1**5

%%? o :
&, *

M * STRUCTURED LANGUAGES SIG x

L_ Qs * *

” e * *

T *

0 DECUS o NEWSLETTER *

U'S CHAPTER * *

* *

*hkkkkkhkhhkhkhhkhkhkhhkkhkkkkrkrkkkhkkkkxkhkhkdkhkrkrrkrkrx

Volume 5 Number 1 April 1981

- - - - = = . e e . - e = S R - - G e G S A G - - - - —

Out with the o0ld, and in with the new:

The Structured Languages SIG now has a new chairman,
and several new people within the SIG leadership (see the
editors notes). I have decided to step down as chairman
after four 1long years and let someone with new ideas and
energy lead the SIG. I will not be dropping out of struc-
tured languages entirely, however, since I will still be
interested in the implementation of the NBS-Pascal compiler.
Over the years, I have seen the SIG evolve from a group of
people interested in just ©Pascal to a group which 1is
interested in all languages which significantly improve the
programming environment on DIGITAL computers. I am sure
that Bill will enhance the SIG more than I could have at
this time. Being a member of the U. S. DECUS Executive
Board demands more time than I have had while chairing the
SIG. If everybody gives Bill the same support they gave me
during these past years I am sure that the SIG will continue
to flourish and grow. The SIG is now one of the four 1larg-
est SIGs within DECUS. Your continued support will probably
make it the largest SIG in the next few years.

The Pascal SIG was founded during the 1976 Spring DECUS
Symposium in Atlanta. At that time I was chairman of the
Networks SIG. The Southern California Local Users Group was
heavily involved in the development of a Pascal compiler for
RSX-11D at that time. The SCLUG first started to bug DIGI-
TAL about implementing a Pascal compiler on PDP-1lls during
the 1974 Fall DECUS Symposium in San Diego. Seeing that
DIGITAL was not going to produce a Pascal compiler in the
near future, the SCLUG along with Brian Lucas at the
National Bureau of Standards modified Brian“s initial DOS
version which was implemented in something called Block
Structured Macros to run on RSX-11D and RSX-11M (we said it
didn“t work on IAS since DIGITAL was saying that what they
were doing for IAS didn“t work on RSX-11D or M). I
presented a paper on the implementation at the 1977 Spring
DECUS Symposium in Boston. The response was overwhelming.

Copyright ©. 1981 Digital Equipment Corporation
All Rights Reserved

It is assumed that all articles submitted to the editor of this newsletter are with the authors’ permission to publish iq any DECUS publicatior).
The articles are the responsibility of the authors and, therefore, DECUS, Digital Equipment Corporation, and the editor assume no responsi-
bility or liability for articles or information appearing in the document. The views herein expressed are those of the authors and do not
necessarily express the views of DECUS of Digital Equipment Corporation.

I installed the compiler on the PDP-11/60 in the demonstra-
tion room and told everybody that they could copy it off of
the system if they had a 1200° tape (the 11/60 only had a
TS03). Needless to say, the DIGITAL store sold all of their
1200° tapes and the 11/60 was busy up until the time they
put it on the truck. I then decided that there was a need
for an active Pascal SIG, handed over the reins of the Net-
works SIG to Bill Brindley (that is another story), and
resurrected the Pascal SIG. During the Boston symposium I
also had the pleasure of sitting down next to Kathleen Jen-
sen at a Pascal BOF session. When they passed around the
sign-up sheet for interest in Pascal, Kathleen signed it
first, and she just knodded knowingly to my quizical 1look
when I saw her name and made the assoeiation. Kathleen
later agreed to present a paper on Pascal entitled "Why Pas-
cal" at the 1979 Spring DECUS Symposium in New Orleans. She
was very mnervous about the presentation and wanted me to
back her up on the podium to answer any technical questions
about the Pascal language since she only wrote the users
quide and Wirth wrote the report part of her and Wirth”s
book. Since that time Kathleen has come back partially into
the world of Pascal and is presenting a series of tutorials
on Pascal. Getting back to my history of the SIG, the years
following the Boston symposium saw the Pascal SIG grow into
one of the largest SIGs withim DECUS. Many people contri-
buted to its growth. Roger Vossler and Bill Heidebrecht at
TRW were working closely with me in California as we refined
the NBS Pascal compiler. Brian Lucas joined forces with
Justin Walker at NBS and implemented a version of the com-
piler on Unix. Since they had finally given up on BSM,
switched to C, and then finally rewrote the compiler in Pas-
cal, I received a copy of their version over the ARPAmnet at
UCLA. With the help of some collegues at Hughes Aircraft, I
was able to port their version over to RSX-11D and M. Also
at this time we received the first version of the Swedish
Pascal compiler from Seved Torstendahl in Sweden (that is
why we call it the Swedish Pascal compiler). At each of the
DECUS symposia since Boston, the Pascal SIG and now the
Structured Languages SIG has compiled a SIG tape <containing
the current versions of Pascal compilers and utility rou-
tines for distribution. Bill Heidebrecht has spent many
hours at symposia copying the many tapes, all of which
started with the files on the PDP-11/60 at Boston. James
Triplett 1is now our SIG librariam, and a formal tape copy
procedure is in place. The 1200° tape has grown into two
2400° tapes containing Pascal, C, and Praxis compilers along
with numerous associated software and documentation. It has
been an immense pleasure to me to see and be a part of the
distribution of software tools to the DECUS community.
There are many other people who have helped during the years
who I have not mentioned. They know what they have done,
and many of you know as well.

As I said before, I am not dropping out of the

Structured Languages SIG. My involvement will be with the
NBS Pascal compiler on the RT-11 and Unix operating systems.
The RT-11 version of the compiler for FIS and FPP systems is
available from me on floppy disks. Just call me at (406)
243-2883) to find out how to get a copy. It will also be on
future SIG tapes for those of you who have tape drives.

I am looking forward to being able to contribute even
more to the SIG. Even though I will not be the chairman, I
will be active and waiting to see what the rest of the DECUS
community will come wup with in the future. Thank you for
your past support and interest.

John R. Barr...
From the editor:

In this 1issue of the newsletter I have 1included the
remainder of Hal Morris” article on C from the last
newsletter, a note from David O“Connor that describes an
implimentation of the “pipe” operation under RT-11, a note
from Gary Beckman who directs our RATFOR effort, and a note
from Dr. James Greenwood about the implimentation of Praxis
that he has developed at Lawrence Livermore National Labora-
tory. Please also notice the announcement from DIGITAL of
the seminar "Pascal as a Second Language". Instructors for
the seminar are Kathleen Jensen and Gil Roeder. This sem-
inar is not associated with the symposium at Miami, however,
Kathleen Jensen will present a one day seminar, "Introduc-
tion to Pascal", at Miami. Details are in your Preliminary
Program.

We are fortunate to be able to add two very good people to
our staff of newsletter editors. James Greenwood will be
the feature editor for Praxis and Jim Flournoy will be the
feature =editor for FORTH. You are encouraged to contacted
them if you have any questions, comments or articles related
to their interests. Since we have had several changes and
additions to the SIG staff I have included a complete 1list
below.

The spring symposium in Miami on May 18-21 promises to be a
very good one with a wide variety of presentations. The SIG
is sponsoring the following sessions:

Mon 2:00-3:30 Introduction to Structured Languages
3:45-4:45 Concurrent Languages Panel
4:45-5:45 Concurrent Euclid
6:30-8:30 SIMULA
8:30-9:30 NBS Pascal Report

Tue 3:45-4:45 C for Systems Programmers

Wed 3:45-4:45 PRAXIS and ADA
4:45-5:45 PRAXIS tutorial

Thu 2:00-3:00 Structured Languages SIG meeting

You can find a description of these sessions in your Prelim-
inary Program. And, don“t forget the pre-symposium seminar
on Pascal given by Kathleen Jensen. The seminar will Dbe
held on Sunday, May 17 from 9am to 5pm.

Finally, I want to pass on to you two requests that I Thave
received.

Does anyone have a C compiler which will run on the
DECSYSTEM-20? Contact:

Ron Smith

AMG Associates Inc.

1725 Jeff Davis Hyway, Suite 704

Arlington, Vr 22202

(703) 892-5600

Does anyone have a C, Pascal, or equivalent structured
language <compiler which will run under RSX-11M and generate
machine code for an 8085 microprocessor? Contact:

Bob Martin

Teradyne Central, Inc.

3368 Commercial Ave.

Northbrook, IL 60062

(312) 291-4300

structured Languages SIG

Chairman - Bill Carroll

Moore Systems

1730 Technology Drive
San Jose, CA 95110
(408) 297-9920 XP354

Librarian - James Triplett

Intermetrics, Inc.
733 Concord Avenue
Cambridge, MA 02138
(617) 661-1840

Symposia - Hal Morris

Park View at Madison, Apt. 18G
Lawrence Harbor, NJ 08879
(201) 949-7466

Newsletter - Roy Touzeau, Editor

Department of Computer Science
University of Montana
Missoula, MT 59812

(406) 243-2883

Feature Editors -

C Pascal
Steven McGeady John Barr .
2143 SE Bush Street Department of Computer Science
Portland, Oregon 97202 University of Montana
(503) 235-2462 Missoula, MT 59812

(406) 243-2883

Praxis
James Greenwood

Lawrence Livermore

National Lab
Box 5508 L-464
Livermore, CA
(415) 422-5369

RATFOR FORTH
Gary Beckman Jim Flournoy
Joint Center for Radiation Therapy Box 2455
50 Binney Street San Rafael, CA 94902
Boston, MA 02115 (213) 280-4365
Implementors -
NBS Pascal -
RSX RSTS
J. Bill Heidebrecht Brian Nelson
TRW/DSSG R2/1170 Computer Center
One Space Park University of Toledo
Redondo Beach, CA 90278 Toledo, Ohio
(213) 535-2804
RT11 Unix
John Barr John Barr
Department of Computer Science Roger Vossler
University of Montana TRW/DSSG R2/1170
Missoula, MT 59812 Justin Walker
(406) 243-2383 Interactive Systems

Gaithersburg, Maryland
(301) 963-0100

Swedish Pascal - Gerry Pellitier
Transport Canada
Place de Ville
Ottawa, Canada KIA ON8
(613) 994-2378

C - Rob Denny
Martin Minow
RATFOR - Joe Sventik
Dave Sykes

Standards - Chuck Grant
Lawrence Livermore National Laboratory
Box 5508 L-152
Livermore, CA 94550
(415) 422-3869

20760

94550

-6 -

PASCAL
as a

Second Language

WASHINGTON, D.C.
January 27 - 29, 1981
Ramada Inn
Lanham, Maryland
(301) 459-1000

DALLAS
March 25 - 27, 1981
Fairmont Hotel
Dallas, Texas
(214) 748-5454

LOS ANGELES
February 23 - 25, 1981
Del Webb's Newporter Inn
Newport Beach, California
(714) 644-1700 ext. 504

BOSTON
April 27 - 29, 1981
Marriott Hotel
Newton, Massachusetts
(617) 969-1000

Are you looking for a new
development language because
you are having problems
implementing modern structured
programming techniques?

Are your programmers asking for
a more modern language to help
them do their job better?

Is it time to invest in your
programmers’ future by training
them in a modern structured
language?

Are the costs of your software
maintenance over budget by a
factor of 2 or 3 or more?

... 0Or do you just want a good,
short but intensive, course on
Pascal?

If the answer is YES to any of the
above questions, Digital's 2-1/2-
day seminar on Pascal will be of
interest to you.

Why Pascal?

The questions have been asked,
"“Why does the computer community
need another language? And even if it
does, why Pascal?"’

PASCAL
Today’s Language
for
Structured Programming

The development of any computer
program goes through various stages
of abstraction and refinement. Pascal

was created to provide a means of
expressing these abstractions more
easily. With the current emphasis on
structured methodology and structured
programming, Pascal is an ideal
language by which to standardize your
programming methods.

The language constructs of Pascal
inherently reflect program structures
which otherwise would have to be
hand-coded. By providing a facility for
clearly expressing programming
solutions, Pascal promotes self-
documentation, thereby aiding
program readability and
maintainability. At the compiler level,
Pascal's design provides for efficient
implementation, and excellent error
detection and diagnostic capability.
The richness of the language
combined with a growing number of
excellent implementations have
promoted Pascal’'s popularity among
programmers and project leaders
alike.

Pascal aids project leaders in
cutting costs of program development
and maintenance by ailowing them to
develop a clear-cut framework of
programming standards. A recent
BusinessWeek report cites one claim
that programming in a structured
language such as Pascal ‘‘can make
programming as much as 10 times
faster and can cut the cost of software
by 30%-75%.""

As a leader in the implementation of
Pascal in the minicomputer field,
Digital presents an cpportunity for you
to learn Pascal and the benefits it can
bring to your environment.

SAN FRANCISCO
February 25 - 27, 1981
Santa Clara Marriott
Santa Clara, California
(408) 988-1500

NEW YORK
April 29 - May 1, 1981
The New York Statler
New York, New York
(212) 736-5000

MINNEAPOLIS
March 23 - 25, 1981
Radisson Downtown Hotel
Minneapolis, Minnesota
(612) 333-2181

ATLANTA
May 20 - 22, 1981
Omni International

Atlanta, Georgia
(404) 659-0000

Features

This seminar:
) Gives you an insight into why
Pascal was developed
® Teaches you all the elements of
‘‘standard’’ Pascal
(] Data structures
[] Control statements
[) Structure of a Pascal
program
Exposes you to the advantages
of using Pascal
° Inherent documentation
features
[} Ease of maintainability
[} Transportability of
programs between
systems
L) Requires you to write several
programming exercises
demonstrating the key features
of Pascal
[] Shows you how Pascal is
positioned in the computer
language spectrum

Benaefits

® You will make a 2-1/2-day
intensive investment in learning.
When you leave you'll be able to
start programming in Pascal.

® You will leave with a thorough
understanding of Pascalas a
language.

® You will be able to take
algorithms written in another
language and start re-coding
them in Pascal.

over

SEMINAR OUTLINE

Introduction to Pascal B. Subrange

A History C. Structured

B. Why Pascal? Arrays

C. Program Reading Records

1. Basic Concepts of Pascal Sets

A. The Vocabulary of Pascal Files
] Nomenclature D. User-Defined Data Types
° Symbois V. Procedures and Functions
o Delimiters A. Parameters
® Comments 8. Scope
o Identifiers C. Global vs. Local Variables

8. Standard Data Types 0. Standard Procedures and Functions

C. Operators V. Advanced Concepts

D. Constants, Variables, and Expressions A. Dynamic Variabies

E. Standard Identifiars B. Record Variants

L. Programming and Controi Flow C. Recursion

A. Structure of a Pascal Program Vil Putting It All Together

B. Declarations A. Again . . . Why Pascal?

C. Statements B. Differences between Pascal and Other
[] Simple Programming Languages
° Conditional C. Discussion

® Compound
® Repetitive
\"2 Data Types
A. Scalar

Extensions to Pascal
Status of ANSI standardization

[You will leave with a personal
set of course materials that will
be a convenient and valuable
reference when back on the job.

® You will learn how Pascal can
tacilitate the process of
establishing programming
standards for project
development.

Who Should Attend

° Professional Programmers who
want to be up-to-date on one of
the most popular structured
languages, Pascal

[] Software Project Leaders who
are considering using Pasca!l for
a project

[] Software Product Development
Managers who are planning to
use Pascal as a development
language

[] Assembly Language
Pragrammers who want to learn
a higher level language

® Microprocessor System
Designers who need an
understanding of ‘‘standard”’
Pascal on which to base
investigations into variations and
extensions

[) Anyone who is responsible for
the productivity of programmers

Programming experience is a

prerequisite for this seminar, but no

knowledge of Pascal is assumed.

Several programming exercises are

included which will provide attendees

with experience in writing Pascal.

Attendees will be given time during the
seminar to analyze assignments and
derive solutions. There will also be two
short evening assignments.

Course Materials

A copy of a leading textbook in
Pascal, '‘Pascal User Manual and
Report,” by K. Jensen and N. Wirth,
Springer Verlag, NY, 1974,

A set of Seminar Notes for future
reference.

A set of handouts of debugged
Pascal programs that are valid
solutions to the seminar exercises.

Facuity

Kathleen Jensen and Gil Roeder will
be your team of instructors during the
Pascal seminar.

Kathleen worked for Niklaus Wirth at
The Swiss Federal Institute of
Technology (ETH) in Zurich for three
years during the infancy of the Pascal
language. While at ETH, she taught
Pascal programming and co-authored
the Pascal User Manual and Report.

She also contributed to various
research projects including the Pascal
‘P Compiler.’” Currently, Kathleen is
employed by Educational Services
within Digital Equipment Corporation
where she is invoived in new project
development.

Gil is president of Retrieval
Techology, a consuiting and training
firm located in Chelmsford, MA. Gil
draws on an extensive background of
application development and system
design in several diverse industries
including newspapers and publishing,
energy, and manufacturing. In addition
to his applications experience, Gil has
been involved in intensive system
development in the areas of
communications and database
management systems.

Gil's current interests include the
design of database-oriented business
systems and the integration of
database management within
organizations. He has used Pascal
extensively in the development of
these applications.

(617)493-2858.

seminar.

REGISTRATION & CONFIRMATION

To register for Digital’'s seminar, fill out the registration form or
call the Registrar at (617)493-2858. After your reservation has
been received, you will receive a confirmation letter that will
include time schedules, hotel and meeting room locations, and
other details. If you have additional questions, please call

Early registration is recommended. However, enroliment will
remain open until two weeks before the starting date of the

Praxis Axis

James R. Greenwood

Praxis is a high-level systems implementation language designed for
control and communications programming. Praxis was developed by the
Laser Fusion Program of Lawrence Livermore National Laboratory for
control system programming on the Nova Fusion Facility. Three compilers
and substantial documentation exist and will be in the public domain.
The language project was led by Dr. J.R. Greenwood from its inception in
1978 to completion in January 198l1. Praxis represents an actual
investment of approximately $1,000,000 by LLNL over a two-year period.
The language has been in operational use at LLNL since June 1980, and is
now the standard programming language for controls applications within
the Laser Fusion program.

The compilers are written in Praxis (40,000 lines) and operate on two
processors: VAX/VMS and PDP-11/RSX-11M. The kernal of the Nova control
system written in Praxis (35,000 lines) is operational at this time.
Three compilers are operational:

VAX/VMS generating VAX code
VAX/VMS generating PDP-11 code
PDP-11/RSX-11M generating PDP-11 code

Praxis is the practice of the programming art, science, and skill. It is
a high-order language designed for the efficient programming of control
and systems applications. It is a comprehensive, strongly typed,
block-structured language in the tradition of Pascal, with much of the
power of the unavailable Ada language. Praxis supports the development
of systems composed of separately compiled modules with user defined data
types and exception handling. Also sophisticated control constructs, and
encapsulated data and routines are built into the language. Direct
access to machine facilities, efficient bit manipulation, and interlocked
critical regions are provided in the language.

Additional information is provided in the manuals listed below which are
available from NTIS or LLNL:

0 An Introduction to Praxis UCRL-52957
0 Praxis Language Reference Manual (315 pages) UCRL-15331
0 Programming in Praxis (230 pages) UCRL-5xxxx
0 Praxis Input/Output Interface Report UCRL-15xxx
0 Praxis Internals Document UCRL-15xxx

Published reports which describe the language and implementation include:

0 A Comparison of Programming Languages:
Ada, Praxis, Pascal, C UCRL-15xxx
0 A Tour through the Praxis Compiler UCRL-15xxx

The public domain versions of the compilers are being distributed
currently. Contact:

ok. J.R. Greenwood

Lawrence Livermore National Laboratory
P.0. Box 5508 L-481

Livermore, CA. 94550

(415) 422-5369

In addition negotiations are under way with some vendors to distribute,
support, and maintain the DEC compilers. In addition Praxis will be made
available under UNIX and other 16 bit micros.

In summary, the Praxis language is specifically designed to be WITHIN the
state of the art of language design yet suitable for advanced control and
systems implementation needs. Complex language features such as generic
procedures, overloading of operators, and predefined tasking have been
intentially omitted. We felt that these concepts were either not
understood well enough to be incorporated at this time, or that they
should not be part of the language.

In conclusion, Praxis is an extremely powerful, modern programming
language that goes beyond Pascal and yet is available today.

JG:vb
2109f

- 10 -

RATFOR

Ever since my name appeared in both DECEZDCOEE znd the

2IG7s newsletter. there hasz been a steady stream of maill for
me askins that the sender be kert informed of what iz
harprenine in and around ROTFOR. Some raar e have even
requested information concerning speciflc FRroProOcosSaors,

is my hore that this newsletter be the source of
information. I am wnable to answer dipdividualiy »
request to be ket ur to date, which is whv I volunteered my
time to be the editor of the RATFOR rart of the SIG7c
newsletter. I+ VL have @«uestions. cumaestians, nr
interesting things vou have done send them to med

Gar+v Beckmann
Joint Center for Radiation Thoraey
520 Binnewv Street

EBoston, MA 02115

Flease send evervthing in camera readw Form (205001
PAPEM, inch mareins all arcund, and dark enoush eprint for
reproduction ~— if vou can’t get a decent Xerom of it I

praobably can’t either). If wour auestion is about a
specific prerrocessar, I will do my bhest to gset the auestian
te the imPplementors of it and an answer from them.
Evervthing else that seems within reason will =20 into the

newsletter. (If wvou are claimina to have imrlemented an
opPerating svatem in RATFOR, rlease be pPrerared to
substantiate that claim.)

There are many versions of the RATFOR pPreprocessor
fFloatineg arcound amd I would Tike to make some attemrt to
bhring them all tosether and pProduce one pPreprocessor that

the ZIG would “suppart”’. There are two formal graoups of
which I am aware that are working rFresently with a RATFOR
Preprocessars ane is the Structured FORTHEAM Workina Groue
of the RSX/IAZ 216G and the other is the Software Tools
rearle. I would like to hear from evervone who has

imprlemented a preprocessar and wha is interested in startine
some communication as to what should and should ot be
included in a preprocessor. This information could then be
offered to the community of users by the ZIG. I will attempt
to act as a nexus in this communication. Hopefullvy we can
schedule a meetine or twe at the next svymposium in Florida
where we can thrash over our thoushts in Person.

Feel free to write —-— sometimes my aueude gets pretty
full but I eventuallwy et arnund to responding in some
manner . Until the ne=xt newslette

-1 -

Editor“s note: The following article is the second part of
the introductory article on the programming language C writ-
ten by Hal Morris. It is continued from the last issue of

the newsletter.

I/0 Processing and Interrupts on the PDP-11

This section gives some examples of how to do I/O wusing C
without the aid of an operating system. The programs presented could
in fact be run without an operating system assuming one can find a
way to load and start them. My purposes in doing this are:

(1) To show that it can be done (even efficiently).

(2) To provide for some people (including myself) a better basis for
understanding I/0 on the PDP-11 (and similar machines) than the usual
method which relies heavily on assembler language routines in which
anything of generality is hidden by obscure details.

(3) To provide simple models for real I/0O programming in C. For
instance, stand-alone applications, perhaps because the machine is
very small, or the application very specialized, and no operating
system does an adequate job. Another use for bare-machine I/0 is an
inline device driver, that 1is one which 1is 1linked 1into the
application program. There 1is some discussion of when to use this
technique and when to write a handler in the RT-11 Self-Paced Course.
This 1is what my biggest example is, at any rate. It is fairly easy,
at any rate, involving a 6-line assembler "front-end" for the
Interrupt Service Routine, and otherwise, only C code. Essentially
the same front-end could be used on any inline device driver. An
actual handler (to be installed in the operating system) is a good
bit more difficult for most operating systems, which make some stiff
requirements on its structure (E.g., fixed offsets from the beginning
and/or end of the handler act as variables through which the system
communicates with the handler; the number of words in the handler
must be contained in some fixed location.). Nevertheless, with some
help from assembler inserts, front-ending, and so forth, one can
write an RT-11 driver in (mostly) C. For a complex enough device, it
may be quite worthwhile, which is the oppinion of an acquaintance who
wrote a CAMAC handler in C for RT-11. Apparently UNIX (trademark of

- 12 -

Bell Laboratories), which is mostly written in C, is written to make
it much easier to write handlers in C.

UNIBUS Facts for the Hardware Novice:

I must agree that the concept of the UNIBUS and related bus
structures 1is as outstanding as DEC keeps telling us. C can do most
bare-machine I/0 by itself on any machine with such a structure,
whereas without the UNIBUS or a related bus structure, generalized
I/0 (as opposed to reading and writing text) is so specialized to the
machine that it can not be built into a high-level language A device
plugged into the UNIBUS communicates with the CPU through its own
device registers, which, to the CPU (and to your program) work just
like memory locations except that their addresses are higher than
normal memory. To ocommunicate with the device, the CPU, under
control of a program, moves a word or byte into a device register or
sets certain of its bits. The meaning of this to the device may be
"Print this character.", or "Don”t bother me.", or "It”s O0.K. to
bother me now." (technically: enable or disable interrupts). All
this depends on what bits were set or which register got a word/byte
moved into it. The device may place information in one of its own
registers to say something about its state. If a program must wait
for a device to be in a certain state, it may repeatedly read a
device register, staying in a tight loop until the desired state is
attained. Typical meanings of messages from the device are: "I"ve
got new input in my other register.", "Help me, I°m out of paper.",
or "I‘m not busy now.". Such states of the device may also cause
interrupts, but a discussion of device registers without interrupts
should come 1st.

NOTE 1l: On the smaller 1lls, the highest 2K or 4K numbers which
could be addresses, i.e., could be written with 16 bits, are simply
not allowed to be memory addresses, and are reserved for use as
device register addresses. This is why LSI-1ls, 11/10s, and others
can have at most 28K or 30K words of memory, instead of the 32K words
which the 16 bit size of an address would allow.

NOTE 2: An intelligent but not-yet knowlegeable reader might
well be bugged by the fact that his/her terminal can be attached to a
number of makes of computer, whereas I am talking about devices
having properties specific to the UNIBUS. Since I am going to be
dealing with a terminal in most of the examples, I should point out
that a terminal is not plugged into the UNIBUS. It is connected to a
controller or interface, which is plugged into the UNIBUS and which
1s made only for UNIBUS computers.

C Examples: I/0 Using Only Device Registers:

I will refer to the printing mechanism or video display of a
terminal as Jjust the "printer". Either receives data from the
interface (NOTE 2) in the same way. I am going to write a program
for a terminal interfaced as the console to output the letter “C~”.
The console has 4 l-word registers starting at address 0177560, of
which the 4th (6 bytes beyond the 1lst) is the output buffer register.
Moving a character this register”s low order byte will cause it to

- 13 -

print. I will make the output buffer accessible via OBUF, having the
properties of a char variable, via the following macros:

#define ByteAt(loc) (* (char *) (loc))
/* Recall this is contents of loc treated as a pointer
* to a char variable.

*/
#define DLREGADDR 0177560
#define OBUF ByteAt (DLREGADDR+06)

Then, provided I don”“t collide with the operating system, the
following program will print the letter “C”:

[#defines]
main ()

OBUF = “C”;

If I want to print several characters, there 1is a slight
problem, which 1is that the CPU can send characters much faster than
the terminal can recieve them, and it does not wait to see what
happens to the last character it sent before sending a new one. This
is one purpose of the other register associated with terminal output,
called the Status Register. This tells various things about the
state of the device, and in particular bit 7 is 1 if the printer Iis
ready to receive a character and 0 if not. (Bit 7 is only set by the
device; attempts by a program to set it will be ignored.) The
condition that bit 7 is set can be expressed as follows:

$define Bit(n) (1 << (n))
(A word with just bit n set)
#define IsOn(n, x) notNULL ((x) & Bit(n))

X & Bit(n) is non-zero (and equals Bit(n)) iff
bit n of X is on. notNULL means what is says:

#def ine notNULL (whatnot) (whatnot)

(whatnot has the same truth value as whatnot != NULL.)
Finally:

$def ine IsOff (n, Xx) (!IsOn(n, x))

- 14 -

So the program becomes:

[miscellaneous #defines]
#define OSTAT WordAt (DL REGADDR+04)

main ()

/*1*/ static char out[] = "Hello world\r\n" ;
register char *o; :
/*2*%/ o = out;
while (notNULL (*0))
while (IsOff(7, OSTAT))
/* S8it tight. */
/*3%/ OBUF = *0++;

}

The program just loops as long as the printer says it 1isn’t
ready to print (Bit 7 of the STATus register "IsOff".) Note that in
[1] , out is an array of characters (whose size is determined by the
initialization. [2] and [3] wuse the buffer and pointer technique
described in the example of printing the system date.

Interrupt-Driven I /O:

The next big exercize will be a program which prints several
lines of text wusing an inline asynchronous device driver. This is
linked into the program; it is not 1installed in the operating
system.

The console terminal interface, which on my machine is a DL-11,
has one type of interrupt which says that a character has been typed
at the keyboard, and another type of interrupt associated with
printing. The printer interrupt occurs whenever the printer is ready
to print a character. 1I.e., it interrupts whenever it 1isn“t Dbusy.
Now this can“t be quite true. If it were, the printer would
continuously interrupt any time the CPU could not keep it busy. This
leads to the subject of enabling and disabling interrupts. When a
particular type of interrupt is disabled, then the event which would
normally cause it doesn”t cause it. This may be illustrated very
simply.

Normally, keyboard interrupts are always allowed to happen.
This means that whenever you type something on the keyboard, the
monitor goes and does something, even if it seems to ignore the
character typed. In particular, it will note whether the character
typed was a ctrl/C or not, and if 2 ctrl/Cs are typed consecutively,
a running program will be aborted, unless this feature has been
overridden. Let me broadly sketch what the interrupt does. It takes
control away from the running program, regardless of what is going
on, saves any registers to be used, as well as ‘"status" information
(so that an interrupt can occur between "test x" and "branch if 0",
for instance) and then it looks at what was typed. Then it goes
through a complex set of decisions and actions. If the running

- 15 -

program has requested a line of text (from TT:) for instance, then
the new character from the keyboard usually goes into a buffer.
Under the same circumstances, if the character is a carriage return,
the buffer”s contents are moved to where the user said to put the
next line, and a line feed and a NULL (0) byte are appended. If the
character is a ctrl/U, the buffer is cleared. A ctrl/ may cause an
abort, and so forth. The demonstration program will turn off the
keyboard interrupt so that ctrl/C will have no affect. The program
will also ring the terminal bell 100 times so that you know when it
is running (Try writing and debugging such a program without the last
feature.).

We are still dealing only with device registers. The convention
with UNIBUS devices is to have a register called the Status Register
such that setting bit 6 (to 1) enables interrupts, while clearing it
(setting it to 0) disables interrupts. Here are two macros for
turning on and off specific bits in anything comparable to an int:

#define TurnoOn(n, x) ((x) |= Bit(n))
#define TurnOff(n, Xx) ((x) &= “Bit(n))

This leads to:

#define EnabInt(statreg) TurnOn (6, statreg)
$define DisabInt(statreg) TurnOff(6, statreq)

which turns interrupts for a given device on or off, given the
device”’s Status Register in a form such as OSTAT above. The
terminal”s input, or keyboard status register may be defined as:

#define ISTAT WordAt (DLREGADDR)
since it is the st of the DL-11"s registers.
So finally here is the program:
[miscellaneous #defines]
#define BELL 07
/* Ascii char for ctrl/G, i.e. BELL. */
main ()
long i; /* 32 bit integer (on PDP-11) */
DisabInt(ISTAT) ; .
for (i=0L ; i<10000000L ; ++i) /* for i=1 to 10000000 */
if(i % 100000L, == 0) /* 10000 divides i evenly */
OBUF = BELL;
EnabInt (ISTAT) ;

while (YES)
: /* Infinite loop, but ctrl/C now works */

- 16 -

(Constants ending in “L” have 32 bits.) To test this properly, you
need to run the program, then type ctrl/C frantically while the
terminal beeps stupidly. This will probabally remind you of some
real 1life experience. When it stops beeping, it goes into an
infinite loop, but it can now be made to abort via a ctrl/C.

Interrupts for Hardware Novices:

Besides "pseudo memory locations" known as device registers,
most peripherals are wired to have a special relationship with a pair
of words in low memory called an interrupt vector (in fact, possibly
one vector for input and one for output). The vector is filled by
software (unless it“s ROM) with:

(1) the address of an Interrupt Service Routing (ISR) where control
transfers when the device”s interrupt occurs,

(2) a value for "PS", or Processor Status, including the priority (a
3 bit number 0-7) wh1ch the CPU assumes when the interrupt occurs.

When the device”s interrupt is accepted (which may not happen quite
as soon as the device requests it), the following occurs:

(1) The current IC (Program Counter, which is register 7), and
current PS are placed on the stack so that the ISR can restore them
to their pre-interrupt values if it wishes to act civilized.

(2) New values for the PC and PS are taken from the interrupt vector
of the interrupting device. The replacement of PC should start the
CPU executing a routine which is designed to respond to the
interrupt. Of course with faulty software it might really go
anywhere and almost certainly result in a system crash.

Priority levels and Interrupts:

At this point, you should know at 1least one thing about the
CPU”s priority 1level, which is that it may change in response to
interrupts (see comments on "PS", above). I will use the term "soft
priority" of a device for the priority encoded in the second word of
the interrupt vector, which is the priority the CPU takes on when the
device interrupts. "Soft priority" 1is, as implied, a function of
what software put in the device’s vector. Each device also has a
"hard priority", which 1is wired into the device. When a device
attempts to interrupt, if its hard priority is higher than the
priority at which the CPU 1is running, the interrupt occurs.
Otherwise, it is kept pending, i.e., waiting until the CPU’s priority
falls below the devices hard priority. If you consider, for
instance, that the system clock”s interrupt cannot be pending more
than 1/60th of a second, or the system time will become inaccurate,
it should be clear that the system cannot run for 1long periods at
maximum priority. If a your interrupt is kept pending, the CPU is
probably executing an ISR for a device with soft priority at least as
high as your hard priority. BAn interesting consequence is that a
devices soft priority should be at 1least as high as its hard
priority, or it might interrupt its own ISR, which for various

- 17 -

reasons is very undesireable.

C Example: Terminal printer driver

The interrupt-driven printer driver presented has 2 parts. In
addition to the ISR which jumps in whenever the printer interrupt is
enabled and the printer is ready to print, there is an initialization
routine "InitOut()", which helps the ISR know what to do when the
printer wants to print (tells it where to find some characters to be
printed), and then tells the printer to interrupt (invoking the ISR)
when it is ready.

The main program calls InitOut() when it has a 1line to be
printed. The arguments are the line to be printed, and a pointer to
an address, "done" which is to equal NO == (0) while there are
characters left to print, and is set to YES (== 1) when the ISR wakes
up (the printer is ready) and there 1is nothing left to print.
InitOut () halts any ongoing printing job, copies the two arguments to
var iables which it and the ISR share, sets user”s "done" to NO, and
then tells the printer to interrupt when ready. Note that the
printer will interrupt immediately unless it 1is printing the last
character from its 1last request. When the ISR wakes up due to an
interrupt, "out" and "pDone" will point to the line to be printed and
the user”“s done signal.

The driver requires the main program to place the address of the
ISR in the vector, which it does. This is where one starts needing a
good bit of knowlege about a particular machine and compiler. First
consider the C program "isr()":

isr () /* C Interrupt Service Routine */

if(isNULL (*out)) /* out of output */
*pDone = YES;
DisabInt (OSTAT) ;

else /* send to OBUF; advance */
OBUF = *out++; /* the char pointer "out". */

Via inspection of the assembler translation of this program and
some reading of Whitesmith”s documentation, you would see that:

(1) The routine does not save registers 0 and 1. All other registers
are preserved across function calls, however.

(2) It is not designed to be an interrupt routine. An interrupt
service routine must (besides preserving all registers) return via
the ReTurn from Interrupt, or RTI instruction, which restores PS
(processor status, including priority and condition codes).
Actually, there are equivalent things which it can do (and which
RT-11 handlers do), but an ordinary subroutine return is not
appropriate.

- 18 -

(3) The solution to problems presented by (1) and (2) involves noting
that isr() can be called from an assembler program via "JSR FEC,ISR".
Thus a very simple assembler program (called ISRMAC) can act as a
front end for isr(). An interrupt service routine should have no
arguments, which is why the call is so simple.

So, part of the solutions (one which can be applied to any
inline C interrupt routine) is to make the C function a subroutine of
an assembler function which

(1) saves RO and Rl

(2) calls the C interrupt routine

(3) restores RO and R1l, possibly destroyed by the C routine,
(4) returns via "RTI".

Here is the macro "front end" program:

.GLOBL isr,ISRMAC
.PSECT cStext

ISRMAC :
MOV R1l, -(SP)
MOV RO, -(SP)
J SR KC,isr ;Call C counterpart
MOV (SP)+, RO
MOV (SP)+, R1
RTI - sReturn From Interrupt
.END

Since a DL-11 has 2 consecutive vectors, the lst for input and
the 2nd for output, its vector address is generally given as the
input vector address, while the output vector is 4 bytes beyond that.
Thus I will define DIOVEC, the output vector as follows:

$define DLVECADDR 060
$define DLOVEC ((unsigned *) (DLVECADDR+04))

That is, DLOVEC is the 2nd vector treated as a pointer to an unsigned
var iable, which may be treated as an array of (2) unsigneds. Thus
the vector gets its new contents via:

DLOVEC [0]
DLOVEC [1]

<address of ISRMAC >;
<New PS value.>;

However, the program should also save the old contents of the vector
and restore them when it is done so that when it is finished, the
operating system will be able to print things the way it normally
does. So the main program to test the printer driver now looks like:

- 19 -

extern ISRMAC () ;
unsigned 01ldVec| 2];

DisabInt(OSTAT); /* While vectors are being changed, an */
/* interrupt has unpredictable effect. */

0ldVvec[0] = DILOVECI[O0];
OldvVec[l] = DLOVECI[1];
DLOVEC [0] = ISRMXC:; /* 1 */
DIOVEC[1l] = Priority(7); /* 2 */

... [exXercize driver]

DLOVEC [0]
DLOVEC [1]

0ldVvec[0];
Oldvec[1];

Note on /* 1 */: Getting at the true starting addresses of
subroutines 1is naturally system dependent and may lead to rather
misleading code. To do it, I may declare ISRMAC as an extern
function (i.e. global). If I declare some identifier as an extern
function, then a reference to it not followed by a parenthesized
argument 1list (not even an empty argument list, like " ()") will act
in a very system—dependent way as the address of the starting address
of the function with that name (if one can be found). I could print
ISRMAC, and get the same number that I find for ISRMAC on a linker
load map. A non systemdependent purpose for this is to allow the
passing of functions to other functions so that, for instance, a
gr aphics function to plot points could have the mathematical function
which it is to plot as an argument. Function names end up being
global 1labels in the assembler translation of the C program, and are
interchangeable with 1labels of programs originally written in
assembler.

Note on /* 2 */: Now, consider the second word of the vector,

the Processor Status. Normally with RT-11 and no memory management,

only the 3 bits starting at 5 which represent the priority should be

non-zero. So I can use the following to generate a PS for a given

priority:

$define Priority(n) ((n) << 5)

In particular I want the PS to make the CPU run at priority 7.
Finally, here are the complete driver and test program:

[I WILL JUST ATTACH THEM FOR NOW]

It occupies 440 words of which 256 are part of or below the (normal
sized) stack.

Note on C features used: On the "for" statement, see Kernighan
and Ritchie, p 16 and section 3.5. "Call by value", which is the
reason for the peculiar way of passing "done", has several references

- 20 -

in the index, as does the "static storage class", which is the basis
of the "sharing" of out and pDone between 1InitOut() and isr(). A
somewhat similar use of static variables is in section 5.7 (a date
conversion routine) . K&R”“s index, by the way, 1is very thorough,
which is one reason it is quite a nice reference.

The way this program cycles waiting for "done" fails to
illustrate the point of interrupts, which is to allow other work to

get done while the CPU is waiting on a device to do something. One
way to get some overlap between computation and output is to only
wait for the printer if one wants to print something. An output

routine might be devised which just gets things going and returns
immediately if the printer is free, but a if printer Jjob is being
finished, it has to wait on it. Much more sophisticated things could
be done; 1in particular, with multiprogramming, when one Jjob is
waiting for output to finish, another can be be running. But here is
a modest way of benefitting from interrupts:

® o0

static char buf[BUFSIZE];
static BOOL done = YES; /* 1 */

OupLine(line)
char *line;

copy(buf, line); /* 2 */
while (!done)
/* 3 */

7
InitOut(buf, &done); /* Start this job; can”t start */
/* another til this one”s finished. */

Some final notes on the above program:

/* 1 */: This is YES the first time a request is made and thereafter
depends on whether the job requested on the last call has finished or
not. (BOOL is #defined to be int, Jjust to give an air of
respectability to using integers an booleans.)

/* 2 */: This allows the caller to not worry about wusing its own
buffer (pointed to by line). Note again the necessary use of static.

/* 3 */: Wait until the output from the last request is finished.

If perchance every printed 1line is followed by enough
computation to allow it to finish printing, then the OupLine will
always find done true at the start, so the amount of time spent doing
output will Jjust be a little over the amount of time spent in the
ISR, which is negligible.

Some of my example programs, as well as some of my understanding
of bare machine I/0 derives from a new book: PDP-11 Assembler
Language Programming and Machine Organization (Michael Singer, (c)
1980, John Wiley and Sons), Chapter 4, "Peripheral Devices". I like

- 21 -

it the best of any book on PDP-11 assembly language I“ve seen.

. ! DLDR.C:

/* DILDR.C = DL-11 Output driver consisting of:
* (1) InitOut(): Point ISR at a line of text and say go.
* (2) isr(): Jumps in whenever interrupts on and printer ready.
*/

#include <c:std. h>

include <d1dr.h>

/* Shared by InitOut() and isr(): */

static char *out;

Static BOOL *pDhone;

/* Output initiation routine:
* Tell ISR where line to print is, and where user”’s
* done signal is; tell printer to interrupt when ready.
*/

InitOut(NewOut, pNewDone)
char *NewOut;

BOOL *pNewDone ;
if(isNULL (*NewOut)) /* Printing empty string? Just */
pNewDone = YES;/ tell caller he”s done. */
else
DisabInt (OSTAT) ; /* Unfinished job killed */
out = NewOut;
pDone = pNewDone;

*pDone = NO;
EnabInt(OSTAT);

}

/%
* Interrupt Service Routine; Called by ISRMAC () upon interrupt:

*/
isr ()
if(isNULL (*out))

DisabInt (OSTAT) ;
*pDone = YES;

else
OBUF = *out++;

- 22 -

! TOIDR.C
/* TDLDR.C = main.
* Test DLDR.C: DL driver written in C.
*/
#include <c:std.h>
#include <DIDR.h>
main ()
BOOL done = NO;
static char *out[] =
{"outl\r\n", "out2\r\n", "out3\r\n", NULL} ;
register int i;
uns igned Oldvec| 2];
extern ISRMZC () ; /* Macro front end of Interrupt */

/* Service Routine. */

/* Save old vector and replace with ours. */
DisabInt (OSTAT) ;

0OldVec[0] = DLOVEC[O0]:;
Oldvec[l] = DLOVEC [1]:;
DLO VEC [0] = ISRMXAC;
DIOVEC [1] = Priority(7);

for(i=0 ; notNULL(out[i]) ; ++i)
Ini Out(out[i], &done) ;
while(!done)
: /* Wait till output completes */

}

/* restore vector */
DLOVEC [0] 0ldvec(0] ;
DIOVEC [1] 0ldvec|[1];

- 23 -

! DLDR.H:
/* DLDR.H = constants & macros
* for DLDR, or DI-11 driver. Note that this file determines
* the specific DL-1l1l for which the driver will work.
*/
/* TOOLS FOR BIT MANIP. AND ABSOLUTE ADDRESS REFERENC ING: */
==/
$define WordAt (loc) (* (unsigned *) (loc))
$#define ByteAt (loc) (* (char *) (loc))
#define Bit(n) (1<<(n))
$define IsOn(n, Xx) ((x) & Bit(n))
/* Bit n of x is on. Equal to Bit(n), which is true, if so. */
/* It doesn“t equal the "canonical true value" YES, or 1. */
#define IsOff(n, Xx) (!IsOn(n, x))
/* Is bit n of x off? */
#define TurnOn (bitnum, x) ((x) |= Bit(bitnum))
#define TurnOff(bitnum, Xx) ((x) &= "Bit(bitnum))
/* MISC. */
#define notNULL (whatnot) (whatnot)
#define isNULL (whatnot) (! (whatnot))
/* DEFINES WHICH IL-11 THE PROGRAM IS FOR. (NEEDN”T BE CONSOLE) */
#$def ine DL REGADDR 0177560
$define DLVEC ADDR 060
/* TOOLS FOR BASIC I/O; GETTING AT DEVICE REGISTERS, ETC.: */
$define OSTAT WordAt (DL REGADDR+04)
#define OBUF Byt eAt (DL REGADDR+06)

#def ine DLOVEC ((unsigned *) (DLVECADDR+04))

#define EnabInt(statreq) TurnOn(6, statreg)
#define DisabInt(statreq) TurnOff (6, statregqg)

#define Priority(n) ((n) << 5)

- 24 -

This routine is entered on interrupt since its address

the C function which does most of the work.

e Ne N§ N “

function is guaranteed to preserve the rest), call the

2ttt it 2 2 4+t 3t - - 3+ - 2t i - 1ttt - - -+ -t

. GLOBL isr, ISRMAC
.PSECT cStext

ISRMXC :
MOV R1, -(SP)
MOV RO, -(SP)
J SR EC,isr ;Call C counterpart
MOV (SP)+, RO
MOV (SP)+, R1
RTI ;Return From Interrupt
.END
TDLDR.LNK:

LINK/EXHC : TDLDR/MAP: TDLDR C:CHDR,TDLDR,ISRMAC, DLDR,C:CLIB

TDLDR .MAP:
"RT-11 LINK V05.04E Load Map Wed 20-Aug-80 00:42:30
TDLDR .SAV Title: START Ident:

Section Addr Size Global Value Global Value Global

. ABS. 000000 001000 (RW,I,GBL,ABS,0OVR)

CSTEXT 001000 000462 (RW,I,ICL,REL,CON)
Cc$sTAC 001000 .MAIN 001020 ISRMAC
INITOU 001204 ISR 001266 EXIT
ONEXIT 001412 C$SAV 001426 CSRET
CSRETS 001454

CS$SDATA 001462 000114 (RW,I1,ICL,REL,CON)

Transfer address = 001000, High limit = 001576 = 447, words

will be placed in the appropriate vector. It in turn calls
The job of this routine is to preserve RO and Rl (any C

C funtion isr(), and return with a RTI (ReTurn from Interrupt).

Value

001166
001336
001444

- 25 -

Editor“s note: The “pipe” in the UNIX* operating system 1is
a convenient way to pass output from one program to another.
Programs which transform their input into some other form
are often called filters. Filters and pipes can be used to
express rather <complex transformations of data. A simple
example which I have found useful is:

ls | pr -4 -11 -t

ls is a system (shell) command which produces an alphabetic
list of the files in the directory. This output is sent
directly to the program invoked by the pr shell command
which produces formated output. The arguments to pr
specify: (1) 4 column output, (2) a page length of 1, and
(3) no header. The result is a list of files spaced across
the terminal screem rather than zipping down the left mar-
gin, the early ones disappearing off the screen before I can
see their names.

g

Tlevenawaret b ey Fews @ Tl wed e wevevairoom C s wer . @m”

it e - Ui L OF Oonnoe
FEO Fejan B

HnF s e MY, 1ADT0

The wyreoss of Telwe.eze’ de Lo erovivde lLiwmdlend cepeenerd For he

varadon Zh oanog lezler oparsting cwedomne .

Lion oan BT
P weoadran reoamels Lhe geer For 2 coammanec Line with 757 and thon
teanelates Lhe command line into the RT-11 dndirect file ‘mies. oo’
whieh tmrlemente the intent of the cowmnang Line. Five.onw ewvaont

BRI L O0m O et

LMY wiwe nnt;

fwtalled deeoriwtion of the ledgsl swnbtsw Ffol lowel

1. The " 0" airing 1g gead 3¢ 2 delindter betuaoen wsivao
cednenta. kgl
1] 1]

ryeengd, eragray ~Flag 1 ontegt

T The Ffired cedmpent muest contain one RT-11 fileaskan fap
tha drgadt File. or 4F pnone ds erecifireds inpul defaylic
to the terminzl.

X, The laet cegment muast contazin one ET-11 filaecswer for

the outeyt Files or 1Ff none 1o ewecifierds ouisgt defzylic
Lo the lLerminsl.

*Trademark of Bell Laboratories.

- 26 -

4. The other sedgments are refacradg Lo it 4ot
g cantain Lhe roame of an e
ortionzl Fledgers aywillarwe inegt
There zre Lun turecs nf
ot ams which scoert
WHITESMITHG ‘o wrosgramg
commatrt Line with ana

Fer D Vevaeeet b

3y AREIE- Tl S

sEmment e s anem Foe BT

Fre

odinterns] sedgmente hedin with
woosran osmes Tol Lowed hwe gre 1o 5
Filess Followsd e 1 astional 051

ok ol Filel Filed Filed S0

. ‘o’ anterns Smen e esin wi b Lhe ave

nameas FTol lowerd by

sy cowmivirost bon of AN0TT
1

Vofine -nomaton

Fusmele of the indirect #1le crested by oo oespelae oommsned Live.
I RT=11 sive version 2 0 zuthor ~ Teede L. OF Oonemoe
]
I otne newt line 1s Lhe wise commanc Lioe.
Pokatoet VoW oswiedie AU sort - -l D umioge D omowmese ciyet Domeeonas

i

et arror error
vun swiriw

i, Lnl=, vt /U
1

Spiwe.tml reiretwm? o-n -

Y yIinEnue

Seira, il relve. bwl

LN

U oW s

Speire, tml ercora diot

1

cal. arrar nane

delete/nmoauery sive.bolewira, tm?
cel erprar areor

reasat

- 27 -

Fasteyontons & oomgeant e

Lo o wrodgeses geing Cmadin’ owget preturnd YESY ar o ewi tOYESY e

Frpeet oo b el s
3

W Coponsne Line must naot awceecd B0 crarscltere.

Cnd nobtation not w2l lower) sfher RT-11 filerecs odl teat w1007,

i
>

4. alihoush sies zllowus Lowger ce treegt s B Jower onee File nsmed

avecyle wroraprlive RT-11 cweton giilities need usrer cpaee netione
1

V¥ ewipir Jl

1

.

fe T onever tected siea with the FJOR mand Loe.

O
DECUS

DIGITAL EQUIPMENT COMPUTER USERS SOCIETY
ONE IRON WAY, MR2-3/E55
MARLBORO, MASSACHUSETTS 01752

BULK RATE
U.S. POSTAGE
PAID
PERMIT NO. 129
NORTHBORO, MA
01532

MOVING OR REPLACING A DELEGATE?

Please notify us immediately to guarantee coritinuing
receipt of DECUS literature. Allow up to six weeks
for change to take effect.

() Change of Address
() Delegate Replacement

DECUS Membership No.:

Name:

Company:

Address:

State/Country:

Zip/Postal Code:

Mail to: DECUS - ATT: Membership
One Iron Way, MR2-3
Marlboro, Massachusetts 01752 USA

‘018

‘Adissaniun ‘Aued
-wo3 ‘uoliejjeisul

}0 aweu apnjdu|

‘819y ssaippe

pjo 1und ‘s|gejiene
10U S| |aqge] j| "aJ4ay

12qe| Buijtew iy

