
RSX

MULTI-TASKER

October 1984 Issue

Printed in the U.S.A.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOl
DECnet Digital logo
D ECsystem-10 Edu System
DECSYSTEM-20 IAS
DECUS MASSBUS
DECwriter PDP

UNIX is a trademark of Bell laboratories.

Copyrlght©Oigltel Equipment Corporation 1984

All Rights Reserved

PDT
RSTS
RSX
UNIBUS
VAX
VMS
VT

It Is euumed that ell articles submitted to the editor of this n-sletter ere with the euthon' permission to publish In any DECUS
publication. The articles ere the responslbillty of the authors end, therefore, DECUS, Digital Equipment Corporation, and the
editor e11ume no responsibility or llebilitv for articles or Information appearing in the document. The views herein exprened are
those of the authors end do not necessarily expres1 the views of DECUS or Digital Equipment Corporation.

RSX MULTI TASKER

Table of Contents

From the Editors
Working Group News
SRO Corrections
The DAARC Side of the Force
TTDRV 'Bug' in Update D RSX-llM-Plus
Statement of Menu Items
Using a Second Terminal on a PC350

with the Native Toolkit
Tracking Down Programs that Depend

on a Subroutine
Virtual Arrays in Common ••• Revisited
Hows and Whys of AST's in RSX

1
2
5
7
8
9

20

24
27
29

ONLY. A FEW WEEKS TO VOTE ON THE
RSX-11M SIG FALL 1984 MENU

The RSX-llM Special Interest Group conducts a yearly balloting
to determine the most important issues facing the users of Digital
Equipment Corporation RSX-llM operating systems. It is now time
for the 1984 Menu voting. Attached is the list of menu items and
the menu ballot to be returned. Due to delays in preparing the
menu for publication you have only a short time to read the menu
and return the ballot. In order to have the results for Anaheim,
we must ask you to return the ballot no later than November 2..i_
1984.

This menu and ballot is one step in a continuing process. At
past DECUS symposia, the results of previous menus were discussed
and Digital responded to the top items. The complete menu results
and the Digital response has been published in the Multi-Tasker.

SIG members are periodically invited to input their
suggestions for the RSX menu, both at the Symposium and through the
Multi-Tasker.

The results of the votes received from this ballot will be
compiled and announced at the Anaheim symposium in December, 1984,
and the next menu will begin. A menu submission form for 1985 will
appear in an upcoming issue of the Multi-Tasker.

The menu voting is open to all RSX sites. Each site is
allowed to cast one ballot for each RSX-110, RSX-llM, RSX-llM-Plus,
and RSX-llS operating system license it has purchased. This will
typically mean one ballot for each RSX system. If a site is
eligible to cast multiple ballots, please make a copy of the ballot
and use one ballot for each system. If there are multiple users on
a system, please meet together and return a consolidated ballot.

The menu items below have been accumulated by Alan Bennett of
Clark Systems for the RSX SIG.

The menu t1;llot has had a very favorabvle impact on Digital in
the past, and a large number of the items on past ballots have been
implemented. In order for this process to be effective in the
future, we must continue to receive the large number of responses
that we have received in the past. We must also continue to take
this process seriously. This menu will be as effective as you make
it.

Tabulating the menu is a large task for our volunteers, so
please fill out the ballot very carefully. Please avoid some of
the common mistakes made in the past:

- 1 -

RSX MULTITASKER

*

*

Make sure you submit separate ballots for each system you have.
In the past, we know many sites have submitted only one ballot
when they have had ten systems.

Please use a separate ballot for each system. We cannot handle
a single ballot that represents more than one system.

If the menu is to have any effect on Digital, a substantial
number of the RSX systems installed must respond. The RSX menu is
the primary method for users to supply input to Digital on their
needs for the future. Please take the time to vote now. If you
have any comments on the menu items or the menu process, please
include them on a second sheet.

HELP REACH ALL USERS

This menu is included only in the Multi-Tasker. Not all
RSX sites receive the Multi-Tasker (alas!), so if you know
of sites in your organization or your area that do not
receive it, please forward a copy of the menu and ballot to
them. Your help in this will insure the menu reaches the
majority of RSX sites in the world.

Working Group News

Jeff Hamilton
Working Group Coordinator

(214)457-4175

Date of this report: 14SEP84

The working group chairmen are as follows:
RSX-llM Unsupported Versions:

Bill Burton
Texas Research Institute
1300 Moursand
Houston, Texas 77030

System Performance and Accounting
Roy s. Maull
U. S. Air Force

- 2 -

MULTITASKER

HQ SAC / ADlAE
Offutt AFB, Ne 68113

DECUS Library
Bruce Zielinski
RCA
Marne Highway M/S 138-2
Moorestown, N. J. 08057

SIG Tape Collection
Glenn Everhart
RCA Government Systems Division
Route 38
Cherry Hill, New Jersey 08358

SRD
Bob Turkelson
NASA/Goddard Space Flight Center
Mail Code 614
Greenbelt, Maryland 20771

RSX Realtime
Ed Cetron
University of Utah
Center for Biomedical Engineering
3168 Merrill Engineering Building
Salt Lake City, Utah 84112

Runoff
Chuck Spalding
Adept Technology Inc.
1202 Charleston Rd.
Mountain View, Calif. 94043

Cheap Networks
Evan Kudlajev
Philadelphia Electric Company
P.O. Box 8699
Phildelphia, Pa. 19101

The Unsupported Versions working group continues in its
efforts to provide support for "old" versions of RSX. People
presenting solutions to problems in previous releases of RSX will
be submitting articles to Multitasker, covering changes to
retro-fit Bonner lab Runoff, SRD, etc. on old versions of RSX. An
article was sent to the Multi-tasker in regard to using BRU with
MT: tape drives. Bill Burton will be unable to attend the fall
symposium but Jeff Hamilton will chair the unsupported versions
working group session.

- 3 -

RSX MULTITASKER

The System Performance and Accounting working group is
continuing its work in preparing the index of the past RSXSIG tapes
in regards to System performance and accounting. There is much
interest in continuing the development of performance measuring
tools. Further contact with DEC in .regards to the working groups
goals is being pursued. An article is being prepared for the
multitasker. Further work is being done in the area of
consolidating the working group's division of labor.

A restructoring of the tree for distribution of the DECUS
library tape has been done. The people on the tree are being used
in the evaluation of a sample 2400' 800 bpi tape that will be
submitted to the DECUS library. The tape was sent to the
volunteers the Friday before the Spring Symposium. Evaluation is
being done on the tape at this time. A couple of responses have
been returned. A lot of the tree evaluation team have failed to
return the tape with their evaluation and some have even
disappeared with their tapes. Bruce requests those he has not been
able to get in touch with to please help him by either returning
their tapes or finishing their evaluation.

The SIG Tape working group reports that the spring 84 tape
will be distributed around the 18th of September. As of August
21st the midwest tree has been finalized and the eastern and
western trees are almost finalized. The spring tape is in it's
final form because of the lack of space on the tape to include
anything more.

The SRD working group has started making changes to SRD for
Micro/RSX and POS (basically for named directories). Hopefully
they will have the changes made by the next symposium. A minor bug
fix is being worked up for the Fall symposium tape. The SIG data
base is being used in the evaluation of different SRD and SRD
command file procedures. The SRD Working group has submitted a
seperate article to this issue of the Multi-Tasker describing
corrections for SRD V6.4.

The Real-time and Industrial Automation working group is
working on the pre-symposia seminar that they are sponsoring. They
are also working on a mailing about the role of the Real-time
working group versus the LABS SIG. Other work is being done in the
are of volunteers and objectives. Anyone with ideas, suggestions,
or extra time and energy; please let Ed know.

The Runoff group has continued its effort to consolidate
desirable features of several versions of Runoff into an "official"
version. Chuck, due to work efforts, is finding the time to upkeep
the working group more and more difficult. If there is anyone
willing to help in this position, please get in touch with Chuck.

The Cheap Networks working group got off the ground with the
volunteer effort of Evan Kudlajev who volunterred to be the
chairman of this group. An evaluation of the current free software

- 4 -

SX MULTITASKER

for networking applications is the group's first task. Further
work in the area of layering a mail application on this software
was discussed. Evaluation of the current version of RSX KERMIT
(2.17) is continuing. Distribution of the KERMIT kit is being done
by KERMIT transfers and other virtual terminal transfer programs.
An article is being prepared for the Multitasker.

The formation of the computer aided instruction working group
still awaits the appointment of a working group chairperson.

If you are interested in providing information to a special
working group concerning problems or ideas in that area, please get
in touch with the working group chairman of that group.

SRO Corrections

Submitted by the SRD Working Group

SRD V6.4 found on the Fall 1983 RSX
which shows up when searching by
header is corrupt. SRD reports the
reports corrupt dates for every
selection criteria.

SIG Tape in [352,4] has a bug
date if a date stored in a file
problem, but then erroneously
file which satisfies the date

Another problem showed up recently for ODS! disks restored on
VMS using BACKUP/IMAGE. For files having dates with a single digit
day of month (for example, 4-0CT-84), VMS BACKUP stores the date
with a blank preceding the digit (" 40CT84"). RSX stores the date
with a leading zero ("040CT84"). SRD V6.4 does not expect the
blank and reports that the date is corrupt.

The following correction files fix these problems.
this procedure to generate an updated SRD.TSK:

o Create SRDATA.COR, SRDLST.COR, and SRDSUB.COR.

o Rename the corresponding V6.4 source files to version 1:

PIP *.*;l/RE=SRDATA.MAC;2,SRDLST,SRDSUB

o SLP @SRDATA.COR
SLP @SRDLST.COR
SLP @SRDSUB.COR

o @SRD

If the *.OBJ files exist from previously building

- 5 -

Follow

RSX MULTITASKER

SRD V6.4, only SRDATA, SRDLST, and SRDSUB need to
be assembled by SRD.CMD.

; SRDATA.COR

' ; This file updates SRDATA.MAC;l from SRD V6.4.
SRDATA.MAC;2/AU=SRDATA.MAC;l
•
-/.!DENT/, •

• !DENT -6.4A- ; AUG-84
-/for-selective-delete/ .
' .
' .
' VERSION 6.4A - Aug-84 (;WGOOl) .
J .
' %
-,,/;WGOOl
-/SRDVER: :/,.
SRDVER: : • ASCII
I

<12><15>"SRD -- Version WG-6.4A, Modified August 19

; SRDLST.COR .
J

; This file updates SRDLST.MAC;l from SRD V6.4.
SRDLST.MAC;2/AU=SRDLST.MAC;l
®

-/.!DENT/, •
• !DENT -6.4A- Aug-84

-/three times/

' .
' VERSION 6.4A - Aug-84 (;WGOOl)

.
J .
' .
'

Correct bug so that diagnostic message for corrupted date
in file header is not repeated for files with proper date

. .
' ' %
-,,/;WGOOl/
-/LSTEl:/
-/12$:/
-/DIAG ••• BADDH/

BIC #DATERR,FLAGS$; Clear file-date-corrupt flag
I

; SRDSUB.COR .
J

- 6 -

RSX MULTITASKER

; This file updates SRDSUB.MAC;l from SRD V6.4.
SRDSUB.MAC;2/AU=SRDSUB.MAC;l
®

-/.IDENT/, •
• IDENT -6.4A­

-/address ending/
Aug-84

;

VERSION 6.4A - Aug-84 (;WGOOl)

' %
-,,/;WGOOl/
-/CVDATE: : I
-/$SAVRG/

5$:
I

CMPB
BNE
INC

In the CVDATE routine (in SRDSUB), skip over the first
byte of the date field if it is blank. When
VMS BACKUP/IMAGE restores a Structure 1 disk, a file
date with a single digit day of month is stored in
the file header with a blank preceding the digit,
rather than a zero character as is done in RSX.
(For example, " 40CT84 11 rather than 11 040CT84 11 .)

#<' >,(Rl)
5$

; Is first byte of date field a blank?
; NE - no

Rl ; Skip over the blank

THE DAARC SIDE OF THE FORCE

A New Name for the LABS SIG
Announcment from DECUS

For some time, the Steering Committee of the LABS SIG has been
concerned about reaching a hitherto unreached portion of the DECUS
membership. The unreached portion consisted of those involved in
real time process automation and control. At the same time, it was
thought that a gathering place for those involved in the analysis
of data was also indicated. The line of reasoning went something
like this:

1. The practice and craft of real time data acquisition has
similarities whether the practitioner is acquiring data in a
laboratory on a small RT based system or controlling an
industrial process with a network of VAXes.

- 7 -

RSX MULTITASKER

2. Outside problems (noise, grounding, physical hazards, etc.) are
faced by the laboratory worker as well as his or her industrial
automation counterpart.

3. Once one has acquired data, one has to do something about it,
usually analysis of some sort, whether it be to find the peak
of a spectra or establish the setpoint for a controller.

Therefore, the Steering Committee resolved to provide a place
in DECUS where, in an operating system free environment, these
items could be freely discussed and shared.

Toward the aforementioned ends, the committee has opened up
the LABS SIG to embrace DATA ACQUISITION, ANALYSIS, RESEARCH and
CONTROL. Henceforth, the LABS SIG will be known as DAARC and will
endeavor to provide a forum for a valuable exchange of knowledge
between a broader spectrum of the DECUS membership and also to
provide DIGITAL with a SIG interested in products catering to those
areas of interest.

The DAARC steering committee wishes to stress that DAARC is an
applications oriented SIG open to participation by all DECUS
members. DAARC will also relay real time based needs to the proper
operating system SIGs via working groups.

So, if you're using a computer in a laboratory or trying to
interface a system to an industrial process, come join some kindred
souls in DAARC. DAARC will be sponsoring several sessions at the
Anaheim Symposium this December, why not join us there?

Contact: Jim Deck, DAARC SIG Chairman
c/o DECUS, 249 Northboro Road, BP02
Marlboro, Massachusetts 01752

TTDRV "BUG" in Update D RSX-11M-PLUS

There is a change being released in update D of llM-PLUS
related to the terminal driver and remote lines. In previous
releases, DTR was always high unless the line was being hung up.
With the Update D, DTR is not raised until it detects a ring
signal.

There are two ways to change this behaviour to the old DTR
handling. The first is before a SYSGEN is done, you can edit
SYSCM.MAC. Find the line:

- 8 -

{ MULTITASKER

$TTPRM: : • WORD
DD187

1 ;DEFAULT TERMINAL DRIVER BEHAVIOR

Change the value from '1' to '2'.

If a SYSGEN is already done, you can find the location in
RSXllM.MAP, and OPEN or ZAP the location.

It is not really a bug. It should work just as well whether
we look at Ring and then bring up DTR and look for CD, or always
have DTR high and just wait for CD.

$TTPRM in SYSCM now controls modem behavior. It only affects
llM+, since that Update was out before the "problem" was noticed.
It affects all terminal driver devices.

STATEMENT OF MENU ITEMS

There were many new items added to the RSX menu as a result of
the submissions received at the Spring 1984 DECUS Symposium. To
encourage submissions, DEC developers agreed to examine the list of
items to respond to items that could be answered quickly and to
indicate that the remaindor were items that the RSX users needed to
submit their ballots for.

The following is a list of the response by DEC sent by Gary Oden.
DEC's RSX Development Engineering responses are in brackets ([]).

1. At one time, typeahead (3.2) was allowed on slaved or
terminals. The decision was made to support only on
Some of our applications did not allow for attaching,
terminals were slaved, and typeahead worked for us.
did publish a patch for 4.0.

attached
attached.
but the
Digital

[What we'd like to do is as follows: we don't want to change
the function back, nor do we want to keep publishing the
feature patch. What we'll do is put documentation into the
driver source on how to change the behavior. It's a one line
edit, zap, or conditional. We'll throw in the disabling of
output buffering feature patch, for good measure.]

- 9 -

RSX MULTITASKER

2. RMS is only able to provide bucket-level locking (rather than
record-level locking as on VAX VMS). Provide a means for the
RMS developers to be able to implement record locking under
RSX.

[Not likely to be done: Architecturally, RSX knows nothing
about records, and we believe the changes to be extensive to
implement record locking. VMS also has a much larger amount of
shared database amongst the accessors.]

3. Provide support in the the FORTRAN/MACRO Symbolic Debugger for
I- and D- space tasks, perhaps distributed as a separate
debugger for M-Plus systems.

[planned]

4. Fix ABORT so that a task which is marked for abort will not
wait infinitely for impossible completion of I/O.

[No, no, a thousand times no!]

5. Allow use of (Q-Bus) RS02 without restriction on 22 bit
systems.

[Fixed in last release - 2.1/4.1 updates "B"]

6. Change Sysgen so that when running from a saved answer file it
is possible to specify which answers have been changed since
last assembly, and use that information to do conditional
assembly of only those modules affected by the change.

[Yecch! - We think this would be an accident often finding a
place to happen.]

7. For many processes, disk block caching would help performance.

[Already planned]

8. Continuation line support in GCML$

[We've tentatively planned this for 2.2. If it isn't in there
it will be because it wasn't feasible.]

9. Allow the CON OFFLINEing of an IP: subsystem and subsequent
powering down of said IP: system without crashing the PDP-11
and occasionally wiping out home blocks.

[The RSX group doesn't own the IP driver anymore, but we'll
forward the request.]

10. Add PLAS directives to AME (simpler cluster libraries would
work).

- 10 -

SX MULTITASKER

[planned]

11. To make the Receive Region by Reference directive useful for
us, we need the additional capability of Receive Region by
Reference or STOP.

[We're trying to get this into V2.2 of RSX-llM-PLUS.]

12. Autoconfigure I parameter-driven startup command files should
be made available on full kit-currently only on pregenerated
kits. also MCR set/crash-device =N: command.

[Unlikely. Only some devices have been
on-line configure/set crash support.
orders of magnitude harder.]

converted to allow
The general case is

13. Convert PDP-11 PASCAL to use RMS instead of FCS.

[No commitment yet, but being planned.]

14. Rewrite all utilities to use RMS instead of FCS, so they can
use transparent DECnet support.

[Unlikely. Scope is enormous, but may do selected utilities.
]

15. Datatrieve-11 should use I/D space, supervisor mode RMS, plas
overlays, RMS DAP support for DECnet, be built multi-user (/MU)
to share memory.

[Unlikely.]

- 11 -

RSX MULTITASKER

The following is the list of menu items for which the RSX users
need to submit their votes.

Indicate on the last page your votes for the RSX menu ballot.
Remove that page and mail it to the address below, so that we
receive it on 0~ before November 9, 1984:

DECUS RSX Menu
248 Northboro Road, BP02
Marlboro, Mass. 01752
Attn. Shelly

1. Support of BREAK function of terminal interfaces (DL-11, DZ-11,
etc.) for communication with foreign systems.

2. Provide mechanism to specify which checkpoint file to use for
installed tasks.

3. Add a switch to DMO to dismount the disk even if checkpointing
space is allocated (after migrating any checkpointed tasks
elsewhere, of course).

4. Terminals spooled by QMG should display (through DEV or SET)
all terminal characteristics such as speed, type, etc.

5. QMG/SHR INIT or STOP should not wait if the device is attached
by another task.

6. Enhance ACS with switch to list all tasks checkpointed to a
given file

7. Enhance ACS to allow forcing something checkpointed to become
not checkpointed

8. Support for Digital DF03 modem is sorely lacking. Need ability
to control automated facilities of modem.

9. Double-check with user before BAD and INI.

10. Provide memory virtual disk driver support as an official part
of the RSX-llM Plus system.

11. It's hard for a first time user to understand what RMS
is/does/can/cannot do.
Provide better introductory macro programming documentation for
both FCS and RMS.

12. Modify QMG package and PRT •••
excess of 132. characters.

- 12 -

to allow record lengths in

~X MULTITASKER

13. Transparent spooling over DECnet! (FTS does not qualify)

14. Give LPP (line printer despooler) the smarts to recognize the
XOFF/XON state of a spooled terminal device (such as a LAlOO,
LQP02, LA180, etc.) and treat a long-term XOFF in the same
manner as a line printer being off-line.

15. Allow update to patch a choice of 1 volume on RL02 distribution
kit.

16. Please supply a way to alter the print flag page.

17. Modify sysgen procedure to automatically include devices NL:
and CO:, at least NL:.

18. Change default in RSXBLD.CMD to assume that loadable user
written drivers have a loadable data base, to eliminate the
necessity of editing RSXBLD.CMD to perform the GBLDEF of
$USRTB.

19. Do not have 3-letter names for things in [1,54]
which should not be flying-installed by
BOO,LDR,MCR,TKN.

and [3,54]
TDX, e.g.

20. Allow more of the layered software products to use I/D space
(e.g. FMS, DECnet, DPM).

21. Provide driver for DMF-32
[Unlikely. This isn't a software issue
diagnostics, service, etc.]

as much as

22. Allow M+ I/D space non-multiprocessor systems to use APR 00 for
pool.

23. For M+ I/D space non-multiprocessor systems turn INITL into
real pool, not ICB pool.

24. ALlow RSX networks tasks to be run under VMS compatibility
mode.

25. Implement a "command line editor", to allow recall and editing
of the last one or several MCR commands.

26. Save worst case pool stats when changing pages in RMD and then
returning to "M" page.

27. There is no way to tell which ERRLOG.LST came from which
physical processor when there are two 11/70 processors, one
serving as a hot back-up for the other. The disks are
dual-ported and follow the o/s's; they do not stay with the
processor's.

- 13 -

RSX MULTITASKER

28. Allow an optional number of trailing form feeds to be put on
print jobs using the new Queue Manager System.

29. Have the ability to set the system name at start-up (or
possibly with VMR) rather than early in sysgen.
[DEC specifically did not allow changing the name with MCR
because of DECnet, but VMR might be possible.]

30. Modify the ACP to collect internal performance statistics which
can be dumped into the accounting file.

31. Task resource accounting selective by task, instead of current
all-or-nothing accounting.

32. Drop remote lines (DZll) if no activity or no login present.

33. Would love to have FLX read/write RSTS file structure disk.

34. Allow easily determining whether a device is mounted at TI:

35. Make RSX-llM/M+ Fortran-77 compatible with VAX-11 Fortran-77
(with the obvious exceptions disregarded).

36. Provide a software tool(s) like VAX CMS and MMS for RSX. (CMS
is a Code Management System that provides control over program
development. MMS is a Module management system which automates
software system building.)

37. Develop FMS-11 2.0 for llM+, Micro/RSX, P/OS.

38. Supervisor mode FMS resident library and supervisor mode common
run time library along lines of VMS common RTL.

39. Allow ASCII form names for queue manager, generic escape
sequence for print spooler.

40. Make DAPRES (RMS DECnet support resident library) run in
supervisor mode like RMSRES.

41. Settable upper and lower memory limits for RMD memory page.

42. Supply DTE program from Micro/RSX on llM+ kits.

43. Provide tuning documentation on tasks supplied with an
increment and what they use the extra memory for (so you can
figure how much more you want to give them), which could be
rebuilt in I/D space, with supervisor mode.

44. EDT should support the delete upon exit EDX command like EDI.

45. Allow unsolicited escape sequences to be
appropriate CLI.

- 14 -

sent to the

tSX MULTITASKER

46. Allow OPE to use a command file (e.g. "OPE @CMD") or a one
line open-patch command for use by indirect command files,
complete with link tracing.

47. Files 11 provides no way or determining that a file which is
opened for read regularly but not updated is not an old file.
Provide a "file-last-accessed-when" mechanism for determining
this.

48. Enhance the level of security offered by the ACNT program.

49. Allow (easy) configuration of foreign (non-DEC) terminals to
TT: driver and editors.

50. For the crash memory dump device, SYSGEN currently asks you for
the device name and its controller's CSR address. It parses
out the unit number from the device name you supply and assumes
that the data will go to that unit on that controller. If you
have specified a disk or tape that has multiple controllers,
and the crash dump device is not on the first controller, CRASH
may wind up dumping memory to a different drive than that which
the operator is requested to mount the scratch media in, with
possibly catastrophic results.

If one selects a disk or tape as the memory dump device, SYSGEN
should ask for (1) the device's name; (2) its CSR address;
and (3) the unit number of that device on the controller; then
configure the CSR, unit, and device name in the message from
these answers. (DEC please refer to SPR #11-68478)

- 15 -

RSX MULTITASKER

Indicate on this sheet your votes for the RSX menu ballot.
Return on or before 11/9/84.
Site:
Operating System:
CPU type:
1.

/strongly agree /agree /neutral /disagree /strongly disagree
2.

/strongly agree /agree /neutral /disagree /strongly disagree
3.

/strongly agree /agree /neutral /disagree /strongly disagree
4.

/strongly agree /agree /neutral /disagree /strongly disagree
5.

/strongly agree /agree /neutral /disagree /strongly disagree
6.

/strongly agree /agree /neutral /disagree /strongly disagree
1.

/strongly agree /agree /neutral /disagree /strongly disagree
8.

/strongly agree /agree /neutral /disagree /strongly disagree
9.

/strongly agree /agree /neutral /disagree /strongly disagree
10.

/strongly agree /agree /neutral /disagree /strongly disagree
11.

/strongly agree /agree /neutral /disagree /strongly disagree
12.

/strongly agree /agree /neutral /disagree /strongly disagree
13.

/strongly agree /agree /neutral /disagree /strongly disagree
14.

/strongly agree /agree /neutral /disagree /strongly disagree
15.

/strongly agree /agree /neutral /disagree /strongly disagree
16.

- 16 -

){ MULTITASKER

/strongly agree /agree /neutral /disagree /strongly disagree
17.

/strongly agree /agree /neutral /disagree /strongly disagree
18.

/strongly agree /agree /neutral /disagree /strongly disagree
19.

/strongly agree /agree /neutral /disagree /strongly disagree
20.

/strongly agree /agree /neutral /disagree /strongly disagree
21.

/strongly agree /agree /neutral /disagree /strongly disagree
22.

/strongly agree /agree /neutral /disagree /strongly disagree
23.

/strongly agree /agree /neutral /disagree /strongly disagree
24.

/strongly agree /agree /neutral /disagree /strongly disagree
25.

/strongly agree /agree /neutral /disagree /strongly disagree
26.

/strongly agree /agree /neutral /disagree /strongly disagree
27.

/strongly agree /agree /neutral /disagree /strongly disagree
28.

/strongly agree /agree /neutral /disagree /strongly disagree
29.

/strongly agree /agree /neutral /disagree /strongly disagree
30.

/strongly agree /agree /neutral /disagree /strongly disagree
31.

/strongly agree /agree /neutral /disagree /strongly disagree
32.

/strongly agree /agree /neutral /disagree /strongly disagree
33.

- 17 -

RSX MULTITASKER

/strongly agree /agree /neutral /disagree /strongly disagree
34.

/strongly agree /agree /neutral /disagree /strongly disagree
35.

/strongly
36.

agree /agree /neutral /disagree /strongly disagree

/strongly agree /agree /neutral /disagree /strongly disagree
37.

/strongly
38.

agree /agree /neutral /disagree /strongly disagree

/strongly agree /agree /neutral /disagree /strongly disagree
39.

/strongly agree /agree /neutral /disagree /strongly disagree
40.

/strongly agree /agree /neutral /disagree /strongly disagree
41.

/strongly agree /agree /neutral /disagree /strongly disagree
42.

/strongly agree /agree /neutral /disagree /strongly disagree
43.

/strongly agree /agree /neutral /disagree /strongly disagree
44.

/strongly agree /agree /neutral /disagree /strongly disagree
45.

/strongly agree /agree /neutral /disagree /strongly disagree
46.

/strongly agree /agree /neutral /disagree /strongly disagree
47.

/strongly agree /agree /neutral /disagree /strongly disagree
48.

/strongly agree /agree
49.

/neutral /disagree /strongly disagree

/strongly agree /agree /neutral /disagree /strongly disagree
50.

- 18 -

MULTITASKER

/strongly agree /agree /neutral /disagree /strongly disagree

- 19 -

RSX MULTITASKER

Using a Second Terminal on a PC350 with the Native Toolkit

Forrest Foor
419 W. 56th St.
N.Y., N.Y. 10019

One of the interesting features of the PC350 is the ability to
attach a second terminal to the printer port with a console cable
(BCC14-10). The console cable shorts pins 8 and 9, allowing the
hardware to determine that a terminal, rather than a printer, is
attached to the printer port. The second terminal port has the
device name of TT2.

This terminal was intended as a debugging and testing feature.
It is particularly useful when debugging programs which utilize
graphics and forms, since the debugger dialogue can be redirected
to the second terminal and will not cause the display to scroll off
the screen.

The second terminal is also useful, if the PC is being used
for application development with the Native Toolkit. The DCL
interpreter can be installed under a second task name and spawned
to TT2. This can be accomplished by running a simple macro program
(see belo'f.).

Running the Toolkit from two terminals has certain advantages.
For instance, two users can be editing, compiling, and linking
programs at the same time, or a single user can compile several
BASIC PLUS-2 modules and task build them, while editing other
files. (At the present time there does not appear to be a way to
spawn compilations in background mode with the BASIC PLUS-2
compiler.)

Performance is somewhat degraded, when running tasks
simultaneously. However, the time savings for the programmer can
still be substantial. Compilation times with the BASIC PLUS-2
compiler (V2.2-00) with a representative module were compared under
the following conditions:

1) running alone

2) with EDT (V3.00-14),
medium speed typing

3.8 min

4.7 min

(The most noticeable degradation in EDT performance occurred
during writes to the journaling file, and when searching for text.
Start up times were also affected.)

- 20 -

:SX MULTITASKER

3) compiling the same module
on TTl and TT2 6.4 min

(Both compilations finished at essentially the same time.)

One might have expected that memory demand would lead to
extensive checkpointing under these conditions; however, addition
of an extra 256k memory module (above the standard 512k) did not
improve performance. The BASIC PLUS-2 compiler and EDT have not
yet been written to take full advantage of the extra memory
available on the PC350. Instead the compiler and and the text
editor utilize work files on the disk extensively. Most of the
degradation in performance is probably attributable to competition
for disk I/O.

DCL commands can be run simultaneously from both terminals,
since the utility programs are installed under different names.
For instance, when you enter the DIRECTORY command from TTl, PIP is
installed as PIPTl, while from TT2, it is installed as PIPT2. The
same is also true for such commands as BASIC (BP2Tl vs. BP2T2),
EDIT (EDTTl vs. EDTT2), SHOW TASKS (CA2Tl vs. CA2T2), SHOW MEMORY
(RMDTl vs. RMDT2), etc. An exception to this, and an inconvenient
one, is INDRCT.TSK, which is run with the task name "INDRCT" from
both terminals. Using the DCL "@" command on TT2, while INDRCT is
active on TTl, causes DCL to hang up on TT2. If this happens,
enter ABORT TKT2 from TTl, and respawn DCL on TT2 (see below).

To run utilities simultaneously with the RUN command, you must
first install them under different names, since the RUN command
installs all tasks as "TTl", regardless of the terminal from which
it is issued. For instance, you can use the following commands to
run PAB (Pro Application Builder) from TT2, when PAB is already
running on TTl as task "TTl":

$ INSTALL /TASK:PABT2 APPL$DIR:PAB
$ RUN PABT2

It is possible to run P/OS utilities and applications with
DCL. If the terminal on TT2 supports eightbit characters and has
the LK201 keyboard, e.g., a VT220, then P/OS utilities, and
applications which utilize menu routines and function keys, can
also be run on TT2. The command RUN C$DUTL, for instance, will run
disk services on either terminal. The P/OS utility task files
reside in [ZZSYS] and are always installed. A second copy can also
be installed under another na·me.

P/OS Utility

File Services
Disk Services
Print Services
View Message/Status

File name

CFUTL.TSK
CDUTL.TSK
CPUTL.TSK
CVUTL.TSK

- 21 -

Task name

C$FUTL
C$DUTL
C$PUTL
C$VUTL

RSX MULTITASKER

Use the DCL command CLEAR to clean up the screen after running
these utilities. You will find File Services is of limited
usefulness, when DCL is available. When a second terminal is
attached, Print Services cannot be used (see below). Disk
Services, however, provides functions which are not available with
DCL alone.

To run an application, it is necessary to determine in which
[ZZAPnnnnn] directory the P/OS install utility has placed it. It
may also be necessary to install certain libraries and, rarely, to
define the logical names APPL$MENU, APPL$HELP, or APPL$HFRAME.
Refer to the ZZAPnnnnn.INS file for this information. Command
files for running applications are particulary useful, but, as
mentioned above, can cause problems, when there are two terminals.

If the task uses any menu, help, or message files, it may be
necessary to redefine APPL$DIR, while running the application.
This effectively prevents running two such applications
simultaneously from different terminals and may cause other
problems. Be sure to reassign APPL$DIR to the DCL directory after
running the application. Note that running communications
(CCMAIN.TSK) does not require redefining APPL$DIR.

Also beware of changing the default directory name,
is changed simultaneously for both terminals. If task
compiler command files use full device and
specifications, this is less of a problem.

since it
builder or
directory

Before running the Toolkit on TT2, you may need
terminal characteristics. The settings depend on
terminal which is attached. For a VTlOO, for example,
need to enter:

to set the
the type of

you might

$ SET TERMINAL:TT2:/VT100/SPEED=(4800:4800)/NOEIGHTBIT

If you use EDT on TT2 and you are using a VTlOO, you will need
to enter the EDT line editing command SET TERMINAL NOEDIT.

Use ABORT TKT2 to stop the Toolkit running on TT2. If you
happen to use the SHOW MEMORY command on TT2, you will probably
find you can't exit with ctrl/Z or ctrl/C, and will have to use
ABORT RMDT2 issued from TTl. Ctrl/C trapping is task dependent,
since TT2 interrupts are are not normally enabled.

You can also print, if the attached terminal has a printer.
Set the TT2 terminal to printer copy mode and TYPE the file. If
Toolkit DCL is not running on TT2, set the TT2 terminal to printer
copy and use commands issued from TTl, such as COPY FILE.DAT TT2:
or DIR/OUT=TT2;. The P/OS print utility will not work, since it
detects no printer on the port (an inconvenience).

- 22 -

>X MULTITASKER

Toolkit DCL does not appear to support running another copy of
DCL on TT2 with commands alone. However, this can be accomplished
by running the following macro program:

'
;

. ,

.TITLE SPWNTK

Program function:

Installs DCL.TSK with the NOREMOVE option
specified as TKT2 to differentiate it from
The program uses the PROTSK routine in the
Be sure to task build with the option LIBR

and with the task
NATVTK on TTL
POSSUM library.
= POSSUM:RO.

TKT2 is then spawned establishing TT2: as the task's physical
terminal. Task build with the switch /PR:O on the output
file. (The task must be privileged to specify a new TI:.)

.MCALL EXIT$S, SPWN$S

; Local data

' STAT:

INSTL:

TSKNAM:

.BLKW 8.

.WORD 1.+32.+64. . ,
,

.RAD50 /TKT2 I

POSSUM status blo~k

; Request argument:
1 = install the task

32 = task name specified
64 = noremove

name

FILNAM: .ASCII /DCL.TSK/ ; The default directory should be set
to APPL$DIR, when this task is run.

LEN = . - FILNAM
• EVEN

FILLEN: .WORD LEN

ARGLST: .BYTE 5, 0 ; No. of arguments in the call
.WORD STAT ; Status block address
.WORD INS TL ; Request value address
.WORD TS KN AM . Address of RAD50 task name ,
.WORD FILNAM Address of task file name
.WORD FILLEN ; Address of length of file name

Code:

SPWNTK::

Call the POSSUM routine PROTSK

MOV #ARGLST, R5
JSR PC, PROTSK

Spawn TKT2 on TT2:

- 23 -

RSX MULTITASKER

SPWN$S #TSKNAM,,,,,,,,,,#2,#"TT

EXIT$S

.END SPWNTK

In summary, although P/OS is not a multi-user operating
system, it can support an additional terminal on the printer port.
The lack of multi-user support can lead to problems, but most of
these are not serious, and can be worked around. The addition of a
second terminal may be advantageous for debugging and application
development with the Native Toolkit.

Tracking Down Programs That Depend on a Subroutine

A. Randall Barron
Gas Turbine Laboratory

Massachusetts Institute of Technology
Cambridge, MA 02139

When you make serious revisions to a subprogram, changing its
argument list for instance, you might well want to identify all the
tasks in your directory that use the subprogram in case they
stand in need of revision. The indirect command command file
TSKBLT will do this for you, provided you have observed certain
common conventions in naming task files and TKB command files. If
you don't use this convention with the aid of BOZO.CMD, you may be
able to modify the routine to suit your own convention .

• ;+TSKBLT -- LISTS TASKS THAT WERE BUILT WITH SPECIFIED OBJECT FILES
.;+ Vl.2 -- Written, 6-SEP-84, by A. R. Barron, MIT Gas Turbine Lab.
. ' . ' . . ' . . ' . . ' . ' . . ' . ' . ' . . '

CALL:
@TSKBLT FOO,BAR,BLETCH, •••

The routine works by checking all TKB command files in the default
UFD for occurrences of the specified object filenames. Tasks are
identified by the extension "TSK", and the corresponding TKB commar
files must have the same names, but extension "CMD" -- otherwise,
the routine will ignore them.

.ENABLE QUIET,SUBSTITUTION

.DISABLE DISPLAY

.ONERR GAG ESTABLISH TRANSFER TARGET FOR SYNTAX ERRORS

- 24 -

)X MULTITASKER

. '

• Q:

.SETS SLASH 11 / 11

.OPEN TI:
! THE DELIMITER FOR TKB OPTIONS

Parse the input command string into a list of object file names •

.PARSE COMMAN II II DUMMY LIST

.TEST LIST

.IF <STRLEN> EQ 0 .DATA TYPICAL CALL: @TSKBLT FOO,BAR,BLETCH

.IF <STRLEN> EQ 0 .EXIT <WARNIN>

.SETN NCNT 0

.SETS REMS LIST

.PARSE REMS 11 , 11 TEMPS REMS

.TEST TEMPS

.IF <STRLEN> EQ 0 .GOTO TEST

.INC NCNT

.SETS STR'NCNT' 111 TEMPS%C' 11 STRIP OFF OUTSIDE BLANKS
.TEST:

.TEST REMS

.IF <STRLEN> EQ 0 .GOTO NDQ

.GOTO Q
.NDQ:

. '

• J

• J

. . '

.SETN NOBS NCNT

Make a temporary listing of tasks in the default UFD •

.SETF <ERSEEN>
PIP TMP.DIR = *.TSK/BR
.IFT <ERSEEN> .GOTO GAG

Open the directory listing file and read the header •

.OPENR#l TEMP.DIR

.IF <FlLERR> NE <SUCCES> .GOTO GAG

.SETS TMPDIR <FILSPC>

.READ#l DUMMY

.IFT <EOF> .GOTO GAG

Open the output listing file and write the header •

.OPEN#2 TMP.LST

.IF <FILERR> NE <SUCCES> .GOTO GAG

.SETS TMPLST <FILSPC>

.DATA#2 DIRECTORY '<LOGDEV>': '<UIC>', '<DATE>'

.DATA#2 Tasks built with object files: 'LIST'

Scan through the directory file

.SCAN:
.SETN COUNT 0

.READ#l ENTRY

.IFT <EOF> .GOTO NDSCAN

.SETS ENTRY ENTRY[3:*]

- 25 -

STRIP OFF LEADING <CR><LF>

RSX MULTITASKER

.TEST ENTRY

.IF <STRLEN> EQ 0 .GOTO NDSCAN ! THE LAST LINE IS JUST <CR><LF

.PARSE ENTRY "·" TEMPS DUMMY

.TESTFILE 'TEMPS'.CMD

.IF <FILERR> NE <SUCCES> .GOTO SCAN

.
• J If a task has a corresponding TKB command file, open it for reading

.SETS F$NAME <FILSPC> ! THE ROUTINE BARFS ON THE OPEN

.OPENR#3 'F$NAME' ! IF THE FILE DOES NOT EXIST

.IF <FILERR> NE <SUCCES> .GOTO GAG

.; Run down the TKB command file

.TOP:
.READ#3 LINE
.IFT <EOF> .GOTO BOT
.IF SLASH EQ LINE [1:1] .GOTO BOT ! SKIP THE LIST OF TKB OPTIO

.
• J Loop through the items in the list of object files

.LOOP:

.NDLOOP:

.GOT:

.BOT:

.NDSCAN:

.GAG:

.SETN NCNT 1

.IF NCNT GT NOBS .GOTO NDLOOP

.TEST LINE STR'NCNT'

.IF <STRLEN> GT 0 .GOTO GOT

.INC NCNT

.GOTO LOOP

.GOTO TOP

.DATA#2 'ENTRY'

.INC COUNT

.CLOSE#3

.GOTO SCAN

.IF COUNT EQ 0 .DATA#2 ****NONE FOUND****

.CLOSE#l

.CLOSE#2
PIP TI:='TMPLST'
PIP 'TMPDIR'/DE/NM
.ASK [<FALSE>] SAVE SAVE LISTING FILE 'TMPLST' [N]?
.!FF SAVE .XQT PIP 'TMPLST'/DE/NM
.EXIT <SUCCES>

.IFNDF ERRMSG .SETS ERRMSG "TSKBLT -- FATAL ERROR"

.IFDF ENTRY .SETS ERRMSG ERRMSG+" WHILE PROCESSING "+ENTRY

.DATA 'ERRMSG'

.DATA CHECK TMP.DIR,TMP.LST

.EXIT <SEVERE>

- 26 -

~sx MULTITASKER

VIRTUAL Arrays in Common Revisited

Gary L. Maxwell

United States Geological Survey
345 Middlefield Road, MS 977

Menlo Park, CA 94025

In a previous issue of the Multi-Tasker (Vol. 15, No. 10,
May/June 1982), Chris Doran described a method of patching the Task
Builder so that all Fortran Virtual arrays from different modules
could be overlaid, thus creating a single, unnamed "common block"
consisting of all the Virtual Arrays used by the program. This
feature allows one or more Virtual Arrays to be shared among
subroutines without having to pass the arrays in argument lists.

Some time ago, I was disassembling the V4.l/V2.l Task
forget why temporary insanity, I suppose), when
that Chris' patches to the Task Builder had been
standard TKB in their entirety by the RSX Developers!

Builder (I
,I discovered
included in

I soon discussed my discovery with an RSX Developer, who expressed
in no uncertain terms that this IS and WILL BE AN UNSUPPORTED
FEATURE of TKB. However, the development team was apparently
satisfied with leaving this feature in, due to the low overhead
involved.

To use this feature, perform the following steps:

1. Define all Virtual arrays used by the program EXACTLY the same
way in each program module which needs to access them (as
though the VIRTUAL statement were really a COMMON statement).
The easiest way of doing this is to create a definition file
and INCLUDE it in the necessary modules.

2. Compile the program modules as you normally would.

3. In your Task Builder command file, include the option:

VARRAY=OVR

which forces the Task Builder to assign the OVR attribute to
the PSECT $VIRT. By default, the Task Builder always assigns
the CON attribute to this PSECT.

Note that the usual tricks you can play with COMMON blocks will not
work with this feature. For example, defining VIRTUAL A(lOO) in
one module and VIRTUAL B(50),C(50) does NOT equivalence C(l) to
A(51).

- 27 -

RSX MULTITASKER

The "CON" keyword can also be used with the VARRAY option, which
concatenates all Virtual arrays (the default action}.

The following simple example shows how the mechanism works.

Main Program (TEST.FTN}:

c

c

c

c

c

PROGRAM TEST

VIRTUAL A(lO}, I(lO}

CALL SUBR

WRITE (5,100} A
100 FORMAT (2(1X,5F7.1,/}}

WRITE (5,200} I
200 FORMAT (2(1X,5I7,/})

CALL EXIT
END

Define arrays

Manipulate arrays

Subroutine (SUBR.FTN):

c

c

c

SUBROUTINE SUBR

VIRTUAL A(lO), I(lO)

DO 1000 J=l,10
A(J)=FLOAT(J)

1000 I(J)=-J

RETURN
END

Define arrays

Compile, Task Build, and Execution Sequence:

>F77 TEST,TEST=TEST
>F77 SUBR,SUBR=SUBR
>TKB
TKB>TEST/FP/CP,TEST=TEST,SUBR,LB:[l,l]F770TS/LB
TKB>/
Enter Options:
TKB>VARRAY=OVR
TKB>//
>
>RUN TEST

1.0 2.0 3.0 4.0 5.0
6.o 1.0 a.o 9.0 10.0

-1 -2 -3 -4 -5

- 28 -

RSX MULTITASKER

-6

>

-7 -8 -9 -10

Hows and Whys of ASTs in RSX

Gary L. Maxwell
United States Geological Survey

Menlo Park, California

Like all other operating systems, RSX-11 implements an interface
between programs that run on the system and any external event
which affects the execution of the program. As stated in the
Executive Reference Manual, there are only two means of notifying a
task on RSX that an external event has occurred: event flags, and
Asynchronous System Traps, or ASTs.

Event flags are relatively simple to implement into any program,
but they provide event response "passively." A task must wait for,
stop for, or actively poll the event flags. These methods
effectively reduce the parallelism of operations within a task.

ASTs provide "dynamic" event response. When an event occurs, the
affected task's current processing is "interrupted" so that the
event is handled responsively by an "AST service routine." The idea
of a task "interrupt" is completely analogous to an operating
system interrupt when a peripheral device requires attention. This
allows a task to perform any background processing at "task level"
while events are handled at "AST level." Furthermore, several types
of events are only available through the AST mechanism.

The major obstacle to applying ASTs is the difficulty to
conceptualize and implement them into a task. An additional
difficulty is the lack of full support for ASTs in Fortran.
Fortunately, structured HLLs (such as DECUS C) either support ASTs
or easily adapt to their use.

- 29 -

RSX MULTITASKER

This paper will address the following issues regarding the
mechanisms and applications of ASTs:

1. How ASTs are generated and handled by the Executive, and how
a task which services ASTs is affected by the AST mechanism.

2. The classes of ASTs in RSX, and the individual ASTs within
each class.

3. The rules which should be followed in implementing an AST
service routine in order to avoid common pitfalls and obscure
programming bugs.

4. Features and restrictions of DEC supported AST services from
Fortran programs, plus an example of unsupported AST usage in
a Fortran environment.

1.0 HOW ASTS WORK

We can see how the Executive processes ASTs and how ASTs affect
task operation by following the flow of an AST through the system.

1.1 "Arming" Of An AST By A Task

A task "arms" (or "disarms") an AST by means of an argument to a
system directive. Either the AST argument is the address of the
AST service routine which will field the AST (arming the AST), or
the argument is zero, indicating that no AST is desired. When a
task is initiated, all ASTs are disarmed.

The RSX Executive effectively arms the AST by allocating an "AST
control block" from the Dynamic Storage Region and initializing
some offsets within the control block.

1.2 Executive Declares The AST

An armed AST becomes a "declared" AST when the event associated
~ith the AST occurs. The Executive fills any event-related
information into the AST control block associated with the event,
and enters the control block into a queue of declared AST control
blocks for the task.

An AST control block has the following general format:

- 30 -

RSX MULTITASKER

, _____________________________________ ,
' AST queue link word ' , _____________________________________ ,

A.CBL: ' AST type and flags word , , _____________________________________ ,
A.BYT: , No. bytes to allocate on task stack , , _____________________________________ ,
A.AST: ' AST service routine address ' , _____________________________________ ,
A.NPR: , No. AST parameters , , _____________________________________ ,
A.PRM: ' First AST parameter ' , _____________________________________ ,

, Second AST parameter, etc. , , _____________________________________ ,

The AST control block is queued at the end of a first-in first-out
list of other declared ASTs for the task. Therefore, ASTs are
ordered by event time history for each task on the system. The AST
queue is located in the TCB (Task Control Block) at offset T.ASTL.
(We will see later how one class of ASTs, the Kernel ASTs, have
their own queueing rules.)

1.3 Executive Dispatches The AST

The next time the task is scanned by the RSX Executive scheduler,
the AST queue is examined. If the queue is not empty and AST
recognition for the task is enabled, then the first queue entry is
dispatched, even if the task is in a stopped or waitfor state.
Dispatching the AST involves the following steps:

1. Four words of information regarding the task's previous
context are pushed on the task's stack: the event flag mask
(which identifies the event flag last used in a STOP or WAIT
directive), the program counter, the processor status word,
and the Directive Status word.

2. Any parameters associated with the event, called "trap
dependent parameters," are pushed on the stack.

3. The Executive deallocates the AST control block, and
transfers control to the AST service routine. The service
routine, like the task itself, still competes with other
tasks on the system based on the task's priority. The
previous state of the task (stopped or "waitfor") is saved.

- 31 -

RSX MULTITASKER

1.4 Task AST Service Routine Executes

The AST service routine is entered with the task's stack in the
following state: , __________________________ ,

1 Event flag mask word , , __________________________ ,
1 PS prior to AST , , __________________________ ,
1 PC prior to AST , , __________________________ ,
' Directive status word , , __________________________ ,
1 (Zero or more trap '
, dependent parameters) 1

SP -> , , , __________________________ ,
None of the general purpose or hardware Floating Point registers
are preserved; therefore the AST service routine saves and
restores these as necessary. The service routine is free to
execute most of the system directives and perform regular
computations. While the AST service routine is executing, all
other declared ASTs are deferred (e.g., AST "interrupts" are
disabled), guaranteeing serialization of ASTs.

The service routine exits by removing any trap-dependent parameters
from the stack (always leaving the first four words pushed by the
Executive) and by issuing an AST Service Exit (ASTX$S) directive.
The Executive restores the previous context of the task by popping
the DSW, PS, PC, and waitfor mask from the stack. If the AST queue
is empty, then the task's context and previous state is restored.
If another declared AST is pending, then it is dispatched at this
time.

2.0 AST CLASSES AND THEIR DIRECTIVES

Although all ASTs are handled in a similar manner, there are
actually four distict classes of ASTs that the Executive handles.
Each of these classes has its own unique personality, and some have
their own special rules.

For each type of AST within each class, there is a corresponding
system directive which arms or disarms the AST. This section
contains a description of all AST classes and their members, the
AST-related system directives for each member, and the conditions
which cause each AST to be declared.

- 32 -

RSX MULTITASKER

2.1 Miscellaneous AST Directives

The following directives do not belong to any partiular class of
ASTs. They provide support for manipulating the task's AST
environment and perform special AST functions.

ASTX$ - AST Service Routine Exit. This directive is required to be
the last instruction in an AST service routine. When this
directive is issued, the task must be at AST state, and all
trap dependent parameters must have been removed from the
stack (leaving the four context words pushed by the
Executive).

DSAR$ -
IHAR$

ENAR$ -

Disable (or Inhibit) AST Recognition. Issuing this
directive prevents the Executive from dispatching any ASTs
for the task. This means that ASTs can be declared and
queued up for the task, but no AST service routines are
ever entered until AST recognition is enabled. This
directive is used to place a "guard" around critical
sections of code which cannot be guaranteed to execute
correctly should an AST be dispatched. AST service
routines can issue this directive so that no further ASTs
are dispatched with the current service routine exits.

Enable AST Recognition. This directive instructs the
Executive to dispatch any ASTs presently declared for the
task and clears a previously issued DSAR$ or IHAR$
directive condition. If an AST is already declared for the
task when this directive is issued, the AST is immediately
dispatched. When a task starts, AST recognition is
enabled. AST service routines can issue this directive
(but it is hardly ever necessary to do so).

CMKT$ - Cancel One or More Mark Time requests. If an AST service
routine is specified with this directive, then all Mark
Time requests that were issued with this AST service
routine are cancelled.

CRVT$ - Create Virtual Terminal (M-Plus systems only). This
directive creates a VT: unit for the issuing task (the
parent), allowing the arming of three AST service routines.
When an offspring task issues an I/O request to the VT:
unit created by the parent, an AST is declared for the
parent. The three AST service routines are used to
separately service input, output, and attach/detach
requests to the VT: unit by offspring tasks. The ASTs
remain armed until the VT: unit is eliminated by the ELVT$
directive. This directive is supported by DEC in Fortran
programs.

- 33 -

RSX MULTITASKER

2.2 Class 1: Dynamic ASTs

The most common form of an external event occurs when an operation
initiated by a task has completed. Examples of this class are I/O
operations and timers. The ASTs which can be declared when such
events occur are called "dynamic" ASTs, simply because only one AST
is declared for every operation initiated by a task.

The following directives for dynamic ASTs
groups. The first group of directives
Fortran, and include:

are divided into two
do not support ASTs in

QIO$ - Queue I/O
argument
program.
finished.

Function. The I/O operation specified in the
list is initiated, and control returns to the
The AST is declared when the I/O operation is

QIOW$ - Queue I/O Function and Wait. Identical to QIO, except the
task is placed in a waitfor state. The waitfor condition
is cleared and the AST is declared when the I/O operation
completes.

MRKT$ - Mark Time. The system is instructed to initialize a timer
for the task and return control to the program. When the
time period expires, the Executive declares a significant
event, sets an event flag, and declares the AST.

The second group of directives supports ASTs in Fortran, and all of
the directives are part of the Executive's parent-offspring tasking
support. In all cases, the AST for these directives is declared
for the parent task when the offspring task exits or emits status.
These directives are:

CNCT$ - Connect to task. This directive connects the issuing task
to another task (the offspring) which is already active.

SDRC$ - Send Data, Request, and Connect. This directive allows the
issuing task to queue a standard data packet to, request
(if inactive), and connect to an offspring task.

SPWN$ - Spawn. This directive spawns (requests), connects to, and
optionally queues a command line to an offspring task,

VSRC$ - Variable Send Data, Request, and Connect (M-Plus systems
only). Same as SDRC$, except the size of the data packet
is under program control.

- 34 -

~sx MULTITASKER

2.3 Class 2: Specified ASTs

There is a class of ASTs that addresses the need to handle certain
events when and if they MIGHT occur. The family of "Specified
ASTs" enables the task to identify to the system which events
should be caught and passed on to the task using the AST mechanism.
Most of the Specified ASTs provide a task with the ability to
recover from certain "disasters," such as power failures.

None of the events available through Specified ASTs are available
through the event flag mechanism. Note that only the SPRA$ (power
recovery) and SREA$/SREX$ (requested exit) Specified ASTs are
supported in Fortran programs.

The family of Specified ASTs and the function of each member is:

SCAA$ - Specify Command Arrival AST. For CL! (Command Line
Interpreter) tasks only, this directive causes an AST to be
declared when a command line is queued to the task. The
command line is subsequently read with the GCCI$ directive.

SFPA$ - Specify Floating Point Processor Exception AST. This
directive causes an AST to be declared when the hardware
Floating Point Processor traps through the floating point
exception vector. This directive is normally issued by the
runtime system of any HLL program as part of a standard
error recovery procedure.

SPEA$ - Specify Parity Error AST (M-Plus systems only). This
directive causes an AST to be declared when a memory parity
error is detected in one of the task's regions. On M-Plus
systems, the Fixer task (FXR •••) uses this AST to determine
the range of bad memory within a partition and make the bad
memory inaccessible to the system by creating an unusable
region within the partition.

SPRA$ - Specify Power Recovery AST. This directive causes an AST
to be declared when the operating system performs a power
down/up sequence as a result of a power failure.

SRDA$ -

SREA$ -

Specify Receive Data AST. This directive causes an
be declared when a data packet is queued to the
task. The data packet can be dequeued using one
Receive Data directives.

AST to
issuing
of the

SREX$ - Specify Requested Exit AST. Perhaps the best of the
directives added to RSX in Version 4.0, these directives
cause an AS'~ to be declared when an attempt is made to
abort the issuing task by the ABRT$ directive or the
MCR/DCL ABORT command. This allows a task to clean up and
exit gracefully instead of being rudely aborted.

- 35 -

RSX MULTI'rASKEH

SRRA$ - Specify Receive by Reference AST. Similar to SRDA$, this
directive causes an AST to be declared when a
receive-by-reference packet is queued to the issuing task.
The task can dequeue the packet by issuing the RREF$
directive.

There are some special rules for Specified ASTs. They are:

1. A Specified AST is armed by issuing the appropriate directive
with the address of the AST service routine. The AST remains
armed until the same directive is issued with a value of zero
for the service routine address, or until the task exits.
There are two exceptions. The SPEA$ AST is always disarmed
after the AST is dispatched. In processing the SREA$/SREX$
AST for non-privileged tasks, the Executive disarms the AST
after the AST is dispatched, and any attempts by the task to
re-specify the AST are disallowed.

2. None of the Specified AST directives can be issued from an
AST service routine.

3. When an event causes a Specified AST
that Specified AST is effectively
service routine is dispatched. As
routine is entered, the Specified AST
implies that there is not a one-to-one
the number of events and the number of

to be declared, then
disarmed until the AST
soon as the service
is rearmed. This rule
correspondence between
ASTs declared.

This rule is very important, especially when the SRDA$
(Specify Receive Data AST) or SRRA$ (Specify Receive by
Reference AST) directives are used. The program must assume
that one or more additional events may occur between the time
the AST is declared and the time the service routine is
dispatched.

The Executive must perform some bookkeeping to keep track of the
Specified ASTs that have been armed by a task. When a task arms a
Specified AST, the Executive allocates the AST control block for
the AST and links the block into a list of other armed Specified
ASTs for the task in the TCB (at offset T.SAST).

When an event occurs for which there may be a Specified AST, the
Executive searches the list of armed Specified ASTs in the TCB. If
the correct control block exists, it is removed from the list at
T.SAST and queued into the declared AST list at T.ASTL, declaring
the Specified AST. Once the Specified AST has been dispatched to
the service routine, the AST control block is reentered into the
Specified AST list at T.SAST, rearming the AST. This procedure
forms the basis for Rule 3 above.

- 36 -

RSX MULTITASKER

2.4 Class 3: "Customized" ASTs

Support is provided for system processes (such as I/O drivers) to
define "customized" ASTs and perform specialized actions when the
AST is dispatched. Executive level processing for a customized AST
is almost identical to other ASTs. The best (and only?) example of
a customized AST is the Full Duplex Terminal Driver's Unsolicited
Input Character AST.

A task arms the unsolicited character AST by attaching the terminal
with a special attach function, IO.ATA. The terminal driver
allocates an AST control block, and initializes two offsets which
define a special routine in the driver to be executed when the AST
is dispatched. When the terminal driver receives an unsolicited
character, the AST is declared for the task.

When the AST is dispatched, the Executive sets up the task's stack,
and calls the terminal driver's special routine. This routine
recovers the AST control block, and scans the typeahead buffer for
another unsolicited character. If one is already present, the
driver declares the AST once again, (which will be deferred until
the task services the original AST). The driver returns control to
the Executive, which dispatches the AST to the task.

2.5 Class 4: Kernel ASTs

A Kernel AST, as the name implies, is declared, dispatched, and
serviced within the Executive, and is completely transparent to all
tasks on the system. Although Kernel ASTs use the regular AST
mechanism, they have their own set of rules and procedures. Since
the Kernel AST is a very unique and interesting feature of RSX, we
will devote some discussion to them.

Just as a task uses ASTs to perform post-event processing, the
Executive uses Kernel ASTs to perform certain Executive-level
post-event processing. For example, an event may occur which
requires the Executive to store some words of data into a task's
address space. If the task is checkpointed, then the Executive
cannot store the information until the task is reloaded into
memory. A Kernel AST serves as a "place marker" for the Executive
to complete some event processing when a task's address space and
context are loaded and mapped.

A Kernel AST is declared by the Executive when event processing
requires a particular task's context to be known and loaded. A
Kernel AST is declared in the same manner as a regular AST, except
the AST control block is entered at the BEGINNING of the declared
AST queue, before any other ASTs. This is required so that the
Executive's AST processing precedes the task's AST processing.

- 37 -

RSX MULTITASKER

.
As with regular ASTs, a Kernel AST is dispatched when the Scheduler
finds a declared AST entry for a task which is granted the CPU.
Note that when an AST is dispatched, the Executive has already
loaded the task's context. The Kernel AST control block is
dequeued, and the Executive dispatches the Kernel AST to a
particular service routine within the Executive.

The Executive's AST service routine performs the deferred
processing specified by the Kernel AST, which completes the
Executive's responsibility for handling the event. When the
service routine completes, the scheduler is reinvoked to grant the
CPU to the task with the highest priority.

The following subsections describe each type of Kernel AST. With
the exception of the Load Region Kernel AST, all of the Kernel ASTs
follow the above rules for declaring, dispatching, and servicing
the Kernel AST.

2.5.1 Buffered I/O Kernel AST -

On heavily loaded multi-user systems, the checkpointing or
shuffling of tasks that have outstanding terminal input requests
can improve system performance. The ability to swap out tasks with
outstanding I/O requires the Executive to store the input data in
temporary buffers. On RSX, this is called Intermediate I/O
Buffering, and this feature is used by the Full Duplex Terminal
Driver.

When a task issues a read request to the terminal driver, and the
region containing the task's I/O buffer is checkpointable, the
driver allocates an intermediate buffer from pool and makes the
task region eligible for checkpointing. The driver then supervises
the I/O operation, using the intermediate buffer to store input
characters as they are received. When the read request is
completed, the driver cannot finish the I/O processing since the
task region may have been shuffled or checkpointed. The driver
declares a Kernel AST (with code AK.BUF) by calling the $QUEBF
Executive routine.

The Kernel AST is serviced by a routine ($FINBF) which copies the
contents of the intermediate buffer to the I/O buffer in the
region, and the intermediate buffer is deallocated. The service
routine calls $IOFIN to complete the I/O request in the regular
manner.

A slightly similar Kernel AST is provided for more generalized
intermediate I/O buffering, allowing the device driver to implement
its own buffering scheme. Upon I/O completion, the driver declares
the Kernel AST with a code of AK.GB!. The Kernel AST control block
contains the entry point of a routine within the driver which will
copy the intermediate buffer to the task buffer. When the Kernel

- 38 -

~sx MULTITASKER

AST is dispatched (to the $GENBF routine), a call is made to this
driver subroutine, which completes the Kernel AST processing.

2.5.2 Debugger Kernel AST (M-Plus Only) -

A handy new MCR command on M-Plus systems is "DEBUG taskname,"
which causes an executing task to trap to its debugging aid
(provided it was built with one). This allows the user to force a
runaway program to return control to the debugging aid.

The DEBUG command is implemented using a Kernel AST. When MCR
receives a DEBUG command, it verifies the privilege of the user
issuing the command, makes sure the target task is active, and then
declares a Kernel AST on behalf of the target task with a code of
AK.TBT.

When the target task is scanned by the Scheduler, the Kernel AST is
dispatched to the $DBTRP routine.

The $DBTRP routine first checks the target task to verify that it
actually contains a debugging aid. If it doesn't, then TKTN is
requested to issue an error message on the terminal which issued
the DEBUG command. Otherwise, $DBTRP sets the T-bit in the saved
PS (Processor Status word) for the task in its task header, and the
service routine exits. When the task is finally granted the CPU,
the T-bit trap is immediately effected, and the debugging aid gains
control of the task.

2.5.3 Finish Offspring Exit Kernel AST -

When an offspring task exits, several actions may be performed for
the parent task. An event flag (possibly group global) may be set,
an AST can be declared, an exit status block can be copied to a
buffer in the parent's task address space, and the OCB (Offspring
Control Block) must be deallocated. Since the parent task may be
checkpointed, the exit status block cannot be copied until the
parent task is loaded. Therefore, the Executive declares a Kernel
AST with code AK.OCB for the parent task when an offspring task
exits. When the Kernel AST is dispatched to the $FINXT routine,
all of the above actions are performed, completing the offspring
task rundown.

- 39 -

RSX MULTITASKER

2.5.4 Group Global Rundown Kernel AST -

When a task exits with a pending Receive-by-Reference packet, a
Kernel AST with code AK.GGF is declared for the sender task. When
the Kernel AST is dispatched to the $GGFRN routine, a rundown on
the sender task's Group Global event flags is performed if the
Receive-by-Reference was synchronized with a Group Global event
flag.

2.5.5 Delayed I/O Kernel AST (M-Plus Only) -

This Kernel AST is declared (with code AK.DIC) when a non-transfer
I/O request is completed, and the target task has been checkpointed
or shuffled. This is similar to the Intermediate I/O Buffering
Kernel AST, except only the I/O status block in the task has become
unmapped (there are no I/O buffers to copy). The Kernel AST is
dispatched to the $FINDI routine to copy the two words of I/O
status into the task's address space.

2.5.6 Region Load Kernel AST (M-Plus Only) -

As the name indicates, a Region Load Kernel AST deals with
activities performed when a region is loaded from a checkpoint
file. But the logical flow of a Region Load Kernel AST differs
from all other Kernel ASTs, primarily because this type of Kernel
AST is declared by another Kernel AST, the Buffered I/O Kernel AST.

When a Buffered I/O Kernel AST is dispatched, the $FINBF routine
first checks to guarantee that the region containing the I/O buffer
is memory resident. If it is, then the buffer is subsequently
copied. If the buffer is not resident, then $FINBF must defer its
processing until the region is loaded. This scenario only occurs
when a task issues a buffered I/O request to a region and
subsequently unmaps from the region. Since the region is not
mapped when the scheduler grants the CPU to the task, the region is
not required to reside in memory.

The region is loaded by forcing the task which issued the I/O
request to access the region, which places the region into the
Loader's queue and blocks the task from executing. The Buffered
I/O Kernel AST control block is then inserted into the PCB
(Partition Control Block) for the region at offset P.SWSZ (which
normally contains the swapping size of the region), and a bit
(PS.AST) is set in the PCB's status word.

The next action is taken by the Loader when the region is loaded
back into memory. Seeing that there is a Kernel AST queued into
the region's PCB, the Loader immediately dispatches the Kernel AST,·

- 40 -

tSX MULTITASKER

which causes the I/O buffer to be copied immediately. The I/O
operation is completed, and the region is deaccessed from the task
(since it is still unmapped).

3.0 HINTS AND KINKS IN WRITING AST SERVICE ROUTINES

The primary challenge of ASTs is to write an effective AST service
routine. Because of obscure side effects or programming
oversights, AST bugs can be extremely difficult to diagnose. An
admirable goal is to correctly program ASTs into a task on the
first try. Careful adherence to the following sets of rules for
AST service routines can prevent many common AST programming
problems.

Except in trivial applications, careful planning is required before
actually writing an AST service routine. The scope of the service
routine should be well-defined. An AST service routine is meant to
perform time-critical operations in response to an event;
therefore, it is wise to defer any processing that is not
time-critical to normal task level.

3.1 Rules Governing All AST Service Routines

The following rules are basically "hard" rules, which means that
breaking one of the rules will probably result in an incorrect AST
service routine (which may work correctly some of the time). These
rules apply to any AST application, whether the application is
written in MACRO assembler or in a HLL.

1. A task's context, except for the four context words pushed on
the stack by the Executive, is never preserved when a service
routine is entered. A task's context includes the contents
of the general purpose and Floating Point Processor
registers, all mapping assignments to regions, and any loaded
and/or mapped overlay segments. The AST service routine must
save and restore any portion of the task's context, if
required.

2. As inferred by the above rule, AST service routines must be
located in the root segment of an overlaid task. This rule
can be stretched by logically guaranteeing that the service
routine will always be mapped when the AST is dispatched, but
performing such "tricks" is not recommended.

3. Any subroutines which are
and AST level must be
have any static variables
AST occur. If common
they must be guarded by a

commonly used at both task level
reentrant. Such subroutines cannot
which can be overwritten should an
subroutines are not reentrant, then
critical section, using the !HAR$

- 41 -

RSX MULTITASKER

and ENAR$ directives at task level.

4. As previously mentioned, all trap-dependent parameters must
be popped from the stack before the AST service routine
exits. The task will be aborted by the Executive if the
stack is incorrect when the service routine exits.

5. Some directives are illegal when issued from an AST
routine. These are the Specified AST directives
directives which would cause the task to enter a
state within the service routine. Otherwise, an AST
routine can issue any system directive.

service
and any
stopped
service

6. The state of the task at task level does not change when an
AST is dispatched. This means that if a task is stopped, and
an AST is dispatched, the task will remain stopped when the
service routine exits. Therefore, if the task has stopped
itself (or is waiting) in anticipation of the event handled
by the AST, the AST service routine must manually unstop the
task.

3.2 Rules Governing Supported Fortran AST Service Routines

The following rules apply to Fortran AST routines supported by DEC.
Currently, these supported ASTs are the parent-offspring
directives, the "requested exit" AST, the Create Virtual Terminal
directive, and the power recovery AST. The rules also apply to
specialized (and unsupported) AST applications in Fortran.

1. Since the Fortran I/O subsystem is not re-entrant, the AST
service routine cannot issue any Fortran I/O commands. One
workaround to this problem is to place critical sections
around any Fortran I/O commands performed at task level, but
this can be cumbersome and inefficient. Note that the QIO
directive is not a part of Fortran I/O, so the service
routine may issue QIO directives.

2. The Floating Point Processor registers are not saved before
the AST service routine is entered, so no floating point
operations (including any math library functions) can be
performed within the service routine. A simple workaround is
to use the SAVFPP routine in Appendix A, which is a coroutine
that will save the FPP registers and restore them when the
service routine exits.

3. A Fortran AST service routine should not use the STOP or CALL
EXIT commands if output files are currently open. Since the
Fortran I/0 subsystem may be in an indeterminate state when
the AST is dispatched, exiting the program at AST state may
corrupt the output files.

- 42 -

RSX MULTITASKER

4. The service routine cannot access any Fortran virtual arrays,
since the AST can interrupt the virtual array subsystem at an
indeterminate state.

5. The AST service routine must be compiled with traceback
disabled (/NOTRACE). Otherwise, the AST service routine will
corrupt the program's traceback. Additionally, any runtime
error that occurs in an AST service routine may produce
either an erroneous error message or other unpredictable
results.

6. The Fortran AST interface imposes a finite limit on the
number of outstanding armed ASTs a Fortran task can have.
Currently, a task may have up to 24 outstanding
parent-offspring ASTs pending and up to 24 simultaneous
Virtual Terminal units. Exceeding these limits produces a
directive status of IE.UPN (insufficient pool). Raising or
lowering these limits requires a patch to the SYSLIB module
SPTBL.

7. Fortran subroutines are not re-entrant, since they contain
static variables. Therefore, Fortran subroutines cannot be
used in common between task and AST levels. Fortunately, the
Fortran Exucutive directive calls are re-entrant, so they do
not pose any problems when used within service routines.

3.3 Example: Fortran Requested Exit AST Usage

There are always occasions when a Fortran task must be aborted.
However, this causes any output files to be locked, and usually the
last few output records are lost because they were not written out
to disk before the task aborted.

In another situation, a long-running task (such as a modelling
program) may be aborted due to system considerations, or because
the user wants to examine intermediate results produced by the
task. It would be beneficial to be able to resume the task from
the point where it was aborted. Previously, programming such a
capability required user interaction at the terminal or a clever
scheme using Send and Receive directives.

Using the Specify Requested Exit AST, a task becomes aware that it
is being aborted, and it can take appropriate action to complete
any partial output results, perhaps save its current data
environment, and gracefully exit. Fortunately, since this AST is
supported in a Fortran program, implementation is relatively
simple.

In our example, we have two source files, MAIN.FTN, which contains
the main program code, and ABORT.FTN, which contains the AST
service routine. (It is wise to segregate AST service routines

- 43 -

RSX MULTITASKER

from other sections of the program, since the AST service routines
must be compiled with the /NOTRACE option.) The service routine
communicates with the main program through a COMMON block. When
the AST occurs, the service routine sets a flag in the COMMON
block. When the main program checks the flag, it can then orderly
shut down.

A skeletal outline of the code required might be:

File MAIN.FTN:

c

c

c

Program MAIN

External ABORT
Common /ABOCOM/ Iflag

If lag = 0
Call SREA(ABORT)

C The main loop follows.
c

1000 Continue
c
C... (Main loop contents)
c

Define AST Service Routine

Reset flag
Arm the abort AST

Perform normal processing

If (Iflag .eq. 0) Goto 1000 ! Check abort flag
c
C Abort request fielded. Break out of loop
c

Close (Unit=l)
Call Exit
End

File ABORT.FTN:

c

c

Subroutine ABORT

Common /ABOCOM/ Iflag

If lag = 1
Return
End

! Close possible output file

Set the Abort flag!
And return from AST state

To compile and build the program, the command sequence might be:

>F77 MAIN,MAIN=MAIN
>F77 ABORT,ABORT=ABORT/NOTR
>TKB MAIN=MAIN,ABORT,LB:[l,l]F770TS/LB

- 44 -

SX MULTITASKER

3.4 Example: Unsolicited Character Input AST From Fortran

We perform various types of interactive signal processing on our
PDP-11/70 in Menlo Park, using graphics terminals driven at 9600
baud. Typically, a set of traces are drawn on the screen in a 30
second period. We felt it was necessary to allow users to
interrupt the display process to change parameters and redraw the
screen. The mechanism we used to provide this capability is the
Unsolicited Input Character AST mechanism of the terminal driver.

Since all of the analysis programs are written in Fortran, a
special set of Macro routines were written to allow Fortran
programs to arm and disarm the unsolicited input AST mechanism.
These routines are listed in Appendix B.

A program arms the unsolicited input character by calling the
TTYATA routine with the logical unit number assigned to the user's
terminal and with the address of a Fortran AST service routine
which is invoked when a character is intercepted. The TTYATA
routine issues a QIO$ directive to the terminal with the IO.ATA
function, which attaches the terminal.

The program can perform any Fortran READ or WRITE statements to the
terminal while the AST is armed. The AST will not be dispatched,
since a READ statement is a solicited read request. However, if
the user should enter an unsolicited character when no READ
statement is active, then the AST is dispatched. (Note that the
terminal driver does not echo the unsolicited input character.)

The user's Fortran AST service routine is entered with two
arguments: the ASCII value of the unsolicited character, and the
task's waitfor mask. In our own applications, the AST service
routine compares the input character with a set of legal input
characters. If a match is found, the character is stored in a
COMMON block. The service routine then exits via a RETURN
statement.

The main program periodically examines the COMMON block while the
AST is armed. When an input character is detected, the program
takes appropriate actions based on the particular character
entered. When the AST mechanism is no longer required, the TTYDET
routine is called, which detaches the terminal and disarms the AST.

Examining the Macro code in Appendix B shows how the AST is handled
and passed to the Fortran service routine. The IO.ATA QIO$
actually specifies a service routine within the Macro routines.
This "primary" service routine saves the general purpose and FPP
registers, sets up a standard Fortran argument list pointing to the
character and the waitfor mask, and calls the Fortran service
routine. When control returns to the Macro service routine, the
registers are restored and the ASTX$ directive is issued.

- 45 -

RSX MULTITASKER

3.5 Tips For Writing Specialized Fortran ASTs

To write an
interface,
Unsolicited
procedures
such as the
follow are:

application in Fortran using an "unsupported" AST
the same procedures can be used that are shown in the
Character AST example above. In fact, the same

are used by Fortran in implementing "supported" ASTs,
parent-offspring directives. The basic procedures to

1. Define the Fortran subroutine interface to be used to arm the
AST mechanism.

2. Define the necessary trap-dependent AST parameters which will
be passed to the Fortran AST service routine in the service
routine's argument list.

3. Write the Macro-level, Fortran-callable AST arming mechanism
routine.

4. Write the Macro "primary" AST service routine which actually
fields the AST when it is dispatched. The service routine
will save the general purpose and FPP registers, set up the
Fortran argument block, and call the Fortran service routine.
Upon return, the Macro routine restores the registers,
performs any cleanup operations, and issues the ASTX$
directive.

The example listing in Appendix B provides a good example of the
details involved. Further information regarding the Fortran OTS
can be obtained from the Fortran Object Time System Manual supplied
with the compiler.

4.0 CONCLUSIONS

The use of ASTs can be beneficial in a wide variety of
applications. When real-time response is critical, ASTs provide
the best event mechanism when a task is responsible for managing a
large event-oriented environment.

Care should be used, however, in avoiding a difficult AST
implementation where the benefits may be marginal. From my own
experience, a programmer should ask the following questions before
journeying into the world of ASTs:

1. Does my program spend a great deal of time waiting for event
flags when it could be doing something else?

2. Do I need to be notified of an event for which event flags
are useless, such as power fail recovery?

3. Is it worth the programming time to implement ASTs when event

- 46 -

SX MULTITASKER

flags will perform adequately?

Answering "yes" to any of the questions provides a good argument
for using ASTs. By combining careful planning and programming,
ASTs could be an important performance improvement to your
application.

RSX MULTITASKER

Appendix A

SAVFPP Routine - Save FPP Registers

The following routine must be called by a Fortran AST service
routine if the service routine contains any floating point
arithmetic or math library calls. The contents of all the FPP
hardware registers are saved on the task's stack. Note that a
coroutine linkage is used; when the service routine exits, the FPP
registers are transparently restored.

The SAVFPP routine may be assembled in a straightforward manner,
e.g.:

>MAC SAVFPP,SAVFPP/-SP=SAVFPP

The listing for the file SAVFPP follows:

;+ .
' .
' .
' .
' .
'
.
'

.
' .
' .
'
. , . , . ,
;
;-

.TITLE

.IDENT

.ENABL

SAVFPP -- Save FPP Registers (AST Use)
/01/
LC

SAVFPP -- Save FPP registers for calling routine and
restore registers as a coroutine •

Usage:

Call SAVFPP

This routine must be called by Fortran AST service routines
that perform floating point operations or call math library
routines •

When the routine calling SAVFPP issues a RETURN statement
(Fortran or Macro), the previous contents of the FPP
registers are restored •

This routine requires 27 decimal words of stack space.

; Define FPP registers

F0=%0
Fl=%1
F2=%2
F3=%3
F4=%4
F5=%5

- 48 -

;x MULTITASKER

SAVFPP::
STFPS -(SP) . Save FPP status ' SETD . Set double precision

' STD FO,-(SP) . Save FPP registers
' STD Fl,-(SP)

STD F2,-(SP)
STD F3,-(SP)
LDD F4,FO
STD FO,-(SP)
LDD F5,FO
STD FO,-(SP)
MOV 6 2 cs P > , - c s·p > . Get caller's address ' CALL @(SP)+ Call the caller back

SETD . Restore - set double ' LDD (SP)+,FO . Pop off registers ' STD FO,F5
LDD (SP)+,FO
STD FO,F4
LDD (SP)+,F3
LDD (SP)+,F2
LDD (SP)+,Fl
LDD (SP)+,FO
LDFPS (SP)+ Load FPP status
TST (SP)+ . Pop stale address ' RETURN . Return to caller's caller '
.END

- 49 -

RSX MULTITASKER

Appendix B

TTYATA -- Fortran Callable Unsolicited Character AST

The following Macro listing contains the routines required to
implement unsolicited character input ASTs from a Fortran program.
The procedures can be generalized to other specialized Fortran AST
applications.

Note that the module can be assembled to use either the Fortran OTS
register save routines or a manual set of register save/restore
routines •

;+

• TITLE
.!DENT
.ENABL

TTY A TA
/V2.0/
LC

; Subroutines TTYATA, TTYDET, A3TSV$ • . ,
; Subroutine TTYATA • . ,

TTYATA is a Fortran callable subroutine to link a Fortran
; completion routine to the unsolicited input character AST
; mechanism • . ,
; Since AST service routines are serialized, the completion
; routine may not use any features that depend on the AST
; mechanism, such as I/O • . ,
; Only one lun may be attached through this subroutine at a
; time, due to the nature of the Fortran linkage. To change

TTY's, you must first call TTYDET (see below) to clean up
; for the next call to TTYATA. TTYATA marks itself "in use"
; if $DSW = rs.sue, regardless of the I/O status returned • .
J .
J . , . , . , .
J . , . , . , .
J .
' . , . , . , .
'

Call TTYATA (lun,subr,iosb,ierr)

lun = Preassigned logical unit number for TTY attachment
with unsolicited input character AST, and the event
flag number used in the I/O calls. The high order
byte may be used to specify any special subfunction
bits to be set, in addition to TF.AST, such as
TF.NOT for use with the full duplex terminal
driver. See section 2.3.1 in the I/O Drivers
Manual •

subr= Name of the Fortran completion routine. It must be
declared in an External specification statement,
and will be called by the AST service routine with

- 50 -

RSX MULTITASKER

. ,

. , . , . , . ,

. ,

. ,

.
' ;

.
'

' .
'
,
;

. , .
' ; .
' ;
. , .
'

two arguments: the unsolicited character (except
when left in the typeahead buffer) and the task's
waitfor mask (see section 2.3.3 in the Executive
Reference Manual), e.g.,

FORTRAN main program:

External SUBR

Call TTYATA (5,SUBR,iosb,ierr)

Stop
End

FORTRAN AST service routine:

Subroutine SUBR (char, mask)
Logical*l char
Integer*2 mask

Return
End

Macro level AST service routine (ASTSV$):

Call SUBR {char,mask) . .
ASTX$S

iosb = Two word I/O status block, filled in at the
completion of the attach QIO.

ierr = Error return code:
0 = No errors
1 = Subroutine already in use

<O = Directive status error code

; The QIO is issued synchronously with notification through
; event flag "lun". The issuing task must first check the

directive status word (ierr) before checking the I/O status
; block for errors.

;-

; *** Assembly Instructions *** . ,
; TTYATA may be assembled to produce two versions: . , .
' . , . ,
, . ,

1) If the symbol NO$$F~ is defined, TTYATA performs its own
register saves and restores. You must prefix the system
configuration file to determine whether the floating
point hardware is present:

- 51 -

RSX MULTITASKER

.
' .
' .
' .
' .
' .
' .
' .
' .
' .
' ,
.
'

>MAC TTYATA,TTYATA=[200,200]RSXMC/PA:l,[G,M]TTYATA

The completion routine will be called using the
standard Fortran linkage •

2) If the symbol NO$$F4 is undefined, TTYATA assumes the
Fortran OTS routines are available to save and restore
all required registers:

>MAC TTYATA,TTYATA=TTYATA

.MCALL FILIO$,SPCIO$,IOERR$,QIOW$S

; Define I/O Functions and Error Codes .
'

TTYATA::

EXATA:

10$:

20$:

FILIO$
SPCIO$
IO ERR$

.PSECT

.ENABL

CLR
TST
BNE
MOV
MOVB
MOVB
BIS

QIOW$S
BCS
MOV
MOV

RETURN

INC
BR

MOV
BR

.PSECT

FORLUN: .WORD
FORS UB : • WORD

CODE,RO,I
LSB

@10(R5)
FORLUN
10$
2(R5),R2
(R2)+,RO
(R2),Rl
_#IO.ATA,Rl

; Pure code

; ierr = 0
; Check if in use already
; If ne yes, fatal

Get addr of LUN
; Pick up unit no.

Pick up any subfunction bits
; Set function code for AST

Rl,RO,R0,,6(R5),,< #ASTSV$> ; Issue Attach QIO
20$; Ir cs QIO failed
RO,FORLUN ; Mark subroutine in use
4(R5),FORSUB ; Save address of the FORTRAN

; completion routine
; Return to caller

@10(R5) . ierr = 1 ,
EXATA

$DSW,@10(R5) ierr = <Directive status word>
EXATA

IDATA,RW,D . Impure data ,

0 . "in use" flag, contains LUN
' 0 . Fortran completion routine J

.DSABL LSB
;+ .
J

; Subroutine TTYDET.

- 52 -

RSX MULTITASKER

TTYDET detaches TTY f rorn lun and marks subroutine TTYATA as
; available for use again.

;

;-

Call TTYDET(iosb,ierr)

iosb
ierr

= Sarne as above for TTYATA.
= Same as above for TTYATA, except ierr = 1

indicates that no lun is currently attached.

.PSECT CODE,RO,I

.ENABL LSB
Pure code

TTYDET::
CLR
MOV
BEQ
QIOW$S
BCS
CLR

@4(R5) ; ierr = O
FORLUN,RO ; Get LUN in use
30$; If eq, fatal - not in use

#IO.DET,RO,R0,,2(R5) ; Detach tty from FORLUN
40$ If CS QIO failur.e
FORLUN Mark TTYATA available

EXDET: RETURN Return to caller

30$: INC @4(R5) ierr = 1
BR EXDET

40$: MOV $DSW,@4(R5) ierr = <Directive status word>
BR EXDET

.DSABL LSB
;+

Subroutine ASTSV$.

ASTSV$ is the TTY unsolicited input character
; AST service routine.

.
'

On entry, the stack contains:

SP+lO
SP+06
SP+04
SP+02
SP+OO

Event flag mask word
PS of the task prior to AST
PC of the task prior to AST
Task's Directive status word
The unsolicited character in the low byte
(if TF.NOT not set); optional parameter 2
in the high byte (not used) (See section
2.3.2.1 in the I/O Drivers Manual.)

Before exit, the unsolicited character must be popped
off the stack.

- 53 -

RSX MULTITASKER

.
' , To exit, invoke ASTX$S: . , . , TST (SP)+

ASTX$S . , . ,
; The Fortran completion subroutine is called with the
; unsolicited input character as the first argument, and the
; event flag mask as the second argument (to replace the value
; on the stack before dismissing the AST) • . ,

*** Fortran OTS Routines Used *** . ,
. , . , . ,
;-

MODULE: FPPUTI
SAVRG

.MCALL ASTX$S

ENTRY:

.PSECT CODE,RO,I

ASTSV$::
MOV SP,ARGLST+2
MOV SP,ARGLST+4
ADD _#10,ARGLST+4

.IF DF NO$$F4

CALL F4PSR$

.IFF ; DF NO$$F4

MOV #EXAST,-(SP)
CALL $SAVPO
CALL $SVFPP

.IFTF ; DF NO$$F4

MOV _#ARGLST,R5
CALL @FORSUB

CALL @(SP)+

.IFF ; DF NO$$F4

"'ETURN

.ENDC ; DF NO$$F4

EXAST: TST (SP)+
ASTX$S

$SVFPP
$SAVPO

FPP register save
General register save

; Pure code

; Move char ptr into arg list
; Move EF mask ptr into arg list

; Correct for stack offset

; Manual register save

; Save RO-R5, FO-F5

; Fortran OTS save

; Force coroutine return to us
; Save general registers
; Save FPP registers

; Point to arg list
; Call user AST routine

; Coroutine call to restore regs

; OTS coroutine restore of RO-R5
(Returns control to EXAST) . ,

; Pop character off stack
; Exit AST service routine

- 54 -

RSX MULTITASKER

.PSECT IDATA,RW,D . Impure data J

ARGLST: .WORD 2 . 2 arguments for Fortran J

.WORD 0 J 1st points to unsolicited char

.WORD 0 2nd points to event flag mask

.IF DF NO$$F4 Register save for no OTS

.PSECT CODE,RO,I
'

Pure code

F4PSR$: MOV RO,-(SP) . Save registers for Fortran use J

MOV Rl,-(SP)
MOV R2,-(SP)
MOV R3,-(SP)
MOV R4,-(SP)
MOV R5,-(SP)

STKDEP=14

F0=%0
F1=%1
F2=%2
F3=%3
F4=%4
F5=%5

.IF DF

STFPS
SETD
STD
STD
STD
STD
LDD
STD
LDD
STD

F$$LPP

-(SP)

FO,-(SP)
Fl,-(SP)
F2,-(SP)
F3,-(SP)
F4,FO
FO,-(SP)
F5,FO
FO,-(SP)

; Save FPP status and registers

STKDEP=STKDEP+62

.ENDC

MOV
CALL

.IFT

DF F$$LPP

STKDEP(SP),-(SP) ; Get callers return address
@(SP)+ ; Coroutine return to caller

; DF NO$$F4

MOV (SP)+,STKDEP(SP) , Load return address in slot

.IF DF F$$LPP

SETD ; Restore FPP regs and status

- 55 -

RSX MULTITASKER

LDD
STD
LDD
STD
LDD
LDD
LDD
LDD
LDFPS

.ENDC

MOV
MOV
MOV
MOV
MOV
MOV

RETURN

.ENDC

.END

(SP)+,FO
FO,F5
(SP)+,FO
FO,F4
(SP)+,F3
(SP)+,F2
(SP)+,Fl
(SP)+,FO
(SP)+

; DF F$$LPP

(SP)+,R5
(SP)+,R4

; Restore general registers

(SP)+,R3
(SP)+,R2
(SP)+,Rl
(SP)+,RO

DF NO$$F4

- 56 -

r~~~~;~~;~~~~---=

Please notify us immediately to guarantee con­
tinuing receipt of DECUS literature. Allow up to
six weeks for change to take effect.

Change of Address
Delegate Replacement

DECUS Membership No.: -------­

Name: --------------­

Company: ------------~
Address: --------------

State/Country: -----------­

Zip/Postal Code: ----------­

Phone No.·~-------------

Mail to: DECUS - Attn: Subscription Service
249 Northboro Road. (BP02)
Marlboro. MA 01752 USA

..
r:

- ;;· ;;;
£ ::> CT
a. 2 !!.

.... · o
< ~ s.

~----------------------~

3: ~ ~ c 0(0] l>coc::>~ m
~z=ic: n
l:D 0)> Cl> ~
0 ::ZJ r- Cl) UJ

::13-tmc:
0 :I: p l:D
• l:D c: Cl>
3: o - n
J>::l3"0:JJ

0 3: -
o::ZJm"O
.... 0 2 :::!
utJ>-to
Nc02

. 0 Cl>
- 3: m
l:D "O ::ZJ
"O c: <
0 -t -
~mo

::ZJ m
Cl>
0
0
m
::;!

I
i:g ~ c

033 (nCD
...... ::;- - · "O . 5..
~(/1-,..-o~
Ul(DZ-O:IJ
c.>.:"?O!e1»

I» -S::: _.. CC CD
)> Q) CD

---1'-"--~ rt "i?";.l-, I

