
Order No. AA-K181A-TK 

DECnet 
DIGITAL Network Architecture 

Network Management 
Functional Specification 

Version 2.0.0 



DEenet 
DIGITAL Network Architecture 

(Phase III) 

Network Management 
Functional Specification 

Order No. AA-K181 A-TK 
Version 2.0.0 

October 1980 

This document describes the functions, structures, protocols, 
algorithms, and operation of the DIGITAL Network Architec­
ture Network Management modules. It is a model for DECnet 
implementations of Network Management software. Network 
Management provides control and observation of DECnet net­
work functions to users and programs. 

To order additional copies of this document, contact your local 
Digital Equipment Corporation Sales Office. 

digital equipment corporation · maynard, massachusetts 



First Printing, October 1980 

This material may be copied, in whole or in part, provided that the 
copyright notice below in included in each copy along with an 
acknowledgment that the copy describes protocols, algorithms, and 
structures developed by Digital Equipment Corporation. 

This material may be changed without notice by Digital Equipment 
Corporation, and Digital Equipment Corporation is not responsible for 
any errors which may appear herein. 

Copyright ~ 1980 by Digital Equipment Corporation 

The postage-prepaid READER'S COMMENTS form on the last page of this 
document requests the user's critical evaluation to assist us in pre­
paring future documentation. 

The following are trademarks of Digital Equipment Corporation: 

DIGITAL 
DEC 
PDP 
DECUS 
UNIBUS 
COMPUTER LABS 
COMTEX 
DDT 
DECCOMM 
ASSIST-II 
VAX 
DECnet 
DATATRIEVE 

DECsystem-lO 
DECtape 
DIBOL 
EDUSYSTEM 
FLIP CHIP 
FOCAL 
INDAC 
LAB-8 
DECSYSTEM-20 
RTS-8 
VMS 
lAS 
TRAX 

MASSBUS 
OMNIBUS 
OS/8 
PHA 
RSTS 
RSX 
TYPESET-8 
TYPESET-ll 
TMS-ll 
ITPS-IO 

.SBI 
PDT 



1.0 
2.0 
2.1 
2.2 
2.3 

3.0 
3.1 
3.1.1 
3.1.2 
3.1.3 
3.1.4 
3.1.5 
3.1.6 
3.2 
3.2.1 
3.2.2 
3.2.3 
3.2.4 
3.2.5 
3.2.6 
3.3 
3.3.1 
3.3.1.1 
3.3.1.2 
3.3.1.3 
3.3.1.4 
3.3.1.5 
3.3.2 
3.3.2.1 
3.3.2.2 
3.3.2.3 
3.3.2.4 
3.3.2.5 
3.3.3 
3.3.4 
3.3.4.1 
3.3.4.2 
3.3.5 
3.3.6 
3.3.6.1 
3.3.6.2 
3.3.7 
3.3.8 
3.3.8.1 
3.3.8.2 
3.3.8.3 
3.3.8.4 
3.3.9 
3.3.10 
4.0 

CONTENTS 

INTRODUCTION 
FUNCTIONAL DESCRIPTION 

Design Scope 
Relationship to DIGITAL Network Architecture 
Functional Organization within DIGITAL Network 
Architecture 

NETWORK CONTROL PROGRAM (NCP) 
Network Control Program Functions 
Changing Parameters 
Gathering Information 
Down-line Loading 
Up-line Dumping 
Testing Line and Network 
Zeroing Counters 
Network Control Program Operation 
Specifying the Executor 
Program Invocation, Termination, and Prompting 
Privileged Commands 
Input Formats 
Output Characteristics 
Status and Error Messages 
Network Control Program Commands 
SET and DEFINE Commands 
SET and DEFINE EXECUTOR NODE destination-node 
SET and DEFINE KNOWN Entity Commands 
SET and DEFINE LINE Commands 
SET and DEFINE LOGGING Commands 
SET and DEFINE NODE Commands 
CLEAR and PURGE Commands 
CLEAR and PURGE EXECUTOR NODE Commands 
CLEAR and PURGE KNOWN Entity Commands 
CLEAR and PURGE LINE Commands 
CLEAR and PURGE LOGGING Commands 
CLEAR and PURGE NODE Commands 
TRIGGER Command 
LOAD Command 
LOAD NODE Command 
LOAD VIA Command 
DUMP Command 
LOOP Command 
LOOP LINE Command 
LOOP NODE Command 
SHOW QUEUE Command 
SHOW and LIST Commands 
Information Type Display Format 
Counter Display Format 
Tabular and Sentence Formats 
Restrictions and Rules on Returns 
ZERO Command 
EXIT Command 

NETWORK MANAGEMENT LAYER 

iii 

Page 

1 
3 
3 
5 

6 
9 
9 
9 

10 
10 
10 
11 
11 
11 
11 
12 
12 
12 
14 
14 
15 
18 
19 
19 
19 
22 
24 
29 
29 
29 
29 
30 
30 
32 
32 
32 
33 
33 
34 
34 
34 
35 
35 
36 
36 
37 
39 
39 
40 
44 



4.1 
4.1.1 
4.1.2 
4.1.3 
4.1.4 
4.1.4.1 
4.1.4.2 
4.1.4.3 
4.1.4.4 
4.1.5 
4.1.5.1 
4.1.5.2 
4.2 
4.2.1 
4.2.2 
4.2.3 
4.2.4 
4.2.4.1 
4.2.4.2 
4.2.5 
4.2.6 
4.2.7 
4.2.8 
4.2.9 
4.2.10 
4.3 
4.3.1 
4.3.2 
4.3.3 
4.3.4 
4.3.5 
4.3.6 
4.3.7 
4.3.8 
4.3.9 
4.3.10 
4.3.11 
4.3.12 
4.3.13 
5.0 
5.1 
5.2 
5.3 
5.3.1 
5.3.2 
5.3.3 

CONTENTS (Con t. ) 

Network Management Layer Modules 
Network Management Access Routines and Listener 
Local Network Management Functions 
Line Watcher 
Line Service Functions 
States and Substates 
Priority Control 
Line State Algorithms 
Line Handling Functions 
Event Logger 
Event Logger Components 
Suggested Formats for Logging Data 
Network Management Layer Operation 
Down-line Load Operation 
Up-line Dump Operation 
Trigger Bootstrap Operation 
Loop Test Operation 
Node Level Testing 
Data Link Testing 
Change Parameter Operation 
Read Information Operation 
Zero Counters Operation 
NICE Logical Link Handling 
Algorithm for Accepting Version Numbers 
Return Code Handling 
Network Management Layer Messages 
NICE Function Codes 
Message and Data Type Format Notation 
Request Down-line Load Message Format 
Request Up-line Dump Message Format 
Trigger Bootstrap Message Format 
Test Message Format 
Change Parameter Message Format 
Read Information Message Format 
Zero Counters Message Format 
NICE System Specific Message Format 
NICE Response Message Format 
NICE Connect and Accept Data Formats 
Event Message Binary Data Format 

APPLICATION LAYER NETWORK MANAGEMENT FUNCTIONS 
Loopback Mirror Modules 
Loopback Mirror Operation 
Logical Loopback Message 
Connect Accept Data Format 
Command Message Format 
Response Message 

APPENDIX A NETWORK MANAGEMENT ENTITIES, PARAMETERS AND 

A.1 
A.1.1 
A.1.2 
A.2 
A.3 
A.3.1 
A.3.2 
APPENDIX 

COUNTERS: FORMATS AND DATA BLOCKS 
LINE Entity 
Line Parameters 
Line Counters 
LOGGING Entity 
NODE Entity 
Node Parameters 
Node Counters 

B MEMORY IMAGE FORMATS 

iv 

Page 

44 
44 
44 
45 
45 
46 
48 
48 
49 
50 
52 
55 
55 
56 
60 
61 
62 
62 
66 
67 
69 
69 
69 
70 
70 
71 
71 
71 
73 
74 
75 
75 
77 
77 
78 
78 
79 
79 
80 
82 
82 
82 
82 
82 
82 
83 

84 
87 
89 
91 
94 
96 
98 

103 
104 



CONTENTS (Cont.) 

Page 

APPENDIX C MEMORY IMAGE FILE CONTENTS 105 
106 
III 
113 
113 
113 
115 
123 
125 

APPENDIX D 
APPENDIX E 
APPENDIX F 
F.l 
F.2 
F.3 
APPENDIX G 
APPENDIX H 
APPENDIX I 

GLOSSARY 

FIGURE 1 
2 

3 
4 
5 
6 

7 

8 

NICE RETURN CODES WITH EXPLANATIONS 
NCP COMMAND STATUS AND ERROR MESSAGES 
EVENTS 
Event Class Definitions 
Event Definitions 
Event Parameter Definitions 
JULIAN HALF-DAY ALGORITHMS 
DMC DEVICE COUNTERS 
NCP COMMANDS SUPPORTING EACH NETWORK MANAGEMENT 
INTERFACE 

FIGURES 

126 

135 

Network Management Relation to DNA 6 
Network Management Layer Modules and Interfaces in a 
Single Node 8 
Event Logging Architectural Model 51 
Down-line Load File Access Operation 57 
Down-line Load Request Operation 59 
Examples of Node Level Testing Using a Loopback Node 
Name with and without the Loopback Mirror 64 
Examples of Node Level Logical Link Loopback Test 
with and without the Loopback Mirror 65 
Physical Link Loopback Tests and Command Sequences 
Effecting Them 67 

TABLES 

TABLE 1 NCP Commands 16 
40 
41 

2 Network Management Line States 
3 Line State Transitions 
4 Line Service States, Substates and Functions and 

Their Relationship to Line States 
5 DECnet Line Devices 
6 Line Parameters 
7 Line Counters 
8 Logging Parameters 
9 Node Parameters 

10 Node Counters 
11 Event Classes 
12 Events 

v 

46 
89 
91 
92 
96 

101 
103 
113 
114 





1.0 INTRODUCTION 

This document describes the structure, functions, operation, and 
protocols of Network Management. Network Management 1S that part of 
the DIGITAL Network Architecture that models the software that enables 
operators and programs to plan, control, and maintain the operation of 
centralized or distributed DECnet networks. DIGITAL Network 
Architecture (DNA) is the model on which DECnet network software 
implementations are based. Network software is the family of software 
modules, data bases, hardware components, and facilities used to tie 
DIGITAL systems together in a network for resource sharing, 
distributed computation, or remote system communication. 

DNA is a layered structure. Modules in each layer perform distinct 
functions. Modules within the same layer (either in the same or 
different nodes) communicate using specific protocols. The protocols 
specified in this document are the Network Information and Control 
Exchange (NICE) protocol, the Loopback Mirror protocol, and the Event 
Receiver protocol. 

Modules in different layers interface using subroutine calls or a 
similar system-dependent method. In this document, interface 
communications between layers are referred to as calls or requests 
because this is the most convenient way of describing them 
functionally. An implementation need not be written as calls to 
subroutines. Interfaces to other DNA layers are not specified in 
detail, however, Appendix I describes which Network Management user 
commands (Network Control Program) support each DNA interface. 

In this document network nodes are described by function as executor, 
command, host, and target. The executor is an active network node 
connected to one end of a line being used for a load, dump, or line 
loop test and is the node that executes requests. The command node is 
the node in which the Network Management request originates. The host 
is a node that provides a higher level service such as a file system. 
The target is a node that is to receive a load, loop back a test 
message, or generate a dump. Executor, command, and host nodes may be 
three different nodes, all the same node, or any combination of two 
nodes. A glossary at the end of this document defines many Network 
Management terms. 

This document describes commands that can be standardized across 
different DECnet implementations. An implementation may use only a 
subset of the commands described herein. Moreover, commands and 
functions specific to one particular operating system are not 
described. 

This document specifies the functional requirements of Network 
Management. Both algorithms and operational descriptions support this 
specification. However, an implementation is not required to use the 
same algorithms. It is only required to have the functions (or a 
subset of them) specified. 

1 



This is one of a series of functional specifications for the DIGITAL 
Network Architecture, Phase III. This document assumes that the 
reader is familiar with computer communications and DECnet. The 
primary audience for this specification consists of implementers of 
DECnet systems, but it may be of interest to anyone wishing to know 
details of DECnet structure. The other DNA Phase III functional 
specifications are: 

DNA Data Access Protocol (DAP) Functional Specification, Version 
5.6.0, Order No. AA-K177A-TK 

D =-::..;.N..:...:A_-::D::-=i~gL..:l=-· t~a:;:.=.l_..;;:.D~a:.....:t:....::a-=--.:::-_C=-o=-m:.;.:.::.;:;m~u..::..:n:....::i~c:....::a;:-t.=-l=-· o=-n=s~~M.:..:e::....:s;....:s=-a:.::...g,L..:;:....e--.~p. rot 0 col ( DDC M P) 
Functional Specification, version 4.l~0, Order No. 
AA-K175A-TK 

DNA Maintenance Operations Protocol (MOP) Functional 
Specification, version 2.1.0, Order No. AA-K178A-TK 

DNA Network Services 
3.2.0, Order No. 

(NSP) Functional 
AA-K176A-TK 

Specification, version 

DNA Transport Functional Specification, version 1.3.0, Order No. 
AA-K180A-TK 

DNA Session Control Functional Specification, version 1.0.0, 
Order No. AA-K182A-TK 

The DNA General Description (Order No. AA-K179A-TK) provides an 
overview of the network architecture and an introduction to each of 
the functional specifications. 

2 



2.0 FUNCTIONAL DESCRIPTION 

Network Management enables operators and programs to control and 
monitor network operation. Network Management helps the manager of a 
network to plan its evolution. Network Management also facilitates 
detection, isolation, and resolution of conditions that impede 
effective network use. 

Network Management provides user commands and capability to user 
programs for performing the following control functions: 

1. Loading remote systems. A system in one node can down-line 
load a system in another node in the same network. 

2. Configuring resources. A system manager can change the 
network configuration and modify message traffic patterns. 

3. Setting parameters. Line, node, and logging parameters (for 
example, node names) can be set and changed. 

4. Initiating and terminating network functions. A 
manager or operator can turn the network on or 
perform loopback tests and other functions. 

system 
off and 

Network Management also enables the user to monitor network functions, 
configurations, and states, as follows: 

1. Dumping remote systems. A system in one node can up-line 
dump a system to another node in the same network. 

2. Examining configuration status. Information about lines and 
nodes can be obtained. For example, an operator can display 
the states of lines and nodes or the names of adjacent nodes. 

3. Examining parameters. Line and node parameters (for example, 
timer settings, line type, or node names) can be read. 

4. Examining the status of network operations. An operator can 
monitor network operations. For example, the operator can 
find out what operations are in progress and whether any have 
failed. 

5. Examining performance variables. A system manager can 
examine the contents of counters in lower DNA layers to 
measure network performance. In addition, Network 
Management's Event Logger provides automatic logging of 
significant network events. 

Besides controlling and monitoring the day-to-day operation of the 
network, the functions listed above work to collect information for 
future planning. These functions furnish basic operations 
(primitives) for detecting failures, isolating problems, and repairing 
and restoring a network. 

2.1 Design Scope 

Network Management 
requirements: 

functions satisfy the following design 

1. Common interfaces. Common interfaces are provided to 
operators and programs, regardless of network topology or 
configuration, as much as possible without impacting the 

3 



quality of existing products. There is a compromise between 
the compatibility of network commands across heterogeneous 
systems and the compatibility within a system between network 
and other local system commands. 

2. Subsetability. Nodes are able to support a subset of Network 
Management components or functions. 

3. Ease of use. Invoking and understanding Network Management 
functions are easy for the operator or user programmer. 

4. Network efficiency. Network Management is both processing 
and memory efficient. It is line efficient where this does 
not conflict with other goals. 

5. Extensibility. There is accommodation for future, additional 
management functions, leaving earlier functions as a 
compatible subset. This specification serves as a basis for 
building more sophisticated network management programs. 

6. Heterogeneity. Network Management operates across a mixture 
of network node types, communication lines, topologies, and 
among different versions of Network Management software. 

7. Robustness. The effects of errors such as operator input 
errors, protocol errors, and hardware errors are minimized. 

8. Security. Network Management supports the existing security 
mechanisms in the DIGITAL Network Architecture (for example, 
the access control mechanism of the Session Control layer). 

9. Simplicity. Complex algorithms and data bases are avoided. 

10. 

Functions provided elsewhere in the architecture are not 
duplicated. 

Support of diverse management policies. Network 
covers a range between completely centralized 
distributed management. 

Management 
and fully 

The following are not within the scope of Version 2.0.0 of Network 
Management: 

1. Accounting. This specification does not provide for the 
recording of usage data that would be used to keep track of 
individual accounts for purposes of reporting on or charging 
users. 

2. Automation. This specification does not provide for 
automatic execution of complex algorithms that handle network 
repair or reconfiguration. More automation can be expected 
in future revisions of this specification. 

3. Protection against malicious use. There is no foolproof 
protection against malicious use or gross errors by operators 
or programs. 

4. Upward compatibility of user interfaces. The interfaces to 
the user layer are not necessarily frozen with this version. 
Observable data may change with the next version. Because of 
this, a function such as node-up keyed to a spooler in an 
implementation would not be wise. 

4 



2.2 Relationship to DIGITAL Network Architecture 

DIGITAL Network Architecture (DNA), the model upon which DECnet 
implementations are based, outlines several functional layers, each 
with its own specific modules, protocols, and interfaces to adjacent 
layers. Network Management modules reside in the three highest 
layers. 

The general design of DNA is as follows in order from the highest to 
the lowest layer: 

1. The User layer. The User layer is the 
supports user services and programs. 
Program (NCP) resides in this layer. 

highest layer. It 
The Network Control 

2. The Network Management layer. The Network Management layer 
is the only one that has direct access to each lower layer 
for control purposes .. Modules in this layer provide user 
control over, and access to, network parameters and counters. 
Network Management modules also perform up-line dumping, 
down-line loading, and testing functions. 

3. The Network Application layer. Modules in the Network 
Application layer support I/O device and file access 
functions. The Network Management module within this layer 
is the Loopback Mirror, providing logical link loopback 
testing. 

4. The Session Control layer. The Session Control layer manages 
the system-dependent aspects of logical link communication. 

5. The Network Services layer. The Network Services layer 
controls the creation, maintenance, and destruction of 
logical links, using the Network Services Protocol and 
modules. 

6. The Transport layer. Modules in the Transport layer route 
messages between source and destination nodes. 

7. The Data Link layer. 
communications over a 
protocol, for example, 
Message Protocol (DDCMP). 

The Data Link layer manages the 
physical link, uSlng a data link 
the Digital Data Communications 

8. The Physical Link layer. The Physical Link layer provides 
the hardware interfaces (such as EIA RS-232-C or CCITT V.24) 
to specific system devices. 

Figure 1 shows the relationship of the Network Management layer to the 
other DNA layers. 

5 



User Modules 

Physical Link Modules 

Network 

Management Laver 

Network 

Application Laver 

Session Control Laver 

Network Services Laver 

Transport Laver 

Data Link Laver 

Phvsical Link Laver 

Horizontal arrows show direct access for control and examination of parameters, counters, etc. Vertical and curved arrows show interfaces 
between layers for normal user operations such as fde acces~, down·llne load, up·line dump, end·lo·end looping, and logical link usage. 

Figure 1 Network Management Relation to DNA 

2.3 Functional Organization within DIGITAL Network Architecture 

The functional components of Network Management are as follows: 

User layer components 

Network Control Program (NCP). The Network Control Program 
enables the operator to control and observe the network from a 
terminal. Section 3 specifies NCP. 

Network Management layer components 

Section 4 specifies the Network Management layer components and 
their operation. Figure 2 shows the relationship of Network 
Management layer modules in a single node. 

Network Management Access Routines. These routines provide user 
programs and NCP with generic Network Management functions, and 
either convert them to Network Information and Control Exchange 
(NICE) protocol messages or pass them on to the Local Network 
Management Function. 

6 



Network Management Listener. The Network Management Listener 
receives Network Management commands from the Network Management 
level of remote nodes, via the NICE protocol. In some 
implementations it also receives commands from the local Network 
Management Access Routines via the NICE protocol. It passes 
these requests to the Local Network Management Function. 

Local Network Management Functions. These take function requests 
from the Network Management Listener and the Network Management 
Access Routines and convert them to system dependent calls. They 
also provide interfaces to lower level modules directly for 
control purposes. 

Line Watcher. The Line Watcher is a module in a node that can 
sense service requests on a line from a physically adjacent node. 
It controls automatically-sensed down-line load or up-line dump 
requests. 

Line Service Functions. These provide the Line Watcher and the 
Local Network Management Functions with line services needed for 
service functions that require a direct interface to the data 
link layer (line level testing, down-line loading, up-line 
dumping, triggering a remote system's bootstrap loader and 
setting the fine state). The Line Service module maintains 
internal states as well as line substates. 

Event Logger. The Event Logger provides the capability of 
logging significant events for operator intervention or future 
reference. The process concerned with the event (for example, 
the Transport module) provides the data to the Event Logger, 
which can then record it. 

Network Application Layer Components 

Loopback Mirror. Access and service routines communicate using 
the Logical Loopback Protocol to provide node level loopback on 
logical links. Section 5 describes this Network Application 
layer component. 

Object Types 

The Network 
object types. 

Management architecture requires three 
Each has a unique object type number. 

The object types and numbers are: 

Type Object Type Number 

Network Management 
Listener 19 

Loopback Mirror 25 

Event Receiver 26 

7 

separate 



NCP 

~------------

Line 

Watcher 

Network 
NICE 

Management Protocol 
commands .... - - - ----
to other 
nodes 

----
~ 

System- ~ 
Independent 
Function 
Requests 

Network 
Management 

Access Routines 

User 
Program 

NICE 

i-P..!:o..!.o.£~ 
Network 

Management 

Listener 

User Layer - - --

Network 
Management 

... - - - - commands 
from other 
nodes 

Local Network Management Functions 

Line Service 

Functions 

! Events to 

~~r_n~~:~ __ ----"""f4-__ Events from 

other nodes 

Event Logger 

Network 
Management 
Layer 

-----~------- - - - - - - .1- - - - - - - - - - - -

Service interface to Data 
Link Layer (down-line 
load, up-line dump, line 
tests, line state change) 

Control over lower level ... 
functions (examine line 
state, turn on NSP, etc.) 

System-dependent calls to 
application layer and local 
operating system functions 
(file access, logical link 
loopback, timer setting, etc.) 

LatNer Layers 

Control interface to read 
event queues 

~------------------------------------------------------------------------------------------------------------

LEGEND: 

NCP - Network Control Program 
NICE - Network Information and 

Control Exchange 

Figure 2 
and 

+ - Vertical arrowheads indicate interfaces for function requests 

~ - Horizontal arrowheads indicate control interfaces 

Network Management Layer Modules 
Interfaces in a Single Node 

8 



3.0 NETWORK CONTROL PROGRAM (NCP) 

This section is divided into three parts. Section 3.1 describes the 
NCP functions. Section 3.2 provides rules for the operation of NCP, 
including such topics as input and output formatting, access control, 
and status and error messages. Section 3.3 presents a detailed 
description of all the NCP commands. 

3.1 Network Control Program Functions 

There are two types of NCP commands: 

1. Internal commands. These are directed to NCP itself and 
cannot be sent to remote nodes. Theie are the SET and DEFINE 
EXECUTOR NODE node-id, CLEAR and PURGE EXECUTOR NODE, and 
SHOW QUEUE commands; the TELL prefix; and the EXIT command 
(Section 3.2). 

2. Commands that use the Network Management interface. These 
use the Network Management Listener, via the Network 
Information and Control Exchange (NICE) protocol, when sent 
across logical links to remote nodes. NCP commands directed 
to the local node have the option of either using the Network 
Management Listener, via the Network Management Access 
Routines and the NICE protocol, or of passing requests 
directly to the Local Network Management Function from the 
Network Management Access Routines. The method chosen is 
implementation-specific. 

The NCP command language enables an operator to perform the following 
network functions: 

• Changing parameters (Section 3.1.1) 

• Gathering information (Section 3.1.2) 

• Down-line loading (Section 3.1.3) 

• Up-line dumping (Section 3.1.4) 

• Testing line and network (Section 3.1.5) 

• Zeroing counters (Section 3.1.6) 

3.1.1 Changing Parameters - The parameters are line, node, or logging 
options specifically described in Appendix A. 

Some examples of changing parameters are: 

• Setting a line state to ON 

• Changing a node name associated with a node address 

• Setting the routing cost for a line 

• Setting a node to be notified of certain logged events 

9 



Parameters may be set either as dynamic values in volatile memory 
using the SET command or as permanent values in a mass-storage default 
data base using the DEFINE command. The volatile data base is lost 
when the node shuts down; the permanent data base remains from one 
system initialization to the next. Parameters can be either status, 
such as line state, or characteristics that are determined by SET, 
DEFINE, CLEAR, and PURGE commands. Characteristics are static in the 
sense that once set, either at system generation time or by an 
operator, they remain constant until cleared or reset. Status 
consists of dynamic information (such as line state) that changes 
automatically when functions are performed. 

Permanent values take effect whenever the permanent data base is 
re-read. The timing of the values' taking effect is 
implementation-dependent. Volatile values take effect immediately. 

Setting line states does not change line ownership, which is Transport 
or its equivalent. Line states can be set, however, to control the 
use of the line by its owner. To Transport, the line is either OFF or 
ON. To Network Management, a line can also be in a SERVICE state, a 
state which precludes normal traffic, and which temporarily prevents 
Transport from using the line. The SERVICE state is used for loading, 
dumping, and line testing. The ON and SERVICE states have various 
substates that inform the operator what function the line is 
performing. When states are displayed, the substates are indicated as 
a tag on the end of the operator-requested state. 

3.1.2 Gathering Information - The information gathered includes 
characteristics, status, and counters associated with the line, 
logging, and node entities (detailed in Appendix A). Examples of 
gathering information are: 

• Displaying the state of a line 

• Reading and then zeroing line counters 

• Displaying characteristics of all reachable nodes 

• Showing the status of all commands in progress at a node 

Characteristics and status are described in Section 3.1.1. 

Counters are error and performance statistics such as messages sent 
and received, time last zeroed, and maximum number of logical links in 
use. 

3.1.3 Down-line Loading - Down-line loading is the process of 
transferring a memory image from a file to a target system's memory. 
This requires that the executor, the node executing the command, have 
direct access to the line to the target. The file may be located at 
another remote node, in which case the executor uses its 
system-specific remote file access procedures. The executor supports 
or has access to a data base of defaults for a load request. Section 
4.2.1 describes the down-line load operation in the Network Management 
layer. 

3.1.4 Up-line Dumping - Up-line dumping is the process of 
transferring the dump of a memory image from a target system to a 
destination file. Section 4.2.2 describes the up-line dump operation. 

10 



3.1.5 Testing Line and Network - Testing line and network can be 
accomplished by message looping at both the line and node levels. 
Testing requires receiving a transmitted message over a particular 
path that is looped back to the local node by either hardware or 
software. 

Node level testing uses logical links and normal line usage. The 
lines involved are in the ON state, and the Session Control, Network 
Services, and Transport layers are used. 

During line level testing, the line being tested is in the SERVICE 
state; normal usage is precluded. Network Management accesses the 
Data Link layer directly, bypassing intermediate layers. Section 
4.2.4 describes line and network testing. 

3.1.6 Zeroing Counters - Using NCP, an operator can set line and node 
counters to zero. 

3.2 Network Control Program Operation 

This section describes general rules concerning the operation of NCP. 

The SET, DEFINE, CLEAR, and PURGE commands must successfully act on 
either all parameters entered or on none of them. One parameter per 
command is all that can be expected to take effect on any system, 
although a system may allow some parameters to be grouped on the same 
command. 

3.2.1 Specifying the Executor - Since a command does not have to be 
executed at the node where it is typed, the operator must be able to 
designate on what node the command is to be processed. The operator 
has two options for controlling this: 

1. Specifying a default executor for a set of commands 

2. Naming the executor with the commad 

At NCP start-up time, the default executor is the node on which NCP is 
running or the node that was previously defined with the DEFINE 
EXECUTOR NODE command. The default executor is changed using the SET, 
DEFINE, CLEAR, or PURGE EXECUTOR NODE commands (see Sections 3.3.1.2 
and 3.3.2.1). 

with any command, the operator can override the default executor by 
specifying which node is to execute the command. This is accomplished 
by entering "TELL node-identification" as a prefix to the command. 
The specified node identification applies only to the one command and 
does not affect the default executor or any subsequent commands. 

11 



3.2.2 Program Invocation, Termination, and Prompting - The way NCP is 
invoked or terminated is system-dependent. If a name is used for the 
program, it must be "NCP.II The EXIT command terminates NCP. 

The following rules apply to the initial NCP prompt: 

For an NCP that accepts only a single outstanding command, the p~ompt 
is always the same: 

NCP> 

For an NCP that accepts several outstanding commands where it is 
obvious that NCP is prompting, the prompt is: 

tn> 

For the multiple-outstanding-command case where it is not obvious that 
NCP is prompting, the prompt is: 

NCf'tn> 

In any case, n is the command's request number, which will identify 
the output for the command. 

An implementation that cannot integrate the request number with the 
prompt, can display the request number when the command is accepted. 

3.2.3 Privileged Commands - Network and 
determine which commands should be limited 
exact determination of privilege is an 
function. Privilege is generally determined 
according to the privileges of the local user 
provided at logical link connection time. 

system planners must 
to privileged users. The 

implementation-dependent 
in a system-specific way 
or the access control 

3.2.4 Input Formats - Command input is in the form of arguments 
delimited by tabs or blanks. Either a single or multiple tab or blank 
may be used to delimit arguments. 

Null command lines. Null command lines will result in a command 
prompt being re-issued. 

Node identification and access control. Nodes are identified by 
address or name. The primary identification is the address (a Session 
Control requirement). The keyword EXECUTOR can be substituted for 
NODE executor~node-identification. If a node identification 
represents a node to be connected to, access control information may 
be necessary or desired. If so, the access control follows the node 
identification, the maximum length of each field being 39 bytes. 
Specific systems may limit the amount of access control information 
they will accept. The format is: 

{

LOOP NODE } 
SET EXECUTOR NODE node-id [USER user-id] [PASSWORD password] [ACCOUNT account] 

TELL 

where: 

LOOP NODE node-id Is an NCP command used to initiate a node 
loopback test (Section 3.3.6.2). The 
access control applies only to the command. 

12 



SET EXECUTOR NODE node-id Is an NCP command used to set the node 
identification and access control for the 
default executor node (Section 3.3.1.1). 
The access control prevails until changed 
by another SET EXECUTOR command or a TELL 
or LOOP NODE command. 

TELL node-id Is an NCP command prefix used to pass one 
command and access control information to a 
specific node. The access control applies 
only to that one command. 

[USER user-id] Is access control information that provides 
the identification of the user. 

[PASSWORD password] 

[ACCOUNT account] 

For example: 

Is access control. information furnishing a 
password. 

Is access control information supplying an 
account identification. 

TELL BOSS USER (211,1] PASSWORD secret ACCOUNT x~z CLEAR KNOWN LINES 

SET EXECUTOR NODE 97 ACCOUNT x~z 

String input. String input (every argument that is not a node name, 
keyword or number) is defined by the executor node and the length 
limitations of the NICE protocol. For consistency from one 
implementation to another, the following rules apply to NCP's parsing 
algorithm for these types of arguments: 

• Implementations will provide both a transparent and a 
non-transparent technique for specifying these arguments. 

• The transparent technique will act on any string of characters 
enclosed in quotation marks ("XXXXX"). A quote within the 
string will be indicated by a double quotation mark 
( II XXX II II XX ") . 

• The non-transparent technique will act on any string of 
characters that does not contain blanks or tabs. An exception 
to this occurs where it is possible to recognize syntactically 
that blanks or tabs are not intended as delimiters. 

Keywords. Implementations must accept keywords in their entirety. 
However, the user may abbreviate keywords when typing them in. The 
minimum abbreviation is system-specific. 

The command formats specified in this document are to be the formats 
used for NCP input. They may be modified only in the sense that 
unsupported commands or options may be left out. It is permissible to 
prefix a command with an identifier such as OPR NCP. However, this 
prefix should not affect the remainder of the command syntax or 
semantics. Optional system-specific guide words such as TO or FOR can 
be added to NCP commands if they do not interfere with defined key 
words. 

The NCP command language does not use a question mark as a syntactic 
or semantic element. The question mark is left available for use 
according to operating system conventions. 

An implementation may recognize locally defined names for lines or 
accept other non-standard line identifications as string inputs. 

13 



3.2.5 Output Characteristcs - The output format specified in this 
document is to be considered the basic pattern for all NCP output. 
Implementations may differ as long as common information is readily 
identifiable. The following example shows three commands and their 
resultant output. User-furnished information is underlined to 
distinguish it from the program output. 

t23)LOAD NODE MANILA 

t24)LOAD NODE TOKYO 

t25) 
REQUEST t24; LOAD FAILED, LINE COMMUNICATION ERROR 
SHOW QUEUE 
REQUEST t25; SHOW QUEUE 

REQUEST 
NUMBER EXECUTOR COMMAND STATUS 

21 6 (HNGKNG) SHOW COMPLETE 
22 6 (HNGKNG) SET COMPLETE 
23 6 (HNGKNG) LOAD IN PROGRESS 
24 6 (HNGKNG) LOAD FAILED 
25 N/A SHOW IN PROGRESS 

t26) 
REQUEST t23, LOAD COMPLETE 

Passwords are not displayed. Instead, an ellipsis ( ... ) indicates 
that a password is set. Section 3.3.8 provides details concerning 
output for requested information (SHOW and LIST commands) . 

3.2.6 Status and Error Messages - Status and error messages inform 
the NCP user of the consequence of a command entry. NCP gives each 
command a request number, which it displays with status and error 
messages. NCP displays status or error messages when the status of 
the command changes as long as the user does not begin to type a new 
command. The general form of status and error messages is: 

REQUEST #n; 

where: 

n 

entity 

command 

status 

error-message 

[entity,] command status [,error-message] 

Is the command's request number. 

Is a specific entity described in Appendix A. 

Is a command indicator. 

Is the status of the operation, one of COMPLETE, 
FAILED, or NOT ACCEPTED. If it is COMPLETE, there 
is no error-message. If it is FAILED or NOT 
ACCEPTED, there is an error-message. 

Is the reason for a failure. 

Commands that act on plural entities (for example, SET KNOWN LINES) 
have a separate status message for each individual entity and one for 
the entire operation. In this case, each entity is identified with 
its own status message. 

14 



In an NCP that allows only one command at a time, COMPLETE messages 
are not displayed, and the request number is not included. An example 
of output for a command that has failed follows: 

LOAD FAILED, LINE COMMUNICATION ERROR 

NCP prints unrecognized return codes or error details as decimal 
numbers. For example: 

Remuest t5~ SHOW failed, Management return t-34 
SET FAILED, parameter not applicable, detail t2300 

Error messages are either those from the set of NCP error messages in 
Appendix E, the NICE error returns in Appendix D or implementation 
specific. 

3.3 Network Control Program Commands 

This section describes NCP commands. 

The following symbols are used in NCP command syntax descriptions: 

[ ] 

UPPER CASE 

lower case 

spaces 

hyphens 

{ } 

< 

Brackets indicate optional input. In most cases 
these are the entity parameters and entity 
parameter options for a command. 

Upper case letters signify actual input, that is 
keywords that are part of NCP commands. 

Lower case letters in a command string indicate 
a description of an input variable, not the 
actual input. 

Spaces between variables (not keywords) 
command string delimit parameters. 

Multi-word variables are hyphenated. 

in a 

Braces indicate that any of 
parameters is applicable. 

the enclosed 

This designates keywords or messages that may be 
returned on a SHOW command. This is used in 
Appendix I. 

All NCP commands have the following common syntax: 

command entity parameter-option(s) 

where: 

command 

entity 

parameter­
option(s) 

Specifies the operation to be performed, such 
as SHOW or LOAD. 

Specifies the entity (component) to which the 
operation applies, such as LINE or KNOWN 
NODES. 

Qualifies the command by providing further 
specific information. 

15 



Table I lists the complete set of NCP commands specified in this 
document. Details concerning options and explanations of each command 
follow in the text. Appendix I lists the NCP commands supporting each 
Network Management interface. 

Command Entity 

{
SET }EXECUTOR 
DEFINE 

{
LINE line-id} 
KNOWN LINES 

Table I 
NCP Commands 

NODE 

ALL 
CONTROLLER 
COST 

Parameter 

COUNTER TIMER 
DUPLEX 
NORMAL TIMER 
SERVICE 
SERVICE TIMER 
STATE 
TRIBUTARY 
TYPE 

{
LOGGING sink-type} EVENT event-list 
KNOWN LOGGING KNOWN EVENTS 

* {NODE nOde-id} 
KNOWN NODES 

** 

Legend: 

NAME 
STATE 

ADDRESS 
ALL 
.BUFFER SI ZE 
COUNTER TIMER 
CPU 
DELAY FACTOR 
DELAY WEIGHT 
DUMP ADDRESS 
DUMP COUNT 
DUMP FILE 
HOST 
IDENTIFICATION 
INACTIVITY TIMER 
INCOMING TIMER 
LINE 
LOAD FILE 
MAXIMUM ADDRESS 
MAXIMUM BUFFERS 
MAXIMUM COST 
MAXIMUM HOPS 
MAXIMUM LINES 
MAXIMUM LINKS 
MAXIMUM VISITS 

destination-node 

controller-mode 
cost 
seconds 
duplex-mode 
milliseconds 
service-control 
milliseconds 
line-state 
tributary-address 
line-type 

[source-qual] [sink-node] 

sink-name 
sink-state 

node-address 

memory-units 
seconds 
cpu-type 
number 
number 
number 
number 
file-id 
node-id 
id-string 
seconds 
seconds 
line-id 
file-id 
number 
number 
number 
number 
number 
number 
number 

* EXECUTOR may be substituted for NODE node-ide 

** The node-id with the LINE parameter is a name. With all other 
parameters, it can be either a name or address. 

! Used only with NODE node-ide 

(continued on next page) 
16 



Command Entity 

* {NODE node- id} 
KNOWN NODES 

{CLEAR} EXECUTOR 
LPURGE 

{
LINE I ine- id} 
KNOWN LINES 

Table I (Cont.) 
NCP Commands 

Parameter 

NAME 
OUTGOING TIMER 
(CONT. ) 
ROUTING TIMER 
SECONDARY DUMPER 
SECONDARY LOADER 
SERVICE DEVICE 
SERVICE LINE 
SERVICE PASSWORD 
SOFTWARE 

IDENTIFICATION 
SOFTWARE TYPE 
STATE 
TERTIARY LOADER 
TYPE 

NODE 

ALL 
COUNTER TIMER 

node-name 
seconds 
RETRANSMIT FACTOR number 
number 
file-id 
file-id 
device-type 
line-id 
password 

file-id 
program-type 
node-state 
file-id 
node-type 

{
LOGGING sink-type} EVENT event-list 
KNOWN LOGGING KNOWN EVENTS 

[source-qual] [sink-node] 

{CLEAR} 
LPURGE 

TRIGGER 

* {NODE node- id} 
LKNOWN NODES 

{
NODE 
VIA 

nOde-id} 
line-id 

NAME 

ALL 
COUNTER TIMER 
CPU 
DUMP ADDRESS 
DUMP COUNT 
DUMP FILE 
HOST 
IDENTIFICATION 
INCOMING TIMER 
LINE 
LOAD FILE 
NAME 
OUTGOING TIMER 
SECONDARY DUMPER 
SECONDARY LOADER 
SERVICE DEVICE 
SERVICE LINE 
SERVICE PASSWORD 
SOFTWARE IDENTIFICATION 
SOFTWARE TYPE 
TERTIARY LOADER 

[[SERVICE] PASSWORD password] 
! [VIA line-id] 

(continued on next page) 

17 



Command Entity 

LOAD {NODE nOde-id} 
VIA line-id 

DUMP ~ODE nOde-id} 
VIA line-id 

LOOP {LINE line-id} 
* NODE node-id 

SHOW QUEUE 

{LIST} rCTIVE LOGGING } 
SHOW KNOWN LOGGING 

LOGGING sink-type 

"'ACTIVE LINES 
~ 

ACTIVE NODES 
EXECUTOR 

~ KNOWN LINES 
~ 

KNOWN NODES 
LINE line-id 
LOOP NODES 
NODE node-name 

~ 

ZERO {]INE line-id} * NODE node-id 
KNOWN LINES 

NOWN NODES 

EXIT 

Table 1 (Cont.) 
NCP Commands 

Parameter 

[A'oDRESS 

[FROM 
[HOST 
[NAME 
[SECONDARY [LOADER] 
[SERVICE DEVICE 
[ [SERVICE] PASSWORD 
[SOFTWARE 

IDENTIFICATION 
[SOFTWARE TYPE 
[TERTIARY [LOADER] 
! [VIA 

[DUMP ADDRESS 
[DUMP COUNT 
[SECONDARY [DUMPER] 
[SERVICE DEVICE 
[ [SERVICE] PASSWORD 
[TO 
[VIA 

[COUNT 
[WITH 
! [VIA 

{jVENTS } STATUS 
CHARACTERISTICS 

UMMARY 

{CHARACTERI STICS} 
COUNTERS 
STATUS 
SUMMARY 

COUNTERS 

node-address] 
[CPU cpu-type] 
load-file] 
node-id] 
node-name] 
file-id] 
device-type] 
password] 

software-id] 
program-type] 
file-id] 
line-id] 

number] 
number] 
file-id] 
device-type] 
password] 
dump-file] 
line-id] 

count] 
block-type] 
length] 

{SINK NODE nOde-id} 
KNOWN SINKS 

3.3.1 SET and DEFINE Commands - These commands modify volatile and 
permanent parameters. The SET command modifies the volatile data 
base1 the DEFINE command changes the permanent data base. Section 
4.2.5 describes ~he change parameter operation. 

18 



The general form of the commands is: 

{
SET } 

entity parameter 
DEFINE 

Entity is one of the following: 

EXECUTOR 
LINE line-identification 
LOGGING sink-type 
NODE node-identification 
KNOWN LINES 
KNOWN LOGGING 
KNOWN NODES 

Parameter is one (or more, if allowed by the implementation) of the 
parameter options defined for the specified entity. 

3.3.1.1 SET and DEFINE EXECUTOR NODE destination-node - The SET and 
DEFINE EXECUTOR NODE commands, processed by NCP, change the executor 
node for subsequent commands. Access control information may be 
supplied as described in Section 3.2.4. 

3.3.1.2 SET and DEFINE KNOWN Entity Commands - These commands set 
volatile and permanent parameters for each one of the specified 
entities known to the system. The format is: 

{ SET } KNOWN plural-entity parameter 
DEFINE 

Plural entity is one of LINES, LOGGING or NODES. 

The parameters are the same as for the SET and DEFINE entity commands 
(Sections 3.3.1.3, 3.3.1.4, and 3.3.1.5). However, DEFINE KNOWN 
plural-entity ALL has no meaning. SET KNOWN plural-entity ALL loads 
all permanent entity parameters into the volatile data base. 

3.3.1.3 SET and DEFINE LINE Commands - These commands 
and permanent line parameters for the line identified. 

set volatile 
The format is: 

{
SET } 

LINE line-id 
DEFINE 

,ALL 
CONTROLLER 
COST 
COUNTER TIMER 
DUPLEX 
NORMAL TIMER 
SERVICE 
SERVICE TIMER 
STATE 
TRIBUTARY 
TYPE 

19 

controller-mode 
cost 
seconds 
duplex-mode 
milliseconds 
service-control 
milliseconds 
line-state 
tributary-address 
line-type 



where: 

line-id 

ALL 

Is as specified in Section A.l. 

with SET, puts permanent line parameters 
associated with the line in the volatile 
data base. With DEFINE, creates a 
permanent data base entry for one line. 

CONTROLLER controller-mode Sets the controller mode for the line. 

COST cost 

COUNTER TIMER seconds 

DUPLEX duplex-mode 

NORMAL TIMER milliseconds 

The values for controller mode are as 
follows: 

LOOPBACK 

NORMAL 

This is 
controlled 
controller. 

for software 
loopback of the 

This is for normal controller 
operating mode. 

The command automatically turns the line 
OFF before setting the mode and back to 
the original state after. 

Sets the routing line cost. The cost is a 
decimal number in the range 1 to 25. The 
cost parameter is a positive integer value 
associated with using a line and is used 
in the Transport routing algorithm 
(Transport Functional Specification). 

Sets a timer whose expiration causes a 
line counter logging event. Table 7 lists 
the line counters. These counters 
constitute the data for certain logged 
events (Table 12). The line counters are 
recorded as data in the event and then 
zeroed. Seconds is specified as a decimal 
number in the range 1-65535. 

Sets the hardware duplex mode of the line. 
The possible modes are: 

FULL Full-duplex 

HALF Half-duplex 

Specifies the maximum amount of time 
allowed to elapse before a retransmission 
is necessary. This is used for normal 
operation of the line. Timing is 
implementation-dependent. This timer 
applies to the use of the data link 
protocol (for example, DDCMP). 

20 



SERVICE service-control Specifies whether or not the service 
operations (loading, dumping, line 
loopback testing) are allowed for the 
line. The service-control values are as 
follows: 

ENABLED 

DISABLED 

The line may be put into 
SERVICE state and service 
functions performed. 

The line may not be put into 
SERVICE state and service 
functions may not be 
performed. 

SERVICE TIMER milliseconds Specifies the maximum amount of time 
allowed to elapse before a receive request 
completes while doing service operations 
on the line. Service operations are 
down-line load, up-line dump, or line loop 
testing. The timer value is an integer 
number in the range 1-65535. This timer 
applies to the use of the service protocol 
(for example, MOP). 

STATE line-state Sets the line's operational state at the 
executor node. The possible states are as 
follows: 

ON The line is available to its 
owner for normal use, with the 
exception of temporary overrides 
for service functions. 

OFF The line is not used by any 
network or network-related 
software. The line is 
functionally non-existent. 

SERVICE This state applies only to the 
volatile data base (SET command) . 
The line is available for active 
service functions: load, dump, 
and line loop. The line can 
provide passive loopback - direct 
line software-looped testing 
(Figure 8) - if no active service 
function is in progress. 

CLEARED This state applies only to the 
permanent data base (DEFINE 
command). A line in this state 
has space reserved in system 
tables but has no other databases 
or parameters in volatile memory. 
This state is only applicable in 
systems that can implement it. 

If the line is set to its existing state a 
null operation (NaP) results. 

21 



NOTE 
An implementation may choose to effect 
service functions in the ON state, as 
temporary overrides to normal traffic. 
In this case, error messages must 
clearly indicate when a line is in a 
temporary service condition. 

TRIBUTARY tributary-address Sets the physical tributary address of the 
line. The tributary address is a decimal 
number in the range 0-255. It reflects 
the bit setting of the hardware 
switch-pack for the tributary. 

TYPE line-type Sets up the line for the data 
protocol operation together with 
DUPLEX option. Line type is one of 
following: 

link 
the 
the 

POINT For a point to point line 
CONTROL For a multipoint control 

station 
TRIBUTARY For a multipoint tributary 

3.3.1.4 SET and DEFINE LOGGING Commands - This set of commands is 
used to control event sinks (where events are logged) and event lists 
(that control which events get logged). Appendix F specifies events. 
The command format is: 

{
SET } 

LOGGING sink-type 
DEFINE 

where: 

sink-type 

[sink-node] 

EVENT event-list 
KNOWN EVENTS 

[source-qual] [sink-node] 
[source-qual] [sink-node] 

NAME sink-name 
STATE sink-state 

Is one of CONSOLE, FILE, or MONITOR. 
Determines the ultimate sink for events. 
Section A.2 specifies the sink-type format. 

Specifies a node that receives events. 
is of the form: 

SINK NODE node-id 
or 

SINK EXECUTOR 

It 

This option can either precede or follow 
KNOWN EVENTS or EVENT event-list. The node 
identification is specified in Section A.2. 
If a sink node is not supplied, the default 
is executor. 

22 



[source-qualifier] 

EVENT event-list 

NAME sink-name 

KNOWN EVENTS 

STATE sink-state 

Selects a specific entity for certain event 
classes. It has the form: 

LINE line-id 
or 

NODE node-id 

This option can either precede or follow 
KNOWN EVENTS or EVENT event-list. 

Enables the recording of the events 
specified by the event list. The event 
list consists of event class.event type(s). 
The types (Table 12) are specified in 
ranges using hyphens and in lists using 
commas. For example: 

3.0-2 
4.1-4,8,10 
5.3-4,9 
6.1,3,5 

wild card notation indicates all types of 
events for a particular class. For 
example: 

3.* 

Establishes device or file names for sink 
types CONSOLE and FILE, respectively. It 
specifies a process identification for a 
MONITOR. 

Enables the recording of all events known 
to the executor node for the specified sink 
node. 

Controls the operation 
specified by sink type. 
values of sink state are: 

of the sink 
The possible 

ON The sink is available for receiving 
events. 

OFF The sink is not available and any 
events destined for it should be 
discarded. 

HOLD The sink is temporarily unavailable 
and events should be queued. 

The following is an example of the SET LOGGING command: 

SET LOGGING CONSOLE SINK ~ODE MANILA EVENT 6.2 LINE KDZ-O-l.4 

23 



3.3.1.5 SET and DEFINE NODE Commands - These commands set volatile or 
permanent parameters for a node. Certain parameters can be set only 
for the executor node or for adjacent nodes. See Table 9. The format 
for the command is: 

{
SET } 

NODE 
DEFINE 

node-id 

where: 

node-id 

ADDRESS node-address 

ALL 

ADDRESS 
ALL 
BUFFER SIZE 
COUNTER TIMER 
CPU 
DELAY FACTOR 
DELAY WEIGHT 
DUMP ADDRESS 
DUMP COUNT 
DUMP FILE 
HOST 
IDENTIFICATION 
INACTIVITY TIMER 
INCOMING TIMER 
LINE 
LOAD FILE 
MAXIMUM ADDRESS 
MAXIMUM BUFFERS 
MAXIMUM COST 
MAXIMUM HOPS 
MAXIMUM LINES 
MAXIMUM LINKS 
MAXIMUM VISITS 
NAME 
OUTGOING TIMER 
RETRANSMIT FACTOR 
ROUTING TIMER 
SECONDARY DUMPER 
SECONDARY LOADER 
SERVICE DEVICE 
SERVICE LINE 
SERVICE PASSWORD 
SOFTWARE 

IDENTIFICATION 
SOFTWARE TYPE 
STATE 
TERTIARY LOADER 
TYPE 

node-address 

memory-units 
seconds 
cpu-type 
number 
number 
number 
number 
file-id 
node-id 
id-string 
seconds 
seconds 
line-id 
file-id 
number 
number 
number 
number 
number 
number 
number 
node-name 
seconds 
number 
seconds 
file-id 
file-id 
device-type 
line-id 
password 

software-id 
program-type 
node-state 
file-id 
node-type 

Specifies node name or node address 
(Section A.3). In some cases, noted 
below, the node identification must be a 
node name. EXECUTOR can be substituted 
for NODE executor-node-identification. 

Sets the address of the executor node. 
This cannot be used to set the address of 
any other node. 

With SET this moves all parameters 
associated with the node identified from 
the permanent data base into the volatile 
data base. With DEFINE it creates a 
permanent data base entry for the node 
identified. 

24 



BUFFER SIZE memory-units 

COUNTER TIMER seconds 

CPU cpu-type 

DELAY FACTOR number 

DELAY WEIGHT number 

DUMP ADDRESS number 

DUMP COUNT number 

DUMP FILE file-id 

Sets the size of the line buffers. The 
size is a decimal integer in the range 
1-65535. This size is in memory units 
(Appendix C). It is the actual buffer 
size and therefore must take into account 
such things as protocol overhead. There 
is one buffer size for all lines. 

Sets a timer whose expiration causes a 
node counter logging event. Node counters 
are listed in Table 10. They constitute 
data for certain logged events (Table 12). 
The node counters will be recorded as data 
in the event and then zeroed. Seconds is 
specified as a decimal number in the range 
1-65535. 

Sets the default target node CPU type for 
down-line loading the adjacent node. The 
possible values are: 

PDP 8 
PDP 11 
DECSYSTEM 10 
DECSYSTEM 20 
VAX 

Sets the number by which to multiply one 
sixteenth of the estimated round trip 
delay to a node to set the retransmission 
timer to that node. The round trip delay 
is used in an NSP algorithm that 
determines when to retransmit a message 
(NSP functional specification) . The 
number is decimal in the range 1-255. 

Sets the weight to apply to a current 
round trip delay estimate to a remote node 
when updating the estimated round trip 
delay to a node. The number is decimal in 
the range 1-255. On some systems the 
number must be 1 less than a power of 2 
for computational efficiency (NSP 
functional specification). 

Sets the address in memory to begin an 
up-line dump of the adjacent node. 

Determines the default number of memory 
units to up-line dump from the adjacent 
node. 

Sets the identification of the file to 
write to when the adjacent node is up-line 
dumped. The file identification is a 
string that is interpreted depending on 
the system where the file is. 

25 



HOST node-id 

. IDENTIFICATION id-string 

INACTIVITY TIMER seconds 

INCOMING TIMER seconds 

LINE line-id 

LOAD FILE file-id 

MAXIMUM ADDRESS number 

MAXIMUM BUFFERS number 

Sets the identification of the host node. 
For the executor, this is the node from 
which it requests services. For an 
adjacent node, it is a parameter that the 
adjacent node receives when it is 
down-line loaded. If no host is 
specified, the default is executor node . 

Sets the text identification string for 
the executor node (for example, II Research 
Lab"). The identification string is an 
arbitrary string of 1-32 characters. If 
the string contains blanks or tabs it must 
be enclosed in quotation marks ("). A 
quotation mark within a quoted string is 
indicated by two adjacent quotation marks 
( .... ) . 
Sets the maximum duration of inactivity 
(no data in either direction) on a logical 
link before the node checks to see if the 
logical link still works. If no activity 
occurs within the maximum number of 
seconds, NSP generates artificial traffic 
to test the link (NSP functional 
specification). The range is 1-65535. 

Sets the maximum duration between the time 
a connect is received for a process and 
the time that process accepts or rejects 
it. If the connect is not accepted or 
rejected by the user within the number of 
seconds specified, Session Control rejects 
it for the user. The range is 1-65535. 

Defines a loop node and sets the 
identification of the line to be used for 
all traffic from the node. Loop node 
identification must be a node name. No 
line can be associated with more than one 
node name. 

Sets the identification of the file to 
read from when the node is down-line 
loaded. The file identification is a 
string that is interpreted depending on 
the file system of the executor. 

Sets the largest node address and, 
therefore, number of nodes that can be 
known about. The number is an integer in 
the range 1-65535. 

Sets the total number of buffers allocated 
to all lines. In other words, it tells 
Transport how big its own buffer pool is. 
The count number is a decimal integer in 
the range 0-65535. 

26 



MAXIMUM COST number 

MAXIMUM HOPS number 

MAXIMUM LINES number 

MAXIMUM LINKS number 

MAXIMUM VISITS number 

NAME node-name 

OUTGOING TIMER seconds 

RETRANSMIT FACTOR number 

ROUTING TIMER seconds 

SECONDARY DUMPER file-id 

Sets the maximum total path cost allowed 
from the executor to any node. The path 
cost is the sum of the line costs along a 
path between two nodes (Transport 
functional specification). The maximum is 
a decimal number in the range 1-1023. 

Sets the maximum routing hops from the 
node to any other reachable node. A hop 
is the logical distance over a line 
between two adjacent nodes (Transport 
functional specification). The maximum is 
a decimal number in the range 1-31. 

Sets the maximum number of lines that this 
node can know about. The number is a 
decimal in the range 1-65535. 

Sets the maximum active logical link count 
for the node. The count is a decimal 
number in the range 1-65535. 

Sets the maximum number of nodes a message 
coming into this node can have visited. 
If the message is not for this node and 
the MAXIMUM VISITS number is exceeded, the 
message is discarded. The number is a 
decimal in the range MAXIMUM HOPS to 255. 

Sets the node name to be associated with 
the node identification. Only one name 
can be assigned to a node address or a 
line identification. No name can be used 
more than once in the node. 

Sets a time-out value for the duration 
between the time a connect is requested 
and the time that connect is acknowledged 
by the destination node. If the connect 
is not acknowledged within the number of 
seconds specified, Session Control returns 
an error. The range is 1-65535. 

Sets the maximum number of times the 
source NSP will restart the retransmission 
timer when it expires. If the number is 
exceeded, Session Control disconnects the 
logical link for the user (NSP functional 
specification) . The number is decimal in 
the range 1-65535. 

Sets the maximum duration before a routing 
update is forced. The routing update 
produces a routing message for an adjacent 
node (Transport functional specification). 
Seconds is a decimal integer in the range 
1-65535. 

Sets the identification of the secondary 
dumper file for up-line dumping the 
adjacent node. 

27 



SECONDARY LOADER file-id Sets the identification of the secondary 
loader file, for down-line loading the 
adjacent node. 

SERVICE DEVICE device-type Sets the service device type that the 
adjacent node uses for service functions 
when in service slave mode (see Section 
4.1.4.2). The device type is one of the 
standard line device mnemonics. 

SERVICE LINE line-id Establishes the line to the adjacent node 
for down-line loading and up-line dumping. 
Sets the default if the VIA parameter of 
either the LOAD or DUMP commands is 
omitted. When down line loading a node 
(Section 3.3.4), the node identification 
must be that of the target node. 

SERVICE PASSWORD password Sets the password required to trigger the 
bootstrap mechanism on the adjacent node. 
The password is a hexadecimal number in 
the range 0-FFFFFFFFFFFFFFFF (64 bits). 

SOFTWARE IDENTIFICATION Sets the identification of the software 
software-id that is to be loaded when the adjacent 

node is down-line loaded. Software-id 
contains up to 16 alphanumeric characters. 

SOFTWARE TYPE program-type Sets the initial target node software 
program type for down-line loading the 
adjacent node. Program type is one of: 

STATE node-state 

TERTIARY LOADER file-id 

SECONDARY [LOADER] 
TERTIARY [LOADER] 
SYSTEM 

Sets the operational state of the executor 
node. The possible states are: 

ON 

OFF 

SHUT 

RESTRICTED 

Allows logical links. 

Allows no 
terminates 
and stops 
through. 

new 
existing 

routing 

links, 
links, 

traffic 

Allows no new logical links, 
does not destroy existing 
logical links, and goes to 
the OFF state when all 
logical links are gone. 

Allows 
logical 
nodes. 

no new incoming 
links from other 

Sets the identification of the tertiary 
loader file, for down-line loading the 
adjacent node. 

28 



TYPE nOde-type Sets the type of the node as one of the 
following: 

ROUTING Full routing node. 

NONROUTING Node with no routing 
capability. 

PHASE II Phase II node. 

3.3.2 CLEAR and PURGE Commands - These commands clear parameters from 
the volatile and permanent data bases. The CLEAR command affects the 
volatile data base; the PURGE command affects the permanent data 
base. Not all parameters can be cleared individually. A cleared or 
purged parameter or entity identification is the same as one that has 
not been set or defined. The general form of the command is: 

{
CLEAR} 

entity parameter 
PURGE 

The entities are the same as for the SET and DEFINE commands (Section 
3.3.1) . 

3.3.2.1 CLEAR and PURGE EXECUTOR NODE Commands - The CLEAR EXECUTOR 
NODE command resets the executor to the node on which NCP is running. 
Note that CLEAR EXECUTOR does not return the executor to that defined 
in the permanent data base. The PURGE EXECUTOR NODE command redefines 
the executor in the permanent data base as the local node. Access 
control is reset as well. 

3.3.2.2 CLEAR and PURGE KNOWN Entity Commands - These commands clear 
and purge parameters for all of the specified entity known to the 
system. The format of the command is: 

{ CLEAR} KNOWN plural-entity parameter 
PURGE 

Plural entity is one of LINES, LOGGING or NODES. 

Parameter is one or possibly more of the parameters associated with 
the CLEAR and PURGE entity commands (Sections 3.3.2.3, 3.3.2.4, and 
3.3.2.5) . 

3.3.2.3 CLEAR and PURGE LINE Commands - These commands 
parameters from the volatile and permanent data bases. 
format is: 

{
CLEAR} LINE 1 ine-id 
PURGE 

ALL 
COUNTER TIMER 

29 

clear line 
The command 



where: 

ALL 

COUNTER TIMER 

Clears all parameters associated with the 
line identified and the line 
identification itself from the volatile or 
permanent data base. 

Clears the timer that controls the 
periodic logging of the line's counters. 
This implies that they are no longer to be 
logged. 

3.3.2.4 CLEAR and PURGE LOGGING Commands - These commands, in 
conjunction with the SET and DEFINE LOGGING commands, control event 
sinks and event lists. The same general definitions (sink-node, 
sink-type, and source-qualifier) that apply to the SET LOGGING command 
(Section 3.3.1.4) apply here. 

{
CLEAR} LOGGING sink-type 
PURGE 

where: 

EVENT event-list 

NAME 

KNOWN EVENTS 

EVENT event-list [source-qual] [sink-node] 
KNOWN EVENTS [source-qual] [sink-node] 
NAME 

Disables the recording of the events 
specified by the event list 
(event-class.event-type) . Appendix F 
specifies events. Section 3.3.1.4 details 
the format of the event list. The sink 
node option turns off events for the 
specified sink node. If no sink node is 
specified, the EXECUTOR is assumed. 

Clears the sink name assigned to the sink 
type. The sink then becomes the default 
for the specific system, either no sink or 
some system-specific standard. 

Disables the recording of all events known 
to the executor node for the sink node. 

3.3.2.5 CLEAR and PURGE NODE Commands - These commands clear volatile 
(using CLEAR) or permanent (using PURGE) parameters for the node. 
Node identification can be either a node name or a node address, 
except for the LINE option where it must be a name. EXECUTOR may 
substitute for NODE executor-node-identification. 

{
CLEAR} 

NODE node-id 
PURGE 

ALL 
COUNTER TIMER 
CPU 
DUMP ADDRESS 
DUMP COUNT 
DUMP FILE 
HOST 
IDENTIFICATION 
INCOMING TIMER 
LINE 
LOAD FILE 

30 



where: 

ALL 

DUMP FILE 

HOST 

INCOMING TIMER 

LINE 

IDENTIFICA'rION 

LOAD FILE 

NAME 

OUTGOING TIMER 

SECONDARY DUMPER 

SECONDARY LOADER 

SERVICE DEVICE 

SERVICE LINE 

SERVICE PASSWORD 

SOFTWARE IDENTIFICATION 

SOFTWARE TYPE 

TERTIARY LOADER 

NAME 
OUTGOING TIMER 
SECONDARY DUMPER 
SECONDARY LOADER 
SERVICE DEVICE 
SERVICE LINE 
SERVICE PASSWORD 
SOFTWARE IDENTIFICATION 
SOFTWARE TYPE 
TERTIARY LOADER 

Clears all parameters associated with the 
node identified. 

Clears the identification of the file to 
write to when the node is up-line dumped. 

Clears the identification of the host 
node. 

Clears the node's incoming timer. 

Clears the loop node entry associated with 
the line. 

Clears the node's identification string. 

Clears the identification of the file to 
read from when the node is down-line 
loaded. 

Clears the node name for the node. 

Clears the node 
, 
s outgoing timer. 

Clears the identification of the secondary 
dumper file. 

Clears the identification of the secondary 
loader file. 

Clears the service device type. 

Clears the identification of the line 
associated with the node-id specified for 
the purposes of down-line load, up-line 
dump, and line loop test. 

Clears the password required to trigger 
the bootstrap mechanism on the node. 

Clears the identification of the target's 
initial load software. 

Clears the identification of the target 
node software program type for down-line 
loading. 

Clears the identification of the tertiary 
loader file. 

31 



3.3.3 TRIGGER Command - This command triggers the bootstrap of the 
target node so that the node will load itself. It initiates the load 
of an unattended system. This command will work only if the target 
node either recognizes the trigger operation with software or has the 
necessary hardware in the correct state. Section 3.3.4 describes the 
parameter options. Parameters specified with a command override the 
default parameters of the same type. Section 4.2.3 describes the 
trigger operation. The format of the command is: 

TRIGGER 

{

NODE 

VIA 

nOde-id} 

line-id 

[[SERVICE] PASSWORD 
[VIA 
[[SERVICE] PASSWORD 

password] 
line-id] 
password] 

3.3.4 LOAD Command - This command initiates a down-line load. There 
are two variations. Section 3.3.4.1 describes the parameters used 
with this command. Node identification is either the node name or the 
node address of the target node. This command works only if the 
conditions for trigger are met, or if the target node has been 
triggered locally. Section 4.2.1 describes the operation of down-line 
loading. 

3.3.4.1 LOAD NODE Command - This loads the node identified on the 
line identified or on the line obtained from the permanent data base. 
Any parameter not specified in the command line defaults to whatever 
is specified in the permanent data base at the executor node. 

LOAD NODE node-id 

where: 

[ADDRESS node-address] 

[CPU cpu-type] 

[FROM load-file] 

[HOST node-id] 

[ADDRESS 
[CPU 
[FROM 
[HOST 
[NAME 
[SECONDARY [LOADER] 
[SERVICE DEVICE 
[[SERVICE] PASSWORD 
[SOFTWARE 

IDENTIFICATION 
[SOFTWARE TYPE 
[TERTIARY [LOADER] 
[VIA 

node-address] 
cpu-type] 
load-file] 
node-id] 
node-name] 
file-id] 
device-type] 
password] 

software-id] 
program-type] 
file-id] 
line-id] 

Indicates the address the target node is 
to use. 

Indicates the target CPU 
possible values are: 

PDP 8 
PDP 11 
DECSYSTEM 10 
DECSYSTEM 20 
VAX 

type. 

Indicates the file from which to load. 

The 

Indicates the identification of the host 
to be sent to the target node. 

32 



[NAME node-name] Specifies the name the target node is to 
use. 

[SECONDARY [LOADER] 
file-id 

Provides the identification 
secondary loader file. 

of the 

[SERVICE DEVICE 
device-type] 

Indicates the device type that the target 
node will use for service functions when 
it is in service slave mode (see Section 
4.1.4.2) . 

[[SERVICE] PASSWORD 
password] 

Supplies the boot password for the 
node. A hexadecimal number in the 
0-FFFFFFFFFFFFFFFF. 

target 
range 

[SOFTWARE IDENTIFICATION 
software-id] 

Provides the load software identification. 
Software identification is up to 16 
alphanumeric characters. 

[SOFTWARE TYPE 
program-type] 

Indicates the target node software program 
type. Program-type is one of: 

SECONDARY [LOADER] 
TERTIARY [LOADER] 
SYSTEM 

[TERTIARY [LOADER] 
file-id] 

Provides the identification 
tertiary loader file. 

of the 

[VIA line-id] Indicates the line to load over. 

3.3.4.2 LOAD VIA Command - With this command format, the executor 
loads the target over the specified line, obtaining the node 
identification from the permanent data base if necessary. The command 
format is: 

LOAD VIA line-id [ADDRESS 
[CPU 
[FROM 
[HOST 
[NAME 
[SECONDARY [LOADER] 
[SERVICE DEVICE 
[[SERVICE] PASSWORD 
[SOFTWARE IDENTIFICATION 
[SOFTWARE TYPE 
[TERTIARY [LOADER] 

node-address] 
cpu-type] 
load-file] 
node-id] 
node-name] 
file-id] 
device-type] 
password] 
file-id] 
program-type] 
file-id] 

3.3.5 DUMP Command - This command performs an up-line dump. 
Parameters not supplied default to those in the permanent data base at 
the executor node (see Section 3.3.1.5). There are two variations, as 
follows: 

DUMP NODE node-id [[DUMP] ADDRESS 
[[DUMP] COUNT 
[TO 
[SECONDARY [DUMPER] 
[SERVICE DEVICE 
[[SERVICE] PASSWORD 
[VIA 

33 

number] 
number] 
dump-file] 
file-id] 
device-type] 
password] 
line-identification] 



DUMP VIA line-id [[DUMP] ADDRESS 
[[DUMP] COUNT 
[TO 
[SECONDARY [DUMPER] 
[SERVICE DEVICE 
[[SERVICE] PASSWORD 

number] 
number] 
dump-file] 
file-id] 
device-type] 
password] 

3.3.6 LOOP Command - This command causes 
from the specified line or node. It is 
Mirror and the passive looper can handle. 
as described in the next two sections. 
loop test operation. 

test blocks to loop back 
limited by what the Loopback 

There are two variations, 
Section 4.2.4 describes the 

When a loop test fails, the error message contains added explanatory 
information, in the form either 

UNLOOPED COUNT = n 
or 

MAXIMUM LOOP DATA = n 

Where the unlooped count is the number of messages not yet looped when 
the test failed and maximum loop data is the maximum length that can 
be requested for the loop test data. 

3.3.6.1 LOOP LINE Command - The line loop performs loopback testing 
on a specific line, which is unavailable for normal traffic during the 
test. The optional parameters can be entered in any order. 
Parameters not specified default to their values in the permanent data 
base at the executor node. The command format is as follows: 

LOOP LINE line-id [COUNT 
[WITH 
[LENGTH 

count] 
block-type] 
length] 

where: 

LOOP COUNT count 

LOOP LENGTH length 

Sets the block count for loop tests. Count is an 
integer in the range 0 to 65535. 

Sets the length of a 
Length is an integer in 

block for loop tests. 
the range 0 to 65535. 

LOOP WITH block-type Sets the block-type for loop tests. The possible 
values for block-type are ONES, ZEROES or MIXED. 

3.3.6.2 LOOP NODE Command - A node loop will not interfere with 
normal traffic, but will add to the network load. The parameter 
options available are the same as for the line loop (Section 3.3.6.1). 
The node loop can take place within one node or between two nodes. In 
the latter case, the remote node is the one specified (Figures 6 and 
7, Section 4.2.4). EXECUTOR may be substituted for NODE 
executor-node-identification. 

34 



3.3.7 SHOW QUEUE Command - This command displays the status of the 
last few commands entered at the default executor. The number of 
commands displayed varies with each implementation. The executor for 
commands not sent across the network is shown as N/A (not applicable) . 
Completed commands need not be displayed. Every command in progress 
must be shown in request number order. Implementations that do not 
allow multiple outstanding commands do not need this command. 

An example of output follows: 

REQUEST 113; SHOW QUEUE 

REQUEST 
NUMBER 

9 
10 
11 
12 
1 ~5 

'EXECUTOR 

6 (HNGKNG) 
I.> (HNGKNG) 
10 (MANILA) 
6 (HNGKNG) 
N/A 

COMMAND 

LOAD 
SHOW 
LOAD 
SET 
SHOW 

STATUS 

FAILED 
COMPLETE 
IN PROGRESS 
COMPLETE 
IN PROGRESS 

3.3.8 SHOW and LIST Commands - These commands are used to display 
information. The SHOW command displays information from the volatile 
data base. The LIST command displays information from the permanent 
data base. The general command format is either: 

{ SHOW} entity [information-type] [qualifiers] 
LIST 

or: 

{
SHOW} 

[information-type] entity [qualifiers] 
LIST 

The entities are: 

ACTIVE LINES 
ACTIVE LOGGING 
ACTIVE NODES 
EXECUTOR 
KNOWN LINES 
KNOWN LOGGING 
KNOWN NODES 
LINE 
LOGGING 
LOOP NODES 
NODE 

line-id 
sink-type 

node-name 

KNOWN plural entities are all those known to the system, regardless of 
state. ACTIVE plural entities are a subset of KNOWN as defined in the 
glossary. When displaying plural nodes, the executor display is 
returned first, if it is included. Any loop nodes are returned last. 

The information types are: 

CHARACTERISTICS 
COUNTERS 
EVENTS 
STATUS 
SUMMARY 

35 



Appendix A contains definitions of the information types. The tables 
in Appendix A specify the information returned for each information 
type on the SHOW command. The qualifiers vary according to the 
specific entity, except one that is common to all entities that have 
qualifiers: 

TO alternate-output 

This qualifier directs the output to an alternate output file or 
device (for example, a disk file or a line printer) rather than the 
default terminal display. The output is text in the same format it 
would have on the terminal. The format of the alternate output 
specification is system-dependent. 

When there is no information to display in response to a SHOW command 
display the phrase "no information" in place of the data. 

3.3.8.1 Information Type Display Format - All of the SHOW and LIST 
command information-type options have the same general output format. 
The header of that format is: 

REQUEST #ni entity information-type AS OF dd-mon-yy hh-mm 

For example: 

REQUEST 121; KNOWN LINES STATUS AS OF 8-JUL-79 10:55 

REQUEST 143; EXECUTOR NODE CHARACTERISTICS AS OF 10-SEP-79 10:56 

REQUEST 145; KNOWN NODES SUMMARY AS OF 10-SEP-79 10:57 

The requested information follows the header. The general format of 
the information is: 

entity-type = entity-id 

data 

If the entity type is NODE, then one of EXECUTOR, REMOTE, or LOOP must 
precede it. 

This information format repeats for each individual entity. A SHOW or 
LIST command with no information type should default to SUMMARY. 

3.3.8.2 Counter Display Format - Counters are identified by standard 
type numbers as defined in Tables 7 and 10, Appendix A. Counters are 
displayed in ascending order by type. The display format for counters 
is: 

value description[, INCLUDING:] 
qualifier-l 

qualifier-n 

The value is the value of the counter, up to 10 digits for a 32-bit 
counter. It is a decimal number with no leading zeros. Zero values 
distinguish the case of no-counts from the case where a counter is not 

36 



kept. If the counter has overflowed, it is displayed as the overflow 
value minus one, preceded by a greater-than sign. For example, an 
overflowed 8-bit counter would be displayed as ">254." 

The description is the standard text that goes with the counter type 
as defined in Tables 7 and 10. If the counter type is not recognized, 
the description "COUNTER #n" is used, where n is the counter type 
number. 

If the counter has an associated bit map, the word "including" is 
appended to the description, with a list of qualifiers. A qualifier 
is the standard text for the bit position in the bit map. A qualifier 
is displayed only if the corresponding bit is set. If the standard 
text for the bit is not known, the qualifier "QUALIFIER #n" is used, 
where n is the bit number. 

For example: 

REQUEST i21; LINE COUNTERS AS OF 20-FEB-79 15:29 

LINE :::: DUP-6 

~.)32 

416 
() 

400 
3~j:~ 

4~:j 

52379 
4164() 

963 
423 

5 

() 

ARRIVING PACKETS RECEIVED 
DEPARTING PACKETS SENT 
ARRIVING CONGESTION LOSS 
TRANSIT PACKETS RECEIVED 
TRANSIT PACKETS SENT 
TRANSIT CONGESTION LOSS 
BYTES RECEIVED 
BYTES SENT 
DATA BLOCKS RECEIVED 
DATA BLOCKS SENT 
DATA ERRORS INBOUND, INCLUDING: 

NAK'S SENT REP RESPONSE 
DATA ERRORS OUTBOUND 

3.3.8.3 Tabular and Sentence Formats - Non-counter information 
permits two general formats. The first is easier to scan, the second 
is more extensible. The first is a tabular form, with each individual 
entity fitting on one line under a global header. Using this form, 
unrecognized parameter types are more clumsily handled and the amount 
of information per individual entity is limited to what will fit on 
one output line~ The second is a sentence form. It adapts easily to 
a large number of parameters per individual entity and readily handles 
unrecognized parameter types. 

In either form, the order of parameter output is the same in all 
implementations, even though in a particular implementation, some 
parameters may be unrecognized. The output format for unrecognized 
parameters is: 

PARAMETER #n = value 

where n is the decimal parameter number and value is the parameter 
value, formatted according to its data type. 

Appendix A describes parameter types and their output order. In the 
sentence form of output, parameters that are logically grouped 
together should appear on the same line. Appendix A details these 
logical groupings. 

37 



The general output format of the data for tabular form is: 

entity-type 

entity-id 

parameter-type parameter-type ... 

parameter-value parameter-value .•• 

An example of output of the data in tabular form follows: 

F~Et~UEST 439; KNOWN LINES STATUS AS OF 18-SEF'-78 15:20 

LINE STATE ADJACENT NODE 

DMC~M 1 ON 4 (BOSTON) 
DMe-·3 OFT 
DL-O ON-LOADING 12 

If NCP did not recognize an adjacent node parameter, the output would 
specify the type number of the parameter and the value according to 
the parameter data type. (See Tables 6 to 10, Appendix A, for type 
number s. ) 

The general output format of the data for sentence form is: 

entity-type 

par-type 
par-type 

entity-id 

par-value, par-type 
par-val ue, 

par-value, ... 

An example of output of the data for sentence form follows. 

REQUEST +39; KNOWN LINES STATUS AS OF 18-SEP-78 15:20 

l.INE ::: DMC-1 

STATE::: ON, ADJACENT NODE - 4 (BOSTON) 

LINE ::.~ DMC-3 

STATE :::; OFF 

LINE :::; DL'-O 

STATE = ON, ADJACENT NODE = 12 

The output format for the logging entity differs in the event display. 
For example, for the following command: 

SHOW LOGGING CONSOLE SUMMARY KNOWN SINKS 

38 



A correct output would be 

LoSSins Summary as of 7-MAR-79 10:55 

LoSSinS CONSOLE 

State = ON, NAME = COO: 

Sink node = 15 (HALDIR), EVENTS -

0.0,6 
Line KDZ-0-1.3, 3.6-7 
3.6--13 

Sink node = 16 (EOWYN), Events -

0.0 
Line KDZ-0-l.3, 6.0-1 

3.3.8.4 Restrictions and Rules 
restrictions and rules apply to 
information type commands. 

on Returns - The following 
returns on SHOW and LIST entity 

1. Node parameters. The parameters displayed for the SHOW and 
LIST NODE commands depend on which node is specified. Table 
8, Appendix A, indicates these restrictions. The keywords 
EXECUTOR, REMOTE or LOOP must precede NODE in a display of a 
node to clarify what is displayed. 

2. Line states. The returns on the SHOW and LIST LINE STATUS 
commands must show the line substate as well as the state. 
Table 2, following, lists line states and substates. Table 
3, following, lists all the possible line state transitions 
and their causes. 

3. Loop nodes. Information for a single loop node is returned 
when requested by the loop node name. Information for 
multiple loop nodes is returned at the end of the display for 
KNOWN or ACTIVE NODES. It is the exclusive display for LOOP 
NODES. 

4. Counters. COUNTERS can only be displayed with the SHOW 
commands, and with line or node entities. 

5. Events. EVENTS applies only to the logging entity. Sink 
node identification must be address and name (if a name 
exists) , even for the executor. 

3.3.9 ZERO Command - This command causes a specified set of counters 
to be set to zero. The command generates a counters zeroed event that 
causes counters to be logged before they are zeroed. The counters 
zeroed are those the executor node supports for the specified entity. 
The command format is: 

ZERO 
{

NODE 
LINE 
KNOWN 
KNOWN 

nOde-id} 
line-id 
LINES 
NODES 

[COUNTERS] 

39 



3.3.10 EXIT Command - This command terminates an NCP session. 

Table 2 
Network Management Line States 

State Substate Meaning 
--~---.. ". 

OFF none Line not usable by anything 

ON running Line in normal use by owner 

"';'STARTING Line in owner (Transport) 
initialization cycle 

-REFLECTING Line in use for passive (direct 
line-software looped) loopback 

-AUTOSERVICE Line reserved for Line Watcher 
use 

-AUTOLOADING Line in use by Line Watcher for 
load 

-AUTODUMPING Line in use by Line Watcher for 
dump 

-AUTOTRIGGERING Line in use by Line Watcher for 
trigger 

-LOADING Line in use by operator for load 
- ---

-DUMPING Line in use by operator for dump 

-LOOPING Line in use by operator for 
active line loopback 

-TRIGGERING Line in use by operator for 
trigger 

SERVICE idle Line reserved by operator for 
active service function 

-REFLECTING Line in use for passive (direct 
line-software looped) loopback 

-LOADING Line in use by operator for load 

-DUMPING Line in use by operator for dump 

-LOOPING Line in use by operator for 
active line loopback 

-TRIGGERING Line in use by operator for 
trigger 

40 



Table 3 
Line State Transitions 

Old State New State Cause of Change 

Any OFF Operator command, SET LINE 
STATE OFF 

OFF ON-STARTING Operator command, SET LINE 
STATE ON 

SERVICE Operator command, SET LINE 
STATE SERVICE 

ON ON-STARTING Data Link restarted by 
Transport (from either end) 

ON-REFLECTING Line loopback message 
received from remote system 

ON-AUTOSERVICE Service request received by 
Line Watcher 

ON-LOADING Operator command, LOAD 

ON-DUMPING Operator command, DUMP 

ON-LOOPING Operator command, LOOP LINE 

ON-TRIGGERING Operator command, TRIGGER 

SERVICE Operator command, SET LINE 
STATE SERVICE 

ON-STARTING ON Transport initialization 
complete 

ON-REFLECTING Line loopback message 
received from remote system 

ON-AUTOSERVICE Service request received by 
Line Watcher 

ON-LOADING Operator command, LOAD 

ON-DUMPING Operator command, DUMP 

ON-LOOPING Operator command, LOOP LINE 

ON-TRIGGERING Operator command, TRIGGER 

SERVICE Operator command, SET LINE 
STATE SERVICE 

ON-REFLECTING ON-STARTING Passive line loopback 
terminated 

ON-AUTOSERVICE Service request received by 
Line Watcher 

(continued on next page) 

41 



Old State 

ON-REFLECTING 
(CaNT. ) 

ON-AUTOSERVICE 

ON-AUTOLOADING 

ON-AUTODUMPING 

ON-AUTOTRIGGERING 

ON-LOADING 

ON-DUMPING 

ON-LOOPING 

ON-TRIGGERING 

SERVICE 

SERVICE 

Table 3 (Cont.) 
Line State Transitions 

New State Cause of Change 

ON-LOADING Operator command, LOAD 

ON-DUMPING Operator command, DUMP 

ON-LOOPING Operator command, LOOP LINE 

ON-TRIGGERING Operator command, TRIGGER 

SERVICE Operator command, SET LINE 
STATE SERVICE 

f-----

ON-STARTING Line released by Line 
watcher 

ON-AUTOLOADING Load initiated by Line 
Watcher 

ON-AUTODUMPING Dump initiated by Line 
Watcher 

ON-AUTOTRIGGERING Trigger initiated by Line 
Watcher 

ON-AUTOSERVICE Load complete 

ON-AUTOSERVICE Dump complete 

ON-AUTOSERVICE Trigger complete 

ON-STARTING Load complete 

ON-STARTING Dump complete 

ON-STARTING Active line loop complete 

ON-STARTING Trigger complete 

SERVICE-REFLECTING Line loopback message 
received from remote system 

SERVICE-LOADING Operator command, LOAD 

SERVICE-DUMPING Operator command, DUMP 

SERVICE-LOOPING Operator command, LOOP LINE 

SERVICE-TRIGGERING Operator command, TRIGGER 

ON-STARTING Operator command, SET LINE 
STATE ON 

(continued on next page) 

42 



Old State 

SERVICE-REFLECTING 

SERVICE-LOADING 

SERVICE-DUMPING 

SERVICE-LOOPING 

SERVICE-TRIGGERING 

Table 3 (Cont.) 
Line State Transitions 

New State Cause of 

SERVICE Passive line 
complete 

SERVICE-LOADING Operator command, 

SERVICE-DUMPING Operator command, 

SERVICE-LOOPING Operator command, 

SERVICE-TRIGGERING Operator command, 

SERVICE Load complete 

SERVICE Dump complete 

SERVICE Active line loop 

SERVICE Trigger complete 

43 

Change 

loopback 

LOAD 

DUMP 

LOOP LINE 

TRIGGER 

complete 



4.0 NETWORK MANAGEMENT LAYER 

This layer, the heart of Network Management, contains the modules and 
data bases providing most of the functions requested by Network 
Control Program (NCP) commands. The Network Management layer also 
provid€s automatic event-logging and an interface to user programs for 
network control and information exchange. Section 4.1 describes the 
Network Management modules. Section 4.2 outlines the operation of the 
functions associated with each Network Information and Control 
Exchange (NICE) message, including algorithms for implementation. 
Section 4.3 details the Network Management layer message formats as 
well as NICE connect and accept data formats and the Event message 
binary data format. 

4.1 Network Management Layer Modules 

This section describes the Network Management layer modules (Figure 2) 
and some of the algorithms for implementing them. 

4.1.1 Network Management Access Routines and Listener - The Network 
Management Access Routines receive NICE commands from the Network 
Control Program (NCP) and user programs. Network Management Access 
Routines pass NICE messages to the remote or local Network Management 
Listener via logical links. They also pass local function requests to 
the Local Network Management Functions. The Network Management 
Listener receives NICE command messages via logical links from the 
Network Management Access Routines in the local node or in other 
nodes. 

The method used for processing Network Management functions within a 
single node is implementation-dependent. The Network Management 
Access Routines can pass all local function requests to the Local 
Network Management Functions. Alternatively, the access routines can 
pass NICE messages to the Network Management Listener via a logical 
link. The latter method cannot be used for functions, such as turning 
the network on, that occur before a logical link is possible. 

4.1.2 Local Network 
Management Functions 
other modules: 

Management 
receive the 

Functions - The Local Network 
following types of requests from 

• System-independent function requests from the local NCP via 
the Network Management Access Routines. 

• NICE function requests from other nodes via the Network 
Management Listener. 

• NICE function requests from the local node via the Network 
Management Listener. 

• Automatically-sensed service requests from the Line Watcher. 

The Local Network Management Functions have the following interfaces 
to other modules or layers: 

• Line Service Functions. The Local Network Management 
Functions have a control interface to the Line Service 
Functions for setting and changing line states. The Local 

44 



Network Management Functions have a "user" interface to the 
Line Service Functions for handling functions that are 
necessary for service functions (such as up-line dumping, 
down-line loading, and line level testing) to be performed. 

• Control interfaces to lower layers. The Local Network 
Management Functions interface with lower layers directly for 
control and observation of lower level counters and 
parameters. An example of such an interface is examining a 
node counter. 

• Function requests to lower layers and to local operating 
system. The Local Network Management Functions pass such 
function requests as file access, node level loopback, and 
timer setting to the application layer or to 'the local 
operating system in the form of system-dependent calls. 

• Event logging. The Local Network Management Functions 
interface with the Event Logging module in order to set event 
logging parameters that control such things as which events 
are logged and at what sink node they are logged. 

Section 4.2 supplies algorithms for handling Network Management 
function requests. 

4.1.3 Line Watcher - The Line Watcher module senses data link level 
service requests to up-line dump or load coming on a line from an 
adjacent node. 

The Line Watcher senses a request by calling the Line Service 
Functions. using parameters from that message, the Line Watcher then 
determines the request type and calls the Local Network Management 
Functions to accomplish the request. 

The algorithm for implementing the Line Watcher is as follows: 

Call Line Service Functions to set I_ine Service re~uest for line 
IF Line Service reGuested 

Set line state to ON-AUTOSERVICE (Local Network Management 
Functions> 

Determine function needed 
Call Network Manasement Functions to perform needed function(s) 
Reset line state to ON (Local Network ManaSement Functions) 

ENDIF 

Section 4.2.5 describes the algorithms for setting and resetting line 
states for the Line Watcher. 

4.1.4 Line Service Functions - The Line Service Functions provide 
Local Network Management Functions with line state changing and line 
handling services. They are used for functions requiring a direct 
interface to the' Data Link layer. The functions that use the Line 
Service Functions are: 

• Down-line load (Section 4.2.1) 

• Up-line dump (Section 4.2.2) 

• Trigger bootstrap (Section 4.2.3) 

45 



• Line test (Section 4.2.4.2) 

1. Active at the executor node 

2. Passive at the target node (for unattended system) 

• Set line state (Section 4.2.5) 

The Line Service Functions provide the following services: 

• Condition a node to be dumped, loaded or have a loopback test 
performed. This state of the target node is called service 
slave mode, a mode in which the entire processor is taken 
over. Control rests with the executor. 

• Notify a higher level that active line services (load, dump) 
are needed. 

• Provide transmit/receive interface to higher level for active 
line services. 

4.1.4.1 States and Substates - To arbitrate the use of the 
Service Functions maintain states and substates. Table 4, 
shows these as well as corresponding line states and 
displayed with the NCP SHOW LINE STATUS command. Table 4 
related Line Service functions. 

line, Line 
following, 
substates 

also shows 

The line can go from any substate to service slave mode. 

Line 
State 

ON 

ON 

ON 

ON 

ON 

ON 

Table 4 
Line Service States, Substates and Functions and 

Their Relationship to Line States 

Line Line Line Service 
Line Service Service Function in 
Subs tate State Subs tate Progress or Allowed 

passive idle Pass message to 
higher level 

-STARTING passive idle Pass message to 
higher level 

-REFLECTING passive reflecting Passive loopback 

-LOADING open loading Receive and 
transmit loading 
messages 

-DUMPING open dumping Receive and 
transmit dumping 
messages 

-TRIGGERING open triggering Receive and 
transmit triggering 
messages 

(Continued On Next Page) 

46 



Line 
State 

ON 

ON 

ON 

ON 

ON 

ON 

SERVICE 

SERVICE 

SERVICE 

SERVICE 

SERVICE 

SERVICE 

OFF 

Table 4 (Cont.) 
Line Service States, Substates and Functions and 

Their Relationship to Line States 

Line Line Line Service 
Line Service Service Function in 
Subs tate State Subs tate Progress or Allowed 

-LOOPING open looping Receive and 
transmit looping 
messages 

-AUTOSERVICE closed idle Pass message to 
higher level 

-REFLECTING closed reflecting Passive loopback 

-AUTOLOADING open loading Receive and 
transmit loading 
messages 

-AUTODUMPING open dumping Receive and 
transmit dumping 
messages 

-AUTOTRIGGERING open triggering Receive and 
transmit triggering 
messages 

closed idle Pass message to 
higher level 

-REFLECTING closed reflecting Passive loopback 

-LOADING open loading Receive and 
transmit loading 
messages 

-DUMPING open dumping Receive and 
transmit dumping 
messages 

-TRIGGERING open triggering. Receive and 

.. -

transmit triggering 
messages 

-LOOPING open looping Receive and 
transmit looping 
messages 

off idle -

47 



4.1.4.2 Priority Control - The Line Service Functions must make sure 
that higher priority functions take over, and that lower priority 
functions are resumed when higher priority functions are complete. 
The priorities are as follows from highest (1) to lowest (5): 

1. Enter service slave mode (MOP primary mode) for passive line 
loopback, receiving down-line load, sending up-line dump, and 
transferring control. Control rests with the executor node. 
Some implementations may require hardware support. 

2. No line operation (off state). In some implementations, this 
is the first priority. 

3. Active service functions (send down-line load, trigger 
bootstrap, receive up-line dump, perform active line 
loopback) . 

4. Passive line loopback. 

5. Normal operation (line available for use by owner) . 

4.1.4.3 Line State Algorithms - The algorithms that follow are a 
model for implementation of the Line Service states. If these 
algorithms are followed, the proper state transitions will take place. 
The algorithms refer to Data Link maintenance mode. This is a Data 
Link layer mode (DDCMP functional specification). 

Set line state to off: 

Call Data Link to halt line 
Set subs tate to idle 

Set line state to passive: 

IF line state is off or closed 
IF substate is not reflecting 

Set subs tate to idle 
ENDIF 

ELSE 
Fail 

ENDIF 

Set line state to closed: 

IF line state is off, passive, or open 
IF line state is off or passive and substate is not reflecting 

Call Data Link to set line mode to maintenance 
Set subs tate to idle 

ENDIF 
ELSE 

Fail 
ENDIF 

48 



Set line state to oPen: 

IF line state is passive or closed 
Call Data Link to set line mode to maintenance 
IF subs tate is reflectins 

Terminate passive loopback 
ENDIF 
Record sUbstate accordin~ to open parameter 

ELSE 
Fail 

ENDIF 

NOTE 

The Data Link call to set the line mode 
to maintenance is a single operation 
that will succeed regardless of the 
state in which Data Link has the line 
when the call is issued. 

4.1.4.4 Line Handling Functions - The line handling services of the 
Line Service Functions and the algorithms for implementing them 
follow. 

1. Handling line in passive state (for entering service slave 
mode, passive loopback and passing messaqe to a higher 
level) : 

WHILE line state is passive 
Call Data Link to see if line mode has Sone to maintenance 
IF line mode has ~one to maintenance 

Call Data Link to receive the service messa~e 
IF enter service slave mode messaSe 

Enter service slave mode 
ELSE IF loop data messaSe 

Perform passive loopback al~orithm 
ELSE IF looped data messa~e 

I~nore 

ELSE 
On re~uest, pass messaSe to hiSher level 

ENDIF 
IF line state is still passive 

Call Data Link to halt line 
ENDIF 

ENDIF 
ENDWHILE 

2. Handling line in closed state (for entering service slave 
mode and performing passive loopback): 

WHILE line state is closed 
Call Data Link to receive message 
IF enter service slave mode message 

Enter service slave mode 
ELSE IF loop data messaSe 

Perform passive loopback alSorithm 
ENDIF 

ENDWHILE 

49 



3. Handling line in open state (for entering service slave mode, 
receiving a message, and transmitting a message): 

WHILE line state is open 
IF transmit reouested 

Call Data Link to transmit messa~e 
ELSE IF 'receive reouested 

IF data overrun recorded 
Return data overrun error 

ELSE 
Post receive reouested 

ENDIF 
ENDIF 
Call Data Link to receive message 
IF enter service slave mode message 

Enter service slave mode 
ELSE 

IF receive posted 
Return messa~e 

ELSE 
Record data overrun 

ENDIF 
ENDIF 

ENDWHILE 

4. Handling passive line loopback (passive at the remote or 
target node): 

(Initial messa~e alread~ received) 
Set subs tate to reflecting 
WHILE substate is reflecting 

IF loop data messaSe 
Call Data Link to transmit looped data messa~e with received data 
Call Data Link to receive a messaSe 
IF timeout or start received or error or loopback terminated 

Set substate to idle 
ENDIF 

ELSE 
Set substate to idle 

ENDIF 
ENDWHILE 

4.1.5 Event Logger - This module, diagrammed in Figure 3, following, 
records events that may help maintain the system, recover from 
failures, and plan for the future. Events originate in each of the 
DNA layers. Appendix F describes the specified events and 
corresponding event parameters. A system manager controls event 
recording with the SET LOGGING EVENT event-list command (Section 
3.3.1.4). The event list entered may require the Event Logger to 
filter out the recording of certain events. 

50 



Event 
Monitor 

- - - - - - _.- - - - - - - - - - - - - - - - - - --
Network Management Layer 

from Event 

Transmitters 
Event 

Receiver 
Event 

Recorder t--

Event 
Queue 

Event 
" ~ 

Event 
Monitor 
Interface 

...... .... 
---\-

pmo.".d .,.nts~ 
... ~ Event 

Queue 
File 

........ ". 

3 
Event 

Event 
Processor 

(

Queue 

~ 

raw events 

Applications Layer 

Session Control Layer 

Network Services Layer 

Transport Layer 

Data Link Layer 

Physical Link Layer 

Figure 3 

) 
Event Filters 

Event 
Queue 

-----

raw events 

Event 
Queue 

Event 
Queue 

Event 
Queue 

--. Console 

--. Event 
Transmitter 

Event 
Transmitter 

to Event 
Re ceivers 

---------~---------
Event 
Queue 

raw events 

-------------------
Event 

Queue 

EVent 
Queue 

Event 
Queue 

Event 
Queue 

raw events 

raw events 

t41---raw events 

raw events 

Event Logging Architectural Model 

51 



DECnet Event Logging is specified to meet the following goals: 

• Allow events to be logged to multiple sink nodes including the 
source node. 

• Allow an event to be logged to multiple logging sinks on any 
sink node. 

• Allow the definition of subsets of events for a sink on a node 
by event type and source node. 

• Include the following logging sinks: 
monitor program. 

console, file, and 

• Allow sharing of sinks between network event logging and local 
system event logging. 

• Minimize processing, memory, and 
required to provide event logging. 

network communication 

• Never block progress of network functions due to event logging 
performance limitations. 

• Minimize loss of event logging information due to resource 
limitations. 

• Record loss of event logging information due to resource 
limitations. 

• When required due to resource limitations, discard newer 
information (which can often be regained by checking current 
status) in favor of older. 

• Minimize impact of an overloaded sink on other sinks. 

• Standardize content and format of event logging information to 
the extent practical, providing a means of handling system 
specific information. 

• Allow independent control of sinks at sink node, including 
sink identification and sink state. Sink states include use 
of sink, non-use of sink, and temporary unavailability of 
sink. 

4.1.5.1 
Logger 
section: 

• 
• 
• 
• 
• 
• 
• 
• 
• 

Event Logger Components - As 
consists of the following 

Event queue 

Event processor 

Event transmitter 

Event receiver 

Event recorder 

Event console 

Event file 

Event monitor interface 

Event monitor 

52 

shown in Figure 3, the Event 
components, described in this 



Event queue -- There are several event queues (Figure 3). Each one 
buffers events to be recorded or transmitted, and controls the filling 
and emptying of the queue. 

An event queue component has the following characteristics: 

• It buffers events on a first-in-first-out basis. 

• It fills a queue with one module; empties it with another. 

• It ensures that the filling 'module does not see an error when 
attempting to put an event on the queue. 

Since event queues are not of infinite length, events must be lost. 
The filling module must record the loss of an event as an event, not 
as an error because of the third characteristic above. This event is 
called an "events-lost" event. An implementation requires the 
following algorithm at each event queue: 

IF WJeue i~:; full 
Discard the event 

ELSE IF this event would fill the Gueue 
Discard the event 

ELSE 

IF last event on Queue is not -events-lost-
Queue an -events-lost- event <which fills the Queue) 

END IF 

(hH:~ue the E~vent 
ENDIF 

The event queue component handles "events-lost" events according to 
the following rules. 

1. Consider such events "raw" for raw event 
"processed" for processed event queues. 

queues 

2. Flag such events for the sink types of the lost events. 

3. Time stamp such events with the time of first loss. 

and 

4. Filter such events only if all events for the queue are also 
filtered. 

Event Processor -- This component performs the following functions: 

1. Scans the lower level event queues, collecting raw event 
records. 

2. Modifies raw events into processed events. 
contain the following fields: 

EVENT CODE ENTITY IDENTIFICATION 

Processed events contain the following fields: 

EVENT SOURCE SINK ENTITY DATE AND 
CODE NODE FLAGS NAME TIME STAMP 

ID 

53 

Raw events 

DATA 



3. Compares the processed events with the event filters for each 
defined sink node, including the executor. Following are the 
characteristics of the filters used to control event logging: 

• The event source node maintains all filters. 

• Each event sink node has a separate set of filters at the 
source node. 

• Each sink node set of filters contains a set of filters 
for each sink (monitor, file, or console). 

• 

• 

Each sink node set of filters contains a set of 
filters, one global filter for each event class. 
contains one or more specific filters, each 
particular entity within an event class. 

global 
It also 
for a 

Each filter contains one bit for each event type within 
the class. The bit reflects the event state. SET if the 
event is to be recorded, CLEAR if it is not. 

• The filtering algorithm sees first if there is a specific 
filter that applies to the event. If so, the algorithm 
uses the specific filter. If not, the algorithm uses the 
global filter for the class. 

• Commands from higher levels create and change filters 
using the EVENTS event-list option. When the specific 
filters match the global filter, the event processor 
deletes specific filters. 

• Although the filters are modeled in the event processor, 
in some implementations, to reduce information loss or for 
efficiency reasons, it may be necessary to filter raw 
events before they are put into the first event queue. A 
reasonable, low-overhead way to implement this is by 
providing an event on/off switch at the low level. The 
high level can turn this switch off if the event is 
filtered out by all possible filters. This avoids a 
complex filter data base or search at the low level, but 
prevents flooding the low level event queue with unwanted 
events. 

4. Passes events not filtered out to the event recorder for the 
executor or to the appropriate event queue for other sink 
nodes. 

Event Transmitter. using a logical link, this component transmits 
event records from its queue to the event receiver on its associated 
sink node. 

Event Receiver. This component receives event records over logical 
links from event transmitters in remote event source nodes. It then 
passes them to the event recorder. 

Event Recorder. This module distributes events to the queues for the 
various event sinks according to the sink flags in the event records. 

Event Console. This is the event logging sink at which human-readable 
copies of events are recorded. 

Event File. This is the event logging sink at which machine-readable 
copies of events are recorded. To Network Management, it is an 
append-only file. 

54 



Event Monitor Interface. This interface makes events available to the 
Network Management Functions for reading by higher levels. 

Event Monitor. This user layer module is an "operator's helper." It 
monitors incoming events by using the Network Management Access 
Routines and may take action based on what it has seen. Its specific 
responsibilities and algorithms are undefined for the near term. 

4.1.5.2 Suggested Formats for Logging Data - Following are suggested 
text formats for logging data. System specific variations that do not 
obscure the necessary data or change standard terminology are allowed. 

The date field in the output is optional if it is obvious from the 
context of the logging output. 

Milliseconds can be used in the event time data if it is possible to 
do so. If not supported, this field will not be printed. It is 
possible for two times given the same second to be logged and printed 
out of order. 

General format: 

EVENT TYPE class.type[, event-text] 
FROM NODE address[(node-name)]OCCURRED [dd-mon-yy]hh:mm:ss: [.uuu] 
[entity-type[entity-name]] 
[data] 

For example: 

Event t~pe 4.7, Packet aSeinS discard 
From node 27 (DOODAH), occurred 9-FEB-79 13:55:38 
Packet header = 2 23 91 20 

Event t~pe 0.3, Automatic line service 
From node 19 (ELROND), occurred 9-FEB-79 16:09:10.009 
Line KDZ-0-l.3, Service = Load, Status = ReQuested 

Or, on a node that does not recognize the events: 

Event t~pe 4.7 
From node 27~ occurred 9-FEB-79 13:55:38 
Parameter 12 = 2 23 91 20 

Event b~pe 0.3 
From node 19, occurred 9-FEB-79 16:09:10.009 
Line KDZ-0-l.3, Parameter 10 = 0, Parameter 11 0 

4.2 Network Management Layer Operation 

This section describes how Network Management operates with regard to 
each general function. Each function relates to a particular NICE 
message. Algorithms are given for most functions. There is also some 
user information in several of the descriptions, especially that 
concerning testing. Finally, there is a section explaining how NICE 
handles logical links. Appendix D lists status and error messages for 
NICE commands, and Section 4.3.12 explains the response message 
formats. 

55 



4.2.1 Down-line Load Operation - The down-line capability allows the 
loading of a memory image from a file to a target node. The file may 
reside at the executor node or at another node. Any node can initiate 
the load. 

The requirements for a down-line load are as follows: 

• The target node must be directly connected to the executor 
node via a physical line. The executor node provides the line 
level access. 

• The target node must be running a minimal cooperating program 
(refer to the MOP functional specification). This program may 
be a primary loader from a bootstrap ROM. The down-line loaq 
procedure may actually involve loading a series of programs, 
each of which calls the next program until the operating 
system itself is loaded. The initial program request 
information determines the load file contents. 

• The direct access line involved must be in the ON or SERVICE 
state. 

• The executor must have access to the file. The location 'of 
the file can be either specified in the load request or looked 
up by the Local Network Management Function. 

Local Network Management modules are used to obtain local 
files. Remote files are obtained via remote file access 
techniques. (Refer to the DAP functional specification.) 

Figure 4, following, shows local and remote file access for a 
down-line load. 

• The executor must have access to a node data base, which can 
be either local or remote. 

• The target node must be able to recognize the trigger 
operation with software or hardware or must be triggered 
locally. 

56 



1. LOCAL FILE ACCESS 

2. REMOTE FI LE ACCESS 

LEGEND: 

MOP - Maintenance Operation Protocol 
FAL - File Access Listener 

Figure 4 Down-line Load File Access Operation 

57 



Either the target or executor node (or a remote command node) can 
initiate a down-line load. The target node initiates the load by 
triggering its boot ROM. The executor node initiates the load with 
either a trigger command or a load request. If the executor does not 
have the initial program request or the target does not respond to the 
attempt to load it, the executor should trigger the target. 

Once the target is triggered, it requests the down-line load. The 
target node may be programmed to request the load over the line that 
the trigger message came. Or, the target node could request the load 
from another exe~utor. The Line Watcher at the executor senses the 
first program request from the target node (usually a request for the 
secondary loader, described below). Or, if the operation was 
initiated by a Network Management load request, the program request is 
received as a response to that request. Figure 5, following, shows 
the down-line load request operation. 

58 



1. TARGET·INITIATED REOUEST 

"Target NOde 

2. OPERATOR·INITIATED REOUEST FROM A REMOTE COMMAND NODE 

LEGEND: 

MOP - Maintenance Operation Protocol 
NICE - Network Information and Control Exchange 
NCP - Network Control Program 

Figure 5 Down-line Load Request Operation 

59 



The executor proceeds with the load according to the options in the 
initial request. 

Several fields in the NICE request down-line load message may be 
either furnished as overrides or defaulted to the values in the node 
data base. Any information left to default is first obtained from the 
data base. 

The executor identifies the target node by address, name, or line. 
The name and address parameters may be supplied as overrides to those 
in the data bases. The address or line identification key into the 
node data base. If line is used, then address is obtained from the 
data base entry. If a target is identified by name, then address is 
determined by normal name to address mapping and used to key into the 
data base. 

The address the target is to have is always sent to the target during 
the down line load request operation. This target address is either 
obtained from the node data base or supplied as an override. 

The name the target is to have, if any, is either supplied with the 
request as an override or obtained by normal address-to-name mapping. 

Host identification follows similar rules to target identification. 
The host node address must be sent to the target. If both name and 
address are not supplied, address is obtained from the node data base. 
Name, if any, is obtained by normal address-to-name mapping, if not 
supplied. 

The executor controls the process of loading the requested programs 
until the operating system is loaded. The executor is responsible for 
understanding the service protocol (for example, MOP) from and to the 
target. 

The first program to run in the target node, called the primary 
loader, is typically loaded directly from its own bootstrap ROM. It 
then requests, over the communications line, the next program in the 
sequence. This program, the secondary loader, may have certain 
restrictions on the way it is loaded, depending on the capabilities of 
the primary loader. This process may extend through a tertiary 
loader. The final program' to be loaded is defined as the operating 
system, although it does not necessarily have to be capable of being a 
network node. Within a single down-line load process (possibly 
including "loader loads") each program loaded is expected to request 
another, except for the operating system, which does not. 

When the down-line load has been completed (in other words, the 
operating system successfully loaded) or aborted due to an error, the 
executor sends the proper response back to the command node to finish 
up the process. 

The content of the load image file is specified in Appendix C. 

The algorithm for handling the down-line load is as follows: 

Call Line Service Function to open line for load 
Perform load callin~ Line Service Function to transmit and receive 
Call Line Service Function to close line 

4.2.2 Up-line Dump Operation - The up-line dump capability of the 
Network Management layer allows a system to dump its memory to a file 
on a network node. 

60 



The requirements for such a dump correspond with those for a down-line 
load: 

• The system being dumped must be connected to a network node 
(executor) by a specific physical line. 

• The system being dumped must run a minimal cooperative program 
that can communicate over the line with the executor. The 
protocol used is implementation-dependent (refer to the MOP 
specification) . 

If the executor determines that the program is not there, then 
executor must supply the program. This is the secondary 
dumper. 

• The line used must be in the ON or SERVICE state and returned 
afterwards to its original state. 

• The executor must have access to the file receiving the dump. 
If the file is remote,' the executor transfers the data using 
remote file access routines. (Refer to the DAP Functional 
Specification.) 

The system to be dumped can indicate that it is capable of being 
dumped. In this case, the Line Watcher at the executor node senses 
the possibility of a dump and can pass a dump request to the Local 
Network Management Functions at the executor node. Alternatively, the 
executor or a remote command node can initiate the dump with an NCP 
DUMP command. In this case, the executor node's Local Network 
Management Functions receive the request from the Network Management 
Access Routines or the Network Management Listener. 

The Local Network Management Functions proceed according to the 
options in the request. Any required information that has been left 
to default is first obtained from the node data base. The Local 
Network Management Functions then accomplish the dump using the 
system-dependent service protocol (for example, MOP), and the local 
operating system's file system or network remote file transfer 
facilities. If the remote system does not respond, the executor can 
trigger the remote system and load a secondary dumping program. 

In cases where the dump was not initiated by the target node, when the 
requested memory has been dumped to a file or the dump has been 
aborted, the executor sends an appropriate response back to the node 
requesting the operation. 

The content of the dump file is specified in Appendix C. 

The algorithm for performing the up-line dump is as follows: 

Call Line Service Function to open line for dump 
Perform dump callin~ Line Service Function to transmit and receive 
Call Line Service Function to close line 

4.2.3 Trigger Bootstrap Operation - The trigger bootstrap capability 
of the Network Management layer allows remote control of an operating 
system's restart capability. Since a system being booted is not 
necessarily a fully functional network node, the operation must be 
performed over a specific physical line (specified by a 
line-identification) . The node on the network side of the line is 
called the executor node. 

61 



The NCP TRIGGER command can initiate the 
via the Network Management Listener 
Access Routines. The Local Network 
executor node receive the request. 

trigger bootstrap function 
and/or the Network Management 

Management Functions at the 

Wh~n the Local Network Management Functions receive a NICE trigger 
bootstrap request, they proceed according to the options in the 
request. Any required information which has been left to default is 
obtained from the node data base. 

The physical line being used must be in the ON or SERVICE state at the 
executor node's end. The executor uses the system-dependent service 
protocol (for example, MOP) to perform the operation. 

When the operation is complete, the executor sends its response to the 
command node. 

Once the target node is triggered, it 
whatever manner its bootstrap ROM is 
could include requesting a down-line load 
that just triggered it or some other. 
itself from its own mass storage. 

will then load itself in 
programmed to operate. This 
either from the executor 

The target node could load 

The algorithm for implementing the trigger bootstrap is as follows: 

Call Line Service function to open line for tri~~er 
Perform trig~er, callin~ line service to transmit 
Call Line Service function to close line 

4.2.4 Loop Test Operation - There are two types of loop tests, node 
level and line level. Both types are loopback tests that loop a 
standard test block a specified number of times. 

If either test fails, the response explains the failure. If the test 
fails because the test message was too long, the error return is 
"invalid parameter value, length" (Appendix D) and the test data field 
of the error message contains the maximum length of the loop test 
data, exclusive of test data overhead. If the test fails for any 
other reason, the test data field contains the number of messages that 
had not been looped when the test was declared a failure. 

The unlooped count need not be returned for success or for errors that 
occur before looping can begin (for example, connect errors, command 
message format, or content errors). The only exception to this is the 
case that the value of the length parameter is too large, since this 
requires a return of the maximum length. 

4.2.4.1 Node Level Testing - There are two general categories of node 
level tests (shown in Figures 6 and 7, following). Both use normal 
traffic that requires logical links. Both have variations that use 
the Loopback Mirror and NCP LOOP NODE commands. The difference is 
that the first type uses what might be called "normal" communication, 
while the second type sets up a loop node name established with the 
NCP SET NODE LINE command. 

62 



The four ways in which node level messages travel are: 

1. Local to local 

2. Local to remote 

3. Local to 
loopback 
used) 

local loopback (using an operator-controlled 
device with a loop node defined with the line to be 

4. Local to remote loopback (using two connected nodes with a 
loop node defined with the line to be used) 

The first two ways are used for the "normal" communication tests. The 
last two ways are used for the loop node name tests. 

Test data can be a Loopback Mirror test message that is repeated a 
defined number of times, a file that is transferred in any of the ways 
listed above, or a message generated by a user task. 

The set up commands for various types of node level tests are 
described in Figures 6 and 7. 

The operation of node level testing that uses Network Management 
modules is as follows. The Local Network Management Functions receive 
the NCP LOOP NODE command from the Network Management Listener and/or 
Network Management Access Routines. If a line is involved in the 
test, it must be in the ON state. if the Loopback Mirror is involved, 
the message is passed to the Loopback Mirror Access Routines (see 
Section 5). One logical link loop test uses a loop node with a 
routing node on the remote end of the line (Figure 6). This test 
returns the test data on the line chosen by the Transport algorithm at 
the routing node. 

63 



A. Local-to-Loopback Node Test, Single Node, uSing files as test data, with a software 
controlled loopback capability 

SEcT LINE Ilneld CONTROLLER LOOPBACK 
SET NODE FISHY LINE l,ne 1<1 
(Transfer fIle to/fro In FISHYI 

User 
Modules 

Network 
ApplIcatIon 

Session Control 

Network 
Services 

Transport 

Data LInk 

PhYSIcal LInk 

NODE BOB 

C. Local-to-Loopback Node Test, Two Nodes, using user task 

SET NODE FISHY LINE line-id 
(Invoke user task using BOB and FISHYI 

NODE BOB 

User I Use'Task I I User Task I Modules 

Network 

T /' Management i 
Network I / ApplicatIon 

Session Control I j 
Network 

~ / Services 

Transport \ i 
Data Link \ I 
Physical Link \ I 

\ \1 

Loopback 
Hardware 
DeVice 

B. Node Test, Single Node, uSing loopbaci' !lllrror and test messages, and a manually set 
loaphack device 

SET NODE FISHY LINE line Id 
LOOP NODE FISHY 

User 
Modules 

Network 
Management 

Network 
Applu:atlon 

SessIOn Control 

Network 
Services 

Transport 

Data Link 

PhYSIcal LInk 

User 
Modules 

Network 
Management 

Network 
ApplicatIon 

Session Control 

Network 
Services 

Transport 

Data LInk 

PhYSIcal LInk 

NODE BOB 

NODE TONY 

I' "'. 
I i 

T i 
1 I I 

\ '" Communications Hardware ) I 
\ ~--------------------- I , 
,-----------------------_/ 

D. Local-to-Loopback Node Test, Two Nodes, using loopback mirror and test messages 

SET NODE FISHY LINE line-id 
LOOP NODE FISHY 

User 
Modules 

Network 
Management 

Network 
ApplicatIon 

Session Control 

Network 
Services 

NODE BOB 

I Network Management] 
Access Routines 

I Local Network Management FunctlonJ 

• 
I Loopback I 

Access Routines I I Loopback J 
Mirror 

User 
Modules 

Network 
Management 

Network 
ApplIcatIon 

NODE TONY 

"J';~"" ~Se-ss-'o-n-C_o_-nt-ro-I----------------___l 
I' ",';' Network 

II $""'''' __ ServIces ... , 

Transport :: /, Transport ',-, \ 
~D-at-a-L-In-k-------'"ILI--'+:·-,r----- Data Link jl ! 

Physical Link ~, ~ , PhYSIcal link !i II 

1

'\ \' I , I ,I II 1 
" 

~ CommunIcatIons Hardware 1,1 II 
, ~-----------------------------., )1 
'.-::~;_;;;=_;;:;;;;;;;=-=-;;;;:~~;.~:;:.:;:.~.;;.;;.:' . .l 

Loopback node name = FISH Y 

Figure 6 Examples of Node Level Testing Using a Loopback 
Node Name with and without the Loopback Mirror 

64 



A. Normal Local-to-Local, using loop back mirror B. Normal Local-to-Local, using user tasks 

iLOOP NODE BOBI or iLOOP EXECUTORI (Invoke user task uSing BOB) 

NODE BOB NODE BOB 

User 

~ Modules 

I User ,Task I User I user;ask I I Network Management I Modules 
Network Access Routines 
Management 

Local Network Management Function I ! I 
I 

Network 

~ Network 
I I I LooPback, I I t ApplicatIOn Access Routines Mirror Application + 

Session Control II II SeSSion Control : l 
Network 1\ II Network \ I , ,. 
Services " '/ Services ' .... _- ,-
Transport ' .... :::,--:,: ....... " Transport 

Data Link Data Link 

PhYSical Link PhYSical Link 

I I 
CommunicatIOns Hardware Communications Hardware 

C. Normal Local-to-Remote, using loopback mirror 

LOOP NODE TONY 

User 
Modules 

Network 
Management 

Network 
Application 

Session Control 

Network 
Services 

Transport 

Data Link 

Physical Link 

NODE BOB 

I 
Network Management I 

Access Routines I 
I Local Network Management Function I 

User 
Modules 

Network 
Management 

NODE TONY 

I Loopback I Network ~ 
Access Routllles I Application ~ 

I i SesSion Control / ,/ 

I I ~:r~~c~sk ,. / / / 

: I Transport 1/ /' 

, \ Data Link / / 

\ \ PhYSical LlI1k 7 7 
\ \ I , // ,-

, " CommUnications Hardware ./ " , ..... _---------------_ ....... // 

',----- ----- ----- - ----"" 

D. Normal Local-to-Remote, using files as test data 

(Transfer files from BOB to TONY) 

User 
Modules 

Network 
Application 

Session Control 

Network 
Services 

Transport 

Data Link 

PhYSical Link 

Legend: 

NODE BOB 

File Access I 
Routines 

! 

User 
Modules 

Network 
Application 

SessIOn Control 

Network 
Services 

Transport 

Data Link 

PhYSical Link 

NODE TONY 

r 
File_ Access 

LIStener 

',I~ ________________________ ~J I 
" Communications Hardware // 

.......... ~/ 
""''-.. ."..."" -- ...... -- -----...---

normal traffic flow 
test data, using normal traffic paths 

Figure 7 Examples of Node Level Logical Link Loopback Test 
with and without the Loopback Mirror 

65 



4.2.4.2 Data Link Testing - Line level testing requires a direct 
interface between the Line Service Function and the Data Link layer. 
Figure 8 at the end of this section shows two types of line level 
tests: 

1. Direct line loopback, hardware looped 

2. Direct line loopback, software looped 

Line loopback requires the use of line service software (for example, 
MOP), with the line to be tested in the ON or SERVICE state. 

The hardware-looped option requires an operator-controlled loopback 
controller, a modem set to loopback mode, a ROM with loopback 
capabilities at the remote end, or some other equivalent operation. 
It is recommended that the operator turn off the line, reconfigure the 
hardware, and then turn the line back on. Alternatively, the operator 
may leave the line in the ON state, and any resulting synchronization 
problem will be logged as an error. 

The algorithm for the active loop test is as ,follows: 

Set not done 
Call Line Service Functions to open line for active loop 
WHILE not done 

Call Line Service Function to transmit loopback data message 
Call Line Service Function to receive message 
IF error OR count exhausted OR message is not loop data or looped data 
OR rf.~cei ved data does not match sent data 

Set dcme 
ENDIF 

ENDWHIl.E 
Call Line Service Function to close line 

66 



A. Direct Line Loopback. hardware looped 

User 
Layer 

Network 
Management 
Layer 

Data 
Link 

Physical 
Link 

(
(SET LINE line-id STATE OFF] ) 
(manually set loopback device) ( 

) SET LINE line-idSTATE ON/SERVICE'" or 
( LOOP LINE lone-,d , 

Executor Node 

I N. M. , ----fN.M.l 
IAccess Routin 

t , 

l 
I 

I 

-- --- -~ 

Local N. M. Functions I 
Line Service Functions I 

: T 
l : 

I (line in ON or SERVICE state) I 
I 

SET LINE line-id CONTROLLER LooPBACK I 
LOOP LINE line-id 

Hardware Loopback 
Device ! : I 

I I Com"'m-u-n-:-ic-at~io-ns":"H:-ar"":'dw-a-re+--------1 
: "'----------1-- ... 
,------------- ~-,,) 

B. Direct Line Loopback, software looped. line in ON or SERVICE stata" 

User 
Layer 

Network 
Management 
Layer 

Executor Nod. 

I N. M. 
LAcC8SS Routine , 

LOOP LINE line-id 

--' -~ 

User 
Layer 

Network 
I Local N. M. Functions J Management 

Layer 

Target Node 
(in SERVICE or ON state) 

I Line Service Functions I c= Line Service Functions 

~----------------~-~._----------------_1 ~-~ , , ~ I I Data 
Link 

Physical 
Link 

Legend: 
'optional alternative 

* * implementation-dependent 

Figure 8 

! I Link I I 

: I ~::ical: l 
! I I I 
I I Communications Hardware : I 
I ,-----------------------------, I \ _______ ... ___________ .. __________ .J 

- control flow N. M. = Network M8Ilapment 
- --- .. data flow 

Physical Link Loopback Tests and Command 
Sequences Effecting Them 

4.2.5 Change Parameter Operation - When a NICE change parameter 
request is received, the specified parameters are changed, usually by 
interfacing with the local operating system. An appropriate resporise 
is then returned to the requestor. The options of the change 
parameter request indicate the desired operation (either specifying a 
different value or removing the value) and the entity it relates to. 
The operation can be done either for volatile or permanent parameters. 

The request may contain zero or more parameters. If there are none, 
the operation applies to the entire entity entry (in other words, the 
NCP ALL parameter). All parameters in the message should be checked 
before any are changed in the data base. If one parameter fails the 
check, then the operation should fail. A single response indicates 
success or failure for single-entity operations. 

67 



A change parameter request may apply to a group of entities. In this 
case, success or failure is individual. The entire request does not 
fail if a single entity request fails. An initial fail return implies 
no further responses are coming. A special success return indicates 
more responses will follow, one for each entity in the group. 

Changing the line state requires the following capabilities: 

For operator: 

• set line state to OFF 

• Set line state to ON 

• Set line state to SERVICE 

For the Line Watcher: 

• Set line state to ON-AUTOSERVICE 

• Reset line state from ON-AUTOSERVICE 

All of the algorithms imply recording the line state if they succeed. 
The line state algorithms follow. 

Set line state to OFF: 

Call Transport to set line state to off 
Call Line Service Function to set line state to off 

Set line state to ON: 

Call Line Service Function to set line state to passive 
IF success 

Call Transport to set line state to on 
ELSE 

Fail 
ENDIF 

Set line state to SERVICE: 

Call Line Service Function to set line state to closed 
IF success 

Call Transport to set line state to off 
ELSE 

Fail 
ENDIF 

Set line state to ON-AUTOSERVICE: 

IF line state is ON 
Perform alSorithm to set line state to service 

ELSE 
Fail 

ENDIF 

Reset line state from ON-AUTOSERVICE: 

If line state is ON-AUTOSERVICE: 
Perform alSorithm to set line state to on 

ENDIF 

68 



4.2.6 Read Information Operation - When a read information request is 
received, a response is returned, followed by the requested data in 
the form of standard Network Management data blocks (Appendix A). The 
data may be obtained either from within the Local Network Management 
Function itself or by interfacing with the system as appropriate. 

The many restrictions and special situations relating to reading 
specific parameters or counters are described in Appendix A. 
Additional information is in Section 3.3.8 (SHOW command). 

A fail return in the first response implies no further responses are 
coming. A special success return indicates the command message was 
accepted and more will follow. 

4.2.7 Zero Counters Operation - When a zero counters request is 
received, the appropriate counters are cleared by interfacing with the 
local operating system. An appropriate response is then returned to 
the requestor. 

If a read and zero was requested, the counters are returned as if a 
read information had been requested. 

A fail return on the first response implies no further responses are 
coming. Success is a single return for single-entity operations. For 
multiple-entity operations, success is a special success return 
implying further responses. 

4.2.8 NICE Logical Link Handling - This section describes the logical 
link algorithms that Network Management uses when sending NICE 
messages. The version data formats are in Section 4.3.12. The 
determination that a received version number is acceptable is always 
the responsibility of the higher version software, whether it is the 
command source or the listener. 

The recommended buffer size for NICE messages is 300 bytes. 

The Network Management Listener algorithm follows: 

Receive connect reGuest 
(Optionall~) Determine privile~e level based on access control 
IF resources available and received version number OK 

Send connect accept with version number in accept data 
WHILE connected (see Note, below) 

Receive command messa~e 
IF messa~e received 

Process command messa~e accordin~ to command and privile~e 
Send response messa~e(s) 

ENDIF 
ENDWHILE 

ELSE 
IF received version number not OK 

Send connect reject with version skew reason in reJect data 
ELSE 

Send connect reJect 
ENDIF 

ENDIF 

69 



NOTE 

The algorithms used for connections is 
implementation dependent. For example, 
connections can be maintained 
permanently, only while the executor is 
set, timed-out, or one per command. 

The Network Management command source algorithm follows: 

Send connect reauest with version number in connect data 
IF connect accepted 

IF received version number OK 
WHILE desired 

Send command messaSe 
Receive response messaSe(s) 

ENDWHILE 
ENDIF 
Disconnect link 

ELSE 
IF connect reJected b~ listener 

IF reJect data indicates version skew 
Failure due to version skew 

ELSE 
Failure due to listener resources 

ENDIF 
ELSE 

Failure due to network connect problem 
ENDIF 

ENDIF 

4.2.9 Algorithm for Accepting Version Numbers - A version number 
consists of three parts -- version, ECO (Engineering Change Order) , 
and user ECO (Section 4.3.12). In general, another version is 
acceptable if it is greater than or equal to this version. If less 
than this version, it is optionally acceptable as determined by 
product requirements. 

When comparing two version numbers, compare the second parts only if 
the first parts are equal, and so on. 

4.2.10 Return Code Handling - Use the following return code handling 
algorithm to call the Network Management access routines: 

Initiate function 
IF return code = more 

WHILE return code < > done 
Perform next operation 
Process success/failure 

ENDWHILE 
ELSE 

Process success/failure 
ENDIF 

Note that an initiate call starts the function, and an operate call 
performs the function (one entity at a time in the case of plural 
enti ties) . 

70 



4.3 Network'Management Layer Messages 

This section describes the NICE and Event Logging Messages, NICE 
response message format, and NICE connect and accept data format. 

NICE is a command-response protocol. Because the Network Management 
layer is built on top of the Network Services and Data Link layers, 
which provide logical links that guarantee sequential and error-free 
data delivery, NICE does not have to handle error recovery. 

In the message descriptions that follow, any unused bits or bytes are 
to be" reserved and set to zero to allow compatibility with future 
implementations. Conditions such as non-zero reserved areas and 
unrecognized codes or unused bytes at the end of a field or message 
should be treated as errors, and no operation should be performed 
other than an appropriate error response. 

The entire message should be parsed and checked for validity before 
any operation is performed. 

4.3.1 NICE Function Codes - The Phase III NICE protocol performs the 
following message functions. The last one is for system specific 
commands, not specified in this document. 

Function NICE 
CODE Function 

15 Request down-line load 
16 Request up-line dump 
17 Trigger bootstrap 
18 Test 
19 Change parameter 
20 Read information 
21 Zero counters 
22 System-specific function 

4.3.2 Message and Data Type Format Notation - The Network Management 
message format and data type descriptions use the following notation. 

FIELD (LENGTH) 

where: 

FIELD 

LENGTH 

CODING = Description of field 

Is the name of the field being described 

Is the length of the field as: 

1. A number meaning number of 8-bit bytes. 

2. A number followed by a "B" meaning number of bits. 

3. The letters "EX-n" meaning extensible field with n 
being a number meaning the maximum length in 8-bit 
bytes. If no number is specified the length is 
limited only by the maximum NICE message. 
Extensible fields are variable in length consisting 
of 8-bit bytes, where the high-order bit of each 
byte denotes whether the next byte is part of the 
same field. The -1 means the next byte is part of 
this field while a 0 denotes the last byte. 

71 



CODING 

where: 

Extensible fields can be binary or bit map; if 
binary, then 7 bits from each byte are concatenated 
into a single binary field; if bit map, then 7 
bits from each byte are used independently as 
information bits. The bit definitions define the 
information bits after removing extension bits and 
compressing the bytes. 

4. The letters III_n" meaning image field with n being 
a number which is the maximum length in 8-bit bytes 
of the image. The image is preceded by a I-byte 
count of the length of the remainder of the field. 
Image fields are variable length and may be null 
(count-0) . All 8 bits of each byte are used as 
information bits. The meaning and interpretation 
of each image field is defined with that specific 
field. 

5. The character "*" meaning remainder of message. A 
number following the asterisk indicates the minimum 
field length in bytes. 

Is the representation type used. 

A 7-bit ASCII 

B Binary 

BM Bit Map (where each bit or group of bits has 
independent meaning) 

C Constant 

NOTES 

1. If length and coding are omitted, FIELD represents 
a generic field with a number of subfields 
specified in the descriptions. 

2. Any bit or field which is stated to be "reserved" 
shall be zero unless otherwise specified. Any bit 
or field not described is reserved. 

3. All numeric values in this document are shown in 
decimal representation unless otherwise noted. 

4. All fields are presented to the physical link 
protocol least significant byte first. In an ASCII 
field, the leftmost character is in the low-order 
byte. 

5. Bytes in this document are numbered with bit 0 the 
rightmost (low-order, least-significant) bit, and 
bit 7 the leftmost (high-order, most-significant) 
bit. Fields and bytes of other lengths are 
numbered similarly. 

6. Corresponding data type format notation used in 
Tables 6, 8, and Appendix F is described at the 
beginning of Appendix A. 

72 



4.3.3 Request Down-line Load Message Format 

FUNCTION OPTION NODE LINE PARAMETER 
CODE ENTRIES 

where: 

FUNCTION CODE (1) B = 15 

OPTION (1) BM 

NODE 

LINE 

Is one of the following options: 

Option bits Value/Meaning 

0 0 = Identify target by node-ide 
1 = Identify target by line-ide 

Is the target node identification in node-id 
format (see Appendix A) as key into defaults data 
base (present only if option bit 0 0) . Plural 
nodes options are not allowed. 

Is the line identification in line id format (see 
Appendix A). Plural lines options not allowed. 
Present only if option bit 0 = 1. 

PARAMETER ENTRIES are zero or more of PARAMETER ENTRY consisting of: 

DATA 
ID 

where: 

DATA 

DATA ID (2) B 

DATA 

NOTE 

Is the parameter type number 
(see note below and Appendix 
A) • 

Is the parameter data 
(Appendix A). 

The parameters allowed are the following 
node parameters: 

ADDRESS 
CPU 
HOST 
LOAD FILE 
NAME 
SECONDARY LOADER 
SERVICE DEVICE 
SERVICE LINE (allowed only 

if bit 0 = 0) 
SERVICE PASSWORD 
SOFTWARE IDENTIFICATION 
SOFTWARE TYPE 
TERTIARY LOADER 

73 



4.3.4 Request Up-line Dump Message Format 

FUNCTION OPTION NODE LINE PARAMETER 
CODE ENTRIES 

where: 

FUNCTION CODE (1): B = 16 

OPTION (1) : BM Is one of the following options: 

Option bits Value/Meaning 

0 0 == Identify target by node-ide 
1 1 = Identify target by line-ide 

NODE Identifies the node to be dumped (present only if 
option bit 0 = 0). Format is defined in Section 
A. 3. 

LINE Specifies the line over which to dump (present 
only if option bit 0 = 1). Format is defined in 
Section A.l. 

PARAMETER ENTRIES are zero or more of PARAMETER ENTRY consisting of: 

DATA 

where: 

DATA ID (2) B Is the parameter type number 
(see note below and Appendix 
A) • 

DATA Is the parameter 
(Appendix A) . 

NOTE 

The parameters are selected 
node parameters. Only 
parameters are allowed in 
message. They are: 

DUMP ADDRESS 
DUMP COUNT 
DUMP FILE 
SECONDARY DUMPER 
SERVICE LINE (allowed only 

if option bit 0 = 0) 
SERVICE PASSWORD 

74 

from the 
certain 

the dump 

data 



4.3.5 Trigger Bootstrap Message Format 

FUNCTION OPTION NODE LINE PARAMETER 
CODE ENTRIES 

where: 

FUNCTION CODE (1): B = 17 

OPTION (1) : BM 

NODE 

LINE 

Is one of the following options: 

Option bits Value/Meaning 

0 0 = Identify target by node-ide 
1 = Identify target by line-ide 

Identifies the node to trigger boot on (present 
only if option bit 0 = 0). The format is defined 
in Section A.3. 

Identifies the line over which to trigger the boot 
(present only if option bit 0 = 1). The format is 
defined in Section A.l. 

PARAMETER ENTRIES are zero or more of PARAMETER ENTRY consisting of: 

DATA 

where: 

DATA ID (2) B Is the parameter type number 
(see note below and Appendix 
A) • 

DATA Is the parameter 
(Appendix A). 

NOTE 

The parameters are selected 
node parameters. Only 
parameters are allowed in the 
message. They are: 

SERVICE LINE (allowed only 
if option bit 0 = 0) 

SERVICE PASSWORD 

from the 
certain 
trigger 

data 

4.3.6 Test Message Format 

FUNCTION OPTION NODE USER PASSWORD ACCOUNTING LINE PARAMETER 
CODE ENTRIES 

75 



where: 

FUNCTION CODE (1): B = 18 

OPTION (1) : BM Is one of the following options: 

Option bits Value/Meaning 

0 0 = Node type loop test 
1 = Line type loop test 

If node type loop test: 

7 o 
1 

Default access control 
Access control included 

For node type loop tests only (option 0), four parameters are as 
follows: 

NODE Identifies the node to loopback the test block in 
node-id format (Section A.3). Plural node options 
are not allowed. 

USER (1-39): A Is the user-id to use when connecting to node. 
Present only if option bit 7 = 1. 

PASSWORD (1-39): A Is the password to use when connecting to node. 
Present only if option bit 7 = 1. 

ACCOUNTING (I-39):A Is the accounting 
connecting to node. 
= 1. 

information to use when 
Present only if option bit 7 

For line tests only (option 1), one parameter is as follows: 

LINE Identifies the line to send the test on in line-id 
format (Section A.l). Plural lines options not 
allowed. 

PARAMETER ENTRIES Are zero or more of PARAMETER ENTRY, consisting 
of: 

IDATA ID I DATA 

where: 

DATA ID (2) B Is the parameter type number 
(Appendix A). 

DATA Is the parameter 
(Appendix A). 

NOTE 

The parameters are selected 
node parameters. Only 
parameters are allowed in 
message. They are: 

LOOP COUNT 
LOOP LENGTH 
LOOP WITH 

76 

from the 
certain 

the test 

data 



4.3.7 Change Parameter Message Format 

FUNCTION OPTION ENTITY PARAMETER 
CODE ID ENTRIES 

where: 

FUNCTION CODE (1): B = 19 

OPT ION (1): BM 

ENTITY ID 

PARAMETER ENTRIES 

Is one of the following options: 

Bits Meaning 

7 0 = Change volatile parameters. 

1 = Change permanent parameters. 

6 0 = Set/define parameters. 

1 = Clear/purge parameters. 

0-1 Entity type (Appendix A) . 

Identifies the particular entity (Appendix A). 

Are zero or more of PARAMETER ENTRY consisting of: 

IDATA IDI DATA 

where: 

DATA ID (2) B 

DATA 

Parameter type number 
(Appendix A). 

New value according to DATA 
ID (Appendix A). Present 
only if option bit 6 = 0. 

4.3.8 Read Information Message Format 

FUNCTION 
CODE 

where: 

OPTION 

FUNCTION CODE (1): B 20 

77 



OPTION (1): BM Is one of the following options: 

Bits Meaning 
-

7 0 = Read volatile parameter 
1 = Read permanent parameter 

4-6 Information type as follows: 

0 = Summary 
1 = Status 
2 = Characteristics 
3 = Counters 
4 = Events 

0-1 Entity type (Appendix A) . 

ENTITY ID Identifies the particular entity (Appendix A) . 

4.3.9 Zero Counters Message Format 

FUNCTION OPTION ENTITY 
CODE ID 

where: 

FUNCTION CODE (1): B = 21 

OPTION (1): BM 

ENTITY ID 

Is one of the following options: 

Bits Meaning 

7 1 = Read and zero 
0 = Zero only 

0-1 Entity type (Appendix A) . 
(line or node only) 

Identifies the particular entity, if required 
(Appendix A). 

4.3.10 NICE System Specific Message Format 

FUNCTION SYSTEM REMAINDER 
CODE TYPE 

where: 

FUNCTION CODE (1) B = 22 

SYSTEM TYPE (1) : B Represents the type of operating system command to 
which command is specific. 

REMAINDER (*) 

·Value System 

1 RSTS 
2 RSX family 
3 TOPS-20 
4 VMS 

B Consists of data, depending on system specific 
requirements. 

78 



4.3.11 NICE Response Message Format 

RETURN ERROR 
CODE DETAIL 

where: 

RE'rURN CODE (1) 

ERROR ENTITY TEST DATA 
MESSAGE ID DATA BLOCK 

B Is one of the standard NICE return codes (Appendix 
D) • 

ERROR DETAIL (2) :B Is more detailed error information according to 
the error code (e.g., a parameter type). Zero if 
not applicable. If applicable but not available, 
its value is 65,535 (all bits set). In this case 
it is not printed. 

ERROR MESSAGE 
(1-72) : A 

[ENTITY ID] 

[TEST DATA] (2) 

[DATA BLOCK] 

Is a system dependent error message that may be 
output in addition to the standard error message. 

Identifies a particular entity (Appendix A) if 
operation is on plural entities, or operation is 
read information or read and zero counters. If 
the entity is the executor node, bit 7 of the name 
length is set. 

B Is the information resulting from a test operation 
(Test message only). This is only required if a 
test failed and if data is relevant. Section 
4.2.4 explains contents. 

Is one of the data blocks described in Appendix A 
(for read information message or read and zero 
message) . 

If a response message is short terminated after any field, the 
existing fields may still be interpreted according to standard format. 
This means, for example, that a single byte return is to be 
interpreted as a return code. 

Responses to messages not noted as exceptions above are single 
responses indicating return code, error detail, and error message. 

A success response to a request for plural entities is indicated by a 
return code of 2, followed by a separate response message for each 
entity. Each of these messages contains the basic response data 
(return code, error detail, and error message) and the entity ide A 
return code of -128 indicates the end of multiple responses. 

4.3.12 NICE Connect and Accept Data Formats - The first three bytes 
of the connect accept data are: 

VERSION DEC USER 
ECO ECO 

where: 

VERSION (1) B Is the version number 

DEC ECO (1) B Is the DIGITAL ECO number 

USER ECO (1) : B Is the user ECO number 

79 



4.3.13 Event Message Binary Data Format - This section describes the 
generalized binary format of event data. It applies to messages on 
logical links and, as much as possible, to files. 

The buffer size for event messages is 200 bytes. 

The format of an event logging message is: 

FUNCTION SINK EVENT EVENT SOURCE EVENT EVENT 
CODE FLAGS CODE TIME NODE ENTITY DATA 

where: 

FUNCTION CODE (1) : B = 1, meaning event log 

SINK FLAGS (1) : BM Are flags indicating which sinks are to receive a 
copy of this event, one bit per sink. The bit 
assignments are: 

EVENT CODE (2) 

EVENT TIME 

Bit Sink 
---.-

0 Console 
1 File 
2 Monitor 

BM Identifies the specific event as follows: 

Bits Meaning 

0-4 Event type 
6-14 Event class 

Is the source node date and time of 
processing. Consists of: 

event 

JULIAN SECOND MILLISECOND 
HALF DAY 

where: 

JULIAN HALF DAY (2) 

SECOND (2) : B 

MILLISECOND (2) B 

80 

B Number of half days 
since 1 Jan 1977 and 
before 9 Nov 2021 
(0-32767). For example, 
the morning of Jan 1, 
1977 is 0. 

Second within current 
half day (0-43199) ~ 

Millisecond within 
current second (0-999). 
If not supported, high 
order bit is set, 
remainder are clear, and 
field is not printed 
when formatted for 
outp.ut. 



SOURCE NODE 

EVENT ENTITY 

EVENT DATA (*) 

Identifies the source node. It consists of: 

NODE NODE 
ADDRESS NAME 

where: 

NODE ADDRESS (2) B 

NODE NAME (1-6) A 

Node address (see 
Section A. 3) . 

Node name, 0 length, if 
none. 

Identifies the entity involved in the event, as 
applicable. Consists of: 

where: 

ENTITY TYPE (1) B 

Value Entity Type 

-1 none 
0 Line 
1 Node 

ENTITY ID 

where: 

LINE ID (1-16) A 

NODE ID 

Represents the type of 
entity, as follows: 

ENTITY ID Field 

none 
LINE ID 
NODE ID 

Identifies the entity. 
Depends on type, defined 
below. 

Identifies 
entity. 

a line 

Identifies a node 
entity, same form as for 
SOURCE NODE. 

B Is event specific data, zero or more data entries 
as defined for NICE data blocks, parameter types 
according to event class. 

81 



5.0 APPLICATION LAYER NETWORK MANAGEMENT FUNCTIONS 

The only Network Management function specified for the application 
layer is the loopback mirror. 

5.1 Loopback Mirror Modules 

The Loopback Mirror service tests logical links either between nodes 
or within a single node. It consists of an access interface -- the 
Loopback Access Routine; service routines -- the Loopback Mirror; 
and a simple protocol -- th~ Logical Loopback Protocol. 

5.2 Loopback Mirror Operation 

When the Loopback Mirror accepts a connect, it returns its maximum 
data size in the accept data. This is the amount of data it can 
handle, not counting the function code. 

When a Logical Loopback message is received, it is changed into the 
appropriate response message and returned to the user (Figure 7, 
Section 4). The Loopback Mirror continues to repeat all traffic 
offered. The initiator of the link disconnects it. 

5.3 Logical Loopback Message 

Section 4.3.2 describes message format notation. 

If the function code is not valid, or the message is too long, the 
failure code is returned. 

5.3.1 Connect Accept Data Format 

I MAXIMUM DATA I 
where: 

MAXIMUM DATA (2) B Is the maximum length, in bytes, that 
Loopback Mirror can loop. 

5.3.2 Command Message Format 

FUNCTION DATA 
CODE 

where: 

FUNCTION CODE (I) 

DATA (*) B 

B = 0 

Is the data to loop. 

82 

the 



5.3.3 Response Message 

IRETURN CODE I DATA 

where: 

RETURN CODE (1) B Indicates Success (1) or Failure (-1). 

DATA (*) : B Is the data as received, if success. 

83 



APPENDIX A 

NETWORK MANAGEMENT ENTITIES, PARAMETERS, AND COUNTERS: FORMATS AND DATA BLOCKS 

This appendix describes the formats of all entities, entity parameters 
and entity counters, as well as the returns used in the NICE protocol 
and Event Logging messages in response to a request for information. 

There are three entities: LINE, LOGGING and NODE. The entities also 
have plural forms: KNOWN and ACTIVE LINES, LOGGING and NODES, and 
LOOP NODES. The glossary defines the entities. 

Type Number. Each entity, parameter and counter is assigned a type 
number. The entity type numbers are as follows: 

Type Number Keyword 

0 NODE 
I LINE 
2 LOGGING 

The parameter and counter type numbers appear in the tables in this 
appendix. 

Entity Identification Formats. Each entity is assigned an 
identification format at both NCP and Network Management layer level. 
Thes~ formats also appear below in appropriate sections. 

Entity Parameter and Counter Formats. Each parameter and counter is 
assigned a format at both NCP and Network Management layer level, 
described below in appropriate sections. The notation used for the 
parameter formats is described in Section 4.3.2. 

Parameter ~isplay Format and Automatic Parsing Notation. Each 
parameter IS assigned a data type at Network Management layer level 
that corresponds with the format of the parameter. This information 
allows NCP to format and output most parameter values in a simple way, 
even if NCP does not recognize the parameter type. 

The notation used in the parameter tables in this appendix to describe 
these data types is as follows: 

Notation Data Type 

C-n Coded, single field, maximum n bytes 
CM-n Coded, multiple field, maximum n fields 
AI-n ASCII image field, maximum n bytes 
DU-n Decimal number, unsigned, maximum n bytes 
DS-n Decimal number, signed, maximum n bytes 
H-n Hexadecimal number, maximum n bytes 
HI-n Hexadecimal image, maxlmum n bytes 

NICE Returns. A response to a SHOW command consists of the 
identification of the particular entity to which it applies and zero 
or more data entries. The data entries are either parameter or 

84 



counter entries, depending on the information requested. 
in ascending order, by type, so that they can be easily 
output. 

Entries are 
grouped for 

When an implementation recognizes the parameter type of a coded field, 
the output should be the keyword(s) or other interpretation that 
corresponds to the code for that parameter type. If the parameter 
type is not recognized, the field should be formatted as hexadecimal. 

The format of a data entry is as follows: 

DATA ID (2): BM 

DATA TYPE (1): BM 

Identifies: 

Bit Meaning 

15 0 = Parameter data 
1 = Counter data 

If bit 15 is clear, the rest of the bits are as 
follows: 

Bits Meaning 

0-11 Parameter type, interpreted according 
to entity type. 

12-14 Reserved 

If bit 15 is set, the rest of the bits are as 
follows: 

Bits Meaning 

0-11 Counter type 

12 0 = not bit mapped 
1 = bit mapped 

13-14 Counter width 

0 = reserved 
1 = 8 bits 
2 = 16 bits 
3 = 32 bits 

Identifies data type, present only for parameter 
data 

Bit Meaning 

7 1 = Coded, interpreted according to 
PARAMETER TYPE. 

0 = Not coded. 

If bit 7 is set, the rest of the bits are as 
follows: 

Bit Meaning 

6 0 = Single field. Bits 0-5 are the 
number of bytes in the field. 

1 = Multiple field. Bits 0-5 are the 
number of fields, maximum 15; 
each field is preceded by a DATA 
TYPE. 

85 



BIT MAP (2): BM 

DATA: B 

If bit 7 is not set, the rest of the bits are as 
follows: 

Bit Meaning 

6 1 = ASCII image field. Bits 0-5 zero. 
o = Binary number. Bits 0-3 are data 

length. 0 implies data is image 
field. Bits 4 and 5, used to 
indicate how to format the binary 
number for output, are: 

Value Meaning 

o 
1 
2 
3 

Unsigned Decimal Number 
Signed Decimal Number 
Hexadec imal .Numbe r 
Octal Number 

Is the counter qualifier bit map, included only if 
data id is counter and counter is bit mapped. 

Is the data, according to data id and type. 

The data required for setting a parameter or counter is the entity 
identification, the DATA ID, and the DATA. The information required 
for clearing a parameter or counter is the entity identification and 
the DATA ID. When a parameter is displayed, the information is entity 
id, DATA ID, DATA TYPE, BITMAP (if applicable) and DATA. The purpose 
of the data type field is to provide information for an output 
formatter. Thus the formatter can know how to format a parameter 
value even if its parameter type is unrecognized. 

A coded multiple (CM) field cannot appear as a data type for a field 
within a coded multiple type parameter value. 

All numbers are low byte first in binary form whether image or not. 
The image option for numbers can only be used for parameters where it 
is explicitly required. All number bases except hexadecimal have a 
maximum Length of four bytes. 

Indicate counter overflow by setting all bits in the DATA field. 

The following ranges are reserved for system specific counters or 
parameters: 

Range Reserved for 

2100-2299 RSTS specific 

2300-2499 RSX specific 

2500-2699 TOPS-20 specific 

2700-2899 VMS specific 

2900-3899 Future use 

3900-4095 Customer specific 

86 



Information Types. Each parameter is associated with one or more 
information types. The parameter tables in this appendix use the 
following symbols to indicate information types for each parameter. 

Symbol Keyword Associated Entity 

C CHARACTERISTICS All entities 
S STATUS All entities 

* SUMMARY All entities 
EV EVENTS LOGGING 

Applicability Restrictions. All node parameters and counters cannot 
be displayed at every node; nor can all line counters be displayed 
for every line-id. In the following tables, which describe the entity 
parameters and counters, the following symbols note these 
restrictions: 

Symbol 

A 
DN 

E 
N 
L 
R 

S 
ST 

T 

Applicability 

Adjacent node only 
Destination node only 

(includes executor) 
Executor node only 
Node by name only 
Loop nodes 
Remote nodes 

(all nodes except 
executor and loop nodes) 

Sink node only 
Multipoint station 

(when no tributary 
number was specified 
in the request line-id) 

Multipoint tributary 
(when a tributary 
number was specified 
in the request line-id) 

Setability Restrictions. Some parameters have user setability 
restrictions, indicated in this appendix by the following notation: 

Symbol Meaning 

RO Read only 
WO Write only, in the sense that it appears in a 

different form in a read function. (For example, 
a node name can be set, but it is read as part of 
a node id . ) 

A.I LINE Entity 

Lines may be referred to individually or as a group. The formats for 
specifying line entities symbolically are as follows: 

LINE line-id 
KNOWN LINES 

- ACTIVE LINES 

A line identification consists of a device identification (dev), a 
controller number (c), a unit number (u), if a mulitple line 
controller, and a tributary number (t), if multipoint. These fields 
represent the actual local hardware for the line. If the device is 

87 



not a multiplexer, the unit number is not allowed. The tributary 
number is a logical tributary number and is not to be confused with 
the tributary address used to poll the tributary. The tributary 
number is used by Network Management to identify the tributary. The 
tributary address is used by the multipoint algorithm at the Data Link 
level to identify a tributary (DDCMP functional specification). If 
the device is not multipoint, the tributary number is not allowed. An 
omitted unit and/or tributary number in a line-identification implies 
the entire controller and/or station. 

A line identification consists of one to sixteen upper or lower case 
alphanumeric characters. The line-identification format is as 
follows: 

dev-c-u.t 

Some examples: 

DMC-0 
DMC-l 
DZ-0-1 
DZ-.1-0 
DV-0-0.8 
DV-3-0.0 
DL-l.3 

(DMC, controller 0) 
(DMCll, controller 1) 
(DZll, controller 0, unit 1) 
(DZll, controller 1, unit 0) 
(DVll, controller 0, unit 0, tributary 8) 
(DVll, controller 3, unit 0, tributary 0) 
(DLll, controller 1, tributary 3) 

"Wild cards~ are permitted in line identifications. A wild card is an 
asterisk (*) that replaces a controller, unit, or tributary number in 
a line identification. Wild cards specify known lines in the range 
indicated by their position in the line identification. 

The following represent legal uses of wild cards: 

Line 
Identification Meaning 

DMC-* Known DMC lines. 

DZ-3-* Known units on DZ controller 3. 

DZ-3-4. * Known tributaries on DZ controller 3, unit 4. 

DZ-3-*.* Known units and tributaries on DZ controller 3. 

The following represent illegal uses of wild cards: 

* 
DZ-*-3 

When represented in binary, line identification is one of three 
choices, depending on the function it will be applied to. The format 
is as follows: 

LINE FORMAT (1) B 

LINE ID A 

Line format type, with the following values: 

Number Type 

-2 Active lines 
-1 Known lines 
>0 Length of line-id 

The ASCII line identification if LINE FORMAT 
> 0. 

88 



The complete parsing of a line identification can take place only at 
the executor node. This is because the executor is the only node that 
can know what device mnemonics and other line characteristics are 
applicable to itself. 

The following table contains all currently recognized DECnet line 
devices: 

Mne Multiplexer 

**DP N 
DU N 

DL N 

**DQ N 
DA N 
DUP N 
DMC N 

DLV N 
DMP N 
DTE N 
DV Y 
DZ Y 

KDP Y 
KDZ y 

**KL N 
PCL y 

Table 5 
DECnet Line Devices 

Description 

DPII-DA synchronous line interface 
DUII-DA synchronous line interface 
(includes DUVII) 
DLII-C, -E asynchronous serial line 
interface 
DQII-DA synchronous serial line interface 
DAII-B, -AL unibus link 
DUPII-DA synchronous line interface 
DMCII-DA/AR, -MA/AL, -FA/AR interprocessor 
link 
DLVII-E asynchronous line interface 
DMPII multipoint interprocessor link 
DTE20 interprocessor link 
DVII-AA/BA synchronous link multiplexer 
DZII-A, -B asynchronous serial line 
multiplexer 
KMCII/DUPII-DA synchronous line multiplexer 
KMCII/DZ-II-A asynchronous line multiplexer 
KL8-J serial line interface 
PCLII-B multiple CPU link 

A.I.I Line Parameters - The line entity has the following parameters: 

LINE STATE (I) : B Represents the line state, as follows: 

Value Keyword 

0 ON 
I OFF 
2 SERVICE 
3 CLEARED 

** not supported by Phase III DECnet 

89 



LINE SUBSTATE (1) B 

LINE SERVICE (2) B 

Represents the line substate, 
following values: 

Value Keyword 

0 STARTING 
1 REFLECTING 
2 LOOPING 
3 LOADING 
4 DUMPING 
5 TRIGGERING 
6 AUTOSERVICE 
7 AUTOLOADING 
8 AUTODUMPING 
9 AUTOTRIGGERING 

with the 

Represents line service control with the 
following values: 

Value Keyword 

0 ENABLED 
1 DISABLED 

LINE COUNTER TIMER (2) B 
Is the number of seconds between line counter 
log events. 

LINE LOOPBACK NAME (1-6) : A 

LINE ADJACENT NODE 

LINE BLOCK SIZE (2) 

LINE COST (1) : B 

NORMAL TIMER (2): B 

Is the name to be associated with a line as a 
result of a "SET NODE node-id LINE line-id" 
command. 

Identifies the node on the other end of this 
line. Consists of: 

NODE NODE 
ADDRESS NAME 

where: 

NODE ADDRESS (2) : B 

NODE NAME (1-6) : A 

Adjacent node address. 

Name, zero length for 
none. 

B Is Transport's block size for this line. 

Represents the line cost. 

Is the number of milliseconds before a reply 
should be received from the remote station. 

90 



LINE CONTROLLER (1): B 

LINE DUPLEX (1) B 

LINE TYPE (1) B 

Represents the line controller mode, with the 
following values: 

Value Keyword 

0 NORMAL 
1 LOOPBACK 

Represents the line 
following values: 

Value Keyword 

0 FULL 
1 HALF 

duplex, with the 

Represents the line type, with the following 
values: 

Value Keyword 

0 POINT 
1 CONTROLLER 
2 TRIBUTARY 

LINE SERVICE TIMER (2) B 
Is the line service timer value. 

LINE TRIBUTARY (1) : B Is the line multipoint tributary address. 

Table 6 summarizes the line parameter data blocks. 

Paramo NICE 
Type Data Inf. 
Number Type Type 

0 C-l S* 
1 C-l S* 

100 C-l C 
110 DU-2 C 
400 AI-6 S* 
800 CM-l/2 S* 

DU-2 
AI-6 

810 DU-2 S 
900 DU-l C 

1110 C-l C 
1111 C-l C 
1112 C-l C 
1120 DU-2 C 
1121 DU-2 C 
1140 DU-l C 

Table 6 
Line Parameters 

Set. NCP 
Rest. Keywords 

STATE 
RO substate (not 

SERVICE 
COUNTER TIMER 

RO LOOPBACK NAME 
RO ADJACENT NODE 

node address 

a keyword) 

node name (optional if none) 
RO BLOCK SIZE 

COST 
CONTROLLER 
DUPLEX 
TYPE 
SERVICE TIMER 
NORMAL TIMER 
TRIBUTARY 

A.l.2 Line Counters - The line entity counters are listed in Table 7, 
following. The definition of each counter and the way that it is 
incremented can be found in the functional specification for the 

91 



appropriate layer (NSP functional specification, version 3.2; 
Transport functional specification, version 1.3; and DDCMP functional 
specification, Version 4.1). Due to hardware characteristics, some 
devices cannot support all counters. In general, those counters that 
make sense are supported for all devices. Specific exceptions related 
to the DMC are noted in Appendix H. 

Line counters are specified for the following layers only: 

Layer 

Network Management 

Transport 

Data Link 

Type Number 
Range 

0 

800's 

1000's 

Table 7 
Line Counters 

NOTE 

When a line is point-to-point, both groups (ST and T) of the line 
counters are returned. 

Type Bit Bit Number 
Appl. Number width Standard Text Standard Text 

T 0 16 Seconds Since Last Zeroed 

T 800 32 Arriving Packets Received 
T 801 32 Departing Packets Sent 
T 802 16 Arriving Congestion Loss 
T 810 32 Transit Packets Received 
T 811 32 Transit Packets Sent 
T 812 16 Transit Congestion Loss 
T 820 8 Line Down 
T 821 8 Initialization Failure 

T 1000 32 Bytes Received 
T 1001 32 Bytes Sent 
T 1010 32 Data Blocks Received 
T 1011 32 Data Blocks Sent 
T 1020 8 Data Errors Inbound 0 NAKs Sent 

Header Block 
Check error 

1 NAKs Sent Data 
Field Block 
Check error 

2 NAKs Sent REP 
Response 

T 1021 8 Data Errors Outbound 0 NAKs Received 
Header Block 
Check error 

1 NAKs Received 
Data Field 
Block Check 
error 

2 NAKs Received 
REP Response 

(continued on next page) 

92 



Type Bit 
Appl. Number Width 

T 1030 8 
T 1031 8 
T 1040 8 

T 1041 8 

T 1050 16 

T 1051 8 

ST 1100 8 

ST 1101 8 

Table 7 (Cont.) 
Line Counters 

Standard Text 

Remote Reply Timeouts 
Local Reply Timeouts 
Remote Buffer Errors 

Local Buffer Errors 

Selection Intervals 
Elapsed 
Selection Timeouts 

Remote Process Errors 

Local Process Errors 

93 

Bit Number 
Standard Text 

0 NAKs Received 
Buffer 
Unavailable 

1 NAKs Received 
Buffer Too 
Small 

0 NAKs Sent 
Buffer 
Unavailable 

1 NAKs Sent 
Buffer Too 
Small 

0 No Reply to 
Select 

1 Incomplete 
Reply to 
Select 

0 NAKs Received 
Receive 
Overrun 

1 NAKs Sent 
Header Format 
Error 

2 Selection 
Address Errors 

3 Streaming 
Tributaries 

0 NAKs Sent 
Receive 
Overrun 

1 Receive 
Overruns, NAK 
not Sent 

2 Transmit 
Underruns 

3 NAKs Received 
Header Format 
Error 



A.2 LOGGING Entity 

The logging entity identification is the sink type. Logging may be 
referred to by individual sink types or by the sink types as a group. 
The formats for specifying logging entities symbolically are as 
follows: 

Format Meaning 

LOGGING sink-type A particular logging sink type 

KNOWN LOGGING All logging sink types known 
node 

ACTIVE LOGGING All known sink types that are 
state 

A sink type is one of the following: 

CONSOLE 
FILE 
MONITOR 

When represented in binary, sink type is: 

to 

in 

the executor 

ON or HOLD 

SINK TYPE (1) : B Represents the logging sink type as follows: 

Value Meaning 

-2 Active sink types 
-1 Known sink types 

1 CONSOLE 
2 FILE 
3 MONITOR 

Appendix F defines all the event classes and their associated events 
and parameters (not to be confused with the logging parameters). 

Line and node counters provide information for event 
are no logging entity counters specified, 
characteristics, and events. 

The logging sink types have the following parameters: 

logging. 
just 

There 
status, 

STATE (1) : B Represents the sink type state wi th the following 
values: 

Value Keyword 

0 ON 
1 OFF 
2 HOLD 

NAME (1-255) A 
Is the name of the logging sink. If not set, the 
logging sink name defaults to a system-specific value. 

94 



SINK NODE 

EVENTS 

Is the sink node 
following event 
is encountered. 
executor node. 
is described in 
allowed. When 
of: 

NODE 
ADDRESS 

where: 

NODE 
NAME 

identification that applies to all 
parameters until another sink node id 
If not present, it defaults to 

The format for setting this parameter 
Section A.3. Plural options are not 

reading parameter, sink node consists 

NODE ADDRESS (2) : B Node address 

NODE NAME (1-6) : A Node name, 0 length for none 

Are the sink type events, consisting of: 

ENTITY ENTITY 
TYPE ID 

where: 

ENTITY TYPE (1) 

ENTITY ID 

EVENT CLASS (2) 

EVENT EVENT 
CLASS MASK 

B Represents the entity type as 
follows: 

Value Meaning 

-1 No entity 
0 NODE 
1 LINE 

Is the entity 
ENTITY TYPE, 
NODE or LINE. 

id according 
present only 

to 
for 

If ENTITY TYPE is NODE, format is 
as described for sink node. 

If entity type is LINE, format 
is: 

LINE ID (1-16) : A = Line ide 

BM Entity class specification: 

Bits Meaning 

14-15 0 = Single class 
2 = All events for 

class 
3 = KNOWN EVENTS 

0-8 Event class if bits 
14-15 equal 0 or 2. 

95 



EVENT MASK (1-8) B Event mask, bits set to 

NOTE 

correspond to event types (Table 
12, Section F.2). Low order 
bytes first. High order bytes 
not present imply 0 value. 
Format for NCP input or output is 
a list of numbers corresponding 
to the bi ts set (Section 
3.3.1.4). Only present if EVENT 
CLASS is for a single class (bits 
14-15 = 0). 

The wild card and KNOWN EVENTS 
specifications are for changing events 
only. Return read events as a class and 
mask. 

Table 8 summarizes the logging parameters. 

Table 8 
Logging Parameters 

NOTE 

Symbols are explained at the beginning of this appendix. 

Param. 

100 

200 

201 

NICE 
Data Type 

C-l 

AI-255 

CM-l/2 
DU-2 
AI-6 

Info 
Type 

S* 

C* 

EV* 

CM-2/3/4/5 EV* 
C-l 
DU-2 

AI-6 

AI-16 

C-2 
HI-8 

A.3 NODE Entity 

Appl. NCP 
Restr. Keywords 

ESTATE 

E NAME 

S SINK NODE 

S 

Node address 
Node name (optional if none) 

EVENTS 
Entity type 
Node address (if entity type 
is node) 
Node name (if entity type is 
node) 
Line id (if entity type is 
line) 
Event class 
Event mask (if single event 
class indicated) 

The node entity is referred to by its keyword, NODE, followed by the 
node identification. The node identification is either the node 
address or node name except where limited in the command descriptions 

96 



(Section 3.3). Nodes, as a group, can be referred to as KNOWN or 
ACTIVE (see the glossary for definitions). The possible node entities 
are as follows: 

NODE node-id 
EXECUTOR 
ACTIVE NODES 
KNOWN NODES 
LOOP NODES 

When the executor or loop nodes are mixed in a multiple return with 
remote nodes, return the executor first, and the loop nodes last. 

A node address is a unique decimal in the range 1 to MAXIMUM ADDRESS. 
Node address is the primary identification of a node, due to its use 
in the DIGITAL Network Architecture. Transport routes messages to 
node addresses only. Node names are optionally added in the Session 
Control layer as a convenience for users. A node address can have 
only one node name associated with it. However, implementations can 
use system-specific methods to provide users with "alias" node names 
(Transport Functional Specification). 

A node name consists of one to six upper case alphanumeric characters 
with at least one alpha character. A node name must be unique within 
a node and should be unique within the network. 

The format for displaying node identification is: 

NODE = node-address [(node-name)] 

For example: 

NODE = 19 (ELROND) 

The parentheses are only used if the node has a name. When 
represented in binary, node identification is one of four choices 
(limited by applicability to a particular function). All choices 
begin with a format type. The input format is as follows: 

NODE FORMAT (1) : B Represents the node format type, as follows: 

NODE ADDRESS (2) 

NODE NAME A 

Number Type 

-3 Loop nodes, no further data 
-2 Active nodes, no further data 
-1 Known nodes, no further data 

0 Node address 
>0 Length of node name, followed by the 

indicated number of ASCII 
characters. 

In the ENTITY ID field of a response message bit 
7 set indicates the node identification is the 
executor node. 

B Is the node address if NODE FORMAT 0. When 
used as input, a node address of zero impiies the 
executor node. 

Is the node name if NODE FORMAT >0. 

97 



The usual binary output format is as follows: 

NODE 
ADDRESS 

where: 

NODE 
NAME 

NODE ADDRESS (2) B Is the node address. When supplied as output a 
node address of 0 indicates a loop node. 

NODE NAME ( I-6} A Is the node name, 0 length implies none. 

A.3.l Node Parameters - The node entity has the following parameters: 

NODE STATE (l) : B 

NODE IDENTIFICATION (I-32) 

NODE MANAGEMENT VERSION 

NODE SERVICE LINE (1-16) A 

NODE SERVICE PASSWORD (1-8) 

NODE SERVICE DEVICE (1) B 

Represents the executor or destination 
node state with the following values: 

Value Keyword Node 

0 ON Executor 
1 OFF Executor 
2 SHUT Executor 
3 RESTRICTED Executor 
4 REACHABLE Destination 
5 UNREACHABLE Destination 

Except for the executor node state, 
this is a read only parameter. 

A Is the node identification string (for 
example, operating system and version 
number) . 

Is the node Network Management 
version, consisting of the following: 

VERSION (l) : B 

ECO (1) : B 

USER ECO (1) : B 

Version number 

Engineering Change 
Order (ECO) number 

User ECO number 

Is the line used to perform down-line 
load and up-line dump functions. 

B Is the node service password for 
down-line loading and up-line dumping 
the node. The length in binary form 
corresponds to the length of the text 
form. 

Is the device type over which the node 
handles service functions when in 
service slave mode. Code as defined 
in the MOP Functional Specification 
and correspond to the standard Network 
Management device mnemonics. 

98 



NODE CPU (1) B 

NODE LOAD FILE (1-255) : A 

NODE SECONDA'RY LOADER (1-255) 

NODE TERTIARY LOADER (1-255) A 

NODE SOFTWARE TYPE (1) B 

Is the CPU type 
down-line loading 
values: 

of the node for 
with the following 

Value Type 

0 PDP 8 
1 PDP 11 
2 DEC SYSTEM 10 20 
3 VAX 

Is the node load file. 

A 
Is the node secondary loader file. 

Is the node tertiary loader file. 

Is the target node software program 
type for down-line loads with the 
following values: 

Value Program Type 

0 SECONDARY LOADER 
1 TERTIARY LOADER 
2 SYSTEM 

NODE SOFTWARE IDENTIFICATION (1-16) : A 

NODE DUMP FILE (1-255) : A 

NODE SECONDARY DUMPER (1-255) 

NODE DUMP ADDRESS (4) B 

NODE DUMP COUNT (4) B 

NODE HOST 

NODE HOST 

NODE LOOP COUNT (2) : B 

NODE LOOP LENGTH (2) : B 

Is the load software identification. 

Is the node dump file. 

A 
Is the node secondary dumper file. 

Is the actdress to begin up-line dump 
of the node. 

Is the number of memory units to 
up-line dump from the node. 

Is the host identification for reading 
(SHOW or LIST) only. Consists of: 

NODE ADDRESS (2) : B 

NODE NAME (1-6) : A 

Host node 
address. 

Host node 
name, zero 
length if 
none. 

Is the identification of the node that 
node being down-line loaded may use 
for suppor t functions. (Used for 
changing the parameter.) Format is as 
described for the node entity. Plural 
options not allowed. 

Is the default count for loop test. 

Is the default length for loop test. 

99 



NODE LOOP WITH {l} B 

NODE COUNTER TIMER (2) 

NODE NAME (I-6) : A 

NODE LINE (I-16) : A 

NODE ADDRESS {2} : B 

B 

NODE INCOMING TIMER {2} B 

NODE OUTGOING TIMER (2) B 

NODE ACTIVE LINKS {2} B 

NODE DELAY {2} B 

NODE NSP VERSION 

NODE MAXIMUM LINKS { 2} : B 

NODE DELAY FACTOR (l) B 

NODE DELAY WEIGHT (l) B 

NODE INACTIVITY TIMER ( 2) : 

NODE RETRANSMIT FACTOR ( 2) 

NODE TYPE ( 1) : B 

NODE COST (2) B 

NODE HOPS (l) B 

NODE LINE (I-16) A 

B 

: B 

Is the default block type for loop 
test with the following values: 

Type Contents 

0 ZEROES 
1 ONES 
2 MIXED 

Is the number of seconds between node 
counter log events. 

Is the node name. 

Is the line used to get to the 
executor node and associated with a 
loopback node-name. 

Is the executor node address. 

Is the node incoming timer. 

Is the node outgoing timer. 

Is the number of logical links from 
the executor to the destination node. 

Is the average round trip delay in 
seconds to the destination node~ Kept 
on a remote node basis. 

Is the node NSP version. Format same 
as for Network Management version. 

Is the node maximum links. 

Is the node delay factor. 

Is the node delay weight. 

Is the node inactivity timer. 

Is the node retransmit factor. 

Represents the executor node type with 
the following values: 

Value Keyword 

0 ROUTING 
1 NONROUTING 
2 PHASE II 

Is the total cost over the 
path to the destination node. 
a remote node basis. 

current 
Kept on 

Is the total number of hops over the 
current path to a destination node. 
Kept on a remote node basis. 

Is the line used to get to a node 
other than the executor. 

100 



NODE ROUTING VERSION 

NODE TYPE (1) B 

NODE ROUTING TIMER ( 2) : B 

NODE MAXIMUM ADDRESS ( 2) 

NODE MAXIMUM LINES ( 2) : B 

NODE MAXIMUM COST ( 2) B 

NODE MAXIMUM HOPS (1) B 

NODE MAXIMUM VISITS (1) B 

NODE MAXIMUM BUFFERS ( 2) : 

NODE BUFFER SIZE ( 2) B 

Table 9 summarizes the node 

B 

B 

Is the node routing version. Format 
same as for Network Management 
version. 

Represents the adjacent node type, 
with the following values: 

Value Keyword 

0 ROUTING 
1 NONROUTING 
2 PHASE II 

Is the node routing timer value. 

Is the node maximum address. 

Is the node maximum lines value. 

Is the node maximum cost value. 

Is the node maximum hops value. 

Is the node maximum visits value. 

Is the node maximum buffers value. 

Is the node buffer size value. 

parameter data blocks. 

Table 9 
Node Parameters 

NOTE 

Symbols are explained at the beginning of this appendix. 

Par am. NICE Inf. Appl. Set. NCP 
Type Data Type Rest. Rest. Keywords 
Number Type 

0 C-l S* E,R STATE 
100 AI-32 C* E IDENTIFICATION 
101 CM-3 C E RO MANAGEMENT VERSION 

DU-l version number 
DU-1 ECO number 
DU-l User ECO number 

110 AI-16 C A SERVICE LINE 
III H-8 C A SERVICE PASSWORD 
112 C-l C A SERVICE DEVICE 
113 C-l C A CPU 
120 AI-255 C A LOAD FILE 
121 AI-255 C A SECONDARY LOADER 
122 AI-255 C A TERTIARY LOADER 
125 C-l C A SOFTWARE TYPE 
126 AI-16 C A SOFTWARE 

IDENTIFICATION 

(continued on next page) 

101 



Paramo NICE Inf. 
Type Data Type 
Number Type 

130 AI-255 C 
131 AI-255 C 
135 DU-4. C 
136 DU-4 C 
140 CM-1/2 C 

DU-2 
AI-6 

141 n/a 
150 DU-2 C 
151 DU-2 C 
152 C-1 C 
160 DU-2 C 
500 n/a n/a 
501 AI-16 C* 
502 n/a n/a 
510 DU-2 C 
511 DU-2 C 
600 DU-2 S* 
601 DU-2 S* 
700 CM-3 C 

DU-1 
DU-l 
DU-l 

710 DU-2 C 
720 DU-1 C 
721 DU-1 C 
722 DU-2 C 
723 DU-2 C 
810 C-1 S 
820 DU-2 S 
821 DU-1 S 
822 AI-16 S* 
900 CM-3 C 

DU-1 
DU-1 
DU-1 

901 C-1 C 
910 DU-2 C 
920 DU-2 C 
921 DU-2 C 
922 DU-2 C 
923 DU-1 C 
924 DU-1 C 
930 DU-2 C 
931 DU-2 C 

Table 9 (Cont.) 
Node Parameters 

App1. Set. 
Rest. Rest. 

A 
A 
A 
A 
A,E RO 

A,E WO 
E RO 
E RO 
E RO 
E,R 
E,R WO 
L,N 
E WO 
E 
E 
E,R RO 
R RO 
E RO 

E 
E 
E 
E 
E 
A RO 
R RO 
R RO 
R HO 
E HO 

E 
E 
E 
E 
E 
E 
E 
E 
E 

102 

NCP 
Keywords 

DUMP FILE 
SECONDARY DUMPER 
DUMP ADDRESS 
DUMP COUNT 
HOST 

Node address 
Node name (optional 

if none) 
H'OST 
LOOP COUNT 
LOOP LENGTH 
LOOP WITH 
COUNTER TIMER 
NAME 
LINE 
ADDRESS 
INCOMING TIMER 
OUTGOING TIMER 
ACTIVE LINKS 
DELAY 
NSP VERSION 
Version number 
ECO number 
User ECO number 

MAXIMUM LINKS 
DELAY FACTOR 
DELAY WEIGHT 
INACTIVITY TIMER 
RETRANSMIT FACTOR 
TYPE 
COST 
HOPS 
LINE 
ROUTING VERSION 
Version number 
ECO number 
User ECO number 

TYPE 
ROUTING TIMER 
MAXIMUM ADDRESS 
MAXIMUM LINES 
MAXIMUM COST 
MAXIMUM HOPS 
MAXIMUM VISITS 
MAXIMUM BUFFERS 
BUFFER SIZE 



A.3.2 Node Counters - Table 10, below, lists the node counters. The 
definition of each counter and the way it is to be incremented is 
given in the functional specifications for the layer containing the 
counter. 

Node counters are specified for the following layers only: 

Appl. 

DN 

DN 
DN 
DN 
DN 
DN 
DN 
DN 
DN 
E 

E 
E 
E 
E 
E 
E 
E 

Layer 

Network Management 

Network Services 

Transport 

Type Number 
Range 

0 

600's, 700 

900's 

Table 10 
Node Counters 

Type Number Bit width Standard Text 

0 16 Seconds Since Last Zeroed 

600 32 Bytes Received 
601 32 Bytes Sent 
610 32 Messages Received 
611 32 Messages Sent 
620 16 Connects Received 
621 16 Connects Sent 
630 16 Response Timeouts 
640 16 Received Connect Resource Errors 
700 16 Maximum Logical Links Active 

900 8 Aged Packet Loss 
901 16 Node Unreachable Packet Loss 
902 8 Node Out-of-Range Packet Loss 
903 8 Oversized Packet Loss 
910 8 Packet Format Erro~ 
920 8 Partial Routing Update Loss 
930 8 Verification Reject 

103 



APPENDIX B 

MEMORY IMAGE FORMATS 

Since the PDP-8, PDP-II, VAX-II, and DECsystem-10, or DECSYSTEM-20 
memory addressing requirements differ, different formats are required 
for memory image data. In each case, it is essential to know the 
number of bytes that represent the smallest individually addressable 
memory location. A format summary is provided below. 

PDP-8 

PDP-II 
VAX-II 

DECsystem-I0 
DECSYSTEM-20 

Each three bytes represents two l2-bit words. 
that is, the memory address is incremented by two 
for each three bytes. Byte 1 is the low 8-bits of 
memory word 1. Byte 2 is the low 8-bits of memory 
word 2, and byte 3 is the high 4-bits of memory 
words 1 and 2. 

Each byte represents one memory byte. That is, 
the memory address is incremented with each byte. 

Each five bytes represents one 36-bit word. That 
is, the memory address is incremented by one for 
each five bytes. Byte 1 is the highest 8-bits of 
the word. Bytes 2 through 4 follow. The high 
4-bits of byte 5 are the low 4-bits of the word. 
The low 4-bits of byte 5 are discarded. 

104 



APPENDIX C 

MEMORY IMAGE FILE CONTENTS 

The files containing memory images for a down-line load or an up-line 
dump have the same contents. The format may vary from one operating 
system to another, but the contents are functionally the same in all 
cases. The minimum control information required is as follows: 

• The type of the target system (PDP-S, PDP-II, VAX-II, 
DECsystem-10, or DECSYSTEM-20). This is necessary to know how 
to interpret and update memory address information. 

• Transfer address. This is the startup address for the 
program. This field is generally meaningless for a dump file. 

The image information required is as follows: 

• Memory address. This is the address where image goes for a 
load or comes from a dump. 

• Block length. Number of memory units in image block. 

• Memory image. This is the contiguous block of memory 
associated with the above address. The format requirements 
are as specified in Appendix B. The memory image can be of 
any length. 

105 



APPENDIX D 

NICE RETURN CODES WITH EXPLANATIONS 

This appendix specifies the NICE return codes. 

In all cases, the number specified is for the first byte of the return 
code. 

The error detail that sometimes follows the return codes is two bytes 
long. Since some systems may have trouble implementing the error 
details, a value of 65,535 (all 16 bits set) in the error detail field 
means no error detail. In other words, in this case, no error detail 
will be printed. 

If a response message 
existing fields may 
format. 

is short terminated after any field, the 
still be interpreted according to the standard 

A printed error message consists of the standard text for the first 
byte. If the second and third bytes have a defined value, this is 
followed b¥ a comma, a blank, and the keyword(s) for the values. 

Number Standard test 

1 (none) 

2 (none) 

3 (none) 

-1 Unrecognized function or 
option 

-2 Invalid message format 

106 

Meaning 

Success. 

The request has been accepted, 
and more responses are coming. 

Success, partial reply. More 
parameters for entity in next 
message. Can only be embedded 
in a more/done sequence. Each 
message still contains fields up 
through ENTITY ID. 

Either the function code or 
option field requested a 
capability not recognized by the 
Local Network Management 
Function. Also, the error code 
for function codes 2-14 (Phase 
II) , and for system-specific 
commands when the system type 
matches the receiving system. 

Message too long or too short 
(i.e., extra data or not enough 
data), or a field improperly 
formatted for data expected. 

(continued on next page) 



Number Standard test 

-3 Privilege violation 

-4 Oversized Management 
command message 

-5 Management program error 

-6 unrecognized parameter type 

-7 

-8 

-9 

-10 

-11 

Incompatible Management 
version 

Unrecognized component 

Invalid identification 

Line communication error 

Component in 
wrong state 

107 

Meaning 

The requestor does not have the 
privilege required to perform 
the requested function. 

A message size was too long. 
The NICE message for the command 
was too long for the Network 
Management Listener to receive. 

A software error occurred in the 
Network Management software. 
For example, a function that 
could not fail did fail. 
Generally indicates a Network 
Management software bug. 

A parameter type included in, 
for example, a change parameter 
message not recognized by the 
Network Management Function. 

The error detail is the low and 
high bytes of the parameter type 
number, interpreted according to 
the entity involved. 

The function requested cannot be 
performed because the Network 
Management version skew between 
the command source and the 
command destination is too 
great. 

An entity (component) was not 
known to the node. The error 
detail contains the entity type 
number.* 

The format of an entity 
identification was invalid. For 
example, a node name with no 
alpha character, or KNOWN used 
where not allowed. The error 
detail contains the entity type 
number.* 

Error in transmit or receive on 
a line. Can only occur during 
direct use of the Data Link user 
interface. 

An entity (component) was in an 
unacceptable state. For 
example, a down line load 
attempted over a line that is 
OFF, or a node name to be used 
for a loop node already assigned 
to a node address. The error 
detail contains the entity type 
number.* 

(continued on next page) 



Number Standard test 

-13 File open error 

-14 Invalid file contents 

-15 Resource error 

-16 Invalid parameter value 

-17 Line protocol error 

-18 File I/O error 

108 

Meaning 

A file could not be opened. 

The error detail is defined as 
follows: 

Value 

o 
1 
2 
3 
4 
5 

Keywords 

PERMANENT DATABASE 
LOAD FILE 
DUMP FILE 
SECONDARY LOADER 
TERTIARY LOADER 
SECONDARY DUMPER 

The data in a file was invalid. 
The error detail is defined as 
for error #-13. 

Some resource was not available. 
For example, an operating system 
resource not available. 

Improper line-identification 
type, load address, memory 
length, etc. The error detail 
is the low and high bytes of the 
parameter type number, 
interpreted according to the 
entity involved. 

Invalid line protocol message or 
operation. Can only occui 
during direct line access. In 
the case of a line loop test, it 
indicates that an error was 
detected during message 
comparison that should have been 
caught by the line protocol. 

I/O error in a file, such as 
read error in system image or 
loader during down-line load. 

The error detail is defined as 
for error #-13. 

(continued on next page) 



Number Standard test 

-19 Mirror link disconnected 

-20 No room for new entry 

-21 Mirror connect failed 

-22 Parameter not applicable 

109 

Meaning 

A successful connect was made to 
the Loopback Mirror, but the 
logical link then failed. 

The error detail is: 

Value 

o 
1 

2 

3 
4 
5 
6 

7 
8 

9 
10 

11 

12 

13 
14 
15 
16 

Standard text 

No node name set 
Invalid node name 
format 
Unrecognized node 
name 
Node unreachable 
Network resources 
Rejected by object 
Invalid object name 
format 
Unrecognized object 
Access control 
rejected 
Object too busy 
No response from 
object 
Remote node shut 
down 
Node or object 
failed 
Disconnect by object 
Abort by object 
Abort by Management 
Local node shut down 

Insufficient table space for new 
entry. 

A connect to the Network 
Management Loopback Mirror could 
not be completed. The error 
detail is the same as for error 
#-19. 

Parameter not applicable to 
entity. For example, setting a 
tributary address for a 
point-to-point line or an 
attempt to set a controller to 
loopback mode when the 
controller does not support that 
function. The error detail 
contains the parameter type of 
the parameter that is not 
applicable. 

(continued on next page) 



Number Standard test Meaning 
~----+-------------------------------4-------------------------------------~ 

-23 Parameter value too long 

-24 Hardware failure 

-25 Operation failure 

-26 System-specific Management 
function not supported 

-27 Invalid parameter grouping 

-28 Bad loopback response 

-29 Parameter missing 

-128 (none) 

*NOTE 

A parameter value was too long 
for the implementation to 
handle. The error detail is the 
low and high bytes of the 
parameter type number, 
interpreted according to the 
entity involved. 

The hardware associated with the 
request could not perform the 
function requested. 

A requested operation failed, 
and there is no more specific 
error code. 

Error return for system-specific 
functions unless the system type 
is for the system receiving the 
command. May be further 
explained by a system-specific 
error message. 

The request for changing 
multiple parameters contained 
some that cannot be changed with 
others. 

A loopback message did not match 
what was expected, either 
content or length. 

A required parameter was not 
included. The error detail is 
the low and high bytes of the 
parameter type number, 
interpreted according to the 
entity involved. 

No message printed. Done with 
multiple response commands 
(e.g., read information for 
known lines). 

Error codes -8, -9, and -11 indicate 
problems with the primary entity to 
which a command applies. They may also 
apply to a secondary entity, such as the 
line in a LOAD NODE command. 

110 



APPENDIX E 

NCP COMMAND STATUS AND ERROR MESSAGES 

NCP has the following standard status and error messages. 

Standard Text 

COMPLETE 

FAILED 

NOT ACCEPTED 

Unrecognized command 

unrecognized keyword 

Value out of range 

Unrecognized value 

Not remotely executable 

Bad management response 

Listener link disconnected 

Meaning 

Status Messages 

The command was processed successfully. 

The command did not execute 
successfully. 

The command did not get past syntax and 
semantic checking. No attempt was made 
to execute it. The text of the error 
message may vary as long as the meaning 
is clearly the same. 

Error Messages 

The command typed by the user was not 
recognized. 

Something in the command keyword was not 
recognized. 

A parameter value was out of range. 
This message may be followed by a comma, 
a blank and the parameter keyword(s). 

A parameter value was unrecognizable. 
This message may be followed by a comma, 
a blank and the parameter keyword(s). 

NCP is functionally unable to send a 
command to a remote node. 

~he Network Management Access Routines 
received unrecognizable information. 

A successful connect was made to the 
Network Management Listener, but the 
logical link then failed. Optional 
error detail is as in NICE error message 
-19 (Appendix D). 

(continued on next page) 

III 



Standard Text 

Listener connect failed 

Total parameter data 
too long 

Oversized Management 
response 

Meaning 

Error Messages 

A connect to the Network Management 
Listener could not be completed. The 
optional error detail is as in NICE 
error message -21 (Appendix D). 

NCP command overflows maximum 
message for this implementation. 

NICE 

NCP could not receive a NICE message 
because it was too long. 

112 



APPENDIX F 

EVENTS 

F.l Event Class Definitions 

Table 11, following, defines the event classes. The event class as 
shown in Table 11 is a composite of the system type and the system 
specific event class. 

Event 
Class 

o 
1 
2 
3 
4 
5 
6 

7-31 

32-63 

64-95 

96-127 

128-159 

160-479 

480-511 

F.2 Event Definitions 

Table 11 
Event Classes 

Description 

Network Management Layer 
Applications Layer 
Session Control Layer 
Network Services Layer 
Transport Layer 
Data Link Layer 
Physical Link Layer 
Reserved for other common classes 

RSTS System specific 

RSX System specific 

TOPS-20 System specific 

VMS System specific 

Reserved for future use 

Customer specific 

In the following descriptions, an entity related to an event indicates 
that the event can be filtered specific to that entity. Binary 
logging data is formatted under the same rules as the data in NICE 
data blocks (see Appendix A). Section F.3 describes the event 
parameters associated with each event type. 

Table 12 shows the events for each class. 

113 



Table 12 
Events 

Class Type Entity Standard Text 

o 
o 
o 
o 

o 
o 
o 
o 

2 

2 

3 
3 

3 

4 
4 
4 
4 
4 
4 

4 
4 
4 

4 

4 
4 

4 

4 

4 

5 

o 
1 
2 
3 

4 
5 
6 
7 

1 

1 

o 
1 

2 

o 
1 
2 
3 
4 
5 

6 
7 
8 

9 

10 
11 

12 

13 

14 

o 

none 
node 
line 
line 

line 
node 
line 
line 

none 

none 

none 
none 

node 

none 
line 
line 
line 
line 
line 

line 
line 
line 

line 

line 
line 

line 

line 

node 

line 

Event records lost 
Automatic node counters 
Automatic line counters 
Automatic line service 

Line counters zeroed 
Node counters zeroed 
Passive loopback 
Aborted service request 

Local node state change 

Access control reject 

Invalid message 
Invalid flow control 

Data base reused 

Aged packet loss 
Node unreachable packet loss 
Node out-of-range packet loss 
Oversized packet loss 
Packet format error 
Partial routing update loss 

Verification reject 
Line down, line fault 
Line down, software fault 

Line down, operator fault 

Line up 
Initialization failure, 
line fault 
Initialization failure, 
software fault 
Initialization failure, 
operator fault 

Node reachability change 

Locally initiated state change 

114 

Event Parameters 
and Counters * 

none 
Node counters 
Line counters 
Service 
Status 
Line counters 
Node counters 
Operation 
Reason 

Reason 
Old state 
New state 
Source node 
Source process 
Destination process 
User 
Password 
Account 

Message 
Message 
Current flow control 
NSP node counters 

Packet header 
Packet header 
Packet header 
Packet header 
Packet beginning 
Packet header 
Highest address 
Node 
Reason 
Reason 
Packet header 
Reason 
Packet header 
Expected node 
Node 
Reason 

Reason 
Packet header 
Reason 
Packet header 
Received version 
Status 

Old state 
New state 

(continued on next page) 



Table 12 (Cont.) 
Events 

Class Type Entity Standard Text 
Event Parameters 
and Counters * 

5 

5 

5 

5 

5 

5 
5 

5 

5 

6 
6 
6 
6 
6 
6 

* 

F.3 

1 line Remotely initiated state change Old state 

2 

3 

4 

5 

6 
7 

8 

9 

o 
1 
2 
3 
4 
5 

line 

line 

line 

line 

line 
line 

line 

line 

line 
line 
line 
line 
line 
line 

Protocol restart received in 
maintenance mode 
Send error threshold 

Receive error threshold 

Select error threshold 

Block header format error 
Selection address error 

Streaming tributary 

Local buffer too small 

Data set ready transition 
Ring indicator transition 
Unexpected carrier transition 
Memory access error 
Communications interface error 
Performance error 

Counters are defined in Appendix A. 

Event Parameter Definitions 

New state 
none 

Line counters, 
including station 

Line counters, 
including station 

Line counters, 
including station 

Header (optional) 
Selected tributary 
Received tributary 
Previous tributary 
Tributary status 
Received tributary 
Block length 
Buffer length 

New state 
New state 
New state 
Device register 
Device register 
Device register 

The following parameter types are defined for the Network Management 
layer (class 0): 

Type Data Type Keywords 

0 C-l SERVICE 

1 CM-l/2/3 STATUS 
C-l Return code 
C-2 Error detail (optional if no error 

message) 
AI-72 Error message (optional) 

2 C-l OPERATION 
3 C-l REASON 

115 



where: 

SERVICE (1): B 

STATUS 

OPERATION (1) B 

REASON (1) B 

Represents the service type as follows: 

Value Keyword 

0 LOAD 
1 DUMP 

Is the operation status, consisting of: 

RETURN ERROR ERROR 
CODE DETAIL MESSAGE 

where: 

RETURN CODE (1) B 

ERROR DETAIL (2) : B 

ERROR MESSAGE(I-72) A 

Standard NICE return 
code, with added 
interpretation: 

Value Keyword 

0 REQUESTED 
>0 SUCCESSFUL 
<0 FAILED 

Standard NICE 
detail. 

error 

Standard NICE optional 
error message. 

Represents the operation performed, as follows: 

Value Keyword 

0 INITIATED 
1 TERMINATED 

Represents the reason aborted, as follows: 

Value Reason 

0 Receive timeout 
1 Receive error 
2 Line state change by higher level 
3 Unrecognized request 
4 Line open error 

116 



The following parameter types are defined for the Session Control 
layer (class 2): 

Type 

1 

2 

3 

4 

5 

6 

7 

8 

where: 

REASON (1) B 

OLD STATE (1) 

NEW STATE (1) 

Data Type 

C-l 

C-l 

C-l 

CM-l/2 
DU-2 
AI-6 

CM-l/2/3/4 
DU-l 
DU-l 

DU-l 

AI-16 

CM-l/2/3/4 

AI-39 

C-l 

AI-39 

Keywords 

REASON 

OLD STATE 

NEW STATE 

SOURCE NODE 
node address 
node name (optional if none) 

SOURCE PROCESS 
Object type 
Group code, (if specified and process 
name present) 
User code, (if specified and group 
code present) 
Process name, if specified 

DESTINATION PROCESS 
Same as for SOURCE PROCESS 

USER 

PASSWORD 

ACCOUNT 

Represents the reason for state 
follows: 

change, 

Value Meaning 

0 Operator command 
1 Normal operation 

B Represents the old node state, as follows: 

Value Meaning 

0 ON 
1 OFF 
2 SHUT 
3 RESTRICTED 

as 

B Represents the new node state, coded same as OLD 
STATE. 

117 



SOURCE NODE 

SOURCE PROCESS 

Is the source node identification, consisting of: 

NODE NODE 
ADDRESS NAME 

where: 

NODE ADDRESS (2) 

NODE NAME (1-6) A 

B Node address (see Section 
A. 3) • 

Node name, 0 length 
none. 

if 

Is the source process identification, consisting 
of: 

where: 

OBJECT TYPE (1): B 

GROUP CODE (1): B 

USER CODE (1): B 

PROCESS NAME(I-16):A 

PROCESS 
NAME 

Object type number 

Group code number 

User code number 

Process name 

DESTINATION PROCESS Is the destination process identification, defined 
as for SOURCE PROCESS. 

USER (1-39) : A Is the user identification 

PASSWORD (1) : B Is the password indicator. A value of zero 
indicates a password was set. Absence of the 
parameter indicates no password was set. 

ACCOUNT (1-39) : A Is the account information 

The following parameter types are defined for the Network Services 
layer (class 3): 

Type Data Type Keywords 

0 CM-4 MESSAGE 
H-l Message flags 
DU-2 Destination node address 
DU-2 Source node address 
HI-6 Message type dependent data 

1 DU-l CURRENT FLOW CONTROL 

118 



where: 

MESSAGE (1-12) B Is the message received (NSP information 
only). Consists of: 

MESSAGE DESTINATION 
FLAGS NODE 

where: 

MESSAGE FLAGS(l):B 

DESTINATION NODE(2):B 

SOURCE NODE(2):B 

DATA(I-6) :B 

SOURCE DATA 
NODE 

Message flags 

Destination 
address 

node 

Source node address 

Message type 
dependent data 

CURRENT FLOW CONTROL (1) : B Is the current flow control value 

The following parameter types are defined for the Transport layer 
(class 4): 

Type 

1 

2 

3 

4 

5 

6 

7 

Data Type 

CM-4 
H-l 
DU-2 
DU-2 
H-l 

HI-6 

DU-2 

CM-l/2 
DU-2 
AI-6 

CM-l/2 
DU-2 
AI-6 

C-l 

CM-3 
DU-l 
DU-l 
DU-l 

C-l 

Keywords 

PACKET HEADER 
Message flags 
Destination node address 
Source node address 
Forwarding data 

PACKET BEGINNING 

HIGHEST ADDRESS 

NODE 
node address 
node name (optional if none) 

EXPECTED NODE 
node address 
node name (optional if none) 

REASON 

RECEIVED VERSION 
Version number 
ECO number 
User ECO number 

STATUS 

119 



where: 

PACKET HEADER Is the packet header consisting of: 

MESSAGE DESTINATION SOURCE 
FLAGS NODE NODE 

ADDRESS ADDRESS 

where: 

MESSAGE FLAGS (l):B 

DESTINATI0N NODE ADDRESS(2):B 

SOURCE NODE ADDRESS (2): B 

FORWARDING DATA (l):B 

FORWARDING 
DATA 

Message 
definition 
flags 

Address of 
destination 
node 

Address of 
source node 

Message 
forwarding 
data 

PACKET BEGINNING (6) : B Is the beginning of packet. 

HIGHEST ADDRESS (2) : B Is the highest unreachable node address. 

NODE 

EXPECTED NODE 

REASON (1) B 

Is the node identification in the same 
format as SOURCE NODE in Session Control 
events. 

Is the expected node identification in the 
same format as SOURCE NODE in Session 
Control events. 

Is the failure reason: 

Value 

o 
1 
2 
3 
4 
5 
6 
7 

8 

9 
10 

11 

Meaning 

Line synchronization lost 
Data errors 
Unexpected packet type 
Routing update checksum error 
Adjacent node address change 
Verification receive timeout 
version skew 
Adjacent node address out of 
range 
Adjacent node block size too 
small 
Invalid verification seed value 

'Adjacent node listener receive 
timeout 
Adjacent node listener received 
invalid data 

120 



RECEIVED VERSION 

STATUS (1) B 

Is the received 
of: 

I VERSION ECO 

where: 

VERSION (1): B 

ECO (1): B 

USER ECO (1): B 

version 

USER 
ECO 

number, 

Version number. 

ECO number. 

User ECO number. 

consisting 

Represents the node status, as follows: 

Value Meaning 

0 REACHABLE 
1 UNREACHABLE 

The following parameter types are defined for the Data Link layer 
(class 5): 

Type Data Type Keywords 

0 C-l OLD STATE 

1 C-l NEW STATE 

2 HI-6 HEADER 

3 DU-l SELECTED TRIBUTARY 

4 DU-l PREVIOUS TRIBUTARY 

5 C-l TRIBUTARY STATUS 

6 DU-l RECEIVED TRIBUTARY 

7 DU-2 BLOCK LENGTH 

8 DU-2 BUFFER LENGTH 

where: 

OLD STATE (1): B Represents the old DDCMP state, as follows: 

Value Meaning 

0 HALTED 
1 ISTRT 
2 ASTRT 
3 RUNNING 
4 MAINTENANCE 

NEW STATE ( 1) : B Represents the new DDCMP state, as defined 
for OLD STATE. 

HEADER (1-6) : B Is the block header 

SELECTED TRIBUTARY(l) : B Is the selected tributary address 

RECEIVED TRIBUTARY (1) : B Is the received tributary address 

121 



PREVIOUS TRIBUTARY (1) : B Is the previously selected tributary address 

TRIBUTARY STATUS (I): B Is the tributary status, as follows: 

value Meaning 

0 Streaming 
1 Continued send after timeout 
2 Continued send after deselect 
3 Ended streaming 

BLOCK LENGTH (2): B Is the received block length from header, in 
bytes 

BUFFER LENGTH (2): B Is the buffer length, in bytes 

The following pa~ameter types are defined for the Physical Link layer 
(class 6): 

Type Data Type 

0 H-2 

1 C-l 

where: 

DEVICE REGISTER(2}: B 

NEW STATE (I): B 

Keywords 

DEVICE REGISTER 

NEW STATE 

Represents a single device register. When 
more than one, they should be output in 
standard order. 

Represents the new modem control state, as 
follows: 

Value Meaning 

0 OFF 
1 ON 

122 



APPENDIX G 

JULIAN HALF-DAY ALGORITHMS 

The following algorithms will convert to and from a Julian half-day in 
the range 1 January 1977 through 9 November 2021 as used in the binary 
format of event logging records. 

The algorithms will operate correctly with 16 bit arithmetic. The 
arithmetic expressions are to be evaluated using FORTRAN operator 
precedence and integer arithmetic. 

In all cases, the input is assumed to be correct, i.e., the day is in 
the range 1 to maximum for the month, the month is in the range 1-12, 
the year is in the range 1977-2021 and the Julian half-day is in the 
range 0-32767. 

To convert to Julian half-day: 

JULIAN = (3055*(MONTH+2)/100-(HONTH+10)/13*2-91 
+(1-(YEAR-YEAR/4*4+3)/4)*(MONTH+10)/13+DAY-1 
+(YEAR-1977)*365+(YEAR-1977)/4)*2 

To convert from Julian half-day: 

HALF = JULIAN/2 
TEMPI = HALF/1461 
TEHP2 = HALF-TEMP1 
YEAR = TEMP2/365 
IF TEMP2/1460*1460 = TEMP2 AND (HALF+1)/1460 > TEMP1 

YEAR = YEAR-1 
ENDIF 
TEMP1 = TEMP2-(YEAR*365)+1 
YEAR = YEAR+1977 
IF YEAR/4*4 = YEAR 

TEMP2 = 1 
ELSE 

TEMP2 = 0 
ENDIF 
IF TEMP1 > 59+TEHP2 

DAY = DAY+2-TEHP2 
ELSE 

DAY = TEMP1 
ENDIF 
MONTH = (DAY+91)*100/3055 
DAY = DAY+91-MONTH*3055/100 
HONTH = MONTH-2 
IF HALF*2 = JULIAN 

HALF = 0 
ELSE 

HALF = 1 
ENDIF 

123 



The algorithm was certified -to work using the following FORTRAN 
program running in FORTRAN IV+ on RSX-llM: 

INTEGER*4 COUNT 
INTEGER*2 JULTES,JULIAN,DAY,HONTH,YEAR,JULTEH,HALF 

DO 1099 COUNT=0,32767 
JULTES=COUNT 
CALL UNJUL(JULTES,HALF,DAY,HONTH,YEAR> 
JULTEM=JULIAN(DAY,MONTH,YEAR>+HALF 
IF (JULTEM.EQ.JULTES) GOTO 1099 

TYPE 10,JULTES,JULTEH,HALF,DAY,MONTH.YEAR 
10 FORMAT (X,'Error!',617) 
1099 CONTINUE 

END 

INTEGER FUNCTION TO CONVERT DAY, MONTH AND YEAR TO JULIAN HALF-DAY 

INTEGER*2 FUNCTION JULIAN(DAY,MONTH,YEAR) 
INTEGER*2 DAY,MONTH,YEAR 

JULIAN = (3055*(MONTH+2)/100-(MONTH+10)/13*2-91 
& +(1-(YEAR-YEAR/4*4+3)/4)*(MONTH+l0)/13+DAY-1 
& +(YEAR-1977)*365+(YEAR-1977)/4)*2 

RETURN 
END 

SUBROUTINE TO CONVERT JULIAN HALF-DAY TO DAY, MONTH AND YEAR 

SUBROUTINE UNJUL(JULIAN,HALF,DAY,MONTH,YEAR) 
INTEGER*2 JULIAN,HALF,DAY,MONTH,YEAR,TEMP1,TEMP2 

HALF = JULIAN/2 
.TEMPI = HALF/1461 
TEMP2 = HALF-TEMPI 
YEAR = TEMP2/36S 
IF (TEMP2/1460*1460.EQ.TEMP2.AND.(HALF+l)/1460.GT.TEMP1) 

& YEAR = YEAR-1 
TEMP1 III TEMP2-(YEAR*365)+1 
YEARIIIYEAR+1977 
TEMP2 III 0 
IF (YEAR/4*4.EQ.YEAR) TEMP2 = 1 
DAY • TEMP1 
IF (TEMP1.GT.S9+TEMP2) DAY = DAY+2-TEMP2 
MONTH III (DAY+91)*100/30S5 
DAY III DAY+91-MONTH*30SS/100 
MONTH III MONTH-2 
TEMP1 III 0 
IF (HALF*2.NE.JULIAN) TEMP1 = 1 
HALF := TEMP1 
RETURN 
END 

124 



APPENDIX H 

DMC DEVICE COUNTERS 

The following counters are the only ones applicable to the DMC device. 

Number 

1000 
100'1 
1010 
1011 
1020 

1021 
1030 
1031 
1041 

Standard Text 

Bytes received 
Bytes sent 
Data blocks received 
Data blocks sent 
Data errors inbound 
o NAKs sent, header block check error 
1 NAKs sent, data field block check error 
Data errors outbound 
Remote reply timeouts 
Local reply timeouts 
Local buffer errors 
o NAKs sent, buffer unavailable 

None of the other standard counters can be kept due to the nature of 
the DMC hardware. The "Data errors outbound" counter is kept with no 
bitmap. It represents the sum of all NAKs received. 

Since the counters kept by the DMC firmware cannot be zeroed in the 
way that driver-kept counters can, the recommended technique for 
providing the zero capability is to copy the base table counters when 
a zero 1S requested. The numbers returned when counters are requested 
are then the difference between the saved counters and the current 
base table. 

125 



APPENDIX I 

NCP COMMANDS SUPPORTING EACH NETWORK MANAGEMENT INTERFACE 

This appendix shows the NCP commands supporting the Network Management 
interface to each of the lower DNA layers. 

126 



< This notation precedes keywords or text returned on SHOW or LIST commands 

A. Network Management Layer Interface 

{SET } EXECUTOR NODE destination-node 
DEFINE 

line-id} {LINE ALL 
KNOWN LINE COUNTER TIMER seconds 

SERVICE service-control 
STATE line-state 

{LOGGING Sink-type} ALL 
KNOWN LOGGING EVENT event-list source-qual sink-node 

KNOWN EVENTS source-qual sink-node 
NAME sink-name 
STATE sink-state 

NODE node-id ALL 
COUNTER TIMER seconds 
CPU cpu-type 
DUMP ADDRESS number 
DUMP COUNT number 
DUMP FILE file-id 
HOST node-id 
IDENTIFICATION string 
LOAD FILE file-id 
SECONDARY DUMPER file-id 
SECONDARY LOADER file-id 
SERVICE DEVICE device-type 
SERVICE LINE line-id 
SERVICE PASSWORD password 
SOFTWARE 

IDENTIFICATION file-id 
SOFTWARE TYPE program-type 
TERTIARY LOADER file-id 



A. Network Management Layer Interface (Cont.) 

CLEAR {NODE J node-id ALL 
PURGE KNOWN NODES COUNTER TIMER 

CPU 
DUMP ADDRESS 
DUMP COUNT 
DUMP FILE 
HOST 
IDENTIFICATION 
LOAD FILE 
PARAMETERS 
SECONDARY DUMPER 
SECONDARY LOADER 
SERVICE DEVICE 
SERVICE LINE 
SERVICE PASSWORD 
SOFTWARE 

IDENTIFICATION 
SOFTWARE TYPE 
TERTIARY LOADER 

CLEAR {LOGGING Sink-type} EVENT event-list source-qual sink-node 
PURGE KNOWN LOGGING KNOWN EVENTS source-qual sink-node 

NAME 

TRIGGER {NODE nOde-id} SERVICE PASSWORD password 
VIA line-id *VIA line-id 

LOAD {NODE nOde-id} ADDRESS node-address 
VIA line-id CPU cpu-type 

FROM load-file 
HOST node-id 
NAME node-name 
SECONDARY LOADER file-id 
SERVICE DEVICE device-type 
SERVICE PASSWORD password 
SOFTWARE 

IDENTIFICATION file-id 
SOFTWARE TYPE program-type 
TERTIARY LOADER file-id 

*VIA line-id 

* not allowed when first option is VIA 



A. Network Management Layer Interface (Cont.) 

DUMP faDE nOde-id} DUMP ADDRESS number 
VIA line-id DUMP COUNT number 

SECONDARY DUMPER file-id 
SERVICE DEVICE device-type 
SERVICE PASSWORD password 
TO dump-file 

*VIA line-id 

LOOP fINE line-id} COUNT count 
NODE node-id WITH block-type 

LENGTH length 

{SHOW} {LINE line-id} CHARACTERISTICS (SERVICE 
LIST KNOWN LINES 

COUNTERS (seconds since last. . zeroed 

STATUS (STATE-substate 

~LOGGING Sink-type} {SINK nOde-id} STATUS (STATE 
KNOWN LOGGING KNOWN SINKS 
ACTIVE LOGGING 

CHARACTERISTICS NAME 

EVENTS See 
Section A.2 



I-' 
W 
o 

A. Network Management Layer Interface (Cont.) 

{SHOW} {ACTIVE NODES 

nOde-id} 

LIST EXECUTOR 
LOOP NODES 
KNOWN NODES 
NODE 

SHOW QUEUE 

ZERO {LINE line-id} 
KNOWN LINES 

{NODE 
KNOWN NODES 

nOde-id} 

CHARACTERISTICS ADDRESS 
COUNTER TIMER 
CPU 
DUMP ADDRESS 
DUMP COUNT 
DUMP FILE 
HOST 
IDENTIFICATION 
LOAD FILE 
MANAGEMENT VERSION 
NAME 
SECONDARY DUMPER 
SECONDARY LOADER 
SERVICE DEVICE 
SERVICE LINE 
SERVICE PASSWORD 
SOFTWARE IDENTIFICATION 
SOFTWARE TYPE 
TERTIARY LOADER 

COUNTERS (secondS since last 
zeroed 

COUNTERS 

COUNTERS 



I-' 
w 
I-' 

B. Session Control Layer Interface 

{SET } DEFINE 
{NODE 

KNOWN NODES 
nOde-id} 

{CLEAR} 
PURGE 

{NODE 
KNOWN NODES 

nOde-id} 

{SHOW} {EXECUTOR 

nOde-id} 
LIST KNOWN NODES 

ACTIVE NODES 
LOOP NODES 
NODE 

{ EXECUTOR 

nOde-id} 
KNOWN NODES 
ACTIVE NODES 
LOOP NODES 
NODE 

LINE line-id 

ALL 
ADDRESS node-address 
INCOMING TIMER seconds 
LINE line-id 
NAME node-name 
OUTGOING TIMER seconds 
STATE node-state 

ALL 
INCOMING TIMER 
LINE line-id 
NAME 
OUTGOING TIMER 

~INCOMING TIMER 
CHARACTERISTICS LINE 

NAME 
OUTGOING-TIMER 

STATUS <NAME 
STATE 

STATUS <NODE-NAME 



C. Network Services Layer Interface 

{SET } EXECUTOR ALL 
DEFINE DELAY FACTOR number 

DELAY WEIGHT number 
INACTIVITY TIMER seconds 
MAXIMUM LINKS number 
RETRANSMIT FACTOR number 

{SHOW} EXECUTOR DELAY FACTOR 
LIST DELAY WEIGHT 

CHARACTERISTICS INACTIVITY TIMER 
MAXIMUM LINKS 
NSP VERSION 
RETRANSMIT FACTOR 

COUNTERS See Table 10 

STATUS <ACTIVE LINKS 
DELAY 

ZERO {EXECUTOR } COUNTERS 
KNOWN NODES 

D. Transport Layer Interface 

{SET } { LINE line-id} ALL 
DEFINE KNOWN LINES COST cost 

{NODE nOde-id} ALL 
KNOWN NODES BUFFER SIZE memory-units 

MAXIMUM ADDRESS number 
MAXIMUM BUFFERS number 
MAXIMUM COST number 
MAXIMUM HOPS number 
MAXIMUM LINES number 
MAXIMUM VISITS number 
ROUTING TIMER seconds 
TYPE node-type 



t-' 
W 
W 

D. Transport Layer Interface (Cont.) 

{SHOW} {LINE line-id} 
LIST KNOWN LINES 

ACTIVE LINES 

{SHOW} {LINE line-id} 
LIST KNOWN LINES 

ACTIVE LINES 

{LINE line-id} 
KNOWN LINES 
ACTIVE LINES 

{ EXECUTOR 

nOde-id} 
KNOWN NODES 
ACTIVE NODES 
LOOP NODES 
NODE 

{EXECUTOR 

nOde-id} 
KNOWN NODES 
ACTIVE NODES 
LOOP NODES 
NODE 

{EXECUTOR 

nOde-id} 
KNOWN NODES 
ACTIVE NODES 
LOOP NODES 
NODE 

ZERO { LINE line-id} 
KNOWN LINES 

CHARACTERISTICS (COST 

STATUS <BLOCK SIZE 

COUNTERS See Table 7 

BUFFER SIZE 
CHARACTERISTICS MAXIMUM ADDRESS 

MAXIMUM BUFFERS 
MAXIMUM COST 
MAXIMUM HOPS 
MAXIMUM LINES 
MAXIMUM VISITS 
ROUTING TIMER 
ROUTING VERSION 

COST 
STATUS HOPS 

LINE 
STATE 
TYPE 

COUNTERS See Table 10 

COUNTERS 



E. Data Link/Physical Link Layers Interface 

{SET } {LINE line-id} ALL 
DEFINE KNOWN LINES CONTROLLER controller-mode 

DUPLEX duplex-mode 
NORMAL TIMER milliseconds 
SERVICE TIMER milliseconds 
TRIBUTARY tributary-address 
TYPE line-type 

{CLEAR} LINE line-id ALL 
PURGE 

{SHOW} {ACTIVE LINES line-id} DUPLEX 
LIST LINE CONTROLLER 

KNOWN LINES PROTOCOL 
CHARACTERISTICS TRIBUTARY 

TIMER 
SERVICE 

{ACTIVE LINES line-id} COUNTERS See Table 7 
LINE 
KNOWN LINES 



active lines 

GLOSSARY 

NOTE 

Terms that derive from other related 
specifications (such as hops, cost, 
delay, etc.) are defined in those 
specifications. 

Active lines are known lines in the ON or SERVICE state. 

active logging 

Active logging describes all known sink types that are in the ON 
or HOLD state. 

active nodes 

All reachable nodes as perceived from the executor node are 
active nodes. 

adjacent node 

A node removed from the executor node by a singl~ physical line. 

characteristics 

Parameters that are generally static values in volatile memory or 
permanent values in a permanent data base. A Network Management 
information type. Characteristics can be set or defined. 

cleared state 

Applied to a line: a state where space is reserved for line data 
bases, but none of them is present. 

command node 

The node where an NCP command originates. 

controller 

The part of a line identification that denotes the control 
hardware for a line. For a multiline device that'controller is 
responsible for one or more units. 

135 



counters 

Error and performance 
information type. 

data link 

statistics. A Network Management 

A physical connection between two nodes. In the case of a 
multipoint line, there can be mUltiple data links. 

entity 

LINE, LOGGING, or NODE. These are the major Network Management 
keywords. Each one has several parameters with options. LINE 
and NODE also have specified counters. There are also plural 
entities: KNOWN and ACTIVE LINES, LOGGING, and NODES. 

executor node 

The node in which the active Local Network Management Function is 
running (that is, the node actually executing the command); the 
active network node physically connected to one end of a line 
being used for a load, dump, or line loop test. 

filter 

A set of flags for an event class that indicates whether or not 
each event type in that class is to be recorded. 

global filter 

A filter that applies to all entities within an event class. 

hold state 

Applied to logging. A state where the sink is temporarily 
unavailable and events for it should be queued. 

host node 

The node that provides services for another node (for example, 
during a down-line task load). 

information type 

One of CHARACTERISTICS, COUNTERS, EVENTS or SUMMARY. Used in the 
SHOW command to control the type of information returned. Each 
entity parameter and counter is associated with one or more 
information types. 

known lines 

All lines addressable by Network Management in the appropriate 
data base (volatile or permanent) on the executor node. They may 
not all be in a usable state. 

known logging 

All logging sink-types addressable by ~etwork Management in the 
appropriate data base. 

136 



known nodes 

line 

All nodes with address I to maximum address that are either 
reachable or have a node name plus all names that map to a line. 

A physical path. In 
tributary is treated 
Management entity. 

the 
as 

case of a 
a separate 

multipoint line, each 
line. Line is p Network 

line identification 

The device, controller, unit and/or tributary assigned to a line. 

line level loopback 

Testing a specific data link by sending a repeated message 
directly to the data link layer and over a wire to a device that 
returns the message to the source. 

logging 

Recording information from an occurrence that has potential 
significance in the operation and/or maintenance of the network 
in a potentially permanent form where it can be accessed by 
persons and/or programs to aid them in making real-time or 
long-term decisions. 

logging,console 

A logging sink that is to receive a human-readable record of 
events, for example, a terminal or printer. 

logging event type 

The identification of a particular type of event, such as line 
restarted or node down. 

logging file 

A logging sink that is to receive a machine-readable record of 
events for later retrieval. 

logging identification 

The sink type associated with the logging entity (file, console 
or monitor). 

logging sink 

A place that a copy of an event is to be recorded. 

logging sink flags 

A set of flags in an event record that indicate the sinks on 
which the event is to be recorded. 

logging sink node 

A node to which logging information is directed. 

137 



logging source node 

The node from which logging information comes. 

logging source process 

The process that recognized an event. 

logical link 

A connection between two nodes ~hat is established and controlled 
by the Session Control, Network Services, and Transport layers. 

loopback node 

A special name for a node, that is associated with a line for 
loop testing purposes. The SET NODE LINE command sets the 
loopback node name. 

monitor 

node 

An event sink that is to receive a machine-readable record of 
events for possible real-time decision making. 

An implementation that supports Transport, Network Services, and 
Session Control. Node is a Network Management entity. 

node address 

The required unique numeric identification of a specific node. 

node identification 

Either a node name or a node address. 
must be used as a node identification. 
be used as a node identification. 

node name 

In some cases an address 
In some cases a name must 

An optional alphanumeric identification associated with a node 
address in a strict one-to-one mapping. No name may be used more 
than once in a node. The node name must contain at least one 
letter. 

node level loopback 

Testing a logical link using repeated messages that flow with 
normal data traffic through the Session Control, Network 
Services, and Transport layers within one node or from one node 
to another and back. In some cases node level loopback involves 
Ilsing a loopback node name associated with a particular line. 

off state 

Applied to a node: a state where it will no longer process 
network traffic. Applied to a line: a state where the line is 
unavailable for any kind oE traffic. A.pplied to logging: a 
state where the sink is not availablp., ancl rlrlY '~":~ ~1 i:::; r. ) ~_. i. :: 
l~l·J~ll J b8 discarded. 

138 



on state 

Applied to a node: a state of normal network operation. Applied 
to a line: a state of availability for normal usage. Applied to 
logging: a state where a sink is available for receiving events. 

physical link 

An individually hardware addressable communications path. 

processed event 

An event after local processing, in final form. 

raw event 

An event as recorded by the source process, incomplete in terms 
of total information required. 

reachable node 

A node to which the executor node's Transport believes it has a 
usable communications path. 

remote node 

To one node, any other network node. 

restricted state 

A node state where no new logical links from other nodes are 
allowed. 

service password 

The password required to permit triggering of a node's bootstrap 
ROM. 

service slave mode 

The mode where the processor is taken over and the adjacent, 
executor node 1S 1n control, typically for execution of a 
bootstrap program for down-line loading or for up-line dumping. 

service state 

A line state where such operations as down-line load, up-line 
dump, or line loopback are performed. This state allows direct 
access by Network Management to the line. 

shut state 

sink 

A node state where existing logical links are undisturbed, but 
new ones are prevented. 

(see logging sink) 

specific filter 

A filter that applies to a specific entity within an event class 
and type. 

139 



station 

A physical termination on a line, having both a hardware and 
software implementation, that is a controller and/or a unit and 
is part of a line identification. 

status 

Dynamic information relating to entities, such as their state. A 
Network Management information type. Also, a message indicating 
whether or not an NCP command succeeded. 

subs tate 

An intermediate line state that is displayed as a tag on a line 
state display. 

summary 

An information type meaning most useful information. 

target node 

The node that receives a memory image during a down-line load, 
generates an up-line dump, or loops back a test message. 

tributary 

unit 

A physical termination on a multipoint line that is not a control 
station. Part of the line-identification for a multipoint line. 

Part of a line-identification. 
forms a station. 

140 

Together with the controller 



· CI,) 

.= 

0> c o 
o 

READER'S COMMENTS 

DECnet DIGITAL 
Network Architecture 
Network Management 
Functional Specification 
AA-K181A-TK 

NOTE: This form is for document comments only. DIGITAL will 
use comments submitted on this form at the company's 
discretion. If you require a written reply and are 
eligible to receive one under Software Performance 
Report (SPR) service, submit your comments on an SPR 
form. 

Did you find this manual understandable, usable, and well-organized? 
Please make suggestions for improvement. 

Did you find errors in this manual? If so, specify the error and the 
page number. 

Please indicate the type of reader that you most nearly represent. 

[] Assembly language programmer 

[] Higher-level language programmer 

[] Occasional programmer (experienced) 

[] User with little programming experience 

[] Student programmer 
[] Other (please specify) ____________________________________ ___ 

Name Da te ____________ _ 

Organization __________________________________________________ __ 

Street ___________________________________________________ ___ 

ci ty ______________ Sta te _______ Zip Code _________ _ 
or 

Country 



,. - - - -Do Not Tear - Fold Here and Tape - - - - - -

111II1 

BUSINESS REPL V MAIL 
FIRST CLASS PERMIT NO.33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

SOFTWARE DOCUMENTATION 
146 MAIN STREET ML 5-5/E39 
MAYNARD, MASSACHUSETTS 01754 

I 
I 
I 

- - --l 

No Postage 

Necessary 

if Mailed in the 

United States 

I 
I 

I 

I 
- - - - Do Not Tear - Fold Here and Tape - - - - - - - - - - - - - - - - - - I 

I 

I A 

I 
I 


	0000
	0001
	0002
	0003
	0004
	0005
	0006
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	replyA
	replyB

