
Networks· Communications

. ----------.

DECnet-RSX

Programmer's Reference Manual

~D~DD~D

wore

DECnet-RSX

Programmer's Reference Manual
Order No. AA-M098C-TC

September 1985

The DECnet-RSX Programmer's Reference Manual describes the
programming facilities available in the DECnet-RSX environment and
details the network programming calls for each facility.

Supersession/Update Information:

Operating System and Version:

Software Version:

This is a new manual.

RSX-11 M V4.2
RSX-11 S V4.2
RSX-11 M-PLUS V3.0
Micro/RSX V3.0

DECnet-11M V4.2
DECnet-11S V4.2
DECnet-11 M-PLUS V3.0
DECnet-Micro/RSX V1.0

AA-M098C-TC
First Printing, September 1985

The information in this document is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation. Digital Equipment Corpora­
tion assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may only be used
or copied in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not
supplied by Digital or its affiliated companies.

Copyright © 1985 by Digital Equipment Corporation

The postage-prepaid Reader's Comments form on the last page of this document requests
the user's critical evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC MASSBUS RT
DECmate PDP UNIBUS
DECnet P/OS VAX
DECUS Professional VAXcluster
DECwriter Rainbow VMS
DIBOL RSTS VT

~D~DDmD RSX Work Processor

Ethernet is a trademark of Xerox Corporation.

Networks and Communications Publications typeset this manual using Digital's
TMS-11 Text Management System.

1

2

Contents

Preface

Introduction

1.1
1.2
1.2.1
1.2.2
1.2.3
1.2.4
1.2.4.1
1.2.4.2
1.2.4.3
1.2.4.4
1.2.5
1.2.6
1.2.7
1.2.8
1.2.9
1.2.10
1.2.11
1.2.12
1.2.13
1.3
1.4

Intertask Communication Conventions 1-2
Intertask Communication Concepts 1-2
Establishing an Active Network Task. .. 1-3
Assigning Logical Unit Numbers 1-3
Establishing a Logical Link. .. 1-5
Building a Connect Block. .. 1-5
Destination Descriptor. .. 1-6
Source Descriptor. .. 1-6
Access Control Information 1-6
Optional Data Messages ... 1-6
Getting Data from the Network Data Queue 1-6
Sending and Receiving Messages .. 1-7
Sending Interrupt Messages. .. 1-8
Checking Completion Status Information. .. 1-8
Terminating Activity on a Logical Link. .. 1-9
Closing a Network Connection 1-9
Using the Wait Option .. 1-12
Using the AST and WAITNT Options 1-12
U sing the Flow Control Option. .. 1-12
DECnet-RSX Remote File Access Operations 1-13
DECnet-RSXTaskControl 1-14

DECnet-RSX MACRO-11 Programming Facilities

2.1 RSX-11 Network Macro Formats 2-1
2.1.1 BUILD Type Macros ... 2-1
2. 1.2 EXECUTE Type Macros. .. 2-3
2.1.3 STACK Type Macros ... 2-4
2.1.4 Macro Format Examples ... 2-4
2.2 Conventions Used in this Chapter 2-5

iii

2.3
2.3.1
2.3.2
2.3.3
2.3.4
2.3.5
2.3.6
2.3.7
2.3.8
2.3.9
2.3.10
2.3.11
2.3.12
2.3.13

2.3.15
2.3.16

2.3.17

Intertask Communication Macros. .. 2-6
Common Argument Definitions 2-7
ABT$ - Abort a Logical Link 2-8
ACC$ -Accept Logical Link Connect Request. 2-10
CLS$ - End Task Network Operations 2-12
CONS - Request Logical Link Connection 2-14
CONB$$ -Build Connect Block 2-18
DSC$ - Disconnect a Logical Link 2-24
GLN$ - Get Local Node Information 2-26
GND$ - Get Network Data 2-28
OPN$ -AccesstheNetwork 2-37
REC$ - Receive Data over a Logical Link 2-39
REJ$ - Reject Logical Link Connect Request. 2-41
SND$ - Send Data over a Logical Link 2-43
SPAS - Specify User AST Routine 2-45
XMU - Send Interrupt Message. .. 2-48
MACRO-II Intertask Communication Programming Example
(Transmit) ... 2-50
MACRO-II Intertask Communication Programming Example
(Receive) ... 2-52

Dr",,..~ iru .. 1:"",_ili+I __ -1_ .. I:'nDTD A... "nan. __ • • v~.u ~. g" .. n."~ lUI run I nl"u", ,",UUUI.., allu

BASIC-PLUS-2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.7.1
3.7.2
3.7.3

3.7.5
3.7.6
3.7.7
3.7.8
3.7.9
3.7.10
3.7.11
3.7.12
3.7.13
3.7.14
3.7.15
3.7.16
3.7.17

iV

Building a DECnet-RSX Task 3-1
Establishing a Network Task 3-2
Examining I/O Status Blocks 3-2
Using Event Flags .. 3-3
Obtaining Access Control Information. .. 3-3
Conventions Used in this Chapter 3-4
Intertask Communication 3-6
Common Argument Definitions 3-7
ABTNT - Abort a Logical Link 3-9
ACCNT - Accept Logical Link Connect Request. 3-10
BACC - Build Access Controi Information Area. 3- i 2
BFMTO - Build a Format 0 Destination Descriptor 3-15
BFMT 1 - Build a Format 1 Destination Descriptor 3-17
CLSNT - End Task Network Operations 3-21
CONNT - Request Logical Link Connection 3-22
DSCNT - Disconnect a Logical Link 0 •••••••••••• 3-25
GLNNT - Get Local Node Information 3-27
GNDNT - Get Network Data 3-29
OPNNT - Access the Network 3-38
RECNT - Receive Data over a Logical Link. .. 3-41
REJNT - Reject Logical Link Connect Request 3-43
SNDNT - Send Data over a Logical Link 3-45
W AITNT - Suspend the Calling Task. .. 3-47
XMINT - Send Interrupt Message 3-48

3.7.18

3.7.19

3.7.20

3.7.21

3.7.22

3.7.23

3.8
3.8.1
3.8.2
3.8.3
3.8.4
3.8.5
3.8.5.1
3.8.5.2
3.8.5.3
3.8.5.4
3.8.5.5
3.8.6
3.8.7
3.8.8
3.8.9
3.8.10
3.8.11
3.8.12
3.8.13
3.8.14
3.8.15
3.8.16
3.8.17
3.8.18
3.8.19

3.8.20

3.8.21
3.8.22

3.8.23

3.8.24

FORTRAN Intertask Communication Programming Example
(Transmit) ... 3-50
FORTRAN Intertask Communication Programming Example
(Receive) '" " 3-53
COBOL Intertask Communication Programming Example
(Transmit) ... 3-55
COBOL Intertask Communication Programming Example
(Receive). .. 3-60
BASIC-PLUS-2 Intertask Communication Programming Example
(Transmit) ... 3-64
BASIC-PLUS-2 Intertask Communication Programming Example
(Receive) ... 3-67
Remote File Access. 3-69
Opening Files .. 3-70
Performing File Operations 3-70
Performing Record Operations 3-70
Closing Files and Completing Calls 3-71
Setting Task Build Parameters 3-71
Setting Event Flags 3-71
Setting Buffering Level. .. 3-71
Setting Maximum Record Size .. 3-72
Setting Buffer Space Allocation 3-72
Using the Task Build Procedure 3-73
Using ASCII Zero (ASCIZ) Strings 3-74
Common Argument Definitions for Remote File Access Calls. 3-75
ACONFW - Set Access Options 3-78
A TTNFW - Set Extended Attributes 3-80
CLSNFW - Close a File 3-84
DELNFW - Delete a File 0 ••••••••••••••• 3-85
EXENFW - Execute a File. .. 3-86
GETNFW - Read a Single Record '" 3-87
OPANFW - Open a File for Appending Records 3-90
PRGNFW - Discard an Opened File 3-93
PUTNFW - Write a Single Record' .. 3-94
RENNFW - Rename a File .. 3-96
SPLNFW - Create, Write, and Print a File 3-97
FORTRAN Remote File Access Programming Example
(Append) ... " 3-100
FORTRAN Remote File Access Programming Example
(ReadlWrite) .. 3-102
COBOL Remote File Access Programming Example (Append) .. " 3-104
COBOL Remote File Access Programming Example
(ReadlW rite) .. " 3-109
BASIC-PLUS-2 Remote File Access Programming Example
(Append) .. 3-115
BASIC-PLUS-2 Remote File Access Programming Example
(ReadlW rite).. 3-118

v

4

3.9 FORTRANTaskControl .. 3-121
3.9.1 Waiting for Requests. 3-121
3.9.2 RSX Remote Task Control Utility 3-121
3.9.3 ABONCW - Abort an Executing Task or Cancel a Scheduled

Task .. 3-122
3.9.4 BACUSR - Build Account and User ID Information Area 3-125
3.9.5 RUNNCW - Execute an Installed Task in a Remote Node 3-126
3.9.6 FORTRAN Task Control Programming Example 3-130

DLX: Direct Line Access Controller

4.1
4.2
4.3
h '"'J ..
'"1:.:7. ~

4.3.2
4.3.3
4.3.4
4.3.5
4.3.6
4.3.7
4.3.8

4.3.9

4.3.10

System Requirements for Tasks Using DLX 4-2
Special Considerations for Ethernet Users 4-2
DLX QIOs ... 4-3
IO.XOP - Opell a Lille ... 4-5
10.XSC - Set Characteristics (Ethernet only) 4-8
10 .XIN - Initialize the Line (non-Ethernet only) 4-12
10 .XTM - Transmit a Message on the Line 4-14
10.XRC - Receive a Message on the Line 4-17
10.XHG - Hang Up the Line (non-Ethernet only) 4-21
10.XCL - Close the Line (non-Ethernet only) 4-22
DLX QIO Transmit Programming Example (for non-Ethernet
device) ... 4-23
DLX QIO Receiver Programming Example (for non-Ethernet
device) ... 4-32
DLX QIO Programming Example (for Ethernet device) 4-40

A Disconnect or Reject Reason Codes

B Obiect TVDeS
- --. - - - - I .- - -

C Summary of Remote File Access Error/Completion Codes

C.l I/O Status Block Error Returns C-l
C. 2 Data Access Protocol (DAP) Error Messages C-4
C.2.1 Maccode Field .. C-4
C.2.2 Miccode Field ···· C-5

D MACRO-11 Connect Block Offset and Code Definitions

'II

E

F

Figures

Tables

Network Error/Completion Codes for FORTRAN, COBOL, and
BASIC-PLUS-2

Network MACRO-11 Error/Completion Codes

1-1 Establishing a Logical Link ... 1-4
2-1 Sample Connect Block ... 2-20
2-2 Sample Connect Block Built by CONB$ $ 2-22
2-3 Sample Connect Block Received by GND$ 2-33

1-1 DECnet Communication Calls Summary 1-10
2-1 Intertask Communication Macro Summary. .. 2-6
2-2 CONB$ $ Connect Block Symbolic Offsets 2-21
2-3 Connect Block Received in the Mail Buffer after GND$ 2-34
3-1 Intertask Communication Call Summary. .. 3-6
3-2 Connect Block Received in the Mail Buffer after GNDNT 3-33
C-l First Word I/O Status Block Error Codes C-l
C-2 NSP Error Codes .. C-3
C-3 DAP Maccode Field Values .. C-5
c-4 DAP Miccode Values for Use with Maccode Values of 2, 10,

and 11 .. C-6
C-5 DAP Miccode Values for Use with Maccode Values 0, 1,4,5,

6,7 .. c-16
c-6 DAP Miccode Values for Use with Maccode Value 12 C-26

vii

Preface

The DECnet-RSX Programmer's Reference Manual explains DECnet programming
concepts and describes the DECnet-RSX calls provided for the following program­
ming functions:

• Intertask communication

• Remote file access

• Task control

• Direct line access (DLX)

DECnet-RSX supports intertask communication calls for MACRO-II, FORTRAN
77, COBOL, and BASIC-PLUS-2 programming, remote file access calls for FOR­
TRAN 77, COBOL, and BASIC-PLUS-2, task control calls for FORTRAN 77, and
QIO calls for the DLX user interface.

Intended Audience

This manual is intended for users responsible for writing network programs to be run
on DECnet-IIM, DECnet-1IM-PLUS, DECnet-IIS, and DECnet-MicrolRSX sys­
tems.

Structure of This Manual

This manual is organized into four chapters:

Chapter I

Chapter 2

Chapter 3

Chapter 4

Provides introductory information about intertask communication, re­
mote file access, and task control operations.

Describes the DECnet-RSX MACRO-II programming facilities for
intertask communication macros.

Describes the DECnet-RSX FORTRAN, COBOL, and BA­
SIC-PLUS-2 programming facilities for intertask communication, re­
mote file access, and FORTRAN task control.

Describes the DECnet-RSX Direct Line Access Controller program­
ming facilities for tasks using Ethernet and non-Ethernet QIO calls.

ix

The following programming examples are included in this manual and in your tape or
disk kit:

• MACRO-II Intertask Communication Programming Example (Transmit)

• MACRO-II Intertask Communication Programming Example (Receive)

• FORTRAN Intertask Communication Programming Example (Transmit)

• FORTRAN Intertask Communication Programming Example (Receive)

• COBOL Intertask Communication Programming Example (Transmit)

• COBOL Intertask Communication Programming Example (Receive)

• BASIC-PLUS-2 Intertask Communication Programming Example (Transmit)

• BASIC-PLUS-2 Intertask Communication Programming Example (Receive)

• FORTHAN Remote File Access Programming Example (Append)

• FORTRAN Remote File Access Programming Example (ReadlWrite)

• COBOL Remote File Access Programming Example (Append)

• COBOL Remote File Access Programming Example (ReadlWrite)

• BASIC-PLUS-2 Remote File Access Programming Example (Append)

• BASIC-PLUS-2 Remote File Access Programming Example (ReadlWrite)

• FORTRAN Task Control Programming Example

• DLX QIO Transmit Programming Example (for non-Ethernet device)

• DLX QIO Receiver Programming Example (for non-Ethernet device)

• DLX QIO Programming Example (for Ethernet device)

x

This manual also contains the following appendixes:

Appendix A Contains the network disconnect or reject reason codes.

Appendix B Defines the Digital object type code values.

Appendix C Provides a summary of remote file access error/completion codes.

Appendix D Contains the MACRO-II connect block offset and code definitions.

Appendix E Contains the FORTRAN, COBOL, and BASIC-PLUS-2 network
error/completion codes.

Appendix F Contains the MACRO-II network error/completion codes.

Associated Documents

Users of this manual should have the following Digital documents available for refer­
ence:

• Introduction to DECnet

• DECnet-RSX Network Management Concepts and Procedures

• DECnet-RSX Guide to Network Management Utilities

• DECnet-RSX Guide to User Utilities

Users of this manual should also have the RSX-IIM documentation set and the
appropriate language manuals.

xi

Graphic Conventions

In addition to the graphic conventions listed below, this manual contains specific
conventions not defined here. Chapter 2 provides specific conventions for MACRO-II
calls. Chapter 3 provides specific conventions for FORTRAN, COBOL, and BA­
SIC-PLUS-2 calls. See Sections 2.2 and 3.6 for these conventions.

CALL CLSNFW

(lun,status)

PRSIZ=5

CALL BFMTI

Acronyms

Capital letters in a command line represent characters that must
be typed as shown.

Italicized lowercase letters represent variables for which you must
supply specific information.

The use of ellipses means that not all the information the system
would display in response to a particular command or message is
shown or that not all the information a user would enter is shown.

The expression (CTRL/X) refers to a control character keying sequence.
Press the key labeled CTRL and the appropriate character key
simultaneously when you see this symbol.

The following acronyms are used in this manual:

AST

CEX

DLX

FCS-11

MOP

NETFOR.OLB

NETL!B.MLB

NFAR
PSW

QIO

xii

Asynchronous system trap

Communications Executive

Direct Line Access Controller

Maintenance Operation Protocol

DECnet high-level language library

DECnet l\fACRO-ll library

Network File Access Routine

Processor status word

Queued input/output call

1
Introduction

DECnet-RSX software extends the RSX-IIM/IIM-PLUS/IIS operating systems for
the PDP-II. With DECnet-RSX you can write programs that exchange data with
programs running on other DECnet systems in the network, even though these sys­
tems may run under operating systems other than RSX. This manual describes the
network programming functions available using the MACRO-II, FORTRAN 77, CO­
BOL, and BASIC-PLUS-2 languages.

Before proceeding, you should become familiar with the Introduction to DECnet for
background information. Also refer to the DECnet-RSX Guide to User Utilities for
terminal user information.

For programs using DECnet-RSX, tasks running on different nodes can exchange
data using intertask communication, remote file access, or remote task control.

• Intertask communication. User tasks on different nodes can exchange messages
and data by issuing a series of DECnet communications calls. The DECnet software
allows you to perform task-to-task communication regardless of the programming
language used or the operating system running on the different nodes. For example,
an RSX FORTRAN-77 program can communicate with a VMS program written in
BASIC-PLUS-2.

• Remote file access. Remote file access programs allow you to access sequential
files for reading, writing, and appending records to remote files. User tasks can
delete files from devices on remote nodes as well.

When the remote node is an RSX node, programming remote file access operations
is similar to programming local I/O operations. When the remote node is other than
an RSX node, an accessing program can perform only those functions that its source
language provides and that the remote file system supports. Refer to the Introduc­
tion to DECnet for the possible file operations for different DECnet systems.

1-1

• Remote task control. A user can write a FORTRAN program to control the execu­
tion of installed tasks on remote RSX or lAS DECnet nodes. The user can cause
immediate execution of a task, schedule a task for execution at a later time, sched­
ule a task for periodic execution, abort a task, or cancel scheduling of a task on a
remote node.

Functions performed by cooperating local and remote nodes can also be performed at
the local node. For example, a task can issue MACRO-II DECnet calls to exchange
data with another task on the same node. This allows programmers to debug RSX
programs locally before running them at a remote node.

1.1 Intertask Communication Conventions
This manual refers to calls by their first three letters. These calls are common to all
four languages DECnet-RSX supports. The term macro refers to MACRO-II calls,
and the term call refers to the higher level languages. Each call name concludes with a
lowercase x, which represents the variable portion of each call (determined by the
programming language used). When you issue a call in MACRO-II, replace the
variable x with a $. When you issue a call in FORTRAN, COBOL, or BA­
SIC-PLUS-2, replace the x with NT. Lowercase x is used throughout this chapter to
discuss intertask communication calls in a general way.

Example:

OPNx (generic representation)
OPN$ (MACRO-II)
OPNNT (FORTRAN, COBOL, or BASIC-PLUS-2)
OPNx is the first DECnet call a task issues for any DECnet session. A session includes
all intertask communication calls issued between the OPNx call and the CLSx call.
Table 1-1, at the end of Section 1.2.10, provides an alphabetical list of the DECnet
intertask communication calls, gives the function of each call, and briefly describes
the normal or expected result after executing each call.

1.2 Intertask Communication Concepts

lntertask communication concepts include:

• Establishing an active network task

• Establishing a logical link

• Building a connect block

• Getting data from the network data queue

• Sending and receiving messages

• Sending interrupt messages

• Checking completion status information

• Terminating activity on a logical link

• Closing a network connection

1-2 DECnet-RSX Programmer's Reference Manual

1.2.1 Establishing an Active Network Task

Before any task can exchange data using intertask communication calls, the task
must be an active network task. A task is active if it is running and it has issued an
open (OPNx) call (see Section 1.1). An OPNx call establishes a network data queue
for a task and connects the task to the network.

1.2.2 Assigning Logical Unit Numbers

The following calls use a logical unit number (LUN) assigned to the network data
queue:

OPN$ Access the network

SPA$ Specify a user AST routine

GND$ Get network data

REJ$ Reject a logical link request

CLS$ End a task's network operations

GLN$ Get local node information

You can assign the LUN by defining it either as the global symbol .MBXLU in your
program or as a parameter for the macro call. The .MBXLU definition and the macro
call parameter definition are mutually exclusive (.MBXLU is referenced only if the
LUN argument is left blank in the macro parameter block). You should define a
particular network data queue LUN in one place only.

If you use the .MBXLU definition, you can assign the LUN at assembly time or at
task build time using one of the following command techniques:

1. To include the logical unit number (LUN) locally in your source code, include the
following in each source module:

.MBXLU=x

The variable x is an integer representing the logical unit number.

2. Each source module in the user task must have the same integer x defined for
.MBXLU; otherwise, the macros will complete with a privilege error (IE.PRI).
You can define a global definition (==) by including the following statement in a
single source module:

.MBXLU==x

This statement causes the task builder to define references to .MBXLU in all
modules of your program to the value of x.

3. If you want to defer definition of .MBXLU to task build time, you can issue the
following task build option:

GBLDEF=.MBXLU:x

This option instructs the task builder to define all global references to .MBXLU
as the value of x.

Introduction 1-3

REJECTS

G

Figure 1-1: Establishing a Logical Link

NETWORK ISSUES
REJECT CALL

1-4 DECnet-RSX Programmer's Reference Manual

These three command techniques for defining .MBXLU are mutually exclusive. If you
do not use any of these procedures, the task builder returns an undefined reference
warning message. If you run the task and ignore the warning, the six macro calls
(OPN$, SPA$, GND$, REJ$, CLS$, and GLN$) will be rejected by the operating
system with a directive status error indicating an invalid logical unit number. The
task builder causes undefined references to default to o .. MBXLU cannot be defined
with a 0 value because 0 is an invalid logical unit number.

All network logical unit numbers are freed and the task's logical links are aborted
when you issue a CLS$ call to terminate network operations for a MACRO-II task.
The CLS$ call can be issued in any of the three CLS$ formats - CLS[W]$, CLS[W]$E,
and CLS[W]$S.

If a LUN is not assigned to NS, any network directive will be returned with a status of
illegal function code.

1.2.3 Establishing a Logical Link

To exchange data, a logical link must be established between two active network
tasks. A logical link is a logical path between two cooperating tasks. These tasks must
agree to communicate. When the link is established, a user task can send and receive
messages. Figure 1-1 illustrates the flowchart process for establishing a logical link.

The task requesting to establish a logical link is called the source task. The other task
is called the target task. This distinction applies only during the connection sequence.
Once the logical link is established, the terms source and target have no significance,
since both tasks have equal access to the logical link.

Tasks at either end of the link must specify a logical unit number (LUN) for the link.
The LUN is the number each task assigns to the logical link so that the link can be
associated by the tasks and the network. The tasks at both ends of the link do not
have to use the same LUN for a link.

1.2.4 Building a Connect Block

Before the source task can issue a request to connect to another task, it must build a
connect block. A connect block contains a destination descriptor, a source descriptor,
access control information, and optionally, user-supplied data.

Introduction 1-5

1.2.4.1 Destination Descriptor - When one task communicates with another task,
the tasks are considered to be two objects communicating. There are two kinds of
objects: named objects and numbered objects. The destination descriptor identifies
the destination task either by task name or by object type number.

Named objects are installed user-defined tasks that are referred to by name when a
connection is requested. The object type numeric identifier for user tasks referred to
by name is o.
Numbered objects are installed user-defined tasks and installed DECnet tasks that
are referred to by object type number when a connection is requested. The object type
numeric identifier for these tasks referred to by number ranges from 1 to 255. Num­
bers from 1 to 127 are reserved for DECnet tasks. Numbers from 128 to 255 are
reserved for user tasks.

For information on defining objects, see the DECnet-R8X Network Management
Concepts and Procedures manual.

1.2.4.2 Source Descriptor - The source descriptor contains information supplied
by the DECnet software on the source node. It contains the source node name and
either the source task name if it is a named object or the source task object number if
it is a numbered object. The target task can use this information to determine if it
wants to establish communications or not.

1.2.4.3 Access Control Information - Access control information contains argu­
ments that define your access rights at the remote node. Access control verification is
performed according to the conventions of the target system. If the target node is
equipped to do so, it verifies access control information before the connect request is
passed to the target task. For information on access control verification, see the
DECnet-R8X Network Management Concepts and Procedures manual.

1.2.4.4 Optional Data Messages = ~Nhen the source task issues a connect request,
you can include a data message of up to 16 characters in the connect block. If the
connect (CONx) call contains the location and length of a block of user data, the
source node appends that block to the connect block.

1.2.5 Getting Data from the Network Data Queue,

Once a task is connected to the network, it has a network data queue. The software on
the connected task's node places all incoming connect request messages, interrupt
messages, user disconnect messages, user abort messages, and network abort mes­
sages on the task's network data queue. To get these messages, the task must issue a
get network data (GNDx) call. A'task should begin monitoring its network data queue
as soon as the open call completes successfully.

1-6 DECnet-RSX Programmer's Reference Manual

The get network data call ordinarily returns the first message on the queue on a first­
in, first-out basis. However, the GNDx call has the following options:

• Remove the first message on the queue and place it in the message buffer.

• Remove the first message of a specified type for any logical link and place it in the
message buffer.

• Remove the first message for a specified logical link regardless of the message type
and place it in the message buffer.

• Remove the first message of a specified type for a specified logical link and place it
in the message buffer.

• Determine the type, length, and associated logical link of any message on the queue
without removing it from the queue. This allows you to assign an appropriate buffer
size in a subsequent GNDx call that performs one of the above four options.

1.2.6 Sending and Receiving Messages

Once a logical link has been established between two tasks, both tasks can send and
receive messages. DECnet distinguishes between data and nondata messages. Data
messages are delivered directly to a buffer provided by the receiving task. Nondata
messages are delivered to a task's network data queue. Nondata messages are unsoli­
cited high priority messages that inform the receiving task of some event such as an
interrupt or disconnect request.

To send a data message, a task issues a send (SNDx) call. In the send call, specify the
LUN assigned in the connect or accept call. Also specify the location and length of the
data message buffer. A send call completes when the receiving node acknowledges to
the sending node that it received a message correctly.

To receive a data message, a task issues a receive (RECx) call. In the receive call,
specify the LUN assigned in the connect or accept call. Also specify the location and
length of the data message buffer. A receive call completes when the data message is
placed in the specified data message buffer. If the data message buffer is not large
enough, the receive call completes with a data overrun condition and the excess data
is lost. In the case of overrun, the I/O status indicates this. To receive the next data
message, another receive call is required.

To send a high priority nondata message, a task issues an abort (ABTx), disconnect
(DSCx), or interrupt (XMlx) call.

To receive a high priority nondata message, a task issues a get network data (GNDx)
call.

For more information on sending and receiving messages, see Sections 3.7.15 and
3.7.13.

Introduction 1-7

1.2.7 Sending Interrupt Messages

A task can send interrupt messages to another task. Usually an interrupt message
informs the receiving task of some unusual event in the sending task. An interrupt
(XMIx) call can be up to 16 bytes long. In the interrupt call, specify the LUN
assigned in the connect or accept call. Also specify the location and length of the
message buffer.

An interrupt call completes when the receiving node acknowledges to the sending
node that it has received the message. The receiving node software places the inter­
rupt message on the receiving task's network data queue. The receiving task must
issue a get network data call to remove the message from the queue and place it in the
task's message buffer.

A task can have only one interrupt message outstanding on a logical link. Until the
call completes, any subsequent attempt to send another interrupt message on that
same link is returned with a specific error code in the I/O status word.

1.2.8 Checking Completion Status Information

Each macro or call can include an argument specifying the address of a 2-word status
block. While this is an optional argument, you should include it. There is no other
way to check the status of a call when it returns. Each active macro and call should
have its own status block. The use of the same status block by concurrent I/O requests
will produce unpredictable results.

The first status word contains:

• A zero if the called macro or subroutine has not completed

• A positive value if the called macro or subroutine produced the desired results

• A negative value if the called macro or subroutine did not produce the desired
results

The second status word contains further information about the completion. For exam­
ple, in a successful data transmission, it returns the number of bytes transmitted.

1-8 DECnet-RSX Programmer's Reference Manual

1.2.9 Terminating Activity on a Logical Link

Any task can terminate activity on a logical link at any time. To do so, you can issue a
disconnect call or an abort call. A disconnect (DSCx) call terminates transmissions
over the logical link after all data transmissions and interrupts have been sent. An
abort (ABTx) call disconnects the logical link immediately, regardless of any mes­
sages queued for transmission. The receiving node software places the termination
message on the receiving task's network data queue. The receiving task must issue a
get network data call to retrieve the message.

In both disconnect and abort calls, you can specify the location and length of a user
data message for the receiving task. The message can be up to 16 bytes long.

In the disconnect call, specify the logical unit number (LUN) assigned in the connect
or accept call. When a disconnect call is issued, the software causes all pending
transmits for the task issuing the disconnect call to complete before disconnecting the
logical link. During this time, the task issuing the disconnect call continues to receive
messages. When the last message is transmitted, any remaining receive calls complete
with an abort condition. When the link is disconnected, the LUN is freed. A task can
use that LUN in subsequent connect or accept calls.

In the abort call, specify the logical unit number (LUN) assigned in the connect or
accept call. When an abort call is issued, the software immediately aborts all pending
transmits and receives and disconnects the link. The LUN is freed and a task can use
that LUN in subsequent connect or accept calls.

1.2.10 Closing a Network Connection

To close a task's network connection, issue a close (CLSx) call. The close call informs
the software that the task no longer requires network services. This causes the soft­
ware to purge the task's network data queue. Any active LUNs are deactivated and
freed for use if the task subsequently issues an open (OPNx) call.

If there is data in the task's network data queue when the close call is issued the
following can occur:

• If the terminating task's network data queue contains any connect requests, the
terminating task will receive them if it subsequently issues an open call within a
short period of time.

• Any other type of data in the terminating task's network data queue is discarded
(for example, interrupt, disconnect, and abort messages).

Introduction 1-9

Table 1-1: OECnet Communication Calls Summary

Call

ABT$
ABTNT

ACC$
ACCNT

BACC

BFMTO
BFMTl

CLS$
CLSNT

CON$
CONNT

CONB$$

DSC$
DSCNT

GLN$
GLNNT

1-10

Function

Abort a logical link

Accept a logical link re­
quest

Build access control in­
formation area

Build a format descrip­
tor block

Close the network con­
nection - end the
task's network opera­
tions

Request a logical link
connection

Build a connect block

Disconnect the logical
link

Get local node data:
node name and trans­
mission segment size

Normal Action

Abort is a nondata message transmitted over the logi­
cal link. It is delivered to the receiving task's network
data queue by the DECnet software on the receiving
task node.

Notification of the target task's acceptance of the log­
ical link request is sent by the DECnet software on
the target task node to the DECnet software on the
source task node, which delivers it to the status block
of the source task CON$ or CONNT call.

No user data is transmitted over a logical link by this
call. In a subsequent CONNT call, the contents of
this area are delivered to the DECnet software on the
target task node.

No user data is transmitted over a logical link by this
call. In a subsequent CONNT call, the contents of
this block are delivered to the DECnet software on
the target task node.

No user data is transmitted over a logical link by this
call. The close request is delivered to the DECnet
software on the issuing task node.

A connect request is a high priority nondata message.
The connect request and the connect block are sent
over the temporary logical link to the DECnet soft­
ware on the target node. If the target task is an active
network task, the connect request is delivered to the
target task's network data queue. The connect block
is delivered to a mailbox as a result of a subsequent
get network data call (GND$ or GNDNT).

No user data is transmitted over a logical link by this
call. In a subsequent CON$ call the contents of this
block are delivered to the DECnet software on the
target task node.

Disconnect is a nondata message transmitted over
the logical link. It is delivered to the receiving task's
network data queue by the DECnet software on the
receiving task node. '

No user data is transmitted over a logical link by this
call. The requested data is delivered to locations
specified by arguments of the call in the issuing task.

(continued on next page)

DECnet-RSX Programmer's Reference Manual

Table 1-1 (cont.): DECnet Communication Calls Summary

Call

GND$
GNDNT

OPN$
OPNNT

REC$
RECNT

REJ$
REJNT

SND$
SNDNT

SPAS

WAITNT

XMI$
XMINT

Introduction

Function

Get network data from
task's network data
queue

Open the network con­
nection - create the
task's network data
queue

Request to receive data
over the logical link

Reject a logical link re­
quest

Request to send a data
message over the logi­
cal link

Specify the location of
a user-writen asynchro­
nous system trap
(AST) routine.

Wait for the completion
of any other D ECnet
communications call.

Request to send an in­
terrupt message over
the logical link.

Normal Action

No user data is transmitted over a logical link by this
call. The requested data is delivered to the location
specified by arguments of the call in the issuing task.

No user data is transmitted over a logical link by this
call. The open request is delivered to the DECnet
software on the issuing task node.

No user data is transmitted over a logical link by this
call. Notification that this call completed (that is,
that the task that issued this call received a data
message as a result of another task issuing a DECnet
send call) is delivered to the status block of this call
by the DECnet software on the issuing task node.

Notification of the target task's rejection of the logi­
cal link request is sent over the temporary logical link
by the DECnet software on the target task node to
the DECnet software on the source task node, which
delivers it to the status block of the source task CONS
or CONNT call.

The data message is transmitted over the logical link
to the DECnet software on the receiving task node for
delivery to the area specified in a DECnet receive call
issued by the receiving task. When the DECnet soft­
ware has delivered the data to the receiving task, it
sends a completion status message over the logical
link to the DECnet software on the sending task
node. The completion status message is delivered to
the status block of the send call.

No user data is transmitted over a logical link by this
call. When a nondata message is placed on the task's
network data queue, control is transferred to the
AST.

No user data is transmitted over a logical link by this
call. Suspends task execution until a previously is­
sued call that had the wait option specified com­
pletes.

Interrupt is a high priority nondata message
transmitted over the logical link. It is delivered to the
receiving task's network data queue by the DECnet
software on the receiving task node.

1-11

1.2.11 Using the Wait Option

Many macros and calls allow you to include a W in the call name. When a W is
included in a call (GNDW$ or GNDNTW), execution of the calling task is delayed
until the indicated call request has completed. Execution of the calling task then
proceeds at the instruction immediately following the call. This ensures that the
process to be performed by the macro or call completes before the task continues.
When the wait option is not used, the call is executed asynchronously.

NOTE

When using the wait option in a MACRO-II call, you must assign an
event flag. If the event flag is not specified, the call completes as a
normal asynchronous call.

1.2.12 Using the AST and WAITNT Options

Where an asynchronous system trap (AST) has been specified in a MACRO-II call,
the AST is executed when the call completes. In FORTRAN, COBOL, and BA­
SIC-PLUS-2, the WAITNT call is provided to determine when a call completes
because there is no AST available.

1.2.13 Using the Flow Control Option

Network programs require buffer space for temporary message storage. For example,
buffer space is needed to keep a copy of every message that it sends over the link until
the receiver acknowledges receipt of the message. Network programs hold buffer space
while waiting for inbound messages to be received.

DECnet provides flow control mechanisms to prevent the overflow of available buffer
space. It forces synchronization between the sending and receiving tasks so that data
is transmitted from a source task only if the target task has issued a receive call and
has available buffer space.

With MACRO-II tasks, DECnet-RSX also provides a special NOFLOW option that
disables the flow control mechanisms. The NOFLOW option can be beneficial when a
higher level of network performance is desired. However, this option must be used
with caution. Without flow control, a source task can send data regardless of the
availability of a buffer at the receiving end. If the target task does not have adequate
buffering to handle the incoming flow of data, some data segments will be discarded.
Each time a data segment is discarded, the software must request retransmission of

1-12 DECnet-RSX Programmer's Reference Manual

the discarded segment, after a timeout. This significantly degrades network perform­
ance. If you choose the NOFLOW option, adequate buffering should be maintained at
the target task to compensate for the loss of send/receive synchronization. The com­
municating programs should be appropriately written.

The NOFLOW option is desirable under the following conditions:

• Programs already have control mechanisms or acknowledgment-signaling mecha­
nisms written into their User layer protocol.

• The flow of data is predictable, and the program can anticipate and handle the
flow.

NOTE

If you are developing network programs, you are advised not to spec­
ify the NOFLOW option initially. Specify the NOFLOW option only
when the communicating programs have been tested and the data
flow between them is adequately synchronized.

Either end of the logical link can be independently set to FLOW or to NOFLOW
control. Set the NOFLOW control option within the CONx and ACCx calls. Flow
control is the default.

1.3 DECnet-RSX Remote File Access Operations

Using DECnet-RSX remote file access facilities, you can write a FORTRAN, CO­
BOL, or BASIC-PLUS-2 program to perform the following file access operations for
sequential files only:

• Open or create a remote file

• Read and write records to a remote file

• Append records to a remote file

• Close, purge, or delete a remote file

DECnet-RSX file access facilities have similar features to those of DECnet-RSX
intertask communication facilities.

• The file access facilities are implemented by means of calls to subroutines.

• The task that requests file access is called the source task, and the task that accepts
or rejects the request is called the target task.

• Acceptance of a file access request creates a logical link between the source and
target tasks. Then the file access process begins.

Introduction 1-13

Incoming file access requests are translated into calls to the file system at the target
node. The resulting file data is sent back to the accessing task. The accessing task
then reformats the data as required by the system. Unlike intertask communication,
the DECnet software establishes the logical link, so much of the connection process is
transparent. After completing file access operations, the logical link is disconnected.

A discussion of remote file access operations is provided in Section 3.8.

1.4 DECnet-RSX Task Control

DECnet-RSX task control allows you to write tasks in FORTRAN that perform the
following activities:

• Execute an installed task on a remote node according to a set schedule using the
RUNNCW call

• Abort an executing task on a remote node using the ABONCW call

• Cancel a scheduled task on a remote node using the ABONCW call

A discussion of remote task control is provided in Section 3.9.

1-14 DECnet-RSX Programmer's Reference Manual

2
DECnet-RSX MACRO-11 Programming Facilities

DECnet-RSX provides a library of MACRO-II macros that you can use to perform
network intertask communication. DECnet-RSX MACRO-II programming facilities
describe those macros and explain how to use them.

2.1 RSX-11 Network Macro Formats

You can use the following formats to code your macros:

• BUILD type macro. Creates a parameter block at assembly time and is generally
used in conjunction with an EXECUTE type macro or a DIR$ directive.

• EXECUTE type macro. References the parameter block created with a BUILD type
macro and executes the function requested. An EXECUTE type macro allows you
the option of overriding parameters specified by the BUILD type macro.

• STACK type macro. Creates a parameter block on the processor stack and executes
the requested function.

Examples demonstrating the use of these three macro types are provided in Section
2.1.4.

2.1.1 BUILD Type Macros

The BUILD type macro is used at assembly time to create a parameter block that
contains arguments describing the particular network function you have requested.
Having a predefined parameter block of this sort is especially useful if you are going to

2-1

perform the same network operation a number of times. If you omit an optional
parameter from this block, the macro allocates space for it anyway. This allows you to
fill in the argument at a later time using an EXECUTE type macro. However, if you
plan to use the EXECUTE type macro, you must include all trailing arguments in the
BUILD type macro.

The format for issuing a BUILD type macro is:

label: xxx[W]$ parameter-list[,flag]

where

label is a symbolic name associated with the location of the parameter
block.

xxx is the name of a DECnet-RSX macro.

[W] specifies that this network function will complete synchronously.
The issuing task waits until the function completes before continu­
ing. If you omit the W, the call completes asynchronously.

parameter-list is a list of arguments that describe particular features of this call.
Each parameter must be a valid argument for a .WORD or .BYTE
MACRO-11 directive. A list of possible parameters for each macro is
contained in the discussion of each macro. The number of argu­
ments specified must not exceed the number specified in an EXE­
CUTE type macro that will use this parameter block.

flag is a symbolic name that specifies an optional subfunction of the
network macro.

BUILD type macros can be executed by issuing an EXECUTE type macro or a DIR$
macro. A DIR$ macro call pushes the address of the network function parameter block
that you have created with the BUILD macro on the processor stack and then issues
an ElVIT 377 for the Executive to execute the macro. A DIR$ macro can be written as
follows:

DIR$ adr, err

where

adr is the address of the parameter block in the format of a source operand of a
MOV instruction.

err is the address of an optional error routine. The C-bit in the processor status
word (PSW) is set whenever an error is encountered.

2-2

NOTE

A DIR$ macro generates less code than a corresponding EXECUTE
macro.

DECnet-RSX Programmer's Reference Manual

2.1.2 EXECUTE Type Macros

The EXECUTE type macro references a network function parameter block that you
create at assembly time with a BUILD type macro. An EXECUTE type macro allows
you to enter parameters that override parameters that were defined when you origi­
nally built the parameter block with a BUILD macro.

NOTE

All trailing arguments must be included in a BUILD type macro that
is referenced by an EXECUTE type macro.

Once you have redefined or specified new parameters for the call, the EXECUTE
macro automatically executes the function requested by the call. The format for
issuing an EXECUTE type macro is:

xxx[W]$E label[,override-parameter-list][,flag]

where

xxx

[W]

label

override­
parameter-list

flag

is the name of a DECnet-RSX macro.

specifies that this network function will complete synchronously.
The issuing task waits until the function completes before continu­
ing. If you omit the W, the call completes asynchronously.

represents one of two values:

• The label of the BUILD type macro that supplies parameters for
this EXECUTE macro. You can include arguments immediately
following the label to override any parameters previously defined
in the BUILD parameter block.

• The label of an area of memory that will contain the parameters
that you are currently specifying. The parameter block is built and
the call is executed in the same macro.

is a list of one or more arguments that you specify to replace param­
eters that were previously defined for this call using a BUILD type
macro. Each argument in this list must be a valid source operand for
a MOV S, label+offset MACRO-II instruction.

The value of a parameter can be overridden and assigned a null
value by specifying a null value for that parameter. For example, if
an AST is not required, the parameter should be specified as o.
is a symbolic name that specifies an optional subfunction of the
network macro.

DECnet-RSX MACRO-11 Programming Facilities 2-3

2.1.3 STACK Type Macros

The STACK type macro creates the network function parameter block for the call on
the processor stack and then executes the function requested. All required parameters
must be specified when you issue this macro. Otherwise, the macro generates assem­
blyerrors.

The format for issuing a STACK type macro is:

xxx[W]$S parameter-list[,flag]

where

xxx is the name of a DECnet-11 macro.

[W] specifies that this network function will complete synchronously.
The issuing task waits until the function completes before continu­
ing. If you omit the W, the call completes asynchronously.

parameter-list is a list of arguments that describes particular features of this call.
The arguments can be one or more legal source operands for MOV
S,-(SP) MACRO-II instructions. A list of possible parameters for
each call is contained in the discussion of each call.

flag is a symbolic name that specifies an optional subfunction of the
network macro.

2.1.4 Macro Format Examples

The following examples demonstrate the three macro types.

label: xxx[W]$ lun,efn,status,ast,<pl,p2, ... ,pn>

xxx [Wl$E label

;Create a parameter block
;for the call designated
;by xxx$ using a BUILD
;type macro.

;Issue an EXECUTE type macro
;referencing the parameter
; block created for label.

xxx[W]$E label"", <pl,p2>

;Issue an EXECUTE type macro
;and override the parameter
;list arguments pI and p2.

xxx[W]$S #lun,#efn,#status,#ast,<#pl,#p2>

2-4

;Issue a STACK type macro, create
; a parameter block on the stack,
;and execute the call.

DECnet-RSX Programmer's Reference Manual

2.2 Conventions Used in this Chapter

The following conventions are used in the macro descriptions and examples in this
chapter:

asterisk * flags arguments that you must check for information after the
macro completes. For example, the status argument specifies an
array/data item where completion status information is stored
when the macro completes.

UPPERCASE represent actual characters that you must enter as shown.

lowercase italic indicates variables whose value you must specify.

square brackets [] enclose optional data. You must specify any argument not en­
closed by brackets. Do not type the brackets when you code a
macro.

braces {}

commas and
angle brackets <)

Example:

ABT[W]$ lun,[efn],[status],[ast][,<out,outlen)]

In this macro, the lun argument is required; all other arguments
are optional.

enclose several arguments of which you must select just one. Do
not type the braces when you code the macro.

Example:

GND[W]$ [lun, [efn], [status], [ast],

~<:~~t:~:~:maSk)'NT.TYP} ,NT.LON
<"mask),NT.LON

In this example, you must include one of the four argument
strings enclosed within the braces when you code GND$.

must be typed where shown as part of the macro format. Even if
you omit an argument, you must include the comma that de­
lineates its field unless no other arguments follow.

Example:

Basic format:

ABT[W]$ lun,[efn],[status],[ast][,<out,outlen)]

Sample macro:

ABT$ 5"status

efn, ast, out, and outlen have been omitted. A comma delineates
the field for the missing efn argument; no commas are necessary
for the three arguments dropped at the end of the macro.

DECnet-RSX MACRO-11 Programming Facilities 2-5

numbers are assumed to be octal unless followed by a decimal point. If
the assembler default radix has been set to octal, you can desig­
nate a decimal radix by placing a decimal point immediately
after a number.

Example:

In this example, 16 is a decimal number.

2.3 Intertask Communication Macros

This section contains descriptions and usage guidelines specific to the intertask com­
munication calls listed in Table 2-1. Before turning to these calls, you should read the
preceding material in this chapter. If you are not familiar with intertask communica­
tion concepts, you should also read Chapter 1 carefully before you attempt to code
any of these calls.

Table 2-1: Intertask Communication Macro Summary

Macro

ACC$

CLS$

CON$

CONB$$

DSC$

GLN$

GND$

OPN$

REC$

REJ$

SND$

SPA$

XMI$

2-6

Function

Abort a logical link

Accept a logical link connect request

End a task's network operations

Request a logical link connection

Build connect block for CON$ macro

Disconnect a logical link

Get local node information

Get data from network data queue

Access the network

Receive data over a logical link

Reject logical link connect request

Send data over a logical link

Specify a user AST routine

Send interrupt message over a logical link

DECnet-RSX Programmer's Reference Manual

2.3.1 Common Argument Definitions

Arguments that are commonly used in intertask communication macros are defined
below to avoid needless repetition throughout the macro descriptions.

• label

has the following meanings, depending on the macro type:

BUILD type: label is a symbolic name associated with the location of the argu-
ment block.

EXECUTE type: label can represent one of two values:

The label of the BUILD macro that supplies arguments for the current EXECUTE
macro. If desired, you can override any arguments defined in that BUILD macro by
reentering them after label in the EXECUTE macro.

The label of an area of memory that will contain the arguments that you specify in
the current EXECUTE macro.

• status

unless noted otherwise, is the address of an optional 2-word status block that con­
tains completion status information on return from the macro. If specified, this
block will contain the following values when the macro completes:

Word 0: Byte 0 = Error/completion code (see individual macro descriptions for
possible codes)

Byte 1 = 0

Word 1: 0

• out,outlen

defines optional user data you wish to send with certain macros. These are paired
optional arguments; use both when specified, or omit both.

out is the octal starting address of a buffer that contains optional user data
you can send on some operations.

outlen is the length in decimal bytes of the 1- to 16.-byte message you wish to
send.

DECnet-RSX MACRO-11 Programming Facilities 2-7

ABT$

Abort a Logical Link

2.3.2 ABT$ - Abort a Logical Link

Use:

Issue ABT$ from either task to abort a logical link. ABT$ immediately aborts all
pending transmits and receives, disconnects the link, and frees the LUN assigned
to the logical link. When you issue ABT$, you can send 1 to 16. bytes of user data
to the task from which you are disconnecting (see the out,outlen arguments).

Formats:

label: ABT[W]$ lun,[efn],[status],[ast][,<out,outlen>]

ABT[W]$E label,[lun],[efn],[status],[ast][,<out,outlen>]

ABT[W]$S lun,[efn],[status],[ast][,<out,outlen>]

Arguments:

label

*

*

2-8

specifies the location of the argument block. See definition in Section 2.3.1.

lun

identifies the logical link to abort. If you initiated the connection, enter the LUN
you used in the CON$ macro. If you accepted the connection, enter the LUN you
used in the ACC$ macro.

efn

specifies an optional event flag number that is set when ABT$ completes.

status

specifies completion status information on return from ABT$. See definition in
Section 2.3.1.

ast

is the address of an optional user-written AST routine to be executed after ABT$
completes.

out,outlen

defines optional user data you wish to send. See definition in Section 2.3.1.

DECnet-RSX Programmer's Reference Manual

Error/Completion Codes:

IS.SUC The macro completed successfully.

IE.ABO The specified logical link has already been aborted or disconnected.

IE.BAD The optional user data exceeds 16. bytes.

IE.IFC LUN not assigned to NS:.

IE.NLN No logical link has been established on the specified LUN.

IE.NNT The issuing task is not a network task; OPN$ did not execute successfully.

IE.SPC Invalid buffer argument; the optional user data buffer (out) is outside the user task
address space.

DECnet-RSX MACRO-11 Programming Facilities 2-9

ACCS

Accept Logical Link
Connect Request

2.3.3 ACC$ - Accept Logical Link Connect Request

Use:

Issue ACC$ from the target task to establish a logical link with the source task.
When you issue ACC$, you can send 1 to 16. bytes of user data to the source task
(see the out,outlen arguments).

Formats:

*

*

label: ACC[W]$ lun,[efn],[status],[ast],<mail,[mailen],
[out, outlen] > [,N OFLO W]

ACC[W]$E label,[lun],[efn],[status],[ast],<[mail],[mailen],
[out, out len] > [,NOFLOW]

ACC[W]$S lun,[efn],[status],[ast],<mail,[mailen],
[out, outlen] > [,NOFLOW]

Arguments:

label

specifies the location of the argument block. See definition in Section 2.3.1.

lun

assigns the logical link number. Use this LUN to refer to this logical link in any
subsequent REC$, SND$, XMI$, ABT$, or DSC$ macro.

efn

specifies an optional event flag number that is set when ACC$ completes.

status

specifies completion status information on return from ACC$. See definition in
Section 2.3.1.

ast

is the address of an optional user-written AST routine to be executed after ACC$
completes.

2-10 DECnet-RSX Programmer's Reference Manual

mail

is the address of the connect block sent by the source task and retrieved by
GND$. This address is the same one that is specified for mail in GND$ (see
Section 2.3.9). Connect block information (see Table 2-5) is needed to establish
the connection.

mailen

is the length in decimal bytes of the connect block. If omitted, the value N. CBL
(98.) is used (see Table 2-5).

out,outlen

defines optional user data you wish to send. See definition in Section 2.3.1.

Flag:

NOFLOW

disables flow control for incoming messages (that is, messages destined for the
task that issued ACC$). If NOFLOW is omitted, flow control is established for
incoming messages. Either end of the link can be set independently to flow or
noflow control. Use the NOFLOW option with caution (see Section 1.2.13).

Error/Completion Codes:

IS.SUC The macro completed successfully.

IE.ABO The task that requested the connection has aborted or has requested a disconnect
before the connection could complete.

IE.ALN A logical link has already been established on the specified LUN.

IE.BAD Either the temporary link address in the connect block sent by the source task is
invalid, or the optional user data buffer length (outlen) exceeds 16. bytes.

IE.IFC LUN not assigned to NS:.

IE.NNT The issuing task is not a network task; OPN$ did not execute successfully.

IE.RSU System resources needed for the logical link are not available.

IE.SPC Invalid buffer argument; either the pending connect block (mail) or the optional
user data buffer (out) is not word aligned, or one of them is outside the user task
address space.

DECnet-RSX MACRO-11 Programming Facilities 2-11

CLS$

End Task Network
Operations

2.3.4 CLS$ - End Task Network Operations

Use:

Issue CLS$ from either task to end that task's network activity, abort all its
logical links, and free all its network LUNs. If there is data in the task's network
data queue, the following results can occur:

• If the queue contains any pending connect requests that arrived while the task
was active, the calling task is rescheduled (that is, the task will receive these
connect requests whenever it is restarted). There is a limit of one retry and a
timeout period of approximately 15 seconds.

• If any connect requests arrived before the task was active, they are rejected.

• If the queue contains an interrupt message, user disconnect, user abort, or
network abort, this data is discarded.

label: CLS[W]$ [tun], [ein],[status][,ast]

CLS [W]$E label, [tun], [ein], [status] [,ast]

CLS[W]$S [tun], rein], [status] [,ast]

Arguments:

label

*

*

specifies the location of the argument block. See definition in Section 2.3.1.

ein

specifies an optional event flag number that is set when CLS$ completes.

status

specifies completion status information on return from CLS$. See definition in
Section 2.3.1.

ast

is the address of an optional user-written AST routine to be executed after CLS$
completes.

2-12 DECnet-RSX Programmer's Reference Manual

Error/Completion Codes:

IS.SUC The macro completed successfully.

IE.lFC LUN not assigned to NS:.

IE.NNT The issuing task is not a network task; OPN$ did not execute successfully.

IE.PRI The network is not accessed on the specified LUN.

DECnet-RSX MACRO-11 Programming Facilities 2-13

CONS

Request Logical Link
Connection

2.3.5 CONS - Request Logical Link Connection

Use:

Issue CONS from the source task to request a logical link with the target task.
Before you issue CONS, you must build a connect block using the CONB$$ macro
(see Section 2.3.6). This connect block is passed to the target node when you issue
CONS.

When a remote system receives a connect request, it checks to see if the target
task is currently installed and inactive. If it is, it automatically loads and ac­
tivates the task. The target task must issue a GND$ (see Section 2.3.9) to retrieve
the connect block information, which it evaluates to determine whether to accept
(ACC$, see Section 2.3.3) or reject (REJ$, see Section 2.3.12) the connect request.

You can send 1 to 16. bytes of user data to the target task and/or receive 1 to 16.
bytes of user data from the target task when it accepts/rejects your connect
request.

Formats:

label: CON[W]$ lun,[efn],[status],[ast],<conbl,[conblen],
[out,outlen], [in,inlen] > [,NOFLOW]

CON[W]$E label,[lun],[efn],[status],[ast],<conbl,[conblen],
[out ,outlen], [in, inlen] > [,NO FLOW]

CON[W]$S lun,[efn],[status],[ast],<conbl,[conblen],
[out,outlen],[in,inlen]> [,NOFLOW]

Arguments:

label

*

specifies the location of the argument block. See definition in Section 2.3.1.

lun

assigns the logical link number. Use this LUN to refer to this logical link in any
subsequent REC$, SND$, XMI$, ABT$, or DSC$ macro.

efn

specifies an optional event flag number that is set when CONS completes.

2-14 DECnet-RSX Programmer's Reference Manual

status

is the address of an optional 2-word status block that contains completion status
information on return from CON$. If specified, this block will contain the follow­
ing values when CON$ completes:

Word 0: Byte 0 = Error/completion code (see list below)
Byte 1 = 0

Word 1: Byte 0 = Content depends on error completion code in word 0, byte 0 (see
list below)

Byte 1 = 0

Listed below are possible error/completion codes you can receive in word 0, byte 0,
plus the corresponding contents of word 1, byte o.

Error/Completion Code
Word 0, Byte 0

IS.SUC
Connection accepted

IS.DAO
Connection accepted
with data overrun

IE.DAO
Connection rejected by
user with data overrun

IE.URJ
Connection rejected by
user

IE.NRJ
Connection rejected by
DECnet

All other cases

Word 1, Byte 0

Received byte count
(0 if no data received)

Received byte count
(0 if no data received)

Received byte count
(0 if no data received)

Received byte count
(0 if no data received)

Reason for rejection
(see Appendix A)

o

DECnet-RSX MACRO-11 Programming Facilities 2-15

ast

is the address of an optional user-written AST routine to be executed after CONS
completes.

conbl

is the address of the connect block built using CONB$$ (see Section 2.3.6). This
block must start on an even byte (word) boundary.

conblen

is the length of the connect block in decimal bytes. If omitted, the argument
N.RQL (72.) is used (see Table 2-2).

out,outlen

defines optional user data you wish to send. See definition in Section 2.3.1.

in,inlen

defines the buffer to receive optional user data from the target task. These are
paired optional arguments; use both or omit both. If you omit these arguments
and the target task sends user data, a data overrun status code (IS.DAO or
IE.DAO) will be returned.

* In is the octal address of the buffer.

inlen is the buffer length in decimal bytes (1 to 16.).

Flag:

NOFLOW

disables flow control for this end of the link. If NOFLOW is omitted, this end of
the link is established as flow controlled. Either end of the link can be set inde­
pendently to flow or noflow control. Use the NOFLOW option with caution (see
Section 1.2.13).

2-16 DECnet-RSX Programmer's Reference Manual

Error/Completion Codes:

IS.SUC The macro completed successfully.

IS.DAO The macro completed successfully; the connection has been accepted, but some
optional user data was lost (the data sent from the target task when it accepted
your connect request).

IE .ALN A logical link has already been established on the specified LUN.

IE.BAD Either the optional user data buffer exceeds 16. bytes, or the field length count in
the connect block is too large.

IE.DAO The connection was rejected and some optional user data was lost (the data sent
from the target task when it rejected your connect request).

IE.IFC LUN not assigned to NS:.

IE.NNT The issuing task is not a network task; OPN$ did not execute successfully.

IE.NRJ The network rejected the connection (see reject reason codes in Appendix A).

IE.PRI The local node is shutting down. No logical link can be established.

IE.RSU System resources needed for the logical link are not available.

IE.SPC Invalid buffer argument; either the connect block (conbl) is not word aligned, or the
optional user data buffers (in or out) are outside the user task address space.

IE.URJ The remote user task rejected the connection.

DECnet-RSX MACRO-11 Programming Facilities 2-17

CONB$$

Build Connect Block

2.3.6 CONB$$ - Build Connect Block

Use:

Issue CONB$$ from the source task to build a 72.-byte connect block to be passed
to the target task when you issue CON$ (see Section 2.3.5). The connect block
contains the node name, destination descriptor, and access control information
required by the target task to determine whether to accept (ACC$) or reject
(REJ$) the connect request. Figure 2-1 illustrates a sample connect block.

Access control information comprises arguments that define your access rights at
the remote node or process. Access control verification is performed according to
the conventions of the target system. If the target node is equipped to do so, it
verifies access control information before the connect request (CON$) is passed to
the target task. (For more information on access control verification, see the
DECnet-R8X Network Management Concepts and Procedures manual.

NOTE

If you have already included the correct access control information
with an alias node name, you need not include it in the connect block.
For more information on using aliases, refer to the DECnet-RSX
Guide to User Utilities or to the DECnet-RSX Network Management
Concepts and Procedures manual.

Format:

CONB$$ [no deL [objL [fmt, <de.~crip> L [rqidL [<pass>][pccno]

Arguments:

2-18

NOTE

If you must specify non-ASCII data for any of the following argu­
ments that require ASCII data, leave the argument field blank and
create the non-ASCII field dynamically. You can create the entire
connect block dynamically by reserving a block of storage equal to the
length of N .RQL (72. bytes, as shown in Table 2-2). If you do not
include the arguments in the CONB$$ macro call, you must define
the fields before the macro is executed. All fields can be created or
modified during task execution by using the symbolic offsets shown in
Table 2-2. Use the CRBDF$ call to define these symbolic offsets.

DECnet-RSX Programmer's Reference Manual

node

is the name of the target node to which this connect block is directed. The name
must have 1 to 6 alphanumeric characters, including at least 1 alphabetic charac­
ter.

The obj, fmt, and descrip arguments, described below, are collectively referred to
as the destination descriptor. The destination descriptor describes formatting
characteristics required by the target task. You must specify this information in
order to access the task.

obj

is the object type of the task to which the connect request is directed. Object
types group DECnet tasks according to the functions they perform; they are
identified throughout the network by object type codes (see list of codes in Appen­
dix B). Your code must be in the range of ° through 255 (decimal).

fmt

NOTE

If you are a privileged user, you can define your own object types;
refer to the DECnet-RSX Network Management Concepts and Pro­
cedures manual for instructions.

is the descriptor format type. If you specified obj as 0, use 1 for fmt; otherwise, use
0.

descrip

is the target task name (1 to 16. ASCII characters). Omit this argument if you
specified a nonzero object type.

The rqid, pass, and accno arguments specify access control information that
determines your access at the remote node or process. If you have already pro­
vided this information in an alias node name for the target node, you can omit
these arguments.

rqid

is the user ID (1 to 16. ASCII characters).

DECnet-RSX MACRO-11 Programming Facilities 2-19

DESTINATION
DESCAIPTOR
FIELDS

ACCESS
CONTROL
INFOAMATION

If access control
information is not
l'lnp,.ifipn +hiq

j;,f~;~;tion" ~~n
be retrieved from
an alias definition.

L E
o R

o N

ndname: ELROND

o format 1, objtype 0

L B
G 0
S G

namesz

name

usersz

user

passwdsz

passwd

acenosz: (not used by RSX)

aceno: (not used by RSX)

TW0189

Figure 2-1: Sample Connect Block

2-20 DECnet-RSX Programmer's Reference Manual

pass

is a 1 to B.-byte password. If you are entering an ASCII password (as opposed to
binary), precede each character of the password with an apostrophe (') and sepa­
rate the characters with commas. For example, the password PAS should be
entered as 'P,'A,'S.

accno

is your account number at the remote node or process (1 to 16. ASCII characters).

Table 2-2: CONB$$ Connect Block Symbolic Offsets

SymbOlic
Offset

N.RND*

N.RFM

N.ROT

N.RIDC*

N.RID*

N.RPSC*

N.RPS*

N.RACC*

N.RAC*

N.RQL = 72.

Length
(decimal
bytes)

6.

1.

1.

2.

16.

2.

8.

2.

16.

Contents

DESTINATION DESCRIPTOR

Remote node name with trailing blanks

Destination descriptor format type: 0 or 1

Destination object type: 0-255.

Descriptor Field for Format 0

18. Not used

Descriptor Fields for Format 1

N.RDEC* 2. Destination task name length
(equal to or less than 16. bytes)

N .RDE* 16. Destination task name

ACCESS CONTROL INFORMATION

User ID length (equal to or less than 16. bytes)

User ID

Password length (equal to or less than 8. bytes)

Password

Account number length (equal to or less than 16. bytes)

Account number

* These symbolic offsets are guaranteed to be even (that is, word aligned).

DECnet-RSX MACRO-11 Programming Facilities 2-21

DESTINA TION
DESCRIPTOR
FIELDS

ACCESS
CONTROL
INFORMA TlON

If access control
information is not
specified, this
information can
be retrieved from
an alias definition.

I
3

A

l

(lode: ELRONO

fmt: 1, ob j: 0

Byte count for descriptor

descrip: RECVR

R

Byte count for user 10

rgid: BL OGGS

1

Byte count for password

P

S pass: PAS

Account numb., (not used fo' RSX) J

TW0190

Figure 2-2: Sample Connect Block Built by CONB$$

2-22 DECnet-RSX Programmer's Reference Manual

Figure 2-2 illustrates a connect block that was built as a result of executing the
following call:

CONB$$ ELRONDtOtl t(RECVR>tBLOGGSt('Pt'At'S>

This connect block will be directed to a task named RECVR on remote RSX node
ELROND. The object type is 0 (named object) and the descriptor format type is 1.
The user ID is BLOGGS and the password is PAS; no account number is required for
RSX target systems.

DECnet-RSX MACRO-11 Programming Facilities 2-23

DSC$

Disconnect a Logical Link

2.3.7 DSC$ - Disconnect a Logical Link

Use:

Issue DSC$ from either task to disconnect the logical link and free the logical unit
number. Unlike ABT$ (see Section 2.3.2), DSC$ causes all pending transmits to
complete before the link is disconnected. While these transmits are completing,
the task continues to receive messages. When the last transmit has completed, all
pending receives are aborted and IE.ABO is returned in the I/O status block for
each one. When you issue DSC$, you can send 1 to 16. bytes of user data to the
task from which you are disconnecting (see the out,outlen arguments).

Formats:

label: DSC[W]$ lun,[efn],[status],[ast][,<out,outlen>]

DSC[W]$E label,[lun],[efn],[status],[ast][,<out,outlen>]

DSC[W]$S lun,[efn],[status],[ast][,<out,outlen>]

Arguments:

label

*

*

specifies the location of the argument block. See definition in Section 2.3.1.

lun

identifies the logical link to disconnect. If you initiated the connection, enter the
LUN you used in the CONS macro. If you accepted the connection, enter the
LUN you used in the ACe$ macro.

efn

specifies an optional event flag number that is set when DSC$ completes.

status

specifies completion status information on return from DSC$. See definition in
Section 2.3.1.

ast

is the address of an optional user-written AST routine to be executed after DSC$
completes.

out,outlen

defines optional user data you wish to send. See definition in Section 2.3.1.

2-24 DECnet-RSX Programmer's Reference Manual

Error/Completion Codes:

IS.SUC The macro completed successfully.

The specified logical link has already been aborted or disconnected.

The optional user data exceeds 16. bytes.

LUN not assigned to NS:.

No logical link has been established on the specified LUN.

The issuing task is not a network task; OPN$ did not execute successfully.

The network is not accessed on the specified L UN.

IE.ABO

IE.BAD

IE.IFC

IE.NLN

IE.NNT

IE.PRI

IE.SPC Invalid buffer argument; the optional user data buffer (out) is outside the user task
address space.

DECnet-RSX MACRO-11 Programming Facilities 2-25

GLN$·

Get Local Node
Information

2.3.8 GLN$ - Get Local Node Information

Use:

Issue GLN$ from either task to have the following local node information placed
in the specified buffer:

• Local node name

You may wish to supply the local node name within a task that is to connect to
the local node. For example, if you have a task that runs on several nodes and
sends data to the local node, your task must supply the local node name to the
connect block before it can establish a connection with that node. You also may
wish to issue a GLN$ within any task that is to display the local node name.

• Default NSP segment size (that is, the size that NSP uses to segment data
transmitted on a logical link)

When you know the default NSP segment size, you can use transmit buffers
(large data buffers) most efficiently by adjusting the length of the message
blocks to be transmitted.

Formats:

label: GLN[W]$ [lun] , [efn], [status], [ast], <buf, buflen>

GLN[W]$E label, [lun], [efn],[status],[ast], <buf, buflen>

GLN[W]$S [lun], [efn], [status], [ast],<buf, buflen>

Arguments:

label

*

*

specifies the location of the argument block. See definition in Section 2.3.1.

efn

specifies an optional event flag number that is set when GLN$ completes.

status

is the address of an optional 2-word status block that contains completion status
information on return from GLN$. If status is specified, the contents of word 1
depends on the error/completion code returned in word 0, byte 0 (word 0, byte 1 is
always 0).

2-26 DECnet-RSX Programmer's Reference Manual

*

Contents in Word 0, Byte 0

IS.SUC (1) or IE.DAO (-13)

IE.xxx (excluding IE.DAO,
xxx refers to
IE.NNT, IE.PRI,
IE.SPC)

ast

Contents of Word 1

Number of bytes transferred
to the user buffer

o

is the address of an optional user-written AST routine to be executed after GLN$
completes.

buf

is the address of the buffer to contain the received data. This buffer must start on
an even byte (word) boundary. On return from GLN$, the data is stored as
follows:

Length
(in bytes)

6

2

buflen

Content/Meaning

Local node name in ASCII (left justified and
filled with spaces if name is less than 6 bytes)

Default NSP segment size

is the length of the buffer (6 or 8. bytes) to contain the received data. If you
specify 6 bytes, only the local node name will be returned. If you specify 8. bytes,
both the node name and the default NSP segment size will be returned.

Error/Completion Codes:

IS.SUC The macro completed successfully.

IE.DAO Data overrun. The network data was longer than the specified buffer. As much data
as fits into the buffer is transferred to it; any remaining data is lost.

IE.IFC LUN not assigned to NS:.

IE.NNT The issuing task is not a network task; OPN$ did not execute successfully.

IE.PRI The network is not accessed on the specified LUN.

IE.SPC Invalid buffer argument; the buffer specified to receive network data (buf) is out­
side the user task address space.

DECnet-RSX MACRO-11 Programming Facilities 2-27

GND$

Get Network Data

2.3.9 GND$ - Get Network Data

Use:

Issue GND$ from either task to get data from that task's network data queue and
store it in the specified mail buffer (see mail,mlen). If GND$ completes success­
fully, word 0, byte 1 of the status block identifies which of the following unsoli­
cited message types has been stored:

• Connect request (NT.CON)

• Interrupt message (NT.lNT)

• Vser disconnect notice (NT.DSC)

• User abort notice (NT.ABT)

• Network abort notice (NT.ABO)

You can use the SPA$ macro (see Section 2.3.14) to find out how many network
data items are in the network data queue. If you issue GND$ when the queue is
empty, GND$ completes with an error (IE.NDA) even if the GND[W] form is
used.

Formats:

label: GND[W]$ [lun],[e/n],[status],[ast],

«mail, mlen> 1

t mail, mlen, mask>,NT.TYPj
,NT.LON
<"mask>,NT.LON

GND[W]$E label,[lun],[e/n],[status],[ast],

{

<mail,mlen> }
<mail,mlen,mask>,NT.TYP
,NT.LON
<"mask>,NT.LON

GND[W]$S [tun], [e/n],[status], last],

2-28

{

<mail, mlen> }
<mail,mlen,mask>,NT.TYP
,NT.LON
<"mask>,NT.LON

DECnet-RSX Programmer's Reference Manual

Table 2-3: Contents of Status Block after GND$

If GND$ completes successfully and NT. LON is not specified:

Status Word 0
Byte 0 Byte 1

Is.sue
or
IS.DAO
or
IE.DAO

Is.sue
or
IE.DAO

Is.sue
or
IE.DAO

NT.eON
Connect request

NT.INT
Interrupt
message

NT.Dse
User disconnect

NT.ABT
User abort

NT.ABO
Network abort

Status Word 1
Byte 0

N umber of bytes in
connect block
(see Table 2-4).

Number of bytes (1-16)
in optional message. If
0, no message was
received.

Byte 1

Access verification (1) and privi­
leged code:

VS.NPV = Requesting user is
nonprivileged.

VS.PRV = Requesting user is
privileged.

VZ.NVD = Verification was not
done. (2)

VE.FAI = Verification failed. (3)

LUN over which the interrupt
message was received.

Number of bytes (1-16) LUN over which the user discon­
in optional message. If nect message was received.
0, no message was
received.

Number of bytes (1-16) LUN over which the network
in optional message. If abort message was received.
0, no message was
received.

Reason for network LUN over which the notice was
abort (see codes in Ap- received.
pendix A).

If GND$ completes successfully and NT.LON is specified:

Status Word 0
Byte 0 Byte 1

Is.sue
or
IE.DAO

NT. XXX
(type of first item
in queue)

Status Word 1
Byte 0 Byte 1

Number of bytes in °
first item in network
data queue.

(continued on next page)

DECnet-RSX MACRO-11 Programming Facilities 2-29

Table 2-3 (cont.): Contents of Status Block after GND$

If GND$ completes with an error other than IE.DAO (-13):

Status Word 0 Status Word 1
Byte 0 Byte 0 Byte 1 Byte 1

IE.XXX o o o

1. If access verification is enabled for the target node, it evaluates access control data in the
connect request before it is allowed to pass to the target task's network data queue. For
more information on access control, refer to the DECnet-R8X Network Management Con­
cepts and Procedures manual.

2. Either the verification task was not installed on the target node, or it was set to OFF with
the NCP SET EXECUTOR VERIFICATION command or the proper access control file
was not available.

3. Either the account is not in the system account file, the password does not match the one in
the file, or the object is set to inspect.

Arguments:

*

*

label

specifies the location of the argument block. See definition in Section 2.3.1.

lun

identifies the logical unit number assigned to the network data queue. Use the
LUN you specified in OPN$.

efn

specifies an optional event flag number that is set when GND$ completes.

status

is the address of an optional 2-word status block that contains completion status
information on return from GND$. The content of the status block is summarized
in Table 2-3.

2-30 DECnet-RSX Programmer's Reference Manual

ast

is the address of an optional user-written AST routine to be executed after GND$
completes.

mail,mlen

defines the task mail buffer to receive the network data or connect block on return
from GND$. (Connect block contents are itemized in Table 2-5.) These argu­
ments must be specified if the NT.TYP and NT.LON flags are omitted.

* mail is the octal address of the buffer, which must start on an even byte
(word) boundary.

mlen is the length of the buffer in decimal bytes (98. to 116.).

mask

specifies data type to be selected from the network data queue. Normally, GND$
returns items from the network data queue on a first-in, first-out basis. However,
you can use mask to select the first item on the queue that matches the message
type and/or LUN that you choose. Enter one of the combinations given in Table
2-4 for the mask argument:

Table 2-4: Mask Argument Options

Message Type (Byte 0) Logical Unit Number (Byte 1)

NT.CON (connect request)

NT.INT (interrupt message)

NT.DSC (user disconnect)

NT.ABT (user abort)

NT.ABO (network abort)

o (Selects the first LUN of message type NT.CON)

o (Selects any message type on the
specified LUN.)

o or LUN

o or LUN

o or LUN

o or LUN

LUN

For example, if you want to select from the network data queue the first discon­
nect message (NT.DSC) on LUN 3, you would code the mask argument as fol­
lows: 3*256.+NT.DSC.

If you specify 0 in byte 1, the first message of the type specified in byte 0 will be
returned, regardless of the LUN.

DECnet-RSX MACRO-11 Programming Facilities 2-31

Flags:

NT.TYP

indicates that a specific message type and/or LUN has been requested in a mask
argument (see above). NT.TYP should always be used when mask is specified
with mail and mien.

NOTE

If you use NT.TYP in a BUILD type GND$, you must also use it in
any ensuing EXECUTE type GND$.

NT.LON

specifies dynamic assignment of mail buffer space. When you specify NT.LON,
the message type of the first message in the network data queue is returned in
word 0, byte 1 of the status block, and the message length is returned in word 1,
byte 0. The message is not removed from the queue or placed in the mail buffer. If
you sPecify NT.LON, you must not use mail, mlen, and NT.TYP.

NOTE

If you use NT.LON in a BUILD type GND$, you must also use it in
any ensuing EXECUTE type GND$.

Figure 2-3 shows sample connect block information retrieved from the network
data queue by a G ND$ macro. The connect block shown is the one generated by
the CONB$$ macro example given in Section 2,3,6,

Error/Completion Codes:

IS.SUC The macro completed successfully.

IS.DAO The macro completed successfully, but some returned optional data was lost.

IE.DAO Data overrun. The network data was longer than the mail buffer. As much data as
will fit into the mail buffer is transferred to it; any remaining data is lost.

IE.IFC LUN not assigned to NS:.

IE.NDA There is no data in the network data queue to return.

IE.NNT The issuing task is not a network task; OPN$ did not execute successfully.

IE.PRI The network is not accessed on the specified LUN.

IE.SPC Invalid buffer argument; the buffer assigned to receive network data (mail) is not
word aligned or is outside the user task address space.

2-32 DECnet-RSX Programmer's Reference Manual

DES TINA T ION
DESCRIPTOR
FIELD

SOURCE
DESCRIPTOR
FIELDS

ACCESS
CONTROL:
NO
VERIFICATION

If verification is
ON. the password is
cleared out before
being passed to the
destination task

R

Symbolic Offset

N CTl: (not used by user)

N.SEGZ: 420

N.OFt.1: 1. N.OOT: 0

N.OOEC: 5

V C NODE: RECVR

R

E S

N SNO: BOSTON

N SFt.1' 1. NSOT: 0

NSOEC: 5

o N N SDE: SENOR

R

6 NCIDC: 6

l B
G 0
S G

NCPSC' 3

NCPS' PAS

N.CACC: (not used by RSX)

N CAC' (not used by RSX)

TW0191

Figure 2-3: Sample Connect Block Received by GND$

DECnet-RSX MACRO-11 Programming Facilities 2-33

Table 2-5: Connect Block Received in the Mail Buffer after GND$

Symbolic
Offset

N.CTL*

N.SEGZ*

N.DFM

N.DOT

N.SND*

N.SFM

Length
(decimal
bytes)

2.

2.

1.

1.

6.

1.

Contents

Temporary logical link address
(required by the network; do not modify)

NSP segment size
(used by NSP to send message data to source)

DESTINATION DESCRIPTOR
(20.-byte total)

Destination descriptor format type: 0,1

Destination object type: 0-255.

Descriptor Field for Format 0

18. Not used

Descriptor Fields for Format 1

N .DDEC* 2. Destination task name length
(equal to or less than 16. bytes)

N.DDE* 16. Destination task name

SOURCE DESCRIPTOR
(26.-byte total)

Source node name
(name of node requesting the connection; ASCII, with
trailing blanks)

Source descriptor format type
(must be either format 0 or format 1)

* These symbolic offsets are guaranteed to be even (that is, word aligned).

(continued on next page)

2-34 DECnet-RSX Programmer's Reference Manual

Table 2-5 (cont.): Connect Block Received in the Mail Buffer after GND$

Symbolic
Offset

N.SOT

Length
(decimal
bytes)

1.

Contents

SOURCE DESCRIPTOR

Source object type
(object type of task or process requesting the
connection: 1-255. for format 0, or ° for format 1)

Descriptor Field for Format 0

18. Not used

Descriptor Fields for Format 1

N.SDEC* 2. Source task name length
(equal to or less than 16. bytes)

N .SDE* 16. Source task name

ACCESS CONTROL INFORMATION
(46.-byte total)

If no verification performed

N.CIDC* 2. User ID length
(equal to or less than 16. bytes)

N.CID* 16. User ID

N.CPSC* 2. Password length
(equal to or less than 8. bytes)

N .CPS* 8. Password

N.CACC* 2. Account number length
(equal to or less than 16. bytes)

* These symbolic offsets are guaranteed to be even (that is, word aligned).

(continued on next page)

DECnet-RSX MACRO-11 Programming Facilities 2-35

Table 2-5 (cont.): Connect Block Received in the Mail Buffer after GND$

Symbolic
Offset

N.CDAC*

N.CDA*

Length
(decimal
bytes)

2.

16.

Contents

ACCESS CONTROL INFORMATION

N.CAC* 16. Account number

If verification performed

N .CDEV 2. Default device name

N .CUNI 1. Default device unit number

1, Not used

N .CUIC 2. Log-in UIC from account file

N.CDDS 11. Default directory string
(0 if no default string)

29. Not used

OPTIONAL DATA
(18.-byte total)

Length of optional user data
(equal to or less than 16. bytes; 0 if no optional data)

Optional user data sent by source task
(0 to 16. bytes)

N.CBL = 98. (not including optional data)

* These symbolic offsets are guaranteed to be even (that is, word aligned).

2-36 DECnet-RSX Programmer's Reference Manual

OPN$

Access the Network

2.3.10 OPN$ - Access the Network

Use:

Issue OPN$ to establish the task as an active network task and to create the task's
network data queue. You must issue OPN$ before issuing any other intertask
communication macro.

Formats:

label: OPN[W)$ [lun),[efn), [status), [ast][, <links[,lrp»)

OPN[W)$E label, [lun), [efn), [status),[ast) [, <links[,lrp]>]

OPN[W]$S [lun), [efn), [status), [ast] [,<links[,lrp»)

Arguments:

label

*

*

specifies the location of the argument block. See definition in Section 2.3.1.

lun

assigns a logical unit number to the task's network data queue. You can omit this
argument if you have already assigned the LUN to NS: by defining the symbol
.MBXLU in the user program or in a GBLDEF option at task build time. Use this
LUN in any subsequent GND$, SPA$, GLN$, REJ$, or CLS$ macro.

efn

specifies an optional event flag number that is set when OPN$ completes.

status

specifies completion status information on return from OPN$. See definition in
Section 2.3.1.

ast

is the address of an optional user-written AST routine to be executed after OPN$
completes.

DECnet-RSX MACRO-11 Programming Facilities 2-37

links

specifies the maximum number of logical links that can be active simultaneously
within the task. When the number of active links equals the links value (255.
maximum), the network rejects any incoming connect request. A value of 0
(which is also the default) sets no limit as long as network resources are available.

To prevent access to your task, specify a links value of 1 and code the routine that
processes the GND$ macro to reject all incoming connect requests. You can still
establish outgoing links by using CON$.

lrp

specifies the link recovery period - that is, the number of minutes that can
elapse from the time a physical link fails until the associated logical link is
aborted by the network. The lrp must be in the range of 0 through 32767(deci­
mal).

When specifying an lrp value, remember that unless your task has been built
checkpointable, it will be locked in memory until the link recovery period has
elapsed if the task has outstanding I/O when the link fails. This can cause serious
delays for other system users who need to access the occupied area of memory.

Error/Completion Codes:

IS.SUC The macro completed successfully.

IE.IFC LUN not assigned to NS:.

IE.PRI The network is being dismounted, or the user task has already accessed the net­
work.

IE.RSU System resources needed for the network data queue are not available.

2-38 DECnet-RSX Programmer's Reference Manual

REC$

Receive Data over a
Logical Link

2.3.11 REC$ - Receive Data over a Logical Link

Use:

Issue REC$ from either task to receive message data over an established logical
link and store it in a specified buffer.

Formats:

label: REC[W]$ lun,[efn],[status],[ast],<buf,buflen>

REC[W]$E label, [lun], [efn], [status], [ast][, <buf,buflen>]

REC[W]$S lun,[efn],[status],[ast],<buf,buflen>

Arguments:

label

*

*

*

specifies the location of the argument block. See definition in Section 2.3.1.

lun

specifies the logical link over which data is to be received. If you initiated the
connection, enter the LUN you used in the CON$ macro. If you accepted the
connection, enter the LUN you used in the ACC$ macro.

efn

specifies an optional event flag number that is set when REC$ completes.

status

specifies completion status information on return from REC$. See definition in
Section 2.3.1, and note this exception:

Word 1: Contains number of bytes received.

ast

is the address of an optional user-written AST routine to be executed after REC$
completes.

buf

is the address of the buffer to contain the received message data.

buflen

is the length of the receive buffer in bytes (8128. maximum).

DECnet-RSX MACRO-11 Programming Facilities 2-39

Error/Completion Codes:

IS.SUC The macro completed successfully.

IE.ABO The logical link was disconnected during I/O operations.

IE.DAO Data overrun. More message data was transmitted than requested. As much data as
will fit into the receive buffer is transferred to it; any remaining data is lost.

IE.lFC LUN not assigned to NS:.

IE.NLN No logical link has been established on the specified LUN.

IE.NNT The issuing task is not a network task; OPN$ did not execute successfully.

IE.SPC Invalid buffer argument; either the data buffer (buf) is outside the user task address
space, or the buffer length (buflen) exceeds 8128. bytes.

2-40 DECnet-RSX Programmer's Reference Manual

REJ$

Reject Logical Link
Connect Request

2.3.12 REJ$ - Reject Logical Link Connect Request

Use:

Issue REJ$ from the target task to reject a logical link connect request. When you
issue REJ$, you can send 1 to 16. bytes of user data to the requesting task (see the
out,outlen arguments).

Formats:

label: REJ[W]$ [lun],[efn],[status],[ast],<mail,[mailen]
[,out ,outlen] >

REJ[W]$E label, [lun], [efn], [status], (ast), <mail, [mailen)
[,out,outlen) >

REJ[W]$S [lun], [efn],[status], [ast], <mail, [mailen]
[,out,outlen) >

Arguments:

label

*

*

specifies the location of the argument block. See definition in Section 2.3.1.

efn

specifies an optional event flag number that is set when REJ$ completes.

status

specifies completion status information on return from REJ$. See definition in
Section 2.3.1.

ast

is the address of an optional user-written AST routine to be executed after REJ$
completes.

mail

is the address of the connect block sent by the source task and retrieved by
GND$. This address is the same one that is specified for mail in GND$ (see
Section 2.3.9). Connect block information (see Table 2-5) is needed to reject the
connection.

mailen

is the length in decimal bytes of the connect block. If omitted, the value N.CBL
(98.) is used (see Table 2-5).

out,outlen

defines optional user data you wish to send. See definition in Section 2.3.1.

DECnet-RSX MACRO-11 Programming Facilities 2-41

Error/Completion Codes:

IS.SUe The macro completed successfully.

IE.ABO The task that requested the connection has aborted or has requested a disconnect
before the rejection could complete.

IE.BAD Either the temporary link address in the connect block is not valid, or the optional
user data buffer exceeds 16. bytes.

IE.IFC LUN not assigned to NS:.

IE.NNT The issuing task is not a network task; OPN$ did not execute successfully.

IE.PRI The network is not accessed on the specified LUN.

IE.SPC Invalid buffer argument; either the connect block (mail) or the optional user data
buffer (out) is outside the user task address space, or the connect block is not word
aligned.

2-42 DECnet-RSX Programmer's Reference Manual

SND$

Send Data over a
Logical Link

2.3.13 SND$ - Send Data over a Logical Link

Use:

Issue SND$ from either task to send message data over an established logical link.
This macro completes when the other task has actually received the data.

Formats:

label: SND[W]$ lun,[efn],[status],[ast])<buf,buflen>

SND[W]$E label,[lun],[efn],[status],[ast][,<but,buflen>]

SND [W]$S lun, [efn], [status], [ast], < but, buflen>

Arguments:

label

*

*

specifies the location of the argument block. See definition in Section 2.3.l.

lun

identifies the logical link over which the data is to be sent. If you initiated the
connection, enter the LUN you used in the CON$ macro. If you accepted the
connection, enter the LUN you used in the ACC$ macro.

efn

specifies an optional event flag number that is set when SND$ completes.

status

specifies completion status information on return from SND$. See definition in
Section 2.3.1, and note this exception:

Word 1: Contains number of bytes sent.

ast

is the address of an optional user-written AST routine to be executed after SND$
completes.

buf

is the address of the buffer containing the data you wish to send.

butlen

is the length in bytes (8128. maximum) of the data you wish to send.

DECnet-RSX MACRO-11 Programming Facilities 2-43

Error/Completion Codes:

IS.SUC The macro completed successfully.

IE.ABO The logical link was disconnected during I/O operations.

IE.lFC LUN not assigned to NS:.

IE.NLN No logical link has been established on the specified LUN.

IE.NNT The issuing task is not a network task; OPN$ did not execute successfully.

IE.SPC Invalid buffer argument; either the message data buffer (buf) is outside the user
task address space, or the buffer length (buflen) exceeds 8128. bytes.

2-44 DECnet-RSX Programmer's Reference Manual

SPA$

Specify User AST
Routine

2.3.14 SPAS - Specify User AST Routine

Use:

Issue SPA$ from either task to specify a user-written AST routine to be executed
whenever network data arrives in the network data queue. No AST routine will be
executed for data items that arrive in the queue before SPA$ is issued. However, a
count of all data items in the queue (including premacro entries) is returned in
word 1 of the SP A$ status block each time SP A$ is issued.

Formats:

label: SPA[W)$ [lun),[efn],[status),[ast),<addr>

SPA[W)$E label,[lun),[efn),[status),[ast)[,<addr»

SPA[W)$S [lun),[efn),[status),[ast),<addr>

Arguments:

label

*

*

specifies the location of the argument block. See definition in Section 2.3.1.

lun

identifies the logical unit number of the network data queue. Use the same LUN
you assigned in the OPN$ macro.

efn

specifies an optional event flag number that is set when SPA$ completes.

status

specifies completion status information on return from SPA$. See definition in
Section 2.3.1, and note this exception:

Word 1: Contains number of items in network data queue.

ast

is the address of an optional user-written AST routine to be executed after SPA$
completes (see SPA$ programming note below).

DECnet-RSX MACRO-11 Programming Facilities 2-45

addr

is the address of a user-written AST routine to be executed whenever data arrives
in the network data queue. (If this argument is omitted, no AST routine is exe­
cuted.) The specified AST routine can be changed during execution of the task by
specifying a different starting address; it can be eliminated by zeroing the starting
address.

NOTE

When this AST executes, no extra information is pushed onto the
stack (as it is for a normal completion AST). Therefore, you need not
remove anything from the stack.

Error/Completion Codes:

Is.sue The macro completed successfully.

IE.IFC LUN not assigned to NS:.

IE.NNT The issuing task is not a network task; OPN$ did not execute successfully.

IE.PRI The network is not accessed on the specified LUN.

2-46 DECnet-RSX Programmer's Reference Manual

The following coding example shows how an application can process all network data
at the AST level by using the SP A$ completion AST (specified by ast in the SP A$
macro) to simulate the network data AST.

MAIN CODE

OPN$S

SPA$S

CMPAST

SPAAST

CMPAST:

SPAAST:

10$:

20$:

.CMPAST , . SPAAsr Set UP SPAAST as the AST entrY
for netl.aorK data

The entr~' pOlnt for co,,,pletion of the actlJal SPA dlrectlue

The entr~' pOlnt for each arrlual of netl.lorf; data

,ENABLE LSB

MOl)
MQl.'
MOl.'

CMPB
BNE
MOl.!
BEO
BR

MOl.!
MOl.!
GNDW$S
BCS
CMPB
BNE

SOB
MOl.!
AST)($S

(SP)+tloSB
RO,-(SP)
IoSB,RO

IS,SUCdRO)
20$
2(RO) ,RO
20$
10$

RO,-(SP)
.1 ,RO

"" , GNoSB
20$
IS,SUC,GNDSB
20$

RO,10$
(SP)+,RO

,DSABL LSB

Saue the SPA$ liD status blocK address
Saue RO
Get the liD status address

Was dlrectlue successful
If NE, no - ~ust eXlt froM AST
Else, copy current nUMber of ASTs queued
If EO, nothll"IS queued, eXlt fro,,, AST
Else, ~Oln COMMon code

Saue RO
Set the networK data queue count to one
Get the networK data lteM
If CSt dlrectlue falled
Was the d 1 r e c t 1 II e s u c c e s s f u I ?

If NE, no - eXlt frOM AST

'" do SOMe process inS

Contlnue untll
Restore RO
EXlt frOfrl AST

DECnet-RSX MACRO-11 Programming Facilities 2-47

XMI$

Send Interrupt Message

2.3.15 XMI$ - Send Interrupt Message

Use:

Issue XMI$ from either task to send an interrupt message over an established
logical link. The message you send is placed on the target task's network data
queue and must be retrieved with a GND$ (see Section 2.3.9) before you can issue
another XMI$ on the same logical link. (Note that XMI$ may complete before the
target task issues a GND$ to retrieve the interrupt message.)

Formats:

label: XMI[W)$ lun,[eln),[status),[ast),<int,intlen>

XMI[W]$E label, [lun], [eln] , [status], [ast] [, <int, intlen»

XMI[W]$S lun, [eln], [status], [ast], <int,intlen>

Arguments:

label

*

*

specifies the location of the argument block. See definition in Section 2.3.1.

lun

specifies the logical link over which the interrupt message is to be sent. If you
initiated the connection, enter the LUN you used in the CON$ macro. If you
accepted the connection, enter the LUN you used in the ACC$ macro.

eln

specifies an optional event flag number that is set when XMI$ completes.

status

specifies completion status information on return from XMI$. See definition in
Section 2.3.1, and note this exception:

Word 1: Contains number of bytes sent in message.

ast

is the address of an optional user-written AST routine to be executed after XMI$
completes.

int

is the address of the buffer that contains the 1- to I6.-byte interrupt message you
wish to send.

intlen

is the length in decimal bytes of the message you wish to send.

2-48 DECnet-RSX Programmer's Reference Manual

Error/Completion Codes:

IS.SUC The interrupt message has been transmitted successfully. (However, this code does
not ensure that the message has been retrieved by a GND$; see Section 2.3.9).

IE.ABO The logical link was disconnected during I/O operations.

IE.BAD The interrupt message exceeds 16. bytes.

IE.IFC LUN not assigned to NS:.

IE.NLN No logical link has been established on the specified LUN.

IE.NNT The issuing task is not a network task; OPN$ did not execute successfully.

IE.SPC Invalid buffer argument; the interrupt message buffer (int) is outside the user task
address space.

IE. WLK An interrupt message was transmitted before a previous interrupt message had
been received by the target task.

DECnet-RSX MACRO-11 Programming Facilities 2-49

2.3.16 MACRO-11 Intertask Communication Programming Example
(Transmit)

The program SENI0 transmits 10 data messages to the cooperating program RECIO.
After SENI0 transmits and RECIO receives 10 data messages, both programs discon­
nect from the network.

NOTE

This programming example is also included in your tape or disk kit .

• TITLE SENlO
«**w*** « «
« •
: THIS EXAMPLE WILL : :
• SEND 10 DATA MESSAGES WITH THE FORMAT 'THIS IS MESSAGE N' •
: ACCEPT A SHORT MESSAGE FROM THE INITIATING TERMINAL :
: AND SEND THIS MESSAGE OUT AS AN 'INTERRUPT MESSAGE' • :
• •
: To assemble use the following command string: : • • • • : MAC SBN10,SBN10/-SP-IN:[lOO,lO]NETLIB/ML,IN;[200,200]SEN10 :

• « : To task build use the following command string: :
• « : TKB SEN10,SEN10/-SP-SEN10,IN:[130,10]NETLIB/LB :
• • • • « Note: The IN: device must be the DECnet distribution device «
: after the PREGEN (if any) has been performed. :
« •
• ***.

.MCALL
• MCALL
• MCALL

OPNW$S,CONW$S,SNDW$S,CONB$$,ALUN$C,QIOW$C
EXIT$S,MRKT$C,WTSE$C,CLEF$C,SETFC,QIOC
DSCW$S,XMIW$S,ASTX$S

DATA AREA
,
MESH: .ASCII ITHIS IS MESSAGE I
NUN: .ASCII 101
NN=.-MESN
PRMPT: .ASCII IMSG:I

• EVEN
IOSTN: .BLKW 2
BUFF: .BLKB 16.
IOSTB: .BLKW 2
CNT: .WORD 0
ERRCNT: .WORD 0
IOSB: • BLKW 1

• EVEN
CONBL: CONB$$ ELROND,O,l,<RECIO>

CODE

• EVEN

MESSAGE TO BE TRANSMITTED
MESSAGE NUMBER

PROMPT FOR INTERRUPT MESSAGE

COMPLETION STATUS FOR NETWORK
INTERRUPT MESSAGE BUFFER
COMPLETION STATUS FOR BUFFER
NUN OF CHAR IN INTERRUPT MESS
ERROR COUNT
1/0 STATUS

CONNECT REQUEST BLOCK

(continued on next page)

2-50 DECnet-RSX Programmer's Reference Manual

START:

OKl:

LOOP:

CLR
CLEF$C

MOVB
ALUN$C
ALUN$C
OPNW$S
TSTB
BGT
JMP
CONW$S
TSTB
BLE
QIOSC

TST
BLT
MOV
SNDW$S
TSTB
BLE
I NCB
SOB

WTSE$C

DSCW$S

EXIT$S

TERMINAL AST
;
TRMAST: MOV

MOV
XMIW$S

TSTB
BLE
SETF$C

ASTX$S

ERRCNT
5

#60,NUM
1,NS
2,NS
#l,#l,#IOSTN
IOSTN
OKl
ERRI
#2,#2,#IOSTN,,<#CONBL>
IOSTN
ERR2

INITIALIZE ERROR COUNT TO ZERO
CLEAR EVENT FLAG USED TO MAKE SURE
INTERRUPT MESSAGE ACCEPTED PRIOR
TO EXIT
INITIALIZE MESSAGE NUM TO ZERO
ASSIGN LUN 1 FOR NETWORK DATA QUEUE
ASSIGN LUN 2 FOR LOGICAL LINK
CREATE THE NETWORK DATA QUEUE
TEST FOR ERRORS

CREATE LOGICAL LINK TO "REClO"
TEST FOR ERRORS

IO.RPR,5",IOSTB,TRMAST,<BUFF,l6."PRMPT,4> ; ACCEPT

$DSW
ERR3
'10. ,RO
'2,,2,'IOSTN,
IOSTN
ERR4
HUM
RO,LOOP

5

'2,'2,'IOSTN

ROUTINE

(SP)+,IOSB
IOSTB+2,CNT
'2,'3,'IOSTN,

IOSTN
ERR5
5

INTERRUPT MESSAGE FROM TERMINAL
(USE AST)[16 CHAR MAX]

TEST FOR ERRORS

: SET LOOP COUNTER TO 10
,<'MESN,'NN> : SEND MESSAGE

TEST FOR ERRORS

UPDATE MESSAGE NUMBER
LOOP I F MORE TO SIND

MAKE SURE TERMINAL MESSAGE
HAS BEEN ENTERED
BEFORE EXITING

DISCONNECT NETWORK

EXIT

: POP STACK
: OBTAIN NUMBER OF CHARACTERS

,<'BUFF,CNT>; TRANSMIT INTERRUPT MESSAGE
(NOTE USE OF EF 3 INSTEAD OF
EF 2 - AVOID COMPETITION)
TEST FOR ERRORS

SET EVENT FLAGE TO INDICATE
INTERRUPT MESSAGE SENT
AST EXIT

ERROR HANDLING - A SAMPLE DEBUGGING TECHNIQUE
;
ERR5 INC ERRCNT DETERMINE
ERR4 INC ERRCNT WHICH
ERR3 INC ERRCNT ERROR
ERR2 INC ERRCNT OCCURRED
ERR1 INC ERRCNT

MOV ERRCNT,Rl Rl CONTAINS THE ERROR NUMBER
MOV SDSW,R2 R2 CONTAINS THE DIRECTIVE STATUS WORD
MOV IOSTN,R3 R3 CONTAINS THE FIRST I/O STATUS WORD
MOV IOSTN+2,R4 R4 CONTAINS THE 2ND I/O STATUS WORD
lOT ABORT - DUMP THE REGISTERS

• END START

DECnet-RSX MACRO-11 Programming Facilities 2-51

2.3.17 MACRO-11 Intertask Communication Programming Example
(Receive)

Each time RECIO receives a message, from the cooperating program SENIO, it dis­
plays THIS IS MESSAGE n on the console device (CO:). This is followed by the
actual message. The message is sent to RECIO as an interrupt message.

NOTE

This programming example is also included in your tape or disk kit .

• TITLE RECIO
.**. • • • • : THIS EXAMPLE WILL: :
• ACCEPT SHORT MESSAGES PROM THE SENDER TASK ·SNDIO· •
: PRINT THE MESSAGES ON THE CONSOLE DEVICE (CO:) :
: DISCONNECT AND EXIT GRACEFULLY. :
• •
: To assemble use the following command string: : • • • • : MAC RECIO,RECIO/-SP-IN: [130, IO]NETLIB/ML, IN: [200,200]RECIO :
• •
: To task build use the following command string: :
• •
: TKB RECIO,RECIO/-SP-RECIO,IN:[130,IO]NETLIB/LS :
• • · ~ • •
: Note: The IN: device must be the DECnet distribution device :
: after the PREGEN (if any) has been performed. :
• • ~

• MCALL OPNW$S,SPAW$S,RECW$S,GNDW$S,ACCW$S,CLSW$S,NETDp$
.MCALL QIOW$S,ALUN$C,CLEF$C,WTSE$C,SETF$C,ASTX$S,EXIT$S
NETDF$

DATA AREA
,
BUFl:

BUF2:
lOST:
IOSTl:
IOST2:
IOSB:
ERRCNT:
CNT:
CNTB:
FLAG:

CODE

2-52

.BLKB
• EVEN
.BLKB
.BLKW
.BLKW
.BLKW
.BLKW
• WORD
• WORD
.BLKB
• WORD
• EVEN

25.

K.CBL
2
2
2
1
o
o
2
o

BUFFER FOR USER MESSAGES

BUFFER FOR NETWORK MESSAGES
COMPLETION STATUS FOR NETWORK
COMPo STAT. FOR GET NET DATA
COMPo STAT. FOR ACCEPT CONNECT
I/O STATUS
ERROR COUNT
USER MESSAGE CHAR COUNT
INTERRUPT MESSAGE CHAR COUNT
DISCONNECT FLAG

(continued on next page)

DECnet-RSX Programmer's Reference Manual

START:

LOOP:

CLR
CLEF$C

ALUN$C
ALUN$C
OPNW$S
TSTB
BLE
SPAW$S
TSTB
BLE
WTSE$C

RECW$S
TSTB
BLE
MOV
QIOW$S

TST
BEQ
CLSW$S
TSTB
BLE
EXIT$S
BR

ERRCNT
10.

1,NS
2,NS
'l,#l,'IOST
lOST
ERRl

INITIALIZE ERROR COUNT TO ZERO
CLEAR EVENT FLAG USED TO MAKE
SURE CONNECT HAS OCCURRED
ASSIGN LUN 1 FOR NETWORK DATA QUEUE
ASSIGN LUN 2 FOR LOGICAL LINK
CREATE THE NETWORK DATA QUEUE
TEST FOR ERRORS

'l,'l,'IOST,'CMPAST,<'NETAST> ; SPECIFY AST HANDLING
lOST TEST FOR ERRORS
ERR2
10. ; WAIT TO MAKE SURE CONNECT

; HAS OCCURRED
'2,,2,'IOST,,<'BUFl,'25.>; RECEIVE UP TO 25 CHARS
lOST ; TEST FOR ERRORS
ERR3
IOST+2,CNT ; OBTAIN CHARACTER COUNT
#IO.WLB,#5,#5",,<#BUF1,CNT,#40>; TYPE MESSAGE

FLAG
LOOP
,1,'1,'IOST2
IOST2
ERR5

LOOP

ON TERMINAL

HAS DISCONNECT OCCURRED?
NO, POST ANOTHER RECEIVE
CLOSE NETWORK
TEST FOR ERRORS

PROGRAM EXI T

ERROR HANDLING - A SAMPLE DEBUGGING TECHNIQUE
,
ERR6:
ERR5:
ERR4:
ERR3:
E~2:
ERR1:

INC
INC
INC
INC
INC
INC
MOV
MOV
MOV
MOV
lOT

ERRCNT
ERRCNT
ERRCNT
ERRCNT
ERRCNT
ERRCNT
ERRCNT,Rl
$DSW,R2
IOST,R3
IOST+2,R4

Rl = ERROR NUMBER
R2 DIRECTIVE STATUS WORD
R3 I/O STATUS BLOCK (1ST WORD)
R4 = I/O STATUS BLOCK (2ND WORD)
ABORT - DUMP REGISTERS

AST HANDLING FOR DATA IN NETWORK DATA QUEUE
,
CMPAST: MOV

MOV
MOV
CMPB
BEQ
JMP

OKA: MOV
BNE
JMP

OKB: BR

(SP)+,IOSB
RO,-(SP)
10SB,RO
'IS.SUC,(RO)
OKA
OUT
2(RO) ,RO
OKB
OUT
GET

SAVE SPAS I/O STATUS BLOCK \DDR
SAVE RO
GET I/O STATUS BLOCK ADDRESS
SUCCESSFUL?

GET CURRENT NETWORK DATA COUNT

(continued on next page)

DECnet-RSX MACRO-11 Programming Facilities 2-53

NETAST: MOV
MOV

GET: GNDW$S

OTHER:

,
OTHR2:

OKC:

BCS
CMPB
BNE
CMPB
BNE
ACCW$S
TSTB
BLE
SETF$C

BR
CMPB
BNE
MOV
BR

CMPB
BEQ
JMP
MOVB
QIOW$S

NEXT: NOP

RO,-(SP) : SAVE RD
#1,RO ; SET NETWORK DATA COUNT TO I
#1,#I,#IOSTl,,<#BUF2,#N.CBL> ; GET NETWORK DATA
OUT CARRY BIT SET - ERROR
#IS.SUC,IOSTI SUCCESSFUL?
OUT
#NT.CON,IOST1+l CHECK IF CONNECT REQUEST
OTHER
#2,#2,#IOST2,,<#BUF2> ACCEPT CONNECTION
IOST2 TEST FOR ERRORS
ERR4
10. SET EVENT FLAG TO INDICATE

CONNECT HAS OCCURRED
NEXT
#NT.DSC, IOSTI+l
OTHR2
#1,FLAG
NEXT

#NT. INT, IOSTI+l
OKC
ERRG
IOSTl+2,CNTB
#IO.WLB,#5,#3,

CHECK IF DISCONNECT REQUEST

SET DISCONNECT FLAG
GO BACK TO MAIN ROUTINE

CHECK IF INTERRUPT MESSAGE

NOT A EXPECTED COMMAND
i OBTAIN CHARACTER COUNT

,<#BUF2,CNTB,#40> ; TYPE INTERRUPT MESSAGE
(NOTE USE OF EF 3

DEC RO

; INSTEAD OF EF 5)

CHECK I F MORE DATA
BEQ OUT
JMP GET

QUT: MOV (SP)+,RO
ASTX$S

• END START

2-54

RESTORE RO
AST EXIT

DECnet-RSX Programmer's Reference Manual

3
Programming Facilities for FORTRAN, COBOL, and

BASIC-PLUS-2

DECnet-RSX provides three types of network subroutines:

• Intertask communication calls

• Remote file access calls

• Task control calls (FORTRAN only)

Calls to perform these subroutines are listed in alphabetical order. The description for
each call includes its use, formats, argument definitions, and error/completion codes.
All references to FORTRAN pertain to both FORTRAN IV and FORTRAN-77. All
references to BASIC pertain to BASIC-PLUS-2. Before issuing these calls, read
Chapter 1.

3.1 Building a DECnet-RSX Task

When a FORTRAN, COBOL, or BASIC task uses any DECnet-RSX facility, that
task must be linked to the library [1,1] NETFOR.OLB. For example, a COBOL task
named FILES can be built under RSX-11M with the following task builder command
string:

F I L E S , F I L E S = F I L ESt L 5 : [1 ,1]N ETFOR/LB t L 5 : [1 t 1] CO 5 L I 5 I L B

I

TASK=FILES

PAR=GEN

ACTFIL=2

II

3-1

You do not have to assign logical unit numbers (LUNs) for calls to the network (NS:)
at task build time or in your program. The LUNs are assigned to the network at run
time by the OPNNT[W], CONNT[W], and ACCNT[W] calls. If you do assign a LUN
to the network at task build time or in your program, this will not have an adverse
effect on the execut.ion of the program. Be sure that the LUNs you specify in these
three calls are used only for network activity while they are assigned to NS:.

3.2 Establishing a Network Task

The first DECnet call you issue must be an open call. To access the network, issue one
of the following open calls:

OPNNT Establishes your task as an active network task and creates a network
data queue for the task.

OPNNTW Performs the same functions as OPNNT, except that further task exe­
cution is suspended until this call completes.

After opening the task to the network, you can establish a logical link by issuing calls
as described in this chapter.

To terminate network operations for a task, issue one of the following closing calls:

CLSNT Terminates a task's network activity, aborts its established logical
links, and frees all its network logical unit numbers.

CLSNTW Performs the same functions as CLSNT, except that further task execu­
tion is suspended until this call completes.

3.3 Examining I/O Status Blocks

All calls listed in this chapter allow you to specify the address of a status block. This
address will contain completion status information when a call completes.

NOTE

The status block address is a recommended, but optional, argument
for intertask communication and task control calls, but is a required
argument for remote file access calls.

Status blocks are either 1- or 2-element integer arrays/strings. One-element
arrays/strings are used for the BACC, BFMTO, and BFMT1 calls. In these I-element
arrays/strings, a return of -1 indicates the arguments you supplied for the call are
valid; a 0 code indicates the arguments are invalid.

3-2 DECnet-RSX Programmer's Reference Manual

Calls other than BACC, BFMTO, and BFMTI use 2-element arrays/strings. In a 2-
element array/string, the first status word contains an error/completion code for the
call. The error/completion code tells you one of the following:

• A positive value indicates the call executed successfully.

• A negative value indicates the call failed to execute properly.

• A null value (0) indicates the call has not yet completed.

Examine the value of the returned error/completion code to determine why a call
failed. A complete list of error/completion codes is provided in Appendix E for inter­
task calls and task control calls.

The contents of the second status word can differ according to the call you issue.
Therefore, each call defines the contents of the second status word.

3.4 Using Event Flags

The network file access routines (NF ARs) require the exclusive use of two event flags.
By default, the event flags used are 17 (.TREF) and 18 (.RCEF). You have the option
of overriding these defaults by issuing the following commands in the task builder
command file:

GBLDEF=.TREF:value
GBLDEF =.RCEF:value

The value variable is a decimal integer from 1 to 64. (33. through 64. are global flags).

3.5 Obtaining Access Control Information

Access control information is generally required by the target system to prohibit
unauthorized access to its resources. The specific information required by a target
node should be contained in the target system's user documentation. DECnet-RSX
nodes require you to enter user identification and a password. The following para­
graphs describe how to supply access control information using intertask communica­
tion, remote file access, and alias node names.

• Intertask communication calls. If required by the target node, access control
information is supplied by the source task user in the BACC call.

• Remote file access calls. If required by the target node, access control informa­
tion is supplied by the source task user in the ident argument for individual calls.

• Alias node names. You can define an alias node name (a user-assigned logical
name for a network node) and include access control information with the alias.
When you exercise this option as a source task user, you do not have to specify
access control fields in your program; the access control information supplied with
the alias will be used automatically. More information on creating and using alias
node names is provided in the DECnet-RSX Network Management Concepts and
Procedures manual.

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-3

3.6 Conventions Used in This Chapter

The following notation conventions are used in the call and argument descriptions
and examples for intertask communication, remote file access, and task control calls
in this chapter:

asterisk *

UPPERCASE

lowercase italic

commas, periods
parentheses ()

numbers

3-4

flags arguments relating to arrays/character strings that you
must check for information after the call completes. For exam­
ple, the status argument specifies an array/data item where
completion status information is stored when the call completes.

represent actual characters that you must enter as shown.

indicates variables whose value you must specify.

must be typed where shown as part of the call format. Even if
you omit an argument, you must include the comma that de­
lineates its field unless no other arguments follow.

FORTRAN Example:

Basic call format:

CALL BACC ([status],tgtblk,[usersz,user],
[passwdsz,passwd], [,accnosz,accno])

Sample call:

CALL BACC (dgtblk t t tpasswdsz,passwd)

Status, usersz, user, accnosz, and accno have been omitted.
Commas delineate the fields for the first three missing argu­
ments, but are not necessary for the two arguments dropped at
the end of the call.

represent octal numbers in calls and examples unless followed
by a decimal point.

Example:

A 1- to 43.-element character string

DECnet-RSX Programmer's Reference Manual

square brackets [] enclose optional data. You must specify any argument not en­
closed by brackets. Do not type the brackets when you code a
call.

In COBOL and BASIC, you can omit an optional argument only
if you also omit all trailing arguments. However, you can enter 0
for an optional argument that you do not wish to specify, but
that has trailing arguments you wish to include.

COBOL Example:

Basic call format:

CALL "CONNT" USING lun,[status],tgtblk,
[outsize, outmessage],
[insize, inmessage].

In this call there are three categories of optional data:

• status

is optional, but it cannot be omitted because it is followed by a
required argument (tgtblk). You can enter 0 for status if you
do not want to have status information returned on the call.

• outsize,outmessage

are paired optional arguments you can omit only if you also
omit the trailing arguments, insize and inmessage. If you do
not want to specify outsize and outmessage, but do want to
include the arguments that follow, you can enter null argu­
ments (0) for outsize and outmessage.

• insize, inmessage

are paired optional arguments you can omit without specify­
ing null values since there are no trailing arguments.

Sample call:

CALL II CONNT II US I NG lun,status,tgtblk, I) , I) ,

insize, inmessage •

This call specifies status and insize, inmessage, while omitting
outsize,outmessage by specifying null values for these optional
arguments.

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-5

3.7 Intertask Communication

This section contains descriptions and usage guidelines specific to the intertask com­
munication calls listed alphabetically in Table 3-l.

Before turning to these calls, you should read the preceding material in this chapter.
If you are not familiar with network intertask communication concepts, you should
also read Chapter 1 carefully before you attempt to code any of these calls.

Table 3-1: Intertask Communication Call Summary

Call

ABTNT

ACCNT

BACC

BFMTO

BFMTI

CLSNT

CONNT

DSCNT

GLNNT

GNDNT

OPNNT

RECNT

REJNT

SNDNT

WAITNT

XMINT

Function

Abort a logical link

Accept a logical link connect request

Build access control information area

Build a format 0 destination descriptor

Build a format 1 destination descriptor

End a task's network operations

Request a logical link connection

Disconnect a logical link

Get local node information

Get data from network data queue

Access the network

Receive data over a logical link

Reject logical link connect request

Send data over a logical link

Suspend the calling task

Send interrupt message over a logical link

Each call description includes the format for each language. The generic formats for
each language are:

FORTRAN:

COBOL:

BASIC:

3-6

CALL XXXXX (arguments)

CALL "XXXXX" USING (arguments.)

CALL XXXXX BY REF (arguments)

DECnet-RSX Programmer's Reference Manual

3.7.1 Common Argument Definitions

Arguments commonly used in intertask communication calls are defined on the fol­
lowing pages tu avoid needless repetition throughout the call descriptions. Argument
definitions here are divided into four categories: a general category containing defini­
tions common to all languages and three individual language categories for arguments
with language-specific definitions.

GENERAL

• outsize,outmessage

defines optional user data you want to send with certain calls. These are paired
optional arguments; use both when specified, or omit both.

EXCEPTION

You cannot omit outsize,outmessage in the CONNT call in COBOL and BASIC
unless you also omit the insize, inmessage arguments; if you want to include
insize,inmessage, but do not want to specify outsize,outmessage, you can enter a
null value (0) for both outsize and outmessage. (See the example under the discus­
sion of square brackets [] in Section 3.6.)

outsize specifies the length in bytes/characters of the optional user data you
can send on some operations. It must be an integer variable or con­
stant.

outmessage specifies the array/string containing the user data you want to send.

FORTRAN

This is a 1- to l6.-element byte array for FORTRAN or a 1- to 16.­
element numeric data item/character string for COBOL or BASIC.

• References to integers imply single-precision integer values.

• status

specifies an array containing completion status information on return from the call.
If specified, this optional 2-element single-precision integer array will contain the
following values when the call completes:

status(l)

status(2)

• tgtblk

returns an error/completion code (see individual call descriptions for
possible codes).

returns a directive error code if status(l) returns a value of -40; other­
wise, status(2) contains O.

specifies a 72.-element byte array where the access control information area and
destination descriptor are built by the BACC and BFMTO or BFMTI calls. This
array is passed to the target task in a CONNT call. The array must start on an even
byte (word) boundary.

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-7

COBOL

• For a COBOL task using the DECnet interface, logical unit number 1 is a reserved
number and should never be assigned for lun.

• status

specifies an elementary numeric data item containing completion status informa­
tion on return from the call. If specified, this elementary numeric data item will
contain the following values when the call completes:

status(l)

status(2)

returns an error/completion code (see individual call descriptions for
possible codes).

returns a directive error code if status(l) returns a value of -40; other­
wise, status(2) contains O.

You cannot omit status if there are trailing arguments, but you can specify 0 for
status if you do not want status information returned. See the discussion of square
brackets in Section 3.6 for more information on omitting optional arguments.

• tgtblk

specifies a 72.-element numeric data item where the access control information area
and destination descriptor are built by the BACC and BFMTO or BFMTI calls.
This is passed to the target task in a CONNT call.

BASIC-PLUS-2

• status%O

specifies an array containing completion status information on return from the call.
If specified, this optional 2-element integer array will contain the following values
when the call completes:

status%(O)

status%(l)

returns an error/completion code (see individual call descriptions for
possible codes).

returns a directive error code if status%(O) returns a value of -40;
otherwise, status%(l) contains o.

You cannot omit status if there are trailing arguments, but you can specify 0 for
status if you do not want status information returned. See the discussion of square
brackets in Section 3.6 for more information on omitting optional arguments.

• tgtblk$

specifies a 72.-element character string where the access control information area
and destination descriptor are built by the BACC and BFMTO or BFMTI calls.
This string is passed to the target task in a CONNT call. To allocate space for
tgtblk$, use the STRING function:

~tb~$=STRING$(72tO)

3-8 DECnet-RSX Programmer's Reference Manual

3.7'.2 ABTNT - Abort a Logical Link

Use:

ABTNT

Abort a Logical Link

Call ABTNT from either task to abort a logical link. ABTNT immediately aborts
all pending transmits and receives, disconnects the link, and frees the LUN as­
signed to the logical link. When you call ABTNT, you can send 1 to 16.
bytes/characters of user data to the task from which you are disconnecting (see
the outsize, outmessage arguments).

Formats:

FORTRAN:

COBOL:

BASIC:

Arguments:

Zun

CALL ABTNT[W] (Zun, [status] [,outsize, outmessage])

CALL "ABTNT[W]" USING Zun,[status][,outsize,outmessage].

CALL ABTNT[W] BY REF (Zun%,[status%()]
[,outsize%,outmessage$])

identifies the logical link to abort. It must be an integer variable or constant. If
you initiated the connection, enter the LUN you used in the CONNT call. If you
accepted the connection, enter the LUN you used in the ACCNT call.

* status

specifies completion status information on return from ABTNT. See definition for
your language in Section 3.7.1.

outsize,outmessage

defines optional user data you want to send. See definition in Section 3.7.1.

Error/Completion Codes:

1 The call completed successfully.

-2 No logical link has been established on the specified LUN.

-9 The task is not a network task; OPNNT did not execute successfully.

-13 You are using an invalid buffer; the optional outmessage buffer is outside the user task
address space.

-40 A directive error has occurred. Directive error codes are defined in the
RSX-llM/M-PLUS Executive Reference Manual.

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-9

ACCNT

Accept Logical Link
Connect Request

3.7.3 ACCNT - Accept Logical Link Connect Request

Use:

Call ACCNT from the target task to establish a logical link with the source task.
When you call ACCNT, you can send 1 to 16. bytes/characters of user data to the
source task (see the outsize, outmessage arguments).

Formats:

FORTRAN: CALL ACCNT[W] (lun,[status],mailbuf,
[outsize, out messageD

COBOL:

BASIC:

CALL "ACCNT[W]" USING lun,[status],mailbuf
[,outsize, outmessage].

CALL ACCNT[W] BY REF (lun%,[status%O],mailbuf$
[, outsiz e%, out message$])

Arguments:

lun

*

assigns the logical link number. This value must be an integer variable or con­
stant. Use this LUN when referring to this logical link in any succeeding RECNT,
SNDNT, XMINT, ABTNT, or DSCNT call.

status

specifies completion status information on return from ACCNT. See definition for
your language in Section 3.7.1.

mailbuf

specifies the 1- to n-element array/string containing the connect block needed to
establish the connection. In FORTRAN, this array must start on an even byte
(word) boundary. For more information, see Table 3-2 and the description of
mailbuf under GNDNT (Section 3.7.11).

outsize,outmessage

defines optional user data you want to send. See definition in Section 3.7.1.

3-10 DECnet-RSX Programmer's Reference Manual

Error/Completion Codes:

1 The call completed successfully.

-1 System resources needed for the logical link are not available.

-3 The task that requested the connection has aborted or has requested a disconnect before
the connection could complete.

-5 The temporary link address in the mail buffer is not valid.

-8 A logical link has already been established on the specified LUN.

-9 The task is not a network task; OPNNT did not execute successfully.

-13 You are using an invalid buffer; the mailbuf or outmessage buffer is outside the user task
address space, or (for FORTRAN) mailbuf is not word aligned.

-40 A directive error has occurred. Directive error codes are defined in the
RSX-llM/M-PLUS Executive Reference Manual.

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-11

BACC

Build Access Control
Information Area

3.7.4 BACC - Build Access Control Information Area

Use:

Call BACC from the source task to build the access control information area for
the connect block that will be passed to the target task when you call CONNT
(see Section 3.7.8). Access control information comprises arguments that define
your access rights at the remote node or process. Access control verification is
performed according to the conventions of the target system. If the target node is
equipped to do so, it verifies access control information before the CONNT call is
passed to the target task. (For more information on access control verification, see
the DECnet-RSX Network Management Concepts and Procedures manual and
Sections 1.2.4.3 and 3.5 of this manual.)

NOTE

If you have already included the correct access control information
with an alias node name, you need not call BACC. For more informa­
tion on using aliases, refer to the DECnet-RSX Guide to User Utili­
ties or to the DECnet-RSX Network Management Concepts and Pro­
cedures manual.

Formats:

FORTRAN: CALL BACC ([status],tgtblk,[usersz,user],

COBOL:

BASIC:

3-12

rnnC>C>'Ilr/Q", nnQQlI,r/H n£OroYlrH'''' "'£0£01'1,,1\
LJ-'""VtJIVV UrUIi-',fJ\.kuu........, ""'J L,\Af"",,,,, IIVOr."", \.0(;"',",' &fUJI

CALL "BACC" USING [status],tgtblk,[usersz,user],
[passwdsz,passwd] [,accnosz, accno].

CALL BACC BY REF ([status%],tgtblk$,[usersz%,user$],
[passwdsz%,passwd$] [,accnosz%, accno$])

DECnet-RSX Programmer's Reference Manual

Arguments:

*

*

status

specifies an integer variable containing completion status information on return
from BACC. On return, the variable is set to -1 if the BACC call completed
successfully or to 0 if there was an invalid BACC argument.

In COBOL and BASIC, you cannot omit status, but you can specify 0 for status if
you do not want status information returned. See the discussion of square brack­
ets in Section 3.6 for more information on omitting optional arguments.

tgtblk

specifies an array/string in which the access control information area is to be
built. See definition for your language in Section 3.7.1.

usersz, user

specifies the user ID. These are paired optional arguments; if you do not use both,
you must omit both (in FORTRAN) or enter 0 for both (in COBOL and BASIC).
For information on omitting arguments in COBOL and BASIC, refer to the dis­
cussion of optional arguments (square brackets []) in Section 3.6.

usersz specifies the user ID length in bytes/characters. This field is an inte­
ger variable or constant.

user specifies the 1- to l6.-element array/string containing the user ID.

passwdsz,passwd

specifies the password that determines your access at the remote node. These are
paired optional arguments; if you do not use both, you must omit both (in FOR­
TRAN) or enter 0 for both (in COBOL and BASIC). For information on omitting
arguments in COBOL and BASIC, refer to the discussion of optional arguments
(square brackets []) in Section 3.6.

passwdsz specifies the password length in bytes/characters. This field is an
integer variable or constant.

passwd specifies a 1- to 8.-element array/string containing the password.

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-13

accnosz,accno

specifies the account number. These are paired optional arguments; use both or
omit both.

accnosz specifies the account number length in bytes/characters (not used
for RSX target systems). This field is an integer variable or con­
stant.

accno specifies a 1- to 16.-element array/string containing the account
number.

Connect Block Offsets

Length (in decimal
bytes/characters) Destination Descriptor

26.

2.

16.

2.

8.

2.

16.

3-14

Built by BFMTO or BFMT1 call
(see Sections 3.7.5 and 3.7.6, respectively)

Access Control

User ID length
(equal to or less than 16. bytes/characters)

User ID

Password length
(equal to or less than 8. bytes/characters)

Password

Account number length
(equal to or less than 16. bytes/characters)

Account number

DECnet-RSX Programmer's Reference Manual

BFMTO

Build a Format 0
Destination Descriptor

3.7.5 BFMTO - Build a Format 0 Destination Descriptor

Use:

Call BFMTO from the source task to build a format 0 destination descriptor for
the connect block that will be passed to the target task when you call CONNT
(see Section 3.7.8). A format 0 descriptor is used to connect to a target task that
requires specification of an object type only. Object types group DECnet pro­
grams according to the functions they perform; they are identified throughout the
network by object type codes (see Appendix B). For example, the TLK server
task, LSN, has an object type code 016 (decimal); any other program providing
the same function on another DECnet system, regardless of its name, would also
be referred to using object type code 016 (decimal).

Formats:

FORTRAN: CALL BFMTO ([status],tgtblk,ndsz,ndname,objtype)

COBOL: CALL "BFMTO" USING [status],tgtblk,ndsz,ndname,objtype.

BASIC: CALL BFMTO BY REF ([status%],tgtblk$,ndsz%,ndname$,
objtype%)

Arguments:

*

*

status

specifies an integer variable containing completion status information on return
from BFMTO. On return, the variable is set to .TRUE. (for FORTRAN) or to -1
(for COBOL and BASIC) if the BFMTO call completed successfully. It is set to
.FALSE. (for FORTRAN) or to 0 (for COBOL and BASIC) if there was an invalid
BFMTO argument.

In COBOL and BASIC, you cannot omit status, but you can specify 0 for status if
you do not want status information returned. See the discussion of square brack­
ets in Section 3.6 for more information on omitting optional arguments.

tgtblk

specifies an array/string in which the destination descriptor is to be built. See
definition for your language in Section 3.7.1.

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-15

ndsz

specifies the node name length in bytes/characters. This field must be an integer
variable or constant.

ndname

specifies a 1- to 6-element array/string containing the name of the node to which
the connect request is directed.

objtype

specifies the object type of the task to which the connect request is directed. This
integer variable or constant must be in the range 1 through 255 (decimal). See
Appendix B for a list of object types.

NOTE

If you are a privileged user, you can define your own object types;
refer to the DECnet-RSX Network Management Concepts and Pro­
cedures manual for instructions.

Connect Block Offsets

Length (in decimal
bytes/characters) Destination Descriptor

6.

1.

1.

18.

46.

3-16

Destination node name with trailing blanks

Descriptor format type, which is 0 for BFMTO

Destination object type (1 to 255.)

Descriptor Field for Format 0

Not used

Access Control

Built by BACC call (see Section 3.7.4)

DECnet-RSX Programmer's Reference Manual

BFMT1

Build a Format 1
Destination Descriptor

3.7.6 BFMT1 - Build a Format 1 Destination Descriptor

Use:

Call BFMTI from the source task to build a format 1 destination descriptor for
the connect block that will be passed to the target task when you call CONNT
(see Section 3.7.8). A format 1 descriptor is used to connect to a target task that
requires specification of a task name only.

Formats:

FORTRAN: CALL BFMTI ([status],tgtblk,ndsz,ndname,
o bjtype, namesz, name)

COBOL:

BASIC:

CALL "BFMTl" USING [status],tgtblk,ndsz,ndname,
objtype, namesz, name.

CALL BFMTI BY REF ([status%],tgtblk$,ndsz%,ndname$,
objtype%,namesz%,name$)

Arguments:

*

*

status

specifies an integer variable containing completion status information on return
from BFMTl. On return, the variable is set to .TRUE. (for FORTRAN) or to -1
(for COBOL and BASIC) if the BFMT1 call completed successfully. It is set to
.FALSE. (for FORTRAN) or to 0 (for COBOL and BASIC) if there was an invalid
BFMT1 argument.

In COBOL and BASIC, you cannot omit status, but you can specify 0 for status if
you do not want status information returned. See the discussion of square brack­
ets in Section 3.6 for more information on omitting optional arguments.

tgtblk

specifies an array/string in which the destination descriptor is to be built. See
definition for your language in Section 3.7.l.

ndsz

specifies the node name length in bytes/characters. This field must be an integer
variable or constant.

ndname

specifies the 1- to 6-element array/string containing the name of the node to which
the connect request is directed.

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-17

objtype

specifies the object type to which the connect request is directed. For BFMTl,
objtype must be O.

namesz

specifies the length of the program name in bytes/characters. This field must be
an integer variable or constant.

name

specifies a 1- to 16.-element array/string containing the name of the program to
which you wish to connect.

Connect Block Offsets

Length (in decimal
bytes/characters)

6.

1.

1.

2.

16.

46.

3-18

Destination Descriptor

Destination node name with trailing blanks

Descriptor format type, which is 1 for BFMT1

Destination object type, which is 0 for BFMT1

Descriptor Fields for Format 1

Destination program name length
(equal to or less than 16. bytes/characters)

Destination program name

Access Control

Built by BACC call (see Section 3.7.4)

Sample coding for BFMTI calls is given in the follow­
ing examples. Each language-specific example shows
the code for a BFMTI call, including the declaration
statements.

DECnet-RSX Programmer's Reference Manual

FORTRAN Example:

INTEGER*2 IOST(2) tNOSIZ tOBJTY tPRSIZ
BYTE NONAM(G) tPRGNAM(5)
BYTE CONBLK(72)

DATA NONAM/'E' t'L' t'R' t'O' t'N' t'D'/
DATA PRGNAM/'R' t'E' t'C' tll.I' t'R'/

OBJTY=(l
NDSIZ=G
PRSIZ=5

CALL BFMT1 (IOSTtCONBLKtNDSIZtNDNAMtOBJTYtPRSIZtPRGNAM)

COBOL Example:

WORKING-STORAGE SECTION.

01 STORE-STUFF.

03 NODNAM PIC }-{ (G) I.IALUE IIELROND II •
03 TSKNAM PIC }.{ (G) I.'ALUE IIRECI.'RII •
03 STAT PIC }-(999 USAGE COMP.
03 CONBLK PIC }{ (72) •
03 NLENG PIC 9 USAGE COMP.
03 TLENG PIC 9 USAGE COMP.
03 DUMMY PIC }{ (2) •

PROCEDURE DIVISION

(continued on next page)

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-19

* BUILD A FORMAT 1 CONNECT BLOCK. *

MOl.,IE G TO NLENG.
MOI,IE 5 TO TLENG.
CALL BFMTl USING

BASIC-PLUS-2 Example:

40 CONBLK$=STRING(72%tO%)

\ NDNAM. LENi.,=G'X,
\ T3KNAM.LEN'x'=5%
\ NDNAM$="ELROND"
\ T3KNAM$="RECI.IR"

STAT
CONBLK
NLENG
NODNAM
DUMMY
TLENG
TSKNAM.

\ CALL BFMTl BY REF (STAT%tCONBLK$tNDNAM.LEN%t
NDNAM$tDUMMY%tTSKNAM.LEN%t
TSKNAM$)

3-20 DECnet-RSX Programmer's Reference Manual

CLSNT

End Task Network
Operations

3.7.7 CLSNT - End Task Network Operations

Use:

Call CLSNT from either task to end that task's network activity, abort all its
logical links, and free all its network LUNs. If there is data in the task's network
data queue, the following results can occur:

• If the queue contains any pending connect requests that arrived while the task
was active, the calling task is rescheduled (that is, the task will receive these
connect requests whenever it is restarted). There is a limit of one retry.

If any connect requests arrive when the task is not active, they are rejected.

• If the queue contains an interrupt message, it is discarded.

• If the queue contains a user disconnect, user abort, or network abort message,
this data is ignored.

Formats:

FORTRAN: CALL CLSNT[W] [(status)]

COBOL: CALL "CLSNT[W]" USING [status].

BASIC: CALL CLSNT[W] BY REF [(status%O)]

Arguments:

* status

specifies completion status information on return from CLSNT. See definition for
your language in Section 3.7.1.

Error/Completion Codes:

1 The call completed successfully.

-9 The task is not a network task; OPNNT did not execute successfully.

-10 The network is not accessed on this LUN.

-40 A directive error has occurred. Directive error codes are defined in the
RSX-llM/M-PLUS Executive Reference Manual.

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-21

CONNT

Request Logical
Link Connection

3.7.8 CONNT - Request Logical Link Connection

Use:

Call CONNT from the source task to request a logical link with the target task.
Before you call CONNT, you must build a connect block using the BACC and
BFMTO or BFMT1 calls. The BACC call builds the access control information
area (unless this data has already been supplied with an alias node name) and the
BFMTO or BFMT1 call builds the destination descriptor format fields. Use
BFMTO when connecting to a task that requires only an object type; use BFMT1
when the task requires only a task name. Refer to Sections 3.7.4 (BACC), 3.7.5
(BFMTO), and 3.7.6 (BFMT1) for full details on each call.

When a remote system receives a connect request, it checks to see if the remote
task is currently installed and inactive. If it is, it automatically loads and ac­
tivates the remote task. The connect block is passed to the remote task (see
GNDNT, Section 3.7.11). The task evaluates the connect request and then de­
cides to accept (ACCNT, Section 3.7.3) or reject (REJNT, Section 3.7.14) the
request. You can send 1 to 16. bytes/characters of user data to the remote task
and/or receive 1 to 16. bytes/characters of user data from the remote task when it
accepts/rejects your connect request.

Formats:

FORTRAN: CALL CONNT[W] (lun,[status],tgtblk,
[outsize,outmessage] ,
[insize ,inmessage])

COBOL:

BASIC:

Arguments:

lun

CALL "CONNT[W]" USING lun,[status],tgtblk,
[outsize ,out message],
[insize ,inmessage].

CALL CONNT[W] BY REF (lun%,[status%O],tgtblk$,
[outsize%,outmessage$] ,
[insize%,inmessage$])

assigns the logical link number. This value must be an integer variable or con­
stant. Use this LUN when referring to this logical link in any succeeding RECNT,
SNDNT, XMINT, ABTNT, or DSCNT call.

3-22 DECnet-RSX Programmer's Reference Manual

* status

specifies an array/data item containing completion status information on return
from CONNT. In COBOL and BASIC, you cannot omit status, but you can
specify 0 for status if you do not want status information returned. See the
discussion of square brackets in Section 3.6 for more information on omitting
optional arguments. If specified, this optional 2-element integer array/data item
will contain the following values when the call completes:

First Status Word

status%(O) (BASIC) or

status(l) (FORTRAN, COBOL):

Error/completion code (see list below).

Second Status Word

status%(l) (BASIC) or

status(2) (FORTRAN, COBOL):

Contents depends on error/completion code in first status word (see list be­
low).

Listed below are possible error/completion codes you can receive in the first status
word, plus the corresponding contents of byte 0 in the second status word. (Byte 1 of
the second status word is always 0.)
Error/Completion Code
First Status Word

Connection accepted

Connection accepted
with data overrun

Connection rejected by
user with data overrun

Connection rejected by
DECnet

Connection rejected by
user

Directive error

All other cases

Contents of Byte 0
Second Status Word

Received byte count

Received byte count

Received byte count

Reason for rejection
(see Appendix A)

Received byte count

Directive error code

o

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-23

tgtblk

specifies an array/string containing access control information area and destina­
tion descriptor. See definition for your language in Section 3.7.1.

outsize,outmessage

defines optional user data you want to send. See definition in Section 3.7.1 and
note the exception.

insize,inmessage

defines user data you can receive from the target task. These are paired optional
arguments; use both or omit both.

insize specifies the length in bytes/characters of the user data you want
to receive. It must be an integer variable or constant.

* inmessage specifies the array/string that will store the user data sent by the
target task. This is a 1- to 16.-element byte array for FORTRAN
or a 1- to 16.-element character string for COBOL or BASIC.

Error/Completion Codes:

1 The call completed successfully.

2 The call completed successfully; the connection has been accepted, but some returned
optional data was lost (the data sent to the target task when you called CONNT).

-1 System resources needed for the logical link are not available.

-4 The connection was rejected and some optional data was lost (the data sent to the target
task when you called CONNT).

-5 Either an optional user data buffer exceeds 16. bytes/characters, or the field length count
in the connect block is too large.

-7 The connection was rejected by the network (see reject reason codes in Appendix A).

-8 A logical link has already been established on the specified LUN.

-9 The task is not a network task; OPNNT did not execute successfully.

-12 The connection was rejected by the remote user task.

-13 You are using an invalid buffer; the tgtblk, inmessage, or outmessage buffer is outside the
user task address space or (for FORTRAN) tgtblk is not word aligned.

-40 A directive error has occurred. Directive error codes are defined in the
RSX -11M/M-PLUS Executive Reference Manual.

3-24 DECnet-RSX Programmer's Reference Manual

DSCNT
Disconnect a Logical Link

3.7.9 DSCNT - Disconnect a Logical Link

Use:

Call DSCNT from either task to disconnect the logical link and free the logical
unit number. When you issue a DSCNT, all pending transmits are completed
before the link is disconnected. While these transmits are completing, the task
continues to receive messages. When the last transmit has completed, all pending
receives are aborted and you receive an abort status in the I/O status block for
each one. When you call DSCNT, you can send 1 to 16. bytes/characters of user
data to the task from which you are disconnecting (see the outsize,outmessage
arguments) .

Formats:

FORTRAN: CALL DSCNT[W) (lun,[status)[,outsize,outmessage))

COBOL:

BASIC:

CALL "DSCNT[W)" USING lun,[status][,outsize,outmessage).

CALL DSCNT[W) BY REF (lun%,[status%O),
[outsize%,outmessage$))

Arguments:

lun

*

specifies the logical link you want to disconnect. It must be an integer variable or
constant. If you initiated the connection, enter the LUN you used in the CONNT
call. If you accepted the connection, enter the LUN you used in the ACCNT call.

status

specifies completion status information on return from DSCNT. See definition for
your language in Section 3.7.1.

outsize,outmessage

defines optional user data you want to send. See definition in Section 3.7.1.

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-25

Error/Completion Codes:

1 The call completed successfully.

-2 No logical link has been established on the specified LUN.

-5 The optional user data exceeds 16. bytes/characters.

-9 The task is not a network task; OPNNT did not execute successfully.

-10 The network is not accessed on this LUN.

-13 You are using an invalid buffer; the outmessage buffer is outside the user task address
space.

-40 A directive error has occurred. Directive error codes are defined in the
RSX-llM/M-PLUS Executive Reference Manual.

3-26 DECnet-RSX Programmer's Reference Manual

GLNNT

Get Local Node
Information

3.7.10 GLNNT - Get Local Node Information

Use:

Call GLNNT from either task to have the following local node information placed
in the specified buffer:

• Local node name

You may want to supply the local node name within a program that is to
connect to the local node. For example, if you have a program that runs on
several nodes and sends data to the local node, your program must supply the
local node name to the connect block before it can establish a connection with
that node. You also may want to issue a GLNNT within any program that is to
display the local node name.

• Default NSP segment size (that is, the size that NSP uses to segment data
transmitted on a logical link)

When you know the default NSP segment size, you can use transmit buffers
(large data buffers) most efficiently by adjusting the length of the message
blocks to be transmitted.

Formats:

FORTRAN: CALL GLNNT[W] ([status],buflen,buf)

COBOL: CALL "GLNNT[W]" USING [status],buflen, but.

BASIC: CALL GLNNT[W] BY REF ([status%O],buflen%,buf$)

Arguments:

* status

specifies completion status information on return from GLNNT. See definition
for your language in Section 3.7.1.

bufien

specifies an array/string containing the received data length. If you specify 6
bytes/characters, only the local node name will be returned. If you specify 8.
bytes/characters, both the node name and the default NSP segment size will be
returned. This value must be an integer variable or constant.

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-27

* but

specifies the array/string containing the received data. In FORTRAN, the buffer
must start on an even (byte) word boundary. On return from the call, the data is
stored as follows:

Length (in bytes/
characters) Content/Meaning

6 Local node name in ASCII (left justified and filled with spaces if the
name is less than 6 bytes/characters)

2 Default NSP segment size

Error/Completion Codes:

1 The call completed successfully.

-4 Data overrun. The network data was longer than the specified buffer. As much data as
fits into the buffer is transferred to it; any remaining data is lost.

-9 The task is not a network task; OPNNT did not execute successfully.

-10 The network is not accessed on this LUN.

-13 You are using an invalid buffer; the buffer specified to receive network data is outside the
user task address space, or (for FORTRAN) it is not word aligned.

-40 A directive error has occurred. Directive error codes are defined in the
RSX-llM/M-PLUS Executive Reference Manual.

3-28 DECnet-RSX Programmer's Reference Manual

GNDNT

Get Network Data

3.7.11 GNDNT - Get Network Data

Use:

Call GNDNT from either task to get data from that task's network data queue
and store it in the specified mail buffer (see mailbuf). If the call completes
successfully, the variable specified by the type argument will contain a code to
indicate which of the following unsolicited message types has been stored:

• Connect request (type code 1)

• Interrupt message (type code 2)

• User disconnect notice (type code 3)

• User abort notice (type code 4)

• Network abort notice (type code 5)

Only one GNDNT request can be outstanding. If you issue a GNDNT while
another GNDNT is outstanding, your request will complete with an error (-14).

Formats:

FORTRAN: CALL GNDNT[W] ([status],type, [mailsz], [mailbufJ,
[ltonly], rimmed] [, typmsk])

COBOL: CALL "GNDNT[W]" USING [status],type,mailsz,mailbuf,
[ltonly],[immed][,typmsk].

BASIC: CALL GNDNT[W] BY REF ([status%O],type%,mailsz%,
mailbuf$, [ltonly%],
[immed%] [,typmsk%])

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-29

Arguments:

* status

specifies an array/data item containing completion status information on return
from GNDNT. In COBOL and BASIC, you cannot omit status, but you can
specify 0 for status if you do not want status information returned. See the
discussion of square brackets in Section 3.6 for more information on omitting
optional arguments. If specified, this optional 2-element integer array/data item
will contain the following values when the call completes:

First Status Word

status%(O) (BASIC) or

status(l) (FORTRAN, COBOL):
Error/completion code (see list below).

Second Status Word
status%(l) (BASIC) or

status(2) (FORTRAN, COBOL):

Contents depends on error/completion code in first status word, as described in
Status Table A.

Status Table A

If GNDNT completes with an error:

Contents of First Status 'Nord Contents oi Second Status Word

-40 Directive error code

-n (other than -40) o

If GNDNT completes successfully and the Itonly flag is -1 (.TRUE.):

Contents of First Status Word

+n

Contents of Second Status Word

Low-order byte contains the number of
bytes/characters in the first network data item
stored in the queue.

If GNDNT completes successfully and the Itonly flag is 0 (.FALSE.):

Contents of First Status Word

+n

3-30

Contents of Second Status Word

Content depends on data message type. Each
message type is listed in Status Table B, fol­
lowed by the contents of the second status word
on return from G NDNT.

DECnet-RSX Programmer's Reference Manual

Status Table B

Contents of Second Status Word

Type
Code

1

2

Message
Type

Connect
request

Interrupt
message

3 User
disconnect

4 User abort

5 Network
abort

Low-order Byte

Number of bytes/char­
acters in the connect
block (the connect
block data determines
whether request will be
accepted (ACCNT) or
rejected (REJNT))

Number of bytes/char­
acters in the message.
If 0, no message was
received.

High-order Byte

Access verification _ * and privilege code:
1 = Requesting user is nonprivileged.
2 = Requesting user is privileged.
0= Verification was not done._**

-1 = Verification failed._***

LUN over which the notice was received.

Reason for network LUN over which the notice was received.
abort (see codes in Ap-
pendix A).

* If access verification is enabled for the target node, it evaluates access control data in the
connect request before it is allowed to pass to the target task's network data queue. For more
information on access control, refer to the DECnet-RSX Network Management Concepts
and Procedures manual.

** Either the verification task was not installed on the target node, or it was set to OFF with
the NCP SET EXECUTOR VERIFICATION command, or the proper access control file
was not available or verification state for the object is off.

*** Either the account is not in the system account file or the password does not match the one
in the file.

* type

specifies an integer variable containing the data message type code on return from
GNDNT. The code indicates the type of data message in the target task's mail
buffer on return from GNDNT. Type codes and corresponding message types are
listed in Status Table B, above.

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-31

*

mailsz

specifies size of task's mail buffer in bytes/characters. In FORTRAN, this integer
variable or constant can be omitted if you specify ltonly as .TRUE. In COBOL
and BASIC, it can be set to 0 if you specify ltonly as -1. Otherwise, mailsz must
be a value greater than O.

mailbuf

specifies a 1- to n-element array/string containing the network data on return
from GNDNT (see Table 3-2). In FORTRAN, this array must start on an even
byte (word) boundary; it can be omitted if you specify ltonly as .TRUE. In
COBOL and BASIC, it can be set to 0 if you specify ltonly as -1.

ltonly

specifies dynamic assignment of mail buffer space. When you specify ltonly as
.TRUE. (for FORTRAN) or as -1 (for COBOL and BASIC), the message type
code of the first message in the network data queue is returned in the type
variable, and the message length is stored in the low-order byte of the second
status word; the message is not removed from the queue or placed in the mail
buffer.
If you specify the typmsk argument (see below), you must specify ltonly as 0 in
COBOL and BASIC; in FORTRAN, you must omit ltonly or specify it as
.FALSE. In COBOL and BASIC, ltonly can be omitted only if all trailing argu­
ments are omitted. For information on omitting arguments in COBOL and BA­
SIC, refer to the discussion of square brackets [] in Section 3.6.

immed

specifies GNDNT action based on data in network data queue.

Value of immed

_. TRUE. (FORTRAN)
or - 1 (COBOL and BA­
SIC)

.F ALSE. (FOR­
TRAN) or 0 (COBOL
and BASIC) or omitted

Data in
Network
Queue?

Yes

No

Yes

GNDNT Action

GNDNT completes normally

GNDNT completes with error code
-6 (no data in queue).

GNDNT completes normally.

No GNDNT does not complete until there is
data in the queue.

3-32 DECnet-RSX Programmer's Reference Manual

Note that immed cannot be omitted in COBOL or BASIC unless all trailing
arguments are also omitted. For information on omitting arguments in COBOL
and BASIC, refer to the discussion of square brackets [] in Section 3.6.

typmsk

specifies data type to be selected from network data queue. Normally, GNDNT
returns items from the network data queue on a first-in, first-out basis. You can
specify an integer variable or constant for typmsk to select the first item on the
queue that matches the message type and/or LUN that you choose.

Table 3-2: Connect Block Received in the Mail Buffer after GNDNT

Length (in decimal
bytes/characters)

2.

2.

1.

1.

18.

2.

16.

Contents

Temporary logical link address
(required by the network; do not modify)

NSP segment size
(used by NSP to send message data to source)

DESTINATION DESCRIPTOR
(20.-byte/character total)

Destination descriptor format type
(0 for BFMTO, or 1 for BFMT1)

Destination object type
(1-255. for BFMTO, or 0 for BFMT1)

Descriptor Field for Format 0

Not used

Descriptor Fields for Format 1

Destination program name length
(equal to or less than 16. bytes/characters)

Destination program name

(continued on next page)

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-33

Table 3-2 (cont.): Connect Block Received in the Mail Buffer after GNDNT

Length (in decimal
bytes/characters)

6.

1.

1.

18.

2.

16.

2.

16.

2.

8.

2.

3-34

Contents

SOURCE DESCRIPTOR
(26.-byte/character total)

Source node name
(name of node requesting the connection; ASCII, with trailing
blanks)

Source descriptor format type
(must be either format ° or format 1)

Source object type
(object type of program requesting connection:
1-255. for format 0, or ° for format 1)

Descriptor Field for Format 0

Not used

Descriptor Fields for Format 1

Source program name length
(equal to or less than 16. bytes/characters)

Source program name

ACCESS CONTROL
(46.-byte/character total)

If no verification performed

Source program user ID length
(equal to or less than 16. bytes/characters)

Source program user ID

Source program password length
(equal to or less than 8. bytes/characters)

Source program password

Account number length
(equal to or less than 16. bytes/characters)

(continued on next page)

DECnet-RSX Programmer's Reference Manual

Table 3-2 (cont.): Connect Block Received in the Mail Buffer after GNDNT

Length (in decimal
bytes/characters)

16.

2.

1.

1.

2.

11.

29.

2.

16.

Contents

ACCESS CONTROL

Account number

If verification performed

Default device name for destination program

Default device unit number

Not used

Log-in UIe from account file
(used for destination program)

Default directory string
(0 if no default string)

Not used

OPTIONAL DATA
(lB.-byte/character total)

Length of optional user data
(equal to or less than 16. bytes/characters; 0 if no optional data)

Optional user data sent by source program
(0 to 16. bytes/characters)

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-35

Message Type (byte 0) Logical Unit Number (byte 1)

1

2

3

4

5

0

Connect request

Interrupt message

User disconnect

User abort

Network abort

Selects any message type
on the specified LUN

o (Selects the first LUN to request a connect.)

o or LUN

o or LUN

o or LUN

o or LUN

LUN

For example, if you want to select from the network data queue the first interrupt
message (type 2) on LUN 3, you would use a variable for the typmsk argument,
declare it as an integer, and assign a value to it, as shown here: (3*256.) +2.

If you specify 0 in byte 1, the first message of the type specified in byte 0 will be
returned, regardless of the LUN.

3-36

NOTE

If you specify typmsk, you must also include mailsz and mailbuf, and
you must specify ltonly as 0 in COBOL and BASIC, and as .FALSE.
in FORTRAN. If you use typmsk, you can omit ltonly in FORTRAN,
but not in COBOL or BASIC.

DECnet-RSX Programmer's Reference Manual

Error/Completion Codes:

1 The call completed successfully.

2 The call completed successfully, but some returned optional data was lost.

-4 Data overrun. The network data was longer than the mail buffer. As much data as will fit
into the mail buffer is transferred to it; any remaining data is lost.

-6 There is no data in the network data queue to return.

-9 The task is not a network task; either OPNNT did not execute successfully, or CLSNT
was issued with this GNDNT pending.

-10 The network is not accessed on this LUN.

-13 You are using an invalid buffer; the mail buffer is outside the user task address space, or
(for FORTRAN) it is not word aligned.

-14 A GNDNT is already pending.

-40 A directive error has occurred. Directive error codes are defined in the
RSX-llM/M-PLUS Executive Reference Manual.

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-37

OPNNT

Access the Network

3.7.12 OPNNT - Access the Network

Use:

Call OPNNT to establish the task as an active network task and create the task's
network data queue. You must call OPNNT before calling any other network
subroutine.

Formats:

FORTRAN: CALL OPNNT[W] ([lun],[status],[mstat],[count][,lrp])

COBOL:

BASIC:

CALL "OPNNT[W]" USING [lun],[status],[mstat],
[count] [, lrp].

CALL OPNNT[W] BY REF ([lun%],[status%O],[mstat%O],
[count%][,lrp%])

Arguments:

lun

*

specifies a logical unit number for the task's network data queue. This value must
be an integer variable or constant. You can omit this argument if you have
already assigned the LUN to NS: by using the GBLDEF option of .MBXLU at
task build time (Section 1.2.2). However, when lun is omitted in COBOL or
BASIC, all trailing arguments must also be omitted. For information on omitting
arguments in COBOL and BASIC, refer to the discussion of square brackets [] in
l"'1 J. n ,.

~ecnon 0.0.

status

specifies completion status information on return from OPNNT. See definition
for your language in Section 3.7.1.

3-38 DECnet-RSX Programmer's Reference Manual

* mstat

specifies a 3-element integer array (or elementary numeric data item for COBOL)
to contain current status information of the task's network data queue. When
specified(+), the mstat array/data item is updated whenever data arrives or is
retrieved by a GNDNT. This array/data item must not be used for other purposes
while the task is active on the network.

Values returned in this array/data item are:

mstat(l) Number of items in network data queue

mstat(2) Data type of first data item:

1 - Connect request
2 - Interrupt message
3 - User disconnect
4 - User abort
5 - Network abort

mstat(3) length of first data item

count

specifies the maximum number of simultaneously active connections the task will
accept. When the number of active logical links equals the count value, the
network rejects any incoming connect request. This integer variable or constant
must not exceed 255 (decimal). A value of 0 (which is also the default) sets no
limit as long as network resources are available.

To prevent access to your task, specify a count value of 1 so that GNDNT will
reject all incoming connect requests. You can still establish outgoing links by
using CONNT.

lrp

specifies the link recovery period - that is, the number of seconds that can elapse
from the time of a physical link failure until the associated logical link is consid­
ered irrecoverable. This integer variable or constant must be in the range of 0
through 32767 (decimal).

When specifying an lrp value, remember that your task will be locked in memory
until the link recovery period has elapsed if the task has outstanding I/O when the
link fails. This can cause serious delays for other system users who need to access
the occupied area of memory.

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-39

Error/Completion Codes:

1 The call completed successfully.

-1 System resources needed for the network data queue are not available.

-10 The network is being dismounted, or the user task has already accessed the network.

-40 A directive error has occurred. Directive error codes are defined in the
RSX-IIM/M-PLUS Executive Reference Manual.

3-40 DECnet-RSX Programmer's Reference Manual

RECNT

Receive Data over a
Logical Link

3.7.13 RECNT - Receive Data over a Logical Link

Use:

Call RECNT from either task to receive data over an established logical link and
store it in a specified buffer.

Formats:

FORTRAN: CALL RECNT[W] (lun,[status],insize,indata)

COBOL: CALL "RECNT[W]" USING lun,[status],insize,indata.

BASIC: CALL RECNT[W] BY REF (lun%, [status%O],insize%,indata$)

Arguments:

lun

*

specifies the logical unit number for the logical link over which data is to be
received. It must be an integer variable or constant. If you initiated the connec­
tion, enter the LUN you used in the CONNT call. If you accepted the connection,
enter the LUN you used in the ACCNT call.

status

specifies completion status information on return from RECNT. See definition for
your language in Section 3.7.1 and note this addition: If a positive value or -4
(data overrun) is returned in the first status word, the second status word con­
tains the number of bytes/characters of data received.

£ns£ze

specifies the receive data buffer length in bytes/characters. This integer variable
or constant can be a maximum of 8128 (decimal).

* indata

specifies the array/string containing the received message data.

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-41

Error/Completion Codes:

1 The call completed successfully.

-2 No logical link has been established on the specified LUN.

-3 The logical link was disconnected during I/O operations.

-4 Data overrun. More message data was transmitted than requested. As much data as will
fit into the receive buffer is transferred to it; any remaining data is lost.

-9 The task is not a network task; OPNNT did not execute successfully.

-13 You are using an invalid buffer; either the indata array/string is outside the user task
address space, or the buffer size (insize) exceeds 8128. bytes/characters.

-40 A directive error has occurred. Directive error codes are defined in the
RSX-llM/M-PLUS Executive Reference Manual.

3-42 DECnet-RSX Programmer's Reference Manual

REJNT

Reject Logical Link
Connect Request

3.7.14 REJNT - Reject Logical Link Connect Request

Use:

Call REJNT from the target task to reject a logical link connect request. When
you call REJNT, you can send 1- to 16. bytes/characters of user data to the
requesting task (see the outsize,outmessage arguments).

Formats:

FORTRAN: CALL REJNT[W) ([status),mailbuf[,outsize,outmessage))

COBOL: CALL "REJNT[W)" USING [status),mailbuf,

BASIC:

[outsize, outmessage).

CALL REJNT[W) BY REF ([status%O],mailbuf$,
[outsize%,outmessage$))

Arguments:

* status

specifies completion status information on return from REJNT. See definition for
your language in Section 3.7.1.

mailbuf

specifies the 1- to n-element array/string containing information necessary to
reject the connect request. In FORTRAN, this array must start on an even byte
(word) boundary. This array/string is the same one referred to in GNDNT (see
Section 3.7.11).

outsize, out message

defines optional user data you want to send. See definition in Section 3.7.1.

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-43

Error/Completion Codes:

1 The call completed successfully.

-3 The task that requested the connection has aborted or has requested a disconnect before
the connection could complete.

-5 Either the temporary link address in the mail buffer is not valid, or the optional user data
buffer exceeds 16. bytes/characters.

-9 The task is not a network task; OPNNT did not execute successfully.

-10 The network is not accessed on this LUN.

-13 You are using an invalid buffer; the mailbuf or outmessage array/string is outside the user
task address space, or (for FORTRAN) the mailbuf array is not word aligned.

-40 A directive error has occurred. Directive error codes are defined in the
RSX -llM/M-PLUS Executive Reference Manual.

3-44 DECnet-RSX Programmer's Reference Manual

SNDNT

Send Data over a
Logical Link

3.7.15 SNDNT - Send Data over a Logical Link

Use:

Call SNDNT from either task to send message data over the logical link.

Formats:

FORTRAN: CALL SNDNT[W] (lun,[status],outsize,outdata)

COBOL: CALL "SNDNT[W]" USING lun,[status],outsize,outdata.

BASIC: CALL SNDNT[W] BY REF (lun%,[status%O],outsize%,outdata$)

Arguments:

lun

*

specifies the logical unit number for the logical link over which data is to be sent.
It must be an integer variable or constant. If you initiated the connection, enter
the LUN you used in the CONNT call. If you accepted the connection, enter the
LUN you used in the ACCNT call.

status

specifies completion status information on return from SNDNT. See definition for
your language in Section 3.7.1 and note this addition: If a 1 is returned in the first
status word, the second status word contains the number of bytes/characters of
transmitted data.

outsize

specifies the length in bytes/characters of the data you want to send. This integer
variable or constant can be a maximum of 8128 (decimal).

outdata

specifies a 1- to n-element array/string containing the message data you want to
send.

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-45

Error/Completion Codes:

1 The call completed successfully.

-2 No logical link has been established on the specified LUN.

-3 The logical link was disconnected during I/O operations.

-9 The task is not a network task; OPNNT did not execute successfully.

-13 You are using an invalid buffer; either the outdata array/string is outside the user task
address space, or the buffer size (outsize) exceeds 8128. bytes/characters.

-40 A directive error has occurred. Directive error codes are defined in the
RSX-llM/M-PLUS Executive Reference Manual.

3-46 DECnet-RSX Programmer's Reference Manual

3.7.16 WAITNT - Suspend the Calling Task

Use:

WAITNT

Suspend the Calling Task

Call WAITNT from any task to suspend that task's operation until a call speci­
fied by one of the associated status blocks completes.

Formats:

FORTRAN: CALL WAIT NT ([index],statusl, ... ,statusn)

COBOL:

BASIC:

Arguments:

* index

CALL "WAITNT" USING [indexl,statusl, ... ,statusn.

CALL WAITNT BY REF ([index%l,statusl %0, .. . ,statusn%O)

specifies an integer variable containing the positional number of the status block
associated with the call that has completed.

In COBOL and BASIC, you cannot omit index, but you can specify 0 for index if
you do not want index information returned. See the discussion of square brackets
in Section 3.6 for more information on omitting optional arguments.

status 1, ... ,statusn

specifies one or more status blocks. W AITNT completes when anyone of the calls
associated with a status block in this list completes.

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-47

XMINT

Send Interrupt Message

3.7.17 XMINT - Send Interrupt Message

Use:

Call XMINT from either task to send an interrupt message over an established
logical link. The message you send is placed on the target task's network data
queue and must be retrieved with a GNDNT before you can issue another
XMINT.

Formats:

FORTRAN: CALL XMINT[W] (lun,[status],intsize,intmsg)

COBOL: CALL "XMINT[W]" USING lun,[status],intsize,intmsg.

BASIC: CALL XMINT[W] BY REF (lun%,[status%O],intsize%,intmsg$)

Arguments:

lun

*

specifies the logical unit number for the logical link over which the interrupt
message is to be sent. It must be an integer variable or constant. If you initiated
the connection, enter the LUN you used in the CONNT call. If you accepted the
connection, enter the LUN you used in the ACCNT call.

status

specifies completion status information on return from XMINT. See definition for
your language in Section 3.7.1.

intsize

specifies the length in bytes/characters of the interrupt message you want to send.
It must be an integer variable or constant.

intmsg

specifies a 1- to 16.-element array/string containing the interrupt message you
want to send.

3-48 DECnet-RSX Programmer's Reference Manual

Error/Completion Codes:

1 The call completed successfully.

-2 No logical link has been established on the specified LUN.

-3 The logical link was disconnected during I/O operations.

-5 The interrupt message exceeds 16. bytes/characters.

-9 The task is not a network task; OPNNT did not execute successfully.

-11 An interrupt message was transmitted before a previous interrupt message had been
received by the remote task.

-13 You are using an invalid array/string; the intmsg array/string is outside the user task
address space.

-40 A directive error has occurred. Directive error codes are defined in the
RSX-llM/M-PLUS Executive Reference Manual.

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-49

3.7.18 FORTRAN Intertask Communication Programming Example
(Transmit)

The following two programs (Transmit and Receive) are examples of FORTRAN
intertask communication. They are cooperating tasks. FTNTRN is a transmit task.
FTNREC is a receiver task. FTNTRN accesses the network, connects to FTNREC,
transmits inquiries to FTNREC, and receives responses from FTNREC.

C

NOTE

These programming examples are also included in your tape or disk
kit.

C TO TASK BUILD USE THE FOLLOWING COMMAND STRING:
C
C FTNTRN,FTNTRN=FTNTRN,[l,l]NETFOR/LB,F4POTS/LB,RMSLIB/LB
C I
C UNITS=lO
C ACTFIL-4
C EXTTSK-IOOO (if RMS included)
C II
C

C

INTEGER*2 MLTYP,RECSIZ,SNDSIZ,OPNLUN,CONLUN,MESNUM,XMITS,NDLEN,TSKLEN
INTEGER*2 IOST(2),MSTAT(3)
BYTE ERRMES(2),TSKNAM(6),CONBLK(72),NDNAM{6),DEFNOD{6),DEFTSK{6)
BYTE SNDBUF(50),RECBUF(10)
LOGlCAL*l STAT, IMMED
DATA DEFNOD/'M','A','S','T' ,'E' ,'R'I
DATA DEFTSK/'R' ,'E','C','V' ,'E' ,'R'I

C INITIALIZE CONSTANTS
C

IMMED=.TRUE. !* SET IMMED TO TRUE FOR GNDNTW
OPNLUN=l !* NETWORK OPNNT LUN
CONLUN=2 !* COUNT LUN FOR THE

i it LOGICAL LINK
XMITS=20 !* THE NUMBER OF INQUIRIES

!* TO BE SENT TO THE REMOTE NODE
SNDSIZ=50 !* THE SIZE OF THE THE MESSAGES TO

!* BE SENT TO THE REMOTE NODE
RECSIZ=lO ! * THE SIZE OF THE MESSAGES TO

! * BE RECEIVED

C
C GET THE NODE AND TASK NAMES
C

4 TYPE 300 ~* ASK FOR NODE-NAME
READ(5,3l0) (NDNAM(NDLEN),NDLEN=1,6) !* GET THE NAME
DO 5 NDLEN=6,1,-1 !* LOOP TO FIND LENGTH OF NAME
IF (NDNAM(NDLEN).NE.' .) GOTO 6 !* IF NOT A SPACE, GET TASK-NAME

5 CONTINUE
DO 50 1=1,6

50 NDNAM(I)=DEFNOD(I) !* DEFAULT NODE NAME 'MASTER'
NDLEN=6 !* LENGTH OF DEFAULT NAME

(continued on next page)

3-50 DECnet-RSX Programmer's Reference Manual

6 TYPE 320 !* ASK FOR THE TASK-NAME
READ(S,310) (TSKNAM(TSKLEN),TSKLEN=1,6) !* GET IT
DO 7 TSKLEN=6,1,-1 !* TSKLEN IS LENGH OF TASK-NAME
IF (TSKNAM(TSKLEN).NE.' ') GOTO 8 !* IF NOT SPACE, ACCESS NETWORK

7 CONTINUE
DO 60 1=1,6

60 TSKNAM(I)=DEFTSK(I) !* DEFAULT TASK NAME 'RECVER'
TSKLEN=6 !* LENGTH OF DEFAULT NAME

C
C ACCESS NETWORK
C
8 CALL OPNNTW(OPNLUN,IOST,MSTAT)

IF (IOST(l).NE.l)GOTO 100 !* IF FAILURE JUST EXIT
C
C BUILD A FORMAT 2 CONNECT BLOCK

C

C

CALL BFMTl(STAT,CONBLK,NDLEN,NDNAM"TSKLEN,TSKNAM)
IF (STAT)GOTO 10 !* IF SUCCESS GO ON
TYPE 200 !* ELSE TYPE OUT A FAILURE

!* NOTIFICATION
GCTO 90 !* AND EXIT

C CONNECT TO THE TASK ON THE REMOTE NODE
C
10

IS

C

CALL
IF
TYPE
GCTO

TYPE

CONNTW(CONLUN,IOST,CONBLK)
(IOST(I).EQ.l)GOTO IS !*
240,IOST !*
90 ! *

!*

IF SUCCESS TELL HIM
ELSE PRINT STATUS BLOCK
DEACCESS THE NETWORK
AND EXIT

220 !* PRINT CONNECT CONFIRMATION
! * NETWORK AND EX I T

C SEND AND RECEIVE MESSAGES TO AND FROM THE REMOTE NODE
C

DO 40 MESNUM=l,XMITS
C
C FIRST GET ANY ERROR MESSAGES SENT FROM THE OTHER SIDE VIA
C INTERUPT MESSAGES

IF (MSTAT(I).EQ.O)GOTO 20 !* IF MSTAT(l)aO NO MESSAGES

CALL
IF

!* ARE THERE
GNDNTW(IOST,MLTYP,2,ERRMES"IMMED,2) !* GET THE MESSAGE
(IOST(l).NE.l)GOTO 20 !* IF WE COULDN'T GET THE MESSAGE

!* JUST IGNORE IT
TYPE 210, ERRMES (1) !* PRINT OUT THE MESSAGE

C
C SEND THE INQUIRY
C
20

C

CALL
IF
TYPE

GCTO

SNDNTW(CONLUN,IOST,SNDSIZ,SNDBUF)
(IOST(I).EQ.l)GOTO 30 !* IF SUCCESS CONTINUE
210,MESNUM !* OTHERWISE TYPE OUT AN

!* ERROR MESSAGE
40 !* AND START A NEW MESSAGE

C RECEIVE THE RESPONSE FROM THE REMOTE NODE
C
30 CALL

IF
TYPE

RECNTW(CONLUN,IOST,RECSIZ,RECBUF)
(IOST(l).EQ.l)GOTO 40 !*IF SUCCESS CONTINUE
210,MESNUM !* OTHERWISE TYPE OUT AN

!* ERROR MESSAGE

(continued on next page)

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-51

40 CONTINUE
C
C DISCONNECT THE LINK
C

TYPE
CALL

230
DSCNTW(CONLUN,IOST)

1* PRINT OUT DISCONNECT MESSAGE

C
C
C
90
100
C
C
C
200
210
220
230
240
300
310
320

COME HERE TO DEACCESS THE NETWORK AND EXIT

CALL CLSNTW
STOP 'END OF PROGRAM EXECUTION'

FORMAT STATEMENTS

FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
END

(' ERROR BUILDING CONNECT BLOCK')
(' ERROR ON INQUIRY ',I3)
(' LINK ENABLED')
(' LINK DISABLED')
(' CONNECT FAIL: IOST- ',13)
(' PLEASE ENTER NODE-NAME <MASTER>:
(GAl)
(' PLEASE ENTER TASK-NAME <RECVER>:

, , $)

, , $)

3-52 DECnet-RSX Programmer's Reference Manual

3.7.19 FORTRAN Intertask Communication Programming Example
(Receive)

When FTNTRN completes sending inquiries, it disconnects the link, deaccesses the
network, and exits. Any error found by FTNREC is transmitted back to FTNTRN as
an interrupt message. FTNTRN then displays the interrupt message on the terminal.

C
C TO TASK BUILD USE THE FOLLOWING COMMAND STRING:
C
C FTNREC,FTNREC=FTNREC,[l,1]NETFOR/LB,F4POTS/LB,RMSLIB/LB
C I
C UNITS-10
C ACTFIL-4
C EXTTSK-1000 (if RMS included)
C II
C

C

INTEGER*2 OPNLUN,MLTYP,INDEX,ACCLUN,NUMBER,NUMMES
INTEGER*2 RECSIZ,SNDSIZ,INTSIZ
INTEGER*2 MSTAT(3),IOST(2),IOST1(2),IOST2(2)
BYTE RECBUF(50),SNDDAT(10),MLBX(98),INTMES(2)

C INITIALIZE CONSTANTS
C

C
C
C

10
20

c

OPNLUN-l !* NETWORK OPNNT LUN
ACCLUN-2 ! * ACCNT LUN FOR THE LOGICAL LINK
RECSIZ=50 ! * SIZE OF DATA BUFFER TO BE RECEIVED

SIZE OF INTERRUPT DATA BUFFER TO SEND
NUMBER OF MESSAGES RECEIVED

INTSIZ-2 ! *
NUMMES-O ! *
SNDSIZ-10 !* NUMBER OF BYTES TO SEND BACK

ACCESS NETWORK

CALL
IF
IF

CALL
CALL
IF

OPNNTW(OPNLUN,IOST,MSTAT)
(IOST(l).NE.l)GOTO 100
(MSTAT(l).EQ.O)GOTO 40

GNDNT(IOST1,MLTYP,98,MLBX)
WAITNT(INDEX, IOST1, IOST2)
(INDEX.EQ.2)GOTO 50

!* IF FAILURE JUST EXIT
!* IF NOTHING ON MAILBOX
!* JUST CLOSE AND EXIT
! * ISSUE A GET NETWORK DATA
!* WAIT FOR A COMPLETION
!* IF INDEX=2 A RECEIVE HAS
!* BEEN COMPLETED

C NETWORK DATA HAS BEEN RECEIVED
C

IF

IF

IF

C

(IOST1(1).NE.1)GOTO 40

(MLTYP.GE.3)GOTO 40

(MLTYP.EQ.2)GOTO 10

!* IF GNDNT FAILED JUST
!* CLOSE AND EXIT
!* IF MULTYP>=3 THE LINK HAS
!* BEEN BROKEN
!* IF MLTYP=2 WE'VE RECEIVED
!* AN INTERRUPT MESSAGE, JUST
!* ISSUE A NEW GNDNT

C WE'VE RECEIVED A CONNECT REQUEST - ISSUE AN ACCEPT
C

CALL
IF

ACCNTW(ACCLUN,IOST,MLBX)
(IOST(l).NE.l}GOTO 10 !* IF FAILURE ISSUE A NEW

!* GNDNT

(continued on next page)

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-53

C
C
C
30

C

ISSUE A RECEIVE TO PICK UP DATA

CALL RECNT(ACCLUN,IOST2,RECSIZ,RECBUF)
GOTO 10 !* ISSUE A NEW GNDNT

!* AND WAIT FOR A COMPLETION

C WE COME HERE UPON RECEIVING A DISCONNECT OR ABORT
C
40 CALL CLSNTW !* DEACCESS THE ~ETWORK

GOTO 100 !* AND EXIT

C
C WE COME HERE IF WE RECEIVE AN INQUIRY
C
50 NUMMES=NUMMES+l

IF (IOST2(1).EQ.l)GOTO 60
C

!* INCREMENT THE MESSAGE
!* COUNT
1* IF IOST2(1)-1 ALL'S O.K.

C IF THERE WAS AN ERROR SEND BACK AN INTERRUPT MESSAGE WITH
C MESSAGE NUMBER
C

INTMES (1) =NUMMES ! * SEND THE MESSAGE NUMBER
CALL XMINT(ACCLUN,IOST,INTSIZ,INTMES)
GOTO 70 !* GO ISSUE A NEW RECEIVE

C
C HERE THE USER CAN LOOK AT THE DATA RECEIVED IN RECBUF AND RESPOND
C BY PLACING THE REQUESTED INFORMATION INTO SNDDAT
C
C
C
C
60
70

SEND BACK THE DATA AND ISSUE A NEW RECNT

C

CALL
CALL
GOTO

C EXIT PROGRAM
C

SNDNTW{ACCLUN,IOST,SNDSIZ,SNDDAT)
RECNT(ACCLUN,IOST2,RECSIZ,RECBUF)
20 !* WAIT FOR A COMPLETION

100 STOP 'END OF PROGRAM EXECUTION'
END

!* HALT THE PROGRAM
!* AND EXIT

3-54 DECnet-RSX Programmer's Reference Manual

3.7.20 COBOL Intertask Communication Programming Example
(Transmit)

The following two programs (Transmit and Receive) are examples of COBOL inter­
task communication. They are cooperating tasks. COBTRN is a transmit task. CO­
BREC is a receiver task. COBTRN accesses the network, connects to COBREC,
transmits inquiries, and receives responses from COBREC.

NOTE

These programming examples are also included in your tape or disk
kit.

IDENTIFICATION DIVISION.
PROGRAM-ID. COBTRN.

* * THIS IS THE TRANSMIT PROGRAM OF THE DECNET COBOL
* INTERFACE COMMUNICATION EXAMPLE PROGRAMS.
* * TO TASK BUILD USE THE FOLLOWING COMMAND STRING:
* * COBTRN,COBTRN=COBTRN,[1,1]NETFOR/LB,C81LIB/LB,RMSLIB/LB
* I
* UNITS=lO
* ACTFIL=4
* EXTTSK=lOOO (if RMS included)
* II
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. PDP-ll.
OBJECT-COMPUTER. PDP-ll.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT DUMMY-FILE ASSIGN TO "COBTRN.DUM".

DATA DIVISION.
FILE SECTION.
FD DUMMY-FILE

LABEL RECORD STANDARD.
01 DUMMY-FILE-REC.

02 FILLER PIC X(132).

WORKING-STORAGE SECTION.
01 MSGS.

03 MSGl.
05 FILLER

05 MSG1-STATl
05 FILLER
05 MSGI-STAT2

03 MSG2.
05 FILLER

PIC X(32)

PIC -99999.
PIC x(ll)
PIC -99999.

PIC X(25)

VALUE " NETWORK OPEN FAILED,
"IOST(l) = ".

VALUE " lOST (2)

VALUE" CONNECT FAIL, IOST(l)

(continued on next page)

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-55

01.

3-56

" = "
05 MSG2-STATI PIC -99999.
05 FILLER PIC X(ll) VALUE n IOST(2)
05 MSG2-STAT2 PIC -99999.

03 MSG3.
05 FILLER PIC X(20) VALUE n ERROR ON INQUIRY
05 MSG3-ERRI PIC X(2) •

03 MSG4.
05 FILLER PIC X(3l) VALUE " ERROR ON INQUIRY

"NG SEND: "
05 MSG4-NUMI PIC 99.

03 MSGS.
05 FILLER PIC X(34) VALUE " ERROR ON INQUIRY

"NG RECEIVE: n
05 MSG5-NUMI PIC 99.

ARRAYS.

03 lOST.
05 IOSTAT OCCURS 2 TIMES PIC S9999 USAGE COMPo

03 MSTAT.
05 MSTATS OCCURS 3 TIMES PIC S9999 USAGE COMPo

01 STORE-STUFF.
03 TEN PIC 99 COMP VALUE 10.
03 OPNLUN PIC 99 COMP VALUE 2.
03 RESULT-REC PIC X(SO).
03 IN-FILE PIC X(6).
03 NODNAM PIC X(6).
03 TSKNAM PIC X(9).
03 FILLER PIC X.
03 STAT PIC S999 USAGE COMPo
03 CONBLK PIC X(72).
03 NLENG PIC 9 USAGE COMPo
03 TLENG PIC 9 USAGE COMPo
03 CONLUN PIC 99 COMP VALUE 3.
03 KNITS PIC 99 COMP VALUE 20.
03 MESNUM PIC 99.
03 MLTYP PIC 9.
03 FILLER PIC 9.
03 MLBXSZ PIC 99 COMP VALUE 2.
03 ERRMES PIC X(2).
03 DUMMY PIC X(2).
03 IMMED PIC S9 COMP VALUE -1.
03 TYPMSK
03 FILLER
03 SNDSIZ
03 SNDBUF
03 RECSIZ
03 RECBUF

PROCEDURE DIVISION.
AlOO-START.

PIC 9.
PIC 99 COMP VALUE 50.
PIC X(SO).
PIC 99 COMP VALUE 10.
PIC x(lO).

It.

DURI

DURI

**
*
*
*
*

INPUT NODE NAME AND RECEIVER TASK NAME FROM
TERMINAL.

*
*
*
*

**

DISPLAY "ENTER NODE-NAME <MASTER>".
ACCEPT IN-FILE.
MOVE IN-FILE TO NODNAM.
DISPLAY "ENTER TASK-NAME <RECVER>".
ACCEPT IN-FILE.
MOVE IN-FILE TO TSKNAM.

(continued on next page)

DECnet-RSX Programmer's Reference Manual

*
*
*
*

ACCESS THE NETWORK. IF THE ACCESS IS UNSUCCESSFUL,
PRINT AN ERROR MESSAGE AND EXIT.

*
*
*
*

CALL "OPNNTW" USING
OPNLUN
rOST
MSTAT
TEN.

IF IOSTAT tl) = 1

ELSE
NEXT SENTENCE

MOVE IOSTAT (1) TO MSGI-STATI
MOVE IOSTAT (2) TO MSGI-STAT2
DISPLAY MSGI
GO COOO-END.

*
*
*
*
*

BUILD A FORMAT 1 CONNECT BLOCK. IF THE CALL DID
NOT COMPLETE SUCCESSFULLY, PRINT AN ERROR MESSAGE
AND DEACCESS THE NETWORK.

*
*
*
*
*

*******-***
MOVE 6 TO NLENG.
MOVE 6 TO TLENG.
CALL "BFMTl" USING

STAT
CONBLK
NLENG
NODNAM
DUMMY
TLENG
TSKNAM

IF STAT NOT = 0

ELSE
NEXT SENTENCE

DISPLAY "ERROR BUILDING CONNECT BLOCK"
GO BlOO-CLOSE.

*
*
*
*
*
*

CONNECT TO THE TASK ON THE REMOTE NODE. IF THE
CALL COMPLETES UNSUCESSFULLY, PRINT AN ERROR MESSAGE
AND CLOSE THE NETWORK. OTHERWISE, PRINT "LINK
ENABLED" MESSAGE.

*
*
*
*
*
*

CALL "CONNTW" USING
CONLUN
lOST
CONBLK.

IF IOSTAT(l) = 1

ELSE
NEXT SENTENCE

MOVE SPACES TO RESULT-REC
MOVE IOSTAT(I) TO MSG2-STATI
MOVE IOSTAT(2) TO MSG2-STAT2
MOVE MSG2 TO RESULT-REC
DISPLAY RESULT-REC
GO BI00-CLOSE.

DISPLAY "LINK ENABLED".
(continued on next page)

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-57

* *
*
*
*
*

SEND AND RECEIVE MESSAGES FROM THE REMOTE NODE.
IF THERE IS SOMETHING ON THE NETWORK DATA QUEUE
(MSTATS (1) > 0), GET THE MESSAGE.

*
*
*
*

LOOP.
PERFORM LOOP VARYING MESNUM FROM 1 BY 1 UNTIL MESNUM = XMITS.

IF MSTATS(l) = 0

ELSE
NEXT SENTENCE

CALL "GNDNTW" USING
lOST
MLTYP
MLBXSZ
ERRMES
DUMMY
IMMED
TYPMSK

IF IOSTAT(l) - 1

ELSE
NEXT SENTENCE

MOVE SPACES TO RESULT-REC
MOVE ERRMES TO MSG3-ERRl
MOVE MSG3 TO RESULT-REC
DISPLAY RESULT-REC.

*
*
*
*
*

SEND A MESSAGE TO THE TASK ON THE REMOTE NODE. IF
UNSUCCESSFUL, PRINT AN ERROR MESSAGE AND START THE
NEXT TRANSMISSION.

*
*
*'
*
*

CALL "SNDNTW" USING
CONLUN
lOST
SNDSIZ
SNDBUF.

IF IOSTAT(lj = 1

ELSE
NEXT SENTENCE

MOVE SPACES TO RESULT-REC
MOVE MESNUM TO MSG4-NUMl
MOVE MSG4 TO RESULT-REC
DISPLAY RESULT-REC
GO LOOP.

* *
*
*
*
*
*

RECEIVE A MESSAGE FROM THE REMOTE NODE. IF
UNSUCCESSFUL, PRINT AN ERROR MESSAGE AND START
THE NEXT TRANSMISSION. IF SUCCESSFUL, SIMPLY
START THE NEXT TRANSMISSION.

*
*
*
*
*

'*

(continued on next page)

3-58 DECnet-RSX Programmer's Reference Manual

CALL "RECNTW" USING
CONLUN
rOST
RECSIZ
RECBUF.

IF IOSTAT(1) = 1

ELSE
NEXT SENTENCE

MOVE SPACES TO RESULT-REC
MOVE MESNUM TO MSG5-NUMI
MOVE MSG5 TO RESULT-REC
DISPLAY RESULT-REC.

*
*
*

DEACESS THE NETWORK.
*
*
*

aOOO-ENDLOOP.
DISPLAY "LINK DISABLED".
CALL "DSCNTW" USING

CONLUN
lOST.

*
*
*

CLOSE THE NETWORK AND EXIT.
*
*
*

aIOO-CLOSE.
CALL "CLSNTW".
DISPLAY "END OF EXECUTION".

COOO-END.
STOP RUN.

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-59

3.7.21 COBOL Intertask Communication Programming Example
(Receive)

When COBTRN completes sending inquiries, it disconnects the link, deaccesses the
network, and exits. Any error found by COBREC is transmitted to COBTRN as an
interrupt message. COBTRN then displays the interrupt message on the terminal.

IDENTIFICATION DIVISION.
PROGRAM- 10. C08REC.

-****
* * * THIS IS THE RECEIVE PROGRAM OF THE DECNET COBOL
* INTERFACE COMMUNICATION EXAMPLE PROGRAMS.
* * TO TASK BUILD USE THE FOLLOWING COMMAND STRING:
* * COBREC,COBREC=COBREC,[l,1]NETFOR/LB,C81LIB/LB,RMSLIB/LB
* I
* UNITS=lO
* ACTFIL=4
* EXTTSK=lOOO (if RMS included)
* II
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. PDP-ll.
OBJECT-COMPUTER. PDP-II.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT DUMMY-FILE ASSIGN TO "COBREC.DUM".

DATA DIVISION.
FILE SECTION.
FD DUMMY-FILE

LABEL RECORD STANDARD.
01 DUMMY-FILE-REC.

02 FILLER PIC X(132).

WORKING-STORAGE SECTION.
01 ARRAYS.

03 lOST.
05 IOSTAT OCCURS 2 TIMES PIC S9999 USAGE COMPo

03 MSTAT.
05 MSTATS OCCURS 3 TIMES PIC S9999 USAGE COMPo

03 IOST1.
05 IOSTATl OCCURS 2 TIMES PIC S9999 USAGE COMPo

03 IOST2.
05 IOSTAT2 OCCURS 2 TIMES PIC S9999 USAGE COMPo

(continued on next page)

3-60 DECnet-RSX Programmer's Reference Manual

01 STORE-STUFF.
03 OPNLUN PIC 99 COMP VALUE 2.
03 MLTYP PIC 9 USAGE COMPo
03 MLSIZ PIC 99 COMP VALUE 98.
03 MLBOX PIC X(98).
03 INDX PIC 99 USAGE COMPo
03 ACCLUN PIC 99 COMP VALUE 3.
03 RECSIZ PIC 99 COMP VALUE 50.
03 RECBUF PIC X(50) •
03 NUMMES PIC 99 COMP VALUE O.
03 INTSIZ PIC 9 COMP VALUE 6.
03 INTMES PIC X(6) •
03 SNDSIZ PIC 99 COMP VALUE 10.
03 SNDDAT PIC x(lO) •

PROCEDURE DIVISION.

* *
*
*
*

ACCESS THE NETWORK. IF THE CALL COMPLETES
UNSUCCESSFULLY, EXIT.

*
*
*

AIOO-START.
CALL "OPNNTW" USING

OPNLUN
lOST
MSTAT.

IF IOSTAT (1) = 1
NEXT SENTENCE

ELSE
GO GIOO-END.

IF MSTATS (1) = 0 GO CIOO-CLOSNET.

*
*
*
*

CHECK TO SEE IF THERE IS ANYTHING ON THE TASK'S
DATA QUEUE.

*
*
*
*

BIOO-NETDAT.
CALL "GNDNT" USING

IOSTl
MLTYP
MLSIZ
MLBOX.

*
*
*
*
*
*
*
*
*
*

WAIT FOR COMPLETION OF A GNDNT OR RECNT CALL. IF A
RECNT CALL COMPLETES (INDEX = 2), PROCESS A RECEIVE.
IF A GNDNT CALL COMPLETES UNSUCCESSFULLY, CLOSE THE
NETWORK AND EXIT. IF THE TYPE OF DATA MESSAGE IN
THE MAILBOX IS NOT A CONNECT REQUEST OR AN INTERRUPT
MESSAGE, CLOSE THE NETWORK AND EXIT. IF AN INTERRUPT
MESSAGE IS IN THE MAILBOX (MLTYP = 2), SIMPLY ISSUE
A NEW GNDNT.

*
*
*
*
*
*
*
*
*
*

(continued on next page)

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-61

BIIO-WAIT.
CALL "WAITNT" USING

INDX
IOSTI
IOST2.

IF INDX = 2 GO DIOO-INQREC.
IF IOSTATI (1) NOT = 1 GO CIOO-CLOSNET.
IF MLTYP NOT < 3 GO C100-CLOSNET.
IF MLTYP = 2 GO BIOO-NETDAT.

*
*
*
*
*

A CONNECT REQUEST IS IN THE MAILBOX. ACCEPT THE
REQUEST TO ESTABLISH A LOGICAL LINK. IF THE CALL
COMPLETES UNSUCCESSFULLY, ISSUE A NEW GNDNT.

*
*
*
*
*

CALL "ACCNTW" USING
ACCLUN
lOST
MLBOX.

IF IOSTAT (1) NOT = 1 GO BIOO-NETDAT.

*
*
*
*

PICK UP THE DATA FROM THE TRANSMITTING TASK. ISSUE
A NEW GNDNT AND WAIT FOR COMPLETION.

*
*
*
*

CALL "RECNT" USING
ACCLUN
IOST2
RECSIZ
RECBUF.

GO BIOO-NETDAT.

*
*
*
*

A DISCONNECT OR ABORT WAS RECEIVED. DEACCESS THE
NETWORK AND EX IT.

*
*
*
*

CIOO-CLOSNET.
CALL "CLSNTW".
GO GIOO-END.

*
*
*
*
*
*

AN INQUIRY WAS RECEIVED. INCREMENT THE MESSAGE
COUNT. IF THE CALL COMPLETED UNSUCCESSFULLY, SEND
AN INTERRUPT MESSAGE CONTAINING THE MESSAGE NUMBER
IN WHICH THE ERROR OCCURRED.

*
*
*
*
*
*

(continued on next page)

3-62 DECnet-RSX Programmer's Reference Manual

D100-INQREC.
ADD 1 TO NUMMES.
IF IOSTAT2 (1) = 1 GO E100-SEND.
MOVE NUMMES TO INTMES.
CALL "XMINT" USING

ACCLUN
lOST
INTSIZ
INTMES.

GO F100-REC.

*
*
*

SEND DATA TO THE TASK.
*
*
*

E100-SEND.
CALL "SNDNTW" USING

ACCLUN
lOST
SNDSIZ
SNDDAT.

*
* ISSUE A NEW RECNT AND WAIT FOR COMPLETION.

*
*

* • *

F100-REC.
CALL "RECNT" USING

ACCLUN
IOST2
RECSIZ
RECBUF.

GO BllO-WAIT.
G100-END.

DISPLAY "COBREC -- END OF EXECUTION".
STOP RUN.

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-63

3.7.22 BASIC-PLUS-2 Intertask Communication Programming Example
(Transmit)

The following two programs (Transmit and Receive) are examples of BASIC-PLUS-2
intertask communication. They are cooperating tasks. BASTRN is a transmit task.
BASREC is a receiver task. BASTRN accesses the network, connects to BASREC,
transmits inquiries to BASREC, and receives responses from BASREC.

3-64

10

\
\
\
\

NOTE

These programming examples are also included in your tape or disk
kit.

!! !
!! !

To task build you must edit the task build command
file and the ODL file created by the build.

I!! >Add the line
!

ACTFIL=4
to the task build command file.

>Append

-NETLIB
to the USER: line of the ODL file.

-->Add the line

NETLIB: .FCTR LB:[l,l]NETFOR/LB
to the ODL fi le.

! !! DEFINE ARRAY CONSTANTS !!!
DIM IOST%(1%),MSTAT%(2%)
ERRMES$=STRING$(2%,O%)
CONBLK$=STRING$(72%,O%)
RECBUF$=STRING$(lO%,O%)
SNDBUF$=STRING$(SO%,O%)

!DEFINE ARRAY ELEMENTS
!DEFINE MAX STRING LENGTH
!STRING$(LENGTH,ASCII VALUE)

20 INPUT "NODE-N~~E <~_~STER>":NDN~¥.$ \ IF NDN&~S="" THEN
NDNAM$="MASTER" ELSE IF LEN(NDNAM$»6% THEN
PRINT "NODE-NAME TOO LONG, PLEASE RE-ENTER"

\ PRINT \ GOTO 20

30

\

INPUT "RECEIVE TASK-NAME <RECVER>";TSKNAM$ \ IF TSKNAM$=""
THEN TSKNAM$="RECVER" ELSE IF LEN(TSKNAM$»6% THEN
PRINT "TASK-NAME TOO LONG, PLEASE RE-ENTER"
PRINT \ GOTO 30

!! !
!! !

! !
! ,

&.
&.

&.
&.
&.
&.
&.
&.
&.
&.
&.
&.
&.
&.
&.
&.

&.
&.

" " "
&.
&.

"
&.
&.
&.

(continued on next page)

DECnet-RSX Programmer's Reference Manual

40

\
\
\

\

\

\
\

! !! DEFINE CONSTANTS !!!
IMMED%=-I%
OPNLUN%=I%
CONLUN%=2%
XMITS%=20%

SNDSIZ%=50%

RECSIZ%=10%

NDNAM.LEN%=LEN(NDNAM$)
TSKNAM.LEN%=LEN(TSKNAM$)

" !SET IMMED TO TRUE FOR GNDNTW "
! NETWORK OPNNT LUN ,
!CONNT LUN FOR THE LOGICAL LINK "
!THE NUMBER OF INQUIRIES "
!TO BE SENT TO THE REMOTE NODE ,
!THE SIZE OF THE MESSAGES TO ,
!BE SENT TO THE REMOTE NODE "
!THE SIZE OF THE MESSAGES TO "
!BE RECEIVED "
!LENGTH OF THE NODE-NAME "
!LENGTH OF THE TASK-NAME

50! !! ACCESS THE NETWORK !!! "
CALL OPNNTW BY REF(OPNLUN%,IOST%(),MSTAT%(» ,

\ IF IOST%(O%)=l% THEN 60 !IF SUCCESSFUL, BUILD THE ,
!CONNECT BLOCK ,

ELSE PRINT "NETWORK OPEN FAILED, IOST=";IOST%(O%l;IOST%(l%) ,
\ GOTO 160 !OPEN FAILED. PRINT THE STATUS ,

!BLOCK AND EXIT

60 I!! BUILD A FORMAT 1 CONNECT BLOCK I!! &
CALL 3FMTI BY REF(STAT%,CONBLK$,NDNAM.LEN%,NDNAM$ ~

,DUMMy%,TSKNAM.LE~%,TSKNAM$) ~

\ IF STAT% THEN 70 ELSE !IF SUCCESS GO ON ,
PRINT "ERROR BUILDING CONNECT BLOCK" ,

!ELSE TYPE OUT AN ERROR MESSAGE"
\ GOTO 150 !AND EXIT

70

\

\

80

90

100

\

110

\

\

I!! CONNECT TO THE TASK ON THE REMOTE NODE I!! , , , , ,
CALL CONNTW BY REF(CONLUN%,IOST%(),CONBLK$)
IF IOST%(O%)=I% THEN 80 !IF SUCCESS TELL HIM
ELSE PRINT "CONNECT FAIL: IOSTz"iIOST%(O%);","iIOST%(I%)

!ELSE PRINT STATUS BLOCK
GOTO 150 !ELSE PRINT STATUS BLOCK AND EXIT

PRINT "LINK ENABLED" !PRINT CONNECT COMFIRMATION
!TO NETWORK

,
I!! SEND AND RECEIVE MESSAGES TO AND FROM THE REMOTE NODE I!! ,
FOR MESNUM%=l% TO XMITS%

I!! FIRST GET ANY ERROR MESSAGES SENT
I!! SIDE VIA INTERUPT MESSAGES I!!

FROM THE OTHER I!!'

IF MSTAT%(O%)=O% THEN 110 !IF MSTAT%(O%)=O% NO MESSAGES
!ARE THERE

ELSE CALL GNDNTW BY REF(IOST%(),MLTYP%,2%,ERRMES$
,DUMMY%,IMMED%,2%) !GET THE MESSAGE

IF IOST%(O%)<>I% THEN 110 !IF WE COULDN'T GET MESSAGE
!JUST IGNORE IT

ELSE PRINT "ERROR ON INQUIRY #":ASCII(LEFT(ERRMES$,l%»
!PRINT OUT THE MESSAGE

" , , , , , ,

! !! SEND THE INQUIRY !!! ,
CALL SNDNTW BY REF(CONLUN%,IOST%(),SNDSIZ%,SNDBUF$) "
IF IOST%(O%)=l% THEN 120!IF SUCCESS CONTINUE ,
ELSE PRINT "ERROR ON INQUIRY DURING SEND: ";MESNUM% ,

!OTHERWISE TYPE OUT AN ERROR ,
GOTO 130 !MESSAGE AND START A NEW MESSAGE

(continued on next page)

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-65

120 I!! RECEIVE THE RESPONSE FROM THE REMOTE NODE I!! &
CALL RECNTW BY REF(CONLUN%,IOST%(),RECSIZ%,RECBUF$) &

\ IF IOST%(O%)=I% THEN 130!IF SUCCESS CONTINUE &
ELSE PRINT "ERROR ON INQUIRY DURING RECEIVE: ";MESNUM% &

!OTHERWISE TYPE OUT AN &
!ERROR MESSAGE

130 NEXT MESNUM% !END OF LOOP

140 I!! DISCONNECT THE LINK I!! &
PRINT "LINK DISABLED" !PRINT OUT DISCONNECT MESSAGE &

\ CALL DSCNTW BY REF(CONLUN%,IOST%(»

150 !ll COME HERE TO DEACCESS THE NETWORK AND EXIT I!! &

160
\

3-66

CALL CLSNTW

PRINT
END

"END OF EXECUTION" &

DECnet-RSX Programmer's Reference Manual

3.7.23 BASIC-PLUS-2 Intertask Communication Programming Example
(Receive)

When BASTRN completes sending inquiries, it disconnects the link, deaccesses the
network, and exits. Any error found by BASREC is transmitted to BASTRN as an
interrupt message. BASTRN then displays the interrupt message on the terminal.

10 !! !
!ll

!

To task build you must edit the task build command
file and the ODL file created by the build.

>Add the line

ACTFIL=4
to the task build command file.

>Append

-NETLIB
to the USER: line of the ODL file.

>Add the line

!. NETLIB: .FCTR LB:[l,l]NETFOR/LB
!! to the ODL file.

!! ! " !! ! "
! I " " " " " " " " " " " !.! " !! ! " !! ! "

I!! INITIALIZE CONSTANTS I!! "
DIM MSTAT%(2%),IOST%(1%),IOSTl%(1%),IOST2%(1%) "

\ INTMES$=STRING$(2%,0%) !DEFINE MAX LENGTH OF STRINGS "
\ MLBX$=STRING$(98%,0%) !STRING$(LENGTH,ASCII VALUE) "
\ RECBUF$=STRINGS (50%,0%)! "
\ SNDDAT$=STRINGS(lO%,O%)

20

\
\

\

\
\
\

30

\

40

50

\

! !! MORE CONSTANTS !!!
OPNLUN%=l%
ACCLUN%=2%
RECSIZ%=50%

INTSIZ%=2%

NUMMES%=O%
INDEX=O%
SNDSIZ%=10%

! !! ACCESS NETWORK !!!

" !NETWORK OPNNT LUN "
!ACCNT LUN FOR THE LOGICAL LINK "
!SIZE OF DATA BUFFER TO BE "
!RECEIVED "
!SIZE OF INTERRUPT DATA BUFFER "
!TO SEND "
!NUMBER OF MESSAGES RECEIVED "
!RECEIVE COMPLETION FLAG "
!NUMBER OF BYTES TO SEND BACK

CALL OPNNTW BY REF(OPNLUN%,IOST%(),MSTAT%(» " " " "
IF IOST%(0%)<>1% THEN 140 !IF FAILURE JUST EXIT
ELSE IF MSTAT%(O%)=O% THEN 90!IF NOTHING ON MAILBOX

CALL

CALL

IF

!JUST CLOSE AND EXIT

GNDNT BY REF(IOST1%(),MLTYP%,98%,MLBX$)
!ISSUE A GET NETWORK DATA

WAITNT BY REF(INDEX%,IOSTl%(),IOST2%(»
!WAIT FOR A COMPLETION

INDEX%=2% THEN 100 !IF INDEX%=2% THEN A RECEIVE
!HAS BEEN COMPLETED

"
" " "

(continued on next page)

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-67

60

70

II! NETWORK DATA HAS BEEN RECEIVED III
IF IOST1%(0%)<>1% THEN 90 !IF GNDNT FAILED JUST

!CLOSE AND EXIT
ELSE IF MLTYP%>=3% THEN 90 !IF MLTYP%>=3% THEN LINK HAS

!BEEN BROKEN
ELSE IF MLTYP%=2% THEN 40 !IF MLTYP%=2% WE'VE RECEIVED

!AN INTERRUPT MESSAGE, JUST
! I SSUE A GNDNT

!!! WE'VE RECEIYED A CONNECT REQUEST - iSSUE AN ACCEPT!!!

&
&
&
&
&
&
&

.s.

CALL
IF

ACCNTW BY REF(ACCLUN%,IOST%(),MLBX$) &
\

80

\

IOST%(O%)<>l% THEN 40 !IF FAILURE ISSUE A NEW GNDNT

90

\

100

I!! ISSUE A RECEIVE TO PICK UP DATA I!!
CALL RECNT BY REF(ACCLUN%,IOST2%(),RECSIZ%,RECBUF$)
GOTO 40 !ISSUE A NEW GNDNT AND

!WAIT FOR THE COMPLETION

I!! WE COME HERE UPON RECEIVING A DISCONNECT OR ABORT I!!
CALL CLSNTW !DEACCESS THE NETWORK
GOTO 140 !AND EXIT

I!! WE COME HERE IF WE RECEIVE AN INQUIRY!!!
NUMMES%=NUMMES%+l% !INCREMENT THE MESSAGE COUNT

\ IF IOST2%(0%)=1% THEN 120 !IF IOST2%(0%)=1 ALL'S O.K.

110 I!! IF THERE WAS AN ERROR, SEND BACK AN INTERRUPT MESSAGE
I!! WITH MESSAGE NUMBER
INTMES$=CHR$ (NUMMES%) +CHR$ (0%) !SEND THE MESSAGE NUMBER

\ CALL XMINT BY REF(ACCLUN%,IOST%(),INTSIZ%,INTMES$)
\ GOTO 130 !GO ISSUE A NEW RECEIVE

120 I!! HERE THE USER CAN LOOK AT THE DATA RECEIVED IN RECBUF$
II! AND RESPOND BY REPLACING THE REQUESTED INFORMATION

130
\

!l! INTO SNDDAT$
I!! SEND BACK THE DATA AND ISSUE A RECNT
CALL SNDNTW BY REF(ACCLUN%,IOST%(),SNDSIZ%,SNDDAT$)

CALL
GOTO

RECNT BY REF(ACCLUN%,IOST2%(),RECSIZ%,RECBUF$)
50 !WAIT FOR A COMPLETION

140 III EXIT PROG~M !l!
PRINT "END OF PROGRAM EXECUTION"

\ END

!! !
I! !

&
&
&

&
&

&
&

&
&
&
&

"
" &
&

"
&

,.
01

"

3-68 DECnet-RSX Programmer's Reference Manual

3.8 Remote File Access

This section contains descriptions and usage guidelines specific to the remote file
access calls listed alphabetically in Table 3-3.

Table 3-3: Remote File Access Call Summary

Call

ACONFW

ATTNFW

CLSNFW

DELNFW

EXENFW

GETNFW

OPANFW

OPMNFW

OPRNFW

OPUNFW

OPWNFW

PRGNFW

PUTNFW

RENNFW

SPLNFW

SUBNFW

Function

To set record and file access options

To set extended attributes

To close a file

To delete a file

To execute a file

To read a single record

To open and append a sequential file

To open and modify a sequential file

To open and read a sequential file

To open and update a sequential file

To create, open, and write a sequential file

To discard an open file

To write a record to a file

To rename a file

To open, write, and print a file

To open, write, and execute a file

These calls are implemented by subroutines. The network open call, OPNNT[W], and
the network close call, CLSNT[W], are also used in remote fHe access operations. You
must always issue OPNNT[W] first because OPNNT[W] allows your task to access
the network. Issue CLSNT[W] last to close your task's access to the network.

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-69

3.8.1 Opening Files

The following nine subroutines open files:

ACONFW Specifies record and file access options before performing a specific file
operation.

ATTNFW Specifies extended attributes before performing OPWNFW, SPLNFW,
SUBNFW, OPRNFW, OPANFW, and RENNFW calls.

OPRNFW Opens an existing file for reading, beginning with the first record.

OPANFW Opens an existing file and appends records to the end of the file.

OPMNFW Opens an existing file for record modification.

OPUNFW Opens an existing file for record update.

OPWNFW Creates and opens a file, then writes records to it, beginning with the
first record position.

SPLNFW Performs the same function as OPWNFW and then prints the file.

SUBNFW Performs the same function as OPWNFW and then executes the file.

Each open subroutine creates a DECnet logical link to the node where the file resides
and then creates and opens the file. You must use the same LUN to open, write, and
close the file. This LUN must be one not in use.

You must issue an ATTNFW or ACONFW call immediately before
OPRNFW,OPANFW, and RENNFW calls to specify additional attributes to be re­
turned after the open operation completes.

3.8.2 Performing File Operations

The following subroutines perform file operations:

EXENFW Executes a remote file

DELNFW Deletes a remote file

RENNFW Renames a remote file

3.8.3 Performing Record Operations

The following subroutines perform record operations:

GETNFW Reads a record from a remote file

PUTNFW Writes a record to a remote file

3-70 DECnet-RSX Programmer's Reference Manual

3.8.4 Closing Files and Completing Calls

When you complete a file access operation, use CLSNFW to close the file. If you want
to clean up errors before closing the file, use PRGNFW for your close operation. Both
CLSNFW and PRGNFW disconnect the logical link and free the logical unit number
for use. If you do not perform a clost operation before attempting a CLSNT[W] to
deaccess the network, or if a network abort occurs while the file is open, the network
will close the file. However, all data may not have been transferred successfully.

Remote file access calls are synchronous and do not return to the user until an
operation completes.

3.8.5 Setting Task Build Parameters

DECnet-RSX uses network file access routines (NFARs) as the interface at the local
node to access remote files for user applications. At task build time you can override
defaults to tailor these NF ARs for a particular application. Task build parameters
you can set and their defaults are:

• Event flags .TREF(default 17) and .RCEF(default 18)

• Buffering level (default 2)

• Maximum record size (default 256. bytes)

• Buffer space allocation (no default)

3.8.5.1 Setting Event Flags - The network file access routines (NF ARs) require
the exclusive use of two event flags. By default, the event flags used are 17(.TREF)
and 18(.RCEF). To override these defaults, issue the following commands in the task
builder command file:

GBLDEF=. TREF:value
GBLDEF=.RCEF:value

The value variable specifies an event flag and must be in the form of an octal integer
from 1 to 200 (octal). Event flags 33. through 64. are global flags.

3.8.5.2 Setting Buffering Level- The NFARs can be configured for multibuffering
to improve throughput. However, this requires more internal buffering space. The
default buffering level is 2. To override this default, issue the following command in
the task builder command file:

GBLDEF=$NFRSZ:buffering-level

The buffering-level variable specifies an integer from 1 to 4. If the remote system is
RSX or lAS, you can ask the system manager for the buffering level used for that
system and use the same one.

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-71

3.8.5.3 Setting Maximum Record Size - The internal buffers used by the NF ARs
must be large enough to hold the largest data record in the remote file. The default
maximum record size is 256 bytes. To override this default, include th~ following
command in the task builder command file:

GBLDEF=$NFRSZ:record-size

The record-size variable specifies an octal value. If the remote system is RSX or lAS,
use the same record size used by the remote system.

If you intend to transfer an ASCII file, add an extra 2 bytes when calculating the
maximum record size. The extra 2 bytes are required for the carriage return and line
feed characters that are appended to each ASCII record. If you intend to transfer
sequenced variable length records, add an extra 2 bytes for the sequence number
included with each record. If you intend to transfer an ASCII file with sequenced
variable length records, add an extra 4 bytes.

3.8.5.4 Setting Buffer Space Allocation - The NF ARs allocate buffer space from
the file storage region used by the File Control System (FCS-11). This space is
allocated in the P-section $$FSRl. Note that the module NFAFSR from the NET­
FOR object library must be included in your task. Be sure to enter the following line
in the task build command as an input file:

[l,lJNETFOR/LB:NFAFSR

Use the following formula to calculate the amount of buffer space required to perform
remote file access:

«$NFRSZ+14.)*($NFNMB+ 1)) +64.) * (max-rem-files) +(512. * <max-lac-files»

where

max-rem-files is the maximum number of remote files that can be opened simulta­
neously.

max-loc-files is the maximum number of local files that can be opened simultane­
ously.

Note that the amount of space (512.) needed for local files will vary according to the
language you are using.

At task build time, extend the file storage region by the amount of space calculated by
this formula by including the following command in the task builder command file
(the value given must be in octal bytes):

EXTSCT=$$FSR1 :value

3-72 DECnet-RSX Programmer's Reference Manual

3.8.5.5 Using the Task Build Procedure - It is necessary for a task to link to
NETFOR.OLB in order to use the DECnet-RSX remote file access capabilities. Edit
the ODL file created by the compiler. The following is an example of a task using the
CMD and ODL files. This task uses the defaults for the buffer size ($NFRSZ), the
number of buffers ($NFNMB), and only one link. The underlined items indicate the
edits required for the task builder to include remote file access capabilities in the
task. Boldface items are necessary for network access.

FORTRAN Example:

FILES.CMD {.B SY:FILES,SY:FILES/-SP=SY:FILES.LB:[1,1JF4POTS
LB:[1 ,1]NETFOR/LB, NETFOR I LB: NFAFSR

I
EXTSCT=$$FSR1:2700
II

You enter:

MCR>TKB @FILES

COBOL Example:

FILES.CMD
SY:FILES,SY:FILES/-SP=SY:FILES/MP
EXTSCT=$$FSR1:2700
II

FILES.ODL

;MERGED ODL FILE CREATED ON 28-FEB-82 AT 18:54:32
;COBOL STANDARD ODL FILE GENERATED ON 28-FEB-82 18:48:28
;COBOBJ=FILES.OBJ
;COBMAIN
LlBR1 :.FCTRLB:[1 ,1]NETFOR/LB- NET FOR ILB: NFAFSR
CBOBJ$: .FCTR SY:[200,200JFILES
CBOTS$: .FCTR LB:[l,lJCOBLIB/LB
OBJRT$: • FCTR CBOBJ$-CBOTS$-LlBR1

.ROOT OBJRT$

.END

You enter:

MeR .:: TK B @F I LES

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-73

BASIC-PLUS-2 Example:

FILES.CMO

SY:FILES/CP/FP,FILES/-SP=SY:FILES/MP
UNITS = 14
ASG = TI:13
ASG = SY:5:G:7:8:8:10:11:12
EXTSCT = $$FSR1:2700
II

FILES.oOL

USER:
LIBR:
NETLlB:

.RooT

.FCTR

.FCTR
.FCTR

@LB:[l tl]BP2ICl
@LB:[ltl]RMS1U-(

.END

You enter:

MCR>TKB @FILES

BASIC2-RMSRoT-USER,RMSALL
SY : FILES - NETLIB
LB:[1,1]BP2oTS/LB
LB:[1,1]NETFOR/LB- NETFoR I LB: NFAFSR

3.8.6 Using ASCII Zero (ASCIZ) Strings

Some of the network file access subroutines require that you provide one or more
arguments in the CALL statement as ASCIZ strings. An ASCIZ string is a string of
ASCII characters terminated by a binary (0).

You can create an array/numeric data item, store the string in the array/numeric data
item, then set the last element to zero (0).

FORTRAN Example:

DIMENSION IFILE (12)
DATA IFILE/'OK' ,'0:' ,'[1',' ,4' ,']C',
'N ' , I TR ' , 'oL ' t ' • A ' , 'LG I , , ; 2' I
IFILE(12)=O

You then specify the array name in the CALL statement:

CALL 0 PRNFW ([un ,status ,node , , I FILE)

3-74 DECnet-RSX Programmer's Reference Manual

COBOL Example:

01 NULLl PIC 9 COMP VALUE O.

01 NULLS REDEFINES NULL1.

03 NULL OCCURS 2 TIMES PIC X(l).

01 IFILE PIC }'{(23) 1.IALUE "DKO:[200t200tJNAME.C5L;1"

STRING IFILE
NULL (1)

INTO IDENT.

You then specify the string in the CALL statement:

CALL II OPRNFW II US I NG lun,status,node,ident.

BASIC-PLUS-2 Example:

I F I LE$ = II DK 0: [200 t 200] NA ME. 52 S ; 1" +CHAR$ (O'X,) CHAR$ (o'x,)

You then specify the array name in the CALL statement:

CALL OPRNFW BY REF (LUN% tstatusi., () tnode$ tident$ tifile$)

3.S.7 Common Argument Definitions for Remote File Access Calls

Arguments commonly used for remote file access calls are defined on the following
pages to avoid needless repetition throughout the call descriptions. Argument defini­
tions here are divided into four categories: a general category containing argument
definitions common to all languages, and three individual language categories for
arguments with language-specific definitions.

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-75

GENERAL

• lun

is an integer variable or constant that specifies the logical unit number of the logical
link created for a specific file access operation.

• node

specifies the name of the node to which the call is directed. It is a 1- to 7-element
array/string that ends with a binary 0 and contains a 1- to 6-character ASCIZ string.

• ident

contains three successive ASCIZ strings: the user ID, password, and account num­
ber necessary to access remote node files. It is a 1- to 43.-element ASCIZ array.

Enter a null value (0) for each item not required by the remote node or each item
previously entered. For example, you may have already entered the required infor­
mation in an alias node name block.

• ifile

is a byte array/string containing a variable length ASCIZ string that contains the
file specification for a file access operation. Be sure to use the remote node's file
specification syntax.

FORTRAN

• References to integers imply single-precision integer values.

• status

specifies an array that will contain completion status information on return from
the call. This 2-element single-precision integer array will contain the following
values when the call completes:

status(l) returns an error completion code. Refer to Table C-1 in Appendix C.

status(2) depends on the content of the first status word. Refer to Appendix C.

COBOL

• For DECnet COBOL, the logical unit number 1 is a reserved number and should
never be assigned for the lun argument.

• status

specifies an elementary numeric data item that will contain completion status
information on return from the call. This elementary numeric data item will contain
the following values when the call completes:

status(l) returns an error completion code. Refer to Table C-1 in Appendix C.

status(2) depends on the content of the first status word. Refer to Appendix C.

3-76 DECnet-RSX Programmer's Reference Manual

BASIC-PLUS-2

• status%O

specifies an array that will contain completion status information on return from
the call. This 2-element integer array will contain the following values when the call
completes:

status%(O) returns an error completion code. Refer to Table C-l in Appendix C.

status%(l) depends on the content of the first status word. Refer to Appendix C.

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-77

ACONFW

Set Access Options

3.8.8 ACONFW - Set Access Options

Use:

Call ACONFW before a specific file operation to specify record and file access
options you want applied to that file operation. These options remain in effect
until the file is closed.

Formats:

FORTRAN: CALL ACONFW (lun,[fac],[shr]'[fop],[accopt)

COBOL: CALL "ACONFW" USING lun,[fac],[shr],[fop]'

BASIC: CALL ACONFW BY REF (lun%,[fac%],[shr%]'[fop%O])

Arguments:

lun

specifies the logical unit number of the logical link assigned to the file operation
you want to set options for.

fac

specifies the file access operations to be allowed while accessing the file. Use this
argument only for open and create operations. The fac value overrides the specific
OPxNFW call used. Valid values are:

3-78

NF$PUT
NF$GET
NF$DEL
NF$UPD
NF$TRN
NF$BIO
NF$REA
NF$WRT

Put access
Get access (default)
Delete record access
Update record access
Truncate file access
Block I/O
Block I/O read
Block I/O write

DECnet-RSX Programmer's Reference Manual

*

shr

specifies the file sharing to be allowed by the remote system. Use this argument
only for open and create operations. The actual functioning is dependent on
remote system capabilities. Valid values are:

fop

NF$PUT
NF$GET
NF$DEL
NF$UPD
NF$NIL

Put access
Get access (default)
Delete record access
Update record access
No access to others

specifies a 3-word array for file-processing options to be used for open, create, and
close operations. To specify a fop value for close operations, the ACONFW call
must be made after the file has been opened, because the open call will overwrite
the current value. Valid values are:

First word:

NF$CTG Create contiguous file
NF$SUP Supercede existing file
NF$TMP Create temporary file
NF$MKD Create temporary file and mark for delete

Second word:

NF$MXV
NF$SPL
NF$EXC
NF$DLC
NF$TEF

Maximize version number on create
Spool on close
Execute on close
Delete on close
Truncate on close

Completion of open/create operations returns:

First word:

NF$FLK
NF$CTG
NF$DIR

File is locked
File is contiguous
File is a directory (system dependent)

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-79

ATTNFW

Set Extended Attributes

3.8.9 ATTNFW - Set Extended Attributes

Use:

Use ATTNFW to specify extended attributes to be used by create, open, and close
operations. These attributes will be returned to the caller after the specified
operation completes.

Call ATTNFW immediately before file create operations (OPWNFW, SPLNFW,
and SUBNFW) to specify additional attributes when creating the file.

Call ATTNFW immediately before file open operations (OPRNFW, OPANFW,
and RENNFW) to specify additional attributes to be returned when opening the
file.

Call ATTNFW immediately before file close operations to specify a change-at­
tributes-on-close sequence.

Formats:

FORTRAN: CALL ATTNFW (lun,[namesize],[name],[atb],
[protblk],[owner],[datemenu],[dateblk])

COBOL: CALL "ATTNFW" USING lun,[namesize],[name],[atb],[protblk],
[owner], [datemenu], [dateblk].

BASIC: CALL ATTNFW BY REF (lun%,[namesize%],[name$],[atb%O],
[protblk%O],[owner$],[datemenu%],
[dateblk%O])

Arguments:

lun

*

specifies the logical unit number of the logical link for the specified file operation.

namesize

specifies the maximum length of the array/string that can be returned to the
resultant file specification. Use this single-word argument for open and create
operations.

name

specifies the array/string containing the resultant file name. This argument can
be used for all operations. The returned file name will be an ASCIZ string.

3-80 DECnet-RSX Programmer's Reference Manual

* atb

specifies a Files-II user file attributes block. When specifying create operations,
the user program is responsible for setting valid values because the NF ARs will
not check these values.

NOTE

If atb is specified, the ichar(2), ichar(3), and len arguments will be
ignored when used with open or create calls. Use the fields NF$ORG,
NF$RAT, and NF$MRS, instead.

When specifying create and open operations, atb returns a 10. word block in the
following format:

NF$RAT RECORD ATTR. I FILE ORG./REC FMT

LONGEST RECORD LENGTH

HIGHEST VBN ALLOCATED (high word)
~ -

(low word)

,END-OF-FILE VBN (high word)

I-- -
(low word)

FIRST FREE BYTE

NF$FSZ FIXED CTR. SIZE I BUCKET SIZE

MAXIMUM RECORD SIZE

DEFAUL T EXTEND QUANTITY

NF$ORG

NF$LRL

NF$HBK

NF$EBK

NF$FFB

NF$BKS

NF$MRS

NF$DEQ

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-81

*

For further information on the values of these fields, see the IAS/RSX I/O Operations
Reference Manual, Appendixes A and F.

* protblk

specifies an array containing file protection information to be used for input for
create and close operations, and returns information from create and open opera­
tions. The following format describes a 5-word array:

FILE OWNER STRING SIZE

SYSTEM PROTECTION MASK

OWNER PROTECTION MASK

GROUP PROTECTION MASK

WORLD PROTECTION MASK

If the file owner size is 0, the owner string will not be returned.

The format of the protection masks is described as follows:

Bit °
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 8
Bit 9

Deny read access
Deny write access
Deny execute access
Deny delete access
Deny append access
Deny directory list access
Deny update access
Deny change protection access
Deny extend access

If a word is set to a -1, that protection will not be sent.

owner

specifies an ASCIZ string/array identifying the file owner to be used for input for
create operations and for output from create and open operations. The maximum
size of this string/array must be specified in the first word of the protblk array.

* datemenu

specifies which values in the date block are to be used for input for create and
close operations or those values returned on output from create and open opera­
tions. Valid values are:

Bit °
Bit 1
Bit 2
Bit 3

3-82

Revision number
Revision date and time
Creation date and time
Expiration date

DECnet-RSX Programmer's Reference Manual

* dateblk

specifies an I8-,word array containing the date, time, and revision information
associated with the file. Files-II timestamps are stored in ASCII in the format
DDMMMYYHHMMSS, and have the following restrictions: leading zeros are
shown, and MMM is the 3-letter month abbreviation in uppercase letters. The
following format shows dates in a block:

REVISION NUMBER NF$RVN

NF$RDT

REVISION DATE

NF$RTI

REVISION TIME

NF$CDT

CREATION DATE

NF$CTI

CREATION TIME

NF$EDT

EXPI RATION DATE

(not used)

For further information on the format of dates in a block, see the IAS/RSX I/O
Operations Reference Manual Appendix F.

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-83

CLSNFW

Close a File

3.8.10 CLSNFW - Close a File

Use:

Call CLSNFW to close a remote file. CLSNFW forces completion of all pending
file operations, ensures the file directory information is valid, optionally modifies
the attributes specified by the changeattr argument and a previous ATTNFW
call, and frees the logical unit number when the call completes.

NOTE

Some systems do not support the change attribute on close capabil­
ity.

Formats:

FORTRAN: CALL CLSNFW (lun,status,[changeattr])

COBOL: CALL "CLSNFW" USING lun,status,[changeattr].

BASIC: CALL CLSNFW BY REF (lun%,status%O,[changeattr%])

Arguments:

lun

*

specifies the logical unit number of the logical link you want to close. See defini­
tion in Section 3.8.7. Use the same LUN specified in the previous open call.

status

specifies completion status information on return from CLSNFW. See definition
for your language in Section 3.8.7. Refer to Table C-l in Appendix C for a
complete code list.

changeattr

specifies the attributes to be changed when this file is closed. The attributes must
have been specified by a previous ATTNFW call either at open time or just prior
to this call. Valid values are:

NF$PRC
NF$DTC

Change protection
Change dates and times

3-84 DECnet-RSX Programmer's Reference Manual

DELNFW

Delete a File

3.8.11 DELNFW - Delete a File

Use:

Call DELNFW to delete a remote file.

Formats:

FORTRAN: CALL DELNFW (lun,status,node,ident,ifile)

COBOL: CALL "DELNFW" USING lun,status,node,ident,ifile.

BASIC: CALL DELNFW BY REF (lunc(',status~'c(),n()de$,ident$,ifile$)

Arguments:

lun

*

specifies the logical unit number of the logical link you want to delete. See
definition in Section 3.S.7.

status

specifies completion status information on return from DELNFW. See definition
for your language in Section 3.S.7. Refer to Table C-l in Appendix C for a
complete code list.

node

specifies the name of the node for the file you want to delete. See definition in
Section 3.S.7.

ident

is an array/string containing access control information. See definition in Section
3.S.7.

ifile

specifies an ASCIZ string containing the file specification for the file to be de­
leted. See definition in Section 3.S.7.

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-85

EXENFW

Execute a File

3.8.12 EXENFW - Execute a File

Use:

Call EXENFW to submit an existing remote file to the batch or command file
processor. The remote file is not deleted after completion of this call.

Formats:

FORTRAN: CALL EXENFW (lun,status,node,ident,ifile)

COBOL: CALL "EXENFW" USING lun,status,node,ident,ifile.

BASIC: CALL EXENFW BY REF (lun%,status%O,node$,ident$,ifile$)

Arguments:

lun

*

specifies the logical unit number of the logical link you want to execute. See
definition in Section 3.8.7.

status

specifies completion status information on return from EXENFW. See definition
for your language in Section 3.8.7. Refer to Table C-l in Appendix C for a
complete code list.

node

specifies the name of the node for the file you want to execute. See definition in
Section 3.8.7.

ident

is an array/string containing access control information. See definition in Section
3.8.7.

ifile

specifies an ASCIZ string containing the file specification for the file to be exe­
cuted. See definition in Section 3.8.7.

3-86 DECnet-RSX Programmer's Reference Manual

GETNFW

Read a Single Record

3.8.13 GETNFW - Read a Single Record

Use:

Call GETNFW to read a record from a file. The record is stored in an array/string
that you specify in the inarray argument for FORTRAN programmers or the
instring argument for COBOL and BASIC programmers. Each successive
GETNFW call reads the record into the same array/string. The previous record is
overlaid and is no longer available in the user record storage area.

If the optional rae argument is not specified, the default will be sequential record
transfer (NR$RTM). The records will be read sequentially from the first record in
the file.

If a rae argument is given and specifies random access, the keyptr argument must
specify the record to be read.

If an error occurs while a file is being read, the logical link is maintained. You
must call CLSNFW to close the file.

Formats:

FORTRAN: CALL GETNFW (lun,status,inbytes,inarray,
[seqno], [rael,[keyptrl,[rop])

COBOL:

BASIC:

CALL "GETNFW" USING lun,status,inehars,
instring, [seqno] , [rae] ,[keyptr] , [rop].

CALL GETNFW BY REF (lun%,status%O,inchars%,instring$,
[seq no%], [rae%], [keyp tr% 0]' [rop%O])

Arguments:

lun

*

specifies the logical unit number of the logical link created for reading your
records. See definition in Section 3.8.7. Use the same LUN you assigned in the
OPRNFW, OPMNFW, or OPUNFW call.

status

specifies completion status information on return from GETNFW. The second
word contains the byte count length of the record returned. See definition for your
language in Section 3.8.7. Refer to Table C-l in Appendix C for a complete code
list.

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-87

*

*

inbytes/inehars

specifies the length in bytes/characters of inarray/instring. It is an integer variable
or constant. The actual length of the record read is returned in the second status
word.

inarray/instring

specifies the array/string that will contain the record to be read from the file. If
the record size is larger than the integer you specified in inbyteslinehars, the
balance of the record is lost.

seqno

specifies the sequence number for the record to be read from the file. You must
specify this integer variable for sequenced variable length records. If the record
type is not sequenced variable length (or in RMS terms, variable with fixed
control, VFC) the seqno argument is ignored. Be sure to specify the record type in
the iehar argument of an open call.

rae

specifies the record access mode to be used while accessing the file. Use this
single-word argument only for open/create operations. Once a file transfer mode is
selected, the rae value will be ignored until the end-of-file is detected. Valid
values are:

NR$SEQ
NR$KEY
NR$RFA
NR$RTM
NR$VBN
NR$BTM

keyptr

Sequential by record
Random by relative record number (RRN)
Random by record file address (RF A)
Sequential file transfer by records (default)
Random blocks by virtual block number (VBN)
Sequential file transfer by blocks

specifies the record. The length is assumed from the rae argument value.

3-88 DECnet-RSX Programmer's Reference Manual

RAe Key

NR$KEY Two-word binary value of RRN
Low-order word first

NR$RFA Three-word binary RFA
Low-order word first

NR$VBN Two-word binary value of VBN
Low-order word first

rap

specifies record processing options. Valid values are:

NR$EOF Position to EOF
NR$UIF Update if existing record

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-89

OPANFW

OPMNFW

OPRNFW

OPUNFW

3.8.14 OPANFW - Open a File for Appending Records

OPMNFW - Open a File for Modifying Records

OPRNFW - Open a File for Reading Records

Use:

OPUNFW - Open a File for Updating Records

OPWNFW - Create and Open a File for Writing Records

See Section 3.8.18.

Call one of the following subroutines to open an existing file:

Call OPANFW to open a sequential file for appending records.

Call OPMNFW to open and modify a sequential file.

Call OPRNFW to open a sequential file for reading records.

Call OPUNFW to open and update a sequential file.

Formats: - -
FORTRAN: CALL {OPANFW} (lun,status, node, ident,

OPMNFW ifile, ichar, len, [iblock])
OPRNFW
OPUNFW

COBOL:

BASIC:

3-90

CALL {'OPANFW" }USING lun,status,node,ident,
"OPMNFW" ifile, ichar, len, [iblock].
"OPRNFW"
"OPUNFW"

CALL {OPANFW} BY REF (lun%,status%O,node$,ident$,
OPMNFW ifile$,ichar$,len%,[iblock])
OPRNFW
OPUNFW

DECnet-RSX Programmer's Reference Manual

Arguments:

lun

*

specifies the logical unit number of the logical link created for the OPANFW,
OPMNFW, OPRNFW, or OPUNFW call. Use the same LUN for any succeeding
PUTNFW, PRGNFW, or CLSNFW call. See definition in Section 3.8.7.

status

specifies completion status information on return from OPANFW, OPMNFW,
OPRNFW, or OPUNFW. See definition for your language in Section 3.8.7. Refer
to Table C-l in Appendix C for a complete code list.

node

specifies the name of the node for the file you want to open. See definition in
Section 3.8.7.

ident

is an array/string containing access control information. See definition in Section
3.8.7.

ifile

specifies an ASCIZ string containing the file specification for the file to be
opened. See definition in Section 3.8.7.

* ichar

is a 3-element array/string. If the values you specify differ from those stored in the
file, the stored values are used. When the open call completes, the ichar
array/string contains the stored values. Check these values to see how the file was
actually opened. Make sure you specify the appropriate ASCII letter code as
defined in the following three fields:

ichar(l) - Mode

Letter Code

A
I

Description

ASCII file
Binary image file

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-91

ichar(2) - Record Format

Letter Code

U
F
V
S
A

ichar(3) - Carriage Control

Letter Code

F
T
N
P

Description

Undefined format records
Fixed length records
Variable length records
Sequenced variable length records (VFC)
ASCII stream format

Description

FORTRAN carriage control
Terminal carriage control
No carriage control
Print file VFC

The following example displays one method for the ichar argument. In this exam­
ple, ichar specifies the file to be opened as an ASCII file ('A'), with variable length
records (,V'), and FORTRAN style carriage control ('F').

Example:

BYTE ICHAR (3)

DATA ICHARI 'A' t '1.1' t 'F '/

I CHAR PIC }OO{ I.lALUE II AI.lF II + (COBOL)

ICHAR$=IAI.lF" (BASIC)

* len

is an integer variable that specifies record length. If the file has variable length
records, enter the maximum record length. A null value (0) implies there is no
maximum record length.

* iblock

is an integer variable that returns the number of blocks currently allocated to the
file. The values are described as follows:

Entry

+n

-n

3-92

Description

Number of noncontiguous blocks
(where n = number of blocks)

Number of contiguous blocks
(where n = number of blocks)

DECnet-RSX Programmer's Reference Manual

PRGNFW

Discard an Opened File

3.8.15 PRGNFW - Discard an Opened File

Use:

Call PRGNFW to close a remote file because one or more errors occurred in the
transfer. If the file was newly created by an OPWNFW, SPLNFW, or SUBNFW
call, it is deleted. If the file existed previously and was just opened by an
OPRNFW or OPANFW call, it is closed in its current state.

Formats:

FORTRAN: CALL PRGNFW (lun,status)

COBOL:

BASIC:

CALL "PRGNFW" USING lun,status.

CALL PRGNFW BY REF (lun%,status%O)

Arguments:

lun

*

specifies the logical unit number of the logical link you want to close. See defini­
tion in Section 3.8.7. Use the same LUN specified in the previous open call.

status

specifies completion status information on return from PRGNFW. See definition
for your language in Section 3.8.7. Refer to Table C-l in Appendix C for a
complete code list.

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-93

PUTNFW

Write a Single Record

3.8.16 PUTNFW - Write a Single Record

Use:

Call PUTNFW to write a record to a file. PUTNFW writes the indicated number
of bytes/characters from the array/string you specify in the outarray/outstring
argument.

If the optional rae argument is not specified, the default will be sequential record
transfer (NR$RTM). The records will be written sequentially beginning at the
first record position unless the file was opened with an OPANFW call, in which
case they are written after the last record.

If a rae value is given and specifies random access, the keyptr argument must
specify the record position where the record will be written.

If a PUTNFW call returns an error, you can close the output file with either a
PRGNFW or CLSNFW call, or you can continue the write (PUTNFW) operation.

Formats:

FORTRAN: CALL PUTNFW (lun, status, outbytes, outarray,
[seqno], [rae), [keyptr), [rop])

COBOL:

BASIC:

CALL "PUTNFW" USING Zun, status, outchars, outstring,
[seqno), [rae), [keyptr],[rop].

CALL PUTNFW BY REF (Zun%,status%O,outchars%,outstring$,
[seqno%),[rac%),[keyptr%O),[rop%OD

Arguments:

*

Zun

specifies the logical unit number of the logical link created for writing a single
record. See definition in Section 3.8.7. Use the same LUN you assigned in the
OPANFW, OPMNFW, OPUNFW, SPLNFW, SUBNFW, or OPWNFW call.

status

specifies completion status information on return from PUTNFW. See definition
for your language in Section 3.8.7. Refer to Table C-l in Appendix C for a
complete code list.

3-94 DECnet-RSX Programmer's Reference Manual

outbytes/outehars

specifies the number of bytes/characters to be written to the file from the
outarray/outehars argument. This integer variable or constant must be equal to or
less than the maximum record length you specified in the open call. If data
overrun occurs, the remaining bytes are lost.

outarray /outstring

is the name of the array/string that contains the record to be written to the file.

seqno

specifies the sequence number of the record to be written. You must specify this
integer variable or constant for sequenced variable length records. If the record
type is not sequenced variable length (or in RMS terms, variable with fixed
control, VFC), the seq no argument is ignored. Remember to specify the record
type in the iehar argument of an open call.

rae

specifies the record access mode to be used while accessing the file. Use this
single-word argument only for open/create operations. Once a file transfer mode is
selected, the rae value will be ignored until after end-of-file is detected. Valid
values are:

NR$SEQ
NR$KEY
NR$RFA
NR$RTM
NR$VBN
NR$BTM

Sequential by record
Random by relative record number (RRN)
Random by record file address (RF A)
Sequential file transfer by records (default)
Random blocks by virtual block number (VBN)
Sequential file transfer by blocks

keyptr

specifies the record. The length is assumed from the rae argument value.

rop

RAe
NR$KEY

NR$RFA

NR$VBN

Key
Two-word binary value of .RRN
Low-order word first
Three-word binary RF A
Low-order word first
Two-word binary value of VBN
Low-order word first

specifies record-processing options. Valid values are:

NR$EOF Position to EOF
NR$UIF Update if existing record

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-95

RENNFW

Rename a File

3.8.17 RENNFW - Rename a File

Use:

Call RENNFW to rename a remote file.

Formats:

FORTRAN: CALL RENNFW (lun,status,node,ident,ofile,nfile)

COBOL:

BASIC:

CALL "RENNFW" USING lun,status,node,
ident, ofile, nfile.

CALL RENNFW BY REF (lun%,status%O,node$,
ident$,ofile$,nfile$)

Arguments:

lun

*

specifies the logical unit number of the logical link created for renaming a remote
file. See definition in Section 3.8.7.

status

specifies completion status information on return from RENNFW. See definition
for your language in Section 3.8.7. Refer to Table C-l in Appendix C for a
complete code list.

node

specifies the name of the node for the file you want to rename. See definition in
Section 3.8.7.

ident

is an array/string containing access control information. See definition in Section
3.8.7.

ofile

specifies an ASCIZ array/string containing the file to be renamed.

nfile

specifies an ASCIZ array/string containing the new file specification for the newly
renamed file.

NOTE

If a name buffer is attached via ATTNFW, the resultant file specifi­
cation of the new file will be returned in that name buffer.

3-96 DECnet-RSX Programmer's Reference Manual

SPLNFW

SUBNFW

OPWNFW

3.8.18 SPLNFW - Create, Write, and Print a File

SUBNFW - Create, Write, and Execute a File

OPWNFW - Create and Open a File for Writing Records

Use:

Call one of the following subroutines to create a file:

Call SPLNFW to create a new remote file, write to it, and print it at the
remote node.

Call SUBNFW to create a new remote file, write to it, and submit it to the
remote batch/command file processor for execution. The file is
deleted after execution.

Successful completion of SUBNFW does not mean that the file
ran properly or even that it ran at all. Successful completion of
this call implies only that the file was handled properly by the
remote node.

Call OPWNFW to create and open a sequential file for writing records.

Formats:

FORTRAN: CALL

COBOL: CALL

BASIC: CALL

tUBNFW} (lun, status, node, ident,
SPLNFW ifile,ichar,len,[iblock])
OPWNFW

{

'SUBNFW'jUSING lun,status, node, ident,
"SPLNFW" ifile, ichar, len, [iblock].
"OPWNFW"

~
SUBNFW} BY REF (lun%,status%(),node$,ident$,
SPLNFW ifile$,ichar$,len%,[iblock%])
OPWNFW

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-97

Arguments:

lun

*

specifies the logical unit number of the logical link for the SPLNFW, SUBNFW,
or OPWNFW, call. Use the same LUN for any succeeding PUTNFW, PRGNFW,
or CLSNFW call. See definition in Section 3.8.7.

status

specifies status completion information on return from SPLNFW, SUBNFW, or
OPWNFW. See definition for your language in Section 3.8.7. Refer to Table C-l
in Appendix C for a complete code list.

node

specifies the name of the node for the file you want to open using SPLNFW,
SUBNFWor OPWNFW. See definition in Section 3.8.7.

ident

is an array/string containing access control information. See definition in Section
3.8.7.

ifile

specifies an ASCIZ string containing the file specification for the file to be opened
using SPLNFW, SUBNFW, or OPWNFW.

* ichar

is a 3-element array/string. If the values you specify differ from those stored in the
file, the stored values are used. When the open call completes, the ichar
array/string contains the stored values. Check these values to see how the file was
actually opened. Make sure you specify the appropriate ASCII letter code as
defined in the following three fields:

ichar(1) - Mode

Letter Code

A
I

3-98

Description

ASCII file
Binary image file

DECnet-RSX Programmer's Reference Manual

ichar(2) - Record Format

Letter Code

U
F
V
S
A

ichar(3) - Carriage Control

Letter Code

F
T
N
P

Description

Undefined format records
Fixed length records
Variable length records
Sequenced variable length records (VFC)
ASCII stream format

Description

FORTRAN carriage control
Terminal carriage control
No carriage control
Print file VFC

The ichar array/string specifies values for the new file.

* len

is an integer variable that specifies record length. If record lengths vary, enter the
maximum record length. A null value (0) implies there is no maximum record
length.

* iblock

is an integer variable that specifies the number of blocks you want to allocate for
file creation. Enter one of the following values:

Entry Description

o Dynamic allocation

+n Number of noncontiguous blocks
(where n = number of blocks)

-n Number of contiguous blocks
(where n = number of blocks)

When SPLNFW, SUBNFW, or OPWNFW completes, iblock specifies the num­
ber of blocks allocated (if you specified a +n or a -n argument, or 0 (if you
specified dynamic allocation).

If the system cannot allocate the number of requested blocks, an error returns and
frees the LUN. If you omit the iblock argument, the system allocates space dy­
namically.

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-99

3.8.19 FORTRAN Remote File Access Programming Example (Append)

The program FTNAPP appends the contents of a local ASCII file to the end of a
remote ASCII file and then closes both files. If an error occurs, the program displays
an error message. In the following example, the user ID is FRED, the password is
PRIV, and the account number is 1.

NOTE

This programming example is also included in your tape or disk kit.

C
C THIS PROGRAM IS A VARIATION OF THE PROGRAM THAT APPEARS IN THE
C RSX DECNET PROGRAMMER'S REFERENCE MANUAL
C
C TO TASK BUILD USE THE FOLLOWING COMMAND STRING:
C
C FTNAPP,FTNAPP=FTNAPP,[l,1]NETFOR/LB,F4POTS/LB,RMSLIB/LB,NETFOR/LB:NFAFSR
C I
C UNITS=10
C EXTSCT=$$FSR1:2700
C ACTFIL=4
C EXTTSK=1000 (if RMS included)
C II
C
C

BYTE NODE(7),BUFFER(128),IDENT(30),ICHAR{3)
INTEGER ISTAT(2),JSTAT(2),KSTAT(2),LSTAT(2),MSTAT(3),NSTAT(2)
DATA ICHAR/'A' ,'V' ,'F'I

C
C GET USER ID, PASSWORD AND ACCOUNT
C

TYPE 666
666 FORMAT ('$ENTER USER I.D.: ')

ACCEPT 779, ICNT, (IDENT(I),I=l,ICNT)
IDENT(ICNT+l)=O
TYPE 667

667 FORMAT ('$ENTER PASSWORD: ')
ACCEPT 779,ICNT9,(IDENT(I),I=ICNT+2~ICNT+2+ICNT9-1)
IDENT(ICNT+2+ICNT9)=0
TYPE 668

668 FORMAT ('$ENTER ACCOUNT NUMBER: ')
K= ICNT+l+ ICNT9+2
ACCEPT 779, ICNT8, (IOENT(I),I=K,K+ICNT8-l)

779 FORMAT (Q,lOAl)

C

TYPE *, 'IDENT = ',(IDENT(I),I=1,15)
TYPE *, (IDENT(I),I=16,30)

C GET REMOTE NODE NAME LOCAL AND REMOTE FILE SPECS
C
95 TYPE 100
100 FORMAT ('$ENTER REMOTE NODE NAME (6 CHAR. MAX.):')

ACCEPT 110,ICNT3,(NODE(I),I=1,ICNT3)
110 FORMAT (Q,6Al)

IF (ICNT3-6) 115,115,95
115 TYPE *,'NODE NAME =' ,(NODE(I),I=1,7)

TYPE 120
120 FORMAT ('SENTER FILE SPEC. OF REMOTE FILE FOR APPEND:')

ACCEPT 130,ICNT1,(BUFFER(I),I=1,ICNT1)
130 FORMAT (Q,64Al)

BUFFER(ICNTl+l)=O
TYPE 140

3-100

(continued on next page)

DECnet-RSX Programmer's Reference Manual

140 FORMAT ('SENTER FILE SPEC. OF LOCAL FILE TO BE APPENDED:')
ACCEPT 150,ICNT2,(BUFFER(I),I=64,63+ICNT2)

150 FORMAT (Q,64Al)
BUFFER(ICNT2+64)=0

C
C CREATE NETWORK MAILBOX FOR ONLY ONE LINK
C

C

CALL OPNNTW (2,LSTAT,MSTAT,1)
IF (LSTAT(l)-l) 907,160,907

C OPEN LOCAL AND REMOTE FILES
C
160 OPEN (UNIT=4,NAME=BUFFER(64),TYPE='OLD' ,ERR=901)

C

CALL OPANFW (I,ISTAT,NODE,IDENT,BUFFER,ICHAR,LENGTH,IBLOCK)
IF (ISTAT(I)-l) 908,200,908

C READ RECORDS FROM LOCAL FILE AND WRITE THEM TO REMOTE FILE
C
200 READ (4,210,END=300,ERR=902) ICNT3,(BUFFER(I),I=1,ICNT3)
210 FORMAT (Q,128A1)

C

CALL PUTNFW (1,JSTAT,ICNT3,BUFFER)
IF (JSTAT(I)-l) 903,200,903

C EOF FOUND -- CLOSE BOTH FILES AND NET
C
300 CLOSE (UNIT=4,ERR=904)

CALL CLSNFW (I,KSTAT)
IF (KSTAT(I)-I) 905,310,905

310 CALL CLSNTW (NSTAT)
IF (NSTAT(I)-l) 906,320,906

320 STOP 'APPEND O.K.'
C
C ERROR HALTS
C
901 TYPE *, (BUFFER(I),I=I,63)

TYPE *, (BUFFER(I),I=64,128)
STOP 'CAN NOT OPEN LOCAL FILE'

902 STOP 'READ ERROR FROM LOCAL FILE'
903 TYPE *,'STATUS =' ,JSTAT(l}

STOP 'WRITE ERROR FROM REMOTE FILE'
904 STOP 'CAN NOT CLOSE LOCAL FILE'
905 TYPE *,'STATUS =' ,KSTAT(I)

STOP 'CAN NOT CLOSE REMOTE FILE'
906 STOP 'CAN NOT CLOSE NETWORK'
907 TYPE *,'STATUS :', LSTAT(l)

STOP 'MAILBOX CREATION ERROR'
908 TYPE *,'STATUS =' ,ISTAT(1),ISTAT(2)

STOP 'CAN NOT OPEN REMOTE FILE'
C

END

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-101

3.8.20 FORTRAN Remote File Access Programming Example
(Read/Write)

The program FTNRRW reads the contents of one remote file into another remote file.
When an end-of-file is encountered, the last record is written to the remote file and
both files are closed. If a read or write error occurs a message is displayed and the
program exits. In the following example, the user ID is JOE, the password is PRIV,
and the account number is 404.

NOTE

This programming example is also included in your tape or disk kit.

C read from a remote file and write to a remote file using
C decnet fortran remote file access support
C
C To task build use the following command string:
C
C FTNRRW,FTNRRW=FTNRRW,[l,l]NETFOR/LB,F4POTS/LB,RMSLIB/LB, NETFOR/LB:NFAFSR
C I
C UNITS=lO
C EXTSCT=$$FSRl:lOOOO
C ACTFIL=4
C EXTTSK=lOOO (if RMS included)
C 1/
C
C
C declare the necessary data structures

DIMENSION IARRAY(256),ISTAT(2),IBLK(l),LNTH(1)
COMMON I STAT
LOGICAL*l IDINFO(13),ICHARS(3)
LOGICAL EOF
DATA EOF/.FALSE.I

C ASCIZ strings for user 10, password and account number.

DATA 10 I NFO/ ' J' , '0' , 'E' , 0 , , P' , 'R' , , I ' , 'V' , 0 , , 4' , , 0' , , 4' , 0/

C array containing mode, record type and carriage control information

DATA ICHARS/'I' ,'V' ,'T'/

c declare network task

CALL OPNNTW(7,ISTAT,,2)
CALL CKSTAT

C open two files, one for input and one for output.
C -both of these files exist on a remote node.

C open file for input

CALL OPRNFW(l,ISTAT,'IASNOD' ,IDINFO,'
X [l33,224]NET.TST' ,ICHARS,LNTH,)

CALL CKSTAT

(continued on next page)

3-102 DECnet-RSX Programmer's Reference Manual

C open file for output

CALL OPWNFW(2,ISTAT,'IASNOD' ,IDINFO,'
X [l33,224]NEWNET.TST' ,ICHARS,LNTH,)

CALL CKSTAT

C once the files are successfully opened, we may transfer records.
C the file associated with lun 1 is opened for reading, the
C file on lun 2 is opened for writing.

C transfer files
DO 30 1=1,100,1

C get a record from the input file.

CALL GETNFW(I,ISTAT,256,IARRAY)
C status code 050047 is end of file

IF (ISTAT(l) .NE. 1 .AND. ISTAT(2) .NE. '050047'0) GO TO 40
LNTH(l) = ISTAT(2)

C check for end of file

IF (ISTAT(l) .NE. 1 .AND. ISTAT(2) .EO. '050047'0) EOF=.TRUE.
IF (EOF .EO .. TRUE.) GO TO 50
CALL PUTNFW(2,ISTAT,LNTH,IARRAY)
IF (I STAT (1) • NE • 1 . AND. I STAT (2) • NE • '050047 ' 0) GO TO 40

30 CONTINUE
40 PRINT 41
41 FORMAT (1Hl,'READ OR WRITE ERROR OCCURRED')

C close files
C now that files have been transferred we may close
C the files

50 DO 55 1=1,2,1
CALL CLSNFW(I,ISTAT)

55 CONTINUE

IF (EOF .NE •. TRUE.) GO TO 60
PRINT 57

57 FORMAT(lHl,'END OF FILE REACHED, FILES CLOSED')

60 STOP
END

SUBROUTINE
DIMENSION
COMMON

CKSTAT
ISTAT(2)
I STAT

IF (ISTAT(l) . EO.l) GO TO 10
5 FORMAT(1Hl,'OPEN ERROR')

PRINT 5
STOP

10 RETURN
END

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-103

3.8.21 COBOL Remote File Access Programming Example (Append)

The program COBAPP appends the contents of a local ASCII file to the end of a
remote ASCII file and then closes both files. If an error occurs, the program displays
an error message.

NOTE

This programming example is also included in your tape or disk kit.

IDENTIFICATION DIVISION.
PROGRAM- I D. COBAPP.

* * * THIS PROGRAM APPENDS THE CONTENTS OF A LOCAL ASCII *
* FILE TO THE END OF A REMOTE ASCII FILE AND THEN *
* CLOSES BOTH FILES. *
* * * TO TASK BUILD USE THE FOLLOWING COMMAND STRING: *
* * * COBAPP,COBAPP=COBAPP,[l,l]NETFOR/LB,CS1LIB/LB,RMSLIB/LB,NETFOR/LB:NFAFSR *
* I *
* UNITS=10 *
* EXTSCT=$$FSR1:2700 *
* ACTFIL=4 *
* EXTTSK=lOOO (if RMS included) *
* II *
* *
* *

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. PDP-l1.
OBJECT-COMPUTER. PDP-II.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT LOCAL-FILE ASSIGN TO "DBO:".
DATA DIVISION.
FILE SECTION.

FD LOCAL-FILE
LABEL RECORDS ARE STANDARD
VALUE OF ID IS LOCAL.

01 LOCAL-REC

WORKING-STORAGE SECTION.
01 MSGS.

03 MSG1.
05 FILLER

05 MSGl-STATl
05 FILLER
05 MSGl-STAT2

03 MSG2.
05 FILLER

3-104

PIC X(SO).

PIC X(36) VALUE" MAIL BOX CREAT
"ION ERROR, IOST{l)
PIC -99999.
PIC X(11) VALUE" IOST(2)
PIC -99999.

PIC X{3S) VALUE " CAN NOT OPEN R

(continued on next page)

DECnet-RSX Programmer's Reference Manual

05 MSG2-STATI
05 FILLER
05 MSG2-STAT2

03 MSG3.

"EMOTE FILE. IOST(I) = "
PIC -99999.
PIC X(II) VALUE" IOST(2)
PIC -99999.

05 FILLER PIC X(42) VALUE" WRITE ERROR FR

05 MSG3-STATI
05 FILLER
05 MSG3-STAT2

03 MSG4.

"OM REMOTE FILE. IOST(I) = "
PIC -99999.
PIC X(ll) VALUE" IOST(2)
PIC -99999.

05 FILLER PIC X(39) ?ALUE " CAN NOT CLOSE

03

05 MSG4-STATl
05 FILLER
05 MSG4-STAT2
MSG5.

"REMOTE FILE. :OST(1) = ".
PIC -99999.
PIC XU!)
PIC -99999.

VALUE" IOST(2) = "

05 FILLER PIC X(35) VALUE" CAN NOT CLOSE

05 MSG5-STATl
05 FILLER
05 MSG5-STAT2

01 ARRAYS.
03 lOST.

"NETWORK. IOST(I) = "
PIC -99999.
PIC X(1)
PIC -99999.

VALUE "IOST(2)

05 IOSTAT OCCURS 2 TIMES PIC S9999 USAGE COMPo
03 MSTAT.

05 MSTATS OCCURS 3 TIMES PIC S9999 USAGE COMPo
01 STORE-STUFF.

03 LOCAL
03 IDENT
03 USERID
03 PASSWD
03 ACCNT
03 REMOTE-FILE
03 FILLER
03 OPNLUN
03 COUNT 1
03 APPLUN
03 LENGTH 1
03 BLOCKl
03 REC-LENGTH
03 NODE-NAME
03 TEMP-NODE
03 TEMP-REMOTE
03 I CHAR

01 NULLl
01 NULLS REDEFINES NULLl.

PIC X(26).
PIC X(30).
PIC X(2).
PIC X(6).
PIC X(9).
PIC X(30).
PIC X.
PIC 9
PIC 9
PIC 9
PIC S9999
PIC S9999
PIC S99
PICX(7).
PIC X(6).
PIC X(29).
PIC x(3)
PIC 9

03 NUL OCCURS 2 TIMES PIC X(I).
PROCEDURE DIVISION.

COMP VALUE 4.
COMP VALUE I.
COMP VALUE 3.
USAGE COMPo
USAGE COMPo
COMP VALUE 80.

VALUE "AVF".
COMP VALUE O.

(continued on next page)

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-105

* *
*
*
*
*

GET ACCOUNTING INFORMATION FOR REMOTE NODE FROM
TERMINAL AND FORM ASCIZ STRING WITH THIS INFORMATION
FOR OPRNFW AND OPWNFW.

*
*
*
*

AIOO-START.
DISPLAY" INPUT USER 10: ".
ACCEPT USERID.
DISPLAY" INPUT PASSWORD: It.

ACCEPT PASSWD.
DISPLAY " INPUT ACCOUNT NUMBER: "
ACCEPT ACCNT.
STRING USERID

NUL (1)
PASSWD
NUL(l)
ACCNT
NUL(l) DELIMITED BY SIZE
INTO IDENT.

*
*
*

GET REMOTE NODE NAME AND FORM ASCIZ STRING.
*
*
*

DISPLAY " INPUT REMOTE NODE NAME: "
ACCEPT TEMP-NODE.
STRING TEMP-NODE

NUL(l) DELIMITED BY SIZE
INTO NODE-NAME.

*
* GET REMOTE FILE NAME AND FORM ASCIZ STRING.

*
*

* *

DISPLAY" ENTER FILE SPEC. OF REMOTE FILE FOR APPEND".
ACCEPT TEMP-REMOTE.
STRING TEMP-REMOTE

NUL(l) DELIMITED BY SIZE
INTO REMOTE-FILE.

*
*
*

GET LOCAL FILE NAME.
*
*
*

3-106

DISPLAY" ENTER FILE SPEC. OF LOCAL FILE TO BE APPENDED".
ACCEPT LOCAL.

(continued on next page)

DECnet-RSX Programmer's Reference Manual

* *
*
*
*

ACCESS THE NETWORK. IF THE CALL COMPLETES
UNSUCCESSFULLY, WRITE AN ERROR MESSAGE AND EXIT. *

*

CALL "OPNNTW" USING
OPNLUN
lOST
MSTAT
COUNTI.

IF IOSTAT (1) : 1
NEXT SENTENCE

ELSE
MOVE IOSTAT (1) TO MSGI-STATI
MOVE IOSTAT (2) TO MSGI-STAT2
DISPLAY MSGI
GO EI00-END.

~**
*'
*'
*'
*'

OPEN THE LOCAL FILE. OPEN THE REMOTE FILE FOR
APPEND. IF UNABLE TO OPEN THE REMOTE FILE, WRITE
AN ERROR MESSAGE AND DEACCESS THE NETWORK.

*
*
*
*

*'**'************************

OPEN INPUT LOCAL-FILE.
CALL "OPANFW" USING

APPLUN
lOST
NODE-NAME
I DENT
REMOTE-FILE
I CHAR
LENGTH 1
BLOCKl.

IF IOSTAT (1) = 1
NEXT SENTENCE

ELSE
MOVE IOSTAT (1) TO MSG2-STATI
MOVE IOSTAT (2) TO MSG2-STAT2
DISPLAY MSG2
GO DI00-CLOSE.

(continued on next page)

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-107

*
*
*
*
*
*

READ A RECORD FROM THE LOCAL FILE AND APPEND IT TO
THE REMOTE FILE UNTIL THE END-OF-FILE IS ENCOUNTERED
IN THE LOCAL FILE. IF AN ERROR OCCURS WHILE WRITING
TO THE REMOTE FILE, PRINT AN ERROR MESSAGE AND EXIT.

*
*
*
*
*
*

BIOO-READ.
MOVE SPACES TO LOCAL-REC.
READ LOCAL-FILE RECORD

AT END GO CIOO-EOF.
CALL "PUTNFW" USING

APPLUN
lOST
REC-LENGTH
LOCAL-REC.

IF IOSTAT (1) = 1 GO BIOO-READ.
MOVE IOSTAT (1) TO MSG3-STAT1.
MOVE IOSTAT (2) TO MSG3-STAT2.
DISPLAY MSG3.
GO EIOO-END.

*
*
*
*
*
*

WHEN THE END-OF-FILE IS ENCOUNTERED IN THE LOCAL
FILE, CLOSE THE LOCAL AND REMOTE FILES. IF UNABLE
TO CLOSE THE REMOTE FILE, PRINT AN ERROR MESSAGE
AND EXIT.

*
*
*
*
*
*

C100-EOF.
CLOSE LOCAL-FILE.
CALL "CLSNFW" USING

APPLUN
lOST.

IF IOSTAT (1) = 1
NEXT SENTENCE

ELSE
MOVE IOSTAT (1) TO MSG4-STAT1
MOVE IOSTAT (2) TO MSG4-STAT2
DISPLAY MSG4

*
*
*
*

DEACCESS THE NETWORK. DISPLAY AN ERROR MESSAGE
IF THE CALL DOES NOT COMPLETE SUCCESSFULLY.

*
*
*
*

DIOO-CLOSE.
CALL "CLSNTW" USING

lOST.
IF IOSTAT (1) = 1

NEXT SENTENCE
ELSE

MOVE IOSTAT (1) TO MSG5-STATl
MOVE IOSTAT (2) TO MSG5-STAT2
DISPLAY MSG5
GO EIOO-END.

DISPLAY "APPEND COMPLETE. END COBAPP PROGRAM EXECUTION".
EIOO-END.

STOP RUN.

3-108 DECnet-RSX Programmer's Reference Manual

3.8.22 COBOL Remote File Access Programming Example
(Read/Write)

The program COBRRW reads the contents of one remote file into another remote file.
When an end-of-file is encountered, the last record is written to the remote file and
both files are closed.

NOTE

This programming example is also included in your tape or disk kit.

IDENTIFICATION DIVISION.
PROGRAM-ID. COBRRW.

* *
*
*
*
*
*
*

THIS PROGRAM READS THE CONTENTS OF A REMOTE FILE
INTO ANOTHER REMOTE FILE. EACH RECORD IS READ AND
WRITTEN UNTIL END-OF-FILE OCCURS AT WHICH TIME THE
LAST RECORD IS WRITTEN TO THE REMOTE FILE AND
BOTH FILES ARE CLOSED.

*
*
'It

*
*
* * TO TASK BUILD USE THE FOLLOWING COMMAND STRING: *

* * * COBRRW,COBRRW=COBRRW,[l,1]NETFOR/LB,C81LIB/LB,RMSLIB/LB,NETFOR/LB:NFAFSR *
* I *
* UNITS=lO *
* EXTSCT=$$FSR1: 10000 *
* ACTFIL=4 *
* EXTTSK=lOOO (if RMS included) *
* II *
*
*

*
*

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. PDP-ll.
OBJECT-COMPUTER. PDP-ll.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT DUMMY-FILE ASSIGN TO "COBRRW.DUM".

DATA DIVISION.
FILE SECTION.
'D DUMMY-FILE

~ABEL RECORD STANDARD.
01 DUMMY-FILE-REC.

02 FILLER
WORKING-STORAGE SECTION.
01 MSGS.

03 MSGl.

03

05 FILLER

05 MSGI-STATl
05 FILLER
05 MSGI-STAT2
MSG2.
05 FILLER

PIC X(132).

PIC X(34) VALUE" CAN NOT OPEN N
"ETWORK. IOST(l) = "
PIC -99999.
PIC xU!)
PIC -99999.

PIC X(44)

VALUE" IOST(2)

VALUE n CAN NOT OPEN R

(continued on next page)

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-109

05 MSG2-STAT1
05 FILLER
05 MSG2-STAT2

03 MSG3.
05 FILLER

)5 MSG3-STAT1
J5 ~ILLER
')5 ~SG3-STA.T2

-)3 'v1SG4.

03

;3 ~:L;:"ER

OS MSG4-STATl
OS FILLER
as MSG4-STAT2
MSG5.
05 FILLER

as MSG5-STATl
as FILLER
05 MSG5-STAT2

01 ARRAYS.
03 lOST.

"EMOTE INPUT FILE. IOST(l) = "
PIC -99999.
PIC X(ll) VALUE" IOST(2)
PIC -99999.

PIC X(4S) VALUE" CAN NOT OPEN R
"~MOTE INPUT FILE. IOST(1) = "
PIC -99999.
PIC X(11) VALUE" IOST(2)
PIC -99999.

?! C :{ (2 -l .
",)S1' 1 .' ~ 'r.

PIC -99999.
PIC x(lU
PIC -99999.

PIC X(2S)
"IOST(l) = ft.

PIC -99999.
PIC X(ll)
PIC -99999.

~ALUE ~ ~EAD ~RRCR.

VALUE" IOST(2) = ft.

VALUE " WRITE ERROR.

VALUE" IOST(2) = n

05 IOSTAT OCCURS 2 TIMES PIC S9999 USAGE COMPo
03 MSTAT.

as MSTATS OCCURS 3 TIMES PIC S9999 USAGE COMPo
01 STORE-STUFF.

03 OPNLUN
03 COUNT 1
03 LENGTH 1
03 BLOCKl
03 INPLUN
03 OUTLUN
03 I
03 IARRAY-SIZE
03 EOF
03 EOFFG
03 TTRUE
03 FFALSE
03 I DENT
03 USERID
03 PASSWD
03 ACCNT
03 TEMP-NODE
03 NODE-NAME
03 TEMP-INPUT
03 REMOTE-INPUT
03 TEMP-OUTPUT
03 REMOTE-OUTPUT
03 I CHAR
03 I ARRAY

01 NULL1
01 NULLS REDEFINES NULL1.

PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

9
9
S9999
S9999
9
9
999
99
99999
S9
S9
S9
X(30).
x(l2) •
X(6) •
X(9) •
X(6) •
X(7) •
X(29) •
X(30) .
X(29) •
X(3(3) •
X(3)
X(SO) •
9

COMP VALUE 2.
COMP VALUE 2.
USAGE COMPo
USAGE COMPo
COMP VALUE 3.
COMP VALUE 4.
USAGE COMPo
COMP VALUE SO.
COMP VALUE 20519.
USAGE COMPo
COMP VALUE -1.
COMP VALUE O.

VALUE "AVF".

COMP VALUE O.

03 NUL OCCURS 2 TIMES PIC X(l).
PROCEDURE DIVISION.

(continued on next page)

3-110 DECnet-RSX Programmer's Reference Manual

* *
*
*
*
*

GET ACCOUNTING INFORMATION FOR REMOTE NODE AND
FORM ASCIZ STRING FOR DECNET REMOTE FILE ACCESS
SUBROUTINES.

*
*
*
*

********************~**

AIOO-START.
DISPLAY "INPUT USER ID:".
ACCEPT USERID.
DISPLAY" INPUT PASSWORD:".
ACCEPT PASSWD.
DISPLAY" INPUT ACCOUNT NUMBER:".
ACCEPT ACCNT.
STRING USERID

:-l'UL(1)

PASSWD
NUL(l)
ACCNT
NUL(l) DELIMITED BY SIZE
INTO IDENT.

*
*
*

GET REMOTE NODE NAME AND FORM ASCIZ STRING.
*
*
*

DISPLAY" ENTER REMOTE NODE NAME:".
ACCEPT TEMP-NODE.
STRING TEMP-NODE

NUL(l) DELIMITED BY SIZE
INTO NODE-NAME.

*
*
*
*

GET REMOTE INPUT AND OUTPUT FILE NAMES AND FORM
ASCIZ STRING FOR EACH FILE.

*
*
*
*

DISPLAY" INPUT FILE SPEC. FOR INPUT FILE:".
ACCEPT TEMP-INPUT.
STRING TEMP-INPUT

NUL(l) DELIMITED BY SIZE
INTO REMOTE-INPUT.

DISPLAY" INPUT FILE SPEC. FOR OUTPUT FILE:".
ACCEPT TEMP-OUTPUT.
STRING TEMP-OUTPUT

NUL(l) DELIMITED BY SIZE
INTO REMOTE-OUTPUT.

(continued on next page)

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-111

*********************************~*******************************

* *
*
*
*

ACCESS THE NETWORK. IF THE CALL DOES NOT COMPLETE
SUCCESSFULLY, DISPLAY AN ERROR MESSAGE AND EXIT.

*
*
*

CALL "OPNNTW" USING
OPNLUN
lOST
MSTAT
COUNT1.

IF IOSTAT (1) = 1
NEXT SENTENCE

ELSE
MOVE IOSTAT (1) TO MSG1-STATl
MOVE IOSTAT (2) TO MSG1-STAT2
DISPLAY MSGl
GO E100-END.

* *
*
*
*

OPEN REMOTE FILE FOR INPUT. IF THERE IS AN OPEN
ERROR, PRINT AN ERROR MESSAGE AND EXIT.

*
*

CALL "OPRNFW" USING

I NPLUN
lOST
NODE-NAME
I DENT
REMOTE-INPUT
I CHAR
LENGTH 1
BLOCK1.

IF IOSTAT (1) = 1
NEXT SENTENCE

ELSE
MOVE IOSTAT (1) TO MSG2-STATl
MOVE IOSTAT (2) TO MSG2-STAT2
DISPLAY MSG2
GO E100-END.

* *
*
*
*

OPEN REMOTE FILE FOR OUTPUT. IF THERE IS AND OPEN
ERROR, DISPLAY AN ERROR MESSAGE AND EXIT.

*
*
*

3-112

CALL "OPWNFW" USING
OUTLUN
lOST
NODE-NAME
I DENT
REMOTE-OUTPUT
I CHAR
I CHAR
LENGTH 1
BLOCK1.

IF IOSTAT (1) = 1
NEXT SENTENCE

ELSE
MOVE IOSTAT (1) TO MSG3-STATl
MOVE IOSTAT (2) TO MSG3-STAT2
DISPLAY MSG3
GO D100-CLOSE.

(continued on next page)

DECnet-RSX Programmer's Reference Manual

*
*
*
*
*
*
*

TRANSFER RECORDS BETWEEN THE REMOTE FILES. WHEN
THE END-OF-FILE IS ENCOUNTERED, EXIT FROM THE LOOP.
EXIT FROM THE LOOP IF A READ OR WRITE ERROR OCCURS
AND BRANCH TO THE APPROPRIATE ROUTINE TO DISPLAY AN
ERROR MESSAGE.

*
*
*
*
*
*
*

LOOP.
PERFORM LOOP VARYING I FROM 1 BY 1 UNTIL I = 100.

CALL "GETNFW" USING
INPLUN
lOST
IARRAY-SIZE
:ARRAY.

IF IOSTAT (1) NOT = 1 AND IOSTAT
GO BIOO-READERR.

MOVE IOSTAT (2) TO LENGTHI.
IF IOSTAT (1) NOT = 1 AND IOSTAT

MOVE TTRUE TO EOFFG
ELSE

MOVE FFALSE TO EOFFG.
IF EOFFG = TTRUE GO DIOO-CLOSE.
CALL "PUTNFW" USING

OUTLUN
lOST
LENGTHI
I ARRAY

(2) NOT EOF

(2) EOF

IF IOSTAT (1) NOT = 1 AND IOSTAT (2) NOT EOF
GO CIOO-WRITERR.

*
*
*
*

A READ ERROR OCCURRED DURING FILE TRANSFER. PRINT
AN ERROR MESSAGE AND EXIT.

*
*
*
*

BIOO-READERR.
MOVE IOSTAT (1) TO MSG4-STATI.
MOVE IOSTAT (2) TO MSG4-STAT2.
DISPLAY MSG4.
GO DIOO-CLOSE.

*
*
*

A WRITE ERROR OCCURRED DURING FILE TRANSFER. PRINT
AN ERROR MESSAGE AND EXIT.

*
*
*
*

CI00-WRITERR.
MOVE IOSTAT (1) TO MSG5-STATI.
MOVE IOSTAT (2) TO MSG5-STAT2.
DISPLAY MSG5.

(continued on next page)

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-113

*
*
*

CLOSE BOTH REMOTE FILES.
*
*
*

D10Q-CLOSE.

LOOP1.
PERFORM LOOPl VARYING

CALL "CLSNFW" USING
I
rOST.

FROM INPLUN 3Y 1 ~NTIL GUTLLJN.

**********************~******************************* ***********

*
*
*
*
*

:F AN ERROR OCCURRED BEFCRE ENCCUNTERING THE
END-OF-FILE, EXIT. JTHERWISE ~HE T~ANSFER WAS
SuCCESSFUL, SO ~~SPLAY A SuCCESS ~ESSAGE AND
::xa.

*
*

END-LOOPl.
IF EOFFG NOT = TTRUE

GO EIOO-END
ELSE

DISPLAY "END OF FILE REACHED. FILES CLOSED.".
ElOO-END.

STOP RUN.

3-114 DECnet-RSX Programmer's Reference Manual

3.8.23 BASIC-PLUS-2 Remote File Access Programming Example
(Append)

The program BASAPP appends the contents of a local ASCII file to the end of a
remote ASCII file and then closes both files. If an error occurs, the program displays
an error message. In the following example, the user ID, the password, and the
account number are entered from the terminal.

5

10
\
\
\

15

\
\
\
\

NOTE

This programming example is also included in your tape or disk kit.

!! !
!! !

To task build you must edit the task build command
file and the ODL file created by the build.

>Add the lines

ACTFIL=4
EXTSCT=$$FSRl:2700

to the task build command file.

>Append

-NETLIB-NETLB2
to the USER: line of the ODL file.

>Add the lines

NETLIB: .FCTR LB:[l,l]NETFOR/LB
NETLB2: .FCTR LB:[l,l]NETFOR/LB:NFAFSR

to the ODL fi le.

ON ERROR GO TO 145 !ERROR HANDLER

!!! DEFINE ARRAY CONTSTANTS I!!
DIM ISTAT%(1%),JSTAT%(1%),KSTAT%(1%),LSTAT%(1%),MSTAT%(2%)
DIM NSTAT%(l%) !DEFINE ARRAY ELEMENTS
NULL$=STRING$(l%,O%) !DEFINE NULL CHAR FOR ASCIZ

!! !
!! !

! !
! !
! !
! !
! !

&
&

&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&

&
&
&

& I!! DEFINE CONSTANTS!!1
OPNLUN%=2% !NETWORK OPEN LUN &
APPLUN%=l% !FILE LUN &
COUNT%=l% !MAX # OF LOGICAL LINKS &
FLAG%=O% !END OF FILE FLAG &
I CHAR$ = "AVF" !MODE, TYPE, CARRIAGE CONTROL

20 INPUT "ENTER REMOTE NODE NAME (MAX. 6 CHARACTERS)";NODNAM$ &
\ IF LEN(NODNAM$»6% THEN PRINT &

"NAME TOO LONG, PLEASE RE-ENTER" &
\ PRINT \ GO TO 20

30 PRINT "NODE NAME = ";NODNAM$ \ NODNAM$=NODNAM$+NULL$ &

40
\
\
\

PRINT
INPUT
PRINT
INPUT

!CREATE ASCIZ STRING FOR OPANFW

"ENTER FILE SPEC. OF REMOTE FILE FOR APPEND:"
BUF1$ \ BUF1$=BUFl$+NULL$
"ENTER FILE SPEC. OF LOCAL FILE TO BE APPENDED:"
BUF2$

&
&
&

(continued on next page)

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-115

50 I!! GET INFORMATION NECESSARY TO ACCESS FILES IN THE!!! &
!!! REMOTE NODE FOR OPANFW !!! &

\ INPUT "ENTER USER ID:";USERID$!GET USER ID &
\ INPUT "ENTER PASSWORD: ":PASSWD$!GET PASSWORD &
\ INPUT "ENTER ACCOUNT NUMBER:":ACCNT$!GET ACCOUNT NUMBER &.
\ IDENT$=USERID$+NULL$+PASSWD$+NULL$+ACCNT$+NULL$ &
\ !CREATE ASCIZ STRING FOR OPANFW

60 I!! CREATE NETWORK MAILBOX FOR ONLY ONE LINK !!! &
\ CALL OPNNTW BY REF (OPNLUN%,LSTAT%(),MSTAT%(),COUNT%) &
\ IF LSTAT%(O%)=l% THEN 70 :IF OPEN NETWORK SUCCESSFUL, &

:OPEN REMOTE AND LOCAL FILES. &
ELSE ?R!NT "MAILBOX CREATION 2RROR" !IF ~NSUCCESSFUL, PRINT &

\ PRINT "STATUS = ":LSTAT%(O%):",":LSTAT%(l%) ,
\ GO TO 150 !MESSAGE AND STATUS AND EXIT

70 I!! OPEN LOCAL FILE I!! &
\ OPEN BUF2$ FOR INPUT AS FILE #4

90 ! !! OPEN REMOTE FILE FOR APPEND !!! &
\ CALL OPANFW BY REF(APPLUN%,ISTAT%(),NODNAM$,IDENT$,BUF1$, ,

ICHAR$,LENGTH%,IBLOCK%) ,
\ IF ISTAT%(O%)=l% THEN 100 !IF SUCCESS, APPEND TO REMOTE &

!FILE FROM LOCAL FILE &
ELSE PRINT "CAN NOT OPEN REMOTE FILE." !IF ERROR ON OPEN, &

\ PRINT "STATUS ";ISTAT%(O%);",";ISTAT%(l%) ,
\ GO TO 120 !OUTPUT MESSAGE AND STATUS AND &

100
\
\
\
\

\

\
\

!! !
!! !
FLAG%
INPUT
CALL

IF
ELSE

!EXIT

READ RECORDS FROM LOCAL FILE AND WRITE THEM TO I!! ,
REMOTE FILE. I!! ,
1% !SET FLAG FOR END OF FILE CHECK'
#4,TEMP$!READ FROM LOCAL FILE ,
PUTNFW BY REF(APPLUN%,JSTAT%(),LEN(TEMP$),TEMP$) &

!APPEND TO REMOTE FILE ,
JSTAT%(O%)=l% THEN 100 !IF SUCCESSFUL, READ NEXT RECORD'
PRINT "WRITE ERROR FROM REMOTE FILE." !IF ERROR, PRINT ,
PRINT "STATUS = ";JSTAT%(O%):",":JSTAT%(l%) &
GO TO 150 !MESSAGE AND STATUS AND EXIT

110 I!! EOF FOUND --- CLOSE BOTH FILES ~~D NETWOF~ I!! &
\ FLAG% 0% !CLEAR END OF FILE FLAG &
\ CLOSE #4 !CLOSE LOCAL FILE ,
\ CALL CLSNFW BY REF(APPLUN%,KSTAT%(» !CLOSE REMOTE FILE &
\ IF KSTAT%(O%)=l% THEN 120 !IF SUCCESS DEACCESS NETWORK ,

ELSE PRINT" CAN NOT CLOSE REMOTE FILE." !IF CLOSE ERROR, ,
\ PRINT "STATUS = ":KSTAT%(O%);",";KSTAT%(l%) ,
\ GO TO 150 !PRINT MESSAGE, STATUS AND EXIT

120
\

\
\

3-116

CALL
IF
ELSE

CLSNT BY REF(NSTAT%(» !DEACCESS NETWORK
NSTAT%(O%)=l% THEN 140 !IF SUCCESS, APPEND COMPLETE
PRINT "CAN NOT CLOSE NETWORK." !IF ERROR, PRINT
PRINT "STATUS ";NSTAT%(O%);",";NSTATS(1%)
GO TO 150 !MESSAGE AND STATUS AND EXIT

,
&.
&
&.

(continued on next page)

DECnet-RSX Programmer's Reference Manual

140 PRINT "APPEND COMPLETE. END PROGRAM EXECUTION" &
\ GO TO 150

145 IF ERR <> 11 THEN 146 !IF NOT EOF, PRINT ERROR &
ELSE IF FLAG%=O% THEN 146 !IF EOF AND EOF FLAG NOT SET, &

!PRINT ERROR &
ELSE RESUME 110 !EOF SO CLOSE BOTH FILES

146 PRINT "ERROR ": ERR:" AT LINE ":ERL !PRINT ERROR AND LINE NO.

150 END

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-117

3.8.24 BASIC-PLUS-2 Remote File Access Programming Example
(Read/Write)

The program BASRRW reads the contents of one remote file into another remote file.
When an end-of-file is encountered, the last record is written to the remote file and
both files are closed.

NOTE

This programming example is also included in your tape or disk kit.

10 !! ! To task build you must edit the task build command !! ! ,
!! 1 file and the ODL file created by the build. !! ! ,
!! ! >Add the lines ! ! ,
!! ! 1 ! ,
!! 1 ACTFIL=4 ! ! ,
! I! EXTSCT-$$FSR1:l0000 1 ! ,
! 1 1 to the task build command file. ! ! ,
! 11 11 ,
!! 1 >Append ! ! ,
!! ! ! ! ,
!! ! -NETLI B-NETLB2 ! ! ,
!! ! to the USER: line of the ODL file. ! ! ,
! ! ! ! ! ,
! ! ! >Add the lines ! I! ,
! I! !! ! ,
!11 NETLIB: .FCTR LB:[l,l]NETFOR/LB ! I! ,
1 ! 1 NETLB2: .FCTR LB:[l,l]NETFOR/LB:NFAFSR !! 1 ,
! 1 1 to the ODL fi Ie. I! 1 ,

20 !! 1 DEFINE ARRAY CONSTANTS !!! ,
DIM IARRAY%(255%),ISTAT%(1%),MSTAT%(2%) ,

!DEFINE MAXIMUM STRING LENGTHS ,
\ NULL$=STRING$(l%,O%) !DEFINE MAXIMUM STRING LENGTHS ,

30

\
\
\
\
\
\
\

I!! DEFINE CONST~~S I!!
I CHARS $ = "AVF"
OPNLUN%-7%
COUNT%-2%
INPLUN%=l%
OUTLUN%=2%
EOF%=20519%
FALSE%=O%
TRUE%=-l%

&
!MODE, TYPE, CARRIAGE CONTROL ,
! NETWORK OPEN LUN ,
!MAX •• OF ACTIVE LOGICAL LINKS ,
!LUN ASSl'GNED TO INPUT FILE ,
!LUN ASSIGNED TO OUTPUT FILE ,
!END OF FILE STATUS RETURN ,
!FLAG INDICATING FALSE ,
!FLAG INDICATING TRUE

40 !!! INPUT NODE NAME !!! ,
INPUT "ENTER REMOTE NODE NAME (MAX. 6 CHARACTERS):";NODNAM$,

\ IF LEN(NODNAM$»6% THEN PRINT ,
"NAME TOO LONG, PLEASE RE--ENTER" ,

\ PRINT \ GO TO 40 ,

50

\
\
\
\
\

3-118

ELSE NODNAM$ = NODNAM $ +NULL$!CREATE ASCIZ STRING

I!! GET INFORMATION NECESSARY TO ACCESS FILES IN THE I!! ,
I!! REMOTE NODE. I!! ,
INPUT "ENTER USER ID:";USERID$!GET USER 10 ,
INPUT "ENTER PASSWORD:";PASSWD$!GET PASSWORD ,
INPUT "ENTER ACCOUNT NUMBER:";ACCNT$!GET ACCOUNT NUMBER ,
IDINFO$=USERI 0$ +NULL$+PASSWD$+NULL$ + ACCNT $ +NULL$,

!CREATE ASCIZ STRING

(continued on next page)

DECnet-RSX Programmer's Reference Manual

60

\
\
\

70

\
\

I!! INPUT FILE SPECIFICATION FOR INPUT & OUTPUT FILES I!!
INPUT "INPUT FILE SPEC. FOR INPUT FILE";INFIL$
INFIL$=INFIL$+NULL$!APPEND NULL CHARACTER
INPUT "INPUT FILE SPEC. FOR OUTPUT FILE";OUTFIL$
OUTFIL$=OUTFIL$+NULL$!APPEND NULL CHARACTER

I!! DECLARE NETWORK TASK I!!
CALL OPNNTW BY REF(OPNLUN%,ISTAT%(),MSTAT%(),COUNT%)

!ACCESS NETWORK

&
&
&
&

&
&
&

LOC1'"'1
GOSUB 150

!ORIGIN OF CALL FOR SUBROUTINE ,
!CHECK STATUS

80 I!! OPEN FILE FOR INPUT. THE FILE RESIDES ON A REMOTE NODE I!! ,
CALL OPRNFW BY REF(INPLUN%,ISTAT%(),NODNAM$,IDINFO$,INFIL$, ,

ICHARS$,LNTH%,BLOCK%) !OPEN REMOTE FILE FOR INPUT ,
\ LOC1=2 !ORIGIN OF CALL FOR SUBROUTINE ,
\ GOSUB 150 !CHECK STATUS

90 ! !! OPEN FILE FOR OUTPUT. FILE RESIDES ON A REMOTE NODE !!! ,
CALL OPWNFW BY REF(OUTLUN%,ISTAT%(),NODNAM$,IDINFO$,OUTFIL$, ,

ICHARS$,LNTH%,BLOCK%) !OPEN REMOTE FILE FOR OUTPUT ,
\ LOC1=3 !ORIGIN OF CALL FOR SUBROUTINE ,
\ GOSUB 150 ! CHECK STATUS

100

102

104

I!! ONCE THE FILES ARE SUCCESSFULLY OPENED, WE MAY!!!
I!! TRANSFER RECORDS. THE FILE ASSOCIATED WITH LUN 1 I!!
I!! IS OPENED FOR READING, THE FILE ON LUN 2 IS OPENED I!!
I!! FOR WRITING. I!!
FOR 1%=1% TO 100%

, , , ,
CALL GETNFW BY REF(INPLUN%,ISTAT%(),256%,IARRAY%(» ,

! READ A RECORD FROM INPUT FILE

IF ISTAT%(O%)<>l% AND ISTAT%(l%)<>EOF% THEN 110 ,
!IF UNSUCCESSFUL, PRINT MESSAGE'

ELSE LNTH%=ISTAT%(l%) !SAVE NO. OF BYTES TRANSFERRED

105 ! !! CHECK FOR END OF FILE !!! ,

106

IF ISTAT%(O%)<>l% AND ISTAT%(l%)=EOF% THEN EOFFG%=TRUE% ,
ELSE EOFFG%=FALSE% !SET FLAG IF END OF FILE

IF EOFFG%=TRUE% THEN 130!IF END OF FILE, CLOSE FILES
ELSE CALL PUTNFW BY REF(OUTLUN%,ISTAT%(),LNTH%

,IARRAY%(» !WRITE RECORD

, ,
107 IF ISTAT%(O%)<>l% AND ISTAT(l%)<>EOF% GO TO 120 ,

ELSE A%=l% !IF UNSUCCESSFUL, PRINT MESSAGE
108 NEXT I% !TERMINATE LOOP

110

\

120

! !! READ ERROR OCCURRED '"
PRINT "READ ERROR. STATUS = ";ISTAT%(O%);",";ISTAT%(l%)
GO TO 130 !CLOSE BOTH FILES

! !! WR I TE ERROR OCCURRED !!!
PRINT "WRITE ERROR. STATUS ";ISTAT%(O%);",";ISTAT%(l%)

& ,

130 ! !! CLOSE FILES !!! &
FOR J%=1% TO 2% ! CLOSE FILES 1 AND 2 &

\ CALL CLSNFW(J%,ISTAT%(»!CLOSE EACH FILE &
\ NEXT J% ! TERMINATE LOOP ,
\ IF EOFFG%<>TRUE% THEN 140 !IF FLAG NOT TRUE, TRANSFER NOT &

!SUCCESSFUL &
ELSE PRINT "END OF FILE REACHED. FILE CLOSED" &

!INDICATE TRANSFER SUCCESSFUL

(continued on next page)

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-119

140 GOTO 170 !BRANCH TO END

150 !!! SUBROUTINE TO CHECK STATUS ON COMPLETION OF OPEN CALLS !!! &

\
\

160

170

3-120

IF ISTAT%(O%)=l% THEN 160 !IF SUCCESS, JUST RETURN &
ELSE PRINT "OPEN ERROR. STATUS = "~ISTAT% (0%) ;" ,"; ISTAT% (1%) &

RETURN

END

PRINT "LOC = ";LOC1
GO TO 170

!ORIGIN OF CALL
!QUIT IF UNSUCCESSFUL

!EXIT FROM SUBROUTINE

!END EXECUTION

"

DECnet-RSX Programmer's Reference Manual

3.9 FORTRAN Task Control

This section contains descriptions and usage guidelines for the FORTRAN task con­
trol calls summarized in Table 3-4. Task control allows you to run or abort specific
tasks according to time schedules that you define in a DECnet call.

Table 3-4: FORTRAN Task Control Call Summary

Call Function

Abort an executing task or cancel a scheduled task ABONCW

BACUSR Build accounting information and the user ID portion of the connect
block

RUNNCW Execute an installed task in a remote node

Before you issue any of these calls you must access the network by issuing an
OPNNTW call. When you complete task control operations, you must issue the
CLSNTW call to deaccess the network.

3.9.1 Waiting for Requests

All calls are synchronous and pass control back to the user task only after the opera­
tion completes.

3.9.2 RSX Remote Task Control Utility

In order for these calls to execute successfully, the RSX Remote Task Control utility
(TCL) must be installed on the remote node. If TCL is not installed, the call will
complete with an error.

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-121

ABONCW

Abort an Executing
Task or Cancel

a Scheduled Task

3.9.3 ABONCW - Abort an Executing Task or Cancel a Scheduled
Task

Use:

Call ABONCW to abort an executing task or cancel a scheduled task.

Format:

CALL ABONCW (lun, [status],ndsz, indnm,passwdsiz,
passwd, tsksiz, tsknam, [ident] , [mask])

Arguments:

lun

*

specifies an integer variable or constant and must be a logical unit number not
currently in use.

status

specifies an integer array containing the following completion status information
on return from ABONCW:

status(l) Returns an error/completion code

status(2) If the error code in status(l) indicates a network reject (-7), status
(2) will contain the disconnect or reject reason code. Refer to
Appendix A. Otherwise, status(2) will contain a directive error
code (if status(l) is -40) or null value (0).

ndsz

specifies an integer variable or constant containing the node name length in
bytes.

ndnm

specifies a 1- to 6-element byte array containing the name of the node to which
this abort request is directed.

passwdsiz

specifies an integer variable or constant containing the password length in bytes.

3-122 DECnet-RSX Programmer's Reference Manual

*

passwd

specifies a 1- to 8.-element byte array containing the user password (the password
you use to log on to the remote system) for the node you want to access.

A privileged password allows a user to abort any task running on the remote node
without specifying the ident parameter. A nonprivileged password allows a user to
abort a task if the correct ident parameter is specified.

tsksiz

specifies the remote task name length in bytes.

tsknam

specifies a 1- to 6-element byte array containing the name of the remote task you
want to abort or cancel.

ident

specifies an integer variable containing the negated task control block address of
the remote task. This value is returned to the ident parameter of the RUNNCW
call when the RUNNCW call completes. This argument is optional for a user with
a privileged password.

* mask

indicates the way ABONCW is used. This is an optional argument. If you omit
this argument or if its value equals 0, only the executing task you specified in the
call is aborted.

If the value equals 1, the rescheduling of the specified task is cancelled and the
presently active task continues to execute.

If the value is greater than 1, the executing task is aborted and rescheduling of the
task is cancelled.

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-123

Error/Completion Codes:

1 The call completed successfully.

-1 System resources needed for the logical link are not available.

-7 The connection was rejected by the network. Refer to Appendix A.

-8 A logical link has already been established using this LUN.

-9 The task is not a network task: OPNNT did not execute successfully.

-21 The requested task is not installed on the remote node.

-23 An ABONCW was issued for a task that was not active.

-24 A privileged violation has occurred. You are not a privileged user, and you are attempt-
ing an ABONCW for a task with improper identification.

-25 An ABONCW was issued for a task that either was being loaded into or was exiting from
the remote node.

-40 A directive error has occurred. Directive error codes are defined in the
RSX-llM/M-PLUS Executive Reference Manual.

3-124 DECnet-RSX Programmer's Reference Manual

BACUSR

Build Account and User
10 Information Area

3.9.4 BACUSR - Build Account and User 10 Information Area

Use:

Call BACUSR in the task requesting the connection if access control information
(user ID and account) is not passed to the remote node in an alias node name
specification. BACUSR allows you to build the account and user ID areas of the
connect block for task control programming.

BACUSR is similar in function to BACC. Unlike BACC, however, BACUSR does
not allow you to specify a password. The password is specified in a task control
program as a parameter of a call (ABONCW or RUNNCW).

Format:

CALL BACUSR ([status], [usersz, user], [aeenasz, aeena])

Arguments:

* status

specifies an integer variable. On return from BACUSR, this optional argument is
set to .TRUE.(-I) if the call completed successfully, or it is set to .FALSE.(O) if
one of the arguments to BACUSR is invalid.

usersz

specifies an integer variable or constant containing the user ID length in bytes.

user

specifies a 1- to 16.-byte array containing the user ID. Usersz and user are paired
optional arguments. Include both or omit both.

aeenasz

specifies an integer variable or constant containing the length in bytes of the
account number (not used for RSX target systems).

aeena

specifies a 1- to 16.-byte array containing the account number. Aeenasz and aeena
are paired optional arguments. Include both or omit both.

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-125

RUNNCW

Execute an Installed
Task in a Remote Node

3.9.5 RUNNCW - Execute an Installed Task in a Remote Node

Use:

RUNNCW allows you to execute an installed task in a remote node using any or
all of the following options:

• Execute the task immediately

• Schedule the task for execution at some future time

• Schedule the task for periodical execution based on predefined time schedules

Format:

CALL RUNNCW (lun,[status],ndnm,passwdsz,passwd,
tsksz, tsknam, [ident], [uic], [s mg, snt],
[rmg,rnt])

Arguments:

lun

*

specifies an integer variable or constant and must be a logical unit number not
currently in use.

status

specifies an integer array containing the following completion status information
on return from RUNNCW:

status(l} Returns an error/completion code

status(2} If the error code in status(l} indicates a network reject (-7), status
(2) will contain the disconnect or reject reason code. Refer to
Appendix A. Otherwise, status(2} will contain a directive error or
will not be used.

ndsz

specifies an integer variable or constant containing the node name length in
bytes.

ndnm

specifies a 1- to 6-element byte array containing the name of the node to which
this request is directed.

3-126 DECnet-RSX Programmer's Reference Manual

passwdsiz

specifies an integer variable or constant containing the password length in bytes.

passwd

specifies a 1- to 8. -element byte array containing the user password (the password
you use to log on to the remote system) for the node you want to access.

A privileged password allows you to run a task under any user identification code
on the remote node. A nonprivileged password allows you to run a task only under
the UIC assigned to you.

tsksiz

specifies an integer variable or constant containing the remote task name length
in bytes.

tskname

specifies a 1- to 6-element byte array containing the name of the remote task you
want to execute.

* ident

specifies an integer variable containing the negated task control block address of
the remote task when RUNNCW completes. This value will be used in
ABONCW. If you do not plan to cancel or abort this task later on, you do not need
to include this argument.

we

specifies a 2-byte array containing the group and user codes under which the task
will run on the remote node. The first element of the array contains the user
member code; the second element contains the user group code. This argument is
optional with a privileged password. If a privileged user omits this argument, the
task will run under its default UIC on the remote node.

smg

specifies an integer variable or constant containing the schedule delta magnitude.
The value of this optional argument is the difference in time from the issuance of
the call to the time the task is to be run at the remote node.

This argument is used with the following argument, snt, which specifies the unit
of time used to schedule the task (in hours, minutes, seconds, or ticks). In no case
can the magnitude exceed 24 hours.

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-127

snt

specifies an integer variable or constant containing the schedule delta unit. This
argument is a code identifying the time unit specified with the smg argument.
Time unit codes and their meanings are:

Code

1

Description

Ticks: A tick occurs for each clock interrupt and depends on the type of clock
installed in the system.

Line frequency clock: The tick rate is either 50 or 60 per second and corresponds
to the powerline frequency.

Programmable clock: A maximum of 1000 ticks per second is available. The exact
rate is determined at system generation.

2 Seconds

3 Minutes

4 Hours

rmg

specifies an integer variable or constant containing the reschedule delta magni­
tude. The reschedule interval is the difference in time from task initiation to the
time the task is to be reinitiated on the remote node. The task is executed each
time the elapsed time equals the reschedule magnitude specified in this argu­
ment. If this time interval elapses and the task is still active, no reinitiation
request is issued. However, a new reschedule interval is started.

This argument is used with the following argument, rnt, which specifies the unit
of time used to reschedule the task (in hours, minutes, seconds, or ticks). In no
case can the magnitude exceed 24 hours.

rnt

specifies an integer variable or constant containing the reschedule delta unit. This
argument is a code identifying the time unit to be used with the delta magnitude
specified in the rmg argument.

3-128 DECnet-RSX Programmer's Reference Manual

NOTE

• If you omit the smg, snt, rmg, and rnt arguments, the task is exe­
cuted immediately.

• If you specify smg and snt, but omit rmg and rnt, the task is exe­
cuted once at the scheduled time.

• If you specify rmg and rnt, but omit smg and snt, the task is exe­
cuted immediately and again each time the reschedule delta time
has elapsed.

• You can specify all four arguments. For example:

CALL RUNNCW (lun,status,ndsz,tsksiz,tsknam,
uic,1,4,4,4)

specifies that you want the task to run for the first time in one hour
and then run every four hours after that.

Error/Completion Codes:

1 The call completed successfully.

-1 System resources needed for the logical link are not available.

-7 The connection was rejected by the network. Refer to Appendix A.

-8 A logical link has already been established using this LUN.

-9 The task is not a network task: OPNNT did not execute successfully.

-20 There is insufficient dynamic memory on the remote node.

-21 The requested task is not installed on the remote node.

-22 RUNNCW has an invalid time parameter.

-23 An RUNNCW call was issued without scheduling parameters for a task that is already
active.

-24 A privileged violation has occurred. You are not a privileged user, and you are attempt­
ing to issue a RUNNCW under a UIC that is different from the UIC to which you are
assigned on the remote node.

-26 A RUNNCW was issued under an invalid UIC (for example, [1,0] or [0,1]).

-40 A directive error has occurred. Directive error codes are defined in the
RSX-llM/M-PLUS Executive Reference Manual.

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-129

3.9.6 FORTRAN Task Control Programming Example

The program RUNABO.FTN uses DECnet task control calls to run or abort a task on
a specified local or remote node. After your task control request has been executed,
you will be prompted to enter another request to run or abort the associated task.
When you have finished entering the task control requests, press (CTRL/Z) to exit from
the request-prompting loop and stop the program.

Before running RUNABO.FTN, the TCL task must be installed on the target node as
shown at the beginning of the program.

NOTE

This programming example is also included in your tape or disk kit.

C
C RUNABO.FTN
C
C
C
C
C
C
C

- USES THE DECNET TASK CONTROL CALLS TO RUN OR ABORT A
TASK ON THE SPECIFIED NODE (LOCAL OR REMOTE).

- TASK "TCL" MUST BE INSTALLED AT THE TARGET NODE.s
- SAMPLE COMMANDS TO DEVELOP THIS TASK FOLLOW

>FOR RUNABO,RUNABO=RUNABO
C
C

>TKB RUNABO, RUl~ABO=RUNABO, [1,1]NETFOR/LB
>INS RUNABO/TASK= ••• CTL

C
LOGICAL*1 ANSWER,RUN,ABO,TARTSK(6),TARNOD(6),PASSWD(S),USERID(16)
LOGICAL*1 ACCNT(16)
INTEGER STATUS(2),STAT
INTEGER*2 MSTAT(3)
DATA RUN/'R'/,ABO/'A'/

C
C CREATE NETWORK DATA QUEUE
C

CALL OPNNTW(1,STATUS,MSTAT)
IF (STATUS(1) .NE. 1) WRITE(S,S)STATUS(1)

C
C PROMPT FOR TARGET NODE, AND TARGET TASK.
c

c

10 WRITE (S, 1)
1 FORMAT(SX,$'TARGET NODE? :')

READ(S,2,END=999) ICNT1,TARNOD
2 FORMAT(Q,16A1)

WRITE(S,3)
3 FORMAT(SX,$'TARGET TASK? :')

READ(S,2,END=999) ICNT2,TARTSK
C
C PROMPT FOR ACCESS CONTROL INFORMATION
C

C

WRITE(S,SO)
SO FORMAT(SX,$'TARGET USER 1.0. ?:')

READ (S,2,END=999)ICNT4,USERID

WRITE(S,4)
4 FORMAT(SX,$'TARGET PASSWORD ?:')

READ (S,2,END=999)ICNT3,PASSWD

(continued on next page)

3-130 DECnet-RSX Programmer's Reference Manual

C

C

C

WRITE(5,11)
11 FORMAT(5X,$'TARGET ACCOUNT NUMBER ?:')

READ (5,2,END=999)ICNT5,ACCNT

WRITE(5,6)
6 FORMAT(5X,$'RUN (R) OR ABORT (A) ? :')

READ(S,7,END=999)ANSWER
7 FORMAT(Al)

C DECIDE WHETHER TO CALL BACUSR
C

IF (ICNT4 .EQ. 0 .AND. ICNTS .EQ. 0) GO TO 70
CALL BACUSR (STAT,ICNT4,USERID,ICNT5,ACCNT)
IF (STAT .EQ .• TRUE.) GO TO 70
WRITE(5,80)STAT

80 FORMAT (' ERROR BUILDING CONNECT BLOCK ')
GOTO 10

C
C DECIDE WHETHER TO RUN OR ABORT THE TASK.
C

C

70 IF (ANSWER .EQ. ABO) GOTO 20
IF (ANSWER .EQ. RUN) GOTO 30
GOTO 999

C ABORT THE TASK, AND PRINT STATUS.
20 WRITE (5,100)

100 FORMAT (5X,$'IF A PRIVILEGED PASSWORD IS USED, ENTER O. IDENT ?:')
READ (5,110)IDENT

110 FORMAT(I6)
CALL ABONCW (2,STATUS,ICNT1,TARNOD,ICNT3,PASSWD,ICNT2,TARTSK,IDENT)

C
WRITE(5,8)STATUS(1)

8 FORMAT(' STATUS = ',17)
GOTO 10

C
C RUN THE TASK, AND PRINT STATUS.
C

30 CALL RUNNCW(2,STATUS, ICNT1,TARNOD, ICNT3,PASSWD, ICNT2,TARTSK, IDENT)
WRITE (5,8)STATUS(1)
IF (STATUS(l) .EQ. 1) WRITE (5,90) IDENT

90 FORMAT (' THE IDENT IS ',16)
GOTO 10

999 STOP
END

Programming Facilities for FORTRAN, COBOL, and BASIC-PLUS-2 3-131

4
DLX: Direct Line Access Controller

DLX allows programs to send and receive data that bypasses the standard DECnet
user interface. This permits:

• Communication with non-DECnet based systems

• Reduction of overhead messages exchanged with other systems or systems that may
be running DLX

To use DLX, you issue queued input/output (QIO) calls to the NX: device. The DLX
interface can be used to communicate over all devices supported by DECnet-RSX.

DLX is automatically built for RSX-IIM-PLUS systems. It is optional for
RSX-IIM/RSX-IIS systems. However, DLX is required for down-line loads and up­
line dumps from RSX-IIS systems.

DLX programming requires a thorough knowledge of MACRO-II assembly language
and experience in writing real-time application programs. You must write tasks that
synchronize with each other before transferring data. If tasks are not synchronized,
the data can be lost during task-to-task communication. You must provide your own
error-handling routines. The DLX software informs your task of any errors, but your
task must be written to process error recovery.

You can use DLX QIOs to communicate between your program and a program on an
adjacent node using the DECnet DDCMP protocol or the Ethernet. The adjacent
system can be any DECnet-RSX or non-DECnet based system that has similar capa­
bilities. In task-to-task communication between adjacent nodes, DLX significantly
improves network performance in terms of CPU and line usage. You can build your
own user level protocol that best suits the application.

NOTE

All messages transmitted and received via DLX are buffered in net­
work buffers. In previous versions of DECnet-RSX, user programs
needed to define buffer space for user data as well as protocol over­
head using the DLXBUF macro. This is no longer required.

4-1

4.1 System Requirements for Tasks Using OLX

Running programs which use the DLX interface requires some special considerations.

• The DLX process must be loaded. DLX is loaded in the system as a common area
called NT.DLX. It will normally be resident after loading the network with an NCP
or VNP command (for example, NCP SET SYSTEM or VNP SET SYSTEM com­
mand).

• Prior to running the program, it is necessary to set the line states for the devices the
program will use. The details for setting lines are described for Ethernet and non­
Ethernet devices.

If the program will use a non-Ethernet device, it is necessary to use the following
commands. The variable dev-x identifies a specific line (for example, DMC-O).

>NCP SET LINE dev-x
>NCP SET LINE dev-x OWNER DLX
>NCP SET LINE dev-x STATE ON

N ow you are ready to run the program.

If the program will use an Ethernet device, it is necessary to use the following com­
mand. The variable dev-x identifies a UNA or QNA device (for example, UNA-I).

>NCP SET LIN dev-x

N ow you are ready to run the program.

4.2 Special Considerations for Ethernet Users

The Ethernet is unlike other data links supported by the Communications Executive
(CEX) and DECnet in that a single circuit can be used by more than one user
simultaneously. Externally, Ethernet devices appear to be single line point-to-point
controllers (for example, UNA-O, UNA-I). Internally, they are implemented as mul­
tipoint devices, with each station representing an available port onto the Ethernet.

Because the Ethernet allows multiple users to access the physical link simultane­
ously, some mechanism must be provided to deliver received messages to the correct
user. All messages on the Ethernet must include a destination address (48-bit) and a
protocol type (I6-bit). There are two modes that determine how messages will be
transmitted: physical address mode and multicast address mode.

Physical address mode defines a unique address for a single node on any Ethernet.
Multicast address mode defines a multidestination address of one or more nodes on a
given Ethernet. With multicast addressing, any number of nodes can be assigned a
group address so they are all able to receive the same data in a single transmission.
Before transmitting and receiving messages, you must define a specific mode. To do
this, use the SET CHARACTERISTICS (IO.XSC) QIO call (Section 4.3.2).

4-2 DECnet-RSX Programmer's Reference Manual

Each user must enable unique protocol/address pairs to define which messages it
wishes to receive. For example, user 1 may enable protocol A to addresses 1 and 2,
while user 2 may enable protocol B to addresses 3 and 4. It is possible for two or more
users to enable the same protocol or addresses, providing that the protocol/address
pairs are unique.

The Ethernet may be opened in three different modes (defined in EPMDF$ in NET­
LIB.MLB):

• Exclusive - This user has exclusive use of the specific protocol and no other user
LF$EXC may transmit or receive using this protocol. (DECnet routing uses this

mode.)

• Default
LF$DEF

- This user should receive messages on this protocol that would other­
wise be discarded because there was no protocol/address pair set up.

• Normal - The user must specify the protocol/address pairs that will be used for
communications.

In addition, the user can select padding for an Ethernet (LF$PAD) that will prefix the
message with a 2-byte length field and pad the message out to the minimum Ethernet
size on transmit. On receive, the length field will be used to indicate the amount of
data present.

When a hardware error is detected on the Ethernet controller, all protocol/address
pairings and multicast addresses will be lost. After issuing the IO.XIN call to reini­
tialize the channel, the protocol/address pairs and the multicast addresses must be
reenabled.

Ethernet users should refer to the DECnet-RSX Network Concepts and Procedures
manual for more information.

4.3 DLX QIOs

DLX requests conform to normal RSX-11 QIO standards. Standards for logical unit
numbers (LUNs), event flags, I/O status blocks, asynchronous system traps (ASTs),
and parameter lists are observed. According to RSX-11 standards, anyone of the
three macro formats may be used (see Section 2.1). The QIO wait option (specified as
QIOW$) also may be used to suspend further execution of the program until the call
completes.

The macros are defined in the DECnet macro library (NETLIB.MLB). This library is
transferred to the user's system during NETGEN. The definitions and offsets used in
the macros are contained in two definition macros: DLXDF$ and EPMDF$.

It is necessary to issue .MCALL statements and explicitly invoke the macro in the
user program. For example,

• MCALL DUWF$ tEPMDF$

DU{DF$
EPMDF$

DLX: Direct Line Access Controller 4-3

The DLX QIO codes and functions are summarized in Table 4-1 for both Ethernet
and non-Ethernet. Each call, with its arguments and completion status codes, is
described in this chapter (Sections 4.3.1 through 4.3.7).

Table 4-1: Summary of DLX Function Codes

Code Non-Ethernet Ethernet

IO.XOP Open a line Open the Ethernet device

IO.XSC Not Applicable Set characteristics

IO.XIN Initialize the line Not Applicable

IO.XTM Transmit a message Transmit a message

IO.XRC Receive a message Recei ve a message

IO.XHG Hang up the line Not Applicable

IO.XCL Close the line Close the line

4-4 DECnet-RSX Programmer's Reference Manual

IO.XOP

Open a Line

4.3.1 IO.XOP - Open a Line

Use:

Issue this QIO to open a line for direct line access message transfer and reception.
This QIO causes the specified LUN to be associated with the specified line. The
line is then implicitly initiated, and the protocol is started. The line owner must
be DLX; the line must be either ON or in SERVICE state, and the LUN must
have been assigned to NX:. Note that in normal mode (see the p3 argument,
below), this function will not complete until the task at the other end of the line
also performs an open or initialize function.

To open the Ethernet device from DLX, specify the address in argument pI for
the device ID string (for example, UNA-O). DLX will scan the port database for
an available port and assign it to DLX for the user.

Format:

QIO$ IO.XOP,lun,[efn],,[status],[ast],<pl,p2,p3>

Arguments:

IO.XOP

is the function code that opens a line.

lun

is the logical unit number associated with the line that you are opening.

efn

is an optional event flag number set when the call completes.

status

is the address of an optional 2-word status block that contains the completion
status of the call in the low-order byte of the first word (see completion status,
below).

ast

is the entry point into an optional user-written AST routine to be executed after
this call completes.

DLX: Direct Line Access Controller 4-5

4-6

pI

is the address of an ASCII string that identifies the line to be opened.

For non-Ethernet devices the format is:

dev-ctl[-line] [.tributary]

where dev is the device mnemonic, ctl is the decimal value for the controller
number, line is the decimal number of the line you are opening, and tributary
defines the decimal number of the multipoint tributary with which you want to
communicate.

p2

is the length of the line identification field.

For Ethernet devices, the format is:

dev-ctl

where dev is UNA or QNA, and ctl is the decimal value for the controller number.

p3

is a word argument that specifies the line mode and timeout value for the call.
(The timeout value is the amount of time that the receiver waits for a message to
be transmitted.) The low-order byte of the word designates the receive timeout
value as follows:

timeout = 0 for no receive timer.
timeout = <n>

where n is the timer value in seconds. (The timer value n causes the timeout to
have a range of n-l to n.) The high-order byte of this word designates the line
mode as follows:

mode = 0 for normal mode.
mode = 1 for Maintenance Operation Protocol (MOP) mode.

DECnet-RSX Programmer's Reference Manual

Completion Status:

IS.SUC (1)

177736
IE.ALN
(-34.)

177776
IE.IFC
(-2.)

177646
IE.NSF
(-26.)

177760
IE.PRI
(-16.)

177757
IE.RSU
(-17.)

The line has been opened successfully.

The specified LUN is already in use.

The LUN is not assigned to NX.

Either you have entered an invalid line identification format or the specified line
is not in the system.

The specified line is not available for use by DLX.

The specified line is already in use.

DLX: Direct Line Access Controller 4-7

IO.XSC

Set Characteristics

4.3.2 IO.XSC - Set Characteristics (Ethernet Only)

Use:

Use this Ethernet QIO to set up the protocol/address pairs and multicast ad­
dresses.

Format:

QIO$ 10.XSC,lun, [e!n]" [status], [ast], <pI,p2>

Arguments:

IO.XSC

is the function code that supplies a single characteristics buffer in arguments pI
and p2. This buffer may contain multiple characteristics blocks.

lun

is the logical unit number associated with the line that you are setting for a
characteristics buffer.

efn

is an optional event flag number set when the call completes.

status

is the address of a 2-word status block that contains completion status. On com­
pletion, the second word of the I/O status block will indicate how much of the
characteristics buffer has been processed.

ast

is the entry point into an optional user-written AST routine to be executed after
this call completes.

pI

is the address of the characteristics buffer.

p2

is the length of the characterIstics buffer.

The set characteristics buffer format may contain multiple characteristics blocks.
Each characteristics block has the following format:

DECnet-RSX Programmer's Reference Manual

CHARACTERISTICS TYPE

SIZE OF DATA INPUT

RESERVED

CHARACTERISTICS STATUS

CHARACTERISTICS DATA

..

..

..

..

Common error codes in C.STAT are:

CE.UDF Undefined function

CE.RTS Request too small (not enough data supplied)

CE.RTL Request toe large (too much data supplied)

CE.RES Resource allocation failure

C.TYP

C.DATI

C.DATO

C.STAT

C.CHRL

The size of data input (C.DATI) indicates how many bytes of characteristic data are
being supplied, the size of data output (C.DATO) is not used by this function. The
status field (C.STAT) of those characteristics blocks that have been processed will be
set to indicate the success or failure of the characteristics function. Protocol flags are
defined in EPMDF$ (LF$xxx).

NOTE

The address field(s) should not be present if LF$EXC or LF$DEF is
specified in the flags.

DLX: Direct Line Access Controller 4-9

Setting up protocol/address pairs:

Protocol type = CC.DST (200) - allows transmission and reception of messages with
the specified protocol to/from any of the addresses in the list.

CHARACTERISTICS TYPE C.TYP

SIZE OF DATA INPUT C.DATI

RESERVED C.DATO

CHARACTERISTICS STATUS C.STAT

PROTOCOL TYPE C.CHRL

PROTOCOL FLAGS

ADDRESS 1

ADDRESS n

Errors returned in C.STAT are:

CE.PCN Protocol usage conflict:

A. Another user has exclusive access to this protocol.

CHARACTERISTICS
DATA

4+6n
BYTES

B. There is already a default user of this protocol and this request is
attempting to set up a new default user.

C. The padding status of this protocol does not match that which is
requested.

CE.IUN Illegal use of multicast address; one of the addresses specified is multi­
cast.

CE.ACN Address usage conflicts; the protocol/address pair is already in use.

4-10 DECnet-RSX Programmer's Reference Manual

Setting up a multicast address:

Protocol type = CC.MCT (201) - allows reception of messages that are sent to the
specified multicast address.

CHARACTERISTICS TYPE

SIZE OF DATA INPUT

RESERVED

CHARACTERISTICS STATUS

MULTICAST ADDRESS

Errors returned in C.STAT are:

CE.NMA Not a multicast address.

CE.MCE Multicast address already enabled.

DLX: Direct Line Access Controller

C.TYP

C.DATI

C.DATO

C.STAT

]

CHARACTERISTICS
DATA

6 BYTES

4-11

IO.XIN

Initialize the Line

4.3.3 IO.XIN - Initialize the Line (non-Ethernet only)

Use:

Issue this QIO to reinitialize a line after a fatal device error has occurred. When
you use this QIO, you must reset the mode and timer values. Note that in normal
mode (see the pI argument, below), this function will not complete until the task
at the other end of the line also performs an open or initialize function.

Format:

QIO$ IO.XIN,lun, [ein]" [status], [ast], <pI>

Arguments:

IO.XIN

is the function code that initializes the line.

lun

is the logical unit number associated with the line that you are initializing.

efn

is an optional event flag number set when the call completes.

status

is the address of an optional 2-word status block that contains the completion
status of the call in the low-order byte of the first word (see completion status,
below).

ast

is the entry point into an optional user-written AST routine to be executed after
this call completes.

pJ

is both the mode and timer argument. Use the same format as described for
argument p3 in IO.XOP (Section 4.3.1).

4-12 DECnet-RSX Programmer's Reference Manual

Completion Status:

IS.SUC (1)

177761
IE.ABO
(-15.)

177776
IE.IFC
(-2.)

177733
IE.NLN
(-37.)

The line has been successfully initialized.

The initialization attempt has been aborted. This could have been caused by a
hardware device error, a user-issued hang-up QIO, or an attempt to initialize a
line that was not hung up.

The LUN is not assigned to NX.

No line has been opened with the specified LUN.

DLX: Direct Line Access Controller 4-13

IO.XTM

Transmit a Message
on the Line

4.3.4 IO.XTM - Transmit a Message on the Line

Non-Ethernet Use:

Issue this QIO to transmit a message on a line that has been initialized (see Section
4.3.3). The data that you transmit to the adjacent node is transferred from your user
buffer and copied to a network buffer for transmission.

Ethernet Use:

When transmitting a message on the Ethernet, you must specify the destination
address for the multicast address to be used for this message along with the protocol
type. This is accomplished by having an optional auxiliary characteristics buffer for
transmit in arguments p3 and p4.

Format:

QIO$ IO.XTM,lun,[efn],,[status],[ast],<pl,p2,[p3,p4]>

Arguments:

IO.XTM

is the function code for transmitting a message.

lun

is the logical unit number for the line on which you are transmitting data.

efn

is an optional event flag number set when the call completes.

status

is the address of an optional 2-word status block that contains the completion
status of the call in the low-order byte of the first word (see completion status,
below).

ast

is the entry point into an optional user-written AST routine to be executed after
this call completes.

pJ

is the address of the user buffer that contains the message to be transmitted. Use
the label specified in the DLXBUF macro call.

4-14 DECnet-RSX Programmer's Reference Manual

p2

is the length of the message you are sending to the remote node (excluding the
DDCMP header and checksum).

p3

is the address of the optional auxiliary characteristics buffer multicast addresses.

p4

is the length of the optional auxiliary characteristics buffer.

The auxiliary characteristics buffer has the same format as the set characteristics
buffer described in Section 4.3.2. The individual characteristics block has the follow­
ing format:

To set the Ethernet address:

Protocol type = CC.ADR (100)

CHARACTERISTICS TYPE

SIZE OF DATA INPUT

SIZE OF DATA OUTPUT

CHARACTERISTICS STATUS

ETHERNET ADDRESS

DLX: Direct Line Access Controller

C.TYP

C.DATI

C.DATO

C.STAT

~
CHARACTE R ISTICS
DATA

6 BYTES

4-15

To set the protocol type:

Protocol type = CC.PRO (101)

CHARACTER ISTICS TYPE

SIZE OF DATA INPUT

SIZE OF DATA OUTPUT

CHARACTERISTICS STATUS

PROTOCOL TYPE

C.TYP

C.DATI

C.DATO

C.STAT

]

CHARACTERISTICS
DATA 2 BYTES

Transmit requests on Ethernet channels must include an auxiliary characteristics
buffer including both the address and protocol type. Failure to do so will cause the
transmit message to be returned with a IE.BAD error. If the auxiliary buffer is present
for other data links, the individual characteristics blocks will be completed with a
CS.IGN (Successful, block ignored) error in C.STAT.

Completion Status:

Is.sue (1)

177761
IE.ABO
(-15.)

177775
IE.DNR
(-3.)

177776
IE.IFC
(-2.)

177733
IE.NLN
(-37.)

177772
IE.SPC
(-6.)

4-16

The message was transmitted to the remote node successfully.

The transmission was aborted because you or the remote user issued a hang-up
QIO or because an unrecoverable error occurred in the hardware device. When a
message transmission completes with an IE.ABO code, the line is hung up. You
must either issue a QIO to initialize the line (see Section 4.3.3) or close and
reopen the line (see Sections 4.3.7 and 4.3.1, respectively) before you can use
that line again.

The hardware device was not ready. The line was hung up and has not been
reinitialized.

The LUN is not assigned to NX.

No line has been opened with the specified LUN.

The transmit buffer is too large (applicable only to PDP-ll/44 or PDP-1I!70
with extended memory).

DECnet-RSX Programmer's Reference Manual

IO.XRC

Receive a Message
on the Line

4.3.5 IO.XRC - Receive a Message on the Line

Non-Ethernet Use:

Issue this QIO to receive a message from the remote node on a line that has been
initialized (see Section 4.3.3). Unless you issue a receive QIO, any data sent to
you by a remote node is lost. When you open a line in MOP (Maintenance
Operation Protocol) mode, this loss of data is not reported to you. If, however, you
open the line in normal mode, an error is reported to you the next time you issue a
receive QIO.

Ethernet Use:

When receiving a message on the Ethernet, you must find out the source address
for this message along with the protocol type. This is accomplished by having an
optional auxiliary characteristics buffer for receive messages in parameters p3,
and p4.

Format:

QIO$ IO.XRC,lun, [efn]" [status], [ast], <pl,p2, [p3,p4]

Arguments:

IO.XRC

is the function code for receiving a message.

lun

is the logical unit number associated with the line on which you receive the
message.

efn

is an optional event flag number set when the call completes.

status

is the address of an optional 2-word status block that contains the completion
status of the call in the low-order byte of the first word (see completion status,
below).

ast

is the entry point into an optional user-written AST routine to be executed after
this call completes.

pJ

is the address of the user buffer in your system that receives the message.

DLX: Direct Line Access Controller 4-17

p2

is the length in bytes that you are allocating for the receive buffer. (The received
message cannot be longer than the size of the system buffer, regardless of the
length you state here for p2.)

p3

is the address of the optional auxiliary characteristics buffer.

p4

is the length of the optional auxiliary characteristics buffer.

The auxiliary characteristics buffer has the same format as the set characteristics
buffer described in Section 4.3.2. The individual characteristics block has the follow­
ing format:

To read the Ethernet address:

Protocol type = CC.ADR (100)

CHARACTERISTICS TYPE

SIZE OF DATA INPUT

SIZE OF DATA OUTPUT

CHARACTERISTICS STATUS

ETHERNET ADDRESS

C.TYP

C.DATI

C.DATO

C.STAT

J
CHARACTER ISTICS
DATA

6 BYTES

4-18 DECnet-RSX Programmer's Reference Manual

To read the protocol type:

Protocol type = CC.PRO (101)

CHARACTERISTICS TYPE

SIZE OF DATA INPUT

SIZE OF DATA OUTPUT

CHARACTERISTICS STATUS

PROTOCOL TYPE

To read destination Ethernet address:

Protocol type = CC.DAD (102)

CHARACTERISTICS TYPE

SIZE OF DATA INPUT

SIZE OF DATA OUTPUT

CHARACTERISTICS STATUS

DESTI NATION
ETHERNET ADDRESS

DLX: Direct Line Access Controller

C.TYP

C.DATI

C.DATO

C.STAT

]

CHARACTERISTICS
DATA 2 BYTES

C.TYP

C.DATI

C.DATO

C.STAT

]
CHARACTERISTICS
DATA

6 BYTES

4-19

Completion Status:

Is.sue (1)

177761
IE.ABO
(-15.)

177763
IE.DAO
(-13.)

177775
IE.DNR
(-3.)

177776
IE.IFC
(-2.)

177733
IE.NLN
(-37.)

177641
IE.TMO
(-95.)

177774
IE.VER
(-4.)

4-20

You successfully received a message from the remote node. The second word of
the I/O status block contains the number of bytes you actually received.

The receive function was aborted because you or the remote user issued a hang­
up QIO or because an unrecoverable error occurred in the hardware device.
When a receive is aborted, the line is hung up. You must either issue an initial­
ize QIO (see Section 4.3.3) or close and reopen the line (see Sections 4.3.7 and
4.3.1, respectively) before you can use the line again.

Either a message was received before a receive QIO was issued and the data is
lost (this applies only to normal mode operations), or the user buffer was too
small to receive all of the data. In the latter case, the message is truncated, and
some data is lost. (The length of the user buffer is contained in the second word
of the I/O status block.)

The hardware device was not ready. The line was hung up and has not been
reini tialized.

The LUN is not assigned to NX.

No line has been opened with the specified logical unit number.

A timeout condition has occurred. No message was received within the timer
interval specified when you opened or initialized the line.

An error has occurred on the line. The second word of the I/O status block
contains the error code. Possible error codes and their meanings are:

100361 DDCMP transmit error threshold exceeded

100362 Operation aborted

100363 Message received without receive pending

100364 Start received

100366 Line physically disconnected

100370 General error

100372 MOP message received

100374 DDCMP reply timeout threshold exceeded

100376 DDCMP receive error threshold exceeded

DECnet-RSX Programmer's Reference Manual

IO.XHG

Hang Up the Line

4.3.6 IO.XHG - Hang Up the Line (non-Ethernet only)

Use:

Issue this QIO to stop operations on a line. This QIO does not close a line.
However, you must issue an initialize QIO (see Section 4.3.3) or close and reopen
QIOs (see Sections 4.3.7 and 4.3.1, respectively) to resume operations.

Format:

QIO$ 10 .XHG, lun, [efn] " [status], [ast]

Arguments:

IO.XHG

is the function code that hangs up the line.

lun

is the logical unit number associated with the line you are hanging up.

efn

is an optional event flag number set when the call completes.

status

is the address of an optional 2-word status block that contains the completion
status of the call in the low-order byte of the first word (see completion status,
below).

ast

is the entry point into an optional user-written AST routine to be executed after
this call completes.

Completion Status:

IS.SUC (1) This line was hung up successfully.

177776 The LUN i~ not assigned to NX.
IE.IFC
(-2.)

177733 No line has been opened with the specified LUN.
IE.NLN
(-37.)

DLX: Direct Line Access Controller 4-21

IO.XCL

Close the Line

4.3.7 IO.XCL - Close the Line (non-Ethernet only)

Use:

Issue the IO.XCL call to close an open line and stop the protocol. If you have a
dial-up connection, however, the line will not be hung up before it closes.

Format:

QIO$ IO.XCL,lun, [efn]" [status], [ast]

Arguments:

IO.XCL

is the function code that closes the line.

lun

is the logical unit number associated with the line that you are closing.

efn

is an optional event flag number set when the call completes.

status

is the address of an optional 2-word status block that contains the completion
status of the call in the low-order byte of the first word (see completion status,
below).

ast

is the entry point into an optional user-written AST routine to be executed after
this call completes.

Completion Status:

Is.sue (1) The line has been successfully closed.

177776 The LUN is not assigned to NX.
IE.IFC
(-2.)

177733 No line has been opened with the specified LUN.
IE.NLN
(-37.)

4-22 DECnet-RSX Programmer's Reference Manual

4.3.8 DLX 010 Transmit Programming Example (for non-Ethernet
device)

The following programs are examples of tasks using the DECnet-RSX DLX interface.
XTS-DLX TRANSMITTER uses DLX QIOs to send data. XTR-DLX RECEIVER
uses DLX QIOs to receive messages.

NOTE

These programming examples are also included in your tape or disk
kit .

• TITLE XTS - DLX TRANSMITTER
.IDENT IV01. OIl

COPYRIGHT (C) 1983, 1985 BY
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED
ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE
INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER
COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY
OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY
TRANSFERRED.

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT
CORPORATION.

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL.

MODULE DESCRIPTION:

XTS - DLX TRANSMITTER

DISTRIBUTED SYSTEMS SOFTWARE ENGINEERING

IDENT HISTORY:

1. 00 28-OCT-83
VERSION 1.0 RELEASE

1.01 11-MAR-85
Correct build procedure UICs

(continued on next page)

DLX: Direct Line Access Controller 4-23

;+

XTS - DLX SYSTEM EXERCISER (THIS TEST UTILITY IS UNSUPPORTED)

XTS IS A UITILITY WHICH ENABLES A USER TO TaANSMIT DATA READ IN FROM
A TERMINAL OR COMMAND FILE ACROSS AN "ERROR FREE"
LINE TO A RECEIVER TASK WHICH ECHOES THE RECEIVED DATA BACK OVER THE
CHANNEL. XTS USES THE DLX INTERFACE TO PROVIDE THE "ERROR FREE" CHANNEL.

BREAK THROUGH WRITES MUST BE SUPPORTED IN ORDER TO RUN THIS PROGRAM.

TO ASSEMBLE USE THE FOLLOWING COMMAND STRING:

MAC XTS,XTS/-SP/LI:TTM=IN:[130,lO]NETLIB/ML,IN:[200,200]XTS

TO TASK BUILD USE THE FOLLOWING COMMAND STRING:

XTS,XTS/-SP-XTS,IN:[130,lO]NETLIB/LB:GCL
I
STACKa 30
UNITS=4
ASG=TI:l:2:3:4
TASK= ••• XTS
II

NOTE: THE IN: DEVICE MUST BE THE DECNET DISTRIBUTION DEVICE
AFTER THE PREGEN (IF ANY) HAS BEEN PERFORMED.

THE FOLLOWING IS AN EXAMPLE OF THE XTS DIALOG:

>XTS
LINE: DMC-O
XTS>THIS IS A TEST OF XTS-XTR
THIS IS A TEST OF XTS-XTR

XTS>TESTING
TESTING

XTS>"Z
>

IN ORDER FOR XTS TO RECEIVE AN ECHO OF THE MESSAGE, XTR MUST BE RUNNING.
IT IS INITIATED IN THE FOLLOWING MANNER:

>XTR
LINE: DUP-O

WHEN FINISHED WITH XTS/XTR, XTR MUST BE ABORTED

.SBTTL LOCAL MACROS

.MACRO EPRINT ERRMSG
MOV #ERRMSG,RO
CALL $EPRINT
.ENDM EPRINT

(continued on next page)

4-24 DECnet-RSX Programmer's Reference Manual

.SBTTL MACRO CALLS

• MCALL QIOW$,QIO$,QIOW$S,ALUN$S,EXIT$S,EXST$S,FSRSZ$,ASTX$S
• MCALL GCL$,GCLDF$,CALLR,DLXDF$

DLXDF$; DEFINE,DLX FUNCTION CODES

.SBTTL CONSTANTS

LUN ASSIGNMENTS:

TILUN=l
CHNLUN=2
ERRLUN=3
CMDLUN=4

EVENT FLAG ASSIGNMENTS:

TIEFN=l
CHNEFN=2
ERREFN=3
CMDEFN=4

.SBTTL DATA

DEFINE GCL PARAMETERS

iLUN FOR TI
;LUN FOR ERROR FREE CHANNEL
;LUN FOR ERRORS
;LUN FOR COMMAND LINES

;EVENT FLAG FOR TERMINAL I/O
;EVENT FLAG FOR CHANNEL
;EVENT FLAG FOR ERROR MESSAGES
;EVENT FLAG FOR COMMAND LINES

GCLDF$ CMDLUN,CMDEFN,<XTS>,CMDBUF,80.

DEFINE FSR SIZE

.**** ,
; DPB'S
.**** ,

WRITE:

ERDPB:

RECl:
REC2:

CLOSE:

,

FSRSZ$

QIOW$

QIOW$

QIO$
QIO$

QIOW$

1 ;ROOM FOR 1 FILE (GCL)

IO.WVB,TILUN,TIEFN",,<O,O,40>

IO.WVB,ERRLUN,ERREFN",,<O,O,40>

IO.XRC,CHNLUN",RlSB,RECAST,<RlBUF,80.>
IO.XRC,CHNLUN",R2SB,RECAST,<R2BUF,80.>

IO.XCL,CHNLUN,CHNEFN

; EXIT-WITH-STATUS WORD
,
EXSTAT: .BLKW 1 iEXIT STATUS

(continued on next page)

DLX: Direct Line Access Controller 4-25

CHANNEL I/O STATUS BLOCK
;
CHNSB: .BLKW 2

;
; AST SAVED I/O STATUS BLOCK
;
IOSB: .BLKW I

;
; CHANNEL RECEIVE I/O STATUS BLOCKS
;
RISB: .BLKW 2

. WORD RIBUF

. WORD HNGRCI

R2SB: .BLKW 2
. WORD R2BUF
• WORD HNGRC2

BUFFER FOR COMMAND LINE
,
CMDBUF: .BLKB 82 .

. EVEN

CHANNEL RECEIVE BUFFERS
,
RIBUF: .BLKB 80.

R2BUF: .BLKB 80 •
• EVEN

:****
; TEXT STRINGS:
.**** ,

HEADER FOR ERROR MESSAGES
,
XTSEM: .ASCIZ /XTS -- /

,
; TEMPORARY PROMPT
,
PROMPT: .ASCIZ <15><12>/LINE: /

ERROR MESSAGES

.ENABL LC

.NLIST BEX

STATUS OF FIRST RECEIVE
ADDRESS OF BUFFER
ADDRESS OF RECEIVE POSTING ROUTINE

STATUS OF SECOND RECEIVE
ADDRESS OF BUFFER
ADDRESS OF RECEIVE POSTING ROUTINE

GCLERR: .ASCIZ /Command line read error/
NSFERR: .ASCIZ /No such command file/
DLXERR: .ASCIZ /DLX not loaded/
OPNERR: .ASCII /Unable to open line -- /
BUFOPN: .BLKB 7
XMTERR: .ASCII /Error transmitting data /
BUFXMT: .BLKB 7
RECERR: • ASCII /Error receiving data -- /
BUFREC: .BLKB 7

.LIST BEX
• EVEN

(continued on next page)

4-26 DECnet-RSX Programmer's Reference Manual

.SBTTL XTS - XTS MAIN LINE
+

XTS -- MAIN LINE OF XTS CODE

XTSEP: :

MOV #EX$SUC,EXSTAT

ASSIGN LUN TO CHANNEL

ALUN$S
BCC
EPRINT
BR

#CHNLUN,#"NX,#O
10$
DLXERR
EXIT

PROMPT USER FOR LINE ID

:ASSUME EXIT WITH STATUS

:IF CC, ALL OKAY
:ELSE, ASSUME DLX NOT LOADED
:AND LEAVE

iO$: MOV
MOV
CALL
MOV
BCS
TST
BEQ

$CLPMT,-(SP)
#PROMPT, $CLPMT
GCL
(SP)+,$CLPMT
EXIT

:SAVE CURRENT PROMPT
:PROMPT STRING

R5
10$

OPEN ACCESS TO THE LINE.

:GET A COMMAND LINE
:RESTORE PROMPT
:IF CS, ASSUME EOF
:BLANK LINE?
;IF EQ, YES - TRY AGAIN

#IO.XOP,#CHNLUN,#CHNEFN,,#CHNSB,,<R4,R5>
15$ IF CS, ERROR
CHNSB,Rl SUCCESSFUL?
20$ IF PL, YES
#BUFOPN,RO ELSE, GET BUFFER ADDRESS
R2 ZERO SUPPRESSION
$CBOMG CONVERT NUMBER
(RO) MAKE STRING ASCIZ

15$:

QIOW$S
BCS
MOVB
BPL
MOV
CLR
CALL
CLRB
EPRINT
BR

OPNERR OPEN ERROR
EXIT

HANG AN ASYNCHRONOUS READ ON LINE
,
20$: CALL

CALL
BCS

HNGRCl
HNGRC2
EXIT

GET COMMAND LINE

30$: CALL
BCS
TST
BEQ

GCL
EXIT
R5
30$

TRANSMIT THE BUFFER

CALL XMIT
BCC 30$

CLOSE THE LINE
,
EXIT: DIRS #CLOSE

IF CS, ERROR

:GET COMMAND LINE
:IF CS, ASSUME EOF
:EMPTY LINE?
;IF EQ, YES - TRY AGAIN

:TRANSMIT THE BUFFER
:IF CC, GET NEXT MESSAGE

(continued on next page)

DLX: Direct Line Access Controller 4-27

;+

EXIT XTS

EXST$S EXSTAT
EXIT$S

.SBTTL GCL - GET COMMAND LINE

**-GCL-GET COMMAND LINE

;TRY TO EXIT-WITH-STATUS
;ELSE, JUST EXIT

THIS ROUTINE IS CALLED TO GET A COMMAND LINE FOR XTS. INPUT CAN BE
FROM TI: OR AN INDIRECT COMMAND FILE. RETURN WITH C-SET FOR ERROR OR EOF.

INPUTS:
NONE

OUTPUTS:
R4=ADDRESS OF COMMAND LINE
R5=SIZE OF COMMAND LINE IN BYTES
C-BIT SET/CLEARED

EFFECTS:

GCL:

10$:
20$:

30$:

,

R4,R5 MODIFIED.

GCL$
MOV
TSTB
BGT

CMPB
BEQ

CMPB
BEQ

CMPB
BNE
EPRINT
CALL
CLR
BR

EPRINT
TSTB
BNE
BR
SEC
BR

$CLIOS,R5
(R5)
40$

#IE.EOF, (R5)
30$

#IE.ABO, (R5)
30$

#IE.NSF, (R5)
10$
NSFERR
ECHO
R5
50$

GCLERR
$CLEVL
30$
GCL

50$

; GET SIZE AND ADDRESS OF COMMAND LINE.
;
40$: MOV $CLBUF,R4

MOV 2 (R5) , R5
CLC

50$:
RETURN

;GET COMMAND LINE
;POINT TO I/O STATUS BLOCK
; ERROR?
; IF GT, NO

;END OF FILE?
;IF EQ, YES - SET C AND RETURN

;WAS READ KILLED BY RECEIVE?
;IF EQ, YES - RETURN WITH C-SET

;NO SUCH FILE ERROR?
; IF NE, NO
;ELSE, SAY SO
;ECHO COMMAND LINE
;SET COMMAND LINE LENGTH TO 0
; AND RETURN EMPTY

;PRINT GET COMMAND LINE ERROR
;TERMINAL INPUT?
;IF NE, NO - FATAL ERROR
;ELSE, RE-PROMPT
;SET-C
;AND EXIT

;GET ADDRESS OF COMMAND LINE
;GET SIZE OF COMMAND LINE
;SET SUCCESS

; RETURN

(continued on next page)

4-28 DECnet-RSX Programmer's Reference Manual

.SBTTL HNGRCl - HANG ASYNCHRONOUS READ ON LINE
;+

**-HNGRCl - HANG AN ASYNCHRONOUS READ ON THE CHANNEL
**-HNGRC2 -

INPUTS:
NONE.

OUTPUTS:
RECEIVE HUNG ON LINE

,
.ENABL LSB

HNGRC1:
CALL $SAVAL ;SAVE ALL REGISTERS
DIR$ #RECl ; HANG RECE I VE
BCS 10$; IF CS, ERROR
BR 20$; AND CONT I WE I N COMMON CODE

HNGRC2:
CALL $SAVAL ;SAVE ALL REGISTERS
DIR$ #REC2 ;HANG RECEIVE
BCC 20$, IF CC, SUCCESS

10$: EPRINT RECERR ;RECEIVE ERROR
SEC ; INDICATE FAILURE

20$: RETURN ; RETURN
. DSABL LSB

.SBTTL XMIT - TRANSMIT DATA OVER LINE
;+

**-XMIT - TRANSMIT DATA OVER LINE

INPUTS:
R4 = ADDRESS OF DATA
R5 LENGTH OF DATA

OUTPUTS:

XMIT:

10$:

20$:

DATA TRANSMITTED

QIOW$S
BCS
MOVB
BPL
MOV
CLR
CALL
CLRB
EPRINT
SEC
RETURN

#IO.XMT,#CHNLUN,#CHNEFN,,#CHNSB,,<R4,R5>
10$;IF CS, ERROR
CHNSB,Rl ;SUCCESSFUL ?
20$;IF PL, YES
#BUFXMT,RO ;ELSE, GET BUFFER ADDRESS
R2 ;ZERO SUPPRESSION
$CBOMG ;CONVERT NUMBER
(RO> ;MAKE STRING ASCIZ
XMTERR ;TRANSMIT ERROR

;INDICATE FAILURE

(continued on next page)

DLX: Direct Line Access Controller 4-29

.SBTTL RECAST - AST FOR CHANNEL READ COMPLETE
:+

**-RECAST - AST FOR CHANNEL READ COMPLETE

INPUTS:
(SP) = ADDRESS OF I/O STATUS BLOCK

OUTPUTS:
1. ANOTHER READ HUNG ON CHANNEL (IF LAST RECEIVE SUCCEEDED)
2. BUFFER READ FROM CHANNEL IS ECHOED ON TERMINAL

RECAST:

10$:

MOV
MOV
MOV
TSTB
BPL
CALLR
MOV
MOV
DIR$
CALL
MOV
ASTX$S

(SP),IOSB
Rl, (SP)
IOSB,Rl
(Rl)
10$
EXIT
2(Rl),WRITE+Q.IOPL+2
4(Rl),WRITE+Q.IOPL
#WRITE
@6(Rl)
(SP)+,Rl

SAVE I/O STATUS BLOCK ADDRESS
SAVE Rl
GET I/O STATUS BLOCK ADDRESS
SUCCESSFUL COMPLETION ?
IF PL, YES - WRITE IT OUT
ELSE, CLOSE LINE AND EXIT
SET LENGTH OF BUFFER TO WRITE
SET BUFFER ADDRESS
WRITE BUFFER TO TERMINAL
HANG ANOTHER RECEIVE
RESTORE Rl

.SBTTL $EPRINT -- PRINT ERROR MESSAGE
;+

**-$EPRINT-PRINT ERROR MESSAGE

PRINTS THE SPECIFIED ERROR MESSAGE PREFIXED BY "XTS -- "
SETS THE EXIT-STATUS AS "EX$ERR".

INPUTS:
RO=ADDRESS OF MESSAGE.

OUTPUTS:
ERROR MESSAGE PRINTED ON TI:
EXSTAT = EX$ERR

EFFECTS:

$EPRINT:

PRINT2:
5$:
10$:

NO REGISTERS MODIFIED •

• ENABL

MOV
MOV
MOV
MOV
CALL
MOV
MOV

MOV
TSTB
BNE
DEC
SUB
MOV
DIR$
MOV
RETURN
. DSABL

LSB

RO,-(SP)
#EX$ERR,EXSTAT
#44,ERDPB+Q.IOPL+4
#XTSEM,RO
5$
#53,ERDPB+Q.IOPL+4
(SP)+,RO

RO,ERDPB+Q.IOPL
(RO)+
10$
RO
ERDPB+Q.IOPL,RO
RO,ERDPB+Q.IOPL+2
#ERDPB
#40,ERDPB+Q.IOPL+4

LSB

;SAVE RO
;SET EXIT STATUS TO "ERROR"
;SET VERTICAL FORMAT TO PROMPT
;GET PREFIX MESSAGE
;PRINT PREFIX
iSET VERT. FORMAT TO OVERPRINT
;GET ADDRESS OF MESSAGE

iSET ADDRESS OF MESSAGE
iNULL BYTE?
:IF NE, NO - KEEP LOOKING
iDON'T COUNT NULL
iCALCULATE LENGTH OF STRING
;SET LENGTH OF STRING
iISSUE DIRECTIVE
iRESTORE VERTICAL FORMAT TO NORMAL

(continued on next page)

4-30 DECnet-RSX Programmer's Reference Manual

;+
.SBTTL ECHO - ECHO COMMAND LINE

**-ECHO-ECHO COMMAND LINE

THIS ROUTINE ECHOES THE CURRENT COMMAND LINE IF IT CAME FROM AN INDIRECT
COMMAND FILE.

INPUTS:
SCLEVL=INDICATES COMMAND FILE LEVEL
SCLBUF=POINTER TO START OF ASCIZ COMMAND LINE.

OUTPUTS:
LINE FEED APPENDED TO TO COMMAND LINE AND COMMAND LINE ECHOED ON TI:

EFFECTS:
RO, Rl MODIFIED.

ECHO:

10$:

TSTB
SEQ
MOV
CALL
RETURN

SCLEVL
10$
$CLBUF,RO
PRINT2

• END XTSEP

DLX: Direct Line Access Controller

COMMAND FROM TERMINAL?
IF EQ, YES - DON'T ECHO
POINT TO COMMAND LINE
PRINT LINE ON ERROR LUN

4-31

4.3.9 DLX 010 Receiver Programming Example (for non-Ethernet
device)

The DLXRCV program uses DLX QIOs to receive data for Ethernet devices only.

NOTE

This programming example is also included in your tape or disk kit .

• TITLE XTR - DLX RECEIVER
.IDENT IV01.011

COPYRIGHT (C) 1983, 1985 BY
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED
ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE
INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER
COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY
OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY
TRANSFERRED.

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT
CORPORATION.

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL.

MODULE DESCRIPTION:

XTR - DLX RECEIVER

DISTRIBUTED SYSTEMS SOFTWARE ENGINEERING

IDENT HISTORY:

1.00 28-JUL-79
VERSION 1.0 RELEASE

1.01 ll-MAR-85
Correct build procedure UICs

(continued on next page)

4-32 DECnet-RSX Programmer's Reference Manual

;+

XTR - DLX SYSTEM EXERCISER (THIS TEST UTILITY IS UNSUPPORTED)

XTR ECHOES RECEIVED DATA BACK OVER THE CHANNEL. XTR USES THE DLX UTILITY
TO PROVIDE THE "ERROR FREE" CHANNEL.

TO ASSEMBLE USE THE FOLLOWING COMMAND STRING:

MAC XTR,XTR/-SP=IN:[130,lO]NETLIB/ML,IN:[200,200]XTR

TO TASK BUILD USE THE FOLLOWING COMMAND STRING:

XTR,XTR/-SP=XTR,IN:[130,lO]NETLIB/LB:GCL
I
STACK=30
UNITS=3
ASG=TI:l:2:3
TASK= ••• XTR
II

NOTE: THE IN: DEVICE MUST BE THE DEC NET DISTRIBUTION DEVICE
AFTER THE PREGEN (IF ANY) HAS BEEN PERFORMED.

THE FOLLOWING IS AN EXAMPLE OF THE XTS DIALOG:

>XTS
LINE: DMC-O
XTS>THIS IS A TEST OF XTS-XTR
THIS IS A TEST OF XTS-XTR

XTS>TESTING
TESTING

XTS>"Z
>

IN ORDER FOR XTS TO RECEIVE AN ECHO OF THE MESSAGE, XTR MUST BE RUNNING.
IT IS INITIATED IN THE FOLLOWING MANNER:

>XTR
LINE: DUP-O

WHEN FINISHED WITH XTS/XTR, XTR MUST BE ABORTED

.SBTTL LOCAL MACROS

.MACRO EPRINT ERRMSG
MOV #ERRMSG,RO
CALL $EPRINT
• ENDM EPR I NT

.SBTTL MACRO CALLS

.MCALL QIOW$,QIO$,QIOW$S,ALUN$S,EXIT$S,EXST$S,ASTX$S,WTSE$S

.MCALL GCL$,GCLDF$,DLXDF$,DLXBUF

DLXDF$; DEFINE DLX FUNCTION CODES AND OVERHEAD

(continued on next page)

DLX: Direct Line Access Controller 4-33

.SBTTL CONSTANTS

RECEIVE BUFFER SIZE

BUFSIZ = 90.

LUN ASSIGNMENTS:

TILUN=l
CHNLUN=2
ERRLUN=3

LUN FOR TI
LUN FOR ERROR FREE CHANNEL
LUN FOR ERRORS

EVENT FLAG ASSIGNMENTS:

TIEFN=l
CHNEFN=2
ERREFN=3
DONE=-l:

.SBTTL DATA

~EVENT FLAG FOR TERMINAL I/O
~EVENT FLAG FOR CHANNEL
~EVENT FLAG FOR ERROR MESSAGES
~EVENT FLAG SIGNALING COMPLETION

DEFINE GCL PARAMETERS

.**** ,
, DPB'S
~****

ERDPB:

RECl:
REC2:

XMT:

START:

CLOSE:

,

GCLDF$ TILUN,TIEFN,<LINE>,RIBUF,BUFSIZ

QIOWS

QIO$
QIO$

QIOW$

QIOW$

QIOW$

IO.WVB,ERRLUN,ERREFN",,<0,0,40>

IO.XRC,CHNLUN",RISB,RECAST,<RIBUF,BUFSIZ>
IO.XRC,CHNLUN",R2SB,RECAST,<R2BUF,BUFSIZ>

IO.XTM,CHNLUN,CHNEFN"CHNSB,,<O,O>

IO.XIN,CHNLUN,CHNEFN"CHNSB

IO.XCL,CHNLUN,CHNEFN

~ CHANNEL I/O STATUS BLOCK
~
CHNSB: .BLKW 2
~
~ TEMP LOCATION TO CONTAIN IOSB ADDRESS
,
IOSB: .BLKW 1
TEMP: .BLKW 1

,
~ CHANNEL RECEIVE I/O STATUS BLOCKS
~
RISB: .BLKW

• WORD
• WORD

R2SB: .BLKW
• WORD
• WORD

4-34

2
RIBUF
HNGRCI

2
R2BUF
HNGRC2

STATUS OF FIRST RECEIVE
ADDRESS OF BUFFER
ADDRESS OF RECEIVE POSTING ROUTINE

~STATUS OF SECOND RECEIVE
:ADDRESS OF BUFFER
:ADDRESS OF RECEIVE POSTING ROUTINE

(continued on next page)

DECnet-RSX Programmer's Reference Manual

CHANNEL RECEIVE BUFFERS

DLXBUF RIBUF,BUFSIZ
DLXBUF R2BUF,BUFSIZ
. EVEN

;****
i TEXT STRINGS:
;****

HEADER FOR ERROR MESSAGES
,
XTREM: .ASCIZ !XTR -- /

ERROR MESSACiES

.ENABL LC

.NLIST BEX

;FIRST BUFFER DESCRIPTOR
iSECOND BUFFER DESCRIPTOR

GCLERR: .ASCIZ /Cornmand line read error/
DLXERR: .ASCIZ /DLX not loaded/
OPNERR: .ASCII /Unable to open line -- /
BUFOPN: .BLKB 7
XMTERR: • ASCII /Error transmitting data /
BUFXMT: .BLKB 7
RECERR: .ASCII /Error receiving data -- /
BUFREC: .BLKB 7

.LIST BEX
• EVEN

.SBTTL XTREP - XTR MAIN LINE
;+

XTREP -- MAIN LINE OF XTR CODE

PROMPT USER FOR LINE TO OPEN AND LOOP ALL MESSAGES RECEIVED OVER THE SAME LINE

INPUTS:
NONE.

OUTPUTS:
LOOP ALL MESSAGES INDEFINITELY.

XTREP: :
CLR R3

ASSIGN LUN TO CHANNEL

ALUN$S
BCC
EPRINT
BR

#CHNLUN,#"NX,#O
10$
DLXERR
99$

DLX: Direct Line Access Controller

IF CC, ALL OKAY
ELSE, ASSUME DLX NOT LOADED
AND LEAVE

(continued on next page)

4-35

PROMPT USER FOR LINE 10
,
10$: CALL GCL GET A COMMAND LINE

IF CS, ASSUME EOF
BLANK LINE ?

BCS 99$
TST R5
BEQ 10$ IF EQ, YES - TRY AGAIN

OPEN ACCESS TO THE LINE.

#IO.XOP,#CHNLUN,#CHNEFN,,#CHNSB,,<R4,R5>
15$ IF CS, ERROR
CHNSB,Rl SUCCESSFUL ?
20$ IF PL, YES
#BUFOPN,RO ELSE, GET BUFFER ADDRESS
R2 ZERO SUPPRESSION
$CBOMG CONVERT NUMBER
(RO) MAKE STRING ASCIZ

15$:

QIOW$S
BCS
MOVB
BPL
MOV
CLR
CALL
CLRB
EPRINT
BR

OPNERR OPEN ERROR
99$

HANG AN ASYNCHRONOUS READ ON LINE
,
20$: CALL

BCS
HNGRCl
99$

CALL
BCS

HNGRC2
99$

;IF CS, ERROR

HANG SECOND RECEIVE
IF CS, ERROR

THE REST IS AST DRIVEN. MAKE BELIEVE WE ARE WAITING FOR SOMETHING !!

WTSE$S #DONE ;WAIT FOR COMPLETION (NEVER HAPPENS!)

99$: DIR$ ItCLOSE iCLOSE DOWN THE LINE
iEXIT EXIT$S

.SBTTL GCL - GET COMMAND LINE
.+
, **-GCL-GET COMMAND LINE

THIS ROUTINE IS CALLED TO GET A COMMAND LINE FOR XTR. INPUT CAN BE
FROM TI: OR AN INDIRECT COMMAND FILE. RETURN WITH C-SET FOR ERROR OR EOF.

INPUTS:
NONE

OUTPUTS:
R4=ADDRESS OF COMMAND LINE
R5=SIZE OF COMMAND LINE IN BYTES
C-BIT SET/CLEARED

EFFECTS:
R4,R5 MODIFIED.

(continued on next page)

4-36 DECnet-RSX Programmer's Reference Manual

GCL:

10$:
20$:

30$:

,

GCL$
MOV
TSTB
BGT

CMPB
BEQ

CMPB
BEQ

EPRINT
TSTB
BNE
BR
SEC
BR

$CLIOS,R5
(R5)
40$

UE.EOF, (R5)
30$

UE.ABO, (R5)
30$

GCLERR
$CLEVL
30$
GCL

50$

i GET SIZE AND ADDRESS OF COMMAND LINE.
,
40$:

50$:

MOV
MOV
CLC

RETURN

$CLBUF,R4
2(R5) ,R5

GET COMMAND LINE
POINT TO I/O STATUS BLOCK
ERROR?
IF GT, NO

iEND OF FILE?
iIF EQ, YES - SET C AND RETURN

iWAS READ KILLED BY RECEIVE?
iIF EQ, YES - RETURN WITH C-SET

iPRINT GET COMMAND LINE ERROR
iTERMINAL INPUT?
;IF NE, NO - FATAL ERROR
;ELSE, RE-PROMPT
;SET-C
iAND EXIT

iGET ADDRESS OF COMMAND LINE
iGET SIZE OF COMMAND LINE
;SET SUCCESS

iGLOBAL RETURN

.SBTTL HNGRCI - HANG ASYNCHRONOUS READ ON LINE

.SBTTL HNGRC2 - HANG SECOND ASYNCHRONOUS READ
;+

**-HNGREC - HANG AN ASYNCHRONOUS READ ON THE CHANNEL
**-HNGRC2 - HANG SECOND ASYNCHRONOUS READ ON CHANNEL

INPUTS:
NONE.

OUTPUTS:
RECEIVE HUNG ON LINE

;-
.ENABL LSB

HNGRCl:
DIR$ #RECl HANG READ
BCS 10$ IF CS, ERROR
BR 20$ AND CONTINUE IN COMMON CODE

HNGRC2:
DIR$ #REC2 HANG READ
BCC 20$ IF CC RETURN

10$: EPRINT RECERR RECEIVE ERROR
SEC INDICATE FAILURE

20$: RETURN
• DSABL LSB

(continued on next page)

DLX: Direct Line Access Controller 4-37

.SBTTL XMIT - TRANSMIT DATA OVER LINE
;+

**-KMIT - TRANSMIT DATA OVER LINE

INPUTS:
NONE.

OUTPUTS:
DATA TRANSMITTED

XMIT:
MOV Rl,-(SP) ;SAVE Rl
DIR$ #XMT ;TRANSMIT DATA
BCS 10$; IF CS, ERROR
MOVB CHNSB,Rl ;SUCCESSFUL ?
BPL 20$; IF PL, YES
MOV #BUFXMT,RO ;ELSE, GET BUFFER ADDRESS
CLR R2 ;ZERO SUPPRESSION
CALL $CBOMG ;CONVERT NUMBER
CLRB (RO) ;MAKE STRING ASCIZ

10$: EPRINT XMTERR ;TRANSMIT ERROR
SEC ;INDICATE FAILURE

20$: MOV (SP)+,Rl ;RESTORE Rl
RETURN
• DSABL LSB

.SBTTL RECAST - AST FOR CHANNEL READ COMPLETE
;+

**-RECAST - AST FOR CHANNEL READ COMPLETE

INPUTS:
(SP) = ADDRESS OF I/O STATUS BLOCK

OUTPUTS:
1. ANOTHER READ HUNG ON CHANNEL
2. BUFFER READ FROM CHANNEL IS ECHOED OVER LINE

RECAST:

5$:

10$:

20$:

4-38

MOV
MOV
MOV
TSTB
BPL
TST
BNE
INC
DIR$
BCC
lOT
TSTB
BPL
lOT
CLR
MOV
BEQ
MOV
CALL
CALL

MOV
ASTX$S

(SP) ,TEMP
Rl,(SP)
TEMP,Rl
(Rl)
10$
R3
20$
R3
#START
5$

CHNSB
20$

R3
2(Rl),XMT+Q.IOPL+2
20$
4(Rl),XMT+Q.IOPL
XMIT
@6(Rl)

(SP)+,Rl

SAVE IOSB ADDRESS
SAVE Rl
Rl -> IOSB
SUCESSFUL COMPLETION ?
IF PL, YES - XMIT THE MESSAGE
BEEN THRU THIS CODE LAST TIME ?
YES - POST RECEIVE AND RETURN
MARK
ELSE, RESTART THE LINE
IF SUCCESS, CONTINUE

ELSE :OT
SUCCESS ?
YES - CONTINUE

ELSE FATAL ERROR - lOT
CLEAR FLAG
SET LENGTH OF BUFFER TO XMIT
IF EQ, NO BUFFER TO XMIT ???
SET ADDRESS OF BUFFER
ECHO MESSAGE BACK OVER LINE
HANG ANOTHER RECEIVE ON CHANNEL
IGNORE ANY ERRORS
RESTORE Rl
EXIT AST

(continued on next page)

DECnet-RSX Programmer's Reference Manual

.SBTTL $EPRINT -- PRINT ERROR MESSAGE
;+

**-$EPRINT-PRINT ERROR MESSAGE

PRINTS THE SPECIFIED ERROR MESSAGE PREFIXED BY "XTR -- "
SETS THE EXIT-STATUS AS "EX$ERR".

INPUTS:
RO=ADDRESS OF MESSAGE.

OUTPUTS:
ERROR MESSAGE PRINTED ON TI:

EFFECTS:
NO REGISTERS MODIFIED.

$EPRINT:
MOV
MOV
MOV
CALL
MOV
MOV

5$: MOV
10$: TSTB

RO,-(SP)
#44,ERDPB+Q.IOPL+4
#XTREM,RO
5$
#53,ERDPB+Q.IOPL+4
(SP)+,RO
RO,ERDPB+Q.IOPL
(RO)+
10$
RO

iSAVE RO
;SET VERTICAL FORMAT TO PROMPT
iGET PREFIX MESSAGE
;PRINT PREFIX
iSET VERT. FORMAT TO OVERPRINT
iGET ADDRESS OF MESSAGE
iSET ADDRESS OF MESSAGE
iNULL BYTE?
iIF NE, NO - KEEP LOOKING
iDON'T COUNT NULL
iCALCULATE LENGTH OF STRING
iSET LENGTH OF STRING
iISSUE DIRECTIVE

BNE
DEC
SUB
MOV
DIR$
MOV
RETURN

ERDPB+Q.IOPL,RO
RO,ERDPB+Q.IOPL+2
#ERDPB
#40,ERDPB+Q.IOPL+4 iRESTORE VERTICAL FORMAT TO NORMAL

.END XTREP

DLX: Direct Line Access Controller 4-39

4.3.10 DLX QIO Programming Example (for Ethernet device)

The XTR-DLX RECEIVER program uses DLX QIOs to receive data.

NOTE

This programming example is also included in your tape or disk kit .

• TITLE DLXRCV - DLX Receive Program for Ethernet
.IDENT IV01.01I
.ENABL LC
.NLIST BEX

Copyright (C) 1982, 1985 by
DIGITAL EQUIPMENT CORPORATION, Maynard, MASS.

This software is furnished under a license for use only on a
single computer system and may be copied only with the
inclusion of the above copyright notice. This software, or
any other copies thereof, may not be provided or otherwise
made available to any other person except for use on such
system and to one who agrees to these license terms. Title
to and ownership of the software shall at all times remain
in DEC.

The information in this document is subject to change without
notice and should not be construed as a commitment by Digital
Equipment Corporation.

DEC assumes no responsibility for the use or reliability of
its software on equipment which is not supplied by DEC •

• +
, Module Description:

DLXRCV - DLX receive program for Ethernet
The following devices are currently supported:
UNA
QNA

This program is used to monitor messages sent by other stations
on the ethernet. Due to the data rates that are present, it can
only be used to watch a single protocol type at a time and will
not be able to keep up if the output device is a terminal or
printer. This program can not be used concurrently with DECnet
(XPT) running.

To assemble this program use the following command line:
MAC DLXRCV,DLXRCV/-SP=IN:[l30,lO]NETLIB/ML,IN:[200,200]DLXRCV

Note: The IN: device must be the DECnet distribution device
after the PREGEN (if any) has been performed.

To build the program:
TKB DLXRCV/PR:O,DLXRCV/-SP=DLXRCV

Ident History:
1.00 21-Jul-83

Version 1.0 Release

1.01 11-Mar-85
Correct build UICs

4-40

(continued on next page)

DECnet-RSX Programmer's Reference Manual

.MCALL

.MCALL

.MCALL

.MCALL

.MeALL

.MeALL

.MCALL

FCSMC$
DLXDF$
CHRDF$
EPMDF$

EXIT$S, QIOW$S,
ASTX$S, SETF$S,
DSAR$S, ENAR$S,

GCMLB$, NMBLK$,
CSI$, CSI$SW,
FDAT$R, FDRC$R,

DLXDF$, EPMDF$,

Local program constants

NETLUN
OUTLUN •
OUTL
TILUN
TILEN
RBUFL
RBCNT
REST

1
2
144.
5
144.
1518.
20.
18.

QIO$S,
CLEF$S,
SREA$S,

GCML$,
CSI$ND,
FDBF$R,

CHRDF$

ALUN$S
WTSE$S
QIO$

OFNB$, OFNB$W
CSIl, CSI2
FCSMC$, PUT$S

Define the DLX symbols
Define Get/Set Char symbols

Network LUN
Data output LON
Length of output line
Terminal I/O LUN
Terminal I/O Buffer size
Receive buffer byte count
Number of receive buffers
Rest of the receive line

.SBTTL Define local macros
TAGNUM=O

.MACRO TYPE MSG
TAGNUM=TAGNUM+l
.NLIST
.IRP N,<\TAGNUM>
• SAVE
.PSECT DATAl,D

BUF'N: .ASCII "MSG"
BUFL'N .-BUF'N

. EVEN

. RESTORE
MOV RO,-(SP)
MOV Rl,-(SP)
MOV R2,-(SP)
MOV #BUF'N,Rl
MOV #BUFL'N,RO
MOV #40,R2
JSR PC,PRINT
MOV (SP)+,R2
MOV (SP)+,Rl
MOV (SP)+,RO
.ENDM
.LIST
.ENDM TYPE

Save the registers

Set up pointers for message

Forms control character
Go print it
Restore registers

(continued on next page)

DLX: Direct Line Access Controller 4-41

.MACRO ERROR MSG
TAGNUM=TAGNUM+l
.NLIST
.IRP N,<\TAGNUM>
• SAVE
.PSECT DATAl,D

BUF'N: .ASCII "MSG"
BUFL'N .-BUF'N

. EVEN

. RESTORE
MOV RO,-(SP)
MOV Rl,-(SP)
MOV R2,-(SP)
MOV #BUF'N,Rl
MOV #BUFL'N,RO
MOV #60,R2
JSR PC,ERRPRT
MOV (SP) + , R2
MOV (SP)+,Rl
MOV (SP)+,RO
.ENDM
.LIST
.ENDM ERROR

.MACRO PROMPT MSG
TAGNUM=TAGNUM+l
.NLIST
.IRP N,<\TAGNUM>
. SAVE
.PSECT DATAl,D

BUF' N: . ASCI I "MSG"
BUFL'N .-BUF'N

. EVEN

. RESTORE
MOV #BUF'N,Rl
MOV #BUFL'N,RO
JSR PC, ASK
.ENDM
.LIST
.ENDM PROMPT
.MACRO PRO
.LIST

CC.DST
4
o
o
TYP

TYP

. WORD

. WORD

. WORD

. WORD

. WORD

. WORD

.NLIST

.ENDM

LF$EXC! LF$DEF

PRO

Save the registers

Set up pointers for message

Forms control value
Go print it
Restore registers

Set up pointers for message

Go do it

Characteristics type
Input data byte count
Output data byte count
Output status
Protocol type
Protocol Flags

. MACRO

.LIST

. WORD
• WORD
. WORD
• WORD
. WORD
. WORD
. WORD
.NLIST
.ENDM

MUL ADl,AD2,AD3

4-42

CC.MCT
6
o
o
ADl
AD2
AD3

MUL

.SBTTL Data Area

.PSECT DATA2,D

Enable multicast address for this prot
Input data byte count
Output data byte count
Output status
Multicast address

(continued on next page)

DECnet-RSX Programmer's Reference Manual

For information purposes - Defined in CHRDF$

Protocol types
,
;CP.LOO
;CP.DUM
;CP.CON
;CP.ROU

000220
000540
001140
001540

Multicast addresses
,
;CM.LOl
;CM.L02
;CM.L03

;CM.DMl
;CM.DM2
;CM.DM3

;CM.RCl
;CM.RC2
:CM.RC3
,

000317
000000
000000

000253
000400
000000

000253
001000
000000

; Characteristics buffers
,
.LIST ME
CHRLOO:

PRO CP.LOO

Loopback (cross-company)
Dump/Load (Digital)
Remote console (Digital)
Routing (Digital)

First word of Loopback
Second word
Third word

First word of Dump/Load
Second word
Third word

First word of Remote console
Seconds word
Third word

Loopback
MUL CM.L01,CM.L02,CM.L03 Loopback Multicast

LOOLEN = .-CHRLOO

CHRDLL:
PRO CP.DUM
MUL CM.DM1,CM.DM2,CM.DM3

DLLLEN = .-CHRDLL

CHRRCN:
PRO CP.CON
MUL CM.RC1,CM.RC2,CM.RC3

RCNLEN = .-CHRRCN

CHRROU:
PRO CP.ROU
MUL 253,1400,0
MUL 253,2000,0
MUL 243,1400,0
MUL 243,2000,0

ROULEN = .-CHRROU

DEVMDE: .WORD CC.ECM
• WORD 2
. WORD 0
. WORD 0
. WORD 0

MDELEN .-DEVMDE

Dump/Load

Remote console

Router

Ethernet channel mode
Two bytes of data
Data bytes out
Status
Mode word for device

90-00
60-01
60-02
60-03

CF-OO
00-00
00-00

AB-OO
00-01
00-00

AB-OO
00-02
00-00

PRMMDE 100000 Promiscuous mode for UNA

(continued on next page)

DLX: Direct Line Access Controller 4-43

,

.SBTTL

.PSECT

.NLIST

RB=O

Receive buffers
DATA3,D
ME

.REPT RBCNT
RB=RB+l
.IRP N, <\RB>

Receive buffer "N

RBUF'N: .BLKB RBUFL
,

Create the receive buffers

; Receive buffer

; Buffer for DLX receive set characteristics

CHR'N:
. WORD CC.DAD
. WORD 6
• WORD 0
• WORD 0
• WORD 0
. WORD 0
. WORD 0
. WORD CC.ADR
. WORD 6
• WORD 0
• WORD 0
. WORD 0
. WORD 0
. WORD 0
• WORD CC.PRO
• WORD 2
. WORD 0
• WORD 0
. WORD 0

CHRL'N = .-CHR'N

.ENDM

.ENDR

10=0
.REPT RBCNT
10=10+1
.IRP N,<\IO>

BSB'N:.BLKW 2
• WORD 0
. WORD RBUF'N
. WORD CHR'N

BSBL'N = .-BSB'N

.ENDM

.ENDR

.PSECT DATA4,D

NXIOSB: .BLKW 2

TIOSB: .BLKW 2

OUTSB: .BLKW 2

BUFCNT: • WORD 0

4-44

Read destination address
Input data byte count
Output data byte count
Status
Ethernet address

Read source Address
Input data byte count
Output data byte count
Status
Ethernet address

Read protocol type
Input data byte count
Output data byte count
Status
Protocol type

Rec buffer IOSB
Link word to next descriptor
Address of the receive buffer
Address of the characteristics buffer

Local storage area

Network I/O status doubleword

Terminal I/O Status Doubleword

Output IOSB

Local count of received packets

(continued on next page)

DECnet-RSX Programmer's Reference Manual

RCVQUE: • WORD 0 Receive queue listhead
. WORD RCVQUE
. WORD -1 Temp flag

TIBUF: .BLKB TILEN Terminal 1/0

OUTBUF:
.BLKB OUTL Output buffer

DEF: . ASCII IUNA-OI
DEFL .-DEF

CNTSTR: .ASCII I Total number of packets received I
CNTL = .-CNTSTR

. EVEN

Buffer

.SBTTL CONSTANTS FOR PROGRAM AND FILE BLOCK ALLOCATION

MSl. TB=l

FSRSZ$ 2 File buffers
FDBOUT:

FDBDF$ Allocate space for FDB
FDATSA R.VAR,FD.CR File attributes
FDRC$A ,OUTBUF,OUTL Record access mode
FDOP$A OUTLUN,DFOUT File open section

,
LCSIO:

CSI$
.8LKB C.SIZE Allocates required storage.
. EVEN

DFOUT:
NMBLK$ ETHER,DAT, ,SY,O

SWTABJ:
CSI$SW TB,MS1.TB
CSI$ND

Tab switch
End of table

. EVEN
.SBTTL
.PSECT
.ENABL

QIO directives
,
XIORCV: QIO$
OUTIO: QIO$

START:
FINIT$
ALUN$S
TYPE
TYPE
TYPE

Main Code
CODE
LSB

IO.XRC,NETLUN",O,RCVAST,<O,RBUFL,O,CHRL1>
IO.WVB,OUTLUN,2"OUTSB,,<OUTBUF,OUTL,60>

Initialize files
#TILUN,#"TI Assign LUN to terminal
< UNA Ethernet monitor>
< >
< The default output is SY:ETHER.DAT >

(continued on next page)

DLX: Direct Line Access Controller 4-45

10$:

20$:

TYPE
PROMPT
MOV
MOV
CSI$l
CSI$2
FDOP$R
OPEN$W
BCC
ERROR
JMP

ALUN$S
BCC
ERROR
JMP

PROMPT
BNE
MOV
MOV

Open the Line

30$:
MOV
QIOW$S
TSTB
BPL
ERROR
CALL
JMP

< >
<Output Device? (File, TI: or Return) >
Rl,LCSIO+C.CMLD+2
RO,LCSIO+C.CMLD
#LCSIO
#LCSIO,OUTPUT,#SWTABO
#FDBOUT,#OUTLUN,#LCSIO+C.DSDS,#DFOUT
#FDBOUT
10$
< Could not open file>
ERREXT

#NETLUN,#"NX,#O ; Assign a LUN to DLX
20$; Branch if no error
<Could not assign LUN to NX >
ERREXT

< Enter line (UNA-O): >
30$
#DEF,RI
#DEFL,RO

Branch if response
Get default answer
And default length

#NXIOSB,R3 ; Point to network IOSB
#IO.XOP,#NETLUN,#1"R3,,<RI,RO,#400>
(R3) Get "open" QIO status
40$ Branch if no error
< Could not open line>
PRTOB ?rint the error Lode
ERREXT Get out

Get current mode
,
40$:

50$:

MOV
QIOW$S
TSTB
BPL
ERROR
JMP

CMP
BEQ
ERROR
JMP

#DEVMDE,R4 : Get address of request buffer
#IO.XGC,#NETLUN,#1"R3,,<R4,#MDELEN>
(R3) Was request successful?
50$, If PL, Yes
< QIO for get device mode failed>
ERREXT

#CS.SUC,6(R4) Was this request successfull?
60$ If EQ,yes
< Get device mode request failed>
ERREXT

Set device in promiscuous mode
,
60$:

70$:

4-46

BIS
QIOW$S
TSTB
BPL
ERROR
JMP

CMP
BEQ
ERROR
JMP

#PRMMDE,10(R4) ; Set promiscuous mode
#IO.XSC,#NETLUN,#1"R3,,<R4,#MDELEN>
(R3) Was request successful
70$, If PL, Yes
< QIO for set device mode failed>
ERREXT

#CS.SUC,6(R4) Was this request successfull?
80$, If EQ,yes
< Set device mode request failed>
ERREXT

(continued on next page)

DECnet-RSX Programmer's Reference Manual

80$:
PROMPT
MOV
MOV
CMPB
BEQ
MOV
MOV
CMPB
BEQ
MOV
MOV
CMPB
BEQ
MOV
MOV
CMPB
BNE
TYPE

<What do you want to monitor (Loop,DLL/DUM,Console,Router»
#CHRLOO,R4 Assume loopback
#LOOLEN,R5
#'L,(Rl)
90$
#CHRDLL,R4
#DLLLEN,R5
#'0, (Rl)
90$
#CHRRCN,R4
#RCNLEN,R5
#' C, (Rl)
90$
#CHRROU,R4
#ROULEN,R5
#' R, (Rl)

Do they want loop
If EQ, Yes
Try DLL/DUM

Do they want DLL?
If EQ,yes
Remote console

If EQ, remote console will be displaye

How about router

80$; If NE, ask again
<Warning!! I may not be able to keep up on loaded networks!>

Enable protocol type to monitor
,
90$:

100$:

110$:

MOV
QIOW$S
TSTB
BMI

CMP
BNE
SUB
SUB
BLE
ADD
ADD
BR

MOV
ERROR
MOV
MOVB
CALL
MOVB
BR

#NXIOSB,R3 : Get IOSB address
#IO.XSC,#NETLUN,#1"R3,,<R4,R5> : Set the protocol type
(R3) Get "SET CHR" QIO status
120$ Branch if error

#CS.SUC,6(R4)
110$
2 (R4) ,R5
#10,R5
140$
2 (R4) ,R4
#10,R4
100$

R4,-(SP)
< Set characteristics
(SP)+,R4
6 (R4) , R3
PRTOB
7 (R4) , R3
130$

Was this request successfull?
If NE, no
Length of request
Length of header
All done
Point to next request

Check next one

: Save request address
error - Bad status in buffer >

Restore the request address
Get the error code
Print the low byte
Get the high byte

120$:

130$:
ERROR < Set characteristics error - Set protocol (QIO status) >

CALL
JMP

PRTOB
EXIT

Post the receive buffers

i40$:
MOV #BSB1,Rl
MOV #RBCNT,RO
DSAR$S

DLX: Direct Line Access Controller

, Print the error code
: Get out

Pointer to first IOsB
Number of receive buffers
Disable AST's

(continued on next page)

4-47

150$:
MOV Rl,4(Rl)
ADD #BSBL1,4(Rl)
MOV Rl,Q.IOSB+XIORCV
MOV 6(Rl),Q.IOPL+XIORCV
MOV 10(Rl),Q.IOPL+4+XIORCV
DIR$ #XIORCV
BCS 190$
ADD #BSBL1,Rl
DEC RO
BNE 150$
SUB #BSBL1,Rl
MOV #BSB1,4(Rl)
CLEF$S #5
ENAR$S
SREA$S #ABOAST
TYPE <Monitor Starting ••• >

160$:
MOV 4 (Rl) ,Rl
TST (Rl)
BNE 170$
WTSE$S #5

Fill in link word address
of next descriptor
Fill in IOSB field
Fill in buffer address
Fill in characteristics buffer address
Issue the receive request
If CS, error with directive
Point to next IOSB
One less to post
Loop t i 11 done
Backup pointer to last descriptor
Change to point to first descriptor
Clear the event flag
Enable AST's
Specify an abort AST

Get next descriptor address
Has buffer been used?
If NE, Yes
Wait for event 5 (RCV complete)

Process the receive buffers
,
170$:

180$:

190$:

4-48

CLEF$S
INC
TSTB
BMI
MOV
MOV
ADD
MOV
CALL
MOVB
ADD
MOV
CALL
MOVB
ADD
MOV
CALL
MOVB
MOVB

MOV
MOV
CALL

CALL

PUT$S
BCC
ERROR
BR

ERROR
MOV
CALL
BR

#5
BUFCNT
(Rl)
200$
#OUTBUF,RO
10(Rl) ,R3
#C.CHRL,R3
#6,R4
CNV
#40,(RO)+
#C.CHRL,R3
#6,R4
CNV
#40, (RO)+
#C.CHRL,R3
#2,R4
CNV
#40, (RO) +
#40,(RO)+

#REST,R4
6 (Rl) , R3
CNV

POST

#FDBOUT
160$

Clear the event flag
Another one received
Did rec complete successfully?
If MI, Repost the buffer
Output buffer area
Get address of the char buffer
Point to destination address
Number of bytes to convert
Convert to ASCII
Add another space
Point to source address
Number of bytes to convert
Convert to ASCII
Add another space
Point to protocol type
Number of bytes to convert
Convert to ASCII
A couple of more spaces

Print out the rest of the line
Get address of the data buffer
Convert the data to ascii

Post another receive

Check for error
< Device write error>
EXIT Print error and get out

< Receive directive error>
Rl,R3 Get IOSB
PRTOB Print the error code
EXIT Get out

(continued on next page)

DECnet-RSX Programmer's Reference Manual

200$:

EXIT:

ERREXT:

POST:

ERROR
MOV
CALL
CALL
BR
• DSABL

CLOSES
MOV
BIC
QIOW$S
QIOW$S

< Receive buffer error>
Rl,R3
PRTOB
POST
160$
LSB

#FDBOUT

Point to IOSB
Print the error code
Post the receive again
Wait for another completion

#DEVMDE,R4 : Get address of request buffer
#PRMMDE,10(R4) : Clear promiscuous mode
#IO.XSC,#NETLUN,#1"R3,,<R4,#MDELEN> : .••
#IO.XCL,#NETLUN,#l Close the opened line

CLOSES #FDBOUT
EXIT$S Program exits

CLR
CLR
MOV
MOV
MOV
DIR$
RETURN

(Rl)
2(Rl)
Rl,Q.IOSB+XIORCV
6(Rl),Q.IOPL+XIORCV
10(Rl),Q.IOPL+4+XIORCV
#XIORCV

.SBTTL AST routines

Clear out the lOSS

Fill in IOSB address
Fill in buffer address
Fill in characteristics buffer address
Post the buffer

.+
; RCVAST Receive buffer AST routine
,
RCVAST:

;+
; ABOAST
,
ABOAST:

10$:

20$:

TST (SP)+ Remove IOSB address
SETF$S #5
ASTX$S

Set event flag for rcv complete
Exit from AST

- AST

MOV
MOV
MOV

MOVB
DEC
BNE

MOV
CLR
CALL
MOV
ADD
SUB

MOVB
DEC
BNE

PUT$S
QIOW$S
JMP

routine for abort requests

#OUTBUF,RO
#CNTSTR,Rl
#CNTL,R2

(Rl)+,(RO)+
R2
10$

BUFCNT,Rl
R2
$CBDMG
#OUTL,Rl
#OUTBUF,Rl
RO,Rl

#40,(RO)+
Rl
20$

Get output buffer pointer
Address of count text
Get the length

Move the characters

Get the packet count
Suppress leading zeros
Convert to decimal count
Compute the space left

Fill rest with blanks

#FDBOUT
#IO.WVB,#TILUN,#7",,<#OUTBUF,#OUTL,#60>
EXIT : Go close the line

(continued on ne?<t page)

DLX: Direct Line Access Controller 4-49

.SBTTL TERMINAL I/O SUBROUTINES
;+

ASK - Prompt and get response

Input:
RO - Length of prompt
Rl - Address of prompt string

Output:
RO - Length of response
Rl - Address of response string

Z bit set if nothing typed (just a carrige return)
,
ASK:

QIOW$S #IO.RPR,#TILUN,#9."#TIOSB,,<#TIBUF,#TILEN,,Rl,RO,#44>
CMPB TIOSB,#IE.EOF Was a Ctrl/Z typed?
BNE 10$ Branch if no
SEC Indicate AZ typed
RETURN

10$:

;+

MOV #TIBUF,Rl
MOV TIOSB+2,RO
CLC
RETURN

PRTOB - Print octal data byte

Inputs:
R3 - Data Buffer Address

Outputs:
Byte printed on TI
RO,R2 - Destroyed

Get buffer address
Save byte count in RO
Clear the carry

PRTOB:

;+

MOV
MOVB
BIC
ASH
ADD
MOVB
MOVB
MOVB

#TIBUF,RO
(R3)+,R2
#AC<377>,R2
#2,R2
#CNVTAB,R2
(R2)+,(RO)+
(R2)+,(RO)+
(R2) + , (RO) +

Output area
Get data byte
Clear out high byte
Convert to table offset
Add in base address of table
Get the conversion data

QIOW$S ~IO.WVB,#TILUN,#9.",,<#TIBUF,#3,#40>
RETURN

Print the data

ERRPRT - Print error messages
PRINT - Print a message on the terminal

Inputs:

,
ERRPRT:
PRINT:

RO - Length of string
Rl - Address of error message
R2 - Forms control value

QIOW$S ~IO.WVB,~TILUN,#9." ,,<Rl,RO,R2>
~ETURN

(continued on next page)

4-50 DECnet-RSX Programmer's Reference Manual

:+
CNV - Convert binary to ASCII string

Inputs:
RO -> Output buffer area
R3 -> Input buffer of binary data
R4 - Number of bytes to convert

Outputs:
RO -> Next available address in the output area
R3 -> Next byte after "count" bytes are converted
R4 - 0

Destroyed R2
,
CNV:

MOVB
BIC
ASH
ADD
MOVB
MOVB
MOVB
MOVB
SOB
RETURN

CNVTAB:
. BYTE
• BYTE
. BYTE
• BYTE
. BYTE
• BYTE

• NLIST
• BYTE
• BYTE
. BYTE
• BYTE
• BYTE
. BYTE
. BYTE
• BYTE
• BYTE
• BYTE
• BYTE
. BYTE
• BYTE
• BYTE
• BYTE
• BYTE
. BYTE
. BYTE
. BYTE
. BYTE
. BYTE
• BYTE
• BYTE
• BYTE
. BYTE
• BYTE
. BYTE
. BYTE
. BYTE

(R3)+,R2
#"'C<377>,R2
#2,R2
#CNVTAB,R2
(R2) + , (RO) +
(R2) + , (RO) +
(R2) + , (RO) +
(R2) + , (RO) +
R4,CNV

60,60,60,40
60,60,61,40
60,60,62,40
60,60,63,40
60,60,64,40
60,60,65,40

60,60,66,40
60,60,67,40
60,61,60,40
60,61,61,40
60,61,62,40
60,61,63,40
60,61,64,40
60,61,65,40
60,61,66,40
60,61,67,40
60,62,60,40
60,62,61,40
60,62,62,40
60,62,63,40
60,62,64,40
60,62,65,40
60,62,66,40
60,62,67,40
60,63,60,40
60,63,61,40
60,63,62,40
60,63,63,40
60,63,64,40
60,63,65,40
60,63,66,40
60,63,67,40
60,64,60,40
60,64,61,40
60,64,62,40

:000
:001
;002
;003
:004
;005

:006
:007
;010
;011
;012
;013
;014
:015
;016
;017
;020
;021
;022
;023
;024
;025
;026
;027
;030
;031
;032
;033
;034
;035
;036
;037
;040
;041
;042

Get the data byte
Clear out high byte
Shift left twice
Add start of table
Move the first character
Second
Third
Fourth
Loop till done

ETC •••

(continued on next page)

DLX: Direct Line Access Controller 4-51

. BYTE

. BYTE

. BYTE
• BYTE
. BYTE
• BYTE
. BYTE
. BYTE
. BYTE
. BYTE
.BYTE
. BYTE
. BYTE
. BYTE
. BYTE
. BYTE
. BYTE
. BYTE
. BYTE
. BYTE
. BYTE
. BYTE
.BYTE
. BYTE
• BYTE
. BYTE
. BYTE
. BYTE
• BYTE
• BYTE
. BYTE
. BYTE
• BYTE
. BYTE
. BYTE
• BYTE
• BYTE
• BYTE
• BYTE
. BYTE
. BYTE
. BYTE
• BYTE
• BYTE
. BYTE
• BYTE
• BYTE
• BYTE
• BYTE
• BYTE
• BYTE
• BYTE
. BYTE
• BYTE
. BYTE
• BYTE
• BYTE
. BYTE
• BYTE
. BYTE
• BYTE

4-52

60,64,63,40
60,64,64,40
60,64,65,40
60,64,66,40
60,64,67,40
60,65,60,40
60,65,61,40
60,65,62,40
60,65,63,40
60,65,64,40
60,65,65,40
60,65,66,40
60,65,67,40
60,66,60,40
60,66,61,40
60,66,62,40
60,66,63,40
60,66,64,40
60,66,65,40
60,66,66,40
60,66,67,40
60,67,60,40
60,67,61,'*0
60,67,62,40
60,67,63,40
60,67,64,40
60,67,65,40
60,67,66,40
60,67,67,40
61,60,60,40
61,60,61,40
61,60,62,40
61,60,63,40
61,60,64,40
61,60,65,40
61,60,66,40
61,60,67,40
61,61,60,40
61,61,61,40
61,61,62,40
61,61,63,40
61,61,64,40
61,61,65,40
61,61,66,40
61,61,67,40
61,62,60,40
61,62,61,40
61,62,62,40
61,62,63,40
61,62,64,40
61,62,65,40
61,62,66,40
61,62,67,40
61,63,60,40
61,63,61,40
61,63,62,40
61,63,63,40
61,63,64,40
61,63,65,40
61,63,66,40
61,63,67,40

;043
;044
;045
;046
;047
;050
;051
;052
;053
;054
;055
;056
;057
;060
;061
;062
;063
;064
;065
;066
;067
;070
;0 7 1
;072
;073
;074
;075
;076
;077
;100
;101
;102
;103
;104
;105
;106
;107
;110
;111
;112
:113
;114
;115
;116
;117
;120
;121
:122
;123
;124
:125
; 126
;127
:130
;131
;132
;133
;134
;135
;136
;137

(continued on next page)

DECnet-RSX Programmer's Reference Manual

. BYTE

. BYTE

. BYTE
• BYTE
. BYTE
• BYTE
. BYTE
. BYTE
• BYTE
• BYTE
. BYTE
. BYTE
. BYTE
. BYTE
. BYTE
. BYTE
• BYTE
. BYTE
. BYTE
. BYTE
,BYTE
,BYTE
,BYTE
',3YTE
• BYTE
. BYTE
• BYTE
• BYTE
• BYTE
• BYTE
• BYTE
• BYTE
. BYTE
• BYTE
• BYTE
• BYTE
• BYTE
• BYTE
• BYTE
• BYTE
• BYTE
• BYTE
. BYTE
. BYTE
. BYTE
. BYTE
• BYTE
• BYTE
• BYTE
. BYTE
• BYTE
• BYTE
• BYTE
• BYTE
• BYTE
• BYTE
• BYTE
• BYTE
. BYTE
. BYTE
. BYTE

61,64,60,40
61,64,61,40
61,64,62,40
61,64,63,40
61,64,64,40
61,64,65,40
61,64,66,40
61,64,67,40
61,65,60,40
61,65,61,40
61,65,62,40
61,65,63,40
61,65,64,40
61,65,65,40
61,65,66,40
61,65,67,40
61,66,60,40
61,66,61,40
61,66,62,40
61,66,63,40
61,66,64,40
61,66,65,-1:0
61,66,66,·10
61.66.67.-1:0
61,67,60,40
61,67,61,40
61,67,62,40
61,67,63,40
61,67,64,40
61,67,65,40
61,67,66,40
61,67,67,40
62,60,60,40
62,60,61,40
62,60,62,40
62,60,63,40
62,60,64,40
62,60,65,40
62,60,66,40
62,60,67,40
62,61,60,40
62,61,61,40
62,61,62,40
62,61,63,40
62,61,64,40
62,61,65,40
62,61,66,40
62,61,67,40
62,62,60,40
62,62,61,40
62,62,62,40
62,62,63,40
62,62,64,40
62,62,65,40
62,62,66,40
62,62,67,40
62,63,60,40
62,63,61,40
62,63,62,40
62,63,63,40
62,63,64,40

;140
;141
;142
;143
;144
; 145
;146
;147
;150
;151
;152
;153
;154
;155
;156
;157
;160
;161
;162
;163
;164
;165
;166
:l6~

;170
;171
;172
:173
:174
:175
:176
;177
:200
:201
:202
;203
:204
:205
:206
:207
:210
:211
:212
;213
:214
:215
:216
:217
:220
:221
:222
:223
:224
:225
:226
:227
:230
:231
:232
:233
;234

DLX: Direct Line Access Controller

(continued on next page)

4-53

. BYTE
• BYTE
. BYTE
• BYTE
. BYTE
. BYTE
. BYTE
. BYTE
. BYTE
. BYTE
. BYTE
. BYTE
. BYTE
. BYTE
. BYTE
. BYTE
. BYTE
.BYTE
. BYTE
.BYTE
. BYTE
. BYTE
. BYTE
.BYTE
• BYTE
• BYTE
• BYTE
• BYTE
• BYTE
. BYTE
• BYTE
• BYTE
• BYTE
• BYTE
• BYTE
• BYTE
• BYTE
• BYTE
• BYTE
• BYTE
• BYTE
• BYTE
• BYTE
• BYTE'
• BYTE
. BYTE
• BYTE
. BYTE
• BYTE
• BYTE
• BYTE
. BYTE
• BYTE
• BYTE
• BYTE
• BYTE
• BYTE
• BYTE
• BYTE
• BYTE
• BYTE

4-54

62,63,65,40
62,63,66,40
62,63,67,40
62,64,60,40
62,64,61,40
62,64,62,40
62,64,63,40
62,64,64,40
62,64,65,40
62,64,66,40
62,64,67,40
62,65,60,40
62,65,61,40
62,65,62,40
62,65,63,40
62,65,64,40
62,65,65,40
62,65,66,40
62,65,67,40
62,66,60,40
62,66,61,40
62,66,62,40
02,66,63,-100
62.66.64.-1:0
62,66,65,40
62,66,66,40
62,66,67,40
62,67,60,40
62,67,61,40
62,67,62,40
62,67,63,40
62,67,64,40
62,67,65,40
62,67,66,40
62,67,67,40
63,60,60,40
63,60,61,40
63,60,62,40
63,60,63,40
63,60,64,40
63,60,65,40
63,60,66,40
63,60,67,40
63,61,60,40
63,61,61,40
63,61,62,40
63,61,63,40
63,61,64,40
63,61,65,40
63,61,66,40
63,61,67,40
63,62,60,40
63,162,61,40
63,62,62,40
63,62,63,40
63,62,64,40
63,62,65,40
63,62,66,40
63,62,67,40
63,63,60,40
63,63,61,40

:235
:236
:237
:240
:241
:242
:243
:244
:245
:246
:247
:250
:251
;252
:253
:254
:255
:256
:257
;260
;261
;262
;263
;264
:265
:266
:267
:270
:271
:272
:273
:274
:275
:276
:277
:300
:301
:302
:303
:304
:305
:306
:307
:310
:311
:312
:313
:314
:315
:316
:317
:320
:321
:322
:323
:324
:325
:326
:327
:330
:331

(continued on next page)

DECnet-RSX Programmer's Reference Manual

. BYTE 63,63,62,40 :332
• BYTE 63,63,63,40 :333
• BYTE 63,63,64,40 :334
• BYTE 63,63,65,40 :335
. BYTE 63,63,66,40 :336
• BYTE 63,63,67,40 :337
• BYTE 63,64,60,40 ;340
. BYTE 63,64,61,40 :341
. BYTE 63,64,62,40 ;342
. BYTE 63,64,63,40 ;343
• BYTE 63,64,64,40 ;344
. BYTE 63,64,65,40 :345
. BYTE 63,64,66,40 :346
. BYTE 63,64,67,40 :347
. BYTE 63,65,60,40 :350
. BYTE 63,65,61,40 :351
. BYTE 63,65,62,40 :352
. BYTE 63,65,63,40 :353
. BYTE 63,65,64,40 :354
. BYTE 63,65,65,40 :355
. BYTE 63,65,66,40 ;356
.BYTE 63,65,67,40 ;357
. BYTE b3,66,60,~0 :360
.oYTE 63,66,61.~O ;361
• BYTE 63,66,62,40 :362
• BYTE 63,66,63,40 :363
• BYTE 63,66,64,40 :364
• BYTE 63,66,65,40 :365
• BYTE 63,66,66,40 ;366
• BYTE 63,66,67,40 ;367
• BYTE 63,67,60,40 ;370
• BYTE 63,67,61,40 ;371
• BYTE 63,67,62,40 :372
• BYTE 63,67,63,40 ;373
• BYTE 63,67,64,40 :374
• BYTE 63,67,65,40 ;375
• BYTE 63,67,66,40 ;376
• BYTE 63,67,67,40 ;377

• END START

DlX: Direct Line Access Controller 4-55

A
Disconnect or Reject Reason Codes

The following list contains the error reasons codes available at the logical link user
interface. These codes can be returned after either of the following events occurs:

• A connect request was rejected by the network (IE.NRJ); see Section 2.3.5.

• A connected logical link was aborted by the network (NT.ABO); see Section 2.3.2.

The symbols in column 1 are defined in the macro NSSYM$. NSSYM$ is located in
NETLIB.MLB (moved to LB:[l,l] during network generation). The events in column
5 indicate the condition that occurred. C refers to a connect request and A refers to a
network abort.

Symbol
Name

NE$RES

NE$NOD

Decimal Octal
Value Value

1 1

2 2

Standard Message/Explanation

Insufficient network resources

The logical link could not be con­
nected because either the local or the
remote node had insufficient network
resources (for example, insufficient
logical links, remote node counters, or
dynamic storage region (DSR) on RSX
systems).

Unrecognized node name

The logical link could not be con­
nected because the destination node
name did not correspond to any known
node address.

Event

c

c

(continued on next page)

A-1

Symbol Decimal Octal
Name Value Value Standard Message/Explanation Event

NE$NSR 3 3 Remote node shutting down C

The logical link could not be con-
nected because the network on the re-
mote node was in the process of shut-
ting down and would accept no more
logical link connections.

NE$UOB 4 4 Unrecognized object C

The logical link could not be con-
nected because the object number or
name specified did not exist at the re-
mote node.

NE$FMT 5 5 Invalid object name format C

The logical link could not be con-
nected because the node did not un-
derstand the object name format.

NE$MLB 6 6 Object too busy C

The logical link could not be con-
nected because the remote object was
too busy handling other logical links.

NE$ABM 8 10 Abort by network management A

The logical link has been aborted by
an operator or a program using net-
work management.

NE$NNF 10 12 Invalid node name format C

The logical link could not be con-
nected because the remote node name
format was invalid. For example, the
name contained illegal characters or
was too long.

NE$NSL 11 13 Local node shutting down C

The logical link could not be con-
nected because the network on the lo-
cal node was in the process of shutting
down.

(continued on next page)

A-2 DECnet-RSX Programmer's Reference Manual

Symbol Decimal Octal
Name Value Value Standard Message/Explanation Event

NE$ACC 34 42 Access control rejected C

The logical link could not be con-
nected because the remote node or ob-
ject could not understand or would not
accept the access control information.

NE$ABO 38 46 No response from object C

The logical link could not be con-
nected because the object did not re-
spond. For example, the object re-
sponded too slowly or terminated ab-
normally.

NE$ABO 38 46 Remote node or object failed A

The connected logical link was aborted
because the remote node or the object
terminated abnormally.

NE$COM 39 47 Node unreachable CIA

Either the logical link could not be
connected or the connected logical link
was aborted because no path existed
to the remote node.

Disconnect or Reject Reason Codes A-3

B
Object Types

The object type code values that have been defined by Digital are listed below,
expressed as octal and decimal byte values. Digital reserves the right to add object
types and to make changes to the descriptor formats used by the object types. At
present, a descriptor format of 1 indicates a user process (object type 000). All other
listed object types have a descriptor format of 0, requiring definition by the object
type codes given in the first two columns below.

Object Type
Octal Decimal

000 000

001 001

002 002

003 003

004 004

005 005

006 006

007 007

010 OOS

011 009

012 010

013 011

014 012

015 013

Process Type

General task, user process

File Access Listener (F AL/DAP) Version 1

Unit record services (URDS)

Application terminal services (ATS)

Command terminal services (CTS)

RSX-11M Remote Task Control utility (TCL) Version 1

Operator services interface

N ode resource manager

IBM 3270-BSC Gateway

IBM 27S0-BSC Gateway

IBM 3790-SDLC Gateway

TPS application

RT-11 DIBOL application

TOPS-20 terminal handler

(continued on next page)

B-1

Object Type
Octal Decimal Process Type

016 014 TOPS-20 remote spooler

017 015 RSX-llM Remote Task Control utility (TCL) Version 2

020 016 TLK utility (LSN)

021 017 File Access Listener (F ALIDAP) Version 4 and later

022 018 RSX-llS Host Loader utility (HLD)

023 019 Network Information and Control Exchange (NICE)

024 020 RSTS/E media transfer program (NETCPY)

025 021 RSTS/E-to-RSTS/E network command terminal handler

026 022 Mail listener (DECnet-based electronic mail system)

027 023 Network command terminal handler (host side)

030 024 Network command terminal handler (terminal side)

031 025 Loopback mirror (MIR)

032 026 Event receiver (EVR)

033 027 V AXNMS personal message utility

034 028 File Transfer Spooler (FTS)

035 029 PHONE utility

036 030 Distributed data management facility (DDMF)

037 031 X.25 Gateway access

040-076 032-062 Reserved for DECnet use

077 063 DECnet test tool (DTR)

100-177 064-127 Reserved for DECnet use

200-377 128-255 Reserved for customer use

B-2 DECnet-RSX Programmer's Reference Manual

C
Summary of Remote File Access Error/Completion

Codes

C.1 I/O Status Block Error Returns

Each remote file access subroutine returns a 2-word I/O status block. The contents of
the second word depend on the contents of the first word.

Table C-l describes each code that can be returned in the first word of the status
block. The description of the code tells you where to look up the description of the
value returned in the second word.

Table C-1: First Word I/O Status Block Error Codes

Error Code

177777 (-1)

177776 (-2)

Description

CHANNEL ALREADY ACTIVE

An attempt has been made to open a file on an active channel.
Either another channel must be used or the active channel must be
released via a close prior to reusing it.

The second word of the I/O status block is not applicable.

CHANNEL NOT ACTIVE

A file operation request has been made on an inactive channel.
Either a file open has not been issued on this channel or the net­
work link for this channel has been lost.

The second word of the I/O status block is not applicable.

(continued on next page)

C-1

Table C-1 (cont.): First Word I/O Status Block Error Codes

Error Code

177775 (-3)

177774 (-4)

177773 (-5)

177772 (-6)

177771 (-7)

177770 (-8)

C-2

Description

DATA ACCESS PROTOCOL ERROR

An error has been detected by the remote file system or by the
remote server task. The error is then returned to the user by DAP.

The second word of the I/O status block contains the file access
error code. Look up this code in Table C-3.

NSP ERROR (see Table C-2)

The Data Access Protocol (DAP) utilities depend on Network Ser­
vices Protocol (NSP) as a vehicle for accessing remote files. This
code indicates that a problem has been encountered at the NSP
level.

The low-order byte of the second word of the I/O status block
contains one of the NSP error codes listed in Table C-2. If this
error is network rejection (-7), the high-order byte of the second
word of the I/O status block contains the reject reason code (see
Appendix A).

INVALID ATTRIBUTES

An invalid character has been found in the attributes array (ichar)
of an open command.

DATA OVERRUN

A message or block of messages was received that did not fit into
the user-specified buffer.

The second word of the I/O status block contains the total number
of bytes read.

TASKS OUT OF SYNC

The requesting task and its server (FAL) have lost Data Access
Protocol (DAP) message synchronization. This indicates a serious
internal software problem that should be reported to your system
manager.

The second word of the I/O status block is not applicable.

INVALID DAP CHANNEL (LUN)

DAP channel numbers must fall in the range of 1 to 255. A 0
channel or a channel value greater than 255 is invalid.

The second word of the I/O status block is not applicable.

(continued on next page)

DECnet-RSX Programmer's Reference Manual

Table C-1 (cont.): First Word I/O Status Block Error Codes

Error Code

177767 (-9)

177766 (-10.)

177765 (-11.)

Description

BUFFER ALLOCATION ERROR FOR DAP CHANNELS

There is no more buffer space available for the DAP channel con­
trol blocks. To extend the buffer size, the FORTRAN program
must be rebuilt, increasing the size of $FSRl in the task build.

The second word of the I/O status block is not applicable.

DIRECTIVE ERROR

Directive error from the executive.

The second word of the I/O status block contains the DSW value.

ILLEGAL REQUEST

An illegal request was made (for example, an attempt to read from
a file that was open for write).

The second word of the I/O status block is not applicable.

Table C-2 contains the NSP error codes that pertain to the NSP ERROR in Table
C-1 (177774). NSP error codes occupy the low-order byte of the second word of the I/O
status block. With the exception of the network rejection (-7), the high-order byte is
undefined.

Table C-2: NSP Error Codes

Error Code

-1

-2

-3

-4

-5

-6

-7

Description

Required system resources are not available.

A request was issued for a LUN on which there is no established logical link.

The link was disconnected with the request outstanding.

The data message to be received was truncated because the receive buffer was
too small.

An argument specified in the call was incorrect.

No network data was found in the user's mailbox.

The network (NSP) rejected an attempted connect. The high-order byte con­
tains the reject reason code (see Appendix A).

(continued on next page)

Summary of Remote File Access Error/Completion Codes C-3

Table C-2 (cont.): NSP Error Codes

Error Code

-8

-9

-10

-11

-12

-13

-14

Description

A logical link has already been established on the LUN to which the user
attempted to connect.

The issuing task is not part of the network. OPNNT was never called.

The user is attempting to access the network for a second time.

A transmission of an interrupt message was attempted before the last one had
finished.

A connect reject was issued by the user task to which the connection was
attempted.

A buffer is either outside the user address space or is not word aligned.

The user is attempting to issue a GNDNT[W) when one is already pending.

C.2 Data Access Protocol (DAP) Error Messages

The DAP status code is used to return status from the remote file system or from the
operation of the cooperating process using DAP. The 2-byte status field (16 bits)
occupies the second word of the I/O status block and is divided into two fields:

• Maccode (bits 12-15): Contains the error type code (see Table C-3 in Section
C.2.1)

• Miccode (bits 0-11): Contains the specified error reason code (see Tables C-4,
C-5, and C-6, depending on error type, as described in
Section C.2.2)

C.2.1 Maccode Field

The maccode field is located in the high-order byte of the second word in an I/O status
block. The value returned in the maccode field describes the functional type of the
error that has occurred. The specific reason for the error is given in the miccode field
(the low-order byte of the same word that contains the maccode field). Miccode
values correlating to each maccode value listed in Table C-3 are found in the table
referenced in the last column of Table C-3.

C-4 DECnet-RSX Programmer's Reference Manual

Table C-3: CAP Maccode Field Values

Field
Value

o
1

2

3

4

5

6

7

10

11

12

Error
Type

Pending

Successful

Unsupported

Reserved

File open

Transfer error

Transfer
warning

Access
termination

Format

Invalid

Sync

13--15 Reserved

16-17 User-defined
status mac codes

C.2.2 Miccode Field

Miccode
Meaning Table

The operation is in progress. C-5

Returns information that indicates success. C-5

This implementation of DAP does not sup- C-4
port specified request.

Errors that occur before a file is successfully C-5
opened.

Errors that occur after a file is opened and C-5
before it is closed.

For operations on open files, indicates that C-5
the operation completed, but not with com-
plete success.

Errors associated with terminating access to C-5
a file.

Error in parsing a message. Format is not C-4
correct.

Field of message is invalid (that is, bits that C-4
are meant to be mutually exclusive are set,
an undefined bit is set, a field value is out of
range, or an illegal string is in a field).

DAP message received out of synchroniza- C-6
tion.

The miccode field is located in the low-order byte of the second word in an I/O status
block. The value returned in this field identifies the specific reason for the error type
defined in the maccode field (see Section C.2.1). Miccode field values are defined in
three different tables, each table associated with certain maccode values, as outlined
below:

• Table C-4: For use with maccode values 2, 10, 11

• Table C-5: For use with maccode values 0, 1, 4, 5, 6, 7

• Table C-6: For use with maccode value 12

Summary of Remote File Access Error/Completion Codes C-5

Table C-4 follows. The DAP message type number (column 1) is specified in bits
6-11, and the DAP message field number (column 2) is specified in bits 0-5. The field
where the error is located is described in the third column.

Table C-4: DAP Miccode Values for Use with Maccode Values of 2,10, and 11

Type
Number
(bits 6-11)

Field
Number
(bits 0-5)

Miscellaneous message errors

00 00

10

Configuration message errors

01

C-6

00

10

11

12

13

14

20

21

22

23

24

25

26

27

30

Field Description

Unspecified DAP message error

DAP message type field (TYPE) error

Unknown field

DAP message flags field (FLAGS)

Data stream identification field (STREAMID)

Length field (LENGTH)

Length extension field (LEN256)

BITCNT field (BITCNT)

Buffer size field (BUFSIZ)

Operating system type field (OSTYPE)

File system type field (FILESYS)

DAP version number (VERNUM)

ECO version number field (ECONUM)

USER protocol version number field (USRNUM)

DEC software release number field (DECVER)

User software release number field (USRVER)

System capabilities field (SYSCAP)

(continued on next page)

DECnet-RSX Programmer's Reference Manual

Table C-4 (cont.): DAP Miccode Values for Use with Maccode Values of 2, 10,
and 11

Type
Number
(bits 6-11)

Field
Number
(bits 0-5)

Attributes message errors

02 00

10

11

12

13

14

20

21

22

23

24

25

26

27

30

31

32

33

34

35

36

Field Description

Unknown field

DAP message flags field (FLAGS)

Data stream identification (STREAMID)

Length field (LENGTH)

Length extension field (LEN 256)

Bit count field (BITCNT)

Attributes menu field (ATTMENU)

Data type field (DATATYPE)

File organization field (ORG)

Record format field (RFM)

Record attributes field (RAT)

Block size field (BLS)

Maximum record size field (MRS)

Allocation quantity field (ALQ)

Bucket size field (BKS)

Fixed control area size field (FSZ)

Maximum record number field (MRN)

Run-time system field (RUNSYS)

Default extension quantity field (DEQ)

File options field (FOP)

Byte size field (BSZ)

(continued on next page)

Summary of Remote File Access Error/Completion Codes C-7

Table C-4 (cont.): DAP Miccode Values for Use with Maccode Values of 2, 10,
and 11

Type
Number
(bits 6-11)

Field
Number
(bits 0-5)

37

40

41

42

43

44

45

Access message errors

03

C-8

00

10

11

12

13

14

20

21

22

23

24

25

26

Field Description

Device characteristics field (DEV)

Spooling device characteristics field (SDC); reserved

Longest record length field (LRL)

Highest virtual block allocated field (HBK)

End-of-file block field (EBK)

First free byte field (FFB)

Starting LBN for contiguous file field (SBN)

Unknown field

DAP message flags field (FLAGS)

Data stream identification field (STREAMID)

Length field (LENGTH)

Length extension field (LEN256)

Bit count field (BITCNT)

Access function field (ACCFUNC)

Access options field (ACCOPT)

File specification field (FILESPEC)

File access field (FAC)

File-sharing field (SHR)

Display attributes request field (DISPLAY)

File password field (PASSWORD)

(continued on next page)

DECnet-RSX Programmer's Reference Manual

Table C-4 (cont.): CAP Miccode Values for Use with Maccode Values of 2, 10,
and 11

Type
Number
(bits 6-11)

Field
Number
(bits 0-5)

Control message errors

04 00

10

11

12

13

14

20

21

22

23

24

25

26

27

30

Continue message errors

05 00

10

11

12

13

14

20

Field Description

Unknown field

DAP message flags field (FLAGS)

Data stream identification field (STREAMID)

Length field (LENGTH)

Length extension field (LEN256)

Bit count field (BITCNT)

Control function field (CTLFUNC)

Control menu field (CTLMENU)

Record access field (RAC)

Key field (KEY)

Key of reference field (KRF)

Record options field (ROP)

Hash code field (HSH); reserved for future use

Display attributes request field (DISPLAY)

Block count (BLKCNT)

Unknown field

DAP message flags field (FLAGS)

Data stream identification field (STREAMID)

Length field (LENGTH)

Length extension field (LEN256)

Bit count field (BITCNT)

Continue transfer function field (CONFUNC)

(continued on next page)

Summary of Remote File Access Error/Completion Codes C-9

Table C-4 (cont.): DAP Miccode Values for Use with Maccode Values of 2, 10,
and 11

Type
Number
(bits 6-11)

Field
Number
(bits 0-5)

Acknowledge message errors

06 00

10

11

12

13

14

15

Access complete message errors

07

Data message errors

10

C-10

00

10

11

12

13

14

20

21

22

00

10

11

12

13

14

20

21

Field Description

Unknown field

DAP message flags field (FLAGS)

Data stream identification field (STREAMID)

Length field (LENGTH)

Length extension field (LEN256)

Bit count field (BITCNT)

System-specific field (SYSPEC)

Unknown field

DAP message flags field (FLAGS)

Data stream identification field (STREAMID)

Length field (LENGTH)

Length extension field (LEN256)

Bit count field (BITCNT)

Access complete function field (CMPFUNC)

File options field (FOP)

Checksum field (CHECK)

Unknown field

DAP message flags field (FLAGS)

Data stream identification field (STREAMID)

Length field (LENGTH)

Length extension field (LEN256)

Bit count field (BITCNT)

Record number field (RECNUM)

File data field (FILEDATA)

(continued on next page)

DECnet-RSX Programmer's Reference Manual

Table C-4 (cont.): DAP Miccode Values for Use with Maccode Values of 2,10,
and 11

Type
Number
(bits 6-11)

Field
Number
(bits 0-5)

Status message errors

11 00

10

11

12

13

14

20

21

22

23

24

25

Key definition message errors

12 00

10

11

12

13

14

20

21

22

Field Description

Unknown field

DAP message flags field (FLAGS)

Data stream identification field (STREAMID)

Length field (LENGTH)

Length extension field (LEN256)

Bit count field (BITCNT)

Macro status code field (MACCODE)

Micro status code field (MICCODE)

Record file address field (RF A)

Record number field (RECNUM)

Secondary status field (STV)

Secondary status text (STX)

Unknown field

DAP message flags field (FLAGS)

Data stream identification field (STREAMID)

Length field (LENGTH)

Length extension field (LEN256)

Bit count field (BITCNT)

Key definition menu field (KEYMENU)

Key option flags field (FLG)

Data bucket fill quantity field (DFL)

(continued on next page)

Summary of Remote File Access Error/Completion Codes C-11

Table C-4 (cont.): DAP Miccode Values for Use with Maccode Values of 2, 10,
and 11

Type
Number
(bits 6-11)

Field
Number
(bits 0-5)

23

24

25

26

27

30

31

32

33

34

35

36

37

40

41

42

43

44

45

Allocation message errors

13

C-12

00

10

11

12

Field Description

Index bucket fill quantity field (IFL)

Key segment repeat count field (SEGCNT)

Key segment position field (POS)

Key segment size field (SIZ)

Key of reference field (REF)

Key name field (KNM)

Null key character field (NUL)

Index area number field (IAN)

Lowest level area number field (LAN)

Data level area number field (DAN)

Key data type field (DTP)

Root VBN for this key field (RVB)

Hash algorithm value field (HAL)

First data bucket VBN field (DVB)

Data bucket size field (DBS)

Index bucket size field (IBS)

Level of root bucket field (L VL)

Total key size field (TKS)

Minimum record size field (MRL)

Unknown field

DAP message flags field (FLAGS)

Data stream identification .field (STREAMID)

Length field (LENGTH)

(continued on next page)

DECnet-RSX Programmer's Reference Manual

Table C-4 (cont.): DAP Miccode Values for Use with Maccode Values of 2, 10,
and 11

Type
Number
(bits 6-11)

13

14

20

21

22

23

24

25

26

27

30

31

Field
Number
(bits 0-5) Field Description

Length extension field (LEN256)

Bit count field (BITCNT)

Allocation menu field (ALLMENU)

Relative volume number field (VOL)

Alignment options field (ALN)

Allocation options field (AOP)

Starting location field (LOC)

Related file identification field (RFI)

Allocation quantity field (ALQ)

Area identification field (AID)

Bucket size field (BKZ)

Default extension quantity field (DEQ)

Summary message errors

14 00

10

11

12

13

14

20

21

22

23

24

Unknown field

DAP message flags field (FLAGS)

Data stream identification field (STREAMID)

Length field (LENGTH)

Length extension field (LEN256)

Bit count field (BITCNT)

Summary menu field (SUMENU)

Number of keys field (NOK)

Number of areas field (NOA)

Number of record descriptors field (NOR)

Prologue version number (PVN)

(continued on next page)

Summary of Remote File Access Error/Completion Codes C-13

Table C-4 (cont.): DAP Miccode Values for Use with Maccode Values of 2, 10,
and 11

Type
Number
(bits 6-11)

Field
Number
(bits 0-5)

Date and time message errors

15 00

10

11

12

13

14

20

21

22

23

24

25

26

27

Protection message errors

16

C-14

00

10

11

12

13

14

20

21

22

23

24

25

Field Description

Unknown field

DAP message flags field (FLAGS)

Data stream identification field (STREAMID)

Length field (LENGTH)

Length extension field (LEN256)

Bit count field (BITCNT)

Date and time menu field (DATMENU)

Creation date and time field (CDT)

Last update date and time field (RDT)

Deletion date and time field (EDT)

Revision number field (RVN)

Backup date and time field (BDT)

Physical creation date and time field (PDT)

Accessed date and time field (ADT)

Unknown field

DAP message flags field (FLAGS)

Data stream identification field (STREAMID)

Length field (LENGTH)

Length extension field (LEN256)

Bit count field (BITCNT)

Protection menu field (PROTMENU)

File owner field (OWNER)

System protection field (PROTSYS)

Owner protection field (PROTOWN)

Group protection field (PROTGRP)

World protection field (PROWLD)

(continued on next page)

DECnet-RSX Programmer's Reference Manual

Table C-4 (cont.): DAP Miccode Values for Use with Maccode Values of 2, 10,
and 11

Type
Number
(bits 6-11)

Field
Number
(bits 0-5)

Name message errors

17 00

10

11

12

13

14

20

21

Field Description

Unknown field

DAP message flags field (FLAGS)

Data stream identification field (STREAMID)

Length field (LENGTH)

Length extension field (LEN256)

Bit count field (BITCNT)

Name type field (NAMETYPE)

Name field (NAMESPEC)

Access control list message errors (reserved for future use)

20 00 Unknown field

10 DAP message flags field (FLAGS)

11 Data stream identification field (STREAMID)

12 Length field (LENGTH)

13 Length extension field (LEN256)

14 Bit count field (BITCNT)

15 System-specific field (SYSPEC)

20 Access control list repeat count field (ACLCNT)

21 Access control list entry field (ACL)

Table C-5 follows. The error code number (column 1) is contained in bits 0-11.
Symbolic status codes (column 2, when shown) refer to the corresponding RMS or
FCS status codes. They are included here for ease of reference only, as they have no
meaning for DAP.

Summary of Remote File Access Error/Completion Codes C-15

Table C-5: DAP Miccode Values for Use with Maccode Values 0, 1, 4, 5, 6, 7

Corresponding
Error Code Symbolic
(bits 0-11) Status Code Error Description

0 Unspecified error

1 ER$ABO Operation aborted

2 ER$ACC Fll-ACP could not access file

3 ER$ACT File activity precludes operation

4 ER$AID Bad area ID

5 ER$ALN Alignment options error

6 ER$ALQ Allocation quantity too large or 0 value

7 ER$ANI Not ANSI D format

10 ER$AOP Allocation options error

11 ER$AST Invalid (that is, synchronous) operation at AST
level

12 ER$ATR Attribute read error

13 ER$ATW Attribute write error

14 ER$BKS Bucket size too large

15 ER$BKZ Bucket size too large

16 ER$BLN BLN length error

17 ER$BOF Beginning of file detected

20 ER$BPA Private pool address

21 ER$BPS Private pool size

22 ER$BUG Internal RMS error condition detected

23 ER$CCR Cannot connect RAB

24 ER$CHG $UPDATE changed a key without having attrib-
ute of XB$CHG set

25 ER$CHK Bucket format check-byte failure

26 ER$CLS RSTSIE close function failed

27 ER$COD Invalid or unsupported COD field

30 ER$CRE F11-ACP could not create file
(STV = system error code)

(continued on next page)

C-16 DECnet-RSX Programmer's Reference Manual

Table C-5 (cont.): CAP Miccode Values for Use with Maccode Values 0, 1, 4, 5,
6, 7

Corresponding
Error Code Symbolic
(bits 0-11) Status Code Error Description

31 ER$CUR No current record (operation not preceded by
get/find)

32 ER$DAC Fll-ACP deaccess error during close

33 ER$DAN Data area number invalid

34 ER$DEL RFA-accessed record was deleted

35 ER$DEV Bad device, or inappropriate device type

36 ER$DIR Error in directory name

37 ER$DME Dynamic memory exhausted

40 ER$DNF Directory not found

41 ER$DNR Device not ready

42 ER$DPE Device has positioning error

43 ER$DTP DTP field invalid

44 ER$DUP Duplicate key detected; XB$DUP not set

45 ER$ENT Fll-ACP enter function failed

46 ER$ENV Operation not selected in ORG$ macro

47 ER$EOF End of file

50 ER$ESS Expanded string area too short

51 ER$EXP File expiration date not yet reached

52 ER$EXT File extend failure

53 ER$FAB Not a valid FAB (BID does not = FB$BID)

54 ER$FAC Illegal F AC for record operation, or FB$PUT not
set for create

55 ER$FEX File already exists

56 ER$FID Invalid file ID

57 ER$FLG Invalid flag-bits combination

60 ER$FLK File is locked by other user

61 ER$FND Fll-ACP find function failed

(continued on next page)

Summary of Remote File Access Error/Completion Codes C-17

Table C-5 (cant.): DAP Miccode Values for Use with Maccode Values 0 1 4 5 , , , ,

Error Code
(bits 0-11)

62

63

64

65

66

67

70

71

72

73

74

75

76

77

100

101

102

103

104

105

106

107

110

111

112

C-18

6, 7

Corresponding
Symbolic
Status Code

ER$FNF

ER$FNM

ER$FOP

ER$FUL

ER$IAN

ER$IFI

ER$IMX

ER$INI

ER$IOP

ER$IRC

ER$ISI

ER$KBF

ER$KEY

ER$KRF

ER$KSZ

ER$LAN

ER$LBL

ER$LBY

ER$LCH

ER$LEX

ER$LOC

ER$MAP

ER$MKD

ER$MRN

ER$MRS

Error Description

File not found

Error in file name

Invalid file options

Device/file full

Index area number invalid

Invalid IFI value or unopened file

Maximum NUM (254) areas/key XABS exceeded

$INIT macro never issued

Operation illegal or invalid for file organization

Illegal record encountered (with sequential files
only)

Invalid lSI value on unconnected RAB

Bad key buffer address (KBF = 0)

Invalid key field (KEY = 0 or negative)

Invalid key of reference ($GET/$FIND)

Key size too large

Lowest level index area number invalid

Not ANSI-labeled tape

Logical channel busy

Logical channel number too large

Logical extend error; prior extend still valid

LOC field invalid

Buffer-mapping error

F11ACP could not mark file for deletion

MRN value = negative or relative key > MRN

MRS value = 0 for fixed length records and/or rela­
tive files

(continued on next page)

DECnet-RSX Programmer's Reference Manual

Table C-5 (cont.): DAP Miccode Values for Use with Maccode Values 0, 1, 4, 5,
6, 7

Corresponding
Error Code Symbolic
(bits 0-11) Status Code Error Description

113 ER$NAM NAM block address invalid (NAM = 0 or is not
accessible)

114 ER$NEF Not positioned to EOF (with sequential files only)

115 ER$NID Cannot allocate internal index descriptor

116 ER$NPK Indexed file; no primary key defined

117 ER$OPN RSTSIE open function failed

120 ER$ORD XABs not in correct order

121 ER$ORG Invalid file organization value

122 ER$PLG Error in file's prologue (reconstruct file)

123 ER$POS POS field invalid (POS > MRS; STY = XAB
indicator)

124 ER$PRM Bad file date field retrieved

125 ER$PRV Privilege violation (OS denies access)

126 ER$RAB Not a valid RAB (BID does not = RB$BID)

127 ER$RAC Illegal RAC value

130 ER$RAT Illegal record attributes

131 ER$RBF Invalid record buffer address (either odd or not
word aligned if BLK-IO)

132 ER$RER File read error

133 ER$REX Record already exists

134 ER$RFA Bad RFA value (RFA=O)

135 ER$RFM Invalid record format

136 ER$RLK Target bucket locked by another stream

137 ER$RMV Fll-ACP remove function failed

140 ER$RNF Record not found

141 ER$RNL Record not locked

142 ER$ROP Invalid record options

(continued on next page)

Summary of Remote File Access Error/Completion Codes C-19

Table C-5: (cont.): DAP Miccode Values for Use with Maccode Values 0, 1, 4, 5,

Error Code
(bits 0-11)

143

144

145

146

147

150

151

152

153

154

155

156

157

160

161

162

163

164

165

166

167

170

171

C-20

6, 7

Corresponding
Symbolic
Status Code

ER$RPL

ER$RRV

ER$RSA

ER$RSZ

ER$RTB

ER$SEQ

ER$SHR

ER$SIZ

ER$STK

ER$SYS

ER$TRE

ER$TYP

ER$UBF

ER$USZ

ER$VER

ER$VOL

ER$WER

ER$WLK

ER$WPL

ER$XAB

BUGDDI

CAA

CCF

Error Description

Error while reading prologue

Invalid RRV record encountered

RAB stream currently active

Bad record size (RSZ > MRS or NOT = MRS if
fixed length records)

Record too big for user's buffer

Primary key out of sequence (RAC = RB$SEQ for
$PUT)

SHR field invalid for file (cannot share sequential
files)

SIZ field invalid

Stack too big for save area

System directive error

Index tree error

Error in file type extension on FNS is too big

Invalid user buffer address (0, odd, or not word
aligned if BLK-IO)

Invalid user buffer size (USZ=O)

Error in version number

Invalid volume number

File write error (STV = system error code)

Device is write locked

Error while writing prologue

Not a valid XAB (@XAB = odd; STY = XAB
indicator)

Default directory invalid

Cannot access argument list

Cannot close file

(continued on next page)

DECnet-RSX Programmer's Reference Manual

Table C-5 (cont.): DAP Miccode Values for Use with Maccode Values 0, 1, 4, 5,
6, 7

Corresponding
Error Code Symbolic
(bits 0-11) Status Code Error Description

172 CDA Cannot deliver AST

173 CRN Channel assignment failure (STV = system error
code)

174 CNTRLO Terminal output ignored due to ~

175 CNTRLY Terminal input aborted due to [CTRL/Y)

176 DNA Default file name string address error

177 DVI Invalid device ID field

200 ESA Expanded string address error

201 FNA File name string address error

202 FSZ FSZ field invalid

203 IAL Invalid argument list

204 KFF Known file found

205 LNE Logical name error

206 NOD N ode name error

207 NORMAL Operation successful

210 o K-.D UP Inserted record had duplicate key

211 OK-.lDX Index update error occurred; record inserted

212 OK-RLK Record locked, but read anyway

213 OK-RRV Record inserted in primary is okay; may not be
accessible by secondary keys or RF A

214 CREATE File was created, but not opened

215 PBF Bad prompt buffer address

216 PNDING Asynchronous operation pending completion

217 QUO Quoted string error

220 RRB Record header buffer invalid

221 RLF Invalid related file

222 RSS Invalid resultant string size

223 RST Invalid resultant string address

(continued on next page)

Summary of Remote File Access Error/Completion Codes C-21

Table C-5 (cont.): DAP Miccode Values for Use with Maccode Values 0, 1, 4, 5,
6, 7

Correspondi ng
Error Code Symbolic
(bits 0-11) Status Code Error Description

224 SQO Operation not sequential

225 SUC Operation successful

226 SPRSED Created file superseded existing version

227 SYN File name syntax error

230 TMO Timeout period expired

231 ER$BLK FB$BLK record attribute not supported

232 ER$BSZ Bad byte size

233 ER$CDR Cannot disconnect RAB

234 ER$CGJ Cannot get JFN for file

235 ER$COF Cannot open file

236 ER$JFN Bad JFN value

237 ER$PEF Cannot position to end of file

240 ER$TRU Cannot truncate file

241 ER$UDF File currently in an undefined state; access is de-
nied

242 ER$XCL File must be opened for exclusive access

243 Directory full

244 IE.HWR Handler not in system

245 IE.FHE Fatal hardware error

246 Attempt to write beyond EOF

247 IE.ONP Hardware option not present

250 IE.DNA Device not attached

251 IE.DAA Device already attached

252 IE. DUN Device not attachable

253 IE.RSU Shareable resource in use

254 IE.OVR Illegal overlay request

(continued on next page)

C-22 DECnet-RSX Programmer's Reference Manual

Table C-5 (cont.): DAP Miccode Values for Use with Maccode Values 0, 1, 4, 5,
6, 7

Corresponding
Error Code Symbolic
(bits 0-11) Status Code Error Description

255 IE.BCC Block check or CRC error

256 IE.NOD Caller's nodes exhausted

257 IE.IFU Index file full

260 IE.HFU File header full

261 IE.WAC Accessed for write

262 IE.CKS File header checksum failure

263 IE.WAT Attribute control list error

264 IE.ALN File already accessed on LUN

265 IE.BTF Bad tape format

266 IE.ILL Illegal operation on file descriptor block

267 IE.2DV Rename; two different devices

270 IE.FEX Rename; new file name already in use

271 IE.RNM Cannot rename old file system

,272 IE.FOP File already open

273 IE.VER Parity error on device

274 IE.EOV End of volume detected

275 IE.DAO Data overrun

276 IE.BBE Bad block on device

277 IE.EOT End of tape detected

300 IE.NBF No buffer space for file

301 IE.NBK File exceeds allocated space; no blocks left

302 IE.NST Specified task not installed

303 IE.ULK Unlock error

304 IE.NLN No file accessed on LUN

(continued on next page)

Summary of Remote File Access Error/Completion Codes C-23

Table C-5 (cont.): DAP Miccode Values for Use with Maccode Values 0, 1, 4, 5,
6, 7

Error Code
(bits 0-11)

305

306

307

310

311

312

313
314

315

316

317

320

321

322

323

324

325

326

327

330

331

332

333

334

335

C-24

Corresponding
Symbolic
Status Code

IE.SRE

SPL

NMF

CRC

BUGDAP

CNTRLC

DFL

ESL

IBF

IBK

IDX

IFA

IFL

KNM

KSI

MBC

NET

OK-ALK

OK-DEL

OK-LIM

OK_NOP

OK-RNF

PLV

REF

Error Description

Send/receive failure

Spool or submit command file failure

No more files

DAP file transfer checksum error

Quota exceeded

Internal network error condition detected

Terminal input aborted due to ~

Data bucket fill size > bucket size in XAB

Invalid expanded string length

Illegal bucket format

Bucket size of LAN does not = IAN in XAB

Index not initialized

Illegal file attributes (corrupt file header)

Index bucket fill size > bucket size in XAB

Key name buffer not readable or writeable in XAB

Index bucket will not hold two keys for key of ref­
erence

Multibuffer count invalid (negative value)

Network operation failed at remote node

Record is already locked

Deleted record successfully accessed

Retrieved record exceeds specified key value

Key XAB not filled in

Nonexistent record successfully accessed

Unsupported prologue version

Illegal key of reference in XAB

(continued on next page)

DECnet-RSX Programmer's Reference Manual

Table C-5 (cont.): DAP Miccode Values for Use with Maccode Values 0, 1, 4, 5,
6, 7

Error Code
(bits 0-11)

336

337

340

341

342

343

344

345

346

347

350

351

352

353

354

355

356

357

360

361

362

363

Corresponding
Symbolic
Status Code

RSL

RVU

SEG

SUP

WBE

WLD

WSF

SNE

SPE

UPI

ACS

TNS

BES

PES

WCC

Error Description

Invalid resultant string length

Error updating RRVs; some paths to data may be
lost

Data types other than string limited to one seg­
ment in XAB

Reserved

Operation not supported over network

Error on write behind

Invalid wildcard operation

Working set full (cannot lock buffers in working
set)

Directory listing: error in reading volume set
name, directory name, or file name

Directory listing: error in reading file attributes

Directory listing: protection violation in trying to
read the volume set, directory, or file name

Directory listing: protection violation in trying to
read file attributes

Directory listing: file attributes do not exist

Directory listing: unable to recover directory list
after continue transfer (skip)

Sharing not enabled

Sharing page count exceeded

UPI bit not set when sharing with BRO set

Error in access control string

Terminator not seen

Bad escape sequence

Partial escape sequence

Invalid wildcard context value

(continued on next page)

Summary of Remote File Access Error/Completion Codes C-25

Table C-5 (cont.): DAP Miccode Values for Use with Maccode Values 0, 1, 4, 5,
6, 7

Error Code
(bits 0-11)

364

365

366

6000

Corresponding
Symbolic
Status Code

IDR

STR

FTM

Error Description

Invalid directory rename operation

User structure (FABIRAB) became invalid during
operation

Network file transfer mode precludes operation

User-defined errors to 7777

Table C-6 follows. The message type number is contained in bits 0-11.

Table C-6: DAP Miccode Values for Use with Maccode Value 12

Type
Number
(bits 0-11)

a
1

2

3

4

5

6

7

10

11

12

13

14

15

16

17

20

C-26

Message Type

Unknown message type

Configuration message

Attributes message

Access message

Control message

Continue transfer message

Acknowledge message

Access complete message

Data message

Status message

Key definition attributes extension message

Allocation attributes extension message

Summary attributes extension message

Date and time attributes extension message

Protection attributes extension message

N arne message

Access control list extended attributes message

DECnet-RSX Programmer's Reference Manual

D
MACRO-11 Connect Block Offset and Code Definitions

The following MACRO-II offset and code definitions refer to connect block offsets
used in network connects and accepts .

• TITLE NETDEF - DECNET USER INTERFACE DEFINITIONS

.MACRO NETDF$tLtB

.MCALL CRBDF$
CRBDF$ LtB ;REQUEST DESCRIPTOR BLOCI\
.MCALL CNBDF$
CNBDF$ LtB ;REQUEST PENDING BLOCK
.MCALL NSSYM$
N33YM$ B ;RETURN SYMBOLS

.MACRO NETDF$ t}-{ t Y

.ENDM NETDF$

.ENDM NETDF$

REQUE3T DESCRIPTOR BLOCK OFFSET DEFINITIONS FOR CONNECTS.

{

OOO

1-------------------1 004

N.RND

N.ROT N.RFM OOG

FORMAT 0

I {~)10
L--________________ ~. 030 (UNUSED)

(continued on next page)

0-1

.=0

.MACRO

.iif nb

.ASECT

N.RND: ILl .BLKB
N.RFM:/LI .BLKB
N.ROT:'LI .BLKB

+ = +

.=.-18.
N.RDEC:/LI
N.RDE:/LI

.=.-18.
N.RGP:/LI
N. RU3: I L'
N. RNMC: I L I

N + RNM: I L I

0-2

FORMAT 1

N.RDEC

N.RDE

N.RIDC

N.RID

N.RPSC

N.RPS

N.RACC

N.RAC

CRBDF$tLtBtLST

010

012

030

032

{

034

052

054

{

05G

OG4

OGG

{

070

lOG

LST .List

G Destination
1 Destination
1 Destination

ForlTlat 0
• BLKB 18 • Unused

ForlTlat
.BLKW Destination
.BLKB 1 G. Destination

ForlTlat 2
.BLKW 1 Destination
.BLKW 1 Destination
.BLKW 1 Destination
.BLKB 12. Destination

node n alTle
descriptor forlTlat
object t}' p e

process b}' t e count
process

sroup
user
n alTle byte count
n alTle

(continued on next page)

DECnet-RSX Programmer's Reference Manual

N.RIDC: ILl .BLKW
N+RID: IL' .BLKB
N.RP3C: IL' .BLKW
t-.l.RP3: / L ' .BLKB
N.RACC: IL' .BLKW
N.RAC:/L ' .BLKB

N.RQL=/B/.-N.RND

.PSECT

.ENDM

.MACRO

.iif nb

.ASECT

.=0
N.CTL:/L '

N ,3EGZ: 'L I
N.DFM: 'L I

N,DOT:/L '

+ = +

• = • -18.
N. DDEC: I L I
N.DDE:/L '

• = • -18.
N.DGP:/L '
N.DU3: / L '
N.DNMC:/L '
N.DNM:/L '

N.3ND: 'Ll
N.3FM: / L '
N.30T: / L '

+ = +

• = • -18.
N.3DEC: 'L I

N.3DE:/L '

• = • -18.
N.3GP:/L '
N.3U3: 'L'
N.3NMC: 'Ll
N.3NM: / L '

.BLKW

.BLKW
,BLKB
.BLKB

.BLKB

.BLKW

.BLKB

.BLKW

.BLKW

.BLKW

.BLKB

.BLKB

.BLKB

.BLKB

.BLKB

.BLKW

.BLKB

.BLKW

.BLKW

.BLKW

.BLKB

1 G.
1
8.
1
1 G.

RequestinS process ID byte count
RequestinS process ID
RequestinS password byte count
RequestinS password
AccountinS information byte count
AccountinS information

Lensth of bIocR

CRBDF$
CNBDF$tLtBtLST
LST

18.

1 G.

1
1
1
12.

G
1
1

18.

1 G.

12.

• Lis t

TeMPOrary linR address

SeSfrlent size
Destination descriptor forMat
Destination Object type

Fo rfrla t 0
Unused

Forfrlat
Destination process byte count
Destination process

Forfrlat 2
Destination Sroup
Destination user
Destination naMe byte count
Destination naMe

Source node nafrle
Source descriptor format
Source object type

Forfrlat 0
Unused

Forfrlat
Source process n arrle b)' t e
Source process n arrle

Fo rrrla t 2
Source Sroup
Source user
Source n afrle b}' t e count
Source nalrle

count

(continued on next page)

MACRO-11 Connect Block Offset and Code Definitions 0-3

$$$=.
N.CIDC: ILl .BLKW
N.CID:/L '
N.CP3C: ILl
N.CP3: / L '
N.CACC:/L '
N. CAC: 'L I

N.CDAC:/L'
N.CDA:/L'

.BLKB
• BLKW
• BU\B
.BLKW
.BLKB
• BLKW

N.CBL=/B/,-N.CTL

.=$$$
N.CDEI.l: ILl
N. CUN I : I L I

.BLKW

.BLKB
• EI.lEN

N.CUIC:/L ' .BLKW
.PSECT

N.CDD3: / L' .BLKB
.PSECT

.ENDM

0-4

1 G •
1
8.
1
1 G •
1

CNBDF$

Source task ID byte count
Source tas~~ ID 1111

Password byte count
PasslAlord
AccountinS inforMatIon byte coun
AccountinS inforMation
Optional data byte count
OPtional data

LenSth of cnb (without any data)

Default deuice nalrle (frolrl accoun
Default device unit nUMber

LoSin UIC froM account file

Default directory strins

DECnet-RSX Programmer's Reference Manual

E
Network Error/Completion Codes for FORTRAN,

COBOL, and BASIC-PLUS-2

This appendix lists the error/completion codes that can be returned in the first word
of any 2-word I/O status block by certain calls in the FORTRAN, COBOL, and
BASIC-PLUS-2 languages.

1 The request was successful.

2 The request was successful, but some optional data was lost.

-1 Required system resources are not available.

-2 A request was issued for a LUN on which there is no established logical link.

-3 The link was disconnected with the request outstanding.

-4 The data received was truncated because the receive buffer was too small.

-5 An argument specified in the call is incorrect.

-6 No network data was found in the user's network data queue.

-7 The network (NSP) rejected an attempted connect.

-8 A logical link has already been established on the LUN to which the user attempted to
connect.

-9 The issuing task is not part of the network (that is, OPNNT was never called).

-10 The user is attempting to access the network for a second time.

-11 Transmission of an interrupt message was attempted before the last one finished.

-12 A connect reject was issued by the user task to which the connection was attempted.

-13 A buffer either is outside the user address space or is not word aligned.

-14 The user is attempting to issue a GNDNT[W] when one is already pending.

E-1

-20 A RUNNCW was issued for which there was not enough dynamic memory on the remote
node.

-21 A RUNNCW or ABONCW was issued for a task that was not installed on the remote
node.

-22 A RUNNCW was issued with an invalid time parameter.

-23 Either an ABONCW was issued for a task that was not active, or a RUNNCW without
scheduling parameters was issued for a task that already is active.

-24 There was a privilege violation on a RUNNCW or ABONCW attempt.

-25 An ABONCW was issued for a task that either was being loaded into or was exiting from
the remote node.

-26 An RUNNCW was issued with an invalid UIC.

-40 A directive error; the second word of the status block contains the actual directive error
code.

E-2 DECnet-RSX Programmer's Reference Manual

F
Network MACRO-11 Error/Completion Codes

Applicable Standard RSX Codes

The following MACRO-II error completion codes include all network related I/O
error completion codes pertaining to this manual. These codes are defined in the
IOERR$ macro in RSXMAC.SML, which is referenced in the NSSYM$ macro in
NETLIB.MLB.

Mnemonic

IS.SUC

IS.DAO

IE. BAD

IE.SPC

IE.WLK

IE.DAO

IE.ABO

IE.PRI

IE.RSU

Decimal
Value

1

2

-1

-6

-12

-13

-15

-16

-17

Octal
Value

1

2

377

372

364

363

361

360

357

Meaning

The request was successful.

The request was successful, but some data
was lost.

Invalid buffer parameter, or data length
exceeds 16. bytes.

Invalid buffer parameters: buffer may not
be word-aligned; buffer may be outside
user address space; or buffer may exceed
8128. bytes.

Transmission of an interrupt message was
attempted before the last one finished.

Data overrun; unstored data is lost.

The link was aborted or disconnected (see
disconnect and reject reason codes, Appen­
dix A.)

The network is not accessed on this L UN.

Required system resources are not avail­
able.

(continued on next page)

F-1

Decimal Octal
Mnemonic Value Value Meaning

IE.ALN -34 336 The specified LUN is already established.

IE.NLN -37 333 There is no established logical link on the
specified LUN.

IE.URJ -73 267 The remote task rejected an attempted
connection.

IE.NRJ -74 266 The network rejected an attempted con-
nection (see disconnect and reject reason
codes, Appendix A).

IE.NDA -78 262 There is no data to return.

IE.NNT -94 242 The issuing task is not a network task;
OPN$ was not executed successfully.

F-2 DECnet-RSX Programmer's Reference Manual

lBONCW, 1-14,3-122,3-123,3-124,
3-125,3-127

lbort a logical link,
see ABTx, ABT$, ABTNT

lbort a task,
seeABONCW

lBT$, 1-10,2-5,2-6,2-8, 2-10,
2-14,2-24

lBTNT,1-10,3-6,3-9,3-10,3-22
lBTx,1-9,1-10,2-8,3-6,3-9
lCC$, 1-10, 2-6, 2-8, 2-10, 2-11,

2-14,2-18,2-24,2-39,2-43,
2-48

lccess control, 1-5, 1-6, 1-10,
2-18,2-19,2-21,2-30,2-35,
3-3,3-6,3-7,3-8,3-12,
3-13,3-14,3-16,3-18,3-22,
3-24,3-31,3-34,3-85,3-86,
3-91,3-96,3-98,3-125

lCCNT, 1-10,3-2,3-6,3-9,3-10,
3-22,3-25,3-41,3-45,3-48

lCCx,1-13
llias node names, 3-3
lSCII string, 4-6
lSCIZstrings, 3-74, 3-76, 3-80,

3-82,3-85,3-86,3-91,3-98
lssigning logical unit numbers,

1-3,1-5,1-7,1-8,1-9,2-8,
2-10,2-14,2-24,2-30,2-37,
2-39,2-43,2-48,3-2,3-9,
3-10,3-22,3-25,3-38,3-41,

Assigning logical unit numbers (Cont.)
3-45,3-48,3-76,3-78,3-80,
4-5

AST, 1-3, 1-11, 1-12,2-3,2-6,
2-8,2-10,2-12,2-16,2-24,
2-27,2-31,2-37,2-39,2-41,
2-43,2-45,2-48,4-3,4-5,
4-8,4-12,4-14,4-17,4-22

B

BACC, 1-10,3-3,3-4,3-6,3-7,
3-8,3-12,3-16,3-18,3-22,
3-125

BACUSR,3-125
BFMTO, 1-10,3-3,3-6,3-7,3-8,

3-14,3-15,3-22,3-33
BMFT1, 1-10,3-3,3-6,3-7,3-8,

3-14,3-17,3-18,3-19,3-22,
3-33

Buffer space, 1-12,2-32,3-32,
3-71, 3-72,4-1, C-3, C-23

Buffering level, 3-71
BUILD type macro, 2-1, 2-2, 2-3

c
Closing files, 3-71
Closing the network, 1-9,3-2
CLS$, 1-3, 1-5, 1-10,2-6,2-12,

2-37
CLSNFW, 3-71,3-84, 3-87, 3-91,

3-94,3-98

Index

Index-1

CLSNT,1-10,3-2,3-6,3-37,3-69,
3-71,3-121

Completion status,
see I/O status blocks

CONS, 1-10,2-6,2-8,2-14,2-16,
2-18,2-24,2-38,2-39,2-43,
2-48

CONB$$, 1-10,2-6,2-14,2-16,
2-18,2-21,2-23,2-36

Connect block, 1-2, 1-5, 1-6,
1-10,2-6,2-11,2-14,2-16,
2-17,2-18,2-23,2-26,2-31,
2-34,2-36,2-41,3-12,3-22,
3-27,3-33

Connect requests, 2-12, 2-38,
3-21,3-39

CONNT, 1-10,3-2,3-5,3-6,3-7,
3-8,3-9,3-12,3-15,3-17,
3-22,3-23,3-24,3-25,3-39,
3-41,3-45,3-48

Cyclic Redundancy Check (CRC),
C-23,C-24

o
DAP (Data Access Protocol), B-1,

B-2,C-2,C-4,C-5,C-7,C-8,
C-10,C-12,C-15,C-24,C-26

DDCMP, 4-1, 4-15, 4-20
DECnet,

code definitions, D-1
communication calls, 1-10
general description, 1-1
macro library (NETLlB.MLB), 4-3
message types, 1-7
remote file access operations, 1-13
task control, 1-14
tasks, 1-6

DELNFVV,3-70,3-85
Destination descriptor, 1-6,2-18,

2-19,3-6,3-7,3-8,3-15,
3-22, D-2

DIR$ macro, 2-2
Disconnect or reject reason codes,

A-I
DLX (Direct Line Access Controller),

general description, 4-1
DLX calls,

IO.XCL, 4-22

Index-2

DLX calls (Cont.)
IO.XHG,4-21
IO.XIN,4-12
IO.XOP,4-5
IO.XRC,4-17
IO.XSC,4-8
IO.XTM,4-14

DLX,
QIOs, 4-1, 4-3

DLXBUF macro, 4-1, 4-14
DSC$,1-10,2-6,2-10,2-14,2-24
DSCNT, 1-10,3-6,3-10,3-22,

3-25

E

Error/Completion codes, 2-9, 2-11,
2-13,2-15,2-17,2-25,2-27,
2-32,2-38,2-40,2-42,2-44,
2-46,2-49,3-3,3-9,3-11,
3-21,3-23,3-24,3-26,3-28,
3-37,3-40,3-42,3-44,3-46,
3-49,3-124,3-129

Error/Completion codes,
FORTRAN,COBOL,BASIC-PLUS-2, E-l
MACRO-II, F-1
remote file access, C-1

Establishing a network task, 3-2
Ethernet,

devices, 4-2
general description, 4-2
using DLX QIOs, 4-4

Event flags, 3-3,3-71,4-3
EXECUTE type macro, 2-1, 2-2, 2-3,

2-4
EXENFVV,3-70,3-86

F

F AL (File Access Listener), B-1,
B-2, C-2

Flow control,

G

incoming messages, 2-11
options, 1-12

GETNFVV, 3-70, 3-87
GLN$, 1-3, 1-5, 1-10,2-6,2-26,

2-27,2-37
GLNNT, 1-10,3-6,3-27

GND$, 1-3, 1-5, 1-11,2-5,2-6,
2-11,2-14,2-28,2-30,2-31,
2-32,2-34,2-36,2-37,2-38,
2-41,2-48,2-49

GNDNT, 1-11, 1-12,3-6,3-10,
3-22,3-29,3-31,3-32,3-33,
3-37,3-39,3-43,3-48

GNDx,1-7

I/O status blocks, 3-2,4-3
Interrupt message,

receiving, 2-49, 3-36
sending, 1-2, 1-8,2-6,2-48,

3-48
Intertask communication,

L

calls, 1-2,2-6,3-1,3-3,3-6,
3-7

concepts, 1-2
conventions, 1-2
macros, 2-6, 2-7

Libraries,
MACRO-II (NETLIB.MLB), 2-1, 4-3
NETFOR.OLB,3-1

Links,
data, 4-2, 4-16
logical, 1-5,2-12,2-38,3-39

Logical unit numbers (LUN),

M

see Assigning logical unit numbers
assigned to NS, 1-5

Maintenance Operation Protocol
(MOP), 4-6, 4-17, 4-20

MBXLU,1-3,2-37,3-38

N

Network File Access Routines
(NFARs), 3-71, 3-72, 3-81

Network,
data queue, 1-2, 1-3,1-6,1-7,

1-9,2-12,2-28
NOFLOWoption, 1-12,2-11,2-16

NS: pseudodevice driver, 2-9,
2-11,2-13,2-17,2-25,2-27,
2-32,2-37,3-2,3-38

NSSYM$ macro, A-I, D-l, F-1
NT.LON, 2-5, 2-28, 2-31, 2-32
NT.TYP, 2-5, 2-28, 2-31, 2-32

o
Object type codes, 2-19, 3-15,

B-1
OPANFW, 3-70, 3-80, 3-90, 3-93,

3-94
Open calls, 3-2
Opening files, 3-70, 3-80
OPMNFW, 3-87
OPN$, 1-2, 1-3, 1-5, 1-11,2-6,

2-9,2-30,2-37,2-45
OPNNT, 1-2, 1-11,3-2,3-6,3-9,

3-11,3-21,3-24,3-26,3-28,
3-37,3-38,3-42,3-44,3-46,
3-49,3-69,3-121,3-124,
3-129

OPRNFW, 3-70, 3-74, 3-75, 3-80,
3-87,3-90,3-93

OPUNFW,3-87
OPWNFW, 3-70, 3-80, 3-93, 3-94,

3-97,3-99

p

Parameters,
for task build, 3-71
overriding MACRO-II, 2-1, 2-3
required for MACRO-II, 2-4

PRGNFW, 3-71, 3-91,3-93,3-94,
3-98

PUTNFW, 3-70, 3-91,3-94

Q

QIOs for DLX,
seeDLX

R

Reading a file, 1-1,3-70,3-87,
3-90

REC$,1-11,2-6,2-10,2-14,2-39
RECNT, 1-11, 3-6,3-10,3-22,

3-41

Index-3

Records,
writing, 1-1, 3-94, 3-97

RE]$, 1-3, 1-5, 1-11,2-6,2-14,
2-18,2-37,2-41

Reject reason codes, 2-17, A-I
RE]NT, 1-11,3-6,3-22,3-43
Remote file access,

argument definitions, 3-75
buffer space, 3-72
calls, 3-1,3-2,3-3
closing files, 3-71
concepts, 1-1, 1-13, 1-14
opening files, 3-70
task build parameters, 3-73

Remote task control, 1-2, 1-14,
3-121

s
Scheduling a task for execution,

1-2,1-14,3-126
Send an interrupt message,

see Interrupt message
Send data,

see SND$, SNDNT
SND$,I-II,2-6,2-10,2-14,2-43
SNDNT, 1-11,3-6,3-10,3-22,

3-45
Source descriptor, 1-5, 1-6, 2-34,

3-34, D-3
SPA$, 1-3, 1-5, 1-11,2-6,2-28,

2-37,2-45,2-47
SPLNFW, 3-70,3-80, 3-93, 3-97,

3-98,3-99
Spool or print a file,

seeSPLNFW
STACK type macro, 2-1, 2-4
SUBNFW,3-70, 3-80, 3-93, 3-97,

3-98,3-99

T

Task control block, 3-123, 3-127
Task control utility, 3-121, B-1
Task,

scheduling, see RUNNCW
see Intertask communication
aborting,

seeABONCW

Index-4

u
User abort, /

see ABT$, ABTNT, GND$, GNDNT
User disconnect,

see DSC$, DSCNT, GND$, GNDNT

w
WAITNT, 1-11, 1-12,3-6,3-47

X

XMI$, 1-11,2-6,2-10,2-14,2-48
XMINT, 1-11,3-6,3-10,3-22,

3-48

READER'S COMMENTS

DECnet-RSX
Programmer's Reference Manual

AA-M098C-TC

What do you think of this manual? Your comments and suggestions will help us to improve
the quality and usefulness of our publications.

Please rate this manual:
Poor Excellent

Accuracy 1 2 3 4 5
Readability 2 3 4 5
Examples 2 3 4 5
Organization 2 3 4 5
Completeness 2 3 4 5

Did you find errors in this manual? If so, please specify the error(s) and page number(s).

General comments:

Suggestions for improvement:

Name _________________________ Date ____________ _

Title Department
Company Street ____________ _

City State/Country ______ Zip Code _____ _

DO NOT CUT FOLD HERE AND TAPE

111111

BUSINESS REPLY LABEL
FIRST CLASS PERMIT NO 33 MAYNARD MASS

POSTAGE WILL BE PAID BY ADDRESSEE

SOFTWARE DOCUMENTATION
1925 ANDOVER STREET TWO/E07
TEWKSBURY, MASSACHUSETTS 01876

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

· · •

.------------------------------------:
DO NOT CUT FOLD HERE -

:~ -, :0
-z :C)
:0
-0
:-4 _-4
-m :0 -,
z
m

