“THE HEAP” a|

FEBRUARY 1985 ISSUE

LANGUAGES AND TOOLS SIG

Table of Contents

Editor's Notes

VAX Performance & Coverage Analyzer
VAX DEC/Shell

VAX Language Sensitive Editor

VAX TPU Tutorial Handout

VAX Ada (%)

VAX Ada (*) Technical Summary

Languages and Tools SIG Wishlist

w o v w N

u7
51
103

* Ada is a trademark of the U.S. Department of Defense

Editor's Notes

As you may be aware, the Anaheim symposium was a momentous
one for the Languages and Tools SIG. This issue of "The Heap"
consists of articles and handouts relating to the many new pro-
ducts which DEC announced in our area of interest. Sessions at
Anaheim were jammed, and the presenters frequently ran out of
their handouts. I'm trying to publish as many of them as I can
get, but if there is a particular handout you didn't get and I
haven't provided the information you need in this issue, please
let me know and I'll try to get it out in a future issue.

In addition to the articles on DEC products, this issue of
"The Heap" contains the LTSIG's latest wishlist. Please take the
time to read it carefully, and respond according to the direc-
tions. The more responses we get, the greater the weight the
survey will have with DEC. Also, I hope to present the results
of this wishlist at the New Orleans Symposium, so it is important
that you return your responses quickly, if I am to have time to
tabulate the results and put together a presentation.

On other matters, I have been underwhelmed by the response
to my request for suggestions for a new name for the newsletter.
If you folks are willing to live with it we'll just put wup with
the connotations of "The Heap". I'm not proud. Otherwise, send
me your suggestions for a new name. Remember, I'll send an LTSIG
Mushroom to whoever submits the winning name. Speaking of the
Mushroom, in the interest of giving credit where credit is due,
Brian Tillman informs me that Derek Hatley of Lear Siegler is the
original designer of the Mushroom. The SIG is grateful to Derek
and Lear Siegler for permission to use the design. Also, I am
still working on putting together an issue relating to public
domain software in which the SIG has an interest. I can't write
the articles myself, however. Let me know if you can help out in
this area.

Finally, please don't get used to these huge newsletters.
Even if DECUS doesn't crack down on me about printing expenses,
I'm soon going to run out of articles. The US in DECUS stands
for User's Society, and I would prefer to get the articles for
the newsletter from users. If you have some experience with a
new language, or have had problems with a software tool, or what-
ever, that experience may be useful to others. Articles don't
have to be elaborate. If you think you might have something to
contribute, please let me know, and we can discuss any bothersome
logistics. My work phone is (215) 674-T7154, and my address is:

Alan L. Folsom, Jr.
Dept 431

Fischer & Porter Co.

E. County Line Road.
Warminster, Pa. 18974

VAX Performance & Coverage Analyzer

VAX Performance and Coverage Analyzer Version 1.0

With a keyword for industry in the 80's being "productivity",
computer programmers need not only languages and operating systems,
but tools to make their systems more productive. The VAX
Performance and Coverage Analyzer 1is a new productivity tool
running on VMS and MicrovMS which will help applications
programmers write code which will execute more efficiently.

What Is It?

The VAX Performance and Coverage Analyzer has two functions.
First, it can pinpoint execution bottlenecks and other performance
problems in application programs. Secondly, it provides test
coverage analysis by measuring what parts of a user program are
executed or not executed by a given set of test data. This product
is not a tool for the analysis of operating system performance or
for use as an aid in hardware resource planning.

How Does it Work?

The VAX Performance and Coverage Analyzer consists of two parts:
the Collector which gathers the performance or test coverage data
on the running user program and the Analyzer which later processes
and displays the collected data. The Collector gathers the
performance data and writes that information to a data file. Once
the data has been collected into a data file, the Analyzer can be
run using that data file as input. The Analyzer 1is a separate
program which reads that data file produced by the Collector and
presents the results as performance histograms or tabular displays.

Both the Collector and the Analyzer are fully symboblic and use the
DEBUG Symbol Table (DST) information in the user program to access
the symbolic names of program locations. Applications written in
any of the VMS 1languages which produce DST information can be
analyzed using the VAX Performance and Coverage Analyzer. These
languages include:

VAX Ada VAX Fortran
VAX Basic VAX Macro
VAX Bliss VAX Pascal
vaxX C VAX PL/1
VAX Cobol VAX RPG II

wWhat Kinds of Performance Data Can be Gathered?

The VAX Performance and Coverage Analyzer can gather and report the
following types of performance data:

o PC samples - The PC (Program Counter) of the user program can be
randomly sampled to determine what parts of the user program take
the most time during program execution.

o Execution counts - Execution counters can be set on specified
program locations or on classes of locations, such as the beginning
of every routine or on every line of a given routine.

o Test Coverage - The Collector can determine which code paths of a
program are executed for a specific set of test data and which are
not.

o Event markers - When collecting performance data, the .user may
wish to mark significant events in the execution of the program to
permit later filtering of the data. For example, an event may be
entering a routine in an application program.

o Page fault data - Information can be collected each time a page
fault occurs.

o System service counts - The Collector can determine the number of
times a user program calls each system service for analysis of
event-driven or real-time applications.

o Input/Output statistics - Data on a program's input and output
characteristics can be collected.

When is This Product Available?

The VAX Performance and Coverage Analyzer was announced at Fall
U.s. DECUS in Anaheim, CA. It will be ready for first shipments
to customers in the Spring of 1985.

For more information on this product, contact:

Susan Azibert

Product Manager

Digital Equipment Corp. (ZK02-3/008)
110 Spitbrook Rd.

Nashua, NH 03062

VAX DEC/Shell

VAX DEC/Shell Version 1.0

The DEC/Shell is a command language that provides an interface to
the VMS and MicroVMS operating systems, similar to the interface on
a UNIX (1) V7 system.

There are two major components of the DEC/Shell: the command 1line
interpreter and the Shell script language. When combined with
common UNIX wutilities, these components provide a program
development environment familiar to users experienced with the UNIX
V7 system.

NOTE: The DEC/Shell is not a UNIX system running on a VAX. The
DEC/Shell is a command line interpreter and programming language
based on the UNIX V7 Bourne Shell.

The DEC/Shell includes the following features:

o environment variables

o pipes

o user-definable search paths for command execution

O UNIX file name syntax

o input and output redirection to and from files

o commands and utilities similar to those found on a UNIX system

o string substitution

o structured constructs (such as while, if-then-else, case,
and for)

o modification of a command's environment

o a Shell run-time library

In addition, the DEC/Shell provides access to DCL commands and VMS
programs. This capability allows users familiar with the UNIX V7

system to take advantage of the VMS and MicroVMS operating systems
while working in a familiar programming environment.

1 UNIX is a trademark of AT &T Bell Laboratories

The DEC/Shell Environment

The DEC/Shell environment is very similar to the environment on a
UNIX V7 system. Input/output redirection, search paths, pipes,
environment variables, and other Bourne Shell features all appear
to the user as they do on a UNIX V7 system.

You can expand the DEC/Shell environment to take advantage of VMS
and MicroVMS features. Symbols and logical names can be exported
to or defined 1in the DEC/Shell. DCL commands and command
procedures can be executed from the DEC/Shell.

Invoking the DEC/Shell

You can invoke the DEC/Shell from DCL level, or you can make the
Shell your default command interpreter when you log in.

To invoke the DEC/Shell from DCL, you use the SPAWN command with
the /CLI qualifier as follows:

$ SPAWN/CLI=SHELL

This command creates a subprocess with the DEC/Shell instead of DCL
as the command interpreter. 1In this subprocess, you can perform
many of the tasks you would do on a UNIX V7 system.

To make the Shell your default command interpreter when you log in,
you can do one of two things:

l. Type /CLI=SHELL/NOCOMMAND after your username when you 1log
in to the system:

Username: BUNTHORNE/CLI=SHELL/NOCOMMAND
Password:

This action will override any other default command interpreter
that the system manager has specified for your account. The
/NOCOMMAND qualifier prevents the Shell from trying to execute
your DCL 1login command procedure (LOGIN.COM). Errors may
result if the DEC/Shell tries to execute a DCL command
procedure.

2. Ask your system manager to make the DEC/Shell the default
command interpreter for your account.

Once you have invoked the DEC/Shell, you can perform many of the
tasks that you would normally perform on a UNIX system. DEC/Shell
command syntax is, for the most part, the same as that for the
Bourne Shell used on the UNIX V7 system.

The DEC/Shell as a Programming Language

While the DEC/Shell can be used primarily as a command interpreter,
it 1is also a powerful programming language. Many of the control
structures used in the DEC/Shell are similar to those used in the C
language. Given the DEC/Shell script 1language, control-flow
constructs, and utilities, you may find that the DEC/Shell is an
adequate programming language for many of your needs.

DEC/Shell Utilities and Commands

The following is the list of commands and utilities provided by the

DEC/Shell:

awk join sh
basename kill sleep
cat lex sort
cd login tail
chmod logout tar
chown 1s tee
date mé4 test
dc mcr times
dcl mkdir touch
diff mv tr
diff3 od trap
echo pr true
ed ps tty
eval pwd umask
exec read uniqg
export readonly units
expr rm wait
false rmdir wC
find sed who
grep set yacc
Availability

The DEC/Shell begins shipment to customers in January 1985.

For more information on this product, contact:

Susan Azibert

Product Manager

Digital Equipment Corp. (ZK02-3/Q08)
110 Spitbrook Rd.

Nashua, NH 03062

VAX Language-—Sensitive Editor

ANNOUNCING THE VAX LANGUAGE-SENSITIVE EDITOR Version 1.0

SUMMARY

The VAX Language-Sensitive Editor is a multi-language, multi-window,
screen-oriented editor specifically designed to increase the
productivity of programmers in the development and maintenance
phases of the software development cycle.

The Editor is "language-sensitive” in that it provides you with
knowledge of the syntax of the following VAX languages:

VAX Ada (r) VAX COBOL VAX PASCAL
VAX BLISS-32 VAX FORTRAN VAX PL/I
VAX C

This knowledge enables both new and experienced programmers to
develop programs faster and more accurately through VvAX
language-specific construct completion, and error detection and
correction facilities.

The VAX Language-Sensitive Editor works in concert with these VAX
languages and the VAX Multi-language Symbolic Debugger to provide
you with a highly interactive, on-line program development
environment that facilitates the EDIT-COMPILE-DEBUG portion of the
program development cycle.

You can customize the environment by tailoring and expanding upon
the features and structures provided by the Editor. 1In addition,
you may extend the editing capabilities provided by the Editor by
calling user-written functions written in VAX TPU (Text Processing
Utility - reference VAX TPU Section of this article).

" LANGUAGE-SENSITIVE" FEATURES

For each of the above stated VAX languages, the VAX
Language-Sensitive Editor provides a set of formatted syntactic
models that fit together to form syntactically correct programs.
Within the models are strings that indicate places that require the
insertion of additional information.

The VAX Language-Sensitive Editor uses these syntactic model
definitions to complete partially entered language constructs -
automatically inserting required words and punctuation, and
indicating syntactic options, which are listed in a menu format.

VAX LANGUAGE-SENSITIVE EDITOR COMMANDS

You control the editing environment with an extensive set of
commands. Most often-used commands can be easily bound to keys to

enable quick and efficient programming. All commands are available
through "command mode".

COMMAND FEATURES include:

* Commands for language construct completion

* Screen manipulation commands

* Commands to invoke the appropriate VAX language compiler
* Command for compile-time error review

* Commands for compile-time error correction

* Commands for tailoring and saving the editing environment

* Commands for calling and executing VAX TPU procedures(refer to
VAX TPU section of this article)

* SPAWN command for suspending the editing session to spawn a
subprocess running the DCL command interpreter

* GOTO command to position the cursor at the indicated option
(options include FILE, BUFFER, SCREEN, PAGE, etc.)

* SEARCH command for locating specified characters or strings

* SUBSTITUTE command for replacing the text of one string with
another

* SHOW command to display characteristics and settings of several
options (including BUFFER, COMMAND, KEY, LANGUAGE, ALIAS)

VAX LANGUAGE INTERFACES

The VAX Language-Sensitive Editor interfaces to VAX 1languages to
provide you with an on-line, interactive program development
environment. That is, you can create and edit programs, compile,
and review and correct compile-time errors -- all within a single
session.

FEATURES:

* Use of language-specific syntactic models to facilitate source
code entry and minimize the occurence of syntax errors

* COMPILE command to perform compilations without 1leaving the
Editor, and, optionally, to review compilation errors upon
compile completion. You may specify DCL qualifiers such as
/DEBUG and /LIBRARY when invoking the compiler from the VAX
Language-Sensitive Editor. The compilation may be performed in
a BATCH job.

* REVIEW mode to review compilation errors upon compile
completion. The VAX Language-Sensitive Editor displays the
compile errors in one window, with the corresponding source code
displayed in a second window. For easy error correction, there

is an EXAMINE ERROR command to position the cursor at the point
in the source code where the compiler detected the error.

VAX MULTI-LANGUAGE SYMBOLIC DEBUGGER INTERFACE
The VAX Language-Sensitive Editor <can be invoked from the VAX
Multi-language Symbolic Debugger offering you the ability to make
source code corrections as they are found during a debugging
session.
FEATURES include:
* Notification if the file invoked by the editor is a different
version than that displayed in the VAX Symbolic Debugger
* Ability to specify the file and line number from which to start
the editing session with the default being the current source
displayed in the VAX Symbolic Debugger

* Choice of terminating activity directly from the editing session
or returing to the debugging session

USER INTERFACE

The LANGUAGE-SENSITIVE EDITOR offers an easy to use, flexible user
interface designed to meet varying user needs and preferences.

FEATURES include:

* Default EDT-like keypad layout
* Multiple windows, multiple buffers

* Choice of editing mode: OVERSTRIKE or INSERT

10

* Ability to bind any command (User-defined or those supplied by
the VAX Language-Sensitive Editor) to a key.

* On-line HELP facility for the VAX Language-Sensitive Editor

* VAX language-specific on-line HELP

USER-TAILORABLE FEATURES

With the VAX Language-Sensitive Editor, vyou can customize the
editing environment to meet your indiviual needs. These
user-defined environments can be saved for future editing sessions.

USER-TAILORABLE FEATURES include the ability to:
* Define a language name to represent a new set of user-defined
syntactic models

* Define (or redefine) Syntactic Models, COMMANDS to complement
those provided by the Editor

* pefine ALIASes that are names that represent pieces of text
* Define (or redefine) keybindings

Bind any command (including user-defined commands or combination
of commands) to a key

VAX TPU (TEXT PROCESSING UTILITY)

For more unique editing requirements, the VAX Language-Sensitive
Editor provides commands to call procedures written in VAX TPU (VAX
Text Processing Utility) which is available as part of the VAX
Language~-Sensitive Editor. VAX TPU has an easy to use high-level
procedural language which allows you to write functions not provided
by the VAX Language-Sensitive Editor to further customize the
editing environment. The VAX TPU language provides for looping and
conditionals to allow you to perform more powerful editing tasks.

VAX TPU LANGUAGE STATEMENTS include:

* The assignment statement

* Procedural statements (PROCEDURE - ENDPROCEDURE)

11

* Looping statements (LOOP - ENDLOOP)
* Conditional statements (IF - THEN - ELSE - ENDIF)
* Case statements (CASE - ENDCASE)

* Error statements (ONERROR - ENDONERROR)

AVAILABILITY

The VAX Language-Sensitive Editor availability will begin in the
Spring of 1985 for the full line of VAX and MicroVAX systems running
the VMS Version 4.x or the MicroVMS Version 4.x operating system.
The Editor will run on any VTlxx, VT2xx, or ANSI terminal.

For more information, contact:

Celeste LaRock

Digital Equipment Corporation

110 Spit Brook Rd. (ZK02-3/008)

Nashua, N.H. 03062
Telephone: (603) 881-2336

(R) Ada is a registered trademark of the U.S. Government (AJPO)

VMS, MicroVMS, VAX, and MicroVAX are trademarks of Digital Equipment
Corporation.

12

VAX TPU

TEXT PROCESSING

TUTORIAL

ADVANCED

TOPICS

13

UTILITY

THE TPU ENGINE

o HAS A COMPLETELY ‘SOFT' HUMAN INTERFACE

- NO DEFAULT KEY DEFINITIONS

o IS MORE THAN JUST AN EDITOR

- PROVIDES EDITING CAPABILITIES SUCH AS
TEXT INSERTION/DELETION

- PROVIDES SCREEN MANAGEMENT OF BUFFERED TEXT

o TWO DIGITAL SUPPLIED INTERFACES AVAILABLE

- EVE INTERFACE, designed by HUMAN FACTORS ENGINEERS
- EDT KEYPAD EMULATOR INTERFACE

14

TPU BUFFERS

o WORKSPACE IN WHICH FILES ARE EDITED

o CAN BE CREATED WITH OR WITHOUT AN ASSOCIATED FILE

o SPECIAL BUFFERS:

- MESSAGE BUFFER
* TPU MESSAGES
* BROADCAST MESSAGES

- SHOW BUFFER

o CAN BE MAPPED TO MULTIPLE WINDOWS, WHERE EACH WINDOW
CAN DISPLAY A DIFFERENT VIEW OF THE BUFFER

o MODIFIABLE BUFFER ATTRIBUTES

- TEXT FOR END OF BUFFER LABEL
- DIRECTION (FORWARD OR REVERSE)

- INSERT OR OVERSTRIKE EDITING

- MARGINS FOR FILL BUILT-IN (LEFT AND RIGHT)

- READ ONLY (NO WRITE), PERMANENT, OR SYSTEM
- TAB STOPS

- OUTPUT FILE NAME

15

TPU WINDOWS

o WINDOWS ARE AREAS OF THE SCREEN IN WHICH A
BUFFER'S TEXT APPEARS

buffer a := CREATE BUFFER ('A’, ‘user$disk:[]Jtest.doc’):
window a := CREATE WINDOW (12, 10. ON):
MAP (window a. buffer a);

o MODIFIABLE WINDOW ATTRIBUTES
- MULTIPLE VIDEO ATTRIBUTES IF YOUR TERMINAL
SUPPORTS THEM
- BLANK PADDING TO GIVE A ‘BOXED’ APPEARANCE
- SCROLLING REGION BOUNDARIES AND AMOUNT

- STATUS LINE TEXT. VIDEO AND WHETHER OR NOT
IT IS PRESENT

- TEXT DISPLAY (BLANK TABS, GRAPHIC TABS OR NO TRANSLATE)

o SPECIAL WINDOWS

- INFO WINDOW
* DISPLAYS ‘SHOW’' OR HELP INFORMATION

- WINDOW(S) TO WHICH MESSAGE BUFFER IS MAPPED
* DISPLAYS TPU MESSAGES AND BROADCAST MESSAGES

16

TPU and THE SCREEN

o THE TPU ENGINE CAN BE USED FROM MANY TYPES
OF INPUT DEVICES

o TPU SUPPORTS SCREEN-ORIENTED EDITING ON ANSI
STANDARD CRT’'S ONLY
o INVISIBLE EDITING IS POSSIBLE

- POSITION (window a) NOT EQUAL TO POSITION (buifer a)

o SCREEN UPDATES DO NOT OCCUR AFTER EVERY BUILT-IN

- FORCE UPDATING USING:
UPDATE (window a)

o MODIFIABLE SCREEN ATTRIBUTES

- TURN SCREEN UPDATING ON OR OFF

- TURN AUTO REPEAT ON OR OFF (USED TO
SLOW DOWN CURSOR. MINIMIZE FLYWHEELING)

- DISPLAY A WORKING (TIMER) MESSAGE
- RING BELL WHEN MESSAGES ARE DISPLAYED

17

TPU and THE SCREEN

o PROMPT AREA IS A DEFINABLE REGION WHICH IS
USED BY SEVERAL BUILT-INS TO DISPLAY PROMPTS

(Example: READ LINE)

- A SINGLE VIDEO ATTRIBUTE CAN BE APPLIED
- CAN OCCUPY MULTIPLE SCREEN LINES

- CAN BE DEFINED TO OVERLAP A WINDOW OR EXIST
AS A COMPLETELY SEPARATE SCREEN AREA

- CAN BE EMULATED USING A BUFFER AND WINDOW

* ADVANTAGES:
- CAN SAVE A LOG OF THE COMMANDS
- ALLOWS FOR EDITING OF PREVIOUS
COMMANDS AND REPLAY
* DISADVANTAGES:

- SLIGHTLY SLOWER, ESPECIALLY WHEN
USING VIDEO ATTRIBUTES

18

MARKERS

o REPRESENT A CHARACTER POSITION IN A BUFFER

o MOVE WITH THE ASSOCIATED CHARACTER

o CAN HAVE AN ASSOCIATED VIDEO ATTRIBUTE

o IF THE MARKER CHARACTER IS DELETED THEN
THE MARKER BECOMES ASSOCIATED WITH THE
NEXT CLOSEST CHARACTER

o MOST COMMON USES ARE AS BOOKMARKS OR
TEMPORARY PLACEHOLDERS

* markl := MARK (NONE)
* POSITION (markl)
* IF MARK (NONE) <> BEGINNING OF (CURRENT BUFFER)

19

RANGES

o REPRESENT THE TEXT BETWEEN AND INCLUDING TWO
MARKERS

o ERASING A RANGE ERASES THE CHARACTERS OF A RANGE
BUT DOES NOT REMOVE THE RANGE STRUCTURE

o CAN OVERLAP AND HAVE VIDEO ATTRIBUTES

o EXIST INDEPENDENTLY OF CURSOR MOTION

o MULTIPLE RANGES CAN BE ACTIVE AT ANY GIVEN TIME

20

SELECT RANGES

o SPECIAL RANGES WHICH :

- BEGIN WITH A SELECT MARK WITH AN ASSOCIATED
VIDEO ATTRIBUTE

- INCLUDE OR EXCLUDE CHARACTERS BASED ON CURSOR
POSITIONING

- END BY CREATING A SELECT RANGE

- CAN OVERLAP OTHER RANGES

o ONLY ONE SELECT RANGE ACTIVE AT ANY GIVEN TIME

21

(44

I [his 1s a test of rectanqular cut and paste

CoLUMNES CoLieca? COLUMNED

MUY U 11
RN RRRR 2RNR
B

llhﬁuatestofmctmlarmtmpaste
COLvoiEd JDLINE2 COLUBNES

MU 1 1
DRNR NI NNV
T

i Th 15 atest nf rectmgular cut and paste

coLmisi | COLLMNE]
11111111 11114111
22222722 22922022

_aay 31331113

PATTERNS

o A DATA TYPE WHICH USES THE |.& @ OPERATORS TO
CREATE A SIMPLE OR COMPLICATED TEXT ‘STRUCTURE’
USED AS AN ARGUMENT TO THE SEARCH BUILT-IN

o PATTERNS ARE RETURNED BY THE FOLLOWING BUILT-INS:

- ANY - REMAIN
- ARB - SCAN

- LINE BEGIN - SCANL
- LINE END - SPAN

- NOTANY - SPANL

o PATTERNS ARE ALSO RETURNED BY ASSIGNMENT STATEMENTS
WHICH USE THE |.& @ OPERATORS

Example
patl := ‘abc’ & (‘d’ | ‘e’)

23

PATTERNS

o SEARCH IS THE ONLY BUILT-IN THAT ACCEPTS A PATTERN
ARGUMENT

- CAN BE MATCHED IN EITHER THE FORWARD OR REVERSE
DIRECTION

o THREE TYPES OF SEARCH

- ANCHOR
* ANCHORS THE SEARCH AT THE CURRENT
CHARACTER POSITION

(‘a’|’'b’|’c’) & ‘d’ looks for ‘ad’, ‘bd’. ‘cd’

- SEEK SEARCH (DEFAULT)
* Looks for first possibility from current position
to end of buffer. then looks for second
possibility, and so on

* First match in string ‘cd bd ad’ is ‘ad’

- INCREMENTAL SEARCH
* Looks for all possibilities at current position
then moves to next character and looks for all
possibilities, and so on

* First match in string ‘cd bd ad’ is ‘cd’

~

24

PATTERN MATCHING EXAMPLE

o EDT WORD MOTION PATTERN
edt$v forward word :=

! Don‘t move off current character position

(ANCHOR &

! If on eol, then match that

((LINE END) |

! Leading spaces. on a word delimiter
((SPAN(" ‘)) & (ANY (edt$vword) | '))) |

! No leading spaces

! On a word delimiter. move one past it
(ANY (edt$v word)) |

! No leading spaces

! On a real word. go one beyond it
(SCAN (edt$v word)) |
! No leading spaces

! On last real word of line. match rest of line
REMAIN) &

! After matching. skip over trailing spaces if any

! except if match occurred at the eol.
! In this case, don’t skip over blanks

(LINE BEGIN | SPAN(") | “'):

search range := SEARCH (edt$v forward word, FORWARD):

25

SUBPROCESSING

o CREATE A TPU PROCESS AND SEND COMMANDS TO IT

- Example

pl := CREATE PROCESS (process buffer, ‘$ show quota’);
MAP (process window. process buifer):
SEND (‘$ show que sys$batch/all’, pl);
pl := 0;

UNMAP (process window):

- USEFUL FOR

* READING MAIL FROM WITHIN THE EDITOR

* GETTING THE STATUS OF BATCH JOBS WITHOUT
LEAVING THE EDITOR

* SAVING A LOG OF YOUR DCL SESSION IN A BUFFER
WHICH ALLOWS FOR SELECTION AND REPLAY OF
PREVIOUS COMMANDS OR GROUPS OF COMMANDS

26

SUBPROCESSING

o CREATE A VMS PROCESS WITH SPAWN AND ATTACH

- SPAWN SUSPENDS THE TPU PROCESS, CREATES A NEW
VMS SUBPROCESS AND ATTACHES YOU TO THE NEW PROCESS

- DCL ATTACH OR LOGOUT RETURNS YOU TO THE SUSPENDED
TPU PROCESS

- ATTACH (‘process name’) SUSPENDS THE CURRENT TPU
PROCESS AND SWITCHES CONTEXT TO THE PREVIOUSLY
CREATED PROCESS THAT YOU SPECIFY

- DCL SPAWN RETURNS YOU TO THE SUSPENDED TPU PROCESS

- USEFUL FOR
* USING DCL FROM OUTSIDE OF THE EDITOR WHILE
RETAINING THE CONTEXT OF THE EDITING SESSION
- WHEN CONTROL IS RETURNED

* SCREEN REFRESHED
* CURSOR POSITIONED TO PREVIOUSLY VISIBLE LOCATION

27

VARIABLES AND IDENTIFIERS

o GLOBAL AND LOCAL VARIABLES
- THERE IS NO EXPLICIT GLOBAL DECLARATION
- IF NOT DECLARED LOCAL., THEN BY DEFAULT THEY
BECOME GLOBAL

o THERE IS NO DECLARATION STATEMENT FOR DECLARING THE
‘TYPE’ OF THE VARIABLE

o VARIABLES ON THE LHS OF AN ASSIGNMENT STATEMENT ASSUME
A DATA TYPE BASED ON THE DATA TYPE OF THE RHS EXPRESSION

o MIXING OF DATA TYPES RESULTS IN AN ERROR MESSAGE
(NO IMPLICIT TYPE CONVERSION)

o EXAMPLES

- ! VALID: new offset has the data type integer
new offset := CURRENT OFFSET + 20

- ! INVALID: cannot mix strings with integers

bad variable := ‘hello’ + 10:

28

TPU PROCEDURES

o APPROXIMATELY 100 BUILT-IN PRIMITIVES

o TPU'S DEFAULT COMMAND LINE INTERFACE IS PROCEDURAL

- NO ABBREVIATIONS

- MUST INCLUDE ALL PUNCTUATION
(INCLUDING PARENTHESES AND COMMAS)

o PROCEDURES COMBINE TPU LANGUAGE STATEMENTS
WITH CALLS TO BUILT-INS

PROCEDURE display batch stats

dcl buffer := CREATE BUFFER (‘DCL BUFFER’);

dcl window := CREATE WINDOW (1. §. OFF):

SET (VIDEO. dcl window. REVERSE):

SET (PAD. dcl window, ON);

dcl process := CREATE PROCESS (dcl buffer,
‘$show que sys$batch/all’);

MAP (dcl window. dcl buffer):

DEFINE KEY (‘'UNMAP (dcl window)’, Fl1):

ENDPROCEDURE

29

WRITING TPU PROCEDURES

PROCEDURE identifier [([PARAMETER-LIST)]
[LOCAL-VARIABLE-LIST]

[ON ERROR-STATEMENT]

REPETITIVE-STATEMENTS: +

CONDITIONAL-STATEMENTS: | Any Combination
CASE-STATEMENTS: | Any Order
MISCELLANEOUS-STATEMENTS: --------- +

ENDPROCEDURE

30

ONERROR STATEMENTS

ON ERROR
STATEMENT-1;

STATEMENT-n:
ENDON ERROR

o ON ERROR STATEMENTS GAIN CONTROL WHENEVER ANY
BUILT-IN USED WITHIN THE PROCEDURE RETURNS A
WARNING OR ERROR STATUS

o IF THE STATUS IS WARNING. THEN YOU CAN USE THE
ON ERROR TO SUPPRESS THE DISPLAY OF A WARNING
MESSAGE OR TO SUBSTITUTE YOUR OWN MESSAGE

o IF THE STATUS IS AN ERROR, AN ERROR MESSAGE IS
DISPLAYED. BUT YOU CAN USE THE ON ERROR TO DO
ADDITIONAL PROCESSING

o COMMON STATEMENTS WHICH ARE USED TO CHANGE THE
FLOW OF CONTROL ARE:
RETURN
ABORT

o AFTER THE ON ERROR STATEMENT HAS FINISHED PROCESSING.
EXECUTION CONTINUES FROM THE POINT IN THE CODE
FOLLOWING THE STATEMENT WHICH CAUSED IT TO BE EXECUTED
(unless RETURN or ABORT is used)

31

WRITING TPU PROCEDURES

o IDENTATION (FORMATTING. SPACING) IS FREE STYLE

o SEMICOLONS SEPARATE STATEMENTS

o COMMENT STATEMENTS (which begin with !) CAN
APPEAR ANYWHERE

- WHEN ! IS SEEN, THE REST OF THE LINE IS IGNORED

o TO RETURN A RESULT

- RETURN value

- procedure name := value

32

REPETITIVE STATEMENTS

LOOP
EXITIF boolean-expression:
STATEMENT-1;

STATEMENT-n:
ENDLOOP:

- THE EXITIF STATEMENT CAN APPEAR ANYWHERE INSIDE
THE LOOP

- THE ON ERROR STATEMENT CAN SOMETIMES BE USED TO
EXIT FROM A LOOP PROVIDED THAT BUILT-INS WHICH
RETURN EITHER WARNING OR ERROR STATUS ARE CALLED
FROM INSIDE THE LOOP (Example: SEARCH)

33

CONDITIONAL STATEMENTS

IF boolean-expression
THEN

STATEMENT-1:

STATEMENT-n:
[ELSE
STATEMENT-1;

STATEMENT-n:]
ENDIF;

- TRUE IS INTEGER ZERO (0) (NO RESERVED WORD TRUE)

- FALSE IS INTEGER ONE (1) (NO RESERVED WORD FALSE)

34

EXAMPLE

PROCEDURE global search replace (str or pat. str2)

]

! This procedure performs a search through the current
! buffer and replaces a string or pattern by a string

LOCAL src range. replacement count:

! Return to caller if string not found
____ ONERROR

| msg text := FAO (‘Completed !UL replacement!%S’.
| replacement count);

| MESSAGE (msg text):

| RETURN;:

|___ ENDON ERROR

replacement count := 0:

! I.oop until eob found or string not found

____Loor

src range := SEARCH (str or pat, forward):
! Search returns a range if found

! Make sure it's not in a comment (call another routine
! to avoid triggering the error handler)
___IF isacomment <> 1

| THEN
| ! replace strl with str2
| ERASE (src range): ! Remove first string
| POSITION (END OF (src range)): ! Move to right place
| COPY TEXT (str2): ! Replace with second string
| replacement count := replacement count + 1:
|___ ENDIF:
_____ENDLOOP:
ENDPROCEDURE ! global search replace

35

CASE STATEMENTS

CASE case-selector FROM case-lower TO case-upper

- [case-constant-1]: STATEMENT-1;... STATEMENT-n:
[case-constant-2]: STATEMENT-1;... STATEMENT-n:

[case-constant-n]: STATEMENT-1.... STATEMENT-n:

[INRANGE]: STATEMENT-1:... STATEMENT-n:
[OUTRANGE]: STATEMENT-1:... STATEMENT-n;

ENDCASE:

EXAMPLE:

menu item := INT (READ_LINE (
‘Enter Menu Selection (1-5): °)):

CASE menu item FROM 1 TO §

[1] : EXECUTE (proc read mail);
[2] : SHOW (WINDOWS):
[3] : UNMAP (INFO WINDOW);
POSITION (BEGINNING OF (CURRENT BUFFER)):
[4] : EXECUTE (proc show batch);
[S] : proc help

[OUTRANGE] : MESSAGE ('Invalid menu selection’):
ENDCASE:

36

TPU KEY DEFINITIONS

o KEY DEFINITIONS ALLOW YOU TO CUSTOMIZE
THE KEYPAD INTERFACE

o COMBINE KEY MANIPULATION BUILT-INS TO DO
USEFUL THINGS SUCH AS EMULATION OF THE EDT
REPEAT COUNT

o KEY DEFINITION AND MANIPULATION COMMANDS

- DEFINE KEY (executable code. key-name. ‘comment’)
- LOOKUP KEY (key-name. PROGRAM or COMMENT)
- READ KEY

- UNDEFINE KEY (key-name)

- KEY NAME (key-name. [SHIFT KEY))

- LAST KEY

(See Handouts for examples)

37

WHAT IS A SECTION FILE

File mysection.tpu

|! Comments

|[PROCEDURE my proc]

l

| . > As many as needed
| .

|[ENDPROCEDURE

l

|[PROCEDURE my key definitions

|DEFINE KEY (‘proc rectangular cut’, F14):

l
| :
| :

|[ENDPROCEDURE

|
|[PROCEDURE TPUSINIT PROCEDURE

Initialize global variables

Set up buffers and windows

Look at the TPU command line to set up journaling,
NO WRITE buffers. and so on.

[ENDPROCEDURE

|! Include desired stand-alone executable statements
IMY KEY DEFINITIONS: ! Define the keys
|SET (TIMER. ON., °...Working...):

|

|SAVE (’sysS$login:mysection.gbl’);

I

|QUIT;

38

WHAT IS A SECTION FILE

o ALL PROCEDURES MUST BE DEFINED BEFORE ANY
EXECUTABLE STATEMENTS WHICH STAND ALONE

o THE SECTION IS CREATED BY USING THE SAVE BUILT-IN
- STORES COMPILED PROCEDURES. KEY DEFINITIONS,
AND SYMBOL TABLE

- MAKES START-UP SIGNIFICANTLY FASTER WHEN COMPARED
TO USING A COMMAND FILE

* USING THE EDT EMULATOR INITIALIZATION FILE
- AS A COMMAND FILE = > approximately 50 seconds
- AS A SECTION FILE = > approximately 4 seconds

39

DIFFERENCES BETWEEN EVE
AND THE EDT EMULATOR

| HISTORY: ALLOWS
| COMMAND RECALL

+ - - cccncsscccnns cccccsacccccncas
| I EDT | EVE

l | EMULATOR] INTERFACE

|

| GOAL | MIGRATION PATH FROM | MEASUREABLY

l | EDT: USER EXPECTED TO | EASY TO LEARN

| | DO OWN CUSTOMIZING | AND FAST TO USE

| | | + USE ADVANCED

| | | EDITING FEATURES

l

| KEYPAD | EDT KEYPAD | LK201 EDITING

| | | PLUS F10-F14

|

|COMMAND LINE| PARSER FOR 6 CMDS | 74 COMMANDS:

| | USING CTRL-Z ‘*’; | ALLOWS ACCESS TO
| | PF1/KP7->TPU Command: | TPU LANGUAGE WITH
| | ENTER TPU COMMANDS | THE TPU COMMAND
| | USING TPU SYNTAX |

| | DIRECTLY (with |

| | parens. underscores) |

|

| ADVANCED | ACCESS TO THEM USING | PREPROGRAMMED

| FEATURES | THE TPU COMMAND LINE | WITH SOME BOUND
| | PROMPT OR BY USER | TO KEYS AND

| | WRITTEN PROCEDURES | OTHERS ACCESSIBLE
| | | USING AN ENGLISH
| | | | LIKE LINE MODE

|

| COMMAND USES TPU PROMPT AREA | USES A BUFFER

| PROCESSING | AND A WINDOW TO
I

|

I

|
|
| | SAVE AN EDIT
I
I

40

THE EVE INTERFACE TO TPU

o GOALS:

- MEASURABLY EASY TO USE AND EASY TO LEARN

- ITERATIVE DESIGN PROCESS, STARTING WITH EXISTING
DATA ON TEXT EDITOR USAGE

o FEATURES:

- USES MULTIPLE FILES AND BUFFERS
- D