
Introduction to DECnet
(Phase III)
AA-AV51A-TK

May 1982

This document is an overview of the concepts and capabilities
of DECnet networks. It defines DECnet terms and describes the
network functions that DECnet implementations can perform.
Readers are expected to be familiar with DIGITAL operating
systems.

This document has been reprinted directly from the manual
Introduction to DECnet, Order No. AA-J055C-TK. Only the title
page, reader's comment form and mailer have changed.

This revised document supersedes the Introduction to DECnet
(Order No. AA-J055B-TK).

Software and manuals should be ordered by title and order number. In the United States, send orders
to the nearest distribution center. Outside the United States, orders should be directed to the nearest
DIGITAL Field Sales Office or representative.

Northeast/Mid-Atlantic Region Central Region Western Region

Digital Equipment Corporation
PO Box CS2008
Nashua, New Hampshire 03061
Telephone:(603)884-6660

Digital Equipment Corporation Digital Equipment Corporation
Accessories and Supplies Center Accessories and Supplies Center
1050 East Remington Road 632 Caribbean Drive
Schaumburg, Illinois 60195 Sunnyvale, California 94086
Telephone:(312)64D-5612 Telephone:(408)734-4915

First Printing, May 1982

© Digital Equipment Corporation 1982. All Rights Reserved.

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license and may
only be used or copied in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by DIGITAL or its affiliated companies.

The following are trademarks of Digital Equipment Corporation:

~DmDDmDTM
DEC
DECmate
DECsystem-10
DECSYSTEM-20
DECUS
DECwriter
DIBOL

MASSBUS
PDP
P/OS
Professional
Rainbow
RSTS
RSX

UNIBUS
VAX
VMS
VT
Work Processor

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in preparing future
documentation.

Contents

Page
Preface IX

Chapter 1 What Is DECnet?

1.1 DECnet Functions.
1.2 Using DECnet. . .

Chapter 2 The DIGITAL Network Architecture

2.1 The DNA Layers
2.2 DECnet Module Interfaces .
2.3 DNA Protocols.
2.4 Relaying User Data through the Network.
2.5 Differences between Phase II and Phase III DNA

Chapter 3 DECnet Routing

3.1 Phase II and Phase III Configurations.
3.2 Basic Concepts of Full Routing. . . .

3.2.1
3.2.2
3.2.3
3.2.4
3.2.5

N ode Addresses and Node Names .
Routing Terms
Routing Algorithms and Data Bases.
Congestion Control . . .
Packet Lifetime Control.

3.3 Affecting Routing Operation ..

3.4

3.3.1
3.3.2

Maximum Path Length.
Circui t Costs.

DECnet to DECnet Routing via a Packet Switching Network.

3.4.1 Public Packet Switching Networks (PPSNs)

3.4.1.1 CCITI Recommendations X.25, X.3, X.28, and X.29
3.4.1.2 Virtual Circuits

3.4.2 The DLM Interface.
3.4.3 The Effect of DLM on DECnet Topology

· 1-3
· 1-4

· 2-1
· 2-3
.2-3
· 2-7
.2-9

.3-1

.3-5

.3-6

.3-6

.3-7

.3-8

.3-8

.3-9

.3-9

.3-9

.3-9

3-10

3-11
3-11

3-12
3-14

iii

Chapter 4 Logical Links

4.1 The Handshake Dialog and Logical Links.
4.2 Logical Link Identifiers and Addresses
4.3 Logical Links and Individual Programs
4.4 NSP Control Messages.
4.5 Sending and Receiving Data
4.6 Segment Acknowledgment and Retransmission
4.7 Flow Control
4.8 Logical Link Applications

Chapter 5 Task-to-Task Communication

5.1 DEC net Task-to-Task Calls ..
5.2 Addressing a Connect Request .

5.2.1 Object Types and Names.
5.2.2 Connect Blocks and Network Specifications

5.3 Accepting/Rejecting a Connect Request.

5.3.1 RSX DECnet and DECnet-IAS Access Control.
5.3.2 DECnet-VAX Access Control.

5.4 Exchanging Data . .

5.4.1 Normal Data.
5.4.2 Interrupt Data

5.5 Disconnecting the Link.
5.6 Summaries of Task-to-Task Communication Calls.

5.6.1
5.6.2
5.6.3
5.6.4
5.6.5
5.6.6

DECnet-RT Calls .
DECnet/E Calls . .
RSX DECnet Calls.
DECnet-IAS Calls .
DECnet-V AX Calls.
DECnet-20 Calls .

Chapter 6 Remote File Access

iv

6.1 The File Access Listener (F AL) .
6.2 The DAP Interface.
6.3 Programming Remote Access.
6.4 File System Capabilities . . .
6.5 Initiating the Remote Access .

6.5.1 The Logical Unit/Channel Xumber
6.5.2 The File Specification. . .
6.5.3 Access Control Information
6.5.4 File Characteristics. . . .

6.6 DECnet Remote File Access Calls

6.6.1
6.6.2
6.6.3
6.6.4

DECnet-RT Calls .
RSX DECnet Calls.
DECnet-IAS Calls .
DECnet-VAX Calls,

.4-2

.4-3

.4-4

.4-4

.4-4

.4-5

.4-6

.4-6

· 5-2
.5-2

· 5-3
.5-4

.5-6

.5-6

.5-7

.5-7

.5-7
· 5-8

· 5-9
.5-9

· 5-9
5-10
5-11
5-12
5-12
5-13

· 6-1
.6-2
· 6-3
.6-4
.6-6

.6-6
· 6-7
.6-8
· 6-8

· 6-9

· o-~
6-10
6-10
6--10

6.7 Accessing Remote Files from a Terminal

6.7.1 Access Control
6.7.2 File Protection
6.7.3 Remote File Specifications . . .
6.7.4 Remote Command File Submission
6.7.5 NFT and V AXNMS Command Examples .

Chapter 7 DECnet Terminal Facilities

7.1 The TLK Utility

7.1.1 One-line Mode and Dialog Mode
7.1.2 The TLK Split Screen Option.
7.1.3 TLK Command Files.
7.1.4 The PHONE Command

7.2 The VMSMAIL Utility (DECnet-VAX only)
7.3 Network Command Terminal Facilities ...

7.3.1
7.3.2

Setting Up a Command Terminal Session
Issuing Commands to the Remote Node

Chapter 8 Network System Management

8.1
8.2

8.3
8.4

8.5

8.6

Network Management Utilities. .
Planning for Node Generation ..

8.2.1 Configuration Data Bases.
8.2.2 Network Generation Planning Aid.

Generating Network Software
Defining Configuration and Other Static Parameters.

8.4.1 Node Addresses and Names.
8.4.2 Node Verification Passwords
8.4.3 Network Object Parameters.
8.4.4 Transport Parameters (Phase III nodes only) .
8.4.5 Line Identification
8.4.6 Circuit Parameters
8.4.7 Multipoint Line and Circuit Parameters.
8.4.8 Transmission Mode.

Operating a Node

8.5.1 Controlling the State of a Node
8.5.2 Controlling Physical Links

Monitoring Node Activity

Chapter 9 Down-line Loading and Up-line Dumping

9.1 Down-line Loading Definitions
9.2 Down-line Loading Data Base Parameters.
9.3 Performing a Down-line Load

9.3.1 The LOAD Command
9.3.2 Target-initiated Down-line Loads

9 .4 Up-line Dum ping
9.5 Down-line Loading and Checkpointing RSX-11S Tasks

6-12

6-13
6-15
6-15
6-16
6-17

. 7-1

.7-2

. 7-2

.7-3

.7-3

.7-5

.7-6

.7-8

.7-9

.8-2

.8-2

.8-3

.8-4

.8-4

.8-5

.8-5

.8-5

.8-6

.8-7

.8-7

.8-7

.8-8
8-10

8-10

8-11
8-11

8-12

.9-1

.9-2

.9-2

.9-3

.9-3

.9-4

.9-4

v

Chapter 10 Loopback Testing

10.1 Hardware Loopback Devices
10.2 Node Level Loopback Tests

10.2.1 Node Level Loopback Commands
10.2.2 Using Commands t.o Initiate Tests.
10.2.3 Using Programs to Initiate Tests.

10.3 Line/Circuit Level Loopback Tests

10.3.1 Line/Circuit Level Loopback Commands.
10.3.2 Examples of Line/Circuit Level Tests

Appendix A DECnet Documentation

Index

Figures

vi

1-1 A DECnet Network
1-2 DECnet Implementations: Interfaces between Operating

Systems and the Network
2-1 The DIGITAL Network Architecture
2-2 Vertical Interaction of DECnet Software Modules . . .
2-3 Protocol Communication between Equivalent Modules.
2-4 Enveloping User Data in Protocol.
2-5 Data Flow from Node 1 to Node 3 in a Three-node Network
2-6 Network Management: Relation to DNA
3-1 Phase II Point-to-Point Routing.
3-2 Phase III Full Routing
3-3 Phase II DECnet Configurations .
3-4 Phase III DECnet Configurations .
3-5 A Mixed Configuration: A Phase III Network Adjacent

to a Phase II Star-shaped Network
3-6 Routing Terms
3-7 Components of a Public Packet Switching Network
3-8 DLM Relaying DECnet Data to PSI Software.
3-9 A DECnet Packet Nested in X.25 Protocol , , , .
3-10 Routing DECnet Data via a PPSN
3-11 RSX DECnet/PSI Nodes within a Phase III Network
4-1 Logical Link Connecting Programs BOB and CAROL
4-2 NSP Modules and Logical Links
4-3 Interrelationship of Link Identifiers and Addresses.
4-4 Programs Supporting Multiple Logical Links
5-1 Addressing Network Objects
5-2 Transmitting Normal Data.
6-1 Remote File Access
7-1 The TLK Utility
7-2 DEC net-lAS TLK Split Screen Option
7 -3 Remote Terminal Processing

10-2
10-;1

10-3
10-4
10-4

10-4

10-4
10-6

· 1-1

· 1-2
· 2-2
.2-4
.2-5
.2-7
· 2-8
.2-9
.3-2
.3-3
· 3-3
.3-4

.3-6

.3-7
3-10
3-13
3-13
3-14
3-15
.4-1
.4-2
.4-4
.4-5
.5-5
.5-8
.6-2
.7-2
· 7-4
.7-7

8-1 A Multipoint Line. .8-8
8-2 Multipoint Circuits 8-10
9-1 A Down-line Load Initiated by a Command Node. .9-2
9-2 A Down-line Load Initiated by a Target Node. .9-3
11"\ 1 Hardware Loopback Devices 10-3 J.V-J.

10-2 Command-initiated Loopback Tests. 10-5
10-3 Program-initiated Loopback Tests 10-7
10-4 Line/Circuit Level Loopback Tests 10-8

Tables

2-1 DN A Protocols. .2-4
5-1 Languages Supporting Task-to-Task Communication . 5-1
5-2 Task-to-Task Calls for DECnet-RT, RSX DECnet, and

DECnet-IAS .5-9
5-3 DECnetJE Task-to-Task Calls 5-10
5-4 DECnetJE Concise COBOL Interface Calls 5-11
5-5 DECnet-VAX Transparent Task-to-Task System Service

Calls 5-12
5-6 DECnet-VAX Nontransparent Task-to-Task System Service

Calls 5-13
5-7 MACRO-20 Task-to-Task Calls. 5-14
6-1 DIGITAL File and Record Management Systems .6-4
6-2 DECnet Remote File and Record Access Capabilities .6-5
6-3 Local Operating System File Specifications . .6-7
6-4 DECnet-RT Remote File Access Macro Calls. .6-9
6-5 Higher Level Language Remote File Access Calls

(DECnet-RT, DECnet-IAS, and RSX DECnet) . 6-10
6-6 VAX-II RMS File Access Calls. 6-11
6-7 Remote File Operations from a Terminal 6-14
6-8 Specifying Access Control Information 6-15
8-1 DECnet Systems and Network Management Utilities .8-3
8-2 Configuration Data Base Terms. .8-4

vii

Preface

This edition of the Introduction to DECnet has been revised to reflect new
versions of the following products:

RSX DECnet and DECnet-VAX

The Purposes of the Introduction to DEenet

Introduction to DECnet is an overview of the concepts and capabilities of
DECnet networks. A DECnet network consists of two or more DIGITAL com­
puter systems that have been linked together via communication lines.
Within such a network, each system runs DECnet software, which, jointly
with the networking hardware, enables communication with the other systems
in the network.

Although all implementations of DECnet embody the same network concepts,
all do not support the same set of network functions. The specific capabilities
of a DECnet network depend on the types of systems participating and on the
network's application. The objectives of this Introduction are:

• To describe the major network concepts behind all implementations of
DECnet

• To define the specific network functions that DECnet provides

• To identify the DECnet implementations that support each function

The DECnet implementations discussed in this Introduction are:

• RSX DECnet (DECnet-llM, DECnet-llM-PLUS, DECnet-llS)

• DECnet-IAS

• DECnet-VAX

• DECnet-RT

• DECnet/E

• TOPS 20 DECnet-20

ix

Chapter 1
What Is DECnet?

DECnet is a family of software products that enables two or more DIGITAL
computer systems to form a network. Such a network can link computers that
run the same operating system; more significantly, however, computers that
run different operating systems can be linked via DECnet, as Figure 1-1
illustrates. The network shown consists of six systems or nodes, each of which
runs a different DIGITAL operating system.

DECnet/E

and
DECnet-RT

in
Paris

DECnet-VAX
in

Amsterdam

DECnet-IAS

Figure 1-1: A DECnet Network

The DECnet implementation at each node acts as an interface between the
node's operating system and the network (see Figure 1-2). On one hand, each
implementation formats system-specific data and procedures according to
common DECnet rules. All data traveling through a DECnet network has
been formated in this way. Conversely, each recognizes the DECnet formats
and converts them into formats recognizable to its own operating system.

1-1

Each implementation formats system-specific data and procedures according to common
DECnet rules. Conversely, each implementation recognizes these DECnet formats and
converts them into formats recognizable to its own operating system.

Figure 1-2: OECnet Implementations: Interfaces between Operating
Systems and the Network

The ability to link different kinds of DIGITAL systems gives a great deal of
flexibility to DECnet networks. A general characteristic of distributed pro­
cessing is that 80% of computer resources are used to process local applica­
tions; work related directly to networking functions consumes only 20%.
Therefore, every system within a network must be the right system for local
requirements, or else considerable computer resources will be wasted.

DIGITAL offers a variety of operating systems designed for different types of
applications and computers. Because DIGITAL also offers implementations of
DECnet to extend most of these systems, users can match operating systems
to local applications and then tie the various systems together with DECnet.

1-2 Introduction to DEenet

1.1 DEenet Functions
DECnet offers a wide range of networking functions. Some, like task-to-task
communication, are provided throughout DECnet, while others can be sup­
plied only by a subset of DECnet implementations. For example, loading a
system image down-line to a satellite node is a function supported by RSX,
lAS, VAX, and TOPS-20 DECnets, but not by DECnet/E or DECnet-RT.
The following list identifies DECnet's major functions, which are discussed at
greater length in the chapter or section as indicated. From these discussions,
the reader will learn which implementations support the functions and what
kind of facilities DECnet provides to perform them.

• Task-to-Task Communication (Chapter 5)

DECnet enables two programs to exchange data over a logical link set up
between them. The two programs can reside in the same or in different
nodes.

• Remote File Access (Chapter 6)

DECnet provides both terminal and program access to files that reside on
remote nodes. Remote file access facilities allow users to perform the follow­
ing operations:

Transfer files between two nodes

Manipulate files residing at a remote node, for example, open, delete, or
append data to remote files

Submit files containing operating system commands to a remote node in
order to gain access to that node's resources

• Terminal-to-Terminal Communication (Section 7.1)

A DECnet utility allows a terminal user to send messages to other terminals
in the network.

• Remote Terminal Facilities (Section 7.2)

DECnet allows a local terminal to be connected logically to a remote node,
which then executes the commands typed at that terminal.

• Network Management Facilities (Chapter 8)

DECnet provides facilities used by system managers to generate, define,
monitor, and control network nodes.

• Down-line Loading (Chapter 9)

An RSX-llS node, which has no disk storage of its own, can be loaded from
an adjacent RSX, lAS, VAX, or TOPS-20 node. RSX DECnet,
DECnet-V AX, DECnet-lAS, and DECnet-20 nodes also support up-line
dumping; that is, if the RSX-llS system crashes, it automatically sends a
system-image dump up-line to the adjacent node.

• Loopback Testing (Chapter 10)

DECnet supplies tests that system managers can run to exercise various
network capabilities and to isolate network problems.

What is DECnet? 1-3

When configuring a DECnet network, a system designer or manager takes into
account the functions supported by each implementation. The range of func­
tions that can be performed between any two network nodes is limited to the
functions that they share. The network as a whole, however, is not limited to
the functions common to all. The interaction between any two nodes is not
determined by the capabilities of the other nodes in the network.

1.2 Using DEenet

DECnet provides user interfaces that are similar to those provided by DIG­
ITAL~s operating systems. To program task-to-task communication or remote
file access, programmers use calls formated according to the operating system
in which the program will run. Likewise, terminal users invoke DECnet utili­
ties in a Inanner consistent with local operating system conventions. There­
fore, using DECnet is similar to using purely local system functions. Never­
theless, network activity does entail varying degrees of complexity, depending
on the type of work being performed and on the types of nodes within the
network. For example, virtually all network functions involve cooperation
between two programs. If both programs are user-written, as in task-to-task
communication, a programmer must ensure not only that both programs run
properly in their respective nodes, but also that the communication between
them proceeds as intended.

Furthermore, although DECnet enables communication between nonhomo­
geneous systems, users performing such communication have to be aware of
system differences. For example, DIGITAL operating systems support dif­
ferent file systems, a fact that has an effect on remote file access operations.
Throughout the Introduction, discussions highlight circumstances in which
users must take differing system characteristics into account.

1-4 Introduction to DECnet

x

The Readers of the Introduction

The Introduction is intended for readers who want to learn about the concepts
and capabilities of DECnet systems. It assumes that the reader is familiar
with DIGITAL operating systems but not with DECnet concepts or terms.
Typical readers will include the personnel at the site of a newly installed
DECnet system, who can read this manual to learn about the kind of work
DECnet enables them to perform. Another group of readers will include
system managers and designers who are thinking about using DECnet to
expand their existing DIGITAL computer systems. And, finally, the Introduc­
tion is also intended for system managers and designers who do not yet use
DIGITAL systems but who are considering the implementation of a computer
network. This manual will inform them about the network capabilities that
nRrnpt. nroviilPQ
--~---~ r-~·----~·

The Structure of the Introduction

The Introduction contains ten chapters, which can be divided into three
parts:

• The first part, Chapters 1 to 4, introduces the concepts and the general uses
for DECnet.

• The second part, Chapters 5 to 7, defines specific network functions and
explains the mechanisms that programmers and terminal users can employ
to implement those functions.

• The third part, Chapters 8 to 10, introduces DECnet functions relating to
the management of the systems (called nodes) that make up a DECnet
network.

Associated Documents

This Introduction discusses many topics that are explained in greater detail in
other manuals. Appendix A lists, by implementation, all the DECnet manuals
and their order numbers.

Chapter 2
The DIGITAL Network Architecture

The DIGITAL Network Architecture (DNA) is the model for all DECnet
implementations and the standard that allows different DIGITAL operating
systems to participate in the same network. This chapter highlights features
of DNA to illustrate some basic concepts of DECnet. DNA consists of layers,
each of which defines a distinct set of network functions and the rules for
performing them. Accordingly, each DECnet implementation consists of soft­
ware modules that perform these layered network functions as DNA dictates.

The DNA model also allows for implementation of the Comite' Consultatif
International T~h~graphique et TelE~phonique (CCITI) recommendation
X.25. This recommendation defines a standard interface from a computer or a
terminal to a public packet switching network (PPSN). DNA also defines a
software interface, called Data Link Mapping (DLM), that creates a bridge
between DECnet and X.25 implementations residing in the same node. DLM
enables a DECnet node that includes an X.25 implementation to communi­
cate through a PPSN to another DECnet node. (RSX DECnet includes a
DLM interface to RSX-11 PSI [Packetnet System Interface], DIGITAL's im­
plementation of the X.25 recommendation for RSX-11 systems.) Section 3.4
discusses PPSN s and the DLM interface.

2.1 The DNA Layers

Figure 2-1 illustrates the DNA functional layers. The following definitions
summarize the purpose of each layer. For detailed information about DNA,
see the DIGITAL Network Architecture General Description and other man­
uals that are listed in Appendix A.

2-1

Each layer defines a distinct set of functions as well as rules
for implementing those functions.

Layers oriented
to user functions

USER LAYER

NETWORK MANAGEMENT LAYER

NETWORK APPLICATION LAYER ---......... - --------- - - ----"'"

Layers oriented SESSION CONTROL LAYER
to network functions - - - --- - ---- -- -- --

NETWORK SERVICES LAYER

TRANSPORT LAYER

~--..,-----------------

Layers oriented
to communication
functions

DATA LINK LAYER
1---- ---- -- - - - - ---

PHYSICAL LINK LAYER

~----------------
COMMUNICATIONS FACILITIES

Figure 2-1: The DIGITAL Network Architecture

Definitions of DNA Layers

• User Layer. The User layer encompasses user-written programs and ser­
vices that access the network. It is the highest layer in the architecture.

• Network Management Layer. The Network Management layer defines the
functions used by operators and programs to plan, control, and maintain
the operation of DECnet networks.

• Network Application Layer. The Network Application layer defines net­
work functions used by the two higher layers. The most important DECnet
functions currently operating within this layer are remote file access, file
transfer, and the remote terminal capability.

• Session Control Layer and Network Services Layer. Together these
layers define a mechanism that allows a program in one node to communi­
cate with a program in another node regardless of either program's location
within the network. Modules in the User layer, Network Management layer,
and Network Application layer can all use the mechanism provided by the
Session Control and Network Services layers. This mechanism, called the
logical link, is discussed in Chapter 4.

• Transport Layer. The Transport layer defines a mechanism for tran­
sporting a unit of data from one node to a specific node elsewhere in the
network.

2-2 Introduction to DECnet

• Data Link Layer. The Data Link layer defines a mechanism for error-free
communication between adjacent nodes. This layer is independent of com­
munication device characteristics.

• Physical Link Layer. The Physical Link layer encompasses the software
device driver for each communications device plus the communications
hardware itself. The hardware includes interface devices, modems, and the
communication lines.

2.2 DECnet Module Interfaces

DNA defines the interfaces between DECnet software modules operating
within the same node. Reflecting the structure of DNA, each module can
communicate with modules in a higher or a lower layer, but not with another
module in the same layer. Using these vertical interfaces, each module uses
the services provided by a module in a lower layer (see Figure 2-2). (DNA does
not allow a module to use any services provided by a higher level module.) In
building-block fashion, the modules in each layer support higher level mod­
ules by providing them with required network services.

Figure 2-2 illustrates a collection of modules residing in a typical DECnet
node. The arrows represent the interfaces between modules. The arrows point
down because each module uses the services provided by a module in a lower
layer; a module cannot use services provided by a higher level module.

2.3 DNA Protocols

So far, DNA has been viewed in the context of an individual node. However,
in addition to defining vertical interfaces, DNA also defines the relationship
between modules in separate nodes: A module in one node communicates only
with an equivalent module in another node, where equivalent means resident
in the same layer and serving the same network function.

Communication between equivalent modules is governed by a set of rules
called a protocol. Each protocol defines the form and content of messages to
be exchanged by modules residing in the same layer, but in separate nodes.
Equivalent modules use the same protocol.

Protocols for modules in the higher layers are more complex than protocols for
lower layers. For example, a Physical Link layer protocol is defined in terms of
electrical signals; whereas a protocol for modules residing in the Network
Application layer defines message formats and rules for exchanging messages.

Figure 2-3 illustrates protocol communication between equivalent modules in
separate nodes. Table 2-1 lists and briefly describes the function of each DNA
protocol.

The DIGITAL Network Architecture 2-3

The Network Control
Program, which allows
manager/operator to

monitor/control
network activity

CD A user program
communicating with a

remote program

@ A user program
accessing remote files

"-

User
Layer

Network
Management
Layer

Network
Appl ication
Layer

Session Controll
Network Services
Layer

Transport
Layer

Data Link
Layer

Physical
Link
Layer

Communications
Facilities

f', I

NCP
Utility

\

\
Network

,
\ ,

\ ,

Management
Routines

\

\

User
Program

CD

I

\

I

/

)

I

i

User
Program

(i)
/

/ ,.
Remote File

Access
Routines

/
~

./

Session Control!

/"
/'

Line A's
Controller

1

/
LmeA

(e.g., a telephone line)

NSP

Module

I
j

Transport
Module

t
DDCMP

Module

'-.....
~

Line 8's
Controller

'\

\
Line 8

(e.g., a cable)

,-
,..

Figure 2-2: Vertical Interaction of DEenet Software Modules

2-4 Introduction to DECnet

I
I

NODE 1
MODULES

User Program

Network
Management
Module

Network File
Access Routines
(NFARs)

NSP Module

Transport Module

DDCMP Module

Device
Controller

I
i

<I

<I

PROTOCOLS -------------User Layer

USER-DEFINED PROTOCOL

~-- -- --------Network Management Layer

NETWORK INFORMATION AND
CONTROL EXCHANGE

PROTOCOL (NICE)

-------------Network Application Layer

DATA ACCESS PROTOCOL (DAP)

-------------Session Control/Network Services Layers

SESSION CONTROL AND
NETWORK SERVICES (NSP)

PROTOCOLS

--------------Transport Layer

TRANSPORT PROTOCOL

- - ------------Data Link Layer

DIGITAL DATA
COMMUNICATIONS MESSAGE

PROTOCOL (DDCMP)

------------~-Physical Link Layer

ELECTRICAL SIGNALS

J Comm. lines that form I

physical connection
between Node 1 and

I Node 2 I

~!

I

..

NODE 2
MODULES

User Program

Network
Management
Module

File Access
Listener
(FAL)

NSP Module

Transport Module

DDCMP Module

Device
Controller

I

Figure 2-3: Protocol Communication between Equivalent Modules

The DIGITAL Network Architecture 2-5

DNA does not define protocols for all functional layers. For example, the User
layer programs communicate over the network according to rules defined by
the programmer. Furthermore, more than one protocol can be defined for the
same layer because some layers support more than one function. For example,
the Network Application layer can include modules that use the Data Access
Protocol (DAP) as well as modules that use a protocol defined by users for a
specific network application (transaction processing, for example). The proto­
cols that DNA does define are also not exclusive; users can substitute their
own protocols as long as they are implemented consistently by equivalent
modules throughout the network.

Table 2-1: DNA Protocols

Protocol

NICE

DAP

NSP

Routing

MOP

DDCMP

Layer

Network
Management

Network
Application

Network
Services

Transport

Data Link

Data Link

Description

The Network Information and Control Exchange protocol
defines mechanisms for exchanging network, node, and
configuration data, and for servicing requests from mod­
ules residing in the Network Management layer.

The Data Access Protocol defines mechanisms for per­
forming remote file access and remote file transfer on be­
half of software modules residing in the Network Manage­
ment layer (Phase III only) and the User layer. See
Chapter 6.

The Network Services Protocol defines a mechanism for
creating and maintaining logical links between higher
level modules residing in the same node or in different
nodes.

The routing protocol defines a mechanism for dispatching
data to any node in the network by the best possible
route. This protocol is implemented in Phase III products
only. See Section 2.5 and Chapter 3.

The Maintenance Operation Protocol defines mechanisms
for transmitting data over a communications channel to
achieve specific functions: down-line loading of a remote
node; up-line dumping from a remote node; testing a node
and network connections; and starting up an unattended
remote node.

The Digital Data Communications Message Protocol de­
fines a mechanism for ensuring the integrity and sequenti­
ality of data transmitted over a communications channel.

This manual refers only to DNA-defined protocols because they are standard
for all DEQnet implementations. Some protocols are discussed in relation to
the functions they serve. The Data Access Protocol, for example, is discussed
in relation to remote file access. Further information about individual DNA
protocols can be found in other DIGITAL publications. See Appendix A.

2-6 Introduction to DECnet

2.4 Relaying User Data through the Network

DNA LAYERS

User
Layer

Before leaving its source node, user data travels down through the layers
defined by DNA. A module in each layer adds control information to the unit
of data it receives from above. This control information is dictated by the
module's protocol. Ultimately, the user data reaches the Physical Link layer
and is transmitted in a multisegmented envelope of protocol. Figure 2-4 illus­
trates how each module adds its protocol to the unit of data it receives from
above.

--

Network
Application
Layer

Network
Services
Layer

Transport
Layer

Data
Link
Layer

,...-...... ----<-..,.

\~------------------------------~,,~------------------------------~)
Complete Envelope Transmitted

from One Node to an Adjacent Node

Figure 2-4: Enveloping User Data in Protocol

The DIGITAL Network Architecture 2-7

N
I

Q)

-o
o
m
o
::s
CD -

NODEl NODE 2 NODE 3

r "'" \ r ~ \ r- ~ ,
--- ------------- --- - -- - -1---- - --- - -- - - - - - - - ---------------.- --------

User
Layer

Network
Application
Layer

r----.l:..-~..., Data from user is

DATA

enveloped in Packet
Header information
as it passes through'
layers to the
Transport Layer.
See Figure 2-4.

f-----------
~,

[
DATA

DATA

~~

Header information removed as
data pa,sses through layers to the
User Layer.

DATA

.4~
---- -- -- - - - --- _. - -- - -- --- - --- - -- - - - - - --- - - -- - -- ----- - - ---- ---- - - -- -- ---

Network
Services
Layer

Transport
Layer

~,

Transport Layer receives packet
from Data Link Layer and sends

I DATA

it to Node 3. ii IT DATA

-------- - --(-'- - - - - -- -------------- - -- -~~-------------------------------
~,

Transport
Packet
Header

DATA
Transport

Packet
Header

DATA
Transport

Packet
Header

DATA

----- -- -- - -- - - - -- 1----- ---- -- -- - - ---- -- -- - - ---- - -- --.-- - - - -- - ---- -- - ----

Data
Link

Data
Link

Layer ':::ontrol

Transport
Packet
Header

DATA
Data
Link

Control

-- ---~.: ;;.;; L:' ~o-;;',: :d-::d: ~ - - - --
Data Link Layer. /Vode 1.

Headers and data
sent from Node 1
to Node 2.

Headers and data
sent from Node 2
to Node 3.

~

Data ... Link I
Control

Transport Data

Packet DATA Link
Header Control

;;":L:' ~o-;;,:, ;:mo,: - -;.;; un,-;':,:, :;:;:i~ ---~~ ~,~ :n; -;,;::;,:-,:,~,: Y --
in Data Link Layer. Node 2. Data Link Layer. Node 2. in Data Link Layer. Node 3.

Figure 2-5: Data Flow from Node 1 to Node 3 in a Three-Nodle Network

Each segment of protocol represents one module talking to an equivalent
module elsewhere in the network. When the data envelope arrives at its desti­
nation node, each module reads and strips off the appropriate protocol seg­
ment and then hands the remaining data up to the next module. Figure 2-5
illustrates the process of adding and subtracting protocol as the user data
travels from its source to its destination.

Note the action taken by the Transport module when the data needs to be
forwarded or routed to another node. The routing mechanism is described in
Chapter 3.

Physical Link Modules

User Layer

Network
Management Layer

Network
Application Layer

Session Control Layer

Network Services Layer

Transport Layer

Data Link Layer

Physical Link Layer

Black arrows show direct access for control and examination of parameters, counters, etc. Red arrows show interfaces between
layers for normal user operations such as file access, down-line load, up-line dump, end-to-end looping and logical link usage.

Figure 2-6: Network Management: Relation to DNA

2.5 Differences between Phase II and Phase III DNA
DECnet products and the architecture on which they are based have been
evolving since 1973. The basic layered structure of DNA has not changed, but
new layers and protocols have been added and existing ones refined. The
evolution of the architecture has coincided with the development and release
of new DECnet products that incorporate up-to-date networking techniques
and concepts.

The DIGITAL Network Architecture 2-9

The first version of DNA and the first releases of DECnet products were
known as DECnet Phase I. Subsequent revisions of DNA and new releases of
DECnet products are categorized as DECnet Phase II and III. Phase I prod­
ucts cannot participate in the same network with Phase II and Phase III
products. However, with the exception of DECnet-RT. products imple­
menting both Phase II and Phase III architecture are compatible within the
same network.

The DECnet implementations described in this manual are either Phase II or
Phase III products. The differences between these two product categories
reflect the following changes to DNA:

• The Addition of the Network Management Layer. This layer lies between
the User layer and the Network Application layer. Unlike most other layers,
it has interfaces defined not only for adjacent layers but also for every other
layer in the architecture, as Figure 2-6 illustrates. The multiple interfaces
meet the special requirements of network system management. The func­
tions defined by this layer allow system managers to oversee, control, main­
tain, and test all major facets of a network node. Phase II products also
supported such functions, but in a system-dependent manner rather than in
a manner dictated by DNA. See Chapter 8 for a detailed discussion of
network management.

• The Revision of the Transport Layer to incorporate a routing mecha­
nism more sophisticated than point-to-point. Although Transport was
defined as a separate layer in Phase II DNA, the point-to-point routing
mechanism it defined was sufficiently simple to be implemented by the
Network Services module. Chapter 3 describes Phase II and Phase III
routing mechanisms in greater detail.

• The Addition of the Session Control Layer. The Session Control layer
defines local-node aspects of logical link management, whereas the Network
Services layer handles the actual creation and management of logical links,
which are discussed at length in Chapter 4. However, Phase III implementa­
tions include the Session Control functions within the same modules that
perform the Network Service functions. In consequence, the management of
logical links by Phase II and Phase III implementations is essentially the
same.

2-10 Introduction to DECnet

Chapter 3
DECnet Routing

Routing is the function that determines the physical path or route along
which data travels to its destination. In the context of routing, the unit of data
to be transported is called a packet. Routing methods vary depending on the
DECnet implementations operating within the network.

• Phase II implementations support point-to-point routing, which allows a
node to send packets to physically adjacent nodes only (see Figure 3-1).
Adjacent nodes are linked directly by a physical line.

• Phase III implementations support full routing, which allows one node to
send packets to any other node in the same network. The source and desti­
nation nodes do not need to be adjacent because each packet is routed
through any nodes that fall in between them (see Figure 3-2).

• A Phase III RSX DECnet node that also includes the RSX-11 PSI (Pack­
etnet System Interface) product can route packets via a public packet
switching network (PPSN) to remote DECnet nodes.

Sections 3.1 through 3.3 discuss point-to-point and full routing. Section 3.4
discusses the RSX DECnet/PSI interface to a PPSN.

3.1 Phase II and Phase III Configurations

Routing capabilities affect the configuration of DECnet networks. Point-to­
point routing means that the most useful Phase II DECnet configurations are
hierarchical or star-shaped; examples of such configurations are shown in
Figure 3-3. In contrast, Phase ill configurations do not have to be so formally
structured since nonadjacent Phase ill nodes can communicate directly with
one another.

3-1

Node B can exchange data with Nodes A and C, but Nodes A and C cannot ex­
change data with each other.

Legend: o = node

= physical line
= logical communication path

Figure 3-1: Phase II Point-to-Point Routing

A Phase III network can include three types of nodes, which support different
degrees of routing function. A node's type determines its position within a
Phase III configuration.

• Routing nodes. A routing node can forward packets to other nodes in the
network and can be adjacent to all other types of nodes.

• Nonrouting nodes. A nonrouting node can send packets to other nodes in
the network but packets cannot be forwarded or routed through it. It can be
adjacent to one other node only; therefore it is always an end node in a
Phase III configuration. For example, a DECnet-RT node is always a non­
routing end node because it has only one physical link to the network.

• Phase II nodes. A Phase II node is a node that runs a Phase II implementa­
tion of DECnet and therefore does not support full routing. It can send
packets to adjacent nodes only and it cannot forward packets it receives
onto other nodes in the network. It can be adjacent to one or more full
routing nodes and/or to other Phase II nodes. Logically, it is an end node
within a Phase III configuration.

Figure 3-4 illustrates configurations of nodes that support Phase III full
routing. Figure 3-5 illustrates a Phase III configuration adjacent to a subnet­
work of Phase II nodes.

3-2 Introduction to DECnet

Legend:

o = node

= physical line

= logical communication path

Figure 3-2: Phase III Full Routing

Hierarchical Star

Linked Stars

Figure 3-3: Phase II DECnet Configurations

DECnet Routing 3-3

Legend:

o = Routing node o = Nonrouting node 6 = Phase II node

Figure 3-4: Phase III OECnet Configurations

3-4 Introduction to DECnet

Legend:

o = Routing node 0 = Nonrouting node 6= Phase II node

Figure 3-5: A Mixed Configuration: a Phase III Network Adjacent to a
Phase II Star-shaped Network

3.2 Basic Concepts of Full Routing

This section introduces some of the concepts that underlie DECnet's imple­
mentation of full routing. The Transport layer of Phase III DNA defines both
the full-routing functions and the methods to be used to implement those
functions. In this discussion, the term transport module refers to the DECnet
software that implements the Transport layer model.

DECnet Routing 3-5

3.2.1 Node Addresses and Node Names

Within a Phase III network, every node has a unique numeric address. A
packet to be routed contains a destination node address in its header, which
has been added by a Transport module (see Figures 2-4 and 2-5). The packet
may arrive from the NSP module in the same node or from the Transport
module in an adjacent node. As one would expect, the destination address
determines where the Transport module sends the packet. Other factors,
which are explained below, determine the path the packet travels to its desti­
nation.

In Phase II networks, nodes are addressed by unique alphanumeric names
rather than by numbers. Because a Phase II node can send packets to adja­
cent nodes only~ names are practical forms of addresses - the number of
adjacent nodes is limited and a data base of unique names is easily main­
tained. Full routing, however, greatly increases the number of reachable
nodes. As a result, routing modules can handle unique numeric addresses
more efficiently than node names.

On the other hand, node names are an easier form of address for network users
to deal with, where users are programmers, operators, system managers, etc.
"Node DENVER" is easier to remember than "Node 27," for instance. To
accommodate both the users and the transport modules, Phase III implemen­
tations of DECnet require the use of node names at the user level. These
names, however, are valid only within the context of the local node; they are
eventually translated into their corresponding numeric addresses, which are
the only identifiers that uniquely describe all the nodes in the network.

3.2.2 Routing Terms

A path is the route a packet travels from its source to its destination. Path
length and path cost, defined below, are important factors in the execution, of
full routing.

• Path length. Path length is the distance from the source node to the desti­
nation node, measured in hops. A hop is equal to a circuit between two
nodes; (Circuits* are logical point-to-point communication paths; see Sec­
tion 8.4.6.)

A path never exceeds a maximum number of hops, which is a value set by a
system manager or determined by the DECnet implementation.

• Path cost. Path cost is the sum of positive integer values assigned to the
circuits that compose the path: Each value is called a circuit cost.

When generating a network data base, a system manager or operator assigns
a cost to each circuit defined for that node. When the node is up and
running, an operator can dynamically change individual costs to higher or
lower values. Altering circuit costs can change packet-routing paths.

* DECnet-IAS and DECnet-RT implementations do not support the concept of circuits. In
their cases, a hop equals the physical line between two adjacent nodes.

3-6 Introduction to DEenet

Maximum path lengths and assigning costs to circuits are discussed in Sec­
tion 3.3.

Figure 3-6 is an annotated diagram of a Phase III network consisting of
routing and nonrouting nodes. The annotations explain the meaning of the
terms path, path length, hop, path cost, and circuit cost.

Legend: o = node

____ = circuit

G = ci rcu it cost

0-----0 = hop

Node A wants to send a packet to Node D. There are three possible paths.

PATH PATH COST PATH LENGTH

@to@,@to@.@to@ (]]+(]]+rn = 7* 3 hops

@to@,@to@ (]]+[1]=9 2 hops

@to@,@to®,®to@,@to@ ~+rn+[!]+~ = 11 4 hops

*7 is the lowest path cost; Node A therefore routes the packet to Node D via this path.

Figure 3-6: Routing Terms

3.2.3 Routing Algorithms and Data Bases
The Transport module in each routing node implements routing algorithms
and other functions defined by the Transport layer. These algorithms deter­
mine where the Transport module sends or forwards (routes through) a
packet.
One routing algorithm calculates the path length and path cost to every
possible destination via every circuit defined for the node. Another algorithm
then determines which circuit represents the least costly path to each destina­
tion in the network. The algorithms operate on locally available values as well
as on values supplied by all adjacent nodes.

DECnet Routing 3-7

The results of these algorithms are saved in routing data bases maintained by
each node. Upon receipt of a packet to be routed, the Transport module first
consults the data bases to find the least costly path to the packet's destination
and then sends the packet via the appropriate circuit. A packet is discarded or
returned to its sender if its destination is not accessible via any circuit known
to the Transport 111odule. (The sender in this context is the local NSP mod­
ule.)

When a packet arrives at the next adjacent node on the path, the Transport
module there also chooses the least costly path for the packet, according to the
local node's routing data bases. The Transport module performs the same
services for packets being routed through the local node as for packets that are
starting out on their journey.

When a packet finally reaches its destination, the Transport module for that
node recognizes that the destination address matches the address of the local
node. The packet is then delivered to the module that implements the next
higher architectural layer (the NSP module in most cases).

Each routing node executes the algorithms over and over again in response to
events of different kinds within the network. For example, if a physical line
somewhere in the network goes down, the routing algorithms recalculate the
path length and cost to destinations affected by the line failure. An operator
can also cause the algorithms to recalculate by changing the cost assigned to a
circuit.

Whenever the algorithms reexecute, each node reveals the contents of its data
bases to all adjacent nodes, which use that information to update their own
routing data bases. In this way, changes affecting path lengths and costs
ripple back and forth through the network, so that all data bases are updated
to reflect the current state of the network. The rippling action stops when all
the routing nodes' data bases are consistent.

3.2.4 Congestion Control

Each Transport module executes congestion control algorithms to limit the
number of packets queuing up for transmission on individual circuits. One
algorithm regulates the ratio of input packets to route-through packets. Input
packets are those that originate from the local node. They are rejected in
preference for route-through packets when a circuit's output queue starts to
fill up. Another algorithm limits the maximum length of a circuit's output
queue so that a single circuit cannot monopolize the available buffers.

3.2.5 Packet Lifetime Control

A packet lifetime algorithm tracks the number of nodes a route-through
packet has visited and discards packets that have exceeded a predefined
limit. This control ensures that packets can never loop endlessly through the
network.

3-8 introduction to DECnet

3.3 Affecting Routing Operation

Although Phase III routing has been designed to operate without need of
direct user intervention, system managers and operators can exercise some
indirect control over routing performance. This interface to the Transport
module is provided by a network management module. Such indirect control
involves manipulation of maximum path lengths and circuit costs. When
building a DECnet system for a particular node, a system manager can define
initial values for these parameters. The values are determined after careful
consideration of their effects on the loc.al node and on the network as a whole.
Subsequently, the values can be modified to improve performance or to reflect
changes in the network configuration.

3.3.1 Maximum Path Length

The maximum path length parameter is used to ascertain whether or not a
destination is reachable. This parameter is always set to a value equal to or
greater than the longest possible path within the network. For example, if a
network consists of four nodes in a ring configuration, the longest possible
path within that network comprises three hops. Therefore, a destination is
unreachable if it cannot be reached in three hops. Among other reasons, a
node might be unreachable because it has failed or been removed from the
network or because the only physical line connecting it to the network has
failed.

3.3.2 Circuit Costs

Circuit cost is a representation of the real or arbitrarily imposed characteris­
tics of a circuit. By assigning a higher or lower cost (positive integer value), a
system manager may influence how much the circuit will be used - higher
cost tends to cause lower traffic volume. As Section 3.2.3 explains, path cost is
the sum of the individual circuit costs incurred by using the path. Because a
major function of routing is to send packets by the least costly paths, indi­
vidual circuit costs are important factors in routing performance.

Section 8.4.4 lists these and other routing parameters that can be defined.

3.4 OeCnet to OeCnet Routing via a Packet Switching Network

An RSX DECnet node that includes RSX-11 PSI (an RSX DECnet/PSI
node) can route packets to remote DECnet nodes via a Public Packet
Switching Network (PPSN). The Data Link Mapping (DLM) interface pro­
vides this routing capability. Section 3.4.1 briefly defines PPSNs. Sections
3.4.2 and 3.4.3 explain the role of DLM and how access to a PPSN can expand
the topology of a DECnet network.

DECnet Routing 3-9

Legend:

- A LEASED CI RCUIT OR
DIAL-UP LINE

PUBLIC
PACKET
SWITCHING
NETWORK
(PPSN)

DCE = Data Circuit-terminating Equipment,
a PPSN switching node.

DTE Data Terminal Equipment, a user
computer or terminal using the PPSN.

Figure 3-7: Components of a Public Packet Switching Network

3.4.1 Public Packet Switching Networks (PPSNs)

A PPSN is a data communications service offered by the Postal Telephone
and Telegraph Authorities (PTT) or common carriers of many countries. A
PPSN receives packets of data to be transmitted from users of the network.
Each packet includes a header of control and destination information that the
PPSN uses to route the packet to its proper destination and to deliver it in its
proper sequence. The PPSN shares its transmission lines by interleaving
packets from many senders. Neither the packet's sender nor its receiver can
directly influence the route a packet takes to its destination.

3-10 Introduction to DECnet

Each PPSN consists of a number of geographically separated switching nodes
that are connected by high-speed links. A circuit leased from the PTT or
common carrier connects a user's computer to one of the PPSN switching
nodes, while either a leased circuit or a dial-up line provides the connection
for a terminal. The PPSN switching nodes are called network interfaces or
Data Circuit-terminating Equipment (DCE). User computers or terminals
connected to DCEs are called Data Terminal Equipment (DTE). Figure 3-7
illustrates the components of a PPSN.

3.4.1.1 CCITT Recommendations X.25, X.3, X.28, and X.29 - All DTEs use
standard interfaces to the PPSN. DTEs that operate in packet mode, which
include computers and intelligent terminals, use the CCITT recommendation
X.25 interface. Recommendation X.25 defines the interface between the
packet-mode DTE and the DCE to which it is connected. How the DCE itself
functions within the PPSN is transparent to the DTEs and not relevant to
X.25. To use a PPSN, non-packet-mode (character-mode) terminals require
special support from the PPSN and the packet mode DTE with which it
wants to communicate. CCITT recommendations X.3, X.28, and X.29 define
the interfaces and mechanisms that enable such terminals to function as
DTEs.

Any type or make of computer or terminal can become a DTE as long as it
implements the appropriate CCITT recommendation(s). Transparently to the
DTEs, the PPSN handles any differences in buffering and operating speeds of
the various DTEs in the network. This transparent PPSN function and the
use of the standard interfaces enable one DTE to communicate with any other
DTE on the PPSN, regardless of individual type or make.

3.4.1.2 Virtual Circuits - Two DTEs communicate by means of a virtual
circuit, which is a logical association set up by the PPSN either permanently
or temporarily. Each virtual circuit handles the exchange of data between two
specific DTEs. The DTE at each end assigns a logical channel and a corre­
sponding channel number (LCN) to the circuit. When sending data, the DTE
includes an LCN to identify the channel and corresponding circuit to which
the data belongs.

When a DTE uses more than one virtual circuit at a time, the circuits are
multiplexed over the physical link between the DTE and the DCE.

Virtual circuits are either permanent or temporary (switched):

• Permanent Virtual Circuits - A permanent virtual circuit (PVC) is analo­
gous to a leased line between a local and a remote DTE. Either DTE can
send data over the PVC at any time without issuing calls to set up or break
the circuit. When a user subscribes to a PPSN, the administrators of the
PPSN allocate the LCN for each PVC to be used.

• Switched Virtual Circuits - A temporary association between two DTEs is
called a switched virtual circuit (SVC). A DTE sets up this type of circuit
only when it wants to send data. The sending DTE assigns a channel,
identifies the target DTE, and then obtains that DTE's agreement to com­
municate. When the DTEs have finished exchanging data, one or the other
initiates a clearing sequence to terminate the SVC.

DECnet Routing 3-11

3.4.2 The DLM Interface

Using the Data Link Mapping (DLM) interface, DECnet users of an RSX
DECnet/PSI node have transparent access to a PPSN. For these DECnet
users, the PPSN is a means of routing packets to remote DECnet nodes.
Specifically, DLM enables RSX-11 PSI to set up and manage virtual circuits
on behalf of DECnet users. (DECnet users' limited access to the PPSN does
not allow them to communicate with non-DECnet DTEs; only the RSX-11
PSI user interface provides that capability.) A major benefit ofDLM is that it
extends possible DECnet topologies by allowing a PPSN to form the physical
link between RSX DECnet/PSI nodes. This section briefly explains what
DLM does and how it works. Section 3.4.3 discusses in greater detail how
DLM can affect the topology of a DECnet network.

In a DECnet/PSI node, the routing data base (Section 3.2.3) specifies circuits
leading to the node's Data Link layer and DLM circuits leading to PSI soft­
ware. Each DLM circuit is associated with a specific DTE (an RSX
DECnet/PSI node) on the PPSN. When DECnet data is addressed to a remote
node reached via a PPSN, the circuit the Transport module chooses for that
data leads to the PSI software. PSI then handles the DECnet packets just the
same as data it receives from PSI users: It envelops each DECnet packet in
X.25 protocol and sends it over the PPSN to the destination DTE associated
with the chosen DLM circuit. The target DECnet node may be the node
adjoining the DTE or it may be a DECnet only node reached via the destina­
tion' DTE node.

Figures 3-8, 3-9, and 3-10 illustrate this process. As shown in Figure 3-8, the
DLM interface enables the Transport module to transfer a DEC net packet to
the RSX-11 PSI software. In effect, an RSX system that runs both RSX
DECnet and RSX-11 PSI has two network identities: (1) it is a node within a
DECnet network and (2) it is a DTE within a PPSN. The X.25 recommenda­
tion defines three functional levels (levels 3, 2, and 1), which, in the context of
DNA, operate mostly alongside the Data Link and Physical Link layers. (Fig­
ure 3-8 illustrates this relationship,) DLM creates a communication path
between the node's Transport layer and the DTE's X.25 level 3.

Figure 3-9 is a diagram of a DEC net packet that has been prepared for
transmission over the PPSN. X.25 level 3 software is responsible for setting up
and maintaining virtual circuits and for adding a header of destination and
control protocol to PSI user data. (In the context of an RSX DECnet/PSI
node, DECnet packets received from DLM are the same as PSI user data.) By
adding a header to PSI user data, level 3 software creates an X.25 packet.
Level 3 transfers the X.25 packet to level 2, which forms a frame by adding its
own protocol header and affixing a flag at both ends. The frame then passes to
X.25 levell, which controls its physical transmission from the DTE to the
DCE. Figure 2-4 shows how DECnet modules implementing DNA layers build
up user data in the same way, a process that Figure 3-8 reiterates on the
DECnet side of the diagram.

3-12 Introduction to DECnet

DNA LAYERS

USER

NETWORK

MANAGEMENT

NETWORK
APPLICATION

SESSION
CONTROL

NETWORK
SERVICES

TRANSPORT

DATA

LINK

PHYSICAL

LINK

RSX DECnet RSX-11 PSI

NODE DTE

o
I

PSI USER LEVEL

X.25 LEVELS
(1)

Figure 3-8: DlM Relaying DECnet Data to PSI Software

1----DEcnet PACKET ----·1

. .
X.25(2) X.25(2) X.25(3) DECnet

DECnet PROTOCOL
X.25(2)

FLAG PROTOCOL- PROTOCOL USER DATA FLAG

l-x.25 USER DATA-

,-------X.25 PACKET •

, -------------- X.25 FRAME ------... ,

Figure 3-9: A DECnet Packet Nested in X.2S Protocol

DECnet Routing 3-13

Figure 8-10 shows two logical paths for DECnet data that is being routed via a
PPSN. The first path terminates at the DECnet node that is also the destina­
tion DTE. The second path passes through the destination DTE and beyond
to a target DECnet node. When the X.25 packet containing the DECnet data
reaches the destination DTE, software at levels 2 and 3 strip off the X.25
protocol headers. Level 3 identifies the local node's Transport module as the
target PSI user and accordingly hands over the DECnet packet. DECnet data
following the first path in Figure 3-10 then passes to the target user in the
local node. If DECnet data is following the second path, the Transport module
in the RSX DECnet/PSI node forwards it to another DECnet node elsewhere
in the network.

DTE NODE

cr
I

RSX DECnet / PSI

RSX DECnet RSX-ll PSI

DECnet
USER DATA

Legend:

NODE DTE

c::J
I
I
I

DTE NODE

PPSN

Path CD = The target DECnet node is also a target DTE.

Path @ = The target DECnet node is reachable via a DTE.

Figure 3-10: Routing DECnet Data via a PPSN

3.4.3 The Effect of DLM on DECnet Topology

Phase III nodes able to communicate with an RSX DECnet/PSI node also
have access to a PPSN through that node's DLM interface. Figure 3-10 shows
how DECnet data can be routed beyond the destination DTE to other
DECnet nodes. Similarly, the source node for DECnet data routed over the
PPSN does not have to be a DTE. As long as the source node supports Phase
III routing, it can also send data over a PPSN. Any intervening nodes forward

3-14 Introduction to DECnet

the data to the DECnet/PSI node adjacent to the PPSN. From there, the data
proceeds along one of the logical paths shown in Figure 3-10. Figure 3-11
shows the kind of Phase III network that DLM makes possible. All the
DECnet nodes shown can communicate with one another and are therefore
logically part of the same network.

DECnet-VAX DECnet/E

RSX DECnet/PSI

DECnet-IAS

DECnet-11S

LEGEND:

0- DECnet Node
6. - PSI only or a non-DECnet node

Figure 3-11: RSX DECnet/PSI Nodes within a Phase III Network

DECnet Routing 3-15

Chapter 4
Logical Links

DECnet uses a mechanism called a logical link to allow communication be­
tween programs running within the same node or in separate network nodes.
Each logical link is a temporary data path connecting two specific programs.
The two programs can exchange data over the link until one or the other
program decides to terminate the connection (see Figure 4-1).

Node A Node B

logical link

...... ~----data-----••

Figure 4-1: Logical Link Connecting Programs BOB and CAROL

The Network Services Protocol (NSP) defines the rules that govern the crea­
tion and operation of logical links. Every DECnet node includes a software
module that implements NSP specifically for the node's operating system. For
example, an RSX DECnet node and a DECnet-VAX node require different
implementations of NSP. In Phase ill nodes, these modules also perform the
functions of the Session Control layer of DNA (see Section 2.5). NSP modules
provide services that are analogous to those provided by the telephone com­
pany. Upon request by a caller, NSP modules set up a connection with a
specific receiver somewhere in the network. Neither party cares how the
module actually sets up the connection, and either party can hang up. Figure
4-2 illustrates the relationship between NSP modules and programs using
logical links.

4-1

In addition to creating and operating individual logical links, NSP modules
enable multiple logical links to share a single communications line. Within a
DECnet network, each communications line carries data packets belonging to
one logical link intermingled with data packets belonging to other logical
links. NSP modules format outgoing logical link data for transmission by tbe
communications hardware. Conversely; these modules separate incoming
data into logical link streams and deliver the data to the appropriate local
programs.

Node A

aGI
"'-J, ,

Node C

legend:

,----.....
, NSP

' ... -

..
o·

NSP

••••

o = program

I NSP I = NSP module

--- - = logical link between programs BOB and CAROL

= logical link between programs ANN and AL

NSP e .::e:: ~ . -- CAROL

. . . .

88

Figure 4-2: NSP Modules and Logical Links

4.1 The Handshake Dialog and Logical Links
NSP modules in separate nodes create each logical link on behalf of two
cooperating programs. Even though a logical link can connect programs run­
ning in the same node, this section describes logical links between programs
residing in separate nodes. Two programs wishing to communicate over a
logical link must follow the same procedures regardless of either program's
location in the network.

4-2 Introduction to DEenat

Cooperation is essential for a successful connection. A logical link will not be
created unless both programs agree to communicate. To use programs BOB
and CAROL as an example, BOB cannot be linked to CAROL until CAROL
agrees to the connection. The two programs must have a preliminary dialog,
with the NSP modules acting as intermediaries, before exchanging data. The
preliminary dialog is sometimes called a handshake - each program recog­
nizes and agrees to be linked to the other program.

The following dialog illustrates how the handshake proceeds. The program
that requests or initiates the link is the source program, and the program that
must accept or reject the request is called the target program. In the dialog
illustrated below, BOB is the source program and CAROL is the target pro­
gram.

• BOB in Node A issues a request to NSP(A): I want to talk to CAROL in
Node B.

• NSP(A) contacts NSP(B): BOB in Node A wants to talk to CAROL.

• NSP(B) contacts CAROL: Do you want to talk to BOB in Node A?

• CAROL responds to NSP(B): Yes, I will talk to BOB.

• NSP(B) responds to NSP(A): Yes, CAROL will talk to BOB.

• NSP(A) responds to BOB: Yes, CAROL will talk to you.

As soon as CAROL agrees to talk to BOB, NSP(A) and NSP(B) together
establish the logical link that allows the two programs to communicate. Once
the logical link exists, both programs can send and receive data on an equal
basis, and either program can decide to terminate the link.

4.2 Logical Link Identifiers and Addresses

A successful handshake accomplishes several goals:

• It confirms that both programs agree to talk with one another.

• It causes a logical link to be created.

• It provides important addressing information at the beginning of the pro­
grams' conversation. In subsequent data transfers, the programs only need
to specify a link identifier.

During the handshake sequence, each program specifies a link identifier to the
local NSP module. If the connection is successful, the program uses the link
identifier to address all messages to be sent over the link. In turn, the NSP
modules cooperate to assign their own link addresses that define the link
uniquely to each of them. At either end of the link, each NSP module associ­
ates the NSP level addresses with the local program's link identifier. Figure
4-3 illustrates the interrelationship of the programs' identifiers and the NSP
modules' addresses.

Logical Links 4-3

NSP(A) NSP(B)

Local Link Remote Link Local Link Remote Link
Address Address Address Address

123456 024602 135700 021357

021357 135700 024602 123456

Figure 4-3: Interrelationship of Link Identifiers and Addresses

4.3 Logical Links and Individual Programs

A program can use more than one logical link at a time, up to a maximum
number determined by the programmer and/or by a system restriction. Each
link identifier assigned by the program must be unique to differentiate among
simultaneous logical links. Note that the identifier assigned to a link by one
program has no relevance to the identifier assigned to the same link by the
remote program. As Figure 4-3 shows, the responsible NSP modules ensure
that both identifiers actually refer to the same logical link.

A program can establish logical links that communicate with different pro­
grams; or, a program can establish several logical links with the same program
to exchange data intended for different purposes. For example, two programs
can establish two logical links between them; one link can be used to transmit
transaction data, while the other can be used to transmit control information.
In Figure 4-4, program BOB in Node A operates logical links between itself
and programs CAROL and ALICE, while program ALICE operates a second
logical link to program TED in Node A.

Section 5.1 describes the use of calls within a program to send and receive
data over a logical link.

4.4 NSP Control Messages
In the handshake dialog discussed in Section 4.1, the NSP modules actually
carryon 11l0st of the conversation. NSP(A) and NSP(B) exchange control
messages to set up the link between BOB and CAROL. The NSP protocol
defines the control messages used by all NSP modules for creating and con­
trolling logical links.

4.5 Sending and Receiving Data
After creating a logical link, the NSP modules begin to orchestrate data
transfers between the connected programs. When a program hands over a unit
of data for transmission, the local NSP module may send the data in one data
packet, or it may divide the data into segments and send each segment in a
separate packet. In this case, the remote NSP module reassembles the seg­
ments before delivering the data to the remote program.

4-4 Introduction to DECnet

Normal data constitutes the subject matter of a dialog. To interrupt the
dialog, either of the linked programs can usually send interrupt data, which
breaks through the current dialog. The means of delivering interrupt data are
system and program dependent, but the receiver usually accesses it before
accessing any normal data that may be pending.

Node A

Legend for logical lin ks:

---- logical link between programs TED and ALICE
------ logical link between programs BOB and CAROL
• • • • • • • • •• logical link between programs BOB and ALICE

NSP(A)

Local Link Remote Link
Address Address

123456 024602

010203 014630

021357 135700

NodeB

NSP(B)

Local Link Remote Link
Address Address

135700 021357

024602 123456

014630 010203

8 , , ,

Figure 4-4: Programs Supporting Multiple Logical Links

4.6 Segment Acknowledgment and Retransmission

The NSP modules that manage both ends of a logical link guarantee:

• That all transmitted data is received

• That all received data is given to the target program in the proper sequence

To guarantee proper segment sequencing, an NSP module numbers the seg­
ments transmitted over the link. The receiving NSP module, using the
transmit numbers for identification, must acknowledge the delivery of the
segments. If a segment is not acknowledged within a certain period of time,
the sending NSP module retransmits it.

Logical Links 4-5

NSP modules assign a different set of transmit numbers to interrupt mes­
sages. The separate sets of numbers logically divide normal data and inter­
rupt data into separate data streams within the logical link. See the detailed
specification of NSP for further information.

The detailed execution of segment acknowledgment and retransmission varies
depending on the NSP implementations involved. However, despite varia­
tions in detail, all NSP modules use these mechanisms to guarantee delivery
of all transmitted segments and to ensure that the segments are delivered in
the proper sequence.

4.7 Flow Control
Network programs and NSP modules both require a certain amount of buffer
space for temporary message storage. For example; an NSP module keeps a
copy of every message it sends over a link until the receiver acknowledges
receipt of the message. At the program level, buffer space is necessary to hold
inbound messages waiting to be processed. NSP modules and programs need
buffer space for other purposes as well, depending on the application and the
DECnet implementations.

Without some kind of control, message traffic could easily cause available
buffer space to overflow. To prevent this, the programs and NSP modules
exercise flow control *. In most implementations, programs coordinate, send
and receive calls: An NSP module transmits data from a source program only
if the target program has issued a receive call. In some implementations,
however, the target node's NSP module must merely have sufficient buffer
space available to hold the data. In either case, the NSP modules handling
the link between the programs ensure that the appropriate condition is satis­
fied before any data is actually sent.

The NSP modules exchange link service messages to request and convey
information about the availability of buffer space and about other conditions
that pertain to data flow on the link. The detailed operation of flow control
depends on the DECnet nodes on the link.

4.8 Logical Link Applications
Almost all network functions require the services of a logical link between
programs. Exceptions include some maintenance functions, such as certain
loopback tests and the down-line loading of satellite systems. NSP modules
create a logical link to accomplish any of the following types of connection:

• A user program connected to another user program. BOB and CAROL
provide an example of this type of connection.

• A user program connected to a OECnet module. For example, BOB
connected to a remote FAL module in order to access a remote file (see
Section 6.1).

* Both RSX DECnet and DECnet-IAS allow flow control to be turned on or off. Under certain
circumstances, a network manager may choose to turn off flow control to improve network
performance.

4-6 Introduction to DECnet

• A DECnet module connected to another DECnet module. For example,
a terminal user invokes a DECnet system program in the local node, which
in turn makes a connection with a cooperating DECnet module in a remote
node.

In the first type of connection, a DECnet application programmer must di­
rectly control the link by including DECnet calls in the source and target
programs. In the second type of connection, the programmer must include
calls that initiate and control the link in the user program only; the DECnet
module automatically handles its end of the link. In the last case, the creation
and operation of the logical link is a level removed from the user; user pro­
gramming is not involved in the connection at all. Typically, the DECnet
modules exchange messages based on locally supplied input.

Logical Links 4-7

Chapter 5
Task-to-Task Communication

BASIC-PLUS

BASIC-PLUS-2

VAX BASIC

BLISS

COBOL

CORAL

FORTRAN

MACRO

PASCAL

PL/I

All DECnet implementations allow two programs within a network to perform
task-to-task communication, that is, to exchange data over a logical link. For
example, an RSX-11M program can use local DECnet-RSX facilities to com­
municate with a program running in a RSTSIE node in the same network.

The language used to write this kind of network program depends on the node
in which the program will run. DIGITAL operating systems do not all support
the same languages, and not all languages supported by each system can be
used for task-to-task communication. Furthermore, the programming lan­
guage used does not depend on the remote program's language or operating
system. For example, an RSX-llM program written in FORTRAN IV-PLUS
can communicate with a RSTSIE program written in BASIC-PLUS-2. The
NSP modules at either end of the programs' logical link provide the necessary
interfaces.

Table 5-1 lists the programming languages that support DECnet task-to-task
communication according to the applicable DECnet implementation.

Table 5-1: Languages Supporting Task-to-Task Communication

DECnet-RT DECnet/E RSX DECnet DECnet-IAS ; DECnet-VAX DECnet-20

X

X X X

X

X

X X X X

X X

X X X X X

X X X X X X

X

X

5-1

In most DECnet implementations, performing task-to-task communication is
similar to performing I/O. The logical link between two programs is like an I/O
channel over which both programs can send and receive data. The RSTS/E
operating system has a native ability to form a communication path between
two local programs. DECnet/E therefore implemented communication with
remote programs as an extension of RSTS/E's local send/receive services.

5.1 DECnet Task-to-Task Calls

A network program uses DECnet calls to communicate with a remote pro­
gram. As Section 4.1 explains, NSP modules actually set up and control
logical links. The DECnet task-to-task calls activate routines that request the
local NSP module to perform specific functions. A network program specifies
parameters in the calls to pass information to the local NSP module,

The form of the DECnet calls that a programmer can use depends on the
source language; they may actually be calls, macros, or system directives. The
DECnet task-to-task capability translates a variety of system-dependent lan­
guage calls into the same set of NSP level messages. For example, in response
to a connect request call, an NSP module sends the same type of NSP level
message to a remote node regardless of the source program's native language.

Every DECnet implementation provides a network program with the means
to perform the following functions:

• Request a logical link

• Receive a logical link request

• Accept or reject a logical link request

• Send data

• Receive data

• Send interrupt data

• Receive interrupt data

• Terminate the logical link

There is not always a one-to-one correspondence between a system-specific
call and one of the above steps. In some cases, a program lllUst issue three
separate calls to initiate a logical link; in other cases, a program needs to issue
only one call.

5.2 Addressing a Connect Request

In the handshake dialog that starts up a logical link, the source program
issues a connect request call that includes network addressing information.
The format of a connect request call depends on the language used to write
the source program and on the DECnet implementation in which it will run.
In some cases, a source program must issue more than one call to generate a
connect request.

5-2 Introduction to DECnet

A connect request call passes all or part of the following information to the
local NSP module:

• Link identifier. This differentiates the requested link from any other links
currently being used by the source program.! (See Section 4.2 for a discus­
sion of logical link identifiers.) If the connect request succeeds, the source
program uses the link identifier to address data to be sent over the link. The
source program's link identifier is called a logical unit number (lun) by RSX
DECnet, DECnet lAS, and DECnet-RT users, a channel number by DEC­
net-V AX users, a user link address (ula) by DECnet/E users, and a job file
number (jfn) by DECnet-20 users.

• Target node identifier. This can be a unique identifier that distinguishes
the node from all others in the network, or it can be a locally defined name
that the local DECnet software translates into a unique node identifier (see
Section 3.2.1).

• Object type or name. Object is another term for a network program. A
network program or object has a special identifier for use in network calls.
This identifier consists of an object type and/or an object name. Section
5.2.1 explains the significance of the object type and name.

• Access control information. This information describes the source pro­
gram and includes a user identification, a password, and optionally, an
account number. The information is equivalent to the data a user supplies
when logging into a system.

In most implementations, the target program uses this information as a
factor in its decision to accept or reject the connect request. RSX DECnet,
DECnet-IAS, and DECnet-VAX nodes also use it to verify the source pro­
gram's connect request at the target node (see Sections 5.3.1 and 5.3.2).

• Optional user data. A source program usually has the option of sending 16
bytes of data to the target program as part of a logical link connect or
disconnect request.

5.2.1 Object Types and Names

A network program makes itself known to the local NSP module by declaring
its object type and name. In most DECnet implementations, a program must
declare its object type and name in order to be eligible to receive link requests.
(In some implementations, a system manager can use a DECnet command at
a terminal to declare a program's object type and name. 2) The name may be a
special network name for the program, or it may be the same name by which
the program is known to the local operating system.

1 A source program using DECnet/E's concise COBOL interface (see Section 5.6.2) does not
supply a link identifier in a connect request. Such a program can only use one logical link at a
time.

2 In DECnet-VAX, any command procedure on disk can be the object of a link request. The
procedure need not have been previously declared as an object; DECnet-V AX looks it up
when the request is issued.

Task-to-Task Communication 5-3

A source program uses one of two formats to specify the target program in a
connect request:

• An object type equal to 0 and an ASCII name

• An object type equal to a positive integer (from 1 to 255) and a null name

The first format identifies a program by name, whereas the second format
identifies a program by numeric type.

To address a target program, a connect request specifies either a name or an
object type, but not both. The first format - object type 0 plus name - is
commonly used to address user-written network programs. To use this format
in a connect request, a source program must know the target program's de­
clared object name. Note that the maximum length allowed for a name de­
pends on the local node's operating system.

The second format provides an abbreviated means of identifying a frequently
used network function, usually a DECnet module such as the File Access
Listener (F AL), which is discussed in Chapter 7. A specific type always repre­
sents the same generic function within a network, even if the program that
actually performs the function has a different name at each node. For ex­
ample, the program that performs the F AL function can always be identified
by object type 17 (decimal) or 21 (octal). In this way, a network program can
address the FAL function without knowing the FAL program's name in the
target node.

DIGITAL reserves a range of object types for DECnet system programs. Types
within this range are used consistently across all DECnet implementations to
refer to the same functions. The reference manuals for each DECnet imple­
mentation list the object types reserved for DECnet use.

Unreserved types can be used for user-written network programs. For ex­
ample, in a user-written transaction-processing application, each node might
have a resident program for recording statistics on transactions performed
within the last 24 hours. The application's designer could choose an unre­
served object type to identify all such programs throughout the network.

Figure 5-1 illustrates the object identifiers for several programs in Node A and
Node B.

5.2.2 Connect Blocks and Network Specifications

Depending on the local implementation of DECnet, a source program creates
either a connect block or a network specification to supply the addressing
information required in a connect request. A connect block is a data area

5-4 Introduction to DECnet

Node A

Legend:

BOB and AliCE are user-written
programs identified by name in
connect requests addressed to
them.

TED and CAROL are usel-written
programs that perform the same
function in their respective nodes
as part of a network application.

~ They are both identified by object ~
type 200 in connect requests
addressed to them. 200 is in the
range of types reserved for
customer use.

The two FAL programs are
DIGITAL-supplied modules that

~ receive all file access requests from ~
remote nodes. A FAL module is
always identified by object type 17.

network program

The object type and name by which the local

NSP module knows the program

Node B

Figure 5-1: Addressing Network Objects

within the source program and is called one of several names: A connect block
(DECnet-RT), a connect data block (DECnet/E), a connect or target block
(RSX/lAS DECnet), or a network connect block (DECnet-VAX).

For the programmer's convenience, most sets of DECnet task-to-task calls
include one or more calls to build the connect block. The target node, target
object, access control information, and, optionally, up to 16 bytes of data are
specified as parameters to the connect block calls. Then in the DECnet call
that passes the connect request to the localNSP module, the source program
specifies the address or label of the previously created connect block. A pro­
grammer can also build a connect block without using these calls.

Task-to-Task Communication 5-5

A network specification is an ASCII string included in the connect request
itself. Like the connect block, it includes a target node identifier, access
control information, and a target object type or name. Network specifications
are used by DECnet-20 programs in all connect requests and by
DECnet-VAX programs that are performing transparent communication.
(The distinction between transparent and nontransparent task-to-task com­
munication is explained in Section 5.6.5.) DECnet/E supports a fornl of task­
to-task communication called the concise COBOL interface (see Section
5.6.3), which is similar to DECnet-VAX transparent communication. A con­
nect request using this interface includes a network specification rather than a
reference to a connect block. Only DECnet-20 network specifications can
include optional data.

5.3 Accepting/Rejecting a Connect Request

5-6

The source NSP module forwards the connect request to the node specified in
the connect block or network specification. The NSP module in the target
node checks that the program addressed in the connect request is a valid
object and then, if necessary, verifies the source program's identification (see
Section 5.3.1). If the target program is a known object and any required
verification checks out, the NSP module delivers the connect request to the
target program.

Note that the wayan NSP module delivers a connect request message and the
way a target program receives the message depend on the applicable DECnet
implementation and programming language.

After examining the incoming connect request, the target program either ac­
cepts or rejects* it. The target node's NSP module forwards the appropriate
response back to the source node. The target program usually has the option
of sending 16 bytes of data along with the acceptance or rejection of the lime
For example, a connect reject response might include data that tells the
source program why the connect request was not accepted.

If the target program agrees to the connection, it specifies its own logical link
identifier in a connect accept call.

5.3.1 RSX DECnet and DECnet-IAS Access Control

RSX DECnet and DECnet-IAS nodes can include a verification module that
screens all incoming connect requests. For each object, the system manager
can assign a verification level, which determines the type of access control
exercised for incoming requests to connect with that object. The verification
module recognizes three different levels:

• Level O. The source program's user identification and password are verified
against the local node's system account file. If the identification and pass­
word do not exactly match an entry in the account file, the connect request
is immediately rejected; the target program never even receives the connect
request.

* Transparent communication in DECnet-VAX (see Section 5.6 .. 5) and the concise COBOL
interface in DECnet/E (see Section 5.6.2) do not allow a program to re,iect a c!)nnert request,

to OECnet

• Level 1. The source program's user identification and password are verified
as for level 0, except that the connect request is forwarded to the target
program regardless of the outcome. The verification module tells the target
program whether or not the source program checked out against the system
account file and whether or not the source program has a privileged identifi­
cation.

• Level 2. Connect requests are forwarded directly to the target program
without any kind of verification.

5.3.2 DECnet-VAX Access Control

DECnet-VAX controls access to a node with a procedure similar to the RSX
DECnet level ° verification. At a DECnet-V AX node, a verification module
intercepts all incoming connect requests. The module checks each request's
access control information against a file that identifies all users authorized to
use the local node. If the access control specifies an authorized user, the
module forwards the connect request to the target program. If the access
control does not specify an authorized user, the module rejects the connect
request. In either case, the target program itself never sees the access control
information sent by the source program.

5.4 Exchanging Data
After a logical link has been established, the program sending data is called
the source and the program receiving it is called the target. The connected
programs can swap roles from one data transmission to another, or they can
both send and receive data simultaneously. Because the connected programs
exchange data on an equal basis, there is no longer a distinction between the
program that initiated the connection (previously the source) and the pro­
gram that accepted the connection (previously the target).

Two kinds of data can be sent over a logical link: normal data and interrupt
data. As Section 4.5 explains, normal data makes up the subject matter of the
programs' dialog, whereas interrupt data conveys special high priority infor­
mation.

5.4.1 Normal Data

To convey normal data over the link, a source program issues one or more calls
to send the data, and a target issues one or more calls to receive it. RSX
DECnet, DECnet-IAS, and DECnet-V AX all require the source and target
programs to coordinate calls for sending and receiving data. The NSP module
at the source node will not transmit data unless the target program has al­
ready issued a receive call. Each receive call allocates the buffer space needed
by the target program to store the data. Figure 5-2 is a flowchart that outlines
this procedure.

Other DECnet implementations allow the source NSP to transmit data over
any logical link as long as the target NSP has access to enough system buffer
space to hold the data. The NSP module at the target node then delivers the
data it has received when the appropriate target program allocates its own
buffer space by issuing one or more receive calls.

Task-to-Task Communication 5-7

SOURCE
REQUESTS

CONNECTION

TARGET GETS
CONNECTION
INFORMATION

TARGET SENDS
REJECTION

INFORMATION

accept

TARGET
COMPLETES

CONNECTION

TARGET
REQUESTS
THE DATA

SOURCE
TRANSMITS
THE DATA

SOURCE
DISCONNECTS

THE LINK

Figure 5-2: Transmitting Normal Data

Regardless of the implementations involved, the NSP modules in the source
and target nodes exchange link service messages to determine whether the
target is prepared to receive a message. This precaution is part of DECnet's
flow control mechanism, described in Section 4.7.

5.4.2 Interrupt Data

Interrupt data can consist of up to 16 bytes of information to be delivered
immediately to the target program. If the target NSP Inodule has a queue of
normal data already received, but not yet processed, the interrupt data is
placed either at the head of that queue or in a separate queue that the target
program can access without first reading the normal data.

5-8 Introduction to DECnet

5.5 Disconnecting the Link

Either program can issue a call at any time to disconnect the link in one of
two ways. One way, which disconnects the link in an orderly fashion, is nor­
mally used by a program to terminate a session that has proceeded as ex­
pected. All pending transmissions are completed before the link is dissolved.
The programmer must decide which of the two programs disconnects under
normal circumstances. When discussing these orderly disconnections, the var­
ious DECnet user's guides call them disconnects or synchronous disconnects.

The second way to disconnect forces the link to be terminated whether or not
the remote NSP has acknowledged previously transmitted data. In most
user's guides, this method of disconnecting the link is called aborting the link.
When the caller's NSP receives notification to abort a link, it cancels all
messages waiting to be transmitted over the link. A program may choose to
abort in response to some unusual system event, like an impending emergency
shutdown.

Whether a program simply disconnects or aborts the link, it can simultane­
ously send up to 16 bytes of data to the other program.

5.6 Summaries of Task-to-Task Communication Calls

This section summarizes the task-to-task communication calls provided by
DECnet implementations.

5.6.1 DECnet-RT Calls

DECnet-RT programmers can use either MACRO-II or FORTRAN-IV for
task-to-task communication. Table 5-2 lists all the task-to-task calls, which
are the same as those used by RSX DECnet and DECnet-IAS programmers.

Table 5-2: Task-to-Task Calls for DECnet-RT, RSX DECnet, and
DECnet-IAS

Call*

OPNx

CONx

CONB$
BACC
BFMTO
BFMTI

Function

Access network services

Connect request

Build connect block

Description

Grants the program access to network services
and creates the program's data queue for holding
incoming messages.

Requests a logical link connection.

These are calls issued to build the connect block
referred to in a connect request call. MACRO-ll
programs use the CONB$ call, and all higher
level languages use the remaining calls.

(continued on next page)

* The lower case x concluding most calls is a variable determined by the source language of the
program using the call. In MACRO-ll programs, x equals $ (OPN$, for example). In FOR­
TRAN, BASIC-PLUS-2, COBOL, or CORAL programs, x equals NT (OPNNT, for example).

Task-to-Task Communication 5-9

5-10

Table 5-2 (Cont.): Task-to-Task Calls for DECnet-RT RSX DECnet,
and DECnet-IAS

Call·

GNDx

ACCx

REJx

SNDx

XMIx

RECx

DSCx

ABTx

CLSx

Function

Get network data

Connect accept

Connect reject

Send data

Send interrupt data

Receive data

Disconnect

Abort

End network activity

Description

Retrieves unsolicited messages from the pro­
gram's network data queue. Unsolicited mes­
sages include connect requests, interrupt mes­
sages, and disconnect or abort messages.

Accepts a logical link connection request.

Rejects a logical link connection request.

Sends data over a logical link.

Sends interrupt data over a logical link.

Receives data over a logical link.

Disconnects a logical link.

Aborts a logical link.

Ends a program's network activity; the converse
of the OPNx call.

* The lower case x concluding most calls is a variable determined by the source language of
the program using the call. In MACRO-ll programs, x equals $ (OPN$, for example). In
FORTRAN, BASIC-PLUS-2, COBOL, or CORAL programs, x equals NT (OPNNT, for
example).

5.6.2 DECnet/E Calls

For DECnet/E programmers, task-to-task calls are available for use with sev­
eral source languages: BASIC-PLUS or BASIC-PLUS-2, FORTRAN or FOR­
TRAN-lV-PLUS, COBOL, or MACRO-II. In addition, DECnet/E provides a
set of five task-to-task calls for use in COBOL programs only. These calls
make up the concise COBOL interface, which allows the programmer to re­
gard the network as a file and data sent and received as records. A COBOL
program using the concise interface can have only one logical link running at a
time.

Table 5-3 lists and describes the full set of DECnet/E calls, and Table 5-4
summarizes the smaller set of calls for the concise COBOL interface.

Table 5-3: DECnet/E Task-to-Task Calls

Call

MDCL

MSLD

NTLN

Function

Access network services

Send local data

GeL local node
parameters

Introduction to DECnet

Description

Registers the program with the operating system
for send/receive services.

Transmits user data to a local program.

Returns information to the calling program con­
cerning the local node's network parameters.

(continued on next page)

Table 5-3 (Cont.): DECnet/E Task-to-Task Calls

Call*

NTEV

NTCI

NTCC

NTCR

NTDM

NTIN

NTLS

NTDI

NTLA

MRCV

MRE,M

Function

Log user event

Connect request

Connect accept

Connect reject

Send network data

Send interrupt data

Link service

Disconnect

Abort

Receive data

Remove receiver

Description

Permits a user-written program to queue an event
to the system event processor for logging.

Requests a logical link connection.

Accepts a logical link connection requested by an­
other program.

Rejects a logical link connection requested by an­
other program.

Transmits user data to a network program over an
established logical link.

Transmits interrupt data to a network program
over an established logical link.

Requests data over a flow-controlled logical link.

Disconnects an established logical link, after all
pending messages have been sent.

Disconnects an established logical link immedi­
ately, destroying any messages waiting to be sent.

Receives a message from the queue of pending
messages.

Terminates send/receive operations.

Table 5-4: DECnet/E Concise COBOL Interface Calls

Call

CNTCON

CNTACP

CNTSND

CNTRCV

CNTDIS

Function

Connect request

Connect accept

Send "record"

Receive "record"

Disconnect

5.6.3 RSX OECnet Calls

Description

Requests a logical link connection.

Accepts a logical link connection request from
another program in the network.

Sends up to 32,767 bytes of data to a remote
program over an established logical link.

Delivers up to 32,767 bytes of data to the
calling program.

Disconnects an established logical link.

RSX DECnet provides task-to-task calls available to five programming lan­
guages: MACRO-II, FORTRAN-IV, FORTRAN-lV-PLUS,
BASIC-PLUS-2, and COBOL. These calls, which are basically the same for
all five languages, are summarized in Table 5-2.

Task-to-Task Communicaticn 5-11

5.6.4 DECnet-IAS Calls

DECnet-IAS provides task-to-task communication calls for use In
MACRO-II, FORTRAN-IV, FORTRAN-IV-PLUS, BASIC-PLUS-2,
COBOL and CORAL programs. The calls are identical to those used in
MACRO-II or FORTRAN programs written to run at an RSX DECnet node
(see Table 5-2).

5.6.5 DECnet-VAX Calls

DECnet-VAX supports two forms of task-to-task communication: trans­
parent and nontransparent. Transparent communication is the simpler form,
in which a program can send and receive only norma! data. M .. A .. CRO, FOR­
TRAN, BASIC, COBOL, PASCAL, PL/I, and BLISS can all be used to write
this kind of program. Table 5-5 lists the system service calls used by a pro­
gram to perform transparent communication. These calls are described in the
appropriate language user's guide or reference manual. Programs written in
higher level languages also can use standard sequential I/O statements to
perform transparent task-to-task communication. For example, VAX-II
FORTRAN programs use the OPEN, READ, WRITE, and CLOSE state­
ments to perform task-to-task communication.

Table 5-5: DECnet-VAX Transparent Task-to-Task System Service
Calls

Call Function

$CREATE/$OPEN Connect request

$OPEN Connect accept

$PUT Send data

$GET Receive data

$CLOSE Disconnect

Description

Requests a logical link connection and
assigns a channel number to the re­
quested link.

Accepts a connect request and assigns
a channel number to the link.

Sends data.

Receives data.

Disconnects the logical link immedi­
ately.

All programs also can perform nontransparent communication, which allows
increased control over network operations and more flexibility in program
development. This form of communication allows a program to use multiple
logical links, to send interrupt as well as normal data, and to disconnect a link
either synchronously or immediately (an abort). Table 5-6 summarizes the
calls that allow a system service program to perform nontransparent commu­
nication.

5-12 Introduction to DECnet

5.6.6 DECnet-20 Calls

DECnet-20 allows a program written in MACRO-20 to perform task-to-task
communication. Table 5-7 summarizes the calls such a program uses to com­
municate over the network.

Table 5-6: DECnet-VAX Nontransparent Task-to-Task System Service
Calls

Call

$CREMBx
$ASS1GN
$Q10 (10$--ACCESS)

$Q10 (10$--ACPCONTROL)

$Q10 (10$--ACCESS)

$Q10 (IO$--ACCESS
1 10$M--ABORT)

$Q10 (10$_ WR1TEVBLK)

$Q10 (10$_ WRITEVBLK
1I0$M-INTERRUPT)

$Q10 (10$-READVBLK)

$Q10 (IO$-DEACCESS
1I0$~SYNCH)

$Q10 (IO$-DEACCESS
1I0$M--ABORT)

$DASSGN

Functibn

Connect request

Declare network name

Connect accept

Connect reject

Send data

Send interrupt data

Receive data

Disconnect

Abort

Description

These three calls perform the
functions necessary to re­
quest a logical link connec­
tion using nontransparent
communication: (1) create a
'mailbox' for queuing unsoli­
cited incoming messages, (2)
assign an I/O channel num­
ber to the network, and (3)
request a logical link connec­
tion to a target program.

Assigns a network name to
the issuing program, making
it eligible to accept multiple
connect requests.

Accepts a logical link connec­
tion request.

Rejects a logical link connec­
tion request.

Sends data.

Sends interrupt data to the
target task (which is not pos­
sible via DECnet-V AX trans­
parent communication).

Receives data.

Disconnects the logical link
in an orderly fashion, that is,
synchronously.

Disconnects a logical link im­
mediately.

Disconnects a logical link im­
mediately.

Task-to-Task Communication 5-13

5-14

Table 5-7: MACRO-20 Task-to-Task Calls

Call

GTJFN

GTJFN

OPENF

OPENF

MTOPR

MTOPR

MTOPR

1.S0UTR
2. SOUT

1. SINR
2. SIN

MTOPR

MTOPR

Function

Program prepares itself for
becoming a target task

Source program identifies
target

Source program requests
connection with a target

Target program declares
its readiness to receive
connect requests

Program enables itself to
receive network interrupt
data

Program reads network
data received over the link

Target program accepts or
rejects a connect request

Program sends normal
data:
1. as individual messages
2. as a continuous byte

stream

Program receives normal
data:
1. as individual messages
2. as a continuous byte

stream

Program sends interrupt
data

Program terminates the
connection

Comments

This GTJFN call assigns a JFN* to SRV:,
which is a logical device name that repre­
sents the target task.

This GTJFN call assigns a JFN to DCN:,
which is a logical device name for the logical
link to be requested.

This OPENF call specifies the JFN of the
logical/device name DCN:, associated with
the target task in a previous GT JFN call.

This OPENF call specifies the JFN of SRV:
as defined by a previous GT JFN call.

This MTOPR call assigns a channel for re­
ceiving interrupt data. The channel is asso­
ciated with the JFN of SRV: if the issuing
program was originally the target or with the
JFN of DCN: if the issuing program was
originally the source.

This MTOPR call specifies the appropriate
JFN for the link and a function code that
determines the type of network data to be
read. The name of the source program, the
various components of access control infor­
mation, and interrupt data are some exam­
ples of types of network data.

This MTOPR call specifies the JFN of SRV:
and the function code for accepting or re­
jecting a connect request.

The sending and receiving programs must
coordinate SOUTR calls with SINR calls or
SOUT calls with SIN calls; that is, the pro­
grams must agree on how to send/receive
normal data:
1. as individual messages or
2. as a continuous byte stream.

This MTOPR call specifies a JFN and the
function code that indicates interrupt data.

This MTOPR call specifies a JFN and the
function code for terminating the connec­
tion.

* JFN stands for Job File Number. DECnet-20 programs handle logical links as if they
were files.

Introduction to DECnet

Chapter 6
Remote File Access

Using DECnet, a program in one node can access a file in another node,
despite differences in the two node's operating and file systems. This remote
file access capability has the following applications:

• A user-written program can incorporate DECnet I/O calls that allow it to
perform record-level operations on remote files (see Section 6.3).

• A terminal user can run a DECnet utility or issue a command to manipulate
remote files (see Section 6.7).

• A terminal user can run a DECnet utility or issue a command to execute a
command file in a remote node (see Section 6.7.4).

Like other DECnet functions, remote file access requires the cooperation of
two network programs: A program in one node issues a remote file access
request, and in the target node, a DECnet program receives the file access
request and translates it into a form recognizable to the local file system.
Before the first program can issue the remote access request, the two programs
establish a logical link between them by exchanging handshake messages.
The program making the request is the source; the program receiving the
request is the target.

6.1 The File Access Listener (FAL)

In the context of remote file access, the source program is the accessing pro­
gram, and the target program is a DECnet system program called the File
Access Listener (F AL). The accessing program can be a user-written program,
a DECnet utility, or a system command, depending on the application. The
target program is always a version of F AL, whose role is to receive remote
access requests from the network. F AL completes connections initiated by
remote accessing programs and translates the incoming requests into calls to
the file system at FAL's node. FAL then sends the resulting file data back to
the accessing program, where special routines reformat the data as required to
make it conform to local file structures.

Figure 6-1 illustrates the role of F AL and other software components in re­
mote file access.

6-1

LOCAL NODE REMOTE NODE

The DAP-
Accessin speaking
Program Routines

DECnet Software DECnet Software

Figure 6-1: Remote File Access

Listener
(FALl

I

File data can flow in either direction between the accessing program and FAL.
The file accessed can reside on a mass storage device like a disk or a magnetic
tape, or it can be associated with an VO device such as a line printer or a
terminal. The actual file operations that an accessing program can perform
depend on the capabilities of both nodes.

6.2 The DAP Interface
F AL and the accessing program exchange Data Access Protocol (DAP) mes­
sages to perform remote file access operations. DAP resides in the network
application layer of the DNA architecture and uses the logical link services of
NSP. DAP defines a set of messages that controls the execution of remote file
access and outlines procedures to accomplish specific file operations. For ex­
ample, to create a file. an accessing program and a remote F AL must ex­
change a subset of DAP messages in a prescribed sequence. For more detailed
explanations, see the DAP specification.

A user level program does not handle DAP messages directly. All DECnet
implementations include system software that implements DAP functions by
sending and receiving DAP messages on behalf of the users. The FAL module
residing in each DECnet node provides the passive DAP function, which is to
receive and process file access requests from elsewhere in the network. The
accessing program can be one of the following types of software module:

• A version of the Network File Transfer (NFT) utility

• A system command

• A user-written program that accesses remote files via calls to DECnet­
subroutines or to subroutines provided by the local file system.

6-2 Introduction to DECnet

Section 6.3 discusses the subroutines that a program can call to gain access to
remote files. Section 6.7 describes how to access remote files from a terminal.

6:3 Programming Remote Access

To gain access to a remote file, a user program incorporates DECnet I/O calls,
which activate the remote file access subroutines. The function of these
subroutines is to build, send, and interpret DAP messages. In several DECnet
systems, they are called Network File Access Routines (NFARs). Calls to the
NF ARs are different from calls that a~cess a program's local file system.

In some systems (DECnet-VAX, for example), remote file access is trans­
parent to the acce$sing program because DAP functions are incorporated in
the file system. A program uses the same I/O calls regardless of the accessed
file's location within the network. To access a remote rather than a local file, a
program simply includes a node identifier in the specification of the file to be
accessed. The file system transparently performs the same function that the
NFARs do in other DECnet systems.

The DECnet systems that allow a user program to access a remote file are

• RSX DECnet

• DECnet-IAS

• DEC net-VAX

• DECnet-RT

All of these systems include facilities that allow a user program to perform the
following operations on a remote file:

• Open an existing file

• Create a new file

• Read records from a file

• Write records to a file

• Close a file

• Delete a file

In addition to these operations, specific DECnet systems allow user programs
to manipulate remote files in other ways. Section 6.6 summarizes the remote
file access calls and operations made available by each DECnet implementa­
tion.

Programmer reference manuals for each DECnet implementation describe
how to use the remote file access calls available to user programs (see Ap­
pendix A). Sections that follow discuss factors in preparing to write remote
file access programs that apply to all DECnet implementations.

Remote File Access 6-3

6.4 File System Capabilities

A programmer needs to be familiar with the file system resident at the target
node. File organization, access modes, and other characteristics are de­
pendent on the type of file system that. an operating system supports. When
the local and remote nodes have the same operating and file systems, pro­
gramming remote access is similar to programming local I/O operations, espe­
cially if the local file system itself includes DAP capabilities (VAX-II RMS).
However, when the remote access bridges different types of operating systems,
the programmer faces certain variables and restrictions. And at some nodes
that run the same DECnet implementation, different DAP capabilities can
result from different configuration choices. For example, RSX DECnet pro­
vides two different F ALs. One is based on FCS-11 and provides basic FCS file
services only, while the other is based on RMS-II and provides a full set of
record access services.

Generally, the theory of the lowest common denominator applies: An ac­
cessing program can perform those functions that its source language provides
and that the remote file system supports. For example, a VAX-II program
cannot use all the remote access functions provided by DECnet-VAX if the
target node runs RSX-IIM.

By cross-checking the file system characteristics with the available remote
access calls, a programmer can find out the kinds of file operations that are
possible between two different DECnet implementations. This information is
provided in Table 6-1, which names the file system supported by each DIG­
ITAL operating system, and in Table 6-2, which summarizes the remote file
and record access capabilities of the various DECnet implementations. Sec­
tion 6.6 describes the remote access calls provided by each DECnet imple­
mentation.

Table 6-1: DIGITAL File and Record Management Systems

File
Systems

Files-ll

HSTS/E

RT-ll

TOPS-20

Operating
Systems

RSX-llM
RSX-llM-PLUS
lAS
VAXNMS

RSTS/E

RT-ll

TOPS-20

6-4 Introduction to DECnet

Record
Management
System

RMS

Operating
System

RSX-llM
RSX-llM-PLUS
VAXNMS
RSTS/E
lAS

:D
CD
3
o
r-+
CD

::!!
CD
»
(')
(')
CD
en
en

Table 6-2: DECnet Remote File and Record Access Capabilities

Data
Types

File
Organization

Access
Methods

Record Formats,
ASCII and Image

Transmission
Mode

Remote
File
Operations

DECnet-11M
RSX DEC net DECnet-11M-PLUS
DECnet-IAS DECnet-IAS
NFARa FCS FAL

ASCII X X

Image X X

Sequential X X

Relative X 1,12 -

Indexed X 1,12 -

Sequential X X

Random - -

Fixed length X X

Variable length X X

VFC XI3 X I2

Stream ASCII X -

Record X X

Block XI -

Command/batch
file submission X3 X

Command/batch
file execution X3 X

File deletion X X

File retrieval X X

File storage X X

Record storage - -

Record retrieval - -

Directory XI X

Rename XI -

I User interface only (that is, NIT or VAXNMS commands)
2 Programmable interface only
3 ASCII data type only
'Fixed length sequential only
~ Interprets as stream ASCII from DECnet-llM,-llM-PLUS,-IAS,-VAX
S Sequential access only

DECnet-11M
DECnet-11 M-PLUS DECnet-115
RMS FAL FAL DECnet-VAX

X X X

X X X

X X X

X - X

X - X

X X X

X - X2

X X X7

X X X7

X X" X7

X - X

X X X

X - X

X - X

X - X

X - X

X X X

X X X

X - X2

X - X2

X - X

X - -

7 Sequential and random access
• Only valid to nonhomogeneous systems
9 Stream ASCII only coming into DECnetlE; any form going out

10 Sequential and random access on sequential files only
II Stream ASCII only
"Block mode only
13 2-byte header only

DECnet-20
DECnet-RT DECnet/E Incoming Outgoln~

X X X X

X X -- X

X X X X

- XI2 -- -

- XI2 -- -

X XI X X

X2,' - -- -

X XI, S -- X

X~ XI, S -- X

- XI, S -- -

X XI, S X X

X XI X X

X XI -- -

X' X· X· X·

X' X· X· X·

X XI X X

X XI Xll X

X XI Xll X

X2, 10 X -- -

X2 10 X -- -

X X X X

- - -- -

6.5 Initiating the Remote Access

Like task-to-task communication, remote file access requires a handshaking
sequence at the beginning of the operation. Not only does DECnet software
set up a logical link between the accessing program and the remote F AL, it
also exchanges initial DAP messages to prepare for the file operation to be
performed over the link.

This extended handshake, which is transparent to the accessing program,
happens automatically when the program issues a call to open a remote file.
The form of the open call varies from system to system and from language to
language, but the call always provides much of the information exchanged in
the handshake. Using the information supplied by the call as well as system­
supplied data about the local file system, the remote access subroutines -
either NF ARs or routines in the local file system - generate DAP messages
addressed to the remote F AL. In response, the F AL sends back DAP messages
to define characteristics of its local file system.

For most remote access operations, the open call issued by the accessing
program includes the following information:

• A logical unit or channel number

• A file specification

• Access control information

• Characteristics of the file to be accessed

Depending on the open call's particular function, for example, open for
reading or open for appending, the call passes other information as well.

6.5.1 The Logical Unit/Channel Number

The logical unit or channel number serves one and sometimes two purposes in
remote file access operations. It identifies the data stream associated with the
requested 1'0 operation, and in RSX and lAS nodes, the local NSP module
treats the number as the program's logical link identifier.

6-6 Introduction to DECnet

6.5.2 The File Specification

The file specification identifies the remote file to be accessed. Because the
remote file system actually carries out the requested file operation, the pro­
grammer must know how the file is identified by users in its local node. Table
6-3 shows the file specification formats used by each operating system.

Table 6-3: File Specifications for DIGITAL Operating Systems

Operating
System

RSX-llM
RSX-llM-PLUS
RSX-llS *
lAS

VAXNMS

RT-ll

RSTS/E

TOPS-20

File Specification

dev: [ufdlfilename. typ; ver

dev: [directorylfilename. typ;ver
or
dev: <directory>filename. typ;ver

dev :filnam. typ

dev: [ppnlfilename. typ

dev: <directory>filename. typo ver

* RSX-llS supports unit record devices only.

Examples

DKO:[200t200JPROG7.MAC:1
MT3: [1 t7JACCNT .DAT; 13
DB1:[300t31GJPEEK.LST;2

DBAO:[HIGGINSJSTAT.FTN;l

MTA3:(CHARLES>TEST.DAT.3

RKO:CHART1.DAT
SYO:TEXT.RNO

SY:[21Gt212JAFIL.BAS
DK1:NEWFIL.COB
MT1:BCKUP.LST

PS(FRED>FISCAL.EXE;l
PS:(JDOE>PROD81.LST;12

Remote File Access 6-7

6.5.3 Access Control Information

The access control information identifies the program to the remote system
and consists of:

• A user identification code or name

• A password associated with the user identification

• Additional accounting information as required by the remote system

If this information matches an account or guest account entry in the remote
system's user file, the program gains access to that system's resources. Like
the file specification, the access control information must be recognizable to
the remote system, and therefore specified according to its syntax.

Gaining access to the remote system does not guarantee that requested file
operations will succeed. In most DIGITAL operating systems, each file has a
corresponding protection code that determines the types of access allowed to
defined groups of users. The user identification - a code or a name - speci­
fied by the accessing program determines the program's group category and
therefore determines the types of access it can make to each file.

The RT-ll file system enforces a simpler version of access control and file
protection than that used by other DIGITAL file systems. To access files at a
DECnet-RT node, a remote user supplies a password, which is either privi­
leged or nonprivileged. The privileged password allows the remote user unre­
stricted access to the node's files, whereas the non privileged password allows
read and directory access only. Furthermore, if a file is marked protected,
privileged and nonprivileged users alike are allowed read access only (see
Section 6.7.2).

6.5.4 File Characteristics

The file characteristics define the file to be accessed in the following ways:

• Access method - sequential or random. The accessing program indi­
cates how it will access the file. All DIGITAL file systems support sequen­
tial access in which each I/O operation reads or writes the next record.
Selected file systems permit random access, which allows the program to
access a specific record anywhere in the file (refer to Table 6-2).

• File organization - sequential, relative, or indexed. Sequential file or­
ganization means that records in a file are arranged in one after the other
fashion. This organization is supported for all types of devices. Relative file
organization means that records within a file are identified by a relative
record number. This number identifies the record's position relative to the
beginning of the file. Indexed organization (RMS only) is a complex file
structure that allows both sequential and random access and uses record
keys for identification. The keys used to identify individual records are
defined at file creation. Relative and indexed organizations are supported
for disk devices only.

6-8 Introduction to DECnet

• Data type - ASCII or image. ASCII data is subject to formatting conver­
sion by the DECnet software, depending on the data's record attributes (see
below). Image data is a stream of bits, to which the software applies no
interpretation.

• Record format - fixed length, stream, variable length, or variable with
fixed length control (VFC). A VFC record includes a fixed length control
field in addition to the variable length data portion.

• Record attributes. This characteristic indicates the type of vertical format
control that applies to the file.

6.6 DECnet Remote File Access Calls

This section summarizes the remote file access calls provided by DECnet
im plementations.

6.6.1 DECnet-RT Calls

DECnet-RT programmers can use either MACRO-II or FORTRAN-IV to
write remote file access programs. Table 6-4 summarizes the macro calls
available for remote file access, and Table 6-5 summarizes the FORTRAN
calls. The MACRO-II interface allows both sequential and random access
operations, while the FORTRAN interface allows sequential access only.

Table 6-4: DECnet-RT Remote File Access Macro Calls

Macro Call

.NLOOKUP

. NENTER

. NAPPEND*

. NREAD

. NWRITE

. NSPOOL*

. NCLOSE

. NDELETE

.NPURGE

. NSUBMIT*

. NEXECUTE*

Function

Opens an existing file .

Opens a new file .

Opens an existing file for appending records (sequential access only) .

Reads a record from a remote file (sequential or random access) .

Writes a record to a remote file (sequential or random access) .

Opens a new file and spools it to a line printer on closing .

Closes a remote file .

Deletes a remote file.

Cancels the remote file access and restores affected files to their original
state .

Opens a new remote command file for submission .

Executes a remote command file.

* This call cannot be used if the remote node runs DECnet-RT.

Remote File Access 6-9

Table 6-5: Higher Level Language Remote File Access Calls
(DECnet-RT, DECnet-IAS, and RSX DECnet)

Call

OPWNFW

OPRNFW

OPANFW

GETNFW

PUTNFW

PRGNFW*

CLSNFW

DELNFW

SPLNFW*

EXENFW*

SUBNFW*

Function

Creates and opens a remote sequential file for writing.

Opens an existing remote sequential file for reading.

Opens an existing remote sequential file for appending.

Reads a record from a remote file.

Writes a record to a remote file.

Discards a previously opened file.

Closes a remote file.

Deletes a remote file.

Opens, writes, and prints a file.

Executes an eXIsting command file.

Opens, writes, and executes a command file.

* DECnet-IAS does not support these calls.

6.6.2 RSX OECnet Calls

RSX DECnet supports remote file access from programs written in FOR­
TRAN-IV, FORTRAN-IV-PLUS, COBOL, or BASIC-PLUS-2. The remote
access calls that an RSX programmer can use are summarized in Table 6-5.

6.6.3 OECnet-IAS Calls

Programs accessing remote files from a DECnet-IAS node may be written in
FORTRAN-IV, FORTRAN-IV-PLUS, COBOL, BASIC-PLUS-2, or
CORAL. The calls are the same as those available to RSX DECnet pro­
grammers and are listed in Table 6-5.

6.6.4 DECnet-VAX Calls

VAX-11 RMS includes routines that implement DAP functions. Thus a pro­
grammer can use the same calls to access remote as well as local flIes. The
programmer simply includes a node identifier in the file specification. All
native mode languages can be used to write programs that access remote files.
Both MACRO and higher level language programs directly incorporate calls
to RMS routines; these calls are summarized in Table 6-6. Programs written
in the higher level languages use standard I/O calls, which are described in the
appropriate language user's guide or reference manual.

6-10 Introduction to DEenet

Table 6-6: VAX-11 RMS File Access Calls

Type of
Processing

File Processing

Record Processing*

Block I/O Processing

Call

$CREATE

$OPEN

$CLOSE

$DISPLAY

$EXTEND

$ERASE

$PARSE

$SEARCH

$CONNECT

$DISCONNECT

$GET

$PUT

$UPDATE

$DELETE

$ WAIT

$FIND

$REWIND

$RELEASE

$TRUNCATE

$FLUSH

$FREE

$READ

$WRITE

$SPACE

Function

Creates a new file and leaves it open.

Opens a file for subsequent processing.

Closes a file and terminates file processing.

Retrieves file attribute information about a
file.

Increases the amount of space allocated to
a VAX-ll RMS disk file.

Deletes a closed file and removes its direc­
tory entry.

Parses a file specification.

Searches a directory for a file name.

Establishes a record stream to an open file.

Terminates a record stream from an open
file.

Retrieves a record from the file.

Inserts a record into the file.

Modifies a record in the file.

Deletes a record from the file (for relative
and indexed file organizations only).

Waits for an asynchronous I/O completion.

Positions a pointer to a specified record in
the file.

Positions to the first record of the file.

Unlocks a record.

Truncates a sequential file.

Forces blocked records to be written to the
file.

Unlocks all previously locked records.

Reads data in block I/O mode.

Writes data in block I/O mode.

Spaces forward or backward in the file.

* All record-processing calls except $DELETE can be used for either sequential or random
access operations.

Remote File Access 6-11

6.7 Accessing Remote Files from a Terminal

All DECnet implementations support terminal-based access of some kind to
remote files. Except for DECnet-VAX, all the implementations use the .Net­
work File Transfer (NFT) utility to perform this function. DECnet-VAX uses
VAXNMS commands, which can manipulate both local and remote files. A
terminal user can perform the following file operations:

• Transfer (copy) a file to or from a remote node or between two remote nodes.

• Delete a remote file.

• Submit a local command file for execution at a remote node or execute a
command file already existing at a remote node. (Command files cannot be
submitted to or executed at a DECnet-RT node.)

• Append one or more local or remote files to an existing local or remote file
(not supported by DECnet-20).

• Obtain listings of remote directories. A directory file lists all the files re­
siding on a device that belongs to a specific user or category. One of the
fields in a file specification indicates the directory in which that file is
listed.

For example, the directory for the file specified as DB1:[301,15]FILE.DAT;3
is indicated by the code [301,15]. In RSX and lAS systems, the code is called
a user file directory (ufd); the same type of code is called a project-pro­
grammer number (ppn) in RSTSIE systems. The corresponding field in a
V AXNMS specification is called the directory field; it can be a code like a
uic or ppn, or it can be an alphanumeric string, for example,
DBA2: [SMITHJFILE.DAT;2.

• Queue one or more files to a line printer. The files can be remote and the
printer local, or the files can be local and the printer remote (not supported
by DECnet-20).

On behalf of the terminal user, NFT creates a logical link between itself and
the remote FAL. From the input a user types at the terminal, NFT formulates
the appropriate DAP messages, which it then sends over the link. In turn,
FAL interprets the DAP messages it receives and interfaces with its local file
system as requested. FAL then returns information and any requested file
data to NFT by sending back DAP messages.

Normal VAXNMS commands can be used to gain access to remote files. To
do so, a terminal user or batch job simply enters a network file specification
rather than a local file specification as a command parameter. The commands
that can be used on remote as well as local files are:

• COpy • OPEN, READ, 'VRITE, CLOSE

• TYPE • ANALYZE

• APPEND • SEARCH

6-12 Introduction to DECnet

• DELETE • BACKUP

• PURGE • DIFFERENCES

• DIRECTORY • DUMP

• SUBMIT/REMOTE • PURGE

• PRINT/REMOTE • CONVERT

• CREATE

When a user supplies a network specification with one of these commands,
DAP-speaking routines within VAX-II RMS send, receive, and interpret
DAP messages to perform the requested remote file access.

Table 6-7 summarizes the remote file operations that a DECnet user can
perform from a terminal. Under each implementation, the table shows the
utility or system command used to perform a supported function.

6.7.1 Access Control

A terminal user must supply the same access control information that a
program must pass to the NFARs or, where applicable, to the DAP-speaking
routines in the local file system. This information - user identification, pass­
word, and optional account data - must be available whenever an NFT
command line or a V AXNMS command refers to a remote node. See Section
6.5.3 for an explanation of the significance of access control to remote file
access.

NFT receives the access control information in various ways, depending on
the implementation. Generally, the user supplies the information directly or
uses default values that have been defined previously.

Depending on the implementation, the information may be supplied within a
network file specification or in response to NFT prompts. Table 6-8 shows the
various formats for specifying access control information within a file specifi­
cation.

Each implementation also provides one or more ways to define default access
control information. In some cases, the defaults must be defined each time the
user logs into a system or each time the user runs NFT. In other cases the
local system retains the default information beyond the duration of a single
NFT or terminal session. Section 6.7.5 includes examples that show how users
can default access control information.

A DECnet-VAX terminal user supplies access control information within a
network file specification. The information can be included as part of a node
specifier. Or a user can assign a logical name to a node name/access control
string and include the logical name in the file specification.

Section 6.7.5 contains examples of NFT and V AXNMS command lines and
illustrates some of the ways a user specifies access control information.

Remote File Access 6-13

en
I

.pa.

::J
.-+ ..,
0
a.
c:
(')
.-+ o·
::J
.-+
0

0
m
(")
::J
CD
.-+

Table 6-7: Remote File Operations from a Terminal

Function RSX DECnet DECnet-IAS DEC net-VAX I

Transfer files (local---.... remote) COPY,
NFT NFT TYPE

commands

DELETE, Delete local or remote files NFT NFT
PURGE

commands

Append to an existing local or remote file NFT NFT APPEND
command

Submit a local command or batch file for COPY,

execution at a remote node NFT NFT SUBMIT/REMOTE
commands

Execute a remote command or batch file NFT NFT SUBMIT/REMOTE
command

Obtain a listing of a remote directory file NFT NFT DIRECTORY
command

Queue local or remote files to a local or re-
mote line printer

NFT NFT PRINT/REMOTE

Rename a remote file NFT not not
supported supported

1 DEC net-VAX supports other V AXNMS commands in addition to the ones listed in this table
(Section 6.7).

2 Only stream ASCII files can be copied to a remote DECnet-20 node.
:1 The remote node cannot be DECnet-RT.

DECnet-RT DECnet/E DECnet-20

NFT NFT NFT2

NFT NFT NFT

NFT 3 NFT not
supported

NFT 3 NFT NFT

NFT 3 NFT NFT

NFT NFT NFT

NFT 3 NFT not
supported

not not not
supported supported supported

Table 6-8: Specifying Access Control Information

DECnet
Implementation

RSX DECnet

DECnet-IAS

DECnet-VAX

DECnet-RT

Format

node/userid/password/account: :
or
node "userid password account"::

node/userid/password/account: :

node "userid password account"::

node/ /password/::
or
node/ /password::

DECnet/E node"userid password account"::

6.7'.2 File Protection

Examples

TEWKS/CHRIS/MAC::
CONN" FREAN CMF" : :

BSTN/SMITH/RJS::

HTFD" CHARLES CAF" : :

NYCIICLAUDIA::

MILL" PERRY LAB" : :

The access control information supplied locally by the terminal user deter­
mines the user's access rights at the remote node. As Section 6.5.3 describes,
the remote file system compares the user's identification with the protection
code associated with the file to be accessed. The file system carries out a
requested access only if the protection code grants access to the identified
user.

A DECnet-RT node protects files in two ways. First, a remote user must
specify a privileged password to gain unrestricted access to any local files (see
Section 6.5.3). A nonprivileged password grants a remote user read and direc­
tory access only. Second, the RT-ll file system restricts access to individual
files marked protected. Protected status prevents a file from being deleted,
duplicated, or manipulated in any way. So even a privileged remote user can
only read a protected file.

6.7.3 Remote File Specifications

A specification that describes a file on a remote node must conform to that
node's syntax rules. (Table 6-3 lists the specification formats defined by DIG­
ITAL operating systems.) Unless the remote and local nodes run the same
operating system, one file specification in a command line may be meaningful
only to the remote node. The foreign specification may contain fields that the
local system does not recognize, or the specification may be qualified by
switches that cannot be interpreted by the local node.

To prevent the local node from checking a foreign syntax, some implementa­
tions require the terminal user to enclose the foreign specification in double or
single quotes. (DECnet-RT and DECnet-20 do not require the user to set off
foreign specifications in this way.)

The following examples illustrate NFT command lines that contain foreign
specifications.

Remote File Access 6-15

• Local node runs RSX DECnet. Remote node runs DECnet-V AX.

NFT> ARGO/DRAKE/LAB/:: "DBBO: [ARCH]" /Ll

In this example, the quoted string names a directory ([ARCH]) on the device
DBBO: at the remote DECnet-VAX node. The NFT command switch ILl
requests a listing of that directory at the local RSX node.

• Local node runs DECnet-RT. - Remote node runs RSX DECnet.

NFT> copy RK1:FAST.MAC NODEB::DKO:[200,200]FAST.MAC

Even though the output file's directory field ([200,200]) is meaningless to
RT-ll, quotes to signal a foreign specification are not necessary.

• Local node runs DECnet/E. - Remote node runs DECnet-VAX.

NFT>- COPY DTITJA}-<: : "DMA2: [I NI.JENTORY] TEST. OAT" =TEST. OAT

This command copies a file from a DECnet/E node to a DECnet-VAX node.
The output file specification, (DTVAX:: "DMA2: [lNVEN­
TORY]TEST.DAT")contains VAXNMS syntax understandable only to the
target DECnet-VAX node. Quotes set off the foreign specification to pre­
vent the local node from parsing it.

6.7.4 Remote Command File Submission

All versions of the NFT utility allow a terminal user to execute a command
file in a remote system. A command file contains ASCII command lines equiv­
alent to the command lines a user enters at a terminal. The remote node reads
and executes these commands when a user submits the file. The COpy and
SUBMIT/REMOTE commands perform this function when the local node
runs DECnet-V AX: COPY transfers the command file to a remote node and
the SUBMIT/REMOTE command submits the command file for execution
there. If the remote node runs DECnet/E or DECnet-VAX, the file is sub­
mitted to a batch processor, and if the remote node runs DECnet-llM-PLUS
or DECnet-IAS, submission to a batch processor is an option.

Remote command file submission and execution are valuable means of ac­
cessing remote system resources. At the local node a user can run a text editor
to create an ASCII file of commands that conform to the syntax of the remote
node's command language. Subsequently, the user can invoke the NFT utility
(or the COpy and SUBMIT/REMOTE commands at a DECnet-VAX node)
to copy the file to the remote node for execution there.

• RSX DECnet. If the remote node runs DECnet-llM, files are submitted to
the RSX-IIM indirect command file processor. This processor accepts spe­
cial commands in addition to conventional MCR commands. The special
commands provide for conditional processing and string substitution,
among other featl1r~s, At a DRCnet-llM-PLUS node, command files are
submitted either to the command processor or to a batch processor, de­
pending on a choice made at network generation.

6-16 Introduction to DECnet

• DECnet-IAS. If the remote node runs DECnet-IAS, a user can submit
command files either to the indirect command file processor or, optionally,
to the batch processor.

• DECnet-RT. A DECnet-RT user can submit command files for execution at
non-RT remote nodes, but RT-ll itself does not support command fiie
execution.

6.7.5 NFT and VAXNMS Command Examples

This section gives examples of NFT and V AXNMS command lines and illus­
trates some system-dependent ways to specify access control information.

DECnet/E NFT

NFT>NODESPECIFICATION NODEB::
NODE: NODEB
PPN: [Z,Z70J
PASSWORD: netcat
ACCOUNT: 5
NFT>APPEND NODEB::ACCT.BAS=AACCT.BAS,BACCT.BAS
NFT>DELETE NODEB::OLD.BAS
NFT>E)<IT

In this example, a DECnet/E user preassigns access control information for
NODEB (the first five lines). The next command copies two local files,
AACCT.BAS and BACCT.BAS, to remote NODEB and appends them to the
file ACCT.BAS. The user then deletes the remote file OLD.BAS and exits
from NFT by typing the EXIT character.

The DECnet/E version of NFT retains access control information preassigned
as shown above until the user terminates the NFT session. A more permanent
way to preassign information is to run the DECnet/E NETACT utility.
NETACT allows a user to define a file of access control information for one or
more nodes. NFT automatically uses this file, if the current user has created
one, to obtain required access control information. Whenever a command line
refers to a remote node for which no access control information has been
preassigned, NFT prompts for it.

DECnet-RT NFT

.RUN NFT
NFT>COPY/PRINT/ASCII ACNT.DAT BOS/KENT/JOE::[Z14,ZOOJACNT.DAT
NFT>APPEND/ASCII ACNT.DAT NYC/KENT/JOE::[100,104JACBKUP.DAT
NFT>E><IT

The DECnet-RT implementation of NFT uses commands and optional
switches to specify file operations. Within the NFT command line, the input
file appears on the left and the output file on the right, with one or more
spaces separating the files.

Remote File Access 6-17

In this example, a DECnet-RT user runs NFT to copy a local ASCII file
(ACNrr.DAT) to a remote RSX node. The command switch (/PRINT) also
causes the remote node to print out the copied file. The second command then
appends the same local file to a remote file called ACBKUP.DAT at a
DECnet/E node. In both command lines, the node specifier includes explicit
access control information.

DECnet-RT also supports the creation of alias node names with associated
default access control information. See the description of alias node names in
the discussion of the RSX DECnet NFT example.

RSX DECnet or DECnet-IAS NFT

)NCP SET ALIAS BOSTON DESTINATION NODE4/PEEK/FREAN
'>NFT
NFT:>BOSTON: :[21 ,5JPAY.LST=[21 tlOJPAY.LST
NFT:>BOSTON::OLDPAY.LST;*/DE
NFT:>[21 ,4JORD.DAT=NY/PEEK/FREAN:: [21 ,7JORD.DAT
NFT:> .'. Z

This sequence of commands shows two ways of specifying access control infor­
mation. The first command invokes a network management utility called the
Network Control Program (NCP). See Section 8.1. The command instructs
NCP to assign the alias node name BOSTON to a node known as NODE4 and
to associate the user name and password string /PEEK/FREAN with that
alias. An alias node name is a temporary name that a user assigns to a node.
As the example above shows, the NCP SET ALIAS command allows a user to
associate default access control information with an alias. In the commands
that refer to node BOSTON, NFT assumes that /PEEK/FREAN is the re­
quired access control information. The alias node name assignment lasts until
the user logs off the terminal.

The last NFT command includes the access control information in the node
specifier (NY/PEEK/FREAN::). This method applies when the node name
(NY in this case) is not an alias node name or when the user wants to override
access control information previously assigned to an alias.

The first NFT command transfers a local file to a file at remote node
BOSTON and the second command deletes all versions of a file called
OLDPAY.LST stored at node BOSTON. The asterisk (*) in the version field
of the file specification specifies all versions of the file. The third NFT com­
mand transfers a file from a remote node called NY to the local node. Finally,
the user terminates the NFT session by typing the tTRLlz) character.

DECnet-V AX commands

$ ASSIGN "NODEB""PEEK NET""::" NB
$ COPY LOCSTAT.DAT;3 NB:REMSTAT.DAT
$ SUBMIT/REMOTE TRNTO"PEEK NET"::DMA3:[PEEKJORDERS.COM

6-18 Introduction to DECnet

A DECnet-VAX terminal user provides access control information directly or
indirectly in a network specification, as these commands illustrate. The AS­
SIGN command associates the logical name NB with the node name/access
control string NODEB"PEEK NET"::. (Two sets of quotes are necessary only
when the access control string is being equated with a logical name.) The
COpy command that follows transfers the local file LOCSTAT.DAT to a file
called REMSTAT.DAT on remote NODEB, referred to by means of the log­
ical name NB.

The last command shows how the access control information can be included
directly in the command line. The user's name and password are enclosed in
quotes within the node specifier (TRNTO"PEEK NET"::). In response to this
command, remote node TRNTO, a DECnet-V AX node, submits the com­
mand file ORDERS.COM to the batch processor. The command file must
already be located at the remote node.

Remote File Access 6-19

Chapter 7
DECnet Terminal Facilities

DECnet provides several terminal facilities for interactive access to the net­
work. These include:

• Terminal-to-terminal communication, provided by the TLK utility or by
the V AXNMS PHONE command.

• Direct access to a homogeneous remote node's operating system, provided
either by a network command terminal utility or by a V AXNMS command.

• The VMSMAIL utility for DECnet-V AX users.

• Remote file access from a terminal, provided by the NFT utility or, for
DECnet-VAX nodes, by VAXNMS commands

This chapter presents overviews of terminal-to-terminal to communication
and direct access to a remote node's operating system. Accessing remote files
from a terminal is discussed in Section 6.7.

7.1 The TLK Utility and the VAX/VMS PHONE Command

All DECnet implementations, except DECnet-VAX and DECnet-20, support
TLK, a means of communication between computer sites linked by DECnet.
DECnet-V AX users can issue the V AXNMS PHONE command to commu­
nicate with terminal users at other DECnet-VAX nodes (Section 7.1.4). A
user can invoke TLK at a local terminal to exchange messages with other
terminal users in the network (see Figure 7-1). The TLK utilities in the source
and target nodes use NSP services to create a connection between the sending
and receiving terminals.

In an initial command line to TLK, a user addresses messages to be sent by
entering a node name and terminal identifier (TT4:, for example). Because
the TLK utility does not access protected resources such as disk files, access
control information is not required. By omitting a node name from the ad­
dress, a user can also send messages to other terminals on the same local node.
And if the terminal identifier is omitted, TLK sends the message to the
operator's console on the remote node. In most cases, TLK breaks through any
current terminal activity to deliver a message.

7-1

TLK EAST::TT1:
>HELLO, EAST COAST!

<TLK> IN DIALOGUE WITH WEST::KB2:
TLK>
<TLK>HELLO, EAST COAST!
TLK>
<TLK>DID YOU GET THE TAPES YET?
TLK>YES! GOT THEM YESTERDAY.
TLK>
<TLK>GREAT. BYE FOR NOW.
<TLK>END OF DIALOGUE

>DID YOU GET THE TAPES YET?
>
YES! GOT THE~.~ YESTERDAY.
>GREAT. BYE FOR NOW.
>(CTRL!Z)
<TLK>END OF DIALOGUE

Figure 7-1: The TLK Utility

7.1.1 One-line Mode and Dialog Mode

All implementations of TLK support both a one-line message nl0de and a
message dialog mode. A user can activate TLK to send a single message
contained on one line or to start up a dialog. The dialog mode of TLK also
establishes an interactive connection with the target terminal so that a user
there can respond instantly to the TLK messages received. In the example in
Figure 7-1, note that the TLK prompt (TLK» appears in between lines
displaying the received messages. These prompts give a user the opportunity
to send messages back to the terminal that started the dialog (TTl: at
NODEA in this case).

One-line mode examples:

• Display at sender's terminal (DECnet-RT)

.R TLK
T L K:> G R E E N_ T T 2: I T URN 0 N YOU R LIN E P R I NT E R. CAT H Y ,

Display at receiving terminal (RSX DECnet)

>
<TLK:>MYNRD::TTO: 'TURN ON YOUR LINE PRINTER. CATHY.
:>

7.1.2 The TLK Split Screen Option

RSX DECnet and DEC net-lAS support a TLK option that splits a video
screen in half to display the two parts of a dialog. TLK reserves the top half of
the screen for the source user's input and the bottom half for the target user's
responses. Figure 7-2 shows how a sample dialog might appear at two corre­
sponding terminals.

7-2 Introduction to DECnet

The video terminal must be a VT52 or a VT100, and both the source and the
target nodes must support TLK's dialog mode. However, it is not necessary
for both nodes to support the split screen option, in which case the messages
will appear on the remote terminal as for normal dialog.

7.1.3 TLK Command Files

The TLK utility implemented by DECnet-IAS and RSX DECnet can send
messages read from a TLK command file. TLK command files are useful for
sending many messages at once and for storing and sending sets of messages
that need to be sent more than once. To prepare for sending messages in this
manner, the user runs a text editor to create an ASCII file composed of TLK
command lines. The format of the command lines depends on the desired
transmission mode (one-line or dialog). Command lines within a command
file conform to the same syntax as lines entered from a terminal.

In the following example, a system manager creates a file of TLK commands
to be broadcast at the end of every work day. Each line looks like a command
entered from a terminal for transmission in one-line mode. The messages
remind operations staff at various sites within the network of a routine shut­
down procedure.

RSX/IAS DECnet example:

>ED I SHUTDOWN. CMD CBTIJ
[CREATING NEW FILE]
INPUT
NODEB: : TTO: 'REMEMBER TO BACK UP ACNT FILES CBTIJ
NASHl.lC:: 'REMEMBER TO BACK UP ACNT FILES CBTIJ
MAYNRD: : TT3: 'REMEMBER TO BACK UP ACNT FILES CBTIJ
'REMEMBER TO BACK UP ACNT FILES CBTIJ
@MORE.CMD CBTIJ

[E}O T]
>TLK @SHUTDOWN. CMD CBTIJ

The last line shows one way to submit the command file to the TLK utility.
The sign @, followed by the command file specification (@filespec) replaces a
TLK command line. The command file itself contains the command line
"@MORE.CMD". When TLK reaches this line, it proceeds to read and exe­
cute TLK commands contained within the file MORE.CMD. This second
command file is nested within SHUTDOWN.CMD. Nested command files
allow a user to submit more than one command file at a time. In the context
of the example, the command lines in SHUTDOWN.CMD can be sent un­
changed every day, but the manager also needs to send messages that depend
on the events of a particular day. These variable messages can be stored in a
separate command file, invoked from within SHUTDOWN.CMD.

7.1.4 The PHONE Command
The PHONE command invokes the VAXNMS Telephone Utility, which al­
lows a DECnet-VAX user to set up a dialog with another local or remote
DECnet-VAX terminal user. (The command does not support dialogs with
terminals at non-VAX nodes.) The utility closely simulates a real telephone
service by providing a "hold button," conference calls, telephone directories,
and other such facilities.

DECnet Terminal Facilities 7-3

NODE 1

SCREEN 1A

HELLO NODE2, ANY MESSAGES FOR US TODAY?
IF SO LET US KNOW.

NODE 2

SCREEN 2A

HELLO NODE2, ANY MESSAGES FOR US TODAY?

NODE 1 NODE 2

SCREEN 18 SCREEN 28

HELLO NODE2, ANY MESSAGES FOR US TODAY? YES. WE NEED ZEBRA FILES.
IF SO LET US KNOW.

---------- TLK dialogue With NODE2 TT4 -- ---- ----

YES. WE NEED ZEBRA FILES. HELLO NODE2, ANY MESSAGES FOR US TODAY?
---------- TLK d~~~ogue With NODE1 TT3 ----------

IF SO LET US KNOW.

Figure 7-2: DECnet-IAS TLK Split Screen Option

7-4 Introduction to DECnet

Example:

$ PHONE PEPPER::CLAUDIA

This example places a call to a user named CLAuuIA at node PEPPER. If
she is currently logged on at that node, her terminal will display a message to
indicate that someone is phoning her:

SALT::HALL is phonins YOU on PEPPER::

To answer the call from SALT::HALL, she types

$ PHONE ANSWER

This reply causes both terminals to display a split screen similar to the TLK
utility's split screen option (Figure 7-2). The top half of the screen displays
the local user's input and the bottom half displays the remote user's input.
Both parties to the dialog can enter text at the same time.

For further information about the VAXNMS Telephone Utility, see the
VAX-ll Command Language User's Guide.

7.2 The VMSMAIL Utility (DECnet-VAX Only)

DECnet-VAX users can run the VMSMAIL Utility to send messages to users
either at the local node or at remote DECnet-V AX nodes. This utility differs
from TLK or PHONE in that it delivers a message whether or not the ad­
dressee is currently logged on. The V AXNMS MAIL command invokes the
utility, which allows a user to send mail, to read mail that has been received,
and to perform a variety of other message-handling functions.

To send a message, a user enters the MAIL command and either specifies a
file to be sent or types the message directly in response to a prompt. A
command parameter indicates to whom the mail is to be delivered. For ex­
ample:

$MAIL/SUBJECT=SICKPAY HEALTHBEN5.TXT LONDON::GRAHAM

This command line delivers the contents of the file HEALTHBEN5.TXT to a
user named GRAHAM at node LONDON::. If GRAHAM is logged on at a
terminal, a message like the following appears:

New Mail froM YORK::PEEK

DECnet Terminal Facilities 7-5

To read his new mail, GRAHAlVI enters the MAIL command and then types
carriage return «CR» in response to the MAIL prompt:

$ MAIL

You haue nel,,1 fTlessase.

MAIL> <CR>

From: YORK::PEEK
TO: LONDON::GRAHAM
Sub.J: Sid~pa/

The utility displays the details shown in the example, followed by the con­
tents of the file that was delivered. \Vhenever a user issues the ~v1AIL com-
mand, a message indicates whether any new mail has arrived since the last
time he or she issued the command.

In the following example, the user types a message in response to a command
prompt.

$ MAIL

MAIL> send
TO: london::sraham
SUBJ; sicf~ pa'/
Enter your messaSe below. Press CTRL/Z when complete. CTRL/C to quit:
You Set two weeKs of sicK leave on full pay. <CTRL/C>

$

For further information about the VMSMAIL Utility see the VAX-II Utilities
Reference Manual.

7.3 Network Command Terminal Facilities

With the exception of DECnet-RT, all implementations have a utility that
logically connects a local terminal to a remote node's operating system. These
utilities, which are listed below, set up connections between nodes that run
the same operating system. For example, the NET utility can connect a
RSTS/E terminal to a remote DECnet/E node, but not to an RSX, VAX, or
lAS node. (Intermediate routing nodes, however, can be any DECnet imple­
mentation.)

Implementation Utility

RSX DECnet Remote Command Terminal (RMT) utility
DECnet-IAS

DECnet/E Network Command Terminal (NET) utility

DECnet-VAX SET HOST command

DECnet-20 SF.'fHOS'f lltility

7-6 Introduction to DECnet

By issuing the appropriate commands, a terminal user can temporarily be­
come a local user of a specific remote node. The network command terminal
utility or command in the source node sets up a logical link with a cooperating
program in the remote node. The resulting connection allows the user to
perform most functions that the remote node allows its local users to perform
(see Figure 7-3).

>RUN RMT
Host: WASH
Connected to "WASH," System type = RSX-" M

>HELLO CHARLES
> Password: (not echoed)

RSX-11M BL22 MUL HUSER SYSTEM

GOOD AFTERNOON
22-MAY-81 15:36 LOGGED ON TERMINAL HT3:

>FOR ADD,ADD=ADD
>TKB ADD,ADD,ADD=ADD
>RUN ADD
TYPE TWO NUMBERS -M,N
522,628
THE SUM IS 1150
HT3 -- STOP
>EXIT RMT

DENVER:: and WASH::
are RSX DECnet nodes_

legend:

- physical communication lines
----logical link

Figure 7-3: Remote Terminal Processing

The ability to set up a logical connection between a terminal and a remote
node has innumerable applications. Remote, interactive program develop­
ment is possibly the most common and important application. If the local
node does not have the resources necessary to support program development
(a DECnet-llS node, for example), a programmer can obtain access to a
remote node that has the required resources.

DECnet-l1M, DECnet-l1M-PLUS, and DECnet-l1S nodes can all run
RMT to initiate a remote terminal session, but a DECnet-l1S node cannot be
the target node. The target node is the node to which the user's terminal is
logically connected; whereas the local node is the node to which the user's
terminal is physically connected.

DECnet Terminal Facilities 7-7

7.3.1 Setting Up a Command Terminal Session

To begin a command terminal session, a user invokes the appropriate utility
or command and specifies a remote node. After a connection has been made,
the user logs into the remote system just as if he or she were sitting at one of
the remote node's terminals.

RSX DECnet RMT example:

>RMT ffiTIl
Host: BASIN
Connected to ""BASIN" t S'lstefTI type
SYsteM ID: MAPPED RSX-llM V3.2 BL32

)HELLO FREAN
PASSWORD: (not echoed)

RSX-llM BL32 MULTI-USER

GOOD MORNING

RS>~-11M

22-MAY-82 12:03 LOGGED ON TERMINAL HT3:

WELCOME TO SYSTEM BASIN [RSX-llM V4.0 AND DECNET V3.1J

DECnet/E NET example:

RUN $NET
NET V2.0-00 RSTS V7.1-00 DECnet SYsteM
NET>BOSTON
Connection established to node BOSTON
HELLO
RSTS V7.1-00 TiMesharins Job 25 KB27 27-JUNE-82 11:4GAM
USER:2t218
Pas s 1,,1 0 r d: (not echoed)

Ready

DEC net-VAX SET HOST example:

$SET HOST BOSTON
UsernafTIe: FREAN
Pas s 1,,1 0 r d: (not echoed)

WELCOME TO VAX/VMS VERSION 2.0 ON NODE BOSTON

$

DECnet-20 SETHOST example:

@SETHOST BOSTON

[Type Ay to return to node KL2102J
WelcofTIe to node BOSTONtTOPS-20

The login procedure will not succeed unless the terminal user is authorized to
use the remote node and he or she supplies the correct identification and
password.

7-8 Introduction to DECnet

7.3.2 Issuing Commands to the Remote Node

After logging in, the user can issue commands that are actually executed at
the remote node. Most commands normally accepted by the remote operating
system are allowed. The RMT or NET utility or the SET HOST command in
the source node forwards the commands to the remote node for processing;
then a cooperating program in the remote node forwards command output
back to the source node. The· output is displayed at the issuing terminal as it
would appear at a terminal directly connected to the remote system.

In the following example, an RSX DECnet user (CHARLES) connects to
remote node THORIN, logs on, requests a listing of the files contained in his
directory, and then terminates the session. How a user terminates the session
and returns control to the local node depends on the utility or command being
used.

>RUN RMT
Host:
Connected to "THORIN" t S}'steITl type = RS}{-llM
SYstem ID: MAPPED RS}{-llM V3.2 BL32

>HELLO CHARLES
Pas s 1,,1 0 r d: ~not eChoed)

RS}{-llM BL32 MULTI-USER SYSTEM

GOOD AFTERNOON
22-MAY-82 14:16 LOGGED ON TERMINAL HT3:

WELCOME TO SYSTEM THORIN [RSX-llM V4.0 AND DECNET V3.1J

>PIP/LI

DIRECTORY DBO:[305t360J 22-MAY-82 14:16

ADD.FTN;l 1 • 22-MAY-82 10:06
ADD.MAP;l 4. 22-MAY-82 10: 19
ADD.STB;l 3. 22-MAY-82 10: 19
ADD.OBJ;l 2 t 22-MAY-82 10: 18
ADD.TSK;2 29. C 22-MAY-82 10:38

TOTAL OF 39./49. BLOCKS IN 5. FILES

>Ei-{ I T RMT
> (Local node's prompt)

DECnet Terminal Facilities 7-9

Chapter 8
Network System Management

This chapter outlines the network-related tasks of a DECnet system manager
and describes the facilities DECnet provides to perform those tasks. In so
doing, the chapter also provides many definitions of network entities and
parameters that pertain to network system management. In practice, many
people may be responsible for carrying out the tasks that are described as
follows. For the sake of simplicity, these people are collectively defined by the
job title "system manager." Those who manage network nodes are responsible
to both local and network users and should be aware that while local applica­
tions usually demand the greatest share of system resources, the remote users,
a potentially very large group, must be sure of each node's response to network
applications.

The procedures for performing Network Management functions can vary from
system to system. For example, the procedure for generating a RSTS/E
DECnet/E node is different from the procedure for generating an RSX
DECnet node. RSTS/E is a timesharing system with a software structure
quite unlike the real-time, event-driven RSX-IIM. Because each DECnet
implementation (DECnet/E, DECnet-VAX, and so on) is an extension of an
operating system, the different ways to manage a node reflect the differences
between the basic DIGITAL operating systems. The purpose of this chapter is
to provide an overview of Network Management functions rather than to
describe actual procedures for performing them. Procedural information can
be found in the documentation provided for a specific implementation.

Network system management functions include the following:

• Planning for node generation (see Section 8.2). This process tailors
DECnet software to suit a specific node's network application.

• Generating network software (see Section 8.3). This section discusses
building the tailored DECnet software to create an active node.

• Defining and redefining network parameters (see Section 8.4). This in­
troduces various network parameters whose definitions determine many as­
pects of a node's role within a specific DECnet configuration.

8-1

• Operating a node (see Section 8.5). This discusses operational functions
such as starting up and shutting down a node and the physical lines con­
nected to a node.

• Monitoring node activity (see Section 8.6). This discusses monitoring the
day-to-day performance of a node by gathering and analyzing logging data
that DECnet makes available.

Network system management responsibilities also include two other functions
described in the next chapters. Chapter 9 describes down-line loading a satel­
lite node and Chapter 10 describes procedures called loopback tests that can
be performed to exercise various levels of DECnet software and hardware.

8.1 Network Management Utilities

Network Management utilities are the means by which a system manager
performs most of the functions described in this chapter. All DECnet imple­
mentations support one or more utilities that provide access to DECnet man­
agement modules. In Phase III, these modules perform the functions defined
by the Network Management layer (see Section 2.1). All implementations
support a utility called the Network Control Program (NCP). Table 8-1
briefly describes the function of NCP and the other Network Management
utilities that each DECnet implementation uses. Each utility accepts com­
mands that activate DECnet management modules either to perform specific
tasks or to request information about the current state of the local node or the
network.

All of the utilities are described in detail in the system manager's or user's
guide to each DECnet implementation.

8.2 Planning for Node Generation

Planning for node generation entails gathering and consolidating information.
DIGITAL-supplied DECnet software provides generalized network capabili­
ties, but the users must supply the data and programs that create a live
DECnet application. A system manager accumulates these data and pro~
grams for eventual incorporation into the local node.

Each system manager must ensure that managers elsewhere in the network
receive information that they need about other nodes. Programmers respon­
sible for network applications should cooperate with system managers by
exchanging information. For example, programmers must use correct ad­
dresses in calls that generate connect requests (see Section 5.2), while system
managers must know the correct names and object types that the network
programs use to identify themselves.

8-2 Introduction to DECnet

Table 8-1: DECnet Systems and Network Management Utilities

System Utility

RSX DECnet Nf'P
.I. ~.L

CFE

VNP

DECnet/E NCP

DECnet-IAS NCP

CFE

DECnet-RT NCP

DECnet-VAX NCP

DECnet-20 NCP

Legend:

Function

Loads, controls, monitors, and tests DECnet software;
down-line loads a DECnet/llS node.

Changes parameters in the configuration file
CET AB.MAC, which is produced at network generation.

Changes the disk image of an RSX DECnet system.
VNP cannot be run from a DECnet/llS node.

Loads, controls, monitors, and tests DECnet software;
maintains the DECnet/E parameter file; reports the cur­
rent status of active logical links, of known physica~ lines
and remote nodes, and of programs using local and re­
mote send/receive services.

Loads, controls, monitors, and tests DECnet software;
defines configuration data base parameters.

Changes parameters in the configuration file
CETAB.MAC, which is produced at network generation.

Loads, controls, monitors, and tests DECnet software;
defines and changes configuration data base
(CETAB.MAC) parameters.

Loads, controls, monitors, and tests DECnet software;
defines configuration data base parameters; down-line
loads a DECnet/llS node.

Loads, controls, monitors, and tests DECnet software;
defines the configuration data base.

CFE - Configuration File Editor
NCP - Network Control Program
VNP - Virtual Network Processor

8.2.1 Configuration Data Bases

Every DECnet node has some form of configuration data base that defines
characteristics of the local node and determines how that node functions
within the network. In some cases, DIGITAL-supplied software already in­
cludes such a data base to provide initial default values for many data base
entries. For other implementations, the network generation procedure creates
the data base. Table 8-2 shows the term that each DECnet implementation
uses to identify its configuration data base.

Depending on the type of DECnet node, the configuration data base may need
to be updated periodically to reflect changes in the network or to tune the
performance of the network. Section 8.4 explains many of the parameters
typically included in a configuration data base. The facts and figures needed
to define them must be gathered before a node can actively participate in a
network.

Network System Management 8-3

Table 8-2: Configuration Data Base Terms

System

RSX DEC net
DECnet-IAS

DECnet/E

DECnet-RT

DECnet-VAX

DECnet-20

Term

Configuration
File

Parameter File

Configuration
File

Configuration
Data Base

REV-CONFIG.­
CMD

Comments

This file (CETAB.MAC) is created during network
generation and subsequently can be mudified by
the Configuration File Editor (CFE).

This file ($NETPRM.SYS) is created and subse­
quently modified by NCP commands.

This file (CETAB.MAC) is created during network
generation and subsequently can be modified by
Network Management commands.

The initial data base is provided within the
DECnet software supplied by DIGITAL. NCP
commands are subsequently used to modify the
data base.

This file is the product of a network generation
and is named by the user.

8.2.2 Network Generation Planning Aid

DECnet-IAS and DECnet-RT provide an aid to help users plan for node
generation. The aid consists of a command file that contains questions per­
taining to node generation options. A system manager runs this command file
from a terminal and answers the questions according to the requirements of
the local node. Using the system manager's responses, the command file then
generates several worksheets. Each worksheet tells the system manager how to
generate some part of DECnet to reflect local requirements.

See the appropriate network generation manual for a complete description of
the command file and the worksheets it generates.

8.3 Generating Network Software

DECnet software arrives from DIGITAL on distribution media such as mag­
netic tapes or floppy disks. The type of media depends on the DECnet imple­
mentation and, in some cases, on the hardware configuration of a specific
system. For example, RSX DECnet is distributed on one of several media,
depending on the user's system.

The procedures for using the distributed software to generate an active node
are different for each implementation of DECnet. To generate an RSX or an
lAS node, a system manager has to regenerate the operating system first and
then tailor and build the network application on top as a second procedure.
Other implementations do not require a system manager to rebuild the dis­
tributed software. For example, to create a DECnet-VAX node, the system
manager simply transfers the software from distribution media to system
storage and uses NCP commands to define the configuration data base. And

8-4 Introduction to DECnet

in the case of DECnet-RT, regenerating the RT-11 operating system and
performing a network generation may both be unnecessary. The Installation
requirements depend on the current state of the operating system and on the
planned DECnet application.

A specific list of DECnet software modules depends on the Implementation
and on the specific network application. However, the distributed software
generally includes modules like the ones listed below, many of which have
been discussed in previous chapters.

• Network devIce controllers

• A DDCMP module

• Routing and other transport layer modules (Phase III)

• An NSP module

• Network utilities like NCP, NFT, and TLK

• DAP-speaking modules for the FAL process and the NFAR routines

8.4 Defining Configuration and Other Static Parameters
The parameters that make up a node's configuration data base are relatively
permanent or static because changing them tends to change the way the node
functions within the network. In addition to parameters that are strictly part
of a configuration data base, a system manager must define other parameters,
such as local network object descriptions, that affect the way 6 node functions
within a network. Depending on the implementation, configuration and other
static parameters are defined in various ways. They can be defined at network
generation, by means of NCP commands, or they may be predefined in DIG­
ITAL-supplied software.

The following subsections provide brief descriptions of static parameters that
are typically defined for most types of DECnet nodes.

8.4.1 Node Addresses and Names

Within a Phase III network, the system manager must assign a numeric ad­
dress that uniquely identifies that node within the network. Phase II nodes are
identified by unique alphanumeric names as well as unique addresses if they
are part of a mixed Phase II and Phase III network. See Section 3.2.1 for a
discussion of node addresses and node names.

8.4.2 Node Verification Passwords

Whenever one of its circuits or lines IS turned on, a node exchanges initializa­
tion messages with the remote node at the other end (Section 8.5.2). The
messages exchange information such as the version numbers of the node's
DECnet software modules or the node's type - routing or nonrouting if the
node runs Phase III DECnet - or the node's name - if the node runs Phase II
DECnet. With one exception, Phase II and Phase III nodes can initialize with
one another. The exception is Phase III DECnet-RT, which is always a non­
routing end node adjacent to another Phase III node.

Network System Management 8-5

After exchanging initialization messages, a node can request that the adjacent
node verify its identity by supplying a password. If verification is required,
adjacent nodes must supply passwords to gain access to the local node. If
verification is not required, adjacent nodes do not have to supply passworgs,
and they automatically gain access to the local node after exchanging initiali­
zation messages. The access gained or denied at this stage is the ability to
send and receive messages over the line or circuit between the two nodes.

Within a DECnet configuration that enforces node verification, each node
maintains a data base of passwords that it sends to and expects to receive
from its neighbors:

• Receive password. The password that the local node expects to receive
from the adjacent node. If the password actually received does not match
the receive password expected, the local node denies access to the adjacent
node.

• Transmit password. The password that the local node sends to the adja­
cent node. The transmit password must match the receive password that
the adjacent node expects from the local node.

8.4.3 Network Object Parameters

Most nodes maintain a data base that describes all the network objects, both
user-written programs and DECnet modules, currently residing in the node
and capable of engaging in network activity. (Network objects are described
in Section 5.2.1.) The manner in which a node's object data base is main­
tained is dependent on each node's implementation. Typically, a node stores
the following kinds of information:

• Object types, names, and addresses

• Access control and verification information associated with each object

• The number of copies of a specific object that DECnet can run to satisfy
incoming connect requests

8.4.4 Transport Parameters (Phase III nodes only)

Several parameters affect the operation of the Transport module in Phase III
full-routing nodes. (See Chapter 3 for a discussion of Phase III full routing.)
These parameters determine:

• A maximum path cost that limits possible routes to paths that cost the
same as or less than this value.

• Individual line or circuit costs that figure in routing algorithms used by the
Transport module. Each line or circuit cost is a number from one to the
maximum path rost. set for the node. Higher cost can reduce traffic on the
line or circuit because the Transport modules dispatch packets on the least
costly paths. Lowering cost does not necessarily increase the traffic on a
specific line or circuit. For example, if a line or circuit leads to an end node,
the assigned cost does not affect the flow of data to that node.

8-6 Introduction to DECnet

• A maximum number of hops per path. A node is unreachable if it cannot be
reached within the maximum number of hops.

• A routing timer that determines the interval between automatic updates of
the local node's routing data base.

• A buffer size for the unit of data actually transmitted over physical lines by
the transport module.

• A buffer count that determines the size of the transport module's pool of
available buffers.

8.4.5 Line Identification

Each physical line leading from a node has a unique identification. These line
indentifications, which are recorded in the configuration data base, have the
following format:

deu-c-u

where

deu is a mnemonic for the type of device.

Examples:

DUP
DMC
DZ
DMR

the DUPII-DA
theDMCII-DA/AR, -MA,AL, or -FNAR
the DZII-A or -B
the DMRll

c is a number (0 or a positive integer) designating the device's hardware
controller.

u is a unit/line number (0 or a positive integer) included if the device is a
multiplexer.

Line identification examples:

Identification

DMR-O

DZ-1-0

Description

DMRll, controller 0

DZll, controller 1, unit 0

8.4.6 Circuit Parameters

In addition to identifying actual physical lines, RSX DECnet, DECnet-VAX,
and DECnet/E also define and identify circuits, which are logical, point-to­
point communication paths. At nodes with these implementations, the circuit
rather than the line is manipulated and defined to control the flow of data
between nodes. Physical lines become the medium over which circuits op­
erate. As a reflection of this concept, RSX DECnet, DECnet-VAX, and
DECnet/E users usually specify circuits when users at other DECnet nodes
specify lines in equivalent Network Management commands.

Network System Management 8-7

Circuits that handle DECnet traffic correspond closely to the physical lines
that actually transmit the data. When a circuit corresponds to a point-to­
point line, circuit and line identifications are exactly the same, For example,
the string DMC-O can identify either the line or the circuit in a Network
Management command. However, circuit and line identifications associated
with a multipoint line and its tributaries differ slightly. Section 8.4.7 explains
how they differ. At an RSX DECnet/PSI node, DLM circuits to be mapped to
PSI are not associated with specific physical lines. The identification of such a
circuit starts with the mnemonic DLM.

For each circuit, the system manager must define various parameters, which
differ depending on the type of circuit (for example, whether it is associated
with a DDCMP point-to-point or multipoint line or with a PSI virtual cir­
cuit). See the appropriate implementation's system manager's guide for fur­
ther information about circuit parameters.

8.4.7 Multipoint Line and Circuit Parameters

A multipoint line is a single communications line connected to more than two
nodes. (A line connecting two nodes is called a point-to-point line.) The
DECnet implementations supporting multipoint are the Phase III versions of
RSX DECnet, DECnet-VAX, DECnet/E, and DECnet-RT.

Figure 8-1 is a diagram of a multipoint line, showing multipoint components.

Legend

Device controller = control station for multipoint line
(for example, a DV, KDP, KDZ, DMP, or DMV)

tri butaries

DV = DV11-AA/BA synchronous line multiplexer
KDP = KMC11/DUP11-DA syncronous line multiplexer
KDZ = KMC11lDZ-11-A asynchronous line multiplexer

DMP = DMP11 synchronous link

DMV = DMV11 synchronous link

Figure 8-1: A Multipoint Line

8-8 Introduction to DECnet

The control station is the device controller responsible for overseeing data
transmissions to and from all the nodes attached to the line. The devices
attaching the other nodes to the line are called tributaries. An RSX DECnet,
DECnet-VAX, or DECnet/E node can support either a control station or a
tributary device. A DECnet-RT node, on the other hand, can support only a
tributary device on a multipoint line.

From the perspective of the control station, the multipoint line and the tribu­
taries connected to it constitute a single line, but the separate paths to each
tributary represent individual circuits. A multipoint line therefore has more
than one circuit associated with- it. Figure 8-2 illustrates the relationship
between a multipoint line and the circuits that correspond to its tributaries.

A tributary supports only one physical link to the control station. From the
tributary's perspective, the DDCMP line that links it to the control station is
point-to-point; the line and corresponding circuit are therefore equivalent.

In the context of full-routing implementations, whether a node supports a
control station or a tributary on a multipoint line is not significant. The
mechanisms for handling data transmissions on multipoint lines are trans­
parent to the Transport layer modules (see Chapter 4).

At the control station's node, a system manager needs to define several
parameters that affect the operation of the multipoint line and its corre­
sponding circuits.

• Tributary Addresses. The data base at the control station's node must
contain correct tributary addresses. The system manager must therefore
record the unique decimal line address of each tributary on the line.

• Polling Ratios. * Whenever necessary, the control station delivers data ad­
dressed to tributaries under its control. In order to handle data originating
from its tributaries, the control station periodically polls them; that is,
periodically asks each tributary whether it has data waiting to be
transmitted. When the control station polls a tributary that has such data,
it allows the tributary to transmit.

The frequency with which a tributary is polled depends on the frequency of
its data transmissions. For the sake of efficiency, the control station polls
active tributaries more often than inactive or dead tributaries. A dead tribu­
tary is one that has not responded within a predefined period of time.

* DECnet!E does not implement the polling technique discussed here.

Network System Management 8-9

A system manager can exercise control over the polling of specific tribu­
taries. If for some reason a tributary should not be polled as often as others,
the system manager can issue a command to assign an active polling ratio to
that tributary. A command can also be issued to set a dead polling ratio
that applies to all inactive tributaries.

A polling ratio is a nUlllber from 1 to 255. If a tributary's active polling ratio
is 5, the control station passes through the active polling list five times
before polling that particular tributary.

Legend:

DM~-O_P~~N~ ~~-~O~NT LINE/CIRCUIT 0
DMP-l MULTIPOINT LINE

----,--------,--------,
I I I
I I I
I I I
I DMP-1.0 I DMP-1.1 I DMP-1.2
I I I

MULTIPOINT CI RCUITS

--- physical line

------.= circuit

DMP stands for a DMPll synchronous link.

Figure 8-2: Multipoint Circuits

8.4.8 Transmission Mode

The system manager sets the transmission mode for every line or circuit
connected to the node. The transmission mode is either half duplex or full
duplex:

Half Duplex. This means that the line or circuit can transmit data in either
direction, but only in one direction at any given time. In other words, data
cannot be sent and received simultaneously.

Full Duplex. This means that the line or circuit can transmit data in both
directions simultaneously. Full duplex allows a node to send and receive data
at the same time.

8-10 Introduction to DECnet

8.5 Operating a Node

To start up a node, a system manager or operator issues commands from a
terminal to load and activate required DECnet software and to turn on com­
munication lines and circuits. In response to the start-up procedure, the local
DECnet software initializes with DECnet software in adjacent nodes (see
Section 8.4.2). Shutting down the node reverses the procedure; commands are
issued to halt network activity involving the local node, to shut off lines and
circuits, and to unload DECnet software.

8.5.1 Controlling the State of a Node

For most implementations of DECnet, a system manager turns a node on and
off by manipulating the node's state.

For example:

NCP)SET EXECUTOR STATE ON

This command activates the DECnet software at the RSX node currently
defined to be the Executor. The Executor is the node at which the NCP
command actually executes. The system manager, using an NCP command,
determines whether the Executor is the local or a remote node.

Most DECnet implementations define three distinct node states: ON, SHUT,
and OFF.

ON. The local node is enabled for performing network functions.

SHUT. The node maintains all existing logical links but does not permit any
new links to be created. When existing links are disconnected, the node's state
changes to OFF.

OFF. The local node cannot participate in any network activity, and existing
logical links are aborted.

8.5.2 Controlling Line or Circuit States

A node cannot actively participate in a network until one or more communica­
tion lines or circuits (RSX DECnet, DECnet-VAX, and DECnet/E) have
been turned on. By issuing an NCP command, a system manager sets the
state of a line or a circuit to ON, OFF, or SERVICE:

ON. The line or circuit is available for use by the DECnet software responsible
for routing data packets (the NSP module in Phase II nodes and the Trans­
port module in Phase III nodes). When a line or circuit is turned on, the local
node exchanges initialization messages and, optionally, node passwords with
the remote node.

Network System Management 8-11

OFF. The line or circuit is not available for any kind of network activity.

SERVICE. The line or circuit is available for special network functions only:
down-line loading, up-line dumping, or loopback testing. (Note that some
implementations of DECnet do not recognize SERVICE as a state explicitly
separate from ON; such implementations may impose the SERVICE state by
their own internal means.)

When a line or circuit is in the ON state, DECnet software uses the data link
protocol that ensures data integrity and sequentiality for normal network
transmissions. (The standard DECnet protocol for normal traffic is DDCMP;
see Section 2.3.) In the SERVICE state, a line or circuit transmits data em­
bedded in a protocol provided for the the special network functions. (The
standard protocol for these functions is called the Maintenance Operation
Protocol, abbreviated to MQP; see Section 2.3.)

8.6 Monitoring Node Activity

At each node, DECnet provides access to the node's network information. A
system manager can use Network Management utilities to display the fol­
lowing information at a terminal:

• The current state of local and remote nodes and of physical lines or circuits

• Values currently defined for configuration data base and other static param­
eters

• The contents of various counters that DECnet software maintains to track
network performance

In addition to displaying information on request, DECnet can automatically
log certain events both at the operator's console and in a file. Event logging
records operational events such as a line starting up or shutting down.
(DECnet-RT does not support event logging.)

DECnet uses counters to track other types of information. A system manager
can periodically record these counters in a file or display them at a terminal to
obtain detailed statistics on the node's network activity. Node counters main­
tain statistics on logical link operations: for example, how many connect
requests have been sent and how many received; how many messages have
been sent over logical links and how many received. If the node is a Phase III
implementation, counters record Transport layer activity as well: for ex­
ample, how many errors of different kinds have been found in packet headers;
how many line or circuit initialization and verification failures have occurred.

DECnet maintains individual communication line or circuit counters. These
counters record statistics like the number of data blocks sent and received
successfully; the number of blocks received with errors; the number of times a
tributary has passed fro in active Lo dead sLate.

8-12 Introduction to DECnet

After counters have been displayed or recorded in a file, NCP commands can
be issued to set the counters to zero. In this way, a system manager can
manipulate the time span that the counters monitor. For example, a system
manager could set all node counters to zero as programmers begin to test a
network application. At the end of the test, the counters could be examined to
see how the application affected the node's performance.

Network System Management 8-13

Chapter 9
Down-line Loading and Up-line Dumping

RSX DECnet, DECnet-IAS, DECnet-20, and DECnet-VAX all support
down-line loading, which means loading a memory or system image from a file
at one node to a separate target node. The target node is usually an RSX-llS
DECnet node, a memory-only system with no disk-based file storage of its
own.*

At an RSX-IIM or RSX-IIM-PLUS node, the system manager generates the
RSX-llS DECnet system image. Once generated, the image can be modified
by VNP commands at an RSX node. The load itself can be initiated in one of
two ways. An operator can issue NCP commands to load the image down-line
to the target node, or an operator at the target can initiate the load by
triggering a bootstrap ROM. (Section 9.3 explains these procedures.)

Up-line dumping is a function that complements down-line loading. The
DECnet/llS target node copies the contents of its memory to a remote node in
response to a system crash. To be capable of dumping its own image up-line, a
target RSX-llS node must be generated to include a routine called
NETPAN.

9.1 Down-line Loading Definitions

The down-line loading function is distributed among two or more nodes in a
DECnet configuration. The following definitions clarify the roles played by
the various nodes.

• The command node is the node from which the NCP load commands are
issued.

• The executor node actually executes the NCP commands; it must be
adjacent to the target node.

• The target node receives the system image loaded down the line or dumps
a system image up the line.

A single node can act as both the command and the executor node.

* A DECnet-20 node can load a system image down-line both to the DN20 front end and to a
specially adapted 118 node called a DN200, which supports a card reader and a line printer,
and which serves as a remote batch station.

9-1

9.2 Down-line Loading Data Base Parameters
For every target node to be down-line loaded, the Executor has access to a
permanent data base. Each data base contains default parameters for down­
line loading a specific target node. The system manager can override these
defaults by providing parameter values in an NCP LOAD command. The
parameters are defined initially at network generation and can be redefined
when necessary.

9.3 Performing a Down-line Load

Whether a remote command node or the target itself initiates the load, the
target must have local access to a cooperating program called a primary
loader. This loader is usually contained in a bootstrap ROl\1 (Read Only
Memory) incorporated in the target. During the down-line load procedure, a
series of programs may be loaded on top of the primary loader; each program
calls the next until the system image itself is loaded down-line.

Using MOP, the executor
ships the load file to the
target node. This completes
the down-line load.

Legend:

MOP - Maintenance Operation Protocol
NICE - Network Information and Control Exchange
NCP - Network Control Program

Using NICE messages sent over
a logical link, network management
modules in the command node
forward the request to the executor.

Network
Management

Modules

NCP

An operator requests a
down-line load to a target
node from a remote executor
node.

Figure 9-1: A Down-line Load Initiated by a Command Node

9-2 Introduction to DECnet

The line or circuit between the Executor and the target is in SERVICE state
during the procedure (see Section 8.5.2). Either the system manager explicitly
sets the state to SERVICE or the DECnet software sets the state automati­
cally. How the state is set depends on the implementation and on the way a
load is initiated.

9.3.1 The LOAD Command

The NCP LOAD command is the means of initiating a down-line load from a
remote command node. As soon as the LOAD command has been issued, an
operator at the target must manually trigger the bootstrap ROM, unless the
line's device controller is a DMC11 or DMR11 device. These devices can
trigger the target's primary loader automatically if the LOAD command
passes down the correct password (see Section 9.2). Figure 9-1 illustrates a
down-line load initiated by a command node.

The target's primary loader is
triggered, * causing a down-line
load request to be sent to the
executor.

Using MOP, network management
modules at the executor ship the
load file to the target.

~t-ecutor NOde

* An operator triggers the loader manually or the completion of an up-line dump triggers it automatically.

Legend:

MOP - Maintenance Operation Protocol

Figure 9-2: A Down-line Load Initiated by a Target Node

9.3.2 Target-initiated Down-line Loads

An operator at the target node can request a load by manually triggering the
primary loader. In addition, the loader is triggered automatically at the com­
pletion of an up-line dump from the target. Target-initiated down-line loads
always use the parameter values defined in the permanent data base for the
target. Figure 9-2 illustrates a target-initiated down-line load.

9.4 Up-line Dumping

An RSX-11S target must include a routine called NETPAN in order to dump
its image up-line to the Executor. If the target node crashes, control automati­
cally passes to NETPAN, which then initiate~ fhp up-line dump. DECnet

Down-line Loading and Up-line Dumping 9-3

software responds by setting the line or circuit to SERVICE state and copying
the target's image to a dump file, which is specified in the target's permanent
data base.

When the dump completes, the NETPAN routine automatically triggers the
target's primary loader. This action causes the executor to reload the target
(see Section 9.3.2)~ which can then continue operating normally.

9.5 Down-line Loading and Checkpointing RSX-11 S Tasks

DECnet-llM, DECnet-llM-PLUS, and DECnet-VAX support two capabili­
ties relating to a DECnet-llS node. The first is called down-line task loading.
RSX-llS tasks can be stored at a DECnet-llM, DECnet-llM-PLUS, or
DECnet-VAX node and loaded down to the RSX.-llS node. The second is
called checkpointing, which is a standard RSX-IIM capability. An executing
RSX-llS task can be interrupted, then copied in its interrupted state up the
line, and be replaced by a higher priority task loaded down-line from the
Executor. When the higher priority task has completed, the interrupted task
is reloaded down-line and allowed to continue executing.

At a DECnet-llM or DECnet-llM-PLUS node, the operating system regu­
larly checkpoints tasks to local disk storage. However, RSX-llS nodes are
basically memory-only systems, so the only way to checkpoint tasks is to use
the Executor's disk storage.

These two capabilities give flexibility to an RSX-llS node that would not be
possible without DECnet. To change the set of resident tasks at a stand-alone
RSX-llS system, an operator would have to reboot with a different system
image. See the RSX DECnet System Manager's Guide and the DECnet- vilX
System Manager's Guide for further information.

9-4 Introduction to DECnet

Chapter 10
Loopback Testing

Loopback tests are procedures that exercise network software and hardware
by repeatedly sending data through a number of network components and
then returning the data to its source. If a test succeeds, the data loops back to
its source without being corrupted. If a test fails, the data does not return to
its source or it returns in a corrupted state. A system manager can run varia­
tions of the loopback tests to isolate the network component responsible for
losing or corrupting the data. DIGITAL software services personnel routinely
run loopback tests after installing DECnet software at a node. Successful tests
verify that both the software modules and hardware equipment within a node
are operating correctly.

This chapter describes loopback tests initiated by NCP commands as well as
tests initiated by user programs. As part of the Network Management func­
tion, DECnet implementations provide the software mechanisms required to
loop data through various network components. Figures shown below illus­
trate the functional layers actually exercised by specific tests. Some of the
tests require the system manager to set up a hardware mechanism that physi­
cally loops the test data back from a device coritroller, from a modem, or from
some point on a physical line.

Users can also write their own test programs that use standard DECnet capa­
bilities. For example, one user program can send data over a logical link to
another user program, which can then return the data to the first program.
Finally, the first program can verify that the data it receives matches the data
it sent. If the two programs reside in different nodes, the test exercises a
variety of DECnet functions at both nodes: the logical link mechanism, the
Transport functions, the Data Link functions (DDCMP), and the communi­
cations hardware between the nodes. If both programs reside in the same
node, they test the logical link mechanism and the Transport functions in
that node.

Basically, there are two categories of loopback tests: node level tests and line
level tests.

10-1

• Node level tests. Node level tests all use logical links to loop test data
through a specified loopback node. The loopback node can be the local
node, a remote node, or a loopback node name that has been associated with
a specific physical line or circuit. Variations of the node level tests allow a
system manager to exercise all the layers of network function in a local as
well as in a remote node.

Most node level tests can execute simultaneously with normal node and line
activity.

• Line or circuit level tests. Line or circuit level tests directly exercise the
operation of communications hardware. These tests do not use logical links
to circulate the test data. Instead, an NCP LOOP LINE or LOOP CIRCUIT
command causes the test data to be delivered directly to a Data Link layer
module (MOP), which transmits the data. The data may be looped back by
a hardware device inserted somewhere on the line or it may be looped back
by DECnet management software in a remote node.

While this kind of test is running, the line or circuit being tested cannot be
used for any other activity.

All Phase III implementations, except for DECnet/E, support a common set of
node level and line or circuit levelloopback tests, which can be initiated by
the same set of NCP commands. DECnet/E supports node level tests only.
DECnet-20, which is a Phase II implementation, supports a set of node level
tests only, which differ slightly in detail from Phase III loopback tests.

10.1 Hardware Loopback Devices
Depending on the type of test to be run, a system manager may need to
prepare a hardware loopback device before running the test. Various hardware
loopback devices can be used to test specific parts of the communications
hardware. These devices physically turn test data around at one of several
points:

• Within the device controller

• Within the modem

• At some point on the physical line

To use a device controller as a loopback device, it must be set to loopback
mode. If the controller is a DMC11 or a DMR11 at a DECnet-VAX or a
DECnet/E node, a system manager can issue an NCP command to enable
loopback mode. In all other cases, loopback mode must be set manually. To
loop data through the controller as far as the modem, the system manager
manually sets the modem to loopback. Usually, the modem itself has two
possible loopback points: one at the interface with the controller and one at
the interface with the physical line. To test stretches of the physical line, a
hardware loopback device must actually be inserted at some point along the
line. The type of device required depend~ on the type of line to he tested,
Figure 10-1 illustrates the possible loopback points within the communica­
tions hardware.

10-2 Introduction to DECnet

NODE

_.l....--..i--.....L---I controller modem

CD Loopback at controller

@ Loopback at modem on controller side

@ Loopback at modem on line side

line line
loopback

device

line

@ Loopback at hardware loopback
device inserted in line

® Loopback at a remote modem

Figure 10-1: Hardware Loopback Devices

10.2 Node Level Loopback Tests

Node level loopback tests can be initiated either by an NCP LOOP NODE
command or by a user-written test program. In either case, the test may
require a few preparatory steps, including setting up a hardware device.
Whether such steps are necessary depends on the test to be run. Section 10.2.1
summarizes the NCP commands that pertain to node level testing. These
commands are then illustrated in Sections 10.2.2 and 10.2.3, which discuss
command-initiated and program-initiated loopback tests respectively.

10.2.1 Node Level Loopback Commands

The following commands are used to prepare for and to run node level loop­
back tests.

• SET NODE name LINE line-id or SET NODE name CIRCUIT cir-id. This
command associates a specialloopback node name with the line or circuit
specified. This special node name can then be used in a LOOP NODE
command or in a test program's request to form a logical link. When
DECnet recognizes the special node name, it transmits forthcoming test
data over the line associated with that name. Depending on the type of test,
the data is looped back by hardware somewhere on the line, or the Trans­
port software at a remote node uses its routing algorithm to determine the
path on which the test data will be looped back.

• LOOP NODE name. This command requests DECnet to perform a node
level loopback test; the node specified is the node to be connected to and
which will loop back the data. The node named can be the local node, a
specialloopback node, or a remote node.

Loopback Testing 10-3

The command accepts further input parameters that determine the number
of times the test data is to he looped, the contents of the test data, and the
length of the test data in bytes.

The next two sections illustrate how these commands are used to perform
variations of the node level loopback tests.

10.2.2 Using Commands to Initiate Tests

Figure 10-2 shows four different node level tests that can be performed by
issuing an NCP LOOP NODE command. The figure includes any required
setup commands. By diagramming the layers through which the test data
travels, the figure identifies the DECnet software and/or hardware compo­
nents exercised by each test.

10.2.3 Using Programs to Initiate Tests

Figure 10-3 illustrates node level loopback tests that are initiated by user
programs. As the figure shows, some of these tests require someone to issue
one or two preparatory commands to set up loopback conditions. Hardware
loopback devices may also need to be prepared. Because programmers can
devise their own loopback test variations, the tests diagrammed here are
merely representative.

10.3 Line/Circuit Level Loopback Tests

Line or circuit levelloopback tests are provided to test communications hard­
ware rather than DECnet software components. Therefore, in response to a
line or circuit level test command (LOOP LINE line-id or LOOP CIRCUIT
cir-id), the DECnet management software delivers the test data directly to a
Physical Link layer module called MOP (Maintenance Operation Protocol).
The MOP module, which resides in the same functional layer as DDCMP,
operates when a line is in SERVICE state (see Section 9.5.2). MOP transmits
the test data, which then loops back at one of several points within the
communications hardware.

10.3.1 Line/Circuit Level Loopback Commands

Line or circuit level tests are normally initiated by NCP commands rather
than by user programs. In addition to the command that actually requests a
test, one or more preparatory commands may be required. Furthermore, to
exercise specific parts of the communications hardware, a system manager
may need to enable or put into place a hardware loopback device before
running a test.

10-4 Introduction to DECnet

r o
o
"0
0"
D>
(")
7\

--i
CD
fJ)
~
::J

CO

~

o
I

U1

NCP
SET UP

COMMANDS

NONE

r LINE line-id 1
SET NODE CAT LCIRCUIT cir-ij

NONE

)

COMMENTS

The command loops data within the
local node.

The command loops data via loop back
node CAT asso(:iated with a line
whose controller has lJeien set to
loop back mode.

The command loops data via loopback
node CAT. The line aSisociated with
CAT leads to adjacent node BARLEY
where data is looped lJack at the
transport layer. *

The command loops dCllta through
node BARLEY where network
management software in application
layer loops data back.

____________________ ~ ________ ~L_ __ ~ __ ~ ____ ~ __ _L ____ L_ __ _L ________ ~ __ ~~ __ ~ __ ~ ____ L_ __ ~ __ ~~ __ ~ ________ • ___________ _

Legend: ~ = the network management software
V that accepts command input

0= network management software that
sends, loops, or receives test data

'"", 1im, = path travelled by test data

interface between modules of
network management software

*The transport layer uses its routing algorithm to determine which path the
test data will be looped back on.

Figure 10-2: Command-initiated Loopback Tests

The NCP commands pertaining to line or circuit level loopback tests are as
follows:

• SET LINE line-id or SET CIRCUIT cir-id STATE SERVICE. This command
enables the service functions provided by MOP for the specified line or
circuit. Depending on the implementation, the system manager mayor may
not have to set the state to SERVICE explicitly. However, the line or circuit
must at least be turned ON.

• LOOP LINE line-id or LOOP CIRCUIT cir-id. This command requests
DECnet management software to perform a line or circuit level loopback
test on the specified line. Where the test data loops back depends on the
position of a hardware loopback device, if any. If the test data does not
encounter a hardware loopback device, the data is looped back by DECnet
management software in the remote node at the other end of the line.

Like the LOOP NODE command, the LOOP LINE or LOOP CIRCUIT
command accepts further input parameters that determine the number of
times the test data is to be looped, the contents of the test data, and the
length of the test data in bytes.

The following section diagrams some tests requested by NCP LOOP LINE or
LOOP CIRCUIT commands.

10.3.2 Examples of Line/Circuit Level Tests

Figure 10-4 contains diagrams of three line or circuit levelloopback tests. The
figure shows the commands issued to run the tests and where the data travels
before looping back.

1 Q-6 Introduction to DECnet

r
o
o
'U
0"
Il>
o
7'

-I
CD
CJ)
:::::!:
:::l

CO

.....
o·
I

NCP
SET UP

COMMANDS

NONE

NODE GRAHAM

A

NODE BARLEY

COMMENTS

Program A sends data to program B,
which returns data back to program A.
Target node is local node GRAHAM. 0)~~J

--------------------~--~~--~~--~~~----+----+----.---~--------~--~----+---~----+---~--~~--+---------------------~ Program A USfIS network file access @

SET NODE CAT rLiNE line-id 1
l:IRCUIT cir-ic:.j

A):::=$==~FAR~:: .. ;;::. ::::==i=::::=,~,.F==::::::;.::'.==" routines (NFARs) and File Access
\....J ~'~ Loopback Listner (FAL) to stom and then

I "--""'FAL)P:::::::::E¢=::::::::::::::::t=:::::::::::$2:::::4"'; - fcroOnmtroller retrieve file dllta.-CAT, the target If p •• \ node, is a loopback node name
l~ ." associated with a conltroller set

-------------+-------+---+...;;;....+--+---+---+---t---------+---+---t __ -t __ -If-_-I __ -II-_-I~to;..;.;lo;.;;o.:;.p.;;.ba;;;.;c;.;.k;,;.... " ________ __

8):::::::;:::$' ~~~~~". ~ @

rLiNE line-id 1
SET NODE CAT (:IRCUIT Cir-idJ o)

Same as test CD except target
node is a loop back node named
CAT; data therefore Iloops back
from an adjacent node. *

-----------------------+----------~~--~----+---~~---.----~----~'--------~----+---~~--~----~--~~---+----~-----------.---------

NONE A
Same as test @ except that
target node is BARLEY.

--------------------~--------~~--+----+----~---+----~--~--------~--~-----+----~----~--~--~----+-----------------------®

NONE A
Same as test G) except Program A
and Program B reside in separate
nodes.

______________________ ~ __________ ~ __ _A ____ ~ __ ~~ __ ~ ____ ~ _____________ ~ ____ ~ __ ~ ____ ~ __ ~ ____ ~ __ ~~ __ ~ ____________________ _

Legend: 0= user program or DECnat module

::::c:c:::: = path travelled by test data

* The transport layer uses its routing algorithm to determine the path on
which test data will be looped back.

Figure 10-3: Program-initiated Loopback Tests

~

o
I

CO

.-+
o
o
m a
:::J
CD
.-+

NCP
SETUP

COMMANDS

(j) LOOP LINE line-id

SET rUNE line-id lSTATE SERVICE/ON* 0-----191 RCUIT cir-idJ v-

NODE GRAHAM

]

Loopback
- from

"'<Z;;~:::::z:::;:;:::::$z:::===7 controller

NODE BARLEY

COMMENTS

The controller must be set manually to
loopback mode.

~--____ .--__________________ .-+ ____________ ~~ ____ t-____ +-____ ~ __ Loopback __ ~ ____ -+ ____ ~ __ , __ ~ ______ ~ ________________________ __
® LOOP LINE line-id from modem

I

SET rUNE line-i~ .1STATE SERVICE/ON* 0 ----
LC'RCUIT clr-/~ ~

or from line'
------------------------------·~------------~~----+_----~----_+--Ioopback
@ LOOP LINE line-id device

SET rUNE line-i~ .1STATE SERVICE/ON* 6cp ---
LCIRCUIT clr-ldJ

Legend: o = the network management software Q that accepts command input

o network mall1agement software that
sends, loops, and receives test data

*SERVICE or ON - depends on the implementation

.• "'c,L" .• ,, = path travelled by test data

- - - - -. = interface between modules of
network management software

Figure 10-4: Line/Circuit Level Loopback Tests

Both modem loopback and line
loopback require manual setting or
insertion of loopback device. See
Section 10. 1.

The line mu:st also be in SERVICE or
ON* state at node BARLEY

Appendix A
DEenet Documentation

RSX DECnet Documentation

Introduction to DECnet
Overview of RSX DECnet
RSX DECnet Guide to User Utilities
RSX DECnet System Manager's Guide
RSX DECnet Network Generation and Installation

Guide
RSX DECnet Post-Installation Checkout Procedures
RSX DECnet Programmer's Reference Manual
RSX DECnet Reference Card
RSX DECnet Release Notes

DECnet-IAS Documentation

Introduction to DECnet
DECnet-IAS Programmer's Reference Manual
DECnet-IAS Guide to User Utilities
DECnet-IAS System Manager's Guide
DECnet-IAS Network Generation and Installation

Guide
DECnet-IAS Post-Installation Checkout Procedures

DECnet-VAX Documentation

DECnet-VAX System Manager's Guide
DECnet-V AX User's Guide
DECnet-VAX Cross-System Notes
DECnet-V AX Software Installation Guide

Order Number

AA-J055C-TK
AA-M096A-TC
AA-H223B-TC
AA-H224B-TC

AA-H225B-TC
AA-J319B-TK
AA-M09BA-TC
AA-M097A-TC
AA-J517B-TC

AA-J055B-TK
AA-L71BA-TC
AA-L717A-TC
AA-L714A-TC

AA-L715A-TC
AA-L716A-TC

AA-HB03B-TE
AA-HB02B-TE
AA-M544A-TE
AA-M537A-TE

A-1

DECnet/E Documentation

Introduction to DECnet
DECnet/E Network Programming in BASIC-PLUS

and BASIC-PLUS-2
DECnet/E Network Programming in MACRO-II
DECnet/E Network Programming in FORTRAN
DECnet/E Network Programming in COBOL
DECnet/E System Manager's Guide
DECnet/E Guide to User Utilities
DECnet/E Network Installation Procedures

DECnet-RT Documentation

Introduction to DECnet
DECnet-RT Guide to User Utilities
DECnet-RT Programmer's Reference Manual
DECnet-RT System Manager's Guide
DECnet-RT Network Generation and Installation

Guide
DECnet-RT Unsupported Software
DECnet-RT Release Notes

DECnet-20 Documentation

Introduction to DECnet
TOPS-20 DECnet-20 Programmer's Guide

and Operations Manual

Phase III DNA Documentation

The DIGITAL Network Architecture General

AA-J055B-TK

AA-H50IB-TC
AA-H265A-TC
AA-L266A-TC
AA-H503B-TC
AA.-H505B-TC
AA-H504B-TC
AA-K7I4A-TC

AA-J055B-TK
AA-K215A-TC
AA-L268A-TC
AA-K250A-TC

AA-K252A-TC
AA-L527A-TC
AA-K254A-TC

AA-J055A-TK

AA-509IB-TM

Description AA-KI79A-TK
The Digital Data Communications Message Protocol

(DDCMP) Functional Specification Version 4.1.0 AA-K175A-TK
The Network Services Protocol Functional Specification

(NSP), Version 3.2.0 AA-KI76A-TK
The Session Control Functional Specification,

Version 1.0.0 AA-K182A-TK
The Data Access Protocol (DAP) Functional

Specification, Version 5.6.0 AA-KI77 A-TK
The Maintenance Operations Protocol (MOP)

Functional Specification, Version 2.0.0 AA-K178A-TK
The Transport Functional Specification, Version 1.3.0 AA-K180A-TK
The Network Management Functional Specification,

Version 2.0.0 AA-KI8IA-TK

A-2 Introduction to DECnet

A

Aborting a logical link, 5-9
Accepting a connect request, 5-6
Access control, 5-3, 5-6, 6-8, 8-5

DECnet-IAS, 5-6
DECnet-V AX, 5-7, 6-15
information, 5-3, 5-6, 6-8, 8-5
initiating remote access, 6-6
NFT examples, 6-17 to 6-19
preassigning access control information, 6-15
RSX-DECnet, 5-6
verification module, 5-6, 5-7
within file specification, 6-13

Access method for remote files, 6-8
Accessing remote files, 6-1 to 6-19

from a command file, 6-16
from a program, 6-6 to 6-11
from a terminal, 6-12 to 6-19

Addresses,
destination node, 3-6
logical link, 4-3 to 4-4
node, 3-6, 8-5
object, 5-3 to 5-5
tributary, 8-9
user link, 5-3

Addressing a connect request, 5-2 to 5-6
Addressing network objects, 5-3 to 5-5
Algorithms,

congestion control, 3-8
packet lifetime control, 3-8
routing algorithms, 3-7

Alias node name, 6-18
Appending files,

local, 6-12
remote, 6-12

ASCII data type, 6-9
ASSIGN command, 6-18

Index

B

BASIC,
DECnet-VAX task-to-task communication, 5-12

BASIC-PLUS,
DECnet/E task-to-task communication 5-10

5-11 ' ,

BASIC-PLUS-2,
DECnet/E task-to-task communication 5-10

5-11 ' ,

DECnet-IAS remote access calls, 6-10
DECnet-IAS task-to-task communication 5-9

5-12 ' ,

RSX DECnet remote access calls, 6-10
RSX DECnet task-to-task communication 5-9

5-11 ' ,

Batch processor, 6-16, 6-17
BLISS,

DECnet-V AX task-to-task communication, 5-12
Bootstrap ROM, 9-1

c
CcrIT recommendations, 3-11

X.3, 3-11
X.25, 2-1, 3-11 to 3-14
X.28, 3-11
X.29, 3-11

CETAB.MAC,
RSX DECnet, 8-4
DECnet-RT,8-4

CFE,8-3
Channel number, 5-3, 6-6
Checkpointing RSX-11S tasks, 9-4
Circuit, 3-6, 8-7 to 8-9

cost, 3-6, 3-9, 8-6
definition, 8-7
PVC, 3-11
SVC, 3-11
virtual, 3-11

Index-1

COBOL,
DECnet/E concise COBOL interface. 5-3, 5-6.

5-10, 5-11
DECnet/E task-to-task communication, 5-10,

5-11
DEC net-lAS task-to-task communication, 5-9,

5-11
DEC net RT task-to-task communication, 5-G
DECnet-VAX task-to-task communication, 5-12
RSX DECnet remote file access calls, 6-10
RSX DECnet task-to-task communication calls,

5-9, 5-10, 5-11
Comitd Consultatif International T~l~graphique et

T~le'phonique (CCITI), 2-1
Command files,

executing, 6-16
submitting, 6-16
TLK,7-3

Command node, 9-1
Communications facilities (DNA), 2-2 to 2-4
Concise COBOL interface, 5-3, 5-6, 5-10
Configuration,

data bases, 8-3, 8-4
DECnet-V AX, 8-4
defining parameters, 8-5
files, 8-4
Phase II, 3-3
Phase III, 3-4

Congestion control algorithm, 3-8
Connect accept, 5-6
Connect block, 5-4
Connect data block, 5-4
Connect reject, 5-6
Connect request,

accepting, 5-3, 5-6, 5-7
addressing, 5-2 to 5-5
call, 5-2
rejecting, 5-3, 5-6, 5-7
verifying, 5-3, 5-6, 5-7

Control station, 8-8, 8-9
Controlling the state of a node, 8-11
COpy command, 6-12, 6-16
Copying a file, 6-12
Cost,

circuit, 3-6, 3-9, 8-6
path, 3-6, 8-7

Counters,
circuit, 8-12
displaying, 8-12
event, 8-12
line, 8-12

Index-2

o

DAP (Data Access protocol), 2-6
interface, 6-2
messages, 6-2

Data,
exchanging, 5-7, 5-8
interrupt, 4-5, 5-8
normal, 4-5, 5-7
receiving, 4-4, 4-5, 5-7
segments, 4-5, 4-6
sending, 4-4, 4-5, 5-7

Data Access Protocol,
See DAP

Data bases, 3-6
configuration, 8-3, 8-4
down-line loading, 9-3
object data base, 8-6

Data Circuit-terminating Equipment (DCE), 3-11
Data Link layer, 2-1 to 2-4
Data Link Mapping (DLM), 2-1, 3-9 to 3-15
Data Terminal Equipment (DTE), 3-11
Data type,

ASCII,6-9
image, 6-9

DCE, 3-11
DDCMP (Digital Data Communications Message

Protocol), 2-6, 8-12
DECnet, 1-1 to 1-4

definition, 1-1, 1-2
functions, 1-1 to 1-3
implementations, 1-1, 1-2
network, 1-1
software modules, 2-3, 8-5
topology, 3-1 to 3-5, 3-14

DECnet/E, 5-5, 6-26
$NETPRM.SYS, 8-4
concise COBOL interface, 5-3, 5-6,

5-10
loop back testing, 10-2
multipoint support, 8-8, 8-9
NCP, 8-3
NET, 7-1, 7-6, 7-8
NETACT example, 6-17
NFT example, 6-17
parameter files, 8-4
remote file operations, 6-14
task-to-task calls, 5-10, 5-11

DECnet-11M,
checkpointing, 9-5

DECnet-11M-PLUS,
check pointing, 9-5

DECnet-11S node,
checkpointing; 9-5

DECnet-IAS,
$NETPRM.SYS, 8-4
CFE, 8-3
down-line loading, 9-1
NCP, 8-3
network generation planning aid, 8-4
NFT example, 6-18
remote command file submission, 6-17,
remote file access calls, 6-10
RMT, 7-1, 7-6

task-to-task calls, 5-9, 5-10
TLK, 7-1 to 7-3
TLK split screen option, 7-2

DECnet-RT,
access control, 6-8
CETAB.MAC, 8-4
configuration files, 8-4
multipoint support, 8-8
NCP, 8-3
network generation planning aid, 8-4
NFT,6-17
remote command file submission, 6-17
remote file access calls, 6-9, 6-10
task-to-task calls, 5-9, 5-10
tributary device support, 8-9

DECnet-20,
down-line loading, 9-1
DN200, 9-1
NCP, 8-3
programs, 5-6
REV-CONFIG.CMD, 8-4
task-to-task calls, 5-13, 5-14

DECnet-V AX,
access control, 5-7, 6-15
calls, 5-12, 6-10
checkpointing, 9-5
commands, 6-18, 6-19
configuration data base, 8-4
down-line loading, 9-1
multipoint support, 8-8, 8-9
NCP, 8-3
non-transparent task-to-task communication,

5-12, 5-13
remote file access, 6-3, 6-10, 6-11
remote file operations, 6-12, 6-13
SET HOST command, 7-1, 7-6, 7-8
task-to-task communication, 5-1, 5-12, 5-13

transparent task-to-task communication, 5-6,
5-12, 5-13

transparent task-to-task system service calls,
5-12

V AX/VMS commands, 6-12, 6-18, 6-19
Default access control, 6-13

alias node name, 6-18
DECnet!E NFT, 6-17
DECnet-IAS NFT, 6-18
DECnet-RT NFT, 6-17
DECnet-VAX, 6-13, 6-16
NETACT utility, 6-17
RSX DECnet NFT, 6-18

Defining configuration and other static parameters,
8-5

Deleting remote files, 6-12
DIGITAL file systems, 6-4
DIGITAL Network Architecture (DNA)

See DNA
Disconnecting the link, 5-9

aborts, 5-9
synchronous disconnects, 5-9

Displaying counters, 8-12
Distribution media, 8-4
DLM interface, 2-1, 3-12 to 3-15
DNA (DIGITAL Network Architecture), 2-1 to 2-10,

Data Link layer, 2-3
Network Application layer, 2-2
Network Management layer, 2-2, 2-10
Network Services layer, 2-2
Physical Link layer, 2-3
Session Control layer, 2-2, 2-10
Transport layer, 2-2, 2-10, 3-5
User layer, 2-2

DNA protocols, 2-3
DAP, 2-6, 6-2
DDCMP, 2-6, 8-12
MOP, 2-6, 10-2
NICE, 2-6
NSP, 2-6, 4-1 to 4-7
Routing, 2-6

Down-line loading, 1-4, 9-1 to 9-4
bootstrap ROM, 9-1
command node, 9-1
data-base parameters, 9-3
DECnet-IAS, 9-1
DECnet-20, 9-1
DECnet-V AX, 9-1
definitions, 9-1
DN200, 9-1
executor node, 9-1

Index-3

LOAD command, 9-3
manual, 9-3
performing a down-line load, 9-2
primary loader, 9-2
RSX DECnet, 9-1
target node, 9-1
trigger password, 9-3

E

Enveloping user data in protocol, 2-7
Equivalent module, 2-3, 2-5
Event counters, 8-12
Event logging, 8-12
Exchanging data, 5-7 to 5-8
Executor node, 8-11, 9-1

F

FAL (File Access Listener), 2-4, 6-1, 6-2, 6-6
File access,

remote, 6-1 to 6-19
File Access Listener (FAL),

See FAL
File characteristics, 6-8, 6-9

random access, 6-8
relative organization, 6-8
sequential access, 6-8
sequential organization, 6-8

File organization,
indexed, 6-8
relative, 6-8
sequential, 6-8

File protection, 6-8, 6-15
File specification, 6-6,
File systems,

capabilities, 6-4, 6-5
DIGITAL, 6-4

Files,
appending files, 6-12
characteristics, 6-6, 6-8
configuration, 8-4
DECnet-IAS command, 6-16
deleting remote file, 6-12, 6-13
DIGITAL file systems, 6-4
foreign file specification, 6-15
indexed files, 6-8
listing, 6-12
organization, 6-8
protection, 6-8, 6-15
queuing files to a line printer, 6-12
random access, 6-8
relative organization, 6-8

Index-4

remote access, 6-1 to 6-19
remote file,

appending, 6-12
command submission, 6-16
deleting, 6-12
operations from a terminal, 6-14
specifications, 6-15

HSX DECnet command, 6-16
RT -11 file system, 6-8, 6-17
sequential access, 6-8
sequential organization, 6-8
specifications, 6-7
submitting command files, 6-12
system capabilities, 6-4, 6-5

Flow control, 4-6, 5-8
Foreign file specification, 6-15

FORTRAN-IV,
DECnet/E task-to-task communication, 5-10,

5-11
DECnet-IAS task-to-task communication, 5-10,

5-11
DEC net-lAS remote file access, 6-10
DECnet-RT task-to-task communication, 5-9,

5-10
DECnet-RT remote file access, 6-9, 6-10
RSX DECnet task-to-task communication, 5-9,

5-10, 5-11
RSX DECnet remote file access, 6-10

FORTRAN-lV-PLUS,
DECnet/E task-to-task communication, 5-10,

5-11
DECnet-IAS task-to-task communication, 5-10.

5-11
DEC net-lAS remote file access, 6-10
DEC net-VAX task-to-task communication, 5-12
DECnet-V AX remote file access, 6-10
RSX DECnet task-to-task communication, 5-9,

5-10, 5-11
RSX DEC net remote file access, 6-10

Full duplex, 8-10
Full routing, 3-1

basic concepts, 3-5
Functions, 5-2

G

Generating a network node, 8-1 to 8-2

H

Half duplex, 8-10
Handshake dialog, 4-2, 4-3, 5-2
Hardware,

loopback devices, 10-2, 10-3
testing communications, 10-2

Hops, 3-6, 3-7, 8-7

Identifiers,
logical link, 4-3, 4-4, 4-5, 5-3, 6-6
node, 3-6, 8-5
target node, 5-3

Image data type, 6-9
Implementations, 1-1, 1-2
Indexed file organization, 6-8
Initialization messages, 8-5, 8-11
Initiating remote access, 6-6
Interrupt data, 4-5, 5-8

J

Job file number (jfn), 5-3, 5-14

L

Languages supporting task-to-task communication,
5-1

Layers,
definition of DNA, 2-1, 2-2

Line,
cost, 3-6, 3-9, 8-6
counters, 8-12
identification, 8-7
states, 8-11, 8-12
transmission modes, 8-10
turning on and off, 8-11

Line level loopback,
commands, 10-4
examples, 10-7
tests, 10-4, 10-8

Link,
See Logical link

Link service messages, 4-6, 5-8
Listing remote directories, 6-12
LOAD command, 9-3
Loading,

down-line system, 9-1 to 9-4
down -line task, 9-4

Logical link, 2-2, 4-1 to 4-7
aborting, 5-9
addressing, 4-3
applications, 4-6
creating, 4-2, 5-2
disconnecting, 5-9
identifier, 4-3, 4-4, 5-3, 6-6
synchronous disconnects, 5-9

Logical link applications, 4-6
Logical link identifiers, 4-3
Logical unit number (lun), 5-3, 6-6
Loopback mode, 10-2

Loopback testing, 1-4, 10-1 to 10-8
circuit level tests, 10-4
command initiated tests, 10-4, 10-5
commands, 10-3
DECnet!E, 10-2
hardware devices, 10-2
line level tests, 10-4
loopback mode, 10-2
node level commands, 10-3
node level tests, 10-2
program initiated tests, 10-4

lun (logical unit number), 5-3, 6-6,

M

MACRO task-to-task communication,
DECnet-VAX, 5-12

MACRO-11 task-to-task communication, 5-9
DECnet/E, 5-10, 5-11
DECnet-IAS, 5-9, 5-12
DECnet-RT, 5-9, 5-10
RSX DECnet, 5-9, 5-11

MACRO-20 task-to-task communication, 5-14
MAIL command (VAXNMS), 7-5 to 7-6
Maintenance Operation Protocol,

See MOP
Management,

network system, 8-1 to 8-13
utilities, 8-2 to 8-4

Maximum path cost, 8-6
Maximum path length, 3-8, 3-9
Mode,

loopback, 10-2
transmission, 8-10

Modules, 2-1
equivalent, 2-3, 2-5
NSP, 2-5, 4-1
Transport, 3-5, 3-7

MOP (Maintenance Operation Protocol), 2-6, 8-12
Multiple logical links, 4-5
Multipoint, 8-8 to 8-10

circuit identification, 8-10
control station, 8-9
line identification, 8-10
lines, 8-8
parameters, 8-9 to 8-10
polling ratios, 8-9
tributary, 8-9

Name,
alias node, 6-18
node, 3-6, 8-5
object, 5-3 to 5-5

ncb,

N

See Network connect block

Index-5

NCP (Network Control Program), R-~
NET, 7-6

example, 7-8
NETACT utility, 6-17
Network,

definition of DECnet, 1-1
Network Application layer (DNA), 2-2, 2-6, 6-2
Network command terminal facilities, 7-6
Network connect block (ncb), 5-4
Network Control Program (NCP), 8-3
Network File Access Routines (NFARs), 6-3
Network generation,

generating network software, 8-4
planning aid, 8-4

Network management, 8-1 to 8-13
faciiities, 1-3
utilities, 8-2

Network Management layer (DNA), 2-2, 2-10
Network object, 5-3

parameters, 8-6
Network parameters,

definitions, 8-1
Network Services layer (DNA), 2-2
Network Services Protocol (NSP), 2-6, 4-1
Network software,

generating, 8-4
Network specification, 5-4, 5-6
Network system management, 8-1
NFARs (Network File Access Routines), 6-3
NFT (Network File Transfer), 6-12 to 6-19

DECnet/E, 6-17
DEC net-lAS, 6-18
DECnet-RT,6-17
examples, 6-17 to 6-19
RSX DECnet, 6-18

NICE (Network Information and Control Exchange
protocol), 2-6

Node, 1-1
addresses, 3-6
alias node name, 6-18
command, 9-1
controlling nodes, 8-11
Executor, 8-11, 9-1
generation and planning, 8-1, 8-2
loopback commands. 10-:1
loop back tests, 10-1
monitoring, 3-1
names, 3-6
nonrouting, 3-2
operation, 8-2, 8-11
passwords, 8-5
Phase III, 3-2
planning, 8-1, 8-2
routing, 3-2, 3-3
RSX DECnet/PSI, 3-9, 3-12
states, 8-11
target identifier, 5-3

~ode level loopback commands, 10-:3
Node level loopback tests, 10-3

Index-6

Node verification passwords, 8-5
Nonrouting nodes, 3-2
Non-transparent task-to-task communication,

DECnet-V AX, 5-12, 5-13
Normal data, 4-5, 5-7
NSP (Network Services Protocol), 2-6, 4-1

control messages, 4-4
flow control, 4-6
guarantees, 4-5, 4-6
modules, 4-1

Object,
addresses, 5-3 to 5-4
data base, 8-6

o

declaring name and type, 5-3
definition, 5-3
name, 5-3
parameters, 8-6
reserved type, 5-4
unreserved type, 5-4

Operating a node, 8-11
Optional user data, 5-3

Packet, 3-1

p

Packet lifetime control algorithm, 3-8
Packet switching network, 2-1, 3-10 to 3-11
Parameters,

configuration, 8-5
line, 8-7
load, 9-3
multipoint, 8-8 to 8-9
network, 8-1
node, 8-5
object, 8-6
static, 8-5
transport, 8-6

Password,
node verification, 8-5
receive, 8-6
remote file access, 6-13
source program, 5-3, 6-8
transmit, 8-6
trigger, 9-2

Path, 3-6, 3-7
cost, 3-6, 8-6
length, 3-6
hop, 3-6

Permanent virtual circuit (PVC), :1-11
Phase I DNA, 2-10
Phase II DNA, 2-9, 2-10

configurations, 3-3
differences, 2-9
nodes, 3-3, 3-5

Phase III DNA, 2-9 to 2-10
configurations, 3-4, 3-11
differences, 2-9
nodes, 3-2, 3-4
routing, 2-10, 3-1 to 3-9

PHONE command (VAX/VMS), 7-1, 7-3 to 7-4
Physical Link layer (DNA), 2-3
Planning for node generation, 8-2
Point-to-point,

line 8-8
routing, 2-10, 3-1

Polling ratios, 8-9
Postal Telephone and Telegraph Authority (PTT) ,

3-10, 3-11
PPSN, 2-1, 3-10 to 3-11
Preassigning access control information, 6-15
Primary loader, 9-2
Program,

source, 5-7
target, 5-7

Programming remote access, 6-3 to 6-11
Protection code, 6-8
Protocols (DNA), 2-3

DAP, 2-6, 6-2
DDCMP, 2-6, 8-12
enveloping user data in protocol, 2-7
MOP, 2-6, 10-2
NICE, 2-6
NSP, 2-6, 4-1 to 4-7
Routing, 2-6

Public packet switching network (PPSN), 2-1, 3-10
to 3-11

PVC, 3-11

Q

Queuing files to a line printer, 6-12

R

Random file access, 6-8
Receive password, 8-6
Receiving data, 4-4 to 4-5, 5-7
Record,

access capabilities, 6-5
access control, 6-8
attributes, 6-9
fixed length, 6-9
format, 6-9
random access, 6-8
sequential access, 6-8
stream, 6-9
variable length, 6-9
variable with fixed length control (VFC), 6-9

Rejecting a connect request, 5-6

Relative file organization, 6-8
Remote command file submission, 6-16
Remote Command Terminal utility,

See RMT
Remote directories,

listing, 6-12
Remote file,

foreign file specifications, 6-15
operations from a terminal, 6-14
remote command submissions, 6-16

Remote file access,
accessing remote files from a terminal, 6-12 to

6-19
calls, 6-9 to 6-11
DECnet-IAS, 6-10
DECnet-RT, 6-9, 6-10
DECnet-VAX, 6-10, 6-11
programming, 6-3 to 6-11

Remote file capabilities, 6-5
Remote node,

issuing commands to, 7-7, 7-9
Remote terminal,

facilities, 1-3
processing, 7-7

REV-CONFIG.CMD, 8-4
RMT (Remote Command Terminal utility), 7-6

DECnet-IAS, 7-1, 7-6
RSX DECnet, 7-1, 7-6, 7-8

Routing, 3-1 to 3-15
algori thms, 3-7
data bases, 3-7, 8-6
full, 3-1
nodes, 3-2
parameters 3-9
point-to-point, 3-1, 3-2
protocol, 2-6
terms, 3-6 to 3-7
timer, 8-7

RSX DECnet,
access control, 5-6
CETAB.MAC, 8-4
CFE,8-3
configuration files, 8-4
down-line loading, 9-1
indirect command file processor, 6-16
multipoint support, 8-8, 8-9
NCP, 8-3
NFT example, 6-18
remote command file submission, 6-16
remote file access calls, 6-10
RMT, 7-1, 7-6
task-to-task calls, 5-9, 5-11
TLK, 7-1 to 7-3
VNP, 8-3

RSX DECnet/PSI node 3-9, 3-12
RSX-ll PSI, 2-1, 3-9
RSX-11S tasks,

checkpointing, 9-4
RT -11 file system, 6-8

Index-7

s

Segment acknowledgment, 4-5
data, 4-5, 4-6
NSP, 4-3, 4-4
retransmissjon, 4-fi

Sending data, 4-4, 4-5
from NSP modules, 4-4, 4-5
from source programs, 5-7

Sequential access, 6-8
Sequential file organization, 6-8
SERVICE state, 8-12, 9-4
Session Control layer (DNA), 2-2, 2-10

addition of, 2-10
SET HOST command,

DEC net-VAX, 7-6, 7-8
SHUT state, 8-11
Software,

distributed DECnet, 8-5
generating network, 8-1
modules, 8-5
tailoring, 8-2

Source program, 4-3, 5-7, 6-1
Split screen option (TLK), 7-2, 7-4
Starting a node, 8-11
Static parameters,

defining, 8-5
SUBMIT/REMOTE, 6-13, 6-16
Submitting a command file, 6-12. 6-16
Switched virtual circuit .

(SVC), 3-11
Synchronous disconnects, 5-9
System image,

down-line loading, 9-1 to 9-4
up-line dumping, 9-1, 9-4

System manager,
tasks, 8-1

Target,
block, 5-4

T

node identifier, 5-3, 9-1
program, 4-3, 5-7, 6-1

Task-to-task calis,
DECnet, 5-2
summary, 5-9 to 5-14

Task-to-task communication,
languages supporting, 5-1
nontransparent, 5-12, 5-13
transparent, 5-6, 5-12, 5-13
using DECnet/E, 5-10, 5-11
using DECnet-IAS, 5-9, 5-10
using DECnet-RT, 5-9, 5-10
using DEC net-VAX, 5-12, 5-13
using RSX DEC net, 5-9, 5-11

Terminal-to-terminal communication, 1-3
accessing remote files from a terminal, 6-12 to

6-19

Index-8

CUllllllullicating with a remute termillal, ,-I lu

7-9
connecting to a remote node via a terminal, 7-1,

7-6 to 7-9
Testing,

communications hardware, 10-2. 10-3
loopback, 1-4, 10-1 to 10-8 .

TLK utility, 7-1
command files, 7-3
dialog mode, 7-2
one-line mode, 7-2
split screen option, 7-2, '/-4

Topology, 3-1 to 3-5, 3-14
Transferring a file, 6-12
Transmission mode, 8-10

full duplex, 8-10
half duplex, 8-10

Transmit password, 8-6
Transparent communication, 5-6, 5-12

remote file access, 6-3
Transport layer (DNA), 2-2, 2-6

module, 3-5, 3-12, 8-7
Tributaries, 8-9
Trigger password, 9-3
Triggering a down-line load, 9-1, 9-3
TYPE command, 6-12

u
ula (user link address), 5-3
Up-line dumping, 1-4, 9-4

NETPAN,9-4
User identification, 5-3, 6-8, 6-13
User interfaces, 1-2, 1-4
User layer (DNA)' 2-2
User link address (ula), 5-3
Utilities,

CFE, 8-2, 8-3
FAL, 6-1, 6-2
NCP, 8-2, 8-3, 10-3
NET, 7-6
NETACT,6-17
NFARs,6-3
NFT, 6-12, 6-17
RMT,7-6
TLK, 7-1, to 7-3
VNP, 8-3

VAX-11 RMS, 6-10
file access calls, 6-11

VAX/VMS,

v

commands, 6-12 to 6-13
examples, 6-18 to 6-19
MAIL command, 7-5 to 7-6

PHO~E command, 7-1, 7-3 to 7-4
SET HOST command, 7-6, 7-8

Verification, 5-6 to 5-7
level, 5-6
module, 5-7

Verifying connect requests, 5-6
Virtual circuit, 3-11
VMSMAIL utility, 7-5 to 7-6

x

X.3 recommendation, 3-11
X.25 levels, 3-12
X.25 recommendation, 2-11, 3-11 to 3-14
X.28 recommendation, 3-11
X.29 recommendation, 3-11

Index-9

READER'S COMMENTS

Introduction to DECnet
AA -JO 5 5 C-TK

NOTE: This form is for document corm-nents orJy. DIGITAL will use comments submitted on this form at the
company's discretion. If you require a written reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your comments on an SPR form.

Did you fmd this manual understandable, usable, and well-organized? Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer

o
o
o
o
o
o Other (please specify) __________________________ _

Name ____________________________________ Date ________________________________ __

Organization ___ _

Street __ __

City __________________ _ State ______ Zip Code _______ __

or
Country

- - - - -Do Not Tear - Fold Here and Tape - - - - --

~DmDDmD IIIIII

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SOFTWARE DOCUMENTATION
1925 ANDOVER STREET TW/E07
TEWKSBURY, MASSACHUSETTS 01876

Do Not Tear - Fold Here and Tape - - - - - -

I
I
I

- ---l

No Postage

Necessary

if Mailed in the

United States

Q,l
c
:3-
'2
o
C
bIJ'
c o
;(..

18

	001
	002
	003
	004
	005
	006
	007
	008
	009
	01-01
	01-02
	01-03
	01-04
	010
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	09-01
	09-02
	09-03
	09-04
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	A-01
	A-02
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	replyA
	replyB

