\@,

DECUS

The DeVIAS Letter

PN

B DECUS
US. CHAPTER

z s

DECUS
US CHAPTER

The RSX Multi-Tasker

September 1983



Printed. in the U.S.A.

The following are trademarks of Digital Equipment Corporation:
DEC DIBOL PDT
‘DECnet Digital Logo RSTS
DECsystem-10 EduSystem RSX
DECSYSTEM-20 1AS UNIBUS
DECUS MASSBUS VAX
DECwriter PDP VMS

VT

UNIX is a trademark of Western Electric Corporation

Copyright © Digital Equipment Corporation 1983
All Rights Reserved

1t is assumed that all articles submitted to the editor of this newsletter are with the authors’ permission to publish inany DECUS
publication. The articles are the responsibility of the authors and, therefore, DECUS, Digital Equipment Corporation, and the
editor assume no responsibility or liability for articles or information appearing in the document. The views herein expressed are
those of the authors and do not necessarily express the views of DECUS or Digital Equipment Corporation.




The DeVIAS

Volume No.

In This Issue
Curley's Corner: News from the Chairman
Ietters:
Mary Roberson: System Directory/Librarian Package?
William Ferry: Digital Counterpart for IAS SIG
John Guidi: C on IAS? TTY Patch. BAD on IAS
Bob Turkelson: Status of SRD

Preliminary description of IAS V3.2
UIC directory for RSX Fall 82 SIG tape
The Magic of Sysgening IAS

LIST utility from Paul Clayton's tape
DeVIAS Questions and Answers

Next Issue:

More from the Clayton tape
Preview of the RSX Spring 83 SIG tape

Letter
16

From the Editor

I hope some of those receiving this newsletter are using IAS
or at least know someone who is and can pass the letter
along.

For those of you who don't even know what an IAS is, my
condolences. You may, however, find the enclosed matter of
interest since much that affects IAS also affects RSX.

For those of you who didn't get the previous issug, I nged
submissions. I will take anything that can be printed in a
free-press society and has some relevance to IAS, DEC or
DECUS.

I hope to publish at the rate of one issue every month or
two, so I need material.

Contributions

The DeVIAS Letter needs contributions in order to continue
as an effective medium for exchange of information regarding
IAS.

Contributions may be submitted in any form you wish.
Originals on 8% x 11 paper are preferred. However, even
photocopies of relevant match-book covers would be
appreciated.

Send all contributions to:
Ontario Hydro
700 University Avenue
Toronto, Ontario
CANADA, M5G 1X6

Attn: John W. Drummond
Mail Stop - M2E10

ii



Department of Radiation Therapy
University of Pennsylvania

Room 410 - 133 South 36th Street
Philadelphia, Pennsylvania 19104
31 July 1983

Dear IAS SIG Member,

There are several issues that bear upon us directly. The most
important, in my view, is the newsletter sharing with the RSX SIG.
The DECUS management has decided that any new SIG will share the
newsletter with an established SIG for the first year. This makes
sense in a couple of ways, (a)it gives the new SIG time to get its
newsletter act established before being forced into a paid
subscription program on its own and (b)it allows DECUS to plan ahead
in its Subsecription Service budget. Thus, we will share the
Newsletter with the Multi-tasker for this fiscal year. I have asked
that the pages of each newsletter (Mhe Multi-Tasker" and "The DeVIAS
Letter") be different, and that we alternate placement on top. The
RSX SIG has already indicated a willingness to share and be helpful.

Scheduling for the Fall Symposium in Las Vegas is done. John
Jenkinson did the preliminary work but was unable to attend the week
scheduling meeting in Marlboro, Massachusetts. Both Jim Hopp (the

Symposia Coordinator for the RSX SIG) and Steve Finch (of Emulex
Corporation, Costa Mesa, California) did the on site work necessary
for us to have IAS sessions in Las Vegas. Thank you both for taking
up the gauntlet on short notice. This brings wup an important SIG
issue: we need a volunteer to be Symposia Coordinator. I would be
glad to hear from you now or find me in Las Vegas and we can discuss
the job (some DECUS paid travel is required).

The sessions on the schedule for Las Vegas are:

Nibbles and Bits of IAS, Ken Guralnik, Thursday, 27 October,
8-11pm

IAS Language Panel, Mike Reilly, Tuesday, 25, October
10-10:30am

IAS SIG Opening Session and Roadmap, Bob Curley, Monday, 24 October
8:30-9:30am

IAS SIG Closing Session and Wish List, Ken Guralkik, Friday,
28 October, 10-11am

IAS/VMS User panel, John Jenkinson, Tuesday, 25 October
12:30-1:30pm

IAS SIG Planning, SIG Steering Committee, Thursday, 27 October
7-8pm

IAS QA, Bob Curley, Monday, 24 October
8-11pm

IAS Product Panel, Tim Leisman, Monday, 24 October
2-3pm

The IAS QIO Unveiled, Mike Reilly, Thursday, 27 October
10-11am

Aerodynamic Laboratory Data System in IAS, Stephen L. Tomlin,
Thursday, 27 October, 12-1pm

Enhancing System Security of IAS, Larry Barrett, Tuesday, 25 October
10:30-11am

IAS.RSTS/E.RSX.VMS, Curley et al, Tuesday, 25 October
5:30-6:30pm

You should have Autopatch E if you have any kind of software
support. Even if you have not ordered Autopatch before. Ask your
software support office if you have not already received it.

I would like to hear from you about talking to your IAS system

with DEC personal computers. Really, any personal computers, but
especially with DEC PC's. I have a DECmate II and will get a Rainbow
"sometime soon". And, I KNOW that intercommunication is NEVER as

simple as it should be. Anyone who has solved the problems -- please
let me know. Thanks.

I noticed that there is a new contribution to the DECUS 1library,
from New Zealand, that is IAS specific. Why is it that we contribute
so little to the Library? I have heard that question often, in the
halls of DECUS. I would 1like to hear your answers or opinions.
Please.

The RSX SIG has an active group working on SRD. It would be
nice, since most of us use it, if our SIG helped. Please call or send
me your name, to be connected with this worthwhile effort.

I have asked Ken Guralnik (EG&G, Las Vegas) to start wup a
mechanism that will permit us to focus our desires for IAS on DEC. It
is often called a "Wish List"™ or "SIG Menu", but Ken has come up with
a better name. He'll tell vyou about it shortly, but if you can't
wait, call him at 702-647-5551. There are, of course, wishes that
never come true. But, if DEC never knows, your wishes will never come
true. I have found the Development group very helpful and reasonable
in my requests.

The [14,%] UFD tapes that Paul Clayton spoke of in St.Louis are
ready. A very cooperative, but anonymous, person has created three
BRU tapes (two at 1600bpi and one at 800bpi) of the whole collection.
Send me a request, I'll send you a tape, you copy it and return the
original to me. If you missed St. VLouis, Paul Calyton described a
herculean effort whereby he collected over 100 individual programs or
collections from DECUS sources (and his own contributions). All run
on IAS. His sources include the "Best of ICR", of Stodola, Wood and
Cael; "Reece's Pieces" of Frank Borger and many Symposia RSX/IAS
Tapes. Some required extensive modification of command files, and the
like, to work. Paul has offered to share them with us.

Sandy Krueger, a 1long time DeVIAS member, has been elected

Chairman of the SIG Council. As many of you know, Sandy has been
Chairman of the DMS SIG for a couple years, succeeding Sat Mohan (also
a DeVIAS Member). The SIG Chairmen were invited to a meeting last

weekend at the O'Hare Hilton. We voted to form a group, that consists
mainly of SIG Chairmen, to be called the SIG Council and elected Sandy
to chair it. The SIG Council 1is an effort to make DECUS more
representative, since you talk to me and I'm supposed to talk to DECUS
management. To make it all work you must talk to me or the SIG



chairman you feel will 1listen best. There are many important (and
devisive issues) that must be addressed and solved by this 1level of
the membership so that DECUS can continue to be the helpful
organization that it has been for so long. Contribute your ideas and
criticisms to your SIG Chairmen.

I was asked a few weeks ago for items to form a "handout" at the
Las Vegas meeting. I responded that we didn't have that act together
yet. I'd like to hear from you who think that handouts are a good
idea for this SIG. I think that our newsletter is a good forum for
those things (few as they are) and the Proceedings the right place for
formal papers. Many of the SIG's use the handouts as a mechanism to
earn money for SIG activities. Any opinions?

My work address has changed. My new office is at 36th and Walnut
Streets in Philadelphia and the address above does not usually enter
the University nor Hospital Mail System. My 0l1d address, 3400 Spruce
Street, wususlly entered the Hospital Mail and sometimes got to me.
Sometimes it would enter the University Mail and never get to me. (I
was approached in San Diego a couple of years ago, at a DECUS
Symposium, with the words: "Oh, You're Bob Curley --- I get your
mail™ by someone else whose badge said "University of Pennsylvania").
Thus, you may use the new address above, or the Post Office Box that I
rent to avoid the 1issue altogether: P.O. Box 322, Flourtown,
Pennsylvania 19031-0322. Or you may phone, 215-662-3083 (8am-4:30pm
Eastern Time).

Another letter that I received recently asked if we wanted to
have items for sale in the DECUS Store at the Symposia. You've all
seen the VAX Ties and various Sig Tee Shirts. Do we wish to sell (or
more practically, buy) IAS items? A volunteer to organize and
maintain that efort would be appreciated. I answered this letter that
we would have no items this Symposium. Again, this is a mechanism for
SIG's to make a few bucks for SIG activities.

I must thank, again, the many people who make this newsletter
possible. The obvious one is John Drummond. But there are you who
send in items and the DECUS Staff who get it printed and mailed.
There are you who send in your subscription dollars to support all the
efforts and ultimately make it possible. Thanks to all of you who
contribute.

Robert F. Curley

Chairman
IAS SIG

Bell Technical Operations L1 3.45{¢].]

Bell Technical Operations Corporation 1050 East Valencia Road
Subsidiary of Textron Inc. Tucson, Arizona 85706
602/294-2651
TWX 910-952-1103

16 February 1983

To: Robert Curley
Delaware Valley IAS Local
P.0. Box 322
Flourtown, PA 19031

RE: Disk and Tape Management System for PDP 11/70 IAS

Dear Mr. Curley:

We are Tooking for an automated tool which would assure that the most
recent version of a file is accessed and provide information for configur-
ation control purposes.

Specifically, the tool should (1) automatically record file name, ver-
sion, date, and device ID, (2) prompt the operator for the correct disk or
tape, and (3) then only accept the specified disk or tape. The PDP 11/70
IAS operating system now selects the most recent version from the mounted
device, but what we want is the most recent version anywhere.

1 would appreciate hearing from other users who have solved or are
trying to solve this problem through disk and tape management systems or
other methods.

Very truly yours,
BELL TECHNICAL OPERATION CORPORATION
77//1/'7 /( /f/{(t"/zm

Mary Roberson
Systems Analyst



dl gttt

28 June 1983

Mr. Robert F. Curley, Chairman

IAS SIG

Hospital of the University of Pennsylvania
3400 Spruce Street

Philadelphia, Pennsylvania 19104

Dear Mr. Curley:

As you know, DECUS is a valuable vehicle for information exchange
between Digital and our customers. Our objective is to insure that
Digital customers realize the maximum benefit to better meet the
needs of the marketplace. Our decision to extend support of the

IAS product set was based on the clear feedback we received from your
organization regarding the need for continued support.

I am pleased to honor your request to have Tim Leisman serve as the
"Digital Counterpart" to the newly formed IAS SIG. Tim brings to
this position his experience as a "Digital Counterpart" to the
RSX-IAS SIG, his enthusiasm for IAS and a sincere interest in the
needs of the IAS user community.

We believe that IAS has a bright future. This is based on the
quality of the product and the quality of the communication between
Digital and the IAS user community. With your continued support and
the support of the IAS community we look positively to the future.

Sincerely,
-~
. < =
lllcléﬁ;n@{ .52’
William P. Ferry ’444;7

Corporate Manager
Software Product Services

WPF:j

2 BOLTON RO¥AT 5§ 2 Mg ACHUSETTS ¢4778
T R97-5141
5

DiGITAl CCOPMENT CORPDE AT D 70

John Guidi
The Computing Center
The Jackson Laboratory
Bar Harbor, Maine
24609 .
phone: (207)288-3371 X-391

Bob;

Question: Does anyone have the DECUS C system running on an IAS V3.0
system? If so, would you please contact me at the above address?

We are running IAS V3.0 and recently we have had some hardware
problems which prompted a visit by DEC Regional Support. To our
delight, the person sent up was intimately familiar with IAS. Some of
his suggestions and comments may be of interest to other IAS users, so
I pass them to you to do with as you see fit.

o Bruce Wright of Duke University published a patch for the IAS
V3.0 terminal handler in the April 1981 issue of the
Multi-Tasker (Vol 14, Number 4, pp.l1@6-187). The patch

ai&ulul) causes parity errors in the type-ahead buffer to be handled

the same as breaks or framing errors. Without this patch,
parity errors in the type-ahead buffer can fill up the
terminal buffer, locking out all terminals.

o The BAD utility distributed with IAS V3/V3.1 does not inhibit
retries of marginal sectors. The error log may fill up when
you run BAD, and if so, you should include any sectors where
retries occured in a subsequent run of BAD.

The BRUSYS.SYS image on the IAS V3.1 distribution contains
the RSX-11M version of BAD which has been referred to as a
"snowplow" - it does not stop to perform retries. We created
a bootable tape by building the Virtual MCR (VMR) utility and
running the BRUSYS.SYS image through it to tape. When
booted, the tape loads a system containing the CNF
configuration program to describe devices, the FMT disk
formatter, the "snowplow" BAD, and a copy of BRU. To do
volume maintenance, we bring the system down, boot this tape,
run the CNF configuration program, and then run the
appropriate utilities.

NOTE: Once you have BRUed onto a volume, you will be unable
to use DSC to make a copy of that volume. BRU writes
information into the home block which DSC does not know how
to handle. We have been told that this is no great sacrifice
as BRU is said to perform better than DSC. Also with BRU,
you can specify the location of the index file.

Sincerely,

AL,



ignored. Various alternate coding sequences will cause the problem to disappear
from the test program, but instances where "real" programs encounter this bug
are much harder to find.

COMMON ID(1),IT

DIMENSION IO(2)

EQUIVALENCE (IO(1),ID(1))
1 FORMAT (I3)

IT =1

WRITE (5,1) I0(2)

IT = 2

WRITE (5,1) I0(2)

END

>FOR TEST=TEST
.MAIN.
>TKB TEST=TEST
>RUN TEST

1

2
TT11 — STOP

>FCR TEST=TEST/CD:EIS
.MAIN.

>TKB TEST=TEST

>RUN TEST

0

2
TT11 — STOP

HELP YOURSELF

"Help Yourself" is a place for you to get your tough questions answered. Each
month, questions from readers will be published. If you have a question, send a
letter to the Multi-Tasker at one of the addresses listed on the cover.

We would also like to publish the answers to questions. If you can help
someone, send a letter to the Multi-Tasker or call Ralph Stamer john at (314)

694-4252. Your answer will be sent directly to the person in need and published
in the next edition of the Multi-Tasker.

ANSWERS TO PREVIOUS QUESTIONS
IAS TERMINAL LOCKOUT

Bruce Wright from the Duke University Medical Center had an answer for the IAS
terminal lockout question in the January, 1981 edition.

The IAS terminal lockout problem is a very well-known problem. The basic cause
is that the IAS terminal handler will buffer up parity errors without regard for
the typeahead buffer size. This is not done for framing errors (a bit is set
indicating that a framing error has occurred, but it doesn't buffer up framing
error messages). If a line is generating enough parity errors without any task
doing a read on the line to get the parity error report, the ENTIRE terminal
buffer area can be filled up with parity error reports for ONE terminal! The
result of this is (as was observed) a <bel> response from any terminal whenever
anything is typed on a terminal. It has nothing to do with system load static,
etc., although parity errors on terminal 1lines can be generated by line
cross-talk.

We have been trying (> 1 year) to get DEC to respond to this problem, but the
only response we ever get is that this is considered a feature (!!) because it
is possible for a task to get a report on EVERY parity error which occurs on a
line. This may be desirable for communications applications, but for other uses
of terminals it is UNACCEPTABLE! This is especially true as the fix is quite
easy. The following code was developed for IAS V3.0, and works for the field
test release of IAS V3.1 as well since the appropriate module has not been
changed. The effect of the patch 1is that only the first parity error in
typeahead is reported (if the terminal is not in typeahead all parity errors
will be reported). This 1is the way breaks or framing errors are currently
handled. In the module ISRRTN, the subroutine UARTER (Uart error), the
following patch:

-40
3 PATCH AUTHOR DATE REASON
; Lo BRUCE C. WRIGHT 10-SEP-80 TREAT PARITY ERRCRS LIKE
H FRAMING ERRORS (CCPIED
H FROM IAS V3.0 LOCAL MODS)
-416, 422
BMI 208 1++L01 SKIP ON DATA OVERRUN.
108: ASL RS ;++071 TRY FOR BREAK (FRAMING ERROR)
BPL 128 y++L01 J IF NOT
MOV #TE.BCC,R5 s++071 ELSE GET CODE
BR 4 ;++L01 AND JOIN COMMON CCDE
12%: MOV #TE. VER, RS ;++L01 GET PARITY ERROR CCDE
148: BIT #SC.BRK, (RY) 1++L01 ALREADY SEEN A BREAK?
-428, 428
20$: MoV #TE.DAO, RS ;++L01 GET DATA OVERRUN CODE
/

£
THIS MONTH S QUESTIONS
6502 CROSS ASSEMBLER
I have been attempting to locate a 6502 cross assembler for the PDP-11 for

either RT-11 or RSX-11M for quite some time now. Rumor has it that there is
"more than one version out there" which is probably a safe assumption. If



NASA/Goddard Space Flight Center
Code 933

Greenbelt, M0 20771
301-344-5003

July 18, 1983

Bob Curley

Dept. of Radiation Therapy
University of Pennsylvania Hospital
3400 Spruce Street

Philadelphia, PA 19104

Dear Bob:

The enclosed materials were sent to the SRD Working Group members and others
who have contacted me concerning SRD. I thought the RSX SIG Steering
Committee would be interested in the status of SRD. The questionnaire
concerns the emphasis that the SRD Working Group should place on two program
versions under consideration. It is being sent to you for your informationm,
but feel free to return it if you want.

If you would like a copy of the versions of SRD under consideration, please
send me a tape. I will assume 1600 bpi BRU format unless you state
otherwise.

Sincerely,

Bl Tonhdoon—

Bob Turkelson

SRD Working Group Questionnaire

SRD Version 6.3 has been submitted to the Spring 1983 RSX SIG tape ([352,4]).
This version was produced by merging Glen Everhart’s recent modifications
which appeared on the Spring and Fall 1982 tape (/HD, /SM, and /BK switches)
into V6.2.

At the recent Spring 1983 Symposium in St. Louis, the working group discussed
desired enhancements to this version of SRD. Enclosed is a wish-list
generated by suggestions made by those interested in SRD.

Henry Tumblin, to whom I had submitted changes which went into V5.0 on the
Fall 1979 tape when he was in the Files-11 Working Group, has sent me his new
version of SRD. He has done much work in cleaning up the code and source code
documentation, as well as adding some useful features. His version has a sort
on date switch, a multi-column listing format, a delta date specification
feature (such as for files created the last 5 days, or the last 2 weeks, for
example), and it uses $EDMSG to generate messages. Unfortunately, he started
with SRD V5.0. The process of bringing his version up to date with the V6.3
features would be much easier and faster had he modified V6.0 from Phil
Stephensen-Payne, who merged V5.0 with Ray Van Tassle’s version, for the
Spring 1981 tape. Henry’s recent suggestion was to modify his version, with
his help, to incorporate features added since V5.0 which he has not yet
included. Our goal would be to have this version distributed on the Spring
1984 tape, since only a few months remain before the Fall 1983 Symposium. Of
course, we can still try for the Fall tape.

As an example of how Henry’s version is documented, I have attached listings
of modules SRDINI and SRDLST from both versions. { €D. DT inCluitd

I was only recently able to try this version (after Henry explained that he
had a solution for the problem for the RSX-~11M version he had sent to me).
With limited testing so far, his version works well.

An example of the multi-column format he uses to display file names is
attached. We would need to allow the generation of the current V6.3 format by
a switch (which could be defaulted) so programs and command files would
continue to work.

Some people have suggested ignoring Henry’s version for now, since he started
with an early version and to bring it up to date with adequate testing would
be quite time consuming. On the other hand, since he has made many valuable
contributions it might be worth the effort to merge them.

Please let me know your feelings on how the working group should proceed by
returning the enclosed questionnaire.



SRD Working Group Questionnaire

Please give your opinions on how the SRD Working Group should proceed:

1. Should the working group add features to V6.3 for the Fall 1983 SIG tape?

2. Should the working group plan to adopt Henry Tumblin’s version for the
Spring 1984 tape?

3. If so, should the working group be modifying only Henry Tumblin’s version
now, even though we may not be ready with a compatible version by
the Fall 1983 SIG tape? (The code required for many of the desired
modifications would be the same for either version, so our work
upgrading V6.3 would not be entirely "lost.")

Example Directory Listing From Henry Tumblin’s SRD

[ Directory of VDO:[352,004] 4-JUL-83 17:12 ]

SRD.CMD; 1 SRD. COR; 1 SRDATA. COR; 1 SRDDBF . COR; 1
SRDINI.COR;1 SRDLST.COR;1 SRDNUD. COR; 1 SRDOPR. COR; 1
SRDPRE.COR; 1 SRDREP. COR; 1 SRDROT. COR; 1 SRDSRT.COR; 1
SRDSUB.COR;1 SRDTRP.COR; 1 SRDTST.COR;1 SRD.DOC; 1

SRDMOD. DOC; 1 SRD.HLP; 1 SRDATA.MAC; 1 SRDDBF.MAC; 1
SRDINI.MAC;1 SRDLST.MAC;1 SRDNUD.MAC; 1 SRDOPR.MAC; 1
SRDPRE.MAC; 1 SRDREP.MAC; 1 SRDROT.MAC; 1 SRDSRT.MAC; 1
SRDSUB.MAC;1 SRDTRP.MAC; 1 SRDTST.MAC;1 SRDXX1.MAC; 1
SRDXX2.MAC; 1 SRDXX3.MAC; 1 SRD.RNO; 1 README. 1ST; 1

[ 36 files listed out of 36 files in VDO:[352,004] ]

10



Fall 79

Spring 81

Fall 81

Spring 82

Fall 82

Spring 83

V5

V6

SRD

0
Ray Van Tassle
!
!
!
!
V6.0 (Phil Stephensen-Payne)
!
!
V6.1
!
!
T 1
! !
Glen Everhart !
! !
! !
2 Glen Everhart Friedberg
! !
! !
] !
!
!
V6.3

July 15, 1983

Suggestions for SRD Modifications

For multi-header files, show the correct file size.
Add a line showing the switch defaults when /ID specified.
Include the capability to handle version numbers ;0 and ;-1 as PIP does.

Merge in the /FO switch from Ray Van Tassle’s version of SRD, so that
file selection may be based upon file owner. Also it would be nice
if /-FO0:[g,m] displayed all files not owned by [g,m].

When displaying the SRD command line, display the original command before
substitution of special characters.

Merge in the file sorting features from the version in the U. S. Forest
Service collection of programs on the SIG tapes (Spring and Fall
1982 [307,120]). This version allows sorting by file name, file
type, and version in ascending or descending order. It also has a
nice command file generator feature.

Merge in the single character wildcard in UIC capability, as found in DIR
(Spring 1982 [350,300]) (and perhaps other SRD versions).

Fix some problems which have been around for a while. For example, when
an error occurs reading a file header (such as a file-id, sequence
number check), SRD displays an error message, but then proceeds
through whatever testing would have been done to determine if the
file name should be listed, which means that the name of the file in
error may not be displayed, or that meaningless tests are made.

When using one of the date switches, if a header contains an invalid
date format, SRD displays a fatal error message telling the user to
enter the date in a correct format, without giving the offending
file name, and then quits working on that directory. The same
routine (CVDATE in module SRDSUB) which verifies a date specified in
the command line switches 1s used to check the date within the file
header. 1If the error is from a file header date, SRD shoud give an
appropriate error message and continue going through the directory.

The addition of an /ER switch which displays the file names which cause
an error while reading the file header.

A change should be made so that the following won’t happen: Specifying
the /AF switch with a date will find no files if the system date and
time have not been set. SRD looks for all files between the
specified date and the "current" system date. This is OK under most
circumstances, but it surprised one user who was checking a disk he
had just copied (to make sure the copy was performed in the correct
direction).



o Add a switch to allow selection based upon allocated file size (all files
equal to or greater than a specified size).

[ Add a /TB switch to always print the total number of blocks in the
selected files, even when it would not otherwise be calculated (for
example, when neither the middle nor full listing is desired).

(<] Modify the command file to generate SRD:

o Reduce the number of questions necessary for choosing the default
switches for most systems by grouping one or two sets of
options most people choose, and asking the user if that set of
options is desired. For example, many people choose
/LI/SR/-WD and /-NA/-RD/WI/AT/M2.

o Perhaps show a default set of default switch settings, giving an
experienced user the option of entering any changes to this by
typing the switch settings desired. The full question and
answer method of choosing default switch settings would still
be available.

o Supply the source files in a universal library, from which SRD.CMD
extracts them, does the assembly, and inserts the object modules
into an object library which the task builder references.

o Create SRDDEF.HLP showing the default switches, which SRD.HLP could
reference.

(] Generate a DCL interface - either external or internal to SRD. Paul
Sorenson’s DIR program (Spring 1982 [350,300]) has internal DCL type
qualifiers. Henry Tumblin has a parsing module to handle DCL type
qualifiers, but this module was not completed.

o Several other desirable features are in Henry Tumblin’s version now (such
as sorting by date, appending to an output file, Iimited multiple
file specifications).

o Investigate handling named directories and subdirectories for future
versions of RSX-11M-PLUS.

o The working group should decide what header and trailer formats should be
used.

[ The working group should decide whether to keep the /BE, /BF, /AE, and
/AF switches for inclusive and exclusive date specifications, or
find a better method.

o ... and documentation, help files, and Multi-tasker articles ...

IAS V32

PRODUCT DESCRIPTION

IAS is a general purpose operating system that runs on PDP-11/23
Plus through 11/70 central processors. It is a multiuser
timesharing system that supports concurrent interactive, batch,
and real-time applications.

The goals of the IAS V3.2 product are to:

o Enhance the useability, reliability, and supportability of
the IAS systenm.

o Keep IAS and its supported dependent products (BASIC-PLUS-2,
PDP-11 COBOL, FORTRAN IV, PDP-11 FORTRAN 77, FMS-11,
DATATRIEVE-11 AND DECnet) as current as possible with their
RSX-11M counterparts.

o Support the Installed Base Marketing Group (IBG) add-on
market sales strategies through adding support for new
hardware.

o Increase hardware and file compatibility with VAX/VMS to
facilitate migration to VAX/VMS.

To accomplish these goals, a maintenance release will be
developed. IAS V3.2 will be an updated release of the currently
offered IAS system. The principle features which comprise V3.2
are:

o Fix all known bugs.

o Provide a private node pool area for the IAS executive
thereby increasing the number of nodes available in the
System Common (SCOM) node pool for user tasks.

o Incorporate the additional functionality in the Files-11 ACP
needed for RMS V2.0,

o Fully support all current PDP-11 CPU's including the 11/23,
11/23 Plus, and 11/24. The "extended addressing” RLV22 and
RXV22 controllers will be the only supported disk devices on
the 11/23 Plus.

o Provide support for additional hardware including the
UDAS5@/RA60,80,81 fixed disks; the TS1l unibus tape drive; the
RM80 and RP@7 massbus disk drives; and the TU77 massbus tape
drive.



o Include the common utilities from RSX-11M V4.1 needed for

BASIC-PLUS-2/IAS
DECnet-IAS

FORTRAN IV/IAS

PDP-11 FORTRAN 77/IAS

(Test sites will be licensed for these layered products and
will be provided them as they become available during the
test.)

o Enhance the backup and restore utility (BRU) to allow backups
of larger disks onto multiple smaller disks.

IAS will be provided on identical format distribution kits as
V3.1 with the addition of a 1600 bpi tape kit for the TS1ll tape
drive.

PREREQUISITES

gardware - The minimum hardware configurations currently listed
in the IAS V3.1 SPD will be supported with the addition of:

o the 11/23, 11/23 Plus, and 11/24 CPU's
o the RM88 and RP®7 disks
o the TS11 and TU77 tape drives

Software - None. IAS V3.2 will contain all of the software that
is currently furnished with V3.1 with the exception of the
unoverlayed macro assembler (PURMAC). This includes the
executive services, file system, MCR, privileged and
non-privileged utilities and I/0 drivers. The terminal handler
will be updated to support the TC.TBF characteristic, the IO.RST
and IO.RTT functions, and RSX-11M compatible character AST's.

SITE CONFIGURATIONS DESIRED

The following should be included among the chosen test sites:

CPU's: 11/23 Plus
11/24
11/44
Peripheral
Devices: RM8@ disk drive

RPO7 disk drive

multiple DR or DB type controllers on a single CPU
TS1ll tape drive

For phase 2:

UDA58 controller with one or more RA68/86/81 drives

CONTENTS OF RqX F82 SIG TAPE - LISTED RY UIC

[300,0011 ~ DNOCUMENTATION ON CONTENTS OF THIS TAFE> INCLUDING THIS FILE.
L30050021 —~ RIGTFC.TSK LAND RIGTFC.OBRJI ~ FROGRAM TO MAKE DUFLICATES OF
THIS AND OTHER ARRITRARY FORMAT TAFES.
[300,1201 ~ JOHN 0SUDAR LATEST VERSION OF VUS! VARIAERLE SEND DATA
DRIVERy WITH SFEED ENHANCEMENTS» AND ASSOCIATED VSUTIL UTILITY FROGRAM.
[300y1341 - WAYNE RAISLEY FAFER ON "AST’S AND S8T'S IN AN OQVERLAY
ENVIRONMENT" .
AUTOLOAD OVERLAY ROUTINES FOR SYSLIR.
AUTOLOAD OVERLAY TRACE (AUT) AND FORMATTER (ATF) FROGRAMS.
L300y1 - MANARD STEWART OLYMFIC SIZED FOOL FOR RSX-11M V4,0 -
FILES AND DOCUMENTATION FOR MOVING SOME OF THE CRASH CODE FROM THE EXEC
TO EXCOM2y GAINING AROUT 1/2 K OF FOOL.
[300513 - GTEFHEN DOVER FAC GAME WITH REVISIONS SINCE $82 TO REDUCE
IMFACT ON SYSTEM FERFORMANCE WHEN SEVERAL COFIES ARE RUNNING AT THE SAME
TIME. ALSO SAVES HIGH SCORE
L300,1371 - STE ‘N DOVER EN GAME MODIFIED FROM $82 TAFE TO REDUCE
IMFACT ON SYSTEM WHEN TWO OR MORE COFIES ARE RUNNING AT THE SAME TIME.
[30051401 ~ RAY VAN TASSLE MEMORY SIDENT DISK FOR 22-BIT SYSTEMS.
C FROGRAMSS RANDOM NUMBER GENERATORy QUICKSORTy FILE SORTER.
[300,201~2141 HAUID RURCH MILAR COMMUNICATIONS SOFTWARE FACKAGE

FOR INTE 30R COMMUNICATIONS VIA A DR11-W LINK.
L301,0671 ~ DAV HARGKY ENTRY = FULL-SCREEN DATA ENTRY SYSTEM»
MODELED AFTE ED/EDT .

L303:0401 -~ MICHAEL O00THOUDT SOURCES FOR FLECS AND ALECS STRUCTURED
LANGUAGE ROCESSORS FOR FORTRAN AN MACRO.
- !

L307,0201 ~ G UFDATED USGS FACKAGES INCLUDES LATEST OF3
C8H ~ CHE “OINT LE ILER ~ DISFLAY & EMPTY CHECKFOINT FILE»
cwn - y ORY»
nuenAaT - DISFLAY Y
SNAF - IMU TO TAKE A SNAFSHOT OF A TASK WHILE IT’S STILL RUNNING,
| | AND WHAT ARE THEY RUNNING.
/BACHE = JOE SVENTEK - ON 2N BRU BACKUF SET=SVENTQOLS»
g S COMFPLETE SOFTWARE TOOLS KIT.
[?O/yO'Ol - CHA 'S SFALDING NEW RELEASE OF 882 RUNOFF RY THIS AUTHOR.
L307y1001 ~ FHILIF KURJAN ACCOUNT - ACCOUNTING FROGRAM FOR RSX-11M

V3,25 NOT AS COMFREHENSIVE AS KMS ACCOUNTING, RUT NO SYSGEN REQUIRED.

GRAF - FLOTTING FROGRAM FOR HF 7220 FLOTTER.
L30751201 — DONALD MCCOY MISCELLANEQUS UTILITIES FOR RSX-11M V4.0 -
INCLUDES IN ¢ MAIL. SYSTEMs CVUT (RADIX CONVERTER)s SNOOFY CALENDARy
COOKTE UAL DISKSs WHOs OFAy REW (REWIND MM:)» RNO» SRDy OTHERS.

A ELF ~ *BLOOFER" TERMINAL LOCKUF FROGRAM.
‘N REINIER nve -~ UFDATING DEVICE STATUS UTILITY -

) UEV BUT UPBAF]NU CONTINUQUSLY) .

RRU - REMOTE TERMINAL RUN FROGRAM.

TRM ~ TERMINAL STATUS REFORT FROGRAM.
FTT ~ TERMINAL "SFECIAL EFFECTS® FROGRAM

1507y151J -

LJO]rl&JJ
[307513 _l

RSEX CILUS ~ FROGRAM FOR MANIFULATING DOS

L307y1361

CIL G
L307»,21110 ~ DENNIS FULSIFHER
: CATCH~ALL TASK DESIGNED TO IO "FLYING INSTALLS"»
g ﬁﬁﬁSHEh FOOL ANALYZER,
it ANALYZER .,
KIRKMAN MISCELLANEQUS UTILITY ROUTINES FOR BRASICy

17



[312,3151 - GLENN EVERHART
BIGTFC -- LATEST VERSIONy WORKS ON VMS AS WELL AS RSX»y
00T -- WORKS WITH I/Z0 SFACE ON M+ U2y
FLOATING FOINT EMULATOR FOR M AND Mt»
FILE RECOVERY FROGRAM»y
TECO MACRO TO EMULATE EDT V2
TRUNC FILE TRUNCATE AND FFL FAST FLX UTILITIES.

[312,3221 - GLENN EVERHART VEDRV - VIRTUAL DISK DRIVER WITH MULTIFLE
FILES FER VIRTUAL DISK UNIT. THIS VERSION HAS ADDITIONAL SECURITY
ENHANCEMENTS

[312,3321 ~ GLENN EVERHART SRD REVISED FROM S$82 TAFEs WITH /BK SWITCH
TO INSERT EXTRA BLANKS EEFORE FILENAME (FOR COMFATIBILITY WITH OLDRER SRD
FORMATS USED BY FOSTFROCESSORS).

[312,3451 ~ GLENN EVERHART FORTACALC - FORTAELE (FORTRAN-RASEL) SFREAD-
SHEET CALCULATOR FROGRAM.

[312,3471 - GLENN EVERHART MODIFICATIONS TO 2 MEMORY-RESIDENT DISK
DRIVERSs ORIGINALS ON THIS TAFE ALSO.

[326s%1 - JOHN JENKINSON

SFELL -~ SFELLING CHECKER FROGRAMs

FLOFFY -- FLOFFY DISK STRUCTURE ANALYSIS FROGRAM
MSTRMD —- MASTERMIND GAME»

DOCEXT —- DOCUMENTATION EXTRACTOR FROGRAM.

[330,0021 ~ FRANK KEEFER FOT - FORTRAN SYMEOLIC DEBUGGING TOOL -
UFDATED FOR 11M V 4.0y F77 W/ STRING MANIFULATION FEATURES.
33250121 - JOHN CLEMENTS RUNOFF ~~ ENHANCEIy WITH MANY DSR FEATURES
AND SOME EXTRASF WILL RUN ON RSXs IAS» OR UMS INCOMPATIRILITY MODE.
[332,1151 - JACK LEES CAT ~ CATCHALL TASK FOR MCR. IMFLEMENTS
CHECK FOR SPECIAL COMMANDS, FASSES LINE TO DCL IF NOT RECOGNIZED.
[333,1001 ~ ALLEN WATSON
SLF FILE TO MAKE CCL EITHER A CLI OR CATCHALL UNLER M-FLUSY
HELF FILES FOR TECO AND RUNOFF
FAFERS ON M TO M~FLUS CONVERSION AND SRD FROM ANAHEIM SYMFOSIUMY
COMMAND FILE TO SET UF SYSMUR.CMIN FOR M-FLUS V2,
ENT SETUF FILE FOR SETTING UF DEFINED KEYS.
[333,1017 - ALLEN WATSON SRD DESIGNED FOR BUILDING AS MULTIUSER
M-FLUS TASKy NON-OVERLAID.
[333,1021 - ALLEN WATSON SLF FILE FOR UNSUFFORTED M-FPLUS V1
LOG UTILITY (CREATES COFY OF TERMINAL OUTFUT IN A FILE).
[333,1031 ~- ALLEN WATSON UTILITIES IN Cy TECO MACROS.
[3335,1041 ~ ALLEN WATSON TMY ~ TAFE MOVE UTILITY» FOR MOVING
FOREIGN-MOUNTED TAFE FORWARKDYy EBACKWARDs REWINDING, WRITING MULTIFLE
TAFE MARKS» ETC. ~ .
[334,0021 ~ SCOTT SNADOW UTILITIES TO MODIFY TASK IMAGE FILES?
MODLUN —~ CHANGE LUN ASSIGNMENTS
MODTSK ~-- MODIFY OTHER TASK OFTION INFORMATION
[343,031~321 ~ BRUCE MITCHELL MEMORY~RESIDENT FSEUDO-DISK FOR 22-KIT
SYSTEMS .
[343y0331 - BRUCE MITCHELL
IDLE TERMINALS.
[344yx1 ~ JIM DOWNWARD KMSKIT ENHANCEMENTS FKG FOR RSX-11M V4.0 -
INCLUDES CCLy KMS ACCOUNTING FACKAGEr MANY OTHERS.
[350,0501 - KITTY BETHE MISCELLANEQUS TROUBLESHOOTING UTILITIES?
FILEID (GIVEN FILE IDy FINDS FILE)y
FNOBLK (FINDS OWNER OF DISK RLOCK)»
DSKZAF (DISPLAY/ZMODIFY CONTENTS OF DISK ELOCK)»
TCI (TASK IMAGE COMFARE UTILITY)s

IDLE TERMINAL MONITOR FROGRAM TO LOG OFF

18

VT100TST (TEST FROGRAM FOR VUT100 FEATURES),

NUMEROUS COMMAND FILES TO DO NIGHTLY BACKUFSs ERROR LOG LISTINGSs ETC.
L3%50,0601 ~ ROSS AMANN FSZ - FGM TO CREATE/REMOVE COMMON PARTITIONS.
[350y0611 ~ ROSS AMANN RE-RELEASE OF RUNOFF FROM $81 TAFE.

[351,0101 ~ JOHN LLOYD DISFLAY TOF CPU USERS ON VT100 JUST LIKE ON
A VAX.

[351,0201 ~ BENSON ACKERMAN
PROGRAMS »

£3%1,0301 - BRIAN NELSON

[351,0401 ~ DENNIS COSTELLO

£351,0411 — DENNIS COSTELLO

[351,0421 ~ DENNIS COSTELLO

[351,0431 ~ DENNIS COSTELLO

35150441 — DENNIS COSTELLO

COMFLEX RADIX2 FFT AND BI-CURIC SFLINE

WHYTED' TEXT EDITOR FOR RSX AND RSTS.
DESCRIFTION OF [351541-~511.
ATF ~ ACTIVE TASK LIST WITH FRIORITIES.
STOF - ARORT ALL ACTIVE TASKS AT TI!
REW - REWIND A MAGTAFE.
TAFE - SHOW STATUS OF TAFE DRIVE.
[3%1,045]1 — DENNIS COSTELLO PRV ~ SET/RESET TERMINAL FRIVILEGE.
[3515,0461 ~ DENNIS COSTELLO FILEDEF -~ FROGRAM TO SET UF LUN-TO-FILE
ASSIGNMENTS FOR FORTRAN-77 FPROGRAMS WHICH DO NOT SPECIFY FILENAMES
IN OFEN STATEMENTS.
[35150471 - DENNIS COSTELLO BATCH SYSTEM» WITH VT! DRIVER AND BATMAN
MANAGER FOR RSX-11M V3.2 (SHOULD ALSO WORK ON V4.0).
[3%51,0501 - DENNIS COSTELLO ACCOUNTING AND MISCELLANEOUS.
£351,0511 ~ DENNIS COSTELLO UCE —- DISFLAY UCRy DCRBy SCE ADDRESSES OF ALL
DEVICES.
[351,0701 ~ VINCENT GRAHAM LIST —- FROGRAM TO LIST FILES AT THE TERMINAL»
WITH FILENAME DISFLAYED ON SCREEN OF VTS52/VT100/TEKTRONIX SCOFE.
£351,71-731 — VINCENT GRAHAM RSEXNET - FROGRAM FOR ASYNCHRONOUS
COMMUNICATIONS RETWEEN SYSTEMSs USING A NULL MODEM OR A DIALUF LINE.
[351,0741 ~ VINCENT GRAHAM VUTM —~ PROGRAM TO FORMAT MESSAGES FOR DISFLAY
ON THE VT100 SCREENy USING ALL VT100 VIDEO ATTRIRUTES.
£351y0751 ~ VINCENT GRAHAM RSXMSG ~ RSX ERROR MESSAGE MODULE» WILL
RETURN MESSAGE STRING IN A BUFFER OR FRINT IT ON THE TERMINAL.
[351y0761 ~ VINCENT GRAHAM WHO ~ FROGRAM TO SELECTIVELY LIST ENTRIES
FROM THE ACCOUNT FILE. NOTE?! THIS IS NOT THE SAME WHO AS IS
DISTRIBUTED IN THE KMSKIT,
[351,077] = VINCENT GRAHAM USERS ~ FROGRAM TO DISFLAY LIST OF USERS
CURRENTLY LOGGED IN TO THE SYSTEM.
[35151101 - J. F. VIBERT DATARASE MANAGEMENT FOR BRIRLIOGRAFHIC
REFERENCES,» DOCUMENTATION, ETC,., IN FRENCH.
C351,11113 - Js Fs VIBERT ANOTHER IMFLEMENTATION OF CCL» WRITTEN
IN FORTRAN» DOCUMENTATION ETC. IN FRENCH.
[351,1201 - DEREK FRANKS FATCH TO KED FOR MULTIUSER VERSION ON M+.
[351,1301 - BARRY BREEN ADVENTURE WRITTEN IN OMSI FASCAL.
[352,0021 ~ BOER TURKELSON TALK FROGRAM V06.00 FOR COMMUNICATION FROM
SYSTEM WITH A FULL DUFLEX TERMINAL DRIVER VIA AN ASYNCHRONOUS SERTAL
INTERFACE TO A REMOTE SYSTEM.
[352y0041 -~ BOE TURKELSON EOR DENNY'S UFDATED VERSION OF SRI.
[370+1301 ~ MICHAEL LEVINE
INDEX -- FORTRAN CROSS-REFERENCER»
SUFERMAC ~—- MACROS TO MAKE MACRO STRUCTURED LANGUAGE,
FRAG —-— DISK FRAGMENTATION DISFLAY UTILITY»
HF11C FROGRAM LISTINGS FOR CONVERTING RETWEEN DECIMAL AND FIDF/VAX RINARY
FLOATING FOINT FORMATS,
30 FLOTTING.
[374y0011 ~ ROE DENNY RINARY KIT AND DOCUMENTATION FOR THE
LECUS C COMFILER, WITH DERUGGERs TOOLS, AND UTILITIES.
£374y0031 - RORBR DENNY LOADARLE XOT FOR RSX-11M V4.0y WITH BUGS
FIXED AND TESTED WITH RL32.
[37450041 ~ BOR DENNY
[374,0051 ~ BOE DENNY

VIRTUAL DISK WITH ERROR LOGGING SUFFORT.
FILES—-11 REFAIR TOOLS & INFO.

19



THE MAGIC OF SYSGENING IAS

Mike Reilly - Development Manager with Digital for IAS.
Mike Garcia - Development Engineer with Digital for IAS

For the next few minutes we're going to be giving you a general overview of the IAS
system generation procedure and the functions performed by each of the tasks which are
included, or which are invoked, as part of the IAS system generation procedure. We are
going to go into a little bit of detail in some areas but, in most cases, the concepts of
what is done will be fairly straight forward and there is no sense for us to go into great
detail to show, for example, how to search through a list, or how to create an entry in
the list, and so forth, which is done in the standard manner.

The order in which we will be presenting the individual tasks will be the order in
which you would normally see them if you were going through an IAS system generation.
Beginning with the initial hardware boot of the system, we will go through a little bit
about the boot block and the boot procedure to bring up an IAS system which has already
been generated and then we will talk about System Generation Phase I, which is the task
that creates a file on the disk. This file is what is going to be later brought into
memory and is going to become your running IAS system. To bring up this system is an MCR
task called BOO (for boot), so that will follow. After BOO we will talk about Sysgen
Phase II, the second part of Sysgen which actually executes in the system which you have
generated and then finally saving the system which you have generated so you will be able
to hardware boot it and start the procedure all over again.

System generation is used to create a file on a disk which is a system image. A
system image is simply a byte by byte copy of what is in memory. If you view a file as
just the contiguous, or continuous, series of bytes beginning with 9 and continuing out
through the end of the file, that is exactly what it is in this case. It is simply a byte
that would be loaded into the memory location is in the identical location in the disk
image. This file normally is called IAS.SAV and is normally created in a UIC of [11,17];
as we will see you have options of changing both of these.

As I said, Sysgen Phase I is the task that will create this file and turn it into an
IAS system image. Sysgen Phase I is the most complicated part of the process because it
must perform all the functions that would normally be done by an executive and several
installed tasks on a running system. It performs all of its functions on a disk image,
but it must do the same things that happen if you, for example, enter at a terminal the
INStall command. Sysgen has to handle the install, parse the command, install the task
and activate it if needed. There are a couple of tasks that it actually has to activate,
S0 it even has to act as if it is the executive when it is writing out the disk image.
The task BOO, which is normally called MCR BOO in the source listings, is a task that will
simply read a block, the first 512 bytes of a disk image, into memory and then begin
executing it. That disk image will continue the process of reading in the rest of the
system image.

Sysgen Phase II, which is very simple, straight forward, is simply a command file
process.

Finally, SAV. SAV has the task of taking an IAS system which is running in memory,

writing it out to the disk in such a way that it can be brought back in at a later time
and continue to run as if it had never been written onto disk at all.

20

As I said we will go through the tasks in the order in which you would normally see
them, so we will begin with the BOOT process and Mike Garcia will stand.

The following information is a summary of what actually happens as a user is ready to
bring up a running system. The information contained here is the boot block, information
on reading the system image into memory, and starting the system. These points will be
expanded upon, as Mike said, as we follow along throughout the talk. The information here
is common for bootstrapping all RK, RL, RM and RP disks. Also included here is the power
recovery trap vector used to restart the system in re-entering SAV, after boot of a saved
system. The PDP-11 ROM bootstrap program reads the first block from the disk into memory
at real address P. It then transfers control at address #. On the slide you can see the
boot code being put up to real P including the address that it points to in the SAV entry
file.

System generation has created an IAS image file on the disk with the first block of
that file being a device specific bootstrap. Sysgen will have set several parameters into
the bootstrap code including the base address of the exec, the disk address and size of
the image file it is creating, in the first register address for the disk controller.

The MCR BOO function has copied this first block of the image file to block P of the
target disk. When the ROM loads memory, the bootstrap program overlays itself with a copy
of itself and, therefore can continue executing.

These following items will be initialized by Sysgen Phase I. The first one is two
words for a logical block number of the SAVed file. Four words are reserved for power
recovery trap vector and some space for the base address of the exec and the size of the
SAV file in one K words. Some other additional parameters are required both by BOO and
SAV. One parameter is provided to be stored by the BOO function to allow a boot to be
performed from a unit other than @#. And the following information is required by SAV,
three bytes for a write-data function code, an offset to a place to insert that function
code, an offset to the code to execute after booting a saved image and an offset to write
the saved image. Two parameters, one for a saved user PARD, another for the address it
saved to return to, have been initialized by the MCR SAV function and used after boot of
the SAVed image file. On the slide we can see the address in the boot code which points
to the module, SAVENT, which is the address of re-entry to the SAV module. MCR SAV and
BOO functions rely on all the parameters mentioned above being fixed offsets within the
boot block, since they do not read in the symbol table. Sysgen Phase I, on the other
hand, does read in the symbol table.

When the system is booted into memory, via either the MCR BOO function or the ROM, the
bootstrap program does an indirect jump to the power recovery vector at real address 24.
This causes the execution of code which will set up the kernel active page registers
followed by a jump to the power recovery routine of the exec, called POWER.UP. The first
time the output of Sysgen Phase I is booted, Sysgen Pnase II will eventually be found
active and control passed to it.

As mentioned previously the start of the bootstrap is at address #. The RAD50 word
sys, S-Y-S, identifies the boot block. At this point we are now ready for real booting to
be done. Note that SAV will also use this code to write the saved image back out to disk,
by changing the function code to a write. Disk specific stuff is done at this point to
finish reading in the rest of the system image. If there is non-existent memory you must
start all over again.

If all is successful and there is no more memory to transfer, we now set up the PSW

21



and return to restart the system. By moving kernel priority seven into the PSW, we
simulate a trap via the power recovery vector. Power recovery trap vector must be
addresses 24 and 26. SAV modifies this trap vector by putting the address of a second
routine in the bootstrap code into location 24 so that the bootstrap will transfer control
via that routine to the SAV task. When SAV gets control back it will restore the vector
to its original contents.

The SAV subroutine sets kernel APRP and APR1 for 4K read/write and maps both to real
memory #. It then sets up user PARP, 4K read/write, and maps it using a saved APR value
and also sets up APR7 to the I/O page. Memory management is now started, followed by
setting up of the executive stack pointer. PS and the PC are set up to return to user
mode via an RTI and SAV will then bring up the system.

The third and last routine in the bootstrap will be used in the event of a real power
recovery. This routine sets up kernel APRP, APR1 and APRT for 4K read/write operation and
maps APRD and APR1 to real zero. APR7 is set to external page and memory management is
then enabled. It will jump to APR1 by adding 20,000 to the program counter, restores
kernel APRP and goes to the executive power-up routine.

Now, that is just a summary of what's going to be mentioned throughout and Mike
[Reilly] will continue with Sysgen one.

As soon as an IAS system image is read into memory, either one block at a time, as
some of the boot blocks do, or the entire system image in one read request, if possible,
otherwise in some cases a large system is broken up into as large pieces as possible. As
Mike mentioned the bootstrap code sets up some kernel mapping registers so that it is
possible for SAV, which is the next part of the bootstrap process, to access both itself,
which is its task code, and various parts of the system that it needs to get to.

Initially control is transferred from the boot block to SAV through the SAVENT entry point
which was mentioned. It is simply hardwired into the boot block and when the code reached
that point returns it to SAV. SAV is running in user mode, with access to the boot block.
SAV uses the boot block to determine the system device and the unit number which it will
use later. The first thing SAV does, when it begins executing, is what it calls an ECO
test. There is a test to determine that an 11/40 processor has been properly ECO'd, which
means there is a necessary change to the hardware that has been applied. If that test
passes, then SAV will continue to set up memory parity registers and the stack limit
register if they exist. These are options of various PDP 11's, so SAVE will determine if,
either the parity registers, or the stack limit register or both exist, and set them up
appropriately. SAV is also capable of generating values for these registers if the system
initially was used on a machine that did not have these registers so there are no saved
contents.

Following this, SAV will restore the power fail vector. As Mike mentioned, the power
fail vector is used to gain entry to SAV when it saves the system. When it writes it out
to the disk image it over writes the contents of the power fail vector with the entry
point into SAV. It will now restore the original power fail vector, so that if a power
recovery occurs it will be handled normally. Mike mentioned that the boot block is read
in at real memory address zero, the executive, however, does not begin at the bottom of
memory. As shown in this diagram, and this one will be used later on also, the executive
virtual address zero begins at the end of the boot code. So on a power fail, the virtual
zero, actually virtual 24, which is an offset to virtual zero, will be used and then the
value that SAV restores is used on power recovery.

Following this, SAV restores the memory management registers. When the system was

22

initially saved, written out to the disk for the first time, SAV created a stack of all
the hardware registers that it could find at that time, included were memory management
registers. So these are restored both in kernel mode and user mode so that the hardware
is set up in the same manner, the same fashion it was when the system was previously
running. Following this there is a check for an 11/44, 11/70 processor, which are 22 bit
CPU's that require special registers, called UMRs (for Unibus Mapping Registers). These
registers allow Unibus peripherals access to the entire memory available in the larger
machines. SAV has been set up to restore the UMR's on the machine that you originally ran
SAV, in other words when you first saved the system, if you were on a machine with UMRs
they were saved. SAV will use those values, if you are again running on a machine that
requires the unibus mapping registers., If not, then SAV will generate UMR values and load
these into the registers so that you can take an IAS system, generated onto another
machine (for example an 11/40, 11/34), save it and then, when you boot it on a 22 bit
processor (an 11/44, 11/70), SAV will generate the necessary UMR content values and the
machine will run as if you had initially used it on the 22 bit machine. SAV will also
perform the opposite. If you save the system on a 22 bit processor and run it on one of
the smaller machines it will skip the UMR values that it saved and simply not restore them
since there is no place to put them.

The next thing that SAV does is size memory, determine the size of memory in the
hardware configuration it has, and adjust any partitions as needed. If your last
partition in the system is the GEN partition it will expand and contract it as needed,
setting up the appropriate data structures to indicate the current size of the partition.
SAV is also capable of completely eliminating any partitions that no longer exist. For
example, if you have a partition which starts beyond the end of memory, on your current
configuration, SAV will simply eliminate that partition, it will just not exist any more.
It will also have to remove any tasks which were installed to run in that partition.

Following this SAV has to check for the system clock. When the system is generated
you can specify one of two types of clocks, a line clock or a programmable clock. SAV
will initially check to see if the same clock that you generated for is present in the
system, if so, it will be used. If not SAV will test for the other type of clock, the one
you did not specify. If that is present, it will be used. It will be properly
initialized by SAV and the system will continue as if the correct clock had been found.

Following this, SAV uses the information that it picked up from the boot block on the
device which was bootstrapped (the unit number, device name), searches through the system
data base and redirects the device SY: to whatever physical device was booted, so that if
you save on a unit 3 of an RP06 for example and then you boot on unit zero, SAV will
modify the system so that the booted device SY is now unit zero.

At this point the system is ready to run, so SAV enables task switching, declares a
pover fail AST and then, its final step, the one which seems to take the longest time and
if you watched your disk, if it has any type of indication as to what it is doing, you'll
see it's very busy. What SAV does is it reinstalls each task which was installed in the
system when it was saved. Not reinstalled as if you had installed it, but what it
actually does is it has to modify an indication stored in the system which points to the
task image so that it now points to the disk address. When a system is moved as part of
the copy procedure for DSC or BRU, it is necessary that the next time you boot the system
all of the tasks which were installed can be located without the system having to know the
file name of each task, go out and locate it through the file system and reinstall it. So
what is done is the file system identification number is saved in the image on the disk.
SAV goes through and takes each task and its identification number, converts it to the
disk address, and sets the disk address into the data base in memory. So that at this

23



point it is now possible to find any task image directly on the disk, as it was when the
system was previously running.

The last thing that happens is SAV prints out its message, its identification, IAS
version 3.1, memory size, it tells you whether a partition or partitions were expanded or
contracted and gives you other information that is needed. For example if it had switched
the system clock it will tell you that it did so. The last thing that it will do will
prompt for date and time, allow you to enter a date and time, and then exits. At that
point you have an identical IAS system with what was running before you initially entered
the SAV command and wrote it out to disk. The power fail AST which was declared by SAV
will cause the executive to enter any task or device handler which has declared a power
fail AST, that task or handler will be able to reinitialize itself to the new hardware
configuration. If it is a device handler it will normally determine if the peripheral
that it is communicating with is still present, it will determine whether it is still
running with UMR's as it was before, if it needs to allocate them and so forth. And the
system continues as if it had never been written out to the disk.

Now, the next thing that you are going to do, or that we are going to assume is going
to happen, is that you wish to generate a new IAS system image. This is done with a task
which is called SYSGEN Phase I or SGN1. As I mentioned before, SYSGEN Phase I or SGN1 is
the most complex part of the system generation procedure. It is working with a file which
it has to use as if that file was memory. It has to know that this file is a copy of
memory and that it will contain both real and virtual addresses. As shown here, it has to
know when it writes things into the disk image, it has to know where on the disk to write
them which corresponds to the real address, when it is setting up the pointers in the
system it has to know the virtual addresses that the executive will later use to access
all the data bases that it needs to get to. Normally a sysgen procedure begins by
installing a task which is given the name INV, this is a virtual install task. This is a
task that installs other tasks just as the INS command does on a normal IAS system, excepi
this task reads and writes the disk file. All the processing which it must go through is
the same processing that must go through when you install a task from a terminal. After
that task is installed assuming you have edited the command file which is going to be
given to SYSGEN Phase I or you are going to enter the commands one by one from the
terminal, you will run the task SGN1.

SGN1 will begin by prompting for a device and file name. This allows you to specify
the name of the IAS system and what disk it is to be written on. Normally you're going to
do a system generation onto the current system disk. However if you wish to make a system
bootable on another disk, then you specify that disk in the initial prompt to SYSGEN Phase
I and it will use files on the disk you specify, instead of on the system disk. The
system generation manual for IAS describes all of the individual directives, the commands
that are given to SYSGEN to indicate what devices you wish to include, what tasks are to
be installed, what processor you are using. All the necessary information to create an
IAS system. These parameters are entered either through the command file or a terminal,
they are parsed by SYSGEN Phase I for correct syntax to make sure all is valid and to make
sure that you don't do things like trying to allocate the executive and a partition to the
same area of memory. SYSGEN then creates an internal data base of all the things it's
going to be doing to this disk file.

Following this, SYSGEN1, having read the commands either from the file or from your
terminal, knows which disk you are going to be using for the IAS system you are going to
build and it looks for a file which contains the bootstrap code for that disk. It will
read the STB file, which was created when this boot code was task-built. It will look for
the offsets from the beginning of the boot block where various bytes of information need

24

to be plugged in. SYSGEN Phase I will always read the STB file for the corresponding disk
that you're going to gen onto.

Following this, it will look for a file called EXECUTIVE.STB, a list of all the
executive symbols that it needs to know. The last file it looks for at this point is the
executive task image itself. The IAS executive is overlaid, so that SAV has to know the
size of the main segment of the executive and of each of the overlays, so it reads this by
reading the executive task image file. After it completes this, it will determine whether
you have used a base address for the executive in one of the parameters, it will set up
the proper real memory address with the executive to be loaded into, and take into account
the size of the bootstrap. As shown in the diagram, the boot code always remains in
memory, below the executive. SYSGEN knows the size of the boot code, it is one of the
symbols it reads from the STB file, so it knows where to place the executive.

Following this, it allocates the mapping for the overlays in the system. SGN1 finds
where each overlay will be placed and what memory management information is needed, so
that when the executive is running it will be able to access the overlay it needs.

Once SAV has all of this information it is ready to create the system image. It
begins by opening the system image file, actually creating a new one, using either the
name you specified or the default IAS.SAV. It then attempts to write the last 32 words of
the file which causes the file system to allocate the file to the proper size that you
specified. A System image must be contiguous and SYSGEN has to have access to any word in
the file in any order, so it has to make sure that all of the file is allocated and it
does that by simply writing the last 32 words.

The first thing that gets written out into this file is the executive. It is copied,
block by block, from the EXECUTIVE.TSK file into the IAS.SAV file. Using the virtual
addresses that SYSGEN 1 calculates, the overlays and the executive will be moved into the
disk image, into their proper positions. Also in the executive, there are certain values
that have to be filled in by SYSGEN and these are filled in as the appropriate block is
copied out to the disk.

The next thing it does is begin to generate the data base, beginning with the devices
that were specified during the beginning portion of SYSGEN, when it read commands that
were entered. It takes a standard physical unit directory entry, which it maintains in
the task image, fills in values from tables it has, or from input given during the SYSGEN
process, and writes these out into the area in the system that will become the system
common area. It allocates these physical unit directories, or PUDs, entries in the
reverse order that they were specified during the initial reading of commands, so that the
last device which was specified will have the first PUD entry. In addition the entries
for a pseudo-device CO:, which is the console terminal, CL: which is the console list
device, and TTP: will be created. TT®: should have been specified as one of the
parameters entered during the early parts of SYSGEN, so what the SYSGEN process will do at
this time is simply test to make sure you have the TTP:. If TTP: is not found it is
considered a diagnostic, not a fatal, error and SYSGEN will continue. It really doesn't
care if you have a terminal handler or not. However, it doesn't give instructions in what
to do with a system without one.

Following this, it installs all of the global common areas that were specified.
Normally this is an FCS common area, possibly an IAS common area and SYSRES, the system
common area. These are installed by SAV going through the procedure of creating the data
structures necessary in the system common area so that when the system is brought up, the
tasks for these common areas look as if they had been installed by install commands from

25



the terminal. Once this is done SAV can start working on the partitions and it will go
out and generate the data base needed for each partition which was specified. Depending
upon the number and type of partitions there are many different things that SAV will do.
The end result is it will have the necessary data base set up for all of the partitions or
it sets a special flag byte indicating it can not set up some of the partitions and it
will be handled after the system is booted, during SYSGEN Pnase II. There is a check then
for the system disk being installed. It is a fatal error if there is no system disk and a
fatal error if SYSGEN Phase II has not been installed.

Memory is then allocated for two tasks. SAV has to install, load and activate two
tasks in the disk image so that when it is brought into memory these two tasks will become
active. One of them is the system disk handler, the other one is SYSGEN Phase II. They
are both placed in a special state indicating that they have just been loaded so that when
the system is brought into memory the executive will see this state and it will begin to
activate the tasks; allow them to run.

SYSGEN then goes back to the system common area, creates an alpha table, which is a
fixed length table of tasks by name and a pointer to the data structure. This list is
alphabetical so that the task can be found quickly when you wish to find an installed
task. To go with each of these tasks that is installed is an entry called an STD, which
is simply the data base for a task which is installed in the system. This is also created
by SYSGEN.

Finally, SYSGEN has to go through and create another data base for tasks which are
active, this is called a ATL. It has to do this for the system disk, and for SYSGEN 2.
It also does it for the special tasks used for timesharing. There are 3 of them. One of
them, TSS1, the second one TSS2 and the third one is a TSNUL1. These 3 ATL entries are
always created in SCOM, whether you generate timesharing system or not. They are not
marked as active. There are special pointers in the system common area that will allow
the executive to find these ATL entries when you bring up timesharing.

After this the data base is complete and SYSGEN writes out the remainder of SCOM. It
has a copy of the system SCOM data base in the sysgen task. All it does is take this copy
and write it out to the disk. All through the SYSGEN1 process it has been filling in
whatever values were needed, so it nows writes out all of the pointers, list heads, all of
the little bytes of information that are needed when the system is going to begin running.

The last thing that SYSGEN Pnase I does is it takes the boot block, the boot file
which it already found and copies the boot block itself to the beginning of the IAS system
image it just created so that when you are finished you will have on the disk, a copy of
the boot block: It is hardware dependent, it will only work on the device which you
specify. This is followed by the IAS image which is going to be loaded into memory by
this boot code. SYSGEN has completed all of the necessary bits and pieces it's supposed
to handle. It prints out its last message which says 'End of SYSGEN Phase I' and it is
completed.

During this process it has communicated with the virtual install task INV. SYSGEN
behaves as if it is MCR in this case, in that it will insert its own command into the MCR
queue for INV and then request that INV be activated. INV will read whatever install
command is present and execute it. Before INV is requested for the first time, SYSGEN
Pnase I allocates a node in SCOM on the running system, so this is now in real memory, and
it fills it in with the values that are needed by INV to find various locations and
offsets in the disk image. Things like the logical block number of the system image, the
size of the boot code, the size of the various executive overlays, and where to find the

26

information it needs in the disk image. INV will go and read this node, to pick up all
the information it needs each time it's called to install a task.

After SYSGEN1 has closed all of its files and printed out its message it is then ready
for you to bootstrap the system. The MCR BOO command is what will handle that and Mike
[Garcia] will take over.

Ok, now that SYSGEN I had completed we're ready for the boot process using the MCR BOO
command, to boot up the image just created by SYSGEN 1 and to get the bootstrap up to real
memory zero. The intent of the MCR function BOO is to perform an initial boot of an IAS
system image. It will simulate the function of a hardware ROM from any device.
Alternatively, it will write the bootstrap block zero on a specified device, by default
the latest version of IAS.SAV is the image booted into the memory. The specified file to
be booted must be an IAS system image created by SYSGEN 1. Boot will check this out to
see if it is the correct file.

Before going into detail about what boot does, a summary of its operation is it first
operates validates command syntax, it reads block one of the IAS image file, verifies it
as an IAS system image, closes the IAS image file, and checks the privileges of the
requesting terminal to see if it is privileged. If the user is attempting to boot, the
terminal must be a privileged terminal. If the user is attempting to write a bootstrap
block, the object device must not be SY: or redirected to SY:, unless the terminal is
privileged.

There are 2 choices on performing the MCR boot function. First choice is the MCR
command BOO with the optional file specification, which inserts the device unit number
into the bootstrap block to be moved, It moves the whole block to real zero and up. You
see the boot code going up to real zero [on the diagram]. It moves what we call special
instructions to real 1000 and up and jumps to the special instructions which enters kernel
mode, disables memory management, and then jumps to real zero. The second choice is to
issue the MCR command BOO along with the /WB switch where virtual block one is to be
copied from the specified file to bootstrap block zero of the disk device. As Mike
mentioned BOO is linked to the STB file for whatever device is being genned so it knows
offsets in the boot block.

The boot procedure starts by getting the boot command line. It will validate the
syntax and parse the command. If there is na syntax error, BOO will exit. It will then
check to see if the device is a random an access device and also if it is a directory
device since we can not boot say a line printer or a terminal. If all is valid we now
proceed to open a file to read the boot block, which is the first block of the IAS image
file. We now have the first block. If it was written by SYSGEN or SAV, the first word is
a Branch instruction and the second word must be "SYS" in RAD50. One of the offsets in
the boot block is the base APR address of the base of the executive. This address must be
between 200 and 777700, therefore the offset itself must be between 2 and 7777. Boot
validates the specified file image by checking all those facts. If all is OK, the
starting LBN of the system image is now written in the boot block. In other words, the
address of the system image is stored into the copy of the boot block just read in. On
the slide again we can see the LBN in the boot code which gets moved up.

Boot checks the privileges of the requesting terminal. If the terminal is privileged,
boot will allow anything to be done. If it is not privileged it will disallow the actual
boot or the writing of block zero of the system device. If the privilege is OK and the
user specified the WB switch, the boot block is then written. If the WB switch was not
specified we move to the routine that moves the device unit number into the bootstrap

27



block. It then moves it all into low memory, starting with real zero, followed by some
special boot instructions. When done, we jump to real zero to perform the actual boot.

Now to get at real zero, we need to map an APR to real zero, UK read/write. Since we
are running under user mode APRP, we will use APR 1 and map it to real zero and inhibit
all interrupts. Twenty thousand is then moved into APR 1 before the routine goes into a
loop moving one word at a time to real zero. We then jump to the special instructions at
real address memory 1000, but since it is mapped to APR 1 it is 21000 for the boot
procedure. Special instructions are there to get us into kernel mode by clearing the
current mode bits that are in the PSW. They set kernel APRP and 1 to real memory address
zero and set UK read/write for both. The twenty thousand bit in the PC is cleared and we
then set the starting address to the bootstrap, do a reset and jump to the starting
address to start the boot. That is the end of the special instructions and that is the
end of the MCR BOO procedure and we are ready to get SYSGEN Phase II into the system.

Believe it or not, you sit there and you are ready to do SYSGEN2 and the message comes
up for SYSGEN generation Phase II, but there is an awful lot that goes on before that
message is printed. SYSGEN II is installed and loaded by SYSGEN I such that booting the
new system disk results in the running of SYSGEN II. SYSGEN II is loaded at the top of
the specified partition to avoid memory fragmentation. You can see where SYSGEN II
resides in memory on the slide.

SYSGEN II performs the following functions automatically. It checks to make sure
there is sufficient memory available, if there isn't it will just exit. It checks to see
that system disk handler is active, requests and loads a TTY handler and mounts the system
disk, fixes Files-11 ACP, and after mounting the system disk it will open a file called
SYSBLD.CMD and execute all the commands found in that file. Note that any task required
by SYSGEN II must be installed before SYSGEN II uses it. Also note that after SYSGEN
Pnase II exits, the user should do a SAVE to preserve the system as generated. If the
SAVE is not performed, the IAS image file will still contain the output of SYSGEN Phase I.
That is, a runnable IAS system with SYSGEN Phase II activated. Note that if it is
desirable to boot the IAS system, the MCR function BOO must be used with the WB switch to
initialize the boot block zero of the system image.

SYSGEN II begins by finding the system size as specified in SYSGEN I. Previous mode
bits of the PSW are again set to kernel, and the PSW is then saved. If we run out of
memory, that is less memory is specified during SYSGEN I, SYSGEN II traps at priority 7
and prints the diagnostic message: "All memory specified does not respond." If memory is
OK, SYSGEN II will inhibit interrupts, set APR 3 to map over the bootstrap, in other words
set PAR 3 to map to zero for booting. A call is made to subroutine SPD 3 to prevent APR 3
from being modified during task switching. APR 3 must be restored to finish.

The IAS system image has now been booted and a call is made to a subroutine to
redirect the PUD for SY: to the appropriate unit of the system disk as it must be the
device and unit number that will specify during SYSGEN I. It extracts this information
from the offset in the boot block. At this point SYSGEN II gets a saved image size from
the bootstrap and converts it to 32 word core blocks from memory management. SYSGEN II
will scan the task partition directories setting up what SYSGEN I could not set up. If
the SG flag is set it must be cleared. The SG flag is a bit from SYSGEN I that SYSGEN II
has to look at to set up its hole pointers. The hole pointers are now adjusted and
manipulated in a loop until all free space in the partitions is found. SPD 3 is called
again to reset APR 3 and the stack is also reset at this point. This section of SYSGEN
Phase II is completed by enabling interrupts.

28

SYSGEN Phase II continues by requesting the TTY handler. LUN 2 is assigned to TTY and
LUN 3 is assigned to SYP:. Here the "GET LUN" directive is used to find the physical
system device. The routine will point to the buffer in order to move the device name into
it. It then appends the period (.) as the third character in the device name, converts
those 3 characters to RAD 50 and puts them back into the buffer. A check is made on the
name of each task in the ATL to find the system disk handler. It was put into the ATL by
SYSGEN Phase I. It will loop through the ATL notes until it finds the system disk
handler. When the system disk handler is found, another check is done to see if it is
active. If the system disk handler is not found the message: "Unable to find ATL or
system disk handler" is printed.

When we find the system disk handler, SYSGEN II moves along and tries to find the STD
entry of the TT handler in the ATL, and will loop until it finds it. When it finds the TT
handler, SYSGEN II waits for the load request state to change, that is the TT handler to
be loaded. It will check every 10 ticks until it is finally loaded. Once it is loaded,
we wait for the TT handler to become active. Again, we wait 10 ticks until it becomes
active. Once it is in memory, we wait 10 more ticks to give the executive time to
complete the activation of the task. The TT handler is now in memory and in active state
and resides directly below where you see the system disk handler. When the TT handler
loads successfully, its ATL node will be charged to SYSGEN II. Consequently, as long as
the TT handler is resident and therefore active, SYSGEN II can not be removed from the
system. To circumvent this, it will now charge the TT ATL to TT handler itself, as SYSGEN
I does when SYSGEN II and the system disk handler.

SYSGEN II is now ready, finally, to type the message: "System Generation Phase II."
The Files-11 ACP is fixed in memory, and the fixed task list is scanned until it finds
F11ACP. The routine will loop until it finds the STD for F11ACP and when it does find it,
the ATLnode is charged to F11ACP and sets F11ACP as its own requester. SYSGEN II will
decrement its own pool usage count. If F11ACP can not be fixed in memory we have the
diagnostic message: "Error fixing F11ACP." That is only a warning, if it does not find
that ACP, SYSGEN II just continues along. At this point SYSGEN II gets the PUD of the TI:
in use and sets the UIC to [1,1]. TI: is set as logged on and privileged, and as the
console terminal COP:.

We now go to the subroutine to obey the contents of the SYSBLD command file to build
the IAS system. In the SYSBLD subroutine, the first step is to create the command to
mount the system disk, "Mount SYP:/OVR"., SYSGEN II now opens [11,17] SYSBLD.CMD, which is
the default command input file and goes through each command one at a time. If there is
an open error or read error on SYSBLD.CMD a fatal error message is issued and SYSGEN II
will exit.

Another routine is called to obey an MCR type command line. This routine checks each
command in SYSBLD.CMD to see if it is comment. It checks for both types of comments, the
semicolon and the exclamation point, both types of these comments are ignored. It also
ignores 2 special cases, the asterisk (#) Delay command and the "Log" command. These two
commands may appear in older versions of IAS. The routine sets up the SPAWN DPB and
executive request SPAWN is issued. It converts the first 3 letters of the command line to
RAD50 and stores them in the SPAWN DPB as the name of the task to be SPAWNed, for example,
PIP and INSTALL. If the MCR task is not installed, an attempt is made to run MCR's
multifunction task, ...MFT, to do the job instead, and it will use MFT as the task name.
If all this fails, a diagnostic error message: "Task not installed" is printed and SYSGEN
II exits with a Fatal request error.

Finally SYSBLD.CMD is closed when end of file is reached. SYSGEN II is now ready to

29



print the "End of System Generation Phase II" message and will then exit. After SYSGEN II
completes and exits the user should always perform typical post SYSGEN2 functions and then
save the system. Mike [Reilly] is ready to discuss SAV.

We started with the SAV task and we end with the SAV task. This time the job of SAV
is to write the contents of memory out to the disk. SAV will do this by verifying that
the system is quiet, that nothing is happening, that all users except the user who is
actually attempting to save to the system are logged out, all disks have been dismounted,
that there is no activity in the SEND/RECEIVE queues, no tasks that are waiting to be
loaded into memory and basically, no activity within the system. There are qualifiers to
the SAV command when you enter the SAV command to override some of these checks. SAV then
will map itself to the boot block that was left in memory by the BOO command, use the
logical block number found in the boot block to know where on the disk memory is to be
written, use the size of the system image found in the boot block to know how much memory
to write, and it will convert the read function code in the boot block to a write function

" code. Since it is identical code, it will just write instead of read. SAV then builds a
8tack to store all of the hardware registers that are going to be restored when the system
comes back up. It then jumps to the boot code so that the boot code will be executed, and
the system image will be written out to the disk. That completes the System Generation
discussion.

Cervantes Convention Center
St. Louis, Missouri
Thursday, 26 May 1983

30

BOOT  CODE
ADDRESS

SAVE

—|

SAVENT

31

REAL

IAS SYSTEM
IMAGE ON
DISK

BOOT




REAL @

BOOT

VIRTUAL @

EXEC

SCOM

SYSTEM DISK
HANDLER

\\

L{

\\

S62...

32

1000

B0O

LEN

BOOT

COLE

33

SPECIAL CCDE



LIST File Listing Utility

Written bu?

William Wood
The Institute For Cancer Research
7701 Burholme Ave.
Fhiladelrhia» Fa, 19111
(215) 728 2760

Version 2

34

LIST File Listing Utility

LIST is 8 utility for diserlawing selected rportions of a file. It
frovides facilities for diseplaving liness positioning in the files and
searching for character strindgs, In additiony outrut from LIST can be
redirected from the terminal to a3 file.

This manual exeplains how to use LIST. Throughout the manualy or-
tional parts of a8 command are enclosed in sauare brackets.
Running LIST

The LIST command line has the following suntax!?

LISTC/switches] fsreclsfsrec...]1 [commandsll>{>1filel

Switches
/HD Write 3 header record containing each file’s name
and the date to the standard outrut before listing
each file.
/G0 List 811 files selected by fsrec without promrting
(see below! Fsrec).
Fsrec

Fspec may be 3 simrle file names an indirect command file name
preceded by @y ory in some installationsy 3 file name containing SRD
wild card characters or switches., If the file name is an indirect
file namey LIST will list the named files in the indirect file one at
a time, If it is an SRD-ture file names LIST will list the files se-
lected bw SRD. In either casesy LIST will rrompt vou with each of the
selected file names to see if wou want it listeds unless /G0 was se-
lected (see above! Switches)., Resronses to the rromrt are!

Y List the file.
<er> or N Don’t list the file.
6 List this and remaining files with no rromrting.

~Z Don’t list this file and rema3inind files.

If commands are diven on LIST’s command lines thew will be exe-
cuted once for each file selected by the fsrecs If the standard out-
rut is redirected by 3 command line» it will remain redirected for
each file selected.

Note! Normal SRD wild card characters and switches maw be used

35



LIST File Listing Utility

in an SRD-ture file name’ howevers, do not use the /SE!
switchy 3s this is the default switch. Alsos onls the
most recent versions will be selected unless X is srec-
ified.

Default Fields in File Names

More than one file mas be listed durind the same LIST session by
turing LIST and them @ carriade-return. LIST will promrt for 2 file
name. After each file has been listed, LIST will promprt for 3 new
file name.

Whenever LIST attemprts to oren 3 filesy the devices uicy names and
extension are remembered and become the defaults. The defaults are
used to rerlace missing fields of subsecuent file names entered for
listind., For examrle!

PDS> LIST
FILE? LB:[22,2]LIST.DOC

When vou are finished listing LRI[22,2]ILIST.DOCs if wou wanted to see
LB:[22,23VG3.D0OCy wou would only have to ture!

FILE? VG3
and LIST would surrly the missing fields of the file name.

If LIST can’t oren a file after surpluing the defaultss it tries
the file name as entered. Initiallys the defaults are SY! for the
device and .LST for the extension.

Numbers

Numbers are used to rosition LIST in the file and 3s ardguments to
commands. Numbers 2aluwags rrecede the command thews affect. A number
may be a3 simple numbers one of several srecial line number variables:
or a3 search pattern. The value of a search pattern is the number of
the line that matches the rattern., Some commands ortionallw take two
numbers as argumentsi when specifwing more than one numbers serarate
the two numbers by 3 commas e.g. 1545 . In additions numbers maw be
added and subtracted from one anothers e.g, $-9 is the 10th line from
the end of the file.

LIST scans the input on & command 1line from left to right.
Whenever it encounters a numbers, dot (the current line number) is set
to that number., Multirle line numbers may arrear next to each other;
LIST rositions to each in turns e.dg. 1/SUBRR/ searches for SURR after
line 1.

36

LIST File Listing Utility

4.1

Line Number Variables

. Dot is the current line number. Whenever LIST en-
counters 3 line numbers the value of dot is reset to
that line number.

$ Dollar is the last line of the file.

3 Sharer is the line number disrlased by the most recent
Frromrt.

e At-sidn is the line number of the tor of the 1last

screen diselaved bs LIST.

b 3 Star is set by the = command and is ecual to the value
of dot when the = command was last issued. X serves
to mark 3 line of interest for future reference.

Semi~-colon is eaual to the current screen size.

-

Search Patterns

A search rpattern is @ strindg of characters bracketed by slashes
(/) or backuwards slashes (\)!

causes LIST to search forward from dot for strinsg,
causes LIST to search backwards from dot-1 for
string.

/string/
\string\

There are several characters which have 3 srecial wmeaning when they
arpear inside 3 search string:?

‘ means that the following character is to be treat-
ed as itselfy not a3s a3 special character.
% srecifies that the match must occur 3t the bedin-

nindg of the 1line onlw., 7% itself must arrear st
the bedinning of the ratternsy otherwise it has no
special meaning.

causes the next character to be interrreted as a
control character.

Once srecifiedr 3 pattern becomes the default rattern and may be in-

voked by // or \\. F3tterns may be used answhere 3 number may arreari
the value of 3 rattern is the line number of the matched line.

37



LIST File Listing Utilite

LIST File Listing Utilite 5.1 Commands That Print

P Disrlaus lines from the file. Dot is alwaus left at the 1last
line printed Pplus 1, P is the default command, and is ortion-
a3l at the end of the command line.

P Print as mans lines as will fit within the current
sereen size (initiallws 23)y starting at the cur-

4.3 Examples of Line Numbers

+-10 10 lines before the current line. t 14 (dot)
1r$ Line 1 and the last line of the file. ren ne (dot’. .
/SUBR/ First line which matches SUBR. nP Print as many llngs as will fit within the current
/ZSUER/ First line which matches SUBR at the besginning of screen size starting at line n.

the line. n1yn2F FPrint lines ni-n2,
AN\ First line which matches the default rattern while . ) X

scanning backwards. G Like Py G disrlaus lines from the files houwever with =zero or
/'/He’ s/ First line which matches /He’s one arduments 6 only prints one lines and the value of dot is
2/HELLO/-5 5 lines before first occurrence of HELLO =&t or not chanded.

after line 2. [¢] FPrint the current line.

nG Frint line n.

nlsn26 Frint lines ni-n2.

It is rossible to specifu fairlw comrlex line numbersi the value

of s line number is alwaws the last number evaluated. For instances ? Disrlaus only lines matching the current search rattern.

? Diseplaw a screen-full of lines matchindg the cur-
L/SUBR/41/70 o 43/END/ 4177 rent. rattern. ?f the end of the file is reacheds
dot is left at line 1, else dot is 1left at the

next line matching the current rattern.

n? Displaw a screen-full of lines matching the cur-
rent ratternr starting at line n. If the end of
the file is reached, dot is left at line 1y else
dot is left at the next line matching the current
rattern.

ni»n2? Diseplaw all lines matchind the current rattern
between lines nl and n2. Dot is left at ni.

specifies two line numberss the first is the second occurrence of
SUBR at or after line one’ the second is the second occurrence of END
at or after 3 after the first line number.

5.0 Commands

LIST a2ccerts commands on it’s command line or when it promets
with the current line number and 2 ">® character., Commands are sindle
characters and are rreceded by zeros ones or two numbers which are ar-
duments to the command. Mare than one command mas be entered on 2
command lines LIST scans the command line from left to righty rosi-
tioning to line numbers and executing commands.

Note! LIST usualls chandes most control characters to nulls
before rrinting 3 records however when two line numbers
are srecified or when the 6 command is executedy, 311l
characters are written out unchanded. Thus it is rossi-
ble to write out rortions of 3 file without losing anu

characters,

There are two tures of commands$} those that eprint and those that
affect LIST’s state without erinting., Commands that eprint usuallw
eprint from dot (the current line number) unless two line numbers were
specifieds in which case eprinting occurs from the first line number. 5.2 Gther Commands
Other commands *eat ur® the number(s) that are their ardumentss in
other wordss dot is reset to the value it had before the command, with

L The L command causes the last command line to be reexecuted.

it’s ardument(s)s was executed.

If s line number arrears at the end of the command line with no = The = command sets the line number variabler %, to dot. X
command after ity the default command (F) is executed, serves to mark & line for later reference.
Thus /SUBR/ is eauivalent to  /SUER/F § both cause printing to = 29: : :o dot.
n= e o n.

begin at the first occurrence of SUBR.

S Sets the screen size.
8 Reset the screen size to 23.

38 39



LIST File Listing Utilityu

nS Set the screen size to n.
n1yn28 Set the screen size to (n2-nl)+1.

c Sets the column rande which will be read from the ineput file.

Cc Reset the column randge to 1-512,
nC Set the column range to 1-n.
nlyn2C Set the column rande to nl-n2.

F Create 3 *virtual file® by restricting LIST to a contisuous

subset of the lines in the file.
F

Reset the virtual file to corresrond to the actual

file.
nF Make 3 virtual file between dot and dot+n-1.
tecomes the new line 1 of the virtual file.

Dot

n1yn2F Make a3 virtual file between ni and n2., N1 becomes

the new line 1 of the virtual file.

N Turn promrt mode on/off. When rromrt mode is offs LIST

will

not prompt with the current line numbers but will leave the

cursor after the last line printed.

If the screen size is set

to one and rromrt mode is set off (1SN accomrlishes this) then
LIST will be in line-by-line mode» in which one line is print-

ed for each carriade-return,

R Resets the screen size to 23, the screen width to it‘’s oridi-
nal valuey the column range to 1-512, the virtusl file to the

fully actual files and rromet mode to on.
X Finish listing the file. X is identical to ~Z (EOF).

* * Srpace (blank) is the null command» and does nothind.

5.3 Installation Specific Commands

Not all installations have the following commands.
[} Sets the screen width.
1) Reset the screen width to it’s original value.
nW Set the screen width to n.

H Invokes LIST as @ subtask to print 3 helr file.

v Routes all the following outrut from the command line to
printer port of the DT80 (3 VT100 look-alike).

6.0 Defining and Using the Macro

the

LIST File Listing Utility

LIST has a simrle text rerlacement macro facilite. The macro is
remembered text from a3 line of LIST commands. The macro is defined bw
enclosing the text in sauare brackets ([1). When M is srecified on
the coamand liney the M is rerlaced by the macro text.

For exaamrle!
[e+i1//r1

defines a macro to search for the current rattern starting from the
tor of the last screen + 1y and rrint from there. To invoke the
macroy tuwre M on the command line.

The text of the macro is not executed when it is defined by en-
closindg it in saeuare brackets. It is not executed until an M is
tyreds M may arrear with other commands and line numbers on the com-
mand lineé first the macro text reerlaces the Ms then the command line
is executed, In additiony M ma3y be used more than once on & command
line.

Redirecting Output From LIST

The outrut from 2 line of LIST commandssy which normally does to
the terminaly maw be redirected to a file. To write 3 new files rut
»>FILE at the end of the commandsy where FILE is 3 standard file name.
To aprend to an existing files, rut *>FILE at the end of the command
line., If FILE doesn’t exist» it will be created. The carriadecontrol
tere of newly created files is identical to the carriadecontrol ture
of the file beind listedr while that of arrended files is the same as
that of the file being arrended to.

Once a2 file name has been srecified usindg >FILE or >>FILEs that
file name becomes the default file name for file redirection onlss and
need not be srecified againy i.e. > or >»> alone is 21l that is needed
to redirect outrut to that file.

41



LIST File Listing Utility

8.0 Examrles of Commonluy Used Commands

<{er>

45

0"5

@...

Lescx

$-9

/SURR/

/7

45/SUBR/
/ERR/-5
$-50/SUBR/
i»10
/SURR/+»/7END/
1/SUB/» ++S/ENL/
/SUBR/?

»

10,$>T.THFP

Hitting return rrints the next screen.

Start rrinting at line 45.

FPrint from 5 lines back,

Frint starting half 3 screen back.

Start Pprinting one and one-half screens back.

Hitting escare prints from 2 screens back.

FPrint the last 10 lines in the file.

Locate the string SUBR and srint from there.

// 8lone defaults to the last search rpattern srecified.
Locate SUBR at or after line 45 and disrlaw a screen.
DIisrlay starting 5 lines before next occurrence of ERR.
Look for 2 subroutine in the last 51 lines of the file.
Frint lines 1-10.

Print the next subroutine.

Print from SUB at or after 1 to END at or after 5 after SUR
Disrlay lines containing SUERR.

Diseplay lires containing the current epattern.

Write lines 10 throush the end of the file to T.TNF.

LIST %.FTN /XVAL/»$7?X would print 2ll occurrences of XVAL in X.FTN.

42



DeVIAS Questions - Answers

Name :

Mailing
Address:

Phone
Number : ( ) -

Instructions

1) Complete relevant part of form

2) Mail to Editor, The DeVIAS letter

3) Question and/or Answer will be published in
newsletter.

Date Submitted: / /

Question:

Answer:

43

next



NOTES

45








