
Digital Equipment Corporation Proprietary & Confidential

For Internal .Use Only

Do Not Copy or Disclose

Digital Equipment Corporation
ALPHA Calling Standard

Revision: 2.0

27-April-1990

Issued by:

Chip Nylander and Terry Grieb, Software Development Technologies

DEC™, VAX™, VMS™, ULTRIX™, and Concert Multithread™ are trademarks of Digital Equip­
ment Corporation.

Copyright © 1989, 1990 Digital Equipment Corporation, Maynard, Mass.

All rights reserved.

Digital Equipment Corporation

•

CONTENTS

. . .
Prefa.ce . xi

Acknowledgements .. ~ .. · xiii

Revision History. xv

Document Organization ·. xvii

Notation Used in This Document.. xix

Part I: ALPHA-64 CALLING STANDARD

Chapter 1 INTRODUCTION . 3

1.1 Applicability . 5

1.2 Architectural Level . 5

1.3 Related Documents . 6

1.4 Definitions . 7

Chapter 2 BACKGROUND. 9

2.1 Goals . 9

2.2 Constraints . 10

2.3 'l'radeoffs . 10

2.4 Important Technical Decisions . 11
2.4.1 PC Mapping vs. FP Based Call Chain Navigation . 11

Chapter 3 BASIC CONSIDERATIONS 15

3.1 Address Representation . 15

3.2 Procedure Representation . 15

3.3 Register Usage Conventions ·. 16
3.3.1 Integer Registers . 16
3.3.2 Floating Point Registers . 17

Chapter 4 FLOW CONTROL . 19

4.1 Procedure fypes . • . 19
4.1.1 Stack Frame Procedures . 20
4.1.2 Register Frame Procedure... 29
4.1.3 No Frame Procedure . 32

4.2 Procedure Signatures . 35

4.3 Procedure Descriptor Access Routines . 37

Ill

4.4 Procedure Call Chain : . 38
4.4.1 Current Procedllre ·. . . • . 38
4.4.2 Tlie Call Chain ~ ~ · .. ~ ~·. ~·. 39
4.4.3 Procedure Call 'I'racing . 39
4.4.4 Obtaining the Context of a ProcedlJre . 43

4.5 Transfer of control . 44
4.5.1 .Call Conventions 44
4.5.2 Linkage . 4 7
4.5.3 Calling Computed Addresses . 49
4.5.4 Bound Procedure Values . 50
4.5.5 Entry and Exit Code Sequences . 53

Chapter 5 DATA MANIPULATION . 59

5.1 Data fypes ·. 59
5.1.1 Argument and Function Value Data Types . 59
5.1.2 Argument Descriptors . 64

5.2 Data Passing . 76
5.2.1 Argu:inent Passing Mechanisms . 76
5.2.2 Argument List Structure.. 76
5.2.3 Argument Lists and High Level Languages . 77
5.2.4 Unused Bits in Passed Data . 78
5.2.5 Sending Data . 79
5.2.6 Receiving Data . 80
5.2.7 Returning Data . 80

5.3 Static Data . 86
5.3.1 Alignment . 86
5.3.2 Record Format Conventions . 86

Chapter 6 EVENT PROCESSING . 89

Iv

6.1 Exception Handling . 89
6.1.1 Exception Handling Requirements . 89
6.1.2 Exception Handling Overview . 90
6.1.3 Data Structures for Exception Handling . 92
6.1.4 Exception Handlers . 99
6.1.5 Establishing Handlers.. 101
6.1.6 Revoking Exception Handlers . 102
6.1.7 Raising Exceptions . 103
6.1.8 Invocation of Exception Handlers . 104
6.1.9 Modification of Exception Records and Context by Handlers 107
6.1.10 Handler Completion and RetlJrn Value . 108
6.1.11 Other Considerations.. 109
6.1.12 Exception Handling Coexistence . 110

6.2 Unwinding 113

6.2.1 Unwind Requirements :...................................... 113
6.2.2 Unwind Basic Considerations , . 113
6.2.3 Types of Unwind : ~ · :·.................... 113
6.2.4 Unwinds Invocation Types... 114
6.2.5 Unwind Initiation . 115
6.2.6 Handler Invocation During an Unwind ; . 117
6.2. 7 Unwind Completion . 119
6.2.8 Unwinding Coexistence with Setjmp/Longjmp . 119
6.2.9 Compatibility with Other Environments . 119

6.3 Asynchronous Software lntenupts . 121

Chapter 7 MULTITHREADED ENVIRONMENT CONVENTIONS 123

7 .1 Thread Environment Block . 124
7.1.1 Access to the Thread Environment Block . 124
7 .1.2 Thread Environment Block Format . 124

7 .2 Stack Limit Checking . 126
7.2.1 Stack Guard Region . 126
7.2.2 Methods for Stack Limit Checking . 126
7 .2.3 Stack Overflow Handling . 127

7 .3 Asynchronous Software lntenupts ·. 128

7.4 Thread Exit . 128

7 .5 Thread Private Storage . 129
7 .5.1 Referencing Thread Private Storage . 130
7.5.2 Sharing TPS Regions Between Shared Libraries.......................... 131
7.5.3 Deleting TPS Regions . 131

Chapter 8 RUN TIME GENERATED CODE . 133

8.1 Procedure Descriptors for Run Time Generated Code......................... 134

8.2 Steps for Run Time Generation of code . 135

Chapter 9 CODE EXAMPLES ~ 137

Part II: ALPHA-32 CALLING STANDARD

Chapter 10 INTRODUCTION . 143

10.1 Applicability . 143

Chapter 11 BACKGROUND . 145

11.1 Goals . 145

11.2 Constraints . 145

v

11.3 'li-adeoffs . 146

11.4 Important Technical Decisions .. ~ ; .. : · ·. 14 7
11.4.1 PC Map vs. FP Based Call Chain Navigation . 147

Chapter 12 BASIC CONSIDERATIONS 149

12.1 Address Representation . 149

12.2 Procedure Representation . 149

12.3 Register Usage Conventions . 150
12.3.1 Integer Registers . 150
12.3.2 Floating Point Registers . 150

Chapter 13 FLOW CONTROL . 151

13.1 Procedure Types . 151
13.1.1 Stack Frame Procedures . 151
13.1.2 Register Frame Procedure . 157
13.1.3 No Frame Procedure . 160

13.2 Procedure Descriptor Access Routines . 160

13.3 Procedure Call Chain . 161
13.3.1 Current Procedure . 161
13.3.2 The Call Chain . 162
13.3.3 Procedure Call Tracing . 162
13.3.4 Obtaining the Context of a Procedure . 162

13.4 Transfer of control . 163
13.4.1 Call Conventions . 163
13.4.2 Linkage . 163
13.4.3 Calling Computed Addresses . 163
13.4.4 Bound Procedure Values . 163
13.4.5 Entry and Exit Code Sequences , , , . 163

Chapter 14 DATA MANIPULATION 167

vi

14.1 Data fypes . 167
14.1.1 Argument and Function Value Data Types . 167
14.1.2 Argument Descriptors . 170
14.1.3 Status Codes and Exception Values . 171

14.2 Data Passing. 172
14.2.1 Argument Passing Mechanisms . 172
14.2.2 Returning Data . 172

14.3 Static Data . 175

Chapter 15 EVENT PROCESSING : 177

15.1 Exception Handling : .. 177
15.1.1 Exception Handling Requirements · ~ .. :'. 177
15.1.2 Exception Handling Overview . 177
15.1.3 Exception Handlers ~ 178
15.1.4 Establishing and Revoking an Exception Handler . 178
15.1.5 Raising Exceptions. 178
15.1.6 Other Considerations........ 179
15.1. 7 Mechanism Vector . 180
15.1.8 Exception Handling Coexistence . 181

15.2 Unwinding . 183
15.2.1 Unwind Initiation . 183
15.2.2 Unwind Completion... 184

15.3 Asynchronous Software Interrupts . 185

Chapter 16 MULTITHREADED ENVIRONMENT CONVENTIONS 187

Chapter 17 CODE EXAMPLES. 189

Part Ill: APPENDICES

Appendix A MULTITHREAD DESIGN NOTES . 195

A.1 Thread Environment Block Facility Area . 196

A.2 Design of Thread Private Storage . 198
A.2.1 Data Structures for Thread Private Storage . 198
A.2.2 Creating TPS Regions . 199
A.2.3 Using TPS Regions . 200

Appendix B PROCEDURE DESCRIPTOR ACCESS ROUTINES 203

Appendix C PC MAPPING LOOKUP DESIGN NOTES . 207

C. l Problem Statement . 207

C.2 Requirements . 207

C.3 A solution . 207

C.4 Data Structures . 208

C.5 Building the Maps . 208

Appendix D IMPLEMENTORS NOTES. 209

D.1 Notes for Compiler Writers 64 . 209
D.1.1 Code Optimizations.. 209

vii

D.1.2 Data Passing Mechanism : . 209
D.1.3 Compiler Switches ·...•....................................... 212
D.1.4 Exception Handlers" ~ · ... ·.......................... 212
D.1.5 Optimized TPS Access . 212

D.2 Notes for RTL Writers ~ 214
D.2.1 Invocation Handles . 214

D.3 Notes for O.S. ·writers . 215
D.3.1 Stack Alignment 215
D.3.2 Unwinding . 215

D.4 Notes for Application Level Programming . 218
D.4.1 Mapping descriptors from VAX/VMS to ALPHA-64. 218

Appendix E EXTENDED MIPS CALLING STANDARD DIFFERENCES 219

E.1 Hardware Based Differences . 219

E.2 Extended MIPS Change Based Differences . 220

E.3 Substantive Differences . 220

E.4 Inconsequential Differences . 221

E.5 Potential Differences . 222

Appendix F WAIVERS GRANTED . 223

INDEX

FIGURES
4-1 Stack Frame Procedure Descriptor Format . 21
4-2 Fixed Size Stack Frame Format . 25
4-3 Variable Size Stack Frame Format . 26
4-4 Register Save Area Layout . 28
~ Register Save Example . 29
~ Register Frame Procedure Descriptor Format ; 30
4-7 Null Frame Procedure Descriptor Format............................... 33
4-8 Procedure Signature Block Format . 35
4-9 Procedure Invocation Handle Format . 40
4-10 Invocation Context Block Format . 40
4-11 Argument Information Register Format . 45
4-12 Linkage Pair Format... 48
4-13 Bound Procedure Descriptor Format................................... 51
5-1 VT Data Format ... , . , , , 64
5-2 Byte-addressable Argument Descriptor Format. 67
5-3 Bit-addressable Argument Descriptor Format . 72
5-4 ALPHA-64 Caller Defined Return Value Descriptor Format 83
5-5 ALPHA-64 Called Routine Defined Return Value Descriptor Format 84

viii

6-1 Exception Record Format . 93
6-2 Immediate ~xception Qualifier .Format . 96
6-3 Indirect Exception Qualifier Format .. ~ ··. 96
6-4 Hardware Caused Exception Record . 98
7-1 Thread Environment Block Format . 125
13-1 Stack Frame Procedure Descriptor Format . 152
13-2 Variable Size Stack Frame Format . 156
13-3 Register Save ·Example . 157
13-4 Register Frame Procedure Descriptor Format............................ 158
13-5 Procedure Invocation Handle Format . 162
14-1 ALPHA-32 Caller Defined Return Value Descriptor Format 173
14-2 ALPHA-32 Called Routine Defined Return Value Descriptor Format 174
15-1 Mechanism Array Format . 181
A-1 Thread Environment Block Facility Area Format . 196
A-2 Overview of TPS Data Structures . 198
A--3 TPS Array Format. 199
A-4 TPS Descriptor Format . 201

TABLES
2-1 ALPHA-64 Calling Standard Tradeoffs . 10
4-1 Function Return Signature Encodings. 36
4-2 Register Argument Signature Encodings . 36
4-3 Signature Summary . 37
4-4 Memory Argument Signature Encodings . 37
4-5 Argument Register Usage Encodings . 45
5-1 Atomic Data Types . 60
5-2 String Data fypes . 62
5-3 Miscellaneous Data Types... 62
5-4 Unsupported Data Types.. 63
5-5 Argument Item Locations . 77
5-6 Unused Bits in Passed Data . 79
11-1 ALPHA-32 Calling Standard Tradeoffs . 146
14-1 Fully Supported Data 'IYPes . 168
14-2 Data Types without Robust Hardware Support........................... 169
14--3 Unsupported Data Types . 170
14-4 Compatible Descriptor Classes . 170
14-5 Adjusted Descriptor Classes . 171
14-6 Unsupported Descriptor Classes . 171
D-1 Argument Passing Mechanism Choices................................. 211
D-2 Descriptor Mapping from VAXNMS to ALPHA-64 . 218
F-1 Calling Standard Waivers Granted . 223

Ix

Preface

. .

This document defines the ALPHA calling standard. There are two flavors of this standard;
one for all 64-bit address ALPHA environments called the ALPHA-64 Calling Standard and
one for a 32 bit address ALPHANMS environment called theALPHA-32 Calling Standard

\\
The standard is NOT under ECO control yet.

This version of the calling standard had two major goals:

o To provide a stability point for the ALPHA-32 flavor
o To provide a complete specification for the ALPHA-64 flavor

There is still an outstanding issue for both flavors of the calling standard
concerning what connection, if any, there will be between UNIX style signal
handling and exception handling.

The ALPHA-32 flavor of the calling standard is otherwise complete and any
further technical changes will be discussed with all parties affected. In some
cases clarifications and additional information may be added.

With the exception noted above, the ALPHA-64 flavor of the calling standard
is also complete. It should be noted that while this flavor of the standard
represents a complete solution to a problem, it has not been verified for
ALPHA/ULTRIX. Nor have all the ramifications for ALPHA/VMS phase II been
investigated. Both of these area will be examined in the future as plans
in each of these areas solidify.

We solicit your review and opinions about all aspects of the contents of this
document. Spelling errors and other syntactic comments as well as technical
questions and requests for clarification should be made via the notes file
mentioned below. Please use separate notes for syntactic comments and technical
questions. If you have concerns or issues with either flavor of the calling
standard you should raise them in a timely fashion.

Any strong concerns or objections about approach or content of this document
should be directed to all of the key participants in the ALPHA development
process. We suggest that the notes file is an appropriate media for expression
of such concerns. Significant change will only result from forging a new
consensus or majority view among the key participants.

Additional copies of this document may be obtained by mailing the following
information to TLE::ALPHA_CALLSTD

Name:
Mailstop:
Enet Address:
Project:
Organization:

Material will NOT be distributed without COMPLETE information.

A restricted notes conference (TURRIS::ALPHA CALLSTD) is available for issues
relating to this standard. Membership requests should be made to
TLE::ALPHA CALLSTD
\\ -

Preface xi

Acknowledgements

It should be noted that besides the authors the following people contributed significant
amounts of time and energy towards the creation of this document. Their efforts and tech­
nical contributions are appreciated by all.

• Rich Grove

• Ron Brender

• Steve Hobbs

• Peter Craig

• Kim Peterson

• Bill Noyce

• Gary Barton

And of course the various others that have provided "special" review.

Acknowledgements xiii

Revision History

Revision
Date Number Author Summary of Changes

30-Jun-1989 0.1 C. Nylander Original Draft, with complete Introduction, 32/64 Common, and 32-
bit specific sections, and incomplete 64-bit specific section.

14-Jul-1989 0.2 T. Grieb Changed document to reflect 64-bit argument lists for the ALPHA-
32 calling standard and changed some text to clarify certain areas
based on first round review comments.

26-Jul-1989 0.3 T. Grieb Changed stack alignment, Rearranged frame descriptors, more
general cleanup, added null descriptor type, changed ALPHA-64
call standard dynamic return, added IS_A_DESC concept.

13-Sep-1989 1.0 T. Grieb Fixed entry and exit code sequences, Made VIRTUAL_ ORIGIN a
quadword, Fixed some incorrect offsets in diagrams, Changed reg-
ister assignments, Changed size of some fields in frame descriptor
and 64-bit descriptors, Clarified some wording/definitions having to
do with alignment, Added IEEE floating data types, Made T2 and
VT2 data types unsupported for 64-bit calling standard, added ex-
ception handler context quadword and made exception handling
storage optional, Added preliminary thread section, Added SP as
base register concept to stack frame descriptor, added argument
zero/sign extend information, small doc reorg to localize some dis-
cussions, removed FREEZE/THAW and WAIT, added preliminary
implementors appendix, Changed DRAIN to DRAINT, Rearranged
frame descriptor formats again, changed layout of register save
area, Defined DRAINT usage requirements, Release (Halloween
Version)

08-Nov-1989 1.1 T. Grieb Fixed FORTRAN descriptor return value, changed names of CHF$x_
symbols, Merged in 64-bit exception handling stuff, added invoca-
tion handle concept, Modified a lot of the multithread text, general-
ized procedure value usage.

19-Jan-1990 1.2 T. Grieb MAJOR document rewrite to separate out 64 bit calling standard
and make it PC mapped, changed Al register layout, changed frame
descriptor to procedure descriptor, changed procedure descriptor
layouts, added all exception handling stuff for ALPHA-64, moved
some of TEB format to appendix, added data types.

19-Jan-1990 1.3 T. Grieb General cleanup after limited review. Establish base version for
discussions

14-Feb-1990 1.4 T. Grieb More cleanup after review, Update for Rev 3 ALPHA SRM

16-Mar-1990 1.5 T. Grieb Bump version after "release". More data passing fine tune. Word-
ing cleanup, Document now reflects some interoperability issues,
Update argument passing.

26-Mar-1990 1.6 T. Grieb Bump version after "release",Final cleanup for "Limited Review"
(April Fool's version)

Revision History xv

•

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

Date

04-Apr-1990

23-Apr-1 990

Revision
Number

1.7

2.0

xvi Revision History

Author

T. Grieb

T. Grieb

s.ummary ~f Changes
. . ,.

Bump version after "release", Add signature information, reorg Al
register and small shuffle of procedure descriptors, added more flag
bits, change name to ALPHA, changed "condition" to "exception",
changed other names and various things for MIPS compatibility,
added MIPS compatibility appendix, added more text to PC map
. design appendix, removed H float as supported data type

Bump version for next public document (May Day version).

Document Organization

This standard is organized into the following distinct parts:

1. Part I, ALPHA-64 Calling Standard, contains specifications that apply to all programs
executing in the 64-bit address ALPHA user mode environment (referred to asALPHA-
64) under any operating system that supports this standard and that environment.

2. Part Il, ALPHA-32 Calling Standard, contains specifications that apply to all programs
executing in the 32-bit address ALPHA user mode environment (referred to as ALPHA-
32) under the ALPHANMS operating system.

This section is written as differences from existing specifications (including the VAX/VMS
calling standard and those specifications in Part I). Therefore the appropriate back­
ground reading is required for full understanding of the material in Part II.

3. Part III, Appendices, contains topics that are related to calling standard but are not
part of the formal specification.

Document Organization xvii

Notation Used in This Documeht

The specifications in this document are presented as follows:

• Editorial Comment
\\
All text enclosed in double backslashes, illustrated by this paragraph, is
editorial 'Comment, i·s not formally a ·part of the ·specification, and will not
necessarily be in future revisions of this document.
\\

• Constants

Constants are presented symbolically with their value given at the point of definition
in this standard. Concrete language bindings for each constant are provided in system
definition files external to this standard.

\\
Note that the symbols used in this document do NOT follow the current VAX/VMS
naming conventions nor do they adhere to any other POSIX or other convention.
We need to decide what we want the ALPHA naming conventions to be (e.g. are
future naming conventions affected by VIP and the presence of open, standard
APis on VMS, ULTRIX and OZIX), and then this document will be brought into
conformance.
\\

• Functional Interfaces

Functional interface syntax is presented in abstract form. Concrete language bindings
for each functional interface are provided in system definition files external to th.is
standard.

The semantic capabilities of each functional interface are defined in American Language.

• Algorithms

Algorithms are presented precisely, as a series of steps, in American Language.

• Conventions

All conventions that are important to correct program execution are presented in a form
appropriate to each convention.

• Methods

Actual or recommended methods are presented informally, using examples, suggestions,
or other appropriate form. ·

• Numbering

All numbers are represented as decimal values unless otherwise indicated. Non decimal
numbers are typically represented with the name of the base in parentheses following
then number, E.G. lB(Hex).

• Figures

Figures that represent memory or register layouts follow the convention that increasing
addresses run from the top to bottom and right to left of a page. Most significant bits
are on the left and least significant bits are on the right.

• Code Examples

Notation Used In This Document xix

Digital Equipment Corporation Proprietary and Confldentlal
For Internal Use Only-Do Not Copy or Disclose

All code examples in this document are supplied strictly for purposes of explanation.
They are presented in a form that expresses the relevant concept with clarity. They
do not reflect optimized and properly schedul~d code s~quences that a compiler would
generate.

Assembler syntax used follows the ALPHA System Reference Manual (including Ap­
pendix A, section A.4.3 on Stylized Code Forms) and does not represent actual ALPHA
Assembler notation which has yet to be defined.

• I>ata Structures

I>ata structures are defined in terms of the physical memory format of each structure.
Concrete language bindings for each data structure are provided in system definition
files external to this standard.

• I>ata Structure fields

Record fields are referred to by using the name of the record or subrecord followed by a
dot, followed by the field name; as in RECORI>_NAME.SUB_RECORI>.FIELI>.

xx Notation Used In This Document

Part I: ALPHA-64 Calling Standard ..

This part .of the document describes the ALPHA-64 Calling standard in it's entirety.

CHAPTER 1

INTRODUCTION

This standard defines the run time data structures, constants, algorithms, conventions,
methods, and functional interfaces that enable a native user mode procedure to operate
correctly in a multilanguage and multithreaded environment on ALPHA systems. These
properties include the contents of key registers, the format and contents of certain data
structures, and actions that procedures must perform under certain circumstances.

Th.is standard also defines properties of the run time environment that must apply at various
points during program execution. These properties vary in scope and applicability. Some
properties apply at all points throughout the execution of user mode code, and must therefore
be held constant at all times. Examples of such properties include those defined for the stack
pointer and various properties of the call chain navigation mechanism. Other properties
apply only at certain points, such as call conventions that apply only at the point of the
transfer of control to another procedure.

Furthermore, some properties are optional depending on circumstances. For example, com­
pilers are not obligated to follow the argument list conventions when a procedure and all of
its callers are in the same module, have been analyzed by an interprocedural analyzer, or
have private interfaces (such as language support routines).

NOTE

In many cases significant performance gains can be realized by selective use of
non-standard calls when the safety of such calls is known. Compiler writers are
encouraged to make optimal use of such optimizations as appropriate.

The conventions specified in this standard are intended to fully exploit the architectural and
performance advantages of the ALPHA hardware architecture and are designed to provide
a leadership execution environment for applications and languages on ALPHANMS (phase
2), ULTRIX, and OZIX. Some of these conventions are visible to the high level language pro­
grammer, and therefore may require source level changes in high level language programs
when moving them from other environments (such as VAX/ULTRIX or VAX/VMS).

To achieve source level compatibility and portability between the ALPHA-64 environment
and various other environments users should not depend on the properties of this architec­
ture· except indirectly through high level language facilities that are portable across archi­
tectures.

ALPHA-64 - Introduction 3

Dlgltal Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

By definition, many of the conventions· described in this standard differ from other soft­
ware implementation .architectures. Therefore programs that depend on properties of this
architecture may not be portable to other architectures. · ·

4 ALPHA-64 - Introduction

Dlgltal Equipment Corporation Proprietary and Confidential
For Internal Use Only:--Do Not Copy or Disclose

1.1 Applicability

This standard defines ·the rules and conventions that govern the native user mode run time
environment on ALPHA systems. It is applicable to ·all Digital Equipment Corporation
products executing in native user mode on ALPHA operating systems which support this
standard. This includes but is not limited to ALPHANMS (phase 2), ALPHA/ULTRIX and
ALPHA/OZIX systems.

Specific .examples.of uses of this standard are:

• All externally callable interfaces in Digital-supported, standard system software

• All intermodule calls to major software components

• All external procedure calls generated by Digital language processors without the benefit
of interprocedural analysis or permanent private conventions (such as those used for
language support RTL routines).

1.2 Architectural Level

This standard defines an implementation level run time software architecture for ALPHA
operating systems.

The interfaces, methods, and conventions specified in this document are primarily intended
for use by implementors of compilers, debuggers and other run time tools, run time li­
braries, and base operating systems. These specifications may be, but are not necessarily,
appropriate for use by higher level system software and applications.

Compilers and run time libraries may provide additional support of these capabilities via
interfaces that are more appropriate for compiler and application use. This specification
neither prohibits nor requires such additional interfaces.

ALPHA-64 • Introduction 5

•

Dlgltal Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

1.3 Related Documents

This calling standard ·is a component of. the larger ALPHA Software Architecture, and de­
pends on certain standards and conventions that are not described by this document.

Those standards,. described by other documents, include:

• Object language and object file format

• Status values and message definition, formatting, and reporting

• Heap memory management and dynamic string management

• Concert Multi.thread Architecture

• Names and naming conventions

The above topics as well as other related topics may be found in:

• Digital Equipment Corporation ALPHA System Reference Manual, Revision 3.0, March
2, 1990

• Digital Equipment Corporation ALPHA Calling Standard ECO Process, Revision 2.0,
March 16, 1990

• Digital Equipment Corporation Concert Multithread TM Architecture Services

• Digital Equipment Corporation Extensions to MIPS R-Series Language Level Run-Time
Software Architecture

• Digital Equipment Corporation VAX Procedure Calling and Condition Handling Stan-
dard, Revision 10.3

• Digital Equipment Corporation Standard 032, VAX Architecture Standard

• Digital Equipment Corporation ALPHA Object File Format Specification [TBS]

• POSIX 1003.1, IEEE Standard Portable Operating System Interface for Computer En­
vironments·- IEEE Std 1003.1-1988

• Draft Proposed American National Standard for Information Systems Programming
Language C - X3Jll/88-159

• Guide to Designing Portable Program.ming Interfaces, Version 1.0, December 1989

6 ALPHA-64 • Introduction

1.4 Definitions

Dlgltal Equipment Corporation Proprietary and Confldentlal
For Internal Use Only-Do Not Copy or Disclose

The following terms are used by this standard:.

• Unpredictable: Refers to any results of an operatioii whlch cannot be guaranteed across
all implementations of this standard. These results may or may not be well defined for
a single implementation but remain unpredictable with reference to this standard. All
results caused by operations defined in this standard that are not explicitly specified
in this standard are considered unpredictable. No standard conforming procedure may
depend on unpredictable results.

• Undefined: Refers to operations or behavior for which there is no directing algorithm
that is used across all implementations that support this standard. Such operations
may or may not be well defined for a single implementation but still remain undefined
with reference to this standard. The actions of undefined operations may not be required
by standard conforming procedures.

• Standard conforming procedure: A procedure is said to be standard conforming if it
adheres to all the relevant rules set forth in this document.

• Standard call: A standard call is defined as any transfer of control to a procedure by
any means that presents the called procedure with the environment defined by this
document and does not place additional restrictions, not defined by this document, on
the called procedure.

• A process includes an address space and at least one thread of execution. Selected
security and quota checks are done on a per process basis.

An ALPHA operating system may provide multiple threads of execution within a process.
An operating system which only provides a single thread of execution per process is
considered to be a special case of a multithreaded system where the maximum number
of threads per process is one.

• Thread of execution: sometimes referred to as simply thread, is the entity that is sched­
uled for execution on a processor. In language terms, a thread is a computational entity
utilized by a program unit. Such a program unit might be a task, a procedure, a loop,
or some other unit of computation.

All threads executing within the same process share the same address space and other
process context, but have unique per-thread stack and hardware context which includes
program counter, processor status, stack pointer, scalar registers RO .. R29, and floating
registers FO .. F30.

This standard applies only to threads which exectite within the context of a user mode
process, and which are scheduled on one or more processors according to software pri­
ority. All subsequent uses of the term thread in this standard refer to such user mode
process threads only.

• Thread safe code: refers to a property of code that has been compiled in such a way as to
insure that it will execute properly when run in a threaded environment. This usually
adds extra instructions to do certain run time checks as well as requiring that thread
local storage be accessed in a particular fashion.

• Natural alignment is an attribute of certain data types that refers to the placement of
the data such that the lowest addressed byte of the data has an address which is a
multiple of the size of the data in bytes. Natural alignment of an aggregate data type

ALPHA-64 - Introduction 7

Dlgltal Equipment Corporation Proprietary and Confldentlal
For Internal Use Only-Do Not Copy or Disclose

generally refers to an alignment suCh that all members of the aggregate are naturally
aligned.

There are five natural alignments d~fined by this starid~d:
• Byte-any byte a~dress

• Word-any byte address that is a multiple of 2

• Longword-any byte address that is a multiple of 4

• Quadword-any byte address that is a multiple of 8

• Octaword-any byte address that is a multiple of 16

• Asynchronous Software Interrupt: refers to an asynchronous interruption of normal
code flow that is caused by some software event. This interruption shares many of
the properties of hardware exceptions which includes forcing some out-of-line code to
execute. Only certain operating systems support this type of interrupt.

• Exception: refers to some exceptional condition in the current hardware and/or software
state that should be noted or fixed. Its existence causes an interrupt of program flow
and forces execution of out of line code. Such an event may be caused by exceptional
hardware state such as arithmetic overflows, memory access control violations, etc. or
by actions performed by software, such as subscript range checking, assertion checking,
or asynchronous notification of one thread by another.

While the normal control flow is interrupted by an exception, that exception is termed
active.

\\
VAX/VMS documentation differentiates between the cause (exception) and effect
(condition) when referring to an exceptional event. This document uses the
general concept of exception to refer to the event in its entirity
without making the cause/effect distinction.

Most usages of exception in this document correspond with the
VAX/VMS usage of the word condition.
\\

• Hardware Exception: refers to a particular category of exceptions that directly reflect
an exceptional condition in the current hardware state that should be noted or fixed by
the software. Hardware exceptions may occur either synchronously or asynchronously
with respect to the normal program flow.

• Exception handler: is a procedure which is designed to handle exceptions when they
occur during the execution of a thread.

• Signal: is a POSIX defined concept that is used to cause out-of-line execution of code.
(This term should not be confused with the VMS usage of the word which more closely
equates to exception as used in this document)

• Call frame: refers to that body of information that a procedure must save to allow it to
properly return to its caller. A call frame may exist on the stack or in registers. A call
frame may optionally contain additional information required by the called procedure.

• Procedure: (sometimes called simple procedure) refers to a body of code that constitutes
a particular scope which is sm.aller than a module and larger than a basic block.

• Bound Procedure: refers to a type of procedure which requires knowledge of a dynami­
cally (at run time) determined larger enclosing scope in order to function correctly.

8 ALPHA-64 - Introduction

CHAPTER 2

BACKGROUND

Th.is section describes various background information that served as the basis for many of
the decisions made during the process of generating this standard.

2.1 Goals

The ALPHA-64 calling standard shares many goals with the VAX/VMS calling standard
which include:

• The standard must be applicable to all intermodule callable interfaces in the native
software system. Specifically, the standard must consider the requirements of impor­
tant compiled languages including ADA, BASIC, BLISS, C,'C++, COBOL, FORTRAN,
PASCAL, LISP, PL/I, and calls to the operating system and library procedures. The
needs of other languages that Digital may support in the future must be met by the
standard or by compatible revision to it.

• The standard should not include capabilities specifically for lower level components
(such as assembler routines) that cannot be invoked from the higher level languages.

• The calling program and called procedure can be written in different languages. The
standard attempts to reduce the need for use of language extensions for mixed language
programs.

• The standard should contribute to the writing of error free, modular, and maintainable
software. Effective sharing and re-use of software modules are specific goals.

• The standard should provide the programmer with control over fixing, reporting, and
:flow of control when various types of exceptional conditions occur.

• The standard should provide subsystem and application writers with the ability to over­
ride system messages to provide a more suitable application oriented interface.

• The standard should add no space or time overhead to procedure calls and returns that
do not establish exception handlers and should minimize time overhead for establishing
handlers at the cost of increased time overhead when exceptions occur.

As well as the above goals the ALPHA calling standard has additional goals which include:

• Provide a common, compatible native user mode run time environment on ALPHA for
the VMS (phase 2), ULTRIX and OZIX operating systems.

• Provide support for a multilanguage, multithreaded execution environment, including
efficient, effective support for the implementation of the Digital Equipment Corporation
Concert Multithread Architecture.

ALPHA·64 • Background 9

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

• Provide an efficient mechanism for calling lightweight procedures that do not need or
want to pay the o~erhead of setting up· a stack call frame.

• Provide for the use of a common calling sequence to· invoke lightweight procedures that
maintain only a register call frame and heavyweight procedures that maintain a stack
call frame. This should allow a compiler to determine whether or not to.use a stack frame
based on the complexity of the procedure being compiled. A recompilation of a called
routine that causes a change in stack frame usage should not require a recompilation
of its callers.

• Provide exception handling, traceback, and debugging for lightweight procedures that
do not have a stack frame.

• Make efficient and effective use of the ALPHA hardware architecture including effec-
tively using a larger number of registers than a conventional VAX has.

• Minimize the cost of procedure calls

• Support a 64-bit address user mode environment

• Provide building block for the next 20 years of computing

2.2 Constraints

This standard was developed under the following constraints:

• The standard must be implementable on all ALPHA platforms

• The standard must be implementable by third party compiler writers.

• There is a short development cycle for the first wave of products

2.3 Tradeoffs

While the overriding goal of the ALPHA-64 flavor of the calling standard is to build a calling
standard for the future, there are certain tradeoffs that have been made. These tradeoffs
are documented below:

Table 2-1: ALPHA-64 Calling Standard Tradeoffs

Issue Reason

None. [TBS]

1 O ALPHA-64 - Background

Dlgltal Equipment Corporation Proprietary and Confldentlal
For Internal Use Only~o Not Copy or Disclose

2.4 Important Technical Decisions ·

This section discusses important tech.Dical decisions that had a dramatic effect on the
ALPHA-64 calling standard.

2.4.1 PC Mapping vs. FP Based Call Chain Navigation

One of the more controversial issues on the ALPHA calling standard has been which type
of call chain navigation mechanism should be used for ·the ALPHA-64 environment flavor of
the calling standard. The two choices that were considered were:

• FP based technique

• PC mapped technique

The PC mapped technique was selected for use in the ALPHA-64 environment. Below is a
brief explanation of each of these methods and the rationale behind this choice.

The keys to being able to properly identify the sequence of calls that lead to any given
instance of a procedure invocation is being able to identify which procedure is active at any
instant in time and leaving a trail of this information behind as new procedure instances
are realized.

FP Based Method
The FP method of procedure tracking is based on the requirement that at any (and all)
point(s) in time a predefined register (called the frame pointer or FP) must contain some
value that can be used to determine the current procedure (for the purposes of this discussion
we will call this FP value a procedure context value. The contents of this register defines
the current procedure. This implies that valid transitions of this register must only consist
of one procedure context value to another procedure context value. This is accomplished by
having a called procedure perform the following steps:

1. Save the current FP contents

2. Set the FP to contain the current procedure context value

3. Perform the work of the procedure (which may include other calls)

4. Restore the previous procedure context value to FP

Because the FP register must ALWAYS contain a valid procedure context value for the
current procedure, the current procedure can always be determined. Furthermore, if step
1 above is required to save the previous FP contents in a well specified location then the
previous procedure can also be determined, as well as the procedure before that, and the
procedure before that, etc. This, then, provides the basis for one method of call chain
navigation.

PC Mapped Method
The PC mapped method for call chain navigation is based on having the ability to lookup
any given PC in a table that maps PC values to procedure context values. This method
requires no saving or restoring of previous values since the value of the PC itself is used to
determine the current procedure. Call chain navigation is done by looking up the current PC
value in the table and retrieving the procedure context value. This value must in some way

ALPHA-64 • Background 11

Dlgltal Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

provide the mechanism whereby the return address of the procedure call may be located.
Once this return address is located it may be used as a PC value to look up the previous
procedure context value, and so on, through the e~tire _call.chain.

Tradeoffs
Each of the above methods has as its basis one absolute or basic assumption. If that as­
sumption ever fails then the entire mechanism fails. For the FP method the assumption is
that the FP always contains .a valid procedure context value. For the PC mapped method
the assumption is that the PC value can always be found in a table (possibly/probably with
multiple parts) of PC values or that there is an acceptable fallback strategy.

When one is designing/implementing a new system, all sorts of things must be considered.
High on that list are:

• Performance

• Extensibility

• Reliability

• Supportability

• Compatibility

Each of these things relates to this issue.

Performance
Although the details of implementing either method dictate a number of implementation
differences between the two, the major attraction to the PC method is that is requires
no saving and restoring of the procedure context value as does the FP based method. This
provides a speed advantage which in the end indicates that the PC mapped technique should
be the preferred method.

Careful analysis of the instruction sequences involved indicate that the execution speed
differential between the two mechanisms is normally in the order of 2 to 5 percent but can
become much larger for certain categories of procedures.

Extensibility
Extensibility is one of the key areas where the advantages of the FP method appear to be
greater. The key assumption for the PC mapped method is to be able to find the PC in a
table. But this implies ALL PC values must be mapped in some table including:

• System bootstrap code

• Static System code

• Dynamically (re)loaded system code

• User programs

• Dynamically loaded shared images

• Transfer vectors in shared images

• Autoloading code

. • Run time generated code

12 ALPHA-64 - Background

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

ANY and ALL PC values must be mapped in some table. One can see from the above list
that in many cases this may be a very non-trivial exercise to accomplish. The FP method
provides more controf over exactly when the con~ is sw.i.tched since the actual context
switch is done at a programmed point (as opposed to the PC mapped method where it
happens at the point of call). This allows the FP method to handle many of the above cases
by allowing the code to execute in the context of it's caller.

Over the years many creative techniques have been found that involve special instruction
sequences in special locations (such as putting a JSB instruction inside a structure and
then executing it to pass the address of the structure). One can argue the merits of such
techniques for many hours but the point here is that this type of :flexibility is more difficult
using a PC mapped technique. One can imagine some special systems code to do autoload
of shared images that might use something like this.

Thus the FP method appears to be more :flexible or extensible.

Reliability
Each of the above methods has their own set of reliability problems. In the FP method, if
the FP gets invalidated somehow then all is lost. In the PC method, a jump to an unplanned
location or any code that is not mapped in the PC table will cause the same effect. One
must make a value judgment as to which might be more likely to occur. After considering
all of the various pieces of code involved in a system it appears that both methods can be
made to work reliably so this is not a determining factor.

Supportability
As long as either method works it is in some sense supportable, but when the PC mapped
method appears to require that more pieces of a system are involved. This pieces include
code such as:

• Image activation code

• Image builder (link.er) tools

• Debuggers (may move code before executing it)

• System component loaders

This list is by no means exhaustive. By virtue of its simplicity and the fact that it is position
independent the FP method requires much less intervention by various components of the
system.

Compatibility _
Compatibility is not a particularly strong point in favor of either method. To begin with,
this mechanism is only visible to programmers that are dealing with assembler level code.
Many people feel that the ALPHA architecture itself will help motivate the industry trend
away from this level of interaction.

Summary

After taking into account all of the various aspects involved in this particular decision,
the engineering tradeoffs discussed above appear to to be manageable relative to the speed
advantage that can be gained by utilizing the PC mapped method. For this reason the PC
mapped method has been chosen for the ALPHA-64 calling standard.

ALPHA-64 • Background 13

CHAPTER 3

BASIC CONSIDERATIONS

This section describes some fundamental concepts of the ALPHA-64 calling standard.

3.1 Address Representation

In the ALPHA-64 calling standard all addresses are represented as 64 bits. The only re­
strictions placed on what values may be used are defined by the particular operating system
environment.

3.2 Procedure Representation

One of the distinguishing characteristics of any calling standard is how procedures are
represented. The term used to denote the value which uniquely identifies a procedure is a
procedure value. If the value identifies a bound procedure then it is called a bound procedure
value.

In the ALPHA-64 calling standard a simple (not bound) procedure value is defined as the
address of that procedure's descriptor (see Section 4.1, Procedure Types). This provides
slightly different conventions than might be used if the address of the procedure's code were
used as it is in many calling standards.

A bound procedure value is defined as the address of a bound procedure descriptor, as defined
in Section 4.5.4, Bound Procedure Values, that provides the necessary information for the
bound procedure to be called.

In the ALPHA-64 calling standard all procedure values are defined to be the address of the
data structure (a procedure descriptor) that describes that procedure. This design has a
desired characteristic that that any procedure may be invoked by calling the address stored
at offset 8 from the address represented by the procedure value.

ALPHA-64 - Basic Considerations 15

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

3.3 Register Usage Conventions

This section describes· the usage of the· ALPHA hard'Yare general purpose (integer) and
floating point registers. . ·.

3.3.1 Integer Registers

In a standard conforming procedure the general purpose, integer registers are used as fol­
lows:

RO

R1

R2 .. R15

R16 .. R21

R22 .. R24

R25

R26

R27

R28

R29

R30 .

R31

Function value register. In a standard call that returns a non-floating point function result in a register,
the result must be returned in this register. In a standard call, this register may be modified by the
called procedure without being saved and restored.

Conventional scratch register. In a standard call, this register may be modified by the called procedure
without being saved and restored.

Conventional saved registers. If a standard-conforming procedure modifies one of these registers, it
must save and restore it.

Argument registers. In a standard call, up to six non-floating point items of the argument list are passed
in these registers. In a standard call, these registers may be modified by the called procedure without
being saved and restored.

Conventional scratch registers. In a standard call, these registers may be modified by the called
procedure without being saved and restored.

Al, Argument Information register. In a standard call, this register describes the argument list (see
Section 4.5.1, Call Conventions, for a detailed description). In a standard call, this register may be
modified by the called procedure without being saved and restored.

RA, Return Address register. In a standard call, the return address must be passed in this register. In a
standard call, this register may be modified by the called procedure without being saved and restored.

PV, Procedure value register. In a standard call, the procedure value of the procedure being called
is passed in this register. In a standard call, this register may be modified by the called procedure
without being saved and restored.

Volatile scratch register. The contents of this register are always unpredictable after any external
transfer of control either to or from a procedure. This applies to both standard and nonstandard
calls. This register may be used by the operating system for external call fixup, autoloading and exit
sequences.

FP, Stack Frame Base register. For procedures with a run time variable amount of stack, this register
is used to point at the base of the stack frame (fixed part of the stack). For all other procedures this
register has no special significance. If a standard-conforming procedure modifies this register, it must
save and restore it. ·

SP, the Stack Pointer. This register contains a pointer to the top of the current operating stack. Aspects
of its usage and alignment are defined by the hardware architecture. Various software aspects of its
usage and alignment are defined in Section 4.5.1, Call Conventions.

RZ, ReadAsZero/Sink. Hardware defined: binary zero as a source operand, sink (no effect) as a result
operand.

16 ALPHA-64 - Basic Considerations

Dlgltal Equipment Corporation Proprietary and Confldentlal
For Internal Use Only-Do Not Copy or Disclose

3.3.2 Floating Point Registers

In a standard conforming procedure the. :floating point registers are used as follows:

FO Floating point function value register. In a standard call .that returns a floating point result in a register,

F1

F2 .. F9

F10 .. F15

F16 .. F21

F22 .. F30

F31

this register is used to return the real part of the result. In a standard call, this register may be modified
by the called procedure without being saved and restored.

Floating point function value register. In a standard call that returns a complex floating point result in
registers, this register is used to return the imaginary part of the result. In a standard call, this register
may be modified by ;the called procedure without being saved and restored.

Conventional saved registers. If a standard-conforming procedure modifies one of these registers, it
must save and restore it.

Conventional scratch registers. In a standard call, may be modified by the called procedure without
being saved and restored.

Argument registers. In a standard call, up to six floating point arguments may be passed by value in
these registers. In a standard call, these registers may be modified by the called procedure without
being saved and restored.

Conventional scratch registers. In a standard call, these registers may be modified by the called
procedure without being saved and restored.

ReadAsZero/Sink. Hardware defined: binary zero as a source operand, sink (no effect) as a result
operand.

ALPHA-64 - Basic Considerations 17

CHAPTER 4

FLOW CONTROL

The following sections contain descriptions of various aspects of the calling standard that
deal with the flow of control of a program (as opposed to data manipulation which comes
later in Chapter 5).

4.1 Procedure Types

This standard defines three basic types of procedures. A compiler may chose which type to
generate based on the requirements of the procedure in question.

The standard procedure types are:

• Stack frame procedure - A procedure that maintains its caller's context on the stack

• Register frame procedure - A procedure that maintains its caller's context in registers

• No Frame procedure - A procedure that executes in the context of its caller

Every procedure must have a structure associated with it that describes which type of pro­
cedure it is as well as various other characteristics of the procedure. This structure, called a
Procedure Descriptor, is a quadword-aligned data structure that provides basic information
about a procedure. This data structure is used to interpret the call chain at any point in a
thread's execution. It is normally built at compile time and is not normally accessed at run
time except in support of exception processing or other rarely used code execution.

Read access to procedure descriptors is done though a procedure interface described in
Appendix B, Procedure Descriptor Access Routines. This allows for future extensions to
these structures in a compatible way.

The purpose of defining a procedure descriptor for a procedure, and for making that proce­
dure· descriptor accessible to the run time system is so that the invocations of that procedure
are visible to and interpretable by facilities such as the debugger, the ~xception handling
system, and the unwinder, and so that the context of the caller saved by the called procedure
can be restored if an unwind occurs.

Some procedures maintain their call frame on the stack, others maintain their call frame
entirely in registers (although they may use the stack). Very simple procedures do not
necessarily maintain any call frame at all and simply execute in the context of their caller.
The calling procedure need not distinguish these cases. The procedure descriptor for the
current procedure contains a field that indicates which kind of procedure is executing.

ALPHA·64 • Flow Control 19

Dlgltal Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

4.1.1 Stack Frame Procedures

A Stack Fram,e procedure is one that allocates space for and saves its caller's context on the
stack. This type of procedure is sometimes called a "heavyweight procedure" referring to
the cost of storing this context in memory.

Such a procedure can save and restore registers and may make standard calls to other
procedures.

The stack frame of this type of procedure consists of a fixed part (the size of which is known
at compile time) and an optional variable part. Certain optimizations can be done if the
optional variable part is not present. Compilers must be careful to recognize situations that
can effectively cause a variable part of the stack to exist in non-intuitive ways such as:

• A called routine may use the stack as a means to return certain types of function values
(see Section 5.2.7, Returning Data, for details).

If any such situation exists a compiler must choose to use a variable frame procedure when
compiling the caller so that an unwind operation can be done correctly.

Procedure Descriptor For Procedures With a Stack Frame
Procedure descriptors for procedures with stack frames are defined as follows:

20 ALPHA-64 • Flow Control

Digital Equipment Corporation Proprietary and Confldentl~I
For Internal Use On~y--Do Not Copy or Disclose

Figure 4-1: Stack Frame Procedure Descriptor Format
PDSC quadword aligned

+---------------+---------------+-.:. ______ ;.. __ ':"" ___ +---:"'.'-~·---------+
I RSA OFF SET I FLAGS I KIND I : O
I - I <15: 4> I <3: O> I

+---------------+---------------+------~--------+---------------+·
I SIGNATURE_OFFSET I must be zero I ENTRY_RA I :4
I I I I
+---------------+---------------+---------------+---------------+

:8
ENTRY

+---------------+---------------+---------------+---------------+
I SIZE I : 16
I I
+---------------+---------------+---------------+---------------+
I ENTRY LENGTH I SP SET I :20
I - I - I

+---------------+---------------+---------------+---------------+
I IREG_MASK I :24
I I
+---------------+---------------+---------------+---------------+
I FREG MASK I :28
I - I

+===============+===============+===============+===============+
(End of required part of procedure descriptor) :32

STACK HANDLER

+---------------+---------------+---------------+---------------+
I I : 40
I STACK_HANDLER_DATA I
I I
I I
+---------------+---------------+---------------+---------------+
Size = PDSC STACK SIZE = 32 - -

PDSC.KIND = 1 (denoted by PDSC_KIND_PC_STACK) specifies a procedure descriptor for
a procedure with a stack frame. The base of the stack frame for this type of procedure is
always point.ed to by either SP or FP as indicated by PDSC.FLAGS.BASE_REG_IS_FP.

PDSC.FLAGS is a vector of :flag bits defined as follows:

• PDSC.FLAGS<O> is denoted by HANDLER_ VALID.

If HANDLER_ VALID is 1, then PDSC.STACK_HANDLER must specify an exception
handler.

• PDSC.FLAGS<l> is denoted by HANDLER_REINVOKABLE.

HANDLER_REINVOKABLE is 1 if the exception handler is a reinvokable handler, that
is, one that can be reinvoked should another exception occur while the handler is al­
ready active. If HANDLER_REINVOKABLE is 0 then the exception handler is not
reinvokable.

ALPHA-64 • Flow Control 21

Dlgltal Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

HANDLER_REINVOKABLE must be 0 unless PDSC.FLAGS.HANDLER_ VALID is 1.

· RATIONALE:

This :ftag was added to correct a specific behavior that became apparent while
implementing run. time support using the VAX/VMS exception handling. If an
exception arises while another excepti~n handler is already active, VAX/VMS
skips all handlers between the active frame and the establisher of the exception
handler in which the new exception occurred. BASIC and PI.JI have both had to
code around this problem. Use of this flag would allow the exception dispatch
code to not skip any exception handler that had this bit set.

• PDSC.FLAGS<2> is denoted by HANDLER_DATA_ VALID.

If HANDLER_DATA_ VALID is 1, then PDSC.STACK_HANDLER must specify an
exception handler, PDSC.FLAGS.HANDLER_ VALID must be 1, and PDSC.STACK_
HANDLER_DATA must exist. If all of these criteria are met the address of PD SC.STACK_
HANDLER_DATA will be passed to the exception handler as defined in Section 6.1, Ex­
ception Handling.

• PDSC.FLAGS<3> is denoted by BASE_REG_IS_FP.

IfBASE_REG_IS_FP is 0, then the SP is used as the base register to which PDSC.SIZE
is added during an unwind. A procedure with this flag set to 0 has a fixed amount of
stack storage specified by PDSC.SIZE, all of which is allocated in the procedure entry
sequence, and SP is modified by this procedure only in the entry and exit code sequences.
In this case R29 (FP) is simply another register and has no special significance.

If BASE_REG_IS_FP is 1, then R29 (FP) is used as the frame base pointer. A procedure
with this flag set to 1 has a fixed amount of stack storage specified by PDSC.SIZE, and
may have a variable amount of stack storage allocated by modifying SP in the body of
the procedure.

• PDSC.FLAGS<4> is denoted by REI_RETURN.

REI_RETURN is 1 if the procedure expects the stack at entry to be set up so that an REI
instruction will correctly return from the procedure. If this bit is set the contents of both
the PDSC.ENTRY_RA field and the RSA.SAVED_RETURN field in the register save
area are unpredictable and the return address is found on the stack. (See Figure 4-4,
Register Save Area Layout, for details.)

• PDSC.FLAGS<5> is denoted by STACK_RETURN_ VALUE.

STACK_RETURN_ VALUE is 1 if the procedure does not reset the stack pointer to its
value at procedure entry. This is the case when the function value is returned on the
stack.

• PDSC.FLAGS<6> must be 0.

• PDSC.FLAGS<7> is denoted by NO_JACKET.

NO_JACKET must always be set to 1 for compiled code.

RATIONALE:

The PDSC.FLAGS.NO_JACKET and PDSC.FT-AGS.NA.T!VE flag bits are care­
fully designed to align with bits 12 and 13 of a VAX procedure entry mask which
must always be zero.

• PDSC.FLAGS<8> is denoted by NATIVE.

22 ALPHA-64 • Flow Control

Dlgltal Equipment Corporation Proprietary and Confldentl~I
For Internal Use Only~o Not Copy or Disclose

NATIVE must always be set to 1 for compiled code.

• PDSC.FLAGS<11:9> must be o~

PDSC.RSA_OFFSET is the signed difference in bytes between the stack frame base (SP
or FP as indicated by PDSC.FLAGS.BASE_REG_IS_FP) and the register save area (see
layout below). PDSC.RSA_OFFSET must be a multiple of 8 such that (PDSC.RSA_OFFSET)
added to the contents of SP or FP, as indicated by PDSC.FLAGS.BASE_REG_IS_FP, yields
a quadword-aligned address.

PDSC.ENTRY_RA is the number of the register in which the return address is passed to
this procedure (26 for a standard call).

RATIONALE:

ENTRY_RA is used, as opposed to SAVE_RA, to allow the return address to be passed
in a non-standard register. If it were not present and an exception happened in a
procedure prolog there would be no way to determine where to find the return
address (since SAVE_RA is not valid until the prolog is completed).

PDSC.SIGNATURE_OFFSETis a 16-bit signed byte offset from the start of the procedure
descriptor. This offset, if non-zero, designates the start of the procedure signature block.
A zero in this field indicates that no signature information is present. (See Section 4.2,
Procedure Signatures, for details of the procedure signature block.)

PDSC.ENTRY is the absolute address of the first instruction of the entry code sequence for
the procedure.

PDSC.SIZE is the unsigned size in bytes of the :fixed portion of the stack frame for this pro­
cedure. The value of SP at entry to this procedure can be calculated by adding PDSC.SIZE
to the value SP or FP, as indicated by PDSC.FLAGS.BASE_REG_IS_FP. PDSC.SIZE cannot
be 0 for a stack frame type of procedure since the stack frame must include space for the
register save area.

PDSC.SIZE must be an appropriate multiple to maintain the minimum stack alignment
required by the ALPHA hardware architecture. Furthermore, in almost all cases it will be
a multiple of 16 to maintain proper stack alignment during a call as defined in Section 4.5.1,
Call Conventions.

Various combinations of PDSC.FLAGS.BASE_REG_IS_FP and PDSC.SIZE can be used as
follows:

• When PDSC.FLAGS.BASE_REG_IS_FP is 0 and PDSC.SIZE is zero, then the procedure
utilizes no stack storage and SP contains the value of SP at entry to the procedure.
(Procedure must be a register frame procedure)

• When PDSC.FLAGS.BASE_REG_IS_FP is 0 and PDSC.SIZE is non-zero, then the pro­
cedure has a fixed amount of stack storage specified by PDSC.SIZE, all of which is
allocated in the procedure entry sequence, and SP is modified by this procedure only in
the entry and exit code sequences.

• When PDSC.FLAGS.BASE_REG_IS_FP is 1 and PDSC.SIZE is non-zero, then the pro­
cedure has a fixed amount of stack storage specified by PDSC.SIZE, and may have a
variable amount of stack storage allocated by modifying SP in the body of the procedure.
(Procedure must be a stack frame procedure)

ALPHA-64. Flow Control 23

Dlgltal Equipment Corporation Proprietary and Confidential
For Internal U~e Only-Do Not Copy or Disclose

• The combination when PDSC.FLAGS.BASE_REG_IS_FP is 1 and PDSC.SIZE is zero is
illegal since it violates the rules for.R29 (FP) usage which say that it must be saved (on
the stack) and restored.

PDSC.SP _SET is the unsigned offset of the one and only one instruction in the procedure
prologue which modifies the stack pointer.

PDSC.ENTRY_LENGTH is the unsigned offset in bytes from the entry point of the first
instruction in the procedure ·code segment following the procedure prologue.

PDSC.IREG_MASK is a bit vector (0 .. 31) specifying the integer registers that are saved in
the variable portion of the register save area on entry to the procedure. The least significant
bit corresponds to register RO. (Bits 31, 30, and 28 of this mask should never be set since R31
is the integer Read-As-Zero register, R30 is the hardware SP, and R28 is always assumed
to be destroyed during a procedure call or return.)

PDSC.FREG_MASK is a bit vector (0 .. 31) specifying the floating point registers that are
saved in the register save area on entry to the procedure. The least significant bit corre­
sponds to register FO. (Bit 31 of this mask should never be set since it corresponds to the
floating point Read-As-Zero register.)

PDSC.STACK_HANDLER is a signed self-relative pointer to the procedure descriptor
for a run time static exception handling procedure. This part of the procedure descrip­
tor is optional. It MUST be supplied if either PDSC.FLAGS.HANDLER_ VALID is 1 or
PDSC.FLAGS.HANDLER_DATA_ VALID is 1 (which requires that PDSC.FLAGS.HANDLER_
VALID be 1).

If PDSC.FLAGS.HANDLER_ VALID is 0, then the contents or existence of PDSC.STACK_
HANDLER is unpredictable.

PDSC.STACK_HANDLER_DATA is a quadword, the address of which is passed to the
exception handler as context. This is an optional quadword and need only be supplied if
PDSC.FLAGS.HANDLER_DATA_ VALID is 1.

If PDSC.FLAGS.HANDLER_DATA_ VALID is 0, then the contents or existence of PDSC.STACK.
HANDLER_DATA is unpredictable.

RATIONALE:

Note that the handler data cell is intended for use by compilers to help implement
the appropriate language semantics. The calling standard does not provide any
direct means by which user level code may cause data to be stored in this location.
Note also that because the address of the handler data cell is passed instead of the
data itself, the data may be a self relative pointer.

Stack Frame Format
Even though the exact contents of a stack frame are determined by the compiler there are
certain properties common to all stack frames. The two basic flavors of stack frames are
described below.

The following figure illustrates the format of the stack frame for a procedure with a fixed
ai.uount of stack which uses the SP as the stack base register (i.e. PDSC.FLAGS.BASE_
REG_IS_FP is 0). In this case, R29 is simply another register and has no special significance.

24 ALPHA-64 • Flow Control

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only~o Not Copy or Disclose

Some parts of the stack frame are optional and occur only as required by the particular
procedure. Brackets s~rrounding a field's name indicate the :field is optional.

Figure 4-2: Fixed SIZe Stack Frame Format
quadword aligned

+--------------~+------~--------+---------------+---------------+
I I :0 (From SP)
I I
I I
I [fixed temporary locations] I
I I
I I
I I
+---------------+---------------+---------------+---------------+
I I :PDSC.RSA_OFFSET
I I (From SP)
I I
I register save area I
I I
I I
I I
+---------------+---------------+---------------+---------------+
I I
I I
I I
I [fixed temporary locations] I
I I
I I
I I
+---------------+---------------+---------------+---------------+
I I :PDSC.SIZE
I I (From SP)
I [arguments passed in memory] I
I I
I I
+---------------+---------------+---------------+---------------+

The following :figure illustrates the format of the stack frame for procedures with a varying
amount of stack which use the FP as the stack base register (i.e. PDSC.FLAGS.BASE_
REG_IS_FP is 1).

Some parts of the stack frame are optional and occur only as required by the particular
procedure. Brackets surrounding a field's name indicate the :field is optional.

ALPHA·64 ·Flow Control 25

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

Figure 4-3: Variable Size Stack Frame· Format
quadword aligned

+---------------+---------------+----~------~---+---------------+ I I :0 (From SP)

I I
[stack temporary area]

+---------------+---------------+---------------+---------------+
I I :0 (From FP)
I I
I I
I [fixed temporary locations] I
I I
I I
I I
+---------------+---------------+---------------+---------------+
I I :PDSC.RSA OFFSET
I I (From FP)
I I
I register save area I
I I
I I
I I
+---------------+---------------+---------------+---------------+
I I
I I
I I
I [fixed temporary locations] I
I I
I I
I I
+---------------+---------------+---------------+---------------+
I I :PDSC.SIZE
I [arguments passed in memory] I (From FP)
I I
I I
+---------------+---------------+---------------+---------------+

In either case the portion of the stack frame designated by PDSC.SIZE must be allocated
and initialized by the entry code sequence of a called procedure with a stack frame.

Fixed temporary locations are optional sections of the stack frame that contain language­
specific locations required by the procedure context of some high level languages. This may
include, for example, register spill area, language-specific exception handling cont.ext (such
as language dynamic exception handling information), fixed temporaries, etc.

If a compiler chooses, the fixed temporary locations adjacent to the area pointed to by the
frame base register plus PDSC.SIZE can be used for a special purpose termed the argument
home area. ·The argument home area is a region of memory used by the called procedure
for the purpose of assembling in contiguous memory the arguments passed in registers,
adjacent to the arguments passed in memory, so that all arguments can be addressed as a
contiguous array. T'nis area may aiso be used to store arguments that are passed in registers
if an address for such a argument must be generated. Generally, 6 * 8 bytes of stack storage
will be allocated by the called procedure for this purpose.

26 ALPHA-64 • Flow Control

Dlgltal Equipment Corporation Proprietary and Confldentlal
For Internal Use Only~o Not Copy or Disclose

If a procedure needs to reference its arguments as a longword array or construct a struc­
ture that looks like an in-memory longword argument list then it might allocate enough
longwords in this area to hold all of the ·argument. list, .and. optionally an argument count.
In this case, argument items that were passed in memory would have to be copied to this
longword array.

Register save area is a set of consecutive quadwords in which registers saved and restored
by the current procedure are stored. The register save area begins at the location pointed
to by the frame base register (as indicated by PDSC.FLAGS.BASE_REG_IS_FP) plus the
contents of PDSC.RSA_OFFSET, which must yield a quadword-aligned address. The set of
registers saved in this area contains the return address followed by the registers specified
in the procedure descriptor by PDSC.IREG_MASK and PDSC.FREG_MASK. The details of
how to lay out and populate the register save area are described below.

A compiler may use the stack temporary area for fixed local variables, such as constant­
sized data items and program state, as well as for dynamically sized local variables. The
stack temporary area may also be used for dynamically sized items with a limited lifetime,
for example, a dynamically sized function result or string concatenation that can't be directly
stored in a target variable. When a procedure uses this area, the compiler must keep track
of its base and reset SP to the base to reclaim storage used by temporaries.

The high-address end of the stack frame is defined by the value stored in PDSC.SIZE plus
the contents of SP or FP, as indicated by PDSC.FLAGS.BASE_REG_IS_FP. The high-address
end is used to determine the value of SP for the predecessor procedure in the calling chain.

Register Save Area
The layout of the frame of a stack frame procedure contains a substructure called the Register
Save Area. This area is defined and populated as described below.

All registers saved in the variable portion of the register save area must have the correspond­
ing bit set in the appropriate procedure descriptor register save mask even if the register is
not a member of the set of registers required to be saved across a standard call. Failure to
do so would prevent the correct calculation of offsets within the save area.

The algorithm for packing saved registers in the quadword-aligned register save area is:

1. · The return address is saved at the lowest address of the register save area (offset 0).

2. All saved integer registers (as indicated by the corresponding bit in PDSC.IREG_MASK
being set to 1) are stored, in register-number order, in consecutive quadwords, beginning
at offset 8 of the register save area. ·

3. All saved floating point registers (as indicated by the corresponding bit in PDSC.FREG_
MASK being set to 1) are stored, in register-number order, in consecutive quadwords
following the saved integer registers.

NOTE
Floating registers saved in the register save area are stored as a 64-bit exact
image of the register, i.e. no reordering of bits is done on the way to or from
memory. Compilers must use a STT instruction to store the register regardless
of:8oating point type.

ALPHA-64 • Flow Control 27

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

RATIONALE:

The above note is so that an unwind routine can properly restore the :floating
point register8 without the type information. ·

If the return address register is not to be preserved (as is the case for a st~dard call) then it
must be stored at offset 0 in the register save area and the corresponding bit in the register
save mask must not be set.

If, however, a non-standard call is made that requires the return address register to be saved
and restored then it must be stored in both the location at offset 0 in the register save area
and at the appropriate location within the variable part of the save area. In addition the
appropriate bit of PDSC.IREG_MASK must be 1.

The register save area layout is defined as:

Figure 4-4: Register Save Area Layout
RSA quadword aligned

+---------------+---------------+---------------+---------------+
I I : o
I SAVED RETURN I
I (R26 in a 'itandard call) I
I I
+---------------+---------------+---------------+---------------+
I I :8

[Preserved Integer registers]

+---------------+---------------+---------------+---------------+
I I

[Preserved Floating point registers]

+---------------+---------------+---------------+---------------+

RSA.SAVED_RETURN is the contents of the return address register.

For example, if registers RIO, Rll, R15, R22, F2, and F3 were saved by a standard pro­
cedure, the IREG_MASK value would be OOOOSCOO (hex) and the FREG_MASK would be
OOOOOOOC (hex). The register save area for such a procedure would be packed as follows:

28 ALPHA-64 • Flow Control

Figure 4-5: Register Save Example

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only:--Do Not Copy or Disclose

quadword aligned

+---------------+~--------------+---------------+---------------+
I I : o
I R26 I
I I
I I
+---------------+---------------+--------~------+---------------+
I I : s
I RlO I
I I
I I
+---------------+---------------+---------------+---------------+
I I : 16
I Rll I
I I
I I
+---------------+---------------+---------------+---------------+
I I :24
I R15 I
I I
I I
+---------------+---------------+---------------+---------------+
I I :32
I R22 I
I I
I I
+---------------+---------------+---------------+---------------+
I I :40
I F2 I
I I
I I
+---------------+---------------+---------------+---------------+
I I :48
I F3 I
I I
I I
+---------------+---------------+---------------+---------------+

4.1.2 Register Frame Procedure

A Register Frame procedure does not maintain a call frame on the stack and must therefore
save· its caller's context in registers. This type of procedure is sometimes referred to as a
"lightweight procedure" referring to the relatively fast way of saving the call context.

Such a procedure cannot save and restore nonscratch registers. Because a procedure without
a stack frame must therefore use scratch registers to maintain the caller's context, such a
procedure cannot make a standard call to any other procedure.

A procedure with a register frame can have an exception handler and can handle exceptions
in the normal way. Such a procedure can also allocate local stack storage in the norm.al way,
although it will not necessarily do so.

ALPHA-64 • Flow Control 29

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

\\
Lightweight procedures have more freedom than might be apparent. By use of
appropriate agreements with caller~ of th~ lightweight procedure, with
procedures that t-he lightweight procedure calls, -and . .by the use of unwind
handlers, a lightweight procedure may modify nonscratch registers, and may call
other procedures.

Such agreements may be by convention (as in the case of language support
routines in the RTL) or by interprocedural analysis. Calls employing such
agreements are, however, not standard calls, and might not be
fully··supported··by a debugger since, for ·instance; it might not be able
to find the contents of the preserved registers.

Since such agreements must be permanent (for upwards compatibility of object
code), lightweight procedures should in general follow the normal restrictions.
\\

Procedure Descriptor For Procedures With a Register Frame
Procedure descriptors for procedures with register frames are defined as follows:

Figure 4-6: Register Frame Procedure Descriptor Format
PDSC quadword aligned

+---------------+---------------+---------------+---------------+
I SA VE RA I must be zero I FLAGS I KIND I : O
I - I I <15: 4> I <3: O> I

+---------------+---------------+---------------+---------------+
I SIGNATURE OFFSET I must be zero I ENTRY RA I :4
I - I I - I

+---------------+---------------+---------------+---------------+
:8

ENTRY

+---------------+---------------+---------------+---------------+
I SIZE I : 16
I I
+---------------+---------------+---------------+---------------+
I ENTRY_LENGTH I SP_SET I :20
I I I
+===============+===============+===============+===============+

(End of required part of procedure descriptor) :24

REG HANDLER

+---------------+---------------+---------------+---------------+
I 1 · :32
I REG_HANDLER_DATA I
I I
I I
+---------------+---------------+---------------+---------------+
Size = PDSC REGISTER SIZE = 24 - -

PDSC.KIND = 2 (denoted by PDSC_KIND_PC_REGISTER) specifies a procedure descriptor
for a procedure with a register frame.

PDSC.FLAGS is a vector of :flag bits defined as follows:

• PDSC.FLAGS<O> is denoted by HANDLER_ VALID.

30 ALPHA-64 • Flow Control

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only:-Do Not Copy or Disclose

If HANDLER_ VALID is 1, then PDSC.REG_HANDLER must specify an exception han­
dler.

• PDSC.FLAGS<l>· is denoted by HANDLER_REINVOKABLE.

HANDLER_REINVOKA.BLE is 1 if the exception handler is a reinvokable handler, that
is, one that can be rel.nvoked should another exception occur while the handler is al­
ready active. If HANDLER_REINVOKAB'.LE is 0 then the exception handler is not
reinvokable.

HANDLER_REINVOKABLE must be 0 unless PDSC.FLAGS.HANDLER_ VALID is 1.

• PDSC.FLAGS<2> is denoted by HANDLER_DATA_VALID.

If HANDLER_DATA_ VALID is 1, then PDSC.REG_HANDLER must specify an excep­
tion handler, PDSC.FLAGS.HANDLER_ VALID must be 1, and PDSC.REG_HANDLER_
DATA must exist. If all of these criteria are met the address of PDSC.REG_HANDLER_
DATA will be passed to the exception handler in as defined in Section 6.1, Exception
Handling.

• PDSC.FLAGS<3> is denoted by BASE_REG_IS_FP.

BASE_REG_IS_FP must always be 0 for a register frame procedure since setting it to
1 would imply that the FP was used, but that could not be correct since the FP must be
saved and restored across a call and register frame procedures cannot save registers.

• PDSC.FLAGS<4> is denoted by REI_RETURN.

REI_RETURN is 1 if the procedure expects the stack at entry to be set up so that an
REI instruction will correctly return from the procedure. If this bit is set the contents
of both the PDSC.ENTRY_RA and the PDSC.SAVE_RA fields are unpredictable and the
return address is found on the stack.

• PDSC.FLAGS<5> is denoted by STACK_RETURN_ VALUE.

STACK_RETURN_ VALUE is 1 if the procedure does not reset the stack pointer to its
value at procedure entry. This is the case when the function value is returned on the
stack.

• PDSC.FLAGS<6> must be 0.

• PDSC.FLAGS<7> is denoted by NO_JACKET.

NO _JACKET must always be set to 1 for compiled code.

• PDSC.FLAGS<8> is denoted by NATIVE.

NATIVE must always be set to 1 for compiled code.

• PDSC.FLAGS<11:9> must be 0.

PDSC.SAVE_RA is the number of the register in which the return address is maintained
during the body of the procedure. If this procedure uses the standard call conventions and
does not modify R26, then both PDSC.ENTRY_RA and PDSC.SAVE_RA will specify R26.

In a standard procedure, PDSC.SAVE_RA must specify a scratch register so as not to vio­
late·the rules for procedure entry code as specified in Section 4.5.5, Entry and Exit Code
Sequences.

PDSC.ENTRY_RA is the number of the register in which the return address is passed to
this procedure (26 for a standard call).

ALPHA-64 • Flow Control 31

Dlgltal Equipment Corporation Proprietary and Confldentlal
For Internal Use Only-Do Not Copy or Disclose

PDSC.SIGNATURE_OFFSET is a 16-bit signed byte offset from the start of the procedure
descriptor. This . offset, if non-zero; designates the start of the procedure signature block.
A zero in this field indicates that no signature information ··is . present. (See Section 4.2,
Procedure Signatures, for details of the procedure signature block.)

PDSC.ENTRY is the absolute address of the first instruction of the entry code sequence for
the procedure. ·

PDSC.SIZE is the unsigned -size in· bytes of the· fixed portion of.the stack frame for this pro­
cedure. The value of SP at entry to this procedure can be calculated by adding PDSC.SIZE
to the value SP. PDSC.SIZE is 0 if the procedure uses no stack.

PDSC.SIZE must be an appropriate multiple to maintain the minimum stack alignment
required by the ALPHA hardware architecture. Furthermore, in almost all cases it will be
a multiple of 16 to maintain proper stack alignment during a call as defined in Section 4.5.1,
Call Conventions.

PDSC.SP _SET is the unsigned offset of the one and only one (if any) instruction in the
procedure prologue which modifies the stack pointer.

If PDSC.SIZE = 0, then the contents of PDSC.SP_SET are unpredictable.

PDSC.ENTRY_LENGTH is the unsigned offset in bytes from the entry point of the first
instruction in the procedure code segment following the procedure prologue.

PDSC.REG_HANDLER is a signed self-relative pointer to the procedure descriptor for
a run time static exception handling procedure. This part of the procedure descrip­
tor is optional. It MUST be supplied if either PDSC.FLAGS.HANDLER_ VALID is 1 or
PDSC.FLAGS.HANDLER_DATA_ VALID is 1 (which requires that PDSC.FLAGS.HANDLER_
VALID be 1).

If PDSC.FLA.GS.HANDLER_ VALID is 0, then the contents or existence of PDSC.REG_
HANDLER is unpredictable.

PDSC.REG_HANDLER_DATA is a quadword, the address of which is passed to the ex­
ception handler as context. This is an optional quadword and need only be supplied if
PDSC.FLAGS.HANDLER_DATA_ VALID is 1.

If PDSC.FLAGS.HANDLER_DATA_ VALID is 0, then the contents or existence of PDSC.REG_
HANDLER_DATA is unpredictable.

RATIONALE:

Because the address of the handler data cell is passed instead of the data itself, the
data may be a self relative pointer.

4.1.3 No Frame Procedure

A procedure may conform to this standard even if it does not establish its own context if in
all circumstances invocations of that procedure do not need to be visible or debugable. This
is termed executing in the context of the caller, and is similar in concept to a conventional
V..AX JSB procedure. For the purposes of stack tracing or unwinding such a procedure is
never considered to be current.

32 ALPHA-64 - Flow Control

Digital Equipment Corporation Proprietary and Confldentl~I
For Internal Use On~y--Do Not Copy or Disclose

For example, if a procedure does not establish an exception handler or save and restore
registers,· and does not extend the ·stack, then that procedure may not need to establish a
context. Likewise, if that procedure does· extend the stack, it may still not need to establish
a context if the immediate caller cannot be the target of an unwind or is prepared to reset
the stack if it is the target of an unwind.

The circumstances under which procedures can ·run in the context of the caller are complex
and are not fully specified by this standard.

AB with the other procedure types defined above, the choice to establish a context or not is up
to the called procedure. By defining a null procedure descriptor format the same invocation
code sequence may be used by the caller for all procedure types.

Procedure descriptors for procedures with no frame are defined as follows.

Figure 4-7: Null Frame Procedure Descriptor Format
PDSC quadword aligned

+---------------+---------------+---------------+---------------+
I must be zero I FLAGS I KIND I :0
I I <15: 4> I <3: O> I

+---------------+---------------+---------------+---------------+
I SIGNATURE_OFFSET I must be zero I ENTRY_RA I :4
I I I I
+---------------+---------------+---------------+---------------+

:8
ENTRY

+---------------+---------------+---------------+---------------+
Size = PDSC NULL SIZE = 16

PDSC.KIND = 8 (denoted by PDSC_KIND_NULL) specifies a procedure descriptor for a
procedure with no frame.

\\
For the FP based environment of the ALPHA-32 calling standard there
are two values of PDSC.KIND (0 and 8) that must never be
pointed to by a FP. This is because the algorithm for determining if
the contents of FP points to a procedure descriptor directly or _
indirectly through a stack location is based on determining if the
quadword which is pointed to has the low order 3 bits clear. Thus PDSC.KIND
values of 0 or 8 fulfill this criteria when it would not be valid.

Bound procedure descriptors and null procedure descriptors are formatted
identically for both the ALPHA-32 and the ALPH.A-64 flavor of the calling
standard. Since neither of these types of procedure descriptors can
ever be pointed to by an FP they are assigned these two special
values of PDSC.KIND, thus solving the problem.
\\

PDSC.FLAGS is a vector of :flag bits defined as follows.

• PDSC.FLAGS<3:0> must be 0.

• PDSC.FLAGS<4> is denoted by REI_RETURN.

ALPHA-64 ·Flow Control 33

•

Dlgltal Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

REI_RETURN is 1 if the procedure expects the stack at entry to be set up so that an
REI instruction will correctly return from the procedure. If this bit is set the contents
of the PDSC.ENTRY_RA field are unpredictable and the return address is found on the
stack.

• PDSC.FLAGS<5> is denoted by STACK_RETURN_ VALUE.

STACK_RETURN_ VALUE is 1 if the procedure does not reset the stack pointer to its
. value .at procedure entry ... This .is the. case when the function value is returned on the
stack.

• PDSC.FLAGS<6> must be 0.

• PDSC.FLAGS<7> is denoted by NO_JACKET.

NO _JACKET must always be set to 1 for compiled code.

• PDSC.FLAGS<8> is denoted by NATIVE.

NATIVE must always be set to 1 for compiled code.

• PDSC.FLAGS<11:9> must be 0.

PDSC.ENTRY_RA is the number of the register in which the return address is passed to
this procedure. Since this type of procedure never establishes itself as the current procedure,
the return address must remain in this register during the entire time the procedure is
active.

PDSC.SIGNATURE_OFFSETis a 16-bit signed byte offset from the start of the procedure
descriptor. This offset, if non-zero, designates the start of the procedure signature block.
A zero in this field indicates that no signature information is present. (See Section 4.2,
Procedure Signatures, for details of the procedure signature block.)

PDSC.ENTRY is the absolute address of the first instruction of the entry code sequence for
the procedure.

34 ALPHA-64 ·Flow Control

4.2 Procedure Signatures

\\

Dlgltal Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

. ~ (/1
~ov--.

Current plans indicate that signature information will only be utilized in the
ALPHA-32 flavor of the calling standard (to enhance interoperability between
translated and native code). Possible uses have also been identified for the
ALPHA-64 flavor of the standard although no implementation plans have been
finalized in this area.
\\

As a means of enhancing certain aspects of program compatibility compilers may generate
optional information describing a procedure. This auxiliary information is called signature
information. If a procedure is compiled with signature information, PDSC.SIGNATURE_
OFFSET contains a byte offset from the procedure descriptor to the start of a procedure
signature block. The procedure signature block is defined as follows:

Figure 4-8: Procedure Signature Block Format
PSIG quadword aligned

+---------------+---------------+---------------+---------------+
I SUMMARY I REG ARG INFO I FRET I : 0
I <31:22> I <21:4> I <3:0> I
+---------------+---------------+---------------+---------------+
I MEMORY ARG INFO[34 •• 7] I ARG COUNT I :4
I - <3l:8> . I <7:0> I

+---------------+---------------+---------------+---------------+
I MEMORY_ARG_INFO [255 •• 35] I : 8
I I

+---------------+---------------+---------------+---------------+
Size = PSIG MAX SIZE = 72

PSIG.FUNC_RETURN is a 4-bit field the describes which registers will be used for the
function value return (if there is one) and what format will be used for those registers. This
field is encoded as follows:

ALPHA·64 • Flow Control 35

Digital Equipment Corporation Proprietary and Confldentlal
For Internal Use Only-Do Not Copy or Disclose

Table 4-1: Function Return Signature Encodings

Name

FR_l32

FR_l64

FR_U32

FR_D64

FR_FF

FR_FDG

FR_FS

FR_FT

FR_FFC

FR_FDGC

FR_FSC

FR_FTC

Value

0

2

3

4

5

6

7

8-11

12

13

14

15

Meaning

32-bit sign extended to 64-bit result in RO

or - ·No function result provided

or - First parameter mechanism used

64-bit result in RO

32-bit unsigned result (zero extended) in RO

64-bit result with low 32 bits in sign extended RO and high 32 bits sign extended in R1

F floating result in FO

D or G floating result in FO

S floating result in FO

T floating result in FO

Reserved for future use

F floating complex result in FO and F1

D or G floating complex result in FO and F1

S floating complex result in FO and F1

T floating complex result in FO and F1

PSIG.REG_ARG_INF0<21:4> is an 18-bit bitvector consisting of 6 groups of 3 bits corre­
sponding to the 6 arguments that may be passed in registers. These groups describe how
each of the first six arguments are expected to be passed in registers with the first group
(bits <6:4>) describing the first argument. Each group is encoded as follows:

Table 4-2: Register Argument Signature Encodings

Name Value

RA_l32 0

RA_l64

RA_U32 2

3

RA_FF 4

RA_FDG 5

RA_FS 6

RA_FT 7

Meaning

32-bit sign extended to 64-bit argument passed in an integer register

or - Argument is not present

or - Argument slot used by previous argument

64-bit argument passed in an integer register

32-bit unsigned argument zero extended to 64 bits, passed in an integer register

Reserved for future use

F floating argument passed in a floating register

Dor G floating argument passed in a floating register

S floating argument passed in a floating register

T floating argument passed in a floating register

PSIG.8'Ul\f.MARY<31:22> is a 10-bit field defined as follows:

36 ALPHA-64 • Flow Control

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy. or Disclose

Table 4-3: Signature Summary

Name

SU_ASUM

SU_VLIST

Bit

0-1

2

Meaning

Summary of arguments 7 through PSIG.ARG_COUNT

00 = All arguments are 64-bit or not used

01 =All arguments are 32-bit sign extended

1 O = Reserved for call signature
· 11 =Other (Not 00 or 01)

VAX style argument list expected

3-9 Reserved for future use - Must be zero

PSIG.ARG_COUNT<7:0> is an unsigned byte that represents the number of 64-bit argu­
ment items that are described in the argument signature information. This count includes
the first six arguments.

PSIG.MEMORY_ARG_INFO is an array of two-bit values which describe each of argu­
ments 7 through PSIG.ARG_COUNT. These bits are defined as follows:

Table 4-4: Memory Argument Signature Encodings

Name Value Meaning

MA_l64 0 64-bit argument

1 Reserved

MA_l32 2 32-bit sign extended argument

MA_U32 3 32-bit zero extended argument

PSIG.MEMORY_ARG_INFO data is only defined for the arguments described by PSIG.ARG_
COUNT.

4.3 Procedure Descriptor Access Routines

A thread can obtain information from the descriptor of any procedure in the thread's vir­
tual address space by calling system library functions as defined in Appendix B, Procedure
Descriptor Access Routines.

ALPHA-64 - Flow Control 37

Dlgltal Equipment Corporation Proprietary and Confldentlal
For Internal Use Only-Do Not Copy or Disclose

4.4 Procedure Call Chain

4.4.1 Current Procedure.

In the course of running and debugging a program there are times when there must be a
way to identify which procedure is currently executing. During normal thread execution
the current procedure must be ·determined any time an exception arises so that the proper
handlers will be invoked. Also a debugger must know which procedure invocation is cur­
rently executing to enable it to find information about the current state of the execution
environment.

In order to completely determine the current execution context not only must the currently
executing procedure be determined but also which instance of that procedure. This context of
the current procedure together with a specific instance of that procedure invocation is called
the current procedure invocation (which is more often shortened to current procedure). At
any point in the execution of a thread there is always exactly one procedure that is considered
to be the current procedure.

In the ALPHA-64 calling standard the value in the PC is used to indicate the current pro­
cedure by means of a lookup table.

To accomplish this all possible PC values must be mapped, either explicitly or implicitly,
in a table of PC values. This table is composed of a set of triples; PC starting and ending
values defining a range, and for that range a pointer to the appropriate procedure descriptor.
Given a PC value at any point in time, that PC value can be interpreted to find the procedure
descriptor for the current procedure by doing a lookup in this table. (Details of the table
lookup scheme can be found in Appendix C.) Details of the runtime interface to the lookup
table are found below.

The following system supplied routine may be used to obtain a procedure value (the address
of the procedure descriptor) that corresponds with any given PC value within the current
address space:

Get Procedure Value

LIB_GET_PROC_VALUE(PC_ VALUE)

Arguments:

PC_ VALUE

..-:. ~. ...,,.. ,
~ unc~1on va.J.ue:

38 ALPHA-64 • Flow Control

A PC value in the current address space for which the procedure value is
to be returned
If zero, indicates the value should be returned for the routine making the
call

PROC_VALUE

4.4.2 The Call Chain

Dlgltal Equipment Corporation Proprietary and Confldentlal
For Internal Use Only~o Not Copy or Disclose

The procedure value for the procedure containing the requested PC
If the return value is PROC_VALUE,,_NULL, then the PC is not c~rrently
mapped · · ·

Except for the very :first invocation in a thread there is always an invocation that was pre­
viously considered to be the current procedure invocation. The current procedure invocation,
together with the previous current procedure invocations, together with all successive pre­
viously current procedure invocations, all the way back to the :first invocation in the thread,
make up a logical list of procedure contexts referred to as the call chain. The current pro­
cedure invocation is always considered to be the :first procedure invocation in this logical
list and the :first procedure invocation that was executed in the thread is always the last
procedure invocation in the list. The register values of all non-scratch registers at the time
of the currently active call in a procedure invocation can be determined by walking the call
chain and retrieving the procedure invocation context for that invocation. A procedure is
called an active procedure (invocation) while it exists on the call chain.

The call chain and its supporting data is used by code which implements various aspects of
the calling standard such as call returns and procedure unwinding.

4.4.3 Procedure Call Tracing

There are three basic facilities needed to support procedure call tracing. They are:

1. A mechanism to refer to a given procedure invocation

2. A mechanism to provide the context of a procedure invocation

3. A mechanism to traverse the procedure call chain

These facilities are described below.

Data structures
This section describes the data structures used to provide the above mentioned mechanisms.

Referring to a Procedure Invocation
A given procedure invocation can be referred to by use of a procedure invocation handle.
This handle is defined as follows:

ALPHA-64 - Flow Control 39

Dlgltal Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

Figure 4-9: Procedure Invocation Handle Format
quadword-aligned

+-------+-------+-------+-------+-~-----+~--~---+---~-~~+-------+
I HANDLE I :0
I I
+-------+---~---+---~---+-------+-------+-------+-------+-------+ .
Size = INVO HANDLE SIZE = 8 - -

HANDLE is a 64-bit quantity which may be used to refer to a specific procedure invocation at
run time. (See Section D.2.1, Invocation Handles, for how this handle might be constructed.)

Invocation Context Block
The context of a given procedure invocation is provided through the use of a data structure
called an invocation context block. This structure is defined as follows:

Figure 4-10: Invocation Context Block Format
INVO CONTEXT BLK quadword-aligned

+-------+-------+-------+-------+-------+-------+-------+-------+
I BLOCK I must be zero I CONTEXT LENGTH I : 0
I _VER I I - I
+-------+-------+-------+-------+-------+-------+-------+-------+
I PROGRAM_COONTER I :8
I I
+-------+-------+-------+-------+-------+-------+-------+-------+
I IREG [O] I : 16
I I
+-------+-------+-------+-------+-------+-------+-------+-------+
I IREG [1] I : 24
I I
+-------+-------+-------+-------+-------+-------+-------+-------+

+-------+-------+-------+-------+-------+-------+-------+-------+
I IREG[30] I :256
I I
+-------+-------+-------+-------+-------+-------+-------+-------+
I FREG[0] I :264
I I
+-------+-------+-------+-------+-------+-------+-------+-------+
I FREG[1] I :272
I I
+-------+-------+-------+-------+-------+-------+-------+-------+

+-------+-------+-------+-------+-------+-------+-------+-------+
I FREG[30] I :504
I I
+-------+-------+-------+-------+-------+-------+-------+-------+
I PREVIOUS_HANDLE I :512
I I
+=======+=======+=======+=======+=======+=======+=======+=======+
I I : 520
I SYSTEM_DEFINED I
I I

+=======+=======+=======+=======+=======+=======+=======+=======+
Size = INVO_CONTEXT_BLK_SIZE is system defined

40 ALPHA-64 • Flow Control

Dlgltal Equipment Corporation Proprietary and Confldentlal
For Internal Use Onl.y-Do Not Copy or Disclose

INVO_CONTEXT_BLK.CONTEXT_LENGTH is an unsigned count of the total length in
bytes of the context b~ock; this represents the sum of the lengths of the standard-defined
portion and the system-defined portion. · · ··

INVO_CONTEXT_BLK.BLOCK_ VERSION is a byte that indicates the context block ver­
sion. This value would change if the format of this structure ever changes. For now, it is
always set to the va.1:ue 1.

INVO_CONTEXT~BLK.PROGRAM_COUNTER is -the current value of the program
counter in the procedure. For interrupted procedures, this is the same as the continuation
program counter; for active procedures, this is the return address back into that procedure.

INVO_CONTEXT_BLK.m.EG[] and FREG[] are the current values of the integer and
floating point registers in the procedure.

INVO_CONTEXT_BLK.PREVIOUS_HANDLE contains the invocation handle for caller
of the procedure whose context information is supplied.

INVO_CONTEXT_BLK.SYSTEM_DEFINED contains procedure context information de­
fined by the host environment. These locations are not defined by this standard.

\\
The system defined section is to allow host environments to collect and keep in
one place all the information that needs to be collected and kept for
interrupted and active procedures.

For example, the sigcontext structure is used for this purpose in
ULTRIX/RISC. It contains all the information in this invocation context block,
plus more. Any ULTRIX implementation is likely to want to keep the additional
sorts of ULTRIX-specific information that is usually found in a
sigcontext structure in the invocation context block. This
system-defined area is provided to allow the invocation context block to be
used as the sigcontext structure.
\\

Referencing a Procedure
A thread can obtain its own invocation handle by calling a system library function defined
as follows:

LIB_GET _INVO _HANDLE(INVO _CONTEXT _BLK_ADDR)

Arguments:

INVO_CONTEXT _BLK_ADDR

Function Value:

INVOCATION_HANDLE

This is the address of a filled in invocation context block. If this address is
passed as 0, the call is assumed to be a request for the invocation handle
of the procedure making the call.

This is an invocation handle of the invocation context that was passed.

If the returned value is INVO_HANDLE_NULL, the invocation context that
was passed was invalid

ALPHA-64. Flow Control 41

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

. NOTE

If the invocation context that was passed in does not represent any procedure con­
text in the active ·call chain, the value of the invocation handle that is returned is
unpredictable.

A thread can obtain the invocation handle of the procedure context preceding any other
procedure context in the active call chain by calling a system library function defined as
follows:

LIB_GET_PRIOR_INVO_HANDLE(INVOCATION_HANDLE)

Arguments:

INVOCATION_ HANDLE

Function Value:

HANDLE

Walking the Call Chain

A procedure invocation handle

An invocation handle:

A valid invocation handle of the previous invocation in the call chain.
INVO_HANDLE_NO_MORE indicates that there is no prior procedure con­
text.

INVO_HANDLE_NULL indicates that the input argument was invalid.

During the course of program execution it is sometimes necessary to be able to navigate
the call chain. Frame based exception handling is one case where this is done. Call chain
navigation is only possible in the reverse direction (latest or top procedure to earliest or
bottom procedure).

The navigation is done by:

1. Given an instance of program state (which contains a register set), construct an invo-
cation context block.

2. Call LIB_GET_INVO_HANDLE to get a procedure invocation handle for that context.

3. Call UB_GET_PRIOR_INVO_HANDLE to get the previous invocation handle

4. Repeat the previous set until the end of the chain has been reached (as signified by
INVO_HANDLE_NO_MORE being returned).

Com pilers are allowed to optimize high level language procedure calls in such a way that
they do not appear in the invocation chain; in-line procedures, for example, never appear in
the invocation chain.

No assumptions should be made about the relative positions of any memory used for proce­
dure frame info.n11ation. i.e. T'nere is no guarantee that successive stack frames will always
appear at higher addresses.

42 ALPHA-64 - Flow Control

Dlgltal Equipment Corporation Proprietary and Confldentlal
For Internal Use Only~o Not Copy or Disclose

4.4.4 Obtaining the Context of a Procedure

Given an invocation handle, a thread can obtain the current context of any procedure invo­
cation in the call chain by calling a system library· function· defined as follows:

LIB_GET_INVO_CONTEXT(INVOCATION_HANDLE, CONTEXT)

Arguments:

INVOCATION_HANDLE

CONTEXT

Function Value:

STATUS

Handle for the desired invocation.

The address of an invocation context block into which the procedure context
of the frame specified by INVOCATION_HANDLE will be written.

A status value:

STATUS_SUCCESS indicates that the context of the requested frame in­
formation was returned in the block specified by CONTEXT.

STATUS_FRAME_NOT_FOUND indicates that there is no frame with the
specified invocation handle.

STATUS_FAILURE indicates that the arguments were otherwise invalid.

ALPHA-64 • Flow Control 43

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

4.5 Transfer of control

This standard states that a standard call may be done in any. way that presents the called
routine with the requ!red environment (see Section· 1.4, ·nefii:iitions). Although this is true it
is believed that the vast majority of standard conforming external calls will be done with a
common sequence of instructions and conventions in both the ALPHA-64 and the ALPHA-32
flavors of the ALPHA environment. This common set of call conventions is so pervasive that
it is included for reference as part of this standard.

One important feature of the calling standard is that it is designed such that the same
instruction sequence can be used to call each of the different types of procedure. i.e. the
caller does not have to know which type of procedure is being called.

4.5.1 Call Conventions

The call conventions describe the rules and methods used to communicate certain infor­
mation between the caller and the called procedure during invocation and return. For a
standard call these conventions include the following:

• Procedure Value

The calling procedure must pass to the called procedure its procedure value. This may
be a statically or dynamically bound procedure value. To do this, R27 is loaded with the
procedure value before control is transferred to the called procedure.

• Return Address

The calling procedure must pass to the called procedure the address to which control
must be returned during a normal return from the called procedure. In most cases the
return address is the address of the instruction following the one which transferred
control to the called procedure. For a standard call this address is passed in the return
address register (R26).

• Argument List

The argument list is an ordered set of zero or more argument items, that together com­
prise a logically contiguous structure known as an argument item sequence. This logi­
cally contiguous sequence is in practice mapped to registers and memory in a fashion
that produces a physically discontiguous argument list. In a standard call, the first six
i:tems are passed in registers Rl6 .. R21 and/or registers Fl6 .. F21. (See Section 5.2.2,
Argument List Structure, for details of argument-to-register correspondence). The re­
maining items are collected in a memory argument list that is a naturally-aligned array
of quadwords. In a standard call, this list (if present) must be passed at O(SP).

• Argument Information

The calling procedure must pass to the called procedure information about the argument
list. This information is passed in the Argument Information Register (R25) which has
the following format:

44 ALPHA-64 • Flow Control

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only,_[)o Not Copy or Disclose

Figure 4-11: Argument Information Register Format
AI

+---------------+---------------+---------------+---------------+
I must be zero I ARG REG INFO I ARG COUNT I : 0
I <31:20> I <l9:s> I <7:0> I
+---------------+---------------+---------------+---------------+

must be zero :4

+---------------+---------------+---------------+---------------+
Size = AI SIZE = 8

ALARG_COUNT<7:0> is an unsigned byte that represents the number of 64-bit argu­
ment items in the argument list (commonly referred to as the "argument count").

ALARG_REG_INF0<19:8> is an 12-bit bitvector consisting of 6 groups of 2 bits cor­
responding to the 6 arguments that may be passed in registers. These groups describe
how each of the first six arguments are passed in registers with the first group (bits
<9:8>) describing the first argument. Each group is encoded as follows:

Table 4-5: Argument Register Usage Encodings

Name

AR_l64

AR_FV

AR_FS

AR_FT

Value

0

1

2

3

Meaning

64-bit or 32-bit sign extended to 64-bit argument passed in an integer register

or - Argument is not present

or - Argument slot used by previous argument

VAX floating argument passed in a floating register

IEEE S floating argument passed in a floating register

IEEE T floating argument passed in a floating register

RATIONALE:

e presents one solution to the "printf' problem mentioned below.

ALPHA-64 • Flow Control 45

Digital Equipment Corporation Proprietary and Confidential
For lntemal Use Only-Do Not Copy or Disclose

\\
There exists a certain type of procedure, such as the ULTRIX printf () function
or the VMS FAO interfaces, which allow any argument.list position to be of·a
"generic" type depending on the value of ·prec·edin·g arguments in the list. In
particular, this type of procedure allows any argument list item to be of type
integer or floating point passed by value and also might require the argument
list to be addressable as a contiguous sequence of argument items.

This poses a problem in that, for any argument list item, the location of an
in-register argument (integer or floating point register) can't be determined
until the function call at run-time.

This problem does not exist on hardware systems where integer and floating
point operations are done on the same set of registers (such as a
conventional VAX) •

This standard provides a mechanism to solve this problem by requiring that
the caller pass information about the location of argument item in the
argument information register.

This problem is solved on MIPS systems by the following technique: when any
argument occurs that is known by definition to be non-floating, then all
subsequent arguments, whether floating point passed by value or not, are passed
in the integer argument locations.

This technique works because the argument(s) that determines the types
of following arguments is never floating point, so such "generic" argument
lists are always forced to the integer argument locations. This technique works
reasonably well on architectures like MIPS, because there is a fast non-memory
data path from the floating point coprocessor registers to the integer
processor registers.

Since it's not possible on ALPHA to move data from the floating point registers
to the integer registers except through memory, a severe performance penalty
could be imposed by adopting techniques like that used for MIPS.
\\

Other bits<63:20> are reserved bits and must be zero.

• Function Result

If a standard-conforming procedure is a function, and the function result is returned
in a register, then the result is returned in RO, FO, or FO .. Fl. Otherwise, the function
result is returned via the first argument item or dynamically as defined in Section 5.2. 7,
Returning Data.

• Stack usage

SP must at all times denote an address that has at least the minimum alignment re­
quired by the ALPHA hardware. In addition, whenever control is transferred to another
procedure the stack must be octaword aligned. (This has the side effect that the in mem­
ory portion of the argument list, if any, will start on an octaword boundary.) During a
procedure invocation the SP may never be set to a value that is higher than the value
of the SP at entry to that procedure invocation.

RATIONALE:

Because this standard requires that the SP be octaword aligned at the time of a
call, compilers may arrange to have local (stack) data octaword aligned without
costly extra code.

The contents of the stack located above the portion of the argument list which is passed
in memory (if any) belong to the calling procedure and should therefore not be read or
written by the called procedure, except as specified by indirect arguments or language­
controlled up level references.

46 ALPHA-64 • Flow Control

Dlgltal Equipment Corporation Proprietary and Confidential
For Internal Use Only~o Not Copy or Disclose

The stack pointer (SP) is used by the hardware in raising exceptions and asynchronous
interrupts. This will cause the contents of the next 2048 bytes below the current SP
value to be continually and unpredictably mo4ified~ N~ software that conforms to this
standard may depend on the contents of the 2048 stack locations below O(SP).

4.5.2 Linkage

A hardware architecture that has the property that instructions cannot contain full virtual
addresses is sometimes referred to as a base register architecture. The ALPHA architecture
is such an architecture. In a base register architecture, normal memory references within
a limited range from a given address are expressed by using displacements relative to the
contents of some register which contains that address (usually referred to as a base regis­
ter). Base registers for external program segments, either data or code, are usually loaded
indirectly through a program segment of address constants.

The fundamental program section containing address constants that a procedure uses to
access other static storage, external procedures, and variables is termed a linkage section.
Any register that is used to access the contents of the linkage section is termed a linkage
e.ointer.

A procedure's linkage section includes the procedure descriptor for the procedure, addresses
of all external variables and procedures referenced by the procedure, and other constants
that a compiler may choose to reference using a linkage pointer.

When a standard procedure is called, the caller must provide the procedure value for that
procedure in R27. Static procedure values are defined to be the address of the procedure's
descriptor. Since the procedure descriptor is part of the linkage section, calling this type
of procedure value provides a pointer into the linkage section for that procedure in R27.
This linkage pointer may then be used by the called procedure as a base register to address
locations in its linkage section. For this reason most compilers will generate references to
items in the linkage section as offsets from a pointer to the procedure's descriptor.

Compilers usually arrange to have the environment setup code for bound procedures also
load R27 with the address of the procedure's descriptor as part of the environment setup
so that it may be used as a linkage pointer as described above. (See Section 4.5.4, Bound
Procedure Values, for an example.)

Althqugh not required, linkages to external procedures are typically represented in the call­
ing procedure's linkage section as a linkage pair. A linkage pair, which should be octaword
aligned, has the following format:

ALPHA-64 • Flow Control 47

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

Figure 4-12: Linkage Pair Format
LKP . octaword aligned

+---------------+---------------+--------·-------+-----""'---------+
I I : o
I ENTRY I
I I .
I I
+---------------+---------------+---------------+---------------+
I I :8
I PROC VALUE I

1---------------+--------------~+--~--~~-~-+~-------------~
/2A. <TCL~ ~c;,.., A~

Size = LKP SIZE = 16 I q

LKP.ENTRY is the absolute address of the first instruction of the called procedure's entry
code sequence.

LKP.PROC_VALUE is the procedure value of the procedure to be called. This is norm.ally
the absolute address of a procedure descriptor for the procedure to be called but may be
a bound procedure value in certain cases (such as for procedures that are called through
certain types of transfer vectors).

\\
Because a code entry address may always be obtained by loading the address
pointed to by a procedure value + 8, only the procedure value is technically
required in the linkage section. The code entry address is also placed in the
linkage section to provide better performance for external procedure calls.
\\

In general, an object module contains a procedure descriptor for each entry point contained
by the module. The descriptors are allocated in a linkage section. For each external proce­
dure, Q, referenced in a module, the module's linkage section also contains a linkage pair
denoting Q, that is, a pointer to Q's procedure descriptor and entry code address.

As an example of typical code to call an external procedure Q as represented by a link­
age pair, suppose that R4 is the register currently containing the address of the current
procedure's descriptor. Q can be called by:

LDQ
LDQ
MOVQ
JSR

R26,Q DESC-MY DESC(R4) ;Q's entry address into R26
R27,Q-DESC-MY-DESC+8(R4) ;Q's procedure value into R27
#AI LITERAL,R.25 ;Load Argument Information register
R26;(R26) ;Call to Q. Return address in R26

Because Q's procedure descriptor (statically defined procedure value) is in Q's linkage sec­
tion, Q can use the value in R27 as a base address for accessing data in its linkage section.
Q accesses external procedures and data in other program sections through pointers in its
linkage section. Therefore, R27 serves as the root pointer through which all data may be
referenced.

48 ALPHA·64 • Flow Control

\\

Dlgltal Equipment Corporation Proprietary and Confidential
For Internal Use Only~o Not Copy or Disclose

The linkage section is part of the called procedure, and the layout of a
linkage section is determined by the compj..ler. Procedur.~s compiled together
(belonging to a single object module) will share ·a linkage section that will
contain a procedure descriptor for each procedure in the module. Offsets for
procedure descriptors and address constants within the linkage section are
assigned by the compiler when the module is compiled.

In practice, the linkage section will be allocated in a program section that is
read-only from the point of view of the program. However when the image section
is loaded fixups will be done which will· cause the image· section to become
non-shared between processes. This read-only linkage section could also contain
all read-only constants defined by the module. However, all the read-only
constants in that section would then also become non-shared between processes.
If there are more than a page or two of read-only constants, this might
significantly increase physical memory usage; thus, caution must be exercised.
\\

4.5.3 Calling Computed Addresses

Most calls are made to a fixed address whose value is completely determined by the time the
program starts execution. There are, however, certain cases which cause the exact address
not to be determined until the code is actually executed. In this case the procedure value
representing the procedure to be called will be computed in a register.

Suppose R4 contains such a computed procedure value (simple or bound). An example of
the code to call the procedure that it describes is:

LDQ
MOV
MOVQ
JSR

R26,8(R4)
R4,R27
#AI_LITERAL,R25
R26, (R26)

;Entry address to scratch register
;Procedure value to R27
;Load Argument Information register
;Call entry address.

Compiled code may optionally be constructed to support enhanced compatibility by gen­
erating and using procedure signature information as described in Section 4.2, Procedure
Signatures. In this mode calls to a computed address must use a slightly different calling
sequence similar to the one described below:

LDL
MOVQ
SRL
BLBC
LDQ
MOV
JSR

CALL JACKET:

\\

LDQ
LDQ
MOV
LDQ
JSR
BR

R28,0(R4) ;Load the flags field of the target PDSC
#AI LITERAL,R25 ;Load Argument Information register
R28-;-#PDSC FLAGS NO_JACKET,R28 ;Use jacketing ?
R28,CALL_JACKET- ;Yes
R26,8(R4) ;Entry address to scratch register
R4,R27 ;Procedure value to R27
R26, (R26) ;Call entry address.

;Rest of procedure code goes nere

;Generated out of line
R26,JACKET(LP) ;Entry address to scratch register
R27,JACKET+8(LP) ;Load procedure value
R4,R23 ;Pass address of routine to call
R24,CALL OUT INFO(LP) ;Pass address of call out information
R26, (R26) - ;Call Jacket routine
back in line ;Return to normal code path

For the ALPHA-32 flavor of the calling standard the name of the jacket routine
is [TBS]. It receives two non-standard parameters in R23 and R24. For the
ALPHA-64 flavor of the calling standard use of this mode is not currently
def in ed.
\\

ALPHA-64 • Flow Control 49

Dig Ital Equipment Corporation· Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

4.5.4 Bound Procedure Values

There are two distinct classes of procedure values; those that· represent simple procedures
and norm.ally acquire .their value sometime prior tO exeeutiOn of code (normally as part of a

, compile, link or activation process - see Section 3.2, Procedure Representation), and those
that represent bound procedures and norm.ally acquire their value at run time.

Bound procedure values, as defined by this standard, are designed for multilanguage use and
utilize the·properties·of procedure descriptors to·allow-callers·ofprocedures to use common
code to call both bound and simple procedures.

The procedure value for a bound procedure is a pointer to a bound procedure descriptor
which, like all other procedure descriptors, contains the address to which the calling proce­
dure must transfer control at offset 8. This offset is required to allow the use of common
code as mentioned above. Use of this common code will cause the pointer to the bound pro­
cedure descriptor to be passed in R27 in the same way that the simple procedure descriptor
address would be passed for a simple procedure value (see Section 4.5.2, Linkage). It is then
the responsibility of the setup code for the bound procedure to use this pointer to insure
that whatever environment is required for the correct execution of the bound procedure is
loaded before control is transferred to the bound procedure. (This usually involves loading
R27 with a pointer a statically defined procedure descriptor for that procedure so that it
may be used as ·a linkage pointer).

Given a procedure Q, if Q is not nested within another procedure, then a procedure value
for Q is simply the address of Q's procedure descriptor. Careful inspection of the sample
procedure value calling sequence given in Section 4.5.3, Calling Computed Addresses, will
show that the code sequence simply calls Q.

If, however, Q is a subprocedure of a procedure P (i.e. a bound procedure), then a procedure
value for Q must be a bound procedure value. The bound procedure value points to a special
type of procedure descriptor that contains the information for both the transfer of control
and accessing the up-level data. The form.at of this data structure is defined as follows:

50 ALPHA-64 • Flow Control

Digital Equipment Corporation Proprietary and Confldentl.al
For Internal Use On_ly-Do Not Copy or Disclose

Figure 4-13: Bound Procedure Descriptor Format
PDSC quadwor.d aligned

+---------------~---------------+----------~----~--~~-----------+
must be zero FLAGS

<15:4>
I KIND I :0
I <3: O> I .

+---------------+---------------+---------------+---------------+
I SIGNATURE OFFSET I must be zero I ENTRY RA I : 4
I - I I I
-+---------------+-------~------+---------------+---------------+

: 8
ENTRY

+---------------+---------------+---------------+---------------+
I I : 16
I PROC VALUE I
I I
I (End of publicly architected portion) I
+===============+===============+===============+===============+
I I :24
I ENVIRONMENT I
I I
I I
+---------------+---------------+---------------+---------------+

Size = PDSC BOUND SIZE = 24 - -

PDSC.KIND = 0 (denoted by PDSC_KIND_BOUND) specifies a bound procedure descriptor.

\\
For the FP based environment of the ALPHA-32 calling standard there
are two values (0 and 8) of PDSC.KIND that must never be
pointed to by a FP. This is because the algorithm for determining if
the contents of FP points to a procedure descriptor directly or
indirectly through a stack location is based on determining if the
quadword which is pointed to has the low order 3 bits clear. Thus PDSC.KIND
values of 0 or 8 fulfill this criteria when it would not be valid.

Bound procedure descriptors and null procedure descriptors are formatted
identically for both the ALPHA-32 and the.ALPHA-64 flavor of the calling
standard. Since neither of these types of procedure descriptors can
ever be pointed to by an FP they are assigned these two special
values of PDSC.KIND, thus solving the problem.
\\

PDSC.FLAGS is a vector of flag bits which must be an exact copy of the flag bits contained
in the quadword pointed to by PDSC.PROC_ VALUE.

RATIONALE:

The above field is required so that if a calling routine needs the :flag information
it does not have to do the indirection to look at the :flag bits of the actual bound
procedure.

PDSC.ENTRY_RA is the number of the register in which the return address is passed to
the environment setup code for this procedure.

ALPHA-64 • Flow Control 51

•

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

Transfer code for bound procedures must follow the same rules as procedure entry code.
(See Section 4.5.5, Entry and Exit Corl:e Seq~ences, for det~ils) In particular, since the
environment setup code never establishes itself as the current procedure; the return address
must remain in this register during the entire time the setup code is active. This implies that
PDSC.ENTRY_RA in a bound procedure descriptor must be the same as the PDSC.ENTRY_
RA of the procedure descriptor for the procedure for which the environment is established.

PDSC.SIGNATURE_OFFSET must be set to zero in all bound procedure descriptors.

RATIONALE:

Since bound procedure descriptors are created at run time there is a strong desire
to minimize the overhead of doing that creation. In this case a routine which needs
the signature information will first determine that the information is needed. On
attempting to access the signature information the routine will discover that this
offset is zero. It can then check the kind field and verify that it is indeed looking at
a bound procedure descriptor at which point it can utilize the PDSC.PROC_ VALUE
field to find the procedure descriptor for which the bound procedure descriptor
was created and then repeat the steps needed to find the signature information.

PDSC.ENTRY is the address of transfer code sequence

RATIONALE:

The offset of this address is tailored to match with the same offset in all procedure
descriptors.

PDSC.PROC_ VALUE is the procedure value of the procedure to be called by the transfer
code. This can be either the address of a procedure descriptor for the procedure or possibly
another bound procedure value.

PDSC.ENVJRONMENT is the environment value to pass to the procedure.

When the transfer code sequence addressed by PDSC.ENTRY is called (by a call sequence
such as the one given in Section 4.5.3, Calling Computed Addresses), the procedure value
will be in R27, and the transfer code must finish setting up the environment for the target
procedure. The preferred location for this transfer code is directly preceding the bound
procedure. This saves a memory fetch and a branching instruction as well as optimizing
instruction caches and paging. (Also, see note below.)

An example of a such a transfer code sequence, for a target procedure that expects the
environment value to be passed in R22 and a link.age pointer in R27, is:

LDQ
LDQ

Q_ENTRY::

\\

R22,24(R27)
R27,16(R27)

;Environment value to R22
;Procedure descriptor address to R27
;Normal procedure entry code starts here

If the transfer sequence does not directly precede the procedure entry
point then the following instructions, or equivalent must be done AFTER the
above instructions:

\\

LDQ
J'MP

R28, 8 (R27)
R31, (R28)

52 ALPHA-64 • Flow Control

;Entry address to scratch register
;Jump to entry address.

Dlgltal Equipment Corporation Proprietary and Confldentlal
For Internal Use Only:--Do Not Copy or Disclose

After the transfer code has been executed and control is transferred to Q's entry address,
R27 contains the address of Q's procedure descriptor, R26 (unmodified by transfer code)
contains the return address, and R22 contains the. enviro~ent value.

The environment value is needed by Q's code for such things as references to variables in P,
and nonlocal GOTOs to points in P. When a bound procedure value such -as this is needed,
the bound procedure descriptor will normally be allocated on the parent's stack.

\\
Bound procedure descriptors must usually be generated at run-time since the
environment value is not usually known until the parent has been invoked.
\\

NOTE

To facilitate calls through bound procedure values or constructs that behave in a
similar fashion (such as certain types of transfer vectors) this standard requires
that a reserved instruction be placed at the address that is exactly 4 bytes before
any external entry point to a procedure even if it is not a bound procedure. This
reserved instruction is:

LDQ R27, 16 (R27) ;Procedure descriptor address to R27

and serves to setup R27 in those cases where it was otherwise used during the
transfer process.

4.5.5 Entry and Exit Code Sequences

This section describes the steps that must be executed in procedure entry and exit sequences.
These conventions must be followed in order for the call chain to be well defined at every
point during thread execution.

Except as noted, the exact instruction sequences are not specified; any instruction sequence
which produces the defined effects is legal.

Entry Code Sequence
Since the value of the PC defines the current procedure, all properties of the environment
specified by a procedure's descriptor must be valid before the first instruction beyond the
procedure prolog (as defined by PDSC.ENTRY_LENGTH) is executed. In addition, none
of the properties specified in the calling procedure's descriptor may be invalidated before
the called procedure becomes current. In particular this means that until the procedure
becomes current all entry code must adhere to the following rules:

• All registers specified by this standard as saved across a standard call must contain
their original (at entry) contents.

• The register designated by PDSC.ENTRY_RA (R26 in a standard call) must contain its
original (at entry) contents. Note: This must be true even for non standard procedures
to allow proper unwinding

• No standard calls may be made

NOTE

If an exception is raised or an exception occurs in the prolog of a procedure, that
procedure's exception handler (if any) will not be invoked since the procedure is
not current yet. This implies that if a procedure has an exception handler compilers

ALPHA-64 - Flow Control 53

Dlgltal Equipment Corporation Proprietary and Confldentlal
For Internal Use Only-Do Not Copy or Dlsclose

may not move code into the procediire prolog that might cause an exception that
would be handled :t>Y that handler ..

. . ..
When a procedure is.called, the code at the entry address must synchronize (as needed) any
pending exceptions caused by instructions issued by the caller, save the caller's context, and
make the called procedure current (by executing the :first instruction beyond the procedure
prolog).

This is done by performing the following actions:

Perform step 1, then steps 2 and 3 in any order, then steps 4 - 6 in any order.

1. If PDSC.SIZE is not 0, then set register SP= SP - PDSC.SIZE.

After any necessary calculations and stack limit checks, this step must be completed
by exactly one instruction that modifies SP, which must be the instruction specified by
PDSC.SP _SET. .

2. If PDSC.KIND = PDSC_KIND_PC_STACK store the registers specified by PDSC.IREG_
MASK and PDSC.FREG_MASK in the register save area as denoted by PDSC.RSA_
OFFSET.

3. If PDSC.KIND = PDSC_KIND_PC_STACK, copy the return address to the quadword
at PDSC.RSA_OFFSET.SAVED_RETURN.

4. If PDSC.FLAGS.BASE_REG_IS_FP is 1, copy register SP to register FP.

5. If PDSC.KIND = PDSC_KIND_PC_REGISTER, copy the return address to the register
specified by PDSC.SAVE_RA if it is not already there.

6. Execute DRAINT if required (see Section 6.1.11, Other Considerations, for details)

Frame Pointer Conventions
After procedure prologue completion, the register indicated by PDSC.FLAGS.BASE_REG_
IS_FP must contain the frame pointer of the stack frame, which is the address of the lowest­
addressed byte of the :fixed portion of the stack frame allocated by the procedure prologue.
The value of the frame pointer is the value of PDSC.SIZE subtracted from the value of the
stack pointer upon procedure entry.

For :fixed frame procedures, the frame pointer is the stack pointer, which is not modified by
that procedure after the ~struction in that procedure prologue specified by PDSC.SP _SET.

Entry Code Example for a Stack Frame
This example assumes that this is a stack frame procedure, that registers R2 .. R4 and F2 .. F3
are saved and restored, that PDSC.RSA_ OFFSET = 16, that the procedure has a static
exception handler that does not reraise arithmetic traps, and that the procedure uses a
:fixed amount of stack (PDSC.FLAGS.BASE_REG_IS_FP is 0).

54 ALPHA-64 • Flow Control

LOA SP,-SIZE(SP)
STQ R26,16(SP)
STQ R2,24(SP)
STQ R3,32(SP)
STQ R4,40(SP)
STQ FP,48(SP)
STT F2,56(SP)
STT F3,64(SP)
ORAINT

;Called procedure is

Dlgltal Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

;Allocate space for new stack frame.
;Save return address
; Save f ir~t integer. reg.ister.
;Save next integer register
;Save next integer register
;Save R29
;Save first floating point register
;Save last floating point register
;Force any pending hardware exceptions
; raised. (see Section 6.1.11)

now the current procedure.·

to be

Entry Code Example for a Register Frame
The following entry code example is for a called procedure that has no static exception
handler, both PDSC.SAVE_RA and PDSC.ENTRY_RA specify R26 and the procedure utilizes
a fixed amount of stack storage (PDSC.FLAGS.BASE_REG_IS_FP is 0).

LOA SP,-SIZE(SP) ;Allocate space for new stack frame.
;Called procedure is now the current procedure.

Exit Code Sequence
The end of procedure entry code can be determined easily given a PC value together with the
PDSC.ENTRY_LENGTH value. Since there may be multiple return points from a procedure,
detecting that a procedure exit sequence is being executed is not quite as straight forward.
Unwind support routines must be able to detect if the stack pointer has been reset or not
and if not, how to reset it. This is done by using a reserved instruction sequence.

Reserved Instruction Sequence for Procedure Exit
To allow the stack to be properly restored during an unwind the following reserved instruc­
tion must appear at every exit point from any procedure that uses stack (PDSC.SIZE =f:.
0):

RET R.31, (Rn),signature_hint ;Return to caller with signature

\\
We intend to propose an ECO to the ALPHA SRM to reserve bits <13:10> of
the hint field when the RET hint (10) is used. These bits set to 0001 will
constitute the above mentioned "signature hint".
\\

Furthermore, for any such procedure that does not return a value on the stack (PDSC.FUNC_
RETURN =f:. FR_STK) the above instruction must be directly preceded by one of the two re­
served stack resetting instruction as in:

LDA SP,SIZE(SP) ;Reset stack
RET R31, (Rn),signature_hint ;Return to caller with signature

or
ADOQ Rn,SP,SP ;Reset stack
RET R31, (Rn),signature_hint ;Return to caller with signature

Furthermore, for any such procedure that has PDSC.FLAGS.BASE_REG_IS_FP set to 1,
the resulting sequence must be directly preceded by the FP reloading instruction as in:

LDQ FP,FP OFFSET(SP) ;Restore FP if needed
LDA SP,SIZE(SP) ;Or ADDQ Rn,SP,SP to Reset stack
RET R31, (Rn),signature_hint ;Return to caller with signature

Procedures that do not use stack need not use these reserved instruction sequences.

ALPHA-64 • Flow Control 55

Dlgltal Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

The unwind support code uses the above sequences to make the following assumptions about
an interrupted PC value:

• If the PC points at a RET R31,(Rn) instruction that has the calling standard reserved
signature bits set in the hint field of the instruction then SP has already been reset,
registers have already been restored and the unwind can proceed.

• If the PC points to either a LDA SP,nnn(SP) or an ADDQ Rn,SP,SP instruction that is
immediately.followed by the.instruction described previously and nnn is the same value
as is stored in PDSC.SIZE, then registers have already been restored but the SP must
be incremented by PDSC.SIZE before the unwind can proceed.

• If the PC points to a LDQ FP,xxx(SP) instruction that is immediately followed by the
instructions described previously and PDSC.KIND = PDSC_KIND_PC_STACK, then
all registers other than FP have been restored, FP still retains the frame base pointer
which should be copied to SP, then FP must be restored, SP must be incremented by
PDSC.SIZE and the unwind can proceed.

• Otherwise, the registers must be restored, SP reset, and the unwind can proceed.

To allow this mechanism to operate correctly procedures that conform to this standard may
not use either of the above mentioned instruction sequences in any case other that as de­
scribed above.

Exit Code Sequence Steps
When a procedure returns, the exit code must restore the caller's context, synchronize any
pending hardware exceptions, and make the calling procedure current by returning control
to it.

This is done by performing the following actions:

Perform steps 1 - 4 in any order, followed by steps 5 - 7 in that order.

1. If PDSC.FLAGS.BASE_REG_IS_FP is 1 and PDSC.FUNC_RETURN # FR_STK, then
copy FPto SP

2. If PDSC.KIND = PDSC_KIND_PC_STACK, and any registers were saved, then reload
those registers from the register save area as specified by PDSC.RSA_OFFSET except
FP if PDSC.FLAGS.BASE_REG_IS_FP is 1. If PDSC.FLAGS.BASE_REG_IS_FP is 0
and FP was saved then it should be reloaded in this step.

3. If PDSC.KIND = PDSC_KIND_PC_STACK, load a scratch register with the return ad­
dress from the register save area as specified by PDSC.RSA_OFFSET. (If PDSC.KIND =
PDSC_KIND_PC_REGISTER, the return address is already in scratch register PDSC.SAv.E
RA.)

4. Execute DRAINT if required (see Section 6.1.11, Other Considerations, for details)

5. If PDSC.KIND = PDSC_KIND_PC_STACK and PDSC.FLAGS.BASE_REG_IS_FP is 1,
reload R29 (FP) from the saved FP in the register save area.

After any necessary calculations, this step must be completed by exactly one instruction
as described above.

6. If a function value is not being returned at O(SP) (PDSC.FUNC_RETURN # FR_STK),
then restore SP to the value it had at procedure entry by adding the value that was

56 ALPHA-64 - Flow Control

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy 9r Disclose

stored in PDSC.SIZE to SP. (In some- cases the returning procedure will leave SP point­
ing to a lower stack address than it had on entry to the procedure, as specified in
Section 5.2. 7, Returning Data). · · ··

After any necessary calculations, this step must be completed by exactly one instruction
as described above.

7. Execute the instruction RET R31,(Rn) instruction as described above to return control
to the. calling procedure.

Note that the called routine does not adjust the stack to remove any arguments passed in
memory. This responsibility falls to the calling routine which may choose to defer their
removal due to optimizations or other considerations.

Exit Code Example for a Stack Frame
The following is the return code sequence for the stack frame example above:

LDQ R28,16(SP) ;Get return address
LDQ R2,24(SP) ;Restore first integer register.
LDQ R3,32(SP) ;Restore next integer register
LDQ R4,40(SP) ;Restore next integer register
LDT F2,56(SP) ;Restore first floating point register
LDT F3,64(SP) ;Restore last floating point register
DRAINT ;Force any pending hardware exceptions to be

; raised. (see Section 6. l.11)
LDA SP,SIZE(SP) ;Restore SP (size is compiled into PDSC.SIZE)
RET R31, (R28),signature_hint ;Return to caller with signature

Exit Code Example for a Register Frame
The following is the return code sequence for the register frame example above:

LDA SP,SIZE(SP) ;Restore the SP
RET R31, (R26),signature_hint ;Return to caller with signature

ALPHA-64 • Flow Control 57

CHAPTER 5

DATA MANIPULATION

This section deals with the storage and passing of data.

5.1 Data Types

\\
The ALPHA-64 does not used the notion of data t_ype as a defined part
of the standard as it was for VAX/VMS. This is because the data type is no
longer stored in ALPHA-64 descriptors. Nor does the ALPHA SRM define hardware
data types in the same way as was done for the original VAX architecture.
However, the concept of data types seems to be a useful one for purposes of
explanation, and as a means of direct comparison with conventional VAX. For
this reason the concept is presented and used in this document.
\\

5.1.1 Argument and Function Value Data Types

Each data type implemented for a higher-level language may be categorized into one of the
following classes of data types for procedure parameters and elemen~ of file records:

• Atomic

• String

• Miscellaneous

When existing data types are not sufficient to satisfy the semantics of a language, new data
types are added to this standard, including certain language-specific ones.

Each data type code presented in the sections below indicates a unique data format. These
encodings should be used whenever there is a need to identify data types to achieve as much
commonality as possible amongst user software.

Some data types are composed of a record-like structure consisting of two or more elementary
data types. For example, the F _:floating complex (FC) data type is made up of two F _:floating
data types, and the varying character string (VT) data type is made up of a word (unsigned,
WU) data type followed by a character string (T) data type.

Unless stated otherwise, all data types represent signed quantities. The unsigned quantities
throughout this standard do not allocate space for the sign; all bit or character positions are
used for significant data.

ALPHA-64 - Data Manipulation 59

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

Fully Supported Data Types
The following data types are fully supported for use as standard argument data types, and
may be passed between external procedures and between languages. · ·

These data types may be freely utilized in the ALPHA-64 environment.
\\
Each of the data types represented below is represented on VAX/VMS by
a symbol of the form DSC$K_DTYPE_<Type Designator>.
\\

Atomic Data Types
Table 5-1 shows how atomic data types are defined and encoded.

Table 5-1: Atomic Data Types

Natural
Type Designator Code Alignment

z 0 quadword

BU 2 byte

WU 3 word

LU 4 longword

au 5 quadword

ou1 25 octaword

B 6 byte

w 7 word

L 8 longword

Q 9 quadword

01 26 octaword

F 10 longword

Name/Description

Unspecified

The calling program has specified no data type. The default
argument for the called procedure should be the correct type.

Byte logical (unsigned)

8-bit unsigned quantity.

Word logical (unsigned)

16-bit unsigned quantity.

Longword logical {unsigned)

32-bit unsigned quantity.

Quadword logical {unsigned)

64-bit unsigned quantity.

Octaword logical (unsigned)

128-bit unsigned quantity.

Byte integer (signed)

8-bit signed 2's-complement integer.

Word integer (signed)

16-bit signed 2's-complement integer.

Longword integer (signed)

32-bit signed 2's-complement integer.

Quadword integer (signed)

64-bit signed 2's-complement integer.

Octaword integer (signed)

128-bit signed 2's-complement integer.

F_floating

32-bit F _floating quantity representing a single-precision num­
ber. See ALPHA SRM for detail of representation.

1These data types may be utilized but it should be noted that the oonventional VAX hardware architecture provides special support '
for these data t'/peS which the ALPHA hardware doss not pi'ovide. Theiekma, language or application u1ilization of these data types
may result in (sometimes severe) performance penalties caused by software handling of these types.

60 ALPHA-64 • Data Manlpulatlon

Table 5-1 (Cont.): Atomic Data Types

Natural
Type Designator COde Alignment

D 11 quadword

G 27 quadword

FC 12 longword

DC 13 quadword

GC 29 quadword

FS [TBS] longword

FT [TBS] quadword

FSC [TBS] longword

FTC [TBS] quadword

String Data Types

Digital Equipment Corporation Proprietary and Confldentlal
For Internal Use Only~o Not Copy or Disclose

Name/Description
..

D_floating

64-bit D_floating quantity representing a double-precision num-
ber. See ALPHA SRM for detail of representation.

G_floating

64-bit G_floating quantity representing a double-precision num-
ber. See ALPHA SRM for detail of representation.

F _floating complex

Ordered pair of F _floating quantities, representing a single-
precision complex number. The lower addressed quantity is
the real part, the higher addressed quantity is the imaginary
part.

D_floating complex
Ordered pair of D_floating quantities, representing a double-
precision complex number. The lower addressed quantity is
the real part, the higher addressed quantity is the imaginary
part.

G_floating complex
Ordered pair of G_floating quantities, representing a double-
precision complex number. The lower addressed quantity is
the real part, the higher addressed quantity is the imaginary
·part.

IEEE $_floating
32-bit IEEE S_floating quantity representing a single-precision
number. See ALPHA SRM for detail of representation.

IEEE T_floating
64-bit IEEE T _floating quantity representing a double-precision
number. See ALPHA SRM for detail of representation.

IEEE $_floating complex

Ordered pair of IEEE $_floating quantities, representing a
double-precision complex number. The lower addressed quan-
tity is the real part, the higher addressed quantity is the imag-
inary part.

IEEE T _floating complex
Ordered pair of IEEE T _floating quantities, representing a
double-precision complex number. The lower addressed quan-
tity is the real part, the higher addressed quantity is the imag-
inary part.

String data types are ordinarily described by a string descriptor. Table 5-2 shows how the
string data types are defined and encoded.

ALPHA-64 • Data Manipulation 61

Dlgltal Equipment Corporation Proprietary and Confldentlal
For Internal Use Only-Do Not Copy or Disclose

Table 5-2: String Data Types

Natural
Type Designator Code alignment

T 14 byte

VT '· 37 · · · ·· word ,

NU 15 byte

NL 16 byte

NLO 17 byte

NR 18 byte

NRO 19 byte

NZ 20 byte
p1 21 byte
v1 byte

vu1 34 NIA

Name/Description

Character string

A single 8-bit character (atomic data type) or a sequence of
8-bit characters (string data type).

Varying character· string ·

A 16-bit unsigned count of the current number of 8-bit char­
acters following, followed by a sequence of 0 to 216-1 8-bit
characters.

Numeric string, unsigned

Numeric string, left separate sign

Numeric string, left overpunched sign

Numeric string, right separate sign

Numeric string, right overpunched sign

Numeric string, zoned sign

· Packed-decimal string

Aligned bit string

A string of contiguous bits. The first bit is bit <0> of the first
byte, and the last bit is any bit in the last byte. Remaining
bits in the last byte must be zero on read and are cleared on
write. ·

Unaligned bit string

The data is a sequence of contiguous bits located arbitrarily
with respect to byte boundaries. See also aligned bit string
(V) data type.

1These data types may be utilized but it should be noted that the conventional VAX hardware architecture provides special support
for these data types which the ALPHA hardware does not provide. Therefore, language or application utilization of these data types
may result in (sometimes severe) performance penalties caused by software handling of these types.

Miscellaneous Data Types
Table 5-3 shows how miscellaneous data types are defined and encoded.

Table 5-3: Miscellaneous Data Types

Type Designator

None.

Code
Natural
Alignment

62 ALPHA-64 - Data Manlpulatlon

Name/Description

Dlgltal Equipment Corporation Proprietary and Confldentlal
For Internal Use Only~o Not Copy or Disclose

Unsupported Data Types
The following tables is included only fo~ info~ation. It rep~esents VAX/VMS data types
that are not supported in this environment.

Table 5-4: Unsupported Data Types

Type Designator Code Name/Description

ZI 22 Sequence of VAX instructions

DSC 24 Descriptor
H, 28 H_floating

HC1 30 H_floating complex

CIT 31 COBOL Intermediate Temporary

BPV 32 VAXNMS Bound procedure value

BLV 33 Bound label value

ADT 35 Absolute date and time

1 H_floating data is not supported for general usage in either flavor of the ALPHA calling standard. However, conversion routines
will be supplied to allow users to convert existing H_floating data to other storage formats.

Varying Character String Data Type
The varying character string data type consists of the following two :fixed-length areas allo­
cated contiguously with no padding in between:

CURLEN An unsigned word specifying the current length in bytes of the immediately following string (byte
aligned).

BODY A fixed-length area containing the string that can vary from zero to a maximum length defined for
each instance of string. The range of this maximum length is 0 to 216-1.

When passed by reference or by descriptor, the address of the varying character string (VT)
data type is always the address of the CURLEN field, not the BODY field.

When a called procedure modifies a varying character string data type passed by reference
or by descriptor, it writes the new length, n, into CURLEN and may modify all bytes of
BODY.

For example, consider a varying string with a maximum length of seven characters. For the
representation of the string, ABC, CURLEN would be three and the last four bytes would
be undefined, as follows:

ALPHA-64 - Data Manlpulatlon 63

Dlgltal Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

Figure 5-1: VT Data Format
15 o·
+---------------+
I 3 I :addr

+-------+-------+
1· A I

+-------+
I B I
+-------+
I c I
+-------+
I \ \ \ I
+-------+
I \ \ \ I
+-------+
I \ \ \ I
+-------+
I \ \ \ I
+-------+
7 0

5.1.2 Argument_ Descriptors

Goals
The goals for the design of ALPHA-64 descriptors include the following:

• Support high level languages

Support passing arguments between procedures that conform to the ALPHA-64 calling
standard. Thus, they are designed to support high level language (HLL) procedures
calling procedures that are:

• written in a HLL (same language or a different language)

• part of the Run Time Library

• part of a callable utility

• Language Level VAX/VMS compatibility

VAX/VMS programs that use descriptors via mechanisms such as %DESCR will continue
to work in the ALPHA-64 environment (except those programs that pass atomic data by
%DESCR).

• Make descriptors self-defining

Given the starting address, it is possible to determine what fields exist in a descriptor.

• Minimize time of access to data

Descriptors frequently need to trade off size of the descriptor for speed of access to
descriptor data. ALPHA-64 descriptors favor improving the speed of access to data.

• Avoid redundant information

Several VAX/VMS descriptors contain fields that can be derived from other fields in the
descriptor. ALPHA-64 descriptors are designed to avoid that redundant information.

• Avoid redundant forms

64 ALPHA-64 • Data Manipulation

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only~o Not Copy or Disclose

Due to evolution of the VAX/VMS calling standard, there are multiple ways of describing
some objects with ~ descriptor. ALPHA-64 descriptors avoid redundant forms.

• Support 8-bit and· multibyte character sets

ALPHA-64 descriptors support 8-bit character sets and multibyte character sets.

• Avoid unsupported combinations of fields

ALPHA-64 descriptors are designed to avoid unsupported combinations of fields. VAX/VMS
descriptors have 2 fields, CLASS and DTYPE, that are not entirely orthogonal to one an­
other. Combinations that seem quite feasible are not supported and often go undetected
by DIGITAL software. A crisper definition of descriptors is applied to the ALPHA-64
environment.

• Provide uniform array descriptors

On VAX/VMS, FORTRAN will create a contiguous array descriptor for an array of real
values whereas PASCAL will create a noncontiguous array descriptor for the same array.
This problem is resolved by avoiding special descriptor classes for contiguous arrays.
Noncontiguous array descriptors can describe both contiguous arrays and cross sections
of arrays that cannot be described by a contiguous array descriptor.

• Provide uniform bit descriptors

Languages can check whether a bit string or array is aligned by testing the lowest three
bits of the POSITION field in the descriptor.

• Provide uniform descriptors for sequences of bits and characters

On VAX/VMS, some languages pass strings using string class descriptors, and expect
string class descriptors for input arguments; other languages use one dimensional array
descriptors. This problem is resolved by having one form of descriptor for linear, one­
dimensional data.

• Avoid addressing calculations in called procedures

The addressing fields in the ALPHA-64 array descriptors are optimized for compiled
code referencing an array element.

Non-Goals
The following are non-goals for the ALPHA-64 descriptor design:

• Descriptors are not designed to describe objects to the degree needed by tools such as a
debugger or a data dictionary.

These tools should use their own data structures, such as DSTs, to describe objects. The
calling standard will not encompass all the requirements of such utilities.

• VAX/VMS and ALPHA-64 descriptors are not identical.

ALPHA-64 descriptors support high level language use of descriptors. Code that ex­
plicitly declares and references fields in VAX/VMS descriptors may not work in the
ALPHA.-64 environment.

ALPHA-64 - Data Manipulation 65

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

Use of Descriptors for Procedure Arguments
Standard descriptors are defined for passing argument information between high level lan­
guages.

Unless explicitly stated otherwise in this standard, the calling procedure must :fill in all
fields in a descriptor. This is true whether the descriptor is generated by default or by a
language extension. The fields must be :filled in even if a called procedure written in the
same language. would ignore the .contents of some Df the fields.

Unless explicitly stated otherwise in this standard, all fields of an ALPHA-64 descriptor
represent unsigned quantities. Descriptors are read-only from the point of view of the called
procedure, and may be allocated in read-only storage at the option of the calling procedure
(except by agreement between the calling and called procedure, such as dynamic text string
descriptors). Memory containing the descriptor is owned by the calling procedure and may
be used for other purposes after the call.

Descriptors must be quadword aligned.

Procedure argument descriptors are divided into two broad categories:

• descriptors for byte-addressable arguments

• descriptors for bit-addressable arguments

Descriptors for Byte-addressable Arguments
The broad class of descriptors for byte-addressable arguments contains the following specific
descriptor kinds:

• Fixed text

• Varying text

• Dynamic text

• Byte-addressable array

ALPHA-64 byte-addressable array descriptors may be used to pass arrays where each array
element starts and ends on a byte boundary. The storage of the array elements is allocated
with a fixed (possibly zero) number of bytes separating logically adjacent elements.

The four kinds of byte-addressable argument descriptors support all the types of text strings
understood in the ALPHA-64 software architecture. Each of the languages with a concept
of text string must map it to one of these forms. Utility routines that accept text string
arguments by descriptor should anticipate receiving text strings in any of these forms, and
only these forms.

66 ALPHA-64 - Data Manlpulatlon

Dlgltal Equipment Corporation Proprietary and Confldentlal
For Internal Use Only~o Not Copy ~r Disclose

Figure 5-2: Byte-addressable Argument Descriptor Format
DSC . quadword aligned

+---------------+---------------+---------------+---------------+
I KIND f DIMENSION I must be zero I : 0
I I I I
+-----------~---+---~-----------+---------------+---------------+
I must be zero I ·: 4
I I
+---------------+---------------+---------------+---------------+
I I : 8
I POINTER I
I I
I I
+---------------+---------------+---------------+---------------+
I I : 16
I EXTENT I
I I
I I
+==========+============+===============+=============+

:24
ELEMENT SIZE

+---------------+---------------+---------------+---------------+
I I :32
I VIRTUAL ORIGIN I
I I
I I
+---------------+---------------+---------------+---------------+
I I :40
I LOW_BOUND(l) I
I I
I I
+---------------+---------------+---------------+---------------+
I I :48
I HIGH_BOUND(l) I
I I
I I
+---------------+---------------+---------------+---------------+
I I : 56
I STRIDE(l) I
I I
I I
+---------------+---------------+---------------+---------------+
+---------------+---------------+---------------+---------------+
I I :x
I LOW_BOUND(n) I
I I
I I
+---------------+---------------+---------------+---------------+
I I :x+s
I HIGH_BOUND(n) I
I I
I I
+---------------+---------------+---------------+---------------+
I I :x+l6
I STRIDE(n) I
I I
I I
+---------------+---------------+---------------+---------------+

Figure 5-2 Cont'd on next page

ALPHA-64 - Data Manlpulatlon 67

DlgHal Equipment Corporation Proprietary and Confldentlal
For Internal Use Only-Do Not ·Copy or Disclose

Figure 5-2 (Cont.): Byte-addressable Argument Descriptor Format

Size = DSC BYTE ·SIZE = 24 x = 2~*(n - 1) + 40 - -

DIMENSION is an unsigned integer 1 .. 255 specifying the number of dimensions in an array.
If DSC.KIND is not DSC_KIND_BYTE_ARRAY,.then DSC.DIMENSION must be zero. (This
field is used in the calculation of the size of the descriptor).

KIND is the descriptor kind attribute:

DSC_KIND_FIXED_TEXT = 65
DSC_KIND_DYNAMIC_TEXT = 66
DSC_KIND_ VARYING_TEXT = 67
DSC_KIND_BYTE_ARRAY = 68

RATIONALE:

DSC.KIND overlays the VAX/VMS DSC$B_CLASS :field in VAX/VMS descriptors.
KINDs don't use same numbers as VAX/VMS descriptor classes so that they may
be differentiated.

POINTER is the address of the first byte of storage occupied by the data. This is the
address of the first byte of the string or, for an array, the address of element (DSC.LOW_
BOUND(l), ... DSC.LOW _BOUND(n)).

EXTENT specifies the number of bytes of contiguous storage occupied by the data.

When DSC.KIND= DSC_KIND_FIXED_TEXT or DSC.KIND= DSC_KIND_DYNAMIC_
TEXT, then DSC.EXTENT is an integer 0 .. 264 - 1 specifying the length in bytes of the
string.

When DSC.KIND = DSC_KIND_VARYING_TEXT, then DSC.EXTENT is an integer
0 .. 216 - 1 specifying the maximum length in bytes of the varying string.

When DSC.KIND = DSC_KIND_BYTE_ARRAY, and DSC.DIMENSIONS = 1, and
DSC.STRIDE = DSC.ELEMENT_SIZE, then DSC.EXTENT is an integer 0 .. 264 - 1 spec­
ifying the length in bytes of the storage occupied by the array.

For all other cases (multidimensional arrays), the contents of DSC.EXTENT are unpre­
dictable.

ELEMENT_SIZE specifies the number of bytes of st.orage occupied by each element of a
character array, and is present if and only if DSC.KIND= DSC_KIND_BYTE_ARRAY.

For arrays of fixed length text strings, DSC.ELEMENT_SIZE is an integer 0 .. 264 - 1
specifying. the length in bytes of each element of the array.

For arrays of varying text strings, DSC.ELEMENT_SIZE is an integer 0 .. 216-1 specifying
'. • 1 ~'L • byte ,. , , me max-;mu.w J.en.gw. :w -s 01 eacn e1ement 01 tn.e array.

68 ALPHA-64 • Data Manlpulatlon

Dlgltal Equipment Corporation Proprietary and Confldentlal
For Internal Use Only~o Not Copy or Disclose

For all other array types (multidimensional), the contents of DSC.ELEMENT_SIZE are
unpredictable.

RATIONALE:

ELEMENT_SIZE is there because some languages require the argument passing
capabilities provided by ELEMENT_SIZE: PIJI (*, *) CHARACTER(*) and (*, *)
BIT(*) for example. Those argument tYi>es will be language-specific without
ELEMENT_SIZE in the general descriptor design.

vm.TUAL_ORIGIN is the address of element (0, 0, ... 0), and is present if and only if
DSC.KIND= DSC_KIND_BYTE_ARRA.Y. This address is not necessarily within the storage
of the array. In extreme cases it may not even be dereferenced as it may lie outside of the
current address space.

RATIONALE:

vm.TUAL_ORIGIN in array descriptors could be derived from POINTER, but it
seems right to provide it anyway.

Called procedures will usually need to have the virtual origin, since indexing will
normally be done relative to virtual origin. If VIRTUAL_ORIGIN were not pro­
vided in addition to POINTER, then most called procedures would have to do the
calculations, on every call, to get the virtual origin. IfVIRTUAL_ORIGIN were not
provided, the WORST case is that the caller computes it on every call, which is the
same cost in run time as having the called routines compute it at every call; the
more usual case is that the caller can calculate VIRTUAL_ORIGIN just once and
use it for many calls, thus saving the cost of calculating the virtual origin for each
call The extra storage required for this seems worth it.

If, and only if, DSC.KIND= DSC_KIND_BYTE_ARRAY, then the following fields occur once
per dimension:

LOW _BOUND(i) is a signed integer specifying the lower bound of the ith dimension of the
array.

lllGH_BOUND(i) is a signed integer specifying the upper bound of the ith dimension of
the array.

STRIDE(i) is a signed integer specifying the difference in bytes between the addresses of
successive elements of the ith dimension of the array.

Data Type Conventions for Byte-addressable Argument Descriptors
Byte-addressable argument descriptors do not specify the data type contained by a string or
array. This must be established by agreement between calling and the called procedures.

All characters in a fixed, varying, or dynamic string must be of the same size, and the
character size cannot be determined by inspecting the descriptor; the calling and called
procedures must agree on both the character size and the character set.

Run Time Conventions for Byte-addressable Argument Descriptors
The conventions controlling the use of byte-addressable argument descriptors are deter­
mined by the kind of the descriptor.

• DSC_KIND_FIXED_TEXT

A fixed text string is sequence of 0 .. 264 - 1 bytes with a fixed extent.

DSC.EXTENT specifies the number of bytes (not characters) occupied by the string.

ALPHA-64 • Data Manipulation 69

Dlgltal Equipment Corporation Proprietary and Confldentlal
For Internal Use Only-Do Not Copy or Disclose

When a fixed text string is written, the contents of the descriptor must not be modified.

• DSC_KIND_ VARYING_TEXT
. ..

A varying text string is an unsigned 16-bit integer immediately followed by a fixed
length area containing 0 .. 216 - 1 bytes. The varying string is left justified within this
fixed length area. ·

DSC.EX.TENT, which must be~ 216 - 1, specifies the length in bytes (not characters) of
· the fixed length area.

DSC.POINTER specifies the address of the unsigned 16-bit integer count that precedes
the fixed length area. This integer, that must be ~ DSC.EXTENT, specifies the current
length in bytes of the varying string.

When a varying text string is written, the contents of the descriptor must not be modi­
fied. If a text string is copied to a varying text string of smaller extent, the string must
be truncated. When a varying text string is modified, the new current length of the
string is written to the 16-bit count.

• DSC_KIND_DYNAMIC_TEX.T

A dynamic text string is a sequence of o .. 264 - 1 bytes.

An uninitialized dynamic text descriptor, and a descriptor for a null dynamic string, has
a DSC.EXTENT of zero.

The DSC.EXTENT and DSC.POINTER fields of a dynamic text descriptor may be
changed when the associated dynamic string is modified. These fields are volatile across
external procedure calls, and descriptors for dynamic text strings must be allocated in
read/write memory.

The system supplies functions for allocating and deallocating memory for dynamic
strings. These functions may modify the DSC.EXTENT and DSC.POINTER fields of
the descriptor. With one exception, these system supplied functions are the only proce­
dures that may modify these fields.

The only exception to this rule is that a procedure with knowledge that the descriptor
has not yet been used must zero the extent field to mark it as being uninitialized. A
procedure ""N.i.th this knowledge is typically the procedure that allocated the descriptor.

• DSC_KIND_BYTE_ARRAY

A byte-addressable array is a ordered sequence of elements, where all elements of any
array must be the same byte-addressable ALPHA-64 data type.

All elements of an array must reside in distinct storage. That is, an ALPHA-64 array
descriptor must not specify that any array elements overlap one another.

When an array is written, the contents of the descriptor must not be modified.

The address of element (ij,k) of a byte-addressable array can be computed as follows.

address = VIRTUAL_ORIGIN + i*STRIDE(l) + j*STRIDE(2) + k*STRIDE(3)

~e address of the first byte of a byte-addressable array is:

address=

VIRTUAL_ORIGIN +
LOW_BOUND(l)*STRIDE(l) +
LOW _BOUND(2)*STRIDE(2) +

70 ALPHA-64 • Data Manipulation

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Oniy~o Not Copy or Disclose

LOW _BOUND(3)*STRIDE(S}

or

address = POINTER

RATIONALE:

There were two directions to go in unifying fixed text and one dimensional charac­
ter array descriptors:

1. Specify that DSC_KIND_FIXED_TEXT, DSC_KIND_VARYING_TEXT, and DSC_
KIND_DYN.AMIC_TEXT descriptors apply to all character sizes.

2. Specify that these descriptor kinds apply only to 8-bit characters, and that the
standard would be extended for multibyte characters when necessary.

The first solution implies that the size of character strings passed by descriptor
cannot be determined by inspection at run time, and that interfaces that accept
character strings must therefore be character-size-specific.

The second solution is more compatible with VAX. However, while sequences of
characters passed by string descriptor could have their character sizes distin­
guished by inspection, the SAME sequence of characters passed to the SAME in­
terfaces by one-dimensional array descriptor could not have their character size
distinguished (because we have no data type field in descriptors). This would be
an odd property.

Solution 1 seems to be the best one (especially since interfaces that accept character
strings by reference must be character-size-specific in any case).

· Descriptors for Bit-addressable Arguments
The broad class of descriptors for bit-addressable arguments contains the following specific
descriptor kinds:

• Bit string

• Bit-addressable array

ALPHA-64 bit-addressable arguments descriptors may be used to pass bit sequences that
start on an arbitrary bit boundary and end on an arbitrary bit boundary. Bit sequences that
are byte aligned can be distinguished by position<2:0> = 000.

A bit-addressable arguments descriptor is capable of describing a bit sequence that starts
anywhere in virtual memory. It is not capable of describing all of virtual memory as a single
bit string or array.

ALPHA-64 bit-addressable array descriptors may be used to pass arrays where each array
element may start on an arbitrary bit boundary and end on an arbitrary bit boundary.
The storage of the array elements is allocated with a fixed (possibly zero) number of bits
separating logically adjacent elements.

The two kinds of bit-addressable argument descriptors support all the types of bit strings
understood in the ALPHA-64 software architecture. Each of the languages with a concept of
bit string must map it tQ one of these forms. Utility routines that accept bit string arguments
by descriptor should anticipate receiving bit strings in either of these forms, and only these
forms.

ALPHA-64 - Data Manlpulatlon 71

Dlgltal Equipment Corporation Proprietary and Confldentlal
For Internal Use Only-Do Not Copy or Disclose

Figure 5-3: Bit-addressable Argument-Descriptor Format
DSC quadword aligned

+---------------+---------------+--------:...--:----+--~~-;_·---------+
I KIND I DIMENSION I must be zero I POSITION I :0
I I I I I
+---------------+---~-----------+---------------+---------------+·
I must be zero I :4
I I
+---------------+---------------+---------------+---------------+
I I : a
I POINTER I
I I
I I
+==============+===============+============+==============+
I I :16
I EXTENT I
I I
I I
+---------------+---------------+---------------+---------------+
I I :24
I ELEMENT SIZE I
I I
I I
+---------------+---------------+---------------+---------------+
I I :32
I LOW_BOOND(l) I
I I
I I
+---------------+---------------+---------------+---------------+
I I :40
I HIGH_BOUND(l) I
I I
I I
+---------------+---------------+---------------+---------------+
I I : 48
I STRIDE(l) I
I I
I I
+---------------+---------------+---------------+---------------+
+---------------+---------------+---------------+---------------+
I I :x
I LOW_BOUND(n) I
I I
I I
+---------------+---------------+---------------+---------------+
I I :x+4
I HIGH_BOUND(n) I
I I
I I
+---------------+---------------+---------------+---------------+
I I :x+a
I STRIDE(n) I
I I
I I
+---------------+---------------+---------------+---------------+
Size = DSC BIT SIZE = 16 x = 24*(n - l) + 32

POSITION is a signed integer 0 .. 63 specifying the relative bit position with respect to
DSC.POINTER of the first bit of the string or, for an array, the relative bit position with
respect to DSC.POINTER of element (DSC.LOW_BOUND(l), ... DSC.LOW_BOUND(n)).

72 ALPHA·64 • Data Manipulation

Dlgltal Equipment Corporation Proprietary and Confldentlal
For Internal Use Only~o Not. Copy or Disclose

DIMENSION is an unsigned integer 1 .. 255 specifying the number of dimensions in an array.
If DSC.KIND is not DSC_KIND_BIT_ARRAY, then DSC.DIMENSION must be zero.

. . . .

KIND is the descriptor kind attribute:

DSC_KIND_FIXED_BIT = 81
DSC_KIND_BIT_ARRAY = 82

POINTER is the base address of the bit string or array. This is the quadword-aligned
address of the storage containing the first bit of the string or, for an array, the quadword­
aligned address of the storage containing element (DSC.LOW_BOUND(l), ... DSC.LOW_
BOUND(n)).

EXTENT specifies the number of bits of contiguous storage occupied by the data.

When DSC.KIND = DSC_KrND_FIXED_BIT, then DSC.EXTENT is an integer 0 .. 264 - 1
specifying the length in bits of the string.

When DSC.KIND= DSC_KIND_BIT_ARRAY, and DSC.DIMENSIONS= 1, and DSC.STRIDE
= DSC.ELEMENT_SIZE, then DSC.EXTENT is an integer 0 .. 264 -1 specifying the length
in bits of the storage occupied by the array.

For all other cases, the contents of DSC.EXTENT are unpredictable.

ELEIWENT_SIZE specifies the number of bits of storage occupied by each element of a bit
array, and is present if and only if DSC.KIND= DSC_KIND_BIT_ARRAY.

If, and only if, DSC.KIND = DSC_KIND_BIT_ARRAY, then the following fields occur once
per dimension:

LOW _BOUND(i) is a signed integer specifying the lower bound of the ith dimension of the
array.

ffiGH_BOUND(i) is a signed integer specifying the upper bound of the ith dimension of
the array.

STRIDE(i) is a signed integer specifying the difference between the bit (not byte) addresses
of successive elements of the ith dimension of the array.

Run Time Conventions for Bit-addressable Arguments Descriptors
The conventions controlling the use of bit-addressable arguments descript9rs are determined
by the kind of the descriptor.

• DSC_KIND_FIXED_BIT

A fixed bit string is sequence of o .. 264 - 1 bits with a fixed extent. DSC.EXTENT specifies
the number of bits occupied by the string.

When a :fixed bit string is written, the contents of the descriptor must not be modified.

The absolute bit address of the first bit of a bit string is:

bit_address = POINTER*8 + POSITION

The absolute bit address may require more than 64 bits to represent.

ALPHA-64 • Data Manlpulatlon 73

Dlgltal Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

The DSC.POINTER-relative bit offset of the last bit in a bit string can always be repre­
sented as a signed 64-bit integer ~ · 263 - 1. This means that the extent passed in a bit
string descriptor array must be ~ 263 - 64. · · · ·

• DSC_KIND_BIT_ARRAY

A bit-addressable array is a ordered sequence of elements, where all elements of any
array must be the same ALPHA' data type; and therefore have the same length in bits.

All elements of an array must reside in distinct storage. That is, an ALPHA-64 array
descriptor must not specify that any array elements overlap one another.

When an array is written, the contents of the descriptor must not be modified.

The absolute bit address of the first bit of a bit array is:

bit_address = POINTER*S + POSITION

The absolute bit address may require more than 64 bits to represent.

The absolute bit address of element (ij,k) of a bit array can be computed as follows.

or

bit_address = POINTER*S + POSITION +
(i -LOW _BOUND(l))*STRIDE(l) +
(j -LOW _BOUND(2))*STRIDE(2) +
(k -LOW_BOUND(3))*STRIDE(3)

bit_address = POINTER*S + POSITION +
i*STRIDE(l) + j*STRIDE(2) + k* STRIDE(3) -
(LOW _BOUND(l)*STRIDE(l) +
LOW _BOUND(2)*STRIDE(2) +
LOW _BOUND(3)*STRIDE(3))

The DSC.POINTER-relative bit offset of the last bit in the last element in a bit array
must be ~ 264 - 1. This means that the difference between absolute bit addresses of the
first and last bits in an array must be~ 264 - 64.

Interchangeability of Fixed Text and Array Descriptors
Array and fixed string descriptors are interchangeable for use in passing contiguous one­
dim.ensional sequences of bits or characters.

For any standard interface that accepts a fixed text string or a contiguous one-dimensional
array of characters, either of the following descriptors may be passed:

or

DSC.KIND= DSC_KIND_FIXED_TEXT
DSC.EXTENT= n

DSC.KIND= DSC_KIND_BYTE_ARRAY
DSC.EXTENT = n
DSC.DIMENSION = 1
DSC.ELEMENT_SIZE =character size
DSC.EXTENT= DSC.ELEMENT_SIZE * MAX(O,(DSC.HIGH_BOUND - DSC.LOW_
BOUND+ 1))

74 ALPHA-64 - Data Manlpulatlon

Digital Equipment Corporation Proprietary and Confldentl~I
For Internal Use Onl.y-Do Not Copy or Disclose

DSC.STRIDE = DSC.ELEMENT_SIZE

For any standard interface that accepts ·a fixed bit string·o;r a contiguous one-dimensional
array of bits, either of the following descriptors may be passed:

or

DSC.KIND= DSC_KIND_FIXED_BIT
DSC.EXTENT = n

DSC.KIND = DSC_KIND_BIT_ARRAY
DSC.EXTENT = n
DSC.DIMENSION = 1
DSC.ELEMENT_SIZE = 1
DSC.EXTENT= MAX(O,(DSC.HIGH_BOUND - DSC.LOW_BOUND + 1))
DSC.STRIDE = 1

Any called procedure that accepts a fixed text descriptor is allowed to interpret a byte array
descriptor as a fixed text descriptor. Likewise, any called procedure that accepts a fixed bit
descriptor is allowed to interpret a bit array descriptor as a fixed bit descriptor.

If a called interface requires a one-dimensional character array descriptor, then it must be
prepared to accept either type of descriptor and convert a fixed text descriptor to a byte array
if necessary. Likewise, if a called interface requires a one-dimensional bit array descriptor,
then it must be prepared to accept either type of descriptor and convert a fixed bit descriptor
to a bit array if necessary.

RATIONALE:

This approach is designed to satisfy the following goals:

• unify strings and one-dimensional contiguous arrays;

• provide a bulletproof rule for passing strings between languages;

• impose no additional programming costs or overhead on users or on string­
oriented languages;

• impose acceptably small overhead on array-oriented languages;

• handle multibyte characters.

ALPHA-64 • Data Manipulation 75

Dlgltal Equipment Corporation Proprietary and Confldentlal
For Internal Use Only-Do Not Copy or Disclose

5.2 Data Passing

The fundamental unit. of data which gets ·passed between procedures has been abstracted for
purposes of discussion to a concept called an argument item. An argument item represents
one unit of data being passed.

5.2.1 Argument Passing Mechanisms

The ALPHA calling standard distinguishes three classes of argument items according to the
mechanism used to pass the argument:

• Immediate value

• Reference

• Descriptor

Argument items are not self-defining; interpretation of each argument item depends on
agreement between the calling and called procedures.

This standard does not dictate which of the above mechanisms must be used by a given
language compiler. Language semantics and/or interoperability considerations may require
different mechanisms to be used in any given situation. See Section D.1.2, Data Passing
Mechanism, for more discussion of this topic.

Immediate Value
An immediate value argument item contains the value of the data item. The argument item,
or the value contained in it, is to be directly associated with the parameter.

Reference
A reference argument item contains the address of a data item such as a scalar, string, array,
record, or procedure. That data item is to be associated with the parameter.

Descriptor
A descriptor argument item contains the address of a descriptor, which contains structural
information about the argument's type (such as array bounds) and the address of a data
item. That data item is to be associated with the parameter.

5.2.2 Argument List Structure

The argument list in an ALPHA call is an ordered set of zero or more argument items, which
together comprise a logi,cally contiguous structure known as the argument item sequence.
An argument item is represented in 64 bits.

An argument item may be used to pass immediate arguments ::; 64 bits, arguments by
reference, and arguments by descriptor. The standard permits any combination of these
mechanisms in an argument list.

Although the argument items form a logically contiguous sequence, they are in practice
mapped to integer J:lnd floating point registers and to meillory in a fashion that may produce
a physically discontiguous argument list. Registers R16 .. R21 and Fl6 .. F21 are used to pass
the :first six items of the argument item sequence. Additional argument items must be
passed in a m~mory argument list which must be located at O(SP) at the time of the call.

76 ALPHA-64 • Data Manipulation

Dlgltal Equipment Corporation Proprietary and Confidential
For Internal Use Only~o Not Copy or Disclose

RATIONALE:

The caller needs to have enough scratch re.gisters to compute arguments. In addi­
tion, if the caller must make a call to compute ·some of the arguments, any that are
in scratch registers must be saved to memory (but only once· so this is no worse
than passing them in memory).

The following table specifies the standard locatiOns in which argument items can be passed.

Table 5-5: Argument Item Locations

Item Integer Registers Floating Point Registers Stack

1 R16 F16

2 R17 F17

3 R18 F18

4 R19 F19

5 R20 F20

6 R21 F21

7 ... n O(SP) ... (n-7)*8(SP)

The general rules that determine the location of any specific argument can be summarized
as follows:

1. All argument items are passed in the integer registers or on the stack, except argument
items that are :floating point data passed by immediate value.

2. Floating point data passed by immediate value is passed in the :floating point registers
or on the stack.

3. Only one location in any row in the above table may be used by any given argument
list. So, for example, if argument item 3 is an integer passed by value, and argument
item 4 is a single precision floating point number passed by value, then argument item
3 is assigned to R18 and argument item 4 is assigned to F19.

The argument list, including both the in-memory portion as well as the portion that is
passed in registers, may be read and written by the called procedure. ·The calling procedure
must therefore not make any assumptions about the validity of any part of the argument
list after the completion of a call. ·

5.2.3 Argument Lists and High Level Languages

High level langu~ge functional notations for procedure call arguments are mapped into
argument item sequences according to the following rules:

1. Arguments are mapped from left to right to increasing offsets in the argument item
sequence. R16 or F16 is allocated to the first argument, and the last quadword of the
memory argument list (if any) is allocated to the last argument.

2. Each source language argument corresponds to a single ALPHA calling standard argu­
ment item.

3. Each argument item consists of 64 bits.

ALPHA-64 • Data Manipulation 77

Dlgltal Equipment Corporation Proprietary and Confldentlal
For lntemal Use Only-Do Not Copy or Disclose

4. A null or omitted argument, for example CALL SUB(A,,B), is represented by an argu-
ment item containing 0. ·

No arguments passed by the immediate mechanis.m may be omitted unless a default
value is supplied by the language. (This is to enable called procedures to distinguish
an omitted immediate argument from an ~ediate value argument.with the value 0.)

Trailing null or omitted arguments, for example CALL SUB(A,,), are passed by the same
rules ·as embedded null or-omitted arguments.

5.2.4 Unused Bits In Passed Data

Whenever data is passed by value between two procedures either in registers, as is the
case for the first six input arguments and return values, or in memory, as is the case for
arguments after the first six, the bits not used by the data are either sign extended or zero
extended as appropriate.

The table below defines the rules for setting or clearing the unused bits.

Key:

•
•
•
•
•
•
•
•

Sign32 means sign extended to 32 bits - The state of bits <63:32> is unpredictable

Sign64 means sign extended to 64 bits

Zero32 means zero extended to 32 bits - The state of bits <63:32> is unpredi~table

Zero64 means zero extended to 64 bits

Data32 means data is 32 bits - The state of bits <63:32> is unpredictable

Data64 means data is 64 bits

Hard means passed in the layout defined by the Hardware SRM

N ostd means that the state of all high order bits not occupied by the data is unpredictable
across a call or return

78 ALPHA-64 • Data Manipulation

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

Table 5-6: Unused Bits In Passed Data

Data size
Register
Extension Memory Ex-

Data Type Type Designator (bytes) Type tension Type

byte logical BU 1 Zero64 Zero64

word logical WU 2 Zero64 Zero64

longword· logical LU 14 Sign64 Sign64

quadword logical au 8 Data64 Data64

byte integer B 1 Sign64 Sign64

word integer w 2 Sign64 Sign64

longword integer L 4 Sign64 Sign64

quadword integer a 8 Data64 Data64

F floating F 4 Hard Data32

D floating D 8 Hard Data64

G floating G 8 Hard Data64

F floating complex FC 2*4 Hard Data64

D floating complex DC 2*8 Hard NIA
G floating complex GC 2*8 Hard NIA
IEEE floating basic single S FS 4 Hard Data32

IEEE floating basic double T FT 8 Hard Data64

IEEE floating basic single S complex FSC 2*4 Hard Data64

IEEE floating basic double T complex FTC 2*8 Hard NIA
Small structures of 8 bytes or less NIA ~8 No std Nostd

Small arrays of 8 bytes or less NIA ~8 No std Nostd

32-bit address NIA 4 Sign64 Sign64

64-bit address NIA 8 Data64 Data64

It is left to the language compilers to map call arguments onto the appropriate data type.

NO data type conversions must be assumed between the calling procedure and the called
procedure.

5.2.5 Sending Data

Sending Mechanism
The following represents the rules which govern the allowable mechanisms for sending data.

By immediate value An argument may be passed by immediate value only if

• it is one of the non complex scalar data types with size known to be ~ 64 bits,

or

• it is a record with size known to be ~ 64 bits,

or

ALPHA-64 • Data Manlpulatlon 79

Dlgltal Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

• it is a set, implemented as a bit vector, with size known to be :::; 64 bits,

No form of string, array or complex data· type may.be p~sse~ by immediate value.

A standard immediate argument item must fill 64 bits. This means that unused high­
order bits of all data types (including records) must be zero-extended or sign-extended, as
·appropriate depending on the data type, to fill all unused bits. (See Table 5-6, Unused Bits
in Passed Data, for details.)

Large Immediate Arguments Argument values that are larger than 64 bits can be passed
by immediate value using non-standard conventions.

The most common such convention is to allocate as many fully or partially occupied argument
item positions to the argument value as are needed to represent the argument. Partially
occupied argument item positions must be zero or sign extended as appropriate to fill the
entire item position. The argument count in this case represents the number of argument
item positions used rather than the number of actual arguments.

Thus, for example, a 64-bit complex floating point argument could be passed by value in 2
floating point registers. A 26-byte string could be passed by value in four integer registers.

Such large immediate arguments are not standard arguments, and should not be used in
standard external calls.

By Reference Non-parametric arguments (that is, arguments for which associated infor­
mation such as string size and array bounds are not required) may be passed by reference
in a standard call.

By Reference Parametric arguments (that is, arguments for which associated information
· such as string size and array bounds must be passed to the caller) are passed by a single
descriptor in a standard call.

Order of Argument Evaluation
Since most higher level languages do not specify the order of evaluation (with respect to side
effects) of arguments, those language processors can evaluate arguments in any convenient
order. The choice of argument evaluation order and code generation strategy is constrained
only by the definition of the particular language. Programs should not be written that
depend on the order of evaluation of arguments.

5.2.6 Receiving Data

When it cannot be determined at compile time if a given in-register argument item is passed
in a floating point register or an integer register, the argument information register may
be interpreted at runtime to establish where the argument was passed. (See Section 4.5.1,
Call Conventions, for details.)

5.2.7 Returning Data

A standard function must return its function value by one of the following mechanisms:

• immediate value

• reference

• descriptor

80 ALPHA-64 • Data Manlpulatlon

Dlgltal Equipment Corporation Proprietary and Confidential
For Internal Use On.ly-Do Not Copy or Disclose

These mechanisms are the only standard means available for returning function values,
and they support the-important language ind~pendent data .~ypes. Functions that return
values by any mechanism other than those specified here are· non-standard, language-specific
functions.

Function Value Return By Immediate Value
This section describes the two types of immediate value function return.

RATIONALE:

This approach to function value by immediate value, which allows a common mech­
anism across both the ALPHA-32 and the ALPHA-64 flavor of the calling standard,
is based on the proposition that returning 64 bits is usually the result of returning
a 64-bit data item, rather than the result of returning two 32-bit data items, and
therefore R0<63:0> is used.

Non-Floating Function Value Return By Immediate Value
A function value is returned by immediate value in register RO if, and only if,

• it is a non-floating point scalar data type with size known to be s 64 bits,

or

• it is a record with size known to be s 64 bits.

or

• it is an array with size known to be s 64 bits,

or

• it is a set, implemented as a bit vector, with size known to bes 64 bits.

No form of string may be returned by immediate value.

Two separate 32-bit entities cannot be returned in RO.

A function value< 64 bits returned in RO must be zero-extended or sign-extended, asap­
propriate depending on the data type (see Table 5-6, Unused Bits in Passed Data, for more
details), to a full quadword.

Floating Function Value Return By Immediate Value
A function value is returned by immediate value in register FO if, and .only if, it is a non­
complex single or double precision :floating point value (F,D,G,S,or T).

A function value is returned by immediate value in registers FO .. Fl if, and only if, it is a
complex single or double precision :floating point value (F,D,G,S,or T).

Function Value Return By Reference
A function value is returned by reference if, and only if,

• the actual size of the function value is known to both the calling procedure and the
called procedur.e, but the value cannot be returned by immediate value (because the
function value requires more than 64 bits, the data type is a string or an array type,
etc.)

and

ALPHA·64 • Data Manipulation 81

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

• the function value can be returned iri a contiguous region of storage.

The actual-argument list and the formal-argument list. are. shifted to· the right by one ar­
gument item. The new, first argument item is reserved for the function value. This hidden
first argument is included in the count and register usage information that is passed in the
argument information register (see Section 4.5.l, Call Conventions, for details).

The calling procedure must provide the required contiguous storage and pass the address
of the storage as the first argument. This address must specify storage that is naturally
aligned according to the data type of the function value.

The called function must write the function value to the storage described by the first
argument.

Function Value Return By Descriptor
A function value is returned by Descriptor if, and only if,

• the actual size of the function value is not known to both the calling procedure and
the called procedure and the value cannot be returned by immediate value (because the
function value requires more than 64 bits, the data type is a string or an array type,
etc.)

and

• the function value can be returned in a contiguous region of storage.

Non-contiguous function values are language-specific and can not be returned as a standard
conforming return value. ·

Records, noncontiguous arrays, and arrays with more than one dimension may not be re­
turned by descriptor in a standard call.

There are two distinct cases where a descriptor return value is used. They are:

• When the caller determines the maximum size of the returned value

• When the called routine determines the maximum size of the returned value

In each case the actual-argument list and the formal-argument list are shifted to the right
by one argument item. The new, first argument item is reserved for the function value.
This hidden first argument is included in the count and register usage information that is
passed in the argument information register.

The initialization and usage of the function value return descriptor is environment specific.
See Section 5.2. 7, Returning Data, for more details.

Function Value Return By Descriptor
The two cases of function value return by descriptor are described below. The mechanism
to be used is chosen by the calling procedure, and is specified by the kind of the descriptor
passed as the first argument item.

82 ALPHA-64 • Data Manlpulatlon

Digital Equipment Corporation Proprietary and Confldentlal
For Internal Use Only~o Not Copy or Dlsclose

Caller Defined Return By Descriptor-
When the calling procedure determines the maximum size of the returned value it must pro­
vide the required contlguous storage and pass the ~ddress · o.f a naturally aligned descriptor
that describes that storage as the first argument. This descriptor is laid out as follows:

Figure 5-4: ALPHA-64 Caller Defined Return Value Descriptor Format ·
DSC quadword aligned

+---------------+---------------+---------------+---------------+
I KIND I must be zero I : 0
I I I
+---------------+---------------+---------------+---------------+
I must be zero I :4
I I
+---------------+---------------+---------------+---------------+
I I : 8
I POINTER I
I I
I I
+---------------+---------------+---------------+---------------+
I I : 16
I EXTENT I
I I
I I
+---------------+---------------+---------------+---------------+
Size = DSC RET FIXED SIZE = 24 - - -

The calling routine must initialize the descriptor as follows:

• DSC.KIND must be set to DSC_KIND_FIXED_TEXT

• DSC.POINTER must be set to point to the buffer where the value is to be returned

• DSC.EXTENT= an integer 0 .. 264 -1 specifying the length in bytes of the storage

To return the value the called function must:

• Write the return value into the storage specified by the hidden descriptor argument,
truncating the return value if its length exceeds the value of DSC.EXTENT.

• Provide whatever padding is required by the semantics of the language of the called
function.

\\
It should be noted that various languages have different language. requirements.
FORTRAN and PASCAL, for example, require BLANK padding while Ada does
not pad at all.

This standard makes no attempt to reconcile these differences.
\\

The descriptor may be allocated in read-only storage by the caller and thus the called func­
tion must never modify the descriptor.

RATIONALE:

This type of function value return is specifically for FORTRAN.

ALPHA-64 - Data Manipulation 83

Dlgltal Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

Called Routine Defined Return By Descriptor
When the called routine determines the maximum size of the returned value the stack is
used to return the actual data of the value. In this case the descriptor pointed to by the
hidden first argument is used as follows:

Figure 5-5: ALPHA-64 Called Routine Defined Return Value Descriptor Format
DSC quadword aligned

+---------------+---------------+---------------+---------------+
I KIND I must be zero I :0
I I I
+---------------+---------------+---------------+---------------+
I must be zero I :4
I I
+---------------+---------------+---------------+---------------+
I I :8
I POINTER I
I I
I I
+---------------+---------------+---------------+---------------+
I I : 16
I EXTENT I
I I
I I
+---------------+---------------+---------------+---------------+
Size = DSC RET STACK SIZE = 24 - - -

The caller must pass as the first argument a function return descriptor initialized as follows:

DSC.KIND = DSC_KIND_STACK_RETURN = 130
DSC.POINTER = unpredictable
DSC.EXTENT = 0

The descriptor must be allocated in writeable storage, and will be modified by the called
function.

The called function must return its value as follows:

1. Allocate stack storage sufficient to contain the return value and place the return value
on the stack.

2. Update the descriptor as follows:

DSC.KIND = DSC_KIND_STACK_RETURN
DSC.POINTER = the address of the first byte of the return value
DSC.EXTENT = an integer 0 .. 264 - 1 specifying the length in bytes of the return
value

NOTE
In all cases DSC.POINTER must be set before DSC.EXTENT is made non zero.
This allows unwind operations to properly restore the stack pointer.

3. The return code sequence must not reset SP such that any part of the function return
value is contained by a stack address lower than O{SP). The ret1'1A.-n value must be
entirely contained by stack storage at or above O(SP).

84 ALPHA-64 - Data Manipulation

Dlgltal Equipment Corporation Proprietary and Confldentlal
For Internal Use Only~o Not Copy c,r Disclose

When control returns to the calling procedure, the contents of register RO are unpredictable.
The caller must manage the return value and SP. The caller may copy the return value from
the stack to some other storage (possibly to a ·higher addr.ess on the stack) and reset SP
appropriately to reflect the return from the called function.

Run Time Conventions ·for Function Value Return Descriptors
Any standard-conforming function that supports returning values using ·the DSC_KIND _
STACK_RETURN type of descriptor must also be prepared to handle the other descriptor
return· value. mechanism, and must return its value according to the mechanism chosen by
the caller.

Functions that may return a stack function return value must use the following algorithm
to determine which of the two mechanisms to use:

1. If DSC.KIND= DSC_KIND_FIXED_TEXT, then use the fixed buffer mechanism.

2. Otherwise, use the stack return mechanism.

It is important that functions do not specifically test for DSC.KIND= DSC_KIND_STACK_
RETURN. This is because future extensions to this standard may specify new function
return mechanisms that define new KIND codes, but that are upward compatible with the
stack return mechanism specified here.

\\
The case in mind here is return via heap storage allocated by the called
function, in which case the caller could "request" return in such heap storage,
but a called function could at its o~n option override that request and use the
stack return mechanism instead, by changing DSC.KIND in the passed descriptor.
Callers that "request" return in heap storage would have to be prepared to
handle either heap or stack return from the called function.
\\

Any function that tests for DSC.KIND = DSC_KIND_STACK_RETURN may not be upward
compatible with future versions of this standard.

For the same reason, functions that return a value by the stack return mechanism must
always set DSC.KIND = DSC_KIND_STACK_RETURN. Any function that returns a value
by stack return mechanism and does not set DSC.KIND= DSC_KIND_STACK_RETURN
may not be upward compatible with future versions of this standard.

RATIONALE:

It is assumed that there will be an OTS routine that language compilers will call
that might look like this:

;

Load descriptor address in RO
Load SP in Rl
Load string address in R22
Load string length in R23

JSR OTS$DYN_RETURN

Returns string length in RO
Returns SP to use in Rl

MOV Rl, SP
RET R31, (R26)

ALPHA·64 • Data Manipulation 85

Dlgltal Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

5.3 Static Data

5.3.1 Alignment

On the ALPHA architecture, memory references to data that is not naturally aligned may
result in alignment faults, which can severely degrade the performance of all procedures
that reference the unnaturally aligned data.

For this reason, arguments and function return values on ALPHA systems should be natu­
rally aligned. For example, 8-bit character strings should start on byte boundaries; 16-bit
integers should start at addresses that are a multiple of at least 2 (word alignment); single
precision real values should start at addresses that are a multiple of at least 4 (longword
alignment); double precision real values should start at addresses that are a multiple of at
least 8 (quadword alignment); and so forth.

Data types larger than 64 bits should use quadword or greater alignment. Alignments larger
than quadword are language-specific or application defined.

For aggregates such as strings, arrays, and records, the data type to be considered for
purposes of alignment is not the aggregate itself, but the elements of which the aggregate is
composed. The alignment requirement of an aggregate is that all elements of the aggregate
be naturally aligned. Varying 8-bit character strings must, for example, start at addresses
that are a multiple of at least 2 (word alignment) because of the 16-bit count at the beginning
of the string; 32-bit integer arrays start at a longword boundary, irrespective of the extent
of the array.

5.3.2 Record Fonnat Conventions

The ALPHA calling standard record layout rules are designed to provide good run time
performance on all implementations of the ALPHA architecture, and to provide the required
level of compatibility with conventional VAX/VMS operating environments.

This standard therefore defines two record layout conventions:

• record layout conventions optimized for the ALPHA architecture, referred to as ALPHA
preferred record layouts ·

• record layout conventions that are compatible with those traditionally used by VAX/VMS
languages,. referred to as VAX I VMS compatible record layouts.

NOTE

Although compiler implementors must make appropriate business decisions, it is
STRONGLY advised that all ALPHA high level language compilers should support
both record layouts.

Only these two record layouts may be used across standard interfaces or between languages.
Languages may support other language-specific record layout conventions, but such other
record layouts are not standard.

The ALPHA preferred record layout conventions should be used unless interchange is re­
quired with conventional VAX applications that use the VAX/VMS compatible record layouts.

86 ALPHA·64 - Data Manlpulatlon

ALPHA Preferred Record Layout

Digital Equipment Corporation Proprietary and Confldentl'I
For Internal Use On~y-Do Not Copy or Disclose

The ALPHA preferred· record layout conventions ensure that: ..
. . ..

• all components of a record or subrecord are naturally aligned

• the layout and alignment of record elements and subrecords is independent of any record
or subrecord in which they may be embedded

• the layout and alignment of a subrecord is the same as if it were a top level record

• declaration in high level languages of standard records for interlanguage use is reason­
ably straightforward and obvious, and meets the requirements for source level compat­
ibility between ALPHA and VAX/VMS languages

The ALPHA preferred record layout is defined by the following conventions:

1. The components of a record must be laid out in memory corresponding to the lexical
order of their appearance in the high level language declaration of the record.

2. The first bit of a record or subrecord must be directly addressable; i.e. it must be byte
aligned.

3. Records and subrecords must be aligned according to the largest natural alignment
requirements of the contained elements and subrecords.

4. Unaligned bit strings, unaligned bit arrays, and elements of unaligned bit arrays must
start at the next available bit in the record; no fill is ever supplied preced~ an un­
aligned bit string, unaligned bit array, or unaligned bit array element.

5. All other components of a record must start at the next available naturally aligned
address for the data type.

6. Strings and arrays must be aligned according to the natural alignment requirements of
the data type of which the string or array is composed.

7. The length of an array element is a multiple of its alignment, even if this leaves unused
space at its end. The length of the whole array is the sum of the lengths of its elements.

VAXNMS Compatible Record Layout
The VAX/VMS compatible record layout is defined by the following conventions:

1. The components of a record must be laid out in memory corresponding to the lexical
order of their appearance in the high level language declaration of the record.

2. Unaligned bit strings, unaligned bit arrays, and elements of unaligned bit arrays must
start at the next available bit in the record; no :fill is ever supplied preceding an un­
aligned bit string, unaligned bit array, or unaligned bit array element.

3. All other components of a record must start at the next available byte in the record,
and any unused bits following the last-used bit in the last-used byte of each component
must be :filled out to the next byte boundary such that any following data starts on a
byte boundary.

4. Subrecords must be aligned according to the largest alignment of the contained elements
and subrecords. This means that a subrecord always starts at the next available byte
unless it consists entirely of unaligned bit data and it immediately follows an unaligned
bit string, unaligned bit array, or a subrecord consisting entirely of unaligned bit data.

5. Records must be aligned on byte boundaries.

ALPHA-64 - Data Manipulation 87

CHAPTER 6

EVENT PROCESSING

This chapter discusses specifications related to events that are normally outside the normal
program :flow.

6.1 Exception Handling

This section on exception handling discusses the considerations involved in the notification
and handling of exceptional events during the course of normal program execution.

Exception notification and handling is closely tied to the hardware mechanisms for excep­
tional event reporting. The ALPHA architecture is notably different from a conventional
VAX in this area.

\\
The basic designs and mechanisms of ALPHA Exception·handling and unwinding are
modeled after the VAX/VMS design with extensions and corrections to support
POSIX and multithread environments better. That design is defined in Sections
"VAX Conditions", "Operations Involving Condition Handlers", "Properties of
Condition Handlers", and "Multiple Active Signals" of the VAX
Procedure Calling and Condition Handling Standard, Revision 10.3 which may
serve as useful background reading.
\\

6.1.1 Exception Handling Requirements

The exception handling capabilities specified in this standard are for support of:

• Reliable programmer and program control over response to exceptions and reporting of
such exceptions, and over the :flow of control when exceptions occur.

• Capability for subsystems and applications to override system messages to provide a
more suitable application oriented interface, specifically including ·modular, multina­
tional message and error reporting.

• Orderly termination of layered applications.

• Correct and predictable exception handling in a multilanguage environment

• Support for the construction of modular, maintainable multilanguage applications.

• Support for paral_lel multithreaded application execution, including

a. Per-thread exception handling.

b. Handling of asynchronous exceptions.

c. Safe thread exit in a multithreaded environment.

ALPHA-64 - Event Processing 89

Dlgltal Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

• Support for at least the minimal exC-eption handling requirements of the Concert Mul­
tithread Architecture including sup:port:

• To raise a particular kind of exception to denote· that a particular error has occurred
in the procedure invocation associated with a particular call frame.

• To search the call chain of the thread receiving the exception notification (from the
most recently invoked to the least recently invoked procedure) to locate a handler
.for. the ,exception.

• For such a handler to be able to resume thread execution at a program location
designated by the handler, which requires terminating all intervening frames in
the call chain.

• Procedure based exception handling must be capable of coexisting and interoperating
with POSIX-de:fined signal handling. The interoperation of these facilities, and the
limits of such interoperation, is described in this standard.

6.1.2 Exception Handling Overview

Basic workings
When an exception occurs (is raised), the normal flow of control in the current thread is
interrupted, the context saved, and control is transferred to the exception handling support
code. This support code marshals the exception information and then enters a section of the
support code called the exception dispatcher. The exception dispatcher searches for exception
handlers and invokes them in the proper sequence.

When a handler is invoked, it is called as a procedure with arguments that describe the
nature of the exception, the environment within which the exception was raised, and the
environment within which the handler was established. When the handler is called the
exception is said to be delivered to the handler.

The handler may respond to the exception in several ways, including various combinations
of the following:

• Perform some action that affects the context of the thread (possibly correcting the cir­
cumstances that led to the exception being raised).

• Modify or augment the description of the exception.

• Raise a nested exception, causing another exception to occur in the context of the excep-
tion handler or in a procedure called directly or indirectly by the handler.

When an exception handler has :finished processing an exception, it must indicate this in
one of the following ways:

• Indicate that the exception handling support code should Reraise the exception and
resume the search for another handler.

• Indicate that the exception handling support code should Continue execution of the
;nterrupted thread at the location indicated by the saved Exception Program Counter.

90 ALPHA-64 • Event Processing

Dlgltal Equipment Corporation Proprietary and Confldentlal
For Internal Use Only~o Not Copy or Disclose

• Unwind, which causes the exception-handling support code to resume execution of the
thread at a point 4ifferent than the.point at which it was interrupted, or terminate the
execution of the thread. ·

Exceptions
There are three basic kinds of exceptions:

• Those caused by an unwind operation (called unwind exceptions)

• Those caused in support of the POSIX 1003.1 signal function (called signal exceptions)

• Those caused by other software or hardware notification mechanisms (called general
exceptions)

Unwind Exceptions
An unwind exception results from the invocation of the unwind support code by a thread,
and is always delivered to the thread which invoked the unwind.

Unwind exceptions are delivered as part of the notification process that an unwind is in
progress (see Section 6.2, Unwinding, for details).

Signal Exceptions
A signal exception results from the delivered of a POSIX signal which is subsequently mar­
shaled into an exception that can be handled using the capabilities defined by this standard.
Signal exceptions may only be raised in POSIX-conforming environments.

General Exceptions
General exceptions may be further categorized as one of:

Software Caused

A software caused general exception is raised as the result of the invocation of an exception
raising procedure and is always delivered to the thread which made the call.

Such an exception may be raised at any point during thread execution. Applications and
language run time libraries may raise general exceptions to notify a thread of some ex­
ceptional (noteworthy) state in the current thread context. For example, subscript range
checking failures and assertion checking failures may be raised as general exceptions.

Hardware Caused

A hardware exception occurs when a thread performs some action which causes an excep­
tional state to exist in the hardware. Such a state will cause the currently active thread
to be interrupted and the exception handling support code to be invoked. This invocation
constitutes the raising of a hardware caused general exception.

A hardware caused general exception is always delivered to the thread that executed the
instruction which caused the exception.

Exactly which hardware events can result in an exception, the state of the machine when a
hardware exception occurs, the interpretation of the exception-related information which is
delivered to a user mode thread, and circumstances under which execution can be continued
are specific to individual hardware exceptions. Hardware exceptions are fully defined by the
ALPHA System Reference Manual which should be consulted for additional information.

ALPHA-64 - Event Processing 91

Dlgltal Equipment Corporation Proprietary and Confidential
For lntemal Use Only-Do Not Copy or Disclose

Exception Properties
All exceptions are handled with the same interfaces, data structures, and algorithms. That
is, there is unified exception handling for all kinds of exceptfons, regardless of their origi­
nation.

Each exception has a exception value, which identifies the exception (such as subscript range
violation, or memory access control violation). ·Exceptions may also have associated with
them one or more exception qualifiers (such as the name of an array and the subscript which
was out of range, or an address associated with a memory access control violation).

6.1.3 Data Structures for Exception Handling

Exception Record
The fundamental data structure for describing exceptions is the exception record.

Exception records can form a linked list. Each record in a list describes one exception.

The first exception record in the list describes the primary exception. Additional secondary
exceptions may be specified by additional exception records in the list. Secondary exceptions
qualify or elaborate the primary exception; they may be raised at the same time as the
primary exception, or a handler may add new secondary exceptions to the list before handling
or reraising the exception.

Storage for exception records may be allocated in read-only memory. The exception record
that is passed to a handler is a separate copy constructed from information in the original
exception record augmented with additional information.

Exception records are defined as follows:

92 ALPHA-64 • Event Processing

Dlgltal Equipment Corporation Proprietary and Confldentl~I
For Internal Use On~y-Do Not Copy or Disclose

Figure 6-1: Exception Record Fonnat -
EXPT quadwor_d aligned

+---------------+---------------+-----------·----+---·.;. ____ . _______ +
I FLAGS I KIND I :0

I I I .
+---------------+---------------+---------------+---------------+

must be zero QUAL_COUNT I :4
I

+---------------+---------------+---------------+---------------+
I I :8
I VAL~ I
I I
I I
+---------------+---------------+---------------+---------------+
I I :16
I NEXT I
I I
I I
+---------------+---------------+---------------+---------------+
I I :24
I EPC I
I I
I I
+===============+===============+===============+===============+

:32

EXPT_QUAL[O]

+------~--------+---------------+---------------+---------------+

+---------------+---------------+---------------+---------------+
I I :x
I I
I I
I EXPT_QUAL[n-1) I
I I
I I
I I
I I
+---------------+---------------+---------------+---------------+
Size = EXPT SIZE = 32 x = 16*n + 32

EXPT.KIND specifies the kind of the exception record. This field is significant only in the
primary exception record; its contents are unpredictable in secondary exception records.

Valid EXPr.KIND values are defined as follows:

• If the exception record is an unwind exception record then EXPT.IGND contains EXC_
DEC_UNWIND.

• If the exception record is a general exception record then EXPr.KIND contains EXC_
DEC_RAISE.

• Otherwise, EXPT.KIND contains a POSIX. 1003.1 style signal number that best approx­
imates the exception which is represented by the exception record.

ALPHA-64 - Event Processing 93

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

EXPT.FLAGS is a bitvector of flags which further qualify the exception. These flag bits are
significant only in the primary exception record; their state is unpredictable in secondary
exception records. EXPr.FLAGS bits are logicany ·divided intO two groups. The :first group
(called detail flags) provide additional information about the exception. The second group
(called environment flags} provide additional information about the environment in which
the exception is being delivered.

Valid EXPr.FLAGS bits that. give additional detail are:

• EXPT.FLAGS<O> is denoted by IS_NONRESUMABLE

IfIS_NONRESUMABLE is 1, the exception handler must not return STATUS_ CONTINUE

• EXPr.FLAGS<l> is denoted by IS_EXIT_UNWIND

IS_EXIT_ UNWIND is 1 if the exception handler is being invoked because of an unwind
operation that will terminate execution of the thread.

IS_EXIT_UNWIND must be 0 unless EXPT.KIND = EXC_DEC_UNWIND.

• EXPI'.FLAGS<2> is denoted by IS_LONGJMP.

IS_LONGJMP is 1 if the exception handler is being invoked because of a general unwind
operation with the semantics of long.imp(). The handler must not modify the exception
record, and must not raise an exception or an overlapping unwind.

IS_LONGJMP must be 0 unless EXPT.KIND = EXC_DEC_UNWIND.

IS_LONGJMP is specific to POSIX-conform.ing environments. This flag bit is significant
only in the primary exception record within POSIX-conform.ing environments; its state is
unpredictable in secondary exception records and in environments that are not POSIX­
conforming.

• EXPT.FLAGS<7:3> must be 0.

Valid EXPr.FLAGS bits that give additional information about the environment at the time
of exception delivery are:

• EXPI'.FLAGS<8> is denoted by IS_UNWIND_INPROG

IS_UNWIND_INPROG is 1 if an unwind is in progress at the time this exception is
delivered.

• EXPT.FLAGS<9> is denoted by IS_SIGNAL_INPROG

IS_SIGNAL_INPROG is 1 if a signal is in progress at the time this exception is delivered.

• EXPT.FLAGS<10> is denoted by IS_ASI_INPROG

IS_ASI_INPROG is 1 if an asynchronous software interrupt is active at the time this
exception is delivered.

• EXPT.FLAGS<ll> is denoted by IS_PRIMARY

IS_PRIMARY is 1 if this handler is being invoked as a primary handler.

RATIONALE:

If a handler is used in multiple places, this bit allows the handier to know why
it is being invoked. Note that there is no VMS style depth mechanism to do this
otherwise.

• EXPT.FLAGS<12> is denoted by IS_LAST_CHANCE

94 ALPHA-64 • Event Processing

Dlgltal Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy .or Disclose

IS_LAST_CHANCE is 1 if this handler is being invoked as a last-chance handler.

• EXPT.FLAGS<13> is denoted by I8 DU~G_ASYNC

I8_DURING_ASYNC is 1 if an asynchronous ·softWare· exception handler has reraised
a nested exception or has been unwound. This indicates that a nested exception was
raised or an unwind was initiated during asynchronous exception handling, which was
not handled within the scope of the exceptfon handler.

• EXPT.FLAG8<14> is.denoted by 18;....DURING_VECTORED

I8_DURING_ VECTORED is 1 if a vectored handler has reraised a nested exception or
has been unwound. This indicates that a nested exception was raised or an unwind was
initiated during the execution of a vectored handler, which was not handled within the
scope of that handler.

• EXPT.FLAG8<23:15> must be 0.

EXPT.QUAL_COUNT is the unsigned number of exception-specific qualifiers in the excep­
tion record.

EXPT.VALUE is a quadword value denoting the exception. The actual value for a given
exception type is system defined.

EXPT.NEXT is either zero or is the address of the next exception record in the list.

EXPT.EPC is the continuation program counter for the exception.

For hardware exceptions, asynchronous software exceptions, and signal exceptions, this is
the address of the instruction following that at which the hardware exception, asynchronous
exception, or signal interrupted execution of the thread.

For synchronous software exceptions and unwind exceptions, this is the address of the
instruction immediately following the call to the library routine that raised the exception or
invoked the unwind, respectively.

This :field is significant only in the primary exception record; its contents are unpredictable
in secondary exception records.

Each EXPT.EXPT_QUAL(n) is two quadwords which provide additional information spe­
cific to the exception, and may contain information intended for display in messages.

Exception Qualifiers
There are two forms of exception qualifiers. They are:

• Immediate exception qualifiers

• Indirect exception qualifiers

ALPHA-64 - Event Processing 95

Dlgltal Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

Immediate Exception Qualifiers
Immediate exception qualifiers contain ·values th.at require eight bytes of storage or less.

.

Figure 6-2: Immediate Exception Qualifier Format
EXPT_QUAL quadword aligned

+---------------+---------------+---------------+---------------+ .
I must be zero I KIND I : 0
I I I
+---------------+---------------+---------------+-~~-~-~-~~~~-~-+ ...
I EXTENT I :4
I I
+---------------+---------------+---------------+---------------+
I I : 8
I VALUE I
I I
I I
+---------------+---------------+---------------+---------------+
Size = EXPT_QUAL_SIZE = 16

EXPT_QUAL.KIND is QUAL_KIND_IMMEDIATE.

EXPT_QUAL.EXTENT specifies the number of bytes of contiguous storage occupied by the
qualifier value. The maximum value of EXPT_QUAL.EXTENT for this kind of exception
qualifier is 8. ·

EXPT_QUAL.VALUE contain the value of the qualifier.· The qualifier value must be stored
starting at byte 8.

Indirect Exception Qualifiers
Indirect exception qualifiers specify values that require more than eight bytes of storage.

Figure 6-3: Indirect Exception Qualifier Format
EXPT_QUAL quadword aligned

+---------------+---------------+---------------+---------------+
I must be zero I KIND I : 0
I I I
+---------------+---------------+---------------+---------------+
I EXTENT I :4
I I
+---------------+-----~---------+---------------+-------------~-+
I · I : 8
I POINTER 1.
I I
I I
+---------------+---------------+---------------+---------------+
Size = EXPT_QUAL_SIZE = 16

EXPT_QUAL.KIND is QUAL_KIND_INDIRECT.

EXPT_QUAL.EXTENT specifies the number of bytes of contiguous storage occupied by the
qualifier data.

96 ALPHA-64 ·Event Processing

Dlgltal Equipment Corporation Proprietary and Confldentlal
For Internal Use Only~o Not Copy or Disclose

EXPT_QUAL.POINTER contains the absolute address of the first byte of storage occupied
by the data.

Exception Records for Unwind Exceptions
Unwind exceptions '.are, characterized by, having "EXPT.KIND = EXC~DEC_UNWIND. The
type of unwind operation is further qualified by the detail flags in EXPT.FLAGS which
specify if the unwind operation is part of a longjmp() invocation or is the result of a thread
exit.

The reason code for the unwind as well as any supplied qualifiers is represented in
EXPT.VALUE in the same way as is done for general exceptions.

Exception Records for Signal Exceptions
Signal exceptions are characterized by having EXPT.KIND :/; EXC_DEC_RAISE or EXC_
DEC_UNWIND.

In exception records for signal exceptions, the value of EXPT.VALUE is the signal number,
and the first exception qualifier (if present) is a parameter which further qualifies the signal.
This parameter (sometimes referred to as a signal code as opposed to a signal number is most
useful for hardware generated signals. For instance, in a POSIX conforming environment,
all arithmetic exceptions are delivered with a signal number of SIGFPE. This signal code
can further qualify this exception by indicating that it was a fi~ating underflow, integer
overflow, or other arithmetic exception.

\\
In a POSIX conf ormant environment there is no mechanism provided for
a user program to deliver a signal with a qualifier of any kind. Thus,
when this qualifier is present it is because it was produced by some
system facility (usually the hardware exception dispatching code} •
\\

Exception Records for General Exceptions
General exceptions are characterized by having EXPT.KIND = EXC_DEC_RAISE.

Software Caused Exceptions
The information in exception records for general and unwind exceptions may vary widely
from a simple single exception to a long chain of exceptions and exception qualifiers.
This specification defines the conventions for constructing these exception records (see Sec­
tion 6.1.3 above). A complete enumeration of all possible combinations is beyond the scope
of this document.

Hardware Caused Exceptions
All ALPHA hardware exceptions have exception information associated with them. This
information may be as little as the exception type and exception PC or as much as two
additional registers worth of information. The specific information that is supplied with
each exception type is defined by the ALPHA architecture SRM.

When a hardware exception is raised, the exception record passed to exception handlers in­
cludes the exception information supplied by the hardware. This information is converted to
exception argument format and marshaled into the exception record to produce an exception
record as follows:

ALPHA-64 • Event Processing 97

Dlgltal Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

Figure 6-4: Hardware Caused Exception Record
EXPT quadword aligned

+---------------+---------------+----------~----+---------------+
I FLAGS I KIND I :0
I I I
+---------------+---------------+---------------+---------------+·

must be zero QUAL_COUNT :4

+---------------+---------------+---------------+---------------+
I I : 8
I VAL~ I
I I
I I
+---------------+---------------+---------------+---------------+
I I :16
I NEXT I
I I
I I
+---------------+---------------+---------------+---------------+
I I :24
I EPC I
I I
I I
+===============+===============+===============+===============+
I must be zero I KIND I : 32
I I I
+---------------+---------------+---------------+---------------+
I EXTENT I :36
I I
+---------------+---------------+---------------+---------------+
I I :40
I ~~ I
I I
I I
+---------------+---------------+---------------+---------------+
I must be zero I KIND I : 48
I I I
+---------------+---------------+---------------+---------------+
I EXTENT I :52
I I
+---------------+---------------+---------------+---------------+
I I : 56

VALUE I
I
I

+---------------+---------------+---------------+--------------~+

EXPT.KIND is EXC_DEC_RAISE or a POSIX 1003.1 style signal number depending on
how this exception is being delivered.

EXPT.FLAGS is as appropriate (see above).

EXPT.QUAL_COUNT is 2.

EXPT.VALUE is the type of hardware exception.

EXPT.NEXT is 0.

EXPT.EPC is the PC that was saved on the stack by the hardware when the exception
processing code was invoked.

98 ALPHA-64 • Event Processing

Dlgltal Equipment Corporation Proprietary and Confldentl~I
For Internal Use Only-Do Not Copy or Disclose

EXPT_QUAL[O].KIND is QUAL_KIND_JMMEDIATE.

EXPT_QUAL[O].EXTENT is 8.

EXPT_QUAL[O].VALUE is the contents of R4 as passed by the hardware.

EXPT_QUAL[l].KIND is QUAL_KIND_IMMEpIATE.

EXPT_QUAL[l].EXTENT is 8.

EXPT_QUAL[l].VALUE is the contents of R5 as passed by the hardware.

Each hardware exception has specific R4 and RS values, as defined by ALPHA System
Reference Manual which should be consulted for further information.

6.1.4 Exception Handlers

Exception Handler Types
There are four types of exception handlers:

• Primary handlers

• Frame-based handlers

• Last-chance handlers

• The system catchall handler

Primary Handlers
Primary handlers may only be established at run time, and are independent of the procedure
stack frame structure of the executing thread. Primary handlers are norm.ally utilized to
provide language independent services such as debugging, instrumentation, and exception
processing by facilities that might not have an active procedure on the call stack when an
exception occurs.

When an exception is raised, the exception handling support code searches for primary
handlers before any others. No other types of exception handlers are invoked unless all
primary handlers have been invoked and have reraised the exception~

Frame-based Handlers
A frame-based handler is established when a procedure whose descriptor specifies an excep­
tion handler becomes current. Thus, frame-based handlers are usually bound to a procedure
at compile time, and are located at run time via the procedure descriptor.

These exception handlers are norm.ally used to implement a particular language's exception
handling semantics.

If all primary handlers reraise an exception, the exception dispatcher searches for frame­
based handlers. The frame-based handlers which may be invoked are those established by
active procedures, from ~e most current procedure to the oldest predecessor.

ALPHA-64 - Event Processing 99

Digital Equipment Corporation Proprietary and Confldentlal
For Internal Use Only-Do Not Copy or Disclose

Last-Chance Handlers
Like primary handlers, last-chance handlers may only be established at run time. If all
frame-based handlers· reraise an excepti~n the· exception ·dispatcher will invoke the last­
chance handlers.

Like primary handlers, last-chance handlers are normally utilized to proVide language in­
dependent services such as debugging and instrumentation.

System· Catchall Handler
If all other exception handlers reraise an exception, the system catchall handler is invoked.

The system catchall handler is not established by a thread. It is supplied by the system, is
always established, and is always valid.

The action of the system catchall handler is undefined by this standard. It may produce an
error message, continue thread execution, terminate execution of the thread in which the
exception was raised, or any other system dependent action.

General properties
A thread may have an arbitrary number of primary and last-chance handlers simultaneously
established.

Primary Handlers
Primary handlers are invoked in FIFO order with respect to the order in which they were
established.

Last-Chance Handlers
Last-chance handlers and are independent of the procedure stack frame structure of the
executing thread.

Last-chance handlers are invoked in LIFO order with respect to the order in which they
were established.

Other Properties of Exception Handlers

Handling Exceptions
An exception handler that conforms to this standard may not handle any exception that it
did not cause unless there is a prior agreement between the writers of the exception handler
and the writers of the code that raised the exception.

Access to Memory
Exceptions can be raised and unwind operations (which cause exception handlers to be
called) can occur when the current value of one or more variables is in registers rather than
in memory. Because of this, a handler, and any descendant procedure called directly or
indirectly by a handler, must not access any variables except those explicitly passed to the
procedure as arguments or those that exist in the normal scope of the procedure.

This rule can be violated for specific memory locations only by agreement between the
handler and all pro~edures which might access those memory locations. A handler that
makes such agreements does not conform to this standard.

100 ALPHA-64 - Event Processing

6.1.5 Establlshlng Handlers

Establlshlng Primary Handlers

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

A thread may establish a ·primary handler, to be called after all previously established pri­
mary handlers have reraised an exception, via a system library function defined as follows:

LIB_ESTABUSH_PRIMARY(HANDLER, DATA)

Arguments:

HANDLER

DATA

Function Value:

ESTAB_HANDLE

The procedure value of the exception handler to be established as a primary
handler.

A 64-bit establishment-specific value to be passed to the handler. (This
corresponds to the handler data that is stored in the procedure descriptor
for frame based exception handlers)

A 64-bit value which may be used to reference this establishment of a
handler to revoke it.
If the return value is ESTAB_HANDLE_NULL, then an error has occurred
and the procedure was not established as a handler

Establishing Frame-Based Handlers
The list of established frame-based handlers for a thread is defined by the thread's procedure
invocation chain.

A procedure descriptor for which PDSC.FLAGS.HANDLER_ VALID is 1 must specify in
PDSC.STACK_HANDLER or PDSC.REG_HANDLER (as appropriate) the self-relative off­
set to the procedure descriptor of an exception handler. The exception handler specified by
an invocation descriptor is established when that descriptor is added to the invocation chain
(that is, when the procedure designated by the descriptor becomes current), remains estab­
lished as long as that procedure invocation is part of the invocation chain, and is revoked
when that descriptor is removed from the invocation chain (that is, when the procedure
invocation designated by the descriptor terminates, either by returning or being unwound).

Thus, the set of frame-based handlers which is established at any moment is defined by the
current procedure call structure.

Dynamic activation and deactivation of exception handlers is not defined by this calling
standard (and in fact not permitted within the semantics of many language standards). H
this capability is required it must be defined on a language by language basis. Compil­
ers which choose to support this functionality may set up language-specific static exception
handlers that provide the dynamic exception handling semantics of that language. These
static handlers would be established by means of the procedure descriptor of the establish­
ing procedure. If a language compiler decides to support dynamic activation of exception
handlers it must be prepared to recognize code that intends to use this feature (i.e. calls
to any UB$ESTABLISH type dynamic activation routines). This requirement stems from
the need to add appropriate DRAINT instructions and other compile time considerations
needed to make dynamic exception handling function correctly.

ALPHA-64 - Event Processing 101

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

\\
There may be additional protocols ·and conventions for dynamic exception
handling. These may be needed, for ·example, to enable. a .. debugge.r to do a good
job within the language exception handling environment. These conventions will
be driven by the requirements of the languages and the language support
utilities, and will not be addressed by the calling standard.
\\

Establlshlng Last-Chance Handlers
A thread may establish a last-chance handler, to be called before any previously established
last-chance handlers are called, via a system library function defined as follows:

LIB_ESTABLISH_LAST_CHANCE(HANDLER, DATA)

Arguments:

HANDLER

DATA

Function Value:

ESTAB_HANDLE

The System Catchall Handler

The address of the procedure descriptor of the exception handler to be
established as a last-chance handler.

A 64-bit establishment-specific value to be passed to the handler. (This
corresponds to the handler data that is stored in the procedure descriptor
for frame based exception handlers)

A 64-bit value which may be used to reference this establishment of a
handler to revoke it.
If the return value is ESTAB_HANDLE_NULL, then an error has occurred
and the procedure was not established as a handler

The system catchall handler can not be established or revoked by any code which conforms to
this standard. This exception handler is always established and has system defined effects.

6.1.6 Revoking Exception Handlers

A thread may revoke a previously established primary or last-chance handler by calling a
system library function defined as follows: ·

LIB_DISESTABLISH_HANDLER(ESTAB_HANDLE)

Arguments:

ESTAB_HANDLE

Function Value:

A value previously returned by LIB_ESTABLISH_PRIMAR,Y() or
LIB_ESTABLISH_LAST _CHANCE(), specifying the vectored han­
dler to be revoked.

102 ALPHA·64 • Event Processing

STATUS

6.1.7 Raising Exceptions

Raising Unwind Exceptions

Dlgltal Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

A status value:

STATUS_SUCCESS indicates that the specified handler was revoked.

STATus_:FAILURE indicates that. th8 argument did not specify an estab­
lished vectored handler.

The mechanism used to raise an unwind exception vary with the intended resulting action
to be performed. See Section 6.2, Unwinding, for details.

Raising Signal Exceptions

\\
Issue: This assumes a connection between signals and ehf
\\

Signal exceptions may be raised asynchronously (such as for notification of a terminal line
hangup) or synchronously. The exact circumstances that cause an asynchronous signal
exception to be raised vary widely from hardware exception notification to software notifi­
cations such as the POSIX ·defined alarm() function. Complete exposition of these circum­
stances is beyond the scope of this document.

A variety of run time support packages may chose the signal mechanism as a means to
provide certain features. One such package is the ANSI C standard support package which
provides the raise() function to enable a programmer raise a synchronous signal exception.
(defined as raise(int sig) - see Draft Proposed American National Standard for Information
Systems Programming Language C section 4.7.2.1 for details) Another such package is the
POSIX support package which provides the kill(). The basic parameters of this function are
provided below as an example of one means of raising a signal exception.

A thread may raise a signal exception in its own or another process's context by calling a
POSIX library routine defined as follows:

kill(pid, sig)

Arguments:

pid_t pid;

int sig;

Function Value:

0

-1

The process identification of the process to receive the signal.

The signal value to be delivered.

Success

Failure

ALPHA-64 • Event Processing 103

Dlgltal Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

\\
The above is presented simply to convey the basic ideas of raising a
signal. IEEE standard 1003.1-1988 ~ection.3.3.2 should ~e referenced
for complete details of the workings of this. call·.
\\

When raising signal exceptions, EXPT.EPC and EXPT.KIND are ignored in the primary
exception record passed iin.:.the .call. .. kill() sets .EXPT.EPC to the return address of the
invoking call, and sets EXPT.KIND to the appropriate POSIX 1003 .1 style signal number.

Raising General Exceptions
A thread may raise a general exception in its own context by calling a system library routine
defined as follows:

UB_RAISE(EXPT_REC_ADDR)

Arguments:

EXPT_REC_ADDR

Function Value:

None.

The address of a primary exception record.

When raising general exceptions, EXPT.EPC and EXPT.KIND are ignored in the primary
exception record passed in the call. UB_RAISE() sets EXPT.EPC to the return address of
the invoking call, and sets EXPT.KIND to EXC_DEC_RAISE.

If UB_RAISE() detects that the exception record passed via the first argument is not a
valid exception record, it raises the exception STATUS_INVALID_EXCEPTION.

6.1.8 Invocation of Exception Handlers

Order of Invocation
When an exception is raised, established exception handlers are invoked in a specific order.

All primary handlers are first invoked in FIFO order with respect to the order in which they
were established.

If no primary handlers have been established, or if all reraise the exception, then any frame­
based handlers are invoked in order from that established by the most current procedure
invocation to the oldest predecessor in the invocation chain.

If no frame-based handlers have been established, or if all reraise the exception, then the
last-chance handlers are invoked in LIFO order with respect to the order in which they were
established.

Finally, if no other exception handlers have been established, or if all reraise the exception,
then the system catchall handler is invoked.

104 ALPHA-64 - Event Processing

Digital Equipment Corporation Proprietary and Confldentl~I
For Internal Use Onl.y-Do Not Copy or Disclose

Nested Exceptions
A nested exception occurs if an exceptio~ is rai~ed while an ex,:ception .handler is active.

When a nested exception occurs, the structure of the procedure invocation chain, from the
most recent procedure inv~cation to the oldest predecessor, is as follows:

1. The procedure invocation within which the nested exception was raised.

2. Zero or more procedures invoked indirectly or directly by the most recently invoked
(most current) handler.

3. The most current handler.

This is the same invocation as item 1 (that in which the nested exception was raised) if
there are zero invocations in item 2.

4. The procedure invocation within which the active exception that immediately preceded
the nested exception was raised; that is, the invocation in which the exception was
raised for which the most current handler was invoked.

5. Zero or more procedure invocations, all established handlers of which were invoked for
the exception that immediately preceded the nested exception, and all of which reraised.

6. The establisher of the most current handler.

This is the same as item 4 (the invocation in which the exception that immediately
preceded the nested exception was raised) if there are zero invocation in item 5.

7. Zero or more procedure invocations for which no established handlers have· yet been
invoked.

Established handlers are invoked in reverse order with respect to that in which their estab­
lishers were invoked; that is, the search for procedure invocations which have established
handlers is in order from 1 to 7.

Any handlers established by the invocations described by items 1, 2, 3, and 7 are always
invoked for a nested exception.

Any handlers established by the invocations described by items 4, 5, and 6 are invoked if,
and only if, the procedure descriptor for the establisher flags that handler as reinvokable.
This means that no handler will be invoked which has already been invoked for an active
exception unless that handler is flagged as reinvokable. In particular, this applies to any
handler established by a descendent of the establisher of the most current active handler.

If further nested exceptions occur, this procedure invocation chain structure is repeated
for those further nested exceptions, and frame-based handlers are invoked according to
the above rules, in order from those established by the most current procedure to those
established by the oldest predecessor. No handler will be invoked which has already been
invoked for an active exception unless that handler is flagged as reinvokable, and no handler
established by a descendent of the establisher of any active handler will be invoked unless
it is reinvokable.

Steps for Locating and Invoking Handlers for Exceptions
When an exception is raised, the steps that implement the above explanation are as follows:

1. Locate the first-established primary handler, if any.

2. If no established primary handler was located, go to step 7.

3. Invoke the vectored handler just located.

ALPHA·64 • Event Processing 105

Dlgltal Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

4. If the handler returns STATUS_ CONTINUE or initiates an unwind, exit these steps.

5. Locate the next-established primary handler, ~ any ..

6. Go to step 2.

7. Let current_invocation· be the procedure invocation in which the exception was raised.

8. If current_invocation does not establish a handler, go to step 19.

9. lnvoke·the handler established :by current_invocation.

1 O. If the handler returns STATUS_ CONTINUE or initiates an unwind, exit these steps.

11. If current_invocation is not itself an active handler, go to step 19.

12. Locate the establisher of current_invocation.

13. Let current_invocation be the procedure invocation which invoked current_invocation.

14. If the current_invocation does not establish a handler, go to step 18.

15. If the handler is not flagged as reinvokable by its establisher, go to step 18.

16. Invoke the handler established by current _invocation.

17. If the handler returns STATUS_ CONTINUE or initiates an unwind, exit these steps.

18. If current_invocation is not the establisher located in step 12, go to step 13.

19. If current_invocation is the beginning of the procedure invocation chain, go to step 22.

20. Let current_invocation be the procedure invocation which invoked current_invocation.

21. Go to step 8.

22. Locate the last-established last-chance handler, if any.

23. If no established last-chance handler was located, go to step 28.

24. Invoke the vectored handler just located.

25. If the handler returns STATUS_ CONTINUE or initiates an unwind, exit these steps.

26. Locate the previously-established last-chance handler, if any.

27. Go to step 23.

28. Invoke the system catchall handler.

29. Force thread to terminate execution by initiating an exit unwind.·

Invalid Thread Stack
If, during the search for and invocation of frame-based handlers, the exception dispatcher
detects that the thread's stack is corrupt, then the following steps take place:

1. The ESTAB_ CONTEXT argument that is passed to all handlers subsequently invoked
is set to 0.

2. The search for handlers immediately proceeds to the last-chance handlers

106 ALPHA-64 - Event Processing

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only:-Do Not Copy or Disclose

Handler Invocation and Arguments
Every exception handler is invoked·as a ~nction which returns a status value. The function
call is defined as follows: · · · · ·

Arguments:

EXPT _SIGNAL

EXPT _REC_ADDR

ACTIVE_ CONTEXT

ESTAB_CONTEXT

ESTAB_PROC_VALUE

HANDLER_DATA

Function Value:

STATUS

This is a duplicate -of the information passed in the EXPT.KlND field of the
primary exception record.

· · ·. \~ The address.of a -primary.exception record.

A pointer to an invocation context block containing the saved original con­
text at the point where the exception occurred.

For frame-based handlers this is a pointer to an invocation context block
containing the saved context of the routine where the handler was estab­
lished.

For vectored handlers, this argument is an indicator of stack validity. It is
0 if the system has detected that the thread's stack is corrupt during the
search for frame-based handlers, and 1 if the stack is valid. Only vectored
handlers are invoked if stack corruption has been detected.

For frame-based handlers this is the procedure value for the routine where
the handler was established.

For vectored handlers, the contents of this argument is unpredictable.

For frame-based handlers, this is the address of the handler data in the
establisher's procedure descriptor (the address of either POSC.STACK_
HANDLER_DATA or PDSC.REG_HANDLER_DATA).
For vectored handlers, this is the data value specified when the handler
was established.

A status value indicating the action to be taken upon handler return.

The valid status values are STATUS_CONTINUE and STATUS_RERAISE.

6.1.9 Modification of Exception Records and Context by Handlers

The exception records, exception qualifiers, and invocation context blocks that are passed
to an exception handler are always allocated in writeable memory. Handlers may write to
any location in these data structures. The exception records and exception qualifiers that
are passed to a handler are copies of the original ones. Modifications to them are seen by
other subsequently called handlers (within the limits defined below) but do not affect the
original data structures.

The effect of a handler modifying passed exception information is as follows:

1. If EXPT.FLAGS.IS_NONRESUMABLE in the primary exception record is changed from
0 to 1, then the exception handler which made the modification must not return STA­
TUS_ CONTINUE, nor may any handler subsequently invoked for the exception return
STATUS_ CONTINUE.

If STATUS_CONTINUE is returned after EXPT.FLAGS.IS_NONRESUMABLE has
been changed from 0 to 1, then a nested exception is raised with EXPT.VALUE =
STATUS_NONCONTINUE, indicating that an attempt was made to continue from a
noncontinuable exception. This second exception is also noncontinuable.

ALPHA·64 • Event Processing 107

Dlgltal Equipment Corporation Proprietary and Confldentlal
For Internal Use Only-Do Not Copy or Disclose

2. If any flags in EXPT.FLAGS in the- primary exception record are modified except as
specified above, there is no effect after the exception handler completes; all handlers
subsequently invoked for the exception receive a .prin.iary exception record with the
flags unmodified.

In particular, if an exception handler changes EXPT.FLAGS.IS_NONRESUMABLE
from 1 to 0, that handler modification must not return STATUS_CONTINUE, and
any and all handlers subsequently invoked for the exception will be invoked with
"EXPT~FLAGS.IS~NONRESUMABLE set to 1.

3. If the contents of the invocation context block specified by CONTEXT is modified by
a handler, the results are unpredictable, and such a handler does not conform to this
standard.

4. Except as specified above, all changes made to the exception information will be visible
to handlers subsequently invoked for the exception. Any other effects of modifying the
exception information are not defined by this standard.

6.1.1 O Handler Completion and Return Value

When an exception handler has finished all its processing, it must complete its execution
by:

• reraising the exception,

or

• continuing execution of the thread,

or

• initiating procedure invocation unwinding.

Completion by Reralse
If an exception handler determines that additional handlers should be invoked for the ex­
ception (because it could not completely handle the exception), it can reraise the exception
by returning STATUS_RERAISE.

Reraise cause.; the next exception handler to be invoked (see Section 6.1.8, Invocation of
Exception Handlers).

If all exception handlers established by the thread reraise the exception, the system catchall
handler is invoked, with system dependent results.

Completion by Continue
By returning STATUS_CONTINUE, an exception handler can continue execution of the
thread at the address specified by EXPT.EPC in the primary exception record with the
context of the interrupted procedure restored.

If STATUS_CONTINUE is returned and EXPT.FLAGS.IS_NONRESUMABLE is 1, then a
nested exception is raised with EXPT.VALUE = STATUS_NONCONTINUE, indicating that
an attempt was made to continue from a noncontinuable exception. This second exception
is also noncontinuable.

Restrictions on Continuation

Continuation from Unwind

108 ALPHA-64 - Event Processing

Dlgltal Equipment Corporation Proprietary and Confldentlal
For Internal Use Only~o Not Copy or Disclose

STATUS_CONTINUE does not apply wlien EXPT.KIND = EXC_DEC_UNWIND. When an
unwind is in progress, the status returned by handlers is ignored and unwinding always
proceeds as though STATUS_RERAISE was retunied. That is, handlers may not continue
during an unwind operation.

Continuation from Signal Exceptions

The legality and effects of continuation from a signal exception are governed by the under­
lying signal, as specified by the·. implementation· of ,the PO SIX environment. .

Completion by Unwinding
The Unwind type of completion is more complex than simply returning a value. See Sec­
tion 6.2, Unwinding, for details and considerations on Unwinding.

6.1.11 Other Considerations

Exception Synchronization
The ALPHA hardware architecture allows instructions to complete in a different order than
that in which they were issued, and for exceptions caused by an instruction to be raised
after subsequently issued instructions have been completed.

Because of this, the state of the machine when a hardware exception occurs cannot be as­
sumed with the same precision as it can be assumed on conventional VAX. unless ·such pre­
cision has been guaranteed by bounding the exception range with the appropriate insertion
of DRAINT instructions.

The rules for bounding the exception range are as follows:

• If a procedure has an exception handler that does not simply reraise all arithmetic
traps caused by code not contained directly within that procedure then it must issue a
DRAINT instruction before it establishes itself as the current procedure.

RATIONALE:

The above is required because a standard procedure is not allowed to handle
traps that it might not have caused.

• If a procedure has an exception handler that does not simply rerai$e all arithmetic traps
caused by code not contained directly within that procedure or by any procedure that
might have been called while that procedure was current then it must issue a DRAINT
instruction· in the procedure epilogue while it is still the current procedure.

RATIONALE:

The above is required because handlers established by previous invocations in
the call chain might not be able to handle exceptions from a procedure invoca­
tion that is no longer active.

• If a procedure has an exception handler that is sensitive to the invocation depth then it
must issue a DRAINT instruction immediately before and after any call. Furthermore,
the handler must be able to recognize exception PC values that represent DRA.INT
instructions immediately after a call and adjust the depth appropriately.

These rules ensure that exceptions are detected in the context within which exception han­
dlers have been set up to handle them ..

ALPHA-64 • Event Processing 109

Dlgltal Equipment Corporation Proprietary and Confldentlal
For Internal Use Only-Do Not Copy or Disclose

These rules do not ensure that all exceptions are detected while the procedure within which
the exception-causing instruction was issued is current. For example, if a procedure without
an exception handler is called by a procedure that has an. exception handler which is not
sensitive to invocation depth, an exception detected while that called procedure is current
may have been caused by.an instruction issued while the caller was the current procedure.
This means that the frame, designated by the exception handling information, is the frame
that was current when the exception was detected, not necessarily the frame that was
current when the exception-causing instruction was ·issued.

\\
It should be noted that many of the continuation cases that existed on
VAX implementations will no longer be needed on ALPHA as instruction
qualifiers can be used to force the traps never to occur.
\\

Continuation from Exceptions
The ALPHA architecture neither guarantees that instructions are completed in the same
order in which they were fetched from memory nor that instruction execution is strictly
sequential. Continuation after some exceptions is possible, but there are restrictions as
reflected in the following discussions.

Software raised general exceptions are, by definition, synchronous with the instruction
stream and can· have a well defined continuation point. Thus, a handler may have the
option of requesting continuation from a software raised exception. However, since compiler­
generated code typically relies on error free execution of previously executed code, continuing
from a software raised exception may produce unpredictable results and unreliable behav­
ior unless the handler has explicitly fixed the cause of the exception in such a way as to be
transparent to subsequent code.

Hardware faults on ALPHA follow the same rules as the strict interpretation of the conven­
tional VAX rules. Loosely paraphrased, these rules state that if the offending exception is
fixed, re-execution of the instruction (as determined from the supplied PC) will yield correct
results. This does not imply that no instructions following the faulting instruction have
been executed (see the Digi,tal Equipment Corporation ALPHA System Reference Manual
for more details). Hardware faults can therefore be viewed as similar to software raised
exceptions and can have well defined continuation points.

Arithmetic traps cannot be restarted since all the information required for a restart is not
available. The most straightforward and reliable way in which software may guarantee the
ability to continue from this type of exception is by placing appropriate DRAINT instructions
in the code stream. Although this does allows continuation, this technique must be used
with extreme caution due to the negative side effect on application performance.

6.1.12 Exception Handling Coexistence

The procedure based exception handling facility defined by this standard can coexist and
interoperate with a global POSIX-style Signal Facility.

This section defines the features, and the limits, of such a coexistence.

• The system provides a special signal handler which provides an interface between a
signal facility and a frame based exception handling facility. The handler is defined as
follows:

110 ALPHA-64 - Event Processing

Dlgltal Equipment Corporation Proprietary and Confldentlal
For Internal Use Only~o Not Copy or Disclose

LIB_SIG_TO_EXP.T(.. system_defined ..)

This special signal handler will gather the software and/or hardware information as­
sociated with a signal and then pass it to the exception handling support code in such
a way that it can be processed by normal exception handlers. The exception handling
code will then proceed with its normal search and invocation procedures as described
in Section 6.1.2, Exception Handling Overview.

If any handler returns with a continue indication (see Section 6.1.2), thread execution
will resume at the point where it was interrupted by the signal.

If no exception handlers are located, or if all handlers reraise the exception, the system
catchall handler is invoked, with unpredictable (system dependent) results.

• When an application which utilizes procedure based exception handling is initialized in
an environment where signals are also supported, the run time system will install the
special signal handler LIB_SIG_TO _EXPT() for each of the signals SIGFPE, SIGSEGV,
SIGBUS, SIGILL, SIGEMT, SIGIOT, SIGSYS, and SIGTRAP.

Applications and language run time support code may instalIUB_SIG_TO_EXPT() for
other signals if desired.

• If, for any signals for which LIB _SIG_TO _EXPT() is installed, a thread directly calls:

signal(),
sigblock(),
sigsetmask(),
sigpause(),
sigvec(),

or directly utilizes the Signal Facility support code in any way not otherwise described
by this section, the Signal Facility mechanisms will continue to operate correctly but
there will be undefined effects on procedure based exception handling of those signals.

\\
Possible effects include disabling of procedure based handling for the affected
signal(s), by virtue of having modified the action taken for the signal(s).

It is also possible, in a high-reliability environment, for the Signal Facility
to be enhanced to permit a higher degree of interoperation with procedure based
exception handling. For example, an enhanced signal() routine might record the
action specified in the direct call to signal(), and take that action if no
frame-based handlers are located or if all frame-based handlers reraise the
exception.

However, this standard does not define the effects of these
actions by a thread. These effects are system defined and
therefore undefined for purposes of this standard.
\\

• A hardware exception or asynchronous software interrupt may immediately pass control
to the Signal Facility, in which case normal exception handlers will not be invoked
unless LIB_SIG_TO_EXPT() is enabled as a signal handling procedure for the signal
being delivered.

\\
This is how ULTRIX is likely to work.
\\

ALPHA-64 - Event Processing 111

Dlgltal Equipment Corporation Proprietary and Confldentlal
For Internal Use Only-Do Not Copy or Disclose

Alternatively, the exception dispatcher may immediately initiate the search for excep­
tion handlers, and only pass contro~ to the Signal Facility if all handlers re-raise the
exception (i.e. do not continue execution of the thread).· ·· .

\\
This is the current design of VIP.
\\

Which of these alternatives applies to a given environment is system defiried, and han­
dlers should not assume one· or the other of these alternatives.

112 ALPHA-64 - Event Processing

6.2 Unwinding

6.2.1 Unwind Requlreme.nts

Dlgltal Equipment Corporation Proprietary and Confidential
For Internal Use Only~o Not Copy ~r Disclose

The unwinding capabilities specified in this section are for support of:

• Correct and predictable nonlocal GOTO support in a ~ultilanguage environment

• Support for the construction of modular, maintainable multilanguage applications

6.2.2 Unwind Basic Considerations

Unwinding refers to the action of returning from a procedure or a chain of procedures by
a mechanism other than the normal return path. This concept is most often referred to
in the context of exception handling and in fact is only allowed in the context of an active
exception on some operating systems.

Performing an Unwind operation in a thread causes a transfer of control from the location
at which the unwind operation is initiated to a target location in a target invocation. This
transfer of control also results in the termination of all procedure invocations, including the
invocation in which the unwind request was initiated, up to the target procedure invocation.
Thread execution then continues at the target location.

Before control is transferred to the unwind target location, the unwind support code invokes
all frame-based handlers which were established by procedure invocations that are being
terminated. These handlers are invoked with an indication that an unwind is in progress.
This gives each procedure invocation being terminated the chance to perform clean-up pro­
cessing before its context is lost.

Once all the relevant frame-based handlers have been called and the appropriate frames
have been removed from existence, the target invocation's saved context is restored and
execution is resumed at the specified location.

The results of attempting an unwind operation to any invocation previous to the top level
procedure of a thread is undefined by this standard.

In the ALPHA-64 flavor of the calling standard, unwinding does not require a exception
handler to be active; it may be used by languages to implement nonlocal GOTO.

6.2.3 Types of Unwind

There are two types of unwind requests:

General unwind
A gerieral unwind transfers control to a specified location in a specified procedure invocation.

The target procedure invocation is specified by an invocation handle.

The target location is specified with an absolute PC value.

When general unwind is completed, register RO is restored from EXPT.VALUE in the pri­
mary exception record, allowing a status to be returned to the target of the unwind.

ALPHA-64 - Event Processing 113

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

Exit Unwind
Since processes may be multithreaded~ .it is n~cessary for a. _thread which is terminating
execution to clean up its use of shared resources. ·

·Because of this, user mode thread exit may be accomplished only by unwinding. A special
form of unwind, termed exit unwind, invokes all established frame-based handlers with an
exception record specifying that an exit unwind is in progress, terminates all procedure
invocations up .to the beginning of. the call chain, . and terminates execution of the thread.
Threads that use any other mechanism are not considered to be standard and their behavior
is undefined.

Exit unwind terminates every procedure invocation in the invocation chain, after which
execution of the thread is terminated.

6.2.4 Unwinds Invocation Types

There are two cases under which an unwind may be invoked. Those initiated while an
exception is active and those initiated while no exception is active.

Unwind with No Active Exception
An unwind which is initiated when no exception is active is usually done to perform a non­
local GOTO. i.e. to transfer control directly to some code location which is not part of the
currently executing procedure. Even this type of operation must provide a mechanism to
allow cleanup operations of terminated invocations (including restoring a consistent set of
register values) to be performed. The unwind mechanism is used to support this type of
operation.

Unwind during an Active Exception
The handler, or any descendant procedure called directly or indirectly by the handler, can
continue execution of the thread at a different location than that at which the exception was
raised by initiating an unwind operation.

An unwind operation specifies a target invocation in the procedure invocation chain and
a location in that procedure. The operation terminates all invocations up to the target
invocation, and continues thread execution at the specified location in that procedure.

Before control is .transferred to the target location, the unwind operation invokes each frame­
based handler which was established by any procedure invocations being terminated. These
handlers are invoked with an exception record indicating that an unwind. is in progress. This
allows each procedure invocation being terminated to perform clean-up processing before its
context is lost.

Once this phase has completed, the target invocation's saved context is restored and the
execution is continued at the specified location.

One effect of the unwind operation is to terminate the exception handler invocation. Control
is never returned to the point at which the unwind was initiated, and that handler invocation
can therefore never return to its caller.

114 ALPHA-64 - Event Processing

6.2.5 Unwind Initiation

Initiating a General Unwind

Dlgltal Equipment Corporation Proprietary and Confldentl~I
For Internal Use Only-Do Not Copy or Disclose

A thread may initiate a general unwind operation by calling a system library routine. This
routine is defined as follows: ·

UB_UNWIND(TAilGET_INVO, TARGET_PC, EXPT_REC_ADDR)

Arguments:

TARGET _INVO

TARGET_PC

EXPT_REC_ADDR

Function Value:

None.

If non-zero, this is the invocation handle of the target procedure invocation
to which the unwind should be done.

If zero, an exit unwind is invoked.

If non-zero, the address within the target invocation at which to continue
execution.

If zero, the unwind is done to the return point of the active call in the target
procedure.

If TARGET _INVO is zero, then TARGET _PC is ignored.

If non-zero, the address of a primary exception record.

If zero, specifies that a default exception record' should be supplied (see
below).

If the EXPT_REC_ADDR argument is zero, then LIB_UNWIND() supplies a default excep­
tion record which specifies exactly one exception record in which EXPT.VALUE = STATUS_
UNWINDING.

When initiating an unwind operation, EXPT.EPC and EXPr.KIND are ignored in the spec­
ified primary exception record. EXPT.EPC is set to the return address of the call to LIB_
UNWIND(). EXPT.KIND is set to EXC_DEC_UNWIND.

If the. EXPT_REC_ADDR argument is specified when the unwind is initiated, then all other
properties of the exception record are determined by EXPT_REC_ADDR. If UB_UNWIND()
detects that a specified exception record is not a valid unwind record,· it will raise the a
exception of STATUS_INVALID_EXCEPrION.

Once an unwind is initiated, control never returns to the point at which the unwind was
initiated.

Initiating an Exit Unwind
A thread may initiate an exit unwind operation by calling a system library function defined
as follows:

UB_EXIT_UNWIND(STATUS)

ALPHA-64 • Event Processing 115

Dlgltal Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

Arguments:

STATUS If non-zero, an unwind status value ...
If zero, indicates that the default unwind status value should be used.

Function Value:

None. This function will never return.

The exit unwind operation terminates the thread after all active procedures have been
terminated.

AB the procedures in a thread are terminated, they must respond to the exit unwind by
performing the appropriate exit actions.

Multiply Active Unwind Operations
During an unwind operation, another unwind operation may be initiated. This may occur,
for example, if a handler which is invoked for the original unwind initiates another unwind,
or if an exception is raised in the context of such a handler and a handler invoked for that
exception initiates another unwind operation.

An unwind which is initiated while a previous unwind is active is either a nested unwind
or an overlapped unwind.

Nested Unwind
A nested unwind is a general unwind which is initiated while a previous unwind is active,
and whose target invocation in the procedure invocation chain is not a predecessor of the
most current active unwind handler. That is, a nested unwind is one which does not termi­
nate any procedure invocation which would have been terminated by the previously active
unwind.

When a nested unwind is initiated, no special rules apply. The nested unwind operation
proceeds as a normal unwind operation, and when execution resumes at the target location
of the nested unwind, the nested unwind is complete and the previous unwind is once again
the most current unwind operation.

Overlapping Unwind
An overlapping unwind is an exit unwind or general unwind which is initiated while a
previous unwind is active, and whose target invocation in the procedure invocation chain is
a predecessor of the most current active unwind handler. That is, an overlapping unwind is
one which terminates one or more procedure invocations that would have been terminated
by the previously active unwind.

An overlapping unwind is detected when the most current active unwind handler is termi­
nated. This detection of an overlapping unwind is termed a collision.

When a collision occurs, the two unwind operations are merged into a new unwind operation,
which is the only unwind operation active following the merge.

116 ALPHA-64 • Event Processing

Digital Equipment Corporation Proprietary and Confldentl~I
For Internal Use On~y-Do Not Copy or Disclose

Collision with General Unwind
When an unwind collides with an already active_general unwind, the target invocation of the
merged unwind operation is whichever of the target invocatfons specified by the colliding
unwind operations is the oldest predecessor on the procedure invocation chain. That is,
the merged target invocation is whichever of the two target invocations causes the greatest
number of invocations to be terminated.

(Note that exit unwind, by definition, always specifies an older _predecessor than any general
unwind).

The target location of the merged unwind operation is the target location associated with
the oldest predecessor target invocation. If the colliding unwinds specify the same target
invocation, then the target location in that invocation is the target location specified by the
overlapping unwind, and the target location specified by the previously active unwind is
discarded.

The EXPT_REC_ADDR argument of the merged unwind operation is that associated with
the overlapping unwind. The argument associated with the previously active unwind is
discarded.

After the colliding unwinds are merged, the unwind operation continues from the point of
the collision.

In POSIX-conform.ing environments, if any unwind overlaps a general unwind for which
EXPT.FLAGS.IS_LONGJMP is 1, the handler which initiated the colliding unwind is in
error and does not conform to this standard.

Collision with Exit Unwind
When a general unwind collides with an already active exit unwind, a noncontinuable STA­
TUS_ COLLIDED _EXIT_ UNWIND exception is raised at the point of the collision.

If an exit unwind collides with an already active exit unwind, the EXPT_REC_ADDR argu­
ment of the merged unwind operation is that associated with the overlapping unwind. The
arguments associated with the previously active exit unwind are discarded.

6.2.6 Handl6r Invocation During an Unwind

When an unwind operation takes place, all frame-based exception handlers are invoked
which were established by any procedure invocation being terminated. These handlers are
invoked in the reverse order from which they were established.

Since primary, last-chance handlers and the system catchall handler are not associated
with a normal procedure invocation, these handlers are never invoked during an unwind
(although they are invoked if an exception is raised during the unwind operation).

Steps for Locating and Invoking Handlers for Unwind
When an unwind operation it initiated, the steps that implement the above capabilities are
as follows:

1. ·1r the EXPT_REC_ADDR argument is zero, supply a default exception record with
EXPT.VALUE = STATUS_UNWINDING.

2. Let EXPT.KIND = EXC_DEC_UNWIND.

3. Let EXPT.EPC = the return address from the call to LIB _UNWIND().

ALPHA-64 - Event Processing 117

Dlgltal Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

4. Let current_invocation be the procedure invocation which initiated the unwind opera­
tion.

5. If current_invocation = TARGET_INVO and EXPT.FLAGS.IS_EXIT_UNWIND is 0, go
to step 20.

6. If current_invocation establishes a handler, invoke that handler.

7. If current_invocation is an active unwind handler, go to step 12.

8. Remove current_invocation from the procedure invocation chain.

9. If the procedure invocation chain is empty, go to step 24.

10. Let current_invocation be the most current invocation in the procedure invocation chain.

11. Go to step 5.

12. If EXPT.FLAGS.IS_EXIT_UNWIND is 1, go to step 8.

13. Let old_expt_rec be the EXPT_REC_ADDR argument passed to current_invocation.

14. Let old_invo be the TARGET_INVO argument passed to current_invocation.

15. Let old_pc be the TARGET_PC argument passed to current_invocation.

16. If old_expt_rec.FLAGS.IS_EXIT_UNWIND is 0, go to step 18.

17. Raise noncontinuable STATUS_COLLIDED_EXIT_UNWIND.

18. If old_invo denotes a predecessor of TARGET_INVO, let TARGET_INVO =.old_invo,
and let TARGET_PC = old_pc.

19. Go to step 8.

20. Restore saved context of current_invocation.

21. Set register RO to the contents of EXPT.VALUE.

22. If TARGET_PC specified t= 0, let return_pc = TARGET_PC, otherwise let return_pc =
saved return address for current_invocation.

23. Exit these steps, resuming execution at return_pc.

24. IfEXPT.FLAGS.IS_EXIT_UNWIND is 0, raise STATUS_FRAME_NOT_FOUND excep­
tion.

25. Terminate execution of thread.

Invalid Thread Stack
If, during the search for and invocation of frame-based unwind handlers, the system detects
that the thread's stack is corrupt, the following steps take place:

1. The STATUS_STACK_INVALID exception is raised, interrupting the unwind operation.

2. The ESTAB_CONTEX.T argument that is passed to all handlers subsequently invoked
is set to 0. ·

3. The search for handlers immediately proceeds to the last-chance handlers.

118 ALPHA-64 ·Event Processing

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Onl.y-Do Not Copy or Disclose

6.2.7 Unwind Completion

When an unwind completes the following conditioi;ts ar~ tru.e:-·

• The target procedure invocation is the most current invocation in the procedure invoca­
tion chain.

• The environment of the target invocation is restored to the state when that invocation
was last current, except for the contents of all scratch registers

• RO contains a value which was passed (either directly or indirectly) by the routine that
invoked the unwind.

• Execution continues at the target location

6.2.8 Unwinding Coexistence with Setjmp/Longjmp

The procedure invocation unwinding facility defined by this standard can coexist and inter­
operate with setjmp I long.imp facilities.

The features and limits of this coexistence are defined as follows:

• A handler which modifies the contents of any exception record associated with a long.imp
unwind does not conform to this standard.

• Any environment which conforms to this standard must implement the long.imp() func­
tion by initiating a long.imp unwind. This means that longjmp() must construct an
exception record with EXPT.FLAGS.IS_LONGJMP set to 1 and call LIB_UNWIND()
with the appropriate target. All handlers established by procedure invocations being
terminated will be invoked.

The unwind facility supports unwinding operations that maintain the semantics of
longjmp(), in order to make this interoperation possible .

. 6.2.9 Compatibility with Other Environments

The exception handling and unwinding facilities defined by this standard are designed to
allow emulation of older exception handling and unwinding facilities. Examples of how such
emulation can be accomplished are presented below.

Compatibility with VAX/VMS
An exception handling and unwinding environment which provides the interfaces of the
VAXJVM.S Condition Handling Facility can be layered on the facilities defined by this stan­
dard.

Routines to emulate SYS$UNWIND() and other VAXJVM.S exception handling routines can
be provided using the information and facilities specified.

Dynamic exception information conversion can be done for any frame by establishing a static
handler which converts the static handler's arguments to a VAXJVM.S signal array and mech­
anism array, and then invokes a dynamically-established VAXJVM.S exception handler. This
VAXJVM.S handler ~an be dynamically established and revoked, for example, by use of some
location in the establisher's stack frame; the offset of that location in the stack frame can be
specified via the HANDLER_DATA argument passed to the static handler. Implementors
should note that for a program to conform to this standard implies that anytime a dynamic
handler of this type is established or r~voked a DRAINT instruction must be executed.

ALPHA-64 • Event Processing 119

Dlgltal Equipment Corporation Proprietary and Confldentlal
For Internal Use Only-Do Not Copy or Disclose

Compatlblllty with ULTRIX/RISC Exceptlon Handling
An exception handling.and unwinding environment which provides the interfaces of ULTRIX
/RISC Exception Handling can be layered on the facilities· defi.D.ed by this standard.

Routines to emulate exc_resume() and other ULTRIX/RISC exception handling routines can
be provided using the information and facilities. specified.

Dynamic exception information conversion can be done for any frame by establishing a
static handler which·converts the static ·handler's· arguments··to·the· arguments expected by
ULTRIX exception handlers, and then invokes an ULTRIX/RISC exception handler. The
DATA argument to the static handler can specify the location of an ULTRIX/RISC exception
handler information array, which the static handler can process using the same logic as the
ULTRIX/RISC exception_dispatcher() routine.

120 ALPHA-64 • Event Processing

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only~o Not Copy or Disclose

6.3 Asynchronous Software Interrupts

Asynchronous software interrupts . can. arise from a number· of system and environment
specific mechanisms. '.Examples of mechanisms which may cause such interrupts are:

• Usage of a POSIX style signal facility

• Usage of a VMS style AST mechanism

Because many of the' usage ·semantics are the same;- a, given execution environment may
chose to provide a connection mechanism between asynchronous software interrupts and
the exception handling facility. Such a coexistence is described in Section 6.1.12, Exception
Handling Coexistence.

While the existence of asynchronous software interrupts profoundly effects this standard,
conventions for their usage, invocation and handling other than mentioned above are beyond
the scope of this document.

ALPHA-64 • Event Processing 121

CHAPTER 7

MULTITHREADED ENVIRONMENT CONVENTIONS

\\
This is a capability that does not exist yet on either VMS or ULTRIX.

Language bindings for library routines, status values, etc. still need to be
agreed upon. The naming conventions used in this version of this standard are
formal, for purposes of specification only, and do not represent the final
language bindings to these interfaces.
\\

This standard defines the essential mechanisms and conventions to allow support of the
coordination of the execution of multiple threads in a multilanguage environment, including:

• Access to the thread private environment

• Thread stack limit checking

• Thread handling of asynchronous interrupts

• Thread exit

• Management of thread private storage

• Implementation of the Concert Multithread Architecture Services

Only the essential mechanisms to support implementation of the Digital Equipment
Corporation Concert Multithread Architecture Services as a layered set of services are
defined by this standard.

ALPHA-64 - Multlthreaded Environment Conventions 123

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

7.1 Thread Environment Block

The thread environment block (TEB) is a ·data structure associated with each thread. A TEB
is provided to each thread by the system, is used "to maintain user mode software context
specific to that thread, and to manage resources used by the thread.

7.1.1 Access to the Thread Environment Block

A thread can obtain the address of its own TEE' by calling an operating system supplied
function defined as follows:

LIB_GET_TEB()

Arguments:

None.

Function Value:

TEB The address of the Thread Environment Block.

The TEB is fixed at the same virtual address for the life of the thread, so the address
returned by LIB_GET_TEB() is valid until the thread terminates.

7.1.2 Thread Environment Block Format

The following figure illustrates the layout of the thread environment block:

124 ALPHA-64 - Multlthreaded Environment Conventions

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only~o Not Copy or Disclose

Figure 7-1: Thread Environment Block Format
TEB . quadword aligned
+---------------+---------------+--------~--~---~--~~-~~------~-+
I must be zero I BLOCK VERSION I :0
I I - I
+-----------~---+---~-----------+---------------+---------------+.
I LENGTH I :4
I I
+---------------+---------------+---------------+---------------+
I I ·: 8
I ERRNO I
I I
I I
+---------------+---------------+---------------+---------------+
I I : 16
I STACK LIMIT I
I I
I (End of publicly architected portion) I
+==============+===============+===============+===============+
I I : 24

(End of portion owned by stack switching code)
+===============+===============+===============+===============+
I I

(End of portion owned by memory allocation code)
+=============+===========+===========+==========+
I I

(End of portion owned by TPS support code)
+=============+===========+===========+===============+

+==========+===========+==============+========+

Other facility owned sections
+===========+=============+===========+=========+
Size = TEB SIZE is system defined

TEB.BLOCK_ VERSION is a byte that indicates the TEB version. This value would change
if the format of this structure ever changes. For now, it is always set to the value 1.

TEB.LENGTH contains the length in bytes of the thread environment block. TEB.LENGTH
is system defined, is the length allocated for the block (not necessarily the length of the fields
currently defined in the block), and is subject to change if the TEB is extended.

TEB.ERRNO contains the current value of the global errno variable for this thread.

The contents of TEB.ERRNO are unpredictable except in POSIX-conforming environments.

TEB.STACK_LIMIT contains the lowest address allocated to the stack that is currently
active.

ALPHA-64 • Multlthreaded Environment Conventions 125

Dlgltal Equipment Corporation Proprietary and Confldentlal
For Internal Use Only-Do Not Copy or Disclose

7 .2 Stack Limit Checking

A program that is otherwise correct can ·rail because of stack overflow. Stack overflow occurs
when extension of the ·stack (by decrementing SP) allocates addresses not currently reserved
for the current thread's stack.

Detection of a stack overflow situation is important. Without it, a thread, writing into
what it considered to be stack storage, could modify data allocated in that memory for some
other purpose. This would most likely· produce unpredictable ·and undesirable results and/or
unreproducable application failures .

. The requirements for procedures that can execute in a multithread environment include
checking for stack overflow. This section defines the conventions for stack limit checking in
a multithreaded environment.

7.2.1 Stack Guard Region

In a multithreaded environment, the memory beyond the limit of each thread's stack is
protected by contiguous guard pages, which form the stack's guard region.

7.2.2 Methods for Stack Limit Checking

Since there may be accessible memory at addresses lower than those occupied by the guard
region, compilers must generate code such that the stack is never extended past the guard
pages into accessible memory not allocated to the thread's stack.

There are two methods for stack limit checking, depending on the circumstances of the stack
extension.

Implicit Stack Limit Checking
If the stack is being extended by an amount known at compile time to be less than or equal
to MAX_NOCHK_EXTEND, then no explicit stack limit checking is required. Stack limit
checking will be implicit, based on the fact that any reference to the guard region will cause
a hardware exception.

However, because asynchronous interrupts and calls to other procedures may also cause
stack eXtension without explicit stack limit checking, stack extension with implicit limit
checking must follow a strict set of conventions.

These conventions are defined as follows:

1. Explicit stack limit checking must be done unless the amount by which the SP is decre­
mented is known to be less than or equal to MAX_NOCHK_EXTEND.

2. The lowest addressed byte in the new stack region (the region of the stack from the old
value of SP - 1 to the new value of SP) must be accessed before SP can be decremented
for a subsequent stack extension.

This access can be done either before or after the SP is decremented for this stack
~xtension, but it must be done before it can be decremented again.

3. No standard procedure call can be done before the lowest addressed byte in the new
stack region is accessed.

126 ALPHA-64 - Multlthreaded Environment Conventions

Dlgltal Equipment Corporation Proprietary and Confldentlal
For Internal Use Only-Do Not Copy or Disclose

4. The system exception dispatcher ensl.tres that the lowest addressed byte in the new stack
region is accessed .if any kind of asynchronous interrupt occurs after SP is decremented
but before the access to the new lowest byte occurs ..

These conventions ensure that the stack pointer will not be decremented such that it points
to accessible storage beyond the stack limit without this error being detected (by either the
guard region being accessed by the thread or an explicit limit check failure).

If the,stack is·being extended ·by an:·amount known,at compile·time, ,but known to be greater
than MAX_NOCHK_EXTEND, then a code sequence which follows these conventions can
be executed in a loop to safely extend the stack incrementally in segments smaller than or
equal to MAX_NOCHK_EXTEND.

The stack must not be extended incrementally in procedure prologues. A procedure prologue
that needs to extend the stack by an amount greater than MAX_NOCHK_EXTEND may
test new stack regions in a loop that does not modify SP, and then extended the stack with
one instruction.

As a matter of practice, the system can provide multiple guard pages in the guard region.
When a stack overflow is detected as a result of access to the guard region, one or more
guard pages can be unprotected for use by the exception handling facility, and one or more
guard pages can remain protected to provide implicit stack limit checking during exception
processing. However, the size of the guard region and the number of guard pages is system
defined, and is not defined by this standard.

Expllclt Stack Limit Checking
If the stack is being extended by an amount of unknown size or known size greater than
MAX_NOCHK_EXTEND then the following steps must be performed in this order:

1. The new SP value must be calculated and checked against the actual stack limit, which
is available in TEB.STACK_LIMIT in the thread environment block.

2. If the new value for SP is an address lower than the stack limit, then the STACK_
OVERFLOW exception must be raised which will initiate orderly thread termination.

3. Otherwise, the stack can be extended by setting SP to the value calculated in step 1.

7.2.3 Stack Overflow Handling

If a stack overflow occurs, the result is system defined.

The system may transparently handle the overflow, extending the thread's stack, resetting
TEB.STACK_LIMIT appropriately, and continuing execution of the thread.

Note that, if this action is taken, a stack overflow that occurs in a called procedure might
cause the stack to be extended and TEB.STACK_LIMIT to be modified in the TEB.

Because of this, TEB.STACK_LIMIT must be considered volatile and potentially modified
by external procedure calls and by handling of exceptions.

ALPHA-64 - Multlthreaded Environment Conventions 127

Dlgltal Equipment Corporation Proprietary and Confldentlal
For Internal Use Only-Do Not Copy or Disclose

7.3 Asynchronous Software lnterru.pts

Asynchronous Software Interrupt usage; handling, and other interactions with the mul­
tithread environment is outside the scope of this O.ocuinerit. These interactions and con­
ventions are described in the implementation documentation for the Digital Equipment
Corporation Concert Multithread Architecture Services

7.4 Thread Exit

When a thread exits, various actions must be performed. Such actions may include:

• Terminate any threads created as computational resources specifically for the thread
being terminated

• Free all thread private storage regions

• Release locks and mutexes acquired by the thread

• Free other resources local to the thread

In order to ensure that all procedures which are active when a thread exits are able to
perform the necessary exit actions, the only defined means for performing thread exit is to
initiate an exit unwind operation, as described in Section 6.2, Unwinding.

Systems which provide alternative, system-specific services for thread termination must
implement such services by initiating an exit unwind.

128 ALPHA·64 • Multlthreaded Environment Conventions

7 .5 Thread Private Storage

Dlgltal Equipment Corporation Proprietary and Confldent1,.1
For Internal Use On,y-Do Not Copy or Disclose

Thread private storage (TPS) provides threads· in. a multiti.u"eaded environment with per­
thread storage that has the properties of static storage. That is, each thread has its own
copy of all thread private storage, which is shared by the procedures that run in the context
of that thread. ·

Since TPS is thread private, changes to such storage made by a procedure running in the
context of one thread are independent ·of changes made by the same procedure running in
the context of a different thread.

TPS is composed of TPS regions, where each region has many of the properties of a program
static section such as:

• Each TPS region has a global name. Any number of modules can contribute to a TPS
region by specifying the same global name.

• Contributions to the same TPS region from different modules can be overlaid or con­
catenated.

• The total size of a region is determined by the linker.

• A TPS region can be aligned as required by the contributing modules. The alignment
of the region is determined by the linker.

• The initial contents of a TPS region can be specified. Each thread's copy of a TPS region
(termed an instance) is initialized to these contents.

• Access to a TPS region is always read/write.

• The offsets for data within a region are managed by compilers and the linker using the
general methods available for managing data within program sections (such as variables
within a COMMON block).

• Dynamically loaded shared libraries can define TPS regions. These TPS regions are
disjoint from the TPS regions of the calling program and of other dynamically loaded
shared libraries. That is, independently linked libraries do not contribute to each other's
TPS regions.

TPS regions have the following additional properties not shared by program static storage
sections:

• Thread private storage must be allocated and initialized before being accessed by a
thread.

• Each thread accessing a TPS region accesses a distinct instance of the region.

• References in object code to a TPS region must be made using special relocations sup­
ported by the linker.

• References to data within a TPS region must be made as offsets relative to a base pointer.
The base pointer is established when the region is allocated, and must be obtained by
each procedure that accesses the region.

• Each TPS region allocated by a thread will be freed when the thread terminates.

ALPHA·64 • Multlthreaded Environment Conventions 129

Dlgltal Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

TPS regions are not typically visible tO the high level language user. This visibility is
consistent with the visibility of program. sections to the high level language user. High level . ..

languages are expected to use TPS regions when the semantics of the language require
thread private static storage. However, attributes or directives may be provided as language
extensions to make thread private static storage visible to the user.

7.5.1 Referencing Thread Private Storage

Accessing Data In TPS Regions
Resolving a TPS location requires the base address of the TPS region which contains the
location, and the_ offset of the data in the TPS region. The address of the TPS region is used
as a base pointer for all access to data in the region.

Referencing thread private storage requires special techniques because, unlike other mem­
ory references, a reference to TPS may require creation of a TPS region.

Referencing TPS Regions
A reference to a TPS region actually resolves to the address of a TPS descriptor for that
region. A system library function may be used to determine the base address of the TPS
region associated with a TPS descriptor (the structure of which is private to the system and
is not .defined by this standard).

This system supplied function is defined as follows:

UB_GET_TPS(TEB, TPS_DESCRIPTOR)

Arguments:

TEB

TPS_DESCRIPTOR

Function Value:

TPS_REGION_ADDRESS

The address of the thread environment block.

The address of a TPS descriptor.

The base address of the specified TPS region.

If the specified TPS region does not already exist in the calling thread, LIB_GET_TPS()
will create and initialize the region.

\\
There are a number of techniques which may be used to minimize the number of
calls needed to access TPS regions. See SectionD.1.5, Optimized TPS Access, for
details.
\\

130 ALPHA-64 • Multlthreaded Environment Conventions

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only~o Not Copy or Dlsclos&

7.5.2 Sharing TPS Regions Between Shared Libraries

Sharing TPS regions across shared libraries only resolves TPS regions between programs
or libraries that are explicitly linked together. Two or more libraries that are never linked
together, but are dynamically loaded into the same address space, do not share TPS regions.
This behavior is consistent with the behavior of FORTRAN COMMON.

In addition, if a shared library containing a TPS region is relinked, but a program linked
against it is not, the program behavior:is·un<kfined, just.as.it is for FORTRAN COMMON
in the same circumstances. The developer of the shared library must control this situation
by the use of shared library match control.

7.5.3 Deleting TPS Regions

TPS region instances have lifetimes no longer than that of the thread to which they are
bound. They are deleted (by freeing the thread private virtual memory zone) when the
thread terminates.

Deleting TPS regions upon thread exit is the responsibility of the run time facility that
supports TPS.

ALPHA-64 - Multlthreaded Environment Conventions 131

CHAPTER 8

RUN TIME GENERATED CODE

Code generated at run time is important for applications that include:

• Interactive languages.

• Software bit block transfer (for efficient support of graphic displays that don't provide
hardware bit block transfer).

• String pattern matching.

• Sorting.

• Interpretive execution and instruction stream modification by programming and debug­
ging tools.

• Construction of bound procedure variables with a representation consistent with that
of simple procedure values.

Code that is generated at run time and stored into writeable memory must be made safe to
use before it can be executed. This is because the system does not necessarily maintain co­
herency between writeable memory and the instruction cache; it assumes, for example, that
replacing a writeable virtual page with a different virtual page in the same physical page
does not require instruction cache invalidation. It is the responsibility of an application that
generates run time code to obey the correct protocols to insure that the newly constructed
code may be executed properly. Failure to do this can result in application failure.

The system library functions described below provide services to ensure that applications
can declare new code to the system so that call chain navigation can be performed correctly.
These routines do not address the various techniques required for cache coherency, etc.

ALPHA-64 • Run Time Generated Code 133

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Dlsclose

8.1 Procedure Descriptors for Run Time Generated Code

In order to maintain stack traceability when code generated at run time is executed, proce­
dure descriptors must be provided for such code. Such procedure descriptors must correctly
describe the characteristic.s of the code, and the environment within which it executes.

Before run time generated code may be executed, a system library function must be called
one or more times to associate each valid PC range with a procedure descriptor. This can
be done by calling the ·system ·supplied procedure defined as follows:

UB_ADD_PC_RANGE(PROC_DESC_ADDR, START, END)

Arguments:

PROC _DESC_ADDR

START

END

Function Value:

STATUS

The address of a procedure descriptor that describes to code in the PC
range.

The lowest address in the PC range

The highest address in the PC range

A status value:

STATUS_SUCCESS indicates that the PC range has been properly
added to the PC mapping tables.

STATUS_FAILUR$ indicates that the requested operation failed.

When a PC range added by UB_ADD_PC_RANGE() no longer contains valid code or the
code will not be executed again, a system library function should be called to remove the
PC mapping information. This routine is defined as follows:

UB_REMOVE_PC_RANGES(START, END)

Arguments:

START

END

Function Value:

STATUS

The low address of the PC ranges to invalidate

The high address of the PC ranges to invalidate

A status value:
STATUS_SUCCESS indicates that the range has been removed, or
that none existed for the values given.

STATUS_FAILURE indicates that the requested operation could not
be performed.

This procedure may be used to removed:

• All dynamically added PC ranges, by using START = 0, and END = -1.)

• All dynamically added PC ranges within a given section of memory, by using START =
low address, and END= high address.)

134 ALPHA·64 • Run Time Generated Code

Dlgltal Equipment Corporation Proprietary and Confldentlal
For Internal Use Onl.y-Do Not Copy or Disclose

• One dynamically added PC range, by using START = low address of range, and END =
high address of range.)

. . ..

A system library function may be called to release all dynamically added PC ranges associ-
ated with a given. procedure descriptor. This function is defined as follows:

UB_REMOVE_PDSC_PC_RAN.GES(PROC_DESC_ADDR)

Arguments:

PROC_DESC_ADDR

Function Value:

STATUS

The address of the procedure descriptor for which all dynamically added
PC ranges are to be removed.

A status value:
STATUS_SUCCESS indicates that all PC address ranges have been
removed that were associated with the given procedure descriptor.

STATUS_FAILURE indicates that the arguments were invalid.

8.2 Steps for Run Time Generation of code

The following steps show how run time code should be constructed and released: ·

1. Allocate memory for code

2. Write code and procedure descriptor(s) to memory

3. Call LIB_ADD_PC_RANGE()

4. Repeat step 4 for each code segment

5. Execute code

6. Call LIB_REMOVE_PC_RANGES()

7. Deallocate memory containing code

ALPHA-64 • Run Time Generated Code 135

CHAPTER 9

CODE EXAMPLES

The following example illustrates many of the techniques and conventions mentioned above.
This example does not presume to represent how a compiler might actually layout memory,
or to represent actual ALPHA assembler notation. The code fragments presented do not
presume to do anything useful.

MODULE X

Xl::

Yl LKP:

Linkage section for Module X

.psect

.word

.word

.long

$LINK ;Read-Only after image activate

;Descriptor for stack frame procedure Xl

<<<PDSC FLAGS NATIVE I PDSC FLAGS NO JACKET>@4> -
I PDSC KIND PC STACK> ;flag;+ kind

8 - ;Register save area offset
26 ;No signature info + Entry Reg

.address_q Xl ENTRY ;Address of entry code sequence for Xl

.long 48 ;Size of fixed part of stack

.word 0 ;SP set
• word 24 ; Entry length
.long <BIT13IBIT141BIT15IBIT29> ;Integer Register mask
.long 0 ;Floating Register mask

.address q Yl ENTRY

.address:q Yl

;Linkage pair for procedure Yl
;Code address for optimized call
;Yl's descriptor address(procedure value)

POWER 2 TABLE: ;Read-only table of powers of 2
- -.long 1,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192

Y DATA 1 ADDR:
- - ~address_l Y_DATA_l

Y DATA 2 ADDR:
- - ~address 1 Y DATA 2 - -

;External static variables
;Address of Y_DATA_l

;Address of Y_DATA_2

; Entry code sequence for procedure Xl

.psect $CODE

Xl ENTRY::

LDA
STQ
STQ
STQ
STQ

MOV

SP,-48(SP)
R26, 08 (SP)
R13,16(SP)
R14,24(SP)
R15,32(SP)

. R27 ,R13

;Code for Module X

;Address of Xl's descriptor is in R27
; on standard call. Return address is in R26
;Allocate stack space for Xl stack frame
;Save return address
;Save preserved R13
;Save preserved R14
;Save preserved RlS
;Xl is now the current procedure

;Move own procedure descriptor address to a
; preserved register because it is needed
; after the call

Calculate 2 raised to power of first argument and store in Y_DATA_l

ALPHA-64 - Code Examples 137

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

LOA

SLL
ADDL
LDL
LDL
STL

R23,POWER 2 TABLE-Xl(Rl3) ;Scratch R23 now has address of
- - ; powers of 2 table

Rl6,t2,R24 ;Scratch ~4 now has of~set into table
R23,R24,R23 ;R23 now has· address .. of answer
R23, (R23) ;Fetch answer from memory
R24,Y DATA 1 ADDR-Xl(Rl3) ;R24 now has address of Y DATA 1
R23, (R24) - - ;Store answer in Y_DATA_l - -

Preserve arguments across call to Yl

MOV
MOV

·R16,R14
R17,Rl5

CALL procedure Yl

;Save arg l.in preserved R14
;Save arg 2 in preserved R15

LDQ R26,Yl LKP-Xl(R13) ;Pick up entry code address
LDQ R27,Yl-LKP-Xl+S(R13) ;Load his procedure value
CLR R25 - ;Load AI register
JSR R26, (R26) ;Make call to Yl leaving return address in R26

Store first plus second argument in external Y_DATA_2 and
return sum as Xl value

ADDL
LDL

STL

Rl4,Rl5,RO ;Get sum in return value register
R23,Y DATA_2_ADDR-Xl(Rl3)

RO, (R23)
;Load scratch R23 with address of Y DATA 2
;And store answer in Y_DATA_2 as well

LDQ. R23,08(FP) ;Get return address
LDQ R13,16(FP) ;Restore preserved R13
LDQ Rl4,24(FP) ;Restore preserved R14
LDQ R15,32(FP) ;Restore preserved R15
LDA SP,48(SP) ;Restore. caller's SP
RET R31, (R23),signature_hint ;Return to caller with signature

; (Sum in RO)

MODULE Y

Yl::

Yl HND:

.psect $LINK ;Linkage section for Module Y

.word

.byte

.byte

.long

;Descriptor for register frame procedure Yl

<<<PDSC FLAGS BASE REG IS FP I PDSC FLAGS NATIVE I -
PDSC-FLAGS-NO uACKET ,-PDSC FLAGS HANDLER VALID>@4> -
I PDSC_KIND_PC_REGISTER > ;flags + kind -

0 ;MBZ
26 ;Return address is left undisturbed in R26
26 ;No signature info + Entry Reg

.address_q Yl ENTRY

.long 0
;Address of entry code sequence ~or Yl
;Fixed frame Size of Zero

.word 0 ;SP set

.word 4 ;Entry length

.quad Yl HND-. ;Offset to Yl_HND exception handler

.word

.byte

.byte

.long

;Procedure descriptor for exception handler

<<<PDSC FLAGS BASE REG IS FP I PDSC FLAGS NATIVE I -
-PDSC FLAGS-NO JACKET>@4> - - -

I PDSC_KIND_PC_REGISTER > ;flags + kind
0 ;MBZ
26 ;Leave return address undisturbed in R26
26 ;No signature info + Entry Reg

138 ALPHA-64 • Code Examples

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only~o Not Copy or Disclose

• address_q Yl HND ENTRY

• long 0 .
. word 0
.word nn

Y STATIC DATA: - -.address 1 Y_DATA_BASE

.psect $DATA

Y DATA BASE: - -
Y DATA 1:: - - .long
Y DATA 2::

0

.long 37

;Address of entry code sequence for Yl HND •
; (Yl HND ENTRY is not shown
; in this-example.)
;Fixed frame .Size.of Zero
; SP set
;Entry length

;Address of base of static Y data

;Static data area

;Start of static data area

;Global static variable Y DATA 1
; (filled in above)
;Global static variable Y_DATA_2

Sample code sequence for procedure Yl

.psect $CODE

Yl ENTRY::

;Code for Module Y

;Address of Yl's descriptor is in R27

DRAINT
; on standard call. Return address is in R26
;Force pending exceptions to be raised
; in context of caller

Compute product of global static Y DATA 1 and Y_DATA_2.
; Store product in Y_DATA_l. - -

LDL

LDL
LDL
MULL/V
STL
DRAINT

R23,Y_STATIC_DATA-Yl(R27)
;Scratch R23 now has base of data area

R24,Y DATA 1-Y DATA BASE(R23) ;Scratch R24 gets Y_DATA_l value
R28,Y-DATA-2-Y-DATA-BASE(R23) ;Scratch R28 gets Y_DATA_2 value
R24,R28,R24 - ;Calculate product
R24,Y DATA 1-Y DATA BASE(R23) ;Store product in Y_DATA_l

- - - ; Synchronize exceptions

Return to caller

RET R31, (R26),signature_hint ;Return to caller with signature

139

Part II: ALPHA-32 Calling Stan~ard

This part of the document describes· the ALPHA~32 Calling standard.

Wherever possible this entire section of the document only specifies changes or differ­
ences from existing specifications such as the VAXNMS calling standard or the ALPHA-
64 flavor of this calling standard. Further reading in related documents may be required
to fully understand the information in this part.

First time readers are strongly encouraged to read Part I, ALPHA-64 Calling Standard,
in its entirety before attempting to assimilate the material presented below.

CHAPTER 10

INTRODUCTION

The ALPHA-32 flavor of the calling standard is intended to provide a calling standard that
provides a high degree of compatibility with the VAX/VMS environment. Conventions that
have been changed are, for the most part, those that have been dictated by differences
between the ALPHA and VAX hardware architectures.

Many of these conventions are visible to the high level language programmer, and therefore
cannot be changed without requiring source level changes in high level language programs.

Since source level compatibility and portability between VAX and ALPHA are explicit goals,
users should not depend on the properties of this architecture except indirectly through high
level language facilities that are portable across architectures.

10.1 Applicability

It is believed that ALPHANMS phase 1 will be the only operating system to ever support
this flavor of the calling standard.

ALPHA-32 - Introduction 143

CHAPTER 11

BACKGROUND

11.1 Goals

The calling standard for the ALPHA-32 environment has one dominating goal which is to
provide compatibility with VAX/VMS. In order that this goal may be accomplished other
related goals must also be met. Thus the goals for the ALPHA-32 flavor of the calling
standard are:

1. Provide a 32-bit user mode environment providing a very high degree of compatibility
with current VAX/VMS programs

2. Simplify coexistence with VAX procedures executing under the translator environment.

3. Simplify the translation of VAX assembler to native ALPHA object code.

After these goals have been met, this flavor of the calling standard attempts to provide the
performance, portability, and other goals of the ALPHA-64 flavor of the calling standard
(see Section 2.1) as long as they do not do not conflict with the goals stated above.

11.2 Constraints

This standard was developed under the following constraints:

As well as those listed under Section 2.2, Constraints, the following considerations were
factored into the development of this flavor of the calling standard:

• There is a very large body of code that exists for current VAX/VMS systems. The in­
vestment represented by this code must not be wasted.

• This flavor of the calling standard MUST provide a high degree of compatibility to en­
courage a well orchestrated migration from conventional VAX/VMS.systems to ALPHA
NMS systems.

ALPHA-32 • Background 145

Dlgltal Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

11.3 Tradeoffs

While the overriding goal of the ALPHA-32 environment :flavor of the calling standard is for
source compatibility with VAXNMS there are certain tradooffs that have been made. These
tradeoffs are documented below:

Table 11-1: ALPHA-32 Calling Standard Tradeoffs

Issue

No emulation of VAX frames

First n args in regs

Return values in RO and FO

New mechanism array format

Argument list width is 64 bits

New function stack return mechanism

Nsw argument passing n.iles

146 ALPHA-32 • Background

Reason

Exact emulation of VAX stack frames was considered for compatibil­
ity reasons. The decision was made not to do this emulation based
on the following facts: to do so would be extremely costly in perfor­
mance, the stack frame format is not visible when using high level
languages, hardware differences would make the emulation techni­
cally very difficult, there seems to be no real requirement for this
feature.

Passing all call arguments in memory was considered for compatibility
reasons. Passing some arguments in registers was deemed permis­
sible for the following reasons: the location of arguments is not visible
when using high level languages, a significant performance advan­
tage can be realized by passing some arguments in registers, there
is an acceptable fallback mechanism that may be utilized in those
cases where it is required to access a totally in-memory argument
list.

VAX/VMS style (RO + R1) return values were considered for compat­
ibility reasons. That choice was rejected for the following reasons:
location of return value is not visible when using high level languages,
the ALPHA hardware provides no means of transferring data between
floating point and integer registers without going through memory, AL­
PHA registers are 64 bits wide and thus there appears to be no strong
motivation to split a single 64-bit return value between two registers.

One might consider trying to emulate the VAX/VMS mechanism array
format but that would appear to be a very bad choice due to the facts
that: the ALPHA Hardware has a different register set and register
sizes, the calling standard is different than the VAXNMS one, only a
small amount of code is sensitive to the format of this data structure
and that code will most likely have to change anyway due to hardware
differences.

32-bit wide argument lists were considered for compatibility reasons.
64-bit wide argument lists were chosen because: Argument list width
is not visible when using high level languages and is only visible to
middle level (C) languages in very contorted ways. Not so distant
future language feature additions, such as INTEGER*B support
for FORTRAN, would make 32-bit wide arguments very cumbersome.

A new stack return mechanism was chosen because it allowed com­
pilers to utilize techniques developed for the ALPHA-64 flavor of the
calling standard as well as increasing the interoperability of mixed
language calls.

New argument passing ruies were chosen to maximize the speed ad­
vantage over conventional VAXes that the ALPHA architecture offers.

Dlgltal Equipment Corporation Proprietary and Confldentl~I
For Internal Use On~y-Do Not Copy or Disclose

Table 11-1 (Cont.): ALPHA-32 Calling Standard Tradeoffs

Issue

New function value returning rules New function value returning rules were chosen to maximize the
speed advantage of ALPHA as well as maximizing the interoperability
of mixed language procedures.

11.4 Important Technical Decisions

This section discusses important technical decisions that had dramatic effect on this flavor
of the calling standard.

11.4.1 PC Map vs. FP Based Call Chain Navigation

Current plans indicate that the ALPHA-32 flavor of the calling standard will only be sup­
ported by the ALPHA/VMS operating system. In support of the strong goal for VAX/VMS
compatibility wherever possible together with a severe time-to-market constraint it seemed
clear that the ALPHA-32 flavor of the calling standard should use the FP based method.

ALPHA-32 • Background 147

CHAPTER 12

BASIC CONSIDERATIONS

This section describes some fundamental concepts of the ALPHA-32 calling standard.

12.1 Address Representation

Probably the most distinguishing feature of the ALPHA-32 flavor of the calling standard is
that in all cases bits <63:31> of all values that represent addresses are identical. In many
cases this fact is used to save storage since only 32 bits are needed to represent an address.
Structures that are compatible with the ALPHA-64 flavor of the calling standard allocate a
full 64 bits for addresses even though bits <63:31> are always the same.

12.2 Procedure Representation

This flavor of the calling standard represents procedures in the same way as the ALPHA-64
flavor of the standard (i.e. either the address of a statically defined procedure descriptor or,
in the case of bound procedures, the address of a dynamically defined procedure descriptor).
See Section 3.2, Procedure Representation, and Section 4.5.4, Bound Procedure Values, for
more information.

ALPHA-32 ·Basic Considerations 149

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

12.3 Register Usage Conventions·_

This section describes the usage of the ALPHA hardware general purpose (integer) and
floating point registers. · · ·

12.3.1 Integer Registers

In a standard conforming procedure the general purpose, integer registers are used for
the same purposes as in the ALPHA-64 flavor of the standard with the following single
exception:

R29 FP, the Frame Pointer. The contents of this register define, among other things, which procedure is
considered to be current. Details of usage and alignment are defined in Section 13.3, Procedure Call
Chain.

See Section 3.3.1, Integer Registers, for details of other integer register usage.

12.3.2 Floating Point Registers

In a ALPHA-32 standard conforming procedure the floating point registers are used for the
same purposes as in the ALPHA-64 flavor of the standard. See Section 3.3.2, Floating Point
Registers, for details.

150 ALPHA-32 • Basic Considerations

CHAPTER 13

FLOW CONTROL

The following sections contain descriptions of various aspects of the calling standard that
deal with the :flow of control of a program (as opposed to data manipulation which comes
later in Chapter 14).

13.1 Procedure Types

This :flavor of the standard has the same three basic types of procedures as the ALPHA-64
:flavor. They are:

• Stack frame procedure -A procedure that maintains its caller's context on the stack

• Register frame procedure - A procedure that maintains its caller's context in registers

• No Frame procedure - A procedure that does not establish a context and therefore
executes in the context of its caller

See the discussion in Section 4.1, Procedure Types, for more basic information about proce­
dures.

13.1.1 Stack Frame Procedures

The stack frame of this type of procedure consists of a fixed part (the size of which is known
at compile time) and an optional variable part. Certain optimizations can be done if the
optional variable part is not present. Compilers must be careful to recognize situations that
can effectively cause a variable part of the stack to exist in non-intuitive ways such as:

• A called routine may use the stack as a means to return certain types of function values
(see Section 14.2.2 for details).

• A called routine that allocates stack may take an exception in its routine prolog before it
becomes current. In this case the fact that the stack expansion happened in the context
of the caller becomes important (see Section 13.4.5, Entry and Exit Code Sequences, for
more details).

It is for this reason that the fixed stack usage version of this procedure type cannot
make standard calls.

The variable stack usage version of this type of procedure is referred to as full function and
may make standard calls to other procedures.

ALPHA-32 ·Flow Control 151

Dlgltal Equipment Corporation Proprietary and Confldentlal
For Internal Use Only-Do Not Copy or Disclose

Procedure Descriptor For Procedures With a Stack Frame

\\
Procedure Descriptors for the ALPHA-32 flavor of the calling standard are
designed to be very similar to those in the ALPHA-64 flavor. Even.though the
differences are small the entire procedure descriptor layouts are included
below for purposes of clarity. Differences can be easily identified by fields
with FP on the front of the field name. All other fields share a common offset

· '(symbol~name/de£inition)' with· the ALPHA-64 f·lavor'"Of ·the ·standard.
\\

Procedure descriptors for procedures with stack frames are defined as follows:

Figure 13-1: Stack Frame Procedure Descriptor Format
PDSC quadword aligned

+---------------+---------------+---------------+---------------+
I RSA OFFSET I FLAGS I KIND I : 0
I - I <15:4> I <3:0> I

+---------------+---------------+---------------+---------------+
I SIGNATURE_OFFSET I must be zero I reserved I :4
I I I I
+---------------+---------------+---------------+---------------+

:8
ENTRY

+---------------+---------------+----------------+---------------+
I SIZE I : 16
I I
+---------------+---------------+---------------+---------------+
I Reserved I :20
I I
+---------------+---------------+---------------+---------------+
I IREG_MASK I :24
I I
+---------------+---------------+---------------+---------------+
I FREG_MASK I :28
I I
+==========+=========+=============+====-=====+

(End of required part of procedure descriptor) :32

STACK HANDLER

+---------------+---------------+---------------+---------------+
I I : 40
I STACK_HANDLER_DATA I
I I
I I
+---------------+---------------+---------------+---------------+
Size = PDSC STACK SIZE = 32 - -

PDSC.KIND = 9 (denoted by PDSC_KIND_FP_STACK) specifies a procedure descriptor for
a procedure with a stack frame. The frame base register for such a procedure (SP or FP as
indicated by PDSC.FLAGS.BASE_REG_IS_FP) always points to the base of the stack frame
(see form.at below).

152 ALPHA-32 • Flow Control

Dlgltal Equipment Corporation Proprietary and Confldentl'!ll
For Internal Use Only-Do Not Copy or Disclose

PDSC.FLAGS is a vector of flag bits defined as follows.

• PDSC.FLAGS<O>_is denoted by HANDLER_ VALID. . ..

If HANDLER_ VALID is 1, then PDSC.STACK_HANDLER is present and specifies an
exception handler.

• PDSC.FLAGS<l> is denoted by HANDLER:_REINVOKABLE.

HANDLER_REINVOKABLE is 1 if the exception handler is a reinvokable handler, that
is, one that can be reinvoked should another exception occur while the handler is al­
ready active. If HANDLER_REINVOKABLE is 0 then the exception handler is not
reinvokable.

HANDLER_REINVOKABLE must be 0 unless PDSC.FLAGS.HANDLER_ VALID is 1.

RATIONALE:

This ftag was added to correct a specific behavior that became apparent while
implementing run time support using the VAX/VMS exception handling. If an
exception arises while another exception handler is already active, VAX/VMS
skips all handlers between the active frame and the establisher of the exception
handler in which the new exception occurred. BASIC and PI.JI have both had to
code around this problem. Use of this ftag would allow the exception dispatch
code to not skip any exception handler that had this bit set.

• PDSC.FLAGS<2> is denoted by HANDLER_DATA_ VALID.

If HANDLER_DATA_ VALID is 1, then PDSC.STACK_HANDLER must specify a excep­
tion handler, PDSC.FLAGS.HANDLER_ VALID must be 1, and PDSC.STACK_HANDLER_
DATA must exist. If all of these criteria are met the address of PDSC.STACK_
HANDLER_DATA will be passed to the exception handler as defined in Section 15.1,
Exception Handling.

• PDSC.FLAGS<3> is denoted by BASE_REG_IS_FP.

If BASE_REG_IS_FP is 0, then the SP is used as the base register to which PDSC.SIZE
is added during an unwind. A procedure with this flag set to 0 has a fixed amount
of stack storage specified by PDSC.SIZE, all of which is allocated in the procedure
entry sequence, and SP is modified by this procedure only in the entry and exit code
sequences. In this case FP normally contains the address of the procedure descriptor
for the procedure.

A procedure that has this flag set to 0 can NOT make standard calls.

If BASE_REG_IS_FP is 1, then the FP is used as the base. A procedure with this flag
set to 1 has a fixed amount of stack storage specified by PDSC.SIZE, and may have a
variable amount of stack storage allocated by modifying SP in the body of the procedure.

• PDSC.FLAGS<4> is denoted by REI_RETURN.

REI_RETURN is 1 if the procedure expects the stack at entry to be set up so that an
REI instruction will correctly return from the procedure. If this bit is set the contents
of the RSA.SAVED _RETURN field in the register save area are unpredictable and the
return address is found on the stack. (See Figure 4-4, Register Save Area Layout, for
details.)

• PDSC.FLAGS<5> is denoted by STACK_RETURN_ VALUE.

ALPHA-32 • Flow Control 153

Dlgltal Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

STACK_RETURN_ VALUE is 1 if the procedure does not reset the stack pointer to its
value at procedure entry. This is the case when the function value is returned on the
stack. · · ·· ·

• PDSC.FLA.GS<6> must be 0.

• PDSC.FLA.GS<7> is denoted by NO_JACKET.

NO_JACKET must always be set to 1 for compiled code.

• PDSC.FLA.GS<8> is denoted by NATIVE.

NATIVE must always be set to 1 for compiled code.

• PDSC.FLAGS<11:9> must be 0.

PDSC.RSA_OFFSET is the signed difference in bytes between the stack frame base (SP
or FP as indicated by PDSC.FLAGS.BASE_REG_IS_FP) and the register save area (see
layout below). PDSC.RSA_OFFSET must be a multiple of 8 such that (PDSC.RSA_OFFSET)
added to the contents of SP or FP, as indicated by PDSC.FLAGS.BASE_REG_IS_FP, yields
a quadword-aligned address.

PDSC.SIGNATURE_OFFSETis a 16-bit signed byte offset from the start of the procedure
descriptor. This offset, if non-zero, designates the start of the procedure signature block.
A zero in this field indicates that no signature information is present. (See Section 4.2,
Procedure Signatures, for details of the procedure signature block.)

PDSC.ENTRY is the absolute address of the first instruction of the entry code sequence for
the procedure.

PDSC.SIZE is the unsigned size in bytes of the :fixed portion of the stack frame for this pro­
cedure. The value of SP at entry to this procedure can be calculated by adding PDSC.SIZE
to the value SP or FP, as indicated by PDSC.FLAGS.BASE_REG_IS_FP. PDSC.SIZE cannot
be 0 for a stack frame type of procedure since the stack frame must include space for the
register save area.

PDSC.SIZE must be an appropriate multiple to maintain the minimum stack alignment
required by the ALPHA hardware architecture. Furthermore, in almost all cases it will be
a multiple of 16 to maintain proper stack alignment during a call as defined in Section 4.5.1,
Call Conventions.

Various combinations of PDSC.FLAGS.BASE_REG_IS_FP and PDSC.SIZE can be used as
follows:

• When PDSC.FLAGS.BASE_REG_IS_FP is 0 and PDSC.SIZE is zero, then the procedure
utilizes no stack storage and SP contains the value of SP at entry to the procedure.
(Procedure must be a register frame procedure)

• When PDSC.FLAGS.BASE_REG_IS_FP is 0 and PDSC.SIZE is non-zero, then the pro­
cedure has a fixed amount of stack storage specified by PDSC.SIZE, all of which is
allocated in the procedure entry sequence, and SP is modified by this procedure only in
the entry and exit code sequences. (Procedure may not make standard calls)

• When PDSC.FLAGS.BASE_REG_IS_FP is 1 and PDSC.SIZE is non-zero, then the pro=
cedure has a :fixed amount of stack storage specified by PDSC.SIZE, and may have a
variable amount of stack storage allocated by modifying SP in the body of the procedure.
(Procedure must be a stack frame procedure)

154 ALPHA-32 • Flow Control

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only~o Not Copy or Dlsclose·

• The combination when PDSC.FLAGS.BASE_REG_IS_FP is 1 and PDSC.SIZE is zero is
illegal since it viola;ttes the rules for R29 (FP) usage which say that it must be saved (on
the stack) and restored. ·

PDSC.mEG_MASK is a bit vector (0 .. 31) specifying the integer registers that are saved in
the variable portion of the register save area on entry to the procedure. The least significant
bit corresponds to r~gister RO. (Bits 31, 30, and 28 of this mask should never be set since R31
is the integer Read-As-Zero register, R30 is the hardware SP, and R28 is always assumed
to be destroyed during a procedure call or return.)

PDSC.FREG_MASK is a bit vector (0 .. 31) specifying the floating point registers that are
saved in the register save area on entry to the procedure. The least significant bit corre­
sponds to register FO. (Bit 31 of this mask should never be set since it corresponds to the
floating point Read-As-Zero register.)

PDSC.STACK_HANDLER is a signed self-relative pointer to the procedure descriptor
for a run time static exception handling procedure. This part of the procedure descrip­
tor is optional. It MUST be supplied if either PDSC.FLAGS.HANDLER_ VALID is 1 or
PDSC.FLAGS.HANDLER_DATA_ VALID is 1 (which requires that PDSC.FLAGS.HANDLER_
VALID be 1).

If PDSC.FLAGS.HANDLER_ VALID is 0, then the contents or existence of PDSC.STACK_
HANDLER is unpredictable.

PDSC.STACK_HANDLER_DATA is a quadword, the address of which is passed to the
exception handler as context. This is an optional quadword and need only be supplied if
PDSC.FLAGS.HANDLER_DATA_ VALID is 1 .

. If PDSC.FLA.GS.HANDLER_DATA_ VALID is 0, then the contents or existence of PDSC.STACK_
HANDLER_DATA is unpredictable.

RATIONALE:

Because the address of the handler data cell is passed instead of the data itself, the
data may be a self relative pointer.

Stack Frame Format
Even though the exact contents of a stack frame are determined by the compiler there are
certain properties common to all stack frames. The two basic flavors of stack frames are
described below.

The format of the stack frame for a procedure with a fixed amount of stack which uses the
SP as the stack base register (i.e. PDSC.FLA.GS.BASE_REG_IS_FP is 0) is the same as in
the ALPHA-64 flavor of the standard. (See Figure 4-2, Fixed Size Stack Frame Format).
In this case, FP would normally contain the address of the procedure descriptor for the
procedure.

The following figure illustrates the format of the stack frame for procedures with a varying
amount of stack which use the FP as the stack base register (i.e. PDSC.FLAGS.BASE_
REG_IS_FP is 1).

Some parts of the stack frame are optional and occur only as required by the particular
procedure. Brackets surrounding a field's name indicate the field is optional.

ALPHA-32 • Flow Control 155

Dlgltal Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

Figure 13-2: Variable Size Stack Frame Format
quadword aligned

+---------------+---------------+----~----------+---------------+·
I . . . I :0 (From SP)

I I
[stack temporary area]

+---------------+---------------+---------------+---------------+
I I :0 (From FP)
I I
I procedure descriptor address I
I I
I I
+---------------+---------------+---------------+---------------+
I I :8 (From FP)
I I
I I
I [fixed temporary locations] I
I I
I I
I I
+---------------+---------------+---------------+---------------+
I I :PDSC.RSA OFFSET
I I (From FP)
I I
I register save area I
I I
I I
I I
+---------------+---------------+---------------+---------------+
I I
I I
I I
I [fixed temporary locations] I
I I
I I
I I
+---------------+---------------+---------------+---------------+
I I :PDSC.SIZE
I [arguments passed in memory] I (From FP)
I I
I I.
+---------------+---------------+---------------+---------------+

In either case the portion of the stack frame designated by PDSC.SIZE must be allocated
and initialized by the entry code sequence of a called procedure with a stack frame.

Usage of each of the stack areas is the same as in the ALPHA-64 flavor of the standard (see
Figure 4-3) with the following exceptions:

The Procedure descriptor address at O(FP) must contain the address of the procedure
descriptor of the current procedure if PDSC.FLAGS.BASE_REG_IS_FP is 1.

Fixed iemporary iocaiions are used in the same way as in the ALPHA-64 flavor of the
calling standard including the argument home area. In this flavor of the calling standard
generally, 6 * 8 bytes of stack storage will be allocated by the called procedure for this
purpose.

156 ALPHA-32 • Flow Control

Register Save Area

Digital Equipment Corporation Proprietary and Confldentl.al
For Internal Use O~ly-Do Not Copy or Disclose

The Regi,ster Save Area is populated and formatted exactly as in the ALPHA-64 flavor of
this standard (see Figure 4-4, Register Save Area ·Layout) with the additional note that the
preserved integer register set must always include R29 (FP), since it will always be used.

For example, if registers RlO, Rll, Rl5, FP, F2, and F3 were to be saved for a procedure
called with a standard call, they would be packed in the register save area as follows:

Figure 13-3: Register Save Example
quadword aligned

+---------------+---------------+---------------+---------------+
I I :O
I R26 I
I I
I I
+---------------+---------------+---------------+---------------+
I I :8
I RlO I
I I
I I
+---------------+---------------+---------------+---------------+
I I : 16
I Rll I
I I
I I
+---------------+---------------+---------------+---------------+
I I :24
I Rl5 I
I I
I I
+---------------+---------------+---------------+---------------+
I I :32
I R29 (FP) I
I I
I I
+---------------+---------------+---------------+---------------+
I I :40
I F2 I
I I
I I
+---------------+---------------+---------------+---------------+
I ·1 : 48
I F3 I
I I
I I
+---------------+---------------+---------------+---------------+

13.1.2 Register Frame Procedure

The considerations. and conventions for register frame procedures are the same as in the
ALPHA-64 flavor of the calling standard with the exception of the layout of the procedure
descriptor defined below.

ALPHA·32 • Flow Control 157

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

Procedure Descriptor For Procedures With a Register Frame
Procedure descriptors for procedures with register frames are .defined .as follows:

Figure 13-4: Register Frame Procedure Descriptor Format
PDSC quadword aligned

+---------------+---------------+---------------+---------------+
I SAVE_RA I SAVE_FP I FLAGS I KIND I :0
I I I <15:4> I <3:0> I

+---------------+---------------+---------------+---------------+
I SIGNATURE OFFSET I must be zero I reserved I : 4
I - I I I

+---------------+---------------+---------------+---------------+
:8

ENTRY

+---------------+---------------+---------------+---------------+
I SIZE I : 16
I I
+---------------+---------------+---------------+---------------+
I Reserved I :20
I I
+===============+===============+===============+===============+
I (End of required part of procedure descriptor) I :24

REG HANDLER

+---------------+---------------+---------------+---------------+
I I :32
I REG_HANDLER_DATA I
I I
I I
+---------------+---------------+---------------+---------------+
Size = PDSC REGISTER SIZE = 24 - -

PDSC.KIND = 10 (denoted by PDSC_KIND_FP _REGISTER) specifies a procedure descrip­
tor for a procedure with a register frame.

PDS~.FLAGS is a vector of flag bits defined as follows.

• PDSC.FLAGS<O> is denoted by HANDLER_ VALID.

If HANDLER_ VALID is 1, then PDSC.REG_HANDLER must be present and specify an
exception handler.

• PDSC.FLAGS<l> is denoted by HANDLER_REINVOKABLE.

HANDLER_REINVOKA.BLE is 1 if the exception handler is a reinvokable handler, that
is, one that can be reinvoked should another exception occur while the handler is al­
ready active. If HANDLER_REINVOKABLE is 0 then the exception handler is not
reinvokable.

H.ANDLER_F..E!NVOKABLE must be 0 unless PDSC.FLAGS.HANDLER_ VALID is i.

• PDSC.FLAGS<2> is denoted by HANDLER_DATA_ VALID.

158 ALPHA-32 • Flow Control

Dlgltal Equipment Corporation Proprietary and Confidential
For Internal Use On,y-Do Not Copy or Disclose

If HANDLER_DATA_ VALID is 1, then PDSC.REG_HANDLER must specify a excep­
tion handler, PDSC.FLAGS.HANDL~R_ V~ID must be 1,,.and PDSC.REG_HANDLER_
DATA must exist~ If all these criteria are met the address of PDSC.REG_HANDLER_
DATA will be passed to the exception handler as described in Section 15.1, Exception
Handling.

• PDSC.FLAGS<3> is denoted by BASE_REG_IS_FP.

If BASE_REG_IS_FP is 0, .. then the SP is used as the .base register to which PDSC.SIZE
is added during an unwind. A procedure with this flag set to 0 has a fixed amount
of stack storage specified by PDSC.SIZE, all of which is allocated in the procedure
entry sequence, and SP is modified by this procedure only in the entry and exit code
sequences. In this case FP normally contains the address of the procedure descriptor
for the procedure.

A procedure that has this flag set to 0 can NOT make standard calls.

If BASE_REG_IS_FP is 1, then the FP is used as the base and must point to a stack
location that contains the address of the procedure's descriptor. A procedure with this
flag set to 1 has non-zero fixed amount of stack storage specified by PDSC.SIZE, and
may have a variable amount of stack storage allocated by modifying SP in the body of
the procedure.

• PDSC.FLAGS<4> is denoted by REI_RETURN.

REI_RETURN is 1 if the procedure expects the stack at entry to be set up so that an
REI instruction will correctly return from the procedure. If this bit is set the contents
of the PDSC.SAVE_RA field are unpredictable and the return address is found on the
stack.

• PDSC.FLAGS<5> is denoted by STACK_RETURN_ VALUE.

STACK_RETURN_ VALUE is 1 if the procedure does not reset the stack pointer to its
value at procedure entry. This is the case when the function value is returned on the
stack.

• PDSC.FLAGS<6> must be 0.

• PDSC.FLAGS<7> is denoted by NO_JACKET.

NO _JACKET must always be set to 1 for compiled code.

• PDSC.FLAGS<8> is denoted by NATIVE.

NATIVE must always be set to 1 for compiled code.

• PDSC.FLAGS<11:9> must be 0.

PDSC.SAVE_FP is the number of the register in which the value of FP at entry to this
procedure is maintained.

In a standard procedure, PDSC.SAVE_FP must specify a scratch register so as not to violate
the rules for procedure entry code as specified in Section 13.4.5.

PDSC.SAVE_RA. is the number of the register in which the return address is main~
tained. If this procedure uses the standard call conventions and does not modify R26,
then PDSC.SAVE_RA can specify R26.

In a standard procedure, PDSC.SAVE_RA must specify a scratch register so as not to violate
the rules for procedure entry code as specified in Section 13.4.5.

ALPHA-32 • Flow Control 159

Dlgltal Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

PDSC.SIGNATURE_ OFFSET is a 16-bit signed byte offset from the start of the procedure
descriptor. This offset-, if non-zero, designates :the start of th~ procedure signature block.
A zero in this field indicates that no signature information is present. (See Section 4.2,
Procedure Signatures, for details of the procedure signature block.)

PDSC.ENTRY is the absolute address of the first instruction of the entry· code sequence for
the procedure.

PDSC.SIZE is the unsigned size in bytes of the :fixed portion of the stack storage (if any)
for this procedure. The value of SP at entry to this procedure can be calculated by adding
PDSC.SIZE to the value of the register indicated by PDSC.FLAGS.BASE_REG_IS_FP. If a
procedure uses no stack storage then PDSC.SIZE is 0.

PDSC.SIZE must be an appropriate multiple to maintain the minimum stack alignment
required by the ALPHA hardware architecture. Furthermore, in almost all cases it will be
a multiple of 16 to maintain proper stack alignment during a call as defined in Section 4.5.1,
Call Conventions.

PDSC.REG_HANDLER is a signed self-relative pointer to the procedure descriptor for
a run time static exception handling procedure. This part of the procedure descrip­
tor is optional. It MUST be supplied if either PDSC.FLAGS.HANDLER_ VALID is 1 or
PDSC.FLAGS.HANDLER_DATA_ VALID is 1 (which requires that PDSC.FLAGS.HANDLER_
VALID be 1).

If PDSC.FLAGS.HANDLER_ VALID is 0, then the contents or existence of PDSC.REG_
HANDLER is unpredictable.

. PDSC.REG_HANDLER_DATA is a quadword the address of which is passed to the ex­
ception handler as context. This is an optional quadword and need only be supplied if
PDSC.FLAGS.HANDLER_DATA_ VALID is 1.

If PDSC.FLAGS.HANDLER_DATA_ VALID is 0, then the contents or existence of PDSC.REG_
HANDLER_DATA is unpredictable.

RATIONALE:

Because the address of the handler data cell is passed instead of the data itself, the
data may be a self relative pointer.

13.1.3 No Frame Procedure

The considerations and format of the procedure descriptor for a no frame procedure are
the same as in the ALPHA-64 flavor of the calling standard. See Section 4.1.3, No Frame
Procedure, for details.

13.2 Procedure Descriptor Access Routines

A thread can obtain information from the descriptor of any procedure in the thread's vir­
tual address space by calling system library functions as defined in Appendix B, Procedure
Descriptor Access Routines. ·

160 ALPHA-32 • Flow Control

13.3 Procedure Call Chain

13.3.1 Current Procedure

Dlgltal Equipment Corporation Proprietary and Confldentlal
For Internal Use Only~o Not Copy or Disclose

In the ALPHA-32 flavor of the calling standard the frame pointer register (R29, also referred
to as FP) is used to indicate the current procedure.

To accomplish this the current procedure must always maintain in FP one of the following:

• A pointer to the procedure descriptor for that procedure

or

• A pointer to a naturally aligned quadword containing the address of the procedure de­
scriptor for that procedure. For purposes of finding a procedure's procedure descriptor
no assumptions are made about where this quadword is. As long as all other require­
ments of this standard are met, a compiler is free to use FP as a base register for
any arbitrary storage, including a stack frame, as long as at any given instant in time
while that procedure is current the quadword pointed to by the value in FP contains the
address of that procedure's descriptor.

Given an FP value at any point in time, that FP value can be interpreted to find the proce­
dure descriptor for the current procedure by examining the value at O(FP) as follows:

• If O(FP)<2:0> is 0, then FP points to a quadword that contains a pointer to the procedure
descriptor for the current procedure.

• If O(FP)<2:0> t 0, then FP points to the procedure descriptor for the current procedure.

By examining the first quadword of the procedure descriptor the procedure type can be
determined from the PDSC.KIND field.

The following code is an example of how the current procedure descriptor and procedure
type may be found:

10$:

20$:

LDQ
AND
BNEQ
LDQ
AND
BNEQ

RO,O(FP)
R0,#7,R28
R28,20$
RO,O(RO)
R0,#7,R28
R28,20$

;Error - Invalid FP

AND R0,#15,RO

;Fetch quadword at FP
;Mask alignment bits
;Is procedure descriptor pointer
;Was pointer to procedure descriptor
;Do Sanity check
;All is well

;Get kind bits

;Procedure KIND is now in RO

If kind is equal to PDSC_KIND_FP_STACK then the current procedure has a stack frame.

If kind is equal to PDSC_KIND _FP _REGISTER, the current procedure is a register frame
procedure.

Note th.at either type of procedure may use either type of mechanism to point to the pro­
cedure descriptor. Compilers may make the appropriate choice of which mechanism to use
based on the needs of the procedure involved.

ALPHA-32 - Flow Control 161

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

13.3.2 The Call Chain

The definition of the call chain and its usage is the same for this :flavor of the calling standard
as in the ALPHA-64 flavor of the standard (see Section 4.4.2, The Call Chain, for details).

13.3.3 Procedure Call Tracing

The considerations and conventions for tracing the call chain are the same for this :flavor of
the calling standard as in the ALPHA-64 :flavor of the standard. See Section 4.4.3, Procedure
Call Tracing, for details.

13.3.4 Obtaining the Context of a Procedure

The considerations and conventions for obtaining a procedure context are the same for this
:flavor of the calling standard as in the ALPHA-64 :flavor of the standard with the following
single exception:

• In the ALPHA-32 flavor of the calling standard, a procedure invocation handle only
consists of 32 bits.

This handle is defined as follows:

Figure 13-5: Procedure Invocation Handle Format
quadword-aligned

+---------------+---------------+---------------+---------------+
I HANDLE I :0
I I
+---------------+---------------+---------------+---------------+
Size = INVO HANDLE SIZE = 4 - -

HANDLE is a 32-bit quantity which may be used to refer to a specific procedure invocation at
run time. (See Section D.2.1, Invocation Handles, for how this handle might be constructed.)

See Section 4.4.4, Obtaining the Context of a Procedure, for other details of invocation
referencing.

162 ALPHA-32 • Flow Control

13.4 Transfer of control

Dlgltal Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

The considerations and conventions for transferring control are the same for this flavor of
the calling standard as in the ALPHA-64 flavor of the ·staridard. See Section 4.5, Transfer
of control, for details.

13.4.1 Call Conventions

The call conventions for the ALPHA-32 flavor of the calling standard are the same as for
the ALPHA-64 flavor of the standard (See Section 4.5.1, Call Conventions, for details) with
the following exception:

• Function Results

In the ALPHA-32 flavor of the calling standard descriptors that are used for function
returns are formated in a VAXNMS compatible way. See Section 14.2.2, Returning Data
for details.

13.4.2 Linkage

The linkage considerations and conventions are the same for this flavor of the calling stan­
dard as in the ALPHA-64 flavor of the standard. See Section 4.5.2, Linkage, for details.

13.4.3 Calling Computed Addresses

The considerations and conventions for calling computed addresses are the same for this
flavor of the calling standard as in the ALPHA-64 flavor of the standard. See Section 4.5.3,
Calling Computed Addresses, for details.

13.4.4 Bound Procedure Values

The considerations and conventions for bound procedure values, including the format of the
bound procedure descriptor, are the same for this flavor of the calling standard as in the
ALPHA-64 flavor of the standard. See Section 4.5.4, Bound Procedure Values, for details.

13.4.5 Entry and Exit Code Sequences

To ensure that the stack can be interpreted at any point during thread execution, all proce­
dures must adhere to certain conventions for entry and exit. These conventions are described
below. ·

Entry Code Sequence
Since the value of FP defines the current procedure, all properties of the environment spec­
ified by a procedure's descriptor must be valid before the FP is modified to make that pro­
cedure current. In addition, none of the properties specified in the calling procedure's de­
scriptor may be invalidated before the called procedure becomes current. In particular this
means that until the FP has been modified to make the procedure current all entry cod~
must adhere to the following rules:

• All registers specified by this standard as saved across a standard call must contain
their original (at entry) contents.

ALPHA-32 - Flow Control 163

Digital Equipment Corporation Proprietary and Confldentlal
For Internal Use Only-Do Not Copy or Disclose

• No standard calls may be made

·NOTE

If an exception is raised or an exception occurs in the prolog of a procedure, that
procedure's exception .handler (if any) will not be invoked since the procedure is
not current yet. This implies that if a procedµre has an exception handler compilers
may not move code into the procedure prolog that might cause an exception that
would be handled by that handler.

When a procedure is called, the code at the entry address must synchronize (as needed) any
pending exceptions caused by instructions issued by the caller, save the caller's context, and
make the called procedure current by modifying the value of FP.

This is done by performing the following actions:

Do step 1, then steps 2 - 7 in any order, then step 8 or 9.

1. If PDSC.SIZE is not 0, set register SP = SP - PDSC.SIZE.

2. If PDSC.FLAGS.BASE_REG_IS_FP is 1, store the address of the procedure descriptor
at O(SP)

3. If PDSC.KIND = PDSC_IGND_FP _REGISTER, copy the return address to the register
specified by PDSC.SAVE_RA if it is not already there.

4. If PDSC.KIND = PDSC_KIND_FP _REGISTER, copy the FP register to the register
specified by PDSC.SAVE_FP.

5. If PDSC.KIND = PDSC_KIND_FP _STACK, copy the return address to the quadword at
PDSC.RSA_OFFSET.SAVED_RETURN.

6. If PDSC.KIND = PDSC_KIND_FP _STACK store the registers specified by PDSC.IREG_
MASK and PDSC.FREG_MASK in the register save area as denoted by PDSC.RSA_
OFFSET. (This step includes saving the value in FP.)

7. Execute DRAINT if required (see Section 15.1.6, Other Considerations, for details)

8. If PDSC.FLAGS.BASE_REG_IS_FP is 1, load register FP with the address of the proce­
dure descriptor or the address of a quadword that contains the address of the procedure
descriptor.

9. If PDSC.FLAGS.BASE_REG_IS_FP is 1, copy register SP to register FP.

Entry Code Example for a Stack Frame
This example assumes that this is a stack frame ;procedure, that registers.R2 .. R4 and F2 .. F3
are saved and restored, that PDSC.RSA_OFFSET = 16, that the procedure has a static
exception handler that does not reraise arithmetic traps, and that the procedure uses a
variable amount of stack.

LOA
STQ
STQ
STQ
STQ
STQ
STQ
STT
STT
DRAINT

MOV

SP,-SIZE(SP)
R27, (SP)
R26,16(SP)
R2,24(SP)
R3,32(SP)
R4,40(SP)
FP,48\SPj
F2,56(SP)
F3,64(SP)

SP,FP

164 ALPHA-32 • Flow Control

;Allocate space for new stack frame.
;Set up address of procedure descriptor
;Save return address
;Save first integer register.
;Save next integer register
;Save next integer register
;Save caller;s frame pointer
;Save first floating point register
;Save last floating point register
;Force any pending hardware exceptions to be
; raised. (see Section 15 .1. 6)
;Called procedure is now the current procedure.

Digital Equipment Corporation Proprietary and Confidential
For Internal Use On~y.-Do Not Copy or Disclose

'Note that if this code sequence is interrtipted by an asynchronous software interrupt, SP
will have a different value than it did at ~ntry, b:u.t the calling P.rocedur~ will still be current.

At that point, it would not be possible to determine the· original value of SP by the register
frame conventions. If actions by an exception handler result in a nonlocal GOTO to a location
in the immediate caller, then it will not be possible to restore SP to the correct value in that
caller.

Therefore, any procedure that contains a label that can· be ·the target of a non-local GOTO
by immediately called procedures must be prepared to reset or otherwise manage the SP at
that label.

Entry Code Example for a Register Frame
This example assumes that the called procedure has no static exception handler, uti­
lizes no stack storage, PDSC.SAVE_RA specifies R26, PDSC.SAVE_FP specifies R22, and
PDSC.FLAGS.BASE_REG_IS_FP is 0.

MOV
MOV

Exit Code Sequence

FP,R22
R27, FP

;Save caller's FP.
;Set FP to address of called procedure's

descriptor. Called procedure is now the
; current procedure.

When a procedure returns, the exit code must restore the caller's context, synchronize any
pending exceptions, and make the caller current by modifying the value of FP.

This is done by performing the following actions:

Do steps 1 - 4 in any order, then the remaining steps in the order specified.

1. If PDSC.FLAGS.BASE_REG_IS_FP is 1, then copy FP to SP

2. If PDSC.KIND = PDSC_KIND _FP _STACK, and this procedure saves/restores any regis­
ters other than FP and SP, reload those registers from the register save area as specified
by PDSC.RSA_OFFSET.

3. If PDSC.KIND = PDSC_KIND_FP_STACK, load a scratch register with the return ad­
dress from the register save area as specified by PDSC.RSA_ OFFSET. (If PDSC.KIND =
PDSC_KIIID_FP _REGISTER, the return address is already in scratch register PDSC.SAVE_
RA.)

4. Execute DRAINT if required (see Section 15.1.6, Other Considerations, for details)

5. If PDSC.KIND = PDSC_KIND_FP _REGISTER, copy the register specified by PDSC.SAVE_
FP to register FP.

6. If PDSC.KIND = PDSC_KIND_FP _STACK, reload FP from the saved FP in the register
save area.

7. If a function value is not being returned at O(SP), then restore SP to the value it had
at procedure·entry by adding the value that was stored in PDSC.SIZE to SP. (In some
cases the returning procedure will leave SP pointing to a lower stack address than it
~ad on entry to the procedure, as specified in Section 14.2.2, Returning Data).

8. Jump to the return.address (which is in a scratch register).

Note that the called routine does not adjust the stack to remove any arguments passed in
memory. This responsibility falls to the calling routine which may choose to defer their
removal due to optimizations or other considerations.

ALPHA-32 • Flow Control 165

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

Exit Code Example for a Stack Frame
The following is the return code sequenc.e for ~e stack frame __ e:xample above:

MOV FP,SP
LDQ R28,16(FP)
LDQ R2, 24.(FP)
LDQ R3,32(FP)
LDQ R4,40(FP)
LDT F2,56(FP)
LDT F3,64(FP)
DRAINT

LDQ FP,48(FP)
LOA SP,SIZE(SP)
RET R31, (R28)

; Chop the stack back··
;Get return address
;Restore first integer register.
;Restore next integer register
;Restore next integer register
;Restore first floating point register
;Restore last floating point register
;Force any pending hardware exceptions to be
; raised. (see Section 15 .1. 6)
;Restore caller's frame pointer
;Restore SP (SIZE is compiled into PDSC.SIZE)
;Return to caller's code.

Interruption of this code sequence by an asynchronous software interrupt can result in the
calling procedure being the current procedure but with SP not yet restored to its value in
that procedure. The discussion of that situation in entry code sequences applies here as
well.

Exit Code Example for a Register Frame
The following is the return code sequence for the register frame example above:

MOV R22,FP

RET R31, (R26)

166 ALPHA-32 • Flow Control

;Restore caller's FP value.
; Caller is once again the current procedure.
;Return to caller's code.

CHAPTER 14

DATA MANIPULATION

This section deals with the storage and passing of data.

14.1 Data Types

14.1.1 Argument and Function Value Data Types

\\
The detailed. description of the ALPHA data types may be included here later.
For now, section "C. 7 Argument Data Types" of the VAX Procedure
Calling and Condition Handling Standard, Revision 10.3 may be used as a
reference.

The IEEE data types are not currently defined in the document mentioned above.
Their format can be found in the ALPHA SRM.
\\

Fully Supported Data Types
The following VAX data types are fully supported for use as standard argument data types,
and may be passed between external procedures and between languages.

These data types may be freely utilized in the either the ALPHA-32 or ALPHA-64 environ­
ments.

ALPHA·32 • Data Manlpulatlon 167

Dlgltal Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

Table 14-1: Fully Supported Data Types

Atomic Data Type

byte logical

word logical

longword logical

quadword logical

byte integer

word integer

longword integer

quadword integer

F floating

D floating

G floating

F floating complex

D floating complex

G floating complex

IEEE floating basic single S

IEEE floating basic double T

IEEE floating basic single S complex

IEEE floating basic double T complex

String Data Type

character coded text

varying character coded text

numeric string, unsigned

numeric string, left separate sign

numeric string, left overpunched sign

numeric string, right separate sign

numeric string, right overpunched sign

numeric string, zoned sign

Miscellaneous Data Type

descriptor

bound label value

absolute date and time

Type Designator

BU

WU

LU

au
B

w
L

a
F

D

G

FC

DC

GC

FS

FT

FSC

FTC

Type Designator

T

VT
NU

NL

NLO

NR

NRO

NZ

Type Designator

DSC

BLV

ADT

Natural .Alignment

byte

word

longword

quadword

byte

word

longword

quadword

longword

quadword

quadword

longword

quadword

quadword

longword

quadword

longword

quadword

Natural Alignment

byte

word

byte

byte

byte

byte

byte

byte

Natural Alignment

longword

longword

quadword

The following data types are supported for compatibility reasons only:

168 ALPHA-32 - Data Manipulation

String Data Type

two-byte character coded teXt

varying two-byte character coded text

Dlgltal Equipment Corporation Proprietary and Confklentlal
For Internal Use Only-Do Not Copy or Disclose

Type Designator Natural Alignment

T2

VT2

RATIONALE:

word

word

The VAX/VMS calling standard architect says T2 and VT2 were never documented
or used, even in Asia. Thus they are not supported in the ALPHA-64 environment.
They will be removed here if they are dropped from the VAX/VMS calling standard.

Data Types without Robust Hardware Support
The following VAX data types are supported for use as standard argument data types, and
may be passed between external procedures and between languages.

These data types may be utilized but it should be noted that the VAX hardware architec­
ture provides special support for these data types which the ALPHA hardware does not
provide. Therefore, language or application utilization of these VAX data types may result
in (sometimes severe) performance penalties caused by software handling of these types.

Table 14-2: Data Types without Robust Hardware Support

Atomic Data Type

octaword logical

octaword integer

String Data Type

bit

bit unaligned

packed decimal

Unsupported Data Types

Type Designator

OU

0

Type Designator

v
vu
p

Natural Alignment

quadword

quadword

Natural Alignment

byte

NIA
byte

The following VAX data types are unsupported for use as standard argument data types,
and should not be passed between standard external procedures or between languages.

ALPHA-32 - Data Manipulation 169

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

Table 14-3: Unsupported Data Types.

Atomic Data Type

COBOL Intermediate Temporary

H floating1

H floating complex1

Type Designator

CIT

H
HC

Reason.

VAX COBOL specific

Not supported by Hardware

Not supported by Hardware

1 H_floating data is not supported for general usage in either flavor of the ALPHA calling standard. However, conversion routines
will be supplied to allow users to convert existing H_floating data to other storage formats.

Miscellaneous Data Type

sequence of instructions

procedure entry mask

VAX bound procedure value

14.1.2 Argument Descriptors

Type Designator

ZI

ZEM
BPV

Reason

This data type represents VAX instructions

ALPHA procedures have no entry mask.

Replaced by the mechanism defined in Sec­
tion 4.5.4, Bound Procedure Values

ALPHA-32 descriptors are defined by reference to Section "Argument Descriptor Formats"
of the VAX Procedure Calling and Condition Handling Standard, Revision 10.3. That doc­
ument should be consulted for complete descriptions of the descriptors discussed here.

Compatible Descriptor Classes
The following VAX descriptor classes are supported for use as standard ALPHA-32 environ­
ment argument descriptors, and may be passed between external procedures and between
languages with exactly the same rules and semantics as the corresponding VAXNMS de­
scriptors.

Table 14-4: Compatible Descriptor Classes

Descriptor Class

Scalar string

Dynamic string

Array

Decimal scalar string

Noncontiguous array

Varying string

Varying string array

Unaligned bit string

Unaligned bit array

String with bounds

Unaligned bit string with bounds

Class Designator

s
D

A

SD

NCA

vs
VSA

UBS

UBA
SB

UBSB

170 ALPHA-32 • Data Manipulation

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only~o Not Copy or Disclose

Adjusted Descriptor Classes ..
The following VAX/VMS descriptor classes are support.ed for use as standard ALPHA-32
environment argument descriptors, and may be passed between external procedures and
between languages. Their contents and/or semantics, however, are different from those of
VAX/VMS as described below.

Table 14-5: Adjusted Descriptor Classes

Descriptor Class Class Designator

Procedure descriptor p

Unsupported Descriptor Classes

Adjustment

The DSC$A_POINTER field must specify the ad­
dress of a procedure descriptor for the proce­
dure, not the address of the entry mask to the
procedure.

The following VAX descriptor classes are unsupported for use as standard ALPHA-32 envi­
ronment argument data types, and should not be passed between standard external proce­
dures or between languages.

Table 14-6: Unsupported Descriptor Classes

Descriptor Class

Variable buffer descriptor

Procedure Invocation descriptor

Label descriptor

Label incarnation descriptor

BASIQ file array descriptor

Class Designator

v
Pl

J
JI

BFA

14.1.3 Status Codes and Exception Values

Reason

Digital Internal Use Only

Obsolete

Reserved to VAX Debugger

Obsolete

Digital Internal Use Only, may not be passed be­
tween separately compiled modules on VAX.

Status codes and exception values for the ALPHA-32 environment are defined in Section
"Condition Value" of the VAX Procedure Calling and Condition Handling Standard, Revision
10.3.

ALPHA-32 - Data Manlpulatlon 171

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

14.2 Data Passing

Most of the conventions and considerations for data passing in the ALPHA-32 flavor of the
calling standard are the same as for the ALPHA-64 flavor '{See Section 5.2, Data Passing,
for details).

There are, however, a small number of differences that are described below.

14.2.1 Argument Passing Mechanisms

The mechanisms used to pass data are the same as the ALPHA-64 flavor, namely:

• Immediate value

• Reference

• Descriptor

The considerations for the mechanism usage are the same with the following additional
notes:

• Reference argument items must be sign extended to 64 bits.

• Descriptors used are VAX/VMS (32-bit address) style descriptors

• Descriptor argument items (the address of the descriptor) must be sign extended to 64
bits.

14.2.2 Returning Data

The function value return mechanisms are the same as for the ALPHA-64 :flavor of the
calling standard, namely:

• immediate value

• reference

• descriptor

The considerations for returning data by immediate Value and by reference are the same as
the ALPHA-64 :flavor of the calling standard.

Function Value Return By Descriptor
A function value is returned by Descriptor if, and only if,

• the actual size of the function value is not known to both the calling procedure and
the called procedure and the value cannot be returned by immediate value (because the
function value requires more than 64 bits, the data type is a string or an array type,
etc.)

and

• the function value can be returned in a contiguous region of storage.

Non-contiguous function values are language-specific and can not be returned as a standard
conforming return value.

Records, noncontiguous arrays, and arrays with more than one dimension may not be re­
turned by descriptor in a standard call.

172 ALPHA-32 • Data Manlpulatlon

Digital Equipment Corporation Proprietary and Confldentl~I
For Internal Use On~y-Do Not Copy or Disclose

There are two distinct cases where a descriptor return value is used. They are:

• When the caller determines the m8ximum size of the returned value
. . .

• When the called routine determines the maximum size of the returned value

In each case the actual-argument list and the formal-argument list are shifted to the right
by one argument item. The new, first argument item is reserved for the function value.
This hidden first argument is included in the count and register usage information that is
passed in the argument information register.

The two cases of function value return by descriptor are described below. The mechanism
to be used is chosen by the calling procedure, and is specified by the kind of the descriptor
passed as the first argument item.

Caller Defined Return By Descriptor
When the calling procedure determines the maximum size of the returned value it must pro­
vide the required contiguous storage and pass the address of a naturally aligned descriptor

·that describes that storage as the first argument. This descriptor is laid out as follows:

Figure 14-1: ALPHA-32 Caller Defined Return Value Descriptor Format
DSC quadword aligned

+---------------+---------------+---------------+---------------+
I CLASS I DTYPE I LENGTH I : 0
I I I I
+---------------+---------------+---------------+---------------+
I ADDRESS I :4
I I
+---------------+---------------+---------------+---------------+
Size = DSC$K_S_BLN = 8

The calling routine must initialize the descriptor as follows:

• DSC.CLASS must be set to DSC$K_CLASS_S

• DSC.ADDRESS must be set to point to the buffer where the value is to be returned

• DSC.LENGTH must be set to reflect the size of the buffer

To return the value the called function must:

• Write the return value into the storage specified by the hidden descriptor argument,
truncating the return value if its length exceeds the value of DSC.LENGTH.

• Provide whatever padding is required by the semantics of the language of the called
function.

\\
It should be noted that various languages have different language requirements.
FORTRAN and PASCAL, for example, require BLANK padding while Ada does
not pad at all.

This standard makes no attempt to reconcile these differences.
\\

The descriptor may be allocated in read-only storage by the caller and thus the called func­
tion must never modify the descriptor.

ALPHA-32 - Data Manlpulatlon 173

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

RATIONALE:

This type of function value return is. specifically for FORTRAN.

Called Routine Defined_ Return By Descriptor
When the called routine determines the maximum size of the returned value the stack is
used to return the actual data of the value. In this case the descriptor pointed to by the
hidden. first argument is used .as follows:

Figure 14-2: ALPHA-32 Called Routine Defined Return Value Descriptor Format
DSC quadword aligned

+---------------+---------------+---------------+---------------+
I CLASS I DTYPE I LENGTH I : O
I I I I
+---------------+---------------+---------------+---------------+
I ADDRESS I :4
I I
+---------------+---------------+---------------+---------------+
Size = DSC$K_STKRET_BLN = 8

The caller must pass as the first argument a function return descriptor initialized as follows:

DSC.CLASS = DSC$K_CLASS_STKRET = [TBS]
DSC.DTYPE = As appropriate
DSC.ADDRESS = unpredictable
DSC.LENGTH = 0

The descriptor must be allocated in writeable storage, and will be modified by the called
function.

The called function must return its value as follows:

1. Allocate stack storage sufficient to contain the return value and place the return value
on the stack.

2. Update the descriptor as follows:

DSC.CLASS = DSC$K_CLA.SS_STKRET
DSC.DTYPE =As appropriate
DSC.ADDRESS = the address of the first byte of the return value
DSC.LENGTH = an integer 0 .. 216 - 1 specifying the length in bytes of the return
value

NOTE

In all cases DSC.ADDRESS must be set before DSC.LENGTH is made non zero.
This allows unwind operations to properly restore the stack pointer.

3. The return code sequence must not reset SP such that any part of the function return
value is contained by a stack address lower than O(SP). The return value must be
entirely contained by stack storage at or above O(SP).

When control returns to the calling procedure, the contents of register RO are unpredictable.
The caller must manage the return value and SP. The caller may copy the return value from
the stack to some other storage (possibly to a higher address on the stack) and reset SP
appropriately to reflect the return from the called function.

174 ALPHA-32 ·Data Manlpulatlon

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only~o Not Copy or Disclose

Run Time Conventions for Function.Value Return Descriptors
Any standard-conformi,ng function that supports returning values using the DSC$K_ CLASS_
STKRET type of descriptor must also be prepared to. handle the ·other descriptor return value
mechanism, and must return its value according to the mechanism chosen by the caller.

Functions that may returri a stack function return value must use the following algorithm
to determine which of the two mechanisms to use:

1. If DSC.CLASS = DSC$K..;. CLASS_S, then use the :fixed buffer mechanism.

2. Otherwise, use the stack return mechanism.

It is important that functions do not specifically test for DSC.CLASS = DSC$K_CLASS_
STKRET. This is because future extensions to this standard may specify new function return
mechanisms that define new CLASS codes, but that are upward compatible with the stack
return mechanism specified here.

\\
The case in mind here is return via heap storage allocated by the called
function, in which case the caller could "request" return in such heap storage,
but a called function could at its own option override that request and use the
stack return mechanism instead, by changing DSC.CLASS in the passed descriptor.
Callers that "request" return in heap storage would have to be prepared to
handle either heap or stack return from the called function.
\\

Any function that tests for DSC.CLASS = DSC$K_CLASS_STKRET may not be upward
compatible with future versions of this standard. ·

For the same reason, functions that return a value by the stack return mechanism must
always set DSC.CLASS= DSC$K_CLASS_STKRET. Any function that returns a value by
stack return mechanism and does not set DSC.CLASS = DSC$K_CLASS_STKRET may not
be upward compatible with future versions of this standard.

14.3 Static Data

The conventions and considerations around the use of static data including alignment and
record format conventions are the same for this :8.avor of the calling standard as the 64-bit
:8.avor. See the discussion in Section 5.3, Static Data, for details.

ALPHA-32 • Data Manipulation 175

•

CHAPTER 15

EVENT PROCESSING

This chapter discusses specifications related to events that are normally outside the normal
program flow.

15.1 Exception Handling

This section on exception handling discusses the considerations involved in the notification
and handling of exceptional events during the course of normal program execution.

Exception notification and handling is closely tied to the hardware mechanisms for excep­
tional event reporting. The ALPHA architecture is notably different from a conventional
VAX. in this area.

\\
The basic designs and mechanisms of ALPHA Exception handling and unwinding are
modeled after the VAX/VMS design with extensions and corrections to support
POSIX and multithread environments better. That design is defined in Sections
"VAX Conditions", "Operations Involving Condition Handlers", "Properties of
Condition Handlers", and "Multiple Active Signals" of the VAX
Procedure Calling and Condition Handling Standard, Revision 10.3 which may
serve as useful background reading.
\\

15.1.1 Exception Handling Requirements

The exception handling requirements for the ALPHA-32 flavor of the calling standard are
simply to provide the semantics and functionality of the VAX/VMS exception handling.

15.1.2 Exception Handling Overview

Basic workings
The workings of the exception handling mechanisms for the ALPHA-32 flavor of the calling
standard are described in various places in the VAX/VMS documentation set (but referred
to as condition handling).

ALPHA-32 • Event Processing 177

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

15.1.3 Exception Handlers

The types of exception handlers for the ·ALPHA-32 flavor of.the calling standard are .the
same as for VAX/VMS. They are: · · · ·

• Primary handler

• Secondary handler

• Frame-based handlers

• Last-chance handler

• The system catchall handler

See the VAX/VMS documentation for a description of each of these types of handlers and
how they are used.

Other Properties of Exception Handlers

Access to Memory
The ALPHA hardware presents certain differences in memory usage when compared with
conventional VAX hardware. See the discussion in Section 6.1.4, Exception Handlers, for
details.

15.1.4 Establishing and Revoking an Exception Handler

Dynamic activation and deactivation of exception handlers is not defined by this calling
standard (and in fact not permitted within the semantics of many language standards). If
this capability is required it must be defined on a language by language basis. Compil­
ers which choose to support this functionality may set up language-specific static exception
handlers that provide the dynamic exception handling semantics of that language. These
static handlers would be established by means of the procedure descriptor of the establish­
ing procedure. If a language compiler decides to support dynamic activation of exception
handlers it must be prepared to recognize code that intends to use this feature (i.e. calls
to LIB$ESTABLISH or other dynamic activation routines). This requirement stems from
the need to add appropriate DRAINT instructions and other compile time considerations
needed to make dynamic exception handling function correctly.

\\
There may be additional protocols and conventions for dynamic exception
handling. These may be needed, for example, to enable DEBUG to do a good job
within the language exception handling environment. These conventions will be
driven by the requirements of the languages and the language support utilities,
and will not be addressed by the calling standard.
\\

15.1.5 Raising Exceptions

Raising Unwind Exceptions
See Section 15.2, Unwinding, for details.

178 ALPHA-32 - Event Processing

Raising Signal Exceptions

Dlgltal Equipment Corporation Proprietary and Confidential
For Internal Use Only~o Not Copy ~r Dlsclost*

Signal exceptions may. be raised asynchronously (such as for notification of a terminal line
hangup) or synchronously. The exact circumstances that. cause an ·asynchronous signal
exception to be raised vary widely from hardware exception notification to software notifi­
cations such as the POS1X defined alarm() function. Complete exposition of these circum­
stances is beyond the scope of this document.

A variety of run time support packages may chose the signal mechanism as a means to
provide certain features. One such package is the ANSI C standard support package which
provides the raise() function to enable a programmer raise a synchronous signal exception
(defined as raise(int sig) - see Draft Proposed American National Standard for Information
Systems Programming Language C section 4.7.2.1 for details). Another such package is the
POS1X support package which provides the kill() procedure. The basic parameters of this
function are provided below as an example of one means of raising a signal exception.

A thread may raise a signal exception in its own or another process's context by calling a
POSIX library routine defined as follows:

kill(pid, sig)

Arguments:

pid_t pid;

int sig;

Function Value:

0

-1

\\

The process identification of the process to receive the signal.

The signal value to be delivered.

Success

Failure

The above is presented simply to convey the basic ideas of raising a
signal. IEEE standard 1003.1-1988 section 3.3.2 should be referenced
for complete details of the workings of this call.
\\

Raising General Exceptions
A thread may raise a general exception in its own context by calling a system library routine
defined as follows:

UB$SIGNAL(EXCEPTION_ VALUE,)

See the VAX/VMS documentation for details.

15.1.6 Other Considerations

Exception Synchronization
See the discussion in Section 6.1.11, Other Considerations.

ALPHA-32 • Event Processing 179

Dlgltal Equipment Corporation Proprietary and Confldentlal
For Internal Use Only-Do Not Copy or Disclose

Continuation from Exceptions
See the discussion in Section 6.1.11, Other CoD$iderations.

15.1. 7 Mechanism Vector

The VAXNMS mechanism vector includes the fields CHF$L_MCH_SAVRO and CHF$L_
MCH_SAVRl, which refer to registers RO and Rl respectively. The values of RO and Rl in
the mechanism· vector may be 1changed and then· followed bya call to SYS$UNWIND which
will have the effect of returning the new values as the return value from the unwound
procedure.

In the ALPHA-32 environment, the mechanism array is 64 bits wide. CHF$Q_MCH_SAVRO
refers to register R0<63:0>, and CHF$Q_MCH_SAVR1 refers to register R1<63:0>. Access
is also provided to F0<63:0> and F1<63:0> as CHF$Q_MCH_SAVFO and CHF$Q_MCH_
SAVFl respectively so that return values may be modified.

If the exception handler data field is present (as indicated by PDSC.FLAGS.HANDLER_
DATA_ VALID) then the address of the handler data quadword is passed to the handler in
the mechanism array at offset CHF$Q_MCH_DADDR, otherwise this field is passed with
contents of zero.

180 ALPHA-32 - Event Processing

Digital Equipment Corporation Proprietary and Confldentlal
For Internal Use Only~o Not Copy or Disclose

Figure 15-1: Mechanism Array Format-
MECH quadword aligned
+-----+-----+---~-+-----+-----+---~-+----~+-~---+ .
I Argument Count I CHF$Q_MCH_ARGS = 0
+-----+-----+-----+-----+-----+-----+-----+-----+
I Establisher's FP I CHF$Q MCH FRAME.= 8
+-----+-----+-----+-----+-----+-----+----~+-----+ - -
I Depth Argument I CHF$Q_MCH_DEPTH = 16
+-----+-----+-----+-----+-----+-----+-----+-----+
I Handler Data Address I 'CHF$Q_MCH_DADDR = 24
+-----+-----+-----+-----+-----+-----+-----+-----+
I RO I CHF$Q MCH SAVRO 32
+-----+-----+-----+-----+-----+-----+-----+-----+ - -
I Rl I CHF$Q_MCH_SAVR1 40
+-----+-----+-----+-----+-----+-----+-----+-----+
I R16 I CHF$Q_MCH_SAVR16 = 48
+-----+-----+-----+-----+-----+-----+-----+-----+
I I

+-----+-----+-----+-----+-----+-----+-----+-----+
I R28 I CHF$Q_MCH_SAVR28 = 152
+-----+-----+-----+-----+-----+-----+-----+-----+
I FO I CHF$Q_MCH_SAVFO 160
+-----+-----+-----+-----+-----+-----+-----+-----+
I Fl I CHF$Q_MCH_SAVF1 = 168
+-----+-----+-----+-----+-----+-----+-----+-----+
I FlO I CHF$Q_MCH_SAVF10 = 176
+-----+-----+-----+-----+-----+-----+-----+-----+
I I

+-----+-----+-----+-----+-----+-----+-----+-----+
I F30 I CHF$Q_MCH_SAVF30 = 344
+-----+-----+-----+-----+-----+-----+-----+-----+
Size = MECH ARRAY SIZE = 352 - -

15.1.8 Exception Handling Coexistence

The procedure based exception handling facility defined by this standard can coexist and
interoperate with a global POSlX-style Signal Facility.

This section defines the features, and the limits, of such a coexistence.

• The system provides a special signal handler which provides an interface between a
signal facility and a frame based exception handling facility. The handler is defined as
follows:

LIB$SIG_TO_EXPT(.. system_defi;ned ..)

This special signal handler will gather the software and/or hardware information as­
sociated with a signal and then pass it to the exception handling support code in such
a way that it can be processed by normal exception handlers. The exception handling
code will then proceed with its normal search and invocation procedures as described
in Section 15.1.2, Exception Handling Overview.

ALPHA-32 • Event Processing 181

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

If any handler returns with a continue indication (see Section 15.1.2), thread execution
will resume at the point where it was interrupted by the signal.

. . . .

If no exception handlers are located, or if all handlers reraise the exception, the system
catchall handler is invoked, with unpredictable (system dependent) results.

• When an application which utilizes procedure based exception handlmg is initialized in
an environment where signals are also supported, the run time system will install the
special signalhandler LIB$SIG_TO_EXP'I'() for each of the signals SIGFPE, SIGSEGV,
SIGBUS, SIGILL, SIGEMT, SIGIOT, SIGSYS, and SIGTRAP.

Applications and language run time support code may installLIB$SIG_TO_EXPT() for
other signals if desired.

• If, for any signals for which LIB$SIG_TO_EXPT() is installed, a thread directly calls
any of: signal(), sigblock(), sigsetmask(), sigpause(), sigvec(), or directly utilizes the
Signal Facility support code in any way not otherwise described by this section, the
Signal Facility mechanisms will continue to operate correctly but there will be undefined
effects on procedure based exception handling of those signals.

\\
Possible effects include disabling of procedure based handling for the affected
signal(s), by virtue of having modified the action taken for the signal(s).

It is also possible, in a high-reliability environment, for the Signal Facility
to be enhanced to permit a higher degree of interoperation with procedure based
exception handling. For example, an enhanced signal() routine might record the
action specified in the direct call to signal(), and take that action 'if no
frame-based handlers are located or if all frame-based handlers reraise the
exception.

However, this standard does not define the effects of these
actions by a thread. These effects are system defined and
therefore undefined for purposes of this standard.
\\

• A hardware exception or asynchronous software interrupt may immediately pass control
to the Signal Facility, in which case normal exception handlers will not be invoked
unless LIB$SIG_TO_EXPT() is enabled as a signal handling procedure for the signal
being delivered.

\\
This is how ULTRIX is likely to work.
\\

Alt.ernatively, the exception dispatcher may immediately initiate the search for excep­
tion handlers, and only pass control to the Signal Facility if all handlers re-raise the
exception (i.e. do not continue execution of the thread).

\\
This is the current design of VIP.
\\

Which of these alternatives applies to a given environment is system defined, and han..:
dlers should not a.ss11nie one or the other of these alter.uatives.

182 ALPHA·32 ·Event Processing

15.2 Unwinding

Digital Equipment Corporation Proprietary and Confldentlal
For Internal Use Only-Do Not Copy or Disclose

The ALPHA-32 environment exception handling is essentially.the same as the conventional
VAX/VMS design. That design is defined in Sections 'VAX Conditions", "Operations Involv­
ing Condition Handlers", "Properties of Condition Handlers", and ''Multiple Active Signals"
of the VAX Procedure Calling and Condition Handling Standard, Revision 10.3.

This basic mechanism has been extended to:

• Provide reinvokable handlers

• Provide exception handlers with a handler specific context

15.2.1 Unwind Initiation

In this flavor of the calling standard an unwind may only be invoked while an exception is
active.

Initiating a General Unwind
A thread may initiate a general unwind operation by calling a system service. This service
is defined as follows:

SYS$UNWIND(.. PARAMS ..)

See the VAX/VMS documentation for details of usage and parameters of SYS$UNWIND.

Initiating an Exit Unwind
A thread may initiate an exit unwind operation by calling a system library function defined
as follows:

LIB$EXIT_VNWIND(STATUS)

Arguments:

STATUS If non-zero, an unwind status value.

If zero, indicates that the default unwind status value should be used.

Function Value:

None. Unlike SYS$UNWIND, this function will never return.

The exit unwind operation terminates the th.read after all active procedures have been
terminated.

As the procedures in a thread are terminated, they must respond to the exit unwind by
performing the appropriate exit actions.

ALPHA-32 • Event Processing 183

Dlgltal Equipment Corporation Proprietary and Confldentlal
For Internal Use Only-Do Not Copy or Disclose

15.2.2 Unwind Completion

In the ALPHA-32 fiavor of the calling standard the value that exists in.RO when the unwind
completes is the value that is passed implicitly to the unWi.nder in the mechanism array (see
Section 15.1.7, Mechanism Vector). This value should be set appropriately by an exception
handler before the unwind is initiated.

184 ALPHA-32 • Event Processing

Dlgltal Equipment Corporation Proprietary and Confldentlal
For Internal Use Only-Do Not Copy or Disclose

15.3 Asynchronous Software Interrupts

Asynchronous software interrupts can arise from a number of system and environment
specific mechanisms. Examples of mechanisms which may··cause such interrupts are:

• Usage of a POSIX style signal facility

• Usage of a VMS style AST mechanism

Because many of the ·usage semantics are. the. same. .a given execution environment may
chose to provide a connection mechanism between asynchronous software interrupts and
the exception handling facility. Such a coexistence is described in Section 15.1.8, Exception
Handling Coexistence.

While the existence of asynchronous software interrupts profoundly effects this standard,
conventions for their usage, invocation and handling other than mentioned above are beyond
the scope of this document.

ALPHA-32 - Event Processing 185

CHAPTER 16

MULTITHREADED ENVIRONMENT CONVENTIONS

The conventions and considerations for the ALPHA-32 multithreaded environment are the
same as for the ALPHA-64 environment with the following caveats:

• In the Thread Environment Block (TEB), although fields are allocated as quadwords
their usage may only be of the first longword. This means that code referencing fields
such as errno must be aware of the true size of the data.

• The names of the routines used to perform various functions will differ (typically by
including a '$' character in the name) from the ALPHA-64 flavor of the standard.

\\
This is a capability that does not exist yet on either VMS.

Language bindings for library routines, status values, etc. still need to be
agreed upon. The naming conventions used in this version of this standard are
formal, for purposes of specification only, and do not represent the final·
language bindings to these interfaces.
\\

ALPHA-32 - Multlthreaded Environment Conventions 187

CHAPTER 17

CODE EXAMPLES

The following example illustrates many of the techniques and conventions mentioned above.
This example does not presume to represent how a compiler might actually layout memory,
or to represent actual ALPHA assembler notation. The code fragments presented do not
presume to do anything useful.

MODULE X

Xl::

Yl LKP:

Linkage section for Module X

.psect

.word

.word

.long

$LINK ;Read-Only after image activate

;Descriptor for stack frame procedure Xl

<<<PDSC FLAGS BASE REG IS FP I PDSC FLAGS NATIVE I -
-PDSC FLAGS-NO JACKET>@4> - - -

I PDSC KIND FP STACK > ;flags + kind
8 - ;Register save area offset
26 ;No signature info + Reserved

.address q Xl ENTRY ;Address of entry code sequence for Xl

.long is ;Size of fixed part of stack
• long 0 ;Reserved
.long <BIT13IBIT141BIT15IBIT29> ;Integer Register mask
.long 0 ;Floating Register mask

.address q Yl ENTRY

.address=q Yl-

;Linkage pair for procedure Yl
;Code address for optimized call
;Yl's descriptor address(procedure value)

POWER 2 TABLE: ;Read-only table of powers of 2
- -.long 1,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192

Y DATA 1 ADDR:
- - ~address_l Y_DATA_l

Y DATA 2 ADDR:
- - ~address 1 Y_DATA_2

;External static variables
;Address of Y_DATA_l

;Address of Y_DATA_2

Entry code sequence for procedure Xl

.psect $CODE

Xl ENTRY::

LOA
STQ
STQ
STQ
STQ
STQ
STQ
MOV

MOV

SP,-48(SP)
R27, (SP)
R26,08(SP)
R13,16(SP)
R14,24(SP)
Rl5,32(SP)
FP,40(SP)
SP,FP

R27,R13

;Code for Module X

;Address of Xl's procedure descriptor is in R27
; on standard call. Return address is in R26
;Allocate stack space for Xl stack frame
;Set up procedure descriptor pointer
;Save return address
;Save preserved R13
;Save preserved R14
;Save preserved R15
;Save caller's frame pointer
;Xl is now the current procedure

;Move own procedure descriptor address to a
preserved register because it is needed

; after the call

ALPHA-32 - Code Examples 189

Dlgltal Equipment Corporation Proprietary and Confldentlal
For lntemal Use Only-Do Not Copy or Disclose

; Calculate 2 raised to power-of first argument and store in Y_DATA_l

LDA

SLL
ADDL
LDL
LDL
STL

R23,POWER 2 TABLE-Xl(Rl3) ;Scratch R23 now has address of
- - ; powers of 2 table . . .

Rl6,f2,R24 ;Scratch R24 now has offset into table
R23,R24,R23 ;R23 now has address of answer
R23, (R23) ;Fetch answer from memory
R24, Y DATA l ADDR-Xl (Rl3) .;R24 now has address of Y DATA 1
R23, (R24) - - ;Store answer in Y_DATA_l - -

Preserve arguments across call to Yl

MOV
MOV

Rl6,Rl4
Rl7,Rl5

CALL procedure Yl

;Save arg l in preserved Rl4
;Save arg 2 in preserved RlS

LDQ R26,Yl_LKP-Xl(Rl3) ;Pick up entry code address
LDQ R27,Yl LKP-Xl+8(Rl3) ;Load his procedure value
CLR R25 - ;Load AI register
JSR R26, (R26) ;Make call to Yl leaving return address in R26

Store first plus second argument in external Y_DATA_2 and
return sum as Xl value

ADDL
LDL

STL

LDQ
LDQ
LDQ
LDQ
LDQ

LDA
RET

Rl4,Rl5,RO ;Get sum in return value register
R23,Y_DATA_2_ADDR-Xl(R13)

RO, (R23)

R23,08(FP)
Rl3,l6(FP)
Rl4,24(FP)
Rl5,32(FP)
FP,40(FP)

SP,48(SP)
R31, (R23)

;Load scratch R23 with address of Y_DATA_2
;And store answer in Y_DATA_2 as well

;Get return address
;Restore preserved Rl3
;Restore preserved Rl4
;Restore preserved RlS
;Restore caller's frame pointer. Caller is once
; again the current procedure.
;Restore caller's SP
;Return to caller with sum in RO

MODULE Y

Yl::

Yl HND:

.psect $LINK ;Linkage section for Module Y

.word

.byte

.byte

.long

;Descriptor for register frame procedure Yl

<<<PDSC FLAGS NATIVE I PDSC FLAGS NO JACKET I -
-PDSC FLAGS HANDLER VALID>i4>--

I PDSC KIND FP REGISTER > ;flags + kind
22 - ;Calle~'s FP is saved in R22
26 ;Return address is left undisturbed in R26
26 ;No signature info + Reserved

.address_q Yl ENTRY

.long 0
;Address of entry code sequence for Yl
;Fixed frame Size of Zero

.long 0 ;Reserved

.quad Yl HND-. ;Offset to Yl_HND exception handler

.word

.byte

.byte

.long

;Descriptor for exception handler

<<<PDSC FLAGS NATIVE I PDSC FLAGS NO JACKET>@4> -
PDSC KIND FP REGISTER >-;flags + kind

23 - ;Sa;e ;aller's FP in R23
26
26

;Leave return address undisturbed in

;No signature info + Reserved

190 ALPHA-32 - Code Examples

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Dlsclos•

.address_q Yl HND ENTRY ;Address of entry code sequence for Yl_HND.
; (Yl HND ENTRY is not shown

.long

.long
0
0

; · in this~ example .) ..
;Fixed frame Size of.Zero
;Reserved

Y STATIC DATA: ;Address of base of static Y data.
:-address l Y DATA BASE - -
.psect $DATA

Y DATA BASE:

;Static data area

;Start of static data area

Y DATA 1:: ;Global static variable Y_DATA_l
; (filled in above) - - .long

Y DATA 2::
0

;Global static variable Y_DATA_2 - - .long 37

Sample code sequence for procedure Yl

.psect $CODE

Yl ENTRY::

;Code for Module Y

;Address of Yl's descriptor is in R27

MOV FP,R22
; on standard call. Return address is in R26
;Save caller's frame pointer in scratch R22
;Force pending exceptions to be raised DRAINT
; in context of caller

MOV R27, FP ;Yl is now the current procedure

Compute product of global static Y DATA 1 and Y_DATA_2.
Store product in Y_DATA_l. - -

LDL R23,Y_STATIC_DATA-Yl(R27)

LDL
LDL
MOLL/V
STL
DRAINT

;Scratch R23 now has base of data area
R24,Y DATA 1-Y DATA BASE(R23) ;Scratch R24 gets Y DATA 1 value
R28,Y=DATA=2-Y=DATA=BASE(R23) ;Scratch R28 gets Y=DATA:_2 value
R24,R28,R24 ;Calculate product
R24,Y DATA 1-Y DATA BASE(R23) ;Store product in Y_DATA_l

- - - ; sy;chronize exceptions

Return to caller

MOV

RET

R22, FP

R31, (R26)

;Restore caller's frame pointer. Caller is once
; again the current procedure.
;Return to caller

191

Part Ill: Appendi.ces

This part of the document describes techniques and details related to various aspects of
the ALPHA Calling standard. This part of the document is not part of the formal standard.
Because of this, nothing in this section may be required by conformant software.

APPENDIX A

MULTITHREAD DESIGN NOTES

This appendix presents a brief overview of some of the implementation details for multi­
thread support. The design reflected here is subject to change without notification. Therefore
it is important that compilers and applications must not depend on any structures or other
information presented in this appendix. Any program. or component that depends on this
design may not be portable to future implementations of this specification. Portable pro­
grams and components must use only the functions specified in Chapter 7, Multithreaded
Environment Conventions.

Multlthread Design Notes 195

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

A.1 Thread Environment Block Facility Area

Figure A-1: Thread Environment Block Facility Area Format
TEB quadword aligned

+---------------+---------------+---------------+---------------+
I I :o

See Chapter 7 for details

(End of publicly architected portion}
+===============+===============+===============+===============+
I I :24
I MAIN_STACK_BASE I
I I
I I
+---------------+---------------+---------------+---------------+
I I :32
I MAIN_STACK_LIMIT I
I I
I I
+---------------+---------------+---------------+---------------+
I I :40
I SIG_STACK_BASE I
I I
I I
+---------------+---------------+---------------+---------------+
I I :48·
I SIG_STACK_LIMIT I
I I
I (End of portion owned by stack switching code) I
+==============+===============+==============+===============+

MEMORY ZONE

(End of portion owned by memory allocation code)
+==============+==============+==============+===============+
I
I
I
I

TPS ARRAY ADDRESS - -
+---------------+---------------+---------------+---------------+
I I
I TPS_ARRAY_FREE I
I I
I (End of portion owned by TPS support code} I
+=============+==============+===============+============+

+===============+==============+===============+==============+
Other facility owned sections

+==============+==============+===============+==============+
Size = TEB SIZE is system defined

:56

:64

:72

TEB.MAJN_STACK_BASE contains the highest address allocated to the thread's main
stack. The main stack locations in use at any instant are those between the main stack
base and the current main stack pointer.

196 Multlthread Design Notes

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

TEB.MAIN_STACK_LIMIT contains the lowest address currently allocated to the thread's
main stack. The main stack locations not in use at any time are those between the current
main stack pointer - · 1 and the main stack limit. .

TEB.SIG_STACK_BASE contains the highest address allocated to the thread's signal stack
(if any). The signal stack locations in use at any instant are those between the signal stack
base and the current signal stack pointer.

The contents of TEB.SIG_STACK_BASE are unpredictable except in environments where
signal stacks are supported.

TEB.SIG_STACK_LIMIT contains the lowest address currently allocated to the thread's
signal stack (if any). The signal stack locations not in use at any time are those between
the current signal stack pointer - 1 and the signal stack limit.

The contents of TEB.SIG_STACK_LIMIT are unpredictable except in environments where
signal stacks are supported.

TEB.MEMORY_ZONE contains the identification of a virtual memory zone which can be
used for allocation of heap storage that will be released by the thread support system when
the thread terminates.

The run time system uses this field to manage the virtual memory in which the TPS array
and all TPS regions for this thread are allocated, and ensures that this storage is released
when the thread is terminated.

TEB.TPS_ARRAY_ADDRESS contains a pointer to the data structure that describes each
TPS region. When the TEB is created by the system, this field is set to zero, indicating that
the TPS array has not been created.

TEB.TPS_ARRAY_FREE contains the byte offset of the first unused element of the TPS
array specified by TEB.TPS_ARRAY_ADDRESS. When the TEB is created, this field is set
to zero.

Multlthread Design Notes 197

Dlgltal Equipment Corporation Proprietary and Confldentlal
For Internal Use Only-Do Not Copy or Disclose

A.2 Design of Thread Private Storage

The ~se of thread private storage requires support from compilers, the linker, the run time
system, and the operating system. This appendix· describes only the run time data struc­
tures, interfaces, and other conventions of TPS that govern the operation of generated code.
(For details of TPS support in the object language, linker processing, TPS initialization, and
so forth, consult th~ Digital Equipment Corporation ALPHA Object File Format Specifica­
tion).

A.2.1 Data Structures for Thread Private Storage

The high level design picture of the run time TPS data structures is as shown here.

Figure A-2: Overview of TPS Data Structures
TEB

+------------+ +----------------+
I tps array 1--->I array size

+------------+ +----------------+
I region[l] !------>+------------+
+----------------+ I tps region I

. I I
I I
I I

+----------------+ +------------+
I region[n] I
+----------------+

TPS Array
If a thread has access to n TPS regions, each of those regions is assigned a unique array offset
between 8 and n * 8. Array offsets for programs and runtime code libraries, are assigned by
a combination of the linker and the system's image activation code.

Each thread in a process uses the same array offset to refer to each instance of a particular
TPS region. The array offset of a TPS region is used to index a data structure, called the
TPS array, which holds the base address of the instance of each TPS region for the thread.
The TPS array is located at the address·contained by TEB.TPS_ARRAY_ADDRESS, and
has the format shown here.

198 Multlthread Design Notes

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

Figure A-3: TPS Array Format
TPS ARRAY

+-------+-------+-------+-------+-------+-------+--.-----+-------+
I TPS Array Size (TPS_ARRAYrOJ) . I :0

+-------+-------+-------+-------+-------+-------+-------+-------+
I TPS_ARRAY[l] I :8

+-------+-------+-------+-------+-------+-------+-------+-------+
I TPS_ARRAY[2] I :16

+-------+-------+-------+-------+-------+-------+-------+-------+

+-------+-------+-------+-------+-------+-------+-------+-------+
I TPS_ARRAY[N] I :n*S

+-------+-------+-------+-------+-------+-------+-------+-------+
Size = 8 * number of TPS regions

TPS_ARRAY[O] specifies the size in bytes of the TPS array, including both used and unused
entries.

TPS_ARRAY[i] contains the base address of TPS region i for this thread. If tps_array[i] is
zero, then region i has not yet been accessed by this thread, and therefore has not yet been
created.

A.2.2 Creating TPS Regions

Non-existent TPS regions must be created before their contents can be accessed. The TPS
support code automatically creates the TPS regions the first time a call is made to LIB_
GET _TPS() for that region. One possible way to accomplish this would be to have a support
routine defined as follows:

TPS __ CREATE_TPS_REGION(TEB, TPS_DESCRIPTOR)

Arguments:

TEB

TPS_DESCRIPTOR

The address of the thread environment block.

The address of the TPS descriptor for the region.

Function Value:

TPS_REGION_ADDRESS The base address of the specified TPS region.

The steps performed by TPS __ CREATE_TPS_REGION() include:

• Creating the thread specific memory zone if it does not exist.

• Creating the TPS array if it does not exist.

• Dynamically extending, and possibly relocating, the TPS array to create a TPS region
whose array offset is beyond the current extent of the TPS array.

• Maintaining the TEB fields that support the TPS array.

• Maintaining the :fields of the TPS array.

• Creating and initializing a TPS region instance if it does not exist.

Multlthread Design Notes 199

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

• Returning the base address of the requested TPS region, whether or not that region
already exists before TPS __ CREATE_TPS_REGION() is called.

. . ..

• Synchronizing access to the TPS array with asynchronous exception handlers that can
also access the TPS array.

If TPS __ CREATE_TPS_REGION() is called for a TPS region that already exists, the base
address of the region is returned with no additional action.

Since the TPS array may have to be expanded and may have to be relocated in order to cre­
ate a region, any call to TPS __ CREATE_TPS_REGION() may modify TEB.TPS_ARRAY_
ADDRESS and/or TEB.TPS_FREE. However, TPS arrays will never be deallocated by
TPS __ CREATE_TPS_REGION(), and old non-zero values ofTEB.TPS_ARRAY_ADDRESS
and TEB.TPS_FREE will continue to be valid for the life of the thread.

In addition, because asynchronous exception handlers may be invoked and create TPS re­
gions during the execution of TPS __ CREATE_TPS_REGION(), additional TPS regions may
be created by a call to this function.

A.2.3 Using TPS Regions

Compile Time Referencing of TPS Regions
Compile time access to a TPS region is implemented through the use of a TPS descriptor
(defined below). These descriptors are constructed from two basic pieces of information that
are required to reference a thread private storage region. They are:

1. The AR,RAY_OFFSET of the TPS region.

The ARRAY_OFFSET of a TPS region is the byte offset, specific to that region, into the
TPS array.

The ARRAY_ OFFSET is assigned by a combination of the linker and the system image
activator. When any secondary image or runtime code library is loaded into memory, the
system develops the offset for each TPS region by adding the offset of the next available
slot in the TPS array to the offsets specified in the image being loaded.

Because of this run time :fixup, TPS descriptors are always allocated in a a non-sharable
data segment. This is usually the linkage section.

2. The template for the TPS region.

The template for a TPS region is a read-only data structure that describes both the size
and initial contents of the TPS region.

Compilers contribute the size and initial content information for each TPS region. The
linker coordinates contributions from multiple modules and determines the size of the
TPS region and its initial contents.

A reference to a TPS region actually resolves to the address of a TPS descriptor for that
region. The format of a TPS descriptor is shown below:

200 Multlthread Design Notes

Figure A-4: TPS Descriptor Format

Dlgltal Equipment Corporation Proprietary and Confldentl~I
For Internal Use Only-Do Not Copy or Disclose

TP S DESCRIPTOR · . quadwor.i:1 aligne.d

+-------+-------+-------+-------+-------+---~---+---~---+-------+
I reserved I ARRAY_OFFSET I : 0

+-------+-------+-------+-------+-------+-------+-------+-------+
I TEMPLATE I ·: 8

+-------+-------+-------+-------+-------+-------+-------+-------+
Size = TPSDSC_SIZE = 16

ARRAY_ OFFSET contains the byte offset of the TPS region in the TPS array.

TEMPLATE contains the self-relative offset to the TPS region's allocation and initialization
data.

Runtime Accessing of TPS Regions
The Thread Environment Block is the root data structure for accessing a TPS region instance
at run time. The TEB contains the following :fields to support TPS regions.

• TEB.MEMORY_ZONE contains the identification of a virtual memory zone for this
thread. When the TEB is created, this :field is set to zero, indicating that the zone has
not been allocated. The run time system uses this field to manage the virtual memory
in which all thread private storage is allocated, and to ensure that this zone is released
when the thread is terminated.

Both the TPS array and TPS regions for this thread are allocated in the thread private
virtual memory zone.

The base address of a TPS region is fixed for the life of the thread, and therefore can be
reused for subsequent accesses to the region.

The values contained by the TEB are not fixed. Because of dynamic library loading, the size
of the TPS array might change, which could require relocating the TPS array and changing
TEB.TPS_ARRAY_ADDRESS and TEB.TPS_ARRAY_FREE. As a result, these TEB values
may change across any external call. However, if TPS array is moved, the old TPS array is
not deallocated so that the compiler is free to maintain the TPS array pointer in a register.
A procedure holding onto an old TPS array pointer executes correctly, but somewhat slower,
since it may require a call to TPS __ CREATE_TPS_REGION() to obtain a desired region
base address from the new TPS array.

Likewise, this code sequence will work correctly if an asynchronous exception occurs during
this sequence or during TPS __ CREATE_TPS_REGION(), even if an asynchronous exception
handler causes one or more TPS regions to be created and/or causes the TPS array to be
relocated.

Multlthread Design Notes 201

APPENDIX B

PROCEDURE DESCRIPTOR ACCESS ROUTINES

A thread can obtain information about any procedure in its own virtual address space by
calling system library functions as defined below.

RATIONALE:

By defining a procedure interface to provide read-only access to information in
the procedure descriptors we allow these structures to be extended in the future
without breaking (then) existing code.

Get Handler

UB_GET _PROC_HANDLER(PROC_ VALUE)

Arguments:

PROC_VALUE

Function Value:

HANDLER

Get Handler Data

Any procedure value, either bound or static, for a procedure currently
mapped in the thread's virtual address space

If zero, indicates data should be returned for the currently executing proce­
dure (i.e. the immediate caller of this library routine)

The procedure value for the handler of the requested routine

If the return value is PROC_VALUE_NULL, then no handler is defined in
the procedure descriptor of the requested procedure

UB_GET _PROC_HANDLER_DATA_ADDR(PROC_ VALUE)

Arguments:

PROC_VALUE

Function Value:

HANDLER_DATA_ADDRESS

Any procedure value, either bound or static, for a procedure currently
mapped in the thread's virtual address space

If zero, indicates data should be returned for the currently executing proce­
dure (i.e. the immediate caller of this library routine)

The address of the handler data for the handler of the requested routine ·

If zero, indicates that no handler data is defined in the procedure descriptor
of the requested procedure

Procedure Descriptor Access Routines 203

Dlgltal Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

Get Entry Address
A procedure's entry address is defined by this standard to always be located at procedure_
value+ 8 (PDSC.ENTRY). This is true ·ror either. bound or static procedure values. This
value may be retrieved from higher level languages by calling the procedure below:

UB_GET_ENTRY_ADDRESS(PROC_ VALUE)

Arguments:

PROC_VALUE

Function Value:

ADDRESS

Get Procedure Kind

Any procedure value, either bound or static, for a procedure currently
mapped in the thread's virtual address space
If zero, indicates data should be returned for the currently executing proce­
dure (i.e. the immediate caller of this library routine)

The entry address of the requested routine
If the return value is 0, then the procedure value passed to this routine was
in error.

UB_GET _PROC_KIND(PROC_ VALUE)

Arguments:

PROC_VALUE

Function Value:

KIND

Get Return Register

Any procedure value, either bound or static, for a procedure currently
mapped in the thread's virtual address space
If zero, indicates data should be returned for the currently executing proce­
dure (i.e. the immediate caller of this library routine)

The procedure kind of the requested routine

UB_GET_RETURN_REG(PROC_VALUE)

Arguments:

PROC_VALUE Any procedure value, either bound or static, for a procedure currently
mapped in the thread's virtual address space
If zero, indicates data should be returned for the currently executing proce-
dure (i.e. the immediate caller of this library routine) ·

204 Procedure Descriptor Access Routines

Function Value:

REGISTER

Get RSA Offset

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

The nuniber of the. register (0-29) in which the requested procedure saves
it's return address

If -1 , indicates that the return address for the requested procedure is saved
on the stack

LIB_GET_RSA_OFFSET(PROC_VALUE)

Arguments:

PROC_VALUE

Function Value:

RSA_ OFFSET

Any procedure value, either bound or static, for a procedure currently
mapped in the thread's virtual address space

If zero, indicates data should be returned for the currently executing proce­
dure (i.e. the immediate caller of this library routine)

The offset, from the frame base register, at which the Register Save Area
starts

If -1, indicates that the requested procedure does not have a register save
area on the stack (It is a register frame procedure).

Procedure Descriptor Access Routines 205

APPENDIX C

PC MAPPING LOOKUP DESIGN NOTES

This section describes some of the considerations for PC mapped procedure location as might
be used to support the ALPHA-64 flavor of this standard.

C.1 Problem Statement

PC mapping techniques are one aspect of a reliable mechanism to allow a call chain to be
navigated from the currently executing procedure backwards to the :first or topmost proce­
dure in a program. To be able to perform this call chain tracing requires that for a given
register set (starting with the current one), there must be a way to interpret the contents of
the registers so as to :find the caller of the routine for which the register set was constructed.
One of the critical pieces of information needed to accomplish this is the return address. The
calling standard specifies a structure (the procedure descriptor) that describes a procedure,
including, amongst other things, the location where the return address is stored during the
execution of the procedure. Thus the problem at hand reduces to one of "given a· PC value,
either a current PC or a PC that is represented by a return address, :find the procedure de­
scriptor that describes the registers represented by that PC". Once the procedure descriptor
is found all of the needed information is available to properly interpret the register set.

C.2 Requirements

The ALPHA architecture is designed to support extremely high end implementations. Much
consideration has been given to aspects of instruction caches, memory prefetching, branch
prediction and other techniques that help optimize code execution. One such technique in­
volves placing seldom used instruction sequences far away from normal code flow so as to
maximize the use of instruction caches. This technique, coupled with various other tech­
niques for optimizing code, may cause the code for any given procedure to be manifest as
a number of disjoint segments in memory. Any scheme that is utilized to :find the proper
procedure descriptor must support such disjoint code segments.

C.3 A solution

The PC mapped solution to locating the procedure descriptor utilizes a collection of lookup
tables such that for any given PC value one of the following is always true:

o Either the PC value exists in a table such that given that PC value the address of the
procedure descriptor may be found in a well defined place (such as at the same offset
into a table of procedure descriptor addresses).

or

o Some well defined rule exists which either defines the information needed or defines a
method to get to the required information.

PC Mapping Lookup Design Notes 207

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

An example of such a rule might be.-'1fthe PC being looked up is not in the PC lookup
tables then the return address can always be found in R26 and that address may be used
as a lookup value to find a procedure descriptor that· proVides the information needed
to correctly interpret the current register set". A rule such as this might be adopted to
allow short segments.of auto-load or environment setup code to not. appear in the PC
mapping tables.

C.4 Data Structures

The basic information needed to support the solution presented above is a set of triples
containing PC ranges and pointers. These triples would contain:

o Low address of PC range

o High address of PC range

o Pointer to procedure descriptor for PC range

Since code may exist in relocatable shared images a tradeoff must be made between image
activation overhead and run time interpretation overhead. An example of such a tradeoff
might be that the tables defined above may consist of low and high PC ranges relative to
the starting address of the containing image rather than absolute address. Such a design
obviously reduces image activation time at the expense of the relatively infrequent nm time
access to the tables.

C.5 Building the Maps

Given that the tradeoffs mentioned above have been considered there is a strong goal to
make the PC value to procedure descriptor address translation as fast as possible. To al­
low a full range of implementation techniques across various operating system versions the
exact details of the PC tables must be isolated from non-system level code. It is assumed
that compilers will generate appropriate object language to provide the PC mapping infor­
mation for each distinct code segment and that the exact details of how that information
is represented and accessed in memory will be knowledge that will only be in the system
supplied:

o Linker

o Image Activator/loader

o LIB_GET_PROC_VALUE routine (defined elsewhere in this document)

This would allow the table entries to be sorted, hashed or otherwise tailored to optimize
access.

208 PC Mapping Lookup Design Notes

APPENDIX D

IMPLEMENTORS NOTES

This appendix contains hints and other possibly useful information for software implemen­
tors.

D.1 Notes for Compiler Writers 64

D.1.1 Code Optimizations

It should be noted that this standard describes conventions and rules for Standard conform­
ing calls and procedures. In many cases some significant code speedup can be realized by
interprocedural analysis that determines that a standard call is not required. Examples of
optimizations that might be done include:

• Not establishing a context in the called procedure

• Not setting up the AI register

• Passing additional arguments in registers

• Treating different registers as preserved and scratch

D.1.2 Data Passing Mechanism

This calling standard does not dictate which of the defined mechanisms should be used
by individual compilers. This is because different languages require different mechanisms.
To achieve maximum interoperability of cross-language calls the following recommended
guidelines have been established for compiler writers.

Key to below:

Key Word

speed

lang

com pat

value

desc

ref

ref(out)

Explanation

Done for speed reasons

"Required" in some sense by language,

Done to be compatible with other languages

Passed by value

Passed by descriptor

Passed by reference

Passed by reference if a VAR or OUTPUT parameter

Implementors notes 209

Dlgltal Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

Compatible Set:

• Entire list contains all languages that can interchange by selecting the proper parameter
declarations (VAR, *, OUTPUT, IN-OUT, ete.) . .

• Uppercase part are languages that roughly follows the same rules for default cases (i.e.
easy interchange)

21 O Implementors notes

Digital Equipment Corporation Proprietary and Confldentlal
For Internal Use Only~o Not Copy or Dlsclos•

Table D-1: Argument Passing Mechanism Choices

Language What How· Passed· R~ason Compatible Set

ADA Scalars value,ref(out) speed ADA,PAS,C,for,cob,pl/i

Strings desc,ref tang ADA,PAS;FOR,COB,PUI

Arrays desc,ref tang ADA,PAS,c,FOR,COB,PUI

Bit vectors < 65 bits value,ref(out) speed ADA,PAS,C,FOR,COB,PL/I

Records < 65 bits value,ref(out) speed ADA,PAS,C,for,cob,pt/i

Records > 64 bits ref com pat ADA,PAS,C,FOR,COB,PL/I

PAS Scalars value,ref(out) speed ADA, PAS,C, for,cob,pl/i

Strings desc,ref tang ADA,PAS,FOR,COB,PUI

Arrays desc,ref tang ADA,PAS,c,FOR,COB,PUt

Bit vectors < 65 bits value,ref{ out) speed ADA,PAS,C,FOR,COB,PL/I

Records < 65 bits value.ref(out) speed ADA,PAS,C,for,cob,pl/i

Records > 64 bits ref com pat ADA,PAS,C,FOR,COB,PUI

c Scalars value speed ADA,PAS,C,for,cob,pl/i

Strings ref tang c
Arrays ref tang ada,pas,C,for,cob,pl/i

Records < 65 bits value speed ADA,PAS,C,for,cob,pl/i

Records > 64 bits ref com pat ADA,PAS,C,FOR,COB,PUI

FOR Scalars ref tang ada,pas,c,FOR,COB,PL/t

Strings desc lang ada,pas,FOR,cob,pVi

Arrays desc,ref com pat ADA,PAS,c,FOR,COB,PL/t

Records < 65 bits ref lang ada,pas,c,FOR,COB,PUI

Records > 64 bits ref tang ADA,PAS,C,FOR,COB,PUI

COB Scalars ref tang ada,pas,c,FOR,COB,PUI

Strings ref com pat ada,pas,FOR,COB,PUI

Arrays ref com pat ADA,PAS,c,FOR,COB,PL/I

Records < 65 bits ref tang ada,pas,c,FOR,COB,PL/I

Records > 64 bits ref com pat ADA,PAS,C,FOR,COB,PL/I

PUI Scalars ref lang ada,pas,c,FOR,COB,PUI

Strings desc,ref com pat ada,pas,FOR,COB,PL/I

Arrays desc,ref com pat ADA,PAS,c,FOR,COB,PL/I

Records < 65 bits ref lang ada,pas,c,FOR,COB,PLJI

Records > 64 bits ref com pat ADA,PAS,C,FOR,COB,PLJI

For most languages, strings and arrays are passed either by descriptor or reference de­
pending upon how much is known. Programmers will have to know what syntax for the
particular language will cause them to be passed compatibly to other languages.

Implementors notes 211

Dlgltal Equipment Corporation Proprietary and Confldentlal
For Internal Use Only-Do Not Copy or Disclose

The above guidelines do not prevent mdividual compilers from choosing implementation
mechanisms to meet ~arket requirements. FORTRAN~ for example, may have a mode
where strings are passed by pointer together with an additional length hidden argument.

D.1.3 Compiler Switches·

\\
A future version of this document will say something about switches that
compilers may have.
\\

Switch to:

• Select ALPHA preferred argument passing or UNIX style arg passing

• FORTRAN may have switch for f.77 style argument passing

D.1.4 Exception Handlers

It might appear that due to the imprecise nature of ALPHA exceptions many DRAINT
instructions must be used in standard code to achieve reliable results. After close inspection
of the rules put forth in Section 6.1.11 and in-depth review of the exact requirements of the
exception handler(s) used to support the language in question, most compilers writers will
be able to determine that the majority of the DRAINTs are not required. This can result in
a significant performance gain over the straight-forward approach.

D.1.5 Optimized TPS Access

The straightforward sequence for determining the address of a TPS region requires a call to
a system library function. If a procedure accesses more than one TPS region, this call must
be made for each region.

To reduce this overhead, which typically occurs at each entry to a procedure that accesses
TPS, optimized protocols can be used which take advantage of the fact that the base address
of a TPS region is fixed for the life of the thread, and therefore can be re-used for subsequent
accesses to the region.

An example of such an optimized TPS access protocol is presented here.

1. Each module accessing one or more TPS regions defines an additional module private
TPS region termed the module. TPS table.

2. For each TPS region accessed in the module, the compiler allocates one address slot in
the module TPS table and assigns a module-wide array offset in the table to each region.

3. On entry, each globally visible procedure in a module calls LIB_GET_TPS() to get the
address of that module's TPS table. This address must be retained in module-wide
register or otherwise made available to non-global procedures within the module by
some means that does not involve thread private storage.

4. If the module TPS table has not been initialized~ then the glob::. 1 procedure calls LIB_
GET _TPS() for each TPS region accessed anywhere in the module, and assigns the base
address of each region to that region's location in the module TPS table.

212 Implementors notes

Dlgltal Equipment Corporation Proprietary and Confldentlal
For Internal Use Only-Do Not Copy or Disclose

5. If the module TPS table has already been initialized, then a global procedure assumes
that the base address of all other TPS regions accessed in the module are available in
the table; it will never be necessary to call LIB _GET _TPS() for these other regions.

6. In that module, procedures which are not global need not check whether the module
TPS table has been initialized, because a prior global entry point will have ensured its
initialization.

7. The base of each TPS region accessed in the module is obtained from the module's TPS
table (which is accessed using the register or other means referenced in step 3) rather
than from LIB_GET_TPS().

This protocol reduces the number of calls to LIB_GET_TPS() from once per region per
procedure, to only once per module boundary crossing.

Implementors notes 213

Dlgltal Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

D.2 Notes for RTL Writers

This section contains. notes for RTL writers

D.2.1 Invocation Handles

There is a strong desire to make invocation handles representable within 64 bits so that
they might be held in a register and passed as values easily. What is presented here is a
brief discussion of this area.

Requirements
An invocation handle must be able to uniquely identify any given invocation in the call
chain. It must support both standard and non standard calls.

One Solution
In forming a solution for the above requirements the following was noted:

• An SP value is not sufficient to represent a frame since register frame procedures using
no stack must be supported.

• Any procedure that has the same stack value as another procedure must save their
caller's Return Address value in a register not used by that other procedure

The top n bits of the SP are always the same (where n varies from implementation to
implementation but is always greater than 2)

At the time of a call the value of SP is always octaword aligned (low order 4 bits are
zero) .

Therefore an invocation handle could be implemented as 64 bits comprised as follows:

1. Bits <62:4> of an SP value shifted left 1 - (59 bits of information)

or'd with

2. The number that represents the register where the caller's Return Address value was
saved (PDSC.SAVE_RA) or 0 depending on the procedure type (0 for stack frame proce­
dures) - (5 bits of information).

214 Implementors notes

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

D.3 Notes for O.S. Writers

D.3.1 Stack Alignment .

This standard requires that stacks be octaword aligned at the time a new procedure is
invoked. During the body of a procedure, however, there is no requirement to keep this
level of alignment (even though it may be beneficial). This implies that any asynchronous
interrupt handlers must properly align the stack before any standard calls are made.

D.3.2 Unwinding

Determining Procedure State
For every valid program counter in a thread, the procedure state represented by that PC
can be determined by applying the following:

Procedures with a fixed stack size

• Program counter is in the procedure prologue, at or before the address specified by
PDSC.SP _SET.

The procedure's stack frame has not been allocated.
The return address is in the register denoted by PDSC.ENTRY_RA..
The scratch registers, except the register denoted by PDSC.ENTRY_RA., may have
been modified.
The saved registers have not been modified.
No registers have been saved.

• Program counter is in the procedure prologue, after the address specified by PDSC.SP _
SET but before the address specified by PDSC.ENTRY_LENGTH.

SP points to a stack frame of fixed size specified by PDSC.SIZE.
The return address is in the register denoted by PDSC.ENTRY_RA.
The scratch registers, except the register denoted by PDSC.ENTRY_RA, may have
been modified.
The saved registers have not been modified, and may be partially stored in the
frame.

• Program counter is not in the procedure prologue.

Register SP points to a stack frame of size specified by PDSC.SIZE.
The return address is in the location specified by the procedure descriptor (either
PDSC.SAVE_RA or RSA.SAVED_RETURN).
Any saved registers are stored in the register save area, and may have been modi­
fied.

Implementors notes 215

Dlgltal Equipment Corporation Proprietary and Confidential
For lntemal Use Only-Do Not Copy or Disclose

Procedures with a variable stack siZe and no Stack Return

• Program counter· is in the procedure prologue, at- or .before the. address specified by
PDSC.SP _SET.

The procedure's stack frame has not been allocated.
The return.address is in the register denoted by PDSC.ENTRY_RA.
The scratch registers, except the register denoted by PDSC.ENTRY_RA., may have
been modified.
The saved registers have not been modified.
No registers have been saved.

• Program counter is in the procedure prologue, after the address specified by PDSC.SP _
SET but before the address specified by PDSC.ENTRY_LENGTH.

SP points to a stack frame of fixed size specified by PDSC.SIZE.
The return address is in the register denoted by PDSC.ENTRY_RA.
The scratch registers, except the register denoted by PDSC.ENTRY_RA., may have
been modified.
Any saved registers have not been modified, and may be partially stored in the
frame.

• Program counter is not in the procedure prologue, and not at a "RET R31,xxx" instruc-
tion followed by the signature instruction

The register indicated by PDSC.FLAGS.BASE_REG_IS_FP points to the.fixed por­
tion of the stack frame, of size specified by PDSC.SIZE.
The return address is in the location specified by the procedure procedure descriptor
(either PDSC.SAVE_RA or RSA.SAVED_RETURN).
Any saved registers are stored in the frame, and may have been modified.

·• Program counter is at a "RET R31,xxx" instruction followed by the signature instruction

The varying portion of the stack frame has been deallocated.
SP points to the fixed portion of the stack frame, of size specified by PDSC.SIZE.
The return address is in the register designated by PDSC.SAVE_RA.
Any saved registers have been restored, and are still stored in the frame.

Procedures with a variable stack size and Stack Return

• Program counter is in the procedure prologue, at or before the address specified by
PDSC.SP _SET.

The procedure's stack frame has not been allocated.
The return address is in the register denoted by PDSC.ENTRY_RA.
The scratch registers, except the register denoted by PDSC.ENTRY_RA, may have
been modified.
The saved registers have not been modified.
No registers have been saved.

• Program counter is in the procedure prologue, after the address specified by PDSC.SP =

SET but before the·address specified by PDSC.ENTRY_LENGTH.

SP points to a stack frame of fixed size specified by PDSC.SIZE.
The return address is in the register denoted by PDSC.ENTRY_RA.

216 Implementors notes

Dlgltal Equipment Corporation Proprietary and Confldentlal
For Internal Use Only~o Not Copy C?r Disclose·

The scratch registers, except the-register denoted by PDSC.ENTRY_RA, may have
been modified.
Any saved registers have not been modifi~d, and :µiay be partially stored in the
frame.

• Program counter is not in the procedure prologue.

The register indicated by PDSC.FLAGS~BASE_REG_IS_FP points to the fixed por­
tion of the stack frame, of size specified by PDSC.SIZE.
The return address is in the location specified by the procedure procedure descriptor
(either PDSC.SAVE_RA or RSA.SAVED_RETURN). .
The saved registers are stored in the frame, and may have been modified.

Reloading Registers

\\
A future version of this document may describe how the unwinder might find
registers in the register save area by: ANDing off high bits above register
wanted. Index into table of 256 entries (1 for each byte mask) up to 8 times or
just BLBS loop, etc.
\\

Implementors notes 217

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

D.4 Notes for Application Level Programming

D.4.1 Mapping descrlpto_rs from VAXNMS to ALPHA-64

The following table indicates which ALPHA-64-descriptor types correspond to the various
VAXNMS descriptors:

Table D-2: Descriptor Mapping from VAXNMS to ALPHA-64

VAX/VMS Descriptor Type VAXNMS Name ALPHA Descriptor Type

s Fixed Length (DTYPE =DSC$K_DTYPE_ T) FIXED_TEXT

s Fixed Length (DTYPE;ifDSC$K_DTYPE_ T) Not Supported

D Dynamic String DYNAMIC_ TEXT

v Variable Buffer Not Supported

A Array BYTE_ARRAY
p Procedure Descriptor Not Supported

Pl Procedure Invocation Not Supported

J Label Not supported

JI Label Incarnation Not Supported

SD Decimal String Not Supported

NCA Non Contiguous Array BYTE_ARRAY

vs Varying String VARYING_ TEXT

VSA Varying String Array BYTE_ ARRAY

UBS Unaligned Bit String FIXED_BIT

UBA Unaligned Bit Array BIT_ARRAY

SB String with Bounds BYTE_ARRAY

UBSB Unaligned Bit String with Bounds BIT_ARRAY

218 Implementors notes

APPENDIX E

EXTENDED MIPS CALLING STANDARD DIFFERENCES

This appendix provides a brief summary of the differences between the ALPHA calling
standard defined in this document and the Extended MIPS calling standard defined in
"Digital Equipment Corporation Extensions to the MIPS R-Series Language Level Run­
Time Software Architecture", Revision 1.0, 1July1989 (referred to as the "Extended MIPS
calling standard" below).

The topics presented are categorized into the following areas:

o Differences that result from differences in the underlying hardware architecture.

o Differences where a change to the Extended MIPS calling standard is recommended,
because of deficiencies in that architecture or because new understanding and/or infor­
mation indicates a new design is needed.

o Other substantive differences that result from different goals, implementation strategy
or other reasons.

o Differences in areas of very limited scope and with substantially no portability impact.

o Potential differences due to unresolved issues.

It is assumed throughout this discussion that addresses contain 32 bits on MIPS based sys­
tems and 64 bits on ALPHA based systems. This difference is pervasive and not mentioned
further. Similarly and consequently, field position and/or order is not mentioned at all.

E.1 Hardware Based Differences

o The "frame descriptors" of the Extended MIPS calling standard are ·similar to the "pro­
cedure descriptors" of. the ALPHA calling standard. The ALPHA terminology more
accurately reflects the intimate role played by the descriptor on the ALPHA architec­
ture (notably that, unlike MIPS, the address of a procedure's descriptor must be passed
as part of a call to that procedure.)

o The Extended MIPS calling standard frame descriptors and ALPHA calling standard
procedure descriptors are similar in some ways and very different in others because they
reflect many characteristics of the underlying hardware (size and number of registers,
etc.). Use of these structures is limited primarily to compiler writers and intimately
related run-time support where there is little potential for portability of the code.

Extended MIPS Calling Standard Differences 219

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

o The lib_getJrame_desc routine in the Extended MIPS calling standard is similar to
LIB_GET_PROC_DESC defined bythe ALPHA calling standard. The names reflect the
respective terminology on those systems. · · · ·

o The Extended MIPS calling standard provides a single frame descriptor structure for
all forms of frame. The ALPHA calling standard provides separate procedure descriptor
structures for each of the three kinds of procedure. The ALPHA calling standard dis­
tinction is intended to promote the packing of these descriptors within the sixteen-bit
offset for a linkage section pointer.

o The Extended MIPS calling standard specifies the exact instruction that shall be used
to raise a stack overflow exception, while the ALPHA calling standard does not.

E.2 Extended MIPS Change Based Differences

o The Extended MIPS calling standard specifies that the first reference to a shared image
must be a call, while no such requirement exists in the ALPHA calling standard. This
requirement should be dropped from the Extended MIPS calling standard as well.

o The Extended MIPS calling standard leaves the action upon detection of stack overflow
as system defined. The ALPHA calling standard requires that an exception be raised.
Raising an exception and allowing application handling and recovery is requi.i-ed for (at
least) the Ada language.

o Several of the routines specified by Extended MIPS calling standard fail to accomplish
their intended purpose because they fail to work with frames that have zero stack size.
These routines include:

• lib_get_virtualJp

• lib_getJrame

• lib_get_prior Jrame

The ALPHA calling standard design is recommended as a successor.

E.3 Substantive Differences

o The ALPHA calling standard defines descriptors and parameter passing rules for inter­
language interoperability, while the Extended MIPS calling standard does not. The ad­
ditional rules are appropriate for enhanced capabilities and to support a multi-language
environment that has become expected on traditional Digital operating systems.

o The ALPHA calling standard defines a descriptor for bound procedures, while the Ex­
tended MIPS calling standard does not. The additional rules are appropriate for en;.
hanced i.nterla.nguage interoperability.

220 Extended MIPS Calling Standard Differences

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only..-Oo Not Copy or Disclose

o The Extended MIPS calling standard routines lib_add_frame_desc and lib_remove_
frame_desc as wel~ as lib_remove_all_frame_descs correspond approximately to the AL­
PHA calling standard routines LIB_ADD_PC_RANGES, LIB_REMOVE_PC_RANGES
and UB_REMOVE_PDSC_PC_RANGES. The.diffe~ent. names reflect the different us­
age of frame versus procedure descriptors as well as the anticipated differences in the
underlying implementation and semantics .. Operating systems may provide the Ex­
tended MIPS calling standard routines as a compatibility extension by layering on the
routines defined by the ALPHA calling standard.

o An Extended MIPS calling standard handler indicates resumption at the point of an
exception by calling exc_resume (which does not return) and has no return value. An
ALPHA calling standard handler indicates resumption by returning a specific status
value (STATUS_CONTINUE for resumption, STATUS_RESIGNAL to indicate further
searching for a handler). We anticipate that ALPHA systems that wish to be down­
ward compatible with extended MIPS platforms may provide an exc_resume routine as
a system compatibility extension.

o The Extended MIPS calling standard has an argument count register named $ac in
contrast to the argument information (Al) register used by the ALPHA calling standard.
The difference in names reflects both differences in the underlying hardware as well as
the extended content and usage of the AI register in the ALPHA calling standard.

o The ALPHA calling standard does not define the usage or interactions of the BSD UNIX
concept of a signal stack. This abstraction has not been endorsed by POSIX because of
its non-portable nature. The Extended MIPS calling standard discussions and specifica­
tions in this area do not conflict with the ALPHA calling standard. These specifications
include those for lib_enable_sigstack_use, lib_disable_sigstack_use and related topics.

E.4 Inconsequential Differences

o The Extended MIPS calling standard contains a field in a frame descriptor that points
to an array that associates exception handlers with the particular exception or class of
exceptions each will handle. The ALPHA calling standard allows only a single handler
to be associated with a procedure description with no precondition on the invocation of
the handler. The functionality provided by the extended MIPS· design can be cleanly
layered using the ALPHA calling standard.

o The Extended MIPS calling standard provides a "default handler" that is intermediate
between the last chance handlers and the system catchall handler, while the ALPHA
calling standard does not. The increased complexity was not required for the ALPHA
calling standard and may be provided as a compatible extension if desired.

o An ALPHA calling standard exception record contains a KIND field that classifies the
exception value while the Extended MIPS calling standard does not. Similarly, some ad­
ditional flags are defined. These are convenience fields that are not needed for portable
·code. ·

Extended MIPS Calling Standard Differences 221

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose

o The Extended MIPS calling standard provides lib_safe_code and lib_unsafe_code to deal
with hardware interactions with run-time generated code. There is no corresponding
need on ALPHA systems. Dummy #defines; macros and/or entry points can be provided
on ALPHA systems as appropriate for portability. · · ·

E.5 Potential Differences

The following items are currently open issues in the ALPHA calling standard but have spe­
cific resolutions in the Extended MIPS calling standard. When the ALPHA calling standard
issues are resolved, these differences will either be eliminated (resolved the same way as
on MIPS) or re-classified in one of the other groups above.

o The relationship and interoperability of POSIX 1003.1 signals and general exceptions
is not yet determined.

o Various details related to threads and CMA are not yet resolved. This might impact,
for example:

• The existence of LIB_CREATE_THREAD_ZONE

• The public contents of TEBs

• The existence of an IS_ASYNC :flag

222 Extended MIPS Calllng Standard Differences

APPENDIX F

WAIVERS GRANTED

This section contains a list of all known variances from this standard.

Table F-1: Calllng Standard Waivers Granted

Granted To: Date Details

No Waivers yet.

Waivers granted 223

INDEX

A
Address Representation

ALPHA-64, 15
ALPHA ~feITed Record Layout, 87
Argument home area, 26
Atomic data type, 60

B
Background

ALPHA-32, 145
ALPHA-64, 9

c
Call Chain

how to walk it, 42
Call Conventions

ALPHA-64, 44
Computed calls, 163
Computed Calls, 49
Constraints

ALPHA-32, 145
ALPHA-64, 10

Current Procedure
ALPHA-32, 161
ALPHA-64, 38

D
Data passing

ALPHA-32, 172
ALPHA-64, 76

Data type
atomic, 60

B, 60
BU, 60
D, 60
DC, 61
F, 60
FC, 61
FS, 61
FSC, 61
Fl', 61
Fl'C, 61
G, 61
GC, 61

Data type
atomic (Cont.)

L, 60
LU, 60
0, 60
OU, 60
Q, 60
QU, 60
w, 60
WU, 60
Z, 60

miscellaneous, 62
string, 61

NL, 62
NLO, 62
NR, 62
NRO, 62
NU, 62
NZ, 62
P, 62
T, 62
v, 62
VT, 62
vu, 62

unsupported, 63
varying character string, 63

Data Types, 59
Definition of terms, 7
Document

E

Acknowledgements, xiii
Architectural Level, 5
Definitions for terms used by, 7
Edit History, xv
Notation, xix
Organization, xvii
Related Documents, 6

Entry and Exit code Sequences, 53, 163
Entry code example

for register frame procedure, 55, 165
for stack frame procedure, 54, 164

Entry Code Sequence, 53, 163
Exception Handling

ALPHA-32, 177
ALPHA.-64, 89

lndex-1

Exceptions
Continuation from, 110,. 180
General, 91
raising, 103, 178
Signal, 91
Synchronization of, 109, 179
types of, 91
Unwind, 91

Exceptions Handlers
frame-based, 99
last-chance, 100
primary, 99
System catchall, 100
types of, 99

Exit code example
for register frame procedure, 57, 166
for stack frame procedure, 57, 166

Exit Code Sequence, 55
Exit code sequence steps, 165
Exit Code Sequence Steps, 56

F
Floating Point Register Usage

ALPHA-32, 150
ALPHA-64, 17

Flow Control
ALPHA-32, 151
ALPHA-64, 19

Function value return

G

By Descriptor, 82, 172
By immediate value, 81
Defined by caller, 83, 173

Goals
ALPHA-32, 145
ALPHA-64, 9

Integer Register Usage
ALPHA-32, 150
ALPHA-64, 16

Invocation context block, 40
Invocation handles

how to get one, 41
Invocation Handles, 39

K
kill, 103, 179

lndex-2

L
LIB$SIG_TO_EXPT, 181
LIB DISESTABLISH HANDLER, 102
LIB-_ESTABLISH_LAST_CHANCE,

102
LIB_ESTABLISH_PRIMARY, 101
LIB_EXIT_UNWIND, 115
LIB,.:.GET_ENTRY_ADDRESS, 204
LIB_GET_INVO_CONTEXT, 43
LIB GET INVO HANDLE, 41
LIB--GET-_PRIOR_INVO_HANDLE,

42
LIB_GET_PROC_HANDLER, 203
LIB_GET_PROC_HANDLER_DATA_

ADDR, 203
LIB_GET_PROC_KIND, 204
LIB GET PROC VALUE, 38
LIB=GET=RETURN_REG, 204
LIB_GET_RSA_OFFSET, 205
LIB_GET_TEB, 124
LIB_GET_TPS, 130
LIB_RAISE, 104
LIB SIG TO EXPT, 111
LIB-_UNWIND, 115
Linkage, 47, 163

M
Mechanism Vector, 180
Miscellaneous data type, 62

p
Procedure Call Chain

ALPHA-32, 161
ALPHA-64, 38

Procedure Call Tracing, 39, 162
Procedure Context, 43
Procedure Descriptor

for register frame procedures, 30, 158
Procedure Descriptor Access Routines, 37
Procedure Descriptors

for stack frame procedures, 20, 152
Procedures

Register Frames, 29
Stack Frames, 20
without frames, 32

Procedure Signatures, 35
Procedures without frames

ALPHA-32, 160
ALPHA-64, 32

Procedure Types
ALPHA-32, 151
ALPHA-64, 19

Procedure Values
Bound,. 50, 163
Definition of, 15, 149

R
Register Frame Procedures

ALPHA-32, 157
ALPHA-64, 29

Register Save Area, 27, 157
Layout of, 28

Register Usage

s

ALPHA-32, 150
ALPHA-64, 16

Stack Frame Format, 24, 155
Stack Frame procedures, 20, 151
Stack Limit Checking, 126
Stack Overflow Handling, 127
Static data

ALPHA-32, 175
ALPHA-64, 86

Static data alignment
ALPHA-64, 86

String data type, 61

T
Thread EnVironment Block, 124
Thread Environment Block Format, 124
Thread Exit, 128
Thread Private Storage, 129
'lradeoffs

ALPHA-64, 10
Transfer of control, 44, 163

u
Unsupported data type, 63
Unused bits in Passed Data, 78
Unwinding

v

ALPHA-32, 183
ALPHA-64, 113

Varying character string data type, 63
VAX/VMS Compatible Record Layout, 87

lndex-3

Digital Equipment Corporation Proprietary and Confidential
For Internal Use Only-Do Not Copy or Disclose -

2

·Memorandum
.<

To: Evax Joint Software Team (EJST) Date:
cc: Steve Jenkins From:

Steve Law
/.~:·

.,Subject: Calling Standard Used by ~LPHA C.

. ~epi~mber. l8, t 991 . .
Ayu~~Khan,; Project Leader
l\LPHALanguagesiandTools

The C compil~r used in porting ULTRIX onto All';E!AP~~oµn~li,s ~e.~.9n RI~<;,;; · ...
ULTRIX4.x cortipilertechnology.·The curr~nt'effo~ .. to port qsF~,ontoAtPHA pliltforniis·.
enhancing the s.am¢ compiler technology. The i1n~rit::of th)s paper .. is to publish the ca)ling ·
standard used~-by the ~LPHA C compiler. · · ., · · ·

As mentioned earlier;, the ALPHA C compiler is based·on.coliipiler ~eclig9logy if.I ¢Xisteri¢fftfr ·:,
current UL T~IX releases~ Hence, the cailing stan,~ar4 ~sed by :AJ1i>1IA.Crls base4t:Qn . · .. ·· ... :.k~ '·· · ·

extending the current technology. The only differences. w~ the .. Q#~ that are dictateifby; the·
underlying hardware. In particular we document:.the followin.g;y1f{erences:

- Register rO con.tains the return address.
- Registerr30 contain.s the stack pointer.
- Register:i'3lalways·~as the zero vall;le~ ·:
- A float or double parameter is assigned i floatin.g ppJnti:~~ister.
- Reg~ster f31 always has the zero value. · · ·

As you might have notiCed, the differences are limit~-~ tq~he register µsage only, ~he .
organizatiQP.; of the call frame does not change. ' . .'

T;he object file produced. by the ALPFIA "C to111piler is XCOFft~d will alsc>be s~ppoitihg
ELF. · .,,, ,

For: y.our c?nvenience,~e aie i)roviilift~ X9~~itJ!,,g~p~S tin '.'Linkage Con:vintl~ns'' anll; .
'' Ob1ect File F orm1.1r(''..ftom ourA~se111blxJ.4Jng~ge Reference manual; which document 1n .,
detail the calling. standard ·used by the AL'.()~il\ 'C'bompiler. ~ · - "' ·.

I~~~ t:~ ~:./"":~·.•
,. ' ' ~· f

l
l't1

. . ,·
. i.•·?v·

. : .. !

)'

;..)'

Linkage Conventions 7

This chapter gives rules and examples to follow when designing an assembly
language program. The chapter concludes with a ''learn by doing'' technique that
you can use if you still have any doubts about how a particular calling sequence
should work. This involves writing a skeleton version of your prospective assembly
routine using a high level language, and then compiling it with the -S option to
generate a human-readable assembly language file. The assembly language file can
then be used as the starting point for coding your routine.

7 .1 Introduction
When you write assembly language routines, you should follow the same calling
conventions that the compilers observe, for two reasons:

• Often your code must interact with compiler-generated code, accepting and
returning arguments or accessing shared global data.

• The symbolic debugger gives better assistance in debugging programs using
standard calling conventions.

The conventions for the compiler system are a bit more complicated than some,
mostly to enhance the speed of each procedure call. Specifically:

• The compilers use the full, general calling sequence only when necessary; where
possible, they omit unneeded portions of it. For example, the compilers don't use
a register as a frame pointer whenever possible.

• The compilers and debugger observe certain implicit rules rather than
communicating via instructions or data at execution time. For example, the
debugger looks at infonnation placed in the symbol table by a '' . frame''
directive at compilation time, so that it can tolerate the lack of a register
containing a frame pointer at execution time.

7.2 Program Design
This section describes three general areas of concern to the assembly language
programmer:

• usable and restricted registers

• stack frame requirements on entering and exiting a routine

• the "shape" of data (scalars, arrays, records, sets) laid out by the various high
level languages.

~ '.: ".I. '

7.2.1 Register Use and Linkage

·L

The main processor has 32 64-bit integer registers. The uses and restrictions of these
registers are described in Table 7-1.

The floating point coprocessor has 32 floating point registers. Each register can hold
either a single precision (32 bit) or a double precision (64 bit) value. Refer to Table
7-2 for details.

Table 7-1: Integer Registers
:;.

Register Name Software Name Use and Linkage
(from regdef.h)

$0 ra Contains the return address and used for
expression evaluation.

$1 or $at AT Reserved for the assembler.

$2 .. $3 vO .. vl Used for expression evaluations and to
hold the integer function results. Also
used to pass the static link when calling
nested procedures.

$4 .. $7 a0 .. a3 Used to pass the first 4 integer type actual
arguments. Their values are not preserved
across procedure calls.

$8 .. $15 t0 .. t7 Temporary registers used for expression
evaluations. Their values are not preserved
across procedure calls.

$16 .. $23 s0 .. s7 Saved registers. Their values must be
preserved across procedure calls.

$24 .. $25 t8 .. t9 Temporary registers used for expression
evaluations. Their values are not preserved
across procedure calls.

$26 .. $27 kO .. kl Reserved for the assembler.

$28 or$gp gp Contains the global pointer.

$29 s8 A saved register (like s0-s7).

$30 or$sp sp Contains the stack pointer.

$31 zero Always has the value 0.

7.·dU.inkage Conventions

Table 7-2: Floating Point Registers

Register Name Use and Linkage

$f0 .. $fl Used to hold floating point type function
results ($f0) and complex type function
results ($f0 has the real part, $fl has the
imaginary part).

$f2 .. $fl 1 Temporary registers, used for expression
evaluation, whose values are not preserved
across procedure calls.

$f12 .. $fl5 Used to pass the first 4 single or double
precision actual arguments, whose values
are not preserved across procedure calls.

$f16 .. $f19 Temporary registers, used for expression
evaluations, whose values are not
preserved across procedure calls.

$f20 .. $f30 Saved registers, whose values must be
preserved across procedure calls.

$f31 Always has the value 0.0.

7 .2.2 The Stack Frame
The compilers classify each routine into one of of the following categories:

• non-leaf routines, that is, routines that call other procedures

• leaf routines, that is, routines that do not themselves execute any procedure calls.
Leaf routines are of two types:

- leaf routines that require stack storage for local variables

- leaf routines that do not require stack storage for local variables.

You must decide the routine category before detennining the calling sequence.

To write a program with proper stack frame usage and debugging capabilities, use the
following procedure:

1. Regardless of the type of routine, you should include a . en t pseudo-op and an
entry label for the procedure. The . ent pseudo-op is for use by the debugger,
and the entry label is the procedure name. The syntax is:

.ent procedure_name
procedure_name:

2. If you are writing a leaf procedure that does not use the stack, skip to step 3. For
leaf a procedure that uses the stack or non-leaf procedures, you must allocate all

Linkage Conventions 7-3

the stack space that the routine requires. The syntax to adjust the stack size is:

subq $sp,framesize

where framesize is the size of frame required; framesize must be a
multiple of 8. Space must be allocated for:

- local variables

- saved general registers. Space should be allocated only for those registers
saved. For non-leaf procedures, you must save $0, which is used in the calls
to other procedures from this routine. If you use registers $16-$23, you must
also save them.

- saved floating point registers. Space should be allocated only for those
registers saved. If you use registers $f20-$f30 you must also save them.

- procedure call argument area. You must allocate the maximum number of
bytes for arguments of any procedure that you call from this routine.

Note

Once you have modified $sp, you should not modify it again for the
rest of the routine.

3. Now include a . frame pseudo-op:

.frame framereg,framesize,returnreg

The virtual frame pointer is a frame pointer as used in other compiler systems but
has no register allocated for it. It consists of the framereg ($sp, in most cases)
added to the framesize (see step 2 above). Figure 7-1 illustrates the stack
components.

·. ;; •. 7-4 Linkage Conventions

Figure 7-1: Stack Organization

high memory

virtual frame
pointer ($fp) {

frameoff set

stack
pointer ($sp) ..,..

low memory

argument n

argument 1

local & temporaries

saved registers
(including returnreg)

framesize

argument build

The returnreg specifies the register the return address is in (usually $0).
These usual values may change if you use a varying stack pointer or are
specifying a kernel trap routine.

4. If the procedure is a leaf procedure that does not use the stack, skip to step 7.
Otherwise you must save the registers you allocated space for in step 2.

To save the general registers, use the following operations:

.mask bitmask,frameoffset
stq reg,framesize+frameoffset-N($sp)

The . mask directive specifies the registers to be stored and where they are
stored. A bit should be on in bi tmask for each register saved (for example,
if register $0 is saved, bit 0 should be '1' in bitmask. The
frameoff set is the offset from the virtual frame pointer (this number is
usually negative). N should be 0 for the highest numbered register saved and
then incremented by eight for each subsequently lower numbered register
saved. For example:

stq $0,framesize+frameoffset($sp)
stq $17,framesize+frameoffset-8($sp)
stq $16,framesize+frameoffset-16($sp)

Figure 7-2 illustrates this example.

Linkage Conventions 7-5

Figure 7-2: Stack Example

high memory

virtual frame
pointer ($fp) -. {

frameoff set

stack
pointer ($sp) -.

low memory

-------------~----------.... saved $0 (ra)
-------------~~--------.... saved $17

saved $16
framesize

Now save any floating point registers that you allocated space for in step 2 as
follows:

.fmask bitmask,frameoffset
st[st] reg,framesize+frameoffset-N($sp)

Notice that saving floating point registers is identical to saving general
registers except we use the . fma s k pseudo-op instead of . mask , and the
stores are of floating point singles or doubles. The discussion regarding
saving general registers applies here as well.

5. This step describes parameter passing: how to access arguments passed
into your routine and passing arguments correctly to other procedures.
For infonnation on high-level language specific constructs (call-by-name,
call-by-value, string or structure passing), refer to Chapter 3 of the
Language Programmer's Guide.

As specified in step 2, space must be allocated on the stack for all
arguments even though they may be passed in registers. This provides a
saving area if their registers are needed for other variables.

General registers $4-$7 and float registers $f12-$f15 are used for passing
the first four arguments. If any of the first four arguments are non-floating
point arguments, they are passed in general registers. If any of the first
four arguments are floating point arguments, they are passed in float
registers if all preceding arguments are floating point; otherwise they are

7-6 Linkage Conventions

passed in general registers.

Stack space is used for passing the fifth and subsequent arguments. The
stack space allocated to each argument is an 8-byte multiple and is aligned
on an 8-byte boundary.

In the table below, the 'f N' arguments are considered single and double
precision floating point arguments, and 'n N' arguments are everything
else. The ellipses(...) mean that the rest of the arguments do not go in
registers regardless of their type. The register assignments occur in the
order shown in order to satisfy optimizing compiler protocols.

Table 7-3: Register Assignments

Arguments Register Asslgments

(fl, f2, f3, f4, ...)
(fl, nl, f2, f3, ...)
(fl, nl, n2, n3, ...)

fl ~ $fl2, f2 ~ $fl3, f3 ~ $fl4, f4 ~ $fl5
fl ~ $fl2, nl ~ $5, f2 ~ $6, f3 ~ $7
fl~ $fl2, nl ~ $5, n2 ~ $6, n3 ~ $7

(nl, n2, n3, n4, ...) nl ~ $4, n2 ~ $5, n3 ~ $6, n4 ~ $7
(nl, fl, n2, n3, ...) nl ~ $4, fl~ $5, n2 ~ $6, n3 ~ $7
(nl, fl, f2, f3, ...) nl ~ $4, fl ~ $5, f2 ~ $6, f3 ~ $7

6. Next, you must restore registers that were saved in step 4. To restore
general purpose registers:

ldq reg,framesize+frameoffset-N($sp)

To restore the floating point registers:

ld[st] reg,framesize+frameoffset-N($sp)

(Refer to step 4 for a discussion of the value of N).

7. Get the return address:

ldq $0,framesize+frameoffset($sp)

8. Clean up the stack:

addq $sp,framesize

9. Return:

ret $31,$0

10. To end the procedure:

.end procedurename

7 .2.3 The Shape of Data

In most cases, high-level language routine and assembly routines communicate via
simple variables: pointers, integers, booleans, and single- and double-precision real
numbers. Describing the details of the various high-level data structures (arrays,
records, sets, and so on) is beyond our scope here. If you need to access such a
structure as an argument or as a shared global variable, refer to Chapter 3 of the
Language Programmer's Guide, and the "Learn by Doing" technique described at

Linkage Conventions 7-7

the end of this section.

7.3 Examples
This section contains the examples that illustrate program design rules; each example
shows a procedure written and C and its equivalent written in assembly language.

Figure 7-3 shows a non-leaf procedure. Notice that it creates a stackframe, and also
saves its return address since it must put a new return address into register $0 when it
invokes its callee:

Figure 7-3: Non-Leaf Procedure

int
non leaf (i, j)

int i, *j;

{
int abs();
int temp;

temp = i - * j;
return abs(temp);
}

.globl nonleaf
1 int
2 nonleaf (i, j)
3 int i, *j;
4 {

.ent nonleaf 2
nonleaf:

subq $sp, 56, $sp
stq $0, 40 ($sp)
stq $4, 56 ($sp)
stq $5, 64($sp)
.mask OxOOOOOOOl, -16
.frame $sp, 56, $0

5 int abs();
6 int temp;
7
8 temp = i - *j;

ldl $14, 56 ($sp)
ldq $15, 64($sp)
ldl $24, 0($15)
subl $14, $24, $25
stl $25, 52 ($sp)

9 return abs(temp);
bis $25, $25, $4
bsr $0, abs
ldq $0, 40($sp)
addq $sp, 56, $sp
ret $31, $0
.end nonleaf

H Create stack frame
H Save the return address
H Save actual arguments

u Restore return address
u Remove stack frame
H Return to caller

Figure 7-4 shows a leaf procedure that does not require stack space for local
variables. Notice that it creates no stackframe, and saves no return address:

7-8 Linkage Conventions

Figure 7-4: Leaf Procedure Without Stack Space for Local Variables

int
leaf (pl, p2}

int pl, p2;
{
return (pl > p2} ? pl p2;
}

.globl leaf
1 leaf (pl, p2}
2 int pl, p2;
3 {

.ent leaf 2
leaf:

.frame $sp, 0, $0
addl $4, 0, $4
addl $5, 0, $5

4 return (pl > p2} ?
cmple $4, $5, $14
bne $14, $32
bis $4, $4, $6
br $31, $33

$32:
bis $5, $5, $6

$33:
bis $6, $6, $2
ret $31, $0
.end leaf

H Truncate pl to 'int'
H Truncate p2 to 'int'

pl p2;

H Return value goes in $2
H Return to caller

Figure 7-5 shows a leaf procedure that requires stack space for local variables.
Notice that it creates a stack frame, but does not save a return address.

Figure 7-5: Leaf Procedure With Stack Space for Local Variables

char
leaf_storage(i}

int i;

char a[16];
int j;
for (j = O; j < 10; j++}

a[j] = '0' + j;
return a[i];

.globl leaf _storage
1 char
2 leaf _storage (i}
3 int i;
4 {

.ent leaf_storage 2
leaf _storage:

subq $sp, 24, $sp
.frame $sp, 24, $0
addl $4, 0, $4

5 char a[l6];
6 int j;
7 for (j = O; j < 10; j++}

stl $31, 4($sp}
$32:

8 a[j] = '0' + j;
ldl $14, 4($sp}

Create stack frame

##Truncate i to 'int'

Linkage Conventions 7-9

addl $14, 48, $15
addq $14, $sp, $24
stb $15, 8($24)
ldl $25, 4($sp)
addl $25, 1, $8
stl $8, 4($sp)
cmplt $8, 10, $9
bne $9, $32

9 return a [i];
addq $4, $sp, $2
ldb $2, 8 ($2)
addq $sp, 24, $sp
ret $31, $0
.end leaf _storage

7.4 Learning by Doing

Return value goes in $2
Remove stack frame
Return to caller

The rules and parameter requirements required between assembly language and other
languages are varied and complex. The simplest approach to coding an interface
between an assembly routine and a routine written in a high-level language is to do
the following:

• Use the high-level language to write a skeletal version of the routine that you
plan to code in assembly language.

• Compile the program using the -S option, which creates an assembly language
(.s) version of the compiled source file.

• Study the assembly-language listing and then, imitating the rules and conventions
used by the compiler, write your assembly language code.

The next two sections illustrate techniques to use in creating an interface between
assembly language and high-level language routines. The examples shown are merely
to illustrate what to look for in creating your interface. Details such as register
numbers will vary according to the number, order, and data types of the arguments.
You should write and compile realistic examples of your own code in writing your
particular interface.

7.4.1 Calling a High-Level Language Routine
The following steps show a technique to follow in writing an assembly language
routine that calls at of a routine written in C that converts ASCII characters to
numbers; for more information, see atof(3) in the Alpha/OSF Reference Pages,
Section 3.

1. Write a C program that calls atof. Pass global rather than local variables; this
makes them easy to recognize in the assembly language version of the C
program. (and ensures that optimization doesn't remove any of the code on the
grounds that it has no effect.)

Below is an example of a C program that calls at of .

char c [] = "3.1415";
doubled, atof();
float f;
caller()

{
d = atof (c);
f = (float)atof(c);
}

7-10 linkage Conventions

2. Compile the program using the using the compiler options shown below:

cc -s -0 caller.c

The -S option causes the compiler to produce the assembly-language listing; the
-0 option, though not required, reduces the amount of code generated, making the
listing easier to read.

3. After compilation, look at the file caller.s (shown below). The comments in the
listing show how the parameters are passed, the execution of the call, and how
the returned values are retrieved .

c:

. globl c

.sdata

.align 2

.align O

.word 875638323 : 1

.word 13617 : 1

.comm d 8

.comm f 4

.text

.align 2

.globl caller
1 char c [] = "3. 1415";
2 doubled, atof();
3 float f;
4 caller()
5 {

caller:
.ent caller 2

subq $sp, 64, $sp
stq $0, 48 ($sp)
stt $f20, 40($sp)
.mask OxOOOOOOOl, -16
.fmask OxOOlOOOOO, -24
.frame $sp, 64, $0

6 d = atof(c);
la $4, c
bsr $0, atof
stt $f0, d

7 f (float)atof(c);
la $4, c
bsr $0, atof
cpys $f0, $f0, $f20
cvtts $f20, $f2
sts $f2, f

8 }
ldt $f20, 40($sp)
ldq $0, 48($sp)
addq $sp, 64, $sp
ret $31, $0
.end caller

H
H

H
H
H
H

7 .4.2 Calling an Assembly Language Routine

Load address of c
Call atof
Store result in d

Load address of c
Call atof
Copy double result to temp
Convert double to float
Store float result in f

This section shows a technique to follow in writing an assembly language routine
that calls a routine written in a high-level language (Pascal is used in this example).

1. Write a facsimile of the assembly language routine you wish to call. In the body
of the routine, write statements that use the same arguments you intend to use in

Linkage Conventions 7-11

the final assembly language routine. Copy the arguments to global variables
rather than local variables to make it easy for you to read the resulting assembly
language listing.

Below is the Pascal facsimile of the assembly language program .

. type
str =packed array (1 .. 10] of char;
subr = 2 .. 5;

var
global_r: real;
global_c: subr;
global s: str;
global=b: boolean;

function callee(var r: real; c: subr; s: str): boolean;
begin
global_r := r;
global_c := c;
global_s := s;
callee := c = 3;
end;

2. Compile the program using the using the compiler options shown below:

pc -S -0 callee.p

The -S option causes the compiler to produce the assembly-language listing; the
-0 option, though not required, reduces the amount of code generated, making the
listing easier to read.

3. After compilation, look at the file callee.s (shown below). The comments in the
listing shows how the parameters are passed, the execution of the call, and how
the returned values are retrieved.

.lcomm $$65 4

.comm global_r

.comm global_c

.comm global_s

.comm global_b

.text

.align 2

.globl callee

4
1
10
1

9 function callee(var r: real; c: subr; s: str): boolean;
.ent callee 2

callee:
subq $sp, 8, $sp
stq $5, 16($sp)
stq $6, 24($sp)
stq $7, 32($sp)
.frame $sp, 8, $0

10 begin
11 global r := r;

lds $f2, 0($4)
sts $f2, global_r

12 global c := c;
ldbu $14, 16($sp)
stb $14, global_c

13 global s := s;
la $15, global s

$32:

7-12 linkage Conventions

addq $sp, 24, $24
li $8, 10

ldbu
stb
addq

$25, 0 ($24)
$25, 0($15)
$24, 1, $24

The pointer to "r" is in $4

##For array "s", the caller copies
##the array to 24($sp)

Copy "s" to global_s using
a tight byte-copying loop.

addq $15, 1, $15
subq $8, 1, $8
bne $8, $32

14 callee := c = 3;
ldbu $9, 16($sp)
cmpeq $9, 3, $10
stb $10, 7 ($sp)

15 end;
zapnot $10, 1, $2 ## Mask the boolean and return in $2
addq $sp, 8, $sp
ret $31, $0
.end callee

7.5 Memory Allocation
The machine's default memory allocation scheme gives every process two storage
areas, that can grow without bound. A process exceeds virtual storage only when the
sum of the two areas exceeds virtual storage space. The link editor and assembler
use the scheme shown in Figure 7-6; an explanation of each area in the allocation
scheme follows the figure.

Linkage Conventions 7-13

Figure 7-6: Layout of memory (User Program View)

Oxff ff f ff f ff ff f ff f

Oxff ff ffff ££80 0000
Oxffff ffff ff7f ffff

Oxffff ffff ff7e 0000
Oxff ff fff f ff 7d ffff

$sp ~

Oxffff f fff 8000 0000
Oxffff f ff f 7fff ffff

Oxffff fcOO 0000 0000
Oxff ff fbf f ff ff f fff

OxOOOO 0400 0000 0000
OxOOOO 03ff ffff ffff

$gp ~

OxOOOO 0000 0080 0000
OxOOOO 0000 007£ ffff

OxOOOO 0000 0000 0000

Ill Reseived for kernel operations

l2I Reseived for operating system use.

(31 Used for local data in C programs.

Reserved for Kernel
(8MB)

Not Accessible
(by convention)

(64KB)

Stack
(grows towards zero)

Protected
(grows from either edge)

Dynamic Loader
and

Shared Libraries

Reserved for Kernel

Not Accessible

Protected
(grows towards zero)

Heap
(grows up)

.bss
.sbss
.sdata
.data
.rdata
.text

Not Accessible
(by convention)

(8MB)

~ Not allocated until a user requests it, as in extending the stack or loading a shared
library.

~ Reseived for any shared libraries and the dynamic loader.

(6) Reseived for kernel operations.

1ZJ Not accessible to kernel or user programs.

7-14 linkage Conventions

l8J Not allocated until a user requests it, as in System V shared memory regions.

19) The heap is reserved for sbrk and break system calls, and it not always present.

(101 The machine divides all data into one of five sections:

- bss -Uninitialized data with a size greater than the value specified by the -G
command line option.

- sbss -Data less than or equal to the -G command line option. (8 is the default
value for the -G option.)

- sdata (small data) -Data initialized and specified for the sdata section.

- data (data) -Data initialized and specified for the data section.

- rdata (read-only data) - Data initialized and specified for the rdata section.

[1J Contains the . text section

ff2) Reserved.

Linkage Conventions 7-15

Object File Format 9

This chapter provides infonnation on the object file fonnat and has the following
major topics:

• An overview of the components that make up the object file, and the differences
between the Alpha/OSF object-file fonnat and the UNIX System V common
object file fonnat (COFF).

• A description of the headers and sections of the object file. Detailed infonnation
is given on the logic followed by the assembler and link editor in handling
relocation entries.

• The fonnat of object files (OMAGIC, NMAGIC, and ZMAGIC), and infonnation
used by the system loader in loading object files at run-time.

• Archive files and link editor defined symbols.

9.1 Overview
The assembler and the link editor generate object files that have sections ordered as
shown in Figure 9-1. Any areas empty of data are omitted, except that the File
Header, Optional Header, and Section Header are always present.

The sections of the Symbol table portion (indicated in Figure 9-1) that appear in the
final object file format vary, as follows:

• The Line Numbers, Optimization Symbols, and Auxiliary Symbols tables appear
only when debugging is on (when the user specifies one of the compiler -gl, -
g2 or -g3
options).

• When the user specifies the -x option (strip non-globals) for the link edit phase,
the link editor strips the Line Number, Local Symbols, Optimization Symbols,
Auxiliary Symbols, Local Strings, and Relative File Descriptor tables from the
object file, and updates the Procedure Descriptor table.

• The link editor strips the entire Symbol table from the object file when the user
specifies the -s option (strip) for the link edit phase.

Any new assembler or link editor designed to work with the compiler system should
lay out the object file sections in the order shown in Figure 9-1. The link editor can
process object files that are ordered differently, but perfonnance may be degraded.

Figure 9-1: Object File Format

9-2 Object File Format

File Header

Optional Headers

Section Headers

Section Data

text small data
initialization text large data
termination text small bss (0 size)
read-only data large bss (0 size)

8-byte literal pool ucode
commentl11 4-byte literal pool

Section Relocation Infonnation

text read-only data
initialization text large data
termination text small data

Symbolic Header

Comments

Line Numbers 111

Dense Numbers
(ucode objects only)

Procedure Descriptor Table

Local Symbols

Optimization Symbols [j]

Auxiliary Symbols 111

Local Strings

External Strings

File Descriptor

Relative File Descriptor

External Symbols

111 Created only if debugging is ON.
121 Missing if stripped of non-globals.
131 Symbol Table. Missing if fully stripped

Readers already familiar with standard UNIX System V COFF (common object file
format) may be interested in the difference between it and the compiler system
format, as described next.

The compiler system File Header definition is based on UNIX System V header file
f ilehdr. h with the following modifications.

• The symbol table file pointer and the number of symbol table entries now specify
the file pointer and the size of the Symbolic Header respectively (described in

• All tables that specify symbolic information have their file pointers and number
of entries in this Symbolic Header.

The Optional Header definition has the same format as specified in the UNIX System
V header file aouthdr. h, except the following fields have been added:
bss_start, gprmask, fprmask, and gp_value. See Table 9-4.

The Section Header definition has the same format as the UNIX System V's header
file scnhdr. h. except the line number fields are used for global pointers. See
Table 9-6.

The relocation information definition is similar to UNIX 4.3 BSD, which has local
relocation types; however, you should read the Section Relocation Information
section in this chapter for information on differences.

9.2 The File Header
The format of the File Header, defined in filehdr. h, is shown in Table 9-1.

Table 9-1: File Header Format

Dec la ration

unsigned short
unsigned short
int
long
int
unsigned short
unsigned short

Field

f_magic
f_nscns
f_timdat
f_symptr
f_nsyms
f_opthdr
f_flags

Description

magic number
number of sections
time and date stamp
file pointer to symbolic header
size of symbolic header
size of optional header
flags

f _ s ympt r points to the Symbolic Header of the Symbol table, and f _ ns yms gives
the size of the header. For a description of the Symbolic Header, see

9.2.1 File Header Magic Field (f_magic)
The magic number in the f magic entry in the File Header specifies the target
machine on which an objectfile can execute. Table 9-2 shows the values and
mnemonics for the magic numbers; the header file f ilehdr. h contains the macro
definitions.

Object File Format 9-3

Table 9-2: Fiie Header Magic Numbers

Symbol Value Description

ALPHAMAGIC 0603 Alpha machine code object file

ALPHAUMAGIC 0617 Alpha ucode object file

9.2.2 Flags (f _flags)
The f flags field describes the object file characteristics. Table 9-3 describes the
flags and gives their hexadecimal values. The table notes those flags that do not
apply to compiler system object files.

Table 9-3: Fiie Header Flags

Symbol

F_RELFLG
F_EXEC

F_LNNO
F_LSYMS
F_MINMAL
F_UPDATE
F_SWABD
F_AR16WR

F_AR32WR

F_AR32W

F_PATCH
F_NODF

F _MIPS_NO_SHARED
F _MIPS_SHARABLE
F _MIPS_CALL_SHARED
F _MIPS_NO_REORG
F _MIPS_NO_REMOVE

Table Notes:

Value

OxOOOI
Ox0002

Ox0004
Ox0008
OxOOIO
Ox0020
Ox0040
Ox0080

OxOIOO

Ox0200

Ox0400
Ox0400

OxlOOO
Ox2000
Ox3000
Ox4000
Ox8000

Description

relocation information stripped from file
file is executable (i.e. no unresolved external
references)
line numbers stripped from file
local symbols stripped from file
minimal object file (" .m") output of fextracfl
fully bound update file, output of ogena
file whose bytes were swabbed (in names)a
file has the byte ordering of an AR16WR (e.g.
PDP-I lnO) machine (it was created there, or
was produced by conv)a
file has the byte ordering of an AR32WR
machine (e.g. vax)a
file has the byte ordering of an AR32W machine
(e.g. 3b, maxi, MC68000)a
file contains "patch" list in Optional Header1
(minimal file only) no decision functions for
replaced functionsa
cannot be dynamically shared
a dynamically shared object
dynamic executable
do not reorder sections
do not reorder sections or remove nops

a. Not used by compiler system object modules.

9.3 Optional Header
The link editor and the assembler fill in the Optional Header, and the system (kernel)
loader (or other program that loads the object module at run-time) uses the
infonnation it contains, as described in the section Loading Object Files in this
chapter.

9-4 Object File Format

Table 9-4 shows the format of the Optional Header (defined in the header file
aouthdr. h).

Table 9-4: Optional Header Definitions

Declaration Fie Id Description

short magic See Table 9-5.
short vs tamp version stamp
long tsize text size in bytes, padded to

16-byte boundary
long dsize initialized data in bytes, padded

to 16-byte boundary
long bsize uninitialized data in bytes,

padded to 16-byte boundary
long entry entry point
long text_start base of text used for this file
long data_start base of data used for this file
long bss_start base of bss used for this file
int gprmask general purpose register mask
int fprmask floating point register mask
long gp_value the gp value used for this object

9.3.1 Optional Header Magic Field (magic)
Table 9-5 shows the values of the magic field for the Optional Header; the header
file aouthdr. h contains the macro definitions.

Table 9-5: Alpha/OSF Magic Numbers

Symbol Value Description

OMAGIC 0407 Impure Format. The text is not write-protected
or sharable; the data segment is contiguous with
the text segment.

NMAGIC 0410 Shared Text. The data segment starts at the next
page following the text segment and the text
segment is write-protected.

ZMAGIC 0413 The object file is to be demand loaded and has a
special format; the text and data segments are
separated. Text segment is also write protected.
(The Alpha/OSF default). The object may be
either dynamic or static.

See the Object Files section in this chapter for infonnation on the format of
OMAGIC, NMAGIC, and ZMAGIC files.

Object File Format 9-5

9.4 Section Headers
Table 9-6 shows the fonnat of the Section Header (defined in the header file
scnhdr. h).

Table 9-6: Section Header Format

Declaration

char
long
long
long
long
long
long
unsigned short
unsigned short
int

Field

s_name[8]
s_paddr
s_vaddr
s_size
s_scnptr
s_relptr
s_lnnoptr
s_nreloc
s_nlnno
s_flags

9.4.1 Section Name (s_name)

Description

section name
physical address
virtual address
section size
file pointer to raw data for section
file pointer to relocation
file pointer to gp (global pointer) tables
number of relocation entries
number of gp tables
flags

Table 9-7 shows the defined section names for the s name field of the Section
Header; the header file s cnhdr . h contains the macro definitions.

Table 9-7: Section Header Constants for Section Names

Declaration Field Description

_TEXT ".text" text section
_INIT II .init" initialization text section for shared libraries
_FINI ".fini" cleanup text section
_RDATA ".rdata" read only data section
_DATA ".data" large data section
_LITS ".lit8" 8 byte literal pool section
_LIT4 ".lit4" 4 byte literal pool section

SDATA ".sdata" small data section
_BSS ".bss" large bss section

SBSS ".sbss" small bss section -
_UCODE ".ucode" ucode section
_GOT ".got" global offset table8

_DYNAMIC ".dynamic" dynamic linking information8

_DYNSYM ".dynsym" dynamic linking symbol table8

_REL_DYN ".rel.dyn" relocation information8

_DYNSTR ".dynstr" dynamic linking strings8

_HASH ".hash" symbol hash table8

_MSYM ".msym" additional dynamic linking symbol table8

_CONFLICT ".conflict" additional dynamic linking information8

_REGINFO ".reginfo" register usage information8

_PACKAGE ".package" package table8

_PACKSYM ".packsym" symbol to package map8

9-6 Object File Format

Table Notes:

a. These sections exist only in ZMAGIC type files and are used during dynamic
linking

9.4.2 Flags (s_flags)
Table 9-8 shows the defined values for s flags; the header file scnhdr. h
contains the definitions (those flags that are not used by compiler system object files
are noted).

Table 9-8: Format of s_flags Section Header Entry

Symbol

STYP_REG
STYP_DSECT
STYP _NOLOAD
STYP_GROUP
STYP_PAD
STYP_COPY

STYP_TEXT
STYP_DATA
STYP_BSS
STYP_RDATA
STYP_SDATA
STYP_SBSS
STYP_UCODE
STYP_GOT
STYP _DYNAMIC
STYP _DYNSYM
STYP _REL_DYN
STYP _DYNSTR
STYP_HASH
STYP_MSYM
STYP _CONFLICT
STYP _REGINFO
STYP _PACKAGE
STYP_PACKSYM
STYP_FINI
STYP _COMMENT
STYP_LIT8
STYP_LIT4
S_NRELOC_OVFL

STYP_LIB
STYP_INIT

Table Notes:

Value

OxOO
OxOl
Ox02
Ox04
Ox08
OxlO

Ox20
Ox40
Ox80

OxlOO
Ox200
Ox400
Ox800

OxlOOO
Ox2000
Ox4000
Ox8000

OxlOOOO
Ox20000
Ox80000

OxlOOOOO
Ox200000
Ox400000
Ox800000

Ox01000000
Ox02000000
Ox08000000
OxlOOOOOOO
Ox20000000

Ox40000000
Ox80000000

Description

regular section; allocated, relocated, loaded
dummy; not allocated, relocated, not loadeda
noload; allocated, relocated, not loadeda
grouped; formed of input sectionsa
padding; not allocated, not relocated, loadeda
copy; for decision function used by field update;
not allocated, not relocated, loaded; relocated,
and line number entries processed normallya
text only
data only
bss only
read only data only
small data only
contains small bss only
section contains ucode only
global offset tableb
dynamic linking infonnationb
dynamic linking symbol tableb
dynamic relocation informationb
dynamic linking symbol tableb
dynamic symbol hash tableb
additional dynamic linking symbol tableb
additional dynamic link.in~ information b
register usage information
package tableb
symbol to package mapb
.fini section text
comment section
section 8 byte literals only
section 4 byte literals only
s_nreloc overflowed, the value is in r_ vaddr of
the first entry
section contains shared library information only
section initialization text only

a. Not used by compiler system object modules.

b. These sections exist only in ZMAGIC type files and are used during dynamic
linking

Object File Format 9-7

s NRELOC OVFL is used when the number of relocation entries in a section
overflows the s nreloc field of the section header. In this case, s nreloc
contains the value Oxffff and the s flags field has the s NRELOC-OVFL flag set;
the value true is in the r v addr field of the first relocation entry for that section.
That relocation entry hasa type of R ABS and all other fields are zero, causing it to
be ignored under normal circumstances.

Note

For perfonnance reasons, the link editor uses the s flags entry instead
of s _name to detennine, the type of section. However, the link editor
does correctly fill in the s _name entry.

9.4.3 Global Pointer Tables
The gp (global pointer) tables are part of the object file that is produced by the
assembler. These are used by the link editor in calculating the best -G num to
compile the objects are specified as recompilable by the -count option. There is a
gp table for the . sdata and . bss sections only.

The gp table gives the section size corresponding to each applicable value specified
by the -G num option (always including 0), sorted by smallest size first. The
s lnnoptr field in the section header points to this value and the s nlnno field
contains the number of entries (including the header). If there is no small section,
the related gp table is attached to the corresponding large section to provide the link
editor with this infonnation.

When an object does not contain a data and bss section, the -G n um option specified
for the object at compilation is unknown. Because the size of the literal pools cannot
be known, this complicates the calculation of a best -G n um. However, a reliable
calculation can be made when there is an 8-byte literal pool, which ensures that the
object was compiled with a -G of at least eight.

The global pointer table has the following format:

union gp_table {
struct {

} ;

int current g value;
int unused;- -

} header;
struct {

int g value;
int bYtes;

entry;

9.5 Section Data

I* actual value */

I* hypothetical value */
/* section size corresponding */
/* to hypothetical value */

Alpha/OSF compiler system files are represented by the following sections:
.dynamic, .liblist, .rel.dyn, .conflict, .msyrn, .dynstr, .dynsyrn,
. hash, . package, . packsym, . rdata (read-only data), . text, . ini t (shared
library initialization text), . fini (process termination text), . data (data), . lit8
(8-byte literal pool), . lit4 (4-byte literal pool), . sdata (small data), . sbss
(small block started by storage), . bss (block started by storage), . lib (shared
library infonnation), and . ucode (intennediate code). Figure 9-2 shows the layout
of the sections.

9-8 Object File Format

The . dynamic, . liblist, . rel. dyn, . conflict, .msym, . dynstr,
. dynsym, . hash, . package, and . packsym sections exist only in ZMAGIC
files and are used during dynamic linking. These sections are described in more
detail in Dynamic linking is discussed in

The . text section contains the machine instructions that are to be executed; the
. rdata, . data, . lit8, . lit4, and . sdata contain initialized data, and the
. sb s s and . b s s sections reserve space for uninitialized data that is created by the
kernel loader for the program before execution and filled with zeros.

Figure 9-2: Organization of Section Data

.dynamic

.lib list

.rel.dyn

.conflict

.msym

.dynstr

.dynsym

.hash
text segment

.package

.packsym

.rdata

.text

.init

.fini

.data

.lit8

.lit4 data segment

.sdata

.got

.sbss

.bss
bss segment

As noted in Figure 9-2, the ·sections are grouped into the text segment (containing the
. text, . init, and . fini sections), the data segment(. rdata, . data, . lit8,
. lit4, and . sdata), and the bss segment(. sbss and .bss). A section is
described by and referenced through the Section Header, the Optional Header
provides the same infonnation for segments.

Object File Format 9-9

The link editor references the data shown in Figure 9-2 both as sections and
segments, through the Section Header and Optional Header respectively. However,
the system (kernel) loader, when loading the object file at run-time, references the
same data only by segment, through the Optional Header.

9.6 Section Relocation Information

9.6.1 Relocation Table Entry
Table 9-9 shows the format of an entry in the Relocation Table (defined in the header
file reloc. h).

Table 9-9: Format of a Relocation Table Entry

Declaration

long
unsigned

unsigned
unsigned
unsigned

Fleld

r_vaddr
r_symndx:24

r_reserved:3
r_type:4
r_extem:l

Description

(virtual) address of an item to be relocated.
index into external symbols or section
number; see r_extem below.

relocation type
= 1 for an external relocation entry;

. r_symndx is an index into External
Symbols.
= 0 for a local, relocation entry; r_symndx
is the number of the section containing the
symbol.

9.6.1.1 Symbol Index (r_symndx) and Extern Field (r_extern)

For external relocation entries, r extern is set to 1 and r symnndx is the index
into External Symbols for this entry. In this case, the value of the symbol is used as
the value for relocation.

For local relocation entries, r extern is set to 0, and r symndx contains a
constant that refers to a section. In this case, the starting address of the section to
which the constant refers is used as the value for relocation.

Table 9-10 gives the section numbers for r symndx; the reloc. h file contains the
macro definitions. -

Table 9-1 O: Section Numbers for Local Relocation Entries

Symbol Value Description

R_SN_TEXT 1 .text section
R_SN_INIT 7 .init section
R_SN_RDATA 2 .rdata section
R_SN_DATA 3 .data section
R_SN_SDATA 4 .sdata section
R_SN_SBSS 5 .sbss section
R_SN_BSS 6 .bss section

9-10 Object File Format

Table 9-10: (continued)

Symbol Value Description

R_SN_INIT 7 .init section
R_SN_LIT8 8 .lit8 section
R_SN_LIT4 9 .lit4 section
R_SN_FINI 12 .fini section

9.6.1.2 Relocation Type (r_type)

Table 9-11 shows valid symbolic entries for the relocation type (r _type) field
(defined in the header file reloc. h).

Table 9-11: Relocation Types

Symbol Value Description

R_ABS OxO relocation already performed.
R_REFHALF Oxl 16-bit reference to the symbol's virtual address
R_REFWORD Ox2 32-bit reference to the symbol's virtual address
R_JSRADDR Ox3 14-bit jump reference to the symbol's virtual

address
R_REFHI Ox4 reference to the high 16-bits of symbol's

virtual address
R_REFLO Ox5 reference to the low 16-bits of symbol's

virtual address
R_GPREL Ox6 reference to the offset from the global pointer

to the symbol's virtual address
R_LITERAL Ox7 reference to a literal in a literal pool as an

offset from the global pointer
R_REFDBL Ox8 64-bit reference to the symbol's virtual address
R_BRADDR Ox9 21-bit branch reference to the symbol's virtual

address

9.6.2 Assembler and Link Editor Processing
Compiler system executable object modules with all external references defined have
the same format as relocatable modules and are executable without re-link editing.

Local relocation entries must be used for symbols that are defined. Therefore,
external relocations are used only for undefined symbols. Figure 9-3 gives an
ovetview of the Relocation Table entry for an undefined external symbol.

Object File Format 9-11

Figure 9-3: Relocation Table Entry for Undefined External Symbols

Relocation Table Entry External Symbols
~ r_vaddr ...

r_symndx r--------. ...
... value=O
... . ..

r_extern=l ...

Section Data Sign-extended to 64 bits
... L/ ...

- constant --
...
...

The assembler creates this entry as follows:

1. Sets r _ vaddr to point to the item to be relocated.

2. Places a constant to be added to the value for relocation at the address for the
item to be relocated (r_ vaddr).

3. Sets r_syrnndx to the index of the External Symbols entry that contains the
symbol value.

4. Sets r _type to the constant for the type of relocation types. Table 9-11 shows
the valid constants for the relocation type.

5. Sets r extern to 1.

Note

The assembler always sets the value of the undefined entry in External
Symbols to 0. It may assign a constant value to be added to the
relocated value at the address where the location is to be done. If the
width of the constant is less than a full word, and an overflow occurs
after relocation, the link editor flags this as an error.

When the link editor determines that an external symbol is defined, it changes the
Relocation Table entry for the symbol to a local relocation entry. Figure 9-4 gives an
overview of the new entry.

9-12 Object File Format

Figure 9-4: Relocation Table Entry for a Local Relocation Entry

Relocation Table Entry Section n Header
r--- r_vaddr
~ ...

r_symndx ...
... s_vaddr_

r_type ...
r_extern=O ...

Section Data Section n Data --... ...
... . ..

~ constant ~ symbol location
... ...
...) . ..

' Sign-extended to 64 bits

To change this entry from an external relocation entry to a local relocation entry, the
link editor:

1. Picks up the constant from the address to be relocated (r _ vaddr).

2. If the width of the constant is less than 64 bits, sign-extends the constant to 64
bits.

3. Adds the value for relocation (the value of the symbol) to the constant and places
it back in the address to be relocated.

4. Sets r _ s ymndx to the section number that contains the external symbol.

5. Sets r extern to 0.

9.6.2.1 Examples

The examples that follow use external relocation entries.

Example 1: 64-Bit Reference-R _ REFDBL. This example shows assembly
statements that set the value at location b to the global data value y .

. globl y

.data
b: .quad y i R_REFDBL relocation type at address b for symbol y

In processing this statement, the assembler generates a relocation entry of type
R _REFDBL for the address b and the symbol y. After determining the address for
the symbol y, the loader adds the 64-bit address of y to the 64-bit value at location b,
and places the sum in location b.

Object File Format 9-13

The loader handles 32-bit addresses (R REFWORD) and 16-bit addresses
(R _REF HALF) in the same manner, except it checks for overflow after detennining
the relocation value.

Example 2: 21-Bit Branch-R BRADDR. This example shows assembly
statements that call routine x from location c .

. text
x: #routine x

c: bsr x # R BRADDR relocation type at address c for symbol x

In processing these statements, the assembler generates a relocation entry of type
R BRADDR for the address and the symbol x. After determining the address for the
routine, the loader subtracts the address c+4 to fonn the displacement to the routine.
This result is added to the low 21 bits of the instruction at address c, and after
checking for overflow, places the result back into the low 21 bits at address c.

R BRADDR relocation entries are produced for the assembler's br (branch) and bsr
(branch subroutine) instructions.

If the entry is a local relocation type, the target of the branch instruction is assembled
in the instruction at the address to be relocated. Otherwise the instruction's
displacement field contains a signed offset from the external symbol.

Example 3: High/Low Reference-R _ REFHI/R _ REFLO. This example shows an
assembler macro that loads the absolute address y, plus a constant, into Register 6:

la $6,y+constant

In processing this statement, the assembler generates a 0 as the value y, and the
following machine language statements:
f: ldah $at,constant>>16($31} # R_REFHI relocation type at

address f for symbol y
g: lda $6,constant&Oxffff ($at} # R_REFLO relocation type at address

g for symbol y

In this example, the assembler produces two relocation entries.

Note

When a R REFHI relocation entry appears, the next relocation entry
must always be the corresponding R_REFLO entry. This is required in
order to reconstruct the constant that is to be added to the value for
relocation.

In detennining the final constant values for the two instructions, the link editor must
take into account that the lda instruction of the R REF LO relocation entry sign-
extends the immediate value of the constant. -

In detennining the sum of the address for the symbol y and the constant, the link
editor does the following:

1. It uses the low 16 bits of this sum for the immediate value of the R REFLO
relocation address.

2. Because all instructions that are marked with a R REFLO perform a signed
operation, the assembler adjusts the high portion of the sum if Bit 15 is set. Then
it uses the high 16 bits of the sum for the immediate value of the R_REFHI
instruction at the relocation address.

9-14 Object File Format

Example 4: Offset Reference-R GPREL. This example shows an instruction that
loads a global pointer relative value-y into register 6:
ldq $6,y

In processing this statement, the assembler generates a 0 as the value y and the
following machine language statement:
h: ldq $6,0($gp) # R_GPREL relocation type at address h for symbol y

and a R GPREL relocation entry would be produced. The assembler then uses the
difference between the address for the symbol y and the address of the global pointer,
as the immediate value for the instruction. The link editor gets the value of the
global pointer used by the assembler from gp _value in the Optional Header (Table
9-4).

Example 4: Floating Point Literal Reference-R _LITERAL. This example
shows an assembler macro that loads a floating point literal into floating point
register 0.
ldif $f0, 1. 234

is translated into the following machine instruction:
h: lds $f0,-32752(gp) # R_LITERAL relocation type at

address h for the literal 1.234

and a R LITERAL relocation entry is produced; the value of the literal is put into
the . lit 4 section. The link editor places only one of all like literal constants in the
literal pool. The difference between the virtual address of the literal and the address
of the global pointer is used as the immediate value for the instruction. The link
editor handles 8-byte literal constants similarly, except it places each unique constant
in the . lit8 section. The value of the -G num option used when compiling
determines if the literal pools are used.

9. 7 Object Files
This section describes the object-file formats created by the link editor, namely the
Impure (OMAGIC), Shared Text (NMAGIC), and Demand Paged (ZMAGIC)
formats. Before reading this section, you should be familiar in the format and
contents of the text, data, and bss segments as described in the Section Datasection of
this chapter.

The following constraints are imposed on the address at which an object can be
loaded and the boundaries of its segments; the operating system can dictate additional
constraints.

1. Segments must not overlap.

2. Space should be reseived for the stack, which starts below
Oxfffffffffl111I800000 and grows through lower addresses; that is, the value
of each subsequent address is less than that of the previous address.

3. The default text segment address for ZMAGIC and NMAGIC files is
Ox800000 with the data segment starting at the next 8-megabyte boundary
following the end of the text segment.

4. The default text segment address for OMAGIC files is OxlOOOOOOO with the
data segment following the text segment.

Object File Format 9-15

5. The -B num option (specifying a bss segment origin) cannot be specified
for OMAGIC files; the default, which specifies that the bss segment follow
the data segment, must be used.

6. Alpha/OSF requires a 8-megabyte boundary for segments.

9.7.1 Impure Format (OMAGIC) Files
An OMAGIC file has the format shown in Figure 9-5.

Figure 9-5: Layout of OMAGIC Files In Virtual Memory

.bss
_.,, - .sbss

bss segment
_,., - .sdata ---- .lit4 ---- .lit8 data segment .. - .data --- .rdata --- .init ...

.fini text segment
- .text ---

allgned on a 16 byte boundary -

The OMAGIC format has the following characteristics:

- Each section follows the other in virtual address space aligned on an 16-
byte boundary.

- No blocking of sections.

- Text, data and bss segments can be placed anywhere in the virtual address
space using the link editor's -T, -D and -B options.

- The addresses specified for the segments must be rounded to 16-byte
boundaries.

- The text segment contains the . text, . fini, and . init sections.

- The sections in the data segment are ordered as follows: . rdata, . data,
. lit8, . lit4, and . sdata.

- The sections in the bss segment are ordered as follows: . sbss and .bss.

9-16 Object File Format

9.7.2 Shared Text (NMAGIC) Files

An NMAGIC file has the fonnat shown in Figure 9-6.

Figure 9-6: Layout of NMAGIC Files in Virtual Memory

.bss
_ ... - .sbss

bss segment

_ ... - .sdata
__... - .lit4
__.. - .lit8 data segment
_ ... - .data
__... ...

.rd a ta ----- .init ----- .fini text segment
_ .. - .text ---

aligned on a 16-byte bou

L-ali ed ona gn a e-size bou pg

ndary

ndary

An NMAGIC file has the following characteristics:

- The virtual address of the data segment is on a pagesize boundary.

- No blocking of sections.

- Each section follows the other in virtual address space aligned on an 16-
byte boundary.

- Only the start of the text and data segments, using the link editor's -T and
-D options, can be specified for a shared text fonnat file; the start of the
text and data segments must be a multiple of the pagesize.

9.7.3 Demand Paged (ZMAGIC) Files

A ZMAGIC file is a demand paged file in the format shown in Figure 9-7.

A ZMAGIC file has the following characteristics:

- The text segment and the data segment are bfocked, with pagesize as the
blocking factor. Blocking reduces the complexity of paging in the files.

- The size of the sum.
0

of the of the File, Optional, and Sections Headers
(Table 9-1, Table 9-4, and Table 9-6) rounded to 16 bytes is included in
blocking of the text segment.

- The text segment starts by default at Ox800000 (8 Mbyte) , plus the size of
the sum of the headers again rounded to 16 bytes. With the standard
software, the text segment starts at Ox800000 + header size.

Object File Format 9-17

Note

This is required because the first 32K bytes of memory are
reserved for future use by the compiler system to allow data
access relative to the constant register 0.

- Only the start of the text and data segments, using the link editor's -T and
-D options can be specified for a demand paged format file and must be a
multiple of the pagesize.

9-18 Object File Format

Figure 9-7: Layout of ZMAGIC Flies In Virtual Memory

Oxffffffffffffffff -------

1 reserved I} 8MB (not accessible by user) Oxffffffffff800000 ._ ____ ___,._

n*8MB

8MB +header

8MB

0

Stack Area

sbrk arena

. bss

.sbss

0 fill area

.got

.sdata

.lit4

.lit8

.data

empty

fill area

.fini

.init

.text

.rdata

.hash

.dynsym

.dynstr

.msym

.conflict

.rel.dyn

.liblist

.dynamic

headers

empty

--
.. i

bottom of stack
ncreases automatically

as required
,.. bss segment

.,

..

data segment
>- (blo eked by pagesize)

text segment
(blocked by pagesize)

Figure 9-8 shows a ZMAGIC file as it appears in a disk file.

Object File Format 9-19

Figure 9-8: Layout of ZMAGIC File on Disk

Symbol Table

0 Fill Area

.got

.sdata

.lit4

.lit8

.data

Fill Area

.fini

.init

.text

.fini

.init

.text

.rdata

.hash

.dynsym

.dynstr

.msym

.conflict

.rel.dyn

.liblist

.dynamic

headers

9.7.4 Ucode objects

data segment
(blocked by pagesize)

text segment
(blocked by pagesize)

Ucode objects contain only a file header, the ucode section header, the ucode section
and all of the symbolic information. A ucode section never appears in a machine
code object file.

9-20 Object File Format

9. 7 .5 Loading Object Files

The link editor produces object files with their sections in a fixed order similar to
UNIX system object files that existed before COFF. See Figure 9.1 for the a
description of the sections and how they are fonnatted.

The sections are grouped into segments, which are described in the Optional Header.
In loading the object module at run-time, the system (kernel) loader needs only the
magic number in the File Header and the Optional Header to load an object file for
execution.

The starting addresses and sizes of the segments for all types of object files are
specified similarly, and they are loaded in the same manner.

After reading in the File Header and the Optional Header, the system (kernel) loader
must examine the file magic number to detennine if the program can be loaded.
Then, the system (kernel) loader loads the text and data segments.

The starting offset in the file for the text segment is given by the macro

N_TXTOFF(f,a)

in the header file a. out. h, where f is the File Header structure and a is the option
header structure for the object file to be loaded. The ts i z e field in the Optional
Header (Table 9-4) contains the size of the text segment and text start contains
the address at which it is to be loaded. -

The starting offset of the data segment follows the text segment. The dsize field in
the Section Header (Table 9-6) contains the size of the data segment; data_ start
contains the address at which it is to be loaded.

The system (kernel) loader must fill the . bs s segment with zeros. The
bss start field in the Optional Header specifies the starting address; bsize
specifies the number of bytes to be filled with zeros. In ZMAGIC files, the link editor
adjusts bsize to account for the zero filled area it created in the data segment that is
part of of the . sbs s or . bs s sections.

If the object file itself does not load the global pointer register it must be set to the
gp.:_ value field in the Optional Header Table 9-4.

The other fields in the Optional Header are gprmask and fprmask, whose bits
show the registers used in the . text, . ini t, and . fini sections. They can be
used by the operating system, if desired, to avoid save register relocations on
context-switch.

9.8 Archive files

The link editor can link object files in archives created by the archiver. The archiver
and the format of the archives are based on the UNIX System V portable archive
format. To improve performance, the format of the archives symbol table was
changed so that it is a hash table, not a linear list.

The archive hash table is accessed through the ranhashinit () and
ranlookup () library routines in libmld. a, which are documented in the manual
page ranhash(3x). The archive format definition is in the header file ar. h.

Object File Format 9-21

9.9 Link Editor Defined Symbols
Certain symbols are reserved and their values are defined by the link editor. A user
program can reference these symbols, but can not define one; an error is generated if
a user program attempts to define one of these symbols. Table 9-12 lists the names
and values of these symbols; the header file s ym. h contains their preprocessor
macro definitions.

Table 9-12: Link Editor Defined Symbols

Symbol

_ETEXT
_EDATA

_EN
_FfEXT
_FDATA
_FBSS
PROCEDURE TABLE
_PROCEDURE_T ABLE_SIZE
_PROCEDURE_S1RING_TABLE
_COBOL_MAIN
_GP

Table Notes:

a. compiler system only.

Value

"etext"
,"edata"

"end"
"_ftext"
"_fdata"
"_fbss"
"_procedure_table"
"_procedure_table_size"
"_procedure_string_table"
"_cobol_main"
"__gp"

Description

1st location after .text
1st location after .sdata (all
initialized data)
1st location after .bss (all data)
1st location of .text'l
1st location of .dataa
1st location of the .bssa
runtime procedure table
runtime procedure table size
string table for runtime proc.
1st cobol main symbol
the value of the global
pointerb

The dynamic linker also reserves and defines certain symbols; see and for more
information.

The first three symbols come from the standard UNIX system link editors and the
rest are compiler system specific. The last symbol is used by the start up routine to
set the value of the global pointer, as shown in the following assembly language
statements:

.globl GP
la $gp,=GP

The assembler generates the following machine instructions for these statements:

a: ldah $gp,0($31) # R REFHI relocation type at address a for symbol GP
b: lda $gp,0($gp) # R=REFLO relocation type at address b for symbol =GP

which would cause the correct value of the global pointer to be loaded.

The link editor symbol _COBOL_MAIN is set to the symbol value of the first
external symbol with the cobol main bit set. COBOL objects uses this symbol to
determiµe the the main routine. -

9.9.1 Runtime Procedure Table Symbols

The three link editor defined symbols, _PROCEDURE_TABLE,
_PROCEDURE_TABLE_SIZE and _PROCEDURE_STRING_TABLE, relate to the
runtime procedure table. The Runtime Procedure Table is used by the exception

9-22 Object File Format

systems in ADA, PL/I and COBOL. Its description is found in the header file
s ym. h. The table is a subset of the Procedure Descriptor Table portion of the
Symbol Table with one additional field, exception_info.

When the procedure table entry is for an external procedure, and an External Symbol
Table exists, the link editor fills in exception info with the address of the
external table. Otherwise, its fill in exception_ info with zeros.

The name of the External Symbol Table is the procedure name concatenated with the
string _exception_info (actually, the preprocessor macro
EXCEPTION_SUFFIX as defined in the header file exception. h.

The Runtime Procedure Table provides enough information to allow a program to
unwind its stack. It is typically used by the routines in libexc. a. The comments
in the header file exception. h describes the routines in that library.

The Runtime Procedure Table is sorted by procedure address and always has a
dummy entry with a zero address and a Oxffffffff address. When required, the table is
padded with an extra zero entry to ensure that the total number of entries is an
uneven (odd) number.

The Runtime Procedure Table and String Table for the runtime procedure table are
placed at then end of the . data section in the object file.

Object File Format 9-23

