
THE HEAP 

STRUCTURED LANGUAGES 

THIS IS THE FIRST 

SUBSCRIPTION SERVICE ISSUE 

DECUS 



Printed in the U.S.A. 

The following are trademarks of Digital Equipment Corporation: 

DEC DIBOL 
DECnet Digital Logo 
DECsystem-10 Edu System 
DECSYSTEM-20 IAS 
DECUS MASSBUS 
DECwriter PDP 

UN IX is a trademark of Western Electric Corporation 

Copyright© Digital Equipment Corporation 1983 
All Rights Reserved 

PDT 
RSTS 
RSX 
UNIBUS 
VAX 
VMS 
VT 

It is assumed that all articles submitted to the editor of this newsletter are with the authors' permission to publish in any DECUS 
publication. The articles are the responsibility of the authors and, therefore, DECUS, Digital Equipment Corporation, and the 
editor assume no responsibility or liability for articles or information appearing in the document. The views herein expressed are 
those of the authors and do not necessarily express the views of DECUS or Digital Equipment Corporation . 



STRUCTURED LANGUAGES/MUMPS 

This first edition of the combined MUMPS and Languages and Tools Newsletter 
features the Languages and Tools SIG. Information on submitting material to 'The 
Heap" can be found on page 1. To submit articles to the MUMPS vehicle, 'The Tree", 
kindly send your material to: 

Jim Bernard 
Data Processing 
Kettering Medical Center 
3935 Southern Boulevard 
Kettering, OH 45429 



THE HEAP 
Languages and Tools SIG Newsletter 

Volume 7, Number 1 September 1983 

From the Editor 

This is the first paid issue of the "Heap". I have tried to 
include as much as possible so you will feel that you are getting 
the most for your subscription fee. You may want to show it to 
your friends who are not subscribing to get them interested. The 
majority of this newsletter comes from articles submitted by 
members of the LTSIG steering comraittee. We now have a core group 
that really wants to make the SIG a worthwhile entity within 
DECUS. It will take help from other people who are interested in 
Languages and Tools to keep the newsletter as good as it is this 
time. I would like to see articles f rorn users of any language or 
tool. Applications of the C language package, how you are using 
CMS or MMS, why your company has chosen to use Pascal, etc. are 
all viable topics. I would like to have articles submitted on 
magnetic tape (800 or 1600 bpi, ANSI labled (VAX/VMS copy), or 

*Unix tar tape) in DSR (Digital Standard Runoff) format. This 
1uakes it easier for me to include them in the newsletter in a 
standard format. I will take pa~er copies as long as they are a 
good quality copy with margins similar to this newsletter (one 
inch left and right margins). In the future we hope to be able to 
utilize the DECUS VAX and the LNOl Laser printer to produce even 
better copy. With the subscription service in effect you should 
be seeing a change in the quality of newsletters. 

In this newsletter, the members of the LTSIG steering 
committee have identified what they are responsible for and what 
they are doing in the real world. Kathy Hornbacb has submitted 
the contents of her handouts from the Spring DECUS Symposium 
(Software Development Environment Plan and Creating a Software 
Development Environment Plan) as well as a report from the recent 
Sof tfair Conference. She has more for the next newsletter on how 
Lear Siegler is using languages and tools in a production 
environment. I have also included several of the Scribe reports 
from the 1983 Spring DECUS Symposium (see editors note before the 
articles). In addition, Shava Nerad's "Tailoring EDT for the 
Structured Language Programmer" is included. Let me know if these 
are the types of articles you would like to see in the future. 

*UNIX is a Trademark of Western Electric Corporation 

1 



The HEAP - September 1983 - Volume 7 Number 1 
From the Editor 

With all that is in this newsletter, what will be coming 
next? Look for an article from Kathy Hornbach on the production 
of the "Tools Sources" booklet. Kathy also wants to create a 
dialog in the newsletter regarding the use and abuse of tools. 
You might want to get in touch with Kathy if you have or know of 
any software tools that we should include in her booklet. 

Bits and Pieces 
Several items have come in my mail that you might be interested in 
reading. If you have any short items that may be of interest to 
our readers, send them along and I will include them in this 
section in future newsletters. 

o There is a company in Utah (Diser,Inc., 385 East 800 
South, P.O. Box 70, Orem, Utah, 84057, (801} 227-2300} 
which is working with Modula-2. They are producing 
Wirth's Lilith computer system and are interested in 
hearing about any applications of Modula-2 or software 
tools developed with the Modula-2 language. 

o 1983 Fall DECUS US Symposium will be held October 24-28, 
1983, at the NGN Grand Hotel in Las Vegas, Nevada. Note 
that LTSIG is sponsering two pre-symposium seminars (Ada 
Programming Methodology by Ken Bowles and Software 
Engineering Techniques and Tools by John Barr}. 

o LTSIG library programs are maintaining their position in 
the top ten most frequently ordered library programs 
list. The C Language System, Pascal Compiler Version 
October 1981, and the Spring 1980 Pascal Symposium Tape 
were recent top ten favorites. Any comments?? 

o ANSI X3 is looking for members of a programming languages 
study group. Individuals involved with planning 
functions and those concerned with state-of-the-art 
development of languages would be most welcome and should 
contact Dr. JAN Lee, Chair, PL/SG, Virginia Tech, 
Departrl1ent of Computer Science, Blacksburg, VA, 24001, 
(703} 961-6931. 

o Those of you interested in PL/I may be interested in 
another ANSI X3 item. They have published an information 
bulletin to give the PL/I producer and usr communities an 
indication of the direction and current status of their 
current PL/I standards review work. You may obtain a 
copy of the document by sending ten dollars and a 
self-addressed mailing label to: PL/I-IB, X3 
Secretariart, CBEMA, 311 First Street, NW, Suite 500, 
Washington, DC, 20001. This is your advance notice of 
the new standards effort. Don't be caught unaware like 
the COBOL and BASIC people seem to be at this time. 

2 



The HEAP - September 1983 - Volume 7 Number 1 
Bits and Pieces 

o Richard Coleman, Kajima International, Inc., 2100 North 
Central Road, Fort Lee, New Jersey, 07024, writes that he 
has been seeking information on Modula-2 that would run 
on a VAX under VMS to allow him to upgrade from FORTRAN 
mainly for commercial and project cost control 
applications. He would like to see a paper on*Ada vs. 
Modula-2 for the average user and the implications in a 
DEC environment of the heavy government support of Ada. 
Any comments?? 

o Chuck Evans, Director of Data Processing, Times 
Publishing Company, Times Square, Erie, Pennsylvania, 
16534, writes that he is trying to start an RMS wish 
list. He says that "Too many ISG wishes are responded to 
with the answer, 'Well, that's really an RMS problem.•, 
and from there, the wish disappears." He is planning a 
session for Las Vegas, and would like to get input from 
anyone who has problems with RMS. 

0 I have sent in my name and address to COSMIC, NASA's 
Software Dissemination Center, to get on their DEC user 
mailing list. Depending on what comes in the mail, I 
will include information about what they have in future 
newsletters. 

o DIGITAL is currently looking at alternative languages for 
future development projects. Such languages as Modula-2 
and Prolog are possible candidates. What do you think??? 

Job description of Languages and Tools SIG Chair 

The job of the SIG Chair is predominantly that of coordinator of 
all the SIG's activties. That is, the chair is the primary point 
of contact between the SIG's members and the other organizations 
with which it must interact. These other organizations include 
DECUS US Chapter office staff, Digital, and any affiliated SIGs. 
Historically, the SIG chair has been the individual ultimately 
responsible for the operation of the SIG. 

In large SIGs, it is clear that a single person cannot handle the 
entire job; other members of the SIG volunteer to take on some of 
the work, and the Chair (happily) delegates to them 
responsibilities appropriate to their expressed interests. As a 
large SIG continues to function, and its members increasingly 
offer to take on more of the work, the various areas of 
responsibility become institutionalized through the SIG's 
operating procedures. What remains, at least implicitly, in my 
view, is the expectation that the SIG Chair is the owner of any 
responsibility not explicitly claimed by some volunteer. In 
particular, the SIG Chair remains the individual responsible for 

*ADA is a Trademark of the Department of Defense 

3 



The HEAP - September 1983 - Volume 7 Number 1 
Language and Tools SIG Chair 

submitting to the DECUS u. s. Chapter an annual budget for the 
SIG, and the information required to relicense the SIG for the 
next year. 

For the Languages and Tools SIG, I'm happy to say, there are now a 
goodly number of volunteers for the numerous areas of 
responsibility we have collectively identified. The holders of 
those jobs have included herein their own job descriptions; from 
these you can see that a small SIG's Chair has a great deal of 
work he or she could do. 

Biographical Sketch of the Current SIG Chair 

James w. Livingston, Jr. 
Measurex Corporation 
One Results Way 
Cupertino, CA 95014 
( 40 8) 255-1500 

As may be said of many of us in this industry, I identify myself 
as a retread. After earning B.S. and M.S. degrees in 
Mathematics, I attended graduate school in Psychology, and 
received a Ph.D. in that discipline. In reterospect, I must 
acknowledge that my most enjoyable activities were building my 
experimental apparatus and programming the various computers on 
which I did my research. 

After accepting a job offer at Livingston College of Rutgers 
University, I built my department a laboratory around a PDP-11/40, 
and served as its system manager, system programmer, and primary 
maintenance person. Some of you will recognize that there is the 
danger, in the situation I've described, that one's own research 
will be insufficient for the purposes of the tenure decision. 
Those who've not experienced the academic world from the junior 
faculty side may consider yourselves happily deprived. 

As events materialized, I went to work for Digital Educational 
Services in 1976, after five years as an Assistant Professor of 
Psychology. At Digital, I taught courses in RSX-llM, IAS, and 
various other topics. As a Digital instructor, I received 
occasional job opportunities, one of which I finally took. I 
worked at Lawrence Berkeley Laboratories for a year, with 
responsibilities for VAX/VHS, DECHet, and Datatrieve. At the end 
of my year there, I joined Measurex, where I am today. 

At Measurex, my responsibilities include supporting microprocessor 
development on MX's engineering VAXen, and writing system and 
communication software for MX products. Hy interests include 
language translators and other development tools, particularly 
those which support the development of software products. 

4 



The HEAP - September 1983 - Volume 7 Number 1 
Operating System Coordinator 

Operating System Coordinator 

As coordinator of the Operating System interest area of the 
LTSIG steering committee, I would like to introduce myself to the 
membership of our SIG. My name is Alan Rizzuto, I work at the 
following address: 

Alan Rizzuto 
Erne Controls, Inc. 
P.O. Box 242 
Cockeysville, M.D. 21030 

As you can see from my address I work at EMC CONTROLS, INC. 
which is a company that produces distributed process control 
systems. My function is a software design engineer for special 
software projects in the Applications Engineering department. My 
past experience consists of eleven years in electronics, 
instrumentation, and computer hardware and four years in the 
software realm. My software background consists of Systems 
Engineering (ie. programming and debugging at executive level 
MACRO 11) and programming in higher level languages. My language 
background is in Fortran, Basic, Macro 11, C, Pascal, and 6809 
Assembly. 

The function I am serving on the steering committee for the 
LTSIG is O/S coordinator, which entails being the liaison of 
information between each of the Operating System coordinators and 
the LTSIG steering committee. Following is a list of the O/S 
coordinators and their respective positions: 

IAS Coordinator 

RSTS Coordinator 

RSX-llM/M+ Coordinator 

RT-11 Coordinator 

UNIX Coordinator 

VAX/VMS Coordinator 

5 

open 

open 

Alan Rizzuto 
Erne Controls, Inc. 
P.O. Box 242 
Cockeysville, MD. 21030 
(301) 667-4800 

open 

open 

Louise M. Wholey 
Measurex Corporation 
One Results Way 
Cupertino, CA. 95014 
(408) 255-1500 x4452 



The HEAP - September 1983 - Volume 7 Number 1 
Operating System Coordinator 

I am pleased to be able to serve the membership of this SIG 
and welcome all comments and questions. Also if anyone is 
interested in filling one of the above open positions, please 
contact me either by phone or letter. 

Alan Rizzuto 

Menu Coordinator 

Greetings: 

My name is Al Folsom, and I'm currently serving as the menu 
coordinator for the Languages and Tools SIG. For those of you who 
are not familiar with the ruenu process as conducted by other SIGs, 
the menu is a means by which the SIG membership can communicate 
it's desires to DEC and/or the SIG leadership. Action items for 
DEC or the SIG to address are suggested by the membership, and 
collated into a guestionaire. This questionaire is then submitted 
to the SIG membership for voting, to determine the popularity of 
the items listed. The implication, of course, is that the more 
strongly the SIG expresses itself on any point, the more likely 
DEC will be to heed it's desires. There's power in numbers! 

My responsibilities include soliciting the menu items, 
collating them and constructing the menu, collecting the menu 
responses and reducing the data collected for presentation at a 
symposium and in the newsletter. Ideally, this will all be done 
on a yearly cycle. 

In addition to the menu, I would like to work on other 
methods of making the SIG more responsive to its membership. If 
anyone has suggestions in this regard, or items for the next menu, 
I would appreciate hearing from you. My work address is: 

Alan L. Folsom, Jr. 
Enertec Inc. 
19 Jenkins Avenue 
Lansdale, Pa. 19446 

Thanks for your help. 

-Al Folsom 

6 



The HEAP - September 1983 - Volume 7 Number 1 
Symposia Coordinator 

Symposia Coordinator 

I am J.R. Westmoreland (James R.) ., the symposia coordinator 
for the languages and tools SIG. My responsibility in this 
position is to make sure that the symposia are scheduled and set 
up according to the wishes of the SIG. I work for Utah Power & 
Light Company. I HAVE BEEN A MEMBER OF DECUS SINCE THE SIG WAS 
THE PASCAL SIG. My interests are compiler design and other 
language related topics. 

If you need to contact me about a symposia related matter you 
can reach me by phone at: (O) 801-535-2387 (H) 801-262-5251 or 
write to: 

ATTN: J.R. Westmoreland 
Utah Power & Light 
Systems & Computer Services rm 184 
1407 W North Temple 
Salt Lake City, Utah 
84116 

Member Services Coordinator 
John R. Barr 

The member services coordinator is responsible for the 
functioning of the activities of the LTSIG which provide services 
other than the menu and symposia. This includes user training 
(pre-symposia seminars), session notes, DECUS program library, and 
the newsletter. It is a catch-all grouping designed to keep the 
work load of the SIG chairman down to a reasonable level. 

Following is a list of the current task assignments: 

Librarian 

Session Notes 

James Triplett 
Intermetrics. Inc. 
701 Concord Avenue 
Cambridge, MA 02138 
(617) 661-1840 

Mark Katz 
GTE Sylvania 
77 A Street 
Needham, MA 02194 
(617) 449-2000 x635 

7 



The HEAP - September 1983 - Volume 7 Number 1 
Member Services Coordinator 

Newsletter Editor 

User Training 

John R. Barr 
Department of Computer Science 
University of Montana 
Missoula, MT 59812 
(406) 243-2883 

open 

Please direct your questions about any of these positions to the 
appropriate person or to myself if you have any problems. 

Productivity Tools Coordinator 
Kathy Hornbach 

I have just taken on the newly created position of Productivity 
Tools Coordinator for the Languages and Tools SIG. The title is 
loose enough that a good variety of things will fit underneath it; 
it seems to boil down to any tool/technique that improves the 
efficiency/quality of software production. This includes DEC 
products like CMS and MMS, and also productivity tools f rorn other 
sources, like the Hughes/Berkley Software Tools. Examples of 
other tools that might fit under this heading are prettyprinters, 
static analysis tools, path coverage tools, configuration 
management tools, and requirements/design tools. 

One of the first things we will be working on is putting together 
a "Tools Sources" booklet, that will list different tools 
available for DEC computers. If you have any questions or 
suggestions for this area of the SIG, feel free to write or call 
me at the below address. 

When I am not working on DECUS activities, I am employed at Lear 
Siegler/Instrument Division. Our main product is aircraft 
instrumentation, including on board navigation and flight 
management systems - we produce both the hardware and software. I 
am head of a group called "Software Tools, Database, and 
Standards", which corresponds quite closely with my DECUS role. 
We are fortunate to have most of DEC's software tools in-house 
(CMS, MMS, and all the VAX Information Architecture), along with 
other productivity tools from outside sources. These tools are in 
use by over 200 engineers developing realtirne avionics and support 
software. 

Kathy Hornbach 
Lear Siegler/Instrument Div 
4141 Eastern SE MS 121 
Grand Rapids, MI 49508 
(616)241-8800 

8 



The HEAP - September 1983 - Volume 7 Number 1 
Softfair Conference Report 

Sof tf air Conference on 
Software Development Tools, Techniques, and Alternatives 

Crystal City, VA 
July 26 - 28, 1983 

Kathy Hornbach 
Lear Siegler/Instrument Division 

The Sof tfair Conference brought together people doing 
state-of-the-art research in the areas of software development 
tools, methodolosi~s, and environments. It was sponsored by the 
IEEE Computer Society, ACM Sigsoft, and the National Bureau of 
Standards. Over 500 people attended the conference. Well 
represented were: 

o the big computer companies - I saw several people each 
f rorn IBM, DEC, HP, Apple. 

o the defense contractors - probably the largest overall 
percentage of attendees, not surprisingly. 

u the governrilent - helped by the i·Jashington, D.C location, 
there were many federal employees in attendance - boti1 
from the military, and from USA, GSA and elsewhere. 

o the phone companies - quite a number of different phone 
companies sent representatives - evidence of the impact 
they hope to make in the software field 

o the universities - where much of this research is being 
done. 

o finally, and probably not surprisingly, the Japanese 
(hoping to do to the software industry what they did to 
the automobile industry?) Not only were they there for 
observations; they gave many of the talks and had many 
of the exhibits. 

There were two unique features to this conference that made it 
unlike any other, and especially valuable: 

1. Big-screen demonstrations were given of several products. 
An ordinary VDT screen was enlarged with the help of some 
device, and projected onto a huge screen, capable of 
being seen by a room of several hundred. Hour-long, 
actual demonstrations of well-known (and not so 
well-known) products were given - a tremendously valuable 
tool in determining just how useful a given product is, 
and much more revealing (often to the detriment of the 
product) than product brochures or sample outputs. 

9 



The HEAP - September 1983 - Volume 7 Number 1 
Sof tfair Conference Report 

2. An exhibits area contained about three dozen booths, 
featuring both commercial and non-commercial products. 
Most were available for actual hands-on use by the 
attendees. This was an even more valuable experience for 
getting the "feel" for some of the tools. 

The conference was organized in three parallel tracks two 
concurrent papers, and a "big screen" demonstration. Almost all 
the sessions were of interest, which made for a lot of running 
back and forth between sessions. The papers were grouped as to 
topic; among the topics included in the conference were: 

1. Verification, Validation, and Testing 

2. Software Development Environments 

3. Object-Oriented Programming 

4. Software Development Management 

5. Configuration Management and Maintenance 

6. Rapid Prototyping and Application Generators 

7. Syntax-Directed Editing 

8. Debugging 

9. Software Design 

10. Software Development Data Management 

In the area of Software Development Environments, there was much 
emphasis on providing tools to help automate the requirements and 
design phases. At least two companies were showing graphical 
tools to support the Yourdon Structured Analysis and Structured 
Design methodology - Boeing Computer Services demonstrated ARGUS, 
and Hughes/Ground Systems Group demonstrated ASAT and AIDES. The 
Hughes tools are currently being marketed; Boeing is considering 
marketing ARGUS. 

10 



The HEAP - September 1983 - Volume 7 Number 1 
Sof tf air Conference Report 

Talks were given on static analysis and path coverage tools under 
the Verification, Validation and Testing sessions. Static 
analysis tools take source code as input, and perform various 
analyses on it. They can detect certain classes of bugs, such as 
mismatch in number or type of calling parameters, and variables 
that are used before being set. They also can provide extensive 
documentation about a program, such as calling trees and global 
variable cross-reference. Path coverage tools "instrument" the 
source (i.e. insert additional statements into the source without 
changing the logic}, which is then compiled, linked and executed. 
The probe statruents that were inserted put out data tracing 
execution. A final phase analyzes this probe data, and produces 
reports showing which portions of the code were and were not 
executed. General Research Corporation demonstrated a tool that 
performs both of these functions on Fortran and Cobol, called 
RXVP-80. Liverpool Data Research Associates gave a paper on a 
similar set of tools that work on a multitude of languages. 

One session especially applicable to DEC customers was one called 
"Proto-Cycling: A New Method for Application Development Using 
Fourth Generation Languages", by P. Zajonc and K. McGowan from 
Information Builders, Inc. The basic thesis was that it is often 
better to give the user a quick prototype of the system, and let 
them find out what they do and do not like about it; rather than 
go through a long and expensive development cycle, only to find 
that what they told you they needed is really not what they want 
at all. This is now possible to do with fourth-generation 
languages. The application described in the paper used IBM 
equipment, but we have very successfully used Datatrieve, FMS, and 
DBMS for the same sort of thing. 

DEC gave one paper at the conference, on the VAX Debugger and its 
internals. 

E. Cristofor of Bell Labs gave a talk on the automatic generation 
of test drivers. The generation program takes as input a module 
that is to be unit tested, and outputs a driver for that module. 
The driver output contains initialization for the various input 
parameters and common variables, and displays the appropriate 
output results. 

A panel discussion on "The Impact of Future Technologies" raised 
some interesting speculations. A wide range of possibilities were 
discussed; a consensus emerged in a few areas. These include: 

very, very high level, graphics oriented programming will 
become common as computing spreads to the masses. (Right 
now, the number of "programmers" is doubling every year, 
with the advent of personal computers} 

11 



The HEAP - September 1983 - Volume 7 Number 1 
Softf air Conference Report 

there will always be the need for more technical types to 
do the lower level work to support these very high level 
applications 

human factors studies/psychology are where most gains 
will come 

I have covered only a small portion of what was presented at the 
conference. The conference proceedings (containing the papers 
presented at almost all the sessions) are available through the 
IEEE Computer Society, and probably through ACM as well. If you 
are interested in these topics, it would be a good investment. 

As an editorial con~ent, the one thing that I wished I could have 
seen more of at a conference like this, is more real world tools. 
Hany of the sessions given were on tools that were under 
development and had never actually been tried out; or tools that 
were in use only by their developers and maybe a couple others; 
or tools in use at universities but not in industry. While all 
the above nentioned are important, especially for the introduction 
of new ideas, nonetheless the type of tools that we are interested 
in getting in-house are well-tested, well-supported tools that 
have been in proven through use in REAL projects, by someone other 
than their developer. While some were present (such as DEC Debug, 
GRC RXVP-80, Hughes AIDES, among others), I had hoped to find 
more. Is it that, despite all the conference activity, no one is 
really marketing and using such tools? Or is it just that the 
practically minded people who use these tools in industry are busy 
working on their projects, and don't bother to give papers at 
conferences like these? 

This is supposed to 
recommend it to anyone 
edge techniques in the 
development. 

become an annual conference. I would 
who is interested in learning about leading 
area of automated tools to support software 

12 



The HEAP - September 1983 - Volume 7 Number 1 
Software Development Environment Plan 

Selected Sections from the 

Lear Siegler/Instrument Division 

Software Development Environment Plan 

1.0 INTRODUCTION 

Lear Siegler/Instrument Division 
4141 Eastern SE HS 121 
Grand Rapids, MI 49508 

Presented at 
DECUS Spring Symposium 

St. Louis, MO 
Nay 24, 1983 

Kathy Hornbach 

A software development environment is a set of integrated, 
automated techniques for assistance in the software development 
process. A good software development environment can greatly 
increase both productivity and the quality of the final product. 
In fact, as projects get larger and more complex, a good software 
development environment becomes a neccessity. 

Implementing a software development environment is much more 
difficult than simply walking out and spending a couple megabucks 
on state-of-the-art tools: 

"The task of creating effective environments is so 
difficult because it is tantamount to understanding 
the fundamental nature of the software processes. A 
specific environment does not merit the name unless it 
provides strong, uniform support for the entire 
process it is intended to facilitate; that is not 
possible unless the process is fully appreciated and 
understood". [l] 

Before a really comprehensive software development environment can 
be implemented, we have to develop a much more refined software 

[l] Osterweil, Leon; 
The Next Five Years"; 

"Software Development Environments: 
Computer; p. 36; April 1981 

13 



The HEAP - September 1983 - Volume 7 Number 1 
INTRODUCTION 

development methodology to define exactly how we produce 
software; the specific steps taken and the specific documents 
produced. We are making good progress in this area - a number of 
people are attending seminars and studying the problem - and 
everyone is aware of the necessity. 

This paper will describe some specific options and implementations 
of a software development environment in-house. This paper is 
divided into five sections: 

1. The first section reviews the qualities of a good 
software development environment in more detail. 

2. This is followed by a discussion of our 
environment and the tools already in place. 

current 

3. The main part of the paper divides the software lifecycle 
into sections, and discusses the software development 
environment needed to support each phase, cumulatively 
building up a comprehensive environment. 

4. Some general support tools, which are useful 
software development and management, are 
Next-generation tools that we may be using in 
future are examined. 

to both 
explored. 
the near 

5. A summary is given of the topics covered, with specific 
recommendations on how to proceed with implementing a 
software development environment. 

2.0 CHARACTERISTICS OF A @Q.Q ENVIRONMENT 

A software development environment should aim for the following 
five characteristics: [3] 

1. Breadth .Q.f scope and applicability - it must be able to 
support all phases of the software lifecycle; it must be 
able to support many different types of projects. 

[3] Osterweil, op.cit., pp 37-40 

14 



The HEAP - September 1983 - Volume 7 Number 1 
CHARACTERISTICS OF A GOOD ENVIRONMENT 

2. User friendliness - an obvious requirement. This applies 
to both the individuc:.l tools and to the system as a whole 
- i.e. if it seems logical, cost effective and useful to 
do something on a computer, the software development 
environment should provide a tool to do it easily. 

3. Reusabillli .Q.f. components the software development 
environment must be built of tool fragments rather than 
ntonolithic tools. Only fragments are flexible enough to 
provide an environment suitable for supporting different 
kinds of work and unexpected requirements. 

4. Tight integration of tool capabilities - The tools must 
work together, with output from one tool being valid as 
input to another. Duplication of functions should be 
minimized. 

5. lJ.§.g of ,g central database - Projects must keep track of a 
tremendous amount of details, facts and relationships. 
This necessitates a central database that tools can work 
out of and into. 

These were the basic considerations used while putting together an 
implementation of a software development environment; keep them 
in mind as the various parts of the implementation are discussed. 

3.0 BACKGROUND 

We have an excellent 
sophisticated software 
three main reasons: 

starting point for implementing a 
development environment. This is so for 

1. The VAX operating system, VMS, provides a strong, 
versatile, user-friendly foundation to build the tools 
on. 

2. DEC offers a number of extremely versatile software 
packages that work together; these tools will form much 
of the basis for the software development environment. 

15 



The HEAP - September 1983 - Volume 7 Number 1 
BACKGROUND 

3. The VAX is widely used by researchers for 
state-of-the-art work; a majority of software 
development environments and tools are implemented on the 
Vl">.X before any other machine (e.g. RXVP). 

With our DECnet links, Datatrieve Query Language, Forms Management 
System, UNIX-based software tools, RXVP, plus several other 
valuable tools on order, we have a good solid basis on which to 
build a software development environment. These tools will be the 
basic building blocks for much of what follows and will be 
explained here in more detail. 

3.1 Software Engineering Database 

As mentioned earlier, the keystone in any software development 
environment is a Software Engineering Database •••• this is a 
mechanism by which things (any and eyery things} can be stored, 
recalled, and correlated. 

From Osterweil: [4] 

"The final, and perhaps most important characteristic 
of an environment is that it be coordinated and 
focused by access to a central repository of 
information. If software projects can be thought of 
as coordinated efforts to gain and disseminate a 
highly structured body of knowledge about a problem 
and its solution, the progress of the project will 
best be assured and facilitated by capturing structure 
and disseminating that body of knowledge as faithfully 
and effectively as possible. Those considerations 
imply the use of a data base and encompassing 
information management system as the centerpiece of 
any environment." 

Specific proposals for database contents will be made later. The 
general capabilities of the database to be used for the software 
development environment will be outlined here. 

DEC's database package, 
engineering database. 
database; it is very 
installed on the IBM, 
currently on order. 

DBMS, 
DBMS 

similar 
which is 

[4] Osterweil, ibid. p. 40 

will be used 
is a CODASYL 
to the IDMS 
also a CODASYL 

16 

for the 
standard 

database 
standard. 

software 
network 

recently 
DBMS is 



The HEAP - September 1983 - Volume 7 Number l 
BACKGROUND 

DBMS is fully integrated with the rest of what DEC calls its 
"Information Architecture", which includes a Common Data 
Dictionary, Datatrieve Query Language, anJ Forms Management 
System. These integrated facilities simplify the writing of 
database programs and the performing of ad-hoc queries. 

The Software Engineering Database will be the hub of the software 
development environment; most tools will work into and out of it. 
The power and flexibility offered by DBMS and related tools should 
greatly reduce the time necessary to make the software development 
environment operational. 

Other tools that will be used as building blocks in the creation 
of a software development environment are 

0 DATATRIEVE - An easy-to-learn, easy-to-use data query and 
report generation language. It will interface both with 
DBMS and PMS; implementing parts of the software 
development environment with Datatrieve will be very 
quick; it can also be used for ad-hoc querying by users. 
Datatrieve is also callable from DEC languages. 

o PMS ( FORi'IS MANAGEMENT SYSTEiil) - provides a simple method 
for creating fill-in-the-blank forms on the terminal. 
These forms are useful any time data entry is to be 
performed, and for user interfaces. FMS works with 
Datatrieve and DBMS. 

o CMS (CODE MANAGEMENT SYSTEr-1) - is a brand-new DEC tool, 
now on order, for doing version control of software. CMS 
is based on the highly acclaimed SCCS (Source Code 
Control System) on UNIX. It keeps track of software 
modules by version/mod, and allows recreation cf any past 
version of the software. Reasons for changes are also 
saved. Modules can be specified as member of a group, 
i.e. a release. This means that it is possible to track 
every change and the reason for that change and to 
recreate any version of a software module or an entire 
release. And it does all this in less than three times 
the storage needed for the original source. 

o UNIX-like TOOLS - The Software Tools User's Group created 
and distributed a set of tools based on those available 
under UNIX. (UNIX is the premier example of a software 
development environment). We have a set of over 75 of 
these tools on the VAX. They perform diverse functions, 
and give us a powerful subset of the UNIX capabilities. 
An example of some tools are: 

17 



The HEAP - September 1983 - Volume 7 Number 1 
BACKGROUND 

DC - desk calculator 

ENCRYPT - encrypt a file 

KWIC - keyword-in-context index 

UNIQ - strip adjacent repeated lines from a file 

FIND - find all occurrences of a string in a file 
(includes very complex pattern matching) 

WC - count of number of words in a file 

o RXVP - A powerful debugging/testing aid that 
static error detection on the source; 
documentation on the source; and performs path 
analysis during execution. 

performs 
produces 
coverage 

o COM.MON DATA DICTIONARY - A uniform method for keeping 
track of data about data; it keeps track of all record 
formats and field meanings for all data used by DBMS and 
Datatrieve. 

o RUNOFF - a text formatter that converts free-form input 
into a formatted document (this document was created with 
RUNOFF). 

o DEBUGGER - for VAX native languages, it it an extremely 
sophisticated interactive, source oriented debugger. 

o NlUJd. - an electronic mail system 

4.0 PROPOSAL FOR A SOFTWARE DE.YELOPMENT ENVIRONNENT 

The software development environment will be described in pieces, 
based on the software lif ecycle. The software development process 
is usually broken up into the following phases: 

o Requirements specification 

o Architectural design 

o Detailed design 

18 



The HEAP - September 1983 - Volume 7 Number 1 
PROPOSAL FOR A SOFTWARE DEVELOPMENT ENVIRONMENT 

o Code and debug 

o Testing and validation 

o Haintanence 

The software development environment for each of these stages will 
be explored separately. General-purpose support tools will also 
be discussed. 

The following sections will define each of these steps more 
rigorously. The software development methodology currently used 
here at LSI/ID for that phase will be discussed. Finally, the 
tools and environment that could be used to support the step will 
be explained. The software development environment will be built 
cumulatively, based on previous steps, until a complete 
environment is in place. This environment will continue to evolve 
as new techniques and tools become available that will both reduce 
the lifecycle cost of software and improve the quality of the 
final product. 

<a section of -25 pages came next, and very 
specifically described each phase of the 
software lif ecycle, and the development 
environment that should be provided for it> 

4.1 General Support Tools 

The tools described in the previous sections were aimed at 
performing a specific task at a specific point in the software 
lifecycle. There are a number of general tools, however, that are 
useful for many tasks at many different times. Some of them have 
nothing to do with software development whatsoever; they just 
help people work more efficiently. Some of the general support 
tools recommended include: 

1. GRAPHICS - An easy-to-use, interactive graphics package 
for producing line and bar charts. 

19 



The HEAP - September 1983 - Volume 7 Number 1 
PROPOSAL FOR A SOFTWARE DEVELOPMENT ENVIRONMENT 

2. OFFICE AUTOHATION TOOLS - for increasing the productivity 
of the "knowledge worker". Office automation tools 
include things like electronic mail, electronic file 
cabinets, automated calendar and meeting scheduling. 
These tools can be used by everyone, not just the 
software types. 

3. TEXT FORMATTING - A text formatter (word processor) can 
be an extrememly sophisticated document-generating tool, 
going so far as to incorporate graphics, mathematics and 
different fonts. 

4. MANAGEMENT TOOLS - Many management aids are provided by 
the software development environment and database, simply 
by keeping track of the status of all parts of the 
software development. Other automated tools are also 
available. 

Each of these areas will now be explored in more depth. 

<the tools were described in more detail, -5 pages> 

5.0 CONCLUSION j\ND HHl\T '.IQ 00 NEXT 

We have made tremendous progress in the last few years in 
providing a good software development environment for project use. 
But software systems have increased in size and complexity even 
more rapidly. To stay competitive and produce a quality product, 
we must take steps to implement a modern software development 
environment. 

The software development environment presented here gives the 
general idea of what such an environment would be like. It is 
recommended that the following items be acted on: 

1. Develop and formalize a complete software development 
methodology, covering all steps in the software 
lifecycle. This is important for the development of good 
software, as well as necessary for providing automated 
support. The Yourdan structured methodology now being 
investigated is the type of thing needed. This is not an 

20 



The HEAP - September 1983 - Volume 7 Number 1 
CONCLUSION AND \•lHAT TO DO NEXT 

easy task, but it is a ~ important one. 

2. Set up a continuing in-house training program in the 
software development methodology and the software 
development environment. The best tools in the world are 
useless if not used or used incorrectly. 

3. Get a terminal on every desk. With all the work being 
done on line, from documention to mail to managment 
tools, working without a terminal will be akin to working 
without pencil and paper. How much work would get done 
if an engineer had to go to a pencil room every tiroe he 
wanted to write something? Or even if he had to share 
his pencil with the other guy in the cubicle? This 
applies to most managers, also, who will be using the 
terminal for management reports and mail. 

4. Take a long, hard look at Office Automation, and see how 
it would benefit engineering. We have so nany of the 
pieces already in place (computer, networks, 
sophisticated users) that tremendous payoffs may be 
possible with very little investment. 

5. Along with (4), consider getting in the phenomenal Xerox 
STAR or DEC VAXstation. With the amount of technical 
documentation done in engineering, a tool of this power 
could provide great gains in productivity. 

6. Along with (4) and (5), work on integrating Word 
Processing very closely with any office automation or 
professional work station. 

7. Continue to invest funds to buy these productivity tools, 
and the hardware that will be needed to support them. 

8. Continue contacts, via seminars and symposiums, with 
people doing research or other users who may have already 
solved problems we are facing. Knowledge of RXVP, UNIX 
Software Tools, Xerox STAR, TELL-A-GRAF, CHS all came 
from attending conferences. 

21 



The HEAP - September 1983 - Volume 7 Number 1 
Creating a Software Development Environment Plan 

Spring DECUS Symposium 
St. Louis, MO 

Creating a Software Development Environment Plan 

Kathy Hornbach 
Lear Siegler/Instrument Div. 

Grand Rapids, MI 
May 24, ]983 

What is a Software Development Environment? 

A Software Development Environment (SDE) is a set 
automated tools and techniques for assisting 
development process that uniformly cover all 
software lifecycle. 

of integrated, 
in the software 

aspects of the 

What is a Software Development Environment Plan? 

Software Development Environment Plan is a strategy for 
a SDE for your particular installation. It analyzes 
are, where you want to be, what is needed to get there, 
steps that should be taken. 

providing 
where you 

and the 

(It's a way to get all the fantastic tools we've been hearing 
about.) 

Background 

LSI develops: 

o Large real-time avionics systems 

o Programs are several hundred subroutines 

o Twelve or more people on a project 

o Large "support software" systems to support 
computers 

o Assemblers, linkers, environment simulators 

o Host-target dichotomy. 

Advantages of Having a Plan 

o Helps integrate the tools into a coherent "whole" 

22 

custom 



The HEAP - September 1983 - Volume 7 Number 1 
Creating a Software Development Environment Plan 

o Forces recognition of tools as a valid area of concern 

o Power of eventual persuasion 

o Produces a "shopping list" of tools 

o Helps organize your thoughts 

o Can force a formalization of your software development 
methodology 

Contents of a SDE Plan 

o Describe what a SDE is, and why it is important 

o Outline your current environment, and any "building 
blocks" (e.g. FMS) that are already in place 

o Describe the desired environment 

* -

- Describe tools in terms of the way your software 
development takes place (or should take place) 

- Match up tools to each step in the process. 

Outline of our Current SDE Plan 

*What an SDE Is; Why it is Important 
What has been accomplished since last Plan 

*Underlying tools and philosophy 
*Tools for software developraent 

*tools for requirements 
*tools for design 
*tools for implementation 
*tools for testing 

Tools for document production 
Tools for project management 
Tools for off ice automation 
Tools for information managment 
Non-software issues 

*Long Range Possibilities 
*Summary and Reccornendation 

included in original plan 

Our Experience with SDE Plan 

o First plan issued July '82 

o Things that happened because of the plan: (Some were a 
direct result of plan; many were previous ideas that gained 
wider acceptance because of the plan) • 

23 



The HEAP - September 1983 - Volume 7 Number 1 
Creating a Software Development Environment Plan 

- Switched to formalized software development methodolo~y 

- Obtained CMS, DBMS, CDD, VMSCAI, upgrade to DTR and FMS 

- Wrote 
- Requirements Traceability Database 
- Requirements and design data dictionaries 
- Automated module documenting system 
- RUNOFF <--> IBM OS/6 translator. 
- Realtime test station/environment simulator 

Other Results 

o Tools are now included in annual budgetting process 

o Users EXPECT tools and are willing to fund them 

o Planned purchase of managerial workstations for department and 
division heads 

Hints 

o ADVERTISE your successful tools - put out memos saying how 
much time/money they have saved 

o TELL people how using you were able to get something done 
for them in time (or ahead of time) because of TOOLX 

o TEACH classes on tools and be there to answer questions; 
the best tools in the world won't help if they are unused 

o CITE articles showing other firms' successes with tools that 
you would like to obtain 

o GET users to help by telling them how their request could be 
fuf illed sooner/better if you obtained a certain tool 

o SOLICIT inputs from the people who will be using the tools -
they will accept the plan much easier if they feel they helped 
shape it. 

o TAKE advantage 
environment can 
Uncle Sam, STUG, 
gratis. 

of free tools a good portion of an 
be gotten for 1uedia charge from universities, 
etc. Many of our most valuable tools were 

Shopping List 

o Sophisticated text formatter/typesetter 

o Automated support for structured analysis and structured 
design 

24 



The HEAP - September 1983 - Volume 7 Number 1 
Creating a Software Development Environment Plan 

o Complexity measurement for Fortran-77 

o Global data flow analysis for Fortran-77 

o Conferencing 

o Execution profiler for Fortran-77 

25 



The HEAP - September 1983 - Volume 7 Number 1 
1983 Spring Symposium Reports 

I 98J SPRING $YMPO$/IJM REPORT$ 

The following session reports were produced by the newly 
initiated scribe service sponsered by the Publications Committee 
and spearheaded by the one and only Ralph Stamerjohn. These 
reports will give our readers who can't make it to a DECUS 
Symposia the chance the see what happened in a timely manner. To 
say the least, Ralph did a super job of organizing the scribes and 
producing the tapes that went out to all of the newsletter 
editors. DECUS hopes to continue this service in the future. You 
may want to send letters of thanks to Ralph: 

Ralph Stamerjohn 
Monsanto, MS: V2B 
800 N. Lindbergh 
St. Louis, MO 63167 

I am sure he and his employer will be happy to see that people 
appreciate all the hard work Ralph has been putting into DECUS. 

26 



The HEAP - September 1983 - Volume 7 Number 1 
Overview of the VAX Languages Environment 

An Overview of the VAX Languages Environment 

Bill Keating 
Digital Equipment Corporation 

Nashua, NH 

Art ~cClinton, Session Chairperson 
Mitre Corporation 

McLean, VA 

Reported by Omar El-Ghazzawy, DECUS Scribe Service 

The presentation on the VAX Language Environment at the 1983 
Spring DECUS U.S. Symposium was given by Bill Keating of DIGITAL. 
The discussion gave a broad overview of the VAX language 
environment and its major components. The languages and tools 
supported were enumerated, as well as planned future offerings. 

The VAX is designed to provide a 'common language' 
environment, which means that VAX languages adhere to set 
standards. These standards include: 

1. A symbolic debugger interface 

2. Use of a symbolic traceback facility 

3. Use of the Common Run Time Library 

4. Conformance to VAX calling standards 

5. Common handling of exceptions 

6. Use of VAX-11 RMS. 

Any new language offerings should conform to these standards. 

27 



The HEAP - September 1983 - Volume 7 Number 1 
Overview of the VAX Languages Environment 

In ter1ns of planned future products, ADA and RPG were 
mentioned in the high level language category. Emphasis was 
placed on improving the tools associated with programming 
productivity in future releases. Suggested improvements were: 

1. Full debugging support for all languages 

2. Increased graphics anti I/O capabilities for all languages 

3. A tighter coupling between the debug 
process. 

edit compile 

In addition, several futuristic tools are under development 
by DIGITAL. These are as follows: 

l. (2) Project management 

2. (3) Specification writing, read anc.1 review 

3. (1) Design 

4. ( 2) Language-oriented editing 

5. ( 2) Overall configuration management 

6. (3) Test management 

7. (1) Test generation 

8. ( 3) Dynamic Analysis Performance 

9. ( 2) Static Source Analysis 

10. (2) Generalized string processor generator 

The numbers indicated above range from 1 (least development) to 3 
(most development) and are designed to give an indication of the 
product's position in the development pipeline. 

28 



The HEAP - Septer1tber 1983 - Volume 7 Number 1 
ADA Language System 

ADA Language System 

Hartin Wolfe 
U.S. Army 

Fort Monmouth, NJ 

Peter Beck, Session Chairperson 
U.S. Army 
Dover, NJ 

Reported by Jeff Stapleton, DECUS Scribe Service 

ALS, the ADA Language System, is meant to be a complete 
program environment. Its host is a VAX/VMS and its target is the 
Intel 8086. This system will be presented informally to the Army 
in August of 1983. The formal presentation is scheduled for July 
of 1984, and, at that time, it will have full bootstrapping 
capabilities. From there, it will undergo testing and physical 
configuration auditing. 

The ALS environment is divided into three main components. 
The user will view only the top level, the Command Language. 
Below that is the Tool Set, which is supported by the actual Data 
Base. 

The Data Base, the lowest level, is basically a tree 
structure similar to UNIX, MULTICS, and VHS. It is accessible by 
either files or directory paths. Both use ADA names, being 20 
characters or less. The names may be addressed absolutely or 
relatively. An advanced capacity of the Data Base is supporting 
extensibility, and both attributes and associations can be done 
dynamically by the user. Associations are name lists of related 
nodes in a tree. 

Sof tech, the developer of the ALS environment, has had to 
change the normal view of updating files. Files can be changed in 
one of two ways. Revision is when an old file is updated, and 
consequently the old version is automatically obsolete. A 
variation is two different versions of the same file, in which 
both versions are to be kept concurrently. A variation is 
incorporated into the tree by linking the two versions with a 
variation header node. This can be thought of as a directory by 
"and" nodes. Choosing the final variation can be considered "or" 
nodes, since both of the variations will not ultimately be kept. 
Softech's philosophy of data management is to put the variations 
as low as possible in the tree. 

29 



The HEAP - September 1983 - Volume 7 Number 1 
ADA Language System 

The access control follows the normal lock and key paradigm. 
There is a small wrinkle added, however. The user needs two keys, 
a user identification or a team identification, and a tool 
identification. 

A tool is any executable program or a Command Language 
procedure. An executable program can be added anywhere in the 
Data Base by a user without any additional coding. Command 
Language is the primary interface between the user and the system. 
'l'he commands are very "ADA"-like in their syntax. To keep matters 
simple, any CL command that has ADA syntax also keeps the same ADA 
semantics. Commas and parentheses may be omitted, but this is 
suggested only for online CRT use. For documentation purposes, it 
is strongly recommended that all commas and parentheses be used 
for readability. 

Substitutors are also tools. A substituter is a cross 
between a Macro and CL variables. There are predefined 
substitutors used for control purposes, which allow quick 
implementation of simple tools. For complex tools, ADA must be 
used. Common sequences can also be used as single commands. 

An interesting fact brought up during the questioning was 
that ALS does not support piping. Unlike UNIX, output from one 
procedure cannot be piped as input into another procedure. 
Softech had considered this feature but turned it down since it is 
still in the development stage. Another piece of data brought out 
involved the File Administrator. Softech is currently keeping ALS 
portable, but as this is adding a large amount of overhead, they 
are rethinking this standard and it may possibly change. There 
was nothing definite about this, however. 

30 



The HEAP - September 1983 - Volume 7 Number 1 
Overview of PASCAL for RSX Users 

Overview of PASCAL for RSX users 

Michael Ross 
Digital Equipment Corporation 

Nashua, NH 

John R. Barr, Session Chairperson 
University of Montana 

Missoula, MT 

Reported by Laura Havlin, DECUS Scribe Service 

Michael Ross, as a representative for DIGITAL, talked about 
the PDP-11 PASCl\L/RSX. This systeM f s based on the "OHSI 
PASCAL-2" compiler acquired by DIGITAL. PDP-11 PASCAL/RSX is an 
implementation of the Pascal language that accepts programs 
compatible with Level 0 of the ISO Specification for the Computer 
Programming Language Pascal (Draft International Standard 7185). 
PDP-11 PASCAL/RSX is a multipass optimizing compiler that provides 
all standard Pascal data types and statements, as well as 
extensions. 

The data types, control statements, and predeclared functions 
and procedures provided by Pascal include (1) INTEGER, REAL, CHAR, 
BOOLEAN, enumerated, and subrange data types, (2) ARB.AY, RECORD, 
SET, and FILE structured data types, (3) FOR, REPEAT, WHILE 
repetitive control statements, (4) CASE, IF-THEN-ELSE conditional 
statements, (4) BEGIN ••• END compound statement, (5) GOTO 
statement, (6) READ, WRITE, READLN, and WRITELN input and output 
procedures. 

The extensions for PASCAL/RSX include: (1) support for RSX 
File Control System (FCS) sequential files, with fixed or variable 
length records; (2) sequential access to fixed or variable length 
records, and both direct and sequential access to fixed length 
records; (3) EXTERNAL and FORWARD procedure and function 
directives; (4) OTHERWISE clause in case statements; (5) REM 
operator to supply the remainder in division operations; (6) 
global, local, and external attributes on variables and 
subprograms; (7) MODULE reserved word for separate and 
independent compilation; (8) static and automatic allocation 
attributes; (9) %INCLUDE directive to allow multiple compilation 
units to access the same program text; (10) binary, hexadecimal, 
and octal constants; (11) exponentiation operator; (12) dollar 
sign ($) and underscore () characters in identifiers; (13) value 
initialization in declaration section at program level; and (14) 
predefined procedures CLOSE, DATE, OPEN, TIME, and HALT. 

31 



The HEAP - September 1983 - Volume 7 Number 1 
Overview of PASCAL for RSX Users 

PDP-11 PASCAL/RSX programs can be compiled in interactive 
mode or with an indirect command file. The PDP-11 PASCAL/RSX 
compiler performs optimizations designed to improve execution 
speed, including constant folding, constant conversion, constant 
pooling, and global register assignment. Optional compiler 
instructions and input and output file attributes are specified by 
compiler switches that: (1) perform run-time checks of array 
bounds, case selectors, pointers, string bounds, and subrange 
bounds; (2) limit the number of error messages printed and allow 
compilation to continue regardless of the number of errors; (3) 
cause code to be generated that provides source line numbers at 
run-time; (4) determine whether to generate EIS, FPP, or FIS 
instructions; (5) produce an optional, machine-code listing; (6) 
identify the Pascal compiler version number; (7) print 
warning-level messages that identify the use of PDP-11 Pascal 
extensions; (8) provide automatic spooling of the listing file; 
(9) maintain qualifier settings for subsequent compilations in 
interactive mode or in the same indirect command file. 

After compilation, the RSX task builder is used to produce an 
executable image file, and to provide support for both relocatable 
and resident object libraries. Task builder options create 
checkpointable tasks, identify the use of floating hardware, 
provide Online Debugging Support (ODT) and allow simultaneous 
execution of multiple versions of a single task. 

PDP-11 PASCAL/RSX allows use of the PDP-11 FORTRAN standard 
calling sequence, permitting Pascal programs to communicate with 
FORTRAN callable system routines for realtime applications. 
However, routines written in FORTRAN cannot be called from PDP-li 
PASCAL/RSX. In addition, PDP-11 PASCAL/RSX programs can call RSX 
system services for process-control operations, system devices, 
and special peripheral access. 

The PDP-11 PASCAL/RSX is expected to be available for order 
during the latter half of this year. 

32 



The HEAP - September 1983 - Volume 7 Number 1 
Programming in PASCAL for RSX Users 

Programming in PASCAL for RSX Users 

Mike Ross 
Digital Equipment Corporation 

Nashua, NH 

John Barr, Session Chairperson 
University of Montana 

Missoula, MT 

Reported by Harty Olevitch, DECUS Scribe Service 

Nike Ross of the Technical Languages and Environments Group 
of Digital Equipment gave a description of the PASCAL language as 
it relates to the RSX environment. PDP-11 PASCAL provides a 
program development environment well adapted to RSX-llM and 
RSX-lHl+. Its compiler accepts the normal RSX command line syntax 
and switches for both MCR and DCL, including indirect cornraand 
files. The compiler can be tailored to the needs of the user at 
installation time. Access to the RSX executive directives is 
supplied through the SEQll procedure call interface at run tirae, 
the compiled object modules may be placed in libraries with LBR, 
and OTS can be overlayed or placed in a resident library. 

Strong points of the PDP-11 PASCAL compiler are that it will 
accept almost any number of identifiers and constants as well as 
any number of procedures and functions in a module. It is 
comparable in speed to the other PDP-11 compilers. The compiler 
allows data sharing between separately compiled modules via the 
GLOBAL and EXTERNAL variable declarations, as well as overlaid 
PSECT. In addition, it provides upward mobility with VAX PASCAL 
V2 at the source language level, an enhanced machine code listing 
and run-time error trace for easier debugging, and produces FPP, 
EIS, or FIS code for floating point operations. 

Optimization features of this compiler include the 
elimination of common subexpressions, global register allocation, 
jump/branch resolution, the folding of constant expressions, and 
deletion of areas of inaccesible code. Also included is flow 
boolean optimization, meaning that a boolean expression will not 
be evaluated in full if it is discovered to be true or false prior 
to the complete evaluation. 

33 



The HEAP - September 1983 - Volume 7 Number 1 
Programming in PASCAL for RSX Users 

Ross emphasized the reliability of this PASCAL, noting that 
the compiler and OTS have undergone over 3,000 PASCAL tests. The 
compiler is self-compiling and usable on any machine. 
Incorporated is the PDP-11 workf ile system. Complete 
documentation such as the Language Reference, User's Guide, and 
Installation Guide are readily available, and information intended 
to anticipate user problems is provided. 

34 



The HEAP - September 1983 - Volume 7 Number 1 
PDP-11 FORTRAN-77 Futures 

PDP-11 FORTRAN-7 7 Futures 

George Hetrick 
Digital Equipment Corporation 

Nashua, NH 

Gary Maxwell, Session Chairperson 
U.S. Geological Survey 

Menlo Park, CA 

Reported by Jeff Stapleton, DECUS Scribe Service 

The PDP-11 FORTRAN-77 DEBUG, currently being field tested, 
was announced at the PDP-11 FORTRAN-77 Future session. DEBUG is a 
fully symbolic debugger for PDP-lls. This means the symbolic name 
can be used instead of the octal representation. It has full 
support of overlaid programs, and DEBUG supports both FORTRAN-77 
and MACR0-11. DEBUG runs as two tasks and supports all FOR'l'RAN-77 
data types. It requires 2K words in the user task and 28K words 
in the user's background task. DEBUG for RSX-llM, RSX-llM-PLUS, 
RSTS/E, and VAX/VHS will be available in October of 1983. 

Commands are separated into four categories. These are: ( 1) 
Display Control Commands, (2) Command Logging Commands, (3) 
Execution Commands, and (4) Convenience Commands. 

The question and answer part of the session revealed some 
interesting information: debugging a program with subroutines 
residing in a library is allowed if the program was compiled with 
the debugger switch on. This does result in a larger object file, 
but the object code remains the same size. Watch points are not 
available in the first version. During the conversation, it was 
revealed that is considered a good idea to always provide a return 
break. It was also mentioned that the number of break points you 
can set depends upon the amount of memory you have left. Since 
break points are dynamically stored, it depends on the amount of 
memory available to you. George Hetrick mentioned that he has set 
as many as 50 break points without any problems! 

35 



The HEAP - September 1983 - Volume 7 Number 1 
Building and Using Resident Libraries 

Building and Using Resident Libraries 

s. Reid Madsen 
Weidner Communications 

Provo, UT 

Allan J. Bennett, Session Chairperson 
Clark Equipment Company 

Battle Creek, MI 

Reported by Marc Caffee, DECUS Scribe Service 

The RSX taskbuilder permits three types of shared regions: 
shared commons, shared libraries, and dynamically allocated 
regions. Several types of shared libraries were discussed, as 
follows: 

1. Resident library - a library that requires a dedicated 
address window in your task. 

2. Cluster library - a set of libraries mapped through one 
window (this type of library can be very slow). 

3. Supervisor mode library (RSX-llM-PLUS only) - the library 
mapped uses supervisor I space while the task is mapped 
in D space. 

The purpose in using a library is to reduce the physical 
address space required for a task by putting routines used by many 
tasks into a co~uon area (library). By doing this a net gain in 
physical address space is made. Using shared libraries also 
reduces disk swapping, since the space requirements for tasks is 
less than that required by tasks which do not use shared 
libraries. This not only increases throughput, but can possibly 
forestall the purchase of additional memory. 

An example of an existing library is the FCS library. During 
the SYSGEN procedure you can link a number of tasks to FCSRES. 
Additionally, some of the layered products (e.g. FORTRAN) have 
the ability to build resident libraries. In addition to the above 
libraries the user can write his own libraries. In order to 
establish a library you must: define the library contents, build 
the library, install the library, and finally link the task to the 

36 



The HEAP - September 1983 - Volume 7 Number 1 
Building and Using Resident Libraries 

library. 

A user built library can contain either a MACR0-11 source 
file or an overlay descriptor file. MACR0-11 source files are 
used by specifying the source file's global entry points. If an 
ODL file is used, the file contains the names of the object 
modules to be included in the library. 

After the contents of the library have been established, TKB 
is used to build the library. By using different TKB commands you 
can build overlaid libraries, cluster libraries, and supervisor 
libraries. In building a memory resident overlay a potential 
pitfall occurs in referencing entry points. If an entry point is 
not referenced in the root segment it should be defined using the 
.GBLREF option. 

In building cluster libraries there are several things to 
remember. 

1. All libraries except the first must be memory-resident 
overlays. 

2. User task vectors indirectly resolve all interlibrary 
references. 

3. Revectored entry point symbols must not appear in the 
"Upstream" symbol definition file. A .GBLXCL option must 
appear for each symbol being revectored to a "Downstream" 
library. 

4. All libraries must be built PIC or built for the same 
address. 

5. Trap or asynchronous entry into a library is not allowed. 

Building a supervisor mode library is similar to building 
other libraries. 

Once a library has been built, the next step is installation. 
One way to do this is to use VHR to create a new bootable system 
image. One strategy is to install each library in a partition 
which has the same name as the task. To get the size for the 

37 



The HEAP - September 1983 - Volume 7 Number 1 
Building and Using Resident Libraries 

partition to be created look at the memory allocation map. 

You are now ready to link to the resident library which you 
have created. For a non-clustered and non-supervisor-mode library 
use either the LIBR or RESLIB TKB options. For clustered 
libraries use the CLSTR keyword. Supervisor-mode libraries are 
specified by SUPLIB or RESSUP. 

In a test to check performance three different situations 
were compared: 

1. No libraries 

2. Cluster library in which both libraries were overlaid 

3. Cluster library where the first library was not overlaid 

Cases 1. and 2. had essentially the same performance, while 
case 3 was slower by about a factor of 9. 

<<<NOTE TO THE EDITOR: A complete written version of this 
session will probably appear in NultiTasker in the near future. 
Included in this version will be illustrative examples, etc.>>> 

38 



The HEAP - September 1983 - Volume 7 Number 1 
FORTRAN/RT Tutorial - EIS, FIS and FPU 

FORTRAN/RT Tutorial - EIA, FIS and FPU 

Ron Trellue 
Sandia National Laboratories 

Albuquerque, NH 

David E. Ellis, Major, USAF 
Air Force Weapons Laboratory 

Kirtland AFB, Nll 

Jack Crowell, Session Chairperson 
Los Alamos National Laboratory 

Los Alamos, NH 

Reported by Gavin Perry, DECUS Scribe Service 

This tutorial is a repeat of the one presented at Anaheim 
(Fall 82) DECUS. New material added consists of benchmarks run 
for the various processors and FORTRAN options. If you've ever 
wondered what NHD, EIS, FIS, and FPU are, and whether you want 
in-line or threaded code, get this tutorial from the proceedings. 
Here are the basics. 

The NHD, EIS, etc. are processor options. You should use 
the compiler and library that are optimized for the hardware that 
you have on your system. To find out what you have run the SHOW 
CONFIG monitor command in RT-11. 

The FORTRAN compiler can be built to produce either inline or 
threaded code. Inline code will usually run faster, but it 
depends on the application. Inline code generates a stream of 
EACRO assembly language code with fewer library calls. Inline FPU 
code is not possible with the present compiler but FORTRAN-77 will 
have this feature if (when) it becomes available for RT-11. The 
timing benchmark tests show that under RSX (which has F77) the 
program that uses a lot of number crunching in floating point will 
run twice as fast. If you don't have arithmetic hardware, or if 
you want to be able to use the Fortran debugger then threaded code 
must be used. Threaded code consists of a string of subroutine 
calls to the Fortran Object Time System (OTS) library that is 
hardware independent. The OTS routines are then selected (when 
you build the library) to optimize for the hardware available. A 
threaded object module can be linked with any of the five types of 
OTS libraries to produce runnable code for any PDP-11. Because of 
all the subroutine calls threaded code tends to run slower but it 
may produce a smaller .SAV file ~llowing larger applications to 

39 



The HEAP - September 1983 - Volume 7 Number 1 
FORTRAN/RT Tutorial - EIS, FIS and FPU 

run, and the Fortran debugger requires threaded code to run so it 
is probably the best way to go for student applications. 

For each application it is important to know what types of 
operations will be executed, what type of hardware is available 
and how to build the software to optimize the application for your 
needs whether they are running speed, ease of use or size of 
application. FORTRAN-77 with its ability to produce in-line FPU 
code will be an important enhancement for those applications which 
are floating point compute bound. 

40 



The HEAP - September 1983 - Volume 7 Number 1 
VAX-11 PASCAL I/O Tutorial 

VAX-11 PASCAL 1/0 Tutorial 

Joyce Spencer 
Digital Equipment Corporation 

Nashua, NH 

John R. Barr, Session Chairperson 
University of Montana 

Missoula, MT 

Reported by Marty Olevitch, DECUS Scribe Service 

Joyce Spencer of DIGITAL Technical Languages and Environments 
Group gave an introductory tutorial on the input/output facilities 
of the VAX-11 PASCAL language. She asserted that, as opposed to 
other versions of PASCAL, this implementation has quite adequate 
I/O capabilities, with access to many of the features supported by 
RMS. Her talk centered on PASCAL predeclared procedures and 
functions that allow creation and manipulation of files, and 
internal I/O. 

Ms. Spencer first went over the fundamental RMS concepts of 
how RMS records are organized into RMS files, and the access 
methods that are used on those files. The general rule is that 
one RMS record is equivalent to one PASCAL file component (with 
the exception of text files). Fixed or variable length formats 
are available. RMS files are collections of records arranged in a 
specific order. There are three basic organizations, and one is 
specified at the time the file is created. In sequential 
organization, the file components are arranged in a physical 
sequence, in the order that they were written to the file. Files 
with relative organization have components that are a given number 
of fixed-length cells. The order is their physical sequence, but 
a cell may either contain data or not. A file component may be 
referred to by its cell number, as well as sequentially. With 
indexed organization, the file components are ordered according to 
some keys that exist in every component. 

Access methods are the way files are stored and retrieved, 
and again there are three methods. They are distinct from the 
file's organization, and are specified each time a file is opened. 
In sequential accessing, the files are processed in order from 
first to last, either according to physical sequence, cell number, 
or ascending order of the primary key. Direct accessing involves 
specifying a particular cell number which is then processed. The 
keyed access method can be used on files with indexed 
organization, which are processed according to the specified key. 

41 



The HEAP - September 1983 - Volume 7 Number 1 
VAX-11 PASCAL I/O Tutorial 

I/O in PASCAL is done with a set of predeclared procedures. 
They are OPEN and CLOSE, sequential access routines, what Ms. 
Spencer called miscellaneous routines, text routines, direct 
access, keyed access, and terminal I/O routines. All of the above 
procedures have a large number of parameters that may be chosen by 
the user. A new feature of version two is the ERROR parameter. 
It allows one to specify an action to be taken upon an error 
signal, and may be used with all of the I/O commands. 

42 



The HEAP - September 1983 - Volume 7 Number 1 
System Programming in VAX-11 PASCAL V2 

System Programming in VAX-11 PASCAL V2 

J·oyce Spencer 
Digital Equipment Corporation 

Nashua, NH 

John Barr, Session Chairperson 
University of Montana 

I-iissoula, MT 

Reported by Omar El-Ghazzawy, DECOS Scribe Service 

Joyce Spencer of DIGITAL covered new features in VAX-11 
PASCAL V2 that make the language suitable for systems programing. 
These features include new data types, attributes, I/O 
functionality separate compilation, and much more. 

System programs are a class of programs which create and 
synchronize processes, access devices and files, and share data 
and code. A language suitable for such tasks requires a flexible 
grammar, and a solid integration into the VAX "common language" 
environment. Such a language is VAX-11 PASCAL V2. 

The new data types In VAX-11 PASC.l-1.L V2 include: UNSIGNED, 
DOUBLE (G-float format), QUADRUPLE, and VARYING CHAR. 

These new attributes permit greater control over the behavior 
of the compiler, data items, routines and compilation units. 
Separate compilation of PROGRAMs and HODULEs. The attributes 
ENVIRONMENT and INHERIT can be used to share variables, routines, 
constants and types, thus greatly simplifying the compilation 
process. In terms of I/O functionality, the principle additions 
are: 

1. ISMA support 

2. ERROR := COHTINUE parameter for I/O procedures 

3. Several new predeclared routines: STATUS, TRUNCATE, 
UNLOCK, and UFB 

43 



The HEAP - September 1983 - Volume 7 Number 1 
System Programming in VAX-11 PASCAL V2 

4. An enhanced OPEN with the new parameters ORGANIZATION, 
DISPOSITION and USERAC'I'ION 

5. An enhanced CLOSE with the addition of the DISPOSITION 
and USERACTION parameters 

Some other new features include new builtin routines for 
STRING and UNSIGNED variables, nonpositional parameters and the 
inclusion of default parameters. 

VAX-11 PASCAL V2 is well integrated into the VAX/VMS 
environment. It supports the VAX-11 Procedure Calling Standard, 
the VAX-11 Symbolic Debugger and access to system supplied 
routines such as RHS, RTL and system services. When calling 
system supplied routines, the procedure names take the form: 

facility-code$procedure-name or procedure-name 

To obtain system status codes, the following construct can be 
used: 

[ INHERIT ( 1 SYS$LIBRARY: STARLET') 

A sumraary of the question and answer session follows: 

Q. Are environment files going to provide for LIB$ functions ? 

A. This is a good idea which may be provided later on. 

Q. What about the bug encountered when you open 
unsuccessfully the first time? 

a file 

A. This has been fixed and will be made available in the next 
maintenance release of VMS. 

Q. In the STARLET environment file are types associated with the 
routines defined? 

A. We are thinking of doing so in the next release. 

Q. How about opening a sequential file in append mode? 

A. It is on our list. 

44 



The HEAP - September 1983 - Volume 7 Number 1 
System Programming in VAX-11 PASCAL V2 

Q. What about a data type that is an external constant? 

A. This is also on our list. 

45 



The HEAP - September 1983 - Volume 7 Number 1 
Tailoring EDT for the Structured Language Programmer 

Tailoring EDT for the Structured Language Programmer 

Shava Nerad 
Varian Associates 

Gloucester, HA 

James w. Livingston, Session Chairperson 
Measurex Corporation 

Cupertino, Cl~ 

Reported by Margaret Watters, DECUS Scribe Service 

Shava Nerad and R. Mark Chilenskas wrote a paper entitled, 
"Tailoring EDT for the Structured Language Programmer". Nerad, 
who spoke before a standing room only crowd, highlighted the 
methods that she has found helpful when editing her programs using 
EDT. Many members of the audience were pleased to discover that 
there are convenient ways to edit their programs using EDT. 

The problem with EDT is that it defines words, sentences, 
paragraphs, and pages within the context of the English language; 
therefore when a programmer tries to delete a single entity of the 
language in which he is writing, he often ends up deleting an 
entire line section. Nerad and Chilenskas have found methods to 
redefine the delimiters of the word, sentence, paragraph, and page 
functions. When Nerad complained about the poor documentation for 
setting up a command file to do this, there was a murraer of 
agreement from the audience. 

One member of the audience suggested that instead of using 
Nerad's method to move up and down the initializing file, to gold 
the arrow keys. Several members of the audience agreed that this 
was a better method. 

<<<Editors note: the following paper expands on the session 
report above.>>> 

46 



The HEAP - September 1983 - Volume 7 Number 1 
Tailoring EDT for the Structured Language Programmer 

Shava Nerad 
Varian Associates, Gloucester, Ma. 

R Mark Chilenskas 
Computer Corp of America, Cambridge, Ma. 

This paper 
the structured 
ECTINI.EDT file 
tailored layout 

ABSTRACT 

will discuss EDT features that are desireable to 
language programmer, present the authors' own 

as a model for the reader, and present a 
of the EDT keypad mode functions. 

EDITOR FLEXIBILITY 

The importance of the editor to a programmer's work should 
not be underestimated. A majority of any programmer's time is 
spent writing code in the editor. This makes tne editor one of 
the most important software tools the programmer will use. 

For the structured languages programmer, the language that 
he manipulates in his day to day work is one of rigid syntax and 
regular, formalized layout. Though the details of each language 
will be different, I will use Pascal as the language of example 
for this paper. 

EDT, the VMS full screen capable editor, is an 
underutilized resource at most VAX sites. The ease of use and 
flexibility of the editor make it a tool that is in some ways 
superior to more powerful, less friendly editors such as T~CO. 
The structured languages programmer's code relies on formatting 
for readability. The entities word, paragraph and page may 
differ from standard text and between languages. Many features 
of EDT can be used to tailor the editor to a special code 
manipulation tool, rather than using the default initialization 
functions of EDT, which are gauged toward general word 
processing. 

TRAVERSING ENTITIES 

Entities are significant pieces of text that may be 
regarded as logical entities in their own right. Entities, 
defined by delimiters, allow the editor to match patterns to 
either move the reterence pointer, or to delete/replace a 

47 



The HEAP - September 1983 - Volume 7 Number 1 
Tailoring EDT for the Structured Language Programmer 

particular range of characters (word, paragraph .•. ). The 
standard entities of computer languages are, by level of 
complexity: 

1. atoms or tokens 

2. statements or s-expressions 

3. modules 

An atom or toKen is the base, unreducible unit of meaning 
in the language. This token-parsed Pascal statement divides 
into twelve tokens: 

writeln ( MyFile ' This is a test ' ) 

Tokens can be combined into s-expressions or statements, 
usually delimited by reserved words or other structure markers, 
such as the semicolon in Pascal. The 'writeln' example above 
shows a Pascal statement which defines the action of writing the 
string literal 'This is a test' to the file Mytile. Complex 
statements can be formed according to the speciric nesting 
syntax of the language, allowing subroutines, procedures, 
functions, declaration sections, et al, to be created as complex 
statements. 

A module is an independant compilation unit, producing its 
own symbol table, requiring independant declarations (it 
required) . 

Tokens can be thought of as replacing the words and 
punctuation of a natural language. Simple statements are 
similar to sentences, complex statements are similar to 
paragraphs. A module might be considered to be like a chapter 
of a booK, or article of a journal. 

In composing and editing code, these entities are important 
to finding one's 'place' in the file. The ability to fina tne 
next signiticant paragraph/complex statement, to neatly delete 
the next significant word--these are actions detined by the 
context of the language in which you work, be it English, LISP, 
APL, or Pascal. 

In programming Pascal, the important toKens of the language 
are: program, module, procedure, function, begin, end, ord, *, 
=, :=, for, while, record, ; , (, ) , {, } , [, ] , and so on. Some 
of these (program, ;, end, } ... ) are delimiters of statements or 
modules. Each of these characteristic elements of the language 
takes on the importance one would accord WORD, S~NTENCE, 
PARAGRAPH, or PAGE when referring to the language English. 
While the detault initialization in EDT only defines the space, 
the carriage return, and the tab characters as valid delimeters 
of WORDS, in the Pascal statement: 

Function MakeWaves(var FirstLocation: array[l .. 8]of char; 
counter:integer; AFlag,BFlag: boolean) :real;extern; 

48 



The HEAP - September 1983 - Volume 7 Number 1 
Tailoring EDT for the Structured Language Programmer 

consists of seven words, whereas the signiticant tokens in tne 
statement are around tnirty. By defining the entity WORD in EDT 
as including the delimiters (, ) , : , ; , and so on, we can more 
realistically represent the realities of the language in which 
we are working--not English, but Pascal. Under ECT default 
initialization, a DELETE WO~D BACK from tne end of the statement 
used in the example above would delete 'boolean) :real;extern'. 
This is almost certainly more than was meant to be deleted by 
the programmer. 

Similarly 'for', 'case', 'if', 'repeat' and otner single 
statement oriented tokens would be defined as similar to 
SENTENCE delimiters, and 'function' and 'procedure' would be 
defined as PARAGRAPH entities. The tokens 'program' and 
'module' would be equated to PAGE delimiters. Unfortunately, in 
EDT only single character delimeters can be defined for WORD and 
SENTENCE delimiters. Although PARAGRAPH and PAGE entity 
definitions will take a string literal, they will only accept 
one delimiter definition for either entity. 

EDITING STRUCTURES 

In addition to moving through a program, structures must be 
entered and changed. These structures are expressed by keywords 
and indentation. Ideally, the editor should help the programmer 
deal with both with minimum eftort and drudgery. 

Indentation is used to group statements togetner. All the 
statements inside a given s-expression (say a BEGIN/END group) 
are inaented to the same level. When entering statements tnere 
should be no reason for the programmer to laboriously tab and 
space to the proper starting column. Rather, there should be a 
simple way to move to the next line at the proper indentation 
level. The indentation level should change when a BEGIN or END 
statement is encountered. In addition, it is useful to 
automatically shift text right or left when a BEGIN is added or 
deleted to the program. 

EDT provides 
indentation level 
definitions lets the 
next 1 ine. (See key 

simple techniques to set the current 
and tab-shitt text. Adding a few key 
programmer start at the right place on the 
3, key gold 3, and key 21 in the example) 

Another useful tool is abbreviation. Every time a FOR loop 
occurs in Pascal, a group of keywords and new lines is entered: 

FOR := TO DO 
BEGIN 

END; 

The same can be said for CASE, WHILE, etc. It is possible to 
enter tnese sKeletal structures with single commands rather tnan 

49 



The HEAP - September 1983 - Volume 7 Number 1 
Tailoring EDT for the Structured Language Programmer 

by typing all the characters every time. This could not only 
save time but serve as a reminder of the syntax for the 
s-expression. The latter is not an important consideraticn in a 
small language like Pascal, but it could be useful when learning 
the many new control structures in ADA. 

As most of our programming is done in Pascal, we have not 
added abbreviations for structures. Since structures are simple 
and not very long, we did not think the time saved would be 
worth the effort of remembering all the abbreviations. Otner 
programmers could of course decide otherwise. 

However, another way to use abbreviations has been helpful. 
Many programmers like others to use long descriptive names, but 
very few like to type them in. Thus they often use 
abbreviations for the names, sacriticing clarity to escape 
drudgery. However, you can use named bufters to provide a 
technique to expand token abbreviations into fully spelled out 
words. The definitions to do this are provided in our init file 
(V, gold V). You would not want to implement statement 
structure abbreviations in exactly this way as they must be: 

1. indented to the proper level and, 

2. the cursor should be left at one of the "blanks" in the 
structure, not at the end. 

These problems can be taken care of by combining EDT commands in 
a macro with text insertion. 

IMPLEMENTATION NOTES 

A complete EDTINI.EDT type file may be chosen from DCL 
(e.g. edit/edt/command=workdir:pascalini.edt). We incluce tne 
line "edt :== 'edit/edt/command=tools:edtini.edt'" in our 
LOGIN.COM's. By the use of EDT "macros", an environment 
appropriate to the current task, (see included bufters RNOMODE 
and TEXTMODE in example) may be initialized without exiting tne 
editor. 

The EDTINI.EDT file in the example 
This is not a legal option in EDTINI.EDT 
use the file, all comments delimited with 
be removed. 

files is commented. 
files. If you plan to 
"(*" and "*)" shoul6 

Several of the example files include representations cf 
control characters in the format 'X'. In the implementation of 
these files, the SPECINS command should be used to insert tnese 
non-printing characters in your text. 

A personalized HELP file is included in the example. Using 
this redefinition greatly reduces the general utility of the 
HELP facility supplied with EDT, but is sufticient for the 
experienced user who may try to learn a new keyboard. 

50 



The HEAP - September 1983 - Volume 7 Number 1 
Tailoring EDT for the Structured Language Programmer 

CONCLUSIONS 

EDT is not a perfect editor for structured languages. It 
is primarily designed to handle lines, words, sentences and 
ether structures of written English. Programming languages have 
other basic entities, namely tokens, s-expressions and modules. 
However EDT provides reasonably powertul customization tools 
which lets the user redefine entities and new functions to 
handle the new entities. 

Tokens are easy to describe in EDT because they are 
delimited by a single character. S-expressions ana modules, 
however, are delimited by strings. EDT will only permit a 
single string as delimiter for the PARAGRAPH and PAGE entities, 
not a choice between a group of strings like FOR, IF, CASE etc. 
Thus s-expressions and modules are not easily described to EDT. 
This makes it harder to move over structures than would be 
desirable. 

The macro and define key capabilities of E~T allow 
programmers to perform common operations like moving to the next 
line with at the proper indentation and abbreviations with 
single commands. This customization is a powertul tool which 
can make common operations quicker and let the programmer 
concentrate on the code rather than its format. This in turn 
leads to faster programming with fewer mistakes. 

51 



The HEAP - September 1983 - Volume 7 Number 1 
Tailoring EDT for the Structured Language Programmer 

Files included: 

edtini.edt 
help.eat 
rnornode.edt 
textmode.edt 

the edt initialization file 
keypad layout learning aide 
useful definitions for DSR task& 
useful definitions for word processing 

EDTINI.EDT 

include tools:rnomode.edt =rnomode 
include tools:textmode.edt =textmode 

(*macros to allow further tailoring of the editor, *) 
(* according to the current task *) 

include tools:help.edt =help 

f ina =main 1 

(* this brings the associated help file into the bufrer *) 
(* "help", so that a personalized keypad help display *) 
(* can be produced. *) 

(* returns tne editor's attention to your main bufrer. *) 
(* otherwise, you would remain in bufrer "help" *) 

set term vtlOO (* or as appropriate *) 

~ set tab 4 (* my preference *) 

detine key 10 as "ext change =help." 
(* the standard keypad HELP key now displays our "help" *) 

define key gold 10 as "-?'ctrl-' ." 
(* Insert control character, using the prompt, "ctrl-" *) 
(* instead of the standard SPECINS. I find it easier *) 
(* to remember "ctrl-z" than the ASCII decimal *) 
(* equivalent numbers, from long experience with other *) 
(* editors that use control characters extensively. *) 

detine key 11 as "CUTSR=dotdotk." 
(* Cut Select Range into buffer Dotdotk. *) 
(* "dotdotk" is an arbitrary bufrer name, lifted from *) 
(* TECO, that we will use as the standard deletion *) 
(* buffer. *) 

define key gold 11 as "CUTSR=?'Buffer name: '." 
(* Cut Select Range into specitied bufrer, prompt for *) 
(* buffer name using prompt "Buffer name: " *) 

define key 17 as "PASTE=DOTDOTK." 
(* undelete key. This will undelete words, lines, or *) 
(* select ranges, but not single characters. I have *) 
(* found that it is very frustrating to have a deleted *) 
(* paragraph disappear when you thoughtlessly delete a *) 
(* single character. *) 

52 



The HEAP - September 1983 - Volume 7 Number 1 
Tailoring EDT for the Structured Language Programmer 

define key gold 17 as "PASTE=?'Buffer name: '." 
(* the complement of Gold 11, this key Pastes in a *) 
(* specified bufter, prompted by "Buffer name: " *) 
(* Note that the named bufter need net have been *) 
(* created by Gold 11, but may be bufters created by *) 
(* Includes, etc. such as the "help" buffer. *) 

define key 7 as "ADV." 
(* FORWARD. Sets the editor looKing forward in the *) 
(* text for the entity to be manipulated. *) 

define key gold 7 as "BR." 
(* TOP. Sets the cursor to the first character of the *) 
(* file. Note that this is the opposite pairing from *) 
(* the standard EDT keypad, which pairs FORWARD with *) 
(* BOTTOM, and BACK with BOTTOM. This is a matter of *) 
(* personal preterence. *) 

define key 8 as "BACK." 
(* sets the editor looking backward in 
(* entity to be manipulated. 

the text for the *) 
*) 

define key gold 8 as "ER." 
(* BOTTOM. Sets the cursor to the [EOB] marker *) 

define key 9 as"''." 
(* FIND NEXT. Find next entity as set by gold 9 *) 

define key gold 9 as "'?'Search for: ''." 
(* SET FIND. Set entity for FIND NEXT, search through *) 
(* text for its first occurance. Note that the editor *) 
(* is not able to search for the character "'", since *) 
(* that is its string delimiter character. *) 

define key 18 as "CUTSR=DOTDOTK PASTE=REPLBUF." 

define key 

define key 

define key 

define key 

(* Select the FIND string, cut to delete bufter, then *) 
(* paste in the string in the replace bufter, REPLBUF *) 
(* REPLBUF is usually filled by using gold 18. *) 

gold 18 as "SEL !?'Replace with: ·-zcuTSR=REPLBUF." 
( * ~z is specins *) 

( * Cut the selected string, which is prompted for with *) 
( * the prompt "Replace with: " into the replace *) , 
( * buffer, called REPLBUF. *) 

4 as "C." ( * set operating entity to CHARACTER *) 

gold 4 as "DC." ( * delete one CHARACTER *) 

5 as "W." ( * set operating entity to WORD *) 

det1ne key gold 5 as "CUTW=DOTDOTK." 
(* Delete one WORD. Note that deleted WORDs are put in *) 
(* DOTDOTK, the delete bufter, for possible undeletion *) 

define key 6 as "L." (* set operating entity to LINE 
53 

*) 



The HEAP - September 1983 - Volume 7 Number 1 
Tailoring EDT for the Structured Language Programmer 

define key gold 6 as "CUTL=DOTDOTK." 
(* Delete one LINE. Note that deleted LINES are put in *) 
(* DOTDOTK, the delete bufter, for possible undeletion *) 

define key 19 as "EL." (* set cursor at END OF LINE *) 

define key gold 19 as "CUTEL=DOTDOTK." 
(* Delete from current cursor position to the end ot *) 
(* the current line. This fractional line is placed in *) 
(* DOTDOTK, the delete bufter, for possible undeletion. *) 

define key 1 as "?'Command: ' • " 
(* to use line mode commands from keypad mode *) 

define key gold 1 as "DEFK." 
(* to define keys while in keypad mode *) 

define key 2 as "4" 
(* arbitrary count specifier. (e.g. {2 gold-6} deletes *) 
(* 4 characters, {2 6} moves the cursor 4 lines) The *) 
(* same function may be accomplished by hitting {gold} *) 
(* and the keyboard (not keypad) number 4, followed by *) 
(* the desired operator (line, delw, etc.) *) 

define key gold 2 as "+EPAR FILLBPAR." 
(* Fill Paragraph. Find the end of the paragraph, do *) 
(* a fill to the beginning of the paragraph. Note that *) 
(* this may produce undesireable results it you are set *) 
(* in the BACK direction, rather than ADV. *) 

define key 3 as "TC." 
(* Tab Compute. Of particular interest to structured *) 
(* programmers, this function sets the indentation to *) 
(* the current tab position divided by the set tab *) 
(* number. By using ENTER rather than RETURN, one can *) 
(* go automatically to the set indent, rather than *) 
(*having to strike {RETURN, TAB, ... TAB} to get to tne *) 
(* desired column. Associated with this function are *) 
(* {~E}/Indent-tabstop and {~R}/Indent+tabstop. *) 

define key gold 3 as "TADJSR." 
(*tab adjust select range. By using {gold}({"-"}J{digit} *) 
(* {gold} {key 3}, one can adjust a select range back *) 
(* or forward by an arbitrary number of tab stops. *) 
(* This is an invaluable aid to the programmer who has *) 
(* to bracket a range of code with one more structure *) 
(* loop, or conversely, take out a loop that is nested *) 
(* around a range of code. It preserves standard loop *) 
(* indenting. *) 

define key 0 as "20L." 
(* move cursor 20 lines. Since programmers selaom work *) 
(* in Paragraphs, this simply moves the cursor about *) 
(* one screen in the desired direction. *) 

define key gold 0 as "TOP." 
(*move cursor's current line to the top of the screen, *) 

54 



The HEAP - September 1983 - Volume 7 Number 1 
Tailoring EDT for the Structured Language Programmer 

(* scrolling text appropriately. Since programmers *) 
(* seldom work in pages ter~inate~ by <FF>'s, this *) 
(* replaces the PAGE function nicely. *) 

define key 16 as "SEL." 
(* set SELECT mode. The current cursor position will *) 
(* be the beginning of a select range. *) 

detine key gold 16 as "SR." 
(* Cancel Select mode, move cursor back to original *) 
(* position where Select was issued. *) 

define key 21 as "I<CR>AZTAB." (* <er> & Az are specins *) 
(* Enter is defined as INSERT <carriage return>, then *) 
(* Insert TAB, as defined by default (tab 1) or TAB *) 
(* select key. See TAB ADJUST/gold 18 *) 

define key gold 21 as "I<CR>AZ-C." (* <er> & Az are specins *) 
(* Open a new, blank line at the current one *) 

define key control B as "EXT CHA LAST. " 
define key gold control B as "EXT CHA=?'Buffer: I " . 

( * These allow switching between bufters. AB goes 
( * the buffer you edited prior to this one, Gold AB 

( * lets you specify a particular bufter. *) 

define key control Das "+DC." 
(* Sometimes it is inconvenient to go to the keypad *) 
(* just to delete a couple of characters *) 

detine key control E as "IAAAZ-30TADJL -LTD TAB -c +'"A' +DC." 
(* Aa's & Az are specins *) 

(* This is a key to controlling indentation. It moves *) 
(* you to the left one indentation level. Thus if the *) 
(* next line is an END; you would type ENTER followed *) 
(* by AE to move you left. *) 

define key control Has "-DC-CUNDC+EL." 
(* Everyone transposes characters from time to time. *) 
(* This lets you BACKARROW to the mistyped characters *) 
(* and reverse them easily, ending at the end of the *) 
(* line so you can continue typing. *) 

define key control J as "-CUTW=DOTDOTK." 
(* Deletes a word backward but puts it in the special *) 
(* undelete buffer. *) 

define key control K as "-c +EW CHGC-W +EW." 
define key control Las "BW +CHGCC +EW." 

(* These keys capitalize the full prior word or first *) 
(* character of the prior word respectively. *) 

det1ne key control Ras "IAAAZ-30TADJL -L TI TAB -c +' A' +DC." 
(* Aa's & Az are specins *) 

(* The compleffient of AE, AR moves you one indentaticn *) 
(* level to the right *) 

55 

to *) 
*) 



The HEAP - September 1983 - Volume 7 Number 1 
Tailoring EDT for the Structured Language Programmer 

define key gold control I as "-BL TAB +EL." 
(* Sometimes a line is not indented properly, usuallly *) 
(* because it was "wrapped" from the prior line. This *) 
(* indents the line properly. *) 

define key control V as "PASTE=?' Abbr: ' . " 
detine key gold control Vas "SEL !?'Expanded: ···z CUTSR=?' Abbr: 

set 

set 

(* AZ is specins *) 
(* These are the "token abbreviations". Gold AV puts *) 
(* the expanded text in a bufter called by the *) 
(* abbreviated name. AV puts the expanded form of an *) 
(* abbreviation in your buffer. *) 

ent w I <LF><VT><FF><CR>() ;[], 
( * This defines tokens for Pascal. *) 

ent sen i • } 
( * This defines the end of s-expressions. It lets you *) 
( * move forward to the end of an s-expression, but is *) 
( * not convenient for moving backward. *) 

set ent par <CR><CR> (* EDT DEFAULT *) 

set ent page <CR>end 
(* If you do not indent the END statement terminating *) 
(* modules and procedures, this defines modules for *) 
(* Pascal. *) 

set wrap 78 
set cursor 0:21 
set lines 20 
set mode change 

56 

I II . 



The HEAP - September 1983 - Volume 7 Number 1 
Tailoring EDT for the Structured Language Programmer 

HELP.EDT 

GOLD I CTRL- I CUT B GET E I 
FFl I PF2 I PF3 PF4 I 

I GOLD I (HELP) I DEL B I UNDEL I 
1-------------------------------------1 
I TOP I EOTTOM !SET FINDISET REPLI 
I 7 I 8 I 9 I I 
I FORWARD I BACKWARD! FIND I REPL I 
1-------------------------------------1 
I DEL C I DEL W I DEL L IDEL@EOL I 
I 4 I 5 I 6 I , I 
I C I W I L I @EOL I 
1-------------------------------------1 
I DEF KEY I FILL IPRETTYPRI OPEN I 
I 1 I 2 I 3 I LINE I 
I COMMAND I (ARG=4) I SET IND I I 
1----------------------------1 ENTER I 

ctrl-B 
Gctrl-B 
ctrl-D 
ctrl-H 
ctrl-J 
ctrl-K 
ctrl-L 
Gold-tab 
Gctrl-V 
ctrl-V 
ctrl-E 
ctrl-R 
backspace 
linefeed 

Move to prior bufrer 
Move to named buf rer 
DelC unaer cursor 
TransposeC, @EOL 
Back DelW 
Change case, pricrW 
Capitalize priorW 
JustifyL l tab -> 
Set abbrev 
Insert abbrev string 
Indent back 1 tabstop 
Indent f orw 1 tabstop 
TransposeC, @EOL 
Back DelW 

I 1/2 PAGE I RESET I I PRESS ctrl-B TO RETURN 
I 0 ~--J I ALIGN 
I PAGE _l_SELECT_l~TEXT~I 

RNOMODE.EDT 

set wrap 78 
set ent word ' <CR>' 
set ent par '<CR> ' 

set ent page '<CR>.ch' 
(* pages are DSR chapters. *) 

define key control U as 'iA&\*~Z -2C.' 
(* This is an example of a structure abbreviation. *) 

(* DSR expects unaerlined words and phrases to be *) 
(* enclosed by A& \, which I can never remember. This *) 
(* puts a blank unaerline in the buffer, which I can *) 
(* then fill in. *) 

TEXTMODE.EDT 

set wrap 78 
set ent word <CR>' 
set ent par '<CR> ' 
set ent page '<CR>.se' 
det1ne key control Vas 11 -L PAR +L." 
define key gold v as 11 SEL -L Pf...R -EL. 11 

det1ne key gold control Vas "+BPAR +EL SEL +EPAR +L." 

57 



The HEAP - September 1983 - Volume 7 Number 1 
Artificial Intelligence Technology Center 

Artificial Intelligence Technology Center 

The Artificial Intelligence Technology Center at DIGITAL is 
currently developing tools to support AI products and will be 
developing additional AI products in the future. Art Beane gave 
me the following slides which have been used at several 
presentations about what the Artificial Intelligence technology 
Center is attempting to accomplish. Currently, Common Lisp and 
Interlisp are being developed through a third party software 
program in conjuction with Rutgers University and the USC/ISI 
(University of Southern California/Information Sciences 
Institute). They are also interested in LOGO, PROLOG, and 
Interlisp compatability software. The intent of the center will 
be to produce the richest variety of software for VAX systems that 
can be used to develop the next generation of AI products. The 
LTSIG hopes to maintain a line of communication with the AI 
Technology Center. Users of Lisp based systems are encouraged to 
contact the LTSIG if they are interested in aiding our efforts. 

58 



The HEAP - September 1983 - Volume 7 Number 1 
Artificial Intelligence Technology Center 

DIGIT AL EQUIPMENT CORPORATION 

ARTIFICIAL INTELLIGENCE 
TECHNOLOGY CENTER 

-v-----tl BOARD ollnRECTORS lr------v-
AI TECHNOLOGY GROUP INTELLIGENT SYSTEMS TECHNOLOGIES 

--PRODUCT ENGINEERING --ADVANCED SYSTEMS AND TOOLS 

--PRODUCT MARKETING --BASE AI APPLICATIONS 

-ADVANCED DEVELOPMENT -BUSINESS AI APPLICATIONS 

--KNM..EIXJE BASE SYSTEMS DEVELOPMENT 

-SOLUTIONS MARKETING 

1--0RGWARE <TM> DEVELOPMENT 

59 



The HEAP - September 1983 - Volume 7 Number 1 
Artificial Intelligence Technology Center 

ARTIFICIAL INTELLIGENCE 
TECHNOLOGY GROUP 

ADVANCED DEVELOPMENT 
o NATURAL LANGUAGE INTERFACES 

o KNO'fLEDGE REPRESENTATION 

o INTELLIGENT VLSI/CAD TOOLS 

o INTELLIGENT DIAGNOSTIC TOOL 

o GENERIC HARDWARE DIAGNOSTIC TOOL 

o SYMPTOM-DIRECTED DIAGNOSIS 

o SECURITY MONITOR 

o EXPERT SYSTEM FOR PROGRAM DEBUGGING 

o INTELLIGENT EDITOR INTERFACE 

60 



The HEAP - September 1983 - Volume 7 Number 1 
Artificial Intelligence Technology Center 

TECHNOLOGY TRANSFER 

o CONSULTATION WITH RESEARCHERS 

o EXTERNAL RESEARCH PROGRAM 

o MICROELECTRONICS AND COMPUTER CORPORATION 

61 



The HEAP - September 1983 - Volume 7 Number 1 
Artificial Intelligence Technology Center 

COMMON LISP GOALS 

o COMMONALITY 

o PORTABILITY 

o POWER 

o EXPRESSIVENESS 

o COMPATIBILITY 

o STABILITY 

o EFFICIENCY 

o CONSISTENCY 

AMONG FOUR DIALECTS 

TO YET OTt-ER MACHINES 

TO ENABLE BUILDING OF LARGE SYSTEMS 

FOR EASE OF READING/WRITING 

WITH OLDER LISP DIAL:ECTS 
<MACLISP AND INTERLISP) 

ONCE DEFINED 

SUBJECT TO THE OTHER GOALS 

BETWEEN COMPILER AND INTERPRETER, 
ESPECIALLY VARIABLE SCOPING 

62 



The HEAP - September 1983 - Volume 7 Number 1 
Artificial Intelligence Technology Center 

HOW GOALS ARE MET 

o PORTABILITY. 
-AVOIDANCE OF M.ACHINE-DEPENDENT FEATURES 

o PGER 

--MANY BUILT-IN OPERATIONS <LARGE LANGUAGE> 

o EXPRESSIVENESS 
--GENERIC OPERATORS 
-USER-DEFINED TYPES 

o EFFICIENCY 

-DECLARATIONS 

o CONSISTENCY 
--VARIABLE SCOPING CHANGES 

63 



The HEAP - September 1983 - Volume 7 Number 1 
Artificial Intelligence Technology Center 

COMMON LJSP IMPLEMENTATIONS 

o SPICE LISP CCMU> 

o VAX COMfilN LISP: VMS, UNIX <DEC, CMU> 
--SHARES CODE WITH SPICE LISP 

o EXTENDED TOPS-20 CRUTGERS> 
--SHARES CODE WITH SPICE LISP 

o LISP MACHINE LISP <SYMBOLICS, MIT> 
--SUPERSET, BUT WILL RUN COMMON LISP 
--RUNNING NOW WITH FULL ENVIRONMENT 
--NEEDS CONVERSION 
--SYMBOLICS SUPPORT <BUNDLED> 

o VAX NIL 
--SUPERSET, BUT WILL RUN COMMON LISP 
--FOR VAA/Vrs, MAY MOVE TO UNIX LATER 

64 



The HEAP - Septewbcr 1983 - Volume 7 Nuraber 1 
Artificial Intelligence Technology Center 

OPS BACKGROUND 

o OPS4 DEVELOPED IN THE LATE 70'S BY CHA.RLES FORGY AT 
CARNEGIE-MELLON UNIVERSITY CCMU) 

o INTRODUCED TO DIGITAL BY JOHN MCDERMOTI OF C.MU AS THE 
IMPLEMENTATION LANGUAGE FOR THE EXPERT VP\X CONFIGURATOR 
CRl) PROGRAM 

o OPSS DEVELOPED BY FORGY 5roRTLY AFTER Rl DELIVERED 

o MCDERMOTI CONVERTED Rl TO RUN USING OPSS <BOTH OPS4 AND 
OPSS RAN IN MACLISP ON DEC-lOS AND DEC-205) 

0 DUE TO THE INCREASING MEMORY REQUIREMENTS Foe Rl, OPSS 
CONVERTED TO FRANZLISP ON VAA 

o OPSS COMPILER IMPLEMENTED IN BLISS-32 (VMS) IN EARLY 1982 

o OPS? CURRENTLY BEING DEFINED BY FORGY 

65 



The HEAP - September 1983 - Volume 7 Number 1 
Artificial Intelligence Technology Center 

OPS5 

o DIGITAL'S MAJOR INTERNAL ARTIFICIAL INTELLIGENCE 
APPLICATIONS LANGUAGE 

o A RULE-BASED <PRODUCTION SYSTEM) LANGUAGE 

o CONSISTS OF A COMPILER AND AN INTERPRETER, BOTH WRITTEN IN 
BLISS FOR EXECUTION ON V/jX/Vt'S 

o USED BY THE XCON, ISA, AND XSEL PROJECTS-IN THE 
INTELLIGENT SYSTEMS TECHNOLOGIES GROUP 

66 



The HEAP - September 1983 - Volume 7 Nuhlber 1 
Artificial Intelligence Technology Center 

THIRD PARTY SOFTWARE PROGRAM 

o INITIAL EMPHASIS ON TOOLS 
-COMMON LISP-20 <RUTGERS) 
-INTERLISP/VMS; INTERLISP/UNIX CUSC/ISI) 
-LOGO~ PROLOG 
--INTERLISP COMPATIBILITY SOFTWARE 

o APPLICATIONS FROM SOFTWARE l-IOUSES 

o GOAL: RICHEST POSSIBLE VARIETY OF SOFTWARE FOR VP\X SYSTEMS 

67 



MOVING OR REPLACING A DELEGATE? f 
Please notify us immediately to guarantee continu i n,aJ--~~---­
receipt of DECUS literature. Allow up to six weeks 
for change to take effect. 

( ) Change of Address 
( ) Delegate Replacement 

DECUS Membership No. :--------
Name : _____________ ~ 

Company : _____________ _ 

Address : --------------

State/Country: ------------
Zip/Post a 1 Code:-----------

Mail to : DECUS - ATT : Subscription Service 
One Iron Way, MR02-1/C11 
Marlboro, Massachusetts 01752 USA 

\, 

:s:: 0 0 0 
:J;>z-m 
::IJ m £? n 
r - -I c:: 
m ::JJ > en 
0 0 r en 
::JJZmC:: 
.O:EO~ 
:s::>Sn 
>-<"::IJ 

~~~~ 
> ::IJ z -
(') 0 -I 0 
::i:: ':" (') z 
c:: .... 0 Cl) cn-,m m n ::.. ::IJ 

:1:::~~ 
Cl) -I (') 

0 .... 
...... 
U'I 
N 

mm 
::IJ 
c:: 
Cl) 
m 
::IJ 
Cl) 

~ 
(') 

m 
-I 
-< 

~[O] 

"Tl 
'iJ ;:+· c 
"' n . CD "' :::; ..,, en c 

1-..J ~. g )> ~ ~ 
- ,... ~ - 0 
z!PO~~ 
~ s:: ::: ~ 

)> "' 




