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introduction to Designing a System with the DECchip ™ 21064 Microprocessor

1 Introduction

This application note provides a basic description of how to integrate the DECchip ™ 21064
microprocessor chip into a module or system. It describes how the processor reacts to the
chip reset condition, and explains how to connect and control the chip interface signals. The
21064 chip has been designed to allow maximum flexibility while at the same time providing
the ability to easily create a computing system with generally available module parts.

Figure 1: - 21064 Pin Bus
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This document is not meant to give every detail about interfacing to the chip. Rather, what
is provided here is enough information for a design engineer to understand what is involved
in creating a 21064-based system. It should allow the designer to quickly determine how
21064 system design compares with other design tasks.
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Examples are used throughout the text to clarify meaning, but this is not intended to imply
that what is described is the only way to use the chip. An attempt has been to describe
real, usable circuits and techniques, but the chip is flexible and the designer is encouraged
to investigate other implementations. A preliminary data sheet is available for the 21064
microprocessor that describes the details and additional features of the chip.

2 General concepts

Some important design concepts are common to many 21064-based system designs, and they
are discussed in this section. The chip pin bus is flexible and mandates few design rules,
leaving open a wide range of prospective systems. Figure 2 is a diagram of the 21064 pin
bus, showing the major signal groups.

A system designed with the chip can be divided into three major sections. There is the 21064
processor itself, the system control logic, and the external backup cache (Bcache) between
them (the Bcache is optional, though most systems will see a performance improvement if
it is included). The chip pin bus provides address and control signals, and transfers data
through a 128-bit bidirectional data bus. The preliminary data sheet describes each of the
signals Figure 1 in detail.

The processor controls the Bcache when its initial tag probe finds that the information
is valid and unshared. The Bcache access is under control of the CPU, and the external
system logic is not involved. When the CPU does a Bcache probe and misses, or when a
lock-associated command is invoked, the processor starts an external cycle.

During the external cycle, the Bcache is under control of the system logic. The system logic
either returns the data to the processor, or accepts the data from the processor (depending
upon the cycle type), and acknowledges the cycle to give control back to the CPU. If the
cycle necessitates a Bcache fill, it is up to the system logic to load the data into the Bcache
RAMs, the upper address bits (with good parity) into the tag address RAMs, and the proper
valid and parity bits into the tag control RAMs.

To help the design engineer create high performance systems more easily, the Bcache is
controlled by the 21064 pin bus during probes that hit. This allows off-the-shelf SRAMs to
be connected to the chip without a lot of extra components. The Bcache interface signals are
programmable through an internal processor register (IPR), so that the Bcache size, access,
and write timing can be set with complete flexibility without affecting the internal CPU

clock speed.

That is, the 21064 can be running at its nominal 6.6ns internal cycle time, but the Bcache
can run slower if required without slowing down the internal timing. There are two internal
caches in the 21064 chip: an I-stream read-only cache (Icache) and a D-stream write-through
cache (Dcache). The speed of the Bcache does not affect the internal caches, which use the
internal clock.

Figure 2 is a block of a system that can be created using the 21064 microprocessor. The
major sections are shown, along with many of the buses that would run through such a
system. In the center of the diagram is the external interface control, which directs the
other system logic subsections that interface to memory, I/O, Bcache, etc.
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21064-Based System Block Diagram

Figure 2
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The Bcache, if it is included in a system, can be as small as 128KB or as large as SMB.
The size is under program control. The adr_h[33:5] bus in Figure 2 is shown partitioned
into an [index] field and a [tag] field. The size of each field depends upon the Bcache size.
The smallest Bcache (128KB) uses adr_h[16:5] to index into the the cache block, and the
tag field would be adr_h[33:17]. Only those bits that are actually needed for the amount
of potentially cachable system main memory need to be stored in the Bcache tag, although
the 21064 uses all the relevant tag address bits for that Bcache size on its tag compare. A
larger Bcache uses more index bits and fewer tag address bits.

Figure 3: Bcache Control Logic
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On an external request (read or write), the 21064 sends out the address and cycle type (and
data for a write cycle), then waits until the system logic sends back the acknowledgment
handshake that the cycle is complete. On a read request cycle, each data word is tagged
as it comes back by the system logic with information about whether the data should be
checked for ECC (or parity, depending upon which mode of operation has been selected for
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the chip), and whether it should be cached inside the chip. On a write request, the system
logic merely notifies the chip that the write has been accepted for processing.

The Bcache is shared between the 21064 and the system logic. Although the processor
directly manipulates the Bcache for read and write hits, it is up to the system logic to:

¢ Fill the Bcache with memory data

* Load the tag address and tag address parity

* Load tag control bits and parity on fills (valid and non-dirty)
* Write data back to memory when necessary

* Probe the Bcache for lock/unlock transactions

* Probe and control the Bcache for DMA transactions

The Bcache control signals are thus under potential control of the 21064 or the system logic.
When the CPU chip determines that an external cycle is necessary, it drives the Bcache
control signals to false. This allows the system logic to read and write the Bcache RAMs.
Figure 3 shows the expected configuration for the Bcache. The figure shows a data line, but
the tag address and control lines are expected to be connected similarly.

The signal mem_data in Figure 3 is a bidirectional memory data bus that connects to the
main storage. When it is necessary to load the contents of memory into the Bcache, the
system logic will drive the memory bus control signals such that a read cycle is performed.
In this example, the signal read_mem_L is being used to drive the Bcache (and 21064)
data bus. The system logic will properly drive the Bcache RAM write enable signal, and
once the data is stable on the data_h[x] bus, it will be strobed into the Bcache.

When the Bcache contents need to be written back to memory, the system logic will control
the RAM output enable signal to access the Bcache data. The signal read_mem_L will now
be de-asserted, and the memory control signals will also properly tristate the mem_data
bus so that the data can be written to the memory storage elements. The system logic must
properly assert the 21064 signal dOE_] so that the CPU will drive the data_h[x] lines.

The Bcache consists of 32-byte blocks or larger. As such, the 21064 supplies address bits
[33:5] to select which Bcache block. The CPU data bus is 16 bytes wide, and thus each
Bcache cycle requires two accesses. The CPU outputs the signal dataA_h[4] to control
which 16-byte data half is being written to or read from. Figure 4 shows the expected
configuration for the lower address bit. As with the chip output enable and write pulse, the
lower Bcache address bit is under control of either the 21064 or the system logic. When the
CPU is in external system logic mode, it drives the dataA_h[4] signal low (along with the
other Bcache control signals).

This application note will later go though some general cycle types, including timing dia-
grams to better explain how a 21064-based system functions.
3 Basic 21064 Power, Input Level, and Clock Issues:

The preliminary data sheet describes how to power and clock the 21064 in detail. This
section provides an overview of these issues, and some example circuits that can be used.
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Figure 4: Lower Bcache Address
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3.1 Power Supply and Input Levels

The 21064 is powered from a +3.3V supply (+/- 5%), but will drive and accept CMOS/TTL-
compatible levels once the chip has been properly stabilized. It is mandatory that no input
or bidirectional pin be allowed to rise above 4.0V until the 3.3V power to the chip is stable.
Failure to follow this rule will damage the chip.

This rule does not imply that power supply sequencing must be used. It only means that
any other module part that can drive the input pins must be kept in tristate mode until the
21064 has stable power. So, for example, a dcOK signal can be used to prevent components
such as SRAMs, MUXes, and buffers from driving the chip.
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3.2 Input Level Sensing

The 21064 uses a reference input pin vRef to supply the threshold level for all chip inputs
except:

e clkin h 1

e testclkIn_h, 1
e tagOk h 1

e dcOk_h

* eclOut_h

e tristate_] .

e cont_l

These pins should never be driven above the 21064 power supply. Since the nominal voltage
to the chip is 3.3V, care must be taken if any of the signals above are generated from logic
that has a 5V supply. Note especially that dcOk_h is one of the signals that must never be
driven above the nominal 3.3V level, since it is likely that it will be generated from a higher

voltage.
Figure 5: Input Reference Voitage Circuit
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vRef should be connected to a stable 1.4V (+/-10%) source. Figure 5 can be used to supply
this voltage level. The resistors R1 and R2 in the figure should be chosen so that they form a
voltage divider that supplies the 1.4V level to vRef. vRef has a large capacitance on it inside
the chip, and there is an RC delay between its pin and the other input buffers. Therefore,
dcOk_h should not be asserted until there has been enough time for the vRef input to
stabilize. Consult the preliminary data sheet for more details concerning the assertion of
dcOk_h.

Note that reset_l is one of the input pins that uses vRef for its threshold level, so it cannot
be relied upon until vRef is stable. dcOk_h being false (that is, low) keeps the chip in reset
mode.
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3.3 Input Clocks

The 21064 expects differential clock signals between 0.6V and 3.0V for the clkIn_h,_l inputs.
A reversed can pseudo-ECL oscillator with pulldowns can be AC-coupled to the clock inputs
for this purpose. Using a pseudo-ECL oscillator means you don’t have to design a special
ECL power supply to clock the chip. Figure 6 is an example of a working circuit. Note that
the series capacitor should use an NPO dielectric.

Figure 6: Input Clock Circult

220pt
NPS
PSEUDO-ECL|OSC H :( Clkin_l|
OSCILLATOR|OSC L :\L Clkin_h
220pt
2200 <, NPd
5%
2200
5%
GND,

Up to 200MHz (translating to a 10ns internal CPU clock cycle), a lower-cost 10K-series
oscillator will work fine. Above that speed, a 100K-series oscillator should be used.

Due to internal chip circuitry, the test clock input signals testClkIn_h,_1 should be pulled
to the appropriate level using small resistors (100 chms maximum). testClkIn_h should

be pulled high (that is, to 3.3V through a small resistor) and testClkIn_l should be pulled
low (to ground).

3.4 Unused Inputs

There are several inputs that are not used in a 21064-based system, but must be tied off
either high or low. The following inputs should be pulled to 3.3V through a resistor:

¢ tagOk_h (unless using the tagOk function)
* tristate_l
e cont_l

¢ perfCntin_h[1:0]

The following inputs should be pulled to ground:
e tagOk_l (unless using the tagOk function)

* dWSel[0] (unless in 64-bit data bus mode)

e eclOut_h

e icMode_h[1:0]
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The tagOk_h,l signals are used to stall the 21064 so that the Bcache can be controlled
by the system logic. They are optimized for very high performance systems, and are not
discussed in this document. The preliminary data sheet provides more details about the
signals and their use. This application note discusses the simpler holdReq_h method for the
system logic to take control of the Bcache (see Section 8.

4 Booting the 21064

The 21064 uses a flexible method to bootstrap the processor. Instead of always jumping to a
fixed I/O address upon reset, the chip can load its initial I-stream from a compact serial ROM
(SROM). As well, the configuration of the external interface is programmable by setting up
certain input pins at reset time. Figure 7 shows how the serial ROM and the configuration
inputs are used at reset time.

Figure 7: Serial ROM and Programmable Clock Inputs
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While the 21064 is in reset mode, the interrupt input lines irq_h[5:0] are inspected to deter-
mine how the chip should configure the external interface logic. There are three configurable

areas:

1.

The 21064 can accommodate either a high-performance 128-bit external data bus or a
lower-cost 64-bit data bus. irq_h[5] determines which of the two is selected, and is
asserted high to choose the 128-bit mode. This application note describes the 21064
in 128-bit mode, but the preliminary data sheet provides more information about the
differences.

The external interface runs synchronously to the external system clock, sysClkOutl_
h. This external clock is generated from the internal clock, which can be divided by
any value between 2 and 8 to form sysClkOutl_h. So, for example, the 21064 chip
running at its nominal 6.6ns internal clock cycle time can be divided by 4 to allow an
external interface to run at 26.4ns. irq_h[2:0] select the external interface division
factor. Table 1 is a chart of the clock divisor decode.

The external interface logic is supplied two differential clocks from the 21064, sysClk-
Outl_h,_]1 and sysClkOut2_h, 1. Each external clock runs at the external cycle time
selected above. sysClkOut2 can also be delayed from sysClkOutl by a programmable
value selected from irq _h[4:3]. The second clock can be delayed from 0 to 3 internal
CPU clocks based upon this selection. Table 2 shows the delay times possible and their
decode meaning.

Table 1: System Clock Divisor

irq_h[2] irq_h[1] irg_h[0) Ratio
0 0 0 2
0 0 3
0 1 0 4
0 1 1 5
1 0 0 6
1 0 1 7
1 1 0 8
1 1 1 8

Table 2: System Clock Delay

irq_h[4) irq_h(3] Delay
0 0 0
0 1 1
1 0 2
1 1 3

Figure 8 shows how the clock configuration works. The input clock that is provided to the
21064 chip is divided by 2 in order to create the internal CPU clock: The CPU clock is the
reference to all the other clocks that the chip outputs. In the example, the clock divisor is 4,
so the system output clocks run at 1/4 of the internal CPU clock time. The figure shows that

10
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sysClkOut2 has been delayed by 1 CPU clock from sysClkOutl. Since the external output
clocks are differential, a two-phase clock is also available by using sysClkOutl_h, 1

Figure 8: Example of 21064 Clock Configuration
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When the reset_l signal de-asserts, the serial ROM is loaded into the processor Icache. The
CPU controls the output enable and the clock for the ROM, and accepts the bit serial data.
The preliminary data sheet provides details about the timing of the SROM control signals.
After the SROM data has been loaded into the Icache, the processor jumps to location 0,
which will hit inside the Icache. The SROM code is expected to perform chip and system
initialization, preparing the system for external operation.

After the SROM code has been executed, it is assumed that the external interface is ready
to supply I-stream data to the 21064 processor. The Bcache can be on or off at this point (in
fact, there is no need to even have a Bcache if the user has no performance reason to include
it). A general system might include a more complete boot/diagnostic ROM (BDROM) after
the SROM has done its job.

Once the 21064 is executing in I-stream mode from an external interface, it expects full
32-byte fills. The normal data path of the 21064 is 128 bits (16 bytes), so two complete fill
cycles are necessary to provide the 32 bytes of data. The BDROM code can be loaded and
executed in several ways, though the suggested method is to move the BDROM code into
RAM memory, then execute it from there. This can be easily handled by the serial ROM,
which can read the BDROM byte by byte, pack it into appropriate memory words, move it
into main memory, then jump to it in RAM.

5§ Cache/memory Interface Details

The Bcache subsystem is carefully integrated into the 21064. It is expected that the Bcache
SRAMs can be directly controlled by the 21064 pin bus, and that the Bcache data lines are
connected to the 21064 data bus, as shown in Figure 2.

The rest of this description assumes that a Beache does exist and is énabled. The case where
a Bcache is not part of the data path is much simpler, and this same document can be used
to understand the design of such a system by merely ignoring those sections dealing with
the Bcache.

1
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The Bcache is organized into 32-byte blocks or larger, with parity or ECC on 4-byte (32-bit)
segments (no error detection is also an option). When the Bcache is enabled, the 21064
will generally probe it for each memory access (lock-related cycles are an exception). The
tag and control SRAMs will first be enabled at the appropriate address, and if the probe
finds a valid match the cycle will be finished without performing a main memory read or
write cycle. The first 128-bit (16-byte) data segment will be read at the same time as the
Bcache tag probe, and will be ready if the probe is successful. The 21064 will then read
the second 128-bit segment. If the internal cache is enabled, the data is saved inside the
chip. The preliminary data sheet provides a timing diagram of the 21064-controlled Bcache
access cycles.

The Bcache is best utilized in writeback mode, which means that both reads and writes
are normally serviced from the Bcache without external logic intervention. This implies
that the Bcache has the only valid copy of a data block after it’s been modified. The 21064
will manipulate the Bcache DIRTY bit to signify that the block has been written since it
was initially read from memory. There is a method that the system logic can use to force
non-writeback behavior, but its use is beyond the scope of this document. The preliminary
data sheet discusses the SHARED Bcache bit in more detail.

5.1 Bcache Timing for 21064 Access

The Bcache timing is under complete control of the user through the BIU_CTL internal
processor register (IPR). Figure 9 shows the layout of this register, which will normally be
set up as part of the chip initialization code. The number of internal CPU cycles to allocate
for Becache reads and writes can be specified, along with the exact representation of where
the Bcache write pulse will be asserted for Bcache writes.

Figure 9: BIU_CTL Internal Processor Register
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Table 3: BIU Control Register
Field Type Description

BC_EN wO,0 Bcache enable. When clear, this bit disables the Bcache. When the Bcache
is disabled the 21064 does not probe the Bcache tag store for read and write
references; it launches a request on cReq_h immediately.

ECC woO When this bit is set, the 21064 generates/expects ECC on the check_h pins. When
this bit is clear the processor chip generates/expects parity on four of the check_h
pins.

OE wO,0 When this bit is set, the 21064 does not assert its chip enable pins during RAM

write cycles, thus enabling these pins to be connected to the output enable pins
of the cache RAMs.

BC_RD_SPD WO Bcache read speed. This field indicates to the BIU the read access time of the
RAMs used to implement the off-chip Becache, measured in CPU cycles. it should
be written with a value equal to one less the read access time of the Bcache
RAMs.

Access times for reads must be in the range 16..3 CPU cycles, which means the
values for the BC_RD_SPD field are in the range of 15.2.

BC_RD_SPD are not initialized on reset and must be explicitly written before en-
abling the Bcache.

BC_WR_SPD woO Bcache write speed. This field indicates to the BIU the write cycle time of the
RAMSs used to impiement the off-chip Bcache, measured in CPU cycles. It should
be written with a value equal to one less the write cycie time of the Bcache RAMs.
Access times for writes must be in the range 16..2 CPU cycles, which means the
values for the BC_WR_SPD field are in the range of 15..1.

BC_WR_SPD are not initialized on reset and must be explicitly written before
enabling the Bcache.

BC_WE_CTL woO Bcache write enable control. This field is used to control the timing of the write
enable and chip enable pins during writes into the data and tag control RAMs. |t
consists of 15 bits, where each bit determines the value placed on the write enable
and chip enable pins during a given CPU cycle of the RAM write access. When a
given bit of BC_WE_CTL is set, the write enable and chip enable pins are asserted
during the corresponding CPU cycle of the RAM access. BC_WE_CTL[0] (bit 13
in BIU_CTL) corresponds to the second cycle of the write access, BC_WE_CTL[1]
(bit 14 in BIU_CTL) to the third CPU cycle, and so on. The write enable pins will
never be asserted in the first CPU cycle of a RAM write access.

Unused bits in the BC_WE_CTL field must be written with zercs.
BC_WE_CTL is not initialized on reset and must be explicitly written before en-
abling the Bcache.

BC_SIZE WO This field is used to indicate the size of the Bcache. BC_SIZE is not initialized on
reset and must be explicitly written before enabling the Bcache. See Table 4 for
the encodings.

13
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Table 3 (Cont.): BIU Control Register
Field Type Description

BC_PA_DIS wo This 4-bit field may be used to prevent the CPU chip from using the Bcache
to service reads and writes based upon the quadrant of physical address space
which they reference. The correspondence between this bit field and the physical
address space is shown in Table 5.

When a read or write reference is presented to the 21064 the values of BC_PA_
DIS, BC_ENA and physical address bits [33:32] together determine whether to
attempt to use the Bcache to satisfy the reference. If the Bcache is not to be
used for a given reference the chip does not probe the tag store, and makes the
appropriate system request immediately. The value of BC_PA_DIS has NO impact
on which portions of the physical address space may be cached in the primary
caches. System components control this via the dRack field of the pin bus.
BC_PA_DIS are not initialized by reset.

Table 4: BC_SIZE

BC_SIZE Size
000 128 Kbytes
001 256 Kbytes
010 512 Kbytes
011 1 Mbytes
100 2 Mbytes
101 4 Mbytes
110 8 Mbytes

Table 5: BC_PA_DIS

BIU_CTL bits Physical Address
[32) PA[33..32] = 0
133] PA[33..32] = 1
[34] PA[33..32] = 2
[35) PA[33..32) = 3

5.1.1 Bcache Read Cycle

For a Bcache read cycle, the access/cycle time is determined by adding up the complete
address or control path from the 21064 pin bus until the data is valid at the 21064 data
bus pins. There is a 5ns setup requirement inside the 21064 on data reads, and this must
also be considered. A system designed with the 21064 must provide access to the Bcache
address and control signals from the module logic, so there is a NOR-type gate in the path.
Furthermore, the 21064 output buffers are characterized driving a 40pf load, so any large
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fanout must be accomplished without exceeding this value. This usually means that buffers
are added to the address and control paths.

Figure 10: Bcache Access Path for 21064
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An example of a Bcache read access time calculation is provided here to clarify the steps.
Figure 10 shows the general circuit assumed for this example. The address path drive
signals will normally be treated as transmission lines in a real high-performance Bcache,
so that is how they will be shown here. The termination scheme indicated in the figure
assumes that your address buffer can drive a low impedance line to a proper level on the
incident wave. If your driver cannot do this, then series termination should be used, with
the implied increase in delay time due to the necessary reflection for a proper signal level.
We will assume that the address buffer in the example has a specified propagation delay of
5ns. One of the address lines is assumed to be a fast, high-drive capability NOR-gate, and
for our purposes it will be treated like the address buffer.

Many devices specify the maximum propagation delay with only one output switching, and
in the case of an address buffer all the outputs might switch simultaneously. To account
for this, extra buffer delay should be added to the assumed propagation delay through the
device. For this example, we will assume that the 5ns buffer delay takes this into account.

All the calculations shown here are based upon the assumptions stated. The system or board
designer is responsible for analyzing any particular implementation, and determining the
correct delays and signal integrity issues. The purposes of this example are to show a
general Bcache circuit that can be implemented with the 21064, and to explain how to
program the IPR that controls the Bcache. Faster and slower systems can be built with the
21064 processor.

The SRAMs in our example have a specified access time of 20ns from address stable to data
valid at their output pins. SRAM devices often have a faster specification from output enable
to data valid, and it will be assumed that the address path, not the output enable path, is the
critical one. The designer should ensure that this is true for any specific implementation.
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The output enable path can be analyzed similarly to the address path. So the general
components of delay for this calculation are:

tADR1 [delay from CPU to input of address buffer])

tBUF [buffer gate delay])

tADR2 [address delay from buffer to SRAM inputs]

tACC [SRAM access time from address valid to data valid)
tDAT [data return path from SRAM to 21064 input pins]
tSU [internal 21064 data setup time])

Figure 11: Timing Diagram for Bcache Read Access
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Figure 11 is a timing diagram showing the 21064 signals and their delay components. The
valid data cannot be sampled until the point labeled "X" in the figure. The preliminary data
sheet provides more detailed timing diagrams of the fast Bcache access path. The Bcache
probe and each data read access would have the timing shown in Figure 11, and they are
controlled by the same programmable BIU_CTL field.

The three unknown delay components are the address paths (tADR1, tADR2) and the data
return path (tDAT). The data return path (tDAT) depends on the edge rate of the SRAM
output, the length of the data line, and the other loads that are connected to the data line. As
such, it is impossible to specify a "normal” delay time. For this exercise, it will be assumed
to be 2ns.

The address delay path from the 21064 address output to the buffer (tADR1) is similar to
the data path. It is unlikely to be a classical transmission line, due to the line length in
relation to the edge rate of the 21064 output. However, there will likely be other loads on
the address line, and the etch itself will cause a delay of around 160ps to 200ps per inch.
For this example, tADR1 will be specified to be 2ns.

The path tADR2 needs a more classical transmission line analysis, since the buffers will
have a fast switching time in relation to the line length. Even if the address drivers can
switch the line to a proper level on the incident wave, the wave will propagate along the
transmission line more slowly than if it was unloaded. Each SRAM will contribute some
capacitance to the line, which will slow the wave down according to the formula:

tPL = tPD * SQRT (1+Ca/Co)
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The term tPL is the loaded propagation delay per unit length, tPD is the propagation delay
per unit length of the unloaded line, Ca is the added capacitance per unit length due to the
SRAM inputs, and Co is the unloaded transmission line capacitance per unit length. It will
be assumed for this example that it will take the wave 2ns to reach the last SRAM address
input, where there will be no reflection. If the address driver cannot switch the line on
the incident wave, a series termination scheme would be used instead, and the delay value
would be higher.

So, the full trip from address valid at the 21064 output pin to data valid at the 21064 input
pin (plus data setup) is:

2ns tADR1
S5ns tBUF
2ns - tADR2
20ns tACC
2ns tDAT
5ns tSU

The numbers above are only for this example. If the designer uses different buffers, or splits
the address drivers differently, or uses drivers that cannot switch the low impedance line on
the incident wave, the analysis would change accordingly. We will assume that the 21064
is using an internal cycle time of 6.6ns, which means that the chip must allocate 6 cycles
for the Bcache read given the conditions specified. This is programmed into the BIU_CTL
register by setting the BC_RD_SPD field to 5, since the actual cycle count is one more than
the one specified in the register. This value will work for any round trip delay that is less
than or equal to 39.6ns.

It should be noted that using SRAMs with an access time of 17ns would reduce the number
of internal CPU cycles to 5, assuming that everything else remained constant.

5.1.2 Bcache Write Cycle

A fast CPU-activated Bcache write cycle can be analyzed similarly. The BC_WR_SPD field
in the BIU_CTL register should be programmed so that the SRAM write cycle will finish,
and the BC_WE_CTL field should place the write pulse so that the timing and width do not
violate the SRAM specifications.

An example of this calculation is provided here. Figure 12 shows the circuit that is assumed
for the Bcache write path.

Figure 13 shows a timing diagram of the write path signals as viewed from the 21064. The
preliminary data sheet provides a detailed timing diagram of a fast Bcache write access.
The tag probe follows the timing for a fast Becache read, and each write access follows the
timing as shown in Figure 13. The write pulse cannot assert until point '"X" in the figure,
and it cannot de-assert until point "Y" in the figure. The cycle cannot end until point "Z" in

the figure.
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Figure 12: Cache Write Path for 21064
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It will be specified for this example that the minimum write pulse width for the SRAM
(tWM) is 15ns. The 21064 can have 1.5ns of skew between the rising and falling edges of
the pulse it will generate. Furthermore, although the rise and fall delays through the NOR
gate in the figure should be close, some skew must be added to account for:

¢ Potential input threshold differences inside the SRAM
* Differences that result inr a rise propagation delay that is different than the fall propa-
gation delay

For the purposes of this example, we will add 2ns of skew between the rising and falling
edges of the write pulse (1.5 for the 21064, and 0.5 for the logic and threshold differences).
The following SRAM specifications will be used for this example:
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tWC = 20ns [Write cycle time]

tWP = 15ns [Write pulse width]

tDW = 8ns [Data setup time to write pulse de-assertion]
tDH = Ons [Data hold time from write pulse de-assertion]
tAW = 15ns [Address setup time to write pulse de-assertion]
tWR = Ons [Address hold time from write pulse de-assertion])
tAS = Ons [Address setup time to write pulse assertion]

The above specifications are only a subset of the total device specifications for a real device,
and are used to show the general technique used in determining how to program the BIU_
CTL IPR. Designers should closely analyze their own systems, including the device support
logic, etch paths, and RAM specifications, in order to determine exactly which paths are
critical.

The first BIU_CTL field to calculate is the BC_WE_CTL, which determines where the write
enable pulse will be asserted. The field is 15 bits wide, and each bit represents an internal
CPU cycle that will assert the write enable pulse (starting with the second cycle, since the
first cycle will never drive the write enable pulse).

The address delay calculation is similar to the read case, and it should be added to the
address setup time as follows:

2ns tADR1

S5ns tBUF

2ns tADR2
15ns tAW for SRAM

The earliest that the write pulse can be de-asserted is then 24ns from the start of the write
cycle, based upon the address setup requirement.

There are two types of "data” that need setup and hold time for the write cycle. The actual
Bcache data is the first type, and the tag control inputs (VALID, DIRTY, SHARED, and
PARITY) are the second type. The 21064 drives the tag control inputs one CPU cycle later
than the actual data, and we will assume that they are the critical path. The chip will
provide stable data at most 2.9ns after the nominal edge that drives the data (in this case,
tag control) lines. We will assume that the data will take 2ns to get to the SRAMs and be
stable. If the CPU clock cycle is 6.6ns, then the earliest that the write pulse can de-assert
is calculated as follows:
6.6ns [1 CPU clock cycle]
.9ns [21064 data stable time]

2
2.0ns tDAT
8.0ns tDW for SRAM

It would appear that in this example the address path is the critical one, and the write pulse
cannot de-assert until 24ns after the start of the write cycle. The minimum pulse width is
specified to be 15ns, which must be extended to (15+2=) 17ns to account for the pulse width
skew in the 21064 and the external logic. At an internal 6.6ns CPU cycle time, 3 cycles
must be used for the write pulse.

Since the earliest that the write pulse can de-assert is 24ns after the start of the write cycle,
the latest that it can assert (in order to meet that de-assertion time) is (24-17=) 7ns after the
cycle start. We have specified here that the write pulse cannot assert until the address is
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stable (tAS), and this will put a bound on how early the write pulse is asserted. It was deter-
mined previously that the address will reach the last SRAM (tADR1+tBUF+tADR2=2+5+2=)
9ns after the start of the cycle. Since there is also 1.5ns of skew between the address signal
and the write pulse signal coming from the 21064, the real minimum time is (9+1.5=) 10.5ns
from the cycle start.

So, the earliest that the 21064 can assert the write pulse is 13.2ns into the Bcache write
(that’s the beginning of the 3rd CPU cycle). The write pulse should then start at the 3rd
CPU cycle and extend until the end of the 5th cycle. The BC_WE_CTL field should be
programmed to be 000000000001110. This means that the write pulse will remain asserted
until (6.6ns*5=) 33ns into the Bcache write, which puts it after the 24ns limit previously
calculated.

The other programmable field of interest in the BIU_CTL is the BC_WR_SPD field, which
determines the entire write cycle time. The write pulse itself is de-asserted at the end of the
5th CPU cycle into the Bcache write in this example, which means it nominally de-asserts
(6.6*5=) 33ns from the start of the cycle. It might be 1.5ns later than that due to 21064
output skew. There is also a NOR gate in the path (tNOR), and some wire travel time
associated with the signal (tWE1 and tWE2).

There are three components of delay for the write enable pulse. The two write delay com-
ponents (tWE1 and tWE2) might or might not be transmission lines. Figure 12 implies
that tWE1 is not a transmission line and tWE2 is, with parallel termination. The module
designer should analyze the particular implementation to see what the correct configuration
should be, and if one of them is a transmission line it should be terminated appropriately
(this analysis is similar to the address calculation in the previous section).

We will assume that tWE1 is 1ns, tNOR is 5ns, and tWE2 is 2ns for this example. So, the
latest that the write pulse can de-assert at the last SRAM (and thus the earliest that the
cycle can end) is:

33.0ns [nominal write pulse de~assertion from start of write]
1.5ns [21064 skew from nominal edge]

1.0ns tWEl

5.0ns tNOR

2.0ns tWE2
42.5ns

At a 6.6ns cycle time this translates to 7 cycles, so the value of 6 should be programmed into
the BC_WR_SPD field (since this value is always 1 less than the actual write cycle time).
The nominal write cycle speed will be 46.2ns for this example. As with the read cycle, it
will be noted here that if the write enable pulse requirement was shorter (say 1lns rather
than 15ns), the fast Bcache write could be reduced to 6 cycles.

5.2 Bcache Miss and External Request

An initial Bcache fill operation is executed when the 21064 attempts to read or write a block
that misses in the Bcache (the write fill operation assumes a write-allocate Bcache policy).
The miss can be caused for several reasons:

1. The Bcache block for that index is not valid
2. The Bcache block for that index is valid, but the tag misses
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The first scenario above is the simplest, and will be discussed first. When a Bcache probe
results in a miss, an external READ_BLOCK or WRITE_BLOCK operation is initiated by
the 21064 external interface logic. The READ_BLOCK and WRITE_BLOCK external cycles
are the most basic method of transferring data between the 21064 and the system, and are
discussed in some detail in this document. The preliminary data sheet provides more details
about other command types.

The command is initiated when the 21064 places the appropriate code on the cReq_h[2:0]
lines during the rising edge of sysClkOutl_h. Timing for external cycles is synchronous
to sysClkOutl_h, and all setup and hold times are referenced to the rising edge of this
clock. The address, control, and data signals all change simultaneously with sysClkOutl_
h, and therefore cannot be sampled on that same edge. In general this is only a concern
for those lines that are used to determine if a cycle should begin; -such as the request lines
cReq_h[2:0] (the holdAck_h line is also in this category, as discussed later). A delayed
version of cReq_h[2:0], perhaps sampled by sysClkOut2_h, should be used to feed any
state machines that run on sysClkOutl_h and use the request lines.

Figure 14: External Cycle
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Figure 14 shows this relationship. The 21064 places the external cycle type on the cReq_
h[2:0] lines at the start of cycle 1 in the figure. sysClkOut2_h is used to sample the request
lines, and the system logic uses this delayed version to start its state machines at the start
of cycle 2. After the external logic has performed the appropriate function, it changes the
cAck_h[2:0] lines, which are sampled by the 21064 at the start of cycle 5. The CPU removes
the request lines at that same time, and could start a Bcache access immediately (at the
start of cycle 5). The earliest that the CPU can start another external cycle is one system
clock cycle later, at the start of cycle 6 (as shown).

It is assumed here that the Bcache block is invalid, but the external logic would have no
way to know that. So, the external logic must have some way to determine if the current
Bcache block occupant needs to be written back to the main memory. One method to do this
is to have the system logic perform its own Bcache tag probe. Only the VALID and DIRTY
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bits need to be inspected, so the external logic probe does not have to wait the entire time
necessary to compare the tag address field in the Bcache.

A critical path in this external logic probe is the SRAM output enable circuitry. The 21064
leaves the Bcache RAMs disabled after its own probe, and it’s up to the external logic to
drive the output enable again in order to inspect the VALID and DIRTY bits. One way
to do this is to allow an early version of the cReq_h[2:0] signals to turn on the SRAM
output enables by default, assuming that a probe will be necessary. For those cycles where
the external logic later needs to write the Bcache, another logic path is necessary to turn
the output enable back off. The de-assertion path is not time-critical, but does need to be
implemented for cache fill operations.

Figure 15: Tag Control Probe Before External Cycle
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Figure 15 shows the timing for the entire cycle, including the tag control check. The figure
shows the delayed cReq_h[2:0] lines changing state at the start of cycle 1, and the tag probe
occurring during that cycle. The signal sys_tagCEOE_h[x] is the system logic version of
the 21064 tagCEOE_h[x] signal. It is the other input to the NOR gate shown in Figure 3.
That nomenclature will be used throughout this application note.

In this case, it was assumed that the Bcache block is invalid, 8o no victim write needs to
be performed. Section 5.5 explains the details of a victim write. If the Bcache probe found
that the block was valid but not dirty (that is, it had not been modified since being read
from main memory), then the outcome is the same. In both cases, the block can safely be
invalidated without a victim write.

Figure 15 shows the tag inspection being implemented in one cycle, so that the read com-
mand can start at the beginning of cycle 2. This might not be possible on any particular
implementation, and must be carefully analyzed to ensure that the data will be stable when
the clock asserts in the system control logic.
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The external cycle (READ_BLOCK or WRITE_BLOCK) will overwrite the data in the
Beache, and will assert the dinvReq_h signal if appropriate during the fill, so the internal
Dcache block will be invalidated later. The lower address bits are directly connected to the
iAdr_h[12:5] invalidate address input lines in this example, and that will ensure that the
correct cache block will be invalidated. Some implementations might want better control
over the invalidate bus, and must ensure that the iAdr_h lines accurately reflect the lower
index value on the asserting edge of sysClkOutl_h that samples diInvReq h.

5.3 Read Block Request

If the external cycle is a READ_BLOCK, a 32-byte block of memory information is returned
to the 21064. The external logic has complete control of the 21064 pin bus during the
transfer. The data is returned to the 21064 and simultaneously loaded into the Bcache.
It is the external logic that writes the data into the Bcache during the read cycle, not the
21064.

The minimum amount of data that can be written to the Bcache is 32 bytes, but the system
logic controls the Bcache until the cAck_h[2:0] lines are changed from their IDLE state.
As such, it can load and validate more than that if the system designer believes prefetching
more blocks is appropriate. Any prefetching must be done in 32-byte increments.

The external logic is responsible for loading the tag address and the tag control fields of the
Bcache (with correct parity on both) along with the data. The tag control field should be
written as VALID and CLEAN.
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Figure 16: Tag Access and Write Circuit
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Figure 16 shows an example of the logic that is expected for tag address control. One of
the tagAdr_h lines is shown connected to its Bcache RAM. All the tag address lines in
use by the implementation go to the parity generator. The tagAdr_h[tag] signals and the
tagAdrP_h parity lines are all driven by tristate buffers. On probe reads, the SRAM output
enable allows the Bcache to drive the signals, where they are compared by the 21064 or the
system logic. On a fill operation, the load_tag 1 signal causes the Becache tag RAMs to be
loaded with the upper address bits. Notice that the RAM write enable input is not connected
to the 21064, since the processor never writes them.

As each data word is returned to the 21064 the dRack_h[2:0] field is changed from IDLE to
non-IDLE. Normally, the non-IDLE state will be OK, which instructs the 21064 to both check
the ECC (or parity) on the returned data and cache the data internally. The preliminary
data sheet provides more information on the dRack_h[2:0] field. Figure 17 is a timing
diagram for a READ_BLOCK data transfer, showing the 21064 control signals.

The data in the example is assumed to be ready at the start of cycles 4 and 6, but in another
implementation the data might be ready before or after that time. The dRack_h[2:0] lines
should change to the non-IDLE state whenever the data is ready, with enough setup time
so that they are sensed by the 21064 at the assertion of sysClkOutl_h. The cAck_h[2:0]
lines can also change to their non-IDLE state (signifying the end of the cycle) during the
last dRack_h[2:0] data phase if desired.
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Figure 17: Timing Diagram of READ_BLOCK Cycle
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The timing of the Bcache write signal might be tight in relation to the data arriving from
the memory. If the memory is a DRAM array, for example, the CAS signal should be de-
asserted as quickly as possible after the DRAM data is stable in order to start the next
memory access during a page mode read. The Bcache, however, might need the data held
stable. Using a bidirectional clocked memory data transceiver, as shown in Figure 2, can
help in some cases.

Figure 17 shows the dInvReq_h signal asserting, which will invalidate the internal Dcache
block corresponding to the lower index bits in the address. This is only needed if the external
data fetch is for I-stream (indicated by a false cWMask_h[2] on READ_BLOCK cycles), and
if the internal Dcache is being kept as a subset of the Bcache. The block that is being
filled into the Bcache might be in the Dcache, and it will not otherwise be invalidated on an
I-stream fetch.

The 21064 can potentially drive its own Bcache control signals a few CPU cycles into the
external cycle. As such, the Bcache SRAMs might still be driving the data bus as the external
cycle starts. On a read cycle, the system logic might turn on its own data transceivers early
in the access, and should be aware that a system cycle should be allowed before this is done.
This eliminates any tristate overlap between the SRAMs and the data transceiver.

For a system without 'a Bcache, the 21064 signals would be the same as Figure 17, but
none of the Beache related lines would be asserted by the system logic. If the system has
a Bcache but it is not enabled, the external system logic needs to have some mechanism to
turn off the Becache fill logic, since the 21064 does not broadcast its internal Bcache enable
signal to the external pin bus.

25



Introduction to Designing a System with the DECchip ™ 21064 Microprocessor

If the read cycle is to an area of memory that has been defined as I/O, it is likely that
another bus is involved with the transfer. In this case, the timing is also similar, and the
Bcache control signals are also not asserted. A further modification in this case might be
to change the dRack_h[2:0] field to indicate that no error checking be performed and that
the data should not be loaded into the internal chip Dcache either.

Figure 18: Clock Skew From System to 21064
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CLOCK BUFFERS

The 21064 system clocks, such as sysClkOutl_h, are specified to drive only 40pf. Because
of this, clock buffers will normally be used to drive the system logic. The clock buffers add
skew between the 21064 and the system logic. Figure 18 shows a timing diagram and a small
circuit section that might be used to create the signals in the diagram. The buffered version
of the system clock buf_sysClkOutl_h drives the system state machines that eventually
cause the data_h lines to be valid at the 21064 input pins.

The data_h must be setup at least 3.5ns before the assertion of sysClkOutl_h. In this ex-
ample, the delay added by the buffer must be added to that setup time, since the 21064 sees
its reference clock some time before the system logic. This delay should include the entire
path for the buffered clocks, including wire delay, device propagation delay, simultaneous
switching increases, transmission line effects, etc. The example in Figure 18 shows only one
instance of this consideration. Others must be analyzed based upon the implementation.

It should be noted here that the skew helps signals like dRack_h([2:0] and cAck_h[2:0],
since they can be asserted on the system logic version of the clock and meet both the setup
and hold times in reference to the 21064.
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Figure 19: READ_BLOCK Cycle with Write Pulse
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If the external timing allows it, a write pulse can be created by delaying sysClkOut2_h by
1 CPU cycle, and using sysClkOutl_h to create an enable signal for it. Figure 19 shows a
READ_BLOCK cycle with a cache fill that uses a write pulse to load the Bcache. The signal
sys_dataWE_en_h enables sysClkOut2_h when the Bcache needs to be written.

Figure 20 is an example of how the write pulse can be created, showing the circuit paths of
interest. The clock buffers are shown that are expected to drive the system logic, in part to
show that skew must be carefully considered if a write pulse-like scheme is attempted. If
the clock buffers add enough delay to the path, and the delayed version of the clock is used
to create the sys_dataWE_en_h signal, the leading edge of the enable can overlap with
sysClkOut2_h. To prevent this from happening, a non-buffered version of sysClkOutl_h
might be used to create sys_dataWE_en_h. The same argument applies to the tag control
write pulse.
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Figure 20: Write Pulse Circult
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5.4 Write Block Request

If the external cycle is a WRITE_BLOCK, the system logic must perform a different set of
functions. The initial tag probe must still be done by the external logic, and we are still
assuming here that the current block is either not valid, or it is valid but not dirty (no victim
write needed).

If we assume that the Bcache is used as a writeback cache (the normal mode), and that the
design is using a write-allocate Bcache policy, then the write data should go into the Beache,
even though an external WRITE_BLOCK cycle is being executed. The most reasonable way
to accomplish this is to read the entire block from memory into the Bcache, then write the
masked 8-byte into that same Bcache block. For systems without a Bcache, the external
memory should be writable on 4-byte (32-bit) boundaries, since the Bcache merge cannot be
performed.

‘The 21064 is attempting to perform a WRITE_BLOCK cycle in this case, and doesn’t even
know about the memory read cycle. The dRack_h[2:0] and cAck_h[2:0] signals should
remain IDLE throughout the read transfer. After the read has been accomplished and the
main memory data is now in the Bcache block, the system logic should cycle the 21064
through its write data by using the dWSel_h[1] line. The 21064 input signal dOE_l is
used to instruct the chip to drive the data lines for the write portion of the cycle. Only the
masked 4-byte segments should have their write enable inputs asserted during the cycle,
based upon the cWMask_h[7:0] signals.

After the entire read and write cycle have been finished, the tag control should be written
as VALID and DIRTY, and the tag address should be written with the correct upper address
bits. Figure 21 shows the Bcache write portion of the WRITE_BLOCK cycle. The read
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Figure 21: Timing Diagram of WRITE_BLOCK Cycle
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portion looks like Figure 17, except that the CPU acknowledge signals should not be changed
from IDLE.

Note when the data actually changes relative to the signals dWSel_h and dOE_l1. All the
signals are synchronous to the leading edge of sysClkOutl_h, so the inputs are not acted
upon until the next system clock edge. The end of the external write in Figure 21 is the
start of cycle 7, at which time the 21064 will remove the address and potentially start the
next Bcache probe.

There are several optimizations that can be made on the write cycle:

1. The cWMask_h[7:0] signals can be inspected, and if they are all set the read portion of
the cycle does not have to be performed. In this case, every byte will be wntten anyway,
so the Bcache write cycle can be performed from the start.

2. The tag Bcache RAMs don't have to be written on both the read and write portions of
the cycle. It may turn out to be simpler to do it during the read cycle so that it is the
same as a normal read, but it is under control of the designer.

3. Both 128-bit data segments don't need to be written if the lower mask bits show that
there are no 4-byte segments enabled. The signal dWSel_h[1] can be asserted earlier to
write the upper 128 bits only. If both segments are written, however, the lower address
must be written before the upper address (as shown in Figure 21).
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Figure 22: Clock Skew From System to 21064 for Write
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As with the read cycle, the write cycle must take into account the clock skew between the
21064 and the system logic. Figure 22 shows an example of a potential problem. The 21064
signal dOE_] is asserted by the system logic to instruct the chip to drive the data_h lines
during the write cycle. But dOE_l is sampled by the chip on the earlier, unbuffered version
of sysClkOutl_h. In Figure 22, the data is removed on the asserting edge of sysClkOutl_
h, which might be too soon. If the system logic uses its version of buf_sysClkOutl_h to
sample the write data, then it should cause dOE_]l to remain asserted low one extra cycle
to accommodate the clock skew. This same argument applies to dWSel_h[1].

5.5 Victim Wrlte

The second possibility for the original Bcache miss is that the data currently occupying the
Bcache block is VALID and DIRTY, but the upper address bits do not match the tag address.
The 21064 will go to the external logic with a READ_BLOCK or WRITE_BLOCK, just as
in the previous description. When the external logic does the Bcache VALID/DIRTY probe,
however, the outcome is different. Since the data in the Bcache block has been modified
since it was read from the main memory, it must be written back to memory before the
external read or write cycle can continue. The act of writing the block back to memory is
called a victim write.

The external control logic for a victim write is straightforward. The 128-bit data segments
are read from the Bcache, and the data is sent to the external memory. After the victim
is safely back in memory, the READ_BLOCK or WRITE_BLOCK is performed, exactly as
described in the previous sections. Some time during the entire cycle (including the victim
write and subsequent read or write cycle), the dinvReq_h signal should be asserted to
invalidate the internal Dcache block for that index.
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Figure 23: Timing Diagram of Victim Write Cycle
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Figure 24: Address MUX for Victim Write
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Figure 23 shows the victim write cycle. The tag address is used as the high memory address
bits for the write, so the sys_tagCEOE_h signal is asserted to enable their outputs. The
Bcache data RAMs are enabled, and each data segment is selected in turn by sys_dataA_
h[4]. In this example, two cycles are necessary for the main memory to be written. If the
memory is slower, more cycles should be allocated. At the start of cycle 7 the actual read or
write cycle would proceed.
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A MUZX gate is needed to choose between the normal 21064 memory write and the victim
write, where the upper address bits are taken from the tag field of the Bcache. Figure 24
shows the expected circuit. Normally, the MUX selects the adr_h lines, but during victim
write cycles the tagAdr_h lines are chosen as the memory address. Figure 24 also shows
that the entire address bus should have the ability to tristate for DMA access. During DMA
transfers, the 21064 is forced off the address lines and the external logic controls the entire
address. The MUX and tristatable gate can be one physical device.

The signals victim_write_h and DMA_cycle_h are expected to be created by the system
logic. They do not come from the 21064. The tag address field in Figure 24 is shown for the
smallest Bcache size. Other Bcache sizes will have different relative widths for the tag and
index fields.

For high performance systems, a victim queue (or silo) is an option. Instead of writing the
victim and reading the new data word serially, the Bcache and the memory can be read
simultaneously. The information in the Bcache can be stored in a silo while the memory
data is loaded into the Bcache. The silo can then be used to write the previous Bcache
contents to memory.

5.6. Non-cacheable Memory Write

There might be non-cacheable memory space in your 21064 system design. When that area
is a write target, the data should bypass the Bcache and be written directly to the system
memory. If non-cacheable memory is included in the system, it is best to-make it writable on
4-byte segments. Otherwise, a full read/modify/write cycle will be needed to store non-fully
masked data.

A memory write on a system that allows masking on 4-byte segments is only a minor variant
on the victim write function. The difference is that the information to be written to memory
is coming from the 21064 rather than the Bcache. The Bcache is not invoked at all in this
situation, and the dWSEI]_h[1] signal is used to instruct the 21064 about which 128-bit
data segment to provide.

Figure 25 shows the timing for such a write cycle. In this example, a more complete memory
control flow is shown. It is assumed that the memory is a DRAM array, and a representative
set of memory control signals are provided. The designer should work out the exact timing
on a particular implementation in order to ensure that the memory parts are accessed within
specification.

The adr_h lines should be stable at the start of the cycle, since they are changed by the
21064 before the cycle is started. If the DRAM address MUX points to the row address by
default, the memory can be RASed at the start of the cycle. At the end of the cycle, the
DRAM RAS precharge time must be accounted for. The 21064 will allow at least one idle
cycle after it senses cAck_h as non-IDLE before it will start the next external command.
In the example, RAS de-asserts at the start of cycle 6, which means that it cannot re-assert
until the start of cycle 8. The changing of cAck_h so that it is sensed at the start of cycle
7 meets the RAS precharge time for the part in this implementation.
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Figure 25: Timing Diagram of Direct Memory Write Cycle
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6 Load Locked and Store Conditional

The 21064 provides the ability to perform locked memory accesses through the LDxL (Load_
Locked) and STxC (Store_Conditional) cycle command pair. The LDxL command will force
the 21064 to bypass the Bcache and request data directly from the external memory inter-
face. The memory interface logic must set a special interlock flag as it returns the data, and
may optionally keep other information about the transaction (such as the locked address).

The data requested for the LDxL access might be in the Bcache, since it has not been
probed, so the external memory logic must do its own probe to determine where to obtain
the information. In previous descriptions, the system logic only had to probe the tag control
VALID and DIRTY RAMs to determine if a victim write was necessary. For the LDxL and
STxC probe, the entire tag address must be compared, since the data that is being accessed
might be in the Beache.

Figure 26 shows a diagram of the probe and compare logic. On the initial request (the cReq_
h[2:0] lines specify that the external LDxL must be performed) the system logic enables the
tag RAMs and compares them to the tag field of the address for the 21064. If they compare
and the block is valid, then the data requested is already in the Bcache. If the tag compare
also shows that the block is dirty, then the only place the data resides. is.in the Bcache.
There are two choices:

1. The data can be accessed from the Bcache.
2. The data can be written back to memory, then accessed from there.
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Figure 26: Tag Address Compare Circuit
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If the tag compares and the block is valid, but it is not dirty, then both the Becache and the
memory contain the data. It can be accessed from either place. If the tag fails or the block
is not valid, then the data is only available from memory and must be accessed from there.
In all the above cases, a flag must be set that signifies the location is locked.

Every design needs to provide a lock flag, but the amount of address information latched
is completely up to the designer. On a uniprocessor system that does not expect much lock
contention, simply having the lock flag with no address information might be enough. If any
device accesses a memory location, the flag can be cleared, which will cause the subsequent
store cycle to fail. On a multiprocessor system that expects real lock contention, lock address
information can be saved so that different processors can lock different areas.

The STxC instruction is executed by the 21064 to clear the lock (and to find out if the code
that was executed did so without contention). It is a write-type request where the processor
bypasses the Bcache without a probe. If no other access has been made to the locked data,
the STxC is treated similarly to a regular external memory write, though the Bcache must
be probed by the system logic to determine where the most up-to-date data is located. The
locked flag is also cleared.
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If the Beache probe finds that the data is both valid and dirty, the choices are similar to the
read case:

1. The data can be written into the Bcache, using the cWMask_h[7:0] to determine which
4-byte segments should be modified. The STxC command will never validate more than
a single 4-byte or 8-byte segment of data, and this can be used to optimize the cycle if
desired.

2. The data can be written back to memory with a victim write, and modified there.

If the locked data location has been accessed between the LDxL and STxC commands, the
external memory logic must return a special acknowledgment code that notifies the 21064
of this fact. In this case, no Bcache probe or actual external cycle needs to be performed.

7 Special Request Cycles

There are some external request cycles that might not actually perform any work, but must
still provide the 21064 with an acknowledgment. The BARRIER, FETCH, and FETCH_
M cycles are described in the preliminary data sheet, and will perform a system-specific
function. When they are sensed by the external control logic, the system must minimally
provide a cAck_h acknowledgment of OK.

8 DMA Access

There are situations where a device connected to an I/O bus needs direct access to the
21064 cache/memory subsystem. In the most general case the data could be in the Bcache,
and that is the one discussed in this section. If a restriction can be made that eliminates
the possibility of the target data being in the Bcache (that is, the DMA is always done to
uncached space), then a simpler version of this discussion applies.

There are several ways that the external logic can perform a DMA access, the most straight-
forward of which is the use of the holdReq_h line. When a DMA device requires access
to the 21064 cache/memory subsystem, it can notify the chip of that fact by asserting the
holdReq_h signal. The 21064 replies to this request by asserting the holdAck_h signal.
This signifies that the 21064 is no longer asserting the address, data, or Bcache control
signals. The entire memory subsystem and Bcache are now under control of the external
system logic.

The signal holdAck_h changes simultaneously with sysClkOutl_h. As such it should be
sampled on an edge other than sysClkOutl_h if used as an input into state machines that
run on sysClkOutl_h. This is similar to how cReq_h[2:0] must be used, as shown in
Figure 14.

If it is assumed that the DMA target data (read or write) might be in the Bcache, the
external logic must do a Beache probe. This is similar to the probe necessary to determine
if the data is in the Bcache when a LDxL or STxC is executed. The tag address and control
RAMs should be compared to find out if the requested data is in the Bcache, and if it is
dirty. The DMA logic can use the LDxL/STxC compare logic shown in Figure 26, or it can
duplicate that logic for its own comparison.
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The 21064 provides a third option for the tag address comparison, and this is the tagEq_1
signal. When the chip is in holdReq_h mode, the adr_h[33:5] signals become inputs. The
DMA device can drive its address on those lines and simultaneously enable the tag address
RAMs. If the tag address compares with good parity, the signal tagEEq 1 will be asserted
low. Consult the preliminary data sheet for more details about the use and timing of this
feature.

For DMA read cycles where the probe shows that the data is valid in the Bcache, the choices
are similar to what they were for the LDxL/STxC probe. If the data is valid but not dirty,
it can be accessed from wherever it is most convenient. If the data is valid and dirty, it can
be accessed directly from the Bcache or written back to memory and accessed there.

For a DMA write that hits in the Bcache, there are several choices:

1. The data can be written directly into the Bcache with the correct ECC or parity. In
this case, the tag control should be made DIRTY, and the dinvReq_h signal should
invalidate the cache line in the internal Dcache.

2. The data can be written back to memory with a victim write, and it can be modified
there. The dInvReq_h signal should be asserted during the victim write or the DMA
memory write to invalidate any stale Dcache data.

If the Bcache probe misses, or if the DMA access is defined to be only in the memory, then
it is most sensibly accessed or modified there.

After the read or write cycle is complete, the holdReq_h signal can be de-asserted, which
will cause the 21064 to de-assert the holdAck_h signal. The 21064 will then take control
of the bus again, after a short delay.

There is one subtlety that should be mentioned here in regard to DMA access design. The
21064 might be in the middle of its own external (non-Bcache) access when it receives the
holdReq_h request signal. If this happens, the chip might be waiting for data of its own,
and has really only stalled the external cycle. As such, the data and cycle acknowledge
signals are "live". The external logic must be careful not to assert the dOE_1, dAWSEL_h,
dRack_h, or cAck_h signals during its access cycle. Furthermore, there is a 2-CPU cycle
delay between the time that the 21064 de-asserts the holdAck_h signal and when it re-
enables its own address and data lines. This must be factored into the external logic for
cycles that continue after the DMA stall.

In order to simplify the design, it is possible to filter the holdReq h signal going to the
21064. If the external logic ensures that the holdReq_h signal only gets to the 21064
between cycles, then the problem of external cycles stalling in the middle is eliminated.

9 Backmapping the internal 21064 Dcache

The 21064 provides the ability to keep a "backmap" of the internal Dcache tag address in
external logic. In effect, the module adds enough extra information about the Dcache tag
address to filter the invalidates that are sent to the 21064 Dcache. This can be used in
multiprocessor systems or to filter DMA writes. :

The processor outputs the signal dMapWE_h when it loads a block into the Dcache. This
is meant to control an external memory array that takes the address from the appropriate
adr_h lines and updates the external tag address memory location.
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The external tag address does not have to contain the entire Dcache tag field, but rather
needs only the difference between the Becache and Dcache tag widths. If the Dcache is being
kept as a subset of the Beache, and if the Bcache is first probed, then the Dcache backmap
is only responsible for knowing if a Bcache hit is also a Dcache hit. The preliminary data
sheet describes the backmap in more detail.

10 1/0 Interface

‘'The input/output function of the 21064 is in some ways a subset of the memory function.
I/O is normally not cached, so the probe will miss or not be performed at all for that memory
quadrant. The access will go directly to the external interface bus as a READ_BLOCK or
WRITE_BLOCK.

On a read cycle, the data will be returned as in the memory access already described,
with the dRack_h[2:0] signals indicating that the data should be neither error-checked
nor cached inside the chip. Since the return data is under complete control of the system
interface logic, the Bcache will not be filled. On a write cycle, the steps are similar to a
direct memory write cycle. The external logic can take the appropriate number of data
words, then acknowledge the cycle.

The Alpha architecture provides an approach to I/O called a "mailbox". A description of
the read or write is set up in memory. The description includes the full address, data, and
mask information. A special mailbox register is then accessed in order to invoke the I/O
transaction. This approach implies a smart I/O controller, and allows access to the full
address range of the I/O bus.

If the mailbox option is not implemented, there are some techniques that can be employed
when interfacing the 21064 to an I/O bus:

1. Address or data bits can be used to create byte masks and encode system level functions.

2. The 21064 address lines adr_h can be shifted right when accessing external buses that
need the lower address bits. So, for example, adr_h[20:5] can translate to I/O address
bits [15:0].

3. Reads and writes to I/O space can use the low bytes for all transactions, rather than
pack the data into the appropriate field within the 32-byte block.

4. The cWMask_h field can normally be ignored for I/O writes.

11 Summary

The intent of this application note was to provide information so that a logic designer could
understand the fundamental principles of creating a system with the 21064 processor chip.
All of the chip’s features were not covered, and it is suggested that the preliminary data
sheet be consulted for more details about the 21064 and its use. Future application notes
will cover different aspects of 21064 system design.
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