

BLISS
Primer

I nterm ediate

This course reflects:

COMPILERS: BLISS-16c
BLISS-32
BLISS-36

Educational Services

Digital Equipment Corporation

Marlboro, Massachusetts

EY-AY008-SP-001

BLISS Primer

The information in this document is subject to change
without notice and should not be construed as a commitment
by Digital Equipment Corporation. Digital Equipment
Corporation assumes no responsibility for any errors that
may appear in this document.

The information in this document is furnished under a
license and may be used or copied only in accordance with
the terms of such license.

Digital Equipment Corporation assumes no responsibility
for the use or reliability of its software on equipment
that is not supplied by DIGITAL.

Copyright @ 1978, 1979 by Digital Equipment Corporation

The following are trademarks
Corporation:

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOM

DECsystem-10
DECtape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-8
DECSYSTEM-2'"

of Digital

MASSBUS
OMNIBUS
OS/8
PHA
RSTS

Equipment

RSX
TYPESET-8
TYPESET-I'"
TYPESET-Il

I

LANGUAGE ABSTRACT

MODULE 11-1

1I-1-1

BLISS Primer V~lume 2: Intermediate
. Language Abstract

Course Map

II-1-2

BLISS Primer Volume 2: Intermediate
Language Abstract

Introduction

This unit presents BLISS from an abstract, conceptual
viewpoint. The language is described in terms of a few very
general rules and these rules are contrasted with non-BLISS
languages. The presentation assumes a familiarity with BLISS
syntax as presented in the prerequisite units.

11-1-3

BLISS Primer Volume 2: Intermediate
Language Abstract

---------------Objectives ----------------

Given an arbitrary BLISS expression using contructs from the
prerequisite units, be able to determine if it is valid and, if
so, its val ue •

.--------------Sample Test Items ------------_

Given that the location A is
whether the following expressions
value.

initially zero, determine
are valid and, if so, their

1) X = INCR COUNT FROM 9 TO 4 DO
A = .A + 1;

2) (IF.A GTR 9 THEN 2 ELSE 5) = .A;

,--------------Additional Resources -------------.

None.

11-1-4

BLISS Primer Volume 2: Intermediate
Language Abstract

GENERAL

This primer has thus far de-emphasized the interaction of
expressions in order to emphasize the fundamental concepts of the
language. Now that a substantial subset of the syntax has been
presented, it is appropriate to examine the general semantics of
the language. From a conceptual viewpoint, the language can be
described with 2 general rules:

1) Every expression has a value.
2) The context of a value determines its meaning.

However, the characteristics of the language which allow this
simple generalization and the characteristics which make the
language versatile also create the most confusion in the minds of
new users. This is why a specific discussion of these rules has
been deferred until now.

BLISS IS AN EXPRESSION LANGUAGE

The statement "BLISS is an expression language" can usually
be better appreciated by programmers familiar with an expression
language such as LISP, than by programmers familiar with
non-expression languages such as FORTRAN. This is at least
partially true because users who are not familiar with an
expression language tend to associate the term "statement" with
the term "expression". As will become apparent, statements and
expressions are not at all synonymous.

BLISS has three types of expressions: primary, control, and
compound. Since primary expressions have not previously been
explicitly identified as such, they are depicted below with an
example of each:

Primary Expressions Examples

literal 3

plit PLIT(%ASC1Z'STR',5)

name SYM TABLE

routine call EXCHANGE (X,Y)

block (eli e2i e3)
(where the "ens are expressions)

structure reference TABLE[5]

I1-1-5

BLISS Primer Volume 2: Intermediate
Language Abstract

Of course, most of these primaries are also available in
other languages; however, in non-expression languages they
frequently have meaning only in specific contexts. In BLISS they
can be used anywhere an expression is permitted. This distinction
is very apparent when comparing the allowable expressions in BLISS
and non-BLISS control constructs.

Control constructs include conditional, case, select, and
loop expressions. Although most languages have one or more
equivalent constructs, a comparison between expression and
non-expression languages as to the type of expression permitted in
the various control constructs emphasizes a fundamental
difference:

BLISS Non-Expression

IF expression
THEN expression
ELSE expression

WHILE expression DO
expression

INCR name
FROM expression
TO expression
BY expression
DO expression

IF Boolean-construct
THEN statement
ELSE statement

WHILE Boolean-construct DO
statement

INCR name
FROM arithmetic-statement
TO arithmetic-statement
BY arithmetic-statement
DO statement

In BLISS, an expression is an expression is an expression. That
is to say, there is, in general, no restriction on the type of
expression which can be used in the various parts of a control
expression. You can, for example, use another control expression
as the test condition, permitting constructions like:

IF (IF .A THEN ••• ELSE •••)
THEN •••
ELSE •••

This is not true in many other languages. For example, in other
languages, it is common to allow only Boolean constructs in
conditional tests (after IF or WHILE), and arithmetic constructs
where numeric values are anticipated (after FROM, TO, BY, etc.).
The more general BLISS syntax has many advantages. For example,

11-1-6

BLISS Primer Volume 2: Intermediate
Language Abstract

IF (IF .P NEQ 0
THEN •• P GTR 0
ELSE 0)

THEN •••
ELSE •••

forces the test of the pointer p to be performed before using it;
whereas

IF .P NEQ 0 AND
•• P GTR 0

THEN
ELSE •••

may not perform the test ".P NEQ 0" first and therefore could
result 1n an illegal memory reference on some systems. This
conceptual difference between BLISS and non-BLISS-like languages
also extends to the creation of compound expressions.

Compound expressions result from combining primary and/or
control expressions with assignment, arithmetic, Boolean, or
relational operators. Compound constructs in BLISS and non-BLISS
languages have the general forms shown below:

BLISS

expression OPERATOR expression
(control-expression) OPERATOR (control-expression)

non-BLISS

arithmetic-expression OPERATOR arithmetic-expression
name = arithmetic-expression

Note that there are two forms shown for the BLISS and the
non-BLISS languages. The second form in each is an exception to
the more general rule above it: i.e., in BLISS, control
expressions used where a value is required must be enclosed in a
block (in this case parentheses); and, in most non-BLISS
languages, explicit names are usually required on the left side of
an assignment operator. The BLISS exception (control expressions)
is illustrated by the following examples:

x = (IF condition
THEN •••
ELSE •••);

11-1-7

and

x = (SELECTONE index OF
SET

BLISS Primer Volume 2: Intermediate
Language Abstract

[label 1]: expression 1; . . .
[label n]: expression n;
TES);

Note: When writing production programs, the VAX-II Software
Engineering Manual should be consulted for acceptable coding
practices. This is necessary because the misuse of the language,
through valid but exotic expressions, creates more problems than
it solves: although BLISS will compile exotic constructs, they
may be confusing to readers of the code and defeat the purpose of
BLISS as an implementation language, or they maybe be confusing to
the user and require substantial debugging time.

These examples should suggest both the relative simplicity of
BLISS, taken in the abstract, and the complexity of the
expressions which the language permits you to construct.

In order to achieve this generality which permits, among
other things, the arbitrary nesting of control constructs, each
expression must return a value when used in a context which
requires one.

EVERY EXPRESSION HAS A VALUE

This is perhaps the most significant distinction between an
expression language like BLISS and non-expression languages.
Non-expression languages tend to be comprised of "statements"
which, in general, describe actions to be taken but do not have a
value as such. These statements merely perform an operation or
step. For example, the assignment

TEMP = 256;

would store the value 256 at the symbolic address TEMP; however,
in non-expression languages the statement itself would have no
value. As a result,

INCR COUNT FROM 0 TO TEMP = 256 DO
BUFF[.COUNT] = TTY_GET_CHAR();

would be meaningless. Non-expression languages therefore permit

11-1-8

BLISS Primer Volume 2: Intermediate
Language Abstract

only arithmetic expressions in such contexts, since they are the
only statements that produce a value. In BLISS an assignment
expression (as a entity) has a value, and that value is the same
as the value being stored. This means in BLISS that the above
example would be equivalent to:

INCR COUNT FROM 0 TO 256 DO
BUFF[.COUNT] = TTY_GET_CHAR()i

with the additional "side-effect" of storing the value 256 in
location TEMP. It is therefore common to combine the first test
of a value with its assignment to a temporary, e.g.,

IF (TEMP = TTY_GET_CHAR(» GEQ %0'40'
THEN •••

The value of an assignment expression is in fact a fullword
bit pattern and need not be a numeric value (logically) as such.
For example, the assignment

TEMP = PLIT(%ASCIZ'A MESSAGE');

has as its value the address of the PLIT. Since the assignment
operator associates to the right, this value could in fact be
"reused" by adding yet another level of assignment,

PTR = TEMP = PLIT(%ASCIZ'A MESSAGE');

and so on.

Rules for determining the value of common primary and
operator expressions include:

* The value of a PLIT is its address.
* The value of a name is its address.
* The value of the fetch operator (".") applied to a name

is the contents of the corresponding memory location.
* The value of a routine call is the value returned

by the called routine.
* The value of a block is the value of the last expression

executed in the block.
* The value of a compound expression made from a

relational operator is 1, if true, and 0, if false.
* The result of a compound expression made from a

Boolean operator is the resulting bit pattern.

These are relatively straightforward results with
exception of a NOVALUE routine call. Because

II-1-9

the possible
no value is

BLISS Primer Volume 2: Intermediate
Language Abstract

returned, NOVALUE routine calls are therefore not permitted (they
are invalid) in any context which requires a value. For example,
in the following expressions the NOVALUE routine EXCHANGE is used
in an erroneous and invalid manner:

EXTERNAL ROUTINE
EXCHANGE: NOVALUE; . . .

A = EXCHANGE (X,Y) + 20; INVALID EXPRESSION

IF EXCHANGE (X,Y)
THEN expression
ELSE expression;

INVALID EXPRESSION

It is important to note however that these expressions would
be correct if the routine EXCHANGE returned a value.

The rules governing the value of control expressions are
somewhat less intuitive. They include:

*

*

*

*

For SELECT and SELECTONE:
the value of the last (or only) expression evaluated
or -1 if none are selected.

For CASE:
the value of the expression executed
or undefined if no match is found.

For loops:
-1 on normal complet!on or the value of the LEAVE
or EXITLOOP. expressIon that terminated the loop.

For IF-THEN-ELSE:
the value of the THEN or ELSE expression
SELECTed.

Note that although the defined value of -1 for SELECT/SELECTONE
and loop expressions may seem arbitrary, it does provide a means
of determining the action taken during execution. For example:

TYPE = BEGIN
SELECTONE

SET
[%C 'A '
[%C'''''
TES;

END;

TO %C'Z']:
TO %C'9']:

ALPHA;
NUMERIC;

which will read a character, assign it to CHAR, and return in
TYPE:

11-1-10

BLISS Primer Volume 2: Intermediate
Language Abstract

the value of ALPHA if an alphabetic character
the value of NUMERIC if a numberic character
the value -1 if not alphanumeric

The value of any expression is a fullword bit pattern which
can be determined by applying the above rules; however, the
meaning associated to that value depends entirely upon the context
in which the value is used, and not on the way it was generated.

THE MEANING OF A VALUE

The meaning of a value is determined by the context in which
it is used, not by any intrinsic quality of the expression which
produces the value. Consequently, the expressions

TEMP = %C'S';
TEMP = SAM;
TEMP = 10 * 8 + 3;

would all have exactly the same value, assuming the address of SAM
was decimal 83. In many non-expression languages, special
declarations (implicit or explicit) are necessary to store
numbers, strings, and addresses since they are thought of as being
different kinds of data. Furthermore, identical expressions can
have different values depending upon the context in which they are
used. For example, the assignment:

A = A + 1;

In most non-BLISS-like languages the value of A on the left of the
assignment operator is its address, whereas the value of A on the
right of the assignment operator is its contents. In BLISS the
value of a symbolic name is always the same, i.e., an address.
Hence, in this example A would be assigned the address of the next
memory location - not one more than its present contents. To add
one to the contents of A would require the use of the "dot"
operator, as follows:

A = .A + 1;

Although this unit can not discuss all of the implications
resulting from these three BLISS rules (abstracted above), a few
of the more significant considerations are presented below.

II-I-II

BLISS Primer Volume 2: Intermediate
Language Abstract

FURTHER RAMIFICATIONS

A common programming requirement is to assign one of two
values to a given location depending upon the results of some
test. This operation could be diagrammed as,

* I Y:

X: * •

* I Z:

where the condition (depicted by the arrow) acts as a switch to
direct either the contents of Y or Z to be transferred to X. The
code in most languages would be equivalent to:

IF condition
THEN

X = .Y
ELSE

X = .Z;

In BLISS this same sequence can be written equivalently as:

X = (IF condition THEN .Y ELSE .Z);

The value of the IF statement becomes the value of the selected
THEN or ELSE part (i.e., the contents of Y or Z), and this value
is in turn stored in X. The syntax corresponds very closely to
the diagrammatic logic of the situation. It is important to again
note that the control expression has been enclosed in parentheses.
This restriction (i.e., having to enclose control expressions -
used as a value - in a block) is imposed for the user's benefit.
It is necessary because of the ambiguity which can and frequently
does result without an explicit indication of the end of the ELSE
expression. For example, the expression

X = IF A GTR B THEN A ELSE B+4;

has two possible interpretations:

X = (IF A GTR B THEN A ELSE B) + 4;
X = (IF A GTR B THEN A ELSE B + 4);

11-1-12

BLISS Primer Volume 2: Intermediate
Language Abstract

Another common programming requirement is to assign a value
to one of two locations, depending on the result of some test.
The resulting construct in most languages could be illustrated as:

Y: *

.......... --*

Z: *

This would be programmed in most languages as:

IF condition
THEN

Y = • X
ELSE

Z = • X;

X:

BLISS, on the other hand, permits the more direct construction:

(IF condition THEN Y ELSE Z) = .X;

Observe that the parentheses in this
achieve the intended result, as
interpreted differently without them.

example are essential
the expression would

to
be

Expressions in BLISS may be arbitrarily complex and nested to
great depths. The block is a good example:

BEGIN
declarations; •••
expressions; •••
END

or equivalently,

(declarations; ••• expressionsi •••)

The block is itself a primary expression, but it can be composed
of many more blocks each with many sub-expressions. For
instance,

(eli e2; e3i ••• (elli e12; e13; eln); ••• en)

where each block may also contain its own separate declarations.

11-1-13

BLISS Primer Volume 2: Intermediate
Language Abstract

It is in fact common practice in BLISS to declare local variables
or macros for an inner block. For example:

IF •••
THEN

BEGIN
LOCAL.

x,
, Y; . . .

x =
Y =
END

ELSE •••

. . .

11-1-14

BLISS Primer Volume 2: Intermediate
Language Abstract

Exercises

Given:

A = 0
B = %C'S'
POSC) - a routine which always returns the value 1
EXCH() - a NOVALUE routine

For each expression below, determine its value if valid, or the
reason it is invalid.

1) A = 25 - 5;

2) A = (8 = 5; C = .8 + 5; o = 0) ;

3) A = (IF POS () THEN A = 6 ELSE A = 4);

4) A = (I F .8 THEN 7) ;

5) INCR COUNT FROM o TO 4 DO
A = .A + 1;

6) A = %C '8 ' ;

7) A = EXCH () ;

8) A = IF pas () THEN .8 ELSE .A;

9) A = (SELECT .8 OF
SET
[%C I S I] 1;
[%C IT'] 2;
[%C 10 1] 3;
[ALWAYS] 4;
TES) ;

10) • (A + 5) = 16;

11) 7 = (INCR COUNT FROM o TO 100 DO
IF .COUNT GTR 50
THEN

EXITLOOP 5
ELSE

A = .A + 1) ;

12) A = • pas () ;

13) A = (.8 + 1 ;) ;

II-I-IS

BLISS Primer Volume 2: Intermediate
Language Abstract

This page intentionally left blank.

II-1-16

BLISS Primer Volume 2: Intermediate
Language Abstract

1) 20

2) 0

3) 6

4) invalid

5) -1

6) %C'B'

7) invalid

8) invalid

9) 4

10) 16

11) 5

Solutions

(the ELSE part is required when an IF control
expression is used as a va~ue)

(normal termination)

(or octal la2)

(this context requires a value)

(control expressions require parentheses when
used in a context which requires a value -
such as in this assignment)

(ALWAYS is last label selected)

(the value of EXITLOOP - it is always a
premature exit)

12) contents of location one

13) (the expression is equivalent to: A=(.B+l;a);)

11-1-17

BLISS Primer Volume 2: Intermediate
Language Abstract.

This page intentionally left blank.

11-1-18

BLISS Primer Volume 2: Intermediate
Language Abstract

Unit Test

1. Given that the contents of A is initially zero in each
expression below, determine whether each expression is valid and,
if so, its value:

a) X = (WHILE .A GTR 15 DO
A = .A + 1) ;

b) (IF .A GTR ~ THEN 2 ELSE

c) X = INCR COUNT FROM ~ TO
A = .A + 1;

2. Given:

the contents of B = %C'X'
the address of B = 112

5) = .A;

4 DO

For each question below, determine the value of each expression:

a) SELECT .B OF
SET
[%C 'B ']
[%C '0']
[%C 'X,]
[OTHERWISE]
TES;

b) TEMP = B;

c) BAND • B;

d) .B GTR B;

A = 1;
A = 2;
B = 3;
B = 4;

II-1-19

BLISS Primer Volume 2: Intermediate
Language Abstract

This page intentionally left blank.

II-1-20

LEXICAL FUNCTIONS

MODULE 11-2

11-2-1

BLISS Primer Volume 2: Intermediate
Lexical Functions

Course Map

I I-2-2

BLISS Primer Volume 2: Intermediate
Lexical Functions

Introduction

The lexical string, protect, and macro functions are
introduced along with examples. These functions are primarily
used with macros although the string functions can be used to
simplify certain string processing operations. Conditional macros
are also discussed.

1I-2-3

BLISS Primer Volume 2: Intermediate
Lexical Functions

_-------------Objectives ----------------.

Be able to use arbitrary lexical functions correctly in the
solution to a specified problem involving conditional macros •

.-------------- Sample Test Items ------------......

Write a program, using a conditional macro named AVG, that
accepts an arbitrary number of ·integer arguments and subsequently
computes their average. The solution must use at least four
different lexical functions •

..------------- Additional Resources

BLISS-32 Language Guide Chapter 16: Lexical Processing
Section: 16.2

11-2-4

BLISS Primer Volume 2: Intermediate
Lexical Functions

Lexical functions are a means of producing or controlling
substitutions in the input stream to the compiler. As such, these
functions allow the user to create or manipulate literals and
symbols in ways which would not otherwise be permitted.

One case of lexical substitution occurs in a macro expansion
when the macro name (and its arguments) is removed from the input,
and the text of the macro is substituted in its place. The final
result is as if the text had been typed in the original source
code.

Although the lexical string functions have some direct
application outside of macros, lexical functions are primarily
used in conjunction with the macro facility. Since several of the
lexical functions have special applications in conditional macros,
the latter will be discussed before proceeding to specific lexical
functions.

CONDITIONAL MACROS

A conditional macro has the general form

MACRO
name (fo rmal-parameters, •••) [] =

text %;

with the expansion contingent upon both the number of formal
parameters in the macro definition and the number of actual
arguments in the macro call. In general, expansion occurs as long
as the number of actual arguments in the macro call equals or
exceeds the number of formal parameters in the macro definition.
This means that if you define a conditional macro as having two
parameters and then call it with five actual parameters, the macro
will be expanded twice: once for the first two arguments and once
for the second set. No expansion occurs for the third set because
only one of the two required arguments was supplied. Examples
will be deferred until the specific lexical functions which
normally occur in conditional macros are discussed.

STRING FUNCTIONS

The lexical string functions include:

%CHAR
%CHARCOUNT

II-2-5

BLISS Primer Volume 2: Intermediate
Lexical Functions

%NAME
%NUMBER
%STRING

The function %CHAR(integer, •••) accepts a series of one or
more integers, separated by commas, and produces a concatenated
string of ASCII characters. For example (using 32-bit
architecture):

A = %CHAR(79,88); x o A:

The function %CHARCOUNT(string, •••) accepts a series of
string literals, separated by commas, and produces a count of the
number of characters in the concatenated strings. For example:

A = %CHARCOUNT('A','LONG','STRING'); 11 A:

The function %NAME(string, •••) accepts a series of string
literals and returns a concatenated string that is interpreted as
a name. This function is necessary to reference names containing
special characters. For example,

MACRO SYSCALL =
%NAME('.$SYSCALL') %;

constructs an equivalent name for an external systems service
routine name that begins with a period, even though the period has
other meanings in BLISS. Using the macro name, the service
routine can then be referenced in a normal manner as shown below:

EXTERNAL ROUTINE
SYSCALL;

• • •

SYSCALL();

Since this function accepts multiple string arguments, it is also
used to construct new names. For example,

MACRO LOCAL SYM(A)=

. . .
LOCAL -

%NAME('LOC_',(A» %;

LOCAL_SYM('VEC');

11-2-6

BLISS Primer Volume 2: Intermediate
Lexical Functions

concatenates the strings LOC and VEC to produce the declaration:

LOCAL
LOe VEC;

The function %NUMBER(item) accepts either a string literal or
a literal name and returns the appropriate decimal value. For
example:

LITERAL
TYPE A = 3; . . .

A = %NUMBER(TYPE_A);

A = %NUMBER('65');

The function %NUMBER has meaningful
conjunction with macros. For example,

MACRO CTRST(A,B) =
OWN %NAME«A), %NUMB~R(B» %;

3

65

application only in

accepts a literal name or a numeric literal and makes possible
macro calls of the form:

LITERAL
TYPE_A = 3;

CTRST('LVAL_' ,TYPE_A);

to produce:

OWN
LVAL_3;

The last lexical string function is %STRING(string, •••) which
concatenates multiple string literals, separated by commas, into a
single string literal. This function is useful in creating
strings which require special characters that could not otherwise
be incorporated. For instance, .

TTY_PUT_QUO(%STRING('EXIT LINE ',%CHAR(%O'15',%O'12'»);

would output to the terminal the string "EXIT LINE " followed by a
carriage return and line feed. As shown in the above example,
lexical functions may be nested arbitrarily, one 'inside the other.

11-2-7

BLISS Primer Volume 2: Intermediate
Lexical Functions

It is important to emphasize that lexical functions effect a
substitution by the processor which occurs before compilation.
This is depicted below using a few of the previous examples:

Before Lexical Processing

A = %CHAR(79,88);
A = %CHARCOUNT (' A' , 'LONG I , I STRING I) ;

"
Therefore an expression like

A = %CHAR (. TEMP) ;

After Lexical Processing

A = 'OX';
A = 11;

is invalid because ".TEMP" (the contents of location TEMP) has no
value until run-time.

In general, there are three types of lexemes in a macro:

string literals
names
numeric literals

(i • e ., %C' A " , GO', etc)
(i • e ., A , F 00 , etc.)
(i.e., 1, 345, etc.)

In conjunction with macros, it is often necessary or desirable to
convert from one type of lexeme to another when the type of the
desired result is known but the type of the argument is not. The
following table summarizes the possible arguments and their
result:

Function

%STRING

%NAME

Argument type

(st ring-l i teral)

(name)

(numeric-literal)

(string-literal)

(name)

(numeric-literal)

II-2-8

Result

same

concatenation of each
character in the name
taken in textual order

the character
representation of the
numeric literal

name corresponding to
the string

same

%NAME(%STRING(numeric­
literal))

BLISS Primer Volume 2: Intermediate
Lexical Functions

%NUMBER (string-literal)

(I i teral name)

PROTECT FUNCTIONS

%DEC1MAL'string-literal'

value of the literal
name

Without the protect functions, many useful applications of
the macro facility would be made more difficult if not impossible.
For example, an attempt to pass, in a macro call, an argument
which contained a comma, as in

FUNC(A,B);
FUNC (,) ;

would not succeed. The first call would be interpreted as two
arguments (A and B) rather than one (A,B), and the second would
also have two parameters, both null. Furthermore, it would not be
possible to nest macro declarations since the attempt to end the
inner macro declaration with a "%" would terminate the outermost
macro and generate subsequent compiler errors because the leftover
code would not be syntactically correct. The following nested
macros illustrate this problem:

MACRO FMA(X) =

MACRO FMB = text %;

%;

The lexical functions %QUOTE and %UNQUOTE are therefore expedient.
The function %QUOTE prevents the next lexeme (i.e., an entity such
as a" keyword, name, literal, string, delimiter, etc.) from being
interpreted (bound) until it is expanded at the time of the macro
call. This function provides the needed mechanism to pass
parameters that contain a comma or another delimiting character as
part of the argument. For example, the macro calls on FUNC above
can now be correctly written as:

FUNC(A %QUOTE, B);
FUNC(%QUOTE,);

Similarily, the nested macros above would be written:

MACRO FMA(X) =

MACRO FMB = text %QUOTE %;

11-2-9

• • •

%;

BLISS Primer Volume 2: Intermediate
Lexical Functions

The function %UNQUOTE has the opposite effect. That is, the
lexeme following the function is lexically bound in the current
block. This is used to associate a name to the declaration in
effect within the current block. Normally, a name is not bound to
an address until the time that the macro is expanded; at that
time, the name is associated with the appropriate declaration in
effect in that block. The following code demonstrates this
application:

BEGIN
OWN

X;

MACRO MES(A) =
BEGIN
LOCAL

X;
X = PROC(.A);
END; %;

BEGIN
~N

X;
MES(X);
END;

MES(X);
END;

This example has two calls on the macro MES, both in different
blocks. Since the name X has been redeclared twice, three
distinct locations for X are possible; however, X will always
refer to the local declaration of X in the macro. To force X to
refer to the declaration in effect within the block declared, the
function %UNQUOTE can be used. Using %UNQUOTE in the call causes
X to be bound to the declaration in effect in the block the macro
was declared. For example,

BEGIN
OWN

X;

MACRO MES(A) =
LOCAL

11-2-10

BLISS Primer Volume 2: Intermediate
Lexical Functions

X;
X = PROC (.A) %;

MES (%UNQUOTE X);
END;

causes the argument A in the macro to refer to the declaration of
X contained in the call, rather than the declaration of X in the
macro.

MACRO FUNCTIONS

The macro lexical functions are defined only for use in the
macro body itself. They include these three functions:

%COUNT
%LENGTH
%REMAINING

The function %REMAINING is frequently used with conditional
macro calls because it provides a means to obtain the actual
arguments in excess of the number declared. The value of the
function is the list of arguments that are in excess of those
required for the present copy (incarnation) of the macro.
Consider, for example, the recursive macro below which has two
formal parameters (X and Y):

MACRO MAC(X,Y) [] =
X = ALPHA (Y) ;
MAC(%REMAINING)%;

If this macro were called with four actual arguments as in,

MAC(A,B,C,D);

it would produce as its first copy

A = ALPHA (B) ;
MAC (%REMAINING)

(where %REMAINING equals "C,D") then as its second copy

A = ALPHA (B);
C = ALPHA(D);
MAC (%REMAINING)

where %REMAINING equals null. Since the final call to MAC has

11-2-11

BLISS Primer Volume 2: Intermediate
Lexical Functions

fewer arguments than the formal parameters declared, the value of
the macro call is null, and the final result of the call would be:

A = ALPHA (B) ;
C = ALPHA (D) ;

The %COUNT function is also used with both recursive and
conditional macros and returns the number of the current copy of
the macro. The orginal is given number, 0, the first copy, 1,
etc. For example, the conditional macro

MACRO IUC(X) [] =
FUNC IUC(X,%COUNT);
IUC(%REMAINING)%;

generates a new copy for each argument in the macro call, and for
each copy, %COUNT is incremented and that value substituted for
%COUNT. Hence, the macro call

IUC(A,B,C);

expands as:

FUNC IUC (A, 0) ;
FUNC-IUC (B, 1);
FUNC=IUC (C, 2) ;

The function %LENGTH on the other hand returns as its value
the number of actual parameters passed in that call. For example,

MACRO MMC(X,Y,Z) =
IF %LENGTH NEQ 3
THEN

TTY PUT QUO('REQUIRES THREE ARGUMENTS ••• ')
ELSE - -

BEGIN
AVERAGE = .X + .Y + .Z;
AVERAGE = .AVERAGE / 3;
END %;

when called with

MMC(A,B,C);

would produce:

AVERAGE = .A + .B + .C;
AVERAGE = .AVERAGE / 3;

I I-2-12

BLISS Primer Volume 2: Intermediate
Lexical Functions

Note that the IF expression is not generated in the final form of
this example.' Since %LENGTH is a lexical function, the macro
expansion at compile time for the above call would be:

IF 3 NEQ 3
THEN

ELSE
TTY PUT_QUO('REQU1RES THREE ARGUMENTS ••• ·)

BEGIN
AVERAGE = .A + .B + .C;
AVERAGE = .AVERAGE / 3;
END;

Because the test condition in this case (3 NEQ 3) is a constant
zero (i.e., false), only the code for the ELSE part would be
generated. In general, you can expect a conditional expression to
disappear without warning if the test condition is constant. This
results from optimizations that occur at compile time.

11-2-13

This page is for notes.

BLISS Primer Volume 2:· Intermediate
Lexical Functions

II-2-14

BLISS Primer Volume 2: Intermediate
Lexical Functions

1. Given the macro:

MACRO CEX (A, B) [] =
A = • A + %C OUNT ;

Exercises

A = BETA(B) / %LENGTH;
CEX(%REMAIN1NG)%;

Determine the expansion which would result from the macro call:

CEX(R, S %QUOTE, 3, T, W)

2. Determine the output to the TTY of the following
expression:

1NCR COUNT FROM %CHAR(%O'60') TO %CHAR(%O'66') BY 2 DO
TTY_PUT_CHAR(.COUNT);

3. Determine the value of the expre'ssion:

%CHARCOUNT(%CHAR(l2,13,14,15»;

11-2-15

BLISS Primer Volume 2: Intermediate
Lexical Functions

This page intentionally left blank.

11-2-16

BLISS Primer Volume 2: Intermediate
Lexical Functions

1) R = .R + 0;
R = BETA(S,3) / 4;
T = .T + Ii
T = BETA(W) / 2;

2) 0246

3) 4

Solutions

II-2-17

BLISS Primer Volume 2: Intermediate
Lexical Functions

This page intentionally left blank.

II-2-l8

BLISS Primer Volume 2: Intermediate
Lexical Functions

Unit Test

Write a program, using a conditional macro named AVG, that
accepts an arbitrary number of integer arguments and subsequently
computes their average which is stored at the predeclared symbolic
address AVERAGE. Obtain the average by dividing the sum of the
arguments by the number of arguments (you do not have to round-off
the result). Show a call to AVG which directs the output to the
terminal. The solution must use at least four different lexical
functions.

11-2-19

BLISS Primer Volume 2: Intermediate
Lexical Functions

This page intentionally left blank.

CHARACTER HANDLING FUNCTIONS

MODULE 11-3

11-3-1

BLISS Primer Volume 2: Intermediate
Character Handling Functions

Course Map

11-3-2

BLISS Primer Volume 2: Intermediate
Character Handling Functions

Introduction

The built-in character handling functions are introduced.
These functions allow the user to build and manipulate character
sequence pointers; to manipulate, compare, search, and move
character strings; and to perform character translation.

II-3-3

BLISS Primer Volume 2: Intermediate
Character Handling Functions

---------------Objectives------------------.

Given a problem which requires the manipulation of character
sequences, be able to write a solution which correctly uses an
arbitrary number of character handling functions.

-------------- Sample Test Items---------------,

Write a routine'which, when passed the address of an ASCIZ
string (having less than l~~~ characters) and the address of a
work area:

1) translates each character in the string into its Radix-5~
equivalent

2) stores the resulting translation in a work area
3) terminates the string with a null character

The solution should use at least 5 different character handling
functions.

BLISS-32 Language Guide

Additional Resources

Chapter 2~: Character Handling
Functions

Se c t ions: all

II-3-4

BLISS Primer Volume 2: Intermediate
Character Handling Functions

The character handling functions are built-in functions. As
such, the syntax for invoking them is the same as that for calling
a routine. An actual routine call, however, does not necessarily
take place; usually, the necessary code will be generated
in-line, saving the overhead of a routine call.

These functions are the preferred method of dealing with
characters in BLISS, replacing most of the direct manipulation
techniques employed in the examples and exercises throughout the
introductory units. They provide code efficiencies as well as
being functionally equivalent between machine types.

The character functions are discussed below in groups of the
general class of facilities they provide.

FUNCTIONS USED IN ALLOCATING STORAGE

A character sequence, sometimes referred to as a "string", is
any series of coded characters stored. contiguously in memory.
Allocating storage to hold such character sequences is ordinarily
the. responsibility of the user. To assist the user, two functions
have been provided:

CH$ALLOCATION
CH$SIZE

The function CH$ALLOCATION(length, character-size) returns
the number of fullwords needed to represent a sequence of a given
character length (in number of characters) and a specified size in
bits per character. The returned value is:

(number-of-characters + 3) / (characters-per-fullword)

For example, if storage for a character sequence is allocated by
means of a vector and the length of the sequence is 45 characters
then

OWN
CH_STORE:VECTOR[CH$ALLOCATION(45)]i

will produce the correct storage allocation. Character size (the
second argument) is optional and has the following defaults:

BLISS-32 ••••• IS A CONSTANT: 8
BLISS-16 ••••• IS A CONSTANT: 8
BLISS-36 ••••• VARIABLE FROM I TO 36 BITS (DEFAULT: 7)

II-3-5

BLISS Primer Volume 2: Intermediate
Character Handling Functions

The function CH$SIZE(source-pointer) returns the number of
bits per character. FUNCTIONS THAT BUILD AND MANIPULATE
CS-POINTERS

A character sequence is specified by two numbers: a
character sequence pointer (CS-pointer) which points to the start
of the sequence, and its length in number of characters. The
three functions which deal with character sequence pointers are:

CH$PTR
CH$PLUS
CH$DIFF

The function

CH$PTR(address, position-index, character-size)

builds a CS-pointer. It returns as its value a CS-pointer which
represents the beginning address of the sequence plus an offset to
the specific character in the sequence. The position index is the
offset, or number of character positions from the initial address,
and if not specified, it defaults to zero; size is the number of
bits per character, and it defaults to eight (BLISS-l6/32) or to
seven (BLISS-36).

The function

CH$PLUS(CS-pointer, index)

performs logical addition on the CS-pointer, incrementing it by
the specified number of characters. It returns a CS-pointer to
the subsequent beginning, now "index" number of characters from
the original CS-pointer.

The function

CH$DIFF(CS-pointer-l, CS-pointer-2)

performs logical subtraction on a pair of CS-pointers and returns
an integer index. For example:

OWN
CSP,
CSP2,
INDEX;

CSP = CH$PTR (PLIT (' EXAMPLE')) ;

11-3-6

!POINTER STORAGE
!POINTER STORAGE
IOTHER STORAGE

lCSP CONTAINS A
! CS-POINTER WHICH
1 POINTS TO THE INITIAL

BLISS Primer Volume 2: Intermediate
Character Handling Functions

CSP2 = CH$PLUS(.CSP, 5);

INDEX = CH$DIFF (.CSP, .CSP2);

! E IN 'EXAMPLE'

!CSP2 CONTAINS A
CS-POINTER WHICH
POINTS TO THE
L IN 'EXAMPLE'

!INDEX CONTAINS INTEGER
5

Many functions return a CS-pointer. The function CH$PTR
creates a CS-pointer while other functions, such as CH$PLUS,
return an updated CS-pointer. In either event, it is the
responsibility of the user to insure that the correct length stays
associated with each CS-pointer. This is essential because the
length of the source and/or destination pointer is required as an
input argument in several of the following character handling
functions.

FUNCTIONS WHICH MANIPULATE CHARACTERS

The two basic functions which manipulate characters are:

CH$RCHAR
CH$WCHAR

The read function

CH$RCHAR(source-CS-pointer)

fetches the character referenced by the given pointer but leaves
the CS-pointer itself unchanged.

The write function

CH$WCHAR(character, destination-CS-pointer)

stores the indicated character at the location referenced by the
destination pointer, again leaving the pointer unchanged. For
ex ample:

OWN
CHI,
CH2,
CSP,
DSPi

11-3-7

!CHARACTER STORAGE

!SOURCE POINTER
!DESTINATION POINTER

BLISS Primer Volume 2: Inter,mediate
Character Handling Functions

CSP = CH$PTR (P'LIT (' EXAMPLE'));

DSP = CH$PTR(CH2);

CHI = CH$RCHAR(.CSP);
CH$WCHAR(.CHI,.DSP);

lCSP IS A CS-POINTER TO
! THE STRING 'EXAMPLE'

!DSP IS A CS-POINTER TO
! CH2

!CSP STILL POINTS TO E
!DSP STILL POINTS TO

FIRST CHARACTER
POSITION IN CH2

Note that the CS-pointers remain unchanged. That is, the value of
the pointer after executing the function is exactly the same as
the original pointer. Two such calls in succession would
therefore read (or write) the same character position twice.

These functions, with the appropriate extension, can also be
used to advance the CS-pointer during the read or write operation.
If the CS-pointer is to be advanced after the read or write
occurs, a "A" is appended to the function name; if it is to be
advanced befo~e performing the indicated operation, a "A" is
prefixed to the function name after CH$. As these functions
update the CS-pointer, in addition to returning a character value,
they require the ADDRESS of the CS-pointer as their argument,
rather than its current value. Each function advances the
CS-pointer at the appropriate time and updates the pointer
location. For example, continuing from the above illustration:

CHI = CH$A_RCHAR(CSP);

CH$WCHAR_A(CH$RCHR(.CSP), nsP);

CSP = CH$PLUS(.CSP,I)i

CHI = CH$RCHAR~(CSP)i

CH$WCHAR (I I I , • nsP) ;

CH$A_WCHAR(CH$RCHR(.CSP), nsP);

CHI = CH$RCHAR_A(CSP)i

!CSP POINTS TO X

!DSP POINTS TO CH~+1

!CSP POINTS TO A

rcsp POINTS TO M

!DSP POINTS TO CH2+1

!nsp POINTS TO CH2+2

!CSP POINTS TO P

Note that it is only the " A" and "A "forms of these
functions which require the address-of the CS-pointer.
character functions take the value of the CS-pointer.

character
All other

FUNCTIONS WHICH INITIALIZE AND MOVE CHARACTER STRINGS

11-3-8

BLISS Primer Volume 2: Intermediate
Character Handling Functions

The following three functions move and initialize character
strings:

CH$MOVE
CH$COPY
CH$FILL

The function

CH$MOVE(length, source-pointer, destination-pointer)

is used for copying a character sequence from one place to
another.

The function

CH$COPY(length-l, source-pointer-l, ••• ,length-n,
source-pointer-n, fill-character, destination-length,
destination-pointer)

copies the concatenated character sequences to the given
destination, filling unused positions with the fill character.
Since this function accepts an arbitrary number of arguments, the
last three arguments are always assumed to be the fill character,
the destination length, and the destination pointer (in that
order) • The value of the CH$MOVE and CH$COPY functions is a
CS-pointer referencing the destination character position
following the last character moved.

The function

CH$FILL(fill-character, length, destination-pointer)

is used for initializing a character sequence. The value of this
f uncti on is a CS-po inter referenc ing the' destination character
position following the last character filled. To illustrate these
functions, assume the following declarations (BLISS-32):

OWN
CSP,
DSP,
CSP2,
WKSP:VECTOR[CH$ALLOCATION(100)];

BIND STP = UPLIT(
PLIT BYTE ('NOW'),
P LIT B YT E (' IS') ,
PLIT BYTE ('THE '),
PLIT BYTE ('TIME I»~

11-3-9

!SOURCE POINTER
!DESTINATION POINTER
!SECOND SOURCE POINTER
!WORKING STORAGE

BLISS Primer Volume 2: Intermediate
Character Handling Functions

: VECTOR [4];

and the CS-pointer assignments:

DSP = CH$PTR(WKSP[0]);

CSP = CH$PTR(.STP[3]);

CSP2 = CH$PTR(.STP[l]);

!CS-POINTER TO WORK
! AREA

ICS-POINTER TO T IN
! THE STRING 'TIME'
ICS-POINTER TO I IN

THE STRING 'IS'

With these declarations and assignments, the expressions

CH$FILL (%C' " 100, • DSP) ;

DS P = C H $M OVE (5 , • C S P, • DS P) ;

DSP = CH$MOVE(3,.CSP2,.DSP);

and the expression

DSP = CH$COPY (5, .CSP,
3, .CSP2,
%C' " 100, .DSP);

IFILL WORK AREA WITH
! SPACES

!MOVE 'TIME ' TO
! WKSP [0-4]
!DSP POINTS TO WKSP[5]

!MOVE 'I S , TO
! WKSP[5-7]
!DSP POINTS TO WKSP [8]

both produce the same result in the work space WKSP and the string
"TIME IS II

FUNCTIONS TO COMPARE CHARACTER SEQUENCES

The following six functions are used to compare character
sequences:

CH$GTR
CH$GEQ
CH$LSS
CH$LEQ
CH$EQL
CH$NEQ

The general form of these functions is

11-3-10

BLISS Primer Volume 2: Intermediate
Character Handling Functions

CH$xxx(length-l, CS-pointer-1,
1ength-2, CS-pointer-2, fill-character)

where xxx indicates one of the relational operators (e.g., LSS,
LEQ, etc.) and the fill character defaults to 0. These functions
perform character-by-character comparisons, so that:

IF .CS-pointer-l xxx .CS-pointer-2
THEN

1
ELSE

o

For example, using the plit STP above,

C H $N E Q (2 , • C S P , 2 , • C S P 2) ;

returns the value 1 (for true). Alternatively,

IF CH$NEQ (2, .CSP, 2, .CSP2)
THEN

TTY PUT QUO (' TRUE I)

ELSE - -
TTY_PUT_QUO('FALSE');

outputs to the terminal the string 'TRUE'.

FUNCTIONS USED TO SEARCH SEQUENCES

The following four functions are provided for searching
character sequences:

CH$FINO SUB
CH$FINO-CH
CH$FINO-NOT CH
CH$FAIL-

Th e funct i on

CH$FIND_SUB(length-1, CS-pointer-l, 1ength-2, CS-pointer-2)

searches the sequence described by CS-pointer-l and length-l for
the first occurrence of an embedded subsequence precisely
identical to the sequence described by CS-pointer-2 and 1ength-2.

11-3-11

The function

BLISS Primer Volume 2: Intermediate
Character Handling Functions

CH$FIND_CH(length, CS-pointer, character)

searches the sequence described by the CS-pointer and the given
length for the first occurrence of the specified character.

Conversely, the function

CH$FIND_NOT_CH(length, CS-pointer, character)

searches for the first occurrence of a character not equal to the
specified character. All three functions return either a
CS-pointer referencing the matched subsequence/character or a
null, if no match occurs.

The function

CH$FAIL(CS-pointer)

is used in conjunction with these three functions to examine the
CS-pointer so that its value is:

IF CS-pointer EQL 0
THEN

1
ELSE

o

!EQUAL TO NULL POINTER

The following example uses the plit STP (above) to d~monstrate the
CH$FAIL function:

!+

1-

THIS LOOP SEARCHES FOR THE SUBSTRING' 'ME'
IN EACH ENTRY IN THE PLIT STP

INCR I FROM 0 TO 3 DO
BEGIN
LOCAL

FOUND PTR,
LENGTH;

MACRO
PLIT LENGTH (APLIT)=

~«APLIT)-4) %i

BIND
ME = PLIT('ME');

11-3-12

BLISS Primer Volume 2: Intermediate
Character Handling Functions

LITERAL
ME SIZE = %CHARCOUNTC'ME');

CSP = CH$PTR(.STP[.I]);
LENGTH = PLIT LENGTH(.STP[.I]) * 4;
FOUND PTR = CH$FIND SUB(.LENGTH, .CSP, ME_SIZE,

- - CH$PTR(ME);

IF NOT CH$FAIL(.FOUND PTR)
THEN -

EXITLOOP;
END;

This example returns a CS-pointer in CSP (on the fourth iteration)
to the character M (matched in .STP[3]).

FUNCTIONS USED TO PERFORM CHARACTER TRANSLATION

The two functions which are used to perform character
translation are:

CH$TRANSTABLE
CHSTRANSLATE

The first builds a translate table;
character by character translation.

The function

CH$TRANSTABLE(translation)

the second performs a

builds a translation table at compile time. The translation
syntax is the same as that for plits except that it must not
include an allocation unit and it is limited to 256 characters.

The function

CH$TRANSLATE(translate-table, length, source-pointer,
fill-character, length, destination-pointer)

performs the actual transformation. Each character in the source
sequence is interpreted as an index in the translation table, and
the corresponding character in the table (at that index) is moved
to the destination string. If the destination sequence is longer
than the source sequence, the destination is filled with the
specified fill character. The value of the function is a
CS-pointer referencing the character following the last character

11-3-13

BLISS Primer Volume 2: Intermediate
Character Handling Functions

moved into the destination sequence.
translation table

For example, given the

the

BIND TBL = CH$TRANSTABLE(REP 36 OF (0) , 38, 39,
REP 8 OF (0) , 37,
0, 1, 2, 3, 4, 5, 6,
REP 7 OF (0) ,
11, 12, 13, 14,
19, 20, 21, 22,
27, 28, 29, 30,
35, 36,
REP 37 OF (0)) ;

routine

ROUTINE ASCII TO RAD50(CSP,DSP): NOVALUE =
CH$TRANSLATE(TBL, 1, .CSP, 0, 1, .DSP);

15,
23,
31,

7, 8, 9, 10,

16, 17, 18,
24, 25, 26,
32, 33, 34,

when passed the source pointer to a seven bit ASCII character and
a destination pointer, will write the corresponding RADIX-50
character representation to the destination address. Zero will be
written for any character not in the Radix-50 set.

11-3-14

B LIS S P rim e r Vo 1 urn e 2: In term ec:i ate
Character Handling Functions

Exercises

1. Write a translation table called NR TBL which will
translate a number from zero to nine into its ASCII equivalent,
e.g., ° to octal 60, 1 to octal 61, etc ••

2. Given the address of an ASCIZ string (stored in ADDR),
determine how many characters the first word (i.e., to the first
space) contains. Assume the string starts with the first
character of the word.

3. Determine the final result in TBL (list as a string)
after excuting the following code:

OWN
TBL: VECTOR [5] ,
CSP,
DSP,
CHAR;

DSP = CH$PTR(TBL);
CSP = CH$PTR(PLIT('POINTER •••• ');

CH$COPY(7,CH$PLUS(.CSP,3),0,8,.DSP);
CH$FILL(%C'D',4,.DSP);

CHAR·= CH$A RCHAR(CSP);
CH$A WCHAR(~CHAR,DSP);
CSP ; CH$PLUS(.CSP,2);
CHAR = CH$RCHAR A(CSP);
CH$A WCHAR(.CHAR,.DSP);
CH$A=WCHAR(CH$A_RCHAR(CSP),DSP);

11-3-15

BLISS Primer Volume 2: Intermediate
Character Handling Functions

This page intentionally left blank.

11-3-16

BLISS Primer Volume 2: Intermediate
Character Handling Functions

Solutions

1) BIND
NR TBL = eH$TRANSTABLE(48,49,5~,51,52,53,54,55,56,58)i

2) OWN
esp,
NRi

CSP = CH$PTR (.ADDR) i
NR = CH$DIFF(.esp,eH$F1ND_eH(5~,.esp,'O·4~·»i

3) The ASC1Z string:

DONE •••

11-3-17

BLISS Primer Volume 2: Intermf:~d iat,!
Character Handl ing Funct i()n~;

This page intentionally left blank.

BLISS Primer Volume 2: Intermediate
Character Handling Functions

Unit Test

Write a routine which, when passed the address of an ASCIZ
string (having less than 1000 characters) and the address of a
work area:

1) translates each character in the string into its Radix-50
equivalent

2) stores the. resulting translation into a work ar,ea
3) terminates'the string with a null

The routine should use at least five different character handling
functions.

11-3-19

BLISS Primer Volume 2: Intermediate
Character Handling Functions

This page intentionally left blank.

11-3-20

DATA STRUCTURES

MODULE 11-4

II-4-1

B~ISS Primer Volume 2: Intermediate
Data Structures

Course Map

11-4-2

BLISS Primer Volume 2: Interme·liate
Data St ructures

Introduction

This unit introduces the STRUCTURE declaration along with the
related MAP declaration and REF attribute. The STRUCTURE
declaration permits the user to define an arbitrary data
structure; the MAP declaration associates a new accessing
algorithm to existing storage; and the REF attribute simplifies
indirect references to a structure.

11-4-3

BLISS Primer Volume 2: Intermediate
Data Structures

---------------Objectives --------------------"11

Given an arbitrary data structure, be able to use the
STRUCTURE declaration to create an accessing algorithm for that
structure.

-------------- Sample Test Items ---------------.

Write a STRUCTURE declaration that implements a three
dimensional array MATX3[row,co1umn,p1ane], so that MATX3[1,2,~]
references the second row, third column of the first plane. Show
the declaration which allocates the storage and also a subsequent
reference to the third column of the fifth row of the fourth
plane.

BL1SS-32 Language Guide

Additional Resources

11-4-4

Chapter 12: Data Structures
Sections: 12.3 and 12.7

BLISS Primer Volume 2: Interr·:·ediate
Data Structures

BLISS provides the capability to implement any arbitrary data
structure. This is accomplished with the STRUCTURE declaration
which permits the user to define an accessing algorithm for a
given storage. As such, the accessing algorithm is simply an
expression that returns an address based upon the access formal(s)
for each reference. This declaration can also be used to compute
the storage required for allocation of such a structure.

The predefined structures introduced earlier have been
declared using this declaration mechanism. They are, in a sense,
declared in an outer block of the user's program and, therefore,
accessible from any block in the program. Since these structures
should be familiar to most users, they are used as examples
throughout this unit to illustrate the STRUCTURE declaration.

STRUCTURE FORMALS

The general form of the STRUCTURE declaration is:

STRUCTURE
name[access-formalsi allocation-formals] =

(structure-size]
(accessing-algorithm) <field-selector>;

As depicted in this declaration, there are two types of formal
parameters: access formals, which are derived from the arguments
used at the time of a structure reference, and allocation formals,
which are constants derived from arguments at the time the
structure is allocated. These formals a·re separated by a
semicolon with access formals on the left and allocation formals
on the right. For example, '

STRUCTURE
VECTOR [I iN] = • • •

has one access formal, I, and one allocation formal, N.
time of the storage declaration

OWN
TABLE: VECTOR[101i

At the

each occurrence of the allocation formal
allocation actual of 10. This is a
Similarily, the reference

N is replaced by the
one-time substitution.

TABLE[5l

11-4-5

BLISS Primer Volume 2: Intermediate
Data Structures

causes each occurrence of the access formal I to be replaced by
the access actual of five in the accessing algorithm. The
distinction is that allocation formals, once declared, are
constants which do not change value; whereas access formals can
vary with each access reference to the structure.

The user has an
allocation formals.
formal. For example,

option of assigning default values for
This is achieved by assigning a value to the

STRUCTURE
VECTOR[I;N,UNIT=4] = •••

designates UNIT as having a default value of four. Consequently,
if only one allocation actual were given in the storage
declaration, the default value four would be substltuted for each
occurrence of UNIT.

STORAGE ALLOCATION

The next part of the STRUCTURE declaration is an optional
size component that is used to compute the amount, in bytes
(BLISS-16/32) or words (BLISS-36), of storage to be allocated.
For example (BLISS-32), .

STRUCTURE
VECTOR[I;N,UNIT=4] =
[N *UNIT] •••

when invoked within the storage declaration

OWN
TABLE: VECTOR[1~,2]; IVECTOR OF WORDS

allocates 20 bytes [10 * 2] or l~ words of storage with the
symbolic name TABLE; whereas

OWN
TABLE: VECTOR[l~]; IVECTOR OF LONGWORDS

allocates 4~ bytes [10 * 4] or l~ longwords. Note that in the
latter example, the default value for UNIT was used since only one
allocation actual was provided.

In a routine call, parameters are evaluated and stored at a
temporary location given by the applicable symbolic name of the
formal parameter. This is not the case in either macros or

11-4-6

BLISS Primer Volume 2: Intermediate
Data Structures

structures where access actuals are substituted directly for the
appropriate formal. As a consequence, the dot operator is not
used to obtain the value of the access actual as is done in
routines. That is, the following is erroneous,

[. N * • UNIT]

if the value of N or UNIT is required.

Because a user may want to allocate structures in bytes,
words, and longwords, the keywords BYTE, WORD, and LONG are
predefined as literals having the values 1, 2, and 4 respectively
when used as structure actuals or formals. (BLISS-l6 does not
recognize "LONG", while BLISS-36 recognizes only "WORD".)
Consequently, the declarations

OWN
TABLE: VECTOR[10,BYTE],
STORE: VECTOR[10,LONG];

are equivalent to:

OWN
TABLE: VECTOR[10,1],
STORE: VECTOR[10,4];

ACCESSING ALGORITHM

IVECTOR OF .BYTES
IVECTOR OF LONGWORDS

IVECTOR OF BYTES
!VECTOR OF LONGWORDS

The third part of a STRUCTURE declaration is the actual
accessing algorithm or structure body. It ,is this algorithm that
determines the address for each reference made to a specific
log ical element of the structure. For": example, the· STRUCTURE
declaration for a vector of longwords (BLISS-32) could be written:

STRUCTURE
L VECTOR [I iN] =

- [N *4]
(L_VECTOR + I * 4);

The subsequent storage declaration

OWN
TABLE: L_VECTOR[100];

would then result in the allocation formal (in this example N)
being replaced, producing:

11-4-7

STRUCTURE
TABLE [I ;N] =

[1""*4]
(TABLE + I * 4);

RLISS Primer Volume 2: Intermediate
Data Structures

This results in 1"" longwords being allocated and in producing an
algorithm where only the access formals remain to be determined.
In a reference, such as

TABLE[S];

the access actual (in this example, the argument five) replaces
the access formal (in this example the parameter I), and the
address resulting from the accessing algorithm is substituted in
place of the reference producing the address:

(TABLE + S * 4);

FIELD SELECTOR

The final component of the STRUCTURE declaration is the field
selector. In BLISS the user has the capability to reference
and/or access any size field within a fullword. This is
accomplished with a field selector enclosed in "()" of the form,

(position, size, sign)

where position is an offset in bits from the address designated by
the symbolic name; size is the number of bits in the field; and
sign is the extension rule which applies to the field (zero
extension or sign extension). For this purpose, the keywords
SIGNED and UNSIGNED when used in structures are predefined
literals with the values 1 and ~ respectively. The sign default
is UNSIGNED. Note that BLISS-36 supports WORDs only; the
zero-extension vs. sign extension is meaningless for such
word-sized elements.

For example, assume a variable named FLAG contains the
following bit pattern as the result of the assignment:

F LA G = %0' 6 S ' ; 1 ••• 0110101

To depict the resulting bit patterns, the rightmost digit (in this
example 1) represents bit zero; the digit to its left, bit one,
and so forth. The three dots at the left of the pattern indicate
that the remaining bits in the longword (through bit 31) are the

11-4-8

BLISS Primer Volume 2: Intermediate
Data Structures

same as the leftmost digit shown (in this case 0).

Therefore, the reference

FLAG<4,3> 1 ••• 0110101

represents an unsigned field (by default) starting at the fifth
bit (bit four) and extending for three bits through the seventh
bit (bit six). As might be apparent, every reference to a name
not declared as a structure and not having an extension attribute
(SIGNED/UNSIGNED) or an allocation unit (BYTE, WORD, OR LONG)
contains an implied field selector. The default values are:

BLISS.:..16:
BLISS-32:
BLISS-36:

<0,16,0>
<0,32,0>
<0, 36, 0>.

This means that the assignments (in, say, BLISS-36)

FLAGS = .SAVE_FLAGS;

and

FLAGS<0,36,0> = .SAVE_FLAGS<0,36,0>;

are equivalent. As FLAG now contains the value 53 (octal 65), the
ass ignment

SAVE FLAGS = .FLAG<4,3>; ! ••• 01l

sets SAVE FLAGS to the value three. Note that fields are always
filled from right to left (left to right in BLISS-36) and that

1) if the receiving field is larger than the sending
field, the unspecified bits are set to zero; whereas

2) if the receiving field is smaller than the sending
field, the leftmost bits of the sending field are
truncated.

The application of these rules is illustrated in the following
ex amples :

SAVE FLAGS = .FLAG<0,6>;
SAVE-FLAGS<0,4> = 0;
SAVE=FLAGS<0,S> = .FLAG<0,1>;

! ••• 0ll0l0l
1 ••• 0110000
1 ••• 0100001

In actual practice, however, field selectors are only rarely used

11-4-9

BLISS Primer Volume 2: Intermediate
Data St ructures

in a direct assignment expression. They usually appear as the
last component of a STRUCTURE declaration where the same effect
can be achieved without cluttering in-line code.

VECTOR STRUCTURE

The BLISS-32 VECTOR structure is predefined as: ,

STRUCTURE
VECTOR[I;N,UNIT=4,EXT=0] =

[N*UNIT]
(VECTOR + I * UNIT)<0,8*UNIT,EXT>;

The definition of this structure permits a vector. of signed or
unsigned bytes, words, or longwords. As examples, the declaration

OWN

allocates

BYTE TABLE: VECTOR[10,BYTE],
WORD-TABLE: VECTOR[10,2,SIGNED],
LONG-TABLE: VECTOR[10];

[10 * 1]
[10 * 2]
[10 * 4]

and defines the accessing algorithms:

(BYTE TABLE + 1 * 1)<0,8*1,O>
(WORD-TABLE + I * 2)<O,8*2,1>
(LONG-TABLE + 1 * 4)<0,8*4,O>

!UNSIGNED BYTE VECTOR
!SIGNED WORD VECTOR
!UNSIGNED LONGWORD
! VECTOR

110 BYTES
110 WORDS
! 10 LONGW ORDS

!BYTE FIELDS
lWORD FIELDS
!LONGWORD FIELDS

Compare this declaration to the BLISS-16 VECTOR declaration:

STRUCTURE
VECTOR[I;N,UNIT=2,EXT=0] =

[N*UNIT]
(VECTOR+I*UNIT)<0,S*UNIT,EXT>i

and the VECTOR declaration for BLISS-36:

STRUCTURE
VECTOR [I iN] =

11-4-10

BLISS Primer Volume 2: Interm~diate
Data Structures

[N]
(VECTOR+I)<~,36>;

(Note that the VECTOR
simplified due to the
Unit default value.)

structure declaration for BLISS-36 is
lack of a need to specify the Allocation

BITVECTOR STRUCTURE

The BITVECTOR structure is predefined in BLISS-32 as:

STRUCTURE
BITVECTOR[I;N] =

[(N+7) /8]
B ITVECTOR <I ,1>;

Note that storage is always allocated in bytes so that the
declaration

OWN
SWITCH 1: BITVECTOR[l~];
SWITCH-2: BITVECTOR[6~];

allocates:

[(1 ~+7) /8]
[(6~+7) /8]

Il~ BIT VECTOR
16~ BIT VECTOR

12 BYTES OF STORAGE
18 BYTES OF STORAGE

The accessing algorithm for this structure computes the field
beginning address. selector position offset from the

Consequently,

SWITCH 1[5]
SWITCH=2[4S]

generates

SWITCH 1<5,1,0>
SWITCH=2<45,1,~>

15 IS THE SPECIFIED BIT
145 IS THE SPECIFIED BIT

and selects the fifth and forty-fifth bits respectively, counting
from zero.

11-4-11

BLISS Primer Volume 2: Intermediate
Data Structures

BLISS-16 declares the BITVECTOR structure as:

BITVECTOR[1;N] =
[«(N+15)/16) *2]
(BITVECTOR+I/16)<I MOD 16,1,O>;

while BLISS-36 uses this declaration:

BITVECTOR[1;N] =
[(N+35) /36]
(B1TVECTOR+((36 A 18+1)/36-l A 18»
«36 A 18+1)MOD 36,1,O>;

BLOCK AND BLOCKVECTOR STRUCTURES

The BLISS-36 BLOCKVECTOR structure is predefined as:

STRUCTURE
BLOCKVECTOR[1,O,P,S,E;N,BS] =

[N *BS]
(BLOCKVECTOR + 0 + 1*BS)<P,S,E>;

As an illustration (using 36-bit architecture), consider the
declaration

OWN
B BLOCKVEC: BLOCKVECTOR[10,5],

W BLOCKVEC: BLOCKVECTOR[10,3],

L BLOCKVEC: BLOCKVECTOR[10,2];

which allocates

[10*5]
[10*3]
[10*2]

and defines the accessing algorithms

(B BLOCKVEC + 0 + I * 5)<P,S,E>
(W-BLOCKVEC + 0 + I * 3)<P,S,E>
(L-BLOCKVEC + 0 + I * 2)<P,S,E>

5 WORDS PER
BLOCK

3 WORDS PER
BLOCK

2 WORDS PER
BLOCK'

! 5 ° WORDS - 10 BLOC KS
! 30 WORDS - 10 BLOCKS
120 WORDS - 10 BLOCKS

where the accessing formal I is the block number; 0 is the word

11-4-12

BLISS Primer Volume 2: Interm~~diate
Data St ructures

within the block; P is the field position;
and E is the sign extension rule. A typical
structure would be

W_BLOCKVEC[S,2,18,18,0];

S is the field size;
reference to this

which, after replacing access formals in the algorithm with access
actuals, determines the desired address and its field selector as
shown below:

(W BLOCKVEC + 2 + 5 * 3)<18,18,0>;

In this example, it is the address of the lefthalf of the 18th
word or logically to the user a data field in the righthalf of the
third word of the sixth block.

The BLISS-16 declaration for the BLOCKVECTOR structure is:

STRUCTURE
BLOCKVECTOR[1,O,P,S,E;N,BS,UN1T=2] =

[N*BS*UNIT]
(BLOCKVECTOR+(1*BS+O)*UN1T)<P,S,E>;

BLISS-32 predefines the BLOCKVECTOR structure as:

STRUCTURE
BLOCKVECTOR[O,P,S,EiN,BS,UNIT=4] =

[N *BS *UNIT]
(BLOCKVECTOR+(1*BS+O)*UN1T)<P,S,E>;

The predefined BLOCK structures are
BLOCKVECTOR structure without the access
allocation formal BS.

MAP

identical
formal I

to
and

the
the

Frequently, it is convenient to redefine an existing
structure to have different properties. Savings in space, time,
and readability can result. The MAP declaration provides this
capability by permitting the user to associate a new accessing
algorithm with, an existing storage. As a declaration, MAP has the
same scope rules as any other declaration. Therefore, the MAP
declaration only applies within the block declared and all inner

11-4-13

BLISS Primer Volume 2: Intermediate
Data Structures

blocks so long as the name of that storage is not redeclared or a
new accessing algorithm assigned to that storage. Consider the
example (BLISS-36)

BEGIN
OWN

SWITCH TABLE: BITVECTOR[36];
• • •

. . .
END;

,
BEGIN
MAP

SWITCH_TABLE;

SWITCH TABLE = 9;
END;

which uses the MAP declaration to redefine SWITCH TABLE from a
BITVECTOR to a scalar. This enables SWITCH TABLE to be set to
zero with a single assignment. After executing the assignment,
the block with the MAP declaration is exited, and the BITVECTOR
structure is again the accessing algorithm for SWITCH_TABLE.

Another example which uses the MAP declaration is the
BLISS-32 routine OUT HEX below, which permits hexadecimal
characters, stored in a general purpose work area, to be output
without having to use shifts or field selectors explicitly.

11-4-14

BLISS Primer Volume 2: Interm~diate
Data Structures

BEGIN
LITERAL

WK SIZE = 10;

OWN

. . .
ROUTINE OUT HEX: NOVALUE =

BEGIN
STRUCTURE HEXVEC[I,J]=

(HEXVEC + I)<J,4>;

LITERAL

MAP

FIRST = 0,
SECOND = 4;

WK_AREA: HEXVEC;

INCR COUNT FROM 0 TO (WK_SIZE*4-1) DO
BEGIN

END;
END;

IF .WK AREA[.COUNT,FIRST] GTR 9
THEN -

TTY PUT CHAR (.WK AREA[.COUNT,FIRST] + %0'67')
ELSE - - -

TTY_PUT_CHAR(.WK_AREA[.COUNT,FIRST] + %0'60');

IF .WK AREA[.COUNT,SECOND] GTR 9
THEN -

TTY PUT CHAR (.WK AREA[.COUNT,SECOND] + %0'67')
ELSE - - -

TTY_PUT_CHAR(.WK_AREA[.COUN~,SECOND] + %0'60');

TTY PUT CRLF();
END~ -

Note that octal 60 is added to the contents of each byte to
produce the ASCII code required for output to the TTY.

In general, the use of field selectors should be restricted
to STRUCTURE declarations, as in the above example, since it makes
the resulting code easier to read, debug, and modify.

1I-4-15

REF VECTOR

BLISS Primer Volume 2: Intermedi~te
Data Structures

W~len using routines, it is common to pass the address of a
storage area as an argument of the routine call. In this instance
the location cannot be referenced directly by name but is pointed
to by the value of a variable. This unfortunately adds an
additional level of complexity by requiring an additional level of
indirection. The following routine, which exchanges the contents
of two vectors, illustrates the problem:

ROUTINE EXCH(VEC1,VEC2,SIZE): NOVALUE =
BEGIN
LOCAL

TEMP;

INCR COUNT FROM ~ TO (.SIZE - 1) DO
BEGIN

END;

TEMP = • (.VECl + .COUNT);
(.VECl + .COUNT) = • (.VEC2 + .COUNT);
(.VEC2 + .COUNT) = .TEMP;
END

This is more complicated than necessary. One solution is to
declare a new structure which returns the address of an element of
the vector. For example:

ROUTINE EXCH(VECI,VEC2,SIZE): NOVALUE =
BEGIN
STRUCTURE

PTR VEC[C] =
-(.PTR_VEC + C);

LOCAL
TEMP;

MAP
VECI: PTR VEC,
VEC2: PTR VEC;

INCR COUNT FROM ~ TO (.SIZE - 1) DO
BEGIN

END;

TEMP = .VECI[.COUNT];
VEC1[.COUNT] = .VEC2[.COUNT];
VEC2[.COUNT] = .TEMP;
END;

11-4-16

BLISS Primer Volume 2: Interm~diate
Data Structures

This however requires a STRUCTURE declaration for a requirement
which is very common. Therefore, the REF attribute has been
provided. It enables a name, which contains a pointer to a
structure, to be used to reference the structure as if the name
were the structure itself, i.e., using only a single dot operator
instead of two. This is effectively equivalent to defining a new
structure definition. Using the REF attribute, the above example
can be rewritten as:

ROUTINE EXCH(VEC1,VEC2,SIZE): NOVALUE =
BEGIN
LOCAL

TEMP;

PVEC2: REF VECTOR;
PVEC1: REF VECTOR;

PVEC2 = • VEC2;
PVECl = • VEC1;

INCR COUNT FROM 0 TO (.SIZE - 1) DO
BEGIN

END;

TEMP = .PVEC1[.COUNT];
PVEC1[.COUNT] = .PVEC2[.COUNT];
PVEC2[.COUNT] = .TEMP;
END;

Note: The REF attribute may be used with any structure.

11-4-17

BLISS Primer Volume 2: Intermediate
Data St ructures

This page intentionally left blank.

11-4-18

BLISS Primer Volume 2: Intermediate
Data Structures

Ex.ercises

1. Using the predefined BLISS-36 VECTOR structure definition
given in this unit, write a BLISS-36 STRUCTURE declaration named
VECTORI to create an accessing algorithm which starts at one
rather than zero (i.e., TABLE[l] references the first longword in
TABLf~) •

2. Write a BLISS-36 STRUCTURE declaration
MATX[row,column] that implements a two dimensional zero
array, so that MATX[~,l] is the first row, second column.
the initial declaration which allocates the storage
subsequent reference to the third column of the fifth row.

11-4-19

named
origin

Show
and a

BLISS Primer Volume 2: Intermediate
Data Structures

This page intentionally left blank.

II-4-2~

BLISS Primer Volume 2: Intermediate
Data Structures

Solutions

1) STRUCTURE VECTOR1 [I;N]=
[N]
(VECTOR1 + (I - 1)) <S., 36>;

2] STRUCTURE MATX [I,J;K,L]=
[K*L]
(MATX + (I*L + J))<S,36>; . . .

OWN
X : MA T X [1 S, 1 S] ;

• • •

X[4,2];

Note: The array MATX starts at [S,S].

11-4-21

! ISS WORDS
!lS ROWS, IS
! COLUMNS

BLISS Primer Volume 2: Intermediate
Data Structures

This page intentionally left blank.

I1-4-22

BLISS Primer Volume 2: Interm~diate
Data Structures

Unit Test

Write a STRUCTURE declaration that implements a three
dimensional array MATX3[row,column,plane], so that MATX3[1,2,0]
references the second row, third column of the first plane. Show
the initial storage declaration and a subsequent reference to the
third column of the fifth row of the fourth plane.

11-4-23

BLISS Primer Volume 2: Intermediate
Data Structures

This page intentionally left blank.

11-4-24

ADDITIONAL DATA STRUCTURES

MODULE 11-5

11-5-1

~LISS Primer Volume 2: Intermediate
Additional Data Structures

Course Map

II-5-2

BLISS Primer Volume 2: Intermediate
Additional Data Structures

Introduction

This unit depicts several more examples of data structures
and their associated field macros. These examples illustrate
programming requirements for which the STRUCTURE declaration is
appropriate. The structures presented in this unit involve bounds
checking and linked lists.

11-5-3

BLISS Primer Volume 2: Intermediate
Additional Data Structures

_-------------- Objectives ---------------

Given an arbitrary data structure, be able to implement this
structure using the STRUCTURE declaration and appropriate field
macros.

_------------Sample Test Items------------__

Given that a block contains the fields (for a 32-bit machine)

LEFT_LINKCl6) I RIGHT_LINK (l6)

TYPE (4) I DATA(28)

and that these blocks form a doubly linked ring,

-

write a STRUCTURE declaration named RING and the field macros
necessary to implement this structure.· Show the initial
declaration allocating storage for the ring and a reference to the
field TYPE made with a variable RING PTR which is a REF to the
ring.

BLISS~32 Language Guide

Additional Resources

11-5-4

Chapter 12: Data Structures
Section: 12.8

BLISS Primer Volume 2: Intermediate
Additional Data Structures

The predefined data structures are adequate for most
programming requirements. However, it can be anticipated that
special requirements will arise that necessitate the creation of
new data structures. For this reason, BLISS provides the
STRUCTURE declaration rather than attempting to define an
all-purpose set of data structures which the user must force his
program to use. Since the algorithm generated by a STRUCTURE
declaration is substituted in-line for the actual structure
reference, a STRUCTURE declaration should not be used to
manipulate data or otherwise perform complex operations. A
routine is the appropriate declaration when these operations are
required.

This unit depicts examples which use the STRUCTURE
declaration. These examples are intended to illustrate conditions
when a new structure can be more appropriate than a predefined
structure.

ERROR CHECKING

Error checking can be used advantageously during program
debugging and for certain user application programs. As an
example, consider the following BLISS-36 two dimensional array
STRUCTURE declaration, which includes a simple bounds checking
facility:

STRUCTURE
ARRAY2[I,J;M,N] =

[M*N]
(IF I*J GTRU M*N
THEN

"ERROR(ARRAY2,I,J)
ELSE

ARRAY2 + (I*M + J»<0,36>;

This structure, in addition to returning an address, also verifies
that each reference is within the storage space allocated. It
does not, however, ensure that each index is within bounds, only
that their product does not exceed the storage space. (Note that
the unsigned comparison (I*J GTRU M*N) precludes having to
explicitly check that the product is less than zero, since a
negative number would appear as a very large unsigned number which
would always exceed the available storage.) If the product is
within bounds, the normal address calculation is performed and
returned. If the product of the access actuals (I*J) exceeds the
declared storage (M*N), an error routine is invoked. In this
example the' routine ERROR is assumed to return a default address

11-5-5

BLISS Primer Volume 2: Intermediate
Additional Data Structures

for the illegal structure reference. Since the value returned
from the accessing algorithm will be used as a reference, the
STRUCTURE declaration must provide a default address for
out-of-bounds conditions to preclude terminating the program
because of an illegal address or, worse yet, an erroneous address
which is still within the user's space.

A NON-CONTIGOOUS STRUCTURE

The predefined structures declare storage that is contiguous
in memory. This may, however, not be consistent with the logical
structure which is necessary for a particular programming problem.
For example, consider a program which requires a fixed number of
blocks, each consisting of three fu1lwords, and an additional
block, consisting of four fu1lwords, to store supplementary data.
The additional data mayor may not be applicable to each of the
fixed blocks required. One possible solution is to allocate the
entire seven fullwords for each block. This would of course
necessitate substantial storage that would be poorly utilized. A
better solution is to obtain the storage for the supplementary
data erom a common area on an as-needed basis. The implementation
requires that the block of supplementary data be linked to the
appropriate fixed block. This is depicted in the following
diagram:

~. 216 ~ :100

B I A

C

D

200 :116

B I A

C

D

200 :132

B I A

C

II-5-6

BLISS Primer Volume 2: Intermediate
Additional Data Structures

D

E = 0 :200

F = 0

H = 0 IG = 0

I = 0

E :216

F

H I G

I

where A through D represent the data fields for the initial fixed
blocks, and E through I represent the data fields for the
supplementary data block. Note that the first fullword of each
initial block is a pointer to the additional data block and that
those with no additional data point for compatibility to a common
block which is preset to zero.

The method used to allocate the storage would depend upon the
initialization stragegy. Because this example deals with blocks,
the predefined BLOCKVECTOR structure would probably be
appropriate. For example,

OWN
DATA_BASE: BLOCKVECTOR[100,4];

declares 100 blocks having four fullwords each.
number of these blocks would be initialized
fullword set to the address of the first free
example 200) which is preset to zero.

A predetermined
with the first

block (in this

The accessing algorithm to implement the storage depicted
above requires a STRUCTURE declaration. Since a STRUCTURE
declaration and its associated field macros are necessary to
understand the structure, they should be physically located
together in the program to convey this relationship. For example
(BLISS-32):

11-5-7

BLISS Primer Volume 2: Intermediate
Additional Data Structures

STRUCTURE
!+

!-

B = BLOCK NUMBER, 0 = LONGWORD OFFSET,
P = FIELD POSITION, S = FIELD SIZE,
E = SIGN EXTENSION, I = INDIRECT ADDRESS

BLOCK LINK[B,O,P,S,E,I] =
(IF I EQL 0

THEN
(BLOCK LINK + B*16 + 0*4)

ELSE -
(.BLOCK LINK + B*16 + 0*4)

)<P,S,E>;

MACRO
1+

!-

FIELD DEFINITIONS FOR BLOCK LINK STRUCTURE
FOR O,P,S,E,I RESPECTIVELY

A = 1,0,16,0,0 %,
B = 1,16,16,0,0 %,
C = 2,0,32,0,0 %,
D = 3,0,32,0,0 %,
E = 0,0,32,1,1 %,
F = 1,0,32,1,1 %,
G = 2,0,16,1,1 %,
H = 2,16,16,1,1 %,
I = 3,0,32,1,1 %;

This STRUCTURE declaration implements the structure discussed
above. Note that the BLOCK LINK structure contains no allocation
formals. This structure is used to access storage only and
allocates no storage. As written, this structure can be
associated to the previously allocated storage DATA BASE using the
declaration

MAP

so that subsequent references to the structure would have the
form:

DATA_BASE[block-number, macro A-I]

The first entry is the desired block number, and the second entry
is one of the macros A through I defined above. Explicitly,

DATA BASE[2,G]
references the data field G in the third block. Al though the

11-5-8

BLISS Pr imer Vo I ume 2: Intermt:d iate
Additional Data Structures

physical block containing this supplementary data may be any block
in the vector, it is associated to block three through the
BLOCK LINK structure.

The REF attribute could have been used instead of the MAP
declaration. The choice would depend to a large extent upon the
manipulation requirements of the program. With the REF attribute,
the block number is not necessary, but the address of the desired
block must be maintained. An example using REF is provided below.

TREE STRUCTURE

The structure illustrated above can also be applied to build
a tree structure. Assume a block configuration of,

PARENT ~.~----------+--* DATA

LEFT CHILD ~~~----~~-_-_:_* ________ ~ _____ *::::-------.. RIGHT CHILD

where the pointers for this discussion are offsets into the
storage vector rather than an actual address. As such, this
configuration can be used to define a binary tree (each parent
having at the most two children) as shown below:

The declaration to allocate this storage can either'be part of the
structure declaration or independent of it, depending upon the
initialization requirements. For example, the following STRUCTURE
declaration, and its corresponding field macros, implements the
algorithm for a tree but allocates no storage for that structure.
(The declaration is patterned for a 32-bit word length.):

11-5-9

BLISS Primer Volume 2: Intermediate
Additional Data Structures

STRUCTURE
+

I = INDIRECT ADDRESS, 0 = FULLWORD OFFSET,
PI = INDIRECT FIELD POSITION, Sl = INDIRECT FIELD SIZE
El = INDIRECT FIELD SIGN,
P = FIELD POSITION, S = FIELD SIZE

TREE[I,O,Pl,Sl,El,P,S] =
~IF I EQL 0

THEN
• (TREE + O*4)<Pl,Sl,El> + TREE

ELSE
TREE

)<P,S>;

MACRO
!+

!-

FIELD DEFINITION FOR TREE STRUCTURE
FOR I,O,P1,Sl,E1,P,S RESPECTIVELY

PARENT = 0,0,16,16,1,0,32 %,
DATA = 1,0,0,0,0,0,16 %,
LEFT CHILD = 0,1,16,16,0,0,32 %,
RIGHT_CHILD = 0,1,O,16,0,O,32 %;

Because this structure uses offsets instead of addresses, the
algorithm must add the contents of the field to the base address
of the storage area. The TREE structure, defined above, can be
referenced by establishing a pointer with the declaration

OWN
NODE: REF TREE;

where subsequent references such as

NODE = NODE [PARENT]
TEMP = .NODE[DATA]

would conceptually be replaced by the algorithms:

NODE = (.NODE[PARENT]<16,16> + NODE[PARENT])<0,32>
TEMP = .NODE[DATA]<0,16>

The first example assigns to NODE the address of the parent node
(an offset in fu1lwords plus the current address in the TREE);
whereas the second example assigns to TEMP the data for that node.

11-5-10

BLISS Primer Volume 2: Intermediate
Additional Data Structures

TREE TRANSVERSAL

To demonstrate the use of the TREE structure defined above,
consider a tree constructed from parsing the equation

(5 - • B) = (.A + 7);

as depicted below:

Assuming that the data is stored as ASCII characters in the data
field, the following recursive routine could be used to perform an
inorder (left-child, parent, right-child) transversal of any
binary tree constructed with similar fields and output the
contents of the data fields:

ROUTINE OUT TREE (TOP NODE): NOVALUE=
BEGIN - -
LOCAL

NODE: REF TREE;
NODE = .TOP NODE;
IF NODE [LEFT CHILD] NEQ .NODE
THEN -

OUT TREE (NODE [LEFT CHILD]);
TTY PUT-CHAR(.NODE[DATA]);
IF NODE[RIGHT CHILD] NEQ .NODE
THEN -

OUT TREE (NODE [RIGHT CHILD]);
END i - -

The routine OUT TREE is recursive and continues to call itself so
long as a left- or right-child exists. That is, so long as a
left- or right-child field contains an offset other than zero.
The routine searches first for a left-child; therefore, the
algorithm prints the, data inorder: left-child, parent,
right-child until the entire tree has been transversed.

11-5-11

BLISS Primer Volume 2: Intermediate
Additional Data Structures

As mentioned, the fields in the above example contain offsets
which must be added to the current base address; therefore, the
parent field must be signed. In fact, had larger fields been
allocated initially, they could have contained the actual
addresses.

11-5-12

BLISS Primer Volume 2: Interm~diate
Additional Data Structures

Exercises·

1. Create a BL1SS-36 structure named VECTOR BCK that has a
normal predefined VECTOR accessing algorithm but-also does bounds
checking on the access actual used in the reference. Call a
routine named ERROR if the access actual is not in bounds and pass
the reference actual as a parameter. You can assume that the
routine ERROR returns a default address.

2. Same as Exercise 1) above except this exercise assumes
ERROR does not return a default address. Make the first fullword
of the storage area the default address (i.e., return the address
of the first fullword of the array VECTOR_BCK[~] if a referencing
error occurs).

11-5-13

BLISS Primer Volume 2: Intermediate
Additional Data Structures

This page intentionally left blank.

11-5-14

BLISS Primer Volume 2: Intermediate
Additional Data Structures

Solutions

1) STRUCTURE
VECTOR BCK[I;K] =

[KT

2) STRUCTURE

(IF I LSS 0 OR I GTR (K-1)
THEN

ERROR (VECTOR BCK,I)
ELSE -

VECTOR BCK + I)
<0;36>;

VECTOR BCK[I;K] =
[KT
(LOCAL

TEMP;

TEMP = I;

IF I LSS 0 OR I GTR K-1)
THEN

BEGIN
ERROR (VECTOR BCR,I);
TEMP = 0; -
END;

VECTOR BCK + .TEMP
<0;36>;

11-5-15

BLISS Primer Volume 2: Intermediate
Additional Data Structures

This page intentionally left blank.

II-5-l6

BLISS Primer Volume 2: Intermediate
Additional Data Structures

Unit Test

Given that a block contains the fields (32-bit machine)

LEFT_LINK (16) I RIGHT_LINK(16)

TYPE (4) I DATA(28)

and that these blocks form a doubly linked ring,

- -
write a BLISS-32 structure declaration named RING and the field
macros necessary to implement this structure. For purposes of
accessing this structure declare RING PTR as a REF to the ring.
Show the initial declaration which allocates the storage for the
ring and a reference which accesses the field TYPE. Assume that
LEFT-LINK and RIGHT-LINK contain offsets from the address of the
current block to the address of the desired block.

11-5-17

BLISS Primer Volume 2: Intermediate
Additional Data Structures

This page intentionally left blank.

11-5-18

TABLE BUILDING

MODULE 11-6

11-6-1

BLISS Primer Volume 2: Intermediate
Table Building

Course Map

11-6-2

BLISS Primer Volume 2: Interm9diate
Table Building

Introduction

Initialization, which is the final step in establishing a
data structure, is discussed in this unit. Two methods of
initializing a table are depicted: the INITIAL attribute for
storage, which may subsequently be modified, and the PLIT
declaration for applications where storage is not subject to
chang e.

11-6-3

BLISS Primer Volume 2: Intermediate
Table Building

---------------Objectives----------------.

Given a data structure and its required initial value, be
able to initialize the given structure using the INITIAL attribute
or the PLIT declaration as appropriate.

r---------------Sample Test Items --------------.

Given that a BLOCKVECTOR named TBL consists of six blocks,
each having three fullwords, where the first three blocks (named
MASK_BLK) have the logical fields (for 32-bit architecture)

PTR (3 2) MASK BLK:

S (16) I R (16)

MASK(32)

and the last three blocks (named DATA_BLK) have logical fields,

TYPE (4) I DATA(28)

DATAl (32)

DATA2(32)

DATA BLK:

write the macros and declarations necessary to allocate and
initialize TBL, so that:

1) MASK BLK contains an offset of three (points to the
fourth block) in PTR; zeroes in S; the address of the
symbolic names Al through A3, respectively, in R; and
the value -1 in MASK

2) DATA BLK contains the value nine in TPYE and the
value zero in DATA, DATAl, and DATA2

11-6-4

BLISS Primer Volume 2: Intermediate
Table Building

There are three distinct steps in establishing most data
structures:

1) defining an accessing algorithm
2) establishing field macros
3) initializing the storage

The process of defining the accessing algorithm has been
discussed in the two previous prerequisite units. This process
includes either using predefined structures or creating new
structures with the STRUCTURE declaration. In general, the
predefined structures are adequate for most applications and their
use is encouraged. When a predefined structure would suffice,
creating a new structure could prove to be inefficient with
respect to execution time and could result in increased debugging
time. It is, of course, not recommended that an algorithm be
manipulated to fit a predefined structure when a new structure is
clearly necessary. It is suggested that the data structure is an
essential part of an efficient algorithm and should, therefore, be
given considerable thought.

Field macros are also an essential part of a data structure.
Field macros help to improve readability and documentation by
providing easily recognized mnemonics, simplifing coding through
textual substitution, and making the program easier to modify and
debug by isolating the code.

The final phase of implementing a given data structure is its
initialization. The particular method of initialization is
contingent on the data structure's size, complexity, and
subsequent utilization. Two methods will be illustrated:
initializing with the INITIAL attribute and with the PLIT
declaration.

BASIC TECHNIQUE

The basic technique in table building is to fill up the table
one fullword at a time, by shifting and- ORing the values of
individual fields as necessary. For example, the expression

1 A 28 OR 100 A 12 OR ·S. A 4 OR 3

would generate one fullword, consisting of four separate fields
organized as follows (36-bit machine):

II-6-5

BLISS Primer Volume 2: Intermediate
Table Building

A(S) I 8(16) C(8) D (4)

The shift factor is computed as the sum of the sizes of all the
fields to the right of the one in the current fullword.

INITIALIZATION WITH THE INITIAL ATTRIBUTE

The INITIAL attribute permits the user to initialize
permanent storage to any given value at the time it is allocated.
Fo r example,

OWN
TABLE: VECTOR [10]

INITIAL(REP 10 OF (0»;

sets each of the 10 locations in the vector TABLE to zero, while

OWN
B TABLE: VECTOR [4]

INITIAL('EXAMPLE');

initializes the vector B TABLE to 'EXAMPLE'. However, the
initialization becomes increasingly more complicated as fields
within each· word unit require individual values. This is
especially true with blocks or vectors of blocks. Consider, for
example, the diagram

IA(S) I 8(16) CIS) 10 (4) I
which is logically divided into fields
bits in each field is indicated by
The initialization of these fields
respectively, could be achieved with
the following declaration:

OWN

A through D. The number of
the numbers in parentheses.
to 1, 100, 's ' and 3,

the INITIAL attribute as in

However, this form is awkward and is also not particularly
descriptive. Furthermore, this is a relatively simple example
having only one fullword. A vector of 25 fullwords would be
tedious, more prone to errors, and a considerable headache if one
or more of the fields required modification. One solution to this

11-6-6

BLISS Primer Volume 2: Intermediate
Table Building

problem is to use a macro to initialize the fields. For example,

MACRO
WORD INIT(A,B,C,D)=

INITIAL«A)A28 OR (B)AI2 OR (C)A4 OR (D» %,
VEC INIT(A,B,C,D)=

-«A)A28 OR (B)AI2 OR (C)A4 OR (D» %;

could be used to initial a fullword as in the example above,

X: FULL_INIT(I,100,'S',3);

or to initialize a vector of these fullwords:

OWN
TABLE: VECTOR[10]

INITIAL(VEC INIT(I,100,%C'A',3),
VEC=INIT(2,101,%C'B',4), . . .
VEC_INIT(10,110,%C'J',12»;

The procedure is easily adapted to BLOCKS, BITVECTORS, or any
other structure. In addition, initialization macros offer the
same advantages discussed for field macros above and should
therefore be an essential part of any initialization. As declared
above, the initialized values could easily be modified.

Where the storage once initialized is not subject to further
modification, a PLIT declaration can be used t6 advantage.

INITIALIZATION WITH PLITS

As the following example illustrates, plits can be used to
build a table much in the same manner as was achieved with the OWN
declarations above:

BIND
TABLE = UPLIT(

VEC INIT(I,100,%C'A',3),
VEC=INIT(2,lI0,%C'B',4), . . .
VEC INIT(10,110,%C'J',l2»

- VECTOR[10];

II-6-7

BLISS Primer Volume 2: Intermediate
Table Building

Note that both the OWN and PLIT declarations use initialization
macros and also that both can subsequently be referenced with

TABLE [•••]

if the plit is used in conjunction with the BIND declaration as
above. Note that UPLIT is the preferred declaration unless the
count is required.' AN INITIALIZATION EXAMPLE

The tec~nique for multiword tables is simply a repetition of
the packing methods discussed above, with commas separating the
values for each word. Consider initializing a symbol table having
three fullwords per block, where each block is logically defined
as:

Nl (32)

T (10) I N 2 (22)

A (32)

In the above diagram, Nl is the Radix-50 representation of the
first six letters in the name; N2 is the Radix-50 representation
of the last four letters, T is a type field giving information
about the name; and A is the address of the routine which
processes that name. To keep this example simple, only four names
of this table will be initialized. The following macro
initializes the block:

MACRO
INIT TBL(A,B,C,D) =

%RAD50ll(%STRING(A»,
(C)A22-0R %RAD50 11(%STR1NG(B»,
(D) %; -

The storage for these blocks can be allocated and initialized in a
plit since the symbol table will not be subsequently modified.
Fo r example,

BIND
SYM TABLE = UPLIT(

INIT TBL('INCR',0,2,SINCR),
INIT-TBL (' IF' ,0,2, SIF) ,
INIT-TBL('ROUTIN',%C'E',l,SROUTINE),
INIT-TBL('SELECT','ONE',0,SSELECT»

:BLOCKVECTOR[4,3];

11-6-8

BLISS Primer Volume 2: Intermediate
Table Building

initializes storage as depicted below,

INCR

2 I "
*

IF

2 1 "
*

ROUTIN

1 I E

*
SELECT

" I ONE

*

•

ROUTINE SINCR

.. ROUTINE SIF

ROUTINE SROUTINE

..... ROUTINE SSELECT

where the names would be in Radix-5". An arrow (~) indicates a
pointer to the specified data.

11-6-9

This page is for notes.

BLISS Primer Volume 2: Intermediate
Table Build ing

11-6-10

BLISS Primer Volume 2: Intermediate
,Table Building

Exercises

1. Declare a macro named INIT VAL which initializes a WORD
(BLISS-16/32) with the logical fields:

XSIGN(l) EXPONENT (6) MANTISSA(8) MSIGN (1)

where the numbers in parentheses represent the number of bits in
each field. Show the macros and the actual declaration necessary
to initialize a word named REAL declared in an OWN declaration so
that:

XSIGN = 1
EXPONENT = 24~
MANTISSA = 128
MSIGN = ~

2. Using the format in Exercise 1) above, declare a macro to
initial a plit bound to the name REAL TBL consisting of l~ words.
Show the first and l~th entries (use " ••• " for the missing data in
between) using any data.

3. Construct a BLISS-36 macro named INIT BLK to initialize a
block with the fields:

I
TYPE (6) I DATA (18) I PTR (12)

Show the initialization of a BLOCK named HEAD so that:

L ADDR = l~~
R-ADDR = 2~~
TYPE = 1
DATA = • A'
PTR = 1(tJ~

II-6-ll

BLISS Primer Volume 2: Intermediate
Table Building

This page intentionally left blank.

11-6-12

BLISS Primer Volume 2: Intermediate
Table Building ;

Solutions

1) MACRO

OWN

INIT VAL(A,B,C,D) =
INITIAL«A)A1S OR (B)Ag OR (C)Al OR (D» %i

REAL: WORD
INIT_VAL(1,240,128,~)i

2) MACRO
INIT VAL(A,B,C,D) =

TA)A1S OR (B)Ag OR (C)Al OR (D) %i

BIND
REAL TBL = UPLIT(

INIT_VAL(1,24~,128,~), . . .
INIT VAL(1~,2S~,138,19»

:VECTOR[l~,WORD]i

3) MACRO

OWN

INIT BLK(A,B,C,D,E) =
INITIAL«A)A18 OR (B),
(C)A3~ OR (D)A12 OR (E» %i

HEAD: BLOCK [2]
INIT_BLK(1~~,2~~,1,'C'A',1~~)

11-6-13

BLISS Primer Volume 2: Intermediate
Table Building

This page intentionally left blank.

11-6-14

BLISS Primer Volume 2: Intermediate
Table Building

Unit Test

Given that a blockvector named TBL consists of six blocks,
each having three fullwords, where the first three blocks (named
MASK_BLK) have the logical fields (for a 36-bit machine)

PTR(36) MASK BLK:

S (18) I R (18)

MASK(36)

and the last three blocks (named DATA_BLK) have the logical
fields,

TYPE(6)IDATA(39)

DATAl (36)

DATA 2 (36)

DATA BLK:

write the macros and declarations necessary to allocate and
initialize TBL, so that:

1) MASK BLK contains an offset of three (points to the
fourth block) in PTR; zeroes in S; the address of the
symbolic names Al through A3, respectively, in R; and
the value -1 in MASK

2) DATA BLK contains the value nine in TYPE and the
value zero in DATA, DATAl, and DATA2

11-6-15

BLISS Primer Volume 2: Intermediate
Table Building

This page intentionally left blank.

II-6-16

CONDITIONAL COMPILATION

MODULE 11-7

II-7-1

BLISS Primer Volume 2: Intermediate
Conditional Compilation

Course Map

1I-7-2

BLISS Primer Volume 2: Intermediate
Conditional Compilation

Introduction

This unit discusses the conditional compilation mechanism
available in BLISS along with various lexical functions which are
useful in combination with this capability.

II-7-3

BLISS Primer Volume 2: Intermediate
Conditional Compilation

---------------Objectives ----------------.

Given a programming problem, be able to develop a solution
which correctly uses the conditional compilation mechanism and
related lexical functions.

------------ Sample Test Items------------

Write a macro named INIT that uses conditional compila~ion to
initialize a vector depending upon the compiler used, so that:

BLISS 36 -
Fields: A = <O,18>

B = <18,18>
BLISS 32 -

Fields: A = <O,8>
B = <8,8>
C = <16,16>

In addition, the solution should terminate the compilation with an
error diagnostic if:

*
*

required arguments are missing
the macro is called more than some arbitrary
number of times (use two compile-time constants named
LIMIT and COUNT)

Assume that COUNT is initially set to zero; LIMIT is set to an
arbitrary value at the beginning of each vector initialization;
and COUNT is incremented by one on each call.

Additional Resources

None

11-7-4

BLISS Primer Volume 2: Intermediate
Conditional Compilation

Conditional compilation provides a means to select, during
compilation, one of two alternative sources of input text. The
choice is determined by testing a compile-time expression. The
general form is:

'IF compile-time expressidn
'THEN

source-code sequence one
'ELSE

source-code sequence two
'FI

The compile-time expression is evaluated, and the value of the
low-order bit is used to select the appropriate source code
sequence. A one selects the 'THEN part whereas a zero selects the
'ELSE part. The sequence selected is incorporated into the
program, while the sequence not selected is discarded. The 'ELSE
part is optional and, if not present, a null lexeme is assumed.
Note that a conditional compilation begins with a 'IF and ends
with a 'Fl. As a consequence, a semicolon is not required. An
example of a conditional compilation:

'IF COND FLAG
%THEN

MACRO
FIELD = 0,8 %i

'ELSE
MACRO

FIELD = 0,7 ';
'FI

Assuming COND FLAG is a compile-time expression with a value of
zero, the following source code would be generated:

MACRO
FIELD = 0,7 %i

Code that is discarded as a result of a conditional compilation is
never seen by the compiler and therefore may contain syntactic
errors that will not be detected. The code may also contain
partial declarations that will not be processed until substitution
is complete. For example, it is legal to say:

11-7-5

%IF VISIBLE
%THEN

GLOBAL
X

%ELSE
OWN

%FI
x

: VECTOR[10];

BLISS Primer Volume 2: Intermediate
Conditional Compilation

It is equally important to understand that compile-time
functions and conditional compilations occurring in macro
declarations are not evaluated and therefore do not take effect
until the time of the macro call.

COMPILE-TIME DECLARATIONS

A compile-time declaration creates a symbolic name whose
value can be changed at any time during the compilation of the
program. In all other respects, a compile-time name is equivalent
to a literal name and can be used in the same ways that a literal
name can be used.

A compile-time name is declared with the keyword COMPILETIME.
For example,

COMPILETIME
FLAG = 0;

declares the name FLAG as a compile-time name with the value zero.
As such, it is equivalent to a LITERAL declaration with the
exception that its value may subsequently be changed.

The function %ASSIGN(compile-time-name, compile-time-constant)
modifies the value of the compile-time name by assigning the
specified compile-time constant as its value. The function
%ASSIGN(•••) is replaced by the null lexeme (i.e., it disappears)
after the assignment is made; consequently, it should not be
followed by a ";" since the semicolon would not disappear and
might introduce syntactic complications. An example of this
function is

%ASSIGN(FLAG,I)

which resets the compile-time literal FLAG to the value one, and

%ASSIGN(FLAG, FLAG + 2)

II-7-6

BLISS Primer Volume 2: Intermediate
Conditional Compilation

which resets the current value to the value of FLAG plus two.
Note that FLAG is a compile-time literal and, therefore, the dot
operator is not used to obtain its value. Together, these two
functions provide added flexibility in controlling the compilation
process. For example,

COMPILETIME
COUNT = 0; . . .

%ASSIGN(COUNT, COUNT + 1) . . .
%IF COUNT GTR 4

%THEN
code segment one . . .

%ELSE
code segment two . . .

%FI

allows the user to select a specific source code based upon a
compile-time counter which is incremented during the course of the
compilation.

LEXICAL FUNCTIONS

The conditional compilation mechanism iSl,further enhanced by
a number of special lexical functions.' They include test,
functions, which are used to evaluate compile-time constants;
advisory functions, which are used to ~enerate compile-time
messages; and macro functions, which are used in conjunction with
the conditional compilation of macros.

TEST FUNCTIONS

Each test function contains one or more arguments which are
evaluated to determine whether a given condition is true or false.
The test function is then replaced by a one (true) or zero (false)
as a.ppropriate.

II-7-7

BLISS Primer Volume 2: Intermediate
Conditional Compilation

The function %NULL(argument, •••) returns a one if all of its
arguments are null or a zero if one or more of its arguments are
not null. For example,

MACRO
NR LINES (LINE SIZE)=

- %IF NOT %NULL(LINE SIZE)
%THEN -

LINES = .CHARS / LINE SIZE
%FI %;

generates a null if the
argument because %NULL
ze ro) •

macro NR LINES is called without an
returns a-one (i.e., NOT %NULL returns a

The function %DECLARED(name) returns a one if its argument is
a user declared name and a zero if it is not. For example, the
test condition in

OWN
STORE; . . .

%IF %DECLARED(STORE)
%THEN

TABLE[.K] = .STORE;
%FI

returns a one because STORE is a user-defined name and,
consequently, the THEN sequence is included in the compilation.
This function accepts only one argument.

The function %SWITCHES(argument, •••) returns a one if the
standard BLISS compilation switches included as arguments are true
(activated) at that time, and a zero if one or more are not. For
example,

%IF %SW1TCHES(DEBUG)
%THEN

INCR I FROM 0 TO 9 DO
TTY_PUT_1NTEGER(.TABLE[.1],10,10);

%FI

succeeds and generates the INCR loop if the DEBUG switch is
activated for the compilation.

The function %IDENTICAL(arguments, •••) requires a minimum of
two arguments and returns a one if these arguments are exactly the
same, or a zero if they are not. "Exactly", in this context,
requires that both the value and the type of literal agree. This

1I-7-8

BLISS Primer Volume 2: Intermediate
Conditional Compilation

is illustrated by the following example, where each of the test
conditions fail for the indicated reason:

LITERAL
SIXFIVE = 65; . . .

%IF %IDENTICAL(65,%C'A') •••

%IF %IDENTICAL(65,%O'10l') •••
%IF %IDENTICAL(65,SIXFIVE) •••
%IF %IDENTICAL(%ASCII'A',%C'A') •••

!NUMBER VS STRING
! LITERAL
lONE VS TWO LEXEMES
!LITERAL VS NAME
!TWO VS ONE LEXEME

The function %BLISS(argument) accepts the generic name of a
BLISS compiler, i.e.,

BLISS16
BLISS32
BLISS36

and returns a one if the compiler is processing the program or a
zero if another compiler is processing the program. For example,

%IF %BLISS(BLISS32)
%THEN

CHAR PER WORD = 4;
%ELSE

%IF %BLISS(BLISS36)
%THEN

CHAR PER WORD = 5;
%ELSE

CHAR PER WORD = 2;
%FI

%FI

results in the appropriate source code being generated to assign
to CHAR PER WORD the correct number of characters per word,
depending upon the compiler which is processing the source code.

ADVISORY FUNCTIONS

The advisory functions provide a means to generate
compile-time diagnostic and/or other messages which will appear in
the program listing being generated. These functions do not
produce source code and therefore have no run-time effect on the
program being compiled.

II-7-9

BLISS Primer Volume 2: Intermediate
Conditional Compilation

The function %ERROR(quoted-string, •••) produces an error
diagnostic in the listing which includes the quoted string as its
message. For example,

%IF NOT %BLISS(BLISS36)
%THEN

%ERROR('YOU HAVE THE WRONG COMPILER');

generates a compile-time error and the diagnostic message 'you
have the wrong compiler' if the BLISS-36 compiler is not the one
being used. Because the error indicator is incremented when this
function is invoked, no object module is generated.

The function %WARN(quoted-string, •••) produces a
diagnostic which includes the quoted string. The
indicator is incremented and an object module is produced.

warning
warning

The function %INFORM(quoted-string, •••) produces a diagnostic
but does not increment the error or warning indicators. The
quoted string is output on both the listing file and the terminal
as a message.

The function %PRINT(quoted-string, •••) prints
string in the compilation listing but does not
diagnostic. For instance,

%IF %SWITCHES(DEBUG)
%THEN

%PRINT('DEBUG SWITCH ON .);
%ELSE

%INFORM('DEBUG SWITCH NOT ACTIVIATED')
·%FI

the quoted
generate a

prints a message in the compilation listing, reminding the user
that the debug switch was activated, or else prints a diagnostic,
indicating that the debug switch was not activated. The message
generated by %INFORM is output to the terminal and included in the
compilation listing; whereas the %PRINT message appears in the
compilation listing only.

The last advisory function is %ERRORMACRO(quoted-string),
which provides a method to stop macro processing within complex
macros when there appears to be no reason to continue normal
expansion. An error diagnostic is produced which includes the
quoted string and the function terminates all currently active
macro expansions. For example,

II-7-leJ

BLISS Primer Volume 2: Intermediate
Conditional Compilation

MACRO
A VG TW 0 (I , J) [] =

-%IF NOT (%LENGTH MOD 2)
%THEN

I = (. I * . J) /2 ;
AVG_TWO(%~EMAINING)

%ELSE
%ERRORMACRO('ODD NUMBER OF ARGUMENTS')

%FI %;

terminates the macro expansion, if an odd number of arguments is
passed to the macro call.

MACRO FUNCTIONS

The macro functions have no meaning outside of a macro
expansion; however, within a macro expansion, these functions
terminate the expansion of the macro in which they are contained.

The function %EXITITERATION has no arguments. In an
iterative macro expansion, this function terminates the expansion
of the current iteration and is replaced by a null. In a
noniterative macro %EXITITERATION is functionally equivalent to
%EXITMACRO.

The function %EXITMACRO also has no arguments. It terminates
the expansion of the macro in which it is contained and is
replaced with a null. Using this function, the example above
could have been written:

MACRO
A VG TW 0 (I , J) [] =

-%IF NOT (%LENGTH MOD 2)
%THEN

I = (. I * • J) /2 ;
AVG_TWO(%REMAINING)

%ELSE
%INFORM('ODD NUMBER OF ARGUMENTS')
%EXITMACRO

%FI %;

The advantage of this construction is that an object module is
produced although the macro expansion was terminated; whereas in
the former example an object module would not have been produced
because the error indicator was incremented.

11-7-11

This page is for notes.

BLISS Primer Volume 2: Intermediate
Conditional Compilation

11-7-12

BLISS Primer Volume 2: Intermediate
Conditional Compilation

Exercises

1. Write an initialization macro named INIT that initializes
the fields

BLISS-16 -
Fields:

BLISS-32 -
Fields:

BLISS-36 -
Fields:

A
B

A
B
C
D

A
B
C
D

= <~, 8>
= <8,8>

= <~,8>
= <8,8>
= <16,8>
= <24, 8>

= <0,12>
= <12,6>
= <18,1~>
= <28,8>

depending upon the specific compiler used. Print a warning
message if any of the required arguments are missing.

2. Write an initialization macro named INIT that initializes
the fields in Exercise 1) depending upon the specific compiler
used. In addition to initializing the fields, store the values of
the arguments in a table named SAVE if the debug switch is
activiated.

3. Same as Exercises 1) and 2) and, in addition, terminate
the macro with an error diagnostic if the user has not declared a
variable named SAVE.

11-7-13

BLISS Primer Volume 2: Intermediate
Conditional Compilation

This page intentionally left blank.

11-7-14

BLISS Primer Volume 2: Intermediate
Conditional Compilation

Solutions

1) MACRO
INIT(A,B,C,D)=

%IF %BLISS(BLISS16)
%THEN

%IF %NULL(A) OR %NULL(B)
%THEN

%WARN('MISSING ARGUMENT')
%ELSE

%FI
%ELSE

«B) A 8 OR (A»

%IF %BLISS(BLISS32)
%THEN

%IF %NULL(A) OR %NULL(B) OR %NULL(C) OR
%NULL (D)

%THEN
%WARN ('MISSING ARGUMENT')

%ELSE
«D) A 24 OR (C) A 16 OR (B) A 8 OR (A»

%FI
%ELSE

%FI
%FI %;

%IF %BLISS(BLISS36)
%THEN

%FI

%IF %NULL(A) OR %NULL(B) OR %NULL(C)
OR %NULL(D)

%THEN
%WARNC'MISSING ARGUMENT')

%ELSE .

%FI

«D) A 28 OR (C) A 18 OR (B) A 12
OR (A»

11-7-15

BLISS Primer Volume 2: Intermediate
Conditional Compilation

2) COMPILETIME
COUNT = 0;

•••

MACRO
INIT(A,B,C)=

%IF %SWITCHES(DEBUG)
%THEN

%FI

SAVE [COUNT] = (A);
%ASSIGN(COUNT, COUNT + 1)
SAVE [COUNT] = (B);
%ASSIGN(COUNT, COUNT + 1)

%IF %BLISS(BLISS16)
%THEN

(B ,.. 8 OR A)
%ELSE

%IF %BLISS(BLISS32)
%THEN

%IF SWITCHES(DEBUG)
%THEN

%FI

SAVE [COUNT] = (C);
%ASSIGN(COUNT, COUNT + 1)
SAVE [COUNT] = (D);
%ASSIGN(COUNT, COUNT + 1)

«D) ,.. 24 OR (C) A 16 OR (B) A 8 OR (A»
%ELSE

%FI
%FI %;

%IF %BLISS(BLISS36)
%THEN

%IF SWITCHES (DEBUG)
%THEN

%FI

SAVE [COUNT] = (C);
%ASSIGN(COUNT,CQUNT + 1)
SAVE [COUNT] = (D) i'
%ASSIGN(COUNT,COUNT +1)

«D) A 28 OR (C) ,.. 18 OR (B) ,.. 12 0R (A»
%FI

II-7-l6

BLISS Primer Volume 2: Intermediate
Conditional Compilation

3) COMPILETIME
COUNT = 0; . . .

MACRO
INIT(A,B,C)=

%IF NOT %DECLARED(SAVE)
%THEN

ERRORMACRO('SAVE NOT DECLARED')
%FI

%IF %SWITCHES(DEBUG)
%THEN

%FI

SAVE [COUNT] = (A);
%ASSIGN(COUNT, COUNT + 1)
SAVE [COUNT] = (B);
%ASSIGN(COUNT, COUNT + 1)

%IF %BLISS(BLISS16)
%THEN

«B) A 8 OR (A»
%ELSE

%IF %BLISS(BLISS32)
%THEN

%IF SWITCHES(DEBUG)
%THEN

%FI

SAVE [COUNT] = (C);
%ASSIGN(COUNT, COUNT + 1)
SAVE [COUNT] = (D);
%ASSIGN(COUNT, COUNT + 1)

«D) A 24 OR (C) A 16 OR (B) A 8 OR (A»
%ELSE

%FI
%FI %;

%IF %BLISS(BLISS36)
%THEN

%IF SWITCHES (DEBUG)
%THEN

%FI

SAVE [COUNT] = (C);
%ASSIGN(COUNT, COUNT + 1)
SAVE [COUNT] = (D);
%ASSIGN(COUNT, COUNT + 1)

«D) A 28 OR (C) A 18 OR (B) A 12 OR (A»
%FI

II-7-17

BLISS Primer Volume 2: Intermediate
Conditional Compilation

This page intentionally left blank.

II-7-l8

BLISS Primer Volume 2: Intermediate
Conditional Compilation

Unit Test

Write a macro named INIT that uses conditional compilation to
initialize a vector depending upon the compiler used, so that:

BLISS 36 -
Fields: A = <0,18>

B = <18,18>
BLISS 32 -

Fields: A = <0,8>
B = <8,8>
C = <16,16>

In addition, the solution should terminate the compilation with an
error diagnostic if:

*
*

required arguments are missing
the macro is called more than some arbitrary
number of times (use two compile constants named
LIMIT and COUNT)

Assume COUNT is initially set to zero; LIMIT is set to an
arbitrary value at the beginning of each vector initialization;
and COUNT is incremented by one on each call.

11-7-19

BLISS Primer Volume 2: Intermediate
Conditional Compilation

This page intentionally left blank.

II-7-29

OPTIMIZATION

MODULE 11-8

11-8-1

BLISS Primer Volume 2: Intermediate
Optimization

Course Map

11-8-2

BLISS Primer Volume 2: Intermediate
Optimization

Inttoduction

This unit presents source-code optimizations intended for
programmers that need to minimize space requirements or want to
produce highly optimized code.

11-8-3

BLISS Primer Volume 2: Intermediate
Optimization

__ ----------------------------Obj8Ctiv8S------------------------------~

Given an algorithm coded in BLISS-32, be able to rewrite the
source code so that the object code produced by the compiler is
more highly optimized than the original with respect to program
size.

11-8-4

BLISS Primer Volume 2: Intermediate
optim izati on

------------- Sample Test Items -------------_

Modify the following BLISS-32 source code to reduce the
current routine size of the object code produced by the compiler
by at least 11 bytes:

MODULE TEST (MAIN=SP CHAR)=
BEGIN -
EXTERNAL ROUTINE

PROCi

EXTERNAL LITERAL
NULL,
SETONE;

GLOBAL
FLAG;

ROUTINE SP_CHAR(TYPE)=
!++

1=0
1=1

!ROUTINE SIZE 86 BYTES

THIS ROUTINE CONVERTS SELECTED SPECIAL CHARACTERS TO
THEIR FUNCTIONAL EQUIVALENT AND RETURNS THE VALUE.

!--
BEGIN
LOCAL

TEMP;

TEMP = • TYPE;

SELECT .TYPE OF
SET
[%C I [I] :

[%C '\'] :
[%C '] ,] :
[OTHERWISE] :
[ALWAYS] :
TES;

RETURN .TEMP;
END;

END
ELUDOM

TEMP = %C I (I ;

TEM P = %C I /' ;

TEM P = %C I) I ;
FLAG = SETONE;
(FLAG = NULL; PROC(.TEMP»;

11-8-5

This page is for notes.

BLISS Primer Volume 2: Intermediate
Optimization

II-8-6

BLISS Primer Volume 2: Intermediate
Optimization

The BLISS compilers are optimizing compilers which in general
produce highly,optimized object code. The code generated by the
compilers compares favorably with that produced by competent
system programmers using assembly language. As a consequence,
BLISS programmers are encouraged to write source code so that it
can be easily read by other competent programmers, and to leave
the optimization to the compiler. That remains sound advice even
though this unit discusses optimization! For most applications,
coherent code is preferred even at the expense of program size
and/or execution time. .

There are, however, many different options available when
coding any given algorithm, and these choices tend to be
arbitrary. This unit therefore attempts to identify source
trade'offs or selective options that enable programmers,
necessary, to conserve space and/or time. In addition, this
provides coding conventions which make it possible for
compiler to produce more efficient object code.

No~

You are cautioned that the assembly code
depicted in this unit was derived using
version lD(114) of the BLISS,32 compiler and
may not be duplicable with other BLISS
compilers. This is due to continual
improvements being made to the compilers and
the on'going effort to produce more highly
optimized code. The focus of each example is
to show that a savings of generated code is
possible; the actual number of bytes saved
will vary, depending upon the compiler.

NOVALUE ROUTINES

code
when
unit
the

The NOVALUE attribute was introduced in an earlier unit and
has been used extensively throughout subsequent units in routines
that did not return a value. Although this attribute is not
mandatory, even when a routine does not return a value, its use is
recommended since it can effect savings in both program size and
execution time. When a routine is identified as NOVALUE, the
compiler does not provide for return value generation and can
therefore avoid allocating storage for potential return values.
The compiler does not have to generate instructions that would
otherwise be necessary to move and store these values. Of course,
the actual s~vings for any given routine are highly dependent upon

11-8-7

BLISS Primer Volume 2: Intermediate
Optimization

the complexity
routine level.

of the routine. BLISS optimization occurs at the
Consider, as an example, the routine:

ROUTINE NVR(X,Y)= NVR:
BEGIN .WORD AM<>
IF .Y EQL 1 MOVL 8(AP),R0
THEN CMPL ReJ,#l

.X = 5 BNEQ 1$
ELSE MOVL #5,@4(AP)

, • Y = 3 MOVL #5,R0
END; RET

1 $: MOVL #3, (ReJ)
MOVL i3,R0
RET

Because this routine does not contain the NOVALUE attribute, it
requires code to move the potential values of X '(i.e., five) and
of Y (i.e., three) to the return reqister R0. The routine size of
the resulting object code is 26 bytes. The same routine with the
NOVALUE attribute is six bytes smaller and no longer requires the
longword moves to register R0. In addition, someone reading the
program would know immediately that this routine does not return a
val ue. o

For routines that do return a value, the keyword RET~RN
improves program readability and also provides additional
information to the compiler, which can facilitate optimization by
identifying the specific variable that will contain the value to
be returned. Being able to identify which variable will contain
the return value, prior to code generation, the compiler can often
assign it to the retu~n register. Even when no saving results, no
additional code is generated! For example, the routine

ROUTINE RTN= RTN:
BEGIN .WORD AM<>
LOCAL MOVL Y,Rl

X; BLBC Rl,l$
IF .Y MOVL Rl,R0
THEN RET

X = .Y 1 $: MNEGL Rl,R0
ELSE RET

X = ~.Y;
.x
END;

which does not explicitly identify the return value requires seven
instructions and has a program size of 18 bytes; whereas the same
routine, using an explicit RETURN expression which eliminates the

II-8-8

BLISS Primer Volume 2: Intermediate
optimization

local X, requires two fewer instructions and is reduced in size by
four bytes:

ROUTINE RTN= RTN:
BEGIN .WORD M<>
RETURN MOVL Y,R0
IF .Y BLBS R0,l$
THEN MNEGL R0,R0

.Y 1 $: RET
ELSE

".Y) ;
END;

This code is also easier to read.

It should be noted that the examples in this unit are
necessarily small and that this limits many opportunities for
optimization which can occur as a result of using the suggested
coding techniques.

EXTERNAL LITERALS

As a general rule, external literals should not be used: it
is better to define the values of the literals locally than to
reference them through external literals. If external literals
are essential, they should contain the size of each field.
Without size information, the compiler assumes a fullword literal.
The extensive use of fullword literals can produce a significant
increase in the size of the program. This is especially
applicable if these literals have small numeric values. For
example, consider the declaration:

LITERAL
TYPE A = 1,
TYPE-S = 2,

TRUE = 1;

The use of fullword external literals in comparisons and in other
expressions effect both program space execution time. For
example, using the external literals

EXTERNAL LITERAL
ONE,
TRUE;

II-8-9

the routine (BLISS~32)

ROUTINE EXT=
BEGIN
LOCAL

X;
X = 0;
IF TRUE EQL 1
THEN

X = .X + ONE;
END;

BLISS Primer Volume 2: Intermediate
Optimization

EXT:
.WORD AM<>
CLRL R0
CMPL iTRUE,il
BNEQ 1$
ADDL2 iONE,R0

1 $: CLRL R0
RET

has a size of 23 bytes. On the other hand, the same routine using
external literals that include the field size

EXTERNAL LITERAL
ONE: UNSIGNED (4) ,
TRUE:UNSIGNED(4);

generates the same code but has a routine size of only 15 bytes.
Of course, completely eliminating these external literals
decreases the routine size to nine bytes and produces better code:

EXT:

MINIMIZING TEMPORARIES

.WORD
CLRL
INCL
CLRL
RET

AM<>
R0
R0
R0

In general, th~ use of temporary storage is also discouraged.
This will probably appear strange to more experienced higher~level
programmers, particularily those who are accustomed to FORTRAN
type languages. For example, code equivalent to the BLISS

II-8-l0

BLISS Primer Volume 2: Intermediate
Optimization

ROUTINE TEX=
BEGIN
LOCAL

TEMP;
TEMP = .A + .B ~ .C;
IF .TEMP GTR 100
THEN

1
ELSE

~

END;

TEX:

1 $:

.WORD AM<>
ADDL3 B,A,R0
SUBL2 C,R0
CMPL R0,1100
BLEQ 1$
MOVL Il,Re
RET
CLRL R0
RET

is often necessary. The variable TEMP is used in this example to
provide a single variable on which to perform the conditional
test. Assuming that TEMP is a local variable, the routine size is
31 bytes. In this example the compiler is able to allocate TEMP
to a register, because this routine is small and, therefore, the
object code is identical to that produced for the following source
code without the temporary variable:

ROUTINE TEX=
BEGIN
IF (.A + .B ~ .C) GTR 100
THEN

1
ELSE

o
END;

However, as the complexity of the algorithm and the number of
temporary variables increases, the ability of the compiler to best
utilize the existing registers and, therefore, to produce optimum
code is severly hampered. This is particularily true of
control~flow values since these values need not necessarily be
allocated storage. Control~flow expressions evaluate to a true or
false indicator which determines whether or not to jump.

If st~tic storage had been used in the original example
instead of local storage, the routine size would have increased
five bytes to 36 bytes. This is depicted below:

II-8-ll

BLISS Primer Volume 2: Intermediate
Optimization

TEX:
.WORD
ADDL3
SUSL3
CMPL
BLEQ
MOVL
RET

1 $: CLRL
RET

A M<)
B,A,R0
C, R0, TEMP
TEMP,#100
1$
#1,R0

R0

A more reasonable example that involves several temporary
variables and which does result in savings, even when using local
variables, is shown below:

ROUTINE CMP= CMP:
BEGIN
LOCAL

A,
B,
C;

A = .X * 10;
B = .Z AND .Yi
C = .Y ., 20;
A = .A OR .B OR .C;
IF .A
THEN

1
ELSE

o
END;

1 $:

.WORD "M<R2)
MULL3 #10,X,Rl
MCOML Z, R2
BICL3 R2,Y,R0
SUBL3 #20,y,R2
BISL2 Rl,R0
BISL3 R2,R0,Rl
BLBC Rl,l$
MOVL #1, R0
RET
CLRL R0
RET

The temporary variables in this example require five additional
bytes of storage and also preclude the compiler from generating
code that could avoid evaluation of unnecessary expressions. Note
the difference when the temporary variables are eliminated:

ROUTINE CEX= CEX:
BEGIN .WORD "M<)
IF (.x * 10) OR MULL3 #10,X,R0

(• Z AND .Y) OR BLBS R0,2$
(.Y" 20) BLBC Z,l$

THEN BLBS Y,2$
1 1 $: SUBL3 #20,Y,R0

ELSE BLBC R0,3$

° 2$: MOVL #1,R0
END; RET

3 $: CLRL R0
RET

11-8-12

BLISS Primer Volume 2: Intermediate
Optimization

In addition to significantly reducing the routine size,
produced is better optimized. It now evaluates
expressions necessary to satisfy the test condition.

the
only

code
the

There is, however, a trade~off between source code
optimization and obscurity. After all, production programs must
be maintained and programmers attempting to maintain code that has
been unnecessarily "tweaked" may have difficulties understanding
and, subsequently, modifying it. The Style Guide in the VAX,11
Software Engineering Manual should therefore be consulted for
coding practices which are to be avoided.

Also applicable to a discussion of minimizing temporaries is
the capability of the compiler to recognize common subexpressions,
because the elimination of common sUbexpressions is a typical use
of temporaries. The BLISS-32 compiler can and does recognize
common sUbexpressions if they are written correctly. For example,

ROUTINE CSB= CSB:
BEGIN .WORD M<>
IF .N MOVL X,R0
THEN BLBC N,l$

BEGIN ADDL3 #1,R0,X
X = .X + 1; C~L Z
Z = 0; BRB 2$
END 1$: MOVL #4,Z

ELSE ADDL3 #1,R0,X
BEGIN 2$: C~L R0
Z = 4; RET
X = 1 + .X;
END

END;

contains code which is common to both branches; however, as
written, it was not identified by the compiler as a common
subexpression. If the two expressions had been written
identically each time, the compiler would h~ve recognized them as
common subexpressions and would have produced the following code:

11-8-13

ROUTINE eSB
BEGIN
IF • N
THEN

BEGIN
X = .X + 1;
Z = 0;
END

ELSE
BEGIN
Z = 4;
X = .X + 1;
END

END;

BLISS Primer Volume 2: Intermediate
Optimization

CSB:
.WORD M<>
ADDL3 #1,X,R0
MOVL RO,X
BLBC N,l$
CLRL Z
BRB 2$

1 $: MOVL #4,Z
2$: CLRL R0

RET

This routine is six bytes smaller than the previous version, which
required 38 bytes.

CROSS JUMPING

Common sUbexpressions are recognized as parts of expressions
which are identical, wherever they occur. Another source of
optimization is cross jumping which occurs when common code can be
identified in two or more branches. For example, the routine GP
below

ROUTINE GP= GP:
BEGIN .WORD AM<>
IF .K GTR 0 TSTL K
THEN BLEQ 1$

(RTN (. X) ; K = • K + 1) PUSHL X
ELSE CALLS #1, RTN

RTN (3) ADDL3 #1,K,R0
END; MOVL R0,K

RET
1 $: PUSHL #3

CALLS #1, RTN
RET

calls the function RTN in both the THEN and ELSE branches. As it
is written, it has a routine size of 37 bytes and requires 11
instructions. But by rearranging the routine call so that it is
the last entry in each branch, the compiler can combine the calls
to RTN. The resulting routine

II-8-14

BLISS Primer Volume 2: Intermediate
Optimization

ROUTINE GP= GP:
BEGIN
IF .K GTR 0
THEN

(K = • K + 1; R TN (• X))
ELSE

RTN(3)
END; 1$:

2 $:

.WORD
MOVL
BLEQ
ADDL3
PUSHL
BRB
PUSHL
CALLS
RET

.... M<>
K,R0
1$
#1,R0,K
X
2$
#3
#l,RTN

is smaller in size by eight bytes and has only nine instructions.

Another example of cross jumping where several
expressions are involved is depicted below:

common

ROUTINE CSX= CSX:
BEGIN .WORD M<>
CASE N MOVAL N,Rg

FROM o TO 2 OF CASEL R0,#0,#2
SET 1 $: .WORD 2$=-1$
(0] : .WORD 3 $,,1 $

(X=.X+l;Y=.Y+l;Z=0); .WORD 4$=-1$
(1] : MOVL #3,Z

(Y=l+.Y;Z=l;X=.X+l); MOVL #3, R0
(2] : RET

(Z=2;Y=.Y+l;X=1+.X); 2$: INCL X
(OUTRANGE] : ,INCL Y

Z=3 CLRL Z
TES CLRL R0
END; RET

3 $: INCL Y
MOVL #l,Z
BRB 5$

4 $: MOVL #2,Z
INCL Y

5$: ADDL3 #1,X,R0
MOVL R0,X
RET

Notice that much of the code is duplicated for in=-range values;
however, as it is written, this code was not identified by the
compiler as common and was therefore not eliminated. If the
common code had been arranged in a group and positioned at the end
of.each block, as shown below,

11-8-15

BLISS Primer Volume 2: Intermediate
Optimization

ROUTINE CSX= CSX:
BEGIN
CASE N

FROM " TO 2 OF
SET 1$:
["] :

(Z="iX=.X+liY=.Y+l);
[1] :

(Z=liX=.X+l;Y=.Y+l);
'[2] :

(Z=2;X=.X+l;Y=.Y+l); 2$:
[OUTRANGE] :

Z=3 i 3$:
TES;
END; 4$:

5$:

.WORD
MOVAL
CASEL
.WORD
.WORD
.WORD
MOVL
MOVL
RET
CLRL
BRB
MOVL
BRB
MOVL
INCL
ADDL3
MOVL
RET

AM<>
N,R"
R0,#",#2
2$",,1$
3$"..1$
4$",,1$
#3,Z
#3,R"

Z
5$
#l,Z
5$
#2,Z
X
#l,Y,R"
R",Y

the compiler could recognize this duplication and would generate
only one such sequence. The resulting routine is 13 bytes smaller
than the previous version.

SEQUENTIAL PROCESSING

Another source of potential optimization occurs when
accessing storage. In general, the compiler can optimize
accessing and/or storing operations if the code is sequentially
executed. This means that the programmer should attempt to
perform like operations together. For example,

ROUTINE SBX = SBX:
BEGIN .WORD M<>
BV<0,4> = 0; BICB2 #15,BV
T = • z ; MOVL Z,T
BV<7,1> = 0; BICB2 #224,BV
BV<S,3> = 0; CLRL R"
END; RET

resets the three fields of the longword, BV but the code does not
perform the operation sequentially. It is interrupted with an
unrelated assignment. Because the impact of. this unrelated
assignment can not be anticipated by the compiler, the
interruption results in the execution of the first assignment. As
a result, the routine requires two instructions to store this data

11-8-16

BLISS Primer Volume 2: Intermediate
Optimization

into the three fields. Note that the two
were consolidated into one instruction.
bytes of storage.

subsequent assignments
The routine requires 23

If, on the other hand, these assignments had been written
sequentially, as below,

ROUTINE SBX
BEGIN
BV<0,4> = 0;
BV<7,l> = 0;
BV<S,3> = 0;
T = .Z;
END;

SBX:
.WORD
BICB2
MOVL
CLRL
RET

M<>
i239,BV
Z,T
R0

the compiler would be able to consolidate the three storage
operations into one instruction. The resulting code requires less
space by five bytes and is also faster.

CONDITIONALS

In BLISS the user has many ways of coding a conditional
expression, including case, select, selectone, and nested
IF-THEN-ELSE. Besides the differences in readability, there are
also differences with respect to optimization. To demonstrate
this, consider the problem of counting the occurrences of the
numbers one through four stored in a vector named TABLE. Although
the solution is obviously well-suited to a case expression, it
could be accomplished with anyone of the various conditional
expressions and therefore provides a reasonable comparision.

As a case expression the routine

11-8-17

BLISS Primer Volume 2: Intermediate
Optimization

ROUTIN E COND= .
BEGIN
INCR I FROM 0 TO 999 DO

CASE .TABLE[.I]
FROM 1 TO 4 OF
SET

END;

[1] :
FRESHMAN();

[2] :
SOPHMORE () ;

[3] :
JUNIOR () ;

[4] :
SENIOR () ;

[OUTRANGE] :
ERROR ()

TES

COND:

1 $:
2$:

3$:

4$:

5$:

6$:
7$:

.WORD
CLRL
CASEL
.WORD
.WORD
.WORD
.WORD
CALLS
BRB
CALLS
BRB
CALLS
BRB
CALLS
BRB
CALLS
AOBLEQ
MNEGL
RET

"M(R2>
R2
T[R2],#1,#3
3-2
4-2
5-2
6-2
#~,ERROR
7$
#~,FRESHMAN
7$
#~,SOPHMORE
7$
#~,JUNIOR
7$
#~,SENIOR
#999,R2,1$
#l,R~

generates particularly fast code because it has an equivalent
machine instruction. Having a routine size of 64 bytes, it is
also the smallest possible configuration produced by any of the
conditional expressions below.

11-8-18

BLISS Primer Volume 2: Intermediate
Optimization

The equivalent select expression

ROUTINE COND=
BEGIN
INCR I FROM 0 TO 999 DO

SELECT .1 OF

END;

SET
[1] :

FRESHMAN () ;
[2] :

SOPHMORE () ;
[3] :

JUNIOR ();
[4] :

SENIOR () ;
[OTHERWISE] :

ERROR (1
TES

COND:
.WORD
CLRL

1$: MOVL
CMPL
BNEQ
CLRL
CALLS

2$: CMPL
BNEQ
CLRL
CALLS

3$: CMPL
BNEQ
CLRL
CALLS

4$: CMPL
BNEQ
CLRL
CALLS

5$: BLBC
CALLS

6$: AOBLEQ
MNEGL
RET

"M<R2,R3,R4>
R2
T[R2],R4
R4,tl
2$
R3
to,FRESHMAN
R4,t2
3$
R3
to,SOPHMORE
R4,t3
4$
R3
to,JUNIOR
R4,t4
5$
R3
to,SENIOR
R3,6$
to,ERROR
t999,R2,1$
tl, R0

requires 81 bytes and utilizes slower compare and branch
instructions. Although a select expression is probably easier to
read, the code produced strongly resembles the code generated for
the equivalent nested IF-THEN-ELSE construction:

11-8-19

BLISS Primer Volume 2: Intermediate
Optimization

ROUTINE COND= COND:
BEGIN .WORD A M<R2,R3>
INCR I FROM ~ TO 999 DO CLRL R3

IF .I EQL 1 1 $: MOVL T[R3],R2
THEN CMPL R2,#1

FRESHMAN () BNEQ 2$
ELSE CALLS #0,FRESHMAN

IF .I EQL 2 BRB 6$
THEN 2$: CMPL R2,#2

SOPHMORE () BNEQ 3$
ELSE CALLS #0,SOPHMORE

IF .I EQL 3 BRB 0$
THEN 3 $: CMPL R2,#3

JUNIOR () BNEQ 4$
ELSE '"' CALLS #0,JUNIOR

IF .I EQL 4 BRB 6$
THEN 4$: CMPL R2,#4

SENIOR () BNEQ 5$
ELSE CALLS #~,SENIOR

ERROR () BRB 6$
END; 5$: CALLS #0,ERROR

6$: AOBLEQ #999,R3,1$
MNEGL #1,R0
RET

However, the routine with the nested IF-THEN-ELSE expression
requires only 75 bytes and has the advantage of exiting the
routine after executing the expressions following the match. The
IF-THEN-ELSE expression generates identical code· to that produced
for the equivalent selectone expression:

ROUTINE COND=
BEGIN
INCR I FROM 0 TO 999 DO

SELECTONE .TABLE[.I] OF
SET

END;

[1] :
FRESHMAN () ;

[2] :
SOPHMORE () ;

[3] :
JUNIOR ();

[4] :
SENIOR () ;

[OTHERWISE] :
ERROR();

TES

II-8-2~

BLISS Primer Volume 2: Intermediate
Optimization

Exercises

In each of the exercises below, modify the BLISS-32 source
code so that the routine size of each object module produced by
the compiler is reduced by at least six bytes:

1) ROUTINE SX= !ROUTINE SIZE 67 BYTES
!++

1--

THIS ROUTINE CHANGES SQUARE AND FANCY BRACKETS INTO
THEIR EQUIVALENT PARENTHESIS. "TYPE" IS STATIC STORAGE
DECLARED IN AN OUTER BLOCK.

BEGIN
TYPE = (

SELECT .TYPE OF
SET
[%C ' [" %0' 173 ']: %C' (, ;
[%C '] " %0 'I 7 5 %C ']: %C')';
[OTHERWISE]: ~
TES)

END;

2) ROUTINE SP CHAR (TYPE)= lROUTINE SIZE 71
BYTES -

1++

1--

END;

THIS ROUTINE CONVERTS SELECTED SPECIAL CHARACTERS TO
THEIR FUNCTIONAL EQUIVALENTS AND RETURNS THAT VALUE.

BEGIN
EXTERNAL

FLAG;

EXTERNAL LITERAL
SETONE;

LOCAL
TEMP;

SELECT .TYPE OF
SET
[%C ' [,] :
[%C ' ,] :
[%C '] ,] :
[OTHERWISE] :

TES;
• TEMP

!SETONE = 1

TEM P = %C' (, ;
TEMP = %C I I ;

TEMP = %C') , ;
BEGIN

11-8-21

FLAG = SETONE;
TEMP = .TYPE
END

BLISS Primer Volume 2: Intermediate
Optim i zation

This page intentionally left blank.

II-8-22

BLISS Primer Volume 2: Intermediate
Optimization

1)

2)

Solutions

ROUTINE SX: NOVALUE= !ROUTINE SIZE 61 BYTES
1++

THIS ROUTINE CHANGES SQUARE AND FANCY BRACKETS INTO
THEIR EQUIVALENT PARENTHESES. "TYPE" IS STATIC STORAGE
DECLARED IN AN OUTER BLOCK.

BEGIN
TYPE = (

SELECTONE .TYPE OF
SET
[%C ' [, , %0 ' 1 7 3 ']: %C' (, ;
[%C •] , , %0 ' 1 75 ']: %C')';
[OTHERWISE]: 0
TES)

END;

ROUTINE SP CHAR (TYPE)= lROUTINE SIZE 39 BYTES
1++ -

1--

THIS ROUTINE CONVERTS SELECTED SPECIAL CHARACTERS TO
THEIR FUNCTIONAL EQUIVALENTS AND RETURNS THAT VALUE.

BEGIN
EXTERNAL

FLAG;

EXTERNAL LITERAL
SETONE: UNSIGNED(l);

RETURN (

END;

CASE .TYPE
FROM %0'133' TO %0'135' OF
SET
[%C ' \ ']: %C' /' ;
[%C ' [,]: %C' (, ;
[%C '] ,]: %C')';
[OUTRANGE]: (FLAG = SETONE; .TYPE)
TES)

11-8-23

BLISS Primer Volume 2: Intermediate
Optimization

This page intentionally left blank.

11-8-24

BLISS Primer Volume 2: Intermediate
Optimization

Unit Test

Modify the following BLISS,32 source code so that the current
routine size of the object code produced by the compiler is
reduced by at least 11 bytes:

MODULE TEST(MAIN=
BEGIN
EXTERNAL ROUTINE

PROC;

EXTERNAL LITERAL
NULL,
SETONE;

GLOBAL
FLAG;

ROUTINE SP_CHAR(TYPE}=
1++

1=0
1=1

!ROUTINE SIZE 86 BYTES

THIS ROUTINE CONVERTS SELECTED SPECIAL CHARACTERS TO
THEIR EQUIVALENT AND RETURNS THAT VALUE.

1,-
BEGIN
LOCAL

TEMP;

TEMP = .TYPE;

SELECT .TYPE OF
SET
[%C ' [,] :

TEMP = %C' (, ;
[%C '\ '] :

TEM P = %C' /' ;
[%C '] ,] :

TEMP = %C')';
[OTHERWISE] :

FLAG = SETONE;
[ALWAYS] :

(FLAG = NULL; PROC(.TEMP)
TES;

.TEMP
END;

END
ELUDOM

11-8-25

BLISS Primer Volume 2: Intermediate
Optimization

This page intentionally left blank.

11-8-26

DEBUGGING TECHNIQUES

MODULE 11-9

11-9-1

BLISS primer Volume 2: Intermediate
bebugging Techniques

Course Map

II-9-2

BLISS Primer Volume 2: Intermediate
Debugging Techniques

Introduction

This unit illustrates a variety of code which can be added to
a module to facilitate subsequent testing and debugging. In
general, the code consists of macros constructed with the
conditional compilation mechanism.

1I-9-3

BLISS Primer Volume 2: Intermediate
Debugging Techniques

_-------------Objectives ---------------,

Given a module with one or more routines, be able to insert
conditional code that can be used to monitor and debug the module •

....------------- Sample Test Items ------------.....

Given the module TEST.BLI (on your disk area and in
Attachment II), which includes trace and monitor macros, insert
the necessary macro calls to test and debug the program. Execute
the program and identify the existing bugs.

------------ Additional Resources

None

II-9-4

BLISS Primer Volume 2: Intermediate
Debugging Techniques

As most production programmers are aware, debugging can and
usually does consume a significant part of the time required to
produce a substantially error free program, i.e., a program
containing no branches that:

*

*
*

produce exception conditions that prematurely
terminate execution
result in an infinite loop
produce an erroneous result

When one or more of these error conditions are encountered, the
programmer has the problem of identifying and isolating the "bug".
A variety of methods can be used including (but not limited to):

*
*
*
*

reviewing the source code
consulting with the local "expert"
inserting code to output periodic messages/data
using a debugger program

A point to consider when reviewing segments of source code, which
logically (to you) should contain the problem but which appear
correct, is that this code may in fact be correct. Therefore,
after a thorough analysis of the segment has been conducted
without finding the "bug", consider other reasons which could
produce the error condition. This will frequently reveal the
problem and save many frustrating hours.

A more aggressive approach in the attempt to prod~ce
error-free code is to program defensively. This includes:

*
*
*

checking input parameters for validity
making internal consistency checks
providing built-in testing facilities

This unit concentrates on techniques for the latter and explores a
variety of possible source code insertions which can be used at
execution time to identify and isolate "bugs". This code is
constructed using conditional compilation so as not to adversely
affect the execution time of the finished program.

1I-9-5

TRACE FACILITY

BLISS Primer Volume 2: Intermediate
Debugging Techniques

The mere isolation,of a "bug" can be a significant task.
This is apparent to anyone who has had a program-stop with the
diagnostic:

?ILL MEM REF AT USER PC xxxxxxx

Because this address mayor may not be in a routine, the
diagnostic does not necessarily isolate the problem to a routine,
and, even if it did, it can not identify the recursion level at
which the error occurred. As a consequence, many hours can be
spent attempting to isolate the problem. The time is, of course,
dependent upon the experience of the programmer, the debugging
facilities available, and the size of the program. Infinite loops
can cause similar difficulties.

One solution is a simple trace mechanism to identify the
routine and the level of nesting at which the problem appears.
Fo r example,

MACRO
$TRACE(TIND, TNAME) =

%IF %SWITCHES(DEBUG)
%THEN

TTY PUT QUO(%STRING«TIND),' ROUTINE ',(TNAME),
- - %CHAR(%O'IS',%O'12'»)

%FI %;

can be used with any routine such as

ROUTINE EVAL STACK (STACK ADDR,STACK_LEN,CURRENTOP) =
BEGIN
• • •

$TRACE('ENTER', 'EVAL_STACK');
· ..
$TRACE ('EXIT', 'EVAL_STACK'); · . .
END;

to produce a trace of each call of that routine and each
subsequent exit by providing the messages:

ENTER ROUTINE EVAL STACK
EXIT ROUTINE EVAL STACK

11-9-6

BLISS Primer Volume 2: Intermediate
Debugging Techniques

Because the macro is constructed with a conditional compilation
dependent upon the debug switch, the code for the trace is
generated only when the debug switch is activated. This simple
mechanism can isolate a problem regardless of the nesting level at
which it appears. It therefore facilitates testing because the
routine order is generally known.

FORMATTED VARIABLES

Another potentially annoying problem, even using a debugger
program, is the display of data. Data frequently consists of
varying types (i.e., integer, ASCII, etc.) or is packed into
irregular size fields. For example, the block (32-bit machine)

where

NAME(32)

TYPE (2) I DATA(30)

NAME = 'Rl'
TYPE = 1 (designating an integer)
DATA = 38 (decimal)

TABLE:

would, if dumped in hexadecimal with a conventional debugger, be
displayed as

TABLE/
TABLE+4/

00005231
40000026

or if dumped in ASCII mode:
TABLE/ Rl
TABLE+4/ @ *1

Neither is extremely useful, and a long table displayed in either
format would be extremely frustrating. An alternative is to
insert code which interpretes the structure and displays the data
in the appropriate mode. For example (BLISS-32),

1I-9-7

MACRO

BLISS Primer Volume 2: Intermediate
Debugging Techniques

$DUMP BLOCK =

• • •

'IF 'SWITCHES(DEBUG)
'THEN

INCR I FROM ~ TO 24 BY 8 DO
IF .TABLE[~]<.I,8> EQL 9
THEN

EXITLOOP
ELSE

TTY_PUT_CHAR(.TABLE[~]<.I,8»;

TTY_PUT_CRLF ();

IF TTY PUT INTEGER(.TABLE[I]<39,2>,1~,1) EQL 1
THEN - -

TTY PUT INTEGER(.TABLE[l]<9,39>,1~,1~)
ELSE - -

'FI %;

BEGIN
TTY PUT INTEGER(.TABLE[1]<15,15>,1~,5);
TTY-PUT-QUO (. / .);
TTY-PUT-INTEGER(.TABLE[1]<~,15>,1~,5);
END- -

ROUTINE EVAL STACK (STACK ADDR,STACK LEN,CURRENT OP)=
BEGIN - - - -
· . .
$DUMP _BLOCK;
• • •
$DUMP _BLOCK;
· . .
END;

dumps the data in TABLE at the beginning and end of each call to
the routine EVAL STACK in the format:

1

or if

Rl
38

TYPE = 0 (designating a fraction)
DATA = 3~~010 (in octal)

in the format:

Rl
3/8

11-9-8

BLISS Primer Volume 2: Intermediate
Debugging Techniques

This macro could also have been written with a few bells and
whistles:

MACRO
$DUMP BLOCK =

%IF %SWITCHES(DEBUG)
%THEN

TTY PUT QUO (%STRING(
- - 'TYPE "Y" FOR DUMP',

%CHAR(%0'IS,%0'12'»);

IF TTY GET CHAR() EQL %C'Y'
THEN - -

%FI %;

BEGIN
TTY_PUT_QUO ('NAME: ');

INCR I FROM 0 TO 24 BY 8 DO
IF .TABLE[0]<.I,8> EQL 0
THEN

EXITLOOP
ELSE

TTY_PUT_CHAR(.TABLE[0]<.I,8»;

TTY_PUT_CRLF ();

IF .TABLE[I]<30,2> EQL 1
THEN

BEGIN
TTY PUT QUO (' INTEGER: ');
TTY-PUT-INTEGER(.TABLE[I]<0,30>,10,10);
END- -

ELSE
BEGIN

END

TTY PUT QUO('FRACTION: I);
TTY-PUT-INTEGER(.TABLE[I]<IS,IS>,10,S);
TTY-PUT-QUO (' / ');
TTY-PUT-INTEGER(.TABLE[1]<0,IS>,10,5);
END; -

This version permits, the user to determine at the time
"$DUMP BLOCK" is invoked whether or not to dump the data in TABLE
by responding to ,the message:

TYPE "Y" FOR DUMP

II-9-9

BLISS Primer Volume 2: Intermediate
Debugging Techniques

If a Y is typed, the following output occurs:

or

NAME: Rl
INTEGER: 38

NAME:
FRACTION,:

Rl
3/8

It is important to note that the the macro is constructed
with a conditional compilation and, therefore:

1) No debugging code is generated unless the appropriate
switch is activitated; consequently, execution time is
not affected when that switch is off.

2) Using a macro permits a simple one line entry that makes
the code convenient to generate and also permits it to
be used for more than one routine.

MONITORING VALUES

Another convenient facility is the ability to examine the
value of predetermined variables while the program is executing.
Minimally, one would like to know the initial and final values of
selected variables within each routine. A macro to accomplish
this is depicted below:

COMPILETIME
TESTING = 1;

• • •

MACRO
$LOOK(NAME, VAL) []=

%IF TESTING
%THEN

BEGIN
TTY PUT QUO(%STRING«NAME), ': I);
TTY-PUT-INTEGER«VAL),lS,lS);
TTY-PUT-CRLF () ;
$LOOK(%REMAINING);
END

%FI %;

II-9-lS

BLISS Primer Volume 2: Intermediate
Debugging Techniques

ROUTINE EVAL STACK (STACK ADDR, STACK_LEN, CURRENT_OP)=
BEGIN - -. . .
$TRACE('ENTER', 'EVAL STACK');
$LOOK('STACK ADDR', .STACK ADDR,

'STACK-LEN', .STACK LEN,
'CURRENT_OP', .CURRENT_OP); . . .

$TRACE (' EXI T', 'EVAL STACK');
$LOOK (' RETURN', • TEMP) ;

RETURN .TEMP;
END;

As used in the routine "EVAL STACK" above,

ENTER ROUTINE EVAL STACK
STACK ADDR xxx
STCK LEN xxx
CURRENT OP xxx

is output to the TTY each time the routine is entered and

EXIT ROUTINE EVAL STACK
RETURN xxx

is output as the final instruction prior to returning to the
calling routine. Note that once the macro is constructed, the
additional coding to insert this facility or any other is
negligible especially considering the potential benefits.

ERROR CHECKING

A more subtle form of debugging occurs in bounds checking.
This facility cari be performed without obvious interaction, at
least until an error is detected. Debugging in this manner is
feasible since many parameters are predictable within reasonable
limits and can therefore be bounded. For example,

SELECT .OPNAMES OF
SET
[%C • (•]: 0 ; . . .
[%C ' =']: 9;
[OTHERWISE]: ERROR(3);

II-9-11

BLISS Primer Volume 2: Intermediate
Debugging Techniques

produces an error message (e.g., "?ILL OP TYPE - RETYPE LINE") if
the contents of OPNAMES is not one of the acceptable characters;
however, the actual problem producing this message would have to
be further researched. However, if the code had been wr~tten

[OTHERWISE] : BEGIN
ERROR(3);
$LOOK ('OPNAMES " • OPNAMES) ;
END;

the output would have been displayed as

?ILL OP TYPE - RETYPE LINE
OPNAMES xxx

depicting at least the contents of OPNAMES at the time of the
error and possibly indicating the source of the problem. Another
example of bounds checking performed only during debugging is
shown below:

MACRO
$CHECK(NAME, NR, LOW, HIGH)=

%IF %SWITCH(DEBUG)
%THEN

IF (NR) LSS (LOW) OR (NR) GTR (HIGH)
THEN

BEGIN
TTY PUT_QUO {%STRING(

, %WARN
(NAME) ,
, EXCEEDS

TTY PUT_INTEGER ((NR) ,10, 10) ;
END-

%FI %; . . .
$CHECK ('VAL', • VAL, 0, 1000);
IF .VAL LSS .CONDITION
THEN . . .
ELSE IF .VAL GTR .PROCESS

THEN ,

,
BOUNDS ... ') ;

Thus, as in the above example, critical values can be monitored
and reported, via the TTY, when they exceed reasonable limits
established by the programmer:

%WARN VAL EXCEEDS BOUNDS ••• xxxx

11-9-12

BLISS Primer Volume 2: Intermediate
Debugging Techniques

This is particularly beneficial when values are assumed never
to be outside of a given range, and, therefore, an error indicates
an oversight in design or a "bug" in the program.

Although many of the above mechanisms are possible with a
debugger, some "bugs" can elude detection without extensive
testing but can be detected from a display of intermediate data
and/or traces during execution. Most important, this code is
easily eliminated with a switch, yet it can be reactiviated for
subsequent testing or modification if necessary.

~------------------------Note------------------------~

A word of caution: the use of debugging code
which is not thoroughly tested can generate
"bugs" which are more elusive than those the
code was intended to detect. Therefore, use
only those features that contribute to
identifying potential problems, aid in
subsequent elimination of "bugs", and/or which
have been tested prior to use - i.e., keep it
simple. This can be accomplished by confining
the code to macros (or routines) and by
possibly maintaining it in tested REQUIRE
files.

II-9-l3

This page is for notes.

BLISS Primer Volume 2: Intermediate
Debugging Techniques

11-9-14

BLISS Primer Volume 2: Intermediate
Debugging Techniques

ATTACHMENT #1

MODULE TEST (MAIN=R1) =
BEGIN

REQUIRE 'TUTIO';

COMPI LETIME
TESTING = 1;

LITERAL
CR = 13,
LF = 10,
ASCII ZERO = 48,
YES =- 78,
NO = 67;

OWN
X: INITIAL (0) ;

MACRO
STRIP CRLF () =

TTY_GET_CHAR() %;

MACRO
$TRACE(TIND, TNAME} =

%IF TESTING
%THEN

CARRIAGE RETURN
LINE FEED
= "0"
= "Y"
= "N"

TTY PUT QUO(%STRING«TIND),' ROUTINE ',(TNAME),
- %CHAR(CR,LF»}

%FI %;

MACRO
$LOOK(NAME, VAL) []=

%IF TESTING
%THEN

TTY PUT QUO (%STRING «NAME), ':'}};
TTY-PUT-INTEGER«VAL},10,10};
TTY-PUT-CRLF ();
$LOOK(%REMAINING)

%FI %;

FORWARD ROUTINE
R1,
R2,
R3,
R4;

11-9-15

ROUTINE Rl =
BEGIN
LOCAL

ANS,
TEMP;

IF .X NEQ ({J

THEN
R3(~);

BLISS Primer Volume 2: Intermediate
Debugging Techniques

TTY PUT QUO('TYPE A NUMBER 1 THRU 7 I);
TEMP = TTY GET CHAR() - ASCII_ZERO;
STRIP CRLF; -
X = • TEMP;
TTY PUT CRLF () ;
TTY-PUT-QUO('YOU TYPED ••• I);
TTY-PUT-CHAR(.TEMP+ASCII ZERO);
TTY-PUT-CRLF(); -
TTY-PUT-QUO (' TYPE tty II FOR YES OR .. N" FOR NO ') ;
ANS-= TTY GET CHAR();
TTY PUT CRLF (f;
STRIP_CRLF;

IF .ANS EQL YES
THEN

R2 (• TEMP)
ELSE

IF .ANS EQL NO
THEN

R3 (.TEMP-l);

IF .X NEQ ~

THEN
Rl () ;

R4 ();
END;

II-9-16

BLISS Primer Volume 2: Intermediate
Debugging Techniques

ROUTINE R2(ARH)=
BEGIN
IF .ARH NEQ .X
THEN

BEGIN
TTY PUT QUO('YOU CHEATED');
TTY-PU~-CRLF ();
R1 (); -
END;

TTY_PUT_QUO('MODULUS 4 OF YOUR INPUT IS?? I);

IF (TTY GET CHAR() - ASCII_ZERO) NEQ R3(ARH)
THEN - -

BEGIN
STRIP CRLF;
R1 () ;-
END;

STRIP CRLF;
END; -

ROUTINE R3(A)=
BEGIN
IF .A EQL .X
THEN

X = " ELSE
R2(.A);

RETURN (.A MOD 2);
END;

ROUTINE R4 =
BEGIN
TTY PUT QUO('EXIT');
TTY-PUT-CRLF () ;
END; -

END
ELUDOM

II-9-17.

This page is for notes.

BLISS Primer Volume 2: Intermediate
Debugging Techniques

11-9-18

BLISS Primer Volume 2: Intermediate
Debugging Techniques

Exercises

1. Write two macros $SAVE and $CHANGE which can be used
conditionally with the debug switch to monitor a single variable.
The macro $SAVE should save the initial value of the variable at
the time of the macro call and the macro $CHANGE should report its
old and current value if a change has occurred.

2. Write the macro $PAUSE which would allow a user to
conditionally invoke the debugging routine DUMP STRU which dumps
global data structures. The macro should be conditional on the
COMPILETIME constant TESTING.

II-9-19

BLISS Primer Volume 2: Intermediate
Debugging Techniques

This page intentionally left blank.

11-9-29

BLISS Primer Volume 2: Intermediate
Debugging Techniques

Solutions

1) MACRO
$SAVE{VAL) =

'IF 'SWITCHES{DEBUG)
%THEN

LOCAL
'NAME {'STRING {' S$', (VAL»;

'NAME {'STRING (' S$', (VAL» = • (VAL)
'FI %,

$CHANGE (VAL) =

2) MACRO

'IF %SWITCHES{DEBUG)
%THEN

IF .%NAME{'STRING ('S$', (VAL» NEQ • (VAL)
THEN

%FI %;

BEGIN
TTY PUT QUO {%STRING «VAL), 'OLD');
TTY-PUT-INTEGER{.'NAME('STRING('S$',

- - (VAL}),19,5);
TTY PUT QUO ('NEW') ;
TTY-PUT-INTEGER (. (VAL) ,19, 5) ;
END; -

$PAUSE =
%IF TESTING
%THEN

TTY PUT QUO (' TYPE "Y" TO CALL DEBUG ROU·rINE ');
IF TTY GET CHAR() EQL %e'Y'
THEN - -

DUMP STRU () ;
STRIP _CRLF () ;

%FI %;

Note: The routine (or macro) STRIP CRLF strips the carriage
return and/or. line feed characters- so that other input is not
affected.

11-9-21

BLISS Primer Volume 2: Intermediate
Debugging Techniques

This page intentionally left blank.

11-9-22

BLISS Primer Volume 2: Intermediate
Debugging Techniques

Unit Test

Given the module TEST.BLI (on your disk area and in
Attachment II) which includes trace and monitor macros, insert the
appropriate macro calls to test and debug the program. Execute
the program and identify the existing bugs.

Note: Do not attempt to debug the program before inserting the
debugging code: the routines are small and therefore not
difficult to debug by analyzing the source code. For your
convenience, the macros

$TRACE
$LOOK

are included in the module. Assuming the correct responses are
given, the order of execution is:

in Rl --> in R2 --> in R3 --> out R3 --> out R2 -->
i,n R4 --> out R4 --> out Rl

11-9-23

BLISS Primer Volume 2: Intermediate
Debugging Techniques

This page intentionally left blank.

11-9-24

UTILITIES

MODULE 11-10

11-11-1

BLISS Primer Volume 2: Intermediate
Utilities

Course Map

II-1S-2

BLISS Primer Volume 2: Intermediate
Utilities

I "troduction

This unit presents some of the useful utilities provided for
the BLISS language translators. Included utilities are PRETTY,
BLSCRF, CONDEN, CVT10 and CVTll, and MODULE.

11-10-3

BLISS Primer Volume 2: Intermediate
Utilities

---------------Objectives---------------.....

This unit exists for the purpose of acquainting the reader
with a subset of the utilities provided for the BLISS programmer •

.....------------- Sample Test Items --------------.

Using the text as necessary, list
provided for the BLISS programmer,
usage •

at least four utilities
along with their intended

.....------------. Additional Resources,

VAX-ll BLISS-32 USER'S GUIDE Chapter 8
Section 2

Certain .DOC and .HLP files, including PRETTY. HLP
BLSCRF.HLP
CVT10.HLP,.DOC
CVTll.HLP, .DOC
MODULE.BLI

11-10-4

BLISS Primer Volume 2: Intermediate
Utilities

PRETTY

PRETTY is a utility program which accepts a BLISS source file
and produces a reformatted source file (and optionally a specially
formatted listing file), using formatting rules as specified in
the VAX-II Software Engineering Manual. The output file will have
all whltespace (except in strings, macro definitions, comments,
and certain PLIT bodies) removed and replaced. Control
expressions are indented according to hierarchical structure.

To invoke PRETTY, type ·PRETTY'. It will prompt with 'BLF>'
for a file specification line of the form

input.ext [/OUTPUT:name.ext] [/LISTING :name.ext] [/EXIT]

where 'input.ext' is the source file specification. The bracketed
options are available: prompting may be used also. The default
file names are that of the input file. The output file extension
.defaults to that of the input; the listing file extension
defaults to '.LST'. (Note: Production of the listing file
doubles PRETTY run time.)

Specific formatting options can be supplied to PRETTY by
means of directives inserted as full-line comments into the source
text. (There are more than 2rtJ such options. For a full list, see
the file, PRETTY.HLP.) Using these options, one can specify
variations in the formatting of pages, macros, PLITs, error
messages, upper and lower case, and synonyms.

Here's an example of PRETTY usage. The file to be PRETTYed
is called UGLY.BLI and looks like this:

MODULE UGLY (MAIN = B) = BEGIN ROUTINE B = BEGIN
TTY_PUT_QUOC'YUP'); END; END ELUDOM

UGLY is syntactically correct; but difficult to read. Now we'll
'PRETTY' it up.

@pretty
PRETTY version 6
BLF>ugly.bli/output:nice.bli/exit
MODULE SMA LL
ROUTINE B
@ty nice.bli
MODULE SMALL CMAIN = B

) =
BEGIN
ROUTINE B =

BEGIN

II-lrtJ-S

BLISS Primer Volume 2: Intermediate
Utilities

TTY PUT QUO ('YUP I);

END; -
~D

ELUDOM
@

Note that PRETTY tells the user what modules and routines it is in
the process of 'PRETTY'ing up.

By the use of PRETTY, one can tell at a glance if the code
indention properly reflects the program "logic. If the 'PRETTY'ed
file has a different indention format than the original file,
perhaps it is due to the program logic being different than
intended. PRETTY is, in this manner, a valuable tool for program
development.

BLSCRF - (BLISS CROSS REFERENCE)

BLSCRF is a program which cross references BLISS source
files. BLSCRF is invoked by the command 'BLSCRF', returning a
single asterisk as a command line prompt. The user may now type a
series of cross reference requests. The command line has the
form:

outfil,gxrfil=srcfil/switch/switch •••

where either "outfil" or ",gxrfil" (but not both) may be omitted
and where all switches are optional. The default file extensions
are

srcfil: BLI (,B32, B16, B36, B10, Bll)
outfil: XRF (GXR if IF is specified with a single

output file)
gxrfil: GXR
REQUIRE file: REQ (,B32, B16, B36, B10, Bll, R32, R16,

R36, BLI)

Upon completion, if no switches have been specified, outfil
contains a numbered listing of srcfil and its REQUIRE files
followed by a cross reference of srcfil suitable for printing on a
132 column line printer; gxrfil contains a cross reference which
is formatted so it can be sorted with other files of its type to
produce a master cross reference listing of multiple source files.

All REQUIRE files requested in srcfil are included in the cross
reference. All Common BLISS reserved words are excluded from the

II-10-6

BLISS Primer Volume 2: Intermediate
Utilities

cross reference. All line numbers which correspond to lines
within REQUIRE files are flagged by a "+" in the cross reference;
all routine definitions are flagged ty "*". All symbols directly
proceeding the assignment operator are flagged with "t ...

In addition, if the BLISS source module has been edited in the
style described in the VAX-II Software Engineering Manual

(i.e., inserted lines marked by !Aedit as in !A9S
modified lines marked by !Medit as in !Mll
deleted lines marked by !Oedit as in !077)

a list of all lines affected by each edit is output at the end of
the cross reference. '

For a list of the allowable command switches, see the help file on
BLSCRF.

CONOEN

CONDEN is a program which CONDENses and cleans up the merged
and sorted cross reference (see BLSCRF, above).

The following sequence of commands can be used to create a set of
GXR (Global X-Reference) files, append them together to form one
large GXR file, sort the produced GXR file, and produce the final
cross reference:

@blscrf
*filea,filea=filea
*fileb,fileb=fileb
*filec,filec=filec
@copy allfil.gxr=filea.gxr,fileb.gxr,filec.gxr
@sort
*files.sor=/record:150/alphanumeric/ascii/key:l:40:a -

allfil.gxr
@conden
*files.xrf=files.sor

FILEA.XRF, FILEB.XRF, and FILEC.XRF now contain the individual
cross reference listings. FILES.XRF contains the sorted, merged
cross reference of all three.

II-10-7

CVTI~ and CVTII (CONVERT)

BLISS Primer Volume 2: Intermediate
Utilities

CVTI~ is a tool for converting BLISS-l~ into BLISS-36c.
(CVTIl, a sister version, converts BLISS-II into BLISS-16c.)
CVTI~ will do a large percentage of the syntax conversions and a
smaller set of other conversions. CVTI~ assumes that the input is
compilable, without errors, by the BLISS-l~ compiler. It also
makes no provisions for expanding macros in order to see what was
meant. 'Reasonable' macros and 'reasonable' code will go through
CVTI~ unscathed.

To use CVTl~, enter the command 'CVTI~'. CVTI~ will respond by
asking for the names of the input files (separated by spaces).
Next, the names of the output files are requested. (The default
in both cases is TTY:.) When all the files have been converted,
CVTI~ will ask for another set of input and output files.

Typically, the input file extension- will be .BI~ and the output
file extension will be .B36.

For help on using CVTI0, see the file, CVTI~.HLP. For a full
description of the CVTl0 (and CVTIl) programs, including
instructions for expanding the range of conversions, see the files
CVT10.DOC and CVTIl.DOC.

MODULE

MODULE.BLI is the standard BLISS source module template. It
provides a standard outline for writing BLISS programs. Included
in MODULE.BLI are the full Module headers and Routine headers, as
presented in the VAX-II Software Engineering Manual.

II-I~-8

BLISS Primer Volume 2: Intermediate
Utilities

Exercises

None

11-19-9

BLISS Primer Volume 2: Intermediate
Utilities

This page intentionally left blank.

1I-19-19

BLISS Primer Volume 2: Intermediate
Utilities

Unit Test

Using the text as necessary, list
provided for the BLISS programmer,
usage.

11-18-11

at least four utilities
along with their intended

BLISS Primer Volume 2: Intermediate
Utilities

This page intentionally left blank.

11-10-12

BLISS-32 APPENDIX

11-11-1

BLISS Primer Volume 2: Intermediate
BLISS-32 Appendix

This page intentionally left blank.

11-11-2

BLISS Primer Volume 2: Intermediate
BLISS-32 Appendix

Introduction

This unit illustrates the steps
BLISS-32 program on the VAX-ll/7S8
describes the following procedures:

• Getting started on the VAX system
• Editing the source file
• Compiling the BLISS source file
• Linking the resultant OBJ file
• Running the program

II~11-3

necessary to execute a
system. Specifically, it

BLISS Primer Volume 2: Intermediate
BLISS-32 Appendix

Additional Resources ---------

VAX-II BLISS-32 User's Guide

VAX/VMS Pr imer

VAX/VMS Text Editing Reference Manual

VAX/VMS LINKER Reference Manual

VAX!VMS Command Language User's Guide

Introduction to VAX-II RMS

VAX/VMS VAX-ll RMS Reference Manual

VAX/VMS Programmer's Guide to Debugging

VAX-II Common Run-Time Procedure Library Reference Manual

VAX/VMS System S~rvices Reference Manual

VAX/VMS Symbolic Debugging Reference Manual

11-11-4

BLISS Primer Volume 2: Intermediate
BLISS-32 Appendix

This unit teaches you how to transform a BLISS-32 source
program into a running program on the VAX-ll/788 system.

There are five steps involved in the process:

• Get logged on to the VAX system
• Write a BLISS-32 source program using EDIT
• Compile the source program by invoking the

BLISS-32 compiler
• Link the resultant object module using LINK,

yielding an executable image of your program
• Run the image on the VAX system

GENERAL PROCEDURE:

STEP 1: Get LOGGED on to the system.

First, see the system manager to arrange an account with a
user-name and password.

Let's assume that you've found a terminal that's connected
to a VAX-ll/789 system. Get the system's attention by
hitting RETURN. The VAX system will respond with

USER-NAME:

Enter the user-name and hit RETURN. Next, the system will
request the password

PASSWORD:

Enter your password and hit RETURN. If your USER-NAME and
PASSWORD are correct, the VAX system will display a
greeting like this:

WELCOME TO VAX!VMS VERSION 1.99
$

The '$' is the VAX/VMS system prompt.

You are now logged on to the system. If you have any
question about the commands which you can give VAX, try
typing 'help'. You'll get a list of subjects for which
the system has a HELP message.

For example, if you want help on the DIRECTORY
command:

11-11-5

BLISS Primer Volume 2:· Intermediate
BLISS-32 Appendix

$ help directory
DIRECTORY

Provides a list of files or info about
a file or group of files.
Format: DIRECTORY [file-spec, •••]
Additional info available: Parameters

Qualifiers

Note the 'Additional info' list. This is a time saving
feature. By giving more information only when you ask for
it, you can zero in on just the help you need.

Say you want more help on the DIRECTORY command
qualifiers:

$ help dir qua
DIRECTORY

QUALIFIERS
/BRIEF
Lists only the file name, filetype,
and file version of each file to
be listed.

/FULL . . .
•

Note that you only n·eed to type enough of a command to
uniquely specify it, as in 'hel dir qua'.

If you wish to see the present time:

$ show time
lS-JAN-78 17:34:23

There are several other things the VAX system can 'show'.
Find out which ones by getting HELP on SHOW.

When you are finished using the system, use the LOGOUT
command to end the terminal session:

$ logout

For more information on using the VAX system, see: The
VAX/VMS Primer.

11-11-6

BLISS Primer Volume 2: Intermediate
BLISS-32 Appendix

STEP 2: Create a BLISS-32 source program using EDIT.

The editor is invoked to create or modify a source file
with a command like this:

$ edit test.b32

If the file already exists, the EDITor
prepares it for your modifications.
exists, the EDITor creates it for you.

retrieves it and
If no such file

Note: '832' is the proper file type for a BLISS-32 source
file.

An editing session now begins, during which you will
direct the EDITor using certain special commands. The
default EDITor for the VAX system is called 'SOS'. Its
commands are nearly identical with those of the SOS
editors on other DEC computer systems.

SOS is a line-oriented editor; that is, it 'sees'
text in terms of lines. A line is a string of characters
and spaces. Every line in an SOS file has a line number
associated with it. When SOS displays a line, it is
preceeded by its line number:

00100 This is a sample line of text.

SOS responds to the EDIT command by displaying its
version number and the full file specification. SOS then
prompts you to begin entering lines:

$ edit test.b32
SOS V02.04A
I N PUT: DB 0: [3 00 , 21] T EST. B 32 ; 1
00100

The line number prompt, '00100', indicates that you are in
INPUT MODE. In this mode, each line you enter is placed
into the file.

Terminate each line by
automatically increments the
prompts you for more input.

hitting RETURN.
line number by 199

SOS
and

When you are finished inputting lines, hit the ESCAPE
«esc» key to get out of INPUT MODE. (On some terminals,
the equivalent'key is labeled 'ALTmode', 'SELect', or
'PREfix'.) The <esc> key is echoed to your terminal as a

11-11-7

BLISS Primer Volume 2: Intermediate
BLISS-32'Appendix

dollar sign ($).
EDIT MODE. In
enter as one of
prompt is a '*'.

Upon the echo of the $, you are in the
this mode, SOS interprets each line you

its .special commands. The EDIT MODE

When you are done with the file, you can exit the
EDITor by entering an 'E' at the EDIT MODE level. SOS
will write the entered lines into a disc file under the
specified name and return you to VAX command level.

Summary of Frequently Used SOS Commands:

Command

<RET>

<ESC>
p

I

N

R

D

F

*key:
position

range

Arguments*

None

None
position or
range
position

increment
and/or range
position
or range
position

or range
string<ESC>

Function

Print the next line in the
file
Print the previous line
Di splay 1 ine (s)

Insert new 1ine(s) into
file
Renumber the lines in file

Replace one or more lines
wi th new line (s)
Delete 1ine(s) from the
file

Find and print the next
line containing the
specified string

means you can specify a single line
number
means you can specify a range of line
numbers of the form <firstline>:
<lastline>

increment is a numeric value for line number
incrementing

string is any string of characters

For more information on the SOS Text EDITor, see:
VAX/VMS Text Editing Reference Manual.

11-11-8

BLISS Primer Volume 2: Intermediate
BLISS-32 Appendix

STEP 3: Compile the program.

The BLISS-32 source file that you've created must now be
compiled. The compiler checks your source program for
syntax and programming errors, then translates this input
source file into a binary form. The translated code,
called the 'object module', is written by the compiler
into a file called the 'object module file', which has the
f i 1 e type, 'OBJ'.

You can invoke the BLISS-32 compiler by entering a
command string of the form:

BLISS [<qualifiers>] <sourcefile>[,<sourcefile>, •••]

Source file names may be separated by a comma. The
following qualifiers are supported:

QUALIFIER DEFAULT

/[NO]LIST: [<filespec>]
/ [NO] OBJECT: [<f i lespec>]
/ [NO] LIBRARY: [<f i lespec>]
/ [NO]DEBUG
/[NO]QUICK
/(NO]CODE
/VARIANT[=<n>]
/TERMINAL: (

[NO] ERRORS,
[NO] STATISTICS)

/SOURCE: (
[NO]HEADER
PAGE SIZE=<n>
[NO] LIBRARY
[NO] REQUIRE
[NO] SOURCE
[NO]EXPAND MACROS
[NO]TRACE MACROS)

/OPTIMIZE:(-
LEVEL=<n>
SPACE I SPEED
[NO] SAFE)

/MACHINE CODE: (
[NO] ASSEMBLER
[NO] SYMBOLIC
[NO] COMMENTARY
[NO] BINARY
[NO]UNIQUE_NAMES)

11-11-9

/NOLIST
/OBJECT
/NOLIBRARY
/NODEBUG
/NOQUICK
/CODE
/VARIANT=0
/TE:(ERR,NOSTAT)

/SOURCE:(HEAD,PAGE=55,
NOLIB,NOREQ,SOURCE,
NOEXP,NOTRACE)

/OPT:(LEVEL=2,SPACE,SAFE)

/MACH:(NOASS,SYM,BIN,COM,
NOUNIQUE)

BLISS Primer Volume 2: Intermediate
BLISS-32 Appendix

If no <filespec> is supplied in LIST, OBJECT or LIBRARY
qualifiers, default is to the name of the first input file
(with the appropriate file type, i.e., LIS, OBJ, L32).

The OBJECT and LIBRARY qualifiers are mutually exclusive.

(See APPENDIX A for a detailed description of each
qualifier.)

STEP 4: 'Link the object module.

The OBJECT module produced by the BLISS-32 compiler is not
in itself, executable: generally, an object module
contains references to other programs or routines that
must be bound with the object module before it can be
executed. This is the function of the LINKer.

The LINKer is invoked by a command of the form:

LINK [/<command qualifiers>] <filespec(s»[<file
qualifiers>]

</command qualifiers> specify output file options

<filespec(s» specify the input OBJect file(s) to be
linked (Default filetype in <filespec> is OBJ.)

</file qualifiers> specify input file options

Note that the LINK command can be entered without an
accompanying file specification. The system responds with
the prompting message:

$ FILE:

You should type the file specification on the same line as
the prompting message.

Multiple file specifications can be entered, each
separated from the preceding specification by a comma. A
single executable image is created from the input files
specified. If no output file is specified, the LINKer
produces an executable image with the same name as the
first object module, and the type EXE. (No executable
image is produced if the /NOEXECUTE qualifier is
specified.) The following table lists some of the most
often used LINKer qualifiers.

II-II-I~

BLISS Primer Volume 2: Intermediate
BLISS-32 Appendix

LINKer Qualifiers

Command qualifiers

/[NO]BRIEF
/[NO]CROSS REFERENCE
/[NO]DEBUGT:<filespec>]
/[NO]EXECUTABLE[=<filespec>]
/[NO]FULL
/[NO]MAP[=<filespec>]

File qualifiers

Default

/NOBRIEF
/NOCROSS REFERENCE
/NODEBUG-
/EXECUTABLE
/NOFULL
/NOMAP

Default

/[NO]INCLUDE[=<module-name>[, •••]]
/[NO]LIBRARY

/NOINCLUDE
!NOLIBRARY

LINKer command qualifiers affect the output produced
by the LINKer. By including the appropriate qualifiers,
you can determine the type of executable image produced
(if any), and the type of map file produced (.if any).

(See APPENDIX B for a detailed description of each
qualifier.)

STEP 5: Run the program.

The LINKer has created an executable image of your
program. You can now run the program by the use of the
following general command string:

RUN [<qualifiers>]<filespec>

If the <filespec> does not include a file type, the RUN
command assumes a file type of EXE.

Normally, no <qualifiers> are used in the RUNning of a
program. However, by the use of the proper <qualifiers>,
you can influence such RUN factors as:

o delay time
o interval time
o priority
o privileges
o process-name
o swapping
o user identification code

11-11-11

BLISS Primer Volume 2: Intermediate
BLISS-32 Appendix

For more information, see:

VAX-II Common Run-Time Procedure Librarr Reference Manual,
VAX/VMS System SerVlces Reference Manua , or
VAX/VMS Command Language User's Guide.

AN EXAMPLE OF THE WHOLE PROCEDURE:

Suppose that you wanted a BLISS program that looked like this:

MODULE SKELETON (MAIN = MAINLOOP) =
BEGIN
!++

This is a test BLISS program
1--
REQUIRE 'TUTIO';
ROUTINE MAIN LOOP: NOVALUE =

BEGIN
TTY PUT QUO {'WHAT HO 1');
END; -

END
ELUDOM

Let's look at the steps necessary to take this program from
paper to an executing program on the VAX-ll/780 system.

STEP 1: Log on to the system.

Make sure the terminal is powered ON. Hit RETURN and
enter USER-NAME and PASSWORD when VAX requests them. The
system will respond with a message like this:

WELCOME TO VAX/YMS VERSION 1.00
$

Note the system prompt ($) ending the message.

STEP 2: Enter the BLISS-32 source program into a file.

We will call our program something clever, like
'TEST.B32'. Here's the way the editing session would go.

$ edit test.b32
SOS V02.04A
INPUT:DB0: [300,21]TEST.B32; 1
00l0~ MODULE SKELETON (MAIN = MAINLOOP) =
0020eJ BEGIN
0030eJ 1++

11-11-12

BLISS Primer Volume 2: Intermediate
BLISS-32 Appendix

00400
00500
00600
00700
00800
00900
01009
01100
01200

This is a BLISS test program.
1--
REQUIRE 'TUTIO';
ROUTINE MAIN LOOP: NOVALUE =

BEGIN
TTY PUT QUO ('WHAT HO 1');
END; -

END
ELUDOM$

The $ in the last line is the echoed <ESC> that you hit to
go from INPUT MODE to the EDIT MODE. SOS responds with

*
The file looks OK, so exit SOS by entering 'E':

*E
[DB0: [300,2l]TEST.B32;1]
$

Note that SOS displays the full file specification.

STEP 3: Compile the program.

Now you are ready to invoke the BLISS-32 compiler. Let's
say, as an option, that you want a listing of the compile.
The command string to enter is:

BLISS /LIST TEST

BLISS-32 will compile TEST.B32. If the compilation is
successful, the produced OBJECT module is named TEST.OBJ,
and the compiler listing is named TEST. LIS.

STEP 4: Link the object module.

Invoke the LINKer with the command:

LINK TEST

If the link is successful, it will produce the file named
TEST.EXE.

11-11-13

BLISS Primer Volume 2: Intermediate
BLISS-32 Appendix

STEP 5: Run the program.

You can now run your program by entering

RUN TEST

11-11-14

BLISS Primer Volume 2: Intermediate
BLISS-32 Appendix

APPENDIX A

Compilation Qualifiers

[NO]LIST: [<filespec>]
Specifies that the listing file is to be <filespec>.

[NO]OBJECT: [<filespec>]
Specifies that the object code is to be placed in

<filespec>.

[NO]DEBUG
Indicates whether or not the compiler should produce a

symbol table that may be used with the debugger.

[NO]QUICK
Requests a faster, non-optimized compilation. (The lack

of optimization may make it easier to relate the source code
to the generated code.)

[NO]CODE
Specifies whether or not the compiler should produce

object code. You might use /NOCODE to simply perform syntax
checking of the source program; because the compiler does not
produce code, the compilation time is reduced.

VARIANT [=<n>]
Specifies the value of the predeclared literal %VARIANT.

If no value is specified for <n>, it defaults to a value of 1;
otherwise %VARIANT has the specified value. If /VARIANT is
not specified at all, %VARIANT has a value of 9.

TERMINAL: ([NO]ERRORS,[NO]STATISTICS)
Controls whether or not ERROR and STATISTICal information

are displayed on the user terminal during the compilation. If
STAT is specified, the compiler will display the names and
sizes of all routines that are being compiled.

SOURCE: «spec>,<spec>,<spec>, •••)
Specifies what information is to appear in the listing

file.
[NO]HEADER

Indicates whether the compiler should print normal
page header information at the top of each page of the
listing file. If NOHEADER is specified, the page
header is supressed, as well as the form feed and any
compiler sp~ce dependent summary information.

PAGE SIZE=<n> Specifies the number of lines in a page in
-the listing file.

II-II-IS

BLISS Primer Volume 2: Intermediate
BLISS-32 Appendix

[NO]REQUIRE Controls whether or not the contents of all the
require files be included in the listing.

[NO]SOURCE Indicates whether or not the BLISS-32 source
statements will appear in the listing.

[NO]EXPAND MACRO Specifies whether or not all MACROs shall
be expanded wherever they appear in the source
listing.

[NO]TRACE MACROS Requests that the listing include a trace
of MACRO expansions.

OPTIMIZE:(LEVEL=<n),SPACE I SPEED, [NO]SAFE)
Indicates whether the compiler should optimize code across

mark points. Optimization can be set for either SPACE
efficiency or time .efficiency (SPEED). [NO]SAFE indicates
whether or not named variables in the source code will be
addressed only by name. Use NO SAFE to indicate that variables
can be addressed by pointers, and not just by name.

MACHINE CODE: «spec),<spec),<spec), •••)
The-MACHINE CODE qualifier requests a listing of the

generated object code, the format of which is determined by
the following subqualifiers:

[NO]ASSEMBLER Specifies whether or not a listing of the
object code is to be produced in a suitable format for
assembly.

[NO]SYMBOLIC Specifies whether or not a listing of the
object code is to be produced in a suitable format for
symbolic interpretation by the programmer.

[NO]COMMENTARY Specifies whether or not a listing of the
object code is to be produced with a compiler
commentary.

[NO]BINARY Specifies whether or not a listing of the object
code in binary format is to be produced.

[NO]UNIQUE NAMES Indicates whether the compiler should
produce unique names for OWN variables and non-global
routine names when it creates a listing that is to be
assembled.

11-11-16

BLISS Primer Volume 2: Intermediate
BLISS-32 Appendix

APPENDIX B

LINKer Qualifiers

[NO]BRIEF
Requests the

allocation) file.
is also specified;
the command line.

LINKer to produce a brief map (memory
The /BRIEF qualifier is valid only if /MAP
and it must follow the /MAP qualifier in

The /BRIEF listing contains:
o A summary of the image characteristics
o A list of all object modules included in the image
o A summary of the LINK-time performance statistics

(The effect of the /BRIEF qualifier is to withhold
summary of global symbols from the memory allocation

1 isting.)

[NO]CROSS REFERENCE

the

Controls whether or not the memory allocation listing
(map) contains a symbol cross reference. The /CROSS REFERENCE
qualifier is valid only if /MAP is also specified;- and it
must follow the /MAP qualifier in the command line. A symbol
cross reference lists each global symbol referenced in the
image, its value, and all modules in the image that refer to
it.

[NO]DEBUG[=<filespec>]
Controls whether or not an executable image is bound with

a debugger. /DEBUG is valid only if /EXECUTABLE is specified,
either explicitly or by default. The /DEBUG qualifier
optionally accepts the name of an alternate, user-specified
debugger. If a file specification is entered, and it does not
contain a file type, the LINKer assumes the default file type
of OBJ. If /DEBUG is specified without a file specification,
the default VAX/VMS Debugger, DEBUG, is linked with the image.
For more information on DEBUG, see the VAX/VMS Programmer's
Guide to Debugging.

[NO] EXECUTABLE [=<filespec>]
Controls whether or not the LINKer produces an executable

image and optionally provides a file specification for the
output image file. By default, the LINKer creates an
executable image with the same file specification as the first
input file specified and a file type of EXE.

Use !NOEXECUTABLE when you want to determine the outcome
of linking a set of modules, without incurring the LINKer
overhead required to create an image file.

II-11-17

[NO] FULL

BLISS Primer Volume 2: Intermediate
BLISS-32 Appendix

Requests the LINKer to produce a full map (memory
allocation) listing. The /FULL qualifier is valid only if
/MAP is specified, and must follow the /MAP qualifier in the
command line.

A /FULL listing contains the following information:
o A summary of the image characteristics
o A list of all object modules included in the image
o A summary of LINK-time performance statistics
o A iist of global symbols
o Detailed descriptions of each program section in the

image file

[NO]MAP[=<filespec>]
Controls whether or not a memory allocation listing (map)

is produced and optionally defines the file sp.ecification. If
/MAP is specified, the qualifiers /BRIEF, /FULL, or
CROSS REFERENCE may also be specified to control the contents
of the map. If none of these qualifiers if specified, then
the map will contain:

o A summary of the image characteristics
o A list of all object modules included in the image

. 0 A summary of LINK-time performance statistics
o A summary of global symbols
If /MAP is specified without an output file specification,

the output file is given the same file name as the first input
file specified and a file type of MAP.

[NO]SHAREABLE[=<filespec>]
Requests the LINKer to produce a shareable image file

rather than an executable image. If no file specification is
given, the LINKer provides the image file with the same file
name as the first input file and a file type of EXE.

If /SHAREABLE is specified, /DEBUG may not be specified.
Shareable images cannot be run with the RUN command; however,
they may be linked with object modules to produce executable
images. (See the /SHAREABLE qualifier in the information on
file qualifiers, below.)

[NO]SYMBOL TABLE[=<filespec>]
Requests the LINKer to create a separate file in object

module format containing symbol definitions for all symbols
contained in the image. If /SYMBOL TABLE is specified without
a file specification, the LINKer creates a file with the same
file name as the image file and a file sype of STB. If /DEBUG
is specified, the LINKer includes the symbol definitions in
the image for use by the debugger, and also creates a separate
symbol table file.

The symbol table file can be used as input to subsequent

11-11-18

BLISS Primer Volume 2: Intermediate
BLISS-32 Appendix

LINK commands, to provide the symbol definitions to other
images.

File qualifiers can set certain options for the input
file(s).

[NO]INCLUDE[=<module-name>[, •••]]
/NOINCLUDE indicates that the associated input file is an

object module library, and that only the module names
specified are to be unconditionally included as input to the
LINKer. If /INCLUDE is specified, /LIBRARY can also be
specified, to indicate that the same library should also be
used to search for unresolved references. At least one
<module-name> must be specified. If more than one is
specified, they must be enclosed in parentheses and separated
by commas.

[N 0] LIB RARY
/LIBRARY indicates that the associated input file is an

object module library, which is to be searched for modules
that resolve any undefined symbols in the input file(s).

If the associated input file specification does not
include a file type, the LINKer assumes the default file type
of LIB.

A library may not be specified as the first input file
unless the /INCLUDE qualifier is also specified to indicate
which modules in the library are to be included in the input.
You can use both /INCLUDE and /LIBRARY to qualify a file
specification; in that case, the explicit inclusion of
modules occurs first, then the library is used to search for
any unresolved references.

[NO] SHAREABLE
/SHAREABLE indicates whether the associated input file is

a previously-linked shareable image. If /SHAREABLE is
specified the associated input file specification does not
include a file type; the LINKer assumes the default file type
of EXE.

11-11-19

BLISS Primer Volume 2: Intermediate
BL1SS-32 Appendix

This page intentionally left blank.

11-11-29

BLISS-36 APPENDIX

II-12-1

BLISS Primer Volume 2: Intermediate
BLISS-36 Appendix

This page intentionally left blank.

11-12-2

BLISS Primer Volume 2: Intermediate
BLISS-36 Appendix

Introduction

This unit illustrates the steps necessary to execute a
BLISS-36 program on the DECSYSTEM-10/20. Specifically, it
describes the following procedures:

• Getting started on the DECSYSTEM-10/20
• Editing the source file
• Compiling the BLISS source file
• Linking the resultant REL file
• Running the program

11-12-3

BLISS Primer Volume 2: IntermediatE~
BLISS-36 Appendix

Additional Resources

Getting Started with the DECSYSTEM-20

DECSYSTEM-l0 Software Notebooks (13 Volumes)

DECSYSTEM-20 Edit User's Guide

DECSYSTEM-20 User's Guide

DECSYSTEM-20 LINK Reference Manual

DECSYSTEM-l0 Operating System Command Manual

DECSYSTEM-20 EDIT Reference Manual

DECSYSTEM-20 EDIT Reference Card

VAX-ll BLISS-32 User's Guide

11-12-4

BLISS Primer Volume 2: Intermediate
BLISS-36 Appendix

This unit teaches you how to transform a BLISS-36 source
program into a running program on the DECSYSTEM-10/20. For the
sake of simplicity, all examples will be given from the point of
view of TOPS-20, the mon~tor that runs on the DECSYSTEM-20. (For
more information on TOPS-10, see the appropriate references as
mentioned in ADDITIONAL RESOURCES.)

There are five steps involved in the process:

• Get logged on to the DECSYSTEM-10/20
• Write a BLISS-36 source program using EDIT
• Compile the source program by invoking the

BLISS-36 compiler
• Link the resultant object module, load it into

core, and save the executable image of your program
• Run the image on the DECSYSTEM-10/20 system

GENERAL PROCEDURE:

STEP 1: Get LOGGED on to the system.

First, see the system manager to arrange an account with a
user-name and password (and possibly an account number).

Let's assume that you've found a terminal that's connected
to a DECSYSTEM-10/20. Get the system's attention by
hitting CTRL-C (that's the <CTRL> and C keys
simul taneously) • The DECSYSTEM-20 will respond wi th a
message like this:

EDUCATIONAL SERVICES, TOPS-20' Monitor 3(1371)
@

The '@' is the TOPS-20 system prompt.
are at 'command level' • Now
i n form a t i on :

It says
type the

LOGIN <user-name> <password> [<account>]

that you
following

If your user-name, password, (and account number, if
applicable) are correct, TOPS-20 will display a message
like this:

Job 9 on TTY31 13-Jun-78 10:23:42
@

You are now logged on to the system. If you have any
question about the commands which you can give TOPS-20,

11-12-5

BLISS Primer Volume 2: Intermediate
BLISS-36 Appendix

try typing 'help *'. You'll get a list of subjects for
which the system has a HELP message.

For example, if you want help on BLISS:

@help bliss
BLISS-36 is the new BLISS compiler (BLISS. EXE) wh·ich
runs under TOPS-l~ or TOPS-29 and generates code for
KA, KI, and KL processors. The BLISS system is
' .
•
•

If you wish to see the present time:

@daytime
Friday, October 13, 1978 11:34:32

You can gather a great deal of information about the
TOPS-29 commands using the 'HELP *' facility.

When you are finished using the system, use the LOGOUT
command to end the terminal session:

@logout
Killed Job 9, User WITHROW, Account 234, TTY 31,

at lS-Jun-78 2~:23:42, Used 9:3:13 in 9:23:34

For more information on using the DECSYSTEM-2~ system,
see: The DECSYSTEM-29 User's Guide.

11-12-6

BLISS Primer Volume 2: Intermediate
BLISS-36 Appendix

STEP 2: Create a BLISS-36 source program using EDIT.

The editor is invoked to create or modify a source file
with a command like this:

$ edit test.bli

If the file already exists, the EDITor
prepares it for your modifications.
exists, the EDITor creates it for you.

retrieves it and
If no such file

Note that 'Bli' (and 'b36') are the two default file types
for BLISS-36.

An
direct
default
'SOS'.
the SOS

editing session now begins, during which you will
the EDITor using certain special commands. The
EDITor for the DECSYSTEM-29 system is called
Its commands are nearly identical with those of

editors on other DEC computer systems.

SOS is a line-oriented editor; that is, it 'sees'
text in terms of lines. A line is a string of characters
and spaces. Every line in an SOS file has a line number
associated with it. When SOS displays a line, it is
preceeded by its line number:

99199 This is a sample line of text.

SOS responds to the EDIT- command by displaying its
version number and the full file specification.· SOS then
prompts you to begin entering lines:

@edit test.bli

%File not found, Creating New file
Input: TEST.BLI.l
99199

The line number prompt, '99199', indicates that you are in
INPUT MODE. In this mode, each line you enter is placed
into the file.

Terminate each line by
automatically increments the
prompts you for more input.

hitting
line number

RETURN.
by 199

SOS
and

When you are finished inputting lines, hit the ESCAPE
«esc» key to get out of INPUT MODE. (On some terminals,
the equivalent key is labeled 'ALTmode', 'SELect', or

11-12-7

BLISS Primer Volume 2: Intermediate
BLISS-36 Appendix

, P R Ef ix' .) Th e
dollar sign ($).
EDIT MODE. In
enter as one of
prompt is a '*'.

<esc> key is echoed to your terminal as a
Upon the echo of the $, you are in the
this mode, SOS interprets each line you

its special commands. The EDIT MODE

When you are done with the file, you can exit the
EDITor by entering an 'E' at the EDIT MODE level. SOS
will write the entered lines into a disc file under the
specified name and return you to TOPS-20 command level.

Summary of Frequently Used SOS Commands:

Command

<RET>

<ESC>
p

I

N

R

D

F

*key:

Arguments* ,

None

None
position or
range
posi tion

increment
and/or range
position
or range
position

or range
string<ESC>

Function

Print the next line in the
file
Print the previous line
Display line(s)

Insert new line(s) into
file
Renumber the lines in file

Replace one or more lines
with new line(s)
Delete line(s)from the
file

Find and print the next
line containing "the
specified string

position means you can specify a single line
number

range means you can specify a range of line
numbers of the form <firstline>:
<lastline>

increment is a numeric value for line number
incrementing

string is any string of characters

For more information on the SOS Text EDITor, see:
DECSYSTEM-20 EDIT User's Guide

11-12-8

BLISS Primer Volume 2: Intermediate
BLISS-36 Appendix

STEP 3: Compile the program.

The BLISS-36 source file that you've created must now be
compiled. The compiler checks your source program for
syntax and programming errors, then translates this input
source file into a binary form. The translated code,
called the 'object module', is written by the compiler
into a file called the 'object module file', which has the
file type, 'REL'.

You can invoke the BLISS-36 compiler by typing simply
'BLISS'. The BLISS-36 compiler will next display its
prompt:

BLISS>

You should now enter the command line, which, in its
simplest form contains one filename, like this:

BLISS>file

This will cause FILE.B36 (or FILE.BLI) to be compiled, and
the FILE.REL to be created.

A number of switches can also be specified on the command
line. (For a full list of switches, see Appendix A.)

STEP 4: Link the object module.

The OBJECT module produced by the BLISS-36 compiler is not
in itself, executable: generally, an object module
contains references to other programs or routines that
must be bound with the object module before it can be
executed. This is the function of the linker.

The linker is invoked by a command of the form:

LOAD file

(Default filetype is REL.)

The LOAD command will not only invoke the linker; it
will also load the linked module into core. At this
point, the easiest way to start the program running is to
enter the command 'START'. However, if you wish to run
the program in the future, you can avoid the repeated
LOADing and STARTing by now SAVING the core image of the
LOADed program. To do this enter the command:

11-12-9

@save file.exe

BLISS Primer Volume 2: Intermediate
BLISS-36 Appendix

The executable core image is now permanently SAVEd in the
file with extension, 'EXE'.

For more information, see:

DECSYSTEM-29 LINK Reference Manual

STEP 5: Run the program.

The SAVEd core image file can now be executed, by entering
the command:

@run file.exe

If the <filespec> does not include a file type, the RUN
command assumes a file type of EXE. For more information,
see:

DECSYSTEM-29 User's Guide

AN EXAMPLE OF THE WHOLE PROCEDURE:

Suppose that you wanted a BLISS program that looked like this:

MODULE SKELETON (MAIN = MAINLOOP) =
BEGIN
1++

This is a test BLISS program
1--
REQUIRE 'TUTIO';
ROUTINE MAINLOOP: NOVALUE =

BEGIN
TTY PUT QUO('! AM FLATll)~
END; -

END
ELUDOM

Let's look at the steps necessary to take this program from
paper to an executing program on the DECSYSTEM-29.

STEP 1: Log on to the system.

Make sure the terminal is powered ON. Hit CTRL-C. Let's
say that USER-NAME, PASSWORD, and ACCOUNT are 'WITHROW',

11-12-19

BLISS Primer Volume 2: Intermediate
BLISS-36 Appendix

'PAL', and '432', respectively. In response to the
opening message of TOPS-2~ enter this line:

@login withrow pal 432

Note that TOPS-20 will not echo the characters of the
password (for the sake of security.)

The system will respond with a message like this:

Job 15 on TTY52 14-Aug-78 ~~:34:22
@

Note the system prompt (@) ending the message.

STEP 2: Enter the BLISS-36 source program into a file.

We will call the program 'FLAT.BLI'.
Here's the way the editing session would go.

@edit flat.bli
%File not found, Creating New
Input: FLAT.BLI.l
~~1~~ MODULE SKELETON (MAIN
~~2~0 BEGIN
~~3~0 1++

file

= MAINLOOP) =

0~4~0
~~5~~
0~6~0
~~7~~
~~8~0

~09~~

This is a BLISS test program.

~1~~~
~1100

012~0

1--
REQUIRE 'TUTIO';
ROUTINE MAINLOOP:

BEGIN
TT Y PUT QUO (I I
END; -

END
ELUDOM$

NOVALUE =

AM FLAT! I) :

The $ in the last line is the echoed <ESC> that you hit to
go from INPUT MODE to the EDIT MODE. SOS responds with

*
The file looks OK, so exit SOS by entering 'E':

*E
[FLAT.BLI.l]
@

11-12-11

BLISS Primer Volume 2: Intermediate
BLISS-36 Appendix

STEP 3: Compile the program.

Now you are ready to invoke the BLISS-36 compiler. Let's
say, as options, that you want a listing of the compile,
statistics to be displayed, and to return to monitor level
upon completion of the compile. The command strings to
enter are:

@b1iss
BLISS>flat/1ist/stat/exit

BLISS-36 will compile FLAT.BLI. If the compilation is
successful, the produced object module is named FLAT.REL,
and the compiler listing is named FLAT. LIS.

STEP 4: Link the object module.

Invoke the Linker with the command:

@load flat

If the link/load is successful, it will generate the
message 'EXIT', and return to monitor level. You can then
save the core image with the command:

@save flat

There now exists a new file, 'FLAT.EXE', which can be
executed.

STEP 5: Run the program.

You can now run your program by entering

RUN FLAT

11-12-12

BLISS Primer Volume 2: Intermediate
BLISS-36 Appendix

APPENDIX A

BLISS-36 Compiler Switches

A listing of the available switches is given below.
Defaults are marked with an asterisk(*).

SWITCH

/C(ODE)*

/0 (EBUG)

/ER(RS)*

/EXI (T)

/EXT(ENDED)

/F (ORMAT) :

/H(EADER)*

/KA (1 ~)

/KI (1 ~)

/KL (1 ~) *

/LIB(RARY)

DESCRIPTION

Generate object code.

Generate symbols for debugging, emit debug
linkages, and disable certain optimizations
so the debugger doesn't get confused.

Report errors to the terminal.

Exit back to EXEC after compilation.

Program to run in a non-zero section on a
Model B processor.

Specify certain options to control the format
of the listing file (for full list of FORMAT

switches, see below.)

Produce a heading on the top of each page of
the listing file including configuration
information.

Assume generated code is to be executed on a
KA-lg.

Assume generated code is to be executed on a
KI -lg.

Assume generated code is to be executed on a
KL-lg or KL-2~.

Interpret the source file(s) as a library
source file. The resultant object file
(.L36) is the precompiled library file that
can be requested from a source program with a
library-declaration. A library file can only
be requested by a compiler if that same
compiler was the one that built the library.

11-12-13

/LIS(TING):fs

/NOxxx

/OPTI(MIZE)*
/OPTL(EVEL):n

/P(AGSIZ):n

/Q(UICK)

/SA(FE)*

/ST(ATISTICS)

/TOPSl(~)

/TOPS2(~)*

/U(NAMES)

/V(ARIANT):n

/Z(IP)

BLISS Primer Volume 2: Intermediate
BLISS-36 Appendix

Produce a listing file. If no filespec (fs)
is given as an argument, use the default
extension .LST.

Invert the meaning of switch /xxx.

Perform full flow analysis.
Specify the degree of optimization. N must
be in the range ~ to 3. Request 3 for
maximum optimization. Default is 2.

Specify the number of lines printed on each
page of the listing file. N must be in the
range 2~ to 52. Default is 52.

Requests a "quick" compilation,_ possibly at
the expense of some optimization.

Specifies that the source program is coded in
a "safe" manner, i.e. values of named
variables are changed only by explicit
assignment to the named variable. If /NOSAFE
is specified, the compiler assumes that
indirect assignments invalidate a larger
class of variables.

Produce routine names on the terminal as they
are compiled.

Produce code to run under TOPS-l~.

Produce code to run under TOPS-2~.

Produce unique names for own variables and
non-global routine names in the listing file
when it is to be assembled.

Assign n to be the value of the lexical
function %VARIANT. If not present (default),
zero is assumed. If present and no value is
given, 1 is assumed.

Optimized for time over space if there is a
choice to be made.

The following are the options that can be given with the
/FORMAT switch. The form of the /FORMAT switch is given by:

11-12-14

BLISS Primer Volume 2: Intermediate
BLISS-36 Appendix

/FORMAT:option
or

/FORMAT:(option,option, •••)

/A(SSEMBLY)

/B(INARY)*

Produce a listing file that can be assembled.
(Some modification may be necessary.)

Include in the listing file the binary code
generated.

/C(OMMENTARY)* Include in the listing file commentary on the
operands of each instruction. Currently,
this consists of a source line number.

/E(XPAND)

/L(IBRARY)

/NOxxx

/0 (BJECT) *

/R(EQUIRE)

/SO(URCE)*

/SY(MBOLIC)*

/T(RACE)

Include the
invocation.

expansion of each macro

Include a trace identifying the library
accessed by each library-declaration and the
first use of each name whose definition is
obtained from a library file.

Invert the meaning of option xxx.

List the compiled code. The ASSEMBLY,
SYMBOLIC, BINARY, and COMMENTARY options
determine the format of the compiled code.

Do not mod~fy the listing control counter
when openlng or closing files specified in a
REQUIRE declaration. In the default case,
this results in not listing each REQUIRE
file. See SOURCE.

Increments the listing control counter. The
initial value of the counter is 1. When the
counter is greater than ~, source is listed.
Require-declarations automatically decrement
the counter for the length of the require
file unless REQUIRE is set.

List the instructions generated, using as
many program symbols as possible.

Trace macro expansion. This includes the

11-12-15

resulting
EXPAND.

BLISS Primer Volume 2: Intermediate
BLISS-36 Appendix

stream of 1exemes produced by

II-12-16

BLISS-16 APPENDIX

11-13-1

BLISS Primer Volume 2: Intermediate
BLISS-16 Appendix

This page intentionally left blank.

II-13-2

BLISS Primer Volume 2: Intermediate
BLISS-16 Appendix

Introduction

This unit illustrates the steps necessary
BLISS-16 program on the DECSYSTEM-19/29.
describes the following procedures:

• Getting started on the DECSYSTEM-19/2~
• Editing the source file
• Compiling the BLISS source file

11-13-3

to translate
Specifically,

a
it

BLISS Primer Volume 2: Intermediate
BLISS-16 Appendix

Additional Resources

Getting Started with the DECSYSTEM-20

DECSYSTEM-10 Software Notebooks (13 Volumes)

DECSYSTEM-20 Edit User's Guide

DECSYSTEM-20 User's Guide

DECSYSTEM-10 Operating System Command Manual

DECSYSTEM-20 EDIT Reference Manual

VAX~11 BLISS-32 User's Guide

DECSYSTEM-20 EDIT Reference Card

various documentation for the PDP-l1 systems

11-13-4

BLISS Primer Volume 2: Intermediate
BLISS-16 Appendix

This unit will show you how to transform a BLISS-16 source
program into an object file ready to be transported to a PDP-II
system and run there. The translator system for BLISS-16 is
actually a pre-processor chaining to a compiler chaining to a
cross-assembler. The whole system is called BLISS-16c ('c' for
cross-compiler.) Most of that operation is performed without the
need of· user ini tiation. Th is uni t wi 11 assume that the user is
new to the use of the DECSYSTEM-19/29, and will, therefore,
explain the generation of the final object file in detail.

For the sake of simplicity, all examples will be given from the
point of view of TOPS-29, the monitor that runs on the
DECSYSTEM-29. (For more information on TOPS-19, see the
appropriate references as mentioned in ADDITIONAL RESOURCES.)

There are four steps involved in the process:

• Get logged on to the DECSYSTEM-19/29
• Write a BLISS-16 source program using EDIT
• Compile the source program by invoking the

BLISS-16c translator package
• Transport the resultant object file to a

PDP-II system for task-building and execution

GENERAL PROCEDURE:

STEP 1:. Get LOGGED on to the system.

First, see the system manager to arrange an account with a
user-name and password (and possibly an account number).

Let's assume that you've found a terminal that's connected
to a DECSYSTEM-19/20. Get the system's attention by
hitting CTRL-C (that's the <CTRL> and C keys
simultaneously). The DECSYSTEM-29 will respond with a
message like this:

EDUCATIONAL SERVICES, TOPS-20 Monitor 3(1371)
@

The '@' is the TOPS-2m system prompt.
are at 'command level'. Now
information:

It says
type the

LOGIN <user-name> <password> [<account>]

II-13-5

that you
following

BLISS Primer Volume 2: Intermediate
BLISS-16 Appendix

If your user-name, password, (and account number, if
applicable) are correct, TOPS-20 will display a message
like this:

Job 9 on TTY31 l3-Jun-78 10:23:42
@

You are now logged on to the system. If you have any
question about the commands which you can give TOPS-20,
try typing 'help *'. You'll get a list of subjects for
which the system has a HELP message.

For example, if you want help on BLISS-16c:

@help bls16c
The BLISS-16c is a translator and compiler in one
package: the translator produces BLISS-II code
from BLISS-16c source code; the compiler is in
fact the BLISS-l1 compiler.
•
•
•

If you wish to see the present time:

@daytime
Friday, October 13, 1978 11:34:32

You can gather a great deal of information about the
TOPS-20 commands using the HELP * facility.

When you are finished using the system, use the LOGOUT
command to end the terminal session:

@logout
Killed Job 9, User PEGRAM, Account 234, TTY 31,

at lS-Jun-78 2~:23:42, Used 0:3:13 in 0:23:34

For more information on using the DECSYSTEM-20 system,
see: The DECSYSTEM-20 User's Guide.

11-13-6

BLISS Primer Volume 2: Intermediate
BLISS-16 Appendix

STEP 2: Create a BLISS-16 source program using EDIT.

The editor is invoked to create or modify a source file
with a command like this:

$ edit test.b16

If the file already exists, the EDITor retrieves it and
prepares it for your modifications. If no such file
exists, the EDITor creates it for you.

Note: 'b16' is the default file type for BLISS-16.

An editing session now begins, during which you will
direct the EDITor using certain special commands. The
default EDITor for the DECSYSTEM-20 system is called
'SOS'. Its commands are nearly identical with thos~ of
the SOS editors on other DEC computer systems.

SOS is a line-oriented editor; that is, it 'sees'
text in terms of lines. A line is a string of characters
and spaces. Every line in an SOS file has a line number
associated with it. When SOS displays a line, it is
preceeded by its line number:

00100 This is a sample line of text.

SOS responds to the EDIT command by displaying its
version number and the full file specification. SOS then
prompts you to begin entering lines:

@edit test.b16

%File not found, Creating New file
Input: TEST.B16.l
00100

The line number prompt, '00100', indicates that you are in
INPUT MODE. In this mode, each line you enter is placed
into the file.

Terminate each line by
automatically increments the
prompts you for more input.

hitting RETURN.
line number by 100

SOS
and

When you are finished inputting lines, hit the ESCAPE
«esc» key to get out of INPUT MODE. (On some terminals,
the equivalent key is labeled 'ALTmode', 'SELect', or
'PREfix'.) The <esc> key is echoed to your terminal as a

11-13-7

BLISS Primer Volume 2: Intermediate
BLISS-l6 Appendix

dollar sign ($). Upon the echo of the $, you are in the
EDIT MODE. In this mode, SOS interprets each line you
enter as one of its special commands. The' EDIT MODE
prompt is a'.'.

When you are done with the file, you can exit the
EDITor by entering an IE' at the EDIT MODE level. SOS
will write the entered' lines into a disc file under the
specified name and return you to TOPS-29 command level.

Summary of Frequently Used SOS Commands:

Command

<RET>

<ESC>
P

I

N

R

D

F

·key:
position

range

Arguments·

None

None
position or
range
position

increment
and/or range
position
or range
position

or range
string<ESC>

Function

Print the next line in the
file
Print the previous line
Display line(s)

Insert new line(s) into
file
Renumber the lines in file

Replace one or more lines
with new line(s)
Delete line(s)from the
file

Find and print the next
line containing the
specified string

means you can specify a single line
number
means you can specify a range of line
numbers of the form <firstline>:
<lastline>

increment is a numeric value for line number
incrementing

string is any string of characters

For more information on the SOS Text EDITor, see:
DECSYSTEM-29 EDIT User's Guide

11-13-8

BLISS Primer Volume 2: Intermediate
BLISS-16 Appendix

STEP 3: Compile the program.

The BLISS-16 source file that you've created must now be
compiled. The BLISS-16c compiler package checks your
source program for syntax and programming errors, then
translates this input source file into a form suitable for
passing to an assembler. That code is then translated by
a cross-assembler (MACYll) into 'object' code, and placed
in a file called the 'object module file', which has the
file type, 'OBJ'.

You can invoke the BLISS-16 compiler by typing simply
'BLS16C'. The BLISS-16 compiler package will next display
its prompt:

*
You should now enter the command line, which is of the
form:

*objfil,lstfil=srcfill,srcfi12, ••• /switch/switch •••

where either "objfil" or ",lstfil" (or both) may be
omitted and where all switches and all but the first
"srcfil" specification may be omitted.

Defaults for the relevant file extensions are:

srcfil:
lstfil:

objfil:
intfil:

B16
PII (BLISS-II listing file)
LST (MACYIl listing file)
OBJ
I16 (BLISS-16c Intermediate file)

The BLISS-16 pre-processor translates the BLISS-16
source into BLISS-II source, passing on the objfil and
lstfil specifications to the BLISS-II compiler.

If both files are specified, MACYII will be invoked
after BLISS-II completes its compilation (assuming the
compilation was successful!) Objfil and lstfil
specifications from the BLISS-16c command line will be
passed on to MACYll and will become the names of the
object and listing files output by MACYIl. Both object
and listing files are always produced by MACYII when
invoked from BLISS-16c.

If either objfil or lstfil is specified on the BLISS-16c

11-13-9

BLISS Primer Volume 2: Intermediate
BLISS-16 Appendix

command line without the other, the one specified is taken
to be lstfil. In such case, MACYII is not invoked, and
the assembly can then be performed either on the
DECSYSTEM-lB/2B by MACYll, or on the PDP-II, itself.

The BLISS-16 pre-processor normally produces a BLISS-II
source file, called the intermediate file, or intfil, with
the file name taken from srcfil. This intermediate file
will normally be deleted by BLISS-II when it is finished.
If MACYll is invoked, the BLISS-II listing file is also
normally deleted (after the assembly completes). Both
files (intfil and lstfil) can be optionally retained.

A number of switches can be specified on the command line.
(For a full list of switches, see Appendix A.)

STEP 4: Link (Taskbuild) the object module.

The OBJECT module produced by the combined BLISS-16
pre-processor/BLISS-II compiler/MACYII cross-assembler
package is not in itself, executable: generally, an
object module contains references to other programs or
routines that must be bound with the object module before
it can be executed. This operation is the function of the
LINKER (or TASKBUILDER).

At this point (with the object file "in your hands") your
options are twofold:

• invoke one of the several PDP-II simulator packages to
taskbuild an executable image of your program, or

• transport the object file (from MACYII) to a PDP-II
then taskbuild and run it there.

II-13-IB

BLISS Primer Volume 2: Intermediate
BLISS-16 Appendix

AN EXAMPLE OF THE WHOLE PROCEDURE:

Suppose that you wanted a BLISS program that looked like this:

MODULE SKELETON (MAIN = MAINLOOP) =
BEGIN
!++
! This is a test BLISS program
!--
ROUTINE MAINLOOP: NOVALUE =

BEGIN
END;

END
ELUDOM

Let's look at the steps necessary to take this program from
paper,to an object file on the DECSYSTEM-2a.

STEP 1: Log on to' the system.

Make sure the terminal is powered ON. Hit CTRL-C. Let's
say that USER-NAME, PASSWORD, and ACCOUNT are 'PEGRAM',
'PAL', and '432', respectively. In response to the
opening message of TOPS-2A enter this line:

@login pegram pal 432

Note that TOPS-2a will not echo the characters of the
password (for the sake of security.)

The system will respond with a message like this:

Job 15 on TTY52 14-Aug-78 99:34:22
@

Note the system prompt (@) ending the message.

11-13-11

BLISS Primer Volume 2: Intermediate
BLISS-16 Appendix

STEP 2: Enter the BLISS-16 source program into a file.

We will call the program 'NOFLAT.B16'.
Here's the way the editing session would go.

@edit nof1at.b16
%Fi1e not found, Creating New file
Input: NOFLAT.B16.1
~0100 MODULE SKELETON (MAIN = MAINLOOP) =
00200 BEGIN
9939g !++
99490 This is a BLISS test program.
ggS0g !--
9g69g ROUTINE MAINLOOP: NOVALUE =
gg7gg BEGIN
ggagg END;
gg9g0 END
glg00 ELUDOM$

The $ in the last line is the echoed <ESC> that you hit to
go from INPUT MODE to the EDIT MODE. SOS responds with

*
The file looks OK, so exit SOS by entering 'E':

*E
{NOFLAT.B16.l]
@

11-13-12

BLISS Primer Volume 2: Intermediate
BLISS-16 Appendix

STEP 3: Compile the program.

Now you are ready to invoke the BLISS-16c translator
package. Let's say, as options, that you want a listing
of the translation, statistics to be displayed, and to
save all intermediate files created by the translator
package. The command strings to enter are:

@blsl6c
*noflat,noflat=noflat/stat/noidelete

The BLISS-16c translator package will pre-process,
compile, and assemble NOFLAT.B16. If the translation is
successful, the produced files will be:

• NOFLAT.II6 - the BLISS-II equivalent of the original
BLISS-16 source file. (It is normally deleted.)

• NOFLAT.PII - produced by the BLISS-II compiler.
contains the assembly language translation of
Intermediate BLISS-II source file.) It is
normally deleted.)

It
the

also

• NOFLAT.LST - the listing file produced by MACYll.

• NOFLAT.OBJ - the purpose of the whole exercise: the
object file, ready for taskbuilding. It's produced
by MACYll.

STEP 4: Link (Taskbuild) the object module.

You are now
NOFLAT.OBJ, and
PDP-II.

ready to taskbuild the object file,
run it on either a simulator or a real

11-13-13

BLISS Primer Volume 2: Intermediate
BLISS-l6 Appendix

APPENDIX A

BLISS-16C Compiler Switches

The allowable command switches are:

Switch Default

/ADDRESS:opt /ADDRESS:RELATIVE

/BLISSII:"switch(es)" no switches

/CODE /NOCODE

/COMPRESS /NOCOMPRESS

11-13-14

Description

Controls addressing mode to
be used in the generated
code •

• ABSOLUTE will cause an
.ENABL AMA control
directive to be emitted
into the output file and
addressing mode 37
(absolute) will be used
instead of mode 67
(relative) •

• RELATIVE will cause
addressing mode 67
(relative) to be used.

The switches specified
within the quotes will be
passed by BLISS-16C into the
BLISS-II command line.
Example: BLISSll:"/S/A"
will print routine lengths
on the terminal as they are
compiled and will allow EIS
instructions.

Generate BLISS-II code as a
result of translation.
/NOCODE is used to do a
syntax check only.

Compress the intermediate
file. COMPRESS leaves out
generated comments and
indenting and replaces
"BEGIN"-"END" with "("_H)".

BLISS Primer Volume 2: Intermediate
BLISS-16 Appe:ndlx

/DEBUG

/ERRS

/IDELETE

/INTER:file

/LIST: (sw, •••)
or /LIST:sw

/NODEBUG

/ERRS

/IDELETE

srcfil.I16

/LIST(COMMENTARY,
NOEXPAND,
NOREQUIRE,
NOTRACE,
OBJECT,
SOURCE,
SYMBOLIC)

11-13-15

Sets up an appropriate
linkage for DEB16C (formerly
called SIXI2). The /DEBUG
switch is passed to
BLISS-II. However, the
SIXl2 debugger for BLISS-II
(developed at CMU) is not
supported by this release.

Print warnings and error
messages on the terminal.

Delete the intermediate file
after BLISS-II compilation.
If MACYll is invoked, delete
the BLISS-II listing file
after the assembly
completes.

Override the default
intermediate file name
assign~ent with 'file'.

COMMENTARY List the BLISS-
11 code produced
by the translator

EXPAND

OBJECT

REQUIRE

SOURCE

SYMBOLIC

TRACE

Show result of
macro expansion.

Allow object code
to be listed as
indicated below.
With NOOBJECT set
no object code is
listed.

List REQUIRE
files.

List BLISS-16C
so urce code.

List the MACRO
code generated by
BLISS-II.

Trace macro

BLISS Primer Volume 2: Intermediate
BLISS-16 Appendix

expansions.

/MACYll="switch(es)" no switches The switches specified
within the squotes will be
passed by BLISS-16C via
BLISS-II into the MACYll
command line. A comma
and/or an equals sign may
occur within the quotes to
show which switches are to
be associated with which
command line files. If no
comma or equals sign is
present, the switches are
appended to the end of the
MACYll command line.
Example:

/OBJECT:opt

/OPTIMIZ E

/OPTLEVEL: n

MACYll=" ,/SP/NL=/EN: PNC"
would associate /SP and /NL
with the listing file and
/EN:PNC with the source
file.

/OBJECT:RELOCATABLE Controls object file format:

/OPTIMIZE

/OPTLEVEL: 2

11-13-16

• ABSOLUTE will cause an
.ENABL ABS control
directive to be emitted
into the output file.
PSECT and EXT~RNAL
declarations will not be
allowed •

• RELOCATABLE will generate
an object file which must
be processed by the task
builder.

Perform optimization
according to OPTLEVEL.

Controls amount of
optim i zat ion:

QJ = None
1 = Final only
2 = Code motion and Final

OPTLEVEL:0 is equivalent to

BLISS Primer Volume 2: Intermediate
BLISS-16 Appendix

/PAGSIZ E:n /PAGSIZE:52

/RBLISSll /RBLISSIl

/SAFE /NOSAFE

/STATISTICS /NOSTATISTICS

/UNAMES /NOUNAMES

/VARIANT /VARIANT: 8

/ZIP /NOZIP

/NO •••

11-13-17

NOOPTIM IZ E.

Set page size to Un" lines
per page for the listing
file. Un" is interpreted as
a decimal number and must be
between 29 and 52 inclusive.
The default is 52.

Run the BLISS-II compiler on
the intermediate file.

Asserts, of the source code,
that named variables will be
addressed only by name.
/NOSAFE is used when,
because of the use of
pointers to named variables,
the value of a variable may
be referenced or altered
without the specific use of
its name.

Print routine names and
sizes on terminal while
compil ing.

Generate unique names for
OWN variables and non-global
ROUTINE names when producing
a listing which is to be
assembled.

Set value of the %VARIANT
predefined literal. If
/VARIANT is specified
without, Un", the value is
one.

Optimize time at the expense
of space.

The prefix "NO" in a switch,
as in /NOERRS generally
reverses the sense of the
switch. Exceptions to this
are noted in the definitions
above.

BLISS Primer Volume 2: Intermediate
BLISS-16 Appendix

This page intentionally left blank.

11-13-18

