THE HEAP
STRUCTURED LANGUAGES

February 1984 Issue

Printed in the U.S.A.

The following are trademarks of Digital Equipment Corporation:
DEC DIBOL PDT
DECnet Digital Logo RSTS
DECsystem-10 EduSystem RSX
DECSYSTEM-20 1AS UNIBUS
DECUS MASSBUS VAX
DECwriter PDP VMS
VT

UNIX is a trademark of Bell Laboratories.

Copyright © Digital Equipment Corporation 1984
All Rights Reserved

1t is assumed that all articles submitted to the editor of this newsletter are with the authors’ permission to publish in any DECUS
publication. The articles are the responsibility of the authors and, therefore, DECUS, Digital Equipment Corporation, and the
editor assume no responsibility or liability for articles or information appearing in the document. The views herein expressed are
those of the authors and do not necessarily express the views of DECUS or Digital Equipment Corporation.

.—-—-—-—.—-—-—-—-—-—-—-—-—-—-1

The MUMPS SIG

Did not submit material for this issue

Send your submissions for the next issue to:

Jim Bernard

Data Processing
Kettering Medical Center
3935 Southern Blvd.
Kettering, OH 45429

THE HEAP

From the Editor
John R. Barr, University of Montana, Missoula, MT

This is really the November issue of the Heap which 1is appearing
late due to the 1lack of submissions and my own personal time. This
month”s award for letting people know what you are doing has to go to
Kathy Hornbach (Lear Siegler) who is our Productivity Tools Coordinator.
It looks like Kathy is using her software tools effectivly as she has
the time to tell people what she and her people are doing. How about
the rest of the people who read this newsletter? Why are you so busy
that you can”t tell other people what you are doing? There must be more
people using software tools and languages that have something to say
about them. How about sending me something for the newsletter? I will
accept RT-11 floppy disks, UNIX tar tapes (1600bpi only), ANSI standard
tapes, DEC20 tapes, or give me a call and I will give you access to omne
of my systems (300 baud) to type it in. We also have Kermit on the
DEC20 to transfer a completed file. Use DSR (Runoff) without any fixed
margins. If you have to send me reproducable copy I will paste it 1in,
but I prefer to use DSR as it produces much better copy.

We are planning two pre-symposium seminars for Cincinnati. One by
Kathy Hornbach "Implementing a Software Development Environment" and one
by myself "Modula-2 Programming and Concurrent Programming Techniques".
Let us know if you are interested in other topics for future symposia.
I will not know what sessions will be presented in Cincinnati until
February. Look for the next issue of the HEAP sometime in April to
contain a review of what the Languages and Tools SIG has planned.

A couple of the newer members of the SIG steering committee have
submitted an outline of what they will be doing for this newsletter. I
will include a complete list of the SIG leaders in the April HEAP.

The HEAP - January 1984 - Volume 7 Number 2
From the Editor

This issue contains two excellent articles on how Lear Siegler 1is
utilizing productivity tools in the VAX/VMS environment. I am sure you
and others can profit from their experiences and may even have something
to contribute along these lines. Let me know what you think.....

John R. Barr

Department of Computer Science
University of Montana
Missoula, MI 59812

(406) 243-4807

Modula-2 Interest Area Coordinator

I am Jack Davis, the LTSIG Modula-2 Interest Area Coordinator. I
am attempting to compile a resource 1list for Modula-2: sources of
information about the language, sources of compilers that generate code
for DEC machines (from PC°s to 10/20°s!), or run on DEC machines
generating code for other processors, and also information about who is
working with Modula-2 to enhance existing implementations or produce new
ones. I would also like to be informed of useful tools and other
programs that have been implemented via Modula-2., Last but certainly
not least, I would like to hear from individuals who have encountered
and/or fixed bugs in Modula-2 implementations.

The information I collect will appear in a later edition of the HEAP.

For those with questions or information to contribute, my telephone
number is (615) 690-3160 (eastern time), and my address is

Jack R. Davis

NAP Consumer Electronics

9041 Executive Park Drive

Suite 612

Knoxville, Tennessee 37923

UNIX Coordinator

As the new UNIX coordinator of the Operating Systems interest area
of the LTSIG steering committee, I would like to introduce myself. My
name is Rod Creason and I work as a Systems Programmer and Project
Leader for Compiler Design and Development at Digital Information
Systems Corporation (DISC). My address is:

Rod Creason, Jr.

Digital Information Systems Corporation
3336 Bradshaw Road 340

Sacramento, California 95827

(916) 363-7385

The HEAP - January 1984 - Volume 7 Number 2
UNIX Coordinator

My function as UNIX coordinator will be to track and Languages and Tools
associated with UNIX, test and document any new UNIX contributiomns, act
as liaison to the UNISIG, and work closely with the Operating Systems
Coordinator of the LTSIG. Please get in touch with me if you have any
thoughts which might concern my area.

RT-11 Operating System Coordinator

I would like to introduce myself to the Languages and Tools members
as the new RT-11 operating system coordinator. My name is Michele Wong.
I am the manager of Software Development at Digital Information Systems
Coorporation (DISC). At DISC I am responsible for overseeing the
development of the DBL language. Most of our work is systems-level work
on RT-11, TSX-PLUS, RSTS, RSX-11M, and VAX/VMS.

AS RT-11 coordinator for the LTSIG, I will be responsible for
communicating information relating to languages and tools under the
RT-11 operating system between the Languages and Tools and RT-11 SIGs.
I will also be providing support to RT-11 users in the languages and
tools areas. I can be reached at the following address:

Michele Wong

DISC

3336 Bradshaw Road, Suite 340
Sacramento, California 95827
(916) 363-7385

I am looking forward to working with the members of the LTSIG.

The HEAP - January 1984 - Volume 7 Number 2
Toolside Chat with Kathy Hormbach

Toolside Chat

This is the first of a quarterly column, answering questions on software
tools and methodologies. It is written by Kathy Hornbach, from Lear
Siegler in Grand Rapids, MI. If you have a question on software tools
or methodologies you would like answered, send it to:

John Barr

LTSIG Newsletter Editor
Computer Science Dept.
University of Montana
Missoula, MT 59812

This month”s question:

How can I find out what software packages are available for DEC machines
- both from DEC and from 3rd party vendors?

Answver:

A good place to start is with some literature provided by DEC and DECUS
- they have several books available that contain a host of software
packages. The books available include:

o Software Referral Catalog, 10th edition; from the Engineering
Systems Group.

It contains over 600 entries, under the headings of chemical,
civil, earth resource, electronic, mechanical, optical, power
systems and structural engineering; also CAD, CAM, engineering
libraries, general engineering tools, and management and
administration. Packages 1listed run on a variety of DEC
machines.

To receive future editions of this catalog, write to:

Digital Equipment Corporation

Software Referral Catalog Attn: SRC Manager
Engineering Systems Group MR03-1/E8

2 Iron Way

Marlboro, MA 01752

o PDP-11 Software Source Book, lst edition;

Contains 980 pages of software that runs wunder the various
PDP-11 operating systems, in all areas - from business to
engineering to languagues.

To obtain a copy of this catalog, contact your local Digital
Sales office, or write to:

The HEAP - January 1984 - Volume 7 Number 2
Toolside Chat with Kathy Hormbach

Attn: G. Deforge

Printing and Circulation Services
Digital Equipment Corporation
444 Whitney Street

Northboro, MA 01532

and ask for PDP-11 Software Source Book, Order No.
ED-24762-20.

o UNIX* Software Guidebook, First Edition

Contains 180 pages of software packages that run under the UNIX
operating systems, Both applications and systems software
packages are listed. To obtain a copy, contact your local
Digital Sales office, or write to:

Attn: G. Deforge

Printing and Circulation Services
Digital Equipment Corporation
444 Whitney Street

Northboro, MA 01532

and ask for UNIX Software Guidebook, Order No.
EJ-25541-20

o Graphics Referral Catalog, third edition. From the Engineering
Systems Group

Contains 75 pages of information about graphics hardware and
software that is available for a variety of DEC machines. To
receive future editions of the Graphics Referral Catalog, write
to:

Digital Equipment Corp.

Graphics Referral Catalog Attn: GRC Manager
Engineering Systems Group MR03-1/E8

2 Iron Way

Marlboro, MA 01752

o U.S. Chapter DECUS Program Library Software Abstracts,

Over 150 pages of abstracts of user-donated sofware that is
available for order from the DECUS library. You must be a
DECUS member to use this library (you also must be a DECUS
member to subscribe to this newsletter, so you should not have
any problems). To get a copy of this catalog, write to:

DECUS Publications
MR0O2-1/Cl1

*UNIX is a trademark of Bell Labs

The HEAP - January 1984 - Volume 7 Number 2
Toolside Chat with Kathy Hornbach

One Iron Way
Marlboro, MA 01752

All of the above are invaluable resources when someone stops by and asks
if there 1is any software available to "......". They are frequently

revised to incorporate new packages. Later articles in this column will
talk about non-DEC sources of tools catalogs.

The HEAP - January 1984 - Volume 7 Number 2
Using CMS for a Very Large Software Project

USING CMS FOR A VERY LARGE SOFTWARE PROJECT

Robert Gable

Lear Siegler, Instrument Div.
4141 Eastern Ave. S.E. MS 121
Grand Rapids, Michigan 49508

"When the going gets tough, the tough turn to code management."
-- Raoul Duke

INTRODUCTION

We have spent the last 6 months setting up and using a source code
control system for a large, real-time avionics software project. This
software is being developed and initially checked out on a VAX-11/782
running VMS and a TI 990 minicomputer running DX10. The following will
attempt to share some of the experiences we have had in using DEC”s Code
Management System (CMS) on the VAX for our source code management
system,

PROJECT BACKGROUND

Lear Siegler is currently developing the hardware and software for
a state of the art flight management computer system (FMCS) be used in a
large commercial aircraft. The system can fly a plane on airline routes
from origin to destination automatically and in the most fuel efficient
manner. The system consists primarily of three computer processors;
one for navigation, one for performance, and one for the I1/0. We are
using CMS to manage the operational flight program which consists of
over 300,000 lines of source code for the three processors.

The people concerned with the source code on this project can be
divided into three groups:

o development

These are the people who write the design documents,
write, debug and module test the code, and who integrate all of
the modules after they have been coded until they are ready to
undergo system test.

o verification

These are the people who approve or disapprove module
tests from designers, test the code by individual function and
do hardware/software integration tests.

The HEAP - January 1984 - Volume 7 Number 2
Using CMS for a Very Large Software Project

0 support people

This is everybody else.

The delivery schedule to the customer has been tight, meaning that
development, integration and verification of the software is all being
done concurrently. Development engineers, integration engineers, and
verification engineers all need access to different versions of the FMCS
source code. CMS provides the necessary common environment for storing
and retrieving that source code.

Development is being done in three '"packages" or releases where
each package has more functionality than the previous package. Because
of the tight schedule, more than one package is being developed at a
time. The later package uses some of the previous package’s code
untouched, modifies some of the previous package’s code to add
functionality, and also adds new modules of its own. This means that
while a module is still being developed for the earlier package,
sometimes it must at the same time be modified and used for development
of the later package. Eventually, different versions of modules between
packages must be resolved. More about this concurrent development
later.

To attempt to control this type of source code development wusing
the more informal ways of the past would have been impossible.
Therefore, we have chosen CMS to be the mechanism to manage our source
code 1in a controlled, yet flexible manner. As an added benefit, we can
generate data using CMS that attempts to quantify the progress of the
software.

USAGE OF OUR CMS LIBRARY (SO FAR)
Most of the following information is derived from the CMS history
file.

o 72200 source files for a total of 60000 blocks

o 750 people use the library

This includes development engineers, verification
engineers, clerks, summer students, configuration management
and software quality assurance personnel and even project
managers.

o over 200,000 library transactions in 6 months

(o)

(o)

The HEAP - January 1984 - Volume 7 Number 2
Using CMS for a Very Large Software Project
typical weekday usage
The library gets heavy interactive use during the day and
large batch FETCHes and INSERTs during the evening. Users were
given plenty of encouragement to delay their big batches until
after peak hours and they have cooperated.

- ~1500 transactions a day (the peak day so far had 3000)

- 50-200 RESERVEs or REPLACEs a day

the most frequent commands in order are:

FETCH, INSERT, RESERVE, REPLACE, CREATE, REMOVE, UNRESERVE

we backup the library twice a day (6AM, 6PM)

20% of the users have 80% of the library usage

HOW THE LIBRARY IS SET UP

(o)

all modules are in only one library

This was necessary because some modules are used in more
than one processor.

source modules consist of FORTRAN code, assembly language code
and common blocks that are lexically included at compile time

common blocks are treated as multi-file elements

Gur common blocks are generated automatically by a
Datatrieve procedure that works automatically from our "design
dictionary". Both assembly and FORTRAN versions of every
common block are generated. We store them in CMS as a single
element. Everytime you FETCH, RESERVE or REPLACE a common
block from the 1library, CMS automatically either gives you a
copy of both versions or stores both versions back into the
library.

The HEAP - January 1984 - Volume 7 Number 2
Using CMS for a Very Large Software Project

o we have the history attribute enabled

Unless you specify otherwise, the CMS replacement history
is automatically appended to the end of source modules copied
from the library.

o a source module is uniquely identified by the its CMS element
name and generation number

Earlier in the project, we had another method of
identifying modules but element name and generation number
turned out to be the superior way of identifying modules for
module test status 1lists, software configuration management
paper documents etc,

PARTIAL LIST OF CODE MANAGEMENT TASKS

The following are the standard ways in which project engineers
interface with the library.

o development engineers - adding a new source module to the
library

Each development engineer is responsible for putting new
modules into the 1library using a procedure developed to
standardize and automate this task. The module must compile
cleanly but need not have undergone module level test to be
entered in the library.

o development engineers - fetching a read—only module

This is simply an engineer needing a copy of a module with
no intention of modifying it.

o development engineers - problem fix -

This involves RESERVEing a module, revising and debugging
it, REPLACEing it back into the 1library and eventually
submitting a completed module test report. The remarks field
will contain the reason for the change and usually the problem
report number that this change fixes. Some developers FETCH a
module, modify it and when debug is complete, do a RESERVE,
delete the module just copied from the 1library, and REPLACE
with the module they had modified after the FETCH. The
developer must take responsibility for any problems that might
crop up by circumventing the “correct" procedure.

10

The HEAP - January 1984 - Volume 7 Number 2
Using CMS for a Very Large Software Project

We slowly realized that it is better to get the source
changes into CMS as soon as possible rather than strictly
enforcing the "rules" and have engineers refuse to use CMS
until absolutely necessary. One of the most difficult aspects
of introducing CMS on this project was deciding on what the
guidelines are for when a module can be changed in CMS and when
it cannot.

integration engineers - fetching source to build a test
executable for integration work in the lab

This is where we gain the greatest benefit from using CMS.
Integration engineers are required to fetch all of their source
used for a build from the 1library while at the same time
recording the exact element and generation number in a CMS
class. This is to insure that at any time, what is being run
in the 1lab has been clearly identified in CMS and 1is
reproducible at any time in the future. The engineers quickly
realized that it was to their advantage to do this diligently.
Eventually, these classes are used to determine what to deliver
to the customer.

verification engineers — fetching source for functional or
hardware/software integration test

After a few iterations, we developed a method whereby one
person performs all of the source fetches for verification.
The verification engineer informs this person of what he or she
desires and the "test fetcher'" takes care of all the rest. The
engineer provides a list of modules with exact generation
number. This 1list is then used to fetch the modules from the
library at an appropriate time and the 1list 1is stored
elsewhere. At any time until the end of the project, what
source was tested will be identified exactly by this list.

verification engineers - maintenance of module test information
Verification maintains a progress data base which contains
the test status of every module. Among other things, the

generation of every module that has passed module level test is
maintained in a data base and in CMS classes.

configuration management, software quality assurance personnel

11

The HEAP - January 1984 - Volume 7 Number 2
Using CMS for a Very Large Software Project

Both maintain classes which satisfy their requirements for
properly identifying the source that has been tested and
released. On previous projects, an extremely cumbersome and
error prone manual, paper based system was used. CMS
automation has saved many, many hours in this area as well as
dramatically improving quality.

support engineers - overall maintenance of library

This involves correcting mistakes made by engineers (typos
during new module creation being the most common), trouble
shoot ing problems, renaming modules and investigation of better
methods of utilizing CMS.

support engineers - build tools or educate users for more
productive use of CMS

CMS is relatively easy to use so education has been
minimal. We wrote an FMCS CMS user”s manual to accompany the
DEC/CMS manuals. The manual describes how to use the FMCS CMS
library, what is the significance of all the classes, what are
the naming conventions, what tools are available and how to use
them etc. We are on the constant prowl for ideas for tools
that will exploit the wealth of information gained by wusing
CMS.

facilities personnel - insure proper BACKUPs of library;
installation and control of CMS

These are the normal system manager tasks. It pays to be
on the good side of these people since CMS does use up
resources and the library is a valuable item which needs to be
preserved.

CMS CLASSES WE MAINTAIN

o

function classes

The FMCS source code is partitioned into functions. A
class which contains all modules constituting a function is
created for each function. For example, FPN is the class which
contains all modules for the "flight plan management" function
in the navigation processor

12

The HEAP - January 1984 - Volume 7

Number 2

Using CMS for a Very Large Software Project

o integration build classes

The development engineers responsible for
integration of the software (i.e. taking software
lab and doing their magic), create and maintain a ¢
each build they do, by processor and package. Before
test a module in the lab, they insert the module
appropriate class and then fetch it. These are
important classes since they are the definitive record
software is being tested. Monitoring the activity

debug
into the
lass for
they can
into the
the most
of what
of these

classes gives a good indication of the amount of development

work taking place.

For example, NAVPK20CT25 is the class containing
the modules (with proper generation number)
navigation processor build for package 2 release on
25th.

o in-module-test and passed-module-test classes
These classes are maintained by verification

module must have a corresponding module test packet
for it by the developer. When verification receives

all of
for the
October

. Every
submitted

the test

packet, the module is placed in the in-module-test class. When
verification approves the test packet, the module is placed in
the passed-module-test class. By comparing these classes with
the preceding integration classes, we can determine which
modules being integrated still require an initial unit test or

retest.

o software quality assurance passed module class

This class contains all modules which software

assurance has found satisfactory.

o software configuration management release classes
This class contains all modules which have been
and sent out to the customer in a particular release.
MODULE STATUS
By simply doing a CMS SHOW ANCESTOR /CLASS, we are
determine the following things about an FMCS module. On

manual-based projects, most of the information was difficult,
impossible, to obtain.

13

quality

released

able to
previous,
if not

The HEAP - January 1984 - Volume 7 Number 2
Using CMS for a Very Large Software Project

o how many generations exist

o which version of a module is the "latest & greatest"

o for each generation:
- who made the change
- when they did it
- what problem reports this change fixes
- reason for the change
o what processors use the module
o the module title
o the module part number identifier
o what generations have been released to the customer
o what generations are currently in integration
o what generations have been module tested

ADVANTAGES WE GAINED BY USING CMS

o advantages for development

- accurate access to "new & improved" code for debug work

- knowledge of what code is currently in integration, what
code has been module tested, function tested and system
tested and what code has been released

- source code under visible control

14

(o)

(o)

(o]

The HEAP - January 1984 - Volume 7 Number 2
Using CMS for a Very Large Software Project

- reservation mechanism to avoid concurrent modification by
more than one person (which can be overridden if necessary)

advantages for verification

- clearly identified record of tested source

- knowledge of debug changes

- source code under visible control

- ability to monitor current status of various packages

- latest version plus all previous versions always accessible

advantages for project managers

- little time lost due to test of wrong/unknown versions of
software

- accurate information on project status and module status

Most important, this status is available in a timely
manner.

- history of source code, available for analysis of metrics,
bug origins etc. for later projects

advantages for the persons responsible for controlling the
source code

- CMs is sufficiently flexible to allow evolution in the way
we choose to use it

- no human intervention is necessary between the development
engineer and the source code 1library (with a few
exceptions)

- data integrity
DEC has done an outstanding job of insuring that no
data gets lost. We have had disk crashes, system crashes,

a power glitch, hostile and incompetent users; none of
which has caused any source code to be lost.

15

The HEAP - January 1984 - Volume 7 Number 2
Using CMS for a Very Large Software Project

PROBLEMS WE HAVE HAD
o no “clean" way to turn off access to the library
o no explicit provisions made for allowing BACKUP to run while
engineers are accessing the library
We excluded the library from the normal system backup and
do our own backup twice a day. We require that everyone stop
using the library at this point.
The only time we had to restore the library from backup

was when the disk went bad 20 wminutes after preventive
maintenance had been completed.

0 response time gets very slow when several users are trying to
access the library at the same time

o when an element belongs to many classes, it is very painful to
have to rename the element
It must be deleted from all old classes under the old name
and added to those same classes under the new name.
THE PEOPLE
The following are some thoughts about the social and psychological

implications about using CMS on a large project.

o Nobody ever had any problem learning how to use the basic
commands .

o The development engineer who spends his time coding and testing
his own modules is usually the one who objects to using CMS.

Some of this is probably frustration at having yet another
new tool/methodology to have to master.

When using CMS interactively on a busy day, time can be

wasted waiting on CMS commands. yet, few managers viewed the
time wasted as significant.

16

The HEAP - January 1984 - Volume 7 Number 2
Using CMS for a Very Large Software Project

A few people have the attitude that "real" programmers
don“t need code management systems.

o 95% of all complaints center around response time on a loaded
system when several others are using CMS also.

Getting several "Your library is in use" messages at your
terminal can be frustrating. As CMS response time improves,
complaints should drop dramatically. Many engineers have
become adept at SPAWNing CMS commands and setting up batch jobs
rather than doing their CMS work interactively.

o I prefer to see each development engineer accessing the library
him or herself rather than delegating that activity to support
people.

The goal is to get any new or changed source in CMS as
soon as possible. Otherwise, very quickly you lose all hope of
tracking that module. For example, in one case an engineer did
not have time to put his modules into CMS himself. Two other
people tried to put the same modules into the 1library (
different copies of course). Fortunately, CMS leaves a record
of all important transactions.

As the system evolved, it became obvious that this did not
hold true for verification engineers and that it was more
efficient to have one person to do the big fetches of source
for test

o Both project mapagement and line management at LSI quickly
recognized the benefits of CMS and were supportive when
problems arose.

Both they and engineers get the credit for the successful
use of CMS. Plus, everybody”s complaints and grumbles tended
to be humorous in retrospect.

SURPRISES
o Development engineers are reasonably precise about what they

put for the remark when doing a REPLACE.

17

The HEAP - January 1984 - Volume 7 Number 2
Using CMS for a Very Large Software Project

o Development engineers are nearly unanimous in complaining about
the response time for CMS commands when several people are
accessing the library.

o Multiple batch jobs running CMS concurrently tended to shut out
people running CMS interactively.

o Using classes is a boon in tracking development”s progress.

o Considering that we have run CMS hundreds of thousands of
times, we found only 3 minor bugs that need to be SPRed.

o Variants of the same module for different packages allow
concurrent development of the same module, but signal everybody
to pay particular attention to these modules to insure proper
coordination,

Allowing variants to evolve from a module is a far cry
from 2 or 3 people copying the same module to their own
personal directory with nobody knowing that somebody else is
working on that module. We originally viewed variants as being
too risky and complicated to use but gradually came to accept
their use in legitimate cases.

o Despite threats of bodily harm, people continue to delete CMS
batch jobs from the batch queue while they are running.

This leaves the library in an inconsistent (though easily
recoverable) state.

o When the library is in an inconsistent state, anyone using CMS
gets a message saying "Please use CMS VERIFY/RECOVER."

Even though we tell people not to do it, they, without
fail, never disobey the computer. One time, a project manager
and a part time summer student both tried to run the RECOVER at
the same time. The student probably did not know better. The
manager knew better but did it anyway. Recovery on a library
of this size can take 2 hours of exclusive access to the
library and is sometimes not necessary. Project tends not to
appreciate this down time. Rumor has it that the error message
will be changed in the next release.

TOOLS DEVELOPED TO AID IN USING CMS

18

The HEAP - January 1984 - Volume 7 Number 2
Using CMS for a Very Large Software Project

o tool to put new code into the library

This tool does a CREATE ELEMENT with standardized remarks,
inserts the element 1into a function class and records some
other data

o tool to fetch code from the library for verification testing
and record exactly what was fetched

o tool to find compare two classes to find elements with the same
generation number that are in both classes

For example, often we want to know which elements
currently in integration have been module level tested.

o tool to record gripes about CMS

o tool to put the latest version of the common blocks into the
library

The tool does RESERVE/REPLACEs only for those common
blocks that have changed in the design dictionary since the
last time the tool has been run

o tool to show which modules for a package need retest or have
passed module test or are currently in module test or have an
inconsistent status that needs to be resolved

o the next obvious tool to build is a dependency file generator
to allow MMS to rebuild the system from the library

SUMMARY

CMS has provem to be a necessary component of our software
development methodology. It provides not only a mechanism for capturing
source code changes, but used properly, it allows the monitoring of
development and verification progress during an ongoing project. The
only technical drawback to using CMS is performance. It has improved
with version 1.1 and should improve greatly for version 2.0.
Nevertheless, we feel strongly that CMS was the right choice for our
source code management system.

19

The HEAP - January 1984 - Volume 7 Number 2
Using CMS for a Very Large Software Project

If you have any questions about using CMS, I would be glad to
answer questions through the newsletter.

20

The HEAP - January 1984 - Volume 7 Number 2
A Structured Analysis Method for Large, Real-Time Systems

A STRUCTURED ANALYSIS METHOD FOR LARGE, REAL-TIME SYSTEMS

Derek J. Hatley
Lear Siegler Inc., Instrument Division,
G6rand Rapids, Michigan.

22 Nov 83

1.0 Introduction

In the spring of 1982 we, at the Instrument Division of Lear
Siegler 1Inc. (LS1/ID), were faced with a dilemma. We develop and
manufacture real-time avionics systems and, as those systems became
more software intensive, 1larger, and more complex, we had been
experiencing all the classical problems: schedules were unacceptable,
costs were high, and it was increasingly difficult to get the systems
to work as intended. Against this background we were about to embark
on another large, complex, and <critical project: the Flight
Management Computer System (FMCS) for the new Boeing 737-300.

It was clear that, to be more cost—-effective, we needed to make
significant improvements in our management of requirements, design,
and testing, each of which had been handled somewhat open—loop wuntil
that +time, and we set out on an evaluation of structured methods,
hoping to find some which would be suitable for our type of system and
which would provide the improvements we were 1looking for. Our
conclusion was that the Yourdon methods had the most potential, but
that there was nothing available which would completely meet our
needs. Consequently, @ decision was made to go ahead and develop our
own methods, based on those of Yourdon. but modified and/or extended
as needed.

A major part of that decision was the formation of a "Methods
Team”, with representatives from Engineering Management, Systems
Engineering, Software Design, Software Testing, and Support Software.
The Methods Team was tasked with:

- developing structured methods suitable for LSI/ID
applications

— +teaching the methods in-house to all personnel who would need
to use them

- investigating the availability of automated aids to support
the methods, and develop aids in-house if necessary

21

The HEAP - January 1984 - Volume 7 Number 2
A Structured Analysis Method for Large, Real-Time Systems

—= supporting the initial implementation of the methods on the
FMCS project.

The tesults to date of the Methods Team’s work are:

- a rteal-time Structured Analysis method. based on Yourdon’s
but with a completely new extension to handle the control
requirements

- a Structured Design method, also based on Yourdon’s, but with
some modifications to meet the needs of large real-time
systems

- a cross-reference data-base, 1linking all the primitive
statements in the requirements, design., and test documents

- some basic software aids to support these tools

- in—house classes on the methods, with our own texts, and over
200 people now trained in their use

- most importantly, an FMCS which is now well into system test
with significantly fewer problems and better quality than any
of our comparable previous systems at this stage of
development.

This article gives an overview of FMCS and describes the GSA
method developed for it.

2.0 Overview of the 737-300 Flight Management Computer System

As the name implies, the FMCS manages all aspects of the flight
of the aircraft. It interfaces with all other major systems on board
and with the pilot and first officer through dual control/display
units (CDUs). There are 13 other systems with which it currently
interfaces, and provision for three more in the future. These systems
include the auto-pilot and auto-throttle, with which FMCS forms part
of the outer control loop, so response times are critically important

for stability reasons. Typical response time requirements are 50,
100, or 200 msec. Major functions which the system is required ¢to
perform are: navigation, aircraft performance calculations.,

management of the CDUs, management of the flight plan, flight profile
prediction, vertical guidance and steering, lateral guidance and
steering, and built—-in-test. It contains two large data bases: the
Navigation Data Base, which contains all the information on waypoints,
navaids, airports, airways, standard routes, altitude restrictions and
other data for +the area covered by the wuser airline; and the
Performance Data Base. which <contains numerical models of the
aerodynamics of the aircraft and of the engine thrust characteristics.
The size of the Navigation Data Base ranges from 96k to 192k words and
that of the Performance Data Base from 4k to 12k words (actual sizes

22

The HEAP - January 1984 - Volume 7 Number 2
A Structured Analysis Method for Large, Real-Time Systems

are determined by customer option and aircraft configuration). The
size of the executable code is about 200k words (all words are
16 bit).

The response of the system to a given stimulus is highly
dependent on past events. current conditions, and predicted future
events. Such considerations as the recent history of navigation
signals, the current flight phase; and whether the aircraft is
approaching an altitude or speed restriction, all have an impact on
various aspects of system response.

The CDU has a 14 1line by 24 character CRT display, a full
alpha-numeric keyboard, a variety of special function keys, and
several annunciators for alerting the <crew to wunusual conditions.
Many different displays are available to the crew, and through the CDU
they are able to monitor such things as: the progress of the aircraft
throughout the flight; predictions of time, distance, and fuel
reserves to the destination and alternate destinations; and the
status of FMCS and other systems on board. They are also able to
enter many kinds of data, including changes to the current flight plan
and construction of completely independent flight plans for future
use. Figure 1 illustrates the layout of the CDU.

Systems of this type can provide capabilities which had not
previously been possible. One of these is to guide the aircraft along
a "great circle” path (the shortest distance between two points on the
surface of the earth), which 1is characterized by a8 continuously
changing heading and bearing. Conventional guidance methods use a
fixed heading or bearing for each flight leg.

A prime consideration in the development of commercial avionics
systems is the fact that they must be subjected to the very exacting
requirements of FAA certification. These requirements include.
amongst many other things, demonstration of the fact that the system
will not fail in ways which will impair the continued safe flight of
the aircraft, and that it will not present false or misleading
information to the cTew. The need to demonstrate these
characteristics in sustems as complex as FMCS makes it almost
mandatory to present all the requirements and design data to the FAA
in an orderly and structured manner.

23

The HEAP - January 1984 - Volume 7 Number 2
A Structured Analysis Method for Large, Real-Time Systems

AMBIENT LIGHT SENSORS FOR
AUTOMATIC CRT CONTRAST ADJUSTMENT

CRT 1iTLE BLOCK
DATA STATUS PAGE NUMBER
GLOCK\ —F# / BLOCK
i i 7

>7/.<’_::3 i sy | | O e
d/I=! E-------——-_--——_-—A/E A
=||! A=
SELECT/ENTER { B E g S > SELECT/ENTER
B i 1=
VI=! t:::::':.:::‘_‘::::-::;'. B3|
R e\ S———) || e

~—~\BRT
wi] lare || ces | [crz][oes O‘/r-r/sxecure KEY

N, |
FUGHT PHASE AND DIR DEP EXECH=|
FUNCTION KEYS iwTC | [LECS] | ARR | |HOLD} |PROG] |] T
Ny
LIMIT Fix A B (o D E
A el
PAGE SELECT e il I R O | S

ANNUNCIATORS = ||

DELETE KEY

S ¢
ll'ITU @@@ Kilcfim]Int]o ‘ I\Anwuncm‘roas
|

HA 16
CHANGE N — SLASH KEY

olololninlnlnlBisel
\ l_,_CLEAR KEY
INSTALLATION/— | L

REMOVAL HANDLE
NUMERIC ALPHABETIC
°EC'MN§E"$‘NT CHARACTER CHARACTER
KEYS KEYS

FIGURE 1 - Illustration of FMCS Control/Display Unit

24

The HEAP - January 1984 - Volume 7 Number 2
A Structured Analysis Method for Large, Real-Time Systems

3.0 Goals of the Real-Time SA Method

Recognizing the effectiveness of the basic Yourdon SA methad
within its own scope, we adopted the goals of that method for the
extended method: namely:

- Rigor
- Completeness
= Understandability

- Changeability and Maintainability

In addition, we wanted to minimize the <changes ¢to ¢this basic
method, and to adopt as many of its features into the extended method
as possible. In this way we would take best advantage of all the
experience invested in the basic method and make the transition from
one method to the other as easy as possible.

Basic S5A is an elegant concept, but its strengths lie also in its
practicality which arises from features such as leveling, balancing,
its numbering system, and the diagrammatic representation. We wanted
to adopt these features as much as possible in the extended method,
and we also recognized the large body of knowledge available in finite
state machine theory and wanted to take advantage of that too.

4. 0 Description of the Method
4.1 Overview

There are a number of characteristics which distinguish real—-time
(RT) from non-real-time systems, ¢two of which are particularly
important to this method. First, RT systems contain two distinct
types of signals — as well as the familiar data signals (data flows)
which are used within data processes, there are other signals, both
external and internal, whose primary purpose is to modify the response
of the system to incoming data rather than to be processed by it.
Second, RT systems are required to recognize past events, current
status, and expected future events and, again, to modify system
response accordingly.

These characteristics give rise, directly, to the two principle
new features of the real-time SA method. First, signals are divided
into two types - data signals and control signals — with flow diagrams
similarly divided into data +flow diagrams (DFDs) and control flow
diagrams (CFDs). (Note that the 1latter are pot state <transition
diagrams). Second, a@ new type of spec is introduced — the control
spec — which represents the finite state (FS) machine characteristics
of the system (and which may contain state transition diagrams). To
distinguish them from control specs, mini-specs are renamed "process

25

The HEAP - January 1984 - Volume 7 Number 2
A Structured Analysis Method for Large, Real-Time Systems

specs”. In fact, several minor changes in terminology have been
adopted and are listed below:

Real-Time Method Basic Method

Data context diagram Context diagram
Control context diagram None

Data flow diagram Data flow diagram
Control flow diagram None

Process spec Mini-spec

Control spec None

Timing spec None

Requirements dictionary Data dictionary

Having decided to separate signals into two types it becomes
necessary to define how to make that separation in practice. As
vsuval, there are no absolute rules, but some guidelines were

established. Any signal representing a continuous physical quantity
must be categorized as data. Discrete-valued signals are not always
s0o easily dealt with. The best approach is to refer back to the

original principle: if a signal is used within a process as part of a
calculation, categorize it as data, if it is used to modify the
response of the system to other signals, categorize it as control. It
sometimes happens that a signal is used for both purposes, in which
case it is categorized as both, and appears both in the DFDs and CFDs.

The primary purpose of the FS machine attributes of the system is
to modify the response of the system according to past. current. and
expected future conditions. 1t does ¢this by controlling processes
{that 1is, activating and de—activating them) and can conveniently be
thought of in the same way as a feedback <control 1loop in control
system theory. Figure 2 illustrates this concept. A second purpose
of the FS machine is to signal the status of the system to other

systems, and this is done through the control outputs shown in the
figure.

Two additional terms are introduced in figure @a: "process
controls” and "data conditions"”. Process controls are the signals
which activate and de—activate processes in the data processor, and

data conditions are control signals derived through tests on data;
for example:

If ALTITUDE > 18000f¢t.
set HIALT = TRUE

in which HIALT is a data condition.
26

The HEAP - January 1984 - Volume 7 Number 2
A Structured Analysis Method for Large, Real-Time Systems

DATR \NEUTS Dara QUDT?L\TS
PRACESSOR
PROCESS oata
CANTROLS CcOMT\ONS

CONTROLLER

COMTROL esTRGL
maeuTs QLTPVTY

FIGURE 2 - Feedback Control Representation of Method

4.2 Integration of the Control Method into the Basic SA Format

It is characteristic of control system design that the entity ¢to
be controlled is defined first, since only then can the controlling
mechanism be defined. For example, in designing a feedback power
amplifier, the output stage must +first be designed to drive the
required load. then the number of stages and the loop transfer
function can be calculated ¢to suit the requirements of the output
stage. This principle was wvsed in structuring the real-time SA
method. Since the main purpose of the FS machine is to control the
data processor, its structure is slaved to that of the data flow
structure. GSpecifically, control signals are constrained to flow only
along the same routes as data signals, and each control spec is
associated with one and only one DFD - the one whose processes it
controls. This means that each CFD must correspond with @ particular
DFD and must have the same name and number as that DFD. and that each
process on that CFD must have the same name and number &#s a process on
the corresponding DFD. It also means that a control spec must have
the same name and number as its corresponding DFD. This gives rise to
very tightly coupled groups of diagrams: a DFD, a CFD, and a control
spec, all with the same name and number. All the 1inputs to ¢the
control spec come from the corresponding CFD and the two must balance.
All the outputs from the control spec are either activators of
processes on the corresponding DFD, or new control signals which go
directly to the corresponding CFD and must balance with it.

This structure has the very desirable effect of concentrating
control requirements close to where they are used, yet there is no
loss of flexibility, as the control signals from which the control
functions are derived may flow within the structure in Jjust the same

27

The HEAP - January 1984 - Volume 7 Number 2
A Structured Analysis Method for Large, Real-Time Systems

way data signals do. The control requirements simply get partitioned
in the same way as the processing requirements are partitioned.

Figure 2 may be thought of as being repeated at each level in the
structure and the “controller” block divided into CFDs and control
specs. Figure 3 illustrates one level of this configuration.

7o ¥ReH
LEVEL ARSVE
[}

S oRYa Flas - ==
y oraCRAr //
Mocesr / , , onm
cowrgoes / ; ,cvarrsans
/7 /
/7 /
/ /
s L,
i i
gowrrs”
co~reac rrgvRC s fomnTRaL FLo4s
srec _—— e — — P/AgRAAY
] {
. |
To]FK&H

LEvEL BELOU]

FIGURE 3 - Interconnections between DFD, CFD, and Control Spec.

4.3 Data Flow Diagrams.

DFDs are essentially identical to those in basic SA. The one
exception is the appearance of data conditions (described earlier)
flowing out of the primitive processes in which they are generated.
They are shown there to complete the picture of the process, and are
also shown flowing out of the same process on the corresponding CFD.
Any further flow, ¢to higher or lower levels, is shown only on the
CFDs, as with all the other control signals. Figure 4 is a typical
DFD with data conditions.

Process activators are not showun at all on the DFDs, only in ¢the
control specs. Since, in the document, a control spec is located
close to its DFD, it is easy to refer to it to €find which processes
are activated. Processes which do not have activators operate in the
same way as in basic SA - they are data triggered.

28

The HEAP - January 1984 - Volume 7 Number 2
A Structured Analysis Method for Large, Real-Time Systems

>
ﬁi ‘ﬁ pchod

"y
=
Lc22 4.8 [NR P

DATA FLOW 1.5.3.2.4
SET PP INDICATORS FOR NAV paTa

FIGURE 4 - Data Flouw Diagram with Data Conditions

29

The HEAP - January 1984 - Volume 7 Number 2
A Structured Analysis Method for Large, Real-Time Systems

4.4 Control Flow Diagrams

The term "control flow diagram” is sometimes used synonymously
with "state transition diagram", but this is not its meaning in this
method. Here, the term is used because the diagram it describes is
very similar to a DFD, so it is appropriate for them to have
correspondingly similar names. State transition diagrams are referred
to exclusively by that name in this method, and appear only in control
specs.

Like DFDs, CFDs contain processes, signal flows, and stores, and
must balance with their parent and child diagrams. The differences
between the two are important, however. and are as follows:

-~ their signal flows are control signal flows, and are shown
with broken lines to distinguish them from data signal flouws.

- signals flowing to and from the associated control spec are
shown with a short bar on the end of the vector.

— the processes on a CFD are duplicates of those on the
associated DFD. I# a particular process on the DFD has no
control signal flows associated with it, it may be omitted
from the CFD.

It is not required that every DFD has a CFD and control spec
associated with it. If none of the processes in the DFD is
controlled, then a control spec is not required, and if none of the
children of the DFD has any control signals associated it, then no CFD
is required (no signals flowing down to or up from lower levels).
However, if a control spec is needed, then so is a CFD (to provide the
inputs and receive any outputs). Figure 5 is a typical CFD, and
corresponds with the DFD of figure 4.

It is important not to misinterpret the control signals flowing
into and out of processes on a CFD. They are not activators of those
processes, but signals flowing between levels, just like data flows in
DFDs. The process activators only appear in control specs.

4.5 Control Specs

Control specs contain the Trepresentations of the actuval FS
machines. Their purpose is analogous to that of process specs - to
show how their outputs are generated from their inputs - but they do
this wusing decision tables and state transition diagrams instead of
structured English.

30

The HEAP - January 1984 - Volume 7 Number 2
A Structured Analysis Method for Large, Real-Time Systems

\

ser FP
1a7D1C ATORS

Foe. huforr
1.6124.2

Few
{%{-\

¢.
s

—_— e BN
= MRoATA

DESIRED
wayPoinT

,622.4.6
< _Jiﬂ!—!!’?Lﬁi’ﬁWWﬂr

REFRESH, CLR 3/

CONTROL FLOW 1.5.3.2.4
SET FP INDICATORS POR NAV DATA

FIGURE 5 - Control Flow Diagram

31

The HEAP - January 1984 - Volume 7 Number 2
A Structured Analysis Method for Large, Real-Time Systems

FS machines may be divided into two types: combinational and
sequential. In combinational machines, the current outputs and states
of the internal elements are determined entirely by the current
inputs. They are represented mathematically as a "3-tuple",

{1, Z. w), where:

I is a finite set of input symbols,

Z is a finite set of output symbols,

w is a mapping of I onto Z <called the output function or
transfer function.

Combinational machines are usually represented by decision tables
in which all combinations of the input signal values (i.e. all the
input symbols) are 1listed with their <corresponding output signal
values <{output symbols). In practice, it is usual that many of the
input symbols are of no interest ("don’t care” condition) and the
table can be greatly simplified. Figure & is a typical control spec
using decision tables, including generation both of control signals
and process controls. It corresponds with the DFD and CFD of figures
4 and 5. The numbers in the body of the process control table
represent activation of the processes in that numerical sequence.

In sequential machines, current outputs and states of the
internal elements are determined by current inputs together with past
values of inputs and internal elements — i.e. they contain memory.
They are represented mathematically as a "S5-tuple”, {I. Q, Z, d, w},
where:

is @ finite set of input symbols,

is @ finite set of states,

is a finite set of output symbols,

is @ mapping of I X QO onto Q@ called the next state
function,

w is @ mapping of I X Q onto Z called the output function.

aNDQD -

Sequential machines may be modelled in a number of ways, including the
Moore model, in which the output function depends only on the current
state, not on the inputs, and the Mealy model, in which the output
function depends on both the current state and the inputs. It can be
proved that any representation wusing one of these models has an
equivalent representation on the other, but the Moore representation
will vsvally require more states. Because of its greater flexibility.,
the Mealy model was chosen for this method.

Although the types of system we are dealing with are invariably
sequential machines overall, when the control requirements are
partitioned as described earlier, it is wusually found <that the
sequential rTequirements can be concentrated into a few localized
areas; that the rest of the control requirements can be represented
in combinational machine form (simple decision tables); and that
large parts of the system can be represented in basic SA form, with no
control structure at all, using the "data triggering” concept.

32

The HEAP - January 1984 - Volume 7 Number 2
A Structured Analysis Method for Large, Real-Time Systems

LowTROL 14 cowTRol ouT

vm |cooE P PARGCE ACUM

£ et wowe \"NE

CoONTROL IN Pﬁf C;-;Szii r/c;a TED

DSPLY— | FXN- |NAV- DATA- | NUM._puPL
k7 wum |cooe _\eommar |'pre |1 |8 1617

5 |30 | mwoex |1-22 1z 42
1R o) o\l 3
CONTROL IN PROCESS ACTIVATED }.5.3.2.4.N
PP Eope | A - Vet s |2 [3 (4[5 6718
>0 D/c 2 o
AIRPORT o peere | 1 O 0 0 2
1L- OTHERWISE 210
se, >0 p/c 2 0
LR- |wavpont) DeLeTE 0 11, 017
5 SR OTHERWISE 210
>0 ole 2 0
NAVAID 0 bewcTE () 110 " 0 2
OTHERWISE 2 1lo
RUNWAY | Dlc o/c ol|1 (o) 21]0

33

The HEAP - January 1984 - Volume 7 Number 2
A Structured Analysis Method for Large, Real-Time Systems

Sequential machines are represented wusing state transition
diagrams, or various equivalent tabular forms, any of which may be
used in a control spec. Figure 7 shows a typical example wusing a
matrix form. In addition to the state transition diagram itselét.
decision tables are vusually required to represent its input and output
logic.

Since the control requirements for a given DFD may be arbitrarily
complex, there is no restriction on the size of control specs, and
they are frequently several pages long. It is important <that their
input and output signals are grouped together and clearly identified
near the front of the spec so that they can be easily balanced with
the CFD.

4. 6 Requirements Dictionary

The requirements dictionary (RD), is essentially the same as the
8A data dictionary, but it contains the definitions of both the data
and control signals. The symbology is the same for both - control
signals are grouped in just the same way as data signals. The RD has
been automated using a commercial data management system, and is
divided into fields: "name"”, "composed of", "used in", and "member
of". The last two list, respectively, the flow diagrams in which the
signal is used. and other signal groups in which it is included.

4.7 Timing Requirements

From the requirements point of view, timing falls into just +two
categories:

- required rates of receiving inputs and generating outputs

- response times from system input events to resulting system
output events.

Input and output rates are stated in the requirements dictionary as
attributes of the individual primitive signals. Response times are
listed in simple tabular form showing the input signal(s), the event
associated with those signals, the output signals, and the resulting
event associated with those output signals. Figure 8 illustrates a
response time spec format.

Such considerations as timing budgets for software functions or
module calling rates have no place in a requirements spec.

34

The HEAP - January 1984 - Volume 7 Number 2
A Structured Analysis Method for Large, Real-Time Systems

v TANSTH |TANSTN TRNSTN | PRED IM 29083 | 803 ;u:v "
3¢] 1v | movEd | mov RNT 3
veel By BT e | B | R B | B
N g to et
STATE ¥ s
[1]
oLaN
‘.“‘[’ o ©o o ofle o o ol o o ol o @ ole o @ e o o ofle o o ofle o o o o o el e e
NN PREPARE(CLR
¥) V% FOR ODES
3 MOLD &!,i;
L L knv:l
P AP RPN RPN SR ceca]ea.
cLIne | cLime
Laten 15 PREPARE -
nSG L8 EOR CRI[PREVARE
voate snerane|Fos 0ES| bES
cLIng Yodts PREPAR ’
RPN PR R M R A FoR JFOR WLD| MIT.
CRUISE
snerare| °%5°
INIT |eecccea
ror ji1 ce
TESY ve 8V REPAR
oLy crz bes Y H
CRUISE [131 wo FOR HLD| PATH
PN I M 71T e * e e -a T
UPOATE DESCEN
cccece=|TODES cccccce [cocscee
TsT pes|TsY DES
ss=c AR
CARLY PATH ;ggra: v?axgzs
DESCENT , 0es cee- PlErhRE| vo st
ceecoflcccaleae- .- EOR WLO[=- = = =
- o o o] PATH
DESCENT
SET CRI|PREPARE
P :Ss'ag 'gg
cruzse patn |presd 82121
cLIng . DESCENT
PatH
DESCENT
TEST £T T
iy e
sinusss sl ikl oy
DESCENT gDDES ‘ V6 8T
PATH
DESCENT
TESTY PREPARE
i i
e Aty i,
BESCENT TODES
I
LATERAL NOLD
PATH
onLY e ocoeolecnelecccelccncae