

RSX Multitasker

Table of Contents

From the Fditor
Ask a Question

Introduction to the Task Builder Internals
Library Updates

W N =

34

From the Editor

This is my first issue as sole editor of the Multitasker. 1
would Like to thank Allen Watson for a year of hard work as
Multitasker co-editor. We all send AL our best wishes in his
future endeavors.

In this month's issue there is an excellent article from the
RSX development team on TKR internals. For those using FORTRAN-77,
Ask a Question may be of interest.

As always, the Multitasker is looking for articles, <columns,
suggestions, etc. from our readers. Please send submissions
directly to me at the address below.

Happy New Year!

pPominic DiNollo

Loral Electronic Systems
Engineering Computer Center
Ridge Hill

Yonkers, New York 10710

RSX MULTITASKER

Hints and Kinks

Does anyone out there know how to get around the problem of
having too many parameters on a FORTRAM "OPEN" statement ? I am
trying to open an indexed file with 7 keys, but when I FORTRAN=77
compile, I get error 11-F.

Thanks for your time and help.

Response from Ed Cetron

The solution is to increase the expression frame analyzer stack
within the compiler. Read the .cmd file for f77 build on B-2 in
the Installation Guide/Release Notes. If you make the Lline:

extsct=stack1:1160

something Llike extsct=stack1:3000
the problem should go away after you re-Llink the compiler.

RSX MULTITASKER

Introduction to the Task Builder Internals

Digital Equipment Corp.

1.0 TASK RBUILDER INTERMNALS

This appendix is a brief overview of the RSX-11M/M-PLUS Task
Builder internal operation. It assists in the maintenance of the
Task Builder as well as provides the necessary aid to the
development process. This appendix gives you a detailed
description of the basic flow of processing that the Task Builder
(TKB8) performs while generating task images, resident libraries and
shared common areas.

2.0 BASIC PHASES OF OPERATION

The operation of the Task Builder (TKBR) dis best described as
separate phases. These phases are:

o Phase 1 Initialization

o Phase 2 - Option Processing
o Phase 3 - First Module Scan
o Phase 4 - Memory Allocation

o Phase 5 - Task Image and Map File Generation

o0 Phase 6 - Symbol Table File Generation

The phases are described in detail in the following sections.

3.0 PHASE 1 - INITIALIZATION

TKB performs initialization first, which the next sections describe.

RSX MULTITASKER

3.1 Data Structures

TKB allocates data structures out of the dynamic memory area at
addresses higher than and just above the task image and initializes the
virtual memory system. The virtual memory system consists of the
dynamic memory management routines, which control the allocation and
deallocation of blocks of real memory, and the virtual memory management
routines, which manages the storage and retrieval of dynamic memory
pages on disk. Hereinafter the virtual memory system is referred to as
VMS.,

The system library routines Llisted next compose the dynamic memory
management portion of VMS. These routines are:

o S$INIDM - Initialize dynamic memory

o $RQCB - Request core block

0o SRLCB - Release core block
The virtual memory management routines make up the remaining portion of
the VMS and consist of four general classifications. They are Llisted

below with the modules that comprise each of the four categories:

- S$INIVM-Virtual memory initialization routine

o Core allocation routines

- S$ALBLK - Allocate core block
- S$GTCOR - Get core block

- SEXTSK - Extend task

- SWRPAG - Write page

o Virtual memory allocation routines
- S$ALVRT - Allocate virtual memory block
- S$ALSVB - Allocate small virtual memory block

- S$RQVCB - Request virtual ccre block

o Page management routines

- S$CVLOK - Convert to real address and lock in dynamic memory

4

RSX MULTITASKER

- $CVRL - Convert virtual address to real address in dynamic

memory
- S$RDPAG - Read virtual page into dynamic memory
- S$FNDPG - Find selected page in virtual memory
- S$WRMPG - Write-mark selected page in dynamic memory

- S$LCKPG - Lock page in dynamic memory

- SUNLPG - Unlock page in dynamic memory

When the VMS is initialized, the virtual memory management routine
$INIVM opens an unnamed work file such that when it is closed, it will
be deleted. Each time the YMS needs more space, the file is extended by
31 blocks until it reaches the theoretical maximum size of 256 blocks.

3.2 Command Line Processing

TKB obtains your input command line by means of the GCML$ directive and
parses the Lline. TKB allocates an element descriptor from dynamic
memory for each output file and stores the switches associated with that
file in an output record block associated with each of the output files.
The output record block is a unique descriptor <containing FCS related
information necessary for 1/0 operations. ;.INDEX R$SWTH The element
descriptor is 40 (decimal) bytes long and describes each output file.
In the =element descriptor at offset ESLMND, the specified file is
described in terms that are file system dependent. This information 1is
used when TKB opens and closes the file. At offset ESLNUM, TKB inserts
a -2 value if the element descriptor has been allocated for an output
file. Otherwise, . its wvalue 1is a =1 if it describes a Llibrary file
(.0LB) or it contains a value that represents the maximum number of
program sections (.PSECTs) that the 1input file (.0BJ) defines. The
offset ESLSWT contains the switch bits that are associated with input or
output files. TKB sets up and records default switch values.

3.3 Overlay Descriptor Language Processing

buring the scan of the input file, the presence of the /MP switch
governs whether or not TKB must process an overlay structure.
Non-overlaid (single-segment) and overlaid (multi-segment) tasks are
discussed n ext.

RSX MULTITASKER

3.3.1 Single Segment Task - If TKB determines that a single-segment
task is to be built, processing continues at entry-point $BLDSF where
TKB builds the filename blocks for the system Library file and the
debugging aid, if requested, and allocates an element descriptor to each
file. If the task to be built is to use D-space support and a debugging
aid, TKB <changes the filename to reflect the correct debugger, namely
ODTID.0OBJ instead of ODT.OBJ.

3.3.2 Multi-Segment (0Overlaid) Tasks - If TKB is to build multi-segment
tasks, TKB enters a sub-phase that processes the Overlay Descriptor
Language (0ODL) in three passes.

3.3.2.1 Overlaid Tasks, Sub-phase 1, Pass 1 - $MLSGO opens and reads
the .0DL file a single Lline at a time. $MLSGD checks the syntax of the
line for validity, decodes each directive and stores it in dynamic
memory for use in later processing.

3.3.2.2 Overlaid Tasks, Sub-Phase 1, Pass 2 - $MLSG1 scans
pre-processed and syntactically <correct overlay description Llines in
dynamic memory. It parses the ODL Llines and generates segment

descriptors from them. $MLSG2 creates a linked input file List for each
Line, and for each file specification it allocates an element descriptor
and builds a module name table. Fach module name table contains up to
eight modules.

3.3.2.3 Sub-Phase 1, Pass 3 - 3MLSG2 produces task segment tables from
the parsed segment descriptor previously prepared by $MLSG1 and sets the
overlay structure linkages. $MLSG2 releases 1its working storage to
dynamic memory because the overlay structure 1is no longer needed.
Processing continues at entry point $BLDSF as in single-segment tasks.

4.0 PHASE 2 - OPTIOMN PROCESSING

Option keywords drive the option processor, which consists of two
sub-phases. These are described next.

RSX MULTITASKER

4.1 Option Processing, Phase 2, Sub-Phase 1

P20PT performs the preliminary processing of each option keyword. As
P20PT decodes the option, it calls the ancillary routines to perform
octal-to-binary and decimal-to-binary conversions and stores the
converted values in the common input parameter block $PARM. P20PT then
continues further processing. If the decoded option keyword makes
reference to a shared region of any kind, the module P2LBR processes the
filespec and allocates an element descriptor to the file. P2LBR Llinks

an element descriptor and all shared region references into the element
list at the head of the list. Module P2LBR checks the specified file
for validity as a shared region reference.

If the file passes the test for validity and was built position
independent and was requested with an APR, P2LBR reads the file Llabel
block, calculates the APR bias, and updates the addresses. P2LBR then
links the Library reference into the library reference list pointed to
by $LBRHD. If the APR has not been specified, P2LBR Llinks the Llibrary
into the Llibrary reference Llist. If a non-PIC Llibrary has been
requested, P2LBR checks the base address of the Llibrary for possible
address conflicts with other libraries or the task itself.

4.2 Option Processing, Phase 2, Sub-Phase 2

The final pass for option processing occurs after the options have been
terminated by either a single slash (/) or a double slash, (//). Module
P2POP is called and its primary function is to map all referenced
libraries 1into the task's addressing space. Because the libraries are
somewhat fixed in their address windows, the APR bitmaps must be
adjusted to reflect the existence of the library or libraries. The
first pass at allocating the APRs for the libraries is done for those
libraries that are either built non-PIC or have been built PIC but
specified in the option Line with an APR. The latter is a reserved APR
assignment. The entire Llibrary Llist 1is scanned for all non-PIC or
APR-reserved libraries before APRs are assigned to any PIC Libraries.
It 1is during the post-option processing that cluster libraries are
marked as such. The significant difference between <cluster Libraries
and standard libraries is that all libraries in a cluster can share the
same address window and, therefore, the same base starting address.

5.0 PHASE 3 - FIRST MODULE SCAN

buring this major phase, TKB reads all the input modules and generates
internal symbol tables for each task segment in the allocation. As TKB
considers each segment, TKB scans the element Llist generating section
and symbol tables for that segment. The scan continues for all modules
contained in that segment. TKB resolves the element module name and
constructs the element section mapping table. The element section
mapping table contains information that links each program section seen

RSX MULTITASKER

by TKB to a file defined by an element descriptor. This is done to
provide a more efficient path through the input element list during code
output in a later phase.

5.1 Pre-Processing, Phase 3, Sub-phase 1
During this sub-phase, the subroutine $P3PRF is called from routine
STASKB. $P3PRE initializes the internal symbol tables and program
section tables with the following entries:

o Global segment names

o Global references

o Program section entries for:

- Autoload vectors - ($%$ALVC, RO, I, GBL, REL, CON)

- Supervisor-mode vectors (if requested) - ($$SLvC, RO, I,
GBL, REL, CON)

- Segment tables -
($8SGDO, R/W, D, GBL, REL, CON)
($$SGD1, R/W, D, GBL, REL, CON)
($$SGD2, R/W, D, GBL, REL, CON)

- Segment return point -

($$RTR, RO, I, GBL, REL, CON)
($$RTQ, RO, I, GBL, REL, CON)
($$RTS, RO, I, GBL, REL, CON)

- Window descriptors - ($$WNDS, R/W, D, GBL, REL, COM)

- Region descriptors - ($$RGDS, R/W, D, GBL, REL, COM)

5.2 Module Scan, Phase 3, Sub-Phase 2

puring this sub-phase, TKB initializes the overlay structure path List
by <calling $WSINI. This routine scans the overlay structure and builds
the path Llist that will be used by the virtual memory symbol table
search and 1insert routines. On output, this module sets the following
global variables:

RSX MULTITASKER
o $CRSEG ::- Real (memory) address of <current segment being
processe d

o SCRVSG ::- Virtual (disk) address of <current segment being
process ed

o $PATH ::- Address of current segment path list
On output, SWSINI has constructed the segment path list, which <contains
the following information:

o SGADR-Virtual address (disk) of the segment descriptor

o PATHF-path flag which has a wvalue relative to the current
segment being processed. The possible values are:

- PATHF = 0, current segment
- PATHF = 1, segment is up-tree

- PATHF segment is in a cotree

]
N
A}

- PATHF < 0, segment is down-tree

Entries are made in the following format:
o The current segment
o ALl entries down-tree
o ALl entries up-tree

o ALl cotree entries

Once the search path has been established for the <current segment,
processing continues after the coroutine $STIMP has set up and opened
the first module in the segment element list. TKB allocates and Links a
concatenate d module descriptor into the element Llist at the first
module. The reason for this apparent duplication of data structures 1is
for dynamic memory conservation. After this first module scan, it is no
longer necessary to keep the full file specification because the file
IDs are sufficient for later processing. For each entity in the element
list, the <called subroutine SPRCLM reads each object module, but
performs operations only on the global symhol directory (GSD) records.
With the exception of block types 0 and 6, all other block types are
ignored. 0f the block type 1 at the start of the GSHP, there are nine
sub-classifications. They are:

RSX MULTITASKER

1. Module name

2. Section name

2. Internal symbol

4, Transfer address

5. Symbol declaration

6. Program section name (.PSECT)

7. Version identification

. Virtual array storage section name (FORTRAN support)
9. Completion routine name for supervisor-mode libraries.

Upon completion of the module scan for the entire overlay structure
driven by the 1input element Llist, the final scan on the system object
library is initiated. The system object library is treated much Llike an
input module, &except that now the concatenated module descriptor is a
linked Llist, all elements pointing to the system object Llibrary file
specifier. The module $P3LBS performs the scan of this library reading
the entry point table, searching for the desired entry point name, and
then calling on $PRCLM to process the element.

6.0 PHASE 4 - MEMORY ALLOCATION

Phase 4 of the task build performs the memory and disk space allocation
for the task. This phase takes as input all the tables constructed
during Phase 3 processing. PA4MAL processes resident Llibrary and shared
common regions first followed by each segment in the allocation. P&4MAL
assigns to each control section and to all relocatable symbols in the
segment absolute addresses relative to zero in that segment. 1If the
current task wutilizes a supervisor-mode Llibrary, P4MAL wuses the
supervisor-mode Llisthead to generate the supervisor-mode vectors to
which P4MAL assigns absolute addresses relative to zero in the segment
in the same manner as for the autoload vectors. Finally, P&4MAL
allocates the disk space for the task image. 1In addition, P4MAL also
processes the unit modification table that has been set up during Phase
2 option processing by using the ASG keyword and the patch Llist that set
up by the GBLPAT and GBLDEF option keywords. From this information, TKB
calculates the task image header size and determines 1its position on
disk relative to the label block.

10

RSX MULTITASKER

6.1 Task Header Generation, Phase 4

Once P4MAL completes the memory and disk allocation, patch Llist
processing, autoload vector and supervisor-mode vector generation, P4MAL
calls module HEADR to begin writing the task image out to the disk file.
It is during this processing by HEADR that sets the various bits in both
the lLlabel and header blocks that reflect the task type. From the tables
built wup during previous ©phases, HEADR checks the address Llimits and
writes them out to disk in the label block. The Llabel block is used by
the INSTALL processing program to determine the run-time requirements of
the task, such as library requests, initial memory size requirements,
and partition assignment. Once installed, the label block is no longer
needed. After the lLabel block has been written to disk, HEADR writes
out the Llogical wunit block or blocks. There will be one LUN block if
the number of units is less than or equal to 128, or two LUN blocks for
anything over 129 up to 255. The label block layout is as follows:

0 L$BTSK - Radix 50 task name
o LSBPAR - Radix 5N task partition
o L3$BSA - Task starting virtual address

0 L$BHGY - Highest virtual address in window zero

o L$BMXV Highest task virtual address

0 L$BLDZ - Task load size (32-word blocks)

0 L$BMXZ - Task maximum size (32-word blocks)

0 L$BOFF - Task offset into partition (32-word blocks)
o L$BWND - Number of windows required (less Llibraries)
o L%BSEG - Size of resident segment descriptors

0 L$BFLG - Task flags word

0o LS$BDAT - Creation date (year, month, day)

0o L3$BLIB - Task resident Library requests

0o L$BPRI - Task priority

o vLSBXFR - Task transfer address

0 LSBEXT - Task extend size (32-word blocks)

0o L3$BSGL - Block number of segment length Llist

11

RSX MULTITASKER

0o LP$RHRB - Relative block number of header

o L$BBLK - Number of blocks in Llabel

o L$BLUN - Number of logical units

o L$BROB - Relative block number of read-only image

o L$BROL - Read-only load size (32-word blocks)

o L$BRDL - Read-only data load size (32-word blocks)

0o L$BHDB - Relative block number of data

0o L3$BDHV - Data window 1 high virtual address

o L$BDMV - Data high virtual address

o L3$BDLZ - Data load size

0o L$BDMZ - Data maximum size

0o L3BASG - Symbolic device assignments
At offset L$BLIB, HEADR places the resident library and common region
requests according to the order of specification. For RSX-11M, the
maximum number of library requests is 7 and for RSX-11M-PLUS, this
number 1is extended to 15. After HEADR writes the label block and LUN
block(s), it writes the task header block. The Executive wuses the
header block during the task's run-time, as a dynamic storage region
unique to that task. The header block contains the initial values for
the Processor Status Word, program counter and stack pointer, as well as
the addresses in the task's addressing space of any synchronous system
traps that may be wused by the task. The header block layout is as

follows:

0 HSCSP - Current SP word

o H3DSIZ - Length of header in bytes

0 HSEFLM - Address of event flags and mask word
0 H$SCUIC - Current UIC

o HSDUIC - pefault UIC

0o HS$IPS - Initial PS word

o HSIPC - Initial PC word

12

RSX MULTITASKER

o HBISP - Initial SP word

o HSODVA - ODT SST vector address

O H3$ODVL - OPT SST vector length

0o HSTKVA - Task SST vector address

o HSTKVL - Task SST vector Length

0 HSPFVA - Address of power-fail AST control block

o HS$FPVA - Address of floating point exception control block
0 HSRCVA - Address of task receive AST control block
o HSEFSV - Event flags save word

0o HSFPSA - Address of floating point save area

o HSWND - Address of task window blocks

O HSDSW - Task directive status word

o H$FSR - Address of FCS work area

0 HSFOT - Address of FORTRAN OTS work area

o HSOVLY Address of overlay run-time system work area
0 HSVEXT - Work area vector extensions
o H$SPRI - Swapping priority difference

0o HSNML Network mailbox LUN

0 H3SRRVA - Receive-by-reference AST

0o HSGARD Address of header guard word

0 HSNLUN - Number of logical units
0 HSLUM - Logical unit table

As a final step, if the task being built has memory resident overlays,
HEADR writes the segment load list, which contains the length of each
memory resident segment in the task, out to the disk file. Also, if a
user-mode I- and D-space task is being built, HEADR writes a second copy
of the task header out to disk in the D-space portion of the task image.
The support routines needed by the module HEADR are as follows:

13

RSX MULTITASKER

o SDSALO - Allocation of task-resident descriptors

0 SALALO - Address assignment for autoload and supervisor-mode
vecto rs

0 SSGALO - Segment physical and virtual memory allocation
o $SYALO - Absolute address assignment to relocatable symbols

0 OSDKALO - Disk space allocation for the task image

7.0 PHASE 5 - TASK IMAGE AND MAP FILE GENERATION

This phase of the task build process generates the actual image on disk.
PSMAP generates the requested map file during this phase. As P5MAP
considers each segment in the allocation, TKB scans the element Llist for
each and the scanning <continues to the end of the module Llist. TKB
performs relocation and writes the resultant text to the task image disk
file.

7.1 Task Image Generation, Phase 5, Sub-Phase 1

First, TKB searches the entire structure for the symbols that are
located 1in branches of the tree structure being built. As TKB locates
the symbols, it now resolves their addresses by the offset 4dinto the
program section $$ALVC. $S3SALVC defines the entry point in terms of an
autoload vector. Contained in the vector is a subroutine <call to the
Overlay Run-time System module AUTO ($AUTO0), the address of the segment
descriptor containing the target routine, and the address of the target
routine itself.

The scan of the segments comprising the allocation begins with the root
segment. TKB calls module STINP to set up the input stream. $PSELM
processes each object module, which resembles the function of $PRCLM,
except that $PSELM uses the object record types 3 and 4, the text record
and relocation directory records. The text record contains the actual
code generated by either MACR0-11 or one of the language processors.
The relocation directory records govern the processing of the preceding
text record and have sixteen legal commands. They are:

1. Type 1 - Internal relocation
2. Type 2 - Global relocation

3. Type 3 - Internal displaced relocation

14

RSX MULTITASKER

L., Type & - Global displaced relocation

5. Type 5 - Global additive relocation

6. Type 6 - Global additive displaced relocation
7. Type 7 - Location counter definition

8. Type 8 - Location counter modification

9. Type 9 - .LIMIT directive (MACRO-11)

10. Type 10 Sector relocation

11. Type 11 - Illegal format (Reserved)

12. Type 12 - Sector displaced relocation

13. Type 13 - Sector additive relocation

14. Type 14 - Sector additive displaced relocation
15. Type 15 - Complex relocation

16. Type 16 - Resident library additive relocation

After $PSELM scans, relocates and writes out to the disk file, sub-phase
1 processing continues with end-of-segment processing. Module PSEOS
writes the following out to the disk file: the autoload vectors,
supervisor-mode vectors, and the task-resident segment tahles for the
current segment being processed.

After TKB has traversed and output the entire overlay structure, Phase 5
continues with cluster Llibrary processing, if requested by the CLSTR
option during Phase 2 option input. Module P5CLS generates and patches
task resident segment descriptors, which describe a TKB-generated
overlay structure. From the cluster Library listhead, P5CLS creates and
writes out a dummy root segment to the disk file of the task image.
PS5CLS then traverses the overlay structures of the <clustered Llibraries
making the necessary changes to the segment descriptors, window blocks,
and region descriptors for each cluster Llibrary element. P5CLS marks
each Llibrary as such to prevent the INSTALL processing program from
flagging the clustered libraries as mapped upon installation. The only
exception is the first library din the cluster group, which is the
default Llibrary. The request for this Library 1is mapped upon
installation, the others checked against the common block directory, if
running on an RSX-11M-PLUS system, or checked against the partition Llist
for entries associated with the clustered libraries, if running on an
RSX-11M system. If any one of the requested libraries is not installed,
the task cannot be installed itself.

With the completion of cluster library processing, TKB either compresses
and closes or merely closes the task image file. 1If TKB built either a

15

RSX MULTITASKER

resident Llibrary or a multiuser task, the read-only portion of the task
image is compressed. Compression allows easier loading of the read-only
part of the image when it 1is run.

7.2 Map File Processing, Phase 5, Sub-Phase 2

A third pass over the entire overlay structure 1is necessary if a
standard map file 1is to be generated. Module PSMAP scans the switch
word and determines if a map has been requested, and if so whether it is
to be a Llong or short (default) map. If requested, the map file is
opened and the map heading is output. If the task being built has an
overlay structure, then the overlay structure is written to the map file
by module MPOLD. A scan of the overlay structure is initiated to reset
the base addresses of each section within the segment currently being
processed. If there are any undefined symbols in a segment the symbols
are written to the map file as well. There are no other error messages
that are written to the map file. Closing the map file completes Phase
5 processing.

8.0 PHASE 6 - SYMBOL TABLE FILE GENERATION

The final phase of the task build is the generation of the symbol table
file (.STBR) for the task image. It can have two forms depending on
whether the task beinag built is a shared region or a normal task with or
without a debugging aid. The differences between the two are discussed
in the following sections.

8.1 Shared Region .STB File Generation

The primary function of the .STB file is to provide a means by which the
global entry points of a shared region, either a resident Llibrary or
resident common, resolve addresses generated by subroutine calls within
a user task to the resident library or common. The format of the .STB
file is identical with that of an object record produced by either
MACRO-11 or a language processor. The file contains the same types of
records that define the values (addresses) of the entry points in the
library or common and any program sections that may be associated with
it. Two switches are associated with .STB file processing. They are
the /LI and /CO0 switches.

The use of the /LI switch suppresses the inclusion of all program
section entries 1in a position-independent resident Llibrary. This
prevents a resident library and the user task from having two ©program
sections with the same name. 1If this suppression is not done, TKB tries
to assign addresses to the program section that has been defined in the
library and is fixed in length. TKB then reports a load address out of
range error and cancels the task image file generation. 1In this case,

16

RSX MULTITASKER

the name of the first module seen in the input stream is used as the
library program section name. This ensures, with some measure of
certainty, that there is not a3 .PSECT conflict.

The use of the /CO switch builds a common, which retains all .PSECT
information. The /CO switch dis the default if /=HD and /PI are both
present.

1f the resident library is to have an overlay structure, the only
symbols that appear in the .STB file are those that have been defined in
the root of the lLibrary. 1If there are segments of the Library that
contain entry point definitions, the symbol must be forced into the root
segment through the GBLREF option. This generates an autoload vector
entry for that symbol and it is output to the .STB file in the program
section S$SALVC. In addition to these symbols, any that have been
specified by the GBLINC option are included in the .STB file.

8.2 Normal Task With Debugger .STB File Generation

I1f the task being built is to have a debugging aid, the .STB file has a
slightly different structure. If a symbolic debugging aid is specified,
the kernel of the debugger must know the addresses and names of the
symbols in the task being debugged. It must also know the overlay
structure of the task. For the debugger to maintain this information,
TKB must include some sort of one-to-one correlation between the task
image and the .STB file that describes it. The correlation is done by
an dinternal symbol definition of the task image creation date and time.
This and the <creation of internal symbol directory records on a
segment-by-segment basis are the only differences between the two types
of .STB files (task and shared region). With the <generation of this
type of .STB file TKB re-scans the entire input module Llist for each
segment.

17

APPENDIX A

TASK BUILDER INTERMAL DATA STRUCTURES

19

TASK BUILDER

| version

identification

INTERNAL DATA STRUCTURES

| Module name (title block)

| Vvirtual address of

Monitor dependent

Mapping

informati

20

Element Descriptor

10

14

20

24

ESLNXT

ESLCMT

ESLNUM

ESLIDT

ESLMOD

ESLVMT

ESLMND

Elen

TASK BUILDER INTERMNAL DATA STRUCTURES

N =

4

10

20

40
100
200
400
1000
2000
4000
10000
20000
40000
100000

1

2

4

10

20

40
100
200
400
1000
2000
4000
117000
20000
40000
100000

+ — +

[IV, B

e

Task and STR File Switches

171717171 00000000N0O00N
4321009876543 210
Lk ok Tk T S A A A e
trre e
L Bk ik Rk T T S S A R S S S Y
L1 11 I | #-xXH$SDR -/XH not allowed. (1=yes)
L1t t 1111 | +---swsALo-Chkpnt space alloc. (O=yes)
Ll +----—- SWSAC -Task is ACP (1=yes)
[T T T T O I IR T L P SWSMU -Task is multi-user (1=yes)
T O T T O A O B R SWSNS -Sends not permitted (1=yes)
T O I B B R SWSSL -Task is slaveable (1=yes)
I O O O B B B ettt SWSPM -Post-mortem dump (1=yes)
N O O N B B e e L SWSTR -Set trace bit in PS (1=yes)
Pl] 4mmmmmmmm e SWSPR -Task is privileged (1=yes)
I T T B R etk SWSPI -PIC output (1=yes)
I B B e e e L E L L e P SWSDA -/DA specified (1=yes)
I T B SWSCM -Ruild task /CM (1=yes)
| | 4=-mmmmmm e e e - SUSNH -Build task /-HD (1=yes)
| #=-—mmmmmmrmreeee SUSEA -Task uses EAE (1=yes)
e et L SWSFP -Task uses FPU (1=yes)
------------------------------- SWSCP -Task checkpointable (0=yes)
Input File Switches
171711100000 00000
46 3 2109876543210
ket T S e e S Lo -
N T T R O I O
ek et R e e et Bk ot Tt
L1111 1 | +-suscLs-Clstr Lib Elem (1=yes)
P11t 11l +---susss -/sS applied? (1=yes)
O O O I I B SWSRL -Res Lib Flem? (1=yes)
T I O T O B
T O O O O B B e SWSAL -Autoload FElement (1=yes)
| T T T I I I B T e e SWSCC -Concatenated file (1=yes)
N N N I N B B etttk SWSSUP-Supervisor-mode library
N N I N I B e et SW$SY -Super-mode vectors (1=no)
O O O I B
I I T A
| I
I B B e SWSDA -Module is debugger (1=yes)
| | #mmmmmm e e - SWSMP -Overlay map file (1=yes)
| 4o - SWSLB ~-Library file (1=yes)
DL e L L L L L L e SWSDL -File is dflt syslib (1=yes)
------------------------------- SWSMA -Include file in map (1=no)

21

TASK BUILDER INTERNAL DATA STRUCTURES

40000
100000

+ — +

Control Section Table

___ +

Link to next entry | N CSSLNK
___ |

Section name, radix 50 | 2 C3SMNE
= = = = = s e e e e e e e e e e e e .- -

I

___ |

Flags word | 6 CSSFLG
___ I

Rase address | 10 C%SBSE
___ [

Length of control section | 12 C$SLTH
___ [

Address of defining element | 14 C$SELM
___ [

Current base address | 16 C$SCUR
___ |

Length in segment | 20 Cc$SLGS
___ +

Flag Word Bit Definitions

171171110000 0000O00
S 4321098765 43210
bttt —d—t—d bttt —t—t—t—t—+

N A Y Y O A B I
S S G i S S S

Pt b1 bbb 1| +-cssATL-Autoload flag (1=yes)
1t 1Pt r 1Pt 1 11 11 | +---cssLiB-Library section (1=yes)

N N Y Y Y N BN B (TR CSSALO-Allocation (1=ovr, 0N=con)
[T T O O Y B IR S LD L L CSSIND-Indirect (1=ind, O=def)

N T T O O O A B LR L e CSSACC-Access (1=R/0, 0=R/W)

I O O O B O CSSREL-Relocatable (1=rel, 0=abs)
T T O A B B B e CS3GBL-Scope (1=global, 0=local)
I T O O I I B B CS$STYP-Type (1=data, 0=ins)

I T O O O A

I T T T A I

Frrl o+

I T B e CS3SUP-Super-mode library Section
| | | #=mmmmmmmmr e o CS$ROT-Section forced into root
I e it CS$VAS-Virtual array Sec. (1=yes)
I e CSSRES-Task-resident Sec. (1=yes)
Ll el il bl Dt CS$vVsSC-Virtual Section (1=yes)

22

TASK BUILDER INTERNAL DATA STRUCTURES

10

20

40
1090
200
400
1000
2000
4000
10000
20000
40000
100000

Symbol Table Entry

Symbol name, radix-50

| 0 SSYLNK

| 2 SSYNME

| 6 SSYFLG
| 10 ssyYvVAL
| 12 SsYCMT
| 14 SSYSEG

| 16 ssycmp

Symbol Table Entry Flag Word Rit Definitions

+

23

| SYSWK -Weak ref. or def. (1=yes)
+---SYSATR-
R SYsL1B-
#ommmm e SYSDEF-
$ommmmmem SYSATL-
$ommmmmmem oo SYSREL-
------------- SYSGRL-
$ommmmmm e SYSIND-
Fomm e SYSSAB-
bm e SY$SUP-
tmmmmmmmm e SY$SLB-
----------------------- SY$SDF-
------------------------- SY$RSO-
------------------------- SY$SRL-
SYSSGR-
SYSEXC-

Autoload VvVec ref? (1=yes)
Symbol def in Lib? (1=yes)
nefinition (1=def, O=ref)
Autoload flag (1=yes, 0=no)
Relocation (1=rel, 0=abs)
Global (1=global, 0O=Llcl)
Indirect (1=ind, 0=def)

Abs def from super-mode Llib
Super-mode def from root
Super-mode def (1=L1ib)
Super-mode sym decl (1=def)
Super-mode future expansion
Super-mode rel sym (1=rel)
Super-mode GBL sym (1=GRL)
Exc sym from map? (1=yes)

TASK BUILDER INTERNAL DATA STRUCTURES

Task Builder Internal Segment Descriptor Offsets

___ +
T Segment status (low byte). High byte is reserved. | N SSGSTS
| 37ex block address of seamenc | 2 ssesix
| %70 disk block address of seamems | 4 ssesro
| R7u dats d1ek block address of seament | sseaud
| %70 dats 9isk block address of seament |10 sseson
| “Vireosl load address of seament | 12 ssuoa
| Lomatn of seament in oyres T | 14 ssoune
e T | 16 sseup
im deun T |20 sseoun
| Link next (Link rrenny T | 22 ssonxt
| Link previons CLimk lefo T | 24 ssopav
i'éé;;éll'B;;;'EZBEQZEB """"""""""""""" | 26 ssoune
| === m o e |

| vVirtual address of Window Block Descriptor. | 32 SSGWDP
| Comtrol Section Table List. T | 34 ssecst
| == |

| Read/write memory allocation in bytes | 40 SSGRW
| Resdronly memory allocation in bytes | 2 sseo
| Read/nrite data memory alivcation in bytes | e sserwd
| Readronly data memory ailocarion in byies T | 46 ssero
| Number of aloval symbel emiries in seament | 5o ssents
| Syabol Table Lisr. | TTTTTTTTTTTmmTee | 52 ssesta
| Count of undefined symbols wisnin the seament | 154 sscumd
| Hignest virtusl sddress in the seamemt T | 156 ssovap
| Tuoword Element vescripror Uissmess | 160 ssceLt

TASK BUILDER IMTERNAL DATA STRUCTURES

| Supervisor Load list (2 wds), entry count (1 wd) | 162 S3GSPL
T T
| |
R T T
| |
| === e |
| Autoload Llisthead (2 wds), entry count (1 wd) | 170 SSGATL
| R R B R B R R
| |
I L T I
| |
| -m e mm e e eoemmmmeamenne |
| Highest physical address in segment | 176 S$GMEM
[l |
| Base virtual address of Read/Only root | 200 S3GROB
RSO SeAS R |
| Base virtual address of R/0 data root | 202 ss$GoDB
=== - |
| Start of segment Supervisor Mode Vectors | 204 S$GSUP
A
| |
ERE R L L DLt e e DL DL LD DL L DR Dl |
| Start of segment Autoload Vectors | 210 SSGAUT
A
| |
[=mmmmmm oo |
| start of Region Descriptors | 214 SSGREG
U
| |
P RS |
| Start of Segment Descriptors | 2720 SSGSER
= m m e S e e e e e oo oo
| |
RO SRR |
| start of Window Descriptors | 224 SSGUND
T
| |
[mm e e e !
| Sequence allocation listhead | 230 SSGSEQ
T L T Iy
| |
gy U g RSt +

25

TASK BUILDER INTERNAL DATA STRUCTURES

Segment Descriptor Flags (in S$GSTS)

1711717110000000000
543210087 65¢43210
kR e A S k t B TS
N Y Y Y Y O N
kR R A Lt Tk ok Tk §
T bbbl +-s68GBL-Seg
2 bbbttt rrr 1t bl I +---s6SPHY-Seg
/A I L A I B AR ST SGSRES-Seg
0T e O N et SGSRO -Seg
72 « I T I O R B B B SGSMEM-Segq
T L I I A I B e T SG3LOD-Seq
o 1o R O O R O O B B e ettt SGSDSK-Segq
0] R O I O O O B B e e SG$DES-Seg
s00 L1+
1000 | L L Lo+
2000 | I || |+
4000 |] | | +
10000 | | | +
20000 | | +
4n000 | +
100000 +

26

name is GRL (1=yes)

has mem alloc (1=yes)
is res o'lay (1=yes)
is read-only (1=yes)
in mem? (D=in memory)
ldld in mem (1=yes)

has dsk alloc (0O=yes)
desc flg (always set)

TASK BUILDER INTERNAL DATA STRUCTURES

Virtual Memory Page

___ .
T Link to next Page | 0 PSGNXT

O e | 2 esenix
T ime o et reteremee TS | 4 psarm
| Trane lock soums | TTTTTTTTTTTTTTTTmmTmomToooes | 4 pscLox
| rane vara. 317 byres TTTTTTTTTTTTTTTTTTTITTIIS | 10 pseTxT
B e e e T +

=

PGSWRT-Page written into

|

|

|
10 |
20 |
40 |
100 |
200 +

27

APPENDIX B

TASK-RESIDENT DATA STRUCTURES

29

TASK-RESIDENT DATA STRUCTURES

Task-resident Segment Descriptor Offsets

[pisk block sddress(aits 11 - 0> |0 e
| Virtusl Logs saarass of seament e
| enotn of seament in byres T |
:-:;;;‘;; ------------------------------------- ‘ 6 TSRUP
{-:;;;-;;;; ----------------------------------- } 1N TSRDWN
;-[;;;';;;; -------------------------------------- I 12 TSRNXT
| “Seament mame Cowerd redie smy L TTTTTTTTTTTTT QR
R S T

| = o m e e e e e e m e |

| Task-resident window backpointer | 20 TSRWOP
s A +

s~
ODOrN

|
|
|
l
|
|
100 |
200 |
400 |
1000 |
2000 |
4000 |
10000 | A e L L e TRSLOD-Seg is loaded mem? (1=yes)
20000 | L e Dl L L D D LDl TR$DSK-Seg has dsk alloc (1=no)
40000 | #=---m-meemme e e e TRSMEM-Seg is in memory (1=no)
100000 +#------------mmmmmm e e TRSDES-Task-res flag (always set)

30

TASK-RESIDENT DATA STRUCTURES

W.NAPR 1

-
ornNn -

20

40
100
200
400
1000
2000
4000
10000
20000
40000
100000

Task-resident

Window Definition Block (WDB)

T P T 0 wonio

T indon aiee m s Bre PleeR T |2 wnsiz
\reaton 1o TTTTTTTTTTTTTTTTTTTmmTooe | 4 w.nro

| mmmmm e | | off
| = e |

| Length to map] 10 W.NLEN

| indon states werd | TTTTTTTTTTTTTTTTTTTTTTIoTI | 12 wonsts

| Semdrneceive batter address TTTTTTTTTTTTTTTTINI | 4 wonsks
Fleee wera TTTTTTTTTTTTTTTITm o m oo |16 wnien

| “nddress ot meaiom peserimtar TTTTTTTTTTTTTTTTTTT | 20 wsnres

LY, I

+ — +

—_————e)

L
I WN -

+ — +
+ — +
+ — +

+

| WS.RED-Send
+=--=WS.WRT-Send
tmm——- WS.EXT-Send
tomm————— WS.DFL-Send
tommm - WS.BPS-Always bypass cache
e WS.SIS-Create Super-1 window
bttt WS.RCX-Exit
R ettt WS.MAP-Map by CRAWS or PREFS$
i WS.64B-Define allowed alignment
------------------- WS.NAT-Create Att.
gy WS.RES-Map only
g WS.NBP-Do not bypass cache (M+)
------------------------- WS.RRF-Reference received
--------------------------- WS.ELW-Window eliminated
----------------------------- WS.UNM-Window unmapped

with Read access

with Write access
Wwith Extend access
with Delete access

if no RREFS

Desc.
if resident

------------------------------- WS.CRW-Window succfully created

31

TASK-RESIDENT DATA STRUCTURES

Task-resident Region befinition Block (RDB)

g g g g g g g +
| Region Identification | N R.GID

et LI D LTI IR DL e D e ettt S L LTI L L |

| Region size in 32w blocks | 2 R.GSIZ
R e L D D et il |

| Region name, RADIX-50 | 4 R.GNAM
- e e e e = e e e = e = e e e e e e m e e e e m = = |

| |

R et D DL e D DS LD DD D R ity |

| Region main Partition name, RADIX-50 | 10 R.GPAR
e o

| |

Rt et e b D L DL D LDl |

| Region status word | 14 R.GSTS
e LD e R DD L e D L L L |

| Region protection word | 16 R.GPRO
g g g g gy gy g gy g +

1717111100000 00000
543210987 6543210
R S et et B
e e
R et e e e e e D
Tttt 1| +-rRS.RED-Read access required
2 bttt bbbl 1 | +---RS.WRT-Write access required
& L rrrrrrrrrr e RS.EXT-Extend access required
O N T I Y A N I B R LR L S RS.DEL-Delete access required
0 B T O T O R O O I O ittt RS.NEX-Region not extendible
o O O O B bbbt RS.ATT-Attach to created Region
e O O A I B B bbbty RS.NDPL-Do not mark for deletion
20« T I O B O O B B bbb bt RS.MDL-Mark for Deletion on detach
500 | LIl
1000 | L LT+
2000 | LIl o+
s000 | ||| o+
10000 | | | +
20000 | | +
40000 | #--==-m-mmmmmmm oo RS.UNM-Window unmapped on detach
100000 4=-----cemmem e m s e m—m e RS.CRR-Region succfully created

32

TASK-RESIDEMT DATA STRUCTURES

Autoload Vector Format

ettt TP +
| JSrR PC,a_#0 ‘ | 0 AsSuTO
| Radress of Autoload subrovtine | 2 asaor
| Taroet routine seament vescrintor address |4 asses
| Taroet routine tntry poine |6 aseer
itttk +

Rt | o
| “hadress of super-mode roviine emirypeint T |2 sseer
e wos T s
| “adrens of conpletion roatine in Liorary |6 sscrn
e e +

33

Library Updates
revision
PRO-123
BASIC, PASCAL, PortaCalc, Kermit and a Desk Top Calendar

Version: V3, October 1984

Author: Various

Submitted By: Glenn C. Everhart, Ph.D.
Operating System: P/0S, RSX-11M-PLUS
Source Language: C, FORTRAN 77, MACRO-1l1l

Other Software Required: PASCAL is not useful without the PRO
Toolkit

These diskettes contain a grab bag of several RSX-11l tools off old
RSX-11 SIG tapes, converted to RX54 format for the NEC
Professional-35A under P/0S V1.7 or later (Maybe earlier too; no
way to test that).

The following are provided:

PortaCalc for Professional-35A4 is the most powerful spreadsheet
available. This version is compatible with the VAX/VMS version
and does essentially everything you ever wanted your spreadsheet
to do. The tutorial and manual file are supplied, and an install
file is there too, in case you want to run it from a menu.

DTC for Professional-35A is a good desktop calendar facility for
handling your calendar on the PRO. Full screen
day/week/month/year displays, appointment selection, meeting
scheduling, etc. etc.

RSX BASIC for the Professional-354 is the Michael Reese BASIC, a
full language dialect similar to BASIC PLUS.

SWEDISH PASCAL for the Professional-354 is the latest "Swedish
PASCAL" compiler (updated for the new RSX versions) for the PRO.
It is a full language compiler and OTS, plus the manual. This
program is useful for those who have the PRO Toolkit so they can
build programs in PASCAL now.

PRO Kermit V1 is a full featured communications. package with host
versions in the public domain available for practically any host
or other Micro you ever heard of, and many you haven't. This

package allows full VT142 emulation, file transfer, logging and
much more and makes it totally unnecessary for you to buy

anybody's communications packages. Includes the hexify and
dehexify tools, making it possible to send even files with weird
rms attributes around and rebuild the attributes.

34

There are install command files for BASIC, DTC, PortaCalc, and
Kermit. The PASCAL kit is to be run from the PRO Toolkit, so is
not installable from a menu. The others can run under the PRO
Toolkit too; it is not necessary to go through the menu, except
maybe for Kermit, which is heavily into PRO menus.

Note: Complete documentation and sources were not included to
reduce the number of floppies. Documentation and sources

for most of the programs in this package can be found with
DECUS Program Numbers: 11-SP-18, 11-SP-47, 11-SP-Ad, and
11-SpP-A7.

Changes and Improvements: Cleaned up speedups for PortaCalc
BASIC. Added a couple of C tools.

Complete sources not included. Documentation on magnetic media.
Media (Service Charge Code): 5 1/4" Floppy Diskette (JDN)
Format: FILES-11
Keywords: Spreadsheet,
Calendars, Compilers, PASCAL,
BASIC, Kermit
Operating System Index:
RSX-11/IAS, P/0S

November 26, 1984

35

new
11-76A5

RSX SIG Tapes Evaluation

Version: October 1984

Author: A. Szentgali

Submitted By: KXKlaus Centmayer, TU Muenchen, Munich, West Germany
Operating System: IAS, RSX-11M

This collection of reports is a review of programs from the DECUS
RSX Symposium Tapes. 1Its goal is to evaluate the programs and
their building procedures and to help users in choosing and
installing software according to their actual needs and
configuration., Testing includes building and installation .
procedure and, as far as possible, a brief run test. This report
contains the US-RSX-SIG-Tapes Spring and Fall 82 (up to now not
complete).

The tape includes a SIG-Tape Road Map Summary as a quick
reference. It contains:

RSX-IAS US Fa11'77oooFall'83' Europe'79000'83

Lars Palmer + IAS-ICR collections.

This tape contains documentation only.

Media (Service Charge Code): A(A' Magtape (MA)

Format: FILES-11
Keywords: Symposia Tapes -
RSX-11
Operating System Index:
RSX-11/1IAS

November 24, 1984

36

revision

v-Sp-28
Symposium Tape from the RSX SIG, Spring 1984, Cincinnati, in
VMS/BACKUP

Version: V2, Spring 1984

Author: Various

Submitted By: Glenn C. Everhart, Ph.D.

Operating System: IAS, RSX-11D, RSX-11M, RSX-11M-PLUS, VAX/VMS
Source Language: Various

This program is the RSX, Spring 1984, Cincinnati S¥mposium tape
for the convenience of VMS users. It is available in either BRU
format (DECUS Program No. 11-SP-47) or VMS/BACKUP format at 1444
BPI.

The following are some highlights of the tape:

Michael Reese BASIC, ATT, DEV, Force command line, DOS cross
supports, virtual disks (memory and disk resident), spreadsheet,
calendar, Runoff from Rice University, spelling checker, several
communications utilities including updates and extensions of XMITR
and DUPLEX, graphics, full Kermit distribution (as of 7/15/1984),
BUG screen debugger for IAS, LBL Tools toys (LEX, YACC, LISP,
RATFOR, AR, etc,), DECUS C for PRO-35A4, phone list manager,
mailing list manager, sorter, HEX file mgr, Task Image Zap, and
numerous PRO-35@4 loadable task images and runtimes including
Swedish PASCAL, BASIC, DTC, AnalytiCalc (spreadsheet), DDT
(sources for symbolic debugger), TECO SRD, COPY, LISTRSX, and much
more. Since many of these programs are as useful on VAX as on
RSX, they are provided.

No guarantees are made as to the completeness, usability, or
quality of the programs on the tape. The material has not been
checked or reviewed and documentation may or may not be included.

Changes and/or Improvements: Some new Kermits and a significant
PortaCalc speedup.

Complete sources not included. Documentation on magnetic media.

Media (Service Charge Code): 2444' Magtape (PS)

Format: VMS/BACKUP (Blocked at 32748)
Keywords: Symposia Tapes -
VMS, Spreadsheet, BASIC, RUNOFF
Operating System Index:
RSX/IAS, VAX/VMS

November 26, 1984

37

new
PRO-124
C Language System with Native Toolkit

Version: November 1983

Author: David Conroy, Robert Denny, Charles Forsythe, Clifford
Geshke and Martin Minow

Submitted By: Martin Minow
Operating System: P/0S V1.8

Source Language: C, MACRO-11

"C" is a general purpose programming language well suited for
professional usage. This "C" distribution contains a subset of
the DECUS "C" programming system which includes:

- A compiler for the "C" language. The entire language is
supported except for an emulated (software) floating point,
macros with arguments, bit fields, and enumerations.

- A common runtime library ('standard 1/0 library') for "C"
programs running under the RSX-11] or RT-1l1 operating systems.
By using this library, "C" programs may be developed on one
operating system for eventual use on another.

- An RSX-11/M extensions library allowing access to all RSX-11M
executive services.

Note: For sources and documentation manuals see DECUS No.
11-sp-18.

Restrictions: This submission contains neither documentation nor
sources for the compiler or Run-Time Library. The "tools" are not
provided. Some functions for accessing P/0S menus are provided.

Sources not included. Very limited documentation on magnetic
media.

Media (Service Charge Code): S 1/4" Floppy Diskette (JC)

Format: FILES-11

Keywords: Programming
Languages
Operating System Index: PO/S

November 12, 1984

38

revision
11-528
TAB: A Low-Overhead Data Management System for the PDP-11

Version: April 1984

Author: R.N, Stillwell, Baylor College of Medicine, Houston, TX

Operating System: IAS V3.1, RSX-11M V2,1
Source Language: MACRO-11, FLECS

Memory Required: 28KW

This package builds a set of tasks providing a small, relatively
unsophisticated data management system in which the user can
easily define and manipulate tables of data. Tables are arrays of
rows and columns containing data in character form. Tasks are
provided to define a table, modify the format of an existing
table, update and list the contents of a table, and split and
merge tables. An interpreter for a simple language (RPT) provides
a means of writing specific applications, including report
generation and table updating: it has provision for arithmetic and
string operations, terminal interaction, file I/0, conditional and
repetitive execution, and subtasking. The 1984 release provides a
full-screen table editor on VTl40-compatible terminals, and all
necessary modifications for FORTRAN-77 and RSX11M/M+ (including
subtasking). Command and batch files for building and testing the
package, and sources for the Flecs preprocessor are included. A
spreadsheet application written in RPT is provided as an example.

Documentation on magnetic media.

Media (Service Charge Code): A0A' Magtape (MA)

Format: DOS-11
Keywords: .Data Base Management
Operating System Index: RSX-11/1IAS

November 12, 1984

39

new
11-74A0
COMPOSE: VT200 Custom Character Set Generator Program

Version: V1.4, October 1984

Author: Bob Awde, Jr., General Mills, Minneapolis, MN
Operating System: RSX-11M V4.1, RSX-11M-PLUS V2.1
Source Language: FORTRAN 77, MACRO-1l1l

Memory Required: 15,264 Words

Special Hardware Required: VT20@¢ Family of Terminals

The COMPOSE program permits you to design and automatically
generate custom character sets for the VT2d04 family of terminals.
The output of COMPOSE consists of two files; a FORTRAN direct
access file that contains the character definitions in binary form
and a test file that can be "typed" at an appropriately configured
VT24@ terminal to actually create the custom character set. An
example set of files used to generate the APL character set is

included.
Documentation on magnetic media.

Media (Service Charge Code): Write-Up (AA), Floppy Diskette
(XA), 664" Magtape (MA)

Format: FILES-11

Keywords: Utilities - RSX-11,
Terminal Management

Operating System Index:
RSX-11/1AS

November 12, 1984

40

new
11-SpP-7?
Reese BASIC

Version: May 1984

Author: Frank Borger, Michael Reese Hospital, Chicago, IL
Operating System: IAS V3.1 and later, RSX-11M V3,2 and later
Source Language: MACRO-11

Memory Required: Various

Reese BASIC is a highly upgraded version of what used to be a
DECUS library program for DOS.

1. Full FILES-11 I/0 is supported, (fixed length random access,
shared mode, etc.).

2. String functions and user defined functions are much more
flexible than in either the original version or in DEC's
BASIC-11.

3. Multi-user implementation is supported with separate pure and
impure areas (IAS and RSX-11D only).

4, Since it is an interpreter, it includes the special debugging
commands: STEP, CON and SET TRACE.

5. Although an interpreter, significant manipulation of the source
program is done to speed up operation.

6. OVERLAY and a data preserving CHAIN are also supported.

7. A clean "break" feature is implemented via the TT handler.

8. A number of BASIC-PLUS2-like features have been added
including: virtual arrays, integer and byte variables,
continued lines and IF-THEN-ELSE,

9. User written machine language subroutines are supported.

14.The capability of SPAWNING another task is supported.

Also included on the tape are two entertainment programs,
MURPHY, which randomly produces versions of Murphy's law, and MAY,
which gives curses of the form "May the bird of happiness..."
Documentation on magnetic media.

Media (Service_Charge Code): AGBGB' Magtape (MC)

Format: D0OS-11
Keywords: Programming
Languages, BASIC
Operating System Index:
RSX-11/1IAS

October 29, 1984

41

“The Following are trademarks of Digital Equipment Corporation:

DEC PDT
DECnet P/0OS
DECmate Professional
DECsystem-10 Rainbow
DECSYSTEM-20 RSTS
DECUS RSX
DECwriter RT

DIBOL UNIBUS
Digital logo VAX
EduSystem VMS

IAS vT
MASSBUS Work Processor
PDP

UNIX is a trademark of Bell Laboratories.

Copyright ® DECUS and Digital Equipment Corporation 1984
All Rights Reserved

It is assumed that all articles submitted to the editor of this newsletter are with the suthors’ permission to publish in sny DECUS
publication. The articles are the responsibility of the authors and, therefore, DECUS, Digitsl Equipment Corporation, and the
editor assume no responsibility or liability for articles or information appearing in the document. The views herein expressed are
those of the suthors and do not necessarily express the views of DECUS or Digital Equipment Corporstion.

