
RSX

MULTI-TASKER

AUGUST 1984 ISSUE

Printed in the U.S.A.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL
DECnet Digital Logo
DECsystem-10 Edu System
DECSYSTEM-20 IAS
DECUS MASSBUS
DECwriter PDP

UNIX is a trademark of Bell Laboratories.

Copyright© Diglt1I Equipment Corporation 1984

All Rights Reserved

PDT
RSTS
RSX
UNIBUS
VAX
VMS
VT

It is 1uumed that 1ll 1rticles submitted to the editor of this newsletter 1r1 with the 1uthon' perml11ion 10 publish In any DECUS
publlc1tlon. The articles are the responsibility of the authors end, therefore, DECUS, Dlglt1I Equipment Corporation, and the
editor 11sum1 no responsibility or ll1bilhy for articles or Information 1pp11ring in the document. The views herein expressed ere
those of the authors end do not necesserily express the views of DECUS or Digital Equipment Corporation.

x

RSX MUL Tl-TASKER

TABLE OF CONTENTS

The Crystal Ball • • • • • . • • • • • • • 2
SIG News • • • • • • • • • . • • • • • 4
Placing a Quote in an Indirect Symbol • 8
Updated - The Worst Bug I have ever

Encountered • • • • • • • 10

Serializing I/O in RSX-llM • • • • • • 12
Using FMS-11 from RSX-llM-Plus Indirect

Command Files • • • • • • • • 21
Spiffy Things to do with Virtual Disks •• 28

i

From The Editors

Submissions are dwindling again. No one wants to spend too
much time at work during the lazy days of summer; therefore, I am
hopeful submissions will pick up during the Fall. Many people are
doing many interesting things with RSX. Please step into the
limelight and let us all know what your doing. We can accept
submissions in many machine readable forms. My address is below,
please contact me if you need any assistance.

What's Inside

This month the North Texas LUG gives us a view of what they
perceive to be the future via there Crystal Ball. The RSX SIG is
planning three very interesting pre-symposium seminars for the
Anaheim Symposium. Hans Jung, RSX SIG Pre-symposium Seminar
Coordinator tells us what is in store. Several months ago a letter
appeared in the Multitasker about putting a quote in a symbol
within an RSX command file, this month we have two more solutions
to this problem.

Three very interesting articles are presented this month.
Philip Miller and Robert Novas discuss Serializing I/O in RSX-llM.
Mark Chatterton brings to light the FMS-11 interface in the RSX
command File Processor. I'm sure most of you have heard about
Virtual Disks. This month Jim McGlinchey gives us some Spiffy
ideas on practical uses for them.

- 1 -

Dominic DiNollo
Loral Electronic Systems
Engineering Computer System
Ridge Hill
Yonkers, New York 10710

(914) 968-2500 ext. 2210

RSX MULTITASKER

THE CRYSTAL BALL

From the North Texas LUG Newsletter

The night is dark. In the distance, Coyotes hauntingly howl.
The wind moans through the cracks in the house. Inside, the grou1
sits around a table. A solitary candle lights the room castin~
ghostlike shadows that dance about the room. Next to the candlE
lies a crystal ball. We all gaze intently into it. At first, it if
shrounded in mist. But slowly, the mist parts to give us a view o1
the future.

Looking down into the murky depths, we see the planet Venuf
(from whence the mist came, no doubt). But the image of Venuf
slowly fades to reveal something called a 790 ••• then, you alread~
know about that. But wait! There is more to know! It uses nffi
technology to gain speed at the expense of power consumption.
There was something about a bunch of gates all in a row and colum1
but no further word came of that area. Performance ••• ah, yes
That evasive quality that DEC doesn't talk about. Well, it doesn'1
stop the crystal ball! It knows nothing but tells all. I sei
floating in the mists a 4 MIPS figu ••• no! It says 9 MIPS ••• no,
it seems to be floating between these two values because of thi
highly pipelined design. And cost ••• yes, it's the price of twc
780s and the performance of four. Looking into the heart of the
machine, there is something different, something strange. It siti
over the boards ••• ! can't quite make it out •••• it seems, yes, it'i
definitely is a 4 foot box fan positioned 1 inch above the boardi
(for cooling, no doubt). It has a name on the side ••• let'i
see ••• ah yes, it says DECair. Mayhaps this is the source for some
of the hot air coming from DEC on past occasions.

The image of Venus slowly fades to show ••• yes, yes, i·
is •••• new software. It is an operating system which (if you arc
lucky enough to login) won't allow you to do anything due to al:
the checks and security features that have been implimented. Bu·
that's okay ••• you just wanted to play anyway. Management cares no·
that serious work can get done so long as it is the work is secur1
and safe in the friendly hands of VMS. Still, you feel goo1
knowing that your secure system has already been broken by severa:
intelligent users. But that is a contracdiction in terms
intelligent and users ••• Ah, but such are the mysteries of th1
world.

- 2 -

RSX MULTITASKER

I see a reduced instruction set computer ••• could this be the
PDP-8 brought up to speed???

Ah, I see a book, no... more than one book... something
called the M+ documentation set which makes references to a
multi-processor system. Could such a device be forthcoming??? I
see such a device being introduced within a year ••• The software
already has embedded within it the necessary hooks and the hardware
has been built and I see it in current operation on a software
development system. What a system I see... speed of 4 11/73
boards all running M+ without the overhead of VMS; what ever that
is. But then again, good ole stodgy VMS will still be there,
proding slowly along, helping all you real time people lead
happier, healthier lives.

The image fades •••• Something called a fully vectored executive
of M/M+ slowly forms ••• This wonderous beast slowly gains strength
and power, but dies a slow and painful death due to buyer
apathy •.• I see forming something called named directories for M+
but not for M. And a hierachical directory structure. And logical
name tables ala VMS. All this I see already working on both M and
M+. And I see the implimentation done over one weekend ••• two
days ••• such a short time for something that DEC has said would take
years. And yet, no such product will come forth from the bowels of
Digital ••• a monster it seems has run amonk within DEC .•• and it is
exceedingly evil for it is the beast called ••. hush, don't say it
too loudly ••• politics. And this beast has forbade new features on
a product the DEC has "solidified". Such is the life for something
which is supposed to be lean and mean.

The smoke slowly curls about a small creature called a
Micro/RSX which has J-11 support, I and D space, supervisory mode
support and even newer device support. The hushed conversations
behind the CPUs have rumored performance 4 to 7 times that of the
current Micro-11 ••• and even a disk that's faster than a floppy!

I see a room somewhere in the dark corridors of power; a
small elf, hoping to please the overlords, helps the poor memory
starved M systems by shrinking the size of the powerful EDT weapon
to a small shadow of itself, thus making it up to 10 times slower.
But then to bedazzle the M+ cult, he makes it big and fast and yet,
says not a word to the M clan about the fact that the unoverlayed
M+ EDT will work just as well under M •••• and yet, not a word was
forthcoming for help on EDT. Know ye well that help under EDT V3
"sorta" works ••• PF2 gives you the scrolling keypad layout ••• and
type ye not a keypad less you find no help available ••• all this to
reassure you that DEC has done a bangup job checking out the beast.
Therefore, throw not out ye V2 EDTs lest the beast of V3 come up
and smite thee.

I see that the lowely DMZ-32 slowly makes it's way to the
sunlight to replace the powerful but hungary DMF-32 ••• imagine! 24
ports on one board, all with full modem control and all with DMA.

- 3 -

RSX MULTITASKER

I see DEUNAs coming complete with sabres and marshmellows sc
that ye can have your picnic roasting the marshmellows over the lE
amp.DEUNA.

And the terminal server (good help is so hard to find these
days) that rivals DMF-32 performance and runs but on one coa~
wire ••• a wire different in diameter than the rest of the world's
coax ••• but then again, you should only buy DEC anyway lest field
service point its finger at the "other" vendors.

The images slowly fades into the mists as the first light of
dawn treks slowly across the room. As we all look up, a booming,
bodiless voice speaks the language of all people: "That will be
thirty five dollars." A~ the echo fades slowly into the room, we
are comforted by one thought that has given us strength throughout
many, many ye~rs:

"Though we may criticize DEC, though we may poke fun at
them, though we curse them under, nay, over our breath,
though busses may go and interconnects come, though users
knoweth not what they what and DEC knoweth all, we still
want our DEC machines and don't let anyone take them away
from us."

SIG News

Recently several DECUS members who work with Data Acquistion
and Real-Time Control requested the formation of a new SIG (acronym
DAARC) that would cross operating system divisions and deal with
the problems common to this type of operation regardless of which
operating system is used.

The RSX SIG Steering Committee has voted in favor of the
proposed formation.

Ed Cetron, the
recommended in favor
the Steering Committee
not be in conflict
would still want to be
RSX.

RSX Real-Time Working Group Chairman,
of the new SIG. After some discussion among
members, we agreed that the new SIG would
with the RSX SIG. People working with DAARC
active in the RSX SIG if they were using

At the moment, to the knowledge of this editor, the new SIG
has not been formally chartered by DECUS.

- 4 -

RSX MULTITASKER

RSX Pre-symposium Seminars in Anaheim

Hans Jung
RSX Pre-Symposium Chairman

Listed below are abstracts for the three RSX SIG presymposium
seminars.

Public Domain Software: An Indepth Review of the
RSX SIG Tapes

Some of the best programs available at any price are free:
little programs that save a few minutes a day, but are too much
trouble to write in house, or a larger package too expensive to buy
and too big to write yourself. Someone, somewhere has written
them, and they're in the public domain, but you have to know where
to find them.

Just some of the programs available are:

languages: BASIC, C, two flavors of PASCAL, RATFOR
text processing packages: the TECO editor and RUNOFF
formatting program
Software Tools - a virtual operating system with UNIX-like
tools
CCL - a user extendable command line intrepreter to make RSX
"friendly"
Virtual Disks
SRD - a directory utility
KERMIT and other computer communications packages
PortaCalc - a spreadsheet written in FORTRAN

Programs like these have been contributed by goverment labs,
universities and private companies. This high quality software is
distributed in the public domain through the RSX SIG tape copy
proceedure.

A number of experienced RSX users will describe the programs
available from seven years of RSX SIG tapes. In addition to the
program description, tested methods for using SIG software in
system management and program development will be covered. Using
SIG programs as templates for custom software development will also
be discussed.

- 5 -

RSX MULTITASKER

VAX users should also be interested since many of the programs
run in compatability mode, and some are even availible in native
mode.

Anyone involved in systems or project management will come
away with some immediately useful ideas for using these programs.
The small programming shop, and particularly the one person
programming staff, will find that someone has solved those nagging
problems, at a price they can afford.

Notes on all the programs discussed will be provided. The
programs discussed will be made availible on magnetic tape.

Speaker Biographies:

(Note - The seminar is being organized by Glenn Everhart and
Jim Neeland, so their biographies are included. We expect to have
at least 6 presenters, most from the Anaheim area.)

Glenn Everhart
Staff Engineering Scientist
RCA
Cherry Hill, NJ

Glenn Everhart has contributed numerous programs tc
the RSX SIG. His most notable current program is
"PortaCalc", a spreadsheet written in FORTRAN which runs on
both RSX and VMS. He is the current RSX SIG Tape
Coordinator.

Jim Neeland
Hughes Research

I

Jim Neeland has been active in the RSX SIG ~ape copy
program since its inception in 1977. He served for twc
years as RSX SIG Tape Copy Coordinator. Active in since
1975, he has contributed or worked on such popular RS]
programs as TYPE, OPA (online pool analyser) and
DVCDAT(device database display).

The other speakers will be announced at a +ater date.

RSX Systems Internals: A Developers View

RSX system internals have often been taught, but rarely by a
person who actually wrote part of RSX. Brian McCarthy, an RS]
developer, will describe not only how RSX works, but why the RS]
group chose to make it work that way.

This full day overview of RSX should interest
systems programmer and the experience RSX "guru"
important as the details of the internal structure, the

- 6 -

the novice
alike. As
philosophy

RSX MULTITASKER

behind RSX will be explained.

Topics to be covered include memory mapping, the I/O
structure, interrupts and traps, task scheduling and the data
structures they use. With only a day to cover such a broad area,
sources for further study will be suggested.

RSX-llM Plus specific areas such as secondary pool, I and D
space mapping and supervisor mode will be described, both in what
they are and why they were added to M-Plus.

Some experience with RSX systems programming will be assumed,
as will a general knowledge of PDP-11 hardware. Those with systems
experience on other operating systems and hardware may find this
seminar an excellent introduction to the power of RSX for designing
complex hardware and software systems.

Speaker Biographies:

Brian McCarthy
Principle Software Engineer
RSX Development Group
DEC

Brian McCarthy is responsible for a large portion of
RSX llM-Plus. He has worked with RSX for over nine years,
first as an independent consultant. In 1977 he joined DEC
working in Educational Services. He became a member of the
RSX development group in 1979. His current projects
include working with the J-11 and other new DEC processors.

Industrial Automation: Tieing your
Real-time Device to RSX

Computers are great for talking to terminals and printers, but
what happens when you want to talk to a numerically controlled
lathe or get data from the fancy new instrument just delivered to
your lab?

Interfacing to unusual peripherals is often learned ad hoc,
with less than perfect results. Yet many techniques, from the very
simple to the very sophisticated exist for integrating equipment
into a real time system. This seminar will cover some of them.

Techniques covered will include mapping to the I/O page, using
the connect-to-interrupt directive and custom written device
drivers. All have advantages and disadvantages, and the tradeoffs
will be described.

Designing a system structure to handle real time requirements
is another critical aspect which will be covered in detail.

- 7 -

RSX MULTITASKER

With many instruments now interfaced through EIA ports, the
seminar will describe some of the special problems of using the
terminal driver with non-terminal devices.

Case studies of actual systems will be presented as examples
of how some real world problems have been handled.

The material will be covered from an RSX point of view, but
many of the techniques described apply to other PDP-11 operatin~
systems and even the VAX. Reasonable familiarity with the PDP-11
hardware and the RSX operating system will be assumed.

Speaker Biography:

Ed Cetron
Computer Systems Manager
Center for Biomedical Design
University of Utah
Salt Lake City, Utah

Ed Cetron is currently working on interfacing a PDP 11/44
to the Utah-MIT DEXTROS Robotic Hand. He began dealing
with computers in a lab enviroment while studying for a
bachlors degree at the University of Virginia. He was
awarded a Masters Degree in Biomedical Engineering in 1983
for work on a "Microprocessor Control for Prosthetics."

Placing a Quote in an Indirect Symbol

Peter A. Shea
Systime. Ltd.

There are two ways to get a quote symbol into an indirect
command file. Try, firstly:

@TI: "
AT.>.Enable Substitution
AT.>;'Pl'
AT.>e>z

- 8 -

RSX MULTITASKER

Or better still:

@TI:
AT.>.enable substitution
AT.>.setn Q 242
AT.>.sets QUOTE "'Q%V'"
AT.>;'QUOTE'
AT.>©z

Have fun, Pete Shea.

Placing a Quote in an Indirect Symbol

Dear Sir:

Simon Smith

Pauls Agriculture Ltd.
47 Key Street

Ipswich, IP4 lBX
Suffolk, England

After reading the short article by Roger Jenkins (RSX
Multitasker May 1984 issue) concerning placing the quote character
in an indirect symbol, may I be so bold as to suggest that the
solution is simplicity itself. No messing around with user entry,
or data files is required. I discovered the solution by accident.
It went as follows.

"One sunny day, while creating a command file to perform yet
another if thoise repetative jobs that always needs doing (hooray
for ICP !!),the old fingers slipped while entering a .SETS line.
I only discovered my mistake (or good fortune as it turned out to
be) while looking back over the command file searching for another
bug. I looked at what I had done in both disbelief and joy, for
what I had entered, though technically incorrect, had not caused
ICP to fall over with "Syntax Error" or the like!!"

The heart of the matter is that I had typed in •••

• SETS <symbol> #<string># and not .SETS <symbol> "<string>"

- 9 -

RSX MULTITASKER

I thought, "I wonder. What would happen if I placed a quote
in the string?". I did, and lo and behold, IT WORKED!!

The solution to this dilemma therefore, is to use the number
sign (#) to delimit strings instead of the quote character.

Updated "Worst Bug I have Ever Encountered"

Mike Morrow
Clark Equipment Company

Automated Systems Division
P.O. Box 3000

Battle Creek, Michigan 49016

As the members of the RSX SIG may know, I won the prize for
the "Worst Bug I have Ever Encountered" contest at the Fall 1 83
symposium in Las Vegas. In case you don't know, I found out the
hard way that RSXllM+ checkpoints a common upon removal to its task
image file, regardless of whether or not that file exists,
resulting in bad things if that file or pack is not there any more.

Well folks, I think I have a bug (actually a nondesirable
feature) to top even that one! We have a fairly large and complex
program, written in MACRO using SUPERMAC, which consists of several
modules that get assembled seperately and have the .OBJ files
inserted into an .OLB, then task-built from that using overlays.
Each module makes implied global references (.ENABL GBL) to
subroutines and data elements in other modules and we let TKB pull
the whole mess together. This arrangement in the past has worked
satisfactorily.

When we rebuilt this task under RSXllM+ V2.1 and RMS V2.0 we
experienced some strange problems. Two of these were isolated to
RMS; DEC has had my SPR and PMD's for about three months now.
However, one other problem had no apparent explanation, and it was
)n our application code.

While looking by chance at the listing of one of the modules
in question, I saw an instruction

$CALL CSM

which was supposed to generate a call to a global subroutine
named CSM in another module. Looking "just for grins" at the
symbol table at the end of the listing I found no entry for CSM (I
would have expected something like

- 10 -

RSX MULTITASKER

CSM = ****** GX

to denote an implied global reference). I smelled a rat.

I got to a terminal and typed "MAC ,TI:=TI:", typed ".END" to
shift MACRO to pass 2, then typed "JSR PC,CSM", the instruction
that SUPERMAC translates "$CALL CSM" to. Instead of seeing

004767 OOOOOOG JSR PC,CSM

printed by MACRO, I was quite surprised to see

004767 007000 JSR PC,CSM

I said to myself "Well that's nice. MACRO seems to think he
knows just where my global subroutine will be when my program gets
task built". I then realized that probably CSM is in MACRO's
permanent symbol table, and was added to the new assembler that
came with RSXllM+ V2.1. I got out the manual and went to the
appendix that showed the PST, but found no CSM. I then went to my
best processor handbook (PDPll 04/34a/44/60/70 1979-80) but found
no CSM. I then DMP'ed MAC.TSK in R5 format and found the PST.
Sure enough, there was CSM, along with TSTSET and WRTLCK, whatever
they do. I then got an even newer handbook from a coworker, and it
documented CSM as "Call to Supervisor Mode" for the 11/44.

My main gripe is that MACRO lets you use an opcode as an
operand and doesn't tell you about it; it just assembles in the
wrong code. This is compounded by the fact that MACRO keeps
getting all these new CIS and FPS instructions added with new
versions, tending to unpredictably break existing programs. I plan
to submit a "suggested enhancement" SPR to DEC recommending that
usage of an opcode as an operand be flagged with a warning;
hopefully DEC will favorably respond.

I appreciate the opportunity to share this experience with the
RSX users. I hope that other users put this in their bag of tricks
in case they encounter this same situation themselves.

- 11 -

RSX MULTITASKER

Serializing 1/0 in RSX-11M

Philip Miller and Robert Novas
Century Computing, Inc.

(301) 953-3330

Introduction

This article describes how I/O requests for two independent
device controllers may be serialized. The need for serialization
occurs in systems where simultaneous I/O through several high-speed
controllers overloads the system bus, generating data late
conditions.

A hypothetical example of a need for serialization is:

A PDP-11 system has a high-speed disk, a high-speed magnetic
tape, and a DRll-B DMA interface to an array processor. If all
three devices run at once, the UNIBUS is saturated and data
late errors are generated. Serializing I/O requests to the
disk and the array processor would avoid the overload.

The technique described here involves no changes to user mode
software, no changes to device data bases, and only minor changes
to existing device drivers.

Restrictions

The technique presented here has several restrictions:

1. Only single controller drivers are supported.
multi-unit drivers are supported.)

2. Only two controllers may be serialized.

(However,

3. The two-character device names of the two controllers to be
serialized must be different.

4. Every time a serialized driver is re-loaded, about 150 bytes of
pool are lost.

5. Though minor, changes to existing device drivers are required.
It is the authors' experience that many device drivers in the
RSX world are delicately coded and difficult to change
reliably.

- 12 -

RSX MULTITASKER

Restrictions 1 though 4 may be eliminated by extending the
code listed below, i.e., there are no conceptual barriers to doing
a more general implementation.

- 13 -

RSX MULTITASKER

Description

The basic concept is to imitate the manner in which the RSX
$STMAP subroutine resolves contention for UNIBUS mapping registers.
(RSX-llM-PLUS uses a similar technique to support mixed MASSBUS
devices.)

Before a serialized driver initiates I/O, a call is made to
REQCON (listed below) to request use of the controller. If the
companion controller is idle, REQCON returns and the driver
proceeds to initiate I/O; if the companion controller is busy,
REQCON places the context of the driver in its "coordination block"
and returns to RSX.

When a serialized driver receives control following completion
of I/O, the driver releases the controller by calling RELCON
(listed below). RELCON checks to see if the companion driver is
waiting for the controller; if the driver is waiting, RELCON
restores the saved context and continues execution of the companion
driver.

Because the implementation here works for drivers that are
loadable, code for RELCON must be below page 5 so that it can map
between the drivers. Rather than add the module to the RSX
monitor, we have opted to move the routine to the dynamic pool
during driver initialization. To simplify the coding, we have
placed RELCON in the coordination block, which is itself in the
dynamic pool.

Data Structures

Each driver has a coordination block.
block is placed at offset D.VPWF+2 in the
(We do this in order to avoid changes to the
tables; users with user-written drivers can
by placing the block pointer in the SCB.)

The pointer to the
driver dispatch table.
standard RSX data base
simplify the code here

RELCON uses the "saved PC" in the other driver's coordination
block to determine if the driver is waiting for the controller: a
zero PC indicates that the driver is not waiting.

- 14 -

RSX MULTITASKER

Installation Procedure

The following steps implement serialization of (hypothetical)
devices Dl and D2:

1. In DlDRV.MAC, add the following lines directly after the fourth
word of the $D1TBL (dispatch table):

CBPTR:: .WORD
CORDEV:: .WORD

0
"D2

;Coordination block pointer
;Device to coordinate with

2. In DlDRV.MAC, add "CALL REQCON" at a point in the logic with
the following characteristics:

o Before S.CTM is set (to start the device timeout).

o Where it is known that a DMA data transfer is to be
performed. (In general, it is not necessary or desirable
to call REQCON for non-transfer operations.)

o Where RO may be destroyed.

3. Following every $IODON call in DlDRV, add "CALL RELCON". Note
that RELCON destroys RO and Rl. (It is acceptable to call the
RELCON subroutine even when you have not requested use of the
controller.)

4. At the power fail entry point (DlPWF), add "CALL CBINIT". Note
that the UC.PWF bit must be set in the UCB's U.CTL field to
request that DlPWF be called upon driver initialization.

5. Task build DlDRV referencing the SERIAL object module (listed
below). If the driver data base is contained in the DlDRV
module, then SERIAL must be presented to the TKB before the
DlDRV module.

6. Repeat steps 1-5 for D2DRV.MAC, using "Dl" for the CORDEV
value.

- 15 -

RSX MULTITASKER

.title serial

.ident /200/

.enabl le
~,.. , ____ ,_

eUUVV-L U U.U& J:' ..L '-

SERIAL.MAC

serialization subroutines

~-"' __ --~"' -­
UJ. .I. YVJ. "''U\o&..L..1..1.l:)

.if eq 1 ;comment block . , . , . , . , . ,

Typical driver coding for a driver to coordinate
with the MT device. The MT driver must have
similar coding to coordinate with this driver •

$drtbl: • word drini ;standard RSX entry points
.word drcan
.word drout
.word drpwf

cbptr:: .word 0
"MT

;pointer to CBLK
cordev: : • word ;name of coordinated device

. , . , . ,

.
' .
' .
' .
' . , .
' .
' . , .
'

.
' . , .
' .
' .
' .
' .
' .
' .
' .
'

Power fail driver initialization •

call cbinit ;build coordination block

. . .
Request controller; for control functions that do not
require I/O, it is more efficient not to call this •
You must be at fork level to request controller •

A good way to find a place for this is to follow calls
to $STMAP (even if conditionalized on M$$EXT) with this
(unconditionalized) call. $STMAP implies a transfer •

call reqcon ;request controller

Release controller; if this call is bypassed in the
I/O completion logic, the other driver will hang
forever. Don't forget to make this call in timeout
and cancel logic •

The following logic should appear following every
$IODON/$IOALT call. Note that it is okay to release
the controller even when you have not allocated it •

; You must be at fork level to release controller • .
' call
.endc

rel con ;release controller

- 16 -

RSX MULTITASKER

SERIAL.MAC (continued)

.sbttl cbinit -- initialize CBLK .
' .
' .
' .
'

Allocate and build CBLK in dynamic memory •

Input: .
' R5=UCB pointer .
' Registers r3-r5 preserved • .
' .
' cbinit::

tst
bne
mov
call
bes
mov
mov
add
mov
add
mov
mov

30$:
mov
sob

50$:
return .

'

cbptr
50$
#c.bln,rl
$alocb
100$
rO,cbptr
rO,pact
#c.act,pact
rO,pfind
#c.find,pfind
#cblk,rl
#c.bln/2,r2

(rl)+,(rO)+
r2,30$

;already initialized?
;brif yes
;rl=bytes to allocate
;allocate block
;brif no memory
;set pointer to CBLK
;make pointer to •••
;activate routine
;make pointer to
;find routine
;source for move
;r2=words to move

;move CBLK to pool
;loop

.
' .
'

No dynamic memory. Not clear what to do here;
we mark the device off-line to prevent QIOs • .

' 100$:

.
' .
'

bisb
return

pact:
pfind:

#us.ofl,u.st2(r5)

.blkw

.blkw
1
1

- 17 -

;act pointer
;find pointer

RSX MULTITASKER

SERIAL.MAC (continued)

.sbttl relcon release controller . ,
Call here at fork level to release controller . , . ,
Registers r2-r5 preserved • . , . ,

rel con::
mov
clr
mov
call
bes
tst
beq
call

50$:
return

cbptr,rO
c.busy(rO)
cordev,rO
@pf ind
50$
c.pc(rO)
50$
@pact

;CBLK pointer
;no longer busy
;device to coordinate
;find other CBLK
;brif no other
;is other waiting?
;brif not waiting
;activate other driver

.sbttl reqcon -- request controller . , . , . , Registers rl-r5 preserved •
Call from fork level only •
Must call with (sp) equal to RSX return • . ,

;
reqcon::

mov
call
bes
tst
beq
mov
mov
add
mov
mov
mov
mov
mov
return

50$:
mov
inc
return

cordev,rO
@pf ind
50$
c.busy(rO)
50$
cbptr,rO
(sp)+,c.pc(rO)
#c.rl,rO
rl,(rO)+
r2,(r0)+
r3,(r0)+
r4,(r0)+
r5,(r0)

cbptr,rO
c.busy(rO)

- 18 -

;name of other device
;find its CBLK
;brif no CBLK
;does other have cntrllr?
;brif not
;ptr to our own CBLK
;save callback
;register save area
;save in our own CBLK . , . , . , . ,
;to caller's caller

;pointer to our CBLK
;set that we have cntrllr
;to caller

RSX MULTITASKER

SERIAL.MAC (continued)

.sbttl coordination block .
' .
' .
'
'

Coordination block. Placed in dynamic memory so it
can map between drivers. The block consists of a data
area and two subroutines (find and act). .

' cblk:
cpc:
busy:
map:
srl:
cptr:
;

.word

.word

.blkw

.blkw

.blkw

0
0
1
5
1

;start of CBLK
;callback pc (or zero)
;O=free; l=busy
;kisar5 of other driver
;rl-r5 of waiting driver
;pointer to other CBLK

; off sets defining
c.pc=cpc-cblk
c.busy=busy-cblk
c.rl=srl-cblk

data in coordination block:
;saved PC

;busy flag
;register save area .

' ;
;

Subroutine to find CBLK pointer of other driver.
Input: rO=device name of other driver .

' .
'

Output: rO=CBLK pointer; C bit set if no CBLK
The code here must be PIC • .

' c.find=.-cblk
find:

mov
mov
mov

10$:
beq
mov
bne
br

50$:
beq
mov
beq
mov
mov

60$:
mov
beq
clc
br

70$:
sec

100$:
mov
mov
return

rl,-(sp)
@#kisar5,-(sp)
@#$devhd,rl
cmp d.nam(rl),rO
50$
d.lnk(rl),rl
10$
70$
tst d.dsp(rl)
70$
d.pcb(rl),rO
60$
p.rel(r0),@#kisar5
p • re 1 (rO) , map
mov d.dsp(rl),rO
d.vpwf+2(r0),r0
70$

100$

(sp)+,@#kisar5
(sp)+,rl

- 19 -

;offset in CBLK

;save
;save current mapping
;rl=first DCB in chain

;is this the device?
;brif yes
;get next in chain
;brif more
;error return

;driver resident?
;brif not
;rO=pcb address
;brif inside RSX
;map to other driver
;save locally for act

;rO=dispatch table
;rO=ptr to other CBLK
;brif no CBLK
;success flag
;return

;error flag

;restore caller's map
;restore

RSX MULTITASKER

SERIAL.MAC (continued)

.sbttl activate subroutine . ,
; Activate other driver. (Resident in coordination block.) . , . , Input: . , rO=CBLK pointer of other driver . , . , . , . ,

Registers r2-r5 preserved •

The code here must be PIC • . ,
c.act=.-cblk
act:

mov @#kisar5,-(sp)
mov map,@#kisar5
mov r2,-(sp)
mov r3,-(sp)
mov r4,-(sp)
mov r5,-(sp)
mov rO,cptr
add #c.rl,rO
mov (rO)+,rl
mov (r0)+,r2
mov (r0)+,r3
mov (r0)+,r4
mov (rO), r5
mov cptr,rO
inc c.busy(rO)
call @c.pc(rO)
mov cptr,rO
clr c.pc(rO)
mov (sp)+,r5
mov (sp)+,r4
mov (sp)+,r3
mov (sp)+,r2
mov (sp)+,@#kisar5
return . ,

c.bln=.-cblk
.end

- 20 -

;offset in block

;save caller's mapping
;map to other driver
;save caller's r2-r5 . , . , . ,
;save other CLBK ptr
;rO=ptr to save area
;restore for other . , . , . , . ,
; restore for •••
;set busy
;call other driver
;rO=ptr to other CBLK
;no longer waiting
;restore for caller . , . , . ,
;restore caller's map
;to releasing driver

;size of CBLK

RSX MULTITASKER

USING FMS-11 FROM RSX-11M-PLUS INDIRECT COMMAND FILES

INTRODUCTION

Mark Chatterton
General Mills, Inc.
9000 Plymouth Ave. N.
Minneapolis, MN 55427

At General Mills, we have found that Digi t·a1 's FMS-11 soft­
ware provides a very good user interface for programs that
require keyboard input. The ability to move forwards and back­
wards to various fields on the screen, along with definable
HELP screens and messages make FMS an invaluable tool for our
applications.

When I read in one of Allen Watson's columns that the Indirect
Command Processor for RSX-llM-PLUS contained a Form Driver
interface, I was intrigued. Unfortunately, documentation for
this handy feature is mysteriously lacking in the RSX books.
The Indirect command file manual does little more than mention
the fact that a Form Driver interface exists.

My goal here is to provide enough information so that a read­
er familiar with FMS software can access the Forms Driver from
within an Indirect command file. This information was discov­
ered, for the most part, through trial and error.

FORMS & FORMS LIBRARIES

Forms to be accessed through Indirect are created by the Form
Editor (FED) and maintained with the Form Utility (FUT) just
as they would be for any other programming language.

The default Indirect provides a 4000 byte data area for FMS
use. If your screen exceeds this limit, unpredictable results
occur.

COMMAND SYNTAX

Indirect uses the ".FORM" command to access the Form Driver.
The syntax of the command is:

.FORM FNC,PARAM1,PARAM2, ••• ,PARAMN

- 21 -

RSX MULTITASKER

Where:

FNC is a three letter code telling Indirect which
Form Driver function you want to perform.

PARAMl through PARAMN are parameters to be passed to
to the Form Driver so it can execute the function.

Every parameter has a required type: string or numeric. String
variables or quoted strings may be used for string parameters.
Numeric variables or numbers may be used for numeric parameters.
String substitution may be used.

ERROR RETURNS

After each ".FORM" command is executed, Indirect sets two of
its special numeric symbols to indicate the success or failure
of the operation. The symbol <FILERR> will be greater than
zero if the command completed to success. If <FILERR> is less
than zero, some error occured, and a list of the error codes
are in the FMS manual. If <FILERR> is equal to -4. or -18., an
error occured opening or reading your form library. The FCS
or RMS error code will be placed in a symbol called <FILER2>.

FUNCTION CODES & PARAMETERS

What follows is a list of all the Form Driver function codes
that I know about and the parameter list associated with each
code. Note that the function mnemonics are identical to the
ones used by the Macro-11/FMS interface. I've indicated option­
al parameters with square brackets. If you choose to omit an
optional parameter, be sure to include the comma that immedi­
ately follows it. Also remember to use the correct symbol type,
string or numeric, for each parameter you include.

A complete discussion of what each function does can be found
in the FMS manual.

For an example of all this, look at the module "FMSDEM" in
LB:[l,2]INDSYS.CLB of your distribution kit.

ALL - Get the responses for all fields

.FORM ALL,[fval],[term]

Inputs:
fval (string) = The concatenated values for all fields

in the form. If null, the values are

- 22 -

RSX MULTITASKER

Outputs:

only stored in the Form Driver data
area. You can then access them later
using RTN or RAL.

term (numeric)= Terminator code for the key that
the operator used to end input.

ANY - Get the response for any field

.FORM ANY,[fid],[fidx],[fval],[term]

Inputs: None

Outputs:
fid (string) = Name of the field filled by operator.
fidx (numeric) = Field index of the field filled by

fval (string)
term (numeric)

operator (if that field is indexed).
= The value entered by the operator.
= Terminator code for the key that

the operator used to end the input.

CLS - Close a form library

.FORM CLS

CSH - Clear entire screen and show a form

'

.FORM CSH,fnam,[line]

Inputs:
fnam (string) = Name of the form.
line (numeric) = Starting line for the form, over­

riding the line number assigned with
FED.

Outputs: None

DAT - Get named data

.FORM DAT,[fid],[fidx],[fval]

- 23 -

RSX MULTITASKER

Inputs:
fid (string)
fidx (numeric)

= The name of the data to be retrieved.
= The index value of the data to be

retrieved.
(At least one of these parameters must be present. If
you include both, fidx will be ignored)

Outputs:
fval (string) = The named data value retrieved from

the form.

GET - Get the response for a specified field

.FORM GET,fidl,[fidxl],[fid2],[fidx2],[fval],[term]

Inputs:
fidl (string) = The field name.
fidxl (numeric) = The field index for fidl (when the

field is indexed).

Outputs:
f id2 (string) = The field name.
f idx2 (numeric) = The field index for the f id2 (when

the field is indexed).
fval (string) = The field value.
term (numeric) = Terminator code that the operator

used to end the input.

GSC - Get current line of scrolled area

.FORM GSC,fid,fval,[term]

Inputs:
fid (string) = Name of the field within the scrolled

area.

Outputs:
fval (string)

term (numeric)

= The concatented values for all fields
in the line.

= Terminator code that the operator
used to end the input.

LST - Output to the bottom line of the screen

- 24 -

RSX MULTITASKER

.FORM LST,[fval]

Inputs:
fval (string) = String to be displayed on the bottom

line. If null, bottom line will be
cleared.

Outputs: None

OPN - Open a form library

.FORM OPN,flnm

Inputs:
flnm (string) = A form library file specification.

Outputs: None

PAL - Output data to all fields

.FORM PAL,[fval]

Inputs:
fval (string) = The concatenated values to be displayed.

Outputs: None

If null, the Form Driver restores de­
fault values for all fields.

PSC - Output data to current line of scrolled area

.FORM PSC,fid,[fval]

Inputs:
fid (string) = Name of the field within the scrolled

area.
fval(string) = The field values to be displayed. If

null, the Form Driver restores default
values to the Tield.

Outputs: None

- 25 -

RSX MULTITASKER

PUT - Output data to a specific field

.FORM PUT,fid,[fidx],[fval]

Inputs:
fid (string) = The field name.
fidx (numeric) = The field index for the field (when

fval (string)

Outputs: None

the field is indexed).
= The field value to be diplayed. If

null, the Form Driver restores the
default value to the field.

RAL - Return the responses for all fields

.FORM RAL,fval

Inputs: None

Outputs:
fval (string) = The concatenated vaues for all fields

in the form.

RTN - Return the response for a specific field

.FORM RTN,fid,[fidx],fval

Inputs:
fid (string) = The field name.
fidx (numeric) = The field index for the field (when

the field is indexed).

Outputs:
fval (string) = The field value.

SHO - Show a form

.FORM SHO,fnam,[line]

Inputs:
fnam (string) = A form name.
line (numeric) = Starting line for the form, over-

- 26 -

RSX MULTITASKER

Outputs: None

riding the line number assigned with
FED.

SPF - Turn supervisor-only mode off

.FORM SPF

SPN - Turn supervisor-only mode on

.FORM SPN

TRM - Process field terminator

.FORM TRM,[fidl],[fval],term,[fid2],[line]

Inputs:
fidl (string)

fval (string)

term (numeric)

Outputs:

= The field name. Required if a scrolled
area terminator is specified.

= Data to be displayed in the top or
bottom line of the scrolled area.
Ignored if specified terminator is
not a scrolled area terminator.

= Numeric code for the terminator to
be processed.

fid2 (string) = Name of the new current field.
fidx (numeric) = Index of the new current field.

FINAL COMMENT

I have not yet been able to duplicate my favorite FMS func­
tion through Indirect. The FORTRAN Form Driver interface
allows the use of the GET function (FGET in FORTRAN) without
parameters. When this call occurs, the Form Driver places the
cursor in the lower-right corner of the screen and waits for
the operator to hit the ENTER or RETURN key. This is a great
way to synchronize the task with the operator.

Unfortunately, the Indirect version of the Form Driver inter-

- 27 -

RSX MULTITASKER

face gets very upset when you don't pass it a field name with
the GET call. My way around this is to define a single char­
acter field in the lower-right corner of the screen, call GET
using this field, and wait for the operator to hit ENTER.

Good-Luck ! I

Spiffy Things to Do with Virtual Disks

James A. McGlinchey
Software Engineering Consultant

Post Office Box 451
Warrington, PA 18976

(215) 348-7261

Virtual Disks have been around in the RSX world for a while
now, yet practical uses for them seem to evade a lot of users'
imaginations. I want to present some techniques I have used in the
past two years which have added to the flexibility and reliability
of systems I support.

What's a Virtual Disk?

Simply stated, a Virtual Disk is a contiguous file on an RSX
disk that is in itself treated as a disk. A Virtual Disk is driven
through a Virtual Disk driver, which remaps all Virtual Disk
accesses into logical disk accesses and re-queues the request to
the physical disk driver in a method entirely transparent to the
user.

A Virtual Disk can have BAD run against it (if fact, it MUST),
can be INitialized, have UFD's placed on it, and can be backed up
and copied using BRU. The only thing you can't do with a Virtual
Disk that you can do with a physical disk is FORMAT it!

The principle of Virtual Disks was first demonstrated by Ralph
Stamerjohn; he was the first to release'a Virtual Disk package. I
like the package placed on the ~all 1982 (Disneyland) RSX SIG Tape
by Glen Everhart of RCA, for a couple of reasons: (1) It runs on
both RSX-llM and RSX-llM-PLUS, and (2) I have been using it for a
year without trouble.

Virtual Disk packages are fairly easy to use. Although it
certainly helps to understand how they work, it really is not
necessary in order to use them. The best way to come to an
understanding of Virtual Disks is to bring up a package and tinker

- 28 -

RSX MULTITASKER

with it a bit.

I don't want to dwell on the theory of Virtual Disks; I want
to get on to some practical uses.

Practical use No. 1: A Poor Man's Disk Quota System

Got users who leave their old listings lying around on your
disk, and then complain to you when they run out of space? Give
them each a Virtual Disk to use, and then the problem becomes
theirs rather than yours (that's the whole secret of being a
successful System Manager, isn't it?). A small change to the HEL
task will enable you to assign them a Virtual Disk when they log
on.

Practical use No. 2: Partitioning a Big Disk

Create Virtual Disks for each major application or Data Base.
Keep all the files associated with the application on the same
Virtual Disk. They will thus be isolated from the rest of the
files on the physical disk, but will still be easily accessible. A
Virtual Disk gets a complete set of UIC's, so you can use lots of
UFD's to arrange your software in an orderly manner.

Practical use No. 3: Protecting and Separating Distribution
Kits

In a Big Disk system, it is often the case that the
distribution kits for layered products are left on the system disk.
After all, what's all that space for, if it isn't to be filled up?
You then wind up with the distribution kits for Datatrieve, FMS,
and FORTRAN-77 scattered all over your system disk, and oftentimes
it isn't obvious which UIC goes with which layered product. If you
give each layered product its own Virtual Disk to live on, each kit
is kept logically separate from the others.

Practical use No. 4: Keeping RSX-llS by itself

RSX-llS makes life sticky because it's an operating system,
not just a layered product. It can share UIC's with its host
operating system, and its distribution kit can therefore get all
intertwined with the files which belong to the host. Murphy's Law
says that when you try to move an llS system off the host system's
disk, you'll probably get part of the host system along with it,
and you'll leave part of the llS system behind. Put you" RSX-llS
Distribution kit on its own Virtual Disk, and then put each of the
generated target systems on their own Virtual Disks. By the way,
put the target applications on the same Virtual Disk as its target
Operating System, and you'll avoid the mismatch problem that often
occurs when you have to support multiple target systems from a
single host.

- 29 -

RSX MULTITASKER

Practical Use No. 5: Disk-to-Disk Backup

Got a Big Disk system, and your users really get steamed when
you have to take the system down to do backups? Try creating a
Virtual Disk and use a command file to do a disk-to-Virtual Disk
incremental backup during the night, then come morning you can
trundle in and copy the Virtual Disk to tape at your (and your
users') leisure.

Practical Use No. 6: Shadow Recording

Shadow Recording on M-PLUS has a couple hidden costs. At
first it sounds really super, almost like getting it for free. But
wait - what if you only have one disk? Sorry, says DEC, gotta get
a second one, and it must be exactly the same type as the first
one. That may mean getting a second RA80, at a cost of $OUCH. l
To add

insult to injury, you must shadow the entire disk, even if
only a few files are really critical to you.

Virtual Disks can help here. You can have two different
physical disks, but you can shadow one Virtual Disk to another
Virtual Disk, independent of the physical type pf disk the Virtual
Disks live on (got that?). For instance, suppose you have an RL02
and an RM02, and you want to shadow record about 8 MB worth of
files. Set up a Virtual Disk on the RM02 and copy the live files
into this Virtual Disk. Then set up a Virtual Disk on the RL02
that is exactly the same size as the Virtual Disk on the RM02.
Then Designate the second Virtual Disk as the Shadow of the first
Virtual Disk.

I tried this, and it works, with one GOTCHA. You have·to know
a little bit about device drivers here. You have to go into the
Virtual Disk package and build the two Virtual Disk units you want
to use for shadowing with their own separate Status Control Blocks
(SCBs). Other than that, it works just fine.

Practical Use No. 7: Multiple SYSGENs

Support a lot of systems? Tired of traipsing all over the
plant to do the SYSGENs? Take heart. Also take a Big Disk and
create on it a lot of Virtual Disks which are the size of the
physical disks on your target systems. Put your RSX Distribution
kit on another Virtual Disk, just to keep it separate. Then you
can set up your SYSGENs using the Saved Answer Files, and turn a
whole bunch of them loose overnight. Come morning, all you have to
do is to DSC or BRU the Virtual Disks off onto tapes, boogie on out
to the target system, copy the tape onto the real physical disk,
BOO the new system and SAV it.

- 30 -

r~~~~;~~;~~~~----------,

Please notify us immediately to guarantee con­
tinuing receipt of DECUS literature. Allow up to
six weeks for change to take effect.

Change of Address
Delegate Replacement

DECUS Membership No.: -------­

Name: --------------­

Company: ------------~
Address: --------------

State/Country:-----------­

Zip/Postal Code: ----------­

Phone No.~· -------------

Mail to: DECUS - Attn: Subscription Service
249 Northboro Road, (BP02)
Marlboro, MA 01752 USA

~----------------------~

'

s: ~ S! c o[Ol >coe>~ m
::z:1 z =i c n
!;; o > en cm
0 :::D ,... CJ)
:::D -t m c
o:::com
• llJ c CJ)

s: 0 - 0 > :::D "'O :::D
0 s: -

o ... m "'O ... - z -t
..... 0 -t 0
U1 > 0 z
NCO

.:.... ::Ill CJ)
m ::. m
"'O "'O :::D
oc<
N -t 0-
- m :::D m

CJ)

0
0
m
~

r
CD "'O
0 CD 3 ..,

0 - · 3
~ ~ ;:;.·

U1 - z
c.> ~ ~

s:::
> CX>

c
Cn CD

"'O. c
> "'O ;;c:
6 g JJ

- I»
I» -IC CD
CD

