
THE HEAP

STRUCTURED LANGUAGES

May 1984 Issue

Printed in the U.S.A.

r·-·-·-·-·---·-·-·-·-·-·-·-·-·-·-·
The MUMPS SIG

Did not submit material for this issue

-----------·-·-----·-·-
Send your submissions for the next issue to:

Jim Bernard

Data Processing
Kettering Medical Center
3935 Southern Blvd.
Kettering, OH 45429

,itm·-·-·---------·-·-------·-·-·-·- ..

The following are trademarks of Digital Equipment Corporation :

DEC DIBOL
DECnet Digital Logo
D ECsystem-10 EduSystem
DECSYSTEM-20 IAS
DECUS MASS BUS
DECwriter PDP

UNIX is a trademark of Bell Laboratories.

Copyright© Digital Equipment Corporation I 984
All Rights Reserved

PDT
RSTS
RSX
UNIBUS
VAX
VMS
VT

It is assumed that all articles submitted to the editor of this newsletter are with the authors' permission to publish In 1ny DECUS
publication. The articles ar1 the responsibility of the authors and, thereforit. DECUS, Digital Equipment Corporation, and the
editor assume no responsibility or liabilltV for articles or Information appearing in the document. The views herein expressed are
those of the authors and do not necessarily express the views of DECUS or Digital Equipment Corporation.

The HEAP

From the Editor

John R. Barr, University of Montana, Missoula, MT

This issue of the Heap isn't all I promised in the previous issue.
However, it does contain some interesting material and continues to be
mainly articles submitted by Kathy Hornbach. Is anyone reading this
newsletter?? I would like to see more articles on languages and their
application. Our Modula-2 coordinator is putting together a list of
sources for Modula-2 compilers that run on DEC equipment and operating
systems. Is anyone out there using Pascal?? What are you doing with it
that you couldn't do with FORTRAN?? How about Ada? Surely everyone
will be using Ada as soon as the compilers and programming support
environments are available. Any comments??

I have included a list of all the people invloved with the LTSIG to
the best of my knowledge. There may be others, but I don't know about
them. If you need information about languages and tools, don't call me,
call the people listed in the LTSIG leadership directory. I will just
refer you to them.

The subscription fee structure will be changed for next year (July
84 to June 85). Each SIG newsletter will be separately priced according
to the projected number of issues and page counts. We are planning to
produce four newsletters next year with each newsletter containing
approximately 40 pages. Your subscription cost will be $10.00 for the
year. Look for the new subscription order form to appear in DECUSCOPE.

Finally, we need a new newsletter editor. I am going to resign as
newsletter editor in June. We need someone who likes to edit and write
to take over as editor. Please call Jim Livingston or me if you are
interested.

John R. Barr
Department of Computer Science
University of Montana
Missoula, MT 59812
(406) 243-4807

1

The HEAP - January 1984 - Volume 7 Number 2
LTSIG Leadership Directory

Chairman: James W. Livingston, Jr.
Measurex Corporation
One Results Way
Cupertino, CA 95014
(408) 255-1500 x4468

Operating System Coordinator: Alan Rizzuto

IAS Coordinator:

Erne Controls, Inc.
P.O. Box 242
Cockeysville, MD 21030
(301) 667-4800

open

RSTS Coordinator: open

RSX-llM/M+ Coord: Alan Rizzuto

RT-11 Coordinator: Michele Wong
DISC
3336 Bradsha.w Road, Suite 340
Sacramento, CA 95827
(916) 363-7385

Unix Coordinator: Rod Creason, Jr.
DISC
3336 Bradshaw Road, Suite 340
Sacramento, CA 95827
(916) 363-7385

VAX/VMX Coordinator: Louise M. Wooley
Measurex Corporation
One Results Way
Cupertino, CA 95014
(408) 255-1500 x4452

Symposia Coordinator:

Menu Coordinator:

J. R. Westmoreland
Utah Power and Light
Systems and Computer Services, Room 184
1407 w. North Temple
Salt Lake City, Utah 84116
(801) 535-2387

Alan L. Folsom, Jr.
Enertec, Inc.
19 Jenkins Avenue
Lansdale, PA 19446

2

Tools Coordinator:

The HEAP - January 1984 - Volume 7 Number 2
LTSIG Leadership Directory

Kathy Hornbach
Lear Siegler/Instrument Division
4141 Eastern SE, MS 121
Grand Rapids, MI 49508
(616) 241-8800

Member Services: John R. Barr
810 Continental Way
Missoula, MT 59803
(406) 728-0062 (evenings)

Librarian: James Triplett
Intermetrics, Inc.
701 Concord Avenue
Cambridge, MA 02138
(617) 661-1840

Session Notes: Mark Katz

Newsletter:

User Training:
Modula-2 Coordinator:

GTE Sylvania
17 A Street
Needham, MA 02194
(617) 449-2000 x635

(Soon to be open)

open
Jack R. Davis
NAP Consumer Electronics
9041 Executive Park Drive, Suite 612
Knoxville, Tennessee 37923

3

The HEAP - January 1984 - Volume 7 Number 2
Toolside Chat with Kathy Hornbach

Toolside Chat

If you want to learn about Software Tools, Spring DECUS '84 in
Cincinnati (June 4-8) is the place to be. The theme for the Symposium
is "Increased Programmer Productivity", which is exactly what Software
Tools are intended to do. A Preliminary list of sessions indicates that
the tools area is well-represented. DEC is sponsoring many sessions
on specific tools like CMS and MMS; on how they use tools internally;
and "crystal balling" on tools they are thinking about developing.

Tools are also well represented in sessions presented by users. These
include sessions on experiences with DEC tools, with home-grown tools,
and with third-party tools. And there is a pre-symposium seminar (given
by yours truly) on "Implementing a Software Development Environment".
We have certainly come a long way from just two years ago, when the only
session specifically on tools was one birds-of-a-feather!

In addition to the planned sessions, there will be plenty of
opportunities for you to talk to DEC people and expert tool users
informally - the LTSIG will have both a campgr.ound and a suite.

A partial list of the sessions a tools person would be interested in:

CMS and MMS - many sessions, including presentations from DEC on usage,
features and futures, and user presentations/panels on experiences with
these tools.

ADA (ADA is a trademark of the Department of Defense) a whole
afternoon of sessions on ADA and the ADA environment, both by DEC and by
people from the ADA community.

Specific sessions include:

o Real World Use of Software Development Tools

o Languages and Tools Panel (DEC)

o VAX/VMS Software Development Environment
Methods and Tools (DEC)

Productivity thru

o Programmer Productivity - Tools are not Enough (DEC)

o Software Tools User's Group Update

o Define the Software Process, then find the VMS Tools (DEC)

o Teams of Tools (DEC)

o Testing Software: Methods, Procedures and Practices

4

The HEAP - January 1984 - Volume 7 Number 2
Toolside Chat with Kathy Hornbach

o LR(l) Parser Generator

o EMACS Editor

o Automating an Assurance Testing System

o Promoting the Acquisition and Use of Software Development Tools

o Computer-Aided Systems Analysis and Design Tools

o SPSS

Hope to see you there!

5

The HEAP - January 1984 - Volume 7 Number 2
Problem and Fix for DECUS C Compiler

James B. Van Bokkelen, Manager, Software Development
Perception Technology Corporation
50 Shawmut Road
Canton, Massachusetts 02021
(617) 821-0320

I would like to report a problem and fix for IOGET.MAC, version 11, and
IOGETC.MAC, version 6. Under RTll emulation on RSTS/E, any use of
ungetc() on a terminal will crash the program. This is because of the
interaction between two fixes (in IOFOPA, for buffered RTll terminal
input, and in IOGETC, fo un-edited RSTS terminal input), resulting in
there being no buffer for ungetc() to put the character in.

My approach was to take the RSTS native mode terminal READ code out of
IOGETC, and put it in IOGET, as its fuctionality implied. In the
process, I altered it to use the standard I/O buffering mechanism, which
fixed ungetc(), and to trim all the normal RSTS terminator characters.
This last was in an effort to duplicate the effect of .GTLIN under
native RTll.

I understand DECUS has installed a VAX, and that you are on an internal
DEC network. I have access to the ARPANET (jbvb@ml), and can (with some
effort) get mail onto the DEC Engineering Network. If I had an address,
I could send either just the diff output, or the complete modified
modules via that means. I would also appreciate some feedback on the
currency of the problems I am reporting. My distribution was obtained
through the MIT PDPll LUG in Summer, 1983. The compiler is at "Patch
Level 8".

(Editor's note: I have the listings of the fixes and need to get them
to someone who will include them in the next C release. Anyone
interested should send me a self-addressed envelope or contact Jim
directly.)

6

The HEAP - January 1984 - Volume 1 Number 2
Getting the Most Out of VAX-11 DEC/MMS

GETTING THE MOST OUT OP VAX-11 DEC/MMS

Operating System and Version: VAX/VMS Version 3.0 or later.

Software Version: DEC/MMS Version 1.0

The information in this document is subject to change without not~ce
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by Digital Equipment Corporation or its
affiliated companies.

Copyright (c) 1983 by Digital Equipment Corporation
All Rights Reserved.

Printed in U.S.A.

The following are trademarks of Digital Equipment Corporation:

DEC
DEC/CMS
DEC/MMS
DECnet
DECsystem-10
DECSY'STEM-20
DEC US
DECwriter

DIBOL
EduSystem
IAS
MASS BUS
PDP
PDT
RSTS

7

RSX
UNIBUS
VAX
VMS
VT

The HEAP - January 1984 - Volume 7 Number 2
Getting the Most Out of VAX-11 DEC/MMS

CONTENTS

ABOUT THIS DOCUMENT •• • • i

CHAPTER 1

1.1
1.2
1.3

CHAPTER 2

2.1
2 .1.1
2 .1.2
2.2
2.3
2.4
2.4.1
2.4.2
2.5
2.6
2.6.1
2.6.2
2.7

CHAPTER 3

3.1
3.2
3.3
3.4

CHAPTER 4

4.1
4.2
4.3

SIMPLE TRICKS

CHECKING WHETHER FILES ARE UP-TO-DATE • • • •
USING MMS TO "FETCH AND BUILD" • • • • • • • •
USING THE /SKIP QUALIFIER • • • • • • •

• • 1-1
• • 1-1

• 1-2

BEING CREATIVE WITH MMS

GATHERING STATISTICS • • • • • • • • • • • • • • • 2-1
Finding Out What is Missing from a CMS Library • 2-1
Creating a Checkpoint File • • • • • • • • • • • 2-2

USING DCL COMMAND PROCEDURES IN DESCRIPTION FILES 2-3
USING DCL SYMBOLS AS MACROS • • • • • • • • • • • 2-4
CREATING AND USING TIME STAMPS • • • • • • • • • • 2-4

Creating a Time Stamp File Using DCL Symbols • • 2-5
Creating a Time Stamp File Using Included Files 2-6

CHECKING FOR REPLACEMENT OF CMS ELEMENTS • • • 2-8
SELECTIVELY DELETING FILES • • • • • • • • • • 2-9

Creating a Command Procedure • • • • • • 2-9
Using a Macro Definition • • • • • • • • • 2-10

DOING PARALLEL PROCESSING • • • • • • • • • • • 2-11

GENERAL USAGE

HOW CAN USING MMS HELP A PROJECT? • • • • • • • • 3-1
WHY NOT JUST USE DCL COMMAND PROCEDURES? • • • • • 3-2
HOW DOES DEC/MMS EXECUTE COMMANDS? • • • • • • • • 3-3
CAN THE ORDER OF COMMAND EXECUTION BE CONTROLLED? 3-3

LIMITATIONS OF Vl.O

TARGET AND SOURCE SPECIFICATIONS
MULTIPLE TARGETS WITH ONE ACTION • • •
DEFAULT FILE TYPES FOR /DESCRIPTION

8

• • • 4-1
• • • • • • 4-1

• • • 4-4

The HEAP - January 1984 - Volume 7 Number 2
Getting the Most Out of VAX-11 DEC/MMS

ABOUT THIS DOCUMENT

This is an informal document specifically prepared for the 1983 spring
session of U.S. DECOS. It cannot be ordered from DIGITAL. It can,
however, be copied, as long as the source is credited. There will be
no updates to or revisions of this document. However, some
information from this document may be included in the next version of
the VAX-11 DEC/MMS User's Guide.

This document is aimed at users familiar with DEC/MMS. It is intended
to supplement the information provided in the VAX-11 DEC/MMS User's
Guide. The information presented here is not intended to help you get
MMS to run; it is assumed that you are familiar with MMS, and that
you have used it without major difficulties. It is also assumed that
you have a more than cursory familiarity with DCL.

The primary objectives of this document are to present information to
help you use MMS more effectively, and to give you a perspective on
MMS broader than that provided in the User's Guide. This document
suggests approaches to some specific tasks for which you might not
have considered using MMS. You can use these approaches as they
appear in this document, or you can modify them for other purposes.
You are limited only by your own creativity.

9

The HEAP - January 1984 - Volume 7 Number 2
Getting the Most Out of VAX-11 DEC/HHS

CHAPTER 1

SIMPLE TRICKS

This chapter describes some simple tasks for which you can use MMS.
Some of these tasks do not even require a description file.

1.1 CHECKING WHETHER FILES ARE UP-TO-DATE

You can use MMS to check whether a file is up-to-date with respect to
its source(s), without even using a description file. Suppose you
have a CMS library defined, and this CMS library contains the source
file FOO.BLI. The file that is built from FOO.BLI, FOO.EXE, resides
in your default directory. To see whether FOO.EXE is up-to-date, you
need type only the following command line:

$ MMS/CMS/SKIP/CHECK FOO.EXE

MMS will go to the CMS library, check the time of FOO.BLI, and report
whether FOO.EXE is up-to-date with respect to FOO.BL!. (The /SKIP
qualifier ensures that the outcome of /CHECK is unaffected if any
intermediate files do not exist.) Use this command line when the
source is in your default CMS library, and specify the target file
(FOO.EXE in this example) as the parameter to the MMS command.

1.2 USING MMS TO •FETCH AND BUILD"

Suppose you have a CMS library that contains DSR (DIGITAL Standard
Runoff) source (.RNO) files, and you want to create a .MEM file from
one of those source files. Instead of fetching the .RNO file from the
CMS library and running DSR to create the .MEM file, you can simply
type the MMS/CMS command and specify the .MEM file-to-be as the
parameter on the command line. For example, suppose you want to
create a memo, and the source file MEMO.RNO exists in your CMS
library. To use MMS to build MEMO.MEM, you would type the following
command line:

10

$ MMS/CMS MEMO.HEM

The HEAP - January 1984 - Volume 7 Number 2
Getting the Host Out of VAX-11 DEC/MMS

MMS will fetch MEMO.RNO from the CMS library, run DSR, and create
MEMO.MEM. No description file is necessary. Remember to specify the
file to be created as the parameter on the MMS command line.

NOTE

If you have a description file
(DESCRIP.MMS or MAKEFILE.) containing
the .MEM file-to-be as a target, MMS
will also parse that description file.

1.3 USING THE /SKIP QUALIFIER

Use the /SKIP qualifier when you want to update a system, but do not
want to rebuild all the intermediate files (such as .OBJ files). For
example, suppose your directory contains the following files:

MYPROG.EXE
MYPROG.OLB
DESCRIP.MMS
A.BL!

The description file for building MYPROG.EXE looks like this:

MYPROG.EXE : MYPROG.OLB(A,B,C)
LINK/EXE=MYPROG MYPROG/LIB/INCLUDE=A

You have fetched A.BL! from a CMS library that contains the source
files, and you have edited this file. To update the system to reflect
the change to A.BLI, type this command:

$ MMS/CMS/SKIP

MMS will update MYPROG.EXE. It will also create A.OBJ, since A.BL!
has a time newer than that of the corresponding module in MYPROG.OLB.
However, MMS will not create any other .OBJ files (such as B.OBJ and
C.OBJ) because /SKIP was specified on the command line. If /SKIP was
not specified, MMS would have fetched B.BLI and C.BLI, compiled them,
and added the .OBJ files to MYPROG.OLB, even though they did not need
to be updated.

11

The HEAP - January 1984 - Volume 7 Number 2
Getting the Most Out of VAX-11 DEC/MHS

NOTE

Require files must be present in the
working directory for MMS to execute
compiles. For example, suppose the
description file contains the following
rule:

A.OBJ : A.BLI DEFS.REQ
BLISS A

If both A.BLI and DEFS.REQ are in the
CMS library, but you fetch and change
only A.BLI, MMS will not fetch DEFS.REQ.
Therefore, A.OBJ will not be updated and
the compile will have errors.

You may want to delete intermediate files once the main target is
updated. See Section 2.6 for information on selectively deleting
files.

12

The HEAP - January 1984 - Volume 7 Number 2
Getting the Most Out of VAX-11 DEC/MMS

CHAPTER 2

BEING CREATIVE WITH MMS

This chapter describes some creative things you can do with MMS.

2.1 GATHERING STATISTICS

You can use MMS to gather statistics about your files. The
sections describe some methods for gathering certain
statistics.

2.1.1 Finding Out What is Missing from a CMS Library

following
kinds of

Suppose that your sources for a particular software system are
contained in a CMS library, and you want to know whether everything
you need is there. To get a list of missing files, you cou+d put a
default action such as the following in your description file, using
the .DEFAULT reserved keyword:

.DEFAULT :
IF " 1 1 F$SEARCH ("MISSING .SRC") 1 " .EQS. ""
THEN OPEN/WRITE MSING MISSING.SRC
IF "' 'F$SEARCH("MISSING.SRC")'" .NES. ""
THEN OPEN/APPEND MSING MISSING.SRC
WRITE MSING "missing $*"
CLOSE MSING

When you process this description file with MMS, MISSING.SRC contains
the list of missing files.

13

The HEAP - January 1984 - Volume 7 Number 2
Getting the Most Out of VAX-11 DEC/MMS

2.1.2 Creating a Checkpoint File

You can use MMS to create a checkpoint file that indicates when MMS
completed targets. For example, suppose that your directory contains
the source files FOO.C, BAR.C, and BAS.C. You want MMS to create .EXE
files for each of these sources, and also to inform you when it
completed each build. A description file to accomplish these tasks
looks like the following example. This description file builds
FOO.EXE, BAR.EXE, and BAS.EXE. It also creates a file called
CHECK.PNT, which indicates the time the executable files were
completed.

! Suffixes list with .PNT in the first position •
• SUFFIXES :
.SUFFIXES : .PNT .EXE .OBJ .C .c-

! User-defined rule to build .EXE files from .PNT files •
• EXE.PNT :

IF n 1 1 F$SEARCH ("CHECK .PNT") 1 11 .EQS. " 11

THEN OPEN/WRITE CHECK CHECK.PNT
IF "''F$SEARCH("CHECK.PNT")'" .NES. ""
THEN OPEN/APPEND CHECK CHECK.PNT
WRITE CHECK "Completed build of$< at ''£$time()'"
CLOSE CHECK

MAIN TARGET : FOO.PNT BAR.PNT BAS.PNT
MAIL CHECK.PNT <your process> -
/SUBJECT="Build summary of$* ending at ''£$time()'"
DELETE CHECK.PNT~

NOTE

The executables will be built before the
.PNT files are processed. Also, the
.PNT files never really exist. They are
simply a trick to allow the actions that
produce the file to be localized in one
place (the .EXE.PNT rule).

When you run MMS, the action lines are displayed as follows:

CC /NOLIST FOO.C
LINK /TRACE FOO.OBJ
IF ""F$SEARCH("CHECK.PNT")'" .EQS. ""THEN OPEN/WRITE CHECK CHECK.PNT
IF "''F$SEARCH("CHECK.PNT")'" .NES. ""THEN OPEN/APPEND CHECK CHECK.PNT
WRITE CHECK "Completed build of FOO.EXE at ''£$time()'"
CLOSE CHECK
CC /NOLIST BAR.C
LINK /TRACE BAR.OBJ
IF"' 'F$SEARCH("CHECK.PNT")'" .EQS. ""THEN OPEN/WRITE CHECK CHECK.PNT
IF "''F$SEARCH("CHECK.PNT")'" .NES. ""THEN OPEN/APPEND CHECK CHECK.PNT

14

The HEAP - January 1984 - Volume 7 Number 2
Getting the Most Out of VAX-11 DEC/HMS

WRITE CHECK "Completed build of BAR.EXE at ''f$time()'"
CLOSE CHECK
CC /NOLIST BAS.C
LINK /TRACE BAS.OBJ
IF "' 'F$SEARCH("CHECK.PNT")'" .EQS. nn THEN OPEN/WRITE CHECK CHECK.PNT
IF "''F$SEARCH("CHECK.PNT")'" .NES. ""THEN OPEN/APPEND CHECK CHECK.PNT
WRITE CHECK "Completed build of BAS.EXE at ''f$time()'"
CLOSE CHECK
MAIL CHECK.PNT <your process>/SUBJECT="Build summary of MAIN TARGET
ending at ''f$time()'"
DELETE CHECK.PNT:

The mail message sent to your process looks like the following:

From: <your process> 3-MAY-1983 08:48
To: <your process>
Subj: Build summary of MAIN TARGET ending at 3-MAY-1983 08:48:06.85

Completed build of FOO.EXE at
Completed build of BAR.EXE at
Completed build of BAS.EXE at

3-MAY-1983 08:47:32.99
3-MAY-1983 08:47:49.65
3-MAY-1983 08:48:06.33

2.2 USING DCL COMMAND PROCEDURES IN D~SCRIPTION FILES

You can use DCL command procedures
example, you could write a command
file become.s available, and invoke
description file.

in conjunction with MMS. For
procedure that loops until a given
that command procedure in your

Suppose your command procedure is called GETFILE.COM, and contains the
following:

$ LABEL:
$IF"' 'F$SEARCH(" 'Pl' ")'" .NES. ""THEN GOTO DONE
$ WA IT + : ' p 2 I

$ GOTO LABEL
$ DONE:

You could use this command procedure when you start MMS in a batch
job.

The description file that invokes GETFILE.COM might look like the
following:

GET NEXT INFO :
MAIL NL: $(MY_PROC)/SUBJECT="string"
@GETFILE ANSWER.IN 15
@ANSWER.IN

15

The HEAP - January 1984 - Volume 7 Number 2
Getting the Most Out of VAX-11 DEC/MMS

NOTE

Be sure that you do not leave a space
between the at sign (@) and the name of
the command procedure, so that MMS does
not interpret the at sign as the Silent
action line prefix.

ANSWER.IN corresponds to the Pl parameter, and 15 is the polling
interval (in minutes) that corresponds to the P2 parameter. ANSWER.IN
might modify the environment in some way -- for example, it might set
a CMS library at a point where MMS cannot find the right CMS library.

The $(MY PROC) macro is not defined in the description file. This is
because -it is a DCL symbol. Section 2.3 describes how to use DCL
symbols as macros.

2.3 USING DCL SYMBOLS AS MACROS

You can use DCL symbols to do things cleanly by invoking DCL symbols
as macros in your description file.

One way of using DCL symbols as macros is to define a symbol for your
process in your LOGIN.COM file. Then use that symbol as a macro in
description files when you want MMS to send mail to you. See the
second example in Section 2.2. The reason for defining a symbol for
your process is to make sure that mail gets sent to the right place.
If you have any subprocesses or batch jobs running, and you do not
have a symbol used as a macro in your description file, MMS may not
send mail to the process you wanted it sent to.

Another way of using DCL symbols is illustrated in Section 2.4.1.

2.4 CREATING AND USING TIME STAMPS

You can use MMS to create time stamps for such purposes as finding out
whether anything has changed since the last time you built a system,
and tracking the progress of the system.

The following sections describe two methods of creating and using time
stamps.

16

The HEAP - January 1984 - Volume 7 Number 2
Getting the Most Out of VAX-11 DEC/MMS

2.4.1 Creating a Time Stamp File Using DCL Symbols

The following example description file creates the file CMSMODS.RPT.
CMSMODS.RPT reports the number of project sources modified as
indicated by replaces in the CMS library.

PROJECT SOURCES = PARSE.Y, TOUCH.C, GM.C, DRIVE.C, CLP.C, -
LEX.C, GRAFBUILD.C, GRAFWALK.C, LFS.C, -
MACROBANK.C, MB.C, MMSPRINT.C, UTILS.C, -
EXECCMD.C, RULES.C, LBR.C, CMSACCESS.C, -
MMSMSG.MSG, FILTER.C, GRAPH.H, GLOBALS.H, -
LBRDEF.H, PDEFS.H, TOKEN.H, CLP.H, TC.H

! Special CMS filetypes not included by default •
• SUFFIXES : • Y • y- .MSG .MSG-

! New CMS rules (Note: no real CMS fetches occur)
.MSG-.MSG :

.H- .H

.c-.c

.Y-.Y

COPY NL: $*.MSG
PUR $*.MSG
MODS = MODS + 1

COPY NL: $*.H
PUR $*.H
MODS = MODS + 1

COPY NL: $*.C
PUR $*.C
MODS = MODS + 1

COPY NL: $*.Y
PUR $*.Y
MODS = MODS + 1

Create the new time stamp file
Remove the old one, if any
Increment the modification counter

Primary Target
MODS : !NIT $(PROJECT SOURCES)

INIT

IF n''F$SEARCH("CMSMODS.RPTn)'" .EQS. nn

THEN OPEN/WRITE CHECK CMSMODS.RPT
IF "''F$SEARCH("CMSMODS.RPT")'" .NES. ""
THEN OPEN/APPEND CHECK CMSMODS.RPT
WRITE CHECK"' 'MODS' MODIFICATIONS DETECTED AT ''F$TIME()'"
CLOSE CHECK

MODS = 0

MODS is a DCL symbol used as a counter.

CMSMODS.RPT may be used in some form as input to a program that prints
a graph of CMS replaces with relation to a number of days. Such a
graph can be used as an indication of how stable the given project's
source code is with respect to project milestones.

17

The HEAP - January 1984 - Volume 7 Number 2
Getting the Most Out of VAX-11 DEC/MMS

It is suggested that a description file such as the one in the example
be run on or nearly on a daily basis. You may want to put the
appropriate MMS command in your LOGIN.COM file.

2.4.2 Creating a Time Stamp File Using Included Files

Suppose you have the following directories and files:

[DIR!] contains FILEl.X

[DIR2] contains FILE2.Y

[DIR3] contains FILE3.Z

You want MMS to build a file reporting changes to these files. The
following example description file creates the file CHANGES.DOC, which
reports when changes were made to the source files •

• SILENT :

RECORD CHANGE = INCLUDE CHANGE-.REC

REPORT CHANGE : INIT FILEl.TIM FILE2.TIM FILE3.TIM
IF "' 'F$SEARCH("CHANGES.DOC")'" .NES. "" -
THEN TYPE CHANGES.DOC
IF"' 'F$SEARCH("CHANGES.DOC")'" .EQS. "" -
THEN WRITE SYS$0UTPUT "No changes detected"

INIT
IF"' 'F$SEARCH("CHANGES.DOC")'" .NES. "" -
THEN DELETE CHANGES.DOC;*/NOLOG

Testing the time stamps
FILE!. TIM : [DIR!] FILE! .X
$(RECORD_CHANGE)

FILE2. TIM : [DIR2] FILE2. Y
$(RECORD_CHANGE)

FILE3. TIM : [DIR3] FILE3. Z
$(RECORD_CHANGE)

Note the use of the .SILENT reserved keyword. .SILENT prevents MMS
from displaying all the action lines. Therefore, only two things will
be displayed when MMS processes this description file:

1. If no changes were made to the files, MMS will print "No
changes detected" as instructed in the REPORT CHANGE action
line.

18

The HEAP - January 1984 - Volume 7 Number 2
Getting the Most Out of VAX-11 DEC/MMS

2. If changes were made to the files, MMS will type out
CHANGES.DOC as instructed in the REPORT CHANGE action line.
CHANGES.DOC will list the files that were- changed, and the
times the changes were made.

CHANGE.REC, the file included
recording procedure (rule)
following actions:

by
for

the RECORD CHANGE
making a change.

macro, is the
It contains the

IF"' 'F$SEARCH("CHANGES.DOC")'" .NES. ""
THEN OPEN/APPEND CHANGE CHANGES.DOC
IF n 1 1 F$SEARCH ("CHANGES .DOC") 1 " .EQS. n n

THEN OPEN/WRITE CHANGE CHANGES.DOC
WRITE CHANGE "Changes to$< noted ''f$time()'"
CLOSE CHANGE
COPY NL: $*.TIM
PURGE $*.TIM

You must indent the lines from column 1 of the file by at least one
space or tab. This is so MMS will interpret them as action lines when
it includes the file into the description file. Also, when you use
the $(RECORD CHANGE) macro as an action line, you need not indent it
because the lines are indented in the included file.

You can substitute different recording procedure files for CHANGES.REC
without changing the description file every time. To do so, create
the same description file described in the example, but omit the
RECORD CHANGE macro. Also, replace the invocations of the
RECORD-CHANGE macro with INCLUDE $(REC PROC). The description file
will therefore look like this: -

.SILENT :

REPORT CHANGE : !NIT FILEl.TIM FILE2.TIM FILE3.TIM
IF ""F$SEARCH("CHANGES.DOC")'" .NES. ""
THEN TYPE CHANGES.DOC
IF "''F$SEARCH("CHANGES.DOC")'" .EQS. ""
THEN WRITE SYS$0UTPUT "No changes detected"

!NIT
IF"' 'F$SEARCH("CHANGES.DOC")'" .NES. "" -
THEN DELETE CHANGES.DOC;*/NOLOG

Testing the time stamps
FILE!. TIM : [DIR!] FILE! .X

INCLUDE $(REC_PROC)

FILE2.TIM : [DIR2]FILE2.Y
INCLUDE $(REC_PROC)

FILE3.TIM: [DIR3]FILE3.Z
INCLUDE $(REC_PROC)

19

The HEAP - January 1984 - Volume 7 Number 2
Getting the Most Out of VAX-11 DEC/MMS

REC_PROC is a macro that you define on the MMS command line to be
whichever recording procedure file you want to use at the time. Type
the following command line to use the file of your choice:

$ MMS/MACRO="REC_PROC=f ilename"

2.5 CHECKING FOR REPLACEMENT OF CMS ELEMENTS

If more than one programmer is working on your project, you may want
to wait for someone else to replace an element in the project CMS
library before you do a particular task. Rather than asking that
programmer every ten minutes whether he/she is done yet, you can have
MMS automatically check for element replaces. To do so, create a
command procedure that checks the CMS library at specified intervals
to determine when the element is replaced. You also need to create a
description file that tells MMS which element to look for, and to
notify you when the element has been replaced. Such a description
file might look like this:

THERE.TIM : NEEDED.FOR- ! Or whatever the element's name is
IF"' 'F$SEARCH("THERE.TIM")'" .NES "" -
THEN MAIL NL: $(MY PROC) -
/SUBJECT="$< is back in the CMS library."
DIR 1234567890 ! Causes MMS to abort with $STATUS = failure

The command procedure that loops until the specified element is
available in the CMS library looks like the following:

$ CMS SET LIBRARY [YOURCMSLIB] ! The CMS library
$ SET DEFAULT [WORKINGDIR] ! Your working directory
$IF"' 'F$SEARCH("THERE.TIM")'" .EQS. ""THEN COPY NL: THERE.TIM
$ LOOP:
$ MMS
$ IF .NOT. $STATUS THEN EXIT
$ WAIT 0:5 ! or some interval
$ GOTO LOOP

When submitted to the batch queue, this command procedure will run
MMS, which will check to see whether the element in the CMS library
has a newer time than THERE.TIM. If it does not (that is, if the
element has not been replaced in the CMS library), $STATUS will be 1,
and MMS will wait the specified interval before trying again. If the
element has been replaced, the first bit in $STATUS will be set to O,
and MMS will mail the message "NEEDED.FOR is back in the CMS library."

This procedure is doubly useful in that it will detect whether another
person has reserved and replaced an element while you are waiting for
the first person to finish with the one you are waiting for.

20

The HEAP - January 1984 - Volume 7 Number 2
Getting the Host Out of VAX-11 DEC/HHS

You can run this procedure in a subprocess (instead of submitting it
to the batch queue) by typing the following command:

$ SPAWN/NOWAIT @FILENAME

FILENAME is the name of the command procedure.

2.6 SELECTIVELY DELETING FILES

Suppose you have just updated your system, and
the intermediate files from your working
intermediate files to be deleted automatically
Two ways of accomplishing this with MMS are:

1. Create a command procedure

2. Use a macro definition

now you want to delete
directory. Or you want
after an MMS build.

These methods are described in the following sections.

2.6.1 Creating a Command Procedure

To use a command procedure to selectively delete files, create the
procedure in the description file. Modify the dependencies or the
default rules to include the following actions:

IF"' 'F$SEARCH("DELETE.COM")'" .EQS. "" -
THEN COPY NL: DELETE.COM
OPEN/APPEND DEL FILE DELETE.COM
WRITE DEL FILE"$ DELETE $<;"

NOTE

Usually, you will want to modify only
the .OBJ.OLB rule to include these
actions. However, you can modify all
the rules you use to delete everything;
just be extremely careful that you are
deleting only what you want deleted.

The modified .OBJ.OLB rule will therefore look like this:

.OBJ.OLB :
IF"' 'F$SEARCH("$@")'" .EQS. nn THEN $(LIBR)/CREATE $@
$(LIBR) $(LIBRFLAGS) $@ $<
IF"' 'F$SEARCH("DELETE.COM")'" .EQS. "" -
THEN COPY NL: DELETE.COM

21

The HEAP - January 1984 - Volume 7 Number 2
Getting the Most Out of VAX-11 DEC/MMS

OPEN/APPEND DEL FILE DELETE.COM
WRITE DEL FILE 0 $ DELETE $<:"

Once you have modified the rule, add a target such as the following to
your description file:

DELETE : MYPROG.EXE ! Or whatever your main target is
- @DELETE.COM

Note that the Ignore action line prefix (-) is used to prevent MMS
from aborting upon detecting errors (such as the absence of files)
while deleting.

To delete .OBJ files that MMS created during a build, you need type
only the following:

$ MMS/CMS/SKIP DELETE

2.6.2 Using a Macro Definition

There are two ways of using macros to selectively delete files:

1. Use a macro definition on the MMS command line

2. Use a DCL symbol as a macro

To use a macro on the command l~ne to delete files, modify the desired
rule to include the following action:

IF "$(CLEAN)" .NES "" THEN DELETE $<;

Thus, the .OBJ.OLB rule would look like this:

.OBJ.OLB :
IF " 11 F$SEARCH (11 $@") 1 " .EQS. "" THEN $ (LIBR)/CREATE $@
$(LIBR) $(LIBRFLAGS) $@ $<
IF "$(CLEAN)" .NES "" THEN DELETE $<;

The command line would be:

$ MMS/CMS/SKIP/MACRO="CLEAN=CLEAN"

The string you define the macro to be (that is, where the second CLEAN
appears in the command line) can be anything you like. All MMS needs
is something to expand the $(CLEAN) macro to so that it will not be
null.

To use a DCL symbol as a macro for deleting files, add the same action
line to the desired rule as for using a macro on the command line.
However, substitute ''CLEAN' for $(CLEAN), as follows:

22

The HEAP - January 1984 - Volume 7 Number 2
Getting the Host Out of VAX-11 DEC/MMS

.OBJ .OLB :
IF ""F$SEARCH("$@")"' .EQS. ""THEN $(LIBR)/CREATE $@
$(LIBR) $(LIBRFLAGS) $@ $<
IF "''CLEAN'" .NES "" THEN DELETE $<;

You can use the same macro definition on the command line as for the
previous example. If you do not want to define the macro on the
command line, make sure that the DCL symbol CLEAN is defined to be
non-null when you invoke MMS. Then the command line can be shortened
as follows:

$ MMS/CMS/SKIP

2.7 DOING PARALLEL PROCESSING

If you have a very large system to build, you can process different
parts of it simultaneously by adding rules such as the following to
the beginning of your existing description file:

PARALLEL PROC : TARGl TARG2 TARG3 ! Names for parts of your system
T Files submitted

TARGl
MMS/CMS/OUT=TARGl.OUT FOO.EXE
PROCESS TARGl.OUT Creates TARGl.COM
SUBMIT $*

TARG2
MMS/CMS/OUT=TARG2.0UT BAR.EXE
PROCESS TARG2.0UT Creates TARG2.COM
SUBMIT $*

The rules building the parts of your system
FOO.EXE : FOO.OBJ

ACTION

BAR.EXE : BAR.OBJ
ACTION

PROCESS (in the TARGl and TARG2 action lines) is a program that you
supply to insert a dollar sign ($) in front of each line in the file,
thus creating the command procedures.

This description file causes MMS to process the parts of your
"in parallel" or simultaneously. This can result in
processing time and earlier error detection.

23

system
shorter

The HEAP - January 1984 - Volume 7 Number 2
Getting the Most Out of VAX-11 DEC/MHS

CHAPTER 3

GENERAL USAGE

This chapter answers some commonly-asked questions about the workings
and general usage of DEC/MMS.

3.1 HOW CAN USING MMS HELP A PROJECT?

A software project on which more than one programmer is working
usually has one CMS library or project source directory containing the
pieces of the system. In addition, each programmer usually has
his/her own copies of everything that is in the CMS or source library.
Each programmer makes different changes to the files and puts them
back in the library. This procedure can result in the following
problems:

1. Forgetting which modules have changed.

2. Conflicting changes to the same module(s), resulting in
modules that do not work.

3. Wasted disk space.

MMS can help solve these problems in the following ways:

1. MMS determines what has changed, relieving programmers of
that responsibility.

2. MMS can be used to build and test modules first locally, and
then against the modules in the source library. Thus, the
modules that are replaced in the library will always work.

3. Use of the /SKIP qualifier avoids unnecessary building of
intermediate files, thus saving space.

24

The HEAP - January 1984 - Volume 7 Number 2
Getting the Host Out of VAX-11 DEC/MMS

3.2 WHY NOT JUST USE DCL COMMAND PROCEDURES?

A function of MMS that is not easily found in DCL is that MMS supplies
a conditional for determining whether one file is older than another
(or whether it exists at all with relation to another file). For
example, the following relationship:

A : B
ACTION

or

A : B 1 ACTION

means, in DCL terms:

IF (A is older than B) or
(A does not exist and B exists)

THEN
DO ACTION

DCL does not easily supply this capability. You can use DCL command
procedures to perform functions similar to those performed by MMS, but
using them is not always the most efficient way of doing things.

MMS has some other advantages over DCL command procedures:

1. The order in which MMS processes dependency rules is
determined by logic, rather than by the position of the rules
in the description file. In DCL command procedures, the
order of command execution is determined by the position of
the command in the procedure.

2. You can leave some steps out of an MMS description file, due
to the presence of built-in rules, which define certain
commonly used actions. You cannot leave any steps out of a
DCL command procedure.

3. MMS allows the "top-down" breakdown of a task. This means
you can use target names at the beginning of a description
file to specify the order in which tasks must be
accomplished, and then specify the actions to accomplish
those tasks further down in the description file. For
example:

! Target names for the tasks
BLD MY SYSTEM NOTIFY SYS MGR FOO.EXE -

INSTALL THE EXE CLEANUP

Actions to accomplish the tasks
NOTIFY SYS MGR :

! Action to send mail to system manager

25

The HEAP - January 1984 - Volume 7 Number 2
Getting the Most Out of VAX-11 DEC/MMS

CLEANUP :
Actions to purge, delete, and so on

INSTALL THE EXE :
1 Action (such as VMSINSTAL) to
1 install the image

FOO.EXE : A.OLB($(MY MODS))
1 Actions to-create FOO.EXE

In DCL, you cannot break a task down into sub-tasks in as
clean a manner. You must specify the actions as you go
along, thus scattering the commands and structural
information throughout the command procedure. With MMS, the
structural information is all in one place, giving a clearer
representation of the system.

3.3 BOW DOES DEC/MMS EXECUTE COMMANDS?

When you run MMS, two processes are used.
current process, executes the actual MMS
spawned subprocess, executes the commands
the description file.

The first process, your
code. The second process, a
specified on action lines in

The spawned subprocess is created by MMS only when an action is to be
executed. MMS creates only one subprocess to execute all actions in
the description file. MMS creates this subprocess when it executes
the first action~ the subprocess remains until the parent MMS process
terminates.

While the subprocess is executing an action (such as a DCL ·command),
the parent process is in a hibernate state. Therefore, if you monitor
the parent process, do not be alarmed to find it hibernating.

When you invoke MMS
commands, another
original subprocess
MMS execution.

from a description file using the MMS or $(MMS)
subprocess is spawned to execute the new MMS. The
is treated as a parent process for the subsequent

3.4 CAN THE ORDER OF COMMAND EXECUTION BE CONTROLLED?

Yes, to an extent. MMS executes commands as a result of traversing a
network data structure or graph. MMS initially builds this graph from
parsing the description file. The order of the dependencies in the
description file may determine the position of a target (or "node") in
the graph.

26

For example,

A . .

B . .
D . .
E . .

The HEAP - January 1984 - Volume 7 Number 2
Getting the Most Out of VAX-11 DEC/MMS

NOTE

This order will hold true when all the
dependencies are explicitly specified in
the description file. However, the
order of command execution may be
affected if part of the description file
relies on built-in or user-defined rules
to specify implied target/source
relationships. The suffixes precedence
list also becomes a factor in the order
of command execution when built-in rules
are used.

suppose you have the following description

B D E
ACTION 1

c
ACTION 2

F
ACTION 3

H c
ACTION 4

file:

When MMS builds a graph, it places nodes from left to right, in the
order in which it encounters them in the dependency rules. Therefore,
the graph for this description file would look like the following:

ZK-1208-82

27

The HEAP - January 1984 - Volume 7 Number 2
Getting the Most Out of VAX-11 DEC/MMS

MMS walks the graph in a "left first, depth first"
the nodes would be visited in the following order:

order. That is,
A, B, C, O, F, E,

H, C.

If MMS executed all the actions in this description file, it would do
so in the following order: ACTION 2, ACTION 3, ACTION 4, ACTION 1.

Graphs for double colon rules are different from those for regular
rules. For example, suppose you have the following description file:

E : A
ACTION 1

A :: B
ACTION 2

A:: C
ACTION 3

A :: D
ACTION 4

The graph for this description file would look like the following:

ZK-1209-82

The node A is really represented in the graph as one node. However,
internally, two "clones" of A are created for MMS to act upon. Each
clone is executed at a different time, but MMS gives the clones the
same time that the original node A had. MMS does this so that the
execution of ACTION 2 does not make the second clone appear up-to-date
with regard to node c.

The actions are executed in the order in
graph, that is, left first, depth first.
treated the same, that is, left to right.)

which they appear in the
(Each of node A's clones is

The order of command execution may sometimes be difficult to predict
because it can be affected by the following factors:

28

The HEAP - January 1984 - Volume 7 Number 2
Getting the Host Out of VAX-11 DEC/MMS

o The order of file types in the suffixes precedence list. This
factor only affects dependencies that rely on built-in or
user-defined rules.

o Rules that appear between directly-related dependencies in the
description file. For example, suppose your description file
looks like the following:

FOO: A.EXE

more rules

A.BLI : A.BLI-

ZK·1207-82

A.EXE depends on A.BL!, but these rules are not together in
the description file. This positioning does not affect the
relationship between A.EXE and A.BL!, but it can affect the
construction of the graph. The nodes may not be initially
connected in the graph. Two nodes may not be obviously
connected when the graph is constructed, but they will be
connected when built-in or user-defined rules are executed.

29

The HEAP - January 1984 - Volume 7 Number 2
Getting the Most Out of VAX-11 DEC/MMS

CHAPTER 4

LIMITATIONS OP Vl.O

This chapter documents limitations of Version 1.0 of DEC/MMS.

4.1 TARGET AND SOURCE SPECIFICATIONS

For this release of MMS, targets and sources in dependency rules must
be in the same directory for built-in rules to work properly. That
is, you cannot have a rule with the following target/source line:

FOO:BAR.OBJ : BAS:BAR.C

MMS will not be able to use built-in rules to build the target in such
a rule. (If you explicitly specify an action line, however, MMS will
work properly.) You can get around this limitation by adding an action
line copying the files to the correct directory.

FOO:BAR.OBJ : BAS:BAR.C
COPY BAS:BAR.C FOO:

MMS will then be able to build BAR.OBJ from BAR.C using built-in
rules.

This limitation does not apply to elements in CMS libraries.

4.2 MULTIPLE TARGETS WITH ONE ACTION

There is a potential problem if
target/source line that have
than one version of the targets
once for each target.

you have more than one target on one
the same action: MMS may create more

because it executes the action line

30

The HEAP - January 1984 - Volume 7 Number 2
Getting the Most Out of VAX-11 DEC/MMS

Suppose, for example, that you have the following description file:

FOO X.EXE, X.STB
! Done

X.EXE, X.STB : X.OBJ
MCR TKB X, ,X=X

X.OBJ X.MAC
MCR MAC X=X

The graph that MMS builds from this description file looks like the
following:

FOO

X.EXE X.STB

MCR TKB X,,X=X

X.OBJ

MCR MAC X=X

X.MAC

ZK-1206-82

If FOO does not exist, MMS will create it by walking the graph left
first, depth first. As it updates the nodes, MMS flags them as being
updated and does not check them again, in order to avoid repeating
actions.

31

The HEAP - January 1984 - Volume 7 Number 2
Getting the Nost Out of VAX-11 DEC/MMS

Assuming that none of the nodes except X.MAC exists, MMS will create
FOO by following these steps:

1. Execute the MCR MAC X=X action line to create X.OBJ from
X.MAC.

2. Execute the MCR TKB x,,X=X action line to create X.EXE from
X.OBJ. (This action also creates X.STB.)

3. Execute the MCR TKB X,,X=X action line to create X.STB from
X.OBJ. (This action also creates X.EXE.)

4. Execute the !Done action line to create FOO.

As a result of steps 2 and 3, MMS creates two versions each of X.EXE
and X.STB.

Now suppose that X.OBJ exists and is up-to-date. MMS will then
perform the following steps:

1. Execute MCR TKB X,,X=X to create X.EXE (and also X.STB).

2. Check X.STB. It is found to be up-to-date because the MCR
TKB action line was just executed. Therefore, MMS does not
execute the action again.

3. Execute !Done to create FOO.

This time, MMS creates only one version of X.EXE and X.STB.

MMS does not realize that executing action lines to update one target
can also update other targets. When MMS flags a node as being
updated, it assumes that all nodes above that one must· then be
updated. It must assume this in order to avoid duplicating actions
unnecessarily. For example, suppose that the action executed to
update X.EXE also updates X.MAC. X.MAC is then newer than X.OBJ.
Therefore, MMS updates X.OBJ, making it newer than X.EXE. Because MMS
has already flagged X.EXE as being up-to-date, however, it does not
try to update everything else again.

To avoid unnecessary duplication of actions, do not put more than one
target with the same action line on the same target/source line.
Separate them into different dependency rules.

4.3 DEFAULT FILE TYPES FOR /DESCRIPTION

MMS does not supply any default file types for the /DESCRIPTION
qualifier. If you specify /DESCRIPTION=FOO and expect MMS to look for
FOO.MMS, you will get an error. You must explicitly specify the file
type (usually .MMS) when you use the /DESCRIPTION qualifier.

32


~~~~~-~-~-~----~----------~-, 
MOVING OR REPLACING A DELEGATE? I L 

Please notify us immediately to guarantee continuing 
receipt of DECUS literature. Allow up to six weeks 
for change to take effect. 

( ) Change of Address 
( ) Delegate Replacement 

DECUS Membership No. : --------
Name : ______________ _ 

Company : _____________ _ 

Address: ---------------

State /Country : ------------

Zip/Postal Code : -----------

Mail to : DECUS ·ATTN: Subscription Service 
249 Northboro Road, BP02 
Marlboro, Massachusetts 01752 USA l.J ....________~ 

l---~-~-~-~-----------~~~~---J 

:!: N 0 0 
.,._ .i::. - m 
...... tel G') 
::o z - n 
r 

0 
-I C °' )> (/) 0 ::O r en 

::o-lmC 
o::tocx:i . °' (/) :s: o S n 
)> ::0 "'C ::0 
(/) 0 s: :0 
en ::o m -I 
)> 0 2 0 
~ )> -I 2 
c o n en 
(I). Om 
m °' :S: ::o 
-I "'C "'C < 
-I 0 c -
(l)N-10 

0 ... ..... 
U1 
N 

mm 
::0 

c 
(/) 

m 
::0 
(I) 

(/) 

0 
n 
m 
-I 
-< 

~[O] 

r 
~ ~ c 
3"" (nOJ 

~ 3· ~ . .,, . c: 
~!!l.-!::"O~ 
wmzco:D 

.. """' ? S!?. Q> Ill ..... s:: ...... (0(1) 
)> CX> (1) 


