
RSX

MULTI-TASKER

January 1985 Issue

RSX Multitasker

Table of Contents

From the Editor 1
Ask a Question 2
Introduction to the Task Builder Internals 3
Library Updates 34

From the Editor

This is my first issue as
would like to thank Allen
Multitasker co-editor. We all
future endeavors.

sole editor of the Multitasker. I
Watson for a year of hard work as
send AL our best wishes in his

In this month's issue there is an excellent article from the
RSX development team on TKR internals. For those using FORTRAN-77,
Ask a Question may be of interest.

As always, the Multitasker is looking for articles, columns,
suggestions, etc. from our readers. Please send submissions
directly to me at the addr~ss below.

Happy New Year!

1

Dominic DiNollo
Loral Electronic Systems
Engineering Computer Center
Ridge Hill
Yonkers, New York 10710

RSX MULTITASKER

Hints and Kinks

Does anyone out there know how to get around the problem of
having too many parameters on a FORTRAN "OPEN" statement ? I am
trying to open an indexed file with 7 keys, but when I FORTRAN-77
compile, I get error 11-F.

Thanks for your time and help.

Response from Ed Cetron

The solution is to increase the expression frame analyzer stack
within the compiler. Read the .cmd fi Le for f77 build on B-2 in
the Installation Guide/Release Notes. If you make the Line:

extsct=stack1 :1160

something Like extsct=stack1:3000
the problem should go away after you re-Link the compiler.

2

RSX MULTITASKER

Introduction to the Task Builder Internals

Digital Equipment Corp.

1.0 TASK BUILDER INTERNALS

This appendix is a brief overview of the RSX-11M/M-PL!IS T<isk
Builder internal operation. It assists in the maintenance of the
Task Builder as well as provides the necessary aid to the
development process. This appendix gives you a detailed
description of the basic flow of processing that the Task Builder
CTK8) performs while generating task images, resident Libraries and
shared common areas.

2.0 BASIC PHASES OF OPERATION

The operation of the Task Builder (TKB)
separate phases. These phases are:

0 Phase 1 - Initialization

0 Phase 2 - Option Processing

0 Phase 3 - First Module Scan

0 Phase 4 - Memory Allocation

is best described as

0 Phase 5 - Task Image and Map Fi le Generation

0 Phase 6 - Symbol Table Fi le Generation

The phases are described in detail in the following sections.

3.0 PHASE 1 - INITIALIZATION

TKB performs initialization first, which the next sections describe.

3

RSX MULTITASKER

3.1 Data Structures

TKB allocates data structures out of the dynamic memory area at
addresses higher than and just above the task image and initializes the
virtual memory system. The virtual memory system consists of the
dynamic memory management routines, which control the allocation and
deallocation of blocks of real memory, and the virtual memory management
routines, which manages the storage and retrieval of dynamic memory
pages on disk. Hereinafter the virtual memory system is referred to as
VMS.

The system library routines
management portion of VMS.

listed next compose
These routines are:

o $INIDM - Initialize dynamic memory

o $RQCB - Request core block

o $RLCB - Release core block

the dynamJc memory

The virtual memory management routines make up the remaining portion of
the VMS and consist of four general classifications. They are listed
below with the modules that comprise each of the four categories:

$INIVM-Virtual memory initialization routine

o Core allocation routines

$ALRLK - Allocate core block

$GTCOR - Get core block

$EXTSK - Extend task

SWRPAG - Write page

o Virtual memory allocation routines

$ALVRT - Allocate virtual memory block

$ALSVB - Allocate small virtual memory block

$RQVCB - Request virtual core block

o Page management routines

$CVLOK - Convert to real address and lock in dynamic memory

RSX MULTITASKER

$CVRL - Convert virtual address to real address in dynamic
memory

$RDPAG - Read virtual page into dynamic memory

$FNDPG - Find selected page in virtual memory

$WRMPG - Write-mark selected page in dynamic memory

$LCKPG - Lock pa~e in dynamic memory

SUNLPG - Unlock page in dynamic memory

When the VMS is initialized,
$INIVM opens an unnamed work
be deleted. Each time the VMS
31 blocks until it reaches the

the virtual memory managP.ment routine
file such that when it is closed, it will
needs more space, the file is extended by
theoretical maximum size of 256 blocks.

3.2 Command Line Processing

TKB obtains your input command line by means of the GCML$ directive and
parses the line. TKB allocates an element descriptor from dynamic
memory for each output file and stores the switches associated with that
file in an output record block associated with each of the output files.
The output record block is a unique descriptor containing FCS related
information necessary for I/O operations. ;.INDEX R$SWTH The element
descriptor is 40 (decimal) bytes long and describes each output file.
In the element descriptor at offset ESLMND, the specified file is
described in terms that are file system dependent. This information is
used when TKB opens and closes the file. At offset f$LNUM, TKB inserts
a -2 value if the element descriptor has been allocated for an output
file. Otherwise, its value is a -1 if it describes a library file
<.OLB) or it contains a value that represents the maximum number of
program sections <.PSECTs) that the input file (.OBJ) defines. The
offset E$LSWT contains the switch bits that are associated with input or
output files. TKB sets up and records default switch values.

3.3 Overlay Descriptor Language Processing

During the scan of the input file, the presence of the
governs whether or not TKB must process an overlay
Non-overlaid <single-segment) and overlaid (multi-segment)
discussed n ext.

5

/MP switch
structure.
tasks are

RSX MULTITASKER

3.3.1 Single Segment Task - If TKO determines that a single-segment
task is to be built, processing continues at entry-point $BLDSF where
TKB builds the filename blocks for the system library file and the
debugging aid, if requested, and allocates an element descriptor to each
file. If the task to be built is to use o-space suoport and a debugging
aid, TKB changes the filename to reflect the correct debugger, namely
ODTID.OBJ instead of ODT.OBJ.

3.3.2 Multi-Segment (Overlaid) Tasks - If TKB is to build multi-segment
tasks, TKB enters a sub-phase that processes the Overlay Descriptor
Language COOL) in three passes.

3.3.2.1 Overlaid Tasks, Sub-phase 1, Pass 1 - $MLSG0 opens and reads
the .ODL file a single line at a time. $MLSGO checks the syntax of the
line for validity, decodes each directive and stores it in dynamic
memory for use in later processing.

3.3.2.2 Overlaid Tasks, Sub-Phase 1, Pass 2 - $MLSG1 scans
pre-processed and syntactically correct overlay description lines in
dynamic memory. It parses the ODL lines and generates segment
descriptors from them. $MLSG2 creates a linked input file list for each
line, and for each file specification it allocates an element descriptor
and builds a module name table. Each module name table contains up to
eight modules.

3.3.2.3 Sub-Phase 1, Pass 3 - $MLSG2 produces task segment tables from
the parsed segment descriptor previously prep~red by $MLSG1 and sets the
overlay structure linkages. $MLSG2 releases its working storage to
dynamic memory because the overlay structure is no longer needed.
Processing continues at entry point $BLDSF as in single-segment tasks.

4.0 PHASE 2 - OPTION PROCfSSING

Option keywords drive the option processor, which consists of two
sub-phases. These are described next.

6

RSX MULTITASKER

4.1 Option Processing, Phase 2, Sub-Phase 1

P20PT performs the preliminary processing of each option keyword. As
P20PT decodes the option, it calls the ancillary routines to perform
octal-to-binary and decimal-to-binary conversions and stores the
converted values in the common input parameter block $PARM. P20PT then
continues further processing. If the decoded option keyword makes
reference to a shared region of any kind, the module P2LBR processes the
filespec and allocates an element descriptor to the file. P2LRR links
an element descriptor and all shared region references into the element
list at the head of the list. Module P2LAR checks the specified file
for validity as a shared region reference.

If the file passes the test for validity and was built position
independent and was requested with an APR, P2LAR reads the file lahel
block, calculates the APR bias, and updates the addresses. P2LBR then
links the library reference into the library reference list pointed to
by $LRRHD. If the APR has not been specified, P2LBR links the library
into the library reference list. If a non-PIC library has been
requested, P2LBR checks the base address of the library for possible
address conflicts with other libraries or the task itself.

4.2 Option Processing, Phase 2, Sub-Phase 2

The final pass for option processing occurs after the options have been
terminated by either a single slash (/) or a double slash, (//). Module
P2POP is called and its primary function is to map all referenced
libraries into the task's addressing space. Because the libraries are
somewhat fixed in their address windows, the APR ~itmaps must be
adjusted to reflect the existence of the library or libraries. The
first pass at allocating the APRs for the libraries is done for those
libraries that are either built non-PIC or have been built PIC but
specified in the option line with an APR. The latter is a reserved APR
assignment. The entire library list is scanned for all non-PIC or
APR-reserved libraries before APRs are assigned to any PIC libraries.
It is during the post-option processing that cluster libraries are
marked as such. The significant difference between cluster libraries
and standard libraries is that all libraries in a cluster can share the
same address window and, therefore, the same base starting address.

5.0 PHASE 3 ~ FIRST MODULE SCAN

During this major phase, TKB reads all the input modules and generates
internal symbol tables for each task segment in the allocation. As TKB
considers each segment, TKB scans the element list generating section
and symbol tables for that segment. The scan continues for all modules
contained in that segment. TKB resolves the element module name and
constructs the element section mapping table. The element section
mapping table contains information that links each program section seen

7

RSX MULTITASKER

by TKB to a file defined by an element descriptor. This is done to
provide a more efficient path through the input element list during code
output in a later phase.

5.1 Pre-Processing, Phase 3, Sub-p·hase 1

During this sub-phase, the subroutine $P3PRF.
$TASKB. $P3PRE initializes the internal

is called from routine
symbol tables and program

section tables with the followinq entries:

o Global segment names

o Global references

o Program section entries for:

Autoload vectors - ($$ALVC, RO, I, GBL, REL, CON)

Supervisor-mode vectors Cif requested) -
GBL, REL, CON)

Segment tables -
($~SGDO, R/W, D, GBL, REL, CON)
($$SGD1, R/W, D, GBL, REL, CON)
($$SGD2, R/W, D, GBL, REL, CON)

Segment return point -
($$RTR, RO, I, GBL, REL, CON)
($$RTQ, RO, I, GBL, REL, CON)
($$RTS, RO, I , GBL, REL, CON)

Window descriptors - ($$WNDS, R/W, I) , GBL,

Region descriptors - ($$RGDS, R/W, o, GBL,

5.2 Module Scan, Phase 3, Sub-Phase 2

($$SLVC, RO, I,

REL, COM)

REL, COM)

During this sub-phase, TKB initializes the overlay structure path list
by calling $WSINI. This routine scans the overlay structure and builds
the path List that will be used by the virtual memory symbol table
search and insert routines. On output, this module sets the following
global variables:

8

RSX MULTITASKER

0 $CRSEG .. - Real (memory) address of current segment being
processe d

0 $CRVSG .. - Virtual Cdisk) address of current segment being
process ed

0 $PATH .. - Address of current segment path list

On output, $WSINI has constructed the segment path list, which contains
the following information:

o SGADR-Virtual address Cdisk> of the segment descriptor

0

Entries

0

0

0

0

PATHF-path flag which has
segment being processed.

a value relative
The possible values

PATHF = n, current segment

PATHF = 1, segment is up-tree

PATHF = 2, segment is in a cotree

PATHF < O, segment is down-tree

are made in the following format:

The current segment

A l l entries down-tree

A l l entries up-tree

A l l cotree entries

to
are:

the current

Once the search path has been established for the current segment,
processing continues after the coroutine $STINP has set up anrl opened
the first module in the segment element list. TKR allocates and links a
concatenat~ ~ module descriptor into the element list at the first
module. The reason for this apparent duplication of data structures is
for dynamic memory conservation. After this first module scan, it is no
longer necessary to keep the full file specification because the file
IDs are sufficient for later processing. For each entity in the element
list, the called subroutine $PRCLM reads each object module, hut
performs operations only on the global symbol directory CGSD) records.
With the exception of block types 0 and 6, all other block types are
ignored. Of the block type 1 at the start of the GSD, there are nine
sub-classifications. They are:

9

RSX Ml.ILTITASKER

1. Module name

2. Section name

3. Internal symbol

4. Transfer address

5. Symbol declaration

6. Program section name C.PSECT)

7. Version identification

8. Virtual array storage section name CFORIRAN support)

9. Completion routine name for supervisor-mode libraries.

Upon completion of the module scan for the entire overlay structure
driven by the input element list, the final scan on the system object
library is initiated. The system object library is treated much like an
input module, except that now the concatenated module descriptor is a
linked list, all elements pointing to the system object library file
specifier. The module $P3LBS performs the scan of this library reading
the entry point table, searching for the desired entry point name, and
then calli~g on $PRCLM to process the element.

6.0 PHASE 4 - MEMORY ALLOCATION

Phase 4 of the task build performs the memory and disk space allocation
for the task. This phase takes as input all the tables constructed
during Phase 3 processing. P4MAL processes resident library and shared
common regions first followed by each segment in the allocation. P4MAL
assigns to each control section and to all relocatable symbols in the
segment absolute addresses relative to zero in that segment. If the
current task utilizes a supervisor-mode library, P4MAL uses the
supervisor-mode listhead to generate the supervisor-mode vectors to
which P4MAL assigns absolute addresses relative to zero in the segment
in the same manner as for the a~toload vectors. Finally, P4MAL
allocates the disk space for the task image. In addition, P4MAL also
processes the unit modification table that has been set up during Phase
2 option processing by using the ASG keyword and the patch list that set
up by the GBLPAT and GBLDEF option keywords. From this information, TKB
calculates the task image header size and determines its position on
disk relative to the label block.

10

RSX MULTITASKER

6.1 Task Header Generation, Phase 4

Once P4MAL completes the memory and disk allocation, patch list
processing, autoload vector and supervisor-mode vector generation, P4~AL
calls module HEADR to begin writing the task image out to the disk file.
It is during this processing by HEADR that sets the various bits in both
the label and header blocks that reflect the task type. From the tAbles
built up during previous phases, HEADR checks the address limits and
writes them out to disk in the label block. The label block is used hy
the INSTALL processing program to determine the run-time requirements of
the task. such as library requests, initial memory size requirements,
and partition assignment. Once installed, the label block is no longer
needed. After the label block has been written to disk, HEADR writes
out the logical unit block or blocks. There will be one LUN block if
the number of units is less than or equal to 128, or two LUN blocks for
anything over 129 up to 255. The label block layout is as follows:

o L$BTSK - Radix 50 task name

o L$BPAR - Radix Sn. task partition

o L$BSA - Task starting virtual address

o L$BHGV - Highest virtual address in window zero

o L$BMXV - Highest task virtual address

o L$BLDZ - Task load size (32-word blocks)

o L$BMXZ - Task maximu~ size (32-woro blocks)

o L$80FF - Task offset into partition (32-word blocks)

o L$BWND - Number of windows required <less libraries)

o LSBSEG - Size of resident segment descriptors

o L$BFLG - Task flags word

o L$BDAT - Creation date (year, month, day)

o L$BLIB - Task resident library requests

o L$BPRI - Task priority

o L$8XFR - Task transfer address

o L$REXT - Task extend size (32-word blocks)

o L$8SGL - Block number of segment length list

11

RSX MULTITASKER

0 L$RHR8 - Relative block number of header

0 L$BBLK - Number of blocks in Label

0 L$BLUN - Number of Logical units

0 L$BROB - Relative block number of read-only image

0 L$BROL - Read-only load size (32-word blocks)

0 L$BRDL Read-only data load size (32-word blocks)

0 L$BHDB - Relative block number of data

0 L$BDHV - Data window 1 high virtual address

0 L$BDMV - Data high virtual address

0 L$BDLZ - Data Load size

0 L$8DMZ - Data maximum size

0 L$BASG - Symbolic device assignments

At offset L$0LIA, HEADR places the resident Library and common region
requests according to the order of specification. For RSX-11M, the
maximum number of library requests is 7 and for RSX-11M-PLLJS, this
number is extended to 15. After HEADR writes the Label block and LIJN
block(s), it writes the task header block. The Executive uses the
header block during the task's run-time, as a dynamic storage region
unique to that task. The header block contains the initial values for
the Processor Status Word, program counter and stack pointer, as well as
the addresses in the task's addressing space of any synchronous system
traps that may be used by the task. The header block layout is as
follows:

0 H$CSP - Current SP word

0 H$DSIZ - Length of header in bytes

0 H$EFLM - Address of event flags and mask word

0 H$CUIC - Current UIC

0 H$DUIC - Default UIC

0 H$IPS - Initial PS word

0 H$IPC - Initial PC word

12

RSX MULTITASKER

o H$ISP - Initial SP word

o H$0DVA - ODT SST vector address

o H$ODVL - onr SST vector length

o H$TKVA - Task SST vector address

o H$TKVL - Task SST vector length

o H$PFVA - Address of power-fail AST control block

o H$FPVA - Address of floating point exception control hlock

o H$RCVA - Address of task receive AST control block

o H$EFSV - Event flags save word

o H$FPSA - Address of floating point save area

o H$WND - Address of task window blocks

o HSDSW - Task directive status word

o H$FSR - Address of FCS work area

o H$FOT - Address of FORTRAN OTS work area

o H$0VLY - Address of overlay run-time system work area

o H$VEXT - Work area vector extensions

o H$SPRI - Swapping priority difference

o H5NML - Network mailbox LUN

o H$RRVA - Receive-by-reference AST

o HSGARD - Address of header guard word

o HSNLUN - Number of logical units

o H$LUN - Logical unit table

As a final step, if the task being built has memory resident overlays,
HEADR writes the segment load list, which contains the length of each
memory resident segment in the task, out to the disk file. Also, if a
user-mode I- and D-space task is being built, HEADR writes a second copy
of the task header out to disk in the D-space portion of the task image.
The support routines needed by the module HEADR are as follows:

13

RSX MULTITASKER

o $DSALO - Allocation of task-resident descriptors

o $ALALO - Address assignment for autoload and supervisor-mode
vecto rs

o $SGALO - Segment physical and virtual memory allocation

o $SYALO - Absolute address assignment to relocatable symbols

o $DKALO - Disk space allocation for the task image

7.0 PHASE 5 - TASK IMAGE AND MAP FILE GENFRATION

This phase of the task build process generates the actual image on disk.
P5MAP generates the requested map file during this phase. As P5MAP
considers each segment in the allocation, TKB scans the element list for
each and the scanning continues to the end of the module list. TKB
performs relocation and writes the resultant text to the task image disk
file.

7.1 Task Image Generation, Phase 5, Sub-Phase 1

First, TKB searches the entire structure for the symbols that are
located in branches of the tree structure being built. As TKB locates
the symbols, it now resolves their addresses by the offset into the
program section $$ALVC. $$ALVC defines the entry point in terms of an
autoload vector. Contained in the vector is a subroutine call to the
Overlay Run-time System module AUTO ($AUTO), the address of the segment
descriptor containing the target routine, and the address of the target
routine itself.

The scan of the segments comprising the allocation begins with the root
segment. TKB calls module STINP to set up the input stream. $P5ELM
processes each object module, which resembles the function of $PRCLM,
except that $P5ELM uses the object reco~d types 3 and 4, the text record
and relocation directory records. The text record contains the actual
code generated by either MACR0-11 or one of the language processors.
The relocation directory records govern the processing of the preceding
text record and have sixteen legal commands. They are:

1. Type 1 - Internal relocation

2. Type 2 - Global relocation

3. Type 3 - Internal displaced relocation

14

RSX MULTITASKER

4. Type 4 - !ilobal displaced relocation

5 • Type 5 - Global additive relocation

6. Type 6 - Global additive displaced relocation

7. Type 7 - Location counter definition

8 • Type 8 - Location counter modification

9 • Type 9 - .LIMIT directive CMACR0-11)

1 n . Type 1 fl - Sector relocation

11 • Type 11 - Illegal format (Reserved)

1 2 • Type 1 2 - Sector displaced relocation

1 3 • Type 1 3 - Sector additive relocation

1 4 • Type 14 - Sector additive displaced relocation

1 5 • Type 1 5 - Complex relocation

1 6. Type 16 - Resident library additive relocation

After $P5ELM scans, relocates and writes out to the disk file, sub-phase
1 processing continues with end-of-segment processing. Module P5FOS
writes the following out to the disk file: the autoload vectors,
supervisor-mode vectors, and the task-resident segment tahles for the
current segment being processed.

After TKB has traversed and output the entire overlay structure, Phase 5
continues with cluster Library processing, if requested hy the CLSTR
option during Phase 2 option input. Module P5CLS generates anrl patches
task resident segment descriptors, which describe a TKR-generated
overlay structure. From the cluster library Listhead, P5CLS creates and
writes out a dummy root segment to the disk file of the task image.
P5CLS then traverses the overlay structures of the clustered Libraries
making the necessary changes to the segment descriptors, window blocks,
and region descriptors for each cluster Library element. P5CLS marks
each Library as such to prevent the INSTALL processing program from
flagging the clustered Libraries as mapped upon installation. The only
exception i s the f i rs t library in the c 'luster group, w hi c '1 i s the
default Library. The request for this library is mapped upon
installation, the others checked against the common block directory, if
running on an RSX-11M-PLUS system, or checked against the partition list
for entries associated with the clustered Libraries, if runninq on an
RSX-11M system. If any one of the requested Libraries is not installed,
the task cannot be installed itself.

With the completion of cluster library processing, TKB either compresses
and closes or merely closes the task image file. If TKB built either a

15

RSX MULTITASKER

resident Library or a multiuser task, the read-only portion of the task
image is compressed. Compression allows easier Loading of the read-only
part of the image when it is run.

7.2 Map File Processing, Phase 5, Sub-Phase 2

A third pass over the entire overlay structure is necessary if a
standard map file is to be generated. Module PSMAP scans the switch
word and determines if a map has been requested, and if so whether it is
to be a long or short (default) map. If requested, the map file is
opened and the map heading is output. If the task being built has an
overlay structure, then the overlay structure is written to the map file
by module MPOLD. A scan of the overlay structure is initiated to reset
the base addresses of each section within the segment currently being
processed. If there are any undefined symbols in a segment the symbols
are written to the map file as well. There are no other error messages
that are written to the map file. Closing the map file completes Phase
5 processing.

8.0 PHASE 6 - SYMBOL TABLE FILE GENERATION

The final phase of the task build is the generation of the symbol table
file C.STB) for the task image. It can have two forms depending on
whether the task being built is a shared region or a normal task with or
without a debugging aid. The differences between the two are discussed
in the following sections.

8.1 Shared Region .STB File Generation

The primary function of the .STB file is to provide a means by which the
global entry points of a shared region, either a resident library or
resident common, resolve addresses generated by subroutine calls within
a user task to the resident library or common. The format of the .STB
file is identical with that of an object record produced by either
MACR0-11 or a language processor. The file contains the same types of
records that define the values (addresses) of the entry points in the
library or common and any program sections that may be associated with
it. Two switches are associated with .STB file processing. They are
the /LI and /CO switches.

The use of the /LI switch suppresses the inclusion of all program
section entries in a position-independent resident library. This
prevents a resident library and the user task from having two program
sections with the same name. If this suppression is not done, TKR tries
to assign addresses to the program section that has been defined in the
library and is fixed in length. TKB then reports a load address out of
range error and cancels the task image file generation. In this case,

16

RSX MULTITASKER

the name of the first module seen in the input stream is used as the
library program section name. This ensures, with some measure of
certainty, that there is not a .PSECT conflict.

The use of the /CO switch builds a
information. The /CO switch is
present.

common, which retains all .PSECT
the default if /-HD and /PI are both

If the resident library is to have an overlay structure, the only
symbols that appear in the .STB file are those that have been defined in
the root of the library. If there are segments of the library that
contain entry point definitions, the symbol must be forced into the root
segment through the GBLREF option. This generates an autoload vector
entry for that symbol and it is output to the .STB file in the program
section SSALVC. In addition to these symbols, any that have been
specified by the GBLINC option are included in the .STA file.

8.2 Normal Task With Debugger .STB File Generation

If the task being built is to have a debugging aid, the .STB file has a
slightly different structure. If a symbolic debugging aid is specified,
the kernel of the debugger must know the addresses and names of the
symbols in the task being debugged. It must also know the overlay
structure of the task. For the debugger to maintain this information,
TKB must include some sort of one-to-one correlation between the task
image and the .STB file that describes it. The correlation is done by
an internal symbol definition of the task image creation date and time.
This and the creation of internal symbol directory records on a
segment-by-segment basis are the only differences between the two types
of .STB files (task and shared region>. With the qeneration of this
type of .STB file TKB re-scans the entire input module list for each
segment.

17

APPENDIX A

TASK BUILDER INTERNAL DATA STRUCTURES

19

TASK BUILDER INTERNAL DATA STRUCTURES

Element Descriptor

+---+
I Link to next descriptor I 0 f$LNXT
!---!
I Real Control Section Mapping Table I 2 E$LC~T

!---!
I Highest section number I 4 E$LNUM
!---!

El en

---!
Version identification I 10 E$LIDT

-I

Module name (title block) 14 F$LMOD

Virtual address of Mapping Table 20 E$LVMT

Monitor dependent information 24 E$LMND

I- -I

+---+

20

TASK BUILDER INTERNAL DATA STRllCTURES

1
2
4

10
20
40

100
200
400

1000
2000
4000

1 nooo
20000
40000

100000

1
2
4

10
?O
40

100
200
400

1000
2000
4000

1 !J00'.1
20000
40(100

100000

Task and STA File Switches

1 1 1 1 1 1 o o o o o o o n o o
s 4 3 ? 1 o 9 ~ 7 6 s 4 3 2 1 o

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
I I I I I I I I I I I I I I I I I
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

I I I I I I I I I I +-XH$DR -/XH not allowed. C1=yes)
I I I I I I I I I +---SW$ALO-Chkpnt space alloc. CQ=yes)
I I I I I I I I +-----SW$AC -Task is ACP C1=yes)
I I I I I I I +-------SW$MU -Task is multi-user C1=yes)
I I I I I I +---------SW$NS -Sends not permitted C1=yes>
I I I I I +-----------SW$SL -Task is slaveable C1=yes>
I I I I +-------------SW$PM -Post-mortem dump C1=yes)
I I I +---------------SW$TR -Set trace bit in PS C1=yes)
I I +-----------------SW$PR -Task is privileged C1=yes>
I +-------------------SWSPI -PIC output C1=yes>
+---------------------SW$DA -/DA specified C1=yes)

-----------------------SWSCM -8uild task /CM C1=yes)
+-------------------------SWSNH -Build task /-HO C1=yes)

+---------------------------SW$EA -Task uses EAE C1=yes)
-----------------------------SW$FP -Task uses FPU C1=yes)

+-------------------------------SW$CP -Task checkpointable CO=yes)

Input File Switches

1 1 1 1 1 1 o o o o o n. o o o o
s 4 3 2 1 n 9 p, 7 6 s 4 3 2 1 o

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
I I I I I I I I I I I I I I I I I
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

+

I I I I I I I I I +-SW$CLS-Clstr Lib Elem C1=yes)
I I I I I I I I +---swsss -/ss applied? <1=yes>
I I I I I I I +-----SW~RL -Res Lib Flem? C1=yes)
I I I I I I +
I I I I I +---------SWSAL -Autoload F.lement C1=yes)
I I I I +-----------swscc -concatenated file C1=yes>
I I I +-------------SW~SUP-Supervisor-mode library
I I +---------------SW$SV -Super-mode vectors C1=no)
I +
+

-----------------------SW$DA -Module is debugger C1=yes>
+-------------------------SW$MP -overlay map file C1=yes)

---------------------------SW$LB -Library file C1=yes>
+-----------------------------SWSDL -File is dflt syslib C1=yes>

-------------------------------SW$MA -Include file in map C1=no)

21

TASK BUILDER INTERNAL DATA STRUCTURES

1
2
4

10
20
40

100
200
400

1000
2000
4000

10000
20000
40000

100000

Control Section Table

+---+
I Link to next entry I
!---!
I Section name, radix sn I
I- -I
I I
---!

Flags word I
---!

Rase address I
---!

Length of control section I
---!

Address of defining element I
---!

Current base address I
---!

Length in segment I
+---+

Flag Word Bit Definitions

1 1 1 1 1 1 0 0 Q 0 0 0 0 0 0 0
s 4 3 2 1 o 9 8 7 6 s 4 3 2 1 n

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
I I I I I I I I I I I I I I I I I
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

n CSSLNK

2 CSSMNE

6 C$SFLG

1n C~SBSE

1 2 C$SLTH

14 C$SELM

16 C$SCUR

20 C$SLGS

I I I I I I I I I I I I +-CS$ATL-Autoload flag C1=yes)
I I I I I I I I I I I +---CSSLIB-Library section C1=yes)
I I I I I I I I I I +-----CS$ALO-Allocation C1=ovr, O=con)
I I I I I I I I I +-------CSSIND-Indirect C1=ind, O=def)
I I I I I I I I +---------CSSACC-Access C1=R/O, O=R/W)
I I I I I I I +-----------CS$REL-Relocatable C1=rel, O=abs)
I I I I I I +-------------CSSGBL-Scope C1=global, O=local)
I I I I I +---------------CS$TYP-Type C1=data, O=ins)
I I I I +
I I I +
I I +
I I -----------------------CS$SUP-Super-mode library Section
I I -------------------------CS$ROT-Section forced into root
I +---------------------------CS$VAS-Virtual array Sec. C1=yes)
+-----------------------------CS$RES-Task-resident Sec. C1=yes)

+-------------------------------CS$VSC-Virtual Section C1=yes)

22

TASK BUILDER INTERNAL DATA STRUCTURFS

1
2
4

10
20
40

100
200
400

1000
2000
4000

10000
20000
40000

100000

Symbol Table Entry

+---+
Link to next symbol

Symbol name, radix-50

Symbol flags byte

Symbol value

Control Section F.ntry address

Address of defining segment

Value of completion routine
+---

Symbol Table Entry Flag Word Bit Definitions

1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
5 4 3 2 1 0 9 ~ 7 6 5 4 3 2 1 0

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
I I I I I I I I I I I I I I I I I

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

0 S$YLNK

2 S$YNME

6 S$YFLG

10 SSYVAL

12 S$VCMT

14 S$YSEG

16 S$YCMP

I I I I I I I I I I +-SY$WK -weak ref. or def. C1=yes>
I I I I I I I I I +---SY$ATR-Autoload Vee ref? C1=yes)
I I I I I I I I +-----SY$LIB-Symbol def in lib? C1=yes>
I I I I I I I +-------SY$DEF-Oefinition C1=def, O=ref)
I I I I I I +---------SY$ATL-Autoload flag C1=yes, O=no)
I I I I I +-----------SV$REL-Relocation C1=rel, O=abs)
I I I I +-------------SY$GBL-Global C1=global, O=lcl>
I I I I +---------------SYSIND-Indirect C1=ind, O=def)
I I I +-----------------SYSSAB-Abs def from supPr-mode lib
I I I +-------------------SY$SUP-Super-mode def from root
I I +---------------------SYSSLB-Super-mone def C1=lib)
I +-----------------------SY$SDF-Super-mode sym decl C1=def)
+-------------------------SYSRSO-Super-mode future expansion

+---------------------------SY$SRL-Super-mode rel sym C1=rel)
+-----------------------------SYSSG8-Super-Mode GBL sym C1=GBL)

+-------------------------------SY$EXC-Exc sym from map? C1=yes>

23

TASK BUILDER INTERNAL DATA STRUCTURES

Task Builder Internal Segment Descriptor Offsets

+---+
Segment status Clow byte). High byte is reserved. 0 SSGSTS

Disk block address of segment 2 S$GBLK

RIO disk block address of segment 4 SSGBRO

R/W data disk block address of segment 6 S$GBWD

RIO data disk block address of segment 10 S$GBOD

Virtual load address of segment 1 2 S$GLDA

Length of segment in bytes 14 S5GLNG

I Link up 16 S$GUP
!---
' Link down 2n S$GDWN
!---
' Link next Clink right) 22 SSGNXT
!---
' Link previous Clink left) 24 S$GPRV
!---
' Segment name RADIX-58 26 SSGNME

Virtual address of Window Block Descriptor. 32 S$GWDP

Control Section Table list. 34 S$GCST

Read/write memory allocation in bytes 40 S$GRW

Read/only memory allocation in bytes 42 S$GRO

I Read/write data memory allocation in bytes 44 S$GRWD
!---
' Read/only data memory allocation in bytes 46 S$GROD
!---
' Number of global symbol entries in segment 50 S$GNTB
!---
' Symbol Table list. 52 SSGSTB
!---
' Count of undefined symbols within the segment 154 S$GUND

!---
' Highest virtual address in the segment 156 S$GVAD
!---
' Two-word Element Descriptor Listhead 160 SSGELT
!---

24

TASK BUILDER INTERNAL DATA STRUCTURES

Supervisor Load list C2 wds), entry count C1 wd) 162 SSGSPL

Autoload listhead C2 wds>, entry count C1 wd) 170 SSGATL

Highest physical address in se~ment 176 S$GMEM

nase virtual address of Read/Only root 200 S$GROA

Base virtual address of RIO data root 202 S$GODB

Start of segment Supervisor Mode Vectors 204 S$GSUP

Start of segment Autoload Vectors 210 S$GAUT

1---
Start of Region Descriptors 214 SSGP.EG

Start of Segment Descriptors 220 S~GSEG

Start of Window Descriptors 224 S$GWND

I Sequence allocation listhead ?30 SSGSEQ
I- -I
I I
+---+

25

TASK BUILDER INTERNAL DATA STRUCTURES

1
2
4

10
20
40

100
200
400

1000
2000
4000

1onno
20000
40000

100000

Segment Descriptor Flags Cin S$GSTS)

1 1 1 1 1 1 o o o o o o o n o o
s 4 3 ? 1 o q a 7 6 s 4 3 2 1 n

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
I I I I I I I I I I I I I I I I I
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

I I I I I I I I I I I I +-SG$GBL-Seg name is GnL (1=yes)
I I I I I I I I I I I +---SGSPHY-Seg has mem alloc C1=yes)
I I I I I I I I I I +-----SGSRES-Seg is res o'lay C1=yes)
I I I I I I I I I +-------SGSRO -Seg is read-only C1=yes>
I I I I I I I I +---------SG$MF.M-Seg in mem? CO=in memory)
I I I I I I I +-----------SGSLOD-Seg ldld in mem C1=yes>
I I I I I I +-------------SGSDSK-Seg has dsk alloc CO=yes>
I I I I I I +---------------SG$D~S-Seg desc flg (always set>
I I I I I +
I I I I +
I I I +
I I +
I +
I +
I .
+

26

TASK BUILDER INTERNAL DATA STRUCTURES

P$GSTS

Virtual Memory Page

+---+
I Link to next Page I 0 P$GNXT
!---!

3 I Page Status I Page Rel Rlk # I 2 P$GRLK
!---------------------------------------~-----------!
I 'Time' of last reference I 4 P$GTIM
!---!
I Page lock count I 6 P$GLOK
!---!
I Page Data, 512. bytes I 10 P$GTXT
+---+

n f'I n o Cl o o n
76543210

+-+-+-+-+-+-+-+-+
I I I I I I I I I
+-+-+-+-+-+-+-+-+

Page ~tatus Bits

1 I I I I I I I +-PG$WRT-Page written into
7 I I I I I I +
'• I I I I I +

1 o I I I I +
2n I I I +
40 I I +

1 oo I +
200 +

27

APPENDIX B

TASK-RESIDENT DATA STRllCTllRES

29

TASK-RESIDENT DATA STRUCTURES

Task-resident Segment Descriptor Offsets

+---+
Disk block addressCbits 11 - 0) Cl T$RALK

Virtual lo~d address of segment 2 TSRLDA

Length of segment in bytes 4 T$RLNG

Link up 6 T$RUP

Link down 1n T$RDWM

Link next 1 2 T$RNXT

Segment name C2-word radix 50) 14 T$ IHJME
- -I

I
---!

Task-resident window backpointer I 20 T$RWDP
+---+

Task-resident Segment Descriptor Flags Cin T$RALK bits 15 - 12)

1
2
4

10
20
40

100
200
400

1000
2000
4000

10000
20000
40000

100000

1 1 1 1 1 1 a o o o o o o o o o
5 4 3 2 1 0 9 A ? 6 5 4 3 2 1 0

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
I I I I I I I I I I I I I I I I I
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

I I I I I I I I I I I +
I I I I I I I I I I +
I I I I I I I I I +
I I I I I I I I +
I I I I I I I +
I I I I I I +
I I I I I +
I I I I +
I I I +
I I +
I +
I
I +-------------------------TR$LOO-Seg is loaded mem? C1=yes)
+---------------------------TR$DSK-Seg has dsk alloc C1=no)

+-----------------------------TR$MEM-Seg is in memory C1=no)
-------------------------------TR$DES-Task-res flag <always set)

30

TASK-RESIDENT DATA STRUCTURES

Task-resident Window Definition Block (WDB)

+---+
W.NAPR 1 I Window base APR I Window IO I 0 W.NID

1
2
4

10
20
40

100
200
400

1000
2000
4000

10000
2nooo
40000

100000

!---!
I Window size in 64 byte blocks. I
!---!
I Region ID I
!---!
!---!
I Length to map I
!---!
I Window status word I
!---!
I Send/Receive buffer address I
!---!
I Flags word I
!---!
I Address of Region Descriptor I
+---+

Window Definition Block Status Word Bit Definitions

1 1 1 1 1 1 o o n o n n o o o n
5 4 3 2 1 0 Q 8 7 6 5 4 3 2 1 0

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
I I I I I I I I I I I I I I I I I
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

2 W.NSIZ

4 W.NRID

10 W.NLEN

1 2 W.NSTS

14 W.NSRB

16 W.NLGH

20 W$NREG

I I I I I I I I I I +-WS.RED-Send with Read access
I I I I I I I I I +---WS.WRT-Senrl with Write access
I I I I I I I I +-----WS.EXT-Send with Extend access
I I I I I I I +-------WS.D~L-Send with Delete access
I I I I I I +---------WS.BPS-Always bypass cache
I I I I I +-----------WS.SIS-Create Super-I window
I I I I +-------------WS.RCX-Exit if no RREF$
I I I +---------------WS.MAP-Map by CRAW$ or PREF$
I I +-----------------WS.648-Define allowed alignment
I +-------------------WS.NAT-Create Att. Desc.
+--------------~------WS.RES-Map only if resident

-----------------------WS.NBP-Do not bypass cache CM+)
+-------------------------WS.RRF-Reference received

+---------------------------WS.ELW-Window eliminated
+-----------------------------WS.UNM-Window unmapped

-------------------------------WS.CRW-Window succfully created

31

Off

TASK-RESIDENT DATA STRUCTURES

1
2
4

10
20
40

100
200
400

1000
20QO
4000

10000
20000
40000

100000

Task-resident Region Definition Block CRDB)

+---+
Region Identification n R.GID

Region size in 32w blocks 2 R.GSIZ

Region name, RAOIX-50 4 R.GNAM

Region main Partition name, RADIX-SO 10 R.GPAR

Region status word 14 R.GSTS

Region protection word 16 R.GPRO
+---+

Region Definition Block Status Word Bit Definitions

1 1 1 1 1 1 o o o n o .o o o o o
5 4 3 2 1 0 9 R 7 6 5 4 3 2 1 0

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
I I I I I I I I I I I I I I I I I
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

I I I I I I I I I +-RS.RED-nead access required
I I I I I I I I +---RS.WRT-Write access required
I I I I I I I +-----RS.EXT-Extend access required
I I I I I I +-------RS.DEL-Delete access required
I I I I I I +---------RS.NEX-Region not extendible
I I I I I +-----------RS.ATT-Attach to created Region
I I I I +-------------RS.NDL-Do not mark for deletion
I I I I +---------------RS.MDL-Mark for Deletion on detach
I I I +
I I +
I +
+

+
+

-----------------------------RS.UNM-Window unmapped on detach
+-------------------------------RS.CRR-Region succfully created

32

TASK-RESIDENT DATA STRUCTURES

Autoload Vector Format

+---+
I JSR PC,@ #0 I 0 A$UTO
l----------~-------------------------~--------------1
I Address of Autoload subroutine I 2 A$ADR
1---1
I Targ~t routine Segment Descriptor address I 4 A$SGA
1---1
I Target routine Entry Point I 6 A$EPT
+---+

Supervisor-mode Vector Format

+---+
I MOVE (PC)+,-(SP) I n S$LVC
1---1
I Address of Super-mode routine entrypoint I 2 S$EPT
1---1
I CSM (PC)+ I 4 S$CSM
1---1
I Address of Completion routine in library I 6 S$CRA
+---+

33

Library Updates

BASIC, PASCAL, PortaCalc, Kermit and a Desk Top Calendar

Version: V3, October 1984

Author: Various

Submitted By: Glenn c. Everhart, Ph.O.

Operating System: P/OS, RSX-11"'1-PLtJS

Source Language: C, FORTRAN 77, "'1ACRO-ll

revision
PR0-1?.1

Other Software Required: PASCAL is not useful without the PRO
Toolkit

These diskettes contain a grab bag of several RSX-11 tools off old
RSX-11 SIG tapes, converted to RXSA format for the nEC
Professional-359 under P/OS Vl.7 or later (Maybe earlier too; no
way to test that) •

The following are provided:

PortaCalc for Professional-350 is the most powerful spreadsheet
available. This version is compatible with the VAX/VP4S version
and does essentially everything you ever wanted your spreadsheet
to do. The tutorial and manual file are supplied, and an install
file is there too, in case you want to run it from a menu.

DTC for Professional-35A is a good desktop calendar facility for
handling your calendar on the PRO. Full screen
day/week/month/year displays, appointment selection, meeting
scheduling, etc. etc.

RSX BASIC for the Professional-35A is the Michael Reese BASIC, a
full language dialect similar to BASIC PLUS.

SWEDISH PASCAL for the Professional-359 is the latest •swedish
PASCAL• compiler (updated for the new RSX versions) for the PRO.
It is a full language compiler and OTS, plus the manual. This
program is useful for those who have the PRO Toolkit so they can
build programs in PASCAL now.

PRO Kermit Vl is a full featured communications.package with host
·Versions in the public domain available for practically any host
or other Micro you ever heard of, and many you haven't. This
package allows full VT1A2 emulation, file transfer, logging and
much more and makes it totally unnecessary for you to buy
anybody's communications packages. Includes the hexify and
dehexify tools, making it possible to send even files with weird
rms attributes around and rebuild the attributes.

34

There are install command files for BASIC, OTC, PortaCalc, and
Kermit. The PASCAL kit is to be run from the PRO Toolkit, so is
not installable from a menu. The others can run under the PRO
Toolkit too; it is not necessary to go through the menu, except
maybe for Kermit, which is heavily into PRO menus.

Note: Complete documentation and sources were not included to
reduce the number of floppies. Documentation and sources
for most of the programs in this package can be found with
DECUS Program Numbers: ll-SP-18, ll-SP-47, 11-SP-~A, and
11-SP-~7.

Changes and Improvements: Cleaned up speedups for PortaCalc
BASIC. Added a couple of C tools.

Complete sources not included. Documentation on magnetic media.

Media (Service Charge Code): 5 1/4• Floppy Diskette (Jn)

Format: FILES-11

35

Keywords: Spreadsheet,
Calendars, Compilers, PASr.AL,
AASIC, Kermit
Operating System Index:
RSX-11/IAS, P/OS

November ?.~, 19A4

RSX SIG Tapes Evaluation

Version: October 1984

Author: A. Szentgali

new
11-7~5

Submitted ~y: Klaus Centmayer, TU Muenchen, ~unich, West Germany

Operating System: IAS, RSX-llM

This collection of reports is a review of programs from the nECUS
RSX Symposium Tapes. Its goal is to evaluate the programs and
their building procedures and to help users in choosing and
installing software according to their actual needs and
configuration. Testing includes building and installation .
procedure and, as far as possible, a brief run test. This report
contains the US-RSX-SIG-Tapes Spring and Fall R2 (up to now not
complete) •

The tape includes a SIG-Tape Road Map Summary as a quick
reference. It contains:

RSX-IAS US Fall'77 ••• Fall'B3, Europe'79 ••• '81
PASCAL Spring 1 80 ••• Fall'81, RT-11 Fall'79 ••• Fall'Bl
Lars Palmer + IAS-ICR collections.

This tape contains documentation only.

Media (Service Charge Code): ~0~' Magtape (MA)

Format: FILES-11

36

Keywords: Symposia Tapes -
RSX-11
Operating System Index:
RSX-11/IAS

November ?.~, 1984

revision
V-SP-?.R

Symposium Tape from the RSX SIG, Spring 1984, Cincinnati, in
V't1S/BAC~UP

Version: V2, Spring 1984

Author: Various

Submitted By: Glenn c. Everhart, Ph.D.

Operating System: IAS, RSX-110, RSX-11~, RSX-llM-PLUS, VAX/V~S

Source Language: Various

This program is the RSX, Spring 19R4, Cincinnati symposium tape
for the convenience of VMS users. It is available in either BRU
format (DECUS Program No. 11-SP-~7) or VMS/BAC~UP format at l~AA
BPI.

The following are some highlights of the tape:

Michael Reese BASIC, ATT, DEV, Force command line, DOS cross
supports, virtual disks (memory and disk resident), spreadsheet,
calendar, Runoff from Rice University, spelling checker, several
communications utilities including updates and extensions of XMITR
and DUPLEX, graphics, full Kermit distribution (as of 1/15/19R4),
BUG screen debugger for IAS, LBL Tools toys (L~X, YACC, LI~P,
RATFOR, AR, etc.), DECUS c for PR0-35A, phone list manager,
mailing list manager, sorter, HEX file mgr, Task Image Zap, and
numerous PR0-35A loadable task images and runtimes including
Swedish PASCAL, BASIC, DTC, AnalytiCalc (spreadsheet), OOT
(sources for symbolic debugger), TECO SRD, COPY, LISTRSX, and much
more. Since many of these programs are as useful on VAX as on
RSX, they are provided.

No guarantees are made as to the completeness, usability, or
quality of the programs on the tape. The material has not been
checked or reviewed and documentation may or may not be included.

Changes and/or Improvements: Some new ~ermits and a significant
PortaCalc speedup.

Complete sources not included. Documentation on magnetic media.

Media (Service Charge Code): ?.400 1 Magtape (PS)

Format: V't1S/BACKUP (Blocked at 3?.7~R)

37

Keywords: Symposia Tapes -
VMS, Spreadsheet, BASIC, RUNOFF
Operating System Index:
RSX/IAS, VAX/VMS

November ?.~, 19A4

C Language System with Native Toolkit

Version: November 1983

new
PR0-1?.4

Author: David Conroy, Robert Denny, Charles Forsythe, Clifford
Geshke and Martin Minow

Submitted By: Martin Minow

Operating System: P/OS Vl.8

Source Language: c, MACR0-11

•en is a general purpose programming language well suited for
professional usage. This nc• distribution contains a subset of
the DECUS •en programming system which includes:

A compiler for the •c" language. The entire language is
supported except for an emulated (software) floating point,
macros with arguments, bit fields, and enumerations.
A common runtime library ('standard I/O library') for ncn
programs running under the RSX-11 or RT-11 operating systems.
By using this library, ncn programs may be developed on one
operating system for eventual use on another.
An RSX-11/M extensions library allowing access to all RSX-llM
executive services.

Note: For sources and documentation manuals see DECUS No.
ll-SP-18.

Restrictions: This submission contains neither documentation nor
sources for the compiler or Run-Time Library. The •tools• are not
provided. Some functions for accessing P/OS menus are provided.

Sources not included. Very limited documentation on magnetic
media.

Media (Service Charge Code): 5 1/4• Floppy Diskette (JC)

Format: FILES-11

38

Keywords: Programming
Languages
Operating System Index:

November 12, 1984

PO/S

TAB: A Low-Overhead Data Management System for the PDP-11

version: April 1984

revision
11-5?.8

Author: R.N. Stillwell, Baylor College of Medicine, Houston, TX

Operating System: IAS V3.l, RSX-llM v2.1

Source Language: MACR0-11, FLECS

Memory Required: 28KW

This package builds a set of tasks providing a small, relatively
unsophisticated data management system in which the user can
easily define and manipulate tables of data. Tables are arrays of
rows and columns containing data in character form. Tasks are
provided to define a table, modify the format of an existing
table, update and list the contents of a table, and split and
merge tables. An interpreter for a simple language (RPT) provides
a means of writing specific applications, including report
generation and table updating: it has provision for arithmetic and
string operations, terminal interaction, file I/O, conditional and
repetitive execution, and subtasking. The 1984 release provides a
full-screen table editor on VT100-compatible terminals, and all
necessary modifications for FORTRAN-77 and RSXllM/M+ (including
subtasking). Command and batch files for building and testing the
package, and sources for the Flees preprocessor are included. A
spreadsheet application written in RPT is provided as an example.

Documentation on magnetic media.

Media (Service Charge Code): ~00' Magtape (MA)

Format: DOS-11
Keywords: .Data Base Management
Operating System Index: RSX-11/IAS

November 12, 1984

39

COMPOSE: VT2~0 Custom Character Set Generator Program

Version: Vl.A, October 1984

Author: Bob Awde, Jr., General Mills, Minneapolis, MN

Operating System: RSX-llM V4.l, RSX-llM-PLUS V2.l

Source Language: FORTRAN 77, MACR0-11

Memory Required: 15,2~4 Words

Special Hardware Required: VT200 Family of Terminals

new
11-7~~

The COMPOSE program permits you to design and automatically
generate custom character sets for the VT2AA family of terminals.
The output of COMPOSE consists of two files; a FORTRAN direct
access file that contains the character definitions in binary form
and a test file that can be •typed" at an appropriately configured
VT2~0 terminal to actually create the custom character set. An
example set of files used to generate the APL character set is
included.

Documentation on magnetic media.

Media (Service Charge Code): Write-Up (AA), Floppy Diskette
(KA), ~AR' Magtape (MA)

Format: FILES-11

40

Keywords: Utilities - RSX-11,
Terminal Management
Operating System Index:
RSX-11/IAS

November 12, 1984

Reese BASIC

Version: May 1984

Author: Frank Borger, Michael Reese Hospital, Chicago, IL

new
11-SP-7~

Operating System: IAS V3.Al and later, RSX-llM V3.2 and later

Source Language: MACR0-11

Memory Required: Various

Reese BASIC is a highly upgraded version of what used to be a
DECUS library program for DOS.

1. Full FILES-11 I/O is supported, (fixed length random access,
shared mode, etc.).

2. String functions and user defined functions are much more
flexible than in either the original version or in DEC's
BASIC-11.

3. Multi-user implementation is supported with separate pure and
impure areas (I~S and RSX-llD only).

4. Since it is an interpreter, it includes the special debugging
commands: STEP, CON and SET TRACE.

5. Although an interpreter, significant manipulation of the source
program is done to speed up operation.

~. OVERLAY and a data preserving CHAIN are also supported.
7. A clean •break" feature is implemented via the TT handler.
8. A number of BASIC-PLUS2-like features have been added

including: virtual arrays, integer and byte variables,
continued lines and IF-THEN-ELSE.

9. User written machine language subroutines are supported.
!A.The capability of SPAWNING another task is supported.

Also included on the tape are two entertainment programs,
MURPHY, which randomly produces versions of Murphy's law, and MAY,
which gives curses of the form •May the bird of happiness ••• •

Documentation on magnetic media.

Media (Service Charge Code): ~ee• Magtape (MC)

Format: DOS-11

41

~eywords: Programming
Languages, RASIC
Operating System Index:
RSX-11/IAS

October 29, 1984

''The Following are trademarks of Digital Equipment Corporation:

DEC PDT
DECnet P/OS
DECmate Professional
DECsystem-10 Rainbow
DECSYSTEM-20 RSTS
DEC US RSX
DECwriter RT
DIBOL UNIBUS
Digital logo VAX
EduSystem VMS
IAS VT
MASS BUS Work Processor
PDP

UNIX is a trademark of Bell Laboratories.

Copyright •DECUS and Digital Equipment Corporation 1984
All Rights Reserved

It 11 auumed that all articln 1ubminad 10 tha editor of thi1 n-1leti.r are with tha authors' perml11lon to publish In any DECUS
publlcation. Tha articles are the rnpon1lbillty of the authon and, therefore, DECUS, Digital Equipment Corporation, and th•
editor H1ume no respon1ibility or liability for articles or Information appearing In the document. The views herein exprei1ed are
those of the authors and do not necessarily exprn1 the views of DECUS or Digital Equipment Corporation.

~

r~~~~;~~;~~~~----------1

Please notify us immediately to guarantee con- I I I
tinuing receipt of DECUS literature. Allow up to
six weeks for change to take effect.

Change of Address
Delegate Replacement

DECUS Membership No.: -------­

Name: --------------­

Company: ------------~
Address: --------------

State/Country:-----------­

Zip/Postal Code: ----------­

Phone No.~·-------------

Mail to: DECUS - Attn: Subscription Service
249 Northboro Road. (BP02)
Marlboro, MA 01752 USA L. _________________ _____________ _.

..

'

~.'"

s: ~ ~ 0 0(0] l>coe>~ m
0 :a -r- 2 ~ c: c

mol>en Ul o :a r- en
::a~mc: o :t: P m • mc:en s: o - n
l> :a -a :a

0 s: -
o - m -a ~ ... 2 ~
..... 0 ~ 0
U'll>nz
NOC

.:... :II' en m :::. m
-a -a ::;
0 c: <, ~ n-
- m :a m

en
0
n
m
~

r
~ ~ c 3

0 -· 3 (/) gi
..... :J - · -a . -
~cn->"tl::ot" c.nc;z-o ...
c.>_-.?o~cr

Al -S::: IC ~
> CJ) ~

