
THE I I m 11 • oEcus
ta1kcz111111111111111111111111111111111111 RT-11 SIG NEWSLETTERlllllllllllllllllllllllllllllllllllll

APRIL 1982

Contn"butions to the newsletter should be sent to:

Ken Demers
MS-44
United Technologies Research Center
East Hartford, Conn. 06108
(203) 727-7527 or 7240

Other communications can be sent to:

John T. Rasted
JTR Aaociates
58 Rasted Lane
Meriden, Conn. 06450
(203) 634-1632

TABLE OF CONTENTS

USER INPUT

or
RT-11 SIG
C/ODECUS
One Iron Way
MR2-3/E55
Marlboro, Mass. 01752
(617) 467-4141

VOL. 8·2

On Use of Virtual (Extended) Memory•.....••......•..•.....•.......•....... 2
How I Installed a Lineprinter•••.....•...............•.......•. 6

USER REQUESTS
Viii-Cale Program . • • • • • • 8

UPCOMING SYMPOSIUM INFORMATION
TECO Tutorial •............••......•.••.....•......•....•...•....•.•..... 8
VTEDIT Tutorial • . • • . • • • • • . • • . . . • . . . 9
TECO Pre-Symposium Seminar • • • . . . • • 9
Migration/Compatibility Between DEC Operating Systems •...................•......•.. 10

PAST SYMPOSIUM INFORMATION
RT-11 SJ/FB/XM Performance Report Revisited•...............•.....•. 11
Australian RT· 11 Wish Lilt • • • . . •22
Los Angeles Fall 1981 RT·11 Wish List•................•... 27

SYMPOSIUM TAPE INFORMATION
Changes to the SFGL70 Graphics Plckage ... 31

Copyright©. 1982, Digital Equipment Corporation
All Rights Reserved

tt ls assumed that all articles submitted to the editor of this newsletter are with the authors' permiaion to publish in any OECUS publication.
The articles are the responsibility of the authors and, therefore, OECUS, Digital Equipment Corporation, and the edito• assume no responsi­
bHity or liability tor art:ldea or infonnation appearing in the document The >Mws herein u:preued are th089 of the authors and do not
necessarity express the views of OECUS or Digital Equipment Corporation.

1JSSR INPUT

ON THE USE OF VIRTUALCEXTENDEDJ MEMORY

Usin~ FORTRAN VIRTUAL in aPPlications runninS before without it• slows
down these aPPlications considerablw. This is illustrated bw the table
below which shows that at least FORTRAN VIRTUAL is 3* slower than standard
FORTRAN.

TABLE
·--!
!10 times transfer(Prosram DO-looPrREAD+WRITE for device) of 1024 words !
!---!

PDP-11/34 PDP-11/03 LSI-11/23

!usinS FORTRAN low-mem arra'=i!: 37.
14. 29. 17.

VIRTUAL . . 103. .
VIRTUAL . : 89.

MACRO low-mem arra1::1: 3.01 6.66 3.86
!on VM! .READW/.WRITW : 7.
!oro Rl\05 . : 81.
!on RX01 . . 420 • .
I

<Threaded)
<In-line>
<Threaded)
<In-line)

•Note: All values are nr. clock ticksCl clocktick=20. ms. I),

!---!
The ~raPh included shows that the UM: Performs better than VIRTUAL for
recordsizes lar~er then 100. words• while for records larser than 256.
words it is more then 10 times faster! The verticallw disPlawed values
show the time in ms. it takes, to read from+write to memorwr the nr. of
Points disPlawed horizontallw.

I include the source of a routine to manipulate in a more a less
transPararot waw data residins on UM: as data in an arraw.
More arraws maw be used within a Prosram bw usins different filenames.
In the same waw more Jobs maw use virtual memorw simultaneous~w.

H. T. M. Haerren
Dept, Clin. Neurolosw AZG
P.O. Bo:< 30.001
9700 RB GRONINGEN
Holland
.TITLE VMARR

H.H. Klin. Neuro. dec-81

Motivation:
The VM: handler is more then 10* faster in data- transports then
usin~ FORTRAN VIRTUAL. Even faster then FORTRAN itself.

The routines!

CALL INIARR<NRELEMENTSrITYPEl

2.

Initialize an array with the dimension of NRELEMENTS
C=NRELEMENTS/256.+1 blocks for ITYPE=ll.
In fact a file is oPened on UM! with name UARRAY.TMP
ITYPE = 1 ! Inteser array

2 : Real
3 Double precision

CALL GETARRCBUFFERrINDEXrNRELEMENTSrINDBUFJ

Read from virtual into low-memory buffer BUFFER
a number of NRELEMENTS startins at index INDEX
BUFFER must be larse enough to contain the red elements
and minimum size is 256. words.
INDBUF Points to the same element in BUFFER as INDEX
does for the whole virtual array.

CALL PUTARRCBUFFERrINDEXrNRELEMENTSrINDBUFJ

Write to virtual from low memory. Arsuments as for GETARR.

CALL FINARRCICLOSEJ

Closes virtual array buffer. If ICLOSE=-1 then array is Pursed.
Else the array is conserved as a file on UM!.

;--·

0 2 3 etc. <-- block adres on UM!
!-------!-------!-------!----
! ---------------~=;: i INDEX

Extra words transferred due
to block bounderies.
NRELEMENTS !------>!

!--------->! INDBUF

.MCALL .EXITr.PRINTr.ENTERr.LOOKUPr.READWr.WRITWr.CLOSE
.• MCALL .PURGE
.ENABL LC

INIARR!!
TST CR5J+
MOU @CR5J+rRO ;Nr. elemer1ts
MOU @CR5J+rR1 HTYPE 1r2r3
DEC R1
ASH RlrRO ;Nr. words 2=2*• 3=4*
MOU RlrTYPE ;save type,
MOU ROrR2
CLRB RO
MOU ROrR5
SWAB R5 ;Nr. blocks
SUB ROrR2 ;Remainins words?
BEU 2$
INC R5 ;Yes, ther1 1 block more

0Pen channel on UM!
Use channel t14. FORTRAN always starts with to for its LUN's.

J.

,2$:
.ENTER tAREA,t14 •• tFILO•R5
BCS LFAILO
RETURN

Error returns!

LFAILO: .PRINT tNOLKO
.EXIT

;-----------------------------------
FILO: .RAD50 /UM UARRAYTMP/
;-----------------------------------
NOLKO!
ERR!
FLAG:

.ASCIZ

.ASCIZ

.BYTE

.EVEN

/VMARR LOOKUP-Fl
/VMARR HARD IO ERR/
0

End of initializing code
; ------------------------
GETARR::

CLRB FLAG
BR START

PUT ARR!!
MOVB tlrFLAG

START: TST CR5J+
CR5ltrR1
@CR5J+,R4
R4
TYPErRO
RO,R4
R4rR3
R3
R3rR4
R3
@CR5J+,R2
ROrR2
R4rR2
RO
RO,R4
R4
R4r@CR5>+
FLAG

MDV
MOU
DEC
MOU
ASH
MOU
CLRB
SUB
SWAB
MOU
ASH
ADD
NEG
ASH
INC
HOV
TSTB
BNE
.READW
BCS
RETURN

1$

tAREArt14.rR1rR2rR3
HRDERR

1$! .WRITW tAREArt14.rR1rR2rR3
BCS HRDERR
RETURN

HRDERR! .PRINT tERR
.EXIT

Close/Purse channel

FINARR!:
TST
CMP
BEG
.CLOSE
RETURN

CR5lt
t-1r@CR51
1$

t14.

4.

,Buffer adres
; Inde:<
;to START

;Ma~.e nr. words

;MultiPle of 256,
;Remaining words
;Block adress
;~r. element• to do
; • words
;Extra words due to blk bound

Make nr. elemnts
Index start at tl
And store it.

;P•Jrse?

rs: • PORGE fl4 •
RETURN

AREA! .BLKW 5
TYPE! .WORD 0

.END

1888.8

181.8

n •. 18.8

l .8

8. l

5

=HH: M

Low Mo•. lHR

Low. Mo•.EIS

58 511 sm

Nr. point.a

5.

How I installed a linepr inter
Who hasn't installed a serial device at least oncel I must have done it a dozen
times by now. But, despite the fact that serial devices ase the easiest there
are, Mwphy always seems to attend their installation. This story tells of a
typical dumb installation, and includes a dumb, but effective, solution to the
problem of connecting a device with modem controls to an interface that doesn't
Support them (Dl V11 I).

It all started when the high-quality ql.1111! printer blew-up and had to be sent to
Dllsseldorf tor extended repairs - leaving us without a printer. I decided it
was time to get a cheap back-up printer - and so I i:uchased the cheapest I
could find - an epson mx80.

The printer arrived Satwday in a box with lots of little bits and pieces and
not much docwnentation. I should confess at this point that I don't know much
about hardwase - just enough to argue with hardwase engineers when it comes to
working out whether a problem is software or hardware. So, the first thing I did
was ring Mike, who knows hardwase. He wasn't home. This didn't suprise me - he
always seems to go to Berlin when I need him for hardwase.

I ... packed the printer and read the documentation. At this point I worked out
which connectors and cables I needed. This took about an hour. Then, I copied
the connectors I had made for the ql.1111!. Unfortunately, I didn't have a berg con­
nector gun and so I ended up doing them by hand. This took another hour.

At this point Mike twned up lnlllnOlnced and unaware. He wanted to use my garage
to play around with his new toy - i.e. install a radio/cassette in his brand new
sports car. Thus, he wasn't much interested in playing around with my El Cheapo
printer but I managed to blackmail him into at least doing the necessary solder­
ing (which I abhore).

He had to solder tine wires to the printer end. Well, he did this but nothing
seemed to fooction. So he looked at what I had done at the DLV-11j-end and
looked at me like I was a madman. The quality of my connections apparently left
something to be desired. I explained that I didn't have a berg gun (which I
can't operate anyway) and we decided to connect the wires directly to the DLV-
111 without using a socket.

It still cidn't work, and I suggested to Mike's blank face that perhaps we
should check the pin m.mbers at the printer-end (by this time we had assembled
quite a range of documentation including 2 151 handbooks, the DLV-111 drawings
and the epson manuals). Mike checked them and then, told me sheepishly that not
once in the 50 serial devices he had connected had he ever got the pin numbers
right first time.

He resolden!d the ainnection and the printer started to at least print things.
It would print B's but not A's. "Looks like softwase• said Mike as dissappeared
in the cirection of his auto. I was still considering the validity of his seem­
ingly dubious statement, when he retwned and proceeded to ... plug and remove the
standard lamp near the printer. When I objected he reminded me that he had lent
it to me some two years betore. He left me in the dark.

As I suspected the printer was switched to expect parity - so I wrote my first
parity routine (easier than dismantling the printer to change the switch). Well,
of course this took two tries - since I provided even-parity and it wanted it
odd. But, finally I could print the entire character set - which is when I found
out the distributors had shipped it to me set up for gennan IA'lllauts instead of
ascii. But that was just another switch somewhere in the middle of the machine.
At the same time a much more critical problem reared its ugly head.

6.

When I was looking for this low-cost printer I scanned a dozen product descrip­
tions. I must have merged two descriptions and I had the impressioo that the
epson would support ctrl-s/ctrl-q for print speed synchronisation. I was wrong.
The epson was using the data-terminal-.eady signal to sync. As most of ~ will
know a DLV-11) does not support this signal. ttnn.

Well, I had three options. First I could send the printer back and it hadn't
exactly endeated itself to me. Second, I could buy a DL V-11E, but I would be
better off investing sidl money in a printer that supported ctrl-s/ctrl-q.
Third, I could try to make the damn thing work.

I went out to the garage and spoke to Mike w~ was stuck upside clown in the back
seat of his car cursing himself for not paying the extra DM 200 ($75) for the
installation of the casette/radio. I asked him whether I could somehow use the
data-tenninal-.eady signal (OTR) to crive the transmitter-done line. He told me
that DTR was a 12""YOlt level, not a S""YOlt pulse and I would blow the board up.
So I asked him about the other signals and went off to think.

Well, I had a lot of time to think because Nicole turned up to do some photoco­
pying. and the photocopier broke down three times in a row. The third time was
more critical since this little rubber band that crave the crum came off. I am
seated stiff of the photocopier since I always manage to burn my fingers in
there, so after trying to fix it for a half an hour I told Nicole to get Karin
who had more experience. Karin fixed it in about one minute. I asked her how
often this had happened before and was deflated to learn that it was also the
first time she had seen the problem.

The next delay was caused by the German ritual of having Coffee and Cake. Karin,
Nicole, Mike, Karin's parents, our two baby boys and I tried to celebrate the
ritual around a table that was designed for maximum four persons. After that
Karin forced Mike to take us in his new car to see two new houses (we need a
bigger place for a bigger table).

Well, I decided in my own naive software-person-like way that all I needed to do
was get the DTR into my machine somehow. Now, I found that the data-in signal
for the receiver is also an EIA signal. I asked Mike what would happen if I fed
the DTR signal into the data-in line and he said that nothing would probably
happen but that I wouldn't blow anything up. He soldered the connection for me.

I had theorised that what I should get is a framing error and thats exactly what
happened. I wasn't sure if I would get one or two framing erron but it turned
out to be a single framing error each time the epson raised the DTR signal. It
works. Whats more I can get an interrupt off it. In fact its easier to use than
a Dl-11E.

Now I don't know if this technique will work with all such connectioos. There
are in fact two DTR signals - the second, Reverse Channel, is the complement of
DTR. In fact I think used Reverse Channel by mistake. Anyway, if)'ltl want to use
this techil'K!ue just try both of them.

Well, the rest of the work was just plodding to bump the baud rate up, disable
the German umlauts and get the paper size right (which took about an hour since
I had to work out how to divide by three). The epson is real slow (I mean really
slow) on line feeds, so I have set it up to use small characters all the time
and use 2/3 size paper (AS), this makes it 33% faster. It also means that the
listings will take up less room on the work tables that are also too small.

What has this to do with RT-11. Well, as ~ will have assumed, I put together a
device handler for the printer as I went along. With each discovery I changed
the handler to reflect my improved view of reality. Compile and load took under
a minute. I used the handler to help solve most of the problems. In most other
systems I know, the handler itself would be the largest problem. And they ask me
why I love RT-111

Ian Hammond - Am Feldbom 22 - 0-34 Qlttingen - Germany -Tel: +49 (551) 23828

7.

TJS".:R RW1U".:S'l'S

PCKTECHNOLOGYDIVISION
322 Ll.E. South Service Road, Melville, N.Y. 11747 • Tel. 516-454-4400 • TWX 510-224-6596

Dear Mr. Demers:

I am an RT-11 user with a need for a
"visi-calc"-like tabul~ting program to run under
RT-11. To this date I have had no luck finding
anyone who has written such a program for use on
DEC computers.

Any assistance would be a great help.
There is a real need for such a program within
our Division.

Your assistance in this matter will be
sincerely appreciated.

Very truly yours,

r~
Jonathan C. Crowell
DECUS #: 158532

--''PC:O"TNG SY~'POSIUM I"l'FORMATION

TECO TUTORIAL I - INTRODUCTORY EDITING

TECO-TUTORIAL I is a session designed.to introduce TECO to new and
beginning users. TECO is the only editor available across most
Digital Equipment Corporation operating systems: RSTS/E, RSX-11/M,
RSX-11/0, VAX/VMS, IAS, RT-11, OS/8, TOPS-10 and TOPS-20. A
"novice subset" of TECO conmands will be presented in an operating
system independent manner. Examples will be carefully explained
for this set of conmands.

Users who have hesitated in introducing T~~v on their site are
invited to attend this presentation to see an effective means of
teaching TECO. The presentation method includes two speakers (TECO
in stereo, no less), a session handout and an introductory level
publ icati'}n, "How to Use TECO."

It is emphasized that this session is not paced for the experienced
TECO user. -

Presented by: Steven Stepanek, California State University, Northridge
J. A. Hayes, California State University, Northridge
Boyce Cowgill, Dynamic Sciences, Inc.

B.

VTEDIT TUTORIAL

This tutorial presents VTEDIT, the full screen, key pad text editor
available across most DEC operating systems. The topics covered
are VTEDIT conventions, access and exit, editing conmands (move
cursor, insect/move text, delete text, search text), learn mode and
interpreting the on-line screen "instant".

Presented by: J. A. Hayes, California State University, Northridge
Boyce Cowgill, Dynamic Sciences, Inc.

[Q]
DECUS

PRE-SYMPO.SIUM SEMINAR

1982 SPRING DECUS ATLANTA, GEORGIA

SUNDAY MAY 9 FROM 9:00 am to 5:00 pm

TECO-FROM INTERMEDIATE EDITING TO PROGRAMMING FEATURES

This tutorial covers intermediate to advanced editing commands for TECO, Text Editor and
Corrector, for the DIGITAL operating systems: RSTS/E, RSX·11M, RSX·11D, IAS, RT·11, OS/8,
TOPS· 10, TOPS-20, and VAX/VMS. Additionally, it will include the programming features that
make TECO one of the most powerful editors available across operating systems.

The morning se~ion will include:
Fundamental TECO concepts
Helpful tidbits and other essentials
TECO accesses

• Editing commands

The afternoon session will cover:
Overview of advanced editing and programming concepts
Input/Output capability
Data structures/storage
Ability to loop

• Conditional execution
Ability to perform operations on data structures
0-Registers - Numeric and text storage
Extended search and match constructs
Advanced TECO examples

Who should attend:
Users and programmers who wish a comprehensive, well-
structured tutorial on TECO
Users and programmers who work on multiple operating
systems and who prefer to use only one editor
Individuals wishing to learn how to present TECO in
effective manner at their own sites

Instructors: Joyce Hayes and Steven Stepanek
California State University, Northridge, CA

~.

Hisration/Co11PatibilitY Between DEC 0Peratins 5Ystew1s

"Conr.PatibilitY' is a bi~ word in an1:1 lansuase - and it means
different thinss to different PeoPle. The manufacturer looh at
ComPatibilitY in the larse. as a cost/Perfora1ance Problem. For the
user. Co11PatibilitY is a 111icro-11ana!lellent task: 'Can I connect device
X to syste• Y on Processor Z?' This difference of aPProach is the
Priaars reason for this report which neserits the User View of
Co111Patibi lits'.

So reads an introductors Parasral'h of a draft rePort issued last year
bY the European DECUS Hi!lration Workin!I Group, The scope of this
report (Presentls 40 PaSes in lensthl includes:

o HARDWARE - busr nocessorr instruction set. devicesr memor\I 1>aP
o OPERATING SYSTEHS - evolution• nocessorsr cor1fi!lurations
o FILE structures• names, capabilities
o TERHINAL commands, control keYS• command files• DCL commands,

runnin!I nosra11s
o PROGRAH co.,.andsr editorsr utilities
o LANGUAGES
o OPERATING SYSTEH structurer architecurer emulators. terminology,

calls
o FILE STRUCTURE LAYOUTS

ObviouslY• the llUestion of misration and comPatibilitY is an issue for
ans or!lanization• resardless of size, A Birds of a Feather session
was held at the Fall '81 symposium to discuss this iss•Je• and to see
what interest there was in exPandinS on the European re Port. As it
turns outr a sreat deal of interest existsr and we have now scheduled
a workshop for Atlanta, Wednesdas• 12th Hay at 3l30 p,111.-5!30 p,m. in
Salon B Room of the Atlanta Hilton and Towers Hotel. Steve Harsraver
Software Support Specialist for the TOEH Harketiris GrouPr has
expressed enthusias• for this ProJectr Particulary as he is presentl!I
involved in a si•ilar study for RSX to VAXr and Steve has indicated
that he will participate in our session.

Althoush this workshop landed in the RT-11 schedule, the subJed
impacts all SIGSr and nobabls the Site Mar1a!lement SIG more than any
other. This workshop will be an interactive session that will allow
users to freels discuss the various noblew1s and solutions that
accoaPans the 1tiSration from one ol'eratin!I sYStem to ~nether. The
obJect of this workshop is to set tosether a workins sro•JP to senerate
a document that will help to demsstifs these iss•Jes. This kind of
docuaent is sorely needed and does not set formally e>:ist; however•
with the foundation we've been novidedr and with the talent that
exists within the DECUS membershiP• we can noduce a document that
will aake misration efforts easier for eversone.

Ans Person who has found an!I solutions to an" Problem rel at ins to this
subJect is encourased to Present this information in Atlanta;
however. we would like to collect as much data Prior to Atlanta, if at
all Possible• that will be incorporated into a second draft, to be
issued subselluent to the wor~,shop,

10.

A copy of the European Hisration Report can be obtained by contactin~

me at the address below. Feel free to note any • comments or
sussestions seParatelY or directly onto the report.

Shirle~ M+ Hooper
Ba•Jsch & Lomb
Instrument & Systems Division
9545 Wentworth Street
Sunland' California 91040
(213> 352-6011 ext. 291

--
P4ST SY~POSIUM INFORMATION
--

RT-11 SJ/FB/XM Performance Report Revisited

Ned w. Rhodes
Melpar Division
E-Systems Inc.

7700 Arlington Boulevard
Falls Church, Va. 22046

ABSTRACT
Test routines were developed and timing tests were
run to see which of the RT-11 monitors (Single Job
(SJ), Foreground/Background (FB), or Exte~ded Memory
(XM)) would provide the fastest execution of user
programs. The test routines were also run under TSX
and along with the VM (Virtual Memory) handler under
the FB environment. The test routines were broken
into three groups. Within each group, the t~;t
routine was linked so as to use no overlays, disk
resident overlays, and virtual overlays. Two grou~s
used virtual arrays for data storage and one .did
not. Two types of virtual array support routine~­
were used. One set stored the array in extended
memory while the other set used disk storage. The
results show that the FB monitor and the VM handler
provide the fastest environment and should be used
with large, heavily overlaid programs. The r7sults
also show that to optimize the use of virtual
overlays, programs should minimize the number of
times virtual overlay segments are called.

1.0 Old Business

As the title implies, this is a
second look at RT-11 performance
characteristics. The first look revealed
that the virtual overlay handler had a
serious design flaw that resulted in poor
performance of virtually overlayed jo~s.
Since that time, a patch has been applied
to the virt.ual overlay handler and one of
the purposes of this paper is to determine
just how effective that patch is.

The other result of the first
paper was in the form of a series of
questions concerning the VM (Virtual
Memory) handler and virtual arrays. The VM
handler had the best performance
characteristic of any of the test
configurations, and it was postulated that
if virtual arrays could made disk resident
and placed on the VM device, that that
configuration would be faster than the
equivalent XM configuration. This paper
will examine a support package that makes
virtual arrays disk resident, and it will
show the performance of that package. 11 •

2.0 Introduction

Since its introduction in 1973,
RT-11 has grown from a Single Job (SJ)
monitor to a Foreground/Background (FB)

monitor and finally to an Extended Memory
monitor (XM). With three RT-11 monitors
available, it is sometimes hard to choose
the monitor that is correct for your
application. The purpose of this paper is
to present some performance characteristics
of the different RT-11 monitors that will
make the choice easier.

My discussion of RT-11
performance characteristics will center
around four areas. I first want to
establish which RT-11 operating environment
allows the fastest execution of user
programs. Next I want to explore extended
memory overlays and compare them with disk
resident overlays. Additionally, I will
look at the performance of the patched
virtual overlay handler. Thirdly, I want
to investigate the VM or Virtual Memory
handler that was distributed on the Fall
1Q79 RT swap tape. And finally, I want to
study how much time is required to
implement virtual arrays in the various
RT-11 operating environments using the
standard extended memory support package as
well as a support package for disk based
virtual arrays.

I have divided this paper into a
number of sections. I will first discuss
the RT-11 operating system in general.
Next I will discuss extended memory
management techniques. Those two sections
will provide the necessary background
information in order to understand the test
routine which I created to measure RT-11

performance. This test routine exists in
two versions. The first version uses
regular arrays for data storage while the
second version uses virtual arrays. I will
be comparing the time differences between
the two versions of the test routine. I
have also included TSX-PLUS, a multi-user
version of RT-11, in some of my timing
comparisons for reference. Finally, I will
answer the following questions:

1. Which RT
fastest

monitor provides the
program execution

environment?

2. How much faster than disk resident
overlays are extended memory
overlays and how can I optimize
their usage?

3. How much slower do . programs
execute under TSX-Plus than under
the XM monitor?

4. How much additional time is added
to program execution when virtual
arrays are used and does the XM
environment provide a faster
implementation of virtual arrays
than the SJ or FB environments?

5,. Will the use of
Memory) handler
execution times?

the VM (Virtual
decrease program
Why or why not?

6. What is the performance of disk
based virtual arrays?

7. Does the patched
handler provide
performance over
version?

virtual overlay
any additional
the unpatched

My particular use of RT-11 is in
a high-speed, data acquisition environment
where speed is the most important
parameter. The rest of this paper will
address only that parameter and give
recommendations as to which configuration
of RT-11 to use to allow the fastest
execution of programs.

3.0 RT-11 Operating System

RT-11 was introduced in 1973 and
has always been designed to be a
single-user operating system that has many
applications in the real-time environment
where operating system characteristics like
small size, efficiency, reliablity, high
throughput, low interrupt latency times and
ease of use are important. We have sern RT
grow from a Single Job (SJ) monitor i:.o a
Foreground/Background (FB) monitor and
finally to an Extended Memory (XM) monitor.
Each of the different RT-11 monitors has
different characteristics and capabilities;
let me briefly d~scribe them.

12.

3.1 RT-11 Single Job (SJ) monitor

The Single Job monitor is the
smallest of the three monitors, requiring
only 2K words for the resident portion. It
supports only one job and programs can
access up to 28K words of memory.· Data may
be stored in memory above 28K by using
virtual arrays in FORTRAN. The SJ monitor
supports all the system utility programs
and most of the keyboard commands and
programmed requests.

3.2 RT-11 Foreground/Background (FB) monito

This monitor supports two jobs,
one in the foreqrollnd, and the other in the
background. The foreground job is given
priority over the background job and always
executes until a blocking condition exists,
such as an I/O transfer, a timed wait, or a
wait for an external interrupt. Only when
the foreground job becomes blocked can the
background job run. The foreground was
designed to accommodate a time-critical
task such as real-time data acquisition.
All the system utilities and language
processors run as background tasks. All
tasks that will run in the SJ monitor will
run in the background of the FB
environment, provided there is enough
memory to accommodate both the foreground
and the background task, if both are loaded
simultaneously. The FB monitor is only
slightly larger than the SJ monitor and,
like the SJ monitor, programs may address
only 28K words of memory and data arrays
may be placed in extended memory. A
sp~cial system generation option allows up
to six 'system jobs' (a special type of
foreground job) to execute along with the
foreground and the background jobs,
provided they do not access the I/O page.
This monitor offers the most services for
the least amount of memory.

3.3 RT-11 Extended Memory (XM) monitor

Tta XM monitor, nof- introduced
until Version 3, is the ~argest of the
RT-11 monitors and provides the most
services. The XM monitor has all the
features of the FB monitor plus it provides
a set of programmed requests that allow
jobs to extend their logical address space
beyond the 32K word limit imposed by the
16-bit word length of the PDP-11. The XM
monitor requires a system with an Extended
Instruction Set (EIS), a KT-11 memory
management unit (or MMU chip on ll/23's)
and greater than 32K words of addressable
memory. Extended memory may be utilized

for large arrays of data, in FORTRAN, by
declaring the array virtual. Or,
progranuned requests may be issued to map
logical program address space to portions
of extended memory. The linker has been
modified so that portions of the program
may be overlaid in extended memory, instead
of overlaying from disk. For many
applications, this can significantly reduce
the amount of disk I/O time and decrease
program execution times. The XM monitor is
the only monitor that supports programmed
requests for the use of extended memory.

3.4 TSX-Plus Operating System

As I have mentioned, RT-11 is
distributed as three separate moni·tors and
was designed to be a single-user operating
system. S & H Computing has an RT-11 like
product, called TSX-PLUS, that is worth
mentioning. Essentially it is a multi-user
RT-11 system with extensions. All jobs
that run under the ~J monitor and do not
access the I/O page, will run under TSX, as
will all the language processors and RT-11
system utilities. I have included TSX-Plus
in this paper because it provides a good
environment for program development and
data reduction, for multiple users, and it
is almost fully compatible with existing
RT-11 programs. TSX-Plus does not support
extended memory based virtual arrays or
extended memory overlays, but it will
support the disk based virtual array
package.

4.0 Extended Memory Management Techniques

The PDP-11 word length of 16-bits
will allow a program to directly address
only 32K words of memory, although. the
UNIBUS can andress up to 128K words because
of its eighteen address lines. The
directly addressable memory in the range of
0-32K is usually termed low memory, while
memory in the range of 32-128K is
considered extended memory. The PDP-ll's
normally reserve the upper 4K words of the
address space as the I/O page. Therefore,
programs only really have 28K of user space
available for each job. This 28K limit can
never be extended, but the KT-11 memory
management unit provides the means for
programs to address any of the 128K words
of physical memory, by mapping the 16-bit
program virtual address to anywhere in the
128K word physical address space.

The KT-11 is composed of two sets
of Active Page Registers (APR), one for the
Kernel or supervisor mode and one for the
user. Bits in the Program Status word
(PSW) of the CPU determine which mode you
are in. Each APR is composed of two
registers called Page Address Registers

1J.

(PAR) and Page Descriptor Registers (PDR).
This pair of registers determine how the
program's virtual address space maps into
the PDP-11 physical memory. Table 1 shows
the relationship between virtual memory
addresses and PAR/PDR registers. For
example, the virtual memory address range
of PAR/PDR-7 normally is mapped to the PDP
I/O page, while PAR/PDR sets 0-6 are used
for user programs. ~ach PAR/PDR set
controls up to 4K words of memory. The
disadvantage of using the KT-11 is that
0.12 microseconds (on an 11/34) is added to
execution times for every memory cycle
used. Each PDP-11 instruction may require
multiple memory accesses, depending on the
instruction type, in order to execute so
that the time will add up.

The KT-11 may be utilized in a
number of ways. One way is to use
progranuned requests and let the XM monitor
set up the KT-11 registers for you.
Another way to use the KT-11 is to
manipulate the hardware registers yourself.
This would be very complicated and
dangerous in a true multi-user environment,
but in RT-11, it is a reasonable method of
operation in certain circumstances.

Virtual Address Range

000000 - 017776
020000 037776
040000 - 057776
060000 - 077776
l ()()Of)() - 11 7776
120000 - 137776
14()000 - 157776
160000 - l 77776

TABLE l

PAR/PDR

0
l
2
3
4
5
6
7

4.1 FORTRAN Virtual Array Support

DEC FORTRAN has been extended to
allow for the storage of data arrays in
extended memory. These arrays are called
virtual arrays and space is allocated for
them in extended memory by the FORTRAN
Object Time System (OTS) when it
initializes for program execution. Due to
the differences in the RT-11 monitors,
there are two sets of virtual array support
routines. One set of routines supports the
SJ and FB environments and the other set
supports the XM environment.

The virtual array support
routines for the SJ and FB monitors
manipulate the KT-11 hardware registers
directly, which implies that other users
cannot be manipulating the registers at the

same time. In order to suppOrt virtual
arrays, the FORTRAN OTS maps the job and
RT-11 itself to Kernel space and the
virtual arrays to user space. When a
virtual array element is used, the OTS
turns on the KT-11 memory management unit,
selects user space, accesses the element
and then turns off the KT-11. This means
that for most of the program, the memory
management unit is off and so the added
delay associated with having the unit
turned on is minimized.

The FORTRAN virtual array support
routines for the XM environment use a
different approach than the SJ and FB
routines. Instead of manipulating the
KT-11 hardware registers directly, these
routines use the XM programmed requests.
When the program is initializing, the OTS
'buys' (from the monitor) a block of memory
to hold the virtual arrays. Then, the OTS
uses PAR/PDR set 7 for its own use for the
rest of the program. This means that
FORTRAN programs that use virtual arrays
cannot access the I/O page directly, which
is not the case under the FB and SJ
monitors. Whenever an element is outside
the currently addressed 4K boundary of
PAR/PDR set 7, a programmed request is
issued to bring the element into the window
so that greater than 4K words of virtual
array space may be used. Note that the
KT-11 is always enabled under XM so that
all programs should run slower than under
SJ or FB.

The disk based virtual array
support package stores the array elements
in a file on the DK: device. The program
then keeps between ? and 16 blocks (user
defined where one block is 256 words) of
array information in main memory. If an
array element is required that is not
currently in memory, then one of the blocks
of information is written out to disk and
the block containing the desired element is
read back into memory. It is obvious that
programs that use this support package will
benefit by processing the array elements in
sequential order to minimize disk accesses.

4.2 XM Monitor and Extended Memory

The main difference between the
XM monitor and the FB monitor is the fact
that the XM monitor controls all of
physical memory. It knows how much
physical memory is attached to the machine
and it allocates extended memory on demand.
Any program or utility that requires
extended memory, requests the space with a
programmed request, and returns the memory
upon exiting. The XM environment is very
controlled and jobs do not and cannot share
memory among themselves.

virtual
The XM monitor also provides a

.SETTOP feature. Normally when

14.

jobs issue a .~ETTOP request, they are
given all of available memory from the top
of the program to the bottom of the
resident monitor. This means that although
the program can address up to 2BK words
(not including the I/O page), it is only
given 2BK words minus the size of the
monitor. Under XM, when a .SETTOP is
issued, the monitor actually allocates a
full ~BK words of addressable memory to the
program. If the full 28K words are not
available in low memory, the monitor
allocates the additional space in extended
memory and handles the mapping for the
program in a transparent manner.

~nother feature of the XM monitor
has to do with the overlaying of programs.
Refore Version 4 of RT-11, all overlays
were disk overlays and segments were read
off of disk and overlaid in memory as
required. The Version 4 linker has the
capaoility of using extended memory for
virtual overlays. So, instead of reading
the overlaid routine off of disk, all the
overlay segments are stored in extended
memory and whenever a segment is called,
the run-time overlay handler maps to the
particular segment in extended memory
instend of reading the seqment out of disk
storage. This method can significantly
reduce program execution time because there
is no oisk I/O required to bring in the
needed segment.

4.3 VM (Virtual Memory) handler

The first time I encountered the
VM handler was on the Fall 1979 RT SIG swap
tape. It is a full RT-11 handler that
makes extended memory look like an RT-11
random access device. That means that you
can use it as a system device and actually
boot an RT-11 system from it. It directly
manipulates the KT-11 hardware registers
and is therefore incompatible with the XM
monitor. The size of the VM device depends
on how much extended memory is on your
system. If the full 12BK words of
available memory are attached to the
system, the VM device has 372 blocks of
user space. The easiest way to think about
the VM device is to think of it as a
super-fast disk device that crashes when a
new RT-11 monitor is booted. (Actually,
the installation code in the VM handler
destroys the contents of the VM device as
it is determining the amount of memory
attached to the system.).

I have decided to include the VM
handler in this paper because I believe it
provides a very good alternative to
re-linking your existing programs to use
the /v overlay option of the Version 4
linker. When the VM device is accessed,
the handler determines where the block of
data is located in extended memory. Then
it maps itself to that portion of extended

memory using PAR/PDR register set 7, and
then proceeds to transfer the data to lower
memory like any non-XM RT-11 handler would.
The I/O time is very fast because the
access time involves only a simple
calculation, and the data transfer is
nothing more than a memory-to-memory
transfer.

4,4 TSX-PLUS

TSX-PLUS is a multi-user version
of RT-11. Each user is allocated up to 28K
words of memory somewhere in the available
physical memory. Note that each user is
given a full 28K word partition, unlike
regular RT-11 where the user space is
normally 28K words minus the size of the
monitor, resident handlers, and USR (User
Service Routine) • TSX-PLUS does not
support any extended memory programmed
requests or extended memory overlays. It
looks to the user like the SJ monitor, only
there can be many jobs running at the same
time. Each user is protected from each
other and the KT-11 memory management unit
usage is transparent to the user.

s.o The Hardware and Software System

Because this is a timing test, it
is important to know something about the
test environment. All of the tests were
executed on an LSI 11/23 CPU with FPP and
MMU chips and 12AK words of MOS memory.
The system uses one 10 MB u.s. Design
winchester disk drive for main storage.
The RT-11 monitors used were RT-11 SJ
V04.00B, RT-11 FB V04.00E, and RT-11 XM
vo4.00G: TSX-~LUS version 2.0 was also
tested. MACR0-11 version 4.00 and FORTRAN
version 2. 5 were the language pro.cessors
used. All programs were linked with the
version 6.0lC linker. Note that faster
program execution times will be observed
for the disk overlaid test configurations
if faster disks are used. Let me again add
that the purpose of this paper is not to
report absolute program execution times,
but to report qualitative program execution
times to be used for comparisons.

6.0 The Test routine

For the purposes of this paper, I
have decided to concentrate only on one
parameter--execution time. In my
environment, we are most interested in how
fast the processor runs our data reduction
programs and our data acquisition software.
so, for this RT-11 performance measurement,
I needed to create a computation bound

Thie test routine had to be

15.

simple and I knew that once I had
established a base-line execution time, I
would then re-link the routine using the
various options available to me in the
linker, and run it in the different RT-11
operating environments. In all cases I
will run the test routine as the only job
in the system to minimize the interaction
with other jobs. My purpose is not to
study how many jobs can run in RT-11 at the
same time nor is it my purpose to study how
the number of running jobs affects system
performance. The test routine is made up
of five separate .OBJ modules that I will
explain.

6.1 Main test routine -- TEST

The test routine is really
nothing more than a routine that compares
the FORTRAN sine function with a sine
function written in MACRO. The line
frequency clock is used for timing, <ind for
all the times listed, the error can be one
clock tick or 16.? milliseconds. The main
routine begins by making a call to routine
TIMEI that gets the current time-of-day
from the system. Next the SINTST routine
is called and the FORTRAN and MACRO sine
functions are evaluated. After 10,000 sine
comparisons have been completed, the
time-of-day clock is again read and the
difference between the beginning and ending
times is the program execution time. This
time is printed and the test is over.
Listing l shows the main test routine.

6.2 Timing routines -- TIMEI and TIMEE

The TIME!, or time-initial,
routine gets the current time-of-day from
the system using the GTIM request. This
value is saved in a COMMON block for later
use. The TIMEE, or time-end, routine is
called at the end of the timing loop. It
also uses the GTIM request to get the
current time-of-day. Then the starting and
ending times are subtracted using the JSUB,
or two word subtract routine, and then
converted to seconds. As noted before, the
error on the line frequency clock is plus
or minus one clock tick or 16.6
milliseconds. I could have used a more
precise time base, but I was really only
interested in a qualitative time
measurement and not the exact time required
to execute the test routine. Listing 2
shows both timing routines.

6.3 Sine test routin~ -- SINTST

The heart of the test routine is
in SINTST. Basically, the routine

generates a random floating-point number,
and then evaluates its sine with the
FORTRAN sine function. Next a MACRO
language version of the FORTRAN sine
routine is called with the same random
floating-point value. The absolute
difference between the two results is then
taken and if the difference is not zero, a
message is printed. Ten thousand numbers
are evaluated in this manner before the
program ends.

There are two versions of the
SINTST routine in order to allow me to
check-out virtual arrays. The first SINTST
routine in Listing 3 uses a real array for
the storage of the random numbers, while
the SINTST routine in Listing 4 stores the
random numbers in virtual arrays. There
are three array accesses per loop in the
routine -- one to store the random' number,
one to call the FORTRAN sine routine, and
one to call the MACRO sine routine.
Because the loop is executed ten thousands
times, and since there are three array
accesses per loop, a total of thirty
thousand array accesses will be made. With
this many accesses, we should be able to
get some good statistics on how much time
is required to access a virtual array
element as compared to a non-virtual array
access.

6.4 MACRO sine function -- SIN

The code for the FORTRAN su~port
routines does not directly uti~ize the FPP
(Floating Point Processor) or FIS
(Floating-point Instruction Set for LbI-11
or 11/35) floating-point unit~. Instead, a
call is made to a general floating-p0int
operations routine. Then, when the FORTRAN
library is built, the proper floating-point
routine to support the machine's hardware
conf~guration is inserted into the library
with the proper name. For example, the
floating-point multiply routine may be
called MULF, but MULF may contain an FPP
coded routine, an FIS coded routine or a
NHD (No Hardware Dependent) routine. This
scheme is great for the person who writes
the support routines, because he or she
does not have to remember how to use the
FPP or FIS; just a general calling
sequence is used. The problem is that the
code takes longer to execute because we
have to call a subroutine instead of
executing in-line code for the particular
hardware unit. In one of my applications,
I wanted to speed up a series of sine
calculations, and so I modified the FORTRAN
sine function to use in-line code. The
result is the routine in Listing 5. From
the results of this test routine, I have
found that it gives the same answer as the
FORTRAN sine function.

16.

6.5 Random number generator -- RANDU

The random number generator in
Listing 6 is nothing more than a call to
the system random number generator RAN.
The seeds to the random number generator
are saved in a COMMON block so that they
will not change if the subroutine is
overlaid. The function RANDU returns an
floating-point number between 0 and 1.

7.0 Linking Considerations

Simple programs have no trouble
fitting into the 28K words of user space
available, but as program complexity
increases, so does program size. There are
two techniques available to the user in
RT-11 to circumvent the memory shortage -­
chaining and overlayinq.

In order to ~hain programs
together, it is first necessary to divide
the job to he done into many separate
programs, that individually accomplish a
portion of the overall task. Then, the
last thing that a program does before
exiting is to call or schedule the next
program in the chain. This technique has
the advantage that each sub-program can be
checked out individually and then fit into
the larger chain. There are numerous
nisadvantages, such as the fact that files
are closed between programs and have to be
reoF~ned. Also, any communication or data
that is common to all the routines has to
be stored in a file, or in a system area
that can be accessed by the next job when
it is started. Finally, if any of the
programs are modified, there is a
possibility that they may become too large
to fit into available memory. Then that
program will have to be broken up into
chained programs or overlaying could be
used.

When programs are overlaid, part
of the program resides on secondary storage
(usually a disk), and is read into memory
when required. It is possible to have
parts of the program share memory space or
regions and when one segment is read into
memory, it 'overlays' or is copied over an
existing segment that is no longer needed.
The user has to be very careful in his
overlay scheme to insure that the return
path for subroutine calls is always in
memory and that the return path has not
been overlaid by another segment.

The Linker sets up the overlaying
mechanism at link time under the direction
of the user. When the program is run, a
run-time overlay handler is called whenever
an overlaid segment is called. This
run-time overlay handler reads in the
required segment (in the case of disk or /o
overlays) or maps to the segment (in the

case of memory resident overlays or /V
overlays) and then branches to that section
of code. In all cases, the program will
take longer to execute due to the fact that
parts of the program reside on secondary
storage and have to be read into main.
memory, or because parts of the program are
in extended memory and have to be mapped.

8.0 Test Configurations

Now I will discuss the test
routine configurations. There are fifteen
configurations and their execution times
are summarized in Table 2. The first five
configurations use low memory data arrays
while the last ten configurations use
virtual arrays for the storage of data.
For each configuration I will discuss how
it was linked, how fast it executed under
the various RT-11 monitors, how it compared
to other test configurations, and then
remark on any observed anomalies.

a.1 Non-virtual array configurations

Configurations l and 2 will run
under all the operating systems while
configurations 3, 4 and 5 will only execute
under the XM monitor.

9,1.l Configuration 1 -- Base-line -

This test configuration was
tested in all the o_perating system
environments and provides the . base-line
program execution time that we will use for
caaparison purposes. Link 1 shows how the
program was linked--all parts of the
program are memory resident and there aTe
no overlay segments.

One of the results of the first
paper was that background jobs will execute
in the same amount of time when run under
either the SJ or FB monitors. Because of
this fact, I only ran the test routines
under the FB monitor and assumed that they
would require the same amount of time under
SJ.

The program execution time for
the VM handler is the same as either the FB
or SJ monitor with good reason. If we
think of the VM device as a very fast disk
and if we remember that for non-overlaid
programs only two disk accesses are
required to bring in the routine (one
directory access to locate the program on
disk and one to actually read in the
program) , then the time it takes the
program to exe7ute is totally dependent
upon the operating system. Because you can
only use the VM handler with either the SJ

17.

or FB monitors, it follows that program·
execution time is the same as for the SJ
and FB monitors for this configuration.

The XM monitor time is slightly
longer than the FB time. The XM monitor is
conditionally assembled from the FB
monitor, which implies that the internals
of both XM and FB are similar. Therefore,
the only major difference between the XM
and FB monitors must be the fact that the
KT-11 is always enabled.

I ran the base-line program under
TSX and found that it took longer to
execute than under XM. In order to be
fair, the test routine was the only job
running under TSX and I was the only user.
Because TSX is a true multi-user operating
system, I can understan<l why programs will
take longer to execute. This time was
included only to show potential users the
time penalties they would pay in a
multi-user system.

So, in summary, the test program
executed the fastest FB. The use of the VM
handler had no effect on program execution
time--the program executed in the same
amount of time as FB test routine. The use
of the XM monitor cost l.?.l seconds in
additional time while TSX required an
additional 2.44 seconds of time. Unless
you require extended memory support, then
either the SJ or FB monitor is the one to
use for the fastest program execution
times.

A.1.2 Configuration 2 -- Disk overlays -

This test configuration uses disk
resident overlays and is shown in Link 2.
The two routines SIN and RANDU are disk
resident and the test routine alternates
execution of those two routines. First a
random number is returned from RANDU and
then its sine is evaluated by SIN. There
is a lot of disk I/O time with this
particular configuration and the times in
Table 2 reflect this.

The difference between the FB and
XM times shows how the effect of the disk
being used for overlaying. I believe that
I can explain the 161.3A second differenc~
by the fact that FB allows the program to
execute the fastest so that the next disk
overlay is right under the head when it is
called for by the overlay handler. When
the same program is run un<ler XM, it
executes slower and the disk overlay
handler has to wait a full rotation before
being able to read in the segment. Another
possibility is that one overlay segment
spans a track boundary in the XM version,
and a head positioning is required before
the segment can be read in. Either
explanation supports the fact that disk
overlayed programs are very dependent upon
the characteristics of the disk drive. The

test results that I gathered in the first
paper also support the two explanations.
With the first paper, I was using slower
RKOS disk drives, and the execution time of
the FB and XM test configurations was
identical.

The real
configuration is

surprise with
the VM handler

this
time.

Again, it is not surprising when we
consider that the VM handler is a fast
disk. In the next configuration we will
want to compare the execution times of
virtual overlays with disk overlays using
the VM handler.

The TSX execution time is about
equal to the XM time because the
environments are very similar when only one
job is running under TSX. TSX may provide
the slowest running environment, but it
does provide a multi-user environment where
total system throughput and utilization of
system resources and time are high.

So, for this test configuration
as compared with the baseline
configuration, program execution time is
between R and 12 times greater except when
using the VM handler. The additional time
required for execution is all due to the
disk drive where the overlay segments
reside. I can conclude that if you have a
very heavily overlaid program that requires
a lot of I/O time, you can cut down on the
program execution time by using the VM
handler.

8 .1. 3 ·configuration
overlays -

3 Virtual

This configuration is similar to
configuration 2 except for the fact that
all /o's are changed to /V's as shown in
Link 3. This configuration should run
faster than disk resident overlays.

The execution time for this
configuration is much less than the disk
resident configuration because there is no
disk I/O time required. Instead of reading
the next segment off of disk, the run-time
overlay handler maps to the extended memory
segment and program execution continues. I
had expected to find that the virtual
overlays would be faster than disk resident
overlays because the overlay segments were
always memory resident and only a re-map
would be required to access the segment:
then I looked at the VM handler time. I
was surprised to find that the VM handler
time was shorter than the virtually
overlaid configuration. This led me to
investigate how the run-time overlay
handler worked and the result was
configuration 4.

Notice also that there is a big
time difference between the old virtual
overlay hand~er and the new patched

version. By fixing an old problem, DEC has
also speeded up the virtual overlay handler
so that the VM handler is only a little bit
faster than a virtually overlaid program.

8.1.4 Configuration
segments -

4 Re-map

The VM handler has to be used
with disk resident overlays and it works by
actually transferring the required overlay
segment from extended memory to low memory.
When virutal overlays are used, there is no
transfer of data: only a re-map is
required because the overlay segment is
already in memory. Note that the old
run-time overlay handler uses the .CRAW
programmed request that, in effect, defines
a virtual address window and maps it into a
physical memory region. I understand that
the new patched run-time overlay handler
now uses a .MAP request and so should be
faster than the old version in
configurations where you are bouncing
between already created segments. Link 4
shows the test configuration I used to
investigate the run-time overlay handler.

The overlay handler exists in two
versions. There is the regular version
that handles only disk resident overlays
and then there is the new Version 4 overlay
handler that handles both /v and /o overlay
constructs. The proper version is included
with the routine when it is linked. Only
the regular version is required for disk
resident overlays and it is smaller than
the overlay handler that supports /V and /0
overlay types.

I constructed configuration 4 so
that there was only one /v segment. Based
upon what I knew about /o segments, I
figured that there would only be one map
required because there was only one
virtually overlaid segment. That was
certainly the case for disk resident
overlays. I figured that the program
execution time would then be close to the
XM base-line time. Table 2 shows otherwise
and I had to dig into the book for an
answer.

From the source code for the
run-time overlay handler, I discovered
that, unlike the run-time overlay handler
for disk resident overlays, the vir-tual
overlay handler always does a .CRAW for
every segment and does not check to see if
the segment is already mapped! I was quite
surprised but there was my answer. Given
the fact that the base-line test
configuration required 41.53 seconds to
execute and configuration 4 required 66.94
seconds, I can assume that the difference
in time is due to the run-time overlay
handler and the .CRAW progranuned request.
From the code of the test routines, I know
that 10,000 sines were evaluated by SIN
(the only routine in the /V section). That

18.

means that the run-time overlay handler and
the .CRAW programmed request requires about
2.54 ([66.94 - 41.53] I 10000) milliseconds
per usage on an 11/23. That is a lot of
time, equivalent to about 508 instructions
(assuming 5 microseconds per instruction on
the average), but significantly less than
the time required to read an overlay
segment off of disk.

If we now examine the patched
version of the overlay handler, we see that
the change from a .CRAW to a .MAP program
request, allows the program to execute in
about the same amount of time as the
base-line configuration, which is what I
expected in the first place.

8.1.5 Configuration 5 -- One /V segment -

Link 5 shows test configuration
s. In this configuration all the routines
are combined into one virtual overlay
segment. That means that only one map is
required and the entire program would
execute in the one extended memory overlay
segment. The execution time for
configuration 5 is about the same as for
the base-line configuration which says two
things. Because we are always executing in
an extended overlay segment, the KT-11
memory management unit must always be
enabled. Secondly, the old overlay used
.CRAW's, which were very expensive. The
new, patched, overlay handler uses .MAP's
which are considerably faster.

That concludes the discussion on
the test configurations that 'do not use
virtual arrays. The overall conclusion
that I have reached to this point is that
the FB monitor and the VM handler are the
best combination to use for large programs.
No change is required to your programming
style to take advantage of extended
memory--again think of the VM handler as a
fast, but small disk drive. I think that
the limitations imposed upon the programrner
in order to use virtual overlays (such as
taking 4K words of address space, at a
minimum, for each different extended
overlay segment) are not worth the time
when a faster and easier solution exits
(i.e. VM handler). Of course, this is not
to say that virtual overlays do not have a
place in the RT-11 programmer's bag of
tricks. One of the purposes of this paper
is to point out the alternatives that are
available to the programmer.

8.2 Extended memory based virtual array tes

The following 5 test
configurations all use virtual arrays that
are stored in extended memory. The virtual
array support libraries from DEC exist in
two forms--one for the XM monitor and one

19.

for the SJ and FB envirorunent. For
configurations 6 and 7, I had to use the
different libraries and so created separate
link command files. Configuration 6 is
really the base-line test routine for
virtual arrays. Note that only the FB and
XM monitors can be tested--TSX and the VM
handler do not support virtual arrays
stored in extended memory.

B.2.1 Configuration ~

base-line -
Virtual array

, ~his configuration is similar to
configuration 1 except that the data is
stored in virtual arrays instead of low
memory arrays. Link 6 was used for this
configuration. From the source code it can
be seen that there are three virtual array
accesses per program loop. One access is
used to store the random number, another to
compute its sine with the FORTRAN sine
function, and one more to compute the sine
with the MACRO language routine. And since
the program looped 10,000 times with 3
virtual array accesses per loop, there were
a total of 30,000 accesses per program. I
can make some estimates as to the time
required to access virtual array elements
in the various operating system
envirorunents.

The difference in execution time
from configuration 1 to configuration 6,
for the FB monitor, is 2.41 seconds which
we ~an attribute totally to virtual array
accesses. That means that each virtual
array access requires 80.3 microseconds (on
an 11/23) or about 16 instruction times

-(again assuming about 5 microseconds per
instruction). With the XM monitor, we have
a difference of 4.49 seconds between
configuration 1 and configuration 6, which
translates into 149.6 microseconds per
access. From the data I can conclude that
the XM environment does not provide a more
efficient (i.e. less time) mapping of
virtual array elements as was suggested to
me at the Fall qo DECUS convention.

B.2.2 Configuration 7 -- Disk overlays -

Configuration 7 (see Link 7) i~
really nothing more than configuration 2
with virtual arrays used. Here again we
can see the effect of the disk on execution
times. In the FB environment, virtual
arrays are requiring more time, so that the
next disk overlay segment is not positioned
exactly under the head when it is called
for. The test routine has to wait for more
disk latency time than under the first
configuration as its total execution time
has increased.

Notice that the total execution
time has actually decreased for the XM
version of the test. I believe that this

is due to again to how the overlay segment
is positioned on the disk itself and how
long the program has to wait until the
required segment comes around under the
read/write head.

8.2.3 Configurations 8,9 and 10 -- Virtual
overlays -

Configurations 8, 9 and 10 (shown
in Link 8, Link 9 and Link 10) do nothing
more than confirm the fact that virtual
array accesses require about 150 usec. for
each element.

8.3 Disk based virtual array test configura

The final 5 test configurations
also use virtual arrays, but instead of
being stored in extended memory, the array
elements are stored on disk. Because the
arrays do not use extended memory, I could
test this configuration under all the
operating systems.

8.3.1 Configuration 11
base-line -

Disk based

From the times in table 2 we can
see that an additional 10 seconds is
required for the test routines (see Link
11) that are running under FB, XM, and TSX.
The test routine running with the VM
handler only required about 6 seconds more,
which only proves that the VM "disk" is
faster than the winchester disk I was using
for the other tests. With 30,000 virtual
array accesses per test, it requires about
333 usec. per virtual array element under
FB, XM and TSX. Using the VM handler, it
only requires 200 usec. per array element.
These t.imes are considerably slower than
the extended memory virtual arrays, but it
is the only way that allows you to use
virtual arrays with TSX.

8.3.2 Configuration 12 -- Disk overlays -

In this configuration, I used
disk overlays and virtual arrays that were
stored on disk as shown in Link 12. Now,
we have the times being about equal for FB,
XM, and TSX. The FB time was 166 seconds
slower that the time of configuration l and
I think that it is due to the rotational
delay in the disk and the fact that the
virtual arrays are also stored on the same
disk. The execution time for the FB test
has gotten progressively slower as I forced
the routine to do more processing before
calling the next overlay segment.

The real performer for this

20.

configuration is the VM handler. Its time
of 88.17 seconds is faster than XM
configuration 8 that used virtual overlays
and virtual arrays that were stored in
extended memory. It is something to think
about when using the XM monitor.

8.3.3 Configurations 13,14 and
Virtual overlays -

15

The final three configurations
(shown in Link 13, Link 14 and Link 15)
were only run to support the fact that
about 10 seconds of time was added to
execution time when virtual arrays were
stored on disk. Note also that the new
patched virtual overlay handler provides
for faster program execution than the old
virtual overlay handler.

9.0 Normalized times

I have included Table 3, which
contains the times of Table 2 normalized to
the base-line time of Configuration 1, for
reference. It truly shows the relative
performance of each of the test
configurations in all the RT-11 operating
environment. Table 3 can be used to choose
the proper RT-11 operating environment for
your program or system once you know which
options you will be using. For example, if
you are going to use only virtual arrays,
Table 3 shows that the SJ or FB monitor
delivers the best performance with virtual
-arrays. From Table 3, it can also be seen
that the VM handler and the FB monitor,
will allow you program to execute the
fastest if it is heavily overlaid.

10.0 Conclusions and Recommendations

With all the above data in mind,
I have come to the following conclusions.

1. In my opinion the FB monitor has
more services and is worth the
extra memory. For all types of
jobs the XM monitor provides the
slowest execution time environment
of all the RT-11 monitors.

2. Virtual overlays are about 84%
faster than disk resident
overlays, depending upon the speed
of the disk.

3. Virtual overlays may be optimized
by executing within a segment
because of the .MAP required to go
to the next segment.

4. Programs executing under TSX-Plus
take 5% longer than under FB or SJ

5.

6.

and only 2\ longer than under XM.

Virtual arrays execute the fastest
under the SJ and FB
environments--XM is less
efficient.

The use of the VM handler and disk
resident overlays is about 3\
faster than virtual overlays and
XM. I believe that the use of the
VM handler with the FB monitor
will provide the best enviroment
for users with large programs that
are heavily overlaid. In
addition, I think that the disk
resident overlay scheme is easier
to use than the virtual overlay
scheme because you do not have to
worry about PAR/PDR usage and the
fact that 4K words is required, as
a minimum, for each virtually
overlaid region.

7.

8.

9.

virtual
between 8\

the original

The patched
handler is
faster than
handler.

overlay
and 35'
overlay

Disk based virtual arrays are
•~ower than extended memory stored
virtual arrays, but allow virtual
arrays to be used with TSX-Plus.

The VM handler is still the
overall speed champion, but not by
much.

Monitor
SJ/FB

(execution time in seccnds)
Configuration

1 (Base-line)
2 (/0 segs.)
3 (/V segs.)
4 (re-map seg)
5 (one /V seg)

6 (Vir. array)
7 (/O segs.)
8 (/V segs.)
9 (re-map seg)
10 (one /V seg)

11 (Disk array)
12 (/O segs.)
13 (/V segs.)
14 (re-map seg)
15 (one /V seg)

Configuration

41.53
345.98

43.94
426.59

51. 32
512.43

Monitor
SJ/FB

XM XM+ TSX VM

42.74
507.36

90.77 03.69
66.94 43.77
42.52 42.61

47.23
504.80

95.86 08.34
71.51 48.27
47.21 47.18

52.83
511.13

101.00 93 .63
76.78 40.36
52.51 52.69

Table 2

~execution time
XM XM+

in

43.97
507.42

54.20
511.67

seconds)
TSX

41.53
81. 52

47.84
88.11.

vr:

Comments

No virtual arrays
No virtual arrays
No virtual arrays
No virtual arrays
No vi.rtual arrays

Virtual array-mem
Virtual array-mem
Virtual array-mem
Virtual array-mem
Virtual array-mem

Virtual array-disk
Virtual array-disk
Virtual array-disk
Virtual array-disk
Virtual array-disk

Comments

--1 (Base-line) 1.00 1.02 1.06 1.00 No virtual arrays
2 (/O segs.) 8.33 12.22 12.22 1.96 No virtual arrays
3 (/V segs.) 2.19 2.02 No virtual arrays
4 (re-map seg) 1.61 1. 05 No virtual arrays
5 (one /v seg) 1.02 1.03 No virtual arrays

6 (Vir. array) 1.06 1.14 Virtual array-mem
7 (/0 segs.) 10.27 12 .16 Virtual array-mem
8 (/V segs.) 2.31 2.13 Virtual array-mem
9 (re-map seg) 1. 72 1.16 Virtual array-mem
10 (one /V seg) 1.14 1.14 Virtual array-mem

11 (Disk array) 1. 24 1.27 1.31 1.15 Virtual array-disk
12 (/O segs.) 12.34 12.31 12.32 2.12 Virtual array-disk
13 (/V segs.) 2.43 2.25 Virtual array-disk
14 (re-map seg) 1.85 1.16 Virtual array-disk
15 (one /v seg) 1.26 1. 27 Virtual array-disk

21.

0 '" -toll:::: ..
in i­.,_, .. .,
•= •lJ !'.::
:'C HI
~ '-' ,,
.... :;.::

C>
::;:; ::r::
c:. :::.::: •
:1: - ::!'::: ..,,

>..111 ·= ::.... -c 1:> •• 1::
::t; oll .,., :s:: . .._

~~ !': g-·
'!- .,,, •:..

~~ ,., 1::..,

'" .. .•
"

<> J_, r..,

• •r
llJ ~t' .• ~

Ill 11J
~
!'O :>
--t 11,1 1G
•11 !­

<..'!) f-:.

'" 1n ·- .. : ::i
r· .. C..l<I:

,_
'"

•n
•J
•U

:~
'"

•u
•J

.>
•U ,,
•U
.c ..
'"
'" c

" '" '" .•
'" .:.::

''" c

,,
·~

• •U .-1
(.') .,, ,.."'
::i :::i •U
r . .l !- '.J:
'.J

'::i ,: '"
;; •:J 10

.... ,,, l:'I
IA •U

1tl ::; .. .,
!- •..I 1:
:~ :~ ;~
~~ ,~ ,_.

..... r\I
~-1:.
i::o <t: ._

Ill ·= :!I . ., •:;)

~:io.. ':I

" '" •:l •:I,
·-:. •ti

...,_ !-,_, ..
.. ..:. i=

:~ '" ~
-~ !=,
-:; ~! :;
'""' •U !.­:::a 1.T• IU ..
1).1 != i=
.-:

" •,; .'.~ :u
"J: "' -~;
•11 1:) •:I

1:.. "' ..

"' "' 0
"-

:: 1.1,1 1:. •V
.J;)

!::: •:l:::
•J.I, •n ::11:

-::.::: .:.::
:>.. !- .J=

!:.. •0 ~
t'til !- :;: I-
ll.I •:J •u o
~':. (. ') !- :s:

"' ,.

.:) :
•:l .. ::i •= IU

'" •U

•IJ ·= 1.J

"> - '" IU ~ ... 11,1

•:i "'' c!:
•:J :i:::

.... != •i:J
·= f-
111 on ,,..,
l.'.) IU 1.:t
.... 1;,
u'l ,.::i 1!L

"' 1:...:::: 11.I
' ,,,
i.::i 1n !­
Ill 1tl 11J
r.:J ~--•
0 in 1:n
.... -·.t. 1:

l..J·
'- •:J"l:'I
0 ,.,

,..:;, •:i

~g •1

11J ''" !-:c ;'): ,,
:c '" Ci­,,

t.I) •"4 - flJ
:!I :C CJ .--t

'" . •)':> ,_
C.J 1tl , •u
•.·.J ... ~,._
·==- >•: ·::i ~;

,_ .• ,,,
'" .•

·=
:~

•n •11

:; :d r~ ;; \t'~:~
.. ~ :~ ~; ~~ ~~ :;
.. ~ •7:1 .,:, != .n :~ ~:;
'C •::l QI 1U .. _, •;n

.,:;) >."Ct • ...

.:J ·=- 0 .n 1lJ :::J ~.., ·= ..
,. ... 0 ., 1.J

·= "1,:'I ·-=-
'1.1 1U ::: :::; 'U
.... Q •!I .!I:
.-=.. '='

<O ·- -t..ll
<A <I.I ~- 1'Q 0 :-,::
•il .. = ~--::: :c ;;.::: •.J
.•:: •.J I- ,.,

...... 0 •"':II
-= ill .. 4- r.:i
•:J 1::...•n r:: • 111
.... d.I '" 111
'" •11 ::< II.I ··­
~- .. = ::< l.J
1U .,.oo «- •U •-t 111

:> --t• ,,.,. g ~~ ;;
~~ -.~ ;~ :c

.. .) 1:n•:1,1
10 "1:::0 != ..!".:

1n !:.. i- I:;)
t;:I 11.I 11'r-t

•'ti '= .:: '" ,,
"'"" •U •::
!:.. 1';) ..:...: tU

•• -!-" :!11-1..ll·, ...
LJ_ , ... 4- ,_
" ;:;-!: ::i '= ·= :::i • --t :J: ,,
L•O::: (':) 1'.l..r-t

~...,
tr.I -':;) IU 1U

~~ '" ;;:; ,;;s ~~ ·:.:;
... 11. 11.1 •:l c

Ill ·= •ti ..1= 11,1 , ...
........ 1..ll i~,
r::: L~ ,:::0 ~- i:;1

:>. '""" r:: o ::
<t: J:. tf) ttl 'i- •U

'" ,, ..
•:r..

'" .:::;

..
•n .• ..

·= ,,

;~ ..
•U ,.

" " -'t

1 ...
' ' "

.•
;~

' >-
1:C::

..
u ..

"' . :c ~
·c ~
0"'

::J
0

3: !.::

"'0 .. ,_ . ..:
•• u

·= ,, ,., .. '" .•

" 0 '-
f- ,.
"' « I-•·-
"' :> •
~ ,_
r- -'

"l::ll co:

" C::J
1;;1 ;;:

"' ",_ "',_ ,_ .. ,_ .. '~
'"

,_ ,_ ., ...
'-- •n '"" o •U 1: ,, " i= r- :c
0 ::1

,, -':t

...... '" lr:I .• .. ,,,
a. ..

UJ

.. .•
:c ,_
" ,_

,_
"' .• ,,
,_
"'

::.. ..
Ill,:t
l.J •.J l_t
1: 1!.I 10
ro !-
:!:
:t: ,::ii,. ...
1:) !::.:: •ti
l.J
•r~ •U ::J
r:: •= •:l
•n ,,.,.
1A !:;: !:
1'3
1:).. 1'.:L.

i.., U.1 ~
., '.>

·- 'll,I

1~
.._..Ill .. .Jo

:~ != 1-
:J: •U

.:::> I:) ..1:
0 "l:JI

'°' Ill "r 1::. ,_ ,,.,
!- ln

·~ ;..., ,, •U
_,;:. ,.. .. IA ,....,

•11 ,
.A': :- •U '1-
...... Ill l.J
.... :t: 0 ., ...
:I: l- l.J

...... "l::ll 1:)..11,11 ,_
1-- :, •11
.. ~ •:J i.::i
>< ... = !:::
LU 1n 4- ·~-t

-~

_,
;

:; .
<U ,,

:;

,_
"

•u
"' ,,
"'

..
'" ..
'" :~
•U
.;::

,_ ,,
~~

• 1.::
ti.I ,..,. Ill
-·4 l\I :::;
, .. IJJ ..l:l 1i

~- "' -~
·.:.i ~ 1Y
·-= ,, c "­
'"" != 0 :C != 11.1
;: , Ill
,., 1.J 1=

..... 1.J~;::
............ i:i
•.J 11' i= ~­
II.I 1l1 X
1:... • .J .t:: lU
.... '-'- :c ::?.::

"l:Jlt:.=- ,,

!= ::,~ l..J .. ~

'" .. != ., -::
11' 11' ~ ,_

...= Cl
10J -r..ll C- 4-
~ ,,
:> Ill "'

..... Ill •JJ
r.: t:J I-
::J ;;e: i:-
r_ .. _..

·= ,,
•U . ,,
'"

'" :0

'.! ,,
..... •11
10 .i
·?: :>-. ,,
tU 1.n
"1:) .I~

~~ .•
...... '" .• , ..
'-' :u::
•:) ~; : . .•

.;.tt, ,._ IY.,

11J •U !:
..... .1.::

,._.. ·l..ll
,, '11 ,;:i

........ ; :~
Ill :C

.. ::. ;; :u
... •::l.-<..ll , ..

... , •::r.o
·= ~-0 0

...... "l:f

!= -
i: •ll •)•-.

0 '"-
..... •lt ...
..... "l:t ::0
a.
0

, ..

1'1

; ... 11'

,...., A!:
, .. C:t
11J ~=
l._ .:~

.•
:> ,,

.;:,__

!- ':JI
QI

" .. "
.J:::ll ::s ,,
·~ >-

......... ~
1ll •·- ~--­:., -;;;

· .. ~ ,_ = <ti
.... ""':JI ·::i

~· '.~ -~~
."C 0
11.1 ~;._ :>

...... ·:r~
IA !:.. ,:t
:>. "11 11J
an ··:ii r~

·= 1\1
1n ·:J
Ill::

'" •l.I 1:.. :~

an -"O •-:..
;:J ~= :
OJ

·= ,,

..

.•
•'
OJ ,,
,,
<J

<>
•r

•.3 !; '"
'" :s lb

IQ f­..... -.,.,
1n rn ,JI : .. •ti .. .,, ·=

.... :c
'" 10 r: •u
1- '" ,,

r:: .,, "'=
I;) 10 .. _,, ,, ,,
.J

•U :,.. '.:I
~ ~=

·•-t 1\1 I'll
•! • ·::::
:::i :c
,, ·::i
1- tll •J

!::
l.,1.J ,_ ~:!:

.:~ 1\1 L:l
C") """" ,_,:
L,l --1 ;·o::::
W«
'~ ,,
f- • .,_
•:U ,,:I
tn 1:: !=

.. ,,

:~ ;::i; 1:) '"
1:) ::>-

.-o .,_ :~ .'!
1::1 IJ"I;. !-

t.ll ·= •ll
•U :>

;;e: ,, :c •:'I
........ !'::.:: :.:>
<.C Ill •1.J :~

::<:: :c •:it ~.:I
'-.) :1?: ,:0 ~:::

• 1::i :.:::
I.JC!-

,.. .. "1:JI

t.::i "l_:I tU !=
;c 111 1n •U :::-::: != ,_

...... ::1 1.n
•ll 4- ,, ·.:
:~ Ill :;:... •:I
•"ti ,:JI
·-= i.: .. ,,. ,.:.

:":J

•:J ' •.3 !-= •::i •.::i
11' "l:J .;;,

'"
:>

,J

.. ,,
•u .. .,

llJ L_ ,_

"' ·=
'"

N
N

.. -· ,, .•
r:

-· .• ,, ..
·-
.. ..

.. ., ,_ .• ..
"'
,, .. ,_ ,, ..
<?

rr, 1!1
!= ..
iv ... ,, "4-

..1:) •LI .., !:
• _,. •::&. 1:i .,,

. ..: "' Ill ... !- ,_. !=
:~ -'~ ~- .:~ :~ ~~

I ·.; :~ ~ ~~ 1n i;:I ~~
.>- __,~ ,..':,! .•-lo :~ •U I.I

.1:i ... :: .. _ ;; t:J; ;; :~

-c: l..J r.= .:: ""'
'-' l'D 0 •ll
•:i Ill ! ...

:3' !:: ,
•':I != o rn •-t _,:;.

11.1...... . .. 11
1\1 '" •l.I 1-' '" ::::i

C:J 3 .1':; .-.. 11'1
~:::: +:. :>. ,., •:J 1:
".:.:: 1\1 1:.. "1;1 1i 1\1

.. -:. Q.I i;:. tlJ .:.C:
>- :> := 1\1 '1:) ,.,

.•:::r 11.1 i:.. 1: ... ,,
1.J U'I 11111- 1lJ

•::i 1'U 11.1
1tl,..... r::r •U ""1..1
•l.I o. 1n ,._, u ;,.. •ll

111 !- 1:-...

•ll ~~= .. ~ :;- :~ '"
.r':I 1n 1U

fU "" '" ~"" •U 1-4
iQ • 11'1 != l.J

1.n 1"' :;.... tl'I •lJ •U ::t
IU r- l:J •-t !;: 1-t

....... •:r.o 0 11 l.J ~= != :IC ... ,.,
<i- '"" 11.1 ll.I <t- 1U :C :c -''.l .,_
l:;:t '\- ':::i 1U •.JI ·= .,_ ,::: 1:J •.n hi,
,.., '::J
·c ,: ::i •l.I i: •U
.c •II '1:t •:l •-t 1tl ,.. ...

:~ .. :: ~ ~~ ~: :~~=
-1.ll ,,, ,:::; •::r ;,J

i~ ~~ ~~ ~! :~ ;~ ~~ ..

.. .. ,_
•U

'" ..
•U ,,
.• .,

..
•> ,_ ., ..
"' ,, .•
"'

,, ..
«­.. ,, .•
::.;
r: .• ..
"' '" ,_

,,
,,
x
'

·• -· .•
~ ..
" <C

.• -· ., .• -·
> .•
' ,_ ,.
"' "'

!:... -· ..

,_ .• ..

,, .. .• ,_
'" " <C

.. ,,

" "' _.J .,~
"1.,:J l:J
!- :'l: ..
0 ,,

... :::. 1'U :.. ,,,
~ _,;-,
' ..

...... .,.:.,
111 11'i
11,il r.=
"'­" .. 1111-lo
r- ,..,.
•Y..111
0
~- r.=

•U ,, .. ,
tV ·::::

!:.. l:_'t

'U 1;')
:> 171..

'~
•1.1 •U
•..J..:0:: .
> •> .. ., ,

... _ •.:: :=
.;:; !-

~~ ... ;~
,:.,...,.ll rt.I
>- :::1 !­.• , ,,

1::>,. ..
10 .. ,
:c •:::> l.J
1- 1n
1:> •1.1
,: ·- '·'

~~ ... :~
..,_. ·~

..... ':I ::

:u :~ ·~

l.J
•:.. i=

l:l 11,1 d,J

...... :J: ·=
0 ..

::1-t.ll
•• -i:J := ~ ,.,•
-~"' "'., 0 0

'"""''"' -· ...

•n ·u
;~ ~~ :~ ;~

•n .;:i
l:'I •:I != •fl
1: 1.ll 10
!1' !- ;:i ·= ~ 11 '=
•-' ~ 1= "':>-.
n a 1u ·.J

:~ 4- ~; :~
11;! 1.ll •1

:~ :~ :u ·=-
.1-:: ,.,

•ft 1.n 1.ll

........ •ti ";;J
::: .• •II ~<

.. :. :-=:
•:;) >~ .. .;.
- .. A Fl.I !::

.:i: 1::: •J.I
,,.,.C:l .;.ll

,:: -..J ~n •n ·= 1:..

~~~~:~ 
t';I e:::1::i •::J 

''""' ..... s= lJ 
•.:: ftl != 
;::J x .. -:: •-4 

" ,:_ ,.._ 1.n 
0"' 0 '•- .. : 

...... +.ll:: 
1::i ,,, ~-1= .,._ ..... :e 
1l;I ........ ... 

c -· :c .. f\I •ti 
I:) ;>.. ..1: ...... 
!.J """ 1-' .. _. 

l:U != 
•1.1 :"> :>.. w 
............ i:- ,,. 
1t1 ..,_. +.ll u• 
!- 11J •U 
11J i:: .. 
1:.. !'- """l 1.lO 
•U 41 I:) 1U 
•n ~ ·-:. .,;: 

>­
:~ <.C 1'0 -

" :~ 

t• .. 

'" ,_ 
•U .. .. .. .,, .. 

.. . .• ,_ .• ,, 

.• .• 
IU ,.. ... 
1- -· .• "' 
111-., 

" •• >-
1.n r-,_ 

.. n.! ~ . .. .. . .. 

l...J .:.­
~= l:J 
<C 
:?:: ... _. 
LJ r=: 
co:: ::s . ., ., 
.::.;: 1n 

;~ ;~ !-

::;:: 1i ru 
l.J "'' r:: 

\:: 
1n 1¥ ... ,,, ~ 

c_ ,_ 
:::i 0 ,,, 
:::::: :• 1\1 
c.:i .. .:11 
c::i :Jo. i: 
_J ·- fl.I 

1:11 :IC 
... ., :::i 

!- 1.,1 •.J 
•:J 1\1 •:II 
~- ,_ "l:J 

.,., ,,, 10 ,_ ., 
:i ., 
" 

llJ •= ,_ •:n 
•11 :::J , .. 
:-a•:::>-·::. 

!:.. ,;:; 
•?: ..c .. ::. 
IU +JI 0 
.. = ' 
• ... 0 t:L .,, 
"t- •fl 
I') ·= .... .. 
ru •.J •II 

:·::: '""' 
•JI •11 ... :: 
!!'I := .,._ 

f-' Ill 
,;:; •II 

1: •:: 1U 
~ .... •:&. ~~ 

•11 0 1,1 0 
•II _ .. J:::il ,,...,,'ti 

1n .. != 
i- 111 .... 111 
f1.I 1-.I u"I .i: 

<t- ...... ..:. 
'4- 1.n •O 
:J i.n 
1:» !':: ·-= ,u .. .. 
.. ..:. "I;, 1.:r~ ·<: 
1n •ll ?: 10 
11:1 +:. .... ,,, 
,::.,. ......... _. 

~ m tJJ 
•1.1 .... '" ..,: .......... ,::::.. .. -" 
•1 .. . .. 

., 
•U ,. 
., ,,, 
} . 

,_ 
i:... Ill 

on (\I 4-
!: 4- 4-
•:J 4- ::s 
~ .. '.:I .,:, .. ,, 
11. •IJ 
~::i Ill .. .:ti 

t-- ~~ :~ 
1.IJ •ll rt.1 
(.I"),,_':. 

,_ ,, ,_ 
~ .. 
•C 
•C ., 
•J 

,_, ~~ 
~ "1:1 .. 
,,, .,.:11 

on oU ~..., 

:~ ::! '~ 
.:,.... ,,;:, .. ., .. ·­
"l,:t "T:J ':;I 

~ Q,I • 

r: ,_ "':'I .... 
"l:'I 3: ·= _.,. .... 
::i ,,, .,_ 0.., .. 
::1 1:_ "l:;:I .,, 

3 1:... .• 
,:::i 1J,1 on 

"'" ,, .. 
..... .1: _.,. 
~- +.:. 111 

:>. .. -" ;; 
r- 1U .,.,. 
·::i ..i: +:. 
;.:ti ... _. ..... 

..... ,.:ii .... .., 
i:... -t-" 11' .. "' ""::t-+-" ... ., 

1.n 1.n 
!:= ::i .... .3 .. , .... 
:c r- •:'I 

..... Q.I 1: .. "' 
•U .. .. 
" 

.~.., 

:: ll.I 1: 
•::) ~ 1U 

·= .. .. 
·= 
'" c 
·c ,, ,, 

,_ .. .. 
'" 

,, ·-

" tJ 

,_ ., ,_ 

" ,,_ 
:.~ ., 

,_ ., 

'" ,, .. 
to ., 

., 
;~ :~ . ..... ,_, 
•• 4- llJ 
:i.. .. ., .. ., -....... 
,..,. •u 1;, 

,.. .. IY:, fl.I .... :-
1..I 1a •U 
10 ..... .1::11 ,_ 

1.n •"JI ../= ::a-- .. ., 
'-' 11:1 
i- :i: 1n 
,1;11 ..... 1n 

~ ~~ -~~ ,_ 
11,1 != .. ., 

, • .,. 11' 1n ,.,, ... . . -· " >: 

•U 1U 
...:. .... 
IQ ,_.,. 
,,, <t-

.. 
:t: .. _. 
::i: •Ill 
1: ,,, .... 
.~:. r.:r.. :::1 
.::::. 1': J~ ........... 
......... .:. ::::a 
1-- .... 13 
.. c 11.I 
.:::. ~- •U 
I·- "t- .1: 
L•J .a ,..:11 

<? 

;~ 
'~ 
" tJ 

.• .. 
'" .. 
;~ 

·­.. . 
. '" ·= .. 
. 
·= ., 
,, .. 
,; 
•> 

.• 
'" 

.. 
J ., 

,J 

, ,,, .. 
" ., 

·= ., 

·u ,.. 
•.:r• r:: 
•• 0 
•.fl CJ 

'" t--
•11 t -:c .. :c 

111 =· ;. ....... ... 
,:r .... )-
•U ::. c._ 
,,.. •U c:::a 
1:&..l.::t C..J . , 
'-' r.:: .._ 

•• 0 .• 
•11 •U .,..:. 

:c ::J 

~~ :~ 0 

:-: ~ ~~ 

1-- •il 
1-- l..J 

" 

'" <::') ..... 

T- 11) ' ,, 
(.J •.'.> 

~~ ~~ •fl 

1= ···- •\I 
•.!I •:r ~ 

i:r:. ..,., ,._ 
<"::I Ill .... .... -., 
r.":J .... ~·~ 

•11 ,_, • 
.:...i:: ru 
......... 4-
..... 1= •:) 
...... •11 .. 
Q,I IU •U 
:r.::: <t- .... 
-e::: •11 !-

~ 'I" :~ 
IT• ui 
0 •• 
r- O:) 
.::.. ,_ :~ 

....... :r 
<: 
111 11J "l.;:t .. .. 
i.n ~n '-' 
:>. ru i.: 

CJ) -r;, ru 
..... r­
:> •• 

!:... 1;J 't-
o!- 11.I 

11 !-

"· . _) ~ :: 
I :1 ' .. ~ .) 

·= •" ;~ 
.... !-
• .. "'."1 II.I 

<U '·- l\t 

' LI ~ -:: 

~; ,:; :-
" •U ,, .. 

' •U 

... 1= 
·1- 1n , 

·:a.,,, 
, .... :; -1..:0 
::; I~ ... 

•:J ,.:. , .. 
"l 0:) 11'.I 

•U .. ._ 
,;: J: 11'1 

:~ ..,,, :~ 
~= !- ,_ 
"):I) l:J 

111 ··- ~~ 
•.T) 111 
•11 ... .1: 
.... 10 •::n 
1.n 17'. ... 
11 .... .1: 

" t.J ,, 
•U 11'1 r:: 
.:: ;; '.! .. 
111 ·= '~ T• t.r.. 
~= .:l .. ., 
1tl 1:r ;.; 
::: r:: IU 
'-' ru .. .,, 

·:: ,, .. 
:~ ... :c .• " 

I'.) •1' 
l]J .. ,, .. <ll ·-

.... ;n •.J Ill 
....... ",( .. •1 

<t- ,;:i :~ iU l1I 

1..:0 •:t ..... l,:t J::r 
10 11"1 •":I 

.:: ... f'·· ;; ;) : ... 
~: ~i ~~ 
>< •• 

" r;r.. '11 • ., 

~~ ~:; :; .• 
•.J.:) ..... 

,: 
;:. • .:: 17,I 

iu '-' 
,,, :# "l'.:I 

:-" •11 
·n i:i 

1U ;:i 
..... 1:'1 - .. 

:; ·~ :~ 
IA 4- , ... 

' 11J 11' I)') 
'~ ti.I 

:c .... , .. 
r:) .. ... 

1:.. .... 
~- ... •ll 

•ll r:: 
1:.. i= 1:r 
0 •:t .... 

... -1.:0 
•JI ..,_, .::... 

-..:11 .... l::J ,, 
11.I ,:i •11 

..... tTl ,") 

~- :~ ;~ 

'" m ~~ :~ 
r: 

I;:~ :; =~ 
;; ·:~ ;~ ... ~~ 

<t- 1tl .. .:. 
1u , .. 1..1 

.,.:. •11 •11 1-lo •lJ 

~~ ~; '.~ ;~ ,:i 
":I ·:::i ..... 

• ... ::o-. •-:r .:::i 
.. : 1::... J: •1.1 0 
.. .:. l:l 1-lo .,, .. :: 

1..1 .... 1n 
,,, :J: •":: 

,..:. :.... '3 
111 •·-I ,--1 •':L. 
,,., .... ::J •::J 

10 C,- • •.J 

~=- ~~ :: ~.~ •11 ..... 
!= •.J :I n ,:: .:.~ 
17.I Ill ,,_ ... -t..:O t:.. 

0 .,_•!I.... ... :s: 
... .. ..,.:. '" .'l) != 
111 .... 0 "l.;:t 
,,.. 1::: .,;:J ..,.:. .......... 
1.:0 1::1 •.J .. .:. ::r 

Ill l"IJ 0 
.. .:11 .:: 1:.. :c ·= 

•":JI 1::... ..,.:. .c ,_ 1n 
.. .:. t::J •;) 0 

1:: '-' ·- •• 
•11 r:: 1;:. 1::: t--
... 111 :>. .... t--

,_, ,... II 
'1- 111 .. ..,,, 1U •• 

;:. ·- ..,.:. t--
tU Ill ~-lo 11' 1\1 t-­
:; .,:: c ••• 1::a.. lJI l,T.. 

17' ~: ·:; :~ :~ :~ 
·= .. 
'~ ,,, 
•> 
tJ 

-. '-I O> 

" 

~; 
•":JI 1::: 

iU :~ •.l 

~; •:l ~~ 
•LI •I.I 1:: 
:> 11"1 1:11 
1- .... l.J .... 
1n r- •.:II 
111 1U .. ., 

1- ·= f::li.-1-" ,., 
:.:JI 11:1 

"13 rl,I -· " •.:JI 1.::t i:: 

:~ :}: :~ .,, 
•U 1:J 
11 • .n i:: ....... ,., ·- ·~ .. 
1..J 1:::J on 
........ -1.:0 .. .:. . ., -... 
IU ,~. ::r 
r:: •::J ,,, 
IT, IU 
....... J l-1: ,.._ 

•C •ti 
•:l '::. •11 .,_, ~ - ...... 

ll.J .... 
i;r. U') 'I-

'~ .,, ., 
u 



F11es-1i fun;at in FL.l:X ~i.::i:f1n1tely n:s;;:, ??? v;,x; \wvw;1 

SGUE~ZE tu be able ~o cupy to a d1sc-i~~9e f11e t~nere~y of 
~iniMUM size) for a later CC?~/DEVICE/F!LE. 

SGIJE.EZE tu ~e eable to ap~i:n.:: f1!2; fron une •:le'v'l\:e ui-1i.u 

another de~1c~ already cu~~~ialn~ fl:e 

SYS~lD etc: 

• WilG card/chara ter ;ubrout.1~2 l~ Sr~~1B ;fGr ~d~i~~ =,: 
i:apaU1lit Ei ca;1!y/. Li:cali:e tt,i; one i; tti:i;t 
~ifficult J 

~Y~L!B, fCRLIB dui:UMCiit~tion= an i~d~x ~i fu~ct1~il la; ~~i~ ~~ 
by fiirie) as can De hard ;a find wh~~ is ~,61!~~~e. 

S'i'SLlB su;:iport fui- .5ilTTM EilT. 

*'*;~·*·~~-~··•******~********~~*;*~****¥*******:~***************~*:~ 

FORTRAN IV 

Good 1NTEGER•4 suppG7t. 

InCLUCE-fileni~e for CO~riGTI and ~ata block;. 

PGRT~~N 77 - ar if th~~ ; to~ ~~rd, 1~0RT~~N lV 11..U,J • ~?.i.ac.s~!i 

S~pport fGr virtual array; un ~ii~ f1las 'fGr littl~ i. .. uy 
.. ~ -.. - ·- --, \ Hdt..11.r.i1c::t; I• 

~~i::.:;.t:y to ct.ac~ ru. ~i7l~bla; ~hie~ ~ppaar un.i.~ ~n ~.~~ 
r:;.-at1t-t1or,d ;i~c uf e;;~ta;;1jjr,; 

~tiliti to hiYi errGr; ~~d ~ar~1~9~ s~~L to tne ter~lF~i UI -\,iJ vi-I 

~~tput file ~1thaut ijii t~~ c~;t ~ft~€ l1stin~ \: ,~~~~~'· 

:~~~****;***~'********'*****'****;*''*****;***************~~******=~* 

Miscellaneous 

• Su~er Stor Trek: ni;s:;,n:j file called f'LP.G:JC.S~V! \. t;(1yiH11: l '1i .UC:C;.; 

.~~ can put M~ i~ to~c~ wlt~ t~2 ~r:;,tars 0f .. - - . - -·· - -~ - -- ·-v iLI..;;. d,;;1;:111 .. I .r.;. Cd 

Yi"ij:Fanttc'";' .r. 1t wi:iu.r.Y ~e Yii.iC~1 
_________ ._ ... 
0!-'f.11 C\. .a.Q .. ~._. 0 , 

' ~ C't'l ..... •• _,_ - ..1 - • ..1, ••••• 1 1 ., I \ 
\.r."u ~1tCllll,,ld1u, udvu1a.a..r.y:1. 

!"ti_,,...,.. n1HU•T>1r> -•• 
a.lt...r...J,J ~~_!J.!J~~~ UIJ I l.'I 

,_, .. __ .. 
\Cl.1.1.1~.I." ::14,UW; I 

26. 

RT-11 WISH LIST 

LOS ANGELES 1981 DECUS SYMPOSIUM 

Before you read the Wish List from the Los Angeles DECUS, I want 
remind you that Wishes are accepted all year round, not just at 
oiyearly symposia. All you have to do is to send me your suggestions 
enhancements that you would like to see on RT. Just write me: 

1. 

Marilyn Runyon 
39 Locust Point Road 
Locust, NJ 07760 

Special Directory-Structured Devices and RT-11 Magtape: 

to 
the 
for 

In the current (4.0) and previous (3x) versions of RT-11 magtape was 
supposedly supported as a special directory structured device via the FSM 
module. In fact, this is not the case. Large amounts of device dependent 
code are included in PIP, DUP and DIR to support the file structure on 
magtape (MT, MM, and MS) and casette tape (CT). The following is a 
proposal on a method to support special directories under RT-11. 

1) Support a form of the .LOOKUP cequest which returns the file name 
of the opened file. The form used would be: 

.LOOKUP area,chan,dblk,seqnum 

where the file name is null and the seqnum argument is >0. The file name 
would be returned in the dblk area in RAD50. This Jata could then be used 
by the utilities to do wild-card lookups and directories. 

case 
Data 
data 

2) Support a reserved .SPFUN call to initialize the device. In the 
of RT-11 mag tape this would write the VOLl header record and LEO'r. 

for the volume label (Vol-ID and Owner) could be passed through the 
buffer. 

3) In handlers with the FILST$ bit set, allow support of 

.DELETE amd .rename requests. 

The fallout of these changes would create the following features: 

l) An alternate FSM module for the magtape ilandlers (FSMDOS?) to 
support DOS-11 format magtapes. This would allow RT-11 user to read t.1e 

Structurea Languages SIG Tape would 
friends. (Also FSMRSX and FSJ>IRST ??) 

invonveniencing our RSX 

2) Alternate device handlers for other meaia to allow (among 
working with IBM Interchange format diskettes without FILES. 

(Kenneth Bell, Cucamonga, CA) 
2. Need Shareable XM regions. One joo can use an XM region for 
instead of MQ and reads and writes. 

ana RSTS 

others) 

mailbox 

An option in the linker to provide Virtual common for FORTRAN. Now 
virtual arrays are not shareable but it would oe nice. 

27. 



Option to fix location of an XM region for special devices that can 
use it for data acquisition, i.e., A/D converters. OM virtual. 

{Ned w. Rhoaes) 
KED would be nicer if it told you the NAME and SIZE of the file edited 

upon exit (like EDT). 

4. I need RT V4.0 Sysgened baseline and RX02 - is this a possible 
combination. Also need VT-11 support and multi-terminal support as a 
combination. 

5. We want RT-11 FORTRAN-77 ••..• Actually wnat we really must 
have is a FORTRAN that generates efficient coae for the FPU, anci perhaps 
the FPFll accelerator board for the 11/23. What are the specific problems 
with bringing FORTRAN-77 UP on RT? Is there anything we can do to get it 
implemented? 

(Robert Walraven, Univ of Calif, Davis) 
ti. l<e need an option for DIFF /PR!, DUMP/PR!, PR!, DIR/PR!, 

/TDSTAMP DIFF/PRI/TOSTAMP DUMP/TOSTAMP, PRI/TOSTANP, DIR/PRI/TOSTAMP 
will place date and time on first line. Also, a way to place directories 
of many devices on one device and search for which devices contain 
file.typ. Need support for Directory annotation. Also a means to force 
reread of directory segment to detect a swapped floppy disk, for instance, 
SET for • EN'fER .CLOSE, also programmed requests. 

PIP Copy/wait would permit swapping to DXl: from input,output 
without disturbing DXO:=SY:. Make LF at end of print optional. It is NOT 
now possible to print 2 files with a trailing FF and print the next file 
at the same place on the page without backing up the line prints manually. 
COPY/QUERY/COMPARE - COMPARE would place on screen a line as follows with 
length ana date: 

DEV:FILE.TYP LEN DATE to DEV:FILE.TYP LEN DATE 
{if file exists on output device, place marker here 
and show existing file) 

This would simplify decision to copy or not wnicn presently requires 
composing and marking to alpha behind ctirectories. 

RENAME/SETDATE:DD:MON:yy - place date optionally as parameter to 
command rather than system date. 

SET 
Make trailing formfeed optional for compatibility with PIP. Like a 
QUEUE (NO) FORM z. We place a trailing FF in our text files which 

allows us to print multiple copies with 

SET LP:NO FORMO. Queue gives a blank page between each copy of the 
file. 

Option to have Queue pause before a selected job printout for 2 paper 
change. Option for narrow or wiae banner page. Option for one line 
header at top of first page of printout, QUEUE DEV:file.typ len file-date 
real-date real-time. Command to purge queue of jobs. Provide ·;ueue 
service for DIFF, DIR, DUMP etc. .DIR/QUE .DIFF/QUE 

.DUMP/QUE, auto open aump file and place name in the queue. 

28. 

Support for RA80 as 8 logical devices on SOME new winchester storage! 
[J control character to exit program without swap auch as D. [J control 
character to exis programs and save status so that one can continue from 
where he left off - a proceed, so to speak. 

(P.F. Fitts, Innovatek, Millerton, NYJ 
7. What are the differences between FOFTRAN-PLUS and FORTRA.~-77? I would 
like to see PLUS on RT and have been told that it is not supported. I am 
a first-time DECUS attendee and am sure that it has oeen asked before. Is 
a version of FORTRAN .with PLUS features possible or available? 

ti. I wish a means of defeating the device" full" restriction when 
adding a file with a size greater than one/half the available remaining 
space. 

KEO. 
!:I. 

{Thomas G. Barnum, Bradley Corp, 
Menomonee Falls, WI) 

Make some utilities VIRTUAL jobs on Version 5, for, example, 

10. FORTRAN WISH LIST {RT-11 FORTRAN) l) Virtual arrays changeable 
from FORTRAN subroutines. 2) Commons as virtual array entities. 3) 
Better integer*4 support {as genuine data type). 

11. Tell us enough about STATWD bits to ascertain whether another 
line of input exits in a command file. This would allow a program to 
receive a variable amount of input from an indirect command file and then 
switch to user-friendly CRT prompts and special TT mode to solicit input 
from the user when no more input exists in the command file. (i.e., no 
echoing). Please do the same in the FB monitor. 

12. 
support. 

{Bob Natale, International Computing Co.) 

Want FILES-11 {RSX/VAX) support in FILEX. 

{Ian Hammond, Hammond Software) 

DOS mag tape 

13. Want support in FORTRAN (READ-WRITE) for multi-terminal. 

:4. This is a rewrite of one probably thrown away on Monday. 
Instead of just writing the device full message when a file to be written 
is.larger than 1/2 the remaining space on the volume, allow the user to 
decide whether to force the action. 

(An explanation of the above is necessary for those of you 

who were not at Los Angeles. The clean up crew at the 

hotel did their joo so well on the first night 

that our Wish List box was in the RT-Ll campgrouna - it aisappeared! 

Tnis happened to all other such Wisn List boxes, too, so we were 

not unique. Fortunately, I 

had emptied it at 10:30 that evening, so all was not lost. 

Neealess to say, it was replaced. M.R.J 

29. 



15. In the System User Guide, command section, put back in the 
command names in the upper corner of EV~RY page. You had it in V3, but it 
was lost in V4 and makes the manual mich harder to use. 

Make it possible to assign a terminal as LP: (an LS:-type driver) in 
a multi-terminal system. 

Make it possible to obtain control in a multi-terminal system on an 
arbitrary terminal. If we need another option than having to FIND the 
active terminal and issue SEE TT CONSOLE=n on it. 

FILES-11 support from FILEX!!! 

16. would like to see 9 track mag tape DOS format support in 
FILEX. 

(Steve Macha, Consultant, Stafford, TX) 

17. If not multitasking, why not two tasks only - not an unusual 
need for a single user or use a FORTR&~ program in background of FB type 
moniter. 

In KEO enter a select field as a find model, set left margin. 

Want FORTRAN FF on RT-11, C and/or PASCAL for RT-11, and BASIC 
debugger for V4. 

18. On RT-11 magtape handlers, PIP copies put the CURRENT date on 
the tape. Since I use the file dates for aocumenting revision levels, I 
NEED to have the file date as stored on the disk transferred to the tape. 
My use for a /SETDATE option here is minimal 

(Glenn Sever, NASA DFRF, Edwards, CA) 
l~. How about efficient mag tape use under RT-11, ie, to back up large 
disks. (Program similar to ROLµIN.)-

20. MQ handler should use RAD50 names so programs can use STANDARD 
I/O calls. Need an entry point in FORTRAN OTS to tell us how much memory 
is available before we call IGETSP. 

21. In SET TT:SCOPE mode, please handle deletion of control 

characters 
characters 
character. 

correctly. Control characters display 
(including "") but ruoout on.1.y removes 

as two graphic 
tne alpnabetic 

2~. Need user written duplex serial device drivers ana aoility in 
PIP to handle unlabeled (or in general, non-RT-file structurea) mag tape. 

23. How about a DEC supported C compiler and support liurary for 
RT (now tnat DEC is working on the same for VMS). Change ODT to use 
.TTYIN etc instead of hard I/O so that when in a multi-terminal system and 
tne console has been changed, one can still use ODT. 

24. Provide an option to pass all keyooard input 
application (including S, Q, C, o, etc). 

to the 

30. 

1'ditor's "Tote: 
The R'!'-11 SIG would li.ke the wish list to be representative of all 

RT-11 users (not just RT-11 users at Symposia). Therefore, if you have 
<iny co~"lents concerning either R'!'-11 wish list, please send them to me. 
I will forw'lrd ~11 com'!lents to the R'!'-11 develop"lent rrroup. 

SYMPOSIUM TAPE INFORMATION 

"'".e following ,chP-nges are a fix to the S"GL?O Gr'lphics p,-,ckage which 
1 subMi +ted to the RT-11 SIG Tape in Los Angeles. The probl~rn only occu~red 
if you build the package for a CPU that does not have flo~ting point hard­
w~re, Edit the file l)ISTIC.MAC and "1"-ke the following chsnges. 

Insert the following SUB instruction between lines 65 & 66 1 

6 5 XS~'fR 1 • WORD 0 
SUB #4. ,R4 

66 CALL S$AVARG 
; leave R4 pointing to xstart 
;save regs 

Change lines 130 & 131 from-
130 .WORD t!!OFtMM,XtRANGE,M$XRAN ; set up max arg 
131 .WORD MOI IS,X 11'.XCOR ;get max range 

toa 
130 .WORD MOF$MM,Y$RANGE,M$XRAN ;set up max arg 
131 ,WORD MOI$IS,Y$l'l'XCOR 1get max range 

Additirm'1lly, chan!!e 8.ny occurrence of M!ilOVCUR to MVCUUi"l the 
r-out i ne s FLTXT. MAC, "LTXTI. MAC, PLTSYM, MAC, TXTGRD. ~1 AC, & TXTill'T, MAC, 

I have .iust finished implenienting the necessary changes to SFGL70 
to ~llo"1 i.t to be used with 1JEC BASIC, I will be subnii tting this "lew 
pqckage to the Spring 1982 t<>pe in Atlanta. If you are '°' BASIC l"nguage 
c:s<0r ~nd would 1 ike to try the package before Msy ple8 se contact me. 
I '1eed the test sites. I''Tl sure there "lust l:Je 'T!sny people using BASIC 
who ~ould like to have graphics capability on the~r Tektronix or VTlOO 
terminals. 

Jl. 

Ken Demers 
203 727-7527 



DIGITAL EQUIPMENT COMPUTER USERS SOCIETY 
ONE IRON WAY, MR2-3/E55 
MARLBORO, MASSACHUSETIS 01752 

MOVING OR REPLACING A DELEGATE? 

Please notify us immediately to guarantee continuing 
receipt of DECUS literature. Allow up to six weeks 
for change to take effect. 

( ) Change of Address 
( ) Delegate Replacement 

DECUS Membership No.:--------
Name: _____________ __ 

Company: ____________ _ 

Address:--------------

State/Country: -----------­

Zip/Postal Code:-----------

Mail to: DECUS - ATT: Membership 
One Iron Way, MR2-3 
Marlboro, Massachusetts 01752 USA 

BULK RATE 
U.S. POSTAGE 

PAID 
PERMIT NO. 129 

NORTHBORO, MA 
01532 


