October 1984 Issue

LANGUAGES AND TOOLS SIG

Printed in the U.S.A.

The following are trademarks of Digital Equipment Corporation:
DEC DIBOL PDT
DECnet Digital Logo RSTS
DECsystem-10 EduSystem RSX
DECSYSTEM-20 1AS UNIBUS
DECUS MASSBUS VAX
DECwriter PDP VMS
vT

UNIX is a trademark of Bell Laboratories.

Copyright © Digital Equipment Corporation 1984
All Rights Reserved

It is assumed that all articles submitted to the editor of this newsletter are with the suthors’ permission to publish in any DECUS
publication. The articles are the responsibility of the suthors and, therefore, DECUS, Digital Equipment Corporstion, and the
editor assume no responsibility or liability for articles or information appearing in the document. The views herein expressed are
those of the suthors and do not necessarily express the views of DECUS or Digital Equipment Corporation.

"TABLE OF CONTENTS"

TITLE PAGE

Notes From the Editor: Introductions, 2
Excuses, and Pleas for Contributions.
- Al Folsom, Fischer & Porter Co.

Notes From the SIG Chair y
- Kathy Hornbach, Lear Siegler

Report on the International Software 6
Engineering Conference
- Kathy Hornbach, Lear Siegler

MATRIX, A Language Using Decision Tables 10
- Joe Brugman, Plessey Peripheral Systems

LTSIG Wishlist 18
- Al Folsom, Fischer & Porter Co.

DEC/TEST Manager 27
- Lee Rodabaugh, Digital Equipment Corp.

Converting to PDP-11 Pascal 30
LTSIG Sessions for Anaheim 32
ADA[*] Certification and Validation: 35

First Steps to a Production ADA System.
- Ronald F. Brender, Digital Equipment Corporation

The Languages & Tools "Mushroom" 40
The only complete SA/SD Tool, available

from the LTSIG.

Kathy Hornbach, Lear Siegler

The LTSIG and Standards Activities 41
- Jay Wiley, Bechtel Power Corporation

¥ ADA is a trademark of the DoD.

My name is Al Folsom, and, if you're reading this, my first
attempt at newsletter editing has not been an abject failure. 1
took on this role at the Cincinatti Symposium, when John Barr was
forced to give it up due to work constraints. My primary goals
will be to get the newsletter published on a regular and timely
basis, and to insure that the articles published are of maximum
interest to the SIG membership.

I hope I've made a good start with the current issue of "THE
HEAP", Our Standards Coordinator, Jay Wiley, has contributed a
synopsis of software engineering standards activities. If you
are interested in this area, Jay has provided a cornucopia of
useful information. In addition, we have articles on a decision
table based programming 1language, a description of the new
DEC/TEST Manager, a report on the International Software En-
gineering Conference, and a variety of information relating to
the Anaheim Symposium.

Speaking of the Anaheim symposium, it is my hope that this
reaches you sometime before the start of the symposium. As I
type this, it is 1late September, and 1 hope to ship the
newsletter to the DECUS office within the next two days. Part of
my learning curve, however, will be to get a feel for the 1lead
times involved in producing the newsletter. The Languages and
Tools SIG is sponsoring a wide variety of sessions at this sympo-
sium, including an emphasis on the ADA language. I have included
a list of sessions, but in addition to that 1list, of particular
interest and note is that Jean Ichbiah, a principal architect of
the ADA programming language, has agreed to give the Languages
and Tools keynote address, certainly a session that no one in-
terested software engineering should miss. Since ADA will be a
central topic of the symposium, I have included slides from a
presentation by Ronald F. Brender of Digital, concerning the
validation process for ADA. While these pages may be a little
difficult to read due to the duplicating process, they are cer-
tainly worth 1looking over if you are interested in the develop-
ment of the language.

The SIG itself has undergone some changes in the 1last few
months., For one thing, we are no 1longer +the "Structured
Languages SIG", but are now titled the "Languages And Tools SIG",
abbreviated LTSIG. This 1is to reflect a2 concern not only with
Languages, but with the whole realm of tools and products which
affect the software engineering environment. Digital has been
filling a void in this area with tools such as CMS, MMS, DEC/TEST
manager, and so forth, and we wish to reflect the growing impor-
tance of these types of productivity tools. In addition to the
name change, we have had some personnel changes in the steering
committee. Primarily, our new SIG chair is Kathy Hornbach of
Lear Siegler. If you attended the Cincinnati symposium, or have
been reading your DECUScopes, you may recognize Kathy as the re-
fereed papers winner. Kathy's primary interest is in the area of
productivity tools.

Here is a partial list of steering committee members, feel
free to contact any of us if you have questions or suggestions,
and if you do attend the Anaheim symposium, try to look us up in
the LTSIG suite.

Kathy Hornbach Barb Chase
LTSIG Chair Vice Chair
Lear Siegler/Instrument Div Hughes Aircraft Company
4141 Eastern SE MS 121 P.0. Box 92426
Grand Rapids, MI 49508 Bldg R1, MS D340
Los Angelos, CA 90009
Alan L. Folsom, Jr Mark Katz
Newsletter Editor Session Notes Editor
Dept 431, Corporate Cntr GTE Sylvania
Fischer & Porter Co. 77 A Street
200 Witmer Rd. Needham, MA 02194

Horsham, PA 19044

Jim Livingston J.R. Westmoreland
Product Planning/Past Chair Symposium Coordinator
Measurex Corporation 6748 Acoma Road

1 Results Way Midvale, UT 84047

Cupertino, CA 95014

As you will see in the article dealing with the LTSIG's
Wishlist, one of our members' most common requests is for an in-
troductory issue of the newsletter, dealing with some of the pub-
lic domain software we have distributed in the past, and possibly
surveys or lists of other available software. I hope to do this
in the next issue, and would like to take this time to solicit
articles in that vein. 1In addition, other articles of genereal
interest would be greatly appreciated. Submissions preferably
should be in machine readable format, although we can use hard-
copy. (all the articles for this issue were submitted in hard-
copy format). If you would like to submit material, write me, or
call at (215) 674-7154, and we can arrange for a suitable media
or format. Also, if you have suggestions for types of articles
which would make the newsletter more valuable to you, I would
like to hear from you. It has been suggested that we should
print summaries of sessions from the symposia, for those people
who could not attend. Would this be of interest to you, or would
you prefer some other type of article? Please let me know.

Finally, I would like to change the name of the newsletter.
"THE HEAP" has unsavory connotations, and is a holdover from the
days when this was the Pascal SIG. If you have suggestions for a
new name, send them to me, and they will be judged by a complete-
ly partial random jury of assorted weird programmer types. I'11
send an "LTSIG Mushroom" to whoever submits the winning name.

Looking Towards Anaheim

Now is the time to start thinking about attending the Fall DECUS Symposium, at
the Anaheim Convention Center, December 10 through 14. There are a record
number of sessions being sponsored by the Languages and Tools SIG this
Symposium -- you will find a complete list elsewhere in this issue.

Sessions

Coming out with version 4 of VMS are new versions of many of the DEC languages
and tools -- such as Fortran, CMS, MMS, DEC/Test Manager, editors, and VAX
Debugger -- and sessions are scheduled to bring you up to date on all of these.
Other sessions will highlight C, Pascal, and PL/1. Tutorials will introduce
attendees to effective use of tools for improving software development. User
papers on experiences with Digital and third party languages/tools are also
offered. For the first time, there will be a Languages and Tools Question and
Answer session, with a panel of Digital developers and expert users; ready and
hopefully able to answer your most challenging technical questions.

Spotlight on Ada
The SIG is highlighting the Ada[*] programming language this symposium -- a

language that will have a tremendous impact on software development in the
coming years. We are proud to announce the Languages and Tools Keynote Address
will be given by Jean Ichbiah, one of the principal architects of the Ada
language. In addition, Digital will be giving several technical sessions on

their VAX Ada compiler; and we have many presentations by other companies
working on Ada compilers or programming in Ada.

Seminars

The SIG is sponsoring three Pre Symposium Seminars. They deal with three
different facets of software development, and all promise to be excellent.

o Portable Software/Rapid Prototying with Software Tools VOS -- The
Software Tools Virtual Operating System (V0OS), a public domain
software package, provides an excellent environment for the
development of software, particularly software that must run on
different types of hardware and/or operating systems. The
UNIX-|ike[**] package contains over 100 utilities and several hundred
library routines which form a powerful toolbox for the developer
engaged in rapid prototyping or production of portable software.

o Artificial Intelligence -- This course will be an introduction to the
capabilities of Artificial Intelligence, as they are today and as they
may develop in the future. It will attempt to remove some of the

[*] Ada is a trademark of the DoD
[#**] UNIX is a trademark of Bell Labs

mystique surrounding AI, by covering the standard approaches used in
implementing Al solutions, including expert systems, natural language
understanding, robotics, and vision. It also includes a discussion on
what it takes to actually manage and develop a product-quality Al
system, which will be valuable to companies thinking of acquiring or
developing Al products.

o Implementing a Software Development Environment -- This seminar will
discuss software development tools for all software life cycle phases,
and how to integrate them into an overall software development
environment. Specific types of tools, how they are used, and sources
for tools on DEC equipment will all be covered in detail, as will
justifying tool purchase and promoting use of tools within an
organization.

Other Symposium Activities

We are planning on repeating our popular Tool Sources handout -- listing
suppliers of software tools for requirements, design, coding, verfication,
documentation, that run on DEC hardware.

In addition to the formal sessions we present, we have user-driven ‘Birds of a
Feather’ meetings where people with like interests discuss a specific topic;
and a campground and SIG suite where you can meet the SIG leadership, Digital
developers, and other DECUS members with similar interests. to get the most
out of the week.

Be sure to attend the Roadmap session, first thing Monday morning. There you
will be filled in on special sessions of interest, introduced to Languages and
Tools Steering Committee members and Digital representatives, and in general
given hints on how to get the most out of the week.

In addition to the formal sessions, the Languages and Tools SIG will again be
hosting a suite in the headquarters hotel, and a campground in the Convention
Center. These are places where you can escape from the hectic pace for a
little while, meet people interested in the same things you are, and talk with
SIG leadership and Digital developers.

As you can see, many exciting things are happening in the area of Languages and
Tools at Anaheim. Your attendence at sessions, and active participation in the
SIG, can not only help you in your work, but will also give you a chance to
shape the direction of future Digital offerings in the area of languages and
tools!

-~ Kathy Hornbach
Languages and Tools Chair

Report on the Internation Software Engineering Conference

This report is a brief synopsis of the Seventh International Conference on
Software Engineerin (ICSE&, held last March in Orlando, Florida. ICSE,
sponsored by the IEEE and ACM, is the leading forum for introduction of new
ideas into the field of software engineering. It was attended by well over
1000 people, with a large percentage of them from Europe, Japan and elsewhere.
The conference is held every 18 months, alternating on and off the North
American continent. There were a lot of recognizable names there, for anyone
familiar with the Computer Science field. These are the people breaking new
ground, and writing papers on future directions in software engineering.

Overview

There were several marked trends that became apparent from the papers given at
the conference. These are not things that will affect the ordinary software
developer immediately, but they will undoubted exert a large influence over the
next five to ten years (just as papers in the early seventies on Structured
Analysis, source code control and UNIX[«] are of central importance now).
These trends include:

o The emphasis is on requirements - There was very little attention paid
to the design and coding phases - it was almost as if these were
considered solved problems. Formalized requirements definition, on
the other hand, was treated as a completely open problem. In fact,
the emphasis was more on defining what the problem is, as opposed to
figuring out how to solve it.

o Artificial intelligence may be the next panacea - Much as "Structured

(fill-in-the-blank)" was touted as the solution to all the woes of
software development a decade ago, artificial intelligence is seen by
many as a cure-all. The keynote address was by Herbert Simon, a nobel

prize winner and one of the pioneers in the field of AI. Many of the
papers centered on Al-oriented solutions to requirements definition
problems. As with the Structured Methods, there is probably much
value in these techniques, but there remains much to learn, much work
to get people to use them, and many new problems will inevitably
appear to replace solved ones.

o Rapid prototyping is even more popular - Rapld prototyping (the
putting together of a quick "breadboard” version to try out a concept
and get feedback from users) has been a hot topic for the last few
years. There was much emphasis on this area again this year -
executable specifications are the latest spinoff. The only real world
applications of prototyping, however, seem to be in the area of user
interfaces for information systems.

o Stop the waterfall - Just as we are patting ourselves on the back for
finalTy “adopting the formalized "requirements-design-code-test"

[*] UNIX is a trademark of Bell Labs

software life cycle "waterfall"™ model, the people who proposed it in
the first place change their-mind. They say it really isn’t the way
software should be developed after all! Actually, what they really
are proposing are modifications to the life cycle to reflect reality
even more accurately - encompassing rapid prototyping, places for AI
assistance, etc.

o The generation gap widens - The gap between state-of-the-art and
real-world software development techniques seems to be getting bigger.
The papers were on Al and executable specs and formalized proofs of
correctness. The people in the audience working on real projects were
struggling to get their company to recognize that there is such a
thing as a software life cycle; that formalized methods are
worthwhile; that code should be commented and controlled; even that
interactive terminals are beneficial.

SESSION DETAILS

1.0 SOFTWARE DEVELOPMENT PARADIGMS

Fred Brooks (of Mythical Man Month fame), Harlan Mills (from IBM and originator
of much of Structured Programming), and Tom Cheatham had a lively debate on the
correct "model" for software development. Brooks advocated the traditional
software life cycle, modified by rapid prototyping.

Harlan Mills put forward some surprising new concepts, based on research he is
doing back at IBM. The first concept is of "Structured Data" - get rid of
pointers and arrays; use the higher level constructs of queues, stacks and
sets in their place. (0f course, these would eventually be implemented with
pointers and arrays, but this should be hidden just as GOTO’s are hidden in DO
WHILEs). Based on experiments he did, he postulates that use of these high
level data types reduced verification difficulty by a factor of five. If this
seems somewhat far-fetched, remember that goto-less programming did too, when
he first talked about it.

The second concept he discussed is that of "clean room" software development.
Under this method, the development team does the design and writes the code -
but goes no further than obtaining a clean compile. A separate test team, that
has been developing functional tests concurrently with design and coding, runs
the test set against the code. Results are returned to the development team,
who must then fix the code based only on the results from the test team, get a
clean compile, and resubmit it to the test team. What has happened in actual
experiments is that the development team spends much more time in code
walkthroughs and in desk checking their code. The overall time to implement a
correctly working program has been less than on traditionally developed
programs. And, to their surprise, the development team on the whole did not
resent not being able to execute their own code.

Cheatham talked about the future, with Al assistance in program development,
and how such a system might evolve from current capabilities. The first step
is putting project knowledge in on line data bases, and coordinating that with

an integrated tool set. Later stages formalize properties and attributes, and
draw inferences based on data in the data base.

2.0 EXECUTABLE STRUCTURED ANALYSIS

Tom DeMarco (co-inventor of Structured Analysis) gave an interesting talk on
some work he is doing in Modula-2 on the Lilith computer. He has extended the
concept of pipes from UNIX. UNIX supports three standard 1/0 channels per
process - input, output and error. DeMarco extends this concept to many ports
per process by giving each port a name. Processes are then connected together
by connecting named ports with a graphical editor. Each bubble is represented
by an executable process. A bubble can also represent an entire lower level
sequence of bubbles and data flows, just as in SA. Each data flow corresponds
to a named port. This is indeed very similar to a Data Flow Diagram.

They have a primitive version of this tool working on Lilith. This is the
first I have seen of an actual implementation of "executable specifications".
However, as questions from the audience pointed out, it is not clear how many
problems - even simple ones - would be amenable to this type of solution.
DeMarco admitted it was difficult to even come up with examples of problems
that could be solved with this method. There was some talk that this approach
had been tried before, and dropped when it was discovered it was not all that
useful.

Nonetheless, it is an interesting concept. There is a paper on it in the
Proceedings.

3.0 PRODUCTIVITY FACTORS

A study by the ITT Advanced Technology Center, of several real world projects
attempted to pin down which factors contributed to effective completion of a
project, and to high productivity. There were wide spreads in the ranges of
data for some of the factors, which was initially puzzling. For example, some
projects that employed modern programming practices had comparatively high
levels of programming productivity; but some projects using the same methods
had relatively low productivity. However, all projects that did NOT employ
modern programming practices had relatively low productivity.

The conclusion drawn is that it is not enough just to wuse SOME productivity

techniques. To really succeed, a software project must do EVERYTHING right.
Failure in one of the areas can drag all the others down with it.

4.0 CASE STUDY OF ADA INTRODUCTION

A division of GE did a pilot project on teaching Ada [**] to embedded system
programmers, to Dbetter understand the problems and considerations to
effectively learning the language. The conclusions they reached reinforce some

[#*] Ada is a trademark of the DoD

suspicions we have had all along about ADA training. They include:

1. Most training programs stress teaching the syntax of the language.
The hard part is understanding the CONCEPTS behind various parts of
the language. An effective training course would include much
background information on concepts like data abstraction and
information hiding. They found that much training is needed, in some
cases, to bring people up to speed on the concepts alone.

2. The examples given in much of the training are from
computer-science-type applications. Students expressed much interest
in having problems drawn from real world applications, such as sensor
monitoring, navigation, etc.

3. It is important to have a compiler to try out all the things that are
being learned.

4. Although most of the features of Ada were used by programmers on their
first attempt, they were used in ways other than for what the language
designers intended (again, better grounding in concepts would help
here) .

5. Many support tools are clearly needed. A language sensative editor is

absolutely required - it would have save enormous amounts of time.
6. The requirements for the project were too detailed - more like than
unlike a Fortran system design. Implementors found they had to

abstract UP!

Summary

ICSE was a fascinating conference in many ways. In many ways it is the exact
opposite of DECUS Symposia sessions, which tend to be problem-specific,
immediately useful, and grounded in the real world. ICSE was theoretical and
non-specific, and I had no new knowledge I could take back home and put to
immediate use. BUT, on the other hand, it provided an excellent preview of the
directions software engineering is likely to be taking over the next five, ten
and fifteen years. While the things I learned may not be immediately useful,

many of the concepts I heard talked about for the first time, will always be in
the background of my thinking now, helping shape how our whole software
development environment will be evolving over the next few years.

If any of you have a chance, I would recommend attending this conference,
keeping in mind its goals and targeted audience. The next one is in London,
England, in August, 1985. You can order the Conference proceedings for this
and all previous ICSE from the IEEE.

-- Kathy Hornbach

MATRIX, a Language Using Decision Tables
by Joe Brugman
ABSTRACT

Using decision tables to direct the processing
of business computer programs provides a rapid
and easy method of creating computer programs.
This paper describes such a language.

New languages seem to make their appearance quite often. Many are
special-purpose languages; others assist the programmer by selecting
routines from a library to perform various desired functions. Some are
oriented away from the FORTRAN and COBOL format toward an objective or

results language letting the compiler (?) decide how to obtain the
desired end.

I have come across a language which is completely different from any of
these. It is quite popular in Europe under several different names,
but MATRIX will due as a general reference. Why Matrix? Because it is
a decision table based 1language. The matrix of a decision table is
used to determine the flow of operations to obtain the desired
processing of the data. This may be handling data input and storage on

a file; it may be processing that data, with other information, to
produce a variety of reports; or most any other activity used in
business data processing. The wuse of pointers, bits, addresses of

variables and other types of programming aids are also features of the
languages.

MATRIX has some relation to COBOL in that all variables are defined in
the <front of the program. The files that will be used are specified

and the location, size, and type of each field that will be used in
each record are defined.

Having established the tools that will be used, the program next needs
to Know what results you intend to produce. So a list is made up of
the wvariables that will be used in the output. These variables are
associated with a single letter or number. There are three types of
output variables, and what character is used is significant. Variables
which are printed and have no other significance or function are
assigned the 1letters A through L, though others from the end of the
alphabet and some other printable characters may be used if necessary
to the output. Those wvariables which cause a break requiring a
subtotal are assigned letters M through R. These totalling fields
cause breaks in sequential alphabetical order with M being the major
break, N the next most significant, etc. Finally, since a break
generally means that a total is to be taken, the totalling fields carry

single-digit designators, and if necessary, letters starting with S at
the end of the alphabet.

0Of course, if breaks and subtotals are to have any meaning, the data
must be sorted. The sorting order is specified using variables which
have been defined either as field names or as the names given working
variables. Numbers, other than single precision integers must be
converted to strings before sorting.

10

Now that we have defined what we want to output in the way of
variables, the printed output is defined. <(Note that output to a file
is handled in the same manner as input from a file except that the data
is moved into the field and the record is written instead of the
reverse.) Using these assigned numbers and letters, a “"picture® of
each line of output is made. These pictures are labeled for their
desired wuse. A header format and the necessary totalling formats for
each break may be defined as well as an output for each record. 1f any
formats are not defined, no problem, the program continues without
printing the line or break or whatever. One of the chores of handling
breaks is taken care of by the program, and that is rolling over the
subtotal to the next higher level and the fields zeroed.

By now it‘’s time to get down to massaging the data. A starting
decision table, (DETAB) is used to set up initial conditions if any are
desired. When it is complete, the program automatically starts
processing the DETAB named RECORD. 1If desired, one file may be defined
as a "controlling" file and will be read sequentially. Depending on
what is read or the results of some operation on the data, another file
may be randomly accessed and further actions taken. Finally, the
results may be printed and output to a file, records updated, or other
actions taken.

“What is this DETAB that does all these wonderful things?" "How is it
constructed and how does it work?", 1 hear you asking. A decision table
is familiar to students of logic; it is a short and concise way of
expressing what can be very complex conditions and actions taken
depending on these conditions. The conditions are posed in the form of
a question: is A equal to B? This condition stub is then followed, on
the same 1line, by the condition entrys usually yes (Y). no (N), or
don’t care (=),

A keries of conditions are followed by actions. The action stub
consists of a wverb and usually a variable name to be acted upon. It
may also have a second operand if appropriate. The action entry for
each action stub is directly related to the conditions set forth in the
DETAB. I¥f a rule (explained presently) is satisfied, then the action,
or non-action for each action entry is indicated. An "X" means "do
ity a "." means "don‘t." Since all the Ys, Ns, and -s appear within a
regular matrix, a rule is easily defined as the condition entries in
any particular column.

When & rule ie satisfied, i.e. the condition entries in one column are

all as specified for the data being tested, then the actions in the
action entries with X8 in that rule are carriedout.

11

Consider this DETAB:

c A = B Y Y N N
A > c Y N Y N

A c MV 25.00 X - - - [MOVE 25.00 TO C
c MY 10.00 - X - - { MOVE 10.00 TO C
c MV 0 - - X -
CALL ADDRESS X X X -
GOTO RECORD X X X X

The- "C" and "A" in column 1| are aids to the compiler to signal which
stub is being parsed. The comments are introduced by a “[." The
“CALL" verb means to process the DETAB named ADDRESS and then return to
process the next action.

An extended entry stub may contain a question mark for one of its
operands. Then the value to substitute for the question mark will be
found in the appropriate entry. For example:

c DEPT = ? 2 17 30 ELSE
A AMT MV ? 100 50 80 -

1f DEPT is 17, then 50 will be moved to AMT. The ELSE rule handles all
records which don’t satisfy any other rule.

I can run the language on my PDT (MINI MINC) under RT-11. I have used
it extensively under U3B, and some under US. There are some bugs in
the program, but they can be worked around.

1 also have a version that runs under RSTS/E. I have not used it,
however, since US so I don‘’t Know how it will work under any later
versions. Some day I711 try it out. but since RT-11 works with the
latest version, I suspect that the RSTS may also.

To show the language, I wrote two programs to read the same data and
print the results. They are necessarily short and quite simple. Both
are written to run wunder RT-11. Al though the BASIC code could be
improved upon, and take less space and effort to code, it cannot come
near to being as short and as simple as the MATRIX version. The file
used for these programs contained entries which were ignored. It was
organized in Account Number order within Area as a sequential file.

To summarize: MATRIX is a fast, simplified data processing system which
can be wused extensively <for the selection and printing of data from
computer files, and for the creation and maintenance of those files.
MATRIX is straightforward to learn and quick and easy to write.
Incorporating a powerful Decision Table Processor, MATRIX allows for
easy definition of record selection criteria and processing
requirements; it is controlled by simple parameters which define input,
output, and processing required by a problem. As little or as much of
the automatic processing of MATRIX as the programmer desires may be
incorporated in the program.

MATRIX is a compiled language which can be used not only by the data
processing staff as a general purpose utility, but also by
non-technical staff and management to provide information retrieval and
report generation.

12

MATRIX, under other names, is being used in hundreds of installations
in Europe and Australia. Reports show that many of them are placing
increasing reliance on the language in general development work to
maximize programming output; all report substantial savings in
development time, often up to 80 percent compared with COBOL.

MATRIX program logic is expressed in decision tables which are easy to
understand, write and amend, and document. Decision tables normally
consist of “"conditions" <followed by "actions", but in MATRIX, it is
possible to specify "initial actions" prior to "conditions", thus
reducing the number of decision tables required to perform the program
logic.

In brief, MATRIX is a comprehensive file maintenance and reporting
system. The facilities offered by MATRIX make it suitable for a wide
range of applications. They include input validation, file creation
and maintenance, selective reporting with arithmetic actions taken on
desired fields, subtotals on selected field breaks, and information
retrieval.

MATRIX has been designed around three fundamental principles which will
increase productivity:

1. simple, and largely free-format, statements are
used to define requirements

2. decision tables, a simple and powerful way of
expressing logic, are used to specify, easily,
concisely, and accurately, the record selection and
processing requirements

3. capability of interrupting MATRIX‘s automatic
sequence of operations to specify your own
processing requirements

These provide a high level of utility characterised by simplicity of
syntax and ease of understanding. Bpth accuracy and speed of
programming are enhanced.

1f this paper has tickled the fancy of any of you fine readers, and you
would like to write, I would be happy to respond. Enclose an SASE with
your letter. I also think the language could be improved and rewritten
in C. Certainly the bugs could be fixed. Any comments? Write me at
15434 Janine Drive, Whittier, California 90403.

About the author

The author has a Bachelor’s Degree in Engineering
and a Master’s Degree in Business Administration.
He has been engaged in data processing for 19 years
having been involved in all aspects of that field.
He is currently managing the technical support and
program production for Plessey Pheripheral Systems.

13

PROGRAM BALACT.BAS 3-SEP-84 1342 HOURS

1 REM
5 REM BALACT.BAS JJB 04-MAY-84 WUNC

10 REM
220 L$=" ‘L ‘LLL SSHHNNEH . B

240 S$=" AREA ‘L TOTAL STHHNRN . HE"

240 Te=" FINAL TOTAL SEHHHNH . HE"
280 [¢=" * \ REM 10 SPACES FOR INDENT

1000
1001
1002
1010
1020
1040
1040
1080
1100
1120
1400
1420
1440
1440
1480
1600
2000
2001

2002
2020
2040
20460
2100
2130
2180
2200
2250
2300
2500
2600
2800
2820
2840
2880
2900
3000
3001

3002
3020
3050
3060
3100
3120

REM
REM wxxxx INITIALIZE #%xx%x
REM
PZ=0
T=0 _
Ti=0
T2=0
DIM #1,R1$(18/)=2355/
OPEN *DK1:CUSTFL.DAT" FOR INPUT AS FILE #1
OPEN "LPO:" FOR OUTPUT AS FILE #4
Y$=R1$(12)
GOosuB 5000
At=Al1%
Me=M1$
=B1¢
GOosuB 11000
REM
REM #%x%% | OOP THROUGH FILE
REM
FOR 17=2/ TO 184
Y$=R1$(I1X)
GosuB S000
IF M$<’9000° GO TO 2200
IF M$>/9799° GO TO 2200
GO TO 2800
IF A$< 21/ GO TO 2800
IF A$)>/22’ GO TO 2800
B=VAL (B$)
IF As=A1$ THEN GOSUB 3000 \ IF IZ=18X THEN
IF A$<{>Al$ THEN GOSUB 3000 \ GOSUB 4000
At=Ale
Me=M1¢
B$=Bi¢
NEXT I%
GO TO 4500
REM

REM xxxxx PRINT A LINE #%%xxx

REM

PRINT #4,1%;

PRINT #4,USING L$,A$,M$,B/100
Ti=T1+B

LA=L%+17%

IF L#4>804 THEN GOSuB 11000

14

9 3 3% % %

Gosue 4000

PROGRAM BALACT.BAS 3-SEP-84 1342 HOURS

3200
4000
4001
4002
4020
4030
4040
4060
4080
4200
4500
4501
4502
4520
4540
44600
S000
S001
S002
5020
5S040
5060
5100
11000
11001
11002
11020
11040
11220
12100
12120
12140
12150
12160
12170
12180
12200
12240
31000
31001
31002
31100
31120

RETURN

REM

REM xxxx%x AREA BREAK *xxxx
REM

PRINT #4 \ PRINT #4,1%;

PRINT #4,USING S$,A$,T1/100

T2=T2+T1

T1=0

PRINT #4 \ PRINT #4

RETURN

REM

REM - *xxxx FINAL TOTAL xxxx
REM

PRINT #4 \ PRINT #4,1%;

PRINT #4,USING T$,T2/100

GO TO 31000

REM

REM ®%xxx%x DECODE RECORD %%
REM

Al$=SEG$(Y¢,3,4)

M1$=SEG$(Y%,5,8)

B1$=SEG$(Y%,159,148)

RETURN

REM
REM
REM
PRINT

®x%¥%% NEW PAGE %xxxx

CHR$ (127

P7=PZ+1X

L7=6%
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT

RETURN

REM
REM
REM
CLOSE
CLOSE

#4,1%;
#4,’04-MAY-84 CUSTOMER BALANCE LISTING
w4

#4,1¢;

#4,° AREA ACCOUNT BALANCE /
#4,1%;

#a, NUMBER’

#4

%xxk¥% E O J %xxxx

#1
#4

15

PAGE’ ; P/

PROGRAM BALACT .MAT

*

* BALACT .MAT
*

* BALANCES BY ACCOUNT AND AREA

%*

*FILE 8255 CUSTRP.DAT
#*0OFILE 3 A DK1:BALACT.LST

*

#*DICTIONARY
*

LR1

AREA = LR1+3/2
ACCNO = LRi+5/4
BALANCE = LR1+15%9/10

%*

DOLLARS = %X
*

*INLIST
*
A ACCNO
M AREA
2 DOLLARS
*
%*HEAD L CH1,2
DD-MMM-YY
AREA ACCOUNT
NUMBER
*0UT L 1,0
MM AAAA
*0UT M 2,1
*AREA‘MM’ TOTAL’
*0UT F 3,0

‘FINAL TOTAL“
*DETAB RECORD
*

c ACCNO GE
ACCNO LE
AREA LT
AREA 6T

A DOLLARS MV
DOLLARS /
1 GNORE

3-SEP-84 1344 HOURS
0/255
[AREA
[ACCOUNT NUMBER
[BALANCE
CUSTOMER BALANCE LISTING PAGE PPPP
BALANCE
$22222.22
$222222.22
$2222222.22
‘9000 Y Y - - ELSE [IGNORE RECORDS
‘9799 Y ¥ - - - L 2000 - 9799
7217 - - Y - -
1227 - - - Y -
BALANCE X
100 e e s e X
X X X X .

16

04-MAY -84 CUSTOMER BALANCE LISTING

AREA ACCOUNT
NUMBER
21 1144
21 1313
21 8643
21 9827

AREA 21 TOTAL

22 3211
22 3270
22 9988

AREA 22 TOTAL

FINAL TOTAL

BALANCE

$1511.20
$151.50
$109.22
$210.80
$1982.72
$16.84
$128.62
$99.88

$245.34

$2228.06

17

"LTSIG WISHLIST"

Those of you who have been with the SIG for some time may
remember that about a year and a half ago we conducted our first
Wishlist survey. For a variety of reasons, this information was
not collated until early this past summer, (although we received
responses as recently as last June!), which detracts somewhat
from the usefulness of the responses. The results are, finally,
presented here, along with the items from the original survey.

The format consisted of two lists of actions, one directed
at the SIG, and one directed at DEC. Respondents were asked to
cast a total of forty votes per list, with a maximum of five
votes per individual item. For example, eight items could re-
ceive five votes each, twenty items could receive two votes each,
or items could be prioritized as desired. Each list was indepen-
dent. In addition, a brief questionnaire was included with the
Wishlist.

Perhaps the most amazing result of the survey was the reve-
lation of how many people were incapable of following the direc-
tions! Nonetheless, I sorted them out as best I could; disallow-
ing‘ blatently 1illegal responses such as casting forty votes for
one item, and translating Yes/No responses to a balanced distri-
bution of forty votes.

Many SIG's conduct surveys under a variety of names, such as
Wishlists, Menus, or SIR's. The RSX SIG was, I believe, the
first to do so, and has been at least moderately successful in
getting responses from DEC. As far as I know, however, we are
the first SIG to have a section of the Wishlist directed at the
SIG itself. I hope that this will help the Steering Committee to
best meet the wishes of the SIG membership.

The first four pages consist of the original items on the
Wishlist. It is important to remember that these items were all
submitted by members of the SIG; they are not biased in any way
towards what DEC wished to hear, or what the SIG steering commit-
tee thought was appropriate.

Following that is a synopsis of the questionnaire results.
These include operating systems used, types of installations, and
a breakdown of languages used by the respondents and those pre-
ferred.

18

Finally, there are two pages representing the results of the
survey, showing first the DEC directed items, and then those
directed to the SIG. On each page the items are sorted first by
the number of votes received, and then by numerical order. The
first column shows the item number, followed by the raw total of
votes received. This is then translated to a precentage of the
maximum votes the item could have received, calculated by multi-
plying the number of respondents by five. Finally, there is a
histogram representation, comparing that particular item to the
one receiving the largest vote.

For this Wishlist process to be effective, it 1is crucial
that the turn around time be reduced. to that end, we are tar-
getting at presenting the result of the next wishlist at the
Spring 1985 symposium. Items for the surveys must come from the
members of the SIG, and should be sent to the Newsletter Editor.
If you wish to contribute items for the next wishlist, the ad-
dress is:

Alan L. Folsom, Jr.

Dept 431

Corporate Center

Fischer & Porter Co.

200 Witmer Road

Horsham, Pa. 19044

Please indicate whether the items are intended for DEC, or for
the SIG. The Wishlist cannot be effective unless a reasonable
number of rational items are presented to the membership. Face-
tious items, or suggestions which are clearly impossible (The SIG
developing and maintaining and ADA compiler, for example), will
not be included. Since the LTSIG is now involved with items such
as €MS, MMS, and the Test Manager, items for improvements or ex-
tensions in the area of software development tools would be par-
ticularly welcome.

If at all possible, the next Wishlist will be included in
the next 1issue of the newsletter. It is important, therefore,
that items for inclusion be received as soon as possible.

COLUMN 'A’ COLUMN 'B'

I1'11 take one of these,
and two of those, and two of ...

19

0.2
0.3

Oo4
0.5

0.6

0.7

008

DEC DIRECTED MENU ITEMS

DEC should provide a consistant, standardized structured

language, and support it across all operating systems and
CPU's.

Structured languages should be provided for 10/20 machines.

Structured languages should be provided for the PDP 11 com-
puters.

A wider range of languages should be supported for RT-11.

DEC should provide Cross Compilers for the various new 16
bit micros, to facilitate program development.

Dec should provide more closely coupled compilers and de-
buggers, to facilitate program development in high level
languages.

A common set of debugging tools should be developed, provid-
ing a unified interface across operating systems and
languages.

DEC should announce +when software such as 1loaders are
changed, so that modifications can be made to SIG or custo-
mer supported software.

A standard "C" should be provided across all operating sys-
tems.

DEC should provide and support a "C" compiler for the DEC
10/20 machines.

DEC should provide and support the "C" language for RSX sys-
tems.

The "C" language should be available for the new personal
computer lines.

The "C" language should be available for programming the
L3I-11 machines, perhaps as a Cross Compiler package on
larger CPU's.

DEC should put the DECUS "C" compiler on the distribution
kits, in the same manner as TECO.

A standard Pascal should be provided =across all operating
systems.

20

0.17
0.18
0.19

0.20

0.21

0.22
0.23
0.24
0.25
0.26

0.27
0.28

Vax-11 Pascal Global variables should be fixed to allow
sharing or non-sharing across seperately compiled modules.

DEC should support Pascal for RT-11.
DEC should support Pascal for RSX.

DEC should provide a Pascal Compiler for the LSI-11, which
would run with limited memory. (64k)

DEC should support Pascal under RSTS, allowing 1linkage to
Macro or Basic+2 object modules.

PDP 11 Pascal should be provided, allowing 1linking to RHMS
1.

Fortran 77 should be supported under RT-11.
DEC should provide customer BLISS courses.
Modula 2 should be supported under RSX
Modula 2 should be supported under VIS

Modula 2 should be supported for the new Personal Computer
lines.

DEC should make an ADA package availble for the VAX.

DEC should make an ADA package availble fo the PDP 11.

21

0.1

0.3

0.4

0.5

0.6

007

0.9
0.10

0.1

SIG DIRECTED MENU ITEMS

The SIG should provide an organized method of feedback to
DEC on language use and problems.

The SIG should be involved in formulating language stan-
dards.

The SIG should provide information on the use of structured
languages in a time critical commercial environment.

The SIG should investigate ways of taking advantage of
operating system features, while maintaining operating
system/implementation independence.

The SIG should develop and maintain a source code management
system.

The SIG should work on developing a set of compilers for all
DEC operating systems, and a unified interface to IBM and HP
systems.

The SIG should provide information and surveys of Third Par-
ty Compilers.

The SIG should develop and maintain Cross Compilers for the
various new 16 bit microcomputers.

The SIG should provide "C" compiler benchmarks.

The SIG should publish information in the newsletter, and
otherwise address the issue, of "C" portability.

The SIG should develop language translators, such as Fortran
to "Cll .

The SIG should provide detailed documentation on the input
format to the Code Generator phase of the Decus "C" com-
piler, so that users could write their own code generators
for other processors.

The SIG should develop a Fortran 77 that uses Pass 2 of the
DECUS "C" compiler.

The SIG should support a Structured Fortran preprocessor
package.

The SIG should investigate and develop support for Fortran
77 under RT11.

The SIG should maintain a Pascal for RSTS.

22

9.19
0.20
0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

N.30

0.31

0.32

The SIG should investigate improvements to the MBS Pascal
Compiler and Library.

The SIG should continue, and enhance, support for Pascal
running under RT11 and RSX.

An RSX Praxis should be made available on the SIG tapes.
The SIG should make an ADA package available.

The SIG should address the issue of portable programming in
general, especially in the area of standard or multilanguage
libraries.

The SIG should publish articles in the newsletter dealing
with information and experiences concerning Praxis and/or
Ada like languages.

The SIG should provide an introductory newsletter, with in-
formation about Software Tools, and what is available on the
SIG tapes.

Tne SIG should provide a comparison of available structured
languages, in terms of their capabilities and available com-
pilers.

The SIG should develop and maintain common debugging tools
for all structured languages.

The SIG should encourage development of Software Tools, to
be made available through the SIG tapes.

The SIG should survey to determine in what areas software
tools are most needed.

Tne SIG should endeavor to provide faster turnaround for SIG
tapes.

The SIG snould provide better documentation of wupdates on
the SIG tapes.

The SIG should investigate other means of acquiring updates.

The SIG should develop standardized 1libraries for various
applications, such as file 1/0, graphics, and terminal han-
dling.

Tne SIG should maintain the largest possible range of
languages for RT11.

23

w

©
OCON = O = — =

n
L, O NUT A o D

= u
[S Ny g o QR S N S B

un

¥%¥ OPERATING SYSTEMS #*#¥

respondents
respondents
respondents
respondents
respondents
respondents
respondents

using
using
using
using
using
using
using

RSX or IAS

RSTS

RT 11

VMS

UNIX

other operating

¥%¥ TYPE OF INSTALLATION ¥¥

Scientific oriented installations
Manufacturing oriented installations
Education oriented installations
Business oriented installations

22 Government oriented installations
38 other installations

¥¥ LANGUAGES: USED ¥**
MACRC-11 1 ASSEMBLER 3
SIMULA 2 SIMULAGT 1
PL/M 1 SAL-11 1
BASIC+2 1 DIBOL 2
NOT SPECIFIED 3 PL/1 1
SAIL 3 BLISS 2
COBOL 3 FORTRANIV 14
PASCAL 32 C 20
RATFOR

¥* LANGUAGES: PREFERRED ¥*¥
ALGOL68 1 CEDAR 1
APLSF 2 SIMULA 1
ALGOL-60 6 FORTRANTT 1
BASIC+2 31 NOT SPECIFIED 1
MODULA 1 FORTH 1
MODULA-2 3 ALGOL 1
BLISS 1 FLECS 6
FORTRAN 38 C 26
PASCAL 3 RATFOR

¥¥ LANGUAGES: SECOND CHOICE ¥*
BLISS 1 MACRO-11 1
SIMULAG67 1 FLECS 1
SUPERMAC 1 BLISS36 1
MACRO 1 PRAXIS 3
FORTH 4 PL/1 1
XPL 7 FORTRANT7 1
NOT SPECIFIED 2 ALGOL 11
COBOL 24 ADA 1
MODULAZ2 37 C 7
PASCAL

24

TOPS10 or TOPS20

systems

MODULA-2
BLISS10
MAINSAIL
BASIC
FLECS
MANY
FORTRAN
FCRTRANTT

BASIC+
SIMULAG6T
MAINSAIL
LOGO
SAIL

APL

PL/1

ADA

ASSEMBLER
LISP
CORAL-66
RATFOR
MODULA
SMALLTALK
MODULA-2
BASIC
FORTRAN

#% SORTED DEC ITEMS ##

Item
Number

-

N

NN = N
U EWoOUMITWoOWUN] =

12

Total
Votes

463
416
398
375
329
291
225
219
210
206
179
169
153
139
121
119
114
102
95
94
91
88
82
79
78
T1
u7
43
31

Percent
Of Max

42.9
38.5
36.9
34.7
30.5
26.9
20.8
20.3
19. 4
19.1
16.6
15.6
1.2
12.9
1.2
1.0

o« o o o .
WOEFEONMHWO = EJ00 &80

-
NELEOAII00OOWO

#% DEC ITEMS #¥¥

Item
Number

-_—
S OWENONEWN =

N =t 2 b 2
CWVWoENOoOWU =ZWN

NN
VT EWN =

N
O 0o~

Total
Votes

463
102
210

91
225
375
416

Percent
Of Max

42.9

9.4
19.4

8.4
20.8
34.7
38.5
12.9

w
& O
.

—_) - -
o e e o o

-

-

—

2 OOV EN—200COVONE®
NWONAARNODNNPOWO=2ONO 2NN EW

=N

o e

Percent of Largest Vote
0 50 100

FREARERRERR AR FRRRERRERRBRRRERE RN RRRRRRRRERTEREERN
(I X R X X R R RS XR X Z SRS A2 R
BRERRERERRRERRERERRRRRRERRRRERRRERRRRENRREN
(2 X X X R R R R R X R R R R RS SXZZEZ RS
RERRREREERBERERERRRRRERERXAEARRRNER

L XSRS S 24

(X2 XXX 2SS ERSERER S22 2 XE]
REREERRRERERRRRAERRRERR

(I3 XXX SRS

I XXZEX2SZSEESEES SRR]

(XXX EXSEXEZETRE SRR

(I E2 XXX ER]

I XZZEEZXX2ZXE 2]

(X2 XEZRZSEE S

(Z XXX Z]]

(22 EX2 22222

(A XXZ2Z2 X2

L ZXXZXXZXXE]

(XXX 222 X2

(XX Z2Z2 XX R

IIX2X2EE 2]

(IXXEX2Z2]

(222X 2 XS

B0 3 3 % % % %

B KRRRR

RN

LI XX 2]

% %%

* %%

Percent of Largest Vote
0 50 100

LI R 2 R R X 22 R R R X222 S22 222 22X2X22 222 X1
(2 XEZ2 2R 2}

(X 222X EX2ZZE2SSXX22 2L

(I X2 X3RS

I ZZ XXX E S XS

12 X2 2 R SRR RS RS2SRRSR 222Z 2}
BRBRRE TR R R REERTERERRRERREERERFEREERE RS
I Z2XZ2 2SR 22R 2

2R X 2RSSR RS2SR X2

(2 X X234

I 2 EXX2Z2EX]

[IEE XXX R]

REERREKR

I Z2X22 2222222222222 2]

(A X222 22X RS AR R RS SRR 222X SR
LI EXZZE2ZXE S

HERRERKEN

(ZXX2XX2X2 X2 2]

[ZZXZXX 2]

%% %%

B3 0 3 3 % % % % %

I 2XX22 X222 222222

[2 X

[IZX22 XX

I I 22X ZE]

[EXX2Z2X]

(2 R 22 R XSRS 2222 X 2]

LI 22222 X222 R2222R]

(222222222 X 23

There were 216 ballots, max vote per item = 1080

25

%% SORTED SIG ITEMS #&#

Item Total Percent
Number Votes Of Max
23 42y 39.3
24 393 36.4
26 376 34.8
1 336 31.1
7 278 25.7
21 261 24.2
31 226 20.9
20 218 20.2
2 191 17.7
y 185 17.1
5 157 14.5
22 156 1.4
8 141 13.1
12 136 12.6
14 135 12.5
3 126 1.7
27 123 11.4
25 118 10.9
10 115 10.6
15 113 10.5
6 101 9.4
18 98 9.1
9 82 7.6
11 81 7.5
32 17 7.1
29 71 6.6
17 67 6.2
28 62 5.7
13 42 3.9
33 39 3.6
16 37 3.4
19 36 3.3
30 23 2.1
#% STIG ITEMS ##
Item Total Percent
Number Votes Of Max
1 336 31.1
2 191 17.7
3 126 1.7
y 185 17.1
5 157 14.5
6 101 9.4
T 278 25.7
8 141 13.1
9 82 7.6
10 115 10.6
11 81 7.5
12 136 12.6
13 42 3.9
14 135 12.5
15 113 10.5
16 37 3.4
17 67 6.2
18 98 9.1
19 36 3.3
20 218 20.2
21 261 24.2
22 156 4.4
23 424 39.3
24 393 36.4
25 118 10.9
26 376 34.8
27 123 1.4
28 62 5.7
29 71 6.6
30 23 2.1
31 226 20.9
32 77 7.1
33 39 3.6

Percent of Largest Vote
0 50 100

LA R R R Y R X R R X X XY Rt L)
RN R R RN R R R R R RN R RN ERR RN AR RN RN ERERRRNRRN
AR R RN R RN RN R RERRARRRRRRREERRRRRRRNRE
LA R Y R E E EE E E X Y)
LA A X R YT T

2l s A R R X R XXX X

L A i A R R X X R)

T I N NN NN NN

2 X X R 2R XXX Y
ERERRERERRRRERRE XX E RN

(2 E 2 2222222222223

(322222 22222222222

(22 222222222222 X]

(22222 E Y]

(2222222222222

(222222222223

BEEEREXRRERERN

I ZE 22222222

(22222222222 2]

(222222222222}

(A2 S22 22224

HERBEEREEENR

o0 3 0 3 % % %%

(2 XEZ2XXZ]

W N NE KRR

(AZZ 22 X2}

(222222

3 % 3 3% % % %

% %%

* % %%

L ZEX]

%% % %

* %

Percent of Largest Vote
0 50 100

LA R R R R X X R E E F XN XX L
(A2 A X 22 2]

(2222222222222

(222 2222222222222
BEERBRRERERERERE XN

(2 X222 XXZXX]
RRERRERRRREREERRRERRRE RN RN
REREEERERRRREREER

(222222224

(2322222222223

(222222233

(2222222222222 24

% % % %

1 2222222222222 4

LA a2 X222 2]

L1224

(2 X2 X2 X]

RREERRRARER

(2 X 2]

06 06 06 06 36 06 3 06 6 0 3 06 3 0 00 0 00 0 U 0 0N

(A2 X R R R R R X R XSS 2R]

(i X2 X2 X222 X

LA R R R I Y R R Y R S XYY Y]
R AR R R RN AR AR RR RN RN RN B RN R RN RRNERRREN
RRERARERRRERE

LA A L Y I R R R R R R E YY)
RRERREERRRRERS

(2222221

ERERRRRR

[1]

L R R YY)

(22222228

%R

26

There were 216 ballots, max vote per item = 1080

“DEC/TEST MANAGER’
I. WHAT IS DEC/TEST MANAGER?

DIGITAL is developing a new software tool, called DEC/TEST
MANAGER, to help users test their software during development and

maintenance. This tool automates the organization, execution, and
review of tests by several developers.

DEC/TEST MANAGER is based on the concept of regression
testing. In standard regression testing, established software
tests are run and the results are compared against some expected
results. If the actual and the expected results do not agree, the
test is considered to have failed, indicating that the software

being tested may contain errors. In that case, the software is
said to have "regressed.”

With DEC/TEST MANAGER, you can describe your tests, classify
them by assigning them to groups, and choose combinations of tests
and groups to be run. DEC/TEST MANAGER executes the tests you
select and compares the test results with the expected results you
gave it. Multiple developers may choose to run different
combinations of tests, and of course, you can always run all the
tests in the test system. During the execution of a test,
DEC/TEST MANAGER provides a summary of the test'’'s status. It also
allows you to view test results interactively, evaluate the test
run, and use the results to make modifications to your code.

Thus, DEC/TEST MANAGER provides software developers the means
to build a common test system for their project. It automates the

organization of the testing, the running of the tests, and the
evaluation of the results.

II. WHY WOULD I USE IT?
&

Testing is a necessary part .0of software development, yet
developers frequently don’'t take the time or trouble to do it as
well or as consistently as they should. Without adequate testing
and good testing procedures, code written by several developers
may not integrate smoothly. Fully tested code can save

developers’ time and produce a high-quality product with less
expense.

With DEC/TEST MANAGER, developers must still write their own
tests, but they can let the tool keep track of where those tests
are stored. DEC/TEST MANAGER can run tests independently, or it
can run groups of tests that share certain attributes or
behaviors. The capability of grouping related tests makes it easy
for developers to test modules as they finish implementing them.
Because all developers have easy access to the same test system,
one developer can group his tests with the related tests of
another developer or with selected tests from several developers.
For example, periodic integration checks of the developing
software, perhaps nightly or weekly, can be performed by running
all tests or significant groups of tests.

DEC/TEST MANAGER can also help with software maintenance.
Once you have fixed a bug in your software, you can run a single

27

test of that fix. You can also run that test with a g¢group of
tests that are somehow related to the code you modified. Or you
can run all the tests in your test system to insure that your fix
does not affect the rest of the code. DEC/TEST MANAGER gives you
a consistent and simple method of testing during both development
and maintenance cycles.

III. HOW DOES IT WORK?

DEC/TEST MANAGER stores all the information it needs to

manage a test system in an area called a TEST MANAGER library.
You create a library to hold the tests for one project or for a
set of projects.

A. ORGANIZES YOUR TESTS

Once you have written your tests, you use DEC/TEST MANAGER to
create a test description for each test. A test description

contains the information DEC/TEST MANAGER needs to process tests,
such as:

- the name of the test

- a pointer to a command procedure that runs the test

- a pointer to a set-up file that will be run before the test is
run

- a pointer to a clean-up or filter file that will be run after
the test is run

- a pointer to a benchmark file that contains the results you
expect from the test run

- a description of what the test does

For a very simple test, not all this information 1is necessary.

But with a complete test description, DEC/TEST MANAGER can manage
a very elaborate test system.

With the flexibility to manage individual tests, simple
groups of tests, and elaborate sets of groups that contain other
groups or test descriptions, DEC/TEST MANAGER can keep your tests
organized and easily available to all users of the test system.

B. RUNS YOUR TESTS

When you are ready to run your tests, you can collect any
combination of tests and groups of tests for DEC/TEST MANAGER to
execute as a single test run. By automating the process, DEC/TEST
MANAGER saves developers' time but still provides a simple means
for running only the tests you select. DEC/TEST MANAGER
automatically compares the results of every test run with the

benchmarks you supplied and generates a file of the differences
and any other important information from the run.

28

C. AUTOMATES REVIEW OF THE RESULTS

DEC/TEST MANAGER allows you to view interactively the results
of a test run and the differences recorded for each test in the
run. DEC/TEST MANAGER lets you easily see which tests succeeded
(that is, the actual results agreed with the benchmarks) and which
tests failed (that 1is, the actual results differed from the
benchmarks. If a test failed, you can examine the differences
file produced by DEC/TEST MANAGER to determine the reason. Using
the information that DEC/TEST MANAGER supplies, you can quickly
organize your own work (changing and recompiling code) and then
rerun the test to insure that the problem has been corrected.

DEC/TEST MANAGER helps you as you implement assigned tasks,
integrate your code, and maintain your software. This tool is
currently used internally by DIGITAL software developers.

For further information, contact:

Lee Rodabaugh 2ZK02-3/Q08
110 Spit Brook Road
Nashua, NH 03062-2897
(603) 881-2254

29

CONVERTING TO PDP-11 PASCAL

The following list contains syntax differences that exist between PDP-11
PASCAL and other Pascal implementations. These differences should be noted
when converting your existing Pascal applications programs to run
successfully under PDP-11 PASCAL. The list is not meant to be exhaustive
but does point out most of the differences. For more information on the
exact syntax required by PDP-11 PASCAL and the use of these features, refer
to the appropriate section of the PDP-11 PASCAL Language Reference Manual
or the PDP-11 PASCAL User's Guide. For information on the specific
differences between PDP-11 PASCAL and VAX PASCAL refer tc Appendix E of
the PDP-11 PASCAL Language Reference Manual. In PDP-11 PASCAL,

© The command line used to invoke the compiler and the command 1line

switches may differ from those of other implementations.

O No switches embedded in comments are recognized.

o PROGRAM or MODULE headings are required. These headings must
include the names of all external files which are referenced in
the program or module including the standard files INPUT and

OUTPUT.

O MODULEs must end with an “"END."” .

O0 S$INCLUDE syntax may be different from other implementations. File
names used in RINCLUDE directives must include the file extension.
No default file extension is supplied. 1In a declaration section,
the S INCLUDE directive must not be followed by a semicolon.
Default file extensions are provided for files used in OPEN calls-
.DAT 1is attached to external files, .TMP is attached to internal

files.

© Only a file variable parameter is allowed for RESET and REWRITE
calls. Use the PDP-11 PASCAL OPEN statement to attach specific
characteristics to a file. Because the OPEN call leaves the file
in an wundefined state, the OPEN must be followed by a RESET or

REWRITE call.

o The FIND and UPDATE predeclared procedures provide the
capabilities offered by the = SEEK procedure in other
implementations. Calls to SEEK can be replaced by calls to FIND;
the SEEK-PUT sequence can be replaced by the FIND-UPDATE segquence.

o Octal output and negative field widths are not allowed with WRITE

or WRITELN statements.

o Boolean operators (AND, OR and NOT) cannot be wused with integer

operands.

30

Octal, binary and hexadecimal constant syntax may be different
from other implementations.

The number and types of predeclared routines may be different from
other implementations. Consult Appendix C of the PDP-11 PASCAL
Language Reference Manual for a list of the predeclared procedures
and functions provided by PDP-11 PASCAL.

. The MOD operator returns the modulus of the two operands- the REM
operator returns the remainder of the division of the two
-operands. In some implementations, occurrences of MOD may need to
be replaced by REM to achieve the same functionality.

A new TIME function returns the time as an 1ll-character string.
The optional OTS module FTIME returns a floating-point
representation of the time.

Declaring procedures and functions with the [EXTERNAL] attribute
and/or the EXTERNAL directive causes the routine name to be passed
to the Task Builder as a global symbol, even if the procedure or
function is not otherwise referenced within the compilation unit.

It is allowable to declare a routine EXTERNAL in a compilation
unit and then 1include the body of the routine in the same
compilation unit with the following restrictions. The EXTERNAL
declaration must appear first with a complete parameter list and
function result type, if applicable. The subsequent GLOBAL
declaration must include the [GLOBAL] attribute in the routine
heading and if the parameter list or function result type are
included on the [GLOBAL] declaration, they will be ignored and a
warning level compile-time error will be given. Usually, this
warning level error will not prevent the correct operation of the
program.

Only positional parameters are allowed in calls to predeclared and
user declared routines.

REAL variables are handled with single precision only; double
precision reals are not supported.

Function result types must be simple types; structured types such
as arrays and records cannot be used as function results.

The SEQll directive is used to generate a FORTRAN-like calling

sequence; other implementations may use a different directive for
this purpose.

31

Following is a list of sessions, in no particular order,
sponsored by the LTSIG for the Anaheim symposium:

SCIENTIFIC APPLICATION & APPLICATIONS DATABASE FOR THE PUBLIC
DOMAIN. Mike Peterson, Digital Equipment Corp.

SOFTWARE TOOLS TUTORIAL & UPDATE. Dave Martin, Hughes Aircraft
Company.

A COMPARISON OF SEVERAL POPULAR TEXT EDITORS. Dave Martin,
Hughes Aircraft Company.

GENERIC FMS SCREEN PROCESSOR. Kirk Harmon, Varian Associates.

THE USES OF TOOLS TO MIGRATE AND CONTROL CODE FROM VMS TO UNIX
Daniel Detterman, Mass. Computer Assoc.

LANGUAGES & TCOLS ROADMAP. Katherine Hornbach, Lear
Siegler/Instrument Division.

INFORMAL LIBRARY CONTROL SYSTEM. Robert DeWolf, Hughes Aircraft
Company.

ADVANCED OBJECT LIBRARY CONTROL TECHNIQUES. Robert DeWolf,
Hughes Aircraft Company.

SORT/MERGE V3.0 PDP-11 System Software Group, Digital Equipment
Corporation.

CALLING PDP-11 SORT/MERGE V3.0 FROM HIGH LEVEL LANGUAGES. PDP-11
Languages Group, Digital Equipment Corporation.

PRACTICAL BENEFITS OF A STANDARD DEVELOPMENT ENVIRONMENT ON DEC
OPERATING SYSTEMS. Collins Hemingway, Oregon Software.

DEBUGGING FORTRAN-77 APPLICATIONS USING FORTRAN-77 DEBUG. For-
tran Development Group, Digital Equipment Corporation.

CAPABILITIES OF DEC/TEST MANAGER -- REGRESSION TEST TOOL FOR
SOFTWARE DEVELOPMENT AND MAINTENANCE. Software Tools Group, Digi-
tal Equipment Corporation.

VAX PASCAL FUTURES. Joel Clinkenbeard, Digital Equipment Cor-
poration.

VAX PASCAL OPTIMIZATIONS. Joel Clinkenbeard, Digital Equipment
Corporation.

VAX DEBUGGER V4.0. Bert Beander, Digital Equipment Corporation.

ANALYZING PROGRAM PERFORMANCE 1IN THE VMS ENVIRONMENT. Bert
Beander, Digital Equipment Corporation.

32

VAX ADA(R) TECHNICAL SESSION. Charles Mitchell, Digital Equip-
ment Corporation.

LANGUAGE SENSITIVE EDITORS. Glenn Lupton, Digital Equipment Cor-
poration.

VAX C AND THE VMS PROGRAMMING ENVIRONMENT. Chip Nylander, Digi-
tal Equipment Corporation.

OVERVIEW OF DIGITAL'S ADA(R) LANGUAGES IMPLEMENTATION FOR
VAX/VMS. Charlie Mitchell, Digital Equipment Corporation.

UNIX EMULATION USING THE VAX C RUN TIME LIBRARY. Chip Nylander,
Digital Equipment Corporation.

PROGRAM EDITING IN THE VMS ENVIRONMENT. Glenn Lupton, Digital
Equipment Corporation.

VAX PL/1 OVERVIEW. Chip Nylander, Digital Equipment Corporation.

A NEW EMPIRICAL ANALYSIS OF FORTRAN PROGRAMS. Joel Clinkenbeard,
Digital Equipment Corporation.

FORTRAN IN THE VAX PROGRAMMING ENVIRONMENT. Joel Clinkenbeard,
Digital Equipment Corporation.

DEC/CMS, DEC/MMS, DEC/TEST MANAGER -- A TUTORIAL ON VMS TOOLS.
Software Tools Group, Digital Equipment Corporation.

WHAT'S NEW WITH DEC/CMS? CAPABILITES AND FEATURES. Software
Tools Group, Digital Equipment Corporation.

HOW TO GET THE MOST OUT OF DEC/MMS. Software Tools Group, Digi-
tal Equipment Corporation.

VAX TPU TUTORIAL. Steve Long, Digital Equipment Corporation.

ANNOUNCING THE NEW VMS TEXT EDITOR - TPU. Steve Long, Digital
Equipment Corporation.

A STANDARD FOR SOFTWARE VERIFICATION PLANS. Jay Wiley, Bechtel
Power Corporation.

A STATIC ANALYZER FOR SETS OF FORTRAN MODULES. Gerald Berns,
Science Applications, Inc.

HUGHES AIRCRAFTS' SOFTWARE ENGINEERING ENVIRONMENT. Joe Bryant,
Hughes Aircraft Company/Ground Systems Group.

A LANGUAGE FOR PROCESSING TEXT ON VMS. Corporate Languages &
Tools, Digital Equipment Corporation.

REAL WORLD USE OF SOFTWARE DEVELOPMENT TOOLS. Katherine Horn-
bach, Lear Siegler/Instrument Division.

33

PROMOTING THE ACQUISITION AND USE OF SOFTWARE DEVELOPMENT TOOLS.
Katherine Hornbach, Lear Siegler/Instrument Division.

LANGUAGES AND TOOLS QUESTION AND ANSWER. Katherine Hornbach,
Lear Siegler/Instrument Division.

PASCAL PROGRAM DEVELOPMENT REQUIRING ACCESS TO RSX11M EXECUTIVE
DIRECTIVES. Bruce R. Ingersoll, GTE Communications Systems.

A DOD ADA STATUS REPORT. Peter Beck, U.S. Army Armament Research
& Development Center.

ADA LANGUAGE SYSTEM DEMONSTRATION. Rich Thall, Softech.

MANAGING ADA IN A LARGE SYSTEM DEVELOPMENT. Mike Ryer, Intere-
trics.

ADA Q&A PANEL. Peter Beck, U.S. Army Armament & Research
Development Center.

AN ARTIFICIAL INTELLIGENCE PROJECT CASE STUDY -- THE FIRST SIX
MONTHS. Don Rosenthal, Space Telescope Science Institute.

TEX: TYPESETTING FOR ALMOST EVERYBODY. Samuel Whidden, American
Mathematical Society.

WRITING EFFICIENT AND EASY-TO-READ CODE IN VAX C. Russ Brill,
Jet Propulsion Laboratory.

MULTI-LINGUAL APPLICATIONS DEVELOPMENT. Bob L. Besner, Depart-
ment of National Defense.

MULTI-LINGUAL COMMERCIAL APPLICATIONS WITH VAX-11 COBOL. Mark
Gillis, Digital Equipment Corporation.

MACHINE PROCESS DEFINITION SYSTEM. David W. Cohn, General Elec-
tric Co.

THE USE OF DEC/CMS & DEC/MMS IN CONFIGURATION MANAGEMENT. Earl
S. Cory, Eaton Corporation, Information Systems Division.

USING DCL AS A SOFTWARE DEVELOPMENT TOOL. Earl S. Cory, Eaton
Corporation, Information Systems Division.

CONVERSION AND COMPARISON OF STANDARD FORTRAN, DEC FORTRAN'S AND

VAX-11 FORTRAN. Earl S. Cory, Eaton Corporation, Information
Systems Division.

34

SE

Page 2

r A Super Brief History of Ade
Ada Certification and Validation:

First Steps to A Production Adas Systes o Early 70's - DoD spending billions om softwere, using
hundreds of lesnguages and dialects

o 1975 = A High-Order Language VWorking Group (HOLWG)

established
Ronald F. Brender

Digital Equipment Corporation
o 1977 - DoD established that s single language to setisfy
June 1984 DoD requirements vas feasidble, but no existimg lamguage
sufficed

o 1979 - The "green® language designed by Jesm Ichbieh
became Ads

0o 1983 - ANSI/MIL-STD-18154-1983 approved

r
Ade i3 a registerad trademark of the U.S. Covernment, Ada Joint
Progrem Office

Page 3 Page 0§

Why Ada?

Why Ada?

The DoD got -
- A powerful generasl purpose language 1incorporating moderns
The DoD sought progremming practices with integrated facilities for:

A language suited for programming DoD embedded systems, with Strong typing

particular concern for: *
. Program relisbility and maintenance . Data sbstraction
. Progremming as a human sotivity . Concurrent processing (multi-tasking)
. Efficiency . Separate (not independent) compilation

. Exception handling
. Generic definitions

. Machine dependent facilities

Page 5 Page 6
Officislly Ada Ade Certification and Validation

o Ada Standard - ANSI/MIL-STD-1815A-1983
o Administered by the Ades Velidation Office, AJPO

o Ada Tredemark
o Required to qualify for DoD contracts

o Ads Velidetion
o Checks conformance with the Ada standerd

o Ada Board

o IS0 TC97/SCS5/WNGIN

w
]
Page 7 Page 8
Certification? Validation? Certification
A letter sent by an implementer to the AVO that describes:
Certification -
o All host and/or target configurations to be validated
Take thé test yourself at home in private and send @ note
claiming you pass
o All 1{implementation specific psrameters (range of
integers, accuracy of flosting point, and the 1ike)

o All implementation dependent characteristics according

Validation -

AYO comes to your house and gives you the test to
really pass

see if you

to the criteria in Appendix F of the Ada Standard

Page 9 Page 10
Certification
Also, a statement that: Certification
o The implementstion passes all applicable tests Further, a description of and justification for:
o No deliberate extensions to the Ada Standard exist 1in
the implementation o Any modifications required to pass any test
o Any tests claimed to be incorrect
And agreement to: .
o Any tests deemed not applicabdle
o Public release of all information concerning the results
of validation testing o Compiler options available and used
o Comply with the Ads Trademark Policy of the AJPO
w
~
Page 11 Page 12
Certification Certification Acceptance
Finally, assure the aveilability during sctusl validation of: The letter of Certification is scoepted when:
o Complete hard copy 1istings of all tests o The AVO is satisfied that all required information 1is
provided
o Access to computing fescilities on a 28-hour basis
o Any disputed tests have been reviewed by a "Fast
R ti T " of Ada experts
o Machine readable output to be kept by the AVO (if at all eaction Tesm™ o o exp
possibdble) . The AVO withdraws sny disputed test that is resolved
in favor of the implementer
. The implementer agrees to confors to any disputed
test resolved in favor of the AVO
Actual validation is then scheduled

Page 13

Page 14
Validation The Ada Validation Suite - "The Test"
o AVO personnel come on-site and supervise running of the o A set of about 1800 tests
tests
c t
o If 100 percent of the applicadble tests are passed then ° hecks that correct progrems work
the implementor receives a
Certificete of Validation o Checks that incorrect programs are diagnosed
A d d -
o A certificate of validation is good for one year o Augmented, revised and updated on a six-month cycle
Version 1.8 as of April 1984
o Publicly available
w
[+
Page 15 Page 16
Kinds of Validation Tests Kinds of Validation Tests
A® Executable, no internal checking
® . ADA Normal tests
Be Non-exzecutable, deliberste errors that must be detected
during compilation
® _DEP Implementation dependent tests
ce Executadle, self-checking with sutomatic reporting For options 1ike LONG_INTEGER, SHORT_FLOAT data types
pe Capscity tests (do not influence sucocess of validstion) e, 18T Parsmeterized tests
Must adapt for implementation dependent parameters, such
E® Executadble, determine certain options, check non-binding as maximum digits of floating point precision
interpretations
Le Non-executable, delidberate errors which must be detected

no later than linking

6€

Page 17 Page 18
Distribution of Tests (Units) Distribution of Tests (Units)
®_ADA . DEP ®,TST Tests Chapter

decccccccccccccccccccccccccccccccsccccececcnaccs emcee ececeee cccoa=

!
A® | ST 1 1 - 1 Introduction

! 92 2 Lexicsl Elements
. | 291 3 Declarations and Types
B ! 755 9 21 363] Nemes and Expressions

: 233 5 Statements

105 6 Subprogramss

ce ! 918 3%0 10 77 7 Pookng:s

! 168 8 Visibility Rules
[] ! 179 9 Tasks
b ! 18 - - 219 10 Programs Structure ...

| 26 1 Exceptions
° ! 214 12 Generios
£ ! 6 = ! - 13 Representation Clsuses ...

: 222 14 Input-Output
Le | 86 18 -

Page 19 Page 20
Digital Status on 7 June 1988 Significance of Validation
Per cent of the validation tests passed: 777 Being validated means thst the implementation
Disputed tests: 17
o Is able to pass a reasonably demanding set of tests
Non-spplicable tests: 71?
o Qualifies for considerstion where "a validated cospiler”
Letter of certification sudmitted: 777 1988 1s a selection criteris
Validstion scheduled: 777 1984
No More, No Less

Languages and Tools "Mushroom"

Keeping in spirit with the Languages and Tools SIG’s
emphasis on software development methods, as well as
languages and tools, the SIG had designed and manufactured a
special template for sale in the DECUS store at Cincinnati
and later Symposia. The template contains all the symbols
necessary for the drawing of data flow diagrams and
structure charts, which are the graphical outputs from the
Structured Analysis/Structured Design methodology. It even
includes the French curves necessary for drawing the data
flows -- and hence its unusual, mushroom-like outline.

Those of you who have tried to do SA/SD by hand before will
realize that it takes at least three commercially-available
templates to provide all the symbols needed. The L & T
template provides them all...you can see its outline below.

B <
G RROWHEADS U
CNCTR
ROCESS TERMNINA TOR
SA STORE
MOOULE
SO STORE STATE

40

The LT SIG Standards Activities

My name is Jay W. Wiley and I am the Standards Coordinator for the
LT SIG. I can be reached at:

Bechtel Power Corporation
12400 E. Imperial Highway
Norwalk, CA 90650
213-807-4016

The standards activities that are of interest to the SIG are the
national standards associated with the programming languages that
are represented by the SIG and software engineering standards.

The language specific standards activities are normally handled by
the SIG language coordinator. Software engineering standards typi-
cally fall into two categories. These categories are Department of
Defense (DOD) and non-DOD. The DOD standards are of primary
interest to military contractors and will not be addressed by the
SIG. The most active non-DOD group is the Software Engineering
Standards Subcommittee (SESS) of the IEEE Computer Society. I

am an active member of Working Group P1012, a Standard for Software
Verification Plans, and will present a paper on the activities of
this Working Group during the Fall Symposium. Included in this
newsletter is a copy of the current SESS status report. This
report includes the names and addresses of the Chairmen of all

of the various Working Groups. Anyone can participate in these
working groups. You do not need to be a member of IEEE.

The SIG will have information on the proposed FORTRAN 8X standard
available at the Fall Symposium. If you are planning on attending
the Symposium, be sure to stop in at the LT SIG suite.

41

STATUS REPORT, 1 May 1984

Software Engineering Standards Subcommittee

Technical Committee on Software Engineering

1EEE Computer Society

42

P kP W W W W WUPNNY=

U vubkbbbbs b

Newuuuw

WUWWN=O 000U bdW

CODDDDD
W ")+

»OMnN-=00

~OoVYONOCO S N 0 v b W N

)

SESS Status Report, 1 May 1984
TABLE OF CONTENTS

PURPOSE . . .

SUMMARY OF THIS YEAR S ACTIVITY TO DATE
Completed Events . . [
New Starts . .

APPROVED STANDARDS e e
ANS1/1EEE 729-1983. l1EEE Standard Glossary OFf
Software Engineering lTerminology .

ANSI/1EEE 730-1981, 1EEE Standard Far SoFtware .

Quality Assurance Plans. . .
1EEE Std 828-1983, 1EEE Standard For SoFtware
Configuration Management Plans.

ANS1/1EEE 829-1983, 1EEE Standard For SoFtware

Test Documentation
IEEE Std 830-1983., I1FEE Guide For Softuwcre
Requirements Specifications

APPROVED PROJECTS

P730-1, A Standard For Softmare Gualxtq A=surance

Plans.

P982, A Standard For SoFtware Relxabxlxtq
Measurement .o .
P983, A Guide For Software Gualxtg Assurance
P990, A Guide For The Use Of Ada® As A Prosaram
Design Language .

P1002, Software Engxneer;ng atandards Taxonomq
P1008 A Standard For Suftwsre Unit Testing

P1012 A Standard For Software Verification Plans

P1016 A Guide For Software Design Descriptions

P1028, A Standard For Software Reviews And Audits

TENTATIVE PROJECTS.
A Guide For Software Coanguratxon Manaqement
Plans .
A Standard Classx.lcat1on OF SoFtware Errors,
Faults, And Failures. .
A Standard For Software Productxvxtq Metrxcs .
A Guide For Third Party Software Acquisition
A Standard For Software Quality Metrics
A Standard For User Documentation .
SOFTWARE ENGINEERING STANDARDS SEMINARS
SOFTWARE ENGINEERING STANDARDS APPLICATION
WORKSHOPS .
OTHER ITEMS
Organizational Representatzon
Organizational Points Of Contact . . .
Other Standards Activities OFf Interest.
I1S0/TC-97 .
P610, Computer Dxctxonarq

ANS 10. 4 Guideline For Software Verincatxon ‘

And Validation .

43

E-) L] [A] w N ro bt 0o e

g b

15

16
17
17
18
18
19

<0
20
20

22

23
23
23

SESS Status Report, 1 May 1784

8 3 4 ASTM E 730o 24
8 4 SE3S Administration 24
8.4 .1 SESS @Quideo oL 29
8. 4.2 Long—-Range Plannine 29
8.5 Miscellaneous a9

Ada is a registered trademark of the United States Government
Lepartment of Defense (AJPO).

44

SESS Status Report, 1 May 1984

1.0 PURPOSE
The purpose of this memo is to provide the status of efforte on:

1. Approved standards.

n

Approved projects.
Tentative projects.

Software Engineering Seminars

o s w

Other items.

2.0 SUMMARY OF THIS YEAR'’'S ACTIVITY TO DATE

Significant events occuring to date in 1984 to date are summarized as
follows:

2.1 Completed Events

1. The IEEE Standards Board published IEEE Std 830-1984, IEEE
Guide to Software Requirements Specifications, on 10 Fedb 1983

r

The 1985 SESS Budget tequest was provided to J. Musa, TCSE
Chairperson, and to T.Fittman, CSC Chairperson, on 28 Feb 1985
by S. Gloss—Soler

3. The Charter and Organization of the SESS was composed by
A.Frank Ackerman., reviewed and tTevised by a group chaired by
Shirley Gloss-Soler, and submitted to a ballot of the SESS
Executive Board on 20 March 1984

4. The Software Engineering Technigques project has been cancelled

n
n

New Starts

1. The following new projects were initiated on 28 Feb 1984

45

SESS Status Report, 1 May 1984

a. A Standard for Software Quality Metrics
b. A Standard for User Documentation
c. A Guide for Third Party Software Acquisition

The Project Authorization Request for A Standard for Software
Reviews and Audits was approved by the IEEE Standards Office

at the 22 March 1984 Standards Board meeting. This was
subject to a change in the name of the project to "Guide" or
"Recommended Practice”. That directed change is currently

under appeal to the Standards Board

3.0 APPROVED STANDARDS.

(Copies of these Standards may be purchased using the order form
at the end of this report.)

These are summarized in Table 1.

Table 1
Approved Software Engineering Standards

ANSI1/1EEE Std 730-1981, 1EEE Standard for Scftware Quality

Assurance Plans

ANSI/IEEE Std 729-1983, IEEE Standard Glossary of Software

Engineering Terminolougy

ANSI/IEEE Std 829-1983, IEEE Standard for Software Test

Documentation

IEEE Std 828-1983, IEEE Standard for Software Configuration

Management Plans

IEEE Std 830-1984, 1EEE Guide to Software Requirements

Specifications

46

.1

n

SESS Status Report, 1 May 1984

ANSI1/1EEE 729-1983. 1IEEE Standard Glossary Of
Engineering Terminology

1. Chairperson is:

S. Gloss—-Soler
(315) 456-1240
1607 Craig St

Rome, NY 13440

2. The standard was approved by ANSI on 5 Aug 1983

3. Further action on the International area is being
abeyance pending completion of the efforts
establishment of I1S0O/TC-97/SC-22. (See 8.3. 1)

ANSI/IEEE 730-1981, IEEE Standard For Software Quality
Plans.

1. Chairperson is:

Fletcher J. Buckley
(609) 778-3606

RCA, Mail Stop 101-229
Moorestown, NJ 08057

r

Status is as follows:; the Standard was

a. Approved by ANSI on 21 July 1982.

Software

held
on

in
the

Assurance

b. Submitted to the Secretariat, 1S0/TC-176 by the Chairman,

USTAG on 17 March 1933.

c. Submitted to the Chief, US Delegate, I1S0/TC-97 on
1983.

3. ProJected milestones are as follows:

24 Feb

a. Approved by IS0O/TC-176 at their next meeting: March 1984.

b. Approved by ISO/TC-97: March 1984.

47

SESS Status Report, 1 May 1984

IEEE Std 828-1983, IEEE Standard For Software Configuration
Management Plans.

1. Chairperson is:

Rick Fredrick

(214) 995-2650

Texas Instruments, M. S. 8
PO Box 5012

‘Dallas, Texas 75067

2. The standard was approved by the IEEE Standards Board on 24
June 1983.

3. The results of the meeting with NPEC were approved by the IEEE
Standards Board on 1 Feb 1784,

ANSI/IEEE 829-1983, IEEE Standard For Software Test Documentation

1. Chairperson is:

David Gelperin

(612) 542-8620

2425 Zealand Ave., N.
Golden Valley, Minn. 55427

M

This standard was approved by ANSI on 17 August (9H3.
3. Further action on the International area 1is being held in

abeyance pending completion of the efforts en the
establishment of 1S0O/TC-97/35C-22. {See 8. 3. 1)

IEEE Std 830-1983, IEEE Guide For Software Requirements
Specifications

1. Chairperson is:
Al Davis

(602) 582-7069
GTE Network Systems

a8

SESS Status Report, 1 May 1984
2500 West Utopia Road
Phoenix, Az 85027

2. The Guide was approved by the IEEE Standards Board on 22 Sept
1983, and published on 5 Feb 19984.

3. Projected milestone is as follows:

a. To be adopted by ANSI: July 1984

4. 0 APPROVED PROJECTS

These are shown in Table 2.

Table 2
Approved Software Engineering Standards Projects

A Standard for Software Quality Assurance Plans (Revision) (P730-1)
A Standard for Software Reliability Measurement (P982)

A Guide for Software Quality Assurance (P983)

A Guide for the Use of Ada® as a PDL (P990)

Software Engineering Standards Taxonomy (P1002)

A Standard for Software Unit Tecsting (P1008)

A Standard for Software Verification Plans (P1012)

A Guide for Software Design Descriptions (P1016)

A Standard for Software Reviews and Audits (P1028)

#Ada is a registered trademark of the US Government, AJFO.

49

SESS Status Report, 1 May 1984

4 {1 P730-1, A Staendard For Software Quality Assurance Plans.

1. Chairperson is:

Fletcher J. Buckley
(609) 778-3606

RCA, Mail Stop 101-229
Moorestown, NJ 08057

¥

Co-Chairperson is:

Robert Felker

(215) 770-6675

Penn Power and Light

2 North 9th St

Allentown, Penn 18101

3. Current status is as follows

a. The balloting has been completed. All members of the
balloting group and coordination groups have been notified
of the results and offered an opportiunity to change their
ballot.

b. Results of the balloting effort are as follows:
(1) Number of ballots sent. 181
{2) Number of ballots returned: 154 (85. 1%)
f3) Affirmatives: 134 (73. 5% of returns)

(4) Number of wunresclved Negative Votes: 1 (0. 8% of
returns)

{(S5) Number of Abstentions: ? (5.9% of returns)

4. The revised steandard was provided to the IEEE Standards Roard
on 19 March 1984 for approval at their June 1984 meeting.

50

SESS Status Report, 1 May 19843

4 2 P982, A Standard For Software Reliability Measurement

1. Chairperson is:

Jim Dobbins

(703) 367-3912

MS 105-9013

IBM FSD

9500 Godwin Drive
Manassas, Va 22110

n

Co-chairpersons are:
a. Ted Workman
011 44 344 77319, ext 3647
Hewlett—-Packard Limited
Nine Mile Ride
Wokingham, Berks
England RG 11 3LL
b. Ray Leber
(2195) 962-4118
General Electric Co.
PO Box 8555, Room M2216, Bldag 100
Philadelphia, Pa 19101
3. The last meeting was held on 2-4 April 1934: Orlando, Fla
4, The schedule for forthcoming meetings is as follows:

a. October 1984, San Francisco., Calif.

S. Status is as follows:
A initial final draft has been produced.
6. Projected milestone is as follows:

Draft standard balloted: Jan 1985

51

SESS S5tatus Report, 1 May 1984

P983, A Guide For Software Quality Assurance

1. Chairperson is:

G. Tice

(503) 629-1310
Tektronix
PO Box 392
Wilsonville, Oregon 97070
2. Co-chairperson is:

A. K. Ackerman

(201) 981-79464

Bell Laboratories.,

8 Corporate Place
Piscataway, NJ 08854

3. The last meeting was held at Dallas Texas:

8-10 May 1984.

4. The schedule of forthcoming meetings is as follows:

a. Portland, Oregon: 28-30 Aug 1984

5. Status is as follows:

a. A Project Authorization Request was approved by

Standards Board at

b. The first complete draft was produced and distributed

comment on 2 Aug 1983.

6. Projected milestone is as follows:

Draft standard balloted: Sept 1984

4.3 P90,

the IEEE

their December 1932 meeting with the
addition of coordinction with 1S0/7C 97.

for

A Guide For The Use Of Ada®* As A Program Design Language

* Ada is a registered trademark of the United States Government Dept of

Defense (AJPO).

52

SESS Status Report, 1 May 1984

1. The chairperson is:

Bob Blasewit:

(609) 778-395%

RCA, MS 101-210

Moorestown, NJ 08057
2. The co-chairperson is:

Mark S. Gerhardt

(401) B847-8B000

Raytheon

PO Box 360

Portsmouth, R1 02871
3. The last meeting was held on 24-26 Aptril 1984, Atlanta., €Ga
4. The schedule of forthcoming meetings is as follows:

a. TBD

S. Status is as follows:

a. The US Government Dept of Defense Ada Joint ﬁrogram Office
(AJPO) provided permicssion to this organization to use
their trademarked term "Ada", in connection with ¢this
project, by telegram on 11 March 1983

b. A Project Authorization Request was approved by the IEEE
Standards Board at their 17 March 1983 meeting.

C. The scope and outline have been completed.

6. Projected milestones are as follows:
a. First complete draft: Dec 1983.

b. Draft standard balloted: Sept 1984.

4.5 P1002, Software Engineering Standards Taxonomy

1. Chairperson is:

Leonard Tripp

53

SESS Status Report, 1 May 1984

(206) 575-5390

Boeing Computer Services
MS 9C-24, PO Box 243446
Seattle, Washington, 98124

Co-Chairpersons are:

a.

Ralph Wachter

({301) 953-7100, Ext 7336
Johns Hopkins APL

11100 Johns Hopkins Road
Laurel, Maryland 20707

Perry Nuhn

(203) 375-0200 ext 2564

ITT Programming Technology Center
1000 Oronoque Lane

Stratford, Conn 06443

The last meeting was held on 23-25 April 1984 S5t. Louis,
Missouri.

The schedule of forthcoming meetings is as follouws:

a.

June/July: Washingtoen, DC.

Status i1s as follows:

The Project Authorization Request was approved by the IEEE
tandards Board on 24 June 1983.

Four items have been released for comment tuo 1interccted
parties:

(1) A Progect Plan, dated 28 March 1983

{(2) A Statement of Reruirements. dated 283 March 1983

(3) A bulletin requesting involvement in clarifying some
fundamental issuves in defining a Software Engineering

Standards Taxonomy.

(4) A bulletin requesting support in building a Taxonomy
Reference Library.

54

SESS Status Report, 1 May 1984

6. Projected milestones are as follows:
a. First complete draft: Sept 1984.

b. Draft standard balloted: April 1985.

4 6 P1008 A Standard For Software Unit Testing

1. Chairperson is:

David Gelperin

{612) 541-1431

Software Quality Engineering
2425 Zealand Ave., N.

Golden Valley, Minn 55427

2. Co-chairpersons are:

a. Hugh Spillane
(617) 299-3801
RCA, A/S, Mail Stop 18-2
PO Box 588
Burlington, Mass 01303

b. Pat Wilburn
(509) 376-4711
Westinghouse — Hanford Co.
M/S W/B-109

PO Box 1970
Richland, Washington 27452

3. The last meeting was 8-11 May 1984, Toronto, Canada
4. Schedule of forthcoming meetings is as follows:
a. 7-10 Aug 1984, Seattle, Washington.
b. 13-16 Nov 1984, Atlanta., GA.
9. The ProjJect Auvthorization Request was approved by the IEEE

Standards Board on 23 June 1983 The Scope and ovuvtline have
been completed.

55

R)

YOS Ciwt

v Rponrt, 1 May 1984

6. Projected milestones are as follows:
a. First complete draft: May 1984.

b. Draft standard balloted: June 1985.

P1012 A Standard For Software Verification Plans

1. Chairperson is:

Roger Fuyjii

(213) 831-0611 Ext 2420
Logicon, Inc.

255 West Fifth St.

San Pedro, Calif 90731

M

Co-Chairperson is:

Douglas McMann

(213) 535-4917

TRW Defense and Space Systems Group
Mail Stop M-1/1406

1 Space Park

Redondo Beach, Calif 90273

3. The last meeting was on 28 Feb -1 March 1984, Sen Francisco,

Cali¢
4 Schedule of forthcoming meetings is as follows:
a. 19-21 June 1984, New Orleans

b. 11-13 Sept 1984 Seattle

S. The Project Authorization Request was approved by

Standards Board on 22 Sept 1983, subject to coordination with

I1S0/T7C97.

5. Contact has been established with the ANG 10. 4 committee which
is working on a similiar topic for the American Nuclear

Society (see below).

56

SESS Status Report, 1 May 1984

P10146 A Guide For Software Design Descriptions

1. Chairperson is:

H. Jack Barnard

(303) 538-3976

Mail Stp 1D30

ATT, Inf. Sys. Labs
11900 North Pecos St.
Denver, Colorado, B0234

n

Co-chairperson is:

Jim Darling

(303) 673-7617

Storage Technology Corep
Mail Stop 93

2270 South 88th St.
Louisville, Co. 80028

3. The last meeting was held on 27-29 March 1984: Orlando, Fla.

4. Schedule of forthcoming meetings is as follows:
a. July 1984, Las Vegas, Nevada

b. September 1984, Toronto

5. The Project Authorization Request was approved by the

Standards Board, on 22 Sept 1983 subject to ccocordination with

130/T7C97. The Standards Board recommended that the title
changed from "Guide” to "Recommended Practice".

6. The second draft is scheduled to be distributed in October

1984

P1028, A Standard For Software Reviews And Audits

1. Chairperson 1is:

Charles P. Hollocker
(312) 979-5823

ATT

901 Rolling Drive
Lisle, I1 60532

57

SESS Status Report, 1 May 1984

2. Co-Chairperson is:
Tim Kasse
(602) 438B-3572
Mororola Microsystems
2900 South Diablo Way
Tempe, Arizona 85062

3. The last meeting was 28-29 Feb , 1 March 1984, San Francisco,
Calitéf.

4. Further meetings are projected as follows:

a. 9-8 June, Chicago.

b. 18-21 Sept 1984, Arlington, Va

3. Current status is that The Project Authorization Request has
been approved by the 1EEE Standards Office at the 22 March

1984 Standards Board meeting. This was subjyect to a change in
the name of the project to "Guide” or "Recommended Practice”.
That directed change is currently vunder appeal to the

Standards Board

5.0 TENTATIVE PROJECTS

These are shown in Table 3.

58

SESS Status Report, 1 May 1984

Table 3

Tentative Software Engineering Standards Progjects

Quide for Software Configuration Management

Standard Classification for Software Errors,
Faults and Failures

Standard for Software Productivity Metrics

Standard for Software Quality Metrics

Standard for User Documentation

Guide for Third Party Software Acquisition

.1 A Guide For Softuware Configuration Management Plans

M

Chairperson is:

Richard Van Tilburg

(714) 732-2307

Hughes Aircraft Corporction
Bldg 618, MS B209

PO Box 3310

Fullerton, Calif 92634

Co-Chairperson is:

David Schwartz

(602) 8469-3827

Intel Corp, MS: DZ 2-274
2402 West Beardsley Road
Phoenix, AZ 85027

Current status is that @ Project Authorization Request was
provided to the Secretary of the 1EEE Standards Board on 18
March 1984 by the Chairperson, CSC. It is projected that this
will be approved at the June meeting of the Standards Board.

The last meeting was held at 30-31 Jan 1984, Santa Barbara.
Calif

59

5

2

S.

SESS Status Report, 1 May 1984

Further meetings are projected as follows:
a. 16-19 May 1984, Phoenix, Az
b. Sept 1984, Wacshington, DC

C. Jan 1985, Austin, Texas

A Standard Classification Of Software Errors, fraults, And
Failures.

r

Chairperson is:

Dick Evans

{213) 536-3805

TRW, Mail Stop R4/2182

One Space Park

Redondo Beach, California 90728

Co-Chairperson is:
David Simkins

(607) 751-5346

IBM, FSD

M. C. 889 B P75

Owego. New York 13827

The last meeting was held on 7-8 Feb 1984, Redondo DBeach.,
Calif.

Further meetings are projected as follows:

a. 23-25 May, Toranto, Canada

b. 25-27 Sept 1984, Bethesda, Md.

c. Jan 1985, Los Angeles

d. April 1985 TBD

Current status is that a Project Autheorization Request was
provided to the Secretary of the IEEE Standards Board on 18

March 1984 by the Chairperson, CSC. It is projected that this
will be approved at the June meeting of the Standards Board.

60

SESS Status Report, 1 May 1984

A Standard For Software Productivity Metrics

n

Chairperson is:

Eleanor Antreassian

(201) 981-6479

Bell Labs

Room 3Bi21

& Corporate Place
Piscataway, New Jersey 08354

Co-Chairperson is:

Robert Sulgrove

{913) 445-1064

NCR Corp., WHQ-5E

1700 South Patterson Blvd

Dayton, Ohio 45479

The last meeting was held on 18-20 Jan 1984, Melborne, Fla.
Further meetings are projected as follows:

a. 2-4 May, Oregon.

b. Sept, Nashua, NH

Current status is that @ Proyject Auvthorization Request was
sent to the Chairperson of the Computer Standards Committee 1

AprTil 1984, It is projected that this will be approved at the
June meeting of the Steandards Board.

Guide For Third Party Software Acquisition

Chairperson is:

Philip C. Marriott
(513) 445-2198

NCR Corporation
World Hqs 4
Dayton., Ohio 45479

Co-Chairperson is:

Flo Harteloo

61

A

N

n

SESS Status Report, 1 May 1984

(602) 438-3068
Motorcla Microsystems
Mail Stop DW 212
2900 South Diablo Way
Tempe, Ariz 85282

The first meeting was held, 28 Febd 1984,

Standard For Software Quality Metrics

Chairperson is:

Dr. Norman F. Schneidewind
(408) 646-2719/3211)
Professor, Dept RSA/CS
Code 54SS

Naval Postgraduate School
Monterey, Calif 93940

The first meeting was held, 28 Feb 1984,

Standard For User Documentation

Chairperson is

Christopher Cooke

{301) 338-5652

Martin Marietta Aerospace
Mail Station 98

103 Cheasapeake Park Plaza
Raltimore, Md 21220

San Francisco, Calif.

San Francisco, Calif.

The first meeting was held 28 Feb 1984 at the Cathedral Hotel,

San Francisco, Calié¢.

The next meeting is scheduled for 11-12 June 1984, Naperville.

Illinios.

62

SESS Status Report,

6.0 SOFTWARE ENGINEERING STANDARDS SEMINARS

Table 4 shows the schedule of Software Engineering

1 May 19384

Seminars

by this subcommittee jointly with the IEEE Standards Board.

Table 4

ProJected Schedule of Software Engineering Seminars

Seminar Title

Date

Place

Software Quality Assurance

Software Test

Software Configuration
Management

Software Requirements

23-25 May 1984

4-6 July 1984

10-12 Sept 1984
14-16 Nov 1984
13-14 Sept 1984
22-23 Oct 1984
26-7 Nov 1984
9-10 Oct 1984

24-25 Dct 1984
28-29 Nov 1984

Spring 1985

San Francisco,
London, England
Washington, DC
San Francisco
Washington, DC
Texas

San Diesgo, CA
Atlantic City, NJ

Texas

San Diego, CA

For details on these

following:

S. Havranek
212 705-7907

seminare,

contact

Seminar Marketing Manager

IEEE Standards Board

345 East 47th St
New York,

New York 10017

63

should be

made with

Calif.

sponsored

the

SESS Status Report, 1 May 1984

7.0 SOFTWARE ENGINEERING STANDARDS APPLICATION WORKSHOPS

The Third Software Engineering Standards Application Workshop is
scheduled for 2-4 Oct 1984 at the Sherton-Palace Hotel, San Francisco.,
Calif.

Chairperson is:

Leonard Tripp

{206) 575-5390

Boeing Computer Services
MS 9C-70, PO Box 243446
Seattle, Washington, 98124

8. 0 OTHER 11EMS
8.1 O0Organizstional Representation

The following are the current representatives to this subcommittee from
standardece-making organizations:

1. American Institute of Aeronautice and Astronautics (AlAA)
Software Systems Technical Committee:

Robert R. Jones
(714)732-3847

Hughes Aircraft Corp.

PO Box 3310, MS 618/b218
Fullerton, Calif 92634

2. ANS/NPEC Joint Working Group

a. N. C. Farr
(812) 289-3000 ext 1495
Public Service Indiana
PO Box 190
New Washington, IN 471462

b. Jim Thomas (alternate)
(704) 373-4612
422 South Church St.
Charlotte, NC 28242

3. American Nuclear Society

Dr Gerald W. Main
Hanford Engineering Development Lab

64

SESS Status Report, 1 May

Westinghouse Hanford Co.
PO Box 1970
Richland, WA 99352

ANSI X , IEC/7C-83, 1S0/TC-97

E. Lohse
240 Radnor — Chester Road
Radnor, PA 19087

ANSI Z1:

John Milandin

(313) 994-7778

Bechtel Power Corp.

777 East Eisenhower Pkwy
Ann Arbor, Mich 48106

ASQC:

Art Ferlan

{603) 8B4-6711

Digital Equipment Corp.
M/S MK 1-2/615
Continental Blvd
Merrimack, NH 03054

ASTM

Peter E. Schilling, Chairman
ASTM Comm E-31 (CS)

(412) 337-2724

Alum. Co. of America

Alcoa Technical Center

Alcoa Center, PA 15069

DPMA:

William E. Perry

(305) B876-4292

Quality Assurance Institute
9222 Bay Point Drive
Orlando, Fla 32811

EDP Auditors Association:
Stanley R. Jarocki
Bankers Trust Co.

Four Albany Street
New York, NY 10015

65

1984

SESS Status Report, 1 May 1984

10. EIA:

H. Ronald Berlack
(603) 885-5170
Sanders Associates
M/S NCAL1-4222

95 Canal St
Nashua, NH 03061

11. IEEE Reliability Society

Dr. T. L. Regulinski
(602) 932-7321
Goodyear Aerospace
PO Box 295

Goodyear, Ariz 85338

12. National Security Industrial Association (NSIA)

Perry Nuhn

{203) 375-0200 ext 266

ITYT Programming Technolosgy Center
1000 Ornoque Lane

Stratford, Conn 06443

8.2 Organizational Points Of Contact
The following are organizational points of contact:
1. ADAPSO

Lauren Erling

(703) 522-5055
Suite 300

1300 North 17th St
Arlington, Va 22209

r

ANS X3 K1

Michael Landes, Chairperson

(703) 521-5280, ext 271

ANS X-3 K1, Program Documentation
Computer Science Corp.

400 Army—Navy Drive

Arlington, Va 22202

66

SESS Status Report, 1 May 1984

3. W.F. Michell
01-629-9000
British Standards Institution
2 Park St.
London W1A2BS, England

4, Dept of Defense

William P. LaPlant
(202) 695-0499
AF/ACDT, Rm 5C1084
The Pentagon
Washington, DC 20330

8.3 Other Standards Activities Of Interest

The activities listed below are not a part of the effort of this
Subcommittee. They are of direct interest, however, and so are
identified herein.

8.3.1 1S0/7C-97 - The following information is extracted from the
minutes of the 1EEE Standards Board of 24 June 1983.

Secretary’s Report: "At a meeting of the X3 Committee held in
Washington on June 2 and 3, the Committee , acting as the Technical
Advisory Group ¢to TC-97. asked IEEE to assume Tresponsibility as
Secretariat to act as the Technical Advisory Group for @ new Activity
within TC-97 on software engineering. ... "

Report of Standards Board actions: "7. Authorized lIEEE to assume the
Secretariat of a new ISO sub-committee {(tentatively identified as IS0
TC97/5C22) on Software Engineering. ”

8.3 2 P610, Computer Dictionary -
1. Chairperson is:

Jane Radat:

(619) 455-1330
Logicon, Inc

PO Box 80158

San Diego, Calif 92138

67

SESS Status Report, 1 May 1984

2. Th<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>