
THE I I
fll " e DECUS

·\- la1kc111111111111111111111111111111111111 RT-11 SIG NEWSLETTER I 111111111111111111111111111111111111

October 1983

PIP LD

DJ]l

PAT

XM

FIL EX

4tolV

Q~~"'

~
CDEQJS

U.S. CHAPTER

Volume 9, Number 4

est

llELp

Printed in the U.S.A.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL
DECnet Digital Logo
DE Csystem-1 0 EduSystem
DECSYSTEM-20 IAS
DECUS MASSBUS
DECwriter PDP

UN IX is a trademark of Western electric Corporation

Copyright© Digital Equipment Corporation 1983
All Rights Reserved

PDT
RSTS
RSX
UNIBUS
VAX
VMS
VT

It is assumed that all articles submitted to the editor of this newsletter are with the authors' permission to publish In any DECUS
publication. The articles are the responsibility of the authors and, therefore, DECUS, Digital Equipment Corporation, and the
editor assume no responsibility or liability for articles or Information appearing In the document. The views herein expressed are
those of the authors and do not-necessarily express the views of DECUS or Digital Equipment Corporation.

•

•

•

•

•

THE I I fn ft e DECUS . leikc• n 111111111111111111111111111111111 RT-11 SIG NEWSLETTERlll I 111111111111111111111111111111 I I I

October 1983 Volume 9, Number 4

TABLE OF CONTENTS

ADDRESSES
Newsletter Submissions •••••••••••••••••••••••••••••••••••••• J

FROM THE EDITOR
Volunteers Needed ••• 4

USER INPUT
Documentation Directory For RT-11 Device Handlers ••••••••••• 4
Patch To Allow RT-11 V5.0 RXOJ Support •••••••••••••••••••••• 11
Bit Manipulation Program •·•••••••••••••••••••••••••••••••••• 12
RT-11 v5.o Extended Memory Patch•••••••••••••••••••••••••••• 19
Cursor Driven Command File Driver••••••••••••••••••••••••••• 23

USER REQUESTS
FRT.MAC Question •••••••·•••••••••••••••••••••••••••••••••••••34
RT-11 VJ Serial Printer Handler ••••••••••••••••••••••••••·•• J4

USER RESPONSES
Change to DATE Program•••••••••••••••••••••••••••••••••••••• 34

UPCOMING SYMPOSIUM INFORMATION
RT-11 Session Notes ••• 35
Las Vegas Schedule •• 36

PAST SYMPOSIUM INFORMATION
306A Clock Board Support •••••••••••••••••••••••••••••••••••• J8
RT-11 Macro/Fortran Interactions •••••••••••••••••••••••••••• 46
MACDBG/RT-11: A User's Critique ••••••••••••••••••••••••••••• 48
Creation and Handling of Multi-Volume Directories ••••••••••• 49

SOFTWARE PERFORMANCE REPORTS
SIPP/PIP/Backup Problem.;••••••••••••••••••••••••••••••••••• 50

SYMPOSIUM TAPE INFORMATION
Call For SIG Tape Submissions ••••••••••••••••••••••••••••••• 51
Tape Copy Release Agreement ••••••••••••••••••••••••••••••••• 51
Tape Copy Release Form·••••••••••••••••••••••••••••••••••••• 52

2

THE I I m n • DECUS ta1k••fll 11111111111111111111111111111111 RT-11 SIG NEWSLETTER I I II I I I 11111111.1111111111111111111111

October 1983

Contributions to the newsletter should be sent to:

Ken Demers
MS-48

Volume 9, Number 4

United Technologies Research Center
East Hartford, Ct. 06108
(203) 727-7139 or 7240

Other communications can be sent to:

John T. Rasted
JTR Associates
58 Rasted Lane
Meriden, Ct. 06450
(203) 634-1632

RT-11 SIG
c/o DECUS
One Iron Way
MR2-3/E55
Marlboro, Ma. 01752
(617) 467-'+141

3

•

•

•

•

•

From The Editor

I still need more volunteers to convert the audio tapes recorded
at DECUS Symposium RT'-11 sessions into articles for the "Minitasker".
You will only be responsible for converting the tape from any one
session. Please contact me as soon as possible.

Thankyou,

Ken Demers

USER INPUT

- DSIR --DEPARTMENT OF SCIENTIFIC AND INDUSTRIAL RESEARCH

APPLIED MATHEMATICS DIVISIOW

P.O. Box 1335 Wellington New Zealand
Telephone (4) 727 855 Telex 3276 Research
7th Floor Rankine Brown Building Victoria University of Wellington -· ... '
SCIN 123:1 3 MAY 1983

A DOCUMENTATION DIRECTORY FOR RT-11 DEVICE HANDLERS AND INTERRUPTS.

R. D. BROWNRIGG

ABSTRACT: An exhaustive list is presented of those references to device
handlers and interrupt processing contained in the DEC
documentation available for the RT-11 version 4.0 operating
system.

1. INTRODUCTION.

The following references are to section numbers figures, and tables
contained in the various manuals available for the RT-11 version 4.0
operating system. All references have direct relevance to device
handlers in particular or interrupt processing in general. In some
cases, further information is provided in parentheses to clarify exactly
which aspects of these topics are men~ioned or discussed in the
particular section referred to. Page numbers are also provided.

The manuals referred to and their abbreviations are as follows:
MAM - DIGITAL 'microcomputers and memories' handbook (1982 edition)
GEN - RT-11 Installation and System Generation Guide
SYS - RT-11 System User's Guide
REF - RT-11 Programmer's Reference Manual
SUP - RT-11 Software Support Manual

4

2. DIGITAL 'microcomputers and memories' handbook

ARCHITECTURAL OVERVIEW
PROCESSOR STATUS WORD (interrupt priority)

PROGRAMMING TECHNIQUES
POSITION INDEPENDENT CODE (virtual address space)
STACKS (subroutines, interrupts)
INTERRUPTS (interrupt enable bit)

LSI-11 BUS
INTERRUPTS (vector, device priority)

MEMORY MANAGEMENT (kernel mode, user mode)
MEMORY RELOCATION
PROTECTION
PAGE ADDRESS REGISTER (PAR)
VIRTUAL AND PHYSICAL ADDRESSES

3. RT-11 Installation and System Generation Guide

1.1.3.2 Do You Need to Perform the System Generation Process?

MAM CHAPTER
MAM CHAPTER

MAM CHAPTER
MAM CHAPTER
MAM CHAPTER
MAM CHAPTER

MAM CHAPTER
MAM CHAPTER

MAM CHAPTER
MAM CHAPTER
MAM CHAPTER
MAM CHAPTER
MAM CHAPTER

(device I/O timeout, error logging, extra device slots) GEN 1-14
Table 1-5 Features Available Only Through System

Generation Process (device I/O timeout, error logging) GEN 1-15

2.8.13 ~nstalling Other Devices (RT-11 bootstrap action) GEN 2-31

8.2.3 Monitor Services for Target Applications
(device timeout, error logging) GEN 8-5

8.3 Studying the SYSGEN dialogue
(device I/O timeout, error logging, extra device slots) GEN 8-15

F.1 System Conditionals (device I/0 timeout, error logging) GEN F-1

4. RT-11 System User's Guide

1.2.2 Device Handlers (definition) SYS 1-5

3.3 Physical Device Names (standard names) SYS 3-3
Table 3-1 Permanent Device Names SYS 3-3
3.5 Device Structures (random access, sequential access) SYS 3-5

4.4 Keyboard Monitor Commands SYS 4-15
(INSTALL device handler) SYS 4-112
(LOAD device handler) SYS 4-126
(REMOVE device handler) SYS 4-139
(SET handler characteristics) SYS 4-149

Table 4-13 SET Device Conditions and Modification SYS 4-150
(SHOW device assignments, handler status) SYS 4-160
(UNLOAD device handler) SYS 4-176

5

•
2
2

8
8
8
8

9
9

10
10
10
10
10

•

•

•

•• '

17.1 Calling and Using RESORC
Table 17-1 RESORC Options
17.2.3 Device Handler Status Option (/D)
17.2.6 Device Assignments Option (/L)

19.1 Uses (error logging)
19.2 Error Logging Subsystem
Figure 19-1 Error Logging Subsystem

5. RT-11 Programmer's Reference Manual

1.1.2.7 Programmed Request Errors
(processor status, error byte)

1.1.3.1 Initialization and Control
(I/O requests, timer requests, queue elements)

1.1.3.5 Input/Output Operations
(I/O requests, completion routines)

1.1.3.7 Timer Support (timer requests)
1.1.3.11 Interrupt Service Routines (.INTEN, .SYNCH)
1.1.3.12 Device Handlers (special macros)

2.12
Table
2.16
2.17
2 .18
2.19
2.20
2.21
2.22
2.23
2.24
2.29
2.30
2.37
2.38
2.57
2.58
2.63
2.76
2.79
2.80
2.92

.CTIMIO (cancel device timeout)
2-1 Timer Block Format (I/O timeout)

.DRAST (driver asynchronous trap)

.DRBEG (driver begin)

.DRBOT (driver bootstrap)

.DRDEF (driver definitions)

.DREND (driver end)

.DRFIN (driver finish)

.DRSET (driver SET options)

.DRVTB (driver vector table)

.DSTATUS (device status)

.FETCH/.RELEASE (device handler load/unload)

.FORK (dismiss interrupt)

.HRESET (hardware reset)

.INTEN (interrupt notify)

.QELDF (queue element define)

.QSET (set queue length)

.READ/.READC/.READW (read/with completion/with wait)

.SPFUN (special function I/O)

.SYNCH (synchronise with user state)

.TIMID (I/O timeout)

.WRITE/.WRITC/.WRITW (write/with completion/with wait)

6. RT-11 Software Support Manual

2 .1. 3
Figure
2.1.4
Figure
2. 1. 5
Figure
2 .2 .1
Figure
Figure
Figure
2.3.4

Interrupt Vectors (standard)
2-4 Interrupt Vector Area
I/O Page (addresses)

2-5 I/O Page
System Device Handler (bootstrap)

2-6 System Device Handler
Device Handlers and Free Space (loading into memory)

2-11 SJ System with Two Loaded Handlers
2-12 SJ System with One Handler Unloaded
2-13 SJ System with Both Handlers Unloaded
Size of Device Handlers (where specified)

6

SYS 17-1
SYS 17-2
SYS 17-3 .
SYS 17-5

SYS 19-1
SYS 19-2
SYS 19-3

REF 1-12

REF 1-15

REF 1-19
REF 1-23
REF 1-25
REF 1-26

REF
REF
REF
REF
REF
REF
REF
REF
REF
REF
REF
REF
REF
REF
REF
REF
REF
REF
REF
REF
REF
REF

SUP
SUP
SUP
SUP
SUP
SUP
SUP
SUP
SUP
SUP
SUP

2-24
2-25
2-30
2-31
2-31
2-32
2-33
2-34
2-34
2-35
2-36
2-44
2-46
2-56
2~57
2-86
2-87
2-94
2-121
2-127
2-129
2-142

2-8
2-10
2-10
2-11
2-11
2.;.12
2-19
2-20
2-21
2-22
2-39

3.2
3.2.1
3.2.2
Figure
3.3
3.3.1
Figure
Figure
Figure
Figure
Figure
Figure
Figure
3.3.2
Figure

Clock Support and Timer Service
SJ Systems Without Timer Service
Systems With Timer Service (timer implementation)

3-5 Timer Queue Element Format
Queued I/O System (components)
I/O Queue (structure)

3-6 Components of the Queued I/0 System
3-7 I/O Queue Element Format
3-8 I/O Queue with Three Available Elements
3-9 I/O Queue with Two Available Elements
3-10 I/O Queue with One Available Element
3-11 I/O Queue When One Element is Returned
3-12 1/0 Queue When Two Elements are Returned
Completion Queue (structure)

3-13 Device Handler Queue when a New Element is
Added

Figure 3-14 Completion Queue Element Format
3.3~2.1 SJ Considerations (interruptibility)
3.3.2.2 .SYNCH Considerations (format)
Figure 3-15 Synch Queue Element Format
3.3.3 Flow of Events in 1/0 Processing
3.3.3.1 Issuing the Request (blocking)
3.3.3.2 Queuing the Request in SJ (I/O initiation)
3.3.3.3 Queuing the Request in FB and XM

(system state, holding)
3.3.3.4 Performing the 1/0 Transfer
3.3.3.5 Completing the I/O Request
Figure 3-16 Device Handler/Resident Monitor Relationship
3.4.1 User and System State (context switching, system stack)
3.4.1.1 Switching to System State Asynchronously

(interrupts, interrupt level, $INTEN)
Table 3-2 Values of the Interrupt Level Counter
Table 3-3 Job's Stack after $INTEN
Figure 3-17 Interrupts and Execution States
3.4.1.2 Switching to System State Synchronously ($ENSYS)
Table 3-4 Job's Stack after $ENSYS .
3.4.1.3 Returning to User State
3.6.1.1 Configuration Word (hardware, monitor, clock)
Table 3-9 The Configuration.Word, Offset 300
3.6.1.4 System Generation Features Word

(I/O timeout, error logging)
Table 3-12 System Generation Features Word, Offset 370
3.6.3 Queue Element Format Summary
3.6.3.1 I/0 Queue Element
Figure 3-24 I/O Queue Element Format
3.6.3.2 Completion Queue Element
Figure 3-25 Completion Queue Element Format
3.6.3.3 Synch Queue Element
Figure 3-26 Synch Queue Element Format
3. 6. 3. 4 Fork Queue Element .
Figure 3-27 Fork Queue Element Format
3.6.3.5 Timer Queue Element
3.6.4 I/O Channel Format (channel status word)
Figure 3-28 Timer -Queue Element Format
Figure 3-29 I/O Channel Description

7

SUP
SUP
SUP
SUP
SUP
SUP
SUP
SUP
SUP
SUP
SUP
SUP
SUP
SUP

SUP
SUP
SUP
SUP
SUP
SUP
SUP
SUP

SUP
SUP
SUP
SUP
SUP

SUP
SUP
SUP
SUP
SUP
SUP
SUP
SUP
SUP

SUP
SUP
SUP
SUP
SUP
SUP
SUP
SUP
SUP
SUP
SUP
SUP
SUP
SUP
SUP

3-9
3...;9
3-9
3-10
3-11
3...;12
3-12
3-13
3-14
3-15
3-15
3-16
3-16
3-17

3-17
3-18
3-18
3-18
3-19
3-19
3-19
3-20

3-20
3-22
3-22
3-22
3-24

3-25
3-25
3-26
3-26
3-27
3-27
3-28
3-51
3-51

3-54
3-54
3-59
3-60
3-60
3-60
3-60
3-61
3-61
3-61
3-61
3-61
3-61
3-62
3-62

•

•

•

•

•

3.6.5 Device Tables SUP 3-62
3.6.5.1 $PNAME Table (permanent names) SUP 3-62
3.6.5.2 $STAT Table (device status) SUP 3-63
Table 3-16 Channel Status ~ord (CSW) SUP 3-63
3.6.5.3 $DVREC Table (code locations) SUP 3-64
3.6.5.4 $ENTRY Table (entry points) SUP 3-64
3.6.5.5 $HSIZE Table (handler size) SUP 3-64
3.6.5.6 $DVSIZ Table (device size) SUP 3-64

4.2.4.1 Page Address Register (PAR) SUP 4-13
Figure 4-14 Correspondence Between Pages and Active Page

Registers SUP 4-13
Figure 4-15 Page lrddress Register (PAR) SUP 4-13
4.2.5 Converting a 16-Bit Address to an 18-Bit Address SUP 4-14
4.2.7 Kernel and User Processor Modes SUP 4-16
Figure 4-19 Processor Status Word and Active Page Registers SUP 4-17
4.6.5 I/O Queue Element (XM) SUP 4-59
4.8.1 PAR1 Restriction SUP 4-66
4.8.3 PAR~ Restriction SUP 4-67

6.2
6.2.1
6.2.2
Figure
6.2.3
6.3

Figure
Figure

Interrupt-Driven I/O
How an Interrupt Works (interrupt
Device and Processor Priorities

6-1 RT-11 Priority Structure
Processor Status (PS) Word

vector, RT!)

In-Line Interrupt
Handlers

Service Routines Versus Device

6-2
6-3

Processor (PS) Word
In-Line Interrupt Service Routines and Device
Handlers

SUP
SUP
SUP
SUP
SUP

SUP
SUP

SUP
6.4.1 Get to Know Your Device SUP
6.4.2 Study the Structure of an Interrupt Service Routine SUP
6.4.3 Study the Skeleton Interrupt Service Routine SUP
6.5 Structure of an Interrupt Service Routine SUP
6.5.4 Lowering Processor Priority: .INTEN (system state) SUP
6.5.5 Issuing Programmed Requests: .SYNCH (user state) SUP
6.5.6 Running at Fork Level: .FORK (system state, fork block) SUP
Table 6-1 Synch Block SUP
Table 6-2 Fork Block SUP
6.5.7 Summary of .INTEN, .FORK, and .SYNCH Action (registers) SUP
Table 6-3 Summary of Interrupt Service Routine Macro

Calls
6.5.8 Exiting From Interrupt Service: RTS PC
Figure 6-4 Summary of Registers in Interrupt Service

Routine Macro Calls ,
6.6 Skeleton Outline of an Interrupt Service Routine
Figure 6-5 Skeleton Interrupt Service Routine
6.7 Interrupt Service Routines in XM Systems

Figure
Figure
Figure

(kernel mapping, PAR1, .SYNCH)
6-6 Kernel and Privileged Mapping
6-7 Interrupt Service Routine Mapping Error
6-8 PAR1 Restrictions ·for Interrupt Service

SUP
SUP

SUP
SUP
SUP

SUP
SUP
SUP

6-2
6-3
6-3
6-3
6-4

6-4
6-5

6-7
6-8
6-10
6-10
6-11
6-13
6-14
6-15
6-15
6-16
6-17

6-17
6-18

6-18
6-19
6-19

6-20
6-21
6-22

Routines SUP 6-23

8

7. 1
7.1.1
·7. 1 .2
7.1.3
7.1.4
7. 1 .5
7.1.6
7.,. 7
7. 1. 8

How to Plan a Device Handler
Get to Know Your Device
Study the Structure of a Standard Device Handler
Study the Skeleton Device Handler
Think About Using the Special Features
Study the Sample Handlers
Prepare a Flowchart of the Device Handler
Write the Code (position independent code)
Install, Teat, and Debug the Handler

7.2 Structure of a Device Handler
7.2.1 Preamble Section
7.2.1.1 .DRDEF Macro (•MCALL, SYSGEN conditionals)
7.2.1.2 Device-Identifier Byte
Table 7-1 Device-Identifier Byte Values
7.2.1.3 Device Status Word (.SPFUN, aborts, internal queuing)
Table 7-2 Device Status Word
7.2.1.4 Device Size Word
1.2.2 Header Section
7.2.2.1 Information in Block 0
Table 7-3 Information in Block 0
1.2.2.2 First Five Words of the Handler
7.2.2.3 .DRBEG Macro
7.2.2.4 Multi-Vector Handlers: .DRVTB Macro
Table 7-4 Handler Header Words
7.2.2.5 PS Condition Codes
7.2.3 I/O Initiation Section (system state)
7.2.4 Interrupt Service Section
7.2.4.1 Abort Entry Point (.FORK)
7.2.4.2 Lowering the Priority to Device Priority
7.2.4.3 .DRAST Macro
7.2.4.4 Guidelines for Coding the Interrupt Service Section

(.FORK, retries)
7.2.5 I/O Completion Section

(channel status word, end-of-file)
1.2.6 Handler Termination Section
7. 2. 6. 1 Th.e .DREND Macro
1.2.6.2 Pseudo-Devices

7.3 Skeleton Outline of a Device Handler
Figure 7-1 Skeleton Device Handler

7.4
7. 4. 1
7.4.2
7.4.3

7.5
7.5.1
7.5.2
7.5.3
Figure
7.5.4
7.5.5

Handlers that Queue Internally
Implementing Internal Queuing
Interrupt Service for Handlers that Queue Internally
Abort .Procedures for Handlers that Queue Internally

SET Options
How the SET Command Executes
SET Table Format
.DRSET Macro

7-2 SET Option Table
Routines to Modify the Handler
Examples of SET Options

9

SUP 7-1
SUP 7-1
SUP 7-2
SUP 7-2
SUP 7-2
SUP 7-2
SUP 7-2
SUP 7-2
SUP 7-3

SUP 7-3
SUP 7-3
SUP 7-3
SUP 7-6
SUP 7-6
SUP 7-7
SUP 7-7
SUP 7-8
SUP 7-9
SUP 7-9
SUP 7-9
SUP 7-9
SUP 7-9
SUP 7-10
SUP 7-10
SUP 7-11
SUP 7-11
SUP 7-13
SUP 7-14
SUP 7-14
SUP 7-14

SUP 7-15

SUP 7-16
SUP 7-18
SUP 7-18
SUP 7-19

SUP 7-19
SUP 7-19

SUP 7-20
SUP 7•20
SUP 7-21
SUP 7-22

SUP
SUP
SUP
SUP
SUP
SUP
SUP

7-22
7-23
7-23
7-24
7-24
7-25
7-25

•

•

•

•

•

•

7.6 Device I/O Timeout
7.6.1 .TIMIO Macro (.FORK, kernel mapping)
Tab1e 7-5 Timer Block Format
7.6.2 .CTIMIO Macro (.FORK, abort)
7.6.3 Device Time-out Applications
7.6.3.1 Multi-terminal Services
7.6.3.2 Typical Timer Procedure for a Disk Handler

(system stack)
7.6.3.3 Line Printer Handler Example
Figure 7-3 Line Printer Handler Example

7.7 Error Logging
7.7.1 When and How to Call the Error Logger (.FORK)
7.7.1.1 To Log a Successful Transfer
7.7.1.2 To Log a Hard Error
7.7.1.3 To Log a Soft Error
7.7.1.4 Differences Between Hard and Soft Errors
7.7.1.5 To Call the Error Logger
7.7.2 Error Logging Examples
7.7.3 How to Add a Device to the Reporting Program

7.8 Special Functions
.SPFUN Programmed Request 7 .8. 1

7.8.2
7.8.3
7.8.4
7.8.5

How to Support Special Functions in a Device Handler
Variable Size Volumes
Bad Block Replacement
Devices with Special Directories

7.9 Device Handlers in XM Systems
7.9.1 Naming Conventions and the System Conditional
7.9.2 XM Environment (PAR1, PAR2, kernel mapping)
7.9.3 The Queue Element in XM
Figure 7-4 Device Handler in XM
7.9.4 DMA Devices: $MPPHY Routine
7.9.5 Character Devices: $GETBYT and $PUTBYT Routines
7.9.5.1 $GETBYT Routine
7.9.5.2 $PUTBYT Routine
7.9.6 Any Device: $PUTWRD Routine
7.9.7 Handlers That Access the User Buffer Directly (PAR1)
Figure 7-5 Device Handler Mapping to User Buffer Area
Figure 7-6 PAR1 Mapping

7.10 -ystem Device Handlers and Bootstraps
7.10.1 Monitor Files
7.10.2 Creating a System Device Handler
7.10.2.1 Primary Driver
7.10.2.2 Entry Routine
7.10.2.3 Software Bootstrap
7.10.2.4 Bootstrap Read Routin~
7.10.2.5 Bootstrap Error Routine
7.10.2.6 .DRBOT Macro
7.10.3 DUP and the Bootstrap Process
7.10.3.1 BOOT ddn:filnam
7.10.3.2 COPY/BOOT xxn:filnam ddm:
Table 7-6 DUP Information
7.10.3.3 BOOT ddn:
Figure 7-7 BOOT ddn:filnam Procedure
Figure 7-8 COPY/BOOT xxn:filnam ddm: Procedure
Table 7-7 DUP Information
Figure 7-9 BOOT ddn: Procedure

10

SUP 7-28
SUP 7-28
SUP 7-29
SUP 7-30
SUP 7-31
SUP 7-31

SUP 7-31
SUP 7-32
SUP 7-33

SUP 7-34
SUP 7-35
SUP 7-35
SUP 7-35
SUP 7-35
SUP 7-36
SUP 7-36
SUP 7-37
SUP 7-37

SUP 7-38
SUP 7-38
SUP 7-39
SUP 7-40
SUP 7-40
SUP 7-40

SUP 7-41
SUP 7-41
SUP 7-41
SUP 7-42
SUP 7-43
SUP 7-44
SUP 7-44
SUP 7-45
SUP 7-45
SUP 7-45
SUP 7-47
SUP 7-49
SUP 7-49

SUP 7-50
SUP 7-50
SUP 7-51
SUP 7-51
SUP 7-51
SUP 7-52
SUP 7-52
SUP 7-52
SUP 7-53
SUP 7-53
SUP 7-53
SUP 7-54
SUP 7-54
SUP 7-55
SUP 7-55
SUP 7-56
SUP 7-56
SUP 7-57

7.11 How to Assemble, Link, and Install a Device Handler
7.11.1 Assembling a Device Handler
7,11.2 Linking a Device Handler
7,11.3 Installing a Device Handler
7,11.3.1 Using the Bootstrap to Install Handlers

Figure 7-10

Figure 7-11
7,11.3,4
7.11.3,5
7.11.3.6

Automat.ically ·
Using the INSTALL Command to Install Handlers
Manually
Using the DEV Macro to Aid Automatic
Installation
Bootstrap Algorithm for Installing Device
Handlers
Installing a New Device Handler
Installing
Writing an
overriding

Devices Whose Hardware Is Present
Installation Verification Routine
the Hardware Restriction

7.12 How to Test and Debug a Device Handler
7.12.1 Using ODT to Test a Handler
Figure 7-12 ODT and a Device Handler in Memory
7,12.2 Using ODT in XM

SUP 7-57
SUP 7-57
SUP 7-58
SUP 7-58

SUP 7-58

SUP 7-59

SUP 7-60

SUP 7-60
SUP 7-61
SUP 7-62
SUP 7-62
SUP 7-65

SUP 7-65
SUP 7-66
SUP 7-67
SUP 7-68

Russell L. Morrison II
Plessey Peripheral Systems
P.O. Box 19616
Irvine, CA 92714

(714)540-9945

I have discovered a small problem with RT-11 V5 and RX03
dual sided, dual density floppies: the new version has all
the code that used to support RX03's deleted. What used to be
a relatively simple patch to enable RX03 support is now a
rather involved patch which re-enters all the old RX03 support
code.

If you woi~ld like a copy of this patch please request in
writing to the editor of the "Mini-Tasker".

Sincerely,

Z7!#-~
Russell L. Morrison II
Systems Analyst,
Software Support

11.

•

•

•

•

•

•

************************************~**********************

HIGH LEVEL MULTILANGUAGE l'IACHINE-INDEPENDENT PROGRAl'll'IATION
<16, 32, 36, ... BITS>~ A SUBROUTINE FOR BIT l'IANIPULATIONS
IN BASIC AND FORTRAN IV.

BY DANIEL GUINIER

LABORATOIRE DE PHYSIOLOGIE COl'IPAREE DES REGULATIONS
GROUPE DE LABORATOIRES DU CNRS DE STRASBOURG-CRONENBOURG
23 RUE DU LOESS
B. P. 20 CR
67037 STRASBOURG CEDEX, FRANCE

INTRODUCTION :

MANIPULATION OR EXAl'IINATION OF BITS OF A l'IEl'IORY WORD PERl'IITS

COMPRESSION OF BINARY DATA THAT CAN REACH A VERY INTERESTING RATE
FOR STORAGE, CODING OR DATA ACQUISITION. THIS ALSO ALLOWS LOGICAL
OPERATIONS APART FROM USING MACHINE CODE OR ASSEl'IBLER LANGUAGE WHICH
ARE PARTICULAR TO A GIVEN COMPUTER.

WE HAVE REALIZED A SUBROUTINE AND ITS CALLING PROGRAl'I WRITTEN AS IN
FORTRAN IV AND ALSO IN BASIC <TESTED WITH ZX81 SINCLAIR WHICH IS THE LEAST
EXPENSIVE MODEL IN THE MARKET OF MICRO-COl'IPUTERS>. OUR PURPOSE .IS TO USE
THIS METHOD ON ALL TYPES AND ORGANIZATIONS OF COl'IPUTERS (16, ?2, l6, ... BITS)
AS WELL AS TO COMPARE THESE TWO LANGUAGES.

METHODS :

REPRESENTATION OF INTEGERS :

AN INTEGER I IS STORED IN A l'IEl'IORY WORD OF 16, l2, l6, ... BITS
WHOSE THE HIGHEST WEIGHTED BIT IS THE BIT OF SIGN; IF THIS BIT IS RESET TO
ZERO, THE NUMBER IS POSITIVE, OTHERWISE. IT IS POSITIVE.

EXAMPLE :

16 15 14 1l 12 11 10 9 8 7 6 5 4 l 2 1

I I I I I I I I I I I I

12.

- LET NE:i;;:BIT=16 .. 3:2 OR H: .. THE NUMBH OF BITS PEF.: WOF.:C•.
- LET J, THE INDEX FOR THE POSITION OF THE BITS IN THE WORD <J=1 TO NBRBIT>.
- LET BITCJ>=0 OR 1, THE ACTUAL VALUE OF THE J TH. BIT IN THE WORD.

IF NBF.:BIT=16
IF NBF.:8 I T=3:2

-(2**15-1)
-(2H:]:1-1)

(=

<"-·--
(= 2••15~1 THAT IS -12767 (= I (= 12767
(= 2*•3:1-1

IF NBRBI T=3:6 -(2**l5-1) (= (= 2*•35-1

BINARY - DECIMAL CONVERSION

THE VALUE OF A MACHINE WORD WHICH IS THE IMAGE OF A FIELD INTEGER I
CAN BE EXPRESSED RS :

I= BITC1) + BITC2)*2 + BITCl)*2**2 + BITC4>*2**l + BIT<NBRBIT-1>*2**<NBRBIT-2>

THE NBRBIT-TH BIT GIVES THE SIGN OF I

EXAMPLE :

16 15 14 11 12 11 10 9 8 7 6 5 4 l 2 1

I I 0I 0! 0I 01 0I 0I 0I 0I 1I 0I 0I 0I 0! 1I 1!

IF WE APPLY WHAT WAS DESCRIBED ABOVE

I= 1 + 1*2 + 0*2**2 + ... + 1*2**6 + ... = 1 + 2 + 2**6 = 1 + 2 + 64 = 67

I = + 67 BECAUSE BITCNBRBIT> = BITC16> = 0

THIS IS A BINARY - DECIMAL CONVERSION.

DECIMAL - BINARY CONVERSION :

FOR A POSITIVE INTEGER I, THAT IS AN I WITHOUT ITS SIGN BIT,
CAN BE CONVERTED INTO BINARY REPRESENTATION CONTAINED IN THE ELEMENTS BITCJ)
OF AN ARRAY BIT() THAT ARE THE RESIDUALS OF SUCCESSIVE DIVISIONS PER TWO.

EXAMPLE - TAKE THE ABSOLUE VALUE OF I = 67

6-::' I / 2 = 3:3 RESI C•LIAL BITCU = 1 -,..,
~·~ / 2 = 16 r<:ESIDUAL BIT<2> = 1
16 ,•

' 2 = 8 r<:ESIDUAL BI TO) = 0
8 / 2 = 4 RESIDUAL BITC4> = 0
4 ,. .. 2 = 2 r<:ESI C•UAL BIT<5) = 0
2 / rl ... = 1 RESIDUAL BIT<6> = 0
1 / 2 = 0 l<:ESIC•LIAL BIT<?> = 1

ALL OTHER BITS FROM BIT(8) TO BIT<NBRBIT-1), THAT rs BITC15)
ARE RESET TO ZERO AND BIT<NBRBIT) = 0 IF I IS POSITIVE.

THIS IS A DECIMAL - BINARY CONVERSION.

13

•

•

•

1. \

i.

FOR NEGATIVE NUMBERS :

IN THE PRECEDING CONVERSIONS, WE WORKED ON POSITIVE INTEGERS TO
AVOID TWO'S COMPLEMENTATION, FORM IN WHICH NEGATIVE INTEGERS ARE
USUALY STORED, THIS OPERATION WAS AUTOMATICALLY DONE BY A SINGLE INSTRUCTION
OF SIGN CHANGE AND COMPLEMENTATION BY I = l C+/-) 2**<NBRBIT-1>
WHEN BITCNBRB!T) = 1

E>::AMPLE

16 15 14 1s 12 11 10 9 e 7 6 s 4 s 2 1

I = + 6? I 0I 01 !H 0I 0! 0I 01 0I 01 1I 01 0I 01 01 1I 1I

I = - 6? l 1I 11 1! 1I lI 11 11 1I 1! 0! 11 11 1! 1! 01 1I

NUMERICAL EXAMPLES :

15T. EXAMPLE : **************************
*~"'***********

It--lPUT :
I == 6?
Ii= 0
OUTPUT

67
0000000001000011

INPUT :
I =-6?
Ii= 0
OUTPUT
-6?
1111111110111101

:?.TH. E::<:AMPLE *************************

INPUT
I = 67
I1= 1
BIT 1 = 1 BIT 9 = 1
BIT 2 = 0 BIT10 = 1
BIT]: = 1 BI T11 = 1
BIT 4 = 1 BIT12 = 1
BIT 5 = 1 BITB = 1
BIT 6 = 1 B I.T 14 = 1
BIT 7 = 0 BI T15 = 1
BIT 8 = 1 BI T16 = 1
OUTPUT

~...., - -· (

1111111110111101

14

4TH. EXAMPLE : *************************

INPUT
I = 6?
Ii= 1
BIT 1 = 2 BIT 9 = 1
BIT 2 = 2 BI THI = 1
BIT 3: = 2 BI T11 = 1
BIT 4 = 2 BI T12 = 1
BIT 5 = 2 BITU = 1
BIT 6 = 2 BI T14 = 1
BIT ? = 2 BI T15 = 1
BIT 8 = 2 BI T16 = 1
OUTPUT
-189
1111111101000011

**

LI STINGS :

SUBROUTINE BIT01 INCLUDES THREE PRINCIPAL PHASES :
SEARCH OF THE BITS' LEVEL FOR THE FIELD INTEGER I.
POSSIBLE CHANGES OF THIS LEVEL (0 OR 1).
RELEASING OF A NEW FIELD INTEGER I AFTER A CHANGE OF LEVEL OF THE BITS.

THESE PHASES ARE IMPLICIT FOR THE TWO VERSIONS <BASIC AND FORTRAN>.
THE LISTINGS BELOW INCLUDE THE TWO VERSIONS WITH MAINS AND SUBROUTINES

AND ALSO FOUR NUMERICAL EXAMPLES.

INPUT AND OUTPUT ARGUMENTS

FORTRAr~ IV BASIC

I I

IND I1

BIH) A<)

BITSEH) 8()

NBRBIT N0

T'r'PE FUNCTION

IN/OUT INTEGER FOR THE LEVEL -OF THE BITS OF THE
AF.:RAY BIT< >, UNCHANGED FOR OUTPUT l F
IND OR 11=0

IN

IN

IN

IF IND OR 11=0 : EXAMINATION OF THE BITS'
LEVEL. OTHERWISE POSSIBLE CHANGE OF THESE
LEVELS.

OUT INTEGER ARRA~' C 0, 1 L LOADED WITH THE BI TS
LEVEL OF THE INTEGER FIELD I.

INTEGER AHA~', GIVING THE BITS' LEVEL TO CHANGE
FOF.: ALL BITSET() INCLUDED IN C0,1J

NUMBER OF BITS IN A MACHINE WORD
<NBRBIT=16, 12, 16, ... BITS>.

15

•

• (

'

* LISTING OF THE FORTRAN IV VERSION *

* MAIN PROGRAM FORTRAN IV *

rnTEGEj BIT<?.6), BITSET<?.6)

DATA NBRBIT/16/LEC, IMP/5, 7/

[)(I 1 ,T=L NBF.:BI T
1 BITSETCJ>=-1

~HHTE<IMP, 2)
2 FORMATC'SI= ')

READCLEC, 3)I
3 FORMATCI5)

l~F~ITECIMP, 4)
4 FORMATC'SIND= ')

F.:EA[:• C LEC, 3) !N[:•

5

IFCIND. EQ. 0)60 TO 7

[:iO 6 J=1, NBRBI T
W<:ITECIMP .. 5),T
FOF.:MATC'f.BIT',I2,' = ')
F.:EADCLEC, 3>K
IF<K.GT.1.0F~.ICLT.0)60 TO 6
BITSEH.T>=K

6 CONTINUE

C CALL SUBROUTINE BIT01
? CALL BIT01CL !NI), BIT. BITSET. NHBIT>

C OUTPUT RESULTS.
l·H<:ITEOMP, 8)1 .. <BIHK), K=NBRBIT. 1. -1)

8 FORMATC/I8//, 2X, 16!1//)

c:
c

STOP
END

* SUBROUTINE FORTRAN IV *

SUBFWUiHIE BIT01<I. INr.1 , BIL BITSEL NBRBIT>
c
C DANIEL GUINIH: C198:n C. N. F.:. S. SHASBOUF.:6
c
C SUBROUTINE FORTRAN IV FOR EXAMINATION AND/OR CHANGE OF THE VALUE
C OF ONE OR SEVERAL BITS IN A MACHINE WORD FOR ANY TYPE OF COMPUTER
C AF.:CHI TECTUF.:E C 16, J:2.. J:f., BI TS).

16

INTEGER BIT<3:6), BITSET06)

NBR=NBRBIT-1
IP=I
BIT<NBRBID=0

IFCIP GE. 0>GO TO 1

BIT<NBRBIT)=1
IP=IP+2. **t'.NBl<:BIT-U

1 DO 2 J=1,NBR

BITU>=MOD<IP, 2)
2 IP=IP/2 ·

3

4

IFdND. EQ. 0)RETURN

IFc:E:ITSET(J). NE. 0>GO TO 3
BIT (J)= 0
BITSETU)=-1
GO TP 4

IFCBITSETCJ). NE. 1)60 TO 4
BIT C.T)= 1
BITSETC.T)=-1
CONTINUE

I=BIT<NBI<:)
N=NBl<:-1

1)0 5 J=N, L -1

5 I=I•2+BIT(J)

fH0
02£1

010

IFc:E:IHNBRBIT). EQ. UI=I-2. **<NBHIT-U

RETUFrn
END

* LISTING OF THE BASIC VERSION *

* MAIN PROGRAM BASIC *

[:>IM A06)
C•IM E:(J:6)

LET N0=16

17

(

•

040
050
060

FOR J=1 TO N0
LET B<n=-1
NE)-::T ,T

070 PRINT " I ="
080 INPUT I
090 PRINT " I1="
100 INPUT I1

110 IF I1=0 THEN GOTO 190

120 FOR J=l TO N0
130 PRINT II BIT"; ,T; II =·
140 INPUT K
150 IF K>1 OR KC0 THEN GOTO 170
160 LET B<J>=K
170 NEXT J

180 REM " CALL SUBROUTINE BIT01
190 GOSUB 1000

200 PRINT " SORTIE DES RESULTATS"
210 PRINT 11 I=";I
220 PF:INT 11 ETAT DES BITS DE I"
230 FOR J=1 TO N0
240 PRINT ACJ)
250 NEXT ,T

260 STOP

* SUBROUTINE BASIC *

1000 REM "
1010 REM 11 SUBROUTINE BIT01
1020 REM" Al<:GUMENTS LILAO,BO,N0"
1030 F:EM II•.••••••..•..••••.••••..

1040 LET N1=N0-1
1050 LET I2=I
1060 LET ACN0>=0

1070 IF 12>=0 THEN GOTO 1100

1080 LET ACN0)=1
1090 LET I2=12+2**(N0-1)

1100 FOR J=1 TO Nl

1110 LET I3=INT <I2/2)
1120 LET A(J)=I2-I3*2
1130 LET 12=13
1140 NE>::T ,T

1150 IF I1=0 THEN RETURN

1160 FOR J=l TO ~0

11?0
1180
:t190

IF 8(J)()0 THEN GOTO 1210
LET F1(,T)= 0
LET 8(,T)=-1

1200 GOTO 1240

18

1210
1220
1230
1240

1250
1260

1270

1280
1290

1300
1310

1320

IF B<J><>1 THEN GOTO 1248
LET A<J>= 1
LET B<J>=-1
NEXT J

LET I=A<N1>
LET N2=N1-1

FOR J=N2 TO 1 STEP -1

LET 1=1•2+A<J>
NEXT J

IF A<N0><>1 THEN RETURN
LET I=I-2**<N0-1)

RETURN

CONCLUSION

THE USER CAN DIRECTLY YERIFY OR HANDLE BITS' LEYEL OF A nEnORY WORD
WHITOUT A SPECIFIC ASSEMBLER OR MACHINE CODE WHICH ARE PARTICULAR TO A GIYEN
COMPUTER; THIS SUBROUTINE IS COMPLETELY TRANSPORTABLE TO ANY TYPE OF "ACHINE.

THE READER WILL NOTICE SO"E DIFFERENCES BETWEEN THE TWO HIGH LEYEL
LANGUAGES AND ESPECIALLY WILL APPRECIATE THE "NEnONIC AND RELATIYE STRTE"ENTS
QUALITIES OF FORTRAN.

I recently came across a problem with the RT-11 VS Extended Memory
monitor on 18-bit Qbus systems. I would like to share this problem (and its
solution) with you and the other users out there.

The problem, simply (??) stated, is that DEC has been supplying the LSI
11/23+ chip set for some time, and thus some LSI systems (ours, for emple)
already have 22-bit addressing capability, even though the CPU is plugged
into an 18-bit Qbus. Under these conditions, the memory sizing routine in
RT-11 VS does a "wrap-around•, that is, the upper four bits of a 22-bit ad­
dress are ignored, making the next address after •777777• equal to •000000•
instead of •1000000•. This is not especially critical in the Single Job
monitor, wb&re it simply causes the _RESOR.C routine to report 4Mb of memory,
and the VM Virtual Memory Disk Emulator thinks the same thing. Using the VM
driver under these oondi tions can cause RMON to be writ ten over and will
generally cause the system to crash.

In the RT-11 VS Extended Memory monitor, the boostrap routine sizes
memory and reports to RT-11 that it has 4Mb available. This causes the XM
monitor to crash on loading, so users can't even have the use of the back­
ground partition.

Since Plessey Peripheral Systems' mairi product line is Qbus systems,
this state of affairs was wholly unacceptable, and some sort of "work
around• or patch had to be developed. The result ot our work consists of
two unsupported patches, either or both of which may be installed to fix
this problem. Since these patches alter the RT-11 source files, care 111USt
be exercised in using them; i.e., be sure you have adequate backups of your
distribution.

19

I
I
!

• These patches are presented as a courtesy only. We have tested these
patches on the DEC RT-11 distribution and have found them to work as de­
scribed. However, PlesaeJ' Peripheral S,.Ste.s makes DO guarantee aa to the
accuracy or functionalitJ' of these patches, and will in no case prortde sup­
port tor systells on which tbeJ' are applied. PlesaeJ' will aaw DO

responsibility tor any da•ges resulting f'roll tbe use ot these patches.

The first patch is an addition to SYSGEN of a new parameter, ll>DE22.
This parameter turns on/off 22-bit addressing in the RT-11 system, both in

the extended memory monitor and the VM driver. The patch consists of three
SLP files, to be applied to SYSGER.C<ll, ~.MAC, and VM.MAC, respecti­
vely.

The first SLP file, SYSGEN.SLP, is as follows:

-I • IFF <ESCAPE> .GOTO 11>20/, •
• IFF <ESCAPE> .GOTO Q3.l

-I .GOTO Q3/

• Q3.l: • IFF XM • GOTO !1>20
.ASK [<TROE>] ll>DE22 Do you want 22-bit support (I)?

-I .IF DBM = "LS• .GOSUB I.St!/
.IF DllM = -VM• .GOSUB VH22

-/.CTLP90:.RETURN/

• VM22: .IFT XM .RETURN
;
.ASK [<TRUE>] ll>DB22 Do you want 22-bit support (I)?
.BBTURR

-/.GS:/
.SETS ARG 9Jl>DE22,22-bit support•
.GOSUB SBT

I

The second SLP file, BSTRAP.SLP, is as follows:

-/.SBTTL •
• IIF llDF ll>l>E22
.IIF NB ll>DE22
-I BIS
.IIF llDF HODB22

BIS
.IIF EQ PDT$0P

BCS
BIT

I

Extended Memory Bootstrap •/
ll>DE22 = 000000
ll>DB22 = 000020
#20,@#SR3/,/ BIT #20,@#SR3/
ll>DE22 = 000000
#ll>DE22,@#SR3
NOP
20$
#ll>DE22,@#SR3

It should be noted that the first line of this file should be read as
"minus slash period SBTTL tab asterisk eight spaces Extended Memory Boot­
strap nine spaces asterisk slash"

The third SLP file, VM.SLP, is as follows:

-/!l>DE22 = 000020/, •
• IIF NDF MODB22 MODE22
.IIF NB MODE22 MODE22
I

= 000000
= 000020

20

Once these files have been created, they may be implemented by the
following comwands:

.lLil.f
•SY8GEN.COH=SISGEN.CQM,SY8GEN.SLP
·~TBAP.HAC=BSTBAPetlAC,BSTBAP.SLP
•VH.ffAC=VM,MAC, JM. SLP

·~
Having implemented these files, perfort1 a SYSGEN, or edit your

SYSGEN.CHD file to include a line:

HODE22 = 000000 ;22-bit support

which will disable 22-bit support in both the Extended Melll.ory monitor
and in the VH driver. When you perform a SYSGEN, you will notice a new
question:

Do you want 22-bit support (I)?

This question will be asked if you select the XM monitor, or, if you
don't select the XM monitor, when you select the VH Virtual Memory Driver.
Please note that the default base ad.dress of the VM driver in XM systems
(BASE=10000) will make it uninstallable on 18-bit systems.

The second patch consists of the addition of a SET command to the VM
driver. The patch is implemented through an SLP file, VMSET.SLP, the text
of which is as follows:

-/REINST:/,/.EVEN/
REINST: .ASCIZ •?VM-W-Revome/install VM•

.EVEN

.IF EQ MHG$T
BARBA: .BYTE 17, 10

.BUW

.BI.KW

.WORD .256 •
• WORD 0

C.BT22: MOV RJ,V.BIT
MOV R3,I.BIT
BR PRI
.EHDC

-/.DRSET/, •
• IF EQ HMG$T
.DRSET 22BIT,1,S.BT22,HO
.EHDC
.DRSET BASE,1600,S.BASE,OCT
.IF EQ !Hl$T

S.BT22: MOY (PC)+,R3
.WORD 21

DEC
BR
.EHDC

R3
C.BT22

.BNABL LSB
-/.EHDC/,/$$.SET/

PRI:
.EHDC
MOV
ADD
.PRINT

PC,RO
#REINST-.,RO

21

(, ,,

•

/I
.

/'..;

5$:
10$: HTS PC

.DSABL LSB
$$.SET - .

-/BIS #MODE22,@#l4f.SR3/,/BEQ 20$/
HOV (PC)+,R1

I.BIT: .WORD MODB22
KOV #HMSR3,R2
BIS R1,@R2
BCS 20$
BIT R1,@R2
BEQ 20$

-/CLR @#MMSR3/,/JMP 100$/
CLR @R2
BR 100$

-/.WORD MODE22/ I.
V.BIT: .WORD MODE22
I

This patch is implemented through the following corni:aands:

After entering these commands, either recompile the VM driver or per­
form a SYSGEN. Upon completion, a command of the form:

SET VH [N0]22BIT

will be available.

Please note that these two patches are in no way incompatible; that is,
they may both be in place at once. Note as well that the second patch,
which implements a SET comraand for the VM driver only, does nothing for the
Extended Hemory Monitor problem. It should also be noted that, while the
second patch in no way alters the functionality of the VM driver, it does
change the warning message printed after a SET command from:

?YH-W-Remove and reinsta11 this handler
to:

?VH-W-Remove/insta11 VH

While this is not a big deal for most users, this message might be con­
fusing to less sophisticated users, since it can't be found in any of the
manuals.

Please note that neither of these patches will correct the RESORC
report that there are 4Mb of memory installed. It will, however, fix any
problems connected with using the VM driver or the Extended Memory monitor.
Please note as well that any software that directly manipulates the memory
management registers of the 11/23 will need to be written to take the prob­
lems of the 18~bit bus into account.

I hope that these patches will be of use to those DEC and DEC
compatible users who have been a little perplexed at some of the glitches in
RT-11 V5 1 s extended cemory features.

22

Russell L. Harrison II
Plessey Peripheral Systems
P.O. Box 19616
Irvine, CA 92714

(714)540-9945 ~#----7-,--1,~
The Cursor Driven Con1n1<1nd File Driver does the following:

1, You give the progr<1111 the n<1111e of Cl 111enu file which is displqyed on the
screen. A 111enu file h&s the n<1111e of previously created co111111and files togeth­

. er with Cl short description.

2 • You 111ove the cursor <inywhere within the co111111<1nd file nan1e, This na111e 111ust
be <1lph.:inun1eric <1nd c<1n be 1 to 6 ch<1r<1cters.

3, You hit the return key, If the co111111<1nd file is cre<ited properly &nd is
spelled correctly on the 111enur it will then execute.

A couple of co111111ents/observations on the progra111:

1. It runs on a LSI 11/23 under TSX+; a VT100 ter11tinal in ANSI 11tode.

2. The esc&pe sequences which we use as Cl standard at the top of EVERY
11tenu <1re CIS follows; <I tried the progra11t <1n out of d<1te •• kind of off the
w&ll sequence and it didn't work •• so be warned>:

ESC = tne escape ch<1r.
er = C&r• return; lf = line feed.

ESC<ESCC?31ESCC2JESC1j24rESCCHESCC011tcrlf

ESC< = If in VT52 11tode reset to ANSI

ESCC?31 = If screen 132 col set to so; the question 11t<1rk is not P<1rt of
the sequence but since we have C-ITOH's that use it as P&rt of their se­
quence we put it in and it works on a VT100 ok.

ESCC2J = Erase entire screen.

ESCCH24r = Set top-botto11t scrolling region.

ESCCH = Cursor unconditionally to HOHE position.

ESCC011t = Clear all attributes.

3, You May Move the cursor anywhere with the six charctcter coM11tand file
n<111te and the progra11t will work. If you put a call to this prograa and the
Menu na111es in ctll co111111ctnd files referenced by your 111enu syste111r it cctn Make
getting ctround the systear significantly faster.

I'd like to thank Bruce Johnson of ITI for showing Me 111uch fctster/ectsier
'"a1:1s out of the trenches at various ctnd sundry tiP1es.

2)

(

•

Hope you h&ve fun with it; Any comments, experiences in iNplementin~ it,
etc. would be Nost welcoNe.

I cre&ted it out of sheer frustration <ain't it always the way?), after
seein-:1 DEC350.

<*$L+,$A+*)

RONALD ROSENTHAL
HQ CECOM

U.S. ARMY ELECTRONICS COMMAND
DRSEL-MS-0

FT. MONMOUTH, NJ 07703
(201) 544-2109

PROGRAM PAS;
I*<!!!!!!!!!!:!!:>

PROGRAM LOGIC;
READ MENU INTO ARRAY
MOVE CURSOR TIL CR
GET CURSOR POSITION
STUFF INTO X,Y
GET COMMAND STRING
SETUP ASSEMBLER LINK TO COMMAND STRING INTERPRETER
EXECUTE COMMAND STRING AND
EX IT PROGRAM

\
\
\
\
\
\
\
\
\
v

< ! >*I
CONST

MAXCOL=l 15;
MAXROW=26;

MINCOL=1;
BLANK=040B;
ESCAPE=33B;
LEFTBR=133B;
SIX=066B;
SMALLN= 156B;

TYPE

UPARROW=136B;
SURPRISE=041B;

CURSORRIGHT=103B;
CURSORLEFT=104B;
CURSORUP=101B;
CURSORDOWN=102B;

CR = 15B;
LF = 12B;

NINE=9;

R = 1. . MAXROW;
C = 1 .. MAXCOL;
MN= ARRAY [R,CJ OF CHAR;
NAME = ARRAY [CJ OF CHAR;
CURPOS = FILE OF NAME;

CHARSET=SET OF CHAR;
VAR

GOOD: BOOLEAN;
NAMEMENU: ARRAY [l. . lAJ OF CHAR; tMENU FILE NAME FROM COMMAND FILEJ
F: FILE OF CHAR; [MENU FILE POINTER J
D:CHAR; [RECEIVES CHARS FROM FJ
MENU: MN; C STORES SCREENMENU IN 2D ARRAY. J
BUFFER:NAME; C TEMP STORAGE FOR NUMBERS FROM <READ CURSOR POSITION> J

24

ENDOFESCAPESEGUENCE: INTEGER;
SCREEN: TEXT;
ROW: R;
MENUCOL,SCREENCOL,CDL:C;
INCREMENT,LEFTCOL,RIGHTCOL: INTEGER;
LENGTHOFARRAY,LENGTHOFSTRING,DONE,COLBOUNDARY,DPOS: INTEGER;
STOPCHAR,S,SAMPLE:CHAR;
JOBSTAT ORIGIN 448: INTEGER;
CMDLENGTH ORIGIN 5108: INTEGER;
CMDFLE ORIGIN 512B:ARRAY [1 .. 9] OF CHAR;

!*<--->*!
PROCEDURE P020BEEP;

CONST

BEGIN

DING = 7B;
DONG = 7B;

WRITE <CHR<DING>,CHR<DONG));
END; CP020BEEPJ

!*<--->*!
PROCEDURE P030EXECUTECOMMANDFILE;
I* THIS POROCEDURE CALLS AN ASSEMBLY LANGUAGE MACRO CALL*/
I* TO EXECUTE THE STRING OF CHARACTERS ALREADY BUILT. */
BEGIN
I* JOBSTAT SETS A BIT IN THE JSW INDICATING THERE'S A COMMAND FILE*/
I* TO BE EXECUTED WHEN THE EXIT MACRO IS EXECUTED. */

JDBSTAT .- JOBSTAT + 4000B;

[*$C
. MCALL . EXIT
CLR RO
. EXIT
*]

END; CEND PROCEDURE]
!*<--->*!
PROCEDURE P040CREATECOMMANDFILE;
/*VAR INTERNAL*/
VAR CMDCOL; I1: INTEGER;
BEGIN

I* LENGTH OF COMMAND STRING SHOULD BRE SET HERE; IT WILL BE PASSED TD THE
JOBSTATUS AREA WHEN COMMAND FILE IS EXECUTED*/

CMDLENGTH :=NINE;

FOR I1 := 1 TO 9 DD
BEGIN
CMDFLE [I1] I Ii

END;

CMDCOL : = 2;
CMDFLE [1 J ' ';
CMDFLE [8J := CHRCCR>;
CMDFLE [9J := CHR<LF);

25

(

~ ,.,

••

FOR 11 := LEFTCOL TO RIGHTCOL DO
BEGIN

END; [END PROCEDUREJ

CMDFLE CCMDCOLJ :=MENU CROW, I1J;
CMDCOL := CMDCOL + 1;
END;

!*<--->*!
PROCEDURE P050TRUEFALSE <VAR CH:CHAR; SKIPSET:CHARSET; VAR DB:BOOLEAN>;
/*VAR INTERNAL*/
BEGIN

IF CH IN SKIPSET THEN
BEGIN

DB: =TRUE;
END;

END; CEND OF POSOTRUEFALSEJ

!*<--->*!
PROCEDURE P060TESTCHAR;
/*VAR INTERNAL*/

BEGIN
GOOD: =FALSE;
IF <SAMPLE>= 'A'> AND <SAMPLE<= 'Z'> THEN

BEGIN
GOOD: =TRUE;

END;
P050TRUEFALSE <SAMPLE, ['A' .. 'Z'J, GOOD>;
P050TRUEFALSE <SAMPLE, ['0' .. '9'J, GOOD>;

END; EEND PROCEDURE]

!*<------------------------------~-----------------------~-------------->*!
PROCEDURE P070FINDMENUCOL <DMENU:MN;DROW:R;SCREENCOL:C;VAR ACTUALMENUCOL:C; VAR ENDE

C:;. SC. A.\> i: : :;.;iTt'-i: ~;

I* THIS ROUTINE IS TO TAKE THE COLUMN NUMBER RETURNED BY THE CURSOR POSITION*/
I* REPORT AND CORRELATE IT TO THE ACTUAL COLUMN POSITION IN THE ARRAY OF THE MENU K

C.) E~I I~ C.r,11,,.E. *-/
/*THE CPR DID NOT COUNT ESCAPE SEQUENCES AND WHEN A TAB WAS ENCOUNTERED IT*/
I* ACTUALLY INSERTED TABCOUNT <USUALLY EIGHT> NUMBER OF SPACES IN THE COLUMN*/
I* NUMBER; WHEREAS IN THE CORE ARRAY THERE IS ONLY 1 CHARACTER <11B ELEVEIN*/
I* OCTAL).*/

CONST TAB=11B;TABCNT=8;

VAR DONE,APPARENTMENUCOL: INTEGER; CH: CHAR;

BEGIN

REPEAT

DONE: =0;
ACTUALMENUCOL:=O;
APPARENTMENUCOL:=O;

BEGIN

ACTUALMENUCOL ACTUALMENUCOL + 1;
CH := DMENU EDROW,ACTUALMENUCOLJ;

IF CH = CHR<ESCAPE> THEN

26

BEGIN
ACTUALMENUCOL := ACTUALMENUCOL + 1;
CH:= DMENU [DRQW,ACTUALMENUCOLJ; .

IF CH = CHR<LEFTBR>
THEN

ELSE

END;

BEGIN
ENDESCAPE ACTUALMENUCOL + 2;
ACTUALMENUCOL := ACTUALMENUCOL + 2;
END

BEGIN
ENDESCAPE := ACTUALMENUCOL + 1;
ACTUALMENUCOL := ACTUALMENUCOL + 1;
END;

ACTUALMENUCOL ACTUALMENUCOL + 1;

I* THIS VARIABLE IS TO STOP THE LEFT SCAN OF PilOFINDSTRINGBOUNDARY FROM*/
I* OVERSHOOTING ITS TARGET WHEN SCANNING LEFT; CIT IS ASSUMED THAT ONLY THE*/
I* HIGHLIGHT SEGUENCE <ESC[lM> STOP SEQUENCE <ESC[1M>; OR DOUBLE HEIGHT DOUBLE*/
I* WIDTH <ESC#N> WILL BE USED.) */

/*THIS COULD HAPPEN IF COMMAND FILE NAME IS RIGHT AGAINST*/

I* THE ESCAPE SEQUENCE FOR HIGHLIGHTING ON THE MENU; E. G. ,
N'EST PAS?? *f

IF CH = CHR<TAB> THEN
BEGIN

ESCUMXXXXXX

ACTUALMENUCOL := ACTUALMENUCDL + 1;
APPARENTMENUCOL := APPARENTMENUCOL + TABCNT;

END;

IF CH = CHR<CR> THEN
BEGIN

DONE: =1;
END;

IF CH > CHR<37B> THEN
BEGIN

APPARENTMENUCOL := APPARENTMENUCOL + 1;
END;

IF APPARENTMENUCOL = SCREENCOL THEN
BEGIN

END
UNTIL DONE = 1;

END;

END; [P070FINDMENUCOLJ

DONE:= 1;

27

•

•

!*<--->*!
PROCEDURE POSOTESTFORESCAPEBOUNDARY <DCOL,ENDCOL: INTEGER; VAR DB: BOOLEAN>;

BEGIN
IF DCOL = ENDCOL THEN

BEGIN
DB : = FALSE;
END;

END; [P080TESTFORESCAPEBOUNDARYJ

!*<--->*!
PROCEDURE P090TESTFORSTRINGLENGTH <COLNOW,COLBEGIN.LS: INTEGER; VAR DB: BOOLEAN>;
/*VAR INTERNAL*/
BEGIN

IF ABS <COLNOW - COLBEGINJ > LS THEN
BEGIN
DB : = FALSE;
END;

END; [END PROCEDURE]

I*<--------------------------------------·---------------------------·---->* I
PROCEDURE P100TESTCOLIMITS <DCOL,MIN1MAX : INTEGER; VAR DB: BOOLEAN>;
/*VAR INTERNAL*/
BEGIN

IF <DCOL < MIN> OR <DCOL > MAX> THEN
BEGIN
DB : = FALSE;
END;

END; [END PROCEDUREJ

!*<--->*!
PROCEDURE P110FINDSTRINGBOUNDARY <ENDESCAPE: INTEGER; DMENU:MN; DROW:R; DCOL:C;

/*VAR INTERNAL*/
~ VAR DCOLBOUNDARY: C; VAR INC: INTEGER>;

VAR NUMCHARS,DLENGTHOFSTRING : INTEGER;

BEGIN

NUMCHARS := 0;
DLENGTHDFSTRING := 6;
COLBOUNDARY:=DCOL;
DONE : = 0;

REPEAT
GOOD :=TRUE;
SAMPLE := DMENU [DROW,COLBOUNDARYJ;
P060TESTCHAR;

IF GOOD = TRUE THEN
BEGIN
POBOTESTFORESCAPEBOUNDARY <COLBOUNDARY,ENDESCAPE.GOOD);
END;

IF GOOD = TRUE THEN
BEGIN
P090TESTFORSTRINGLENGTH <COLBOUNDARY,DCOL.DLENGTHOFSTRING,GOOD>;
END;

28

IF GOOD = TRUE THEN
BEGIN
P100TESTCOLIMITS CCOLBOUNDARViMINCOL MAXCOL, GOOD>;
END;

IF GOOD = TRUE THEN

ELSE

UNTIL DONE = 1;

BEGIN

END

BEGIN

END;

COLBOUNDARY:= COLBOUNDARY + INC;
NUMCHARS:=NUMCHARS + 1;

DONE : = 1;
CDLBOUNDARY := CDLBOUNDARY - INC;

I* IF SOMEONE PUTS THE CURSOR ON A NO-NO WE WANT TD MOVE IT BACK TO ITS */
I* STARTING POINT. */

IF NUMCHARS = 0 THEN
BEGIN

COLBOUNDARY:= COLBOUNDARY +INC;
END;

DCOLBOUNDARY := COLBOUNDARY;

END; rEND PROCEDUREJ

~:e~~~~~~:~~~~~~~~~~~~---------------------------------------~---------->*I (
/*THIS PROCEDURE IS FOR DIPLSAY THE MENU*/
BEGIN

GET<F>;
D: =F"';

END; [P120GETCHARJ

l*<-------------------~-~~-->*J
PROCEDURE P130DISPLAYSTOREFILE;
/*VAR INTERNAL*/
BEGIN

COL : =1;
ROW : =1;

READ (NAMEMENU > ;
RESET (F,NAMEMENU>;

WHILE NOT EDF CF> DO BEGIN

I* DISPLAY MENU AND STORE IN ARRAY IN CORE;
DISPLAY SCREEN

IF D=CHR<OOOB> THEN BEGIN
END

ELSE
BEGIN

WRITE<D>;
MENU[RQW,COLJ:=D;
COL: =COL+li

29

•

•

•

IF D = CHR<LF> THEN
BEGIN

END;

COL: =1;
ROW: =ROW+1;

END;

'* ONE READ ONE WRITE PER MODULE!!!!!!*/

P120GETCHAR;

END; [END OF WHILEJ

CLOSE CF);

END; [P130DISPLAYSTOREFILEJ

!*<--->*!
PROCEDURE P140ECHOFF;
/*VAR INTERNAL*/

BEGIN
WRITE<CHR<035B>~ 'F•>i

END; [P140ECHOFFJ

!*<--->*!
PROCEDURE P150ECHON;
/*VAR INTERNAL*/

BEGIN
WRITECCHR C035B >, 'E' n

END; [P150ECHONJ

!*<---~---------~------->*!
PROCEDURE P160GETCURSORPOSITION;

BEGIN

END; [P160GETCURSORPOSITIONJ

WRITE<CHR<ESCAPE>>;
WRITE<CHR<LEFTBR));
WRITE<CHR<066B));
WRITE<CHR<156B));

!*<--->*!
PROCEDURE P170GETCURSORPOSITION;
BEGIN
P160GETCURSORPOSITION;
END; [P170GETCURSORPOSIT!ONJ

!*<--->*!
PROCEDURE P180GETSCREENCHAR <VAR CH: CHAR);

I* THIS PROCEDURE WILL BE MADE AN EXTERNAL PROCEDURE THAT*/
I* WILL BE CALLABLE FROM ANY PASCAL PROGRAM. */

VAR JOBSTAT ORIGIN 44B: INTEGER;

I* B & C ARE ON AND OFF VT100 ESCAPE LETTER ACTIVATION. *I
I* S & T ARE ON AND OFF SINGLE CHAR. ACTIVATION */
/*.WHEN ON YOU DON'T NEED A CR TD RETURN A CHAR TO YOU *I

30

BEGIN

I* JOBSTAT DOES THE SAME THING FOR RTll AS S DOES FOR TSX+ */
I* SEE PROCEDURE P085. . FOR TURNING OPTIONS OFF. */ . .

WR I TE (CHR <035B), I B I) ;

WRITE <CHR<035B>, '8');
JOBSTAT JOBSTAT OR 100008;

REPEAT
[SC
. MCALL . TTYIN
. TTYIN
MOVB RO,@CH<6>
J

UNTIL CH # CHR<O>;

END; [P180GETSCREENCHARJ

!*<--->*!
PROCEDURE P190REVERSEP1800PTIONS;

I* THIS PROCEDURE WILL BE MADE AN EXTERNAL PROCEDURE THAT*/
I* WILL BE CALLABLE FROM ANY PASCAL PROGRAM.*/

VAR JOBSTAT ORIGIN 44B: INTEGER;

BEGIN

I* B & C ARE ON AND OFF VTlOO ESCAPE LETTER ACTIVATION. */
I* S & T ARE ON AND OFF SINGLE CHAR. ACTIVATION */
I* WHEN ON YOU DON'T NEED A CR TO RETURN A CHAR TO YOU */

•
I* JOBSTAT DOES THE SAME THING FOR RT11 AS S DOES FOR TSX+ *I
I* SEE PROCEDURE POBO. . FOR TURNING OPTIONS ON. */

WRITE (CHR (035B), , c I) i

WRITE <CHR <035B) I 'TI);
JOBSTAT := JOBSTAT AND NOT 100008;

END; [END PROCEDURE P190REVERSEP1800PTIONSJ

!*<-->*!
PROCEDURE P200SCANTIL;

VAR X: INTEGER;
BEGIN

X: =O;

FOR X:= 1 TO LENGTHOFARRAY DO
BEGIN

BUFFER (x J : = I , i

END;

WHILE S # STOPCHAR DO
BEGIN

END;

X:=X+l;
BUFFERCXJ : = S;
P180GETSCREENCHAR<S>;

LENGTHOFSTRING := X;

31

t END; CP200SCANTILJ

•

!*<--->*!
PROCEDURE P210ARRAYTONUM;
/*VAR INTERNAL*/

VAR I1, I2: INTEGER;R1:REAL;
BEGIN
R1: =O. Q;

I2 : = 0;
DPOS: =O;
FOR I1:=LENGTHOFSTRING DOWNTO 1 DO

BEGIN
R1 := R1+<<0RD<BUFFER[I1J> - ORD<'O')) * EXP10CI2));
I2 : = 12 + 1;

END;
DPOS := TRUNC<R1>;
END; [P210ARRAYTONUMJ

!*<--->*!
PROCEDURE P220MOVECURSOR;
VAR ENDSW: INTEGER;
BEGIN
ENDSW : = 0;

REPEAT
BEGIN

PlBOGETSCREENCHAR<S>;

IF S = CHR<ESCAPE> THEN BEGIN

END;
IF S = CHR<LEFTBR> THEN BEGIN

END;

PlBOGETSCREENCHAR<S>;

P180GETSCREENCHAR<S>;

IF S = CHR<CURSORRIGHT> THEN BEGIN
WRITE <CHR<ESCAPE));
WRITE <CHR<LEFTBR));
WRITE < CHR < 103B > > ;
END;

IF S = CHR<CURSORLEFT> THEN BEGIN

END;
IF S = CHR<CURSORUP> THEN BEGIN

END;

WRITE <CHR<ESCAPE));
WRITE <CHR<LEFTBR));
WRITE CCHR<CURSORLEFT));

WRITE (CHR <ESCAPE>>;
WRITE CCHR<LEFTBR));
WRITE CCHR<CURSORUP>>;

IF S = CHR(CURSORDOWN> THEN BEGIN

END;

/*IF S = CHR<CR> THEN BEGIN

END;

WRITE <CHR<ESCAPE>);
WRITE (CHRCLEFTBR));

. WRITE <CHR <CURSORDOWN> >;

ENDSW : = 1;

32

*'
IF S = CHR<LF> THEN BEGIN

ENDSW 1;
END;

END [END OF REPEATJ
UNTIL ENDSW = 1;
END; CP220MOVECURSORJ

'*<--->*!
PROCEDURE P230STUFFINTOXY;
/*VAR INTERNAL*/
BEGIN
STOPCHAR : = I; I;

LENGTHOFARRAY := 2;
P1BOGETSCREENCHAR<S>;
P1BOGETSCREENCHARCS>;
P180GETSCREENCHARCS>;
P200SCANTIL;
P210ARRAYTONUM;
ROW : = DPOS;
P1BOGETSCREENCHAR<S>;
STOPCHAR : = 'RI;
P200SCANTIL;
P210ARRAYTONUM;
SCREENCOL := DPOS;
END; [P230STUFFINTOXYJ

!*<$$$)-*/

BEGIN
P130DISPLAYSTOREFILE;
P220MOVECURSOR;
P160GETCURSORPOSITION;
P230STUFFINTOXY;
I* THESE NEXT TWO STATEMENTS ARE FOR DEBUGGING PURPOSES COMMENTED OUT */
/*WRITE C'SCREEN',SCREENCOL);*/
/*WRITE C'ROWXXX',ROW);*/
P070FINDMENUCOL <MENU,ROW,SCREENCOL,MENUCOL,ENDOFESCAPESEGUENCE>;
INCREMENT: =-1;
P110FINDSTRINGBOUNDARY <ENDOFESCAPESEGUENCE,MENU,ROW,MENUCOL,LEFTCOL, INCREMENT>;
INCREMENT: =1;
P110FINDSTRINGBOUNDARY <ENDOFESCAPESEGUENCE,MENU,ROW,LEFTCOL,RIGHTCOL, INCREMENT>;
P040CREATECOMMANDFILE;
I* SAME METHOD USED HERE FOR THIS DEB~GGING STATEMENT */
/*WRITE <LEFTCQL,RIGHTCQL,CMDFLE>;*/
P190REVERSEP1800PTIONS;
P030EXECUTECOMMANDFILE;
END.

33

•

USER REQUESTS

I am running RT-11 on a PDP 11/23 to prepare a TU-58 to
run stand-alone on a 11/04. What do I have to change in FRT.MAC
which is part of the stand-alone module? Where can I get the latest
documentation on FRT.MAC and SIMRT.MAC.

Joseph F. Heinig
NASA Goddard Space Flight Center
Code 564.J
Advanced Systems Section
Greenbelt Road
Greenbelt, Md. 20771

We are in urgent need of a serial handler for a printer with
X-on/X-off protocol for operation under Version 1 of RT-11.

If you can advise us as to where we might find such a handler,
we would be most grateful.

Very truly yours,

VARTRON CORPORATIONG--
750 WELCH ROAD -..Jc_...,if;~-ff"""\--

PALO ALTO, CALIFORNIA 94304 - ---

PHONE: (415) 328-2531

Pat Vartanian
DECUS Associate 118501

USER RESPONSES

The very useful! programm DATE, published by R.M.Harrington in Mini­

tasker March 1983 Vol 9, No.l, could be added with some lines to

accept time from 20: to 23: hours (for night-workers!)

Change the lines between the comment "HH OR H FORMAT" and "NOW

CHECK FOR ERRORS" as follows:

HH OR H FORMAT

HH: CMP R1,$:f-541

BPL TIM too much input

IDV ::W 34460, R2 Range 0-9

JSR PC, CHECRR

CMPB -1 (Rl) ,*40 CK for Space

BEQ CKE

34

CMPB -1 (Rl) df 61 ;CKforl

BEQ ADJ

CMPB -1 (Rl) ,$62 ; CK for 2

ENE TIM

INC Rl

MJV jf 31460, R2 ; Range 0-3

JSR PC, CHECKR

ADJ: DEC Rl ; Adjust Pointer

CM'B -1 (Rl) , ff 40 CK for Space

ENE TIM

CKE: CMPB -2 (Rl) ,-jf 'E CK for 'E' of time

ENE TIM

NCM CHOCK FDR ERIDRS

L.Kahlbau

c/o SIEMENS I SARI·

Yours sincerely
Fertigungstechnik

Estr.de Almeirim

. ~ 7000 Evora Ui4L 4 ~~ PORTUGAL

L. Kahlbau

UPCOMING SYMPOSIUM INFORMATION

ANNOUNCING

RT-11 SESSION NOTES

for
DECUS LAS VEGAS

There wi I I be a volume of Session Notes containing the vi­
suals for some of the RT-11 papers to be given at the DECUS 1983
Fat I Symposium in.Las Vegas. Additionally, the volume wi I I con­
t:)in "The Best of RT-11, Volume 2", as an added bonus.

Look for the document at the OECUS store at the Symposium.

35

I

(

E~1
~

•

•

1983 FALL SYMPOSIA IN LAS VEGAS

Even though there was very little time between the Spring
symposia and the Fall symposia, I received a record number of sub­
missions for the RT-11 SIG. The scheduling problem was compounded
by the fact that the number of meeting rooms was less than before.
The end result of all this is a schedule that is a little different
than before. First of all, we will be starting at 8:30 in the
morning instead of 9:00. Second, the coffee break time was elimina­
ted so that we could hold more sessions. Cookies and milk will be
available in a number of locations so that you will not have to go
the entire morning or afternoon without food. Finally, you will
notice that a number of RT-11 sessions are scheduled for Friday
morning and afternoon. The thought here was that this was really
a five-day convention and that we should better utilize Friday in
order to avoid "session burnout." As always, I will be available
at the symposia to listen to constructive criticism only so long as
you buy the beer.

I have attached a Master Index of all the RT-11 sessions
to enable you to make plans to attend the symposia. I hope to see
you there.

RT-11

CODE

ROOl

R002

R004

ROOS

R007

ROOS

R009

ROlO

ROll

R012

TITLE/SPEAKER

USING A PDP-11/23 AS A FILE SERVER FOR ATTACHED
LSI-ll'S
Fouts, Martin

MIGRATION OF DBMS SOFTWARE FROM RT-11 TO RSX-llM
Natale, Robert C.

RT-11 USERS SPEAKOUT
Rhodes, Ned W.

RT-11/TSX-PLUS COMPATIBILITY ISSUES
Peterson, Jack J.

RT-11 SIG BUSINESS MEETING
Rasted, John T.

RT-11 SIG SYMPOSIUM WRAP-UP
Rasted, John T.

DECUS LIBRARY LAYERED PRODUCTS PANEL FOR RT-11
Bourgeois, Nick

RT-11 ROADMAP
Rasted, John T.

RT-11 USER APPLICATION WORKSHOP
Rasted, John T.

RT-11 USER COMMAND LINKAGE
Crowell, John M.

36

TIME REQ.

1 hour

30 minutes

2~ hours

1 hour

30 minutes

30 minutes

l~ hours

30 minutes

1 hour

30 minutes

R013

R014

R017

R018

R019

l<.T-11 FUTURES WORKSHOP
Crowell, John M.

HOW TO DEVELOP RT-11 DEVICE HANDLERS
Rhodes, Ned W.

COMBATTING FLASH FLOODS WITH PDP-llS
Peterson, Jack J.

TSX~PLUS INTERNALS
Bramlet, Jan

ACCESSING MEMORY ABOVE 56KB FROM RT-11 FORTRAN
Trellue, Ron

1 hour

1 hour

1 hour

1 hour

1 hour

ROZO SHARED REGIONS AND RESIDENT LIBRARIES FOR RT-11 XM 1 hour
Adams, Greg

R021

R022

R023

R024

R025

R027

R029

R030

R031

R032

RT-11 XM NEW USER
Adams, Greg

RT-11 FEEDBACK SESSION
RT-11 Software Development Group

RT-11 LANGUAGES PANEL
RT-11 Software Development Group

RT-11 PRODUCT PANEL
RT-11 Software Development Group

RT-11 DIRECTORY STRUCTURES INTERNALS
Gentry, Martin

RT-11 IND NEW USER
Metsch, James

USING TSX-PLUS SHARED RUN-TIME SYSTEMS
Crapuchettes, Jim

IMPROVING PERFORMANCE OF RT-11 FORTRAN PROGRAMS
Crapuchettes, Jim

TSX-PLUS REAL-TIME I/O TECHNIQUES
Crapuchettes, Jim and Clark, Tim

TSX-PLUS QUESTION & ANSWER AND MAGIC
Kingsbury, Dan

37

1 hour

1 hour

30 minutes

1 hour

1 hour

1 hour

1 hour

1 hour

1 hour

1 hour

!.

.title

.enabl

.ident

.nlist

PAST SYMPOSIUM INFORMATION --------------------------·
From: William K. Walker

Monsanto Research Corp.
P. o. Box 32 OS-123
Miamisbursr Ohio 45342
(513) 865-3557

I save a short Prese~tation durins the Foreisn PeriPherals Forum
at the St. Louis DECUS meetins on the model 306A clock board
from Grant TechnoloSY Systems. This is a KWV11-C eauivalent
board that also includes a really slick battery-backed calendar
clock option. A number of People expressed interest in a couP1e
of utilities which I had written to set the calendar clock and
to set the RT-11 date and time from the clock values. This
stuff was not ready for the RT-11 SIG tape at the time and I
didn't have any listinss with me. I have since found time to
clean-up these routines and to add some additional code and
assembly conditionals to make them more seneral. I am enclosins
source listinss for those of you who misht be interested. For
those of YOU who are too lazy to do Your own tYPinsr I have also
submitted them to the DECUS library.

set306.mac
le
/wkw02/
end

Sincerely,

William K. Walker

This Prosram sets UP the date and time on the calendar clock option for
the GTSC model 306A real-time clock/calendar clock board.

This is NOT a real soPhisticated prosram
Sarbase on the boardr it will cheerful!~ do
and relatively easy to understand.

if YOU tell it to set UP
so. It isr howeverr- simPler

Note that there are conditionals in the code for three
variables. You may choose to read/write the resisters
format, you may keep AM/PM or 24-hour clock timer and
board comPensate for DaYlisht Savinss Time. Note also
turns all interrupt enable bits ~ff. The alarm times
however.

different set-uP
in binary or BCD
you can have the
that the Prosram
are undisturbed

This Prosram will run under versions 4 and 5 of RT-11 and Probably
earlier and later versions as well.

Contributed by: William K. Walker
Monsanto Research Corp.
P. O. Box 32 OS-123
Miamisbursr Ohio 45342

38

.lhcall .s1tlin, .exit

ccba =
re!:la =

170400
ccba+12

;Base address for clock re!:listers
;Re!:lister A address

re!:lb = ccba+13 ;Re!:lister B address
re!:ld = ccba+15 ;Resister D address

; Conditionals:

dm
ck.24
dse

= 4
= 2
= 1

;Disable if board is to oPerate in BCD •ode
;Disable if board is to keep AH/PH tilhe
;Disable if board is not to compensate for dayli!iht savin!:ls

time

.iif ndf d•, dm = O

.iif ndf ck24t ck24 = 0

.iif ndf dset dse = 0

= 200
= 160
= 40

set
dvrset
dvset
bset = set!dm!ck24!dse

set306:

10•:

20•:

•ov
mov
mov
tstb
bmi
lllOYb

sob

mo vb
.9tlin
call
mo vb
.9tlin
call
mo vb
.9tlin
call
mo vb
.9tlin
call
mo vb
.stlin
call
mo vb

.if eo ck.24
.s1tlin
bicb
cm Pb
beo
ClflPb
bne
bisb

tccbatrO
tsecrr1
t6tr2
@tre9a
10$
(r0>+dr1>+
r2,20$

@tre9dtr0
tb•Jf' tYeara
ascbin
rO,year
tbuf,tmontho
ascbin
rOtmonth
tbuf,tdayo
ascbin
rOrdaY
tbuf,tdaywko
ascbin
rO,daYWk
tbuf,thouro
ascbin
rO tho•Jr

tbuf,ta111PlflG
t240tbuf
buf,t'A
30$
bufrt'P
30$
t200thour

.endc
30S: .9tlin tbuf ,tmino

call ascbin
mo vb

;set up to 9rab current tilfle data off board
; <really Just after alarm times> •••

;update in Pro!:lress1
;Branch if so
;Get the data •••

;set 'valid RAH and time' bit
;PromPt foi and set year
;convert to aPProPriate binary
;store result
;Get, convert, and store month •••

;no day of month •••

;no day of week •••

;Hour •••

;'AH or PH1'
;Hake response uPPer case, 7-bit
;AH1

;set PH <hish-order> bit

;Minute •••

39

•

\.

•

ascbin:

.if ea

.iff

.endc

.stlin
call
111ovb

.stlin
lllOV

ll'IOV

mov
mo vb
mo vb
lflOVb

sob
mo vb
bicb
.exit

lllOV

clr
tstb
bne
return

tstb
bea
mo vb
bic
d111
.rePt
asl
.endr

asl
ITIOV

asl
asl
add

tst

20s: movb
bic

.if ea dm
bis

.iff

.endc

buf:

sec:

min:

hour:

da!:lwk:
da!:I:
month:
!:lear:

add

return

.bl kb

.b!:lte

.b!:lte

.b!:lte
+b!:lte
+b!:lte
.b!:lte
+b!:lte
.b!:lte
.b!:lte
.b!:lte

tbufrtseca
ascbin
rOrsec

tbufrtseta
tsecrrO
tccbarr1
t10+rr2
tbs et, fU resb
tdvrsetr@tresa
(r0>+r<r1>+
r2r40$
tdvset, IH res a
tsetr@tresb

tbufrr1
rO
< r1>+
10$

< r1>
20$
-(r1>rr0
t"C<17)n0

4
rO

rO
r0rr2
rO
rO
r2, rO

< r1 >+

-<r1>rr2
t,.;C<17>rr2

r2rr0

r2rr0

;second •••

;'Hit <return> to set clock ••• •
;Ro => data buffer
;R1 => clock resisters
;R2 = no+ of b!:ltes to transfer
;rossle set-uP bits
;Reset divider chain
;Load resisters •••

;Re111ove divider reset
;start clock
; Exit to Rr-11

;R1- => inPut buffer
;clear RO; will contain result
;rest first character
;continue if not null
;Return with zero result otherwise

;rest 2nd character
;If nullr number is 0-9
;Get 10's character
;striP out ASCII stuff

;Hove left 4 bits into hish-order nibble

;Adjust Pointer

;Get one's character
;striP out ASCII stuff

;~et low-order nibble

;Add to result for 10's character

134. ;Buffer for .stlin reauest

0
0
0
0
0
0
0
0
0
0

;Data buffer for clock resisters++•

40

; Prompt messases:

!:leara: .ascii I Year (1983=83)? 1<200>
montha: .ascii I Hon th (Jan=1>? /(200>
da!:la: .ascii I Da!:I? /(200>
da!:lwka: .ascii /Da\:I of week <Sun=1>?)<200>
houra: .ascii I Hour? /(200>
amPma: .ascii I AH or PH <A or P>? /(200>
mina: .ascii I Minute? /(200>
seca: .ascii I Second? /(200>
seta: .ascii /Hit <return> to set clock •• i/(200>

.even

• er1d set306

.title setdt.mac

.ident /wkw02/

.enabl le

.nlist end

This Prosram sets the RT-11 date and time from the GTSC model 306A
clock board.

The handiest wa\:I to use this prosram is to run it in !:lour start-uP
command file. It can' of course, be run at an\:I time !:IOU ma!:I wish to
brins the RT-11 date and time into asreement with the the clock on the
306A.

This prosram will run under a version 4 or 5 monitor.

Contributed b!:I: William K. Walker
Monsanto Research Corp.
P. O. Box 32 OS-123
Hiamisburs, Ohio 45342

.111call .sval' .Print, .sdttm, .exit

ceba = 170400 ;calendar clock base address
resa = ccba+12 ;•Resister A" address

..isw = 44 ;Address of Job status word
userrb = 53 ;Address of user error b!:lte
S!:ISVer = 276 ;offset of monitor version nu111ber
severs = 10 ;severe error bit in user error byte

eis = 1 ;Disable if YOU do not have EIS instructions
;1t50hz = 1 ;Remove semicolon if YOU have 50Hz line-time clock
;amPm = 1 ;Remove semicolon if board is set UP for AH/PH time
;bed = 1 ;Remove semicolon if board is set UP in BCD mode
datime = 1 ;Disable if \:IOU 'don't want date and time Printed on exit

NOTE: The mainline code in this Prosram doesn't really do very much.
If you strip out this mainline code and add the aPProPriate
GLOBL and PSECT stuff, you have a MACRO or FORTRAN-callable
subroutine named GSDTH that will set the RT-11 date and time
from the 306A clo~k.

41

•

•

•

setdt:

10$:

20$:
.if df

40$:
.endc

chnbit:
wr!ilver:

.if df
csize:
cstart:

cend:
.endc

• !ilval
bic
ClltPb

b!ilt
beo

.Print
bisb
clr
• exit

RtOV

call
datime
mov
mov
mov
mov
mov
mo vb
sob
bis
clr

.exit

.word

.asciz

.even
datime
.word
.asciz
.asciz
.even

tarearts!dsver
t~C<377>rr0

r0rt4
20$
10$

;Get RT-11 version number •••

;rest for version 4
;Branch if V5 or later
;Branch if V4

twr!ilver ;complain if earlier than V4
tsever$r@tuserrb ;set severe error bit
rO ;no a hard exit •••

t4000rchnbit

!ilsdtm

tlOOOrsP
csizerrO
tcstartrrl
t510rr2
r0dr2>+
<rl>tdr2>+
r0r30$
chnbitr@tjsw
rO

40

;set-uP for V4-st!dle chain exit

;set date and time from 306A

;Pass DATE and TIME commands to RT-11
; on exit •••

/?SETDT-F-Wron!il Version Of RT-11/

cend-cstart
/DATE/
/TIME/

; "Get-and-set• date and time from GTSC model 306A clock board.

• ii f ndf bcdr noon = 12 •
.iif df bcdr noon = 22 ;c22 = 12. in BCD>

!ilsdtm:
•DY t10.rr3 ;Get read!d to RIO Ve 10 b!dtes
mov tccbarr4 ; startin!il from the cc base address
mov tsecrr5 ; to the local buffer

10$: tstb @tre!ila ;clock uPdate in Prosress?
bmi 10$;Branch if so

20$: mo vb Cr4>+r<r5>+ ;Hove a b!dte to the buffer
sob r3r20$, ; Keep !iloin!il until done

.if df am Pia ;code for AH/PH time •••
tstb hr Hs time PM?
bea 30$;Branch if not
mo vb hrrrO ;Get hours value
bic t~C<17>r rO ;Mask for hour value
add tnoonrrO ;Make it a 24-hour time value
mo vb rO,hr ;store •corrected" value

30$:
.endc

42

.iif df bcdr call bcdbin

c 1 r
mo vb

.if ndf eis
.re?t
asl
.endr

+iff
ash

.endc

bisb
.if ndf eis

.re?t
asl
.endr

• iff

.endc
ash

lllOVb

sub
bis
mov

cl r­
c 1 r
mo vb
call
mo vb
add
call
mo vb
add
adc

.if ndf lt50hz

call
+iff

call
.endc

r-5
month,r5

5
r5

t5,r5

daym,r5

5
r5

t5rr5

Yearrr4
172.rr-4
r4rr5
r5rdate

rO
!'" 1
hrrr1
m•Jld60
mirur5
r5' r-1
muld60
sec,r5
r-5, r1
rO

muld60

muld50

mov rOrtimehi
mov r1rtimelo

.sdttm tareartdate

ret•Jrn

Buffer for clock resisters:

sec:

min:

hr:

daym:
month:
!:!ear-:

obYte
.byte
,byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte

0
0
0
0
0
0
0
0
0
0

;convert re~ister- values to binar!:lr
; if necessary

;clear R5
;Get the month

;shift left 5 bits •••

;shift left 5 bitsr EIS code

;Get the day of the month

;shift left 5 bits •••

;shift left 5 bitsr EIS

;Get the Year
;offset it from 1972
;stuff it into r5
;save result as date wor-d

;clear RO (will be hish~order- time)
;clear R1 <will be low-order time>
; Get ho•Jr and
; convert it to minutes past midnight
;Get minutes,
; add them in, and
; conver-t to seconds
;Get seconds
;Add to get seconds from midnisht •••

;convert to ticks <60Hz clock>

;convert to ticks (50Hz clock>

;store hish-order time
;store low-order time

;set the RT-11 date and time

43

(..
.. :) ,.

'

•

•

•

; Date and time words for +SDTTM reauest:

date: .word 0
timehi: .word 0
timelo: .word 0

area: .word OrO ;EMT arsument block for .SDTTM

This routine multiPlies a double-precision <two-word) inteser bY 60.
It takes advantase of this special case' and does it as C64*N>-<4*N>.

muld60:
+if ndf

10s:

20s:

• iff

.endc

eis
mov
clc
asl
rol
sob
mov
mov

mov
clc
asl
rol
sob

ashc
mov
mov
ashc

sub
sbc

t2rr4

r 1
rO
r4r10$
rO, r2
r1rr3

t4rr4

r 1
rO
r4,20$

t2rr0
rO.r2
r1rr3
t4,r0

r3rr1
rO

sub r2rr0
return

• if df lt50hz

;Non-EIS code •••
;MultiPlY ROrR1 by 4 •••

;save result <n*4> •••

;Now multiPlY by 16 to set n*64

;EIS code •••
;MultiPlY ROrR1 by 4 •••
;save result •••

;Now multiPlY by 16 to set n*64

;subtract R2,R3 from ROrR1 •••

-; For those of YOU with 50Hz line-time-clocksr this routine multiplies
a two-word inteser in ROrR1 by 50. It does this by treatirisi SO*n as
<32+16+2>*n•

muldSO:
.if ndf eis

clc
asl
rol
mov
mov

10s:

mov
clc
asl
rol
sob
mov
mov

r1
rO
rO,-(sp)
r1r-(sp)

t3rr4

r1
rO
r4r10$
rOr-(sp)
r1r-(sp)

;Non-EIS code •••
;MultiPlY ROrR1 by 2 •••

;save result <n*2>

;Now multiPlY by 8 to set n*16 •••

;save result <n*16)

44

clc
asl r1
rol rO

+iff
a she t1rr0
mov rOr-(sp)
mov r1r-(sp)

a she t3rr0
mov rOr-(sp)
mov r1r-(sp)

a she 11rr0

.endc
add (sp)frr1
adc rO
add (sp)frrO

add (sp)frr1
adc rO
add (sp)frrO

return
.endc
+if df bed

; This routine so es thro•Jsh
; them from BCD to b i.na r·!:I.

bcdbint
mov tsecrrO
mov t10.rr1

10St mo vb CrO>rr2
bic +~C<360>rr2

bea 20$
ror r2
mov r2' r3
ror r2
ror r2
add r3, r2
mo vb < rO > , r3
bic t~C<17>rr3

add r3' r2
rnovb r2rCrO>+

20$t sob r1r10$
ret•Jrn

.endc

.end setdt

jNow rnultiPl!:I b!:I 2 so that RO,R1 is n*32 •••

;EIS code to do same as above •••
; n*2 •••

;Add n*16 to n*32 to set n*4B •••

;Return

the list of clock resister values and chanses

;Ro => resister value list
;R1 = rePeat count
;Get a value
;Mask for lO's disit
;Nothins to do if zero
;M~ltiPl!:I this value b!:I 10 •••

;Result in R2
;Get val•Je asain
;Mask for one's disit
;Add this to Previous result
;store binar!:I value
;Go do another until done
;Then return

45

•

•

•

RT-11 MACRO/FORTRAN Interactions

John M. Crowell
Los Alamos National Laborator!::f

Los Alamos, NM

Ned w. Rhodesr Session ChairPerson
E-SYstems

Falls Churchr VA

RePorted bY Gavin Perry~ DECUS Scribe Service

This tutorial covered the mechanism for callins MACRO
routines from a FORTRAN Prosram. The material is cavered in the
FORTRAN users 6uide and the FORTRAN Library Gui-de. When writins
FORTRAN prosrams one sometimes needs to sPeed up certain
critical Parts of the Prosram. These time critical routines
will be faster if coded in MACRO routines which can be called
from a FORTRAN Prosram usins the technioues Presented here.
These technioues include basic information on FORTRAN
conventions for Passins arsuments to a subroutine. Also
included are some of the Pitfalls encountered when wri~ins
FORTRAN callable routinesr with hints on how to set around them •

When a CALL statement is issued from a FORTRAN Prosramr the
code senerated declares the subroutine name as a slobal and
~asses the address of an arsument block in R5 to the routine as
follows:

.GLOBL SUBRTN
MOV
JSR

ARG; 3
x
y
z

tARGrRS
PC, SU BR TN

the number of arsuments
the address of Parameter X
etc for the rest of the arsuments

The MACRO routine can now set the arsument addresses
th~oush RS. The first word of the arsument block contains the
number of arsuments beins Passed in the low bYte. The hish
bYter while usually Or is officially undefined. This Permits

the use of certain tricks. (see below> The first word in the
arsument block is followed bY the addresses of each of the
arsuments ir1 the In the subroutiner these para~ters ma~ be
accessed b!::f inde>:ins RS .(e.s. 2CR5>>. This is safer than
alterins the value of R5r since other routines maY also want to
reference the arsuments Pointed to by R5.

Function Calls

A FORTRAN function c•ll returns with the answer in RO. If
the answer is Inteser*4 or Literal*4 the low order result will
be in RO and the hish order part in Rt. For a Real ~ariabler
the low order portion of the result is in Rl and the h1sh order

46

Portio" is i1l RO. Double Precision returns four words with RO
containins the most siSnificant Portion of the result and the
remainins Portions in Rl to R3 <least sisnificant>. For a
complex number the hiSh order Portion of the real number is in
RO, the low Part in Rl, ~hile the i~asinar~ Portions of the
value will be in R2 and R3. FORTRAN expects to find the results
returned to it in this format.

GOTCHA's

Missins ar~uments will have -1 as the address' so be sure
~o check for addresses of -1 when there is a chance of missins
dr~uments in the call Ces CALL (A,B,,X)), If no arsuments are
passed the first word will contain 0 in the low b~te, so ~ou·maw
want to check for thit too. FORTRAN doesn't care if ~ou save
the resisters RO to R5 and it won't save them for ~ou between
calls to wour routines' so be sure to save anw values that will
be needed in other calls to a routine. The stack must also be
sdved.. It is verw imPortant Lhat for everw Push onto the stack
there is also a Pull froru the stack. Four out of seven sotcha's
were MIND THE STACK. It doesn't matter how manw times it's
said, ever~one sometime ends UP l~avins a number on the stack.
When this haPPens, i return to PC soes to never-never land. If
the stack contains 0 the Prosram will Just exit without even
sa~in~ ~cod b~e. Some Pust1es onto the stack are not obvious.
For exaruPle' if CSISFC is called it Pushes the number of
switches onto the stack even if it is zero. Don't modifw
FORTRAN constants unless wou want 2+2=5. It is not the value
Lhat is Passed but the address. FORTRAN won't know that the
y~lue of the constant has been changed. If wou are using th~
r1uating Point instruction set and changing defaults for the

Precision er the moder be sure to save the value of the current
fl~gs .nd PDP them when done with the different mode or
Precision. Don't muns R5 until done with all the arsuments or
~ou ma~ srab the wrong value.

FILE I/O

FORTRAN has an OTS work area where it keePs track of what
I/O channels are open and various Prosram linkases. Tell
FORTRAN if wou open or close I/O channels bw usins the librarw
routines IGETC and !FREE resPectivelw. D~n't use CSIGEN since
it closes channels 0-8 which are often opened bw FORTRAN. Use
~SISPC insteadr but watch the switch number Push on the stack.
Jf FORTRAN doesn't know about the channels wou open it maw set a
channel alreadw open when it tr~s to oPen a channel.

COMMON BLOCK

The common block st~tement creates a PSECT which wou can
use from wour MACRO routines; Just declare that PSECT in the
MACRO. See the FORTRAN Users Guide for ~he format.

FORTRAN ERROR TRAPS

An error in FORTRAN causes a
arsument 200 + the error number.
tell the user about fatal errors; be
will allow for a graceful exit an~waw

TRAP instruction with the
You can use these errors to
sure to do somethins that
<such as MOV -1, RO> since

47

•

•

•

a CALL SETERR maw have been exeeuted which will keeP it from
exitins until the error count reaches the count level specified.
If there is anw chance that error traPs will be called (either
wou call ~hem or wou use OTS routines that maw trap) be sure
that the trap vector has been initialized.

The PSECT lawout of a FORTRAN Prosram was discussed. The
first statem~nt of a FORTRAN Prosram starts with a call to $$0TI
to initialize the OTS followed bw a Pointer to the MAIN which
then Points to the data to be initialized. It is Possible to
write threaded code to be used with threaded <OTS> routines and
programs but it was not recommended. The threaded structure is
a list of entrw Points to the threaded routines, followed bw
addresses for the Parameters and constants. A namins convention
identifies the FORTRAN operation codes the data twPes and
address cedes Cto tell how manw levels of Pointers back lo so

before wou'll reach the value), More information on this is
dVailable in the documentation of FORTRAN or from John Crowell.

MACDBG/RT-11: A User's Critique

.John M. Crowell
Los Alamos National Laboratorw

Los Alamos, NM

Reported bw M<nse1ret Watters, [IECUS Scribe Service

.John Crowell discussed the Problems and the advantases of
DIGITAL's debussins swstem' MACDBG. This Prosram is a remote
swmbolic debussins tool which runs under RT-11SJ or RT-11XM on a
PDP-11 ur an LSI-11, This swstem has several features includins
the followins: it loads Prosrams into the tarset Prosram via a
Serial Line Unit CSLU); it examines and chanses the tarset
memorw and resisters; it has a RUN/HALT Prosram; it is
Prosrammed to find breakpoints, watchPoints, and tracepoints;
Lhe Host console can be used as a tarset terminal; and it
reouires an ODT in the tarset. Findins the tracepoints is an
esPeciallw useful tool in debussins, as the Potentiallw
problematic Point in the tarset Prosram is indicated, wet the
Prosram continues to run, so the user can observe the effect the
point has on the ProSram.

This swstem also has some non-essential features that are
helpful. There is a "Help• Pase; a Status disPlaw <on the
VT100 onlw>; a command kew Pad <on the VT100 and the LA120
onl»); Prosrammable kews ~VT100 and LA120 onlw); indirect
command files; and a loSSins console I/O to file.

The Debus ~ervice Module <DSM) is 0Ptional1 however it is
reGuired fbr findins breakpoints, watthPoints, tracePoints' and
for sinsle stePPins. The DSM resides in the Tarset RAM, and
takes UP 464 octal bwtea. It contains a loader for movins
blocks of data into tarset memorw. There is also a handler for
handlins breakpoints, watchPoints, tracepoints, and for sinsle
stePPins. The module sPeeds up loadins and dePositins in the
tarset memorw. This module should not be used if the user does

48

not have the necessarw RAM, or if he does not have RAM at
locations 14 or 16. The Prosram also should not be used if uses
BPTs or if it used instructions that alter the T-bit. The DSM
maw be linked with the user's Prosrams' and it can be loaded
seParatelw. The speaker warned that • user must be careful that

his Pro~ram does not write over the DSM.
under SJ, the "halt" instruction corrupts
MACDBG thinks it does).

He also w~rned that
DSM (or at least

Crowell Pointed out several problems that he has noticed
while usin~ MACDBG. The maJor Problem is that MACDBG sets the
cursor kews to the 'APPlication Code", which does not matter
while MACDBG is in use1 since it does not use the cursor kews.
Howeverr MACDBG does not reset the kews to "Cursor Code" before
exitin~. This particularlw baffled Crowell. MACDBG has several
buss of its ownr but Crowell said that it is a Powerful tool
nonetheless' and that it is the most cost effective software
that. he has bo1_1sht in a verw lonsi time.

Creation and Handlins of Multi-Volume Directories Under RT-11 With TECO

Maarten van Swaaw
Kansas State Universitw, DePartment of ComPuter Science

Manhattan, KS

J~ck Crowellr Session ChairPerson
Los Alamos National Laboratorw

Los Alamosr NM

RePorted bw J. Rick Mihalevich, DECUS Scribe Service

Manw small RT-11 swstems are based on floPPW disk storase.
Files and their backup copies can ~asilw extend over 50-100 disk
volume~' and locatins an individual file can become a tedious
chore of browsins throush a larse collection of disks or Printed
directories.

TECO can retrieve volume ID records and file names from a
volume without invokins directorw oPe~ations from USR. This
caPabilitw makes it Possible to use TECO f-0r the creation of a
multi-volume directorw file. Because retrieval of the directorw
information does not invok• USR, the output volume can share a
spindle with the inPut volumes from which the directories must
be obtained.

A set Qf TE-CO macros for creation and use of a m•Jlti-volume
director~ file was described. The Packa~e Presented includes
Provisions for the creation of a new director~ file, for
insertion I rePlacenient I deletion of a sinsle-volu111e director~
in the filer and for locatins selected files f~om the directorw.
Because the directorw file can extend over more than half the
sPace on a sinsle volumer a mechanism was discussed to edit a
larse file-in-Place.

49

•

•

•

NAME:

The Presenter offered copies of these macros. To obtain a
COPY one needs to send a floPPY to: Maarten Van SwaaYi Kansas
State University, Manhattanr Kansas 66506+ The Presenter
reouested that a Packase complete with return address and enoush
Posts•e for return be included with the floPP~+

SOFfWARE PERFORMANCE REPORTS

VO 00
DEC OFFICE ANO CONTACT PERSON

Ned W. Rhodes
Lanham

FIRM:

ADDRESS:

CUST. NO.:

E-Systems, Melpar Division

7700 Arlington Blvd.
Falls Church, Va. 22046

REPORT TYPE/PRIORITY

§ PRODL.'i"'/.ERROR

SUGGESTED ENHANCEMENT

OTHER

1.~HEAVY SYSTEM IMPACT

2.. MODERATE .!'l'STEM IMP

3 MINOR SYSTEM IMPACT

'· NO SIGNIFICANT IM-C'"

5. DOCUMENTATION/SUGGES

SUBMITTED BY: PHONE:

Garr L. Fuller 703 560-5000 X2858
ATTACHMENTS

MAG TAPED n..o,..v DISKS D LISTI NGO

OTHER:

CAN THE PROBLEM BE REPRODUCED AT WILLT

COULD THIS SPR HAVE BEEN PREVENTED av
BETTER OR MORE DOCUMENTATIONT

PLEASE EXPLAIN IN PROVIDED SPACE BELOW.

CPU TYPE SERIAL NO. MEMORY SIZE DISTRIBUTION MEDIUM SYSTEM DEVICE DO NOT PUBLISH

LSI-11 /23 1AB02254 128 K RX-02 RL-01

1. A problem with the SIPP utility occurs when both of the following
conditions are met:

(1) An optional com-filespec is supplied in the SIPP command string:

(2) A modification is made to the input file in the address range-
1000 ~ (Base+ Offset) ' 2000 (octal).

[

The problem is characterized by the insertion of the command file text
(destined for the com-filespec channel) into the input file starting at
address 1000 (i.e. Block 1) .

The probable diagnosis is that there is a channel mix-up when buffering
the command file text. Wh~ the 1000 - 2000 address range is a factor is
undetermined.

The problem may be reproduced by performing any of the customization
patches supplied in the RT-11 Installation Guide (AA~H376B-TC) Ch. 2.7
which specify addresses in the indicated range and by additionally
specifying a com-filespec.

2. The /H and /V switches are transposed in the minirefPrence.
are correct in the system utilities manual.

They

3. BACKUP/MULTI - If a fil~ is too large to fit on the output volume
and it is the last file being transferred, it continues to prompt for
output volumes instead of giving a message that the file is too large.

50

•

•

•

SYMPOSIUM TAPE JNFORMATION

CALL FOR
AT-1·1 SIG TAPE

SUBMISSIONS

Assembling the RT-11 SIG Tapes at the OECUS Symposia (and
producing a quality product) has turned out to be difficult. The
Spring, 1983, tape was done after the Symposium, and I propose to
do the same this time. Therefore, any SIG Tape submissions which
are ready now can be sent to me for preparation. Please note,
that even if you send a tape submission early, the DECUS U.S. Sym­
posium rape Copy Release Form MUST BE SIGNED!! A copy of the
Release Form is attached below.

Please send al I submittals, along with the Release Form to:

R. W. Barnard
Sandia National Laboratories
Divi"sion 2565A
P. 0. Box 5800
Albuquerque, NM 87185

Remember that the RT-11 SIG accepts not only 9-track, 800
boi, magnetic tapes, but also RX01 and RX02 floppies. (I can also
read TU-58 DECtape I I's). Thank you.

ATTACHMENT D

TAPE COPY RELEASE AGREEMENT

Release Form
Number:

The DECUS Program Library and the DECUS Tape Copy Facility provide a clearing house function only; programs are not
sold or generated or tested. All programs and information and copies are provided "AS IS". DIGITAL EQUIPMENT COMPUTER
USERS SOCIETY, DIGITAL EQUIPMENT CORPORATION, AND THE CONTRIBUTOR DISCLAIM ALL WARRANTIES
ON THE PROGRAMS, INCLUDING WITHOUT LIMITATION, ALL l~PLIED WARRANTIES OR MERCHANTABILITY
AND FITNESS.

The following authorization is assumed for all programs copied on the copy facility:

Full permission and consent is hereby given to DECUS and to the DECUS Special Interest Group to reproduce,
distribute, and publish and permit others to reproduce in whole or in part, in any form and without restriction,
this program and any information relating thereto. The submitter hereby warrants and represents that he had
good and sufficient right, interest, and title in and to this program and the related information to grant such
permission to DECUS .

Signed

51

ATTACHMENT C

Release Form
Number:

·DECUS U.S. SYMPOSIUM TAPE COPY RELEASE FORM

Company
--~

Address

City State ZIP Telephone
------------------- --------- ------ -----------------

Pro gr am Name(s)
--~

SIG Tape Submitted to: O RSTS/E
ORSX

OVAX
0 STRUCT. LANG.

Is this material account specific?

ORT-11 DTOPS-10
OTOPS-20

--~
Number and Kinds of Tape Submitted: 0 OOS Format

0 7-track

O 800BPI

Description:

0 ANSI Format

0 9-track

0 1600 BPI

D Other ------------0 Other -------------
0 Other ------------

--

Guidelines:

Users who wish to participate in the exchange should bring a 2400 foot (preferably new) quality tape to the Symposium.
The tape and cannister should be clearly labeled with the user's name and address.

1. No propr;.tary or licenllld a1ftwan (including whole or partial copin) may I» 111bmittlld.

2. Users who would like to submit modifications to licensed DIGITAL software may submit files to be appended
to the original source program. ONLY the modifications may be submitted.

3. Users are encouraged to include a README file on their tape including the submitter's name and address, and
· a description of the files he/she is submitting.

4. Tapes should be compatible with standard system software. Please indicate the number of fales and the PPN,
UJC or account, and tape format.

S. Tapes should be 9-track, and be labeled with the sender's name and address.

IMPORTANT! RELEASE AGREEMENT ATTACHED

52

I

•
I
1

'

MOVING OR REPLACING A DELEGATE? r

Please notify us immediately to guarantee continuing
receipt of DECUS literature. Allow up to six weeks
for change to take effect.

() Change of Address
() Delegate Replacement

DECUS Membership No.:--------
Name: _____________ _

Company: ______________ _

Address: -------------------------~

State/Country: ---------------------­

Zip/Postal Code: --------------------

Mail to: DECUS · ATT: Subscription Service
One Iron Way, MR02-1/C11
Marlboro, Massachusetts 01752 USA

l

s:: 0 c c
l> z - m
:xi men
r - -4 c:
txJ :xi)> (I)
0 0 r (I)
:xi z m c:

.o:eo~
s::l>Sn
l><-g::xl
(I) ",,,. s:: ;;
(l)::..m-t
)> :xi z -
n o -t o
::i:: ~ n z
c:..ao(I)

~nS::m
-4 ... -g::xi
-t ... C:~
(I) -t n mm

:xi Q ...
""" U1
N

c:
(I)
m
:xi
(I)

~ n
m
-4
<

~[C]

.,,
.,, ;:;· c
~ g. -0 i:n al
3 er · c

"" -· c)> .,, ~ _.,... ..., - 0
2~ c ~ ~
!:>3: :::~

)> "'

'--',

