
RSX

MULTI-TASKER

JUNE 1985

RSX MUL TIT ASKER

Table of Contents

From the Editor 1
SIG News 2
The RSX System Manager 2
The Bag of Tricks: MACR0-11 15
More Useful Extensions to FORTRAN 17
Recursive FORTRAN Programming 20

From the Editor

The Multitasker will undergo a format change next month. All SIG
newsletters published by DECUS will be combined into a single
monthly publication. Each SIG will have its own section. The RSX
SIG will have a monthly Multitasker "section" in the combined DECUS
newsletter.

The combined newsletter will be partially subsidized by DECUS. The
yearly subscription fee will be $35.00. All current subscribers to
the Multitasker will receive for the remainder of their
subscription the combined newsletter at no extra charge. When
renewal time arrives, the $35.00 fee will entitle the subscriber to
twelve issues of the combined newsletter which will contain
material from all SIGs (based on their publication schedule). As
stated, the RSX SIG will continue to publish material monthly.

Since many people subscribe to more than one newsletter, the
combining of newsletters will save many for most.

The procedure to contribute to the Multitasker remains the same.
Machine readable copy can be sent to DECUS or directly to me at the
address below. All media will be returned. I can accept the
following media and formats:

Magnetic Tape: 800, 1600, 6250 BPI - PIP, BRU, FLX

Floppy Disk:

TU58 Tape:

1600, 6250 BPI - VMS BACKUP

RXOl, RX02 - ODS-1, ODS-2

Dominic DiNollo
Loral Electronic Systems
Engineering Computer Center
Ridge Hill
Yonkers, New York 10710

(914) 698-2500 ext. 2210

1

RSX MULTITASKER

SIG News

Nominations for the RSX SIG Executive Committee

The RSX SIG Executive Committee consists of five elected members,
three appointed members, a representative from the DECUS staff and
a representative from the RSX Product Management. Nominations are
now open for the five elected positions. RSX SIG members may be
nominated for the elected positions by submission of a petition
containing the nominee's name and address. The petition must be
signed by at least five RSX SIG members. Please submit any
nominations to:

Elizabeth Bailey
Tennessee Valley Authority
222 CEB
Muscle Shoals, Ala., 35660

Nominations should be received by August lst.

A ballot containing a brief summary of each candidate's
qualifications and a photograph of each candidate will be mailed to
all members of the RSX SIG in August or September. The new members
of the executive committee will be announced at the fall OECUS
symposium. The term of office is two years, with the new committee
members assuming office on January 1st.

The RSX System Manager

Undeleting RSX Files and File Security

In last month's column, there was one issue regarding undeleting
files I neglected to mention. In particular, the UNO program
performs no file protection checks when a file is recovered.

This can pose some serious system security problems when UNO is
permanently installed. Specifically, non-privileged users can
effectively resurrect any deleted file, including restricted files
(e.g., MAIL files). There are two approaches to remedy this

2

RSX MULTITASKER

problem, if your system deals with sensitive information.

First, don't install UND. Since the program is privileged, it
cannot be invoked (installed) by non-privileged users. This is
probably the most satisfactory solution, since it may be unwise to
allow any user to try and undelete his/her files. The disadvantage
is that a system manager or system programmer with privileged
access will have to be located when a file needs to be recovered.

Second, UND can be modified to check the file protection bits in
the file header of a deleted file, and disallow recovery of a file
which does not have read access allowed to the user who invoked
UND. This is the more general solution, but I know of no
implementation at this time.

Some Useful Print Despooler Modifications

The main topic this month deals with modifications to the
RSX-llM/M-Plus line printer despooler task, LPP, that we have made
over the years at USGS.

Since LPP is a privileged task, and the modifications discussed
here can potentially corrupt or crash a running system, the United
States Geological Survey, DECUS, Digital Equipment Corporation, and
I disclaim any and all responsibility for the correctness or
reliabilty of the modifications discussed herein. (Of course, I
would like to be notified of any errors.) The modifications
discussed here apply to RSX-llM-Plus Version 2.1 and RSX-llM
Version 4.1.

Following brief descriptions of the modifications are the .COR
files and the commands for incorporating the modifications into
RSX-llM-Plus, followed by the .PAT files and commands for
incorporation under RSX-llM. Be sure to follow the appropriate
instructions for your system.

Modification 1: Customized Flag Page Headings

Many requests dealing with the print spooler are for modifying the
text that appears in the "corners" of the job and file flag pages.
As distributed, these headings are composed of the ASCII string
"01234567 ..• " and the name of the operating system.

Modifying and customizing the flag page headings is
straightforward. The strings used for these headings
input to the System Library routine, $EDMSG, to
informational lines on the flag pages. These strings
in two modules: JBINI (for job flag pages) and FLIN!

3

relatively
are used as
format the
are located

(for file

RSX MULTITASKER

flag pages). For M-Plus systems, one can modify the MACR0-11
source files for these modules in UIC [121,10) on the distribution
disk, reassemble and relink LPP. For RSX-llM, the object files for
these routines must be patched with alternative strings.

Another desirable modification deals with narrow forms. LPP
normally chops off the left part of the left header string (TXTFMT)
when the output is going to a narrow printer. With the addition of
a substitute string (SHFMT), an abbreviated header string can be
used instead. When modified, the SHFMT string will be used if the
buffer size of the output device is less than 132 characters.

The length of these strings can vary slightly, but remember that
you have 132 columns at most to work with. The headers we use have
the following lengths:

TXTFMT (Left side)
SHFMT (Left side)
ENDFMT (Right side)

42 characters
17 characters
22 characters

Since you will want to put your own flag page headings into the
despooler, the .COR and .PAT files contain the strings we use at
USGS, to serve as an example. You will probably have to do some
experimenting with these strings.

Modification 2: Checking for Bad Filetypes

It's amazing how fast a box of printer paper disappears when a task
image file is spooled to the printer. At USGS, we grew tired of
reminding our users about the dangers of a wildcard PRINT command,
when non-text files would be spooled along with everything else.

In the FILPRO module of LPP, the next file to be printed is
prepared for spooling. This module has been modified so that a
check is performed to reject files with particularly nasty
filetypes. Obvious filetypes that should be rejected out-of-hand
are .TSK, .OBJ, and .OLB. Since different systems may have
additional data types which should not be allowed, the correction
to FILPRO is driven off an expandable table.

When a file is found to be among the class of illegal filetypes,
LPP will still print the job and file flag pages, but will follow
with an error message on both the printer and the console terminal
with an error code of -40 (illegal record size). The print job
will continue normally if more files remain to be printed.

When adding
all files
workaround,
a different

filetypes to the illegal filetype table, remember
with that filetype will be rejected. The

once the patch is installed, is to copy the file
filetype.

4

that
only

using

RSX MULTITASKER

Modification 3: Console Logging of Print Jobs

There are many advantages to keeping a running log of print jobs on
the console terminal. A system manager may want to locate the
person who left the line printer offline, or it may be desirable to
have a record of users who make heavy use of the printer.

Modifying LPP to print a message on the console after each print
job turns out to be relatively easy. For M-Plus systems, the user
and jobname of each print job is saved in a buffer in the root
segment: for llM systems (and in some cases in M-Plus),
information needs to be collected and saved when the job is
started. Modifications to the JBINI and JOBEND modules, and a
modification to the [l,20)LPPBLD.BLD file accomplishes this
function. The modification to LPPBLD.BLD, which in turn modifies
[l,24)LPPBLD.ODL, is required to bring a console logging routine
into the overlay segment containing the JOBEND routine.

The console message consists of a time stamp, the jobname, the user
or account name, and the name of the printer device.

How to Incorporate the Modifications

To incorporate all of the modifications described above, simply
follow all of the steps outlined for your system type (llM or
M-Plus). If you wish to incorporate only one or two modifications,
use the following table to determine which LPP modules you will
have to modify:

Custom Flag Pages
Filetype Checks
Console Logging

FI LP RO

x

FLINI

x

JBINI JOBEND LPPBLD

x

x x x

Try to use the RSX UIC conventions for patching and correcting
system components. Correction files should be placed in [*,40)
directories. Be sure to create a new version of the LPP object
library to work on, and use PIP to protect the original copies of
the source and object files.

* * * * * Corrections for RSX-llM-Plus LPP Despooler * * * * *

Correction file [121,40)FILPRO.COR:

FILPRO.MAC:2/AU/-BF=[l21,10)FILPRO.MAC:l
-/.IDENT/, •

• IDENT /l.04A/
-/VERSION/,.
: VERSION l.04A

5

RSX MULTITASKER

-/LOCAL ••• DATA/
-/DELETE/

Illegal filetype table.
This table contains filetypes whose files typically drive
printers crazy (e.g., any non-text file). The table can
be extended to any length, as long as it is terminated by
a null word.

I LLTAB: • RAD SO
.RADSO
.RADSO
.WORD

-/LOA:/
-/N.FTYP(Rl)/+l

MOV
20$: TST

BEQ
CMP
BNE
MOVB
SEC
BR

30$:
I

/TSK/
/OBJ/
/OLB/
0

Don't print .TSK files
Don't print .OBJ files
Don't print .OLB files
Terminate the list

#ILLTAB,RS Get illegal file types
(RS) Reached end of table?
30$: If eq yes - file passes
(RS)+,N.FTYP(Rl) ; Is this file a no-no?
20$ If ne no, try next one
#IE.RBG,F.ERR(RO) ; Return bad record size

Set error return
LOADED And finish

Reference label

Correction file [121,40]FLINI.COR:

FLINI.MAC;2/AU/-BF=[l21,10]FLINI.MAC;l
-/. IDENT/, •

• IDENT /03.0lA/
.ENABL LC

-/TXTFMT:/,/.ENDC/

; The following appears on the left side of the banner header.
; This must be ASCIZ and should end with "%4S"

TXTFMT: .ASCII /*** National Strong Motion Data Center ***/
.ASCIZ /%4S/

The following alternate to TXTFMT is used on narrow forms.
This must be ASCIZ and should end with "%48"

SHFMT: .ASCII /*** N S M D C ***/
.ASCIZ /%4S/

-/ENDFMT:/,/SPCFD:/

The following appears on the right side of the banner header.
; It must be .ASCIZ and should begin with "%2S"

6

RSX MULTITASKER

ENDFMT: .ASCII /%2S/
.ASCIZ /Menlo Park, California/

: The following strings are lower case equivilents of
: standard LPP flag page strings

COPFMT: .ASCIZ
DELFMT: .ASCIZ
NOT: .ASCII
SPCFD: .ASCII
-/#RSXFMT/,.

/Copy %D of %D/
/Deletion %VA/
/not I
/specified/

MOV #SHFMT,Rl :Shorten the line - small printer
I

Correction file [12l,40]JBINI.COR:

JBINI.MAC:2/AU/-BF=[l2l,l0]JBINI.MAC:l
-/.!DENT/, •

• !DENT /02.0lA/
.ENABL LC

-/TXTFMT:/,/MNYFMT:/

: The following appears on the left side of the banner header.
: Note that this must be an .ASCIZ string and should end with
: "%4S"

TXTFMT: .ASCII /*** National Strong Motion Data Center ***/
.ASCIZ /%4S/

The following alternate to TXTFMT is used on narrow forms.
It too, must be .ASCIZ and should end with "%4S"

SHFMT: .ASCII /*** N S M D C ***/
.ASCIZ /%48/

The following appears on the right side of the banner header.
It must be .ASCIZ and should begin with "%3S"

ENDFMT: .ASCII /%3S/
.ASCIZ /Menlo Park, California/

The following are upper/lower case equivalents of the
standard banner page information lines.

TIMFMT: .ASCIZ /%3S%Y%3S%3Z/

JOBFMT: .ASCIZ /%VA%3R - Limit:%D pp./
NOL IM: .ASCIZ /%VA%3R - No page limit/

FORYES: .ASCIZ /Form #%D - %D lines per page/
FORNO: .ASCIZ /Form #%D - Normal hardware forms/
IMPYES: .ASCIZ /Form feed implied after %D lines/

7

RSX MULTITASKER

IMPNO: .ASCIZ /No implied form feed/
FILFMT: .ASCIZ /%X/
FIDFMT: .ASCIZ "/FI:%P:%P"
MNYFMT: .ASCIZ /Job contains %D filespecs/

; The following three lines are required if console
; logging of print jobs will be performed.

SAVSTR: .ASCIZ /%l0<%VA%l0>%6A/
.EVEN

SAVARG: .BLKW 3

-/#RSXFMT/,.
MOV #SHFMT,Rl

-/70$:/
Narrow forms - shorter line

The following code saves the account and jobname fields in
a save area in the root, which will be used later to output
a message to the console terminal

I

MOV
MOV
MOV
MOV
MOV
MOV
ADD
CALL

#SAVSTR,Rl
#FLBUF,RO
#SAVARG,R2
UICDSD,(R2)
R4,2(R2)
R4,4(R2)
(R2),4(R2)
$EDMSG

Get address of input string
Get save area
Get argument area
Save size of account string
Save address of account string
Copy into next word
Get address of jobname
Save it all for later

Correction file [121,40]JOBEND.COR:

JOBEND.MAC;2/AU/-BF=[l21,l0]JOBEND.MAC;l
-/. IDENT/, •

• IDENT /02.0lA/
.ENABL LC

-/.MCALL/+l
.MCALL GLUN$

$COLUN
$COEFN

-/USTP:/

GLUN: GLUN$
GLUNBF: .BLKW

2
9.

LPLUN,GLUNBF
6

Console LUN
Console event flag

; Get spooled device info
; GLUN$ buffer

; $EDMSG Input string and argument block

COARG: .WORD
.WORD
.WORD

FLBUF+lO.
GLUNBF+G.LUNA
GLUNBF+G.LUNU

Address of jobname
Address of device name
Address of device unit

RSX MULTITASKER

.WORD FLBUF ; Address of user name

COSTR: .ASCII /Print job - %6A%4S/
.ASCIZ /completed on %2A%B: User %10A/

COBUF: • BLKB

-/40$:/

I

DIR$
MOV
MOV
MOV
CALL
MOV
MOV
CALL

60.

#GLUN
#COBUF,RO
#COSTR,Rl
#COARG,R2
$EDMSG
Rl,-(SP)
#COBUF,-(SP)
$PRCO

; Console message buff er

Get output device info
Point to output buffer
Point to input string
Point to argument block
Format the output string
Push length of output string
Push beginning address
Send message to the console

Correction file [l,40]LPPBLD.COR:

LPPBLD.BLD;2/-AU=[l,20]LPPBLD.BLD;l
-/.DATA !DENT=/, •
• DATA IDENT=03.02A
- I . DAT A J : I , .
.DATA J:
• DATA Jl:

.FCTR

.FCTR
'$LI'LPP/LB:INIT:JOBSTR:JOBEND:IOPRT-Jl
'$LI'QMG/LB:PRCO

I

To incorporate these correction files into the M-Plus LPP
despooler, follow instructions in the Release Notes, or use the
following command sequence:

>SET /UIC=[l21,10] Correct source files
>SLP @[121,40]FILPRO.COR
>SLP @[121,40]FLINI.COR
>SLP @[121,40]JBINI.COR
>SLP @[121,40]JOBEND.COR
>SET /UIC=[l21,24] ! Assemble sources
>MAC FILPRO=[l,l]EXEMC/ML,[ll,lO]RSXMC/PA:l,[121,lO]FILPRO
>MAC FLIN! =[l,l]EXEMC/ML,[ll,lO]RSXMC/PA:i,[i21,l0]FLINI
>MAC JBINI =[l,l]EXEMC/ML, [ll,lO]RSXMC/PA:l,[121,iO]JBINI
>MAC JOBEND=[l,l]EXEMC/ML,[ll,lO]RSXMC/PA:l,[121,lO]JOBEND
>SET /UIC=[l,24)
>PIP LPP.OLB/NV/CO=LPP.OLB;l ! Update library
>LBR LPP/RP/-EP=[l21,24]FILPRO,FLINI,JBINI,JOBEND
Module "FILPRO" replaced

Module "FLIN! " replaced

9

RSX MULTITASKER

Module "JBINI " replaced

Module "JOBEND" replaced

>SET /UIC=[l,20]
>SLP @[l,40]LPPBLD.COR Modify build file

Now either invoke SYSGEN to rebuild privileged tasks, or manually
modify the current .CMD and .ODL files for LPP in [1,24] and
rebuild LPP. After task building, test the new version of LPP (be
wary of crashes!), and then replace the old version by using VMR.

* * * * * Corrections for RSX-llM LPP Despooler * * * * *

Correction file [121,40]FILPRO.PAT:

.TITLE FILPRO

.ENABL LC

Original file checksum: 042135
Correction file checksum: (depends on filetype table)

Check for filetypes that strictly aren't text files,
and reject them with an illegal record error.

.$ = .

. = • $

ILLTAB:

$PATB:
10$:

20$:

.!DENT /l.04A/

.PSECT

+ 410
JMP SPATB Go check for illegal filetypes

.PSECT $PATBD,RO,D

.RADSO /OBJ/ Table of illegal f iletypes

.RADSO /TSK/

.RADSO /OLB/

.WORD 0 Terminate table with a zero!

.PSECT $PATBI,RO,I

MOV
TST
BEQ
CMP
BEQ
BR

CALL

#ILLTAB,RS Point to table
(RS) End of table?
20$: If eq yes
(RS)+,N.FTYP(Rl) : Match an illegal file type?
30$ If eq yes, return with CC=i
10$ Check next entry

.FIND Lookup the file

10

RSX MULTITASKER

30$:

40$:

BR
MOVB
SEC
RETURN

40$
#IE.RBG,F.ERR(RO)

Return with .FIND status
; Return bad record size
Set CC=l
And return to caller

.END

Correction file [121,40]FLINI.PAT:

.TITLE FLIN!

.ENABL LC

Original file checksum: 016554
; Correction file checksum: (depends on header text)

.$

.

.!DENT /03.0lA/

.PSECT
=

= • $ + 236
MOV #TXTFMT,Rl Get text for left side of flag page

= • $ + 252
MOV #SHFMT,Rl Get left side text for narrow forms

= .$ + 464
MOV #ENDFMT,Rl Get right side text

.PSECT SPATAD,RW,D

.NLIST BEX

The following appears on the left side of the banner header.
This must be ASCIZ and should end with "%48"

TXTFMT: .ASCII /*** National Strong Motion Data Center ***/
.ASCIZ /%4S/

The following alternate to TXTFMT is used on narrow forms.
; This must be ASCIZ and should end with "%4S"

SHFMT: .ASCII /*** N S M D C ***/
.ASCIZ /%48/

The following appears on the right side of the banner header.
It must be .ASCIZ and should begin with "%2S"

ENDFMT: .ASCII /%2S/
.ASCIZ /Menlo Park, California/

.EVEN

.END

11

RSX MULTITASKER

Correction file [121,40]JBINI.PAT:

.TITLE JBINI

.ENABL LC

Original file checksum: 075724
Correction file checksum: (depends on string option)

Customize job flag page for site installation

.IDENT /02.0lA/

.PSECT
.$ =
INFO = .$ + 770 Routine called from patch

= • $ + 464
MOV #TXTFMT,Rl Get left side of flag page

= .$ + 500
MOV #SHFMT,Rl Get left side: narrow forms

= • $ + 672
MOV #ENDFMT,Rl : Get right side text

The following two lines are required for console logging

. = .$ + 730
CALL $PATC

.PSECT $PATAD,D,RW

Save account/job info

The following three lines are required if console
logging of print jobs will be performed.

SAVSTR: .ASCIZ /%10<%VA%10>%6A/
.EVEN

SAVARG: .BLKW 3

The following appears on the left side of the banner header.
Note that this must be an .ASCIZ string and should end with
"%4S"

TXTFMT: .ASCII /*** National Strong Motion Data Center ***/
.ASCIZ /%4S/

The following alternate to TXTFMT is used on narrow forms.
It too, must be .ASCIZ and should end with "%4S"

SHFMT: .ASCII /*** N S M D C ***/
.ASCIZ /%48/

The following appears on the right side of the banner header.
It must be .ASCIZ and should begin with "%3S"

12

RSX MULTITASKER

/%3S/ ENDFMT: .ASCII
.ASCIZ
.EVEN

/Menlo Park, California/

The following code saves the account and jobname fields in
a save area in the root, which will be used later to output
a message to the console terminal

$PATC:

.PSECT $PATCI,RO,I

CALL
MOV
MOV
MOV
MOV
MOV
MOV
ADD
CALL
RETURN

.END

INFO
#SAVSTR,Rl
#FLBUF,RO
#SAVARG,R2
UICDSD,(R2)
R4,2(R2)
R4,4(R2)
(R2) ,4(R2)
$EDMSG

Format the other lines
Get address of input string
Get save area
Get argument area
Save size of account string
Save address of account string
Copy into next word
Get address of jobname
Save it all for later
Return from patch code

Correction file [l21,40]JOBEND.PAT:

.TITLE JOBEND

.ENABL LC

Original file checksum: 112617
Correction file checksum: 044570

(MACR0-11 Version YOS.OOd)

Output message to console at end of job

.$ = •

. = • $ +

$COLON
$COEFN

GLUN:
GLUNBF:

.IDENT /02.0lA/

.PSECT

302
JMP $PATA

.PSECT $PATAD,D,RW

.MCALL GLUN$,DIR$

-- 2
-- 9.

GLUN$ LPLUN,GLUNBF
.BLKW 6

Go print message

Console LUN
Console event flag

Get spooled device info
GLUN$ buffer

; SEDMSG Input string and argument block

13

RSX MULTI TASKER

COARG: • WORD FLBUF+lO • Address of jobname
.WORD GLUNBF+G.LUNA Address of device name
.WORD GLUNBF+G.LUNU Address of device unit
.WORD FLBUF Address of user name

COS TR: .ASCII /Print job - %6A%4S/
.ASCIZ /completed on %2A%B: User %10A/

COBUF: .BLKB 60. ;
.EVEN

.PSECT $PATAI,I,RO

$PATA:: DIR$ #GLUN
MOV #COBUF,RO
MOV #COSTR,Rl
MOV #COARG,R2
CALL $EDMSG
MOV Rl,-(SP)
MOV #COBUF,-(SP)
CALL $PRCO
RETURN
.END

Correction file [l,40]LPPBLD.COR:

Console message buffer

Get output device info
Point to output buffer
Point to input string
Point to argument block
Format the output string
Push length of output string
Push beginning address
Send message to the console
Return from JOBEND

LPPBLD.BLD;2/-AU=[1,20]LPPBLD.BLD;l
-/.DATA J: I'.
.DATA J:
• DATA Ji:
I

.FCTR

.FCTR
'$LI'LPP/LB:INIT:JOBSTR:JOBEND:IOPRT-Jl
'$LI'QMG/LB:PRCO

To incorporate the changes, follow the instructions in the Release
Notes for performing object level modifications to system
components, or use the following command sequence as a guide:

>SET /UIC=[l2l,24]
>MAC FILPRO.POB=[121,40]FILPRO.PAT ! Assemble patches
>MAC FLINI .POB=[l21,40]FLINI .PAT
>MAC JBINI .POB=[l21,40]JBINI .PAT
>MAC JOBEND.POB=[l21,40]JOBEND.PAT
>LBR FILPRO.OBJ;l=[l,24]LPP;l/EX:FILPRO Extract originals
>LBR FLINI .OBJ;l=[l,24]LPP;l/EX:FLINI
>LBR JBINI .OBJ;l=[l,24]LPP;l/EX:JBINI
>LBR JOBEND.OBJ;l=[l,24]LPP;l/EX:JOBEND
>PAT FILPRO.OBJ;2=FILPRO.OBJ;l/CS:042135,FILPRO.POB
>PAT FLINI .OBJ;2=FLINI .OBJ;l/CS:016554,FLINI .POB
>PAT JBINI .OBJ;2=JBINI .OBJ;l/CS:075724,JBINI .POB
>PAT JOBEND.OBJ;2=JOBEND.OBJ;l/CS:ll2617,JOBEND.POB/CS:44570
>SET /UIC= [l, 24]

14

RSX MULTITASKER

>PIP LPP.OLB/NV/CO=LPP.OLB:l ! Update library
>LBR LPP/RP=[l2l,24]FILPRO,FLINI,JBINI,JOBEND/-EP
Module "FILPRO" replaced

Module "FLIN! " replaced

Module "JBINI " replaced

Module "JOBEND" replaced

>SET /UIC=[l,20]
>SLP @[l,40]LPPBLD.COR Correct build file

Now either manually modify [1,24]LPPBLD.ODL and rebuild LPP, or
reinvoke SYSGEN2 to rebuild the privileged tasks. Be sure to try
out these modifications, keeping in mind that they may crash your
system. Good luck!

Please send questions, comments, ideas and submissions for this
column to the following address:

Gary Maxwell
u.s.G.S. M/S 977
345 Middlefield Road
Menlo Park, CA 94025

The Bag of Tricks: MACR0-11

Bruce R. Mitchell
Machine Intelligence and Industrial Magic

PO Box 601
Hudson, WI 54016

This column covers MACR0-11 bag-of-tricks routines, as stated in
previous issues of the Multi-Tasker. encouraged to submit their
favorite routines to the Multi-Tasker so that these useful,
interesting, or just plain bizarre tricks can be put out before the
SIG in general for the admiration and edification of all.

In this month's column, we have something which is related to the
previous processor identification routine - a routine to determine
if the host CPU posesses a floating point processor (FPP).

15

RSX MULTITASKER

Again, this routine lets those of us who do commercial coding ride
herd on persons of questionable morality who would make
unauthorized copies of our children who are out in the big cold
world. If you license a program to run on a machine with floating
point, then by damn, you can use this to make sure it runs on a
machine with floating point and nothing else.

Another use, of course, is to ensure the presence of an FPP before
starting up a mainline program which uses FPP instructions. It is
always embarrassing to have a program trap out nastily for no
apparent reason.

This routine was written using the previous processor ID routine as
a template. It should be noted that any attempt to use it with a
debugging tool such as ODT will give very, very strange results.

Because the author tends to separate data and code structures in
his programs, the labels have been made so that the data and code
can be readily separated within a single source file.

The output from TSTFPP is an integer in RO which flags the presence
or absence of an FPP. This can be used directly in the mother
program to compare against a stored value.

.SBTTL TSTFPP Test for FPP

TTTTTTTTTT sssssssss TTTTTTTTTT FFFFFFFFFF PPPPPPPPP PPPPPPPPP
TTTTTTTTTT sssssssss TTTTTTTTTT FFFFFFFFFF ppppppppp PPPPPPPPP

TT SS TT FF pp pp pp pp
TT SS TT FF pp pp pp pp
TT ssssssss TT FFFFFFFF PPPPPPPPP PPP PPP PPP
TT ssssssss TT FFFFFFFF PPPPPPPPP PPPPPPPPP
TT SS TT FF pp pp
TT SS TT FF pp pp
TT SS TT FF PP pp
TT SS TT FF pp pp
TT ssssssss TT FF PP pp

; TT ssssssss TT FF pp pp

; TSTFPP - Test Host System for Floating Point Processor

; This subroutine attempts to determine if which the host system
processor is equipped with a floating point processor (FPP option).

Inputs: None

Outputs: RO - l for no FPP, 0 for FPP present
Carry clear on success, carry set on failure

16

RSX MULTITASKER

Register dispositions: RO destroyed

Variable dispositions: TRPTBL modified

SST trap table

TRPTBL: .WORD O, 0, O, O, RSRVED, O, O, 0
TRTLEN = • - TRPTBL

Trap catcher

RSRVED: INC RO
RTT

Subroutine code

TSTFPP: CLR RO
SVTK$S #TRPTBL, #TRTLEN

: Clear the trap flag register
: Set up trapping

We shall attempt to copy the floating condition codes into the PSW

CFCC Copy floating condition codes

Clear the trap catcher and return to the caller showing success

CLR
SVTK$S

RETURN

.END

TRPTBL+8.
#TRPTBL, #TRTLEN

Clear reserved instruction vector
Clear trapping

Return to the caller without prejudice

More Useful Extensions to FORTRAN

Terry Medlin
Survey Sampling, Inc.

At our shop, we manipulate lots of direct access files. More often
than not, we need to know how many records are in the file so we
can append information or simply process the records in a loop. As
you may know, FORTRAN does not support an END= option on direct

17

RSX MULTITASKER

access reads.

The way we accomplish this is through a routine called
is treated as an INTEGER*4 function in our F77 code.
works for FIXED length FCS files that do NOT have the
attribute. An example FORTRAN shell would be:

c

c

INTEGER*4 LRECL
INTEGER*4 LUNRNO

OPEN(UNIT=l,NAME= •••••

LRECL=LUNRNO(1)

!NUMBER OF RECORDS
!FUNCTION

l rs THE LUN

LUNRNO which
This routine

NOSPANBLOCK

Note that if you open the file TYPE='UNKNOWN' ,ACCESS='APPEND' then
you can create the file and keep adding records via continued use
of a program.

The code for the routine follows:

;+

;-

.TITLE LUNRNO - GET NO. OF RECORDS IN A FILE

.IDENT /XOl/

FUNCTION TO GET NO. OF RECORDS IN A FILE.
RETURNS A DOUBLE WORD INTEGER IN FORTRAN

N=LUNRNO(LUN) WHERE LUN IS LOGICAL UNIT NO.

DOES NOT CURRENTLY WORK FOR FILES WITH NOSPANBLOCK SET
ONLY WORKS CORRECTLY WITH FIXED LENGTH RECORD FILES

MODIFICATION LOG

TPM 29-AUG-84

REPAIRED CODE TO RETURN 0 RECORDS RATHER THAN -1 FOR EMPTY FILE

MADE CODE USEFUL FOR VARIABLE LENGTH FILES AS FOLLOWS:
EMPTY FILES RETURNS A ZERO
NON-EMPTY RETURNS A ONE (1)

THUS CAN BE USED TO SEE IF FILE IS EMPTY FOR ALL FILES

.PSECT

.GLOBL
$$LBCD,RO,I,CON,REL
$FCHNL,$0TSV

LUNRNO::
MOV
MOV
JSR
MOV
ADD
MOV

@2 (RS), R2
@#$0TSV,R3
PC,$FCHNL
R0,R3
#14,R3
F.EFBK+2(R3),Rl

;GET LUN
;GET WORK AREA ADDRESS
;FIND FDB ADDRESS

;GET TO RSX FDB
;GET LOW ORDER COUNT

18

RSX MULTITASKER

MOV
DEC
TST
BNE
TST
BNE
TST
BNE

WE HAVE . ,
CLR
CLR
BR

10$:
ASHC
ADD
ADC
MOV
MOV
MOV
BNE

F.EFBK(R3) ,RO
Rl
RO
10$
Rl
10$
F.FFBY(R3)
10$

AN EMPTY FILE

RO
Rl
30$

#9. ,RO
F.FFBY(R3),Rl
RO
Rl,R2
RO,Rl
F.RSIZ(R3),RO
20$

:GET HIGH ORDER COUNT

SEE IF WE HAD AN EMPTY FILE
BR IF NOT

RETURN ZERO RECORDS

IF ZERO THEN WE HAVE A VARIABLE LENGTH FILE

INC
CLR
BR

20$:
INC
ASH
ASH
CALL
MOV

30$:
RETURN
.END

RO
Rl
30$

RO
#-1,RO
#1,RO
$DDIV
R2,RO

: RETURN A l

:ROUND TO EVEN WORD SIZE

Now what about files with NOSPANBLOCK. For fixed length record
files, you know how many records will be in each block except the
last. When, you open a file FORTRAN remembers the last block in
use and the byte within that block. The following routine can be
used to obtain this information and then you can calcualate yur
file size in records. Note this routine is also useful for
tracking record placement if you plan to use .POINT style access
for pseudo-direct access of variable length records.

The code follows:

:+

.TITLE FCBSIZ - ROUTINE TO SNATCH BLOCK & FCBSIZER
• !DENT /XOl/

19

RSX MULTITASKER

;-

CALL FCBSIZ (ARG1,ARG2,ARG3)
INTEGER*2 ARGl !LUN
INTEGER*4 BLOCK !LAST USED BLOCK
INTEGER*2 BYTE !BYTE POSITION IN LAST BLOCK

ARGl = FORTRAN CHANNEL NO.
ARG2 = BLOCK # WITH EOF
ARG3 = FIRST FREE BYTE

FCBSIZ::
MOV
JSR
MOV
ADD
MOV
MOV
MOV
MOV
RETURN
.END

@2 (RS) ,R2
PC,$FCHNL
RO,Rl
#12.,Rl

;SET CHNL NO.
;GET FDB IN Rl

4(R5),R4 ;2ND
F.EFBK+2(Rl),(R4)+
F. EFBK (Rl) , (R4)
F.FFBY(Rl),@6(R5)

ARG ADDR.

As you can see, FORTRAN can be made more useful and a lot more
elegant by accessing information in the FDB and by using some of
the FCS routines.

Bruce Mitchell's column on MACRO can help you understand the MACRO
side. we will try to cover some more FCS material in the future.
If you run into a snag, see if Ed's Q/A column can help.

Recursive FORTRAN Programming

Dale D. Lutes
Cessna Aircraft Company

Wichita, KS

There are many programming problems which can be greatly simplified
by using recursive subroutines. Although programming languages
which support recursive programming are available, some
installations may not have a compiler for such a language. Here is
a method for writing recursive FORTRAN routines for use on a
PDP-11. These ideas can be modified for use with other languages
and other machines.

20

RSX MULTITASKER

There are two problems to be overcome when writing recursive
routines in FORTRAN:

1. FORTRAN compilers will not allow a subroutine to call itself.

2. Because each successive call to the routine uses the same
memory space for local variables, intermediate results will be
lost for all but the final call to the subroutine.

The first problem may be solved by using an alias for the recursive
routine. For instance, if some program makes use of the recursive
subroutine CHKPAR, instead of coding the recusive call like this:

SUBROUTINE CHKPAR

CALL CHKPAR

RETURN

Write it like this:

SUBROUTINE CHKPAR

CALL CHK

RETURN

This satisfies the compiler, but we get an undefined reference for
CHK at task build time. There are two ways to establish the alias.
One is to get a copy of the memory allocation map provided by TKB
and note the address of CHKPAR. Task build again using the GBLDEF
option:

GBLDEF=chk:address of CHKPAR

This makes CHK an alias for CHKPAR as they both refer to the same
address. The second solution uses a short MACR0-11 subroutine to
define CHK:

CHK::
.TITLE
JSR
RTS
.END

CHK
PC,CHKPAR
PC

21

RSX MULTITASKER

The second method has the slight disadvantage of placing an extra
subroutine call on the stack. The first method has the
disadvantage of requiring two task builds each time the program is
modified. For large programs involving time-consuming task builds,
the second method is much more attractive.

The second problem is usually a little more difficult to solve. If
our routine, CHKPAR, includes a loop like this:

DO 100, K =l,5
IF (IARRAY(K).NE.0) CALL CHK

100 CONTINUE

and the variable K has reached, let's say 3, before CHK is called,
there is only a very slight chance that K will still be equal to 3
when CHK returns. Clearly, variables like K that should remain
unchanged by more deeply nested calls to the recursive routine must
be saved somewhere. The obvious place is on the stack. We can
write MACRO routines to push the variables on the stack and then
pop them after the recursive call. To save our variable, K, from
the previous example, we can use the following:

FROM THE MAIN PROGRAM ••.

DO 100, K =1,5
CALL PUSH (K)
IF (IARRAY(K).NE.0) CALL CHK
CALL POP (K)

100 CONTINUE

MACRO SUBROUTINE •••

.TITLE CHK
CHK:: JSR PC,CHKPAR :Make recursive call

RTS PC

PUSH:: MOV (SP)+,TEMPl :Save PUSH's return ••.
MOV (SP)+,TEMP2 : ••• address & link
MOV @2(R5),-(SP) :Push K
MOV TEMP2,-(SP) :Restore return •••
MOV TEMP1,-(SP) : ••• address & link
RTS PC

:
POP:: MOV (SP)+,TEMPl :Save POP'S return ••.

MOV (SP)+,TEMP2 : ••• address & link
MOV (SP)+,@2(R5) :Pop K
MOV TEMP2,-(SP) :Restore return ..•
MOV TEMPl,-(SP) : ••• address & link
RTS PC

TEMPl: .WORD

22

RSX MULTITASKER

TEMP2: .WORD

FORTRAN puts the contents of RS on the stack before loading it with
the address of the parameter table. The subroutine call puts the
return address on top of that. These two items must remain on the
top of the stack during pushes and pops. The previous example
temporarily stores these values at addresses TEMPl and TEMP2 then
returns them to the top of the stack after the push or pop.

The demonstration program that accompanies this article shows one
application of recursive programming. The program does the
postorder traversal of the 4-ary tree shown on the next page.
Postorder traversal means that all of a given node's children are
visited before the node itself. The tree is set up as a 16x4 array
of integers representing the four children of each of the sixteen
nodes in the tree.

The program's first action is to print a table listing the nodes
and their children. A zero in this table indicates no child on
that link. Processing of the tree begins with the call to TRAVRS
from the main program, RECURS.

TRAVRS contains a DO loop that checks each of the current node's
links in turn. If a child is found, the current node and link
number are pushed onto the stack and processing continues with the
child. When all of a node's links have been processed, that node
is visited.

The program prints the names of each of the nodes in the order in
which they are visited. If you would like to follow the program
through the series of recursive calls, uncomment the first three
write statements in the subroutine TRAVERS.

23

RSX MULTITASKER

Tree traversed by demonstration program, RECURS
NOTE: Small numbers near links indicate child number.

C===
c
c
c
c
c
c
c
c
c
c

FROM DRl: [4,120]RECURS.FTN - FORTRAN recursive programming
demonstration.

COMPILE INFO: F77 RECURS,RECURS=RECURS

TASK BUILD INFO: TKB RECURS,RECURS=RECURS,TRV

WRITTEN: DALE D. LUTES ll-MAR-85

C===
c

PROGRAM RECURS
c

24

RSX MULTITASKER

c

c

c
c

INTEGER TREE(l6,4) !4-ary tree to be traversed

DATA
l
1
1

TREE I 2, 0, 8, 12, 0, 0, 0, 0, 0, 15, 0, 0, 0, 0, 0, 0
, 3, 6, 9, 0, 0, O, O, O, 0, 0, 0, O, 0, 0, O, 0
, 4, 7,i0,13, O, O, 0, 0, 0, 0, O, O, O, O, O, 0

, 5, 0,11,14, 0, 0, 0, O, 0,16, 0, 0, O, O, O, 0/

COMMON /ALL/TREE

C ••••••• FORMAT STATEMENTS
c
10 FORMAT(2X, 5(I2, 7X))
11 FORMAT(///' NODE ', 4(3X, 'CHILD', Il))
12 FORMAT(//)
c
c
C ••••••• MAIN
c

WRITE (6,11) 1,2,3,4 !Print the tree in table format
DO 100, I=l,16

WRITE (6,10) I,(TREE(I,J), J=l,4)
100 CONTINUE

c

c
c
c

WRITE (6,12)

CALL TRAVRS(l)
END

!Begin traversal at root

C===
c
c
c
c

Recursive subroutine to do a postorder traversal of a
4-ary subtree

C===
c

c

c

c
c

SUBROUTINE TRAVRS (NODE)

INTEGER TREE(i6,4),
1 NODE

COMMON /ALL/TREE

!Global variable - see RECURS
!Node at which to begin traversal

C ••••••• FORMAT STATEMENTS
c
10
11
12
14
c
c

FORMAT('OBeginning node '
FORMl\T (5X, 'Node ' , I 2, '
FORMAT('OReturning to node
FORMAT('OVISITING ', I2)

I2)
Child I

I , I 2)

25

Il, I = I2)

RSX MULTITASKER

C ••••••• MAIN
c
C WRITE (6,10) NODE

DO 900, I=l ,4
C WRITE (6,11) NODE, I, TREE(NODE,I)

IF (TREE(NODE,I).NE.0) THEN !Non-empty subtree, traverse it
CALL PUSH(NODE,I) !Save local variables
CALL TRV (TREE(NODE,I)) !Make recursive call
CALL POP (NODE,!) !Restore local variables

C WRITE (6,12) NODE
END IF

900 CONTINUE
c

WRITE (6,14) NODE
RETURN
END

!Finished with subtrees, visit node

.. ,,

FROM DR0:[4,120]TRV.MAC - This subroutine allows TRAVRS to call itself.
Also included are routines to push/pop two integers on/from the stack.

CALLING SEQUENCE: CALL TRV (NODE)
WHERE: NODE = The single parameter normally passed in

CALL TRAVRS (NODE)

ASSEMBLE INFO: MAC TRV,TRV=TRV

WRITTEN BY: DALE D. LUTES ll-MAR-85

.. ,,

. ,
.TITLE TRV
.!DENT /031185/

TRV:: JSR
PC

PC,TRAVRS ~Process CHILD
RTS

.. ,,

CALLING SEQUENCE: CALL PUSH (Il, I2)

WHERE:

or
CALL POP (Il, 12)
Il = 1st integer variable to be pushed/popped
!2 = 2nd integer variable to be pushed/popped

.. ,, . ,
PUSH::

MOV
MOV (SP)+,TEMPl :Get return address & link register
(SP)+,TEMP2

26

RSX MULTITASKER

MOV
MOV
MOV

MOV
RTS

POP::

;

MOV
MOV
MOV
MOV

MOV
RTS

TEMPl:
TEMP2:

.END

@2(RS),-(SP)
@4(RS),-(SP)
TEMP2,-(SP)

TEMPl,-(SP)
PC

;Push PARENT on the stack
;Push INDEX on the stack
;Put return address & link on new

top of stack

MOV (SP)+,TEMPl ;Get return address & link register
(SP)+,TEMP2
(SP)+,@4(RS)
(SP)+,@2(RS)
TEMP2,-(SP)

TEMPl,-(SP)
PC

.WORD

.WORD

;Restore INDEX from the stack
;Restore PARENT from the stack
;Put return address & link on new

;top of stack

27

Printed in the U.S.A.

"The Following are trademarks of Digital Equipment Corporation"

ALL-IN-1 Digital logo RSTS
DEC Edu System RSX
DECnet IAS RT
DECmate MASS BUS UNIBUS
DECsystem-1 0 PDP VAX
DECSYSTEM-20 PDT VMS
DEC US P/OS VT
DECwriter Professional Work Processor
DIBOL Rainbow

Copyright 0 DECUS and Digital Equipment Corporation 1985
All Rights Reserved

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation or DEC US. Digital Equipment Corporation and DECUS assume
no responsibility for any errors that may appear in this document.

POLICY NOTICE TO ALL ATTENDEES OR CONTRIBUTORS "DEC US
PRESENTATIONS, PUBLICATIONS. PROGRAMS. OR ANY OTHER
PRODUCT WILL NOT CONTAIN TECHNICAL DATA/INFORMATION
THAT IS PROPRIETARY. CLASSIFIED UNDER U.S. GOVERNED BY
THE U.S. DEPARTMENT OF STATE'S INTERNATIONAL TRAFFIC IN
ARMS REGULATIONS (/TAR)."

DEC US and Digital Equipment Corporation make no representation that
in the interconnection of products in the manner described herein will
not infringe on any existing or future patent rights nor do the de­
scriptions contained herein imply the granting of licenses to utilize any
software so described or to make, use or sell equipment constructed in
accordance with these descriptions.

It is assumed that all articles submitted to the editor of this newsletter
are with the authors' permission to publish in any DECUS publication.
The articles are the responsiblity of the authors and, therefore. DEC US,
Digital Equipment Corporation, and the editor assume no responsibility
of liability for articles or information appearing in the document. The
views herein expressed are those of the authors and do not necessarily
express the views of DECUS or Digital Equipment Corporation.

[Q]
DECUS

DECUS SUBSCRIPTION SERVICE
DIGITAL EQUIPMENT COMPUTER SOCIETY
219 BOSTON POST ROAD, (BP02)
MARLBORO, MA 01752

r------------------·----·1
STATUS CHANGE

I I

I Please notify us immediately to guarantee I
continuing receipt of DECUS literature. Allow
up to six weeks for change to take effect.

I) Change of Address I

I
) Please Delete My Membership Record I

(I Do Not Wish To Remain A Member)

DECUS Membership No: _____ _
Name: ____________ _

I I I ~~;,~::y_: ====================== I
I State/Country:__________ I

I ::'.I~:·:~:::~ A_T_T_N_: -Su_b_s-cr-ip-t-io_n_S_e_rv_ic-e I
219 Boston Post Road, BP02

I Marlboro, MA 01752 I

I
USA

----------------------_ _J

Bulk Rate
U.S. Postage

PAID
Permit No. 18

Leominster, MA
01453

