The system hashes the key value, uses the resulting relative
record number to access the Master File, and insures that a synonym
is not retrieved. The user can then request that the system retrieve a
record in a specific Detail File containing that same key value. The
system, using the pointers contained in the retrieved Master File,
retrieves and turns over the requested record.

The user can also specify that another Detail File record with the
same key value then be retrieved. The system, using the pointers in
the Detail File records, can then retrieve every record in the Detail File
that contains that value. If the user requests a Detail File record with a
different value, the system must again hash the new requested key,
locate the proper Master File record, and start over again in the
Detail File.

A powerful capability, that's true. But instead of calling these files
Master Files and Detail Files, let's change terminology a bit. Let us call
the Master File an Index, and call the Detail File a Data File. Let's then
call the "Data Base Management System" a new name: Multiple Key
ISAM.
We've already seen that Multiple Key ISAM permits data records to be
retrieved based on the values in any number of key fields through use
of an index. These "Data Base Management Systems" permit data
records to be retrieved based on the values in several key fields through
use of a Master File. So far, the two kinds of systems are functionally
identical, but let's look at the other functions performed by Multiple
Key ISAM systems.

14

Figure 10

DETAIL FILE

EACH DETAIL FILE CAN HAVE MULTIPLE KEY FIELDS.

KEY VALUES MAY BE DUPLICATED.

DETAIL'FILE: CUSTOMER

KEY FIELDS: CUSTOMER NAME
CUSTOMER NUMBER

Figure 11

ALL THREE FILES

MASTER FILE: NAME

BROWNING

MASTER FILE: NUMBER

15

DETAIL FILE: CUSTOMER

.. I BROWNING 1 sao 1

With MUltiple Key I~AM, the user can retrieve recoras sequentially
based on the ascending values in a key field. With these "Data Base
Management Systems," all the data records containing the same key
value can be retrieved, but there is no mechanism available to find
the next highest key value in the data. ISAM simply accesses the next
sequential record in the index; these other systems don't have an
index in order by key value. Instead, their equivalent of the index, the
Master File, is a hashed file in which the records are in random sequence.
Remember the use of generiC keys with ISAM? These "Data Base
Management Systems" can't provide generic key capability. The user
of these systems must provide the system with the full key value in
order for the hashing algorithm to generate the same relative record
number that it generated when the Master File record was originally
stored in the file.
How about approximate keys, which were no problem with the aid of
the ISAM index? Not available with these systems, because the user
who provides to the hashing algorithm a key value that doesn't exist in
the Master File isn't going to find a record in that Master File that con­
tains the next highest key value.
Aside from functionality, the user's job is usually more complex with
these "Data Base Management Systems," because the user must be
aware of, and may have to maintain, the Master Files. With ISAM, of
course, the File Management system is responsible for knowing about
the indexes and using them when necessary.

Well, there you have it. Some vendors have built Multiple Key ISAM
File Management Systems, and some vendors have built systems
almost as useful and called them "Data Base Management." Given
your choice, which do you think stands the better chance of doing a
company's job?
So far, all we've discussed have been File Management systems,
regardless of what we've called them. This book has promised to talk
about real Data Base Management, so let's get to the heart of the matter.

16

Chapter

DataBase
Management
The idea of data base management has been around since the early
1960s. Like any other topic with the word "management" in its title, its
purpose is to provide a company's management personnel with the
ability to better manage the data asset owned by the company. And
data is an asset. There has been a growing awareness of that fact
over the past decade. Think about it: what does it cost your company
to record data, file it, update it, delete it? And what would it cost your
company if that data were lost or otherwise tampered with? Would
your management be misled into serious management decisions if
the data in your computer installation weren't correct or up to date?

That growing awareness led to work in trying to find better ways for
management to control and use its data asset. A data base
management system then has the following characteristics:

• It provides protection from persons who would tamper with the
data (or its definitions).

• It provides a single copy of each piece of data, for the use
of the entire installation, instead of multiple copies gathered by
multiple means, each used by only one application system.

• It provides a unified description of all the data asset in the com­
pany, so that all portions of the company that need to use that
asset will have access to it.

• It provides a separation between data and its description, on the
one hand, and the application programs that manipulate it, on the
other. This provides the ability to change one without changing
the other.

• It provides for the definition of the logical relationships which exist
between the various records in the data base, so that each and
every application program need no longer embody those
definitions in the logic of the program.

17

EVOLUTION FROM FILE MANAGEMENT
Let's look at the conceptual steps in moving from a File Management
environment to a Data Base Management environment.

Figure 12 depicts the first step: separating the data definitions from
the programs. It is now recognized that one of the worst mistakes we
made in the infancy of programming technology was to imbed the
definitions of the data inside the definitions of problem-solving
algorithms (programs). That mistake was made in the interests of
being able to compile programs efficiently by knowing at compilation
time what the object time data would look like. There is no logical
reason, relating to the nature of problem solving, that requires that the
data definitions reside with the program.

The program is a statement of an algorithm for solving some user's
problem. We wouldn't write programs if there wasn't a problem to be
solved by the program. But the problem solution does not depend
upon the format or size of the data. Calculating an employee's gross
pay does not depend upon how many decimal places we record on
that employee's time card or on how many digits there are in that
employee's hourly rate. The calculation is also not altered by whether
or not we store those numbers in ASCII, binary, or packed decimal
format.

So, for our first step, let's conceptually rip the data definitions apart
from the rest, or procedural part, of the programs in the installation.

The next step (Figure 13) is to combine all the installation's data
definitions into a machine-readable file called the "Schema." This
process will require that all the duplicate data definitions that existed
in the many different programs be eliminated so that the Schema
contains one and only one definition for each and every data item
(field) that is to be in the data base.

This process also must result in an objective definition of each data
item, instead of the subjective definitions found in application pro­
grams. For example, the same magnetic tape file may be read by two
different programs. One of those programs may contain a definition of
a data item on that file that is called DATE and is six characters in
length. The other program may contain a definition for the same
character positions on the file but may describe those six characters
as a two character data item called MONTH, another two character
data item called DAY, and another two character data item called
YEAR. In this example, it's clear that each program contains defini­
tions that are consistent with the other, but other cases may not be
so obvious.

The point is that programs contain data definitions that are colored
to suit that particular program's viewpoint of the data. Nowhere in
the File Management environment is there a true, objective, and
uncolored definition of the data. In the Data Base environment, the
Schema contains the objective data definition for each data item in
the installation's data base.

18

Figure 12

SEPARATING DATA DEFINITIONS FROM PROGRAMS

DATA
DEFINITION

PROCEDURES

DATA
DEFINITION

PROCEDURES

Figure 13

DATA
DEFINITION

PROCEDURES

PROGRAMS

CONSOLIDATING THE DATA DEFINITIONS INTO A "SCHEMA"

19

DATA
DEFINITION

DATA
DEFINITION

THE
SCHEMA

DATA
DEFINITION

Figure 14 shows the next step in our evolution: the creation of defini­
tions of the relationships that exist between the various records
defined in Schema. Remember that we pointed out earlier that the
real world relationships existing between the events represented by
the data were not known to the File Management systems. One of our
goals in a data base environment is to define for the Data Base
Management system just what those relationships are, so that we
don't have to explain them over and over to application programmers,
and the application programmers don't need to code the statements
to see that the proper records are used in conjunction with each
other. .

The data structure definitions that we put into the Schema complete
the Schema. The Schema now contains both the definitions of the
content of the data base and the definition of the structure of the
data base. Using the Schema, the installation can generate diction­
aries containing all the information known about the company's data
asset. Through use of these dictionaries, systems analysts and users
can determine what data is available in the data base before designing
new applications. Thus duplicate effort involved in collecting the same
data more than once for more than one application system is
eliminated.

Figure 14

ADDING DATA STRUCTURE DEFINITIONS TO THE SCHEMA

DATA
STRUCTURE
DEFINITIONS

THE
SCHEMA

We can now create the data base, as shown in Figure 15. As the files
are moved into the data base, the system uses the Schema to deter­
mine how the data is to be stored and what relationships exist
between the various records going into the data base. The Data Base
Management system must construct some internal method of
guaranteeing that the records that are a part of a relationship are
bound together for use by the applications. The system thus builds
whatever kinds of internal tables, pointers, links, or indexes it needs
to implement the defined relationships. These internal aspects of the
system are never seen by the application.

The process of moving files into the data base is not a simple copying
operation. Just as each program had its own data definition, each
application had its own files containing some of the same data con­
tained in files belonging to other applications. Our goal is to eliminate
redundant data, so we must determine which copy of each data item
goes into the data base. That can be a long and tedious process,
similar in nature to the older problem of converting old applications to
new ones. Questions like the timing of the installation of the new
system and the installation of the new programs must be carefully
coordinated.

o

01

Figure 15

CONSOLIDATING THE DATA FILES INTO A DATA BASE,
AS DEFINED BY THE SCHEMA

THE
SCHEMA

THE
DATA
BASE

SELF­
DESCRIBING
DATA

Now let's turn our attention back to the procedural parts of the pro­
grams that we left hanging a few steps ago. By removing the data
definitions from the programs, we removed the ability of those
programs to access any external data. We must now restore that
capability, which we do by defining Sub-schemas (Figure 16).

A Sub-schema defines the parts of the data base that are to be
accessible to a program, just as the data definitions that were in the
program defined what part of the installation's files were to be
accessible by that program. The major difference is that the
Sub-schema is not a part of the program, but is written separately.

A Sub-schema may be viewed as a "window" through which an
application program sees the data base. A copy of a Sub-schema list­
ing must be given to the application programmer so that he can see
what data and what relationships are known to the program being
written.

The Sub-schema also performs another major function. It provides
subjective data definitions removed by building the Schema. The
Sub-schema permits not only the definition of what is to be available,
but also its format. For example, an application may prefer to group
the data items in a record in a way different from the way they appear
in the data base and are described in the Schema. By writing the
Sub-schema to show the application-desired grouping, the respon­
sibility for rearranging the data items as they are read and written is
assumed by the Data Base Management system.

Figure 16

DEFINING EACH PROGRAM'S VIEWPOINT
OF THE DATA BASE IN "SUB-SCHEMAS"

THE

SUB-SCHEMAS
SCHEMA

I
SUB-SCHEMAS

j
THE
DATA

PROGRAM BASE PROGRAM

22

Now we're down to the essence of data base management: the ability
of a company to manage its data asset similar to the way it manages
its cash asset or its capital assets. By providing the necessary software,
a Data Base Management system provides the tool necessary for
management to institute a program of data management (Figure 17).

By separating programs (that is, the statement of problem solutions)
from the definition of the data operated on by those programs, we can
separate the responsibility for the creation and maintena.nce of both.
This requires the creation of a new function in the data processing
world, that of the Data Base Administrator.

The Data Base Administrator is responsible for the care of the
company's data asset, in the same sense that the company's treasurer
is responsible for the care of the company's cash asset. The Data
Base Administrator creates the Schema, the Sub-schemas, the data
dictionaries, and the data base itself. The Data Base Administrator
determines which users can access data, change data, and delete
data. Of course, this can't be done without input from the systems
analysts and programmers, just as the treasurer can't manage cash
assets without input from those who have a need to use the cash.

Figure 17

MANAGING THE DATA AND ITS DEFINITION INDEPENDENT OF PROGRAMS

SYSTEMS ANALYSTS
AND PROGRAMMERS
'- '

PROGRAMS

23

DATA BASE ADMINISTRATOR

[]
THE

SUB-SCHEMAS

THE
SCHEMA

THE
DATA
BASE

INUU:S I HYWIUt: Ut:Vt:LUtJMt:N I

W hen the idea of data base began to catch on in advanced circles a
decade ago, it lit a lot of fires under software designers and developers
in lots of companies. Like any new idea, it was exciting. It led to lots of
experimentation to see how to apply this new idea to solving real
business problems. Unfortunately, like all new ideas, it led to a lot of
terrible implementations and a general confusion about what was
good and what was bad. Let's compare what has happened over the
last decade with what happened to programming languages over the
preceding decade.

When programming languages were in their infancy, literally thousands
of them were invented and implemented. Most of them were never
heard of outside their immediate area of birth, but many of them got
broader use. Gradually, the computing industry saw that we" had built
our own Tower of Babel; we were prevented from performing to our
potential because of the proliferation of languages. As a result, the
less useful languages died out and the survivors were standardized,
so that we were all talking the same dialect of the same few languages.
Today, COBOL and FORTRAN have been standards for years, and
both PUI and BASIC are in the latter stages of becoming standard
languages.

In the world of data base facilities, we are seeing the history of pro­
gramming languages repeat itself. The early proliferation of languages
and data structures is dying out, and the industry is zeroing in on a
single, generally useful facility. The work being done to bring this
about is in an organization called The Conference on Data Systems
Languages, or to use the acronym, Codasyl.

Codasyl Activity
Codasyl was formed in 1959, when the Pentagon called together some
computer manufacturers and computer users fora two-day conference.
Their goal was to determine the feasibility of designing a programming
language that would permit the writing of business programs once
and then translate them to many different computers. Today, the idea
is so commonplace that we forget that it was revolutionary in its day.
The result of the initial meeting was an informal organization, Codasyl,
consisting of those companies who volunteered their time, money,
and personnel to work toward the definition of a language that could
achieve that goal. COBOL was the language that emerged from that
work.

COBOL has been around now since 1960. So has Codasyl, but Codasyl
devoted its attention to more than just COBOL over these years.
Although the COBOL Committee of Codasyl meets every six weeks,
other committees responsible for other aspects of computing systems
are meeting just as often and making the same kind of contributions
to the industry.

Codasyl's data base activity started in 1965, when the COBOL Com­
mittee formed its Data Base Task Group (DBTG), and chartered it to
develop language facilities to bring data base capabilities to the pro­
gramming world. Now, more than a decade later, Codasyl has given
its stamp of approval to a set of languages and data structures
designed to bring a single system to the marketplace that would serve
the need of all users, just as COBOL serves the need of business
programmers.

24

COdasyllmplementatlons
Prior to final approval by Codasyl, however, there were a number of
draft documents published so that the general computing public could
follow its progress. Figure 18 shows the chronology of Codasyl's data
base work. It abo shows the initial availability dates for some widely
used Data Base Management systems.

As you can see, Codasyl published drafts of its work in both 1969 and
1971. The Schema facilities were finally approved in 1973, and the
Sub-schema facilities and the extensions to COBOL for accessing the
data base were approved in 1975.

Now look below the time line. The systems marked with the asterisk
are those systems designed in accordance with the Codasyl specifi­
cations. As you can see, since the Codasyl specifications began to
take shape in the early 1970s, no vendor has seen fit to invest major
amounts in the design of data base systems that are not based on the
Codasyl work. In fact, quite a few of the major vendors have seen fit to
introduce new products based on that work. Figure 19 shows more
detail of the Codasyl-based systems.

No one, least of all the developers at Codasyl, thinks that the Codasyl
work is perfect. But it's the only set of specifications that has been
researched for twelve years and implemented by more than one
vendor. In other words, it's the only game in town, and the industry is
working to constantly improve the facilities defined in that game.
Digital Equipment Corporation is a part of that activity; the other
vendors are Cincom Systems, Control Data, Honeywell, IBM, International
Computers Ltd., Univac, Cullinane Corporation, Prime Computers,
CII-Honeywell Bull, Computer Sciences Corporation, and the University
of Florida.

The Schema
The Schema, as we have seen, is the definition of the content and the
structure of the data base. The Schema is written by the Data Base
Administrator in a language defined by Codasyl. This language is totally
independent of the programming languages that might be used later
to access the resulting data base.

We won't go into the syntax of the language, but it looks somewhat
like the data definition statements in COBOL or PLII. The Schema
consists of record definitions, data item definitions within those record
definitions, and the new concept, the definition of the structure of the
records (the record interrelationships).

It's time now to introduce the term "set." A set is a collection of records
that are related in some way that is useful to an application program.
For a payroll application, a useful set of records might be a payroll
master record, a time-worked record, a year-to-date earnings record,
and a deduction record. For a labor distribution application, a useful
set might be the same payroll master record, a contract master record,
and a labor distribution record.

The relationships between records, as defined in the Schema, are
defined in terms of sets. The Schema, therefore, consists of a series of
record definitions and a series of set definitions.

25

I\.)
(j)

Figure 18

DATA BASE CHRONOLOGY (CODASYL)

SUBSCHEMA
WORK DRAFT SCHEMA COBOL
BEGINS 1 DRAFT OK OK

2

I
1965 1969 1971 1973 1975

*DMS-1100 *DMS/90 *DMS 170
*DBMS-10 *IDS II
*IDMS
*SIBAS

IMS SYSTEM
2000

TOTAL ADABAS

*CODASYL BASED

1977

*DBMS-11

Figure 19

CODASYL DATA BASE SYSTEMS

NAME RUNS ON AVAILABLE

DMS-1100 UNIVAC 1100 SERIES 1971
DMS/90 UNIVAC 9000 SERIES 1973
DBMS-10 DEC SYSTEM -10 1973
IDMS IBM 360/370 SERIES 1973

ICL 2900 SERIES 1975
SIBAS IBM 360/370 SERIES 1973

UNIVAC 1100 SERIES 1973
DEC SYSTEM -10 1973
NORD 1973

DMS 170 CONTROL DATA CYBER 170 1975
IDS II HONEYWELL 6000 SERIES 1975
DBMS-11 DEC PDP-11 SERIES 1977

The Sub-Schema
The purpose of the Sub-schema is to specify what part of the total
data base is to be available to an application program. To do that, the
Sub-schema consists of a series of record and set definitions, just as
the Schema did. However, the Sub-schema may list only records and
sets that have been defined to exist in the Schema. In other words, the
Sub-schema cannot be used to define new kinds of records or sets.

The Sub-schema for a given application program will not list all the
records in the data base, will not list all the sets in the data base, and
might not even list all the data items that exist in the records that it
does list. The Data Base Administrator, in writing the Sub-schema, has
the ability to specify that a certain kind of record only has, say, five
data items in it, rather than the seven data items that the same record
in the data base has. This capability means that the Data Base Manage­
ment system must "filter" the record as it is retrieved, so that the
application asking for the record will only get that part of the record
that its Sub-schema says it is to get.

The language used to write the Sub-schema also looks much like the
data definition parts of a COBOL or PL/ I program.

27

DATA BASE STRUCTURES
There are three types of classic data base structures (Figure 20). In
that figure, each small circle represents a type of record, such as
payroll master or customer record. The lines between the various
types of record represent the logical relationships between them.

The simplest is the sequential structure, also called the chain or ring.
In this structure, each record type is related to two other types of
records. Note the similarity between this type of structure and the
sequentially organized files with which we're familiar.

The next most complex is the tree or hierarchical structure. In this
structure, each record type may have following it more than one other
record type. The tree gets its name from the picture, which looks like
the roots of a tree. Note here that, as in tree roots, once a branch is
taken, there is no way to get to the records on the other side of the
branch without returning to the branch and taking the other path.

The most complex form of structure is the network. Here, any record
may be related to any other record, without the restrictions mentioned
above. The network is a superset of the tree. Trees are usually imbedded
within networks, just as chains are usually imbedded within trees.

One or more of these three structures are associated with all Data
Base Management systems.

Figure 20

DATA BASE STRUCTURES

SEQUENTIAL TREES NETWORKS

Figure 21 shows a typical tree data structure, with each lettered box
representing a specific type of record. If the problem to be solved
involves data that has a natural hierarchical structure, this form is very
good.

Because a tree doesn't support a network, there are some very definite
rules that must be obeyed by the Data Base Administrator when
designing the data base. Referring again to Figure 21, if an application
needs to use both the record K and the record A as branches subordi­
nate to record B, the Data Base Administrator would have to find
some way to change the entire configuration of the tree, because the
desired structure is not legal, given the tree as presently defined. For
that reason, the Data Base Administrator in a tree installation must
draw a map of the data base structure, much like the one in Figure 21,
before actually beginning to code the Schema. This will insure the
legality of the required structures.

Figure 21

TREE

Figure 22 shows a typical network as supported by several popular
systems. Again, each box represents a type of record and is labelled
with a record name. The "master" records are rectangles labelled with
letters; the "detail" records are hexagons labelled with digits. In this
example, record A is related to both record 1 and record 2; record 2 is
related to record A, record C, and record D.

Figure 22

NETWORK

Remember, though, the analogy to Multiple Key ISAM. With these
systems, it is not possible to define a relationship between two master
files. In other words, if an application would like to see a set consisting
of records 2 and 3, it could not be defined. The application would have
to use record 0 as the common link between the records desired.

With these networks, as with trees, the Data Base Administrator must
map the data base before beginning the job of coding the Schema,
because of the restrictions that exist in not being able to define any
possible relationship.

All the pre-Codasyl data base management systems had this sort of
restricted capability to define record relationships. Even worse was
the mess that occurred when a change had to be made to the structure.
To overcome both these problems, Codasyl specified the set as the
basic building block from which all complex relationships would grow.

The Set
The only form of structure that can be defined in a Codasyl system is
the set, which is illustrated in Figure 23. Each box represents a type of
record. A set always has two levels, with an "owner" type of record
defined at the top level and one or more "member" types of records
defined at the bottom level. When the Data Base Administrator defines
the relationships between the records, in coding the Schema, it is
done by defining one or more types of sets.

OWNER [
RECORD1
TYPE L

MEMBER
RECORD
TYPES

Set Attributes

Figure 23

A SET TYPE IS A TWO-LEVEL STRUCTURE

, , ,
,

r - -,- - ""1

I I
L ____ ..J

It would appear that this simple two-level structure can't possibly
define all the complex relationships that exist between records in a
large and complex business. But the set has some interesting attributes
in addition to its structural simplicity. The most interesting attribute,
and the one we'll spend our time discussing, is this:

THE DATA BASE ADMINISTRATOR MAY DEFINE EACH SET WITHOUT
REGARD TO WHAT KINDS OF SETS HAVE ALREADY BEEN DEFINED,
OR WILL BE DEFINED IN THE FUTURE.

30

The attitude taken on by the Data Base Administrator in a Codasyl
installation is to sit back and let each application designer state what
relationships will be useful to his application. The Data Base Adminis­
trator then defines the sets required, without concern for their legality.
There are no illegal structures. The Data Base Administrator in this
environment need never draw a map of the entire data base structure,
because the entire structure is immaterial. The data base may consist
of chains, rings, trees, or networks, and no one really cares. The Data
Base Administrator may examine the interaction of the various sets,
from time to time, to see if changing the physical mapping of the data
base could be improved to provide better performance. Any such
changes do not affect the application programs, except to make them
run faster.

Figure 24 illustrates the relationship between the Schema and the
data base defined by that Schema. In this example, the data base
consists of three types of records, defined as the employee (EMP)
record, the timecard (TC) record, and the labor distribution (LD) record.
Subordinate to each record description are the definitions of the data
items contained in each record, which aren't shown here in detail. In
the data base, we see four EMP records, five TC records, and four LD
records.

PR

31

RECORDS:
01 EMP
01 TC
01 LD

ACCT

PR

Figure 24

SCHEMA

SETS:
PR:OWNER = EMP

MEMBER = TC
ACCT:OWNER = EMP

MEMBER = LD

DATA BASE

PR

ACCT ACCT

Now look at the right half of the Schema, where we define the sets of
interest to the applications. We have a payroll (PR) set, defined to
have the EMP record as its owner and the TC record as its member.
We have also defined an ACCT set, consisting of the same EMP
record as the owner and the LD record as the member. In the data
base, these sets are both illustrated by the lines connecting these
records and labelled with the name of the set. Notice that in the data
base, there are several occurrences of the PR set and several occur­
rences of the ACCT set. In each occurrence, the EMP record is
connected to its associated TC and LD records.

We can now write a payroll application that accesses EMP records by
employee number. Once the application has the EMP record, logic
need not be coded to access the proper TC records. The application
simply requests the Data Base Management system to retrieve the
proper TC records. The system, using its internal knowledge of the
data base structure, retrieves the proper associated TC records. It is
no longer required that we complicate our application programs with
the logic involved to find the right records.

WHAT IT MEANS TO THE USER
The growing industry movement toward the implementation of Codasyl
data base systems is a repetition of the industry's movement to
Codasyl's earlier product, COBOL. Today, COBOL is used for almost
all business applications, and the most recent information indicates
that 83% of all programs running today are written in COBOL. The
U.S. Federal Government requires that any computer sold to the
government for business processing must be accompanied by a
standard COBOL compiler. Representatives within the government
have also indicated that the same requirement will exist with data
base systems, as soon as the vendors have had a reasonable time to
implement such systems. The marketplace already shows such systems.

What do Codasyl systems mean to the user? Well, to begin with, they
are the de facto standard for data base definition and processing. The
user who already recognizes the advantages of common facilities,
such as reduced training and ability to move programs to other com­
puters, will recognize that the same benefits exist for data base
systems. Another major benefit to the user is that there are no struc­
tural constraints in Codasyl systems. The Data Base Administrator can
intersperse chains, rings, trees, and networks in the same data base,
and can regularly change the structure without invalidating dozens of
programs.

The technical facilities of the Codasyl systems are too detailed and
numerous for discussion here, but you could look at it this way: the
specifications were written by dozens of people from dozens of
companies who spent twelve years in researching the problems and
finding solutions that would serve the needs of all kinds of users in all
kinds of applications in all kinds of businesses. We believe that those
people did a pretty good job, and that the future of data base systems
lies with those specifications. To top it off, ANSI has begun to examine
standardizing the Codasyl data base work.

32

Most user problems can be solved by good File Management systems;
some require the use of a true Data Base Management system.
Mismatching the user's problem with a data solution is always a
mistake. If the user needs data base, his job will be much more costly
and difficult if he is forced to use a File Management system. If the
problem can be solved with File Management, however, the use of a
Data Base Management system will introduce needless overhead and
complexity to the problem.

We believe it is in the customers' best interests to have a full range of
products from which to choose the best tool to solve a given problem.
We provide that range of products with our File Management system,
RMS-11K, that equals or exceeds the capabilities of any File Manage­
ment system on the market, and with our DBMS-11, which is in con­
formance with the Codasyl specifications for Data Base Management
systems and provides the most comprehensive data base facilities in
the entire computer industry, bar none.

33

,41

About The Author
Mike O'Connell has been associated with CODASYL since 1968. His
work there began with helping to define the COBOL communications
specifications. After several years of general work in improving the
CODASYL COBOL language specifications, he began to specialize in
data base work. Under contract to Bell Labs, he developed the pro­
posal to CODASYL for the COBOL Sub-schema language and the
COBOL data base manipulation facility, which CODASYL ultimately
approved. He was the first chairman of the CODASYL Data Base
Language Task Group, and is now the chairman of the CODASYL
Data Description Language Committee (DDLC).

He has been with Digital Equipment since 1973, and is presently
Manager of Product Planning for Large Systems for the Business
Products Group.

34

